PRACTICAL ELES
SEPTEMBER 1981

BOOKLET

U.K. ISSUES

Introduction to Legal CB

Michael Tooley ва AND
David Whitfield ma.mse

* typical prapormance
* 984 MHz COMPARFD WITH 27 MHz
* what IS FM?
* FM VERASUS AM
* GFNFRATING FM
* BASIC CONFIGURATION
* USING CB

Eacictronics

TNTHIS ISSUE8

Unique in concept-the home computer that grows as you do! The Acorn Atom

Special features include * FULL SIZED KEYBOARD * ASSEMBLER AND BASIC * TOP QUALITY MOULDED CASE HIGH

* optional

The Acorn Atom is a definitive personal computer. Simple to build, simple to operate. A powerful, full facility computer with all the features you would expect.
Just connect the assembled computer to any domestic TV and power source and you are ready to begin. (Power requirement: 8 V at 800 mA). There is an ATOM power unit available - see the coupon below.

Free with every ATOM, kit or built, is a computer manual. The first section explains and teaches you BASIC, the language that most personal computers and the ATOM operate in. The instructions are simple and learning quickly becomes a pleasure. You'll soon be writing your own programs. The second section is a reference
manual giving a full description of the ATOM's facilities and how to use them. Both sections are fully illustrated with example programs.
The standard ATOM includes:
HARDWARE

- Full-sized QWERTY keyboard 6502

Microprocessor Rugged injection-moulded case 2 K RAM - 8 K HYPER-ROM - 23 integrated circuits and sockets Audio cassette interface UHF TV output Full assembly instructions
SOFTWARE
32-bit arithmetic $(\pm 2,000,000,000)$ High speed execution 43 standard/extended BASIC commands Variable length strings (up to 256 characters) String manipulation functions 27×32 bit integer variables - 27 additional arrays Random number function PUT and GET byte WAIT command for timing DO-UNTIL construction - Logical operators (AND, OR, EX-OR) Link to machine - code routines PLOT commands, DRAW and MOVE

The ATOM modular concept

The ATOM has been designed to grow with you. As you build confidence and knowledge you can add more components. For instance the next stage might be to increase the ROM and RAM on the basic ATOM from $8 \mathrm{~K}+2 \mathrm{~K}$ to $12 \mathrm{~K}+12 \mathrm{~K}$ respectively. This will give you a direct printer drive, floating point mathematics, scientific and trigonometric functions, high resolution graphics.

From there you can expand indefinitely. Acorn have produced an enormous range of compatible PCB's which can be added to your original computer. For instance:
A module to give red, green and blue colour signals Teletext VDU card (for Prestel and Ceefax information) An in-board connector for a communications loop interface - any number of ATOMs may be linked to each other or to a master system with mass storage/hard
 copy facility Floppy disk controller card. For details of these and other additions write to the address below.
ACORN
COACORN 4 a market Hill,
CAMBRIDGE CB2 3NJ Your ACORN ATOM may qualify as a business expense. To order complete the coupon below and post to Acorn Computer for delivery within 28 days. Return as received wthin 14 days for full money refund if not completely satisfied. All components are guaranteed with full service/repair facility available.

Quantity	Item		Item price inc. VAT $+p \& p$	TOTALS	To: Acorn Computer Ltd., 4a Market Hill, CAMBRIDGE CB2 3NJ I enclose cheque/postal order for $£$ \qquad Please debit my Access/Barclaycard No.		
	ATOM KIT - 8K ROM + 2 K RAM (MIN)		(13) $£ 140.00$				
	ATOM ASSEMBLED-8KROM + 2 KRAM (MIN)		(6) $£ 174.50$				
	ATOM KIT - 12 K ROM + 12 K RAM (MAX)		(6.) $£ 255.00$		Signature		
	ATOM ASSEMBLED-12KROM+12KRAM (MAX)		(16) $£ 289.50$				
	1 K RAM SETS		(16) $£ 11.22$		Name (Please print)		
	4K FLOATING POINT ROM (inc in 12 K Version)		(1) $£ 23.30$		Address		
	PRINTER DRIVE (inc in 12 K version)	6522 VIA	(4) $£ 10.35$				
		LS244 Buffer	(13) $£ 3.17$				
	MAINS POWER SUPPLY (1.3 amps)		(4) $£ 10.20$		Telephone No.Registered No: 1403810 . VAT No: 215400220		
			TOTAL			PE/9/81	

CONSTRUCTIONAL PROJECTS

REMOTE KEYBOARD by J. Lewis 24
Interface the layman to your computer
ANALOGUE FREQUENCY METER by Andy Flind 32
Up to 1 MHz measured proportionally at better than 2%
PE RANGER 27FM Part 1 by Michael Tooley B.A. and David Whitfield M.A., M.Sc. 40
Introduction to our CB rig
DRUM SYNTHESISER by P. Bailey 50
Provides a range of sounds from a pulse input
AUDIO AN ALYSER Part 2 by Michael Tooley B.A. and David Whitfield M.A., B.Sc. 68
Construction and use
GENERAL FEATURES
SPEECH RECOGNITION SYSTEM by Anthony Young 28
"How 'Katrina' got Big.Ears!"
THE ELECTRONIC CAR by Walter Musty 36
A look at present systems and future developments
SEMICONDUCTOR UPDATE by R. W. Coles 59
Featuring MC13002 GL-105XX IR-2E01
DIGITAL DESIGN Part 2 by Tom Gaskell.B.A. 60
Power supplies, inputs and outputs
MICROPROMPT 74Exchange of software and ideas
NEWS AND COMMENT
EDITORIAL 17
NEWS \& MARKET PLACE 18
Including Countdown and Points Arising
23
23
INDUSTRY NOTEBO
EXTRA CASE COUPON 27
Save yourself some money on another case PATENTS REVIEW 35
Improved PA
SPACEWATCH by Frank W. Hyde 48
Packed with information on extra-terrestrial activity
SPECIAL OFFER-GRAPHIC EQUALISER 49
To match our Audio Analyser project
A NEW GENERATION OF SOFTYS 73Mike Abbott takes a look at Softy 2OUR OCTOBER ISSUE WILL BE ON SALE FRIDAY, 11 SEPTEMBER 1981(for details of contents see page 31)

[^0]

Rechargeable Light oht first time.

If you've never built a kit before, Heathkit have some very pleasant surprises for you. Their kits are easy to build. Simple, but detailed instructions take you through every stage. Everything is included. Even the solder you need is there.

Follow the steps and you'll end up with a hand-crafted, well designed piece of equipment. Much better than shop bought, massproduced. Because you built it yourself.

Digital Clock

There's a great range of kits to start you off. From a
 buzzer alarm to a digital electronic clock, or a portable rechargeable fluorescent light to a portable VOM.

With all this going for you, you can count yourself very lucky you started off with Heathkit. Because all first time kit builders will get a free soldering iron and 10% discount off ten selected kits.
Buzzer Alarm

To: Heath Electronics (UK) Limited, Dept (PE9), Bristol Road, Gloucester GL2 6EE.
To start me off, please send me a copy of the Heathkit catalogue. I enclose 28p in stamps.

> Youbuild onourexperience HEATHK펼

* MPU Section accepts $24,28,40$ \& 64 pin DIL microprocessors
* Auxiliary Areas accept any $.3^{\prime \prime}$ or $.6^{\prime \prime} \mathrm{RAM}$, ROM or peripheral chip
* Power Bus Strips on all sides
* 5 incoming turret Power Terminals
* Component Support Bracket included
* Over 1400 contact points
* Alpha-Numeric column and row indexing
* Eurocard size ($160 \mathrm{~mm} \times 100 \mathrm{~mm}$)
* Slots onto all BIMBOARDS
* Non-Slip rubber backing
* Ideal for schools and colleges
* Long life, $<10 \mathrm{~m}$. ohms, nickel silver contacts

The PROFESSIONALS breadboard that BEGINNERS can start on
BOSS INDUSTRIAL MOULDINGS ITD
2 Herne Hill Rd, London SE24 0AU, England Telephone 01-737 2383

Telex 919693 Cables \& Telegrams: LITZEN LONDON SE24

Please send me MPUroBreadBoard(s) at $£ 18.00$
This price includes VAT \& PP, is applicable from March 1981 but please add 15% for Overseas Orders, make cheques/P.O. payable to BOSS Industrial Mouldings Ltd and allow 10 days for order processing and cheque clearance etc.
I enclose a cheque/P.O. to the value of $£$.
Name
Company
Address

Telephone Number

ERBOWASOMNC electronics

DEPT P.E. 48 JUNCTION ROAD, ARCHWAY, LONDON N195RD TELEPHONE 01-263 9493 01-263 9495100 YDS FROM ARCHWAY STATION \& 9 BUS ROUTES

YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPUTERS

£279 ${ }_{\text {Еєзооз }}$

Utilises 280, 12 K level II Basic, Integral Cassette Deck, UHF O/P, 16 K RAM, all TRS80 features. Simply plugs into meatures. Simply plugs into monitor or UHF TV. With V.U Meter

```
PARALLEL PRINTER INTERFACE INC. CABLE. CHROMASONICS PROGRAMABLE SOUND KIT SOUND KIT (FITTING EXTRA) LOWER CASE KIT (FITING EXTRA) COLOUR KIT (FITTING EXTRA) EXPANSION BOX WITHMITHOUT RS 232

\section*{APPLE}

\section*{APPLE II PLUS \\ Complete Systems \\ 48 K Machines \\ Oisk Drive with Controller \\ Disk Drive without Controller \\ Colour Card \\ £349.00 \\ £285.00 \\ P.O.A. \\ P.O.A. \\ Apple II plus Coppla}

Accessory Cards, Software
All Available - Phone for details.


\section*{PRINTERS}


EPSON MX80 £359
Dot-matrix printer with Pet graphics interface. Centronics parallel and serial. Pet and Apple compatible. True bidirectional, 80 cps
EPSON MX80 FT/1 £399
Dual single sheet frietion and tractor, 9 wire head, true descenders.

Interfaces and Cables for APPLE II, PET, TRS80, RS 232, UK 101, SHARP SUPERBOARD All Available EPSON MX80 FT/2 £449 An FT/1 with high resolution graphics. EPSON MX70 £259 Tractor feed, 7 wire head high resolution graphics. SEIKOSHA GP8OA £199
Dot matrix \(5 \times 7.80\) columns 30 cps graphics, double width characters. JUST PHONE FOR FURTHER DETAILS

\section*{MONITORS}

\section*{MON \(10^{\prime \prime}\) (illust) B\&W} \(9^{\prime \prime}\) Green Monitor Hitachi professional'monitors
9" Black \& White
\(12^{\prime \prime}\) Black \& White
\(£ 82.00\) £98.00
\(£ 99.95\)
£149.00

\section*{UK101- mown}

UK 101 Kit inc. 8K Memory \(£ 125\) Ready Built inc. 8K Memory £175 Complete in case 4 K Expansion \(8 \times 2114\) Memory Expansion Kit 8K 79.95 16K \(£ 106.95\) Printer Interface £29.95 Sound generator plus P10 Kit \(£ 29.95\) Cases
£24.50

\section*{NEW}

Chromasonics Sound Kit
£24.95
Colour Kit £84.95 Inc. Demo Tape \& Full
Documentation. Send for details.
\(\square\) VIC 20
Colours
24 total. 8 for characters, 8 for border, 16 for screen mixed as you wish. Basic colours on program keys are black, white, red, blue, light blue, green, yellow, and purple.
Sound
3 Tone Generator for music
"White Noise" Generator for language and sound effects.
Each Generator gives 3 octaves.
Reproduction is through tv speaker.
Character/Line Display
22 Characters by 23 lines
64 ASCII characters, pet-type graphic
character set.
Keyboard
DIN typewriter keyboard with 8 programmable
function possibilities via 4 special function keys.
Colours are directly addressable from the keyboard.
Peripherals/Accessories
VIC Datacassette with special interface to guarantee high reliability read/write quality (PET/CBM compatible).
VIC 1515 - Low cost VIC DOT Matrix printer VIC 1540 - Single disk unit with 170k Byte capacity. Price only \(£ 165\) cassette deck £34.95

\section*{TANTEL}

\section*{PRESTEL BY TANTEL}

COMMUNICATION AT YOUR FINGER TIPS FOR BUSINESS \& HOME. UP TO DATE INFO
180,000 pages of information on Travel, News, Investment, Holidays, Hotels Etc., Etc.

\section*{£170}

TANTEL IS POST OFFICE APPROVED. SEND FOR DETAILS DEMONSTRATION AVAILABLE AT OUR SHOWROOM.

\footnotetext{
barclarcard
VISA
Please add VAT \(15 \%\) to all prices. Postage on computers, printers and cassette decks charged at cost, all other items, P\&P 30p. Place your order using your Access or Barclaycard (Min. tel order £5). Trade and export enquiries welcome. Official orders welcome
}

\section*{D.I.Y. KITS FOR SYNTHESISERS, SOUND EFFECTS}


\section*{P.E. MINISONIC MK2 SYNTHESISER} A portable mains operated miniature sound synthesiser with keyboard circuits. Although having slightly fewer facilitites than the large Formant synthesiser the functions offered by this design give it great scope and versatility. 3 Oct KBD \& GJ contacts needed.

Set of basic component kits lexcl.KBD R's \& tuning pots see list for options available) and PCBs (incl. layout charts) "Sound Design" booklet KIT 38-25 £80.14 Knobs, skts, swis

See our lis

\section*{P.E. \(1 \mathbf{2 8}\)-NOTE SEQUENCER}

Enables a voltage controlled synthesiser to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and thythmic pattern are externally variable. 4 Oct KBD and GI contacis needed.

Set of basic comps, PCBs and charts KIT 76-7 \(£ 35.56\) \(\begin{array}{lll}\text { Set of text photocopies } & \text { TEXT } 76 & £ 1.36 \\ \text { Kno } & \text { HW } 76 & £ 6.62\end{array}\)

\section*{P.E. 16-NOTE SEQUENCER}

Sequences of up to \(\mathbf{1 6}\) notes may be programmed by the panel controls and fed into most voltage controlled synthesisers Set of basic comps, PCBs and charts KIT 86-5 \(£ 32.10\) Set text photocoples
\(\begin{array}{rr}\text { TEXT } 86 & £ 1.84 \\ \text { HW } 86 & \text { £11.15 }\end{array}\)

\section*{P.E.STRING ENSEMBLE}

A multivolced
Set of basic comps, PC8s \(\&\) charts KIT 77-8
E109.72

\section*{ELEKTOR CHOROSYNTH}

A \(2 \frac{1}{2}\)-octave Chorus synthesiser with an amazing variety of sounds ranging from violin to cello and flute to clarinet amongs many others. Experienced constructors can readily extend the octave coverage. 3 Oct KBD and GJ contacts needed,

Basic comps, PCBs and charts
Text photocopy
KIT 100-8
TEXT 100
HW \(100 \quad 70\) D

\section*{ELEKTOR FORMANT SYNTHESISER}

A very sophisticated synthesiser for
Set of basic comps, PCBs (as publ.) KIT 66-14 \(\mathbf{C 2 5 5 . 4 5}\) Set of text photocopies TEXT \(66 \quad £ 7.83\) Knobs, skts, sw's

\section*{ELEKTOR DIGITAL REVERB UNIT}

A very advanced unit using sophisticated i.c. techniques instear of mechanical spring lines. The basic delay range of 241090 mS can be extended up to 450 mS using the extension unit. Further delays can be obtained using more extensions.
\(\begin{array}{llll}\text { Main unlt basic comps and PCB las publ.)KIT } & 78-3 & \mathbf{8 9 . 9 5} \\ \text { Extension unit comps and PCB } & \text { KIT } & 78-4 & £ 39.95\end{array}\) Extension unit comps and PCB KIT \(78-4 \quad\) E39.95 Text photocopy

\section*{ELEKTOR ANALOGUE REVERB}

Using i.c.s instead of spring-lines the main unit has a maximum delay of up to 100 mS , and the additional set extends this up to 200 ms . May be used in either mono or stereo mode.

Main unit basic component set KIT 83-4 \(\quad\) £29.23 Additional Delay basic components KIT 83-2 £20.07 PCB (as publ.) to hold both kits included in Kit \(83-4\) Text photocopy Knobs, skts, switch

\section*{ELEKTOR SEWAR}

For use with Elektor Analogue Reverb to give greater flex'bility to the revert effects.
\begin{tabular}{|c|c|c|}
\hline Basic comps. PCB (as publ.) & KIT 101-1 & £18.19 \\
\hline Text photocopy & TEXT 101 & 60p \\
\hline
\end{tabular}

Text photocopy

\section*{WE ALSO SELL COMPONENTS ASK FOR OUR LIST}

ADD: POST \& HANDLING
U.K. orders: Keyboards add \(\mathbf{\$ 2 . 7 0}\) each. Other goods: Under f 5 add 50 p. under \(£ 20\) add 75 p . over \(£ 20\) add \(£ 1\). Recommended insurance against postal mishaps: add 50p insurance must be added for credif card orders. N. 8. Elre, C.I. B.F.P.O and other countries are subject to higher export postage rates.

ASIC COMPONENTS SETS include all necessar asistors, capacitors, semiconductors, potentiometers and transformers. Hardware such as cases, sockets, knobs, keyboards, etc. are not included but most of hese may be bought separately. Fuller details of kits PCBs and parts are shown in our lists.

LAYOUT DIAGRAMS are supplied free with all PCBs unless "as published"


NEW KITS
EE 3-CHAN STEREO MIXER
Full level control on left and right of each channel, and with master output control and headphone monitor.
Basic comps, PCB \& chant
KIT 107-1
TEXT 108
Text photocopy
TEXT 108
HW 107

\section*{3-MICROPHONE STEREO MIXER}

Enables stereo live recordings to be made without the 'hole in the middte effect. Independent control of each microphone. \(\begin{array}{llr}\text { Basic comps, PCB \& chart } & \text { KIT } & 108-1 \\ \text { Text photocopy } & \text { © } 5.41 \\ & \text { TEXT } 108 & 55\end{array}\) \(\begin{array}{lrr}\text { Text photocopy } & \text { TEXT } 108 & 55 p \\ \text { Knobs, skts. \& sw's } & \text { HW- } 108 & \text { E2.55 }\end{array}\)

\section*{E.E. HEADPHONE AMPLIFIER}

For use with magnetic, ceramic or crystal pick-ups. tapedeck or uner, and for most headphones. Designed with RIAA equalisation.
Basic comps. PCB \& chart
Text photocopy
KIT 104-1
TEXT 104

Knobs, \& sockets

\section*{E.E. AUDIO EFFECTS UNIT}

A variable siren generator that can produce British \& American police sirens. Star Trek, Red Alert, heart-beat monitor sounds, etc. Basic comps. PCB \& chart KIT 105-1 §4.87 \(\begin{array}{lrr}\text { Text photocopy } & \text { TEXT } 105 & 65 p \\ \text { Knobs, skts \& switch } & \text { HW } 105 & \text { £1.91 }\end{array}\)

\section*{GUITAR PRACTISE AMPLIFIER}
A. 3 watt mains powered amplifier suitable for instrument practis or as a test gear monitor. Drives 8 or 15 ohm loudspeaker.
8asic comps, PCB \& chart KIT 106-1
E9.81 \(\begin{array}{lll}8 \text { asic comps, PCB \& chart } & \text { KIT } & 106-1 \\ \text { Text photocopy } & \text { E9.81 } \\ & \text { TEXT } 106 & 65 p\end{array}\) Text photocopy
\(\begin{array}{rr}\text { TEXT } 106 & 65 p \\ \text { HW } 106 & \text { £2.02 }\end{array}\)

\section*{SIGNAL TRACER \& GENERATOR}

Allows audio signals to be injected into circuits under test, and for racing their continuity. Includes frequency \& level controls. \(\begin{array}{lll}\text { Basic comps. PC8 \& Chart KIT 109-1 } & \text { E5.80 }\end{array}\) \(\begin{array}{lll}\text { Text photocopy } & \text { TEXT } 109 & 55 p \\ \text { Knots, skis, sw's \& probes } & \text { HW } 109 \text { ¢ }\end{array}\)
P.E. GUITAR SUSTAIN
\begin{tabular}{lll} 
Maintains the natural attack whilst extending note duration. \\
Basic comps, PCB \& chart & KIT \(75-1\) & E6.99 \\
Text photocopy & TEXT 75 & 38 p \\
Knobs \& sets. & HW75 & 91 p
\end{tabular}

\section*{P.E. AUTO-WAH UNIT}
\begin{tabular}{lrr} 
Automatically give Wah or Swell sounds with each note played. \\
Basic comps. PCB \& chart & KIT \(58-1\) & E10.11 \\
Text photocopy & TEXT 58 & 58 p \\
Knobs \& skts & HW58 & \(\mathbf{E 1 . 2 6}\)
\end{tabular}

\section*{ELEKTOR WAVEFORM CONVERTER}

Converts a saw-tooth waveform into sinewave, mark-space saw Basic comps PCB or square-wave with variable mark-space \(\begin{array}{lll}\text { Knobs, skis, sw's } & \text { HW } 67 \text { E4.23 }\end{array}\)

\section*{P.E. SWITCHED TONE TREBLE BOOST}
\begin{tabular}{lll} 
Provides switched selection of 4 preset tonal responses & \\
Basic comps, PCB \& chart & KIT 89-1 & E4.34 \\
Text photocopy & TEXT 89 & 78 p
\end{tabular} Text photocopy TEXT 89 78p

\section*{ELEKTOR RING MODULATOR}


\section*{PHONOSONICS}

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

\section*{ELEKTOR FUNNY TALKER}

Incorporates a ring modulator, chopper \& frequency modulator to produce fascinating sounds when used with speech \& music. \(\begin{array}{lll}\text { Basic comps. PCB (as publ.) KIT 99-1 } & \text { ¢9.60 }\end{array}\) Text photocopy
\(\begin{array}{rr}\text { TEXT } 99 & \text { 40p } \\ \text { HW } 99 & \mathbf{1 . 2 2}\end{array}\)

\section*{ELEKTOR FREQUENCY DOUBLER}

For use with guitars \& other electronle instruments to produce an output one octave higher than the input. Inputs and outputs may be mixed to give greater depth

Basic comps. PC8 (as publ)
Text photocopy
KIT 98-1 E5.48
Text photocopy TEXT 98 20p

\section*{P.E. SPLIT-PHASE TREMOLO}

A simple but effective substitute for a rotary cabinet. The output of an internal generator is phase-split and modulated by an inpu signat from an electronic gutar of other instrument. Outpu amplifudes, depth \& rate are variable. May be fed to one or two amplifiers.
\(\begin{array}{lrr}\text { Basic comps, PCB \& chart KIT } & 101-3 & \text { £17.68 } \\ \text { Text photocopy } & \text { TEXT } 102 & 65 p\end{array}\)
Text photocopy
\(\begin{array}{rrr}\text { TEXT } 102 & 65 p \\ \text { HW } 102 & £ 2.53\end{array}\)
P.E. MINISONIC WAVEFORM

\section*{CONVERTER}

A simple converter that modifles the Minisonic sawtooth waveform to produce triangle and sine outputs. ideally one should be used with each Minisonic VCO. KIT 96-1 £3.98 \(\begin{array}{lrr}8 \text { asic comps, PCB \& chart } & \text { KIT } 96-1 & \text { £3.98 } \\ \text { Knob, skts, switch } & \text { HW 96 } & \mathbf{9 9 p}\end{array}\)

\section*{P.E. GUITAR MULTIPROCESSOR}

An exiremely versatile sound processing unit capable of producing, for example, flanging, vibrato, reverb, fuzz and tremolo as well as other fascin
Basic comps, PCB \& charts (excl. SWs) KIT 85-5 \(\mathbf{~} 49.2\)
Set of text photocopies

\section*{P.E. PHASER}

An automatically controlled 6 -stage phasing unit with integra
osclilator Basic comps. PC8 \& chart KIT 88-1 \(\mathbf{1 1 0 . 9 1}\) 2-Notch extension. PC8 \& chart KIT 88-2 £6.36 Text photocopy
, skis, swit

\section*{ELEKTOR PHASING \& VIBRATO}
includes manual and automatic control over the rate of phasing \& vibrato. Slightly modified to also include a 2 -input mixer stage Set of basic comps. PCB \& chart KIT 70-2 \(\mathbf{E 2 1 . 6 7}\)
Text photocopy
TEXT 70 67p

\section*{P.E. GUITAR EFFECTS UNIT}

Modulates the attack, decay and filter characteristics of a slonal from most audio sources, produ ing 8 different switchable effect that can be further modified by manual controls.
Basic comps, PCB \& chart \(42-4\)

Basic comps, PCB \& chart
TEXT 42
28
Knobs \& skts HW 42 £1.85

\section*{P.E. GUITAR OVERDRIVE}

Sophisticated versatile fuzz unit incl. variable controls affecting the fuzz quality whilst retaining attack and decay, and also providing fittering. Usable with most electronic instruments. \(\begin{array}{lll}\text { Basic comps. PC8 \& chart KIT 56-3 } & \text { E11,22 }\end{array}\) \(\begin{array}{lrr}\text { Text photocopy } & \text { TEXT } 56 & 68 \rho \\ \text { Knobs \& } 5 \mathrm{k} \text { ts } & \text { HW } 56 & \text { £2.29 }\end{array}\)
P.E.SMOOTH FUZZ

\section*{Basic comps. PCB \& chart KIT 91-1 £6.52 Text photocopy TEXT 9955} Knobs \& skts HW 91 £1.22

\section*{ADD 15\% VAT} (or current rate if changed). Must be added to full total of kits, discount post \& handing on all U.K. orders. Does not apply to Exports. or photocopies.

> EXPORT ORDERS ARE WELCOME but to avoid payments must be cash-with-order, in Sterling by international Money Order or through an English Bank. To obtain list - Europe send 50 p, other countries şend £ \(\uparrow .00\).
> Note that we do not offer a C.O.D, service and that our terms are payment in advance.

\section*{AND OTHER PROJECTS} PHOTOGRAPHS in this advertisememe of the PE, proiects built from our kits and PCBs. The cases were built by aurselves and are not for sale, though a small selection of other cases is small selection of other cases is available.
LIST-Send stamped addressed envelope with all U.K. requests for free list giving fuller details of PCBs. kits and other components.
OVERSEAS enquiries for list Europesend 50 p: other countries-send \(\mathbf{E} 1,00\).

\section*{KIMBER-ALLEN KEYBOARDS AND CONTACTS}

KIMBER-ALLEN KEYBOARDS as required for many published projects. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C , the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust alumbinum frame. 3 Octave ( 37 notes) £25.50 \(\quad 4\) Octave ( 49 notes) \(\quad\) £32.25 5 Octave ( 61 notes) \(\mathbf{£ 3 9 . 7 5}\)

CONTACT ASSEMBLIES (gold-clad wire) - 1 required for each KBD note: Type GJ-SPCO 33p ea. Type GB-2 pr N/O 374p ea.

\section*{P.E. 6-CHANNEL MIXER}

A high specification stereo mixer with variable input impedances

> Basic comps \& PCB's

\section*{KIT 90} Extra 2 -channel set with PCB
KIT \(90-9 \quad £ 10.21\) Extra 2 -channel set with PCB
KIT \(90-9\)
£10.21 Set of Text photocoples TEXT \(90 \cdot \mathbf{£ 1 . 5 0}\) Knob, skis, sw's

\section*{RHYTHM GENERATORS}

Several available, including programmable 16 beat 64000 pattern, and pre-programmed 15 pattern using either M252 or M253 rhythm chips. A selection of effects instruments circuits is also available.

\section*{WIND \& RAIN EFFECTS}

\section*{UNIT}

A slightly modified version of the original P.E. unit. Basic comps, PCB \& chartKIT 28-1 \(£ 4.84\) Text photocopy TEXT 28 28p Knobs, skts, sw's HW 28 £1.65

\section*{P.E. ENVELOPE SHAPER}

\section*{WITH VCA}

Has an integral Voltage Controlled Amplifier, and has full manual control over the A.D.S.R. functions.

Basic comps, PC8 \& chart KIT 50-1 88.03
Text photocopy TEXT 50 58p
Knobs. skis HW50 £1.32

\section*{P.E. TRANSIENT}

\section*{GENERATOR}

An ADSR envelope shaper without VCA, and additionally providing Repeat-triggering enabling a synthesiser to be programmed for mandolin of banjo effects.

Basic comps. PC8 \& chart KIT 63-2 \(£ 7.62\) Text photocopy TEXT 63 58p

\section*{P.E. EXTERNAL-INPUT} SYNTHESISER-INTERFACE

Allows external inputs such as guitars. microphone etc., to be processed by synthesiser circuits.

Basic comps. PCB \& chart KIT 81-1 \(£ 3.90\) Knobs. sets

\section*{P.E. TUNING FORK}

Produces 84 switch-selected frequency-accurate tones with an LED monitor clearly dispłaying beatnote adjustments
\(\begin{array}{llr}\text { Set of basic comps. incl. power supply. } \\ \text { PCBs \& charts } & \text { KIT } 46-3 & \mathbf{2 3 . 3 2} \\ \text { Text photocopy } & \text { TEXT } 46 & 97 p \\ \text { Knobs, skts, sw's } & \text { HW } 46 & \mathbf{£ 2 . 8 9}\end{array}\)

\section*{P.E. TUNINGINDICATOR}

A simple octave frequency comparitor for use with synthesisers and other instruments where the full
versatilizy of KIT 46 is not required versatility of KIT 46 is not required.
\(\begin{array}{lrr}\text { Basic comps, PCB \& chart KIT 69-1 } & \mathbf{C 8 . 1 9} \\ \text { Text photocopy } & \text { TEXT } 69 & 580\end{array}\) Text photocopy TEXT 69 58p

PRICES ARE CORRECT AT TIME OF PRESS E. \& O. E. DELIVERY SUBJECTTO AVAILABILITY

\section*{DIGITAL EXPOSURE}

UNIT
Controls up to 750 watts in \(\frac{1}{2}\) second steps up to 10 minutes. with built-in audio alarm. Basic comps, PCBs KIT 93-3 \(\quad \mathbf{2 3 . 4 5}\) Text photocopy TEXT 93 £1.20 \(\begin{array}{lll}\text { Knobs, skts } & \text { HW } 93 & £ 2.48\end{array}\)

\section*{P.E. DISCOSTROBE}

A 4-channel light show controller giving a choice of sequential, random, or full strobe mode of operation.
Basic comps, PCB \& chart KIT 57-3
E19.37 Text photocopy TEXT \(57 \quad 78\) \(\begin{array}{lrr}\text { Text photocopy } & \text { TEXT } 57 \\ \text { Knobs, skts, sw's } & \text { HW } 57 & \text { £7.30 }\end{array}\)

\section*{P.E. CONSTANT DISPLAY FREQUENCY COUNTER}

A 4 -digit counter for 1 Hz to 99 kHz with 1 Hz sampling rate. Readout does not count visibly or flicker due to blanking.

Basic comps, PCB \& chartKIT 79-4 E31.61
Text photocopy TEXT 79 78p
Knobs, skts, sw's HW 79 £4.67

\section*{P.E. VOICE OPERATED} FADER
For automatically reducing music volume during talkover - particularly useful for discos.

Basic comps, PCB \& chart KIT 30-1 £4.37
\(\begin{array}{lrl}\text { Text photocopy } & \text { TEXT } 30 & \text { 28p } \\ \text { Skts } & \text { HW } 30 & 32 p\end{array}\)

\section*{P.E. DYNAMIC NOISE LIMITER}

Very effective stereo clrcuit for reducing the hiss found in most tape recordings.
\(\begin{array}{lrr}\text { Basic comps. PCB \& chart KIT 97-1 } & \mathbf{8 8 . 0 7} \\ \text { Text photocopy } & \text { TEXT } 97 & \mathbf{7 5 p}\end{array}\)
EXT 97

\section*{P.E. DYNAMIC RANGE}

LIMITER
Preset to automatically control sound output Basic comps. PCB \& charkKIT 62-1 \(\quad \mathbf{5} 51\) Skts HW 62 44p

\section*{ALL KITS INCLUDE SPECIALLY DESIGNED PRINTED CIRCUIT BOARDS}

MORE KITS AND COMPONENTS ARE IN OUR LISTS

\section*{Put your ideas in our box.}

Meet the Idea Box. The short est distance between idea and working prototype or one-of-akind instrument.

It's a great time-saver! You design the circuit. we provide the power supplies assembled and tested ... and the right case to house it all.

The Idea Box comes complete with three highly regulated low-ripple power supplies (fixed 5VDC@ 1A: + and -15VDC. variable.@0.5A). Plus your chorce of a solderless breadboard. a preetched pre-drilled PCB which emulates the hole connection of the solderiess breadboard's pattern.
or a blank foll board you can use for existing PCB designs. All. housed in our attractive. highimpact case ( \(4^{\prime \prime} \mathrm{H} \times 10^{\prime \prime} \mathrm{W} \times 7^{\prime \prime} \mathrm{D}\) ) complete with aluminum fron panel and hardware. Priced from ¢79.75

The Idea Box has the capacity for big ideas as well as small ones You can stack any of the three circuit cards. in any combination

So. before you tackle your next project. get a head start with a litle help from us have an Idea Box on hand. After all. good ideas shouldn't be kept wating


GLOBAL SPECIALTIES CORPORATION G.S.C. (UK) Limited, Dept. 50


For further information, and your FREE catalogue fill in this coupon NOW and return to:
G.S.C. (UK) Ltd., Dept. 50

Unit 1, Shire Hill Industrial Estate, Saffron Walden,
Essex CB11 3AQ.
NAME
ADDRESS \(\qquad\)

KITS As a special intro offer, kits come complete with aerial, mic. \& rechargeable batteries.

AS FEATURED IN THIS MONTH'S PE tre PE RANGER

CB rig has been designed to fit the new legal Home Office specification, and starts off as a hand held unit absolutely complete with aerial, mic., rechargeable battery pack etc.
\(\star\) Communicate with your family and friends from work, home, car etc.
\(\star\) British Manufactured for UK Market.
SPEC.
R.F. Power Output: (min) \(f\) Watt:

AF (internal speaker) \(\frac{1}{2}\) Wata
Modulation: FM: freq: \(27.6 \mathrm{MHz}-28 \mathrm{MHz}\) (CB Band) Capable of use on \(28 \mathrm{MHz} \cdot 29.5 \mathrm{MHz}\) (Amateur Band) No. of channels (max): 6.


RECOMMENDED EXTRAS: (PP free if ordered with rig)
Your Ranger comes with 2 channels. Extra channels (giving up to 6 max) \(£ 2.25\) (each) + 50p P.P.
Extra aerials for permanent fixing to car, bike, house roof or loft - these are specially manufactured high quality plastic covered \(5 / 8\) wave helical aerials with UHF screw plug \(\mathbf{5 3 . 9 5}+80 \mathrm{p}\) P.P.
\({ }^{* *}\) Please add \(15 \%\) VAT to entire order \({ }^{* *}\) SPECIAL INTRO. OFFER

NOTE: Kits are ex stock from Aug. 14th - If there is any delay, your order will be put in a strict queue - so order early. PHONE YOUR ACCESS or BARCLAYCARD ORDER IN FOR FAST SERVICE
MODUS SYSTEMS LTD. (Tel: 04626 74468/76392)
DEPT A.P., P.O. BOX 30, LETCHWORTH, HERTS, SG 6 3DQ


\section*{BIG EARS}

SPEECH
INPUT
FOR
YOUR
COMPUTER!


BIG EARS opens the door to direct man-machine communication. The system comprises analogue frequency separation filters, preamps and signal conversion, together with a quality microphone and extensive software.
Words, in any language, are stored as "voiceprints" by simply repeating them a few times in "learn" mode. Using keyword selection techniques, large vocabularles can be constructed.
Use BIG EARS as a front end for any application: data enquiry, robot control, starwars - the possibilities are unlimited.
BUILT, TESTED \& GUARANTEED ONLY -40 ! PRICE INCLUDES POSTAGE \& PACKING PLEASE ADD VAT AT 15\% PLEASE STTATE COMPUTER: UK101, SUPERBOARD, NASCOM2, PET, TRS80, ETC.

Please add VAT at \(15 \%\) to all prices
Barclay/Access orders accepted on telephone
WILLIAM
Dower House, Billericay Ro

SYSTEMS LEd Telephone: Brentwood (0277) 810244

\title{
CUBE MANIA - FREE OF CHARGE
}

With purchases totalling over \(\mathbf{1 1 7 . 5 0}\). Only on request at time of ordering. Offer cioses \(31 / 8 / 81\). Subject to availability

BECOME AN INSTANT MUSICIAN NO EXPERIENCE NECESSARY

The success story of 1981 . Hundreds sold already! As featured on "Tomorrow's World"
Create your own music with a VL-TONE. You combine the sound rhythm and tempo and the VL-I plays it back . . . beautifully! CASIO VL-TONE (VL-1)
Electronic Musical instrumen
and calculator.
(RRP C39.95) ONLY \(£ 35.95\)
VL-1 records and plays back up to 100 notes as a melody. One Key Play or Auto Play of Prano, Violin, Flute, Guitar and Fantasy, or create your own unique sounds with A.D.S.R. 10 build -In Auto R hythms and Tempo control. LCD digital readout of notes and tempo. Also a calculator, Battery powered with memory and program retention. Integral amplifer/speaker. Output jack. With Song Book. Dims: \(1+\times 11_{\frac{1}{4}} \times 3^{4}\).

\section*{CASIOTONE POLYPHONIC KEYBOARDS}

MT-30
With built-in amplifier and loudspeaker
(RRP \&115)
ONLY 195
22 instruments over 3 octaves. 4 -position sound memory Batiery or mains. \(\mathrm{O} / \mathrm{P}\) jack. Dims: \(24 \times 22 \div 6\}^{*} .61 \mathrm{~b}\).
*** NEW *** CASIOTONE CT-202
-Son of success... The two harpsichords demonsirate the Casiotone's talent for sparkling, crystal clear tones ... Even more impressive is the clav \(\therefore\). " (Melody Maker).

(RRP £325) ONLY £275
49 instruments over 4 octaves. 4 voice memory function with push button selectlon. 3 vibrato settings and sustain. Pitch control. \(\mathrm{O} / \mathrm{P}\) jacks. AC only, \(34 \times 34 \nmid \times 113 / 16^{\prime \prime}\). 15.8 lbs .

CT. 301


ONLY £245
14 instruments over 4 oclaves. \(8 \times 2\) rhythm accompaniments. Vibrato and delayed vibrato. Start/stop. synchro start, tempo control. tempo indicator, and rhythm volume. Pitch control. AC only. \(0 / \mathrm{P}\) jacks. \(4 \mathbf{4} \times 31 \times 12 \mathbf{j}^{2} .27 \mathrm{bs}\).
CT-401
(RRP £345)
ONLY £295
As 301 plus folowing: 16 rhythm accompaniments, will fill-in. Casio Auto Chord for one finger or auto accompaniment. Plays major, minor and 7 th chords with bass. Balance control, Dims as 301, Weight 28.216 l .


\section*{CASIO SCIENTIFICS}

Wth liquid erystal display for long battery life ** NEW MODELS ***
FX5 Junior scientific with fractions, square roots, cube roots, squares. reciprocals, pi, three pairs of parentheses etc.
RRP \(£ 10.95)\)
\(£ 8.95\)
FX7 Similar to above plus trigs. (RRP £12.9:) \(£ 10.95\)


NEW FX550. Top of the range


10 digits. 50 scientinc functions. One lietium battery lasts 13.000 hours. Auto power off facility. (RRP £21.95) \(£ 19.95\) FX100. \(10 \mathrm{~d}, 44 \mathrm{f}, 7.500\) hours from \(2 \times\) AA balleries
 FX81. 8d. \(30 \mathrm{f}, 4.000\) hours
FX81. \(8 \mathrm{dd} 30 \mathrm{O},\).4.000 hours
(2xAA) APO
(RRP £14.95) £12.9
SUPER SCIENTIFICS WITH TIME DIMENSION
FX8 100. 46r. Clock. calendar, alarm, hourly chimes, countdown alarm. stopwatch. \(\ddagger \times 2 \frac{1}{7} \times 5 t^{*}\)
(RRP £27.95) \(£ 24.95\)
FX6100. 39f. Hand held version without
£17.95
calendar
With APO and CASIO PROGRAMMABLES
\begin{tabular}{|c|}
\hline C2mins \\
\hline 호브․․․․ \\
\hline 듬ํํ․․ \\
\hline  \\
\hline -ramem \\
\hline
\end{tabular}


FX2700P. 8 +2 d , 50 . 38 functional steps. Wallet FXI80P. 10+2d, \(55 f\). 38 functional steps. 2 programs. Integrals, Regressional Analysis \(\frac{4}{} \times 3 \times 5 \mathbf{i}^{*}\) FX3500P. Wallet version. 61f. \(\qquad\)
SPECIAL OFFER while stocks last
FX502P+ Masterpack software kit ONLY £59.95 FXS02P Masterpack only. (RRP £17.95) \(£ 7.50\) to clear melody alarm clock calculators 7 models from
\(£ 14.95\)
BQ1100 Biorythm calculating alarm clock
\(£ 16.95\)
Digital Space Invader Game Calculators
from \(£ 10.95\)
SYMPHONIC ALARM CLOCK
MA-1


\section*{CASIO'S}

\section*{POWERFUL NEW PROGRAMMABLE THE VERSATILE FX602P (RRP £84.94) ONLY \(£ 74.95\)}

\section*{LCD alpha/numeric (dot matrix) scrolling display.}

Variable range of input capacity from 32 program seps with 88 independens memories \(t 0512\) steps with 22 memories.
Memory and program retention when switched off
Up to 10 pairs of unconditional jumps (GOTO). Manual Jump.
- Conditional jumps and count jumps.
- Up to 9 subroutines, up to 9 depths (levels).
- 50 built-in functlons, all usable in programs.
- 33 parentheses at 11 levels.
- An almost infinite number of programs can
optional FA-1 adapter. (Price £19.95).
Two lithium batteries last approx. 660 hours (continuous) with Auto Power
Off after approx. 6 minutes non-use.
Dims: \(9.6 \times 71 \times 141.2 \mathrm{~mm}\left(1 \times 2 \ddagger \times 5 t^{\prime \prime}\right)\), Wallet.

\section*{ATOM OWNERS LOOK OUT}

There are DODCEMS about!
Dodgems is just one of the brand new games packs from Acorn, the manufacturers of your Atom. You have to steer your car around the lanes collecting points. But bewarel There's a computer controlled There's a computer controlied
car programmed on a collision course. If you survive the game gets faster. Also in Games Pack 6 are Simon and Amoeba.

GET THE BEST-FORGET THE REST
All Acornsoft games are designed and produced by the manufacturers of the Atom. Trust the manufacturer to get the very best out of his product. Realistic sound effects, great graphics and colour tool

GAMES PACK 1
Asteroids Shoot them before they crash into you. Lists ten 'best scores. Program 4K, graphics 6K.
Sub Hunt Command a destroyer tracking a submarine, find its position and destroy it. Program \(1 K\), graphics \(1 / 2 K\), needs floating-point.
Breakout Score points knock. ing bricks from wall. Ball has two changes of angle and speed. Program 3K, graphics

\section*{1-2K. COLOUR}

\section*{GAMES PACK 3}

Rat Trap Move your rats without colliding with the trails left. Entangle your opponent before he entangles youl Highspeed rat action replay. Program 4K, graphics 6K.
Lunar Lander Land a spacescraft on a lunar crater; altitude velocity, fuel and drift. Program \(1 K\), graphics \(1 / 2 K\).
Black Box Deduce the position of four invisible objects in the Black Box by firing rays at Black Box by firing rays at
them. Program 4K, graphics \(1 / 2 K\).

\section*{GAMES PACK 4}

Star Trek Classic computer game; rid the universe of Klingons Short and longrange scans, galactic map, phasers, photon torpedoes, shilelds etc. Program \(5 K\), graphics \(2 K\).
Four Row Take turns in placing marbles on the board; the first to get a line of four wins. Program \(5 K\), graphics \(6 K\). COLOUR Space Attack Repel the invasions of earth and avoid being hit by the gunner ships. Becomes progressively harder with each
invasion. Program 3K, graphics -6K.
GAMES PACK 7
Green Things An alien life-form has invaded your space.craft; discover a way of destroying it with the weapons available on the ship Program 5K, grapnics 2K. COLOUR Ballistics Take turns in firing shells at the other player, taking into account the wind and shape of the hill, Program 3K, graphics 6K, needs floating-point.
Snake Grow yourself a snake by guiding it towards digits which it eats. Program 2K, graphics \(1 / 2 \mathrm{~K}\).

\section*{ORDER TODAY!}

Just send a cheque or money order. Only \(£ 11.50\) per pack including VAT and post and packing. State which packs you want. Or ring 0223316039 or \(01-9301614\) quoting your Access or Barclaycard number. Allow 14 days for delivery. Or if you think you can wait for more details just write to Acornsoft Limited, 4a Market Hill, Cambridge.
ACORNSAFT TAKE GAMES SERIOUSL.Y

\section*{GAMES PACK 5}

Invaders The most popular video game, with invaders, flying saucers, shelters, and full sound effects. Program 5K, graphics 6K.
Wumpus Wander in caves inhabited by the Wumpus. Find and shoot him before he eats you. Pits and bats make things harder. Program 2K, graphics \(1 / 2 \mathrm{~K}\) Reversi Reversi, or Othello played with counters that are black one side and white on the other; Program 3K, graphics \(1 / 2 \mathrm{~K}\). COLOUR


GAMES PACK 2
Dogfight Two-player game; each player controls a plane and tries to shoot down his opponent without crashing. Program 4K, graphics 6K.
Mastermind Guess the computer's code before the computer guesses yours; program 3 K , graphics \(1 / 2 \mathrm{~K}\). Zombie Land on Zombie island: try to lure all the zombies into the swamp. In desperation jump into hyper-space! Program 3K, graphics \(1 / 2 \mathrm{~K}\). COLOUR




\section*{\begin{tabular}{l}
0.0 \\
9. \\
00 \\
\hline 0
\end{tabular}}

\section*{EVERY DOOR} SHOULD HAVE ONE

Whatever kind of door you have, our New Electronic Combination Lock will enable you to open it easily but make things very difficult for unwelcome visitors. The unit, which comes complate with a 10 -way keypad, requires an easily remembered four digit code to be entered before the door can be
opened, while the intruder has over 5,000 combinations to choose from. The code can be easily opened, while the intruder has over 5,000 combinations to choose rom. The code can be easily
changed by means of a pre wired plug and a momentary or latched output version can be made. The kit has even more uses in a car where it may be feature is the Save 8 utton. This stores the combination number, enabling the car to be used by authorised persons such as garage personnel
without disclosing the code. he complete kit without disclosing the code. The complete kit
measures \(7 \times 6 \times 3 \mathrm{cms}\). deep and consumes a mere 40 uA when not in use. and will drive 25 V to
15 V \(\mathbf{1 0} 5\) \(15 \mathrm{~V}(750 \mathrm{~mA})\) solenoid or relay coil (not supplied) directly. So why not treat your door to a new lock
for ONLY \(£ 10.50\) and think zbout all the keys you can lose or forget withour ever locking

ARE YOU SITTING COMFORTABLY?
Our new TDR300K ouc. Dimmer K.
will ensure thet you are. 8ased on ou

\section*{K.
our
con-} highly surecessful TO300K touch con-
trolled dimmer kit. the TDR300K introlled dimmer kit. the TDR300K in-
corporates an infra red receiver, enablcorporates an infra, red receiver, enab-
ing the lamp brightmess to be varied and switched on or off by touch or remotol
by mesns of a small hand held transmitter. The complete kit, which in cludes easy to foltow instructions, will fit into a plaster depth box and the plastic front plate has no metal pads to
touch, ensuring complete safety. Even a touch, ensuring complete safety, Even a
neon is included to help you locate the switch in the dark.



For the more sthletic of you
the the TD300K Touchdim mer kin is still ayailabe an E8.50 and
 P\&P and \(15 \%\) VAT io total purchase

\section*{DISCO LIGHTING KITS}

\section*{Each unt has 4 chamnels frated tit KW at} vide sequencing effects, controlled manually or by an optional opto isolated audio input. DL1000K dircitonal sequence, speed of sequence and frequency of direction change being
variable by means of potentiometers. incorproates irol. DLZ1000K
A lower cost version of the channel sequence with speed variable by means of a preset pot. Outputs switched only at mains zero crossing points to
reduce radio hiterference to reduce radio hterierence to
minimum.
\(\mathbf{8 8 . 0 0}\) Optlon

\section*{MINI KITS}

Wese kits form useful subsystems whict. may be incorporated into larger designs or
used alone. Kits include PCB, short instructions and all components.
MKI TEMPERATURE CONTROLLER/ THERMOSTAT Uses LM3311 IC to sense temperature
\(\left(80^{\circ} \mathrm{C} m a x\right)\) and triac to switch \(\left(80^{\circ} \mathrm{C}\right.\) max) and riac to switch Meater. SOLID STATE RELAY Ideal for switching motors. lights, heaters.
etc. from logic. Opto-isolated with zero etc. from logic. Opto-isolated with zero Select the required triac from our
range. range.
MK3 BAR/DOT DISPLAY
Displays an analogui voltage on a linear io Displavs an analogua voltage on a linear 10
element LED display as a bar or single dot. element LED display as a bar or single dot.
Ideal for thermometers, level indicators, etc.
May be stacked to obtain 20 to 100 element \begin{tabular}{l} 
May be stacked to obtain 20 to 100 elemen \\
displays. Requires \(5-20 \mathrm{~V}\) supply. \\
\hline E4.75
\end{tabular} MKA PROPORTIONAL TEMPERATURE CONTROLLER
Based on a new zero voltage switch 1C, this
kit may be wired to form a burst fire' power controyler, wired to form a burtt fire power
enclosure temperature of an enclosure to be maintained within \(0.5^{\circ} \mathrm{C}\). Thermistor failure causes output to switch
off. Temperature range ambient to \(90^{\circ} \mathrm{C}\).
3 KW off. Temperature range
3 KW . MAINS TIMER
MK5 MIN
MK5 MAINS TIMER
Based on the ZNiO34E Timer IC thls kit will Based on the ZNIO34E Timer IC thls kit will
switch a mains load on for off) for a preset time from 20 minutes to 35 hours. Longer of
shorter periods may be realised by mino component changes. Maximum load
\(\mathbf{K W W}\). \(\quad \mathbf{E 4 . 5 0}\)
24 HOUR CLOCK/APPLIANCE TIMER KIT
Switches any appliance up to
KW on and off


IKW un and off at preset
times once per day. Kit con-
tains: AY-5-1230 IC. \(0.5^{\prime}\)
LED display, mains supply. display drivers. switches, structions.
CT 1000 K Basic Ktt
CT 1000 KB with white box \((56 / 131 \times 71 \mathrm{~mm})\) \(\begin{array}{lr}\text { Ready Builr } & £ 17.40 \\ & \mathbf{2 2 . 5 0}\end{array}\)

\section*{TRIACS}


\section*{NEW RIDICULOUS LOW PRICE \\ FOR DVM(THERMOMETER KIT}

\section*{£13.50}

INTEGRATED CIRCUITS


Based on ICL7 106 OVM chip and a \(3 \frac{1}{\text { digit }}\)
liquid crystal display. This kit will form the liquid crystal display. This kit will form the basis of a digital multimeter - only a few additional switches and resistors required (details supplied) or make a sensitive digital thermometer \(\left(-50^{\circ}\right.\) to \(\left.150^{\circ} \mathrm{C}\right)\) reading to
\(0.1^{\circ} \mathrm{C}\). The basic kit has a sensitivity for full scale of 200 mV , automatic polarity and runs from a 9V PP3 battery.
At this price you can use this kit in place of moving coil meters in virtually any application from bathroom scales to bicycle speedometers - the possibilthles are endess

REMOTE CONTROL COMPONENTS AND KITS


LD27 1 IR Emitting dlode
SFH2O5 Photodiode Detector SL480 IC Pulse Amp. SL490 32 Command Encoder. MLrans 10-chat ML922 10-channei receive
+3 analogue outputs

ML.926 16-channet receiver 4
momentary binary outputs
ML928 16-channel receiver, 4
latched binary outputs latched binary outputs
ML929 16-channel receiver, 4 \(\mathbf{1 . 4 0}\) latched binary outputs \(\quad 1.40\) Clio-on Plastic Peflector for IR LEDs, increases range .20 oy control, providing a 2 -speed drive motor and three position latched steering system or a vehicle with momentary action steering and a third motor, eg. gun turred, winch, etc. Ouiputs also avallable for other facilities such as hom, turn indicators, headights. otc
To make things EVEN EASIER, we have designed eevaral new kitt :with a hand held plastic box. Requires a 9V Battery. MK7 - Infra Red RECEIVER. Single channel, rance approximetely 20 f . Mains powered 4.20
with a triac output to switch loads up to 500 W at 240 V ac, but can be modified for use with 5 to 15 Vdc supplies and transistor or relay outputs.
Special Price \({ }^{\text {MKK }}\) and MK7 together. Order as RC500K. MK8 - Coded Infra Red TRANSMITTER, Based on the SL490, the kit includes 2 IR LEDs,
12.50 measures only \(8 \times 2 \times 1.3 \mathrm{cms}\) and requires a 9 V (PP3) battery. 5.90
MKS -4 Way KEYBOARD. For use with the MK8 kit, to make a 4 -channel remote controt transmitter.
MK 10 - 16 -Way KEYBOARD. For use with the MKB kit, to
generate 16 different codes for decoding by the \begin{tabular}{l} 
generate 16 different codes for decoding by the \\
ML928 or ML926 receiver (MK12) Kit. \\
\hline . 40 \\
N
\end{tabular} MKII - 10 On-OHf Channel IR RECEIVER with 3 analogue
outputs \(0-10 \mathrm{~V}\) ) for controlling such functions as lamp brightness, volume, tone, etc. Other functions include an on/standby output and a toggle output, which may
be used for sound muting. Based on ML922 decoder IC. Includes its own mains supply.
IR 12.00
IT kit with 16 on/off outputs which with further interface circuitry, such as relays of triacs, will switch up to 16
items of equipment on or off remotely. Outputs mey be tems of equipment on or off remotely. Outputs may be latched or momentary, deoending
ML926 or ML928 is specified. Includ supply.
MK 13
MK 11
Sill analogue + and \(-(3)\), mule normalise analogue out:
and

\section*{VMOS POWER FETS D.I.L. I.C. SOCKETS}
\begin{tabular}{|c|c|c|c|c|}
\hline  & \({ }_{88 \mathrm{p}}^{58}\) &  & \[
\begin{aligned}
& 18 \\
& 48 \\
& 40 \\
& 40
\end{aligned}
\] &  \\
\hline
\end{tabular}



\section*{LN THElectronics}

ALL COMPDNENTS ARE BRAND NEW AND TO SPECIFICATION ADO SOD PBP and 154 VAT 70 TDTAL OVERSEAS

(PE9), 11 BOSTON ROAD
LONDON W7 3SJ. 01-579 9794/2842

\section*{All these advantages... NMMM \\ - Instant all-weather starting - Smoother running \\ - Continual peak performance - Longer battery \& plug life - Improved fuel consumption - Improved acceleration/top speed Extended energy storage \\ ..inkit form}

SPARKRITE \(X 5\) is a high performance. \(10 p\) quality inturtive discharge electronic ignuitionsystem deasignexl for the electrowics O.I Y. world It has been tried. tested and proven tolx interly reliable Assembly only takes 12 hours anclunstallation even less due to the patentert clip oni tasy fitting

The superbiechuncal-desigur of the: Sparkrite circut elinurnates problems of the contact lreaker There is no nusfire cher to contact breaker bounce which is ehinnuated electronically by a pulse' stippression circuit which prevents the tirit firmigy of the points bounce? obpen at heyh R P M Contact breaker tuirn is ehminnated by reducing the current by \(95^{\circ}\) ", of the. nerm

There is also a umicue' 'exfermeded elwall circuit whinch allows the' cooll a lenceror periox of time: tos store'its emearcty tepore chscharçuxg tos the plays The: unt melulens built in statuctumugg light. systemes func:ion light, and sucurity chameperver switc: Will work all revereunters


Fits all 12 v negative-earth vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISESEVERYTHING NEEDED Die pressed case: Rexady irrile ed, alummmin exiruded base and heat sumk. coil meuntury clips and accerssories All kit components are guaranteed for aper :ox of 2 years from date of purchase Fully illustrate:d asstmilily and mstallation mstructions are included


Roger Clark the world famous rally driver says"Sparkrite electronic ignition systems are the best you can buy."


HIGH PERFORMANCE
ELECTRONIC IGNITION
Elactronic: Design Agsociatos, Dopt. PE1179, 82 Bath St., Walcall, WS1 3DE

Electronics Design Associates, Dept. PE/9/81
82 Bath Street, Walsall, SW1 3DE. Phone: (0922) 614791
Name
Addres
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Phone your order with Access or Barclaycard} \\
\hline Inc. Y. .I. and PP & Quantity revo. \\
\hline X5KIT £16.95 & \\
\hline access dr bahclay caro no. & \\
\hline
\end{tabular}

I encluse cheque PO 's tor
E

\section*{Cheque No}

Send SAf if brochure unty requirel

\section*{ELEGTROVALUE}

BEST SELLERS
recmargeable cells by sanyo-cadnica size AA 99p. C 2.27. D 3.76. PP3 4.10 with tags: AA 1.06. C. 2.43.0 3.99 .
CHARGEASPF 4.75 . AA 4.95 , A C. D 7.60
Pustic B0XES PBI \(116 \times 77 \times 35 \mathrm{~mm} 62\)
Breadboards Euro 5.70 N . Veroblock 3.63
Bimboard 8.03 . Buzzer G-15V 80 .
 Mariabte Dilecon 100pf 208,500 pf 3.21 .
ELECTROIVIICS full range.
CONNECTORS f" jack pluy 32 p , skt 12 p 3.5 mm jack plug 17 p , skt 14 p .2 .5 mm 12p. OIP header 14 pin 38 p . 16 pin 43 p.
Ouick test mains block 5.25.
Fuse holders 20 mm panel 22 p . thassis 6 p
Heas sinks Power \(1.25^{\circ} \mathrm{CW}\) 2.85: linget type T03 25p. T0220 25 IMTEGRATED CIRCUITS - hundreds of types: 741 18p. 555 23p. CA3140E 40 LM380N 99a LM3914N 2.68. S566B 2.14. TCA965 1.20.
IC hoiders 8 pin \(9 p .1440\) pin 1 p per pin.
KMOBS. screw truings f" hom 16 g m
Louds speakers \(2.1 / 22^{8} 0164\)
Magneta res isiors from 1.60 N
Meters. panel \(80 \times 45 \mathrm{~mm} 50 \mathrm{u} \mathrm{A} \cdot 1 \mathrm{~A}\) es 4.80
Opta ECOS red 70. Yellow \(9 p\). qreen 11 p ; ultrabright 21 p oll colours.
LED drivers UAA170NAA 80 ea 1.52 .
POTENTIOMETERS carbon 20 mm dis \(100 \mathrm{R}-2 \mathrm{M} 2 \mathrm{lin}, 220 \mathrm{R}-4 \mathrm{M} 7 \log\) single 29 p . IK\(2 \mathrm{M} 2 \mathrm{lin} .4 \mathrm{~K} 7.2 \mathrm{M} 2 \log\) duals, ea 81 la . Add 51 p if required with swith Sliders mono 72p, stereo 1.18, bezel 34p.
 tenic chlonde lab grade 3.40. Pasitiv 20 photo resist 75 ml 1.65 . Eich ressist pen 105 silver paint 3 g 4.14 N . Rearys 12 v coll 3 PP 2 W 10 A contacts 2.90 . Resistors f W . \(\ddagger \mathrm{W}\). 1 W 5\% ea 2 p . Metal oxide TA5 \(2 \% 5\), Film MR25 5 .
14 p . BC182/212 lamily 9 p , BFR34A 63 p , BFTG5. ACA2N3055 70p, BCI07.9 lamily 44p. TIP 41 A/42A ea 45 p . TiP 2955 TTP 3055 ea 55 p
Solder 500ym 60/40 20SWG 7.30N.
HRONS Anter C. CCN. CX or \(\times 25\) ea 4.40 N . Ony 50 temperature controlled 11.50 N . ISO.TIP cordless with charger 24.00 N . 2. 40 .
 Miniature drills. 12 V dc TITAN 10.28 N . IITAN gald plated 4 PST 95p. 10PST 2.10.
Tools CK pliess 4.70 , culters 6.10 , skippers 4.95 .
Vero wiring system kit 4.42. wire 1.17
Computers Nascom 1 built E140
MASCOM 2 kit \(£ 295.00\) complete (less \(8 \times 4118\) 's \(£ 225.00 \mathrm{~N}\) ). P/S kit, 3 amp 32.50 N , 16K RAM kit 110.00 N .

KEEN BUYERS KEEN BUYERS! COMPREHENSIVE PRICE UST (Valid 3 miths.l CATALOGIE -81 aCCESS ANo BARCLAYCAROS ACCEPTED EVERYTHING BRANO NEW \& GUARANTEED HARO TO FINO ITEMS KEEN PRICES \& DISCOUNTS
SPECIAL OUANTITY OISCOUNTS
SPEEOY TURN ROUND on oroers NO PIP CHARGES ON UK. C.WO OROERS OVER £5.75. (Add handling charge of \(40 p\) if under) PLEASE AOO 15\% VAT TO TOTAL VALUE OF ALI OROERS.
Shop Hours
9 5.30:
Sats. 9-1 pm

ELECTROVALUE LTD. DEPT. PE/8, 28 SL. Judes Road Englefield Green. Egham. Surriey TW20 OHB. Phone Eghem 33603 (ST0 0704. London 87). Twlox 26475 Narthein Bianch (Personal Shoppers only) 880 8urnage Lane Burnage. Manchester MIS INA Phone (061) 4324945.

- About 2,000 items clearly listed - Profusely illustrated throughout. Large A-4 size pages.
Bargain list, order form and 2 coupons each worth 25 p if used as directed, all supplied free.
Price \(£ 1\), plus 50p for post, packing and insurance.
Send cheque or P.O. for \(£ 1.50\)
HOME RADIO Components LTD
Dept. PE, P.O. Box 92, 215 London Road, Mitcham, Surrey.

01-5435659

RADIO/TAPES BARGAINS
LW/MW/Mains/Battery Radios £9.00 each ( \(P \& P £ 1.00\) ) LW/MW Car Radios with speaker £ 9.00 each ( \(P \& P \in 1.00\) )
Small VHF/MW Battery Radios 87.00 each (P \& P 50p) 8-C60 High gain Cassettes

E2.00 (P \& P 50p)
5-C90 High gain Cassettes
E2.00 (P\&P 50p)
Stereo Headphones with lead and Jack Plug £4.50 (P\&P50p)
Maximum Postage Charge \(£ 1.00\).
Money refunded if not satisfied.

\section*{AERIAL AMPLIFIERS}

Aerial amplifiers can produce remarkable improvement on the picture and sound in fringe or difficult areas.
845 - For Mono or Colour this is tunable over complete UHF television band.
B11 - For stereo or standard VHF/FM radio.
B12-for VHF television band 1 \& 3. All amplifiers are complete and ready to use Battery type PP3 or 8 V to 18 V DC next to the set type fitting PRICES \(\mathbf{E} 6.70\) each.

Signal Injectors with (pre-set) variable AF, which emits RF harmonics into the UHF band. Protected up to 300 volts DC. Complete with leads £5.70 each

All Prices Include VAT at 15\%. P \& Pper Order 30p. S.A.E. for Leat/ets. Access Cards
ELECTRONIC MAILORDER LTD,
62 Bridge St, Ramsbottom, via Bury, Lancs. BLO 9AGP
Tel Rams (070 682) 3036.

\section*{П（1）limo Firnuits \\ Prime components～Low prices．}

All our microchips are at micro prices．Don＇t be fooled by low surplus，sub－spec or rebranded devices．All our parts are quaranteed new，first quality， factory prime，full spec devices．H is also our policy to offer you the available and these are fecome vailable and these are featured egulariv．Prices are exclusive of ＂Op and VAT－please refer to Ordering Information＂before ordering．Otticial orders from
schools，colleges，universities and schools，colleges，universti

\section*{7400}

\section*{－}


\section*{NEW，LOW，LOW PRICES ON MEMORIES}

Compare our prices before you buy elsewhere！All devices are brand new factory prime，full spec．and fully guaranteed！
All prices exclude P\＆P and VAT．
Please refer to Ordering Information before ordering． STATIC RAMS
\(2114 L 200 \mathrm{NS}\) \(\begin{array}{lll}1.24 & 25-99 & 100+ \\ 1.60 & 1.45 & 1.30 \\ 6.25 & 5.95 & 5.25\end{array}\)


SUPER SALEI

\section*{KEYBOARD
ENCODER ENCOAER
AY－5－2376
KR3600}



LINEAR I
AY3 1350
AY3 8910
709
723
781
181

\section*{}示


\section*{Which amplifier?}
1.L.P. Amplifiers now come in three basic types, each of which is available with or without heatsink. Having decided the system you want - home hi-fi (models HY30, 60 or 120 for example), super quality hi-fi with extra versatility (MOS120, MOS200) or Disco/PA/Guitar (HD120, HD200 or HD400) you will then decide whether amplifiers housed within their own heatsinks or plate amplifiers for bolting to a metal chassis will suit. With choice such as this and a brilliant new range of I.L.P. functional modules to choose from you now have the chance to build the finest audio system ever offered to the constructor.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{BIPOLAR S} & \multicolumn{7}{|l|}{Standard, with heatsinks} & \multicolumn{5}{|c|}{Without heatsinks} \\
\hline & & DIST & Rtiow & & & & & & & & & & \\
\hline \[
\begin{aligned}
& \text { MODEI } \\
& \text { MUMBER }
\end{aligned}
\] & \begin{tabular}{l}
dutput \\
POWER Walls rms
\end{tabular} & \[
\begin{gathered}
\text { T.M.O. } \\
T_{1 p} \\
=1 \text { ikHz }
\end{gathered}
\] & \(\qquad\) & SUPPLY voltage Typmax & SIZE & \[
\begin{array}{r}
W T \\
m m \\
\hline
\end{array}
\] & PRICE & vat & \[
\underset{\text { mUM }}{\text { MODEL }}
\] & \[
\begin{gathered}
\text { SI2E } \\
\text { in } \mathrm{mm}
\end{gathered}
\] & \[
\begin{gathered}
W T \\
\mathrm{oms}
\end{gathered}
\] & PRICE & vat \\
\hline HY30 & 15w14.88 & 0.015\% & <0.006\% & \(\pm 18 \pm 20\) & \(76 \times 68 \times 40\) & 240 & 17.29 & 11.09 & & & & & \\
\hline hY60 & \(30 \mathrm{w} / 4.8 \Omega\) & 0.015\% & <0.006\% & \(\pm 25 \pm 30\) & \(76 \times 68 \times 40\) & 240 & ¢8.33 & f1.25 & & & & & \\
\hline HY120 & \(60 \mathrm{w} 14.8 \Omega\) & 0.01\% & <0.006\% & \(\pm 35 \pm 40\) & \(120 \times 78 \times 40\) & 410 & E17.48 & 12.62 & HY120P & 120×26x40 & 215 & C15.50 & 12.33 \\
\hline hr200 & 120w14-88 & 0.01\% & <0.006\% & \(\pm 45 \pm 50\) & \(120 \times 78 \times 50\) & 515 & \$21.21 & [3.18 & HY200p & \(120 \times 26 \times 40\) & 215 & \$18.46 & ¢2.77 \\
\hline hY400 & 240w/4ת & 0.01\% & <0.006\% & \(\pm 45 \pm 50\) & \(120 \times 78 \times 100\) & 1025 & [31.03 & 4.77 & HY400P & \(120 \times 26 \times 70^{\circ}\) & 375 & [28.33 & ¢4.25 \\
\hline
\end{tabular}

Protection: Load line, momentary short circuit (typically 10 sec) Slew rate: \(15 \mathrm{~V} / \mathrm{\mu s}\) Rise lime: \(5 \mu \mathrm{~s}\)
S/N ratio: 100 db Frequency response ( \(-3 d 8\) : \(15 \mathrm{~Hz}-50 \mathrm{kHz}\)
input sensitivity: 500 mV ms input impedance: \(100 \mathrm{k} \Omega \quad\) Damping lactor: \(|8 \Omega / 100 \mathrm{~Hz}|>400\)

AMPLIFIER
WITH
HEAT SINK

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{HEAVY DUTY} & \multicolumn{3}{|l|}{with heatsinks} & & & & \multicolumn{6}{|c|}{Without heatsinks} \\
\hline H0120 & 60w/4.88 & 0.01\% & <0.006\% & \(\pm 35 \pm 40\) & \(120 \times 78 \times 50\) & 515 & [22.48 & 13.37 & HD120P & \(120 \times 26 \times 50\) & 265 & f19.84 & 1298 \\
\hline H0200 & 120wi4.88 & 0.01\% & <0.006\% & \(\pm 45 \pm 50\) & \(120 \times 78 \times 60\) & 620 & [27.38 & 44.11 & H0200P & \(120 \times 26 \times 50\) & 265 & [23.63 & ¢354 \\
\hline H0400 & 240w/4ת & 0.01\% & <0.006\% & \(\pm 45 \pm 50\) & \(120 \times 78 \times 100\) & 1025 & ¢38.63 & 15.79 & H040日P & 120x26×70 & 375 & ¢34.28 & ¢5.14 \\
\hline
\end{tabular}

Prorection: load line, PERMANENT SHORT CIRCUIT (ideal for discoigroup use should evidence of short circuit not be immediately apgarent).
The Heavy Outy range can claim additional output power devices and complementary protection circuitry with performance specs. as for standard types.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{MOSFET U} & \multicolumn{8}{|l|}{Ultrs.Fi, with heatsinks} & \multicolumn{4}{|l|}{Without heatsinks} \\
\hline MOS 120 & 60w/4.88 & <0.005\% & <0.006\% & \(\pm 45 \pm 50\) & \(120 \times 78 \times 40\) & 420 & ¢25.88 & 13.88 & MOS120P & \(120 \times 26 \times 40\) & 215 & ¢23.32 & ¢3.50 \\
\hline mos200 & 120 w 4.88 & <0.005\% & <0.006\% & \(\pm 55 \pm 60\) & \(120 \times 78 \times 80\) & 850 & f33.46 & \(\int 5.02\) & MOS200P & \(120 \times 26 \times 80\) & 420 & ¢28.53 & ¢4.28 \\
\hline MOS400 & 240w/4 \(\Omega\) & <0.005\% & <0.006\% & \(\pm 55 \pm 60\) & 120:78×100 & 1025 & \$45.39 & 66.81 & MOS400P & \(120 \times 26 \times 100\) & 525 & ¢38.91 & ¢5.84 \\
\hline
\end{tabular}

Protection: Able to cope with complea loads, without the need tor very special protection circuitry lfuses will sufficel.
Ultra-fi specifications:
Slew rafe: \(20 \mathrm{~V} / \mu \mathrm{s}\) Rise fime: \(3 \mu \mathrm{~s} \quad S / \mathrm{W}\) ratio: 100 db Frequéncy respanse \(/-3 d 8 /: 15 \mathrm{~Hz}-100 \mathrm{kHz}\) input sensitivity: 500 mV rms hpuf impedance: 100 kS Damping factor: \((8 \Omega(100 \mathrm{~Hz})>400\)

\section*{POWER SUPPLY UNITS}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{MOdEL No. For use with} & PRICE & VAT \\
\hline PSU30 & \begin{tabular}{l}
\(\pm 15 \mathrm{~V}\) combinations of HY6/66 series to a maximum of 100 mA or one HY67 \\
The following will also drive the HY6/66 series except HY67 which requires the PSU30.
\end{tabular} & \(£ 4.50\) & \(£ 0.68\) \\
\hline PSU36 & 1 or 2 HY 30 & ¢ 8.10 & £1.22 \\
\hline PSUSO & 1 or 2 HY60 & ¢ 10.94 & ¢ 1.64 \\
\hline PSU60 & \(1 \times\) HY120/HY120P/HD \(120 /\) HD 120 P & ¢13.04 & £1.96 \\
\hline PSU65 & \(1 \times \mathrm{MOS} 120 / 1 \times \mathrm{MOS} 120 \mathrm{P}\) & £13.32 & ¢ 2.00 \\
\hline PSU70 & 1 or 2 HY 120/HY 120P/HD120/HD120P & ¢15.92 & ¢2.39 \\
\hline PSU75 & 1 or 2 MOS \(120 / \mathrm{MOS} 120 \mathrm{P}\) & ¢16.20 & ¢2.43 \\
\hline PSU90 & \(1 \times\) HY200/HY200P/HD \(200 / \mathrm{HD} 200 \mathrm{P}\) & ¢ 16.20 & ¢2.43 \\
\hline PSU95 & \(1 \times\) MOS 200/MOS200P & ¢16.32 & ¢ 2.45 \\
\hline PSU180 & \(2 \times \mathrm{HY} 200 / \mathrm{HY} 200 \mathrm{P} / \mathrm{HD} 200 / \mathrm{MO} 200 \mathrm{P}\) or \(1 \times\) HY \(400 / 1 \times\) HY \(400 \mathrm{P} / \mathrm{HD} 400 / \mathrm{HD} 400 \mathrm{P}\) & ¢21.34 & ¢3.20 \\
\hline PSU185 & \begin{tabular}{l}
1 or 2 MOS \(200 /\) MOS \(200 \mathrm{P} / 1 \times\) MOS \(400 /\) \\
\(1 \times\) MOS 400 P
\end{tabular} & ¢21.46 & ¢3.22 \\
\hline
\end{tabular}

\section*{FP480} BRIDGING UNIT FOR DOUBLING POWER Designed specially by I.L.P. for use with any two power amplifiers of the same type to double the power outpu
obtained and will function with any I.L.P. power supply. In totally sealec case, size \(45 \times 50 \times 20 \mathrm{~mm}\), with edge connector. It thus becomes pessible to obt ain 480 watts rms (single channel) into \(8 \Omega\). Contributory distortion les: into \(8 \Omega\). Contr
than \(0.005 \%\).
Price: \([4.79+72 p\). V.A.T.
£ 10.94
£ 13.04 £13.32 £ 16.20 £ 16.20 £ 16.32

\section*{OFA NEW ERA O.}

\section*{Which modules?}

In launching eighteen different units all within amazingly compact cases to help make complete audio systems using I.L.P. power amplifiers, we bring the most exciting, the most versatile modular assembly scheme ever for constructors of all ages and experience. Study the list - see how these modules will combine to almost any audio project you fancy - and remember all I.L.P. modules are compatible with each other, they connect easily. Modules HY6 to HY 13 measure \(45 \times 20 \times 40 \mathrm{~mm}\). HY 66 to HY 77 measure \(90 \times 20 \times 40 \mathrm{~mm}\). They are so reliable that all I.L.P. modules carry a 5 year no quibble guarantee
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MODEL NO. & MODULE & DESCRIPTION/FACILITIES & CURRENT REQUIRED & PRICE & VAT & \\
\hline HY6 & MONO PRE AMP & \begin{tabular}{l}
Mic/Mag. Cartridge/Tuner/Tape/ \\
Aux + Volume/Bass/Treble
\end{tabular} & 10 mA & £6.44 & £0.97 & \\
\hline HY7 & MONO MIXER & To mix eight signals into one & 10 mA & £5.15 & ¢0.77 & \\
\hline HY8 & STEREO MIXER & Two channels, each mixing five signals into one & 10 mA & £6.25 & £0.94 & The modules are encapsulated and include latest design high quality \\
\hline HY9 & STEREO PRE AMP & Two channels mag. Cartridge/ Mic + Volume & 10 mA & \(£ 6.70\) & £1.01 & clip-on edge connectors. \\
\hline HY11 & MONO MIXER & \begin{tabular}{l}
To mix five signals into one \\
+ Bass/Treble controls
\end{tabular} & 10 mA & \(£ 7.05\) & £ 1.06 & \\
\hline *HY 12 & MONO PRE AMP & To mix two signals into one + Bass/Mid-range/Treble & 10 mA & £6.70 & £1.01 & For easy mounting we recommend \\
\hline * HY13 & MONO VU METER & Programmable gain/LED overload driver & 10 mA & £5.95 & £0.89 & B6 Mounting board for \\
\hline HY66 & STEREO PRE AMP & Mic/Mag. Cartridge/Tape/Tuner/Aux + Volume/Bass/Treble/Balance & 20 mA & £12.19 & \(£ 1.83\) & \[
\begin{aligned}
& \text { modules HY6 - HY13 } \\
& 78 p+12 p . \text { V.A.T. }
\end{aligned}
\] \\
\hline HY67 & STEREO HEADPHONE & Will drive headphones in the range of \(4 \Omega-2 K \Omega\) & 80 mA & £12.35 & £1.85 & B66 Mounting board for HY66 - HY77 \\
\hline HY68 & STEREO MIXER & Two channels, each mixing ten signals into one & 20 mA & \(£ 7.95\) & £1.19 & \(99 p+13 p\). V.A.T. \\
\hline HY69 & MONO PRE AMP & Two input channels of mag. Cartridge/ Mic + Mixing Nolume/Treble/Bass & 20 mA & £10.45 & £ 1.57 & All I.L.P. modules include \\
\hline HY71 & \begin{tabular}{l}
DUAL STEREO \\
PRE AMP
\end{tabular} & Four channels of mag. Cartridge/Mic + Volume & 20 mA & £10.75 & £1.61 & full connection data. \\
\hline *HY72 & VOICE OPERATED STEREO FADER & Depth/Delay & 20 mA & To be & ounced & \\
\hline * HY73 & GUITAR PRE AMP & Two Guitar (Bass/Lead) and Mic + separate Volume/Bass/Treble + Mix & 20 mA & £12.25 & ¢ \(1.84^{\circ}\) & \\
\hline tHY74 & STFREO MIXER & Two channels, each mixing five signals into one + Treble/Bass & 20 mA & £11.45 & £ 1.72 & \\
\hline +HY75 & STEREO PRE AMP & Two channels, each mixing two signals into one + Bass/Mid-range/Treble & 20 mA & £10.75 & £ 1.61 & \\
\hline tHY76 & \begin{tabular}{l}
STEREO \\
SWITCH MATRIX
\end{tabular} & Two channels, each switching one of four signals into one & 20 mA & To be & nounced & I.L.P. Products are of British \\
\hline +HY77 & STEREO VU METER DRIVER & Programmable gain/LED overload driver & 20 mA & ¢9.25 & £ 1.39 & Design and Manufacture. \\
\hline
\end{tabular}
- Ready August - may be ordered now
+Ready September - may be ordered now

All the above modules operate from \(\pm 15 \mathrm{~V}\) minimum \(10 \pm 30 \mathrm{~V}\) makrmum - higher voltages being accommodated by use of dropper resistors. HY67 can onty be used with the PSU 30 po wer supply unit.
encapsulated and include latest design high quality clip-on edge connectors.
or easy mounting we recommend B6 Mounting board for modules HY6 - HY13 \(78 p+12 p\). V.A.T.
B66 Mounting board for HY66-HY77
\(99 p+13 p\). V.A.T.

All I.L.P. modules include full connection data.
I.L.P. Products are of British Manufacture.

\section*{SEE OUR AD ALSO ON PAGE 64}

\section*{TO ORDER USING OUR FREEPOST FACILITY}

Fill in the coupon as shown. or write details on a separate sheet of paper, quoting the name and date of this journal By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to l.L.P. Electronics Ltd. It crossed and made payable to i.L.P. Electronics Lid. sending cash, it must be by registered post. To pay
C.O.D. please add £ 1 to TOTAL value of order. When C.O.D. please add £ 1 to JOTAL value of order. When
ordering. U.K. customers must include the appropriate ardering. U.K. cusi
V.A.T. as shown.
V.A.T. as shown.
PAYMENT MAY BE MADE BY ACCESS OR

PAYMENT MAY BE MADE BY A
BARCLAYCARD IF REQUIRED.

\section*{ALL WITH ILP'S 5 YEAR NO OUIRBLE GUABANTEE}

\section*{TO: L.L.P. ELECTRONICS LTD. ROPER CLOSE CANTERBURY CT2 7EP}

Please supply
\(\rightarrow\) Toal pucchase price E
1 enclose Cheque \(\square\) Postal Orders \(\square\) International Money Order \(\square\)
Please debit my Access/Barclaycard Account No.

\section*{NAME}

ADDRESS

Signature


\section*{PRACTICAL ELECTRONICS} CAR RADIO KIT (Constructors pack?


Mor to build 5 push button funing - Modern sidling design •All new unused componenti 6 woll output " Rady atched g punchad P.C.B. - Incorporates suppression circuits * Mow with tepe input sockat All the electronic components to build the radio, you supply only the wire and solder as featured in the Practical Electronics March issue. Features: Pre-set tuning with five push button options. black illuminated tuning scale, with matching rotary control knobs. one. combining on/off volume and tone-control, the other for manual tuning, eath set on wood simulated fascia The P.E. Traveller has a 6 watts output. neg ground and incorpor ates an integrated circuit output stage. a Mullard IF module LPII81 ceramic litter type, pre-aligned and assembled and a Bird pre-aligned push button tuning unit. The radio fits easily in or under dashboards.
Complete with instructions
f10.50
CONSTRUCTORS PACK 7A
plus \(\mathbf{5 2 . 0 0}\) p 8 p Suitable stainless steel fully retractable locking aerial and speaker (approx. \(6^{\prime \prime} \times 4^{\prime \prime}\) ) is \(\mathbf{C 1 . 9 5}\) per pack. available as a kit complete 1 䛫 p [1.15


30 + 30 WATT STEREO AMPLIFIER BUILT AND TESTED
Viscount IV unit in teak simulate cabinet silver finished rotary controls and pushbuttons with matching fascia, red mains indicator and stereo jack socket. Functions switch for mic magnetic and cerstal pickups. tape and auxiliary. Reat panel features luse holder. DIN speaker and input socket \(30+30\) watts. RMS \(60+60\) watts peak for use with 4 to 8 ohm speakers. Size \(14 \pi^{\prime \prime} \times 10^{\prime \prime}\) approx.

\section*{ready to plar \(£ 32.90\)} plus
\(53.80 \mathrm{p} \mathrm{\& p}\)

HI FI STEREO
AMPLIFIER MODULES
- Mullard LPI 183 built preamolifier suitable for ceramic and auxiliary inputs. \(\mathbf{~} 1.95\) plus \(70 p\) p\& p .
- Mullard LP:184 built preamplifier suitable for magnetic/ceramic and auxiliary inputs. \(\mathbf{f 4} 95\) plus \(80 p\) p \(\&\) p
Matchina I.C. \(10+10\) Steres Power amplifier kit. f3.95 plus \(\mathrm{f} 1.15 \mathrm{p} \& \mathrm{p}\)
- Matching power supply kit with transformer. \(\mathbf{£ 3 . 0 0}\) plus \(\mathbf{f 1 . 9 6} \mathrm{p}\) ap
- Matching set of 4 slider controls complete with knobs for bass.
treble and volumes \(\mathbf{~} 1.70\) plus 80 p p\&p.
Complete with application notes.


\section*{10+10 WATT} STEREO AMPLIFIER KIT
- Fe aturing latest SGS/ATES TDA 200610 watt output I.C.; with in-built thermal and short circuil protection. - Mullard Stereo Preamplififer module. - Attractive black vinyl finish cabinet. Size \(9 " \times 8 h^{\prime \prime} \times 3 h^{\prime \prime}\) approx. - Convers to a 20 wath Disco amplifier.

To complete you just supply connecting wire and solder. Features include din input sockets for ceramic cartridge, microphone, tape or tuner. Dutputs-lape. speakers and headphones. By the press of a bufton it transforms into a 20 watt mono disc amplifier with iwin deck mixing, The kit incorporates a Mullardins power amplifier as sembly kit and mains power supply. Also featured 4 slider level controls. rotary bass and treble controls and 6 push button switches. Silvee finish fascia panel with matching knobs and contrasting ready made black vinyl finish cabiner and ready made metal work. For further information instructions are availahte price 50 p . Free with kit

\section*{SPECIFICATIONS}

Suitable for 4 to 8 ohms speakers
Frequency responce \(\quad 40 \mathrm{~Hz}-20 \mathrm{KHz}\)
\(\begin{array}{ll}\text { Input Sensitivity P.U. } 150 \mathrm{mV} \text { Aux. } 200 \mathrm{mV} \text { Mic. } 1.5 \mathrm{mV} \\ \text { Tone controls } & \text { Bass } \pm 12 \mathrm{db} @ 60 \mathrm{~Hz}\end{array}\) Bass \(\pm 12 \mathrm{db} @ 60 \mathrm{~Hz}\) Treble \(\pm 12 \mathrm{db} @ 10 \mathrm{KHz}\) \(\begin{array}{ll}\text { Distortion } & -1 \% \text { typically @ } 4 \text { watts } \\ \text { Mains supply } & 220-250 \text { volis } 50 \mathrm{~Hz}\end{array}\) BSR chassis record deck with manual set down and return. complete with stereo ceramic antridge f 850 plus f 3.15 p\&
when purchased with amplifler
Available separately \(\mathbf{f 1 0 . 5 0}\) plus \(\mathbf{5 3 . 1 6} \mathrm{plap}\).


\section*{8" SPEAKER KIT \(28^{8 \prime \prime}\) aporox. twin cone domestic use} speakers \(£ 4.75\) per stereo pair plus \(f 1.70 \mathrm{p} \mathrm{\& p}\) when purchased with amplifier. Available separately \(\mathbf{f} \mathbf{5} .75\) plus \(\mathbf{\$ 1 . 7 0}\) pep

\section*{STEREO MAGNETIC PRE-AMP}

CONV ERSION KIT. All components including P.c.B. to convert your ceramic input on the \(10+10 \mathrm{amp}\) to magnetic. \(£ 2.00\) whe purchased with kit featured above. \(\mathbf{4} .00\) separately inc. p\&p.

\section*{-Tvic}

323 EDGWARE ROAD. LONDON W2
2IB HIGH STREET. ACTON W3 6NG ACTON: Mail Order only, No callers All PRICES INCLUDE VAT AT \(15 \%\) All itams eubject to availability. Price correct at \(1 / 8 / 81\) and zubject to change without notite.
For further information send for instructions \(20 p\) plus stamped addressed envelope.
MOTE: Goods despatched to mainand and M . Iretend only.
Persons under 16 years not served without parent's authorisation. R TVC ITD. reserve the right to aher, update or improve their products withoul notice.

\section*{HICH POWER MODULE KITS}

\section*{125 WATT MODEL \(£ 10.50\)} 200 WATT MODEL \(£ 14.95\) plus f 1.15 p\&ip

\section*{SPECIFICATIONS}

\author{
Operating voltage 0 OC
}

Operat
Loads
125 watt RMS
50.80 Max .

Frequency response measured at 100 watts 4.16 ohms Sensitivity for 100 watts
Typical T.H.D.@ 50 watts 4 ohms load 25 Hz -20K Kz Typical T.H.D. @ 50 watts 4 ohms load 000 mV @ \(4 \%\) Oimensions
\(205 \times 90\) and \(190 \times 36 \mathrm{~mm}\) The power amp hit is a module for high power applicationsdisco units, guitar amplifiers, public address systems and even high power domestic systems. The unit is protected agaihst short circuiting of the load and is sate in an open circuit condition. A large safely margin exists by use of generously rated components, result, a high powered rugged unit. The PC Board is backprinted. etched and ready to drill for ease of construction, and the aluminium chasis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.

\section*{ACCESSORIES}

125 W model
\(\varepsilon 1.00\)
plus 25 p plip.
ع1.25
Suitable LS coupling electrolytic for 200W madel

Suitable Mains Power Supply Unit for 125 W model

\section*{MULLARD LP1183} STEREO PREAMP
Original listed price over 55.00 . Suirable lor ceramic and auxiliary inpurs. when you


50 WATT MONO MIXER AMPLIFIER
Six individually mixed inputs for two pick ups (Cer. or Mag.), two moving toil microphones and two auxifiany for tape, tuner, organs etc. Exght slider contruls - six for level and two for master bass and treble, tour extra treble controls for mic and aux. inputs.
Power output 50 watt R.M S. (continuous) for use with 4 to 8 ohms spe akers. Finish: Attractively styled black vinyl case, with matching fascia and knobs. C
and ready for use.

\section*{\(£ 39.95\)}


\section*{100 WATT \\ MONO DISCO AMPLIFIER}


Brushed aluminium fascia and rotary controls
Size approx \(14^{\prime \prime} \times 4^{\prime \prime} \times 10 \%\). Five vertical slide controls. master volume tape leverl, mic level, deck level, PLUS INTER DECK FADER for pertect graduated change from record deck No. 1 to No. 2, or vice versa. Pre fade level controls (PRL) lets YOU hear nexi dise betore fading it in. VU meter monitors output level. \(\qquad\)
plus \(\mathrm{f4} .60\) plip

\section*{THE PROTECTION RACKET}

PROTECTION in this day and age has become a dirty word but don't knock it, we can provide some protection to you when buying by mail order from adverts in PE. Every so often you will find a statement in our ad. pages about the Mail Order Protection Scheme, it is in your interest to read and be aware of the protection this scheme provides. The protection is against advertisers that become insolvent or bankrupt, it does not cover classified ads. or orders placed as a result of receipt of a catalogue, so it is limited!

In some magazines you will find the protection further limited by a maximum amount being placed on payment of claims made against any one company and also on all claims made by readers in any one year. In such a case you could find yourself with no protection, especially in troubled times when a number of companies go to the wall. The protection offered by PE is not limited in this way but it is dependent on a claim being made in the specified manner and on the advertiser being declared bankrupt or insolvent, a
process which can take some time (claims against Metac, who last advertised in PE a year ago, have only recently been paid-but our readers did get their money back).

Unfortunately, the scheme is voluntary and not all publishers offer such protection. There is nothing to prevent the directors of an insolvent company, owing money to mail order buyers and to the magazines in which they advertised, from starting their own publication carrying mail order advertising and offering no protection scheme to readers. It's OK while the advertisers are solvent but what happens when one goes, owing mail order customers large sums?

\section*{VOLUNTARY SCHEME}

It could be argued that this problem has been caused by the very publications that provide readers with protection-PE included-because the publishers operate the scheme voluntarily. This was thought to be preferable to being forced by the Director General of Fair Trading to instigate a scheme under law. Because the scheme has remained voluntary not all
publishers operate it and therefore not all buyers are covered. If in doubt, ask the advertisement department of the publication concerned, they should be able to give full details of the scheme, including the procedure for making a claim, and should be able to show a relevant statement made in the publication.

Not only because we operate this scheme, but also because we like to get paid for the adverts that appear in PE, we vet our advertisers carefully and it is not unusual for us to refuse to carry advertising material from some companies. If you do have a valid complaint against an advertiser we can help sort it out-everyone makes mistakes occasionally, and even the biggest companies can flounder.

\section*{PRICE}

We regret to inform you that from next month the price of PE will be \(75 p\), this increase is due to rising costs. We are only too well aware of the effects of increasing prices on us all, we will do our best to ensure that PE represents good value for money.

Mike Kenward

\section*{EDITOR}

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR
Jasper Scott PRODUCTION EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY

\section*{ADVERTISEMENT MANAGER}

\author{
SECRETARY \\ AD. SALES EXEC. \\ CLASSIFIED MANAGER
}
D. W. B. Tilleard

Chriatine Pocknell \(\}\)
Alfred Tonge 01-2616819
Colin Brown 01-2615762

Editorial Offices:
Practical Electronics,
Westover House.
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 71191
We ragrat that lengthy technical enquiries cannot be answered over the telephone (see below).

Advertising Offices:
Practical Electronics Advertisements,
King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-261 6601

\section*{Technical Queries}

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.
Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

\section*{Back Numbers}

Copies of some of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington Hoiuse, 25 Lavington Street, London SE1 OPF, at \(95 p\) each including Inland/Overseas p\&p.

\section*{Binders}

Binders for PE are available from the same address as back numbers at \(£ 4.30\) each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

\section*{Subscriptions}

Copies of PE are available by post, inland or overseas, for \(£ 11.80\) per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

\title{
Edited by David Shortland \& Jasper Scott
}

\title{
CB:Licence Proposals
}

Further proposals regarding the British CB service were detailed by the Minister of State at the Home Office, Mr Timothy Raison in a speech to the Radio, Electrical and Television Retailers Association on July 9th. Extracts from Mr Raison's speech are printed below.
"I now turn to the arrangements for bringing the new service into operation. Users will need a licence which will define what equipment may be used, and how it may be operated. CB apparatus which is to be marketed in the United Kingdom will be required, by interference regulations made under section 10 of the Wireless Telegraphy Act 1949, to conform to the technical standards outlined in the relevant Home Office performance specifications and to be certified accordingly.

These specifications cover the minimum requirements necessary to minimise interference to other services without unduly increasing the cost of the CB apparatus. To assist retailers and users to identify this interference free equipment a standard mark of compliance is recommended in the specification.

If equipment is marketed in contravention of the regulations it will be open to the Home Secretary, by issuing a notice under section 12 of the 1949 Act, to prohibit the manufacturer or importer concerned from selling such equipment.

I very much hope that British manufacturers will seize the opportunity of producing CB equipment. There was a good deal of initial interest, as witness the number of people who asked for a copy of our draft performance specifications, but my impression is that this interest has receded somewhat in recent months. It may be that some manufacturers here will be able to convert existing sets to the approved Home Office specifications at an economic cost, and we should certainly welcome this. There is a legal difficulty in that virtually every AM set in this country has been imported illegally and has therefore evaded the payment of import duty and VAT, but I understand that Customs and Excise are looking at this problem as sympathetically as possible.

Finally, I should say something about the licensing arrangements. I cannot give much by way of detail because the system is still being set up. It has to be able to cope with hundreds of thousands, possibly millions, of users and this constitutes no small task. The system will however be run by the Post Office, and will be
similar to that used for TV licences. Licences will be available at the counters of most Post Offices as well as by post from the central record keeping agency. Renewals will be dealt with in the same way. We have made good progress and there is no reason to suppose that the licensing system will not be ready to operate in the autumn. We have not yet established the licence fee; clearly it will have to cover the quite considerable costs involved in setting up a licensed CB service and dealing with the associated interference, but we have no intention of pitching the fee at a discouragingly high level.

We are giving some thought to the conditions of use. We shall want to make these as simple as possible and while it will be necessary to include standard conditions such as the usual prohibition on grossly offensive transmissions and on advertising or soliciting for business, we intend to make the conditions less restrictive than in most other radio transmitting licenses. There are many points for consideration; for example, should the licensee be enabled to allow members of his household and his employees to operate his \(C B\) equipment, and how many items of equip-
ment should be covered by the licence fee? What arrangements should be made to control the use of equipment hired out by the licensee? It will be advisable to ban the use of CB equipment in aircraft: should any further restrictions be placed on where CB equipment is used, or are such matters better left to a code of practice to be negotiated with the CB organisations? All these matters have to be settled before the licensing system comes into effect.

To sum up, our aim has always been to have a legal service in operation by the autumn. This has dictated an extremely tight time-table; a complex licensing system has to be created and millions of licence forms and fee stamps have to be designed, printed and distributed. Manufacturers and importers have to know the permitted standards so that they may design, manufacture and market the equipment accordingly which means in turn that the order banning all 27 MHz equipment has to be amended. In addition we have to produce regulations on the criteria that will have to be met to prevent interference to other authorised services.

We are on course to complete all these stages in time. I have no doubt that legalised CB will give a great deal of pleasure to a large number of people, including many who have at present no thought of using such a facility. It is the Government's hope that with this credible alternative to the illicit equipment now in widespread use the many \(C B\) enthusiasts will turn to it and continue to enjoy their hobby with approved equipment that will reduce the amount of interference to other users of radio."

The TG102 Function Generator is the latest product complementing thei Thandar range of test instruments.

It is mains operated and has a frequency range of 0.2 Hz to 2 MHz producing sine square and triangle waveforms plus d.c. from a variable amplitude \(50 \Omega\) output. TTL output is. also provided. External sweep facility is available enabling \(>1000: 1\) frequency change within a selected range.

The TG102 comes complete with mains lead and 1 year warranty and costa f145 plus VAT.
A. Marshall (London) Ltd., Kingsgate House, Kingsgate Place, London NW6 4TA (01-624 8582). mal retail outlets unless otherwise specified. Prices correct at time of going to press.

\section*{SAFGAN SCOPE}

Safgan Electronics has recently introduced a new range of reasonably priced high performance dual trace oscilloscopes.

Designated the DT-400 Series, these oscilloscopes cover a bandwidth range from 10 MHz to 20 MHz , and all models have vertical sensitivities from \(5 \mathrm{mV} / \mathrm{div}\) to \(20 \mathrm{~V} / \mathrm{div}\) in 12 calibrated 1-2-5 steps. DT-400 series is made up of the following models; DT41010 MHz at \(£ 169\). DT-415 15MHz at f175. DT-420 20 MHz at \(£ 188\) (all prices plus VAT).


Time base speed for all models range from 0.5 ş/div to \(200 \mathrm{~ms} /\) div in 18 calibrated 1-2-5 steps; the fastest sweep speed can be expanded by \(x 5\) to \(100 \mathrm{~ns} / \mathrm{div}\).

All three have \(Z\)-modulation and \(X Y\) facility providing matched \(X\) and \(Y\) inputs. The series offer Bright Line Auto, Normal and TV field triggering modes with a sensitivity below 0.5 div for internal triggering sources which can be CH 1 or CH 2 and 100 mV for External source. Trigger Level and \(1+\) )ve, 1 -)ve slope selection are also incorporated.

Safgan Electronics Ltd., 56 Bishop's Wood, St. John's, Woking, Surrey, GU21 3QB (04862 66836).

\section*{CASIO GO PRO}


Following the success of Casio's first keyboard instrument, the Casiotone 201, Casio have now brought out its successor, the 202, which incorporates many refinements and can really be classed as a professional instrument.

The 202 has the same size ( 49 note) keyboard as the 201, and the same 8note polyphony and method of voice selection. That, really, is where the similarities end.

Casio have added many new voices and duplicated some of the old ones from the 201 giving a total of 49 (the 201 had 29). Brass string and organ voices are particularly realistic.

Maving the control panel from the right to the left-hand end of the keyboard may not appear to be a great step forward, but for anyone playing at a gig it's a considerable advantage.

The 202 performs well as o home entertainment instrument, as it is very compact and has a built-in speaker and amplifier. However, it really comes into its own when used by the professional or amateur musician playing in a group-either as the players sole instrument or as an add-on to another keyboard such as an electric piano.

The Casiotone 202 is available at a discount price of \(£ 275\) (inc. VAT and p\&p) from Tempus, Dept PE, 164-167 East Road, Cambridge CB1 1DB. (0223 312866)

\section*{New Government Green Paper on Copyright Reform...}

A green paper giving the Government's views on future copyright reform was published on July 15. Mr Reginald Eyre, Parliamentary Under Secretary of State, who announced the publication, stressed that it was a green paper, and that it invites public reaction on a wide range of issues covering all aspects of copyright.

Points likely to be of particular interest to readers are: that the Government has not been convinced that it would be right to introduce a levy on audio and video recording equipment or blank tapes (this had been suggested to compensate for loss of royalties due to illegal copying), and, as regards computing, the Government proposes that all forms of stored program-i.e. on magnetic tape or in ROM-should receive complete copyright protection.

\section*{Briefly...}
P.c.b.s for many PE projects are now available while you wait from Crofton Electronics Ltd. Crofton inform us that they can make up most p.c.b. designs very quickly, and callers can wait for single boards. They can also supply by mail-order. Crofton Electronics Ltd., 35 Grosvenor Road, Twickenham, Middlesex TW1 4AD.

Program Power the Leeds based software company are to produce a new magazine for Nascom enthusiasts. Called Micro Power the magazine will contain articles on a wide range of hardware and software topics.

The first issue will appear in August and will include articles on the design of a programmable character generator and the start of a series on interfacing printers to Nascom. The magazine is priced at \(95 p\) including \(p \& p\).

Program Power, 5, Wensley Road, Leeds, LS7 2LX.

Electronic kit manufacturers Powertran Electronics, who are known in particular for their musical designs, inform us that their 1981/82 catalogue is available free on request. It contains comprehensive details and photographs of all their kits as well as a current price list.

Powertran Electronics, Portway Industrial Estate, Andover, Hants SP10 3NN (026464455).

A new low-cost thermal printer has been introduced by Cricket Peripherals.

Features of the Cricket 101 include self-test initialisation message after power on, 97 characters including \(E\) sign, single or double width selectable from control codes, quiet operation and simple mechanics. The standard interface is Centronics parallel, and there are optional interfaces available for PET, Apple, Nascom and Sorcerer. Other interfaces will be available soon.

The Cricket 101 is priced at £199.50 including VAT, carriage (mainland) and one roll of paper. Interfaces are priced at £35. Cricket Peripherals, 92 London Road, Knebworth, Herts.

\section*{ADVANCED IRON}


An electronic thermostat in Adcola's new 444 soldering iron is claimed to eliminate all the problems experienced by users of mechanically controlled soldering tools.

This soldering iron has been designed to operate off the majority of 24 V 50 Hz 50 VA soldering stations, and has the control circuit contained in the handle. The temperature is fully adjustable within the range of \(220^{\circ} \mathrm{C}\) to \(420^{\circ} \mathrm{C}\).

Adcola attributes the success of this instrument to the fact that the circuit contains an i.c. 'manufactured to their own design and specification. Incorporating a zero-crossing switch which eliminates switching transients, it controls the bit temperature through a thermocouple and a triac. The heating element has no magnetic effect and the instrument can be earthed.

The soldering tool is supported by a range of more than ten iron-plated \(3 / 16^{\prime \prime} / 4.75 \mathrm{~mm}\) dia. profiles of soldering bits/tips.

As an introduction, Adcola is currently offering two evaluation kits at a special reduced price. Kit 1 comprises of the 444 instrument, a selection of 5 long-life bits/tips and a safety stand for \(£ 21.00\), and Kit 2, without the safety stand for \(£ 17.00\). The normal one-off price of the Unit 444 is \(£ 18.50\), with the usual discounts for quantities.

Adcola Products Ltd., Adcola House, 113 Camden Rd., London SW4 6LH (01-622 0291).


\section*{BECKMAN 310}

A hand-held \(3 \frac{1}{2}\) digit multimeter, the Tech 310 , has been added to the range of instruments manufactured by Beckman. The multimeter features a 2000 hour battery life, continuity and semiconductor test functions and overload protection on all 26 ranges.

Measurements can be made across five d.c. voltage ranges from 200 mV to 1500 V full scale; five a.c. voltage ranges spanning 200 mV to 1000 V full scale; five a.c. and d.c. current ranges, \(200 \mu \mathrm{~A}\) to 2 A full scale (a separate input extends the range to 10A); and six resistance ranges with full scale values from 200 ohm to 20 Mohm.

The 310 is priced at \(£ 99\) plus VAT and p\&p Beckman Instruments Ltd., Electronic Components UK Sales, Mylen House, 11 Wagon Lane, Sheldon, Birmingham 826 3DU.

\title{
Thorn erect Satellite Receiver
}

With satellite broadcasting of telecommunications and TV soon to become a reality in some of its export markets and interest in the medium developing in the UK, Thorn Consumer Electronics Limited have erected a 3 metre dish satellite receiver aerial at their Enfield engineering laboratories to establish a reference source for experimental satellite signals and for evaluation of various aerial technologies.

Each European country has been allocated five possible channels for satellite transmissions and both France and Germany are scheduled to begin direct broadcasting by satellite in 1984. In the UK, the Home Office has suggested that two out of the five available UK satellite channels could start broadcasting although a commencement date has not yet been fixed. A recent Home Office publication, indicated that a DBS system could operate four years after a go-ahead decision is taken.

\section*{POINTS ARISING}

\section*{EPROM PROGRAMMER (Jan. '80)}

There is an error in the printed circuit layout as shown in Fig. 2.1, and the following correction should be implemented to make the track layout conform with Fig. 5 (December 1979): the track which serves \(\overline{\mathrm{CS}}\) of IC5 and IC6 (pin 8) should be cut before it reaches the junction serving the link L7. Having been severed, the \(\overline{\mathrm{CS}}\) track should be surface wired by hand to connect to IC13 pins 4 and 5 . It will be found easiest to refer to component overlay diagram Fig. 2.3.

\section*{DIGITAL DESIGN PART 1 (Aug. '81)}

Due to printing problems a number of errors crept into the first part of this article. Fig 1.5 The 'new functions' should read \(\bar{A} \bar{B}, \bar{A}+\bar{B}, \bar{A} \bar{B}, \bar{A}+\bar{B}\)
Fig 1.6 The 'voters' column should read C B A (left to right)

On page 44 second column it should read 'Hence, \(Q=A \bar{B}+\bar{A} B\). Expression number 8 just below should read \(\bar{A} \bar{A}=\bar{A}\)

At the bottom of the same page when we are looking at the truth table, the second and fourth lines should read: \(A+B\) is the same as \(\overline{\bar{A}} \bar{B}\) and \(\overline{A+B}\) is the same as \(\bar{A} \bar{B}\)

On page 45 second column above Fig. 1.7a, we should read \(A+B\) is the same as \(\overline{\bar{A}} \bar{B}\)

On page 46 under 'Filling in the map', the first paragraph should read: we can say that the column \(=1\) if \(A=1\) AND \(B=0\), so the column is \(A \bar{B}\)

\section*{EPROM PROGRAMMER (Aug. '81)}

In Fig. 1, R4 should go to pin 20 and not pin 21. In Fig. 2, R4 should be connected to comply with the revised Fig. 1. Also, there is an unnecessary break in the stripboard track at F24 which should be removed.

\section*{COLOUR BOARD REVIEW (Aug. '81)}

Our apologies to Chromasonic Electronics of North London for mis-spelling their name throughout this article.

\section*{CAPACITANCE METER (July '81)}

The connection from IC. 1 pin 6 to pin 7 (see Fig. 2) is absent from the p.c.b. diagram of Figs. 4 and 5. This connection should be made for correct operation.

Houndidoun.
Please check dates before setting out. as we cannot guarantee the accuracy of the information presented below.

Harrogate Int. Fest. of Sound Aug. 15-18. Royal Hall Exhibition Centre \& Hotels. X
Solar Energy Exhibition Aug. 23-28. Brighton. M
BEX Cardiff Sept. 3-4. Centre Hotel. K
Business \& Light Aviation Sept. 3-5. Cranfieid Airport. \(\mathbf{Z 1}\)
Microprocessor Workshop Sept. 7-8. University of Liverpool. D
Laboratory Sept. 8-10. Grosvenor House, Park Lane, London. I
Personal Computer World Show Sept. 10-12. Cunard Hotel, London. M
West of England Electronics Show Sept. 15-17. Bristol Exhibition Centre. Q
Microtest Sept. 21-24. (Symposium) Kent-University, Canterbury. S1
Business Telecoms \& Electronic Office Sept. 23-25. Royal Lancaster Hotel, London. 0
BEX Edinburgh Sept. 30-Oct. 1. Assembly Rooms. K
Viewdata Oct 6-8. Wembley Conference Centre, London. 0
BEX Bristol Oct 14-15. Exhibition Centre. K
Video Show Oct. 16-18. West Centre Hotel, London. \(Z 1\)
International Business Show Oct. 20-29. NEC Birmingham. A2
Testmex Oct. 27-29. Wembley Conference Centre, London. T
Computer Graphics (Ex. \& Conf.) Oct. 27-29. 0
BEX Southampton Nov. 4-5. Polygon Hotel: K
Viewdata \& TV User Nov. 4-6. West Centre Hotel, London. \(\mathbf{Z 1}\)
Breadboard Nov. 11-15. Royal Hort. Halls. B7
IFSEC (Fire \& Security) Nov. 17-19. RDS Düblín. V
Compec Nov. 17-20. Olympia, London. Z1
Electronics Nov. 17-20. Olympia, London. I

BEX Plymouth Nov. 18-19. Holiday Inn. K
INTRON Nov. 24-26. RDS Dublin. V
There are continuous events and permanent exhibition at the National Micro \& Electronics Centre. L1

\section*{1982}

Electronics OEM Assemblies Feb. 2-4. Royal Hort. Halls, Westminster, London. T
Electronic Test \& Measurement March 30-April 1. The Forum, Wythenshawe. T
Laboratory, Edinburgh March 30-31. Assembly Rooms, George Street. E
Sensors \& Systems March 30-April 1. The Forum, Wythenshawe, Manchester. T
Laboratory, Manchester April 7-8. New Century Hall, Corporation Street. E
All Electronics Show April 19-21. The Barbican, City of London. E

Hart Browne \& Curtis \& 01-439 8556
B7 Modmags 01-437 1002
D Liverpool Univ., Brownlow Hill, PO Box 147
E Evan Steadman, Saffron Walden \& 079922612
I ITF, Solihull © 021-705 6707
K Douglas Temple, Bournemouth i 020220533
L1 World Trade Centre 01-488 2400
M Montbuild Exhibitions \& 01-486 1951
O Online, Northwood, Middx. \(\varnothing 0927428211\)
Q Exhibitions for Industry \& 088334371
S1 Sert / 01-403 2351
T Trident, Tavistock 808224671
v SDL 『 Dublin 763871
X Exhibition \& Conference, Harrogate \& 042362677
Z1 IPC Exhibitions, Sutton \& 01-643 8040

\section*{MASTER ELECTRONICS MASTER COMPUTERS}


\section*{LEARN THE} PRACTICAL WAY BY SEEING AND DOING

- Complete Home Study library.
- Special educational Mini-Computer supplied ready for use.
- Self Test program exercise.
- Services of skilled tutor available.

\section*{MASTER THE REST}
- Radio Amateurs Licence. Logic/Digital techniques. - Examination courses (City \& Guilds etc.) in electronics. Semi-conductor technology. - Kits for Signal Generators - Digital Meters etc.



\section*{Showbiz}

So 1982 is to be designated the Year of Information Technology! I shall call it YIT and I'm already wondering just what it will do that wouldn't happen of its own volition.

My scepticism is based firmly on precedent. Older readers may recall the famous National Plan which foundered after a few months. The era of the White Heat of Technological Revolution left most of us stone cold.

National Productivity Year also left the nation unmoved. This was spread over 1962 and 1963 when Britain had the lowest percentage increase of national product per man-year than any other industrial nation. Japan, West Germany and Italy, the three defeated nations of World War 2, were aiready racing away with their respective economic miracles.

Sixteen years later Britain was still at the bottom of the productivity league table in heavy industry and' the long period of drift ended only when harsh reality affected job prospects. In retrospect, National Productivity Year with its 1.500 separate events staged to explain the meaning of productivity, why an increase was necessary for national survival, and how to achieve it, was a waste of time.

Will YIT prove to be more effective? The Government is to top up the taxpayers' contribution to new electronics technology to £200 million. Not to be sneezed at but peanuts compared with the billions still being poured into nationalised steel, coal, railways, shipbuilding and BL.

\section*{Data Communications}

If we really need YIT the assumption must be that we are lagging behind in information technology and need a good kick up the backside. If we look at data communications, the heart of the matter, in fact
we are doing quite well. Taking as a yardstick the number of network termination points (NTPs), i.e. the interfaces between user equipment and the PTT services, Britain is leading the field in Europe by a handsome margin.

I take the figures from the last Eurodata Report which was researched in 1979. The United Kingdom was top user with 117,000 NTPs, followed by West Germany (61,700), France \((54,000)\) and Italy \((45,500)\). The also-rans at the bottom of the league were Ireland (966), Portugal (794). Luxembourg (649) and Greece (639).

Of course these figures are misleading for obvious reasons. Tiny Luxembourg with a. population of only 356,000 people would clearly need less NTPs in total than the United Kingdom with its 56 million population.

A more realistic league table can be constructed by re-casting the figures as the number of NTPs installed per thousand of the working population. The UK then emerges with a figure of \(5 \cdot 2\) per 1,000 , still well ahead of West Germany (2.87), France (3.03) and Italy (3.16). Note that the three runners-up to the UK in the four biggest countries have now changed order with Italy rising and West Germany dropping from second to fourth in the big country group.

But in this new formulation, if we include all 17 countries in the Survey, the UK drops to second position behind Sweden with its \(5 \cdot 66\) NTPs per 1,000 and is only marginally ahead of little Luxembourg (5.15) which has almost miraculously climbed from next to bottom to the number three spot.

Eurodata, when it crystal-balled in 1972 on what would happen in 1979, underestimated the growth rate of data communications by 100 percent. Undeterred by such a gross error, or perhaps inspired by it, the crystal ball has again been employed, this time to forecast the figures for 1987.

In 1987 the UK will still have the largest number of NTPs \((377.000)\) of any country in Europe and Sweden will still be top of the NTP per 1,000 league table with a figure of 26.4. But, sadly, in this table the UK will have dropped back to sixth place (16.8), having been overtaken by Luxembourg (23.9), Switzerland (22.2), Belgium \((21.3)\) and the Netherlands (17.0). Note that the top five are now all small countries. But of the 'big four' of UK, West Germany, France and Italy, the UK will still be top on either calculation.

Overall growth rate for Europe in installed terminals is forecast at 26 percent per year but only 10 percent in hardware value, confirming once again that electronics is the only field in which hardware costs relatively consistently fall.

Looking at the above figures a conclusion may be drawn that salesmen have been busy and potential users have snapped up opportunities offered. And that the UK, far from needing YIT, could teach the rest a few wrinkles. On reflection YIT may yet prove a boon if only to provide extra em--ployment for exhibition specialists, advertising copywriters, printers and organising committees.

Honesty compels me to add a final footnote. If the forecast for 1987 is correct, top of the league in Europe, Sweden, will by then only have achieved the same level of usage as in the United States today.

\section*{First Hoppers}

A major triumph for Britain was the launch of Racal's Jaguar-V VHF combat radio, claimed to be the world's first antijamming frequency-hopping transceiver. Already in production, it was a little ahead in time against Marconi's Scimitar, a similar private venture development, and is still well ahead of the United States Sincgars-V project. Racal has already taken orders for the British Army and for three other NATO countries. At this stage one assumes the orders are in sample quantities for field trials and evaluation by the armed forces concerned.

Racal is said to be in negotiation with other customers and forecast a sales potential for Jaguar-V running into hundreds of millions of pounds over the next ten years. Competition, however, will be fierce. The Marconi Scimitar was publicly shown within a month of the Jaguar launch and will be attacking the same market.

\section*{New Knights}

Two new electronics Knights Bachelor were in the Queen's Birthday Honours list. They were Godfrey Hounsfield, 'father' of the EMI body-scanner and a Nobel prizewinner, and Ernie Harrison, chairman and managing director of Racal Electronics Group for his services to export. One a brilliant scientist, the other an outstanding man of business, both have served their country well.

\section*{Aerospace}

Electronics was well represented at the Paris Air Show. A British breakthrough, shown publicly for the first time, was the holographic head-up display (HUD) which Marconi Avionics has developed for the United States Air Force for fitting in F-16 multi-role fighters and A-10 close-support tank-busters. The new HUD enables these aircraft to operate safely at low altitudes in total darkness.

British exhibitors came home with another \(\mathbf{£} 300\) million of orders, mostly for export, of which about one third will find its way to the electronics industry. A good show in both senses.

\section*{Competition}

The break-up of British Telecom's total monopoly is certainly having a galvanising effect. Nearly a thousand salesmen are to be recruited and trained by Telecom and will actually be given targets to attain and bonuses to be earned in the business sector where competition will be hottest. No need for a sales effort for the private user. There are still some 300,000 hopeful residential customers awaiting connection although, we are promised, they will not be forgotten.


\section*{REWOTE REVBDARD J.Lems}

MCROCOMPUTERS are fine and great fun-especially for the first few weeks or even months when they are a novelty-but the honeymoon period wears off and one starts to wonder what useful purpose they can be put to. An obvious application is in the home, to provide control of the various systems e.g. heating, lighting and security. However, if this is to be done it becomes obvious that the microcomputer itself has to be located away from prying fingers which could so easily key in incorrect instructions or operate the Load or Reset switches and cause a horrendous crash. What is needed is a remote keyboard designed to be idiot-proof.

The circuit described here was specifically designed for a Elf II microcomputer to allow different modes of operation to be selected, and accept the entry of a six digit security code. The circuit (Fig. 3) is applicable to other microcomputers though the actual interfacing may differ according to input/output lines available. First thoughts might suggest that the new keyboaid could be daisy chained to the existing one, but this raises all sorts of problems, not least that of the input or Enter key. Many people find difficulty in accepting the concept that you actually need to "enter" the digit into the computer. This might be one reason why reverse polish notation as used on Hewlett Packard calculators never took the mass market by storm. What is needed is a keyboard which tells you what to do, and when it has been done automatically enters it into the microcomputer. The following circuit does just that.

\section*{HOW IT WORKS}

A matrix type keyboard is used which has 8 output lines, four of which are connected to the columns and four to the rows (Fig. 1). When any key is depressed a unique contact is
made between one of the columns and one of the rows. Such keyboards are designed to be used in conjunction with a special decoder integrated circuit. Two of the most popular being the 74C922 and the 74C923. These are CMOS devices and can handle either a 16 key or 20 key keyboard respectively. For this application 16 keys were sufficient and so the 74C922 is ideal.

A block diagram of the 74C922 is given in Fig. 2. By connecting a capacitor between pin 5 and -ve the internal oscillator is enabled so that the keyboard matrix is scanned to detect any key closures. Key bounce is, thankfully, eliminated by connecting another capacitor between pin 6 and -ve. The decoded output from the keyboard is present in BCD form on pins 14 to 17. As a keyboard entry is made so the "Data Available" line, pin 12, goes high and returns to low when the key is released even if another key is depressed. After the normal debounce period it will go high again indicating the acceptance of another entry. The 74 C922 has tri-state capability on its 4 data output lines thus enabling it to be connected directly to a data bus. This tri-state feature is controlled by pin 13 which, when high, ensures the data outputs present a high impedance to the bus. On grounding this pin the decoded output from the keyboard - which has been stored in internal latches within the i.c.-is put on to the bus. In this particular application the tri-state mode is not required and so pin 13 is grounded.

The output from this i.c. is only half a byte wide and whilst software could handle it, the sensible course is to offer a whole byte at a time. This is easily done using a quad D type register such as the 4076. By connecting the clock line of this i.c. to the Data Available output of the 74C922 data can be latched into the 4076, thus giving the full byte required

for the data bus. A tri-state facility is available on the 4076 and use is made of it to isolate the i.c. from the bus line when not in use. It is an active low operation which means that whilst pins 1 and 2 (Output Disable) are held high, the four output lines present a high impedance to the bus; take them low and the data in the latch is put onto the bus.

In the case of IC1 the tri-state feature could not be used since its outputs were connected to the inputs of IC2. If they had been, then anything that happened to be on the high order part of the bus when the data available pin went high would be transferred into IC2. To overcome this a 4066 quad analogue switch is interposed between the outputs of IC1 (74C922) and the bus. The 4066 is similar to the 4016 except it has a much lower "on" resistance. The signal on any particular input is only transferred to the corresponding output when its "Control" is taken high. By connecting all 4 "Controls" together, simultaneous transfer of the high order part of the byte is achieved.

In order to signal to the computer that a byte of data, i.e. two keyboard entries, was available, a 4013 dual D type flip-flop is used. The output from the Data Available
pin of IC1 clocks one half of the 4013 whilst the resulting output from Q1 clocked the second half. By connecting the \(\overline{\mathrm{Q}}\) outputs to their respective Data Inputs the flip-flop action was ensured by Q2 going high as the second data entry is made. The set and reset pins are connected so that on acceptance of the input by the computer the correct conditions are forced onto both Q1 and Q2. So that the user would know which digit he was supposed to enter next, a couple of l.e.d.'s were included as shown in Fig. 3. When D1 is illuminated it means that the first digit is to be entered, when it is, D2 turns on as well. When both digits have been entered the two l.e.d.'s are extinguished until the byte is accepted by the micro. Suitable legends were placed near these l.e.d.'s to indicate the action required.

\section*{YOUR GOOD ELF}

At this point a little digression about the Elf itself might be worthwhile. It is based on that excellent, though often maligned, microprocessor the RCA 1802. This is a 40-pin CMOS device with 91 easy to use (and understand) instructions. Being CMOS it is not too concerned about exact voltage levels, has a very low current consumption and high noise immunity. The actual clock frequency can be as high as 6.4 MHz though the power dissipation rises with clock frequency, it will also operate down to d.c. levels as well. Interfacing to other RCA COSMAC products is simple and being CMOS it works well with i.c.'s from the 4000 range, you do not need expensive low power TTL items. There is an interrupt line, four flag lines, a toggle output and after decoding, 14 unique input/output commands. Combine these with the 16, 2 byte wide, internal registers which can be used for program pointers, memory pointers or storage and you have an ideal micro for both the home experimenter and commercial applications. The Elf II consists of a mother board containing the 1802, 256 bytes of RAM, a keyboard and control switches together with all the necessary decoding circuitry, a 2 digit l.e.d. display, crystal clock together with a video chip which can be used to give a TV output. Sockets allow various daughter boards to be plugged in and the most useful of these is the so called Giant Board

Fig. 2. Block diagram of

which has a ROM monitor, cassette interface, provision for RS232C interface, an 8 bit parallel input port, an 8 bit parallel output port, decoding of the 14 input/output lines as well as address decoding for additional memory up to 64 K . The other sockets accept 4K RAM boards etc. Thus one can easily build up a microcomputer which will readily interface with the real world. Tiny and extended BASIC are also available but in this particular application machine code was used.

To connect the remote keyboard to the Elf the following procedure was used though obviously there is no need to use the actual flag or input lines indicated since others serve the same purpose. For other microprocessors the system can be adapted to utilise the facilities they have. The Byte Ready signal from the 4013 was inverted using a 4011 and connected to the EF3 flag line. These flags are software monitored and when the appropriate signal is present a branch can be initiated. The interrupt line could also have been used and would have given a slightly faster response. The byte itself is read by sending a pulse originating from the 6 D input instruction to the remote keyboard circuitry. This Read signal not only enables both the 4066 (IC3) and IC1, although this needs an inverted signal, hence the use of IC5, but also resets the flip-flop (IC4). Thus the input from the keyboard is entered into the computer and can cause a branch to a particular routine. It is helpful to repeat the byte entered on a display at the keyboard so that the user can see what has actually been accepted; not only does this allow any keying mistakes to be corrected but also serves as a reminder as to which routine is currently running. The additional circuitry for this is given "in Fig. 4. Note that the driver i.c.'s for the two l.e.d. displays must be capable of decoding the full four line BCD into hexadecimal formatfigures 0 to 9 and letters A to F. The 9368, a t.t.l. device, will do this. Some only decode the numerical portion whilst others give a different character set, for example \(H, E, L, P\).

Example of entry program for the Remote Keyboard using the ELF
\begin{tabular}{|c|c|c|}
\hline 00 & 90 & \\
\hline 01 & B3 & \\
\hline 02 & F8 & Initialisation \\
\hline 03 & A0 & Initalsation \\
\hline 04 & A3 & \\
\hline 05 & E3 & \\
\hline 06 & 3E & Short branch if EF3 \(=0\) \\
\hline 07 & 06 & \\
\hline 08 & 6D & Input-enable/reset line goes high \\
\hline 09 & 64 & Echo input to display on Elf motherboard* \\
\hline 0A & 30 & Branch back \\
\hline OB & 06 & * May not be required. \\
\hline
\end{tabular}

\section*{LOCATION}

Whilst this is called a remote keyboard the actual decoding circuit must be as close as possible to the microcomputer itself to minimise the length of the bus lines joining them. Shielded multicore cable can be used for interconnections to the keypad and displays, though ribbon cable is equally suitable.

When the six digit security number is being entered the user needs to be reminded which pair of digits are currently being entered. Again I.e.d.'s can be used with suitable labels and, with the other l.e.d.'s already provided for individual digit entry, makes the use of driver i.c. worthwhile. A suitable one is the UL2004 which incorporates an internal resistor allowing direct interface with CMOS circuits. These 3 I.e.d.'s


\section*{NOTE}

The prototype was wirewrapped on stripboard to suit space and other constraints. Since layout is not critical, no drawing is given because construction will largely be a matter of conforming to application requirements.
\begin{tabular}{c|cccccccccccccccc} 
SWITCH & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
POSITION & \(Y 1, X 1\) & \(Y 1, X 2\) & \(Y 1, X 3\) & \(Y 1, X 4\) & \(Y 2, X 1\) & \(Y 2, X 2\) & \(Y 2, X 3\) & \(Y 2, X 4\) & \(Y 3, X 1\) & \(Y 3, X 2\) & \(Y 3, X 3\) & \(Y 3, X 4\) & \(Y 4, X 1\) & \(Y 4, X 2\) & \(Y 4, X 3\) & \(Y 4, X 4\) \\
\hline D & & & & & & & & & & & & & & & & \\
A & A & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
T B & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
A C & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & D & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}

Table 1. Truth table for keyboard decode
should be under software control using three of the bits available from the 8 bit parallel output port on the Elf's Giant Board. As each pair of digits is entered it is checked but not repeated in the display and the program ensures that all 6 digits are entered before any indication that the number is wrong is given. Thus a person could not obtain the code by looking over the user's shoulder nor is any indication given as to which pair of digits is incorrect thus increasing the security aspect. If necessary another l.e.d. could be used to show a wrong sign and this could be derived from a spare bit on the output port. Software counts the number of attempts made and also the time taken. If either exceeds a preset number the computer refuses to accept any more security entries and would only respond to the two digit routine entries, one of which would override the block on security numbers.

Other remote keyboards could also be added, say, at the front and back doors, in the kitchen should any household functions need controlling etc., thus ensuring that what started out as an expensive toy actually does earn its keep. At the same time you will be one of the few people who have entered the silicon age with a micro that does practical tasks and can understand the instructions of dumb humans.

\section*{нбу PECASECOUPON}

I enclose two completed case coupons cut from PE, e 30p postal order made payable to IPC MAGAZINES LTD., and a \(15 \frac{1}{2} p\) stamp. Please send me an extra instrument case.

NAME
ADDRESS

Only available to UK and BFPO addresses, allow 28 days for delivery. Incorrect or incomplete orders will te returned.

\title{
ExtraCases! \\ 30p (plus postage) To Regular Readers.
}

OLLOWING the Free Case gift with the May issue we
have a quantity of cases available as extras to regular
readers (at UK and BFPO addresses only) for 30 p plus
postage-the normal price from Lascar is \(£ 1.95\) plus VAT and postage.

Extra cases-as used to house the Digital Thermometer, Digital Multimeter (May '81); PE Minitune, pH Meter, Continuity Tester (June '81); Capacitance Meter, Light Meter, and Noise Meter (July '81)-can be obtained from PE by sending in two correctly filled-in case coupons (name and address on both coupons please) cut from PE, a 30p postal order and a \(15 \frac{1}{2}\) p stamp (a case coupon is given here). We can only accept 30 p postal or money orders (NOT CURRENCY OR CHEQUES). Do not enclose any correspondence. Incorrect or incomplete orders will not be accepted-your stamp will be used to return them.

Send two completed case coupons cut from PE with your 30p postal order (payable to IPC Magazines Ltd), and a \(15 \frac{1}{2}\) p stamp to:

PE Instrument Case Offer, IPC Magazines Ltd., Westover House, West Quay Road, Poole, Dorset. BH15 1JG.

Sorry we cannot undertake to send extra cases to overseas readers.
PLEASE ALLOW 28 DAYS FOR DELIVERY.


THE advertisement announced BIG EARS in bold capital letters making me wonder if this was a joke from Toy Town; however, a quick scan of the text showed that this was another product from William Stuart Systems. As I already own an audio oscilloscope and a colour graphics system from the same stable I felt confident that my \(£ 45+\) VAT was not going to buy a toy. I confess to being somewhat relieved that when I unpacked my parcel less than a week later the name Big Ears was not on the brushed aluminium front but in its place an impressive "Speech Recognition System Interface SR 1."

Big Ears or SR. 1 can be connected to any personal computer like NASCOM, TRS 80, PET, UK 101, Superboard or to any other via a spare user input port. In my case, an 8 K UK 101 , hooking up couldn't have been much simpler with just five connections to be made. Five core ribbon cable and standard 5 pin DIN plug are provided so plugging in the SRI is quite straightforward. Power requirements are low so the +5 volts needed comes from the motherboard via the ribbon cable. All this is explained in a very clear User Manual containing Connection Details, Software Loading Instructions, User Instructions, Demonstration Software, Theory of Operation and BASIC Software Listings. A small part of the software is written in machine code and is provided in a form to suit the most popular 6502 or Z80 based systems.

The purpose of the SR1, if you hadn't guessed, is to provide speech input to your computer and open the door to direct manmachine communication. For anyone who has formed a close interpersonal love affair with their computer (yes Ursula Katrina 101 is a person) then giving her Big Ears could well extend a beautiful relationship. To be more exact it is more like one Big Ear in that her ear comes in the form of an electret condenser microphone plugged into the smart aluminium facia of a black metal case \(15 \mathrm{~cm} \times 12 \mathrm{~cm} \times 5 \mathrm{~cm}\) using a standard jack plug. Relationships can blossom in that with a speech recognition system it's conceivable that one's computer could be verbally commanded to execute various options in robot control, games programs, etc. Captain Kirk could command "Fire" to zap the Klingons or a remote controlled vehicle could be requested to move "Forward", "Back", "Left" or "Right". It is even conceivable that I could flirt with Ursula Katrina via an interactional conversation program in which she would only have learned (and thus understood) my voiceprint; such faithfulness!
The minimum amount of memory required by the SR 1 is 5 K but since machine code real-time input routines are loaded into the top of user memory the last one K must be located in the 8th

K sockets leaving the 5th, 6th and 7th sockets empty in the UK 101/Superboard. However, now that 2114 Rams aren't so expensive one might as well upgrade to 8 K unless funds are very tight. 8 K will allow a larger vocabulary to be stored.

The demonstration software (BASIC) is very interesting providing correlation tables for the words learnt and a \(5 \times 6\) two-dimensional array of numbers as the individual word's "voiceprint". During the learning stage the computer asks for the word to be spelied and then spoken. The spoken word should be repeated 4 to 8 times to achieve optimum recognition and the voiceprint is printed each time. It is naturally important to speak clearly and consistently. Having taught the computer a number of words it is then possible to test its recognition. It can have problems understanding the difference between Fine, Pine and Wine but less problems distinguishing between Apples, Pears and Raspberries. The computer compares the voice it hears with its averaged memory voiceprints and perceives you to have said the word which has the highest correlation. It signals its understanding by printing "You said Raspberries" or whatever. Both the correfation table and voiceprint printout can be deleted by removing lines and the computer's response can be tailored to individual needs.

The computer's voice perception is based on frequency analysis of the first and second formants of the speech waveform. The interface unit SR1 separates the formants and delivers digital values to the computer which then performs frequency analysis for each of sixty-four 16 ms sampling periods. This is implemented in machine code. For each period the two formant counts are then compared against threshold data values to determine which frequency ranges are present. The two range indices are then used to determine which location in a twodimensional array will be incremented. Thus the sixty-four 16 ms samples must all fit in this two-dimensional histogram forming a kind of "frequency-space". To learn a word four or more such histograms are averaged and normalised to have a mean value of zero with a uniform standard deviation. The resulting averaged voiceprint-histogram is stored for future correlation.

If necessary the sensitivity of the SR1 can be adjusted by going inside the cabinet with a small screwdriver and adjusting a preset potentiometer; clockwise to increase and anti-clockwise to decrease. The systems software is listening for the first sound in order to start sampling but if the system is too sensitive it could be triggered by background noise. In noisy environments this adjustment is very useful as sensitivity can be set low and the speaker can speak up. Don't clear your voice or stutter because Ursula (or whoever) will be less than understanding about it. Moreover one should remember that with sixty-four samples of 16 ms any phrase or word to be learnt should not last longer than about one second. This is quite okay in practice as long as one avoids Welsh railway station names.

If one wishes to use the SR 1 in the application of data enquiry (which might need a large vocabulary) then the secret of success is to use key words to define which group of words the computer can expect you to be using next. In this way the computer need only compare the word it hears with a reasonably small group of words and the chance of misunderstandings is thus correspondingly reduced. Words which the computer might confuse can be located in different groups. Vocabulary, therefore, can grow like a tree. An example of this is a Travel Reservation System which might initially ask "Inland, European or Intercontinental?" Each of these headings might access 8 or 10 destinations with further destinations to be found by "Other" always being one of the options.

In conclusion Ursula Katrina's Big Ear might not be quite as perceptive as a human ear but then it's not such fun to nibble either. Notwithstanding that l'm still convinced that she's got the hot-heatsinks for me . . . "Love me Katrina?" . . "I DO HONEY". . . If only things could always be that easy.

\section*{CHATTER- \\  \\ SERVEDHERE.}


Realistic is the biggest name in Citizens Band Radio and accessories - and you will be able to buy the full range at Tandy - the world's largest retailer of CB equipment!

\section*{PREALIStIC}


With the Minimax II, Videotone revolutionised the market by establishing an opening for small, high quality speakers. Natural evolution has brought about the new Minimax 2, retaining all the qualities of clarity and sensitivity. This ideal combination of size and performance is a proven success, acclaimed by the press and public for seven years.

POPULAR HI-FI
"Switching to the Minimaxs' from any of the others produced an open and natural sound as though something had been taken away. It had, the colouration had gone." Comparative test OCTOBER 1975.
HI-FI ANSWERS
Their modest appearance and price disguise their startling abilities. Never have we heard such a small speaker sound so big!" JANUARY 1975.
PRACTICAL HI-FI \& Audio "The depth, clarity and openness of sound produced is quite astonishing". JUNE '75 WHAT HI-FI
the ability of the Mini-
max to take a lot of power and still sound good could be decisive" - Comparative test, APRIL 1977.

PRACTICAL HI-FI
The little Videotone scored highly for such a small inexpensive loudspeaker". JANUARY 1981.
Specification:
Recommended amplifier power: 10 to 40 watts rms into 8 ohms. Frequency Response:
\(80 \mathrm{~Hz}-20 \mathrm{KHz} \pm 5 \mathrm{~dB}\).
Finish: natural teak, veneer with black frets.
Size: \(107 / 8^{\prime \prime}\) high, \(63 / 4^{\prime \prime}\) wide, \(71 / 2^{\prime \prime}\) deep.
Weight: 4.1 Kgs ( 9 lbs) each.
ONLY £69.95 A PAIR
- We welcome callers to our South London Showroom for demonstrations.
- Enqiries and information phone: 01-690 8511, Ex. 32
- All products are only available direct or from selected authorised dealers throughout the U.K.
VIロEOTONF 98 CROFTONPARK ROAD LONDON SE4.
Send for our free brochure and details of outlets in the U.K.

\section*{LIGHTAC
SWITCH}

Used for automatic Ilghting control. elec. appliance con-
trol, electronic gun burglar alarm and auto-open door \begin{tabular}{l} 
system. \\
Switch \\
\hline
\end{tabular} switiances. applinces.
Kit + parts
easy assembly.
\(£ 3.50\)
\(\left\lvert\, \begin{aligned} & \text { EPROMS } \\ & 2708450 \mathrm{~ns} \\ & 2716450 \mathrm{~ns} \\ & 2732 \text { intel type }\end{aligned}\right.\)
\begin{tabular}{|cc|}
\hline 2732 intel type & \begin{tabular}{c}
\(\mathbf{E 2 . 5 5}\) \\
\(\mathbf{E 2 . 6 5}\) \\
Buy 5 off for \\
\hline
\end{tabular} \\
\hline
\end{tabular}

GI SOUN AY-3-8910
GI
-Full sotiware control of sound generation - Interfaces with most 8 -bit and 16 -bit microprocessors.
-3 independently programmed analog outputs.
-Two 8-bit general purpose I/O ports. -Single +5 volt supply.
- S PECIAL PR

Data 50p. Large S.a.e. please
Data E1. Large S.A.E. please
\begin{tabular}{|lr|}
\hline INTERSIL ICL 7660 \\
Voltage Converter. Now ex-stock. & \(£ 2.25\) \\
\hline
\end{tabular}
Voltage Converter. Now ex-stock.
* Simple conversion of +5 V Logic supply to
\(\pm 5 \mathrm{~V}\) supplies.
- Simple voltages multiplication (v our \(=\left(-\frac{1}{2} . \mathrm{Vin}\right)\).
* \(99.9 \%\) typlcal open circuit voltage conversion efficiency.
* \(\mathbf{9 8 \%}\) typical power efficiency
* Wide operating voltage range 1.5 V to 10.0 V .
* Easy to use, requires only 2 external non-
critical components.
DATA AVAILABLE 50p. Large S.a.e.


JUST ARRIVED FROM VERO
S100 Prototyping Boards.
Microboard Pattern 06-2175L \(£ 16.40^{\circ}\) Square Pad Universal Pattern 06 2338 F
Prototyping 8oard for your
APPLE/T2020
ع16.40

FLOPPY DISC CONTROLLER
\begin{tabular}{|c|c|}
\hline FD1771 & \\
\hline FD1791-2 & \\
\hline
\end{tabular}
\begin{tabular}{lr} 
FD1791-2 & \(£ 32.00\) \\
WD1691D & \(£ 14.50\) \\
&
\end{tabular}
\begin{tabular}{lr} 
WD2143-01 & E14.50 \\
WDP \\
\hline
\end{tabular}
-SPECIAL Complete PKg.
includes FD1791-2+WDI6910
+WD2 143-01.
individual Data available 50 p per copy. Large 50p S.a.e. please

Set of Data on the above \(£ 3\).

\section*{COMBO CHIPS}

Intended for \(Z 80\) Usage
z80 Combo Chip (MK3886) 2 )
 A Combo Chip (MK3886N

ANTEXSOLDERINGIRONS
\begin{tabular}{|ll|}
\hline ModelCX17W & \(\mathbf{E 4 . 2 5}\) \\
KitSK.115W & \(\mathbf{8 6 . 0 0}\) \\
\hline
\end{tabular}
incl. baseststand + solder.
KitSK. 317 W
Kit SK. 425 W
SK. 3 and SK. 4 c
MX Repair Kit can be used where no
maln elecis available
VEROBLOC SOLDERLESS
BREADBOARD
360 reliable contacts.
Will accommodate any size of IC.
Can be fully interlocked one with another.
SPECIAL PRICE \(\mathbf{~} 3.55\) each.

\section*{KITS FOR BEGINNERS}

AROUSE THE MICRO CHIP INTEREST IN THE YOUNGSTERS STARTER KITS.

\section*{ULTRONIC FLY \\ REPELLER \\ A must for campers. \\ Features:
-LED indication, \\ - Pocket size case}

Kow Power consumption.
\(\mathrm{Kit}+\) all parts + case with in-
structions for easy asssembly. structions for easy asssembly.
Battery not included.
£4.50

ELECTRONIC
WHEEL OF FORTUNE Fun Kit.
Easy to assemble.
Case included.
Wonderful game
\(£ 5.00\)

\[
\begin{aligned}
& \text { New Series: ROUBOTIGS } \\
& \text { NONATHRTA }
\end{aligned}
\] Knowledge sidereal Time object in the sky. astronomer to firmeribes a portable GMT and clock" which indica

\title{
Analogue
} FRFOUEMGY MIIER Andy Flind

AFREQUENCY meter is a most useful item of equipment for the experimenter's workshop, but hitherto the choice of design for amateur constructors has been somewhat limited. Broadly speaking, there are two normal approaches to the problem; digital, in which cycles are counted over a fixed period and digitally displayed, and analogue where a pulse of fixed width is generated by each cycle and the pulses fed directly into a meter. The digital method is very accurate but is also complex and expensive; too much so for many would-be constructors. The analogue approach is far simpler and cheaper, but in general cannot measure frequencies much beyond 100 KHz , and the accuracy, particularly at the higher end of this range, is usually so poor that it cannot be considered as much more than a toy.

\section*{HYBRID APPROACH}

By combining these two techniques, a hybrid instrument can be built which falls nicely between the two above types in terms of accuracy, cost and complexity. The approach chosen for this project was to build a basic analogue with a fixed range of 0 to 100 Hz , since at this low frequency calibration is simple and excellent accurancy can be obtained, and then extra ranges were added by prescaling with cheap C-MOS decade divider stages. Fig. 1 shows a block diagram of the instrument. The input signal is amplified and squared to make it suitable for driving digital circuitry, and it is then fed to four divide-by-ten stages. Each CMOS chip contains two such divider stages and costs less than one pound, so that the cost of providing extra ranges in this way is very reasonable indeed. The actual degree of division required is selected by a switch and the signal then passes to a monostable generating a fixed-width pulse for each cycle fed to it. These pulses could be mechanically integrated by feeding directly into the meter, but the linearity is improved
and meter flicker at low frequency reduced by the use of a further integrator circuit. A voltage regulator provides a constant supply voltage to maintain accuracy as the battery gradually deteriorates. It was intended originally to attempt to obtain an accuracy of \(2 \%\) from this project; however, on test against a digital instrument it has proved better than \(1 \%\) over most of its range, which is probably more than sufficient for most experimenters. The maximum frequency that can be measured with the top range is 1 MHz .

The complete circuit diagram appearis in Fig. 2. The power supply is similar to that used in PE Magnum metal detector projector, the main differences being the use of a 1458 C dual op-amp, and the addition of an I.e.d. to indicate battery failure. The bias current required by TR2 in this circuit is normally too small to light an l.e.d., but when the supply voltage drops too far the bias circuitry saturates in an attempt to correct the output and the bias current jumps to about 10 mA -just right for lighting the lamp. This semi-discrete circuit was used in preference to a three-terminal i.c. regulator, as firstly it delfvers a symmetrically split output, ideal for op-amp circuitry, and secondly, it will function until its input is only a fraction of a volt above the required output, very useful where the current is supplied by batteries. Most i.c. regulators need a differential of at least two volts to operate.

The input signal is amplified and shaped by IC2, R7 and R8 provide positive feedback so that the output of this stage is never linear but switches rapidly from rail to rail. It will handle any input waveform. The minimum input that will operate it is about 200 mV ; at about 600 mV protection diodes D1 and D2 start to conduct and clamp the level fed to IC2, so the maximum input voltage that can be applied is about 200 V peak-to-peak, after which R6 would start to overheat. In practice, a maximum input of 50 V is suggested.



06076


E6673

EGB72
On test, this input circuit has been found reliable to beyond 1.2 MHz . Two C-MOS 4518 dual decade dividers are ripplecascaded to give four stages of division by ten, providing the instrument with a total of five ranges. The required output is selected by S1b. Capacitor C6, D3 and D4, and R9 differentiate the signal to provide short negative spikes for triggering the monostable timer IC5. If the input frequency is too high for the range selected, the period of the input signal to the timer may be shorter than the timer's output period, and in this condition the timer will trigger on multiples of the input cycles. To prevent false readings due to this, the timer period must be less than half the shortest input period expected, so that for any excessive input frequency the meter will simply read f.s.d. plus. The period of a frequency of 100 Hz is 10 mS , so R10 and C7 have been chosen to give a timer output about 4 mS .

IC6 is essentially an integrator with a discharge resistor R12 across its capacitor. The inverting input will be maintained at OV, so each timer pulse dumps a fixed packet of current through R11 into C9, regardless of the output voltage. This output voltage will, of course, alter until the current out through R12 balances the net current coming in through R11. VR1 and R13 were selected to provide a suitable f.s.d. point on a \(50 \mu \mathrm{~A}\) meter since this is readily available. Other meters may be used if the values of these two resistors are suitably altered. The use of an integrator confers two advantages; firstly the linearity of the output is improved, and secondly there is less needle flicker on the meter. In fact, the flicker is not apparent at all above \(5 \%\) of meter scale.

\section*{CONSTRUCTION}

All the electronic components for this project are mounted on a single p.c.b. It is suggested that this board is constructed in stages, testing at each step so that any problems can
be easily traced and dealt with as they arise. Start by fitting the five wire links on the board, followed by the power supply components R1, 2, 3, and 4, C1, 2, 3, and 4, ZD1, TR1 and 2 , and IC1. Temporarily connect the l.e.d. and connect up the battery supply, preferably through a 100 Ohm resistor, which will limit the current somewhat if a fault is present. Check that the output voltages are correct. The l.e.d. will not light unless the supply voltage falls to around the 11 V 2 total output voltage. If there is no output, first check that l.e.d. and Zener polarities are correct.

Continue the construction with the input stage; R5, \(6,7\). and 8, C5 and 10, D1, D2 and IC2. Apply power and an a.c. input of around half a volt. In many cases the house wiring induces a.c. and a wet finger will do. Then check the output from IC2 pin 6. This will appear on the link just above the i.c. and can be monitored with an oscilloscope, or heard as a loud buzz on an earphone (use a d.c. blocking capacitor). If it doesn't work, check R7 and R8 first, its easy to confuse the colours on these resistor values. Now go to the other end of the circuit and construct the integrator, with R11, 12 and 13, VR1, C9 and 12 and IC6. Temporarily connect the meter and supply, and check that the meter goes to zero. If you place one wet finger on the top end of R11 and another on a +5 V 6 point (positive end of C4) you should get a reading on the meter. If this works, fit the timer components R9 and 10. C6, 7, and 8, D3, 4 and 5 and IC5. Attach all the wires for the range selector switch and connect the two most righthand ones together. Inject a 50 Hz input using a few volts from a mains transformer. The meter should read, and VR1 can now be used to set it to mid-scale. This is the only calibration adjustment required for this project! If all seems correct, complete the board with C12 and the two divider chips, observing the usual C-MOS handling precautions. Use sockets for these two if you prefer, although on the prototype they were soldered directly to the board. The other ranges can be checked by shorting each switch lead in turn


Fig. 3. Printed circuit


Fig. 4. Component layout

\section*{COMPONENTS ...}

\section*{Resistors}
\begin{tabular}{ll} 
R1 & 220 \\
R2, 3, 9 & \(10 k\) (3 off) \\
R4 & \(1 \mathrm{k5}\) \\
R5 & 1 M \\
R6, 13 & \(33 \mathrm{k}(2\) off) \\
R7 & \(4 k 7\) \\
R8 & \(470 k\) \\
R10 & \(82 k\) \\
R11 & \(47 k\) \\
R12 & \(100 k\)
\end{tabular}

\section*{Potentiometers}

VR1
100k sub-min hor. preset

\section*{Capacitors}

C1, 3, 4
C 2
C
C
C
\(\begin{array}{ll}\text { C6 } & \text { In ceramic plate } \\ \text { C7 } & 47 n \text { polyester }\end{array}\)
C8 \(\quad 100 \mathrm{n}\) polyester
C9 \(\quad 2 \mu 225 \mathrm{~V}\) tant. bead
C10, 11, \(12 \quad 1 \mu 63 \mathrm{~V}\) electrolytic (3 off)

Transistors \& Diodes
\begin{tabular}{ll} 
TR1 & BC184L \\
TR2 & BC214L \\
D1,2,3,4,5 & 1N914 \\
D6 & BZY88C5V6 5V6 400mW Zener \\
D7 & TIL 209 red.
\end{tabular}

\section*{Integrated Circuits}
\begin{tabular}{ll} 
IC1 & 1458C \\
IC2 & CA3130 \\
IC3,4 & C-MOS 4518 BE \\
IC5 & ICM7555 \\
IC6 & CA3140
\end{tabular}

\section*{Miscellaneous}
P.c.b.

Switch S1, 2 pole 6 way
Meter, \(0-50 \mu \mathrm{~A}\) FSD
Case, Verobox, Vero part no. 202-21036G,205 \(\times 140 \times\)
110 mm
Coax socket
Tagstrip
Control knob
\(2 \times\) PP3 battery clips

Fig. 5. Interconnections

RANGEIPOWER SWITCH


EG875
to the lead furthest to the right (the timer input), and applying an appropriate input signal. Aternatively, they can be functionally checked with a 50 Hz input, as the meter needle will give a small kick for each timer pulse on any range. Note that on the top range, however, a 50 Hz input will only give one kick every 200 seconds. If these ranges are working at all, though, they are automatically as accurate as the basic

\section*{100 Hz range.}

The board is designed to mount directly into the specified Verobox using two of the self-tapping screws provided. An " \(L\) " shaped aluminium bracket is fitted to the other end of the box with the other two self-tappers, and this holds the batteries firmly against the box side. The total drain of the circuit is only about 12 mA so a pair of PP3 batteries is a perfectly adequate source of power. The meter is the large fourinch scale \(50 \mu \mathrm{~A}\) unit available from Maplin, chosen for its large clear scale, and also because this scale has 100 divisions. A little careful work on the scale plate with typing error ink and a letter transfer sheet provided the appropriate markings. The meter, switch, l.e.d. and input socket are all mounted on one of the aluminium panels, and interconnected as shown in Fig. 5. A small piece of tagstrip is used to make the necessary connections between the battery leads. A final check and adjustment of the calibration of the lowest range should be carried out when construction is complete.

The prototype instrument has proved very accurate and useful, and is extremely simple to use. The total construction cost is somewhere around f 20 , but of this a very large proportion is accounted for by the case and meter. If preferred, the board could be housed in an alternative, cheaper case and used in conjunction with the workshop test meter, providing accurate measurement of frequency at even lower cost.


IMPROVED PA

The Marconi Company of Chelmsford, Essex, has a British patent (BP 1586 441) on a public address system which automatically tailors the reproduced sound level to the ambient noise. All too many PA systems are inaudible or unintelligible and this is largely due to incorrect sound level setting; they either distort or get lost in the background noise. Manual control is possible but cannot cope with rapid fluctuations in noise level; it is also labour intensive.

The Marconi idea relies on the wellknown phenomenon whereby a moving coil loudspeaker can be used "in reverse" as a microphone. This phenomenon is already relied on in areas of strict security where there is a PA system installed. The PA system is switched into the microphone mode whenever it is not in use. An attempt to bomb one of Britain's largest cruise liners was foiled through the use of just such a system.

Fig 1.


Figure 1 shows the basic Marconi layout. At a reproduction setting of switch 5 , the loudspeaker 1 reproduces an audio signal from input 3 . The signal is passed through a gain level controller 4 . The switch 5 is held in the reproduction position whenever level detector 8 senses the presence of an audio signal at 3 . When this signal disappears, or falls below a pre-determined threshold level, switch 5 changes state so that the loudspeaker 1 functions as a microphone and feeds a signal representative of the ambient background noise level to level detector 6 . This detector provides a control signal
which is stored at 7. When the switch 5 changes back to the reproduction state the level memory 7 sets the gain of level controller 4 to a value which is appropriate for audible reproduction of the PA message through loudspeaker 1. The output of detector 8 also feeds memory store 7 to provide an update on the level of signal to be reproduced.

By correlation of the inputs to memory 7, the speaker 1 will produce audible announcements irrespective of the input level at 3 and the background noise in the vicinity of the loudspeaker.

WHEN the implications of the 1970's fuel crisis finally sank home, the future for private motorised transport looked bleak. But the new decade has arrived and although the motor industry is in recession, it is facing the challenge of fuel economy legislation with a powerful new ally-micro-electronics. Instead of gloomy predictions that we would be driving around in converted milk floats (mass produced in Hong Kong), we have retained the comfort and performance levels and reduced fuel consumption.

This level of improvement has been achieved mostly by refining the mechanical design of petrol engines close to its theoretical efficiency limits. Further improvements will be more difficult and this is where the microprocessor comes in.

\section*{ENGINE CONTROL}

The immediate answer to improve engine efficiency was mechanically controlled fuel injection, which had been developed to a sufficient degree in motor racing. In today's commercial environment of spiralling labour and raw material costs, hydraulic and mechanical controls are becoming more expensive to manufacture while microprocessors and associated electronics are becoming cheaper and more sophisticated.


Fig. 1. (a) View of the Bosch "Motronic" electronic control unit.

Whilst a mechanical system cannot monitor any more than two input variables (say speed and load), without a drastic increase in complexity and bulk, a microprocessor can handle virtually all the information that the system generates. These can be engine and ambient temperatures, barometric and boost pressures, fuel variations and even instantaneous conditions in the combustion chambers and exhaust system. Additionally, the inherent flexibility of the microprocessor as a programmable device allows it to predict trends in ongoing conditions, such as rising engine temperature, and optimize efficiency at all moments in time. This compares with the somewhat crude correction of an unintelligent mechanical controller which is also subject to error through wear (and rust?).

Bosch, the West German automotive components group, have had in production since 1979 just such a system, called "Motronics" (Fig. 1) which is in use in certain up-market cars such as Porsche and BMW. The system controls spark ignition as well as fuel injection, exact settings are calculated from available data sampled 400 times a second. These settings are calculated using data stored in a fixed memory (ROM), which customises the module to the engine's performance characteristics, hence the system can be easily adapted for use with any petrol engine.

(b) Simplified block dlagram of the Motronic control unit. (Courtesy: Robert Bosch Ltd.)


From its memory, the computer, with some processing, can output 4096 near ideal ignition dwell-angle settings for a particular load/speed situation. These are corrected with respect to ambient conditions such as air and engine temperature and atmospheric pressure. The same applies to fuel injection control with added functions such as fuel cut-off on the overrun (i.e. when you take your foot off the throttle), this alone gives a 5 per cent increase in economy. The system's efficiency is particularly pronounced in the case of engines which have a high compression ratio and run on lean mixtures of un-leaded petrol.

(c) Diagram of the Motronic control system as used on cars such as Porsche or BMW. (Courtesy: Robert Bosch Ltd.)

So while present claims for fuel savings are in the range of 5 to 20 per cent (dependent on the driving conditions), the system has the potential to adapt to and improve the coming generation of "clean" economy engines.

Although the microcomputer was designed around a standard microprocessor and memory chips, these and the other electronic components in the Motronic system have been selected to satisfy extreme environmental conditions. Whereas the normal operating range for commercial electronics is 0 degrees \(\mathbf{C}\) to +70 degrees C , Bosch designers have allowed for a -40 degrees C to +130 degrees \(\mathbf{C}\) temperature range. Mechanical impact up to 100 times the acceleration due to gravity is taken in its stride.

\section*{ELECTRICAL SYSTEM CONTROL}

Apart from improving efficiency and performance, manufacturers are looking to electronics to rationalize and hence to reduce manufacturing costs of existing electrical systems in the car. The electrical wiring harness, which distributes power and controls accessories, is bulky, expensive and labour intensive to actually fit into the car during production. In use, it is also a major factor in unreliability of the car as a whole. The system planned for the future electronic car is a single power ring running around the body tapped into by solid state power switches. These will be controlled by a series digital data line.

Data transmissions are handled by a microprocessor which also interfaces with the driver's control panel. Each switch on the panel has a specific digital code which is matched to a unit on the control line. If, for instance, the rear window demister is selected, the microprocessor senses the switch closure and sends a digitally coded message down the line. Although all the units connected receive the data, only the rear window module responds to the unique code and latches its associated switch to energize the window heater element.

The module itself will be a general purpose one with several power switches, so it can be used throughout the car and control different functions which are physically grouped together. For example, the rear lamp cluster, which normally comprises driving, brake, reversing, fog and turn indicator lamps, would normally need 6 wires runnning the length of the car. In the digital system, the control module is built into the lamp cluster, with the power ring and data control line connected to it.

When fully developed, the module electronics could well be a


Practical application of "ALI" driver guidance system, currently tested in the Ruhr area of West Germany. The display panel supplies the following information: distance to nearest petrol station; distance to nearest telephone; road hazard warnings and route directions
simple microprocessor with integral memory, a single integrated circuit which in quantity costs less than \(£ 5\) at today's prices. Such a system can be further developed to be self monitoring, i.e. when a lamp is powered up the module senses this and sends a status message back to the microprocessor which gives the driver a direct panel indication.

The data message line will probably be a fibre optic cable, which transmits the codes in bursts of visible light rather than electric current. Optoelectronic sensors will replace traditional ones, such as mechanical micro switches, and will impart high reliability to more sophisticated sensing applications such as fuel/air flow and rotational speed.

\section*{ELECTRONIC DRIVER AIDS}

A microprocessor makes an ideal system monitoring unit as the application requires a scan of a large number of subsystems such as fuel tank, oil pressure, engine temperature. These can be displayed continuously or only when they reach a critical value (with audible warning), the relationship between various parameters can be processed to give the driver better information without distracting him from the task of actually driving the car!

Up to now emphasis (especially in the USA) has been on fuel consumption and digital displays with GM's Tripmaster, the Ford Miles To Empty display and the Chrysler Tripcomputer. The nearest to a fully integrated electronic dashboard is Aston Martin's Lagonda, which utilizes l.e.d. technology but has no computer. AM's design department has developed an l.c.d. panel for their 200 mph Bulldog, but are reluctant to introduce electronics in any other areas of their cars as the microprocessor in the first Lagonda had reliability problems.

In Europe, one of the most active companies in this field are BMW, whose top models boast an impressive range of electronics headed by the already mentioned fuel injection-ignition system designed by Bosch.

BMW's Check Control System is an on-board computer which supplements existing analogue instruments. The control panel has 12 calculator-type push-buttons and a four-digit illuminated display, each button doubles as a data entry or command function. Normally, the unit displays time but on command will display: outside temperature (with buzzer warning when below freezing point-for warning against black ice), average speeds (with preset speed limit buzzer warning),
estimated time to arrival, distance to destination, instant and average fuel consumption, and miles to empty. Additional interesting functions are digital code entry for ignition immobilization (as in cash dispensers), stop-watch function for checking acceleration, and programmable timer which can actuate the car heater before the driver actually gets in.

There are many possibilities for electronic driver comforts, a his/hers electronic seat adjustment memory is perhaps the ultimate in electronic extravagance. Perhaps the most effective driver aid is the incredible ALI system from Blaupunkt of Germany. ALI is an abbreviation in German for car driver leading and information system. The system consists of a relatively simple transmitter-receiver unit in the boot of the car, and a liquid crystal display and graphic display module with calculator pushbuttons.

The roads contain aerial loops which communicate with the car's transceiver as it passes. Actual information handling is done partly in the roadside electronic control boxes, and these are all linked by cable to a large central computer which controls long-term traffic flow on the whole autobahn system.

At the moment, operation is limited to a pilot scheme covering 60 miles and 83 flyover intersections. The number of cars involved is about 400 . In spite of the system's complexity, it is simple for the driver to use. The driver enters a map reference number for his destination and drives off. As the car approaches a junction, the unit gives a bleep and a simple diagram appears on its screen making it obvious whether to turn off or carry straight on. Should the driver make a mistake the unit will take this error into account and direct him to the next most direct route. If this is not worthwhile, then it indicates a U-turn at the next intersection.

The message exchanges are repeated three times to eliminate errors, the transfer takes about 20 milli-seconds which allows for cars travelling at speeds up to 155 mph . The cost of the car electronics is less than \(£ 100\), but the pilot scheme has already cost £3 million. Nevertheless, the cost of converting the whole motorway system will still be only one per cent of the original construction costs.

\section*{BRAKING}

Perhaps the biggest contribution of electronics to car safety is the anti-lock braking system. One system, the ABS, has been developed jointly by BMW and Bosch. ABS consists of a


This photo shows the benefits of the Bosch Anti-Skid Braking system (A.S.B.), which is the result of microchip technology. The situation is panic braking on a slippery road surface. Left: without A.S.B. Right: with A.S.B.
microprocessor and a series of sensors that measure the rotational speed of each wheel. If any wheel begins to lock, a solenoid valve adjusts brake pressure on that wheel to keep maximum traction with the road. This means the car will stop in a straight line on almost any surface, in the minimum possible distance, even if the driver applies excessive pedal pressure. In practice, ABS reduces the stopping distance on a wet road at 70 mph from 150 yards to 90 yards-well worth the \(£ 800\) BMW charge as an option.

For \(\$ 6000\) the infra-red goggles developed and marketed by CCS, Communication Control of New York, seem slightly worse value for money, but come in handy should the headlamps fail in an unlit tunnel. CCS can also fit your car with remote ignition control, bomb sniffer and electronic surveillance transmitters, plus the usual bullet proof windows, machine guns and tear gas ducts, all suitable for local shopping trips! With annual revenues of \(\$ 18\) million, CCS seem to have carved a niche in this particular market sector, which consists mainly of extremely scared (and wealthy) industrialists or people with skeletons in their cupboards. The former Shah of Iran ordered a fully fitted Cadillac in 1979 for \(\$ 250,000\) but never collected it, forfeiting his \(\$ 50,000\) deposit.

With diagnostic computers in widespread use in garages, a logical progression will be to use the on-board computer to perform this task at the touch of a button. It can also give a readout of the state of serviceable items like brake pads, brake fluid and oil levels, using digital letter dashboard displays. A step in this direction has already been taken by Ford with their concept car Probe 1, the dashboard layout looking as if it may have been taken from the NASA space shuttle flight deck.

Before such a system can be fully implemented, low cost sensor technology must be further developed. Bosch seem to be the leader among. car electronics firms with yet another innovative


Trip Computer from Smiths Industries
but impressive safety feature, electronic tyre pressure monitoring. The tyre pressures are monitored in a non-contacting manner using high frequency pressure switch and sensor units, when pressure falls below a preset level, the switch stops radiating pulses which after a delay cause audible and visual warnings to be actuated by the processing unit.

\section*{COLLISION RADAR}

Still in a state of early development, mobile radar is being tested in Germany with a view to helping drivers maintain correct distances between cars. The radar operating frequency is about 35 GHz . A microprocessor processes the input information and displays a correct driving speed for that particular distance. There are still quite a few problems to be overcome, for instance how to blank out spurious reflections on bends and interference from other cars working on the same frequencies.

Should the radar computer mistake an articulated lorry for a low-lying bridge, electronics still saves the day with Bosch's passive restraint control processor. It actually detects the onset


Futuristic instruments display including keyboard designed by Hugo G. Poole for Smiths Industries
of a collision and activates air bags to protect the car's occupants before death or injury; the system is claimed to positively distinguish a collision from normal driving!

\section*{THE FUTURE}

When will the showrooms be flooded with these mobile amusement arcades? In the next few years we will see electronics slowly infiltrate the mass market cars just as Porsche and BMW are doing now. But it won't be until around the end of the decade before we have all-electronic computerized Cortinas available. Before then, the whole motor trade has to evolve sufficiently to cope with the service and back-up requirements of the built-in computer technology.

Labour rates for a skilled mechanic are around \(£ 12\) per hour, how much will trained computer and electronic service engineers cost to the motorist? To employ such people will be unavoidable but the cost can be minimized by making the electronics in the car self-diagnostic to a large extent. This means faults will be traced as easily as they are in colour televisions, which match computers in complexity, but can be serviced at the customer's home by relatively unskilled technicians.

The design of the electronic car will have to be rationalized in a similar way with easily replaceable standard modules which if produced in large quantities can be made cheaply. The number of processors will be limited to say two, one for control and one for monitoring and diagnosis of the automotive parts and the electronics themselves. When a thorough service is necessary then the powerful garage diagnostic computers will be plugged into the car computer's diagnostic plug and will pin-point the fault.


IMPORTANT
The Home Office 27 MHz CB Specification (MPT 1320) carries the following as part of the Foreword.

The Wireless Telegraphy Act 1949 provides that no radio equipment may be installed or used except under the authority of a licence granted by the Secretary of State. All Citizens Band Radio equipment, whether hand held, mobile or base station, must be covered by a licence; it is a condition of this that the apparatus fulfils, and is maintained to, certain minimum technical standards.

The manufacturer, assembler, or importer of citizens band equipment is responsible for ensuring that the apparatus conforms with the specification; and any additional requirements imposed by regulations under the Wireless Telegraphy Act 1949, Conformity with the required standards may be established by tests carried out by the manufacturer, assembler or importer, or by a reputable test establishment acting on his behalf, but in either case conformity with the specification will remain the responsibility of the manufacturer, assembler or importer.

At the time of going to press CB licences were not available to the general public but it is anticipated that availability will be announced shortly. However readers can be ready with the PE Ranger to use this new facility as soon as it becomes legal.

Copies of MPT \(1320(27 \mathrm{MHz}\) ) and MPT 1321 (934 MHz ) are available from Government Bookshops and booksellers for \(£ 1.90\) each.

The PE Ranger 27FM will only meet the Home Office specification for UK CB if it is constructed using a complete kit of parts obtained from Modus Systems and assembled exactly in accordance with the instructions given in this article. We do not recommend this project to anyone who has not successfully completed the construction of other electronic equipment.

Readers who hold the appropriate radio amateurs licence may use the PE Ranger on the 10 m band.

ITIZENS Band radio is shortly to become legal in the UK and the PE Ranger 27FM offers you the chance to take advantage of this new system and develop its potential to meet your personal needs. The Ranger provides an ideal starting point for the newcomer and experienced operator alike. The introduction of the new service is expected shortly after the publication of this article and you have the opportunity to be on the air as soon as licences are issued.

The Ranger is not just a rig which you, will outgrow as your operating experience increases. It forms a part of an overall system which can expand with each new application you find for CB. The base and mobile adaptor will extend the range and facilities of the basic transceiver for use in the car, home and boat.

The first parts of the PE Ranger series describe the construction and basic principles of operation of a selfcontained hand-portable transceiver for short-range personal communication. Future articles will cover the testing and alignment procedures, which will require a minimum of test equipment, and the construction of a base and mobile unit.

BUILDING A RANGER?
The first question asked by many would-be constructors will be, "Could I build a Ranger?". The basic requirements are: the ability to solder neatly, a few basic tools, the use of a d.c. voltmeter, and a complete set of components. With these requirements satisfied, the answer to the original question is, "Yes".

The tools required are: a soldering iron (maximum 25 W or temperature controlled) with a miniature bit, a supply of


\section*{SPECIFICATIONS}

mulitcored solder, a pair of long nosed pliers, a pair of good quality side cutters, wire strippers (optional), a sharp knife or scalpel, a small screwdriver, a magnifying glass (optional), and a trimming tool (which may be made by filing down a plastic knitting needle to the correct dimensions). With the tools above and a set of components, it should be possible to follow the instructions given and successfully complete the PE Ranger 27FM without any previous experience of r.f. constructional projects. However, we suggest you do not build the PE Ranger if you have not successfully completed other electronic projects. It cannot be stressed too greatly that the recommended printed circuit board layout must be followed exactly if predictable results are to be obtained. Depending on the experience of the constructor, the Ranger may be built in 2 to 4 evenings, and the testing and alignment completed in a further 1 to 2 evenings, depending on the time spent and the facilities/test equipment available. In
will meet the Home Office performance requirements. Indeed, it is usually the case that there will be at least as many different designs produced as there are different designers working on a particular problem!

The main design aim was to produce a low cost, handportable FM transceiver suitable for personal communication. Operation from internal re-chargeable nickel-cadmium batteries, while involving a higher initial outlay than for dry batteries, was considered an essential feature for portable use. The life cycle cost of a unit powered exclusively from dry batteries will otherwise rapidly exceed the total cost of the equipment itself! To this end, the Ranger has been designed with re-chargeable batteries, a mains power supply and automatic battery charging circuits, all included inside the case. Operation from an external d.c. source such as a 12 volt car battery is also possible, and the NiCads may even be re-charged in this way.


Fig. 1.1. Block diagram of the PE Ranger
the event of problems being encountered, a detailed fault finding guide is given in the latter part of the constructional notes. When care has been taken to check the identification and orientation of all components before soldering, and when the finished p.c.b. has been carefully inspected after completion, few problems should be experienced; the majority of problems arise from wrongly fitted components and poor soldering (solder splashes and dry joints in particular).

\section*{DESIGN PHILOSOPHY}

The design of the PE Ranger 27FM inevitably represents an engineering compromise between the various design and performance parameters. One over-riding design constraint is, of course, the Home Office Performance Specification for "Angle modulated 27 MHz radio equipment for use in the Citizens Band Radio Service". Within the limits of this specification, however, there is plenty of scope for many different practical implementations of an FM transceiver which

The transceiver itself makes use of integrated circuits in the design wherever possible. This allows a high level of performance to be achieved at low cost in the smallest possible space, while keeping to standard constructional techniques. Wherever possible, preset adjustments are kept to a minimum, with test points provided for simplifying the alignment procedure, and readily available components are used. Careful attention to the design of the p.c.b. ground plane and the component layout allows all of the components except the sockets and controls to be mounted on one single-sided p.c.b. The completed design is therefore compact, repeatable, cost-effective and straightforward to align. The robust case, flexible helical antenna, integral batteries and loudspeaker, detachable microphone, and rugged transmitter design all contribute to making the PE Ranger 27FM a self-contained transceiver which is suitable for a wide range of applications.

\section*{SYSTEM DESCRIPTION}

The PE Ranger 27FM comprises four functional modules; transmitter, speech processor, receiver, and power supply. Fig. 1.1 shows how these modules are arranged in the basic transceiver.

In the transmitter, a low frequency ( 9 MHz ) fundamental crystal oscillator is used to define the output frequency. The speech processor amplifies the microphone signal \({ }_{\text {a }}\) provides active limiting and low pass filtering, and then adjusts the level to set the maximum transmitter deviation. The output of the speech processor is used to frequency modulate the fundamental oscillator by means of a varicap diode. The modulated 9 MHz signal then drives a frequency multiplier stage to produce an output on 27 MHz . This 27 MHz signal then undergoes two stages of RF amplification to provide an output of around 500 mW (r.m.s.) into \(50 \Omega\). A multi-stage low pass filter is included in the path between the p.a. stage and the aerial to provide a high rate of attenuation of unwanted spurii. The overall design of the transmitter features bandpass coupling between stages, and this assists in achieving a low harmonic content in the output. The alignment procedure is simple, with test points provided for each stage, and only a simple d.c. voltmeter is required to complete the alignment of the transmitter.

The receiver features a conventional superhet arrangement with an intermediate frequency (i.f.) of 455 kHz . The signal frequency is applied via the RF amplifier stage to one of the mixer inputs. The local oscillator drive for the second input is derived from an overtone oscillator running at 455 kHz below the signal frequency. The 455 kHz i.f. output from the mixer is filtered to remove unwanted mixing products, amplified in a five-stage limiter, and then demodulated. The combined i.f. amplifier and demodulator stage also provides the squelch facilities. Final audio amplification of the recovered signal is provided by an i.c. audio power amplifier. The use of a high gain amplifier, with its associated i.f. filter, ensures that alignment of the receiver is a very straightforward task, with a minimum of preset adjustments.

\section*{SPECIFICATIONS}

In designing a piece of equipment for Citizens Band use consideration has to be given to meeting the specifications laid down by the Home Office. These are primarily concerned with the following aspects of equipment performance:
(a) Maximum power output and effective radiated power.
(b) Accuracy and stability of the transmitted frequency.
(c) Frequency deviation and bandwidth of the transmitted signal.
(d) Spurious radiation from the transmitter and receiver.

In each performance area limiting values are specified and these should not be exceeded under both normal and extreme conditions. To this end the Home Office require that tests be made either on a sample of the equipment type or, for simplicity's sake, on one item only. In this latter case equipment manufacturers, importers or-assemblers must, from time to time, carry out subsequent tests to ensure that the specifications are still being met. In the case of the PE Ranger it is therefore necessary to establish that not only the performance of the prototype conforms to the given specification but also that sample units be tested, after assembly, to check that they also comply with the Home Office requirements. For this reason constructors are warned that the specifications quoted in this article are only likely to
be valid for transceivers constructed:
(a) Using the components, p.c.b. and enclosure specified
(b) Closely following the constructional details and alignment instructions given.

Any major departure from either the recommended components or alignment procedure may result in a finished transceiver which not only fails to perform to the quoted specification but fails to comply with the Home Office requirements. It should also be noted that, on any particular piece of equipment, performance specifications may bé marginally different from those quoted due both to minor variations in individual components and to alignment tolerances.

\section*{CIRCUIT DESCRIPTION}

The complete circuit diagram for the PE Ranger 27 FM is shown in Fig. 1.2. To assist in locating a particular component, identification symbols are allocated distinctly to the transmitter, receiver and control sections, respectively, of the Ranger. Components in the transmitter and speech processor are numbered from 1,'e.g. R1, C1, IC1, etc. Receiver components are numbered from 100, e.g. R100, C100, IC100, etc. The control section numbers components from 200, e.g. R200, C200, etc.

The selection of transmit or receive is by means of the


Prototype p.c.b. design of the-PE Ranger


Fig. 1.3. Deviation characteristic for the frequency modulator



COMPONENT POLARIZATION

Fig. 1.2. Complete circuit diagram of the PE Ranger


\section*{COMPONENTS . . .}

\section*{TRANSMITTER}

\section*{Resistors}
\begin{tabular}{|c|c|}
\hline R1, R15, R28 & 150 (3 off) \\
\hline R2, R3, R21, R24, R25, R26 & 100 k (6 off) \\
\hline R4, R19 & 47k (2 off) \\
\hline R5 & 330 \\
\hline R6, R7 & 100 (2 off) \\
\hline R8 & 2k2 \\
\hline R9 & 33k \\
\hline R10 & 27 \\
\hline R11 & 47 \\
\hline R12,R13 & 10 (2 off) \\
\hline R14, R22, R23 & 3 k 3 (3 off) \\
\hline R16, R17, R20, R27, R29 & 10k (5 off) \\
\hline \(R 18\) & 82k \\
\hline
\end{tabular}

All resistors \(W\) W 5\% carbon

\section*{Potentiomoters}

VR1 10k hor. preset
VR2 470 hor. preset
VR3 1 M hor. preset

\section*{Capacitors}

C1. C19
C2, C8, C11, C12, C14.
C16, C17
C3, C4
C5, C6, C10, C13, C26
C7. C20, C2 1
C9
C15
C18
C22, C24
C23
C25
VC1, VC2
\(22 \mu 10 \mathrm{~V}\) elect. ( 2 off)
4 n 7 ceramic ( 7 off)
100p ceramic plate (2 off)
in ceramic ( 5 off)
100 ceramic ( 3 off)
33p ceramic plate
\(10 \mu 16 \mathrm{~V}\) elect
\(22 \mu 16 \mathrm{~V}\) elect
\(22 n\) ceramic ( 2 off)
\(22 \mu 16 \mathrm{~V}\) elect
\(2 \mu 216 \mathrm{~V}\) elect
3-45p trimmer (2 off)
All electrolytic capacitors are vertical p.c.b. mounting types

Semiconductors
\begin{tabular}{ll} 
TR1, TR2 & BC237A (2 off) \\
TR3, TR4 & 2N2218 (2 off) \\
D1, D6 & BZY88 C9V1 (2 off) \\
D2 & BB109 \\
D3 & OA47 \\
D4, D5 & 1N4148 (2 off) \\
D7 & Red I.e.d. \\
IC1 & LM 324N \\
\hline
\end{tabular}

Miscellaneous
11
L2/L3 KANK 3335
L4/L5, L7/L8 KXNSK 4612 (2 off)
L6, L9 \(\quad 10 \mu \mathrm{H}\) choke (2 off)
S1 2 p 6 w rotary p.c.b. switch
\(\mathrm{X1} 1-\mathrm{X6} \quad 9 \mathrm{MHz}\) fundamental \(\mathrm{HC} 18 / \mathrm{U}\) crystal ( 6 off)
LPF Low pess filter module
FB1 Ferrite anti-parasitic bead

\section*{RECEIVER}

\section*{Resistors}
\begin{tabular}{ll} 
R100, R104, R110 & 470 (3 off) \\
R101 & 220 \\
R102, R103, R118 & \(22 \mathrm{k}(3\) off \()\)
\end{tabular}
\begin{tabular}{ll} 
R105, R112, R113, R120, R121 & \(47 \mathrm{k}(5\) off) \\
R106, R109, R119 & \(1 \mathrm{k}(3\) off) \\
R107, R108, R114, R115 & 10k (4 off) \\
R111 & 2 k 2 \\
R116 & 220 k \\
R117 & 4 k 7 \\
R122 & \(4 \Omega 7\)
\end{tabular}

All resistors \(\frac{1}{4}\) W 5\% carbon

\section*{Potentiometers}

VR100 10k hor. preset
VR101 \(4 k 7\) potentiometer with a s.p.s.t. switch

\section*{Capacitors}

C100, C101, C116 \(\quad 1\) On ceramic (3 off)
C102, C103, C108, C111, C112, 100n ceramic C114, C124
C104
C105, C106, C109, C110
C107
C113
C115. C117, C118
C1 19, C120
C121, C122, C123
( 7 off)
\(22 \mu 10 \mathrm{~V}\) elect
in ceramic (4 off)
\(2 \mu 216 \mathrm{~V}\) elect
10p ceramic
\(10 \mu 16 \mathrm{~V}\) elect ( 3 off )
\(100 \mu 16 \mathrm{~V}\) elect (2 off)
33 p ceramic plate 3 off

\section*{Semiconductors}
\begin{tabular}{ll} 
D100 & BZY 88 C5V6 \\
D101 & BZY 88 C6V2 \\
D102 & OA47 \\
TR100, TR101, TR102 & 2SK55 (3 off) \\
IC100 & MP 5071 \\
IC101 & LM 380N-8
\end{tabular}

Miscellaneous
L100/L101, L102/L103.
L104/L105
L106/L107
L108
fl100
S100
S101
X100-X105
Loudspeaker
KXNSK 4612 (3 off)
YHCS 11100 AC2 (2 off)
YRCS 11098 AC2 CFM 2455 D
Combined with S 1 Toggle switch s.p.s.t 27 MHz 3 rd overtone HC18/U crystals (6 off) \(50-75 \mathrm{~mm}\) diameter \(16 \Omega\)

\section*{CONTROL}

\section*{Resistors}
\begin{tabular}{ll} 
R200 & 10 k \\
R201 & 100 k \\
R202 & 330
\end{tabular}

All resistors \(\frac{1}{4}\) W 5\% carbon
Capacitors
C200 \(470 \mu 25 \mathrm{~V}\) elect
C201 100n ceramic
C202 Inceramic
\(\mathrm{C} 203 \quad 2200 \mu 16 \mathrm{~V}\) elect
C204 \(2 \mu 225 \mathrm{~V}\) elect
C205 \(1 \mu 25 \mathrm{~V}\) elect
Semiconductors
D200 W005
D201, D202, D203, D204, D205 1N4001 (5 off)
D206, D207
IC200

1 N4148 (2 off)
NE555

Components cont.

\section*{Miscellaneous}

RL200 Relay type 221 D012 p.c.b. mounting 12V 2p c/o
S200 S.p.s.t. switch (see VR101)
SK200 Round SO239 socket
SK201 Reversible chassis mains plug
\(\left.\begin{array}{l}\text { SK202 } \\ \text { SK203 }\end{array}\right\}\) 5-way d.i.n. socket
SK203
SK204 5-way \(180^{\circ}\) di.i.n. socket
B200,
B201 6.25V 250 mAh Nlcad pack
T200 \(\quad 0-12 \mathrm{~V} 3 V A\) p.c.b. transformer

\author{
General \\ Case \\ P.c.b. \\ Knobs (2 off) \\ Microphone with PTT switch \\ Helical whip aerial \\ Mains lead
}

\section*{Constructors \({ }^{\text {Note }}\)}

The PE Ranger 27FM will only meet the Home Office specification for UK CB if it is built from a complete kit of parts from Modus Systems-exactly in accordance with the instructions given in this series of articles. No responsibility will be accepted by Modus Systems for sets which do not meet the specification due to incorrect assembly or alignment. The following prices have been specially arranged for PE readers.

The PE Ranger 27FM kit including injection 'moulded case, mains and car input, rechargeable batteries, microphone, helical \(\frac{5}{8}\) wave aerial and crystals for two channels, \(£ 49.95\) plus \(£ 1.40\) p\&p, plus VAT ( \(£ 59.05\) inclusive) or \(£ 97.00\) for a matched pair of transceiver kits with crystals for two channels plus \(£ 2.80\) p\&p, plus VAT (£ 114.77 inclusive).

Extra sets of crystals are \(£ 2.25\) for each channel plus 50 p p\&p (for any quantity), plus VAT.

Extra plastic covered helical \(\frac{5}{8}\) wave aerials (overall length 50 mm ) for mobile or base station use, \(£ 3.95\) each, plus 80 p p\&p, plus VAT.

Modus Systems Ltd., Dept AP, PO Box 30, Letchworth, Merts. SG6 3DQ (f \(0462674468 / 76392\) ).
press-to-talk (PTT) switch on the microphone. When the PTT switch is not depressed, RL200 is in the default position, and the receiver is selected. Depression of the PTT switch energises the coil of relay RL200, causing the aerial to be reconnected to the transmitter output, and d.c. power to be redirected from the receiver to the transmitter and speech processor stages.

The overall block diagram for the PE Ranger 27 FM shown in Fig. 1.1, will be used as the basis for the description of the circuit operation in the sections which follow.

\section*{TRANSMITTER}

The transmitter output frequency is defined by a 9 MHz crystal oscillator, the output of which subsequently undergoes frequency multiplication to produce a 27 MHz signal on the channel frequency. Modulation is applied directly to the crystal oscillator to produce frequency modulation of the carrier.

The 9 MHz oscillator stage uses a bipolar transistor, TR1, configured as a Colpitts oscillator, whose frequency is defined by the crystal selected by S1. A varicap diode, D2, is used to frequency modulate the oscillator. A varicap is a diode whose capacitance when reverse-biased varies inversely with the bias voltage, i.e. the capacitance decreases as the bias voltage is increased. Used in series with the crystal, the varicap diode increases the oscillator frequency as the bias voltage rises. This characteristic is exploited to allow the audio signal from the speech processor to modulate the carrier frequency. The deviation characteristic for the oscillator and modulator working on channel 21 is shown in Fig. 1.3. It can be seen that the overall transfer characteristic of the modulator is not quite linear, but that the deviation available is considerably more than is required. A limited operating range may therefore be chosen over which the response is linear for the deviation required (maximum \(\pm 2.5 \mathrm{kHz}\) ). The maximum deviation allowed by the Home Office specification corresponds to a swing of \(\pm 833 \mathrm{~Hz}\) on the 9 MHz frequency; Fig. 1.3 indicates that the varicap bias could be set to approximately +6 to 7 volts for zero modulation input in order to give substantially linear performance. It also becomes clear from this graph that the bias voltage for
the varicap must be stabilised against supply voltage fluctuations if the carrier frequency is to be stable. VR1 provides the means of adjustment for the varicap bias voltage, and R1/D 1/C1 stabilise the bias to the diode.

One result of inserting a varicap diode in series with the crystal in the oscillator is to increase the effective series capacitance. This has the effect of increasing the frequency of oscillation, and L1 is therefore included to compensate for this change by reducing the frequency. L1 also provides a fine adjustment for the zero-deviation oscillator frequency.

The oscillator output is taken from the collector of TR 1 to minimise the loading effects, and the signal is used to drive the frequency multiplier stage. TR2 operates as a frequency tripler in common base configuration. This arrangement provides a high power gain and high output impedance, which is required to match to the output tuned circuit, L2/L3. The tuned circuit has a high Q factor to ensure that only the third harmonic (at 27 MHz ) is coupled to the driver stage.

TR3 is a tuned amplifier whose gain may be adjusted via VR2 to vary the drive level to the power amplifier. VR2 operates by varying the emitter current flowing in TR3. The tuned collector load for TR3, L4/L5, is arranged as an impedance step-up to simplify the matching arrangements; this type of arrangement is only appropriate for low power applications.

The power amplifier again uses the common emitter configuration, and TR4 provides around \(10-13 \mathrm{~dB}\) of gain. The output is coupled in a similar fashion to the driver stage, and is passed to the low-pass filter network, and then to the aerial. The output stage is matched to a 50 ohm impedance.

In the transmitter there is extensive decoupling of the supply rail for all of the stages. This decoupling, in conjunction with the short connections to the earth plane, is essential to ensure stability of the transmitter and to suppress the generation of unwanted spurii. On no account should the decoupling be omitted and good quality ceramic capacitors should be used throughout; the aim is to produce a supply rail which has negligible signal impedance. Test points are provided all along the transmitter chain to assist in the tuning up procedure.

\section*{NEXT MONTH: Circuit description and construction}


\section*{THE INTERNATIONAL ULTRAVIOLET EXPLORER}

The IUE has now passed its third birthday and provided data of outstanding excellence. This orbiting astronomical observatory is a joint venture between the United Kingdom Science Research Council, the eleven member European Space Agency and the National Aeronautical and Space Administration of the United States. During its continuing life more than 600 scientists have made use of its facilities. Data is collected continuously at three main centres, one at the Goddard Spaceflight Tracking Centre, another at the NASA ground station at Maryland, and for about ten hours a day at the ESA tracking station at Villafranco del Castillo (VILSPA) near Madrid in Spain.
In the three years of operation the satellite has obtained about 20,000 ultraviolet spectra of astronomical objects. The images which are stored on magnetic tape are kept at the Science Research Council, World Data Centre at Ditton Park, Great Britain. This data is accessible to all astronomers. The data Centre is unique in the world in that it is the largest and most important store of astronomical spectra in the world.

The actual time allowed for the SRC share of the IUE time is a maximum of 160 eight hour shifts during any one year. This is very much oversubscribed by United Kingdom observatories. The reason for this situation is the flexibility of the instrumentation on board the IUE. The design is such that the press of a button provides instantly different modes of operation. For example an astronomer could be focused on a bright source at very high resolution and by pressing the appropriate instruction button, move to a fainter object at lower resolution. The cameras are of remarkably high sensitivity and allow studies to be made of objects which to the ultraviolet eye are very faint such as quasars and external galaxies.

Spectrographic studies of Saturn, Jupiter, asteroids and comets in the solar system have already been made. The more distant objects studies have been carried out on many stars, from those that are very young and those that are highly evolved. Extensive stellar winds have been detected in the hotter and more energetic stars. As a result some theories have had to be rewritten. Another area of surprise was the success in studying corona and the chromospheres of cool stars. It was not thought that these would be accessible to ultraviolet detection.
In the interstellar medium some exciting discoveries have been made. For example, the detection of a hot halo enveloping the galaxy itself. It extends out over a distance of 10,000 parsecs. The temperature is of the order of \(10,000^{\circ} \mathrm{K}\). It is possible to suggest also that this would apply to the nearby neighbours, the Greater and Lesser Magellanic Clouds. It is possible that the high redshift quasara which show multiple absorption lines could be partly caused by the halos of intervening galaxies. One of the most exciting of the observations carried out recently was on the 'twin' quasar which is believed to be a double image of a very distant quasar formed by a massive intervening galaxy which is acting as a gravitational lens. The ultra violet of the spectra are consistent with this interpretation.

The IUE was launched on 26th January 1978 from Cape Canaveral, Florida, by a NASA DELTA 2914 rocket. It is placed in a geosynchronous orbit over the Atlantic. It has a perigee of \(28,000 \mathrm{kms}\) and an apogee of \(46,000 \mathrm{kms}\). Its design life was for three years but it is clear that it will last longer than this. It has been decided that observations will continue so long as useful data is being returned or the satellite remains operational.

\section*{GIOTTO AND HALLEY'S COMET}

Giotto, which will be the first European Space Agency vehicle to go deep into space beyond the Earth will give the ESA an outstanding opportunity to come close to the comet if it arrives on time. Comets are believed to consist of some of the most primitive material in the Solar System. There will only be four hours of close study of the tail as the spacecraft passes through it. Thus high speed measurements must be made. The distance from Earth will then be greater than the distance of the moon. There are therefore technical problems for the radio link to the 60 m Parkes radio telescope in Australia.

In addition to the observations of the cometary nucleus (if indeed there is a nucleus) the scientists concerned with the mission are particularly interested in investigating the cometary dust. The interaction of the tail with the solar wind is an important area for study because the conditions are not unrelated to the development of heating processes in fusion plasmas in the laboratory. Giotto will be equipped with a telescope with electronic colour imaging and with automatic microprocessor control to counteract the effects of the spinning spacecraft. The two dimensional tinted image of the comet will be accurately defined in contrast and transmitted to Earth in real time via the telemetry channel. The pictures will be used to control the vehicle on its course. The real time imaging is important
because the spacecraft may be damaged during hazardous parts of the encounter. Dr. Gary Hunt will be involved in the two dimensional imaging and also with the associated software. This will be principally for the analysis of the images so that the mass flows subliming from the nucleus to the coma and the tail can be quantified.

The spacecraft will speed through the cometary dust at \(68 \mathrm{~km} / \mathrm{sec}\). At that velocity a 0.1 g of dust will explode through 8 cm of aluminium. Since it would be impossible to provide for protection at such thickness in a space craft, an ingenious solution has been adopted to safeguard the vehicle from dust impacts. Two thin shields well separated will be sufficient. In the first contact the particle of dust will explode and will be vapourised to burst on the second sheild 25 cm away as a diverging ionised plasma which will be spread over a wide area. Tests have shown that this will work well and will enable a number count even with large masses. There is an enormous dynamic range to cover as the density of the tail increases as penetration proceeds into the denser layers. The range may well be from \(10^{-17} \mathrm{~g}\) to \(10^{-3} \mathrm{~g}\).

Plasma analysers will be used to provide space-time resolution of the velocity distributions of the ions and electrons in the plasma and the impacting solar wind. A magnetometer will study the bow shock and the plasma flows and instabilities set up where the ionised atmosphere of the comet reacts with the solar wind. It is unfortunate that the United States fiscal plans have meant the maximum coverage of the mission will be decreased leaving the present mission to the European Space Agency, the Japanese with a lightly loaded probe and the USSR with the Venus orbiter on its return. The maximum effort will be from ESA and the USA will have to wait for the next return in 2062.

\section*{THE 30inch STEAVENSON TELESCOPE}

Last October the Steavenson telescope was erected at the new observatory at an elevation of 3,000 feet in the Sierra Nevada, in Spain. The French 22 inch was already installed. The Steavenson was moved from the Royal Greenwich Observatory where it had been refurbished. It was decided to ship it as nearly assembled as possible to avoid double testing and re-assembly. To this end only the optics and electronics were separated. The team of French, Spanish and British astronomers and technicians worked enthusiastically together. It is hoped that the 30 inch will be able to give its full use in the new and better observational conditions.

\section*{SHUTTLE EXPERIENCE}

In a personal conversation with the Shuttle Commander John Young, he told me that he had expected a 'kick in the back of the neck' at take off. This did not happen and in fact it was smooth and easy with full voice communication throughout. A point that showed his past experience as an Astronaut was indicated by the fact that his own heart beat was normal but his co-pilot Astronaut Crippen experienced twice the normal rate.


A graphic equaliser to match our Audio Analyser project. This offer has been specially arranged by PE with BI-PAK to coincide with the publication of our Audio Analyser. The graphic equaliser on offer matches the analyser and provides ten channel audio correction. Knobs and a black aluminium front panel are also provided.

\section*{SPECIFICATION}

Ten channel mono graphic equaliser (2 required for stereo)
Overall measurements: \(155 \times 66 \times 55 \mathrm{~mm}\)
Control Frequencies: \(31,62,125,250,500,1 k, 2 k, 4 k, 8 k\) and \(16 \mathrm{k}(\mathrm{Hz})\)

Control Range: \(\pm 12 \mathrm{~dB}\) cut or boost per channel
Dynamic Range: 110 dB
Maximum Input: 3V r.m.s.
Maximum Output: +15 dB
Frequency Response: \(30 \mathrm{~Hz}-20 \mathrm{kHz}( \pm 1 \mathrm{~dB}\) )
T.H.D.: 0.005\%

Power: \(15 \mathrm{~V}-0-15 \mathrm{~V}\) at 50 mA
Offer closes Friday, October 16, 1981.

To: BI-PAK Semiconductors, PO Box 6, Ware, Herts. Tel. Ware 3182.

I enclose P.O./Cheque No ............. Value
Make cheques payable to BI-PAK
Please charge my Access/Barclaycard account

\(\qquad\)
\(\qquad\)
\(\qquad\)

Please allow 28 days for delivery OFFER CLOSES FRIDAY 16th OCTOBER 1981

Name
.
Address
\|
I
From: BI-PAK, PO Box 6, Ware, Herts.
回


THE synthesiser was originally developed using a keyboard, as the key contact was the easiest method of implementing the switching function required. However, as time passed by, other methods of controlling the basic synthesiser circuits were investigated, and the drum synth was born.

This works on the principle of a pick-up or sensor of some kind picking up the vibrations of a drum or pad and then feeding these signals to the circuitry which controls the synth. Note that this signal is only a trigger signal and that the synth produces the actual sound.

The unit to be described here can use one of a variety of methods to pick up the drum signal and trigger the envelope shaper etc. in the synth which is contained in a separate case. It runs off a regulated mains power supply which could be used to power external equipment if desired.

\section*{BLOCK DIAGRAM}

Fig. 1 shows the basic arrangement of the circuits in the synth. The sweep generator circuit provides a rising or falling envelope (as selected) which is mixed with the triangle wave output from the modulation oscillator, and an external control voltage if desired, and fed to the voltage controlled oscillator (VCO) and voltage controlled filter (VCF) to control their frequencies. The output of the VCO (sinewave, squarewave or white noise as selected) is fed directly to the VCF and passes on to a voltage controlled amplifier (VCA) which is controlied by an envelope generator, triggered by the drum pick-up. This gives the sound its percussive envelope, essential in imitating drums etc. From here the sound is fed to the external amplifier or tape recorder as required via the output socket.

\section*{MODULATION OSCILLATOR}

The circuit for this is shown in Fig. 2. It is a standard integrator/comparator oscillator circuit and its purpose is to generate a linear triangle wave, frequency variable over the low frequency range cycling the pitch of the VCO or cut-off frequency of the VCF as described earlier. IC1, R2, and C2 form an integrating network. C2 charges up linearly via R2 until it triggers IC2, which forms a comparator. On triggering, the output switches polarity and so charges C2 in the opposite direction at a rate dependent on the setting of VR1. When S1 is in the I.f. (low frequency) position, C1 is placed in parallel with C2, increasing its capacitance and thus decreasing the frequency. The range is about 0.5 Hz to 200 Hz on a.f. (audio frequency) and 1 cycle in 30 secs. to 10 Hz on l.f. S3 routes the modulation voltage to the VCO or VCF in the proportion set by VR2, the oscillator being disconnected when not required by S 2 .

Fig. 1. Block diagram of the Drum Synthesiser




Tu . \(E\)
 output

VCF


SWEEP

volume
output
OFF
\(\square\)

\section*{VOLTAGE CONTROLLED OSCILLATOR}

This generates the actual signal which will form the final sound. It has two waveshapes, sine and square, and a white noise output which will be discussed later. The circuit for the VCO and noise generator is shown in Fig. 3. It is based on a custom i.c., the SSM2044. This is a completely integrated voltage controlled low-pass filter system in one package requiring very few external components. The system comprises an exponential converter for controlling the cut-off frequency exponentially from a linear control voltage which is fed in at pin 13, a four-pole low-pass filter block based on transconductance amplifiers which has a \(-24 \mathrm{~dB} /\) octave cutoff slope and minimum control range of \(10,000: 1\), and a circuit for controlling Q (or resonance) from an input control current fed into pin 2 . If the \(Q\) current is increased beyond a
certain value, the filter is forced to oscillate at the cut-off frequency producing a pure sinewave at the output. This is the principle used to generate the sinewave in the VCO, the range being approximately 25 Hz to 2.5 kHz . The output appears at pin 3 of the i.c. and is a current. This is converted into a voltage and buffered by IC3, so producing a sinewave of around 8 V peak to peak depending on the setting of VR3. VR3 sets the voltage which is converted into a current by R7 and controls the Q . This allows accurate setting of the Q for maximum stability over the oscillation range, and greatest purity in the sinewave.

The control voltages for the VCO from the modulation oscillator, the sweep circuit via S4 and VR5, the manual frequency potentiometer, and external input, are summed by IC6 and the resulting voltage is attenuated to around 80 mV


Fig. 2. Circuit of the modulation oscillator

Fig. 3. Circuit of the VCO and noise generator


by R13 and R12, and fed to pin 13 of IC5. Although some exponential oscillators using discrete components suffer from temperature drift problems in the exponential generating transistor, the on-chip exponential generator in the SSM2044 has circuitry which keeps this drift to a minimum and the prototype was found to be thermally stable, the oscillator settling down a few seconds after switch on.
The sinewave is fed to a simple comparator formed around IC4. This produces a squarewave of adjustable amplitude by VR6.
The noise generator uses a reverse biased transistor emitter/base junction (TR1) to produce white noise which is amplified by TR2 and further amplified by IC7, the gain of which can be set by VR7.

Switch S5 selects the desired output waveform: sine, square, or noise. The presets VR6 and VR7 are adjusted so that all waveforms are at the same level.

\section*{VOLTAGE CONTROLLED FILTER}

Once the basic signal has been generated, some way of controlling its timbre or tonal quality must be provided to give variation in the sound, since raw squarewave or white noise becomes boring very quickly. This quality is affected by the voltage controlled filter which is a low-pass type. This filter has an exponentially voltage controllable cut-off frequency, variable over roughly the same range as the VCO, a cut-off slope of \(-24 \mathrm{~dB} /\) octave, and resonance variable up to oscillation. It uses the same chip as the VCO, the SSM2044.
The circuit is shown in Fig. 4. The same combination of control voltages as in the VCO is used in the VCF, i.e. sweep, modulation oscillator, manual, and external. These are summed in the required proportions by IC10. This provides the control voltage for IC9. VR8 provides a variable voltage which is converted to a current by R26 and controls the filter's \(Q\). The input signal is taken directly from the waveform selector switch of the VCO. IC8 converts the output current into a voltage and buffers it, this signal going directly to the next stage.

Since the VCF's cut-off frequency is exponentially related to control voltage, as in the VCO, the VCF and VCO will track each other with fair accuracy if controlled by the same voltages. Better tracking accuracy could have been achieved using close tolerance resistors, but in this application the added expense was felt to be unnecessary.

\section*{trigger input circuit}

Each time a sound is required in any instrument, it must be initiated in some way, i.e. plucking a string, or pressing a key. In a drum synth the sounds are initiated by the signals from a transducer placed near to or on a drum, as mentioned earlier. These signals are of no use to the synth, since a sharp, high level pulse is required. For this reason an amplifier and pulse generator are used.

The circuit is shown in Fig. 5 and is very simple. The incoming low level signals are first attenuated to the desired amplitude by the sensitivity control VR11, and then amplified by a non-inverting, variable gain, op-amp circuit using IC11. The gain can be set by VR12 to any value between. 1 and the op-amp's open loop gain (typically around 100,000). Thus by setting the gain high, when a low level signal is presented to the input, a high level, squared-up signal will appear at the output, due to the clipping action of the circuit.

To provide a stable voltage representing an on or off condition, a capacitor C2O is charged via D1 by this squared waveform so rectifying it. D1 allows only positive pulses to charge the capacitor and prevents it from instantly discharging when the op-amp output falls to zero. R38 controls the decay time of the capacitor and allows it to discharge quickly on removal of the input waveform. The voltage across this capacitor is used to trigger the monostable pulse generator formed around two gates from IC12. This triggers on the positive excursion of the voltage across C20, producing a positive pulse of around 0.01 s long. This is what is fed to the circuits requiring a trigger signal.

A manual switch is included so that sounds can be set up without the unit being connected to a microphone or pickup. Also included is an external trigger input which requires a positive d.c. pulse of about 8 V or above (absolute maximum 12 V ). When a jack plug is inserted into the external trigger socket the drum input circuit is automatically disconnected. R39 ensures that the input to IC12a is never left floating, otherwise instability could occur, causing false triggering.

\section*{SWEEP MODULATION}

This circuit, as explained earlier, provides a rising or falling voltage each time the synth is triggered. The speed of the change of voltage is controllable via the decay pot. The circuit is shown in Fig. 6. \({ }^{\circ}\) CMOS switches IC13a and IC13b, together with IC14, C22, R41, and VR13 form a simple envelope generator. IC12c is connected as an inverter so that when one of the CMOS switches is on, the other is off.

Fig. 5. Circuit of the trigger input


When the trigger input is low the input to switch IC13b is high and it is on, so holding C22 at ground potential via VR13. When the trigger input becomes high IC12c is switched, IC13a switches on, and C22 charges via R41 to approx. +10 V . When the trigger pulse is removed IC13b switches back on again and C22 discharges to ground at a rate determined by the resistance of VR13. Thus a falling envelope as in Fig. 7a is produced. The voltage on C22 is buffered by IC14 to provide a usable output. This output is inverted by IC15 to provide the rising envelope as shown in Fig. 7b. The VCO and VCF each contain a switch which selects the direction of the sweep envelope, and a potentiometer to control the amount of sweep modulation. The decay control can vary the decay time from approximately 0.1 s to 10 s .

\section*{VOLTAGE CONTROLLED AMPLIFIER}

So far, since the VCO and noise generator are on all the time, the output of the drum synth would be a continuous sound, hence some method of switching on the output and controlling its decay time is required. The circuit which does this is the voltage controlled amplifier together with the envelope generator. For simulating percussive sounds, which is what the drum synth does, an envelope with fast attack time and slower decay time is necessary. This means that the sound, when initiated by the trigger pulse, must increase in volume to its maximum almost instantly, and then die away to zero at a preselected rate. To produce this effect an envelope generator produces a positive-going envelope voltage with the above characteristics which is fed to the VCA, a device which gives an output signal proportional to its control voltage, so shaping the output signal.

The circuit can be seen in Fig. 8. The voltage envelope is generated in the same manner as in the sweep generator, C23 charging via R44 to give a fast attack, and discharging via VR14 giving variable decay. Since only a positive envelope is required no inverter is included.

The VCA is based on the CA3080 transconductance opamp i.c. This functions similarly to an ordinary op-amp but its output is multiplied by a current injected into pin 5 , called \(I_{a b c}\). Thus by feeding a signal into the inputs the gain and hence amplitude of the signal can be linearly controlled by varying \(I_{\text {abc }}\). IC17 together with TR3 and R45 convert the envelope voltage into a current suitable for controlling IC18. When IC16's output is OV then there is no output from the VCA since \(I_{a b c}=0\). VR15 converts the current output of IC18 into a voltage, and also sets the volume to the output socket via C24.

\section*{POWER SUPPLY}

The synth is powered from a mains \(\pm 12 \mathrm{~V}\) stabilised power supply. This uses two integrated circuit regulators, the 78 M 12 and 79 M 12 , to provide positive and negative voltage rails as can be seen from Fig. 9. Each rail can provide a maximum of 500 mA before the regulator's current limit acts. Since the drum synth draws only around 40 mA from each rail, external equipment could be driven from the PSU. For instance if two drum synths were built only one power supply could supply both via a socket on the back of the case for example. Note that if the maximum current is required to be drawn then the regulators will require heatsinks. D3 shows that the power is on.

\section*{CONSTRUCTION}

Construction should begin with the preparation of the case. The prototype was housed in a rexine covered case size \(13 \mathrm{in} \times 8 \mathrm{in} \times 4 \frac{1}{2} \mathrm{in}\). The drilling dimensions are shown in Fig. 10. The diameters of the mounting holes for the switches and l.e.d. will depend on the particular components


Fig. 7(a). Falling envelope


Fig. 7(b). Rising envelope


Fig. 6. Circuit of the sweep modulation generator
used by the constructor. Once all the case drilling has been completed, the front panel can be covered in Con-Tact or similar, or painted if desired. It can now be lettered with white rub-down lettering, and then sprayed with clear varnish to protect it. The transformer should be mounted to the back panel with 8BA bolts, and connected to the mains lead and mains switch as shown in Fig. 10.
damaged by leakage from a soldering iron tip. IC12 and IC13 should be left in their protective foam until all other circuit board construction is complete. Then they should be put into the sockets, keeping handling to a minimum.

Begin preparing the circuit board by drilling the mounting holes and making the breaks in the copper strips. Now the PSU can be constructed. When building the power supply,


All potentiometer spindles should be cut to length and the potentiometers, switches, sockets, and l.e.d. mounted to the panel. These should be wired up as shown, the panel mounted components being connected too. Uninsulated, singlecore wire is used to link all the common connections at the back of the panel. Otherwise lightweight, stranded wire should be used for interconnection.

The use of coloured wire greatly helps in the identification of wires and their functions. A source of suitable wire is a metre of 25 or 36 core multicore cable. The wires to the circuit board need not be connected yet. Attention can now be turned to this circuit board.

Most of the components are contained on a 115 holes x 36 strips piece of Veroboard, excepting those soldered directly to the potentiometers and switches on the front panel so as to minimise the number of wires running to and from the circuit board. It is recommended that the power supply section be built and tested first. Once working this will provide power for testing the other sections. Circuit layout is shown in Fig. 11.

To make building, testing, and setting up easier, each circuit is laid out on the board so as to be completely isolated and independent from all the other circuits, apart from sharing power supply connections. This allows each one to be built and tested without having built any others onto the board. A convenient procedure is to build the circuit board up from left to right. It is recommended that i.c. sockets or Soldercon pins be used for all i.c.s particularly IC5 and IC9 to prevent them being overheated during soldering, and IC12 and IC13 since these are CMOS chips and could be
double check the polarity and positioning of all the components. Check carefully that the regulators have been inserted facing the right way round. The power supply constructed, the transformer should be connected (mains to the primary) and with a voltmeter across +12 V and -12 V the mains should be switched on. If there is no reading on the voltmeter then switch off immediately and check for any breaks missed out on the circuit board underside, and wiring errors. If a reading is obtained, then measure the voltage of the positive and negative rails with respect to ground. These should be approximately 12 V . This being successful, the construction of the rest of the sections can begin.

The i.c. sockets should be soldered in place first since the presence of these will aid the positioning of the other components. Resistors and capacitors should be soldered in next, attention being paid to the polarity of the electrolytics and tantalums. The transistors and diodes should now be soldered, preferably using a heatshunt. Ensure that the diodes have been inserted the correct way around, the end with the red band is the end with the bar on the diagram (the cathode). Veropins are recommended to be used for all leads entering and leaving the board, as these allow wires to be connected and disconnected easily when testing etc.

\section*{TESTING}

Preliminary testing of each section as it is built can be performed as follows.

Mod. Osc. Connect VR1 temporarily to the circuit board. Connect an amplifier, with its volume set very low, to pin K8


Fig. 9. Power supply unit


Fig. 10. Front panel layout
and check that a tone can be heard, VR1 altering the frequency. Short pins K8 and M6 together and the pitch should become a series of clicks.
VCO Adjust VR3 to max. (slider at +ve end). Connect an amplifier to pin EE26 and then pin FF40. Both should produce an audio tone.
Noise Generator Connect an amplifier to pin P39. The characteristic rushing sound of white noise should be heard.
VCF Connect pin P44 to the +12 V rail and check that a tone can be heard at pin Y54.
Sweep Connect VR 13 temporarify to the board and connect a voltmeter ( 25 V d.c. range) with positive to pin Y68. Short pin L72 to +12 V briefly and the voltage should rise on the. voltmeter and then decay to zero at a rate adjustable by VR13. Also make sure that an inverted output is available at pin P68 (remember to reverse the voltmeter connections).
VCA Connect pin C82 to noise gen. pin P39 and solder VR14 and VR15 temporarily to the board. Connect an amplifier to pin F 90 and short pin to +12 V as before. The sound should be heard and then decay in volume to zero at a rate adjustable by VR 14.
Trigger Input Adjust VR12 to nearly max. (slider near OV). Connect a voltmeter to pin C63. The voltage should rise from zero in a positive direction when a finger is placed on pin B75 (the hum induced in a finger should be sufficient to trigger the circuit). The reading should return to zero when the finger is removed.

These tests having been successfully completed, then the circuit board can be mounted in the case using 1 in 8BA bolts and \(\frac{1}{2}\) in 8BA spacers. The wires to the front panel can now be connected too, as shown in Fig. 10. Note that screened lead should be used on all board/front panel connections on the drum input circuitry. This completes the construction of the drum synth although the circuits are still to be set up.

\section*{SETTING UP}

For this the unit need not be connected to a drum, but should be connected to an amplifier via the output socket. An oscilloscope is a very useful piece of equipment during the setting up, but if one is not available then the process can be performed by ear. Switch the synth on and connect the 'scope or amplifier to the VCO sinewave output (pin EE26). Adjust VR3 for as pure a sinewave as possible. Make sure of the full range by observing the waveform whilst rotating VR4 between its extremes. If the waveform deteriorates or disappears then adjust VR3 until this is stopped. Note the sinewave amplitude, and now connect the scope or amp to the squarewave output (pin FF40). If this is impure then adjust VR3 once more slightly, rechecking the sine output. Adjust VR6 until the squarewave is at the same amplitude as the sinewave. Now check the noise output (pin P39) and adjust its level (via VR7) to that of the others. This done, if using a 'scope observe the output of the modulation oscillator (pin K8) which should be a triangle wave. All waveforms should be symmetrical about zero. The gain in the input section of the trigger circuitry should be set so that the wiper of VR12 is almost at the end connected to ground. If it is found that sensitivity is too high, or low, then this setting can be altered to correct this. Moving the wiper towards IC11 output reduces the gain. It now remains to check out each section of the synth, using the "Manual" front panel push switch to trigger it.

\section*{USING IT}

The unit will normally be triggered by a conventional drum, and several methods are possible. A contact microphone can be constructed using a small crystal microphone insert. A length of screened lead should be connected to this to allow it to be plugged into the synth. This insert can be taped onto the side of a drum so picking up the drum vibrations and triggering the unit. Low impedance transducers such as loudspeakers and earphones also will provide a trigger signal. A special drum can be constructed for use with the synth. This would include a pad for the drum stick to strike, and a miniature loudspeaker beneath this to collect the sound and provide a triggering signal. A cassette recorder microphone could be used, or virtually any other type of microphone. This would be mounted on a


\section*{COMPONENTS}
\begin{tabular}{ll}
\begin{tabular}{l} 
Resistors \\
R1,R9,R11,R27,R28,R41, \\
R44,
\end{tabular} & \\
R2,R4,R15,R16,R18,R22, & \\
R32 R34,R35 & 100 k \\
R3 & 6 k 2 \\
R5,R6,R48 & 10 k \\
R7,R26,R45 & 6 k 8 \\
R8,R25,R38,R42,R43 & 47 k \\
R10,R21 & 2 k 2 \\
R12,R23,R29,R47,R49 & 1 k \\
R13,R31 & 150 k \\
R14,R30 & 15 k \\
R17,R19,R33,R46,R36 & 330 k \\
R20 & 22 k \\
R24 & 68 k \\
R37 & 390 k \\
R39 & 1 M \\
R40 & 1 M 5 \\
All \(\frac{1}{4} \mathrm{~W} \pm 5 \%\) carbon & \\
\end{tabular}

\section*{Potentiometers}

VR1,VR2,VR4,VR5,VR9,

VR10
VR3
VR6,VR7,VR 12
VR8
VR11,VR13,VR14
VR15

100k lin
4 k 7 vertical preset
100 k vertical preset
4k7 lin.
\(1 \mathrm{M} \log\).
10k log

Semiconductors
\begin{tabular}{ll} 
D1,D2 & 1N914 \\
D3 & TIL209 \\
TR1 & BC107 \\
TR2 & BC108 \\
TR3 & BC212 \\
IC1-4,IC6-8,IC10,IC11, & \\
IC14-17 & 7418 -pin IC \\
IC5,IC9 & SSM2044 (Digisound) \\
IC12 & CD4001 \\
IC13 & CD4016 \\
IC18 & CA3080 \\
IC19 & \(78 \mathrm{M} 12+12 \mathrm{~V} 500 \mathrm{~mA}\) \\
& voltage regulator (Maplin) \\
IC20 & 79M12-12V500mA \\
& voltage regulator (Maplin) \\
REC1 & W005 50V 1A bridge rectifier
\end{tabular}

\section*{Miscellaneous}

T1
JK 1-5
FS 1

\section*{Switches}

S1,S2,S4,S6
S3
S5
S7

\section*{S8}
(All switches available from Maplin)
miniature SPDT toggle miniature DPDT toggle 4 -pole 3-way rotary push-button momentary action
miniature DPDT mains toggle

12-0-12V 1A mains transformer,
\(\frac{1}{4}\) in. mono switched jack socket.
1 A fuse and holder

Veroboard 115 holes \(\times 34\) strips,
\begin{tabular}{|c|c|c|}
\hline l.c. sockets & 8 -pin & 14 off \\
\hline & 14-pin & 2 off \\
\hline & 16-pin & 2 off \\
\hline
\end{tabular}

Case: \(13 \mathrm{in} . \times 8 \mathrm{in} . \times 4 \frac{1}{2} \mathrm{in}\).,
8 BA nuts, bolts, and spacers,
screened cable, mains cable, stranded wire, knobs etc.


Fig. 11. Veroboard component layout


\section*{Internal layout}
microphone stand and placed beneath a drum with the bottom skin removed. A Shure Unidyne B was found to trigger the synth reliably. The choice of triggering arrangement is really up to the constructor who can use a method best suited to the way he will be using the unit. It should also be borne in mind that when used with a microphone, a clap or even a shout can be used, so extending the versatility even further.

\section*{VCO/VCF CONTROL INPUTS}

The external control voltage inputs for the VCO and the VCF are included so as to extend the usefulness of the synth. These may be used with any device which produces a control voltage (absolute maximum 12 V ) such as a foot pedal or another synthesiser. These sockets were primarily designed to allow the synthesiser to be connected to a sequencer, the ext. trig. input also being used, requiring a positive pulse. The control voltage law is around 3 volts/octave, but it should be noted that the VCO and VCF may not be accurately exponential over their full range since component tolerances, the lack of temperature compensation, and the use of 741 op-amps may cause inaccuracies. Nevertheless, they are fairly exponential over the central part of their range. The use of even a simple sequencer allows a wide range of rhythms to be generated.

With the VCA "Decay" control adjusted for a short, slight decay and the sine output of the VCO being used, an ordinary drum sound is produced, from a bass drum through to bongos and woodblocks as the VCO "Tune" control is adjusted. Increasing "Decay" and adding "Down Sweep" to the VCO produces the well-known "pew-pew" disco Syndrum sound. Using the square output of the VCO, synthesiser "waa-waa" sounds can be obtained by increasing "Sweep" on the VCF. Adding low frequency modulation to the VCF in large amounts produces a burbling noise. Using "Noise" and "Sweep" on the VCF, noises varying from sea and thunder to jet-plane whooshes can be achieved by varying the VCF "Tune" and "Resonance" controls. With a short, punchy VCA decay, and a suitably set VCF, snare drum sounds can be obtained using "Noise". Obviously these are just a few of the sounds which can be produced, and the limit is really the user's ingenuity.


Cobbies Ltd.
London. 01-699-2282
Microdigitol Ltd
Liverpool. 051-227-2535
Electronica CG Lid.
Manchester. 061 1.788-0656
Technomatic Ltd.,
Middlesex. 01-897-3429
Watford. 0923-37774
London. 01-452-1500

Transam,
London. 01-402-8137
A. Marshall (London) Lid. London. 01-624-0805 Interface Components Lid., Amersham. 02403-22307
New Bear Computing Store Lid. Newbury. 0635-30505

\section*{Siapid Electronics}

\section*{Hilloroft House Station Road Eynsford Kent}


\title{
Semiconductor UPDATIT featuring
}

\section*{ANALOGUE LSI}

Large Scale Integration (LSI) is an everyday technology to be found in nearly every home in the country; living inside calculators, electronic games, door-chimes, personal computers and the like. The thing you may have overlooked about this new domestic revolution is that all of these LSI based gadgets are essentially digital in design and construction. In other words, they are either dedicated logic arrays made up of a custom arrangement of gates, or they are a form of dedicated microprocessor, made into a door-chime, for example, by a custom program inserted during the manufacturing process.

Any analogue functions that do crop up in these gadgets are either provided by external circuitry, perhaps using Small or Medium Scale Integration, or are implemented on the mainly digital LSI chip using a certain amount of "Electrickery" to bend digital gates to an analogue function. Neediess to say, the performance of analogue circuitry produced using this latter method leaves a lot to be desired, although for interface to game paddles or other simple transducers, which do not require high precision or high frequency processing, the method can be made quite adequate.

The reason for all this is that making logic gates is kids' stuff in comparison with making, for example, a stable High Frequency amplifier with very low distortion, and anyway the High Frequency system would probably need bulky external reactive components such as i.f. transformers so in the past there hasn't been much commercial pressure to achieve the ultimate in miniaturisation. Technology marches inexorably on, and the thoroughbred microprocessor chips, now moving rapidly into the VLSI era (the \(V\) stands for Very!) are starting to look askance at their analogue "poor relations" and wondering whether they really relish the prospect of having to shake hands with tatty old analogue SSI chips which are not really in the same class of Silicon at all

In addition to that rather whimsical interpretation of the situation, it can certainly be stated that there are now increasing commercial pressures to introduce radically new "miniature" analogue gadgets such as televisions in the mould of the Sinclair Microvision. The trouble seems to be that the manufacturers have saturated the market with televisions to the extent that most trade now comes from the trickle of sets bought as replacements for obsolete or expensive-to-repair models, and from those customers who are prepared to buy a new
set if it features innovations such as Teletext, Viewdata, or small size

There isn't a lot that can be done about the wear-out market (Built-in premature wear-out would NOT be popular with the customerll but new ideas and extra features will always find a market, and hence the pressure to produce LSI components for televisions, so that they can be turned into the equivalent of the humble "tranny" radio, small and cheap so that families will aspire to owning not two sets but three, or even four!

\section*{MONOMAX}

One expression of the effect of this pressure is a new wonder chip from Motorola. Coded the MC13002 in its 625line European version, this device makes possible a television using only two integrated circuits, a tuner module, and six transistors for power output stages. The chip carries out all the video processing functions required by a black and white television, and (this is the important bit) the chip requires only ONE external passive component, actually a high stability resistor for an on-chip oscillator, replacing hordes of resistors, capacitors; and chokes in the conventional layout. The nickname Monomax is meant to indicate that this is the maximum number of parts for a monochrome TV currently possible on one chip, but Motorola also predict that a COLOUR version will become available fairly soon.

On the MC13002 you get a 100 microvolt input sensitivity at an i.f. frequency of 35 to \(60 \mathrm{MHz}, 2.5 \mathrm{~V}\) of sound i.f. output, and 1.2 V of video signal. Subsystems on the chip include a video i.f. amplifier, detector, AGC and noise processor system, horizontal and vertical sync generators and signal processors, a video processor and a power supply regulator The second chip you need to add is a device such as the TDA1190P sound channel processor which is already with us, and also uses few external passive components. The Monomax will run from supplies between 10.8 and 15 volts, and dissipates less than 500 mW , making it ideal for miniature battery powered TV sets. It is, however, no limited only to the portable sets, its signal processing is good enough for sets with much bigger screens using mains supplies.

The chip itself is not huge by digital standards but it does include 200 linear bipolar devices and 200 logic gates ('fraid you can't do anything these days without a FEW gates!), and it will soon be one of those jelly bean parts which 'will only set you back a couple of pounds or so.

\section*{BAR TALK}

Digital displays are excellent for high precision measurements of parameters which change only very slowly with time, but if the rate of change or the peak value of a changing signal carries valuable information then a digital meter is excruciatingly difficult to use. (Hands up all those who decided to "get with it" by buying a digital multimeter, only to discover they still needed one of the steam versions for a surprisingly wide range of jobs. Me for one!)

If you need a simple analogue display device for a project, and you don't like the idea of using a delicate, bulky, and expensive moving coil meter don't despair, use a solid state bargraph display with a row of l.e.d.s which light up progressively to indicate signal level. This system isn't going to win any prizes for precision, but it will provide you with a compact and rugged indicator which gives easily interpreted information on rates of change and signal excursions. All you will need is a row of l.e.d.s, a handful of comparator circuits, a voltage reference generator, and a bunch of resistors to set the thresholds of each comparator and the l.e.d. currents. Oh, and if you need to respond to an a.c. signal, for a VU meter perhaps, then you will need a signal amplifier and a detector to give a reasonable drive for the comparators.

If that doesn't sound too simple to you, it's probably because you haven't run into a family of bargraph components recently introduced by Sharp of Japan, which actually make the whole job as easy as pie. The family consists of 11 l.e.d. bars, some with five points, coded GL-105XX, and some with seven points, coded GL-107XX, in a very wide choice of colours including composite types where the first (say) five points are in "restful" green, and the remaining two points are in "watch-it!" red. Complementing the displays. Sharp have two driver chips, the IR-2 E01 for five point displays, and the IR-2E02 for the seven point versions. Inside these chips you get a signal amplifier, detector, voltage reference, comparators, resistor chain, and constant current l.e.d. drivers with the only extra components required being a single l.e.d. current setting resistor, and the smoothing and gain setting components of your choice for the signal amplifier, which is only required for low-level a.c. inputs anyway. There is even a pin which gives a logic output when a signal large enough to turn on the least significant l.e.d. is present.

Both drivers come in 16 pin plastic di.p.s and will perform on supply voltages of up to 18 volts. How's that for simplicity!

\title{
Digital Design Tom Gaskell batanamimbana
}

\title{
Part 2 Power Supplies... Inputs \& Outputs
}

\(L^{s}\)AST month* we worked through some of the theory surrounding digital circuit design, and we looked at logic families and logic gates. This month we launch into some of the more practical aspects of designing and constructing with digital i.c.s.

As discussed in Part 1, TLL requires a 5 volt supply, well regulated and of a fairly high current. The range of voltage allowed is actually from 4.75 V to 5.25 V for normal operation; outside this range and the i.c.s may not work properly, and any voltage higher than 7 volts will destroy the i.c. Regulation and ripple should both be better than \(5 \%\). Standard TTL takes typically between 12 and 30 mA per package, and LS (Low Power Shottky) TTL typically 1 to 3 mA , hence the power supply should be well decoupled to prevent spurious voltages on the power supply rail from affecting logic operation. This is best done by connecting \(0.1 \mu \mathrm{~F}\) disc ceramic capacitors across the power supply rails, as near as possible to the i.c.s themselves, at a rate of one capacitor per 3 to 5 i.c.s. Several \(10 \mu \mathrm{~F} 25 \mathrm{~V}\) capacitors can also be added, per board, across the supply rails. The power supply tracks should be as broad and short in length as possible.

The +5 V supply to TTL is called Vcc (stands for Voltage to the Collectors).
The OV supply to TTL is called Ground (abbreviated to GND).
It is usual to earth the "Ground" line to mains and chassis earth at one point only, to avoid hum and earth loops; there should be one connection from mains earth to the chassis, and one connection from mains earth to 0 volts; at the power supply preferably.

\section*{CMOS}

This is a much more tolerant family with respect to power supply requirements. The supply to the latest " \(B\) " series of CMOS can be anything from 3 to. 18 V although it is usual to see it being used in the range 5 tó 15 V . Below 3 V will cause the i.c. to malfunction, and above 18 V can cause permanent damage. Because of this wide voltage range, ripple and regulation need not be as critically controlled as with TTL supplies, although it is always a good idea to have as smooth and well regulated a supply as possible; because of the lower power consumption of CMOS this is fairly easy to do. Decoupling is not necessary to the same extent as with TTL; one or two \(0.1 \mu \mathrm{~F}\) disc ceramic capacitors per board is more than adequate under normal conditions. Again, the shorter and wider the power supply tracks the better, but this is not as critical as with TTL.
*See the Points Arising on page 21

The +VE supply to CMOS is called Vdd (stands for Voltage to the Drains).
The 0 volts supply to CMOS is called Vss (stands for Voltage to the Sources).
Although it is usual to earth the Vss supply rail to mains and chassis earth at one point (as with TTL), it is occasionally more convenient to earth the Vdd supply instead. (If you ever do this, beware of incoming signals that may be of different polarity).

The majority of CMOS circuits can be quite easily and effectively run from a simple small battery; such as a PP9 and 9 volts is an ideal voltage. TTL is much more difficult to power by batteries as regulation is needed, and the battery life will be very limited. Whatever power supply you use, be very careful to connect it the right way round!! Both CMOS and TTL can be easily damaged by mis-connection of the supplies.

The use of mains powered supplies can be costly in small projects, but pays off very soon in larger systems. Quite simple supplies can be used, with i.c. voltage regulators providing control of the output. Fig. 2.1 shows a suggested mains power supply, which is conventional and self explanatory. The four diodes (or bridge rectifier) rectify the a.c. from the transformer to full-wave d.c., which is smoothed by C1. The voltage regulator stabilises and regulates this voltage, while C2, C3 and R1 prevent unwanted oscillation of the i.c. itself. For currents above 100 or 200 mA , the voltage regulator should have a heatsink fitted, although it is well protected; these i.c.s have built in thermal overload and short circuit protection. Although 5 or 12 volt regulators can be used with the transformer intended for the 15 volt. regulator, their power dissipation will be considerably more, and they are likely to require more heatsinking than if they used lower input voltages. Note, though, that the input of


E0550
Fig. 2.1. Regulated mains power supply
the d.c. level should be 3 volts or more above the required output voltage to allow the regulator i.c. to work properly. Remember that the d.c. voltage level is the transformer secondary a.c. r.m.s. voltage multiplied by 1.414 minus 1.2 V (the two diode drops):
V.d.c. (Unreg) \(=(1.414\) V.a.c. \()-1.2\)

\section*{INPUTS AND OUTPUTS}

Fig. 2.2a shows the circuit diagrams of TTL and CMOS input and output configurations. The TTL inputs have single protection diodes, and are frequently connected to multipleemitters of the TTL input stage; these are specially formed transistors with several emitters. Each emitter can behave conventionally on its own, or can act together with the other emitters forming the relevant logic function. The use of this type of transistor removes the need for more active elements and diodes on the input, and speeds up operation of the circuit. The output stage has a fairly high current sinking transistor to speed up the change from logic 0 to logic 1. This configuration is known as a "Totem Pole" output.

Because of the very high input impedance of CMOS and the danger of static charges causing damage, the inputs have a resistor/diode network as shown in Fig. 2.2b. This input network should not be relied upon to "catch" high voltages applied knowingly to the inputs-that should be done using external diodes-but they are quite effective at protecting against static and other transient damage. The moderately high output impedance (usually in the range of 200 to 500 ohms) can also result. in damage being done; hence the output protection diode configuration.

The relative performance of TTL and CMOS inputs and outputs is shown in Fig. 2.3; these are typical limits for the majority of logic inputs and outputs in each family.

\section*{UNUSED INPUTS}

If the logic input to a TTL i.c.is left "floating", i.e. not connected to anything, it will naturally go to a logic 1 state. In this condition though, it is very susceptible to noise, transient spikes of voltage, etc. In critical cases the unused input should be connected to Vcc with a 1 kO resistor. Note that several inputs can be paralleled; only one 1 kO resistor is needed for up to 10 paralleled unused inputs. (Never connect a TTL input directly to Vcctransient voltages can very easily destroy it if this is done without a series resistor.) If the logic input is not critical of the occasional spurious pulse, of course, no resistors are needed because the input can be left to "float". If a logic 0 state is required for an unused TTL input, connect that input directly to ground, NOT via any resistor. Of course, any unused logic input can be connected to any logic output, as long as fan-out is not exceeded (see below). Note CMOS inputs must never be left floating.

\section*{FAN IN/FAN OUT}

Any logic output can only satisfactorily drive up to a certain number of logic inputs. For standard TTL the limit is 10 logic inputs, for CMOS it is greater than 50. To increase the number in either case, it is necessary to make one or more of the logic inputs being driven that of a buffer (or two inverters in series). The output of this buffer stage can then go out to drive a further 10 or 50 gates, as appropriate.

\section*{DRIVING LOADS}

The input/output performance chart of Fig. 2.3 shows that, whereas TTL can drive small loads reasonably successfully; 4 mA for logic 1 typically, and 12 mA for logic 0 , CMOS is very poor indeed at load driving. (To be on the safe side, you should always use TTL load driving at logic 0 , i.e. current "sinking". It is generally far better at this than current sourcing). In both families there are special i.c.s which are designed to make interfacing and driving loads somewhat easier.

In TTL this is mainly provided by "open collector" outputs; i.e. the final output is an npn transistor, with its
emitter connected to ground and its collector taken directly to the output pin; there is no pull-up to Vcc. Many logic gates and other logic devices can be provided with opencollector outputs; these can drive l.e.d.s, relays or other similar loads directly, fed from the Vcc supply rail or even a higher voltage than Vcc in some cases. Figs. 2.4a and 2.4b show the arrangement of such types of load driving. When an inductive load (e.g. a relay) is used, don't forget the statutory protection diode across it, to protect the TTL output transistor from huge reverse voltage spikes caused by the back e.m.f. from the load.


Fig. 2.4a. Open collector driving of a l.e.d.


Fig. 2.4b. High voltage driving of a relay
CMOS i.c.s type 4049 and 4050 are inverting and noninverting buffers respectively, with six buffers in each i.c. package. They are designed primarily to enable CMOS devices to drive TTL inputs, but are useful generally as high current drivers. Although their source current is only between 1 and 2.5 mA , they can sink 6 mA at 5 V , and more than 16 mA at 15 V -a very handy amount of current, which can drive l.e.d.s, some relays and similar loads. The inputs of these devices are unusual, in that they can be fed with logic levels between +3 V and +15 V , yet the power supply can be different in voltage; for example, the i.c. can have an input range of 0 to 15 V , yet a supply rail of only +5 V , in which case the output voltage range is 0 to +5 V . If the supply rail is 15 V , then the output range becomes 0 to +15 V . When using these devices to drive several loads simultaneously, be aware that the maximum power dissipation for the i.c. package is 200 mW , and above this thermal damage can occur.

For displaying information on "7-Segment" l.e.d. displays (i.e. the type found in many calculators and clocks) a decoder/driver is available in CMOS; the 4511. This is designed to have a high current source capability to make interfacing with displays easier, and has a capability of driving up to 25 mA per segment. We shall look into the driving of 7 segment displays later in the series.

Finally, the 4017 CMOS "Decade counter" is able to drive l.e.d.s directly, due to its internal current limiting on outputs. The actual device itself will be looked at later, so for the moment it is sufficient to mention that it has this output capability. See Fig. 2.5a. Direct driving is only safe at sup-


Fig. 2.5a. A 4017 driving l.e.d.s with Vdd>9V


56050
Fig. 2.5b. A 4017 driving l.e.d.s with Vdd<9V
plies of up to 9 volts; above this, individual resistors should be used in series with each l.e.d. as shown in Fig. 2.5b. Since only one output is ever on at once, there may be a temptation to connect all the l.e.d. cathodes together, and take them down to Vss with a single common resistor; this is a temptation to avoid! The l.e.d.s can break down when reverse biassed, which they all would be with the exception of the l.e.d. that's turned on, and this can cause large currents to flow in the 4017 output stages, resulting in possible damage. So, for a Vdd of over 9 volts, stick with the circuit of Fig. 2.5a.

\section*{CURRENT BOOSTING}

A simple way of doubling the output current of a CMOS logic gate is to connect another gate in parallel! Simply join up the inputs of the two gates and the outputs. The two gates (or more) should be in the same i.c. package, though, because variations in transfer characteristics between packages could cause large transition currents to flow. This paralleling procedure also applies to TTL but is used less due to the inherently higher output currents of \(T \mathrm{~L}\).

The usual method of boosting output current is to add a small extra circuit; examples are shown in Fig. 2.6. In prac-


Fig. 2.6a. Load driving circuit for logic 1


Fig. 2.6b. Load driving circuit for logic 0
tice, the values of R1 and R2 are determined by the gate output capability. If we assume 0.3 mA maximum output current for the gate, then resistor R1 will be:
\[
R 1=\frac{(\mathrm{Vdd}-0.6)}{0.3} \text { (approx.) }
\]

R2 ensures that the transistor turns fully off when the logic gate output has gone back to the state which results in no current flowing through the load. A good "rule of thumb" is to make it very roughly one third of the value of R1, so:
\[
\mathrm{R} 2=\frac{\mathrm{R} 1}{3} \text { (approx.) }
\]

Since the transistor base current is limited by these resistor values, it follows that the transistor gain determines the maximum current that we can expect to drive through the load. For conventional medium to high gain silicon transistors we can obtain currents of at least 30 mA using this technique, usually even more. If considerably more current than this is required it will be necessary to add extra stages of transistor drive circuitry in "darlington" or other fairly conventional circuit configurations.

One of the easiest ways to interface loads with CMOS and TTL logic is by using VFETs. These are high power handling f.e.t.s with extremely low input current requirements. The circuitry couldn't be easier; see Fig. 2.7. Note that many


Fig. 2.7. VFET interface circuit
VFETs have a 15 V Zener diode between their most negative point and their gate, as a protection device. If Vdd is 15 V or lower, there is no problem and the resistor \(R\) can be left out, with the output of the CMOS device connecting to the VFET gate directly. For a Vdd of 15 to 18 V , resistor R should be added to limit the current passing into the Zener diode; a typical value would be 100 k . Although they are not cheap, these devices are slowly falling in price, and they do represent a very easy and effective way of interfacing logic with high current loads.

\section*{LOGIC AND SWITCHES}

In most logic circuits there is a requirement for human intervention or operation by means of a switch. This is a simple matter if the switch function is basic; re-setting a counter, switching on a l.e.d. via some interface logic, or whatever. Fig. 2.8 shows these basic switch circuits. Note, that in order to reverse the switch action of the TTL circuit an inverter of some sort must be added; the switch cannot be taken to Vcc in the same way as with CMOS.

\section*{CONTACT BOUNCE}

The problem with the circuits in Fig. 2.8 is that of "contact bounce". All mechanical switches suffer from this problem. When the switch is activated the "wiper" or moving contact swings across to touch a fixed contact. As they touch there is a momentary period when the contacts "bounce" apart.



SWITCH OPEN I/P \(=1\)
SWITCH CLOSED OIP \(=0\)


WITCH DPEN I/P \(=1\)
SWITCH CLOSED O/P=0

\section*{[E0059]}

Fig. 2.8. Simple logic input switches
then make contact again, then bounce apart, etc., etc. This process can last for several milliseconds before the logic level coming out of the switch finally becomes stable. This "bounce" can result in spurious pulses being fed into logic inputs, in turn leading to false operation of the circuitry. In many cases these spurious pulses may not matter, but where they could cause problems a "de-bouncer" circuit is needed. The most simple of these simply stretches any pulses to such a duration that they all "merge" into one another, and the logic change is a single one without any pulses; this pulse stretching circuit is one that we looked at last month, and is shown again here in Fig. 2.9 (TTL should not use the versions shown in Fig. 2.9; the "latch" debouncer circuit described next month should be used instead.)


E0000] Fig. 2.9. Simple contact de-bouncing circuits for CMOS logic for either a 0 or 1 output.
The time constant RC should be long enough to maintain the logic level during the entire period of contact bouncing; typical values are 100 k and \(0.1 \mu \mathrm{~F}\), or even 1 M and \(0.1 \mu \mathrm{~F}\) These circuits can be effective in many applications. With poor switches, and in particularly critical circuitry, though, the occasional small pulse can still get through. Electrically noisy environments can exaggerate this problem, needless to say. Next month we shall be looking at a more sophisticated circuit for switch de-bouncing as well as touch switches, timers, oscillators and testing. But now we'll turn to the practical aspect of the series and look at constructional techniques and the first of our mini-projects the MultiAlarm.

\section*{CONSTRUCTIONAL TECHNIQUES}

There are two basic approaches to building logic circuits; the components and link wires can be plugged into and built up on a "breadboard" or a "printed circuit board" (p.c.b.) can be made up from a specially designed master artwork, and the components all soldered onto this, with most interconnections being done automatically by the p.c.b. tracks.

\section*{BREADBOARDS}

These are wafer-shaped plastic blocks, with a large number of small holes in an 0.1 inch grid. Beneath this pattern of holes sit a number of high quality spring clips which grip wires and component leads pushed through the holes, and interconnect them in groups of five "holes" at a time. Interconnection between groups of sockets can be done by using insulated single cored wire, stripped back at each end.

Because no soldering is involved, there is no risk of heat damaging components. All parts can be used and re-used "ad infinitum" and component values can be experimented
with and selected very rapidly. Wiring changes and i.c. changes are, of course, virtually instantaneous. Along each long edge of the breadboards there are continuous rows of holes which act as power supply distribution to all parts of the circuit. .

\section*{PRINTED CIRCUIT BOARDS}

These are more robust and compact than breadboard circuits, but can take a long time to make, or are expensive to buy. Changing interconnections is very messy; tracks must be cut and wire links added. Changing components is a slow process, and if repeated several times it can cause the copper track to peel away from the board; for this reason, i.c.s are best fitted into good quality i.c. sockets. (Never use "cheap and cheerful" sockets, because unimaginable problems can be caused by oxides forming on the contacts, and the contacts losing touch with the i.c. pins).
"Stripboards" are a mixture of the flexibility of breadboards and the robustness of p.c.b.s. They have strips of copper on a p.c.b. type basis, with arrays of holes on an 0.1 inch grid. Connections are by soldering, and areas of the board are linked together with wire links again. The most well known type of stripboard is "Veroboard". Another type is called "Matchboard" which have the tracks ready cut and laid out in the same layout as breadboards. This enables breadboard designs to be instantly transferred across to the more permanent "Matchboard" without needing to cut tracks and without needing to re-lay the circuit.

\section*{CONSTRUCTIONAL AND CHECKING HINTS}

For complex circuit layouts, a good idea is to trace or photocopy the circuit or layout diagrams then draw in the interconnection on this in red pen as you add them. In this way, should your train of thought be disturbed, you won't have forgotten how much you have done.

Beware of trying to force i.c.s into socket or breadboards if their "leg" spacing seems too wide. The solution is to lie all the legs on one side of the i.c. on a metal sheet or plate on the bench, and apply gentle pressure to the whole i.c. to bend the legs nearer to being at right angles to its body. Then turn the i.c. over, and repeat the procedure for the opposite row of legs. Only a tiny movement of the legs is needed, and BE GENTLE! The i.c. should then slot more easily into the socket contacts.

Before switching on, check that the power supply or battery is connected the right way round, and visually check for any obvious short circuits. If possible, check the inter-wiring. A short cut way of doing this fairly effectively is to look at the circuit assembly, and find any i.c. pins which are not connected to anything; check back with the circuit or layout diagram to see if those pins really should be connected to something or not. Not all i.c. pins are used, but this method can show up a surprising number of faults nonetheless. Finally, ensure that all CMOS inputs not being used are connected to the 0 volts supply (Vss) or the +ve supply (Vdd). or another CMOS output. Whatever you do, don't apply any signals into an i.c. without its power supply being turned on.

\section*{THE MULTI-ALARM}

This is a multi-purpose project, which can be used in many different ways. Basically, it's an 8 input alarm system; a negative edge on any input switches on a relay (to drive an alarm bell or similar, external to the unit), and light up a front panel l.e.d. to indicate which channel or channels the alarm was triggered by. A "reset" switch is provided, as is an "arm" switch, which sounds a buzzer for 30 seconds and disables the alarm system, to allow you to get clear of the sensors before the alarm is activated.

The alarm sensors can be anything you want them to be! Make switches, break switches, touch switches, water-level switches, light level switches and even switches that sound the alarm when you break a light beam. Any of these, and more, can be incorporated, with any mixture of different types in the one unit. The Multi-Alarm, then, can be used not only as a simple burglar alarm, but as a general purpose monitor/alarm system.

\section*{CIRCUIT DESCRIPTION}

The circuit diagram of this Multi-Alarm which is shown in Fig. 2.10 is based on Schmitt trigger input NAND gates, connected in pairs as latches. Because Schmitt devices are used, the inputs to these latches can be touch switches, slowly changing voltages, etc., which gives the system its flexibility. One output of each latch lights a l.e.d. via a conventional transistor driver circuit, to indicate that the channe! has been triggered. The other latch outputs feed the input of an 8 input NOR gate, IC5. Hence, if any latch is operated; the output of IC5 goes to logic 0, which is inverted by IC6b, and turns on relay 1 via R33, R34 and TR11 (a standard transistor driving stage). D12 protects the transistor from back e.m.f. voltage surges. The relay contacts are used to sound an external alarm.

When the "arm" switch S2 is pressed, this starts the timing period of IC8, which is a standard 7555 i.c., connected as a timer. R28 and C3 set the timing interval of 30 seconds approximately. When the timing period starts, the output pin 3 of IC8 goes to logic 1, which is inverted by IC7d, and fed to IC7b pin 6. Since IC7a and IC7b are connected as an oscillator of approx. 1 kHz , this input of logic 0 starts the oscillator, which feeds the loudspeaker via TR9 and TR10. Two transistors are used in a "darlington" configuration to give more current gain and hence drive the low resistance of the loudspeaker directly. RL is included if the loudspeaker is a low impedance ( 4 ohms to 40 ohms), and is a 1 watt resistor, to limit power dissipation in the loudspeaker . . . and reduce the very noisy level! D1 1 protects TR9 and TR 10 from back e.m.f. voltage surges. The transistor driver stage is fed from pin 4 of IC7b, instead of pin 3 of IC7a (which would be more usual), in order that the input to the driver stage is at logic \(O\) when the oscillator is turned off, preventing a continuous current flow through the loudspeaker.


Front and rear views of the Multi-Alarm


Fig. 2.10. Complete circuit diagram of the Multi-Alarm unit including alternative inputs for triggering alarm

Also during the timing period, pin 5 of IC6b is kept at logic 1, preventing any "latched" conditions of the input latches from turning on the relay. At the end of the timing period, the output of IC8 goes to logic 0, so pin 10 of IC6 goes to logic 1. The network of C1, R26 and D9 produces a short positive-going pulse from this logic level change, which is inverted by IC6d and passed to the "reset" inputs of all the latches. Hence, when the "arm" switch is pressed, a loudspeaker sounds while you have time to get out of the way, the alarm relay is prevented from operating, then as the


\section*{COMPONENTS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Resistors} \\
\hline R1, R4, R 7, R 10, R13, R16, R19, R22, R32, R34 & 10 k (10 off) \\
\hline \[
\begin{aligned}
& \text { R2, R5, R8, R11, R14, R17, R20, } \\
& \text { R23, R31, R33 }
\end{aligned}
\] & 33k (10 off) \\
\hline R3, R6, R9, R12, R15, R18, R21. & \\
\hline R24 & 1 kO (8 off) \\
\hline R25, R26, R27 & 100k (3 off) \\
\hline R28 & 180k \\
\hline R29 & 820k \\
\hline R30 & 390 k \\
\hline R35 & 1 MO \\
\hline RL & 1 W , see tex \\
\hline
\end{tabular}

All resistors \(\frac{1}{4}\) or \(\frac{1}{3}\) W \(10 \%\) carbon except where otherwise stated.

Capacitors

C1, C5
C2
C3, C4
C6, C7
C8
C9
Semiconductors
D1 to D8
D9. D11, D12
D10
TR1 to.TR8
TR9, TR11
TR10
IC1. IC2, IC3, IC4
IC5
1C6, IC7
IC8

In ceramic plate (2 off)
10 n polyester
\(100 \mu 25 \mathrm{~V}\) elect ( 2 off)
100 n 25 V disc ceramic (2 off)
100 n polyester
\(1 \mu 035 \mathrm{~V}\) tant
Red I.e.d. 0.2 in with fixing clips (8 off)
1 N4 148 (3 off)
1 N4002
BC558 (8 off)
BC548 (2 off)
BFY50
4093 (4 off)
4078
4001 (2 off)
ICM 7555

Miscellaneous
Si single or double pole toggle switch
S2, S3 pushbutton single pole push-to-make (2 off) Battery holder
Small loudspeaker
Matchboard EXP-300PC Global Specialties (3 off) Benchtopper case CTB-1 Global Specialties Terminal blocks
"arm" period ends the inputs are all reset, and wait to be triggered. Pressing S3 also causes a logic 0 level to be fed to the latch resets by IC6d. D10 protects the circuit against incorrect connection of the battery, and C4, C6 and C7 are to help smooth out any spurious pulses on the power supply rails. C9 and R35 form a power-on reset circuit, which provides a pulse to reset the latches after approximately 1 second, and which is inverted by IC6a to reset IC8 immediately after switch-on.

\section*{CONSTRUCTION}

The prototype unit was made up on three Match boards. The front panel has the I.e.d.s fitted to it with conventional plastic l.e.d. clips. If required, the power switch (S1) could be hidden, or it could be a key-operated lock switch, to add security.

The arrangement of the rear panel depends somewhat on the particular inputs being used, but. a good arrangement is that a length of terminal strip is fixed to the panel, with the interconnecting wires taken through holes in the panel immediately adjacent to their relevant termination. The relay contacts can also be taken to the rear panel in this way. The two potentiometers, which can be seen are sensitivity controls for two of the inputs of this unit which are "light level" inputs; they could equally well be pre-set potentiometers on the input board. The loudspeaker is glued over the grille in this top half of the case, and connected to the circuitry with a flying lead; don't forget to solder a protection diode across it the right way round!

All interconnections between boards and panels can be done in thin flexible wire, and the cathodes of the l.e.d.s can be joined together with one long length of bare copper wire, to simplify wiring. Be careful with the I.e.d.s-they are easy to damage if their leads are handled roughly. Finally the battery holder can be fixed to the bottom half of the case using "Sticky Fixers" self adhesive foam pads.

\section*{CONSTRUCTION OF THE INPUT DEVICES}

When using resistive touch switches (or "water level detecting switches') in Figs. 2.10c"and 2.10d, don't use offcut pieces of Matchboard or Veroboard; the base material can absorb moisture and the switch will "stick" on. Use instead pieces of "fibreglass" based p.c.b. material, or metal strips fixed to a piece of plastic. Note, though, that mains circuitry of any sort should never be taken near water, so ensure that the Multi-Alarm is being powered by batteries, not a mains power supply, if its to be used as a fluid level detecting system.

The hum detecting touch switch requires that the Vss (i.e. 0 volts) supply be connected to mains earth to operate reliably. The touch plate can be any piece of metal, so try a piece of p.c.b. material or Matchboard (moisture has no effect) or even a piece of aluminium foil. If a piece of doublesided p.c.b. material is used, you'll find that touching the reverse side from the one connected to the unit will also work! If you want to protect a metal object from being fiddled with or pilfered, simply place it on the touch switch plate; it then becomes a touch switch too!

Finally, the "light level" switch (Figs. 2.10f and 2.10 g ) are considerably improved if the ORP 12 light-dependentresistor is housed in an opaque tube a few inches long, to "funnel" the light towards it, and cut out unwanted light effects. (Putting a lens in the tube to focus the light works even better.) The circuit in Fig. 2.10 fan be used to detect the breaking of a beam of light in this way.

NEXT MONTH: As well as the topics mentioned above there will also be a special offer to PE readers of a GSC experimenters kit.


SEND TODAY 50p（REFUNDABLE WITH FIRST ORDER）FOR CATALOGUE
TITAN TRANSFORMERS AND COMPONENTS Dept．P．E．CENTRAL HALL CHAMBERS GRIMSBY DN32 7EG HUMBERSIDE MAIL OROER－PRICES INCLUDE 15\％VAT

G．S．C．（UK）Limited Dept．5D Unit 1，Shire Hill Industrial Estate， Saffron Walden，Essex．CB11 3AQ Telephone：Saffron Walden（0799） 21682 Telex： 817477

Instant frequency indication from 5 Hz to 100 MHz ；no range selection problems；a brilliant 8 －digit LED display；mains or battery operation；an accuracy of 4 parts per million \(\pm 1\) count；and totally automatic operation－all this for only \(£ 77.55^{*}\) with GSC＇s new Max－100 freqency counter．
Just take a look at our spec．Where else could you find anything similar at the price？ ＊Frequency range 5 Hz － 100 MHz ＊Input impedance 1 M shunted by 10 pF ＊Sensitivity 30 mV from 1 KHz up to \(50 \mathrm{MHz} ; 120 \mathrm{mV}\) r．m．s．over full frequency range Timebase accuracy \(\pm 4\) parts in 106 （from 5 to \(45^{\circ} \mathrm{C}\) ）Maximum aging rate 10 parts in 106 per vear＂Over－frequency indication Low－battery－power alarm＂Operates from dry or rechargeable cells，an external 7.5 to 10VDC supply，or a car battery（via an adaptor） ＊Dimensions： \(45 \times 187 \times 143 \mathrm{~mm}\)＂Options： 12 V adaptor；battery eliminator；r．f． antenna，low－loss r．f．tap，carrying case．
Fill in the coupon for further details
－price excludes post，packing and VAT
G．S．C．（UK）Limited，Dept．5D．Unit 1，Shire Hill Industrial Estate，Saffron Walden，Essex CB11 3AQ．


\title{
AUDIO ANALYSER Michael Tooley в.. David Whitfield m.a.м.sc.
}

\section*{PART 2}

THIS second part concerns construction, testing and using of the samples together with possible extensions and modifications.

\section*{CONSTRUCTION}

Construction of the Audio Analyser uses a Vero G-range case to house the various circuit boards and ancillary components. The case (type \(4 B\) ) is approximately \(298 \mathrm{~mm}(\mathrm{~W}) \times\) \(170 \mathrm{~mm}(\mathrm{D}) \times 80 \mathrm{~mm}(\mathrm{H})\), excluding the aluminium sleeve. Assembly is best carried out in two phases; first the printed circuit boards should be constructed, and then these are mounted in the case along with the remaining components, and the wiring is added. The following notes are a guide to constructors and include points which may require special attention.

The printed circuit board design for the audio processor stage is shown in Fig. 10, with the corresponding component layout in Fig. 11. There are no special handling considerations for any of the components and the two i.c.s may be soldered directly onto the board, after the orientation has been carefully checked, or mounted in DIL sockets.

The eight octave filter channels and the monitor channel all make use of the printed circuit track design shown in Fig. 12. A component layout for the filter channels is shown in Fig. 13. The board has been designed to accommodate capacitors which have a mounting pitch of between 5 mm and 15 mm . Capacitors should be mounted so as to project no more than \(7-8 \mathrm{~mm}\) from the surface of the board, and the leads cropped close on the bottom. There is sufficient space on the board to allow vertical capacitor types to be mounted horizontally by bending the leads at \(90^{\circ}\). As mentioned earlier, VR1 and/or VR2 may be replaced by fixed value resistors, typical values being 3.9 k for VR1 and 10k for VR2. The board is shown wired for a bar graph display; the link 'ab' should be replaced with a link 'b-c' for moving dot display. It is suggested that all filter channels are wired to operate in the same display mode to avoid the user suffering from mental indigestion! The i.c.s should be carefully checked for the correct orientation before being soldered to the board. Low profile DIL sockets may be used as long as the maximum height limitation is not exceeded; the filter boards are mounted on a 10 mm pitch and allowance must be made for board thickness and component leads on the bottom of the adjacent board. The l.e.d.s should be mounted with their leads flat and parallel to the surface of the board. The lead length should be cut such that the rear of the l.e.d. body adjoins the front edge of the board. It is important, therefore, that the lead length of the l.e.d.s used is a minimum of \(12-13 \mathrm{~mm}\) to allow them to be mounted without having to extend the leads. The colour(s) of l.e.d.s used is a matter of personal choice; the prototype used green types since this colour is most restful to the eye for prolonged viewing.

The inter-p.c.b. connectors specified are a low cost type which are supplied with blanking plugs to obstruct any selected pin positions in the socket. This feature allows optional use of the three unused pin positions on each board to
code the actual filter boards to ensure that all 8 boards may only be inserted together in the correct positions. The suggested codings are given in Table 1 for the positions of the blanking plugs in the sockets. Should this coding system


Fig. 10. P.c.b. track pattern for Audio Processor



Fig. 12. Etching detail for the filter and display boards
be adopted, it is necessary to remove the corresponding pins from the associated plugs mounted on the backplane, otherwise only the 64 Hz board will fit at all!

The monitor channel uses the same component layout as the filter channels with the following exceptions. R2 is omitted and R3 is replaced by a wire link. 'R' closest to connector pin 1 is replaced by R7, and ' \(R\) ' closest to pin 10 is replaced by R8. 'C' adjacent to pin 10 is omitted, and ' \(C\) ' next to pin 1 is replaced by C3. All other components are as for the filter channels.

\section*{PSU BOARD}

The power supply printed circuit board track design is shown in Fig. 14, with the corresponding component layout in Fig. 15. The regulator i.c.s should have their leads preformed prior to being mounted on the heatsinks on the board. No insulating kits need be used, but the mounting hardware should be arranged to avoid contact with the case.

The final board in the case is the backplane on which the p.c.b. connector plugs and 3 capacitors are mounted. The track pattern is shown in Fig. 16 with a component layout shown below in Fig. 17. If preferred, the backplane p.c.b. may be fabricated from a piece of 0.1 in pitch Veroboard of similar size, \(135 \mathrm{~mm} \times 75 \mathrm{~mm}\). Where coded polarisation plugs have been used on the filter boards, the corresponding pins on the plugs should be cut off at this stage.

When all of the printed circuit boards have been assembled, a careful visual examination should be made to verify the correct orientation of all polarised components (diodes, capacitors, i.c.s and rectifiers), and to ensure that there are no inadvertent short circuits due to solder splashes or bridges. After this check, which may save many hours of toil at a later stage, has been completed, the second stage of assembly may proceed.


Fig. 13. Component layout
A suggested overall layout giving the positions of the p.c.b.s and major ancillary components is shown in Fig. 18. Initially the front and rear panels should be removed from the case to allow drilling of suitable holes for sockets and controls etc., and cutting of two display windows. A cutting diagram for the front panel is shown in Fig. 19, while sockets on the rear may be positioned as convenient, taking care to leave adequate clearance for the audio processor board and the two backplane support brackets. The mounting detail for the backplane and filter/monitor boards is shown in side view in Fig. 20. Two lengths, each approximately 135 mm , of plastic binding comb (as used for edge binding reports etc., and available from stationers) are used to support the bottom edge of the backplane and to act as a locating and securing guide rail for the filter/monitor boards. Two bent aluminium brackets are used to secure the top of the backplane to the rear of the case. The locating strip should


Internal assembly


Fig. 14. Etching detail for p.s.u. board
have nine slots, one for each board, each of a width equal to the thickness of the p.c.b.s, cut with a hacksaw to the depth shown in the inset of Fig. 20. The position of these slots are given by the positions of the channel boards when fitted to the backplane. The lengths of binding comb are fixed to the base of the case with one of the cyanoacrylate 'super-glues'.

After the two strips have been fixed to the base of the case, the audio processor board and the various sockets should be mounted on the rear panel. A length of ribbon cable may then be used to link between the sockets and the PCB as this simplifies removal for fault finding or modification. Any inter-socket wiring should also be added at this time, e.g. SK50 \(\rightarrow\) SK51.SK53 \(\rightarrow\) SK54, etc. The rear panel is now re-attached to the base of the case, and the backplane p.c.b. secured in place with its two mounting brackets. The power supply p.c.b. and two mains transformers are now installed in the case, and the front panel temporarily re-attached complete with S50 and VR50 in place. All remaining interconnection wiring should now be added, with sufficient length included in the leads to VR50 and S50 to allow the front panel 1 to be folded down through \(90^{\circ}\) and move forward to facilitate installation/removal of filter/monitor boards.
After the interconnection wiring has been completed and checked, the unit is ready for testing. The filter/monitor p.c.b.s should not be fitted at this stage, but it is probably a worthwhile exercise to verify the correct mechanical alignment of the backplane, locating strip and front panel. It is also useful for future use if a p.c.b. extender card is made for the filter/monitor boards. This is no more than a piece of Veroboard 70 mm wide with a 10 -way plug at one end and a socket at the other, using the copper tracks to interconnect.


BACKPLANE \(=8 / P\)
AUOIO PROCESSOR = A \(/ P\)
Fig. 15. Component layout

\section*{TESTING AND USING THE ANALYSER}

The first stage in testing is to verify the correct operation of the mains power supply section. Power should be applied via SK100, and the unit turned on with S100. A multimeter is then used to measure the four d.c. supply rails: +5 V , \(+7 \frac{1}{2} \mathrm{~V},+15 \mathrm{~V}\), and -15 V . Should any of these be more than \(5 \%\) in error, a check should be made on the regulator i.c. or Zener diode associated with that supply, paying particular attention to the device code number. For no output on a particular rail, the transformer input to the appropriate rectifier, the bridge rectifjer itself, and the regulator should be inspected, with particular attention being paid to the orientation of the components. When the various outputs of the power supply p.c.b. are satisfactory, the power connections to the audio processor p.c.b., the backplane p.c.b., and SK 101/102 should be checked with a meter before any filter/monitor p.c.b.s are installed or auxiliary units connected.

VR1 and VR2 on all filter/monitor boards should be set to their mid-value positions. The monitor channel p.c.b. should now be inserted into its socket on the backplane, 550 set to 'Left', and VR50 set to minimum sensitivity. A 500 mV (r.m.s.) 1 kHz sine wave signal should be connected to the left input on SK52 and VR50 increased to give a full-scale indication on the monitor channel l.e.d.s. The full-scale indication should be achieved with the sensitivity control set
near to the fully anti-clockwise position, otherwise the connections to VR50 should be changed to give minimum resistance in the 'Off' position. Selection of 'Right' should


Fig. 18. Detailed overall assembly
produce no display, while selection of 'Mono' should illuminate \(80 \%\) of the scale (i.e. 6 dB down), with approximately +3.8 V on pin 5 of IC2 on the monitor board. The input signal should then be transferred to pin 3 of IC50 and a check made that full-scale indication is achieved with 'Left' selected. The tests above should then be repeated using the 'Right' input channel; the loudspeaker input is tested on pin 3 of IC51.


Fig. 19. Front panel detail

Fig. 16 (right). Printed circuit board of backplane

Fig. 17 (below).
 Component layout


The final test on the audio processor section is to check that, with VR50 set to maximum sensitivity, a full-scale indication is obtained with an input signal to approximately 5 mV (r.m.s.) at the tape monitor input. This confirms that the variable gain stage, IC51d, is operating with the expected gain ratio (100:1).

A 500 mV (r.m.s.) signal at 1 kHz should now be applied to the left channel tape monitor input and 'Left' selected on SW50. The eight filter channel p.c.b.s are now inserted in their appropriate positions, starting with the 64 Hz board. As each filter is added, the display shown in Figure 21 should build up. When complete, this display actually represents the shape of the response characteristic of the 1 kHz filter (see Figure 7), with the expected roll-off rate of 6 dB per octave. Failure of any channel should be investigated using the extender board and with the signal generator adjusted to the filter's nominal centre frequency. Under these conditions an output of approximately \(+7 \frac{1}{2}\) volts is expected at pin 12 of IC1, and also at pin 5 of IC2. Otherwise, the voltage at these points will depend on the frequency separation between signal generator and filter centre, e.g. at 1 kHz , the 512 Hz filter output will be approximately +3.8 V .

When the eight filters are installed and working correctly, the gain of each may be set if necessary. This is done by applying a constant amplitude sine wave input at the centre frequency of each filter in turn, and then adjusting the appropriate VR1 to give a voltage at pin 5 of IC2 of the channel under test which is the same (and less than \(+7 \frac{1}{2}\) volts) for all boards. The monitor channel is best set at 1 kHz , and the analyser is ready for use when the adjustments are complete.

The analyser input sensitivities at the minimum setting of VR50 are approximately 500 mV (r.m.s.) for tape monitor and 10 V (r.m.s.) for the loudspeakers (equivalent to \(12 \frac{1}{2}\) watts into \(8 \Omega\) ). At maximum setting, these sensitivities are increased by a factor of approximately 100 . The loudspeaker input sensitivity may be altered by changing the value of R51 and R60; these may even be fitted as switchable values or replaced by preset resistors. To obtain the sensitivities quoted for \(4 \Omega\) speakers, the values should be reduced by approximately 2 times, while for \(15 \Omega\), an increase of 2 times is required. The equivalent power levels may seem rather low by comparison to the specification of many amplifiers, but in practice the drive signal may require a higher-than-expected setting. This is because the average signal level of typical programme material over the integration period of the filters is generally significantly lower than the instantaneous peak levels.

The analyser will handle inputs up to 10 volts r.m.s. at the
tape monitor inputs without harm, and it presents an impedance of \(47 \mathrm{k} \Omega\). With the component values shown, the inputs on the loudspeaker sockets may rise to 100 volts r.m.s. without harm, and the isolation between input and ground exceeds \(30 \mathrm{k} \Omega\). The display is not affected by over-driving the input stages, but over-dissipation of the filter/display boards at maximum indication in bar mode should be avoided if the l.e.d. current has been programmed higher than 12 mAl .e.d. (i.e. if R6 has been reduced much below \(1 \mathrm{k} \Omega\) ). Simultaneous full-scale indication on all channels in bar mode may cause the analyser to become warm if sustained for long periods, but no damage should result.

The setting of the display time constant (by means of VR2) is a matter of personal choice. Minimum setting of VR2 will produce a 'fast' display which will follow input peaks. This, however, tends to produce a visually 'noisy' display which can be tiring to the eye over long periods. A 'slower' display, on the other hand, can induce a feeling of vague frustration in the user. The optimum setting is best found by experiment, but a mid-way setting of VR2 will produce a generally acceptable result.

In addition to the uses of the analyser for equalising loudspeaker systems, using a microphone and preamplifier, as described in the first section of this article, many other applications will be found. The use of test material such as test records/tapes with the analyser connected in the loudspeaker outputs allows interesting comparisons to be made between equipment components. VHF radio material will be found to have a noticeably more restricted frequency range than, say disc, and many interesting spectral characteristics of source material will become apparent. For example, in a conversation between male and female speakers, it is quite possible to distinguish the sex of the speaker by the overall spectral shape of the voice alone; the male voice has a similar spectral shape, but generally lower in frequency, as expected. Despite the pre-existing bias of many observers to the possible 'gimmick' nature of the analyser as a component in an audio system, its use as a constant output monitor quickly gains acceptance due to the psychologically acceptable 'feel' of the display; unlikely, but true !

\section*{EXTENDING THE ANALYSER}

The graphic analyser described is complete in itself, but it may also be used as the basis for a design to suit any particular application not catered for by the basic design. The possible extensions and modifications fall into three. main areas: changes to the audio processor section; changes to the filter and display section; simple additions to the overall unit.


Fig. 20. Mounting detail for filter and monitor channel boards
FRONT VIEW EEO65
Fig. 21. Analyser response to al 1kHz sine wave

Possible changes to the audio processor section are limited only by the range of applications and the imagination/ingenuity of the user. A simple change might be the addition of multi-channel signal handling capabilities, with variable preset gain on each channel. Other modifications could include the derivation of a (left-right) difference signal, the inclusion of automatic sensitivity control, and the production of an absolute signal level indication. Many other changes will occur to constructors in the light of their own particular applications.

The addition of three further filter channels to the filter and display section has already been discussed, and the relevant filter component values are given in Table 1. The use of half-octave filters (i.e. spaced at \(\sqrt{ } 2 f_{0}\) multiples instead of \(2 f_{0}\) ) is simply achieved by modification of the filter \(Q\) by changing \(R_{2}\) and \(R_{3}\), and the reduction of the overall gain by the same factor as the change in \(Q\) (change \(R_{4}\) ). The new \(Q\) is 2.915 and \(R_{3} / R_{2}\) is 1.657 , compared to 1.5 and 1.333 , respectively, in the basic design. The extension of the display range from 30 dB to 60 dB is readily achieved, as shown in Fig. 22, by the addition of an operational amplifier and a second LM3915. In this circuit the reference to both i.c.s is held at +7.5 volts and the signal input to the lower i.c. is amplified by 30 dB . The use of \(1 \%\) resistors allows the gain to be set within \(\pm 0.2 \mathrm{~dB}\), but it should be noted that an opamp offset voltage of 5 mV will move the first l.e.d. threshold by as much as 4 dB , and an offset trim may be required in some cases. Extension to a 90 dB display range is possible,


Fig. 22. Circuit for a 60dB display using two LM3915s. All pins shown with no connection are l.e.d. drive outputs
but presents a number of practical difficulties. These mainly arise from the fact that the threshold of the lowest l.e.d. will be set around 0.5 mV , i.e. \(500 \mu \mathrm{VI}\) Several offset nulls are required and careful attention to wiring design is essential.

Add-on units for the analyser are a simple way of extending the range of facilities without change to the basic design.

Next Month; a microphone preamplifier for matching a wide range of microphones to the low level input to the analyser, and a noise source.

\section*{New Generation of SOFTYs}

Whilst being primarily an EPROM programmer, one could say that SOFTY is to the microprocessor software engineer what the oscilloscope is to the straight-forward electronics engineer, certainly when there are limited funds.

Anyone who has tried to investigate the working (or non-working) of a microcomputer system using conventional equipment such as a scope, will appreciate the purpose behind Softy's existence. However, the basic characteristics of this unique engineering tool will not be repeated here since these were covered in the Softy review of PE January 1980 by Dr. A. A. Berk. Suffice it to say that Softy, apart from being a stand-alone control type microcomputer in its own right (based on SC/MP \(\mu \mathrm{P}\) ), is primarily intended to aid microcomputer firmware developement by allowing memory analysis and manipulation on any system, irrespective of the processor used.

Now there is Softy 2, and the question is: How does this new generation machine differ from its forefather?

\section*{SINGLE SUPPLY EPROMS!}

Immediately apparent in the photograph is that Softy 2 is housed in a ABS plastic case; this comprising two halves which clip together, and being of the same ilk as that used on the Sinclair ZX80. The power supply is also enclosed in a plastic "battery eliminator" type case with integral three-pin mains plug. The case incorporates an antistatic tray, using conductive foam for EPROM storage, and the zero insertion force (ZIF) socket has a "personality Switch" to accommodate the pin-out requirements of the various EPROM devices. Notably, Softy 2 may be used to program single supply rail EPROMs too, such as the \(2716,2516,2732\) and 2532.

\section*{EXTRA MEMORY}

Memory size has been doubled to now give a 2 K static RAM buffer (working RAM), 2 K monitor ROM, and PIA with scratchpad RAM (INS 8154).

The ROMULATOR facility, which is an in-circuit ROM emulator for dynamic program development, has been improved with buffering on address and data lines, and a ROMULATOR ribbon cable with terminating 24-pin d.i.l. plug is to be supplied as standard.

In addition to the original Transwift software based cassette interface, there are serial and parallel I/O routines for interfacing to another computer, a printer (RS232 and Centronics etc.,) tape reader and punch etc.
another instruction. The latter, DELETE, is more or less the reverse of this. The first three unoccupied bytes are found and the code shifted left to remove the instruction under the cursor. Both these commands will shift as much of the 2 K as is necessary but will not work if there is no free space. This kind of flexibility means that you do not need to be a computer to program one. In all, there are seven extra keys on the Softy 2 keyboard.

Softy 2 has not changed its role and all the original features remain. Essentially an intelligent memory module designed to reveal as much of its contents as possible on a standard TV screen, it has its own UHF modulator.

The editing capabilities benefit from a double cursor system which is intended to take the pain out of offset calculations for relative jumps, there are numerous useful functions like a match-byte which will seek out the occurrence of any byte of code throughout the memory, and highlight it on Softy's unique multi-intensity display.

\section*{NEW COMMANDS}

Among the new or improved commands added to Softy's repertoire are INSERT and DELETE. The former looks ahead for the first

> Softy 2 is available direct from Dataman Designs of Lombard House, Dorchester, Dorset, and costs £169 plus VAT ready built and tested. No kits are available. It is also available from Watford Electronics and other general suppliers.


The hardware and software exchange point for PE computer projects

\section*{A BLANK EXPRESSION}

Sir-Like R. J. Newman (Microprompt, May '81) I was troubled with the blank character apparently inserted by the STR\$ function at the front of strings derived from numeric values.

Adrian Waters, founder of the UK101 user group (now Computer User Aids) then explained to me that the blank was already there, before the application of the STR\$ function if the value is positive, its place otherwise taken by the negative sign. He also pointed out that this was a feature of BASIC which was probably present in a number of versions, apart from the UK10\%. The statement \(X \$=\) " 8 " accepts " 8 " as a literal, not a numeric value, so there is no leading blank in this case.

To demonstrate the presence of the leading blank in positive numeric values, give your UK101 the following instructions: PRINT "8": PRINT 8: PRINT -8, when you will note that the first statement yields an 8 in the first print position, the second an 8 in the second print position, thus indicating the presence of the leading blank and in the third case the negative sign takes the place of the blank.

The following BASIC subroutine removes the blank character. If the application cannot possibly yield a string with other than a leading blank, the first line may be omitted. 5000 IF LEFT \(S(X S, 1)<>"\) " THEN RETURN
5010 XS = RIGHT S (XS,LEN(XS) - I): RETURN

On the subject of the UK101 User Group 1 must say that Adrian Waters has been most helpful in helping me to sort out little problems such as the above. My one disappointment was the apparent lack of response to his idea that we should form local groups within the User Group. Since local contact can be useful on occasions, especially when one is a fair distance from London. I would be interested to hear from other UK 101 and OSI Superboard users in the Edinburgh and Lothian area-whether or not they are members of a national group-if they are interested in forming a local association.

An S.A.E. would be appreciated to facilitate replies. Hopefully such local groups can be run to complement rather than compete with the national groups.

David J. Giles, Edinburgh.

It should be emphasised that material presented in Prompt has not necessarily been proven by us. Neither can compatibility with all generations of the computer equipment to which it relates be guaranteed.

\section*{SOFT BAUD RATE}

Sir-I wonder if any of your readers would be interested in the following cassette Baud rate modification of the Compukit UK101. All the previous Baud rate modifications have been to allow teleprinters etc., to run from the ACIA. This modification allows true software control of the cassette interface Baud rate selectable between 300/600 and is working perfectly in my system.

The modification isn't as difficult as one might at first think to install, as the p.c.b. has a track taking IC14 pin 5 up to IC68 pin 13 anyway, a spare inverter/buffer is available on IC62 and thus only a small amount of wiring is necessary.

After reset pin 5 of IC14 is at a \(\emptyset\) and \(K 57\) then, when reaching 1100 is loaded with 0110 and thus only divides by 6, this causes the ACIA to run at 600 Baud, the diode and 4 k 7 resistor allow C11 to charge faster and remove any problems when loading data at the 600 Baud rate.

To select 300 Baud simply POKE 61440,81 which causes IC57 to be loaded with 0000 after reaching the count of 1100 thus dividing by 12, as pin 2 of IC62 is now at a \(\emptyset\) the \(4 k 7\) resistor has no effect on the charging time of C11 due to the diode series with it.

Remember after reset and entry into machine code FOOO4 must be set to 51 H for 300 Baud machine code load. In BASIC POKE 61440, 17 selects 600 Baud.

The following machine code routine modifies the beginning of the subroutine to move the display up one line and enables the user to have the top one or more lines static, as a heading, whilst the data beneath scrolls.
Suggested start address:
\begin{tabular}{lll}
0230 & \(A 2 D 4\) & LDX \\
0232 & \(A 0000\) & LDY \\
0234 & \(84 E 3\) & \(S T Y\) \\
0236 & \(A O 8 O\) & LDY \\
0238 & \(4 C 66 F B\) & JMP
\end{tabular}

80 leaves top 2 lines unscrolled 40 would leave only one line CO would leave 3 lines etc.

Now when printing lists, say,
IF PEEK \(520=>15\) THEN POKE
11,48: POKE 12,2:X = USR(X)
and screen will scroll up leaving top lines unmoved.

NB. All above addresses are with new monitor.

NEW MONITOR SAVE/HEX DUMP
Sir-In the UK101 Manual a very useful cassette save/hex memory dump routine is described. This works with the OLD monitor, but is not compatible with the NEW one.

Since a number of Compukit owners have upgraded their systems with the new monitor-and new kits are delivered with it, there seems to be a definite demand for a routine with the new monitor. The following program will do just that.

Like before, the starting address of the code to be saved should be placed in \(\$ 00 F 7\) (LOW) and \$00F8 (HIGH). The end address goes into \$00F9 (LOW) and SOOFA (HIGH). However, the program starts at \(\$ 0228\) instead of \(\$ 0222\) previously. The reason for this is that the new monitor occupies addresses \$0222-\$0224 for NMI-and \$0225-\$0227 for IRQ-vectors. See opposite page.

At the same time, I should like to express appreciation of the very useful Memory and Address Decoding Maps submitted by Mr. David McDonnell in the March issue of P.E. However, a slight correction should be made to his Hardware Memory Map, in accordance with the previous description of new monitor usuage. His line:
"\$0222 to \$O2FA: UNUSED-USING NEW MONITOR EPROM" should instead read:
"\$0228 to \$O2FA: UNUSED-USING NEW MONITOR EPROM"

I have found the Compukit UK101 to be a system of great potential for a reasonable price, but have experienced a verv particular and unexpected difficulty; that of obtaining a detailed monitor listing, for the oldt as well as the new version. I think a responsible attitude on behalf of the producer amounts to considering such documentation as being an integral and necessary part of the combined hardware/software product sold, and that such monitor listings should be available at a reasonable price for those who feel they need them to take full advantage of the computer's potential. Do you not agree?

Mr. Gisle K. Dyvik,
Norway.


DISASSEMBLED LISTING
\begin{tabular}{|c|c|c|c|}
\hline 0228 & A90D & LDA & H\$0D \\
\hline 022A & 208202 & JSR & \$0282 \\
\hline 022D & 207AFF & JSR & SFF7A \\
\hline 0230 & A92E & LDA & \#\$2E \\
\hline 0232 & 207B02 & JSR & \$027B \\
\hline 0235 & A5F8 & LDA & \$F8 \\
\hline 0237 & 206902 & JSR & \$0269 \\
\hline 023A & A5F7 & LDA & \$F7 \\
\hline 023C & 206902 & JSR & \$0269 \\
\hline 023F & A92F & LDA & \#\$2F \\
\hline 0241 & 207B02 & JSR & \$027B \\
\hline 0244 & A 200 & LDX & \#\$00 \\
\hline 0246 & A1F7 & LDA & (\$F7, X) \\
\hline 0248 & 206902 & JSR & \$0269 \\
\hline 024B & A90D & LDA & HS0D \\
\hline 024D & 20B1FC & JSR & SFCB1 \\
\hline 0250 & A920 & LDA & \# \({ }^{\text {S }} \mathbf{2 0}\) \\
\hline 0252 & 208202 & JSR & \$0282 \\
\hline 0255 & E6F7 & 1NC & SF7 \\
\hline 0257 & D002 & BNE & \$025B \\
\hline 0259 & E6F8 & INC & \$F8 \\
\hline 025B & 38 & SEC & \\
\hline 025C & A5F9 & LDA & \$F9 \\
\hline 025E & E5F7 & SBC & \$F7 \\
\hline 0260 & A5FA & LDA & \$FA \\
\hline 0262 & E5F8 & SBC & SF8 \\
\hline 0264 & 10DE & BPL & \$0244 \\
\hline 0266 & 4C30FE & JMP & \$FE30 \\
\hline 0269 & 85FC & STA & \$FC \\
\hline 026B & 20ACFE & JSR & \$FEAC \\
\hline 026E & AD64D1 & LDA & \$D164 \\
\hline 0271 & 207B02 & JSR & \$027B \\
\hline 0274 & AD65D1 & LDA & \$D165 \\
\hline 0277 & 207B02 & JSR & \$027B \\
\hline 027A & 60 & RTS & \\
\hline 027B & 20B1FC & JSR & \$FCB1 \\
\hline 027E & 208202 & JSR & \$0282 \\
\hline 0281 & 60 & RTS & \\
\hline 0282 & 8 D 0202 & STA & \$0202 \\
\hline 0285 & 48 & PHA & \\
\hline 0286 & 8A & TXA & \\
\hline 0287 & 48 & PHA & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 0288 & 98 & TYA & \\
\hline 0289 & 48 & PHA & \\
\hline 028A & AD0202 & LDA & \$0202 \\
\hline 028D & F033 & BEQ & \$02C2 \\
\hline 028F & AC0602 & LDY & \$0206 \\
\hline 0292 & F008 & BEQ & \$029C \\
\hline 0294 & A240 & LDX & \#\$40 \\
\hline 0296 & CA & DEX & \\
\hline 0297 & D0FD & BNE & \$0296 \\
\hline 0299 & 88 & DEY & \\
\hline 029A & D0F8 & BNE & \$0294 \\
\hline 029C & C90A & CMP & \#\$0A \\
\hline 029E & F02B & BEQ & \$02CB \\
\hline 02A0 & C90D & CMP & \#\$0D \\
\hline 02A2 & D006 & BNE & \$02AA \\
\hline 02A4 & 202A03 & JSR & \$032A \\
\hline 02 A 7 & 4 CC 202 & JMP & \$02C2 \\
\hline 02AA & 8D0102 & STA & \$0201 \\
\hline 02AD & 201703 & JSR & \$0317 \\
\hline 02B0 & EE0002 & INC & \$0200 \\
\hline 02B3 & A92F & LDA & H\$2F \\
\hline 02B5 & EA & NOP & \\
\hline 02B6 & 18 & CLC & \\
\hline 0287 & 69CD & ADC & \(\# \$ C D\) \\
\hline 02B9 & EA & NOP & \\
\hline 02BA & CD0002 & CMP & \$0200 \\
\hline 02BD & 3009 & BMI & \$02C8 \\
\hline 02BF & 203303 & JSR & \$0333 \\
\hline 02C2 & 68 & PLA & \\
\hline 02 C 3 & A8 & TAY & \\
\hline 02 C 4 & 68 & PLA & \\
\hline 02 C 5 & AA & TAX & \\
\hline 02 C 6 & 68 & PLA & \\
\hline 02 C 7 & 60 & RTS & \\
\hline 02 C 8 & 202D03 & JSR & \$032D \\
\hline 02 CB & 201703 & JSR & \$0317 \\
\hline 02CE & A9CD & LDA & \(\#\) SCD \\
\hline 02D0 & EA & NOP & \\
\hline 02D I & 29E0 & AND & H\$E0 \\
\hline 02D3 & 8D0202 & STA & \$0202 \\
\hline 02D6 & A207 & LDX & \#\$07 \\
\hline 02D8 & BD4803 & LDA & \$0348, X \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 8 & 9 & A & B & C & D & E & F & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \\
\hline 0228 & A9 & 0D & 20 & 82 & 02 & 20 & 7A & FF & A9 & 2E & 20 & 7B & 02 & A5 & F8 & 20 \\
\hline 0238 & 69 & 02 & A5 & F7 & 20 & 69 & 02 & A9 & 2F & 20 & 7B & 02 & A2 & 00 & A 1 & F7 \\
\hline 0248 & 20 & 69 & 02 & A9 & 0D & 20 & B1 & FC & A9 & 20 & 20 & 82 & 02 & E6 & F7 & D0 \\
\hline 0258 & 02 & E6 & F8 & 38 & A5 & F9 & E5 & F7 & A5 & FA & E5 & F8 & 10 & DE & 4 C & 30 \\
\hline 0268 & FE & 85 & FC & 20 & AC & FE & AD & 64 & D1 & 20 & 7B & 02 & AD & 65 & D1 & 20 \\
\hline 0278 & 7B & 02 & 60 & 20 & B1 & FC & 20 & 82 & 02 & 60 & 8D & 02 & 02 & 48 & 8A & 48 \\
\hline 0288 & 98 & 48 & AD & 02 & 02 & F0 & 33 & AC & 06 & 02 & F0 & 08 & 2 & 40 & CA & D0 \\
\hline 98 & FD & 88 & D0 & F8 & C9 & 0A & F0 & 2B & C9 & OD & D0 & 06 & 20 & 2A & 03 & 4 C \\
\hline 02A8 & C2 & 02 & 8D & 01 & 02 & 20 & 17 & 03 & EE & 00 & 02 & A9 & 2F & EA & 18 & 69 \\
\hline 02B8 & CD & EA & CD & 00 & 02 & 30 & 09 & 20 & 33 & 03 & 68 & A8 & 68 & AA & 68 & 60 \\
\hline 02C8 & 20 & 2D & 03 & 20 & 17 & 03 & A9 & CD & EA & 29 & E0 & 8D & 02 & 02 & A2 & 07 \\
\hline 02D8 & BD & 48 & 03 & 9D & 07 & 02 & CA & 10 & F7 & BE & 50 & 03 & A9 & 20 & A0 & 2F \\
\hline 02E8 & EA & C0 & 20 & 30 & 01 & 0A & 8D & 08 & 02 & A0 & 00 & 20 & 07 & 02 & D0 & FB \\
\hline 02F8 & EE & 09 & 02 & EE & OC & 02 & EC & 09 & 02 & D0 & F0 & 20 & 07 & 02 & CC & 02 \\
\hline 0308 & 02 & D0 & F8 & A9 & 20 & 20 & 0A & 02 & CE & 08 & 02 & D0 & F8 & F0 & A8 & AE \\
\hline 0318 & 00 & 02 & AD & 01 & 02 & A0 & 00 & EA & D0 & 04 & 9D & 00 & D3 & . 60 & 9D & 00 \\
\hline 0328 & D7 & 60 & 20 & 17 & 03 & A9 & CD & EA & 8D & 00 & 02 & AE & 00 & 02 & BD & 00 \\
\hline 0338 & D3 & A0 & 00 & EA & F0 & 03 & BD & 00 & D7 & 8D & 01 & 02 & A9 & 9 A & D0 & D5 \\
\hline 0348 & B9 & 00 & D0 & 99 & 00 & D0 & C8 & 60 & D3 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 02DB & 9D0702 & STA & \$0207, X \\
\hline 02DE & CA & DEX & \\
\hline 02DF & 10F7 & BPL & \$02D8 \\
\hline 02E1 & BE5003 & LDX & \$0350, Y \\
\hline 02E4 & A920 & LDA & \(\# \$ 20\) \\
\hline 02E6 & A02F & LDY & \(\# \$ 2 \mathrm{~F}\) \\
\hline 02E8 & EA & NOP & \\
\hline 02E9 & C020 & CPY & H\$20 \\
\hline 02EB & 3001 & BM1 & \$02EE \\
\hline 02ED & 0A & ASL & A \\
\hline 02EE & 8D0802 & STA & \$0208 \\
\hline 02F1 & A000 & LDY & \#\$00 \\
\hline 02F3 & 200702 & JSR & \$0207 \\
\hline 02F6 & D0FB & BNE & \$02F3 \\
\hline 02F8 & EE0902 & INC & \$0209 \\
\hline 02FB & EE0C02 & INC & \$020C \\
\hline 02 FE & EC0902 & CPX & \$0209 \\
\hline 0301 & D0F0 & BNE & \$02F3 \\
\hline 0303 & 200702 & JSR & \$0207 \\
\hline 0306 & CC0202 & CPY & \$0202 \\
\hline 0309 & D0F8 & BNE & \$0303 \\
\hline 030B & A920 & LDA & \#\$20 \\
\hline 030D & 200A02 & JSR & \$020A \\
\hline 0310 & CE0802 & DEC & \$0208 \\
\hline 0313 & D0F8 & BNE & \$030D \\
\hline 0315 & F0A8 & BEQ & \$02BF \\
\hline 0317 & AE0002 & LDX & \$0200 \\
\hline 031A & AD0102 & LDA & \$0201 \\
\hline 031D & A000 & LDY & \#\$00 \\
\hline 031F & EA & NOP & \\
\hline 0320 & D004 & BNE & \$0326 \\
\hline 0322 & 9D00D3 & STA & \$D300, X \\
\hline 0325 & 60 & RTS & \\
\hline 0326 & 9D00D7 & STA & \$D700. X \\
\hline 0329 & 60 & RTS & \\
\hline 032A & 201703 & JSR & - \$0317 \\
\hline 032D & A9CD & LDA & \(\# \$ C D\) \\
\hline 032 F & EA & NOP & \\
\hline 0330 & 8D0002 & STA & \$0200 \\
\hline 0333 & AE0002 & LDX & \$0200 \\
\hline 0336 & BD00D3 & LDA & \$D300. X \\
\hline 0339 & A000 & LDY & \#\$00 \\
\hline 033B & EA & NOP & \\
\hline 033C & F003 & BEQ & \$0341 \\
\hline 033E & BD00D7 & LDA & \$D700, X \\
\hline 0341 & 8D0102 & STA & \$0201 \\
\hline 0344 & A99A & LDA & \#\$9A \\
\hline 0346 & D0D5 & BNE & \$031D \\
\hline 0348 & B900D0 & LDA & \$D000, Y \\
\hline 034B & 9900 DO & STA & \$D000. Y \\
\hline 034E & C8 & INY & \\
\hline 034F & 60 & RTS & \\
\hline 0350 & D3 & ??? & \\
\hline
\end{tabular}

\section*{GRAPHICS MANIPULATION}

Sir-Alihough the Compukit has a quite extensive graphics set, it is difficult to use them to their full potential. This is because a) there is no graphic documentation supplied with the machine and b/ the graphics are not directly accessible from the keyboard. The program, Graphics-Aid, described below, overcomes both these problems and is a very useful tool for producing good graphic displays.

In use, the graphics section of the character set is displayed as the top half of the screen. The bottom half is clear and is used as the display area. The required graphic is selected by moving the top cursor over it. The bottom cursor is moved into position, and then by pressing the space bar the graphic character is deposited in that position. The bottom cursor is moved using the keys U, D, L and R IUp, Down, Left and Right) and the top using SHIFTED U, D, L and \(R\).
RUB-OUT deletes the character under the bottom cursor (for correcting).
SHIFT' 'restarts program (used as a clear screen function.
RETURN causes both cursors to flash revealing characters under them. Mode exited by pressing SHIFT.
SHIFT';' (ie ' + ') this causes the machine to scan the display area with a visible cursor and when it encounters a character, its value along with its position relative to the original cursor is displayed: press any key to continue on to the next character. This function is very useful since many small displays (eg cars, spaceships etc) are poked into position relative to one pointer, so by setting the cursor to the centre of the display and using this function, it is possible to produce a working system quickly and easily.

10 REM GRAPHICS AID: BY ADL
20 FOR I=128TO242
\(30 \mathrm{IF}(\mathrm{I}+10) / 23=\mathrm{INT}((\mathrm{I}+10) / 23)\)
THENPRINT: \(\mathrm{A}=(\mathrm{A}+1)\) AND1
40 IFA \(=1\) THENPRINTCHR \(\$\left(\right.\) I) \({ }^{\prime \prime}\)
";:GOTO60
50 PRINT" "CHR\$(I);
60 NEXT:PRINT
70 FORI \(=0\) TO22:PRINT" ";:POKE54220+POS(8),I:NEXT
80 FORI = ITO \(10:\) PRINT:NEXT
\(100 \mathrm{Cl}=54221: \mathrm{C} 2=53261:\) POKE11,0:
POKE12,253:S=32
102 GOTO350
110 POKEC1,154:POKEC2-1,18:
POKEC2 \(+1,22\)
\(120 \mathrm{X}=\mathrm{USR}(\mathrm{X})\) :
AS=CHRS(PEEK(531))
130 IFAS \(=\) "n"THENRUN
\(140 \mathrm{D}=0:\) IFPEEK(57100)
<254THEN230
150 IFAS="U"THEND=-64
160 IFA \(S=\) " \({ }^{\prime \prime}\) THEND \(=64\)
170 IFAS="L"THEND=-1
180 IFA \(\$=\) " \({ }^{\prime \prime}\) THEND \(=1\)
190 IFAS=" "THENS=PEEK(C2):
GOTO 120
\(192 \operatorname{IFPEEK}(531)=13\) THEN 350
\(195 \operatorname{IFPEEK}(531)=28\) THENS \(=32\) : GOTO 120
200 [FD=0THEN 120
210 X=C \(1+\mathrm{D}: I F X>542690 R X\)
<53645THEN1 20
220 POKEC 1,S :S = PEEK(X):C1 = \(\mathbf{X}\) :
GOTO110
230 IFAS \(=\) " e "THEND \(=-65\)
240 IFAS = "T"THEND=65
250 IFAS \(=\) " "THEND \(=-2\)
260 IFA \(\$=\) " b "THEND \(=2\)
265 IFAS \(=\) " + "THEN300
270 IFD=0THEN 120
280 X=C2+D:IFX<53261ORX>53626
THEN 120
290 POKEC2-1,32:POKEC2+1,32:
C2 \(=\) X:GOTO1 10
300 POKEC1,S:D=32:FORI=
53645TO54269:POKEI-1,D:D=
PEEK(I):POKEI,154
310 IFD=32THEN340
320 PRINTD,I-C1;:POKE54221 +
POS(8),32:X=USR(X)
330 PRINTCHR \(\$(13)\) TAB(20)
CHRS(13);
340 NEXT:POKEI-1,32:
POKE54221,32:GOTO 110
350 POKEC2-1,32:POKEC2 \(+1,32\) :
POKECI,S
360 FORI \(=1\) TO500:NEXT
370 POKEC2-1,18:POKEC2 + 1,22:
POKEC1,154
380 FORI=1TO500:NEXT
\(390 \operatorname{IFPEEK}(57100)=254\) THEN 350
400 GOTOI 20
Note: Lines 40 to 70 there are two spaces between the quotes. Lines 50 \& 190 there is one space between the quotes.
A. D. Love, Swansea.

\section*{INDEXED SOFTWARE}

Sir-Here is an easy way of loading only one program from several filed on one cassette, which works on the UK101 and presumably the Superboard. When SAVEing start each program with:
\(1 \mathrm{~A}=\mathrm{X}\)
\(9 \mathrm{~A}=0\) : poke 515,0 \(\left\{\begin{array}{l}X \text { is the sequential } \\ \text { number of the } \\ \text { program. }\end{array}\right.\)
At the end of the program, while the tape is still running, type RUN (Return). Repeat this routine for each program.

When LOADing first type in these two program lines:
5 IF A=Y THEN NEW
6 END \(\left\{\begin{array}{l}\text { Where } Y \text { is the } \\ \text { number of the } \\ \text { wanted program } \\ \text { minus one. }\end{array}\right.\)
Then LOAD the tape in the usual way. Each program will LOAD and then RUN. Until the program before the required one is reached, line 5 will do nothing and line 6 will stop the current program so that LOADing can continue.

When the penultimate program RUNs, line 5 promptly erases it, any surviving line of previous programs, and itself. The wanted program then LOADs and RUNs. Line 9
puts \(A=0\) in case \(A\) is a variable in the program and POKE 515,0 returns the computer to normal operation from LOAD. If you do not want any particular program actually to run, make line 9 STOP.

If the wanted program is the first on the cassette there is no need to enter lines 5 and 6. Just LOAD in the usual way. If there are to be only two programs on the cassette, do not bother with \(A=X, A=O\) and lines 5 and 6. TO LOAD the second. program. simply type 5 NEW before LOADing.
A. H. Whitfield

Maidenhead

\section*{SIMPLE DECODE}

Sir-There is a very simple way of address decoding for the UK101 which can be used to control up to 8 external devices, and which seems to have escaped attention.

IC17 pin 11 is selected (active low) when the address is \(A 15 \ldots . . A O=1111\) \(X X 01 X X X X X X X X \quad(X=\) don't care). To make use of this, a wire can be taken from this pin to one of the unused pins of the 40pin expansion socket (pin 29 for instance, the earth connection having been cut). On the external decoding board, this is connected to pin 5 of a 74LS138 3-to-8 line decoder, pins 1,2,3,4 and 6 being respectively connected to A7, A10, A11, OV and +5 V .

YO (pin 15) is then selected when the address is F100 to F17F 161696 to 61823). Y1 (pin 14) for F180 to 'F1FF (61824 to 61951) etc.
W. Gough,
Cardiff.

\section*{A SMART PROBLEM}

Sir-I have built a UK101 and a Smart 2 8 K expansion board from kits. The UK101 works well; it has the new monitor RON: and 8 K on board.

On powering up the expansion board in the manner suggested in its instructions, a fault became evident after inserting ic's WNM and V. The UK 101 would reset from its random screen pattern to show "select \(M, C\) or \(W^{\prime \prime}\), etc. but the cursor would not flash and several symbols (CHR 27) were present on the screen. These were the same at every switch on.

I have examined the board for soldering faults, both visually and with a meter. There are.none that I can find. I have swapped all of the ic's around where possible. The fault is still present when the 8T28's on the UK101 are removed, these chips working OK when substituted elsewhere. If the expansion board is left plugged into J 1 on the UK101, but not powered up, the computer works normally with its own 8 K.

I presume the fault is on the expansion board, but I am not sure. Can anyone give me any advice on what to check? Or even, where to take it to have it checked?

I am not an electronics man, but I do have access to a scope and various meters, etc. Any help would be greatly appreciated.

Roger Cannon,
Basingstoke.



CONCISE PARTS CATALOGUE

\section*{OUT NOW!}

\section*{AMBIT'S NEW CATALOGUE}

In an attempt to collate and organize our burgeoning ranges of 'stock' components (now over 7000 line items), we have at last produced a 'concise' 80 page parts catalogue to supplement the popular 'Tecknowledgey' series of 'wordy' applications catalogues, which now lists a wide range of basic components - as well as our unique RF and Communications components. The World of Radio and Electronics contains everything the informed electronics user needs, at prices which we guarantee will match the lowest on the market for equivalent product.
Prices appear on the page alongside the part numbers, and the catalogue is now updated quarterly - available either direct from here ( 60 p all inc ) or at most newsagents and bookstalls where you can find electronics publications. So as well as all the 'run-of-mill' items like resistor, capacitors, hardware, solder etc - you now have the first genuinely complete parts source for the radio, communication, electronics, computer user.

\author{
Ambit International 200, North Service Road, Brentwood, Essex CM14 4SG
}

\section*{THE BODY OF ANY} SYSTEM
Lets face it - you can't produce as crisp an image on a domestic T.V. as you can on a Crofton monitor.
TYPICALLY
9" Crofton Monitors P4 White P31 Green
\(E 77.62\)

SHUGART FIOPPY DISK Phone us for up to date prices
No case, No Power Supply
SA \(400 \quad 5 \%^{\circ \prime}\) S.S.S.D.
£149.05
SA \(450 \quad 5 \%^{\prime \prime} \quad\) D.S.S.O. £283.31
SA \(8008^{\prime \prime}\) S.S.S.D. c340.52
FLOPPY DISKS - BOXES OF TEN
Single sided \(35 / 40\) Track £ 26.45
Double sided \(35 / 40\) Track \(5 \%\) " £ 37.95
Single sided 77 Track £ 41.40
Double sided 77 Track \(5 \%{ }^{\prime \prime}\) \& 47.15
Single sided 8 \(^{\prime \prime}\) \& 40.25
IKEGAMI \(12^{* \prime}\) MONITORS
P 4 White
\(£ 171.50\)
P31 Green £184.97
2/3" FULLY INTERLACED C.C.T.V.CAMERAS £149.00
ALL THE ABOVE PRICES INCLUDE V.A.T. AND CARRIAGE
F... ALL MAJOR CREDIT CAROS ACCEPTED - Small surcharge

CROFTON ELECTRONICS LTD
35 Grosvenor Road, Twickenh.am, Middx TW1 4AD 01-891 1923/1513

\section*{RADIATION DETVCTIORS}
- THIS DOSIME TEA WILL AUTOMAICALLY OETECT GAMMA AND X.RAYS
- UNIT IS SIZE OF FOUNTAIN PEN \& CLIPS ONTO TOP POCKET - PAECISION INSTRUMENT METAL CASED WEIGHT 207 - manufacturers current PRICE OF A SIMILAR MODEL OVR E25 EACM
British design \& manufacture Tested \& fully guaranteed. Ex-stock delivery



FREE
RE-CHARGE SERVICE AFTER PURCHASE


Ideal for the experimenter COMPLETE WITH DATA


404 EDGW ARE ROAD. LONDON W2 IED

\section*{PARNDON ELECTRONICS LTD.}

Dept. No. 2144 Paddock Mead. Harlow. Essex. CM18 7RR. Tel: 027932700
RESISTORS: \(1 / 4\) Watt Carbon Film E24 range \(\pm 5 \%\) tolerance. High quality resistors made under strictly controlled conditions by automatic machines. Bandoliered and colour coded
E1.00 per hundred mixed. (Min 10 per value) £8.50 per thousand mixed. (Min 50 per value) Special stock pack 60 values. 10 off each \(£ 5.50\)

\section*{DIODES: IN4148 3p each. Min order quandity - 15 items \\ £1.60 per hundred}

DIL SWITCHES: Gold piated contact in fully seoled base - solve those
programming problems.
4 Way 86 p each. 6 Way \(£ 1-00\) each. 8 Way \(£ 1.20\) each.
DIL SOCKETS: High quality, low profile sockets.
8 pin-10p. 14 pin- 11 p. 16 pin-12p. 18 pin- 19p. 20 pin- 21 p.
22 pin-23p. 24 pin- 25 p. 28 pin- 27 p. 40 pin-42p.

\footnotetext{
ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN. ORDER - U.K. £1 00. OVERSEAS ES CASH WITH ORDER PLEASE
}

\section*{PANMirece introduces THE NEW MAJOR 20K \\ An outstanding new entry to the world of Electronic Servicing}



Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of HiFi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits .

1000 items for the constructor.
CROSSOVER NETWORKS AND COMPONENTS. GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINETS - PLUS MICROPHONES AMPLIFIERS - MIXERS - COMBOS - EFFECTS SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.
* Lowest prices - Largest stocks *
* Expert staff - Sound advice *
* Choose your DIY HiFi Speakers in the comfort \(*\) of our listening lounge.
(Customer operated demonstration facilities)
* Ample parking *
\(\star\) Access . Visa . American Express accepted \(\star\)
Tdealfor Prestel/Teletext Systems
For more information and price structure write to:
RGB/PALEncoder Department,
Acom Computers Lid.,
4A Market Hill,
Cambridge, CB2 3NJ.

\section*{쥬 \\ 0625529599}

35/39 Church Street, Wilmisow, Cheshire SK9 1AS


\section*{SEMCONDNCTOR databook}

\author{
11th Edition
}

A M Ball

8
Half a million sales since first publication 10,000 American, European and Japanese devices Alphanumeric listing of devices A completely revised edition
In this completely new and rewritten edition of Radio Valve and Semiconductor Data the devices are listed in alphanumeric order to simplify reference. It presents data on more than 10,000 semiconductor devices from the major American, European and Japanese mariufacturers and there are separate sections devoted to transistors, FETs, UJTs, diodes, rectifiers, optical semiconductors, triacs and SCRs. Device outlines and pinouts are also included. This collection of data is essential for all designers and constructors of electronic equipment.
\(276 \times 219 \mathrm{~mm}\)
184 pages
Illustrated 0408004797
£5.50
Paperback

Write for full details of all our books - or in case of difficulty send cash with order to Patricia Davies, Marketing Manager at the address below.
\[
\mathbb{N}_{\text {Borough Green Sevenoaks }}^{\text {ewnical TNis BPH }} \text { Technical } \begin{aligned}
& \text { a division of } \\
& \text { Butterworths }
\end{aligned}
\]

\section*{NICKEL CADMIUM BATTERIES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { AA (HP7) } \\
& \text { 0.5AHr }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SUB 'C' } \\
& \text { 1.2AHI' }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 'C' (HP11) } \\
& \text { 1.65AMr }
\end{aligned}
\] & \[
\begin{aligned}
& \text { C' (HP11) } \\
& \text { 2.0AHr }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 'D' (HP2) } \\
& \text { 4.OAHr }
\end{aligned}
\] & \begin{tabular}{l}
PP3 \\
0.1 AMr
\end{tabular} \\
\hline 1-24 & \(\underline{0.85}\) & c1. 38 & £1.69 & £2.25 & E2.97 & E3.79 \\
\hline 25-49 & \(\underline{0.82}\) & C1. 28 & ¢1.58 & ¢2.10 & 62.77 & \\
\hline 50-99 & c0.80 & E1. 24 & ¢1.52 & ¢2.02 & E2.67 & \\
\hline 100 up & 60.70 & £1.16 & f1.41 & £1.87 & C2.47 & \\
\hline
\end{tabular}

All cells are brand new full spec devices from reputable mnfrs. All Nickel Cadmium cells lexcept PP3) are supplied complete with solder tags and are 'VENTED' devices suitable for fast charge. CHARGERS - single or dual O/P to charge PP3, AA or SUB \({ }^{\circ} \mathrm{C}\) c cells in \(12-14 \mathrm{hrs}\) (chargers will charge ' \(C\) ' and ' \(D\) ' cells but with longer charging time). Units supplied complete in plug top case
with flying leads. Number of cells (10 max) in series and type mult be specified for each rewith flying leads. Number

> SINGLE O/P CHARGER \(£ 5.04\) DUAL O/P CHARGER \(£ 5.72\)

TRANSFORMERS - as used in chargers. \(2 \times 12\) volt 0.25 amp secondarys 240 v primary, tog connections \(£ 1.57\) each.

Data and charging circuits free wit orders over f 10 otherwise 30 p post. P\&P \(10 \%\) if order less than E10. \(5 \%\) order over \(f 10\). Prices DO. NOT to the total order.

SOLID STATE SECURITY, Dept. (PE), Bradshaw Lane, Parbold, Wigan, Lancs. Telephone 02576-3018.
CELESTION

\section*{UK101/VIDEO GENIE/ SUPERBOARD}

\section*{PRINTERS::}

\section*{The EPSON MX80}

Friction and tractor feed printer with very high quality output, true lower case characters etc. We are able to offer these units at a very special price to members. Telephone now for further details of the printers and our special offer.
GRAPHICS::: Only \(\mathbf{£ 6 7 . 8 5}\) or \(£ 72.35\) (ready built). A complete unit to plug into the UK101 or Superboard. Any display size or monitor, the PCB suits all systems. Design your own graphics, 3d diagrams. Hi res graphs and much more. Send now for complete details.
VIDEO GENIE \& UK101:: Sound Board. This ever popular kit (or ready built unit) is now available for the Video Genie. The only totally complete kit on the market. A1 leads, speaker amp and software supplied. Proper 40 pin to 40 pin Jumper, simply plug in and go. Only \(£ 40.20\).
PERSONAL COMPUTER WORLD SHOW::: Come and see us Stand T7 of the PCW show. All our products will be on show and we will be selling various kits etc at special Show prices.
All our prices INCLUDE VAT \& P\&P, User Group membership is still \(£ 4.60\) per 6 months.
Callers by appointment only please

\section*{COMPUTER USER AIDS}

9 Moss Lane, Romford, Essex RM1 20.B. Romford 64954.

\(4 \mathrm{t} \ln \times 3 t \mathrm{in}\) METER. \(30 \mu \mathrm{~A}, 50 \mu \mathrm{~A}\) or \(100 \mu \mathrm{~A}, \mathbf{£ 5} \mathbf{1 0}\). 50 p P. \& P.

\section*{MICROPHONES FOR} TAPE RECORDERS
DM228R 200 ohm with 3.5
and 2.5 mm Jack Plugs
DM229R 50K with 3.5 and
2.5 mm Jack Plugs
£2.25
DM18D 200 ohm with 5
and 3 pin Din Plugs
\(£ 1.99\)
Postage on above microphones
17p


CARDIOID
DYNAMIC MICROPHONE

Model UD-130 Frequency response \(50-15,000 \mathrm{c} / \mathrm{s}\). Impedance Dual 50K and 600 ohms. £8.02. 50p P. \& P.

2in \(\times 2\) in meters \(500 \mu \mathrm{~A}, \mathbf{£ 4 . 1 4}\) 17p P.\& P.
\(60 \times 45 \mathrm{~mm}\) meters \(50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}\) \(500 \mu \mathrm{~A}\) and 1 mA VU meter, £4.00 26p P. \& P

6 V BUZZERS. 50 mm diameter 30 mm high, 52p. 15p. P. \& P

MULTI- METER
\(7 \mathrm{~N} \quad 36\) OTR 20,000 ohm/vol RESISTANCE
RANGES
X1, X10, X1K
X10K
\(\mathbf{£ 1 3 . 3 0}\)
P.\&P. 75p


LP30 LOW PASS FILTER
Cut off frequency 30 MHz £3.50 post 75 p

SWR9-SWR \& FS METER
£10.20 Post 75p
CX3 CO-AX SWITCH
For one transceiver to 3 aerials or 3 aerials to one transceiver. 150 watt £5.65 Post 75p

PL259 Plug 33p; Socket 33p; PL259/SO239 Angled Connector 70p; 1 watt dummy lead 95p; 2m Rubber Neck Aerial with PL259 Plug \(£ \mathbf{£ 3 0}\).

POST ON ABOVE ITEMS 14p.
All above prices include V.A.T. Send 50p for new 1980 fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.


158 Bradshawgate - Bolton • Lancs. BL2 1BA


\section*{ICS have} helped thousands of ambitious people to move up into higher paid more secure jobs in the field of electronics - now it can be your tum. Whether you are a newcomer to the field or already working in the industry. ICS can provide you with the specialised training so essential to success.

\section*{Personal Tuition and Guaranteed Success}

The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful,. is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.'

\section*{City and Guilds Cortificates}

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:

Telecommunications Technicians
Radio, T.V. Electronics Technicians
Radio Amateurs
Electrical Installation Work

\section*{Diplome Courses}

Colour T.V. Servicing
CCTV Engineering
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

\section*{Other Career Coursee}

A wide range of other technical and professional courses are available including GCE.



\section*{SELLING OR BUYING}

\section*{A classified advertisement could solve your problem at very little cost.}

\section*{RING LINDA 01-2615846}

\section*{RECEIVERS ANO COMPONENTS}

2716's (5V) MOTORDLANAPANESE. £4.40. 4 off £17.20. 2732 's to order. IN4148 \(50 £ 1.25,100 £ 200\). BC 107/8/9 Sprague equivalents 8.0 p . VAT is included. P\&P 40p under £ 10.00 . Wessex Trading, 17, Cripstead Lane, Winchester.


300 SMALL CDMPONENTS, transistors, diodes \(£ 1.60 .7 \mathrm{lbs}\) Assorted Components \(£ 3.95\). 10 lbs \(£ 5.25\). PCBs \(11 t^{\prime \prime} \times\) \(8^{\prime \prime}, 60 \mathrm{p} .1 \mathrm{lb}\) weight assorted 80 p . Fibreglass \(11^{\prime \prime} \times 5^{i^{\prime \prime}} £ 1\). \(11^{\prime \prime} \times 10^{\prime \prime} £ 1.80\). Fourty 74 series ICs on panel \(£ 1.60 .500\) capacitors \(\mathbf{£ 3 . 0 0}\). List 20 p refundable. Post 50 p. Optional insurance 20p. J.W.B. Radio, 2. Barnfield Crescent, Sale, Cheshire M 33 INL.

PRINTED CIRCUIT BDAROS designed. Realistic prices. Manufactured/delivered assembled or unassembled. Quick delivery on one-offs or multiples. Complete artwork/silk screening service. Enquiries to: Bertal Designs, 66, Harwood Close, Arnold. Nottingham. Tel. Nottm. 202049.

T \& J ELECTRONIC CDMPDNENTS - Quality components, competitive prices, catalogue 45 p. 98 Burrow Road, Chigwell. Essex.

\section*{SMALL ADS}

The prepaid rate for classified advertisements is 28 pence per word (minimum 12 words), box number 60p extra. Semi-display setting \(£ 9.50\) per single column centimetre (minimum 2.5 cms ). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

\section*{NOTICE TO READERS}

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

MY CATALDGUE contains thousands of surplus electrical and mechanical items. Price 40 p or sent free with large tin of aerosol freezer price \(£ 1\) plus 85 p postage. J. A. Crew (PE) Spinney Lane, Aspley Guise, Milton Keynes.

TURN YOUR SURPLUS Capacitors, transistors. etc.. into cash. Contact COLES-HARDING CO.. 103 South Brink, Wisbech. Cambs. 0945-4188. Immediate settlement.


BALLARD'S OF TUNBRIDGE WELLS have moved to 54, Grosvenor Road, no lists. S.A.E. all enquiries phone Tunbridge Wells 31803.

GET LOST. UK 101 l 3D Maze. \(16 \mathrm{~K}, 32\) lines CEGMON only. Animated demo. \(£ 5.00\). Dave Henniker, 59 Moredun Park Gardens. Edinburgh EH 17 7LQ.

BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 33 years. Foresters (National Radio Supplies), Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel. 302204. Closed Weds.

BLACKPOOL AND THE FYLDE. For components come to Eteson Electronics. 15B Lower Green, Poulton-Le-Fylde. Tel. 885 107. Mail order too-S.A.E. lists.

1920's ONWARD VALVES, wireless, SAE Sole Electronics, PE 37. Stanley Street. Ormskirk, Lancs. L39 2DH.

MZ8OK NUMERIC KEYPAD and unshifted cursor controls replaces graphics characters, eprotn details. SAE Antronics, I Cairnhill Gdns. St Andrews K Y 16 8QY

\section*{BOOKS AND PUBLICATIONS}

DUT of PRINT Book Service, 17, Fairwater Grove (E), Cardiff. Send SAE for details.
any single service sheet is L.S.A.E. Thousands different repair/service manuals/sheets in stock. Repair data your named T.V. 16 (with circuits 88 ). S.A.E. Newsletter, pricelists, quotations. AUS (PE), 76 Church Street, Larkhall, Lanarkshire. (0698 883334).

\section*{SOFTWARE}

CARDBOARD COMPUTOR Learn Assembly Language Programming and Computor Architecture. \(£ 8.97\) inc. Vat. Also Solar Cells, Science Kits, Encrgy Books, Stirling Engines, Space Blankets etc. Send 25p for lists. Edencombe Ltd.. Dept. PM34. Nathans Road, North Wembley. Middlesex HA0 3RX.

\section*{UK 101/SUPERBOARD OWNERS}

Do your string handling programs sometimes lock up? Does FRE(X) sometimes cause a erash?
if so. then you need our genuine mask programmed BASIC 3 ROM with corrected Garbage Collestion. Direct replacernent no mads. or soldering:
£7.50 incl. P\&P and leallet.
R. W. Stibbons,

3 Mansfield Drive, Hayes, Middx.

EPRDM PROGRAMMING SERVICE for 2716 (5v)devices. \(\mathcal{L} 1\) per 256 bytes. 11 per copy. P\&P 50p. N. J. Tobin, 8 Kingsfield Road. Dane End. Nr Ware. Herts.

NEW IMPROVED CHARACTER set in Eprom for your UK \(101 /\) Superboard (Please state which). Includes double-density graphics. maths. electronic and gaming symbols for only £8.95 ( +50 p P\&P). Reprogramming service available. J. O. Linton. 110 Duchy Road. Harrogate, HG12HB.
your UK101 basic program in EPROM. Switch on an run! Using 5V, 2716. SAE for details. 22A, Hyde Road, Mottram Hyde, Cheshire.

\section*{UK101 SOFTWARE ON TAPE}
from the guy who wrote "Le Passe-Temps"
GALACTIC HITCHHIKER (8K). An adventure, all in machine code. A beauty ( (E7.00)
machine code. A beauty (E7.00)
SUPERTREK (8K). Sail boldly through the universe zapping moving Klingons in real time. Superb graphics ( \(£ 7.00\) ) STARTREK ( 8 K ). The old favourte, beautifully presented. IE6.00
less than 3 hours. ( \(£ 3.00\) )
HANGMAN. Excellent graphics. P.E, said sol ( \(£ 3.00\) )
BASIC TUTOR \((8 \times 4 \mathrm{~K})\). The only way BASIC TUTOR ( \(8 \times 4 \mathrm{~K}^{\prime}\) ). The only way to learn - at the keyboard. (E12,00)
oot it ( \(£ 3.00\) ) and are aveilable for \(16 \times 48\) and \(32 \times 48\) displays lincluding
enhanced Supertoardsl.

\section*{HARDWARE}

I am now sole UK distributor for the exciting new TAOWA ronge of add-ons, designed specifically for the UK101/Superboard. These kits are complete in every way: plus preformed cable assembly for easy interconnection to Ji .
MOTHERBOARD SYSTEM. Now you can add on all those extras easily. Provides eight, yes EIGHT, fully buffered J1 type
til sockets ( 226.50 )
SK STATIC RAM BOARD. (£47.25)
works. COMPLETELY RELIABLE 4000 At last, a system that works. COMPLETELY RELIABLE 4000 band 18000 with deasonable cassette) plus software for named file handling A VIDEO ENHANCEMENT. Switch Ealectable \(16 \times 4\). VIDEO ENHANCEMENT. Switch ealectable \(16 \times 48\) or
\(32 \times 48\) displays without butchering y \(\begin{array}{ll}32 \times 48 \text { displays without butchering y } & \text { mputer, ( } \mathbf{f 1 9 . 5 0} \text { ). } \\ \text { Monitor EPROMS re-blown to suit for } \\ \mathbf{2 . 5 0}\end{array}\) 8K EPROM BOARD ( \(\mathbf{E 2 4 . 5 0}\) ). A 2 K Extended Monitor is availabie in EPROM for E12.00 plus, coming soon, TOOLKIT in EPROM and BASIC
MONITOR BOARD. Plug ihto Monitor socket to provide switch selection of up to 4 EPROMS. (E11.70)
Board. Analogue Board and something rather nice on the graphics side.
inclusive prices - absolutely no hidden axtres.
Plesse write or phone for further details:
A. KNIGHT (Dept. PE),
28 Simonside Walk,
Ormesby.
Cleveland.

Tel. (0642) 321266

\section*{SERVICE SHEETS}
bell's television services for Service Sheets on Radio, Tv, etc \(£ 1.00\) plus \(\$\). A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel:(0423) 55885.

\section*{PLEASE MENTION}

PRACTICAL ELECTRONICS
WHEN REPLYING TO
ADVERTISEMENTS

CITY \& GUILDS EXAMS
Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:
```

ICS SCHOOL OF RLECTRONICS
Dept. 272L Intertext House, London SW8 4UJ Tel. 01-622 9911 (all hours)
State if under 18

```

\section*{TECHNICAL TRAINING}

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS paid job. Take the first step now-write or phone for for details of ICS speciaist homestudy courses on
Radio, TV, Audio Eng. and Servicing, Electronics. Radio, TV, Audio Eng. and Servicing, Electronics.
Computers: also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 272L Intertext Hounc, London SW8 4U3 Tel. 01.6229911 (all hours)

State if under 18

\section*{COLOUR TV SERVICING}

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

\author{
ICS SCHOOL OF ELECTRONICS \\ Dept. 272L Interiext House, London SW8 4UJ \\ Tel. \(01-6229911\) (all hours)
}

State if under 18

CAREERS in Marine Electronics. Courses commencing September and January. Further details, the Nautical College, Fleetwood FY7 8JZ. Tel. 0391779123.

\section*{TELEVISION COMPUTER} RADIO \& RADAR SERVICING
\(2 \frac{1}{3}\) YEAR full-time Modular Diploma course to include a high percentage of practical work.
- ELECTRONIC PRINCIPLES
- MONOTV \& CCTV
- COLOUR TV \& VCR
- MICROELECTRONICS \& DIGITAL TECHNIQUES
- COMPUTERS \& MICROPROCESSORS

RADIO \& RADAR

Each of the above Modules are 13 weeks in duration. Individual Modules can be arranged for applicants with suitable electronics background.
Tuition fees (UK \& Overseas) \(£ 1500\) per year (i.e. \(\mathbf{£ 5 0 0}\) per Module).
Next session starts September 14th.
Prospectus from:

\section*{LONDON ELECTRONICS COLLEGE}

Dept: AA, 20 Penywern Road, London SW5 9SU. Tel: 01-373 8721.

\section*{MISCELLANEOUS}

FREE CATALOGUE. Send 14 pence stamp to Logiç Designs. 168 Cauldwell Hall Road. Ipswich IP4 SDB. Free 50 pence voucher with first 100 catalogues.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{THE SCIENTIFIC WIRE COMPANY PO Box 30, London E.4.01-531 1568.} \\
\hline \multicolumn{5}{|l|}{ENAMELLED COPPER WIRE} \\
\hline SWG & 1 lb & 8 z & 402 & 207 \\
\hline 8 to 29 & 2.76 & 1.50 & 0.80 & 0.60 \\
\hline 30 to 34 & 3.20 & 1.80 & 0.90 & 0.70 \\
\hline 35 to 39 & 3.40 & 2.00 & 1.10 & 0.80 \\
\hline 40 to 43 & 4.75 & 2.60 & 2.00 & 1.42 \\
\hline 44 to 47 & 5.90 & 3.40 & 2.39 & 2.0 \\
\hline 48 to 49 & 15.96 & 9.58 & 6.38 & 3.69 \\
\hline \multicolumn{5}{|l|}{\(\begin{array}{ll}\text { SILVER PLATED COPPER WIRE } \\ 14 \text { to } 30 & 6.50 \\ 3.75 & 2.20\end{array}\)} \\
\hline \multicolumn{5}{|l|}{TINNED COPPER WIRE} \\
\hline 14 to 3 & \multicolumn{4}{|l|}{Prices Incl P\&P, VAT.} \\
\hline \multicolumn{5}{|l|}{Orders under £2 please add 20p.} \\
\hline \multicolumn{5}{|l|}{AE for List of Copper/Resistance Wire. Dealer} \\
\hline
\end{tabular}

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer - now greatly improved and very much faster. Aerosol cans with full instructions £2.25. Developer 35p. Ferric Chloride 55p. Clear Acetate sheet for master 14 p. Copper-clad Fibreglass. Board approx. 1 mm thick \(£ 1.70 \mathrm{sq}\). ft. Post/packing 75p. WHITE HOUSE ELECTRONICS. P.O. BOX 19, Castle Drive, Penzance, Cornwall.
SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range Competitive prices start at a Low \(£ 1.05\). Chassis punching facilitues at very competituve prices, 400 models to choose (Dept. No. 23), S. Wilfrids, Foundry Lane, Halton, Lancaster, LA1 6LT.
burglar alarm equipment. Latest Discount Catalogue out now! Phone C.W.A.S. Alarm 0274682674.
SENSATIONAL FREE OFFER. Buy a Casiotone VL-I Electronic Musical Instrument and get a semi condtor pack absolutely free. Comprising 107400 . 10-BC 183L. 1-7805, worth \(£ 2.60\). Send cheque/PO for \(£ 35.95\) (no postage required) to-Micro Musical Lid.. Freepost. 37 Wood Lane. Coventry, CV79BR. Offer closes 31/10/81.

\section*{ORDER'FORM PLEASE WRITE IN BLOCK CAPITALS}

Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for £ .................................................
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics).
\begin{tabular}{|l|l|l|l|l|}
\hline & & & & \\
\hline
\end{tabular}

NAME
Send to: Classified Advertisement Manager
PRACTICALELECTRONICS

Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower. Stamford Streét, London SE 1 9Ls.


Paraphysics journal (Russian Translations): Psychotronic Gienerators, Kirlianography, Gravity Lasers, Telekinesis. Details: SAE \(4 \times 9^{\prime \prime}\), Paralab, Downton, Witts.

\section*{WRONG TIME?}

MSF CLOCK is ALWAYS CORRECT - never gains or loses. SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, also parallel BCD output for computer and audio to record and show put for computer and adio to record and show time on playback, receives Rugby
atomic time signals, built-in antenna, 1000 Kmz atomic time signals. built-in antenna,
range, GET the RIGHT TMME, E62.80.
V.L.F.? EXPLORE 10.150 KHz , Receiver \(£ 16.50\). Each fur-to-build kit includes all parts, printed circuit, case, instructions, postage etc money back assurance so GET

\section*{CAMBRIDGE KITS}

45 (FW) Oid School Lane, Milton, Cambridge.
GRUNDIG STABILISED POWER SUPPLY 2 amp pushbutton selection \(0-25\) volt. Meter indicates voltage/currenh, overload protected, strong metal case \(£ 20+£ 5.00\). Also millivoltmeters, multimeters, isolation transformers, signal generators/tracers. All in working order. Ring 0391841 631 (after 6 pm ) or S.A.E. to: A. Moore, 5, St. Joseph's Park, Ballycruttle. Downpatrick.
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
QUARTZ LOCKED \\
ULTRASONIC ALARM \\
Dotector and Control Unit - Type UAQ + P Faatures:No alignment reqd. - No interaction between units. Kit inc:-
F/G. PCB. punched ABS box, all comp. inst. Single unlt conF/G. PCB. punched ABS box, atl comp. inst. Single unlt con-
struction - PCB screw connections 240 V AC supply: with optional NI-CAD battery back up. 15 to 20 ft detection range, externally presettable 20 sec delay on leaving: 10 sec delay on entry; 1 sec invalid movement delay: 2 min self cancelling alarm: latching panic button fa clility included.
240 VAC UAO \(+P\) Multione Drive 240 V AC UAQ \(+P\) Multitone Drive KIt \\
\(240 \mathrm{~V} A C \quad \mathrm{UAO}+P\) Multitone Drive \& Relay Output Kit \\
Above kits built \& tested \(=\) Kit Price Plus Keyswitch Sounder 95 dB - \(1 \mathrm{mtr}, 9\) Tone Options Keyswitch in ABS box 5.95 . \(2 \times\) NI-CAD Batteries \(£ 9.20\) All prices inclusive. CWO UK. SAE for further details. \\
GJD ELECTRONICS \\
105 Marper Fold Road. \\
Radcliffe, Manchaster M26 ORQ.
\end{tabular} \\
\hline
\end{tabular}

DIgital watch batteries. Any sort \(\mathbf{5 1 . 2 0}\) each + p.p. Send S.A.E. or 15p with number or old battery to: Disclec, 511 Fulbridge Road. Werrington. Peterborough.

\section*{DIGITAL WATCH BATTERY REPLACEMENT KIT}

These watches all require battery ( \(p\) ower cell) replacement at regular intervals. This kit provides the means. We supply provides the means. non-magnetic eyeglass, non-magnetic
tweezers, watch screwdriver, case knife and screwback case opener, also one doz. assort. push pieces. full instructions and battery identification chart. We then supply replacement batteries-you fit them. Begin now. Send \(\mathbf{£ 9 . 0 0}\) for complete kit and get into a fast growing business. Prompt despatch.
BOLSTER INSTRUMENT CO.
(PE28)
11 Percy Avenue, Ashford, Middx. TW15 2PB.
CAR RADIO SERVICE SHEETS. S.A.E. 49, Westbourne Terrace. Reading RG3 2RP. 0734-53046.
SUPERB LOUOSPEAKER CABINETS built to your specification or choose from standard range. S.A.E. for leaflet M. G. Saville. 63 Upper Shelton Road, Marston, Moretcyne. Beds.

\section*{RYDER ORGAN SYSTEM}

The WW classical design for full-size keyboards, including couplers. Expanded range of p.c. boards \& data available includes chorus, vibrato, combination stop control.
Reverberation. A new compact solidstate unit gives smooth natural sound. Demo cassette, on loan, deposit \(£ 1.50\), refund f 1.00 . (Prices UK only).
HIYKON LTD. (P), Woodside Croft, Ladybridge Lane, Bolton BL1 5ED.

ELECTRONIC KITS. Largest range of kits in the U.K. Everything from stroboscopic lights to transmitters, at unbeatable prices. Send S.A.E. for frec catalogue to: Eastling Electronics (Kits), 648 Hawthorn Road, Winton, Bournemouth.

\section*{MAKE YOUR OWN PRINTED CIRCUITS}

Etch Resies Tranzfars - Starrer pack (5 sheets, Unes, pads, 4.C. padsl 42.00 . Large range of single sheets in stock at Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. 2 sheets negative paper, 2 sheets positive film (A4) \(£ 2.10\). Photo-resist spray ( 200 ml ) £3.25 ( \(\mathrm{p}+\mathrm{p}\) 55p). Drafting Fitm (A4) 25 p . Precision Grids (A4) 65 p.
where indicated.
Closed for holidays July 20rh to August 15th
P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE.

PRINTED CIRCUITS boards. Glass fibre tinned and drilled Prototypes to batch runs. Quick turn-round, competitive prices. Send S.A.E. for quotations. R. D. Electronics, 12 Whitcoaks \({ }^{\wedge}\) Road, Oadby, Leicester. 0533716273.


SECONDHAND ELECTRONIC TEST EQUIPMENT including oscilloscopes. generators, PSU's. Norfab., Telephone Potter Heigham (069-27) 721.

\section*{Cabinet and Flightcase Fittings Freatorths. Coverings. Mandles, Castors erc. Jacks and
Sockets. Cannons. Bulgins, Reverb Trays, Gmilar CompresSockets, Cannons, Bulgins, Reverb Trays, Gmilar Compres-
sion Drivers. AKG Mics, Celestion Speakers, ASS, Glasstibre \\ Horns.
Send 30p Postal Order for illustrated catalogues to:- \\ ADAM HALL (P.E. SUPPLIES) Unit G, Carton Court, Grainger Road,
Southend-on-Sea, Essex SS2 \(58 Z\).}

CLEARING LABORATORY: scopes, generators, P.S.U.'s, bridges, analy sers, meters, recorders, etc. 0403-76236.
korting coldur generator Model 82512, completely overhauled by Decca. Perfect condition. \(£ 75.00\). 01-886 4057.

\section*{RECHARGEABLE BATTERIES}

\section*{Private \& Trade Enquiries Welcome} FULL RANGE AVAILABLE. SAE FOR LISTS. £1.45 for Booklet. Nickel Cadmium Power plus Catalogue. Write or call: Sandwell Plant Lid, 2 Union Drive, BOLOMERE, SUTTON COLOFIELO, WEST MIOLANOS. 0213549764.
- NEW SEALED LEAD RANGE AVAILABLE.

ULTRASONIC TRANSOUCERS. \(\mathbf{£ 2 . 8 5}\) per pair +25 p P\&P. Dataplus Developments, 81 Cholmeley Road, Reading, Berks.

SEEN MY CAT' 5,000 odds and ends. Mechanical. Electrical. Cat Free. Whiston Dept. PRE, New Mills, Stockport.

PRE-PACKED. Screws, nuts, washers, solder tags, studding. Send for price list. A| SALES (PE), P.O. Box 402, London SW6 6LU.

\section*{TUITION}

Pay as you learn. postal mathematics tuition. 23, St. Lukes Close. Middlestown, Wakefield.

\section*{FOR SALE}

TELETEXT P.E./Marshall's project. Complete kit almost built cost \(£ 200\) want \(£ 125\) o.n.o. Telephone Scarborough (0723) 863564.

UK101 8K CASED plus Tape Recorder, 1-2 megahertz, 300600 band, Cegmon with tool kit in EPROM. Much sofware and extras \(£ 275.00\) negotiable. Phone Stevenage 69612 after 6 pm .
cadcocat: Components, Grabbags, Correspondence Courses, Kits, Equipment. Wrie: Cadco, 67A, Jalan Periasia, Johore Bahru, Malaysia.
hartley dual trace oscilloscope. Excellent condition £90. J. Price, Bridge House, St. Davids, Dyfed, SA62 6PD

\begin{abstract}
SUPER BUY Hilki 25W Soldering Iron \(\mathbf{£ 3 . 9 0}\) plus 30 p P \& P. Orders with cheque/P.O. McDonald, M.O. Dept. 72. Strawfrank Road, Carstairs Junction, Lanark ML11 8RE, Scotland.
\end{abstract}
P.E S NOVEMBER 1964-OCTOBER 1972. Complete (minus one). Offers? Buyer collects. Southampton (0703)860360.

NEW BACK ISSUES OF 'PRACtICAI ELECTRONICS' available 90 p . each Post Free. Cheque or uncrossed P/O returned if not in stock. Bell's Television Services, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

\section*{WANTED}

WE buY SURPLUS electronic components, PCB's etc for cash. Tel. (0703) 785862.

When replyting to Classified Advertisements please ensure:
(A) That you have chearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

> This will assist advertisers in processing and despatching orders with the minimum of delay.



\section*{Radio Component Specialists}

337 WHITEHORSE ROAD CROYDON, SURREY, U.K. Tel. 01-684 1665

\section*{CLEF electronic MUSIC}

\section*{FIRST \\ for PIANOS for STRINGS for ROTORS for RHYTHM}

\section*{IF MUSIC IS YOUR INTEREST}

Since 1972 Clef Products have consistently produced designs in the field of Eiectronic Musical Instruments, many of which have been published under the authorship of A. J. Boothman. With musical quality of paramount importance new techniques have been evolved and the latest musically valid technology has been incorporated into projects which have been successfully com-


\section*{MASTER RHYTHM}

As published in Practical Electronics fully programmable TWENTY-FOUR PATTERNS EIGHT PARALLEL TRACKS TWEIVE INSTRUMENTS SEQuence operation
Kit includes all components to
build this comprehensive User build this comprehensive User Programmable Rhythm Generator in an attractive metal case with finished case, hardware and wir

> KIT - \(£ 79.00\)
> BUILT \(-£ 114.00\)

OUR PRICES INCLUDE VA.T., CARAIAGE \& INSURANCE
Please send S.A.E. for complete lists or use our telephone BARCLAYCARD service. Very competitive EXPORT rates in Australia please contact JAYCAR in Sydney
ALL INSTRUMENTS MAY BE SEEN IN DUR SHOW ROOM.

\section*{CLEF PRODUCTS (ELECTRONICS) LIMITED \\ (0ept. P.E.) 44A 8 ramhall tane South. 8ramhall. Stackport. Cheshire SK7 IAH 061-439 3297}



\section*{STORAGE CABINETS}


Metal Cabinets \(12^{\prime \prime}\) wide \(\times 5 \frac{3^{\prime \prime}}{4}\) deep, finished blue with transparent plastic drawers.

Type H No. of Drawers Price (ins) Sm MedLge
\(\begin{array}{llllll}1118 & 11 & 15 & 2 & 1 & £ 10.75\end{array}\) \(\begin{array}{llllll}1633 & 16 & 30 & 2 & 1 & £ 13.95\end{array}\) \(\begin{array}{llllll}1838 & 18 & 35 & 2 & 1 & £ 15.95\end{array}\) \(\begin{array}{llllll}2236 & 22 & 30 & 4 & 2 & £ 18.55\end{array}\) 22602260 - \(£ 18.55\) Access/Barclaycard welcome Prices include VAT and Post. Cheque/P.0. to: Millhill Supplies (Tools). 35 Preston Crowmarsh. Benson, Oxon OX9 6SL.

\begin{tabular}{|c|c|c|c|c|}
\hline TYPE &  & \multicolumn{2}{|l|}{Stotomer \({ }^{\text {ans }}\)} & PRICE \\
\hline  &  &  &  &  \\
\hline
\end{tabular}

Also available from ELECTROVALUE, MAPLIN. CANTERBURY CT2 7EP Phone (0227)54778 Technical (0227)64723 Telex 965780

\section*{5-YEAR GUARANTEE}
roroidals have only half the weight and height offlicient. cost virtually the same as the older
equited types which they are rapidly replacing. Induced hum is reduced by a factor of ten. Supplied with teoprene washers. All I.L.P. Toroidal neoprene washers. All I.L.P. Toroidal
Transformers carry our full 5-vear guarantee
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{\[
\begin{gathered}
\substack{\text { SERIES } \\
\text { NO }} \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{SECOMOARY AMS} & \multirow[t]{2}{*}{PRICE} \\
\hline & & Volts & Curemt & \\
\hline \multirow{9}{*}{\[
\begin{gathered}
160 \mathrm{va} \\
110 \times 40 \mathrm{~mm} \\
1.8 \mathrm{Kg} \\
\text { regulatom } \\
8 *
\end{gathered}
\]} & \({ }_{5 \times 011}^{5 \times 017}\) & \({ }_{1}^{9}+9\) & 889 & \multirow{9}{*}{\[
\begin{aligned}
& \mathbf{f} 8.44 \\
&+f .13 \mathrm{PaP} \\
&+ \text { f1. } 18 \mathrm{VAT} .
\end{aligned}
\]} \\
\hline & . \(5 \times 013\) & \(15+15\) & \({ }_{533}\) & \\
\hline & \(5 \times 014\) & 18+18 & \begin{tabular}{l} 
ci4 \\
363 \\
\hline
\end{tabular} & \\
\hline & \(5 \times 016\) & \(25+25\) & 320 & \\
\hline & \(5 \times 017\) & \(30+30\) & 2.86 & \\
\hline & \(5 \times 018\) & \(35+35\) & 228 & \\
\hline & \({ }_{5 \times 206}\) & \(40+40\) & 200 & \\
\hline & \(5 \times 028\)
\(5 \times 029\) & 110
220 & 1.45
0.72 & \\
\hline & 5x030 & 240 & 066 & \\
\hline \multirow{10}{*}{\[
\begin{gathered}
225 \mathrm{va} \\
110 \times 45 \mathrm{smm} \\
22 \mathrm{Kg} \\
\substack{\text { reculation } \\
7 \%}
\end{gathered}
\]} & \(6 \times 012\) & \(12+12\) & 938 & \multirow{10}{*}{f10.06} \\
\hline & \({ }^{6 \times 013}\) & \(15+15\) & 7.50 & \\
\hline & \(8 \times 014\)
\(6 \times 015\) & \(18+18\)
\(22+22\) & 6.25
511 & \\
\hline & \(6 \times 016\) & \(\underline{25}+25\) & 4.50 & \\
\hline & \(6 \times 017\) & \(30+30\) & 3.75 & \\
\hline & \(6 \times 018\) & \(35+35\) & 3.21 & \\
\hline & \({ }^{6 \times 026}\) & 40 +40 & 2.81 & \\
\hline & \(6 \times 025\) & \({ }_{45}^{+45}\) & & \\
\hline & \(6 \times 028\)
\(6 \times 029\) & \({ }_{220}\) & 208
1.02 & \\
\hline & \(6 \times 030\) & 240 & 0.93 & \\
\hline \multirow{6}{*}{\[
\begin{gathered}
300 \mathrm{va} \\
110 \times 50 \mathrm{~mm} \\
26 \mathrm{~kg}
\end{gathered}
\]} & \(7 \times 014\) & \({ }^{18} \cdot 18\) & 8.33 & \multirow{9}{*}{\[
\begin{aligned}
& \mathbf{1 1 . 6 6} \\
& =C 1.13 P 8 P \\
& - \text { E201 VAT. }
\end{aligned}
\]} \\
\hline & \(7 \times 015\) & 22:22 & 882
6.00 & \\
\hline & \({ }_{7 \times 017}\) & 30, 30 & 500 & \\
\hline & \(7 \times 018\) & 35.35 & 4.28 & \\
\hline & \(c702670025\) & \(40 \cdot 40\)
45
45 & 3.75
3.33 & \\
\hline & 70025 & 30. 50 & & \\
\hline \multirow[t]{3}{*}{} & \({ }_{7 \times 028}\) & 110 & 2.72 & \\
\hline & \(7 \times 029\) & 220 & \({ }^{1.36}\) & \\
\hline & \(7 \times 030\) & 240 & 1.25 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline TYPE & Stilis & \multicolumn{2}{|l|}{SECONOAYY RMS} & PRICE \\
\hline 500va \({ }^{100}{ }^{60 \mathrm{kgm}}\) \({ }^{4}\) regution &  &  &  &  \\
\hline 625va 50 kg Regulition &  &  &  &  \\
\hline
\end{tabular}

All voltages quoted are for FULL LOAD. Add regulation figure to - CHOICE OF 3 PRIMARY INPUTS
1.L.P. Toroidal Transformers are avilable in choice of \(110 \mathrm{~V}, 220 \mathrm{~V}\). 240 V . coded as follows (Secondaries can be connected in series or parailel):
For 110 V Primary insen 0 in place of " X " in type number. For 220 V
Primary (Europe) insert I in place of "X" in type number, For 240 V Primary (U.K. insert 2 in place of " \(X\) " in type number. THUS: sova 240v. \(6+6 \mathrm{v} 4.16 \mathrm{~A}=22010\). envelope marked FREEPOST. NO STAMP REOUIRED. envelope marked FREEPOST. NO STAMP REQUIRED. Enclose sheque/Postal Order/Money Order payable to IL..P. accocronics No. To par C.O.D. add fl extra to TOTAAL value of order. U.K. customers must include V.A.T. with payment. GOODS DESPATCHED WITHIN 7 DAYS OF RECEIPT OF

To: I.L.P. ELECTRONICS LTD \({ }_{n}\) CANTERBURY CT2 1EP Please supply Transformer(s)

No.(s).
Total purchase price \(\mathcal{E}\) I enclose Cheque \(\square\) Postal Order \(\square\) International Money Order \(\square\) Debit my Access/Barclaycard Account No.

\section*{NAME.} ADDRESS


The modern way of instant 2-way communivations. Just plug into power socket. Ready to use. Crystal clear cormmunications from room to room. Range z-mile on the same mains, phase. On/oft swich Useful as inter-office intercom, between oftice and warehouse, in surgery and in homes. Also F.M. 2 channel "touch" model \(£ 55.95+\) VAT \(£ 8.40\) + P \& P £2.15

\section*{NEW AMERICAN TYPE CRADLE}

\(£ 18.95\)
+VAT E2.85 Latest transistorised. Telephone Amplifier, with
detached plug-in speaker. Placing the recelver on to the cradle activates a switch for immediate two-way conversation without holding the handset. Many people can listen at a time. Increase efficiency In office, shop, workshop. Perfect for "conference" calls: leaves the user's hands free to make notes consult files. No long walting, saves time with long distance calls. On/off switch, volume control con versation re
P\& \(\mathrm{P}\{1.65\).

\section*{DOOR ENTRY SYSTEM}

No house/business/surgery should be without DOOR ENTRY SYSTEM in this day and age. The modern way to answer the door in safety to unwanted callers. Talk to the caller and admit him only if satisfied by pressing a remote control button which will open the door electronically. A boon for the invalid, the aged, and busy housewife. Supplied complete d.i.y. kit with one internal Telephone Yate type surface latch lock): mains power unis Yale type suriace latch lock), mains power (fis VAT 990 P \& P 2.25 Kit with two Telephone' \(\mathbf{8} 69.95\) +VAT \(£ 10.50+\mathrm{P} \& \mathrm{P} £ 2.45\)

10-day price refund guarantee on all itenis
WEST LONDON DIRECT SUPPLIES (PE9) 169 KENSINGTON HIGH STREET, LONDON, W8. 01-937-5548.

\section*{MAIL ORDER ADVERTISING}

\section*{British Code of Advertising Practice}

Advertisements in this publication are required to conform to the British Code of Advertising Pracice. In respect of mail order advertisments where money Is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

\section*{Mail Order Protection Scheme}

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery. PRACTICAL ELECTRONICS will consider you for compensation if the Adver tiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the day you sen your order and not later than iwo months from that day
Please do not wat until the last moment to in form us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc, received as a result of answering such advertisements. Classified advertisements are excluded.

\section*{THE ART OF ELECTRONICS}
by Horowitz \& Hill
Price: \(£ 13.50\)
THE PPLSYNTHESIZER COOKBOOK by H. Kinley

Price: \(\mathbf{5} 5.25\)

\section*{HE MC6809 COOKBOOK}
by C. D. Warren
Price: \(\mathbf{5} 5.00\)
DIGITALIC\&... HOWTHEYWORKE HOWTO USE THEM
by A.W. Barber
Price: \(\mathbf{£ 5 . 7 5}\)
ELECTRONICDESIGN WITH OFFTHE
SHELFINTEGRATEDCIRCUITS
by Z. H. Meiksin
Price: \(\mathbf{£ 6} \mathbf{2 5}\)
EXPERIMENTER'S GUIDETO SOLID STATE ELECTRONICS PROJECTS
by A. W. Barber
Price: \(\mathbf{£ 5} .50\)

SCHEMATICDIAGRAMS
by J. Douglas-Young
Price: \(\mathbf{\Sigma 5 . 5 0}\)
PRACTICAL SOLID STATE CIRCUIT DESIGN byJ.E.Oleksy

Price: \(\mathbf{£ 6 . 5 0}\)
WORLDRADIOT.V.HANDBOOK
by J. M. Frost
Price: 10.50
1981 THE RADIO AMATEUR'S HANDBOOK by A.R.R.L.

\title{
THE MODERN
} BOOK CO.
BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET LONDON W2 1 NP

Phone 01-4029176
Closed Saturday 1 p.m.

\section*{Attention Atom Owners become} WORD PERFECT
WITH THE NEW ATOM WORD PACK


The ATOM word pack is ideal for the preparation of leaflets, letters, booklets and documents. Text can be edited, saved on cassette or disk and then printed out in any desired format. BASIC programs and data created by programs can also be edited. The Word Pack is a 4 K ROM which simply plugs into the ATOM's utility ROM socket and adds EDIT and TEXT to the command sot. Complete with a 16 page book let giving full instructions and examples. Just £29.90 including post, packing and insurance.

\section*{Also Available:}

\section*{SOFT VDU}

The soft VDU replaces the normal ATOM VDU, but provides 128 characters including upper and lower-case letters, and mathematical symbols. Program 1.5K, graphics 6K.


UTILITY PACK 1
Disassembler Lists machine code in standard ATOM assem. bler form, or stores the assembier text into memory. Graphics \(2 K\). Fast Cos Modifies the ATOM:'s standard cassette-interface routines to operate at 1200 baud, or 4 times faster. Program 1K.
Renumber \(A\) fast renumber for BASIC or assembler programs, gives display of the numbers for labelled lines. Program 1K.


MATHS PACK 1
Plot A' versàtile graph-plotting package for research, accounting, schools and mathematics, or simply for amusement. Program 5K, graphics 6K. Simultaneous Solves a set of simultaneous equations, with integer or real coefficients. Program 2K, graphics \(1 / 2 \mathrm{~K}\). Regression Calculates the bestfitting straight line to a specified set of data points, gives the equation and the correlation coefficient. Program 2K, graphics \(1 / 2 K\).


\section*{ORDER TODAY!}

Just send a cheque or money order for only \(£ 11.50\) per pack ( \(\mathbf{E 2 9 . 9 0}\) for the word pack) including VAT and post and packing State which packs you want. Or ring 0223316039 or 01-930 1614 quoting your Access or Barclaycard number. Allow 14 days for delivery. Or if you think you can wait for more details just write to Acornsoft Limited, 4a Market Hill, Cambridge

\section*{ACORNSEFT}

\section*{INDEX TO ADVERTISERS}
Adam Hall Supplies ..... 84
Ambit ..... 78
Apollo Elektronics ..... 86
Barrie Electronics ..... 80 ..... 10
B. Bamber
Bolster Instruments ..... 84
Boss Industrial Mouldings
British National Radio \& Electronics School ..... 22
Butterworths ..... 80
Cambridge Kits ..... 84
Chromasonic Electronics ..... 5
Clef Products ..... 85
77
Crimson Components
Crofton Electronics ..... 78C.R. Supply Co.
C.U.A. ..... 81
Dziubas M . ..... 81
E.D.A. ..... 12
12
Electronic Mail Order ..... 12
Electrovalue ..... 58
Gemini ..... 10
Jo Electronics ..... 7. 67
Heathkit ..... 4 ..... 78.86
84
Henry's Radio
Henry's RadioHome Radio12
ICS Intertext ..... 81. 83
IL. P Electronics ..... \(14,15,87\)
Knight A. ..... 82
L \& B Electronics ..... 85
London Electronics CollegeCover 4
Microcircuits ..... 13
MicrodigitalMicro TimesMillhillModern Book Co87
Modus Systems80
Pantec ..... 79
ParndonPhonosonicsPKG Electronics6. 7
Proto Design ..... 84
Radio Component Specialists ..... 85
Radio \& T.V. Components ..... 16
Roden Products ..... 84
Sandwell Plant Co. ..... 84
Scientific Wire Co. ..... 84
Stlbbons R. W. ..... 82
Tandy Copporation ..... 29
Technomatic ..... Cover 3
Titan ..... 67
T.K. Electronics ..... 11
Videotone ..... 30
Watford Electronics2.3
87
West London Direct Supplies87
William Stuart Systems ..... 79 Australia and New Zcaland Gordon \& Goich (A/sia) Lid.: South Africa-Central News Agency Lid.
Subscriptions INLAND and OVERSEAS \(£ 11.80\) payable to IPC Services. Oakfield House. Perrymount Road, Haywards Heath. Sussex.

 pan of any publicaton or advertising, literary or pictorial matter whatsoever.


For personal service visit one of our stores.
Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.
There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

* Same day service on in-stock lines
* Very large percentage of our stock lines in stock
* All prices include VAT
* Large range of all the most useful components
* First class reply paid envelope with every order
* Quality components-no rejects-no re-marks
\(\therefore\) Competitive prices
* Your money is safe with a reputable company

On price, service, stock, quality and security it makes
 first choice for components every time!```


[^0]:    © IPC Magazines Limited 1981. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

