PRACTICAL

\square ए \square —

JUNE 1981

DIGITAL PRECISION
ant

51.5

-

$1 / \sqrt{\text { (1) min }}$

PULLQUT TGR DCITAL CATALOG E

For every one you send for processing by the Practical Electronics Colour Print Service.

Fast, efficient, high quality film Focessing is now as close to you as your nearest post box. Hundreds of thousands of magazine readers are delighted with this reliable Colour Print Film Service-and the replacement film that comes free every time they use it! So why don't you give it a try?

Here's what you do. Send any make of colour print film inside the envelope enclosed in this issue. Or fill in the coupon below and send it with your colour film in a strong envelope to:
Practical Electronics Colour Print Service, Freepost, Teddington, Middlesex TW11 8BR. No stamp is required.

SEND NO MONEY

We are so confident in the reliability of the service and the quality of our prints, (each one is date stamped with the month and year of developing) that you don't pay until you have received them!

LUXURY COLOUR PRINTS

You will be amazed at the beautiful colours and hi-definition

[^0]sheen finish of the prints we supply... with elegant rounded corners and borderless to give you maximum picture area. And now with the new Giant Superprints you get 30% more picture area than the standard enprints at no extra cost.

UNHEATABLE VALUE

The new Giant Superprints cost you only 17 p each and a further charge of $£ 1$ is made towards postage and packing. That's all you pay and, when we send your prints, a replacement film, of the size you use, is included absolutely free. That's a saving of up to $£ 2.19$.

The offer is limited to the U.K. For Eire, C.I. and B.F.P.O., a handling surcharge will be made.

FREE ALBUM SHEETS

One album voucher is sent with each film we process. Collect 3 vouchers and we send you a set of FREE album sheets to fit into our specially designed album to show off both superprints and standardprints.

MORE BENEFITS TO YOU

You benefit in two additional ways. Firstly, you enjoy a personal service with every care taken over each individual order. And secondly, you pay only for what you get - with no credit vouchers as with many other companies. An invoice comes with your prints, so it is a straight business transaction.

Your prints will normally be despatched within five working days of receipt, but please allow for postal times and possible delays.

Offer exc. Minolta \& Siub-miniature film. Roll film 20p surcharge. 40\% ASA 20p surcharge. Superprints can only be produced from Kodacolour II, C41 and Agfa CNS cassette and cartridge film not half frame. Prices correct at time of going to press.

From: Practical Electromes Cohour Print Service. Ftecoms. Teddinuton. Middlesex. TWII XBR. Pleilse primt me film Superprim/Standiard Enprint size "delete size which is ion regured.

Mr Ms
Adiress \square
PRACTICAL
E

CONSTRUCTIONAL PROJECTS

PE Minitune by Martin Kent 34
For r.p.m., dwell, voltage and resistance testing
pH METER by Martin Kent 40
Provides an accurate measurement of pH values in the range $0-14 \mathrm{pH}$
SEMICONDUCTOR CURVE TRACER by D. Mandelzweig 50
Transistor and diode characteristics displayed on your scope CONTINUITY TESTER by Martin Kent 64
Provides resistance measurements in the range $0.1 \Omega-20 \mathrm{M}$
INTERFACING COMPUKIT Part 6 by D. E. Graham 68
Manipulating the VIA
GENERAL FEATURES
WIRE WRAPPING by John Lewis 24
An introduction to a simple and effective form of wiring
WEMON REVIEWED by Dr A. A. Berk 26
Another UK101/Superboard monitor looked at
SEMICONDUCTOR UPDATE by R. W. Coles 31
CY500 LM330
STRICTLY INSTRUMENTAL by K. Lenton-Smith 38
The history of a pioneer in the organ world
OSCILLOSCOPES . . . HOW THEY WORK Part 3 by lan Hickman 45
Circuitry
POSITIVE IMPEDANCE CONVERTORS by A. B. Bradshaw 58
The use of gyrators in the design of filters
MICROBUS By D.J.D. 76
Acorn Atom games, dynamic ZX 80 graphics
NEWS AND COMMENT EDITORIAL 17
NEWS \& MARKET PLACE 18
Including Countdown and Points Arising
INDUSTRY NOTEBOOK by Nexus 23
Triumphing over the recession
EXTRA CASE COUPON 28
To save you money on another case
SPACEWATCH by Frank W. Hyde 32
Keeping you up to date with extra-terrestrial activity
SPECIAL OFFER—CAR AUDIO BOOSTER 39
Yet another unrepeatable bargain
READOUT 44, 79
Criticism of the controversial
SPECIAL OFFER—DIGITAL PANEL METER 57
Use it with our free case 78A 7in. cube that delivers 500 watts of audio power!
OUR JULY ISSUE WILL BE ON SALE FRIDAY, 12 JUNE 1981

[^1]

DIGITAL THERMOMETER

This is one of our range of PROJECT KITS. It includes all the parts required to complete the project, including the case. Calibration is very simple and an accuracy of up to 1% can be obtained. The instrument covers the range $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. Read-out is on an LCD display. Power requirement is a 9 V Battery. An ideal instrument for home or laboratory. Full instructions included.

PROJECT KIT $800104 \quad £ 26.50$

MUSICAL BOX

This 'electronic musical box' can be used in a variety of applications. These include toys, video games and doorbells. It can be programmed to play no less than 27 tunes. The circuit is based on the AY-3-1350 which offers a considerable improvement over similar devices. The output can be switched from 'piano' to 'organ' like quality. The project includes all the components, case, loudspeaker and full insiructions. An easy project for the beginner. An additional amplifier is available if required.
PROJECT KIT 80502K £25-95 (Musical Box)
PROJECT KIT 80543K £3-95 (Stamp Amplifier)

The High COM system of noise reduction, developed by TELEFUNKEN, offers considerable advantages over existing systems. The Compressor/ Expander circuits are designed around a specially designed IC, the U401B. The unit is designed for use with cassette and reel-to-reel tape systems to give professional quality, low noise recordings.
TECHNICAL SPECIFICATIONS:

Frequency Range
Signal/Noise ratio
Input Sensitivity
Output Sensitivity
$20-18 \mathrm{~Hz}(+0,-3 \mathrm{~dB})$
80 dB (DIN input) 85 dB (Socket input) DIN $0.6 \mathrm{mV} / 6 \mathrm{k} \mathrm{ohm}$ DIN $130 \mathrm{mV} / 79 \mathrm{k}$ ohm

Distortion Noise reduction
less than 0.2\% at $100 \mathrm{~Hz}: 15 \mathrm{~dB}$ at $3 \mathrm{kHz}: 20 \mathrm{~dB}$ at 15 kHz : 25 dB

The project packs include all the electronic components, self adhesive front panel, prebuilt and tested HIGH COM modules and PCBs. The meter circuit uses an LED bar display and is essential for the operation of the unit.
HIGH COM (81117-1)
£49-55
£15.40
HIGH COM Pow
Case for project
£14.50
Meter/Display $(9860+9817)$

DISCO PROJECTS

MINIMIXER
This mixer is easy to assemble, most parts are mounted on the single PCB. It incorporates two stereo disc inputs, two microphone inputs and a stereo tape input. Slider controls for level controls, rotary pots tor tone controls. Distortion is approx 0.1%, frequency response 20 Hz to 25 kHz (3dB)
Project Pack 81060
£37-50 Case
£7-50
DISCO LIGHTS
This ceiling lights project controls a matrix of $25 \times 100 \mathrm{~W}$ lamps. A preprogrammed IC switches them in 22 diflerent sequences of patterns. Patterns can be repeated if required. Triac controlled outputs. Lamps not supplied. Mains peration
Project Pack 81012
£53-95
SWINGING POSTER
A specially printed poster comes to life when the red and green lamps powered by this circuit are switched on. A random sequence makes the disco girl appear to dance. Poster included. Lamps not provided (100W)
Project Pack
§17-70

HOW TO ORDER

Send a cheque or postal order to DORAM ELECTRONICS LTD or write or ring with your ACCESS account number. All our prices include VAT at 15\%. Overseas customers please deduct 15\%. Please add 40 p to the cost of all UK orders for postage and packing. An answering service is available to take your orders outside our normal office hours. We are a MAIL ORDER business.
SUMMER ISSUE OF OUR CATALOGUE AVAILABLE - Send 14 p stamp for your copy.
PROUJECT PACKS include PCB, Components and data, Cases etc
 extra.

PROJECT PACKS

Pools Predictor (79053) LED Display	$£ 8-15$
loniser (9823) Negative ion generator	$£ 10-50$
Talk Funny (80052) Ring Modulator	$£ 10-00$
Photo Process Timer (81101)	$£ 18-20$
Cackling Egg Timer (9985) It clucks!	$£ 7-20$
Sound Effects Unit (81112) Guns, trains etc	$£ 8-30$
Elektornado (9874) 100W power Amp	$£ 19-50$
Top-preamp (80023) Hifi preamp	$£ 34-40$
Guitar Preamp (77020)	$£ 6-50$
Analogwe Reverb (9973) 100mS delay	$£ 27-70$
Elektor Vocoder (80068) 10 channels	$£ 162-50$
2l Digit DVM (81105)	$£ 23-35$
AM Receiver (81111) Easy to build	$£ 10-25$
Touch switch (81008) 12 positions	$£ 10-00$
200W Disco Power Amp (81082)	$£ 0-85$
Swinging Poster (81073) Moving picture	$£ 17-20$
STAMP (80543) Mini amplifier	$£ 3-75$
Steam Train Sound (80019) sound effects	$£ 6-50$
Pest Pester (80130) Insect repellent	$£ 2-35$
Stereo Disc Preamp (80532)	$£ 5-20$
Programmable Car Wiper delay (80086)	$£ 15-85$
Active Car Aerial (80018) AM/FM amplifier	$£ 13-85$
Aerial Booster (80022)	$£ 5-65$

Full list in our new catalogue

Unique in concept-the home computer that grows as you do! Name -The Acorn Atom plus VATand pEp. Computer kit

The ATOM -a definitive personal computer. Simple-to-build, simple-to-operate. But a really powerful full-facility computer. And designed on an expandable basis. You can buy a superb expanded package now - tailored to your needs. Or, you can buy just the standard Atom kit, and, as you grow in

The standard ATOM kit includes:

- Full sized QWERTY keyboard Rugged polystyrene case - Fibreglass PCB 2 K RAM 8 KROM 23 integrated circuits - Full assembly instructions including tests for faultfinding. (Once built, connect it to any domestic TV and power source) - Power requirement: 8 V at 800 M A . ATOM power unit available.

See coupon. PLUS FREE MANUAL written in two sections - teach yourself BASIC and machine code for those with no knowledge of computers, and a reference section giving a complete description of the ATOM's facilities. All sections are fully illustrated with example programs.

The ATOM concept

Adding chips into sockets on the PCB allows you to progress in affordable steps to large-scale expansion. You can see from the specifications that the RAM can be increased to 12 K allow. ing high resolution (256×192) graphics. Two further ROM chips, e.g. maths functions, can be added directly to the board giving a 16 K capacity. In addition to $5 \mathrm{I} / \mathrm{O}$ lines partly used by the cassette interface, an optional VIA device can provide varied I/O and timer functions and via a buffer device allow direct printer drive. An optional module provides red, green and blue signals for colour. An in-board connector strip takes the ATOM communications loop interface. Any number of ATOMs may be linked to each other - or to a master system with mass storage/

Your ACORN ATOM may qualify as a business expense. To order complete the coupon below and post to Acorn Computer for delivery within 28 days. confidence and knowledge, add more chips. No need to replace your equipment. No need to worry that your investment will be overtaken by new technology. As you need more power, more facilities, you can add them!
-The picture shown demonstrates mixed graphics and characters in three shades of grey provided by the Standard Atom.
hard copy facility. Interface with other ACORN cards is simplicity itself. Any one ACORN card may be fitted internally.
So you can see there are a vast number of modular options and additions available, expanding with your ability and your budget. The ATOM hardware includes:

- Memory from 2 K to 12 K RAM on board (up to 35 K in case) - 8 K to 16 K ROM (two 4 K additions) 6502 processor Video Display allows high resolution (256×192) graphics and red, green and blue output Cassette Interface -CUTS 300 baud Loudspeaker allows tone generation of any frequency - Channel 36 UHF Modulator Output Bus output includes internal connections for Acorn Eurocard.
The ATOM software includes:
-32-bit arithmetic $(\pm 2,000,000,000)$ - High speed execution - 43 standard/extended BASIC commands Variable length strings (up to 256 characters) String manipulation functions - 2732 -bit integer variables 27 additional arrays random number function PUT and GET byte WAIT command for timing DO. UNTIL construction Logical operators (AND, OR, EX-OR) LINK to machine-code routines PLOT DRAW and MOVE.

$\rightarrow / 1001$
 CO E Aa Market Hill, CAMBRIDGE CB 3NJ

 Return as received within 14 days for full money refund if not completely satisfied. All components are guaranteed with full service/repair facility available.

D.I.Y. KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. MINISONIC MK2 SYNTHESISER A portable mains operated miniature sound synthesiser with
keyboard circuits. Although having slighty fower facilities than the large Formant synthesiser the functions offered by this design give it great scope and versatility. 3 Oct KBD \& GJ contacts needed.

Set of basic component kits (excl.KBD R's \& tuning pots see list for options available) and PCBs (incl. layout chats)

| "Sound Design" booklet | KIT $38-25$ | $\mathbf{£ 8 0 . 1 4}$ |
| :--- | :--- | :--- | :--- |
| $£ 1.00$ | | |

Knobs, sets, sw's
See our list

P.E. 128-NOTE SEQUENCER

Enables a voltage controlled synthesiser to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and rhythmic pattern are externally variable. 4 Oct KBD and GJ contacts needed.
$\begin{array}{llll}\text { Set of basic comps, PCBs and charts KIT 6-7 } & \mathbf{£ 3 5 . 5 6} \\ \text { Set of }\end{array}$ Set of text photocopies TEXT 76 £1.36

P.E. 16-NOTE SEQUENCER

Sequences of up to 16 notes may be programmed by the panel controls and fed into most voltage controlled synthesisers. Set of basic comps, PCBs and charts KIT 86-5 £32.10 Set text photocopies TEXT 86 £1.84 Knobs, sets, sw's HW 86 £11.15
P.E. STRING ENSEMBLE

A multivoiced polyphonic string instrument synthesiser Set of basic comps. PCBs \& charts KIT 77-8 £109.72

ELEKTOR CHOROSYNTH

A $2 \frac{1}{2}$-octave Chorus synthesiser with an amazing variety of sounds ranging from violin to cello and flute to clarinet amongst many others. Experienced constructors can readily extend the ctave coverage. 3 Oct KBD and GJ contacts needed. | Basic comps. PCBs and charts | KIT | $100-8$ |
| :--- | :--- | :--- |
| Text photocopy | TEXT 100 | 70 p | Knots, sets sw.

$\begin{array}{rr}\text { TEXT } 100 & 70 p \\ \text { HW } 100 & \mathbf{£ 1 1 . 5 5}\end{array}$

ELEKTOR FORMANT SYNTHESISER

A very sophisticated synthesiser for the advanced constructor Who puts performance before price. Set of basic comps, PCBs las publ.) KIT 66-14 $£ 255.45$ | Set of text photocopies | TEXT 66 |
| :--- | :--- |
| Knobs sets sw's | $£ 7.83$ |

ELEKTOR DIGITAL REVERB UNIT

A very advanced unit using sophisticated i.c. techniques instead of mechanical spring lines. The basic delay range of 24 to 90 mS can be extended up to 450 mS using the extension unit. Further elays can be obtained using more extensions.
Main unit basic comps and PCB (as publ.)KIT 78-3 f49.95 Extension unit comps and PCB KHT 78-4 $£ 39.95$ Text photocopy \quad TEXT 78 86p

ELEKTOR ANALOGUE REVERB

sing i.c.s instead of spring-lines the main unit has a maximum delay of up to 100 mS . and the additional set extends this up to 200 mS . May be used in either mono or stereo mode.
Main unit basic component set KIT 83-4 \quad £29.23 Additional Delay basic components KIT 83-2 $£ 20.07$ PC8 (as publ.) to hold both kits included in Kit 83-4 Kext photocopy TEXT 83 67p

ELEKTOR SEWAR

For use with Elektor Analogue Reverb to give greater flexibility to reverb effects.
Basic comps. PCB (as publ.) KIT $101.1 \quad £ 18.19$ ext photocopy
Knobs, sets, switch

KIT $101.1 \quad £ 18.19$ $\begin{array}{rr}\text { TEXT } 101 & 60 p \\ \text { HW } 101 & \mathbf{~} 2.44\end{array}$

BASIC COMPONENTS SETS include all necessary resistors, capacitors, semiconductors, potentiometer ho tra, hers. Hardware such as cases, socker, nobs, keyboards, eic. are not included but most of PCBs and be bough separar lists. PCBs and parts are shown in our lists.

LAYOUT DIAGRAMS are supplied free with all PCBs unless "as published"

AMERICAN FXPRESS

NEW KITS

EE 3-CHAN STEREO MIXER
Full level control on left and right of each channel, and with master output control and headphone monitor. $\begin{array}{llll}\text { Basic comps. PCB \& chart } & \text { KIT } & 107-1 & £ 8.61 \\ \text { Text photocopy } & \text { TEXT } & 108 & 65 p\end{array}$ $\begin{array}{lrr}\text { Text photocopy } & \text { TEXT } 108 & \mathbf{6 5 p} \\ \text { Knobs, skis } \& \text { sw's } & \text { HW } 107 & £ 3.19\end{array}$

3-MICROPHONE STEREO MIXER

Enables stereo live recordings to be made without the hole in the middle' effect. Independent control of each microphon asic comps. PCB \& chan | KEXT 10 B | $\mathbf{5 5}$ |
| :--- | ---: |
| 5.4 | | $\begin{array}{lrr}\text { ext photocopy } & \text { TEXT 10B } & 55 p \\ \text { Knobs, sets, \& sw's } & \text { HW-108 } & £ 2.55\end{array}$

E.E. HEADPHONE AMPLIFIER

For use with magnetic, ceramic or crystal pick-ups, tapedeck or tuner, and for most headphones. Designed with RIAA equalisa tion.
 $\begin{array}{lrr}\text { Text photocopy } & \text { TEXT } 104 & 85 p \\ \text { Knobs. \& sockers } & \text { HW } 104 & \text { £2.50 }\end{array}$

E.E. AUDIO EFFECTS UNIT

A variable siren generator that can produce British \& American police sirens. Star Trek, Red Alert, heart-beat monitor sounds, etc $\begin{array}{lll}\text { Basic comps. PCB \& chart } & \text { KIT } & 105-1 \\ \text { Text photocopy } & \mathbf{£ 4 . 8 7} \\ & \text { TEXT } 105 & \mathbf{6 5 p}\end{array}$ Text photocopy TEXT 105 65p

GUITAR PRACTISE AMPLIFIER

A 3 watt mains powered amplifier suitable for instrument practise or as a test gear monitor. Drives 8 or 15 ohm loudspeaker. $\begin{array}{lll}\text { Basic comps, PCB \& chart } & \text { KIT } & 106-1 \\ \text { Texf photocopy } & \text { TEXT } 106 & 65 p \\ & & \text { K.81 }\end{array}$ Knobs, skts, switch HW 106 £2.02

SIGNALTRACER \& GENERATOR

Allows audio signals to be injected into circuits under test, and for tracing their continuity. Includes frequency \& level controis. 8 asic comps. PCB \& chart $\begin{array}{lrr}\text { Text photocopy } & \text { TEXT } 109 & \text { 55p } \\ \text { Knobs, skts, sw's \& probes } & \text { HW } 109 & 83.17\end{array}$

P.E. GUITAR SUSTAIN

Maintains the natural attack whilst extending note duration, $\begin{array}{llr}\text { Basic comps, PC8 \& chart } & \text { K1T } 75-1 & \text { £6.99 } \\ \text { Text photocopy } & \text { TEXT } 75 & 38 \mathrm{p}\end{array}$ Knobs \& sets
$\begin{aligned} \text { EXT 75 } & \text { 38p } \\ \text { HW75 } & \text { 91p }\end{aligned}$
P.E. AUTO-WAH UNIT

utomatically give Wah or Swell sounds with each note played.		
Basic comps, PCB \& chart	KiT $58-1$	$£ 10.11$
Text photocopy	TEXT 58	58 p
Knobs \& skts	HW58	$£ 1.26$

ELEKTOR WAVEFORM CONVERTER

Converts a saw-tooth waveform into sinewave, mark-space saw

 Coth. regular triangle, or square-wave with variable mark-space Basic comps. PCB \& chart, but excl. sw'skIT 67-1 $£ 9.24$
P.E. SWITCHED TONE TREBLE BOOST

Provides switched selection of 4 preset tonal responses.		
Basic comps. PCB \& chart	KIT 89-1	$\mathbf{£ 4 . 3 4}$
Text photocopy	TEXT 89	$\mathbf{7 8 p}$
Knobs. sets. sw's	HW 89	$£ 1.89$

ELEKTOR RING MODULATOR

ompatible with the Formant \& most other synthesisers
Set of basic comps \& PCB las publ.) KIT 87-2 \quad £6.84 ext photocopy TEXT 87 Knob, set

> WE ALSO SELL COMPONENTS ASK FOR OUR LIST

ADD: POST \& HANDLING U.K. orders: Keyboards add $£ 2.70$ each. Other goods: Under Recommended inder $£ 20$ add 75 p. over $£ 20$ add $£ 1$. for cover up to $£ 50$, $£ 1$ for $£ 100$ cover etc pro nsurance must ord N. B. Eire, C.I. B.F.P.O and orher countries higher export postage rates.

ADD 15\% VAT (or current rate if changed) Must be added to full total of kits, discount post 8 handiling apply U.K. orders. Does not photocopies.

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

ELEKTOR FUNNY TALKER

Incorporates a ring modulator, chopper \& frequency modulator to produce fascinating sounds when used with speech \& music. $\begin{array}{lll}\text { Basic comps, PCB las publ.) KIT 99-1 } & £ 9.60 \\ \text { Text photocopy } & \text { TEXT } 99 & \mathbf{4 0 p}\end{array}$ Knobs \& sets
$\begin{array}{rr}\text { TEXT } 99 & \mathbf{4 0 p} \\ \text { HW } 99 & \mathbf{1 . 2 2}\end{array}$

ELEKTOR FREQUENCY DOUBLER

For use with guitars \& other electronic instruments to produce an output one octave higher than the input. Inputs and outputs may be mixed to give greater depth

Basic comps, PCB (as publ.)	KIT $98-1$	$\mathbf{£ 5 . 4 8}$
Text photocopy	TEXT 98	20 p

P.E. SPLIT-PHASE TREMOLO

A simple but effective substitute for a rotary cabinet. The output of an internal generator is phase-split and modulated by an inpu signal from an electronic guitar or other instrument. Output amplitudes. depth \& rate are variable. May be fed to one or two amplifiers.

Basic comps, PCB \& chart KIT 101-3	
Text photocopy	
17.68	

$\begin{array}{lrl}\text { Text photocopy } & \text { TEXT } 102 & \\ \text { Knobs \& skts } & \text { HW } 102 & £ 2.53\end{array}$
P.E. MINISONIC WAVEFORM CONVERTER

A simple converter that modifies the Minisonic sawtooth waveform to produce triangle and sine outputs. Ideally one should be used with each Minisonic VCO.
Basic comps, PCB \& chart
Basic comps, PC8 \& chart KIT 96-1
Knob skts, switch

P.E. GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing, for example. flanging. vibrato. reverb, fuzz and tremolo as well as other fascinating sounds. May be used with most ectronic instruments.
Basic comps. PCB \& charts (excl. SWs) KIT 85-5 £49.23 Set of text photocopies TEXT 85 £2.52

P.E. PHASER

An automatically controlled 6 -stage phasing unit with integral oscillator.

Basic comps, PC8 \& chart	KIT 88-1	$\mathbf{£ 1 0 . 9 1}$
2-Notch extension, PC8 \& chart	KIT 88-2	$£ 6.36$
Text photocopy	TEXT 88	$68 p$
Knobs, skts, switch	SW 88	£1.63

ELEKTOR PHASING \& VIBRATO

ncludes manual and automatic control over the rate of phasing 8 brato. Slightly modified to also include a 2 -input mixer stage Sext of basic comps, PCB \& chart KIT 70-2 £21.67 Knobs, sets, sw's
$\begin{array}{rr}\text { TEXT } 70 & \mathbf{6 7 p} \\ \text { HW } 70 & \mathbf{~} 3.27\end{array}$

P.E. GUITAR EFFECTS UNIT

Modulates the attack, decay and filter characteristics of a signal rom most audio sources, produ ing 8 different switchable effects hat can be further modified by manual controls.

8asic comps. PCB \& chart
ext photocopy
nobs \& sets
KIT $42-4$
TEXT 42
HW 42
28
P.E. GUITAR OVERDRIVE

Sophisticated versatile fuzz unit incl variable controls affecting he tuzz quality whilst retaining attack and decay, and also pro viding filtering. Usable with most electronic instruments Basic comps. PCB \& chart KIT 56-3 £11.22 $\begin{array}{lrr}\text { ext photocopy } & \text { TEXT } 56 & \mathbf{6 8 p} \\ \text { Knobs } \& \text { sets } & \text { HW } 56 & \mathbf{£ 2 . 2 9}\end{array}$
P.E. SMOOTH FUZZ

Basic comps. PCB \& chart
Text photocopy
EXPORT ORDERS ARE WELCOME
 deyme advise you to see our list for postage rates. A national Money Order or national Money Order or through an English Bank. To obtain list - Europe send 35p, other countries send 75 p . that our terme are payment in edvance.

AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of the P.E. projects built from our kits and PCBs. The cases were built by ourselves and are not for sale, though a small selection of other cases is available.
LIST-Send stamped addressed envelope with all U.K. requests for tree ist giving fuller details of PCBs. kits and other components
OVERSEAS enquiries for list Europesend 35p: other countries-send 75 p.

KIMBER-ALLEN KEYBOARDS AND CONTACTS

KIMBER-ALLEN KEYBOARDS as required for many published projects. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C , the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame.

CONTACT ASSEMBLIES (gold-clad wire) - 1 required for each K8D note Type GJ - SPCO 33p ea. Type GB - 2 pr N/O $37 \frac{1}{2} p$ ea.

P.E.6-CHANNEL MIXER

A high specification stereo mixer with variable input impedances
Basic comps. PCB \& charts
$\begin{array}{rl}\text { KIT } 90-8 & \mathbf{£ 5 6 . 4 3} \\ \text { Extra }\end{array}$
Extra 2-channel set with PCB
Set of Text photocopies TEXT 90 $£ 10.21$ Knob. sets, sw's

RHYTHM GENERATORS

Several avaitable. including programmable 16 beat 64000 pattern, and pre-programmed 15 a sernusing aither instruments circuits is also available.

WIND \& RAIN EFFECTS

UNIT
A slightly modified version of the original P.E. unit. Basic comps, PCB \& chart KIT $28-1 \quad £ 4.84$ $\begin{array}{lll}\text { Text photocopy } & \text { TEXT } 8 & 28 \text { p } \\ \text { KN }\end{array}$

P.E. ENVELOPE SHAPER

WITH VCA

Has an integral Voltage Controlled Amplifier. and has full manual control over the A.D.S.R. functions.
Basic comps. PCB \& chart KIT 50-1 $£ 8.03$ Text photocopy
$\begin{array}{rr}\text { TEXT 50 } & \mathbf{5 8 p} \\ \text { HW50 } & \mathbf{£ 1 . 3 2}\end{array}$

P.E.TRANSIENT

GENERATOR
An ADSR envelope shaper without VCA, and additionally providing Repeat-triggering enabling a synthesiser to be programmed for mandolin of banjo effects.
$\begin{array}{lrr}\text { Basic comps, PCB \& chart KIT 63-2 } & \mathbf{~} 7.62 \\ \text { Text photocopy } & \text { TEXT } 63 & \mathbf{5 8 p}\end{array}$
Knobs, skis
HW63 £1.82
P.E. EXTERNAL-INPUT SYNTHESISER-INTERFACE
Allows external inputs such as guitars, microphone etc., to be processed by synthesiser circuins.

Basic comps, PC8 \& chart KIT 81-1 $£ 3.90$

P.E. TUNING FORK

Produces 84 switch-selected frequency-accurate tones with an LED monitor clearly displaying beatnote adjustments.

Set of basic comps, incl. power supply
PCBs \& charts
Text photocopy.
KIT 46-3
TEXT $46 \quad 97 p$
HW $46 \quad 5289$

P.E. TUNING INDICATOR

A simple octave frequency comparitor for use with synthesisers and other instruments where the full versatility of KIT 46 is not required. Basic comps, PCB \& chart KIT 69-1 $\mathbf{~} 8.19$ Text photocopy
Knobs, skts, sw's

DIGITAL EXPOSURE
UNIT
Controls up to 750 watts in $\frac{1}{2}$ second steps up to 10 minutes, with built-in audio alarm.

Basic comps. PCBs	KIT 93-3	$£ 23.45$
Text photocopy	TEXT 93	$£ 1.20$
Knobs, skts	HW 93	$£ 2.48$

P.E. DISCOSTROBE

A 4 -channel light show controller giving a choice of sequential. random, or full strobe mode of operation.

Basic comps. PCB \& chart KIT 57-3 $\mathbf{f 1 9 . 3 7}$ $\begin{array}{lrr}\text { Text photocopy } & \text { TEXT 57 } & \text { 78p } \\ \text { Knobs. skts. sw's } & \text { HW } 57 & \text { £7.30 }\end{array}$

P.E.CONSTANT DISPLAY

 FREQUENCY COUNTERA 4 -digit counter for 1 Hz to 99 kHz with 1 Hz sampling rate. Readout does not count visibly or flicker due to blanking

Basic comps, PCB \& chart KIT 79-4 $\mathbf{£ 3 1 . 6 1}$
Text photocopy
$\begin{array}{ll}\text { EXT } 79 & 78 p\end{array}$
P.E. VOICE OPERATED

FADER

For automatically reducing music volume during talkover - particularly useful for discos $\begin{array}{lrr}\text { Basic comps. PCB \& chart KIT } 30-1 & \mathbf{~} 4.37 \\ \text { Text photocopy } & \text { TEXT } 30 & \mathbf{2 8 p}\end{array}$ Skts HW 30 32p

P.E. DYNAMIC NOISE

LIMITER

Very effective stereo circuit for reducing the hiss ound in most tape recordings. 8asic comps. PC8 \& chart KIT 97-1 £8.07 Text photocopy TEXT 97 75p
P.E. DYNAMIC RANGE LIMITER
Preset to automatically control sound output levels.

Basic comps, PCB \& chart KIT 62-1 $£ 5.31$ HW 62 44p

ALL KITS INCLUDE SPECIALLY DESIGNED PRINTED CIRCUIT BOARDS

MICROCOMPUTER COMPONENTS

LOWEST PRICES - FASTEST DELIVERY

OFFICIAL ORDERS WELCOME - QUANTITY DISCOUNTS AVAILABLE

Midwich Computer Co., Ltd.
(Dopt. PE).,
Howitt House, Northgate Street,
Tolephong: (0284) 701321
Telophont: (0284) 701321

All prices exclude post and packing on order
inder $£ 10(50$ p and VAT (15%)
ALL ORDERS DESPATCHED ON DAY OF ECEIPT WITH FULL REFUND FOR OUT STOCK ITEMS
hour Telephone Credit Card Orders

PANTITE INTRODUCES THE NEW MAJOR 20K

An outstanding new entry to the world of Electronic Servicing

* 45 Ranges
* High Accuracy: 20k Ω /VDC
* Full Protection: Mains across resistance ranges? no problem just replace the quick-blow fuse.
* Anti-parallax mirror.
* Shock resistant ABS Case.
* Optional high voltage probe for TV - Radio servicing.
* Supplied with shock proof plastic case, test leads, spare fuse and multilingual instruction manual.
DC VOLTS: 0.15-1.5-5-15-50-150-500-1500V
AC VOLTS: 7.5-25-75-250-750-1500V
DC Current: 50μ A-0.5-5-50m A-0.5-2.5A
AC Current: 2.5-25-250 mA-2.5-12.5A
Resistance: 0.5Ω to $2 \mathrm{M} \Omega$ in 4 ranges. dB: $-10+69$
Ballistic capacitance: 100-1000 μ F-10-100 mF

SAFGAN DT-400 series

DUAL TRACE OSCILLOSCOPES NEW BRITISH PRODUCTS
FROM $£ 169$ +VAT
ALL MODELS

- DUAL TRACE
- $5 \mathrm{mv} / \mathrm{div}$
- 4" CRT

DT-400 SERIES

MODELS

DT-410 10MHz £169+VAT
DT-412 $12 \mathrm{MHz} \mathrm{f} 175+$ VAT
DT-415 15MHz £ 188 +VAT

SPECIFICATION FOR ALL MOOELS

* $\mathrm{CH} 1, \mathrm{CH} 2: 5 \mathrm{mv} / \mathrm{div}-20 \mathrm{~V} / \mathrm{div}$ in 12 cal steps.
* Bandwidth: $\begin{aligned} & 15 \mathrm{MHz} \text { (DT-415). }\end{aligned}$
* Time Base: $0.5 \mathrm{us} / \mathrm{div}-200 \mathrm{~ms} / \mathrm{div}$ in 18 cal steps. $\times 5$ expansion to $100 \mathrm{~ns} / \mathrm{div}$
* XY facility: matched $X=\mathrm{CH} 1, Y=\mathrm{CH} 2$
\star Trigger: Level Control, \pm siope selection. Bright Line Auto, Normal, TV Triggering.
CH^{\dagger}. CH 20.5 div; 100 mv External Source
- Z modulation.
* CAL o/p for probe compensation.
\star Graticule blue ruled 8×1 Odiv $\left(6.4 \times 8 \mathrm{~cm}^{2}\right)$
Size: H 215 mm , W 165 mm , D 280 mm , Weight 4.5 kg .
PROBE (X1-REF - X10) $£ 10.50$ + VAT
ORDERS TO: SAFGAN ELECTRONICS LTD. 56 BISHOPS WOOD, ST. JOHNS, WOKING

5SURREY GU21 3QB. Tel: Woking 69560 or Woking 66836 VISA GOODS + p\&p $£ 3.50$ or parcel service $£ 6.50+15 \%$ LONDON STOCKIST: AUDIO ELECTRONICS TEL: 01-724 3564 DT-400s are designed and manufactured by SAFGAN in England

ELECTRONICS?

TRY A ZEDPACK! COMPONENTS AT A PRICE EVERYONE CAN AFFORD
 $\begin{array}{ll}Z 2 \\ \text { Z3 } \\ 300 & \text { mixed capacitors, most types } \\ \text { 2 }\end{array}$
 $\begin{array}{lll}25 & 100 \text { mixed polystyrene caps } & \mathbf{\Sigma 2} \cdot \mathbf{2 0} \\ \mathbf{Z 6} & \mathbf{3 0 0} \text { mixed printed clicut }\end{array}$ Z6 300 mixed printed circult components

tors
\& 1.45

$\mathbf{Z} 10$
$\mathbf{2 5}$
\mathbf{Z} assorted pots. 21125 assorted pots.
21125
2 Z12 20 assorted vor's and skeleton etc. $\mathbf{Z 1 3} 1 \mathrm{lb}$ mixed hardermistors $\mathrm{K} 1 \cdot 2$ Zis 11 b mixed hardware. Nuts. bolts zelf-tappers, sleeving, etc. $\mathrm{f1} \cdot 2$ transistore. Pack Includes:- BC148, 8F154, BF274, 8C212L, BC238, BC184L, Pacios and, or lots of similar types
Z15 100 mixed diodas Including:-zener, power, bridge, signal, germanium,
silicon etc. All'full spec. 216201 N 44 s
$217201 \mathrm{~N} 4003 / 10 \mathrm{D} 2$

E1
E1

21820 assorted zeners, 1 watt and 400 mw Z11 12 - 125" TIL 209 RED. LED'S \& button, slide, multipole, miniature efc UHF MODULATORS UHF MODULATORS (625 line UHF) housed in metal box $21^{\prime \prime} \times$ $2^{\prime \prime} \times 1^{\prime \prime}$ with 9^{\prime} coaxial lead, TV plug and connection data. $£ 2 \cdot 50$ ea, 3 for $£ 6$. Aluminium finish sl/der knobs, standard 200μ A Miniature level/batt. meters $\mathbf{1 0}$ fitted to many caszette recordera. 90 p Deluxe FIBRECLASS printed elreult etehing kits.
includes 100 aq Ins. of copperelad F/G army to MIL, SPEC.), 1 dalo etch resist Den abrasive cleaner, tweezers, etch resist dish and instructions: OUR PRICE £5.\&5 116 of FeCl. $22 \cdot 25$
TO: "GEMINI ELECTRONIC COMPONENTS" DEPT PE 'THE WAREHOUSE'" SPEEDWELL ST. LONDON S.E.8. Where shown. Send Cheque* or Postal Order. Plus sep PAP, and 15\% VAT, ZED PACKS now available for Callers at 50 Deptford Broadway, London, S.E.8.

E\#BROMASOMME electronics
48 JUNCTION ROAD, ARCHWAY, LONDON N19 5RD TELEPHONE 01-263 9493 01-263 9495

YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPONENTS AND COMPUTERS

UK101

£149 IN KIT FORM £199 READY BUILT \& TESTED
£225 COMPLETE IN CASE

4K Expansion (8×2114) NOW ONLY $\mathbf{f} 14.00$
No extras required

* Free sampler tape
* Full Qwerty keyboard
* 8 K basic incl garbage collection routine
* Ram expandable to 8 K on board (4 K inc)
* Kansas City tape interface
* NEW MONITOR ALLOWS FULL EDITING \& CURSOR CONTROL NOW INCLUDED IN KIT

- UK101 MEMORY BOARD
 \star On board power supply fuses the UK101 transformer). $\begin{aligned} & \text { Facility for } 4 \mathrm{~K} \text { eprom expansion. } \star \text { Fully }\end{aligned}$ buffered for expansion via 40 pin socket $\star 40$ pin header \& 8T28's included.
 8K Kit (inc. 16 K skts) $£ \mathbf{7 9 . 9 5}$. 16 K Kit $\mathbf{£ 1 0 6 . 9 5}$
 Printed circuit board $£ 29.95$

PARALLEL PERIPHERAL INTERFACE

UK 101 AND SUPERBOARD COMPATIBLE
Interfaces to GP80, MX80 series, TX80, centronics P1, etc printers. Can operate relays, motors, various other peripherals. LED binary display. Plugs into ACIA socket. Fully documented.

ONLY
Built and tested.
£29.95

PRINTERS

EPSON MX80 £359
9×9 dot matrix, 80 c.p.s. True descenders, various print densities up to 132 columns, tab controls both horizontal \& vertical, bold expanded condensed printing, bidirectional.
EPSON MX80 FT/1
£399
Dual single sheet friction and continuous tractor feed, 9 wire head, true descenders.
EPSON MX80 FT/2
£449
Additional feature to $\mathrm{FT} / 1$ is high resolution graphics.
EPSON MX70
£259
Tractor feed, 7 wire head, high resolution graphics.
SEIKOSHA GP80A
£199
Dot matrix $5 \times 7,80$ columns, 30 cps , graphics, double width characters.

The 2001 sweeps the board at only \&78 2

Get all the waveforms you need -1 Hz to $\cdot 1 \mathrm{MHz}$ in five overlapping ranges: stable, low-distortion sine waves, fast rise/fall-time square waves, high linearity triangle waves - even a separate TTL square wave output. Plus high- and low-level main outputs.
An applied DC Voltage at the Sweep input can shift the 2001's frequency: or sweep up to 100: 1 with an $A C$ signal. A pushbutton activates the DC Offset control, which shifts the output waveform up or down on command.
For value for money the 2001 sweeps the rest off the board. For immediate action - The G.S.C. 24 hour, 5 day a week service Tel: (0799) 21682 and give us your Access, American Express, Barclaycard number and your order will be in the post immediately or just clip out the coupon.
*price excluding P\&P and 15\% VAT

G.S.C. (U.K.) Limited. Dent. 5HH Unit 1, Shire Hill Industrial Estate, Saffron Waiden, Essex C811 3AQ Tel: Saffron Walden (0799) 21682 Telex: 817477

Global Specialties Corporation (UK) Limited Dept. 5 HH
Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ

Name
I enclose POICheque for $£$. or debit my

New! Sinclair ZX81 Personal Computer. Kit: $£ 49 .{ }^{2}$ compobe

Reach advanced computer comprehension in a few absorbing hours

1980 saw a genuine breakthrough - the Sinclair ZX80, world's first complete personal computer for under $£ 100$. At £99.95, the ZX80 offered a specification unchallenged at the price.

Over 50,000 were sold, and the ZX80 won virtually universal praise from computer professionals.

Now the Sinclair lead is increased for just £69.95, the new Sinclair ZX81 offers even more advanced computer facilities at an even lower price. And the ZX81 kit means an even bigger saving. At £49.95 it costs almost 40\% less than the ZX80 kit!

Lower price: higher capability

With the ZX81, it's just as simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX 80

It uses the same micro-processor, but incorporates a new, more powerful 8KBASICROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, or to select a program off a cassette through the keyboard.

Higher specification, lower price-

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The $Z \times 81$ reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX 80 !

Proven micro-processor, new 8KBASIC ROM, RAM - and unique new master chip.

Kit or built it's up to you!

The picture shows dramatically how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 V DC nominal unregulated (supplied with built version)

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder

New

Sinclair

 teach-yourself BASIC manualEvery ZX81 comes with a comprehensive, speciallywritten manual-a complete course
 in BASIC program ming, from first principles to complex programs. You need no priorknowledge - children from 12 upwards soon become familiar with computer operation.

```
N:IRM=N THEN GO TO E
=1TTN
(x)}=11%
X O
= J+1
NWRR J=N THEN GO:TD 4B
=\+1
=\rho(J)
(J)=A(T)
ET}=
= J-1
= THEN GD Tロ 1E
```


New, improved specification

- Z80A micro-processor-new faster yersion of the famous $Z 80$ chip, widely recognised as the best ever made.
(x) Onnique'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry - Unique syntax check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications.
- Cassette LOAD and SAVE with named programs.
- 1 K -byte RAM expandable to 16 K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer (not available yet - but coming soon!)
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

If you own a Sinclair $\mathbf{2 X 8 0}$...

The new 8K BASIC ROM used in the Sinclair ZX81 is available to $\mathbf{Z X 8 0}$ owners as a drop-in replacement chip. (Complete with new keyboard template and operating manual.)

With the exception of animated graphics, all the advanced features of the ZX81 are now available on your ZX80-including the ability to drive the Sinclair ZX Printer.

Coming soonthe IX Printer.

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics across 32 columns, and highly sophisticated graphics. Special features include COPY, which prints out exactly what is on the whole TV screen without the need for further instructions. The ZX Printer will be available in Summer 1981, at around $£ 50$ - watch this space!

16K-BYTE RAM pack for massive add-on memory.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

How to order your ZX81

BY PHONE - Access or Barclaycard holders can call 01-200 0200 for personal attention 24 hours a day, every day BYFREEPOST - use the no-stampneeded coupon below. You can pay by cheque, postal order, Access or Barclaycard.
EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be

Sinclair Research Ltd,

6 Kings Parade, Cambridge, Cambs.,
CB2 1SN. Tel: 027666104.
Reg. no: 214463000

ALGOM
 CONTINUE THEIR SPECIAL OFFER

 mini 20

 mini 20 $20 \mathrm{k} \Omega / \mathrm{V}$ d.c. $\quad 6.6 \mathrm{k} \Omega / \mathrm{V}$ a.c. $20 \mathrm{k} \Omega / \mathrm{V}$ d.c. $\quad 6.6 \mathrm{k} \Omega / \mathrm{V}$ a.c. multimeter multimeter only $£ 19.50$ only $£ 19.50$ INCLUSIVE OF POST INCLUSIVE OF POST PACKAGE V.A.T.

 PACKAGE V.A.T.}

The Mini 20 is an ideal instrument for the constructor. This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving or nearly $£ 10$ on the normal retail price.
The 26 ranges cover all likely requirements. Operation is straight-forward, just turn the selection switch to the required range.

RANGES:

d.c.V: $100 \mathrm{mV}, 1 \mathrm{~V}, \mathbf{1 0 V}, \mathbf{3 0 V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. a.c.V: $10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
d.c.I: $50 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.
a.c.I: $3 \mathrm{~mA}, 30 \mathrm{~mA}, 300 \mathrm{~mA}, 3 \mathrm{~A}$.

Ohms: $0-1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega$.
Movement protected by internal diode and fuse.
The instrument is supplied complete with case, leads and instructions.

For details of this and the many other exciting instruments in the Alcon range, including multimeters, component measuring and electronic instruments please write or telephone:

ATCOM

[^2]

Ш(WHID Primecomponents-Lowprices.

䍛

HIGH POWER MODULE KITS 125 WATT MODEL $\mathbf{£ 1 0 . 5 0}$ pus 5.1 .5 sepp pllustrated) 200 WATT MODEL $£ 14.95$ pusf 5.15 speqp

SPECIFICATIONS

Max. Output power
Operating voltage (OC) Loads
Frequency response measured at 100 watts Sensitivity for 100 watts
Typical T.M.O@ 50 watts 4 ahms load Dimensions
The PE power 205×90 and $190 \times 36 \mathrm{~mm}$ The P.E. power amp kit is a module for high power applicationsdisco units, gultar amplifiers, public address systems and even high power domestic systems The untt is protected against shont circuiting of the loas and is safe in an open circuit condition. A large safety margin exists by use of generously rated components. result, a high powered rugged unit The PC Board is backprinted. etched and ready 10 drill for ease of construction, and the

125 watt RMS
50.80 Max

4-16 ohms
$25 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$
400 mV @ 47 K
0.1%

PRACTICAL ELECTRONICS

CAR RADIO KIT (Constuctors pack 7)
 - 6 watl output "Ready stchad a punched P.C.B.
incorporates suppression circuits "Now with tape input socket
All the electronic components to build the radio, you supply only the wre and solder as featured in the Practical Electronics March issue. Features Pre-set tuning with live push button options, black illuminated tuning scale. with matching rotary control knobs, one. combining on/off volume and tone control. the othes for manual tuning, each set on wood simulated fascia.
The P.E Fraveller has a 6 watts output, neg ground and incorporates an integrated circuit output stage. a Mullard IF module LP1181 ceramic fitter type. pre-aligned and assembled and a Bird pre-aligned push button tuning unat The radio fits easily in or under dashboards
Complete with instructions

CONSTRUCTORS PACK 7A

f10.50

Suitable stainess steel fully retractable locking aerial and | speaker (approx $6^{\prime \prime} \times 4^{\prime \prime}$) is |
| :--- |
| avallable as a kit complete |
| \mathbf{Y} |
| $\mathbf{9 5}$ per pack. |

30 + 30 WATT STEREO AMPLIFIER BUILT AND TESTED

Viscount IV unit in teak simulate cabinet silver finished rotary controls and pushbuttons with matching lascia, red mains indicator and sterea jack socket. Functions switch for mic magnetic and erystal pickups, tap and auxiliary Rear panel features fuse holder DIN speaker and input socket $30+30$ watts. RMS $60+60$ watts peak for use with 4 to 80 hm speakers. Size $14 \frac{1}{4}$ " $\times 10^{\prime \prime}$ appron.

heady to play $£ \mathbf{3 2 . 9 0}$

 f380 p\&pHI FI STEREO AMPLIFIER MODULES

- Mullard \&P1 183 built preamolifier suitable for ceramic and auxiliary inputs. $\mathbf{~} 1.95$ plus 70 p p\&p.
- Mullard LP 1184 built preamplifier suitable for magnetic/ceramic and auxiliary inputs. $\mathbf{8 4 . 9 5}$ plus 80p p\&p
- Matchina IC. $10+10$ Stereo Power amplifier kit. £3.95 plus f 1.15 p \&
- Matching power supply kit with tsansformer $\mathbf{£ 3 . 0 0}$ plus $£ 1.96 \mathrm{p} \& \mathrm{p}$
- Matching set of 4 slider controls complete with knobs for bass. treble and volumes. $\mathrm{f1} .70$ plus 80 p p\&p.
- Complete with application notes
aluminium chasis is preformed and ready 10 use. Supplied with all parts. circuit diagrams and instructions.

ACCESSORIES

Suitable LS coupling electrolytic for
125W model
Suitable LS coupling electrolytic for
200W model

Suitable Mains Power Supply Unit
for $125 W$ model
Suitable Twin Transformer Power
Supply for 200W model

Supply for 200 W model

JAPAN - 10 YEARS AHEAD

Nthe Japanese are not 10 years ahead in technology; we're talking about how they see their electronics industry in the next 10 years with regard to prospects, technological development and product demand not a bad thing to investigate with most of the world in the midst of an economic depression. A 626 page report by the Japanese Electronic Industry Development Association has been published by the Fuji Ccrporation and is available at a cost of $\$ 400$. We have seen a summary of it which makes interesting reading for anyone concerned with electronic technology in the UK and the rest of the world

Having analysed the present aspects and trends the report provides a proposition of seven points for the future direction of the electronics industry in Japan. It is these seven points that show the way ahead, not only for Japan but for the rest of us.

They are: technological results are producing great ripple effects on other industries and form the core of innovations that will push the Japanese in-
dustrial structure to further heights. Consequently, the importance of the electronic industry should be recognised and efforts for its development undertaken.
In the 1980s, a time when low economic growth, resource conservation and energy-saving are taking hold, efforts will need to be redoubled to firmly establish the electronic industry's position as a key industry of Japan by fully utilising the special characteristics of the industry and at the same time to accelerate technological development.

While industry efforts will need to be channelled in basic research and development, there is an urgent need at national level for a clarification of research and development guidelines, appropriate financing and tax relief measures, systemising of the research and development programs, and furthering of co-operative and assistance arrangements.

From an international perspective, there will need to be a promotion of foreign trade activities, capital investment, industrial penetration into over-
seas markets, and technological transfer. It is imperative that efforts be made to respect the position of each foreign country and work out rules for mutual reconciliation.

Since the importance of software within the computer industry will continue to rapidly increase in the future along with the upgrading of hardware, efforts will need to be made to put software production on a more efficient basis.

For the private enterprises, there is an urgent need for in-company technical training, training for jobs in other fields and retraining for improving present skills.

In connection with the development of technology application, there is a need to undertake assessment in the practical application of technological development, and to eliminate any negative aspects that arise.

If the Japanese implement these suggestions and we simply sit back, where will we be in 10 years?

Mike Kenward

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR
Jasper Scott PRODUCTION EDITOR

ADVERTISEMENT MANAGER

SECRETARY
AD. SALES EXEC.
CLASSIFIED MANAGER

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY
D. W. B. Tilleard

Christine Pocknell
Alfred Tonge 01-2616819
Colin Brown 01-261 5762

Editorial Offices:

Practical Electronics,
Westover House
West Quay Road, Poole,
Dorset BH15 1JG Phone: Editorial Poole 71゙191
We regret that lengthy technical enquiries cannot be answered over the telephone (see below).

Advertising Offices:
Practical Electronics Advertisements, King's Reach Tower, King's Reach, Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G

Make Up/Copy Dept.: 01-261 6601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers

Copies of some of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 95 p each including Inland/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.30$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 11.80$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

DDD Edited by David Shortland \& Jasper Scott

VIDEODISCS set for take off

The video market, which has continued to expand with the sale of video recorders increasing despite the recession will be further strengthened in the coming year with the introduction of video dise systems.

These systems are designed to playback pre-recorded programs stored on discs, with typical playback times of two hours.

Three companies are planning videodisc launches with Philips leading the way later this year with their LaserVision system followed by Thorn and RCA in 1982. The RCA Selecta Vision system launched recently in the USA amid a $\$ 20$ million advertising campaign uses Capacitive Electronic Disc (CED) technology which combines a diamond micro-stylus with a conductive grooved disc. The Philips Laservision is an optical system which uses a light beam instead of a stylus to read the disc, whilst the Thorn system developed by JVC also uses the CED system but with smooth discs which enables the stylus to be easily moved across the disc. The pick-up head also includes an automatic tracking signal which ensures the head is correctly aligned on the disc during playback.

Once again as with VCR systems, these three disc systems are not compatible.

Fibre Optic TV

Strands of glass fibre. no thicker than a human hair, will be relaying television and radio programmes to 18 households in Milton Keynes by the end of this year.

The rental houses, at Oldbrook 1 near the city centre, have been chosen by British Telecom for their first public trials of transmitting TV programmes by fibre optic cable. A single fibre optic cable can carry as much information as a copper co-ax cable but is physically smaller.

Electrical signals. converted into pulses of light. will be carried over one optical fibre cable from the receiving station at Linford Wood to a distribution point near the houses.

From that point. smaller optical fibre cables will be laid to each house where the signals will be converted back into an electrical form suitable for reception on ordinary TV sets and radios.

The trial will be monitored by British Telecom for at least one year and there will be no additional costs involved for either the Milton Keynes Development Corporation or the residents.

BIRD BAREAIN

A car radio/cassette listed by Bird Audio in January 1980 at $£ 180$ plus VAT is now available for just f 65.95 including VAT. The radio/cassette is the 8020 Combination Unit MW/VHF stereo radio and stereo cassette player with automatic eject. The radio has a digital frequency readout with pushbutton two level (local or distant stations) autosearch in either direction or manual tuning with single memory. The unit also incorporates a 24 hour digital clock with continuous display at ignition on or 15 second selectable display while the radio is on. The set employs the patented Philips/IAC interference suppression circuitry, has a mono/stereo reception switch, interstation muting and boasts 7 watts per channel output.

Other features include MWNHF and stereo indicators, tone, balance and volume controls, clock set buttons and locking fast forward and rewind cassette switch. The output stages are neatly housed in a separate black steel enclosure. The set comes with inter-connecting leads and full installation instructions. One of the most comprehensive units around and not to be missed at this price. Limited quantities available to callers only (not mail order) from RT-VC, 323 Edgware Road, London W2.

Also available is the 7300 combination unit-basically the same without the digital clock and frequency readout, but including LW and I.e.d. station indicator. Previously listed by Birds at $£ 156$ plus VAT, now £53.95 inclusive from RT-VC, again limited quantities to callers only.

COMPONENT CATALOGUE

T\&J Electronic Components, who specialise in Mail-Order, have recently published their latest catalogue, which is packed with electronic components and accessories. It is available to readers at a price of 45 p, including postage.

T\&J Electronic Components, 98 Burrow Road, Chigwell, Essex. (01-500 7073)

NIGHT ロWL

Night Owl is a radar controlled courtesy light and intruder detector which can protect an egg shaped area with a forward range of $\mathbf{1 0 0}$ feet.

When the radar system detects a moving vehicle or person the house lights are automatically turned on. These lights stay on for an adjustable time period after the last movement has ceased. However if further movement is detected the lights will come back on. The unit is programmed to accept only Continuous movements, an anti-flutter system rejects momentary and oscillatory movements (i.e., doors, curtains, trees etc.).
The detection range is adjustable from 6 to $\mathbf{1 0 0}$ feet and the light duration can be set from $\frac{1}{2}$ to $\mathbf{1 0}$ minutes. (If an audible alarm or extra light is required an extra set of contacts are built into the unit).
The unit which is priced at $£ 150$ is available from Loadpoint Ltd., Chelworth Industrial Estate, Cricklade, Swindon, Wilts.

The latest addition of Sony's range of high-quality video equipment is the Betastack - a video cassette autochanger which was recently introduced to the public at the Home Video Show.

The Betastack enables the Sony C7 video recorder to provide up to 13 hours of unattended recording. Because the C7/Betastack combination can be programmed to automatically record up to four TV programmes onto four separate cassettes of appropriate length, the user can conveniently record over tape no longer required yet save those programmes he wishes to see again. This added convenience also helps ensure the most cost-effective use of video tape.

The Betastack can be fitted to the $\mathbf{C 7}$ recorder by a Sony dealer (though some early machines may require minor adaptation), and new purchasers of the C7 recorder will be able to obtain the advantages of Betastack already fitted for $\mathbf{£ 1 2 9 . 0 0}$. Supply and fitting to existing owners' C7 recorders will cost under $£ 150$.

CHIP SHOP KITS...

An entirely new range of practical, easy-to-solder electronic kits, all retailing at $£ 5.00$ or less, will soon be available from High Street hobby shops. Called Chip Shop Kits, there are over 20 different electronic projects in the range, which have been specifically designed to introduce teenagers or adults to the world of electronics.

Each Chip Shop Kit contains all the components necessary to build the project described. All that is needed is a soldering iron and a 9 volt battery to power the circuit. Step-by-step instructions on construction are included in the box together with detailed educational notes about the individual circuit and advice about soldering techniques, with particular reference to safety precautions. All components are guaranteed. Projects currently available include a burglar alarm, electronic organ, lie detector, two transistor radio and a soldering iron.

Electroni-Kit Ltd., Rectory Court, Chalvington, Hailsham, East Sussex. (032 183 579).

The HM307 from Hameg is a lightweight single trace scope which has been designed for both the service technician and the advanced hobbyist. A principle feature of the MH307 is its' built-in component tester. This allows both passive and active components to be tested while still in circuit. Operation of the component tester is activated by push-button and during the test operation it is not necessary to change the oscilloscope settings.
If the component under test has a very high resistance or is open circuit, then the display is in the form of an almost horizontal line and a short circuit across the test terminals results in a vertical line. Medium resistances are indicated by a diagonal line on the screen.
Capacitors and inductors exhibit a phase differential between \mathbf{X} and \mathbf{Y} deflections giving an elliptical display. Because of the low frequency of the test signal (50 MHz) only relatively large capacitors and inductors will exhibit this phase difference: capacitors between 10 nF and $100 \mu \mathrm{~F}$.
The HM307 is priced at $£ 138$ plus VAT and p\&p. Hameg Ltd., 74-78 Collingdon Street, Luton, Beds (0582 413174).

OK SOURCE

OK Machine \& Tool's new battery charger will charge three different sizes of Ni-Cad battery-HP7, U11 and U2. Two or four batteries can be charged at a time, and any pair of same-sized batteries can be fitted in one section, with another pair of different sized batteries in the other section. Charging times range from 10 to 16 hours

Another new product from $O K$ is their Economy PCB Repair Kit, which they claim will pay for itself very quickly-after a few 'on the spot' salvage jobs. The kit includes master frames with tracks and fingers, eyelets and eyelet setting tools.

The Ni-Cad Battery Charger is priced at E11.38, and the Economy PCB Repair Kit at $E 46 \cdot 80$. Both prices are exclusive of VAT and $p \& p$.

OK Machine \& Tool (UK) Ltd, Dutton Lane, Eastleigh, Hants. (0703 610944)

POINTS ARISING . . .

DP200 MULTIMETER (May '81)

Please note: The price given for the complete kit of parts for the DP200 excludes the price of the case and LE-DPM200 panel meter
MASTER RHYTHM (Jan '81)
In Fig. 7 C53 should connect to R49/59/69/79. The p.c.b. and overlay are correct.

MICROTUNE (Dec. '80 \& Jan. '81)
R19 should be 220 k . R42 should be 10 k and R43 should be 10 k

The second R42 shown on the circuit diagram as a $2 k 2$ and missing on the component overlay, is unnecessary. This component may be ignored. R44 should be 220k. Resistors which appear in the components list only, may be ignored.
GRAPH DISPLAY UNIT (March '81)
The capacitor $C 4$ should connect from pin 6 to pins $1 / 2$. C3 from 3 to $4 / 5$

LIEHIIMG-UP

West Hyde Developments, who are well known for their "Bocon" range of cases, have now introduced a wide range of l.e.d.s manufactured by the German company Mentor.

The l.e.d.s are available in sizes of either 3 mm or 5 mm diameter, with a choice of four colours. There is also a choice of concave or convex reflectors finished in chrome or black.

In addition to this standard range, there is also a range of flashing variants with built-in circuitry. At the top of this range is an I.e.d. which provides either a continuous green or flashing red light.

For further details contact West Hyde Developments Ltd, Unit 9, Park Street Industrial Estate, Aylesbury, Bucks. (0296 20441).

Home Office in trouble with ASA

The Home Office has been in trouble with the Advertising Standards Authority who received a complaint concerning the national TV licence campaign. The complaint centred around the statement in the advertisement, 'If you own a TV set, you're actually required by law to own a licence', which is incorrect.

If you only use your TV for showing pre-recorded video programmes or for playing video games, then you're not required by law to own a licence. The Home Office gave an undertaking to clarify the legal situation in future advertisements.

A new hand tool has been developed for the quick and easy insertion of strip form track pins which enable double sided p.c.b.s. to be interconnected without the need for plated through holes.

The new tool feeds out the strip form track pins, exposing them one at a time so they are ready to be located in the p.c.b. hole. When the pin has been located correctly, it is broken off the strip, leaving it in place in the hole, ready for soldering. At the press of a button, the tool exposes another pin and the process is repeated in the next hole to be connected through.

Apart from making the pin insertion process a lot quicker and easier, the new tool also ensures consistent insertion of the pin. Until now, the normal method of using the pins in strip form has been by holding the strip in the fingers. Another advantage of the new method is that the pins are kept clean during assembly prior to soldering.

The price of the tool is $£ 25$ excluding VAT and p\&p, and it is available from Harwin Engineers, Fitzherbert Road, Farlington, Portsmouth, Hants. 10705370451).

Anunidnurn...

Entertainment postponed.

Welsh Amateur Mobile Rally May 10. Barry Memorial Hall. C
Defence Components Expo May 12-14. Metropole, Brighton. I
East Suffolk Wireless Revival May 24. Civil Service Sports Association. Sports Ground. Straight Road, Ipswich. VI
Hobby Electronics May 29-31. Bristol Exhibition Centre. B7
Scotelex June 2-4. Royal Highland Exhibition Hall, Ingliston, Edinburgh. Al
Semlab June 2-5. Grand Hall, Olympia, London. I
Electronic Hotel June 3-4. West Centre Hotel, Fulham, London. Z1 Videotext June 4. Europa Hotel, London WI. Z1
Transducer/Tempcon June 9-11. Wembley Conf. Centre, London. T Components June 9-12. Earls Court, London. I
Pet Computer Show June 18-20. West Centre Hotel, London. B8
Compec North June 23-25. Belle Vue Hotel, Manchester. Z1
International Word Processing Exhibition \& Conf. June 23-26. Wembley Conf. Centre, London. \mathbf{Z}
BEX Salisbury June 24-25. City Hall. K
Leeds Electronics Show June 30-July 2. University of Leeds. E
Nat. Education \& Training (Exhibition \& Conf.) July 2-4. NEC, Birmingham. B2
BEX Portsmouth July 15-16. Centre Hotel. K
BAEC Amateur Electronics Exhibition July 18-26. The Shelter Penarth Esplanade, S. Glam. B9
Microcomputer Show (and seminars) July 29-31. Wembley Conf. Centre. 0
Solar Energy Exhibition August 23-28. Brighton. M
Harrogate Int. Fest. of Sound August 15-18. Royal Hall Exhibition
Centre \& Hotels. X
BEX Cardiff September 3-4. Centre Hotel. K

Business \& Light Aviation September 3-5. Cranfield Airport. Z1
Microprocessor Workshop September 7-8. University of Liverpool. D
Laboratory September 8-10. Grosvenor House. Park Lane, London. I
Personal Computer World Show September 10-12. Cunard Hotel, London. M
West of England Electronics Show September 15-17. Bristol Exhibition Centre. Q
Business Telecoms \& Electronic Office September 23-25. Royal Lancaster Hotel, London. O
BEX Edinburgh September 30-October 1. Assembly Rooms. K Viewdata October 6-8. Wembley Conf. Centre, London. O BEX Bristol October 14-15. Exhibition Centre. K

D Brownlow Hill, PO Box 147. Liverpool L69 $\mathbf{~ E v a n ~ S t e a d m a n ~ C o m m u n i c a t i o n ~ G r o u p , ~ S a f f r o n ~ W a l d e n . ~}$『 079922612
I ITF, Solihull. \& 02 1-705 6707
K Douglas Temple Studios, Bournemouth. 6020220533
M Montbuild Exhibitions, London. 01-486 1951
o Online Conferences, Northwood. Middx. / 0927428211
Q Exhibitions For Industry Ltd., East Oxted, Surrey. \& 088334371
T Trident. Tavistock $『 08224671$
v SDL, Dublin. 8763871
X Exhibition \& Conf. Services, Harrogate. $\subset 042362677$
Z BETA Exhibitions, London. 01-405 6233
A1 Institute Of Electronics. 659 Oldham Road, Rochdale, Lancs. bOL16 4PE
L1 London World Trade Centre. Europe House. 01-488 2400
V1 Jack Toothill, 76 Fircroft Road, Ipswich IP 1 6PX.
Z1 IPC Exhibitions, Sutton, Surrey. 6 01-643 8040
A2 Hart Brown \& Curtis, Piccadilly, London. © 01-439 8556
B2 Brintex, London. 01-637 2400
37 Modmags Ltd. 6 01-437 1002
B8 Baroness Internation, London. © 01-734 2907
B9 British Amateur Electronics Club. Penarth. \& 0222707813

Impotence

From the tremendous bickering over the economy, one fact has plainly emerged. The Chancellor, any chancellor for that matter, is virtually impotent. The best that can be hoped is to guide the economy. A chancellor cannot control it.

Even in a totalitarian state such as the USSR there are always factors beyond government control that push programmes off course. A disastrous harvest, for example, or people who prefer to drink vodka rather than work diligently.

In our own case the government, for social as well as political reasons, continued to pump massive additional resources into steel, shipbuilding, mining and the automotive industry. And this on top of failure to control the rest of the public sector expenditure, so that at midterm in the Government's life it had actually increased, although for two years critics had constantly complained of cuts.

The barely concealed sniggers by opposition parties to Mrs Thatcher's surrender to the miners' demands and other financial calls from the nationalised industries, predictably turned to howls of rage when the bills came in on budget day.

The pre-budget queue of supplicants pleading their special causes was even larger this year. In the event, nobody was satisfied and there were loud cries of complete disaster. And so it is, after every budget, except that complete disaster never comes.

Of course exaggeration is part of the stock in trade of all politicians and the popular press. Fortunately, the fact that unemployment of qualified electrical and electronics engineers has almost tripled in the past year has escaped their notice. Imagine the headlines, the parliamentary questions! But don't get scared, the statement is virtually meaningless although true. The ac-
tual figures in percentage terms are an increase, according to the recent IEE Salary Survey, from 0.3 per cent to 0.8 per cent.

The same survey shows that public sector engineers are once again pulling ahead of their private sector colleagues in salary scales. The relative increases in 1980 were 27 per cent and 19 per cent respectively. At least in our profession, if not in others, public service employees are doing very nicely thank you.

Overall, the budget is not harmful to the electronics industry and in many ways is beneficial. The reduction in MLR and the decline in international value of sterling is helpful to everybody. More exciting is the encouragement of new businesses. Most of today's great entrepreneurs in the electronics industry originated in one or two people or a small team with bright ideas starting up on their own in quite a small way.

A vionics

I often think the world would be a happier place if success was accorded the same publicity as failure. Instead of deploring our inability to build commercial ships cheaper than the Japanese or Koreans, we might spend a little time rejoicing in the success of the British avionics industry whose products sell world-wide, not least to America.

Few people realise that of the total cost of a modern military aircraft as much as 50 per cent and typically 40 per cent is in electronics. The figure is not all that much lower for civil airliners. If we add in all the ground components such as radar, instrument landing systems, and communications the immensity of the market becomes apparent and it is a market in which Britain has a first-class reputation, enjoyed ever since the pioneering days of avionics 50 years ago and never relaxed since.

Marconi, Ferranti, Smiths, Plessey and Decca are all names to conjure with in this high technology activity. Racal, apart from ground communications, has been less active in this area but will no doubt become more prominent through the re-organised Racal-Decca company.

An interesting development is the Marconi entry into the aerial platform itself as well as the airborne avionics. There is no intention of course of joining the big-time airframe manufacturers. Don't expect a Marconi successor to the Tri-Star or the 747. Marconi Avionics MACHAN remotelypiloted vehicle (RPV) is far more modest having only a $12-\mathrm{ft}$ wingspan and being powered by an 18 hp two-stroke engine driving a ducted pusher propeller.

The machine can carry a 33lb payload for a cruising duration at 64 knots of 2 hours, with a smaller duration at faster speeds up to a maximum in level flight of 115 knots. The airframe, powerplant and flight control system has been developed at the Cranfield Institute of Technology under sub-contract.

A payload of 33lb would not have been of much value only 10 years ago. Today it's surprising what you can pack in. The microprocessor-controlled digital autopilot
is all on a single card only 6 in by 4 in . Seven other similar cards comprise the total electronics package including all the TV camera processing and video data links to the ground. In case you haven't guessed already, the MACHAN is a spy-in-the-sky drone for battlefield surveillance.

Incidentally, there is a touch of the old Empire in the name. MACHAN is an old Hindi word for a tree-top surveillance platform and is pronounced "Ma-shahn" with the accent on "shahn"

Leisure

The great 19 th Century reformers such as Ruskin had a vision that if labourers in the factories and fields had better working conditions and especially shorter working hours, they would nobly turn to selfeducation and in particular devote much time to the creation of beauty and cultivation of the arts. More than a century later their hope has been achieved in respect of increased leisure time for all, but hardly in the use made of it if we are to believe, for example, that the daily attendance at Bingo sessions is six million.

Electronics, judged solely as a tool, is impartial to noble or ignoble use. I note that two recent export orders are both coupled with the human weakness of gambling. The Tote Agency in Melbourne has just upped its installation of 32-track Racal recorders to a total of 16 machines to cope with telephone bets. These expensive machines are those normally used to record all traffic information at airports. The Tote now has 464 channels of continuous recording to cope with 50,000 calls a day with exact timings to eliminate fraud.

The other order, greater in value, is for comprehensive colour TV at the Singapore Turf Club. Three Marconi cameras, video recorders and other equipment are to be used for surveillance of the races, judging by the stewards, and monitoring for the spectators. The system will also be linked by microwave to three other racecourses in Penang, Perak and Selangor. The Singapore Club is one of the oldest, founded in 1842, but is also famed as the most up-to-date in the world.

Security

Security as a business is booming as law and order becomes an increasing problem. Thorn EMI has merged into a new Security Division the formerly separate activities of fire protection and intruder detection. The Division now has annual sales of $£ 60$ million with a high content of electronics in specialised sensors. While consolidating the business at home, Thorn EMI expect to see substantial advances in overseas business.

Performance

Good bright firms prosper through good and bad times. Yes, even in vulnerable consumer electronics. Alan Sugar has pulled it off again with Amstrad turnover up 58 per cent in the last recorded half-year and, more important, profits up 51 per cent.
| KE all good ideas wire wrapping is simple and effective. In its -basic form wire wrapping does exactly what it says. One end ol' a length of wire is wrapped around a ferminal and the other end is wrapped round another terminal to complete the circuit. To the non believer this may seem an unreliable way of making a connection. In fact though it is a very reliable technology which is used on circuits destined for a wide variety of usesincluding the very particular military sector. Its big advantage is the ease with which changes can be affected and this is a godsend to the experimenter.

The mechanics of the wire wrapped joint are that a bared wire is wrapped a number of times around a square post-typically 0.025 inches square (Fig. 1.). The actual pressure between the wire and the post can initially be as high as $100,000 \mathrm{lbs}$ per sq in. though over time it may drop to $10,000 \mathrm{lbs}$ per sq in. due to stretching. Even so the oxide layers are crushed or sheared and a gas light seal is formed between the wire and the post; migration of the metals involved at the joint also takes place thus improving the electrical connection.

Fig. 1. The wire wrapped connection around the terminal crushes the oxide layer on both the wire and the terminal

TYPES OF WRAPS

One problem when just the bared wire was wrapped round the post was its lack of resistance to vibration (Fig. 2a.). However, by continuing the wrap to include a turn or two of the insulated portion of the wire as well this is much improved and strain relief is also provided. This type of wrap is known as a 'modified wrap' and is standard now for most applications (Fig. 2b.).

(a)

(b)

Fig. 2(a). In a standard wrap only the bare wire is wrapped around the terminal. This method is preferred with large gauge wire

Fig. 2.(b). In a modified wrap the first 1 to $1 \frac{1}{2}$ turns are made with the insulation wrapped around the terminal

TYPES OF TOOLS

So here we have an excellent idea but how can it be implimented by the amateur. The first thing that is required is a wrapping tool which can be either electrically or manually operated, secondly some 30 a.w.g. (0.25 mm) wire, thirdly a wire stripper (though this can be an integral part of some wrapping tools) and
lastly a supply of suitable i.c. sockets and terminals which have square posts long enough to accommodate at least 3 wraps.

CIRCUIT BOARDS

Obviously some form of circuit board is still required and this can be the traditional 0.1 inch stripboard provided care is taken to isolate the necessary tracks. Better though are the d.i.p. boards which have the requisite copper patterns for individual i.c. 's as well as some additional contacts, isolated from the others, together with some continuous tracks possibly on the top surface of the board as well for power and bus connections.

To build a circuit one first inserts the required number and type of sockets and solders them into place. The soldering is necessary since additional posts may be needed to be inserted in the spare holes by each socket pin should more than three connections be required to any particular i.c. pin. At this stage it helps if the pin terminals are identified on the underside of the board since it is very easy to transpose say, pin 1 and 16 , when "working upside down'. A small piece of masking tape stuck between the legs of the i.c. socket with pin numbers written on it helps to prevent such errors.

HOW TO MAKE A JOINT

To make a joint about an inch of insulation is stripped from one end of the wire (Fig. 3.). (If you are using one of the wire strippers especially designed for this application or a tool which has an integral stripper the length stripped will be predetermined so there is no need to measure.) The end of the wrapping tool has two holes in it, a large one in the centre and a smaller one on

Step 3

Step 4

Fig. 3. Method for making a wire wrapped joint
the circumference. The bared wire is pushed into the smaller hole as far as it will go - in fact some of the insulated part will also disappear if a modified wrap is being made-and then bent at

The Hobby wrap tool from Vero Electronics has been designed specifically for the amateur market. A Ni-cad battery drives the tool and an optional plug-in charger is available. A switch on the end of the barrel enables the same bit to be used for wrapping and unwrapping
90°. The tool is then placed over the appropriate post so that it enters the larger, central hole of the tool and pushed down as far as it will go. It is then rotated clockwise until the connection is completed. If a powered tool is being used allow about 2 secs running time, if it's a manual one then it should be turned without undue pressure for approximately $10-12$ turns. Take a tool off the post and the wrap is made. The turns should be laying flat and close to each other, if they are not or if they overlap then either the tool has been pulled up as it was turned or not allowed to rise as the wrap was being made.

Typical wire wrapped backplate
It takes longer to describe the process than to actually do it and once a few have been done you become quite adept at it. The wire is led across to the post to which the next connection is to be made and cut so that it is about $1 \frac{1}{4}$ times too long-the end is stripped and a wrap made in a similar fashion to that described above. And so on following the circuit diagram to make the various connections called for. Note that it is good practice to keep both ends of the wire at the same level otherwise it can be difficult to make changes.

UNWRAPPING

Should a change be required the joint is just unwrapped. In some cases a special unwrapping tool may be needed though most wrapping tools if turned anticlockwise do unwrap as well. So the tool is slipped over the post given a few turns anticlockwise and removed leaving the unwrapped joint ready to be taken off. It is false economy to try and use that joint again by straightening the wire and rewrapping, much better to replace it totally. If you suspect that changes will be needed once the circuit is made then leave sufficient slack in each connection so that additional wraps can be made.

A new development is a special tool using a wire which does

3. Witharaw wire - blade rempves insulation

The Combiwrap tool from Vero Electronics is a combined wire stripper, wrapping and unwrapping tool

not require stripping. The tool has a bobbin of wire attached to it feeding down though the tool into the wrapping bit. In use the tool bit is placed over the post, the free wire end is held whilst the whole tool is rotated through 8 turns and then removed. The tool, with wire trailing is moved onto the next post and the procedure repeated. To cut the wire a button on the tool is pressed and two further turns of the tool will cut the wire at the joint. What happens is that the insulation on the wire is automatically pierced and displaced by the square corners on the post thus making a good electrical, gas tight joint.

When the wrapping is finished the connections should be checked against the circuit diagram and here the advantage of using coloured wires for different parts of the circuit becomes apparent. If all seems well the i.c.'s can be inserted into their respective sockets-the right way round-and power applied. Hopefully it will work first time, if not then fault finding and rectification is easy compared with printed circuit boards.

* Illustrations by courtesy of Vero Electronics, Industrial Estate, Chandler's Ford, Hants.

y Baam

Do something PRACTICAL about your future
Firms all over Britain are crying out for qualified people. With the right training, you could take your pick of these jobs

Now, the British Institute of Engineering Technology will train you in your spare time to be an Electrical Engineer

You risk nothing! We promise to get you through your chosen course-or, refund your fee!

So, join the thousands who have built a new future through home study Engineering courses.

Courses in
C \& Elect. Technicians C \& G Elect. Installations Telecomms. Technicians Exams Television Servicing Radio Maint. \& Repairs (BIET) Pract. Radio \& Electronics Plus over 60 other home study courses

POST COUPON FOR FREE 44 PRCE CUDDE BRITISR INSTTTUTE OF ENGINEERING TECENOLOGY
 Aldermaston Court, Dept TPE12, Reading RG7 4PF.

NAME (Block capitals please) \qquad ADORESS

POSTCODE
\qquad

by Dr.A.A.BERK

THE WEMON monitor, produced by Watford Electronics, is an overall system monitor for the UK 101 -Superboard family of computers. The Monitor in any machine of this kind is in constant use for such activities as interpreting keyboard data, keeping the screen formatted, allowing editing of programs, breakpoints, machine code writing etc. The revolutionary nature of WEMON is its realisation on a 2532 (4 K Bytes) erasable programmable read-only memory (EPROM). These devices retail at $£ 15-£ 18$, normally, and WEMON costs less than $£ 20$. The reason for its requiring such a large amount of memory for all its functions lies in two or three of its advanced facilities. Firstly, full on-screen editing of BASIC programs is availableyou simply move the cursor to any point on the screen containing a listing of the program, effect an insertion, change or deletion. and WEMON takes care of inserting the changes into the stored copy of your program. The second important feature is concerned with the sophisticated way in which the device controls loading and saving to tape. One of the most memory intensive parts of this function stems from the fact that WEMON's method of tape storage is fully compatible with the usual methods for $101 /$ Superboard machines. Thus, although under WEMON it is vastly more sophisticated than normal, friends can still swop taped versions of programs with alacrity.

A third feature of some importance for the programmer, though less memory intensive than the above, is WEMON's BASIC keyword presentation facility. By this means, BASIC keywords such as FOR. POKE, etc may be called up by single keys on the keyboard. Two keystrokes are necessary, as SHIFT and CONTROL have to be pressed together first, released and followed by the key associated with the BASIC function required.

The chip containing WEMON has to be fitted into the memory space on the board, and to do this, a set of links and track cuttings must be performed on the p.c.b. before starting. These modifications are quite straightforward, and though I did not perform the modification myself, they seem to be well described in the manual.

The facilities available are described below, and have mostly been checked, during the review, on a Superboard. The chip comes in various versions, for the different machines it fits.

START UP

When the machine is switched on, the BREAK or RESET key is pressed, and a menu containing five letters appears: M/C/W/D/U?
The machine is asking for a response from the user, and any of these letters can be typed, followed by a RETURN, to open one set of facilities available. M starts the machine code monitor, C is cold start for BASIC. \mathbf{W} is warm start, D performs an indirect jump to a routine starting at 9800 (Hex), although this can be
changed if required, and U jumps to a vector which can be defined by the user. The last two commands allow complete flexibility of use from the very beginning.

KEYBOARD

The keyboard is decoded as normal with alpha lock distinguishing between upper case teletype, and normal typewriter mode with lower case and use of SHIFT. In addition, several of the keys have special cursor control functions, and others, when used in conjunction with the CONTROL key, have command functions. See Table 1. CTRL(S) toggles between 24 and 48 characters per line with half the number of lines in the second case, CTRL (E) allows a jump to extensions to BASIC, CTRL(Q) changes to a mode whereby you can print characters on the screen corresponding to each of the cursor commands. By this means, using a PRINT statement, the cursor may be moved around the screen by your BASIC program-very useful for easy screen formatting under program control. The symbols used to signify these cursor commands are chosen to be logical-e.g., the cursor down symbol is a down arrow, etc. Table 1 also shows that cassette tape motor control is included from the keyboard to allow the tape to be rewound or forward wound without having to unplug the remote connection. CTRL(D) inserts a blank line between two BASIC lines of text to allow a new line to be written in. In addition, cursor movements are effected by LINE FEED and REPEAT, with their inverses occurring by the use of SHIFT with these keys. SHIFT RUBOUT, logically enough, produces the INSERT function in BASIC text, and SHIFT ESC (using the LEFT SHIFT) produces a screen clear.
These facilities are very useful indeed during program writing, and after a few minutes of use, it becomes very irritating to return to the old method of rewriting lines to effect changes. The only criticisms I can make are. firstly that the cursor is chosen, sensibly, to flash on and off, but the speed is rather low; and secondly, while stepping along a line, or moving up and down the screen using auto repeat, the cursor will stop flashing, and disappear. It is therefore impossible to watch the progress of the cursor on the screen to see when it has arrived at its destination.

BASIC

As mentioned above, WEMON has full screen editing, including insert both character and line. An exciting aspect of the editor is its ability to be used within a program. As explained above, characters corresponding to the editing commands may be included in PRINT statements to allow simple program formatting of the screen. By this means, a program is able to treat the screen as a "sheet of paper" around which the cursor may be moved at will to place printout easily at any position on the screen.

Another advanced feature of the monitor is its ability to extend the BASIC words which it can recognise. This is activated by CTRL(E). Before this has been performed, BASIC responds with the usual SN error if it finds a command which it does not

```
TABLE 1
    REPEAT \(=\) Cursor Right
    DELETE = Rubout
    LINE FEED = Cursor Down
    ESC = Home Cursor
Use of SHIFT reverses these functions, e.g. SHIFT
LINEFEED = Cursor Up., and SHIFT ESC clears the screen.
    CTRL(E) \(=\) Basic Extension
    SHIFT RUBOUT ( 1 E ) = Insert
    CTRL(X) \(=\) Cursor Left
    \(\operatorname{CTRL}(\mathrm{Z})=\) Cursor Up
    CTRL(S) \(=\) Video Swop
    CTRL \((\mathrm{Q})=\) Toggle Quotes
    CTRL(N) \(=\) Delete
    CTRL \((H)=\) Cursor Right
    \(\operatorname{CTRL}(\mathrm{J})=\) Cursor Down
    CTRL(T) \(=\) Tape on/off
    \(\mathrm{CTRL}(\mathrm{D})=\) Open Screen
    CTRL(P) \(=\) Toggle Print Flag
```

recognise. After CTRL(E), it performs further tests before rejecting the command. If the tests succeed, then a jump is performed to a location named EXTVEC. This is a three byte location which should contain a jump to another routine which can contain anything you wish. Some parameters are passed via the stack, and use of this function can, of course, crash the system if not set up correctly. Thus, the BASIC interpreter is no longer completely closed, any further facilities required can simply be strung on as desired.

A useful, though simple, addition to the system is use of the SPACE key to slow down a listing. Instead of flashing uncomfortably before the user's eye, a long list can be slowed down to reading speed by holding down the SPACE bar.

A printer routine is included in the monitor, but it expects a 6520 parallel 1/O chip to be present at base address 8800 (Hex). The command CTRL(P) toggles the print facility in and out, and every call to the normal output routine tests this flag and prints accordingly. The protocol is Centronics. Naturally, any other parallel device may be attached here if it handshakes in the Centronics manner.

The cursor symbol and flash rate are supposed to be user selectable via certain memory locations, but neither of these facilities worked on my version of the chip. I am assured that this will be rectified on the full production version, and these additions appear to be easy enough to include.

TAPE HANDLING

This is one of the areas of WEMON where it really scores very high marks. The whole problem of tape handling seems to have been cleared up by this monitor. The tape is automatically turned on and off by the program via a very simple hardware modification to the p.c.b. which includes an i.c. driver and a p.c.b. mounted relay. The RTS line of the 6850 ACIA is used to drive this facility in a very neat and easy to use manner. Once the remote connection has been plugged into the tape recorder, it does not have to be removed to rewind etc.-CTRL(T) being used from the keyboard to allow normal tape use when not required to be under program control.

Both (optional) named-files and part-SAVEs are allowed. To save a file to tape, the command: SAVE"AAAAAA is typed being followed by RETURN, opening quotes being mandatory, closing quotes are not required. The name (up to six alphanumeric characters) can be omitted (along with quotes) if no name is required for the file. At this point, a five second delay is encountered during which any tape leader is cleared, and then the message "SAVING AAAAAA" will appear followed by the command "LIST". At this point, the user may type a linenumber followed by RETURN, to tell the computer where to
start the listing from. Just RETURN starts the listing from the first line. The file then lists out on the screen as usual until the process is complete, when SPACE RETURN switches off the tape and clears the SAVEFLAG-which signals the computer whether or not to output to tape when a LIST is performed.

Loading from the tape is similar, with one or two extra tricks. If the opening quotes are omitted, the first character of the name is ignored in the name comparison. If a "*" is included in the name, the name comparison stops at that point. Thus:

LOAD"HELLO

will load the same file as:

LOAD"HE*

In addition, all named files encountered during a search of the tape are listed on the screen during the process, to allow the user to keep track of what is happening.

Machine code tape files are also handled with great efficiency by WEMON. It is claimed that they transfer some three times faster than normal! These files may only be handled from the machine code monitor, which is described later. S and L are used instead of SAVE and LOAD, and no quotes are necessary for file names. The form of the SAVE operation is as follows:

S AAAAAA(RETURN) XXXX-YYYY

After the RETURN, the cursor waits for the mandatory address parameters for the SAVE routine-all code from address XXXX to the location immediately preceding YYYY is thus saved to tape under the file name of AAAAAA.

LOADING of the block of data may be made to the same locations, or a different set entirely. Leading zeros are not required in the address parameters, and once again, the fite name is optional.

MACHINE CODE MONITOR

The machine code monitor has one or two useful features not found on other monitors, though WEMON is much more a BASIC handler, and the features should not be expected to be wide ranging.

After RESET. if M is pressed, the machine code monitor is entered, and one of seven single letter commands is available. Unfortunately, if any other letter is pressed instead. the machine hangs up, and RESET has to be pressed to return to normal use. Each command has a set of parameters which are associated with that command's use. and if these are miss-typed in certain ways, the machine hangs again. This fragility in the software is irritating if you type fast, as mistakes are inevitable. Each command must be used, therefore, with some care as to format.

When the machine code monitor is entered, an immediate display of the registers is shown at the top of the screen, and subsequent commands. including those performing scrolls to the screen, leave this line of registers displayed at all times. The R function can be used to modify the contents of this line for various purposes. The modifications to this line are loaded into the MPU registers when the G function is used-the location to which control is transferred by G is determined by the PC value shown at the top of screen. While R is being used, the cursor steps along on the line beneath the register fields being modified. By this means, the contents are not obscured by the cursor block. The cursor may be moved back and forth at will to modify any position on the line.
M allows any set of locations to be examined and modified byte by byte. A useful display feature has been included here. whereby consecutive locations treated in this way are listed vertically down the screen rather than being confined, as with the old monitor, to a one-line display. The vertical line scrolls when it reaches the botiom of the screen, leaving the register line intact. M can also be used to search through any designated
memory block for all occurrences of a particular byte. Each occurrence, with its address, is listed on the screen, and at the end the total number found is displayed.

V allows a formatted block of memory to be displayed-with scrolling if the block does not fit onto the screen. The scroll rate may be very conveniently slowed down, as for BASIC, by the use of SPACE.

B allows a block move of data in any direction. The start and end addresses of the block to be moved are given, along with the new start address for that block.

S and L have been described in the Tape Handling section above.

Breakpoints are implemented, for debugging, to allow either a branch out to the machine code monitor, or to an address specified by the user-again, maximum flexibility being the watchword.

Finally, the RS232C output of the machine may be used after the delay, and other cassette-priority routines, have been disabled by:

POKE517,255

This allows a serial system printer to be used under program control, instead of the parallel printer referred to earlier.

CONCLUSION

In addition to the above facilities, there is a very large number of subroutine entry points and functional locations included in the manual. It is fair, therefore, for the manufacturers to claim that WEMON is able to satisfy both the beginner's need for an easy to use system, and the experienced user's need for maximum flexibility and utilisation of the system offered. The version of the manual used for this review was a pre-production copy of the document, and many changes have since been incorporated; however, most of the functions are quite adequately described, and the hardware modifications well sketched.

It is inevitable that a comparison will be made between this monitor and the ever increasing number of UK 101 type monitors flooding into existance. It is impressive to note that bit for bit this has been priced to be the cheapest monitor around; and, as it is implemented efficiently on a 4 K (bytes) EPROM, it is inevitably the most sophisticated.

It was suggested that there is a user-settable location in the machine code monitor, which the machine branches to, allowing extra commands to be added, although this was not apparent in the reviewed version of the manual.

ExtraCases! 30p (plus postage) To Regular Readers.

> EOLLOWING the Free Case gift with the May issue we have a quantity of cases available as extras to regular readers (at UK and BFPO addresses only) for 30 p plus postage-the normal price from Lascar is $£ 1.95$ plus VAT and postage.
> Extra cases-as used to house the pH Meter, Rev/Dwell Counter and Continuity Tester published in this issue-can be obtained from PE by sending in two correctly filled-in case coupons (name and address on both coupons please) cut from PE, a $30 p$ postal order and a $15 \frac{1}{2} p$ stamp (a case coupon is given here, another will be given next month). We can only accept 30 p postal or money orders (NOT CURRENCY OR CHEQUES). Do not enclose any correspondence. Incorrect or incomplete orders will not be accepted-your stamp will be used to return them.

Send two completed case coupons cut from PE with your 30p postal order (payable to IPC Magazines Ltd), and a $15 \frac{1}{2}$ p stamp to:

PE Instrument Case Offer, IPC Magazines Ltd., Westover House, West Quay Road, Poole, Dorset. BH15 1JG.

Sorry we cannot undertake to send e:tra cases to overseas readers.

PLEASE ALLOW 28 DAYS FOR DELIVERY.

Tantel

Tantel is a British success story. Since its launch in December 1980 the Tantel adaptor has outsold every other viewdata terminal and adaptor. Why?

- Because it is priced at $£ 170+$ VAT
- Because it embraces the latest British made and designed technologies.
- Because it is available in large quantities.
- Because it produces a superb picture on any television set.
- Because it is an unobtrusive $91 / 2^{\prime \prime} \times 61 / 2^{\prime \prime} \times 2$.

Simply plug Tantel into your T.V. aerial socket and tune to a spare channel. Use the rear socket to record pages on a sound cassette recorder or to drive a hard copy printer. Single button double height text expansion facility.
Post Office Approved.
NOW AVAILABLE FROM OVER 100 APPROVED UK RETAIL OUTLETS.

تص \square

BY TANGERINE
For details of your local stockist or for trade details contact Peter Harding TANDATA MARKETING LTD, FOREHILL WORKS, FOREHILL, ELY. CAMBS CB7 4AE

Tel: Ely (0353) 3633/5489/5326.

MICRO TIMES

19 Mill St. Bideford, North Devon. EX 39 2JR Telephone (023 72) 79798 (Dept PE2)

European Export Orders welcome. Add 15\% P\&P costs VAT no: applicable.
It is our policy to offer you Brand new, full spec. devices. Prices subject to change without notice.

MAIL ORDER Barclay Card/
Access Welcome. Please add 50p P\&P. Plus 15\% VAT to all orders. Bryit wth Access

****THIS MONTHS SUPER SAVERS ****

MEMORIES				$1+$	10	$25+$	
			4116200 ns	£1.85	£1.80	£1.70	
$1+$	$10+$	$25+$	4116150 ns	£3.50	£3.40	£3.20	
2114 L 450ns.. $\mathbf{8 5}$	£1.80	£1.70	CMOS RAM $510{ }^{\circ}$	£3.45	£3.40	£3.30	
	£1.90	£1.85	EPROMS				
FROM TOSHIBA TC 5514P					£2.85	£2.75	
			2732 Intel type ..		£4.30		
					Buy 5 off for.		12.00
			HM $6116-\mathrm{P}-316 \mathrm{~K} 150 \mathrm{~ns}$			19.75	

LM $3914 \ldots . . .$. DOT/BAR DISPLAY DRIVER

Drives 10 LED directly for making bar graphs, audio power meters, analog meters.
SPECIAL PRICE
$£ 2.10$

AY-3-8910 GI SOUND COMPUTER CHIP

FEATURES

* Full software control of sound generation
* Interfaces with most 8-bit and 16-bit microprocessors
* 3 independently programmed analog outputs
* Two 8-bit general purpose I/O ports
* Single +5 Volt Supply

Data 50p. Large SAE please ***SPECIALPRICE £7.25***

JUST ARRIVED FROM VERO*
S100 Prototyping boards
Microboard Pattern 06-2175L £16.40* Square Pad Universal pattern 06-2338F £16.40* Prototyping Board for your APPLE/ITT 2020
£8.37*

COMBO CHIPS

Intended for Z80 usage Z80 Combo Chip (MK3886) $2 \frac{1}{2}$ Meg

$$
£ 25.00
$$

Z80A Combo Chip
(MK3886N-4) 4 Meg £29.95
FLOPPY DISC CONTROLLERS FD1771 £23.95 FD1791-2 £35.00 WD1691D £14.50 WD2143-09 £5.00

* SPECIAL

Complete Pkg. $£ 53.00$. includes FD1791-2 +

WD1691D +
WD2143-09
Data available 50p each copy. Large SAE

SOLDERLESS
 BREADBOARD

New from Vero the VEROBLOC
A prototyping method of building and testing circuits, designed to dovetail together to form a cont. 2.54 pitch, any size of IC can be accommodated. 29 rows of contact sockets enables mounting of 3 16-lead devices contiguously. 3 Blocs can be interlocked and mounted on single Eurocard $100 \times$ 160 mm . SPECIAL
f3.55 each

Semiconductor TPDMATE
 ffaturing

STEP THIS WAY . . .

Apply a voltage to an ordinary electric motor and it will immediately start to accelerate, remove the voltage and it will eventually slow down and stop. Suppose you want the motor to move through exactly 37 degrees and then stop dead. Impossible, unless you use gears and an electronic servo loop which monitors the position and speed of the output shaft and controls the applied voltage accordingly. Even in a full-blown servo of the sort used in proportional radio control systems, precise angular movement and positioning is difficult, and relies to a large extent on the skill of a human operator. The rate of acceleration is set more by the need to prevent "hunting" than by any other factor and is not normally controllable by the operator.

It was to overcome these sort of positioning and control problems that the "Stepper Motor" was developed, and since its introduction it has found application in a wide range of industrial systems, particularly those controlled by computers or microprocessors. The Stepper motor has several coils, commonly four, and these are switched on or off in a fixed pattern such that each change in the pattern causes the motor shaft to move through a clockwise or anti-clockwise step of a fixed angle determined by the motor design. Each coil is either switched on or switched off, so there is very little power dissipation in the driver circuitry and control of the pattern can be easily handled by a computer or a microprocessor. By rotating a pattern of ONEs and ZEROs, the controller can make the motor move through any number of precise angular steps, in any direction, at any speed and with precisely controlled acceleration and deceleration rates. All this is done without the need for a feedback servo loop, and with quite smooth operation at the higher rates.

If steppers are so marvellous, you may ask, why aren't they used universally? Well, for a start, you do need a computer-type controller, and it is only with the advent of the microprocessor that this has become an economical proposition. Secondly, they are becoming increasingly common in all sorts of lower cost applications. Many of the cheap printers on the market take advantage of the precise control possible with steppers and microprocessors to replace the expensive sets of cogs and levers and cams which used to do the same job.

. . . WITH THE CY 500

If you have a pet micro you can hook a few power transistors onto an output port, and, by writing a few machine code
routines, you can have a stepper motor obey your commands. Full control over the motor speed, direction, acceleration, and position is certainly possible by this method, but you will spend many a happy week writing the code, and when the micro is busy stepping out, it won't be able to do anything else. A new device from a firm called Cybernetic Micro Systems can make the job much easier, and it also represents an interesting new breed of "Microprocessor components", based on standard single-chip microprocessors with programmed-in software.

The CY 500 is described as a Stored Program Stepper Motor Controller, and it comes ready programmed to perform 22 special high-level stepper motor functions such as "Set rate of stepping", "Set slope of acceleration", "Declare zero reference position", "Begin Stepping", 'Wait", "Execute", "Set clockwise", "Set Anticlockwise", etc. etc. A complete program loop using up to 18 of these commands can be loaded into the CY 500 for automatic execution, or instructions can be passed and executed one at a time. Any serious application would probably use the CY 500 as a peripheral device to assist an existing microprocessor, but for evaluation and learning purposes the CY 500 can be connected directly to a parallel ASC11 keyboard, and commands entered using single letters followed in some cases by numerical parameters. Once a command letter sequence has been entered, typing the D command will cause immediate execution.

Various control inputs and outputs are available on the CY 500 chip in addition to the 4 motor "phase" lines and the 8 bit data bus, making the CY 500 adaptable to just about any application imaginable. If only a small stepper motor is to be controlled, a single additional chip such as the Sprague ULN 2823A high voltage driver array can be used as the motor interface. Larger motors will need power transistors to handle the high current pulses. The CY 500 comes in a 40 pin package and runs from a 5 volt supply. It is available in the UK from: Data Plus Ltd., Cheltenham.

POWER MISER

Have you ever needed a 5 volt supply, for MOS or TTL circuitry perhaps, which had to be derived from batteries? If power consumption and battery size have to be minimised, this apparently simple requirement can turn out to be quite a headache!

The first thing you consider is using a 6 volt supply and a regulator-then you discover that 5 volt regulators need an input voltage of around 7.5 volts for correct operation, so you increase the battery
voltage to suit. Then you realise that you will have to waste 50 per cent more power than you actually need for the logic, just to heat up a silly regulator-there must be a better way! Next, in a moment of bravado, you decide that the high efficiency of a switching regulator is what you need, only to discard this idea when you realise that it will mean going into the coil-winding business and some rather hairy design calculations, too! At this point, if you are like me, you either give in and chance running the logic at 6 volts straight=from the battery (very naughty!) or you put up with the extra consumption and use an LM309 running from 7.5 or even 9 volts.

You may be pleased to know that in future you will have another, much more satisfactory, option in the form of a new voltage regulator from National Semiconductor, the LM330.

You see, the problem with the existing voltage regulator devices, is that they all rely on NPN transistors to do the regulating, and that means the series-pass transistor operates as an emitter follower, often a compound emitter follower, and that in turn means that the voltage at the base of the series pass element has to be well above the output voltage due to baseemitter drops. Add a bit more for the current sources used as load resistors, and you don't get much change out of 7.5 volts, especially when the regulator is cold.

Now i.c. designers are not just perverse in sticking doggedly to NPN emitter followers when a PNP common emitter configuration could solve the problem better, the fact is that PNP transistors are very difficult to fabricate on an i.c., and so this option has not really been available.

The LM330 is different because National have solved the problem of fabricating efficient PNP transistors on integrated circuits by using deeper diffusions to produce the so-called deep-base PNP. Using the deep-base approach National get the dropout voltage on this 5 volt regulator down from about 2.5 volts for the NPN types to just half a volt for the LM330. So you can use a 6 volt battery and its terminal voltage can drop to less than 5.5 volts before the LM330 gives up! Some sacrifices have been made, because the full rated current specification is only 150 mA , a lot less than the NPN types but usually sufficient for battery applications. Protection is built in against thermal overload, reverse battery connection, input voltage transients, and even mirror image insertion of the package.

The LM330 lives in a TO 220 plastic power package, and it should be quite inexpensive when it arrives on suppliers' shelves within the next few months.

FRANK W. HYDE

COMMUNICATION CONGESTION

Commercial communication may be seriously threatened within the next decade because of lack of bands of frequencies required for domestic video and voice data slots. The two bands allowed for these purposes are the C band $(6 / 4 \mathrm{GHz})$ and the K_{u} band $(14 / 12 \mathrm{GHz})$. In the C band at the beginning of the year two slots only were left. At that time the FCC (Federal Communications Commission) of the USA had authorised 20 more launches, in addition to the nine in operation, between 50 deg . W long. and 150 deg . W long. This will exhaust the C band slots for geosynchronous orbits. On this basis there would be no further parts of the band available by the 1990's.

The National Aeronautics and Space Administration (NASA) have put forward a possible solution, though this is a long term matter. Nasa suggests that the K_{a} band ($30 / 20$ GHz) should be developed, using commercial satellites. They are preparing a demonstration of the system using several ground stations and with a spacecraft to be launched on the shuttle about 1987. If this is successful it will be possible to make use of the narrower band width and would allow the spacecraft to fly closer together without mutual interference. To this end experimental work is already under way to alieviate the problems by the study of multibeam antennas.

The multibeam antenna allows a number of spot frequencies in narrow beams to be used without interference. On-board switching would enable the spot beams to be interconnected so that signals could be switched from downlink to uplink in any combination. This technique is not new of course except at the frequences proposed. High power transmitters would be used in the satellites at the frequencies considered together with low noise onboard receivers. Owing to the effect of rain which restricts operation on the K_{a} band, the links between ground stations would be by microwave and or fibre optics.

The K_{u} band is fully available and it is expected that there will be sufficient slots available. It has of course the advantage that the aerials can be mounted on normal buildings in crowded areas. However, the possibility of fading due to rain would still be present. Nevertheless this is an important step in combating the band difficulties. A number of companies are engaged actively in the production of satellites and equipment undaunted by the difficulties.

ACTIVITIES OF THE USSR

During 1980 the Soviet Union launched more manned missions than in any year of their space history. The six-manned flights of 1980 also included the longest operation of astronauts so far in space. Their record will no doubt soon be surpassed by themselves. It confirms that the Russians continue to be set now on the path of space station operation. They have in fact now achieved more than double the manhours of the USA spent in space. In addition to the manned missions, automatic tankers to refuel and restock the Salyut-6 were operated. There were fewer missions in 1980 devoted to scientific activities, in favour of military projects.

In 1979, 74 military missions were known to have operated. In 1980, no less than 85 spacecraft were launched. It is understood that they continued the policy of flying two man crews for six month shifts with the addition of short period additions of crews from other parts of the world and satellite countries of the Soviet Union. There is also the possibility of guest astronauts from France participating in missions.

Salyut-6 is to be replaced by Salyut-7. This was originally planned for 1980 but the serviceability justified continued use and indeed there may be some manned activity this year. The new three man Soyus-T transport will add considerably to the versatility of these vehicles. The Russians also plan to send scientists and engineers to do active experimental work and to be free of piloting duties.

Another development is that they have demonstrated their ability to operate Soyus-T spacecraft in a way that allows the orbital modules to be left before re-entry takes place. This presents the possibility of leaving the orbital module docked with the space stations. This would necessitate the provision of more docking points. It is readily appreciated when looking at the models in the permanent space exhibition in Moscow that it is possible to extend space stations both vertically and horizontally like a Leggo construction kit.

The large antenna that was deployed in 1980 paves the way for space building and it can easily be seen that with little additional skill, the possibility of large platforms such as the proposed Satellite Power System, measured in kilometres in extent, is within the immediate future. With their development of large boosters and their already active work with a re-entry winged vehicle, they could have a space station to support ten or more crewmen on a permanent basis. All this opens up new vistas for the USSR. No doubt there will be military advantages and the new booster will enable geostationary activity to be advanced.

The lag behind missions are given here as
known in late March 1981. For example, the GAIS military communications satellites, a group of four vehicles, the first of which should have been launched in 1979. The four positions planned are at 25 deg . W long., 85 deg . E long., 45 deg . E long., and 170 deg . W long. The frequency allocated for these satellites is in the 8.7 GHz band. A mission that has been delayed also is the Viona communications system. These satellites consist of a group of 7 units and would provide a service similar to that of Marisat.

There seems to be a possibility of delay on another new system called Louch. It is believed that this consists of spacecraft positioned round the world to compete with the Intelsat 5 system. The frequencies of operation are said to be 11 GHz downlink and 14 GHz uplink. Six Molniya craft were launched during 1980 but it seems that two at least are failures. A number of other missions were flown during 1980 and many are presumably vehicles that play a dual rolethat of part research with alternative military use. During 1980 all but one of the spacecraft were launched from Plesetsk.
Most projects in 1980 were increased in number compared with the same types launched in 1979. It is possible to see the pattern of the Soviet thinking by a study of the disciplines involved.

THE HALLEY COMET MISSIONS

Three separate missions are to be attempted by the European Space Agency, the USSR and Japan, for a comet encounter. A meeting has been arranged to set up the necessary requirements for the pooling of the data obtained. The present plans for the encounter would mean that the Soviet comet probe would arrive shortly before the ESA spacecraft, the Giotto. Pictures taken by the Soviet vehicle could be useful for correcting the Giotto to best position perhaps even closer than the planned target distance of $1,000 \mathrm{~km}$. Russia has revised the strategy for the Venera unmanned mission to Venus by including a probe to be released from the Venera in mid 1985 to an encounter of the comet within a distance of 10,000 to $50,000 \mathrm{~km}$. Japan's project is designated "A" with no other details available at the moment.

THE SOLAR POLAR MISSION

As was forecast in the last issue of Spacewatch there has been sharp reaction to the cut-back of programmes by the United States affecting the NASA cooperative mission with ESA. The Director General of ESA, Erik Quistgaard, has urged each member State to make the approach of protest at ambassadorial level in the first instance. The NASA/ESA memorandum of understanding covering the cooperative activities which included return fly by Jupiter secondary missions were regarded as essential. Since the agreement was signed in March 1979, a number of alterations have been made from the US side including delays because of shuttle troubles. Rather bitterly a European official said ". we did not expect these things to happen because of the cancelling of funding and not in this way . . it seems that the US do not realise the importance of honouring international commitments".

"quasar

Our PE Quaser stereo tuner has been designed around a set of Mullard modules. It is a straightforward, easy to build unit and repre-

PRACTICAL
 =LECTRONICE

OUR JULY ISSUE WILL BE ON SALE FRIDAY, 12 JUNE, 1981

DP400 Minitune for r.p.m., dwell, voltage and resistance testing

THE DP400 Minitune is a versatile car tester incorporating voltage, resistance, r.p.m. and dwell angle measurement ranges. Using the LE DPM200 panel meter and the special instrument case, an accurate and highly compact instrument may be easily constructed using a few additional components. The specifications listed below make the Minitune extremely useful for fault-finding in automotive electronics and for tuning an engine for better efficiency and reduced fuel consumption.

CIRCUIT DESCRIPTION

The PE Microtune featured in the December 1980 issue has proven to be a very popular instrument for laboratory or automotive use and response from readers has indicated an additional need for a compact automotive-dedicated tester which may be kept in the toolbox. The recent sharp increase in the cost of petrol emphasises again the need for correct car maintenance if fuel costs are to be minimised.

The circuit diagram of the Minitune is shown in Fig. 1 where ME1 forms the 200 mV full-scale meter.

Function switching is provided by S 1 and range switching by S2. The voltage ranges are provided by switched outputs from the attenuator formed by R1-R4 which are metal film types for good stability. Voltage-dependant resistor R21 is included to suppress any transients appearing at the terminals by rapid clamping to low resistance.

For resistance measurement, the ratiometric method is used such that the resistance to be measured is displayed as a ratio of an internal reference resistor, providing direct display without the need for any calibration adjustment. Thermistor TH1 and transistor TR2 are included to protect the panel meter from the accidental application of high voltage to the input terminals, when measuring resistance or checking continuity. The resistance of the positive-temperaturecoefficient thermistor will rapidly increase when TR1 turns on and shunts current through the thermistor, so reducing the input current to a safe value.

In order to minimise current consumption of the instrument, the r.p.m. measurement circuit incorporates a CMOS timer, IC 1, configured as a monostable. The Common Pin of ME1 is established at typically 2.8 V below supply positive, enabling the CMOS timer to operate using Common and supply positive as the supply connections as it will operate

SPECIFICATION

Function	F.S.D.	Resolution	Accuracy
Voltage (d.c)	20 V	10 mV	$0.5 \% \pm 1$ digit
	200 V	100 mV	$0.5 \% \pm 1$ digit
Resistance	200Ω	$100 \mathrm{~m} \Omega$	$0.5 \% \pm 1$ digit
	$20 \mathrm{k} \Omega$	10Ω	$0.5 \% \pm 1$ digit
R.P.M.	$20.000 \mathrm{r} . \mathrm{p} . \mathrm{m}$.	$10 \mathrm{l} . \mathrm{p} . \mathrm{m}$.	$1 \% \pm 3$ digits
Dwell	90°	0.1°	$2 \% \pm 3$ digits

on supplies as low as 2 V with consumption of $80 \mu \mathrm{~A}$. When a negative going pulse appears on pin 2 of IC1 a positive going pulse appears at pin 3 , with duration 0.69 R14 C1. The output pulses are smoothed to a d.c. voltage by R 9 , R10, C5 and since the pulses are of constant duration this voltage is proportional to the input pulse rate.

The r.p.m. circuit is triggered by connecting Input LO to vehicle chassis and Input HI to the ignition coil L.T. trigger point.

For a four-stroke engine, the distributor shaft rotates at half the speed of the crankshaft and it can be shown that r.p.m. is related to the contactbreaker pulse rate by the equation:
r.p.m. $=\frac{\text { pulse } / \mathrm{min} . \times 2}{\text { Number of cylinders }}$

Engine r.p.m. is therefore proportional to the pulse rate appearing at the L.T. trigger point, and accordingly the d.c. output from IC1 which is calibrated accordingly.

Pulse shaping and clamping circuitry is added to protect the CMOS input of IC1 from transients produced by the ignition coil inductance.

DWELL MEASUREMENTS

To simplify use of the Minitune, dwell measurements are made using the same connections to the vehicle as required for r.p.m. measurements. Dwell angle of a distributor is the angle through which the contact breaker cam rotates whilst the points are closed. To ensure correct combustion the dwell angle adjustment is very important and may be measured by comparing the points open time to points closed time or duty cycle.

Fig. 1. Circuit of Minitune

Fig. 2. Printed circuit board

Fig. 3. Component overlay

COMPONENTS

\section*{Resistors-
 | R1 | 9 M | |
| :---: | :---: | :---: |
| R2 | $900 \mathrm{k}\}$ | Metal film 0.25\% |
| R4 | 10k | |
| R5 | 100k | |
| R6 | 10k | |
| R7 | 10k | Carbon film 5\% |
| R8 | 18k | |
| R9 | 100k | |
| R10 | 1 k | |
| R11 | 9 k | |
| R12 | $900\}$ | Metal film 0.25\% |
| R13 | 100 | |
| R14 | 1k | |
| R15 | 220k $\}$ | Carbon film 5\% |
| R16 | 100 k | |
| R17 | 100k | |
| R18 | 10k | Carbon film 5\% |
| R19 | 10k | |
| R20 | 18k | |
| R21 | 400 V | VDR |
 Variable Resistors
 VR1 5 k preset
 VR2 5 k preset
 Semiconductors
 | D1 | 1N914 |
| :--- | :--- |
| D2 | BZY882V7 |
| D3 | 1N914 |
| D4 | 1N914 |
| TR1-TR2 | MPSA42 |
| IC1 | ICM7555 (CMOS) |
| IC2 | LM324 |}

Miscellaneous

S1 4 pole 4 position slide switch.
S2 3 pole 3 position slide switch.
TH1 1 k PTC thermistor.
ME1 LE DPM 200 panel meter module.
Case.
P.c.b.

4 mm p.c.b. mounting terminals (2 off).
Ribbon cable.
Self M3 screws.
PP3 battery and connectors.
A kit of components (excluding the DPM200 and case) is available at $£ 14.95$ (inc. VAT and p\&p) from Lascar
Electronics Ltd., Unit 1, Thomasin Road, Basildon,
Essex SS 13 1LH.

Fig. 4. Front panel template

A four cylinder engine has four distributor cam lobes spaced 90° apart which represents the maximum possible dwell angle. In practice the dwell angle is usually slightly less than two thirds the cam lobe angle.

$$
\text { Dwell angle }=\text { cam lobe angle } \times \frac{100 \%-\text { Duty Cycle }}{100 \%}
$$

The first stage of IC2 acts as a comparator with preset triggering threshold. The pulse output of IC2a is an inversion of the input pulses such that the points closed time is active "high". The pulses are averaged to produce a d.c. voltage proportional to dwell angle for input to the panel meter.

CONSTRUCTION

Construction of the Minitune is very straightforward and the component layout is shown in Fig. 2. Resistors and capacitors should be soldered in place first followed by the semiconductors and taking particular care with CMOS IC1.

Switches should be pushed down onto the p.c.b. as far as possible and checked for perpendicular positioning before soldering in place. The fuse clips and terminals should now be soldered in place.

Ribbon cable connects the panel meter to the p.c.b. and the battery connector should then be soldered in place.

TESTING AND CALIBRATION

With the instrument switched to the 20 V range the display should read 0.00 and voltage measurements should not require calibration if the correct attenuator resistors have been used.

When switched to resistance ranges and the inputs open circuit the display should indicate a 1 in the leading digit with the other digits blanked which is the over-range indication. When the input terminals are shorted together, the display should read zero except on the 200 ohm range where there will be a small offset due to the fuse and switch resistance.

PULSE GENERATOR

The r.p.m. section may be calibrated using a pulse generator. Referring to the earlier equation it will be evident that a 50 Hz input pulse rate corresponds to 1500 r.p.m. A low secondary output mains transformer may be used by rectifying and clipping the output. With 50 Hz input VR 1 should be adjusted until the panel meter reads 1.50 .

To calibrate the dwell section a pulse generator with variable mark/space ratio is preferable but a 50 Hz square wave source is a useful substitute. VR2 should be adjusted until the display reads 45.0 with an equal mark/space ratio input. With the input open-circuit the display should be approximately 90.0 .

The Minitune is now ready for use and the p.c.b. may be screwed in place, then the panel meter located in the case and the case clipped together. The dwell and r.p.m. readings should be multiplied by two-thirds when used on six-cylinder engines and by half when used on eight-cylinder engines.

USING THE MINITUNE

The DP400 Minitune enables accurate measurements to be carried out and can be used to set the idling speed and dwell angle in accordance with manufacturers' specifications. In addition, a wide range of tests may be carried out including points, coil, air cleaner and air/fuel ratio mixture. Reference should be made to a workshop manual and/or $P E$ January 1981 issue.

Note: the interior cutting details of the case are identical to that shown in the continuity meter article.

THE PRINTER YOU THOUGHT YOU COULDN'T AFFORD.... \sim FREE/2 The SEIKOSHA GP80 - 80 column impact matrix printer

price includes K mainland deliver but excludes VAT.

Standard Centronics interface makes it ideal for most hobby Micro's
() $*+,-.101234$ parstuvwxyz\{1\}~dyddet ABCDEFGHI JKLMNOPQRSTL
 bedefghi jkimnoparstuv

The GP-80 is a revolutionary new graphic printer with a difference, not only does it have an amazingly low price, but unlike its competitors the GP-80 uses a unique 'Uni-hammer' system and with a name like Seikosha* behind it you can be sure of its quality, reliability and precision construction. The GP-80 is an ideal printer for your system or VDU, and it produces a top quality printout.
If you would like a GP-80, complete the order form or telephone today. (*part of the Seiko Watch Company).
Allow 14 days delivery, subject to availability, full refund if goods returned within 14 days.

* PRINT METHOD - Impact Dot Matrix
* CHARACTER MATRIX - 5×7 Dot Matrix
* CHARACTER SET - 128 characters
- CHARACTER CODE - ASCII
* PRINT SPEED - 30 characters/second
- CHARACTERS/LINE - 80 or extended chs.
- CHARACTERS/INCH - 12
* LINES/INCH - 6 (9 for graphics)
* LINES/SECOND - 5 (7.5 for graphics)
- Paper feed - Pin Feed
* PAPER/WIDTH - Up to $8^{\prime \prime}$ plain paper
- COPIES - 3
- RIBBON - Ink roller built in cassettetype(1 colour
- POWER SUPPLY . $100 / 117 / 220 \pm 10 \% 50160 \mathrm{~Hz}$
- POWER CONSUMPTION - 15W(print) 5W (idling)

DIMENSIONS $-17.25 \mathrm{~d} \times 32.8 \mathrm{w} \times 13.2 \mathrm{hcms}$

* WEIGHT - 2.5 kg ($51 / 2 \mathrm{lb}$.)
* NOISE LEVEL - Under 60 phon
* INTERFACES - Centronics fitted as standard
* WARRANTY - 12 months

micro Peripherals

61 New Market Square, Basingstoke, Hampshire. RG21 1HW

Telephone: 025656468 (4 lines)
Telex: 858575
Seiko appointed importer and distributor

by K. Lenton-Smith

TAKE a successful business man with a passion for something quite outside his field, add some experts to develop the ideas and you have the start of something destined to prove interesting.

Frederick C. Lowrey, who died in 1955 aged 85 , firmly believed that music was a 'purifying and uplifting force' and set himself the task of developing an electric instrument capable of reproducing the pipe organ as closely as possible. Although he never played the organ, he knew organ music and became thoroughly familiar with the technicalities of the instrument itself. Once he had set himself on this course there was no turning back and he never regretted the time and money spent on the process.

At the age of 16 he started up inbusiness, selling pots and pans from a horse-drawn 'shop' and in 1894 founded Central Commercial Investment.

In the early years of this century, Lowrey had seen the Cahill organ installed in the Telharmonic Hall, New York City. The Eastern Cahill Telharmonic Company made arrangements with the telephone company to meter music to subscribers. Mark Twain was one of the first to have his home wired for organ music by telephone. The musical notes were produced by a series of alternators and, as there was no known means of electrical amplification at that time, a handset was the only method of hearing them. Unfortunately for that company, Henry P. Morgan (a leading industrialist of that era) had difficulty placing an important business call and such was his influence that he put a stop to music by telephone.

The next electrical instrument presented to the American Public was the Choralcello, originally made in Boston, Mass. In 1918 , Frederick Lowrey took over its manufacture and moved the factory to Chicago. This instrument derived its tones from piano strings which were vibrated mechanically and had either one or two seven octave keyboards. Lowrey's next essay was the purchase of an organ from a Californian inventor: he had the instrument delivered by boxcar and set up in an abandoned theatre in Chicago. This organ had vertical, resonator pipes with diaphragms near their bases which were made to vibrate at given frequencies. Though smaller than a pipe organ, it proved to be too large for a home or small chapel.

During the 1930 s, Lowrey continued his quest, buying patents and employing inventors, engineers and musicians. His team at

Central Commercial experimented with generators of every known type - rotary magnetic, rotary electrostatic, gas discharge tubes and valves - during this decade. Their final choice was valve generators because no moving parts were involved and rich waveforms were available.

ORGANO

For the duration of the second world war, U.S. Government controls forbade the manufacture of musical instruments and purchase of electrical materials that were not essential to the war effort. Even so, Lowrey's first successful venture was the Organo, conceived by his associate Mr . Koeht and demonstrated at the 1941 Music Merchants Trade Show in New York by the fabulous Ethel Smith.

The Lowrey Organ Division of Central Commercial produced this instrument, which added the facilities of a single manual organ to an ordinary piano. The electronics-speaker, amplifier and generators-were housed in a single cabinet alongside the piano, an interconnecting cable carrying signals from switches under the piano keys. It was a divider organ with twelve LC master oscillators based on 12AX7 valves, each with its string of four 12 AU 7 bistable divider stages. The keyboard could be 'split' and vibrato applied overall. A simple tone forming system allowed the player to choose combinations of Principal, Horn and String at several volume levels.

Lowrey Organs were now well under way. Their first spinet model, the Berkshire was produced in 1954 and its voicing principles are still used in current models. In the following year, Frederick Lowrey died and, as the organ operation was foreign to its businesses, Central Commercial sold Lowrey Organs to the Chicago Musical Instrument Company.

Lowrey's new owners continued with the same vigour shown by the pioneer himself. 1956 saw the first spinet organ with sustain, chimes and glide-the Lincolnwood de Luxe. The Holiday and Heritage series of organs were initiated and in 1962 the company was first in the field with AOC. This feature-Automatic Organ Computer-will add full chords to a single note melody, according to left hand harmony. Runs of chords otherwise impossible to finger make it still a popular feature today.

In the 1960 s, with Lowrey team were
first in producing instruments with built-in Leslie speakers and chorus reverberation. In 1965, with the advent of more reliable silicon devices, valves were replaced by transistors. In the last decade, Golden Harp (automatic arpeggio), String and Brass Symphonizers were fitted to Lowrey models and the company was collaborating with i.c. manufacturers in designing Top Octave Synthesizers and other LSI devices.

MX1

Frederick Lowrey's dream of providing the public with convincing sounding organs would have made him proud of 1981 models, though they offer far more than organ tones. At the top of the range is the MX1, which Lowrey say almost defies description, but I will have to try just the same! This is a one man band with total realism-by means of a perfect marriage between microprocessor/computer and orchestral voicing.
'Orchestration Plus' is a feature offering the choice of twelve pre-progammed, fully orchestrated backgrounds against which to play the solo on an almost unlimited number of upper keyboard registrations. The orchestrations are Big Band, Contempo, Polka, Country, Jazz Guitar, Rock, Blue Grass, Baroque, Rhythm Guitar, Disco, Waltz and Latin. Variations can be applied: for example, Big Band is programmed to play trumpets, trombones and string bass, but saxophones can take over. The fidelity of the instrument sections is such that nothing short of the highest praise is due to Lowrey's engineers.

Eighteen digital stereo rhythm patterns are available and there are three synthesizers. The Orchestral Symphonizer is polyphonic with brass, reeds and percussive tones, all of which may be coupled down to the lower manual. The Solo Symphonizer is monophonic but can be used with other polyphonic voices, whilst the Custom Symphonizer allows the player to set up his own voicing by means of envelope and filter controls.

Orchestral Percussion provides not only the usual second and third harmonic effects but also chimes and vibraphone among its nine effects. Golden Harp arpeggiates over three octaves and may be used in conjunction with Orchestral Percussion. A string synthesiser processes cello, viola and violina and the mixture can be channelled through Sterophase Chorus Celeste for a Mantovani effect.

AOC is present and, in addition to the many tab controlled voices on each manual, Custom Flute presets allow these tones to be mixed by sliders in drawbar fashion. (It is interesting to note that Lowrey have their form of Hammond drawbar, while Hammond have their version of AOC, called 'Pro Chord'! Magic Genie chords are fitted with the beginner in mind.

Lowrey's claim that this is the 'ultimate organ' is certainly justified at present-and it would be good to be able to write the cheque for just under $£ 14,000$ to buy it. With technology advancing rapidly, one wonders what the back room boys will come up with next!

£1150 INCIUDING V.A.T PLUS E1-20 POSTAEE \& PACKING LIOUIDATED STOCK

WE HAVE been able to arrange this PE offer as a result of a special purchase. A limited quantity of these booster amplifiers are available to PE readers at this incredible price-you cannot even buy the components for the cost of this ready made unit.

A fully protected 15 W per channel audio booster providing extra amplification for stereo car radios, cassettes and radio/cassettes. Improves quality of tone across the frequency spectrum of 30 Hz to 10 kHz . The unit is designed for 12 V negative earth vehicles and can be remotely mounted. An inbuilt electronic on/off switch means that all functions of the booster are via the radio/cassette controls.

Available to UK addresses only. Offer closes Friday 26th June 1981.

To: RTVC Ltd., 21b High St., Acton W3 6NG (mail order only).

NEXT to temperature measurement, pH measurement is one of the most widely used in many areas of science. pH is a measure of the concentration of hydrogen ions in a solution and is effectively a measure of acidity. Absolute measurement of pH and the monitoring of its rate of change is important in chemistry experiments but pH measurement is also of importance to the food and drink industries, to aquarists to prolong the life of tropical fish and to gardeners who use lime to control soil acidity and improve plant growth.

The DP300 pH meter provides accurate measurement of pH values in the range 0 to 14 pH with resolution of 0.01 pH .

MEASUREMENT OF pH

The value of pH is defined as:

$$
\mathrm{pH}=\log \frac{1}{[H+]}
$$

where $[\mathrm{H}+]$ is the hydrogen ion concentration in the solution.

Pure water at ordinary temperatures dissociates slightly into hydrogen ions and hydroxyl ions [$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$], the concentration of each type of ion being 10^{-7} grammolecules per litre, the pH value of pure water will be:

$$
\log \frac{1}{10^{-7}}=7
$$

This figure is therefore taken to represent neutrality on the pH scale.

If acid is added to water its hydrogen ion concentration will increase and its pH value will therefore decrease. Acidity is indicated by pH values below 7, and alkalinity is indicated by values above 7 .

Acid has the effect of liberating hydrogen ions in solution and one of the traditional tests for acidity is to use litmus
peper. Generally acid reacts with litmus paper to ture it red, whereas alkali turns litmus blue. For accurate measimement $0^{6} \mathrm{pH}$ electronic methods are universally used. A sir ole pH poobe consists of two electrodes between which a pctential d fference is generated when they are immersed in te solution under test. Probes are constructed on the principle of a galvanic cell with output proportional to pH value. The output is very small and a certain amount of care is required in its measurement.

CIRCUIT DESCRIPTION

The DP300 pH meter has been designed to operaw with a aboratory grade probe which will be made available to PE readers. The circuit of the instrument is shown in Fig. 1 and requires few components in addition to the LE-DPN 200 panel meter.
The pH probe is fitted with coaxial cable, to protert the electrode potential difference from r.f. pickup, and cornects to the instrument via plug and socket.

Operational amplifier IC1 forms a unity-gain voltage fol ower which presents very high impedance of typically $1 C^{12}$ at its non-inverting input to produce negligible $\mathrm{k} \not \mathrm{c}_{\mathrm{ding}}$ of the electrode.

Amplification is provided by VR3 and a reference veltage is adjusted by VR4 such that with zero input from the electrode a reading of 7.00 is obtained on the panel meter

CCNSTRUCTION

-he p.c.b. track layout is shown in Fig. 2 and it shol d be noted that the p.c.b. supplied from Lascar Electron ss is coated to prevent ingress of moisture which could affect accuracy.

The component layout is shown in Fig. 3 and the assembly is straightforward. Link LKA should be omitted at

[^3]> THE DP3OO DIGITAL PRECISION pH METER HAS A MEASUREMENT RANGE OF O-14 pH $\pm 0.01 \mathrm{pH}$

MARIIN KENT

FREE CASE PROJECT

Fig. 1. Complete circuit diagram of the pH meter
this stage to ease the calibration. When all components have been soldered in place, the panel meter may be connected to the p.c.b. by the ribbon cable.

To ease the calibration of the pH meter it may be found worthwhile fixing the p.c.b. to the lower half of the case using the self-tapping screws.

CALIBRATION AND TESTING

The LE-DPM 200 is supplied tested and calibrated with 200 mV , full scale and is used as a separate piece of test equipment when calibrating the pH meter to avoid the need for additional instruments.

When the p.c.b. assembly is complete, a battery should be connected to the unit and a piece of insulated wire approximately six inches long connected to the panel meter side of link LKA position on the p.c.b. The flying lead arrangement
enables voltages arouna tne p.c.b. to be monitored on the panel meter.

When the test lead is connected to the Input LO side of the coaxial socket the display should read 0.00 .

Connect a shorting link to the coaxial inputs and connect the test lead to test point A. VR1 should be adjusted to zero the offset voltage produced by IC1. Now connect the test lead to test point B and zero the offset voltage of IC2

Now connect the test lead to test point C and adjust VR4 to provide a reading of 7.00 on the panel meter.

Remove the test lead, insert link LKA on the p.c.b., remove input shorting link and connect the pH probe to the coaxial socket

The probe is supplied with two calibration buffer powders of pH 4 and pH 7 . The probe should be placed in buffer pH 7

COMPONENTS ...

Resistors

R1, R2	10k (2 off) carbon film 5%
R3	33 k carbon film 5%
R4, R5	100 k (2 off) carbon film 5%
R6, R7	$39 \mathrm{k}(2$ off) carbon film 5%
VR1	100 k cermet multiturn preset
VR2, VR3,	
VR4	22 k (3 off) cermet multiturn preset

Semiconductors

IC1. IC2. TLO61CP (2 off)

Miscellaneous

ME1 Panel Meter LE-DPM 200 (See Special Offer)
Case
PP3 battery and connector
P.c.b.
Ribbon cable
Coaxial socket SK 1
P.c.b. mounting switch
M3 self-tapping screws (4 off)

Constructor's Note

A laboratory grade pH probe with full operating instructions and pH 4 and pH 7 calibration powders is available at $£ 22$ (inc VAT) and a kit of components (excluding DPM 200 and Case) is available at $£ 8.95$ (inc VAT and p\&p) from Lasear Electronics Ltd, Unit 1, Thomasin Road, Basildon, Essex.

Fig. 4. Front panel template

Probe assembly

Fig. 3. Component layout

Internal view of the pH meter
solution and VR1 adjusted so that the panel meter reads 7.00. Rinse the probe in water and place it in buffer pH 4 solution, adjust VR3 for a reading of 4.00 . The front panel should then be drilled using the template shown in Fig. 4.

The instrument is now fully calibrated and the panel meter may be located in the top half of the case. The pH meter is ready for use for the measurement of other solutions at the same temperature and forms an ideal companion to the DP100 Thermometer.
\star The author gratefully acknowledges the assistance given by Barry James of the Aqua Chemical Co., Dover.*

Thinumarion

makes for a better job...

The biggest name in solder worldwide

Tool Box Reels
3 flux-cored solders that cover a range of electrical and non-electrical applications. ARAX $40 / 60 \mathrm{tin} /$ lead size $11 £ 4.14$ each. ALU-SOL size $4 £ 7.36$ each ERSIN 40/60 tin/ lead size $3 £ 4.14$ each.

Solder Cream

For precision soldering Solder Cream is a mixture of solder powder and flux. Electrical electronic ("Ervin" flux) size BCR10 £1.49. Metal joining ("Arax" flux) size BCA14 £1.49 Stainless steel and jewellery ("Arax" flux) size BCA16 £3.22.

Wire Strippers \& Cutters No tool box is complete without this handy wire stripper which will adjust to most sizes of flex and cable Easy grip plastic coated handles. Automatic opening. Handle locking device. Ref 9 £2.69.

Handy Dispensers
Size 19A 5 -core solder Ersin flux 1.22 mm da for electrical work $£ 0.97$.
Size PC115 extra thin gauge for small electrical components $£ 1.27$
Size SV130 5-core Savbit specially for copper bits and wires $£ 1.61$
Size AR 140 Arax solder for all metal repairs except aluminium $£ 1.38$.
Size AL 150 Alu-sol for most metals especially aluminium $£ 1.93$.
Size SS 160 for stainless steel and silver jewellery
Size SS
$\mathbf{£ 2 . 5 3 .}$

Soldering Flux Paste - Ersin A fast, non corrosive rosin flux for general and electrical for general and electrical
soldering applications. Use with Ersin Multicore solder. Size RF 10 £0.74.
Arax soldering flux paste also available for general metal working. Size AF 14 £0. 74.

Bib makes for a better sound

Bib Groove-Kleen
For single play turntables. Velvet pad and tracking brush track across the record as it plays picking up harmful dust to improve sound performance. Ref 101B £4.69 British Patent Number 1519881

Cassette Tape Hand Winder
Winds a C90 cassette in 60 seconds - faster than most cassette machines. Especially ideal for battery powered recorders to save consumption when used on fast wind. Ref $78 £ 1.66$. British Patent Number 1443628

Bib Groove-Guard-XL-2 Unique formula liquid, when applied to record, gives antistatic protection and helps reduce friction between stylus tip and groove. Complete with pump spray dispenser and special cleaning pad. Treats up to 12 LBs. Ref 27 £2.60.

Bib Hi-Fi Accessories Ltd Kelsey House, Wood Lane End.
Heme Hempstead.
Hertfordshire HP 2 4RQ.
Telephone: (0442) 61291

Record Valet and Liquid
Handy kit contains special anti-static fluid and velvet record cleaning pad. Ideal to remove dust and other particles from records and provides an anti-static effect to help keep your records clean. Ref $47 £ 3.45$.

All prices given are recommended retail including VAT. If you have difficulty in purchasing your Multicore solder product or Bib Hi-Fiaccessory, send direct to the address above quoting the reference number and including your remittance plus $40 \mathrm{p} P \& \mathrm{P}$. Send SAE for free colour catalogue showing complete range.

Readout... A selection from our Postbag

Readers requiring a reply to any letter must include a stamped addressed envelope.
Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

Rabbit, rabbit . . .

Sir-I simply had to put pen to paper in your defence. I feel that Mr. Bleck's criticism levelled at such a good mature-minded magazine just cannot be tolerated.

What I would like to know is: has Mr. Bleck checked all his electrical equipment for r.f. interference radiation. including his car. drill, washing machine, etc. After all, as Mr. Bleck doesn't like interference. why should his neighbours?

Mr. Bleck claims to have read so much about CB, and yet he knows so little about it. He says: "Every ten years or so it will become involved in some small way with a murder hunt.... Your magazine, plus all the informed readers will know just how many lives have been saved. and how many people have been helped by illegal CB already. Mr. Bleck also says that 99 per cent of the population is similarly disinterested. Just how naive can any person be? They say that ignorance is bliss-in Mr. Bleck’s case. it is pitiful.

1 have read and enjoyed your magazine for about 20 years, and have found it to be a very respectable magazine, which keeps its readers happy and informed. If Mr. Bleck had his way. it would no doubt be run on communist lines-i.e. if the Editor doesn't like it, it won't get printed.

I will go on reading your wonderful magazine even if you say things I don't agree with. Thankyou for letting me air my views. which I'm sure are shared by many other people.
R. S. Spencer. Forest Hill.

Sir-I write in reply to Mr. Peter Bleck's letter printed in your April edition of Readout.

May I say that if "99 per cent of the population" are disinterested in Citizens Band Radio, as he so inaccurately claims, are the authorities that be (i.e. HM Government) bowing to the wishes of a one per cent minority? I doubt it.

Perhaps he should contact his local post office to help him locate the source of interference on his domestic equipment.

I would be obliged if you would print his full address. so that anyone who is interested in CB can send him a postcard to give him an idea of the support $C B$ has. Nobody is asking him to like CB (I don't agree with foxhunting. for example)-but just to keep his childish outbursts to himself.

Ben Spencer. Waddington.

Wonderful response

Sir-I am writing to let you know what a wonderful response I've had from an advertisement I placed in your magazine. I have been looking and hoping for a very long time that I could find someone who could build me a transistorised horn for use with my various model boats. Up until now, my search has been in vain.

Recently. I was advised to advertise in your magazine, and I'm very glad that I did-now three professional people are helping me with what l have been seeking to install in my boats.

Thankyou very much for your help and the wonderful medium that Practical Electronics has proved to be.
B. Clarke, Eastbourne.

OSCILIOSCOPES

How to use them - How they work • by lan Hickman
Oscilloscopes are essential tools for checking circuit operation and diagnosing faults, and an enormous range of models is available. But which is the right scope for a particular application? Which features are essential, which not so important? What techniques will get the best out of the instrument? lan Hickman, experienced in both professional and hobbyist electronics, has written this book to help all oscilloscope users - and potential users. After introducing basic principles for readers new to the subject, he explains in detail the features of typical simple and advanced real-time oscilloscopes, plus accessories such as probes and cameras. He advises on how to choose and operate scopes, and how to avoid common pittalis; he also describes special-purpose instruments, from smail portable scopes to storage scopes and spectrum and logic analysers. Finally, to give readers a better understanding of how oscilloscopes work, he explains the principles of the cathode-ray tube and basic scope circuitry,

MEM
BOOK

Illustrated with many photographs and two-colour diagrams, the book will appeal to everyone who needs to know about oscilloscopes, from the school student to the graduate, from the hobbyist to the technician.
Available from your local bookseller or in case of difficulty from the Publisher.

BROADEN YOUR SCOPE NOW!
 Cut out this coupon and return it to Patricia Davies, Marketing Manager, at the address below.
 Please send me copy/copies of Oscilloscopes (Hickman)
 $040800472 \times$ Illustrated paperback, 128 pages $(216 \times 138 \mathrm{~mm})$ at $£ 3.45$ each.

I enclose a cheque/PO for Σ in total payment

From

Address
(PE/6/81)
Tewnes Technical Books
Borough Green, Sevenoaks, Kent TN15 8PH

Oscilloscopes ..HOW THEY WORK Part Three...Circuitry... by lan Hickman

Abstract

This feature is taken from the last two chapters of a new book by this well-known author. Published by Newnes Technical Books the paperback is entitled Oscilloscopes. How to use them. How they work.

THE circuit diagram of the trigger processing circuits, timebase and X deflection amplifier of a modern dual-trace 15 MHz oscilloscope, recently introduced by Gould (formerly Advance Ltd.), is shown in Fig. 19. It is a good example of the tendency noted earlier of modern oscilloscope designs increasingly to incorporate integrated circuits while retaining discrete components for those circuit functions where they are more appropriate. The various sections of the circuit are labelled (e.g. ramp generator, X output amplifier etc.) and detailed operation is described below, as it is typical of modern oscilloscope practice.
The trigger source switches, S502 and S503, connect the required trigger signal via the trigger coupling switches, S504 and S505, to the trigger buffer amplifier formed by TR601 and TR602. S502 selects the differential CH1 signal via R313 and R314 from IC301. S503 selects the equivalent CH2 signal via R363 and R364 from IC351. Where both S502 and S503 are selected, both of the above signals are disconnected and the single-sided input from the EXT TRIG input socket SKC is selected.

When the a.c. coupling switch, S 504 , is out, the trigger signals are directly coupled-through, but when this switch is in, a.c. coupling is introduced via C603 and C604 (C601 on external). TR601 and TR602 form a differential buffer amplifier with the d.c. balance controlled by the trigger level control, R602. The differential output from this stage is applied to the comparator, 1C602, which has positive feedback applied by R623 to form a Schmitt trigger circuit. The changeover switch, S506, reverses the output from TR601 and TR602 to determine the frigger slope.

When both S504 and S505 are "in" (a.c. and d.c. in for TV mode), the junction of R603 and C610 is connected to the -11 V supply. D601 and D608 are brought into conduction, while D602 and D604 are reverse biased. This diverts the output of the trigger amplifier away from IC602 into TR605, which amplifies the positive tips of the waveform only. TR605 is prevented from saturation by feeding back the peak detected synch pulses via TR607 and TR606 to the emitter of TR605.

These pulses are amplified by IC601b and applied via R617 and D603 to the Schmitt trigger, IC602. IC601a is used in conjunction with S504 and S505 to disable the sync separator when a.c or d.c. is selected.

At the fast timebase sweep speeds, S262a is open and TR 603 is cut off. However at speeds of $100 \mu \mathrm{~s} / \mathrm{cm}$ and slower, R608 is connected to +11 V and TR603 is switched on. This effectively grounds C609 to introduce an RC integrating time constant into the sync pulse signal path in the TV mode to separate out the frame trigger.

The square-wave trigger output from IC602 is applied (with d.c. bias of Zener diode, D605) as the clock to the D-type TTL flip-flop, IC501a. A positive-going trigger edge will clock the bistable, driving Q low. In the waiting state, Q was high $(+4.5 \mathrm{~V})$, turning on TR261 via R 507 and R262, holding the input (and hence the output) of the operational amplifier, IC261, at 0 V . This timebase amplifier is connected as a direct voltage follower.

When the trigger signal sends Q of IC501 a low, the timebase clamp transistor, TR261, is turned off. Part of the constant current generated by TR 264 flows through the resistor network, R272, to charge C263 at a constant rate, The resultant positivegoing linear ramp voltage generated at the input of IC 261 is buffered by that amplifier to generate the low-impedance ramp output.

TIMEBASE RANGE SWITCH

The timebase range switch, S262, selects the tap point on the network, R272, to vary the ramp slope in the $1,2,5$ sequence over a range of three decades. On all fast sweep ranges TR262 is biased off, but on ramps $0.5 \mathrm{~ms} / \mathrm{cm}$ and slower S 262 c connects R 263 to +11 V . TR262 is turned on and C264 is effectively connected in parallel with C263 to slow the sweep rate 1000 times.

The constant current in the ramp generator is derived from the current mirror circuit formed by TR263 and TR264. The variable gain control, R269, provides an approximate $3: 1$ range

Fig. 19. X circuits of Gould OS255 oscilloscope, showing timebase generator-

trigger circuits and X-deflection amplifier (courtesy Gould Instruments Division)
of variation in this current; R506 provides a preset calibration control on the slow sweep rates, only when S262 is closed.

When the ramp reaches its maximum level, the negative bias introduced by R521 and R519 is overcome and TR503 turns on, driving the reset input of the timebase bistable low. As the bistable switches, Q returns high, and TR261 conducts to discharge the timing capacitor(s) and the sweep is complete. However, a hold-off action takes place to inhibit trigger signals during the sweep; this remains for a short period after a sweep to ensure that the ramp potential is fully reset before the next sweep can be triggered. As the ramp goes positive, D506 conducts to charge C502, reverse biasing D503 and turning on TR502. At the end of the sweep when the timebase bistable is reset, Q goes low and the D input follows via the action of D508 and R511. The ramp output returns rapidly towards 0V, but TR502 remains in conduction for a period determined by C502 and R518. Only when TR502 turns off can R516 and D507 take the D input high for the bistable to respond to the next clock input.

Transistor TR501 acts in a way similar to TR262 (described above) to introduce additional hold-off time through C501 on the slower half of the timebase ranges.

The brightline facility causes the timebase to free-run in the absence of trigger signals. The square-wave output from the Schmitt trigger, IC602, is coupled via C615 into the peak detector diodes, D606 and D607, to generate a positive-going signal into the negative input of 1 C 601 c , driving its output negative. In the absence of such trigger signals for a period determined by

TR513 and TR514. The collector output of this stage drives the X deflection plates of the c.r.t. The gain introduced by TR 509/TR 511 is defined in the $\times 5$ magnification mode by the input resistance, R539, and the feedback resistance, R552, with the preset, R553. In this mode the transistor switch, TR512, is biased off. However in normal xl magnification mode, S507 is open and the current in R548 turns on TR512, introducing R544 with preset R551 as additional feedback to reduce the gain of the amplifier accordingly.

The X shift control, R501, introduces an additional bias input via R541 into the input of the shunt feedback amplifier.

POWER SUPPLY AND C.R.T. CIRCUITRY

The circuit diagram of the c.r.t. and power supplies section of a straightforward oscilloscope, the Scopex 4S6 is shown in Fig. 20. All the supplies are derived from a mains transformer with an untapped primary, providing operation from 210 to 250 V a.c., $48-60 \mathrm{~Hz}$. The 6.3 V secondary winding that supplies the c.r.t. heater is insulated to withstand the full -1.4 kV e.h.t. voltage applied to the c.r.t. cathode/grid circuit. All the d.c. supplies are derived from a single-tapped secondary winding; as is usually the case in inexpensive scopes, they are not stabilised. This will cause the deflection sensitivity of the c.r.t. to vary with mains voltage, but the design of the Y amplifier is such that its gain varies with mains voltage in the inverse sense, maintaining the overall gain constant at the calibrated value.

Fig. 20. Power-supply and c.r.t. circuit of Scopex $\mathbf{4 S 6}$ oscilloscope (courtesy Scopex Instruments Ltd.)

C618 with R627 and R626, the output of IC601c goes positive. When TR 502 turns off at the end of the hold-off period, D509 conducts to turn on TR 504, driving the set output low to initiate another sweep. This free-run condition is removed as soon as lC601c detects an output from the Schmitt trigger. It can be inhibited also with a positive bias via R625 if the BRIGHTLINE OFF switch S501 is operated.

The X output amplifier is formed by the shunt feedback stage of TR509/TR511 driving single-sided into the amplifier stage,

Intensity, focus and astigmatism controls are provided, the first two being mounted on the front panel. However, once set up during production test, the astigmatism control will need readjustment rarely if ever, so this control is a preset potentiometer mounted internally.

Diagrams in this series have been taken from the book and do not therefore conform with normal style for PE.

Apple II

The worlds best selling computer - sophisticated and versatile to solve your problems

DOS 3.3 - Operating Systems
UOS 3.3 is the handy housekeeper developed by Apple to help you take full advantage of your Disk 11 Floppy Disk subsystem. DOS automatically keeps track of files, saves and retrieves information on a diskette, and performs a variety of other 'housekeeping' chores. It dynamically allocates diskette space in a manner that's totally transparent to you, yet maximises diskette copacity (20% more than previous versions of DOS). DOS stands for Disk Operating System; 3.3 is the version update number.

Price	Nett	Vot	Total
	39.00	5.85	44.85
DOS 3.3 Toolkit	39.00	5.85	44.85

Double Vision 80 Column Card

Double Vision is a Video Interface designed specifically for the Apple II Plus computer with the capobility of displaying 24 LINES of 80 COLUMN data on a'CRT screen. With the software provided it has the capability of working with Integer BASIC, APPLESOFT BASIC and PASCAL.

Price	Nett	Vot	Total
Soltware to converf to Pascal	162.00	24.30	186.30

Alf Music Synthesizer Cards

ALF music synthesizers enable you easily to create music on your Apple. Quite simply, you con slot an ALF music synthesizer card into the back of an Apple Computer and before long you will be writing and playing back your own synthesized music. Cables are supplied for connection to a stereo amplifier.
Music is entered note by note from a music sheet on to the high resolution display monitor using the games paddles (one paddle controls the type of note, the other paddle controls the position).

There are two versions of the ALF music cord:
MC16: ALF music and 3 channel. This has an 8 octove range and an accuracy of over 98%. Up to 3 cards can be linked together.
MC1: ALF music card, 9 channel. A less sophisticated version with a 6 octove range.

Pr	Nett	Vat	Total
ALF Music Cord 9 Voice	91.00	13.65	104.65
AlF Music Cord 3 Voice	114.00	17.10	131.10
Timing Mode Input Boord	14.00	2.10	16.10
ALF Music Album 1 for MC16	12.00	1.80	13.80
ALF Music Album 2 for MC16	12.00	1.80	13.80
ALF Music Album 0 (Xmos) for MCl 6	12.00	1.80	13.80
ALF Ear Troining Disc INTG MC16	28.00	4.20	32.20
ALF Eor Training Disc A/Soh MCl6	28.00	4.20	32.20
ALF Process Series for MCI, MCl6	28.00	4.20	32.20
AlF Music Album A for MCl	12.00	1.80	13.80
ALF Music Album B for MCl	12.00	1.80	13.80
ALF Music Album C for MCl	12.00	1.80	13.80

Apple Cards

Parallel Printer Interface

The Parallel Printer intertace Cards ore available to allow the use of parallel printers with your APPLE computer.

Price	Nett	Vat	Total
Porallel	104.00	15.60	119.60
Centronics	130.00	19.50	149.50

Communications Interface Card

The Communications Interface Card is available separately to allow you to connect your APPLE to modems, CRT terminals, and other devices employing a serial RS-232C interface. The card's builtin intelligence lets you control these devices easily, in BASIC.

Price	Nett	Vot	Total
	130.00	19.50	149.50

Apple Eurocolour Card
This card has a composite video (PAL) colour output that will work with European Video Monitors. Facility for modulator to be attached to allow you to use almost any European TV by just plugging the lead from the Apple into your aerial socket. The Apple gives 16 colours in L.R. Graphics and 6 colours in H.R. Graphics.

Price	Nett	Vat	Total
	113.00	16.95	129.95
UHF Modulator	14.00	2.10	16.10

High Speed Serial Interface
The Serial Interface Card allows an APPLE computer to exchange data with computers, printers, and other devices in serial format (one bit at a time). It is intended for use (in place of the Communications Interfoce Card) in applications that:

- Use data rates other than 110 or 300 baud (10 or 30 char/sec) - Involve serial printers that don't require "handshake"

Price	Nett	Vat	Total
	113.00	16.95	129.95

Hobby/Prototyping Card

Crecte your own APPLE interface boards with this wire wrap card. The $2^{3 / 4} /^{\prime \prime} \times 7^{\prime \prime}$ double sided circuit board includes a hole pattern (on 100 -mil centres) that accepts all conventional $I C_{s}$ and passive components. it plugs directly into an Apple expansion connector, and fits entirely within the computer case. Supplied with complete bus documentation to cid the interface designer.

Price	Nett	Vat	Total
	15.00	2.25	17.25

Books

Apple documentation is as good as you can get. Extra copies of the manuals are available for when the system has a number of users or enable prospective purchasers to fully understand the product.

	Price
Apple II Reference Manual	11.00
6502 Hardware Manual	9.00
6502 Software Manual	9.00
Apple II Basic Program Manual	6.00
Applesoft II Reference Manual	6.00
DOS 3.2 Manual	6.00
Pascal Reference Manual	8.50
Apple II Basic Tutarial Manual	6.00
Autostar ROM Manual	4.50
DOS 3.3 Manua!	4.80

Note:-
There is no VAT on books
Add $£ 1$ post and packing on orders for less than $£ 10$
The Microsoft Z80 Softcard for Apple II
Plug the new Microsoft $\mathbf{Z 8 0}$ Softcard into your Apple !1 and start using all of the system and application software written for $\mathbf{Z 8 0}$ based computers.

Price	Nett	Vat	Total
	170.00	25.50	195.50

Other Prices

	Nett	Vat	Total
Apple Logo Ties	6.00	0.90	6.90
Applesoft Firmware Card			
\quad - for integer Apples	116.00	17.40	133.40
Integer Card			
- for Applesoft Apples	116.00	17.40	133.40
Programmers Aid 1	27.00	4.05	31.05
Auto Start ROM Pack	38.00	5.70	43.70
Apple Juice bock up power supply	157.00	23.55	180.55
Disk Controller Card (DOS 3.2)	45.00	6.75	51.75
Apple Numeric Keypod	85.00	12.75	97.75
Vero Prototyping Board for Apple	9.95	1.49	11.44

Apple II

The worlds best selling computer - sophisticated and versatile to solve your problems

Why you should buy an Apple Microcomputer

- The most flexible and versatile micro available, it is easier to get
it to do what you want it to do.
- The worlds best selling computer, which means there is a lot of
- Quality and reliability. The Apple is very well made and the
documentation is second to none.
- Easy to use. First time users are always surprised by how friendly the Apple is.
- Proven. There are many thousands of Apples in use doing virtually any job a computer can do. The Apple has a fabulous reputation.
Why you should buy your Apple from Microdigital
- Every system is thoroughly tested by our engineers before despatch.
- Three years Apple experience.
- Quantity discounts available on orders for 5 or more systems.
- Two year parts and labour guarantee on Apple products.
- Free delivery by Securicor
- 30 days credit on bona fide official orders from commercial or government organisations.
- We have the resources of the Ladbroke Group behind us. We will be there when you need us most.
Microdigital supply a 48 k machine for the price of a 16 k machine, we supply a Black and White modulator free and give free delivery

Price	Nett	Vot	Totol
Apple I Computer 48k	695.00	104.25	799.25

All Apples supplied by us are legitimately imported and are genuine 230V Europlus models.

Apple Disk II Floppy Disk Subsystem

The Apple Disk II Floppy Disk Subsystem increases the capability of your Apple Computer System through the use of flexible, or 'floppy', disks for data storage. Expanded memory capacity, greater data retrieval speed, and random access to your stored data - all of these, and more, are made available through the Disk II Subsystem. Whether you use your Apple with a Disk II in business to control inventory, or at home for household management, you'll find that i's the superior answer to your data storage needs.

The latest DOS 3.316 sector disk drive with controller, which replaces the old model

Price	Nett	Vat	Total
	383.00	57.45	440.45

Second disk drive uses same controller as first drive.			
Price	Nett	Vat	Total
	299.00	44.85	343.85

Language System (PASCAL)

This package includes the Language Card, which allows APPLE users to take immediate advantage of the powerful PASCAL language as well as the Integer and Applesoff BASIC interpreters. The Lanuage Card's 16 K bytes of RAM memory electrically replace the ROM firmware built into each APPLE. Upon start-up this RAM memory is automatically loaded from disk with the user's choice of languages then electrically protected from change.

Price	Nett	Vat	Total
	299.00	44.85	345.85

Apple Fortran

Apple FORTRAN operates in the Apple Pascal Language system offering the same comprehensive soffware development environment provided to our Pascal programmers. The Editor, Linker, Filer and Assembler can all be used with the Apple FORTRAN compiler, which, like Pascal, produces 'P' code.

Price	Nett	Vat	Total
	120.00	18.00	138.00

[^4]Free delivery within mainlond UK on orders over $£ 10$

Apple Pilot

Apple Pilot is a powerful, easy to use system designed to support program development for Computer-Assisted-Instruction (CAI). If you're familiar with the PILOT language, you'll quickly become proficient in developing Apple PILOT courseware - and at a fraction of the cost of most other systems.

Price	Nett	Vai	Total
	76.00	11.40	87.40

Graphics Tablet

The Graphics Tablet is an image input device that allows the user to enter pictorial information directly (by sketching or tracing).

Price	Nett	Vat	Total
	462.00	69.30	531.30

Carrying Case

The Apple is truly portable and this padded vinyl, leather look case protects your Apple in transit and makes it easier to carry.

Price	Net	Vat	Total
	16.00	2.40	18.40
Dustcover	9.95	1.49	11.44

Silentype Printer

The silentype allows printing of high resolution graphics at 60 dots per inch, at 40 upper/lower case characters per second and 80 characters per line. The Silentype eliminates the loading or writing of a programme to print a screen configuration, because you can dump any high-resolution screen directly to the printer.

Price	Nett	Vat	Toral
10 rolls thermal paper for Silentype	349.00	52.35	401.35
Dustcover for Silentype	9.95	4.20	32.20

Appletel

The Appletel package provides the means to bring the Apple II computer and the Prestel service together.

Price	Nett	Vat	Total
	595.00	89.25	684.25

Apple II

The worlds best selling computer - sophisticated and versatile to solve your problems California Computer Systems
 Model 7712A Synchronous Serial Board
 Far high-speed interface communicatians.

Model 7114A 12K ROM/PROM Module

Capable of accepting operaing systems, system patches or other firmware in 12 K increments of mixed ROM or PROM. This module allows you to replace your computer's firmware without physically removing the Apple || ROMs.

Price	Nett	Vat	Total
	70.00	10.50	80.50

Model 7440A Programmable Timer

Now, you con time events in four operating modes: (1) continuous, (2) single shot, (3) frequency comparison, and (4) pulse widh comparison. With the Programmable Timer, you have a peripheral that can be used for anything from cooking eggs or playing games, to industrial uses all on one unit.

Price	Nett	Vat	Total
	106.00	15.90	121.90

Model 7470A 33/4 Digit BCD Analog to

Digital Converter

With this module your computer will convert $D C$ voliages to $B C D$ numbers for monitoring and analysis. Now you can save money on your energy bills by monitoring your thermostat or use your computer as a digital voltmeter

Price	Nett	Vat	Total
	99.00	14.85	113.85

Model 7811 A Arithmetic Processor

The 7811 A Arithmetic Processor is a Hardware floating point unit that will significantly improve the execution speed of your Apple II programs. Eight functions are available using the USR(X) command: $\operatorname{ARCSIN}(X), \operatorname{LOGIO}(X), \operatorname{PI}, \operatorname{INVERSE}(X), \operatorname{SINH}(X), \operatorname{COSH}(X)$ and TANH (X).

Price	Nett	Vat	Total
	265.00	39.75	304.75

Model 7490A IEEE Card

This card allows even more accessories such as X, Y Plotters to be interfaced with the Apple.

The 7490A General Purpose Instrument Bus Interface implements the Controller/Talker/Listener functions of the IEEE Standard 488 1978. With the 7490A GPIB interface your Apple II becomes a flexible tool for controlling large test systems or a single GPIB instrument for automated testing and measurement. When used as a talker/listener the Apple II may act as a peripheral device to another controller such as a colour graphics outpul device.

Price	Nett	Vat	Total
	199.00	29.85	228.85

Model 7720A Parallel Interface
With the 7720A Parallel Interface Card you will have a powerful accessory unit for the Apple II computer that can transfer data at high speed to your printer, paper tape equipment, another computer, or even control special external devices (such as low current relays, or other on/ off devices through two bi-directional 8 -bit buses).

Price	Nett	Vot	Total
	79.00	11.85	90.85

Model 7728A Centronics Printer
Interface Board, tor Centronics type parallel printers.

Price	Nell	Vat	Total
	79.00	11.85	90.85

Model 7424A Calendar/Clock Board
12 or 24 hour formats, adiusts Feb. to 29 days for leap years.

Price	Nett	Vat	Total
	83.00	12.45	95.45

Model 77104 Asynchronous Serial Board
For paper-tape reader, keyboard, VDU, printer, etc. Baud rates selectable from 50 to 19.2 K baud.

Price	Nett	Vat	Total
	119.00	17.85	136.85

Interactive Structures
 D 109 Digital Interface

The D109 is a single card for Apple II which provides a complete digital interface system. It can be used as a 32 line parallel interface with each line functioning as either inpul or output. A current drive option is available which allows output lines to sink up to 300 ma .
The system includes four independent 16 - bit interval timers which con be used to count events, generate precise square waves and pulses or provide a programmable clock. By cascading tirners, intervals up to 17 years may be timed. Two 8 bit shift registers are included to provide serial- to parallel conversion on input, or parollel. to-serial conversion on output, the necessary components for construction of a serial communication link.

Price	Nett	Vat	Total
	213.00	31.95	244.95

AO-03

The A0-03 Anolog Output System provides the capability to use the Apple II microcomputer to control processes common in scientific, industrial and home applications. An A0-03 output may be used for example, to adjust the brightness of a light bulb, to vary the speed of a motor, or to move a loudspeaker cone and produce sound. Anything you might consider adjusting by furning a knob can be odjusted instead by a program using the A0.03. In addition, the AO. 03 operales rapidly enough to do high speed tasks such as producing good quality audio signals for computer music or speech.

Price	Nett	Vat	Total
4 Channe!	180.00	27.00	207.00
8 Channe!	281.00	42.15	323.15

The A 102

The A102 makes the Apple II microcomputer useful in areas requiring real time input of analog information. These include measurement of temperature, pressure, human emorions, light levels, etc. This capability is provided in a 16 channel 8 bit configuration on a simple plug- in card. The A102 opens several significant new application areas including laboratory instrumentation, industrial process control, and hands-on training.

Full engineering support is provided for the A102 by the manufacturer. Application notes are supplied lo explain useful techniques and interfacing hints. Application assistance, custom interfacing and system design services are avalable from the factory.

Price	Nett	Vat	Total
	192.00	28.80	220.80

A1-13 Analog Input System
\star True 12 bit precision giving 204,800:1 or 106 dB span.

* 16 analog input channels selectable from software at speed.
\star High speed 20 microsecond conversion time.
$\star 8$ software selectable voltage ranges
0 to 5 V
0 to IV
0 to 0.5 V
0 to 0.1V
-5 to $+5 v$
$-110+1 V$
-0.5 to +0.5 V -0.1 to +0.1 V
\star Easily used from BASIC and assembly language.
\star External rigger/interrupt facility.
\star Bult in precision reference.

Price	Nett	Vat	Total
	373.00	55.95	428.95

Quantily discounts avalable on request. 12 month guarantee/2 years on Sharp \& Apple.
Free de livery within manland UK on orders aver $£ 10$

Apple II

The worlds best selling computer - sophisticated and versatile to solve your problems

Mountain

Expansion Chassis
Mountain Hardware, Inc.
By popular demand! Eighl more slats for your Apple. Attractive sturdy enclosure. Its awn heavy du'y power supply. Easy to use. Address cards in Expansion Chassis the same way as in your Apple. Only ane additianal cammand ta specify in Apple or in Expansion chassis. Compatable with all Apple peripherals.

Price	Nett	Vat	Total
	362.00	54.30	416.30

MusicSystem

Dig:tal Synthesizer with 16 oscillarors. Stereo output. Polyphanic multi voice chords and note sequences. Additive synthesis of instruments waveforms, envelapes, and amplitudes are fully programmable for each voice ta create instrument definitians and music dynamics. 32 Khz sample rate. Frequency resolution is 0.5 Hz steps. Graphical input of sheet music on high-resolution screen using standard music notation. print out sheet music with graphics printer. Complete software operating system. Graphical music editor using lighı pen (provided), game paddles, or keyboard. Pre-entered music provided for immediate playing and enjoyment. Thorough documentaion and tutorial use's manual.

Price	Nett		Vat	Tatal
	312.00	46.80	358.80	
Spare Disk Pack	24.00	3.60	27.60	
Spare Manual	11.00		11.00	

Romplus (and keyboard filter)
Romplus provides six sockets that accept individually addressable 2 K Eproms. Sophisticaled firmware allows one ar more Eproms to be used simultaneously (for programs longer than 2 K).

The Keyboard Filter is one 2 K Eprom that is supplied with the Romplus. Its features are:-

* Upper and lower case characters allowed, with special graphics characters
* A fant editor, for designing, using your own character sets (i.e. for graphics, animatian and other alphabets)
\star Keyboard Macros, two key-stroke, aulomatic typing of multiple, user defined words or phrases, including BASIC or DOS commands
* Ability to mix text and graphics anywhere on the page

Price	Nett	Vat	Total
	127.89	19.18	147.07

Copyrom

COPYROM may be used with your Mountain Hardware
ROMPlust to expand your disk aperaling environment. Features include:
\star Current number of available sectors on any Integer BASIC or
Applesoft disk
\star An improved Catalog function containing more numeric information for each file entry in decimal or hex
\star Copy the contents of an entire disk using only one disk drive

* Operation in immediate mode or under program control
\star Print directory contents in upper/lower case to an external printer, include cantrol characters 'hidden' in file names when displaying catalog information on the screen.

Price	Nett	Vat	Total
	30.00	4.50	34.50

Mountain Hardware Clock/Calendar Card

This plug-in card provides a 388 day calendar and clock with resolution to 1/1000 second. The clock is crystal controlled to yieid 0.001% accuracy. A built-in rechargeable battery keeps the clock on time for up to four days without system power, and external batteries may be used tor long periods. Interrupt capability simplifies control applications. Supplied with complete operating instructions and rechargeable battery.

Price	Neit	Vat	Total
	168.00	25.20	193.20

Quontity discounts avaitable on request 12 month guarantee/2 years an Sharp $\&$ Apple.

Supertalker SD200

Input/Output Speech digitizer, permits talking programs. This $1 / O$ capability allows interactive teaching programs and speech-prompted data input formats. Use output for speech directed activities in business systems, announcements in a control-riam, or sound effects in entertainment programs. Easy to use because input as well as output is under cantrol with special software operating system.

Price	Nett	Vat	Total
	179.55	26.93	206.48

Romwriter

Hardware:

- Programs 2716 EPROMs - 5V, 2K.
- Zero insertion force sacket. (Z|F). Mechanical lever opens up pin holders ta drop in an EPROM.
- Camplete 2716 programmed in under 2 minutes (50 msec/byte).

Price	Nett	Vat	Total
	106.05	15.91	121.96

A/D + D/A Interface
Commercial, scientitic, and industrial data acquistion and control functions are now practical with Mountain Hardware's A/D + D/A. card. Superfast conversation lime permits high frequency and other applications not possible with slower cards.
$A D+D / A$ features

- Single PC card - qus conversation time
- 16 channels digital to analog output
- 8 bit resolution
- 16 channels analog ta digital input

Price	Nelt	Vat	Total
	196.00	29.40	225.40

Heuristics

Heuristics Speech Link H-2000
This is an inexpensive easy-to- use voice data input device for the Apple computer. With Speechlink you can enter data with your Apple and control your Apple or equipment (peripherals) attached to it using your vaice.

Price	Neft	Vat	Total
	168.00	25.20	193.20

Model 70 controller

Provides four relay contact closure outputs on a card which plugs into an Apple II peripheral slot and which is completely controlled by POKE statements in Apple || BASIC. The unit is recommended for use with Heuristics SpeechLab and SpeechLink vore data and control input cards for the Apple II, but may be used with any Apple in any application. More than one Model 70 may be used.

Price	Nett	Vat	Total
	57.00	8.55	65.55

Heuristics Speech Lab

A voice input device consisting of microphone and interface card The Apple may be trained to recognise a vocobulary of up to 32 words.

Price	Nett	Vat	Total
	122.00	18.30	140.30

Hewlett-Packard HP-85

Hewlett-Packard brings personal computing power to the busy professional

All the computing power needed by the busy professional - processor, keyboard, video display, printer, mass storage and operating system, packed into a single unit no larger than an electric typewriter. This is the way HP-85 offers the personal computing capability, convenience, reliability and power needed by today's scientist, engineer or business professional.
Extended BASIC for power and simplicity
The enhanced BASIC language contained in the HP-85's 32 K ROM provides more than 150 commands and statements that give you the power to solve problems

Alphanumeric/graphics display simplifies operation

HP-85's video display allows you to operate in alphanumerics or graphics, then switch from one to the other.
In alphanumeric mode you can display programs, data, error messages, syslem commands and results. You can see 16 lines at a time or use the scrolling key to review 64 lines, up or down, from display memory
In graphics mode, you can display graphics information separately. The 256×192 dot resolution screen provides clear, legible images and curved lines.

Thermal printer provides crisp hard copy

 and graphicsA quiet bi-directional thermal printer integrated into the HP-85 provides excellent print quality with adjustable intensity

At a speed of two 32 character lines per second, the HP- 85 printer provides fast hard copies of the graphics or alphanumeric contents of the display, outputs from programs or program listings. When displayed graphics are printed, information is oriented to allow stripcharting and continuous graphs.

Standard typewriter keyboard and numeric pad

The typewriter section of the HP. 85 keyboard has a full 128 character set with the English alphabet, punctuation marks, European and Scandinavian characters, key Greek letters, mathematical operators and symbols. All charocters may be underlined for emphasis to give a total of 256 characters.

High quality permanent digital storage

Magnetic tape cartridges supply the HP. 85 with high quality digital storage. These high density, large capacity cartridges may be used for temporary or archival storage of data and programs.

Memory can be doubled quickly and easily

When you wish to write and run very long programs, or handle large data requirements, you can double the memory capacity of the HP. 85 with an optional 16 K Memory Module.

Enhancement ROMs extend the power of your HP-85

Enhancement ROMs allow you to increase the range and efficiency of your HP 85 by adding new functions and peripherals.

These enhancements are added quickly by placing a ROM module into the ROM drawer and inserting it into one of the $1 / O$ ports of the HP-85. The ROMs interface directly with the HP-85 to provide completely new commands and capabilities to complement those existing in the machine.

Matrix ROM

The HP. 85 Matrix ROM provides matrix input and output, facilifates matrix mathematics with matrix operators, simple matrix manipulation, matrix inversions and linear systems solutions. It provides a powerful set of statements and functions for working with arrays - both matrices (two-dimensional arrays) and vectors (one-dimensional arrays) with more convenience, speed and accuracy than with the HP. 85 alone.

Mass Storage ROM

The HP. 85 Mass storage ROM allows you lo interface your HP-85 with the HP 82900 Series Flexible Disc Drives or the HP 9895A Flexible Disc dive.

Plotter/Printer ROM

The HP-85 Plotter/Printer ROM adds powerful new plotting commands and provides graphic input capability for digitizing. It enables the HP- 85 to inle-face with Hewlett-Packard's high resolution ploters and full width line printers. It also includes several graphics enhancements.

I/O ROM

The enhanced BASIC language of the HP-85 may be enriched with straight-forward I/O commands through the HP-85 I/O ROM. Any I/O system requires program stalements or subroutines ("1/O drivers") to pass data and commands among instruments. These can be complex and usually differ for each device. These language enhancements are provided by the HP-85 I/O ROM so that the programmer needs use only a few standard BASIC commands. Statements are provided to configure, control, pass data to and from, and check the status of devices in the $1 / O$ system.

Interface modules allow easy connection to peripherals
 Five plug-in intertace modules (HP-IB, RS -232 C serial interface, GP.

 IO, BCD and Centronics) connect your HP-85 to a full line of peripherals for handing data file management, full-width printouts, special plotting assignments, etc.The HP-IB Interface, for example, is the industry standard IEEE-488 Interface which allows the connection of instruments and peripherals with equal ease. It permits bi. directional, asynchronous communication with a wide variety of instruments and peripherals, up to 14 per interface. The complexity of the interfacing task is handled by the microprocessor-based interface card, so the user can concentrate on using the instrument instead of how to hook it up.

With the HP IB , peripherals such as the HP 82900 Series Flexible Disc Drives, HP 9895 A Flexible Disc Drive System, HP 2631 B Impact Printer and HP 7225 Graphics Plotter can be added without difficulty. Additional devices require only an industry standard HP - IB cable. And with the appropriate enhancement ROMs, the HP. 85 's simplicity of operation is extended to the peripherals.

HP 7225 Graphics Plotter

Hewlett Packard's HP 7225 Graphics Plotter is a compact and efficient unit that provides a cost-effective solution to the need for poofessional hard copy graphics. It will provide publication quality plots made up of clean, continuous ink lines.

HP 2631 B Impact Printer

The HP 2631 B printer achieves high throughout with a print speed of 180 characters per second, bi-directional printing, suppression of leading and trailing blanks, skipping over embedded blanks and a high-speed carriage return.

Hewlett-Packard HP-85

HP 82900 and HP 9895 Series

Flexible Disc Drives

Hewlett-Packard flexible disc drives provide from 270 K bytes to 4800 K bytes of fast on line storage using removable flexible discs. The 82900 Series uses $13 \mathrm{~cm}\left(51 / 4^{\prime \prime}\right)$ discs, each supplying approximately 270 K bytes of formatted storage. The 9895 Series uses $20 \mathrm{~cm}\left(8^{\prime \prime}\right)$ discs, each of which supplies approximately 1200 K bytes of formatted storage. The disc drives are available as dual (two disc drives) and single (one dise drive) master units and dual and single add- on units. Add-on units must be connected to a master unit which contains the control electronics.

HP-85 Application Pacs provide pre-pre-programmed solutions for a wide variety of disciplines

Information Management Pac
The Information Management Pac gives the Series 80 personal computers a data base management facility for accessing, searching and sorting data. Data base totalling and statistics are included as are report and graphics generation.

These programs speed up and simplify the creation, updating and printing of customer or mailing lists, inventory records, catalogues and other data bases.

Graphics Presentation Pac

The Graphics Presentation Pac is a versatile set of programs that lets the user make four-colour overhead projection ttansparencies or report copies of lext, bar charts, pie charts and line charts. Management reports, customer presentations, sales seminars and so on can all benefit from graphics generated in this way

NEW!

The HP-83, the latest addition to HP's personal computer family, is identical to the HP-85 computer except that it does not have an integrated magnetic tape cartridge drive and integrated thermal orinter.
Price Nett Vat Total

HP-80 Series Mainframes
HP-83 Computer

1210.00	181.50	1391.50
1750.00	262.50	2012.50
158.00	23.70	181.70
25.00	3.75	28.75
78.00	11.70	89.70
78.00	11.70	89.70
159.00	23.85	182.85
78.00	11.70	89.70
159.00	23.85	182.85
213.00	31.95	244.95
213.00	31.95	244.95
nocharge		
nocharge		
267.00	40.05	307.05
267.00	40.05	307.05
150.00	22.50	172.50
39.00	5.85	44.85
39.00	5.85	44.85
42.00	6.30	48.30
48.00	7.20	55.20

Plotter and Accessories
(Requires HP-IB Interface and plotter/printer ROM)
Ploter

1208.00	181.20	1389.20
412.00	61.80	473.80
56.10	8.42	64.52
20.20	3.03	23.23.
119.24	17.89	137.13

$\quad 7 \times$ l 0 in plot area			
100 sheets, Metric grid, (E.F.)	3.79	0.57	4.36
$18 \times 25 \mathrm{~cm}$ plot area			
50 sheets, blank, (E.F.)	3.79	0.57	4.36
50 sheets, blank, (A4)	1.63	0.24	1.87
4 colour pen pac	1.63	0.24	1.87
5 red pens	3.52	0.53	4.05
5 blue pens	3.52	0.53	4.05
5 green pens	3.52	0.53	4.05
5 black pens	3.52	0.53	4.05
100 transparency films	3.52	0.53	4.05
Transparency solvent	11.92	1.79	13.71
Transparency pens (B,R,B,G)	2.03	0.30	2.33
Transparency pens (B,O,B, $)$	4.61	0.69	5.30
Transparency pens, wide (B,R,B,G)	4.61	0.69	5.30
Transparency pens, wide, (B,O,B,V)*	4.61	0.69	5.30
	4.61	0.69	5.30

Transparency pens, wide, ($B, O, B, V)^{*} \quad 4.610 .695$
$*$ E.F. English format 8.5×11 inches B, R, B, G, black red blue green B, O, B, V, black orange blue violet

Printer and Accessories

(Requires HP-IB Interface and plotter/printer ROM)

Printer (including 2 ribbons)	2141.00	321.15	2462.15
Printer stand	158.00	23.70	181.70
Adds paper rack	29.00	4.35	33.35
Sound/abatement cover	58.00	8.70	13.70
Wire paper basket	29.00	4.35	33.35
Printer ribbon, package of 3	33.66	5.05	38.71
Additional Accessories			
Tape cartridges (pac of 5)	48.06	7.21	55.27
Thermal paper (box of 2 rolls)	18.00	2.70	20.70
Cartridges and manuals holder	6.00	0.90	6.90
HP-83/85 Carrying case	65.00	9.75	74.75
3-ring system literature binder	5.40	0.81	6.21
Dust cover	8.00	1.20	9.20

Manuals
Owners Manual 15.05
V O ROM Manual 18.05
Pocket Guide 3.01
Plotter/Printer ROM Manual 6.02
Matrix ROM Manual 6.02
Mass Storage ROM Manual 6.02
Flexible disc operating manual 6.02
Serial installation manual 6.02
Assembler ROM Manual 11.00
Application Pacs

Basic Iraining	52.00	7.80	59.80
General Stats	52.00	7.80	59.80
Finance	52.00	7.80	59.80
Math	52.00	7.80	59.80
Circuit Analysis	52.00	7.80	59.80
Games	52.00	7.80	59.80
Linear Programming	52.00	7.80	59.80
Text Editing	52.00	7.80	59.80
Wove Form Analysis	52.00	7.80	59.80
Basic Stat and Data	52.00	7.80	59.80
Regression Analysis	52.00	7.80	59.80
Graphis Presentation Pac	108.00	16.20	124.20
Information Management Pac	108.00	16.20	124.20
Visicak Plus	108.00	16.20	124.20

Flexible Disc Units

(Require HP-IB Interface
and Mass Storage ROM)
Dual Master (540 K bytes) (For $51 / 4^{\prime \prime}$ disc) $1350.00 \quad 202.501552 .50$
Dual Add-On (540K bytes) (For $51 / /^{\prime \prime}$ disc) $1185.00 \quad 177.751362 .50$
Single Master (270 K bytes) (For $51 / \mu^{\prime \prime}$ disc) $\quad 810.00 \quad 121.50 \quad 931.50$ Single Add-On (270K bytes) (For $51 / 4^{\prime \prime}$ disc) $\quad 700.00 \quad 105.00805 .00$
Dual Master (2400 K bytes) (For 8 " disc) $3569.00 \quad 535.354104 .35$
Dual Add-On (2400K bytes) (For 8 " disc) $3020.00 \quad 453.003473 .00$
Single Master (1200K bytes) (For $8^{\prime \prime}$ disc) $2608.00 \quad 391.20 \quad 2999.20$
Single Add-On (1200K bytes) (For $8^{\prime \prime}$ disc) $2059.00 \quad 308.852367 .85$
$\begin{array}{llll}\text { Flexible disc 51/4" (Pac of } 10) & 42.00 & 6.30 & 48.30\end{array}$
$\begin{array}{llll}\text { Flexible disc } 8^{\prime \prime}\left(\begin{array}{ll}\text { Pac of } & 10)\end{array} \quad 60.19\right. & 9.03 & 69.22\end{array}$

Sharp PC 3201 Desk Top Computer System ${ }^{\text {t }}$, Bona fide official orders welcome
 - Control Accounts (Nominal Controls plus 94 Sales Revenue Heads)
 - Non-Buying Customers
 - Sales Ledger Listing/Transactions Listing
 - Aphabetic Listing of Accounts
 - Full screen interrogation of Account details.

a micro with the power to run a business system properly

This is the machine all the others will have to beat with a fabulous list of features

Future Enhancements

8 inch Floppy disks - 1 Megabyte capacity (available Summer 81)
RS 232C Interface - available Summer 81
General Purpose I/O Card - available Autumn 81)

Price	NeHt	Vat	Total
PC3201 Computer	1500.00	225.00	1725.00
CE320C Green Video Display	250.00	37.50	287.50
CE332P Dot Matrix Printer	450.00	67.50	517.50
CE331M Twin Disk Unit	670.00	100.50	770.50
CE341M Interface For Disk Unit	125.00	18.75	143.75
Total System Cost	2995.00	449.25	3444.25

The Disk Interface can handle two twin disk drives. The 3203 can be fitted with two interface cards for a maximum of 4 twin disk units. Each twin disk unit added to the above system requires an additional cable.

Price	Nett	Vat	Total
CE350L Additional Cable	30.00	4.50	34.50

The BASIC supplied with the PC3201 is one of the best yet available and makes the writing of powerful business programs much easier. The enhanced arithmetic accuracy makes this machine also ideal for scientific applications.

Business Software

Each Business Application can be run independently of others, yet it will still offer the flexibility of operation as if the system was specially designed with your needs in mind. If you want to link one application with another, then this is simplicity itself. Invoices rased on the Invoicing System can be automatically posted to the Sales Ledger for examole.
As your needs grow then you can be sure there is a
Business Application available to suit.

Sales Ledger System

- Up to 1600 Accounts (this is parameterisable)
- up to 5000 Transactions per month
- Balance Brought Forward System, although cash etc. can be allocated to 4 months aged debts. (When 112K RAM Sharp PC 3201 becomes available then it will be simple to convent to Open Item if required)
- Fully integrates to Sales Invoicing System
- Fully integrates to Nominal Ledger System
- All reports are fange selectable on demand
- All reports can be stopped (interrupted) as and when required with no loss of data
- Press any key on the keyboard and the system will not go wrong

Reports

- Statements (Choice of formats)
- Aged Debts Listing (Choice of formats)
- Comprehensive Audit Trails including Daybook
- V.A.T. Summary Cumulative

Purchase Ledger System
Volumes, systems procedures and reports are the same as for the Sales Ledger System, except they refer to Suppliers rather than Accounts.
There is no need for a 'Non Buying Report' and there is no
integration to Sales Invoicing System.

Price	Nett	Vat	Total
	300.00	45.00	345.00

Sales Invoicing System

- 1500 Products (2000 when 112 K microcomputer is available). Product Code $=6$ characters.
- Access time to products less than $11 / 2$ seconds maximum.
- Free format invoices.
- Create your own products as you are constructing an invoice
- Records all invoice line details against a comprehensive stock file including:
\bigcirc Turnover \bigcirc Cost of Sales \bigcirc Gross Profit information
- Last Movement Dates are recorded

O Unit Gross Profit, Unit Gross Profit \%, Overall Gross Profit \%, Valuation of Free Stock at Selling Price, as well as at Cost Price.

- Changeable invoice format.
- A full Audit Trail
- Takes Name and Address from Sales Ledger System when constructing an Invorce/Credit Note.
- Attractive screen layouts, and easy to follow screen 'prompts' to help end user.
- 15 lines per invoice.
- 10 V.A.T. rates.
- Invoice and Delivery Address.

Pre-printed stationery available for Sales Ledger, Purchase Ledger and Invoicing Systems.

Price	Nett	Vat	Total
	300.00	45.00	345.00

Nominal Ledger System

- 900 Nominal Codes.
- 99 Sub-Analysis Codes e.g. Monthly or Branch Accounting etc
- 5000 Transactions.
- Batch control techniques with comprehensive verification of input.
- Full interrogation via screen.
- Complete Audit Trail.
- Selective reporting by Nominal Codes, Sub Analysis Codes and Final Accounts is available.
- Trial Balance, Profit and Loss and Balance Sheet that all balance and agree.
- Automatic V.A.T. Calculation from Gross Amount.

Price	Nett	Vat	Total
	450.00	67.50	517.50

A stock control program capable of handling up to 4,000 stock items is available free on request to systems purchasers.

Direct Generator

The Direct Generotor is a suite of programs that enables a lay person to generate computer programs.
Programs can be generated tor a wide range of applications e.g. Invoicing, with all the necessary file maintenance and printer output, a stock control system, mailing lists, etc.

Price	Nett	Vat	Total
CE330G Direct Generator	120.00	18.00	138.00

Quanily discounts ovaloble on request 12 monnh gucrantee/2 years on Shorp \& Apple. Free delivery withn manland UK on orders over $£ 10$

Sharp MZ 80K

The quality single unit computer with 48 K RAM

Famed for its quality and reliability the MZ 80K is very competifively priced.
Notable features of the basic unit are the built in 3 Octave Music Synthesiser and the high speed (1200 bps) of the cassette interface. Systems expansion is via an interface unit (M Z $80 / / \mathrm{O}$) into which are connected the printer, the dual disk drive, the second dual disk drive and the universal interface card.

The basic unit comes with a 14 K BASIC interpreter and the disk drives come with an enhanced disk version of this. Alternatively xtal BASIC can be used with the computer and the industry standard CP/M disk operating system is available for disk based systems.
Ledgers and stock control software are available free when full systems are purchased.

Prices	Nett				Vat	Total
MZ 8 OK Computer 48K RAM	499.00	74.85	573.85			
MZ 80 VO Interface Unit	82.00	72.30	94.30			
MZ 80 FD Dual Disk Drive	630.00	94.50	724.50			
MZ 80 FDK Dual Add-on Drives	565.00	84.75	649.75			
MZ 80 P3 Printer	415.00	62.25	477.25			
MZ 80 VO- U Universal						
Interface Card	40.00	6.00	46.00			
MZ 80 TV Assembler	36.00	5.40	41.40			
MZ 80 T20C Machine Language	18.00	2.70	20.70			
XTAL BASIC	40.00	6.00	46.00			
CP/M Disk Operating System	200.00	30.00	230.00			

A Genuine advance in technology $£ 82$ + VAT

Now available CE122 Printer/

Our Low Prices	Nett	Vat	Total
PC1211 Pocket Computer	82.00	12.30	94.30
CE121 Cassette Interface	12.00	1.80	13.80
CE122Printer/Cassette interface	55.00	8.25	63.25

- Uses the BASIC programming language.
- Approximately $2 K$ of user RAM
- Program retained when computer turned off. Cassette interface (CE-121) available for storing programs and data - with file names.
- Built in beeper, with Beep function in BASIC.
- Supplied with a thick manual full of application programs.

SHARP

Features

- 100 hours battery life using Alkaline manganese batteries.
- Compact size $175 \times 70 \times 15 \mathrm{~mm}$ and light weight 170 g .
- FU\|l QWERTY keyboard with numeric pad.
- Alphanumeric dot matrix liquid crystal display scrolls in all four directions.

V. Video Genie

Amazing Value - compatible with TRS80 16 K level 2

Microdigital are the hardware experts - - here's why you should buy your Genie from us. Low Price of $£ 280+$ VAT. Each computer tested by our engineers before despatch. $\star 12$ month parts and labour guarantee. \star Free delivery within mainland U.K. \star Bona fide official orders welcome Latest version of Genie

The Video Genie is a complete computer system, requiring only connection to o domestic 625 line TV set to be fully operational; or if required a video monitor can be connected to provide the best quality display

The system case contains the Central Processor Unit (CPU), 16,000 bytes RAM memory, the cassette system, a 12,000 byte operating system and BASIC interpreter in ROM, and a full size keyboard, in a stylish case, at a price that makes the Video Genie better value than some "kit" computers.

Applications

The Video Genie System has many uses in all spheres of life, the easy to use BASIC language means that programs are easily written for specific applications, and pre-recorded program tapes are available in great variety.

In a school or college the machine can be used with a large screen TV to allow a whole class to be taught at once.

Expansion

1. The EG3013 EXPANDER (expansion unit)
is designed to upgrade your VIDEO GENIE SYSTEM, from a personal computer to a powerful microcomputer system, in the most flexible and inexpensive way. All resident interfaces are fully buffered to ensure reliability.

2. Mass Storage and Fast Access

The Disk Controller Interface can handle up to 4 sets of mini-Floppy disk drives (compatible types as Shugart SA-400 and Pertec FD-200). Storage options: i) Single side, single/double track density 35/40/77 tracks.
ii) Double side drives can also be used provided their side select signals are modified. If using double side, the Disk Interface can only handle 2 drives instead of 4
Disk Operating System options: TRSDOS; NEWDOS;
MICRODOS; VTOS.

3. Communications

The RS-232-C Interface (optional) can be connected to telephone, modem or other form of carrier to provide data cammunication capabilities. Besides communications, it can also be used to operate RS-232-C standard serial printers.

4. Memory Expansion

Memory capacity can be expanded from the basic 16 K to $32 \mathrm{~K} / 48 \mathrm{~K}$ by insertion of RAM CARD (not inclusive in the EG3013 EXPANDER package), into either one of the two remaining $\mathrm{S}-100$ slots.

5. 5-100 Bus Expansion

Optional S-100 Bus standard cards (such as controller cards) can be plugged into either one of the two remaining S-100 slots for further system expansion.

Prices	NeHt	Vat	Total
Video Genie Computer	280.00	42.00	322.00
EG3013 Expander with RS232	215.00	32.25	247.25
EG3013 Expander without RS232	185.00	27.75	212.75
32 K Memory Board S100	130.00	19.50	149.50
16K Memory Board S100	95.00	14.25	109.25
Single Disk Drive	215.00	32.25	247.25
Dual Disk Drive	410.00	61.50	471.50
2 Drive Cable	17.00	2.55	19.55
4 Drive Cable	32.00	4.80	36.80
Printer Cable	17.00	2.55	19.55
Centronics Parallel Interface			
\quad for unexpanded Genie	33.00	4.95	37.95
Sound kit	10.00	1.50	11.50
\quad fitting above	5.00	0.75	5.75
Lower case kit	35.00	5.25	40.25
\quad fitting above	5.00	0.75	5.75

Books

Microdigital offer a good selection of books to help you get the best from your Genie or TRS 80. There is no VAT on books, but $£ 1$ for post and packing should be added to orders for less than $£ 10$.

Learning Level II BASIC by David Lien

This is the second excellent book by CompuSoft Publishing in California. No Genie or TRS 80 owner can afford to miss this one.
Introduction to T-Bug by D. \& K. Inman
The only book which describes in detail the machine language monitor operations of the TRS 80 or Genie. Introduction to TRS 80 Graphics by D. Inman
For some time now, graphic displays on microcomputers have been out of the reach of hobbyists because of their complexity and high cost. in this book the author will show you how, with a minimal knowledge of the BASIC computer language and your Genie or TRS 80 computer, you can create graphic displays that only a few years ago were the exclusive turf of the big computer owners. The book begins with the basics and works from line drawings through geometrics and right on up to moving figure animation and more advanced operations. A great handbook on computer graphics for microcomputer owners at all levels of experience
Microsoft" BASIC by Knecht
A tell it all book for Genie and TRS 80 users. It presents an introduction and tutorial on programming in MICROSOFT BASIC. The concepts presented are illustrated with examples that actually run. By starting with the simplest and mast commonly used commands and then progressing onto the more complex instructions, the author illustrates how the more powerful versions of the BASIC language can save time and effort.
TRS 80 Disk and Other Mysteries
A straight-forward presentation on disk organisation and file management and hints on how to deal with some disk problems.
TRS 80 BASIC - A Self Teaching Guide by Albrecht/Inman/Zamora
A step by step guide for all Level II TRS 80 and Genie owners. Although geared towards the beginner, it contains a wealth of information for more advanced programmers.
Video Genie System Service Manual
This manual is written for servicing technicians and people who are interested in modifying the machine to suit their particular applications. Readers are assumed to have a basic background on digital electronics and microprocessors.
The easy way to programming in BASIC using the Video Genie System by John and Judy Deane

* How to program graphics. How to load and run
programs. $\star 40$ sample programs. \star Full explanation of BASIC error messages. Ideal for beginners.

Apple Software

CCA DATA MANAGEMENT (48K APPLE, Disk)

This system, developed by Personal Soltware, stores and retrieves information. It is very simple to learn and use, and at the same time provides real data processing capabilities for you and your Apple. Allows you to prepare and access files for your mailing list, customer lists, expense reporting, budget analysis or any report you need.

Price	Nett	Vat	Total
	75.00	11.25	86.25

DESK TOP PLANNER (48K APPLE, Disk)

A unique financial planning and forecasting system that is driven by a simple menu system. Allows you to create business models or sub models and build up consolidated summaries if you have individual branches or cost centres.

Price	Nett	Vat	Total
	75.00	11.25	86.25

VISICALC (32K APPLE, Disk)

Visicalc provides an electronic worksheet of up to 63 columns and 254 rows

Price	Nett	Vat	Total
	85.00	12.75	97.75

VisiList

Lists out the grid locotion and formulas of any VisiColc file.

Price	Nett	Vat	Total
	10.95	1.64	12.59

Apple Plof

A useful addition to VisiCale and Desktop/Plan systems which enobles results to be plotted quickly and accurately. Multiple sets of data con be compared on the same report and displayed on the screen, in colour, or a hard copy generated for reports, files etc.

Price	Nett	Vot	Total
	37.00	5.55	42.55

Maths Sequences (Milliken)

A comprehensive sottware curriculum in mathemotics for children oge 5-10. Topics covered ronge from simple arithmetic through to laws of orithmetic and negative numbers. Instruction is completely individualised based on eoch student's needs and abilities. The programs are success orientoted and allow the student to work at his own pace towards set objectives. As well as all this each student's progress is monitored thus allowing the teacher to review the progress of all students in a matter of minutes.

Price	Nett	Vat	Total
	200.00	30.00	230.00

I.F.O. - Information File Organiser

This easy-to-use Dato Base Manogement System allows the user to quickly create o data base and then extract information from it. Extracted informotion con be printed out in up to 10 user defined report formats on screen or printer

Price	Nett	Vat	Totol
	105.00	15.75	120.75

Video Message

The Video Message display systems turns the Apple into an electronic bulletin board. A simple set of commonds allows the user to creote 'slides' containing text and colour graphics.

Price	Nett	Vat	Total
	150.00	22.50	172.50

First VISICALC,
 now another great for the Apple

MicroModetler is the first decision support system to run on a microcomputer. This is mode possible through the powerful Apple microcomputer with the Micromodeller program. The progrom will seem fomiliar to existing users of the more populor time shoring programs, such as TABOL, FCS, PROSPER, SIMSTRAT, FORESIGHT, etc. It offers all the benefits of these programs at a fraction of the cost.

For more information please ring.

Price	Nett	Vat	Total
MicroModeller	425.00	63.75	488.75

The latest in Apple games

Apple Bowl
An enrertaning 3 -dimensional 10 pin bowling game. You control curve and speed. Requires integer basic and paddles.

Price	Nett	Vat	Toral
	9.00	1.35	10.35

Apple Adventure
Surely the best adventure game available for Aople. Very hard to win, excellent graphics. Requires Applesoft Basic.

Price	Nett	Vat	Toral
	21.00	3.15	24.15

Stellar Invaders

Another one in the 'Invaders' series. Realistic graphics and sound effects. You can control you base with either the keyboard or poddles. Requires Applesoft Basic.

Price	Nett	Vat	Total
	13.00	1.95	14.95
Tranquility Base	Nett	Vat	Totol
	13.95	2.09	16.04
Bloody Murder	Nett	Vat	Totol
Like play with knives? (Integer) Disk.	9.95	1.49	11.44
Microleage Baseball	Nett	Vat	Total
	11.95	1.79	13.74
Macro Screen Editor	Nett	Vat	Totol
Cursor orientoted editing tool.	19.95	2.99	22.94
Akalabeth	Nett	Vat	Total
Latest Adventure type game.	16.95	2.54	19.49
Trilogy	Nett	Vat	Tolal
	15.95	2.39	18.34
Tranquility Base	Nett	Vat	Total
	13.95	2.09	16.04
Head-On	Nett	Vat	Total
	13.95	2.09	16.04
Bill Budge's Space Album	Nett	Vat	Total
	20.95	3.14	24.09

NEW GAMES

An air hockey game, so fast it comes with a video synch conneclor.

Retroball	Nett	Vat	Total
	15.95	2.39	18.34
Alien Lander	Neft	Val	Totol
	13.95	2.09	16.04

VARIOUS

New from SIRIUS. Amazing hires graphics scroll bi-directionolly.
Phantom Five Nett Vat Total

STARCRAFT (Tokyo)
The best "Invader" game we've seen bar none. We mean it!
Apple Galaxian Netl Vat Total
Galaxy Wars \quad Nefl Vat Total

Broderbund

Do you like Startrek odventures?
4 Galoctic Soges from Broderbund, provide a level of complexity and sophisticotion not seen before.
Galactic Empire, Trader and Revolution (3 seporate disks)

Price each	Nett	Vat	Total
	13.95	2.09	16.04
Tawala's Last Redoubt	Nett	Vat	Total
	16.95	2.54	19.49

12
 Add $£ 1$ post and packing on orders for less than $£ 10$

 Books

 Books}
sybex
CP/M Handbook - R.Zaks
One of the best selling microbooks of all time, this title is useful on its own or as an addition to the Digital Research documentation
Microprocessors - From Chips to Systems - R.Zaks
The basic text on micros for everyone with a technical or scientific background. This book teaches all the fundamentals of microprocessors step by step.
Micros-Interfacing Techniques-Zaks and Lesea
This comprehensive book introduces the basic interfacing concepts and techniques, then presents the implementation detail's from hardware to software.

Programming the 6502-R. Zaks

This book is on educotional text designed to teach programming, using the 6502. It does nat require ony prior programming knowledge, yet can be used to odvantage by anyone wishing to tamiliarise himself with the 6502. An invalucble book for owners of the PET, Apple, Kim, etc

Programming the Z-80-R. Zaks
Another in the highly successful Sybex Series by Rodnay Zaks. This book combines the function of a teaching text, that Sybex do so well, with an exlensive reference section. The book is much more than an introduction to the Assembly Language syntax of the Z-80
Z-8000 Programming - R. Mateosian
Entering the field of 16 -bit micros, this book fulfils a dual rale as both on educational text ond a reference manual, and covers machine language progromming from basic concepts to advanced programming techniques.
6502 Applications Book - R. Zaks.
This book presents practical applicotions techniques for the 6502 ronging from a complete home alarm system to on industrial control loop to temperoture control. Also includes analog to digital conversion and simple peripherals from paper tape reader to micro printer
6502 Games - Zaks
A book of ten gomes which will teach you assembly language, algorithm design and dara structures in a straight forward and enjoyable manner. Your First Computer - R. Zaks
This book explains what a computer sysiem is, how it works, and haw to
seleci the various components and peripheral units. Essential reoding for a would be computer user.

OTHER BOOKS

The BASIC Handbook by David Lien
This is a machine independent reference text for the BASIC complers on most personal computers. It also shows the syntax for the new ANSI standard BASIC. It is the only book of its kind in print at present.
Illustrating Basic - a simple programming language by \mathbf{D}.

Alcock

One of the best selling books on BASIC, it's clear explanations, attention to details, style, wit and humour heve won it widespread acclaim
Practical Microcomputer Programming

The 6502 - Weller

This book examines the detailed assembly level programming characteristics of the 6502 microprocessor and includes appendices giving an assembly lisling of the assembly program (6502 Resident Assembler), an assembly lisling of Apple 11 input/output subroutines for the assembly computers and assembly listing of the D.Bug program for Apple 11
A very comprehensive reference book.
Advanced BASIC by J. Coan
Develops the readers expertise with BASIC through strings and files to graphing and more important mathematical functions.
The Art of Computer Programming Volume 1 -

Fundamental Algorithms by Knuth

This is the first book in this world wide best selling seres and thought by many as the best books of their rype available. Volume 1 begins with a thorough revew of the mathematical techniques used, although it does not assume mathematics above high school level in the reader. It goes on to review assembly level programming and ends with a 200 page
review of information structures. The book contains numerous exercises.
The Art of Computer Programming Volume 2 -
Semi-Numberical Algorithms by Knuth
The Art of Computer Programming Volume 3 -

Searching and Sorting by Knuth

Using CP/M - A Self Teaching Guide - Femandez/Ashley

CP/M is the most widely used microcomputer operaling system, and this book presents o complete detciled introduction to the use of CP/M for moximum capability ond efficiency - with any hordwore and using ony programming language.

The ZX80 Pocket Book

This is not a book for the complete beginner; it: is intended tor the student, who wishes to develop his or her programming skill, and for the experienced programmer who wants a concise summary of the unique choracteristics of this mochine.

Basic BASIC by J. Coan
One of the most widely sold text books on BASIC. The book uses over 100 example problems to tlustrate the essential techniques of the language.

BASIC Computer Games by David Ahl

The first collection of gomes all in BASIC. Contons both a complete listing ond a somple un of each game along with a descriptive write up. BASIC Primer by Waite and Pardee
This book is exactly what it says it is - on top of this it also includes 7 appendices to help you optimise your code for speed and memory use. Finally, ol the bock is a reterence card which you will keep in your pocket during the rest of your BASIC Progromming career.

Best of Micro - Volume 1

Minast widely read of the specialists ournals. deoling with the 6502 microprocessor os used in the PET, Apple, Aim, OSI, Computhink Minimax, etc. "Best of Micro" is a bound version of the

first six issues.

Best of Micro - Volume 2
this is the bound version of the second six issues of Micro up to mid

1979

Cheap Video Cookbook by D. Lancaster
A complete guide to super low cost alphanumeric and graphic microprocessor bosed video disploys this book picks up where the TV Typewriter Cookbook ended.
CMOS Cookbook by D. Lancaster.
Your complete guide to the understanding and use of Complementary Metol-Oxide-Silicon integrated circuits. Gives usage rules, power supply design examples, applications, bread boarding and coverage of logic. Computer Graphics Primer by M. Waite
Instruction in the methods of producing drawings, plans, maps and schematics on a CRT display. In 3 sections 'Perspectives', 'Basic Concepts', and 'Grophics Programming'
Computer Programs that Work by Lee, Beech and Lee
This book contoins twenty four programs in BASIC in the oreas of biology, mathematics, chemistry and physics and includes simulations of real-life situations and popular games.
Computerisation for the Small Business
by Edward G. Cluff 2nd Edition
A layman's guide to Directors and Senior Line Management. This is a crisp, non-technical guide which covers, the whole business field computer and programming choices; dola preparation; input and retrieval; financing; the secondhand market; maintenance; running costs; and security and privacy. It concludes with a collection of self evaluation surveys for different computer applications.
Computers in Maths - D. Ahl
A fun maths book by the author of BASIC Computer Games - a huge
source book of ideas for using compulers to learn about mathematics
The Howard W. Sams Crash Course in Microcomputers by L. E. Frenzel
Written in a teach yourself formot with study questions, this book provides a solid background in microcomputers quickly and effectively All aspects from fundamentals and operating systems to programming and peripherals.
How to Program Micros by W. Barden Jnr.
Explains assembly language programming of microcomputers based on the 8080,6800 and 6502 microprocessors. Bosic concepts, number systems and operations, computer operation and codes are examined.
Industrial Process Control Systems by Patrick and Fardo
Process control procedures, system concepts, components, industrial applications and study questions in a logical text book.
Introduction to Microcomputers by A. Osbome - Volume 0 The Beginners Book - A. Osborne
If you know nothing about computers this is the book to begin with. It explains what computers are and describes their componenis.
Introduction to Microcomputers by A. Osbome - Volume 1 Basic Concepts - A Osborne
This book describes application techniques common to oll
microprocessors yet specific to none. All the basic hardware and software concepts ore explained simply.

Introduction to Microcomputers by A. Osborne (September 14.90

 1978 Edition) Volume 2 - Some Real Microprocessors This $9^{\prime \prime} \times 7^{\prime \prime}$ loose leaf format book covers every major microprocessor on the market. 4 bit 1016 bit in detail and analyses more than 20 CPUs. Includes new sections on the most recent entries into the microprocesso market. Describes support devices for use with only one microprocessorIntroduction to Microcomputers by a Osborne - Volume 3 Some Real Support Devices - Loose Leaf
A companion volume to Volume 2. This describes the micro support devices which can be used with more than one microprocessor
Osbome Update Series for Volume 2 and Volume 3
Volume 2 Dala on TMSI 000 MK3372/3373 Single Chip Mostek
Volume 2 Dala
Motorola MC6801 Single Chip Synertek SY655 ACIA TMS9902 USART MicroNova 9940 updale Intel 8086 Instruction Set Update Zilog Z8000 2900 Series Chip Slice Products.
Volume 3 Data on:- Static RAM update 2652 Multi Protocol Communications Circuit 2651 Programmable Communications Interface Introduction to Dato Converters Digital to Analog Converters (8/10/12 Bit). Analog to Digital Converters (8/10/12 Bit) Am9511 Arithmetic Processor Introduction to Peripheral Controllers Keyboard Display Controllers Video Controllers Floppy Disc Controllers Motorola EXORciser Bus Heoth H8 Bus RS449/422 A/423 A Standards. Binders Custom binder for Volume 2 and Volume 3 which allows the updates to be added when issued. Volume 2 or Volume 3 must be specified when ordering

Microcomputers for Business Applications by W. Barden

 Jnr.This book will prove invaluable to a potential buyer of a business microcomputer system -helping him to select the best system for his particular needs. The micros discussed range from spin-offs of hobbyists computers to complete "turnkey" systems with customi
This is the sequel to the best selling "BASIC Computer Games". 84 fascinating and entertaining games for solo or group play. All games are complete with a program listing in BASIC, a sample run and a description. Standard Microsoft BASIC is used throughout and the programs are simple to use with al most all microcomputers.

Pascal for the PET

PET and the IEEE 488 Bus (GPIB) by Fisher \& Jensen
A book for instrument designers, scientists, programmers and hobbyists which shows how you can have a low cost versatile system that may be interfaced to any of hundreds of electronic instruments.
PET/CMP Personal Computer Guide - Donaghue \& Enger
details on BASIC programming, storing data preventative maintenance
and assembly language
The PET Revealed - Nick Hampshire (1980)
The PET Library of Sub-Routines (1980)
your PET Commodore approved
Practical Microcomputer Programming with the $\mathbf{Z - 8 0}$ by Weller
18 chaplers of solid accurate programming information. Debugging rechniques, interrupt modes, array and table handling, number base conversation, floating point arithmetic, programmed input/output stackpointer usage.
Practical Programs and Games in BASIC
A varied selection including Space War, Blackjack, Statistica
Problem Solving and Structured Programming in BASIC by Koffman and Friedman
The book reflects the view that good problem solving and programming habits should be introduced at an early stage
Programming and Interfacing the $\mathbf{6 5 0 2}$
An excellent staning point for 6502 micro computer novices, who need experience in assembly language programming or chip-level interfacing Examples are shown using o KIM, AIM or SYM system. Programming a Microcomputer (6502) by Foster
This book will teach you how to program a micracomputer in mochine used in the Kim 1, PET and the Apple, the basic principles involved apply to al computers

Programming in PASCAL by Grogono

this introductory longuage manual is an excelent start to one of the fastest growing programming languages today. The book is arranged as a tutorial containing both examples and exercises lo increase reader proficiency with the language.
30 Programs for the Sinclair $\mathbf{Z X 8 0}$ (1 K) - Beam Software 6.90
S-1 00 Bus Handbook - Bursky Dave 9.10
This book documents the bus structure used by most micro makers. Full
The 5-100 and Other Micro Buses by Poe and Goodwin 5.10
This book is about buses and after ocquanting the reader with busSARGON:A Computer Chess Program by Dan and Kathe9.45Spracklen
Here is the computer chess program that won first place in the first chesstoumament at the 1978 West Coast Computer Faire. It is written in Z 80assembly language using the TDL macro assembler. It comes completewith block diagram and sample printouts.
Some Common BASIC Programs - Poole/Borchers 3rd 7.90
Includes 76 short programs covering financial, mathemetica
The Systems Analyst by J. Atwood (Hardback) 7.45
problem, to the actual installation of the completed system, the bookcovers the strategies, skills and techniques needed.
TIL Cookbook by D. Lancaster7.10
Discover what transistor transistor logic is, how it works and how to usesystems that entertain test and train
TV Typewriter Cookbook by D. Lancaster7.20
and graphics dola for microprocessor systems word processing, TV titlingand video games.
TRS 80 Interfacing by J. A. Titus
Requiring a good understanding of Level 11 BASIC, this book describesthe signals available in the TRS 80 computer and their application to thecontrol of external devices. Experiments in the construction and use ofsome typical intertaces are included.Book 16.90
Z-80 Assembly Language Programming7.90
Z-80 Microprocessor Programming and Interfacing 7.70
Volume 1
by Nichols and Rony
This book is the first of a two volume series on the Z.80. It covers programming at the assembly and machine language level for the $Z-80$ Book 2 will cover interfacing. The books are laboratory orientated texts.The strong emphasis is on learning through experiment. This book
requires no background in compues
requires no background in compues
Z-80 Programming and Interfacing Book 2 8.45
Instruction Handbook (2-80) 3.05
this sim volume constitutes a powerfu and comorehensive guide Abou seven hundred instruction codes are oblainable from the basic
Z-80 Microcomputer Design Projects by W. Barden Jnr. 9.10
A solid instruction to the $Z .80$ microcomputer and the $E Z-80$ chip. SimpleZ-80 Microcomputer Handbook by W. Barden Jnr.6.90
This book provides essential information on $\angle .80$ technology and isorganised into three sections: Hardware, software and microcomputersbuilt around the Z-80
Z-80 Programming for Logic Design - A. Osborne6.25
These books describe the implementation of sequential and combinctional logic using assembly language. They describe the meetingground of the programmer and the logic designer and are written forreaders in both fields.
6502 Assembly Language Programming by Leventhal 10.45
Another fine manual 6800 and 2.80 book
6502 Cookbook by R. Findley7.70and these recipes will help you to explore some of the possibilitiesavailable.
6502 Software Design by L. Scanlon (Sams)7.90
Fundamentals of 6502 operation are explaned and then extenced toave a comprehensive coverage of 6502 use13.45
This manual concentrotes on the practical aspects of programmingFORTH for people who are new to this operating system and
Z-8000 Assembly Language Programming -13.45
Leventhal/Osborne/Collins
the fine points of assembly language programming.
(CRA 4 HIS
eors on Shorp

Printers

Microline 80

Now an old favourite, the MICROLINE has established itseif on the market as one of the most reliable and versatile printers available. This quiet 5×7 dot matrix printer prints at 80 cps and is capable of producing graphical output. It comes complete with 96 character set and centronics comparible interface. You can select from 40,80 and 132 characters per line in soffware. The 40 character output is doublesize, 80 character is of $10 \mathrm{cpi}, 132$ character is at (16.5 cpi). Now at a new low price, exceptional value.

Price	Nett	Vat	Total
MICROLINE 80	345.00	51.75	396.75
Tractor Feed	45.00	6.75	51.75
RS232 Adaptor	75.00	11.25	86.25
Ribbons	2.25	0.34	2.59
PAPER $\left(2000\right.$ sheets $111^{\prime \prime} \times 91 / 2^{\prime \prime}$			
Pick-up Price	11.00	1.65	12.65
Delivered Price	14.00	2.10	16.10

Qume Sprint Model 545RO

An extremely high quality daisy wheel printer for the professional user. Some features are 45 characters per second print speed, asynchronous serial interface, 96 character doisy wheel, 10 or 12 characters per inch producing 132 to 158 character's per line. A plotting resolution of 5760×2880 points per sq. inch is available.

Price	NeHt	Vot	Total
Receive only model	1750.00	262.50	2012.50

Seikosha GP-80

At last, an economic printer for the hobbyist. This must be the lowest-cost smallest impact graphic printer in the world. Graphics, normal (12 cpi) and double-width (6 cpi) characters can be printed on the same line. Pinfeed tractor is equipped as standard. The printer prints on plain paper and has a continuous self-inking ribbon. There is a wide range of optional interface boards available. A truly remarkable dot matrix printer, it prints at 30 cps using a 5×7 dot matrix. A parallel interfoce is standard.

Price	Nett	Vot	Total
GP-80	220.00	33.00	253.00
RS232C Interfaces:	50.00	7.50	57.50
IEE 488	50.00	7.50	57.50
PET	50.00	7.50	57.50
APPLE	50.00	7.50	57.50
TRS 80	30.00	4.50	34.50
Video Genie	30.00	4.50	34.50
Ribbons	4.00	0.60	4.60
PA.PER (2000 sheets) $11^{\prime \prime} \times 81 / 2^{\prime \prime}$			
Pick-up Price	12.00	1.80	13.80
Delivered Price	15.00	2.25	17.25

Centronics 737

80 CPS + double spacing and mono spocing 10 and 16.7 CPI, proportional spacing, 3 way paper handling, 96 character set, expanded print, right margin justification, underlining, bi-directioncl, centronics parailel and serial interfaces standard.

Price	Nett	Vot	Total
	395.00	59.25	454.25

Video Monitors

APH 10" MONITOR

An economic monitor, producing a clear black and white picture.

Price	Nett	Vot	Total
APH	85.00	12.75	97.75

HITACHI 9" MONITOR

A compact and reliable monitor, produces white on black charocters.

Price	NetH	Vot	Total
VM910	125.00	18.75	143.75

HI-RESOLUTION MONITOR (VM 906)

This monitor has a much finer tube than most, producing extremely clear and highly defined pictures.

Price	NetH	Vot	Total
VM906	145.00	21.75	166.75

HITACHI 12" MONITOR (VM 129)

This is a must for the professional user. The VM 129 is ideal for use with the 80 column displays. Provides a clear and stable picture.

Price	NeHt	Vat	广otal
VM 129	185.00	27.75	212.75

12" GREEN-SCREENED MONITOR (VM 12G)

ideal for continuous use, this monitor displays green dota. A tinted perspex screen cover reduces reflections and glare. Rapidly becoming the industry standard.

Price	Nett	Vat	Tota!
VM 12G	162.00	24.30	186.30

CABLES FOR MONITORS

These are supplied free if purchased with a microcomputer. Otherwise:

Price	Nett	Vat	Total
Cable	3.50	0.53	4.03

Colour Monitors - please ring for details.

QED Mains Interference Suppressors

For use when mains interference is causing your computer problems.
Simply plug the equipment into the suppressor and plug the suppressor into the wall socket (see specification for maximum power). Inserted in this way, most forms of mains borne interference will be cured. An alternative method of fitting, whereby the suppressor is connected to the mains circuit of the appliance cousing the interference, may prove to be more effective in some cases. Technical Specification: 6/2B
16/4C specification in brackets)

Maximum power
750 watts (1500)
Maximum current
Operating voltage Insertion loss
Frequency range

Discharge time

Scotch 7440 Head Cleaning Diskettes

Keeping the heads free of debris means longer lasting heods, fewer diskette replacements and fewer engineer calls. The rotating cleaning fabric in the head cleaning diskettes alternately wipes the heads with the solution and dry surface, removing contamination from the read/write heads. In half a minute the heads are clean.
The cleaning diskettes con be used with either single or double headed diskette drives. The 7440 kit is for all $5 \frac{1}{4}{ }^{\prime \prime}$ minidiskette drives. The kit contains one bottle of cleaning soloution, one dispenser cap
and two cleaning diskettes. Each cleaning diskette con be used for approximately 15 cleanings.
Materials and solution are completely safe, being non-flammable, non-adbrasive and will not harm metals, plastics or painted surfaces. Too little or too much cleaning solution will not affect the drive.

Price	Nett	Vat	Total
7440 kit	19.50	2.93	22.43

Cassettes

- C15 Agfa Tape	- Leaderless		
- Special Labels	- Insert Cards		
- Cellophone wrapped	- Screw fixing case		
- Precision transport mechanism	- Proven performance		
Prices	Nett	Vat	Total
one cassette	0.80	0.12	0.92
box of ten cassettes	5.20	0.78	5.98
fifty cassettes	25.00	3.75	28.75
one hundred cossertes	45.00	6.75	51.75

Guarantee

If within 12 months of purchase any of our cassettes does not give satisfactory performance send it back to Microdigital for replocement by return of post.

Disks

High performance Mini Floppy disks

- Anti static envelopes
- single sided, single density - soft sectored abels and write protect

Memory

Guaranteed quality Any foully chips should be returned to us within 12 months of purchase with proof of purchase for replacement by return of post.

Microdigital Mail Order Form
 MAIL TO: Microdigital Limited, Freepost, Liverpool L2 2AB.

Borclaycard

American Express/Diners Club/Stereo Club No.
Expiry dale
Name \qquad
Address: \qquad
\qquad Post Code \qquad
Tel (day)

Lasly's Stereoclub

the easy way to buy, from Microdigito
For as little as $£ 5$ per month, you can join the Lasky's Stereoclub, which immediately entifles you to a credit limit of 24 times your monthly repayment, and enables you to buy now the microcomputer equipment thal you've alwoys wanted from Microdigital. Current Stereaclub interest rate is 2.5% monthly - equivalent 10 on APR of 34.5% (Rates may vary)
As a Stereaclub member weill send you regular news ond lireroture from Lasky's and Microdigital. Lasky's Stereaclub is probobly the best thing that's happened to Microcomputers since the invention of the chip!

Microdigital Limited

Microdigitol Limited is registered in England
Registered Number 319646437
Registered OHice Chancel House, Neasden Lone, London NWIO
Directors P.M. George, P. Klein, G.W Ralph, A.J Stirling, D.J. Sate,
V. C Gaffin, I Edmundson.

Ultimate Holding Compony Ladbroke Group Limited
VAT Number: 24011323

This brochure is effective from 1 st May 1981 and supercedes all previous brochures.

SAXON FOR ALL YOUR DISCO/P.A. NEEDS

STEREO DISCO SYSTEMS

100-600W COMPLETE WITH LIGHT SHOW ABSOLUTELY COMPLETE

features

 - MICTTAPE INPUT * CROSSFADE OUTP * FULL MONitoring/Cue light * FDUR CHANNEL SOUNDLIGHIPLUS!! built in light oisplay - 2 year warkanty
STANDARD CENTAUR 100W SUPER CENTAUR 200W GXL CENTAUR 200W CUSTOM CENTAUR 400/600W

GXL CENTAUR SEE OUR CATALDGUE for other exciting combinations of consoles and loudspeakers - ONLY f1 - INCLUDES $£ 30$ area decides cost

CIGHTING EOUIPMENT

PLUTO P140 projector CW wheel $£ 57.50$ carr. $£ 1.50$
P LITO P250 PLUTO P250 propector CW wheel $£ 94,90$ carr. $£ 1.50$
PLUTO P500 projector CN cassette $£ 115$ tarr. $£ 250$ Full range of wheels. ado on attachments etc in our catalogue

* 22' Rope Lipht £39.50. *Rape Coniroller with Soundllite £19.75. * The pair only f 55 - Pluto Rhyhmatic Super Rode Light Controller 4 kW For/Rev/Auro functions * DJ ELECTRONICS 10 way chaser 32 programmes pius Sound Lite plus Auto Bargain Price f149 * DJ ELECTRONICS Auto Zoner 64 programme matrix unit. Similar Io PE STARSPINNER Bargain Price f1499 * Carr. an all lighting controllers 90 p

FIRST CLASS CONSTRUCTIONAL PROJECTS - GLASS FIBRĖ PCB - FULL INSTRUCTIONS

MGUTING KITS

E9.90 3cm 300w/ch 1 V -100V inpuz
Carr. on all kits 90 p.

EFFECTS UNITS

SAXON SMASH ${ }^{-}$
Connect between mic amp-
Press button for Alien Voice
effec!
$£ 9.75$
MELOS MC350 Echo Chamber £ 77.50 carr $£ 250$ MELDS DE! Oagital Eeho
'SAXON KLAXDN' siren eftects for the price of

US Police UK Police | US Police | UK Police |
| :--- | :--- | Singte

 Twin deck controls + Crosslade \star Tape inpuls $\#$ Mic input with Bass Treble \star Autotade cir
controts \star Ample monitor power front panel to suit $\mathrm{f} \mathbf{3} 50$ - Supply lor mains operation f 7.50 .

SPECIAL OFFER - LIMITED QUANTITY - DJ ELECTRONICS SUPREME' LIGHT UNIT.

* 3 channel $3 \mathrm{~kW} \star$ individual bass $/ \mathrm{mid} /$ treble Variable speed sequences \star Additionaf effects of flowlight and override $*$ Fully guaranteed. Originally sold at $\mathbf{£ 8 9}$ we have a few of these great units at DNLY $\mathbf{4} 49$ SEE THIS MARVELLOUS UNIT AT OUR SHOWROOM

MIXERS

STERED

PA. GEAR

20\% oeposit terms avall abie (See below)

LOUDSPEAKER CABINETS

THE AMAZING POF BIN f125 carr $£ 500$ (illustrated opposite) 100W seflex CAB with iwin horns Very efficient and very loud and
catinet design - Ideal for Discos.

CAEANETS FROM f 30 RANG OF LDUOSPEARERS IN CAGNETS FROM f30-CALL IN
FOR DETAILS.

DRIVE UNITS

12* 1 OOW SAXON DRIVER $4 / 8 / 16 \mathrm{ohm}$

 \# $15^{\prime \prime}$ Bakes $£ 47.50$ tarr. $£ 25$
FEW ONLY AT $£ 99.50$ carr. $£ 3$.

\section*{
 UNREPEATABLE HI-FI BARGAIN 3 WAY LOUDSPEAKER KIT C/W BAFFLE (pre-cut)
 - $25 \mathrm{~Hz}=30 \mathrm{KHz}$ response
 * $6 \frac{1}{2}$ " inen surround bass unit
 - $5^{n \prime}$ mid-range uni
 - 3 way crossover, fixing screws and baltle
 * 20 watts handing capability - 8 ohm system Full instructions provided
 f10.50 wr 2 for $£ 20$
 f 10.50 mr

Carr. $\mathbf{f 1} 1$ for $\mathbf{£ 2 0}$ fer kil.
 | ACCESSORIES | | Carr on accessories $£ 1.50$ untess otherwise stated | |
| :---: | :---: | :---: | :---: |
| * Disco Stand P\&N Style | £26.75 carr ¢250 | * Transformer to suit | ¢150 |
| * Sterea Headphones | ¢7.50 | * $12^{\prime \prime}$ Goose Neck | ¢5.65 |
| - Flexilites | f5.50 | - 6 m Curia Lead | ¢245 |
| * Floor Mic. Stand | f 1290 | * 5m USpeaker Lead | ¢245 |
| - Boom Arm | f8.95 | * Goose Necta Base | f270 |
| * Desk Stand | ¢4.50 | - DJ Electroric Jingle | 5 with 16 Jingles - SNIP! |

CREDIT TERMS AVAILABLE ON ORDERS OVER 100
20\% deposit - Ring Sue on (01) 6897826 and ask tor a written quotation 12.24 months to pay - tyraical APR 36%

- INTEREST FREE OVER 3 MONTHS ——_

Discount vouchers invalid on interest free deals)

AMPLIFIER KITS

Well proven kils tor
rom 30W-240W

- Full short/open circuit proe
- 4 or 8 ohm operation
- High senstitvily - 240 mV (-10dB)
- 20hz-30Khz response
- Complete with heatsink and sockets
* Match most mixer/preamps ine our own make

BEAT THESE PRICES!! 240W ${ }_{\text {E19.75 cal. } 90 \mathrm{p}}^{\text {AK1 }}$ POWER SUPPIY PK1 144 cal. f1 50 $120 W_{\text {f12 }}^{\text {AK2 }}$

POWER SUPPIY PKZ fg

60W ${ }^{\text {AK3 }}$
POWER SUPPLY PK3 $\mathbf{f 6 . 9 0}$ cart. 90p
mains fuse - smoothing etc

VISIT OUR SHOWROOMS AT CROYDON \& SEE OUR WIDE RANGE OF EQUIPMENT.

ONLY £1 GETS YOU OUR LATEST CATALOGUE OVER 250 LINES PLUS £30 WORTH DISCOUNT VOUCHERS
SAXON ENTERTAINMENTS (Dept PE)
327/333 Whitehorse Road,
Croydon, Surrey CRO ZHS.
Mon-Sat Gam-5pm
(LICENSED CREDIT BROKERS)

MAIL ORDER (01) 6848007
CREOIT LINE (01) 6897826
Send cheques or crossed PO's or ring (01) 684.8007
for COD, ACCESS or BARCLAYCARD
We deliver anywhere UK/N. IRELANOW. EUROPE

ALL PAICES, INC. VAT

Semiconductor Curve Tracer

D.MANDELZWEIG

THE Transistor Curve Tracer was designed as an add-on unit for a dual-trace oscilloscope. N.p.n. and p.n.p. transistor I.c. versus Vce (as a function of lb) are displayed, as well as diode and Zener diode curves. Iceo and Iceo Reverse can also be displayed as a function of Vceo. See füll specification opposite. The prototype, using readily available components, costs approximately $£ 30$ to build, and when compared to a commercially available curve tracer, costing about 22 times that price, was found to be within 3% accurate, which is the basic accuracy of smaller dual trace oscilloscopes.

BASIC OPERATION

Refer to Fig 1. A ramp voltage is applied to the collector of the transistor to be tested, via a current sensing resistor Rc. The voltage across the transistor (Vce) is sensed via the X channel of the oscilloscope. A stepped current from a current source is applied to the base and the voltage across the transistor is ramped once for every current value. The actual current flowing in the transistor, Ic, is sensed as a voltage across Rc by the Y channel of the scope. Thus Ic is displayed as a function of Vce for different base currents. Iceo is displayed similarly, with a different value of Rc and with the base drive disconnected. The Diode curves are also similarly displayed, except that a bipolar signal is applied, so that if and Ir or Zener diode curves can be displayed.

BLOCK DIAGRAM

A block diagram is shown in Fig 2. This diagram shows the sub-sections of the unit, and the main components used in the sub-sections. With the aid of this diagram, and the circuit diagram. Fig 3. the circuit description can easily be followed.

CIRCUIT DESCRIPTION

The circuit functions as follows: IC9 and IC10 form the clock running at approximately 1 kHz and a ramp generator respectively. CMOS 555 timers are used to reduce switching transients, which otherwise appear on the scope trace. These i.c.s have their own 12 V supply, which was found necessary to prevent the transients affecting the trace. IC7a and TR7 buffer the ramp, and form a power amplifier for the ramp waveform. VR1 must be adjusted for maximum ramp and minimum space between ramps without affecting the ramp. VR2 must be adjusted for a peak of 12.5 V at the emitter of TR7. This positive going ramp is split into 3 paths. One goes to relay contact 2 for use on n.p.n. transistors. The second path is to IC7b which inverts the waveform and feeds it to IC8a and TR8. These form a power amplifier for the inverted ramp to drive p.n.p. transistors via relay contact 2. VR3 must be adjusted for a negative peak of -12.5 V at TR8 emitter. The third path goes to IC8b which is a level shifter/amplifier. The resultant waveform is used to test diodes. VR4 must be adjusted so that the 25 V base- to-peak ramp waveform is centred about OV .
Fig. 1. As shown, scope Y channel measures Vcc $+V_{r c}$. Y channel should measure Vrc to get Ic. Thus, IC6b has been included in the circuit to subtract Vce from Vs to give a true Vrc. Therefore, ic = V(ychannel)/Rc

Fig. 2. Block diagram

EG566

The output of IC10 (pin 3) is inverted by TR5, and the positive going pulses are used to clock IC3, which is a divide-by-eight counter divider. The Q5 output (pin 4) is used to reset the counter, so that it only counts to five. These five decoded outputs are used to control the transmission gates IC1 and IC2 so that each gate closes in turn, con-
tinually repeating the process. R1 to R11 and S5 form a precision divider chain, allowing voltage steps of 1 V between 7.5 V and 11.5 V (with S5 in the position shown) and between 2.5 V and 6.5 V (with S 5 in the other position) to be

applied to the respective transmission gate inputs. The output of the gates are summed together, and the result of the sequentially closing gates (controlled by $\ddagger \mathrm{C} 3$) is a precise stepped waveform either 7.5 V to 11.5 V in 1 volt steps or 2.5 V to 6.5 V depending on S 5 . S 5 is the base current range switch. In the position shown, it selects the $10 \mu \mathrm{~A}$ to $50 \mu \mathrm{~A}$ range (in steps of $10 \mu \mathrm{~A}$) and in the other position it selects $60 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$ (also in steps of $10 \mu \mathrm{~A}$).

This stepped waveform is buffered by IC4a to avoid loading of the divider chain, and is fed to IC4b and IC5a. IC4b inverts the waveform and feeds it to IC5b. IC5a and IC5b with their associated components form a precision programmable constant current source and constant current sink respectively. The output currents are dependant on the input voltage and the values of R19/R20 and R21/R22. Here S2 is used to select one of two resistors in the current source and sink respectively, and is used as a base current
multiplier. In the position shown, the base current range is as mentioned above, and in the alternate position, the range is multiplied by 10 , i.e. $100 \mu \mathrm{~A}-500 \mu \mathrm{~A}$ and $600 \mu \mathrm{~A}-1 \mathrm{~mA}$, again depending on S5. The resultant stepped constant currents are chosen by relay contact 1 (the source for n.p.n. transistor, and the sink for a p.n.p. transistor) and is fed via S3a to the base of the transistor under test (TUT).

The power supply looks more complicated than may be thought necessary, but as mentioned above, it is not so. Three 3-terminal voltage regulators supply voltages as shown, and a 723 voltage regulator, adjusted via VR5 to a precise 12.5 V , supplies current to the current source/sink and their associated components.

CONSTRUCTION

Although other methods of construction may be used, it is strongly advised that the unit is constructed using the p.c.b. layouts presented here. This will ease construction and make for a neater finish.
P.c.b. mounting switches may be obtained for all switches except $S 7$, due to the different lengths of the switches, however, the following method of construction is adopted.

First solder a 3 cm length of tinned copper wire to each tag of each switch except S7. Once this has been done, the case front panel must be drilled out as shown in Fig. 11. Fit the switches temporarily to the panel, and then fit the wire leads into the corresponding holes in the front panel p.c.b. Align the p.c.b. as close to the switches as possible, remembering to leave room for direct connections to S7, and for the Banana sockets. With the p.c.b. in this position, solder all the wires to the p.c.b. The p.c.b. and switch assembly can then be removed, and construction of the p.c.b. can be completed, leaving l.e.d. D3 and the connections for the Banana sockets and transistor socket for later.

The PSU can be constructed next, and when completed, can be checked for correct operation. Before connecting a.c. to the board, check that all the capacitors are in the correct way round. If all is well, set VR5 for 12.5 V on pin 3 of IC16, remove power, and continue construction of the main circuit. As usual start with the passive components and links, then solder in the transistors, and finally the i.c.'s. The prototype use i.c. sockets, and this practise is strongly recommended. Be careful when handling the CMOS i.c.'s as they are easily damaged. Finally fit the relay into its socket, and check the board carefully for solder splashes, and for correct orientation of the i.c.'s transistors, diodes and C15.

NPN transistor: At four horizontal positions, we have $4 \times 2 \mathrm{~V}=8 \mathrm{~V}$. Second curve, i.e. Ib $=20 \mu A$, we have 1.7 vertical divisions, at 0.2 V per div. which gives 0.34 V . Therefore, Ic $=$ $0.34 / \mathrm{R44}=0.34 / 100=3.4 \mathrm{~mA}$. Therefore hfe $=3.4 \mathrm{~mA} / 20 \mu \mathrm{~A}=170$.

4V7 Zener diode. Forward voltage $=$ $0.6 \times 1=600 \mathrm{mV}$ (at point when current begins flowing). Reverse breakdown: 4V at initially, 5V at a reverse current of 1.4 div. $\times 5 \mathrm{~V} / \mathrm{div}$. over $500 \Omega=14 \mathrm{~mA}$.

NPN transistor. $60 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$ base current range.

Using stranded hook-up wire, preferably of different colours to aid checking, connect up the main p.c.b. and the front panel p.c.b., and solder lengths of wire to the boards for later connection to the PSU board. Leave enough wire between the main p.c.b. and the front panel p.c.b. to allow easy access to the main p.c.b. without having to remove the front panel p.c.b. at a later stage, if this becomes necessary.

SETTING UP AND CHECKING OUT

Once construction is completed, and the p.c.b. and wiring has been carefully checked, the unit can be set up and functionally checked. An oscilloscope and a meter will be required. First turn all the presets to mid-position, and switch S1 to n.p.n. S2 to $\mathrm{Ib} \times 1, \mathrm{~S} 3$ to $\mathrm{Ic}, \mathrm{S} 4$ to 100 mA and S 5 to 10-50uA. Turn on the power, and check the outputs of IC18

Fig 5. Main p.c.b. layout

and IC19. The voltage should be +15 and -15 volts respectively. Now adjust VR5 so that the voltage at pin 3 of IC 16 is +12.5 V exactly. Check that the voltage at the output of 1 C 17 is +12 V . With the oscilloscope connected to pin 7 of IC10 adjust VR1 so that the ramp part of the waveform is a maximum, without the point becoming flattened. Turning VR1 too far will indicated the above condition. Now adjust

VR2 so that the base-to-peak value of the ramp measured at the emitter of TR7 is +12 V . Adjust VR3 for a negative ramp of -12 V at the emitter of TR8. Adjust VR4 so that a bamp waveform with a base-to-peak value of about 25 V appears at pin 6 of IC8b, centred at 0 V . Check that a stepped waveform is available at pin 3 of IC1. Finally, if S 6 is depressed, the relay contacts should pick up.

Fig. 7. Fascia p.c.b. layout

Fig. 8. Fascia p.c.b. component overlay

Fig. 9. PSU p.c.b. layout

The fascia p.c.b. obviates the need for tricky front panel wiring. Solder lengths of tinned copper wire to each tag of the front panel switches, then insert these switches into the p.c.b. and solder. The fascia p.c.b. is fastened solely by these connections. It is worth noting that insertion of the rotary switches into this board will be made easier if wires to the less accessible centre pins are left longer.

COMPONENTS ...

Resistors

R1-R5,R8-R11,R40, R41,R52 R25 R6, R7, R15, R16, R20, R22. R39 R12,R13, R14, R17, R18, R27, R30, R32 R19, R21, R23, R24, R34, R35 R29 R26 R28, R33 R31
R36, R37,R45,R46.
R47, R48
R38
R42
R43
R44
R49
R50
R5 1
VR1, VR5
VR2, VR3, VR4 R53

Capacitors
C1
C2, C4, C7, C9, C11
C3, C6
C5, C12
C8, C10
C13, C14

1k $\frac{1}{4}$ W 2% (12 off) 1k $\frac{1}{4}$ W 5\%

10k $\frac{1}{4} \mathrm{~W} 2 \%$ (7 off)
10k $\frac{1}{4} W 5 \%$ (8 off)
$100 \mathrm{k} \frac{1}{4} \mathrm{~W} 2 \%$ (6 off)
100k $\frac{1}{4} W 5 \%$
75k $\frac{1}{4} W 5 \%$
$47 k \frac{1}{4} W 5 \%$ (2 off)
12k $\frac{1}{4} W 5 \%$
470k \ddagger W 2\% (6 off)
33k +W 2\%
12 2W 5\%
$10 \frac{1}{2}$ W 2%
$100 \frac{1}{2} \mathrm{~W} 2 \%$
$2 k 2 \frac{1}{4}$ W 2%
$1 \mathrm{k} 2 \frac{1}{4}$ W 5\%
$560 \mathrm{~m} \frac{1}{2} \mathrm{~W} 5 \%$
4 k 7 min . horiz. preset (2 off)
10 kmin . horiz. preset (3 off)
$1 \mathrm{k} 5 \frac{1}{2}$ W 5%

82p

10n (4 off)
$\ln (2 \mathrm{off})$
$4 \mu 7$ tant. 25 V (2 off)
1μ (Siemens) (2 off)
$1000 \mu / 25 \mathrm{~V}$ (2 off)

Transistors	
TR1, TR4, TR5	BC107B (3 off)
TR2, TR3	BC109C (2 off)
TR6	BC177B
TR 7	TIP29C
TR8	TIP32C
Diodes	
D1	2V7 Zener
D2	IN4148
REC 1	2A 200V stack
D3	Red l.e.d.
Ic's	
IC1, IC2	CD4016 CMOS quad switch (2 off)
1 C 3	CD4022 CMOS counter
IC4-IC8	$\mu \mathrm{A} 1458$ DUAL 741 's (5 off)
IC9, IC10	7555 CMOS timers (2 off)
IC16	$\mu \mathrm{A} 723$ voltage regulator
1 Cl 7	$\mu \mathrm{A} 78 \mathrm{M} 12 \mathrm{UC}+12 \mathrm{~V} 500 \mathrm{~mA}$
IC18	$\mu \mathrm{A} 7815 \mathrm{UC}+15 \mathrm{~V} 1 \mathrm{~A}$
IC19	$\mu \mathrm{A} 7915 \mathrm{UC}-15 \mathrm{~V} 1 \mathrm{~A}$
Switches	
S2, S4	DPDT (2 off)
S3	4P3W rotary
S6	DPDT biased
S7	SPDT
S1, S5	6P2W (2 off)
Relay	
12 V coil resistance	$1 \mathrm{k}, 4 \mathrm{C} / \mathrm{O}$ contacts + base
Transformer	
15-0-15V	1 amp secondary

PLEASE NOTE

If difficulty is experienced in making the system operate reliably, it may be necessary to alter the Main p.c.b. so that R $30-\mathrm{R} 32$ are powered from +12 V and not $+12 \cdot 5 \mathrm{~V}$. Link IC 10 pin 8 across to top of R 3 ! on p.c.b. and cut the main 12.5 V track between top of R30 and IC3 pin 16, i.e. break just to left of IC3.

Also note that a link is required on Fascia p.c.b. to join the bottom end of R 40 to botiom end of R52. S2a in Fig. 3 is shown at rest in wrong position, i.e. should point to R 19 .

USING THE UNIT

Connect the unit to an oscilloscope, set to $X-Y$ mode. Connect the component to be tested via the socket or flying leads. Set the mode switch to the desired mode. If testing transistors, select the type, base current range, and the maximum allowable collector current for the type of transistor in use. Remember that $\mathrm{Ic}=\mathrm{hfe} \times \mathrm{Ib}$, so that the settings of switches S2 and S4 will be dependent on the transistor type. If the transistor data is completely unknown, always start with the lowest values of Ib and S 4 set to 100 mA . Adjust the X and Y inputs of the scope to give a suitable trace.

Label the front panel with Letraset as shown in the photographs (note that the collector and emitter ' C ' and ' E ' markings on the prototypes are incorrect for the Banana sockets--they have been swapped around. From the top it should read CBE). Fit S7, the I.e.d. D3, and the Banana sockets to the case. Glue the transistor socket to the case with an epoxy glue. Now fit the p.c.b. switch assembly inta the case; tighten the switch retaining nuts, and bolt the main p.c.b. to the base of the case using spacers. Use tinned copper wire to connect the sockets and the l.e.d. to the p.c.b. Mount the transformer, the p.s.u. p.c.b. and complete all interconnections. Once the complete unit has been carefully

BASE CURRENT VALUES

SWITCH POSITIONS	NO. OF STEPS	RANGE	STEP SIZE
S $110-50 \mu \mathrm{~A}, \mathrm{~S} 2 \times 1$	5	$10-50 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$
$\mathrm{~S} 160-100 \mu \mathrm{~A}, \mathrm{~S} 2 \times 1$	5	$60-100 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$
$\mathrm{~S} 110-50 \mu \mathrm{~A}, \mathrm{~S} 2 \times 10$	5	$100-500 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$
S $160-100 \mu \mathrm{~A}, \mathrm{~S} 2 \times 10$	5	$600 \mu \mathrm{~A}-1 \mathrm{~mA}$	$100 \mu \mathrm{~A}$

checked for wiring errors, a functional check and setting up can be carried out.

When testing a transistor for hfe (mode switch in Ic position), 5 curves will be displayed. These correspond to set values of lb , depending on the position of S2 and S5. Table 1 gives the possible combinations. The only thing that must be remembered is the values of R43 and R44 depending on the position of S4. Thus, to calculate the gain of a transistor at any Vce with a set of base current, divide the Y voltage reading by the value of the resistor selected, and then divide by lb . The diode currents and transistor leakage currents are found similarly by dividing the Y voltage reading on the scope by the selected resistor (500Ω for DIODES and 1 k for leakage currents, Iceo).

The accuracy of the unit is dependent on the resistors marked as 2 per cent in the parts list. Ideally 1 per cent resistors should be used, but these seem hard to come by. A way to get round this is to buy a few more 2 per cent resistors than that required and then select by measurement those that have the closest value to the required value. R1 to R11, R19 to R22 are of particular importance, and it is also important that $\mathrm{R} 45=\mathrm{R} 46=\mathrm{R} 47=\mathrm{R} 48$ as close as possible.

O
UR free case has been designed to accept this special offer LE DPM 200 digital panel meter. By using this meter a wide range of accurate instruments can be constructed with the addition of only a few external components. The custom designed l.c.d. consumes only microwatts of power making it ideal for use in portable equipment.

Our offer price including VAT and postage etc., saves $£ 3$ on the normal 1 off price from Lascar.

SPECIFICATION

Input impedance:
Full scale reading:
Accuracy:
Power supply:
Power consumption:
Sample rate:
Auto-zero:
Auto-polarity:

Over-range warning:
Bandgap reference
(50ppm $/{ }^{\circ} \mathrm{C}$ typ.)
Digit height:
Low battery warning:
Operating temperature: Overall dimensions:
Panel cut-out:
Display annunciators:
$>100 \mathrm{M}$
199.9 mV
0.05% of reading ± 1 digit
5-15V d.c.
$50 \mu \mathrm{~A}$ (in low power mode), typically 8,000 hours PP3 life
3 readings per sec.
No necessity to adjust for offsets
Automatic polarity indication eliminates the need to reverse input leads to obtain correct reading.
1 in leading digit with other digits suppressed
incorporated for excellent stability of reading
$15 \mathrm{~mm}\left(0.6^{\prime \prime}\right)$ can be read at distances up to 10 metres
direct display, voltage threshold easily adjusted
$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
$72 \times 36 \times 12 \mathrm{~mm}$
$68 \times 33 \mathrm{~mm}$
many useful legends are built into the custom l.c.d. which may be activated as required

To: Lascar Electronics Ltd., Unit 1, Thomasin Rd., Burnt Mills, Basildon, Essex SS13 1LH. Tel. 0268727383

Positive Impedance Converfers as sanossan

MANY electronic experimenters are deterred from embarking on work involving the winding of low frequency inductors by the cost of pot cores and the obvious chore of winding many turns. This is a pity as a large area of interesting activity is denied them.

With the circuits about to be described this may now be remedied. Low pass, high pass, band pass and equaliser filters can be constructed using the positive impedance converter (PIC) to simulate the inductors (Fig. 1).

The upper frequency of this useful circuit is governed by the response of the op amps used, but the 741 will take care of the a.f. range.

The signal to noise ratio of the simulated inductance may not be as good as a wound compoinent, but in the majority of applications this is not important, and could in any case be preceded by a low noise preamp for low noise filter applications.

The PIC is realised physically using two separate 8 pin d.i.l. 741 op amps, three resistors, one capacitor, a setting resistor (R_{O}). Using a balanced supply to the op amps $\pm 12 \mathrm{~V}$, the setting resistor R_{0} can be referenced to ground, in later arrangements an unbalanced configuration can be used. (See Fig. 2.)

It will be observed that 'looking into' port 1 an inductance is seen, the value of inductance we require is obtained by selecting the appropriate value for R_{0} the setting resistor. Q values of 300 are obtainable with this arrangement.

Here $L=K R_{0}$ where K is called the conversion factor and

$$
K=\frac{C R_{1} R_{3}}{R_{2}}
$$

With perfect op amps this would give

$$
\mathrm{K}=\frac{0.01 \times 10^{-6} \times 270 \times 10 \times 10^{3}}{5.6 \times 10^{3}}=4.82 \times 10^{-6}
$$

But due to imperfect op amps and worst case component tolerances, there is usually an error which can be determined by a test set-up.

SETTING UP A PIC

Wire up the circuit on a small piece of Veroboard. Use a stable a.f. generator with an accurate dial, or use a frequency counter on its output. An output indicator having a high impedance input, or an oscilloscope with a 10 X probe will be needed. Connect up as in Fig. 3. The resistors $R_{A} R_{B}$ are to load down the output impedance of the generator (this is in series with C_{O} and L). Let $R_{B}=100$ and $R_{A}=1 \mathrm{k}$.

For a first run set C_{o} to be 10 n, use two 5,000 p silver mica 1% capacitors in parallel. Set the generator to 1 kHz accurately, and turn its output level to maximum. Use a variable resistor of 500 k for R_{o}. Connect up the high impedance monitor or scope. Vary the potentiometer until a very sharp peak is obtained on the scope. The inductance of the PIC is now at series resonance with C_{0}. Its inductance can be calculated from the expression:

$$
\omega^{2}=\frac{1}{L C_{0}} \quad \omega=2 \pi f
$$

In the example $\mathrm{f}=1 \mathrm{kHz} \mathrm{C}_{0}=.01 \mu \mathrm{~F}$ giving

$$
\mathrm{L}=\frac{1}{0.01 \times 10^{-6} \times 4 \pi^{2} \times 10^{6}}=\frac{10^{2}}{4 \pi^{2}}=2.533 \text { henries }
$$

The next step is accurately to measure the set value of R_{0}.
A technique when setting up is to decrease the value of R_{0} below resonance and replace the potentiometer with a fixed value, say 10% lower, and use a lower value of pot (perhaps 20k); if this procedure is continued then the circuit can be brought to resonance and R_{0} will be known with good accuracy.

Having found the value of R_{0}^{1}, the conversion factor can now be determined from:

$$
\mathrm{L}=\mathrm{K} R_{\mathrm{O}}^{\prime} \text { so that } \mathrm{K}=\frac{\mathrm{L}}{\mathrm{R}_{\mathrm{O}}^{\prime}}
$$

Having now wired up the PIC circuit and arranged the test set-up, the value of K is calculated, we can now write:

$$
L=K R_{0}
$$

At this point it is worth while to substitute various accurately known fixed resistors for R_{o}. Calculate then measure the resonant frequency. This will give some practice in using the set-up arrangement.

When attempts are made to simulate inductors embedded in, say, a filter network, we have to consider three situations:

Grounded Inductors

Note that with a $\pm 12 \mathrm{~V}$ supply with centre at ground potential, the resistor R_{0} is returned to ground, this is to give the op amps an input bias reference (Fig. 4).

If a single +24 V rail is used with the op amps, an artificial centre point of +12 V must be provided. This can be a low resistance resistive divider chain or a Zener diode +12 V rail and R_{0} will be returned to this point with a.c. decoupling.

Balanced Inductors

A balanced inductor is simulated as in Fig. 5. It will be observed that two PICs are needed for this one inductor, this uneconomical situation only occurs in simple filters, as will be shown in the next situation.

Here we find a snag, it is not possible in the balanced case to feed d.c. to the inductor and its simulating PICs, if the inductor is capacitively isolated. We can get around this by reconfiguring the filter as in Fig. 6.

Combined Inductors

This last case is shown in Fig. 7.
A surprise is in store here, for L 1 and L 2 can be simulated with two PICs only.

L1 is simulated by PIC1 - R_{01}-PIC2
L 2 is simulated by PIC2 $-\mathrm{R}_{02}$
In effect PIC2 is shared between L1 and L2. Balanced d.c. supplies are shown for simplicity.

For many filters, if we know the component values we now have enough information to employ PICs for the inductors.

In the test set-up individual 741 op amps were advocated

Fig. 1. PIC symbol for an inductor

Fig. 3. Test set up for PIC

Fig. 2. Physical realisation of a PIC

Fig. 5. (above) balanced inductor and its simulation

Fig. 4. (left) grounded inductor and its simulation

Fig. 6. (above) balanced and isolated inductor showing how to feed d.c. (via ${ }_{\text {AT }}$) to the simulating PIC

Fig. 7. (left) combined inductors and their simulation

Fig. 8. Typical elliptic function bandpass filter with PIC simulation

but if the MC1458CP1 is used with ± 6 volt supply it will give a $K=5.0 \times 10^{-6}$ and will cut the package count by a factor of 2.

In Fig. 8 a typical elliptic function bandpass filter with its PIC equivalent is shown.

BANDPASS DESIGN

The idea here is to define the shape of the bandpass response that is required. To do this, we need to know the bandwidth ratios.

This "shape" requirement is now compared to the data in the low pass tables, and one line of data is selected for best fit.
The selected low pass filter is called the "low pass prototype" ($L P_{p}$). See Fig. 9 for details of bandwidth ratios. The next step is to transform this selected low pass prototype into a bandpass filter.

If we consider that the $L P_{p}$ is resonated at $\omega_{0}=1$ for band centre, we can choose reciprocal values for the resonating pairs of reactances. Hence reciprocal values of capacitance are added in series with the inductors. Reciprocal values of inductance are added in parallel with the capacitors.

This completes the $L P_{p}$ to bandpass transformation. See Fig. 10.

If the " Q " values are correct, the bandpass filter has the same bandwidth at any attenuation as the low pass prototype. The middle section of this bandpass filter looks rather untidy (and inconvenient). A transformation is performed on this in Fig. 11.

The network now looks much more manageable. The final step is to transform by scaling to the operating impedance and frequency.

THE "Q' CONDITION

Nothing has been said so far about the element " Q ". When we select a LP prototype, it will meet the requirements using a definite branch " Q "; this is an important number and is known as " Q_{p} ".

We modify the LP network by adding other elements, some in series and some in parallel to form the bandpass filter. The series elements have " Q " values which increase with frequency, the parallel elements have the reverse law, when scaled up in frequency.

To achieve the " Q " requirements in the final bandpass response, definite relationships exist between the " Q " values in the transposition stages.

$$
\mathrm{Q}_{\mathrm{b}}=\mathrm{Q}_{\mathrm{c}} \times \mathrm{Q}_{\mathrm{p}}
$$

Where $Q_{p}=$ prototype low pass " Q "
$Q_{b}=$ branch " Q " of bandpass filter
$\mathrm{a}_{\mathrm{c}}=$ " $\mathrm{Q}^{\prime \prime}$ of the desired bandpass response.
By using PICs and good quality capacitors, the branch "Os" can be made high, and can thus be lowered by adding loss resistors if needed.

For medium and narrow \% bandwidth designs, " Q " values

LOW PASS PROTOTYPE RESPONSE

Fig. 9. Showing relationship between bandpass and lowpass response
larger than necessary are not often a problem, and usually sharpen up the corners.

The stopband attenuation is only slightly affected by the size of the " Q " values.

WORKED EXAMPLE 1

Using table A4-3
The following data is read.
$\mathrm{A}_{\mathrm{s}}=40 \mathrm{~dB}$
$\omega_{\mathrm{s}}=3.542$
$\mathrm{C}_{1}=0.988$
$\mathrm{C}_{2}=0.0570$
$\mathrm{L}_{2}=1.081$
$\mathrm{C}_{3}=0.988$
$\omega_{2}=4.027$
This is a single section, take f_{0} centre frequency 1350 Hz , " R " to be 220 .
This network is converted to bandpass. Firstly normalising to $\omega_{0}=1$, this enables us to write reciprocals for the resonating components.

We next transform the middle section.

Fig. 10. The lowpass to bandpass transformation

Fig. 11. (below) the middle section of the bandpass filter is transformed. The five, equations on the left show the working through

Fig. 12. (below) the worked transformation

(1) let $x=\frac{L}{K}$
(2) let $\alpha=1+1$
(3) let $\beta=\sqrt{\alpha^{2}-1}$
(4) let $\gamma=\alpha+\beta$
(5) let $L_{0}=\frac{1}{y+1}$

When performing these step calculations, the display on many calculators rounds up the contents of the registers, so use the storage register and carry the process to the end; this should avoid any small errors which can occur at this stage.

The values of y and L_{0} are used in the transformation to give

$$
\begin{aligned}
K L_{0} & =0.9150 \\
Y K L_{O} & =16.6289 \\
\frac{1}{K L_{O}} & =1.0929 \\
\frac{1}{Y K L_{O}} & =0.0601
\end{aligned}
$$

as in Fig. 12.
We now have to scale up to $\mathrm{f}_{\mathrm{O}}=1350 \mathrm{~Hz}$ and the operating impedance of 220 .
From $A=\frac{R}{2 \pi f}=\frac{220}{2 \pi \times 1350}$ (inductance multiplier)
and
$B=\frac{1}{2 \pi f R}=\frac{1}{2 \pi \times 1350 \times 220} \quad$ (capacitance multiplier)
Giving $A=0.0259 \mathrm{H}$
$B=0.53587 \mu$

Fig. 13. (above) the finished filter and (right) the bandpass response when used as a sideband filter for single sideband reception. The send level is OdBm

Multiply through by these multipliers to give the values shown in Fig. 13.

This network can now be made up. A word of caution is needed here. Set up the three PICs to have the same conversion factor (I used 5000p 1\% and 10k 1\%).

If necessary, to get the conversion factors equal, trim the values of R_{3} or R_{2}.

I used MC 1458 op amps with $\pm 12 \mathrm{~V}$.
The conversion factors trimmed to be $\mathrm{K}=\frac{5 \cdot 7155}{10^{6}}$

I selected the capacitors by tuning, using one of the PICs, and the setting resistors were 2%.

WORKED EXAMPLE 2

For simplicity we again use a single section. Attenuation in stop band 40 dB . Band centre 894 Hz . Terminating resistance 330.

From the charts we select

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{s}}=40 \mathrm{~dB} \\
& \omega_{\mathrm{s}}=2.418 \\
& \mathrm{C}_{1}=1.910 \\
& \mathrm{C}_{2}=0.145 \\
& \mathrm{~L}_{2}=0.905 \\
& \mathrm{C}_{3}=1.910 \\
& \omega_{2}=2.762
\end{aligned}
$$

Table A4-1
1dB ripple

For 40 dB this data gives steepest cut. Calculate the reciprocals for the LP to $B P$ at $\omega_{0}=1$

$$
\begin{aligned}
& \mathrm{L}_{1}=0.5236 \\
& \mathrm{C}_{2}=1.1050 \\
& \mathrm{~L}_{3}=6.8966
\end{aligned}
$$

Proceed to transform the middle section as in the first example to give

$$
\begin{aligned}
Y & =9.5155 \\
L_{0} & =0.0951 \\
K L_{0} & =0.6559 \\
Y K L_{0} & =6.2407 \\
\frac{1}{Y K L_{O}} & =0.1602 \\
\frac{1}{K L_{0}} & =1.5247
\end{aligned}
$$

At this stage we have the bandpass filter prior to scaling. See Fig. 14.

Fig. 14. (above) bandpass filter prior to scaling and (below) final filter

Scale to 330 and $f_{0}=894 \mathrm{~Hz}$ using the scaling factors as below.
$A=\frac{R}{2 \pi f}=\frac{330}{2 \pi \times 894}=0.0587$ (inductance multip!ier " h ")
$B=\frac{1}{2 \pi f R}=\frac{1}{2 \pi \times 894 \times 330}=0.53947$ (capacitance
Final filter is shown in Fig. 14.
As in the first example, set up the three PICs. Set their conversion factors to be exactly the same. Trim R_{2} or R_{3} to achieve this condition.

Select the capacitors by either bridging them, or resonating with an accurately set up PIC.

Fig. 15. Response of the final filter. Compare the bandwidth ratio $\left(B_{40} / B_{1}\right)$ with the figure ω_{s} in the prototype

REFERENCES

Realisation of gyrators using op amp and their use in CR active net work synthesis

PROC IEE Vol. 116 No. 11 Nov ' 69

Design of a.f. CR bandpass filters

by Haigh and Jeffers
Radio and Electronic Engineer Vol. 42 No. $8{ }^{\prime} 72$
An active a.f. bandpass filter
by Davies
Radio Communication Jan '77

PE POPULAR PROJECTS

Our book PE Popular Projects containing a selection of 19 popular projects is now on sale at newsagents and components stores. The book costs $£ 1.25$ from retail outlets and is also available for $£ 1.50$, UK post paid, or $£ 1.80$ overseas surface post paid, from Post Sales Department (PE Popular Projects), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.

Where less gives you more...

Cheaper than the infamous imitation, yet it offers you so much more - Mutek present the stunningly successful Superboard Series II.
The great features of the original Superboard are well known, and much copied - ultra-fast Microsoft BASIC, proper 53-key keyboard, superbly reliable cassette interface, sturdy construction, easy expansion to discs, and plenty more besides. The new Series II extends these features still further, with a new programmable screen format $(25 \times 25$ or $48 \times 14)$ with protected 'windows', new 8 -bit digital-to-analogue port, new latch outputs, new controlled reset. And also, fitted as standard, a special version of the proven CEGMON monitor, with full support for machine-code and disc operation, and new leatures for the Superboard Series II.
There's masses of software for the Superboard, along with a wide range of add-ons and full technical support from Mutek.
All this - and yet the price is down - to $£ 149+$ VAT, ready built, tested and guaranteed. And that's a good $£ 25$ less than that imitation!
Superboard Series II, with $4 K$ RAM and CEGMON monitor: $\mathbf{£ 1 4 9}$ Power supply kit (5 V 3 A) $£ 15$; metal case (much sturdier than ABS - and it doesn't melt!) $£ 27$; extra 4 K RAM a mere $£ 5$! Prices quoted exclude VAT.

Mutek — great computing . . . for less than you expect

 Mutek - the independent Ohio Scientific specialists - Quarry Hill, Box, Wilts. Telephone: Bath (0225) 743289
Guess who builds this great

Logic Probe...YOU!
 With this easy-to-build Logic Probe Kit from GSC and just a

 few hours of easy assembly - thanks to our very descriptive step-by-step manual - you have a full performance logic probe.With it, the logic level in a digital circuit is indicated by light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from either leading edge. You'll be able to probe deeper into logic

Complete, easy-to-follow instructions help make this a one-night project. with the LPK-1, one of the better tools from GSC.

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Limited, Dept. $5 Z$ Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex. CB11 3AQ Telephone: Saffron Walden (0799) 21682

Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex.		
$\begin{aligned} & \text { Inc P\&P and } 15 \% \text { VAT } \\ & \text { LPK-1 £14.86 } \end{aligned}$	I enclose cheque PO for E	FREE Catalogue tick box
Phone your order with Access, or American Express	Barclaycard Card No.	date

Telex: 817477.

Continuity MARTIN KENT PE Continuity Meter DP500

THE present trend in electronics is for equipment to incorporate more functions in a gradually reducing space. This is a good policy until the equipment malfunctions and then the small space can add other problems. The DP500 Continuity Meter is intended to speed fault finding on crowded p.c. boards or complex cable looms.

The LE DPM200 panel meter is used to give four resistance measurement ranges providing accurate indication between 0.1Ω and $20 \mathrm{M} \Omega$. A low-power piezo-ceramic alarm is included to produce an audible output when the measured resistance falls below a preset level. Using the audible output, resistance may be assessed without the need to look at the display, leaving the operator to give full attention to the circuit under test. When a fault condition is found, the resistance may be measured accurately on the display. The threshold detection principle may be easily adapted for use in other instruments.

CIRCUIT DESCRIPTION

The Continuity Meter circuit diagram is shown in Fig. 1. Ratiometric resistance measurement is employed which eliminates the need for calibration by comparing the applied resistor to metal film reference resistors R1-R6.

$$
\text { Display }=1000 \frac{R \text { unknown }}{R \text { reference }}
$$

Protection against voltage being applied to the input of the panel meter is provided by R10 and TR2. In the presence of applied voltage TR 1 turns on and shunts current through the PTC thermistor which increases in value to reduce the input current to a safe level.

Resistance measurement may be combined with an alarm output triggered when the input resistance falls below either a fixed or variable threshold.

The piezo-ceramic alarm specified produces large audible outputs even at low operating voltage and current consumption is very small. The alarm is triggered by IC 1 which compares the applied voltage on pin 3 against the threshold voltage on pin 2. During normal resistance measurement the voltage developed across the external resistor will be in the range $0-200 \mathrm{mV}$ and this is applied to the non-inverting input of IC1. This input has extremely high input impedance of typically $10^{12} \Omega$ such that loading of the input voltage will be negligible and accuracy of measurement will not be impaired. A comparator is essentially an operational amplifier operated in open-loop mode with high gain and the basic configuration is shown in Fig. 2.

The output of the comparator has two output states:
Vin $>V$ th then output is high
Vin $<V$ th then output is low
The LE DPM 200 panel meter has a very accurate 100 mV reference voltage available between REF + and REF-. Resistors R10-R12 form a potential divider across the reference voltage to form an extremely stable 10 mV threshold for IC1 when the instrument is switched to fixed threshold mode. The 10 mV figure represents a 0.5% level of the 200 mV full scale, which is equivalent to 1Ω on the

SPECIFICATION

Function	f.s.d.	Resolution	Accuracy
Resistance	200Ω	0.1Ω	0.5%
	$2 \mathrm{k} \Omega$	1Ω	0.5%
	$200 \mathrm{k} \Omega$	100Ω	0.5%
	$20 \mathrm{M} \Omega$	$10 \mathrm{k} \Omega$	0.5%

Fixed Threshold: alarm sounds when applied resistance is less than 0.5% of range.
Adjustable Threshold: alarm sounds when applied resistance is less than threshold which may be set anywhere within the range.
200Ω range, 10Ω on the $2 \mathrm{k} \Omega$ range etc. The alarm will be triggered when the input falls below the level set by the range switch S2.

To provide increased flexibility of operation, a further position on the function switch enables the alarm to be generated when the input falls below an adjustable threshold. The bandgap reference voltage of typically 1.2 V is available between REF BG and REF- on the LE DPM200.

[6656]
Fig. 2. Comparator action

Fig. 1. Circuit of Continuity Meter

E6562

Fig. 3. Printed circuit board

Fig. 4. Companent overlay

COMPONENTS . . .

Resistors
$\left.\begin{array}{ccc}\begin{array}{cc}\text { R1 } & 9 \mathrm{M} \\ \text { R2 } & 900 \mathrm{k}\end{array} & \\ \text { R3 } & 90 \mathrm{k} & \\ \text { R4 } & 9 \mathrm{k} & \text { metal film } 0.25 \% \\ \text { R5 } & 900 & \\ \text { R6 } & 100 & \\ \text { R7 } & 1 \mathrm{k} \\ \text { R8 } & 220 \mathrm{k} \\ \text { R9 } & 100 \mathrm{k}\end{array}\right\} \quad$ carbon film 5%

Variable Resistors
VR1 47 k
Capacitor
C1 22 M
16 V tant. bead
Semiconductors

IC1	LM392N
TR1	MPSA42
TR2	MPSA42

Panel Meter
ME1 LE DPM200 (see special offer)
Thermistor

TH1	PTC	$1 k$
TH2	PTC	$1 k$

Miscellaneous
Instrument case
P.c.b.

Slide switches 4-pole 4-way (2)
Piezo-ceramic alarm SM2
Battery connector
Input terminals, p.c. mounting (2)
Ribbon cable
Self-tapping screws M3 (3)
A kit of components (excluding the DPM200 and case) is available at $£ 12.95$ inc. VAT from
Lascar Electronics Ltd., Unit 1, Thomasin Road, Basildon, Essex.

Resistors R13 and VR1 attenuate the reference and VR1 provides an adjustable threshold for IC1. The higher bandgap reference voltage is used to provide adjustment over the full scale of $0-200 \mathrm{mV}$. The variable resistor may be

Fig. 5. Front panel template
adjusted when the instrument is in use such that the resistance threshold level may be altered to suit the circuits being tested.
The threshold detection techniques employed in the instrument could be used in most instruments using the LE DPM200 as the $0-200 \mathrm{mV}$ input to the DPM is a standard feature.

Switch S2b selects the appropriate decimal point on the display and S2c selects the correct resistance units on the display of either ohms, kilohms or megohms according to the selected range.

Fig. 6. Interior case cutting details.

CONSTRUCTION

The few components required for the Continuity Meter simplify construction which should be commenced with the resistors, then semiconductors. Position the switches and check that they are perpendicular to the p.c.b. before soldering. The input terminals, alarm unit and battery connector should then be fitted and the panel meter connected to the p.c.b. by the ribbon cable.

Connect the battery and with the function switch set to resistance measurement the display should indicate a 1 in the leading digit with other digits suppressed on each range. This is the overrange indication.

Switch to Fixed Threshold and when the input terminals are shorted the alarm should be triggered. Triggering of the alarm at the fixed and variable threshold levels may be tested with various resistors if desired.

When testing is complete, the p.c.b. may be secured in the case using three self-tapping screws and when the panel meter is located in the case lid the case may be clipped together.

AMPS-TUNER-CASSETTE

30 watt amp MC input SA4 $130 \mathbf{£ 7 5 . 0 0}$ Stereo Tuner ST 4120
Cassette full features SC 4200 50 watt amplifier WA7700 20 watt amplifier LA2020 This new range of Electronics from Videotone redefines the words quality and value for money to a new high.

MICROPHONES

MU 105-22

> MU 105-12
$£ 29.30$
MU 25 C
£22.25

Quality plus value ~ always

* A MESSAGE FROM VIDEOTONE *

Dear Customer
You will find that the products advertised on this page are the best possible value for money. They are only low in price because we have eliminated large amounts of selling costs that other brands have to suffer. These savings are passed directly onto you. We have full brochures on any specific item you may be interested in and a competent realistic staff of engineers at our London Showrooms to help you in your choice. Our consumer protection packages are comprehensive and we offer every form of financing you may require. We carry out our own servicing and are dedicated to giving Value for Money. We are confident our products are unbeatable. You may purchase with confidence bec ause our Engineers have specially selected them from competitive sources throughout the world and we import them directly ourselves. Remember, you have 21 days trial period on all products. That is the measure of our confidence.

V A ardcantte
Cliff Hardcastle, Managing Director

ALL
PRICES
INCLUDE

VAT

ALL PRODUCTS ON DISPLAY \& CONTINUOUS DEMONSTRATIONS , E 10EOTONF \square

Interfacing COMPUKTT

Part 6 D. E. Graham

THIS month we shall be looking at applications of the 6522 Versatile Interface Adaptor.

6522 VERSATILE INTERFACE ADAPTOR.

The third section of the Analogue Board consists of a 6522 Versatile Interface Adaptor. This is an extremely useful 16 register device, providing two programmable 8 bit input/output ports with handshaking and interrupt control, two 16 bit timers, and a serial input/output port. Fig 6.1 gives its schematic diagram.

Because of the complexity of this chip, we are forced to be highly selective in the treatment of it here, and have chosen to concentrate on the use of its timing and counting registers. In this context we will explore a number of practical applications including a signal generator, a digital frequency meter, a digital capacitance meter, and a real time clock.

For a treatment of aspects of the 6522 not covered here, the reader is referred to the bibliography at the end of the article.

6522 INTERFACE

Fig. 6.2 gives the circuit of the 6522 section of the Analogue Board. The device is selected by the BL2 line from the Decoding Module, giving it a base address of 61344 decimal. All external connections to the 6522 are made via the 16 pin di.i.l. sockets SK4 and SK5 on the Analogue Board (see Fig. 6.3 for pin connections). These have been made similar to those of SK3 and SK4 of the Decoding Module for the purposes of interchangeability.

The 6522 is a much more demanding device to interface than the 6821 PIA; and the timing and state of the chip select, $\varnothing 2$ and RN signals and ground connections are much more critical. For this reason, as suggested earlier, leads between the Analogue Board and the Decoding Module should be kept to a few inches in length. It is also necessary to enhance the earthing between the 6522 and IC2 on the Decoding Module, and between the UK101 earth track close to its expansion socket and the 6522. This is accomplished by soldering two leads as indicated in Fig. 6.4. For the same reason a 1 n capacitor (C18) not provided for in the published p.c.b. design, but included in the kit supplied by Technomatic Ltd., must be taken from the 6522 chip select line (pin 23) to ground (or Vcc). This is most easily accomplished by soldering the capacitor between pins 23 and 24 of the 6522 on the underside of the board. This capacitor has the effect of delaying the chip select pulse sufficiently to coincide with the arrival of the slightly misshapen and overworked 02 and R / W signals.

TESTING THE 6522

After checking the supply to the socket of IC1, the 6522 should be inserted, and the program listed in Table 6.1 run. This displays the states of the 6522's sixteen registers. Even after a Reset, these should contain a variety of data. If all registers read the same, then the chip is not interfacing
correctly, and checks should be made on pins 1,20, and 2238 of IC1 for a faulty connection or short circuit, either on the Analogue Board itself, or in the connections to the Decoding Module.

Once the registers appear to read correctly, data may be written to them using the program of Table 6.1. After displaying a readout of each of the 6522's registers, the program requests a register number, and data to be entered in it. And after performing the writing operation, will display the new states of all registers. When using this program in initial tests, it should be remembered that by no means all of the 6522's registers can be directly written to. To test the operation of the 6522 for both Read and Write operations, a convenient pair of registers to use is 2 and 3 . These should each accept any integer from 0 to 255 , and the program should display the value entered, on subsequent readout.

This is also an appropriate point to test the Reset function. Pressing the Reset button on the Decoding Module should reset certain (but not all) of the 6522's registers. As a test, it should be found that registers 2 and 3 are set to zero by this operation. Because of the complexity of the VIA it is advisible to reset it in this way before carrying out any of the experiments below using the two parallel ports or the timers; although as mentioned earlier, the Decoding Module Reset line is automatically activated at power-on.

USE OF THE PARALLEL PORTS

The 6522 has a pair of 8 bit input/output ports very similar to those of the 6821 PlA , though because of its extra provision of registers it is much easier to configure than the latter. Table 6.2 gives the configuration of the 6522's sixteen registers. From this it may be seen that registers 0 and 1 are the data registers for ports B and A respectively; note the reversal of order here. Registers 2 and 3 (the Data Direction Registers) determine whether each bit of port B and Port A Data Registers are set for input or output. This is very similar to the functioning of the 6821's Data Direction Registers.

To set port B for output on all 8 bits, the value 255 should be placed in register 2. This may be accomplished either by executing the command POKE 61346, 255, or by using the program in Table 6.1 to enter the data manually. In either case this should set the port B data pins (ie pins 9-16 of SK5) to zero volts. To output data through the port, that data should then be written to register O (at 61344). Thus for example the two commands:

> POKE 61346, 255 POKE 61344, 15
will cause an output on port B of 15; or in other words, pins $16,15,14$ and 13 of SK5 will read a one (about 4.5 volts), while pins $12,11,10$ and 9 will read a zero (a few tens of millivolts). The configuration of port A follows a similar pattern, with the Data Register (register 1) at 61345, and the Data Direction Register (register 3) at 61347.

Fig. 6.2. 6522 section of the Analogue Board

Fig. 6.4. Additional earthing leads to Analogue Board

Table 6.1. 6522 handling program
80 REM INTRFACING UKIOI PROGRAM 12
85 REM 6522 HANDLING PROGRAM
90 DIMAS(15)
$95 \mathrm{P}=61344$
100 FORA=0TO15
110 READAS
110 READAS (A)
120 NEXT
130 PRINT
140 FORA $=0$ T015STEP2
145 PRINTTAB(9)CHR\$(140);
150 PRINTTAB (10)A;TAB(15)AS (A);
160 PRINTTAB(20)PEEK (P+A);TAB(25);CHRS(140);
170 PRINTTAB (26)A+1; TAB (31)AS (A+1)
180 PRINTTAB (36)PEEK (P+A+1)
185 PRINTTAB (41)CHRS(140)
190 NEXT
200 PRINT
250 INPUT" REGISTER";R
255 IFR>15THEN130
260 INPUT" DATA";D
270 POKEP+R, D
280 GOTOL30
300 DATADRB, DRA, DDB, DDA, TIL, TIH,TlL, TIH
310 DATAT2L,T2H,SR ,ACR, PCR, IFR,IER,DRA

Data input on each port is configured by setting the corresponding bits in the Data Direction Register to zero. Thus the commands:

POKE 61347, 0

PRINT PEEK (61345)

will print the value of the data at port A. This will of course be a decimal representation of the binary states of the 8 input lines at pins 16-9 of SK4.

The 6522 does offer one extra facility over the 6821 PIA in the input mode: it may be configured to latch data in response to level changes in the peripheral control lines CA1 and CB1; and for details of how this is accomplished the reader is referred to the 6522 data sheets.

Since the pin connections to SK4 and SK5 of the Analogue Board have been made similar to those serving the PIA on the Decoding Module, devices such as the Joystick Control Box described in parts 2 and 5 of the series may be plugged directly into either of the 6522 ports if desired. In order to run the Joystick from port B of the 6522, for example, the Joystick header should be plugged into SK5 of the Analogue Board, and the Joystick program of Table 3.4 of Part 3 may be run with the following alterations:

$130 \mathrm{P}=61344$

150 POKE P + 2, 0
160 Deleted

THE 6522's TIMERS

The 6522 contains two 16 bit counters which may be used for timing and/or counting operations. The two counters, usually referred to as T1 and T2 are somewhat different in operation, and each may be used in a number of different modes. Mode selection is carried out by setting the appropriate bits in the Auxillary Control Register and the Interrupt Enable Register. See Table 6.3.

Timer T1 will only count at the ϕ_{2} clock rate, and may therefore only be used in timing operations. At the end of each count it may be variously conditioned to cause an in-

Table 6.2. The 6522's registers			
Register Number	Address (Decimal)	Register Function	Nemonic
0	61344	Port B Data Register	DRA
1	61345	Port A Data Register	DRB
2	61346	Port B Data Direction Register	DDA
3	61347	Port A Data Direction Register	DDB
4	61348	Timer T1 Low Order Byte	TIL
5	61349	Timer T1 High Order Byte	TIH
6	61350	Timer T1 Low Order Byte	TIL
7	61351	Timer T1 High Order Byte	TIH
8	61352	Timer T2 Low Order Byte	T2L
9	61353	Timer T2 High Order Byte	T2H
10	61354	Shift Register	SR
11	61355	Auxiliary Control Register	ACR
12	61356	Peripheral Control Register	PCR
13	61357	Interrupt Flag Register	IFR
14	61358	Interrupt Enable Register	IER
15	61359	Port A Data Register	DRA

terrupt and/or to switch the polarity on PB7 (data line 7 of port B of the VIA, accessed through pin 9 of SK5). This. counter may also be configured either in a one-shot mode, in which case only a single interrupt, or a single change in polarity occurs on PB7; or it may be configured in the free running mode, in which case a continuous series of interrupts may be produced, and a continuous square wave train of predetermined frequency may be output at PB7.

Timer $T 2$ can be conditioned to count either at the $\varnothing 2$ rate, or to count the pulses appearing on PB6 (data line 6 of port B of the VIA, accessed through pin 10 of SK5). When a predetermined number of pulses from either source has been counted, T2 can cause an interrupt to signal this event. Timer T2 may also be conditioned to produce clock pulses for the 6522's shift register, though there is not the space here to discuss this latter feature.

The precise operation of the two counters is best understood with reference to specific applications. Timer T2 is the least complex of the two, and we will look at this first.

EVENT COUNTER

Since T2 is able to count incoming pulses on PB6, it may be used as a simple event counter. Only one bit (bit 5) of the Auxilliary Control Register controls the operation of T 2 . When it is at zero, T2 counts at the $\varnothing 2$ rate. Setting it to one on the other hand causes it to count pulses on PB6. For an event counter therefore, the value 32 should be loaded into the ACR (register 11 at 61355), so as to give a one at bit 5 . For initial tests this may be done manually with the program of Table 6.1. It now remains to set the counter operating. This is accomplished by loading data into T2's latches. The latches are a pair of 8 bit registers that may be loaded by writing data to registers 8 and 9 of the VIA. For the purposes of the event counter it is probably easiest to write 255 into each of these. This may be done using the manual entry program. Writing 255 into register 8 will have no apparent effect, but when register 9 is written to, the data in the two latches will automatically be loaded into the counting registers of T2, and the count started. Reading registers 8

$\begin{aligned} & \text { Register } \\ & 11 \end{aligned}$	Nemonic ACR	FUNCTION OF EACH BIT						$\begin{aligned} & 1 \\ & \hline \text { Port B } \\ & \text { Latch } \\ & \text { Enable } \end{aligned}$	0	
		7	6	5	4	3	2			
		7 11 Control		T2 Control	Shift Register Control				Port A Latch Enable	Table 6.3. Function of Auxiliary Control,
12	PCR	CB2 Contro			CB1 Control	CA2 Control			CA1 Control	Peripheral Control, Interrupt Flag, and
13	IFR	IRQ	T1	T2	CB1	CB2	Shift Register	CA1	CA2	Interrupt Enable Registers of the
14	IER	Interrupt Control	T1	T2	CB1	CB2	$\begin{aligned} & \text { Shift } \\ & \text { Register } \end{aligned}$	CA1	CA2	6522

and 9 has the effect of reading the value of the ongoing count, and with no signal on PB6, this should continue to be 255 for each register.

To use the event counter to count switch closures, a debouncing circuit is essential. Fig. 6.5 gives a suitable circuit using an NE555 in the monostable mode. It is supplied by a 5 volt line from SK5. Each time that the push button is closed T2's counting registers will decrement by one.

By using the program in Table 6.4, setting up the event counter on T2 may be streamlined a little. This loads the ACR with 32, and places 255 into registers 8 and 9, and then continuously monitors their contents. If any change is detected, it prints out the new contents, suitably deducted from 65535, so as to effect a count up rather than down. If no pulses are present, a single zero will be printed. Such a counter may of course be used with any device producing a useable voltage transition, such as a photocell or Geiger counter for example, though in both cases the signals would need to be suitably conditioned before application to PB6. In the case of an I.d.r. light sensor, a single transistor amplifier driving pin 2 of the NE555 monostable of Fig 6.5 should prove to be adequate.

A SIMPLE FREQUENCY COUNTER

Similar principles may be used to create a simple frequency counter. Table 6.5 gives a program which achieves this. The signal to be measured is applied to PB6, and the number of pulses occurring during a one second interval is counted, so giving the frequency in Hz . The counting period is determined by the assigned value of T in line 105. By trimming this value, accuracies of up to about 0.1% should be possible, which will be sufficient for many applications.

The frequency under test is calculated in line 180 of the program from the data in the counting registers of T2; and then the subroutine at line 2000 is entered. This POKEs the value of N (the frequency measured) directly on to the screen at a location assigned in line 2200. The subroutine is then re-entered at line 2220 to POKE up the units of measurement. In this case these are Hz only, but in a later program the same routine is used to provide an auto-ranging readout. The routine at 2000 is quite portable, and may be used for POKEing to the screen any assigned variable, or if entered at 2220 will POKE up any assigned string variable. For use on the Superboard, it should only be necessary to alter the value of S , the screen address, in line 2200.
The test signal (applied to PB6) should be a t.t.l. compatible pulse train of frequency from a few Hz up to about 65 kHz . For greater precision at low frequencies a longer waiting loop could obviously be employed; while for higher frequencies a shorter waiting loop could be used, but accuracy would be likely to decline as a result. In any case the maximum useable frequency is determined by the 6522 's timing characteristics, which require pulses on PB6 to be at least $2 \mu \mathrm{~s}$ in duration, and of $2 \mu \mathrm{~s}$ separation. For frequencies above 250 kHz therefore, a prescalar should be used. Also it should be noted that if it is required to use this counter arrangement for measuring sine rather than square waveforms, some form of input conditioning will be required to square the waveform, such as a high gain amplifier.

DIGITAL CAPACITANCE METER

The frequency counting facilities provided in the case above may be conveniently employed to produce a digital capacitance meter. This uses an NE555 timer i.c. in the astable mode to generate a frequency dependent on the unknown capacitor. The output of the 555 is fed to PB6 of the 6522, and is counted for one second intervals by timer T2.

Fig. 6.6 gives the circuit of the tester, which may be built on a small piece of Veroboard, and is powered by the 5 volt
supply available at SK5, which also carries the PB6 line.
The output frequency of the 555 in this circuit is determined by the expression $F=0 \cdot 7 /(R \times C 1)$, where $C 1$ is the value of the capacitor under test. The program for the tester employs this fomula to print out the value of C 1 in nanofarads. It allows for any value of R to be used, and requests the value employed to be entered at the outset; although once a value (or series of values) has been decided upon, it may be easiest to write it into the program.
Fig. 6.5. NE555 monostable debounce circuit for use with event counter

[^5]80 REM INTERFACING UK101 PROGRAM 14
90 REM SIMPLE FREQUENCY COUNTER USING 6522
95 REM SQUARE WAVE INPUT ON PBG
9 FORZOITOL6:PRINT:NEXT
97 PRINT,"SIMPLE FREQUENCY COUNTER"
98 PRINTTAB(II)"('P' PRINTS - SPACE BAR EXITS)"
9 PRINT:PRINT:PRINT:PRINT:PRINT
$100 \mathrm{P}=61344$
$105 \mathrm{~T}=1110$
110 POKEP $+11,255$
120 POKEP $+8,255$
$130 \mathrm{POKEP}+9,255$
140 FORQ=OTOT:NEXT
$150 \quad \mathrm{Y}=\mathrm{PEEK}(\mathrm{P}+8)$
$160 z=\operatorname{PEEK}(\mathrm{P}+9)$
$180 \mathrm{~N}=65535-\mathrm{Y}-256$ *2
200 GOSUB2000
$220 \mathrm{~S}-\mathrm{S}+10$
230 Ns="H2"
240 GOSUB 2220
250 GOSUB 3000 300 GOTOI10 2000 REM
$2200 \mathrm{~S}=54110$
2210 NS-STRS(N)
2220 L=LEN(N\$)
2240 FORM=1TOL
2250 POKES+H, ASC(MID\$(H\$, $\mathrm{M}, 1$))
2260 NEXT
$2265 \operatorname{IFPEER}(S+M)=32$ THEN 2280
2270 POKES $+\mathrm{M}, 32: \mathrm{M}=\mathrm{H}+1:$ GOTO2265
2280 RETURN
3000 REM
3020 PORE5 30,1
3030 PORE57088,253
3040 IPPEEK $(57088)=239$ THENPORE530,0:END
3050 IFPEEK (57088) 25 53THENPRINT:PRINT
3060 POKE530,0 3080 RETURN

The circuit appears to give best results with $R=1 \mathrm{~m} \Omega$ (giving a range from about 100p to about 100 n , or $\mathrm{R}=100 \mathrm{k}$ (giving a range from about 500 p to 1 m). Using lower values of R (eg 10 k or 1 k) to extend the range to higher values of capacitor unfortunately corrupts the mark to space ratio of the output, causing a false reading-although it might be possible to compensate for this somewhat in calculating the capacitor value. Another way to extend the range would be to use a longer waiting loop. A ten second loop, achieved by setting T to about 10000 in line 105, would extend the range at the high end by a factor of 10 .

TIMER T1*

Timer T1 is a slightly more complex device than T2, and makes use of four count and latch registers, where T2 uses only two. It also differs significantly in being able to count only at the $\emptyset 2$ rate, but is able to toggle PB7 each time a count is completed. Thus while T2 can be conveniently conditioned to count pulses on an external line (ie PB6), T1 can produce an external square wave output; and in fact by wiring PB6 and PB7 together (and taking a 1 kO load resistor to earth) counters T1 and T2 could be cascaded to give a 32 bit counter. As with timer T2, we will use specific examples to illustrate its operation.

PRECISION FREQUENCY GENERATOR

With minimal conditioning operations T1 may be set up to produce a square wave output on PB7 (pin 9 of SK5) of frequency between 10 Hz and 250 kHz .

T1's counting mode is determined by bits 6 and 7 of the Auxilliary Control Register. See Table 6.7. With bit 6 at one, the counter operates in the free running mode, while a zero will put it in the one-shot mode. Bit 7 determines whether there will be an output on PB7 (bit $7=1$) or not (bit $7=0$). Incidentally when PB6 or PB7 are selected for use with T2 or T1 this takes precedence over their use as input/output data channels for port B.

From Table 6.7 it may be seen that placing a one at bits 6 and 7 of the ACR conditions T1 for continuous output on PB7. This is arranged in such a way that the output of PB7 is inverted at the end of each count.

It only remains to place the required values for the count in T1's latch registers. These are written to at registers 4 (low order byte) and 5 (high order byte); and as with T2, writing the high order byte automatically causes the two values to be loaded into the counter, and counting to begin. When T1's counting registers reach zero, the polarity on PB7 is inverted, and the contents of the two latch registers again loaded into the counters, and so on.

This operation may be set up using the manual entry program of Table 6.1. As a test, place 192 into register 11 (setting bits 6 and 7 of the ACR), followed by 2 into register 4 , and 0 into register 5 . This should produce a square wave output on PB7 of period $8 \mu \mathrm{~s}$.

The length of the period is given by the expression $\mathbf{T}=$ $2(256 A+B+2) \mu s ;$ where A is the high order byte, and B the low order. The initial multiplication factor of 2 arises because of the toggling of the output effectively dividing the frequency by 2 , and the additional 2 in the expression is associated with the time taken to load the counters etc.

It should be noted here that because of the configuration of the 6522's registers, the latches of timer T1 are written to at registers 4 and 5, but are read at 6 and 7. Data entered in register 4 actually appears on reading register 6 , and similarly for 5 and 7. Reading registers 4 and 5 gives the current value of the count in progress. In the author's experience register 4 is particularly sensitive to good earthing of the 6522 and to good timing of chip select, $\varnothing 2$ and R / W, and it is advisable to check that data written into register 4

```
60 REM INTERFACING UK101 PROGRAM 15
70 REM 6522 DIGITAL CAPACITANCE mETER
80 PRINT" DIGITAL CAPACITANCE METER"
80 PRINT", DIGITAL CAPACITANCE METER" (NING NES55 DRIVING PBG OF VIA"
85 PRINT"UUS
86 PrINT;PRINT (NPUT" RILOHMS";R.
900 P-61344
100 P=61344
110 POKEP+11,255
110 POKEP+11,255
120 POKEP+8,255
130 ROKEP+9,255
140 FORQ=0TOT:NEX
150 Y=PEEK(P+8)
160 Z=PEEK(P+9)
190 IFHZ<3THENPRINT"OUT OF RANGE":GOTOLIO
190 IFGZ<STHENPRNT OUT OF RANGE":GOTO1LO
195 IFHz<lOTHENPRINT,"LOW PRECISION RESULT"
200 C=700/(H2*R)
210 c=1000*c
230 Q=4
240 IFINT(C/10-Q)<1THENQ-Q-1:GOTO240
250 C=INT(.5+C/10^(Q-1))*10^(Q-1)
260 PRINT,C;
260 PRINT,C;
300 gotolio
```

Table 6.7. Functions of bits 6 and 7 of 6522 Auxiliary Control Register

bit 7	bit 6	Mode
0	0	T1 one-shot mode-Generate a single time out interrupt each time T1 is loaded. Output to PB7 disable
0	1	T1 free-running mode-Generate continuous interrupts. Output to PB7 disabled
1	0	T1 one-shot mode-Generate a single time out interrupt and an output on PB7 each time T1 is loaded
1	1	T1 free-running mode-Generate continuous interrupts and toggle output on PB7

does actually appear at register 6. As a test, try for example the values 0 then 1 . If these fail to write in correctly, a check should be made that C18 is in place, and that the extra earth connections described earlier are properly made-some experimentation may be required here.

Using the 6522 to toggle the output on PB7 allows the implementation of very precise frequency generation; although of course only frequencies corresponding to integral numbers of counts may be generated, and ultimately the accuracy is limited by that of the UK101's 8 MHz crystal, which on the author's machine was about 1 part in 3000.

The program listed in Table 6.8 implements the signal generator. It first requests a frequency, and then outputs the nearest frequency available (rounding down), and at the same time prints out the exact frequency actually produced (within the limits imposed by the 8 mHz crystal). It will be noted when using.this program that at the high end of the scale, at 100 or 200 kHz , the choice available is somewhat limited. In fact one can either have a 4,6 , or 8μ s time period. At lower frequencies, much greater choice is available, and in the 1 kHz region for example, the frequency may be adjusted in steps of about 2 Hz .

FREQUENCY COUNTER USING T1 AND T2

One of the limitations to the accuracy of the frequency counter described earlier is the timing loop used to produce the one second delay during which the signal to be measured is counted. A more precise way to implement such a delay for higher frequencies is to use timer T1 in the one shot mode. T2 could then be made to count pulses on PB6 for the duration of T1's count. Stopping the count on T2 at the moment when T1 times out may be accomplished using a pair of NAND gates as shown in Fig. 6.7. The first gate (i.c. 1a) is used to invert the output of PB7 since this goes low rather than high during the count period. The signal to be tested is applied to the second gate (i.c. 1 b) with the result that an output to PB6 is produced only during the counting time of T 1 .

80 REM INTERFACING UKIOI PROGRAM 16 95 REM PRECISION SQUARE WAVE GENERATOR
95 REM USING
$100 \quad \mathrm{P}=61344$
100 P=61344
110 POREP $+11,192$
115 PRINT:PRINT:PRINT:PRINT
120 PRINT:PRINT:PRINT, "PRECISION SQUARE WAVE"
130 PRINT, "GENERATOR - O/P ON PB7 OF VIA"
135 PRINT:PRINT:PRINT
140 PRINT:PRINT" FREQ REQUIRED (10-250000 HZ)
140 PRINT:
145 INPUTF
150 IFF>=10ANDF < $=250000$ THENI 80
160 PRINT:PRINT" OUT OF RANGE - ENTER AGAIN"
160 PRINT:PR
170 GOTO140
$180 \mathrm{~N}=(500000 / \mathrm{F})-2$
$190 \mathrm{Nl}=\operatorname{INT}(\mathrm{H} / 256)$
$200 \mathrm{~N} 2=\operatorname{INT}(\mathrm{N}-256$ *N 1)
$205 \mathrm{~N} 3=256$ *N $1+\mathrm{N} 2$
$210 \mathrm{Fl}=500000 /(\mathrm{N} 3+2)$
215 PRINT:PRINT" EXACT FREQ GENERATED $="$;
220 PRINTFI; " HZ'
225 PRINTTAB(20);"OR ":
230 PRINT1000/F1;" M SEC"
240 POKEP +4, N 2
300 GOTO140
Table 6.8. T1 fre quency generator program
A t.t.l. wave train is then applied at point X, and the program in Table 6.9 run. This puts the value 160 into register 11 of the VIA, setting bits 7 and 5 high, and conditioning T2 for input on PB6, and T1 for the one-shot mode with output on PB7. T2 and T1 are then both loaded with the value 65535 (by placing 255 into both low and high order bytes), so setting in motion both counters. After a wait, the program POKEs the input signal frequency to the screen with auto-ranging units, then repeats the sequence.

As with the frequency counter described earlier, signals must be below 250 kHz , and be t.t.l. compatible. And again a prescalar may be used to extend the upper limit. As a simple example Fig. 6.8 shows a 7490 configured as a divide by ten counter which effectively extends the range up to about 2 mHz . The accuracy of this frequency counter $(\pm 20 \mathrm{~Hz})$ is determined by the relatively short period (about $1 / 20 \mathrm{sec}$) during which the sample is taken. The only way around this with this method is to use software to extend the counting period to several count cycles of T1.

THE USE OF INTERRUPTS

One obvious application of the 6522 VIA in the personal computer context is the implementation of a real time clock. There are many ways of achieving this. About the simplest would be to set either T1 or T2 counting down at the $\varnothing 2$ rate, and inspect its count registers periodically, calculating the time accordingly. Such a procedure however will tie up the CPU rather more than is necessary, rendering the simultaneous running of other programs difficult if accurate timekeeping is to be achieved.

An alternative approach which does not suffer from this drawback is to use the 6502's interrupt facilities. An interrupt provides a way of drawing the CPU's attention to a particular situation at the instant that it occurs, without the CPU having to waste time in waiting loops, perpetually examining the state of various registers for a given occurrence.

The 6502 has two interrupt lines: the NMI or nonmaskable interrupt, and the maskable $\overline{\overline{R O}}$ line. When either of these is taken low by some external device, the CPU will shelve what it is doing and start the execution of a separate set of routines. When it has completed these it will return to where it left off, and continue until further interrupts are sensed. In the case of the maskable interrupt, the CPU will only take notice of the $\overline{\mathrm{RQ}}$ line going low if the interrupt mask flag in the 6502's own status register is not set (ie at zero). This is not the case with NMI, which cannot be masked in this way, and is acted upon as soon as the CPU has completed the instruction that it was engaged upon when $\overline{\mathrm{NMI}}$ was taken low.

Interrupt facilities provided by the $\overline{\mathrm{RQ}}$ line may be used in a number of ways. As an example, they might be used to signal to the CPU that new data had arrived at a particular

port, and should be read in at the earliest convenience. Alternatively they might be used in the implementation of what is called an interrupt driven clock. Essentially this uses a counter to pull the $\overline{\mathrm{IRO}}$ line low at regular intervals, say 20 times every second. The interrupt routine can then count the number of times this occurs, and store the number of elapsed seconds, minutes and hours in RAM, returning to the main program when this has been done. Because interrupt handling routines are written in machine code, their execution times are usually very short. In the case of the interruptdriven clock the CPU will only spend a few microseconds every 50 ms on timekeeping activities, so that this can provide a very efficient way of implementing a clock function on a microcomputer system.

Next month we will give a program which achieves this using the 6522 on the Analogue Board. But for now we will take a look at the general principles involved in using the IRQ interrupt on the UK101.

A SIMPLE INTERRUPT ROUTINE

As a simple illustrative example we will consider an interrupt program which just increments a given memory location when an IRQ interrupt occurs. And to keep the hardware very simple, we will take the $\overline{\mathbb{R Q}}$ line low with a push button connected between $\overline{\mathrm{RQ}}$ and ground (pins 1 and 8 of the UK101 expansion socket).

Interrupts can only be handled using machine code since there are no appropriate Basic commands, and in any case for interrupt servicing, speed of operation is usually of the essence. The central part of an interrupt program is the socalled interrupt service routine, to which the CPU is directed every time the $\overline{\mathbb{R Q}}$ line is brought low. This must first of all save the contents of the 6502's operating registers by pushing them on to the stack. The 6502 automatically saves its program counter and statas register in this way, so that it is only necessary to include instructions for saving the Accumulator and X and Y registers; and even this is only necessary if their contents will be disturbed by the main body of the interrupt service routine.

In this case the main body of the routine will simply increment a given memory location. And when this is complete, the interrupt routine must restore the contents of the 6502's operating registers and finally execute a return to the program on which it was engaged prior to interrupt.

Table 6.10 gives a listing of an interrupt service routine which performs these functions. It is located at 0230 hex, and will cause the data stored at 022F hex to be incremented each time an interrupt is sensed.

0230 48	PHA
0231 8A	TXA
0232 48	PHA
0233 EE2FO2	INC \$022F
0236 68	PLA
0237 AA	TAX
O23868	PLA
023940	RTI

The first command PHA pushes the contents of the accumulator on to the stack. Next the contents of the X register are transferred to the accumulator, and are themselves pushed on to the stack for later retrieval. In this particular example these three commands are not in fact necessary, since the main body of the interrupt service routine does not use either the accumulator or the X register, and so their contents do not need to be protected in this way. The instructions are included here to illustrate the principle involved; and if the Y register is to be used in the service routine, then its contents should also be preserved in the same way.

The next command, INC 022F, increments the contents of 022F, while the three which follow, PLA, TAX and PLA, restore the contents of the X register and then the accumulator. Note that there is an effective reversal of order here, since the stack works on a first-in last-out basis. The final command, RTI, causes a return to the main program.

Before this interrupt service routine can be used, the UK101's interrupt system must be initialised in two ways. Firstly the 6502's IRQ mask must be cleared. This is performed by executing the instruction CLI. In the example we will do this by setting up a two instruction subroutine at 0228 hex. This involves placing 58 hex (CLI) at 0228, and 60 hex. (RTS) at 0229. We can then jump to this subroutine to clear the interrupt mask. Clearing the mask in this way must be carried out as a subroutine of the main program, since using a systems Reset on the UK101 to get back into Basic, automatically resets the IRQ mask again. This is why taking the IRQ line low has no effect during the normal running of Basic or machine code programs-IRQ is masked.

The second part of the initialisation procedure involves the

UK101's IRQ vector. This is a location in RAM (01CO hex, 448 dec) to which the CPU jumps when it accepts an IRQ request. We must load this location with an instruction that directs it to the interrupt service routine described above, which is located at 0230 hex. To do this, locations 01 CO , 01C1 and 01C2 are loaded with 4C, 30 and 02 hex respectively, representing the instruction jump (JMP) to 0230.

We are now in a position to test the IRQ interrupt. To do this, the data in Table 6.11 should be entered at the locations indicated, using the UK 101 Monitor. This effectively enters the CLI subroutine, the interrupt jump instruction at the IRQ vector, and the main interrupt service routine described above. When these are in, the BASIC program in Table 6.12 should be run. Lines 120-160 of this use the $\operatorname{USR}(\mathrm{X})$ call to clear the interrupt mask. The program then prints out a running count together with the contents of location 022 F hex. It will be seen that this latter changes after the IRQ line has been brought low using the push button. It will of course not simply increment by one, since during the finite time that the button is pressed, the CPU will complete many cycles through the interrupt service routine. It will also be noted that during the time that the button is pressed, the BASIC program will pause, resuming operation when it is released.

In more usual interrupt applications, the interrupt would be initiated by a device such as a 6821 or 6522 which can be instructed to take the $\overline{\mathrm{RO}}$ line high again as soon as the CPU acknowledges the interrupt. This prevents the CPU getting involved in an endless loop of interrupts, and at the same time clears the way for fresh interrupt requests. This is the case with the interrupt driven clock to be described in the next issue.
$\left.\begin{array}{lll} & \begin{array}{l}\text { Address } \\ 01 \mathrm{CO}\end{array} & \begin{array}{l}\text { Data } \\ 01 \mathrm{C} \\ \\ 01 \mathrm{C} 1\end{array} \\ & 01 \mathrm{C} 2 & 02 \\ & 0228 & 58 \\ \text { Table 6.11. Table } & 0229 & 60 \\ \text { of data for IRQ } & 0230 & 48 \\ \text { interrupt test } & 0231 & 8 \mathrm{~A} \\ & 0233 & 48 \\ & 0234 & 2 \mathrm{FE} \\ & 0235 & 02 \\ & 0236 & 68 \\ & 0237 & \mathrm{AA} \\ & 0238 & 68 \\ & 0239 & 40\end{array}\right\}$

Function

Replace Jump
Instruction at
IRQ Vector
Clear
Interrupt Flag

Interrupt
Service
Routine

80 REM INTERFACING UK101 PROGRAM 18
90 REM BASIC PROGRAM FOR USE WITH
92 REM MACHINE CODE ROUTINES TO TEST
94 REM UKIOI IRQ INTERRDPT
100 FORA=1T016:PRINT:NEXT
105 PRINT, "IRQ TEST PROGRAM"
106 PRINT, "POR USE WITH MACHINE CODE"
107 PRINT, "PROGRAM"
108 PRINT:PRINT"IF UK101 RANGS UP, CHECK MAGHINE CODE" 120 PORE11,40
130 POKE12,2
$160 \mathrm{X}=\mathrm{USR}(\mathrm{X})$
162 PRINT" IRQ MASK NOU DISABLED"
163 PRINT:PRINT
165 PRINT, "COUNT";" 022F"
170 PRINT,B;" ";PEEK(559)
$180 \mathrm{~B}=\mathrm{B}+1$
190 FORC=1T0500:NEXT
Table 6.12. Basic program for interrupt test

NEXT MONTH, as well as the interrupt driven clock, we will cover analogue to digital conversion, and discuss applications of the 8 channel A/D converter on the UK101 Analogue Board.

BIBLIOGRAPHY

6522 Data Sheet.
L. Leventhal, 6502 Assembly Language Programming.
R. Zaks, 6502 Applications Book.
R. Zaks, Programming the 6502.

The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Cortificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Radio Amateurs
Electrical Installation Work

Diptoms Courses

Colour T.V. Servicing
CCTV Engineering
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses
 es

A wide range of other technical and professional courses are available including GCE.
\qquad
Address
\qquad Age

To ICS, Dept 273H, Intertext House, London SW8 4UJ
or telephone 01-622 9911 (all hours)
\square
\square

The first portable scope with a component tester.

Capacitor 33 uF
Transistor E.C
Transistor E-E
B-EFuF +68 ohms
Oscilloscope Specifications:

Y Deflection
Bandwidth: DC. $10 \mathrm{MHz}(-3 \mathrm{~dB})$
Overshoot: Less than 1%
Sensitivity: $5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$ Input Imp: 1 M ohm // 25pf

X Deflection

Timebase: $0.2 \mathrm{~s}-0.2 \mu \mathrm{~s} / \mathrm{cm}$ Triggering $2 \mathrm{~Hz} \cdot 30 \mathrm{MHz}(3 \mathrm{~mm})$

Auto + level control Bandwidth: $\mathbf{2 H z} \cdot 1 \mathrm{MHz}$

General Information

MICRO-EUS

 Compiled by DJD.

 Compiled by DJD.}

Appearing every two months, Micro-Bus presents ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data. The most original ideas often come from readers working on their own systems; payment will be made for any contribution featured.

GAMES are the main topic in this month's Micro-Bus; three games are presented, in BASIC for the Acorn Atom. The final topic shows how to obtain a continuously-changing display on the ZX 80 .

THREE GAMES

The three games programs contain a large number of abbreviations to keep them compact, and those not familiar with the Atom may therefore find them difficult to follow. The following list of abbreviations will be helpful in understanding them:

F.	FOR
G.	GOTO
GOS.	GOSUB
IN.	INPUT
N.	NEXT
P.	PRINT
R.	RND
R.	RETURN
T.	TOP

The lower-case letters, after line numbers, are used as labels referenced by the GOTO or GOSUB statements.

SKI RUN

The first program, devised by Tim Dobson of Cambridge, simulates a ski run down a hill of random trees, with the aim of reaching a hut at the bottom of the slope. The skier is represented by a $+\operatorname{sign}$, and the hut as a white block: see Fig. 1.

Fig. 1. Display for the Ski-run game; the skier, shown as a ' + ', attempts to reach the white hut.

The game starts by asking you to enter the speed. and this can be in the range 0 (fast) to 500 (slow). Then the slope is displayed, and after a short delay the skier starts down the hill. The CTRL and SHIFT keys cause the skier to go left or right respectively, in order to avoid the trees. If the skier collides with a tree you fail, and if he reaches the bottom of the
screen safely, but misses the hut, he starts again at the top. If, however, he succeeds in reaching the hut, he can attempt a second run with more trees on the hillside.

PROGRAM OPERATION

The program, shown in Fig. 2, works by poking symbols directly to the Atom's screen memory. The variable S, contains the address of the start of the screen; a statement such as: S ? $\mathrm{P}=30$
pokes 30 into the Pth. screen location. First the program puts 15 trees at random places on the screen (line 25), and puts the skier at address R with a blank below him (line 30). Lines 40 to 100 then move the skier down the screen, testing for the CTRL and SHIFT keys, until he hits the hut or a tree. The expression $? \neq \mathrm{B} 001$ gives a value of 191 if the CTRL key is pressed, and 127 if the SHIFT key is pressed. The old position of the skier is -replaced by a blank (line 90), with a test to start again if the skier has reached the bottom, and the skier's new position is put in (line 100). Finally, there is a delay depending on K , the skill level.

Fig. 2. Ski-Run game, in BASIC, runs on an Acorn Atom.

$10 \mathrm{e}=3$; $\mathrm{S}=18000$; $\mathrm{V}=32$
20aIN. "SPEED (0-500)"K;U=15
$25 x C L E A R O ; F$. $\mathrm{T}=1 \mathrm{TOU} ; \mathrm{P}=\mathrm{R} . \varepsilon 511 ; \mathrm{S}$ PP=30; N .
$30 \mathrm{hR}=\mathrm{S}+39 ; \mathrm{RR}=43 ; \mathrm{R} ? \mathrm{~V}=\mathrm{V}$
$35 \mathrm{~S} 47=127 \mathrm{~F}: T=1 \mathrm{TO} 000 ; \mathrm{N}$.
40bP=R; 1 P? \#B001=191R=R-1; G.C
50 IR? 4 B001 $=127 R=R+1 ; G . C$
$60 \mathrm{R}=\mathrm{R}+\mathrm{V}$
70cIF?R=30G.e

110e?P=V; PR=158;P.S30"BAD LUCR"
115 P . -YOU CRASED

130 P. "YOU MADE IT WITH"U" TREES"
135 P. "NOW TRY"U+2" TREES" ${ }^{\prime \prime}$ U $=\mathrm{U}+2$
140 F.I=1TO7000; N.;G.X
150gIN."ANOTHER GAME "\$T.;IF?T.<>78G.a 160 E.

SNAKE

The second game tests your reactions and manual dexterity, and was written by Chris Cant of Edinburgh. It shows a snake moving around on the screen whose direction of movement can be changed by the keys: W (up), A (left), D (right), and Z (down). Digits appear at random on the screen, and if the snake collides with one of these its length increases by the value of the digit; see Fig. 3. The point of the game is to increase the length of the snake without allowing it to collide with itself.

The program, Fig. 4, includes a section of assembler, for the 6502, which scans the keyboard and detects whether the keys \mathbf{W}, \mathbf{A},

Fig. 3. The snake, about to swallow a digit and increase its length.

D, or \mathbf{Z} have been pressed. If a key-press is detected the routine stores the corresponding symbol, $4,<,>$, or U, in memory location G (line 180). Initially, a snake consisting of a single $>$ (code $\# 3 \mathrm{E}$) is set up moving from left to right across the screen (lines 300 to 330). The main program loop. lines 520 to 720 , is then repeated for each move of the snake, until a collision occurs. Variables H and T contain the addresses of the head and tail of the snake, and array D contains offsets to move the snake in the four directions. The head is first moved (line 520), and the square it moves to is tested to make sure that it is not part of the snake (lines 525 and 527). The square is also tested to see if it contained a digit. If so, the score. W, is increased by the digit's value, and the tail of the snake is held still for this number of moves (line 536); the effect is to increase the length of the snake by the digit's value. Otherwise, the tail of the head is moved (lines 615 and 630).

The program then checks the keyboard by linking to the machine-code scan routine. LLO (lines 640 and 670). Variables O and F are used as counters to determine how long the digits remain on the screen, and time until another one appears (lines 700 to 740). A random digit is poked to the screen in lines 760 to 790 .

SNAKE STRATEGY

The snake coils around on the screen, so that if it moves off the top of the screen it will reappear at the bottom. Since the screen contains only 16 lines, it is very dangerous to travel vertically, and you are apt to bump into your own tail. Therefore, the best strategy is to move horizontally most of the time, only moving vertically for short periods to swallow digits. If you score more than about 40 , congratulate yourself on excellent co-ordination!

Fig. 4. Snake game for the Acorn Atom. The assembler routine reads the keyboard; the BASIC section moves the snake.

5 REM SNAKE
0 DIMC4, G6, K6,LL 3,D4
$C!1=151 E 3 E 3 C ; P . \$ 21$
D! $1=\$ 4000211 F$
G!1=\#DFF700DF
G?5=0; G?6=*F7
$60 \mathrm{~K}!1=1$ 1E3E0015
70 K ? $5=0 ; \mathrm{K} 36=1 \mathrm{BC}$
100 REM assembler routine
$120 \mathrm{~F} . \mathrm{I}=1 \mathrm{TO} 2$; DIMP (-1$)$
$120 \mathrm{~F} . \mathrm{I}=1 \mathrm{TO} 2 ; \operatorname{DIMP}(-1)$
130 [:LLO LDY 910
140 :LL1 LDX 96
150 :LL2 STX \$B000
160 LDA *B001
$\begin{array}{ll}170 \\ 172 & \text { CMP G, } X\end{array}$
172 BNE LL 3
176 LDA K, X
90:LL3 STA G
$\begin{array}{ll}190 \\ 200 & \text { BNE LL } 2 \\ 210 & \text { DEY }\end{array}$
$\begin{array}{ll}210 & \text { DEY } \\ 220 & \text { BNE LL }\end{array}$
230 STY \#B000
240
250
2501;N.I
300 B=\% 8000 ; $W=5$; P. $\$ 6$; CLEAR 0
320 ? $\# 8022=\# 3 \mathrm{E} ; \mathrm{H}=\$ 0022 ; \mathrm{T}=\mathrm{H} ; \mathrm{J}=2 ; \mathrm{G}=32$
$3300=0 ; F=13 ; S=5 ; Y=40 ; Z=1 F F$
$520 \mathrm{DO} \mathrm{H}=(\mathrm{H}+\mathrm{D}$ PJ -Q$) \& \mathrm{Z}$
525 WAIT; $\mathrm{Q}=\mathrm{P}(\mathrm{H}+\mathrm{B})$
527 IFQ $=210 R Q=300 \mathrm{RQ}=600 \mathrm{RQ}=62 \mathrm{G} . \mathrm{e}$
$530 \mathrm{IFQ}\rangle \mathrm{Y} E=Q-30 ; W=W+E ; S=S+E ; O=0 ; F=1$
533 I=0;WAIT;? $(\mathrm{H}+\mathrm{B})=\mathrm{C}$ JJ
536 IFS<>1 Sms-1;G.a
$600 \mathrm{HAIT} ; \mathrm{E}=$? ($\mathrm{T}+\mathrm{B}$)
$610 \mathrm{jI=I+1;IFC} 3 I\langle>E$ G.j
$615 \mathrm{WAIT} ;(T+B)=Y$
$615 \mathrm{WAIT} ; ?(\mathrm{~T}+\mathrm{B})=\mathrm{Y}$
$630 \mathrm{~T}=\left(\mathrm{T}+\mathrm{D} \mathrm{PI}-\mathrm{Q}^{2}\right) \mathrm{Z}$
$630 \mathrm{~T}=(\mathrm{T}+\mathrm{D}$? $\mathrm{I}-\mathrm{Q}) \& \mathrm{Z}$
$640 \mathrm{a} ? \mathrm{G}=2 ; \mathrm{LINKLLO} ; I F ? G=2 \mathrm{G.g}$
670 WAIT
670 WAIT; $\quad(\mathrm{H}+\mathrm{B})=$? $\mathrm{G} ; \mathrm{J}=0$
$690 \mathrm{~mJ}=\mathrm{J}+1$; IPC?Jく>? G G.m
700sO $=0-1 ; F=F-1 ;$ IFO<>0 G.t
$720 \quad ?(P+B)=Y ; F \approx R N D \& 1 F+2 ; U .0$
$740 t I F F<>0$
$740 \mathrm{tIFF}\langle>0 \mathrm{U} .0$
$760 \mathrm{UP}=\mathrm{RNDG} \| \mathrm{FF} ; \operatorname{IF} ?(\mathrm{P}+\mathrm{B})<>40 \mathrm{G} . \mathrm{u}$
$780 \mathrm{~N}=($? 889$)+1 ; 0=\mathrm{ABS}($? $9 \mathrm{f}(\mathrm{ll})+15-\mathrm{N}$
$790 \quad ?(\mathrm{P}+\mathrm{B})=130+\mathrm{N}: \mathrm{U} .0$
800e ex 0 ; P.W" SCORED."
850 IN: "ANOTHER GAME" $\$ \mathrm{G} ; \mathrm{IF}$?G*CH"Y" G. 20 900 P.'"CAN'T STAND THE PACE, EH?"." 999 END

LAS VEGAS CRAPS

The third game simulates the excitement of playing the dice game Craps at Las Vegas. It was written by Alex van Someren of Windsor, and it uses the Atom's low-resolution graphics in nlot the two dice: see Fig. 5.

Fig. 5. Dice display for the Craps game.

PROGRAM OPERATION

The program for the Craps game is shown in Fig. 6. The program first asks you to make a bet. It then throws the dice, and you can watch your money increase or disappear depending on your luck.

The program uses a subroutine, r , to throw the dice and plot them on the screen, and this could be incorporated into many other games. P and Q are the numbers on each dice, and S is their sum. Routine q, lines 380 to 450 , plots a dice at the current graphics-cursor position, and is called twice by subroutine r . Lines 100 to 200 form a jump table for the 11 different possible totals, 2 to 12 , on the two dice.

Fig. 6. Craps game, in BASIC, for an Acorn Atom.

```
    5 P.$12"LAS VEGAS CRAPS:
    0 DIM A(3);R=0
    15 8-0
        P."PLEASE gET 0 TO END THE GAME:"'"
        P.:2,3,12 ARE LOSERS; 4,5,6,4,9,10 ARE POINTS."
        IN."ENTER YOUR BET"F;IF F=0 G.e
        P.*HERE ARE YOUR DICE"';GOS.r
        X=S;P.$30,..'
        G.((S*10)+80)
    G.t
110 G.t
120 G.p
140 G.p
150G.W
160 G.p
180 G.p
190 G.W
210wP.S" A NATURAL:"'"YOU WIN "F" DOLLARS".
    220tP.S" CRAPS:"'"YOU LOSE "F" DOLLARS".
    230F=-F
    240aR=R +F
    260pP.s" A POINT: I WILL ROLL AGAIN"'
    270 LI. PPFE3;GOS.r;P.$30,1..! AGAIN"
    275 If S=7 G.t
    280 IF S=X G. 300
    290 P.S"" NO POINT: I WILL ROLL AGAIN"; G. }27
    300 P.S" A WINNERI."'"THAT PAYS " 2*P" DOLLARS",
    310 F=2#F;G.a
330 Q=ABS(R.86)+1
340 S=P+Q
350 O=P;MOVE10,38;GOS.q
360 O-0;MOVE40,38;GOS.q
370 R.*OT 1, B, 0;PLOT1,0,8
30 PLOT1,-8,0;PLOT1,0,-8
95 G. (10*5)+400)
PLOT9,4,4;PLOT8, 4,-4;R.
PLOT9,2,2;PLOT9,4;4;PLOTB,-6,-6;R.
GOS. 405;G.410
PLOT9;2,6;PLOT9,4, 4;PLOTG,-6,-2;R.
GOS.418;G.410
30 PLOT9, 2,4;PLOT9, 4,0;PLOT8, -6,-4;G.420
450 PLOT9,4;4;PLOT8,-4,-4;R.
460eIPR>OP. "YOU NOW HAVE $"R;E.
465 IFR<OP. "YOU ARE UNDER $"-R;E
40 P."YOU CAME OUT AT $O";E.
```

When you are tired of tossing you can enter 0 for your bet, and see how you have fared overall.

CONTINUOUS DISPLAY FOR ZX80

The following program gives a continuously-updated display of the time on a ZX80; the same technique could be used to provide displays for games, simulations. or analysis programs. The program was submitted by Mr. Duggins of Birmingham, and what follows is based on his letter.
"Usually on the ZX80 information cannot be displayed on the screen unless the program is waiting for input from an INPUT statement. or has executed a STOP statement; this is because the display is software driven, and program execution cannot be maintained at the same time. To overcome this problem it was necessary to discover how the display operates."

DISPLAY ROUTINE

"The display routine is also the input routine, and is between addresses 013C and 01B5 (hex). The only useful part is a small subroutine at 01B0 (hex) which actually starts the display. A call to this routine generates one frame, down to the 24th display line. A second call to the routine must be made to finish the TV frame, and a vertical sync pulse must then be output to the TV. The duration of this pulse should be about 1 ms , and the idea of the program is to use this time, once every 250 frames or 5 seconds, to update the display. The updating of the display actually takes slightly longer than 1 ms , so there is an inevitable slight flicker.

DIGITAL CLOCK

"The digital clock program of Fig. 7 illustrates how to drive the display. The time is shown continuously, and is updated once every 5 seconds. It is accurate to about 2 minutes per day, but as the program stands there is no provision for a reset to 1 o'clock after 120° clock. The machine-code routine is entered by typing 'GO TO 250 ' and entering the codes shown in Fig. 8. Then set S, the seconds. M. the minutes, and H , the hours, to a convenient time using direct LET commands, type 'GO TO 10', and when the preset time is reached press NEWLINE to start the clock.

Fig. 7. Digital clock program for the ZX80 uses a machine-code routine to give a continuous display.

```
    10 LET K=USR(17191)
    20 CLS
    30 LET S=S+5
    40 IF S=60 THEN GO TO 100
    50 FOR U=1 TO 2
    60 NEXT U
    70 IF M<lO THEN PRINT "TIME",H
;":0";M;":";S
    75 IF M>9 THEN PRINT "TIME",H;
":";M;":";S
    80 LET K=USR(17232)
    90 GO TO 20
100 LET S=0
110 LET M=M+1
120 IF M=60 THEN GO TO 200
130 GO TO 70
200 LET M=0
210 LET H=H+1
220 GO TO 70
250 FOR A=17191 TO 17243
260 INPUT I
270 POKE A,I
280 NEXT A
```

The BASIC part of the program is quite straightforward, except for the two USR calls. The first call. to address 17191, makes sure that there will be enough NEWLINE characters in the display file: from then on the machine-code is entered at 17232. The FOR . . . NEXT loop in lines $50-60$ is used as a delay so that the TV is at the beginning of a frame, and the output from the 2×80 is therefore in sync with the TV: without this, the flicker is severe while the TV achieves sync.

MACHINE-CODE

The machine-code routine is shown as a decimal dump in Fig. 8. The display time depends on the byte at location 17201; in this case it is 250 frames. If more than 20 characters are to be printed by the routine, the byte at address 17196 should be increased by 1 for every extra character printed. With the program as it stands the machine code cannot be saved on cassette, but it only takes a few minutes to enter.

Fig. 8. Machine code display routine, in decimal, for the $\mathbf{Z X} 80$.

DECIMAL DUMP:									
17191:	237	91	12	64	6	50	205	200	5
17201:	250	229	62	237	1	56	25	42	12
17211:	203	252	205	176	1	43	62	232	14
17221:	4	205	176	1	219	254	225	45	32
17231:	201	211	255	24	220	6	90	16	254
$17241:$	255	24	214						
172									

He PRilinit REMIE

Copies of Patents can be obtained from: the Patent Office Sales, ${ }^{\circ}$ St. Mary Cray, Orpingtion, Kent. Price £1.45 each.

AMP RE-VAMP

Arguably the most radical re-think in amplifier design since the switch from valves to transistors is patented by Robert Carver in International PCT application WO 80/01023. The Carver M400 power amplifier is already on sale in the USA and is now starting to attract attention in the UK. A cube, 7 in in size and weighing less than 9 lb , it can deliver a total of 500 watts of audio power and costs only 350 dollars. Yamaha of Japan produced a similar design and has now taken a licence under the Carver patent.

Another PCT patent from Robert Carver from the USA (WO 80/02219) gives details of the hitherto secret "sonic holography" circuitry that is built into the Carver preamplifier. This will be dealt with in a future issue. Copies of both patents can be referred to, free of charge, in the Science Reference Library attached to the British Patent Office, Southampton Buildings, Chancery Lane. Copies of the patents may be purchased, but beware. Because the applications are not routine British cases (they were filed from the USA under the World Patent Cooperation Treaty), the normal British flat-fee purchase price does not apply. Each patent is well over 100 pages in length and full copies can cost nearly £20 each!

The Carver power amplifier achieves high efficiency and low cost, small size and light weight by the clever combination of several techniques, some known and some apparently new. In a conventional high power amplifier the mains transformer accounts for much of the size, cost and weight. To reduce the weight by reducing the winding, also reduces inductance and thereby increases idling current which wastes power as heat. Carver uses a small transformer and switches the primary in and out of circuit so that it draws just sufficient power for the programme being reproduced. Figure 2 shows a simplified circuit in which transformer 104 is of low inductance and weighs $1 / 40$ th the weight of the transformer of a conventional power amplifier of comparable power rating. When a voltage is applied across primary 104a, the current reaches a pre-set maximum of around 20 amps within a few

Figure 11 shows an amplifier 1100 designed to utilise such a stepped voltage power supply. NPN transistors Q1101, 1103 and 1105 amplify positive portions of the input signal; PNP transistors 01107, 1109 and 1111 amplify the negative portions. Switches 1126; 1130, 1138 and 1140 control the conduction state of their associated transistors. When the signal voltage comes within a few volts of the 25 volt level, the first switch 1126 sends current to the base electrode 1124 of transistor 01103 . When the signal voltage comes close to 50 volts, the second switch 1130 makes transistor 01105 conductive. In this way Q1101 takes power from the 25 volt line E1, Q 1103 receives power

from the 50 volt line E2 and Q1105 takes power from 75 volt line E3. Voltage drop across the transistors is minimised and efficiency maximised.

Yet another feature of the Carver design is shown in Figure 15A. Crossover distortion is minimised by transistors Q1537, 1539, with diodes 1524, resistors R1520, 1521 and capacitor C1513. Together these form a bias network which keeps transistors Q1509 and Q1511 on the verge of conduction. Onset of audio input causes the transistors to conduct immediately without discontinuity of the audio output waveform.

Finally Figure 16 shows another essential link in the Carver chain. One channel of the amplifier includes a network for shifting the phase of the incoming audio signal by 180°. Carver says that statistical analysis

of stereo programme material hàs shown that for most of the time the information in the left and right channels is similar and in phase. As a result conventional amplifiers place a heavy burden on one side of the
power supply while leaving the other side idle. By inverting the phase of one channel, and thereafter processing the two channels in out-of-phase relationship, there is a marked gain in efficiency. Both positive and negative excursions of the power supply during each power cycle are fully employed. The inverter network of Figure 16 consists of capacitors C1601, 1603 and resistors R1601, 1603 and 1605 to drive the inverting terminals of operational amplifier 1604. Preferred values for the network components are listed towards the end of the book-sized patent document.

First reports suggest that the Carver amplifier works well. But r.f. interference created by the rapid duty cycle switching may prove a problem in the UK, where radiation regulations are very strict.

Readout...

A selection from our Postbag

Readers requiring a reply to any letter must include a stamped addressed envelope.
Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

Frustration with Integration . . .

Sir-With reference to R. W. Coles introduction to the SG 1547 Power Supervisor in Semiconductor Update, March 1981 issue, I think a very interesting subject has been intentionally or unintentionally touched on. This being the design of discrete power supplies, or for that matter the design of anything discrete. Everything that is said in the first paragraph is very true, and the satisfaction gained from designing a piece of electronic apparatus and sorting out its problems must be likened to the latest "in thing" of computing and debugging programs.

However the crux of the matter is, as R. W. Coles says, why bother designing PSUs etc, when there are available a plethora of i.c.s which can do the job-but where is the satisfaction! Who. if anyone, would design for their own purposes discrete monostables, counters, op-amps etc. With such a range of i.c.s available, the average constructor has got to a stage where it's easier to select an i.c. rather than build it discretely, to see how it works and check on his own design theory, rather than accept a "black box" attitude.

Personally I have thought that since the 1970s that many constructors have moved away from the design table and have, rightly or wrongly, selected an i.c. for the job. This results in frustration when there is a problem to be tackled and there isn't an i.c. suitable for
that task. Like, for example, low supply voltage applications and low voltage dropout regulators in high quality audio.

Of course there is the other side of the coin-integration has opened up very interesting areas for the constructor which 10 years ago just would not have been considered. So while i.c.s have enhanced the constructors techniques, I think in some ways there has been a step in the wrong direction, away from designing at the discrete level. This situation could be helped with more articles in $P E$ on design principles and concepts.

Geoffrey Pike,
Co. Antrim.
Point taken. Mr Pike, though there are other factors which we have to bear in mind when considering a project for publication. Cost, degree of constructional difficulty and the performance of the end product rank high on our list of priorities. This does mean as you pointed out that a large number of our projects are based around i.c.s. However, judging by the letters we receive, a good proportion of our readers DO know what goes on inside the "black boxes".
Our forthcoming series on Digital Design will help others to get to grips with the subject.-Ed.

1Kw DIMMER PAK

- Full wave control using 8A triacs. Moulded plastic case - completely insulated * 1 Kw max load filament lamps or inductive loads *Easy clip-in fixing * Compact size: $43 /{ }^{\prime \prime} x$ $13 / 16^{\prime \prime} \times 23 / 8^{\prime \prime}(120 \times 30 \times 60 \mathrm{~mm})$. Cut out size: $41 / 8^{\prime \prime} \times 7 / 8^{\prime \prime}(105 \times 23 \mathrm{~mm})$. incredible value at only $£ 16.95$
Four way and eight way facing panets available as optional extras.

Conforms to B.S. 800

The TP125 power amplifier module will suit all applications where high power, quality and reliability are of utmost importance. Output power ratings using PS125 supply 125 w RMS cont. sine wave, 235 w RMS square wave, both into 7.5 ohms. 79 w RMS cont. and 145 w RMS square wave into 15 ohms. Peak power greater than 300 w . T.H.D. 2% @ 125 w , 1% @ 50 w ref 1 kHz . Size: $6 \frac{3}{1 / 4} \times 61^{\prime \prime} 2^{\prime \prime} \times 3^{\prime \prime}$ excellent value $£ 30.00$.
 Tel 01.67231379080 PRICE INCLUDES VAT. P+P FREE

TUAC MAIN DISTRIBUTORS

 Birmingham. George Mathews, 85/87 Hurst St, (Tel: 622 1941)Buckinghamshire, Disco Barn tver, 20 Thorney Lane South, (Tel: 653171) Canterbury.
(Tel: 60948$)$
Cheshire, Cookies Disco Centre, 126 Cheshire, Cookies Disco Centre, 126
West St, Crewe (Tel: 0270 214739) West St, Crewe, (Tel: 0270214739)
Edinturgh, Cruiser Sound Supplies, Ferry Rd, Leith, (Tel: 554993). Exeter, Electrosure Lid, Fore St (Tel 56687)
Glasgow, Rock Electronics, 149 Glasgow
Rd, Dumbarton, (Tel: 32588).

London, Session Music, 163 Mischam Rd, Tooting SW17. (Tel: 672 3413). London, Garland Brothers, Chesham House eptiord Broadwav, SE8. (Te): 01.6924412 Kingston, ABC Music, 56 Surbiton Rd, Tel: 01.54698771.
Luton, Luton Disco Centre, 88 Wellington St, (Tel: 411733). Manchester, A1 Music. 88 Oxford St Tel: 23603401
Middiesborough, Salcoglen, 43
Borough Rd, (Tel 242851)
Borough Rd, (Tel: 242851)
Swansea. Burns Electronic Amplificat-

Rapid Electronics

Rapid Electronics Limited
Hilleroft House, Station Road, Eynsford, Kent

COMPUTER USER AIDS

Incorporating The UK101 User Group

* HARDWARE

Programmable graphics: 128 user defineable graphics, any shape or character. Hi res pictures and animation specialised character sets foreign alphabets \& much more. No cuts are made to the existing board and the machine is kept perfectly standard.
MEMBERS PRICE $£ 59.00$ ($£ 67.85$ inc. VAT).
Sound Generator: This very popular kit provides a true complex sound output for all games and other programs. Completely software controlled - easy to program in BASIC or M-C. Uses no RAM. Based on the friendly AY 38910 with 16 output ports.
MEMBERS PRICE $£ 34.95$ ($£ 40.20$ inc. VAT).

* SOFTWARE

Tried and tested software for the IOI.
30 MAZE - Wander at will in 3 dimensions around this computer constructed maze. Compatible with CEGMON, MONUKO 2.
MEMBERS PRICE £4.50 ($£ 5.17$ inc VAT).
Many of our programs now include SOUND for even greater enjoyment Please contact us for details of all our software

* USER GROUP

This ever popular group welcomes members from any part of the world Subscriptions are $£ 4.60 \mathrm{inc}$. VAT ($£ 5.00$ overseas) per 6 months. Our quarterly newsletter contains news, reviews as well as soft \& hardware tips. Apply now for our latest newsietter.
We have taken a SMALL stand (T7) at the Personal Computer World Show on 10-12th Sept. 1981. We hope to give members further details nearer the time.

Non Members please add 15\% to prices quoted.
CALLERS BY APPOINTMENT ONLY
9 Moss Lane, Romford Essex RM1 20B.
(Romford 64954).

CLEF *etame MUSIC FIRST
 for PIANOS for STRINGS for ROTORS for RHYTHM IF M USIC IS YOUR INTEREST

Since 1972 Clef Products have consistently produced leading designs in the field of Electronic Musical Instruments, many of which have been published under the authorship of A. J. Boothman. With musical quality of paramount importance new techniques have been evolved and the latest musically valid technology has been incorporated into projects which have been successfully completed by constructors over a wide range of technical capability.

The most advanced form of Touch Sensitive action simulating piano key inertia by patented technique.

SIX OCTAVES £207

(component kits include keyboard and may be purchased in four stages) 71 $\mathbf{4}$ OCTAVES $£ 232$ Four mixable voices for serious tone variation plus electronic chorus and flanger effects. See lists for Cabinets, P.A. \& Manufactured Pianos.

Back up TELEPHONE advice to our customers is available direct from the Designer of all kits advertised.

STRINGS

P.E.STRING ENSEMBLE

Versatile String Synthesizer with split keyboard facility and impressive voices. 49 note organ diode keyswitch system with four pitches plus two phase Chorus generator. Kit includes Swell Pedal.

COMPONENT KIT $£ 169$

ROTOR-CHORUS

Comprehensive two speed organ rotor simulator plus a three phase chorus generator on a single $8^{\prime \prime} \times$ $5^{\prime \prime}$ p.c.b. The kit includes all com ponents for mains operation and a stereo headphone driver p.c.b. Easily integrated with existing organ/amplifier system.
COMPONENT KIT $\mathbf{8 8 9 . 0 0}$

KEYBOARDS

Our Square Front Keyboards are chosen for their superior feel to the discerning musician whilst giving adequate physical strength for the high impact playing present in the high impact playin
the Piano application the Piano application. 49 NOTE C-C $£ 25.00$ QUANTITY 73 NOTE F-F $£ 39.00$ ENQUIRIES 88 NOTE A-C $£ 47.00$ WELCOME

R RHYTHM

As published in Practical Electronics fULLY PROGRAMMABLE TWENTY-FOUR PATTERNS EIGHT PARALLEL TRACKS TWELVE INSTRUMENTS SEQUENCE OPERATION
Kit includes all components to build this comprehensive User Programmable Rhythm Generator in an attractive metal case with finished case, hardware and wire
KIT - £79.00 BUILT - £114.00
OUR PRICES INCLUDE V.A.T., CARRIAGE \& INSURANCE Please send S.A.E. for complete lists or use our telephone BARCLAYCARD service. Very competitive EXPORT rates - in Australia please contact JAYCAR in Sydney.

ALL INSTRUMENTS MAY BE SEEN IN OUR SHOW ROOM.

CLEF PRODUCTS (ELECTRONICS) LIMITED
 (Dept. P.E.) 44A Bramhall Lane South, Bramhall, Stockport, Cheshire SK7 1AH 061-439-3297

AITKEN BROS.

35, HIGHBRIDGE, NEWCASTLE ON TYNE TEL. 063226729

Thandar Digital Multimeters
HANDHELD
PDM $353 \frac{1}{2}$ digit LED $£ 39.68$
Carrying Case
AC Adaptor
TM354 $3 \frac{1}{2}$ digit LCD
Carrying Case
TM352 $3 \frac{1}{2}$ digit LCD
Carrying Case
Post 75 p

BENCH PORTABLE
DM235 $3 \frac{1}{2}$ digit LED
Carrying Case
AC Adaptor
DM350 $3 \frac{1}{2}$ digit LED
Carrying Case
AC Adaptor
DM450 $4 \frac{1}{2}$ digit LED
Carrying Case
AC Adaptor
TM351 $3 \frac{1}{2}$ digit LCD
Carrying Case
TM353 $3 \frac{1}{2}$ digit LCD
TM353 $3 \frac{1}{2}$ dig
Send $S A E$ for full spec. All prices include leads.
Extra accessories
Universal test leads
Nicads for LED bench modes $\quad £ 11.27$
40 Kv probe all models Postage $£ 1.00$.

Oscilloscopes

CALSCOPE SUPER 6
6 MHz bandwidth
CALSCOPE SUPER 10
10 MHz bandwidth dual

trace

THANDAR SC1 10
10 MHz bandwidth portable $£ 159.85$ Carriage included in price.
Send SAE for full spec.

Multimeters

KRT100 1 K o.p.v. 10 ranges $\mathbf{~} 5.50$ Y7206EN 20K o.p.v.
19 ranges
$£ 11.95$
YN 360 TR 20K o.p.v. 19 ranges
plus transistor tester
7081 GND 50K o.p.v.
36 ranges
36 ranges
EM20 20 K o.p.v. 17 ranges mic case
AT 102020 K o.p.v. 19 ranges plus transistor checker EM30 30 K o.p.v. 17 ranges inc. case
MM20 20 K o.p.v. 22 ranges MM20 20 K o.p.v. 22
inc case. AC current
MM50 50 K o.p.v. 19 ranges inc case
360 TR 100 K o.p.v.
23 ranges
MM100 100 K o.p.v.
22 ranges
EM 150020 K o.p.v.
${ }_{21} 1$ ranges
Carrying Cases
Carrying
MM100
EM 1500
$£ 13.95$

Postage 1.00 .
$£ 19.95$
$£ 19.50$
$£ 15.95$
$£ 23.95$
$£ 25.95$
$£ 32.50$
$£ 34.50$
$\boldsymbol{£} 42.50$
849.95
f14.95
$£ 10.30$

Frequency Counters
HANDHELD
Thandar PFM200. LED.
$20 \mathrm{~Hz}-200 \mathrm{MHz}$
GSC MAX 50 LED
$100 \mathrm{~Hz}-50 \mathrm{MHz}$
LED.
0 LED
GSC MAX 550 LE
$500 \mathrm{~Hz} \cdot 550 \mathrm{MHz}$
GSC PS500 Prescaler. Exten $\mathbf{5 9 7 . 7 5}$
range by ten times.
For max $50 £ 34.50$
Postage $75 p$.
BENCH PORTABLE
GSC 5001 Counter-timer $£ 212.75$
GSC $60015 \mathrm{~Hz}-650 \mathrm{MHz} \quad £ 224.25$
Thandar TF200. LCD.
$10 \mathrm{~Hz}-200 \mathrm{MHz}$
$£ 224.25$
Thandar TP600 Pre-scaler 600 MHz

Postage $£ 1.50$.
Send SAE for full spec.

Capacitance Meter

GSC 3001 lpf-199, 900uf \quad f178.25
Tri-Mode Comparitor
£178.25
Send SAE for full spec.
Postage fl.50.

Generators

GSC 2001 Function $1 \mathrm{~Hz}-100 \mathrm{kHz}$.

GSC EXP 325 £1.84, EXP350 $\mathbf{5 3 . 6 2 ,}$ EXP650 £4.14 EXP48B £2.64, EXP 300 £6.61, EXP600 £6.95. Postage 25p
PB6 £9.95, PB100 £13.57, PB101 £19.78, PB 102 £26.39, PB 103 £41.34, PB104 £55.14.
Powered Boards
PB203 £68.94, PB203A 197.75,
PB203AK Kit £79.35.
Postage $£ 1.00$.
Soldering Irons
by Antex
TEMPERATURE CONTROLLED
TCSU1 Station with CTC iron +2
bits \quad f43.96 Post $£ 1.75$
Model CX - 17 watt $\quad 4.98$
Model C-15 watt
Model X25 - 25 watt $\mathbf{£ 4 . 9 8}$
ST3 Iron Stand
Post 40p.
All spares available.
Send SAE for list and full spec.

Education Establishment order accepted.
Phone or send your ACCESS or BARCLAYCARD number

FT3 NEON FLASH TUBE

WHY PAY MORE?

METERS (New) - 90 mm DIAMETER A.C. Amp. Type 620 - 0 , 1500 $0-50 \mathrm{~A} .0-100 \mathrm{~A}$.
$\mathrm{D} . \mathrm{C} . \mathrm{Volt} .15 \mathrm{~V} .30 \mathrm{~V}$ Alt. Volt. $£ 3.60$ ea

\qquad VAT)
6.61
HEAVY DUTY SOLENOID, mf. b ent operation. Approx. 20 ib pull at

240V AC SOLENOID

Approx: 101 b pull 10% rafing: Size

12V D.C. SOLENOID

plate Ali chassis containing $4 \times 24 \mathrm{KP}$. B.C. Push Solenoids $\left(1, \frac{1}{2}\right.$. approx.) 5 fig. Counter. 6 min. photo cells. Sub-min. Micro $£ 9.00+£ 2.00 P$ \& \& P (total incl. VAT $£ 12.65$)
 2V. D.c. Solenoid approx 11b. pull.
 SOLENOIDS
 WESTROL SERIES D6 Model
 WESTOOL SERIES D4 12.30 . p. \& . . (Toral incl. VAT $£ 1.50$). AG/GT 24 V . D.C. 70 ohm Coil Solenoid. Push or Pull. Ad spark suppressor. Size: $100 \times 65 \times 25 \mathrm{~mm}$. Price: 3 for $£ 2.85$. MINIATURE SOLENOID FLUID VALVE (U $12 V$ D.C. 15 ohm coil normally closed. Staintes steel body with variabte flow adjuster t" B.S.T inlet and outlet. Size:58 $\times 27 \times 2$.

800 WATT DIMMER SWITCH

Easily fitted. Will control up to 800 W of all lights \& p. 15.06

MICRO SWITCHES
Sub. Min. Honevwell Lever m/s type 3115 m 906 f
10 for $\mathbf{£ 3} .50$ post paid ($\mathbf{£ 4 . 0 3}$ incl. VAT). These V3
Button type (Pye) 10 for $\mathbf{£ 3 . 0 0}$ ($\mathbf{£ 3 . 4 5}$
Short Lever type 16 amp . rating (Crouzet) 10 fo
Long Lever 10 amp C.O. 10 for $\mathbf{£ 4 . 5 0}$ (f5.18
 D.P. C/O lever $\mathrm{m} / \mathrm{switch} \mathrm{mfg}$, by Cherry Co. USA. Precioos metal
low resistance contacts. 10 for $\mathbf{f 3 . 0 0}$ P. \& P. 50 . ($£ 4.02$ incl VAT). (min. order 10).

SOLID STATE EHT UNIT
Input $230 V$ ac. Fully isplated
15 Kv Buill in 10 sec. Timer.
sec.
sec, to a continuous operation.
Designed for boiler ignition. Dozens of physics and electronics eg. supplying uses in the field o enerato, starter or laser xenons cst lamps VAN $\mathrm{S}_{\text {ize: }}$ Length 155 mm , width 85 mm , height 50 mm . Weight 530 grammes, Price $\mathbf{E 5 . 0 0}+75$ pence post \&i packing
5 .
A.E.G. CONTACTOR
 ARROW-HART MAINS CONTRACTOR Cat ap to 660 V A. C. 20 h .p. at 44 OV 3 phase 50 Hz . Price: $£ 7.75$

SMITH BLOWER

Type FFB, 1706 Smalf, quiet, smooth running, 240 V . A.C.
operation. Output aperture $45 \times 40 \mathrm{~cm}$. Overail size $135 \times 165 \mathrm{~cm}$.

CENTRIFUGAL BLOWER UNIT
Powered by GEC $230 / 250 \mathrm{~V}, 2850$ r.p.m. motor producing
appoox. 120 c.f.m. Aperture $65 \times 90 \mathrm{~mm}$. OVerall size 222×225
24 volt. D.C. BLOWER UNIT

INSULATION TESTERS NEW!
Test to E.E.E. Spec. Rugged meial construction
suitable for bench or tield work constant speed
clutch Size L8in W 4 in $H 6$ in weight 610 . 500 V ,
 cl. VAT) $1000 \mathrm{~V} 1000 \mathrm{M} \Omega$. $\mathrm{C55} \mathrm{P}$.
$\mathbf{C} 65.55$ incl. VAT). S. A. for leatlet.

Yet another outstanding offer

IMFD 600V Dubilier

VARIABLE VOLTAGE TRANSFORMEAS
INPUT 230/240V a.c. 50/60 OUTPUT 0-260V

3-PHASE VARIABLE VOLTAGE

 TRANSFORMERS

LT TRANSFORMERS

 $(\mathbf{f 1 9 . 4 3 \text { incl. } \mathrm { VAP } \text {). }}$

\qquad
HY-LIGHT STROBE KIT MK IV
$\begin{aligned} & \text { Latest type Xenon white light flash tube. Solid state } \\ & \text { timing triggering circuit } 230 / 240 \text { a.c. operation. Designed }\end{aligned}$
240 a.c. operation. Designed
$\begin{aligned} & \text { Light output greater than many (so called } 4 \text { Joule) } \\ & \text { strobes. Hy-Light Strobe Kit MkN. E27.00 P. \& P. E2.00 }\end{aligned}$
$\begin{aligned} & \text { strobes. Hy-Light Strobe Kit MK M. £27.00 P. \& P. E2.00 } \\ & \text { (} \mathbf{5 3 3} .35 \text { incl. VAT). Specially designed case and reflector }\end{aligned}$
$\begin{aligned} & \text { £33.35 incl. VAT/. Specially designed case and reflector } \\ & \text { for Hy-Light } £ 9.00 \text { P. \& P. } £ 2.08 \text { (} 12.65 \text { incl VAT). }\end{aligned}$
$\begin{aligned} & \text { Super Hy-Light Strobe lappro } \\ & \text { E2.00 (E40.30 incl VAT) }\end{aligned}$
uitable case $£ 11.00$ P. \& P. £2.00 ($£ 14.95$ incl. VAT)

XENON FLASHGUN TUBES

Range available from stock. S.A.E. for details ULTRA VIOLET BLACK LIGHT FLUORESCENT TUBES

For use in stan bi-pin fittings).
$12 \mathrm{Iin} .8 \mathrm{Watt} £ 2.80$ P. \& P. 45 p ($\mathbf{£ 3} .75$ inct. VAT).

Complete ballass unit for either $6^{\prime \prime} 9^{\prime \prime}$ or $12^{\prime \prime}$ tube 230 VAC op 0 f5.50 P. \& P. 55p (E 6.96 in
400 watt UV tamp and ballast complate $\mathbf{£ 3 8 . 0 0}$. Post $£ 3.50$
$(£ 47.73$ incl. VAT P). 400 watt UV lamp only $£ 14.00$. P P .
PROGRAMME TIMERS
240V A.c. operation. E individually adjustable cams. $\mathbf{£ 7 . 5 0} \mathrm{P}$. \&
6 adjustable 6 fixed cams. Price $\mathbf{£ 6} .00$ P. \& P. $£ 1.25$ ($£ 8.34$ incl
Veeder-R oot Pre-set Counter. Type MG1636. 3 fig.
countdown any number from 999 to 001230 V AC 2 Whein setting. Changeover Microswitch to inform external circuitry on completion of countdown. Size: Width 85 mm . Ht 65 mm . Dpth

Superior Ouality Precision Made

NEW POWER RHEOSTATS

25 WATT $10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{kD}$

 Black, Sitver, Skirted knob calibrated
RELAYS
for detail
230/240V A.C. Relays: Arrow $2 \mathrm{c} / \mathrm{o} .15 \mathrm{amp} \mathbf{\mathrm { C } 1 . 5 0 \mathrm { P } . \& \mathrm { P } . 3 0 \mathrm { p }}$
Open type $3 \mathrm{c} / \mathrm{o} .10 \mathrm{amp} £ 1.10$ P. \& P. 25 ($\mathbf{(£ 1 . 5 5} \mathrm{inct}$. VAT).
$\mathbf{2 3 0} / \mathbf{2 4 0 V}$ A.C. $\mathbf{~ c / o . ~} 11$ pin base. Seald 5 .
£1.35 plus P. \& P. 30 p ($\mathbf{(1 . 9 0} 1.9$ incl. VAT)
D.C. Relay, sealed $6 / 12$ V. D. C. 2 c/o. 10 amp contacts. Single
D.C. Relay, sealed 6/12V. D.C. $2 \mathrm{c} / \mathrm{o} .10 \mathrm{amp}$ contacts. Single
hole fixing. Push on contacts. f 1.30 P. \& P. 30 p (f 1.84 incl

12V D.C. $2 \mathrm{c} / \mathrm{o}$. Open type 10 amp contacts $£ 1.25$ P. \& P. 25

P. 30p (£1.84 incl. VAT
 Reed Relay mif. by Alma. Type CPA $1 / \mathrm{D}$ 6/9V D. 700 ohm
coil 5 for $\mathbf{E} \mathbf{5 0} .50$ plus P. \& P. 50p. Total incl. VAT $\mathbf{£ 3 . 4 5}$. O.C. Relays: Sealed 12 V i coo 7 amp octal base $\mathbf{£ 1 . 0 0} \mathrm{P}$. \& ' P
 relay 20 (amps contact rating)
KMKI Relay. $230 V$. A.C. $1 \mathrm{c} / 0$
KMKI Relay. 230 V. A.C. 1 c/o open type 10 amp contact, mf. by
Keyswitch 80p P. \& P. 25 ($\mathbf{£ 1 . 2 1}$ incl. VAT). 5 for $\mathbf{£ 3 . 7 5}$
Hellormann Deutsch. Hermetically sealed sub-min. Relay. 12
24 V . D.C. $2 \mathrm{c} / \mathrm{o} .850$ ohm coit. 0.2 pitch. P C. mounting. L. 20
$\mathrm{~mm} . \mathrm{W} .10 \mathrm{~mm} . \mathrm{H} .12 \mathrm{~mm}$. Fraction of maker's price: $\mathbf{£ 2} .50$

GEARED MOTORS

 Above three motors mater designed for 110 V . A.C. operation $£ 9.75$ P. \& P. $£ 1.50$ | $\mathbf{1 2} 12.94$ $30 \mathrm{rpm} .230 / 240 \mathrm{~V}$. a.c. 50 lb in. Mf. PARVALUX. 42 R.P.M. 110 A.C. $50 \mathrm{hz}, 100 \mathrm{tb}$ incl. reversible will operate on 230 A.C. Speed remains at 42 R.P.M. but torque reduces by 50%.Price $£ 16.50$ P. 8 P. $£ 2.50$ (£21.28 incl. VAT). 56 rpm .240 V . a.c. 50 lb . in. 50 Hz 0.7
amp. Shaft length 35 mm . Dia. 16 mm
Wt. 6 kg . 600 g . mf. FRACMO. Price.
£15.50 P. B P. $£ 2.00$ ($\mathbf{(E 2 0 . 1 3 \text { incl. }}$
VAT).N.M.S.

100 rpm .110 V a.c. 115 fb in., 50 Hz . 2 Immense power
Totally enclosed. In-line gearbox, Length
250 mm . Dia. 135 mm . Spinde
£18.40 incl. VATI. R. \& T. Suitable Transformer for $230 / 240 \mathrm{~V}$
200 rpm 35 lbs in 145 V 50k
Price: $£ 16.50$ P. \& P. $\mathbf{£} 2.00$ ($£ 21.28$ incl VAT) NMS
Suitabie Transformer for $230 / 240 \mathrm{~V}$. a.c.
Price: $\mathbf{£ 6 . 0 0}$ P, \& P. $£ 1.50$ ($\mathbf{E 8 . 6 2}$ incl. VAT). N.M.S.
HAYDON
$2 \mathrm{rpm} 230 / 240 \mathrm{~V}$. a.c. Synchronous geared Motor, mf
CROUZET. Either type $£ 3.90$ P. \& F. 40 p ($\mathbf{~} 4.95$ incl

230V a.c. FAN ASSEMBLY powerful continuously rated a.c. motor complete with 5故 24V. D.C. GEARED MOTOR
 chassis containing

24V D. C REVERSIBLE MOTOR
rpmax 651 bs in Gearbox ratio $30: 1$. Current 6.8 amp . Rating con less. Size Dia. 16 mm , Width 150 mm , Shaft dia. 16 mm . Price
$\mathbf{£ 1 6 . 5 0}$ P. \&i P. $£ 2.00(£ 21.28$ incl. VAT). N.M.S. or 60 rpm 100 b in rating. Price as above, N.M.

ROTARY CARBON VANE VACUUM $\&$ COMPRESSOR

. Direct coupled to 1

 Suitable, transformer for 240 V . op. $£ 10.00$ P. \& P. ¢2.00 WATER PUMP
Mfg. by S.P.A. Astaisi of traly. 220/240u A.C. 50 hz .2800 R.P.M pprox. 40 gals per minal pump with $1 \frac{1}{}$ inletoutlet. Deliven

REDUCTION DRIVE GEARBOX
Ratio 72 1., Input spindie $\frac{1}{2} \times \frac{1}{2}$ In, Output spindle 2×3 in. long

A.C. Wkg. TUBULAR CAPACITORS

2 mfd . 250	60			
$2 \mathrm{mfd} 450 \mathrm{~V}, \mathrm{AC}$	${ }_{75}{ }^{\text {p }}$	7.5 m		${ }_{\text {f1.00 }}$
2.2 mfd .440 VA	75	10 mfd	250 VA	
	1.00			0
4.1 mid. $440 \mathrm{VJA.C}$	f1.00			
5 mfd .4 400V. C	± 1			
5.3 mfd. 160 V	60p			

P. 8 P. Yp to 2.5 mfd .25 p .3 mfd . to 20 mfd . 50 D . All plus
SPECIALDISCOUNT FOR BULK ORDERS

TIME SWITCH VENNER TYPE

ERD Time switch $200 / 250 \mathrm{~V}$ a.c. 30 amp conta on/2 off every 24 hrs at any manually pre-s.

 me. 36 hour Spring Reserve and day omittin device. Built to highest Electrictiy Board specifiction Price $\mathbf{£ 1 0 . 0 0}$ P. \& P. $\mathbf{£ 1 . 5 0} \mathbf{(\mathbf { 1 3 . 2 3 }} \mathbf{\text { in }}$
VAT)

SANGAMO WESTON TIME SWITCH
Yontacis with override switch dia. 4×3 price $\mathbf{f 8 . 5 0} \mathrm{P}$. $\&$

All Mail Orders Callers
Ample Parking Space
Showroom open Mon-Fri

FELTGLOW LTD.

105B LONDON ROAD. BEXHILL, E. SUSSEX.
(0424) 221686.

Inner London Education Authority LONDON COLLEGE OF FURNITURE 41/71 Commercial Road, London E1 1LA Department of Musical Instrument Technology COURSES IN ELECTRONICS FOR THE MUSIC INDUSTRY

T.E.C. DIPLOMA IN MUSICAL INSTRUMENT STUDIES (2 year full time specializing in Electronics) T.E.C. HIGHER DIPLOMA IN MUSICAL INSTRUMENT TECHNOLOGY
(2 year full time specializing in Electronics)
The Electronics options of these T.E.C. courses allow the student to specialize in music industry application.
Suitable students would be interested in both music and electronics and wish to combine them within this course.
Application forms and further details are obtainable from the Senior Administrative Officer at the College.

STORAGE CABINETS

Metal Cabinets $12^{\prime \prime}$ wide $\times 5^{\frac{3}{4} \prime \prime}$ deep, finished blue with transparent plastic drawers.
Type H No. of Drawers Price (ins) Sm MedLge

1118	11	15	2	1	$\mathbf{£ 1 0 . 7 5}$
1633	16	30	2	1	$\mathbf{f 1 3 . 9 5}$

$1633-16 \quad 30 \quad 2 \quad \mathbf{~} 13.95$
$\begin{array}{llllll}1838 & 18 & 35 & 2 & 1 & \mathbf{£ 1 5 . 9 5} \\ 2236 & 22 & 30 & 4 & 2 & \mathbf{£ 1 8 . 5 5}\end{array}$
$22602260-\mathbf{f 1 8 . 5 5}$
Access/Barclaycard welcome
Prices include VAT and Post. Cheque/P. . . to: Millhill Supplies (Tools).
35 Preston Crowmarsh, Benson,
Oxon 0X9 6SL.

AT: matactum Marshall's

- CD4000	60.17	- CD40138	£0.44	- CD40248	50.60	CD 4049	60. 33	CD4069	f0. 14	CO4095	¢1.00
CD40018	£0. 20	CD4014	¢0.72	CD40288	f0. 60	CD4050B	60. 33	- CD40718	c0. 16	- CD4096	£1.00
CD4002	50.20	CD4015	£0. 72	- CD40298	£1.05	CD40518	c0, 70	- CD4072	50.20	CD40998	¢1.40
C04007	£0. 20	CD4016	£0. 36	CD40348	¢ $£ 2.20$	CD40528	£0. 70	CD40738	¢0.16	CD4507	C0. 44
CD4008B	50.74	- CDS0178	¢0.70	- CD4035B	¢ 1.05	CD40608	E1.10	CD4075	c0. 16	CD45108	¢0.90
CD4009	£0.40	CD4018B	£0.75	CD 4040	£0.90	- CD4063	E1. 10	CD4081B	c0. 16	CD4511	£1.02
CD4010	60.40	CD40198	£0. 44	- CD40418	¢0.80	CD4066B	£0.45	CD4082	¢0.20	CD4514	E2. 20
C040118	f0. 20	CE40208	¢0.90	CD40428	¢0.64	- CD4067	£4.20	CD4085	¢0.90	CD45208	60.90
C04012	f0. 20	C04022B	¢0.78	CD40478	¢1.02	CD4068	£0. 30	- CD4086	¢0. 90	CD4522	£1. 10

| SN7400 | $£ 0.19$ | SNZ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SN | | |

[^6]SEND LARGE SAE FOR OETAILS OF SENSORS \& PARTS TO BUILD OWN FUEL STRETCHER SYSTEM.
MINIMETAL DETECTOR FOR LOCATING PIPES/CABLES UNDER PLASTIC - A MUST FOR EVERY HANDYMAN 9.95

SIEMENS LEDS

5.8mm Red Yellow Green	¢0. 14	TIL 209	¢0.18
3.2 mm Red	co. 12	TIL 228	£0.35
3.2 mm Green/Yellow	¢0.14	TIL 78	£0. 54
Flashing Diodes (3Hz)	c0. 90	BPW 34	£1.18
Rect Leds $2.5 \times 5.0 \mathrm{~mm}$ Red	f0. 12	SFH 205	co. 80
Rect Leds $2.5 \times 5.0 \mathrm{~mm}$ Green/Yellow	¢0.18	ORP 12	£1.20
		4N25	c0.90
. $5^{\prime \prime} 12$ or 24 hr mode. 24 alarm with on/off contrel. sleep timer, snore timer etc. 1.5 v batt. low consurnpt.on			
MA 1026 Alarm/Thermometer Module			£11.50

MA 1003 12v Car Clock Module, Special Price $£ 12.50$ whilst stocks last NSN3914, 3915, 3916 End Stackable Led Bar
Graphs Arrays with Driver All @ $\$ 4.95$ each.

PRESENSITISED POSITIVE FOTO RESIST PC BOAROS 1.6 mm THICK

BAKER 50 WATT
 £69

 AMPLIFIERSuperior quality ideal for Hall PA systems Disco's and Gmome inputs with Mixer Vor inputs with Mixer Volume Controls. Master Bass, Treble and Gain
Controls. 50 watts RMS. Three loudspeaker outlets $4,8,16$ ohm. AC 240 V (120 V available). Blue wording on black cabinet
BAKER 150 Watt AMPLIFIER 4 Inputs f89
for clearance by may 31
(Subject to prior sale)

Ordering your Bargain

Post prices net. 15\% VAT must be added to total cost. (Oversess packing - 35 p if Send C.W.O. marking your order "BARGAIN OFFER"
These bargains available by post from Egham only from

ELEGTROVALUE

LTD
28 St. Judes Road, Englefield Green, Egham, Surrey TW20 0HB
Phone. Egham (0784 (London 87)) 33603 Telex 264475.

ALUMINIUM CHASSIS 18 2.w.E. Uadrilled, ${ }^{4}$ ziden, riveted
 E1. $50 ; 12 \times 8 \times 2$ tin. $£ 2.20 ; 16 \times 10 \times 2$ tin. $£ 2.70$

 $14 \times$ Jin. $60 \mathrm{p}: 12 \times$ Sin. $60 \mathrm{p} ; 16 \times 16 \mathrm{Nin}$. $£ 1.40 ; 16 \times 6 \mathrm{in}$. 90 pp .
ALUUMNIUM BOXESS. MANY SIZESSINSTOCK.

HIGH VOL	CTROLYTI	32
$8 / 800 \mathrm{~V}$..... 51.20	50/500V ... \&1-20	$32+32 / 500 \mathrm{~V}$, f 1.8
16/500V.......... ${ }^{\text {35p }}$		$40+$

16/500V........... 73 p	220/450V95p	40+80/500V
$32 / 500 \mathrm{~V}$......... 75 p		$16+32+32 / 500 \mathrm{~V}$....... $\mathrm{E2}$

DE LUXE BSR HI-FI AUTOCHANGER
Stereo Ceramic Cartridge

Plays 12 in., 1Oin.. or 7 in records
Auto or Manual. A high quality unil $240 \vee \mathrm{AC}$. Size $13+\times 11$ in Above motor board 3 in
 f 20 Post on
All
 <2.
BSR Single Player P207 cueing device
ceramic cartridge.
f17 post $\mathbb{1} 2$
cueing device, aluminium arm. Stereo cartridge.
BSR. C172. Slim arm. Metal Turntable Ceramic Head. Cueing Device Auto Stop
BSR Auto Changer 1 lin Turntable Budget price. Stereo ceramic, reliable unit, 3-speed. $£ 17.50$ post $£ 2$
ISKRA. Disco Deck 3 speed stereo $\mathbf{f} 9.95$ or $\mathbf{~} 18$ pair post free
Rapid Mail Order 65p minimum postage. Callers W
Radio Components Specialists
337, WHITEHORSE ROAD
CROYDON, SURREY, U.K. TEL: 01-684 1665.

NEW 1981
 MODERN ELECTRONIC CIRCUITS REFERENCE MANUAL

by Markus
Price: $£ \mathbf{3 2 . 5 0}$
RADIO AMATEUR HANDBOOK
by ARRL 1981 ed
Price: $\mathbf{£ 8 . 0 0}$
THE ART OF ELECTRONICS
P. Horowitz

Price: $\mathbf{£ 1 3 . 5 0}$
WORLD RADIO T.V. HANDBOOK
1981 edition
Price: $\mathbf{£ 1 0 . 5 0}$
ELECTRONIC PRINCIPLES 2nd od.
A. P. Malvino

Price: $\mathbf{£ 4 . 3 5}$
MANUAL OF ELECTRONIC SERVICING
TESTS \& MEASUREMENTS
by R. Genn
Price: $\mathbf{£ 1 0 . 0 0}$
NTRO. TO DIGITAL FILTERS
by T. Terrell
Price: £6.95
MICROPROCESSORS \& MICRO-
COMPUTERS FOR ENG. STUDENTS \&
TECHNICIANS
by B. Wollard
Price: $\mathbf{£ 5} \mathbf{5 5}$
USING CP/MA SELF TEACHING GUIDE by J. Fernandez

Price: $\mathbf{8} 6.75$
ALL PRICES INCLUDE POSTAGE
THE MODERN BOOK СО.
BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET LONDON W2 1 NP

Phone 01-402 9176
Closed Saturday 1 p.m.

OVERSEAS ORDERS

Overseas readers are reminded that unless otherwise stated, postage and packing charges published in advertisements apply to the United Kingdom only.

Readers wishing to import goods from the United Kingdom are advised to first obtain from the advertiser(s) concerned an exact quotation of the cost of supplying their requirements carriage paid home.

(2) Wilmslow Audio

THE firm for speakers!

SEND 50p FOR THE WORLD'S BEST

 CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.AUDAX AUDIOMASTER BAKER
BOWER \& WILKINS CASTLE CELESTION
CHARTWELL COLES DALESFORD
DECCA EAGLE ELAC EMI FANE
GAUSS GOODMANS HARBETH
ISOPHON I.M.F. JORDAN JORDAN
WATTS KEF LOWTHER MCKENZIE
MISSION MONITOR AUDIO MOTOROLA
PEERLESS RADFORD RAM ROGERS
RICHARD ALLAN SEAS SHACKMAN STAG
TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO (Dept. P.E.)

35/39 CHURCH STREET, WILMSLOW, CHESHIRE
Tel: 0625529599
FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS ETC.
Tel: 0625526213
(SWIFT OF WILMSLOW) FOR HI-FI \& COMPLETE SPEAKERS

PRACTICAL ELECTRONICS PROJECTS

SEPARATOR Murata firters: SFE6 OMA 50p, CDA6 OMC 50p.
POSTAGE \& PACKING $25 p$ per order.
Orders over E10.00 post free.
PRICES DO NOT INCLUDE VAT. Add 15% to all prices.
MAIL ORDER ONLY
CALLERS BYAPPOINTMENT
13 DEEPDALEAVENUE, ROYTON, OLDHAM OL2 6XD.

COMPONENT BARGAINS

```
Equipment manufacturer offers limited amount of excess stock at unbeatable
prices. All devices new and guaranteed
Displays
NSB 3882,0.3"/4 digits/C. Anode300p
Counter/Driver ZN1O40E
LM340T-5, volt. reg.
Transistors
2TX 302 (BC 337)
ZTX 502 (BC 327)
Switches12p
6w-way mini DIP
8-way mini DIP (ERG) 100p
SPDT slide switch
Capacitors
Tantalum bead 25V,3.3\muF
Electrolytic 25V, 47 /F or 100 \mu\textrm{F}

\section*{THESE SPACE INVADERS WILL ALARM YOU}

\section*{The price won't}

CA-90
CASIO'S MOST AMAZING WATCH EVER
Display: Hours, minutes, seconds, \(\mathrm{am} / \mathrm{pm}\). day and date, 12 or 24 hour format.
Auto Calendar: Day, date, month.
year.
Alarm: 24 hour system. Buzzer.
Hourly chimes: Time signal every hour, on the hour. Easily switched on or off. Professional stopwatch: Lap times etc, from 1/100 second to 24 hours. Dual time: Second time zone.
Calculator: 8 digits, four functions, with constants and display symbols. DIGITAL SPACE INVADER GAME with sound effects and scoring. Water resistant resin case, 10.6 mm thick. Mineral glass face. Nightlight all this for ONLY \(£ 24.95\)


The random digital invaders attack from the bottom right and move across the display. Every time you tap AIM your missile number, top right. progresses by 1. When your missile number coincides with an in vader, tap FIRE and that spaceship will disappear, adding to your score. The game is over if 3 of the 16 spaceships in an encounter penetrate your defences.
There are 2 stages, each stage having 9 encounters. In stage 1 the game speeds up with each encounter and in stage 2 the invaders attack from a closer position. After stage 2 the game reverts to stage but the score, displayed after each encounter, is incremental.

\section*{BECOME AN INSTANT MUSICIAN NO EXPERIENCE NECESSARY}

Create your own music with a VL-TONE. You combine the sound. rhythm and tempo and the VL-TONE plays it back . . . beautifully!

\section*{CASIO VL-TONE (VL-1)}

Electronic Musical Instrument and Calculator

(RRP £39.95)
ONLY £35.95
VL-1: Utilises Very Large Scale Integrated circuit advanced technology This complete 29 -note synthesiser records and plays back. The octave shift switch expands the range of the keyboard to almost 5 octaves. Preset sounds: Piano. Violin, Flute, Guitar, Fantasy and ADSR (sound wave that can be varied in over 80 million ways).
Auto play: ONE-KEY or MANUAL playing can be recorded and will be played back in the form of a melody
Auto rhythm: 10 built-in rhythms, all with variable tempo and volume balance. can be incorporated in manual playing or added to your recording.
Built-in melody: Pre-programmed German Folk Song with rhythm accompaniment. Play it anytime and practice tempo changes with the tempo control
Facilities: LCD numerical display shows pitch, including sharps and programming information. Built-in amplifier and speaker. Output jack Pitch control.
Calculator: 8 digits.,\(+-x_{,} \div\)square roots, \(\%\), constants and full memory
Power source: Four AA size batteries or AC adaptor type AD-4160 (price 55 ).
Dimensions: \(30 \mathrm{~mm} \times 300 \mathrm{~mm} \times 75 \mathrm{~mm}\left(1^{\frac{1}{8}^{\prime \prime}} \times 11 \frac{3^{\prime \prime}}{1 \prime} \times 3^{\prime \prime}\right)\).
This compact. battery powered lightweight (438g. 15.4oz) can be played anywhere

\section*{Please order now for May deliver:}

\section*{OTHER CASIOTONE KEYBOARDS}

MT-30 Polyphonic. 22 instruments over 3 octaves. Battery/mains (RRP £115) £95.
CT-301 Polyphonic. 14 instruments over 4 octaves. \(8 \times 2\) rhythm accompaniments. Vibrato, delayed vibrato. Pitch control. Output jacks. AC only (RRP £285) £245.
CT-401 As CT-301 but with Casio Auto Chored for one finger accompaniment. Plays major, minor and seventh chords with bass. Integral sustain and hold. (RRP £345) £295.

\section*{ILLUSTRATED CATALOGUE}

Send 20 p (postage) for details of CASIOTONE keyboards, CASIO watches and calculator and selected SEIKO watches.

Offers subject to availability
PRICES include VAT. P\&P. Remember we will try and beat lower prices. Return of post service. Send cheques, P.O. or phone your ACCESS or BARCLAYCARD number to:



BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 33 years. Foresters (National Radio Supplies), Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel. 302204. Closed Weds.


BALLARD'S OF TUNBRIDGE WELLS have moved to 54 , Grosvenor Road, no lists. S.A.E. all enquiries phone Tunbridge Wells 31803.

\section*{VLF DETECTOR KITS}

PROFESSIONAL AUTOMATIC METAL LOCATOR
The printed circuit Board \& Search Head are ready built \& aligned for easy assembly. Discrimination is by a rising tone for non ferrous \& a falling tone ferrous. Complete kit inc. meter \(£ 27\).
Discriminating Pulse Induction Kit \(£ \mathbf{4 8}\)
C.D.I. SYSTEMS LTD.,

Storrington 4830 (Anytime)
TURN YOUR SURPLUS Capacitors. transistors, etc., into cash. Contact COLESHARDING CO.. 103 South Brink, Wishech. Cambs. 0945-4188. Immediate settlement.

\section*{8K MEMORY EXPANSION \\ Limited Offer \(£ 49.95\) inc. VAT for UK 101 /Superboard}

Board comprises of 8 K RAM ( 2114 's), with on board address decoding and 40 way header cable assy.
Plugs into JI expansion socket. Built and Fully Tested.
ALPHA DESIGN,
116, A shley Road,
Poole, Dorset.
Tel. (0202) 721760.

\section*{SMALL ADS}

The prepaid rate for classified advertisements is 28 pence per word (minimum 12 words), box number 60p extra. Semi-display setting \(£ 9.50\) per single column centimetre (minimum 2.5 cms ). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with'remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

\section*{NOTICE TO READERS}

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.
blackpdol and the fylde. For components come to Eteson Electronics. 15b. Lower Green. Poulton-le-Fylde. Tel. 885107 . Mail order too - S.A.E. lists.
I \& J ELECTRONIC COMPONENTS. Quality components, competitive prices, catalogue 45p. 98 Burrow Road, Chigwell, Essex.

1920's ONWARO VALVES. WIRELESS. SAE. Sole Electronics, PE. 37. Stanley Street. Ormskirk. Lancs. L39 2DH.

\section*{SOFTWARE}

2X80 SOFTWARE - 251 K programs on three cassettes for only \(£ 12.00\) (includes Moon-landing, Biorhythms, FruitMachine, Stopwatch. ZX80 Art and many more), ZX80 programming course - consists of a book and cassette of IK programs. dealing with many aspects of ZX80 programming. 88.95 . ZX80 Breakout (4K) with non-ficker moving graphics! \(£ 6.00\) prices inclusive. Bug-Byte. 251 Henley Road, Coventry.
2X-80 1K. pristine condition, +2 dozen games on cassette. Ideal heginners \(£ 80\) or offers. Telephone (0777) 705445 .

\section*{Superboard / UK101 Low Cost Add-Ons}

8 K RAM +16 K EPROM board, fully buffered and decoded. Top quality PCB - 40 pin DIP connector. All memory bank selectable in 4 K blocks anywhere in memory. Includes 4 K 300 ns RAM (2114). Full instructions etc. supplied.
Kit \(£ 49.39\), built and tested \(£ 57.44\)
PC Board only \(£ 20.12\), extra 4 K only \(£ 16.10\)
High speed cassette interface kit, 300/2400/ 4800/9600 switchable to suit recorder.
Easy to fit kit \(£ 17.19\)
Enhanced Video Display. True \(48 \times 32\) Display Full kit and instructions \(£ 17.75\)
Special Offer: Kit \(+48 \times \mathbf{3 2}\) CEGMON \(\mathbf{8 8 . 3 0}\) + fitting \(£ 13.80\)
Software for all Superboard/UK 101 screen for\({ }_{\text {mats. }}\) Chess \(1.9 £ 8.05\), Draughts \(£ 4.02\), Both \(£ 10.35\)
Superboard II Series II \(£ 183\) including FREE 5 V 3A PSU kit, fully built, tested and guaranteed.
NORTHERN MICRO Tel. Holmfirth

\section*{29 Moorcroft Park}

New Mill
(048489) 2062

HUDDERSFIELD Callers welcome by appt.
CAROBOARD COMPUTOR. Learn Assembly Language Programming and Computor Architecture. \(£ 8.97\) inc. VAT. Also Solar Cells, Science Kits, Energy Books, StirVAT. Also Solar Cells, Science Kits, Energy Books, Sists.
ling Engines, Space Blankets etc. Send 25 for lists. Edencombe Lid.. Dept. PM34, Nathans Road, North Wembley. Middlesex HAO 3RX.
COMPUKIT UK 101. Can handle dimensioned string arrays without any hangups. Simply fit a modified basic 3 chip ( \(5 v\) 2716 ) as published by Osi UK user group, only \(£ 12\). Other programming services considered. C. Spalton, 9. Willowfields. Hilton, Derby, DE6 SGU.
ACORN ATOM SOFTWARE (Acorn approved) Invaders! Fantastic 12 K program utilising high resolution graphics and sound \(£ 12.00\). Atom Breakout ( 4 K ) \(£ 5.00\). Bug-Byte, 251 Henley Road, Coventry.
4K COMPUKIT CASSETTES. Alien Invaders \(£ 2.50 .11 \times 11\) memory expandable Maze Escape. 3D graphics \(£ 2.50 .4 \times\) \(4 \times 4\) 3D Noughts Crosses \(£ 2.50\). Two \(£ 4.00\). Three \(£ 5.25\). S. Hall, 14. Christchurch Lane. Lichfield. Staffs.

\section*{books and publications}

BOOKS BOOKS BOOKS. Large range of radio and electronic books in stock. Send SAE for lists, Servio Radio, Dept. PE6, 156-158, Merton Road, Wimbledon, London SW19 IEG.
ANY SINGLE SERVICE SHEET £1 L.S.A.E. Thousands different repair/service manuals/sheets in stock. Repair data your named T.V. £6 (with circuits 58). S.A.E. Newsletter, pricelists, quotations. AUS (PE), 76 Church Street, Larkhall, Lanarkshire. (0698 883334).

OUT OF PRINT Book Service, 17. Fairwater Grove (E), Cardiff. Send SAE for details.

\section*{SERVICE SHEETS}
T.V. SERVICE SHEETS, BRC FAULT GUIOES, Japanese colour manual specialists. catalogue 25p. Plus S.A.E.. Sandhurst Publications. 49c Yorktown Road. Sandhurst. Camberley. Surrey.
BELL'S TELEVISION SERVICES for Service Sheets on Radio, Tv, etc \(£ 1.00\) plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel:(0423) 55885 .

\section*{EDUCATIONAL}

\section*{CITY \& GUILDS EXAMS}

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Insiallations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 272H Intertext House, London SW8 4UJ Tel. 01-622 9911 (all hours)

State if under 18

\section*{TECHNICAL TRAINING}

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on tor details of ICS specialist homestudy courses on
Radio, TV, Audio Eng. and Servicing, Elecironics, Radio, TV, Audio Eng. and Servicing, Elecironics,
Computers: also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dep. 272H Interrext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

\footnotetext{
COLOUR TV SERVICING
Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and align. ment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 272H Intertext Hoase, London SW8 4UJ
Tel. 01-6229911 (all hours)
State if under 18
CABEERS in Marine Electronics. Courses commencing September and January. Further details, the Nautical College, Fleetwood FY7 8JZ. Tel. 0391779123.
}

\section*{COURSES}

\section*{DIGISOUNDER}
construct your digisounder kit under expert guidance on a residential weekend course. Excellent facilities available.

Course date JULY 10th, 11 th, 12th. For further details write to:
Department of Marine Electronics, The Nautical College, Broadwater, Fleetwood, FY7 8 JZ . Tel. 0391779123.

\section*{FOR SALE}

NEW BACK ISSUES OF 'PRACTICAL ELECTRONICS' available 90 p. each Post Free. Cheque or uncrossed P/O returned if not in stock. Bell's Television Services, 190 K ings Road. Harrogate. N. Yorks. Tel : (0423) 55885.
P.E. STRING ENSEMBLE complete kit, half built including keyboard \(\mathbf{L 9 5}\). Telephone 65368 (Andover).

CENTRONICS PI PRINTER. Up to 80 columns 12.5 cm aluminised paper. Also UK101 to centronics interface. £ 140 will split. 0!-505-3193.

SINCLARR 2X80 (White on Black). £70. MK 14 with V.D.U. £60. Will Split. Retford 702037.

SELF ADHESIVE LABELS, P.C.B's from circuits. Fast service S.A.E. Sistem Electronics, 3, Kestrel, Wilnecote, Staffs. Front panel labels a speciality.

\section*{MISCELLANEOUS}

SEEN MY CAT? 5000 odds and ends. Mechanical, electrical. Cat free. Whiston Dept. PRE, New Mills, Stockport.
printed circuit boards. Glass Fibre tinned and Drilled Prototypes to batch runs. Quick turn-round, competitive prices. Send S.A.E. for quotations. R.D. ELECTRONICS, 12 Whiteoaks Road, Oadby, Leicester, 0533716273.

\section*{WRONG TIME?}

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, 24 hour format, larger digit Hours and Minutes for easy QUICK-GLANCE time, auto GMT/BST and leap year, can expand to Years, Months and Milliseconds, also parallel BCD output for computer or alarm and audio to record and show time on playback, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, ABSOLUTE ACCURACY, £54.80.
V.L.FT EXPLORE \(10-150 \mathrm{KHz}\), Receiver \(\$ \mathbf{1 3 . 7 0}\) Each fun-to-build kit inciudes all parts, printed circuit, case. postage etc, money back guerantee so GET yours NOW.

CAMBRIDGE KITS
45 (FT) Old Schoot Lane, Mitton, Cambridge.
PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer - now greatly improved and very much faster. Aerosol cans with full instructions \(\mathbf{£ 2 . 2 5}\). Developer 35p. Ferric Chloride 55p. Clear Acetate sheet for master 14p. Copper-clad Fibreglass. Board approx. 1 mm thick \(\mathbf{5 1 . 7 0} \mathrm{sq}\). ft. Post/packing 75p. WHITE HOUSE ELECTRONICS, P.O. BOX 19. Castle Drive, Penzance, Cornwall.

\section*{RECHARGEABLE BATTERIES}

TRADE ENQUIRIES WELCOME FULL RANGE AVAILABLE. SAE FOR LISTS. E1.45 for Booklet "Nickel Cadmium Power" plus Catalogue. Write or call Sandwell Plant Lid. 2 Union Drive, BOLDMERE,
SUTTON COLDFIELD, WEST MIDLANDS \(021-3549764\) *New sealed Lead Range Available*

ULTRASONIC TRANDUCERS, \(£ 2.85\) per pair +25 p P. \& P. Dataplus Developments, 81 Cholmeley Road, Reading. Berks.
 WITH A ©COPE METAL DETECTOR
Write NOW for your FREE Full Colour 'Guide to Succes Treasure Hunting' OR Dial 100 and ask the Operator for FREEPHONE \(3186-24 \mathrm{hr}\) Service
C-SCOPE METAL DETECTORS (UK) LTO., DEPT PE Wotton Road, Achtord Kent TN23 2LN Wolaphone : Ashford (0233) 29181 (24hr Ansafone)

\section*{RYDER ORGAN SYSTEM}

The WW classical design for full-size keyboards, including couplers. Expanded range of p.c. boards \& data available includes chorus, vibrato, combination stop control.
Reverberation. A new compact solid state unit gives smooth natural sound Demo cassette, on loan, deposit \(£ 1.50\) refund \(£ 1.00\). (Prices UK only).

HIYKON LTD. (P), Woodside Croft, Ladybridge Lane, Boiton BL1 5ED.

SECONDHAND ELECTRONIC TEST EQUIPMENT including os cilloscopes, generators. PSU‘s. Norfab. Telephone Potter Heigham (069-27) 721 .

\section*{NEW 32.7KHz ULTRASONIC ALARM \\ QUARTZ LOCKED + PANIC FACILITY} No alignment - No interaction between units. KITS INC F/G PCB ABS BOX HARDWARE ALL COMPS. Single unit con struction - screw connections. 240 operation with batter back up option. 15 ft . detection range internally preset. Delay on leaving and entry. Invalid movement delay. self cancelling resetable with keyswitch. Latching , larm for panic -ext and Relay Contact 240 VAC \(3 A\) ALARM KIT UAQ E21.65, Built and Tested \(£ 29.65\). Multitone Sounder 12VDC - 25 mA 95db f9 20. All prices inclusive - CWO - UK

GJD ELECTRONICS, 105 Harper Fold Road
Radcliffe, Manchester m26 ORQ.

\section*{DIGITAL WATCH BATTERY REPLACEMENT KIT}

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass. non-magnetic weezers, watch screwdriver, case knife and screwback case opener, alao one doz. assort push pieces, full instructions and battery identification chart. We then supply replacement batteries-you fit them. Begin now. Send \(\mathbf{8} 9.00\) for complete kit and get into a fast growing business. Prompt despatch.

\section*{BOLSTER INSTRUMENT CO}
(PE25)
11 Percy Avenue, Ashford, Middx. TW15 2PB.

\section*{ORDER FORM PLEASE WRITE IN BLOCK CAPITALS}

Please insert the advertisement below in the next available issue of Practical Electronics for insertions. I enclose Chèque/P.O. for \(£\)
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)
\begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline NAME & Send to: Classified Advertisement Manager PRACTICAL ELECTRONICS \\
\hline ADDRESS. & \begin{tabular}{l}
GMG, Classified Advertisements Dept., Room 2337, King's Reach Tower, Stamford Street, London SE1 9LS. \\
Telephone 01-261 5846 Rate:
\end{tabular} \\
\hline & 28p per word, minimum 12 words. Box Mo. 60p exira. \\
\hline
\end{tabular}

SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a Low \(£ 1.05\). Chassis punching from. Suppliers only to Industry \& The Trade. BAZELLI (Dept. No. 23), St. Wilfrids. Foundry Lane, Halton. Lan(Dept. No. 23),
caster. LA 1 6LT

\section*{BIG EARS}

\section*{SPEECH
INPUT
FOR
YOUR
COMPUTER!}

BIG EARS opens the door to direc
man-machine communication. The system
comprises analogue frequency separation filters. preamps and signal conversion, logether with a quality microphone and extensive software.
Words, in any language, are stored as "voiceprints" by simply repeating them a lew times in "learn" mode. Using keyword selection techniques, large vocabularies can be constructed.
Use BIG EARS as a front end lor any application: dala enquiry, robot control, slarwars - the possibilities are unlimited.
BUILT TESTED \& GUARANTEED ONLY \(\mathbf{4 5}\) !
PRICE INCLUDES POSTAGE \& PACKING PLEASE ADD VAT AT 15
PLEASE STATE COMPUTER UKIOI SUPEREOARD, NASCOM2
- PLEASE STATE COMPUIER UKSO, ETC

MICROGRAPHICS
UKIOINASCOM i\& \(2 /\) Superboar
UK 10 IINASCOM is
(Modulator included)
superboa

COLOUR MODULATOR
RGB in, PALUHF oul KIT £12

Please add VAT at \(15 \%\) to all prices
Barclay/Access orders accepled on teleptone WILLIAM \(\begin{aligned} & \text { Dower House. Billericay } \\ & \text { Herongate, Brentwood. }\end{aligned}\) STUAAT Essex CM 13 3SD Essex CM 13 3SD
Telephone: Brentwood to2

Cabinet and Flightcase Fittings Fretcloths, Coverings. Handles. Castors etc.. Jacks and
Sockets Cannons, Bulgins, Reverb Trays, Emiler Compression Drivers, AKG Mics, Celestion Speakers, ASS, Glasstibre Horns.
Send 30p Postal Order for illustrated catalogues to:-
ADAM HALL (P.E. SUPPLIES) Unit G, Carlton Court, Grainger Road,
Southend-on-Soa, Essex SS2 SB2.

BURGLAR ALARM EQUIPMENT. Latest Discount Catalogue out now! Phone C.W.A.S. Alarm 0274682674.


PSYCHOTRONIC GENERATORS, gravity lazers. electrokinesis. electrophotography. shinvision. SAE \(4 \times 9\) " Paralab. Downton. Wilts.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E.4. 01-531 1568 ENAMELLED COPPER WIRE
\begin{tabular}{|c|c|c|c|c|}
\hline SWG & 1 lb & \(80 z\) & \(40 z\) & 202 \\
\hline 8 to 29 & 2.76 & 1.50 & 0.80 & 0.60 \\
\hline 30 to 34 & 3.20 & 1.80 & 0.90 & 0.70 \\
\hline 35 to 39 & 3.40 & 2.00 & 1.10 & 0.80 \\
\hline 401043 & 4.75 & 2.60 & 2.00 & 1.42 \\
\hline 44 to 47 & 8.37 & 5.32 & 3.19 & 2.50 \\
\hline 48 to 49 & 15.96 & 9.58 & 6.38 & 3.69 \\
\hline \multicolumn{5}{|l|}{SILVER PLATED COPPER WIRE} \\
\hline 14 to 30 & 6.50 & 3.75 & 2.20 & 1.40 \\
\hline \multicolumn{5}{|l|}{TINNED COPPER WIRE} \\
\hline 14 to 30 & 3.85 & 2.36 & 1.34 & 0.90 \\
\hline \multicolumn{5}{|c|}{Prices include P\&P, VAT and wire Data.} \\
\hline \multicolumn{5}{|c|}{\multirow[t]{2}{*}{SAE for List. Dealer enquiries welcome.}} \\
\hline & & & & \\
\hline
\end{tabular}

MAKE YOUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack 15 sheets. lines, pads, I.C. pads) \(£ 2.00\). Large range of single sheets in stock at 43 p per sheet
Master Positive Transparencies from P.C. Iayouts in magazines by simple photographic process. Full instructions supplied. 2 sheets \((20 \times 25 \mathrm{~cm})\) negative paper and 2 sheets \((18 \times 24 \mathrm{~cm})\) positive film \(\mathbf{f 1 . 8 0}\). Drafting film \((30 \times 21 \mathrm{~cm}) \mathbf{2 2 p}\) per sheet.
\(20 p\) stamp for lists and information. \(P \& P\) 35p/order
P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE
D.I.Y. REWIRING FROM f75. Free catalogue and quotation listing materials to rewire your own home. Alphur Electrics. 29 Holme Lane. Bradford, West Yorks. (0274) 685926.


CLEARING LABORATORY: scopes, generators, P.S.U.'s, bridges, analysers. meters, recorders, etc. 0403-76236.



\section*{Conquer the chip.} will revolutionise every human activity over the next ten years.

Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.

Learn the technology of the future today in your own home.

\section*{HMSEREGTONG LEARN THE PRACTICAL WAY \\ - Building an oscilloscope. - Recognition of components.}
- Understanding circuit diagrams. - Handling all types Solid State 'Chips'
- Carry out over 40 experiments on basic circuits and on digital electronics.
- Testing and servicing of Radio, T.V., Hi-Fi and all types of modern computerised equipment.

\section*{MASTER COMPUTERS}

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS.
- Complete Home Study library. - Special educational MiniComputer supplied ready for use. Self Test program exercise - Services of skilled tutor available.

\section*{MASTER THE REST}
- Radio Amateurs Licence. Logic/Digital techniques.
- Examination courses (City \& Guilds etc.) in electronics.
- Semi-conductor technology.
- Kits for Signal Generators - Digital Meters etc


\title{
(a) - \(\quad\) mingrinsis

}

TOROIDAL
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{I A A RANGEVA TO SOF OFH} \\
\hline TYPE & SERIES SECONDARY RMS & \\
\hline  &  & \[
£ 4.48
\] \\
\hline  &  & \\
\hline  &  & \[
£ 5 .
\] \\
\hline  &  & \[
£ 6.38
\] \\
\hline
\end{tabular}

GOODS DESPATCHED WITHIN 7 DAYS OF

\section*{RECEIPT OF ORDER •}

FOR SINGLE AND SMALL QUANTITY ORDERS.
* CUSTOMER DESIGN ENQUIRIES INVITED. QUANTITY PRICE LIST AVAILABLE.
* FREEPOST FACILITY (U.K. only). Simply send your order in envelope to FREEPOST to address below. NO STAMP REQUIRED.
* TO ORDER Enclose cheque/Postal Order/Money Order payable to I.L.P. Electronics Ltd or quote your ACCESS or BARCLA YCARD account No. To pay C.O.D. add £/ extra to TOTAL value of order
* Also available from ELECTROVALUE and MARSHALLS.

\section*{} \begin{tabular}{llll} 
FREE POST T2 GRARAM BELL HOUSE ROPER CLOSE \\
CANTERBURY CT2 7EP. & Phone (0227) 54778 Technical (0227) 64723 & Telex 965780 \\
\hline
\end{tabular}

\section*{+ a NEW SERIES OF P.C.B MOUNTING LAMINATED TYPES}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & PRICE \\
\hline 3 VI &  &  & \[
0.92 \mathrm{p}
\] \\
\hline 6 va &  &  &  \\
\hline 12 va &  &  & \[
£ 2.09
\] \\
\hline
\end{tabular}

\section*{ABOUT THE NEW LAMINATES}
I.L.P. LAMINATED
I.L.P. printed-circuit mounted mains transformers have two independent primary windings which can be connected in series for 2400 V or parallel for 120 V operation. The two independent secondaries can also be connected in series or parallel to give a wide range of output voltage/current configurations. All are wound on split bobbins, eliminating need for a inter-winding screen. Breakdown tested to 2000 VAC minimum
Regulation - 3VA typically \(21 \% ;\) 6VA typically \(15 \%\);
12VA typically \(10 \%\)
Regulation - 3VA typically \(21 \%\); 6VA typically \(15 \%\);
12VA typically \(10 \%\)

I.L.P. TOROIDALS

Only half the weight and height of their laminated equivalents. Avallable in choice of \(110 \mathrm{~V}, 220 \mathrm{~V}\) primaries coded as follows: Secondaries can be connected in series or paralle) when ordering
For 110 V Primary inseri 0 in place of ' \(X\) '' in type number. For 220V Primary (Europe) insen \(I\) in place of ' \(X\) '' in type number.
For 240 V Primary (U.K.) insent 2 in place of " \(X\) " in type number Example - 120VA 240 V \(15+15 V .4 A=42013\).
\begin{tabular}{|c|c|c|c|c|}
\hline TGEF & \[
\begin{aligned}
& \text { SERIES } \\
& \text { No. }
\end{aligned}
\] & SECOND Volts & ARY RMS Current & PRICE \\
\hline \multirow{10}{*}{\[
\begin{gathered}
160 \mathrm{VA} \\
110 \times 40 \mathrm{~mm} \\
1.8 \mathrm{Kg}
\end{gathered}
\]} & 5X012 & 12+12 & 6.66 & \\
\hline & \(5 \times 013\) & \(15+15\) & 5.33 & \\
\hline & \(5 \times 014\) & \(18+18\) & 4.44 & 89 A \\
\hline & \(5 \times 015\) & \(22+22\) & 3.63 & 30.42 \\
\hline & \(5 \times 016\) & \(25+25\) & 3.20 & + \(1.43 P / P\) \\
\hline & \(5 \times 017\) & \(30+30\) & 2.66 & +£1.48VAT \\
\hline & \(5 \times 018\) & \(35+35\) & 2.28 & \\
\hline & \(5 \times 028\) & 110 & 1.45 & \\
\hline & \(5 \times 029\) & 220 & 0.72 & \\
\hline & 5X030 & 240 & 0.66 & \\
\hline \multirow{9}{*}{\begin{tabular}{l}
2257 VA \\
\(110 \times 45 \mathrm{~mm}\) 2.2 Kg
\end{tabular}} & \(6 \times 014\) & \(18+18\) & 6.25 & \\
\hline & \(6 \times 015\) & \(22+22\) & 5.11 & \\
\hline & \(6 \times 016\) & \(25+25\) & 4.50 & G110 \\
\hline & \(6 \times 017\) & \(30+30\) & 3.75 & \\
\hline & \(6 \times 018\) & \(35+35\) & 3.21 & + \(51.73 P / P\) \\
\hline & \(6 \times 026\) & \(40+40\) & 2.81 & +£1.77VAT \\
\hline & \(6 \times 028\) & 110 & 2.04 & \\
\hline & \(6 \times 029\) & 220 & 1.02 & \\
\hline & \(6 \times 030\) & 240 & 0.93 & \\
\hline \multirow{8}{*}{\begin{tabular}{l}
\(300_{\text {ri }}\) \\
\(110 \times 50 \mathrm{~mm}\) 2.6 Kg
\end{tabular}} & 7x016 & \(25+25\) & 6.00 & \\
\hline & 7X017 & \(30+30\) & 5.00 & \\
\hline & TX018 & \(35+35\) & 4.28 & 81165 \\
\hline & 7X026 & \(40+40\) & 3.75 & 0.000 \\
\hline & \(7 \times 025\) & \(45+45\) & 3.33 & + 11.73 P/P \\
\hline & 7X028 & 110 & 2.72 & +£2.01VAT \\
\hline & 7X029 & 220 & 1.36 & \\
\hline & 7X030 & 240 & 1.25 & \\
\hline \multirow{7}{*}{\begin{tabular}{l}
500 ya \\
\(140 \times 60 \mathrm{~mm}\) 4 Kg
\end{tabular}} & \(8 \times 017\) & \(30+30\) & 8.33 & \\
\hline & \(8 \times 018\) & \(35+35\) & 7.14 & \\
\hline & \(8 \times 026\) & \(40+40\) & 6.25 & F1553 \\
\hline & \(8 \times 025\) & \(45+45\) & 5.55 & -10.00 \\
\hline & \(8 \times 033\) & \(50+50\) & 5.00 & + £2.05P/P \\
\hline & \(8 \times 028\)
\(8 \times 029\) & 110 & 4.54
2.27 & +£2.64 \\
\hline & \(8 \times 029\)
\(8 \times 030\) & 220
240 & 2.27
2.08 & \\
\hline
\end{tabular}

\section*{To: I.L.P. ELECTRONICS LTD. CANTERBURY CT2 7EP \\ Please supply Transformer(s). \\ No.(s).}

Total purchase price \(£\)
Ienclose Cheque \(\square\) Postal Orders \(\square\) International Money Order \(\square\) Debit my Access/Barclaycard Account No.

NAME
ADDRESS

Signature

\section*{Top Priority for every constructorHOME RADIO CATALOGUE}
- About 2,000 items clearly listed - Profusely illustrated throughout. - Large A-4 size pages.
- Bargain list, order form and 2 coupons each worth 25 p if used as directed, all supplied free.
Price E1, plus 50p for post, packing and insurance.
Send cheque or P.O. for \(£ 1.50\)
HOME RADIO Components LTD Dept. PE, P.O. Box 92, 215 London Road, Mitcham, Surrey.

01-543 5659


\section*{Index to Advertisers}



\section*{practical books from sams and prentice-hall}
> sams books

> Howard M. Berlin \(\square\) Design of Active Filters, with Experiments

"unique (to my knowledge) in that some 24 experiments are included to demonstrate the design and characteristics of the filters" Microelectronics Journal
\(£ 5.80\) pb 288 pages
672-21539-X 1977
Robert T. Stone and
Howard M. Berlin
\(\square\) Design of
VMOS Circuits, with
Experiments

All aspects of the vertical metal oxide semiconductor are examined.
\(£ 7.10 \mathrm{pb} 176\) pages
672-21686-8 1980

\section*{Howard M. Berlin}

Guide to CMOS
Basics, Circuits and Experiments

22 experiments illustrate CMOS devices, characteristics and design rules.
\(£ 5.80 \mathrm{pb} 224\) pages
672-21654-X 1979
Charles D. Rakes
\(\square\) Integrated Circuit Projects
2nd Edition
£3.60 pb 144 pages
672.21616-7 1979

Rufus P. Turner
\(\square\) LC Circuits
£3.85 pb 112 pages
672-21694-9 1980
Don Lancaster

\section*{\(\square\) TV Typewriter Cookbook}
£6.45 pb 256 pages
672-21313-3 1976

\section*{prentice-hall books}

John D. Lenk

\section*{\(\square\) \\ Handbook of Digital Electronics}

A crash course in digital electronics. this book gives complete technical descriptions and a simplified system of test and traubleshooting for digital electronic equipment. including microprocessors.
£14.25 hb 384 pages 13-377184-9

Frederick W. Hughes

\section*{\(\square\) OP AMP Handbook}

Both theoretical aspects of OP AMPs and practical skills needed for working with OP AMP circuits are explained.
£14.25 hb 304 pages 13-637298-8 1981

\section*{Roberl G. Irvine}

\section*{Operational \\ Amplifier Characteristics and Applications}
£16.20 hb 416 pages
13-637751-3 1981

\section*{Book Orders}

These books can be ordered from your bookseller or in case of difficulty from
Department 30 ,
Prentice-Hall international
66 Wood Lane End.
Hemel Hempstead, Hertfordshire. HP2 4RG. England.

Please mark the number of books you wish to order in the boxes beside each title and return the advertisement to the address above with your payment.
Name
Address

I enclose a cheque/P. 0 . for E
Please add 55p per book for poslage and packing. Payment should be made out to
International Book Distributors Please allow 28 days for delivery


for model ili Purchasers


\section*{The PEDIGREE PETS}

We give a full one year's guara
on all our products, which
normally only carry 3 months guarantee
WE ARE NOW STOCKING THE AUTOSTART APPLE II AT REDUCED PRICES


16K £549 32K \(£ 579\) 48K £599
Getting Started APPLE \(\|\) is faster, smaller, and more because of buils-in features like. - BASIC - The Language that Makes Programming Fun Finely-Detailed Displays. Sound Capability that Brings Programs to Life. Hand Controis for Games and Other 48 K Bytes of RAM, 12 K Bytes of ROM for Big System Pe formance in a Small Package. Eight Accessory Expansion Slots to let the System Grow With Your Needs. You don't need to be an expert to enjoy APPLE II It is a display and start using programs (or writing your own) the first day You'll find that its tutorial manuals help you make is your own personal problem solver


\section*{OUR SHOWROOM} \& SALES CENTRE AT
311 Edgware Road, London W2

COMP POCKET COMPUTER GREATEST BREAKTHROUGH

- Programs in BASIC - "QWERTY" Alphabetic Keyboard - 1.9K Random Access Memory
- Long Battery Life

Computer power that once filled a room can now be carried in your pocket! It's easy to load with ready-to-run software from cassette tape (interface and recorder ontional) or
program it yourself in easy-to-learn BASIC 24 -character hiquid crystal readout displays one line at a time. Special feature is advanced non-volatile memory allows you to
power on and off without losing the contents of memory Nowe. Memory must be transferred to tape before changing batteries. Automatic statement compraction squeezes every ounce of memory space Features power-off retention of
programs and data. Powerful resident BASIC language includes multiple statements, math functions, editing, strings, arravs and much more. Multiple program loading capability subject
batteries included

"Europes Largest Discount Personal Computer Stores"



For personal service visit one of our stores.
Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.
There is excellent street parking on meters a few steps away and
Hammersmith Underground Station is nearby. Call in and see us soon.```


[^0]:    In the event of any query, please write to: Cuswmer Relations Dept., Colour Print Express Ltd., 19-21 Lower Square. Isleworth, Middlesex, or phone 01-5686565.

[^1]:    (C) IPC Magazines Limited 1981. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^2]:    19 MULBERRY WALK - LONDON SW3 6DZ TEL: 01-352 1897. TELEX: 918867

[^3]:    * Please note the Front Cover and this photograph show the prototype pH meter.

[^4]:    Quantity discounts ovaloble on request. 12 month auarontee/2 yeors on Shorp \& Apple

[^5]:    70 REM INTERFACING UKIOL PROGRAM 13
    80 REM 6522 EVENT COUNTER
    90 REM COUNTS PULSES ON PBG
    95 FOR2-1TO16:PRINT:NEXT
    96 PRINT,"6522 EVERT COUNTER"
    98 PRINT:PRINT:PRINT:PRINT
    $100 \mathrm{P}=61344$
    110 POKEP +11, 255
    120 POREP $+8,255$
    130 POREP 9,255
    140 Y1-Y: $21=2$
    Table 6.4. Event
    $150 \mathrm{Y}=\mathrm{PEEK}(\mathrm{P}+8)$
    160 2=PEEK $(P+9)$
    170 IF $(\mathrm{Y}=\mathrm{Y} 1)$ AND $(2=21)$ THENLSO
    $180 \mathrm{PRINT} 65555-Y-256 * 2$
    180 PRINT,65535-Y-256*2
    200 cot0140

[^6]:    DIGITAL FUEL STRETCHER SYSTEM GIVES ACTLIAL Mpg. OR L/100Km
    EASILYFITTED - SUITABLE FOR MOST CARS.
    E58.50
    p/p $£ 1.30$
    EASILYFITTED - SUITABLE FOR MOST CA
    FLOW SENSOR S 8011
    $\mathbf{£ 1 4 . 7 5}$
    FLOW SENSOR 58011
    f 14.95

