PRACTICAL

Unique in concept-the home computer that grows as you do! The Acorn Atom
 Special features include
 * FULL SIZED
 KEYBOARD

 * ASSEMBLER AND BASIC * TOP QUALITY MOULDED CASE HIGH RESOLUTION COLOUR GRAPHICS*

* optional

The Acorn Atom is a definitive personal computer. Simple to build, simple to operate. A powerful, full facility computer with all the features you would expect. Just connect the assembled computer to any domestic TV and power source and you are ready to begin. (Power requirement: 8 V at 800 mA). There is an ATOM power unit available - see the coupon below.

Free with every ATOM, kit or built, is a computer manual. The first section explains and teaches you BASIC, the language that most personal computers and the ATOM operate in. The instructions are simple and learning quickly becomes a pleasure. You'll soon be writing your own programs. The second section is a reference
manual giving a full description of the ATOM's facilities and how to use them. Both sections are fully illustrated with example programs.
The standard ATOM includes: HARDWARE

- Full-sized QWERTY keyboard 6502

Microprocessor Rugged injection-moulded case 2 K RAM -8 K HYPER-ROM - 23 integrated circuits and sockets Audio cassette interface UHF TV output - Full assembly instructions
SOFTWARE

- 32-bit arithmetic $(\pm 2,000,000,000)$ - High speed execution - 43 standard/extended BASIC commands Variable length strings (up to 256 characters) String manipulation functions 27×32 bit integer variables - 27 additional arrays Random number function PUT and GET byte WAIT command for timing \quad DO-UNTIL construction - Logical operators (AND, OR, EX-OR) Link to machine - code routines PLOT commands, DRAW and MOVE

The ATOM modular concept
The ATOM has been designed to grow with you.
As you build confidence and knowledge you can add more components. For instance the next stage might be to increase the ROM and RAM on the basic ATOM from $8 \mathrm{~K}+2 \mathrm{~K}$ to $12 \mathrm{~K}+12 \mathrm{~K}$ respectively. This will give you a direct printer drive, floating point mathematics, scientific and trigonometric functions, high resolution graphics.
From there you can expand indefinitely. Acorn have produced an enormous range of compatible PCB's which can be added to your original computer. For instance:
© A module to give red, green and blue colour signals Teletext VDU card (for Prestel and Ceefax information) An in-board connector for a communications loop interface - any number of ATOMs may be linked to each other or to a master system with mass storage/hard copy facility Floppy disk controller card. For details of these and other additions write to the address below. ACORN
COMPUTER ${ }^{4 \mathrm{a}}$ Market till.
COMPUTER $\begin{aligned} & \text { cambRIDGE CB2 } \\ & \text { and }\end{aligned}$

Your ACORN ATOM may qualify as a business expense. To order complete the coupon below and post to Acorn Computer for delivery within 28 days.
Return as received within 14 days for full money refund if not completely satisfied. All components are guaranteed with full service/repair facility available.

PRACTICAL
ELECTRONICS

CONSTRUCTIONAL PROJECTS

PE QUASAR 26
Stereo AM/FM Tuner
CAPACITANCE METER by Martin Kent 34
Ranges from $1 p$ to 20μ
LIGHT METER by Martin Kent 46
A general purpose instrument with applications in photography, chemistry, medicine and pollutioncontrol
NOISE METER by Martin Kent 50
Indicates ambient noise levels in the range 60-110dB INTERFACING COMPUKIT Part 7 by D. E. Graham 62
Conclusion
GENERAL FEATURES
COMMUNICATION BY FIBRE OPTICS by Gary Gardner 38
A bright future for telephones and TV
SEMICONDUCTOR UPDATE by R. W. Coles 42
Featuring iAPX432 U410B
MICROPROMPT 54Cream of idea soupNEWS AND COMMENT
EDITORIAL 17
NEWS \& MARKET PLACE 18
Including Countdown and Points Arising
INDUSTRY NOTEBOOK by Nexus 23
Slimming for health
CB PROPOSALS 24
The low-down from the Home Office
SPECIAL OFFER - DIGITAL PANEL METER 45
For use with all our free case projects
EXTRA CASE COUPON 57
To save you money on another case PATENTS REVIEW 58
We look at the second of the controversial Carver ideas
READOUT 59
American advice
SPACEWATCH by Frank W. Hyde 61Our resident stargazer celebrates a bi-centenary and the success of the Space Shuttle
SPECIAL 12 PAGE SUPPLEMENT
CIRCUITS SUPPLEMENT22 designs of diverse appeal (between pages 42 \& 43)
OUR AUGUST ISSUE WILL BE ON SALE FRIDAY, 10 JULY 1981(for details of contents see page 43)

[^0]WATFORD ELEBTRONLSS
Tel. Watford (0923) 40588. Telex: 8956095

- -

$A C 125$
$C 12$
$C 12$
$C_{1} 14$
$A C 14$
$A C 14$
$A C 18$
$A C 1$
$A C Y$
$A C Y$
$A C Y 1$ F1
F1
F1
C1
C
C
C C108
BC108B
C108C
C109

 $\stackrel{\rightharpoonup}{\mathrm{m}} \mathrm{\infty}$
 C5

,

 \% YNN

To: Heath Electronics (UK) Limited. Dept. (PE7). Bristol Road. Gloucester. GL2 6EE.

Please send me a copy of the Heathkit catalogue. I enclose 28 p in stamps.
Name
Address

NB: If you are already on the Heathkit mailing list you will automatically receive a copy of the latest Heathkit catalogue without having to use this coupon.

Superboard $\mathbf{3} \mathbf{£ 1 5 9}$. Power supply kit
$\mathbf{£ 1 1 . 9 5}$. Modulator $\mathbf{£ 3 . 5 0}$. Guard band kit $£ 11.95$. Modulator $£ 3.50$. Guard band kit
f 10 (converts the display to 32×32, gives $\mathrm{f10}$ (converts the display to 32×32, gives
1200 and 3008 aud tape speeds, increases computing speed by 50% and converts to 50 Hz). Special offer: Superboard 3 power supply and modulator kit quard band kit ONLY C 172.4 K extra ram $£ 15.60$ case £27. Cassette recorder £18. Cegmon Editor tape $£ 25$. Word processor program $\mathbf{£ 1 0}$. Display expansion kit 30 lines $\times 54$ characters for Supertoard 2 (Not 3) $£ 14$ Cheapo memory expansion offar:- 8 uy a 610
expansion board with 8 k ram on board and space for another 16 K for $£ 159$ and get a free 5 V 3 A power kit and any extra ram you want for $£ 3 / \mathrm{K}$. 8uy a minifloppy disc drive case will power supply + DOS for $\mathbf{£ 2 7 5}$ and
we will do the extra ram for $\mathbf{£ 2} / \mathbf{K}$ (Max 16 K). Wemon Improved monitor rom $£ 19.95$ Centronics Printer Driverkit $£ 10$. New Series 2 Challenger C1P:- cheapo 4 K version $£ 21$ PRINTERS
 kit and word processor program for UK 101 or Superboard 2:- OKI Microline 80 (Illus-
irated $£ 299$. Seikosha GP80 £225. Epson $\mathrm{M} \times 80$ tractor $£ 359$. Epson M $\times 80$ tractor friction £399. Epson MX70 £259. Epson
TX80 £295.

MEMORYCHIPS
2114 450ns $£ 1.95 .4116200 \mathrm{~ns}$ £1.99. 2114 450ns fill
4027 f1.30. Allow current
SINC AR PRODUCTS:

Sinclair products only are all post SC110 Oscilloscope $£ 139$, Adaptor $£ 4$, Rechargeable batteries $\mathbf{£ 7 . 9 5}$, , probe ¢8.05, 10 probe $\mathbf{£ 8 . 8 6 , \text { Carry case } \mathbf { f 8 . 8 0 } .}$ connector kit $£ 11.27$. PDM $35 £ 32.95$, adaptor $£ 4$, case $£ 1.73$. DM235 £56.50, DM350 £78, DM450 £107, adaptor £4, case f8.80, rechargeable batts $£ 7.95$. MICTOVision TV £69. Adaptor $£ 6.95$
3 -way type $6 / 7 \frac{1}{2} / 9 \mathrm{~V} 300 \mathrm{ma} £ 3.50$. 100 ma radio types with press studs $9 \mathrm{~V} \mathbf{f 4 . 9 5}$. $9+9 \mathrm{~V}$ £6.25. Car convertor 12 V input, output 3/ BATTERY ELIMINATOR KITS
100 ma radio types with press-studs 9 V £1.79, $9+9 \vee £ 2.50$. Stabilized 8 -way types $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{ma} £ 3.12,1$ Amp £8.50. Stabilized power kits 2-18V $\mathbf{f 1 5 . 3 0 \text { . TL and computer suoplies } 5 \mathrm { V } , ~}$ stabilized $114 \AA 9,3 A £ 14,6 A £ 20$. 12 V car convertors $6 / 7 \frac{1}{2} / 9 \mathrm{~V} 1 \mathrm{~A} \mathbf{£ 1 . 6 2}$
TV GAMES*
AY-3-8600 , kit $£ 12.98$. AY-3-8550 + kir PRINTED CIRCUIT MATERIALS*
PC etching kit:- economy $£ \mathbf{3 . 4 2}$, standard 5.76. Etch resist pens:- economy 50p, dato 90p.
Drill bits $1 / 32^{\prime \prime}$ or 1 mm 35 p . Etching dish 92p. Laminate cutter $£ 1.30$.
I-PAK AUDIO MODULES
AL30A £4.53. PA12 £9.31. PS 12 £1.75. PA 100 £ 19.24 . SPM 80 £ 5.26 GMT80 £6.36. Stereo 30 £ $\mathbf{2 4 . 1 4 . \text { ALBO } £ \mathbf { 8 . 5 6 } \text { . }}$ COMPONENTS.
1N4148 £1.5p. 1 N4002 3.7p. NE555 B dil 26 p. 7418 dil $20 \mathrm{p} \cdot \mathrm{bc} 182$, bc 184 , bc 212 , WWE12 IOR to $10 \mathrm{M} 1.5 \mathrm{p}, 0.8 \mathrm{p}$ for $50+$ of one value. Polvester capacitors 160 V .015 , $068 \mathrm{mf} 2.9 \mathrm{p}, 047,1 \mathrm{mf} 4.4 \mathrm{p}, 01 \mathrm{mf} 3.3 \mathrm{p}$, $022, .033 \mathrm{mf} 3.7 \mathrm{p}, 15,22, .33 \mathrm{mf} 5.4 \mathrm{p}$, 47 mf 6.6 p . Polystyrene capacitors E 1263 V
10 to $1000 \mathrm{pf} 4 \mathrm{p}, \ln 2$ to 10 n 5 p . Ceramic capacitors 50 V E $E 622 \mathrm{pt}$ to 47 n 2.5 p . Electrolytic capacitors $50 \mathrm{~V} .5,1.2 \mathrm{mf} 6 \mathrm{p}$, $25 \mathrm{~V} 5,10 \mathrm{mf} 6 \mathrm{p}, 16 \mathrm{~V} 22,33 \mathrm{mf} 6 \mathrm{p}, 47 \mathrm{mf}$ 5p, 100 mf 7p, $330,470 \mathrm{mf}$ 9p. Zeners
400 mW E24 $2 \mathrm{v7}$ to 33 V 7 p . Preset pots subminiature 0.1 W horiz or vert 100 to 2 M 2 8 p . IC sockets 8 dil 8.7 p . 14 dil 10.1 p .
16 dil 12 p .

SWANLEY ELECTRONICS

Postage $£ 3.50$ on Superboard. $£ 4.50$ on printers and $45 p$ on other orders. Lists $27 p$ post free.
Please add VAT to all prices except those sections marked with a which already include it at Please add
the old 15% rate Overseas and credit orders weicome. ZX81 part exchange possible

You cant beat The System

The Experimentor System ${ }^{\text {TM }}$-a quicker transition from imagination through experimentation to realization.

When you have a circuit idea that you want to make happen, we have a system to make it happen quicker and easier than ever before: The Experimentor System.

You already know how big a help our Experimentor solderless breadboards can be. Now we've taken our good idea two steps further.
We've added Experimentor Scratchboard workpads, with our breadboard hole-and-connection pattern printed in light blue ink. To let you sketch up a layout you already have working so you can reproduce it later.

With Experimentor Matchboard you can go from breadboard to the finished product nonstop! We've matched our breadboard pattern again, this time on a printed circuit board, finished and ready to build on. All for about $£ 1.20$

There's even a letter-and-number index for each hole, so you can move from breadboard (where they're moulded) to Scratchboardтм (where they're printed) to Matchboardim (where they're silkscreened onto the component side) and always know where you are.
When you want to save time and energy, you can't beat The Experimentor System.

1. EXP-30OPC, which inciudes one tem	
A Matchboard pre-drilled PCB	2.

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Limited, Dept.5W

Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex. CB11 3AQ.
Telephone: Saffron Walden (0799) 21682
Telex: 817477

FHIOMASOMIC Electranics

DEPT P.E. 48 JUNCTION ROAD, ARCHWAY, LONDON N19 5RD

TELEPHONE 01-263 9493 01-263 9495
100 YDS FROM ARCHWAY STATION \& 9 BUS ROUTES

YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPONENTS AND COMPUTERS

$\mathbf{f 1 4 9}$ IN KIT FORM £199 READY BUILT \& TESTED
£225 COMPLETE IN CASE
4K Expansion (8x2114) NOW ONLY£14.00
No extras required
\star Free sampler tape

* Full Owerty keyboard
* 8 K basic incl garbage collection routine
* Ram expandable to 8 K on board (4 K inc)
Kansas City tape interface
* NEW MONITOR ALLOWS FULL EDITING

CURSOR CONTROL NOW INCLUDED IN KIT

UK101 MEMORY BOARD

* On board power supply (uses the UK101 transformer). \star Facility for 4 K eprom expansion. \star Fully buffered for expansion via 40 pin socket $\star 40$ pin header \& 8T28's included.
8K Kit (inc. 16 K skts) $\mathbf{£ 7 9 . 9 5} \mathbf{1 6 K}$ Kit $£ 106.95$
Printed circuit board $\mathbf{£ 2 9 . 9 5}$

PARALLEL PERIPHERALINTERFACE

UK 101 AND SUPERBOARD COMPATIBLE.
Interfaces to GP80, MX80 series, TX80, centronics P1, etc printers. Can operate relays, motors, various other peripherals. LED binary display. Plugs into ACIA socket. Fully documented.

ONLY
Built and tested.
£29.95

PRINTERS

 EPSON MX80 £359 9×9 dot matrix, 80 c.p.s. True descenders, various print densities up to 132 columns, tab controls both horizontal \& vertical, bold expanded condensed printing, bidirectional.
EPSON MX80 FT/1

£399
Dual single sheet friction and continuous tractor feed, 9 wire head, true descenders.
£449
EPSON MX80 FT/2
Additional feature to $\mathrm{FT} / 1$ is high resolution graphics.
EPSON MX70
£259
Tractor feed, 7 wire head, high resolution graphics.

SEIKOSHA GP80A

£199
Dot matrix $5 \times 7,80$ columns, 30 cps , graphics, double width characters.

UK101 COLOUR BOARD

A U.K. PRODUCT

Designed to simply plug into your compute and any standard colour television in
Send for further details.
£84.95
£98.95
\qquad

MONITORS

EG100 12" Black \& White
£65
Moni $9^{\prime \prime}$ (illust) B \& W
£82
Hitachi Professional Monitors 9" Black \& White
$£ 99.95$ $12^{\prime \prime}$ Black \& White
£149

PET
4008 8K RAM 4016 16K RAM 4032 32K RAM 4040 Dual Disk Drive

The new PET printer 402280 column tractor feed. 302380 column friction feed. C2N Cassette Unit. For the business man we stock the 8000 range inc. 8032 and 8050 with daisy wheel printers coming soon.

COMPLETE 32K SYSTEM PHONE FOR MOST COMPETITIVE PRICES

APPLE

 APPLE II PLUS THISTRIE COMPLETE SYSTEMS AVAILABLE Complete Systems16K Machines
32K Machines
48K Machines.
Disk Drive with/without Controller.
Printers - Monitors - Graphics Tablet All Available PHONE FOR MOST COMPETITIVE PRICES

PRESTEL BY TANTEL

The greatest thing since television and telephones. Communication at your fingertips for business and home. Up to date info. 180,000 pages of information on Travel, News, Investment, Holidays, Hotels, etc. etc.
Ask Prestel a question and you have your answer in seconds in full colour on you own TV. Only requires a telephone jack socket available from the PO.

Tantel is Post Office approved. Send for details.

FRapid

 JFectronics
Hillaroft House Station Road Eynsford Kent

Please add 50p P\&P on orders under $£ 20$. Please add VAT at 15% to total order value. Official orders welcome from schools, colleges etc

Conquer the chip. will revolutionise every human activity over the next ten years.

Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.
Learn the technology of the future today in your own home

MASTER ELECTRONICS
 LEARN THE PRACTICAL WAY BY SEEING AND DOING

- Building an oscilloscope. - Recognition of components.
- Understanding circuit diagrams. - Handling all types Solid State 'Chips'
- Carry out over 40 experiments on basic circuits and on digital electronics.
- Testing and servicing of Radio, T.V., Hi-Fi and all types of modern
computerised equipment

MASTER COMPUTERS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW
THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS.

- Complete Home Study library. - Special educational MiniComputer supplied ready for use. Self Test program exercise
- Services of skilled tutor available.

MASTER THE REST

- Radio Amateurs Licence. Logic/Digital techniques. - Examination courses (City \& Guilds etc.) in electronics. - Semi-conductor technology.
- Kits for Signal Generators - Digital Meters etc.

Practical Electronics July 1981

LD271 IR Emitting diode
SFH205 Photodiode
SL490 32 Command Encoder/
ML. 922 to channel receiver

3 analogue outputs
.36
.90
1.70
2.40

momentary binary outputs 1.40 ML928 16 -channel receiver, 4
latched binary outputs
1.40 ML929 16-channel rectiver 41.40 latched binary outputs $\quad 1.40$ Clip on Plastic Reflector for .40 ML925. A decoder designed for model/toy control, providing a 2-speed drive motor and three posion momentary action steering and a thir morn, eg. gun
facilities such as horn, furn indicators, headights, etc. Outputs also avsilable for other
$\mathbf{2 . 1 0}$
To make things EVEN EASIER, we have designed several now kite:-

With a hand heid plastic box. Requires a $9 V$ battery red source which comes complete
20

use with 5 to 15 V dc supplles and transistor or relay outputs. - Special Price "MK6 and MK7 together. Order as RC500K.

MK8 - Coded infra Red TRANSMITTER. Based on the SL490, the kit includes 2 IR LEDS measures only $8 \times 2 \times 1.3 \mathrm{cms}$. and requires a 9 V (PP3) battery. 5.90
MK9 - 4 Way KEYBOARD. For use with the MK8 kit, to make a 4 -channel remote control MK 10 - 16 -Way KEYBOARD. For use with the MKB kit to generate 16 different codes for decoding by the
ML928 or ML926 receiver (MK 12) Kit.
MK 11-10 On-OHf Channel IR RECEIVER with 3 analogue outputs $0-10 V$, for controlling such functions as lamp
brightness volume, tone, otc. Other functions include brightness, volume, tone, etc. Other functions include be used for sound muting. Based on ML922 decoder
MK12-16 Channel IR RECEIVER. For use with the MKB kit with 16 on/off outputs which with further interface circuitry. such as relays or triacs, will switch up to 16 larched or momentary, depending on whether the supply or ML928 is specified. Includes its own mains MK 13 supply. 11 -Way KEYBOARD. Frar use with MK8 11.95 analogue + and - 13 .
puts, and on $/$ standby

INTEGRATED CIRCUITS

New! Sinclair 2X81 Personal Computer.
 Kit: £49. ${ }^{2}$ compmele

Reach advanced computer comprehension in a few absorbing hours

1980 saw a genuine breakthrough - the Sinclair ZX80, world's first complete personal computer for under $£ 100$. At $£ 99.95$, the ZX80 offered a specification unchallenged at the price

Over 50,000 were sold, and the ZX80 won virtually universal praise from computer professionals.

Now the Sinclair lead is increased for just £69.95, the new Sinclair ZX81 offers even more advanced computer facilities at an even lower price. And the ZX 81 kit means an even bigger saving. At $£ 49.95$ it costs almost 40% less than the ZX 80 kit!

Lower price: higher capability

With the ZX81, it's just as simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX 80 .

It uses the same micro-processor, but incorporates a new, more powerful 8KBASICROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, or to select a program off a cassette through the keyboard.

Higher specification, lower price how's it done?
Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX 81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the $Z \times 80$!

Built: £69.95

complete

Kit or built -

it's up to you!
The picture shows dramatically how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components)-a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 V DC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder

New

Sinclair

teach-yourself

 BASIC manualEvery ZX81 comes with a comprehensive, specially written manual-a complete course
 ming, from first principles to complex programs. You need no priorknowledge - children from 12 upwards soon become familiar with computer operation.

```
I\NOUTOM=N THEN GO:TO:
7 XNOT|ROI=
S (x)=1(f)
ST:
    J=J+1
```



```
    T=U+1
    NDT: ⿴囗\)>日ITI THEN CO T:D
    P=日(0)
    A(J)=日(T)
    P(T)=P
    K=J-1
    KC1 THN目N BC T:⿴ 1:W
```

New，improved specification
－Z80A micro－processor－new faster version of the famous Z80 chip，widely

Unique＇one－touch＇ key word entry： the ZX81 eliminates a great deal of tiresome typing．Key words （RUN，LIST，PRINT， etc．）have their own single－key entry．
－Unique syntax check and report codes identify programming errors immediately．
Full range of mathematical and scientific functions accurate to eight decimal places．
－Graph－drawing and animated－ display facilities．
－Multi－dimensional string and numerical arrays．

Up to 26 FOR／NEXT loops．

－Randomise function－useful for games as well as serious applications
－Cassette LOAD and SAVE with named programs．
－1K－byte RAM expandable to 16K bytes with Sinclair RAM pack．
－Able to drive the new Sinclair printer （not available yet－but coming soon！）
－Advanced 4－chip design：micro－ processor，ROM，RAM，plus master chip －unique，custom－built chip replacing 18 ZX80 chips．

디미디린
 ZX8I

Sinclair Research Ltd， 6 Kings Parade，Cambridge，Cambs．， CB2 1SN．Tel： 027666104.
Reg．no： 214463000

If you own a Sinclair ZX80．．．

The new 8K BASIC ROM used in the Sinclair ZX81 is available to ZX80 owners as a drop－in replacement chip． （Complete with new keyboard template and operating manual．）

With the exception of animated graphics，all the advanced features of the ZX81 are now available on your ZX80－including the ability to drive the Sinclair ZX Printer．

Coming soon－ the IX Printer．

Designed exclusively for use with the ZX81（and ZX80 with 8K BASIC ROM）， the printer offers full alphanumerics across 32 columns，and highly sophisti－ cated graphics．Special features include COPY，which prints out exactly what is on the whole TV screen without the need for further instructions．The ZX Printer will be available in Summer 1981， at around $£ 50$－watch this space！

16K－BYTE RAM pack for massive add－on memory．

Designed as a complete module to fit your Sinclair ZX80 or ZX81，the RAM pack simply plugs into the existing expansion port at the rear of the com－ puter to multiply your data／program storage by 16 ！

Use it for long and complex pro－ grams or as a personal database．Yet．it costs as little as half the price of com－ petitive additional memory．

How to order your ZX81
BY PHONE－Access or Barclaycard holders can call 01－200 0200 for personal attention 24 hours a day，every day． BYFREEPOST－use the no－stamp－ needed coupon below．You can pay by cheque，postal order，Access or Barclaycard
EITHER WAY－please allow up to 28 days for delivery．And there＇s a 14 －day money－back option，of course．We want you to be satisfied beyond doubt－and we have no doubt that you will be．

DIGITAL THERMOMETER

This is one of our range of PROJECT KITS. The kit includes all the parts required to complete the project, including the case and battery. Calibration is simple and an accuracy of up to 1% can be obtained.
The instrument covers the range $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. Read-out is on an LCD display. Powered by a 9 V battery it is an ideal instrument for home or laboratory.
Full building instructions included.
PROJECTKIT 800104 E26.50

£3 off

SPECIAL SUMMER OFFER!!! THIS KIT IS NOW ONLY £23.50 IF ORDERED BEFORE SEPT 30TH 1981

■ PROJECT PACKS

These PROJECT PACKS include PCB, Components and data

AERIAL AMPLIFIER
Up to 200 B of gain on your TV or FM radio signal. Order TV or FM (VHF) version. (80022)
DISCO LIGHT DISPLAY
Three lamps controiled by a audio filter/triac circuit. Ideal for discos and parties.
DRILL SPEED CONTROLLER
Controls the revs on your mains electric drill

LOGIC ANALYSER

The first Analyser for the home constructor. Useful to track down problems in digital systems. Send for full specification. (81094)
HIGH COM NOISE REDUCTION SYSTEM
Performs better than other tape noise reduction systems. Developed
by Telefunken. Pack contains pre-built and tested modules. (81117)
IONISER
Generates negative lons for a real healthy atmosphere. Easy to build. (9823)
£10.50
SOUND EFFECTS GENERATOR
An experimental circuit that produces train, motorbike, and space noises. Lots of fun. (81112)
£8.30
PROGRAMMABLE SLIDE FADER
Uses computer techniques for you to program, on tape, a slide show for two projectors. Fades and changes are reproduced automatically. (81002)
£46.50

TALK FUNNY

Simple Ring Modulator circuit that distorts your voice, or musical instrument. (80052)
£10.00

MINIMIXER

Mixer on a single PCB for two microphones, tape and two turn tables. Ideal for Discos etc. (81068)
£ 37.50

NEW SUMMER 1981 CATALOGUE

NOW AVAILABLE
Send a 14 p stamp for your copy. Over 70 projects for you to build. Our comprehensive ranges of high quality components, integrated circuits and hardware are listed. Lots of ideas for your hobby in 44 pages of information. SEND FOR YOUR COPY NOW

HOW TO ORDER

Send a cheque or postal order to DORAM ELECTRONICS LTD. or write or phone your ACCESS account number. Please add 40p for postage and packing in the UK. All our prices include VAT. A telephone answering service is available outside our office hours.
DORAM ELECTRONICS LTD.
FITZROY HOUSE, MARKET PLACE, SWAFFHAM, PE37 7OH
(0760) 21627

3 CHANNEL SOUND/LIGHT CHASER

£ 32.70

£22.70
All the acvantiges

£28.00
for use with up to 8 channats
at 1,000 watts each. Facilities intlude footswitch
trigger and module cascading $116,24,32$ channet,
etc.), thase speed and re-cycle dela

f19.20

A 4 channel sequence generator
for banks of lamps up to 1000 W per channel. Two speed controls, cross eflec: to
betweet, seconds and fapid burst.

1 AND 3 CHANNEL DIMMERS LB31000LD
f16.20

Sh
LB:1000LD $£ 7.20$ Power dimmer units for theatre/stage applications up to 1.000 W per channel. with on braard suppressing. The unit is als
with sliders
LB31000LD (no pots) $\mathbf{£ 1 5 . 0 0}$ Sliders 75 p each.
RDPE LIGHTS/DRIVER LB41000LC-S
f24.20
 4 colour ROPES (6 metre) f36.50

TELEX: 817861

PLUGS AND SOCKETS
2 mm Plug RED
2 mm Plug BLACK
2 mm Socket RED
Amm Plug BLACK
mm Plug RED
mm Socket RED
2 Pin DIN Chassir Socket
5 PIn 240° DIN Chassis Socket
2. 5 mmm Chass 1 s Socket
3.5 mm Chassis Socket
35 mm Chassis Socket
Metal Std. Jack Chassis Socket (mono)
Metal Std. Jack Chass 18 Socket (mono)
Metal Std. Jack Chassis Socket (stereo)
Minale Phono sockit
Coax surface socket
Coax Flush Socket
Plastlc Std. Jack Socket (mono)
lastic Std, Jack Sockel (stereo) for headphones
AC Chassls Socket
AWay Phono Chassis Socket
Plastic Std. Jack Chassis socket stereo switched
AC switched non rev
2 Pin DiN IIne socket
${ }_{5}$ Pin 180° DIN line socke
. 5 mm Plastic line socket
Sid. jack plastic line socket (mono)
Std. ack metal line socket (mono)
Std. jack plastic line socket (stereo)
Std. jack metal IIne socket (stereo)
Phono lin line metal socket
Coax line socket
AC linesocket (2 pin USA Type)
Phono in line plastic socket
Phono back-back socket
${ }_{5}$ Pin DiN plug
5 Pin 240° DIN Nun
2. 5 mm Plug (Metal)
Plug (Plastic)
3.5 mm Plug (Metal)
Std. Plastic Jack Plug (Mono)
Sid. Metal Jack Plug (Mono)
Std. Metal Jack Plug (Stereo)
Plastic Phono Plug
Car Aeriai Plug
Coax TV Plug
Rioht Angle Jack Plug (Mono)
Std. Plastic Jack Plug (Stereo)
Metal Phono Plug
2.1 mm DC Plug
2.5 mm DN Plug
AC Plug (2 pin USA Tyde)
Cassette AC Input Plug
FM Aerial Plug
${ }^{P}$ L259 Plug
O239 Socket 4 hole fixing
PL258 Double Ended Female Coupler
C555 Reducer for PL259 (Small)
NC556 Reducer for PL259 (Large)
M359 Right Angle Coupler PL259 SO239
C563 Inline Coupler PL259 \times
BNC 1550 ohm standard plug
BNC 1502 Chassis mounting socket
BNC1503 Chassis mounting socket single hole fixing
BNC1521 BNC female to PL259 male
Junction Box on in two out
AERIALS
${ }_{106}$ Adjustable Aerlal Gutter Mount
107 FM indoor Ribbon Aerlal
4 Section Car Aerfal (Stainloss
8 Sectlon 1200 mm Telescopic Aerial
8 Section 750 mm Telescopic Aerial
5 Section 570 mm Telescopic Aerial
aUdio leads
1145 pin- 3.5 mm 3 \& 5 connecte
116 Car Aerial Ext Lead
Mains Cassette Lead
2×2 pin Plug in In Line Stereo Jack Socket
Universal Car Adaptor Plug
20ft. Called Guitar Lead
5 pin to 5 pin DIN
5 pin to DIN to open ends
5 pin to DIN to 4 Phono Plugs
5 pin Plug 105 pin socket
5 pin to 5 pin Plug (Mirror image)
2 pin Plug to 2 pln Line Socket 5 mtrs
2 pin Plug to 2 pin Line Socket 10 mtrs
5 pin Plug to Phono Plug
DON'T FORGET
YOUR NEW BI-PAK
CATALOGUE!
OUT NOW:
ONLY $55 P$
PLUS 25PP\&P.
$\stackrel{\text { 20 }}{8}$

 C28 300 A pprox Resistors mixed values (count by weight) C30 60 Precision Resistors $1-5 \%$ tol.100 Approx $1 / 8$ watt min Resistors mixed values 100 Approx $1 / 8$ watt mi
6 Pieces Ferrite Rods
60 Metres Single strand wire assorted colours
15 Reed switches olass type
5 Micro switches assorted tyoes including min 15 Reed switches glass type 5 Micro switches assorted types including
6 Assorted Audlo jack sockets and plugs 100 Dise ceramle
20 Assorted pots
20 Assorted pots
40 C280 type capacitors metal foll 60 Electrolytics assorted
60 Electrolytics assorted
50 Assorted polyestor/polystyrene 60 Low voltage Electrolytics mixed val 10 Dual gang pots log and in assorted 1 Pack assorted Handware nuts/bolts etc.
10 Assorted switches slide/rocker/mains 3 Relays 24 v coll
20 Assorted knobs push, screw and slider types 20 Assorted Tag strips and panels
4 Wave change swltches rotary
1 Pack of assorted PVC sleeving
1 Pack of as sorted PVC sleeving and markers
35 presets assorted type and value
40 Metres stranded wire assorted colours
C55 10 Assorted Din/sockets/Coax/speakers/phono
C56 10 Assorted plugs Din/coax/speakers/elc.
$\begin{array}{ll}\text { C56 } & 10 \text { Assorted plugs DIn/coax/speakers/etc. } \\ \text { C57 } & 10 \text { Metres assorted cable. Mains/s peaker/coax }\end{array}$
C57 10 Meres assorted cable. Mains/speaker/coax/microphone

C5s 100 sq in copper clad board single side paper | C5s | 100 sq in copper clad board single sid |
| :--- | :--- |
| C59 | 75 |

BABANI BOOKS

```
```

No.

```
```

No.
Handbook of Integrated Circuits (IC's) Equivalents \& Substitutes
Handbook of Integrated Circuits (IC's) Equivalents \& Substitutes
Practical Electronics Sclence Prolectsures
Practical Electronics Sclence Prolectsures
Practlcal Stereo and Quadrophony Handbook
Practlcal Stereo and Quadrophony Handbook
Practical Stereo and Quadrophony Handioook
Practical Stereo and Quadrophony Handioook
Electronic Circuits for Model Railways
Electronic Circuits for Model Railways
Audio Enthusiasts Handbook
Audio Enthusiasts Handbook
Solid State Novelty Projects
Solid State Novelty Projects
Build Your Own Solid State H
Build Your Own Solid State H
l
l
Solid State Short Wave Receivers for Beginners
Solid State Short Wave Receivers for Beginners
50 CMOS IC Projects
50 CMOS IC Projects
A Practical introduction to DIgital IC's
A Practical introduction to DIgital IC's
A Practical introduction to Dlgital IC's
A Practical introduction to Dlgital IC's
Beginners Guide to Building ElectronicPProjects
Beginners Guide to Building ElectronicPProjects
Essential Theory for the Electronics Hobbyist
Essential Theory for the Electronics Hobbyist
Engineers and Machinists Reference Tabies
Engineers and Machinists Reference Tabies
Second Book of Transistor Equlvalents and Substitutes
Second Book of Transistor Equlvalents and Substitutes
First Book of Practical Electronic Projects
First Book of Practical Electronic Projects
52 Projects Using IC41
52 Projects Using IC41
Glant Chart of Radio Electronic Semiconductor and
Glant Chart of Radio Electronic Semiconductor and
Major Solid State Audio Hi-Fi Construction Projects
Major Solid State Audio Hi-Fi Construction Projects
Maw to Build Your Own Metal and Treasure Locators
Maw to Build Your Own Metal and Treasure Locators
Electronic Calculator Users Mandbook
Electronic Calculator Users Mandbook
Practical Repair and Renovation of Colour TVs
Practical Repair and Renovation of Colour TVs
Power Amplifler Constructlo
Power Amplifler Constructlo
50 Clrcuits Using Germanlum, Silicon and Zener Diodes
50 Clrcuits Using Germanlum, Silicon and Zener Diodes
50 Prolects Using Relays. SCR,s and TRIACs
50 Prolects Using Relays. SCR,s and TRIACs
50 (FET) Fames with Your Electronic Calculator
50 (FET) Fames with Your Electronic Calculator
\$0 (FET) Field Effect Translstor Projects
\$0 (FET) Field Effect Translstor Projects
Digita, IC Equivalents and Pin Connectlons
Digita, IC Equivalents and Pin Connectlons
50 Simple L.E.D. Circuits
50 Simple L.E.D. Circuits
50 Simple L.E.D. Circuits
50 Simple L.E.D. Circuits
IC555 Prajects
IC555 Prajects
Projects in Opto-Electronics
Projects in Opto-Electronics
Radio Clrcuits Using IC's
Radio Clrcuits Using IC's
Mobile Discotheque Handbook
Mobile Discotheque Handbook
Popular Electronic Prolects
Popular Electronic Prolects
IC LM3900 Projects
IC LM3900 Projects
Electronic Music and Creative Tape Recording
Electronic Music and Creative Tape Recording
Long Distance Television Reception (TV-DX) for the Enthuslast
Long Distance Television Reception (TV-DX) for the Enthuslast
Practical Electronic Calculations and Formulae
Practical Electronic Calculations and Formulae
Yractical Electronic Calculations and Formula
Yractical Electronic Calculations and Formula
Radlo Stations Guide
Radlo Stations Guide
Electronic Security Devices
Electronic Security Devices
How to Build Your Own Solid State Oscilloscope
How to Build Your Own Solid State Oscilloscope
50 Circuits Using 7400 Series IC's
50 Circuits Using 7400 Series IC's
Practical Construction of Pre-amps. Tone Controls, Filters \& Attn,
Practical Construction of Pre-amps. Tone Controls, Filters \& Attn,
Beginners Gulde to Digital Techniques
Beginners Gulde to Digital Techniques
Elements of Electronics - Book 1
Elements of Electronics - Book 1
Elements of Electronics-Book 2
Elements of Electronics-Book 2
Single IC Projects
Single IC Projects
Beginners Guide to Microprocessors and ComputIng
Beginners Guide to Microprocessors and ComputIng
Counter, Driver and Numeral Display Projects
Counter, Driver and Numeral Display Projects
Clectronic Games
Clectronic Games
Electronic Games
Electronic Games
Elecironic Household Projects
Elecironic Household Projects
A Microprocessor Primer
A Microprocessor Primer
Remote Control Projects
Remote Control Projects
Electronic Music Projects
Electronic Music Projects
Electronic Tes1 Equipme
Electronic Tes1 Equipme
Power Supply Projects
Power Supply Projects
Practical Computer Experiments
Practical Computer Experiments
Radio Control for Beginners
Radio Control for Beginners
BP79

```
```

BP79

```
```

Access and Barclaycards accepted - just telephone our Orderline - Ware (STD 0920) 3182. Add 15\% V.A.T., and 50p postage per order. Terms: C.W.O., cheques, Postal Orders payable to Bi-Pak.

BUDGET STEREO
HEADPHONES BLACK WITH PADDED E
IMPEDANCE 8 ohms IMPEDANCE 8 ohms FREQUENCY
$30-18,000 ~ H Z$
WEIGHT
WEIGHT 300gms
C4.20 O/No 885
GOOD QUALITY STEREO
HEADPHONES
DOUBLE PADOED HEAD BAND
CIRCULAR VENTED PADDED
DOUBLE PADDED HEAD BAND
CIRCULAR VENTED PADDED
PIECES
BLACK AND ALUMINIUM FINISH
BLACK AND ALUMINIU
IMPEDANCE B ohms
IMPEDANCE 8 ohms
FREQUENCY RESPONSE
$20-19,000 \mathrm{HZ}$
20-19,000 HZ
WEIGHT 350
WEIGHT 350gms
EE. 25 O/No 884
SUPERIOR QUALITY
STEREO HEADPHONES
STEREO HEADPHONES
WIDE BLACKPADDED HEAD
BAND WITH PADDED MATT
BAND WITH PADDED M
IMPEDANCE 8 Ohms
FREQUENCY RESPONSE
$15-25,000 \mathrm{HZ}$
WEIGHT 290 gms
E15 55 O/No 883
늘

* MPU Section accepts $24,28,40 \& 64$ pin DIL microprocessors
* Auxiliary Areas accept any $.3^{\prime \prime}$ or $6^{\prime \prime}$ RAM, ROM or peripheral chip
* Power Bus Strips on all sides
* 5 incoming turret Power Terminals
* Component Support Bracket included
* Over 1400 contact points
* Alpha-Numeric column and row indexing
* Eurocard size ($160 \mathrm{~mm} \times 100 \mathrm{~mm}$)
* Slots onto all BIMBOARDS
* Non-Slip rubber backing
* Ideal for schools and colleges
* Long life, $<10 \mathrm{~m}$. ohms, nickel silver contacts The PROFESSIONALS breadboard that BEGINNERS can start on

BOSS INOUSTRIAL MOULDINGS LTD

2 Herne Hill Rd, London SE24 OAU, England Telephone 01-7372383 Telex 919693 Cables \& Telegrams: LITZEN LONDON SE24
Please send me MPUroBreadBoard(s)@ £18.
This price includes VAT \& PP, is applicable from Mar. 1, '81, but please add 15% for Overseas Orders, make cheques/P.O. payable to BOSS Industrial Mouldings Ltd and allow 10 days for order processing and cheque clearance etc.

I enclose a cheque/P.O. to the value of $£$.

Name

Company
Address

Hewlett - Packard Displays (5082-7650) HIGH EFFICIENCY \& VERY BRIGHT

Hall inch red common anode definitely the brightest
will replace (01707)
Excellent character appearance, evenly lighted segments. wide viewing angle body colour improves Off segment contrast. Categorized for luminous
intensity, use of like categoies vields a uniform intensity, use of like categoties yields a uniform display. Consumption as low as 3 ma pdr segmen. designed
dual-in-line package confliguration.

ONLY $£ 1.00$ each \quad Set of 6 for $\mathbf{£ 5}$

Vero Computer Frames	National 4116 Dynamic (16K RAM)
19×8 with 64 funners \& guides.	20 N/Seconds 11.95
List price $£ 43$ Our price $£ 17.95$.	Less 10% per 4.15% per 8.

$19 \times 8^{\prime \prime}$ with 64 funners $\&$ guides.
$200 \mathrm{~N} /$ Seconds $£ 1.95$
Less 10% per 4.15% per
All items inclusive of VAT \& Post Paid. Quantity Discounts 15% per 10.20% per 50

ECOOP ONLY E29.95 + V.A.T.

 BRITISH MADE 52 KEY 7 BIT ASCII CDOED - PDSITIVE STRDBE +5 V - 12 V . - FULLASCIICHARACTERS

- parallel dutput WITH SIRDBE - power light on CONTROL
CHIP BY GENERAL INSIRUMENT (G I.) ITL OUTPUT SUPERBLY MADE
SIZE $13 \times 55 \times$ 1.5 ins

Professional ASCIIKeyboards

The 'CHERRY' Computer Keyboard BLACK KEYS WITH WHITE LEDGENS ESCAPE SHIFT RETURN \& RESET KEYS CONTROL REPEAT \& BELL Complete with DATA

Edgware Road London, W2, England 01-4026822

PL259 Plug 33p; Socket 33p; PL259/SO239 Angled Connector 70p; 1 watt dummy lead 95p; 2m Rubber Neck Aerial with PL259 Plug $£ \mathbf{£ 3 0}$.

POST ON ABOVE ITEMS $14 p$.
All above prices include V.A.T. Send 50 p for new 1980 fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.

158 Bradshawgate - Bolton - Lancs. BL2 1BA

Will|hilis
 Prime components-Lowprices.

PRACTICAL ELECTRONICS

CAR RADIO KIT (Constuctors pack 7)

Incorporates supprassion circuits" Now with tspe input sockat
All the electronic components to build the radio, you supply only the wire and solder as featured in the Practical Electronics March issue. Features: Pre-set tuning with five push button options. black illuminated tuning scale, with matching rotary control knobs, one. combining on/ott volume and tone-control, the other for manual tuning. each set on wood simulated fascia.
The P.E. Traveller has a 6 watts output. neg ground and incorporates an integrated circuit output stage. a Mullard IF module LP1181 ceramic filter type. pre-aligned and assembled and a Bird re-aingned push under dashboards.
Complete with instructions.

CONSTRUCTORS PACK 7A
 speaker (approx. $6^{\prime \prime} \times 4^{\prime \prime}$) is
available as a kit complete $\mathbb{\mathbf { 1 }} \mathbf{9 5} \begin{aligned} & \text { per pack } \\ & \text { p\&p } £ 1.15\end{aligned}$

30 + 30 WATT STEREO AMPLIFIER BUILT AND TESTED

Viscount IV unit in teak simulate cabinet silver finished rotary controls and pushbuttons with matching fascia, red mains indicator and stereo jack socket. Functions switch for mic magnetic and crystal pickups. tape and auxiliary. Rear panel features fuse holder. OIN speaker and input socket $30+30$ watts. RMS $60+60$ watts peak for use with 4 to 8 ohm speakers. Size 14 \%in " $^{\prime \prime} \times 10^{\prime \prime}$ approx.
ready to play $£ \mathbf{3 2 . 9 0}$ plus
f3.80 p\&p

HI FI STEREO AMPLIFIER MODULES

- Mullard LP 1183 buith preamolifier suitabie for ceramic and auxiliary inputs. f 1.95 plus $70 p$ p $\&_{p}$.
- Mullard LP 1184 buitt preamplifier suitable for magnetic/ceramic and auxiliary inputs. f 4.95 plus 80 p p\& p
- Matching I.C. $10+10$ Stereo Power amplifier kit. $\mathbf{£ 3 . 9 5}$ plus $f 1.15$ p\&p
- Matching power supply kit with transformer. $\mathbf{£ 3 . 0 0}$ plus $\mathrm{f1.96} \mathrm{p}$ \&p
- Matching set of 4 stider controls complate with knobs tor bass.

Ireble end yolumes fi. 70 plus 80p plap

- Complete with application notes.

10+10 WATT STEREO AMPLIFIER KIT

- Featuring latest SGS/ATES TOA 200610 watt output I.C.'s With in-built thermal and short circuit protection. - Mullara Siereo Preamplitier module. - Altractive black vinyl finish cabinet.

To complete you just supply connecting wite and solder. Features include dia input sockets for ceramic cartridge, microphone, tape or tuner. Outputs-lape, speakers and headphones. By the press of a button it transforms into a 20 watt mono disc amplifier with twin deck mixing. The kit incorporates a Mullard LP1 183 pre-amp module, plus power amplifier assembly kit and mains power supply. Also featured 4 slider level controls, rotary bass and treble controls and 6 push button switthes. Silver finish fascia panel with matching knobs and contrasting ready made black vinyl finish cabinet and ready made metal work. For further information instructions are available price 50 p. Free with kit
SPECIFICATIONS
Suitable for 4 to 8 ohms speakers
Frequency responce 40 Hz - 20KHz
Imput Sensitivity P.U. 150 mV Aux. 200 mV Mic. 1.5 mV $\begin{array}{ll}\text { mput Serisitivity } & \text { Bass } \pm 12 \mathrm{db} \text { @ } 60 \mathrm{~Hz} \\ \text { Tone controls } & \end{array}$ Treble $\pm 12 \mathrm{db} @ 10 \mathrm{KHz}$ $\begin{array}{ll}\text { Oistortion } & 1 \% \text { typically @ wo } \\ \text { Mains supply } & 220-250 \text { voits } 50 \mathrm{~Hz}\end{array}$

BSR chassis record deck with manual set down and return. comolete with stereo ceramic cartidge : $£ 8.50$ plus $£ 3.15 \mathrm{p} \&$
when purchased with amplifie
Available separately $\mathbf{f} \mathbf{1 0 . 5 0}$ plus $\boldsymbol{£ 3} .76$ p\&p.

8" SPEAKER KIT 2 8" aporox. wwin cone domestic use $^{\text {s }}$ speakers. $\mathbf{6 4 . 7 5}$ per stereo pair plus $\mathbf{~} \mathbf{1 . 7 0}$ p\&p when purchased with amplifier. Available separately $£ 6.75$ plus $f 1.70 \mathrm{p} \& \mathrm{p}$.

STEREO MAGNETIC PRE-AMP

CONVERSION KIT. All components including P. .C. . .to convert your ceramic input on the $10+10 \mathrm{amp}$ to magnetic. $£ 2.00$ when purchased with kit featured above. $\mathbf{£ 4 . 0 0}$ separately inc. p\&p.

-arvic

323 EDGWARE ROAD, LONDON W2 2IBHIGH STREET, ACTON W3 6NG ACTON: Mail Order only, No callers ALL PRICES INCLUDE VAT AT 15% All items subject to availability. Price corract at and subject to change without notice. For further information send for instructions $20 p$ plus stamped addressed envelope.
MOTE: Goods despatched to mainland and N. Iroiand only
Persons under 16 yaars not served without parent's authorisation R TVC LTD. reserve the right to alter, update or improve their products without notice.

HIGH POWER MODULE KITS

125 WATT MODEL £ $£ 10.50$

 200 WATT MODEL $\boldsymbol{E 1 4 . 9 5}$ plus f 1.15 p \& p SPECIFICATIONS
Max. Output power
 125 watt RMS

Operating voltage (OC)
Loads
Frequency response measured at 100 watts
50.80 Max

Sensitivity for 100 watts
$25 \mathrm{~Hz}-20 \mathrm{KHz}$
ypical T.H.D.@ 50 watts 4 ohms load
Oimensions $\quad 205 \times 90$ and $190 \times 36 \mathrm{~mm}$ The power amp kit is a module for high power applicationsdisco units, guitar amplifiers, public address systems and even high power domestic systems. The unit is protected against short cireuiting of the load and is safe in an open circuit condition. A large safety margin exists by use of generously rated components, result, a high powered rugged unit. The PC Board is backprinted. etched and ready to drill for ease of construction, and the aluminium chasis is preformed and ready to use. Supplied with all pants, circuit diagrams and instructions.

ACCESSORIES
 Suitable LS coupling electrolytic for

 125 W modelSuitable LS coupling electrolytic for 200W model
$\varepsilon 1.25$
Suitable Mains Power Supply Unit for 125 W model

Suitable Twin Transformer Power Supply for 200W model

MULLARD LP1183 STEREO PREAMP
Original isted price over 5.00 . Suitabie
purchase 2 power module kits

50 WATT MONO MIXER AMPLIFIER

 Six individually mixed inputs for two pick ups (Cer. or Mag.) two movingcoil microphones and two auxiliary for tape, tuner, organs etc. Eight slider controls - six for level and two for master bass and tre ble, four extra teble controis for mic and aux. inpus.
Power output 50 watt R.M.S. (continuous) for use with 4108 ohms speakers. Finish: Attractively styled black vinyl case. with matching tascia and knobs. C
and ready for use.

\&39.95
 plus $£ 370$ p\&p

100 WATT
 MONO DISCO AMPLIFIER

rushed aluminium fascia and rotary controls Size approx $14^{\prime \prime} \times 4^{\prime \prime} \times 10 \%$. Five vertical slide controls. master volume, tape levert. mic level, deck level. PLUS INTER DECK FADER for pertect graduated change from record deck No. 1 to No. 2. of vice versa. Pre fade level controls (PRL) lats YOU hear next disc before ading it in. VU meter monitors output level. Output 100 watts RMS 200 watts peak.

[^1]
THE END OF THE TUNNEL?

THERE have been one or two comments recently that the light at the end of the depression is just beginning to show and, although many component retailers are still finding the going a bit tough, there have been a couple of announcements recently that give rise to hope.

The main announcement was the draft specification on CB from the Home Office. Since its publication there has been plenty of discussion on how it meets the aspirations of the present illegal users, which of course it never could unless it allowed the American standard equipment. We believe the proposals are basically generous and the " U " turn made by HM Government in allowing the use of 27 MHz is probably the best way out of the mess created by the delayed legalisation of a CB frequency. The proposals should give rise to a worthwhile system, probably giving better performance than the present a.m. CB. The Home Office announcement is covered on page 24 in this issue, PE will be publishing more on CB in the September issue and we will
make our announcement next month.
Let us hope that British manufacturers will capitalize on the need for new sets, accessories and for modification of the old transceivers - though it may be expensive to get many of them to meet the Home Office requirements. We look forward to mass use of the system by a wide cross section of the community and we hope that most of the jargon now in use will not continue on the new band. One young lady (Editor's wife!) proclaimed that there was no way she was going to talk about "rubber apples and yellow ducks", when it was suggested that CB could be a great assistance in the home, car and office. This view is typical of many who are frightened off CB by all the "in talk" so let's see straightforward use by everyone, old and young.

COMPUTER PRESERVATION

The second announcement that shows problems can be overcome in these difficult times came from Lucas. They have now bought the old Nascom company which has been living "hand to mouth" under the receiver for some
time. The Nascom products were basically good and their computers have always been in great demand by the hobbyist. Lucas Logic propose to improve some of the present products, introduce a "Nascom case" and are talking about the launch of a new system before too long. Although the company is now owned by Lucas the Nascom name will be retained.

This must be a triumph for all concerned with Nascom during its recent problems. It is remarkable that by careful handling and great efforts by all concerned production has continued and every new unit has been eagerly snapped up. When many companies are struggling for survival this preservation is truly noteworthy.

On another happy note Inmos have received the first Tobie award for "Research Achievement" on its 16 K static RAM. The product has taken some time to appear but it looks good and should become the 16 K industry standard. The Electronics Industry (or Tobie) Awards were organised in conjunction with the All Electronics/ECIF Show.

Mike Kenward

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR
Jasper Scott PRODUCTION EDITOR

ADVERTISEMENT MANAGER

SECRETARY
AD. SALES EXEC.
CLASSIFIED MANAGER

Jack Pountney ART EDITOR

Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY
D. W. B. Tilleard

Christine Pocknell
Alfred Tonge 01-2616819
Colin Brown 01-261 5762

Editorial Offices:

Practical Electronics,
Westover House,
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot be answered over the telephone (see below).

Advertising Offices:
Practical Electronics Advertisements,
King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-261 6601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers

Copies of some of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd. Lavington Hóuse, 25 Lavington Street, London SE1 OPF, at $95 p$ each including Inland/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.30$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 11.80$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

Edited by David Shortland \& Jasper Scott

TXs get Teletext

Thorn Consumer Electronics who recently won a Queen's Award for Technological Achievement with their Ferguson TX colour television range have now released three new Teletext models.

Both the TX 9 chassis (14 to 22in) and the TX 10 chassis (22 to 26 in) were designed from the outset to incorporate remote control and Teletext functions without the need for component or circuit changes to the chassis.

Thorn now believe that many of the colour sets bought during the boom period in the early and mid seventies will be replaced with remote control sets incorporating Teletext.

Nigel Schofield, Thorn's market analyst. said recently, "Almost half of all the 22 in sets now incorporate a remote control facility, while the figure for 26 in sets is almost 70 per cent. The consumer desirability of remote control is evident, and full remote models, including those with Teletext, outnumber simple remotes by two to one. Towards the luxury end of the colour market, Teletext already accounts for over 20 per cent of 26 in deliveries to the trade, and the current market projection is for 175,000 consumer sets this year, which entails a tripling of last year's volume, which had itself shown a 200 per cent increase on the previous year."

Another reason Thorn are confident Teletext will become a major force in TV sales is that the cost of providing a Teletext facility to a remote control TX set is about $£ 90$ and this figure is expected to drop even further as the demand for sets increases.

Three screen sizes are available in the Teletext range: a 20 in model (TX 9) and two TX 10 models (22 in and 26 in). The sets are designed around the Mullard decoder module with full infra-red remote control for all picture adjustments, channel selection and Teletext functions.

Ferguson have also released three add-on accessories for their range of TX models, all of which can be quickly fitted by a qualified dealer. The isolated chassis of the TX 10 makes it simple to feed signals in and out without the need for isolating components.

The TA120 enables the audio signal from the TV to be connected to a hi-fi system via a DIN socket without the loss of sound quality.

As an extension of the TAl 20 Ferguson have introduced a loud speaker which enhances the television sound and is controlled by the TV's remote control. The speaker has been designed to be placed alongside or under the television and to prevent the loss of colour purity which occurs when conventional hi-fi speakers are similarly placed the drive units incorporate low leakage field magnets.

For those who wish to use their TVs for video recording or for encoded video from a video camera then the TA124 incorporates high performance buffer amplifiers for twoway video and sound signals. The TA124 enables recorded material to be replayed via a video input socket instead of the usual aerial socket.

A battery adaptor (TA92) is also available for the TX 9 range of portable TVs which will give up to five hours' viewing with an automatic cut-out to prevent excess battery drain.

CIASSY BREADBDARD

The Verobloc laboratory module is Vero's latest solderless breadboard product and has been developed to simplify breadboard work. It features a large breadboard area and has a fully regulated three rail power supply (5 V d.c. at $750 \mathrm{~mA}, \pm 9 \mathrm{~V}, \pm 12 \mathrm{~V}$. $\pm 15 \mathrm{~V}$ at 250 mA which is ideal for both TTL and CMOS.

The system which accepts most sizes of d.i.l. packages, diodes, resistors, capacitors, transistors and wire links comes ready assembled, complete with four Veroblocs and two pre-pierced front panels for mounting fuseholders, switches, trimpots etc. The d.c. voltage supplies may be picked

Dansette to be resurrected

J. J. Silber. who have recently been in the news having acquired the brand name of Murphy, have announced that they have also purchased the Dansette name.

Many readers will no doubt remember Dansette record players and portable radios, though the name has disappeared in recent years.

Silber, who believe that Dansette was known as a name synonomous with good quality budget equipment. feel that there is room for a "a high volume, low priced, quality product,' and that prospective purchasers will be encouraged by the Dansette name.

There are already plans for the introduction of a new range of stereo radio/record players. They will be introduced to the market during the middle of this year and if all goes according to plan they will have a substantial price advantage over other products in this field, and, claim Silber, will incorporate refinements normally associated with products in higher priced markets.

No figures for the purchase have been disclosed, but it has been described as 'a very reasonable sum'.
up via 2 mm jack sockets and toggle switches are provided for voltage selection.

The Verobloc which features tin copper nickle alloy contacts has bus strips for power distribution on both X and Y axes. All the contact positions are identified by moulded atpha numeric grid references.

The price of the Verobloc module (184-22880J) is $£ 84.00$ excluding VAT and $p \& p$. For further details contact Vero Electronics Limited, Industrial Estate, Chandler's Ford, Hants.

Items mentioned are available through normal retail outlets uniess otherwise specified. Prices correct at time of going to press.

mounc coll BRARHIHROLEIC

The introduction of the MC88E moving coil cartridge is the culmination of an intensive product and manufacturing development by Coral. Its high output voltage of 2.5 mV does away with the need for a head amplifier or a step up device and this has been achieved by using a miniaturised armature, a unique coil winding technique and a compact magnet which generates a high magnetic flux density.

A low impedance has been obtained which is less than $1 / 20$ th of a regular moving coil cartridge weight. This en-

sures flat, stabilised electrical characteristics over the total audio range.

Coral's one point suspension system in which the centre of each armature is fully supported, effectively checks harmonic and intermodulation distortions and accomplishes excellent localisation for natural stereo.

The cartridge's very light weight of only 5 grms will enable optimum balancing with most lightweight tone arms.

The MC88E is available for $£ 29.95$ from Videotone Ltd., 98 Crofton Park Road, London SE4 (01-6908511).

Quad have finally released a success or to their electrostatic loudspeaker which has been a standard in the hi-fi field for twenty-five years.
The Quad ELS63 which measures $925 \times 66 \times 27 \mathrm{~mm}$ has an input impedance of 8Ω (largely resistive) and is suitable for use with amplifiers that have an output rating of 40 V peak (100 W into 8Ω). Amplifiers which are not short circuit protected should not be used with the ELS63.

The speaker is fitted with two protection circuits: one limits the maximum input voltage applied and the other detects fault conditions and shorts the applied signal. Although it is impossible to damage the speaker elements, the input voltage limiter can be damaged by persistent overdriving.

A small word of warning from Quad, however, to all those hi-fi buffs who can afford the $\mathbf{f 1 0 0 0}$ price tag for a pair of ELS63's. Quad say that although the ELS63 will give a more realistic picture of an acoustic event than has ever before been possible, the real excellence of the speakers will only be futly realised if the very best source material is used and that ELS63's are very good at revealing any recording faults.

Quad Electroacoustics Ltd., Huntingdon, Cambs. (0480 52561).

CABINET KITS

For the loudspeaker constructor who wants a professional finish, Wilmslow Audio now stock a range of flat-pack cabinet kits for many popular designs including the new Wharfedale E50, E70 and E90 kits. All panels are accurately cut to size, and baffle boards have the necessary apertures cut and rebated if required.

When assembled, the cabinets may be painted, stained, or finished with iron-on veneer.

Wilmslow Audio Ltd., 35-39 Church Street, Wilmslow, Cheshire, SK9 1AS (0625 529599).

mall onder

The latest 24 page catalogue from Rapid Electronics shows a large increase in their range of components and hardware. Rapid have also increased their stockholding so that they are able to offer a return of post service with an immediate refund made against any item out of stock

The catalogue is available upon receipt of two 14p stamps. Rapid Electronics Ltd., Hillcroft House, Station Road, Eynsford, Kent (0322 863494).

A leaflet is available from Cotswold Elec tronics Ltd., describing their "budget range" of toroidal transformers in 30, 60, 100, 160, 230, 330 and 530VA sizes and at prices ranging from $£ 4.55$ to $£ 15.80$.

Cotswold will accept "freepost" cheques, P.O.'s, money orders, Access and Barclaycard, and will accept credit card orders on a 24 hour answering service. All the customer needs to do is quote a type number, mains voltage, secondary voltage, VA rating and quantity required.

All types are normally supplied with 240 , 110 or 220 V primary windings but special windings can be supplied on request. Dual secondary windings from $6+6 \mathrm{~V}$ to $50+$ 50 V are available and the choice is determined by the VA rating. The secondary windings can be operated in series, parallel or independently

Cotswold Electronics Ltd., Unit T1, Kingsville Road, Kingsditch Trading Estate, Cheltenham (O242 41313).

UERSATILE IIULTIIIETER

The latest multimeter from Thurlby is the 1503 DMM which offers the bonus of a built-in frequency meter. Frequencies up to 3999.9 kHz can be measured directly with a resolution of 100 Hz . Accuracy is ± 1 digit over a $10^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$ temperature range and is defined by a 6 MHz crystal timebase. A movable decimal point allows for external pre-scaling by those wishing to extend the measurement range to 40 MHz or 400 MHz .

In normal multimeter mode, the instrument has a high resolution $4 \frac{3}{4}$ digit scale length and sensitivity figures of $10 \mu \mathrm{~V}$. $10 \mathrm{~m} \Omega$ and 1 nA . There are 32 ranges provided enabling measurement of a.c. and d.c. voltage, resistance, diode test, and a.c. and d.c. current up to 25 amps .

The 1503 which is.priced at 1139 plus VAT has a liquid crystal display and can be

BASICALLY BRITISH

A British company, LSI Computers Ltd, have launched into the personal/small business computer market with the introduction of their M Three system. According to LSI, M Three, which has been developed with the help of a 25 per cent government grant, offers more ability, storage and user satisfaction than any comparable machine at present on the market.

In its basic form, M Three consists of a Zilog $\mathbf{Z 8 0}$ chip surrounded by 64K of RAM, two double-density mini-floppy disc drives, LSI's own VDU with 1920 character green phosphor display and a full functional keyboard. In addition to the normal QWERTY layout, the keyboard has editing keys, cursor control, numeric pad and fourteen programmable function keys.

It comes equipped with a CPM operating system and is programmable by users in high level languages such as BASIC, COBOL, etc. Applications software is also available from LSI including accounting, payroll, and stock control.

Prices for \mathbf{M} Three range from $\mathbf{£ 3 0 0 0}$ to $\mathbf{£ 4 0 0 0}$. LSI can also supply suitable printers and other hardware.
powered from internal batteries or from the mains.

Thurlby Electronics Ltd., Office Suite 1 Coach Mews, The Broadway, St. Ives, Huntingdon, Cambs (O480 63570).

POINTS ARISING . . .
POSITIVE IMPEDANCE
CONVERTORS (June '81)
The tables mentioned in the worked exam ples of filter design can be found in 'Simplified Modern Filter Design by Philip Gaffe, published by lliffe.
ENLARGER TIMER (March '80)
Here, switches S4, 5, 6, 11, should be push-button normally off types. ICs 14, 15, 16 shown in Fig. 1 should be decoupled, that is, have 100 n capacitors connected between +5 V and OV .

NEW DEGREE |INSTANT ROM

North Cheshire College have recently an nounced the launching of a new Bachelor of Education degree entitled "Computers in Industrial Society", which will be validated by the University of Manchester. The first student entry will be in September this year.

The degree has been planned to suit students with an arts background as well as those with a background in science, and it covers not only the technical aspects of microelectronics. but also the implications for industry and society in general.

In addition to periods of practical experience in schools, students will spend some time with an industrial or commercial organisation. This will be of particular value to those students not wishing to become teachers.

For further information, contact: Admissions (C.I.S.), North Cheshire College. Padgate Campus. Fearnhead, Warrington WA 2 ODB (0925814343 Ext. 6).

A new programming aid for users of microcomputers (particularly the Commodore PET) has recently been announced by Greenwich Instruments Ltd.

Instant ROM is a CMOS memory package (2 or $4 K$) with battery back-up which plugs into any standard ROM/EPROM socket, or into the ROM expansion sockets of the PET and similar microcomputers. It can be treated as RAM, and machine code programs can be written into it. What makes Instant ROM unique is that the programs remain after the power has been switched off. It therefore behaves exactly like a ROM. Programs can be edited or altered immediately without erasure problems, yet the program is permanent.

When used with personal computers such as the PET, Instant ROM enables the user to write security and utility programs quickly, run and debug them, and then finally consign the correct program to

EPROM. However, as the battery life is typically 6 years, it is also possible to ship a system with Instant ROM and to supply the ROM later.

Prices, exclusive of VAT, are as follows: $2 K$ devices: 2516 (for PET) and 2716 E39 inc. $p \& p ; 4 K$ devices: 2532 (for PET) and 2732 - $£ 56$ inc. $p \& p$. For further information contact Greenwich Instruments Ltd., 22 Bardsley Lane, Greenwich, London SE10 9RF (01-853 0868).
[noundidunI...

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below

Transducer/Tempcon June 9-11. Wembley Conference Centre, London. T
Components June 9-12. Earls Court, London. I
Pet Computer Show June 18-20. West Centre Hotel, London. B8
Compec North June 23-25. Belle Vue Hotel, Manchester. Z I
International Word Processing Exhibition \& Conference June 23-26
Wembley Conference Centre, London. Z
BEX Salisbury June 24-25. City Hall. K
Leeds Electronics Show June 30-July 2. University of Leeds E
National Education \& Training (Exhibition \& Conference) July 2-4 NEC, Birmingham. B2
BEX Portsmouth July 15-16. Centre Hotel. K
BAEC Amateur Electronics Exhibition July 18-26. The Shelter, Penarth Esplanade. S. Glam. B9
Microcomputer Show (\& Seminars) July 29-31. Wembley Conference Centre. O
Solar Energy Exhibition Aug. 23-28. Brighton. M
Harrogate Int. Fest. of Sound Aug. 15-18. Royal Hall Exhibition Centre \& Hotels. X
BEX Cardiff Sept. 3-4. Centre Hotel. K
Business \& Light Aviation Sept. 3-5. Cranfield Airport. Z 1
Microprocessor Workshop Sept. 7-8. University of Liverpool. D
Laboratory Sept. 8-10. Grosvenor House, Park Lane, London. I
Personal Computer World Show Sept. 10-12. Cunard Hotel, London. M
West of England Electronics Show Sept. 15-17. Bristol Exhibition Centre. Q
Business Telecoms \& Electronic Office Sept. 23-25. Royal Lancaster Hotel. 0
BEX Edinburgh Sept. 30-Oct. 1. Assembly Rooms. K
Viewdata Oct. 6-8. Wembley Conference Centre, London. O
BEX Bristol Oct. 14-15. Exhibition Centre. K

Video Show Oct. 16-18. West Centre Hotel, London. $\mathbf{Z 1}$
International Business Show Oct. 20-29. NE Conference, Birmingham. A2
Testmex Oct. 27-29. Wembley Conference Centre, London. T
Computer Graphics (Exhibition \& Conference) Oct. 27-29. O
BEX Southampton Nov. 4-5. Polygon Hotel. K
Viewdata \& TV User Nov. 4-6. West Centre Hotel. London. $\mathrm{Z} I$
IFSEC (Fire \& Security) Nov. 17-19. RDS, Dublin. V
Compec Nov. 17-20. Olympia, London. ZI
BEX Plymouth Nov. 18-19. Holiday Inn. K
INTRON Nov. 24-26. RDS. Dublin. V
There are Continuous Events and Permanent Exhibition at the National
Micro \& Electronics Centre. LI

A1 Inst. Electronics. Rochdale, Lancs
A2 Hart Browne \& Curtis § 01-439 8556
A3 Sybex. 18 Rue Planchat, F-75020 Paris
B2 Brintex 01-637 2400
B5 Robin Bradbeer. N. London Polytechnic
B7 Modmags (01-4371002
B8 Baroness International $601-7342907$
B9 BAEC. Penarth, S. Glam. 0222707813
C Barry College Radio Soc. 0222565656
D Liverpool Univ.. Brownlow Hill, PO Box 147
D1 Infopress, 58 Fleet St. London
E Evan Steadman, Saffron Walden \& 079922612
F1 ARS Electronica, 34 High St., Saffron W alden
I ITF, Solihull 021-7056707
K Douglas Temple, Bournemouth §0202 20533
LI World Trade Centre \& 01-488 2400
M Montbuild Exhibitions © 01-486 1951
O Online, Northwood. Middx. $/ 0927428211$
Q Exhibitions For Industry $\int 088334371$
T Trident. Tavistock $\quad 08224671$
V SDL \int Dublin 763871
V1 Jack Tootill, Ipswich \& 047344047
X Exhibition \& Conference. Harrogate \& 042362677
Z BETA Exhibitions (01-405 6233
Z. IPC Exhibitions, Sutton \& 01-6438040

The first portable scope with a component tester.

Capacitor 33 uF

Transistor E.C

Transistor B-E

Oscilloscope Specifications:

Bandwidth: DC - $10 \mathrm{MHz}(-3 d B)$ Overshoot: Less than 1\% Sensitivity: $5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$ input Imp: 1 M ohm $/ / 25 \mathrm{pf}$

X Deflection

Timebase: $0.2 \mathrm{~s} \cdot 0.2 \mu \mathrm{~s} / \mathrm{cm}$ Triggering: $2 \mathrm{~Hz}+30 \mathrm{MHz}$ (3mm) Auto + level control Bandwidth: $2 \mathrm{~Hz}-1 \mathrm{MHz}$

General Information

Component Tester.
Calibrator:
Power Supplies:
A.C. Input:

Weight:
Size:
For single components and in circuit
. $0.2 \mathrm{~V} \pm 1 \%$ for probe alignment
${ }^{*}$ Regulated including high voltage $110,127,220,237$, VA.C., $50-60 \mathrm{~Hz}$ $8-1 / 4$ Lbs.
$4 \cdot 1 / 2 \mathrm{H} \times 8.38 \mathrm{~W} \times 10.7116 \mathrm{D}$

[^2]
MICROCOMPUTER COMPONENTS

LOWEST PRICES - FASTEST DELIVERY

DEVICE P	PRICE	DEVICE	PRICE	DEVICE	price
CPU's		74LS 12	0.15	74LS378	0.73
6502	5.50	74LS 13	0.29	74LS379	0.56
6800	3.82	74LS 14	0.51	7445386	0.29
6802	5.74	74LS15	0.15	74LS390	0.68
6803	14.53	74LS20	0.14	74LS393	0.61
6809	12.00	74LS21	0.15		
8085A	8.02	74LS22	0.15	CMOS	
280 CPU	4.00	74LS26	0.19	4000	0.14
Z80A CPU	5.92	741527	0.15	4001	0.14 0.14
SUPPORT CHIPS		74 LS 28	0.17	4002 4006	0.14 0.85
6520	3.15	74 LS 30 74 LS 32	0.14 0.14	4006 4007	0.85 0.18
6522	5.60	74LS32	0.14 0.17	4008	0.75
6532	7.75	744537	0.17	4009	0.39
6821	1.93 5.87	74LS38	0.17	4010	0.47
6840 6850	1.87 1.95	744540	0.14	4011 4012	0.17 0.23
6862	7.09	74LS42	0.40 0.42	4013	0.42
6871 A1T	20.90	744548	0.70	4014	0.78
6880	1.07	74 LS49	0.62	4015	0.80
6887	0.80	744S51	0.14	4016	0.34
8212	2.25	74 LS54	0.15	4017	0.68
8216	1.95	$74 \mathrm{LS55}$	0.15	4018	0.75
8224 8228	2.50 4.20	74LS73	0.22	4019	0.44
8228	4.20 4.75	74L574	0.19	4020	0.82
8253	10.00	74LS 75	0.30	4022	0.88
8255	4.20	74 S 76	0.22	4023	0.83
280 CTC	4.00	74.588	0.25	4024	0.49
Z80A CTC	4.90	744585	0.77	4025	0.19
Z80 DMA	11.52	74LS86	0.18	4026	1,28
Z80A DMA	17.25 7.20	74LS90	0.36	4027	0.44
Z80A DART	7.67	74LS91	0.81	4031	1.85
280 P 10	4.00	74 S 93	0.40	4033	1.70
z80A P10	4.40	744595	0.39	4034	1.99
280 S10-0	20.11	74LS109	0.26	4035	1.05
280 S10-1	20.11	74 LS 112	0.26	4036	2.75
280 S $10-2$	20.11	74LS 113	0.26	4039	2.95
Z80A S $10-0$	24.17	74LS114	0.26	4040	0.83
Z80A S $10-2$	24.17	74LS122	0.45 0.57	4042	0.80 0.68
		74 LS 124	1.07	4043	0.78
2101	3.68	74 LS 125	0.29	4044	0.78
2102	2.54	74LS126	0.29	4045	1.70
2114 200ns low power	+ 1.35	74LS 132	0.51	4046	0.95
2708	1.73	74LS 136	0.29	4047	0.98
2716 (5v)	2.67	74LS138	0.40	4049	0.34
27322532 (specity)	7.59	74 LSI39	0.40 0.78	4050	0.37
4116150 ns	1.25	74 LS 148	1.13	4051	0.78
4116200 ns	1.20	$74 \mathrm{LS151}$	0.35	4052	0.78
REGULATORS		74LS 153	0.35	4053	0.78
7805	0.55	74LS 155	0.50	4054	1.28
7812	0.55	74 LS 156	0.50	4055	1.23
7905	0.65	74LS157	0.36	4060	1.08
7912	0.65	74LS158	0.40	4063	1.18
		74LS160	0.43	4066	0.46
CRT CONTROLLERS		74LS161	0.43	4067	4.25
9364 AP	8.64	74LS162	0.43	4068	0.25
6845	11.72	74LS163	0.43	4069	0.19
BUFFERS		74LS164	0.51	4070	0.29
81 LS95	1.20	74LS 166	0.37	4071	0.24
81LS96	1.25	$74 \mathrm{LS173}$	0.77	4073	0.24
81 LS97	1.20	74LS174 74 LS 175	0.78 0.60	4075	0.24
$81 L 598$	1.25	74 LS 181	0.60 1.50	4076	0.83
$8126 A$ $8 T 28 A$	1.50 1.50	74LS190	0.61	4077	0.29
$8128 A$ $8 T 95 N$	1.50	74LS191	0.61	4078	0.24
$8 \mathrm{BT97N}$	1.50	74LS192	0.69	4081	0.24
8198	1.50	74LS193	0.69	4082	0.24
		74LS195	0.42	4086	0.70
AY-3-i015 (or equiv.)	4.29	74LS 196	0.68	4093	0.53
AY-5-1013 (or equiv.)	4.29	74LS197	0.68	4502	0.99
AY-5-2376 (or equiv.)	7.00	74LS221	0.64	4507	0.45
MC1488	0.75	74LS240	1.01	4508	2.75
MC1489	0.75	74LS241	1.15	4510	0.83 0.63
MC14411	8.75	74LS242	0.85 0.85	4511	0.63
MC14412	8.75 782	74LS243	0.85 0.84	4514	1.93
RO-3-2513L RO-3-2513U	7.82	74LS244	1.21	4515	2.98
RO-3-2513		74 LS 247	0.41	4516	0.89
dATA CONVERTERS		74LS248	0.74	4518	0.89
2N425E	3.50	74LS249	0.74	4519	0.68
ZN426E	3.00	74LS251	0.46	4520	
ZN427E	6.28	74LS253	0.46	4521	2.05
ZN428E	4.78	74LS257	0.57	4522	1.95
ZN429E	2.10	$74 L S 258$ $74 . S 259$	0.40	4527	1.20
ZN433	28.09 22.59	$74 \mathrm{LS261}$	1.15 3.12	4528	0.99
Data converter		74LS266	0.25	4532	1.15
Handbook	1.00	74 LS 273	0.97	4541	1.45
		74LS279	0.37	4543	1.45
74LS SERIES		74LS283	0.45	4553	3.10
74LSOO	0.14	$74 \mathrm{LS290}$	0.60	4555	0.50
74 LSO 1	0.15	74LS293	0.53	4556	0.59
74LSO2	0.14	$74 \mathrm{LS365}$	0.39	4566 4585	1.90 1.35
741503	0.14	74LS366	0.38	4585	1.35
74LSO4	0.15	74LS367	0.38		
74LSO5	0.15	74LS368	0.38	CAYSTALS 4 MHz	
74LSO8 741509	0.14	$74 \mathrm{LS337}$	0.79		1.80
$74 \mathrm{LS10}$	0.14	$74 \mathrm{LS375}$	0.50		
74LS 11	0.15	74LS377	0.97	E. \& O.E.	

OFFICIAL ORDERS WELCOME - QUANTITY DISCOUNTS AVAILABLE

Midwich Computer Co., Ltd.,
(Dept. PE).,
Hewitt House, Northgate Street Bury St. Edmunds, Suffolk IP33'1 HQ Tolephone: (0284) 701321
Tolex: 817682 MIDCOM G

All prices exclude post and packing on orders
ALL ORDERS OESPATCHED ON DAY OF RECEIPT WITH FULL REFUNO FOR OUT OF STOCK ITEMS IF REQUESTED.
24 hour Telephone Credit Card Orders

Scenarios

Imagine an industry once employing 505,000 regular whole-time workers now reduced to about 185,000 . A dramatic decline by any standards and unquestionably qualifying for the use of words and phrases such as decimation, massacre, crucifixion or, at the very least, an obscenity or a national scandal. I choose the words, almost at random, from the current vocabulary of political hyperbole endlessly chanted in Westminster and the media. One might also expect a scream of anguish with over 300,000 honest and hardworking citizens thrown on the scrap heap'.

And yet this particular industry invites not a word of criticism and is not only admired but publicly highly praised. I refer to British agriculture, often described as the envy of the world and rightly so, with this comparatively tiny workforce producing 70 per cent in value of the food consumed by the nation's 56 million people and with a good export record as well.

Of course employment in agriculture has been declining over a long period. In 1801 it employed 36 per cent of the working population. By 1901 the figure had dropped to 9 per cent. But the figures quoted in my opening sentence are recent history, the period from 1960-1980. In 1960 the average wage of the half-million workers was f10.58. In 1980 the slimmed-down workforce was averaging close on $£ 80$ a week.

A similar scenario is now being enacted in manufacturing industry. Here again, slimming down has been taking place over many years but during the last decade was artificially delayed. The present phase of catching up (the alternative to going broke) is the natural and foreseeable result, with severe dislocation compounded by the general recession in trade.
The electronics industry with but few ex-
ceptions (e.g. ICL) has not only survived but prospered during the past two difficult years. It had, and still has, everything in its favour. It is a growth industry, it is highly innovative and, above all, it is still a young industry unhampered by traditional work practices which have proved such a curse in, for example, shipbuilding and steel. There are few industrial problems in introducing new processes and methods and in fact most of them originated in the industry itself. Computer-aided design (CAD), automatic component insertion, computeraided manufacture (CAM) and, at the end of the line, automatic test equipment (ATE). No wonder output doubles and doubles again.

Even in electronics it is not an easy ride. particularly in the depressed areas of consumer electronics struggling against the flood of imports from the Far East. But UK manufacturers are grasping the nettle with products like the Ferguson TX TV, and Fidelity's new colour TV, the design of which cuts component count by 40 percent. In capital goods the outlook remains buoyant and morale is high.

Will the older industries follow the example of electronics with get-up-and-go? Let's look at BSC's Llanwern steelworks in South Wales. This modern plant was plagued by industrial disputes in which one or other of 17 unions was generally involved. Both productivity and morale were low. The 14week steel strike in the spring of 1980 was a catalyst which helped changed attitudes. The realisation came that you had to feed the cow before you could milk it.

In just one year from the strike, Llanwern has doubled productivity and has now almost reached the productivity levels of the best in Europe. Demarcation has all but disappeared, absenteeism is all but absent, inter-union squabbles are forgiven and forgotten. Manning levels have been reduced by 60 per cent and everybody at Llanwern is much happier than in the past, especially so since production is to increase beyond that in the original slimming-down programme. Success has replaced failure, optimism has replaced despair.

It is now clear that Llanwern and its sister plants are not isolated exceptions. Textiles, one of the hardest hit industries, is now showing signs of recovery. Uncertainty in recent months is turning to confidence with investors returning to buy company shares and the recession 'bottoming out'.

Inmos

Inmos is thankfully now showing positive signs of life. This is the controversial VLSI company formed with financial backing from the British taxpayer and promising to establish large production facilities (for 4,000 people) in the UK. I was reporting this news in the November 1978 issue of PE, together with news of a 50/50 GEC/Fairchild project which I forecast would be in production ahead of Inmos.

Well, I was wrong in respect of GEC/Fairchild. The idea was dropped when Fairchild was acquired by Schlumberger and GEC has since taken a different path.

Inmos, however, continued in business, first absorbing $£ 25$ million of start-up cash and then a further $£ 25$ million. A pilot production plant was set-up, not in a depressed area of the UK, but in Colorado Springs, USA. So far as extra employment in the UK has been created, there is almost a nil return except for a handful of experienced people who would have had no difficulty in finding employment anyway.

The good news is that Inmos now has some semiconductor products to sell and has started setting up a distribution chain in the UK and the rest of Europe. Dr. Richard Petritz, the American president, chief executive and co-founder of Inmos, is not promising instant success. He accepts that the coming year is full of risk with spending continuing at a high rate and sales still very small.

While wishing Inmos every success I remain sceptical that there will be any serious production in the UK, at least for a number of years. And it takes a good deal of imagination to believe that Inmos will ever employ 4,000 people in the UK in four factories. In fact only one is in construction. But Inmos has an imaginative outlook and the dream could still come true!

Shuttle

The spectacular success of NASA's Space Shuttle is wonderful news for all technologically based industries if only in re-establishing confidence and redressing the balance with the ecology and antinuclear lobbies. They have had considerable success in their knocking campaigns with the implication that all technology is harmful, its application shameful. Yet, these same lobbyists shamelessly use cars (responsible for more casualties than war), exploit television for propaganda, and some occasionally enjoy a hot bath by courtesy of atomic energy.

HF Radio

Twenty years ago as communication satellites started going into orbit there was much talk of the death of HF radio and submarine cables, the historical methods of long-distance communication. The 'experts' were wrong on both predictions. Submarine cables have prospered mightily, aided by new technology. And if HF radio today carries a less percentage of total traffic it still carries more than in the past.

Far from being in a terminal condition, HF radio has been honoured with two Queen's Awards: Marconi Communications for technological achievement with their fast-tuning techniques launched in 1976 and now in a second generation, and Racal Communications for export achievement with a trebling of overseas business in the past three years.

Redifon has also introduced a new professional quality HF receiver, the R500, company-funded, which adds weight to the proposition that $H F$ radio will remain a valuable asset in the communication's business to the end of the century and beyond.

Ass most readers will by now be aware the Home Office have issued a Draft Performance Specification on CB to be operated on 27 MHz and 934 MHz f.m. The draft is in our view generous in its outline of 40 and 20 channel systems respectively with effective radiated powers of 2 W -on 27 MHz - and 3 W (integral aerial!) or 25 W on 934 MHz .

Perhaps the only criticisn that CB enthusiasts will level at it is that the selected frequencies are not compatible with those of any other country, but since there is little "legal" compatibility between most of the other systems anyway, the problems may not be too great. This would however limit the sale of UK-made equipment.

One point that the spec. does make very clear is that no equipment with the ability to transmit an a.m. signal will be permitted. Present sets will remain illegal. they may be converted to f.m. but they will have to conform to the spec. in every way, and will need to be marked with the official mark to show that they do.

At the time of writing, the Home Office expect to publish the final spec. through HMSO at or near the end of May and presumably the Control of Manufacture and Importation order 1968 will be amended soon after to enable sets to be made, etc.

We publish here the letter we received from the Home Office, the 27 MHz forward (934 MHz is virtually the same) and section 1 of the 27 MHz draft (General) plus the differences in the 934 MHz draft.

The full drafts run for 25 and 22 A 4 size pages.

CITIZENS BAND RADIO SPECIFICATIONS

Thanks for your enquiry about the technical specification for authorised citizens band radio equipment.

It is hoped that a legal system of citizens band radio will be introduced later in the year. This will operate in the 27 MHz band and the 934 MHz band and as promised I enclose a copy of the draft specifications for each of these.

These draft specifications will be considered by a land mobile radio specification committee whose normal membership of UK manufacturing interests has been slightly augmented in this case. This committee is scheduled to hold its first meeting on the 24th April and if you have any comments on the specification I would be grateful if you would let me have them in writing prior to that date so that they may be taken into account.

The technical standards set out in the specifications will be reflected in regulations under Part II of the Wireless Telegraphy Act, 1949. These will set standards for equipment to which manufacturers. importers or assemblers will have to conform; they will also contain a requirement for conformity to be certified by the manufacturer, importer or assembler.

The Radiotelephonic Transmitters (Control of Manufacture and Importation) Order 1968 (Sl 1968/61) prohibited the importation and manufacture of citizens band equipment. The Order remains in force and covers equipment capable of transmitting on any frequency between $26 \cdot 1 \mathrm{MHz}$ and 29.7 MHz , but in due course provision will be made for manufacture and importation of equipment which meets the technical requirements as they are finally established.

Citizens' band equipment operating with amplitude modulation will remain illegal under the new facility. Sets may be converted, provided that they then conform in all respects with the authorised technical standards.

Home Office
27.4.81

FOREWORD

1. Citizens Band Radio, a personal two-way radio system. is available for use throughout the United Kingdom. It operates in the 27 MHz waveband and the 930 MHz waveband.
2. The Wireless Telegraphy Aet 1949 provides that no radio equipment may be installed or used except under the authority of the Secretary of State. All citizens band radio equipment, whether hand held, mobile or base station. must be covered by a licence: it is a condition of this that the apparatus fulfils, and is maintained to, certain minimum technical standards. This specification sets out these standards for 27 MHz f.m. equipment: 934 MHz f.m. equipment is subject to a separate specification.
3. The manufacturer, assembler, or importer of citizens band equipment is responsible for ensuring that the apparatus conforms with the specification: and any additional requirements imposed by regulations under the Wireless Telegraphy Act 1949. Conformity with the required standards may be established by tests carried out by the manufacturer, assembler or importer, or by a reputable test establishment acting on his behalf, but in either case conformity with the specification will remain the responsibility of the manufacturer. assembler or importer.

1 GENERAL

1.1 Scope of specification

This specification covers the minimum performance requirements for angle modulated radio equipments, comprising base station, mobile and hand-held transmitters and receivers or receivers only and additionally any accessories e.g. attenuators, power amplifiers, vehicle adaptors for optional use with the above for use in the Citizens Band Radio service.

For all equipments covered by this specification, the nominal separation between adjacent channel carrier frequencies is 10 kHz .

1.2 Permitted effective radiated power

The output radio frequency power of the equipment is limited to 4 W . With the antenna permitted for use with the equipment this gives an effective radiated power of 2 W .

If an antenna is mounted at a height exceeding 10 m the licence will require a reduction in transmitter power of 10 dB .

To enable the user to accomplish this easily the equipment manufacturer should provide as a standard accessory an attenuator having a nominal attenuation of 10 dB , which may be purchased by the licensee.

1.3 Operating frequencies

The equipment shall provide for transmission and reception only of frequency modulated emissions on one or more of the following radio frequency channels:

Channel 127.60125 MHz
Channel 227.61125 MHz
Channel 327.62125 MHz
Channel 427.63125 MHz
Channel 527.64125 MHz
Channel 627.65125 MHz
Clannel 727.66125 MHz
Channel 827.67125 MHz
Channel 927.68125 MHz
Channel 1027.69125 MHz
Channel 1127.70125 MHz
Channel 1227.71123 MHz
Channel 1327.72125 MHz
Channel 1427.73125 MHz
Channel 1527.74125 MHz
Channel 1627.75125 MHz
Channel 1727.76125 MHz
Channel 1827.77125 MHz
Channel 1927.78125 MHz
Channel 2027.79125 MHz

Channel 2127.80125 MHz Channel 2227.81125 MHz Channel 2327.82125 MHz Channel 2427.83125 MHz Channel 2527.84125 MHz Channel 2627.85125 MHz Channel 2727.86125 MHz Channel 2827.87125 MHz Channel 2927.88125 MHz Channel 3027.89125 MHz Channel 3127.90125 MHz Channel 3227.91125 MHz Channel 3327.92125 MHz Channel 3427.93125 MHz Channel 3527.94125 MHz Channel 3627.95125 MHz Channel 3727.96125 MHz Channel 3827.97125 MHz Channel 3927.98125 MHz Channel 4027.99125 MHz

Citizens Band Radio equipment shall not contain facilities for transmission of radio frequencies other than those listed above, and those contained in MPT. (this specification-Ed.)

Single channel equipment may be tested on any one of the approved channels. Multi-channel equipment shall be equipped to operate at the centre, and the upper and lower limits of the frequency range over which channel switching is possible.

1.4 Permitted modulation

Only equipment which employs frequency or phase modulation and has no facilities for any other form of modulation will meet the requirements of this specification.

1.5 Labelling

The equipment shall be provided with a clear indication of the type number and name of the manufacturer.

1.6 Certification of compliance

Compliance with this specification shall be indicated by an authorised mark stamped or engraved on the front panel of the equipment.

The mark used to indicate compliance shall be as shown in Fig. 1.

Fig. 1: Letter and figure height not less than 1 mm

1.7 Controls

Those controls, which if maladjusted might increase the interfering potentialities of the equipment, shall not be easily accessible.

934MHz VARIATIONS

1 GENERAL

1.1 Scope of specification

This specification covers the minimum performance requirements for angle modulated radio equipments, comprising base station, mobile and hand-held transmitters and receivers or receivers only and additionally any accessories, for example power amplifiers, attenuators, vehicle adaptors for optional use with the above for use in the Citizens' Band Radio service.

For all equipments covered by this specification the nominal separation between adjacent channel carrier frequencies is 25 kHz .

1.2 Permitted effective radiated power

The output radio frequency power of the equipment is limited to 8 W for equipments which has terminals for connexion of a separate antenna. With the antenna permitted for use with this equipment this gives a maximum effective radiated power of 25W.

For equipment with an integral antenna the effective radiated power is limited to $3 W$

1.3 Operating frequencies

The equipment shall provide for transmission and reception or reception only of frequency modulated emissions on one or more of the following radio frequency channels:

Channel	1934.025 MHz
Channel	
2934.075 MHz	
Channel	
Channel	3934.125 MHz
Channel	5934.175 MHz
Channel	693.225 MHz
Channel	7934.275 MHz
Channel	8934.325 MHz
Channel	9934.425 MHz
Channel 10934.475 MHz	

Channel 11934.525 MHz Channel 12934.575 MHz Channel $13934 \cdot 625 \mathrm{MHz}$ Channel 14934.675 MHz Channel $15934 \cdot 725 \mathrm{MHz}$ Channel 16934.775 MHz Channel 17934.825 MHz Channel 18934.875 MHz Channel 19934.925 MHz Channel 20934.975 MHz
(Although the specification quotes 25 kHz separation the allocated chamnels are at 50 kHz spacing we are informed that this will he clarified at a later date-Ed.)

The separation between the " 27 MHz " frequencies now being used illegally and these proposals will obviously make the task of restricting any continuing illegal use that much more easy. It should also mean that, providing illegal use can be stopped, the radio control modellers should be free of interference from British CB.

It is anticipated that these proposals are realistic enough to encourage widespread use of the new service (hopefully without all the codes and jargon) and thus encourage illegal users to convert.

We do not yet know the restrictions and cost of a licence or (at the time of writing) the date of the introduction of the service-our guess is early September, but it is a guess.

ANNOUNCEMENT

PE will be publishing more on CB in the September issue. A full announcement will be made next month, when all will be revealed!

O, (1) am/EM Sitifi Tuif

THE PE Quasar is an AM/FM stereo tuner which incorporates three ready-built and aligned modules: FM tuner (LP1179), r.f.-i.f. amplifier (LP1181) and a frequency multiplexed stereo decoder (LP 1401). The design of the Quasar enables the completed tuner to be easily aligned using just a multimeter and a screwdriver.

CIRCUIT DESCRIPTION

The main circuit diagram of the PE Quasar is shown in Fig. 1.

The FM tuner is a ready-built and aligned VHF module (LP1179) with 75 and 300 ohms aerial inputs which has capacitance tuning for AM. Frequency drift on the FM waveband is counteracted by a built-in varicap diode across the oscillator circuit which facilitates the use of automatic frequency correction (a.f.c.) with a variation of $\pm 0.5 \mathrm{~V}$ (ref. zero) equalling a frequency shift of $\pm 100 \mathrm{kHz}$. The output from the tuner is connected to the i.f. circuit via a 10.7 MHz ceramic filter (XLI). The output signal from the filter only becomes significant when the input signal corresponds to 10.7 MHz . The filter then acts as a high Q tuned circuit.

The i.f. signal from the front end is matched to the ceramic filter and is applied to IC1 via pin 1. IC1 is a TDA1200. This i.c. integrates i.f. amplification and limiting (three stages with a level detector for each stage) with a balanced quadrature FM detector, an audio amplifier with a muting facility and a voltage regulator

The complete system includes such features as an a.f.c. drive circuit and tuning meter drive. The a.f.c. output on pin 7 is reference to +5.6 V and because the tuner module's a.f.c. is designed to operate with reference to zero volts, it is necessary to apply a stabilised voltage of approximately
$-4 V$. Providing L2 is correctly adjusted, VR1 can be set to obtain the necessary zero volts at the junction of R2 and R4.

INTERSTATION MUTING

Because of the high overall gain of the FM tuner a high level of noise can occur when tuning between stations. This noise can be reduced by interstation muting which keeps the audio stages inactive until a signal of pre-determined strength is received. The muting level in the Quasar can be altered by changing R13. A higher value reduces the muting whilst a lower value increases it.

STEREO DECODER

A block diagram of the LP1401, which is a ready-built and aligned frequency multiplexed stereo decoder, is shown in Fig. 2.

The multiplexed stereo output from pin 6 of IC1 is fed via R5 and C6 to the decoder where a splitter circuit extracts the stereo and mono signals. De-emphasis is applied to both

SPECIFICATION

MW520 to 1640 kHz sensitivity $400 \mu \mathrm{Vm}$ for $15 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio LW150 to 265 kHz sensitivity $900 \mu \mathrm{Vm}$ for $15 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio IF 470 kHz
VHF88 to 104 MHz sensitivity $8 \mu \mathrm{~V}$ for $30 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio Limiting 10 mV or better
$\mathrm{AFC}+100 \mathrm{kHz}$
If 10.7 MHz
IF rejection 40 dB min
Image rejection 40 dB min
Stereo separation 38 dB at 1 kHz

E6574
Fig. 1. Main circuit diagram of the PE Quasar

Photograph of the Quasar system

Stereo decoder and SK1

Fig. 2. Block diagram of the LP1401 stereo decoder
signals to improve the signal to noise ratio by attenuating the background noise whilst equalising the signal. The 19 kHz pilot tone is also extracted and the 38 kHz sub carrier, which was suppressed in the transmitted signal, is regenerated by a frequency doubler which is also amplitude limited to reduce noise. The sub carrier is then added in correct phase to the stereo signal and fed to the matrix where the original left and right channel signals are retrieved.

In the mono state the Schmitt trigger, stereo indicator lamp and the stereo on/off gate are all inactive. Only the mono signal is passed through the matrix to each channel.

The stereo enable switch is triggered by the 19 kHz pilot tone. For good reception the strength of the stereo signal has to be high; a poor stereo signal would sound better in mono. The leved of the pilot tone is monitored and for the Quasar to switch to the stereo mode the pilot tone signal must be higher than 15 mV r.m.s.

When the stereo switch is operated a d.c. output from the detector circuit operates the Schmitt trigger which switches on the stereo indicator lamp and the demodulator.

The use of a manual mono/stereo switch enables the mono mode to be selected when a stereo signal is being received.

AM I.F. MIXER

The MW/LW ferrite rod aerial affords adequate sensitivity to all but the weaker signals. However, an extra winding is provided for an external aerial. Signals from the ferrite aerial are fed to the input of the LP1181. This module, which is pre-aligned, performs the functions of a local oscillator/mixer, i.f. amplification, detection and a.g.c. Resistor R20 acts as the "diode load" and tuning meter drive.

Fig. 3. Circuit diagram of the power supply unit

POWER SUPPLY

The circuit diagram of the power supply is shown in Fig. 3. The power supply is a voltage doubler circuit. The unregulated supply appears across the positive terminal of C23 and the negative terminal of C24. The design is unconventional only as far as the negative line is regulated and designated as $O V$ with the -4 V negative supply rail derived via R25. This voltage which is Zener stabilised and decoupled by C26 is used for a.f.c. offset.

CONSTRUCTION

The p.c.b. design for the main board of the Quasar is shown in Fig. 4 with the component layout shown in Fig. 5. Before fitting the FM tuner (LP1179) the AM oscillator trimmer screw on the tuner should be removed (Fig. 6). Carefully

Fig. 6. AM oscillator modification for the FM tuner
check the orientation of IC1 and the AM module (LP 1181) before soldering. Also note the position of the fixed coil L1 which is used in place of a variable inductor. The MW/LW aerial assembly should be soldered last as shown in Fig. 7. After soldering the aerial assembly should be glued to thep.c.b.

The power supply p.c.b. design is shown in Fig. 8 with the component layout shown in Fig. 9. After these two p.c.b.s have been soldered, carefully check the orientation of all the components and that none of the tracks are shorted out by slivers of solder.

Fig. 7. Wiring details for the aerial assembly

COMPONENTS . . .

Resistors	
R1	
R2	
R3	68
R4	15 k
R5,R8.R9,R20	330
R6	22 k
R7	$10 \mathrm{k}(4$ off $)$
R10,R19,R25	4 k 7
R11,R16.R18	3 k 9
R12,R17	$680(3$ off $)$
R13,R14,R22,R23	$8 \Omega 2(3$ off $)$
R15	$1 \mathrm{k5} \mathrm{(2} \mathrm{off)}$
R21	$180 \mathrm{k}(4$ off)
R24	39 k
*R26,R27	100
	820

All resistors $\frac{1}{4}$ to $\frac{1}{2}$ W 10\%

Potentiometers VR1	10k preset
Capacitors	
C1	470n
C2,C3,C8,C11	10 n (4 off) polvester
C4	390p polystyrene
C5,C9,C10,C22,C27	100 n (5 off)
C6,C16,C17	$10 \mu 25 \mathrm{~V}$ (3 off) elect.
C7	82 p polystyrene
C12	$2 \mu 263 \mathrm{~V}$ elect
C13,C14,C15	$47 \mu 25 \mathrm{~V}$ elect (3 off)
C18	270p polystyrene
C19	281p 2\%
C20	20 n polyester
C21	100p 5% polystyrene
C23.C24	1500μ to $3300 \mu 16 \mathrm{~V}$ elect (2 off)
C25	$100 \mu 16 \mathrm{~V}$ elect
C26	$220 \mu 16 \mathrm{~V}$ elect
VC1	25p (max) trimmer
Vc2	80p (max) trimmer
Semiconductors	
D1	3.9 V 300 mW Zener
D2	15 V 300 mW Zener
REC1	
TR1	BD190
IC1	TDA 1200
Inductors	
L1	$220 \mathrm{KE}(22 \mu \mathrm{H})$
L2	L101 (2.2 2 H)
L3	AM Osc coil (42276)
Miscellaneous	
10.7 MHz filter LP1181	
LP1401	
FM Tuner front end LP1 179	
vU meter	
Ferrite rod assembly	
Mains transformer	
Chassis	
p.c.b.s.	
Drive cord and guides. S1, S2, S3.	
*See Fig. 10.	
Note the p.c.b.s supplied in	the kit are not drilled.

Constructor's Note

A kit of parts for the Quasar (minus the stereo enable and stereo indicator modifications) is available from RT\&VC, 21 B High Street, Acton W3 6NG. (Price £ 17.95 plus $£ 2.50$ p\& p.)

The front panel should be assembled next. If a stereo indicator and an enable switch (Fig. 10) are to be fitted, then the mounting holes for these should be drilled first. The front panel legend can then be fixed using either double sided tape or non plastic solvent glue. The mounting holes can then be cut out in the legend using a sharp knife. The tuning meter can then be fitted to the back plate using double sided tape. Before the back plate is fitted to the main p.c.b. the three grommets should be fitted into the mounting holes for the LP1179 tuner. The three tuning drive cord guides should be inserted into the back plate and peened over using a hammer

Fig. 10. Connection diagram for SK1
The two wires for the tuning meter should be soldered before the back plate is fitted. After mounting the back plate onto the p.c.b. the drive tuning cord should be fitted follow. ing the diagram in Fig. 11. The tuning indicator was formed using a piece of copper wire and length of p.v.c. sleeve. To improve the definition of the tuning needle a piece of white p.v.c. tape was fitted behind the tuning display. Do not fit the front panel into position until after the tuner has been aligned

The LP1401 stereo decoder, which is supplied assembled and tested, plugs into SK1 and before any interboard wiring is carried out the two resistors should be soldered to SK1 (Fig. 10). With all the boards and SK 1 assembled the interboard wiring should be carried out as shown in Fig. 12.

FM ALIGNMENT

After the Quasar has been assembled and wired it can be switched on and the voltage supplies checked. It should then be connected to a suitable amplifier and speaker system. To
-
\qquad

Fig. 4. P.c.b. design for the main board
-

Fig. 8. P.c.b. design for the p.s.u.

Fig. 9. Component layout for the p.s.u.

Fig. 5. Component layout for the main board. Note this link is soldered to the case of each module

align the FM band the following procedure should be carried out: a) Cancel the AFC by shorting C1.
b) Press the AM/FM and Mute/Off switches in.
c) Connect an aerial to tuner (75 or 300Ω).
d) Unscrew the core of L2 so that it is approximately 4 to 6 mm proud of the can. If the construction is correct the Quasar will operate.
e) Adjust L2 for maximum undistorted audio output and maximum meter deflection.
f) Remove the link across C1.
g) Short the junction of R1 and XL1 to earth.
h) Adjust VR1 for zero volts across C1 and remove the link between R1/XL1 and earth.
This completes the FM alignment and the core of L2 should be sealed with candle wax.

AM MEDIUM WAVE

The medium wake band can be aligned using the following procedure:
a) Put the $A M / F M$ and the MW/LW buttons in the out position and place the aerial coils flush with the end of the ferrite rod.
b) Tune the set to approximately 433 M and adjust L3 to receive Radio 2. If this is not available set the tuner to any other known wavelength at the extreme LF end and tune L3 to receive that station.
c) Set the tuner to 247 M and adjust VC1 to receive Radio 3.
d) Repeat steps (b) and (c) until the two extreme stations correspond to the scale.
e) Tune the set to a weak station at the extreme LF end and adjust the medium wave coil L3 for maximum output.
f) Tune the set to a weak station on the HF end and adjust the AM trimmer on the tuner for maximum output. g) Repeat steps (d) and (f) for best results.

AM LONGWAVE

The longwave band can be aligned using the following procedure:
a) Press the MW/LW button in and set the pointer to 1500M.
b) Adjust VC2 to receive Radio 4.
c) Set the LW ferrite coil for maximum output. Both the aerial coils can now be sealed with candle wax.

CAPACITANCE MEASUREMENT

There are a large number of methods in use for the measurement of capacitance and the cost of embodying many of these techniques is out of all proportion to the accuracy and usefulness of the instrument. Among the aims in the design of the meter has been the provision of a low cost instrument, with good accuracy, covering a wide range of measurement, with low power consumption and ease of use.

The traditional method of measurement is to use a bridge arrangement with a.c. energisation, and adjusting for null indication. This method can be expensive and requires careful adjustment by the operator.

Rate of charge can be useful for capacitor measurements but is exponential, although, if a constant current source is used instead of a voltage source, good linearity can be achieved. If the constant current source is turned on for an accurately defined time, then the charge on the capacitor at the end of this time will be proportional to the capacitance. A considerable amount of circuitry is required to use such a technique in a repetitive mode, rather than a single-shot mode.

Ideally, once the capacitor to be measured is connected to the instrument, the measurement should be updated automatically as it enables circuit adjustments to be carried out simultaneously and changes in capacitance to be monitored.

The heart of the DP600 is a CMOS monostable which requires very little supply current and operates at low supply voltages; the block diagram of the instrument is shown in Fig. 1.

When triggered, by an input pulse, the monostable produces an output pulse of duration proportional to R and C; accurate decade resistors are therefore suitable for setting the range of measurement, and C is the capacitor to be measured. A system suited to use of standard resistors for range switching results in much lower cost than instruments requiring standard capacitors. The monostable is triggered by a constant frequency source and the constant amplitude pulses are averaged by an RC integrator. The output voltage is now proportional to the applied capacitor and provides a direct readout on the LE DPM200 panel meter. Measurements are automatically updated by the frequency source.

An ideal capacitor is composed of two parallel plates with a dielectric of infinite resistance between the plates. However, practical capacitors have a parallel loss resistance which will shunt the capacitor and reduce the monostable pulse width slightly. The effect will only be noticeable for capacitors with very low parallel resistance, or high leakage.

SPECIFICATION

RANGE
2000pF 200 nF
$20 \mu \mathrm{~F}$
RESOLUTION ACCURACY
1pF
\(\begin{aligned} \& 0.1 \mathrm{nF}
\& 0.01 \mu \mathrm{~F}\end{aligned}, \quad\{0.75 \% \pm 3\) digits

CIRCUIT DESCRIPTION

The circuit diagram of the Capacitance Meter is shown in Fig. 2. Panel Meter ME1 provides a complete analogue-todigital convertor with ultra-low power consumption and calibrated 200 mV full scale.

CMOS timer IC1 operates between V+ and COM, which is typically 2.8 V . Switch S1d selects the appropriate decade resistor for the range of measurement. Accuracy of measurement is dependent upon the monostable output pulses being of constant amplitude. The COM pin of ME1 has good stability with temperature but the change in current drawn through it by the lower value resistor, $\mathrm{R8}$, on the top range can reduce the Common voltage by about 2%, which would be directly indicated in range accuracy. Each range could be individually calibrated, but it is desirable to use only one adjustment. To provide good amplitude stability R9 and IC2 are used, which is a bandgap reference integrated circuit with typically 1.2 V output. Resistors R6-R8 should be high stability metal film types as they directly influence measurement accuracy. Pulse averaging is carried out by R10 and C3 with calibration by VR1.

To optimise measurement accuracy, an offset control is incorporated. Before the capacitor to be measured is connected to the instrument, the effects of stray capacitance may be eliminated by adjusting VR2. Provision of the offset control also enables measurements to be made of capacitors situated at the end of long cables by eliminating the cable capacitance.

The LE DPM200 panel meter includes a dual-slope integration A to D convertor which contains an RC oscillator for control of the integrator timing cycle. To reduce the cost of the instrument, the frequency source required to trigger the CMOS monostable may be derived from the panel meter. The oscillator has a nominal frequency of 48 kHz which is divided down to perform the various timing functions. The backplane signal for the LCD is set at a frequency
of clock divided by 800 , or nominally 60 Hz . The maximum pulse width output from IC1 is $1 \mathrm{k} \times 20 \mu$ or 20 ms . The period of the triggering waveform must be greater than the monostable period otherwise the monostable would be retriggered during a measurement cycle, instead of at the end of the cycle, resulting in erroneous readings. To slow down the internal clock frequency slightly C 4 is added between CLK (oscillator) and TEST (digital ground).

The backplane signal is a nominal 5 V amplitude with respect to TEST, but is $+2.5 \mathrm{~V} /-2.5 \mathrm{~V}$ with respect to Analogue Common. Level shifting is provided by TR 1.

IC1 requires a narrow trigger pulse which should return to the high state before the end of the output pulse. TR2 and associated circuitry produces a narrow negative-going pulse, of typically $50 \mu \mathrm{~s}$, for each positive-going edge of the backplane signal.

The timing waveforms of the circuit are shown in Fig. 3.

Fig. 3. Timing waveforms
Another advantage of using the internal oscillator is that the system is synchronised to the measurement cycle of the A to D convertor to reduce the display jitter which would otherwise result from the charging and discharging of C3. The R10/C3 time constant could be lengthened but this would reduce the response time of the instrument to change in applied capacitance. The display drive circuitry within ME1 is switched to the required decimal point by $S 1 b$.

ASSEMBLY AND TESTING

Assembly of the p.c.b. is very straightforward as the use of the self-contained panel meter greatly reduces the component count. The panel meter is connected to the p.c.b. via ribbon cable and the assembly should be tested before fixing into the case.

When the unit is switched on, the display should be able to be adjusted for zero reading by VR2 on each range. To calibrate the instrument it is preferable to use a standard capacitor, alternatively comparison may be made with another capacitance meter. Calibration should be carried out at mid-range, using either a $1000 \mathrm{p}, 100 \mathrm{n}$, or 10μ standard capacitor. With VR1 adjusted accordingly on one range, the metal film resistors R6-R8 will ensure accurate measurement on the other ranges.

If a capacitor of over-range value is connected to the instrument, the standard over-range warning should be indicated whereby a 1 will show in the leading digit with the other digits blanked.

APPLICATIONS

The Capacitance Meter may be used to measure a wide range of capacitors including electrolytic types.

Cable capacitance can be an important factor in signal distribution systems and this may easily be measured with the instrument. Total capacitance may be measured, alternatively the capacitance per unit length is often required and may be established using a one foot or one metre length.

If the capacitance per unit length is known or can be measured, then the length of cables may be measured using the DP600.

COMPONENTS . . .

Resistors

Variable Resistors

VR1 50k Multiturn preset
VR2 50k

Semiconductors

D1	IN4148
TR1	BC237
TR2	BC237
IC1	ICM7555
IC2	Teledyne $9491 /$ Intersil 8069

Miscellaneous

ME1 LEDPM200 (see special offer)
Instrument case
P.c.b.

Ribbon cable
4P4T Slide switch
PP3 Battery connector
4 mm p.c.b. mounting terminals (2 off)

Capacitors

C1	10 n	Polyester
C2	10 n	"̈talum bead 16 V
C3	$22 \mu \mathrm{~F}$	Tantaly
C4	330 pF	Polystyrene

[^3]

Fig. 6. Template for front panel drillings

High frequency circuits require careful attention to be paid to p.c.b. layouts when siting components and interconnecting tracks. Parallel p.c.b. tracks act as capacitors which can induce spurious oscillation and noise voltages and the instrument may be used to detect unwanted capacitance before fault-finding in systems is required.

The capacitance of components such as switches and relays may be measured, also crystal capacitance may be measured to enable the conditions for resonance in a particular oscillator circuit to be established.

ON SALF NOW! Depopmar

Our book PE Popular Projects containing a selection of 19 popular projects is now on sale at newsagents and components stores. The book costs $£ 1.25$ from retail outlets and is also available for $£ 1 \cdot 50$, UK post paid, or $£ 1.80$ overseas surface post paid, from Post Sales Department (PE Popular Projects), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE 1 OPF.

Fibre optics are now in use as communications links. This article describes what they are and how they are made and used.
$\mathbf{M}^{\text {ost of us are by now familiar with decorative fibre optic }}$ lamps on coffee tables. The use of fibre optics for seeing inside the body has been shown on TV on more than one occasion, and one may have good cause to marvel at this wonder of modern science.

An optical fibre consists of a fine strand of glass made from two chemically dissimilar glasses, one inside the other. These two glasses are referred to as the core and the cladding. The fibre has the ability to act as a wave guide to electro-magnetic radiation, such as ordinary visible light, or infra red. Thus the fibre has the unique ability to bend light, and direct it along its length. It is this property that makes the use of optical fibres so interesting.

The transmission of visible light or infra red down an optical fibre is analogous to an electrical current passing down a wire. Thus a "signal" introduced at one end should ideally emerge at the other end unchanged in shape and amplitude. Why then is it necessary for us to advocate the use of an optical fibre for the transmission of signal, if an ordinary coaxial cable will accomplish the same result? To convert electrical signals into a light beam, pass this down the optical fibre, detect it at the other end, and then convert the light back again into an electrical signal is a little like using a sledge-hammer to crack a nut, isn't it?

PLEASE TRY AGAIN LATER . . .
As demand for telecommunications services increases, so the pressure on our telephone system grows. The advent of PRESTEL, viewphone, and computer data through conventional telephone cables can and will crowd out the ordinary
telephone conversations that also have to be carried. By the use of optical fibre communication systems the capacity for carrying signals is increased by tens of thousands. The reason for this is quite simple; the capacity of a carrier wave is related to its frequency. The frequency of light is many thousand times that of ordinary radio waves.

With optical fibres, the possibility of "crossed lines" will be reduced, because of the total lack of crosstalk between adjacent fibres. For military applications, such as onboard ship, communication cannot be jammed or interfered with, which is a major benefit for military use. Because of their smaller physical size, the existing underground trunking system used for the interconnection of telephone subscribers to the exch anges needs little if any modification to accommodate the new cable.

To the motorist, if nothing else, the lack of the familiar roadup signs will bring a sigh of relief. In oil refineries and other petrochemical plants, the risks of sparks causing fire or explosion are almost completely eliminated by use of fibre optic data links. The basic raw materials are commercially available today and, although the prices are high at present, these will fall dramatically when volume production gets under way.

MANUFACTURE

There are two major processes used for the manufacture of optical fibres. The British Post Office (now renamed British Telecom) have developed a glass-making process called the Double Crucible process. In this process, glasses of dissimilar composition are produced by melting extremely pure ingredients in a coaxial crucible. Once molten, the two glasses are drawn simultaneously from the bottom of the crucible to form a glass rod. As previously described, this rod consists of a central core encased in another glass, which forms the cladding.

The reason the ingredients have to be so pure, is that any impurities cut down the transmission properties of the glass. Looking at an ordinary glass shelf edge on, shows the glass to be green in colour; an optical fibre exhibiting similar properties would be useless as a transmission medium. An optical fibre has to appear as transparent as an open window, yet is equivalent to a pane of glass about a mile in thickness. To achieve this, the basic chemicals have to be purified to an extraordinary high level, and must only contain a total metal impurity of a few parts in a thousand million!

The glass rod so formed (called the preform) is then reheated until plastic, and carefully drawn into a fibre of a thickness which is comparable to that of a human hair. The fibre is protected by applying a silicone resin and polypropylene, which adds mechanical strength. A number of these conductors are then positioned around a steel strength member, and sheathed in polythene. Fibres of this type are now being manufacturered by British Telecom licencees, both in this country and abroad. GEC will shortly be producing fibres for the telephone network in this country, and Erricson likewise in Sweden.

The alternative method of production, which makes fibres of a different type, is called the Chemical Vapour Deposition method, and relies upon a glass-like layer (usually a phosphosilicate) being deposited on the inside of a quartz tube. After such a layer has been deposited, the tube is heated strongly, whilst it is rotated in a special lathe. This has the effect of collapsing the walls of the tube, resulting in the formation of a solid glass rod, which can then be reheated and drawn into a fibre, consisting of a narrow core-the deposited layersurrounded by the cladding - the quartz tube. Again, British Telecom have a development programme for this type of fibre, and volume production is being carried out in this country by such companies as STC and GEC.

BICC and Pirelli also have small development production of fibres of this type, which will in all probability expand in the not too distant future when the demand justifies. Pilkington Ltd has
two production sites producing fibres called "Hytran". One method is a modification of the double crucible, the other is by a process called "phase separable" glass.

LIGHT SOURCE

All the signals carried along optical fibres are in the form of light waves in the infra red part of the electromagnetic spectrum. These can be generated either by using a miniature laser or by using a light emitting diode. The high radiance l.e.d. is unfortunately restricted to low bandwidth short distance operations. By low bandwidth we mean a data rate of about $35 \mathrm{Mbit} / \mathrm{s}$. The alternative approach is to use a Gallium Arsenide laser which has a higher output, and is more suitable for operation over longer distances. It also has the ability to handle much higher data rate which are typically $140 \mathrm{Mbit} / \mathrm{s}$. Unfortunately, these tiny lasers are expensive (about $£ 500$ each), but it is confidently predicted that the price will dramatically fall in the future.

On the other end of the optical fibre, we have the light detector, which can be either a PIN diode or an avalanche diode. Unfortunately, the received infra red signal is very low (often less than 100 nW), and it is important that the detector gathers most of the received power, and efficiently converts it. The silicon PIN diode meets these criteria at an economic cost. The alternative use of the avalanche photodiode provides a higher sensitivity than the PIN diode, but is only superior at higher data rates above $1 \mathrm{Mbit} / \mathrm{s}$.

WHEN?

We already use, albeit in a limited way, fibre optic systems for the transmission of telephone conversations. By the end of 1977, several of the British interested parties had demonstrated the feasibility of optical fibres in operating systems, and the Post Office had run its systems operating at both $8 \mathrm{Mbit} / \mathrm{s}$ and $140 \mathrm{Mbit} / \mathrm{s}$. After the initial demonstration systems, it was found necessary to follow these up with production systems. The main reasons for this was for the Post Office to gain manufacturing and installation and operational experience.

In practice, 18 possible routes were chosen, and put out to tender. In April 1979 orders were placed to the value of $£ 6 \mathrm{M}$ for a total of 34 systems on 15 routes located throughout the British Isles. The total length of the routes is 450 km , giving a total fibre requirement of $3,600 \mathrm{~km}$. Thus orders have been awarded to STC, GEC and Plessey for the supply and installation of optical fibre transmission systems-both cables and equipment-for the expansion of the telecommunications network.

Optical fibre receivers, transmitters, l.e.d.s and avalanche photodiodes (Pilkington Ltd).

TRANSMISSION SYSTEMS

The transmission system is categorised by the data transmission rate, which can be $2-8-34-140 \mathrm{Mbit} / \mathrm{s}$. These, with the exception of $2 \mathrm{Mbit} / \mathrm{s}$, will all be used in the digital network being developed by British Telecom, and together with the system exchanges, lead to the Integrated Services Digital Network. The $140 \mathrm{Mbit} / \mathrm{s}$ (equivalent to 1,920 telephone channels) systems will be used in the trunk network. The typical route length will be 60 km and will require repeaters located at 8 km intervals. Six systems will be used on three routes.

The $34 \mathrm{Mbit} / \mathrm{s}$ (equivalent to 480 telephone channels) will also be used in the trunk network. In this case the repeater spacings need only be at $10-11 \mathrm{~km}$ spacings. Four systems of this type have been ordered for installation on two routes.

The $8 \mathrm{Mbit} / \mathrm{s}$ (equivalent to 120 telephone channels) will be used for both the trunk and junction networks. In the former, the route length is typically 50 km ("long haul") and for the latter the lengths are typically $10-20 \mathrm{~km}$. In all, 24 short haul systems of this type will be installed on nine routes. Because of their shorter lengths, they are usually located in urban areas. In

ing systems will follow over the next two years, with all of them becoming operational by Autumn 1982. In addition to these inland routes. a 5 nautical mile loop of optical cable will be laid by a cableship in Lough Fyne. Later, two repeaters will be inserted, to provide an operational submarine system.

THE FUTURE?

In the immediate future, it is anticipated that optical fibres will be used extensively in the trunk (or main) network, as opposed to the junction or local networks. The use of optical fibre in the trunk network offers an economic alternative to coaxial cables currently in use.

Unfortunately, the situation is somewhat different when one considers the junction network, as the use of pulse code modulation on existing systems reduces the economic advantages of optical fibres. What is certain, however, is that the cost of fibres will ultimately fall and thus encourage their use and adoption in this network. With the local network, ultimately the use of optical fibre will permit the transmission of television, and to this end, British Telecom are actively considering its introduction-a pilot scheme is under way in Milton Keynes.

The use of fibre optical systems in submarine cables could certainly offer some benefits over the existing system. These benefits include dramatic cost savings (some sources quote a reduction of 75 per cent), smaller physical size (with corresponding comparative ease of handling), and of course, longer distances between repeaters, further reducing installation costs, and ultimately providing higher reliability.

Although the use of optical fibres for this application is some way off, there are many other lines of development taking place, which will enable cheaper fibre with lower signal attenuation to be manufactured reliably. The transmitters and receivers will be fabricated in a single chip, rather than from discrete components as at present.

Potentially, these developments could transform the cost effectiveness and practical application of optical fibres over a period of a few years. The prospect for optical fibre is that it could carry the programmes of all eleven Television Companies broadcasting in the UK, and future developments such as 3D television, videophones, personal computers all down a single fibre!

However, this is some way in the future, but nevertheless implications on how the new technology will ultimately change our lives are well established. All that remains is for these systems to be introduced on a national basis. Let the light shine on.

A video camera connected via a fibre optic link to a monitor. The reel holding the fibre optic element and the modems can be clearly seen. (Pilkington Ltd.)

THE PRINTER YOU THOUGHT YOU COULDN'T AFFORD.... FREE/2 The SEIKOSHA GP80
 - 80 column impact matrix printer

*price includes
UK mainland delivery but excludes VAT.

Standard Centronics interface makes it ideal for most hobby Micro's
 parstuvwxyz\{1\}"ddadst ABCDEFGHI JKLMNOPQRSTL osüulu bcdefghi Jk lmnoparstuv

The GP-80 is a revolutionary new graphic printer with a difference, not only does it have an amazingly low price, but unlike its competitors the GP-80 uses a unique 'Uni-hammer' system and with a name like Seikosha* behind it you can be sure of its quality, reliability and precision construction. The GP-80 is an ideal printer for your system or VDU, and it produces a top quality printout.
If you would like a GP-80, complete the order form or telephone today. (*part of the Seiko

Printout sample of GP80 Watch Company).
Allow 14 days delivery, subject to availability, full refund if goods returned within 14 days.

* PRINT METHOD - Impact Dot Matrix
- Character matrix - 5×7 Dot Matrix
* CHARACTER SET - 128 characters
- CHARACTER CODE - ASCII
* PRINT SPEED - 30 characters/second
* CHARACTERS/LINE - 80 or extended chs.
- CHARACTERSINCH-12
* LINES/LVCH - 6 (9 for graphics)
* LINES/SECOND - 5 (7.5 for graphics)
* PAPER FEED - Pin Feed
* PAPER/WIDTH - Up to 8 " plain paper
- COPIES - 3
\star RIBBON - Ink roller built in cassette type(l colour)
* POWER SUPPLY - 100/117/220+ $10 \% 50,60 \mathrm{~Hz}$
* POWER CONSUMPTION - 15W(print) 5W (idling)
* DIMENSIONS - 17.25 dx 32.8 wx 13.2 hcms
* WEIGHT - $2.5 \mathrm{~kg}(51 / 2 \mathrm{lb}$.)
* NOISE LEVEL. Under 60 phon
* INTERFACES - Centronics fitted as standard
- WARRANTY - 12 months

Dealer Enquiries Welcome

Micro Peripherals

61 New Market Square, Basingstoke, Hampshire. RG21 1 HW

Telephone: 025656468 (4 lines)
Telex: 858575
Seiko appointed importer and distributor

Semiconductor $\operatorname{IPDATIT}{ }^{3}$ featuring

THE SHAPE OF THINGS TO COME

No doubt people who read this column regularly have become numbed by the endless stream of new microprocessor wonder-chips I keep raving on about. It wouldn't surprise me, I have become numbed myself by the relentless, almost boring, march of microprocessor technology towards the ever bigger ever faster and ever more capable digital processor. Well, relentless progress is one thing and a quantum jump is quite another, and this month I am glad to report a spectacular quantum jump in microprocessor technology, from Intel, who else?

The name tag "microprocessor" is rather inadequate to describe this new concept in silicon. Intel themselves call it a "micromainframe", and they aren't joking or shooting a line-the IAPX 432 will outperform many familiar mainframe processors such as the IBM 370-but it's not just a super souped up 8080, it's a whole new concept in digital processing on silicon which bears little relation to any of its microprocessor antecedents.

Yes, it's a 32 -bit processor alright, and it has the party tricks you might expect. 32bit integer multiply in 6.25 microseconds, 80 bit floating point multiply in 26.125 microseconds, address range of 2^{32} (over 4 billion bytes!), an 8 Megahertz clock rate, etc., etc. Amazing enough in themselves but they're not the most important features of the IAPX 432.

ADA

The new processor has been designed with the computer programmer and high level languages firmiy in mind. No more electronics engineers with logic analysers trying to discover what is wrong with the software, no more tortuous assembly language programs, this machine will a/ways be programmed in a high level language with all the increased programmer productivity that that brings, even for high speed "real-time" applications. If, for you, "high level language" means BASIC, forget it. The language to learn for the future is ADA, sponsored by the American Department of Defense and designed to incorporate all the best features of PASCAL but with enhancements to suit it for the real time applications which have traditionally. had to be programmed in assembler.

ADA was developed quite separately to the iAPX 432, but the new processor grew from the same body of experience and
academic research and it fits the new language exactly, to the extent that many ADA statements compile directly into 432 instructions. Even system programmers will use ADA, and recourse to assembly language will rarely, if ever, be needed.

The new processor was also designed from the start for multi-tasking and multiprocessor operation. Extra processing power can be added to a 432 system in the form of "attached processors" and, even better, the presence or absence of these extra processors can be transparent to the programmer!

Finally, the 432 has extensive hardware checking facilities to detect any software errors (such as trying to access instructions as data) which manage to slip through the formidable checking process already carried out by an ADA compiler.

Descending from those dizzy heights to good old fashioned hardware, the iAPX 432 is actually a three chip set of unprecedented complexity. Two of the chips, the iAPX 43201 and the APP 43202, act as the CPU or "General Data Processor (GDP)" as Intel call it. Together these chips house no fewer than 160,000 separate transistors, and they each have so many interconnections that a special 64-pin QUIP (Quad Inline Package) has had to be designed for them. The third device, the iAPX 43203, is called an "Interface Processor (IP)" and is used as a post-box for all GDP peripheral data transfers to attached processors, bulk storage devices, high speed printers and so on. There can be several 43203s in a system.

Believe it or not the GDP pair dissipates less than 5 watts and all three devices will run from a single 5 volt supply. With this sort of power just around the corner, the home computers of today will soon appear to be as quaint as the cats whisker wireless!

DIDDY AMP

Being an electronics person of great antiquity, the term "audio-amplifier" still stirs within me memories of the marvellous Mullard 5-10 and the other warm and glowing "bottle-jobs" of my youth. All you newcomers to the gentle art of audio amplification have missed the best bit without a doubt, because now all you need to perform this trifling function is a tiny square of plastic with eight puny legs, like the U410B from AEG-TELEFUNKEN, a "diddy-amp" if ever I saw one. Within this ridiculously inexpensive mini-dip package lives an amplifier which has a 40 dB closed loop gain
and a 1 W maximum output power. You would normally use these uninteresting objects in, say, toys, doorbells, $C B$ radios, intercoms and so on, where you would be well advised to keep the power down to a quite adequate 50 mW , because at this level the total harmonic distortion reaches 1 per cent. A companion device, the U411B, does the same job but condescendingly allows you to alter the gain by means of a single external resistor.
They're good-but they'Il never replace the $5-10$!

LED WARNING

Perhaps as a response to the Three Mile Island "incident", Siemens have produced a novel variation on the theme of seven segment l.e.d. numerical displays. When all is peaceful with the reactor, those in the control room will be reassured by rows of green numbers, indicating coolant temperature, reactor flux, and knocking-off time etc. If things start to get a bit hairy, those reassuring green digits will turn to a panic stricken red colour, and all concerned will be quickly informed of the impending melt-down so that they can finish the crossword or wave their colleagues goodbye or something

"It can't be serious . . . the display's still green!"
The quick change act is made possible by constructing each segment from two l.e.d. chips of different colours wired in antiparallel. When an external circuit senses that a reading is becoming dangerous, a quick change of drive polarity is all that's required to scare the hell out of everyone in eyeshot.

I don't have a part number for these saviours of the world, but they are part of the Siemens HD series of 10 mm digits, and they could no doubt be used in many less worrying circumstances.

A selection of readers' original circuit ideas.

Why not submit your idea? Any idea published will be awarded payment according to its merits.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

COMPUTER CASSETTE MOTOR CONTROL

THE circuit shown is a motor control system for an unmodified domestic cassette recorder, as commonly used for program and data storage with a small computer. It is necessary for the computer to be able to start and stop the cassette motor as required. This is achieved with control pulses. taken from two spare bits of an output port. One bit, when strobed low. will stop the motor, the other will start it, provided that the 'Play' switch on the cassette recorder is depressed. The computer can optionally sense the status of this switch on a one bit input port, thus providing for helpful messages to the
operator, such as 'Press play on the cassette recorder'. This input can also be used to commence the timing for a record operation. insuring that the data is not written when the tape is stationary.

The circuit also overcomes the annoying disadvantage inherent in most systems. whereby it is not possible to rewind a tape without some unplugging. because the motor does not start when the buttons are pressed.

ICla and ICIb form a bistable, whose output is connected via TR2 to the reed relay RL 1 . The relay interrupts the motor current via the socket provided on most
cassette recorders. L1 and L2 are small chokes incorporated to reduce the current surges near computer circuitry. but they could be omitted for simplicity. R1 and C2 detect switch closures, and automatically start the motor, unless the computer is permanently holding $\overline{\text { STOP }}$ low. thus overriding the operator's control. Should a cassette recorder not be wired as shown, it obviously does no harm to change the recorder's internal wiring for this system.
D. Greaves.

Romsey. Hants.

ELECTRONIC AIR FRESHENER

YOU have no doubt noticed how muggy the air is before a storm and how fresh it can be when the storm is over, even if the temperature has not changed. Have you ever wondered what caused the difference? No, not humidity, but the balance between two types of charged particles in the air; charges due to the electrical discharges we call lightning. These particles are called ions, and come in two versions, positive and negative. When the balance between these two is not equalised, the air can feel heavy and humid, or fresh and light. With an excess of positive ions the air is oppressive: with an excess of negative ions it is invigorating. This same effect causes the difference between vitality-lowering jungle air, and invigorating Swiss mountain air. No one as yet can explain why we are effected in this way, but negative ions have been used experimentally with great tem porary success to treat disorders such as asthma.

Your first step is to cut an aluminium cover for the machine and bend it as shown in the diagram. Drill three holes on each side to screw it to the wooden base. Now screw the ignition coil to the base so that it is central. If you intend to mount the dimmer on the base as I did it will be necessary to mount the coil at a third the distance from one edge to allow for the box. However. it would probably be neater to mount your control on the wall direct.

Now wire up according to the circuit. If you have the dimmer on the wall, connect the combination to a terminal block on the base board to anchor the wires as shown.

Now make a wick of wire wool and insert into the h.t. outlet at the top of the coil. Put on the aluminium cover you have made, connecting it to earth, and screw it down. You have now completed the working end of the negative ion generator.

A useful addition, for the sake of safety, is to fix a piece of zinc gauze across the top and bottom of the cover to allow free access of air. but which will keep inquisitive fingers away.

Now wire your terminal block to the light dimmer and switch on. If the dimmer has no mains switch, you will need to add one, but most now incorporate their own on/off switch. However, an extra switch in the line will add to safety as only you will now be able to switch the device on.

Having switched on you will be able to hear a high voltage discharge coming from the ignition coil. Now turn the dimmer up slowly till this discharge just ceases, and the air in your room will become like the Swiss Alps.

To understand the operation it is enough to know that a light dimmer contains a triac which is switched on part the way through each half cycle of the mains. The earlier during each half cycle it is switched on the more power it will pass.

T^{120520}
The capacitor in our circuit passes this rapid switching charge through to the igni tion coil at 100 times per second for 50 Hz mains, rather like the contact breaker on the car opening 100 times per second, while at the same time isolating the mains from being directly connected to the ignition coil. Therefore 100 high voltage pulses are produced per second, the amplitude of which are controlled by the dimmer setting.

To convert this high voltage to negative ions, a silent discharge of electrons is required from a pointed object. I first tried a bunch of needles, but later found that wire wool provided thousands of minute sharp points for the purpose.

Michael Farrington Tunbridge Wells,

THIS simple 'Snap' circuit is built around one 7400 (Quad NAND) which makes it very simple and cheap to build. The first two gates are in an R.S. flip-flop configuration, but both their out puts are held at " l ' by connecting both switched inputs to ' 0 '.

As soon as one of the switches is thrown then the gate has two 'I' inputs and so gives a " 0 " output. which is put into the other gate, and thus prevents it from giving anything but a " l ' output. Thus, while the switch is held the other switch cannot affect the state of the flip-flop. When the first switch is set back to ' 0 ', then the circuit is reset to its original stable state. The two other NAND gates are wired to invert the outputs from the flip-flop. Thus, when the switches are at ' 0 ' the i.e.d.s are not lit. but the appropriate l.e.d. is lit by the first switch to be set at 'l".

If s.p.d.t. push-to-make switches are used then the circuit will provide a sensisitive 'who pushed first' snap indicator which resets itself when both buttons are relcased.
J. Hobson.

Minister.
Sheppey,
Kent.

BURGLAR

ALARM

THIS consists of an astable multivibrator used as a key, and a lock circuit. This operates at a frequency of 3.2 kHz and uses a 1 mH choke as the load which acts as a primary of a transformer, when brought into close proximity to the lock.

The lock uses a r.f.c. (which has two diodes to prevent large voltages being induced onto it) to act as the secondary of a transformer picking up impulses from the key. These are amplified via TRI to a large enough level to operate IC 1, which is a phase locked loop tone decoder. The decoder output at pin 8 is high until the correct frequency is introduced to the i.c. This frequency is set by C6 and VR1 and R8 and adjusted to match the frequency of the key.

The output from the NE567 is buffered and inverted by TR2, the collector of
which operates one half of a CD4013, which is wired as a monostable and used to make sure only one operation of the NE567 at a time is accepted before switching the other half of the CD4013 which is connected as a bistable.

The Q output of the bistable switches TR3 which lights the l.e.d. indicates when the lock has been operated to arm the alarm.

The alarm function uses a NE555 timer as a voltage sensing device. The trigger on pin 2 of the i.c. sets the internal RS bistable when the voltage across C 12 is low before it is charged via R15. A voltage is tapped off pin 5 (the control voltage pin) and fed to the threshold pin 6 via a voltage divider. When the supply voltage falls due to an instantaneous drain on the battery (operation of the lights or courtesy light etc.) the voltage at pin 5 falls as well. If this level

OSCILLOSCOPE TRACE DOUBLER

MOST designs for trace doublers work on the principle of switching, at some preset frequency, between two or more inputs and applying a d.c. level shift to separate the traces. This chopped effect can be most annoying especially when viewing digital waveforms. This circuit switches between inputs midway along each sweep and has the advantage that d.c. levels between inputs can be instantly compared.
The sweep or X output of the oscilloscope is applied to VR! so that the input leve! can be adjusted to centralise the switching point. IC 1 is arranged as a voltage com-
parator such that when the input voltage from VRI exceeds the value set on the + ve input by R1 and R2 then the output goes low. This output is applied to the control input of IC2 which is a triple two input analogue gate.

The first half of the trace therefore contains information from input 1 and the second half from input 2 . Pin 7 of IC2 is taken to a -ve supply in order to accommodate negative input signals.
R. Macfarlane,

Aberdeen,
Scotland.
drops below the threshold voltage which is held there via C11, then the output resets and falls to a low state and stays there.

When this happens IC 4 output switches on TR5 allowing TR6 to switch on and operate the siren. The internal bistable of the NE555 is not set if the Q output of the CD4013 bistable is high. If it is low, then the alarm is armed and TR4 is off and allows C 12 to charge.

A stabilised supply is needed for the NE567 and CD4013 and is derived via R12 and DS giving $5 \cdot 1 \mathrm{~V}$. To suppress transients arriving from the car electrics a 18 V . Zener and a 0.1μ capacitor are connected across the supply.

Peter Robinson
Tyldesley,
Manchester.

RANDOM TUNE SELECTOR UNIT

THIS simple add-on device converts these 24 tune doorbells to give a random selected tune each time the doorbell is pressed. The tune selection switches are replaced with CMOS switches.

In the random tune select mode Si open circuit, the oscillator $\mathrm{ICl} \mathrm{a}, \mathrm{b}$ continuously clocks the decade counters
through the 24 switch positions. When the doorbell is pressed a tune is selected and plays through, regardless of the following changes in switch positions.
To select a particular tune $S 1$ is closed and S2 pressed to clock through the decade counters until the desired tune is found.

The unit shares the doorbell's 18 V power supply. This is the maximum voltage recommended for CMOS devices. The prototype worked on this, but some diodes in series with the supply lines could be used to reduce the supply to about 15 V .
J.R. Scarborough, Skellingthorpe, Lincoln.

(a)

56536

POINTS MOTOR CONTROL

THIS circuit was designed as a points motor control for use in model railway layouts. Normally $16-20 \mathrm{~V}$ a.c. are applied directly to a coil, the resultant magnetic field attracting a solenoid with a brass pin

attached to it. The brass pin in turn fits directly into the operating mechanism of the railway points. The disadvantage of such a simple system is that the solenoid may be burnt out if power is applied for too long, e.g. in the hands of a youngster.
Capacitor C1 charges via R1 from the half wave rectified output of D1. When switch S 1 is closed, the voltage present on Cl is sufficient to fire thyristor CSR1.

Resistor R2 limits the gate current to somewhere in the region $7-10 \mathrm{~mA}$. The thyristor now conducts and operates the points motor. Because Cl is now discharged and R 1 is too large to maintain an adequate level of gate current, the thyristor will turn off when the half wave rectified voltage waveform falls to zero, thus preventing any excess current flowing through the coil, even if $S 1$ is kept closed.

By suitable switching, the output of the unit can be routed to various parts of the model layout.
The unit should be fed from an a.c. source in order for the thyristor to turn off. A single pole two way switch is used to select left or right, then the appropriate points are selected on a 2 pole multiway rotary switch (maximum twelve ways with two single pole, twelve way wafers) and S 1 is activated.
T. J. S. Mowat,

Kincardine o'Neil,
Aberdeenshire.

FREEZER ALARM

THE unit was designed for low cost of construction and to be unobtrustive when in use. Current consumption in the quiescent state is around 0.5 mA .

The temperature sensor is a rod ther mistor whose resistance at $-25^{\circ} \mathrm{C}$ is around 14 k . Perhaps a bead type would be more sensitive (and more expensive) but hysteresis introduced by the relatively large thermal inertia of the rod allows the freezer to be open for several minutes for loading without triggering the alarm

Super alpha pair. TR1 and TR2 provide a sharp trigger for IC la. ICla and lb form a gated astable with a duty cycle between 2 and 4 seconds. The output pulses of IC la and Ib gate a second astable formed by IC Ic and Id. This astable generates a pulsed output of several hundred hertz.

TR 3 is driven via a 10 k resistor by the output from IC1. The transducer is a telephone earpiece which is just as effective but much cheaper than a miniature loudspeaker.

The thermistor is located at the top of the freezing compartment and left to cool for an hour. VRI is then adjusted so that the alarm is triggered by heat from a finger on TH1 for about 10 seconds.

E5536
If the freezer is in a remote location such as a garage the transducer may be connected by twin flex to the house. The alarm unit should be located beside the freezer.

A burglar alarm facility (dashed) can be added by wiring a microswitch or magnet operated reed switch in parallel with the thermistor. This switch closes when the freezer top is opened.

The on/off switch is a shorting plug

which is removed when the freezer is being defrosted. The plug is mounted on the top of the case to give a clear visual indication that the alarm is disabled. The plug would also be removed before loading or unloading when the freezer is located outside the house.
R. Mackay,

Grangemouth.
Scotland.

DIGITAL

POTENTIOMETER
${ }^{\mathrm{T}}$ is useful on many occasions to be able to feed a value set on a variable resistor into a microcomputer. Examples of this include cursor and graphics control. games, servo position, and even speed control. The easiest way to do this is to feed a voltage output from the resistor to an A to D converter; but this does tend to be expensive if 8 bit resolution is required. The circuit presented here achieves 8 bit accuracy from 100 k potentiometer at not very much cost.

Capacitor C1 charges up via VR1 until the threshold of the 3140 is reached. Ob viously the setting of VR1 will influence the charge up time. The output of the 3140 changes and in so doing loads the two four bit latches. IC3 and 4, with the current count value on the outputs of IC5 (a 14 bit counter). This latched value will vary between 1 and 255 using the values shown. over the sweep of the potentiometer. The counter continues until Q9 goes high. corresponding to a count of 256 . The output from pin 8 of the Schmitt trigger goes high very quickly after, resetting the counter and discharging CI by means of the transistor. As the counter resets Q^{9} goes low. and capacitor C2 starts to charge

slowly, until the threshold of the Schmitt is reached releasing the counter and stopping the discharge. This delay is necessary to ensure C 1 has plenty of time to discharge. The main oscillator should be adjusted to give a count of 255 with the potentiometer fully open, this corresponds to 107 kHz .

The data is continuously available at the latch outputs. If some form of Read/Clear is required the clear line should be connected to the processor port, otherwise it should be pulled up.
I. C. Lare.

Northwich,

DELAYEDSWITCH ON FOR SPEAKERS

THIS circuit connects the loudspeaker to a power amplifier a few seconds after the amplifier is switched on, thereby avoiding turn on 'thumps' and possible damage to the speaker

When the power is switched off, the speaker will be disconnected when the rail voltage falls by about 30%; the time taken depending on whether the amplifier is handling a signal. This disconnection protects the speaker from the d.c. offsets at the output. and oscillations that occur in many power amplifiers a few moments after being switched off.

If the amplifiers form part of a large system driven at high levels. and a power failure occurs, then the speakers will be disconnected very rapidly. Even if the power is immediately reinstated, the connection of the speakers will be delayed. thus turn on 'thumps' from preamps, mixing desks. crossovers, etc. will cause no damage.
D1 sets up a reference voltage at pin 2 on the comparator (IC1). At the moment of turn on, the voltage at pin 3 is zero and the output voltage swings negative, hence TRI and RLA remain off. C1 charges via RI and when the voltage on pin 3 of ICI exceeds the reference, the output (pin 7) swings positive. turns on TR2, which in turn connects the RLA and the speaker. When the power is disconnected, the supply rail falls rapidly (provided a speaker is being driven) and the relay will 'drop out' naturally when the supply rail falls to a fraction of its nominal value. In addition, CI discharges via R2 and when the voltage on pin 3 of IC! falls to some 70% of its original value. the comparator output will swing negative and turn off TR1, hence RLA and the speaker

The voltage on pin 2 of IC 1 is normally some 70% of that on pin 3 to allow for variations in the rail voltage which occur in the unstabilised power supplies common to all high quality audio power amplifiers.

Ben Duncan,
Tattershall,
Lincoln.

Power (\%)	Max. voltage	R1	R2	R3	R4	R5	RLA.	$\begin{gathered} \text { D1 } \\ \text { (A11 } \\ \text { BZX85 } \\ \text { or } \\ \text { BZX61c) } \end{gathered}$
$17 w$ into 8Ω 35 w into 4524	24 V	10K	2K	Link across	470R	1K2	24V	3v3
40 w into 8Ω 80 w into $4 \Omega 35$	35 V	10K	1 K 5	$\begin{aligned} & \text { I watt } \\ & 220 \mathrm{R} \end{aligned}$	$1 \text { watt }$ $1 \mathrm{~K}$	2K7	24V	3V3
80 w into 8Ω 150 w into $4 \Omega 47$	$147 \mathrm{~V}$	10K	1K	Link across	$\begin{aligned} & 1 \text { watt } \\ & \text { 1K6 } \end{aligned}$	4K3	48 V	3V6
150 w into 8Ω 250 w into $4 \Omega 63$	$63 \mathrm{~V}$	$\begin{aligned} & \text { I watt } \\ & 10 \mathrm{~K} \end{aligned}$	IK	$\begin{aligned} & \text { I watt } \\ & 560 \mathrm{R} \end{aligned}$	$\begin{aligned} & 2 \text { watt } \\ & 2 \mathrm{~K} 2 \end{aligned}$	$\begin{aligned} & 1 \text { watt } \\ & 6 \mathrm{~K} 8 \end{aligned}$	48V	4V7
250 w into 8Ω 500 w into $4 \Omega 85$	$185 \mathrm{~V}$	$\begin{aligned} & \text { I watt } \\ & \text { 10K } \end{aligned}$	IK	2 watt 1K5	$\begin{aligned} & 4 \text { watt } \\ & 3 \mathrm{~K} 3 \end{aligned}$	$\begin{aligned} & 1 \text { watt } \\ & 10 \mathrm{~K} \end{aligned}$	48 V	6 V 2
	All Resistors $\frac{1}{2}$ watt unless otherwise indicated.							

CABLE TESTER

Ahealthy cable is indicated by both green LEDs being lit and the red one extinguished. To give this indication, the voltages along the chain of LEDs must descend so that $\mathrm{Va}>\mathrm{Vb}, \mathrm{Vb} \geqslant \mathrm{Vc}$, and $\mathrm{Vc}>\mathrm{Vd}$. These voltages can only be maintained by currents flowing along each conductor as shown. Any single open or short circuit on the cable extinguishes one or both of the green LEDs. Multiple faults can result in the red LED paralleling the green ones and taking current from them.
J. A. Percival,
Clowne,
Derbyshire.

LEDS ShOULD be of the same type and manufacture

E0506

PROGRAMMABLE PULSE GENERATOR

THIS circuit describes a device which creates a series of audible signals each of which is about 0.25 second long with a gap of about the same length between each. It was originally designed to identify a number of remote sensors. Each remote would contain one of these circuits and be connected to a small radio transmitter. When triggered it would emit a specific number of "bleeps" and then reset itself to await the next trigger. The idea being that each remote sensor would transmit a dif ferent number of 'bleeps' and so the master on receiving the signals would be able to identify which remote was triggered.

Pins 8-13 of IC2 are wired up to create a latch, when a trigger pulse is detected at pin 13 (B). a trigger puise being logic 0 . pins 10 and 11 go high and via TR4 an oscillator IC3, operating at approximately 4 Hz . is switched on providing a clock pulse for ICI. Pins $1-11$ of IC 1 provide
outputs which are normally low and go high when the corresponding number of pulses is provided at the clock input. e.g., when five pulses are sent to the clock input, output 5 (pin 5) will go high. When a clock pulse is provided by IC3 and sent to the clock input of ICl it is also sent through an inverter, produced by pins 4.5 and 6 on IC2. The output of the inverter (pin 6) is used to switch on and off an audio oscillator via TR3. The audio oscillator is produced by TR1 and TR2, and is a simple multivibrator. An output can be taken from both sides of R6 and can drive a small high impedance crystal transducer. This output is the final output and it is here that I connected the transmitter mentioned earlier. Every time the clock oscillator goes low a "beep" will be heard in the transducer. The programmable part is achieved by creating a direct link from one of the numbered outputs to the reset pin
(pin 15) on ICl thus when a wire is connected as shown by the dotted line eight 'beeps' will be heard and then the circuit will reset itself. As the latch requires a low reset the pulse is first sent through an inverter produced by pins 1.2 and 3 of IC2.

Other uses for this circuit could include an automatic telephone dialler or a simple remote control system. The number of "beeps" can be increased by an indefinite degree by connecting another 4017 counter into the circuit. To do this simply disconnect pin 12 on the existing counter from the resistor R1 and take it to the clock input (p in 14) on the next counter, all other pins should be connected as they are on the first counter: the output pins on counter two can then be checked to see how many pulses they produce.
J. Chalmers.

East Grinstead,
West Sussex.

THIS circuit is for a simple light flasher that is for both domestic and disco use. It is built around a TTL SN7414N hex inverter Schmitt used as an oscillator. To obtain full lamp brilliance a triac is used. rather than a thyristor, and is driven by a BFY50 transistor. The output of the power supply is about 9 V which is dropped to 5.1 V , for the i.c., using a Zener diode.

The range of frequencies that the lamp will flash over is determined by C1, VR1 and R1. The formula for calculating the frequency is $f=1 /\left(R_{1}+V R_{1}\right) C_{1}$ where f is in hertz, C is in farads. R is in ohms
With the values shown in the diagram the lamp flashes about once every second to about 45 times a second. The lamp load that the circuit will drive is determined by the handling capability of the triac.
K. Badcock,
Kettering,

Northants.

VARIABLE LIGHT FLASHER

ELAPSED TIME METER

THE meter is connected across the mains supply to the device being timed, after any on/off switch or thermostat.

Because the display is only activated when a reading is required, and is not multiplexed, the circuit shows very little current consumed when counting, and a negligible amount on standby. It will run for at least a year on one PP3 battery.
The operation is as follows: when the device being timed is operating. 50 Hz pulses are fed from T1 through D37 into ICI . The pulse level is limited to 9 V by D38. IC1 is gated by IC2 to divide by 1800. The output of IC2 is stretched by R 17 and C1 and clocks IC3a as well as resetting ICI. IC3a gives an output pulse every 0.1 hour. and these pulses are counted by IC3b and IC4, the count being dis played in BCD format when SI is pressed.
The display l.e.d.s are shunted by diodes, and have other diodes in series, to prevent reverse voltages being applied to the l.e.d.s. The display brightness is kept low to enable the l.e.d.s to be driven directly by the 4518 ICs, and to reduce battery drain.

S2 resets the counters, and D40/D41 ensure that the output pulse from IC2 only resets IC 1.

The counter gives a maximum count of 99.9 hours. If a larger count is required, a 4017 could be inserted between IC1 and IC 3a. the latter being used for the first (tenths) display. The maximum count will then be 999.9 hours.
A. M. Tucker, Charminster Dorchester.

HEXADECIMAL DISPLAY UNIT

THIS circuit decodes a 4-bit binary number and displays the appropriate hexadecimal character $(0-\mathrm{F})$ on a 7 segment display.

The diode matrix would normally use 78 diodes in a conventional system but this has been reduced to 34 by using diodes in the matrix to stop segments lighting. All segments light otherwise.

Two 7442s are used to produce a 1 to 16 output from the binary input because the 74154 could not pull the segment driver inputs low enough through the diode matrix.

The use of 7400 s to drive the display allowed the unused input to be used for display blanking.
J. K. Semple. Plaxted, Kent.

[00572

MULTI-WAY TOUCH SWITCH

THIS circuit has bcen developed to climinate the possibility of activating the wrong combination of switches. Switch C can never be switched "on" when either switches A or B or both are 'on'. Circuit D enables switches A and B to be switched "on` simultaneousty.

This circuit senses the 50 Hz noise our body is always picking up and uses that as the control signal. IC 3 a is connected as a standard amplifier with a gain of about 50 . When a finger touches the touch plate, the noise voltage on the touch plate is amplified and then rectified by DI and filtered by $\mathrm{C} t$ to provide a small voltage change across R4, providing a logic 1 pulse at ICla. ICla and IClb acts as a memory.

When the finger is removed. point a remains at logic 1. The output of switch A goes from logic 1 to logic 0 . The I.e.d. DII goes on when point a is at logic 1 and will remain so as long as it is at logic 1 .

To enable switch C to be turned "oft" when switch A is 'on', point a is connected via an inverter to point c of switch C. This will result in the memory circuit of switch C being reset, and its output will go 10 logic 1 if it is at logic 0 .

Switch B is wired similarly to switch C. Switch D is wired to switches A and B at point a and b respectively to enable switches A and B to be switched 'on' simultaneously.

Further stages can be added to this
multi-way switch and different switching combinations can also be chosen.

Multi-pole function can be achieved by connecting an inverter to point a or its equivalent point in the other stages.

This unit was intended for direct interface with TTL. but the output could be used to drive a relay if heavier loads are required.

The knob of a door could be used as a touch plate. Hus using the unit as a burglar alarm.

Yee Yew Khuan.
Selangor.
West Malaysia.

CAR THEFT ALARM

86961

alarm will sound for about 2 minutes and you'll have about 20 seconds to turn the unit off after entering the car. These times can be changed by altering the RC . networks. If the diode D2 is connected
directly across the horn (or relay) the + connection will not be necessary.

Anders Ljungfeldt. Gothenburg.

Sweden.

THE desirability of a large range of in teresting voices is an indisputable requirement for all organists. This presents no problem when unlimited funds are available since the ubiquitous chip has provided the means to produce an almost infinite range of sounds controilable by tabs. drawbars. peddles, knee switches. etc. However. in the more modest range of organs, as few as three tabs only may be available on each manual, together with presets such as vibrato, wha, banjo. etc. This does allow a dozen or so combinations but it will soon become desirable to have more.
The new sounds are achicved by the use of two filter circuits either singly or in combination, both employing LM741 operational amplifiers to provide band pass characteristics. Both filters provide gain over a narrow band of frequencies but filter A has a gain of unity at low frequencies. By connecting adjusting resistors. the band pass frequency can be varied over a wide range whilst the band width remains constant.

Filter A will pass the fundamental frequency of the note played plus the harmonics which lie within the pass band. These harmonics being boosted by the gain in the pass band.

Filter B provides very similar boosting
characteristics to the harmonics but does not pass the fundamental.

Use of filter A or both will provide a basic flute-like tone but with the addition of the selected higher harmonics. The effect will be to considerably brighten the tone and particularly to increase the attack on the leading edge of the envelope. The addition of the upper harmonics will not produce edgy string-like sounds since the width of the pass band is insufficient, the sound being more bell-like.

By setting S4 to auto. VR8 is replaced by a field effect transistor used as a variable resistor, so that voltage control of the pass band frequency can be achieved. This allows the use of a waveform generator to control the filter frequency and provide repetitive effects of almost infinite variety.

The waveform generator circuit is based on the 8038. It can provide sine. square. triangular and ramp-type waveforms over a frequency range of 0.1 to 100 Hz approximately.

The chosen waveform is applied to filter B via the f.e.t. TR1 together with a d.c. bias which sets the nominal pass band frequency. The amplitude control sets the extent of the frequency sweep. Many combinations of pass band frequency sweep amplitude and repetition rate are possible.

Using the filters with their nominal pass band frequencies set by VR7 and VR8 will provide very bright voices when used on their own or will brighten any combination of the organs existing voices. Vibrato will enhance all the voices as desired. If the waveform generator is used with a sine wave to drive filter B an effect similar to vibrato will occur but only on the upper harmonics. With very small amplitudes this can be a very subtle and musical effect, particularly when the sweep frequency is matched to the tempo of the music being played. Many other modern effects can be produced with large amplitudes of sweep frequency, for example. when matched to the beat of the music or when very slow, allowing the pass band to sweep the whole range.

Some combinations of the controls will not be musical but many new voices and combinations of effects will enhance the performance of your organ.

The complete unit should be installed in parallel with the existing organ filters. The bus bar connections should be made to the filter inputs with the outputs going to the summing amplifiers.
B. F. Smith, Humberstone, Leicester.

NTENDED as an addition to microprocessor or VDU keyboards. this produces a different pattern of high and low tones for each key on the keyboard. Although it is not necessary to learn these different patterns. after some use the tone generator becomes a real aid to accurate typing.

The 8 -bit data from the keyboard is
loaded into a shift register IC 1 , and latch IC3a.c is set, when a keyboard strobe pulse is produced. Pulses from the oscil lator IC3b shifts the data so that the two tone oscillator IC4a, b produce a high tone for a 1 and a low tone for a 0 . These tones are summed and fed to a small loudspeaker. Counter IC2 resets the latch after the last data bit is shifted out.

VRI sets the speed of shifting, and VR2/VR3 adjust the high and low tones respectively. VR4 sets the volume. The circuit shown is for negative strobe pulses. but is easily rearranged for positive strobes.
T. P. Hopkins. Didsbury. Manchester.

NINE-CHIME DOOR BELL

THIS bell is programmed by the user to play a tune with anything up to nine notes. Instead of one oscillator playing the tune, two oscillators are used, which are tuned so as to give a chord on every note.

When the bell push is operated, the latch formed by IC2 is triggered and the decade counter IC 3 is reset. The output of the latch operates a switching transistor. This applies the supply voltage to ICs I. 3, 4. 5 , and 6. At this point, a slow oscillator formed by IC1 is started, the output of which starts the counter counting. A tempo control is provided which speeds up or slows down the tune.

Each output of the counter goes via a preset and diode which are commoned and the output voltage from each note (which is programmed by adjusting the pre-sets). goes to two voltage controlled oscillators formed by IC4 and 5. Each VCO has its individually controllable tune preset. In practice these are set up so the notes produced form a melodic chord. The output from each VCO goes to a simple power amplifier formed by IC6. This is provided with a simple volume control which feeds a loudspeaker.

When the last note has played the counter is automatically reset and the latch also resets. The power is removed from all the i.c.s except IC2, which is always receiving power so the door chime may be triggered.

Graeme Durant
Selby.
N. Yorkshire.

WITHOUT going into the controversy about the advantages of capacitor or inductive discharge ignition versus normal ignition, a circuit for inductive discharge ignition is presented here. It is a points assisted unit in which the coil load of 3.5 amps is removed to a switching transistor. Other features in the circuit are: rev limit. points bounce control. long dwell time. lower RFI than a CDI system.

Most ignition coils have a resistance (including ballast) of about 3.5 ohms and an inductance of some 11 mH . A time constant of 3 milliseconds results and some 10 milliseconds are needed for the coil to saturate fully after switch-on. In the circuit presented the coil is switched on for most of the time (long dwell) and is only switched off to fire the plugs for about I millisecond. (For very high revs this time can be reduced to $500 \mu \mathrm{~s}$.)

IC1 acts as a 1 ms monostable and with
its output normally low TR2. TR3 and TR4 are switched on. When triggered IC1 output goes high for 1 ms and switches TR2. TR3 and TR4 off for this period to fire the plugs. TRI acts as an inverter to trigger the monostable and the circuitry around VR1, Cl and DI act as a rev limiter and point bounce control. When the points open TRI conducts and Cl is rapidly charged bringing pin 2 of IC1 low momentarily before Cl charges up again. This triggers IC1. When the points close again TRI stops conducting and Cl discharges slowly through VR1. Points bounce occurs on closing and should a bounce occur a retrigger cannot occur because Cl has not yet fully discharged. Should the time constant of C1, VR1 be set very long then C 1 may not have dis charged when the next firing pulse is required. A misfire occurs and the revs are limited to the corresponding time constant
set by VRI. In practice VR1 should be set at maximum safe engine revs for effective point bounce control.
TR3 and TR4 are high voltage switching transistors. Each can handle 3 amps but gain at this current is low. Parallel operation reduces individual current to a point where gain is higher requiring less base drive.

The circuitry around D2 to D6, C5, C6 is for surge control and to prevent high reverse voltages across TR3 and TR4. Note that C6 has a much lower value than a normal car capacitor and this can be varied to tune the coil for best output using a 'scope. The value shown however is a good average value for most coils.
R. Immelman.

Somerset West.
South Africa

SIMPLE

PRESSURE

SENSOR

THIS unit was originally designed as part of a burglar alarm system. although. as it is capable of giving an out put which is almost linearly proportional to pressure, it may find many other uses such as a tactile sensor in a robot.

The circuit shown is a linear reading pressure sensor. The voltage at the output of the potential divider formed by the sensor and RI (which rises with increased pressure) is buffered by ICl and fed to the amplification stage IC2-the resulting out-
put is directly proportional to pressure The preset VRI is used to set the output voltage to a convenient level in the absence of an input. This output could then be fed into an A / D converteŕ for use in a robotic system.

The sensor is a piece of conductive foam of the type with which CMOS i.c.s are supplied. As the foam is compressed its resistance decreases. In the prototype the foam was sandwiched between a piece of p.c.b. material with a wide strip of copper removed from the middle, and a piece of plain circuit board. Built in this way the foam bridges the gap on the p.c.b although the foam could be sandwiched between two pieces of copper backed board with one terminal of the sensor being taken from each.

The resistor R1 should be approximately $\frac{d}{J}$ the value of the uncompressed resistance of the foam.

S. Draper,
 Sudbrooke
 Lincoln.

next

Ever wondered what effect your room

PRACTICAL

OUR AUGUST ISSUE WILL BE ON SALE FRIDAY, 10 JULY 1981

 200 Darth Service Raud, Brentwoad, Gisen

OUR free case has been designed to accept this special offer LE DPM 200 digital panel meter. By using this meter a wide range of accurate instruments can be constructed with the addition of only a few external components. The custom designed l.c.d. consumes only microwatts of power making it ideal for use in portable equipment.

Our offer price including VAT and postage etc., saves $£ 3$ on the normal 1 off price from Lascar.

SPECIFICATION

Input impedance:
Full scale reading:
Accuracy:
Power supply:
Power consumption:

Sample rate:

Auto-zero:
Auto-polarity:

Over-range warning:

Bandgap reference

(50ppm $/{ }^{\circ} \mathrm{C}$ typ.)
Digit height:
Low battery warning:
Operating temperature:
Overall dimensions:
Panel cut-out:
Display annunciators:
$>100 \mathrm{M}$
199.9 mV
0.05% of reading ± 1 digit
5-15V d.c.
$50 \mu \mathrm{~A}$ (in low power mode), typically 8,000 hours PP3 life
3 readings per sec.
No necessity to adjust for offsets
Automatic polarity indication eliminates the need to reverse input leads to obtain correct reading.
1 in leading digit with other digits suppressed
incorporated for excellent stability of reading
$15 \mathrm{~mm}\left(0 \cdot 6^{\prime \prime}\right)$ can be read at distances up to 10 metres
direct display, voltage threshold easily adjusted
$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
$72 \times 36 \times 12 \mathrm{~mm}$
$68 \times 33 \mathrm{~mm}$
many useful legends are built into the custom l.c.d. which may be activated as required

To: Lascar Electronics Ltd., Unit 1, Thomasin Rd., Burnt Mills, Basildon, Essex SS13 1 LH. Tel. 0268727383

पІा FREE CASE PROJECT

 MEIERTHE measurement of light intensity is required in many applications areas, including photographic exposure meters, dust density meters for environmental control, fog density meters, flame monitoring in heating engineering, in addition to general photometry experiments.
The DP800 Lightmeter may be easily assembled using the LE DPM200 Panel Meter and very few additional components. Extensions of the basic circuit are also described to widen the possible applications.

OPTICAL SPECTRUM

The optical spectrum is characterised by radiation having wavelengths between 10 nm and 1 mm and may be divided into two invisible sections (infrared and ultraviolet) separated by a central visible section. Parameters defining the visible section are generally termed photometric units and the radiant energy is characterised by wavelengths of about 380 nm to 780 mm . The term 'light' only relates to that part of the optical spectrum capable of being detected by the human eye.

The rate of flow of visible radiant energy with respect to time is the luminous flux which is measured in lumens. For light measurements the standard unit is the lux which is a measure of the luminous flux density incident upon a surface or illuminance (Ev) and is defined as 1 lumen $/ \mathrm{m}^{2}$.

One of the traditional components used in light measurement is the cadmium sulphide light dependent resistor. The device is easy to apply but produces non-linear variations of resistance with respect to incident light. Phototransistors were a later development whereby light falling upon the exposed base causes variations in collector current. Operation of phototransistors is usually linear over small ranges.

Luminous fluxes should be measured with photodetectors which produce a linear output with special correction to the spectral sensitivity of the eye. Silicon photodiodes are available which act as variable current sources with output proportional to luminous flux and which also provide faster switching than phototransistors.

Fig. 1 shows the relative spectral response of the human eye and of the photodiode used in the DP800. When a photodiode is reverse-biased the leakage current is independent of the applied voltage but a condition is reached when the current cannot be further reduced by shielding from irradiation; the current then flowing is known as the dark current which is typically $1.4 \mu \mathrm{~A}$ for the photodiode used (Fig. 2). The true photocurrent generated is the difference between the light current, when exposed to radiant energy, and the dark current.

PE Digital Precision Lightmeter DP800

Fig. 1. Relative spectral characteristics

Fig. 2. (Left) Graph showing photocurrent vs irradiation for the photodiode used

CIRCUIT

The circuit diagram of the basic luxmeter is shown in Fig. 3. Photodiode D1 is reverse-biased by the stable 1.2 V bandgap reference within the LE DPM200. The panel meter

Fig. 3. Circuit of Lightmeter
operates with 200 mV f.s.d. and the photocurrent is scaled to the correct voltage by R1 and VR1.

Typical responsivity of the photodiode is $0.7 \mu \mathrm{~A} / \mathrm{mW} / \mathrm{cm}^{2}$. It is possible to obtain a direct reading of lux by using the fact that $1 \mathrm{~mW} / \mathrm{cm}^{2}$ is equivalent to 200 lux, therefore 1 lux is equal to a photocurrent of typically $3 \cdot 5 \mathrm{nA}$.
The instrument may be easily scaled to provide ranges of varying sensitivity. For example, 2000 lux would produce $7 \mu \mathrm{~A}$ photocurrent and to produce 200 mV f.s.d. requires a resistance of approximately $28 \mathrm{k} \Omega$, similarly 20,000 lux requires a scaling resistor of $2.8 \mathrm{k} \Omega$. As a guide, the light energy in the UK on a sunny day can be in excess of $500 \mathrm{~W} / \mathrm{m}^{2}$ or 10,000 lux. The wide tolerance in manufacturers' specification for the responsivity of the photodiode necessitates a wide range of adjustment on VR1. Devices with closer tolerance are available but are a great deal more expensive.
The p.c.b. track is shown in Fig. 4 and the component layout in Fig. 5. Ribbon cable is used to connect the p.c.b. to the panel meter.

APPLICATIONS

The circuit can be calibrated by comparison with another luxmeter and is capable of measuring light intensity over a very wide range, making it useful in photographic and general photometry applications. Lux readings may be converted to specific photographic values to enable the instrument to be used as an exposure meter. In the human eye the pupil of the iris adapts the area of the aperture, according to the effective luminance in the field of vision. The aperture area of the pupil acts like a variable stop, so that the solid angle for the incident luminous flux on the individual points of the retina is variable in the ratio of about $1: 16$. In photography, for a film of given sensitivity (ASA/DIN rating), the exposure required for a specific lux reading is dependent upon the camera aperture setting (f stop) and the shutter speed (since a fast shutter speed reduces the amount of light energy striking the film).

Shutter speeds on cameras are usually in steps of $2: 1$ ($1 / 500 \mathrm{~s}, 1 / 250 \mathrm{~s}, 1 / 125 \mathrm{~s}$ etc.) and the aperture f stop numbers are also chosen to provide changes of aperture area in the range of $2: 1$ between adjacent f stop numbers, with higher numbers indicating smaller apertures. For a given lux reading, various combinations of shutter speed and aperture setting will produce the same overall exposure and the shutter speed may be selected according to subject movement etc. Examples of camera settings for ASA100/DIN21 type film are shown over.

Fig. 4. Printed circuit board

50308
Fig. 5. Component layout
$\begin{array}{llllll}\text { Bright Sunlight } & \text { f stop } & 22 & 16 & 11 & 8\end{array}$

shutter speed	60	125	250	500

For reduced lux readings, combinations should be chosen to provide greater exposure.

Cloudy Conditions	f stop	8	$5 \cdot 6$	4	2.8
	shutter speed 60	125	250	500	

ALTERNATIVE CALIBRATION

An alternative method of calibrating the Lightmeter is to use an 18% grey scale test card which is used widely for calibration of photographic exposure meters. These meters are calibrated to read correctly when directed at the standard grey scale which is of density such that 18% of the incident light is reflected.

Fig. 6. Method of incorporating offset adjustment

OTHER CIRCUITS

When making low level lux measurements of luminous objects an adjustable offset control may be added to the basic circuit to remove the effects of ambient lighting or of the photodiode dark current at very low levels. Fig. 6 shows the method of incorporating an offset adjustment using a voltage divider across a bandgap reference integrated circuit.

For darkroom use the photodiode may be mounted remotely from the instrument, via screened cable, and used to measure the exposure required. The enlarger projects an image of the negative on to the photosensitive paper and the photodiode should be positioned to receive the radiation reflected from the paper. The photodiode should only evaluate the central picture content.

Fig. 7. Ratiometric method of measurement

RATIOMETRIC MEASUREMENTS

The versatile nature of the LE DPM 200 may also be harnessed to provide ratiometric measurements, enabling the ratio of the most exposed to least exposed areas of negatives to be indicated, as shown in Fig. 7.

Ratiometric measurements are also useful in absorption experiments. Critical properties of materials, which are of particular interest in the fields of chemistry, medicine and pollution control, are characterised by absorbence. The general arrangement for absorbence measurements is

Fig. 8. Front panel template
shown in Fig. 9. The relationship between absorbence, A, and light intensity, E, is:

$$
A=\log \frac{E_{1}}{E_{T}}
$$

where $E_{1}=$ intensity of incident light
$E_{T}=$ intensity of transmitted light

Fig. 9. Making absorbence measurement

The two photodiode inputs to the panel meter represent the intensity of light transmitted through space and through a medium that absorbs light. Relative absorption of the medium will be directly displayed and absolute absorption may be calculated if desired by taking the log of the displayed value.

COMPONENTS . .

Resistors		
R1	1 k 5	carbon film 5%
R2	15 k	carbon film 5%
VR1	5 k	multiturn preset
VR2	50 k	multiturn preset

Semiconductora

D1 Photodiode RS305-462

Miscellaneous

ME1 LE DPM200 (see special offer)
Instrument case, front panel label, p.c.b., 4P3T slide switch. Ribbon cable. PP3 battery connector

A kit of components required for the Lightmeter is available at $£ 9.95$ inc. VAT (excluding LE DPM200 and case) from Lascar Electronics Ltd., Unit 1, Thomasin Road, Basildon SS13 1LH.

FREE OF CHARGE

With purchases over $\mathbf{5} 18$
(Only on request, at time of ordering) Offer closes $31 / 8 / 81$. Subject to availability.
Invented by Prof. Rubik of the Budapest A cademy of Design. this $3 \times 3 \times 3$ array of 27 cubes starts off with each external face of 9 unit cubes in one of six colours. Although it does not come apart, any single layer of 9 cubes can be rotated about its centre. quickly confusing the colour symmetry. Since there are
43,252.003.274.489,856,000 permutations, it may take a while to make just one face all the same colour again, and just a little longer to

CASIO VL-TONE. As featured in
"TOMORROW'S WORLD" 23 April, 1981 BECOME ANTINSTANT MUSHCIAN - NO EXPERIENCE NECESSARY.
Create your own music with a VL-TONE. You combine the sound, rhythm and tempo and the VL-1 plays it back... beautifully!

VL-1 Electronic Musical Instrument

and Calculator

(RRP £39.95)
ONLY £35.95
VL-1: Utilizes Very Large Scale Integrated circuit advanced technology. This complete 29 -note synthesiser records and plays back. The octave shift switch expands the range of the keyboard to almost 5 octaves
Preset sounds: Piano. Violin. Flute, Guitar, Fantasy and ADSR (sound wave that can be varied in over 80 million ways).
One-key play: Record the notes of a melody. The notes are replayed in correct se
quence simply by tapping the replay key and duration and tempo can be varied.
Auto play: Lets you re-listen to the melody you have played by the ONE-KEY PLAY
Manual play can also be recorded and played back. Notes are shown on the LC Display and individual notes can be added or deleted as required.
Auto rhythm: 10 built-in rhythms and a 19 step tempo control with digital readout. Can be incorporated in manual playing or added to your recording.
Facilities: LCD calculator display. note display and tempo display. Built-in amplifier and loudspeaker. Output jack. Pitch control. Battery power and light weight (438. 15.4 oz) allows playing anywhere. AC adapior $£ 5$.
Dimensions: $30 \mathrm{~mm} \times 300 \mathrm{~mm} \times 75 \mathrm{~mm}$ ($1 \frac{1}{9}$ by $11 \frac{3}{4}$ by $3^{\prime \prime}$) \qquad
"Son of success ... Even more impressive is the clav... The two harpsichords demonstrate the Casiotone's talent for sparkling. crystal clear tones". (Melody Maker) Polyphonic playing of 49 instruments over 4 octaves with 3 vibrato settings and susOutput jacks. AC powered. RRP $£ 325$. ONLY $£ 275$.

OTHER CASIOTONE KEYBDARDS

MT-30 Polyphonic. 22 instruments over 3 octaves. Battery/mains (RRP £115) $\mathbf{5 9 5}$. CT-301 Polyphonic. 14 instruments over 4 octaves. 8×2 rhythm accompaniments. Vibrato. delayed vibrato. Pitch control. Output jacks. AC only (RRP £285) \&245. CT-401 As CT- 301 but with Casio Auto Chord for one finger or auto accompaniment. Plays major. minor and seventh chords with bass. Integral sustain and hold. (RRP [345) $£ 295$.

A CLASSIC IN ITS TIME

Battery powered, with integral stand. Ideal for car, caravan, boat, domestic or office use, or as a pocket watch (leatherette pouch with window included).

Large LC Display of full digital time. Symphonic alarm (Mozart, No. 40) or buzzer, with snooze facility. Hourly time signal option. Integral speaker and amplifier. Rapid setting. Accuracy ± 15 secs $/$ month. One lithium battery lasts approx. 12 months. Dims: $9.3 \times 108 \times 48 \mathrm{~mm}$. ($\left.\frac{4}{8} \times 4 \frac{1}{4} \times 1 \frac{7}{9}^{\prime \prime}\right) .53 \mathrm{~g}(1.90 \mathrm{z})$. MA-1 Battery Alarm Clock
Similar to PQ-20 but has blue LC Display, nightlight, 3 position volume control. 3 AA batteries last 15 months approx. Dims: $43 \times 115 \times 76 \mathrm{~mm}$ ($1 \frac{3}{4} \times 4 \frac{1}{2} \times 3$ inches). Ivory coloured case. (RRP $£ 11.95$) ONEY $£ 9.95$
PRICE includes VAT and P\&P. Send cheques, P.O. or phone your ACCESS or BARCLAYCARD number to:

Dept. PE, FREEPOST 3164-167 Gast Road Cambridge CBt 108

CASIO'S MOST AMAZING WATCHES EVER

Display: Hours, minutes, seconds, am/pm, day and date. 12 or 24 hour format. Auto Calendar: Day, date, month, year. Alarm: 24 hour, with "On" symbol. Hourly Chimes: Time signal every hour. on the hour. Easily switched on or off. Professional Stopwatch: Lap times etc. from 1/100 second to 24 hours
Dual Time: Second time zone
Calculator: 8 digits, four functions. with constants and display symbols FINGER-TOUCH KEYBOARD. DIGITAL SPACE INVADER GAME with sound effects and scoring Water resistant case. Mineral glass. CA-90: $46 \times 36 \times 10.55 \mathrm{~mm}$. Black resin
 (RRP £29.95) ONLY £24.95 CA-901: $40.5 \times 35.2 \times 10.5 \mathrm{~mm}$. Metal (RRP £34.95). ONLY $£ 29.95$

SUMMER TIME

Now is the time to buy a Sports Watch for your holidays and outdoor activities. These models (except HV027) are WATER RESISTANT TO 100 METRES and suitable for swimming, snork elling. sailing and most other outdoor sports.
SEIKO DUAL DISPLAY
A nalogue display of time with sweep second hand. Independent digital display of time (12 or 24 hour format): day/date calendar: 24 hour alarm function: hourly time signal: $1 / 100$ second stopwatch. Instant setting. Luminous dial. 2 year battery life. Battery life indicator. Stainless steel case. HARDLEX glass. JET 088. Black outer bezel. 100 metre W/R case $36 \times$ $40 \times 9 \mathrm{~mm}$ approx.

CASIO ALARM CHRONOS

,
Full time (12 or 24 hour) and calendar display. Half-hourly time signal option. Alarm. 1/100 second stopwatch. Lap timing. Countdown alarm timer with repeater memory function. Time is always visible regardless of display mode. Nightlight. 9.65 mm thick case. Mineral glass face. Amazing 5 year battery life.

OTHER CASIO WATCHES

Sports Chronograph: F-500, Resin £9.95. Alarm Chrono: F-81. Resin £ 15.95 . ALARM CHRONOGRAPHS: Melody A/C: M-12. Resin $£ 19.95$. M-1200. S/S $£ 29.95$. LCD Analogue/Digital A/C: AA-81, Chrome $£ 29.95$. AA-82. S/S $£ 39.95$. AA-81G. Gold pl. $£ 49.95$. ** NEW! *** UC-50W S/S 50 metre Water Resistant A / C with full month calendar display (forward/reverse stepping), chimes etc $£ 19.95$.

CASIO CALCULATORS

Digital space invader game: MG-880 £10.95. MG-770 £12.95. With alarm/s calendar etc: BQ-1100 Biolator £16.95. With melody: UC- 360 £19.95. UC $365 £ 19.95$ UC $-3000 £ 27.95$. ML- $90 £ 19.95$. ML- $75 £ 17.95$ MO-1200 $£ 19.95$. ML- $2000 £ 22.95$. SCIENTIFICS: FX-81 $£ 12.95$. FX $100 £ 15.95$. FX-510 £19.95. FX-2700P £19.95. FX-180P £19.95. FX 3500P £22.95. FX-502P with FREE MasterPack (RRP £17.95) £74.95. FA-1 Adaptor $£ 19.95$.
With clock, alarms, stopwatch etc: FX-6100 £18.95. FX-7100 £24.95. FX 8100 (also has calendar) $£ 24.95$.
SENO 20p for illustrated catalogue of selecteo casio ANO SEIKO PRDOUCTS

SPECIFICATION
Measurement Range Resolution Accuracy

60-110dB
0.1 dB
0.5 dB

0NE of the health hazards under constant attack by environmentalists is high sound level. In factories, offices, airports and indeed most situations where men and machines are placed together, the monitoring of sound levels is very important. If sound levels are high, then work ate can be impaired, pain may be induced and even permaent damage to hearing may be caused.

The DP700 Noisemeter is an extremely compact instrument, with very low power consumption, which measures between 60 and 110 dB . True r.m.s. measurements are made by a new integrated circuit to achieve good accuracy from widely varying input waveforms. The instrument is simple to operate and will be found useful in checking sound levels at work or home. Many hobbies require the participants to be aware of sound levels including model aircraft and car rallying. Audiophiles can also use the instrument for checking sound systems and room accoustics.

SOUND MEASUREMENT

A graph of typical sound levels found in different environments is shown in Fig. 1. Intensity of sound covers an extremely wide range and if measurements are made with a conventional linear meter, then very large numbers are involved. Sound measurements are normally made on the dB scale to compress the readings and make the numbers more usable; also the human ear responds to sound logarithmically rather than linearly. It can be shown that if a certain sound level is taken as the OdB reference, then a 120 dB reading corresponds to an increase of $1,000,000: 1$ and long scale length instruments would be required to make such measurements.

The decibel (dB), or one-tenth of a bel (B), is defined as the logarithm of an electrical power ratio of 1.259:1. The number of $d B$ corresponding to the ratio of two powers is given by $10 \log \left(P_{2} / P_{1}\right)$, consequently the number of $d B$ corresponding to the ratio of two voltages is given by 20 log $\left(V_{2} / V_{1}\right)$ since power is proportional to the square of voltage.

The DP700 is designed to operate with an electret condenser microphone which converts sound pressure acting on a capacitive element into a voltage which is amplified by an integral i.c. amplifier.

The most accurate method of measuring alternating voltages is to determine the r.m.s. value. The majority of instruments which measure a.c. inputs employ averaging circuits which are scaled to provide r.m.s. indication provided the input waveform is sinusoidal. Sound waveforms are usually anything but sinusoidal and as the peak value moves further away from the mean (increasing crest factor) so the error in measurement using averaging

PE Digital Precision Sound Meter DP700

Fig. 1. Typical sound levels found in different environmental conditions.

The manner in which the corresponding dB scaling increases with voltage output from the microphone is shown in Table 1.

TABLE		
Voltage Ratio	dB	
1	0	Table of dB scaling
10	20	increases with output
100	40	of microphone.
1000	60	
10,000	80	
100,000	100	
$1,000,000$	120	

To achieve a wide span of readings a logarithmic amplifier is clearly required to convert the microphone voltage to a dB scaled voltage. Most sound level meters employ large numbers of ranges in order that approximations to the log value can be made over a narrow range. Such instruments normally employ centre-zero moving-pointer meters and can be awkward to use.

TRUE R.M.S. IC

The Noisemeter has been designed for ease of use and provides clear unambiguous indication from 60 dB to 110 dB without the need to change ranges. A new integrated circuit from Analog Devices, the AD636, is a laser-trimmed device which computes the true r.m.s. value of a complex input signal and produces a dB scaled output in addition to a linear output. The AD636 is designed specifically for interface with instruments such as the LE DPM200 panel meter and also requires fow supply current to complement the ultra-low power of the panel meter.

The block diagram of the DP700 is shown in Fig. 2. A transistor amplifier interfaces the electret condenser microphone to the AD636 which converts the true r.m.s. value of the a.c. input to a d.c. value scaled in $d B$ and is read directly by the LE DPM200.

E6506 Fig. 2. Block diagram.

CIRCUIT DESCRIPTION

The circuit diagram of the Noisemeter is shown in Fig. 3. Transistor TR1 forms an input amplifier to permit a variety of microphones to be used and the input level is adjusted by VR1. The AD636, IC1, computes the root-mean-square relationship:

$$
V_{R M S}=\sqrt{V_{I N^{2}}}
$$

where $V_{I N}{ }^{2}$ is the average of the squared instantaneous values of the input voltage over a nominal period. High crest factors of input waveform can be accepted without loss of accuracy.

The absolute value of the input signal is taken and converted to a current which is applied to a squarer circuit. The output current drives a current mirror through a low pass filter, the time constant of which is controlled by C 4 . The current mirror produces a current corresponding to the r.m.s. value of the input voltage and a voltage output of $-3 \mathrm{mV} / \mathrm{dB}$.
The OdB reference point is adjusted by VR2 which controls the internal reference current of the AD636. A range of 50 dB is possible with the device and the panel meter reading is offset to provide a 60 dB display with zero input voltage, such that the instrument is usable from 60 dB to 110 dB . The offset is adjusted by VR3.

Scaling of the panel meter is adjusted by VR4 which sets the reference voltage. The AD636 produces an output of $-3 \mathrm{mV} / \mathrm{dB}$ and the panel meter operates with a 300 mV reference voltage instead of the usual 100 mV . Operation of the panel meter is ratiometric such that:

$$
\text { Display }=1000 \frac{V_{I N}}{V_{\mathrm{REF}}}
$$

The instrument is designed around a self-contained microphone with remote on/off switch and connected via two jack plugs. Easier access to machinery etc. is therefore provided than if the microphone element was mounted in the case. The remote on/off switch minimises the already very low current consumption of the instrument due to the use of the LE DPM200 panel meter. The microphone may, of course, be detached for use in recording or other sound systems.

ASSEMBLY AND TESTING

Very few components are required in addition to the LE DPM200 to complete the instrument. To ease the calibration, four wire links LKA-LKD are provided which should be

Fig. 3. Circuit of Noisemeter.

Fig. 4. P.c.b. and overlay (right).
\square
[5SIS
TRIM TO THIS LINE TO FIT INSIDE MOULDED RECESS IN FRONT COVER

TEMPLATE

Fig. 5. Front panel template.
omitted at this stage. When complete the pcb is connected to the panel meter by ribbon cable.

A 3.5 mm jack socket mounted on the front case connects the input signal from the microphone and a 2.5 mm jack socket connects the remote on/off switch. Connect the microphone to the sockets and a battery to the PP3 connector.

Testing and calibration should be carried out as follows: Ensure that link LKA connecting VR2 to IN LO is removed and then insert the link LKB to short IN HI to COM. The offset controls are now overriden, a 100 mV d.c. reference voltage should be connected between IN LO and C.OM and VR4 should be adjusted to make the display read 33.3 to accommodate the $3 \mathrm{mV} / \mathrm{dB}$ output of IC1. Disconnect the reference voltage.

Remove link LKB and add link LKC. VR3 should now be adjusted to provide a display of 60.0 , corresponding to 60 dB reading with zero input. Remove links LKC and LKD, add link LKA. Connect a 10 mV r.m.s. sinewave of typically 1 kHz between Test Point A and COM. Adjust VR2 to return the display to 60.0 to establish the OdB reference point for the AD636. Disconnect the a.c. input and add link LKD.

Using a sound reference of typically 80 dB , or comparing

against another calibrated meter, VR1 should be adjusted to provide the correct reading for the particular microphone used.

COMPONENTS

Resistors

R1		
R2	$4 k 7$	
R3	$1 M$	
R4	$4 k 7$	
R5	$1 M$	
R6	$18 k$	Carbon film 5%
R7	$5 M 6$	
R8	$150 k$	
R9	$33 k$	
	$10 k$	

Variable Resistors
$\left.\begin{array}{ll}\text { VR1 } & 50 \mathrm{k} \\ \text { VR2 } & 1 \mathrm{M} \\ \text { VR3 } & 50 \mathrm{k} \\ \text { VR4 } & 20 \mathrm{k}\end{array}\right\}$ Multiturn presets

Capacitors

C1	$1 \mu 5$	
C2	$1 \mu 5$	
C3	$1 \mu 5$	
C4	$1 \mu 5$	Tantalum Bead 16 V
C5	10μ	

Semiconductors

TR1	BC237
IC1	AD636JH

(Lascar Electronics)

Miscellaneous

ME1 LE-DPM200 (see special offer). JK1 3.5 mm jack socket. JK2 2.5 mm jack socket. PP3 battery connector, instrument case, p.c.b., ribbon cable. Microphone electret condenser with remote switch type and preamp YB, 33L. A complete kit of components for the Noisemeter is available at $£ 29.95$ inc VAT (excluding LE-DPM200 and case) from Lascar Electronics Ltd, Unit 1, Thomasin Rd, Basildon, Essex, SS13 1LH.

The hardware and software exchange point for PE computer projects

IT DOES BOTH！

Sir－Without an assembler，the easiest way to store machine language programs is as a BASIC program of DATA statements， and poke them into the correct memory locations．Unfortunately this requires the conversion of hex instructions into decimal numbers and the writing of the BASIC program．The HECDEC program does both！

Simply enter the instructions as pairs of hex digits separated by Return and enter ＂X＂to mark the end of the data．The BASIC program will then be sent to the cassette． Then LOAD the program back and add any necessary POKE instructions．

Comments on the program：
Line 30 set the dimension of \mathbf{B} as required． Line 40 two hex digits must be entered．
Line 70 X terminates the data entry．
Line 160 six DATA items per line．
Line 200 an option to retransmit the program． RETURN exits．

No check is made for illegal data entry，this could be added if thought necessary．

10
20
REM HECDEC PROGRAM REM NOEL CAFFREY JAN 1981
$30 \mathrm{~K}=1$ ：DIM B（2б才）
40 INPUT＂HEX DATA ．．．＂；AS
$50 \quad \mathrm{I}=1: \mathrm{N}=0$
$60 \mathrm{~S} \$=\mathrm{MID} \mathbf{(A \$, 1 , 1)}: \mathrm{C}=$ ASC（S\＄）
70 IF S $8=$＂X＂THEN GOTO $13 \oint$
75 IF LEN（AS）＞＜2 THEN PRINT＊＊ ERROR ．．．RE－ENTER＂： GOTO 40
80 IF $\mathrm{C}<=57$ THEN $\mathbf{N}=\mathbf{N}+$ C－48
90 IF C >57 THEN N＝N＋C－55
100 IF I＝2 THEN GOTO 126
110 I＝2：N＝N＊16：GOTO 66
$120 \mathrm{~B}(\mathrm{~K})=\mathbf{N}: \mathbf{K}=\mathrm{K}+1:$ GOTO 40
130 PRINT＂：TURN ON TAPE RECORDER＂：SAVE

$150 \mathrm{~L}=1$ 历ी才：PRINT L；＂DATA＂；： FORI $=1$ TOK－I：PRINT B（I）；
160 IF I／6＜$>$ INT（I／6）THEN GOTO 186
$170 \mathrm{~L}=\mathrm{L}+10$ 万：PRINT：PRINT L； ＂DATA＂；：GOTO 190
180 PRINT＂＂；：
190 NEXT
200 PRINT：INPUT＂：ANOTHER COPY＂；W\＄
210 GOTO 15%
Noet Caffrey．
Castleknock．
Co．Dublin．

SCROLL CONTROL

Sir－While writing a program to convert hexadecimal to decimal and vice－versa for
my UK101，it became apparent that it was not possible in BASIC to prevent the screen rolling up and leaving the input message on the screen．（At least，this could not be done within a reasonable time．）As this was re－ quired，I wrote the following program which enables one to leave the input message on the lowest line of the screen and only the resulting output is rolled up．It does however require a machine code routine． The accompanying program shows how the procedure works and uses the trivial lbut short！）example of finding a square－root． Some of your readers may find this useful． especially for＂conversion－type＂programs； the output is very neat and uncluttered．

The routine as given works on an $8 k$ machine，memory should be restricted to 8100 bytes at start up．The machine code is stored at 1FA4 to 1FC6．For a $4 K$ machine lines 35 and 400 should be altered to read：－

35 POKE 11， 210 ：POKE 12， 15 400 DATA 4050， 35

The machine code then starts at OFD2， memory should be restricted to 4050
In passing it may be worth noting that in my hex．to dec．program I had to ensure that any input was valid by inputting it into a DIM field，this prevents any＂REDO＂ messages being put out by the interpreter which would spoil the effect．
10 REM NEAT OUTPUT ROUTINE
20 REM BY S．F．J．
30 GOTO 50
35 POKE 11，164：POKE 12， 31
40 LET X＝USR（X）
45 RETURN

50 READ SP，NI
60 FORI $=1$ TONI
70 READ RE
80 POKE SP，RE
85 LET SP $=\mathbf{S P}+1$
90 NEXT
100 FOR I＝ 1 TO 15：PRINT：NEXT
110 INPUT＂INPUT NUMBER＂；N
120 IF N $<=0$ THEN 300
130 LET S＝SQR（N）
140 GOSUB 35
150 PRINT TAB（10）；N；TAB（25）；S
160 PRINT TAB（10）；
170 FOR I＝ 1 TO 25
180 PRINT CHR \＄（132）；
190 NEXT
200 PRINT
210 GOTO 110
300 GOSUB 35
310 PRINT TAB（10）；N；TAB（26）； ＂INVALID！＂
320 GOTO 160
400 DATA 8100,35
410 DATA $169,0,170,169,64$

420 DATA $168,169,191,133,225$
430 DATA $169,211,133,226,161$
440 DATA $225,145,225,198,225$
450 DATA $169,255,197,225,208$
460 DATA 244，198，226，169， 207
470 DATA $197,226,208,236,96$
Stephen Jaworski，
Walsall．

POOLS AID

On a light hearted note，here is a program which turns your UK 101 into a punter＇s aid． Beats a blindfold and pin！

10 INPUT＂HOW MANY MATCHES ARE ON THE COUPON＂；U

20 INPUT＂HOW MANY LINES DO YOU WISH TO ENTER＂；V
30 INPUT＂HOW MANY MATCHES TO BE CHOSEN PER LINE＂；W
40 DIMA（W）：L＝INT （W＊RND（1）＋V）
50 FOR T＝1TOL：PRINTTAB（19） ＂THINKS＂：FORX＝1TOW
$60 \mathrm{~B}=\mathrm{INT}\left(\mathrm{U}^{*} \mathrm{RND}(1)+1\right):$ FORY＝ 1TOW： $\operatorname{IFA}(\mathrm{Y})=$ BTHEN60
70 NEXT： $\mathbf{A}(X)=B$ ：NEXT：FORZ $=$ 1TOW：FORQ＝1TOW
80 IFA $(\mathrm{Q})<\mathrm{A}(\mathrm{Q}-1)$ THENS $=$ $A(Q): A(Q)=A(Q-1): A(Q-1)=S$
90 NEXT：NEXT：FORY＝1TOW： IFT＞L－VTHENPRINTA（Y）；
100 IFY＝WTHENPRINT
110 NEXT：NEXT：PRINTTAB（30） ＂GOOD LUCK＂：END

It will be noticed that an inefficient rank－ ing method is used at 70－80．This adds to the suspense by slowing the execution con－ siderably，so that a typical run may take about a minute．

The writer will be happy to accept 0.01% commission from winners of half－a－million or so．

> R.J. Newman,
> Chesham, Bucks.

WARM START INTERRUPT

Sir－Concerning Mr．N．Climpson＇s Screen Editor on tape，from the July 1980 edition of Practical Electronics，／am sure／am not the only one who becomes infuriated when POKE 536，45：POKE537，31 has to be typed in every time the machine is warm－ started，to re－activate the editor．Hence／ have designed a very simple machine code routine，which will re－activate the editor automatically after a warm start：

50076 DATA $169,45,141,24,2,169,31$ ， $141,25,2,76,116,162$
50078 FOR I＝546 TO 558：READ A：POKEI，A：NEXT
50080 POKE 1，34：POKE 2，2
50082 NEW
（This should be added on to the end of the editor，and saved as a whole．）

All this does, is point the jump to warm start (addresses $\varnothing \varnothing \varnothing \emptyset-\varnothing \varnothing \square 2$) to a simple routine to put 45 and 31 into addresses 536 and 537, respectively and then jump to address A274 to warm-start.

This method of interrupting the warmstart can incorporate any routine (for example to re-activate the error message program of D.J. Anderson, see September PE). I hope this will be useful.

Martin Stiby,
Dunstable.

TRACE PROBLEM WITH
 CEGMON

Sir-Mr. Beckett's TRACE program works very well on the standard UK101, and promises to be very useful. With the CEGMON, however, there seems to be a problem, and I wonder if anyone can help.

When the TRACE program is loaded and $X=U S R(X)$ entered one of three things happens:

1. TRACE operates as intended. This happens rarely, maybe due to some random store contents not under control.
2. The keyboard locks up, and nothing further can be done.
3. TRACE operates only while the space bar is held down, and single stepping (a potentially useful feature) can be achieved by pressing and releasing the space bar.

Occasionally both 1 and 3 are available. Pressing any key makes the subject program run continuously with TRACE, and pressing the space bar stops it.

The trace program given with the CEGMON is inferior, since it destroys the printing format, and especially with graphics one cannot follow what is going on.

> R.J. Newman, Chesham, Bucks.

DYNAMIC CHANGEOVER

Sir-l refer to the letter " 2 MHz Conversion" in Microprompt, Practical Electronics, September, 1980. You note that the $1 \mathrm{MHz} / 2 \mathrm{MHz}$ changeover switch cannot be used while the machine is working. The circuit below allows this frequency change to be performed while running. It is not infallible, but if the machine does hang up, Reset followed by Warm Start will usually restore the program.

The 7400 is wired as a pair of crosscoupled NAND gates, to debounce the frequency change switch. The output is used to drive the 74157, feeding either 1 or 2 MHz to pin 9, wired to $\emptyset 0$ (pin 37 of $/ C 8$, 6502).

With reference to the new monitor for the UK101, I have found that programs recorded at 600 baud often show corruption when being loaded the 50th character of a line repeats the 49 th) if the machine is running at 1 MHz . The problem disappears if 2 MHz is used. Has anyone else noticed this? The original monitor does not show this problem.

D. P. Goulder,
 Comberton,
 Cambs.

PRINTER INTERFACE?

Sir-I wish to interface a Centronics printer to my UK101 and wondered if this could be done using the PE decoding module. If so, how? / would appreciate details on how to do this if it is possible.
N. Odell. Sheffield.

PS: The printer requires seven data bits and Strobe, Acknowledge and Busy lines are provided.
REPLY
Yes there is nothing that cannot be done with the Decoding Module!

You could drive your printer from Port B of the PIA, though you may need to buffer each data line with something like 7407 gates.

To get it to print, you will need to take the strobe line low while data is on the output of the port. One way would be to connect bits 0 -6 of the PIA directly to the 7 data lines of the printer (possibly via a buffer), and to connect bit 7 of the PIA to your strobe line.

Take the busy line to CBI. of the PIA and then all you need is some software. This will be a short program which picks up the SAVE vector and:

1) Configures the PIA for output on port 1

1a) Puts bits 7 high
2) Monitors the busy line (on CB1) until it is not busy
3) Outputs the character in the Accumulator to the port.
4) Takes bit 7 low, then high again to perform the strobe
5) Loops back to the UK 101 output routine

This would be a fairly short machine code routine that could be located in the spare space at $\emptyset 230$ hex.
D. E. Graham.

IMMEDIATE ERROR BANISHED

Sir-One minor irritation on the UK101 Superboard is the OM error message after the first command in immediate mode having just returned to BASIC from the monitor. This is especially annoying whenever a long instruction has been used. such as
FOR $X=7000$ TO 8191 : PRINT CHRS(PEEK $(X)):$ NEXT

Break existing link between IC29/11 and IC8/37.

Here is a patch of six bytes to avoid the OM error. The stack pointer is set to 255 (FF in hex) before the warm start.

OOOO	$4 C$	$F A$	2OJMP $\$ O 2 F A ;$
			TOTHE PATCH
O2FA	A2	FF	LDX\# $\$ F F$
O2FC	$9 A$		A2TSX
O2FD	$4 C$	74	JMP $\$ A 274$

The BASIC program pokes the patch into place.
5 REM TO AVOID OM ERROR MESSAGE
10 FOR $X=762$ TO 767 : READ Z:
POKE X,Z : NEXT
15 POKE 1,250: POKE 2,2
20 DATA 162, 255, 154, 76, 116, 162
25 END
Robin H. Tracy,
Coventry.

STRING ANSWER

Sir-In response to R. J. Newman's query in the May 'Microprompt' the function STRS (X) is so designed that a leading blank (ASC/I=32) will be inserted into the string from STR $\$(X)$ unless the number to be converted is negative-in which case the leading blank will be replaced by a minus $\operatorname{sign}(A S C)=45)$.

```
Eg.
    101 \(X=-8: X \$=S T R \$(X)\)
    110 PRINTX\$: ":";
    120 PRINT ASC(X\$) ; ASC IMID\$(X\$,2.
        1ノ
    RUN
    \(-8: 4556\)
```


Christopher Davies

Hove,
East Sussex.

TAPE VIEWER

Sir-Mr. Derry's letter (PE November 1980) was most welcome to one who has been making clumsy attempts to add autorun to Basic programs. It would be useful to add that POKE 515,0 should be the first executable instruction in any auto-run program, so that other data on tape will not load andfoul up the program.

His section on RAMless messages sent me to Edward H. Carlson's book "All About OSI BASIC in ROM" (Edward H. Carlson, 3872 Raleigh Dr. Okemos, Michigan 48864, USA) which inspired the following program for reading messages and programs without loading them into memory.

$1 A=61440: B=A+1$ 2 WAIT A,1:?CHR\$ (PEEK(B)); : GOTO 2

RUN the program, use CTRL/C to exit. (It may be necessary to stop the tape if unmodulated tone is playing through.) No error messages, no use of RAM (other than VDU RAM), and no waiting for ten minutes while EXMON loads! Any desired program line or message can be taken from the screen using one of the screen editors now available.

Mitch Park,
New Zealand.

E/MONITOR RELOCATED

Sir-In response to Mr. Walton's enquiry in the January 81 issue in Micro Prompt, / have successfully relocated the Extended Monitor to run at $\$ 1800-\$ 1$ FFF leaving 6 K below it.

The Extended Monitor uses an address table to select the function required. The ASC/I value of the letter typed in is converted into an index which points to an address within the table. The 2 bytes of the address are fetched and pushed onto the stack, followed by the Processor Status Word. Contral is then passed to the subroutine by executing an RTI (Return from Interrupt) instruction. The return address for the subroutine has been pushed onto the stack prior to this.

The address table is located at \$0960-\$0999 and is shown in Fig. 1. The procedure for successful relocation is as follows:
(1) Make a new copy of the program at the required location using the relocation facility.
(2) Determine the relocation constant fthe amount by which the starting address has been increased), e.g. to locate at $\$ 1800$, the relocation constant is $\$ 1000$.
(3) Add the relocation constant to $\$ 0960$ to give the base address of the new address table. Also, add the relocation constant to the addresses stored within the table.
(4) Step through the table starting at the base address you have calculated and change all the incorrect table entries (this will be most of them).

Character	Table Address	Contents
(a)	0960	OB53
A	0962	OBB3
B	0964	0 C 9 A
C	0966	0 CBF
D	0968	0 CD 2
E	096A	0 C 57
F	096C	0 DA 3
G	096E	0 BCI
H	0970	OE33
1	0972	OC12
J	0974	0809
K	0976	0 BAF
L	0978	0F43
M	097A	0D91
N	097C	0D35
O	097 E	0F 29
P	0980	0BB0
Q	0982	0D14
R	0984	ODB7
S	0986	OEC 3
T	0988	0C6E
U	098A	084C
V	098C	0F3B
W	098E	OD7E
X	0990	0BB2
Y	0992	0BB 1
Z	0994	0FB7
Return Address	0996	081E
Brkpt. Routine	0998	0 BC 7

Fig. 1 Extended Monitor Address Table

The new version of the Extended Monitor is now ready to run. If after jumping into the new version, all seems well, make sure by erasing the old version using "Fill".

Fig. 2 shows the table values required to run at $\$ 1800$ and incorporates the following changes:
J transfers control to $\$ 0300$
U Jumps to Cold Start Basic (\$BD11)
Z jumps to the old monitor at $\$$ FEOO
Having relocated the Extended Monitor, you now need to either burn it into EPROM or else make a new self-executing tape. As the procedure for making a new tape is rather long, / suggest that anyone wishing to know how to do this should write to me (via PE-Ed).

John Riley, B.Sc., Coventry.

Character	Table Address	Contents
(a)	1960	1 B 53
A	1962	1BB3
B	1964	1C9A
C	1966	1 CBF
D	1968	1 CD 2
E	196A	1 C 57
F	196C	1 DA3
G	196E	1 BC 1
H	1970	1 E33
I	1972	1 C 12
J	1974	0300
K	1976	1 BAF
L	1978	1 F43
M	197A	1 D 91
N	197C	1 D35
O	197E	1F29
P	1980	1 BB 0
Q	1982	1 D 14
R	1984	1DB7
S	1986	1EC3
T	1988	[C6E
U	198A	BDII
V	198C	1F3B
W	198E	1D7E
X	1990	1BB2
Y	1992	\|BB1
Z	1994	FE00
Return Address	1996	181E
Brkpt. Routine	1998	1 BC 7

Fig. 2 Address Table for Extended Monitor at $\$ 1800$

M/C FOR PSG

Sir-When using the programmable sound generator, it soon becomes apparent that machine code is much faster and more efficient on memory than BASIC. But even here, with several more complex sound effects, some sort of loader is required. The following program takes data from a table

and loads it into the PSG registers. Put the starting address of the table in \$EO, \$E1 (lo byte first). The table should follow the format:

REGISTER

CONTENT
REGISTER
CONTENT
REGISTER
CONTENT
\$FF
To execute GO222

0222	A000	LDY\#\$00
0224	B1E0	LDA(\$E0), Y
0226	C9FF	CMP $/$ \$ ${ }^{\text {PFF }}$
0228	D001	BNES0228
022A	60	RTS
022B	8DF0F1	STASFIF0
022E	C8	INY
022 F	BIE0	LDA(\$E0), Y
0231	8DF1F1	STASFIFI
0234	C8	INY
0235	18	CLC
0236	90EC	BCC \$0224

The addresses at \$022C-D and \$0232-3 will need altering for PSGs not located at \$F1FO and \$FIF1.

T. D. Allen, Poole.

OVERLOADED BUS

Sir-There is a fault in the UK101 circuit which may well have put a number of computers into cupboards gathering dust. It concerns the loading on the address bus line A10. This processor line is very heavily loaded with LSI integrated circuits 116 RAM inputs and 5 ROM inputs). It is also expected to drive one full t.t.l. load, namely IC21b- $\frac{1}{16}$ of a 7404.

I had rather a lot of problems getting my UK101 to work -5 or 6 faulty t.t.l. circuits and a solder bridge which destroyed two 74123 s. Since getting it working, one ROM and three RAMs have failed. My own preference for a Buffer, after giving considerable thought to the subject, is to use a $74 L S$ output with a pull up resistor to the +5 V line. This resistor should ideally be a constant current resistor and l've realised that $\frac{1}{16}$ of a CD40698 with input shorted to earth is the ideal sort of resistor - the gate output, of course.

The circuit I propose to use is shown below left, and I we/come comments on this.

On further consideration of the UK101 circuit / realize that the processor R/W line needs similar treatment. A8 and A9 also look poor, but I would guess that IC171, a 74LS139, has inputs which cause fewer problems.

There are some spare t.t.l. inverters available in IC18 so all one really needs is a CD40698 to make these changes, though I will have to open the case of my UK101 to check this.
J. D. Owen,
Pendine, Dyfed.

VARIABLE INTENSITY

The tone control occupies 1 K of memory between $D 400$ and $D 800$ (just after the video refresh memory). To save space and money the unit uses the address decoding of the UK101. A SEL signal is derived from pin 9, IC20, which decodes A10, A11 and A12, A13, A14, and A15 (via IC23). The unit also uses the video address bus (VAO \rightarrow VA9) and is therefore wired to the compukit board and not taken via the expansion sockets.

SEL takes the 2114 s WR low, enabling data to be written into the 2114 through an LS243 (tristate buffer) which is enabled by SEL. $\overline{S E L}$ is also required to take control of the VA bus from the binary counters. This is also the function of VA (pin 6, IC56) for the video refresh memory. $\overline{V A}$ and SEL are therefore decoded and a new signal VAS (video address select) is formed. The p.c.b. track to pin 6, IC56 must be cut for this function.

In normal operation the binary counters address the 2114 through the VA bus. The data corresponding to the location's intensity then appear on the 2114 's data bus. This bus is directly connected to the D-to-A converter (non latching). NB: The DAC 3851 used gives a current output, and so a trimpot is used to obtain the correct voltage. Some modification may be required for D/A converters with voltage outputs.

A point worth noting about the Compukit's video circuitry is that reverse characters, i.e. black on white, is available from pins 4 and 5 of IC70; this is much

clearer for test than the standard white on black display. It is well worth having this feature switch-selectable or even programmable by 'POKEing'.
R. Mark Charles.

ExtraCases!

30p (plus postage) To Regular Readers.

FOLLOWING the Free Case gift with the May issue we have a quantity of cases available as extras to regular readers (at UK and BFPO addresses only) for 30p plus postage-the normal price from Lascar is $£ 1.95$ plus VAT and postage.

Extra cases-as used to house the Light, Noise and Capacitance Meters published in this issue-can be obtained from PE by sending in two correctly filled-in case coupons (name and address on both coupons please) cut from PE, a 30p postal order and a $15 \frac{1}{2} p$ stamp (a case coupon is given here, another will be given next month). We can only accept 30p postal or money orders (NOT CURRENCY OR CHEQUES). Do not enclose any correspondence. Incorrect or incomplete orders will not be accepted-your stamp will be used to return them.
Send two completed case coupons cut from PE with your 30p postal order (payable to IPC Magazines Ltd), and a $15 \frac{1}{2}$ p stamp to:

PE Instrument Case Offer, IPC Magazines Ltd., Westover House, West Quay Road, Poole, Dorset. BH 15 1JG.

Sorry we cannot undertake to send extra cases to overseas readers.

Copies of Patents can be obtained from: the Patent Office Sales, St. Mary Cray, Orpington, Kent. Price $£ 1.45$ each.

SONIC HOLOGRAPHY

The second patent application from Robert Carver of the USA (WO 80/022 19), filed under the Worldwide Patent Cooperation Treaty, gives hitherto undisclosed details of what the Carver Corporation sells in the USA as the "Sonic Hologram Generator". This exotic description has irritated some reviewers. But those who have heard the Carver sonic holography pre-amplifier in action confirm that it is capable of producing a surprising surround of sound from ordinary stereo recordings and just two loudspeakers fed from a stereo amplifier. The sonic holography patent, like the Carver amplifier patent referred to last month, is lengthy (nearly 150 pages including drawings) so also like the amplifier patent can cost up to $£ 20$ to buy. But it is, like all patents referred to in this column, available for free inspection at those libraries in the United Kingdom (e.g. the Science Library at the London Patent Office) which offer the public access to a full collection of British and foreign patent applications.

The holography patent postulates theories on audio reproduction which will not be accepted by all engineers. Essentially Carver argues that stereo reproduction through a pair of loudspeakers can be improved if the natural cross talk between loudspeakers is eliminated. It is of course inevitable that both ears of the listener will pick up sound from both loudspeakers, whereas anyone listening through headphones will hear the left channel only
through the left ear and so on. It has previously been shown by various workers that binaural recordings made with a dummy head system (microphones set in the ears of a dummy head) and intended for replay through headphones, can be successfully reproduced through loudspeakers if there is electronic compensation for acoustic cross talk. Carver is in effect proposing a similar, but refined, technique to enhance the loudspeaker reproduction of recordings intended for loudspeaker reproduction. But it is clear that his thinking centres on recordings made in a typically transatlantic fashion.

Figure 1 shows how instruments $12 \mathrm{a}-\mathrm{g}$ of an orchestra are recorded using a spaced pair of microphones M1, M2. Figure 2 shows how the recording is then replayed to a listener P through spaced loudspeakers LS, RS. It is here important to note that the use of the widely spaced pair of omnidirectional microphones is much less common in Europe than in the USA.

Here it is more normal to use a closely spaced or "coincident" pair of directional microphones. In the Carver example, sound from instrument of the orchestra $12 f$ is picked up by microphone M2 and then, after a short delay and at reduced level, by microphone M 1 . When the recording is reproduced through loudspeakers LS, RS that sound is produced first by loudspeaker LS and then, after a short delay and at reduced level, by loudspeaker RS. Due to acoustic cross talk, when speaker LS reproduces the sound of instrument $12 f$ it is heard first by the listener's left ear along the path Le and then, slightly later, by the listener's right ear, along slightly longer path Lr. When, soon after, the sound of instrument $12 f$ is reproduced by speaker RS, it is heard first by the listener's right ear
along path Rr and then, slightly later, by the left ear along slightly longer path RI. Carver argues that stereo reproduction can be enhanced, to produce a nearly total dimensionalized effect whereby it appears that the music is in a sense surrounding the listener, if acoustic cross talk is cancelled so that the left ear hears only the left loudspeaker and so on. Instrument $12 f$ is now heard first from the left loudspeaker by the left ear, and then, shortly afterwards, from the right loudspeaker by the right ear. In other words a spurious image of the sound follows the real image. This understandably confuses the ears and brain into believing that, as Carver puts it "the hearer somehow appears to be within the sound or in some manner surrounded by the various sources of the sound".

Figure 3 shows the basic circuit. The right channel input $R(I N)$ is split and one signal fraction sent via frequency equalizer $A(R)$ to a summing junction $C(R)$. The remaining signal fraction is fed via phase inverter $B(R L)$ to an array of four time delay frequency analysers b1 (RL), b2(RL), b3(RL) and $b 4(R L)$. The phase inverter shifts the signal by 180° and splits it into four parts which are each delayed by a different period of time in the four delay devices. These devices also all modify the signal level as a function of frequency. The four, differently delayed, outputs are summed at $C(L)$ with a fraction of the left channel input $\mathrm{L}(\mathrm{IN})$. This has been frequency equalized $A(L)$ in mirror image circuitry which also feeds the summing junction $C(R)$ with a left channel signal fraction processed at B (LR) and b1(LR) etc. So each of the two output channels contains an anti-phase, multipledelay signal crossed over from the other channel. The crossover signals compensate for acoustic cross talk between

Fig. 1

Fig. 2

oudspeakers in the following manner. The listener's left ear first hears a sound direct from speaker LS along path Le. At the slightly later time when the listener's right ear would hear the same sound from loudspeaker LS along slightly longer path Lr, it also receives the delayed replica of that signal in anti-phase from speaker RS. There is thus cancellation at the right ear so the left ear hears only the left speaker.

An array of four different delay devices is used in each channel cross over to compensate for listener head movement. As the head and ears move to a different position so a different time delay in the compensating signal comes into play. So a compensating sound superimposed on one channel will still arrive at the same time as the main sound from the other channel. Carver suggests that in practice delay periods of $110,180,370$ and 690 microseconds are suitable to create a comfortably large listening window.

Readout...

 A selection from our Postbag

 A selection from our Postbag}

Readers requiring a reply to any letter must include a stamped addressed envelope. Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

CB: Learn from US mistakes

Sir-r've followed, as an observer, some of the developments in the UK concerning CB Radio, and I'm frankly amazed at the ridiculous claims being made for it.

As background, I witnessed the institution of CB on 27 MHz in the US in 1958 , and its various stages and problems through to the present (at least to October of 1979, when we came to Saudi Arabia for a two-year contract).

The basic errors made in the US (and I see the arguments being made to repeat the errors in Britain) were many. First, the band chosen was poorly suited for the stated objectives. Second, because the temptations for illegal operation were so great, and the controls so lax, even the stated objectives were forgotten to the point that those people who had a "legitimate" use according to the regulations were pushed out. The Federal Communications Commission has been notably incapable of doing more than putting a finger in the dike (part-time). Your policing agency will have the same problems, because the situation is identical.

Now, CB has some good points and good uses. But they are almost entirely related to individual use of the medium. Group activities and uses tend to be a waste of time and effort. because of the massive illegal use.

In the US at least (and the situation may be quite different in the UK), almost all the uses to which CB is put are duplications of things which are already available in other services;
however, the use of $C B$ is so easy that the other solutions are ignored. In short, 99% of what goes on on Stateside CB shouldn't even exist!

Let me list situations:

1. Emergency communications are quite often worthless on CB. Hoaxes are perpetrated daily. In Houston, Texas (our home), a "command centre" was set up in one of the downtown tall buildings to handle accident reports to the police from commuters on CB. Within a matter of months, the police began to ignore reports from even this well-planned and wellstaffed operation, because of the numerous false calls. Additionally, legitimate emergency communications are deliberately disrupted a large majority of the time.
2. Profanity is rife on CB, and I don't mean "Hells" and "Damns". No subject of anatomy is too delicate to discuss in detail. no vulgar terms are taboo, and there is no way to protect your family. Anonymity works strange changes in the human animal.
3. After a short while, the frustrations of the whole thing cause the individual to either give up, or he decides to fight it. If he gives up. the remaining users gain (less interference) and he loses (he doesn't have the usage he desired). If he decides to fight it, everyone loses. First, he tries higher power. When that loses its splendour, or he finds that there are those who have more power than he does, he looks for something further. So he figures out a way to get away from the crowd (in the US they're
called "Sliders"). Now he"s got high power and he can move out of the band. Next facet: Most of the manufacturers of illegal equipment don't come anywhere near producing anything with any quality. The result is usually (and this can be documented) a 200 watt amplifier, for instance, that dumps 20 watts on channel 19 , and the remaining 180 watts somewhere between 30 and 500 MHz (Murphy`s law says most of that will be on discrete TV channels).
4. Now, what happens next? Well, since he's illegal, there are few things in which he can legitimately engage, and eventually he decides that there's no fun in it, so he looks for new worlds to conquer. What's left? Well, he can move out and bootleg on the ham bands. This is a common occurrence is the US. He can have all sorts of fun creating havoc, and really disrupting things.
5. Many of the CB'ers in the US finally get disgusted and move up to legitimate Ham Radio via the licence route. Ham Radio is where they should have been in the first place.

Okay, for those who get disgusted and quit. and those who get disgusted and upgrade to ham radio, what purpose has CB served? With the illegality that is rampant (at least in the US), CB serves no purpose which justifies its existence, even for those who stay in it. And, Great Britain appears not to have learned the lessons from observing the mistakes of the other countries.

One last observation: I see in several of the magazines advertisements that suspiciously look like offers by UK commercial establishments to sell illegal equipment. CB is getting off to a great start! Why, some magazines print articles on how to build equipment that's illegal to use, and even tell you it's illegal to use it! Sounds slightly hypocritical to me.

I enjoy your magazine. The layout's good, the articles are interesting and it's easy to follow. Keep up the good work, and watch CB grow. I predict you'll find that the only winners will be the purveyors of equipment.

Kent Marshall, Dhahran.

Get a great deal from Marshall's

 a. maphall (Lonoon) hto.KINGSGATE HOUSE
Lso netall shorlat
LONDON MWB ATA.
MAIL OADEA 01 E24 BSaz 24HA SERVICE
23r ECOWARE MOAD, LONOON WZ O1-723 4242

104A stokes ckoft Aition nwz ol. 889

PLEASE ADO POSTAGE/PACKING 60D UNLESS STATED ALSO 15\% VAT ON TOTAL - ALL ITEMS ON THIS DELIVERY. WATCH FOR SPECIAL REDUCTIONS ON

STARRED ITEMS

MANY OTHER RANGES CAPACITORS INCLUDE MULLARD C280 MULLARD/SIEMENS CERAMIC. SIEMENS B41070 RADIAL

LINEAR INTEGRATED CIRCUITS

LF 1331N	2.70	SAA 5000	3.04
LF 1374 ${ }^{\text {H }}$	2.70	SAA 5010	7.11
- LM 301.8	0.26	SAA 5012	7.11
LM 308N	0.48	SAA 5020	5.33
LM 348	0.90	SAA 5030	8.26
LM 380 N14	0.50	SAA 5040	15.14
LM 383	1.56	SAA 5050	8.59
LM 386N	0.75	SAS 560	1.60
LM 389N	0.92	SAS 570	1.60
LM 340 T 5	0.50	SAS 580	1.80
LM 710.14	0.42	SAS 590	1.80
LM 723 CH	0.60	- SFF 96800a	6.25
LM $723 \mathrm{Cl4}$	0.40	SFF 96810A	4.28
LM 741 C14	0.58	SFF 96821A	5.19
LM 923	0.44	- SN 76115	0.70
LM 1303	1.00	- SN 76228	1.00
LM 1458	0.40	- SN 76116	1.25
LM 1801	2.04	- SN 76666	0.70
LM 1871	195	- taa 263	1.00
LM 1872	1.95	tas 521	0.75
LM 3900	050	TAA 621	2.49
LM 3909	0.67	TAA 700	1.50
LM 3914	2.20	TAD 100	1.55
LM 3915	2.20	tBa 120	0.75
LM 4250	1.42	TBA 500	0.45
NE 531	0.95	TBA 550	3.50
NE 543K	1.55	tBA 5700	2.20
NE 544	1.60	- T8A 810 S	1.00
NE 555	0.21	tra 920	2.75
NE 556	0.73	- tBA 9900	2.65
NE 558	3.12	TCA 2705	3.15
NE 562	3.12	TDA 2540	3.85
NE 565	1.05	tDA 2611	1.58
NE 566	1.53	- Tlo 8icp	0.32
NE 567	1.10	- TLO 82CP	0.56
NE 570	3.50	- tlo 84CN	1.00

SINCLAIR INSTRUMENTS			
Digital Multimeter			p/p
	PDM 35	£34.50	£0.60
" "	DM235	¢52.50	$\underline{1.30}$
" "	DM350	¢72.50	£1.30
" "	DM450	f119.00	£1.30
Digital Frequency Meter			
	PFM200	$£ 49.80$	¢0.60
Low Power Osilloscope			
	SC110	£139.00	11.30
TF 200 Frequency	Meter	£145.00	£1.30
TGF 105 Putse G	nerator	¢85.00	¢1.30
NEW			
LCD Multimeter	TM353	£84,00	£9.30
LCD Multimeter	TM351	599.00	£2.50
LCD Multime ter	TM352	£49.95	£1.30
Prescaler	TP600	£37.50	£0.60
LEADER INSTRUMENTS			
Just a selection			
Singletrace Osicill	scope 510A 5*	¢127.00	$£ 3.00$
Doubletrace Osici	oscope 308\$ $3^{\prime \prime}$	C419.00	£2.50
Coubletrace Oscill	oscope 508A $5^{\prime \prime}$	£299,00	E3.00
LSG 16 Sig. Gen.	TV/Radio	£55.00	£2.00
LDM 815 Dip Meter		£45.00	E1.00

TRANSISTDRS/DIODES STOCK CLEARANCE

CRIMSON ELEKTRIK HI FI MODULES

CE 608	Power Amp
CE 1004	Power Amp
CE 1008	Power Amp
CE 1704	Power Amp
CE 1708	Power Amp
CPS 1	Power Unit
CPS 3	Power Unit
CPS 6	Power Unit
CPR 1	Pre Amp
CPR 1S	Pre Amp

CD4000	¢0.17	CD40138	£0. 44	CD4024B	f0. 60	CD4049	¢0.33		CD4069	¢0.14	CD4095	f1.00
CD40018	£0. 20	CD4014	f0. 72	CD4028B	$\underline{50.60}$	CD40508	£0.33		CD4071B	f0. 16	CO4096	£1.00
CO4002	¢0. 20	CD4015	¢0.72	CD40298	£1.05	CD40518	50.70		CD4072	f0. 20	CD40998	f1.40
CO4007	¢0. 20	CO4016	¢0. 36	CD40348	c2.20	CD4052B	¢0.70		CD40738	£0.16	CD4507	£0.44
CD4008B	£0.74	CD40178	¢0.70	CD4035B	E1.05	CD40608	£1.10		CD 40758	f0. 16	CD45108	c0.90
CD4009	¢0. 40	CD40188	¢0.75	CD4040	60.90	CD4063	£1.10		CD40818	¢0. 16	CD4511	£ 102
CD4010	£0.40	CD40198	f. 44	CD40418	¢0. 80	CD40668	¢0.45		CD4082	¢0. 20	CD4514	¢2.20
CD40118	$\underline{50.20}$	CD4020B	¢0.90	CD4042B	¢0.64	- CD4067	$£ 4.20$		CD4085	£0.90	CD4520B	¢0.90
CD4012	¢0. 20	CD4022B	¢0.78	CD40478	£1.02	CD4068	¢0. 30		CD4086	¢0 90	CD4522	E1. 10

SN7400	¢0. 19	SN7420	50.15		SN7445	¢0.91	SN7460	£0.15	SN7496	¢0. 20	SN74164	f0.91
SN7401	£0. 19	SN7423	¢0. 19		SN7446	f0. 24	SN7472	f0. 20	- SN74107	60. 20	SN74165	c0.91
SN7403	£0.19	SN7426	f0 21		SN7447	£0. 24	SN7484	$\underline{0.51}$	- SN74121	¢0. 20	SN74174	0.60
SN7404	£0.15	SN7432	£0.21		SN7448	¢0 30	SN7490	c0. 25	- SN74141	¢0.24	SN74182	¢0.60
SN7410	¢0. 19	SN7440	$£ 0.15$		SN7450	c0. 19	SN7491	0.35	SN74	c0. 77	SN74190	¢0.60
SN7412	£0. 15	SN7441	£0.30		SN7453	£0. 15	SN7492	c0. 20	SN74155	¢0. 50	SN74192	c0.91
SN7414	$£ 0.55$	SN7442	£0. 20		SN7454	£0.15	SN7493	f. 0.20	SN74157	¢0.20	SN74197	c0.60

SEND LARGE SAE FOR DETAILS OF SENSORS \& PARTS TO BUILD OWN FUEL STRETCHER SYSTEM.
MINI METAL DETECTOR FOR LOCATING PIPES/CABLES UNDER PLASTIC - A MUST FOR EVERY HANDYMAN 99.95

SIEMENS LEDS

5.8 mm Red Yeliow Green	$£ 0.14$	TIL 209	$£ 0.18$
3.2 mm Red	$£ 0.12$	TIL 228	$£ 0.35$
3.2 mm Green/Yellow	$£ 0.14$	TIL 78	$£ 0.54$
Flashing Diodes $(3 \mathrm{~Hz})$	$£ 0.90$	8PW 34	$£ 1.18$
Rect Less $2.5 \times 5.0 \mathrm{~mm}$ Red	$£ 0.12$	SFH 205	$£ 0.80$
Rect Leds $2.5 \times 5.0 \mathrm{~mm}$ Green/Yellow	$£ 0.18$	ORP 12	$£ 1.20$
		AN25	$£ 0.90$

MA 1032 Digital LCD Clock Module
$.5^{\prime \prime} 12$ or 24 hr mode, 24 alarm with on/off control
sleep timer, snore timer etc. 1.5 v batt. low consumption
MA 1026 Alarm/Thermometer Module
MA 1003 12v Car Clock Module, Special Price $£ 12.50$ whilst stocks last
NSN3914, 3915. 3916 End Stackable Led 8a
Graphs Arrays with Driver All @ $£ 4.95$ each.

PRESENSITISED POSITIVE FOTO RESIST PC BOARDS 1.6 mm THICK

FRANK W. HYDE

WILLIAM HERSCHEL

In 1781 on the 16 th of April, William Herschel, using his telescope which he had built with his own hands, discovered the planet Uranus. This musician from Germany became one of the world's greatest astronomers. He lived at a time in British history which saw the beginning of a new surge forward in technology over wide horizons. His discovery of the planet named after him and now called Uranus, marked more than a mere observational feat, opening up new wonders and extending the solar system with the first discovery of an additional planet. It marked also a new development in technology. Herschel added to the astronomical scene an advanced technology in practical optics.

The story of his entry into the study of astronomy is interesting and instructive. During the time that he lived in Bath he was given the opportunity to use a small telescope. So struck was he by the increased richness of the number of stars which could be seen with the naked eye, that he sought to purchase a telescope of his own. Eventually he was offered one at a cost of something like $£ 100$. This he could not afford so he set about making his own. Many of these activities have been recorded, but it is worth noting that he decided to make a larger telescope on the assumption that this would enable him to see more. The materials to hand that could be used for the tube, the stand and controls were plentiful. It was the 'mirror' that posed the main difficulty. He recognised that the material, an alloy called 'speculum' metal, had limits. So expert did he become in the manipulation and polishing techniques that the 'mirror' was of such quality that it surpassed any then known.

Here then was one of startling new events of science history, for had it not been for Herschel's production of a so well figured 'mirror' Uranus might not have been discovered for a long time. This was why the planet had not been discovered previously
though others had described a possible body without confirmation. The simple fact was that the telescope was so good that Herschel recognised that he was looking at a planet because it appeared as a disc and therefore could not be a star.

It is a fitting tribute to this man that the new 4.2 m telescope being built for the observatory on the island of La Palma, was named the William Herschel Telescope by the Director of the Royal Greenwich Observatory, Professor F. Graham Smith, during the National Astronomy Week which began on April 25 , 1981. The 4.2 m telescope has an altazimuth mounting, the system that Herschel used for all his telescopes. The 4.2 m telescope is the largest of the three telescopes to be set up at the Roque de los Muchachos, La Palma. There is a connection between Spain and Herschel because the King of Spain purchased one of his best telescopes (with a 24 in . mirror) and installed it in Madrid in 1804.

THE NEW FRONTIER

The successful first flight of the shuttle Columbia marks a point in space history that must touch the hearts of even the most blase of citizens anywhere. The vistas that open will affect every walk of life and invade every area of human endeavour. The capability of the new technology will result in the extension of benefits to the whole world. For some of the plans, already past the drawing board, there will be the requirement for the extensive use of engineering which calls for a vast amount of raw materials and the processing of millions of components of all kinds. For some of the commercial activities a number of thermo electric items such as solar cells will require an increase in the winning of items like gallium, arsenide and silicon, far beyond the present consumption. Material for the assembly of large structures is another item which will consume raw materials for platforms such as would never be contemplated on earth-structures which will be measured in hectares and miles as continuous units. Operational personnel in space could well be getting toward the 1,000 mark by the end of the century, that is to say the personnel aloft as distinct from the backup teams. The continuous servicing of the existing individual spacecraft and satellites means increased life with fewer launches. Units can be standarised as the pallets that are already operational.

It will indeed be a brave new world extension. Progress is now in a logarithmic mode and looking back over 200 years it is clear that these modes increase in frequency and there are new cliches such as "we have learned more in the three days of this mission than in the last three years'. At a recent conference on Saturn and Uranus these were the constant remarks-and so it will go on.

A look back at the Columbia mission and the technical details of the launch is instructive. One point that emerges is that in most sections of the operations the results were beyond target so that the normal planned programme was well within the capability of the possible activities. For example the 7.5 million pounds of thrust at lift-off took the vehicle aloft at a steeper angle than was planned. This 5% steeper climb lifted the vehicle (the Americans call it 'lofting'), and this of
course used more fuel than was planned, but because the greater height was attained it helped to restore the propulsion requirement and the astronauts were notified that they were ahead of time, and instructions might be advanced. However, because of the balancing of the two conditions the original timing was restored. No adverse conditions arose when it came to the time of separation of the boosters.

It was a tribute to the planning that the crew were warned that the main engine cut-off would be at 8 min 34 sec . This was exactly correct. At this cut-off point the velocity was $25.670 \mathrm{ft} / \mathrm{sec}$. only $2 \mathrm{ft} / \mathrm{sec}$ higher than the target. Altitude and the rate of climb was exact. All moves went smoothly to the point when the 130 nau.m by 130 nau.m orbit was reached. More details will be available later when the official reports are released.
The re-entry part of the mission was an unqualified success and started when the speed of the vehicle was at mach 25. At mach 5 the mission commander John F. Young took manual control. The height was then 115,000 feet and Young continued control through the reversal stage till 35,000 feet. The vehicle's tile protection was safe through the 2,300 to 3,000 deg.F period of blackout. This was at a height of 188,000 feet at mach $10 \cdot 3$.

It may be possible in the next issue of Spacewatch to have more details of the moment to moment sequence, outward and return.

The Columbia will go back for refurbishing and it is expected that the next mission will be in September or early October this year. As has already been stated, the first period of shuttie operations will be used to fulfil the time already booked for scientific and defence activities. This is expected to continue on present contracts to 1985. By that time the other shuttles will be operational and open for business. The goal of the enterprise is to 'carry into space anyone who needs to operate equipment, experiments or machinery'. There will be available NASA trained pilots, engineers, doctors, physicists and other scientists. Normally healthy people from 25 to 65 will be able to go into space with safety. It is expected that the upper limit will be increased to 80 in the next decade. Each vehicle can be used 100 times and there will be four of them in the initial programme.

It is perhaps not unreal to look at the facilities of the shuttle and see a picture of a unit having attached to it all kinds of units each doing some job or other and the whole looking as though there was a fiesta with everything 'dressed overall',

JOBLESS BUILD A GATEWAY TO THE STARS

Astronomer Patrick Moore officially opened a new visitor centre which has been created at the Royal Observatory, Blackford Hill, Edinburgh, by a team of unemployed adults and teenagers. It traces developments and the international role of the Royal Observatory and houses the nucleus of a national collection of Scottish astronomical telescopes dating from about 1710. It also gives the latest information on the exploration of space. A model of the Space Shuttle is on view.

The Manpower Services Commission paid the wages of the unemployed persons.

Interfacing COMPUKIT
 Part 7 D.E.Graham

THIS MONTH we conclude the series with discussion of an Interrupt Driven Clock, and with applications of the Analogue to Digital Converter section of the P.E. Analogue Board. These include voltage, temperature, light and sound measurement with v.d.u. bar chart displays, plus a data logger and sampling oscilloscope. But first we continue the discussion of the use of interrupts, begun last month.

6522 INTERRUPTS

The interrupt lines of the 6821 on the Decoding Module and the 6522 on the Analogue Board have both been connected to the UK 101's $\overline{\mathrm{RO}}$ line so that interrupts from both these devices may be readily handled. Unfortunately space has not allowed a discussion of the use of 6821 interrupts during this series. The principles involved however are similar to those for 6522 interrupts, and for further information on the 6821 the reader is referred to the data sheets.

6522 interrupts are handled through two sets of registers, the Interrupt Flag Register or IFR (register 13 at 61357) and the Interrupt Enable Register or IER (register 14 at 61358). These are represented in Table 6.3 of part 6 of the series. From this it will be seen that one bit of the IFR and one bit of the IER are associated with each of the control lines CA1, CA2. CB1 and CB2, and one with each timer and the shift register.

The various bits of the IFR are automatically set by the 6522 when events such as the timing out of the timers, or particular transitions on the peripheral control lines occur, and these flags may be inspected periodically by the CPU. If the interrupt is used however, such continual polling is not necessary, and the CPU need only inspect the IFR once an interrupt has been sensed and accepted. The IFR will then tell the CPU which one of the 7 possible functions caused the interrupt.

To condition the 6522 to cause an interrupt request (ie by taking $\overline{\mathrm{RQ}}$ low) when any of its flags are set is achieved by previously setting the corresponding bit in the Interrupt Enable Register. This register uses bit 7 to indicate whether specified bits are to be set or unset. If bit 7 is a one, then writing to any other bit of the register will set that bit. Thus, placing $130(=128+2)$ into the IER codes bit 7 with a one, so that the remaining data (2) will cause bit 1 to be set. No other bit positions will be affected. Unsetting bits in the IER is accomplished with bit 7 at zero, so that writing 65 to the IER will unset bits 6 and 0 , again leaving the remainder unchanged. To clear the register completely the IER should be loaded with 127. Pressing the Reset button on the Decoding Module will also zero this register.

INTERRUPT DRIVEN CLOCK

As an example of the use of interrupts with the 6522 we will look at the implementation of an interrupt driven clock on the UK101.

This will employ timer T1 on the 6522 to produce an interrupt every 50 ms , and the UK 101 will be conditioned to respond to this by updating a series of memory locations in which it holds the current time in hours, minutes, seconds, and twentieths of a second.

Table 7.1 gives the assembler listing of a program which accomplishes this. It resides at 0230 hex in an unused area of RAM below the UK 101's BASIC file space. The program falls into two parts: the interrupt service routine itself, from 0230 to 0278 hex; and the initialisation routine from 027D to 02A6 hex. This latter is executed only once at the outset, and we will look at this first.

The first five lines set a jump to 0230 instruction at the UK101's IRQ vector. Line 780 initialises the memory location TWENT that is used to count twentieths of a second. The next sequence is used to configure the 6522. Lines 790 and 800 set timer T 1 in the continuous mode by placing 64 into the ACR. Lines 810 and 820 enable the T1 interrupt by loading the IER with $192(=128+64)$, thus setting bit 6 . The instruction CLI at line 830 clears the interrupt mask, while lines 840 to 870 load the low and high order bytes of the T1 latches with the values 78 and 195, so initiating the count. The count total is thus $195 \times 256+78(=49998)$. The 2 micro-secs delay inherent in the counter make this up to 50000 , so giving a 50 ms interrupt repetition rate. The final command executes a return from subroutine.

The interrupt service routine starting at 0230 first places the accumulator on the stack, and executes a read from the low byte of T1's count registers. This latter has the effect of automatically clearing the T1 interrupt flag, so taking $\overline{\mathrm{RO}}$ high again in preparation for the reception of further interrupt requests. The program then decrements the location TWENT (at O22A hex), and checks to see whether it has reached zero. If not it restores the accumulator from the stack, and exits the interrupt routine. If zero has been reached on the other hand, it increments the location SECS (at 022B hex), checking to see whether 60 seconds have been counted, in which case it increments MINS, and so on.
To start the clock once the program has been entered, it is only necessary to execute the subroutine at 027D. This may be accomplished from BASIC using a USR(X) call, or from a machine code routine with a JSR command. We will access it from BASIC.

RUNNING THE INTERRUPT CLOCK FROM BASIC

The BASIC program listed in Table 7.2 consists of two parts. The first loads the clock program of Table 7.1. The second allows the current time to be inserted in the three locations SECS, MINS and HRS, and uses a USR (X) call to enter the clock initialisation routine, thus starting the clock. Lines 3000 onwards then cause the time to be POKEd to the centre of the screen. Line 2100 determines the screen
position of the display, and this should be altered for Superboard use.

The clock display program may be exited by pressing the space bar at any time, and as long as the UK 101 Reset is not pressed, the interrupt clock will continue to operate. Other programs may then be loaded, run and saved as required without disrupting the clock, and these may if desired access the continually updated time by PEEKing locations 555,556 and 557 for seconds, minutes and hours respectively. There seems to be just one proviso to this: programs which use more than the simplest configuration of GOSUB commands must be avoided, since due to an error in the UK101's firmware the IRQ vector has been located within the stack. As a result, subroutine calls can corrupt the interrupt vector at 01 CO , and are in turn corrupted by it. It is for this reason that the program of Table 7.2 avoids subroutine calls, and makes use of flags F and $F 1$ to get around the problems which this creates.

Once the clock has been started, the whole program may be erased with a NEW command, if desired, so as to save memory space, again without affecting the running of the clock.

As with other applications of the 6522, the accuracy of the interrupt clock is tied to that of the UK101's 8 MHz crystal. In my machine this caused the clock to run slow by about 2 secs every hour. This could of course be corrected by using a closer tolerance crystal. But a much simpler way is to alter the value loaded into the low byte of T1's latch register-this is the last data item (78) on line 210 of the program of Table 7.2. With this method it should be possible to achieve accuracies of the order of 1 sec in 16 hours, which should be sufficient for most foreseeable applications.

MACHINE CODE TO BASIC TRANSLATOR

Lines 100 to 340 of the program on Table 7.2 , which enter the interrupt clock program in 6502 code using BASIC, were themselves produced by a translator program written for the purpose. Since this program can translate the contents of any section of memory into BASIC POKE statements, it can be used for saving data or programs stored anywhere in the machine. The program is listed in Table 7.3. It first requests the start and end address of the memory block to be recorded. These may be in hex or decimal, since a hex to decimal conversion routine is included in the program. Next it requests the line number that the BASIC program which it will write is to start from, and the title of the program. It then instructs the cassette recorder to be set to record, and writes the program directly on to it. The machine may then be cleared, and the cassette loaded and run as if it were a normal program.

ANALOGUE TO DIGITAL CONVERTER

The fourth section of the Analogue Board consists of a multiplexed 8 channel analogue to digital converter. The heart of this unit is a ZN427 monolithic AD converter i.c. See Fig. 7.1. This uses the so-called successive approximation technique to achieve conversion times of some 20μ s or less. This is a far more efficient means of conversion than the other commonly used method which simply causes a D/A converter to sequence its output from zero to 255 , using a comparator to stop it when the output matches the analogue signal to be measured. In this case conversion may take as long as 255 clock cycles.

Fig. 7.2 gives the circuit of the A / D section of the Analogue Board. The 8 analogue inputs are taken through SK6, whose full pinout is given in Fig. 7.3. From here they are applied to IC8, a 40518 way analogue switch. This selects one of the 8 channels according to the logic states of its pins 6,9,10 and 11 . These in turn are determined by the

Fig. 7.1. ZN427 Block Diagram

quad latch IC7. This is enabled by line W7 from the Decoding Module. The 8 channels are selected by POKEing the channel number ($0-7$) to address 61319 . Thus the command POKE 61319, 6 will connect channel 6 lat pin 10 of SK6) to the input of the converter.

The converter itself requires a low-enable Start Conversion pulse, and this is supplied by $\overline{W 7}$ from the Decoding Module. This means that each time the multiplexer at 61319 is addressed, a new conversion sequence is initiated.

The clock input of the converter at pin 3 requires a frequency less than 600 kHz . In order to satisfy this condition, IC9 is used to divide the UK 101 Ø2 clock by two, giving a clocking frequency of 500 kHz . Other timing conditions of the ZN427 are satisfied by delaying the operation of the divide by two counter until the ZN427 End of Conversion signal (EOC) goes negative. This is achieved by taking pin 1 of IC10 to pins 2 and 3 of IC9. In the prototype, this was further delayed by the insertion of C16 (50 nF); and this capacitor was included in the component overlay diagram published in part 4 of the series. This extra delay time is not necessary for any of the applications described below, and it is recommended that C16 be removed from the board, so greatly enhancing conversion times.

The EOC signal produced by the ZN427 to indicate the completion of conversion has been taken to pin 7 of SK6, and may be monitored by the CPU if required, although conversion is so fast that there is barely time to monitor it in machine code (and certainly not in BASIC) before conversion is completed. Once conversion has taken place, the converter may be read at 61319. Thus the following two commands will print the value of the analogue input on channel 4.

POKE 61319, 4

PRINT PEEK(61319)

The POKE and PEEK statements may of course be put within a FOR loop to sequence through each of the 8 channels:
FOR A $=0$ TO 7
POKE 61319, A
PRINT PEEK(61319)
NEXT

Fig. 7.2. A/D section of Analogue Board

Fig. 7.3. Connections to
 SK6 on Analogue Board

50 REY LNTERFACLAG UK101 DROGPAI 29
6O REM MACHINE CODE TO BASIC RYAMSLATOR
70 PRINE:PRINT:PRIAT:PRINT
72 PRINTTAB(6)"MACHINE CODE TO GASIC: TRANSLATOR"
74 PRINT:PRINT
75 print" tilts program produces a rapen procres:"
76 PRINT" IN BASLC FOR REPRODUCING ANY Block or"
77 PRENT" MEPHRY DOCATLUNS"
90 PRLINT:PRINT:PRINT
92 PRLAT" ARE. START AND EHD ADDRESSES OF "JEHORY"
93 PRINT" BLOCK IN HEX"
95 IUPUTYS
96 IFLEFT $(\mathrm{Y} \$, 1)=" Y$ "THEN600
98 PRISTM
100 INPUT" START ADDRFSS IV MCHORY";AS
105 PRINT
110 InPIJT" END ADDRESS IN METYORY'; AE
120 INPUT" FIRST LINE NO OF RASIC PROG'; NB
130 PRINT" TITIE OF B.ASIC: PROGRAI
135 Iixputas
140 SAVE
150 Print" Start recoroer."
160 INPUT" ENTER S TO START";BS
200 PRINTNR; "REN ":AS
205 PRINTNB+5; "REM LOCATIOTIS ";AS;" TO ";AE
210 FORA=0TO (AE-AS) STEP10
220 PRINTNA+10+6;" GATA";
230 FORS=0TO9
240 PRINTPEER (AS $+A+$ R);
250 IFAS $+A+E=A \Gamma T H E R!B=10$
254 IFB<9THENPRINT"",";
260 MEXT
270 PRINT
280 NEXT
$400 \mathrm{Z}=4 \mathrm{HB}+100+10 * \operatorname{INT}((\mathrm{AE}-\mathrm{AS}) / 10)$
410 PRINTZ;" FORC=0 TO ";AE-AS
420 PRINZZ+10;" READ I"
430 PRINTZ $20 ; "$ ORE " "AS;"+C, I"
440 PRIRTZ +30 "
440 PRIITZ +30 ;" NEXT"
450 FORZX $=1$ TO $0000:$: $E X T$
500 POKESIT,0
510 FORA=1TO15:PRINT:NEXT
520 PRINT, "RECMRDING COMPLETE"
550 FRMD
600 PRINT"' START ADORESS (MLX) [N MEMORY"
620 GOSUB900
630 ASNN
635 PRINT
640 PRINT" END ADDRESS (HEX) IA MEMORY"
650 COSUR900
670 COTO 20
670 COTO 120
900 RES! HEX CONVERSION
910 IMPUTS
920 IFLEN $(\Omega \$)<>4$ THENPRRINT:PRINT" 4 DIGIT FURHAT ONLY":GOTO900 $930 \mathrm{~N}=0$
©40 XS"'O123456789ABCDEF"
950 FORJ=1TO4
960 FORI=1T016

980 NEXTI
990 PRINT:PRINT" Charactil not identifieg - pedo"
1000 сото900
$1010 \mathrm{Na} \mathrm{N}+(\mathrm{I}-1) * 16^{\sim}(4-\mathrm{J})$
1020 NEXTJ
1030 PRINT" DECIMAL ENUIVALENT $={ }^{\prime} ; \mathrm{N}$
1050 RETURN
, K

The conversion scale of the ZN427 is determined by the voltage applied to its pin 7. On the Analogue Board this is connected to the ZN427's precision 2.55 volt reference source, which results in a very convenient conversion scale of 10 mV per digit, so that an input of 2.17 volts for example will produce a digital value of 217 , and so on.

EIGHT CHANNELDISPLAY PROGRAM

The program in Table 7.4 may be used to monitor the input levels on all 8 channels of the converter. Analogue to digital conversion is carried out in lines 220 and 230, and the updated conversion result POKEd to the screen, after suitable processing. As may be seen from the photograph, a horizontal bar graph representation is also produced for each channel. This latter is only altered in subsequent passes if a change in input voltage is detected. The program may be exited by depressing the space bar.

VOLTAGE MEASURING

As it stands, the converter will measure voltages from 0 to 2.55 volts presented to the input pins of its 8 channels (ie pins 16 to 9 of SK6, corresponding to channels 0 to 7 respectively). For accurate conversion, each input should be loaded with an impedance of 10 k or less. This is necessary to ensure an impedance match with the input circuitry of the ZN427, and also in order to avoid charge carry-over from one channel to the next as the multiplexer sequences through the channels. If for example a voltage is applied to channel 0 , and the input of channel 1 is left floating, channel 1 will read a non-zero voltage as measured in the display program of Table 7.4. This is avoided by keeping input loads below 10 k and by earthing unused inputs.

If it is required to increase the voltage range of any channel of the converter, this may be accomplished by using a resistor network. That shown in Fig. 7.4 gives a scale factor of two so that 5 volts will give a reading of 250 . The resistors used should be 1% types or better, although if these are not available, lower tolerance resistors could be trimmed (by constructing series/parallel combinations) so as to give a reading of 127 or 128 when point X is connected to pin 2 of SK6. This is the ZN427's own 2.55 volt reference source. The function of C in the dropper network is to keep the input impedance low enough to match the ZN427. Similar techniques may be used to extend the range further.

ANALOGUE JOYSTICK

Each of the 8 channels of the converter may be used with a virtually infinite variety of sensors. We will give circuits for use with some of the more obvious. Fig. 7.5 gives a circuit for a two-direction joystick. Each joystick potentiometer is supplied by the 2.55 volt reference source, and 100 nF capacitors are again used to keep the input impedance low. As the circuit stands the two joysticks are connected to channels 0 and 1, and very straightforward software could be used to move a cursor or other character to any point of the screen in response to the position of the joystick. With the analogue use of the joystick, as opposed to the digital applications discussed in parts 3 and 5 of the series, the cursor could immediately move to the selected spot without having to traverse all intermediate screen positions first.

EIGHTSENSOR

Fig. 7.6 gives the circuit for an I.d.r. light sensor. With R1 at 1 k this produces a good range of output, from very dim conditions (a v.d.u. screen at 1 metre) to brightly lit interiors. Higher precision in dark conditions may be achieved by increasing the value of R1, while improving the range in very bright conditions will be limited by the current drawn.

100 res incteractme uniol progpar: 21
110 REIG 8 chammel, a/D CONVEPTER DIGPlay
120 FORA=1T08: PRJMT:HEXT
130 PHIUTTAB(ID)"3 CHANHLL A/D COHVERTER"
140 PHINT:PRINTTAB(13)"(SPACE BAR EXITS)"
150 PKINT: PRINT: PRINT:PRIYT:PRINT: PRINT
160 FORA $=1$ TO 3000 : EXT
170 FORA=1TJIĹ: PRINT: NEXT
130 cosub 475
$190 \quad 7=53335$
2n0 E-61319
210 FORA=OTU7
220 POKEB, A
$230 \mathrm{~N}=\mathrm{PELK}(B)$
$240 \mathrm{~S}=\mathrm{z}+\mathrm{A}^{*} 128$
250 coseb 300
260 cosur 560
270 NEXT
280 cosuy 410
290 60TO210
300 REy mumeritial display erbtry puint
310 RE! SCREEN PURE ROUTINE.
320 NSOSTRS (N)
330 L-LCN(NS):REM STQLNG, DISPLAY ENTRY POIMT
340 FORS=1TOL

360 POLES $+\mathrm{H}, \mathrm{n}$
370 :EEXT
380 1FPEFK (S+: $)=32$ TYF. 1490
390 YORES $+\mathrm{M}, 32:$: $^{\prime \prime}+1+1$: COTC 330
400 RETUPM
410 RE: SPACF, BAR MOHITOR
420 POKE530,1
430 POEE57088,253
440 IFPCEL $(57088)=239 T H E N P O K E 530,0:$ END
450 POKE530,0
460 RETIJRN
470 RE'Y TEKT HANDLING
480 bs="Clainmel"
$490 \quad 7.53323$
500 FORA 0 0T07
510 ITS=RS $5+5 \mathrm{TRS}(\mathrm{A})$
530 Cosur 330
530 cosur 330
540 :IEXI
550 RETIRN
560 rem bar display calcillation
$570 \mathrm{NL}=1 \mathrm{NT}(\mathrm{N} / 10+.5)$
$580 \quad 12=\pi 1-\mathrm{Ni}(\mathrm{A})$
590 [H:12=0THENN $(A)=N 1:$ RETURN
600 TFN2<OTHEN 650
610 FORQ1=:1 (A) TON $1-1$
620 PURES $+6+21,161$
330 NEXT
$\therefore 40$ COTO 680
650 FORQ1min (A) TOM 1 STEP-1
660 POKES $+6+01,32$
670 HEXT
$680 \mathrm{~N}(\mathrm{~A})=1 \mathrm{xl}$
690 RETURN
OK

Fig. 7.4. Divide by two network

Fig. 7.5. Connection of 2 axis joystick to A/D converter

Fig. 7.6. Connection of light sensor to A/D converter

The left hand end of R1 could have been connected to the 2.55 volt reference source at pin 2 of SK6, but this is easily overloaded (maximum loading about 1 k), and it is more prudent to use the pair of dropper resistors shown; or alternatively a 2.5 volt zener could be used. With the circuit of Fig. 7.6, quite small changes in light level may be discerned; and by using an I.d.r. on each channel, pattern recognition experiments may be undertaken. For such an application nine (or better still, sixteen) would be a more appropriate number of light sensors to use, in which case a second multiplexer could be added, either driven by one port of the PIA or VIA, or using a second 74LS75 latch, for which purpose the decoded line W7 has been taken out to pin 4 of SK6 on the Analogue Board. In such an application it should be noted that POKEing a one to bit 3 at 61319 renders the analogue switch IC8 open circuit.

TEMPERATURE SENSOR

Thermistors may be used for temperature measurement using a simple dropper resistor in the same manner as described for the l.d.r. application, although only fairly high resistance types are suitable, in order to avoid self-heating effects.

Far more precise measurement may be achieved for little extra outlay by using a temperature sensing diode such as the LM335Z. This is essentially a diode whose forward voltage is dependent on its temperature in a very linear manner, at the rate of 10 mV per degree Kelvin. This means that its voltage increases by 10 mV for every degree Centigrade above absolute zero ($-273^{\circ} \mathrm{C}$). Thus at $20^{\circ} \mathrm{C}$ its forward voltage will be $2 \cdot 93$. This voltage is unfortunately beyond the direct range of the A / D converter. But it is easily reduced with a resistor network such as that shown in Fig. 7.7. This will produce a reading of about 146 at $20^{\circ} \mathrm{C}$.

To improve the reading precision, a d.c. amplifier with offset facility can be used between the sensor and the converter. Fig. 7.8 gives a circuit for such an arrangement. With this the voltage gain of the amplifier can be altered from unity to about 50 by adjusting VR1, and an offset of ± 3 volts at maximum gain can be achieved by altering VR2. It should be noted however, that even at quite modest gain settings, the earth loop caused by using the UK101's mains transformer to drive the Decoding Module produces hum problems, and a small fluctuation appears on the reading. To avoid this, a separate 9-0-9 volt transformer should be used to power the Decoding Module.

To obtain the highest precision with the LM335Z $\left(1^{\circ} \mathrm{C}\right.$ error at room temperature) it should be used in conjunction with a 10k potentiometer as in Fig. 7.9, and the potentiometer adjusted to give an output as close to 2.982 volts as possible at $25^{\circ} \mathrm{C}$.

The d.c. amplifier of Fig. 7.8 may also be used for increasing the sensitivity of the converter for use in other applications, such as d.c. voltage measurement etc.

AUDIO DETECTION

The circuit of Fig. 7.10 allows sound levels to be measured with the A/D converter. Like the temperature sensor amplifier of Fig. 7.8, it uses a 741 op. amp., but no earth loop hum problems arise in this case because no offset is required, and pin 2 can be taken down to earth. The values of R1 and C1 in the integrator following the diode detector circuit should be selected to give a time constant appropriate to the use to which the unit is to be put. Generally speaking this should be somewhat greater than the sample repetition time of the program driving the converter. In the case of the 8 channel display, program of Table 7.4, a time constant of about one tenth of a second is appropriate, and may be

Fig. 7.7. Connection of Temperature Sensor to A/D converter

Fig. 7.8. Temperature Sensor with voltage amplifier

Fig. 7.10. Audio Detection using the \mathbf{A} / \mathbf{D} converter
achieved using $10 k$ for R1 and 10μ for C 1 . For much higher sample repetition rates, such as those achievable with the sample 'scope program below, C1 may be removed completely for certain applications.

DATA LOGGER

The interrupt clock described earlier may be used in conjunction with the A/D converter to create a simple data logger. A program that accomplishes this is given in Table 7.5. To use it, load the interrupt clock program in BASIC of Table 7.2, then load the data logger supplement of Table 7.5. The latter makes use of routines in the former, including the interrupt clock itself, to implement the data logging function. When RUN is executed, the interrupt clock will operate as before, but now pressing the space bar will cause a transfer to the data logger. This requests a start time for logging in hours, minutes and seconds; then a repetition

4090 REM INTERFACING URLOI PROGRAM 22
4100 REM DATA LOGGER SUPPLFMEMT
4110 REIG TO BE LOADFD OH TUP OF
4120 Re.: Program 19 (the interpupt
4130 REM CLOCK)
5000 RE:T DATA LOCGER
$5020 \mathrm{~F}=2 \cdot 7=53276$ NA=0
5100 FORQ2=1T016:PRINT:NEXT
5110 PPIITT, "DATA LOGGER"
5132 PRINT:PRINT:PRINT" STAPT TIME OF RECORDING"
5140 INPUT' HOURS". SY
5142 INPUT" MENUTES", SM
5144 INPUT" SECONDS'; ${ }^{\prime \prime}$ SS
5150 Print:print" repritifton period of readings'
5160 INPUT" HOURS"; RH
5170 IfPUT" MINUTES"; RM
S180 INPUT" SECONDS";RS
go prlat:print" number of rfanimgs"
00 INPUTNR
5210 IIHA (NR , 8): OIMAS (IR)
5220 FORQ4=1T016:PRIMT:MEXT
5230 PRINT" NO"; TAB(11)"TIUE"; TAB(33)"DATA"
5500 GOTO2200
550 RER FNTRY POINT
5560 IFS=SSANDM $=$ SMARDH $=$ SHTHEN 5600
5570 GOTO2200
5600 Re: Data aquisition
5605 PRINT" ";NA+1;".."
5610 PRINTTS;
5625 1FQ2=4THENO3=-24:PRINT 5630 POKE61319,Q2
$5640 \mathrm{~A}\left(\mathrm{NA}, \mathrm{Q}^{2}\right)=$ PEEK (61319)
5650 PRISTTAR $(23+6 * Q 2+03)$
5650 PRINTA(NA, 22);
5670 NEX
5670 NEXY
5680 Q3 $=0$
5690 PRINT:PRINT

$5700 \mathrm{CS}=0: \mathrm{CM}=0$
$5710 \mathrm{SS}=\mathrm{SS}+\mathrm{RS}$
5720 TFSS $>59 \mathrm{TEE}$

$5750 \mathrm{SH}=\mathrm{Sit}+\mathrm{RII}+\mathrm{CM}$
5760 IFSH $>=24$ THENSH $=\mathrm{SH}-24$
5800 COTO2200
6000 PRINT, "EXIT FROM DATA LOCGER"
6010 goto6 110
6100 print, "DATA logging complete
6110 PRINT,NA; "READINGS TAKEN"
6120 PRINTTAB(15)"TIME";Ts
6125 PRINT:PPINT
6130 PRINTTTO DISPLAY CLOCK, RUN 2100 "
6140 PRINT'TO RESTART LOGGER, RUN $5000^{\prime \prime}$

period in hours, minutes and seconds; and lastly the number of loggings required. This latter number sets the dimension of two arrays $A \$(1)$, which records the time of each reading, and $A(I, J)$, which contains the 8 data values recorded at each reading.

The program then initiates the continued POKEing of the time to the centre of the top line of the screen, at the same time continually checking to see whether the start time has been reached. When it has, the A / D converter sequences through its 8 channels, and the resultant data is stored in the
array for later use. The number of the reading, the time and the 8 data values are also printed on to the screen. See accompanying photograph. The program then waits for the duration of the repetition period, and again stores and prints the data measured. If hard copy or cassette recording of the data is required, an appropriate routine may be added at 6200 to be executed after data logging has been completed. And as with the interrupt clock itself, the space bar may be used to exit the data logger.

The logger program is highly flexible, and can take readings at intervals as short as 1 second, or as long as 24 hours, and the number of readings allowed is limited only by the memory size of the machine. A 4 k machine will allow some 15 or 16 readings, while with $8 k$ this rises to somewhere above 110 . If memory size is a problem, a considerable saving could be made by storing the measured data individually in RAM by means of POKE statements to a protected area. Alternatively the program could be modified so as to print out, but not to store, the data, in which case there is no limit to the number of readings taken.

The uses to which the data logger may be put are legion. It could for example be used to monitor the temperature, noise, light and humidity levels in a given locality; and checks could be made on the effectiveness of thermal insulation by recording inside and outside temperature over a 24 hour period. It could also be used to gather data on the temperature dependence of a resistance, or to record the voltage decay curve of a CR combination of sufficiently long time constant. Additionally, the logger could be used in conjunction with the event recorder using $T 2$ of the VIA described last month, to log the number of events of a given kind occurring within any period. Those events could variously be counts from a Geiger-Muller tube, passages across a photocell, the occurrence of sound levels above a given threshold etc. Once the data has been collected from whatever source, the UK 101 can then be used to analyse it in any appropriate manner, and to present the results graphically if so desired.

WAVEFORM SAMPLING

The very fast conversion rate attainable with the ZN427 AD converter-around 50,000 per second-allows the sampling and digital storage of waveforms at frequencies up to a few kHz . Using the converter a series of samples may be taken in very rapid succession, and stored in RAM, from where they may be analysed at leisure. For example, Fourier analysis might be performed on the data, or the sampled waveform could be replayed continuously through the D/A converter for steady display on an oscilloscope screen. Alternatively the UK 101 VDU screen could be used to display the sampled waveform.

For such applications it is obviously essential to use machine code, since using BASIC would only allow some 100 or so samples to be taken every second. Table 7.6 gives an assembler listing of a two-part program which has a sampling and replay facility. The first part, which is located at 0230 hex, causes a series of samples to be taken and stored in RAM above 0290 hex. The sampling rate, the number of samples, and the channel number from which the samples are taken are determined by the contents of locations 022D, 022 E and 022 F respectively, and these may be set up before the program is run. The second part of the program, which begins at 0250 hex, allows the replay of the stored data in a continuous loop to the D/A converter located at 61320 dec . The number of samples to be replayed, and the replay rate, are determined by the contents of locations 022E and 022C respectively, and again these parameters may be set up before the routine is run.

A program in BASIC is given in Table 7.7 which loads the above program, and then controls the sampling and replay parameters with a series of INPUT statements. The program sets the channel number to 0 , and the number of samples to 100 in lines 280 and 290. These may be altered if required, though 100 is the maximum number of samples allowed. It then requests a sample rate from 1 (fast) to 255 (slow), and after making the sample, requests a replay rate. It then replays through the D/A converter in a continuous mode, which can only be exited through a reset and warm-start.

The accompanying photographs show a 'scope trace of a 100 Hz waveform that was sampled and replayed using this program. The original waveform is also shown. As may be seen from this, fidelity of reproduction is very good, even though no sample-and-hold circuitry has been used in the A/D conversion.

Sampling with this arrangement is fast enough for the lower end of the audio spectrum, and the circuit of Fig. 7.10 may be used in conjunction with the sampler to allow sampling of parts of speech signals and other audio waveforms.

As suggested above, the 100 data samples produced by the sampler may be analysed at leisure, or modified before replaying them through the D/A converter. If it is required to work on more than one set of samples, for comparison purposes for example, the 100 bytes of data may be transferred to another location using PEEK and POKE commands. The 100 bytes from 0290 hex would then be used simply as a temporary input buffer for the incoming data.

VDU SAMPLE SCOPE

If no suitable oscilloscope is available, or a larger display is required, the add-on program of Table 7.8 will allow for any 40 byte wide part of the sampled waveform to be displayed on the UK 101 screen. When this program is loaded on top of the sample scope program of Table 7.7, it requests an offset factor to be entered ($0-60$) after the sampling routine has been executed, and POKEs up a display on the screen, using the characters 128-135 to achieve a vertical resolution of 128 . The offset factor determines whereabouts along the 100 -wide sample the display is taken from, and altering this moves the 40-byte wide sample window to left or right through the 100 bytes of data. If the space bar is depressed during the display, a new offset factor may be entered to change the position of the window. If a number greater than 60 is entered here, the program re-enters the sampling routine so that a new sample may be taken. The accompanying photograph shows the screen representation of the 100 Hz signal shown in the oscilloscope trace photographs referred to earlier. As may be seen, reproduction quality is quite good given the constraints imposed by the UK101's low resolution graphics.

CUSTOMISED WAVEFORM GENERATOR

The D/A section of the machine code routine referred to above may also be used on its own for the creation of customised waveforms. The 100 bytes of memory space above 0290 hex can be filled from BASIC using SIN, COS, LOG, RND, power or other furictions of the user's choice. The replay routine in machine code may then be executed to generate the waveform repeatedly, and at speed, through the D/A converter at 61320 .

The number of bytes of digitised waveform sent to the D / A converter before the sequence is repeated is determined by the data held in location 558 dec . This may be POKEd with any value from 1 to 100 so as to achieve a smooth follow on from the end of one displayed cycle of the waveform to the next.

100 REM Interfacing uki01 program 23
110 REIt SAMPLE SCOPE PROGRAM
120 cosue 360
130 RES
140 FORA=1TOL6: PRINT: NEXT
150 PRINT, "SAITLLE SCOPE"
160 PRINT, "ON CHANNEL 0 "
170 PRINT: PRLNTQQS
180 COSUB270
190 POKE1 1, 48 : POKE12, 2: X=USR (X)
200 PRINT:PRINT:PRINT" SAMPLE MADE"
210 PRINT: PRINT
220 INPUT" REPLAY RATE (1-255) ${ }^{n}$; RR
230 PRINT: PRLNT" REPLAY IN PROGRESS
240 PRINT" USE RESET KEYS TO EXIT"
250 POKES56, RR
260 POKE11, B0: POKE12,2:X=IISR(X)
270 REM IMITIALISATION
280 C=0:REM SET CHANNEL
$290 \mathrm{~N}=100$: REM SET NO OF SARPLES ($100=\mathrm{MX}$)
300 INPUT" SAMPLE RATE 1 (HIGH) TO 255 (LOW)"; R
310 IFR<1ORR 255 THEW 300
320 POKE559,C
330 POKE558, N
340 POKE557,R
350 RETURN
360 EEM MACHINE CODE PROGRAII
370 REM LOCATIONS 560 TO 615
380 DATA $174,46,2,173,47,2,141,135,239,172$
390 DATA $45,2,136,234,234,234,208,250,173,135$
400 DATA $239,157,144,2,202,208,232,96,0,0$
410 DATA $0,0,174^{2}, 46^{\circ},{ }^{2}, 189,144^{\prime}, 2^{2}, 141,136^{\prime}$
420 DATA $239,172,44,2,136,234,234,234,208,250$
430 DATA 202, $208,238,76,80,2$
440 FORC=0 TO 55
450 P.EAD I
460 PORE $560+\mathrm{C}$, I
470 NEXT
480 RESTORE
490 RETURN

205 RESY INTERFACING JXX101 PROGRARI 24
206 REY GIVES SCREEN DISPLAY DF
207 REM SAYPLED HAVEFOPI:
208 REM LOAD ON TOP OF program 23
210 G0T07000
7000 REM SCREEN DISPLAY ROUTINE
7050 INPUTZZ
7060 IFZZ<0 OR Z Z >60 TYE:110
$7070 \quad 2 Z=60-22$
Table 7.8. Supplement to Sample

$71205=656+2 z+40$ of Waveform
7130 EORHनCTO4O
$7140 \mathrm{H}=\mathrm{H}: \mathrm{T}(($ PEEK $(\mathrm{S}-\mathrm{N})) / 2)$
$7150 \mathrm{Hl=-NT}(\mathrm{H} / 8)$
$7160 \mathrm{H} 2=1 \mathrm{NT}((\mathrm{H}-\mathrm{HI} 1 * 8))$
7170 POKEN+X-64*41, $\mathrm{H} 2+128$
7200 NEXT
7250 POKE530,1
7260 POKE57088,253
7270 IFPEEK (57088) <>239THEN7260
7290 coto 7000

A NOTE ON THE USE OF NEW MONITORS

All programs in this series are fully compatible with the UK101's original monitor, and with Technomatic's CE1 monitor. But difficulties may arise with other new monitors when using the 3 or 4 programs that contain machine code routines located at 0230 hex, such as the Interrupt Clock and the Sample Scope program. The reason for this is that monitors such as Cegmon, Wemon and Compshop's new monitor use some of the space above 022A hex for scratchpad purposes. With Cegmon this space can be kept free by disabling the screen editor, and using the original screen handling routines. But to get around the problem more generally, an alternative set of programs have been prepared for the Interrupt Clock and Data Logger, and the Sample Scope, which relocate the machine code routines at the top of memory. There is no space to list these programs here, but they are included in the cassette containing the 24 numbered programs from this series, available from Technomatic Ltd.
On Wemon and Compshop's new monitor, but not on the CE1 or Cegmon, the IRQ vector has also been relocated, and this must be accounted for in programs such as the Interrupt Clock and Data Logger, which make use of IRQ, by modifying lines 720, 740 and 760 of the assembler listing in Table 7.1. Further details on this modification are given in the data supplied with the cassette, since the shifted version of these programs must in any case be used with these two monitors.

Triangular Waveform generated by the Customised Waveform Generator, and output through the D/A Converter

Screen display of sampled 100 Hz waveform

100 Hz waveform before and after
sampling

INTERFACING COMPUKIT

Screen photograph taken during the running of the 6522 Handling Program (Program 12) described last month

NEXT MONTH . . . we shall be publishing an EPROM PROGRAMMER which may be driven from this interface system.

Additionally, we will be taking a look at Chromosonic's Colour Board in use with the UK101

Filling the data space using the program below will produce an even triangular wave made up of exactly 100 samples:

2000 FORA $=0$ TO99
$2010 \mathrm{~B}=4 \times \mathrm{A}$
2020 IFA $>49 \mathrm{THENB}=4 \times(99-\mathrm{A})$
2030 POKE656+A,B
2040 NEXT
2050 GOTO300
The accompanying photograph shows the waveform produced using this program. As may be seen, its shape is good, and since it is constructed of a relatively large number of samples, its true step nature is not apparent in the photograph. It should be noted when creating other waveforms using the machine code replay sequence, that

Constructor's Note

In order to improve stability in the offset adjustment on the D/A converter op amp IC11, R10 on the Analogue Board should be increased to 47 k
although the storage space for the waveform begins at 0290 hex, this location is the last rather than the first to be accessed, so that the last byte of waveforms placed into these locations for subsequent replay should be at 0290 hex, the first being at $0290+N-1$, where N is the number of samples to be replayed.

CONCLUSION

Although this is the final article of the present series, it by no means exhausts the possible applications of the UK 101 Decoding Module and Analogue Board. Further applications are planned for future issues of P.E., and it is hoped that ideas will also be contributed by UK101 and Superboard users through the columins of P.E.'s MicroPrompt.

D.I.Y. KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. MINISONIC MK2 SYNTHESISER

 A portable mains operated miniature sound synthesiser with keyboard circuits. Although having slightly fewer faciities wan give it great scope and versatility. 3 Oct K8D \& GJ contacts needed.Set of basic component kits (excl.KBD R's \& tuning pots see list for options available) and PCBs (incl. layout charts) "Sound Design" booklet \quad KIT $\mathbf{3 8 - 2 5} \begin{array}{lll} & \mathbf{8 0 . 1 4} \\ \mathbf{£ 1 . 0 0}\end{array}$ Knobs. skts, sw's See our list

P.E. 128-NOTE SEQUENCER

Enables a voitage controlled synthesiser to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and rhythmic pattern are externally variable. 4 Oct KBD and GJ contacts heeded.
Set of basic comps, PCBs and charts KIT 76-7 £35.56 Set of text photocopies TEXT 76 £1.36 Knobs, skts, sw's HW 76 £6.62

P.E. 16-NOTE SEQUENCER

Sequences of up to 16 notes may be programmed by the pane controls and fed into most voltage controlled synthesisers. Set of basic comps. PCBs and charts KIT 86-5 $\quad \mathbf{8 3 2} .10$ Set text photocopies TEXT 86 £1.84 Knobs, sets. sw's HW $86 \quad £ 11.15$

P.E. STRING ENSEMBLE

Set of basic comps. PCBs \& charts K1T 77-8 $£ 109.72$

ELEKTOR CHOROSYNTH

A $2 \frac{1}{2}$-octave Chorus synthesiser with an amazing variety of sounds ranging from violin to cello and flute to clarinet amongst many others. Experienced constructors can readily extend the ctave coverage. 3 Oct K8D and GJ contacts needed.

Basic comps. PCBs and charts KIT $100-8$ £44.39 Text photocopy TEXT 100 70p

ELEKTOR FORMANT SYNTHESISER

A very sophisticated symthesiser for the advanced constructor
Set of basic comps, PC8s (as publ.) KIT 66-14 $\mathbf{E 2 5 5 . 4 5}$ Set of text photocopies TEXT $66 \quad £ 7.83$

ELEKTOR DIGITAL REVERB UNIT

A very advanced unit using sophisticated i.c. techniques instead of mechanical spring lines. The basic delay range of 24 to 90 ms can be extended up to 450 ms using the extension unit. Further delays can be obtained using more extensions.

Main unit basic comps and PCB (as publ.)KIT 78-3 £49.95 Extension unit comps and PC8 KIT 78-4 $£ 39.95$ $\begin{array}{lrr}\text { Kext photocopy } & \text { TEXT } 78 & \mathbf{8 6 p} \\ \text { Knobs, skts, sw's } & \text { HW } 78 & \mathbf{£ 2 . 9 4}\end{array}$

ELEKTOR ANALOGUE REVERB

Using i.c.s instead of spring-lines the main unit has a maximum delay of up to 100 mS , and the additional set extends this up to 00 ms . May be used in either mono or stereo mode.

Additional Delay basic components KIT 83-2 $£ 20.07$
PCB (as publ.) to hold both kits included in Kit 83-4
Text photocopy \quad TEXT $83 \quad 67$ p
Knobs, skis, switch
HW $83 \quad £ 2.84$

ELEKTOR SEWAR

For use with Elektor Analogue Reverb to give greater flexibility to reverb effects
Basic comps, PCB (as publ)
Knobs skts, swito

WE ALSO SELL COMPONENTS ASK FOR OUR LIST

ADD: POST \& HANDLING
U.K. orders: Keyboards add f 2.70 each. Other goods: Under £5 add 50p. under £20 add 75p. over £20 add £1. Recommended insurance against postal mishaps: add 50p for cover up to E 50 , E 1 for E 100 cover, etc., pro-rata: N. B. Eire, C.I., B.F.P.O and other countries are subject to highar export postage rates.

EASIC COMPONENTS SETS include all necessary resistors. capacitors, semiconductors, potentiometers and transformers. Hardware such as cases, sockets, knobs, keyboards. etc. are not included but most of these may be bought separately. Fuller details of kits PCBs and parts are shown in our lists.

LAYOUT DIAGRAMS are supplied free with at PCBs unless "as published"

AMEFICAN EXPRESS

NEW KITS

EE 3-CHAN STEREO MIXER
Full level control on left and right of each channel, and with master output control and headphone monito
Text photoco
Text photocopy
KIT $107-1$
TEXT 108
TEXT 108
HW 107
68.61
$65 p$
c3.19

3-MICROPHONE STEREO MIXER

Enables stereo live recordings to be made without the 'hole in the middle effect. Independent control of each microphone
Basic comps, PCB \& chart
KIT 108-1
65.41
$55 p$
$\begin{array}{lrr}\text { Knobs, skts, \& sw's } & \text { HW-108 } & \text { E2.55 }\end{array}$

E.E. HEADPHONE AMPLIFIER

For use with magnetic, ceramic or crystal pick-ups, tapedeck or tuner, and for most headphones. Designed with RIAA equalisaBasic comps, PCB \& chart Text photocopy

KIT 104-1 $\mathbf{8 9 . 7 9}$ $\begin{array}{lrr}\text { Knobs. \& } & \text { sockets } & \text { TEXT } 104 \\ \text { EX } & \text { 85p } \\ & \text { HW } 104 & \mathbf{E 2 . 5 0}\end{array}$

E.E. AUDIO EFFECTS UNIT

A variable siren generator that can produce British \& American olice sirens, Star Trek, Red Alert, heart-beat monitor sounds. etc. $\begin{array}{lll}8 \text { Basic comps, PCB \& chart } & \text { KIT } 105-1 & \mathbf{£ 4 . 8 7} \\ \text { Text photocopy } & \text { TEXT } 105 & \mathbf{6 5 p}\end{array}$ $\begin{array}{lrr}\text { Text photocopy } & \text { TEXT } 105 & \text { 65p } \\ \text { Knobs. skts \& switch } & \text { HW } 105 & \text { £1.91 }\end{array}$

GUITAR PRACTISE AMPLIFIER

A 3 watt mains powered amplifier suitable for instrument practise or as a test gear monitof. Drives 8 or 15 ohm loudspeaker.
Basic comps. PCB \& chart
KIT 106-1 $\begin{array}{llll}\text { Basic comps. PCB \& chart } & \text { KIT } & 106-1 & \text { £9.81 } \\ \text { Text photocopy } & \text { TEXT } & 106 & \mathbf{6 5 p}\end{array}$ Text photocopy
$\begin{array}{rrr}\text { TEXT } & 106 & 65 p \\ \text { HW } & 106 & \mathbf{f 2 . 0 2}\end{array}$

SIGNALTRACER \& GENERATOR

Allows audio signals to be injected into circuits under test, and for racing their continuity. Includes frequency \& level controls. 8 asic comps, PC8 \& chart KIT 109-1 $£ 5.80$ $\begin{array}{lrr}\text { Text photocopy } & \text { KEXT } 109 & 55 \text { p } \\ \text { Knobs, skts, sw's \& probes } & \text { HW } 109 & \text { £3.17 }\end{array}$

P.E. GUITAR SUSTAIN

Maintains the natural attack whilst extending note duration.
Basic comps, PCB \& chart $\begin{array}{ll}\text { Basic comps. PCB \& chart KIT 75-1 } \\ \text { Text photocopy } & \text { E6.99 }\end{array}$ $\begin{array}{lrl}\text { ext photocopy } & \text { TEXT 75 } & \text { 38p } \\ \text { Knobs \& sets } & \text { HW75 } & \text { 91p }\end{array}$

P.E. AUTO-WAH UNIT

utomatically give Wah or Swell sounds with each note played.		
Basic comps. PCB \& chart	KIT 58-1	£10.11
Text photocopy	TEXT 58	58 p
Knobs \& skts	HW	

ELEKTOR WAVEFORM CONVERTER

Converts a saw-tooth waveform into sinewave, mark-space saw ooth. regular triangle, or square-wave with variable mark-space. Basic comps, PCB \& chart, but excl. sw'sKIT 67-1 f9.24

P.E. SWITCHED TONE TREBLE BOOST

Provides switched selection of 4 preset tonal responses.		
Basic comps. PCB \& chart	KIT 89-1	$\mathbf{£ 4 . 3 4}$
Text photocopy	TEXT 89	$\mathbf{7 8 p}$
Knobs, skis, sw's	HW 89	$\mathbf{£ 1 . 8 9}$

ELEKTOR RING MODULATOR

Compatible with the Formant \& most other synthesisers.

$\begin{array}{llll}\text { Set of basic comps \& PCB (as publ.) } & \text { KIT 87-2 } & \text { 86.84 }\end{array}$ $\begin{array}{lrr}\text { Text photocopy } & \text { TEXT 87 } & \text { 38p } \\ \text { Knob, skt } & \text { HW } 87 & \mathbf{7 5 p}\end{array}$

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

ELEKTOR FUNNY TALKER

ncorporates a ring modulator, chopper \& frequency modulator to
 Basic comps, PCB las publ.) KIT 99-1 £9.60 $\begin{array}{lrr}\text { Text photocopy } & \text { TEXT } 99 & \mathbf{4 0 p} \\ \text { HW } 99 & \mathbf{~ 1 . 2 2}\end{array}$

ELEKTOR FREQUENCY DOUBLER

For use with guitars \& other electronic instruments to produce an output one octave higher than the input. Inputs and outputs may e mixed to give greater depth.

Basic comps, PCB (as publ.)	KIT $98-1$	$\mathbf{£ 5 . 4 8}$
Text photocopy	TEXT 98	20 p
Knobs \& skts	HW 98	$\mathbf{£ 1 . 2 4}$

P.E. SPLIT-PHASE TREMOLO

A simple but effective substitute for a rotary cabinet. The output an imternal generator is phase-split and modulated by an input signal from an electronic guitar or other instrument. Output mplitudes, depth \& rate are variable. May be fed to one or two mplifiers.
$\begin{array}{lrr}\text { Basic comps. PCB \& chart } & \text { KIT } & 101-3 \\ \text { Text photocopy } & \text { TEXT } 102 & \mathbf{6 5 p}\end{array}$ Knobs \& skis HW 102 £2.53

P.E. MINISONIC WAVEFORM

 CONVERTERsimple converter that modifies the Minisonic sawtooth waveform to produce triangle and sine outputs. Ideally one hould be used with each Minisonic VCO.
Basic comps. PCB \& chart
Knob, skts. switch
IT ${ }^{\text {96-1 }} \quad$ ¢3.98

P.E. GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing, for example, flanging, vibrato. reverb, fuzz and iremolo as well as uther fascinating sounds. May be used with most lectronic instruments.
Basic comps. PCB \& charts (excl. SWs) KIT 85-5 £49.23 Set of text photocopies TEXT $85 \quad £ 2.52$

P.E. PHASER

An automatically controlled 6-stage phasing unit with integral
Basic comps, PCB \& chart
KIT 88-1 £10.9
-Notch extension, PCB \& chart KIT 88-2 66.36
Text photocopy
$\begin{array}{rr}\text { TEXT } 88 & 68 p \\ \text { HW } 88 & \text { £1.63 }\end{array}$

ELEKTOR PHASING \& VIBRATO

Includes manual and automatic control over the rate of phasing \& Sato. Slightly modified to also include a 2 -input mixer stage Set of basic comps, PCB \& chart KIT 70-2 $£ 21.6$ Knobs, skts, swis

P.E. GUITAREFFECTS UNIT

Modulates the attack, decay and filter characteristics of a signal rom most audio sources, produ ing 8 different switchable effect hat can be further modified by manual controls.

Basic comps. PCB \& chart	KIT $42-4$	$£ 7.68$
Text photocopy	TEXT 42	28 p
Knobs \& skts	HW 42	$£ 1.85$

P.E. GUITAR OVERDRIVE

Sophisticated versatile fuzz unit incl. variable controls affecting the fuzz quality whilst retaining attack and decay, and also pro viding filtering. Usable with most electronic instruments.

Basic comps. PCB \& chart KIT 56-3 £11.22 $\begin{array}{lrr}\text { Text photocopy } & \text { TEXT } 56 & \mathbf{6 8 p} \\ \text { Knobs \& skts } & \text { HW } 56 & \text { £2.29 }\end{array}$
P.E. SMOOTH FUZZ

Basic comps, PCB \& chart	KIT 91-1	$\mathbf{~} 6.52$
Text photocopy	TEXT 91	$55 p$
Knobs \& skts	HW 91	$\mathbf{£ 1 . 2 2}$

ADD 15\% VAT (or current rate if changed) kits, discount post \& handling on all U.K. orders. Does not apply to Exparts no photocopies.

EXPORT ORDERS ARE WELCOME but to avoid delay we advise you to see our list for postage rates. A national Money Order or through, in Stering by Inter obtain list Europe ord 50ph angus Bank. To obtain list
f 1.00 . Note Note that we do not offer a C.O.D, eervice and

AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of the P.E. projects built from our kits and PCBs. The cases were built by ourselves and are not for sale, though a mall selection of other cases is available.
IST-Send stamped addressed envelope with all U.K. requests for free list giving fuller details of PCBs, kits and other components.
OVERSEAS enquiries for list Europesend 50p: other countries-send $£ 1.00$

KIMBER-ALLEN KEYBOARDS AND CONTACTS

KIMBER-ALLEN KEYBOARDS as required for many published projects. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C, the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame. 3 Octave (37 notes) $£ 25.50 \quad 4$ Octave (49 notes) $\mathbf{£ 3 2 . 2 5} \quad 5$ Octave (61 notes) $\mathbf{£ 3 9 . 7 5}$ CONTACT ASSEMBLIES (gold-clad wire) - 1 required for each KBD note: Type GJ - SPCO 33p ea. Type GB - 2 pr N/O $37 \frac{1}{2} p$ ea.

P.E. 6-CHANNEL MIXER

A high specification stereo mixer with variable input impedances
Basic comps \& PCB's
Extra 2 -channel set with PCB
Set of Text photocopies TEXT 90 10.2
Knob, skts, sw's See our list

RHYTHM GENERATORS

Several available, including programmable 16 beat 64000 pattern, and pre-programmed 15 patern using either M252 or M253 Myis is also available.

WIND \& RAIN EFFECTS

UNIT
A slightly modified version of the original P.E. unit. Basic comps, PCB \& chart KIT 28-1 $\mathbf{~} 4.84$ Text photocopy \quad TEXT 28 28
P.E. ENVELOPE SHAPER

WITH VCA

Has an integral Voltage Controlled Amplifier, and has fuit manual control over the A.D.S.A functions

Basic comps, PCB \& chart KIT 50-1 $\mathbf{£ 8 . 0 3}$ Text photocopy

TEXT 50
HW50
Knobs, skts

P.E.TRANSIENT GENERATOR

An ADSR envelope shaper without VCA, and additionally providing Repeat-triggering enabling a synthesiser to be programmed for mandolin of banjo effects.

Basic comps. PCB \& chart KIT 63-2 $\mathbf{£ 7 . 6 2}$ Text photocopy TEXT 63 58p
P.E. EXTERNAL-INPUT SYNTHESISER-INTERFACE
Allows external inputs such as guitars, Alcow ox to be processed by synthesiser circuits.

Basic comps, PCB \& chart KIT 81-d £3.90
P.E.TUNING FORK

Produces 84 switch-selected frequency-accurate Pres with an LED monitor clearly displaying beatnote adjustments.
Set of basic comps, incl. power supply.
PCBs \& charts
Text photocopy
Text photocopy

K1T	46-3
TEXT	46

P.E. TUNING INDICATOR

A simple octave frequency comparitor for use with synthesisers and other instruments where the full versatility of KIT 46 is not required.

Basic comps, PCB \& chart KIT 69-1 £8.19 Text photocopy TEXT 69 58p Knobs, skts, sw's HW 69 £1.56

DIGITAL EXPOSURE

UNIT

Controls up to 750 watts in $\frac{1}{2}$ second steps up to 10 minutes, with built-in audio alarm. Basic comps, PCBs KIT 93-3 £23.45 $\begin{array}{lrl}\text { Text photocopy } & \text { TEXT 93 } & £ 1.20 \\ \text { Knobs, skts } & \text { HW } 93 & £ 2.48\end{array}$

P.E. DISCOSTROBE

A 4-channel light show controller giving a choice of sequential. random, or full strobe mode of operation.

Basic comps, PCB \& chart KIT 57-3 £19.37 $\begin{array}{lrr}\text { Text photocopy } & \text { TEXT } 57 & \text { 78p } \\ \text { Knobs, skts, sw's } & \text { HW } 57 & \text { £7.30 }\end{array}$
P.E. CONSTANT DISPLAY FREQUENCY COUNTER
A 4 -digit counter for 1 Hz to 99 kHz with 1 Hz sampling rate Readout does not count visibly or flicker due to blanking

Basic comps, PCB \& chart KIT 79-4 $£ 31.61$
Text photocopy TEXT 79 78p
Knobs, skts, sw's

P.E. VOICE OPERATED

 FADERfor automatically reducing music volume during talkover - particularly useful for discos. Basic comps. PCB \& chart KIT 30-1 $\begin{array}{lrl}\text { Text photocopy } & \text { TEXT 30 } & \text { 28p } \\ \text { Skis } & \text { HW } 30 & \text { 32p }\end{array}$

P.E. DYNAMIC NOISE

 LIMITERVery effective stereo circuit for reducing the hiss found in most tape recordings.

Basic comps, PCB \& chart KIT 97-1 £8.07
Text photocopy TEXT 97
P.E. DYNAMIC RANGE LIMITER
Preset to automatically control sound outpu Basic comps. PCB \& chart KIT 62-1 f5.31 Skts HW 62 44p

ALL KITS INCLUDE SPECIALLY DESIGNED PRINTED CIRCUIT BOARDS

MORE KITS AND COMPONENTS ARE IN OUR LISTS

PHONOSONICS

Elechroliloz

 BEST SELLERS ...
mechargeagle cells by sanyo.CAONica Size Aa 99p. C 227. 03.76. PP3 4.10

 with taps AA 1.06. C $2.43,03.99$CHARGERS PP3 4.75. AA 4.95, A. C. 07.60
PLASTIC BOXE PB1 $116 \times 71 \times 35 \mathrm{~mm}$ 62D
Breadbards Euro 570 N , Veroblock 3.63
Bimboard 8.03, Buzer 6.15V 80p
 Polyester (PCM 7.5 mm$) .001$ 6p $00477 \mathrm{p}, 0568 \mathrm{p} .19 \mathrm{p}$. (PCM 10 mm) 1 uf 26 (Many mare values in this range).
Variable 0ilecon $100 \mathrm{pF} 2.08,500 \mathrm{p} 321$.
ELECTROLYTICS full range
 Oip havder 14 pin 38 p .16 pin 43p
Ouick ress mains block 5.25
Fuse hoideris 20 mm pannel 22 , chassis
Hest sinks Power $125^{\circ} \mathrm{CM}$ 285, linger type 10325 p. TO220 25p
INTEGATEO CIRCUITS - humdinefs of types 741 18p. 555 23p. CA3140E 40p. (M380N 99p. LM3914N 2.88. S568B 2.14. TCA965 1.20
ic holders 8 pin $9 p .14-40$ pin $1 p$ per pi
KNO
Loudspeakers $21 / 2^{\prime \prime} 88^{\prime}$ or 64 ohms 93
Magneto resistors from 1 BON
Meters, pannel $80 \times 45 \mathrm{~mm} 50 \mathrm{u} 4.1 \mathrm{~A}$ es 480
Opto LEDS rod 7 p . Yollow 9 p . green 11 p . ultribright 21 p all coiouls
POTENTIOMETERS carbon 20 mm dia $100 \mathrm{R}-2 \mathrm{M} 2 \mathrm{lin}$. $220 \mathrm{O}-4 \mathrm{M} 7$ lop single 29 p . 1 K $2 \mathrm{M} 2 \mathrm{lin}, 4 \mathrm{~K} 7.2 \mathrm{M} 2 \log$ duals, ea 81 p Add 51_{p} if requirod with switch

Wirgwound 25R-10K. 3 Watr 81.150
PRINTEO CIRCUIT MATERIALS. $300 \times 150 \mathrm{~mm}$ S/S SREP $125.1 / \mathrm{g} 11.90 .500 \mathrm{gm}$

 5% en 2p Metal oxide YR5 2% 5p. Film MR25 $5 p$. SEMICOMOUCTORS 1N4007 6p. IN4148 3p. ACA2N3055 70p. BC107-9 Iamily

Solder $500 \mathrm{gm} 80 / 4020 \mathrm{SWG} 730 \mathrm{~N}$
Soidems Antex C. CCN. CX or $\times 25$ ea 440 N Oryx 50 temperature controlled 1150 N SO-TIP corrdess with charger 24.00 N
SWITCHES slider OPOT min 18 p std 20 p Wexechange 1P12W 2P6W 3PCW 4P3W ia 40 p Time switch $13 \mathrm{~A} 3 \mathrm{an} / 3$ ofl per day 1468 N Min toggles sives contacts SPDT
 Mimature drills, 122 de TITAN 10.28 N TITAN kut 17.06 N , Stand 1200 N
Tools CK pliers 470 , cutters 610,3 stippers 495
Vero wirting sysiem kit 442. wife 1. 17 .
 32 50N. IGK RAM kt 11000 N

SERVICE

KEEN BUYERS

 ASAE BRINGS COMPREHENSIV PRICE LIST Valid 3 mths) COVERING CATALOGUE ' 81ACCESS ANO BARCLAYCAROS ACCEPTED EVERYTHING BRAND NEW \& gUARANTEED HARD TO FIND ITEMS KEEN PRICES \& OISCOUNTS SPECIAL SPECIAL DISCOUNTS SPEEDY IURN ROUND ON ORDERS NO P/P CHARGES ON UK CWO ORDERS DVER £5 75 lAdd handhing charge of 40 p it underi PLEASE ADO 15% VAT TO TOTAL VALUE OF AlL ORDERS
Shop Hours -9-5.30: Sets. 9-1 pm.

ELECTRDVALUE LTD. OEPT. PE/7. 28 SL Juden Roed, Enclafiod Grcen. Egham, Surrey Tw20 OHE

THE firm for speakers!
SEND 50p FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

AUDAX - AUDIOMASTER - BAKER • BOWER \& WILKINS - CASTLE - CELESTION - CHARTWELL - COLES - DALESFORD decca - eagle e elac e emi - fane GAUSS - GOODMANS - HARBETH ISOPHON - I.M.F. - JORDAN - JORDAN WATTS - KEF - LOWTHER - McKENZIE MISSION - MONITOR AUDIO - MOTOROLA - PEERLESS - RADFORD - RAM - ROGERS RICHARD ALLAN - SEAS - SHACKMAN - STAG - TANNOY - VIDEOTONE - WHARFEDALE -

WILMSLOW AUDIO (Dept. P.E.)

35/39 ChURCH STREET, WILMSLOW. CHESHIRE

Tel: 0625529599
FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS ETC.
Tel: 0625526213
(SWIFT OF WILMSLOW) FOR HI-FI \& COMPLETE SPEAKERS

\section*{} | $\begin{array}{ll}\text { Load impedance both models } \\ 4 \Omega-00 \text { Input sensitivity borh } \\ \text { models } 500 \mathrm{mV}\end{array}$ | Input impedance both models $100 \mathrm{~K} \Omega$
 Frequency response both models
 |
| :--- | :--- |

（anOOSE KN I．L．P MOSIET POWER NMP when it is to work with complex loads without difticulty and
complete absence of cross－over distortion．I．L．P＇s

	$\begin{aligned} & \circ \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & 8 \\ & 8 \end{aligned}$
	ले	\cdots
$\begin{gathered} \stackrel{y}{E} \\ \frac{\pi}{\alpha} \\ \frac{8}{6} \\ \hline \end{gathered}$	$\frac{1}{2}$	$\frac{\pi}{2}$
	$\begin{aligned} & x \\ & 8 \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$
\％	只	骨

 Load impedance all models 4Ω－oo Input impedance all models $100 \mathrm{Z} \Omega$
Input sensitivity all models 500 mV Frequency reaponse all models 15Hz－50×Hz－3dB
THE NEW PROFILE EXTRUSIONS
$1\left|\left|\left\lvert\, \begin{array}{l}\text { THE NLW PROEILE EXTRUSIONS } \\ \text { The introduction of standard heatsink extrusion for all } \\ \text { I．L．P．power amplifiers achieves many advantages：}\end{array}\right.\right.\right.$ $\int \begin{aligned} & \text { Research shows they provide optimum therma } \\ & \begin{array}{l}\text { dissipation and stability．Slotted shoulders allow easy } \\ \text { mounting．}\end{array}\end{aligned}$

둔 울

$\stackrel{\infty}{\stackrel{\leftrightarrow}{4}}$		$\underset{\sim}{m} \underset{\sim}{\infty} \underset{\sim}{\sim}$			$\stackrel{\oplus}{\text { ¢ }} \stackrel{\text { ¢ }}{\substack{\text { ¢ } \\ \text { ¢ } \\ \text {＋}}}$
	$\begin{aligned} & \text { © } \\ & \hline 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 毋్ర } \\ & \hline \mathbf{~} \end{aligned}$		$\begin{aligned} & \mathbb{D} \\ & \mathbf{8} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \hline 8 \\ & \hline \end{aligned}$
	\％	范	$\stackrel{\square}{3}$	$\stackrel{\square}{3}$	边
	$\underset{\sim}{n}$	$\underset{\substack{n \\ 3}}{\substack{3}}$	$\underset{\sim}{3}$	${ }_{n}^{\infty}$	$\sum_{\substack{n \\ n}}^{\infty}$
	$\begin{aligned} & 8 \\ & \stackrel{8}{4} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \mathscr{\ell} \\ & \stackrel{0}{6} \\ & 0 \end{aligned}$	$\frac{8}{0}$	$\frac{8}{0}$	－
	$\begin{aligned} & \text { O} \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { B } \\ & \text { In } \end{aligned}$		$\begin{aligned} & \stackrel{8}{N} \\ & \underset{x}{2} \end{aligned}$	首

KITS FOR BEGINNERS

AROUSE THE MICRO CHIP INTEREST IN THE YOUNGSTERS STARTER KITS.

```
ULTRONIC FLY
GEPELLER
A must for campers.
Features:
-LED indication.
-Low Power consumption.
Kit + all parts + case with in-
kin}
Battery not included
```

ORDERING INFORMA
Please add 50p P\& P
Plus 15\% VAT to all orders
EXPORT ORDERS ACCEPTED.
Add 15% P\& P On
Add 15% P\& P on total order. VAT not
applicable.

ORDERING INFORMATION Please add 50 p Pa,

Add 15% P\&P on total order. VAT no
applicable.

LIGHT ACTIVATED
Used for automatic lighting control, elec. appliance control, electronic gun burglar alarm and auto-open door systern.
Switch
Switch onloh 200W elec
appliances.
Kit + parts easy assembly. 75

ELECTRONIC WHEEL OFFORTUNE Funkit.
Easy to assemble.
Case included.
Wonderful game. SPECIAL-E5.45

YSM
It is our policy to offer you brand new. full spec. devices.

Prices subject to change without notice

The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Cortificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for

Telecommunications Technicians
Radio, T.V. Electronics Technicians
Radio Amateurs
Electrical Installation Work

Diploma Courses

Colour T.V. Servicing
CCTV Engineering
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE.

SPARKRITE $X 5$ is a high performance f(p) cinality unductive? discharge electronc momion systemelesicgue-if for the electrenmes D I Y world it has ineen tried. tested and prowern fol lx: utterly reliable Assemily only takes 12 lionirs andinstaliatum 11 , even less due to the patented ${ }^{\circ} \mathrm{c}$ lip on wh Sparkritecircut elminatesproblemens of the: contact breaker Theres is mo minsfore dur to contact breaker brounce which iselimmatext electromically lay a pulse suppresssim circuit which preverits the unt firulg of thin points bounce (upen in higli R PM
Contact breaker ixum is edirmmatedtiy rechucing the curront by 95^{n} is of the nexin

There is alsu a umane extencted dwell corcuit which allows the coni a kengeer periedol tinu. to stome it semer ciy hafore
 bulf unstatue tomung leght systerns finc:tem heght. and secturity chankeriver swith Will work all reve cersutiers

Fits all 12 vegative-earth vehicles

 with coil/distributor ignition up to 8 cylinders.THE KIT COMPRISESEVERYTHINGNEEDED
Die pressed case: Reacly drilledt, alumumum extructeat
base and heat sink. coil incuinting cilps and accussuriess All kit components are guar antextifor a per iod of 2 years from date of
 included

Roger Clark the world famous rally driver says"Sparkrite electronicignition systems. are the best you can buy.
 ELECTRONIC IGNITION
Electronica Daaign Aesociatos, Dopt. PE1179, 82 Bath St., Walsall, wSY 3DE

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

blackpool and the fyloe. For components come to ETESON ELECTRONICS, I5b, Lower Green, Poulton-leFylde. Tel. 885107 . Mail order too - S.A.E. lists.

TURN YOUR SURPLUS C apacitors. transistors, etc., into cash. Contact COLES-HARDING CO.. 103 South Brink, Wisbech. Cambs. 0945-4188. Immediate settlement.

VLF DETECTOR KITS
 PROFESSIONAL AUTOMATIC METAL LOCATOR
 The printed circuit Board \& Search Head are ready built \& aligned for easy assembly. Discrimination is by a rising tone for non ferrous \& a falling tone
 ferrous. Complete kit inc. meter $£ 27$.
 Discriminating Pulse Induction Kit $\mathbf{£ 4 8}$
 C.D.I. SYSTEMS LTD., Storringion 4830 (Anytime)

BALLARD'S OF TUNBRIDGE WELLS have moved to 54 , Grosvenor Road, no lists. S.A.E. all enquiries phone

SMALL ADS

The prepaid rate for classified advertisements is 28 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 9.50$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

notice to READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

BDURNEMOUTH/BOSCOMBE. Electronic components specialists for 33 years. Foresters (National Radio Supplies), Late Holdenhurst Road. Now at 36. Ashley Road, Boscombe. Tel. 302204. Closed Weds.

I \& J ELECTRONIC COMPONENTS - Quality components, competitive prices, catalogue 45p. 98 Burrow Road, Chigwell. Essex.

1920's ONWARD VALVES, WIRELESS. SAE. Sole Electronics, PE. 37. Stanley Street, Ormskirk, Lancs. L39 2DH.

SOFTWARE

2X81 ANO 2×80 SOFTWARE on cassette. Games, educational and household programs available, including GCE "O" level maths, household manager and telephone index/address list. Prices from $\mathbf{1 2 . 0 0}$. Send S.A.E. for catalogue to: ROSE CASSETTES, 148, Widney Lane, Solihull, West Midlands B91 3LH.

Superboard/UK 101 Low Cost Add-Ons

ALL PRICES INCLUDE VAT \& POST
8K RAM + 16K EPROM board, fully buffered and decoded. Top quality PCB -40 pin DIP connector. All memory bank selectable in 4 K blocks anywhere in memory. Includes 4 K 300ns RAM (2114). Full instructions etc. supplied.
Kit $£ 48.99$ built and tested $£ 56.99$
High speed cassette interface kit, 300/2400/4800/ switchable to suit recorder.
Easy to fit kit $£ 16.90$.
Enhanced Video Display. True 48×32 Display Full kit and instructions $£ 15.95$.
Software for all Superboard/UK 101 screen formats. Chess 1.9 \$7.90, Draughts $£ 3.50$.
Superboard II Series II fully built tested and guaranteed. \&169.99.

$$
\begin{array}{lr}
\text { NORTHERN MICRO } & \begin{array}{r}
\text { Tel. Holmfirth } \\
\text { (048489) } 2062
\end{array} \\
\text { 29 Moorcroft Park } & \text { S_A.E. for list please } \\
\text { New Mill } \\
\text { HUDDERSFIELD } & \text { Callers welcome by appt. }
\end{array}
$$

CARDBOARO COMPUTOR. Learn Assembly Language Programming and Computor Architecture. $\mathbf{5 8 . 9 7}$ inc. VAT. Also Solar Cells, Science Kits, Energy Books, Stirling Engines. Space Blankets etc. Send 25p for lists. Edencombe Ltd.. Dept. PM34, Nathans Road, North Wembley. Middlesex HAO 3R X.

2X81, 2X80, Acorn Atom, Sharp PCI211 software available - Wide range, low price, fast delivery. Send S.A.E. for details (state computer) to: BUG-BYTE, (Dept PE), 251, Henley Road. Coventry.

SIX GAMES (IK) for the ZX80 Pontoon, Guess the Number, Battleships. Slot Machines (1 \& 11), Maths Qui2, Maze (1 \& 11). Cassette with full instructions for $\mathbf{£ 3 . 0 0}$ from: \mathbf{P}. Bramwell. 87. A nderson Crescent, Great Barr. Birmingham B43 7ST.

COMPUKIT 4 K game 'Seek and Destroy' with running score etc. Cassette $\mathbf{£ 2 . 5 0}$ including circuit for optional low cost sound. Alan Stott. 29. Hounds Road, Chipping Sodbury, Bristol.

bOOKS AND PUBLICATIONS

B00KS B00KS B00KS. Large range of radio and electronic books in stock. Send SAE for lists. Servio Radio, Dept. PE7 156-158, Merton Road, Wimbledon, London SW 19 IEG.

OUT OF PRINT Book Service, 17, Fairwater Grove (E), Cardiff. Send SAE for details.

ANY SINGLE SERVICE SHEET £L L.S.A.E. Thousands different repair/service manuals/sheets in stock. Repair data your named T.V. £6 (with circuits £8). S.A.E. Newsletter, pricelists, quotations. AUS (PE), 76 Church Street, Larkhall, Lanarkshire. (0698 883334).

EDUCATIONAL

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS

Dept. 272J Intertext House, London SW8 4UJ
Tel. 01-6229911 (all hours)
State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a higher pard job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio. Eng. and Servicing, Electronics, Computers: also self.buld radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS

DepL 272 J Intertext House, London SWB 4UJ
Tel. $01-6229911$ (all hours)
State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Depl. 272J latertext House, London SWB 4UJ Tel. 01-622 9911 (all hours)

State if under 18

TELEVISION COMPUTER COMMUNICATION \& RADAR SERVICING

TWO YEAR full-time Modular Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
- MONOTV \& CCTV
- colour TV \& VCR
- MICROELECTRONICS \& DIGITALTECHNIQUES
- COMPUTERS \& MICROPROCESSORS
- communications \& RADAR
Each of the above Modules are 13 weeks in duration. Individual Modules can be arranged for applicants with suitable electronics background.
Tuition fees (UK \& Overseas) £1500 per year (i.e. £500 per Module).
Next session starts September 14th.
Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Penywern Road, London SW5 9SU. Tel: 01-373 8721.

CAREERS in Marine Electronics. Courses commencing September and January. Further details, the Nautical College. Fleetwood FY7 8JZ. Tel. 0391779123.

TUITION

pay as you learn. postal mathematics tuition. 23. St. Lukes Close. Middlestown. Wakefield.

SERVICE SHEETS

BELL'S TELEVISION SERVICES for Service Sheets on Radio, Tv, etc $f 1.00$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N . Yorkshire, Tel:(0423) 55885 .

FOR SALE

MAPLIN CABINET and extras for Disco Project. Cost $£ 90$. want $£ 60$ o.n.o. All V.\& C. Will deliver. Phone Inverness 32897.

ZX80 SINCLAIR built with manual, mains adaptor, leads. £55. Telephone (0407) 810689.

PRINTER, Printer, Printer. Data Dynamics plain paper printer with supplies. Ideal for UK 101 or similar. $£ 130$. Tel. 01.9591844.

NEW back issues of 'practical electronics' available 90 p . each Post Free. Cheque or uncrossed P/O returned if not in stock. Bell's Television Services, 190 Kings Road. Harrogate. N. Yorks. Tel: (0423) 55885.

MINISONIC $£ 180$, String ensemble $£ 150$, perfect. Complete sound system. 12 channel mixer. Will separate. 01.8662721 .

KIMBER ALLEN KEYboaro, 49 notes, with contacts plus tape decks. record decks. speakers. scope. Back issues of P.E. and more. Any takers? Phone 01-237 2828

Superboard with Cegmon, good P.S.G. Many extras. metal cased $£ 250$. Phone East Kilbride (03552) 37384.

ELECTRONICS MAGAZINES over 100 magazines. mostly P.Es 1964-1977 $£ 20$ buyer collects. Aylesbury 21736 evenings.

miscellaneous

SEEN MY CAT? 5.000 odds and ends. Mechanical. Electrical. Cat Free. Whiston Dept. PRE. New Mills. Stockport.

RYDER ORGAN SYSTEM

The WW classical design for full-size keyboards, including couplers. Expanded range of p.c. boards \& data available includes chorus, vibrato, combination stop control.
Reverberation. A new compact solidstate unit gives smooth natural sound. Demo cassette, on toan, deposit $£ 1.50$, refund $£ 1.00$. (Prices UK only).
HIYKON LTD. (P), Woodside Croft, Ladybridge Lane, Bolton BL1 5ED.

ULTRASONIC TRANDUCERS. $\mathbf{£ 2 . 8 5}$ per pair +25 p P. \& P. Dataplus Developments, 81 Cholmeley Road. Reading. Berks.

ENAMELLED COPPER WIRE			
SWG	1 lb	$\frac{1}{2} \mathrm{lb}$	4 lb
10-19	2.95	T. 70	0.85
20-29	3.05	1.75	0.95
30-34	3.45	1.90	1.00
35-39	3.75	2.10	1.15
40-43	4.95	2.75	2.15
44-46	5.90	3.50	2.40
FREE WIRE TABLES WITH EACH ORDER.			
INDUSTRIAL SUPPLIES, 102 Parrewood Road, Withington, Manchester 20. Prices include P \& P in UK.			

PRINTEO CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer - now greatly improved and very much faster. Aerosol cans with full instructions $\mathbf{£ 2 . 2 5}$. Developer 35p. Ferric Chloride 55p. Clear Acetate sheet for master 14p. Copper-clad Fibreglass. Board approx. Imm thick $\mathbf{f 1 . 7 0}$ sq. ft. Post/packing 75p. WHITE HOUSE ELECTRONICS, P.O. BOX 19, Castle Drive, Penzance, Cornwall.

DIGITAL WATCH BATTERY REPLACEMENT KIT

 These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass, non-magnetic tweezers, watch screwdriver, case knife and screwback case opener, also one doz, assort push pieces, full instructions and battery identification chart. We then supply replacementbatteries-you fit them. Begin now. Send f9.00 for complet kit Send es. 0 for complet kusiness prompt despatch
I INSTRUMENT CO.
(PE26)
11 Percy Avenue, Ashford, Middx. TW15 2P8.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for insertions. I enclose Cheque/P.O. for E ..
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics).

burglar alarm equipment. Latest Discount Catalogue out now! Phone C.W.A.S. Alarm 0274682674.

BIG EARS

BIG EARS opens the door to direct
man-machine communication. The system
comprises analogue frequency separation filters,
preamps and signal conversion, together with a
quality microphone and extensive software.
Words, in any language, are stored as "voice-
prints" by simply repeating them a few times in
"learn" mode. Using keyword selection techniques, large vocabularies can be constructed.
Use BIG EARS as a front end for any application: data enquiry, robot control, starwars - the possibilities are unlimited
BUILT, TESTED \& GUARANTEED ONLY $\mathbf{£ 4 9 !}$
PRICE INCLUDES POSTAGE \& PACKING PLEASE ADD Vaitat 15\% PLEASE STATE COMPUTER. UK101, SUPERBOARD. NASCOM2. pet. trseo, ETC.

MICROGRAPHICS

Colour Conversion for
UK101/NASCOM 1 \& 21 Superboard KIT £45
(Modulator included) BUILT £60
COLOUR MODULATOR
KIT $£ 12$
RGB in, PALUHF out BuILT £18
Please add VAT at 15% to all prices
Barclay/Access orders accepted on telephone

STU,ART $\begin{gathered}\text { Herongate, Brantwood, } \\ \text { Essex CMi13 }\end{gathered}$
SYSTEMS Ltd Essex CM13 35D
brano new. mot surplus. bargain packs! $107400 £ 1$, 10 BC 183L £1, 10 BC 213L £1, 27805 £1. Prices include VAT. Postage 25 p. CWO to: MICRO MUSICAL LTD. The Old Vicarage, 37. Wood Lane, Shilton, Coventry CV7 9LA.

MAKE YOUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack (5 sheets, lines, pads, I.C. pads) £2.00. Large range of single sheets in stack at 43p per sheet.
Master Positive Transparencies from P.C. layouts in magazines by simple photographlc process. Full Instructions supplied. 2 sheets ($20 \times 25 \mathrm{~cm}$) negatve paper and 2 sheets ($18 \times 24 \mathrm{~cm}$) positive film $£ 1.80$.
20p stamp for lists and information. P\&P 35p/order Closed for holidays July 20th to August 15th
P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE
SECONDHAND ELECTRDNIC TEST EQuIPMENT including oscilloscopes. generators, PSU's. Norfab. Telephone Potter Heigham (069-27) 721 .

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, also parallel BCD output for computer etc, receives Rugby 60 KHz
a tomic time signals, built-in antenna, 1000 Km atomic time signals, built-in antenna, 1000 Km range, ACCURAC, 54.80 .
60KHZ RUGBY RECEIVER, as in MSF Clock, serial data and audio outputs, $£ 15.70$.
Each fun-to-build kit includes all parts, printed circuit, case, postage etc, money back assurance so GET yours NOW. Assembled to order. CAMBRIDGE KITS
45 (FU) Old School Lane, Milton, Cambridge.
digital watch batteries. Any sort 75p each + p.p. Send S.A.E. or 15 p with number or old battery to Disclec, Y, 511 Fulbridge Road, Werrington, Peterborough PE4 6SB.

Cabinet and Flightcase Fittings
 Fretcloths Coverings, Handles, Castors etc." Jacks and Sockets, Cannons, Bulgins, Reverb Trays. Emiar Coms. sion Drivers. AKG Mics, Celestion Speakers, ASS, Glassibre Horns.
 Send 30p Postal Order for illustrated catalogues to

ADAM HALL (P. E. SUPPLIES) Unit G, Carton Court, Grainger Road,
Southend-on-Sea, Essex SS2 5BZ.

SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a Low $£ 1.05$. Chassis punching faciltues at very compettive prees, 400 models to choose Om. Spp 23) St Witrids, Foundry Lane. Halton Lan Dept. No. 23), St. Wiffrids, Foundry Lane, Halton, Lan caster, LA 1 6LT.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E.4. 01-531 1568. ENAMELLED COPPER WIRE				
SWG	1 lb	$80 z$	4oz	2 oz
8 to 29	2.76	1.50	0.80	0.60
30 to 34	3.20	1.80	0.90	0.70
35 to 39	3.40	2.00	1.10	0.80
40 to 43	4.75	2.60	2.00	1.42
44 to 47	5.90	3.40	2.39	2.00
48 to 49	15.96	9.58	6.38	3.69
$\begin{array}{lllll}\text { SILVER PLATED COPPER WIRE } & \\ 14 \text { to } 30 & 6.50 & 3.75 & 2.20 & 1.40\end{array}$				
TINNED 14 to 30	OPPER 3.85 Prices		$\begin{aligned} & 1.34 \\ & \text { AT. } \end{aligned}$	0.90
SAE for	s under of Copp enquir Office, 2	2 ple Resi wel Coning	add 2 ce W - Garde	ealer

PSYCHDTRDNIC GENERATDRS, gravity lazers, electrokinesis, electroptography, skinvision, SAE $4^{\prime \prime} \times 9^{\prime \prime}$ PARALAB, Dównton, Wilts.

NEW 32.7 KHz ULTRASONIC ALARM QUARTZ LOCKED + PANIC FACILITY

 No alignment - No interaction between units. KITS INC F/G PCB ABS BOX HARDWARE ALL COMPS. Single unit construction - screw connections. 240 V operation with battery back up option. 15 ft . detection range internally preset. Delay on leaving and entry. Invalid movement delay, self cancelling alarm, approx 2 mins. Latching alarm for panic - ext. resetable with keyswitch. Solid state drive $12 \mathrm{VDC} \quad 25 \mathrm{~mA}$ and Relay Contact 240 VAC 3A ALARM KIT UAO +P £21.65. Built and Tested £29.65. Keyswitch in Box £5.95. Multitone Sounder 12VDC $25 \mathrm{~mA} 95 \mathrm{db} \mathbf{£ 9 . 2 0}$. All prices inclusive - CWO - UKgJD ELECTRONICS, 105 Harper Fold Fload
Radcliffe, Manchester M26 ORQ.

CLEARING LABDRATORY: scopes, generators, P.S.U.'s, bridges, analysers, meters, recorders, etc. 0403-76236.

UK101 - SUPERBOARD

Two really great additions to the UK101 from Computer User Aids.

1. PROGRAMMABLE GRAPHICS

HI RES Graphs, 3D drawings, technical graphics, maths, chess. Almost any imaginable symbol
may be created. Almost any imaginable symbol
may be created.

COMPLETE KIT - No extras needed - Includes PCB, chips, sockets, jumpers and even demo tape. $\mathbf{£ 6 7 . 8 5} \mathbf{i n c}$. VAT P\&P or add $£ 4.50$ for ready built.

2. PROGRAMMERS AID

Extra fast renumber, trace, find, delete and many more. All on EPROM. No eprom board required. Simply plug onto existing board and go. Suitable for Cegmon, Newmon, Synmon etc.
ALL THESE ROUTINES IN EPROM - $\mathbf{£ 2 1 . 0 0}$ inc VAT P\&P
Write or phone now for details of the UK101 User Group and of our other products. These prices apply to members of the User Group only. Membership just $£ 4.60$ per 6 months.

> COMPUTER USER AIDS 9 Moss Lane, Romford, Essex.
> Telephone Romford 64954.

Inner London Education Authority LONDON COLLEGE OF FURNITURE 41/71 Commercial Road, London E1 1LA Department of Musical Instrument Technology COURSES IN ELECTRONICS FOR THE MUSIC INDUSTRY

T.E.C. DIPLOMA IN MUSICAL INSTRUMENT STUDIES (2 year full time specializing in Electronics)
T.E.C. HIGHER DIPLOMA IN MUSICAL INSTRUMENT TECHNOLOGY
(2 year full time specializing in Electronics)
The Electronics options of these T.E.C. courses allow the student to specialize in music industry application.
Suitable students would be interested in both music and electronics and wish to combine them within this course.
Application forms and further details are obtainable from the Senior Administrative Officer at the College.

LOW COST

AUDIO SIGNAL
GENERATORS
MODEL 146-9
(Sine \& Square Waves) $10 \mathrm{~Hz}-100 \mathrm{kHz}$ Very low distortion ($\times 0015 \%$)
 p.p. and ins. $£ 2$ With frequency meter $£ 57.50$.

ALSO economical model 113 Sine/Square. 1 volt into 600 . Dist . 02%. $\mathbf{£ 3 1 . 6 0}$ (Kit version $£ \mathbf{2 6 . 5 0}$) p.p. £ 1 .

TELERADIO ELECTRONICS

325 Fore Street, Edmonton, London N9 OPE
S.A.E. for leaflets . . . Closed all day Thursdays

01-8073719

Phone or send your ACCESS or BARCLAYCARD number. All prices include VAT

FELTGLOW LTD.

105B LONDON ROAD.
BEXHILL. E. SUSSEX.
(0424) 221686.

Top Priority for every constructorHOME RADIO CATALOGUE

- About 2,000 items clearly listed - Profusely illustrated throughout. - Large A-4 size pages.
- Bargain list, order form and 2 coupons each worth 25 p if used as directed, all supplied free.
Price $£ 1$, plus 50 p for post, packing and insurance.
Send cheque or P.O. for $£ 1.50$
HOME RADIO Components LTD Dept. PE, P.O. Box 92, 215 London Road, Mitcham, Surrey.

01-543 5659

NICKEL CADMIUM BATTERIES

	$\begin{aligned} & \text { AA (HP7) } \\ & 0.5 A H r \end{aligned}$	$\begin{aligned} & \text { SUB ' } C^{\prime} \\ & 1.2 A H r \end{aligned}$	$\begin{aligned} & { }^{\mathrm{C}} \cdot \\ & 1.65 \mathrm{HP1} 11) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 'C'iHP11) } \\ & \text { 2.OAHr } \end{aligned}$	$\begin{aligned} & \text { 'D' (HP2) } \\ & \text { 4.OAHr } \end{aligned}$	$\begin{aligned} & \text { PP3 } \\ & 0.1 \mathrm{AHr} \end{aligned}$
1-24	£0.85	f1:38	¢1.69	£2.25	$£ 2.97$	¢3.79
25-49	10.82	f1.28	f1.58	£2.10	£2.77	
50.99	¢0.80	¢1.24	¢1.52	£2.02	¢2.67	
100 up	¢0.70	¢1.15	f1.41	£1.87	¢2.47	

All cells are brand new full spec devices from reputable mnfrs. Ah Nickel Cadmium cells lexcept PP3) are supplied complete with solder tags and are 'VENTED' devices suitable for fast charge. CHARGERS - single or dual O/P to charge PP3, AA or SUB ' C ' cells in 12-14 hrs (chargers will with flying leads. Number of cells (10 max) in series and type must be specified for tach required O / F when ordering

SINGLE O/P CHARGER £5.04
DUAL O/P CHARGER £5.72
connections $£ 1.57$ -

Data and charging clicuits free with orders over f 10 otherwise 30p post. P\&P 10% if order less than $£ 10$. 5% if
order over $£ 10$. Prices DO NOT INCLUDE VAT and this should be added to the total order

SOLID STATE SECURITY, Dept. (PE), Bradshaw Lane, Parbold, Wigan, Lancs. Telephone 02576-3018.

PROGRESSIVE RADIO 31, CHEAPSIDE, LIVERPOOL LZ 2DY

 MINIATURE MAINS YRANSFORMERS. ALL 24OVAC PRMAAYY. 6-O-6 100mA. 3-C-3 100 mA . 12-0 12 50mA, all 75p each. 12 V 200 mA 75 p . 12 V 500 mA f1 20 . $0.6 \mathrm{~V}-\mathrm{O}-6 \mathrm{~V} 280 \mathrm{~mA}$ \& 1.30

LOUD BUZZER. $6-12$ volis 63 p . Fotary Aiarm siren, 12 VOC . Red plastic body and mounting bracket $68 \times 75 \mathrm{~m}$

HIGH IMPEDENCE HEADPHONES, mono 2,000 ohms imp. transducer type. adjustable band and padded ear plece $£ 2.75$.
SPECIAL OFFER STEREO HEADPHONES. 8 otmms, adjustable, standard stereo plug only E2.950
INTERCOM UNITS LCan be used as baby alarm) supplied with approx. 60 cable. call button. 2 was $\mathrm{C5} .25$ paif, 3
Way $\mathbf{~} 7.25 \mathrm{p}$. WIRELESS INTERCOM, 2 units both operate on 240 VAC and mains connected AM frequency 18OK Hz E29.95p.
MINIATUAE TIE
CONDENSER MIKE. Stick type. Omni. 600 ohms. onjoft switch, standard jack plug only 22.95 p . EM6G7 CONDENSER MICROPHONE. Highly polished metat stick mike, unl diractionel, 600 ohms. 3018 KHz ., on/oft JACKSONS C280 50p. 50PF VARIABLE CAPS 50p onch MERCURY (TILT) SWITCH 1" 35p.
 C日 MAND HELD PA MICRDPHONES with Pressid switch, curly lead, noise cancelling type , $£ 7.250$

TOROIDAL
TUROIDAL
IN A RANGE OF 76 TYPES FROM CHOICES
$30 V A$ TO $500 V A$ AND
IN CHAMARIES

TOROIDAL ZOVA TO SOOVA AN 3OVA TO 5 OF THRE		
TYPE ${ }^{\text {s }}$	SERES SECONDARYRMS	
		$£ 4.48$
		$\underset{\{\in\{4.4 P \mathcal{P} \mid}{£ 6.38}$

GOODS DESPATCHED WITHIN 7 DAYS OF RECEIPT OF ORDER

FOR SINGLE AND SMALL QUANTITY ORDERS.

I.L.P. TOROIDALS

 parallel number Example - 120VA $240 \mathrm{~V} 15+15 \mathrm{~V} .4 \mathrm{~A}=42013$.SEE OUR ADS
ALSO ON PAGES 72 Er 73

Only half the weight and height of their laminated equivalents. in choice of lloV. $220 \mathrm{~V}, 240 \mathrm{~V}$ pnmaries. coded as follows: (Secondaries can be connected in series or
For 110 V Primary insert 0 in place of " X " in type number For 220V Primary (Europe)insert I in place of "X" in type

For 240 V Primary (U.K.) insert 2 in place of ' X " in ty pe number

* CUSTOMER DESIGN ENQUIRIES INVITED. QUANTITY PRICE LIST AVAILABLE.
* FREEPOST FACILITY (U.K. only). Simply send your order in envelope to FREEPOST to address below. NO STAMP REQUIRED.
* TO ORDER Enclose cheque/Postal Order/Money Order payable to I.L.P. Electronics Ltdor quote your ACCESS or BARCLAYCARD account No. To pay C. O.D. add fl extra to TOTAL value oforder.

Ta: I.L.P. ELECTRONICS LTD. CANTERBURY CT2 7EP Please supply Transformer(s)

Total purchase price $£$
Ienclose Cheque \square Postal Orders \square International Money Order \square Debit my Access/Barclaycard Account No.

NAME
ADDRESS

Signature

CLEF werome MUSIC

FIRST $=$ IF MUSIC IS YOUR INTEREST

Since 1972 Clef Products have consistently produced leading designs in the field of Electronic Musical Instruments, many of which have been published under the authorship of A. J. Boothman. With musical quality of paramount importance new techniques have been evolved and the latest musically valid technology has been incorporated into projects which have been successfully completed by constructors over a wide range of technical capability

PIANOS

Kits or Manufactured SPECIALISTS SINCE 1972

The most advanced form of Touch Sensitive action simulating piano key inertia by patented technique.

SIX OCTAVES $\mathbf{f} 207$
(component kils include kelboard and be purchased in four stages) $7 \frac{1}{4}$ OCTAVES $£ 232$
Four mixable voices for serious tone variation plus electronic chorus and flanger effects. See lists for Cabinets P.A. \& Manufactured Pianos.

Back up TELEPHONE advice to our customers is available direct from the Designer of all kits advertised.

STRINGS

P.E. STRING ENSEMBLE

Versatile String Synthesizer with split keyboard facility and impressive voices. 49 note organ diode keyswitch system with four pitches plus two phase Chorus generator. Kit includes Swell generator. Kit includes Sw
Pedal
COMPONENT KIT $£ 174$

COMPONENT KIT $£ 174$

ROTOR-CHORUS

Comprehensive two speed organ rotor simulator plus a three phase chorus generator on a single $8^{\prime \prime} \times$ $5^{\prime \prime}$ p.c.b. The kit includes all components for mains operation and a stereo headphone driver p.c.b. Easily integrated with existing organ/amplifier system.
COMPONENT KIT $£ 89.00$

KEYBOARDS

Our Square Front Keyboards are chosen for their superior feel to the discerning musician whilst giving adequate physical strength for the high impact playing present in the Piano application.
49 NOTE C-C $£ 25.00$ QUANTITY 73 NOTE F-F $£ 41.00$ ENQUIRIES 88 NOTE A-C $£ 49.50$ WELCOME

MASTER RHYTHM

As published in Practical Electronics
FULLY PROGRAMMABLE TWENTY-FOUR PATTERNS EIGHT PARALLEL TRACKS TWELVE INSTRUMENTS SEQUENCE OPERATION
Kit includes all components to build this comprehensive User Programmable Rhythm Generator in an attractive metal case with finished case, hardware and wire
KIT - £79.00 BUILT - £114.00

OUR PRICES INCLUDE V.A.T., CARRIAGE \& INSURANCE Please send S.A.E. for complete lists or use our telephone BARCLAYCARD service. Very competitive EXPORT rates - in Australia please contact JAYCAR in Sydney

ALL INSTRUMENTS MAY BE SEEN IN OUR SHOW ROOM

CLEF PRODUCTS (ELECTRONICS) LIMITED

(Dept. P.E.) 44A Bramhall Lane South, Bramhall,
Stockport, Cheshire SK7 1AH 061-439-3297

INTERESTED IN ELECTRONICS?

TRY A ZEDPACK!
COMPONENTS AT A PRICE EVERYONE CAN AFFORD

 $\begin{array}{lll}Z 2 & 150 \text { mixed } 1 \text { and } 2 \text { waft rosistors } £ 1 & 50 \\ Z 3 & 300 \text { mixed capacitors, most types }\end{array}$ Z4 100 mixed electralytics \quad| \&. 2.20 |
| :--- |
| 2.20 | 25100 mixed potystyrene caps $\mathbf{2 6} 20$ Z6 300 mixed printed clrcuit

components
27300 mixed printed circuit resistors
29100 mixed minlature ceramic and plate capa
21025 assorted pots.
ed presets skeleton 20 assorted vdr's and thermistor
Z13 11b mixed hardware. Nuts E1. self-tappers, sleeving, etc. Nuts bolts Z14 100 mixed, new and marked, full spee. BF154, BF274, BC212L, BC238, BC184L, $\mathrm{PBC108}$ and, or lots of similar types
E4.95 Z15 100 mixed diodes including:-zener, power, bridge, slignal, germanium
silicon etc. Allfull spec.
21620 1N4148
Z 1120 1N4003/10D2
Z18 20 assorted zeners, 1 watt and 400 mw
Z19 12-125" TLL 209 RED. LED'S £1 button, slide, multipole, miniature etc. UHF MODULATORS
Video in UHF out. Calibrated to channel 36 (625 line UHF) housed in metal box 21
$2^{\prime \prime} \times 4^{\prime \prime}$ with 9^{\prime} coaxial lead TV connection date. $£ 2.50 \mathrm{ea}, 3$ for $£ 6$. Aluminium finlsh slider mobs, standard fitting. Miniature level bal meters 10 for $200 \mu \mathrm{~A}$ Miniature level/batt. meters, is Deluxe FIBREGLASS printed circuit etching kits.
Includes 100 sa lns. of copperclad F/G board. 11 b ferric chloride (made for U.S. army to MIL, SPEC.), 1 dalo etch resist pen, and instructions. OUR PRICE E5.95 1 lb of $\mathrm{FeCl}, ~ £ 2 \cdot 25$

To: "GEMINI ELECTRONIC COMPONENTS"' DEPT PE
"THE WAREHOUSE" SPEEDWELL ST. LONDON S.E.8.
Where shown. Send Cheque or Postal Order, Plus 60p PaP. and 15% VA IED PACKS now avallable for Callere at 50 Deplford Broadway, London, S.E

NEW 1981
 MODERN ELECTRONIC CIRCUITS REFERENCE MANUAL

by Markus
Price: $\mathbf{£ 3 2 . 5 0}$

RADIO AMATEUR HANDBOOK
 by ARRL 1981 ed. Price: $\mathbf{£ 8 . 0 0}$

THE ART, OF ELECTRONICS
P. Horowitz

Price: $\mathbf{£ 1 3 . 5 0}$
WORLD RADIO T.V. HANDBOOK
Price: $£ 10.50$
ELECTRONIC PRINCIPLES 2nd ed
A. P. Malvino Price: $\mathbf{£ 4} 35$

MANUAL OF ELECTRONIC SERVICING
TESTS \& MEASUREMENTS
by R. Genn
Price: $\mathbf{£ 1 0 . 0 0}$
INTRO. TO DIGITAL FILTERS
by T. Terrell
Price: $\mathbf{8 6 . 9 5}$
MICROPROCESSORS \& MICRO-
COMPUTERS FOR ENG. STUDENTS \&
TECHNICIANS
by B. Wollard
Price: $\mathbf{£ 5 . 6 5}$
USING CP/M A SELF TEACHING GUIDE
by J. Fernandez Price: $\mathbf{£ 6 . 7}$

* ALL PRICES INCLUDE POSTAGE*

THE MODERN ВООК СО.
britain's largest stockist
of British and American Technical Books
19-21 PRAED STREET LONDON W2 1NP

Phone 01-4029176
Closed Saturday 1 p.m.

$£ 18.95$
+VAT £2.85
$+\mathrm{P} \& \mathrm{P} 1.65$
Latest transistorised Telephone Amplifier, with detached plug-in speaker. Placing the receiver on to the cradle activates a switch for immediate two-way conversation without holding the handset. Many people can listen at a time. Increase efficiency in office, shop. workshop. Perfect for "conference" calls: leaves the user's hands free to make notes
consult files. No long waiting, saves time with long distance calls. On/off switch, volume control con versation recording, model at $£ 20 \cdot 95+$ VAT $£ 3 \cdot 15$ P\& P \& 1.65.

DOOR ENTRY SYSTEM

No house/business,surgery should be without a
DOOR ENTRY SYSTEM in this day and age. The DOOR ENTRY SYSTEM in this day and age. The modern way to answer the door in safety to unonly if satisfied by pressing a remote control button which will open the door electronically, A boon for the invalid, the aged, and busy housewife. Supplied complete d.i.y. kit with one internal Telephone outside Speaker pane1, electric door lock release (for Yale type surface latch lock): mains power unit, cable (4 pairs) 50 ft . and wiring diagram. Price E59.95 + $\mathbf{1 6 9 . 9 5}+V A T £ 10.50+P \& P £ 2.45$. WEST LONDON DIRECT SUPPLIES (PE7) WEST LONDON DIRECT SUPPLIES (PE7) 169 KENSINGTON HIGH STREET,
LONDON, W8.01-937-5548.

AMPLIFIER
Superior quality ideal for Halls/PA systems. Disco's and Groups. Two inputs with Mixer Volume Controls. Master Bass. Treble and Gain
Controls. 50 watts RMS. Three loudspeaker outets $4,8,16 \mathrm{ohm}$. Controls. 50 watts RMS. Three loudspeaker outets 4, 8, 16 o
AC 240 V (120V available). Blue wording on black

BAKER 150 Watt AMPLIFIER 4 Inputs $£ 89$

 DRILL SPEED CONTROLLER/LIGHT DIMMER KIT. Fasv tobuild kit. Controls up to 480 watts AC mains. Printed Circuit, f $\mathbf{3}^{3}$ DELUXE MODEL, Ready Built. 800 watts $£ 4$ STEREO PRE.AMP KIT. All parts to build this pre-amp. 3 inputs for high medium or low gain per channtl, with volume control and P.C
Board. Can be ganged to make multi-way stereo mixess.

SOUND TO L Complete kit of part 3 channels. Up to 200 MV to 100 watts sig HI-Fi and all Disco Am 200 Watt Rear Reffect Lights. Edison Screw 75	GHT prin .000 nal sou plifiers. ing W peach	ONTROL KIT MK II circuit. Mains transform each. Will operate f Suitable for home inet extra £4.50. Light Bulbs. Ideal for for $£ 4$ or 12 for $£ 7.50$.	mer. rom 115 ost 95 isco
MAINS TRANSFORMERS Primary 240V A.C. POS			
50-0-350V 250 mA		14.	
$3000-300 \mathrm{~V} 120 \mathrm{~mA} .2 \times 6.3 \mathrm{~V} 2 \mathrm{~A}$ C.T.: $5 \mathrm{~V} 2 \mathrm{~A}510 .00$			
GENERAL PURPOSE LOW VOLTAGE			
Tapped outputs available			
$2 \mathrm{amp} \mathrm{3.4.5.6.8.9,10,12.15.18.25} \mathrm{and} \mathrm{30V.........}$.			
$2 \mathrm{amp} 6.8,10,12,16,18.20,24,30,36,40,48,60 \ldots19 .50$			
$6 \mathrm{~V} .500 \mathrm{~mA}12 .00$		$6.0-6 \mathrm{~V}, 100 \mathrm{~mA} . . .51 .50$	
$12 \mathrm{~V}, 100 \mathrm{~mA}$........ $¢ 1.30$			
$12 \mathrm{~V}, 750 \mathrm{~mA}$........ $\mathbf{5 2 . 0 0}$			
$10-0-10 \mathrm{~V} 2 \mathrm{am}53 .00$			
2a £4.00			
15-0.15v 2a 53.75			
30V. 2 a $£ 3.50$			
30 V . $1 \frac{1}{2} \mathrm{a}$............ $£ 3.30$			
AUTO'TRANSFORMERS 115 V to 240 V			
CHARGER TRANSFORMERS - RECTIFIERS			
V-3a............. £4.00			
$612 \mathrm{~V}-4 \mathrm{a}56 .50 ~ ¢ 2 ~$			
$\text { £ } 3.008 \mathrm{in} \text {. £3.50 } 10 \mathrm{in} \text {. £ } 4-00.12 \mathrm{in} \text {. £ } 4.50 .$			
8 ohm .2 in. £1-50. Зin E1.50. 5in. £ $1 \cdot 50$. 8 in . €3.50. 12 in . £4.50 $16 \mathrm{ohm} 6 \times 4 \mathrm{in}$. $1 \cdot 50$. 5 in . £1-50. 8 in . £3-50. 12 in . £4.50.			
R.C.S. LOW VOLTAGESTABILIISEDPOWR PACK KITS $90-100 \mathrm{~mA}$Post 75p $\mathbf{I} 2.95$			
All parts and instructions with Zener diode printed circuit. rectifiers and double wound mains transformer input 200-240 a.c. Output voltages available 6 or 7.5 or 9 or 12 V d.c. up to 100 mA . State voltage.			
PP BATTERY ELIMINATOR. BRITISH MADE $\quad \mathbf{4 5 0} \mathbf{5 0}$ with overload cutout. Plastic case size $5 \times 5+\times 2 t$. Suitable Radio/ Cassetres. DELUXE Switched Model $3 \cdot 6 \cdot 7 t \cdot 9 \mathrm{~V}$. 400 ma £ $7 \cdot 50$.			
THE "INSTANT" BULK TAPEERASER Suitable for cassettes, and all sizes of tape reels. A.C. main $200 / 240 \mathrm{~N}$ Leatlet S.A.E. f8 Post $95 p$			
HEAD DEMAGNETISER PROBE $\mathbf{5} 5.00$			
A.C. ELECTRIC MOTORS POST 75p 2 Pole, $240 \mathrm{~V}, 2 \mathrm{Amp}$. Spindle - 1.43 x $0.212 \mathrm{in} . \mathrm{f} 1.75$. 2 pole. 240 V . 15 Amp . Double spindle 1.75×0.16 in. Eachf 1.2 Pole, 120 V . 5 Amp. Spindle $0.75 \times 0.2 \mathrm{in}$. Two in series $=240 \mathrm{~V} .50 \mathrm{p}$ cach. Brush Motor. From a Food Mixer 240 V .3 Amp. High Speed and Powerful. Spindle - 0.5×0.25 in. $£ 2.95$			

ALUMINIUM CHASSIS 18 2.w.g. Undriled, 4 sides, riveted corners: $6 \times 4 \times 2 \operatorname{tin}$. $£ 1.20: 8 \times 6 \times 2$ tin. $£ 1-5010 \times 7 \times 24$ tin.
$\mathrm{f} 1.90: 14 \times 4 \times 2$ inn $£ 2.50: 16 \times 6 \times 2$ tin. $£ 2.40: 12 \times 3 \times 2$ in. f1.50: $12 \times 8 \times 2+\mathrm{in}$. $52.20: 16 \times 10 \times 2+\mathrm{in}$. $£ 2.70$.
 $£ 1.20: 6 \times 4 \mathrm{in} .36 \mathrm{p}: 12 \times 8 \mathrm{in} .90 \mathrm{p}: 10 \times 7 \mathrm{in} .80 \mathrm{p} ; 8 \times 6 \mathrm{in} .6 \mathrm{Gp} ;$
$14 \times 3 \mathrm{in} .60 \mathrm{p}: 12 \times 5 \mathrm{in} .60 \mathrm{p}: 16 \times 10 \mathrm{in}, \ldots 1.40: 16 \times 6 \mathrm{in} .91 \mathrm{p}$. 4 ALUMINIUM BOXES. MANY SIZESIN STOCK.

HIGH VOL TAGE	LFCTROI.YTICS	$32+32350 \mathrm{~V}$. \quad. \quad 50p
$8 / 800 \mathrm{~V}$..... ¢ 1.20	50/500V ...£ 1.20	$32+32 / 500 \mathrm{~V}$...... \& 1 -80
16/500V 75 p	220/450V 93 p	40+80/500V 2
32/500v..........75p		$16+32+32 / 500 \mathrm{~V}$...... 52

DE LUXE BSR HI-FI AUTOCHANGER	
Stereo Ecramic Cartridge	
Plays 12in.. 10 hn . or 7 mm record	
Autoor Manual. A hugh quality unnt	
240 V AC.	
Above motor board $3 \frac{1}{\mathrm{i}} \mathrm{m}$.	
BSR Single Player P207 cueing device. ceramic cartridge.	ice. $\quad \mathrm{f17}$ post 1
Garrard Single Player 730 SP metal turntable. cueing device. Snake arm, Magnetic cartridge. \qquad	
BSR. C172. Slim arm. Metal Turntable CeramicHead. Cueing Device Auto Stop $\quad \mathbf{~} 20$ post $£ 2$	
BSR Auto Changer. I I in. Turntable. Budgetprice. Stereo ceramic, reliable unit, 3 -speed. $\mathbf{f 1 7 . 5 0}$ post $£ 2$	
ISKRA. Disco Deck 3 speed stereo $\mathbf{£ 9 . 9 5}$ or $\mathbf{£ 1 8}$ pair post free	
Hapid Mail Order 65p minimum postage. Callers Welcome. Barclay - Access - Visa. Lists 30n. Closed Wod.	
Radio Components Specialists	
337, WHITEHORSE ROAD CROYDON, SURREY, U.K. TEL: 01-684 1665.	

THE VIDEO GENIE SYSTEM

YOUR ZX80 IS NOW NO LONGER REDUNDANT

Upgrade your 2×80 to the full animmeted graphics of the Zorm. Works only in coniuction with new $8 K$ ROM M from
torm Torm. Works only in
Sinclair nont induced

WE ARE NOW STOCKING THE AUTOSTART APPLE II AT REDUCED PRICES

 16K £549 32K $£ 579$ 48K $\mathbf{£ 5 9 9}$)
Getting Started APPLE II is faster, smaller, and more
powerful than its predecessors And it's more fun to use too because of bult-in features like:

- BASIC - The Language that Makes Programming Fun - High-Resolution Graphics (in a 54,000 Point Array) for
Finely-Detailed Displays. Sound Capability that Brings Finely-Detailed Displays. Sound Capability that Brings Programs to Life. Hand Controls for Games and Other Human-input Applications internal Memory Cabacity of
48 K Bytes of RAM 12 K Bytes of ROM for Big-System Per formance in a Small Package. Eight Accessory Expansion Slots to let the System Grow With Your Needs. You don't need to be an expert to enjoy APPLE If, It is a complete, ready-to-run computer Just connect it to a video display and start using programs (or writing your own) the first day. You'll find that its tutorial manuals help you make it your own personal problem solver
 The Radıo Shack TRS-80TM Model III is a ROM-based - A 12 -inch screen 10 display results and other information - A 65 key console keyboard for inputting programs and data to the Computer © A Z-80 Microprocessor, the "brains" of (ROM) containing the Model III BASIC Language (fully compatible with most Model I BASIC programs) Random Access Memory (RAM) for storage of programs and data while the Computer is on (amount is expandable from " 16 K " storage of programs and data (requires a separate cassette recorder, optional/extral A Printer Interface for hard-copy output of programs and data (requires a separate line printer. optional/extra) Expansion area for upgrading to a disk based system (optional/extra) Expansion area for an RS 232-C serial communications interface /optional/extra)
All these components are contaned in a single moulded case

COMPUKIT UKK101

 $\star 6502$ based system - best value for Money on the market. © Powerful 8KBasic - Fastest around \star Full Qwert Keyboard $\$ 4 \mathrm{~K}$ RAM Expandable to 8 K Keyboard * P R RAM Expandable to
on board
Mowly and RF Modulator on board \pm No Extras needed Plug-in and $90 \star$ Kansas Tape Interface on board \star Free Sampler Tape including powerful
Dissassembler and Monitor with each Kit \# If you want to learn about Micros, but didn't know which machne

Build, Understand and Program your
NEW ISSUE COTMPUKIT WITH ALL THE FEATURES THAT MADE IT THE MOST PROFESSIONAL
COMPUTER KIT ON THE MARKET. NOW WITH FRE NEW EXTENDED MONTOR (a saving of ce2). Which includes Flashing Cursor, Screen Ediking, \& Save Data on Tape.

KIT ONLY $\mathbf{£ 1 4 9}$ - VAT
Fully Assembled - $\mathbf{E 1 9}$

DEALER ENOUIRIES INVITE

NEW MONITOR IN ROM avalable separateiv $\mathbf{C 2 2}$
NEW MONITOR IN ROM avalable separateiv $\mathbf{f 2 2}+$ VAT
Revised BASIC 3 ROM - contains cure for GARBAGE collection routine - allows
correct use of STRING ARRAYS. Suitable for Compukit or Superboard $\mathbf{C 7 . 5 0}+$ VAT
4K Upgrade Kit
$\mathbf{1 5 . 9 0}+$ VAT

FOR THE COMPUKIT - Assembler Editor $\mathbf{£ 1 4 . 9 0}$ Screen Editor Tape $\mathbf{£ 1 . 9 0}$
 GAME PACKS - 1). Four Games $\mathbf{5 5 . 0 0}$ 2). Four Games $\mathbf{f 5 . 0 0} \quad$ 3). Three Games $8 K$ only $\mathbf{£ 5 . 0 0}$ Super Space Invaders (8K) $\mathbf{£ 6 . 5 0}$ Space invaders $\mathbf{£ 5 . 0 0}$ Chequers $\mathbf{5 3 . 0 0}$ Realtime Clock $\mathbf{£ 3 . 0 0}$

 Case for Compukıt $\mathbf{£ 2 9 . 5 0} 40$ pin Expansion Jumper Cable $\mathbf{5 8 . 5 0}$NEW REDUCED PRICES
8K $\mathbf{£ 3 9 9}$
16K $\mathbf{f 4 4 9}$
32K £499
RRP $£ 795$ for 32 K

The PEDIGREE PETS

Cassette Deck $\mathbf{f 5 5}$ extra

Interface PET IEEE - Centronics Parallel Decoded $\mathbf{E 7 7 . 0 0}$

GET YOURSELF A NEW MX80 PRINTER AND SAVE A FORTUNE £299 Interface Cards for Apple, Pet, TRS80, Nascom and Compukit necessary for parallel $\mathbf{4 9}$
 $\begin{array}{cc}\text { Full TRS80/Gene Graphics } & \text { Now Available } \\ \text { including cables Ready to go } & \text { Fiction Feed Option } \\ \text { EX.STOCK. } & \mathbf{E 4 9}+\text { VAT }\end{array}$

LOW COST TELEPHONE ANSWERING MACHINE
f 99.95 Microprocessor controlled answering machine. Plug into your phone line. Records any phone call messages. Remote bleeper enables you to listen to your messages from anywhere in the world. Uses standard cassettes Comes complete with mains adaptor, microphone, remote bleeper,
 £129 £99.95 £199 £149

- Reliability Solid state circuitry using an IC and silicon transistors ensures high reliability. 500 lines horizontal resolution Horizontal resolution in excess of Soven in played achieved in picture center stable picture Even played back pictures of Vin can be displaved without jutering. with built-in termination switch. External sync operation (available as option for U and C types) Compact tion lavailable as option for and C types Compac standard 19 -inch rack
 Keyboard 1.9 K Random Access Memory Keyboard

"Europes Largest Discount Personal Computer Stores"

Delivery is added at cost. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number.
MAIL ORDER AND SHOP: CREDIT FACILITIES ARRANGED - send S.A.E for application form 14 Station Road, New Barnet, Hertfordshire, EN5 10W (Close to New Barnet BR Station - Moorgate Line) Telephone: 01-441 2922 (Sales) 01-449 6596 Telex: 298755 TELCOM G OPEN (BARNET) - 10am - 7pm - Monday to Saturday NEW WEST END SHOWROOM:
311 Edgware Road, London W2. Telephone: 01-262 0387 OPEN (LONDON) - 10am - 6pm - Monday to Saturday (IRELAND: 80 Marlborough Street, Dublin 1. Telephone: Dublin 749933受 COMPSHOP USA, 1348 East Edinger, Santa Ana, Califonia, Z; Code 92705 1348 East Edinger, Santa Ana
Telephone: 01017145472526

All mail to: P.0. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 554155 Sales: (0702) 552911

[^0]: (C) IPC Magazines Limited 1981. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]:

[^2]: For further information on HAMEG's full range of top performance oscilloscopes, contact:
 HAMEG LTD.
 74.78 Collingdon Street, Luton, Beds. LU1 1RX Tel: (0582) 413174

[^3]: A kit of components (excluding the DPM200 and case) is available at $£ 12.95$ inc. VAT from Lascar Electronics Ltd., Unit 1, Thomasin Road, Basildon, Essex SS131LH.

