

CONSTRUCTIONAL PROJECTS

PE DIGISOUNDER Part 1 by Brian Currie 30
Digital depth sounder for boats
SPEECH PROCESSOR by Michael Tooley BA and David Whitfield BA, MSc 38
Improves the intelligibility of voice signals
DRILL PSU by Chris Lare 44
Includes a p.w.m. controller for variable speed capability
52
52
Updated protection system
INTERFACING COMPUKIT Part 4 by D. E. Graham 56Analogue board-construction and theory
GENERAL FEATURES
CONSUMER ELECTRONICS SHOW 22
Latest developments are seen at Las Vegas
OSCILLOSCOPES . . HOW THEY WORK Part 1 by lan Hickman 26
The cathode-ray tube
SEMICONDUCTOR UPDATE by R. W. Coles 49
ICM 7242 L290, $1 \& 24118,4801 \& 4802$
MICROBUS by D.J.D. 50
Program loader and other software for $\mathrm{ZX80}$, plus 3-D plotting for Acorn Atom INGENUITY UNLIMITED 66'Day to Remember' clock-Bargraph Thermometer-L.F. Analogue Monitor-Envelope Differentiator-Synth Processor-TVC for Synths
NEWS AND COMMENT
EDITORIAL 17
MARKET PLACE 18
New Products
INDUSTRY NOTEBOOK by Nexus 21
The painful implementation of new technology
SPACEWATCH by Frank W. Hyde 35
Prospects for the next decade COUNTDOWN 42
What to see; where and when to see it
POINTS ARISING 42
$27 / 28 \mathrm{MHz}$ Converter, Microbus
READOUT 63
A bumper batch of readers' opinions, including more views on CB
PATENTS REVIEW 65Pulse rate loggers for overweight joggers

[^0]

A Healthy Pulse Rate c95 for $0 \cdot 5 \mathrm{~Hz}$ to 5 MHz Here's a precision digital pulse generator with

 fast rise and fall times covering 0.5 Hz to 5 MHz in five overlapping ranges. With pulse width and pulse spacing each independently variable from 100 nsec to 1 sec for an amazing $10^{\prime}: 1$ duty cycle range. You'll find the 4001 delivers the pulse modes you need: Continuous, One-Shot, Triggered, Gated, Square Wave, even a Complement mode. The Trigger/Gate input, 50 ohm variable output, TTL-level output and Sync output connectors are BNCs. The 4001. A specification to get your pulse racing. For immediate action -- The G.S.C. 24 hour, 5 day a week service Tel: (0799) 21682 and give us your Access, American Express, Barclaycard *price excluding P\&P and 15\% VAT number and your order will be in the post immediately or just clip out the coupon.
gLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Limited, Dept 25GG,

Unit 1, Shire Hill Industrial Estate
Saffron Walden, Essex CB11 3AQ
Tel: Saffron Walden (0799) 21682 Telex: 817477.
Global Specialities Corporation (UK) Limited, Dept 25GG
Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.

EHBOMASOMTE electronics

48 JUNCTION ROAD, ARCHWAY, LONDON N 19 5RD TELEPHONE 01-263 9493 01-263 9495

YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPONENTS AND COMPUTERS

MEMORY EXPANSION KIT

Suitable for UK101, Superboard expansion using 2114's each board has 16 K ram capacity kit contains:
\star On board power supply
$\star 4 \mathrm{~K}$ Eprom expansion
\star Fully buffered for easy expansion via 40 pin socket
\star 8K kit £89.95
\star 16K kit $£ 122.95$
\star Printed Circuit Board
£29.95

* 40 pin-40 pin header plug
$£ 8.50$

VIDEO GENIE

VIDEO GENIE based on TRS80

Utilises Z80, 12 K level II Basic, Integral Cassette Deck, UHF O/P, 16 K RAM, all TRS80 features.
£289

CASES \longrightarrow UK101 P.P.I.

Available for U.K. 101, Superboard Nascom, Appx. DIM. $17^{\prime \prime} \times 15^{\prime \prime}$ $435 \times 384 \mathrm{~mm}$
PRICE £24.50
Post + Packing £ 1.50

Built \& tested. Interfaces TX80 printer direct, can be programmed to operate relays, motors, various other peripherals. "Centronics compatible". Plugs into IC socket LED binary display. Fully documented.
£29.95

PRINTERS

EPSON MX-80
£359
Dot-matrix printer with Pet graphics interface: Centronics parallel and serial options: PET \& Apple compatible.
£179 IN KIT FORM
£229 READY BUILT \& TESTED
£255 COMPLETE IN CASE (8×2114)
4K EXPANSION NOW ONLY
£18.00
No extras required
\star Free sampler tape * Full Owerty keyboard * 8 K basic
\star Ram expandable to
8 K on board (4 K inc.)
*Kansas City tape interface

* New monitor allows full editing \& cursor control $£ 22.00$ welcome, credit facilities arranged.

NEW SHOP \& SHOWROOM NOW OPEN

TELEPHONE 01-263 9493 01-263 9495

UK101

SOFTWMARE	
	$\mathbf{£ p} \mathbf{p}$
Space Invaders	$\mathbf{6 . 5 0}$
Real Time Clock	$\mathbf{3 . 0 0}$
Chequers	$\mathbf{3 . 0 0}$
Othello	4.00
Game Pack I	$\mathbf{5 . 0 0}$
Game Pack II	$\mathbf{5 . 0 0}$
Game Pack III	$\mathbf{5 . 0 0}$
Screen Monitor	4.00
Assembler Editor	14.90
$10 \times$ C12 Blank Tapes	4.00

CPU'S	
Z80 2.5 Meg	$\mathbf{7 . 9 5}$
Z80A 4 Meg	$\mathbf{9 . 9 5}$
6502	$\mathbf{6 . 9 5}$
6800	6.50
8080	4.75
9900	$\mathbf{2 5 . 9 5}$

-SUPPORT CHIPS

$Z 80$ CTC	$\mathbf{5 . 9 5}$
Z80A CTC	$\mathbf{6 . 9 5}$
Z80 PIO	$\mathbf{5 . 9 5}$
Z80A PIO	$\mathbf{6 . 9 5}$
6520	$\mathbf{3 . 9 5}$
6522	$\mathbf{6 . 8 5}$
6532	$\mathbf{8 . 5 0}$
6821	$\mathbf{4 . 2 5}$
6850	$\mathbf{3 . 6 0}$
6852	$\mathbf{4 . 3 5}$
8212	$\mathbf{1 . 9 5}$
8216	$\mathbf{1 . 9 5}$
8224	$\mathbf{2 . 7 5}$
8228	$\mathbf{3 . 7 5}$
8251	4.95
8253	$\mathbf{9 . 7 5}$
8255	$\mathbf{4 . 5 0}$
TMS9901	$\mathbf{1 3 . 1 6}$
TMS9902	$\mathbf{1 1 . 1 8}$
TMS9904 (74LS362)	$\mathbf{4 . 2 1}$
DM8123	$\mathbf{1 . 7 5}$
MC1483	.90
MC1489	.90

	D.I.L.	W/W
8 pin	. 09	. 25
14 pin	. 11	. 35
16 pin	. 12	. 42
18 pin	. 16	. 50
20 pin	. 20	. 62
22 pin	22	. 65
24 pin	. 24	. 70
28 pin	. 30	. 80
36 pin	-	. 99
40 pin	. 40	1.10

SEND S.A.E. FOR COMPLETE
PRICE LIST OR PHONE 01-263 9495

The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.

City and Guilds Cortificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Radio Amateurs
Electrical Installation Work

Diploma Courses

Colour T.V. Servicing
CCTV Engineering
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

BLACK MAGIC!

FOR ALL YOU HEAVY HEAVY SOUND MEN THE FIRST EVER COMMERCIALLY AVAILABLE QUALITY SOUND MIXER DESIGNED SPECIFICALLY FOR REGGAE MUSIC - LOOK AT ALL THESE FEATURES:

* Mono mixing with split weight \& treble outputs. * Maximum output bass $4 v$: treble $3 \frac{1}{2} v$. * Mic input with vol, treble and bass controls * Aux input with vol control. * Ceramic input \& Mag input with vol control.

* Weight \& treble on/off effects switches and LED indicators. * Treble, middle \& bass controls plus master volume master treble \& master bass controls. . Stereo LED VU meter to monitor weight \& treble levels. * All connections via standard $1 / 4^{\prime \prime}$ jacks mounted on rear panel. 240 v mains operated power supply included. * Size $15^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$
£129 inc VAT.

TD 500

This supurb power amplifier module is a dual mode output configuration i.e. class AB low power primary power output stage, dumping power into a rugged class B 6 transistor output stage with inbuilt protection against open \& short circuits and therma overload. This unit is ideal for high power and high quality applications.

Technical specifications

* 500W RMS into 2 ohms. *Input sensitivity
.775 v RMS (0 dB) at 25 K ohms. * Frequency re $30 \mathrm{~Hz}-25 \mathrm{KHz}-1 \mathrm{~dB}$ at full power. Quiescent current 45 mA . * Hum and noise -105 dB relative full output. * T.H.D. at full power . 1%. * Power re quirements $60-0-60$ v D.C. at 8 amps. * Size $7^{\prime \prime} \times 6 \frac{1}{2 \prime} \times 13 / 4^{\prime \prime}$
£57 inc VAT.
300W version $£ 47$ inc VAT
 Tel $01.6723137 / 9080$ PRICE INCL UDES VAT, PHP FREE TO GRDER BY POSI. M. : insques PP O.s payable to TUAC LTD. or quote Access/Barctaytard No and wust to TUAC LTD. 119 Charlmont Road, London SW17 9A8. We accepl teisphure orders trum Access/Barclaycard Holders.

TUAC MAIN DISTRIBUTORS Birmingham, George Mathews, 85/87 Hurst St. (Tel 622 1941)
Buckinghamshire, Disco Barn Iver, 20 Thorney Lane South, (Tel: 653171) Canterbury, Socodi Music, 9 The Fsiars (Tel: 60948).
Cheshire. Cookies Disco Centre, 126
West St, Crewe (Tel 0270 219739) West SI, Crewe, (Tel 0270 214739),
Edinturgh, Cruiser Sound Suoplies, Edinburgh, Cruiser Sound Sugplies, 13 Ferry Rd, Leith, (Tel: 5549931). Exeter. Electrosure Ltd, Fore St
Tel: 56687 , (Tel: 56687). France, Deltro Vision, 28 Rue de Leningrad, 75008 Paris, (Tel 522.11.75)

Glasgow, Rock Electronics. 149 Glasgow Rd, Dumbarton, (Tel: 32588) London, Session Music. 163 Mitcham Rd, Tooting SW17. (Tel 01-672 3413) Kingston, ABC Music, 56 Surbiton Rd, (Tel: 01-546 9877). Luton. Luton Disco Centre, 88 Wellington St. (Tel. 411733). Manchester, A1 Music, 88 Oxford St (Tel 2360340)
Middlesborough, Salcogien, 43 Borough Rd, (Tel: 242851).
Swansea, Burns Electronic Amplificat

BRANDED INTRUDER ALARMS AT DISCOUNT PRICES FOR LIMITED PERIOD ONLY
Alarm with self-contained siren. Keyed and timed entry, using minimal power consumption oll stand-by. With circuit fault indicator, 3 reed switches, 1 pressure mat, wire and full installation instructions. £ 36.80

Siren extension unit to increase range	$£ 11.75$
Self-powered siren (sounds it separately attacked)	$£ 25.00$
Self-powered bell (sounds it separately attacked)	$£ 29.00$
Reed switches (surface)	$£ 1.00$
Reed switches (flush)	$£ 0.90$
Pressure Pad $-27^{\prime \prime} \times 15^{\prime \prime}$	$£ 2.20$
Pressure Pad $-22^{1} 2_{2}^{\prime \prime} \times 6^{3} 4_{4}^{\prime \prime}$	$£ 1.60$

All above prices inclusive of V.A.T. and postage. Terms: Cash with order Write to Yale Security Products. Wood Street. Willenhall,
West Midiands WV13 1LA. Telephone: 090266911 . Telex: 338251.

WIIHFID Himulis

\therefore : $:$ NEW EXTENDED 1981 RANGE

LARGEST SELECTION - LOWEST PRICES

20 TOP QUALITY MODULES

BI-PAK Audio Modules are famous for their variety, quality of design and ruggedness. For over 10 years BI-PAK have been suppliers to manufacturers of high quality audio equipment throughout the world - to date, well over 100,000 modules have been sold - this is why discerning amateur enthusiasts insist on using BI-PAK modules in their equipment. They know that every item is designed and tested to do the job for which it is intended before it leaves the factory. Whatever you are building, there is a kit or module in the BI-PAK range to suit your every need from 5 watts to 125 watts, from amplifiers to equalisers. AND if you cannot see what you require in this advertisement, just write or phone us - we are waiting to help you!

AL20A-30A

avaio

 AMPLIFIER MODULESAL80 aumo AMPLIFIER MODULE 35 Watts RMS

AUDIO AMPLIFIER MODULE 25 Watts RMS

PA12
STEREO
PRE-AMPLIFIER

AL120
AUDIO AMPLIFIER 50W RMS

AL250
POWEA AMPLIFIER

Latest addition

MM100 Suitable for disco mixer.
MM100G Suitable for guitar pre-amp-mixer.

Stereo 30

 COMPLETE AUDIO CHASSIS

PA100 \& PA200

 STEREO PRE-AMPLIFIERGE100
10 CHANNEL MONOGRAPHIC

AL250. 125 watt Audio Amplifier Module $50-80 \mathrm{v}$ supply. $£ 19.60$

STEREO PRE-AMPLIFIERS
PA12. Supply voltage 22-32v input sensitivity 300 mv . Suit: AL. 10/AL20/AL30. $£ 8.55$ PA100. Supply voltage $24-36 v$ inputs: Tape. Tuner. Mag P.U. Suit: AL60, AL80. $£ 17.65$ PA200. Supply voltage 35-50v inputs: Tape. Tuner, Mag P.U. Suit: AL80/AL1 20/AL250.

BHITS

STA5. 5 watts per channel Stereo Amplifier Kit consisting of: $2 \times$ AL2 20 amplifiers, $1 \times$ PA 12 pre-amplifier, $1 \times$ PS 12 power supply, 1×2036 transformer and necessary wiring diagram.
STA10. 10 watts per channel Stereo Amplifier. Kit consisting of: $2 \times$ AL30 amplifiers, $1 \times$ PA 12 pre-amplifier, $1 \times$ PS 12 power supply, 1×2036 transformer and necessary wiring diagrams.

STA15. 15 watts per channel Stereo Amplifier Kit consisting of: $2 \times$ AL60 amplifiers, $1 \times$ PA 100 pre-amplifier, $1 \times$ SPM80 power supply, 1×2034 transformer, $2 \times$ coupling capacitors for 8 ohms 470 mfd 30 v and necessary wiring diagram.

PS12

POWER SUPPLY MODULE

Bthris

STA25. 25 watts per channel Stereo Amplifier Kit consisting of: $2 \times$ AL60 amplifiers. $1 \times$ PA 100 pre-amplifier, $1 \times$ SPM $120 / 45$ power supply, 1×2040 transformer, coupling capacitors for 8 ohms $470 \mathrm{mfd} 45 \mathrm{v}, 1 \times$ reser voir capacitor 2200 mfd 100 v and necessary wiring diagram
£40.50
STA35. 35 watts per channel Stereo Amplifier. Kit consisting of: $2 \times$ AL80 amplifiers $1 \times$ PA200 pre-amplifier, 1×2035 transformer $2 \times$ coupling capacitors 470 mfd at 50 v for 8 ohms, $1 \times$ reservoir capacitor 2200 mfd 100 v and necessary wiring diagram. $£ 45.76$

Batrs

STA50. 50 watts per channel Stereo Amplifier Kit consisting of: $2 \times$ AL 120 amplifiers $1 \times$ PA200 pre-amplifier, 1×2041 transformer, $2 \times$ coupling capacitors 1000 mfd 63 v . $1 \times$ SPM 120/65, $1 \times$ reservoir capacitor 3300 mfd 100 v and necessary wiring diagram £59.89
STA100. 100 watts per channel Stereo
Amplifier. Kit consisting of: $2 \times$ AL250
amplifiers, $1 \times$ PA200 pre-amplifier
$2 \times$ SPM $120 / 65$ power supplies, 2×204
transformers, $2 \times$ coupling capacitors 1000 mfd
100 v and necessary wiring diagram. £84.68

SPM80 STABILISED POWER SUPPLY

SPM120

 STABILISED POWER SUPPLY

Mk II

EQUALISER

MPA30 PRE-AMPLIFIER

SIREN ALARM module S450 STEREO FM TUNER Fitted with phase lock-loop

Transformers are not included with power supplies. SPM 120 Range also require reservoir and output capacitors.

MONO PRE-AMPLIFIERS

MM100. Supply voltage $40-65 \mathrm{v}$ inputs: Tape, Mag P.U. Microphone Max output 500 mv .
£12.43
MM 100 G . Supply voltage $40-65 \mathrm{v}$ inputs:
2 Guitars. Microphones Max output 500 mv
£12.43
POWER SUPPLIES
PS 12.24 v Supply. Suit: $2 \times$ AL10, $2 \times$ AL20 $2 \times$ AL30 \& PA12/S. 450 . £1.65
SPM80. 33 V Stabilised supply. Suit: $2 \times$ AL6O.
PA100 to 15 watts.
£4.84
SPM 120/45. 45v Stabilised supply. Suit $2 \times$ AL60, PA 100 to 25 watts.
£6.38
SPM 120/55. 55v Stabilised supply. Suit: $2 \times$ AL80, PA200
£6.38
SPM 120/65. 65v Stabilised supply. Suit:
$2 \times$ AL120, PA200, $1 \times$ AL2 50
£6.38
SG30. 15-0-15 Stabilised power supply for
$2 \times$ GE100MK 11.
$£ 3.80$

MISCELLANEOUS

MPA30. Stereo Magnetic Cartridge
Pre-Amplifier - input 3.5 mv Output 100 mv .
$£ 3.27$
S.450. Stereo FM Tuner Supply Voltage 20-30v-Varicap tuned.
£25.56
STEREO 30. Complete 7 watt per channel Stereo Amplifier 8oard - includes amps, pre-amp, power supply, front panel, knobs etc - requires 2039 Transformer.
£21.09

VPS30

REGULATED VARIABLE STABILISED
POWER SUPPLY

KIT £20

 payable to Bi-Pak.
8P 124. 5 watt $12 v$ max. - Siren Alarm Module.

GE100MK11. 10 channel mono-graphic £3.85

2041. $2 \mathrm{amp} 0-55 \mathrm{v}-65 \mathrm{v}$. Suit: SPM 120/55.

 SPM $120 / 65 \mathrm{v}$. \qquad 2039. 1 amp 0-20v. Suit Stereo 30 $\mathbf{£ 3 . 5 0}$ 2043. 150mA 15-0-15v. Suit: SG30. £2.40
ACCESSORIES

139. Teak Cabinet. Suit: Stereo 30, $320 \times 235 \times 81 \mathrm{~mm}$. 40. Teak Cabinet. Suit: STA15,

PS250. Consists - 1 capacitor \& 4 diodes for constructing unstabilised power supply for AL250 to 125 watts. $£ 2.90$

TRANSFORMERS

2034. 1.7 amp 35 v . Suit SPM80.
$£ 4.90$ 2035. 2 amp 55 v
2035. 750 mA 17 v . Suit: PS 12.
£6.65 £2.85
2036. 1.5 amp 0-45v-55v. Suit: SPM $120 / 45$, SPM 120/55v.
$425 \times 290 \times 95 \mathrm{~mm}$.
$\mathbf{£ 9 . 5 0}$
FP100. Front Panel for PA100 \& PA200. $£ 1.80$ BP 100. 8ack Panel for PA100 \& PA200. £1.60
GE100FP. Front Panel for one GE 100 MK 11
f1.75
2037. Kit of parts including Teak Cabinet.

Chassis, Sockets and Knobs etc. (To house
STA15 Amplifier.)
£19.95

Full data sheets are available FREE on request, please enclose a S.A.E.

Access and Barclaycards accepted - just telephone our Orderline - Ware (STD 0920) 3182. All prices exclude V.A.T., add 50p. postage per order. Terms: C.W.O., cheques, Postal Orders

BI-PAK - SATISFACTION OR YOUR MONEY BACK!

THE BI-PAK OPTO SHOW

SPRING TIME IS SALE TIME the remote control

ARE YOU SITTING COMFORTABLY?

Our new TDR3OOK Touch Dimmer Kit
will ensure that you are. Based on our
highly sucessul Th will ensure that you are. Based on our
highly successful TD 300 K touch controlled dimmer kit. the TOR 300 K incorporates an infra red receiver. enabiing the lamp brightness to be varied and
switched on or off by touch or remotely switched on or off by touch or remotely
by means of a small hand held transmitter
The complete kit, which includes easy to follow instructions, will fit into a plaster depth box and the plastic front plate has
no metal pads to touch, ensuring compete safety. Even a neon is included to help you locate the switch in the dark.

CT4000 CLOCK/APPLIANCE TIMER KIT

The CT40co has been designed to preset the state (on or off) of four
outputs at four times per day for up to 7 days in advance, enabling the unit to control tape recorders, appliances, central heating. lights etc. The times are set on a $0.1^{\prime \prime}$ high red LED display by means of a keyboard and the output states are displayed on four EDs. Each
output can switch up to 20 mA at 9 V . For mains loads use our Solid State Relay Kit (MK2). The kit includes a PCB, keyswitches, I.C. 4 date LED display. transformer, plus all other components and a
doreen printed and drilled box which can also accommodate up to 4 screen printed and drill
Solid State Relay Kits
$\mathbf{f} \mathbf{2 5 . 2 5}$
Size: $10 \times 12 \times 4.5 \mathrm{cms}$.

-

 Colour: Black.

Abstract

ONCE UPON A TIME, if you wanted to control any equipment remotely you had to buy a doze logic ICE, chase around the shops for crystals and expensive ultrasonic transducers and then spend a lew days getting the unit to work. Then one day TK began stocking a new system. All you required was one IC, a couple of transistors, resistors and a keyboard for the transmitter and a couple of JCs pius a few capacitors for the receiver, to give you up to 16 oN /off (digital) outputs or 10 channels plus three analogue ($0-10 \mathrm{~V}$) outputs. The SL490 transmitter/encoder accepts inputs from a keyboard (up to 32 way) and encodes these into a pulse train which may be transmitted using infra red, ultrasonic, radio or even wire links. For the receiver you may use the $S L 480$ preamplifier if you want an infra link or a suitable preamplifier for ultrasonic or radio links and one ap the M1920 want an infra red degendiog on the number and type of outputs required. The only adjustment you need to make is to Set one preserthetrialor with a seoprond that's all. SL490 32 Command Encoder Ct ML 928 16 -channel receiver, 4 latched binary MEW M1925 Clip on Plastic Reflector for IR LED. increases CQ 20 MEW ML925. A decoder designed for modelitoy conto, providing a 2 -speed drive motor and three position latched steering system or a vehicle with momentary action steering and a third mot er gun turret. Winch, etc. Outputs also available for other facilities such as horn, turn indicators, headlights, etc. $£ 2.10$

O make things EVEN EASIER we have designed several new kits:-
MK6 Simple Infra Red TRANSMITTER. A pulsed infra red source which comes complete with a hand held plastic box. Requires a 9 V battery, $£ 4.20$ output to switch loads up to 500 W at 240 V ac, but can be modified for use with 5 to 15 V dc supplies and transistor or relay output. $£ 9.00$
SPECIAL PRICE WMK and MK 7 together. Order as RC500K. $£ 12.50$
MK8 Code Infra Red TRANSMITTER. Based on the SL490, the kit includes 2 IR LED s, measures
 MK 10 IO For use with ML. 926 or ML928 Based Receivers. £1.90
by the ML928 or ML926 receiver (MK with the MK 8 kit, to generate 16 different codes for decoding MK11 10 On-OH Channel IR RECEIVER with 40 unctions as lamp brightness. volume, tone, etc. Other functions outputs ($0-10 \mathrm{~V}$) for controlling such ogle output. which may be used for sound muting. Based on ML. 922 decoder IC. Includes its own MK 12 supply. E12.00
further interface circuitry, such as relays or triacs, will switch kit with 16 on/off outputs which with remotely. Outputs may be latched or momentary. depending on whether the ML. 926 or ML. 928 is specified. Includes lite drogue and 48 n music hormlise analogue outputs, and on/standby. $\mathbf{£ 4} .35$ Now you can buy all the components you require tor yourinfra_sed system or complete kits from one
supplier, at unbeatable prices. and five happily ever after. ALL COMPONENTS ARE BRAND NEW AND TO SPECIFICATION. ADD 50 P P\&P and 15% VAT TO TOTAL. OVIRSEAS CUSTOM ADD E1.60 (Europe) 24 (elsewhere) Hop ap Send see for price list and with all enquiries. Callers welcome $9.30-5.00$ (Mo n-Fri)
$10.00-4.00$ (Sat.). IV. TK Electronics
 ,

Conquer the chip.
 Be it a career, hobby or interest, like it or not the Silicon Chip

 will revolutionise every human activity over the next ten years.Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.

Learn the technology of the future today in your own home

MASTER ELECTRONICS LEARN THE PRACTICAL WAY BY SEEING AND DOING

- Building an oscilloscope. - Recognition of components.
- Understanding circuit diagrams. - Handling all types Solid State 'Chips'
- Carry out over 40 experiments on basic circuits and on digital electronics.
- Testing and servicing of Radio, T.V., Hi-Fi and all types of modern computerised equipment.

MASEEGOMDJEDS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW
THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS.

- Complete Home Study library. - Special educational MiniComputer supplied ready for use. Self Test program exercise - Services of skilled tutor available.

MASTER THE REST

- Radio Amateurs Licence. Logic/Digital techniques
- Examination courses (City \& Guilds etc.) in electronics. - Semi-conductor technology
- Kits for Signal Generators - Digital Meters etc.

We use advanced winding technology to make our toroidal transformers. They have only half the weight and height of their laminated equivalents and are appreciably more efficient. Our toroidals cost virtually the same as the older types which they are rapidly replacing. Induced hum ss reduced by a factor of ten. Supplied with rigid mounting kit with centre bolt, steel and neoprene washers.

CHOICE OF 3 PRIMRRY INPUTS

1.L.P. Toroidal Transformers are avalable in choice of $110 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}$, coded as follows: (Secondanjes can be connected in series or parallel)
For 110 V Primary insert 0 in place of " X ' in type number
For 220 V Primary (Europe) insert 1 in place of " X " in type number
For 240 V Prmary (U.K.) insert 2 in place of ' X ' in rype number
Example - $120 \mathrm{VA} 240 \mathrm{~V} 15+15 \mathrm{~V} .4 \mathrm{~A}=42013$.

* CUSTOMER DESIGN ENQUIRIES INVITED.

QUANTITYPRICE LIST
FREEPOST facility.(U.K. only)
Simply address envelope to FREEPOST to address below. NO STAMP REQUIRED
TO ORDER Enclose cheque/Postal Order/Money Order payable to L.L.P Electronics Lid or quote your A CCESS or BARCLA YCARD account No. To pay C.O.D. add fl extra to TOTAL value of order Aso avallable from ELECTROVRLUE and MARSHALLS.
transforners A division of I.L.P. ELECTRONICS LTD.
freepost T2 GRaHAM BELL HOUSE ROPER ClOSE
Phone (0227) 54778 Technical (0227) 64723 Telex 965780

HIGH POWER MODULE KITS 125 WATT MODEL $\boldsymbol{£ 1 0 . 5 0}$ Duss 1.15 seqp pllustataet)

 d

 d}

SPECIFICATIONS

Operating voltage (DC) Loads
Frequency response measured at 100 watts Sensitivity for 100 watts Typical T.H.D.@ 50 watts 4 ohms load Dimensions 205×90 and $190 \times 36 \mathrm{~mm}$ The P.E power amp kit is a module for high power applications disco units, guitar amplitiers, public address systems and even high power domestic systems The unit is protected against short circuiting of the load and is safe in an opencircuit condition. A large safey margin exists by use of generously rated components. result. a high powered rugged unit. The PC Board is backprinted. etched and ready to drill for ease of construction, and the

125 watt RMS 50.80 Max 4.16 ohm $25 \mathrm{~Hz} .20 \mathrm{KHz}_{z}$ $400 \mathrm{mV} @ 47 \mathrm{k}$ 0.1%

PRACTICAL ELECTRONICS CAR RADIO KIT ${ }_{\text {(Constructors pack7) }}$

CONSTRUCTORS PACK 7A
plus $£ 2.00$ p $\&$
Suitable stainless steef fuly retractable locking aerial and speaker (approx. $6^{\prime \prime} \times 4$ ") is
available as a kit complete $\mathbf{£ 1 . 9 5} \begin{aligned} & \text { per pack. } \\ & \text { p\&p } f 1.15\end{aligned}$

30 + 30 WATT STEREO AMPLIFIER BUILT AND TESTED
Viscount IV unit in teak simulate cabinet silver finished rotary controls and pushbuttons with matihing fascia, red mains indicator and stereo jack socket. Functions switch for mic magnetic and crystal pickups, tap and auxiliary. Rear panel teatures fuse holder. DIN speaker and input socket $30+30$ watts. RMS $60+60$ watts peak for use with 4 to 8 ohm speakers Size $143 / 4^{\prime \prime} \times 10^{\prime \prime}$ approx
heaor to play $£ 32.90$ plus
¢ 3.80 p\&p

HI FI STEREO AMPLIFIER MODULES

[^1]aluminium chasis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.

ACCESSORIES

Suitable LS coupling electrolytic for
Suitable LS coupling electrolytic for 200W model
Suitable Mains Power Supply Unit for 125 W model
Suitable Twin Transformer Power Supply for 200W model

MULLARD LP1183
STEREO PREAMP

- Featuring latest SGS/ATES TDA 200610 watt output I C. win-built thermal and short circuit protection.
- Muliard Stereo Preamplifier module
- Atractive black vinyl finish cabinet. Sire 9 " $\times 8 \%^{\prime \prime} \times 35{ }^{\prime \prime}$ approx - Converts to a 20 watt Disco amplifier

To complete you just supply connecting wire and solder. Features include din inpul sockets for ter amic cartridge, microphone, tape or tuner. Outputs-tape, speakers and headphones. By the press of a button it transforms into a 20 watt mono disc amplifier with twin deck muxing. The kit incorporates a Mullard LP1 183 pre-amp module, plus power amplifier assembly kit and mains power supply. Also featured 4 slider tevel controls, rotary bass and treble controls and 6 push button switches. Silver finish fascia panel with matching knobs and contrasting ready made black vinyl finish cabinet and ready made metal work. For
SPECIFICATIONS
Suitable for 4 to 8 ohms speakers
Frequency responce $40 \mathrm{~Hz}-20 \mathrm{KHz}$
input Sensitivity P.U. 150 mV Aux. 200 mV Mic. 1.5 m
Tone controls Bass $\pm 12 \mathrm{db} @ 60 \mathrm{~Hz}$
Distortion 1% typically @ 4 watts
Mains supply $\quad 220-250$ volits 50 Hz
BSR chassis record deck with manual set down and return. complete with stereo ceramic cartridge $£ 8.50$ plus f 3.15 pk
when purchased with amplifier
Available separately f 10.50 plus f 3.160 O p

8"SPEAKER KIT $28^{\prime \prime}$ aporox. twin cone domestic use speakers. $£ 4.75$ per stereo pair plus $f \uparrow .70 \mathrm{p} \& \mathrm{p}$ when purchased with amplifier. Available separately $\mathbf{£} 6.75$ plus $\mathbf{E 1 . 7 0} \mathrm{p} \mathrm{\& p}$

STEREO MAGNETIC PRE-AMP

CONVERSION KIT. All components including P C.B. to convert your ceramic input on the $10+10 \mathrm{amp}$ to magnetic. $£ 2.00$ whe purchased with kit leatured above. $£ 4.00$ separately ine. p\&p.

可TVI

323 EDGWARE ROAD, LONDON W2
21 bHIGH STREET, ACTON W3 6NG ACTON: Mail Order only. No callers
All items subiat to availability Price courect 5281 and sabject to change without notice

For further information send for instructions $20 p$ plus stamped addressed envelope
NOTE: Goods despatched to mainland and M. Ireland only
Persons under 16 years not served without parent's authorisation R TVC LTD. reserve the right to atter, update or improve their products without notice.

STEREO DISCO PREAMPLIFIER
matchnng above modules, suitable for twin deck mixing with P.F matcing above modules,
output and Mic/Tape input
Ready built, ready to play with circuir Ready built, ready to play with circuit
diagram and aplication notes to suit
our power module kits. f1.72 p\&

100 WATT
 MONO DISCO
 AMPLIFIER
 Brushed aluminaum fascia and rotary controls

Size approx $14^{\prime \prime} \times 4^{\prime \prime} \times 10 \%$. Five vertital slide
controls, master volume, tape leverl. mic level. deck
level, PLUS INTER DECK FADER Ior perfect graduated change
from record deck No 1 to No 2. or vice versa. Pre fade level
controls (PRL) lets YOU hear next disc before fading it in. VU meter monitors output level. Output 100 watts RMS 200 watts peak

50 WATT MONO DISCO AMPLIFIER
Size appox $13 \times \times 5 \% \times 6 \% " 50$ watts ims 100 watts peak output. Big features include iwo disc inpurs, both for ceramic
cartidges. tape input and microphone input. Level mixing controls cartridges. tape in
fitted with integral push-pull switches independent bass and treble controls and master volume.
£30.60
plus $\{3.68$ p\&
8SR Manual single play record deck with auto return and cueing lever. Fitted with stereo ceramic cartridge 2 speeds with 45 rpm spindle adaptor ideally suited
$f 1225$
PHILLIPS RECORD PLAYER

[^2]A GOOD CASE...

THOSE of you who have already looked further into your copy will by now be aware that our May issue is a very special one lothers turn to page 36-when you have finished this piece please!) When planning our free case one of our intentions-was to present as wide a variety of digital projects to fit in the case as possible. Another factor that influenced our decision to go ahead with this rather expensive gift, in the face of the present recession, was the relatively simple construction of each project.

The use of what is probably the first of a new generation of panel meters has resulted in very high performance projects which are not expensive, are readily constructed and neatly housed. The free case was designed especially for PE by Lascar Electronics and, as far as we know, is the only case of this type available in the UK at the present time. Because you will get one free you will save over $£ 2.00$ on the project cost and our DPM Special Offer will save you a further $£ 3.00$ on the normal price.

Taking all these factors into account we believe that we can appeal to the
widest possible range of readership and thus make the most of our primary intention-to sell more copies. Yes, it's a hard world and we do publish to make money, although we can easily lose sight of that fact in our enthusiasm for electronics and for PE in particular. Of course we believe PE is excellent value for money anyway, but on this special occasion it will be even more attractive, so please make sure of your copy by ordering it now.

. . . LAID BEAR!

Having just worked our way through that lot of (hopefully) logical thinking and confidently believing we can introduce some new readers to PE, we received the following letter trusted to the tender care of a Paddington Bear envelope:

"Dear Sir or Madam,

In November 1974's Practical Electronics you published the "PE Minisonic" by G. D. Shaw.

My dad has a collection of your magazines, but unfortunately has not got all the parts. So could you please send me the circuit diagram for this very good battery operated synthesiser.

I enclose a stamped addressed envelope for your reply.

Yours sincerely,
Robert Brooks.

PS. I am twelve years old."

Thank you Robert for an excellent letter, unlike many older readers you have given your name and address clearly-you'd be surprised how many people forget all, or part of it-supplied a stamped addressed (Paddington) envelope-without any marmalade on it-set out your letter clearly, kept to one subject and even given us a little praise-all others please follow Robert's example.

The only thing that worries us is why do we bother about easy to build projects to interest new readers if you are building the PE Minisonic at the age of 12 ? You have just messed up all that logical thinking!

We would be interested in hearing from other young readers, we cannot promise to answer all the letters, but why not tell us how you first started reading PE and what type of projects and articles you like.

> Mike Kenward

PS. I'm not telling you my age.

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR
Jasper Scott PRODUCTION EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY
D. W. B. Tilleard 01-261 6676
SECRETARY
AD. SALES EXEC.
CLASSIFIED MANAGER

Christine Pocknell
Alfred Tonge 01-2616819
Colin Brown 01-261 5762

Editorial Offices:
Practical Electronics,
Westover House,
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical
enquiries cannot be answered over the telephone (see below).

Advertising Offices:
Practical Electronics Advertisements,
King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS
Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-261 6601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers

Copies of some of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 95 p each including inland/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.30$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 11.80$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

BUDGET VICE

This portable bench vice. pictured below. is now available from Home Radio. The jaws open to a maximum of 32 mm and it can be fit ted to benches up to 24 mm thick, so it should be suitable for most light constructional work.

The price including VAT and $p \& p$ is $£ 3.87$. Home Radio (Components) Ltd, PO Box 92, 215 London Road, Mitcham, Surrey (01 543 5659)

DRILLMASTER

Two new mini drills ideal for use with our minidrill p.s.u. are being marketed by Microflame together with a complete range of accessories which include a drill stand with a built in magnifying glass.

The junior model features a detachable
chuck linger shicld for close control and the chuck itself has four precision cut steel collets ($0.6,1.2,1.8$ and 2.4 mm). An automatic 3 -jaw chuck is available as an optional extra.

The senior modet is supplied with an automatic 3-jaw chuck and a precision chuck with 5 collets is available as an optional extra (0.6. $1 \cdot 2,1 \cdot 8,2 \cdot 4$ and $3 \cdot 2 \mathrm{~mm}$).

The price of the junior model is $£ 10.00$ and the senior model is $£ 17 \cdot 35$. All prices exclude VAT and p\&p.

Microflame (UK) Limited, Vinces Road, Diss, Norfolk (0379 4813).

SOAR DFM

Many people who consider digital frequency meters just too expensive to be considered for inclusion in their range of test equipment will be interested to hear about the Soar DFM. The importers of this Japanese instrument claim they have done so because of the nonavailability of a low priced high quality UK meter.

The unit which measures only $100 \times 32 \times 120 \mathrm{~mm}$ has a frequency range of 10 Hz to 50 MHz and can measure up to 500 MHz with a prescaler. Powered by either 4 penlight batteries or an external d.c. supply (8 to IIV) the instrument has a 4 digit display and a resolution of $10 \mathrm{~Hz} / 10 \mathrm{kHz}$ with a maximum input of 20 V .

The DFM is priced at $£ 39.99$ including VAT. For $£ 43.58$ the DFM is available with batteries, input lead carriage and insurance.

Holdings, Mincing Lane, Darwen Street, Blackburn BB2 2AF (0254 59595).

KITS FOR BEGINNERS

A range of simple chip based hobby kits with step-by-step instructions has been introduced by OK Machine \& Tool. OK say that the kits are suitable for 12 year olds upwards. with descriptions of the various terms and components used in electronics included in the instructions. Once assembled, the kits fit into their original plastic packaging containers.

Five kits are available. Quick Reaction ($£ 5 \cdot 80$), Electronic Dice $(£ 7.98)$, Digital Roultte ($£ 8.60$), Morse Code ($£ 3.99$) and Electronic Organ ($£ 6 \cdot 70$). All prices include VAT and p\&p and items are available by mail order or by placing a credit card order over the telephone. Prices do not cover batteries or tools.

OK Machine \& Tool (UK) Ltd., Dutton Lane, Eastleigh, Hants SO5 4AA (0703 610944)

CATALOGUES

Howard Associates have just released a short form catalogue which covers a range of PE projects such as the Solid State Car Instruments, Speech Processor, $27 / 28 \mathrm{MHz}$ Converter. DFM, Sound Operated Switch and the Dynamic Semiconductor Tester.

Part kits are available and Howard can also provide individual component price lists.

The catalogue is available from Howard Associates, 59 Oatlands Avenue, Weybridge, Surrey KT13 9SU.

Another shortform catalogue just available is from Lascar Electronics. It contains their complete range of digital panel meters, counter timers and portable instruments. Also listed is a $12 / 24 \mathrm{hr}$ clock module and I.c.d. and l.e.d. thermometers which will measure temperatures between -55° to $+150^{\circ} \mathrm{C}$ with a resolution of $0.1^{\circ} \mathrm{C}$.

Lascar Electronics, Unit 1, Thomasin Road, Basildon, Essex (0268 727383)

KEYBOARD CONSOLES

Boss Industrial Mouldings have recently introduced three medium sized keyboard consoles into their BIM 7400 range. This range now consists of six case sizes from 355 to 508 mm wide by either 178 or 254 mm deep and with a rear panel depth of 102 mm . The front panet is inclined by 10 to 15 degrees for easier key operation.

The consoles are of all aluminium construction and incorporate ventilation slots in both rear and bottom panels with a gasket fitted between the panels to reduce vibration.

Prices for the range are from $£ 16.05$ to $£ 26.33$ excluding VAT.

Boss Industrial Mouldings Ltd., 2 Herne Hill Road, London (01-737 2383).

DRAUGHTING AIDS

Constructors who like to produce their own p.c.b.s will be interested in the latest range of etch resistance transfers from Ace Mailtronix. The transfers which include straight or curved tracks, transistor, d.i.l. solid, oval, square and terminal pads are available either in sets of five sheets of a type or a mixed bag of six sheets including an introduction sheet. The transfers which are printed on $115 \times 105 \mathrm{~mm}$ sheets are available in a $1: 1$ scale for use directly onto copper clad boards or in a $2: 1$ scale for those
with photograpic reduction facilities. Ace can also supply black crepe paper track tape in various widths for constructors with UV light boxes.

For a free catalogue of the complete range send a stamped addressed envelope ($9 \times 4 \mathrm{ins}$).

Ace Mailtronix Ltd., 3A Commercial Street, Batley, West Yorkshire, WF 17 5HJ.

AUDIO-SAFE

The latest protection system for cars is the audio-safe unit which the makers claim makes the unauthorised removal of an in-car entertainment system virtually impossible.

The unit is a two part system: a base plate which replaces the usual dashboard trim plate and a cast aluminium cover that fits over the equipment and is secured to the replacement

panel by means of an individual locking key.
When locked together access to the mounting nuts, securing the equipment, is prevented. In fact the equipment itself cannot be seen.

The audio-safe will sell for around $£ 25.00$ from retailers.

STORAGECASES

A new range of component containers has been added to the large range already carried by Trade Aids. The containers which are made of laminated board are light, strong and easily folded flat for storage. They are available in four sizes from $380 \times 100 \times 133 \mathrm{~mm}$

to $380 \times 210 \times 266 \mathrm{~mm}$ with prices ranging from $24 p$ to $50 p$ ex. VAT and $p \& p$.

Trade Aids, 54-56 Hawkes Road, Kingston upon Thames, Surrey, KT1 3FF. (01-549 2137)

COLOUR PRINTER

Integrex have recently announced the introduction of their new low cost impact Colour Matrix Printer, model CX80.

Printing in 7 colours (with simple control codes) and with 96 ASCII plus 64 graphics characters in ROM, the CX80 is fully dot ad-

dressable, has 15 user programmable characters together with double length and reverse claracter printing.

The retail price is $£ 895$ plus VAT, and further information is available from:

Integrex Ltd., Portwood Industrial Estate, Church Gresley, Burton on Trent, Staffs. (0283 215432)

FUELSTRETCHER

The latest in-car monitor is the Fuelstretcher Drive Computer which will give an instantaneous m.p.g. indication as well as helping with route planning. record keeping and trip scheduling.

The computer processes and stores information received from the fuel flow and speed sensors. This information which is given on a 4 digit l.e.d. display shows the driver how much fuel has been used. elapsed time and distance travelled on a particular trip or on a weekly or monthly basis.

The makers claim the unit is as easy to install as a car stereo and should take no more than two hours. All the motorist has to do is to fit the fuel sensor into the fuel line, speed sensor to the drive shaft and then connect both to the computer unit.

The computer, complete with wiring, optional mounting bracket, instruction manual, fuel flow and speed sensors can be obtained directly from EnviroSystems for just over $£ 80.00$.

EnviroSystems Ltd., Hampsfell Road, Grange-over-Sands, Cumbria, LA 11 6BE (044 84 4233).

New Style Office

"- - - - a transition to twentieth century from nineteenth century office technology is not easily or quickly achieved."

You might suppose the quotation above was taken from a text written, say, in 1905 and referring to then new-fangled ideas like the telephone. Actually, it was written in 1980 and published in January 1981 and is from a case history on the introduction of word processing. It implies that office methods haven't changed much in over 80 years and carries a stern warning of hazards ahead.

Word processing is now a boom area for manufacturers and equipment suppliers. But the potential user had better be wary. It is all too easy to stumble into the trap experienced by those bold enough to invest in data processing in the 1960 s . In those days persuasive sales talk and extravagant claims for economy as well as efficiency only too frequently led to hasty installations, muddle, inefficiency and high costs. The jokes about computers all but disappeared as computer science attained maturity. Early hilarity has been supplanted by the menace of computer fraud-no laughing matter.

Now that we are all accustomed to, even conditioned to, data processing, a transition to word processing ought to be comparatively easy and painless. And, one would have thought, demonstrably so as an office has a welt understood structure and purpose.

Not so, according to this case history. The authors went back to first principles and asked themselves what an office is and what it does. They found that in their own case that different departments organised their affairs quite differently and often to suit the personal needs of executives and
secretaries as well as particular characteristics of the work undertaken.

There were more than 20 departments employing some 1,500 staff, half in London, originating over 1.2 million pages of text on A4 paper per year. When they looked at what people did they discovered that 150 person-years of time which should have been available for profit-earning professional tasks was being frittered away on internal administration. In fact the biggest savings would not be in reduction of secretarial costs but in gains of management time.

When it came to selecting a system it was found that over 30 suppliers offering over 50 different systems were available. Whittling these down to a short-list and final selection was no easy task.

The investment was eventually some $£ 700,000$ for the London office and an equal amount for the provincial offices, making a grand total of $£ 1.4$ million. The payback period was calculated as two years or less.

There is no space to describe all the development of software, training of staff, integration of the system with existing data processing facilities, or possible future expansion of the word processing system in terms of both size and newer technology as it becomes available. Or of how the system was progressively introduced, section by section, of 85 work stations without disruption of the daily work schedule.

The conclusion is that word processing is available now and is cost-effective. There is no mention of staff redundancy so that one assumes that payback in this case is added capacity for throughput which can only pay with an increase in business. In other words, while there are no immediate redundancies there should be no need to expand the staff for a long time ahead.

While this picture looks bleak for office workers, the other side of the coin is a huge new market for the electronics industry in manufacturing, installation, servicing and, eventually, a substantial replacement market, not to mention armies of software specialists.

Albert Einstein is recorded as hapving said: "If we look hopefully upon the shape of things to come, we can visualise automation as the greatest blessing mankind has ever known." I can only add that it seems a pity that the implementation of such a blessing is so painful.

Inertia

As a counterweight to the above an eminent engineer last year was remarking that although technology continues to advance it was slow in introduction and had had litthe real effect on our daily life pattern. As examples he quoted that people still commuted every day in great discomfort and read newspapers produced and distributed in the same manner as in the early part of the century.

How true! But he, too, is expecting big changes. What he was describing was that today there is practically no technical limitation to what can be achieved. The
only real barrier to change is that people are conservative by nature.

Expansion

Ten years ago Aberdeen Airport was a busy terminal handling 30,000 aircraft movements per year of which 4,000 were helicopters. This year the projected movements are 130,000 including 53,000 helicopter movements. A new runway was laid down in 1977 and a new control tower added in 1979. Latest addition is a comprehensive CCTV system for monitoring apron parking, refuelling and baggage handling areas.

Such has been the impact of North Sea oil. The spin-off for the electronics industry is substantial and not only at Aberdeen.

Exploration, drilling, pumping, data logging, communications at sea are all huge markets benefiting the industry. It is interesting to note that in an analysis of the performance of the FT 30 Ordinary Share Index over the past three years that the oil giant $B P$ is a notable high flyer with a gain of 90 per cent showing the strength of oils. But BP comes only third. Runaway winner is Plessey with a gain of 170 per cent since 1978 and GEC a creditable second-placer up 117 per cent.

There are some doubts on whether the government can maintain the promised level of defence spending and this could have an effect on both GEC and Plessey prospects with some major projects. But both these companies have a wide spread of activities and any programme reductions or delays are not likely to have a great effect.

In fact the outlook for electronics has never been brighter. One market analyst, Mackintosh, is forecasting an overall European growth rate of 12 per cent through to 1984 and that the UK will increase its market share.

The British Electrical and Allied Manufacturers' Association (BEAMA). which includes heavy electricals as well as electronics firms in membership, reported a 17 per cent rise in exports over the first nine months in 1980 . In the same period, imports were up only 10 per cent.

ATE.

Automatic test equipment (ATE) continues to thrive. Marconi Space and Defence Systems are supplying equipment for the Middle Eastern military base workshop. The contract is worth $£ 2.5$ million and the equipment supplied will be used to check out 150 p.c.b.s, sub-assemblies and other electronic units on main battle tanks.

On a more modest scale a Racal ATE worth $£ 64,000$ has gone into service with audio engineers Neve, who make sound mixing consoles for broadcasting and other high quality applications. Manual testing of a complex Neve p.c.b. takes as long as $3 \frac{1}{2}$ hours. The Racal ATE does the same job in five minutes.

CONSUMER ELECTRONICS

Put a tape of any oxide formulation into this cassette deck, and the onboard computer will
 have adjus ted to correc bias, equalisation and sensitivity within seconds. Functions are solenoid (logic) controlled. The fluorescent bar meter allows for peak hold, and Dolby noise reduction is included in the GX-F95. Akai America Ltd.

11 in . wide, 4 in . high, 10 in . deep UC-S4 AM/FM digital tuner:

11 in . wide, 2 in . high, 10 in . deep

Selling the concept of psychoacoustics, "Doc" Cavalier of Omnisonix Ltd says of his Imager . . " "far more dramatic than the performance of a dynamic range expander" Shown here is the 801-A intended for automobile hi-fi. Courtesy of Omnisonix Ltd.

Magnavox 14-day programmabie touch-tune VHS VCR, model 8340 portable. Features frame by frame advance, variable slow motion, stop action, fast motion and picture search; fascia or remote control.

Leading edge technology concealed in a "Mediterranean" styled colour TV. Model 5056 in Pecan, by Magnavox.

Magnavision laser-optical videodisc player. Forward, reverse, speed and search facilities, plus choice of bi-lingual-or-stereo, are built in. Video discs are immune to dust and scratches. Courtesy of Magnavox

Today's look in television. The CB-954 is one of the latest family of 19 inch sets from Toshiba. Picture improvement results from the following: Electronic Noise Cancellor, Automatic Dark Picture Intensifier, and a White Detail Purifier. Photo courtesy of Toshiba America Inc.

Computers disguised as animals aid development in thinking and co-ordination in the very young.

POCKET TELEVISION
WITH LIQUID CRYSTAL SCREEN

The star revelation at Las Vegas was undoubtedly three hand-held UHF-VHF TVs, whose monochrome pictures are produced on flat-screen l.c.d.s. Each unit measures an amazing $6.8 \times 3.2 \times 0.7$ inches thick, and weighs just 10.5 ounces. The screen system used measures 1.2×1.6 inches (2 in . diagonal). One model incorporates a digital clock, and another, a radio. All three televisions can double the image size by zooming in on the centre area of the screen.
This is the way Toshiba describe the operation of their breakthrough: "The screen comprises a liquid crystal matrix panel filled with liquid crystal in a gap between the integrated circuit and the front glass. A picture is the end result of brightness differences on the crystal created by voltage differentials."

Photographs courtesy of Toshiba Con-
 sumer Electronics Divn.

Mattel Electronics, a pioneer of handheld electronic games, is expanding in the computerised video games field. Some of these games are shown below.

A unique threedimensional game called Cosmos. In addition to what are described as "Holoptic" images. this sophisticated l.e.d. game incorporates novel sound effects.

OUTLAW

fLAG CAPTURE

HUMAN CANNONBALL

Praxis 35 por table electronic typewriter. Auto matic correction of last ten characters via memory. Courtesy of Olivetti.

Mura claim this is one of the lowest priced digital VOMs. The LCD-200 features easy-to-read $\frac{1}{2}$ inch high digits, and is intended for hobbyists and engineers.

Banana plugs are used in preference to pin contacts, and all ranges are switched, obviating the need to change the probe leads from one socket to another, as is often the case with cheaper units. Photo courtesy of Mura Corporation.

The "jewelry look" has come to calculators. This charcoal grey case with raised chrome numeral keys and l.c.d. display should suit some ex ecutives

The Kosmos biorhythm unit and world time clock will display data on six people. It also has a stopwatch. Courtesy of Kosmos International of Atlanta.

Oscilloscopes
 HOW THEY WORK Part One...The Cathode Ray Tube... by lan Hickman

This two-part feature is taken from the last two chapters of a new book by this well-known author. Published by Newnes Technical Books the paperback is entitled Oscilloscopes. How to use them. How they work.

THE cathode-ray tube is the main component of an oscilloscope. A cathode-ray tube consists basically of an electrode assembly mounted in an evacuated glass vessel (Fig. 1). The electrodes perform the following functions:

1. A triode assembly generates the electron beam, originally called the "cathode ray". It consists of a cathode K heated by a filament F, a control grid G and the first beam-acceleration electrode (2).
2. An electrode (1) focuses the beam.
3. The beam is then further accelerated before reaching the deflection plates.
4. The vertical deflection plates change the direction of the beam in proportion to the potential difference between them. When this is zero, i.e. the two plates are at the same potential, the beam passes through undeflected. The vertical deflection plates are so called because they can deflect the beam in the vertical direction, so that it hits the screen at a higher or a lower point; they are actually mounted horizontally above and below the beam, as shown in Fig. I. Similarly the horizontal deflection plates permit the beam to be deflected to left or to right.
5. The deflected beam then hits the fluorescent coating on the inner surface of the glass screen of the c.r.t. The coating consists of a thin layer of "phosphor", a preparation of

Fig. 1. Basic oscilloscope (electrostatic) cathode-ray tube (courtesy Enertec Instrumentation Ltd.)
very fine crystals of metallic salts deposited on the glass. The "spot" or point of impact of the beam glows, emitting light in all directions including forwards. Modern c.r.t.s are aluminised, i.e. a thin layer of aluminium is evaporated on to the rear of the coated screen. The electrons pass through this with little retardation, causing the phosphor to glow as before, but now the light emitted rearwards is reflected forwards, almost doubling the useful light output.
The potential at the focus electrode is adjusted to obtain a very small round spot on the end of the tube. Unfortunately, if no other control were provided, it would often be found that the focus control setting for minimum spot widths was different from that for minimum spot height. This is avoided by providing an astigmatism control. In the case of a simple cathode-ray tube this consists of a potentiometer that adjusts the voltage on the final anode and screen relative to the deflection plate voltages. Alternate adjustments of the focus and astigmatism controls then permit the smallest possible spot size to be achieved. With more complicated tubes using a high "post-deflection acceleration ratio" another electrode is often needed. This is a "geometry" electrode and is connected to another preset potentiometer, which is adjusted for minimum "pincushion" or "barrel" distortion of the display.

When an electron beam passes between two horizontal plates

Fig. 2. Y-deflection sensitivity: see text (courtesy Enertec Instrumentation Ltd.)
that have a potential difference of V volts between them (Fig. 2) it is deflected vertically by an amount:

$$
\Delta Y=\frac{K V L D}{2 V_{\mathrm{a}} d}
$$

where $L=$ length of the plates
$D=$ distance between the plates and the point on the axis where the deflection is measured
$d=$ distance between the plates
$V_{\mathrm{a}}=$ acceleration voltage applied to the beam at the level of the plates
$K=$ a constant relating the charge of an electron to its mass.

The Y deflection sensitivity of a c.r.t. is defined by $\Delta Y / V$ and is expressed in cm / V. However, in practice the inverse relationship is normally used: $V / \Delta Y$, in V / cm, i.e. the differential deflectionplate voltage necessary to achieve a spot deflection of 1 cm .

Brilliance or intensity modulation (also called Z modulation) is obtained by the action of a potential applied to the cathode or grid that controls the intensity of the beam. Generally, a change of 5 V will produce a noticeable change of brightness, while a swing of about 50 V will extinguish a maximum-intensity trace. The beam is normally extinguished during "flyback" or "retrace"; see Part 2. This may alternatively be achieved in some c.r.t.s by means of an auxiliary "blanking" electrode, which can deflect the beam so that it no longer passes through the deflection plates and hence does not reach the screen.

TUBE SENSITIVITY

The deflection plates of a c.r.t. are connected to amplifiers, which can be of relatively simple design when the required output amplitude is low; it is therefore desirable for the tube sensitivity to be as high as possible. To enable the amplifier to have a wide bandwidth, the capacity between the plates must be kept low, so they must be small and well separated. On the other hand, in order to obtain a suitably clear trace of a signal with low repetition frequency (or single-shot) the energy of the beam must be high. But the ideal tube must be:

1. Short (not cumbersome): D small
2. Bright (high acceleration voltage): V_{a} large
3. And with low deflection-plate capacity: L small, d large This gives a tube with very low sensitivity, considering the formula:

$$
\text { Sensitivity }=\frac{\Delta Y}{V}=\frac{K L D}{2 V_{\mathrm{a}} d}
$$

The requirements for high sensitivity contradict the terms of the equation. Practical cathode-ray tubes are therefore the result of a compromise. However, techniques have been developed to improve a selected parameter without prejudice to the others. Postdeflection acceleration (p.d.a.) is one of these; see Fig. 3. To improve the trace brightness while retaining good sensitivity, it is arranged that the beam passes through the deflection system in a low energy condition (relatively low initial acceleration); postdeflection acceleration is then applied to the electrons. This is achieved by applying a voltage of several kilovolts to the screen of the c.r.t.

Spiral p.d.a., Fig. 4, is a development of the basic p.d.a. technique, and consists of the application of the p.d.a. voltage to a resistive spiral ($500 \mathrm{M} \Omega$) deposited on the inner tube surface between the screen and the deflection system. The uniformity of the electric field is improved, which reduces distortion. In addition the effect of the p.d.a. field between the deflection plates is weaker, so the loss is sensitivity caused by this field is reduced.

The use of a field grid-Fig. 5a-avoids any reduction in sensitivity caused by the effect of the post-deflection accleration field. A screen is interposed between the deflection system and
the p.d.a.; this makes the tube sensitivity independent of the p.d.a., a significant benefit. The screen must, of course, be transparent to the electrons and is formed from a very fine metallic grid. With this system we reach the domain of modern cathode-ray tubes.

The next development is the electrostatic expansion lensFig. 5b. By modifying the shape of the field grid (e.g. a convex grid) it is póssible to create, with respect to the other electrodes, an electric field that acts on the electron beam in the same way as a lens acts on a light beam. It is therefore possible to increase the beam deflection angle, for example by a factor of two, which improves the sensitivity by the same amount.

The field can also be formed by quadripolar lenses. So, for example, if the sensitivity of a spiral tube is $30 \mathrm{~V} / \mathrm{cm}$ in the X axis and $10 \mathrm{~V} / \mathrm{cm}$ in the Y axis, then the sensitivity of a lens-fitted tube, for the same trace brightness, may be $8 \mathrm{~V} / \mathrm{cm}$ in X and $2 \mathrm{~V} / \mathrm{cm}$ in Y or even better.

Fig. 3. Single-stage post-deflection acceleration (courtesy Enertec Instrumentation Ltd.)

Fig. 4. Spiral p.d.a. (courtesy Enertec Instrumentation Ltd.)

Fig. 5. (a) Mesh p.d.a.; (b) As (a) combined with expansion lens (courtesy Enertec Instrumentation Ltd.)

Fig. 6. Delay-line Y-deflection plates (courtesy Enertec Instrumentation Ltd.)

(a)

Fig. 7. Travelling-wave Y-deflection plates (courtesy Enertec Instrumentation Ltd.)

(b)

Fig. 8. (a) Dual-gun tube; (b) Dual-gun tübe with common X- deflection plates (courtesy Enertec Instrumentation Ltd.)

To improve the sensitivity by modifying the deflection system it is necessary to do one of two things:

1. Reduce the distance between the plates, increasing the capacity between them; in addition it must be possible to deflect the beam without it striking them.
2. Lengthen the plates, again increasing the capacity; however, the transit time involved limits the application of this idea.

The transit time is the time taken for an electron to pass through the deflection system: $t_{0}=L / e l e c t r o n ~ s p e e d . ~ S u p p o s e ~ t h a t ~ a ~$ sinusoidal voltage of period t_{0} is applied to the deflection plates. An electron leaving the plates will be in the same position as one entering the system, because the instantaneous value of the voltage applied to the plates will be the same (one period between the input and the output) and there will be no deflection. To enable the beam to be deflected so as to trace the outline of the applied signal, the length of the plates must be small compared with the distance the electrons travel during the period of one cycle of the signal. So for high-frequency work the plates must be short, which again reduces the sensitivity.

This problem can be circumvented by the use of sectional plates (Fig. 6). To improve the sensitivity several plates are placed in series, connected by a delay line. As the propagation velocity of the line is made equal to the speed of the electrons in the beam, the deviation accumulates successively. On the other hand the parasitic capacitance of the plates is incorporated in the delay line, which must be terminated in its characteristic impedance. The design of the line is entirely determined by its stray capacitance and the propagation time. This brings us to delayline deflection plates (Fig. 7). Here, the dimensions of the plates have been reduced and their number increased. Two flattened helices are used, each spiral acting as a deflection plate. The helix is constructed in such a way that its propagation velocity corresponds to the speed of the electron beam. These deflection systems, together with field grids or quadripolar lenses (or both), permit the construction of very high-performance tubes.

OTHER TUBE CHARACTERISTICS

To be suitable for use at high frequencies a c.r.t. must, as already discussed, have a highly developed deflection system.

But this alone is not sufficient when it is required to observe and photograph fast pulses with low repetition rates or single-shot phenomena. The brilliance of the display must also be adequate. This is why "writing speed" is an important feature in these conditions. Writing speed is defined as the maximum speed at which a spot, passing once across the tube face, can be photographed under specified conditions (camera, aperture, image/object, film sensitivity).

On the occasions when it is necessary to compare several fast, single-shot phenomena occurring simultaneously, the only solution is to use an oscilloscope equipped with a c.r.t. with several beams. There are a number of different types available:

1. Multi-gun tubes. Fig. 8a shows a c.r.t. with several cathode-ray assemblies mounted in a single tube. Fig. 8b shows a tube where each gun or triode assembly has its own vertical deflection system but shares common horizontal deflection plates. All phenomena are displayed with the same sweep speed.

Fig. 9. Electrode assembly of Brimar mesh p.d.a. c.r.t. type D13-51 GH (courtesy Thorn Brimar Ltd.)
2. Multi-beam tubes. There is a single electron gun for the different deflection systems, typically two. The beam is shared between each deflection system by means of a splitter plate. This type of tube is more economical because there is a single gun assembly. However, there is reaction between the two systems, and the brilliance of the displays cannot be adjusted separately.

CONSTRUCTION

The construction of the electrode assembly of a mesh p.d.a. cathode-ray tube is shown in Fig. 9. The deflection plates are within the cylindrical shield and the mesh covers the square opening at the end. The wires of which the mesh is woven are so fine that it is invisible; this also ensures that it is transparent to the beam of electrons. Fig. 10 shows a high-performance oscilloscope c.r.t. with side connectors to the deflection plates for minimum capacitance, spiral p.d.a., internal graticule, bonded implosion guard and light guide for graticule illumination.

Fig. 10. Brimar spiral p.d.a. c.r.t. type D14-210GH/82 with internal graticule (courtesy Thorn Brimar Ltd.)

All the measures to maximise the bandwidth of a c.r.t. mentioned previously-p.d.a., delay-line deflection plates, scan expansion lenses-have been put together in the cathode-ray tube used in the Tektronix type 7104 oscilloscope. This instrument boasts a 1 GHz real-time bandwidth, this limit being set by the Y amplifier rather than the c.r.t. itself. The latter could display signals up to 2.5 GHz , were it possible to design suitable wideband drive circuitry. Also, notwithstanding the conflict, explained earlier, between tube design parameters for optimum bandwidth and maximum writing speed, this tube achieves the remarkable writing speed of $20,000 \mathrm{~cm} / \mu \mathrm{s}$, using ASA 3000 film without fogging. (In fact, single-shot events at that speed can also be seen comfortably with the naked eye.) The secret is revealed in Fig. 11, which shows that in addition to the measures already mentioned, the c.r.t. incorporates a microchannel electron multiplier plate. This consists of thousands of short parallel tubes, each coated internally with a high-resistance film. Each individual tube acts as an electron multiplier by virtue of secondary emission, resulting in 10,000 electrons hitting the phosphor for each electron in the beam. Owing to the small spacing between the microchannel plate output side and the aluminised phosphor, together with the high potential difference between them, there is negligible spreading of the output of each microchannel tube, maintaining a small sharp spot size.

NEXT MONTH: the oscilloscope circuitry.

Fig. 11. Cathode-ray tube used in Tektronix oscilloscope type 7104 (courtesy Tektronix UK Ltd.)

Fig. 1.1. Block diagram of the Digisounder
features, the basic operation is to pulse an electronic transducer. At the same time, a counter is reset to zero and the counter input is held open. An oscillator input is fed into the counter, which will commence to count. The counter is stopped and the resultant count displayed on receipt of the transmitted pulse. This count is dependant on the depth of water below the transducer. Varying the oscillator frequency means that the read-out can be in feet, metres or fathoms.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Digisounder is shown in Fig. 1.2. The 1 Hz oscillator IC1d, e, f controls the timing of the circuit. It initiates the cycle of firing the $500 \mu \mathrm{~s}$ monostable IC2e, IC2f which gates the 150 kHz oscillator IC1a, IC1b, IC1c, "on" (for $500 \mu \mathrm{~s}$). The tuned power amplifier TR3, TR4, TR5 amplifies this 9 V pk-pk square wave to about $400 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$. The waveform at this stage is approximately sinusoidal because of the tuning. When this 400V signal is applied to the transducer, the crystal turns the electrical signal into an acoustic one, which travels down to the seabed where it is reflected. On returning to the transducer, it is converted back to an electrical signal (typically tens of microvolts).

The tuned amplifier TR8, TR10 has a time dependant automatic gain control TR6, TR7. The 1 Hz oscillator turns the gain down during transmission and raises it again over the following 30 milliseconds. As the transducer is fired, a positive going pulse appears at the output of IC3b, switching on TR7, discharging C9. Which then charges exponentially through R15, R16 and this changing level is fed via emitter follower TR6 to supply the first tuned stage of the receiver, TR9. The purpose of this is to reduce the risk of a false reflection from air bubbles or debris, which if they are near the transducer can cause large receiver signals and hence an incorrect depth reading. As the gain of the tuned amplifier is very high, it is susceptible to all sorts of interference, hence the need to turn the 150 kHz oscillator off by D2 when it is not driving the transducer (if it were not turned off, some small amount of 150 kHz might get through and saturate the amplifier).

COUNTER

The heart of the unit is the main counter, which receives pulses from the oscillator. The gate of the counter is held open from the moment the transmitter is fired until the returned pulse 'disables' the counter, and operates the latch, updating the display. The time the gate is held open is proportional to depth of water and the frequency of pulses fed in during this time determines the ultimate displayed figure. Therefore, by feeding in different frequencies, the counter will display feet, metres or fathoms. As an example, the 'feet' oscillator is exactly six times the frequency of the 'fathoms' input. This automatically converts the reading into fathoms.

The counter used is the Intersil 7224, a $4 \frac{1}{2}$ digit counter that will drive an I.c.d. directly. Although $3 \frac{1}{2}$ digits are sufficient, this i.c. was chosen as being the most convenient method of implementing the required function. It features low power operation, direct 7 -segment I.c.d. drive, latch and reset inputs and a count inhibit (enable/disable) control.

'NO REFLECTION" DEFLECTION

The flip-flop IC4a, IC4b is set by the 1 Hz oscillator at the beginning of the transmit pulse and reset by the demodulator IC3e when a reflection is detected (so the output is high for a time proportional to the depth of the water, and this signal is used to 'enable' the 7224 counter). If the bottom has soft mud or substantial weed growth, it is possible that no reflection will be detected. IC5a, IC5b another flip-flop is set on transmission, and stays in this position as long as reflections are received. If, however, after approximately 0.5 seconds, no reflection is received, IC5d resets it. IC5a output goes low, which resets the main flip-flop (IC4a, IC4b) and prevents the latch pulse being transmitted by IC4d. TR11 turns on, and pulls the reset and latch inputs of the 7224 low. This makes the display show a zero reading indicating that no reflection has been received. As soon as a correct reflection arrives, normal operation recommences.

DEPTH OSCILLATOR

By varying the rate of the oscillator IC6b, IC6e, IC6f applied to the count input of the 7224, it is possible to arrange the display to show the depth in any desired unit - feet,

COMPONENTS . . .

```
Resistors
    R1 22
    R2.R11,R12 1k(3 Off)
    R3,R42 2k2 (2 off)
    R4,R13,R16,R26,R28,R29, 100k (12 off)
    R35.R36,R38,R39, R44, R46
    R5, R20, R30, R32, R37, R45 10k (6 off)
    R6,R7,R22,R24,R41 1M (5 off)
    R8,R78 560k (2 off)
    R9,R31,R40 47k (3 off)
    R10,R17 22k (2 off)
    R14,R25 4k7 (2 off)
    R15,R33 33k (2 off)
    R19 2M7
    R21, R23
    R27
    R34
    R43
```

 All resistors \(\frac{1}{2}\) W 5\% carbon
 Potentiometers
VR1. VR2
VR3
VR4
VR5
Capacitors
C1. C8
C2, C14, C17
C3, C15, C18, C24
C4
C5, C10, C11, C19, C20, C21, $\ln (9$ off)
C23. C25, C28

C6, C7

C9
C12
C13.C16
C22
C26
C27
47p (2 off)
$47 n$
220n
560 p (2 off)
10 n
22n
1μ

Semiconductors

D1
D2-D14
D16
D15, D17
TR1, TR4
TR2, TR3, TR6, TR7, TR9,
TR1 1, TR12
TR5
TR8, TR10
IC1, IC2, IC3, IC6
IC4
IC5
IC7
in4001
1N4148(13 off)
BZY88 10 V Zener BZY88 5V6 Zener (3 off) BFY50 (2 off)
BC237 (7 off)
TIP41A
2N3819 (2 off)
4069 (4 off)
4011
4001
ICM7224

Miscellanous

3 pole 4 way switch
$3 \frac{1}{2}$ digit I.c.d.
PP7 battery and connector
15 way p.c.b. plug and socket
Case Pac Tec 60119-1
UHF socket
Rm10 (AL250) pot core kit (RS228-242)
YXNS 30450 NK 2 mH choke (2 off)
22 s.w.g. enamelled wire
36 s.w.g. enamelled wire
Ultrasonic transducer
Soldercon pins
WD1 Piezo-Electric Sounder

Constructor's Note

A complete set of parts for the Digisounder is available from Lascar Electronics, Unit 1, Thomasin Road, Basildon,
Essex ($0268 \mathbf{7 2 7 3 8 3}$). Price $£ 69.80$ (transducer extra)
metres, fathoms, inches etc. For the purpose of this design, the first three are used.

Those who know the ICM 7224 will, no doubt, realise that it is a $4 \frac{1}{2}$ digit counter, but here it is only being used to drive a $3 \frac{1}{2}$ digit display. This is because there is little point in measuring to an accuracy of 0.01 feet ($\frac{1}{8}$ th of an inch) when the boat will be moving up and down substantially more than that, due to the movement of the water. A $3 \frac{1}{2}$ digit display is easier and cheaper to obtain with larger digits for the same glass size.

"TOO SHALLOW" DETECTOR

As the current consumption is so low, there is no reason why the instrument should not be left on all the time, in which case the shallow water detector IC4c comes into its own. If there are three consecutive readings below a preset level (adjustable by altering resistor VR5 on the p.c.b.) an alarm sounds, so you can sleep in confidence that if the tide goes out, you will be woken up before it is too late! Three consecutive readings are required, as you might get an occasional low reading from a fish or piece of debris near the transducer. The output from IC4a is taken low when the transmitter fires and stays low until the flip-flop is reset by the returning signal. When the output first goes low, C26 discharges at a rate set by VR5. If the main flip-flop is reset before the voltage on C26 is below the CMOS threshold (approximately 4.5 V) due to shallow water, then a negative go-
ing pulse on the output of IC4c partially discharges C27 This is normally being charged via R43. However, the circuit is arranged so that three consecutive 'low level' readings discharge C24 to the point where IC5c switches on TR12, activating the alarm. VR5 allows setting of any depth between 2-3 feet and 25 feet.

If the depth sounder is to be used on a boat with an engine, it is imperative that the engine is properly suppressed, otherwise it will produce interference, giving random depth indications.

POWER SUPPLY

The instrument operates from a 9 V supply, from which is derived a 5 V supply for the logic circuitry. The 9 V supply can be from the internal PP7 battery, or external in the range 12 V to 30 V . The external input is regulated down to approximately 9 V by D16, TR1. D 15 and TR2 regulate the 9 V input down to 5 V . Diode D1 protects against reverse polarity connection of external supply.

The instrument can be powered from either a supply in the range 12 V to 30 V or an internal 9 V battery, but not both at the same time, because the 9 V battery may leak corrosive chemicals as a result of having charge pushed into it. If external supply is used, the internal 9 V battery should be removed
NEXT MONTH: Construction, Testing and Installation

P.E. COMPUTER SPEECH PROJECT

See P.E. Nov. ' 80 and Dec. ' 80 for relevant articles.

NODUS SYSUEMSETD
Phone Latchworth (04626), 44468/76392

ADD VERBAL OUTPUT TO A COMPUTER OR
LOGIC SYSTEM OF ANY KIND.
Modus Systems Ltd can now supply a range of fixed vocabulary speech synthesiser boards to aid in the evalua
cion and addition of speech to any computer or logic device The words available are basic and revolve around numerical words such as two" thirty "pounds", etc. The units of particular interest, produced by Telesensory Systems Inc
|TSI) are the 24 and 64 English units, consisting of a controller chip and one or two 2 K ROM's, respectively.
Interfacing depends upon three main systems: logic General audio sections. Nodus Systems have developed a General Interface Board which includes all of these aspects and permits easy interfacing to your logic system.
Two levels of power supply are required. One $\{+5$ Volt $)$ is ex petted to be supplied from the microcomputer. The other is supplied from a power supply on the interface board, which also includes all necessary interfaces to the computer. The
board also has an edge socket in which the speech board board also has an edge socket in which the speech board
sits, and a plug and socket for ribbon cable connection to a computer. A small 10 to 15 Volt transformer is required for power and an 8 Ohm speaker for the voice output.
A computer is by no means necessary to use the speech board. Any device even a bank of switches! which gives a a start signal will control the unit. Applications include speaking clocks, telephone answering, games, calculators, audio readout in industrial control applications. etc, etc.

Vocabularies and prices:
S2A (£44.95 - 80p PP + VAT: SPECIAL (NTRO OFFER)
24 - Calculator type words: 0-9
S2B (£69.50 + BOp PP + VAT) 64 words.
As for S2A plus "ten". "twenty", etc, "pounds
S2C ($\mathbf{f} 69.50+80 \mathrm{p}$ PP, VAT) 64 words
Full ASCII set - each ASCIII Coder verbalised in sequence

GET TO GRIPS WITH THE MICRO PROCESSOR

Interface Board (Kit) (£14.95 + 80p PP + VAT).
S2A, B, C board plugs into on-board socket. This PCB contains latches, audio filter, PSU, audio amplifier, $1 / 0$ plug and socket.

* UNLIMITED SPEECH NOW AVAILABLE

Modus Systems can produce customised speech fonts to suit individual applications. Vocabulary generation costs will depend on the specific words required, but they are not likely to exceed $£ 150$ pounds per new English word

* COMING SOON

Series III speech board containing 119 words and all interfacing necessary on a single PCB (requires a single +5 V supply only). Spare ROM socket may be used for a custom vocabulary.

THE EDUKIT

you can even make it talk with our speech board
 £36.95

(see P.E. review (April edition) \& P.E special offer May and June)

TECHNICAL SPEC.

** COS 1802 Processor (RCA) - excellent MPU for control. ** 256 bytes of RAM - plenty for learning machine codes.
** Hexadecimal display - large and readable.
** Full hex keyboard - positive ' click' type switches.
** Full manual - starts at soldering, ends with control circuits.

- Loudspeaker output - simple audio experiments
Excellent for all ages from secondary school level upwards.

Designed by Dr. A. A. BERK -

The EDUKIT has proven a great success providing an excellent introduction to silicon chip technology from the bottom upwards. Many schools and colleges are using the kit, and sales now extend world wide. The machine is not mean to form the basis of a large and expandable personal computer system. The EDUKIT teaches all those things which a purely BASIC running machine cannot. lie. the basis of hardware electronic control, down-to-earth Bits and Bytes, Machine Code etc. \rightarrow and all this at a really throw away price. The manual is written by Dr. A. A. Berk to impart educational understanding from the beginning
1802 USER'S MANUAL (essential for full understanding of MPU used in EDUKIT) 4.75 + 50p PP

FULL SOCKET SET for EDUKIT: $\mathbf{£ 2 . 9 9}+$ VAT (PP included)

EPROM PROGRAMMER P.C.B. £8.95 (fully inc.)

See P.E. Dec. '79 and Jan ' 80 for full description of programmer, along with interface to COMPUKIT.

THE NEXT DECADE

The Calendar for the next decade is a very full one. It is hoped that it will begin with the first trials of the Space Shuttle, Columbia. This issue of Spacewatch should be in your hands for the date set for the launch, which is the 17th of March 1981.
At the present time of writing Columbia is set up on its launch platform at the Kennedy Space Centre in Florida. The vehicle was powered up from the ground using ground based power. Engineers have since January 5th been making the final inspections and the exhaustive check of the systems.
On January 6th the prime team of astronauts, John Young and Robert Crippen together with the back-up crew practised the escape routines. The back-up team are Joe Engel and Richard Truly. There are complete safeguards for the crew from the moment of count-down. A quick exit is possible during the final hours of count-down if an emergency should arise.

The first orbital flight will last for 54 hours. During this flight the crew will test all the systems including the opening and the closing of the 59 feet long doors which cover the payload bay (where the spacecraft to be launched will be carried) and the space which is provided for other instruments.
The Shuttle with its boosters will be launched vertically and will later re enter the atmosphere to glide in an un-powered condition to the NASA Dryden Flight Research centre in Edwards. California. If an emergency should arise the crew can also land in Florida or at the White Sands Missile Base near Las Cruces, Mexico.

PROSPECTS FOR THE NEXT DECADE

August 1981 will see the encounter with Saturn by Voyager 2. Plans are already being finalised for this event. The success or
otherwise is dependent on the state of the vehicle when it arrives in the area of Saturn, before going on to Uranus.
The Soviet Union have a planetary programme which will involve four Venus probes. Venera Nos. 13 and 14 will be launched in November this year with an encounter date in the spring of 1982. Two more Venera craft nos. 15 and 16 will be launched around June or July 1985

The missions will be "landers" and will very likely be similar to the Viking landers used by NASA on Mars. The two vehicles 13 and 14 witl land March/April 1982 to examine the surface of Venus and, no doubt will be making the details of the project available. The 1984 mission will be a joint mission with France. Venera 15 and 16 will carry two balloons and two landers. These balloons at present being developed will carry instruments for the study of the Venusian atmosphcre at a height of 56 km over a period of about six days. The landers will be carrying out observations from the surface at the same time. It is not known at present whether the vehicles themselves will orbit or flyby, but one will leave for an encounter with Halley's comet. This will be in 1986. This vehicle will be equipped with a specially developed camera supplied by the French.
The European Space Agency is preparing the Exosat which will be an additional satellite to cover the X -ray spectrum. At the moment this is the province of the Einstein satellite of NASA. An additional booster will be added to the Ariane launcher in order to get the required power to lift the Exosat to its eccentric orbit, taking it some 200.000 km above the North Pole. The vehicle is equipped to study the position, structure and spectra of the sources emitting X -rays in the energy range up to 1.5 keV . This satellite will operate as an observatory so that the groups of observers can share the time. The date set for the launch is November 1981.

A joint European/United States venture for the launching of an astronomical Satellite in August 1982 will go ahead, but at a higher cost due to certain technical problems. Its task is to study the infra-red wavelengths, which cannot be done satisfactorily from ground based telescopes, because of the carbon dioxide and water in the Earth's atmosphere. This satellite is the IRAS.

Another joint NASA/ESA venture will be the Space Telescope. This is due to be launched by the Space Shuttle in December 1983. The exact date of launch will of course depend on the progress and time table of the Shuttle programme. The telescope will have a primary mirror of 2.4 m diameter, and will carry a number of instruments for the task to be undertaken. The benefit of this telescope will be that it will be some 500 km above the atmosphere and will in consequence produce results of the order of 10 times greater than the largest of the earth based instruments.

In 1984, during March, the Galileo probe is due to be launched. This vehicle has also had a number of difficulties due to the financial troubles that have beset NASA. The plan is to send a probe deep into the atmosphere of Jupiter and an orbiter to go round the planet.

The orbiter would be sent ahead of the probe and will circle the the planet for 20 months make close observations of the conditions of the atmosphere. The probe will study the atmosphere down to a level where the pressure is more than 10 times that of the Earth. Both vehicles will encounter the planet in July 1987.

Still another joint mission is the International Solar Polar Mission. The object of this mission is to explore that part of the solar system away from the ecliptic. It will be the first time that any spacecraft explore that part of the solar system about which we know nothing. The orbit will be over the poles of the Sun. Two spacecraft will be despatched toward Jupiter and "flicked" round in the planet's gravitational field toward the Sun. They will be launched in such a way that they pass over each of the solar poles. that is, they will travel in opposite directions.

Their task is to study the high energy particles of the solar wind and study the solar magnetic field. This is a most important mission to which the European space agency has already allocated $£ 30$ million.

In 1986 the Venus Orbiting Imaging Radar mission will be launched from the Space Shuttle. The object, as its name implies, will be to obtain radar pictures of the surface of Venus. The system of imaging that has been successfully developed will enable distances down to 150 m to be resolved through the thick cloud cover. This vehicle will be dispatched in May or August depending on which trajectory is chosen. It will arrive at Venus in December of the same year.

Another special mission is that of Giotto. This is to be launched by an Ariane vehicle in July 1985 on a trajectory to intercept Halley's comet in March 1986. Attempts will be made to obtain imaging of the nucleus and measure the gas and dust of the coma. There is a great deal at stake in this mission, for an accurate knowledge of the composition of comets is very necessary to qualify present theories of cosmology.

The United States will carry out a plan to extend Gamma-Ray astronomy. The observatory will be launched in August 1985. The Shuttle will also be the vehicle for this mission. The observatory will examine, from an orbit $400-500 \mathrm{~km}$ above the Earth, the very short wavelengths below $10^{-13} \mathrm{~m}$. It is hoped that these observations will help to provide clues as to the nature of Pulsars, Quasars and Super nova.

To make a new map of the sky a special satellite. Hipparcos, is to be launched in 1986/1987. This was put back in favour of Giotto to ensure that at least one spacecraft was able to rendezvous with Halley's comet. Hipparcos' mission is an extremely important one for the same reasons that Giotto was important: further accurate knowledge of the universe.

Hipparcos will measure the positions and motions of 100,000 stars with an accuracy that is not possible from Earth. The measurements will also provide better evidence of the quasars and sources near the edge of the observable universe.

ALSO...The first two projects designed to fit the case

Precision Digital Multimeter; five functions, four ranges per function; diode check; fully protected; $\pm 0.5 \%$ basic accuracy (d.c. volts). No calibration required.

Precision Digital Thermometer; $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$; stainless steel probe; laser trimmed i.c. sensor giving excellent linearity and easy calibration.

...These will be followed in the June and July issues by at least 6 more projects designed to fit in the oase

TO match the free case we will also have a special offer on this brand new l.c.d. digital panel meter. The meter employs watch manufacturing techniques to reduce the depth to a minimum. The current drain has been reduced to only $200 \mu \mathrm{~A}$ which means a PP3 battery can power the display for typically two years if used 8 hours a day.

Other features include 15 mm digits, digital hold facility, auto-zero, auto-polarity, single rail $5-15 \mathrm{~V}$ supply, programmable decimal points and 200 mV full scale deflection.

The meter will fit neatly into our free case and all our projects will use it. An exclusive special offer price has been arranged for $P E$ readers-full details next month.

EXTRA CASES...

We will be presenting "PE Case Vouchers" in subsequent issues so that regular UK readers can obtain extra cases for a fraction of the normal cost. With at least eight different projects we think you will want another case!

We do not want our regular readers to miss out due to the heavy demand this issue is bound to attract, so please order a copy from your newsagent NOW!

PRACTICAL

MAY ISSUE ON SALE FRIDAY 10AMPRIL 1981

fall within the frequency range of the speech signal. At middle and high frequencies (say above 2 kHz) the harmonics generated fall outside the speech signal frequency range and can be attenuated by means of a suitably designed filter.

The transfer characteristics for various degress of amplitude limiting are shown in Fig. 2. 'Hard-limiting' occurs very abruptly, there being no perceptible increase in the output signal amplitude beyond a certain input level. 'Softlimiting', as its name implies, is somewhat more gentle and the slope of the transfer characteristic is made to fall progressively as the input signal amplitude increases above

Fig. 1a Amplitude limiter block schematic

Fig. 1b Dynamic compressor block
a certain threshold level. 'Soft-limiting' offers some advantages over 'hard-limiting' as regards the generation of unwanted harmonics of the input signal. These are considerably reduced with the result that the output signal is less harsh and consequently more pleasant to listen to. Also, due to the reduction in harmonic content, less stringent requirements are imposed on the subsequent filter stage. Typical signal waveforms obtained with 'hard' and 'softlimiting' are shown in Fig. 3.

The degree of limiting employed depends largely upon the particular application. A change in output of, say, 3 dB for a change in input of 20 dB may be eminently suitable for voice communications over a noisy radio channel, however, for public address and tape recording of speech signals a somewhat less severe 6 dB change in output for a 12 dB change in input will be more suitable. An essential requirement, therefore, of a general purpose speech processor employing amplitude limiting techniques is that the degree of limiting should be adjustable over a wide range. In practice, and since the input signal level may vary from one source to another, this means that the signal level both preceeding and following the limiter stage must be made variable. By careful adjustment a wide range of limiting can be achieved and a variety of input and output signal levels can be catered for.

The block schematic of the speech processor is shown in Fig. 4. The first stage is an amplifier with a voltage gain which is adjustable from approximately 1 to 100 . The limiter stage which follows has a fixed voltage gain of 2 for small signals and this falls dramatically as the signal level increases. The active low pass filter has an upper cut-off frequency of approximately 4 kHz and significantly reduces the harmonic content of the output signal from the limiter. The final stage is another amplifier, the gain of which may be adjusted over the range of 0.05 to 4.5 .

Fig. 2 Transfer characteristics for various degrees of amplitude limiting

Fig. 3 Effect upon signal waveforms of the limiting characteristics depicted in Fig. 2

Fig. 4 Block schematic of the Speech Processor

Fig. 5 Circuit of Speech Processor

CIRCUIT DESCRIPTION

IC1a operates as a conventional inverting voltage amplifier, the gain of which is controlled by the negative feedback resistor, VR1. The voltage at the non-inverting input is set by means of R1 and R2 at approximately half the supply voltage with C2 providing decoupling at signal frequencies. A similar arrangement is used for setting the non-inverting input on each subsequent stage. The active limiter is formed by IC1b, D1, D2 and associated components. Since D1 and D2 are silicon devices, a peak-peak voltage of approximately 1.2 V at pin 14 of IC1 will cause D1 and D2 to conduct on alternate half-cycles and this will, in turn, provide a low impedance shunt path across the feedback component, R8.

IC1c and associated entry circuit forms a low-pass Sallen and Key filter. This is a simple, yet effective, second order filter, and cut-off frequency being determined by R9, R 10 and C6, C7. The ratio of R9 to R10 and C6 to C7 being kept constant to provide fixed filter characteristics. The final stage, IC1d, is an inverting voltage amplifier, similar in configuration to IC1a. VR2 and R16 set the voltage gain of this stage, the values being chosen so that the stage can provide attenuation as well as amplification. S1a provides a direct signal path between input and output when S1b is in the 'off' position. A conventional LED and current limiting
resistor is used to provide visual indication that the processor is in use.

CONSTRUCTION

The speech processor is built on a single sided p.c.b., the copper foil layout of which is shown in Fig. 6. The components are arranged on the top side of the p.c.b., as shown in Fig. 7.

It is recommended that IC1 be mounted in a low-profile 14-pin DIL socket and that, as far as possible only miniature components are used. The completed p.c.b. should be carefully checked and then mounted in a small plastic case using stand-off pillars. The layout of the input and output sockets, on/off switch and l.e.d. being entirely a matter for the individual constructor's preference. The connections to the p.c.b. together with associated wiring are shown in Fig. 8.

INITIAL TESTS AND ADJUSTMENTS

Connect a suitable battery (PP3, PP6 or similar) and check the supply current. This should be in the region of 12 to 20 mA . Set VR1 and VR2 to mid-position and connect a microphone to SK1. The output signal should then be checked using an amplifier or tape recorder connected to

Fig. 8 Interior layout and wiring
SK2. The effect of varying the settings of VR1 and VR2 should be noted. If VR1 and VR2 fail to have any effect, or if the output signal is not obtained, the p.c.b. should again be carefully checked and, if this does not reveal any errors, d.c. voltages should be measured and reference made to the table of test voltages.

When experimenting initially with the speech processor it is recommended that VR1 and VR2 be set almost fully clockwise. This will produce similar input and output levels when using a low impedance dynamic microphone and limiting should occur when 'close-talking' into the microphone. Where an appreciable amount of gain is required, as would be the case when speaking at some distance from the microphone, the settings of both VR1 and

VR2 may be increased to around mid-position.
Note that this may have the undesirable side-effect of amplifying unwanted extraneous noises to such a level that their presence is annoying. The settings of VR1 and VR2 are best determined by experiment in conjunction with the actual microphone or signal source which is to be used. It is then a fairly easy matter to determine the optimum settings for any particular application.

APPLICATIONS

Radio transmitters/transceivers

The addition of a speech processor will enhance the performance of most transmitters and transceivers. The extra "talk-power" often making the difference between a signal which is readable and one which is lost in noise. Air tests under marginal conditions show an effective 3 to 4 dB increase over a signal without speech processing. The device is suitable for use with most types of transmitter and transceiver and, being merely inserted in the microphone connection, requires no internal modifications whatsoever. The processor may be switched in and out as required; a direct path from microphone to transceiver being provided in the latter case. Since processed speech tends to be somewhat less pleasant to the ear this facility is useful for restoring normal operation for local contacts; the speech processor being primarily intended for chasing DX! When used with mobile equipment the speech processor will allow

Fig. 9 Frequency response of the Speech Processor with C1 $=470 \mathrm{n}$ and 'rolled-off' at LF below 200 Hz with C1 $=100 \mathrm{n}$

Fig. 10 Transfer characteristic

Test voltages

IC1 pin

14.5 V	84.5 V
24.5 V	94.5 V
34.5 V	104.5 V
49.0 V	110 V
54.5 V	124.5 V
64.5 V	134.5 V
74.5 V	144.5 V

All the above voltages were measured with a $10 \mathrm{~m} \Omega$ input d.c. voltmeter. The d.c. supply was 9V.

the operator to talk at some distance from the microphone thus permitting the use of a gooseneck or tie-clip microphone. This is much safer in use than the usual handheld microphone!

Public address

The speech processor is particularly useful as a means of compensating for the variation in signal level which is often experienced when a fixed microphone (on either a floor or table stand) is employed. The processor then allows the speaker to vary his position relative to the microphone without appreciable loss of amplification.

Tape recording

The speech processor may be used to replace the AGC system used on some cassette tape recorders when recording speech. There is no annoying 'recovery time' and the processor is useful in clarifying signals contaminated by noise as would be the case when recording from short wave receivers. The unit is also suitable for dictation, freeing the user from the need to hold the microphone and allowing him or her to talk at some distance from the recording machine.

And finally, although the processor is not generally suitable for music (the distortion introduced being quite noticeable) it may prove to be of some interest to those who wish to experiment with musical effects. The speech processor makes a very effective "fuzz-box" with VR1 and VR2 suitably adjusted!

Solar Energy Exhibition Aug. 23-28. 1981. Brighton. M
Laboratory Sept 8-10.Grosvenor House. Park Lane, London. I
International Business Show Oct. 20-29. NEC. Birmingham. A2
BEX-Southampton Nov. 4-5. Polygon Hotel. K
Electronics 82 (Sub-titled International Electronics Control and Instruments Exhibition) May 24-28, 1982. NEC. I

I Industrial Trade Fairs. 021-7056707
K Douglas Temple Studios, 1046 Old Christchurch Road, Bournemouth
M Montbuild. / 01-486 1951
O Online Conference. 089539262
T Trident International Exhibitions. $\int 08224671$
AI Institute of Electronics. 070643661
VI Jack Tootill. Ipswich. 047344047
A2 Hart Browne \& Curtis Lid., 29 Sackville Strect. Piccadilly, London WIX IDR. © 01-439 8556
B2 Brintex Exhibitions Ltd., 178-202 Great Portland Street, London WIN 6 NH. $\int 01-6372400$
B5 Dept. Electronic \& Communication Eng., Polytechnic of N. London.

politis bitisnc

27/28MHz CONVERTER (March '81)

The following coil winding details were omitted from Fig. 6: L1 3 turns 26 s.w.g. wound over L2.
L2 15 turns 30 s.w.g. close wound.
L3 \& L4 12 turns 30 s.w.g. close wound.
L5 18 turns 30 s.w.g. close wound.

* In Fig. 5, D5 Anode should be connected to C21 which is non elect. MICROBUS (Feb '81)
There was an error in one of the ZX80 programs. See Readout on page 64.

MICROPHONES

MU 105-22 £29.30
MU 105-12 f22 25
MU 25 C $\quad £ 17.39$

HEADPHONES
Superbly made with top flight performance HP90 £12.65 HP80 $£ 9.69$

30 watt amp MC input SA4 $130 £ 75.00$ Stereo Tuner ST 4120 Cassette full features SC 4200 50 watt amplifier WA7700 20 watt amplifier LA2020 This new range of Electronics from Videotone redefines the words quality and value for money to a new high.

Quality plus value always

* A MESSAGE FROM VIDEOTONE *

You will find that the products advertised on this page are the best possible value for money. They are only low in price because we have eliminated large amounts of selling costs that other brands have to suffer. These savings are passed directly onto you. We have full brochures on any specific item you may be interested in and a competent realistic staff of engineers at our London Showrooms to help you in your choice. Our consumer protection packages are comprehensive and we offer every form of financing you may require. We carry out our own servicing and are dedicated to giving Value for Money. We are confident our products are unbeatable. You may purchase with confidence because our Engineers have specially selected them from competitive sources throughout the world and we mport them directly ourselves. Remember, you have 21 days trial period on all products. That is the measure of our confidence.

> \& Almancorthe

Cliff Hardcastle, Managing Director.

ALL
PRICES
INCLUDE
VAT
ALL PRODUCTS ON DISPLAY \& CONTINUOUS DEMONSTRATIONS

98 CROFTON PARK ROAD LONDON SE4
TEL: 01-690 8511/2

P.s.u. and controller design for mini-drills employing p.w.m. to vary the speed

NEARLY everyone who regularly produces printed circuit boards at home will own a miniature drill of some sort. These drills normally require a power supply of 14 volts, capable of giving 2-3 amps. The supply will allow the drill to give a better performance if it is regulated, since the 14 volts will be maintained when the drill is under load. Also, if the drill is to be used for other purposes than drilling (which should always be done at the fastest possible speed) a variable speed power supply/controller is desirable. The most notable time when a slower speed is required is when using a burr bit to scratch out a p.c.b. track, at full speed the burr tends to skid or bite making the job very difficult. The design presented here is for a suitable power supply and controller, employing pulse width modulation to give the variable speed capability.

PULSE WIDTH MODULATION

The easiest way to control the speed of a small d.c. motor (as are most drills) is to vary the power supply voltage. However, the torque developed by the motor falls off very quickly as the supply is reduced, making the slower speeds useless. This problem can be overcome by using a square wave drive with variable 'on' and 'off' time. (Fig. 1). When the 'on' time is a small percentage of the 'off' time the motor will obviously run more slowly since less energy is supplied, but since the motor is pulsed by a full power surge the torque remains fairly high. Obviously the speed is increased by increasing 'on' time. It is usual to keep the frequency of the system constant and vary the width of the 'on' pulse, hence the name of pulse width modulation.

THECIRCUIT

The circuit is shown in Fig. 2. The power supply is fairly conventional, except that a great deal of decoupling is employed. This should not be omitted because the drill generates a lot of spikes which will cause faulty operation of the timing circuit. It is important that all the power supply components are rated to sufficient current.

mini drill

 CHRIS LARE

Fig. 1. Pulse width speed control

A 20 volt transformer was used in the prototype to give plenty of spare capacity. The output from this transformer is fed to C2 via a 6 amp bridge. Transistor TR1 and R1, D1 form a simple series regulator for the timing circuit. The voltage generated by this supply also determines the final output voltage and thus should be chosen to suit the drill concerned. A 15 volt Zener was used in the prototype, when reduced by three base/emitter drops the resultant 13.2 volt final drive is ideal for a 14 volt drill.

The timing is generated by two 555 timers in a double package (556). The first timer is connected as an astable, of 60 Hz frequency. However, the output from this is in the form of a short pulse, this being ensured by making R2 much greater than R3. The pulse output is used to trigger the second 555, which is connected in monostable mode. C8 and R4 act as a pulse differentiater which increases the noise immunity of the circuit.

The monostable period can be varied by VR2, between short and long periods. Since the maximum period required is just less than the frequency of the first 555 VR3 is included to allow this period to be accurately set; similarly VR1 sets the shortest time available-or the slowest speed. A footswitch facility is provided by using the reset of the monostable; this simply inhibits its operation.

The output from the monostable is fed to a Darlington pair, of which the 2N3055 should be mounted on a heatsink. The output from the 2 N 3055 is fed directly to the drill, although considerable decoupling in the form of C11, C12 and R 10 shouild be added.

Fig. 2. Circuit diagram

Resistors		COMPONENTS	
R1, 10	680R		
R2	47k	Semiconductors	
R3, 5.9	1 l		
R4 VR_{1}	10k 47 k miniature preset	D1	15 V 400 mW Zener BC184L
VR2	47 k potentiometer	TR2	BFY51
VR3	100 k miniature preset	TR3	2N3055
		IC1	556

Capacitors

C1, 3, 5, 6, 9, $12 \quad 0.1 \mu$ Mullard C280

C2	$2200 \mu 63$ Volt electrolytic
C4	$470 \mu 25$ Volt electrolytic
C7, 10	0.47μ Mullard C280
C8	680 p polystyrene
C11	2.2μ Mullard C280
C12	0.01 disc ceramic 750 V

Miscullaneous

REC1-6A bridge; T1-20V transformer 2.4A; double pole single throw illuminated switch: 1A fuse \& holder; 3A fuse \& holder (optional); 2 mono jack sockets; plugs; die cast aluminium box; p.c.b.; footswitch (Watford PB12); insulation kit for 2 N3055; cover for 2 N3055; nuts, bolts etc.; sticky feet; mains supply neon (optional).

CONSTRUCTION

The physical construction is not critical, but the wiring diagram should be closely adhered to so as to avoid noise problems.

The prototype circuit was built on a printed circuit board, produced with an etch-resist pen. Veroboard is not recommended due to the possible noise problems. The circuit board, together with the other parts was housed on a large die-cast aluminium box, chosen for its good heatsink properties. The 2 N3055 transistor was mounted on the box part and fitted with a cover to prevent accidents with wandering screwdrivers. A double pole illuminated switch for the mains supply and the speed control were mounted on the lid of the box.

Standard quarter inch jack sockets were used to connect the drill and footswitch. Note that the footswitch should have closed contacts when released. Most footswitches are connected the other way round, but the one used in the prototype had a standard changeover micro switch inside,

Fig. 4. Interwiring detail
and it was a simple matter to alter the connections. The main capacitor and bridge were mounted on the bottom of the box, and the output decoupling components were mounted directly on the output jack socket.

Four stick on plastic feet completed the unit.

TESTING

If an alternative current limited supply is available it is a good idea to test the board with that, since a major failure will almost certainly destroy TR1 and probably D1 as well. Set the supply for about 17 volts. After re-checking the wiring switch on. Check the regulator works. Check that a pulse output is present on pin 5, and also on pin 9 . Set both presets to half travel and connect a drill up and it should run. Increase the speed control to full, and the drill should speed up. If it starts to run roughly, and slows down, do not
worry-it is simply the monostable over running. Adjust VR3 with the speed control at maximum until the motor runs at its fastest. Turn the speed control to minimum and adjust VR1 until a suitable speed is obtained, then re-adjust VR3 with the speed control at maximum.

IN USE

All drilling should be performed with the speed control at maximum. Slow drilling will wear the drill bits out more quickly, as well as taking longer. For other uses, burring, polishing, etc. the best advice is trial and error, but around half speed seems to be the best.

The footswitch is a definite improvement. It is particularly useful if the drill stalls because the drive can be released quickly, and when drilling over a centre point because the drill can be positioned and then started.

makes for a better job...

The biggest name in solder worldwide

Tool Box Reels
3 flux-cored solders that cover a range of electrical and non-electrical applications. ARAX $40 / 60$ tin/lead size $11 £ 3.91$ each. ALU-SOL size $4 £ 6.90$ each ERSIN 40/60 tin/lead size $3 £ 3.91$ each.

Wire Strippers \& Cutters No tool box is complete without this handy wire stripper which will adjust to most sizes of flex and cable. Easy grip plastic coated handles. Automatic opening. Handle locking device. Ref 9 £2.69.

Handy Dispensers
Size 19A 5 -core solder Ersin flux 1.22 mm dia for electrical work £0.97.
Size PC115 extra thin gauge for small electrical components $£ 1.15$
Size SV130 5-core Savbit specially for copper bits and wires $£ 1.61$
Size AR140 Arax solder for all metal repairs except aluminium $\mathbf{£ 1 . 3 8}$.
Size AL 150 Alu-sol for most metals especially aluminium £1.93.
Size SS160 for stainless steel and silver jewellery £2.53.

Soldering Flux Paste - Ersin A fast, non corrosive rosin flux for general and electrical
soldering applications. Use with Ersin Multicore solder. Size RF10 £0.69.
Arax soldering flux paste also
available for general metal
working Size AF14 £0.69

Bibl makes for a better sound

Electronic Cassette Head Demagnetizer
Demagnetizes the tape heads to improve performance and reduce background noise. Audible tone indicates demagnetizing action.
Works on all cassette machines including in-car
No external power needed. Ref $23 £ 10.49$.

Bib Groove-Kleen
For single play turntables. Velvet pad and tracking brush track across the record as it plays picking up harmful dust to improve sound performance. Ref. 101B £4.69 British Patent Number 1519881

Cassette Tape Hand Winde
Winds a C90 cassette in 60 seconds. fáster than most cassette machines. Especially ideal for battery powered recorders to save consumption when used on fast wind Ref 78 £1.66. British Patent Number 1443628

Bib Groove-Guard-XL-2 Unique formula liquid, when applied to record, gives antistatic protection and helps reduce friction between stylus tip and groove
Complete with pump spray dispenser and special cleaning pad. Treats up to 12 LPs. Ref 27 £2.60.

Bib
Bib Hi-Fi Accessories Ltd.
Kelsey House, Wood Lane End
Hemel Hempstead,
Herifordshire HP2 4RQ.
Telephone: (0442) 61291

Record Valet and Liquid
Handy kit contains special anti-static fluid and velve record cleaning pad. Ideal to remove dust and other particles from records and provides an anti-static effect to help keep your records clean Ref 47 £3.45.

Tape Head Cleaning Kit
Contains everything needed to clean and maintain the heads, capstan and pinch wheel on all types of cassette and tape machines. Kit includes cleaning and polishing pad, special liquid and handy inspection mirror. Ref 25 £2.48. British Patent Number 1485069

All prices given are recommended retail including VAT. If you have difficulty in purchasing your Multicore solder product or Bib Hi -Fiaccessory, send direct to the address above quoting the reference number and including your remittance plus $40 \mathrm{p} P \mathrm{P}$. Send SAE for free colour catalogue showing complete range

Crompton Instruments Type 33 Analogue Multimeter \cdots

* 31 ranges - DC, $A C, O H M S$, dB etc.
* Test leads, batteries \& wallet supplied
\star High accuracy - $20 \mathrm{~K} \Omega / \mathrm{Vdc}$
* Mirror scale + knife-edge pointer
$\star 2$ fuses + diode protection
* Colour coded switches/scales
\star Tough stylish case
* 12 months guarantee
$\star 5$ U.K. Service Centres
31 Switched Measuring Ranges:
DC Volts: $\quad 100 \mathrm{mV}, 0.5,2,10,50,200,500$ 1000 V
DC Current: $50,500 \mu \mathrm{~A}, 5,50,500 \mathrm{~mA}, 5 \mathrm{~A}$ AC Volts: $2.5,10,50,250,1000 \mathrm{~V}$ (50-10,000Hz)
AC Current: $250 \mu \mathrm{~A}, 2.5,25,250 \mathrm{~mA}, 2.5 \mathrm{~A}$ $1 \Omega-5 \mathrm{~K} \Omega, 50,500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega$ $(+50 \mathrm{M} \Omega)$
Capacitance: $100 \mathrm{pF}-50 \mathrm{nF}, 10,000 \mathrm{pF}-50 \mu \mathrm{~F}$ dB Ratios: -12 to +40 dB

HAWKER SIDDELEY

CROMPTON INSTRUMENTS
8 SAFFRON WAY. LEICESTER LE2 GUP Hawker Siddeley Group supplies electrical and mechanical equipment with world-wide sales and service

Please send me
Crompton Type 33 Multimeter(s) at £22.95 each.
I enclose cheque/money order/postal order for $£$
made payable to Crompton Parkinson Ltd.
NAME (Please print)
ADDRESS

CROFTOCI STAR OFFER

Floppy Disk Drive
No case, no power supply
51/4"S.S.S.D. SA400 £156.40
51/4"D.S.S.D SA 450 £280.31
$8^{\prime \prime}$ S.S.S.D SA800 1337.52

Sony Colour Camera
2010P $12 v$ operation.
IV composite output $£ 298.50$
The above prices include VAT
Carriage will be charged at cost

All major credit cards accepted

Ask for Crofton Mail Order Catalogue.

CROFTON ELECTRONICS LIMITED

Rapid Electronics

Pach No
A $10 \quad 10$ PP 3 battery leads A72 103.5 mm jack plugs A73 103.5 mm jack sockets A74A 5 Standard jach plugs A75A 5 Sid. jack sochets A84A 55 pin 180 DIN plugs A85A 55 pin 180 DIN sochers C21 5 Min slide swithes C28 5 Push to make suitches C29 5 Push to break switches C50 208 pin DIL socke1s C52 2016 pin DIL sockets Et0 Resistor kit. 650 resistors 10 ca value 4.7 to 1 M Single potentiometers 5 K - $\mathrm{M} \log$ or lin 50 p
80 p $80 p$ 80p 80p 80 p
90 p
70 p 70p 55p F Slde potentiometers. 60 mm travel. $5 \mathrm{~K}-500 \mathrm{~K} \log$ or $\operatorname{lin} 65 \mathrm{p}$ E26 $\quad 10100 \mathrm{~K}$ min. presets $\quad 70 \mathrm{p}$ E31 101 u 63 V electrolytics E33 1044763 V radial elec. E3. 4010 u 25 V radial clec. E37 10100 u 25 V radial elec. $\begin{array}{ll}\text { E44 } & 101 \mathrm{u} 35 \mathrm{~V} \text { head tants. } \\ \text { E50 } & 10001 \mathrm{C} 280 \text { polycsier }\end{array}$ E50 100.01 C 280 polyester $\begin{array}{ll}\text { E. } 10 & 10 \mathrm{BC} 107 \text { transistors }\end{array}$ Fl1 10 BC108 transistors F12 10 BC 109 transistors F17 10 BC 214 L transistors F27A 52 N3819 transistors $\begin{array}{ll}\text { F311 } & 1 \text { BD } 131 \text { transistor } \\ \text { F312 } & 1 \text { BD132 transistor }\end{array}$

Pack No.
F331 I BD 139 transistor F421 | MJ2955 transistor F 435 78LO5 regulators F46A 17805 regulator
F47A 17812 regulator F49A 17905 regulator F53 I LM317T variable reg. $\mathrm{F} 54 \quad 1 \mathrm{LM} 323 \mathrm{~K} 3 \mathrm{~A} 5 \mathrm{~V}$ reg. H1I 20 IN 4002 diodes $1130 \quad 2 \mathrm{H} 005$ bridge rectifiers $\quad 75 \mathrm{p}$ $\begin{array}{ll}\text { H60 } & 100 \\ \text { IN4148 diodes }\end{array}$ $\mathrm{H} 73-2 \mathrm{C} 106 \mathrm{D}$ thyristors $\quad 90 \mathrm{p}$ J5 1002 in red LEDs 100 p J25 100.2ingreen LEDs $\mathrm{J} 45 \quad 100.2 \mathrm{in}$ yellow LEDs 100.2 in yellow LEDs $\quad 150 \mathrm{p}$ 200.2 in LED clips $\quad \mathbf{6 0 p}$ 100.125 in red LEDs $\quad 100 \mathrm{p}$ 100.125 green LEDs $\quad 150 \mathrm{p}$ 100.125 yellow LEDs 150 p 200.125 LED clips 60p 1 FND500 CC display $\mathbf{1 0 0} \mathbf{p}$ 5741 op amps. K 205 CA 3140 op amps. $K 30 \quad 5$ LM301A op amps. K 40 I LM 324 op amp. $\begin{array}{lr}\text { LM380 2W } & 140 \mathrm{p} \\ & 50 \mathrm{p}\end{array}$ LM3914 70p K75 1 LM3914 LED bar graph320p K85 5 NE555 timers 110 p K90 1 NE556 timer 5 TL08। op amps. 5 TL08 1 op amps.
54011 CMOS 54011 CMOS 14013 CMOS 14017 CMOS 140.49 CMOS

All prices include VAT. Please add 50 p postage and packing. Send SAE for our complete catalogue

Rapid Electronics Limited
Hillerof House, Station Road, Eynsford, Kent

Semiconductor UPDATITEm FEATURING icm 7242 L290, 1 \& 2 4118, 4801 \& 4802 R. W. Coles

DIGITAL 555

Probably the most universally useful and successful integrated circuit ever made is the ubiquitous 555 timer. You find them in the most unlikely places, often doing unlikely jobs which the manufacturers never dreamed of when they introduced the design back in the early 'seventies. First came useful dual and quad versions in 14 and 16 pin packages, and more recently came the CMOS versions, all helping to expand the area of application, but never really eclipsing the original design with its cheap, simple and robust reputation. All of the "improved" 555 devices have been covered in this column over the years, and this month I am able to report on yet another device intended to replace 555 s in certain timing applications.

One area where all previous 555 circuits have run out of steam has been in the construction of simple timers capable of long delay periods of seconds or even minutes duration. The trouble is that the 555 relies on a single CR period to set time duration, and this means going to large electrolytic capacitors when long time-outs are needed. The use of electrolytic capacitors brings the usual bogies of poor tolerance, high leakage, and temperature sensitivity, and for critical applications the solution has been to run the 555 as a higher frequency astable and follow it with a multi stage binary counter such as the CMOS 4040.

To make the job of constructing long duration timers and low frequency oscillators easier, Intersil have introduced the ICM 7242 which puts the oscillator and the counter all in one 555 -like 8 pin package. A single external resistor and capacitor set the basic oscillator frequency, and the oscillator output is fed to the internal 8 stage binary divider chain whose final stage therefore gives an output frequency $1 / 256$ th that of the oscillator. Also in the package is a control flip-flop which is set by a TRIGGER input, and starts the count sequence, and reset by a RESET input which stops the count and zeroes the counter chain. With the

RESET line disconnected the 7242 can be used as an LF oscillator, with the RESET line connected to the final count stage output the 7242 works like a monostable or timer.

For additional flexibility the basic RC oscillator output is brought out, as is the first stage of the count chain which gives a symmetrical square wave at half the oscillator frequency. This is a very useful device for those occasional long time/low frequency applications, but it won't replace the 555, take my word for it!

ROBOT MUSCLE

Robots, like people, need muscles to enable them to move their "arms". Animal muscles can be precisely controlled, are efficient, and are very complex. The poor old robot, on the other hand, has to rely on electric motors, gears, and drive belts, not to mention feedback pots, servo amplifiers, and power supplies.

Really useful muscle analogues seem as far away as ever, but perhaps a new chip set from SGS-ATES can at least help to streamline existing d.c. servomotor "muscle" technology to make it more efficient and compact. With the addition of a d.c. motor and an optical position encoder, and under the control of a microprocessor, the L290, L291 and L292 trio make up a compact and powerful servo system for position control in robots or any other industrial machine. The L290 comes in a 16 pin plastic d.i.p. and contains the circuitry to interface the optical position encoder to the microprocessor by means of derived position and velocity signals. This chip also provides a compensated reference for the L291, which accepts parallel binary data from the microprocessor and converts this into an analogue servo demand signal using a D to A converter. This chip also contains a position amplifier, mode/direction switches, and is housed in another 16 pin d.i.p. The L292 is the motor driver, able to handle up to 2 amps at 36 volts using an overload protected bridge circuit. The L292 operates in the "switched" mode, and in keeping with the application, it is housed in a 15

ead Multiwatt power package

When interconnected, the servo components operate in two modes. In order to slew rapidly to a new demanded position the servo loop can initially employ velocity control only, but as the target position is approached, a change to precise position control is made.

PUTTING THE BYTE ON

If you are shovelling together a new microprocessor system and can't make up your mind what to do about memory, it's probably time you had a look at the "Bytewyde" concept championed by Mostek.

Bytewyde is not a reference to a single memory device, but is the name given to a whole family of devices, including some you will already be very familiar with, like the 2716 EPROM. What makes the concept special is the plug-in interchangeability of ROM and RAM memory devices in the same socket by utilising the pin configuration made standard by 24 pin UV erasable EPROMs and compatible masked ROMs. To launch the concept, Mostek introduced the 4118 , a $1 \mathrm{~K} \times 8$ static RAM in a 24 pin package which would have been a useful hunk of memory even without EPROM compatibility! Things didn't stop there however, and now there are bigger chips and several new manufacturers joining in. Mostek have introduced another $1 \mathrm{~K} \times 8$, the 4801 which is faster than the 4118 , and are now offering the 4802 which is faster and has a $2 \mathrm{~K} \times 8$ capacity to boot. The Mostek chips are all NMOS, but in the land of the rising sun they are turning out CMOS memories in the Bytewyde mould, such as the MSM 2128-1 from OKI Semiconductor, another $2 \mathrm{~K} \times 8$ device.

If you adopt Bytewyde, you can lay your boards out with standard 24 pin sockets and then by changing links to just two of the pins, you can plug in your choice of $1 \mathrm{~K} \times 8,2 \mathrm{~K} \times 8$ or $4 \mathrm{~K} \times$ 8 EPROMs, or $1 \mathrm{~K} \times 8$ or $2 \mathrm{~K} \times 8$ RAMs. If you use 28 pin sockets instead, you will be ready for all of the above plus the new generation of $8 \mathrm{~K} \times$ 8 EPROMs and those giant RAM chips which are just around the corner!

Appearing every two months, Micro-Bus presents ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data. The most original ideas often come from readers working on their own systems; payment will be made for any contribution featured.

THIS month's Micro-Bus presents an automatic program loader for the ZX 80 , and a three-dimensional plotting program for the Acorn ATOM. But first here are three ingenious programs for the ZX80 devised by Lars Silen of Finland. They provide ways of concatenating strings. transferring the last character from one string to another, and reading from the ZX 80 's keyboard.

CONCATENATING STRINGS

The ZX80 has no built-in function for concatenating two strings: so you cannot, for example, add the two strings $A 8=$ "STUV" and $B \$=" W X Y Z "$ by writing $A \$=A 8+B \$$ as you can on some BASICs. The routine shown in Fig. I overcomes this limitation by providing a way of concatenating any two different string variables, and it is called as follows:
LET A $8=A 8$
LET B\$=B\$
GO SUB 1000
With the examples given above $\mathrm{A} \$$ would end up with the value "STUVWXYZ" and B\$ would have the value "" (the null string). The references to $\mathrm{A} \$$ and $\mathrm{B} \$$ in the two seemingly redundant LET statements may be changed to any two different string variables that are to be concatenated. Note that no variables should be used between these two LET statements and the subroutine call, as this may cause the interpreter to hang up.

1000 REM STRING ADDER
1010 LET AD=PEEK $(16394)+256 * \operatorname{PEEK}$
(16395)-3

1020 LET AD=AD-1
1030 IF NOT PEEK (AD) $=1$ THEN GO T - 1020

1035 LET TP=PEEK (AD+1)
1040 POKE AD, 0
1050 POKE AD, PEEK (AD+2)
1060 LET AD=AD+1
1070 IF NOT PEEK (AD+2) $=1$ THEN GO TO 1050
1080 POKE AD+1,TP
1090 POKE AD,l
1100 RETURN
Fig. 1. Program to concatenate two strings on the $\mathbf{2 X 8 0}$

PROGRAM OPERATION

The program depends, for its operation, on the way strings are assigned in the ZX 80 ; when a string variable is assigned to, the old version is deleted and a new version is created at the end of the list of variables. The two LET statements above have the effect of moving the
strings AS and BS to the end of the list of variables, so that they are positioned in memory as shown in Fig. 2 (a).
(a)

E6523]
Fig. 2. Diagram showing two strings (a) before and (b) after running the String Adder program of Fig. 1

Locations 16394 and 16395 contain the address of the top of the list of variables: the program reads backwards from this address, through string B\$. until the terminating byte ' 1 ' is found at the end of $A \$$ (lines 1020 to 1030). Then the characters of $\mathrm{B} \$$ are shuffled down onto the end of A\$ (lines 1050 to 1070), and finally $\mathrm{B} \$$ is recreated as a null string (lines 1080 to 1090). The result is shown in Fig. 2 (b).

TR\$ FOR THE ZX80

The following routine is very much like the ZX80's TL\$ function, but instead of cutting off the leftmost character from a string, it cuts off the rightmost character; it could therefore be called TR\$. The routine is shown in Fig. 3, and uses much the same technique as the program to concatenate strings. Again, the routine is called by executing:

LET A8=A8

LET B\$=B\$
GO SUB 1000
The effect is to cut off the last character from AS and add it as the first character of B\$. Thus if initially $A S=$ 'STUV" and $B S=" W X Y Z "$ the result would be $\mathrm{A} \$=" S T U "$ and $\mathrm{B} \$=$ "VWXYZ". B\$ may initially be a null string.

```
1000 REM TR$
1010 LET AD=PEEK(16394)+256*PEEK
(16395)-3
1030 LET AD=AD-1
1040 IF NOT PEEK(AD)=1 THEN GO T
O 1030
1050 POKE AD,PEEK(AD+1)
1060 POKE AD+1, PEEK (AD-1)
1070 POKE AD-1,1
1080 RETURN
```

Fig. 3. Program for the $\mathbf{Z \times 8 0}$ moves the last character from one string to another

ZX80 KEYBOARD ROUTINE

One shortcoming of the ZX80 is that the keyboard and display are effectively dead during execution of a program. However, with the help of the following simple machine-code routine it is relatively easy to read keys at any desired time:
IN A. 0 : read port 0 into accumulator
LD L.A : save result in LSB of HL
LD H. 0 : zero MSB of HL
RET : return to BASIC. result in HL
Since there is always a risk that a machinecode routine located in the ZX 80 's RAM will be overwritten by the display file, the routine is written into a string which must not therefore be used elsewhere in the program. The program of Fig. 4 sets up the machine-code routine, and is called using the USR function:

LET $\mathrm{K}=\mathrm{USR}(\mathrm{O})$

where K is given the value of the key pressed. Note that this function, and lines 20 to 90 in the program, refer to the variable "O", not the digit zero.

10 REM READER
20 LET O\$="XXXXXX"
30 LET $0=\operatorname{PEEK}(16392)+256 * \operatorname{PEEK}($
$163931+1$
40 POKE O, 219
50 POKE O+1,0
60 POKE $0+2,111$
70 POKE $O+3,38$
80 POKE $0+4,0$
90 POKE O+5, 201
Fig. 4. Program sets up a machine-code routine to read the $\mathbf{2 X 8 0}$'s keyboard

AUTOMATIC PROGRAM LOADER

It is often convenient to record a large number of seldom-used programs onto one cassette, but then it can be a lengthy business retrieving the particular one you want. The following system automatically searches a tape for the correct program, hy skipping the correct number of earlier programs on the tape. It was developed by Trevor Toms of Phipps Associates, for use with the cassettes of programs that accompany their excellent "ZX80 Pocket Book", and they have kindly given permission for it to be included in Micro-Bus.

The automatic loading is performed by a header program, stored at the beginning of
each tape. This is loaded first, and it prints out a list of all the other programs on that tape. All you need to do is type the number of the program you want, and the header program will locate it and load it.

MACHINE-CODE ROUTINE

The first stage in writing the header program is to create a machine-code routine that will skip past a program on the tape. This is best done using a BASIC program, as in Fig. 5. First, line 2 reserves 100 bytes for the machine-code by dimensioning an array C, and the address of this array is calculated and stored in the variable C (line 10). To avoid having to write the entire cassette routine from scratch, the ZX80's LOAD subroutine is copied out of the relevant part of the monitor ROM in lines 30 to 70, and then "patched" to do the required task by modifying certain bytes. The patches are as follows:

Lines 110 to 230 converts the routine into a subroutine, rather than part of the main command-entry loop, and make it read program bytes from tape until a byte containing 128 (or 80 in hex) is detected. This byte denotes the end of the program and program variables. Lines 240 to 260 make the routine ignore the system variables, which are stored as 40 bytes before the program text and program variables. Finally, the routine is patched so that if the BREAK key is pressed the USR function will return a value of -1 (lines 330 to 390). Any other value returned indicates that a program has been successfully skipped over.

Fig. 5. Program to set up a machinecode routine to skip a program on tape

Having typed in the program of Fig. 5, and saved it on tape in case it crashes, run it to create the machine code in array C. Now delete every line in the program, being extremely careful to avoid pressing RUN or CLEAR which would destroy the contents of array C. Now type in the header program of Fig. 6: this contains, in lines 100 to 200, a list of the programs to be saved on the tape, and these lines should obviously be altered to suit the programs to be stored. Line 20 calculates the address of the skip subroutine created earlier, which still exists in memory although there is no longer any reference to it. The subroutine is called by the function $\operatorname{USR}(\mathrm{C}+14)$.

```
        1 REM *** "GOTO 1" ***
        2 REM *** DO NOT "RUN" ***
    10 LET MAXPROGS=3
    20 LET C=PEEK(16392)+PEEK(1639
3)* 256+2
    30 PRINT "PROGRAM SELECTION:"
    4 0 ~ P R I N T
    100 PRINT "1. MASTERMIND",,"lK"
    100 PRINT "2. HANGMAN",,"1K"
120 PRINT "3. HUNT THE WUMPUS",
" 3K"
    200 PRINT
    210 PRINT "REWIND TAPE, ENTER S
ELECTION"
    220 PRINT "PRESS PLAY/NEWLINE T
OGETHER"
    300 INPUT N
    310 IF N<1 OR N>MAXPROGS THEN G
OTO 1
    320 IF N=0 THEN LOAD
    330 IF USR(C+14)=-1 THEN GO TO
400
    340 LET N=N-1
    350 FOR Y=1 TO 400
    360 NEXT Y
    370 REM SMALL SETTLE LOOP 4 SEC
S
    380 GO TO 320
    400 PRINT "BREAK..."
9999 STOP
```

Fig. 6. Header program for the $\mathbf{Z X 8 0}$ loads a specified file from a tape

Having entered the header program, save it at the start of the tape, and you are then ready to fill up the tape with programs you wished to archive. Note that about 10 seconds of blank should be allowed after recording the header program, so that it can be updated and rerecorded if more programs are added to the end of the tape at a later stage.

USING THE PROGRAM

In use, the header program is first loaded from the start of the cassette, and executed using "GOTO 1" since RUN would destroy array C containing the machine-code routine. Having selected a program from the menu, and entered its number, the tape is rewound and played again, while typing NEWLINE. The automatic loader will then skip the header program. and all the intermediate programs. finally loading the program that was chosen.

3-D PLOTTING

The simple program in Fig. 7 plots a threedimensional curve using high-resolution graphics. It is designed for an Acorn Atom
with a floating-point extension. The program avoids plotting lines that would be hidden by the perspective from which the curve is being viewed; see Fig. 8.

The program uses a mixture of integer and floating-point variables; the floating-point variables are prefixed by a "\%" sign, and are

```
        5 REM 3-D PLOT
10 CLEAR4
20 A=128;B=A*A;C=96;D=96
30 FOR X=0 TO A
40 S=X*X
50 % P P=SQR(B-S)
60% I = -% P
6 5 \text { DO}
70 % R=SQR(S+%I * % I)/A
80 %Q=(%R-1)*SIN(24*%R)
90 &Y =% I/ 3+8Q*D
95 FIF %I=-%P %M=%Y;GOTOb
100 FIF %Y>&M %M=%Y;GOTOA
105 FIF &Y>=8N GOTOC
110b%N=%Y
115a%Y=C+%Y
120 PLOT13,(A-X),&Y
130 PLOT13,(A+X),%Y
135c%I =8 I +4
140 FUNTIL &I }>=%
145 NEXT X
150 END
```

Fig. 7. Three-dimensional plotting program for Atom BASIC with floating-point

Fig. 8. High-resolution graphics curve produced by 3-D Plot program
totally separate from the normal integer variables. A second version of the IF statement. FIF. is provided for floating-point comparisons: similarly the integer DO . . . UNTIL loop, which gives repeated execution of a section of statements until the condition in the UNTIL statement is satisfied, has as its counterpart the floating-point DO . . FUNTIL toop. The lower-case letters are labels. used by the GOTO statements instead of line numbers.

The graphics command 'CLEAR 4' sets up the display for 256×192 points, and the statement ${ }^{\circ}$ PLOT 13.X.Y' plots a point at coordinates $\mathrm{X} . \mathrm{Y}$. Hidden-line removal is performed by keeping a record of the highest point plotted. in \%M, and the lowest point plotted. in $\% \mathrm{~N}$: only points greater than $\% \mathrm{M}$ and less than $\% \mathrm{~N}$ are plotted. Line 90 determines the perspective at which the curve is viewed. The function for evaluation is given in line 80 , as the height $\% \mathrm{Q}$ in terms of the radius $\% \mathrm{R}$, and this line can be changed to give plots of other functions.

THIS Ultrasonic Intruder Alarm is an updated version of the design published in PE December 1979. Modifications to the original circuit include the use of a sensitivity control which will also preset the detection range and a steady alarm output. The complete unit has been redesigned to fit onto a single p.c.b.

CIRCUIT DESCRIPTION
The complete circuit diagram of the Intruder Alarm is shown in Fig. 1. The 555 timer (IC2) is connected as a 40 kHz square wave generator which can be fine tuned by VR1. The square wave output is filtered by R22 and C16 before being used to drive the ultrasonic transmitter $\times 1$. The 40 kHz signal sets up a sound pattern in the protected room and if an object moves within the field a frequency shift occurs (due to the Doppler effect) to the waves which are reflected from the moving object. The transducer X 2 will receive two different frequencies $(40 \mathrm{kHz}$ and the shifted frequency which can be higher or lower than 40 kHz); these will combine to produce a beat note. The frequency of this audio or subaudio beat note will be the difference between the two ultrasonic frequencies. This beat frequency is then amplified filtered and used to operate the alarm. The received sound from $\times 1$ feeds the 40 kHz amplifier IC3 the gain being determined by VR2, R6 and C6. VR2 adjusts the voltage gain from 1 to $\times 100$.

The output of this stage is fed to the envelope detector to remove the 40 kHz signal and detect the Doppler frequencies from the received signal. IC4 forms a Doppler frequency amplifier the gain being set by R10, R9, and C8 this increases the signal sufficiently to drive the diode pump detector C9, D7, D8, C10 and R11 to convert the Doppler frequency into a d.c. level.

This d.c. level feeds the unit 'on' and 'movement' indicator formed by IC5, D9 and R12. The diode D9 glows when the unit is on and increases in brightness as a movement is detected, the brightness being dependent upon the voltage at the output of IC5 which causes current to flow though D9 and R12. The diode D9 also acts as a 1.2 V level shifter for better matching to the next stage.

The d.c. level from IC5 is filtered by R13 and C11 (to form
a 1 second invalid movement delay to prevent false triggering) before feeding IC6a and b whiclf form a bistable reset at switch on by C12, D11 and R19 (D10 forms a discharge path at switch off for C12). When the bistable is triggered by pin 13 going high the output of pin 10 goes high charging C13 via R14. When the voltage across C13 reaches the upper threshold of the Schmitt trigger formed by IC6c and d, R15 and R16 the output of pin 4 goes high driving TR1 via resistor chain R17 and R18, the collector of TR 1 drives RLA and D12. Resistor R21 and C15 provide sufficient current to energise the relay with a low holding current to minimise the power taken by the relay. When pin 4 is high C12 is discharged by R19 and R20 causing the voltage at pin 9 to rise, which resets the bistable causing pin 10 to go low discharg-

FEATURES
(1) Screw connections for 240 V a.c. supply and remote alarm sounder.
(2) 18 V battery back up option in case of mains failure. Ni-cads can provide up to 5 hours of protection.
(3) Internally preset detection range (normally preset to 15 feet with built and tested alarms)
(4) Half second system test at switch on-acts as an alarm on reminder for the user
(5) Twenty seconds delay at switch on-to allow the building to be left without sounding the alarm.
(6) Twenty second delay on entry-to allow the alarm to be cancelled without sounding.
(7) One second invalid movement delay-to prevent false alarms by plants etc.
(8) Two minute self cancelling alarm-to provide repeated protection whilst away for long periods.

The alarm is most sensitive to moving objects in front of the unit and towards the unit. A red lamp glows on the front of the unit when power is connected and increases in brightness as movement is detected.

Fig. 1. Complete circuit diagram of the Intruder Alarm

COMPONENTS . . .

Resistors

R1, R18	2k2 (2 off)
R2	12k
R3	47k
R4, R5	220k (2 off)
R6, R12	1 k (2 off)
R7	4 k 7
R8	100k
R9, R22	100 (2 off)
R10	470k
R11, R16, R20	4 M 7 (3 off)
R13, R17	22k (2 off)
R14, R15, R19	1 M (3 off)
R21	680

Potentiometers

VR1	$4 k 7 \mathrm{~min}$. hor.
VR2	100 kmin hor

Capacitors
C1
C2, C15
C3
$470 \mu 25 \mathrm{~V}$ elect.
$220 \mu 16 \mathrm{~V}$ elect. (2 off)
1 n polyester

C4, C16
C5, C8, C11, C12, C13,
C17
C6, C7, C9, C10, C14 $\quad 100 \mathrm{n}$ polyester (5 off)
Semiconductors

D1-D4	1N4001 (4 off)
D5	1N4002
D6, D7, D8, D10, D11.	1N4148 (6 off)
D12	
D9	Red I.e.d.
TR1	BC547
IC1	$78 L 12$
IC2	NE555
IC3	CA3140E
IC4, IC5	741 12 off)
IC6	4001

Miscellaneous
$T 1$
$\times 1$
$\times 1$
$\times 2$
20 mm grommets (2 off) 9 mm grommets (2 off)
ABS box $115 \times 95 \times 45 \mathrm{~mm}$
Relay Omron LC1N-E
Piezo sounder ITT 250 RHA, p.c.b
3 -way terminal block p.c.b. type (2 off)

Fig. 2. P.c.b. design

Fig. 4. Gircuit for ni-cad conversion

Internal view of the alarm

Fig. 3. Component layout

CONSTRUCTION

The p.c.b. design for the alarm unit is shown in Fig. 2 with the component layout shown in Fig. 3. After all the components have been soldered onto the p.c.b. and checked then the case can be drilled. On the prototype the two transducers were fitted into 20 mm grommets. The front panel should also be drilled for the movement detector l.e.d. Grommets should also be fitted to the two holes at the rear of the case used for the mains lead and relay connections.

With the transducers fitted into the case and the p.c.b. mounted, then C16 and the other end of R22 should be soldered onto the ultrasonic transducer X 1 .

SETTING UP

Point the alarm into the room. Turn VR2 fully clockwise and measure the voltage at IC4 pin 3 which should be at around 5.5 V d.c. Adjust VR1 until the maximum voltage is obtained, reduce this setting of VR2 for the required sensing range. It is always best to use the minimum range required to reduce the possibility of a false alarm.

INSTALLATION

The alarm is prone to both vibration and air currents therefore the points below should be observed to avoid false triggering of the alarm.
(1) Do not place the alarm on a vibrating surface.
(2) Close all doors and windows.
(3) Do not point the alarm at a radiator or convector heater.
(4) Cats, dogs and large insects should be considered.
(5) If more than one alarm is to be used ensure that the ultrasonic sound emitted by one alarm does not interact with the second alarm.
(6) Try to install away from telephones as some bells can produce high frequency sound similar to that of the alarm

SG402 A.M. Signal Generator - 100 KHz to 30 MHz in 6 bands -100 mV of O/P with variable attenuator - Int and Ex. A. M - Solid State - Lightweight and portable - Large clear easy to read frequency dial.

FG270, Function Generator -0.1 Hz to 1 MHz in 6 ranges sine, square and triangle -20 V p-p open circuit output $-<1 \%$ distortion - D.C. offset - TLL OP - Ext VCO for sweep tests FG271 as above plus 0.02 Hz to 2 MHz in 7 ranges - int. sweep -

Pulse, Tone Burst and A M

AG202A 200 KHz R.C. Oscillator - 20 Hz to 200 KHz in 4 ranges Sine and Squarewave - Flat OIP to 10 V r.m.s. from 600 ohms $<0.5 \%$ distortion - $>60 \mathrm{~dB}$ of variable OIP atten - Ext Sync. Large easy to read single dial with smooth precise tuning control Instant stable signals - Solid State

CO1303D, DC to 5 MHz Oscilloscope - 10 mV Vidiv sensitivity with variable atten - Int. variable sweep frequency in 4 ranges from 10 Hz to 100 KHz - Int. and Ext. sync. - Direct deflection terminals can monitor R. F. up to 450 MHz CO1303G as above, plus $1: 8$ to 54 MHz monitor freq. range from 1 to 500 W direct coupling - Two Tone gen

1 KHz and 1575 KHz - ideal for SSB. A M. CW etc.

CS1562A Dual Trace 10MHz Oscilloscope - 10 mV to $20 \mathrm{~V} / \mathrm{div}$ sensitivity in $1-2-5$ sequence with fine control - $1 \mu \mathrm{~s}$ to $05 \mathrm{~s} / \mathrm{div}$ sweep tume plus X5 Mag. - Auto, Manual and TV triggering Z mod and $X-Y$ operation. A single trace version CS1559A is avallable at even lower cost
Plus many other Trio Products such as high sensitivity electronic voltmeters, Wow and Flutter meters, DIP meters and of course the main range of Trio scopes up to $100 \mathrm{MHz}-$ JUST ASK FOR THE CATAL OGUE
House of Instruments Ltd., Clifton Chambers, 62, High Street, Saffron Walden, Essex CB10 1EE.
Telephone: (0799) 24922 Telex: 81653

performancehitcompetitive hisreliabilityhi:

DAL 9622

Interfacing COMPUKIT

 Part 4 D.E.Graham

 Part 4 D.E.Graham}

THIS MONTH we introduce a second companion board to the Decoding Module, and examine the implementation of analogue output from the Compukit.

ANALOGUE, TIMING AND AUDIO BOARD

This is a double sided p.c.b. of the same dimensions as the Decoding Module, which connects directly to it via a single edge connector to provide the Compukit with a range of facilities. The board is powered by the Decoding Module's dual 5 volt power supply, and, as may be seen from Fig. 4.1, contains four separate sections: A D/A converter and operational amplifier taken out to SK7; an 8 channel A/D converter accessed through SK6; an AY-3-8910 Programmable Sound Generator and audio amplifier whose output is taken to a number of pads at the edge of the board, and whose two 8 bit ports are accessed through SK2 and 3; and a 6522 Versatile Interface Adaptor providing a number of counting and timing facilities, as well as a further 16 bits of parallel port. Connections to the 6522 are made via SK 4 and 5. Sockets SK2, 3, 4, 5, 6 and 7 are all of the 16 -pin d.i.I. variety.

4.1. Block diagram of Analogue Board

CONSTRUCTION

This should prove to be fairly straightforward. It is probably easiest to solder in i.c. sockets first, followed by discrete components, and finally the through-pins (as indicated on the component overlay in Fig. 4.4). Before inserting the i.c.s, test that the correct supply voltage appears at the appropriate pins of all i.c. sockets. The Analogue Board connects to the Decoding Module via a 2×25-pin 0.1 inch edge connector SK1. This is wired to SK6 on the Decoding Module as shown in Table 4.1. This wiring should be kept to a few inches in length. Precautions against static damage must be exercised when dealing with i.c.s 1, 2, 6, 8 and 10 since these devices may be easily damaged by static charges.

We will cover the testing of the four parts of the board in the particular sections dealing with each functional unit. Details of the PSG 6522 and A / D converter will be given in forthcoming issues. Now we deal with D/A conversion.

D/A TECHNIQUES

In its simplest form a D/A converter may consist of a chain of resistors joined to a parallel output port. Fig. 4.5 shows a 4 bit D/A converter that could be connected directly to the

POWER SUPPLY 2 RESET, R/W, DATA BUS, ADDRESS BUS \& ADDRESS DECODING FROM DECODING MODULE (SK6)

EP509

outputs of a 7475 quad latch. The output voltage would range from a fraction of a volt for zero data to about 4 volts for the decimal value 15 . The resistors would need to be one per cent tolerance types to avoid abrupt changes in voltage occurring when different sections of the chain are brought into play, as in the major transition which occurs from 7 to 8 for example.

The configuration could be doubled up to produce an 8 bit converter, but resistor tolerances would become more
critical. Also, if a PIA port was to be used with such a converter, higher value resistors would be required because of the relatively low drive capability of its output. This would further necessitate the use of a d.c. amplifier to produce a usable analogue output.

ZN425 MONOLITHIC CONVERTER

It is of course possible to get around these problems, and particularly the problem of conversion accuracy, by using a

4.2. P.c.b. for Analogue Board (actual size)

Table 4.1 Connections Between SK1 of Analogue board and SK6 of Decoding Module.

SK1 pin number	Upper		Lower	
	SK6 pin number (upper)	Function	SK6 pin number (lower)	Function
1	1	Vgg(-5V)	1	RESET
2	2	$\emptyset 2$	2	W7
3	3	1 RQ	3	W8
4	4	BC1	4	R7
5	5	BDIR	-	NC
6	-	NC	-	NC
7	-	NC	7	R/W
8	-	NC	8	GND
9	-	NC	9	GND
10	-	NC	10	D7
11	11	W7	11	D6
12	-	NC	12	D5
13	13	A3	13	D4
14	14	A2	14	D0
15	15	A1	15	D1
16	16	AO	16	D2
17	17	GND	17	D3
18	18	GND	18	Vcc
19	19	GND	19	Vcc
20	-	NC	20	GND
21	-	NC	21	GND
22	-	NC	22	GND
23	-	NC	-	NC
24	-	NC	-	NC
25	25	NMI	25	BL2

monolithic D/A converter i.c. From the variety of such devices on the market we have chosen to use the Ferranti ZN425 for a number of reasons. In particular it is readily available at a reasonable price, and operates from a 5 volt supply.

Fig. 4.6 gives a block diagram of the sections of the 425 used in D/A conversion. Essentially it consists of 8 data switches which are activated by an external port or latches. These switch a precision R-2R network to an on-chip 2.5 volt reference source to produce an analogue output on pin 14. This is typically 2.555 volts for all bits on, and 3 mV for all bits off.

PRACTICAL D/A CIRCUIT

Fig. 4.7 gives the full circuit of the D / A section of the Analogue Board. This consists of a pair of 74LS75s wired to form an 8 bit data latch. The latch enables are taken to the W line on the Decoding Module, which corresponds to an address of 61320. The 8 parallel outputs of the latch are connected directly to the ZN425, which performs the conversion of the latched data within $1 \mu \mathrm{sec}$. The analogue output (DA) appears at pin 14 of the 425 , and is fed to the noninverting input of IC11, a 741 operational amplifier. Both DA, and the output of the op. amp. (DAA) are taken out to SK7, which also carries both polarity supply connections and ground.

The op. amp. circuit has two associated variable resistors. VR1 is used for zeroing, and has been given an extended offset capability, and VR2, which controls the gain between about 1 and 2.

To test the converter, connect a voltmeter between pin 14 of SK7 and earth (pins 1,5 or 6 of SK7). Execute the command POKE 61320, 0, and adjust VR1 to give zero volts on the meter. Now execute POKE 61320, 255. This should cause the meter to read somewhere between 2.5 and 4 volts, depending on the setting of VR2. The system is now operational, and POKEing intermediate values to 61320 should yield intermediate voltage readings with a linear correspondence (providing the gain has not been set too high).

If the voltage does not vary with differing data, a voltage check should be made on the DA output of the converter (pin 14 of IC6, or pin 16 of SK7). If this does not alter when data is POKEd to 61320, then checks should be made on the outputs of the two latches IC4 and 5. These should also change when different values are POKEd to 61320.

APPLICATIONS OF THE D/A CONVERTER

The DAA output of the converter unit at pin 14 of SK7 may be used in a wide variety of different applications. It could be used for example to feed a servo amplifier controlling a d.c. motor which could variously drive a graph plotter, a steering mechanism, or a robot's left leg.

More simply it may be used to drive power controllers of one kind or another. For low power d.c. operation, a simple current amplifier of the type shown in Fig. 4.8 may be connected to the DAA output of the converter unit. This will vary the brightness of a 2.5 V lamp according to the data POKEd to 61320. To set this up, first execute POKE 61320, 0, and adjust the zero offset (VR1) so that the bulb is just extinguished. Then execute POKE 61320, 255. This should

CONSTRUCTOR'S NOTE: NEW MONITOR IN EPROM

During the development of this series the screen editor written by Nigel Climpson and published in PE was found to be extremely useful. This editor is now available as the CEI monitor in a 2716 EPROM for $£ 12.50+$ VAT and $\mathrm{p} \& p$, from Technomatic Ltd. It replaces the UK 101 2 K monitor ROM, and also contains useful routines such as a rapid screen clear.
illuminate the lamp brightly, and VR2 may then be adjusted to achieve best control over the full range of data.

A program of the type listed below will be found useful in setting up the converter for the above, and for other applications:

80 REM TEST ROUTINE FOR A/D CONVERTER
$100 \mathrm{~A}=61320$
120 INPUTX
140 POKEA,X
160 GOTO100

It simply requests a number, which should be an integer between zero and 255, and POKEs this to the converter.

TRIAC CONTROLLER
If a.c. or pulsed d.c. control is required, then the converter may be used to drive a Triac or Thyristor. There are many ways in which this may be achieved, but perhaps the most straightforward is to use the DAA output of the converter to vary the brightness of a l.e.d. indicator, which itself illuminates a light dependent resistor placed at a strategic

Fig. 4.3. Analogue Board p.c.b. component side
point in a triac or thyristor controller circuit. This has the great advantage of completely isolating the computer system from the mains. Alternatively, a patent opto-isolator such as the TIL112 may be used. In either case the l.e.d. may be directly driven by the DAA output of the converter as in Fig. 4.9

Fig. 4.10 gives an experimental circuit for a power controller using the l.d.r. method. The phase shift for the triac is produced by the R1/C1 network, with the l.d.r. altering the
charge time of C1. R2, R3, and C2 help to reduce hysteresis and flicker, common diseases of this type of controller, though the latter is not completely eliminated. L1 and L2 are inductors each formed by winding about 100 turns of wire of a half inch former. Perhaps the most vital part of the circuit is the R4/C3 network. This prevents spikes in the supply line from destroying the triac.

The l.e.d. and series resistor are connected between the DAA output of the converter and Vcc. The I.e.d. should be

Fig. 4.4. Component overlay for Analogue Board
taped to the l.d.r., and the pair mounted in a completely light-tight container.

To set up the circuit, VR 1 of the converter should be set to give zero volts between DAA and ground on execution of POKE 61320, 0. VR2 should then be adjusted to give a smooth range of control. Some adjustment of R1, 2 and 3 may be necessary to effect this.

THYRISTOR CONTROLLER

In the author's experience, far more satisfactory power control is achieved using thyristors rather than triacs. One advantage of the thyristor is the ease with which unijunction transistor delay circuits may be used with them; and secondly they cannot suffer from asynchronous firing in the two directions of current flow, as may occur with the triac, and which is indeed one of the factors causing flicker in the controller of Fig. 4.10.

Fig. 4.11 gives the circuit of a thyristor controller which may be used to vary the power to some 12 volt d.c. device for currents up to two or three amperes. Control using the 500 k resistor is smooth and flicker-free. An l.d.r. driven by an l.e.d. from the D/A converter may be introduced in a number of ways into this circuit. About the simplest is to take the I.d.r. from point X to earth via a resistor in the range 20 to 100k. To obtain smooth control it will be necessary to adjust the 500k pot in conjunction with VR1 and VR2 on the Analogue Board. Again, however, it should be stressed that this is an experimental circuit, and some adjustment of values may be necessary to obtain the best performance.

If it is desired to use this circuit for power control at a higher voltage, then it should be possible to increase the supply voltage, and adjust the Zener diode dropper resistor R1 accordingly. If a.c. control is required, then the load

4.12. NE555 signal generator

4.11. Thyristor Power Controller

4.13. Block diagram of storage oscillocope

COMPONENTS

Resistors

R1, R6, R8	$1 \mathrm{k}(3$ off $)$
R2	100 k
R3	10
R4	390
R5	82 k
R7	3 k 9
R9	18 k
R10	10 k

Potentiometers
VR1 10 k preset
VR2 25 k preset
VR3 $100 \mathrm{k} \log +$ switch

Capacitors

C1, C2, C6, C11, C12
C17

C3, C4, C13
C5
C7, C14, C15
C8
C9
C10
C16

100 n disc ceramic (6 off) $10 \mu / 10 \mathrm{~V}$ (3 off)
1 n
$100 \mu / 10 \mathrm{~V}$ (3 off)
$200 \mu / 10 \mathrm{~V}$
47n mylar
220 n mylar
50n mylar

Integrated Circuits

IC1	6522
IC2	AY-3-8910
IC3	LM386
IC4, IC5, IC	74 LS 75 (3 off)
IC6	ZN425
IC8	4051
IC9	74 LS90
IC10	ZN427
IC11	741

Miscellaneous

P.c.b

SK1 2×250.1 in. edge connector
SK2-SK7 16-pin d.i.I. sockets (6 off)
40-pin di.l. sockets (2 off)
16 -pin d.i.l. sockets(5 off)
8 -pin d.i.l. sockets (2 off)
14-pin d.i.l. sockets
14-pin d.i.l. sockets
length of 40 strand ribbon cable

Constructors' Note

A complete kit of parts, excluding loudspeaker, is obtainable from Technomatic Ltd., 17 Burnley Road, London NW10
should be placed in series with the a.c. supply feeding the bridge rectifier. Additionally the reader is referred to the many power control circuits that have appeared in P.E. in the past, and to the useful book on the subject by D. Marsden, entitled 110 Thyristor Projects. The use of one of these with a controlling l.d.r. or opto-isolator should meet most individual requirements; though it should be noted that the recently published circuit for the Slave Light Dimmer (P.E. Feb. 1981) is not suitable for this purpose.

AUDIO OUTPUT

For some purposes it may be found useful to run an audio generator from the Analogue Board D/A converter, or from a R-2R converter running from an unused port, and buffered with an operational amplifier similar to that used on the Analogue Board. In either case the DAA output (or similar) may be used directly with i.c.s such as the NE566 function generator or the NE555 timer. Fig 4.12 gives a circuit for audio production using the 555 . The DAA line from pin 14 of SK7 is used to directly drive the control pin (pin 5) of the 555. With the components specified this will give outputs in the range 5 to 10 kHz . VR1 should be set to null output for zero data, and VR2 to maximum gain. This will result in outputs of about 10 kHz for 255 , and about 5 kHz for data of around 80. If zero is POKEd to the converter, the generator ceases to oscillate, so providing a convenient means of switching off audio output.

FURTHER APPLICATIONS

The D/A converter on the Analogue Board may also be used for directly handling audio and other waveforms. It can, for example, be used in the direct generation of virtually any conceivable waveform. The program below produces a stair-
case output at the DA and DAA pins of the converter:

$100 \mathrm{~A}=61320$

110 INPUT "SAMPLE RATE: TRY 5"; C
120 FOR B=1 TO 255 STEP C
130 POKE A, B
140 NEXT
150 GOTO 120
Using BASIC for this purpose limits the output frequency of any waveform generated to a few Hz or so. For higher frequency outputs, the program would have to be executed in 6502 code. It would be a relatively simple matter to write a short routine in 6502 code that successively output the contents of a block of memory to the D/A converter. The block could then be filled beforehand, using a POKE routine in BASIC, with any desired waveform, e.g. sin, square, triangular step, etc. The short 6502 code program could then be accessed via the $\operatorname{USR}(\mathrm{X})$ call to output the data at any given speed.

Using similar techniques in conjunction with an A/D converter it would be possible to write software for a storage facility for an oscilloscope. The A/D converter would sample a given waveform, and store the data in a given block of RAM. The D/A converter could then be used to output the sequence repeatedly, and at any frequency and repetition rate, so as to provide a permanent display, with the option of recall facilities, etc. See Fig. 4.13.

Next month we will look at the use of the PSG on the Analogue Board, and discuss applications such as a 14 -note organ operated from the UK 101 keyboard. Details will also be given on the use of the Programmable Sound Generator as a 3-channel D to A converter

Readout... A selection from our Postbag

Readers requiring a reply to any letter must include a stamped addressed envelope.
Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

Excellent
 Combination

Sir-l have recently constructed a $P E$ Congress amplifier from a kit supplied by Wicca, as a re-introduction to electronics after a fifteen year break. Apart from bridging two tracks in the phono stage, the unit worked first time. I must congratulate the designer(s) on the performance of this design-it really is incredibly good to listen to, and is capable of 'demolishing' a number of commercial units with a higher 'paper' performance.

I have only two small points of criticism. Firstly, the effectiveness of the balance control can only be described as minimal. I can find no fault in the construction, so can you advise? The second problem (about which 1 intend to speak to Wicca) is transformer hum. which, in an amplifier that generates so little noise internally, is very noticeable. Perhaps a toroidal unit would have been worthwhile?

My second reason for writung is to give a pat on the back to a company which has given me superb service. Some six months ago, I purchased a pair of Videotone GB3 speakers through the PE Special Offer. These were used a few times on an old stereo record player which at best could be described as poor. but did play old records, so I took little notice of the poor sound. When I had completed the Congress. I connected the GB3 units, and with a decent input to them, it was immediately obvious that one tweeter was inoperative.

I telephoned Videotone and explained the problem, which they suggested may have been caused by clipping on the old amplifier (which I doubt as I treated the unit very carefully in deference to its meagre output), but they took my address and offered to supply a new tweeter under warranty. It duly arrived and was installed, and the speakers were connected. The performance of those tiny (and cheap) boxes is a revelation. There is ample bass during the day with a little boost, but the
real beauty is at night. With the bass rolled off a little, the sound quality is retained without annoying the neighbours. Try doing that with the bus-sized speakers that so many people seem to think necessary. In any normal residence, the Congress and GB3 pairing will be found capable of generating excrutiating volume without distortion, even to those with "disco-ears".

To any reader who may have built a Congress. I would say without hesitation, "hang on a pair of GB3s, you will not believe your ears". I bought the GB3s on the strength of an earlier auditioning of the older 'Minimax', which was very good, but not, I believe, in the same class as the GB3. As for the service from Videotone, what can I say except "thank you".
S. G. West,

Northampton.

Noddy Radio

Sir-As a reader of your magazine I would be quite content if the sickeningly over-exposed letters "CB" appeared never again. I have no enthusiasm for citizens band radio, and 1 suspect that 99% of the population of this country is similarly disinterested.

What we have is a verbose minority creating a furore over what is, after all, Noddy radio. I am prepared to tolerate occasional breakthrough on my domestic equipment when it is the police going discreetly about their business-or even a local taxi firm.

However, I see no reason why I should endure prolonged breakdowns when I am trying to take in the news, just so that an immature "citizen" can tell the world he is called Rubber Duck and he doesn't like "bears".

I have no doubt that should this band be allowed, every ten years or so it will become involved in some small way with a murder hunt, and then we shall hear of the wonderful contribution CB makes to society. Why should a respectable magazine like Practical Electronics jump on this bandwagon?

As far as I'm concerned, CB should be allowed only on microwave at 1 mW so that nobody can use it!

Peter Bleck,

 London.Sir-I see that you have published a CB converter in your March issue. I already have a converter and I see from your editorial in the February issue that I need a licence to listen to it. As I cannot obtain a licence to listen to CB, how can I be prosecuted for not having something I cannot obtain anyway?

It is also illegal to transmit on CB, so therefore there is nothing to listen to. So how can I be prosecuted for listening to something that is not there in the first place?

This seems to me to be a ridiculous situation and the sooner the government comes up with some sensible licensing ideas, the sooner it will be getting more money to help with the running of the country.

Little T, Leicester.

Sir-Your editorial seeking views on listening to-for example- CB on 27 MHz raises a wider question. Has any government the moral right to forbid us to listen to any available radio transmission? There may be perfectly justifiable reasons for restricting transmission (e.g. CB) but it must surely be a fundamental right to listen to any broadcast information in an intelligible form.

The obvious exception is on security grounds, e.g. police radio-but the enterprising criminal is hardly likely to be deterred by the Wireless Telegraphy Acts more than, say, the Theft Act!

If the originator of a message chooses an inherently public medium such as radio the onus is on him to adopt a cryptic method of transmission. If an illicit broadcaster gets on the air it is the business of the authorities to stop him, not to tell us not to listen, as do totalitarian regimes. Even those who practice press censorship tend to go for the publisher rather than the reader!
D. B. Lyall, Cheltenham.

Alive and Kicking

Sir-As the new chairman of the Amateur Computer Club I would like to clarify the current position of the ACC, and in particular its future. I feel that your readers, many of whom are interested in home computing will be interested to learn of the current position of the ACC.

I am pleased to announce that the ACC is now very much alive and kicking following a somewhat dormant period last year. The ACC is a national organisation to promote interest in amateur computers and computing, to facilitate the exchange of information and ideas, and to help members with their home computer systems. Annual membership is $£ 4.50$.

I would also like to mention a few other points. Firstly, last year the ACC year was extended to September '80. The new year started on October 1st and runs until 30th September "81. Secondly, it is hoped to set up regular contact with the journals and to keep them informed of the activities of the ACC.

Peter Whittle, Chairman-ACC, I Blinco Road,

Urmston.
Manchester.

Micro Bus Error

Sir-Congratulations for your excellent 'Micro Bus' series, but why not every month? Having tried the Draughts Board game in February 81 issue (for the ZX80) I would like to point out a couple of small (but very important) errors (probably printing errors!):

Line 30 should read: PRINT " 12345678 " Space after the eight, and Line 300 . . OR ($\mathrm{X}=13$ AND TL\$ (A\$)="R") OR NOT... Bracket close after " R "

Having just spent a Sunday afternoon finding the missing space, I hope this might save someonerelse the trouble. There has been some gain though, at least I now know how the program works, which I admit I wouldn't have if it had worked straight away!
P. Holton,

Upper Norwood, London.

PE Microtune

Sir-l have read with interest your project Microtune, in the Dec-Jan editions of your magazine, and was impressed by the technical specifications and useful functions available on what is quite a reasonably priced machine.

It is good to note that your magazine is aware of the importance of the correct adjustments to the ignition system of the modern motor car and that this equipment makes such adjustments an easy task. Using this equipment carefully should enable the builder to recover the cost of it in improved fuel consumption and smoother running in a very short time.

On reading the section "USING THE MICROTUNE", I would like to comment on a few points that I feel may cause confusion with an operator who is not fully conversant with car electrical systems and I hope that my comments may be of use.

In the section "Battery Checking" the test that is suggested is a good test but I feel that the duration of the test should be limited to 15 seconds as the time of 30 seconds quoted I consider too long and could result in the premature condemning of a serviceable battery. An extra check that could be incorporated into this section is a check on coil SW
voitage. On a 12 volt coil system the voltage at the SW terminal should be no more than 0.5 volt lower than the battery voltage. A higher volt loss could be due to a faulty ignition switch or connections in the coil feed. On a ballast system the voltage should be between 5 and 8 volts; a reading higher or lower could indicate a wrong coil fitted or a high resistance in ballast resistor or wiring. These checks are carried out with the contacts closed and ignition on. With the engine being cranked over, this voltage at the SW terminal should be a minimum of 9 volts. With a ballast system a voltage of, say, 5 volts would indicate a fault in the boost circuit between solenoid and coil.

Coil resistance tests are extremely useful, particularly when trying to find out if a car has the right coil fitted. The most usual figures are 3 to 3.5 ohms for a 12 volt coil and 1.5 ohms for a ballast coil. Most ballast resistors are 1.5 ohms and on some cars it is possible to check this also.

The section on points resistance is perhaps the most useful section, and it is important to get this figure down as low as possible. The figures quoted by distributor manufacturers vary between 0.1 volt and 0.4 volt. The Lucas figure of 0.2 volt can be considered as one to aim for. Good starting and coil output depend on a low volt loss here and to some extent condenser performance can also be affected. Things to look for are faults in plug-in connectors in the wiring, burnt or dirty contacts and distributor base plate earth faults.

Dwell angle on modern cars is around 50° and typical figures quoted are Motorcraft 48 to 52° on Ford vehicles, 46 to 56° by Lucas on most Leyland vehicles and 49 to 51° by Delco fitted to Vauxhall cars. These figures are all for 4 cylinder engines. Owing to the fact that altering the dwell angle by 5° alters the ignition timing by 5°, it is important to check and adjust the ignition timing after any distributor adjustments.
M. J. Stacey, TI Transport.

PO Box 8 ,
High March.
Daventry,
Northants.

Going too far?

Sir-In view of the recent interest in CB. I think you may be interested to learn of an article which appeared in a recent issue of the medical newspaper Doctor.

The article concerns an incident in Preston, when a CB group donated $£ 560$ to the intensive care unit of a local hospital to buy some urgently needed equipment. The doctor who had accepted the donation was shocked when the hospital management refused the gift and ordered inquiries into the donors.

The article states: "An embarrassed Dr Saltpepper said 'After the DMT's final decision I was informed that it is not advisable for members of staff to associate with unlawful organisations." He had not realised that the CB group-many of whom are ambulancemen-was unrecognised as a charitable body because CB radio is illegal."
D. M. Broughton, Leeds.

FINGER ON THE PULSE

The national obsession with jogging, and the health risks involved, is producing a spate of patents for gadgets which monitor the wearer's pulse rate and heart beat. The latest, 8 ritish patent application 2039 434, from Patrick Wright of Woking, Surrey and Julian Lynn-Evans of Chichester, Sussex, describes a sophisticated monitor which is worn like a watch on the wrist to give a constant digital readout of heart beat and sound an alarm if a dangerously high rate is reached.

The unit shown in Figures $1 \& 2$ has a transducer 16 and pressure sensor 13 on the rear face which lies over the wrist pulse point. Normal pulse rate is around 72 pulses per minute and the inventors suggests that in general, exercise should be controlled to keep the rate down to below 120ppm.

Figure 1

Figure 2

Copies of Patents can be obtained from: the Patent Office Sales, St. Mary Cray, Orpington, Kent. Price £1.25 each.

Figure 3

Figure 3 shows the basic circuit for utilising the pressure sensor output. Oscillator 28 produces a 3600 Hz signal on line 92 coupled to clock 94. Heart beat rate is determined by the formula

$$
H=\frac{3600}{8}
$$

where $\mathrm{H}=$ heartbeat rate and $\mathrm{B}=$ the number of oscillator pulses stored between heart beats. So if 60 pulses are stored between heart beats, a rate H, of 60 beats per minute is represented and if 120 are stored between beats a rate H, of 30 beats per minute, is represented. Clock circuit 94 is a conventional second, minute, hour, clock and its 60 pulse per second output on line 98 is fed to AND gates 34,36 . These gates are enabled by a signal from flip-flop 26 which changes state each time a pulse is received from transducer 24. When the sensor 13 is in contact with the wearer's pulse pressure point it produces a pulse each time a heart beat is detected so flipflop 26 changes state with the wearer's heart beat.

With the appearance of each heart beat one of two counters 42,48 begins to store pulses from oscillator 28 until the next heart beat is sensed. At that instant the 60 Hz pulses from clock 94 are transferred from the first counter to the second counter, while the output of the first counter is coupled to input register 62. So the number
of pulses occurring between heart beats is stored alternately in counters 42, 48 and transferred alternately to input register 62. Arithmetic unit 80 is programmed to divide 3600 by whatever count is stored in register 62. The output of unit 80 is coupled to numerical display 90 . So the wrist watch unit provides a constant monitor of heart beat rate.

To sound the alarm for an excessively high rate, a pre-set number of oscillator pulses is stored in a register for comparison with the sensed rate. Switches 19,20 couple the output of divider circuit 100 to storage register 104 and 106. As these switches are held closed, pulses are fed into the registers at 20 pulses per second and until required upper and lower limit heart beat rates are stored. Switch 19 is depressed to store the upper rate and switch 20 is depressed to store the lower rate.

Comparators 122, 124 receive the same input signals as arithmetic unit 80 from input register 16. Comparator 122 produces an output for OR gate 128 if the monitored heart beat is greater than the number of pulses stored in register 104. Likewise if the monitored number of pulses is less than the number stored in register 106, comparator 124 produces an output for OR gate 128 . In each case an alarm 130 is activated to warn the wearer.

 A selection of readers
riginal circuit ideas. It original circuit ideas. It
should be emphasised that these designs have not been proven by us. They will at any us. stimulate further thought.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere.

Why not submit your idea? Any idea published will be awarded payment according to its merits.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. * Diagrams should be on separate sheets, not inserted in the text.

'DAY TO REMEMBER' CLOCK

THIS circuit is an add on unit to D. E. Clarke's Digital Calendar published in PE June 1976. It provides a 'Day To Remember' alarm for birthdays, anniversaries, etc.

The NOR gates inputs are wired up to the required outputs from the 74154 on the digital calendar and the 7442. I have divided the unit up into three groups of three NOR gates, DAY/UNIT/MONTH, DAY/TENS/MONTH, DAY/TWEN. TIES/MONTH. If the day to remember is the 16th March, then the middle set of gates would have one of its inputs connected to the 3rd output on the 74154 and the other input connected to the 6 output on the 7442 .

When the clock indicates this date both inputs would go to ' 0 ', feeding a ' 1 ' to the 7410 gate, as the date is the 16th, and not the 6th, or the 26 th. 'except tens' will be at ' 1 ' and the 'inhibit 30 ' will also be at " 1 '. then a ' O ' will be fed through and trigger the 7473. This will remove the inhibit from the 7440 and let the 1 sec . pulse through to switch the l.e.d.s on and off. The 7473 is reset by a ' 0 ' on pin 6 ; this will cause pin 9 to restore the inhibit and stop the l.e.d.s switch on and off.

Obviously it would be of no point in setting up the clock to indicate the day on which the birthday or anniversary falls, therefore I have set my clock up for the alarm to come on 5 days before the event.

> C. T. Chantler. Grimsby, South Humberside.

ENVELOPE DIFFERENTIATOR

MOST monophonic lead line synthesisers have provision for modulation of the VCOs by other oscillators to give vibratos and trills, but few use the ADSR envelope output because of the difficulty in tuning caused by sustained portions of the envelope. The circuit described here converts an ADSR envelope into an AD envelope, giving a 'chirp' at the beginning of every new envelope.

Capacitor C1 'differentiates' the changing envelope voltages, whilst diodes D1
and D2 ensure that only negative going AD envelopes reach the VCOs. VRI controls the depth of VCO modulation. Rx is a resistor chosen to give acceptable maximum levels of modulation. For use in the $P E$ Minisonic suitable values range from 100k to 470 k , depending on individual tastes.

Martin Russ,
Fallowfield,
Manchester.

THIS circuit was originally designed for use in a voltage-controlled synthesiser as a multi-purpose voltage processor, but it can be applied to many other uses.

The circuit consists of a peak detector made up of IC 1 and the associated components, and a memory circuit made up of IC2 and the associated components.

Switches S2 and S3 are used to control the operation mode of the circuit. Controls

VR1 and VR2 control the rate of change of the output voltage. Switch SI controls the direction in which the circuit holds the peaks of the input voltage.

With S2 open the rise time of the circuit is determined by VR1 and the circuit now behaves as "lag' circuit or integrator. If S3 is closed the fall time of the circuit is determined by VR2, S3 is opened for a memory hold or peak detector function. If S2 and

SYNTH PROCESSOR

S3 are closed and VR2 is set to its minimum value, the circuit acts as a voltage follower.

There are many applications of this circuit. In a voltage-controlled synthesiser, the lag processor and voltage follower are useful control-voltage modifiers, using the peak hold with a keyboard voltage can give unusual effects such as unidirectional portamento, where the glide speed varies with the direction of playing on the keyboard. For low frequency a.c. applications the circuit can be used as a rectifier and filter unit with the output being proportional to the 'average' of the input in a similar manner to the operation of an envelope follower.

Martin Russ,
Fallowfield, Manchester.

TVC FOR SYNTHS

COMMERCIAL performance synthesisers use many forms of man/machine interface. Of these, the pitch-pad is rarely seen on home produced synthesisers. The touch voltage control (TVC) described here enables the pitch pad idea to be applied to almost any synthesiser.

The basis of the circuit is the "conductive" black foam used to pack CMOS i.c.s. By using a piece about 3 cms square, sandwiched between two metal sheets, it is possible to make a resistor whose value changes with pressure, from about 100 k or more down to about 200 ohms.

Mechanical and electrical construction of the TVC pad is shown in Fig. 1. The prototype was constructed in a PP3 battery case from which the insides were removed and a rectangular hole cut in the side.

The pad can be used to replace any resistor in the control circuitry of the synthesiser, a few ideas are given in Figs. 2, 3 and 4. These are a voltage controller, volume control and attenuator respectively.

Martin Russ,
Manchester.

JOIN THE KEYBOARD REVOLUTION!

With these amazing new CASIOTONE instruments. A remarkable new concept in electronic keyboards using a totally new technology. digitalised and stored in electronic chip memory for faithful and exciting reproduction.

CASIOTONE 401

(r..р. £345) ONLY £295

Polyphonic. 8 note plitying of 14 instruments and sounds over 4 octaves. Rhythm accompaniment. 16 different rhythms with full-in auto-rhythm. Casio Auto Chord. Alows one finger accompamment. Just press a key with a angle finger and flay major. minor and seventh chords and hass accompanimen vibrato, delayed vibrato, sustain and hold are incorporated in the at-a glance simple to use operational panel. Pitch control makes tuning easy with groups Compaet $+\times 31 \times 12_{8}$ inches with integral amplifier and speaker. The lightweigh (28.2 h) alows playing anywhere there is an A.C. socket. Stand $\mathbf{£ 3 9}$. 301. Similar to above but without Auto Chord. sustain and hold. $\mathbf{£ 2 4 5}$.

CASIOTONE MT-30

(r.r.p. £115) ONLY £95

Polyphonic playing of 22 instruments and sounds over 3 octaves. Built-in vibrato and sustain functions greatly enhance the overall musical effect Compact $2 \times 22 \times 6!$ inches, with built-in amplifier and loudspeaker. Battery/mains power source and light weight (6|b) allows playing anywhere.

BIOLATOR \& WATCH

Clock, calendar, two alarms, countdown alarm, stopwatch, time memory, three date memories. Calculator with date calculations and BIORYMTHM CALCULATIONS.
Forecast your physical, emotional and intellectual performance potential. Chart your peak. ebb and critical days and reschedule to avood mistakes Dims $1 \times 27 / 16 \times 4$, inches. Supplied with leatherette wallet

OTHER CASIO CALCULATORS. Lowest prices*. Send for details.

BEST SELLING CASIO ALARM CHRONOGRAPHS

alarmate hourly chimes. stopwatch, night light. long-life lithium hatters. water resistant cases and mineral glass LCD analogue/digital
LCD analogue/digital
AA 81 (Chrome)
(Gold)
(49.95 . AA 82 (S/5) $£ 39.95$.
12 melody alarms and date memories
(Resin case/strap) £24.95. M-1200 (S/s) £29.95 100 metre water resistant
V 100 (Resin case/strap) $£ 19.95$. W. 150C (S/s CASIO -ASIO watches. Lowest prices* Send for details. SEIKO selected watches. Send for details.

SEND 20p (postage) for details of Casiotone, Casio and Seiko products.
*PRICES

Send your cheque. P.O. or phone your ACCESS or $\mathrm{B}^{\prime} \mathrm{C} A R D$ number to:

DISCO LIGHTING KITS!!!

First class constructional projects, c/w glass fibre P.C.B.'s \& full instructions. No extra components needed to make a top rate working unit.

LK1	3 channel sound-to-light.	LK2	3 channel 3 kW
f9.90	2 k W slider dimmer suitable for clubs/pubs. A professional unit c/w face plate.	£17.90	zero voltage firing $200 \mathrm{mV}-100$ watts input.
LK3 f8.90		LK4	4 channel 4k W
		f1650	audio - forward/reverse
		£16.50	auto - two speed ranges.

ALLKITS C/W circuit, comprehensive instructions \& full parts guarantee

Suitable case for LK I/2/4 £3.50 100w spors ES or BC £1.50.
Coloured pigmy lamps 65p.

UNREPEATABLE HI-FI BARGAIN 3 WAY LOUDSPEAKER KIT C/W BAFFLE (pre-cut)

Comprises:

* $6 \frac{1}{2}^{\prime \prime}$ linen surround bass unit
* $5^{\prime \prime}$ mid-range unit
- $3^{\prime \prime}$ iweeter
- 3 way crossover, fixing screws \& baffle * 20 watts handling capability Full instructions provided Must be heard to be believed!! $\mathbf{f 1 0 . 5 0}$ or 2 kits for $£ 20$. Carr. £I perkit.

SAXON ENTERTAINMENTS

327-333 Whitehorse Rd., Croydon, Surrey CR0 2HS. (01) 6848007

Order by phone - Access/Barclaycard/C.O.D. Open Mon. - Sat. 9am - 5pm.

Semi-Conductors • I.C.s • Optodevices \bullet Rs and Cs in great variety - Pots • Switches • Knobs Accessories •Tools • Materials • Connectors

ELECTROVALUE

ELECTROVALUE LTD. (PE3),
28 St. Jude's Road, Englefieid Green, Egham, Surrey TW20 OMB. Phone: 33603 (London 87) STD 0784. Telex 264475.
NORTMERN (Personal Shoppers Only): 680 Burnage Lane, Burnage NORTMERN M19 1NA. Phone (061) 4324945.

JOIN UP WITH LITESOLD

New 'L' Series soidering irons, designed to latest safety standards. Outstanding performance, lightweight and easy maintenance. Heating elements enclosed in stainless steel shafts and insulated with mica and ceramic. Non-seize interchangeable bits, 'Copper' or 'Long-Life', fit over heating elements for high efficiency Non-roll GRP handles and screw-connected 3 -core mains leads

No. 3 Spring Stand With heavy heat resisting plastic base, chromium plated spring and moulded phenolic top-piece. Holds 'L' Series irons and spare bits in safety. Complete with wiping sponge and non-slip pads: $£ 5.00$
'LOLA' Solder Suckers For trouble free solder removal. Thumb action operation and re-setting. Solder ejector and replaceable PTFE nozzle. 2 sizes - LOLA ' A^{\prime} (standard): £'7.37. LOLA 'D' (miniature) purpose 18 watt iron for

Order direct at these special prices or send 25p for 4-page colour leaflet, or 60p for 16-page colour catalogue

Model LC18 General

virtually all electronics assembly and servicing Normaily 240 volts but also available in 12 and 24 volt. Iron fitted with 3.2 mm copper bit: $\mathrm{f}^{5} 5.23$. Iron with 3 spare bits 1.6.2.4 and 4.7 mm : £7.11

Model LA12

 Intended mainly for fine work this 12 watt iron has a slimmer shaft and smaller bits. Normally 240 volts but available in 6,12 and 24 volts Iron with 2.4 mm copper bit: $£ 5.19$. Iron with 2 spare bits 1.2

all prtice indicated melum pows. packing und 17 and $3.2 \mathrm{~mm}: £ 6.29$

DEPT. PE 1. 97-99 GLOUCESTER ROAD, CROYDON, SURREY CRO 2DN. TELEPHONE: 01-689 0574. TELEX 8811945

D.I.Y. KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. MINISONIC MK2 SYNTHESISER

A portable mains operated miniature sound synthesiser with keyboard circuits. Although having slightly fewer facilities than the large Formant and P.E. synthesisers the functions offered by this
design give it great scope and versatility.
Set of basic component kits (exct. KBD R's \& tuning pots see list for options avallable) and PCBs (incl. layout charts)
"Sound Design" booklet
$\begin{array}{rr}\mathrm{KIT} 3 \mathrm{~B}-25 & \mathrm{EBO} .14 \\ & \mathrm{f} 1.00\end{array}$

P.E. 128-NOTE SEQUENCER

Enables a voltage controlled synthesiser to automatically play preprogrammed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and thythmic pattern are extemally variable. Set of basic comps. PCBs and charts Set of text photocopies

KIT76-7 $\mathbb{£ 3 6 . 5 6}$

P.E. 16-NOTESEQUENCER

Sequences of up to 16 notes may be programmed by the use of external panel controls and fed into most voltage controlled synthesisers.

Set of basic comps, PCBs and charts
Set text photocopies
KIT 86-5 £32.10
P.E.STRINGENSEMBLE

A multivoiced polyphonic string instrument synthesiser Set of basic comps. PCBs \& charts

KIT 77-8 \quad £109.72

ELEKTOR PHASING \& VIBRATO

Includes manual and automatic control over the rate of phasing \& vibrato. and has been slightly modified to also inciude a 2 -input mixer stage

Set of basic comps. PCB \& chart
Text photocopy
KIT 70-2 $\mathbf{E 2 1 . 6 7}$

ELEKTORFORMANTSYNTHESISER

A very sophisticatged synthesiser for the advanced constructor who puts performance before price.

Set of basic comps. PCBs las publ.
Set of text photocopies
KIT 66-14 £255.45

ELEKTOR DIGITALREVERB UNIT

A very advanced unit using sophisticated i.c. techniques instead of mechanical spring lines. The basic delay range of 24 to 90 mS can be extended up to 450 mS using the extension unit. Further delays can be obtained using more extensions.

Main unit basic comps and PCB (as publ.)
Extension unit basic comps and PCB (as pubi.)
Text photocopy
KIT 78-4
189.95

ELEKTOR SEWAR

For use with Elektor Analague Reverb to give greater flexibility to
the reverb effects.
Basic comps, PCB (as publ.) KIT 101-1 £18.19
Text photocopy 60p

ELEKTOR RING MODULATOR
Compatible with the Formant \& most other synthesisers.
Set of basic comps \& PCB (as publ.)
Text photocopy
KIT B7-2

c8.84
 38p

BASIC COMPONENTS EETS include all necessary resistors, capacitors, semiconductors. potentiometers and transformers. Hardware such as cases, sockets, and transformers. Hardware such as cases, sockets, these may be bought separateh. Fuller details of kits PCBs and parts are shown in our lists.

LAYOUT OIAGRAM8 are supplied free with all PCBs unless "as published".

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

ELEKTOR CHOROSYNTH

A $2 \frac{1}{2}$-octave Chorus synthesiser with an amazing variety of sounds ranging from violin to callo and flute to clarinet amongst many others. Experienced constructors can readily extend the oc tave coverage.
Basic comps, PCBs and charts but excl. sw's
Text photocoly \quad KIT 100-8

ELEKTORANALOGUE REVERB

Using i.c.s instead of spring-lines the main unit has a maximum delay of up to 100 mS . and the additionsl $86 t$ extends this up to 00 mS . May be used in either mono or stereo mode.

Mainunit basic component set \quad K!T 83-4 \quad E29.23 Additional Delay basic components KIT 83-2 £20.07 PCB (as publ.) to hold both kits included in Kit 83-4 Text photocopy

ELEKTOR FUNNY TALKER

incorporates a ring modulator, chopper \& frequency modulator to produce fascinating sounds when used with speech \& music signals.

Basic comps, PCB (as publ.) KIT 99-1 $\mathbf{E 9 . 6 0}$
Text photocopy 40p

ELEKTOR FREQUENCY DOUBLER

For use with guitars \& other electronic instruments to produce an output one octave higher then the input. Inputs and outputs may be mixed to glve graster depth. KIT 98-1 E5.4 Basic comps. PCB (as publ.)
Text photocopy
Kit 20

P.E. SPLIT-PHASE TREMOLO

A simple but effective substikute for a rotary cabinet. The output of an internal generator is phase-split and modulated by an inpui signal from an electronic guitar or other instrument. Outpu mplitudes, depth \& rate are variable. May be fed to one or two amplifiers.
Basic comps, PCB \& chart KIT 102-3 £17.68 Text photocopy

65p

P.E. MINISONIC WAVEFORM CONVERTER

A simple converter that modifies the Minisonic sawtooth waveform to produce triangle and sine outputs. Ideally one waveform to produce triangle and sine outputs. Ideally one
should be used with each Minisonic VCO. Basic comps, PCB \& chart

KIT 96-1 E3.98

P.E. GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing for example. flanging, vibrato, reverb, fuzz and tremolo as weil as other fascinating sounds. May be used with most electronic instruments.
Set of basic comps. PCBs \& chans (exct. SWs)
KIT85-5 £49.23
Set of text photocopies $\mathbf{£ 2 . 5 2 ~}$

P.E. PHASER

An automatically controlled 6 -stage phasing unit with integrat		
oscilhator.	KIT 88-1	
Basiccomponents, PCB \& chart	KIT.91	
2-Notch extension. PCB \& chart	KIT 88-2	E8.38
Textphotocopy		88.

KIT 88-1 $\begin{array}{rr}\mathrm{KIT} 88-2 \quad \mathrm{El} .36 \\ & 68 \mathrm{p}\end{array}$

ELEKTOR ELECTRONIC PIANO

A touch-sensitive multiple-voicing piano using the latest integrated circuit techniques for the keying and envelope shaping, and virtualty liminating "bee-hive" noise hitherto inherent in previous electronic pianos.

Set of text photocopies KTI80-10 £58.31

P.E.GUITAR EFFECTS UNIT

Modulates the attack, decay and filter characteristics of a signal from most audio sources. producing 8 different switchable effects that can be further modified by manual controls.

8asic comps, PCB \& char
KIT 42-3 £ 10.60
Text photocopy

P.E. GUITAR OVERDRIVE

Sophisticated versatile fuzz unit incl. variable controls affecting the fuzz quality whilst retaining attack and decay, and also providing tering. Usable with most eiectronic instruments.
Basic components, PCB \& chart KIT 56-3 E11.22 Text photocopy 68p
P.E.SMOOTHFUZZ

> Basic components, PC8 \& chart KIT 91-1 £6.52

Text photocopy

TREMOLOUNIT

A slightly modified version of the simple P.E. unit
Basic components. PCB \& chart KIT54-1 23.74

GUITAR FREQUENCY DOUBLER
A slightly modified and extended version of the P.E. unit. Basic components. PCB \& chart KIT 74-1 E5.19 Text photocopy

P.E.GUITAR SUSTAIN

Maintains the natural attack whilst extending note duration. Basic components, PCB \& chart KIT 75-1 E6.99 Text photocopy

P.E.AUTO-WAH UNIT

Automatically gives Wah or Swell sounds with each note played. Basic components, PCB \& chart KIT 58-1 E10.11 Text photocopy

ELEKTOR WAVEFORM CONVERTER

Converts a saw-tooth waveform into sinewave, mark-space saw ooth, regular triangle, or square-wave with variable mari-space. Basic comps. PCB \& chart, but excl. sw s

KIT 67
19.24

P.E. SWITCHEDTONE TREBLE BOOST

NEW MORE INFORMATIVE LIST NOW AVAILABLE

ADD: POST B HANOLING

U.K. orders: Keyboards add $\mathbf{£ 2 . 7 0}$ each. Other goods: Under $€ 5$ add 50 p . under $£ 20$ add 75 p . over $£ 20$ add $£ 1$ Recommended insurance against postal mishaps: add 50 p for covar up to $£ 50, \mathrm{f} 1$ for $£ 100$ cover, atc., pro-rata insurance must be added for credit card orders. N.B. Eire. C.I. B.F.P.O. and
higher export postage rates.

ADD 15\%VAT

(or current rate if changed) Must be added to full total of kits, discount post \& handling on all U.K. orders. Does not apply to Exports, or photocopies.

EXPORT OROERS ARE WELCOME but to avoid delay we advise you to see our list for postage rates. All payments must be cash-with-order, in Sterling by Inter-
national Money Order or through an English Bank. To obtain list - Europe send 35p. othar countries sand
Note
that our terms ere payment in advance.

AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of
the P.E projects outt from our kits and PCBs. The cases were buill by ourselves and are not lor sale. though a small selection of other cases is available.
LIST-Send stamped addressed envelope with all $\cup K$ requests for tree hist giving fuller details of PCBs. kits and
other components.

OVERSEAS enquiries for list Europesend 35p other countries-send 75p

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKIMBER-ALLEN KEYBOARDS as required for many published projects. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C the claim that these are the finest moulded plastic keyboards available. All octaves are C , c , 3 Octave (37 notes) $£ 25.50 \quad 4$ Octave ($\mathbf{4 9}$ notes) $\mathbf{£ 3 2 . 2 5} \quad 5$ Octave ($\mathbf{6 1} 1$ notes) $£ \mathbf{£ 3 9 . 7 5}$ CONTACTASSEMBLIES (gold-clad wire) - 1 required for each KBD note Type GJ - SPCO 33p ea. Type GB - 2 pr N/O 371 $\frac{1}{2}$ pea

P.E. V.C.F

A voltage controlled filter extracted from P.E. Minisonic project
Basic comps. PCB \& char KIT 65-1 $£ 8.45$

P.E.RING MODULATOR

Extracted from P.E. Minisonic project. Basic comps. PCB \& chart KIT 59-1 £6.35

WIND \& RAIN EFFECTS UNIT

A slightly modified version of the original P.E. unit Basic comps. PCB \& chart KIT 28-1 £4.84 Text photocopy

P.E.ENVELOPESHAPER

 WITH VCAHas an integral Voltage Controlled Amplifier, and has full manual control over the A.D.S.R. functions. Basic comps, PCB \& chart KIT 50-1 $\quad \mathbf{5 8 . 0 3}$ Text photocopy

P.E.TRANSIENT
 GENERATOR

An ADSA envelope shaper without VCA and additionally providing Repeat-triggering enabling a synthesiser to be programmed for mandolin or
bajo ric comp
Basic comps, PCB \& chant KIT 63-2 £7.62
Text photocopy

P.E.EXTERNAL-INPUT

 SYNTHESISER-INTERFACEAllows external inputs such as guitars, microphone to be processed by synthesiser circuits

P.E.TUNINGFORK

Produces 84 switch-selected frequency-accurate tones with an LED monitor clearly displaying beat note adjustments.

Set of basic components, incl. power supply.
Text photocopy
KIT 46-3 $\mathbf{£ 2 3 . 3 2}$

P.E.TUNINGINDICATOR

A simple 4 -octave frequency comparitor for use with synthesisers and other instruments where the full versatility of KIT 46 is not required.

Basic components, PCB \& chart, but excl. sw.
Texiphotocopy 58 p

P.E.DYNAMICRANGE

LIMITER

Preset to auromatically control sound output levels. Basic comps. PCB \& chart KIT 62-1 f5.31
P.E.CONSTANT DISPLAY FREQUENCY COUNTER
A 4-digit counter for 1 Hz to 99 kHz with 1 Hz
sampling rate. Readout does not count visibly or flicker due to olanking.

Basic components, PCB \& char
Text photocopy
$£ 31.6$
P.E.6-CHANNELMIXER

A high specification stereo mixer with variable input impedances.

Basic components. (excl.sw's,) and set of PCBs and charts.

$$
\begin{array}{lr}
& \text { KIT 90-8 } \\
& \mathbf{£ 6 4 . 6 2} \\
\text { Extra 2-channel set with PCB } & \\
\text { KIT 90-9 } & \mathbf{£ 1 0 . 2 1} \\
\text { Set of Text photocopies } & \mathbf{£ 1 . 5 0}
\end{array}
$$

STEREOHEADPHONE

AMPLIFIER

Extracted from P.E. 6-channel mixe Basic components. PCB \& char

KIT 92-1

DIGITALEXPOSURE

UNIT
 minutes, with built-in audio alarm Basic components, PCBs \& charts K|T 93-3 $\mathbf{£} 23.45$
$£ 1.20$

P.E.DISCOSTROBE

A 4 -channel light show controller giving a choice of sequential, random, or full strobe mode of operation

Basic components. PCB \& chart

Text photocopy	KiT 57-3	
	$\mathbf{7 8 p}$	
19.37		

RHYTHM GENERATORS

Several available, including programmable 16 beat 64000 pattern, and pre-programmed 15 pattern using either M252 or M253 rhythm chips. A selection of effects instrument circuits is also available
P.EVOICEOPERATED

FADER

For automatically reducing music volume during talkover - particularly useful for discos. Basic components, PCB \& chan

KIT 30-1 $£ 4.37$

P.E. DYNAMIC NOISE

LIMITER

Very affective stereo circuit for reducing the hiss found in most tape recordings.
Basic components. PCB \& chart
Text photocopy
£8.07

£5.68
,

Why the Sinclair ZX80 is Britain's best-selling

 Built:£99.95

 Built:£99.95}

Including VAT, post and packing, free course in computing, free mains adaptor

Including VAT, post and packing, free course in computing

This is the $Z \times 80$. A really powerful, full-facility computer, matching or surpassing other personal computers at several times the price 'Personal Computer World' gave it 5 stars for 'excellent value'. Benchmark tests say it's faster than all previous personal computers.

Programmed in BASIC - the world's most popular language - the $Z \times 80$ is suitable for beginners and experts alike. And response from enthusiasts has been tremendous over 20,000 ZX80s have been sold so far!

Powerful ROM and BASIC interpreter
The 4 K BASIC ROM offers remarkable programming advantages

* Unique 'one-touch' key word entry the $Z \times 80$ eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry
* Unique syntax check

A cursor identifies errors immediately

* Excellent string-handling capabilitytakes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison)
* Up to 26 single dimension arrays.
* FOR/NEXT loops nested up to 26
* Variable names of any length
* BASIC language also handles full Boolean arithmetic. condition expressions, etc
* Randomise function, useful for games and secret codes, as well as more serious applications
* Timer under program control
* PEEK and POKE enable entry of machine code instructions
* High-resolution graphics
* Lines of unlimited length.

Unique RAM

The 2×80 's 1 K -BYTE RAM is the equivalent of up to 4 K BYTES in a conventional computer-typically storing 100 lines of BASIC

No other personal computer offers this unique combination of high capability and low price

Now available for the $2 x 80 . .$. New I6K-BYTE RAM pack
 Massive add-on memory. Only £49.95

The new 16 K -BYTE RAM pack is a complete module designed to provide you - and your Sinclair ZX80-with massive add-on memory. You can use it for those really long and complex programs-or as a personal database. (Yet it can cost as little as half the price of competitive add-on memory for other computers.)

For example, you could write an interactive or 'conversational' program to show people what your ZX 80 can do. With 16K-BYTES of RAM, they could be talking to your computer for hours!

Or you can store a mass of data-perhaps in a fairly simple program-such as a name and address list, or a telephone directory.

And by linking a number of separate programs together into one giant, but modular, program, you can achieve the same effect as loading several programs at once.

We're also confident that it won't be long

Science of Cambridge Ltd.
before you can buy cassette-based software using the full 16K-BYTE RAM. So keep an eye on the personal computer magazines - and brush up your chess perhaps!

The RAM pack simply plugs into the existing expansion port on the rear of the ZX80. No wires, no soldering. It's a matter of seconds and you don't need another power supply. You can only add one RAM pack to your ZX80-but with 16K-BYTES who could want more!

How to order

Demand for the $Z \times 80$ exceeds all other personal computers put together! So use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your ZX80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your ZX 80 as received within 14 days for a full refund. We want you to be satisfied beyond all doubt-and we have no doubt that you will be

To: Science of Cambridge, FREEPOST 7, Cambridge CB2 1 YY.
Remember: alf prices shown include VAT, postage and packing No hidden extras Please send me
$\left.\begin{array}{l|l|c|c|c}\text { Qty } & \text { Item } & \text { Code } & \begin{array}{c}\text { Item price } \\ £\end{array} & \begin{array}{c}\text { Total } \\ \Sigma\end{array} \\ \hline & \begin{array}{l}\text { Sinclair ZX80 Personal Computer kit(s) Price includes } \\ \text { ZX80 BASIC manual, excludes mains adaptor }\end{array} & 02 & 79.95 & \\ \hline & \begin{array}{l}\text { Ready-assembled Sinclair ZX80 Personal Computer(s) } \\ \text { Price includes ZX80 BASIC manual and mains adaptor }\end{array} & 01 & 99.95 & \\ \hline & \text { Mains Adaptor(s) (600 mA at 9V DC nominal unregulated) }\end{array}\right)$

NB. Your Sinclair ZX80 may quallify as a business expense
TOTAL: £
I enclose a cheque/postal order payable to Science of Cambridge Ltd for $£$
Please print
Name: Mr/Mrs/Miss
Address

AITKEN BROS

35, High Bridge, Newcastle upon Tyne
Tel: 063226729

EXP300
550 contacts with two 50 -point BUS bars. Size $152 \times 53 \mathrm{~mm}$. $\mathbf{£ 6 . 9 5}$. PROTO-BOARD 6 KIT 630 contacts, four 5 way binding posts,

CSC LOGIC PROBES

LP-2 ECONOMY PROBE

Min. pulse width 300 nanoseconds, $300 \mathrm{~K} \Omega$ inpur impedance, tests circuits up to 1.5 MHz . Detecting pulse cuits. $\mathbf{£ 2 0 . 9 5}$.
LP- 1 Memory Probe $£ 35.65$
LP-3 High Speed Memory Probe
£56.75

CALSCOPE SUPER $6 \quad \mathbf{~} 186.30$
A portable single beam 6 MHz bandwidth oscilloscope with easy to use controls. High gain to $10 \mathrm{mv} / \mathrm{cm}$ and wide time base range from $1 \mu s$ to $100 \mathrm{~ms} / \mathrm{cm}$. Full specification to re-

CALSCOPE SUPER 10 £251.85

A dual trace 10 MHz instrument of the very highest achieved by the use of builh-in stabilised power supplies which keep the trace rock steady over a wide range of mains fluctuations. Full specification on request. Please send SA.E.

SINCLAIR LOW POWER PORTABLE

 OSCILLOSCOPE SC110£159.85
The SC1 10 has a 10 MHz bandwidth and sensitivity down to 10 mV per division. Full trigger facilities are provided, including bright line, auto with TV line and frame positions. Please send for full spec. and illustrated brochure

CSC EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter/number identified ny size

SINCLAIR DM235
BENCH-PORTABLE DIGITAL MULTIMETER.
DC volts (4 ranges) 1 mV to 1000 V AC volts (4 ranges) 1 MV to 750 V AC \& DC current 1μ a to 1000MA Resistance (5 ranges) 1Ω to 20 MEG Ω PRICE £60.98. Carrying case £8.95. AC adap tor/charger, $\mathbf{£ 4} \mathbf{- 2 5}$. Rechargeable Battery Pack £8.95.
Size $255 \times 148 \times 40 \mathrm{~mm}$
£83.95 f114.95
5114.95 IN DM4

DM350 $3 \frac{1}{\frac{1}{2}}$ digit display DM450 $4 \frac{1}{2}$ digit display. Both provide six functions in 34 ranges. D.C. voltage $10 \mu \mathrm{~V}$ to $1200 \mathrm{~V}(100 \mu \mathrm{~N}$ on DM350) AC. voltage $100 \mu \mathrm{~V}$ to 750 V 10 mo to 20 MO (100. A.C. current 1nA to 10A resistance DM350 \& 450 as for DM2 opn DM350). Accessories fo M350 \& 450 as for DM235 below. Full spec. on reques
Sinclair PFM200 frequency meter
Range 20 Hz .
PDM35 below $\mathbf{£ 5 7 . 9 5}$

SINCLAIR PDM35

DIGITAL POCKET MULTIMETER
DC volts (4 ranges) 1 mV io 1000 V AC volts 1 V to 500 V DC current (6 ranges) 1 nA to 200 MA £39.95 AC Aanges f4.25 20 MEGR. PRICE ing case $£ 1.95 \mathrm{MN} 1604$ Battery $£ 1.28$. Size $157 \times 76 \times 32 \mathrm{~mm}$

PANEL METERS

DIMS $60 \mathrm{MM} \times 45 \mathrm{MM} .50 \mu \mathrm{amp}, 100 \mu \mathrm{amp} 1 \mathrm{MA}$ $5 \mathrm{MA}, 10 \mathrm{MA}, 50 \mathrm{MA}, 100 \mathrm{MA} .500 \mathrm{MA}, 1$ amp, 2 amp. 25 V dc, 30 V dc, $50 \mathrm{vAC}, 300 \mathrm{Vac}, \mathrm{S}$ ", VU' 50-0-50 a , 100-0-100 1 a, 500-0-500 a a. PRICE £5.95.

DESOLDERING TOOL
SUCTION PUMP
Education Establishment Orders Accepted PHONE OR SEND YOUR ACCESS OR BARCLAYCARD NUMBEF ALL PRICES INCLUDE POSTAGE AND VAT

P.E. STAR SPINNER

A FULL KIT OF PARTS AND ALSO INDIVIDUAL ITEMS ARE AVAILABLE AS FOLLOWS FROM FELTGLOW LTD, 105B LONDON ROAD, BEXHILL, E. SUSSEX

DESIGNER APPROVED PARTS FOR THIS EXCITING PROJECT
P.C.B. Drilled \& Tinned $\mathbf{f 6 . 4 5}$

MM2708 Ready Programmed £11.85
Mains Transformer £11.75
Set 20 TRIACS
Set 20 Darlington Opto's
Complete set of I.C.'s (other than above) \& Holders
Set of Resistors. Caps. etc.
Set of Fuse Holders/Fuses/
Switches/LEDs
Complete Set of Metalwork comprising:
Printed Front Panel
Printed Chassis
Lid \& Heatsinks \& Grommets
Chrome Front Screws \& Internal
Fixings
Set of DIN Rail Terminals \& Rail
If Purchased Separately $£ 126.55$
SPECIAL OFFER
FULL KIT PRICE OF f109.95
SAVING $£ 16.60$ OVER INDIVIDUAL PRICES.
COMPLETE KIT INCLUDES FULL CONSTRUCTIONAL DETAILS

PRICES INCLUDE VAT - ADD POST \& PACKING 60p ON INDIVIDUAL ITEMS - COMPLETE KIT P\&P FREE

Send Cheque or Crossed P.O.'s or Write/Phone your Card No.

FELTGLOW LTD. 105B LONDON ROAD, BEXHILL, E. SUSSEX.

(0424) 221686.

Now, for every Atom owner . . . Atomic games!

Make even more of your Acorn Atom with these, the first in a fast-growing range of imaginative, challenging and sophisticated games!

Games Pack 1

ASTEROIDS. Shoot them down before you collide.
SUB HUNT. Choose your course and speed to catch enemy subs. BREAKOUT. Score points for knocking bricks from wall.

Cames Pack 2

DOGFIGHT. Shoot down your opponent without crashing into stars.
MASTERMIND. Guess the
computer's code.
ZOMBIE. Lure all the zombies into the swamp to survive.

Games Pack 3

RAT TRAP. Entangle your opponent before he entangles you. Action replay feature. LUNAR LANDER. Altitude, fuel, drift velocity.
BLACK BOX. Deduce the position of four invisible objects.

Games Pack 4

STAR TREK. The classic computer game. The universe versus the klingons.
FOUR ROW. Beat the computer to get four marbles in a row. SPACE ATTACK. Save the earth from invasion.

Utility Pack 1

SOFT VDU. Replaces the Atom VDU to give 128 characters, upper and lower case, mathematical symbols, etc. Order today!
Just send a cheque or monev order for $£ 11.50$ (inc VAT and p\&pl per Pack, stating which Pack you want, or write for full details to Acorn Soft Limited, 4a Market Hill, Cambridge. Allow 14 days for delivery.

ACORNSETT

A EXP 650 For microprocessor chips. $£ 3.60$
B EXP 300 The most widely sold breadboard in the UK; for the serious hobbyist. $£ 5.75$
C EXP $600.6^{\prime \prime}$ centre channel makes this the Microprocessor Breadboard. £6.30
D EXP 4B An extra 4 bus-bars in one unit. $£ 2.30$
E EXP 325 Built in bus-bars accepts 8, 14, 16 and up to 22 pin ICS. £1.60
F EXP 350270 contact points, ideal for working with up to 3×14 pin DIPS. $£ 3.15$
G PB6 Professional breadboard in easily assembled kit form. $£ 9.20$ (Not illustrated.)
H PB 100 Kit form breadboard recommended for students and educational uses. $£ 11.80$ (Not illustrated.)

```
\& IT'S AS EASY AS \(1,2,3\) with THE EXPERIMENTOR SYSTEM
1. ExP 3000C which hecludes one tiem. A match board
```



```
3. EXP 303 which includes ihree items. Two matchboards and
an EXP 300 solderless breadboard - \(£ 7.60\)
4. EXP 304 which includes four items. Two matchboards and EXP 300 breadboard and a scratchboard workpad - \(£ 8.70\)
```

The above prices do not include P\&P and 15\% VAT

TOMORROW'S TOOLS.TODAY

global specialties corporation G.S.C. (UK) Limited, Dept. 5H,
 Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Tel: Saffron Walden (0799) 21682. Telex: 817477.

F

```
NAME
ADDRESS
```

I enclose cheque/PO for $£$
or debit my Barclaycard, Access, American Express card

No. $\overline{\text { Tel: (} 0799 \text {) } 21682 \text { with your card number and vour - } \bar{d} \text {. }}$ or Tel: (0799) 21682 with your card number and vour order will be in the
post immediately.

$\begin{gathered} \text { A EXP } 650 \\ \text { £5.00 } \end{gathered}$	Qnty. Reqd.	$\begin{gathered} \text { B EXP } 300 \\ \text { £7.76 } \end{gathered}$	Qnty. Read.
$\begin{gathered} \text { C EXP } 600 \\ \text { f8. } 39 \end{gathered}$	Qnty. Reqd.	$\begin{aligned} & \text { D EXP 4B } \\ & £ 3.50 \end{aligned}$	Qnty. Reqd.
$\begin{gathered} \text { E EXP } 325 \\ £ 2.70 \end{gathered}$	Qnty. Reqd.	$\begin{gathered} \text { F EXP } 350 \\ £ 4.48 \end{gathered}$	Qnty. Read.
$\begin{aligned} & \text { G P86 } \\ & \mathrm{f} 11.73 \end{aligned}$	Qnty. Reqd.	$\begin{gathered} \text { H PB } 100 \\ £ 14.72 \end{gathered}$	Qnty. Read.

Experimentor System

$\begin{gathered} 1 \text { EXP } 300 \text { PC } \\ £ 2.25 \end{gathered}$	Qnty. Read.	$\begin{gathered} 2 \text { EXP } 302 \\ £ 2.58 \end{gathered}$	Qnty. Reqd.
$\begin{gathered} 3 \text { EXP } 303 \\ \text { E } 9.90 \end{gathered}$	Qnty. Reqd.	$\begin{gathered} 4 \text { EXP } 304 \\ \text { £ } 11.15 \end{gathered}$	Qnty. Reqd.
Boxed prices include P \& P and 15% VAT FREE catalogue If no dealer in your area contact GSC direct.			

Global Specialities Corporation (UK) Limited, Dept. 5H.
Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.

RECEIVERS AND COMPONENTS

100 TRANSISIORS f5. (New mix) prewar onward wireless. valves. SAE. Sole Electronics. (PE) 37. Stanley Street, Ormskirk. Lancs.

PC WHOLESALE 3. Thornhill, Romsey Road, Whiteparish. Salisbury, SP5 2SD.					
All goods new full spec - prices are for minimum 100 any one type. Minimum Order f10. 50p post. No VAT. SAE for full list.					
AC138	14	2N3702/8	. 045	Diodes	
AC176	14	2 N 3819	. 17	1N4148	02
AD161/2	45	2N5401	. 17	1 k	. 012
8C107	. 07	40673	.45	10k	. 008
BC 108	08	$1 C^{\prime} \mathrm{s}$		1 k	. 013
$8 \mathrm{BC109C}$	08	40018	. 10	10 k	. 009
BC114	05	40118	10	1 N 4002	. 032
8C147/8/9	05	4013 AF	. 30	1 k	. 024
BC171/2	. 05	4017A	. 35	10 k	. 020
$\mathrm{BC}^{8} 177$	07	4025A	. 12	1 N 4003	. 034
BC1828	. 045	4029A	. 50	1 k	. 025
BC183L	04	4049A	25	10k	. 021
BC2128	. 045	4060 B	. 60	1 N4006	. 046
BC237/8/9	. 05	4069B	12	1 k	. 034
$8 \mathrm{BC308B}$. 05	4511 B	. 60	10k	. 028
BC320	. 07	400148	50		
BC327/8	. 07	$2114 \mathrm{~N}-\mathrm{L}$	1.50		
BC441	. 19	2708450			
BC461 BC557/8/9	. 20		2.80	Cropaced le	
80246	. 30	555	.17	PCB mnt	
BD433	. 32	LED's			
BF181	. 15	LED's	. 055	0.47/50	. 022
8 8259	. 20	yellow	. 080	1/50	. 0224
BFY50 BFY51/2	.15	green	. 080	$2.2 / 50$ $4.7 / 25$. 0224
BFY51/2	. 05	5 mm red	. 0680	4.7/25 $10 / 16$. 0221
PN 109	. 05	yellow	. 080	10/40	. 023
TIP2955	. 46	green	. 02	22/25	. 023
TIP3055	45	Clips	. 02	47/16	. 024
2N1132	. 16	Zeners, 40	0 mW	47/40	. 028
2N1711	. 18	2V4 3V6	4V7	100/16	. 022
2N2369	. 12	$5 \mathrm{~V} 6 \mathrm{6V} 2$	$6 \vee 8$	100/25	. 025
2N2646	. 34	7V5 8V2	9 V 1	100/40	. 027
2N2926A	. 045	11V 12 V	14 V	220/63	. 037
2N3053	. 15	18 V 24 V		1000/16	. 060
2N3055	. 30		at . 03	2200/40	. 320

TURN YOUR SURPLUS Capacitors. Iransistors, etc.. into cash. Comtact COIESHARDING CO.. 103 South Brink Wishecl. Cambs. $0945+188$. Inmediate settlement.

SMALL ADS

The prepaid rate for classified advertisements is 28 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 9.50$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Lid". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London. SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

BOURNEMOUTH/BOSCOMBE. Electronic components spe cialists for 33 years. Foresters (National Radio Supplies). Late Holdenhurst Road, Now at 36. Ashley Road. Boscombe. Tel. 302204. Closed Weds.

£1 BARGAIN PACKS

All packs f 1 each: any 12 for E 10 . Post 25 p. All top-grade
nts - no rubbish.

$$
\begin{array}{ll}
\text { PC1 12 BC107 } & \text { PC9 } 10 \text { TO3 sockets } \\
\text { PC2 } 14 \text { BC108 } & \text { PC10 } 150.1 / 35 \mathrm{~V} \text { tan }
\end{array}
$$

PC10 $150.1 / 35 \mathrm{~V}$ tants
$\begin{array}{ll}\text { PC3 1288C109 } & \text { PC11 } 143 \mathrm{~mm} \text { red LEDs } \\ \text { PC4 } 32 \mathrm{~N} 3055 & \text { PC } 12125 \mathrm{~mm} \text { red LEDs }\end{array}$
$\begin{array}{ll}\text { PC4 } 32 \mathrm{~N} 3055 & \text { PC12 } 125 \mathrm{~mm} \text { red LEDs } \\ \text { PC5 } 7 \text { BFY5 } 1 & \text { PC13 } 741\end{array}$
PC6 16 BC182 PC146555
$\begin{array}{ll}\text { PC760 1N4148 PC15 } 1512 \mathrm{~V} \text { zeners } \\ \text { PC8 } 25 & \text { 1N4003 } \\ \text { PC16 } 2001 \mathrm{~K} \\ \text { WW } 5 \%\end{array}$
Send S.A.E. for 8 -page list/enquiries.
PC ELECTRONICS, 3 Thornhill, Romsey Road Whiteparish, Salisbury, SP5 2SD

CLEARANCE PARCELS: Transistors, Resistors, Boards, Hardware, lolbs only $£ 5.80$! 1,000 Resistors $£ 4.25,500$ Capacitors £3.75. BC108. BC171. BC204, BC230. 2N5061. CV7497 Transistors $1070 \mathrm{p}, 100$ £5.80. 2N3055. 10 for $\mathbf{\text { 23.50. S.A.E. Lists: W.V.E. (2), } 1 5 \text { High Street, }}$ L-ydney. Gloucestershire.

BALLARO'S OF TUNBRIDGE WELLS have moved to 54. Grosvenor Road, no lists. S.A.E. all enquiries phone Tunbridge Wells 31803.

SOFTWARE

COMPUKIT SOFTWARE. FIRMWARE, INFORMATION. Switched $16 / 32$ Line display conversion, simple PIA interface. word processor program on Prom or Cassette. high speed cassette save/load, new enhanced basic monitor \& toolkit. Prom Programming service. S.A.E. for details. N. V. Davies, II Holloway. Haverfordwest, Dyfed.

2X80 MAZE (I\&II), Battleships. Slot machine. Maths test, Guess number. pontoon. All on one cassette (for IK) £2.50. TRS 80 (II 16 K). Space Invaders. Digital clock (with alarm facility) on one cassette - $\mathbf{2 5 0}$. From: P. Bramwell, 87. Anderson Crescent. Great Barr, Birmingham B43 7ST.

```
UK 101 Software on Tape
8 K Nuclear Holocaust \(\quad 8 \mathrm{~K}\) Asteroid Runne
\({ }^{k}\) K Alien Invance \(\quad\) 4K Space Defender
4 K UK 101 Breakout 4K Drawing Machine
4 K The M mY Game 4 K Fruit Machine
\(\mathbf{8} .00\) each or \(£ 2.50\) each for two or more
8 K Ouest For The Golden Crown \(\mathbf{\$ 5 . 5 0}\).
A graphics 'A dventure' game, with instruction booklet
UK 101 Hardware
Programmable Sound Generator
Add another dimension to your UK 101 with our sound unit using the AY \(3-8910\). We will supply the P.C.B. manual
containing list of parts. Hardware. Software and construction details, and software on tape. All for only \(£ 9.50\).
Imagine a sound - Program it!
Cheque. P.O. or just S.A.E, for details to:
MARICK, Dept 12,1 Branksome Close. Paignton, Devon.
```

2X80 (4K) SOFTWARE. Make sure your junior school child has a sound background in English. Maths. General Knowledge and Reasoning. Fun but thorough coaching on cassette $\mathbf{~ 4 . 5 0 .}$. Rose Cassettes, 148 Widney Lane. Solihull. West Midlands B91 3LH.

COMPUKIT $4 K$ DRAUGHTS CASSETTE $£ 1.50$. Beat the computer. Simon Monk, 16. Richmond Road. Wolverhampton. WV3 9HY

4K COMPUKIT CASSETTE. Alien Invaders $\mathbf{5 2 . 5 0} 10 \times 10$ Maze Escape 3D graphics $\mathbf{5 2 5 0}$ both $\mathbf{8 4 . 0 0}$. Steven Hall, 14. Christchurch Lane, Lichfield. Staffs.

UK101 PROGRAMMERS AID. Features. Find, Trace, Delete, Renumber. Variables list and more. Super-board Compatible (2K machine code) 021-308 7012 (Richard).

COMPUKIT UK101 can handle dimensioned string arrays without any hangups. Simply fit a modified Basic 3 chip (5v 2716) as published by OSI UK user group, only £12. Other programming services considered. M. Spalton, 9. Willowfields, Hilton, Derby DE6 5GU.

bOOKS AND PUBLICATIONS

any single service sheet il L.S.A.E. Thousands different repair/service manuals/sheets in stock. Repair data your named T.V. £6 (with circuits f8). S.A.E. Newsletter, pricelists, quotations. AUS (PE), 76 Church Street. Larkhall, Lanarkshire. (0698 883334).

EDUCATIONAL

CAREERS in Marine Electronics. Courses commencing September and January. Further details, the Nautical College, Fleetwood FY7 8JZ. Tel. 0391779123.

CITY \& GUILDS EXAMS
Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Specia! courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amaterrs. Full details from:

> ICS SCHOOL OF ELECTRONICS DepL 272F Intertext House, London SW8 4 UJ Tel. 01-622 9911 (all hours)
> State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Full details from:

```
ICS SCHOOL OF ELECTRONICS
    Depe 272F Intertext House, London SW8 4UJ
        Tel. 01-622 9911 (all hours)
            State if under 18
```


COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and align ment with numerous lllustrations and diagrams. Othe courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 272F Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

COURSES

SUMMER SCHDOL in Personal Computing July 1981 two wecks residential at the University College of Wales Aberystwyth. Details from: PC Summer School. Sandmarsh. Qucens Road. Aberystwyth SY 23 2HH. 0970 617749.

AERIALS

ALMAG INODOR TV AERIAL. New design. All groups $£ 2.50$ +50 p P\&P refundable. Murphy, 6, London Road, Dalkeith, Midlothian.

SERVICE SHEETS

BELL'S TELEVISIDN SERVICES for Service Sheets on Radio, Tv, etc f1.00 plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel:(0423) 55885.

JAPANESE TV SERVICE SHEET specialists catalogue 25 p plus SAE. SANDHURST PUBLICATIONS, Camberley, Surrey.

FOR SALE

P.E. COMPLETE SET Vol 1 No. 1. To present over 170 magazines. Offers Box 85 .

NEW BACK ISSUES of 'Practical Electronics' available 90p each Post Free. Cheque or uncrossed p/o returned if not in stock - BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate. N. Yorks. Tel: (0423) 55885.

UK 101 COMPUKIT 8 K Case Cassette Unit, TV-set, programs, manuals etc. Fully working. built by engineer. Tel. 0245469370 . $\mathbf{2 0 0}$.

SET DF "PRACTICAL ELECTRDNICS" 1965 TO 1981. Offers invited. Telephone Wigan 41850.

PRACTICAL ELECTRONICS. May 1969 to May 1980 inclusive, offers 0516455247.

SUPERBDARD II COMPUTER, Cased. Including power supply, Cassette Recorder, Cassette and Manuals. Costs £226, Only $\mathbf{1 1 7 5}$. Phone Ingrebourne 46565.
E.T.I. 4600 SYNTHESISER. Offers over $\mathbf{5 5 0 0}$. Tel. 09323 44531 evenings or 0932341199 Ext. 2264 daytime.

EARLY PRACTICAL ELECTRONICS, November 1964 to January 1973. Offers? Shottisham (0394) 411000.

MISCELLANEOUS

DIGITAL WATCH BATTERIES. Any sort 75 p each + P\&P. Send S.A.E. or $15 p$ with number or old battery to Disclec, Y. 511. Fullbridge Road, Werrington, Peterborough PE4 6SB.

CLEARING LABORATORY: scopes, generators, P.S.U.'s, bridges, analysers, meters, recorders, etc. 0403-76236.

Cabinet and Flightcase Fittings Fretcloths, Coverings, Handles, Castors etc., Jacks and Sockets, Cannons, Bulgins, Reverb Trays, Emilar Compression Drivers, AKG Mics, Celestion Speakers, ASS, Glassfibre Horns.
 Send 30p Postal Order for illustrated catalogues to:-
 ADAM HALL (P. E. SUPPLIES) Unit G, Cartion Court, Grainger Road Southend-on-Soa, Essex SS2 5BZ.

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer - now greatly improved and very much faster. Aerosol cans with full instructions $\mathbf{£ 2 . 2 5}$. Developer 35p. Ferric Chloride 55 p. Clear Acetate sheet for master 14 p . Copper-clad Fibre glass. Board approx. 1 mm thick $\mathbf{£ 1 . 7 0} \mathrm{sq}$. ft. Post/packing 75p. WHITE HOUSE ELECTRONICS, P.O. BOX 19. Castle Drive, Penzance, Cornwall.

BIG EARS

BIG EARS opens the door to direct
man-machine communication. The system comprises analogue frequency separation fitters preamps and signal conversion, together with a quality microphone and extensive software.
Words, in any language, are stored as "voiceprints" by simply repeating them a few times in "learn" mode. Using keyword selection techniques, large vocabularies can be constructed.
Use BIG EARS as a front end for any application: data enquiry, robot control, starwars - the possibilities are unlimited..
£45!
BUILT, TESTED \& GUARANTEED ONLY 240 :
PRICE INGLUDES POSTAGE \& PACKING PLEASE ADD VATAT 15%
PRICE INCLUDES POSTAGE \& PACKING PLEASE ADD VAT AT 15%
PLEASE STATE COMPUTER UK101, SUPERBOARD, NASCOM2. PEI TRSBO ETC

MICROGRAPHICS
Colour Conversion for
UK 101/NASCOM $1 \& 2$ Superboard. KIT £45 (Modulator included

COLOUR MODULATOR
RGB in, PALJUHF out
KIt £12

Please add VAT at 15% to all prices Baclay/Access orders accepted on telephone WIL_|AM $\begin{aligned} & \text { Dower House. Billericay } \\ & \text { Herongate. Brentwood }\end{aligned}$ STL AAAT Essex CM133SD
SYSTEMS Ltd Essex CM13 3SD Telephone: Brentwood (0277)810244

SUPER8 INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a Low $£ 1.05$. Chassis punching Cacilities at very competituve prices, 400 models to choose from. Suppliers only to Industry \& The Trade. BAZELLI (Dept. No. 23), St. Wilfrids, Foundry Lane, Halton, Lancaster, LA 1 6LT.

GUITAR/PA

 MUSIC AMPLIFIERS100 watt superb treble/bass overdrive. 12 months最 $\mathbf{6 8}$; 100 watt twin channel sep. treble/bass per channel $\mathbf{£ 6 5 ;} 60$ watt $\mathbf{£ 5 2 ; 2 0 0}$ watt $£ 78$, 100 watt four channel sep. treble/bass per channel $£ 75 ; 200$ watt $£ 98$; slaves 100
watt $£ 34 ; 200$ watt $£ 60$: 250 watt $£ 70 \cdot 500$ watt $£ 140$; fuzz boxes $£ 12.00$; bass fuzz $£ 12.90$; overdrive fuzz $£ 22$; 100 watt combo superb sound overdrive. sturdy construction, castors, unbeatable f98; twin channel f115\%, bass combo $£ 118$; speakers 15 in . 100 watt $£ 36 ; 12 \mathrm{in}$. 100
 watt £24; 60 watt $£ 16$; mic

Send cheque or P.O. to:
WILLIAMSON AMPLIFICATION
62 Thorncliffe Avenue, Dukinfield, Cheshire. Tel: 061-3082064

ULTRASONIC TRANSOUCERS. $£ 2.85$ per pair $+25 p$ P. \& P. Dataplus Developments. 81 Cholmeley Road. Reading. Berks.

MAKE YOUR OWN PRINTED CIRCUITS
Etch Resist Transfers - Starter pack $(5$ sheets lines, pads, I.C. pads) $£ 2.00$. Large range of single sheets in stock at 43p per sheet.
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. Full instructions supplied. 2 sheets ($20 \times 25 \mathrm{~cm}$) negative paper and 2 sheets $(18 \times 24 \mathrm{~cm})$ positive film $£ 1.80$. Drafting film $(30 \times 21 \mathrm{~cm}) \mathbf{2 2 p}$ per sheet.
20p stamp for lists and information. P\&P 35p/order
P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

BURGLAR ALARM EQUFPMENT. Latest Discount Catalogue out now! Phone C.W.A.S. Alarm 0274682674.

RYDER ORGAN SYSTEM

The WW classical design for full-size keyboards, including couplers. Expanded range of p.c. boards \& data available includes chorus, vibrato, combination stop control.
Reverberation. A new compact solid-state unit gives smooth natural sound. Demo cassette, on loan, deposit $£ 1.50$, refund $£ 1.00$. (Prices UK only).
HIYKON LTD. (P), Woodside Croft, Ladybridge Lane, Bolton BL1 5ED.

ORDER FORM please write in block capitals

Please insert the advertisement below in the next available issue of Practical Electronics for insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

TIME EXACT?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, self setting at switch-on, 8 digits show Date, Hours, Minutes and Seconds, larger digit Hours and Minutes for easy QUICK-GLANCE time, auto GMT/BST and leap year, can expand to vears and milliseconds, also parallel BCD output for computer or alarm and audio to record and show time on playback, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range. un-to-build kit E 54.80 includes all parts, printed circuit, case, postage etc, money back
ABSOLUTE ACCURACY so GET yours NOW
CAMBRIDGE KITS 45 (FR) Old School Lane, Milton, Cambridge.

BURGLAR ALARM EQUIPMENT. - Brand new. top quality Frec catalogue and price list: Sigma Security Systems, 13 St. Johns Street. Oulton, Leeds LS26 8JT.
SEEN MY CAT? 5000 odds and ends. Mechanical, electrical. Cat free. Whiston Dept. PRE, New Mills. Stockport.

THE SCIENTIFIC WIRE COMPANY
PO Box 30, London E.4. 01-531 1568. ENAMELLED COPPERWIRE

SWG	1 lb	$80 z$	4 oz	2 oz
8 to 29	2.76	1.50	0.80	0.60
35 to 39	3.20	1.80	0.90	0.70
40 to 43	3.40	2.00	1.10	0.80
44 to 47	4.75	2.60	2.00	1.42
47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 30	6.50	3.75	2.20	1.40
TINNED COPPER WIRE				
14 to 30	3.85	2.36	1.34	0.90

Prices include P\&P, VAT and wire Data. Orders under f 2 please add 20p. SAE for List. Dealer enquiries welcome Reg. Office: 22 Coningsby Gardens.

PSYCHOTRONIC GENERATORS, gravity lazers, electrokinesis, electrophotography, skinvision. S.A.E. 4' $\times 9^{\prime \prime}$ Paralab, Downton, Wilts.

BURGLAR ALARM EQUIPMENT. wide selection at competitive prices. Sae for price list. A. Barton (PE), 27. Gunville Road, Newport. I.W.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. We supply provides the means. We supply eyegrass, hon magnetic weeznife and screwback case opener also one doz assort opener, also one pieces, full instructions and battery identification chart. We then supply replacement batteries-you fit them. Begin now. Send $£ 9.00$ for complete kit and get into a fast growing Kusiness. Prompt despatch.
BOLSTERINSTRUMENTCO.
(PE23)
11 Percy Avenwe, Ashford, Middx. TW15 2PB.

> VIDEO MUSIC

The amazing Videograph, as featured recently in Electronics Today International. links your Hi-Fi with any Coldour TV to produce a Fantasia of hypnotic visual effects. The system displays stereo music as briliantly coloured wavelorms minded a square.wave signal generator is built-in, permitting advanced demonsirations of transient response etc. Truly the ultimate accessory for any Hifi system! diY KIt ONLY £33.95
Case \& Controls $£ 15.95$
or READY BUILT $£ 69.95$
All prices
include VAT
r READY BUILT E69.95
meluude VAT
and posslage
VIL_LAM $\begin{aligned} & \text { Dower House, Billericay }\end{aligned}$ STUAAT Essex CM133SD
d
SYSTEMS Ltd Telephone Breniwood (0277) 810244

PRACTICAL ELECTRONICS P.C.B.'s

Drilled. I $\leq \mathrm{mm}$ Glass fibre Fry's Roller Tinned
JUNE 80 Greenhode temp controller EP358 JUNE 80 Greenhouse temp controller ÉP 358 JULY 80 Tape shde winch OCT 80 Cine frame counter EG 408
NOV 80 Discodest

FEB 81 Dimmer EG 485 £ 1.33 Lapsed
MAR $8127 / 28$ MHz converter EA 236
MAR $8127 / 28$ MHI converter EAS 23 h
Digital counter timer EG505/7/4) own masters Trade enquiries walcomed Please wite for quate CWO Pleaso Pasting. - Plesse add $35 p$ postage and packing to complete order. Europe 10 p . 14 Downham Road, Ramsden Heath Billericay, Essex CM11 1PU

Top Priority for

 every constructorHOME RADIO
CATALOGUE

- About 2,000 items clearly listed - Profusely illustrated throughout. Large A-4 size pages
- Bargain list, order form and 2 coupons each worth 25 p if used as directed, all supplied free.
Price f1, plus 50p for post, packing and insurance.
Send cheque or P.O. for $£ 1.50$
HOME RADIO Components LTD
Dept. PE. P.O. Box 92, 215 London Road,
Mitcham, Surrey.
01-5435659

PRACTICAL ELECTRONICS PROJECTS

PROJECT PACKS

Pools predictor (79053)An analogue computer that may win you a fortune	£8.15
Taik Funny (80052) A ring modulator circuit that produces very strange results when fed with a human voice	¢9.60
Pest Pester (80130) An electronic insect repellant.	¢2.35
Steam train sound effects (80019) Simulates the sound of steam and whistle.	¢6.50
Electronic Nuisance (80016) Makes an annoying noise, but only in the dark!	¢3.85
Cackling Egg timer (9985) An egg timer with a difference, it clucks like a hen.	¢8.35
Chorosynth (80060) A cheap mini synthesizer. Send for details.	¢57.90
Elektor Vocoder (80060) The first Vocoder designed to be built in kit form. 10 Channel modular construction.	£162.50
Analogue Reverberation Unit (9973) Uses a SAD 1024 which can produce a delay up to 100mS.	$\underline{27.70}$
Guitar Preamp (77020) With three tone controls.	£6.50
Linear Thermometer (80127) Simple but effective meter reading thermometer using a diode as sensor.	£13.45
Precislon Power Unit (80514) Produces accurate reference voltages at presetable current limits up to 2 Amps.	£48.65
Top-preamp (80031) Mini, all IC preamplifier for use with most power amplifiers.	£34.40
Programmable Slide Fader (81002) Mixes audio signals on tape with operation of two slide projectors.	£46.50
Stereo dynamic Preamp (80532) A low noise high quality disc preamplifier.	¢5.20
STAMP (80543) Super tiny amplifier with up to 1 Watt output.	£3.75
Transistor Ignition (80082) The most significant advantages of other systems combined in one.	£20.45
Dipstick Probe (80102) Direct warning of high oil temperature. State long or short dipstick required.	£11.25
Intelligent Wiper Delay (80086) Can be set to produce delayed wipes at any predetermined interval.	£15.85
Fuel Economiser (81013) Audible guide to cheaper driving.	¢8.05
Disco Projects.	Send for details
Minimixer (8106) 5 Channel High Quality Stereo Mixer.	£37.50
Bath Thermometer (81047) LED display of your bath temperature.	¢6.85
Process Timer (81101) Versatile photographic development timer.	£18.20

Our Project Packs include the electronic components, the PCB, sockets and solder together with assembly instructions. Cases, knobs etc can be supplied as extra items if required. This is only part of our wide range of projects. See our catalogue for details of other projects that we can supply. You can also ring our number between 12.30 p.m. and 1.30 p.m. any weekday for a recorded announcement of any new items we have availab/e.

To order: send cheque or postal order + 40p P\&P to DORAM ELECTRONICS LTD All prices include VAT. a de boer company

OHIO SCIENTIFIC NEW SUPERREOARD OHIO SCIENTFFIC NEW SUPERBOARD 3

New Series 2 Challenger C1P-cheapo New version $£ 202$ Onger
(illustrated)
f259. (illustrated) £259. The special otfer of the century. (Only Swanley could do it 1). For
just $£ 159$ we will supply Superboard 3 with a free power supply and modulator kit and our free guard band kit la brilliant breakthrough in itself for this kit extends the display to 32×32. gives 1200 and
300 Baud tape speeds. increases the computing speed by 50% and converts the display to 50 Hz for flicker free viewing). Guard band kit also supplied separately for
$£ 10.4 \mathrm{~K}$ extra ram $£ 16.95$. Case $£ 27$ £10. 4 K extra ram £16.95. Case $£ 27$.
Cassette recorder $£ 16$. Cegmon improved monitor rom $£ 29.50$. Assembler/Editor lape £25. Word processor program $£ 10$.
Display expansion kit 30 lines Display expansion kit 30 lines $\times 54$ characters for Superboard 2 (not 3) $\mathbf{£ 2 0}$
Cheapo memory expansion offer:- buy a 610 expansion board with 8 K ram on board and space for another 16 K for $\mathbf{£ 1 5 9}$ and get a free 5 V 4 A power kit and any ex-
tra ram you want for $\mathbf{£ 3 / K}$. Buy a miniftop
 py disc drive ${ }^{+}$case ${ }^{+}$power supply
DOS for $£ 275$ and we will do the extra fam for $\mathbf{E 2 / K}$ (max 16 K).

Buy any of the below and get a free interface kit and word processor program for 80 (illustrated) $£ 329$. Base 2800 MST £299. Seikosha GP80 £225.

SINCLAIR PRODUCTS:
SC1 100 Oscilloscope £144.95. PFM200 f6.88. Enterprise prog calculator f19.95. PDM 35 £ 32.50 . DM235 $\mathbf{O 5 5 . 5 5}$. OM450 £109.11.
BATTERYELIMINATORS*
3-way type $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ 300ma $\mathbf{£ 3 . 5 0}$. 100 ma radio types with press studs $9 V$ £4.77. $9+9 \mathrm{~V}$ £5.99. Car convertor 12 V input. output $4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 \mathrm{~V} 800 \mathrm{ma} \mathbf{£ 3 . 0 4}$

100 ma radio types with press-studs 9 V £1.64, $9+9 \mathrm{~V} \leq 2.30$. Stabilised 8 -way types $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{ma}$ £3.12, ${ }^{1}$ Amp £8.10. Stabilized power
kits $2-18 \mathrm{~V}$ 100ma $£ 3.12,1-30 \mathrm{~V}$ 1A £8.30, $1-30 \mathrm{~V} 2 \mathrm{~A} £ 14.82$. TTL and computer supplies 5 V stabilized $1 \frac{1}{\mathrm{~A}} £ 9,3 \mathrm{~A}$
$£ 12.12 \mathrm{~V}$ car convertors $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ 1A E1.62.

TV GAMES
Stunt cycle chip + kit $£ 20.95$. AY-3-8600

+ kit $£ 12.98$ AY-3-8550
MEMORIES
2114 450ns £2.15. 4116 200ns $\mathbf{E 2 . 8 3}$.
4027 f1.30. All low current

SWANLEY ELECTRONICS

Dept. PE, 32 Goldsel Road, Swanley, Kent BR8 8EZ.
Telephone Swanley 64851. Please add 45 p postage. Please add VAT except on sections marked with a * which already include it. Lists 270 post free. No VAT on overseas orders which are a speciality. Official orders welcome.

COMPUTER USER AIDS Incorporating the UK101 User Group

UK101 \& SUPERBOARD USERS

Is your regulator too hot?
Is your cassette unreliable?
Don't know where to buy cheap RAM?
Can't find good quality low price software?
Then perhaps we can help. Computer Aids runs the UK 101 User Group which produces a quarterly newsletter that is despatched to members all over the world. This contains many soft \& hardware tips and hints that answer most of the common questions about the 101 . Advice reviews etc.
Our software sales and hardware kits all carry a 15% discount for members:

Programs from $£ 3.00+$ VAT - Non members $£ 3.45+$ VAT
Sound Board @ $£ 34.95$ + VAT - Non members $£ 40.20$ + VAT
Details of tapes and kits on request, including our latest Programmable Graphics Generator.
Membership is $£ 4.60$ inc. VAT per 6 months.
9 MOSS LANE, ROMFORD, ESSEX.
Tel. Romford 64954.

OVERSEAS ORDERS

Overseas readers are reminded that unless otherwise stated, postage and packing charges published in advertisements apply to the United Kingdom only.
Readers wishing to import goods from the United Kingdom are advised to first obtain from the advertiser(s) concerned an exact quotation of the cost of supplying their requirements carriage paid home.

[^3]
Marshall's

CRIMSON ELEKTRIK HI FI MODULES

CE 608	Power Amp	£20.09
CE 1004	Power Amp	£23.43
CE 1008	..	£26. 30
CE 1704	.	£33.48
CE 1708	" "	£33.48
CPS 1	Power Unit	£19.52
CPS 3	., "	£23.52
CPS 6	" "	£30.00
CPR 1	Pre Amp	£32.17
CPR 1S		£42.52

SINCLAIR INSTRUMENTS

Digital Multimeter
PDM35 £ 3450
DM235 £52.50
DM350 £72.50
DM450 £99.00
Digital Frequency Meter
PFM200 £49.80
Low Power Oscilloscope
SC110 £139.00
TF200 Frequency Meter $£ 145.00$
TGF 105 Pulse Generator $£ 85.00$

NEW

$\begin{array}{lr}\text { LCD Multimeter } & \text { TM351 } £ 99.00 \\ \text { LCD Multimeter } & \text { TM352 } £ 49.95 \\ \text { Prescaler } & \text { TP600 } £ 37.50\end{array}$

New

Presensitised PC Boards, Developer. U.V. units, Toyo miniature Fans 230v AC

POSTAGE/PACKING

Mini Metal Detector/Voltage Tester for locating cable under plaster
£ 9.95
Flow/Speed Sensors for monitoring fuel consumption elec tronically in vehicles

Just one of the exciting Leader range

LB0508A
OSCILLOSCOPE
With 20 MHz DC
bandwidth and 10 mv input sensitivity on a $5^{\prime \prime}$ screen this universal oscilloscope is suitable for a wide range of applications.

Send SAE for details of full range.

Marshall's 80/81 catalogue is now available by post, UK 75p post paid Europe 95 p post paid: Rest of world $£ 1.35$ post paid.

[^4]
ILP HI FI MODULES

Power Amplifiers

HY30	$£ 7.29$
HY60	$£ 8.33$
HY120	$£ 17.48$
HY200	$£ 21.21$
HY400	$£ 31.83$
Pre Amplifiers	
HY6	$£ 6.44$
HY66	$£ 12.19$
Power Supplies	
PSU30	$£ 4.50$
PSU36	$£ 8.10$
PSU60	$£ 4.75$
PSU70	$£ 13.04$
PSU180	$£ 21.34$

MULTIPLEX NICKEL

CADMIUM CELLS
Type S101 (HP4)
Type SubC (HP11)
£1.75
Type SubD (HP2)
£1.95
Friwo Chargers for above Penlight 4: accommodates $1-4$ size HP7
£5.50
Combibox FW611: accommodates HP7. HP11
£13.25

NOTE ALL PRICES NET
 EXCLUDING VAT

CAMBRIDEE LeARNING EvTERPRISES
Microcomputers are coming - ride the wave! Learn to program. Millions of jobs are threatened but millions will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency, with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program,

debugging, and clear documentation
BOOK 1 Computers and what they do well; READ. DATA. PRINT, powers, brackets variable names; LET; errors; coding simple programs. BOOK 2 High and low level ianguages; flowcharting; functions; REM and documentation; INPUT, IF .. THEN, GO TO; limitations of RESTORE; drober derinion. BOH RESTORE; debugging; arravs: bubble sorting; TAB BOOK 4 Advanced BASIC; subroutines strings; files; complex programming; examples; glossary

Also THE BASIC HANDBOOK (BHB) $\mathbf{f 1 1 . 5 0 \quad \text { An encyclopaedic }}$ guide to the major BASIC dialects. A must if you use other peoples programs
and: ALGORITHM WRITER'S GUIDE (AWG) $£ 4.00$ Communicate by flow chart! Learn to use Yes/No questions for: procedures, system design, safety, legislation etc

Understand Digital Electronics

Written for the student or enthusiast, this course is packed with information, diagrams, and questions designed to lead you step by-step through number systems and Boolean algebra to memories, counters, and simple arithmetic circuits; and finally to an understanding of the design and opera
 tion of calculators and computers
BOOK 1 Decimal Octal, hexadecimal, and binary number systems and conversion between number systems; negative numbers; complementary systems. BOOK 2 OR and AND func Hons: muftiple input gates; truth tables; De Morgan's Laws; canonical torms; logic convenadders; subtraction; processors and ALU's; multiplication and division. BOOK 4 ffip flops; shift registers; asynchronous, synchronous, ring, Johnson, and exclusive-OR feedback counters; ROMS and RAMS. BOOK 5 Structure of calculators; keyboard encoding. decoding display-data; register systems; control unit; PROM; address de-coding. BOOK 6 CPU; memory organisation character representation; program storage; address modes; in put/output systems, program interrupts; interrupt priorities; programming, assemblers; com puters; executive programs; operating systems.
DIGITAL COMPUTER LOGIC \& ELECTRONICS. (DCL) £7.50
A course covering the material in italics above, but at a slower pace (4 vols)
GUARANTEE - No risk to you. If you are not completely satisfied your money will be refunded without question, on return of the books in good condition. CAMBRIDGE LEARNING LIMITED, UNHT 21, RIVERMILL SITE, FREEPOST, ST, IVES,

- $=$

FOUR WAYS TO PAY

$$
D C L \quad(£ 7.50)
$$

1) A U.K. cheque or a U.K. posial order (Not Eire or overseas)
2) A bank draft, in sterling on a London bank (available at any major bank)
3) Please charge my Access/M Ch \square Barclay/TrustC/Visa \square Am. Exp. \square Diners \square
4) Or phone us with these credit card details - 048067446 (ansaphone) 24 hour service

Expiry date
Card No
Signed
THESE PRICES COVER THE COST OF SURFACE MAIL WORLDWIDE AIRMAIL
Eur, N.Af, Mid.E. add $1 / 3$ to price of books: Jpn, Aus, N.Z. Pcfc add $2 /$: elsewhere add $1 / 2$

Name
Address

Cambridge Learning Limited, Unit 21, Rivermill Site, FREEPOST. St. Ives, Huntingdon
Cambs PE174BR England
U.K. Delivery: up to 28 days

Reg. in Eng. No. 1328762

April issue on sale Sat., March 14. Keep in touch with the dramatic changes in the motorcycling world by reading our great value-for-money magazine, every month.
In the April issue.

SPRING BIKE BUYERS

 GUIDE what to look for in pertormance and economy when choosing a new or second hand bike.
SUZUKI SPECIAL

Off-road sports plans for 1981 and a road test of their GSX 400 and GSX 550LT models.

TOOLS OF THE TRADE

Home servicing pays if you've got the right equipment for a basic workshop

THREE BIKE TRAIL TEST An and all your regular features and tests! Motorcycling out every month. everything for the motorcyclist. Place a regular order! 60p.
 (

IF M USIC IS YOUR INTEREST

Since 1972 Clef Products have consistently produced leading designs in the field of Electronic Musical Instruments, many of which have been published under the authorship of A. J. Boothman. With musical quality of paramount importance new techniques have been evolved and the latest musically valid technology has been incorporated into projects which have been successfully completed by constructors over a wide range of technical capability.

The most advanced form of Touch Sensitive action simulating piano key inertia by patented technique.

SIX DCTAVES $£ 207$
(component kits include keyboard and may be purchased in four stages)
$7 \frac{1}{4}$ OCTAVES f 232
Four mixable voices for serious tone variation plus electronic chorus and flanger effects. See lists for Cabinets, P.A. \& Manufactured Pianos.

Back up TELEPHONE advice to our customers is available direct from the Designer of all kits advertised.

STRINGS

P.E. STRING ENSEMBLE

Versatile String Synthesizer with split keyboard facility and impressive voices. 49 note organ diode keyswitch system with four pitches plus two phase Chorus generator. Kit includes Swell Pedal.

COMPONENT KIT $£ 169$

ROTOR-CHORUS

Comprehensive two speed organ rotor simulator plus a three phase chorus generator on a single $8^{\prime \prime} x$ $5^{\prime \prime}$ p.c.b. The kit includes all components for mains operation and a stereo headphone driver p.c.b. Easily integrated with existing organ/amplifier system.

COMPONENT KIT $£ 89.00$

KEYBOARDS

Our Square Front Keyboards are chosen for their superior feel to the discerning musician whilst giving adequate physical strength for the high impact playing present in the Piano application.
49 NOTE C-C $£ 25.00$ QUANTITY 73 NOTE F-F $£ 39.00$ ENQUIRIES 88 NOTE A-C $£ 47.00$ WELCOME

MASTER RHYTHM

As published in Practical Electronics
FULLY PROGRAMMABLE TWENTY-FOUR PATTERNS EIGHT PARALLEL TRACKS TWELVE INSTRUMENTS SEQUENCE OPERATION
Kit includes all components to build this comprehensive User Programmable Rhythm Generator in an attractive metal case with finished case, hardware and wire.
KIT - £79.00 BUILT - £114.00

OUR PRICES INCLUDE V.A.T., CARRIAGE \& INSURANCE Please send S.A.E. for complete lists or use our telephone BARCLAYCARD service. Very competitive EXPORT rates Australia please contact JAYCAR in Sydney.

ALL INSTRUMENTS MAY BE SEEN IN DUR SHDW RDOM.

[^5]
INDEX TO ADVERTISERS

Acorn
Aitken Bros
Audio Electronics
Barrie Electronics
Bib Hi-F
8,9,10,11,12,13
Bi-Pak 8,9, 10, 11, 12,13
Bolster Instruments Co
British National Radio \& Electronics School
Butterworths
Cambridge Kits
Cambridge Learning
C.U.A

Chromasonic Electronics
Clef Products
Computer Components (Teleplay)
Crofton Electronics
Crompton Parkinson
C.R. Supply Co

77 6 9 4
 3

Davian

Doram

```
Electrovalue

\section*{Feltgiow}

Flairline Supplie
forgestone
GJD Electronics
Global Speciatists Corporation3.77
Hall, Adam (P.E. Supplies) ..... 79

Hiykon Limited

Home Radio

House of Instruments

I.C.S. Intertext
I.L.P. Electronics
```

Jayen Developments

Keelmoor
Litesold
L \& 8 Electronics

Maclin-Zand

Maplin Electronic
Marick
Marshall, A
Micro Circuits
Modern Book Co.
Modus Systems
Parndon
PC Electronics
PC Wholesale
Phonosonics
PKG Electronics
Progressive Radio
Proto Design
Radio Component Specialists
Radio \& T.V. Components
Rapid Electronics
Saxon Entertainments
Science of Cambridge
Scientific Wire Co
Sentinal Supply
Service Trading
Swanley Electronics

Tempus

Technomatic
Titan
T.K. Electronics

TUAC

Vero
Videotone
Watford Electronics
Williamson Amplification
William-Stuart Systems (Video Music)
William-Stuar Systems (8ig Ears)
Wilmslow Audio
Yale Products

WORLD RADIO

T.V. HANDBOOK 1981

A Complete Directory of
International Radio \& Television.
Price: $£ 10.50$
CMOS HANDBOOK
by D. Lancaster Price: $\mathbf{£ 7 . 6 0}$
THE CP/M HANDBOOK WITH MP/M
by R. Zaks
Price: $\mathbf{f} 9.95$
THE MASTER GUIDE TO
ELECTRONIC CIRCUITS
by T. M. Adams
Price: $\mathbf{f 8 . 7 5}$
THE TTL DATA BOOK FOR
DESIGN ENGINEERS
by Texas
HOW TO USE INTEGRATED CIRCUIT
LOGIC ELEMENTS
by J.W. Streater
PRACTICALTROUBLESHOOTING
WITH THE MODERN OSCILLOSCOPE
by R. L. Goodman
by I. Sinclair
Price: $\mathbf{f 6 . 2 5}$

Price: $\mathbf{f 4} \mathbf{5 0}$
TELEVISION RECEPTION PRINCIPLES
AND CIRCUITS
by K. J. Bohlman
Price: $\mathbf{f 5 . 5 0}$
NEWNES BOOK OF VIDEO
by K. G. Jackson
Price: $\mathbf{£ 6 . 5 0}$
*ALL PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET LONDON W2 1 NP

Phone 01-4029176 Closed Saturday 1 p.m.

It's easy to complain about advertisements.

Every week, millions of advertisements appear in the press, on posters or in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice and are legal, decent, honest and truthful.

But if you find one that, in your opinion, is wrong in some way, please write to us at the address below.

We'd like you to help us keep advertising up to standard.

The Advertising Standards Authority.
A.S A Ltd. Brook House. Torrington Place, London WCIE 7H

Superior quality ideal for Halls/PA systems. Disco's and Gruups. Two inputs with Mixer Volume Controls. Master Bass. Treble and Gain AC 240 V (120 V available). Blue wording on black cabinet.
BAKER 150 Watt AMPLIFIER 4 Inputs
build kit. Controls up to 480 watts AC mains. Printed Circuit. $£ 3$ DELUXE MODEL Ready Bult. 800 watts $f 4$
STEREO $\overline{\text { PEE•AMP }} \overline{\mathrm{KIT}}$. All parts to build his pre-amp. 3 inputs for
high medum or low gain per channel, with volume control and P.C. high medum or low gain per channel. with volume control and P.C.
Board. Can be ganged to make mult-way stereo mixers.
f2.95
R.C.S. SOUND TO LIGHT CONTROL KIT

Complete kit of parts with R.C.S. printed circuit. Thre
channels. Up to 1.000 watts each. Will operate lirom

Hi -Fi and all Disco Amplifers. Cabınet extra $£ 4 \cdot 50$ Post 95 p
200 Watt Rear Reflecting White Light Bulbs. Ideal for
200 Watt Rear Reflecting White Light Bulbs. Ideal for Disco
Lights. Edison Screw 75 peach or 6 for $£ 4$, or 12 for $£ 7$. So. - Lughts. Edison Screw 75 peach or 6 for $£ 4$, or 12 for $£ 7$. SQ.

MAINSTRANSFORMERS Primary 240V A.C. ALL POST 99 D
$250-0250 \mathrm{~V} 70 \mathrm{~mA} .6 .5 \mathrm{~V} .2 \mathrm{~A} . ~$
 $300.0300 \mathrm{~V} 120 \mathrm{~mA} .2 \times 6.3 \mathrm{~V} 2 \mathrm{AC} . \mathrm{T} .5 \mathrm{~V} 2 \mathrm{~A} . .$.
GENERAL PURPOSE LOW VOLTAGE.
2 amp 3.4.5.6.8, 9. 10,12 . 15, 18, 25 and 30 V
1 amp 6.8. $10.12 .16,18.20,24,30.36,40,48.60$
2 amp 6.8. $10,12,16,18.20,24,30.36 .40 .48 .60$

? amp 6. 8. 10. 12. 16. 18. 20. 24. 30. 36. $40.48 .60 \ldots .59 .50 ~$
5
ampt.

6V. 500 mA	E2.00	$6.0-6 \mathrm{~V} .100 \mathrm{~mA}$............. $£ 1.50$
12 V .100 mA	. 11.30	20V. 40 V .60 V .1 amp 54.60

 30 V .5 amp and 17 V7v. $2 \mathrm{amp} . ~$
0.54 .00
0.8 .10 .16 V tamp
$£ 2.50$ $9 \mathrm{~V}, 3 \mathrm{amp}, \ldots .53 .50$
$15-0.15 \mathrm{v} 2 \mathrm{amp} .53 .75$
 AUTO TRANSFORMERS 115 V to 240 V 500 W 12.00

R.C.S.LOUDSPEAKER BARGAINS

 $2 \mathrm{in} . \mathrm{E} 6$
$15 \mathrm{ohm} .31 \mathrm{in} .5 \times 3 \mathrm{in} .6 \times 4 \mathrm{in} .7 \times 4 \mathrm{in} . \mathrm{f} 1.50$.
$25 \mathrm{ohm} .3 \mathrm{in} .5 \times 3 \mathrm{in} .7 \times 4 \mathrm{in} . £ 1.50: 120 \mathrm{ohm}, 3 \mathrm{in}$. dia. $£ 1.50$.
R.C.S.LOW VOLTAGESTABILISED
POWER PACKKITS 90100 mA All parts and instructıons with Zener diode phinted cir cuit, rectifiers and available 6 or 7.5 or 9 or 12 V d.c. up to 100 mA . State voltage.

 THF."INSTANT"BULK TAPE ERASER Suitable for cassemes. and all sizes of tape reels. Leatiet S.A.E.
$f 8 \quad \stackrel{\text { Pos }}{95 p}$

ALUMINIUM CHASSIS 18 s.w.g. Undrilled. 4 sides, riveted

 $14 \times \sin 60 \mathrm{p}: 12 \times 5 \mathrm{nn}$. $60 \mathrm{p}: 16 \times 10 \mathrm{in} . £ 1.40: 16 \times 6 \mathrm{~m} .40 \mathrm{p}$. ALUMINIUM BOXES. MANY SIZESIN STOCK

HIGH VOLTAGE ELECTROLY TICS		.-+,
8/800V 51.20	20	$32+32 / 500 \mathrm{~V}$. $\quad 11$
16/500V..........73p		$40+80 / 500$
32/500V.........75p	$x+16+50 \cdots \cdots .75 p$	$16+32+32 / 500 \mathrm{~V}$.

OE LUXE BSR HI-FI AUTOCHANGER

Stereo Ceramic Cartridge
Plays 12 in . IOnn., or 7 in records
Autoor Manual. A hughquality unit
2401 AC

Sue $13 \frac{1}{2} \times 11 \frac{1}{4}$ Post on Belou mutor board 3 j 1 ln Decks

BSR Single Player P207 cuerng de vice. ceramic cartridge. £15

BSR. C 172. Shim arm. Metal Turntable Ceramic
Head. Cueng Device Auto Stop

Radio Components Specialists

337, WHITEHORSE ROAD
CROYDON, SURREY, U.K. TEL: 01-684 1665.

[^6]High intensity muitt turn high voltage, neon glow
discharge flash tube Design for ignition timing et

WHY PAY MORE?

METERS (New) - 90 mm DIAMETER
 $0-50 \mathrm{~A}, \mathrm{O}-100 \mathrm{~A}$
D.C. Vott. $15 \mathrm{~V}, 30 \mathrm{~V}$

VABIABLE VOLTAGE TRANSFORMERS
INPUT 230/240V a.c. 50/60 OUTPUT 0-260V $\begin{array}{ll}200 \text { watt (} 1 \text { amp inc ac voltmeter } & \mathbf{£ 1 4 . 5 0} \\ 05 \mathrm{KVA}\left(2 \frac{1}{1} \text { amp (MAX) }\right. & \mathbf{£ 1 8 . 0 0}\end{array}$ $1 \mathrm{KVA}(5 \mathrm{amp}$ MAX)
$2 \mathrm{KVA}(10 \mathrm{amp}$ MAX) $2 \mathrm{KVA}(10 \mathrm{amp}$ MAX)
3 KVA $(15 \mathrm{amp}$ MAX $)$ 5 KVA 25 amp MAX) 10 KVA 150 amp MAX)
15 KVA 175 amp MAX)

3-PHASE VARIABLE VOLTAGE

 TRANSFORMERS HEAVY DUTY SOLENOID. mf by Magnetic Devices. 240 V. A.C. intermit-
ent operation Apprax. 20 in pull at
 2V D.C. SOLENOID

4 kp . pull. Easily removable from plate. Ali chassis contanning 4.24 V D C. Push Solenoids (1 $\frac{1}{2}$ th.
approx) 5 -fig Counter 6 min photo cells. Sub-min. Microapprox) 5 -fig Counter 6 min photo cells. Sub-min. Micro
switches etc. etc. Ex-equip. London Transport Printer. Price $£ 9.00 £ 1.00$ p \& p (total incl VAT $£ 11.50$
12V. D.C. Solenoid approx 1 lb pull. Price $\mathbf{£ 1 . 4 0}$ p. \& p. 30 p
(total incl. VAT $£ 1.96$). SOLENOIDS
WESTOOL SERIES D6 Model A3 24 V D.C. Price $\mathbf{£ 1 . 5 0 \cdot 5 0 p}$ 0. \& p. (Total incl. VAT £2.30)

WESTOOL SERIES D4 Model A. 24 V. D.C. Price f1.00 - 30p p. \& D (Total inct. VAT £1.50)

AG/GT 24V.D.C. 70 ohm Coll Solenoid Push or Pull. Adjustable travel to $3 / 16$ in Fitted with mounting brackets and spark sup-
pressor. Size. $100.65 \times 25 \mathrm{~mm}$. Price: 3 for $£ 2.40$. 30 p . P \&

800 WATT DIMMER SWITCH

 Easily fitted. Will control up to 800 W of all lights except fuorescent at main50 p p. \& p. (5.06 inc. VA
REEO SWITCHES Size 28 - p. \& p. 20 p . Itotal incl.

MICRO SWITCHES
Sub Min Honeywell Lever m / s type 3115 m 906n
These V3 yopes
Button types (Pye) 10 for $\mathbf{£ 3 . 0 0}$ ($\mathbf{£ 3 . 4 5}$ incl VAT) $) ~$
Short Lever type 16 amp rating (Grouzet) $\mathbf{£ 4 . 0 0}$
$(\mathbf{£ 4 . 6 0} \mathbf{i n c l}$ VAT)
Roller Type (Bonnella) 10 for $\mathbf{£ 3 . 5 0}$. ($\mathbf{£ 4 . 0 3}$ incl. VAT) N.M.S DP. C/O lever m/switch mig by Cherry Co. USA. Precious metal
low resistance contacts. 10 for $\mathbf{£ 2 . 2 5}$ P. \& P. 30p. Total inc. VAT low resistance contacts. 10 tor $\mathbf{£ 2 . 2 5}$ P. \& P. 30p. Total inc. VAT
$\mathbf{£ 2 . 9 3}$ (min 10 .
N.M.S.

SOLID STATE EHT UNIT

Input 230 V ac. Fully isolated output 10 mm spark. Approx.
15 Kv Built in 10 sec Timer Easily modified for $20 \mathrm{sec}, 30$ sec, 10 a continuous operation
Designed for boiler ignition
physics and electronics, eg. Duzens of uses in the field of etc...EHT. starter or iaser xenons csr lamps VAN de GRAFF generator, loss of vacuum detector, OUDINI coils etc Size: Length 155 mm , width 85 mm , height 50 mm , Weight 530 grammes, Price $\mathbf{f 5} \cdot \mathbf{0 0} \cdot 75$ pence post \& packing.
Total inc. VAT $\mathbf{f 6 , 6 1}$.

A.E.G. CONTACTOR

 20 mp 1 break: 60 V : 20 amp . Price: $\mathbf{5 5 . 5 0}+50 \mathrm{p}$ P. \& P P
(C6.90 inc. VAT \& P.). ARROW-HART MAINS CONTRACTOR, Cat. No $130 A 30$ Coil 250 V . or 500 V . A. C. Contacts. 3 make 50 amp up
to 560 V . A.C. $20 \mathrm{~h} . \mathrm{p}$ at 440 V . 3 phase 50 Hz . Price: $£ 7.75+\mathrm{p}$,hich BLOWER.
SMITH BLOWER
Type FFB. 1706. Small. quier. smooth running, 240 V . A.C. operation. Output aperture $45 \times 40 \mathrm{~cm}$. Overall size $135 \times 165 \mathrm{~cm}$.
Flange mounting. Price: $\mathbf{£ 4 . 2 5}$. P.\& P. 75p. Total: $\mathbf{£ 5 . 7 5 \text { inc. P. }}$
\&AT N.M.S
CENTRIFUGAL BLOWER UNIT
Powered by GEC $230 / 250 \mathrm{~V}$. $2850 \mathrm{rp.m}$. motor producing
approx. 120 cfm . Aperture 65.90 mm . Overall size 222.225

24 volt. D.C. BLOWER UNIT
Precision 24 volt DC 08 amp Blower that works well on 12 V
04 amp DC Producing 30 cuft min at normal air pressure.
INSULATIONTESTERS NEW!
suitable for bench or field work constant speed suitable for bench or field work constant speed
clutch Size L Bin W 4 in H 6in weight $6 \mathrm{lb}, 500 \mathrm{~V}$. 500 megohms £49.Post 80 o If 57.27 inc VAI P P) 000 V . 000 MO f55 Post 80 C64.17
Yet another outstanding offer
IMFD 600 V Dubilier

ro for $£ 150$ p\&o 50 if 230 mc VAT + p\&pt $\begin{array}{lll}\text { 3KVA } 5 \text { amp per phase max. } & \mathbf{£ 1 0 6 . 4 3} & \text { Carriage, packiny } \\ \text { GKVA } 0 \text { amp per phase max. } & \mathbf{£ 1 5 9 . 3 7} & \text { \& VAT extra. }\end{array}$

LT TRANSFORMERS

 Total Incl VAT $f 26.11$.
$0-6 V / 12 V$ at 20 amp $16.20 P$ \& $f 100$ ($£ 19.78$ ine VAT) $0-12 \mathrm{~V}$ at 20 amp or $0-24 \mathrm{~V}$ at $10 \mathrm{amp} £ 14.90$ P. \& P. $£ 1.50$ $(£ 18.86$ inc. VAT \& P)
$0-6 V / 12 V$ at 10 amp $\mathbf{f 9 . 1 0} \mathrm{P}$ \& P f $1.50(£ 12.19$ inc. VAT) $0-6 \mathrm{~V} / 12 \mathrm{~V}$ at 10 amp £9.10 P. \& P \& $1.50(f 12.19$ inc. VAT)
$0-6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$ at 20 amp $£ 20.90$ P. \& $\mathrm{P} . \mathrm{f} 2.00$ (f26.34 inc VAT \& P)
$0.10 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V}$ at 10 amp $£ 11.55$ P \& P. $£ 180(£ 15.35$ inc. VA $)$ Other tyoes in stock phone for enguires or send sae for leaflet

HY-LIGHT STROBE KIT MK IV

Latest type Xenon white light flash tube. Solid state
timing and triggering circuit $230 / 240 \mathrm{~V}$ a.c. operation. Designed for larger rooms, halls, etc. Speed adjustable 20 to.s. Light output greater than many iso called 4
oulel strobes Hy Light Strobe Kit Mk IV. $£ 22.00 \cdot$ E 1.50 Jouie) strobes. Hy Light Strobe Kit Mk IV. $£ 22.00-£ 1.50$ and retlector for Hy-Light $£ 9.00$. Post $£ 1.50$ ($£ 12.08$ incl. VAT \& P , Super Hy-Light Strobe (approx. i 6 joules)

Suitable case $£ 11.00, £ 1.50$ P \& P ($£ 14.38 \mathrm{incl}$. VAT \&
P \& P)
Super Hy Light Strobe Kit, details on receipt of foolscap sae.
XENON FLASHGUN TUBES
Range available from stock. S.A.E. for details.
ULTRA VIOLET BLACK LIGHT
FLUORESCENT TUBES
$\mathbf{4 f t} .40$ Watt $\mathbf{£ 8 . 7 0}$ inc. VAT $\mathbf{£ 1 0 . 0 0}$ (callers only).
$\mathbf{2 f t} 20$ watt $\mathbf{£ 6 . 2 0 . ~ P o s t ~} 75 p$ ($\mathbf{£ 7 . 9 9}$ inc. VAT $+P$)
(For use in stan bi-pin fittings)
$\mathbf{1 2 i n . ~} 8$ watt $£ 2.80$. Post 35 p . ($£ 3.62$ inc. VAT $+P$)
9in. 6 watt $£ 2.25$. Post $35 p$. ($£ 2.99$ inc. VAT + P).
6 in. 4 watt $£ 2.25$. Post 35 . $(£ 2.99$ inc. VAT + P.

 400 watt UV lamp and ballast complete $£ 38.00$. Post $£ 3.50$ ($\mathbf{£ 4 7 . 7 3}$ incl. VAT + P). 400 watt UV lamp only $£ 14.00$. Post
PROGRAMME TIMERS
240 V A.C. operation. 12 individually adjustable cams. $£ 7.50$

Superior Quality Precision Made

 NEW POWER RHEOSTATS25 wasly rated 10.25 50, 100/250/5001 25 WAT $10 / 25$ 50, 100/250/2
15 k . £2.80. Post 20p ($\mathbf{~} \mathbf{3 . 4 5} \mathrm{in}$

50 WATT 250 € £2.90. Post 25 p (£3-62inc. VAT \& P) 100 WATT. ${ }^{1} 5,10,25 / 5010025050$
$35 \mathrm{k} \Omega \mathbf{f 6 . 9 0} \mathrm{p}$. $\mathrm{p} .35 \mathrm{p}(\mathbf{f 8 . 3 4} \mathrm{incl}$ VAT).
dia brass bush Ideal for above Rheostats 24p each
Wide range of $A C$ and $D C$ relays
avaizabe from slock. Phone or write
inver enquiries. UTher types available phone for details N M S
$\mathbf{2 3 0 / 2 4 0 V}$ A.C. Relays: Arrow $2 \mathrm{c} / \mathrm{o} 15 \mathrm{amp} \mathbf{£ 1 . 5 0}$ (£1-96 inc VAT \& P type $3 \mathrm{c} / 0.10 \mathrm{amp} £ 1.10$ ($£ 1.50$ incl. VAT \& P P). $\mathbf{~} \mathbf{2 3 0 / 3 5}$ plus P \& P. 20 p. Total incl VAT $£ 1.78$. mp contacts f 1.35 plus P \& P 20 p Total incl. VAT $£ 1.78$.
D.C. Relay, sealed $6 / 12 \mathrm{~V}$. D.C. 2 CO io amp contacts Single hole fixing Push on contacts. $£ 1.30$ plus P. \& P. 20 p $12 V$ D.C. 2Co. open type 10 amp contacts $£ 1.25$ plus P. \& P
 plus P. \& P. $20 p$. Total incl. VAT $£ 1.73$.
Mercury Wetted contact relay mig. by Clare. Type HGSM Mercury Wetted contact relay mig. by Clare. Type HGSM
$1003.18 / 24 \mathrm{~V}$ D C ico $£ 2.00$ plus P \& P. 20 . Total incl $V A T$
Reed Relay mig. by Alma. Type CPR1/D 6/9V D.C. 700 ohe, coil. 5 for $£ 2.50$ plus P \& P. 50 p. Total incl. VAT £3.45.
D.C. Relays: Sealed 12 V 1 cio 7 amp octal base $£ 1.00$ £1.38 D.C. Relavs: Sealed $12 \mathrm{~V} 1 \mathrm{c/o} 7 \mathrm{amp}$ octal base $\mathbf{£ 1 . 0 0}$ (£1.38
inc. VAT \& P). Sealed $12 \mathrm{~V} 3 \mathrm{c} / \mathrm{o} 7 \mathrm{amp} 11$-pin $£ 1.35(\mathbf{f 1 . 7 8}$
 KMKI Relay. 230V. A.C. $1 \mathrm{c} / \mathrm{o}$. open type 10 amp contact. mf^{f} by "Keyswitch" 80p. + 20p. p. \& p. ($\mathbf{E} 1.15$ incl VAT). 5 for $£ 3.75$ posipaid ($\mathbf{£ 4 . 3 2}$ incl. VAT).
Heliermann Deutsch. Hermetically sealed sub-min. Relay 12 24 V . D C. $2 \mathrm{c} / \mathrm{o} 850 \mathrm{ohm}$ coll 0.2 pitch. P C. mounting L. 20 mm

GEARED MOTORS
$2 \frac{1}{2} \mathrm{rpm}$ KLAXON motors approx. 2 Ib inch 71 rpm WYNSCALE motor approx. 101 lb inch Above three motors are designed for 110 V .
A.C. supplied with auto transformer 240 V ed A.C. supplied with auto transformer 240 V AC pperation. $\mathbf{f 9 . 2 5 p}$ \& p 75p. Total inc 56 , wm 240 V ac 501 b in 50 Hz
0 , mp Shft length 35 mm Dia
16 mm W! 6 kg 600 mit FRACMO.

All Mail Orders Callers Ample Parking Space Showroom open Mon-Fri.

57 BRIDGMAN ROAD. CHISWICK, LONDON W4 5BB 01-995 1560
ACCOUNT CUSTOMERS MIN. ORDER £ 10.00

9 Little Newport Street London WC2H 7JJ Phone 01-437 0576

Make it for a Song!

The New Maplin Matinée
 Amazing Value For Only £299.95
 $+£ 99.50$ for cabinet if required.

Easy to build. Latest technology - means less cost. less components and 80\% less wiring. Comparable with organs selling for up to $£ 1,000.00$. Two 49 -note manuals. 13-note pedalboard. All organ voices on drawbars. Preset voices: Banjo, Accordion, Harpsichord, Piano, Percussion. Pianosustain Sustain on both manuals, and pedalboard. Electronic rotor, fast and slow. Vibrato and Delayed vibrato. Reverb. Manual and Auto-Wah. Glide (Hawaiian Guitar Sound). Single finger chording plus memory. 30 Rhythms! 8 -instrument voicing. Major, Minor and Seventh chords Unique walking bass lines with each rhythm Unique countermelody line with each rhythm Truly amazing value tor money.
For full construction details contact Maplin Electronic Supplies Ltd

The complete buyers' guide to electronic components With over 300 pages, it's a comprehensive guide to electronic components with thousands of photographs and allustrations and page after page of invaluable data Get a copy now - It's the one catalogue you can't afford to be without

กา1กำ니ก

Maplen Elertanue Supplies Ltd
All mathon PO Bux 3. Rayleigh Essex SS6 8LR
Ieterphone Southend (0702) 554155 Saltem 10702) 542921 !
Shope
159161 Kang Street Hammersmath Lombon Wo Telaphone (0)11748(9a26
 Buth chope a leseded Mondery

[^0]: (c) IPC Magazines Limited 1981. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Midlard LP 1183 built preamplifer suitable for ceramic and auxiliary inputs. $£ 1.95$ plus 70 p p\&p
 Mullard (P1 184 buill pre amplifiar suitable for magnetic/ceramic and auxiliary inputs. $£ 4.95$ plus $80 p p \& p$
 Matching I.C. $10+10$ Stereo Power amplitin
 Matching I.C. $10+10$ Stereo Power amplitier kit. £3.95 plus $£ 1.15 p \& p$

 - Matching power supply kit with transtormer $\mathbf{£ 3 . 0 0}$ plus $\mathbf{f 1} 96$ p\&p Matching set of 4 slider controls complete with knobs for bass.
 treble and volumes. $\mathbf{f 1 . 7 0}$ plus $80 p p \& p$.

[^2]:

[^3]: PROGRESSIVE RADIO 31, CHEAPSIOE, LIVERPOOL L22DV

 MIMATIAE MAINS TRANSFORMERS. ALL 24OVAC PRIMARY. a!
 only 15 mA dran operatring voltage
 POCKET MULTIMETER MODEL NH55 2,000 ohms per volt 1000 vodes AC/DC. 100 MA OC current, 2 resistance ranges to 1 meg $\mathbf{~} 55.50 \mathrm{p}$.
 SOLDER SUCKER. High suction/tion nozie, $\mathrm{E4} .65 \mathrm{p}$.
 AMPHENOL COAX CONNECTORS. Plugs 47p, Sockets 42p, Elbows 90p, Reducers 13p. 8ack to back sockets HIGH IMPEDENCE HEADPHONES, mono 2.000 ohms Imp transducer type adjustable band and padded ear Dioce $£ 2.75$.
 SPECIAL
 OF
 SPECIAL OF FER STEREO HEADPHONES. 8 ohms, adjustable, standard stereo plug only E2.95p
 TNTERCOM UNITS (can be used as baby alarm) supplied with approx 60° cable, call bution 2 was $£ 5.25$ peir. 3
 way $\mathbb{E 7 . 2 5 p}$. WIRELESS INTERCOM, 2 units both operate on $240 V$ AC and mains connected. AM frequency way 7.25 . Wir
 180KHz. P29.95p.
 MINIATUAE TIE, PIN MICROPHONE, Omnt, 9 K mp., uses deasf aId battery (supplied) $\mathbf{C 4 . 9 5 p}$. LOW COST CONDENSER MIKE. Stuck wype Omm, 600 ohms, on/ott switch, standard jack plug only E2.95p. EM607
 CONOENSER MICROPHONE. MIghly polished metal stick mike, unl directional. 600 ohms. 30 . $18 K \mathrm{~Hz}$, On/oft
 Matalcase Special clearance offer of tools, (1) Side Cutters. 121 Long nosed Pliers. (3) Heavy duty oliers. insulaled handies, all at
 £1.00 eech. CRIMPING TOOL, for standard terminals also 6 gauge stripper and wire cutter, in sulated handles only $\mathbf{£ 2 . 3 0}$.

[^4]: A. Marshall (London) Ltd., Kingsgate House,

 Kingsgate Place, London NWG 4TA.
 Industrial Sales: 01-328 1009
 Also retal shops: 325 Edgware Road, London W2 40 Cricklawood Broadway. London NW2. 85 West Regent S Mail Order: 01-624 8582 24hr service. Glazgow. 108A Stakes Çroft, Bristol

[^5]: CLEF PRODUCTS (ELECTRONICS) LIMITED
 (Dept. P.E.) 44A Bramhall Lane South, Bramhall.
 Stockport, Cheshire SK7 1AH 061-439-3297

[^6]: Published approximately on the 15 th of each month by IPC Magazines Lid.. Westover House. West Quay Road. Poole. Dorset BHis $1 J G$. Printed in England by Chapet River Press, Andover. Hants. Solt Agents for Australia and New Zealand-Gordon \& Gotch (A/sia) Ltd.: South Africa-Central Nevs Agency Lid.
 Subscriptions INLANI) and OVERSEAS $£ 1180$ payable to IPC Services, Oakfield House. Perrymount Road. Haywards Heath. Sussex
 Subscriptions INLANI) and OVERSEAS $£ 11.80$ payable to IPC Services, Oakfield House. Perrymount Road. Haywards Heath. Sussex
 Practical Electronic, is whil whject to the following conditions, namely, that it shall not, without the written consent of the Publishers first given. be lent. resold. hired out or otherwise disposed of by way of Tri

