PRACTICAL

DECEMBER TEEO

GEp

COMP POCKET COMPUTER GREATEST BREAKTHROUGH YET COMPUTEA POWER THAT ONCE FILLED A ROOM CAN NOW $B E$ CARRIED IN YOUR POCKET!

- Programs in BASIC "QWERTY" Alphabetic Keyboard - 1.9K Random Access Memory - Long Battery Life.
Computer power that once filled a room can now be carried in your pocket! it's easy to load with ready-to-run software from cassette tape (interface and recorder optionall or program it yourself in easy-to-learn BASIC. 24 character
liquid crystal readout displays one line at a time. Special liquid crystal readout displays one line at a time. Special feature is advanced non-volatile memory alhws you to
power on and off without losing the contents of memory. power on and of without losing the contents of memory.
Note: Memory must be transferred to tape before changing batteries. Automatic statement compaction squeezes every ounce of memory space. Features power-off retention of programs and data. Pow'erful resident BASIC language includes multiple statements, math functions, editing, capability subject to RAM availability. Carrying case and capability subject
batteries included
Program
Real Estate
Civil Engineering $£ 13.95$ Games 1 E8.95
$\begin{array}{llll}\text { Aviation } & £ 13.95 & \text { Business Statistics } & £ 10.95 \\ & £ 13.95 & \text { Business Financial } & \mathbf{E 1 0 . 9 5}\end{array}$ Math Drill

COMING SOON THE MARTELL TV GAME

	EUROPE'S FASTEST SELLING ONE BOARD COMPUTER * 6502 based system - best value for money on the market. * Powerful 8K Basic - Fastest around Full Owerty Keyboard. 4K RAM Expandable to 8K on board. *Power supply and RF Modulator on board. No Extras needed -Plug-in and go. Kansas City Tape Interface on board. Free Sampler Tape including powerful Dissassembler and Monitor with each Kit. If you want to learn about Micros, but didn't know which machine to buy then this is the				
	40 pin Expansion Jumper Cable for Compukit expansion $\mathbf{6 8 . 5 0}+$ VAT				
	Build. Understand and Program your own Computer for only a small outlay		wn $\begin{aligned} & \text { KIT ONL } \\ & \text { NO EXT }\end{aligned}$		VAT
	Available ready assembled, tested \& ready to go $\mathbf{5 2 2 9}+\mathrm{VAT}$				
NEW MONITOR FOR COMPUKIT UK101 - In $2 K$ Eprom 2716 - Allows screen editing - Saves data on tape Flashing cursor Text scrolls down e22.00+VAT					
FOR THE COMPUKIT	Game Packs		Super Space Inva	(8K)	C8.50
			Space Invaders		C5.00
Assembler/Editor $\quad \mathbf{1 4 . 9 0}$	1. Four Games	¢5.00	Chequers		E3.00
Screen Editor Tape $\mathbf{E 5 . 9 0}$	2. Four Games	$\underline{5.00}$	Real Time Clock		53.00
All Prices exclusive VAT	3. Three Games 8K only	E5.00	Case for Compukit		C29.50

WE ARE NOW STOCKING THE APPLE II EUROPLUS AT REDUCED PRICES

Getting Sterted APPLE II is faster, smaller, and more Getting Started APPLE II is faster, smalier, and more
powerful than its predecessors. And it's more fun to use too powerful than its predecessors. A
because of built-in features like:

- BASIC - The Language that Makes Programming Fun. - High-Resolution Graphics (in a 54,000 Polnt Arrayl for Finely-Detailed Displays. Sound Capability that Brings Programs to Life. Hand Controls for Games and Othe 48 K 8ytes of RAM, 12K 8ytes of ROM: for Big-System Performance in Small Package Eigh. Accessory Expansion Stots to let the System Grow With Your Needs.
You don't need to be an expert to enjoy APPLE II. It is a complete, ready-to-run coinputer. Just connect it to a video display and start using programs for writing your ownl the first day. You'll find that its tutorial manuals help you make it your own personal problem solver

\section*{	THE VIDEO GENIE SYSTEM
E2	}

NEW REDUCED PRICES
 8K £399
 16K £499
 32K £599
 RRP $£ 795$ for 32 K

The PEDIGREE PETS
\qquad
\qquad
Interface PET IEEE - Centronics Parallel Not decoded $\mathbf{8 4 . 0 0}+$ VAT Decoded $\mathbf{7 7} .00+$ NOW IN STOCK
SUPER 80 COLUMN PET only $£ 825$
Clp GET YOURSELF A PRINTER FOR YOUR PET AND SAVE

A FORTUNE

 only $£ 299$Interface Cards E49
Full Pet Graphics including
cables. Ready 10 go.
Interfaces with APPLE, PET, EXIDY, TRS80, COMPUKIT and NASCOM

"Europes Largost Discount Personal Computer Stores"

Please add VAT to all prices - including delivery. Please make cheques and postal orders payable to COMPSHOP LTD.,
phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number

MAIL ORDER AND SHOP: CREDIT FACILITIES ARRANGED - send S.A.E. for application form.

14 Station Road, New Barnet, Hertfordshire, EN5 1QW (Close to New Barnet BR Station - Moorgate Line) Telephone: 01-441 2922 (Sales) 01-449 6596 Telex: 298755 TELCOM G

NEW WEST END SHOWROOM:

311 Edgware Road, London W2. Telephone: 01-262 0387 OPEN - 10am - 7pm - Monday to Saturday

COMPSHOP USA, 1348 East Edinger, Santa Ana. California, Zip Code 92705
Telephone: 01017145472526

нааитен
VSA
COMPUTER
COMPONENTS
PE MICROTUNE Part 1. by Martin Kent 26
A keep fit kit for your car
PE MASTER RHYTHM Part 1 by A. J. Boothman BSc. 32
Programmable Rhythm Generator
20 mA LOOP by Stephen Ibbs 40
Opto-isolated power for the teletype selector magnet
SPEECH SYNTHESIS by DrA. A. Berk 44Speech Board and interface designsSECURITY SENTINEL Part 2 by W. C. Dickinson54
Construction and installationDISCO DESK Part 4 by Ben J. Duncan6012 V subsystem; output routing and monitor switching
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles 23
IMS 1400 EF9365
MICROBUS by D.J.D. 52
Six BASIC programs for the Sinclair $\mathbf{2 X 8 0}$
INGENUITY UNLIMITED 64
Keyboard Switches-A True Peak-reading DC Voltmeter-Simple Pulse Generator
NEWS AND COMMENT
EDITORIAL 17
MARKET PLACE 18
New Products
IN DUSTRY NOTEBOOK by Nexus 21
Our man in the know remains optimistic
SPECIAL OFFER: IN CAR ENTERTAINMENT 24
Once again we bring you quality products at unbelievable prices COUNTDOWN 25
What to see; where and when to see it
SPACEWATCH by Frank W. Hyde 43
The Shuttle Telescope-The Heart of a Supernova-The Solar Wind READOUT 50
Frank Hyde closes the correspondence on Velikovsky
PATENTS REVIEW 59
Another installment in the chequered history of speaker design
POINTS ARISING 59
NEWS BRIEFS 59
INDEX FOR VOLUME 16 66

OUR JANUARY 1981 ISSUE WILL BE ON SALE FRIDAY, 12 DECEMBER 1980
(for details of contents see page 31)

[^0]
WATFORD ELEGTRONICS
 33/35, CAROIFF ROAD, WATFORD, HERTS, ENGLAND

VERO ELECTRONICS LTD RETAIL DEPT. Industrial Estate, Chandler's Ford, Hampshire SO5 3ZR

Tel: (04215) 62829

Wiring Accessories

The Vero range of wiring accessories are all highest quality 'professional' products, carefully selected to ease your interconnection problems. There's a full range of pins and DIP sockets (including low-profile) for solder or wire wrapping techniques and the popular Verowire prototype wiring system.
Add these to our established range of boards, boxes, frames and cases and you've got all you need for your project. It's all in our catalogue - just send 40 p. and it's yours by return.

Godespesed \＃sedronics

P．O．BOX 23， 34 SEAFIELD ROAD，COPNOR，PORTSMOUTH．
HANTS．，PO3 $5 B$.
组 Now，full spoc．dovices
LED ALARM CLOCK MODULE with bright $0.7^{\prime \prime}$ LED display and switched slarm out＊ put．Just add mains transformer and time sating switches for oparational clock At the
 SOUND EFFECTS MODULE Brand new，designed for＇Spaceman＇toy．Gives 5 audio／visual programs．Requires 8 ohm speaker（not supplied）．85p．Cat．No． 108. ． 14 oin DIL LED DISPLAYS Red，common anode， 0.3° digits with crisp，bright segments． 14 pin DIL package．Super value at $\mathbf{5} 2 \mathrm{p}$ ．Cat．No． 313 ．
POLARIZING FILTER MATERIAL $0.006^{"}$ thick plastic film．Any size cut－even 1 eq．inch． Max．width $19^{\prime \prime}$ any length．Only 3p per sq．Inch．Cat．No． 701.
lits of other uses too．Only $£ 3.95$ each．Cat．No． 204 ．
DIRITAL ALARM CLOCK CHIP MM5316 alarm clock chip．With dete E2．35．Cat．No． 203. MINI 8 DIGIT LED DISPLAY 8 diglt， 7 segment calculator style display．Common cothode， multiplexad，with $0.1^{\prime \prime}$ high digits． $99 p$ each．Cat．No． 312 ．
LM655 TIMER I．C．An extremely versatile I．C．to satisty most of your timer requirements． culator keyboards，excell
key action． 20 keys per board． 2 DIGITAL MULFINETER CMIP Builds into high accuracy dvm or paned meter．Requires ad－ ditional circuitry．With data and circuit．MM5330 only E3．66．Cat．No． 404 ． 0．1＂LED WAISTWATCH DISPLAY High brightness display in＇tegless flatpack＇style package．Requires fairly fine soldering．With data， $99 p$ each or 2 for $\mathrm{E1} 1.50$ ．
ty open contact．Super value at 15p each．Cat．No． 703.
SLIDER SWITCHES A minlatur slide switeh wo 2 pole new．16p each．Cat．No． 702.
AESISTORS 1 ohm to 10 megohms 512 series， 2 ohme to 1 megn ${ }^{2}$ Pp each of $8 p$ for 5 of same value．
有
10 each 22 uf， $12 p$ each． $4.0 \mathrm{uF}, 18 p$ each． 7 p each． $0.04,0.05,0.1 \mathrm{uF}, 8 \mathrm{p}$ each．
TRANSISTORS BC207，10 47 pf，Sp asch． 56 pf to 4700 pf，8p each． DIODES 1 N 3470 ， 4 p each or 25 for 50 p ．1N4003， $5 p$ each． 1 N 4148 ， 3 p each． 1 N 4151 ． $5 p$ CALCULATOR CHIP Nortec 4204， 4 function and constans．Not compatible with our calc． CALCULATOR CHIP Nortec 4204， 4 function and co
kbds．With data and calculator circuit． 80 p．Cat．No． 408.

Untestad Items

FLUORESCENT CALCULATORS Manufacturers rejects．Most repairable but no guarantees． 10 function with full memory．With＇repairing calculator info．©2．50．Cat no． 107 commen cathode． 10 for $99 p$ ．Cat No 311 guan） 10 seven segm

POST AND PACKINQ PLEASE ADD 40p（OVERSEAS ORDERS ADD EI）
LOTS MORE GOODIES IN OUR CATALOGUE，SEND MEDIUM SIZED SAE SATISFACTION QUARANTEED ON ALLITEMS OR FULL CASH REFUNDED

VAT PLEASE ADD 15\％TO THE TOTAL COST OF YOUR ORDER

6200

incredible
latest professional state－of－the－art 31／2－digit DMM－at really old－ fashioned prices！From just an unbelievable $£ 39.95$ inc．VAT，plus $£ 1.15$ p\＆p！

算 $1 \mathrm{mV}, 100 \mu \mathrm{~A}$ and
0.1Ω resolution！
．Measures AC voltage to 600V！
－Measures DC voltage to 1000 V ！
．Measures resistance
to 2 Megohms！
－Low power Ohm ranges！
－Displays mV，V and mA！
．0．8\％accuracy！
－Zero adjustment！
． 3 other models tool

This one－off price is so unbelievably low because the A／D converter and display are custom－built．This is a genuine，no corners cut top－spec DMM，that gives you all the features above ond 200 hrs continuous battery life on the $31 / 2$－digit LCD display：auto＇Batt＇warning：pair of tess leads；batteries：spare fuse and 6 months＇guarantee！This offer can＇t last for ever，so buy now．Remember，a DMM in the hand

Maclin－Zand Electronics Ltd

Plus three other DMMs in the range！ 6220 As the 6200，plus 10 Amp AC／DC measurement！ ONLY 49.95 inc．VAT ONLY $\subset 64.95$ inc．VAT！

ONLY E74．95 inc．VAT！ 110 As 6100 ．plus 10 Amp AC／DC measurement！ Add $\mathbf{1} 1.15$ pepp please．
wC1X OAP．

I believe you！Please send me the DMM／s as marked
—6600＠E41． 10 each，inc．VAT，p\＆p．Total price 6220 ＠ 451.10 each．inc．VAT，p\＆p．Total price $6100 @$ E66．10 each．inc．VAT．p\＆p．Total price

\qquad
Total cash／cheque enclosed \qquad ACCESS NO

Name
Address

Signed

 If you want an Autoranging，nit Display， $3 / 2$ digitLCD Ding，
For only 139.9
weive got to hand it to you
Introducing the
\qquad
 Cheques payable to
Maclin－Zand Electronics Ltd．，please
38 Mount Pleasant，London WCIX OAP
Tel．01－278 7369／01－837｜165

It's faster and more thorough than classroom learning: you pace yourself and answer questions on each new aspect as yougo. This gives rare satisfaction - you know that you are really learning and without mindless drudgery. With a good self-instruction course you become your own best teacher.

Understand Digital Electronics

In the years ahead digital electronics will play an increasing part in your life. Calculators and digital watches mushroomed in the 1970's -soon we will have digital car instrumentation, cash cards. TV messages from friends and electronic mail.
After completing these books you will have broadened your career prospects and increased your knowledge of the fast-changing world around you.

DIGITAL COMPUTER LOGIC AND ELECTRONICS $£ 7.00$
 This course is designed as an introduction to digital electronics and is written at a pace that suits the raw beginner. No mathematical knowledge is assumed other than the use of simple arithmetic and decimals and no electronic knowledge is expected at all. The course moves painstakingly through all the basic concepts of digital electronics in a simple and concise fashion: questions and answers on every page make sure that the points are understood Everyone can learn from it
 \qquad students, engineers, hobbyists,

 housewives, scientists. Its four A4 volumes consist of:Book 1 Binary, octal and decimal number systems; conversion between number systems; conversion of fractions; octa-decimal conversion tables.
Book 2 AND, OR gates; inverters; NOR and NAND gates; truth tables; introduction to Boolean algebra.
Book 3 Positive ECL; De Morgans Laws; designing logic circuits using NOR gates; dual-input
gates.
Book. 4 introduction to pulse driven circuirs; R-S and J.K flip flops; binary counters; shitt registers; half-adders.
DESIGN OF DIGITAL SYSTEMS $£ 12.50$
This course takes the reader to real proficiency. Written in a similar question and answer style to Digital Computer Logic and Electronics, this course moves at a much faster pace and goes into the subject in greater depth. Ideally suited for scientists or engineers wanting to know more about digital electronics, its six. A4 volumes lead step by step through number systems and Boolean algebra to memories, counters and arithmetic circuits and finally to an understanding of calculator and computer design.
Book 1 Octal, hexadecimal and binary number systems; conversion berween number systerns; representation of negative numbers; complementary systems; binary multiplication
and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive OR, NAND. NOR and exclusiveNOR functions: multiple inpur gates; truth tables; De Morgans Laws; canonical forms; logic conventions; karnaugh mapping; three state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback coumers; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding: decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control programme structure.
Book 6 Central processing unit (CPu): memory organization: character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Flow Charts and Algorithms

are the essential logical procedures used in all computer programming and mastering them is the key to success here as well as being a priceless tool in all administrative areas -presenting safety regulations, government legislation, office procedures etc.
THE ALGORITHM WRITER'S GUIDE $£ 4.00$ explains how to define questions, put them in the best order and draw the flow chart, with numerous examples.

GUARANTEE No risk to you.

If you are not completely satisfied, your money will be refunded upon retum of the books in good condition.
CAMBRIDGE LEARNING LIMITED, UNIT 27
RIVERMILL SITE, FREEPOST, ST, IVES, HUNTINGDON,
CAMBS., PE1 74 BR, ENGLAND.
TELEPHONE: ST. IVES (O480) 67446
All prices include worldwide postage (airmail is extra - plaase ask for prepayment invoice).
Please allow 28 days for delivery in U.K.

Microcomputers are coming - ride the wave! Learn to program.

Millions of jobs are threatened but millions more will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation. Harder problems are provided with a series of hints so you
 never sit glassy-eyed with your mind a blank. You soon learn to tackle really tough tasks such as programs for graphs, cost estimates, compound interest and computer games.
COMPUTER PROGRAMMING IN BASIC £9.00
Book1 Computers and what they do well; READ. DATA. PRINT, powers, brackets, variable names; LET; 'errors: coding simple programs.
Book 2 High and low level languages; flowcharting; functions; REM and documentation; INPUT, IF.... THEN, GO TO; limitations of computers, problem definition.
Book 3 Compilers and interpreters; loops. FOR....NEXT, RESTORE; debugging; arrays; bubble sorting; TAB.
Book 4 Advanced BASIC; subroutines; string variables; files; complex programming; examples; glossary

THE BASIC HANDBOOK $£ 11.50$

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time: A must for all users of BASIC throughout the world.

A.N.S. COBOL $£ 5.90$

The indispensable guide to the world's No. 1 business language. After 25 hours with this course, one beginner took a consulting job, documenting oil company programs and did invaluable work from the first day. Need we say more?

ORDER FORM

Please send me the following books:Dıgital Computer Logic \& Electronics @ £7.00 Design of Digital Systems @ $£ 12.50$ Algorithm Writer's Guide @ $£ 4.00$ Computer Programming in BASIC @ $£ 9.00$ BASIC Handbook@ £11.50 ANS COBOL @ £5.90 Your Booklist (Free)
I enclose a "cheque/PO payable to Cambridge Learning Ltd. for E.
("delete where applicable)
Please charge my:
*Access/American Express/Barclaycard/Diners Club/Eurocard/Visa/ Mastercharge/Trustcard
Credit Card No.
Signature
Telephone orders from credit card holders accepted on 048067446 (Ansafone).
Overseas customers (incl. Eire) should send a bank draft in sterling drawn on a London bank, or quote credit card number.
Name
Address

D.I.Y. KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. MINISONIC MK2 SYNTHESISER

A portable mains operated miniature sound synthesiser with keyboard circuits. Although having slightly fewer facilities than the large Formant and P.E. synthesisers the functions offered by this design give it great scope and versatlity

Set of basic component kits (excl. KBDA s a tuning pots
see list for options available) and PCB s (incl. Iayout charts $\begin{array}{rr}\text { KIT } 38-25 & \mathbf{£ 8 0 . 1 4} \\ & £ 1.00\end{array}$

P.E. 128-NOTE SEQUENCER

Enables a voltage controlled synthesiser to automatically play preprogrammed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and rhythmic pattern are externally variable.
Set of basic comps, PCBs and charts
Set of text photocopies
KIT76-7 $\mathbf{£ 3 5 . 5 6}$

P.E.16-NOTESEQUENCER

Sequences of up to 16 notes may be programmed by the use of external panet controls and fed into most voltage controlled synthesisers.

Set of basic comps, PCBs and charts
Set text photocopies
P.E.STRINGENSEMBLE

Amultivoiced polyphonic string instrument synthesiser.
Set of basic comps, PCBs \& charts
KIT 77-8 £109.72

ELEKTOR PHASING \& VIBRATO

Includes manual and automatic control over the rate of phasing \& vibrato, and has been slightly modified to also Include a 2 -input mixer stage
Set of basic comps, PCE \& char
Text photocopy
KIT 70-2 £21.67

ELEKTORFORMANTSYNTHESISER

A very sophisticatged synthesiser foe the advanced constructo who puts performance before price.

Set of basic comps. PCEs (as publ.)
Setof text photocopies
KIT 66-14
87.835 .45

ELEKTOR DIGITALREVERB UNIT

A very advanced unit using sophisticated I.c. techniques instead of mechanical spring lines. The basic delay range of 24 to 90 mS can be extended up to 450 mS using the extension unit. Further delays can be obtained using more extensions.
Main unit basic comps and PCB (as publ.)
Extension unit basic comps and PCB (as publ.) bl.)।

C49.95
Text photocopy
KIT 78
$£ 39.95$

ELEKTOR SEWAR

For use with Elektor Analague Reverb to give greater flexibility to the revert effects.

8asic comps, PC8 (as publ.)
Text photocopy
60 p

ELEKTOR RING MODULATOR
Compatible with the Formant \& most other synthesisers. Sel of basic comps \& PCE (as publ.)

Text photocopy
KIT 87-2
58.84
$38 p$

BASIC COMPONENTS SETS include all necessary resistors, capacitors, semiconductors, potentlometers and transformers. Hardware such as cases, sockets. knobs, keyboards, etc. are not Included but most of these may be bought separately. Fuller detalls of kits PCBs and parts are shown in our lists.

LAYOUT DIAGRAMS are supplied free with all PCBs uless "as published".

ELEKTOR CHOROSYNTH

A 21 -octave Chorus synthesiser with an amazing variety of sounds ranging from violln to cello and flute to clarinet amongst many others. Experienced constructors can readily extend the octave coverage.

Basic comps. PCBs and charts but excl. sw's
Text photocopy
KIT 100-8 $£ 44.39$

ELEKTORANALOGUEREVERB

Using i.c.s instead of spring-lines the maln unit has a maximum delay of up to 100 ms , and the additional set extends this up to 200 mS . May be used in either mono or stereo mode.
$\begin{array}{llll}\text { Main unit basic component set } & \text { KIT } & 83-4 & \text { £29.23 } \\ \text { Additional Delaybasic components } & \text { KIT B3-2 } & £ 20.07\end{array}$ Additional Delay basic components KIT B3-2 $£ 20.07$ PCB (as publ.) to hoid both kits Included in Kit 83-4 Text photocopy

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

ELEKTOR ELECTRONICPIANO

A touch-sensitive multiple-voicing piano using the latest integrated circuit techniques for the keying and envelope shaping, and virtually ellminating "bee-hive" noise hitherto inherent in previous electronic pianos.

5 -octave set of basic comps and PCBs (as publ.)
KIT 80-9 £149.42
Additional 3 -octave extension and basic parts and
$\dot{\text { PCBls (as published) KITBO-10 }}$ £58.32
Set of text photocopies
f1.81

P.E. GUITAREFFECTS UNIT

Modulates the atrack, decay and filer characteristics of a signal from most audio sources. producing B different switchable effects that can be further modified by manual controls.

Basic comps, PCB \& chart
Text photocopy

ELEKTOR FUNNY TALKER

Incorporates a ring modulator, chopper \& frequency modulator to produce fascinating sounds when used with speech \& music
$\begin{array}{lll}\text { signals. } \\ \text { Basic comos, PCB las publ.) KIT 99-1 } & \text { f9.60 }\end{array}$ Text photocopy

ELEKTOR FREQUENCY:DOUBLER

For use with guitars \& other electronic instruments to produce an output one octave higher than the input. Inputs and outputs may be mixed to give greater depth. $\begin{array}{lrr}\text { Basic comps, PCB (as publ.) KIT 98-1 } & \text { E5.48 } \\ \text { Text photocopy } & & 20 p\end{array}$

P.E. SPLIT-PHASE TREMOLO

A simple but effective substitute for a rotary cabinet. The outpu? of an intemal generator is phase-split and modulated by an inpu signal from an electronic guitar or other instrument. Output amplitudes, depth \& rate are variabie. May be fed to one or two amplifiers.

Basic comps. PCB \& chart KIT 102-3 £17.68 Text photocopy
$65 p$

P.E. MINISONIC WAVEFORM CONVERTER

A simple converter that modifies the Minisonic sawtooth waveform to produce triangle and sine outputs. Ideally one should be used with each Minisonic VCO.
Basic comps, PCB \& chart
KIT 96-1 £3.98

P.E.GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing. for example, flanging, vibrato, revert, fuzz and tremolo as well as other fascinating sounds. May be used with most electronic instruments.
Set of basic comps, PCBs \& charts (excl, SWs)
Set of text photocopies
KIT B5-5 £49.23

P.E.PHASER

An automatically controlled 6 -stage phasing unit with integral oscillator.

Basic components, PCB \& chart KITBB-1 f10.91
$\begin{array}{llr}\text { Basic components, PCB \& chart } & \text { KIT B8-1 } & \text { f10.91 } \\ \text { 2-Notch extension, PCB \& chart } & \text { KIT 88-2 } & \text { EB.36 }\end{array}$
Text photocopy

68p

NEW MORE INFORMATIVE LIST NOW AVAILABLE

ADD: POST \& MANDLING
U.K. orders: Kevboards add $£ 2.70$ each. Other goods: Under £5 add 50 p . under $£ 20$ add 75 p . over £20 add £1. Recommended insurance against postal mishaps: add 50 p or cover up to £50, £1 for £100 cover, etc., pro-rata. Insurance must be added for credit card orders.
N.B. Eire, C.I., B.F.P.O. and other countries are subject to higher export postage rates.

ADD 15% VAT

(or current rate if changed)
Must be added to full total of kits, discount post \& handling on all U.K, orders. Does not apply to Exports. or photocopies

EXPORT OROERS ARE WELCOME but to avoid delay we advise you to see our list for postage rates. All payments must be cash-with-order, in Sterling by Interational obtain list - Europe send 35p, other countries send
75 p.
Not
that our terms are peyment in advance

AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of the P.E projects butl from our kits and PCBs. The cases were built by ourselves and are not for sale. though a small
selection of other cases is avarlable. LIST-Send stamped addressed
envelope with all U.K. requests for free list giving fuller details of PCBs. kus and other components.
OVERSEAS enquiries for list Europe send $35 p$: other countries - -send 75 p.

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKIMBER-ALLEN KEYBOARDS as required for many published projects. The manufacturers claim that these are the finest moulded plastlc keyboards available. All octaves are C to C. the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminlum frame. 3 Octave ($\mathbf{3 7}$ notes) $\mathbf{2 5 . 5 0} \quad 4$ Octave (49 notes) $\mathbf{~} 32.25 \quad 5$ Octave (61 notes) $£ 39.75$

CONTACT ASSEMBEIES (gold-clad wire) - 1 required for each KBD note:
Type GJ-SPCO 33p ea. Type GB-2 pr N/O 371p ea.

P.E.V.C.F.

A voltage controlled filter extracted from P.E. Minisonic project.

Basic comps, PCB \& char KIT 65-1 $\mathbb{E 8 . 4 5}$

P.E. RING MODULATOR

Extracted from P.E. Minisonic project. Basic comps. PCB \& chart KIT 59-1

WIND \& RAIN EFFECTS UNIT

A slightly modified version of the original P.E. unit. Basic comps, PCB \& chart KIT 2B.1 $\$ 4.84$ Text photocopy

P.E.ENVELOPE SHAPER
 WITH VCA

Has an integral Voltage Controlled Amplifier, and has full manual control over the A.D.S.R. functions Besic comps, PCE \& chart KIT 50-1 £8.03 Text photocopy.

P.E.TRANSIENT

GENERATOR

An AOSR envelope shaper without VCA, and additionally providing Repeat-triggering enabling a synthesiser to be programmed for mandotin or banjo effects.
Basic comps. PCB \& chart KIT 63-2 $£ 7.62$ Textphotocopy

P.E.EXTERNAL-INPUT

SYNTHESISER-INTERFACE
Allows external inputs such as guitars, microphone etc. to be processed by synthesiser circuits. Basic comps, PCB \& chart KIT 81-1 §3.90

P.E.TUNING FORK

Produces 84 switch-selected frequency-accurate tones with an LED monitor clearly displaying beatnote adjustments.

Set of basic components. incl. power supply.
CBs \& charts KIT 46-3 E23.32
Text photocopy

P.E.TUNINGINDICATOR

A simple 4 -octave frequency comparitor for use with synthesisers and other instruments where the full versatility of KIT 46 is not required.

Basic components, PCB \& chart, but excl. sw.
Textphotocopy
KIT 69-1 $\quad 88.19$

P.E.DYNAMIC RANGE LIMITER

Preset to aunomatically control sound output levels. Basic comps. PCB \& chart KIT 62-1 $£ 5.31$

P.E.CONSTANT DISPLAY FREQUENCY COUNTER

A 4-digit counter for 1 Hz to 99 kHz with 1 Hz sampling rate. Readout does not count visibly or flicker due to blanking.

Basic components, PCB \& chert
Text photocopy
78

P.E.6-CHANNELMIXER

A high specification stereo mixer with variable
inpul impedances.
Basic components, (excl.sw's,) and set of PCBs and charts.
Extra 2 -channel set
KIT 90-8 \quad E84.62
$\begin{array}{ll}\text { Kith PCB } \\ \text { KTT } 90-9 & 〔 10.21\end{array}$
Set of Text photocopies
81.50

STEREOHEADPHONE

AMPLIFIER

Extracted from P.E. 6-channel mixer.
Basic components, PCB \& chart
KIT 92-1 \quad E5.68

DIGITAL EXPOSÚRE

UNIT
Controls up to 750 watts in $\frac{1}{4}$ second steps up to
10 minutes, with built-in sudio alarm.
Basic components, PCBs \& charts
Text photocopy

P.E.DISCOSTROBE

A 4-channel light show controller giving a choice of sequential, random. or full strobe mode of operation.

Basic components. PCB \& chart
Text photocopy
819.37

RHYTHM GENERATORS

Several avallable, including programmable 16 beat 64000 pattern, and pre-programmed 15 pattern using either M252 or M253 rhythm chips. A selection of effects instrument circuits is also available.

P.EVOICEOPERATED

 FADERFor sutomatically reducing music volume during talkover - particularly useful for discos

Basic components, PCB \& chart
KIT 30-1 $£ 4.37$
Text photocopy

P.E. DYNAMIC NOISE

LIMITER

Very effective stereo circuit for reducing the hiss found in most tape recordings.
Basic components, PCB \& chart
KIT 97-1 88.07
Text phatocopy
AMEFICAN
EXPRESS

Television ${ }^{\text {a }}$ ICS have helped thousands of ambitious people to move up into higher paid more secure jobs in the field of electronics - now it can be your turn. Whether you are 8 newcomer to the field or already working in the industry. ICS can provide you with the specialised rraining so essential to success.

Personal Tuition and Guaranteod Success

The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:

Telecommunications Technicians
Radio, T.V. Electronics Technicians
Radio Amateurs
Electrical Installation Work

Diploma Courses

Colour T.V. Servicing
CCTV Engineering
Electronic Engineering \& Mainténance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Carcer Courses

A wide range of other technical and professional courses are available including. GCE.

PAICES ARE CORRECT AT TIME OF PAESS. E. O. E. DELIVERY SUEUECT TO AVAILABILITY

PHONOSONICS

Micronta Auto Range Multimeter Gives you correct polarity, range and measurement - every time. Single function switch lets you choose DC 4 ranges;' $A C 4$ ranges; DC current resistance. 4 ranges. LCD readout. Exclusive range hold facility. 22-196

Micronta 1000 Ohms Volt Multitester Very compact at $89 \times 59 \times 32$ mm. Easy to read colou meter, pin jacks for all 8 ranges. Reads AC V, DC current and ohms Mirrored scale.20-027

Micronta Transistorized Signal Tracer Spot circuit troubles, check RF, IF and audio signals from aerial to speaker on all audio equipment. It has built in 5 cm speaker with volume control. $50 \times 143 \times 38 \mathrm{~mm}$. 22-010

Micronta Dynamic Transistor Checker Shows current gain andelectrodeopen and short circuit. Tests low medium or high power PNP or NPN types. Go/no-go tests from $5-50 \mathrm{~m}$ A on power types. "Quick-check" sockets. 22-024

 electronic kits-with the Heathkit catalogue.

48 product packed pages contain photographs and specifications of the widest possible range of kits. Everything from doorbells to digital clocks, multimeters to microcomputers.

Heathkit make it easy to build, easy on your pocket, and as with 13 million Heathkit builders over 34 years, your success is guaranteed:

Make sure of your copy of the Heathkit catalogue. Send the coupon today, plus 25p in stamps and beat the demand.

To: Heath Electronics (U.K.) Limited, Dept (PE/12/80) Bristol Road, Gloucester, GL 26 EE

Please send me a copy of the Heathkit catalogue. 1 enclose 25 p in stamps.
(PE/12/80)
Name
Address

DISCO LIGHTING KITS!!!

First class constructional projects, c/w glass fibre P.C.B.'s \& full instructions. No extra components needed to make a top rate working unit.

LK1	3 channel sound-to-light.	LK2	3 channel 3kW
f9.90	300 w/channel $1 v-100 w$ input	£17.90	zero voltage firing
LK3	2 kW slider dimmer		$200 \mathrm{mV}-100$ watts in
f5.50	suitable for clubs/pubs.	LK4	
	A professional unit c/w	f16.50	auto - two speed rang

ALL KITS C/W
circuit, comprehensive instructions \& full parts guarantee

Suitable case for LK $1 / 2 / 4 £ 3.50$ 100 w spots ES or BC £1.50.
Coloured pigmy lamps $65 p$.

UNREPEATABLE HI-FI BARGAIN

3 WAY LOUDSPEAKER KIT C/W BAFFLE (pre-cut)

Comprises:

- $6 \frac{t^{\prime \prime}}{}{ }^{\prime \prime}$ linen surround bass unit
* $5^{\prime \prime}$ mid-range unit
* $3^{\prime \prime}$ iweeter
* 3 way crossover, fixing screws \& bafle $\star 20$ watts handling capability. Full instructions provided Must be heard to be believed!! f10.50 © 2 kits for $£ 20$. Carr, $£ 1$ per kit.

SAXON ENTERTAINMENTS

327-333 Whitehorse Rd., Croydon, Surrey CR0 2HS. (01) 6848007

Order by phone - Access/Barclaycard/C.O.D.
Open Mon. - Sat. $9 a m$ - Spm.

PRIME COMPONENTS LOW PRICES

\section*{| Als |
| :--- |
| not |
| now |
| you |
| rog |
| for |}

 isios．

 U＇s

by low

 ずす パに
 Tr

－

 528

-1 $\begin{array}{r}4026 \\ 4027 \\ \hline\end{array}$

Britain's first com The Sindair ZX80.

Price breakdown

 ZX80 and manual: £69.52VAT: £10.43
Post and packing FREE
Please note: many kit makers quote VAT-exclusive prices.
You've seen the reviews...you've heard the excitement...now make the kit!

This is the ZX80. 'Personal Computer World' gave it 5 stars for 'excellent value.' Benchmark tests say it's faster than all previous personal computers. And the response from kit enthusiasts has been tremendous.

To help you appreciate its value, the price is shown above with and without VAT. This is so you can compare the ZX 80 with competitive kits that don't appear with inclusive prices.

'Excellent value' indeed!

For just £ 79.95 (including VAT and p\&p) you get everything you need to build a personal computer at home ...PCB, with IC sockets for all ICs; case; leads for direct connection to a cassette recorder and television (black and white or colour); everything!

Yet the ZX 80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers at several times the price.

The 2×80 is programmed in BASIC, and you can use it to do quite literally anything from playing chess to managing a business.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. It immediately proves what a good job you've done; connect it to your TV ...link it to an appropriate power source* ... and you're ready to go.

Your 2×80 kit contains...

- Printed circuit board, with IC sockets for allics.
- Complete components set, including all ICs-all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be SAVEd and LOADed on to a portable cassette recorder.)
- FREE course in BASIC programming and user manual.
Optional extras
- Mains adaptor of 600 mA at 9 V DC nominal unregulated (available separately-see coupon).
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra RAM chips also available-see coupon).

[^1] adaptor. Available from Sinclair if desired (see coupon).

The unique and

valuable components of the

Sinclair ZX80.

The Sinclair ZX80 is not just another personal computer. Quite apart from its exceptionally low price, the $\mathbf{Z X 8 0}$ has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teachyourself BASIC manual.

The unique Sinclair BASIC interpreter offers remarkable programming advantages:

- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handling capability-takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The $\mathrm{ZX80}$ also has string inputto request a line of text when necessary. Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up to 26
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modiflcation of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions. USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with 22 standard graphic symbols.
- All characters printable in reverse under program control.
- Lines of unlimited length.

Fewer chips, compact

 design, volume productionmore power per poundThe 2×80 owes its remarkable low price to its remarkable design: the whole system is packed on to fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the $\mathrm{Z} \times 80$'s iK byte RAM is roughly equivalent to 4 K bytes in a conventional computer-typically storing 100 lines of BASIC. (Key words occupy only a single byte.)

The display shows 32 characters by 24 lines
And Benchmark tests show that the ZX80 is faster than all other personal computers.

No other personal computer offers this unique combination of high capability and low price.

ZX80 softwarenow available!

See advertisements in Personal Computer Worid, Electronics Today International, and other journals.

New dedicated software-developed independently of Science of Cambridgereflects the enormous interest in the ZX80. More software available soon-from leading consultancies and software houses.

The Sinclair teach-yourself BASIC manual.

If the specifications of the Sinclair ZX80 mean little to you-don't worry. They're all explained in the specially-written 128-page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming-from first principles to complex programs. (Available separately-purchase price refunded if you buy a $\mathrm{ZX80}$ later.) A hardware manual ls also included with every kit.

The Sinclair ZX80. Kit: £79.95. Assembled: £99.95. Complete!

The ZX80 kit costs a mere £79.95. Can't wait to have a ZX80 up and running? No problem! It's also avaliable, ready assembled and complete with mains adaptor, for only $£ 99.95$.

Demand for the $\mathbf{Z X 8 0}$ is very high: use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your ZX80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your ZX80 as received within 14 days for a full refund. We want you to be satisfied beyond all doubt- and we have no doubt that you will be.

Science of Cambridge Ltd

6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: 0223311488.

Marshall's

The new Marshall's 80/81 catalogue is now available. A veritable treasure house of components, test gear, tools, etc.

Lots of old friends, but also many new products including leader test gear, Crimson Hi Fi Modules, Rechargeable NI Cad batteries and chargers (very competitive). More components including SN74ALS series, new tools etc. Available by post, UK 75p post paid: Europe 95 p post paid: Rest of world $£ 1.35$ post paid.

SINCLAIR INSTRUMENTS Digital Multimeter

PDM35 £ 34.50 DM235 £ 52.50 DM350 £ 72.50 DM450 £ 99.00
Digital Frequency Meter
PFM200£ 49.80
Low Power Oscilloscope
SC110 £139.00
NEW
TF200 Frequency Meter
$£ 145.00$
TGF105 Pulse Generator
£ 85.00
CRIMSON ELEKTRIK HI FI MODULES
CE608 Power Amp $£ 20.09$
CE1004 " " £23.43
CE1008 ". $£ 26.30$
CE1704 " " £33.48
CE1708 " " £33.48
CPS1 Power Unit $£ 19.52$
CPS3 " " £23.52
CPS6 ". " $£ 30.00$
CPR1 PreAmp £32.17
CPR1S PreAmp $£ 42.52$ All Prices + VAT + postage/ packaging
Don't forget! We also carry an impressive range of semi-conductors, passive components, electro mechanical components, tools etc.

printed cincuit board types

REF	AMPS	PRICE	
TTP 448	0.5 .2	1.79	50
TTP 447	0.75.2	2.14	60
TTP 449	$1 \cdot 0 \cdot 2$	2.36	70
TTP 450	2.08.2	2.99	${ }^{6}$
TTP 451	$4 \cdot 18 \cdot 2$	4.57	120
TTP 452	8.33-2	588	120
0.9 e 0.9 y			
REF	AMPS	PRICE	P/P
TTP 460	0.30-2	1.79	50
TIP 481	0.50.2	$2 \cdot 14$	60
ITP 483	080-2	$2 \cdot 36$	70
TTP 484	1.38-2	2.80	L
TTP 465	2.71-2	4.57	120
ITP 4.66	5.55-2	$5 \cdot 8$	120

Ov $12 v$ O $v-12 v$ | TTP 480 | $3 \cdot 33 \cdot 2$ | $5-88$ | 120 |
| :---: | :---: | :---: | :---: |

TITAN TRANSFORMERS AND COMPONENTS CENTRAL HALL CHAMBERS GRIMSBY SOUTH HUMBERSIDE PAYMENT CWALL ORDER ONLY MENT C.W.O. CHEQUES. POSTAL ORDERS

TRANSFORMERS

				InPUT 120220240					
					120		-		
[0000000800 000000600000					3100				
0					0				
	PRIMARY O. 120 OR 240 V 50 Hz SECONDARY. SERIES OR PARALLEL P.C.B.OR CHASSIS MOUNTING								
								-	-
							Jlink - Connect		
CHASSIS MOUNTING TYPES									
Ov-6voy. 6 y					Ov-8v OV-9v				
REF	AMPS	PRICE	P/P	REF	AMPS	PRICE	P/P		
TTC448	$0.5 \cdot 2$	1.85	50	TTC 460	0.30 .2	1.85	50		
TTC 447	0.75.2	$2 \cdot 20$	60	TTC 481	0.50.2	2.20	60		
TTC 449	1.0.2	2.45	70	TTC 463	0-60.2	2.45	70		
TTC 450	2-08-2	3.10	85	TTC 464	1.38.2	3.10	85		
TTC 451	4-18.2	4.70	120	TTC 485	2.77-2	4.70	120		
ITF 452	8-33.2	585	120	TTF 48B	5-55-2	5.85	120		

SECURITY SENTRY/SENTINEL

If you are considering building either of these alarm systems save yourself time, aggravation and $£ £ £$ by purchasing one of our kits. Each kit contains detailed step-by-step assembly and installation instructions and every item required to build an alarm control centre as illustrated in the articles. There are no extras to buy. Prices are all inclusive (U.K. only) and are valid for six months. Terms: CWO; Access and Barclaycard orders welcome.

SECURITY SENTRY (July PE)

SCA01 Security Sentry Alarm Control rentre. Includes: Silk screened and drilled case, drillec and tinned PCB, all PCB components, IC sockets, battery holder (less batteries) and all mounting hardware.
£12.95
SCAVCPPO 1 Consists of the above kit and a caravan protection kit comprising: Siren, seven pin socket, magnet and reed switch, 20 M trs wire, wire staples \& hardware
£26.70

SECURITY SENTINEL

DAS01 Security Sentinel Alarm Control Centre. Comprising: silk screened \& drilled case, silk screened, drilled \& tinned PCB's, IC sockets, all PCB components, battery holder (less batteries), mains transformer, and all hardware.
$£ 45.95$
DASO2
As above but includes nickel-cadmium batteries.
£53.95
CS02 Siren Kit. (Can also be used with SCAO1): Siren, 10 Mirs wire, wire staples, and mounting hardware.
£8.75
TMS01 Tri-Mode switch kit comprising: two magnet and reed switch assemblies, diode, resistors, \& hardware.
Interested in a vehicle alarm system kit?? Write for details. $\mathbf{£ 1 . 9 5}$
COMPU-TECH SYSTEMS
Laundry Loke Industrial Estate,
North Walsham, Norfolk
Tel: North Walsham 5600

Master Electronics the new Practical way.

Conquer the 'Chip' - Easy-Fast-Exciting !

AND MASTER ALL THE NEW TECHNIQUES IN MODERN ELECTRONICS.

Build an Oscilloscope.
Carry out over 40 full experiments including work on Digital Electronic Circuits.Recognition of Electronic Components. Understand and draw Circuit Diagrams.
Experience with handling Solid State Circuits and "Chips".
Testing and Servicing of Radio, T.V., Hi-Fi and all types of modern computerised equipment. 4 Cleveland Road, Jersey, Channel Islands.
Name.
Address
Max. Dutput power Operating voltage (DC) Loadsrequency response Mequitivity for 100 wat
125 watt RMS

50.80 Max

 416 ohms for 100 watts 400 mV (047K Typical T.M.O. @ 50 watts 4 ohms load 400 mV @ 47 K 0.1 \% The P.E. power amp kit is a module for high powe applications-diseo units. quitar amplifiers, public address systems and even high power domestic systems. The unit is protected against shor circuiting of the load and is safe in an open circuit condition. A large satery margin exists by use of generously rated compenents, the
SPECIFICATIONS

output stage uses four 115 wath transistors normally only two would be used, result, a high powered rugged unit. The PC Board is backprinted. etched and ready to drill for oase of construction. and the aluminium chassis is preformed and ready to use. supplied with sll parts and circuit diagrams

125 watl power amp kit 50.50 plus plus 1.00 f1.00 88 p

 ACCESSORIES Suirable LS. coupling eiectrolnic $\mathbf{1 1 0}$ plus $20 \rho \rho \& \rho$ Suitable Mains Power Supply Unit $57.500_{\text {plus } 62.75 \text { padp }} 0$ sufficient for one power amp

AS FEATURED IN
PRACTICAL ELECTRONICS OCTOBER ISSUE

DIY STEREO BARGAIN PACKS FEATURING FAMOUS BUILT MULLARD PREAMP MODULES

MULLARD STEREO PREAMP MODULES AND TWO 12 WATT POWER AMP KITS.

In easy 10 build Iorm P.C.B.s backprinted. etched and drilled ready to use. BUILD A 12 WATTS PER CHANNEL STEREO AMPLIFIER $£ 6.00$
ACCESSORIES AND L.S. KIT EXTRA (not available separatelv)

OIY PACK $12 \times$ power amp kits 1P1182/ preamp module, suitable for ceramic and suxillay inputs DIY PACK $2 \quad 2 \times$ power amp kits LP 1184 preamp modula suitable for magnetic ceramic and auxiliary inputs. DIY SPEAKEA KTT Two 8" $\times 5^{\prime \prime}$ approx.

DIY ACCESSOAIES Mains tsansformer smoothing capacitor rectifier $4 \times$ slidet controls. for base, trable and volume. $£ 3.00$ plus 11.60 plap

ACCESSORIES: Available only at time of purchase of Bargain Packs

12 + 12 WATT AMPLIFIER

KIT NOTE: tor use with 4 to 8 ohms speakers. With up-to-the-minute features. To complete you just supply screws. connecting wire and soider. Fe atures include din inpur sockets for ceramic cattidge, microphone, tape or tuner Outputs-tape, speakers and headphones. By the press of a button it transforms imto a 24 watt mono disco amplifier with iwin deck mixing. The kit incofporates a Mullard LP1183 pre-amp module, plus 2 power amplifier assembly kits and mains power supply. Also featured 4 slider level controls, rotary bass and treble conirols and 6 push button switches. Silver finish fascia panel with matching knobs. Easy to as semble teak simulate cabinet and ready made metal work for further information instructions are available price 50 p . Free with kit. Size $91 / 2 \times 8 \%^{\prime \prime} \times 4$ " approx NOTE:
for use with 4 to 8 ohms speakers.
543. 55
plus $\mathbf{5 2 . 5 5}$ php

BSR chassis

record deck with manual set down and return. complete with stereo
ceramic cartridge £8.50 plus C 2.75 p\&p when
purchased with amplifier. Available separately $£ 10.50$ plus $\{2.75 \mathrm{p} \& \mathrm{p}$.
 stereo pair plus $f 1.50$ pap when pur separately $f 6.75$ plus $£ 150$ p STEREO MAGNETIC PRE-AMP CONVERSION KIT all components including P.C.B. to convert your ceramic imput on the $12+12$ amp to magnetic. f2.00 when purchased with kit featured above. $\mathbf{£ 4 . 0 0}$ separately inc papp.

OFFER! SAVE MONEY by purchasing $12+12$ amp kit, BSR
record deck and speaker kit together for only
£25.50
PRACTICAL ELECTRONICS CAR RADIO KIT
(Constructors pack 7)
£10.50

plus $\mathbb{C 1 . 7 5 p \& p}$

- Eacy to build - 5 push button tuning
- Modern styling design "All naw unusad components
- 6 watt outper "Ready etched \& punched P.C.B.
- Incorporates suppression circuits * Now with tape input sockat

All the electronic components to build the radio, you suppity only the wire and solder as featured in the Practical Electronics March issue. Features: Pre-set tuning with five push button options. black illuminated tuning scale, with matching rotary control knobs. one. combining on/oft volume and tone-control, the other for manual tuning, each set on wood simulated fascia.
The P.E. Traveller has a 6 watts output, neg ground and incor-
porates an integrated circuit output stage, a Mullard IF module LP1181 ceramic filter type, pre-aligned and as sembled and a Bird pre-aligned push button tuning unit. The radia fits easily in or under dashboards.
Complete with instructions

CONSTRUCTORS PACK 7A

Suitable stainless steel fully retractabie locking aerial and spaaker (approx. $6^{\prime \prime} \times 4^{\prime \prime}$) is 95 per pack available as a kit complete $\mathbf{5 1 . 9 5}$ p\&p 81.00 Pack 7A may only be purchased at the same time as Pack 7 . NOTE: Constructor's pack 7A sold complete with radio kit ≤ 15.20 including polp. FEATURED PROJECT IN PRACTICAL ELECTRONICS.

30 + 30 WATT STEREO AMPLIFIER

 BUILT AND TESTEDViscount IV unit in teak simulate cabinet silve, finished rotary controls and pushbuttons with mateching tascia, red mains indicator and stereo jack socket Functions switch for mict magnetic and crystal pietuups. tape and suxiliary. Rear panel features fuse holder. DIN speaker and input socket $30+30$ watts. RMS $60+60$ watts peak for use with 4 to 8 ohm speakers. Size 14*" $\times 10$ "approx.
READY TO PLAY $£ \mathbf{3 2 . 9 0}{ }_{\text {and }}^{\text {alup pap }}$

ARISTON PICK UP

Ariston pick-up arm manutactured in Japan. Complete with headshell. Listed price over f30.00 OUR PRICE f11.95

100 WATT

MONO DISCO

 AMPLIFIER

Size approx $14^{2} \times 4^{\prime \prime} \times 104$ Fivery controls. controls. master volume, tape leverl, mic level. deck level. PLUS INTEA DECK FADER for perfect graduated change from record deck No. 1 to No. 2. or vice versa. Pre fade level controls (PRL) lets YOU hear next dise before fading it in. VI meter monitors autput level. Output 100 watts RMS 200 wstts peak.
£76.00 plus 84.00 p\&p

50 WATT MONO DISCO AMPLIFIER

Size appox $13 \%^{\prime \prime} \times 54^{\prime \prime} \times 6 \psi_{4}$ ". 50 watts rms. 100 watts peak output. Big features include two disc inputs, both lor ceramic cartridges, tape input and microphone input. Level mizing controls fitted with integral push-pull switches. Indeperident bass and treble controls and master volume
£30.60
plus 13.20 plp

BREADBOARD

PROVIDING there are no last minute production or distribution hiccups with this issue lafter our industrial problems earlier in the year we only managed to get back on schedule last month) you could be reading this in time to make plans to visit Breadboard '80. Odd though the name is we are sure nearly every enthusiast will by now be aware that the Breadboard exhibition caters for all those interested in electronics as a hobby.

Once again $P E$ will be exhibiting, in our own rather unpretentious manner. We will be very pleased to meet any readers that care to come along, and of course, we will have a number of projects on show-many of them operational. We will also be selling past (back to August ' 80) and present copies and our own book PE Popular Projects.

Some of the items we expect to have working are: PE Teletext, PE Master Rhythm, PE Starspinner (see page 31), a speech synthesiser (see page 44), PE Congress Hi-Fi Amp, Compukit Sound Generator, etc. We will also be showing many items of test gear including the PE Microtune (see page 26) and the range of in-car entertainment equipment from our special
offer on page 24 (this equipment will not be available to purchase from the stand). So if you want to see any of these items or if you just want to chat, come and find us on stands E3 and E4.

If last year is anything to go by, a weekday is best and make sure you bring earplugs and a loud voice! Might we suggest that you also bring plenty of money as there have been many exhibition offers on retailers stands in past years and you could find some bargains.

AVAILABILITY

Many readers have informed us that they have problems buying recent issues-some have been told that we have not published certain issues, one man even rang recently to ask if PE had ceased publicationl Let us make it quite clear that we have published every issue this year-although some were more than a month late.

One of the problems is that these days the newsagents are watching their finances and are not prepared to stock more issues than they are sure they can sell. This means that they often sell out early and few spare copies of any issue are available. In order to make sure of your issue, may we suggest you place an order with your
newsagent and ask for your copy if it fails to arrive.

SPECIALISSUES

The availability problem becomes more acute when we have a special issue, gift or extra supplement etc., This issue carries the Electrovalue catalogue free with all UK copies and next month the issue will carry a free 132 page Tandy catalogue, banded to it. These free catalogues do increase demand for issues so please don't miss out! You have been warned! We are also planning special issues for March, April, May and June and we expect our February issue to be in demand because we hope to cover the electronics incorporated in an entirely new and quite revolutionary luxury British car, which should be launched after Christmas.

For some time PE contributors have been involved in the development of instruments and a locking system for this $£ 65,000$ plus vehicle. We will be describing the development of these instruments and showing how to make similar items to fit rather more mundane vehicles. We can't reveal what the car is or what it looks like yet, but "stay tuned" for full details.

Mike Kenward

EDITOR

Mike Kenward

Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR
Jasper Scott PRODUCTION EDITOR

Jack Pountney ART EDITOR

Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY

ADVERTISEMENT MANAGER
D. W. B. Tilleard 01-261 6676
SECRETARY
AD. SALES EXEC. Alfred Tonge 01-2616819
CLASSIFIED MANAGER Colin Brown 01-261 5762

Editorial Offices:
Practical Electronics,
Westover House,
West Quay Road. Poole,
Dorset BH 15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot be answered over the telephone (see below).

Advertising Offices:
Practical Electronics Advertisements,
King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS
Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-2616601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.
All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.
Components are usually available from advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 95p each including inland/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.30$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 11.80$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

ECONOMIC SCOPE

The new Model SB 3M oscilloscope from Albol Electronic will serve most purposes required by industrial, service and hobby engineers, and yet manages to keep on the right side of the significant $£ 100$ price barrier. With a bandwidth of 0 to 3 MHz at -3 dB (extending to 6 MHz at -6 dB), the SB 3 M breaks new ground, in its class, by offering time-base automatic triggering by i.c. comparator control of the type usually fitted only to luxury 'scopes. A 10 mV signal is all that is needed for a firmly locked and triggered timebase.

The measuring field on the c.r.t. is 50 by 60 mm , and the deflection sensitivities are selectable (by push-button) from 0.05 to 20 V / cm. Calibration accuracy is ± 5 per cent. Albol say that the input characteristics are 1 megohm ± 5 per cent, and $30 \mathrm{pF} \pm 10$ per cent. The time-base can be either automatically triggered or synchronised, and it has four switch-selectable calibration speeds, from $1 \mu \mathrm{~s} / \mathrm{cm}$ to $5 \mathrm{~ms} / \mathrm{cm}$. A six-stage attenuator, from $\times 1$ to $\times 10$, can be applied to each.
Triggering, which can be either internal or external, can be polarised positive or negative, in the range 10 Hz to 500 kHz . If internal synchronisation is used the range extends from 10 Hz to 3 MHz . The internal trigger threshhold is 5 mV , and the external 100 mV .
The SB 3M takes about 20 watts from the 240 V mains, weighs 4.5 kg , and measures 150 mm wide by 340 mm deep by 280 mm high. The price is $£ 99.00$, plus VAT; delivery is exstock.

Albol Electronic \& Mechanical Products Ltd., 3 Crown Buildings, Crown St., London SE5 OJR (01-703 2311).

MICRO BREADBOARD

The first Eurocard size breadboarding system designed specifically for microprocessor based circuit designs will be launched at this years Breadboard Exhibition by Boss Industrial Mouldings Ltd.

Comprising a central MPU Section capable of accommodating a mixture of $24,28,40$ and 64 pin microprocessors, and flanked on both sides by Auxiliary breadboarding sections for RAM's, ROM's and peripheral chips, this 'world first' system enables complex designs to be rapidly built whilst keeping interconnection
link lengths to an absolute minimum. Dual and single bus strips on all sides, plus 5 incoming power line turret terminals all contribute to make this remarkably versatile and rugged breadboarding system. Easily replaceable, double sided, nickel silver contacts, rated at 1 A and typically 10 m ohms resistance will accept a wide range of lead sizes enabling di.i.l. i.c's transistors, resistors, capacitors and diodes etc to be readily plugged in. The rigid High Impact Polystyrene body is rated up to $75^{\circ} \mathrm{C}$ and has non-slip rubber backing for working stability.

Capable of accepting $3^{\prime \prime}, \cdot 4^{\prime \prime}, \cdot 5^{\prime \prime}$ and $\cdot 6^{\prime \prime}$ pitch d.i.l. packages without needlessly wasting auxiliary pin positions and breadboarding areas, every contact is alphanumerically indexed, this being imperative for education and training applications where step-by-step build-up instructions are used.
Boss Industrial Mouldings Ltd, 2 Herne Hill Road, London SE24 0AU (01-731 2383).

SUPER STRIPPER

Tele-Production Ltd. have recently come up with a simple but effective wire stripper, the Telpro Automatic Wire Stripper.

A single squeeze operation strips the insulation from single and stranded wires without damage. Its wide jaws permit fast and accurate stripping without any nicking or scraping of the wire and a gauge is supplied to ensure consistent lengths of stripping during fast production work. Five diameters of wire can be used on this tool, which has the following size cutter: $1 \cdot 0,1 \cdot 6,2 \cdot 0,2 \cdot 6$ and 3.2 mm . Of an all metal construction, it is available ex stock priced $£ 10.50$.

Also available from Tele-Productions is a new p.c.b. holder with a quick release trigger which allows a p.c.b. to be removed and replaced in seconds. There is also a special attachment which when fitted to the holding arms of the unit can be repositioned to hold
small components such as switches etc., during soldering.

The unit can hold boards up to 12 in long and can revolve through 360 degrees. The quick release trigger works by spring tension which can be adjusted. The diecast base of the holder incorporates two trays for holding components.

The MPC 2 Holder is priced at $£ 30.00$ excluding VAT and p\&p.

Tele-Production Tools, Stiron House, Electric Avenue, Westcliff-on-Sea, Essex SSO 9NW. (0702 352719).

4予 Digit DMM

The new $4 \frac{3}{4}$ digit multimeter from Thurlby Electronics has a scale length of 32,768 counts (± 15 bits). This extra resolution enables it to monitor a 1 mV change in a 30 volt power rail, for instance, when a $4 \frac{1}{2}$ digit meter would be limited to 10 mV , and a $3 \frac{1}{2}$ digit meter to 100 mV . In addition, the high resolution virtually eliminates inaccuracy caused by digitising error since this is reduced by 0.003 per cent of full scale, compared to the basic accuracy figures of 0.05 per cent of reading.

Thirty measuring ranges are provided covering the five basic functions of d.c. and a.c. voltage, d.c. and a.c. current, and resistance. In addition, diode test and frequency measurement functions are included. Frequency measurement is achieved via a crystal controlled timebase, and is particularly useful for monitoring oscillators or checking microprocessor clock frequencies, etc. Maximum reading is 3999.9 kHz with overflow to 7 MHz .

The 1503 is housed in a high impact ABS case with a six-position tilt stand which doubles as a carrying handle. Although primarily intended as a laboratory instrument, very low
power circuitry gives it 200 hours of operation from batteries, enabling it to be used as a fully portable field service multimeter. This low power consumption circuitry also eliminates drifts caused by internal heat generation and improves long term stability.

The price of the 1503 is $£ 139$ ex VAT and p\&p.

Thurlby Electronics Ltd. Coach Mews, St. Ives, Huntingdon, Cámbs. PE17 4BN.

LUCKY DIPS

The latest range of dual-in-line sockets from OK Machine \& Tool for pluggable packaging of integrated circuits includes $8,14,16,18$, $20,24,28,36$ and 40 pin configurations with standard $0.1 \mathrm{in}(2.54 \mathrm{~mm})$ in-line spacing.

Virtually all SS 1, MS 1 and LS 1 devices can be accommodated and in the case of the wire wrap versions the pins are suitable for threelevel wire wrapping. The insulations are made of glass filled thermoplastic polyester and contacts are phosphor bronze. Pins are gold plated over nickel.

These sockets are complemented by a range of cable assemblies of varying lengths, to provide a high number of contacts in the minimum of space, together with high density 28-pin input/output sockets and plugs conforming to the basic 0.01 in $\times 0.01$ in grid layout.

For further information, contact: OK Machine \& Tool (UK) Ltd., Dutton Lane, Eastleigh, Hants SO5 4AA. (0703 610944)

VEROCASE

A pocket, hand-held box, ideal for housing remote control handsets, instruments etc., is the latest addition to the Vero range of cases.

It incorporates a $20 \times 50 \mathrm{~mm}$ cut-out slot which may be used for fitting panels or switches and a $12 \times 35 \mathrm{~mm}$ recessed panel for labelling. A circuit board $71 \times 107 \mathrm{~mm}$ can be accommodated in the top section of the two

part body by the use of four self-tapping screws, whilst the bottom section will house a board of $56 \times 105 \mathrm{~mm}$. The two sections snap together and are secured by four screws through the base. There is an integral battery compartment which will accept a PP3 or a nickel cadmium stack of $25 \times 45 \mathrm{~mm}$, it has a slide-off cover which allows easy access.

The price of the case is $£ 12.47$ excluding VAT and p\&p.

Vero Electronics Limited, Industrial Estate, Chandler's, Ford, Eastleigh, Hants SO5 3ZR.

AMBIT

Four new compact modules from Ambit can provide the ideal solution to many MPU data output decoding and display requirements.

Two versions (DM180/1) provide simultaneous decoding and display from multiplexed b.c.d. inputs. Additional options allow for either Hex or Code B displays. The DM180/1 will operate over a voltage range of 3.5 V to 6 V at $20 \mu \mathrm{~A}$ in either the 3.5 or 4 digit display format.

The DM182/3 provides decoding and display using serial data inputs compatible with many types of MPU. At operating voltages of 3 V to 15 V current consumption is typically $60 \mu \mathrm{~A}$.

The modules which are priced at $£ 10.99$ excluding VAT and $\mathrm{p} \& \mathrm{p}$ measure $60 \times 30 \times 7 \mathrm{~mm}$ and 12.5 mm l.e.d.s with integral backlighting can also be supplied.

Ambit International, 200 North Service Road, Brentwood, Essex. (0277 230909).

ATO D INTERFACE

The ADC 1660 is a high speed 16 channel analogue to digital interface board which will connect directly into a standard Acorn 64 DIN bus. The unit provides A to D conversion of 16 inputs at a rate of 16 K conversions per second to 8 -bit resolution.

To the processor the card appears as a block of 16 memory locations which by using 12 d.i.l. switches can be placed in any of 4000 positions in a 64 K map. No special software is required to control the interface, a write pulse from the processor to any of the 16 memory locations loads the analogue multiplexer with the four low order address bits and initiates the conversion sequence. Sample and hold timing is carried out on board and 60 microseconds later the conversion is complete. The processor can time out or an interrupt from the card can inform it that data is available to be read from the same memory location that was written to.

At present the ADC 1660 is available in eurocard form with a 64 way indirect connector for the Acorn bus, but can be link programmed to suit any other 64 way bus.

The ADC 1660 costs $£ 82.00$ in kit form, or ready assembled and tested with front panel and 34 way connector for $£ 110.00$.

Stoneage Electronics, The Cottage, 70 Albion Drive, London, E8 4LX. (254 4727).
This new range of Electronics from Videotone redefines the words quality and value for money to a new high.

30 watt amp MC input SA4130	$£ 75.00$
Stereo Tunner ST4120	$£ 68.00$
Cassette full features SC3200	$£ 98.00$
50 Watt amplifier WA7700	$£ 77.00$
20 Watt amplifier LA2020	$£ 58.00$

HEADPHONES

$\begin{array}{lr}\text { HP } 90 \text { Headphone } & £ 12.65 \\ \text { HP } 80 \text { Headphone } & £ 9.69\end{array}$
Superbly made with top flight performance.

MICROPHONES

MU 105-22
£29.30
MU 25 C
£17.39

HEAD AMP
H300 $£ 51.75$
T100 £24.75

HEADSHELLS
S100 £6
$\begin{array}{ll}\text { S101 } & \text { £7 } \\ \text { S200 } & \text { £4 }\end{array}$

A MESSACE FROM VIDEOTONE

 Dear Customer You will find that ite producuss value for modvertised on this page are the best possible have eliminated large amounts of selling low in price because we have to suffer. Thase amounts of selling costs that other brands full brochures on competent realistic speciric item you may be interested in and a help you in your choice staf of engineers at our London Showrooms to comprehensive and we offer every formpoction packages are We carry out our own servicing and are of financing you may require. Money. We are confidentour and are dedicated to giving Value for purchase with confidence bepreds are unbeatable. You may selected them from cemce because our Engineers have specially we import them directiy ourselves sources throughout the worid and Remember period on, you have 21 days trial all products. That is
SEND FOR OUR

LATEST FREE BROCHURE
AND DETAIL LIST OF LOCAL SALES OUTLETS IN THE U.K.
VIDEOTONE
98 CROFTON PARK ROAD,
CROFTON PARK, LONDON SE4
Tel: 01-690 8511/2
Please send me your Direct Selling Brochure and list of sales outlets.
Name
Address

New Year

The political New Year which opened traditionally with the Political Party and Trade Union conferences has every promise of turbulence. Criticism of Government policy reached a new crescendo, as might be expected, but with a remarkable reversal of roles.

It takes a bit of getting used to when we see the more radical forces of the left becoming the new conservatives, with the reactionaries of the right making the pace in forcing radical change.

We all realise that politicians and trade union leaders need to make their views known in reasonable force but their choice of words and phrases is hardly consistent with fact. Thus, while everyone admits the need for change in industrial performance, we have seen the verbal description of such change progress from the neutral and moderate term rationalisation to restructuring, and now to the destruction of industry. Similarly, the population over the same period has moved from a comparatively mild state of misery, via suffering and sacrificing, to the ultimate crucifixion. The medical metaphor is also much in vogue, particularly on the delicate question of whether the cure will kill the patient.

Listening to the Jeremiahs you might imagine that the whole nation is in extremity whereas the truth is that the areas and industries most affected by the need for change have been problem areas and problem industries for decades and no government yet has found a satisfactory solution for them or is likely ever to do so.

On the broad economic front industry shows no sign of 'destruction' although, naturally, it is feeling the effect of economic squeeze at home and world recession abroad. Exports have been comfortably ahead of imports during past months and the aerospace and electronics industries are not only buoyant but have record order books. Overall, manufacturing industry output has declined seven percent over a
period of a year which embraced crippling strikes in engineering and steel. In the circumstances a creditable performance.

On crucifixion, incomes have kept ahead of inflation and personal savings are near, if not at, an all-time high. And those wanting a late continental holiday were disappointed to find planes fully booked. Of course there is inconvenience, even hardship, deserving of every sympathy and assistance in individual cases, but even these hardly merit the 'crucifixion' label.

Employment

Employment is the most emotive issue, especially when presented in lurid terms as unemployment in numbers of people rather than percentage of the total workforce. The electronics industry finds itself in a unique position in this delicate area by simultaneously creating new jobs in a new industry while destroying existing ones in long-established industries.

Every new advance in industrial automation developed by electronic engineers and fabricated in an electronics plant has had a single purpose, that of increasing productivity per unit cost elsewhere. Thus, to give but one example, a battery of programmable numerically-controlled machine tools could, in theory, be supervised by a single operator rather than having a skilled manual operator for each machine. One of the tragedies of British industry over the immediate past years is that the attitude to such changes in manufacturing practice has been little different from that of the Luddites of 169 years ago. Hence, the tardy progress in modernisation and excesses in over-manning which are now being rectified at considerable social cost to the individual and to the nation as a whole.

At the same time the electronics industry itself has had to readjust to new work patterns resulting in changes of technology as well as to variations in markets. On the latter, one notes that the small-boat radar business of Decca is being discontinued by Racal, new owners. This is no surprise and is a result of being unable to compete commercially with Asian manufacture. Some 350 jobs are said to be at stake but transfers to more profitable areas within the Racal group and imminent retirement of other Decca people will ease the blow and enable most to be absorbed.

Improved technology rather than lack of market is said to be the reason for Thorn cut-backs at their consumer electronics plant at Colwick. The TX9 and TX10 television chassis were designed for easier assembly. Not only are there far fewer components (through LSI) but automated insertion means that assembly is far less labourintensive.

In fact the number of people in electronics goods manufacture is increasing but only at a fraction of the rate of growth of cash turnover. There is still an increasing demand for engineers and technicians but the armies of girl assemblers once needed for wiring up and soldering are no longer required. The circuits are now supplied already wired in the shape of ICs and LSI
from the semiconductor manufacturers, interconnected in PCBs, and are machine soldered in final assembly.

One can't help reflecting on the good fortune that the British electronics industry has remained comparatively free from Luddite attitudes, otherwise it would not and could not exist today.

Forecast

At the risk of treading hazardous ground I still forecast continuing prosperity for the electronics and aerospace industries. I include aerospace because of its huge electronic content. The two are interdependent, especially in the higher and more sophisticated branches of technology.

There will still be ups and downs, mainly in consumer electronics (a perennial problem) but taken as a whole, growth curve has got to be upwards.

I base this assessment on past and present performance of the larger well established companies on which, like the motor industry, many smaller companies feed, and on continuing investment such as the $£ 8.5$ million recently announced for expansion of GIM's plant at Glenrothes. There is also heartening news from Inmos with a promising development in a 16 k static ram although we must wait to see how technical design is converted to production and sales.

Another favourable indicator is the exhibition scene. The Farnborough Air Show was the best for many years. The production equipment Internepcon show in its new home at the Brighton Conference Centre has 400 exhibitors, the greatest number yet. Also new to Brighton this year (from London) was the International Broadcasting Convention packed with professional studio and transmitting equipment from a whole gamut of companies from Acron Video to Zoom Television. Across the channel in Paris the British-run Automatic Testing 80 was also a success with a complete sell-out of space and record attendance.

There is every reason for cheer in high technology industries. They are actively doing, not just talking. They are also crying out for young numerate, literate and scientifically-minded recruits. And yet the National Union of Teachers and the Schools Council are reported as criticising the proposed core curriculum which calls for a minimum number of hours per week to be devoted to study-of what? You guessed right first time, the study of mathematics, English and science.

It is now abundantly clear that technology is the road forward. And this is the area where we can and do sell profitably to all countries including our own. Not only electronics but in other high technology areas, too..

I remain optimistic, at least for the technology-based industries. But even taken overall, for all industries, our export performance has consistently improved in cash terms over the years, more than doubling in the 'difficult' years of 1975-79. As I have often said in this column, the real high-fliers do well in good times and bad and there is plenty of life in the old dog yet.

ह Audio
 THE firm for speakers!

SEND 50p FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

AUDAX AUDIOMASTER - BAKER BOWER \& WILKINS CASTLE CELESTION - CHARTWELL - COLES - DALESFORD DECCA - EAGLE ELAC - EMI - FANE GAUSS GOODMANS - HARBETH ISOPHON I.M.F. JORDAN - JORDAN WATTS KEF LOWTHER - MCKENZIE MISSION - MONITOR AUDIO - MOTOROLA - PEERLESS - RADFORD - RAM - ROGERS RICHARD ALLAN - SEAS - SHACKMAN - STAG - TANNOY - VIDEOTONE WHARFEDALE

WILMSLOW AUDIO (Dept. P.E.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Tel: O625 529599
FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS ETC.
Tel: O625 526213
(SWIFT OF WILMSLOW) FOR HI-FI \& COMPLETE SPEAKERS

PARNDON ELECTRONICS LTD.

44 Paddock Mead. Harlow. Essex. CM18 7RR. Tel: 027932700 (Dept. No. 21)
RESISTORS: $1 / 4$ Want Carbon Film E24 range $\pm 5 \%$ tolerance. High qualify resistors made under strictly controlled conditions by automatic machines. Bandollered and colour coded
E1.00 per hundred mixed. (Min 10 per value)
£8.50 per thousand mixed. (Min 50 per value)
Special stock pack. 60 values. 10 off each $£ 5.59$
DIODES: IN4148 3p each. Min order quantity - 15 items.
£1.60 per hundred
DIL SWITCHES: Gold plated contact in fully sealed base - solve those
programming problems
4 Way 86 p each. 6 Way $£ 1.00$ each. 8 Way $£ 1.20$ each.
DIL SOCKETS: High quality, low profile sockets.
8 pin- 10p. 14 pin-13p. 16 pin-15p. 18 pin-19p. 20 pin-25p.
22 pin -29 p. 24 pin- 35p. 28 pin -39 p. 40 pin -57 p.
ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS
MIN ORDER - UK. 11 O0. OVERSEAS E5 CASH WITH ORDER PLEASE

THANKS FOR THE MEMORY

At last our very own "Silicon Valley" Company, Inmos, has lifted a corner of the veil to reveal a glimpse of the goodies to come.

In fact, the "Silicon Valley" tag with its California connections is not strictly accurate since the action is actually spread between plants in Colorado Springs, Colorado, U.S.A. and Bristol, Avon, U.K., with future production facilities scheduled for a site in South Wales. But apart from its geographical position(s) the Inmos outfit is every inch a progeny of "Silicon Valley", deeply engaged in the business of producing innovative yet practical microcircuits aimed at capturing a big slice of the billion dollar market of the 1980s. It would be terrifying really, if it were not for the fact that they are doing it all for us, the poor old British taxpayersl Everyone who knew anything about the deal must have been worrying a lot about the investment of all that hard earned money in a field where corporate fortunes are not only.made, but lost. There was a lot of criticism when the deal was first announced, a lot of delay in making the second instalment of money available, and a long, long, wait before any hint of a return on the investment could be perceived-but now at last it begins to look like money well spent (Thank Goodness I)

The first device out of the Inmos stable, a 16 K static RAM coded IMS 1400, looks like a real winner because it employs ingeniously different techniques to give a memory which has a larger capacity than any of its rivals, is faster, and is also potentially cheaper to produce. Innovation is the name of the game in the cut-throat memory market-place, as has been demonstrated by such giants as Intel and Mostek, but innovation alone is not enough, the clever new products have to be producable too. and producable in large enough volumes to swamp the competition. With the IMS 1400, Inmos appear to have made an excellent start. Until the IMS 1400, most memory improvements have been made by simply shrinking device geometries so that more and more cells could be squeezed onto a given area of silicon. While this has been an important process of improvement, it does mean that memories have been getting more and more difficult to produce. The Inmos approach does not depend on scaling but on changes to the circuit design
used for each memory cell which together produce a more efficient element which is, in manufacturing terms, actually simpler than rival chips of lower capacity. The performance of the IMS 1400 is adequate for all present and projected microprocessor and minicomputer applications, and it exceeds by a comfortable margin the performance of today's fastest (but smaller) 4 K 2147 device.

The IMS 1400 is housed in a 20 pin 0.3 inch wide package which has an extended version of the 21474 K pin-out. The chip runs from a single five volt line and has a very low power consumption of 375 milliwatts (active) and 35 milliwatts (standby). Perhaps the most significant performance feature is the access time of just 30 nanoseconds, too fast for most of today's microprocessors, but useful for other memory applications currently filled by exotic and expensive bipolar devices of much lower capacity. As if all this alone wasn't enough to make Inmos a blue chip investment, the designers in Colorado Springs have hedged their bets by building in spare columns of memory cells which can be selected after chip fabrication by means of fusible links which map one or more of the spares into the active area to replace defective columns discovered during wafer test.

If future Inmos devices are as ingenious, I think I for one will retire on the proceeds I

ELECTRIC DRAWING BOARD

You can draw pictures on a CRT in one of two basic ways, direct vector or raster scan. In the direct vector scheme, lines are drawn by tracing them onto the tube face with.a moving beam of electrons, in a scheme somewhat similar to that employed by an oscilloscope. To draw a line from A to B the beam is turned on in position A and the correct waveforms are applied to the X and Y deflection plates or coils to move the beam so that its intersection with the display surface describes a straight line on the screen. In raster scan on the other hand, a beam of electrons is constantly scanning the screen in TV raster format and the drawing of a straight line involves no out-of-sequence movement of the electron beam at all. With raster graphics, the screen is arbitrarily divided up into picture elements as "pixels" each of which has a
unique bit reserved for it in the screen memory array. To draw a straight line, the start and end points are used to calculate which of the bit cells in the screen memory need to be "on". As the raster is built up, every memory location will be scanned in sequence, but only those bit cells which are "on" will cause the beam to excite the screen phosphors. The result is a line as before, although in this case the line may appear jagged if the screen memory resolution is limited.
The advantage of raster graphics lies in the fact that multicolour displays using readily available television monitors can be easily constructed, whereas direct vector systems need special long persistence tubes and cannot easily produce multicolour pictures.

Complete raster graphics systems are available from several manufacturers, and are widely used for engineering design and other similar applications where the cost is acceptable. Resolution is typically $512 \times$ 512 pixels for a 625 -line monitor, giving a memory requirement of at least 16 K bytes per colour, a factor which has ruled out such desirable high definition graphics for home computer applications until now.
Thanks to cheap dynamic memory and a new chip from Thompson CSF, the EF 9365 , all that is about to change and we can expect to see much wider application of the "Electric drawing board" in low cost systems. The new chip performs many of the functions currently performed by the proprietary raster display systems costing hundreds of pounds, yet it comes in a 40 pin package and will eventually cost less than $£ 201$ Teamed with a microprocessor and a group of dynamic RAM chips the EF 9365 will turn complex input specifications such as vectors, symbols, shapes and points of origin into the appropriate bit patterns in the screen refresh memory. To cater for the necessary but more mundane alphanumeric display requirement (to label graphics pictures for example) the Thomson device also has an on chip character generator for a full 96 character ASCII set. When drawing vectors on the screen, a mean writing rate of 1.36 milliseconds per pixel is possible, and when this device becomes freely available in 1981 we can expect to see a colourful revolution in microprocessor display peripherals.

PE has taken a pride in bringing readers some excellent offers over the months. Offers arranged to enable the purchase of technical products at exceptional prices. Back in April we arranged a special offer on Videotone speakers. That offer was so successful that Videotone have again come up with exceptional prices, this time on in-car-
entertainment products, just for PE readers. We believe these products represent incredible value for money, and that this is one of the best offers we have ever been able to arrange. The equipment and speakers on offer, shown and described here, are all covered by a full one year guarantee and money back facility if you are not satisfied.

AM/FM STEREO RADIO AND AUTOREVERSING CASSETTE PLAYER

AC200 STEREO 10W per channel (max.) CASSETTE PLAYER

AS4107 10W HIGH QUALITY WATERPROOFED DOOR MOUNTING SPEAKERS

AC100 STEREO 7W per channel (max.) CASSETTE PLAYER

AS6111 15W WEDGE TYPE SPEAKERS WITH METAL GRILLE

BASIC SPEC. FOR THE RADIO/CASSETTE PLAYER

AM $540-1605 \mathrm{kHz}, 20 \mu \mathrm{~V}$ sensitivity (at $20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$), 455 kHz i.f. FM $88-108 \mathrm{MHz}^{\prime} 5 \mu \mathrm{~V}$ sensitivity (at $30 \mathrm{db} \mathrm{S} / \mathrm{N}$), 10.7 MHz i.f., antenna impedance 75Ω unbalanced, l.e.d. stereo beacon, AM/FM/FM multiplex switch.
TAPE PLAYER Autoreversing, 4 track 2 channel stereo, wow and flutter < 0.3% (WRMS), signal to noise $>-40 \mathrm{~dB}$, crosstalk $>-40 \mathrm{~dB}$, l.e.d. indication of tape direction, manual tape reverse button, fast forward and rewind.
GENERAL Output 7W per channel, frequency response 80 Hz 10 kHz , output impedance $4-8 \Omega$, supply voltage $12 \mathrm{~V}(11-16 \mathrm{~V}$ d.c.) negative earth only, tone, balance, volume and tuning controls, range switch, scale illumination, size $180 \times 44 \times 148 \mathrm{~mm}$ deep, weight 1.9 kg , supplied with fixings for in-dash mounting, in line fuse holder and fuse and instructions for mounting, wiring and operating the unit.

BASIC SPEC. FOR THE CASSETTE PLAYERS

Autostop, 4 track 2 channel stereo, wow and flutter <0.25\% (AC200), $<0.3 \%$ (AC100) WRMS, frequency response 50 Hz 12 kHz , signal to noise $<-45 \mathrm{~dB}$, fast forward time $<180 \mathrm{sec}$. for C60 cassette, output impedance $4-8 \Omega$, supply voltage $12 \mathrm{~V}(11-$ 16 V d.c.) negative earth only, size $110 \times 50 \times 170 \mathrm{~mm}$ deep (AC100). $110 \times 55 \times 170 \mathrm{~mm}$ deep (AC200), loudness +7 dB (AC200 only), supplied with fixing brackets, connecting plug, wire, in line fuse holder and fuse and instructions for mounting, wiring and operating, Including circuit diagram.

To: Videotone Ltd. (PE Offer), 98 Crofton Park Road, Crofton Park, London SE4. Tel: 01-690 851 1/2.

Mountidurn

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below.
Semiconductor International 80 Nov. 25-27. Metropole Convention Centre. T1
BEX 80 Nov. 26-27. Exhibition Centre, Bristol. K
Breadboard Nov. 26-30. Royal Horticultural Halls, Westminster. T BEX 81 Feb. 4-5. Pavilion, Bournemouth. K
Microsystems 81 (exhibition and conference) March 11-13. Wembley Conf. Centre, London. $\mathbf{Z 1}$
INSPEX 1981 March 16-20. NEC, Birmingham. $Z 1$
Seminex 81 (seminars only) March 23-27. Imperial College, London. HI
BEX 81 March 25-26. Metropole, Brighton. K
The Northern Electronic Test \& Measurement Exhibition 81 March 31-April 2. Wythenshawe Forum, Manchester. T
Laboratory 81 April 1-2. Glasgow. I
BEX 81 April 8-9. Centre Hotel, Liverpool. K
Laboratory 81 April 8-9. Manchester. I
All Electronics Show 81 April 22-24. Grosvenor Ho., Park Lane, London. F1
Computer Graphics 1981 April 28-30. The Barbican Centre, London. 0

BEX 81 April 29-30. Dragonara Hotel, Leeds. K
Entertainment 81 May 9-17 (weekday mornings trade only). NEC, Birmingham. B2
The European Consumer Electronics Show 81 May 10-13. Nuremberg, West Germany. I
The European Consumer Electronics Show 81 May 10-13, Nuremburg Fair Centre. W. Germany. (Trade)I
BEX Train May 11-22. Calling at: Cambridge, Norwich, Leicester, Sheffield, Newcastle, Middlesbrough, Hull, Nottingham, Reading and Portsmouth. K
Defence Components Expo 81 May 12-14. Brighton Metropole. I
Scotelex 81 June 2-4. Royal Highland Exhibition Hall, Ingliston, Edinburgh. A1
Semlab 81 June 2-5. Grand Hall, Olympia, London. The international scientific, educational; medical and industrial laboratory equipment exhibition. (Trade) I
Transducer Tempcon 81 June 9-11. Wembley Conf. Centre, London. T
Components 81 (Electronics Components Industry Fair) June 9-12. Earls Court, London. I
International Word Processing Exhibiton \& Conf. 81 June 23-26. Wembley Conf. Centre, London. \mathbf{Z}
Solar Energy Exhibition Aug.23-28, 1981. Brighton. M
Laboratory 81 Sept. 8-10. Grosvenor Ho., Park Lane, London. I
International Business Show 81 Oct. 20-29. NEC, Birmingham. A2
Electronics 82 (Sub-titles International Electronics Control and Instruments Exhibition) May 24-28, 1982. NEC. I

I Industrial Trade Fairs. 021-705 6707
K Douglas Temple Studios. 1046 Old Christchurch Road, Bournemouth
M Montbuild. © 01-486 1951
O Online Conferences. 6089539262
T Trident International Exhibitions. \& 08224671
A1 Institute of Electronics. 070643661
H1 Seminex Lid. 0892
T1 Kiver Communications UK, Millbank House, 171-185 Ewell Road, Surbiton, Surrey KT6 6AX.
Z1 IPC Exhibitions Ltd., 40 Bowling Green Lane, London EC1R ONE. f 01-837 3636
A2 Hart Browne \& Curtis Ltd., 29 Sackville Street, Piccadilly, London W IX IDR. © 01-439 8556
B2 Brintex Exhibitions Ltd., 178-202 Great Portland Street, London W IN 6NH. $\%$ 01-637 2400

EMICROTUNE

MARTIN KENT

THE PE MICROTUNE is a general-purpose automotive tester which, as well as featuring volts, amps and resistance measurement, can also check r.p.m. and ignition dwell angle. The voltage and current ranges also have an a.c. function, making the meter extremely useful on car radios, cassettes etc., as well as being suitable for general electrical or electronic diagnostic use. The digital read-out gives a far higher accuracy than is attainable from analogue "pointer" type meters. Use of an l.c.d. display gives large, easily read digits, visible evien in bright sunlight, and giving very long battery life.

A total of seven functions (DC Volts, AC Volts, DC Current, AC Current, Resistance, RPM, Dwell) and twenty ranges, makes this the most versatile car tester yet. It is suitable for use on positive or negative earth vehicles, fitted with normal or electronic ignition, and four, six or eight cylinder engines are catered for.

MICROTUNE BASICS

As with the PE DMM (July 1980), the Microtune uses the Intersil 7106 as the heart of the instrument, the single range voltmeter. This is a $3 \frac{1}{2}$ digit analogue to digital convertor, which drives an I.c.d. display directly. The July article outlined the operation of a dual-slope AD Convertor, so the explanation will not be repeated.

The heart of the instrument is the single range 200 mV voltmeter formed by IC1, the 7106. The input impedance is greater than $100 \mathrm{M} \Omega$, to ensure that negligible current is drawn from the circuit under test. An input filter to limit noise voltage is formed by C6 and R6; the latter also increases the overload protection by restricting the input currents. An on-chip reference voltage is provided at pin 32 of IC1, which is maintained at approximately 2.8 V below the positive supply rail. The voltage reference is the critical part of any AND convertor as all inputs are compared against it. To optimise reference stability, a bandgap voltage reference IC3 is used, which operates from the on-chip 2.8 V reference. The reference voltage output of bandgap devices depends inherently on the properties of transistor junction potentials. The $V_{b e}$ of a junction depends'upon bulk properties and doping levels of the semiconductor material; its long
term stability being essentially unaffected by surface phenomena. A potential divider is formed by resistors R3, R4, R5, and VR1 to adjust the 1.2 V output of IC3 and produce an extremely stable 100 mV reference, while C7 eliminates any noise voltages.

The frequency of the interval clock oscillator is controlled by C5 and R2, the values chosen providing a frequency of approximately 48 KHz , to produce a conversion rate of three readings per second with good rejection from 50 Hz pick-up.

The AD convertor is inherently auto-zero in its' operation, such that when the inputs are shorted together the digital outputs are guaranteed to be zero, to eliminate the need for offset adjustments, The auto-zero capacitor C2 prevents noise voltages affecting the above function. The integrator time constant is set by C1 and R1.

DISPLAY REQUIREMENTS

The 7106 drives liquid crystal displays direct and the square wave backplane signal is provided at pin 21. L.c.d.s require a.c. drive signals since steady d.c. potentials can burn-in the segments. For a particular segment to be turned on, it must be driven by a signal of equal amplitude but opposite phase to the backplane signal.

Voltage comparator integrated circuits are designed to produce a logic " 1 " output when the difference between the inputs is positive and a logic " 0 " when the difference is negative. This is the basis of the auto-polarity circuitry within IC1 which drives the negative polarity bar directly from pin 20. Decimal points are selected by sections of the range switches S2-S5 and the correct I.c.d. drive is provided by dual-input EXCLUSIVE-OR gates within IC4. Examination of the truth table of an EXCLUSIVE-OR gate will show that the output is high if one or other of the inputs is high, but the output is low if both inputs are high. If one of the inputs is used as a control input, when it is low it will allow through the gate a high or low level, as applied to the second input. When the control input is high it will invert the level applied to the second input. Resistors R7, R8 and R9 hold the control inputs, pins 8, 13 and 6 of IC4, at a normally low level by using the test output, pin 37, of IC1. The backplane signal is applied to IC4 pins 9,12, and 5. When a control input is

...ENGINE TUNE-UP UNIT Part One

taken to a high level by the range switch, the respective gate acts as an invertor to provide an output in antiphase to the backplane input and so provide the required l.c.d. drive signal.

When using battery-operated instruments, it is important to know when the battery voltage is dropping to a level where performance of the instrument may be impaired. The liquid crystal displays supplied by Lascar have "LO-BAT" wording which can be turned on when the battery voltage has dropped such that 20 per cent of useful life remains. The operator therefore receives advance warning of battery failure while being able to maintain accurate readings until the battery can be changed.

A potential divider is formed across the supply rails by R10 and R11. When the supply voltage drops to approximately 7 Volts TR1 collector is taken high and IC4d becomes an invertor for the backplane signal, and turns on the low battery warning display segments.

INPUT CONDITIONING

All of the signal inputs to the Microtune must be converted to $0-200 \mathrm{mV}$ d.c. levels to ensure compatibility with the AD convertor.
(a) D.C. VOLTAGE AND CURRENT MEASUREMENT

Four d.c. voltage ranges are provided with f.s.d. of $200 \mathrm{mV}, 20 \mathrm{~V}, 200 \mathrm{~V}$ and 1 KV . The four range switches S2S5 are interlocked with the Off Switch S 1 such that any range selection switches the instrument on. Sections of the function switches then select appropriate areas of circuitry to minimise current drain in unwanted circuitry. Switch S 1 b also isolates the main signal input when the power is off to prevent damage to the A / D convertor. When the Voltage function is selected by 57 , the input is applied to the $10 \mathrm{M} \Omega$ attenuator formed by resistors R13-R18 which are extremely stable 0.25 per cent metal film types. On the 200 mV range the input is routed directly to the A / D convertor, whereas the higher range switches select the appropriate attenuation point.

Voltage dependent resistors R21-R23 are connected across the input terminals to clamp any transient high voltage spikes which may otherwise cause damage to the instrument. A VDR normally exhibits extremely high resistance such that it does not affect measurement accuracy but when the threshold voltage is exceeded the device alters rapidly to a low resistance to shunt out transients.

A single current range of up to 20A is provided via a separate input terminal to avoid high currents flowing through the switches. To convert the input current to the required voltage requires a shunt resistor of value $10 \mathrm{~m} \Omega$ and whilst this value is available such resistors are very expensive. The cost of such resistors may be eliminated by using the p.c.b. track and recalling that the resistance of an element is given by its' resistivity (p), length and cross-sectional area.

$$
\text { Resistance, } R=\frac{\mathrm{pl}}{\mathrm{~A}} \text { ohms }
$$

The industrial standard copper laminate fibre-glass board used for p.c.b. manufacture uses $10 z .(0.035 \mathrm{~mm}$ thick) copper coating. The track width was chosen first to restrict the temperature rise to 20 deg . C with 20A flowing, and then the cross sectional area was calculated. From the resistivity of anriealed copper, the length of the required track for a resistance of $10 \mathrm{~m} \Omega$ was then calculated.

No protection is provided on the current range and care must be exercised when connecting this range in circuit.

The d.c. voltage developed across the shunt resistor R24 is switched by S9a, and the decimal point on the display is set for 19.99A by S9b.

(b) A.C. VOLTAGE \& CURRENT MEASUREMENT

When a.c. functions are selected by S10, capacitor C8 is connected in series with the input to remove any d.c. component. Voltage inputs are fed through the $10 \mathrm{M} \Omega$ attenuator as before and current input is applied to the shunt resistor.

Integrated circuit IC5 is a TL061 operational amplifier, connected as a precision rectifier. Alternating inputs are rectified by diodes D4 and D5 with the positive component

SPECIFICATION

FUNCTION	FSD	RESOLU	ACCURACY
VOLTS (DC)	$\begin{aligned} & 200 \mathrm{mV} \\ & 20 \mathrm{~V} \\ & 200 \mathrm{~V} \\ & 1 \mathrm{kV} \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{mV} \\ & 10 \mathrm{mV} \\ & 100 \mathrm{mv} \\ & 1 \mathrm{~V} \end{aligned}$	$0.5 \% \pm 1$ Digit
CURRENT (DC)	20A	10 mA	$5 \% \pm 2$ Digits
VOLTS (AC)	$\begin{aligned} & 200 \mathrm{mV} \\ & 20 \mathrm{~V} \\ & 200 \mathrm{~V} \\ & 1 \mathrm{kV} \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{mv} \\ & 10 \mathrm{mv} \\ & 100 \mathrm{mv} \\ & 1 \mathrm{~V} \end{aligned}$	$0.75 \% \pm 5$ Digits
CURRENT (AC)	204	10 mA	$6 \% \pm 5$ Digits
RESISTANCE	$\begin{gathered} E 200 \Omega \\ 20 \mathrm{k} \Omega \\ 200 \mathrm{k} \Omega \\ 20 \mathrm{M} \Omega \end{gathered}$	$\begin{aligned} & 100 \mathrm{~m} \Omega \\ & 10 \Omega \\ & 100 \Omega \\ & 10 \mathrm{k} \Omega \end{aligned}$	$0.5 \% \pm 1$ Digit
RPM	20,000RPM 14, 6 or 8 cylinders)	10RPM	$\begin{aligned} & 1 \% \text { nominal } \pm 3 \\ & \text { Digits } \end{aligned}$
DWELL	200° 14, 6 or 8 cylinders)	0.1°	$\begin{aligned} & 2 \% \text { nominal } \pm 3 \\ & \text { Digits } \end{aligned}$

```
COMPONENTS
    Resistors
    R1, R36 47k Carbon film 5% (2 off)
    R2, R20, 
    R3, R5 1k
    R4, R27,
    R28 18k Carbon film 5% (3 off)
    R6, R26 10M Carbon film 5% (2 off)
    R7-R10,
    R12,R25 1M Carbon film 5% (6 off)
    R11,R19 220k Carbon film 5% (2 off)
    R13 9M Metal film 0.25%
    R14 900k Metal film 0.25%
    R15 90k Metal film 0.25%
    R16 9k Metal film 0.25%
    R17 900R Metal film 0.25%
    R18 100R Metal film 0.1%
    R21 VDR 400V
    R22 VDR 400V
    R23 VDR 400V
    R24 10m\Omega P.c.b. integral
    R29 6k8 Carbon film 5%
    R31 Thermistor PTC, 1k, 260V a.c.
    R32 100k Carban film 5%
    R33 470R Carbon film 5%
    R34,R45 3k3 Carbon film 5% (2 off)
    R35, R39,
    R41, R44,
    R46,R47 10k Carbon film 5% (6 off)
    R37, R38 27k Carbon film 5% (2 off)
    R40, R50 1k Carbon film 5% (2 off)
    R42 2k2 Carbon film 5%
    R43 4k7 Carbon film 5%
    R48 6k8 Carbon film 5%
    R49 910k Carbon film 5%
Variable Resistor:
        VR1 1 2k
Capacitors
    C1.C14 220n Polyester (2 off)
    C2 470n Polyester
    C3.
    C10-C12.
    C15 100n Polyester (5 off)
    C4,C6 10n Polyester (2 off)
    C5 100p Polystyrene
    C7,C9,
```

sampled by R26 then filtered by R30 and C12. The op-amp has a j.f.e.t. input resulting in high input impedance, and the supply current is typically $250 \mu \mathrm{~A}$, which makes it ideal for battery operation.

The circuit is mean-sensing and calibrated to indicate the r.m.s. value of sine wave inputs by adjustment of VR2.

(c) RESISTANCE MEASUREMENT

One method of measuring an unknown resistor is to apply a constant current and measure the voltage developed across the resistor. The PE DMM used such a method but the Microtune with its increased space to provide more intricate switching, uses a more streamlined method of resistance measurement. The Intersil 7106 analogue inputs are fully differential as are the reference voltage inputs. In the normal mode of operation a fixed reference voltage is applied to the 7106 and the signal input voltage is measured as a ratio of the reference voltage and the digital reading is $1000 \frac{\mathrm{Vin}}{\mathrm{V} \text { ref. }}$ So that with a 100 mV reference, an input of 100 mV would be read as $100 \cdot 0$. For resistance measure-
ment the arrangement shown in Fig. 2 may be used.
The bandgap reference IC3 forms a stable voltage source which is applied across the reference resistor Rr and the unknown resistor Rx.

The voltage developed across each resistor is dependent upon the ratio of the two resistors and the ratiometric method of operation of the 7106 permits the value of the unknown resistor to be read directly.

$$
\text { Reading }=1000 \frac{R x}{R r}
$$

The reference resistor is selected from the input voltage attenuator resistors, to avoid expensive duplication, by $\mathrm{S} 2-$ S 5 and is in reverse order to the voltage settings. The value of $R \mathrm{x}$ is 100Ω for the 200Ω range, $10 \mathrm{k} \Omega$ for the $20 \mathrm{k} \Omega$ range etc.

A simplified form of the instrument circuit with the 200Ω range selected for resistance measurement is shown in Fig. 3 to clarify the switching.

Resistance measurements should not be made on live circuits, however protection is included to prevent damage to

Fig. 1. Full circuit diagram.

Fig. 2. Ratiometric resistance
Fig. 4. Ignition system triggering measurement

Fig. 3. Switch configuration for resistance 200Ω range the instrument against applied high voltages. Transistor TR2 will turn on at approximately 10 V and shunt the applied voltage. Thermistor R31 has a nominal value of $1 \mathrm{k} \Omega$ at room temperature, but when TR2 draws current through R31 the thermistor temperature rises and due to the positive temperature coefficient the resistance increases so limiting the input current.

(d) R.P.M. MEASUREMENT

The measurement of engine r.p.m. can be very useful when servicing cars and we shall see later that specific tests carried out whilst monitoring the speed of an engine enable its efficiency to be optimised.

Although the internal combustion engine has changed very little over the years, there have been distinct changes in the area of the ignition system. A large number of new vehicles still employ the conventional contact breaker, driven from the distributor, to trigger the ignition coil and hence produce h.t. voltage to the sparking plugs. However, an increasing number of engines are being fitted with electronic ignition units usually triggered by the contact breaker, and capable of producing higher voltage at the sparking plugs from lower supply voltages. Some electronic ignition systems dispense with the mechanical contact breaker and are triggered by a Hall effect switch which detects the passing of a magnetic vane to control the timing. Amidst the variety of ignition systems, one component usually remains unchanged and that is the ignition coil. By monitoring the triggering of the ignition coil, measurement of engine r.p.m. may be made without the need for expensive transducers.

Fig. 4 shows the simplified ignition arrangement of a negative earth vehicle.

For a four-stroke engine, the distributor shaft rotates at half the speed of the crankshaft and the number of trigger pulses applied to the ignition coil is given by:

$$
\text { Pulses } / \text { Min }=\frac{\text { r.p.m. } \times \text { number of cylinders }}{2}
$$

alternatively,

$$
\text { r.p.m. }=\frac{\text { Pulses } / \text { Min } \times 2}{\text { Number of cylinders }}
$$

Therefore, for a given engine, the r.p.m. varies linearly with the pulses/min applied to the ignition coil.

Measurement of the pulse rate is most easily carried out by conversion to an analogue voltage with a frequency-tovoltage convertor and then measuring the d.c. voltage on the 7106-based voltmeter.

The basic diode pump circuit is dependent upon pulse width and amplitude but may be improved by feeding it from monostable which delivers a pulse of fixed amplitude and duration each time the ignition coil is triggered.

Integrated circuit IC6 is a monolithic frequency-to-voltáge convertor based upon a charge pump whose output voltage is buffered by an op-amp.

Due to the ignition coil inductance, high transient voltages can be found superimposed upon the normal 12 V trigger pulse on the coil primary and the input voltage to the f / v convertor is clipped by R32 and D6. The input signal is fed through C14 as the comparator input is required to pass through zero to ensure correct triggering. The output voltage of the LM2907 is referenced to its power supply zero volt line but the 7106 input is not able to operate down to its zero volt line, therefore a separate supply is used for the tachometer section. Output voltage is proportional to timing capacitor C15 and load resistor R34 + VR3, whereas filter capacitor C16 suppresses ripple but will also lengthen the convertor response time. Resistors R49 and R36-R38 form an attenuator to reduce the output voltage when switching between 4,6 and 8 cylinders, since r.p.m. is inversely proportional to the number of cylinders as shown earlier. Full scale output of IC6 is set at 2 V .

The normal range-switch selection of decimal points is overriden on engine functions by S8b, and S11b sets the d.p. for 19.99 ($\times 1000$) r.p.m. for 4, 6 or 8 cylinders.

(e) DWELL MEASUREMENT

Each vehicle has a specific dwell angle quoted for the distributor and is the angle through which the contact breaker cam rotates whilst the points are closed. Adjustment of the dwell angle is very important to ensure correct combustion and the angle may be measured by comparing the points open time to points closed time, or duty cycle. The cam has a number of lobes equal to the number of cylinders such that a four cylinder engine will have four lobes spaced 90° apart and the dwell angle is usually slightly less than two-thirds of the cam lobe angle.

$$
\text { Dwell angle }=\text { cam lobe angle } \times \frac{100 \%-\text { Duty Cycle }}{100 \%}
$$

The instrument is connected to the same coil primary connection as used when measuring r.p.m. and the input voltage is fed to IC7 which is an LM 324 quad op-amp. The first stage acts as a comparator whose threshold voltage is set at approximately 1 V by R39 and D8. The rectangular output of IC7a is an inversion of the input such that the points-closed time is active "high" and clipped to constant amplitude by R40 and D9.

The clipped signal is integrated by R41 and C17 to obtain the average value which is then buffered by IC7b and the 600 mV offset is removed by D10. The output voltage is adjusted by R42, R43 and VR4 to produce a 2 V f.s.d. proportional to dwell angle.
NEXT MONTH: Construction and Use.

Will solar power solve our energy problems? Can we build the satellites? How will they work? When will they be available? How much will it all cost?

For answers to these and other questions the SPS raise, see our article next month.

Computers make smashing toys but sooner or later they mist pay for their keep by doing some real work. Next month we start a series on interfacing the UK101 with the outside world, -using such things as joysticks, I.d.r.s, power controllers, D/A and $\mathbf{A} D$ converters, etc.

H: $=$ TANDY 132 PAGE CATALOCUE

PRACTICAL

PEMaster Rhythm

ΓT is some twenty years since the first commercial attempts were made to simulate the role of a drummer using electronic principles, and despite continuous criticism of monotony and lack of Instrument quality the utilisation of this type of musical aid has grown enormously to the present time where, in addition to almost universal incorporation into commercial electronic organs, it is used by Spanish guitarlsts in Tenerife, Greek singers in London restaurants, Scottish dancers and by practice musicians anywhere.

DEVELOPMENT

Basic design philosophy has changed little over the twenty years but the method of realisation has altered continuously along with the advances made in semiconductor technology. Ignoring tape playback systems early rhythm generators contained a limited number of simple patterns programmed during construction by a diode matrix. This type of system has had a long life and to many musicians its pattern simplicity is still preferable to many of the later "advancements". The advent of high capacity semiconductor memories seemed to provide the perfect answer to rhythm pattern generation-four, eight, twelve, sixteen rhythms on a single chip-then twenty four or more plus extra instruments and measures per bar using multiple chips.

All this looked marvellous, however the technique depended on the fixing of the patterns and instrument channels during the latter stages of manufacture of the integrated circuits and what i.c. manufacturer or commercial electronic
musical instrument design house could resist putting in the most complex patterns possible to give his equipment the gimmick appeal required by the general public. Hence the next generation of design realisation known as "Cancel Buttons". This allows a degree of low pass gimmick filtering and there present systems have rested.

The ability to leave the programming function to the musician has been restricted by the relatively slower development of read/write memories, commonly known as RAMs, as opposed to read only memories, or ROMs. This situation has only fairly recently changed in two important respects, the size of RAM available at an economic price and the standby power required to retain the patterns in an easily reprogrammable memory between periods of active use. The CMOS technique of semiconductor manufacture now gives reasonably low cost i.c.s which may be easily configured to give a 4096 bit capacity, similar to the common preprogrammed rhythm generator ROMs; with instant user programming and reprogramming capabilities and a standby data storage current of a few microamps.

The PE Master Rhythm makes use of this type of integrated circuit to give a small easily constructed rhythm generator on two p.c.b.s which is completely under the programme control of the musician. At the end of the series a full set of patterns will be given which may be used by the constructor to gain familiarity with the operation of the instrument. These are open to experiment and can be used as a base for further rhythms.

SPECIFICATION

Control Facilities
RHYTHM PATTERN SELECTION-Twelve Dual Section Positions.

Switch Positions
One to four
Five to eight
Nine and ten
Eleven and twelve

Section and Sequence Operation (Two switches)

Section
Switch
Position
One
Two
Three
Three
Three
Cymbal Control (Three positions)
Switched-(1) Play programme, (2) Off, (3) Continuous.

Program Control (Ten positions)

Program (write) Tracks-Eight
Play (read) Mode-Two positions

Instrumentation (Three position control)			
TRACK	STICK	BRUSH	L-A
Eight	Accent	Accent	Accent
Seven	Short Cymbal	Short Cymbal	Short Cymbal
Six	Long Cymbal	Long Cymbal	Long Cymbal
Five	Rim-Shot	Short Brush	Claves
Four	Snare Drum	Long Brush	High Bongo
Three	High Tom-Tom	High Tom-Tom	Low Bongo
Two	Low Tom-Tom	Low Tom-Tom	Conga Drum
One	Bass Drum	Bass Drum	Bass Drum

Memory Capacity- 4,096 bits configured as 512×8 Power Source- $4 \times$ HP7 or similar
Operating Current-Typically less than 10 mA
Standby Current-Typically less than $10 \mu \mathrm{~A}$
Nominal Output- 100 mV into 50 kilohm
Approx. Dimensions- $8 \frac{1}{2}$ in $\times 5$ in $\times 2 \frac{1}{2}$ in

SCOPE OF THE INSTRUMENT

This instrument is capable of storing between twelve and twenty four selectable rhythmic patterns, invented, modified, and entered by the operator onto eight instrument tracks. A three position "Instrumentation" control expands the number of instruments available to twelve, grouped into sounds typical of playing with drumsticks, brushes, or on Latin American bongos and claves. The incorporation of pattern sections containing twelve, sixteen, twenty four, and thirty two measures per section, coupled with dual section selection on the main "Rhythm Select" control which allows a continuous pattern of up to sixty four measures, a wide range of complex patterns may be reproduced.

RHYTHM CAPACITY

Each position of the "Rhythm Select" control selects a portion of the memory, split into two sections A and B. The "Section Selector" switch can isolate each section which may therefore contain totally different repeating patterns for a maximum capacity of twenty four discrete rhythms. However the two sections may be programmed with related rhythms, the B section for example containing a drum roll pattern or turn-round riff which will only be played if the "Section Selector" is set to the " B " or "Sequence" position. In the latter case the sequencer switch will determine how often the B pattern appears which on the first eight rhythms can be switched to alternate bars, four bar repetition, or eight bar repetition. Rhythm positions nine to twelve contain double length patterns-i.e. twenty four or thirty two measures per section, and whilst the longer sections may be used to give more measures per bar, they may also be programmed as two bars each which extends the maximum sequence to sixteen bars.

PLAY MODE

When the instrument is set in the play mode depression of the "Play" switch starts the rhythm sequence which continues until "Rest" is depressed. The start of the pattern is indicated by a pulse on the l.e.d. Restart will always be at the commencement of the pattern and sequence, and the "Section Selector" and "Sequence" switches may be altered at
any time during the play condition without disturbance to the synchronisation of the rhythm. The "Instrumentation" and "Cymbal" switch positions may also be altered during performance to introduce further variety as required.

INSTRUMENTATION

The memory system can be considered as an eight track digital recorder in which recording is executed one track at a time and playback occurs on eight simultaneously. Using the "Instrumentation" control the eight tracks may be fed to one of three groups of instruments as shown in the specification. The instruments will be familiar to the reader except possibly for "Accent" which allows a degree of dynamics to be introduced into rhythm patterns giving a more realistic result.

The "Cymbal" control normally selects the pattern contained on the relevant programmed track, but it also has positions to either cancel sound from the "Short Cymbal" or cause it to operate continuously-e.g. in a 16 s mode.

PROGRAM MODE

The program mode is automatically attained by moving the "Program Control" to any of the eight instrument track positions. Prior to carrying out this operation the Master Rhythm should be run in the play mode and the "Rest" button depressed to ensure that the rhythm pattern is at its starting point. This will be indicated by illumination of the l.e.d. as the program mode is selected. During programming the "Sequence" control should be in the " $A+B$ " position and the operator can choose to programme " A " and " B " either separately or together by the position of the "Section Select" control.

The "Instrumentation" and "Cymbal" switches can be set to any position during programming. Corresponding instrument sounds will be heard as the rhythm pattern is developed, but the sounds on playback will be determined by the switch settings at that time.

When an instrument track is selected on the "Program Control", depression of the "Play" button dictates that the relevant instrument will play during that measure of the pattern. Depression of the "Rest" button keeps the instrument
silent for the corresponding measure. Thus for four beats on sixteen measures per bar the pattern of one "Play" plus three "Rest" is pressed four times. In formulating a complete rhythm this action is repeated on each of the eight instrument tracks, an operation which soon becomes very quick. An individual track may be chosen for modification at any time without disturbing the other tracks. All instruments previously programmed plus the instrument under current modification, play during programming which allows a continuous audible check on the growing rhythm pattern.

PATTERN STORAGE

The play mode is automatically regained by turning the "Program Control" to either of its extreme switch positions, and the programmed information will be retained in the memory until modified, provided that the battery continues to give the required standing storage current of typically $5 \mu \mathrm{~A}$ and does not fall below 2 V , which represents virtually a shelf life condition for the battery. When a battery change becomes necessary, indicated by a loss of instrument quality, the battery may be removed for up to five minutes without the loss of the rhythm patterns.

MEMORY OPERATION

The heart of the unit is the block of four CMOS memories type 5101. These are 22 pin packaged devices each containing 1024 memory cells arranged as 256 rows four columns wide. By interconnecting the four integrated circuits in a series parallel configuration the final memory has 512 rows, eight columns wide.

Fig. 1 shows the operation of a single 5101 in simplified form, indicating that the chip consists of a set of memory cells plus control circuits. Each row in the memory has a unique address which can be selected by the voltages present on eight address lines due to the normal binary relationship of $2^{8}=256$. Thus for one combination of address input voltages only one row will be selected. In the unit some of the address lines are connected to the "Rhythm Select" switch which defines the row at which the pattern will start, whilst the others are connected, via the "Section" and "Sequence" switch logic, to a counter which automatically increments the row selection process up to the point at which the pattern is intended to be repeated.

When a row is selected the four corresponding memory cells are potentially available at both inputs and outputs. A read/write control line ensures that information can be put into the memory only when the control line voltage is low, and this is inserted on the rows (measures) as required using a positive voltage equal to the supply to indicate that an instrument requires to be played. On playback, with the read/write control line high, pulses will appear at the outputs to drive the instrument circuits when required.
Two chip selection control lines are also provided in the 5101 , one of which, $\overline{C E 1}$, causes the chip to be active when its input is low and the other, CE2, when high. Unless both inputs are in the corresponding active states the chip presents an open circuit at its outputs preventing any influence on other chips which may be connected into the system. Thus $\overline{C E 1}$ is used in a similar manner to the address lines allowing selection of only the first pair of i.c.s with 256 rows and eight columns, or only the second pair of isc.s with a further 256 rows giving 512 total. CE2 is used by the system clock which beats at one pulse per musical measure, to pulse the chosen address to give the output drive pulses to the instruments.

The remaining connections to the memory are its single supply and ground plus the grounding of pin 18, OD, which
is not used in this application. The relative timing and periods of various activities in this integrated circuit are important and are covered by the detailed circuitry.

SYSTEM OP̈ERATION

A schematic of the system is given in Fig. 2, ignoring the detailed operation of the memory. The mode detector senses whether the "Program Control" switch is in either of the two play positions and signals the mode switching circuitry accordingly. This holds the read/write control voltage up to ensure that when the "Play" key is pressed, and its output latched, the clock will start and be fed through the counter, "Sequence" and "Section Select" switches, to the memory address inputs, coupled with the fixed starting address determined by the position of the "Rhythm Select" switch. A pulse is also transmitted to the chip select inputs CE2 for each measure within the rhythm pattern, and the down beat indicator is pulsed for each twelve or sixteen measure period. The memory output pulses are fed to the instruments via the "Instrumentation" and "Cymbal" selectors where applicable.

When the "Program Control" is in an instrument track position the mode detector gives a high output which sets the mode switching circuitry such that the counter is disconnected fram the clock but incfements on each depression of the "Play" or "Rest" key. High and low level signals corresponding to play and rest respectively pass through the "Program Control" switch to the instrument track selected and replace the level previously stored in that memory cell as a falling pulse is applied to the read/write control input from the mode switching network. The instrument tracks not selected at this time retain the previously recorded information due to the prior state feedback network.

CONTROL CIRCUITS

The complete control circuit detail is shown in Fig. 3. NAND gates IC1c and IC1d form the latch, one output of which is fed to the "Program Control" switch. Resistor network R17 and R18 produces a voltage of approximately 3 V at the inputs to the two comparators which make up the mode detector, leading to a detector output of approximately 6 V . However when the "Program Control" switch is in either of the "Play" positions the resistor network is overcome and the detector input becomes OV or 6 V dependent on the state of the latch connected to "Play" and "Rest" keys. In either case the detector output becomes zero which prevents any signals passing through IC2b to the write enable portion of the circuit. Under these circumstances the clock, which comprises IC 1 a and IC1b, is connected via IC2 2 and IC2d to

Fig. 1. Showing simplified operation of a 5101

Fig. 2. Schematic of Master Rhythm
the counter input. Depression of the "Rest" key will reset the complete counter through IC3b, IC3a and D12, whilst the "Play" key will start the clock.

The counter consists of eight synchronously switched divider stages, the first four of which are decoded by diodes D5 to D8 to produce down beat indicator pulses in conjunction with D4. Outputs from the third and fourth dividers are decoded by diodes D10 and D9 to produce reset signals on the first four counters via D11 after every twelfth measure when R33 is raised by selection of a twelve measure category rhythm. The last four stages of the counter are decoded by diodes D13 to D20 which link with the "Sequence" select switch S5 to pass sequence address information via the "Section Select" switch S6. Counter outputs provide the incrementing address information required by the memory, whilst the fixed starting addresses are
provided through diodes D27 to D41 from the "Rhythrm Select" switch. As described earlier the memories work in pairs, IC6 plus IC8 and IC7 plus IC9. The changeover chip enable signals $\overline{C E 1}$ are provided in opposite sense through the inverter IC3c.
When the "Program Control" is in an instrument track position the high output from the mode detector prevents the passage of the clock through IC2c and enables IC2b to pass the pulses, which occur at the output of IC2a each time either the "Play" or "Rest" key is depressed, forward to IC2d and IC4c. The former provides the stepped clock required during the programming operation whilst the latter provides a negative sense write enable pulse timed by R6/C4 and R10/C5. The prior state feedback network consists of resistors R20 to R27 which protect the information on the non-operative tracks during programming.

Fig. 4. Control p.c.b.

Resistors	
R1	33 k
R2	68 k
R3	1 M
R4	10 k
R5	22 k
R6	150 k
R7	10 k
R8	220 k
R9	2 M 2
R10	10 k
R11	100 k
R12	150 k
R13	330 R
R14-19	150 k (6 off)
R20-28	470 k (9 off)
R29-32	150 k (4 off)
R33	68 k
R34-40	150 k (7 off)

All resistors 0.25 W , 5% carbon film

Switches

S1 Single pole 10 way rotary
S2 Single pole 12 way rotary S3-4 Single pole push-to-make (2 off) S5-8 2 pole 3 way sliders (4 off) S9 Single pole (see potentiometer VR2)

Integrated Circuits

IC1	CD4011
IC2	CD4093
IC3	CD4011
IC4	MM 74C909
IC5	CD4520
IC6-9	TC5501P (4 off)

Potentiometers
VR1 500 k lin
VR2 $25 \mathrm{k} \log$ with switch
VR3 $25 \mathrm{k} \log$

Miscellaneous

0.040 in terminal pins 12 off 22 pin i.c. sockets 4 off
16 pin i.c. sockets 1 off
14 pin i.c. sockets 4 off control knobs 1 in dia 2 off control knobs $\frac{3}{3}$ in dia 3 off printed circuit board 1 off

A complete kit can be obtained from Clof Products, 16 Mayfield Rd., Bramhall, Cheshire SK7 1JU

CONTROL P.C.B.

From the photograph it can be seen that in addition to containing the control circuitry the Control p.c.b. acts as a mechanical support for all switches and the "Level," "Tone," and "Tempo" potentiometers. Diode D24 is shown in brackets and is the twelve measure connection for position 4 on the "Rhythm Select" switch. Since the sample pattern given later for rhythm 4 is based on sixteen measures this diode is omitted. The corresponding twelve measure diodes for positions 1, 2, 3, 11 and 12 are D21, D22, D23, D25 and D26 respectively and may be omitted as required. Rhythms 5 to 10 inclusive are permanently arranged on a sixteen measure basis.

ASSEMBLING THE P.C.B.

The Control p.c.b. has a considerable number of interconnection tracks and it is advisable to inspect closely the p.c.b. before proceeding, particularly ensuring that bridges are not present between the memory tracks or the large switch pads. Figs. 4 and 5 show the track layout and component overlay for the p.c.b.

The twelve terminal pins should first be inserted in the board, note that many of the interconnections are made from the rear of the p.c.b. where pins are not required. All resistors and diodes can be inserted and soldered next. It is advisable to use a small soldering iron with a maximum bit size of $3 / 32 \mathrm{in}$, and in particular it will be found to help if 22 s.w.g. solder is used rather than thicker varieties which aggravate the possibility of solder bridges. Wire links can be inserted after soldering the i.c. sockets, advisable throughout, followed by the capacitors.

The three position switches are pushed into the holes in the p.c.b. and are a tight fit. The "Sequence" switch requires two tags to be cut off before insertion and care should be taken not to damage the switches. However it is important for front panel alignment that the switches should seat on the p.c.b. and it may be necessary to slightly increase the size of the switch tag mounting holes due to the mechanical spread on the switches. To assist in later alignment of the front panel it is also suggested that at this stage the l.e.d. is soldered temporarily some 0.5 in off the p.c.b. The "Play" and "Rest" keys should be easy to locate with the four pin fixing provided.

Fig. 6. Wiring connections to $\mathbf{S 9}$

ROTARY SWITCHES

The rotary switches are single pole, twelve position, and when supplied they have a small metal ring, concentric with the shaft, which can be repositioned to alter the switching compass. In the case of the "Rhythm Select" switch the ring should be removed completely to allow the full twelve positions to be used. The "Program Control" should be set to give ten positions by adjustment of the ring position to its second slot.

Wiring of the rotary switches to the p.c.b. is carried out from the track side using single core tinned wire of 22 s.w.g. The numbers enclosed by squares on the component ident side of the p.c.b. correspond with the switch tag numbers. Note that pins 1 and 10 on the "Program Control" switch are shorted together and that the connection points for the centre keys are some distance away requiring insylation. These are marked SEL for the Selector Switch and PROG for the "Program Control" switch. It is also worth noting that tag 8 on the "Rhythm Select" switch and tags 11 and 12 on the "Program Control" do not have connections to the p.c.b.

POTENTIOMETERS

The "Tempo" control is soldered to the three pads on the p.c.b. again using wire links, whereas the potentiometer sections of the "Level" and "Tone" controls are later connected to the instrument p.c.b. only. Fig. 6 shows all the connections, from the switch S9 integral with the "Level" control VR2, to the control p.c.b. supply points. These are important since they control the standby system in addition to. switching on the main operating power.

Next Month: Instrumentation and setting up

At these sensational prices you can afford to give

CHRITITMA TIME PRESENTS

Great gifts at giveaway prices. For your family. Your friends. Or yourself.

SEIKO QUARTZ CALCULATOR/ALARM
 Only £49.95 + 85p p\&p

Continuous display of hours, minutes, seconds with day, alarm indicators. Optional display: month, date, AM/PM with day indicator. Calculator (16 key) performs arithmetic, percentage, constant and power calculations. 12 hour alarm with AM/PM indication, rings twice a second for 10 seconds, then four times a second for 10 seconds. Display flashes as battery life nears end. Back light. Water resistant. Adjustable stainless steel strap.

MITRAD MD605 QUARTZ LADIES MUSICAL ALARM CHRONO Only £11.95 + 85p p\&p

Continuous display of hours, minutes, seconds. Optional display: day, date, month. Auto calendar. Chronograph with lap timing facilities to $1 / 10 \mathrm{sec} .24$ hour alarm plays 30 seconds of Beethoven's 'Fur Elise'. Back light. Infinitely adjustable stainless steel strap.

MITRAD MD610 QUARTZ GENTLEMAN'S MELODY

 ALARM Only $£ 16.95+85$ p p\&pCase thickness only 5 mm . Continuous display of hours, minutes, seconds with date and mode indications. 'Running horse' chronograph to $1 / 10 \mathrm{sec}$. 12 hour alarm plays 30 seconds of 'Yellow Rose of Texas'. Back light. Infinitely adjustable stainless steel strap.

MITRAD PEN WATCH Only $£ 11.15$ + 85p p\&p

Elegant stainless steel ballpoint pen combined with a quartz precision timepiece. The five function LCD watch displays hours, minutes, seconds, month and date and has a computerised four year date memory. In presentation case with spare pen refill.

From the collection of 12 month guaranteed leading make products oflered through Mitrad's 7
day distribution system and backed by Mitrad's own service organisation. For complete product range, ring or write for catalogue. Trade price list available for bulk buyers.

ATHOUGH designed to interface a Nascom 1 microcomputer with a KSR33 Teletypewriter, this current loop needs very little or no modification to suit other printers and microcomputers with 20 mA serial output. The circuit is in three sections; power supply, opto-isolator, and 20 mA (or 60 mA) current loop mounted on a single, easily drawn p.c.b.

POWER SUPPLY

On test it was found that 400 mA at 9 V was more than sufficient to activate the selector magnet of the teletype, normal being 500 mA at 20 V . A 14.5 V 500 mA transformer was chosen to power the circuit, as these are easily obtainable for a very modest outlay, as are the 1 A bridge rectifier, $1000 \mu \mathrm{~F} 40 \mathrm{~V}$ electrolytic capacitor and 13.5 V Zener diode, all of which provide a stabilised power supply. With the exception of the transformer, the componerits are mounted on the p.c.b.

OPTO-ISOLATOR

R1 is chosen to protect the l.e.d. and any resistance value between 470 and $1 k$ should be sufficient. The reverseparallel diode D5 bypasses negative peaks across the l.e.d. The light emitted by the l.e.d. causes current to flow through the photo-transistor, which is amplified by TR 1 and TR2. The high gain causes a square wave to appear at the collector of TR2. VR1 is used to adjust the current to 20 mA or 60 mA as required. It also serves as a final adjustment to achieve 500 mA at the output to the printer selector magnet.

> Similar to those installed in converted teletypes, enhancing the price by anything up to $£ 80$, yet can be built for only a few pounds

CURRENT LOOP

TR3 and TR4 can be any power transistors of the 3053 and 3055 n.p.n. types respectively. D7 can be any 1 or $2 \hat{A}$ diode. Because of the heat generated around the junction of R9 and R10, R7, R8 and R9 should be 2 to 4 Watt wirewound resistors and R10 a 10 Watt wirewound. These resistors run much cooler when the selector magnet is connected than they do whilst under test before installation. R6 might require changing to adjust the current gain to produce 500 mA at the output.

Fig. 1. Circuit diagram of opto-coupled 20 mA loop. When in optoisolated mode, the OUT from VR1 is connected to IN at D2 (as on p.c.b.) The input at D2 can be used as a non-isolated RS232 input

For a mark input a positive current is applied to the anode of D2. This provides a positive bias to the base of TR3 which overcomes the normal negative bias supplied through R5 and stabilised by D5. TR3 will turn off as the increasing positive current reaches one half of its final value. The collector of TR3 then goes negative and this negative potential is applied to the base of TR4 which turns TR4 on. R8 provides emitter bias to TR3 and supplies a regenerative action to the transistor.

The selector magnet of the teletype is connected between the collector of TR4 and the junction of R9, R10. On marks the current rises to 500 mA and energises the magnet. On spaces the positive input bias decreases and TR3 is turned on at the half line current point by negative bias through R5. The collector of TR3 rises towards a zero potential, applying reverse bias to TR4, de-energising the magnet. The selector magnet opposes the change in current and applies a transient potential to the collector of TR4. D3 now conducts and passes the transient potential to C2 and R11 which limits the potential to a value well under the breakdown voltage of TR4, while selector magnet energy is being dissipated.

CONSTRUCTION

R10 gets very warm in operation and-should be mounted away from the p.c.b. to aid heat dissipation.

D4 should be mounted on long leads and bent over the photo-transistor. They are joined with a short length of coaxial sleeving. The ends should be left open while tests are carried out so that room light shines through the end and activates the photo-transistor, thus preventing the printer from chattering. When the unit is connected to a 20 mA current a plastic pen-cap makes a neat cover.

Should a photo-transistor not be available, the top can be carefully cut from a BC107 and the base exposed. t

COMPONENTS

Resistors

R1	1knom. see text
R2	$1 \mathrm{M5}$
R3	12 k
R4	$1 \mathrm{k5}$
R5	4 k 7
R6	390 see text
R7	$2 R 7 \mathrm{w} . \mathrm{w} .2 \mathrm{~W}$
R8	$1 \mathrm{w.w}$.
R9	$270 \mathrm{w.w}$.
R10	15 WW
R11	150

All resistors $\frac{1}{2} \mathrm{~W} 5 \%$ unless otherwise stated

Capacitors

C 1	$100 \mu / 40 \mathrm{~V}$
$\mathrm{C} 2, \mathrm{C} 3$	$10 \mu / 25 \mathrm{~V}(2$ off $)$

Transistors And Diodes

REC1	1A bridge rectifier
D1, D2	4148 or similar (2 off)
D3	4001 or similar
D4	0.2 in. red l.e.d.
D5	12 V or 13 V Zener 1.5 W
TR1, TR2	BC107 (2 off)
TR3	2 N 3053
TR4	2N3055
TR5	n.p.n. photo-transistor

Transformer

T1
240 V 50 Hz prim. 14.5 to 20 V 500 mA
sec.

Constructors' Note

A complete kit of components is available from Watford Electronics

Fig. 2. Printed circuit (actual size)

LOOP

Fig. 3. Component layout

THE SHUTTLE TELESCOPE

This infrared instrument is a natural addition to the joint United States, United Kingdom and Netherlands venture, which is expected to be launched in 1982. Its full title is Shuttle Infrared Telescope Facility. It is an observatory 1 -metre class instrument. It will be in operation outside the atmospheric difficulties such as the absorption and emission of radiation. This will mean that the degrading of quality, which is suffered by telescopes in lower orbits, can be avoided. In fact the limitations of the SIRTF will be due to the natural back ground of space.

To the techniques to be used in this mission, which is scheduled for 1987 or thereabouts, will be added the advantages of cryogenic control. Such control can provide considerably greater sensitivity. Part of this will be derived from the fact that the operational area will be outside that which limits sensitivity, namely below the wavelength of 30 micrometres and above 300 micrometres. The normal background in these ranges is spoiled by water vapour and carbon dioxide. It is possible to overcome some of this by the use of aircraft and balloons. However there is still the line of sight difficulty due to random absorption and emission: So important are data that can be retrieved in this part of the spectrum that pressure from astronomy has virtually demanded that the latest techniques are used. At the present time detectors are available which, in ground based telescopes, are limited only by photon background. Much of the noise and the atmospheric limitation is at a level several orders of magnitude above the sources to be studied. The use of cryogenic techniques enables this background to be overcome with the result that a cryogenic system outside the atmosphere will offer up to a 1,000 times increase in sensitivity above current equipment. For the first time it will be possible to study high-luminosity extra-galactic sources and stellar formations.

The value of scientific advantages such as the SIRTF lie in the ability to look forward in time as well as backward. The early history of the expansion of the Universe with the formation of galaxies may lie in this cosmological area because of the redshift. Once again the real workload lies with the electronics of control for which the specification is severe. It is required that there shall be a pointing accuracy ± 1-arc/second and a guidance system to ensure a stability of 0.25 -arc/second. Other requirements are that the primary mirror must be held below 12 Kelvin for the first half of each 7 to 14 day mission and thereafter below 16 Kelvin. The secondary mirror must also have a low temperature control at 10 Kelvin or less for the first part of missions and then 15 Kelvin maximum for the rest of the period.

For a nominal 14 day mission SIRTF would need to carry about 1,300 litres of supercritical gaseous helium. This will be held at a pressure of 6 atmospheres to cool the telescope optics and the body. There will be facilities to carry superfluid helium to cool the instrument chamber to a level of 2 -Kelvin. There are current investigations to get the temperature down to a few tenths of a degree kelvin using the isotope helium 3. This is a case of the sword into ploughshares for Helium 3 is a byproduct of weapons technology.

There are difficulties in attaining the ultimate goals but already there are satisfactory signs of progress. For example the optical systems will be diffraction limited at 5 micrometers. This can be achieved using optical grade beryllium. There is a doubt as to whether that beryllium can attain the 2 micrometre diffraction. This figure is of importance for the observation of proto-galaxies, these are galaxies that are forming and would show a high redshift. Other materials are being investigated and these matters will be on-going during this continuing updating. The first flights will be about 14 hours duration rising to 30 hours. The reusable system is expected to reach mission durations of 30 days with a reusable condition free of replacement of any major part for 20 missions.

The aperture of the telescope is .85 metres in diameter and 9.2 metres in length. The cryogenic tanks, the electronics and the pointing systems are housed outside the main shell. There is a sun shield and a collapsible cover to reduce the off-axis radiation in to the telescope. This allows the main axis of the telescope to come within 45 degrees of the sun or the earth. The optical arrangement is that of a primary and secondary mirror arranged in what is known as the Ritchey-ChretienCassegrain configuration. The telescope can be used for over a wide range of studies which include:-

The observation of quasars, star formation, normal galaxies; objects in the solar system such as asteroids, comets and the satellites of the outer planets, also the observation of mass exchange between stars and the interstellar medium. It would also be possible to detect the massive halos of cool stars surrounding galaxies, with the identification of high redshift galaxies in formation.

THE HEART OF A SUPERNOVA

With optical activities growing all the while
it is easy to miss the new developments in radioastronomy. However the 5 kilometre radio telescope at the Mullard Radio Astronomy Observatory has been in operation investigating the Tycho Brahe supernova remnent. This was observed to explode in 1572. This is a Type 1 supernova, a most bright and energetic star explosion.

The discovery made at the observatory at Cambridge by Steve Gull and Guy Pooley was a very small but intense source of radiation at the centre of what remains of the supernova. Until now only one other nebula has been shown to have a Pulsar and this was the Crab Nebula which is within our own galaxy. The radiation of the Tycho remnant was detected at a wavelength of 11 cm . With the high resolution of this radio telescope the picture of the collapsed star can be built up in considerable detail. The observer's suggest that the pulsar or neutron star is in fact the collapsed star. It is not yet finally decided what the real answer is because there could be other reasons for the smail star like object being present. If it is in fact the final 'bit' of the original star then it must be moving at 2000 k / ms a second. This is about 10 times faster than known pulsars. Other observatories are now checking on this star but it may be some time before it is confirmed.

THE SOLAR WIND

Back now to the Earth itself. There is a new collaboration of scientists from 11 countries which began in November. It is perhaps one of the more ambitious projects to undertake the study of the physies of the upper atmosphere. Some 200 scientists are involved. It is expected that nearly fifty rocket launches will be made and observations from 37 ground stations supplemented by satellites and balloons will provide data about the upper atmosphere. The main object of the exercise is to study the atmosphere from 80 to 200 kilometres above the Earth during a magnetic storm.

Magnetic storms are severe disturbances of the earth's magnetic field by the solar wind. There is a continuous radiation which forms the solar wind but this is enhanced by flares and sunspots. The magnetosphere round the earth becomes distorted and the tadpole like tail which appears on the side of the earth away from the sun is extended. The plasma which is composed of ionised particles mostly of hydrogen carries tremendous energy. The particles are dissipated in the upper atmosphere. The solar wind expelled radially from the sun is composed of protons and electrons. When they near the magnetosphere they are lulled out of their straight paths and focussed towards the poles. As the denser part of the atmosphere at about 150 kilometres is reached larger protons are inhibited but the electrons move on. As a result there is a drift of high energy current in a westward direction. This leaks into the atmosphere away from the poles.

Following the article by Frank Hyde on Velikovsky in the April 1980 Spacewatch, we have received many letters from readers, expressing varying opinlons. Frank Hyde's final reply to these letters is printed in Readout on page 50.
and revolve around numerical words such as "two", "thirty", "pounds" etc.
One of the advantages of the fixed-word approach is the extreme ease of interface with any logic system. To aid in the evaluation and addition of speech to any computer or logic device, the interface is described below, as a constructional article. The speech board is available separately, however, with a full technical specification for the user to design his own interface in any way he wishes.

TSI SPEECH SYNTHESIS BOARD

Telesensory Systems Inc (TSI) are the manufacturers of several products for the synthesis of human speech. They produce a talking calculator which has found obvious application for the blind. The units of particular interest, produced by TSI, are the fixed 24 and 64 English word units, consisting of a controller chip (called the CRC), and one or

Syecch Synthesis

AST month, an introduction to the theory and history of $L_{\text {speech synthesis was given as a precursor to this month's }}$ constructional article. An American speech board (manufactured by Telesensory Systems Inc.) is available through Modus Systems Ltd., and its'interface to any general computer or logic system is described. The Compukit and Edukit are used to give examples of the interface, and hence provide readers with a practical demonstration of the way in which speech may be added to their own type of system.

INTRODUCTION

Converting the theory of last month's article into practice at the "one-off" small computer level, was, until recently, rather difficult. Texas instruments, for instance, have not made their speech products available on this experimentation level, and most other companies are only interested in the large volume "OEM" buyer, who needs expensive customised speech sets. To experiment with the technology, the alternatives include some excellent, but relatively expensive phoneme analysis boards, whereby any word may be synthesised by sending it information of the phonemes which make it up. To "try out" speech synthesis, a far better approach is to use a cheap, mass produced fixed-word synthesiser giving digitally controllable speech on demand from any computer or logic system. If more than one speech set is also available then so much the better. It is with this in mind that Modus have imported a range of fixed-word speech synthesisers, for applications where a customised vocabulary is unnecessary. The words available are basic
two 2 K ROMs, respectively. The photograph shows the chips mounted on a p.c.b. with one or two other discrete components, and a gold-flashed edge connector. The size of the board is $66 \times 73 \times 13 \mathrm{~mm}$, with 0.156 in . pitch edge connector tracks. The 64 -word versions have two ROMs on the board and are slightly larger.

TSI speech board

The CRC is a general speech synthesis chip which requires data of pronunciation, pitch, word-length etc. from a ROM to create the necessary sounds. To store the raw data of a word on a read only memory, a complex computer program accepts speech through a microphone and converts it to data suitable to the CRC. TSI have commissioned ROMs, by this method, for several different speech "fonts", and standard vocabularies in a number of different languages (German, French, Arabic etc). The words available here are detailed in Table 1.

S2A	S28	S2C
(Calculator type	(Standard English	(ASCII 64-words)
24-words)	64-words)	space, X-point, quote,
oh	Same as S2A plus:	number, dollars,
one	ten, eleven, etc.	percent, and, apostrophe,
two	twenty, thirty, etc.	left parent, right parent,
three	hundred, thousand,	star, plus, comma,
four	zero, and, seconds,	minus, point, slash,
five	degrees, dollars,	zero, one, etc. nine,
six	cents, pounds,	colon, semicolon, less than,
seven	ounces, total,	equals, greater than,
eight	please, feet,	mark, at, A, B, C, (etc.) . . Z
nine	metres, centimetres	lower case, tone,
times-minus	voits, ohms, amps,	upper case, up arrow,
equals	hertz, d.c., a.c.,	control
percent	down, up, go,	
low	stop, low and high tone	
over		
root		
em(M)	N.B. The ASCII set is of course arranged in	
times exact ASCII order to convert any standard		
$\begin{array}{ll}\text { point } \\ \text { overflow } & \text { binary code into a verbalisation of th } \\ \text { corresponding ASCII character. }\end{array}$		
minus		
plus		
clear		
swap		

TABLE 1. Vocabulary of the three TSI speech boards available

The speech board acts by accepting a control word of six bits to identify the spoken word to be output, followed by a start pulse to tell it to begin speaking. The board is also equipped with a "busy" line to tell external devices that a word is in the process of being spoken. Fig. 2.1 shows a block diagram with timing signals to illustrate the process. The timing shows that the speech output itself does not occur until the "start" signal has fallen to zero. In a typical interface set-up, a set of six latches would feed the control word to the CRC, the "start" signal would fall after 140 micro seconds or more, and the output would be forthcoming. It must be noted that if the "start" line should rise at any time during the speech output, the output is stopped in mid flow. When the "start" line falls again, the word is started from the beginning. To assist in preventing this occurrence, the "busy" line should be monitored by the external system, and the "start" line only operated when the machine has finished talking.

INTERFACING

As is clear from the above, the logic interface requirements are straightforward, and the only problems arise from the rather strange power supply requirements, which are -5 V and -15 V . However, by a simple trick, the -5 V level can be derived from the normal supply of a microcomputer, while the -15 V supply must be derived separately.

The final requirement of the board is for audio circuitry of essentially two types, a filter and an amplifier. The sound is produced by the CRC via a digital to analogue converter

E0660 7
(DAC). This implies that the output waveform is not completely smooth. Its variation from level to level is by a set of steps. A sinewave derived from a DAC will have the form shown in Fig. 2.2. Note that the horizontal width of each step is constant, while the vertical steps vary to approximate the sinewave. This shows that the waveform thus formed may be viewed as a sinewave modulated by a constant frequency squarewave. However, a squarewave contains the elements of many frequencies mixed together (depending on how square it is), and hence the voice output must be passed through a band-pass filter allowing just the band of frequencies needed for voice to pass. To give an idea of the frequencies needed and some typical characteristics, Fig. 2.3 reproduces TSI's suggested op-amp filter response. The three decibel level is often used as a method of comparing such responses, and the frequencies at which this level cuts the graph are called the "corner frequencies". The reason for their importance is that at these frequencies, the incoming waveform's amplitude is exactly halved by passing through the filter.

Fig. 2.2. Sine wave output from D to A converter

In considering the TSI output, however, it was found most advantageous to be able to vary the response to different ears, and for different loudspeaker arrangements. After much experimentation, a very simple single op-amp bandpass filter was selected, which, together with an integrated circuit power amplifier gave acceptable results. This circuit is

Fig. 2.3. Bandpass filter characteristics

(6043)

Fig. 2.4. Bandpass fiter
shown in Fig. 2.4, and includes a tone control, which varies the filter's pass characteristics.

THE INTERFACE UNIT

As explained above, interfacing is dependent upon three main systems: logic, power and audio sections. All these are included on the interface board described here, along with such important details as the correct edge-connector into which the TSI speech unit plugs.

Fig. 2.5 shows a complete circuit diagram of the interface unit, which is designed to be as complete as possible. A separate 5 -volt supply is needed for the logic, as well as a small 10 to 20 volt transformer (at around 250 mA) and an 8 ohm speaker.

The word to be spoken is requested by supplying a set of bits (DO to D5) along with a positive going "latch enable" pulse. The word is latched into IC2 and presented to the speech synthesis board. When the "start" line changes from high to low, and held there, an audio signal is output from the synthesiser. IC1 filters this audio signal in a manner partly determined by the setting of VR1. The filtered signal is a.c. coupled to a volume control and the i.c. power amplifier IC3 which feeds an 8 ohm speaker through C4. The power supply on the board adds 10 volts to the 5 volt supply from the external logic, and just requires an external mains transformer as indicated. The "busy" signal output swings through 15 volts and to convert this to a 5 volt swing, D5 and R5 are included.

CONSTRUCTION

The p.c.b. design and component layout for the unit is shown in Fig. 2.6.

Assembly of the unit is straightforward, and the sockets for the i.c.s should be inserted and soldered first, followed by the edge-connector and ribbon cable connector. Note that the ribbon cable connector has some spare pins for expansion. Discrete components and regulator should be fitted next, observing the correct polarities with great care. It is a very good idea to check that there are 10 volts between -5 V and -15 V lines from IC4, before proceeding. The 5 volt

Fig. 2.5. Interface and speech board circuit diagram

Fig. 2.6. P.c.b. design and component layout for the interface board (Copyright Modus Systems Ltd)
supply can then be connected and a check performed for 15 volts across IC1 and IC3 sockets. Check, also, that the correct supply levels are present at the speech synthesis connector and IC2 socket. When you are fully satisfied, switch off and insert IC3. With the volume fully up, a hum should be audible at the loudspeaker when the wiper of VR2 is touched with a finger. Turn the volume down to ensure that this causes the hum to disappear. This will verify IC3's operation.

Next, insert IC1, IC2 (the correct way round) and the speech synthesis board, with the component side inwards as shown. The unit will sound highly unstable unless the "start" line is held at "one" or "zero" (TTL levels). The line should be taken to zero $(-5 \mathrm{~V})$ through a low resistance (100 ohm for
instance). The line may then be taken high and back to zero to check for word output. If none appears, connect all the inputs of IC2 to zero, and pulse the "latch enable" low, then high. This should load the word "Oh". VR1 and VR2 should be adjusted for the best sound. It is useful to note that the word's pitch may be adjusted by the pot on the speech synthesiser p.c.b.-the pot should be set at half way initiallythe total number of turns for its full travel is about four and a half, the pot should be turned one way until obviously at its end, and a couple of turns added in the opposite direction. If no sound appears, use a logic probe, meter (or l.e.d. in series with a 1 k resistor), to check that the data bits from IC2 to the speech synthesiser board are all zero. If nothing is forthcoming, power should be removed and the whole unit

COMPONENTS

Resistors

R1, R2, R5	$1 \mathrm{k}(3$ off $)$
R3	180 k
R4	4 k 7

All resistors $\frac{1}{4}$ W 5% carbon
Potentiometers

VR1
100k hor. preset
5 k hor. preset
Capacitors
C1, C2 C3 C4, C5, C6, C7 C8, C9, C10

10 n ceramic disc (2 off) $2 \mu 215 \mathrm{~V}$ elect. $100 \mu 15 \mathrm{~V}$ elect. (4 off)
100 n disc ceramic (3 off)
Semiconductors

D1-D4	1N4001 (4 off)
D5	1N4148
D6	SV1 Zener BZY88
IC1	741
IC2	74 LS174
IC3	LM380
IC4	7805

Miscellaneous

P.c.b.

PLI ribbon cable plug and connector
SK1 edge connector socket (10 double way at 0.156 in . pitch with polarising plug)
Mains transformer $10-20 \mathrm{~V} \sec 250 \mathrm{~mA}$
8Ω loudspeaker
S2A, S2B or S2C speech synthesis board
i.c. sockets

Constructor's Note

All components including the speech boards are available from Modus Systems Lid., 29A Eastcheap, Letchworth, Herts, SG6 3DA (04626 74468/76392).
The interface board (ex. transformer and loudspeaker) is £14.95 ex. VAT and p\&p, and the S2A board is £39.95 ex. VAT and p\&p.
checked with the greatest care for any incorrect soldering or component location.

When the unit is working, adjust the two pots on the interface, and the pot on the synthesis board for the best sound. Any tendency toward instability will almost certainly be removed by adding to the power supply decoupling capacitors. Experimentation with the loudspeaker mounting is very worthwhile. Try mounting the speaker in a closed cardboard box with just the speaker cone exposed through a hole of the same diameter. The prototype gave excellent results with a speaker in a transistor radio housing. The speaker should be around two inches or more in diameter for the best results, any smaller and the important base responses will be lost.

COMPUTER SPEECH

It is expected that a number of readers will want to attach the unit to a microcomputer and this section deals with its interface to the Compukit, and the Edukit. The interface requirements for the two machines are sufficiently different to provide an excellent illustration of the process.

In order to operate the speech board effectively, the host computer should have two output lines and one input, as well as the six data lines, usually derived from the data bus, to supply details of the exact word to be spoken. One of the
output lines is used to clock the six bit word into the data latch, the other output is used as a "start" signal to the speech board, and the input line is connected to the "busy" line and monitored by the computer to ensure that a new word is not requested before the current one is finished. This last line is not necessary if a delay loop is used by the computer to ensure that the next word is never output too soon.

The Edukit has several input and output lines for these purposes, and its interface is very straightforward. Fig. 2.7 shows a tried and tested arrangement. The Edukit is based around the RCA 1802 MPU which has a number of special and useful features for hardware control. One of its lines, called the \mathbf{Q} line, is a flip-flop output whose condition may be set by a couple of dedicated machine-code instructionsone to set and one to reset. This output is used here as a "start" signal. The Edukit has a transistor connected to the \mathbf{Q} line, and a couple of pins on the board give access to its collector (through a 100 ohm resistor). A load. resistor (2k2 at least) should be connected across the pins, and the collector end of the resistor (pin nearest to the keyboard) should be connected, as shown, to the "start" line of the interface. Thus, the Q output from the 1802 is inverted, and starting of the speech output is effected by first setting Q (giving zero at the "start" line), resetting and setting Q again. This provides a short pulsed "one" on the "start" line.
The Edukit also has a number of input lines, called "External Flags" (EF lines). The states of these lines may be examined by a comprehensive set of jump instructions in the 1802. The "busy" line, therefore, :nay be examined by EF1, for instance, and the next word sent when the "busy" line returns to a "one".

To transfer data from the computer, the lower six data lines are used, and a further output line is necessary to latch these data bits into the interface's latches. Again, the 1802 is well designed to allow the presence of "output" data on the "data bus" to be signalled by a particular set of output lines (NO and N2). On the Edukit, one of these lines is inverted and used to allow data to be shown on the digital display. The signal appears at pin 3 of the display drivers, (IC11 or IC12), and it is from here that the latch enable of the interface should be drawn.

To ensure that the unit is interfaced correctly, write a program to turn the Q line off, then on, then off again.

E0445
Fig. 2.7. Edukit interface board
Whatever word is held on the latch (IC2) will now be heard when the program is run. If this is working, the hex equivalent of the word spokien will appear on the digital display.

Fig. 2.8 gives a flow chart of a typical piece of software to output all the words offered by the speech board. Either 24 or 64 words are offered on the board, and this will decide when the last word has been spoken. The routine starts by setting the Q line to a "one", and setting the contents of the
memory location (called " 1 " here) to the number 0 , which is the first word to be spoken. The OUT instruction is then used exactly as for outputting to the digital display. " 1 " is then incremented and Q set to O for a short time. The word spoken should agree with the digital display reading. A loop is then entered which simply repeats until the "busy" line returns to a 1 level. When this happens, a check is done to determine whether the last word has been spoken; if not the process is repeated, otherwise the end is reached. This routine, does, of course, form the basis for operating any system, though the exact manner in which the checks are made, and the data output, depends upon the hardware set-up involved.

Interfacing to the Compukit is a rather more difficult business as there are no I/O lines on the board. There are two approaches which may be considered. Which is chosen depends upon whether a quick experimental set-up is sufficient, or a fully operational unit capable of controlling the speech fully is required.

Fig. 2.8. Flow chart to output all the words offered by the speech board

A quick interface to the Compukit, which is by no means a finished set-up, but will give a flavour of the use of speech for a later more sophisticated approach is shown in Fig. 2.9. Here, the top 2K of RAM i.c.s are removed, and their "data" lines, "supply" lines and "chip select" lines are used to drive the speech unit. Notice that the RS lines from the Compukit need inverting before being able to drive the "start" line. The easiest solution is to use any small s!gnal transistor for the job. This interface proved perfectly satisfactory, and should be realised by a couple of d.i.l. headers; rather than by soldering to the p.c.b. When the Compukit is reset and cold started, the Monitor does a memory test, and hence the RS lines are activated. This should cause a word to be output. The theory of operation of this interface is as follows. When a word is to be output, a POKE statement is performed to
any memory location in the top 1 K of memory. This causes RS7 to go low when the "data bus" contains the desired word. The word is then latched by the speech interface. The next operation is to POKE any location in the next to last 1 K of memory-any value will do. This causes R96 to fall to a zero for a short time, which, via the transistor invertor,

50447
Fig. 2.9. Simple Compukit interface
causes the "start" line to rise for a short time and the speech board outputs the latched word. No provision is made for monitoring the "busy" signal, and if a string of words is to be output, then it is necessary to include a delay loop such as:

$$
\text { FOR } I=1 \text { TO } 1500: \text { NEXT I }
$$

between each word output.
The upper 1 K of memory starts at decimal 7168 , and the next 1 K below at 6144 . Thus, for instance, the following program will "say" all the words on the 24 -word version of the speech board.

$$
\begin{aligned}
& 10 \text { FOR J }=0 \text { TO } 23 \\
& 20 \text { POKE } 7168, J \\
& 30 \text { POKE } 6144,0 \\
& 40 \text { FOR I }=1 \text { TO } 1500 \\
& 50 \text { NEXT I } \\
& 60 \text { NEXT J }
\end{aligned}
$$

The upper value in line 40 depends upon the frequency of the clock on the speech board, and hence may need to be adjusted to ensure that nothing is lost.

The above interface should not be viewed as a long term method of providing the Compukit with speech. The correct approach is to use a PIA type device such as that detailed in the PE Compukit articles. By this means, the "busy" signal can be used to ensure that nothing is lost, and the top 2 K of RAM remains free. An excellent and general interface project for the Compukit is described in a set of articles by D. E. Graham, starting in the next issue of PE. The project is perfectly set up to control the speech board as well as many other things. Another advantage of this interface is that it allows the use of digital to analogue converters. The need for such devices, with reference to speech, is mentioned below.

GENERAL NOTES

Any digital device which displays decimal intormation, such as a digital clock, digital car instruments, test gear etc. should be able to be interfaced with the speech unit described here. Some demultiplexing may be required, and the on-board latch provides the basis of such circuitry. Though a major application is for computer speech, a computer is by no means necessary to drive the unit.

In using the speech unit, it is worth pointing out that any word spoken to the human ear out of context may be mis-
heard or misunderstood by the listener. It is therefore a good idea to listen through the complete vocabulary, at least once, while following a written copy. This should adequately attune the ear to the sound being produced.

To experiment with voice output fully, the pitch of the utterance must also be controlled in real time. The speech boards allow the clock frequency to be supplied from an external source, and an external D to A converter followed by a voltage controlled oscillator would be a method of allowing computer control of pitch. Volume could also be adjusted at IC3, and, along with pitch, ultimate control of the process would result. The next step would be to produce a piece of
software which automatically determines and controls the pitch and volume depending upon context and syntax of the utterance. Although the speech unit presented here is relatively simple, it is more than adequate for, these and many other sophisticated experiments in speech synthesis. Indeed, the unit is actually useful, and provides the user with yet another source of output from electronic equipment. This is especially true when the eyes are busy with other tasks, but constant monitoring of numerical data is required.

Finally, the author would like to thank Mr. M. Terkow of Modus Systems for his assistance in prototyping and checking many of the ideas presented in these articles.

Readout... A selection from our Postbag

Readers requiring a reply to any letter must include a stamped addressed envelope.
Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

Velikovsky: Frank Hyde Replies

I offered to answer specific questions from Mr. Austin but so far none have come to hand. However since Messrs Warlow and Williams have added their criticisms on this matter it gives me an opportunity to assume that, certain main themes are themselves statements of belief if not scientific fact, accepted by these gentlemen.

First let me make it clear that I am dealing with the matter from my own original edition of Velikovsky's "Worlds in Collision". Most of the book consists of statements without any support other than quotations from random works of the past. Much of the support for his own ideas are drawn from the biblical text. It is here that quotation is regarded as confirmation of physical facts and as is all too common with this kind of "proof" is not sufficient to substantiate the claims.

Dominant among the statements which serve to antagonise physicists and astronomers are the claims that a comet was ejected from Jupiter. Let us take this as a starting point and I quote page 48 of "Worlds in Collision" "In the middle of the second millenium before the present era, as I interd to show, the earth underwent one of the greatest catastrophes of its history. A celestial body that only a short while before had become a member of the solar system-a new cometcame very close to earth". Then for some 14 pages of quotations of various happenings interspersed with statements such as "the tails of comets are composed mainly of carbon and hydrogen gases. Lacking oxygen, they do not burn in flight, but the inflammable gases, passing through an atmosphere containing oxygen, will be set on fire". Well the earth passed through the tail of Halley's comet in 1910 but no one noticed it nor was the tail visible, let alone on fire. It is perhaps wise to point out here that the "tail" of a comet appears as the comet approaches the body which determines
its perihelion passage. If the comet is large the "tail" will be produced in a direction away from the body it approaches and will continue as it passes round the body to point away from it. It may be that more than one "tail" appears. Sometimes the tail is insignificant and sometimes there is no visible "tail". Halley's comet is due in 1986 and between now and then there is to be a mission to observe the comet at first hand. Thus will all doubt as to the composition be settled. Beyond saying that there is an abundance of literature available about comets which when read will give some of the answers, I will leave the actual comet in order to test the statement by Velikovsky that Venus was originally a comet ejected from Jupiter. This he says occurred around the year 1500 BC . The Book of Exodus provides the details of what happened when the comet grazed the earth. Many very strange things are told such as, the houses of the Egyptian people were destroyed, the Nile ran red etc. The curious thing about it all was that the houses of the Israelites were not affected. After forty years the comet came back and caused further trouble, to go off and again return, and, after hitting the earth, again bringing it to a standstill before going on to upset Mars into its present orbit and itself settling down as Venus. The earth regained its place and continued on as it was, before all these events took place. All this supported by historical facts quoted from the Bible and other writings from various parts of the world. These are very far reaching statements and thus need careful examination. Many so-called scientific predictions have gone awry even when evidence appears to be adequate to make a forecast. However there are certain everyday facts of natural science which must be satisfied before new and astounding statements can be accepted. Let us then look at what the statements of Velikovsky imply in relation to comets.

The basis of many of the statements attends on "belief". Because many of the cometary orbits lie near Jupiter a number of people including Laplace and Pierre Simon put forward
the view that Jupiter might be the source of cometary bodies. However there are no writings in support of the fact nor indeed are there any sightings of it ever happening nor has Jupiter ever been observed to have unusual events occurring in its vicinity. One person, V. S. Vsekhsviatsky does believe that comets are ejected from volcanoes on the satellites.

I will not resort to writing out the mathematics in this reply but will give the consequences as are known and used in astronomical physics. Of course if anyone would like to have the full mathematics I will send them, if a stamped addressed envelope is supplied. The effect of projection of a portion of Jupiter of the density and size to end up as a planetary body like Venus, would be to raise the temperature of Jupiter several thousands ' of degrees centigrade. This would have melted the body being ejected and therefore it would probably be dispersed as dust or vapour. Thus it is unlikely that even a comet (assuming that a comet is not anything like current thinking) could exist or survive such an experience. There is another problem also. The escape velocity at Jupiter is of the order of $20 \mathrm{~km} / \mathrm{se}$ cond. Whatever the escape mechanism might be it would not be aware of this fact for if the velocity of escape was $70 \mathrm{~km} / \mathrm{sec}$. n the comet/planet would fall back into Jupiter, if it were $73 \mathrm{~km} /$ second it would escape from the solar system. In either case it is more likely that Jupiter would be considerably changed and not its stable self as has been observed over a far longer period of time than as recently as 1500 BC .
There is still a further problem. This is the mass of Venus. It amounts to rather more than 5×10^{27} grammes. The total kinetic energy that would be required to propel Venus to the escape velocity of Jupiter is of the order of 10^{41} ergs. This poses an even greater problem than all the others put together for 10^{41} ergs is equivalent to all the radiation energy of the sun for a year. Or in other terms one hundred million times more powerful than the largest solar flare ever observed.

A final word on this situation, which is occupying more space than is justified. Velikovsky has quoted several rapidly occurring collisions involving planets yet the odds against it happening once in a millenium is 30,000 years. Surely unwritten folk stories and legends must defer to practical and demonstrable facts, for this is why David Birch was dismissive.

Frank W. Hyde, FSE,PEng, FRAS.
This correspondence is now closed-Ed.

Buy a microcomputer for under $£ 1,000$ and you could be on your own! Unless it's a Commodore PET.

Commodore produce Britain's number one microcomputer. But we don't stop there. We also insist on providing comprehensive support throughout our national dealer network.

Our dealers can examine your needs and demonstrate which hardware and software will suit you best. Their trained engineers are always at hand and a 24 -hour field maintenance service is available. Your local dealer can tell you more about the following Commodore Services.

- The Commodore PET

The Commodore PET computer range covers everything from the self-contained unit at under $£ 500$ to complete business systems at under $£ 2,500$.

C Commodore Business
 Software and Petpacks
 Our software range covers

 hundreds of applications. Business software includes Sales and Purchase Ledgers, Accounting, Stock Control, Payroll, Word Processing and more. In addition over 50 Petpacks are available covering such titles as Strathclyde Basic Tutorial, Assembler Development System, Statistics, plus our Treasure Trove and Arcade series of games.
© Commodore Approved Products
 Compatible products of other

 manufacturers with Commodore's mark of approval are also available.Commodore Courses
Commodore offer a range of residential tràining courses and one day seminars. An excellent start. And when you have installed your system the PET User's Club Newsletter can keep you informed of new ideas and latest developments.

LONDON AREA
Aada conputest tid Advanced Management Systems. EC2.01-6389319
Byteshop Computerland Byteshop Computerland
W1.01-6360647 C.S.S. (Business Equipment) Ltd.
E8. Ol-254 9293 E8. O1.2549293 Capital Computer Systems.
W1.01-636 3863 Centralex-London Ltd Cetile $0.3-3882813$. Citean Micito ocomplest shop. HARROW. O1-863 0833 Da Vinci Computer Shop.
EDGWARE, 01-952 0526 L\& J Computers.
NW9. O1-204 7525 Home and Business Computers.
E12.01-4725107
Merchant Sy stems Limited,
EC4.01-353 1464
Metyclean Lid. Metyclean Ltd.
SWI. 01-8282511 Micro Computation.
N14. O1-882 5104
N14. O1-8825104
Misro Computer Centre. Micro Computer Centre,
SW14.01-878 3206 Sumlock BondainLtd,
EC1 $01-2500505$ EC1. O1-2500505 EC4.01-6260487 T.L.C. World Trading LId,
WC2. $01-8393894$
TOPS TOPS TVLTD. SW1.01-7301795

HOME COUNTIES

G. M. Marketing, HSV Microcomputers. BASINGSTOKE, 62444 MMS Ltd,
BEDFORD. 40601 ERESYStems Litd, ib DOM Direct Data Marketing ltd. BRENTWOOD, 229379
Amplicon Micro Systems Amplicon Micro Systems Ltd.
BRIGHTON, 562163 RUF Computers (UK) Lid BURGESS HILL. 45211 T\& V Johnson (Microcomputers

Etc Ld, CAMBERLEY, 20446 Etc) Ltd, CAMBERLEY, 20446 | Cambridge Computer Store |
| :--- |
| CAMBRIDGE 65334 | Wego Computers Lid. CATERHAM, 49235 Dataview Ltd.

COLCHESTER, 78811 South East Computers Ltd, HASTINGS, 426844
Alpha Business Systems, Alpha Business Systems
MERTFORD, 57423 MERTFORD, 57423
Brent Computer System Brent Computer Sy stems, Isher-Woods Business Systems, LUTON, 416202 South East Computers Ltd,
MAIDSTONE, 681263 MAIDSTONE, 681263
Micro Facilities Ltd, Micro Facilities LId,
MIODLESEX, O1-9794546 J. R. Ward Computers Led, J. R. Ward Computers Litd Sumlock Bondain (East Anglia) Lid,
NORWICH, 26259 T\& V Johnson (Mic Etc) Lid. OXFORD. 721461 H.S. . Microcomputers,
SOUTHAMPTON. 22131 Super-Vision.
SOUTHAMPTON, 774023 Xitan Systems Ltd, SOUTHAMPTON, 38740
Stuart RDPan SOUTHEND-ON-SEA, 62707 The Computer Room,
TUNBRIDGE WELIS. 41645 Orchard Electronics,

Petalect Ltd,
WOKING. 63901 Oxford Computer Systems,
WOODSTOCK
WOODSTOCK, 811976

MIDLANDS AND

SOUTH HUMBERSIDE
Bytenhop Computerland,
GIRMINGHAM, 6227149
CPS (Data Systems) Lid.
BIRMINGHAM, 7073866
Camden Electronics,
BIRMINGHAM. 77338240
Computer Services Midiand
Computer Services Midlands Ltd
Catlands (Computers) Lid
BURTON-ON-TRENT, 812380
Ibek Systems.
COVENTRY,
COVENTRY, 86449
Jondane Associates Ltd.
COVENTRY 664400
Davidson-Richards Lid.
DEREY, 366803
Caddis Computer Systems Led
MINCKLEY 613544
HINCKLEY. 613544
M.B. Computers.

Taylor-Wilson Systems Ltd.
KNOWLE, 6192
Machsize Ltod.
LEAMINGTON SPA. 312542
Offlee Computer Techniques Lid
Lowe Electronics.
MATLOCK, 2817
Betos (Systems) Lid.
NOTINGHAM 4810
NOTH $\mathrm{NGHAM}, 48108$
Byteshop Computerland,
NOTTINGMAM, 40576
Keen Computers Lid,
NOTTINGHAM, 583254
Tekdata Conputing,
STOKE-ON-TRENT, 813631
Systems Mleros.
TELFORD, 460214
McDowell Knaggs \& As sociates.
WORCESTER, 427077
YORKSHIRE AND
NORTH HUMBERSIDE
Ackroyd Typewriter \& Adding
Machine Co. Ldd, BRADFORD, 31835 Allen Complaters,
Microware Computers Lid,
HULL, 562107 .
Microprocessor Services,
HULL, 23146
Holdene Lid,
LEEDS, 459459
Γ
To: Commodore Information Centre,
| 360 Euston Road, London W1 3BL. 01-388 5702
Please send me further information about the Commodore PET.
Name.
Position
Address

Yorkshire tecertoniccs Services Lid. NORTH WALES
MORLEV, 522181
Computer Centre $\{$ Sheffleld Ltd
SHE FFIELD. 53519
Electronic Services
Electronic Services,
SHEFFIELD, 668767
Hallam Computer Sy stems Lid,
SHEFFIELD. 663125
NORTH EAST
Dyson instruments.
OURHAM. 66937
OUS
Currie \& Maughan.
GATESHEAD, 774540
Wards (Office Supplies) Group.
GATESHEAD, 605915 Elfonltd,
HARTLEPOOL, 61770
Fiddes Marketing Limited.
Newcastle Computer
NEWCASTLE, 615325
Format Micro Centre.
NEWCASTLE, 21093
NEWCASTLE, 21093
Tripont Assuciated System
SUNDERLAND, 73310
SOUTH WALES AND
WEST COUNTRY
Radan Computational Ltd,
BATH, 318483
Computer Corner,
SHREWSBURY, 59788
Bristol Computer Centre.
BRISTOL, 23430
C.S.S. (Bristol) Ltd,

T\& V Johnson (Microcomputers
Etc) Ltd. BRISTOL. 422061
Sumlock TabdownLtd,
BRISTOL 26685
Sigma Systems.
CARDIFF, 34869
Office and Business Equipment
(Chester) Ltd. DEESIDE, 817277
A.C. Systems,
EXETER, 71718

EXEEER, 71718
MIcroMedia Systems
NEWPORT, 59276

- NEWQUAY, 2863

Devon Computers,
PAIGNTON, 526303
J.A.D. Integrated Services.
J.A.D. Integrated
PLYMOUTH 62616

Business Electronlcs.
SOUTHAMPTON, 738248
SOUTHAMPTON, 738248
Computer Supplies (Swansea),
SWANSEA, 29004)
Computer Supplies
SWANSEA, 29004

- - ation Centre,

Intended application
Do you own a PET?
YES
NO \square
Tharstern Lid.
BURNLEY, 38481
B+B(Computers)Lid.
BOLTON, 26644
Preston Computer Centre
Preston Computer Centre,
PRESTON. 57684
PRESTON 57684
Catlands (Computers)
Catlands (Computers) Ltd,
WILMSLOW. 527166
LIVERPOOL
Aughton Microsystems Ltd.
LiVERPOOL, 5487788
BEC COMP
B.E.C. Computers.
LIERPOOL. 263538

Rockcliff Brothers Ltd.
LIVERPOOL 5215830
MANCHESTER AREA
Byteshop Computerland.
HANCHESTER, 2364737
Computas tore Lid.
MANCHESTER 8324761
Cytek (U.K.) Ltd, 8724682
Executive Reprographic Ltd,
MANCHESTER, 2281637
N.S.C. Computer Shops Ltd

Sumlock Electronic Services
Sumberer) Ltd,
Manchester, 8344233
Professional Computer Services Ltd
OLDHAM. 6244065
D. Kipping Lid
SALFORD, 8346367

Automated Busines Equipment Ltd
STOCKPORT, 061-4320708
SCOTLAND
Holdene MIcrosy stems Ltd,
EDINBURGH, 6682727
Microcentre,
Microcentre,
EDINBURGH, 5567354
Aethotrol Consultancy Services.
GLASGOW, 6417758
Byte shop Computerland.
Byte shop Computerland,
GLASGOW, 2217409
Robox Ltd
GLASGOW, 2215401
MacMicro,
INVERNESS, 712203
Thistle Computers,
Thistle Computers,
KIRKWALL. 3140
IRELAND
Sottech Ltd,
DUBLIN, 78473
Medical \& Scientlfie Computer
Services Ltd. LISBURN, 77533
Services Ltd. LISBURN, 77533

This list covers clealers participating in our advenising.

MTCFO-EUS

Compiled by DJD.

Abstract

Appearing every two months, Micro-Bus presents ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data. The most original ideas often come from readers working on their own systems; payment will be made for any contribution featured.

THIS month's Micro-Bus presents six BASIC programs for the Sinclair ZX80 microcomputer

LARGE CHARACTERS

The ZX80 is unusual among microcomputers in that its character-set is stored in ROM alongside the BASIC interpreter, and characters are written to the display by software. Bob Sharp, of Corby, has discovered how to PEEK the ROM and produce displays of large characters. His three programs generate displays of 32,8 or 2 characters of increasing size. They can give the alphanumeric characters and graphics symbols. together with the symbols "\# \$: ? .". As well as being extremely revealing about how the ZX80 works, the programs would be useful for creating large displays for teaching or shop-window advertising.
In the ZX80 the character set is stored, starting at address $448^{* 8}$ in the ROM, as a sequence of 8 bytes per character. Each byte codes the bit pattern for one line of the character matrix. A " 1 " in that byte is displayed as a black dot, and a zero as a white dot. Thus, for example, the 8 lines for the character with code N can be printed, in decimal, by executing:
10 INPUT N
20 FOR R=0TO 7
30 PRINT PEEK $\left((448+\text { N })^{*} 8+\right.$ R)
40 NEXT
Converting these decimal numbers to binary will then reveal the shape of the character.

HUGE EIGHT

The simplest program of the three to understand is Huge Eight, see Fig. 1, which generates 2 lines of 4 characters; for example, see Fig. 2. The Huge Eight program prints a space character, or an inverted space character, for each bit of the characters, thus giving characters 8 times larger than normal. For each line of 4 characters the character codes (plus 448) are stored in the array $I(0)$ to $I(3)$. Then, for each row in these characters (line 120) the ROM is PEEKed (line 140) and the bits are printed (line 160) starting with the high-order bit. A zero is printed as a space, code 0 , and a one as an inverted space, code 128. The expression ($\mathrm{X} / \mathbf{2}^{* *}(7-\mathrm{H})$) divides X , the row in the character matrix, by successive powers of 2 . The low-order bit of the result determines whether, when the result is multiplied by 128 , the code produced is 0 or 128 .

```
    10 REM HUGE 8
    30 INPUT A\$
    60 FOR E=0 TO 1
    70 DIM I(3)
    80 FOR N=0 TO 3
    \(90 \operatorname{LET} I(N)=448+C O D E(A \$)\)
    100 LET A \(\$=T L \$(A \$)\)
    110 NEXT N
    120 FOR G=0 TO 7
    130 FOR U=0 TO 3
    140 LET X=PEEK ( \(8^{*} \mathrm{I}(\mathrm{U})+G\) )
    150 FOR H=0 TO 7
    160 PRINT CHR\$(128*(X/2**(7-H))
);
    170 NEXT H
    180 NEXT U
    190 NEXT G
200 NEXT E
```

Fig. 1. Huge Eight program gives a display of eight large characters on a 2×80

Fig. 2. Display generated by the Huge Eight program

GIANT TWO

The Giant Two program, Fig. 3, converts each bit in the character matrix into a square of four spaces, or four inverted spaces, thus giving an enlargement of 16 times and filling the screen with two characters. The program works in a similar way to Huge Eight, except that now $I(0)$ to $I(7)$ hold the bytes of the character matrix for the first character, and $I(8)$ to $I(15)$ hold the matrix for the second character.

BIG THIRTY-TWO

The third of Bob Sharp's programs, shown in Fig. 4, gives four lines of eight characters, and is at first sight the most bamling to understand. It displays each block of four bits in the characters as the relevant graphics symbol, thus giving an enlargement of four times.

10 INPUT AS
20 DIM I(15)
30 FOR N=0 TO 15
40 IF $N=8$ THEN LET AS=TLS(AS)
50 LET I (2*N-15*(N/8))=PEEK(N+
8*(448+CODE(AS)-N/B))
. 60 NEXT N
70 FOR $T=0$ TO 7
80 FOR $N=0$ TO 1
90 PRINT
100 FOR $A=0$ TO 1
110 FOR $\mathrm{I}=0$ TO 7
120 FOR G=0 TO 1
130 PRINT CHR\$(128*(I (2*T+A)/2*
*(7-I)));
140 NEXT G
150 NEXT I
160 NEXT A
170 NEXT N
180 NEXT T
Fig. 3. Giant Two program gives a display consisting of two large characters

Fig. 4. Big Thirty-Two program displays four lines of enlarged characters on a 2×80

The program looks up two rows of each character, in lines 60 to 100 , and calculates in Y a 4 -bit binary number which specifies the

(E0468)
Fig. 5. The graphics symbols used by the Big Thirty-Two program, together with their $\mathbf{Z X 8 0}$ codes
states of the four squares in the graphics symbol. Thus $Y=0$ is a space, and $Y=15$ is an inverted space. However, finding the correct graphics symbol for the other values of Y is by no means an easy task, since the codes for the graphics symbols are apparently quite haphazard on the $\mathrm{ZX80}$; the symbols and their ZX80 codes are shown in Fig. 5. Bob Sharp gets around this problem by providing a string, $Z \$$ in line 120 , whose characters specify the order of the first 8 graphics symbols. Lines 130 to 160 select the required character in this string, and then lines 170 to 180 convert this to the graphics symbol, and print it. The symbols for Y between 8 and 15 are obtained by inverting one of the first 8 graphics symbols in line 175.

This process is repeated to give the 32 graphics symbols for each line, and for the 16 lines of symbols, and the whole program takes almost two minutes to execute.

These three programs for generating large characters can be modified to give other punctuation and arithmetic signs, in addition to the alphanumeric characters, by replacing the reference to $\operatorname{CODE}(\mathrm{A} \$)$ with: 121 -ABS(121-CODE(A\$)).

MEMORY-MAPPED DISPLAY

Another unusual feature of the $\mathrm{ZX80}$ is that there is not a precise mapping between the characters in memory and what is displayed on the screen; instead the display is generated from a "display file" which can reside anywhere in memory, and which can contain lines of different lengths so that trailing blanks do not have to be stored.

However, it is sometimes useful to be able to use the display as if it were memorymapped, so that POKEing to a specific memory location will cause the code for that character to appear at a predetermined position, and PEEKing will read the code of the character at that position. The program of Fig. 6, submitted by S. J. Duggins of Birmingham, shows how to achieve this, and demonstrates its use by drawing lines, using inverted spaces, between two pairs of coordinates. The top left-hand corner of the screen has coordinates $(1,1)$, and the bottom righthand corner has coordinates $(32,18)$. As an example, Fig. 7 shows four lines drawn by the program.

Mr. Duggins describes the operation of the program as follows: "The display file is first created in lines $20-40$ by printing spaces. The coordinates are then entered as $\mathrm{X} 1, \mathrm{Y} 1$, and $\mathbf{X} 2, Y 2$. If 99 is entered as the.first coordinate
the program will stop. The peculiar LET statements in lines 100 and 110 are used to save having to put four IF statements; their use is explained in the manual. The start address of the display file is then obtained in line 120 from the system variable D-FILE; since the file does not reside in a fixed area of memory the address is obtained before each POKE statement is executed, because even if a variable is assigned the display file will be moved. The reverse space is then POKEd in line 130 to the display position of the coordinates $\mathrm{X} 1, \mathrm{Y} 1$. Then Y1 coordinate (line number) is multiplied by 33 instead of the line width, 32 , because a 32 -character line does in fact contain 33 characters, the last one being inserted by the monitor as a newline marker. Line 140 checks to see if the second coordinates have been reached, and lines 150 and 160 increment or decrement the plotting coordinates to the next position.

10 LET $N=16396$
20 FOR $A=1$ TO 18*32
30 PRINT " ";
40 NEXT A
50 INPUT XI
60 IF Xl=99 THEN STOP
70 InPUT Y1
80 INPUT X2
90 INPUT Y2
100 LET $\mathrm{X}=\mathrm{X} 1<\mathrm{X} 2$ AND 1 OR X1>X2 AND -1
110 LET $Y=Y 1<Y 2$ AND 1 OR Y1>Y2
AND -1
$120 \operatorname{LET} \operatorname{D}=\operatorname{PEEK}(\mathrm{N})+\operatorname{PEEK}(\mathrm{N}+1)$ *256
130 POKE $\mathrm{D}+(\mathrm{Y} 1-1) * 33+\mathrm{Xl}, 128$
140 IF Xl=X2 AND Yl=Y2 THEN GO то 50
150 LET X1=X1+X
160 LET Y $Y=Y 1+Y$
170 GO TO 110
Fig. 6. Program draws lines by POKEing to the $\mathbf{Z X 8 0}$ display file

Fig. 7. Graphics drawn by the program of Fig. 6

Note that the program does not check that the coordinates are legal, and drawing to coordinates outside the display area may ruin the program."

STRING ARRAYS ON THE ZX80

Although the ZX80 provides strings and integer arrays, it does not provide string arrays, and this can be very tiresome when strings are being manipulated by a program. Jeremy Ruston of Kensington has devised an ingenious way around this restriction. A short routine, Fig. 8(a), sits below the main program and uses the string variables $\mathrm{A} \$, \mathrm{~B}, \mathrm{C} \$ \ldots$ etc. as one string array of up to 25 elements. The number of the required element is passed in \mathbf{Z}, and the string is transferred in $\mathbf{Z S}$. The

1 GO TO 12
2 LET Z \$=C
3 RETURN
4 LET C $\$=$ Z $\$$
5 RETURN
6 POKE $16446,38+2$
7 GO SUB 4
8 RETURN
9 POKE $16436,38+2$
10 GO SUB 2
1 RETURN
2 GO TO 20

> 20 FOR $Z=1$ TO 10
> 30 INPUT $Z \$$
> 40 GO SUB 6
> 50 NEXT Z
> 60 FOR $Z=1$ TO 10

Fig. 8. (a)
Routine to
implement a
string array
on the $\mathbf{Z X 8 0}$, and (b) a program to illustrate its operation
routine then POKEs the reference to $\mathbf{C \$}$ in line 2 or line 4 to alter it to the required string variable. On the ZX80 the first line of the program begins at address 16424 , and the POKE addresses in lines 6 and 9 of the routine give the addresses of the " C "s in lines 4 and 2 respectively. Obviously the routine should not be altered without changing these POKE addresses.

The routine is used as follows. Instead of:
LET A $\$(\mathrm{X})=$ "HUGO DRAX"
(which is illegal on the ZX 80) you write:
LET $\mathrm{Z}=\mathrm{X}$
LET $\mathbf{Z} \$=$ "HUGO DRAX"
GOSUB 6
Similarly, to print an element, instead of:
PRINT AS(8)
you would write:
LET $\mathrm{Z}=8$
GO SUB 9
PRINT Z
The program in Fig. 8(b) gives a simple demonstration of how the routine can be used; it reads in ten strings, and then prints them all out.

MAZE

The final program of Fig. 9 is very simple, but quite fun; it was devised by D. Stocqueler of Cardiff, and it draws a random maze on the screen using the ZX80's graphics symbols. His instructions are:
"The object of the game is to try and find a path between the letters A, B, C, D, W, X, Y or Z. Note that the letters may be joined by black or white paths, or they may not be joined at all."

Note that the computer does not ensure that a path exists; this is a much harder task, possibly beyond the capability of an unexpanded ZX80.

```
10 REM MAZE
70 CLS
75 PRINT "A","B","C","D";
80 FOR A=1 TO 750
90 PRINT CHR$(RND(3));
100 NEXT A
105 PRINT
110 PRINT "W","X","Y","Z";
```

Fig. 9. Program to draw a random maze

SEEURITYHIT U Part 2 W.C.Dickinsan

THE complete control centre is mounted on two p.c.b.s which are interconnected with ribbon cable. Connections to the sensor and alarm circuits are made via p.c.b. mounted terminal blocks.

CONSTRUCTION

The designs and component layouts for the two p.c.b.s is shown in Fig. 2.1. The Veropins should be soldered first then the rest of the components starting with the smallest. The terminal blocks, potentiometers, transformer and battery holder are all mounted on the track side of the p.c.b.s and should be soldered last. The l.e.d.s should be bent as shown in Fig. 2.2. before they are soldered in position.

When the ribbon cable has been soldered the battery holder can be secured to the p.c.b. via $4 B A$ screws and 6 mm spacers. The wires from the battery holder should be passed through the p.c.b. and soldered to the appropriate Veropins.

If nickel-cadmium batteries are used then the three links N1, N2 and N3 should be soldered. If alkaline batteries are to be used then the only link required is A1.

Fig. 2.2. Mounting details for the l.e.d.s. Note the orientation of I.e.d. 90 and 91 is different to the rest

Each channel of the Sentinel can provide either a delayed or immediate alarm signal when an intrusion is detected. The channels which will be used to monitor the normal entrances and exits should have a delayed alarm. Any channel will give an immediate alarm if D11, D21, D31, D41, D51 or D61 are soldered. So this diode should be omitted from any channel where a delayed alarm is required.

SETTING UP

Before carrying out the following adjustments ensure that the batteries are fully charged. Connect a $100 \mathrm{k} \Omega$ resistor and a 1 N4148 diode across each pair of alarm channel inputs with the cathode connected to the 'a' terminal as shown in Fig. 2.3.

E6L60
Fig. 2.3. Terminal block connections
Rotate VR10 to VR60 fully anti- clockwise (from the front of the p.c.b.). Insert the batteries depress all alarm channel select switches and release the activate switch. The 'operational' l.e.d. should. illuminate in approximately three quarters of a second. None of the channel 'alarm' l.e.d.s should illuminate. Depress the 'system' switch to the 'defeat' position and using an insulated screwdriver adjust VR10 slightly clockwise. Release the 'system' switch to the 'activate' position. When the 'operational' I.e.d. illuminates depress the 'system' switch to the 'defeat' position. Repeat the above procedure until the channel 'alarm' l.e.d. illuminates when the 'system' switch is released to the 'activate' position. Back VR10 off slightly and release the 'system' switch to the 'activate' position. Repeat this procedure until the channel 'alarm' l.e.d. does not illuminate when the 'system' switch is released. Repeat this procedure for the remaining five alarm channels. If any channel displays an erroneous alarm adjust the preset of the offending channel slightly anti-clockwise until normal operation resumes.

REMOTE MIMIC

The remote mimic (Fig. 2.4.) should be installed near the door which is normally used to leave the house. If the presiren option is used then the system alarm l.e.d. cannot be used.
[E665]

Fig. 2.4. Remote Mimic wiring

PRE-SIREN SIGNAL UNIT

A small piezoelectric sounder can be driven (Fig. 2.5.) instead of the remote system alarm l.e.d. The sounder can be

[00627]

EE0626]

Fig. 2.1. P.c.b. designs and component layouts
used to provide an alarm in advance of the siren being triggered. If this option is used then the value of resistor R89 should be increased to 3 M 6 to increase the 'immediate alarm' delay time to 30 secs. This enables the system to be defeated before the siren is triggered.

E0656

Fig. 2.5. Pre-signal unit wiring

SIREN

Selecting a location for the siren is just as important as selecting the location of the control centre. An ideal arrangement is to have one siren mounted inside the house in a secluded place and a second unit mounted in a high, inac-cessible location outside the house. Most systems will only use one unit and this should be mounted near the eaves with the wiring routed through the loft.

ALARM LOOP INSTALLATION

The wiring of the alarm unit will be determined by the layout of the house and the degree of protection required.

SENSORS

Each alarm channel must include one 'tri-mode' sensor and can have up to a maximum of four. An unlimited number of 'bi-mode' sensors, conventional switches, window foils, trip wires and pressure pads may be incorporated in the loop together with fire sensors and 'panic switches'.

TRI-MODE SENSORS

These sensors provide protection against an opened door or window, a magnetically shunted or an electrically shorted sensor. All large windows and external doors should have 'tri-mode' sensors.

BI-MODE SENSORS

These sensors provide protection against an opened door or window and a magnetically shunted sensor. These sensors should be used on external doors and windows when the number of doors and windows in a loop exceed the number that can be protected by 'tri-mode' sensors. The "trimode' sensors should be fitted to the most vulnerable windows and doors with 'bi-modes' fitted to the remainder.

CONVENTIONAL SENSORS

Conventional sensors consist of magnet and reed switch combinations used alone. They can be fitted to windows on

Internal view of the Sentinel
first floors to reduce installation costs. They can also be used to provide back-up protection by fitting them to between adjoining rooms. This would however prevent the system being used when the house is occupied.

SHUNT DEVICES

Shunt devices normally take the form of pressure mats fitted under carpets. Magnet and reed switch combinations can also be used in this configuration if they are used to sense a door being closed. Pressure mats are normally fitted near windows, doors and passages between rooms. The use of shunt devices also prevents the system being used when the house is occupied.

WINDOW FOILS

Window foils are inexpensive and easy to install but are very conspicuous and easily shunted. If a 'tri-mode' switch is added to the middle of a foil loop it can be made virtually tamper-proof.

'TRI-MODE SWITCH ASSEMBLY

Before any 'tri-mode' switches are fitted into the system it should be decided how many are to be used in each channel (remember at least one per channel is required to establish the loop impedance). The number of switches will determine the value of resistor Ra (Table 1).

Number of 'tri-mode' switches (per channel)	Value of Ra
1	$100 \mathrm{k} \Omega$
2	$47 \mathrm{k} \Omega$
3	$33 \mathrm{k} \Omega$
4	$24 \mathrm{k} \Omega$

TABLE 1: All the 'tri-mode' switches in a particular channel should have the same value resistors.

The selected resistor Ra should first be soldered to a germanium diode (OA91) and then fitted into the reed switch assembly as shown in Fig. 2.6.

Fig. 2.6. After soldering, the resistor and diode should be fitted inside the switch. Note the reed switch is fitted inside the body of the switch and cannot be seen.

DESIGNING A LOOP

The basic principle of the alarm loop is that it presents a resistance of 100 kHz during one phase of the multivibrator. If the resistance of the loop decreases to $80 \mathrm{k} \Omega$ or less an alarm is sensed. During the other phase of the multivibrator the loop should present a resistance less than $10 \mathrm{k} \Omega$. If the resistance of the loop increases to $100 \mathrm{k} \Omega$ or greater an alarm is sensed. The first phase monitors the loop for short circuits and shunt sensors being activated the second phase monitors the loop of continuity of the series sensors.
When designing a loop there are three basic rules that must be followed:
a) In order to maintain maximum noise immunity twin conductor wire should be used from sensor to sensor. This is important if the sensors are some distance
apart or the alarm wiring is in close proximity to the electrical wiring in the house. Wiring in one area, say around a large set of windows, can be separated into single cores whenever it is convenient to do so.
b) The reverse resistance of the loop should be approximately $100 \mathrm{k} \Omega$ when the loop is safe. This resistance is determined by the sum of the resistors in the 'trimode' sensors. (cathode of diode D positive with respect to its anode).
c) The forward resistance of the loop should be less than $10 \mathrm{k} \Omega$ when the loop is safe. This resistance is determined by the series resistance of the wire and the diodes in the 'tri-mode' sensors. (cathode of diode D negative with respect to its anode).

A basic system would take the form of a 'tri-mode' switch at the external door and at any windows which can be forced open to provide access for the average size person. 'Bimode' switches should be fitted to the remaining windows. Doors and windows which are in dark or secluded areas require extra attention as these areas will be the most likely points of attempted access. 'Tamper proof' window foils should be installed on all glass panes in these localities.

Fig. 2.10. Tamper-proof system for window foils.

TAMPER-PROOF FOILS

Because window foils are conspicuous and are easily shunted the basic type should only be used on fixed opaque glass such as those found in bathrooms. A tamper-proof arrangement for foils can be developed by using a resistordiode combination from a tri-mode switch in the foil loop of a fixed window. If the window can be opened then it is better to incorporate a tri-mode switch into the loop, this ensures that the alarm will be triggered if either set of foil terminals is shunted.

Fig. 2.7. Basic loop system. If a shunt device is used at the end of a loop then an extra wire is required. To overcome this problem each loop should end with a tri-mode switch

[60457

An unlimited number of bi-mode switches can be developed from conventional switches and although bimode and tri-mode switches can be used in either leg it is easier to wire all the series devices in 'a' leg and use the ' b ' leg as the return.

OPERATION OF THE SYSTEM

Operation of this system is straightforward due to the built-in automatic test facilities. When you are ready to leave the premises close all windows and doors that-are monitored and release all of the channel selector switches to the 'activate' position. As you leave release the 'system' switch to the 'activate' position. When the 'operational' l.e.d. illuminates the system is completely clear of alarms and has initiated the exit delay. You now have one and a half minutes to make your exit and close the door behind you. If the system goes to 'fault' when it is activated the channel which is causing the alarm will be identified by the flashing channel 'alarm' l.e.d. If you wish you can depress the channel selector switch to 'defeat', cycle the 'system' switch to 'defeat' and then back to 'activate'. The system will now ignore the alarm sensed on this channel and you can make your exit. The facility to 'defeat' selected channels was provided for use mainly when you use the system to protect the house when it is occupied and you only wish to protect key areas of the premises. When the house is unoccupied the source of the alarm should be identified and corrected before you depart. When you return and re-enter the house you will trigger the system immediately. The entry delay timer allows you one minute to reach the control centre and depress the 'system' switch to 'defeat' before the siren is triggered. The 'operational' status when you depart and the 'system alarm' status when you re-enter are verified by the remote l.e.d. mimic as confirmation that the system is operating correctly.

Fig. 2.9. Shunt sensors can be connected across the loop or across a 'tri-mode' sensor

AITKEN BROS

35, High Bridge, Newcastle upon Tyne

Tel: 063226729

EXP300

P86 Kit

CSC LOGIC PROBES

LP-2 ECONOMY PROBE

Min. pulse width 300 nanoseconds, 300 KQ input trains or single-shot event in TTL, DTL, HTL, and CMOS circuits. $\mathbf{E 2 0} \mathbf{9 5}$.

LP-1 Memory Probe

LP-3 Migh Speed Memory Prabe £35.65 CSC catalogue available. Pleare send S.A.E.

CALSCOPE SUPER $6 \quad £ 186.30$

 A , portable single beam 6 MHz bandwidth oscilloscope with easy to use controls. High gain to $10 \mathrm{mv} / \mathrm{cm}$ and wide tirne quest. Please send S.A.E. Professional scopes you can afford.
CALSCOPE SUPER 10 £251.85

A dual trace 10 MHz instrument of the very highest performance and quallity. It has an accuracy of 3% which is achieved by the use of builtoin stabilised power supplies which keep the trace rock steady over a wide range of main

SINCLAIR LOW POWER PORTABLE

OSCILLOSCOPE SC110

£159.85
The SC1 10 has a 10 MHz bandwidth and sensitivity down to 10 mV per division. Full trigger facilities are provided, including bright line, auto with TV line and frame positions. Please send for full spec. and illustrated brochure.

TMK 500 MULTIMETER 30,000 o.p.v. AC volts $2.5,10,25,100,250,500,1000$. DC volts. $0.25,1,2.5,10,25,100,250,1000$. DC current $50 \mu \mathrm{a}, 5 \mathrm{MA}, 50 \mathrm{MA}, 12 \mathrm{amp}$. Resistance $0-6 \mathrm{~K}$, $60 \mathrm{~K}, 6 \mathrm{MEG}, 60 \mathrm{MEG}$. Decibels. -20 to +56 db . Buzzer continuity test size, $160 \times 110 \times 55 \mathrm{MM}$. Batteries, leads, and carrying case included. PRICE £22.95.

CSC EXPERIMENTOR BREADBOARDS
No soldering modular breadboards, simply plug components in and out of letrer/number identified nickel-silver contact holes. Start small and simply snap lock boards together to build breadboards of any size.

SINCLAIR DM350

£83.95
SINCLAIR DM450
£114.95
Size $255 \times 148 \times 40 \mathrm{~mm}$
OM350 $3 \frac{1}{2}$ digit display OM450 $4 \frac{1}{2}$ digit display. Both provide six functions in 34 ranges. O.C. voltage $10 \mu \mathrm{~V}$ to $1200 \mathrm{~V}\{100 \mu \mathrm{~N}$ on OM350) A.C. voltage $100 \mu \mathrm{~V}$ to 750 V D.C. current inA to 10A, A.C. current 1 nA to 10A resistance 10 m Q to 20 M ด (100 mo opn OM350). Accessories for OM350 \& 450 as for DM235 below. Full spec. on request. Please send S.A.E.
Sinclair PFM200 frequency meter Slze $157 \times 76 \times 32 \mathrm{~mm}$.
Range 20 Hz to 200 M Hz . Accessories and lllustration as for POM 35 below. £57-95.

SINCLAIR PDM35

DIGITAL POCKET MULTIMETER
OC volts (4 ranges) 1 mV to $1000 \mathrm{~V} A C$ volts 1 V to 500 V DC current. (6 ranges) 1 nA to 200 MA Resistance (5 ranges) 1Ω to 20 MEGR. PRICE £39.95 AC Adaptor $\mathbf{~} 4.25$ de luxe padded carrying case £1.95 MN 1604 Battery £1.28.
Size $157 \times 76 \times 32 \mathrm{~mm}$.

SINCLAIR DM235

BENCH-PORTABLE DIGITAL
MULTIMETER.
DĆ voits is ranges) 1 mV to 1000 V AC volts 14 ranges 1 MV to 750 V AC \& DC current $1 \mu \mathrm{a}$ io 1000MA Resistance (5 ranges) 1Ω to $20 \mathrm{MEG} \Omega$.
PRICE f60.98. Carrying case 88.95 . AC adapPRICE f60.98. Carrying case $\mathbf{\text { f8.95, AC }}$ adaptor/charger, $\mathbf{£ 4 . 2 5 \text { . Rechargeable Battery Pack. }}$ £8.95.
Size $255 \times 148 \times 40 \mathrm{~mm}$.

PANEL METERS

DIMS $60 \mathrm{MM} \times 45 \mathrm{MM} .50 \mathrm{amp}$. $100 \mathrm{\mu} \mathrm{amp} 1 \mathrm{MA}$
 50-0-50 a , 100-0-100 а, 500-0-500 10 . PRICE £5.95.

DESOLDERING TOOL
SUCTION PUMP.
Education Establishment Orders Accepred.
PHONE OR SEND YOUR ACCESS OR
BARCLAYCARD NUMBER
ALL PRICES INCLUDE POSTAGE AND VAT.

DIGITAL VOLTMETER MODULE
Fully built and tested, ONLY $\mathrm{f}^{\mathrm{f} 11.95}$.vat

* Reads positive and negative voltages with a sensitivity of $0-+999 \mathrm{mV}$ and $0--99 \mathrm{mV}$
* Requires only single supply between 7 \& 12 volts (220 mA)
* High accuracy $+0.1 \%+1$ digit
* Large bright $0.43^{\prime \prime}$ high efficiency displays
* 4 readings per second sampling rate
* Size only $41 \times 95 \times 10 \mathrm{~mm}$
* Supplied with full data \& applications information

This brand new, quality module manufactured by Autona Limited (who are one of the U.K's largest module manufacturers) means you can build accurate test equipment, multimeters, thermometers, etc. easily and at a fraction of the cost of ready-made equipment. Full details are provided showing how to measure A.C. voltage, current, resistance and temperature.
Send your cheque or P.O. (f11.95+f1.79 V.A.T. +50 pp. \& p. = f14.24) now to:-

Dept. P.E. 3
RISCOMP LIMITED
21 Duke Street
Princes Risborough
Bucks. HP17 OAT
BUCKINGHAMSHIRE'S NEW
ELECTRONICS CENTRE
8 miles off the M40
50 minutes from London
Telephone: $(084$ 44) 6326

Rapid Electronics

Guaranteed same day Despatch					
- Quality Product			- Vast Stocks		
- Fr	ree Catalogue		-	ompetitive Prices	
Pack			Pack		
A 10	10 PP3 battery leads	50p	F11	10 BC 108 trans.	90p
A 72	103.5 mm jack plugs	80p	F26	10 2N3704 trans.	80p
A73	103.5 mm jack sockets	80p	F27	10 2N3819 trans.	190p
A 74	10 Std. jack plugs	130p	H11	20 1N4002 diodes	75p
A75	10 Std. jack sockets	170p	H50	200 A 91 diodes	110p
A84	105 pin 180 DIN plug	120p	H60	100 IN4 148 diodes	180p
A85	105 pin 180 sockets	100p	H70	5 C106D thyristors	200p
C20	10 Min . slide switch	130p	J10	200.2 in . red LEDs	170p
C30	10 Push to make sw.	130p	J15	500.2 in . red LEDs	400 p
C31	10 Push to break sw.	170 p	J 20	1000.2 in . red LEDs	750p
C40	Pair Ultrasonics	350p	J30	200.2in. green LEDs	280p
C32	Submin. SPST toggle	$60 p$	J50	200.2 in . yellow LEDs	280p
C33	Submin. DPDT toggle	$80 p$	J80	4 FND500 CC displays	350p
C50	20 Texas 8 pin sockets	170p	K 5	5741 op amps.	90 p
C51	20 Texas 14 pin sockets	200p	K40	1 LM324 op amp.	50p
C52	20 Texas 16 pin sockets	$220 p$	K20	5 CA3140 op amps.	225p
E10	Resistor kit. 10 ea valu	${ }^{\frac{1}{4} \mathrm{~W}}$	K85	5 NE555 timers	110p
	$4.7 \Omega 1 \mathrm{M} .650$ resistors	480p	L8	54011 CMOS	130p
E34	1010 u 25 V radial elec	50p	L9	4013 CMOS	40p
E37	10100 u 25 V radial	75p	L11	4017 CMOS	75p
E44	101 lu 35 V tantalum	100p	L19	4049 CMOS	45p
E54	100.1 C 280 polyester	50p	M20	Dalo pen	80p

- For quality components at competitive prices by return of post Rapid Electronics must be your first choice!

All prices include VAT. Please add 50p postage and packing on orders below $£ 10$. Send SAE for our complete catalogue.

Hilleroft House, Station Road, Eynsford, Kent

BOSE SPEAKERS

European patent application no. 0007453 originates from the Bose Corporation of Framingham, Massachusetts. The aim of the invention is to provide the electronic equivalent of mechanical adjustments which are necessary on some of Bose loudspeakers. According to Bose design philosophy a loudspeaker should radiate more sound energy onto a reflecting surface, such as a room wall, than directly into the listening area. This is said to simulate the sound received in a concert hall where the listener receives significantly more reflected energy than direct energy from the sound source on the stage.

This (highly controversial) approach can result in an unnaturally broad sound image which spreads across the entire surface of the wall which is reflecting the indirect sound from the loudspeakers. Some control of the image spread is possible if the user physically adjusts the angle of the loudspeakers with respect to the nearest wall. But as Bose admit in the new patent application, this is "impractical in many situations". The new idea is to provide addon circuitry which enables the user to vary the image without altering the loudspeaker position.

The Bose 901 loudspeaker is shaped rather like a chunky slice of cake and (see Figure 4) four identical full range loudspeaker drivers 21-24 and 25-28 are

Copies of Patents can be obtained from: the Patent Office Sales, St. Mary Cray, Orpington, Kent. Price 95p each.
mounted on each of the two rearwardly facing and mutually angled panels 120 and 121. A single front facing driver 29 is mounted on the front panel 30 to fire directly into the listening area. The nine drivers are connected in series between loudspeaker terminals 31 and 32 with the junction of front driver 29 and inside rear driver 25 connected to an extra terminal 33. As shown in figure 5 , the audio signal input 44 is split between an "inside" channel of amplifier 47 , resistor 48 and amplifier 51 and an "outside" channel of amplifier 52, resistor 53 and amplifier 54. The gains of amplifiers 47 and 52 are of equal magnitude but opposite sense to provide phase reversal. Capacitor 55 couples the arm 42 of a potentiometer or "spatial control" 41 to earth. Central terminal 33 of the loudspeaker system is also connected to earth. In this way the spatial control alters the ratio of sound energy generated by the inside and outside panels, but only above a frequency of around 300 Hz . Frequencies below 300 Hz , which are largely non-
directional, are unaffected and radiated at equal level by both the inside and outside panels of the loudspeaker. Moreover the overall radiated power from both rear panels remains constant, irrespective of the changing ratio of radiation between panels. Adjustment of the potentiometer arm 42 should thus vary the perceived image without audible change of volume.

According to Bose the modification is immediately applicable to Model 901 loudspeakers which already have the necessary three terminals, but models 501 and 601 speakers will need some modification. It will be interesting to chart the progress of application no. 0007453 through the European Patent Office because the text contains selfcongratulatory statements which are arguable and of a type normally inadmissable in a patent document, e.g. according to Bose the 901 system "has met with wide critical and consumer acclaim throughout the world, receiving an unprecedented series of rave reviews"!

FIG. 4

FIG. 5

polnts nilisinc

THE PERSONAL COMPUTER BOOK by Robin
 Bradbeer in PE October 1980 (Review)

NOTE: Input Two-Nine, the publisher of this book has been taken over by Gower. Those who read this review should note that the book is now available from: Gower Publishing Company, 1 Westmead, Farnborough, Hants, GU14 7RU.

LARGER PREMISES

ACE MAILTRONIX has moved into larger premises at 3A, Commercial Street, Batley, W. Yorks WF17 5HJ. The company specialises in Electronic Components for magazine projects in addition to its electronic component catalogue listing approx 1000 items available from stock by mail order. The catalogue is available now, priced 30 p to mail order customers, and refundable with subsequent orders over $£ 5$. Callers are welcome during normal working hours Monday to Friday and on Saturday mornings, to whom the catalogue is free. Since its formation in 1977 Ace Mailtronix has helped many magazine project builders to find the more awkward components.

DISCO

 Part4 BEN DUNCAN

 Part4 BEN DUNCAN}

N this part the 12 V subsystem, output routing and monito: switching, together with wiring, will be detailed.

PANEL WIRING

The mounting of the components and interwiring is a large task and must be approached systematically. All steps must be carefully checked, because the correction of small errors at a later stage can be very time consuming. A wiring colour code is extremely helpful provided you are not colour blind, in which case the choice of colours would be limited. A table (next month) gives a suitable colour code.

Begin by mounting components on the front pąnel. Set the rotary switch spigots for the appropriate number of switch positions. When mounting the slide pots and microphone transformer, ensure that the screws do not extend more than 1 mm beyond the tapping, othewise damage may result. The sliders are mounted on spacers so that a standard length screw may be used. Use Selotape to hold the spacers in place whilst the slider bezel, screws, panel and slide pot are aligned. Note that although the slider bezels specified are self-adhesive, they are drilled to accept the slide pot's fixing screws. Next, mount all the components on the edge panel. These can be wired directly to their respective barrier strips and the panel can be bolted in place. Then mount barrier strip no. 7 under the turntables. If the relays are mounted on a plate, then it is convenient to wire these up on the bench to their associated components, and then to mount the plate next to barrier strip no. 7 and complete the interwiring. At this stage all the wiring in Fig. 15 can be completed. When the front panel components are all mounted, this panel should be bolted to the console frame by means of hinges along the top edge. The panel should be arranged to sit in the position shown in dashed lines on this figure; this arrangement greatly eases the task of wiring up.

Before beginning the wiring, check the switch positions, ensure that the cards fit their respective edge connectors, especially when the panel is lowered and ensure that the edge connectors are the right way up, so that they connect with the card terminals when the components are facing you. Most important of all, the log sliders must be correctly orientated; pins 11 and 21 are 'earthy' and go to OV, i.e. these are uppermost when the panel is hinged back.

Wiring begins with the 'chassis earths'. Unlike the OV connections, these go directly to the mains earth from screens and all exposed metalwork, which must be permanently earthed. The OV connections on the other hand can be 'ground-lifted' to prevent hum loops. It must be emphasised that the chassis and $O V$ earths should be regarded as being entirely separate. Connect all handles, panels, screens,

turntables, gooseneck arms and other exposed metalwork via $16 / 0.2$ wire to the chassis earth commoning point.

12V SUBSYSTEM

The 12 volt subsystem should be wired next and the relays, lamps and monitor amplifier can be tested if a 12 V supply is to hand. The lamps are normally wired via the spare contacts on each push-button switch. However, extra switch elements may need to be added to certain switches to ensure a consistent pattern, i.e. 'lamps on' = 'function on'. Also test for isolation between chassis earths and the 12 V ' OV ' connections. Before wiring the left-hand edge connector socket, attach a generous length of wire to the VU meters. These will be wired later, but they are difficult to reach once the adjacent sockets are wired. Likewise, be sure that the 12 V subsystem switches adjacent to the right-hand (Cards 3 and 4) edge connectors are correctly wired. Remove edge connector 2 and commence wiring connector 1. Sleeve alternate connections and cut off generous lengths of wire. It will only be possible to connect a few cables as yet, but route the cables as far as possible, using self-adhesive aluminium cable clips to hold them in place temporarily, in conjunction with re-usable cable ties.

When all the connections to the Card 1 edge connector have been made, replace edge connector No. 2 and recommence. As the work progresses, the cable looms will take shape and the loose ends will be tied up. However, where multiple connections are to be made, as on the routing switches and at the power supply bus-bars, the easiest course of action is to attach and solder all the connections simultaneously, and for this reason they are best left until the remainder of the wiring is completed.
Next Month: Completing the wiring

(2)

A selection of readers. original circuit ideas. It shoult be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to its merits.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inser ted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere.

HERE is an electronic substitute for a polyphonic electromechanica. keyswitch assembly. The 4416 is a quad bilateral switch. When a logical ' 0 ' is applied to all control inputs, switches A and D are open and switches B and C are closed. When a logical ' 1 ' is applied to all control inputs, the reverse happens A and D are closed and B and C are open.

In my design there are two 4416 i.c.s for each keyboard contact. The keyboard can now use simple single pole contacts. When a keyboard contact is pressed, a logical ' 1 '
is supplied to the 4416 s of that keyboard contact activating the s.p.d.t. switches, and that particular voltage is supplied to VCOI hold. If any further keys are pressed they will supply simultaneously the relevant voltages to the VCO holds and so on. The voltage divider is now situated between the i.c.s and not on the keyboard contacts. (Power supply connections are omitted from the figure for simplicity all pin 14 s to +9 V , pin 7 s to 0 V .)

The system only uses three of the s.p.d.t. switches, but it can be expanded to
provide simultaneous programming for more. 8 or 10 notes played together might be feasible. Alternatively the unused s.p.d.t. switch can be used to provide the -ve voltage for the triggering of the envelope shapers etc. The ohmic resistance of the 4416 switches provides isolation for the VCO hold circuits. All the usual rules should be observed when handling CMOS i.c.s.
R. M. Pimlott,

Bexleyheath,
Kent.

KEYBOARD SWITCHES

A TRUE PEAK-READING D.C. VOLTMETER

THE accompanying circuit shows a simple method of reading the peak rather than the average of a d.c. waveform. Of course, this may be applied to an a.c. signal simply by rectification prior to feeding the signal to this circuit. Two 741 type op amps are used, in this case in the form of a dual device. The peak voltage is held in a capacitor C_{x}, which is charged further whenever the comparator ICla detects that the input voltage exceeds the value on C_{X}. D2 prevents reverse leakage into ICla output, while DI restores the d.c. offset caused by D2.

IC1b is a simple voltage follower to preserve the leakage resistance from \mathbf{C}_{X} at a high value. In fact, this value will be of the order of 10 megohms. With a $0.22 \mu \mathrm{~F}$ capacitor at $\mathbf{C}_{\mathbf{x}}$, the time constant is of the order of 1.5 seconds, giving a good
response to a music or audio signal. By using a value as high as $100 \mu \mathrm{~F}$ (tantalum) at C_{x}, a "peak-hold" effect is obtained, with a time constant of some minutes. D.c. offset at the output has not been found to
exceed a couple of mV , when using $2 \times$ PP3 for the supplies. Supply-line current drain is about 4 mA .
R. J. Crowther, Stourbidge, West Midlands.

SIMPLEPULSE GENERATOR

SHOWN is the circuit of a simple pulse generator which is useful for testing the operation of digital circuits. It uses a type 4011 CMOS integrated circuit and functions as follows.

The monostable formed from ICla and IC 1 b is triggered by momentarily grounding pin 6 through S1 and then generates a negative going pulse of duration Tl , at output A, and a positive pulse, of duration T2, at output B. With the component values shown VRI will set the duration Tl in the range 50 milliseconds to 1 second. If the triggering pulse or closure of SI has duration T then for:

$$
\begin{aligned}
& \mathrm{T}<\mathrm{T} 1 \text { then } \mathrm{T} 1=\mathrm{T} 2 \\
& \mathrm{~T}>\mathrm{T} 1 \text { then } \mathrm{T} 2=\mathrm{T}
\end{aligned}
$$

Thus output B can also provide a "de bounced" digital signal corresponding to the position of S1.

IC1c and d are interconnected to form an astable which can generate pulses of duration T3 varying from about 2 to 100 milliseconds depending on the setting of VR2. With S2 set to "Pulse" the astable is gated by output B and is therefore controlled by Sl to give either a train of N pulses, where $\mathrm{N} \approx \mathrm{T} 2 / \mathrm{T} 3$, or a continuous pulse train at output \mathbf{C}. If S2 is set to "Run" then output C provides a continuous pulse train independant of $S 1$.

When S2 is set to "Pulse" and VR1 at maximum, VR2 can be set so that $N=1$ to 10 . Output C can then be used to check a counter/decoder/display circuit, each momentary closure of S1 advancing the counter system by N pulses.

Alternatively, with S1 set to "Run", output C can be used as a source of "clock" pulses, whilst outputs A and B are used for "gate" or "data" pulses.

The supply voltage $\mathrm{V}+$ should be equal
to that of the circuit under test and can conveniently be taken from the supply rails of the latter. Each output will drive two TTL or 20 CMOS inputs.
G. B. Wills, Ealing.

CONSTRUCTIONAL PROJECTS

A Simple Conversation Aid by J. M. Watt M.B.,Ch. B.March 62
Acoustically Coupled Telephone Modem
by K. Amor Feb. 39, March 54
Alarm, Security Sentinel Nov. 32, Dec. 54
Alarm, Security Sentry July 64
Amplifier, Class " A " Sept. 58
Amplifier, PE Congress April 38, May 26, June 26
Amplifier, 125W Oct. 52
Audio Isolator by G. Davies March 22
Bench PSU by J. P. MacCaulay June 34
Car Radio, PE Traveller March 40, April 70
Chip Checker by L. V. Cooper April 25
Cine Frame Counter by Stephen Ibbs Oct. 30
Class "A" Amplifier by K. Garwell Sept. 58
Cleaner, Ultrasonic Jan. 41
Constant Current Sources by I. Millar Aug. 60
Controller, Infra Red. May 42
Controller, Greenhouse Temperature June 58
Controller, Soldering Iron Feb. 30
Controller, 2 Wire Train April 72, May 66
Conversation Aid, A Simple March 62
Counter, Cine Frame Oct. 30
Current Sources, Constant Aug. 60
Desk, Disco Sept. 24, Oct. 62, Nov. 56, Dec. 60DFM, PEJuly 50
Diamatic Update, PE Nov. 52
Digital Frequency Meter by M. Tooley B.A. andD. Whitfield B.A., M.Sc.March 72
Digital Frequency Meter, PE July 50
Digital Multimeter, PEJuly 42
Digital Tachometer by G. I. Williams June 64
Disco Desk by Ben J. Duncan ept. 24, Oct. 62
Nov. 56, Dec. 60
DMM, PE July 42
Doorbell Monitor by J. A. Barrow Aug. 30
Dynamic Noise Limiter by R. A. Penfold Feb. 19
Dynamic Semiconductor Tester by M. Tooley B.A. and D. Whitfield B.A., M.Sc. May 48
Electrostat by P. A. Dakin Feb. 46
Enlarger Timer by R. Besson March 33
Eprom Programmer by A. A. Berk B.Sc., Ph.D Jan. 55
Filter, Scratch and RumbleJan. 22
Games Timer by Stephen Ibbs. Nov. 23
Generator, Programmable Sound Sept. 32Greenhouse Temperature Controller
by P. R. Williams June 58
Guitar, Mastertune June 39
Infra Red Controller by Malcolm Plant May 42
Isolator, Audio March 22
Lead Tester by Chris Lane Oct. 36
Loop, 20mA Dec. 40
Master Rhythm by A. J. Boothman B.Sc. Dec. 32
Mastertune, Guitar by B. J. Hamill June 39
Memory, 4 Channel Digital Feb. 56
Metal Locator, PE Magnum Aug. 5 . Sept. 52
Meter, Digital Frequency March 72
Meter, PE Digital Frequency July 50
Microtune Dec. 26
Modem, Acoustically Coupled Telephone Feb. 39,
Monitor, DoorbellMarch 54
Multimeter, PE Digital Aug. 30
Noise Limiter, Dynamic Feb. 19
PE Congress by Graham Jackson April 38, May 26, June 26
PE Diamatic Update by J. R. W. Ames and L. Blyth Nov. 52
PE DFM by D. Mottram July 50
PE DMM by Martin Kent July 42
PE Magnum Metal Locator by Andy Flind Aug. 51,
PE Microtune by M. Kent Dec. 26
PE Teletext by D. J. Shortland Aug. 38, Sept. 42,
Oct. 56, Nov. 48
Pendant, Scintillating
Prescaler by M. Tooley B.A. and D. Whittield Jan. 48
B.A., M.Sc.
Programmable Sound Generator by D. Coutts
April 34
Programmer, Eprom Sept. 32
PSU, Bench June 34
Radio PE Traveller, Car March 40, April 70
R/C Servo Tester by C. R. Francis B.Sc. Jan. 50
Dec. 32
Scintillating Pendant by Owen Bishop Jan. 48
Scratch and Rumble Filter by R. A. Penfold Jan. 22

Security Sentinel by William Dickinson... Nov. 32, Dec. 54 Feb. 30
Speech Synthesis by Dr. A. A. Berk Nov. 26, Dec. 44
Split Phase Tremolo by J. McCarthy May 34
Synchroniser, Tape/Slide July 34

Tachometer, DigitalJune 64
Teletext, PE Aug. 38, Sept. 42, Oct. 56, Nov. 48
Tester, Dynamic Semiconductor May 48
Tester, Lead
Oct. 36

Tester, R/C Servo ... 50
Timer, Enlarger ... March 33
Timer, Games Nov. 23
Train Controller, 2 Wire April 72, May 66
Tremolo, Split Phase ... May 34
Ultrasonic Cleaner... . . Jan. 41
2 Wire Train Controller byJ. Milne April 72, May 66
4 Channel Digital Memory by C. Harding Feb. 56
20mA Loop by Stephen Ibbs.............................. . . Dec. 40
125W Amplifier .. Oct. 52

GENERAL FEATURES

by R.J. Crowther .. Dec. 65
Acorn Review by Dr. A. A. Berk Aug. 22
'Animated Graphics by P. Houghton May 40
Calculator Chips as Logic Devices by P. A. Birnie ...Jan. 69
Colour Blindness by Dr. Janet VokeJune 48
Compukit Update by Dr. A. A. Berk March 68, June 71
Edukit Review by Mike Abbott .
April 22
Aug. 35
INGENUITY UNLIMITED Jan. 35, Feb. 60, March 58, Sept. 66, Oct. 40, Nov. 68, Dec. 64

Accurate Kitchen Timer by David Ian July 60
Alarm Clock Weekend Lockout by P. M. Jessop ... Sept. 66
Appointment Reminder by A. M. Tucker............... May 61
Automatic Car Aerial Control by D. A. Petty Feb. 65
Battery Check by D. H. Halliday Sept. 68
Car Anti-Theft Device by Alastair MutchOct. 41.

Car Cassette Power Supply by N. Riddfiford Feb. 62
Car Courtesy Light Timer by A. Chadwick May 62
Current/Voltage Regulator by A. J. Chadwick....... May 61
Disco Cross Fader by Ben. J. DuncanJan. 38
Four Digit to Six Digit Clocks by P. Ratnam Sept. 67
Four State Indicator by V. V. Shah May 62
Frequency Tester/Missing Pulse Detector
by P. R. Turner
.June 55
'Glow Plug Supply by R. MacFarlaneJan. 37

Hex Keypad by D. Greaves Aug. 66
Hexadecimal Display by R. G. Stubbs March 60
Inexpensive A to D Converter by D. Greaves Aug. 68
"Jacked Up" Regulator by J. A. Barrow Feb. 61
Keyboard Scanner by A. Piper Aug. 68
Keyboard Switches by R. M. Pimlett Dec. 64
Lamp Flasher by P. F. FarthingJune 53
信
Low Noise Mic Pre-Amp by P. R. Williams April 65
Low Pass Filter by J. J. Lambe 38
Metal Detector by P. R. Williams........................ April 65
Model Railway Controller by J. O. Linton.......... April 64

Model Railway Signal Controller by C. R. BrayJJune 54
Model Traffic Lights by M. J. RendleJuly 59
Motor Reversal by C. P. Finn June 52
Moving Lights by A. W. Cunningham July 58
Multiplexer by C. F. Shorto Aug. 67
Noise Gate by C. Bishop ... 59
Op Amp Battery Supply by A. J. FlindJune 54
Op-Amp Tester by S. Callaghan Nov. 71
Phased White Noise by R. OtterwellJan. 37
Portable Tennis by P. Bailey Aug. 69
Quiz Win Indicator by J. Sarns Sept. 67
R/C Failsafe and Servo Tester by J. R. Shield Nov. 69
R/C Servo by N. Roche ..Jan. 36
Rhythm Code Generator by E.J. Weremiuk......... . Feb. 65
Rhythm Generator for Minisonic
by A. R. Bradford
May 58
Roulette Wheel by A. J. Kitching Oct. 40
Scope Calibrator by A. Andrews Feb. 66
Shoot Game by D. Johnson Oct. 41
Shoot Game by L. Privett Nov. 7.1
Simple Autofade by T. P. HopkinsJan. 35
Simple d.c. Power Controller by J. M. Lucas May 60
Simple Pulse Generator by G. B. Wills Dec. 65
Slave Flash Controller by R. C. Mackay Sept. 68
Stepset Sequencer by P. R. WilliamsJuly 61
Stereo Balance Meter by T. AustinJune 53
Tape/Slide Sync by R. N. Johnson Feb. 60
TTLCMOS Debounced Switch by A. F. OliveraJuly 60
TTL Logic Tester by A. C. Twist Nov. 68
TTL Staircase Generator by B. Bell May 60
Voltage Sensitive Relay by M. S. Dhingra Feb. 61
Waveform Converter for Minisonic
by P. G. Ludgate
Feb. 62
Wah-Wah Pedal by Richard Fuller March 58
3 Lamp 2 Wire Controller by J. P. Kemp Feb. 66
200W Temperature Controller by D. Wedlake March 59
555/556 Quick Tester by C. P. FinnJune 52
MICROBUS by D.J.D.Feb. 53, April 60, June 68, Aug. 46, Oct. 24, Dec. 52
Micro Prompt Feb. 23, Mar. 67. April 63; May 38, July 68, Sept. 40, Nov. 40

Power Supplies for MPU's by A. Clements April 54,
May 22
Resident Editor by N. A. Climpson
Nov. 43
SEMICONDUCTOR UPDATE by R. W. Coles Jan. 26,
Feb. 29, Mar. 25, April 24, June 32, July 27,
Aug. 33, Sept. 20, Oct. 29, Nov. 39, Dec. 23

Hughes HNVM3008, National SemiconductorNM58174, Texas TLO11Nov. 39
Inmes IMS 1400, Thompson CSF EF 9365 Dec. 27Softy Review by A. A. Berk B.Sc., PhDDec. 27
Jan. 27
Sparkrite X5 Review July 39
Speech Synthesis by Dr. A. A. Berk Nov. 26. Dec. 44
Sinclair $\mathrm{XX80}$ Review by Mike Abbot July 22
Strictly Instrumental by K. Lenton-Smith Feb. 45 ,
Surefire Electronic Ignition ReviewMay 33
Switching Regulators by D, L. H. Smith Jan. 64
The Shape of Spacecraft by C. R. FrancisB.Sc., Ph.DOct. 44
The ULA by E. Fry B.Sc. Feb. 34
Transistor Parameters by R. A. Hatton March 29
UK 101 Teleprinter Interface by J. J. Trevillion Sept. 38
Video-The Slow Revolution by R. Miles July 28
Video Information Centre by R. Miles July 49
Wersi and Clef Sound Processor Kits Review. June 24
Wiegand Effect by B. Dance M.Sc. Jan. 39

NEWS AND COMMENT

BOOK REVIEWS Feb. 36, April 80, June 47, Oct. 68 ,
Nov. 62
Breadboard Review March 26
COUNTDOWNJan. 71, Feb. 28, March 63, April 71, May 73, June 47, July 37, Aug. 65, Sept. 21 , Oct. 68, Nov. 51, Dec. 25

EDITORIAL...........Jan. 17, Feb. 15, March 17, April 17, May 17, June 17, July 17, Aug. 17, Sept. 17, Oct. 19, Nov. 17, Dec. 17
INDUSTRY NOTEBOOK by Nexus Jan. 47, Feb. 24, March 21, April 33, May 21, June 23, July 21, Aug. 21, Sept. 23, Oct. 23, Nov. 20, Dec. 21 MARKET PLACE.....Jan. 18, Feb. 16, March 18, April 18, May 18, June 18, July 18, Aug. 18, Sept. 18, Oct. 20, Nov. 18, Dec. 18

NEWS BRIEFS......... Jan. 66, Feb. 28, 55, March 30, 79 , May 37, 41, 46, June 36, Aug. 59, Sept. 62, Oct. 55, 68, Nov. 44, Dec. 59

PATENTS REVIEW Jan. 62, Feb. 38, March 64, April 79, May 53, June 62, July 73, Aug. 59, Sept. 51, Oct. 67, Nov. 55, Dec. 59 PE/Lektrokit Competition Results Feb. 38 POINTS ARISINGFeb. 38, March 71, April 80, June 67, July 25, Aug. 31, Sept. 21. Oct. 67 , Nov. 51, Dec. 59

READOUT Jan. 63, March 80, April 80, May 74, June 46, July 63, Aug. 70, Nov. 61, Dec. 50
SPACEWATCH by F. W. Hyde Jan. 32, Feb. 27, March 66, April 66, May 25, June 45, July 40, Aug. 49, Sept. 64, Oct. 32, Nov. 47, Dec. 43

SPECIAL SUPPLEMENTS AND OFFERS

Capacitor Offer	Aug. 45
Casio Watch Offer	July 33
Casio Watch Offer Correction.	Sept. 65
Computer Case Offer	Feb. 37, March 81
Edukit Offer	May 63, June 31
How to Use Your Free Stickies	. May 47
P.A. Loudspeaker Systems by	ncan March 44
Radio/Cassette Offer	Dec. 24

Seiko Watch Offer ... 34
Speaker Offer .. 68
Special Offer-Autoranging DMM's Sept. 57
Special Offer-PE Congress Nov. 31

Turntable Offer
Oct. 35. Nov. 66

Video for Everyone by G. K. Gardner April 44
Watch Offer ... Mar. 65

qminnanowins anus

The briggest name in solder worldwide

Arax Multicore Solder.
Economy pack for general non-electrical use. Replaces solld wire and stick solder. (B.S. 219 Grade L). Econopak 200 g reel of 3 mm dia. Size 16 A . £4.14 per reel.

Toolbox Reels.
Multicore 5 -core solder for general use Suitable for electrical joints (B.S. 219 Grade C).
$40 / 60$ tin/lead 1.6 mm dia. Size 3. $£ 3.91$ per reel.

Savbit.

Multicore 5 core solder for radio, T.V. and similar work Reduces copper erosion. Suitablefor service engineers and manufacturers using small quantities of solder. 1.2 mm dia. Size $12 . £ 3.91$ per reel.

Aluminium Soldering.
Alu-Sol Multicore 4 core solder for soldering most types of aluminium. No extra flux needed. 1.6 mm dia. Size 4 . $£ 11.50$ per reel.

BibHi Fi Accessories Ltd., (Solder Division), Kelsey House, Wood Lane End,
Hemel Hempstead, Hentfordshire HP2 4RQ Telephone: (0442) 61291.

Products that help you make a better iob of it.

All recommended retail prices shown are inclusive of VAT. If you have diffculty in obtaining any of these products send direct with 40 p for postage and packing. For free colour brochure send S.A.E.

SEND YOUR ORDERS TO DEPT. PE12, PO BOX 6, WARE, HERTS. VISIT OUR SHOP AT: 3 BALDOCK ST, WARE, HERTS. Tel: 0920 3182, Telex 817861

Terms cash with order. Cheques/Postal Orders made payable to Bi-Pak at above address.

EHBOMASOMMI Electronics

48 JUNCTION ROAD, ARCHWAY, LONDON N19 5RD

 TELEPHONE 01-883 3705 01-883 2289
YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPONENTS AND COMPUTERS

 PETS \& SYSTEMS| 8N 8K RAM | $\mathbf{£ 3 9 9}$ |
| :--- | ---: |
| 16N 16K RAM | $£ 499$ |
| 32N 32K RAM | $£ 599$ |
| CASSETTE DECK | $£ 55$ |

343K Twin Floppy Disk

NEW 32K with 80 col Screen £825 Twin Disk Drive 950K £895 All with new keyboard and green screen Friction Feed Printer Tractor Feed Printer £375

COMPLETE 32K SYSTEM £1789

MEMORY

EXPANSION KIT
Suitable for UK101, Superboard expansion using 2114's each board has 16 K ram capacity kit contains:

* On board power supply
* 4K Eprom expansion
\star Fully buffered for easy expansion via 40 pin socket
* 8 K kit
$£ 89.95$
* 16 K kit
£122.95
- Printed Circuit Board
£29.95
* 40 pin-40 pin header plug
£8.50

VIDEO GENIE

VIDEO GENIE

 based on TRS80Utilises Z80, 12K level II Basic, Integral Cassette Deck, UHF O/P, 16K RAM, all TRS80 features.

UK101

£179 IN KIT FORM £229 READY BUILT \& TESTED £255 COMPLETE IN CASE (8×2114)
4 K EXPANSION NOW ONLY
£18.00
No extras required \star Free sampler tape \star Full Qwerty keyboard $\star 8 \mathrm{~K}$ basic
\star Ram expandable to
8 K on board (4 K inc.)
\star Kansas City tape interface
\star New monitor allows full editing \& cursor control $£ 22.00$

[^2]
NEW SHOP \& SHOWROOM NOW OPEN

TELEPHONE 01-883 3705 01-883 2289

"SUPPORT CHIPS

		22 pin	. 22	. 65
Z80 CTC	5.95	24 pin	. 24	. 70
Z80A CTC	6.95	28 pin	. 30	. 80
$z 80$ P1O	5.95	36 pin	-	. 99
Z80A PIO	6.95	40 pin	. 40	1.10

6520
6522
6532
6821
6850
6852
8212
8216
8224
8228
8251
8253
8255
TM59901
TM59902
TM59904 (2465362)

UARTS

AY-5-1013	$\mathbf{3 . 9 5}$
AY-3-1015	$\mathbf{4 . 7 5}$
MM5303	$\mathbf{4 . 7 5}$
TMS6011	$\mathbf{3 . 5 5}$

D. RAMS	£ p
4027	2.75
4050 (350NS)	2.35
4060 (300NS)	2.39
4116	3.95
S. RAMS	
2102A	1.30
2102A2	1.69
2112 A	2.75
2114/4045	2.75
4035	1.07
4044-5257	6.93
6810	3.50
BULK PURCHASE	
8×2114	18.00
8×4116	27.50
16×2114	34.00

SEND S.A.E. FOR COMPLETE PRICE LIST OR PHONE 01-883 3705

L PRICES ARE EXCLUSIVE OF VA								
TRANSISTORS		REGULATORS						
		7805............80p						
30p	72..... 12p	7812............. 80 p						
C188K ... 30p	79 25p							
CY17 90 p	183...... 25 p	$7815 \ldots \ldots80 p$ $7824 \ldots80 p$	74194..... 990					
AD149 55p	BF200..... 29p	$790565 p$	74LSOO.... 11 p	4029				
	F336.....33p	7905.......... 65p		4030				
AS217 ...1200	BFX30	7915..........65p	74LS02 12p	4034				
AU113150p	$\left\lvert\, \begin{gathered} \text { BFX86 } \ldots . . \\ \text { BFX88 } \ldots . . \\ 22 p \end{gathered}\right.$	7918......... 65p	74LS03 12p	4035				
BC108	BFY50 13p		74LS04 12p					
BC108A7p	BFY51 13p	L924..... 150	74LS10 ... 19p					
BC108C 7 P	BFY64 28p	LM320T12 105p						
BC136 15p	BFY90 56p	LM320T15 105p	74LS30 18p	4049........ 45p				
	BSX19.... 80p	LM320T18 105p	74LS32.... 24D					
BC141....30p	BSY95A ... 18p	$\text { LM } 223 \mathrm{~K} \quad .450 \mathrm{p}$	74LS42 89p	4051				
BC142 BC143	BU204 ...149p		74LS51					
BC143 28p			74LS55 65p					
		LM340T15..80p LM 340 T18.. 80 p	74LS74 39	4066				
	1696		74LS75 46p	4069				
BC149C	2N930...... 20p							
BC1599p	2N1132 19	TTL		407				
BC16035p	304 ... 40		74LS93 79p	4073				
167A ... 10D	2N1711	7400 9p	74LS114 .. 49p					
BC178 12p	2N1711 ... 15 p 2N2217 $\ldots .20 \mathrm{p}$	74019p 9 P	74LS122 ... 65p	4076				
8p	2N2219A... 20p		74LS123 .. 85p					
BC182L.......9p	2N2221.... 18p		74LS124.165p	4081				
839p	2N2368 ... 15p	$7404 \ldots \ldots . .10 \mathrm{p}$	74LS132 . \quad 79p					
BC183L......9p	2N2369 ... 14p	7405....... 14p	74LS151 .. 89p					
BC184L......9p	2N2894A.. 20 D	7406 45p	74LS155 .. 910	4162				
BC186 20p	2N2904 15p	$\left\lvert\, \begin{gathered} 7407 \ldots \ldots . . \\ 7408 \ldots \ldots . \\ 74 p \end{gathered}\right.$	74LS156 .. 89p	4163				
BC2129p	2N2904A.. 15p		74LS157 .. 690	4402				
BC212L.....9p	2N2905 ... 15p	7409........ 12p	74LS165 .1490	d				
BC21389p	2N2906.... 15p	(1212...... 170	74LS168.195p	4412				
BC327 13p	2N2926Y.. 10p		74LS174 ..1400	4445 17				
BC328 ${ }^{\text {Pr }}$	2N2926O.. 10p 2N2926R. 100	7413...... 25p	74LS175...99p	4446......148p				
BC337 $\ldots . . .16 \mathrm{p}$ BC 338 … 11 p	$\begin{aligned} & \text { 2N2926R .. 10p } \\ & \text { 2N3442 ...102p } \end{aligned}$	$7416 \ldots25 p$$741725 p$	$74 \mathrm{LS190} .110 \mathrm{p}$	4502....... 99 p				
BC440 …. 32 p	2N3702......8p		74LS192.115p 74 LS 194 115 p	4511				
BC5479p	2N37048p	(74LS194.115p					
BC5489p	2N370588 8	(74LS 196 .. 95p					
BC550 14p	2N37088D	7432...... 22p	74LS 197.125 p	4516....... 99 p				
BC558 12p			74LS257 .. 99p	4520....... 110p				
BCY33..... 99p	2N3866 35p	$7442 \ldots \ldots .$.$7447 \ldots \ldots$705	74LS260 .. 99p	4522 129p				
BCY39....229p	2N4058 12p		74LS273 199p	4526				
BCY58..... 16p	2N4427 60p	$7450 \ldots \ldots . .15 p$$7451 \ldots . . .15 p$$7470 \ldots \ldots . .40 p$						
BCY70..... 12p	Add VAT		CMOS	4556....... 69p				
DIODES	TRIACS		chen $4000 \ldots \ldots .14 \mathrm{p}$ $4001 \ldots \ldots .14 \mathrm{p}$	$\begin{aligned} & 4582 \ldots \ldots . .115 p \\ & 4584 \ldots \ldots . . \\ & \hline 59 p \end{aligned}$				
		$7475 \ldots \ldots . .650 \mathrm{p}$$7480 \ldots \ldots . .50 \mathrm{p}$$7482 \ldots .$.70 p		4585........ 99p				
AA119 10p	4A 400V ... 54p		4002 ….... 14p					
BA154 9p	4A 600V ...60p	7486....... 30p	4006....... 86p					
BA156 ….... 9p	6A 400V60p	7491........ 80p	4007........ 16p	DIL SOCXETS				
IN4001....... $4 p$	6a 600V ...66p	7492 55p	4008 79p					
IN4002 4p	8 A 400 V ...66p	7493........ 55p	4009 36 p	$14 \text { pin }$				
	$8 A 600 \mathrm{~V}$... 72p 10 A 400 V .72 p	7494....... 90p	4010....... 36p $401119 p$	16 pin 13p				
IN4006 6 p	10A 600 V . 84 p	$7495 \ldots63 p$ $74100 . . .1200$	4012........ 19p	20 pin				
IN4007	15A 400V. 108 D	741071300	4014....... 79 7					
IN4148	15A 600V . 126p	74121 40p	4015....... 73p					
	with internal	$74122 \ldots \ldots .52 p$ $74123 \ldots \ldots 0$ 7414		EMORIES				
OPTO		$74145 \ldots \ldots .88 p$ 74154 $74.137 p$	4018........ 79 p					
			4019 45 P	$2114 \ldots300 p$$4027 \ldots . . .1500$				
Leds		$\left\|\begin{array}{ccc} 74157 \\ 74161 & \ldots . . . & 609 \\ 742 p \end{array}\right\|$						
125 Red 80	6A 600V 90p	74161 92p 4021 990		$\begin{array}{llll} 4116 & \ldots & 395 p \\ 4118 & \ldots . & 10000 \end{array}$				
125 Green 12p								
125 Yellow 12p	10A 400V. 950	BRIDGE RECTIFIERS		EPROMS				
2 Red 10p	$\begin{aligned} & 10 \mathrm{~A} 600 \mathrm{~V} .100 \mathrm{p} \\ & 15 \mathrm{~A} 400 \mathrm{~V} .120 \mathrm{p} \end{aligned}$	50 V 100 V 200 V 400 V 6						
$\begin{aligned} & 2 \text { Green } \\ & \text { Displays } \end{aligned}$			$38 p \text { 40p }$					
$704110 p$	$15 \mathrm{~A} 600 \mathrm{~V} .138 \mathrm{D}$	4 A 40p 42 D	44p 48p 64	2716...... 1150p				
$741160 p ~$	Prices correct			4850p				
	at time of going to press.							
750 160p								
				Mk 3880.950p				
				$\begin{aligned} & \text { Mk 3881.625p } \\ & \text { Mk 3882.625p } \end{aligned}$				
Irons \& tools * VERO products * OK Machine Tool Co. Products * Microcomputers \& Peripherals including Nascom and Sharp. 35p P\& P. VAT * Large range of Microcomputer books				All advertised items available for immediate despatch white stocks last.				

INTERFACE COMPONENTS LIMITED
 OAKFIELD CORNER SYCAMORE ROAD, AMERSHAM,BUCKS HPG 6SU TELEPHONE:02403 22307. TELEX: 837788
 Write .telephone or call. Access or Barclaycard accepted

b-CLEF KITS - b

High Quality Electronic Musical Instruments under the personal supar-
vision of Specialist Designer A. J. vision of Sp
BOOTMMAN.

JOANNA $72 \& 88$ PIANOS
Six and 7t Octave Electronic Pianos with unique Touch Sensitive Action as used in the P.E. JOANNA, which electronically simulates piano key inertia - a feature not available in
any other design. Build this widely aclaimed any other design. Buid this widely aclaimed
professional instrument, for either domestic or Stage use, from our top quality Component Kits.
SIX OCTAVES - $£ 207$
$7 \pm$ OCTAVES $-£ 232$
P.E. STRING ENSEMBLE

The versatile String Synthesizer with a fanKastic sound at an economic price. Spli voices.

COMPONENT KIT - £169

P.A.' - SPEAKERS - CABINETS

Units can be supplied to add to the Plane Stage Cabinets and portable tubular legs.

P.E. MASTER RHYTHM

User Programmable Rhythm generator to up to 24 selectable patterns on Eight tracks Tree instrumentation seltings select from gives up to 16 Bar pattern groups.

COMPONENTKIT - £79

ELECTRONIC ROTOR

Two speed organ rotor simulation plus tegrates with existing organ.
COMPONENT KIT-£89
KEYBOARDS (Square Front)
$\begin{array}{lr}49 \text { NOTE C-C } & £ 23.80 \\ 73 \text { NOTE F-F } & £ 37.00 \\ 88 \text { NOTEA-C } & £ 45.00\end{array}$
All Keyboards are easily cut to provide your equired lengith and compass. Quantity en

BUILDING SERVICE.
We are specialists in Electronic Piano Manufacture and can build your Plano for you - see lists.

INFORMATION
Please send S.A.E. quoting items of Interest.
Telephone BARCLAYCARD orders can be accepted, all prices Include V.A.T., carriage \& Insurance.

SHOWROOM - 44a Bramhall Lane South.

EXPORT

Enquiries welcome - in Australia please con-
Back up TELEPHONE advice is available clear instructions included with the clear instr
above Kits.

CLEF PRODUCTS (ELECTRONICS) LIMITED

(Dept. PE) 16, Mayfield Road, Bramhall, Cheshire SK7 1JU. 061-4393297

Top Priority for every constructorHOME RADIO CATALOGUE

- About 2,000 items clearly listed - Profusely illustrated throughout. - Large A-4 size pages.
- Bargain list order form and 2 coupons each worth $25 p$ if used as directed, all supplied free.
Price $£ 1$, plus 50 p for post, packing and insurance.
Send cheque or P.O. for $£ 1.50$
HOME RADIO Components LTD
Dept. PE, P.O. Box 92, 215 London Road,
Mitcham, Surrey.
01-5435659

GUARANTEED LOWEST PRICES - GUARANTEED QUALITY

We promise to BEAT any lower advertised price by an extra $2 \frac{1}{2} \%-J$ ust send details and your remitance for the lower amount*
Casio and Seiko watches are water resistant and won't drown in the rain. They do not eat expensive batteries. The quality cases won't wear your cuffs away, nor will plating wear off in a few months. Unlike the usual plastic type, the mineral glass faces will not easily scratch or mark. The high quality modules have a failure rate of around 1% or less - not 25% or more. They are guaranteed accurate and functions do not interact. Spares and servicing are available after the guarantee expires from UK service departments.

THE ULTIMATE WATCHES

CASIO'S giant step forward in time.

AABI
LCD ANALOGUE/DIGITAL
Alarm Chronograph with countdown Anslogue. Independent hours and minutes with Sigital. Hours, minules, seconds, day and date Stopwatech. $1 / 100$ second to 12 hours. Net, lap and Ist and 2 nd place, Start/stop and 10 minuie signals. Alarr. For 30 seconds with carousel dispelay. Countdown Alarm. Normal and net times to 1 hour, with amazing "Star Burs"" hashing dispiay. control. Lithium bantery. Light. Water Resist case. 8.65 mm thick. Mineral glass ($\{34.95$).

ONLY £29.95
For around 40 functions.

12 MELODY ALARM

CHRONOGRAPHS
Countdown alarm. Date memories.
Mours, minutes. seconds. am-pm. 12 or 24 hour. Day, date and month auto calendar. Hourly time signals, With "Bis Ben t orpe weet Hourly time signals. With "Bie Ben type tune.
Date memory, Select either "Wedding March" "Trinklied" to be played.
Iirthday and Christmas Memory.
Countdown alarm. From 1 second to I hour. After zero, count continues positively.
Stopwatch. $1 / 10$ second to 1 ho
icturesque moving display of notes playe lap etc. Picturesque moving display of notes played $\mathrm{M}-12 \mathrm{resin}, \mathrm{s} / \mathrm{s}$ trim. $\mathrm{M}-1200$ all $\mathrm{s} / \mathrm{s} 9.0 \mathrm{~mm}$, thick.

$£ 19.95$
For around 30 functions
A250. As above but with standard water resistant case, £T.B.A.
$\mathbf{S 2 2 0}$. As above but with dual time in lieu of alarms and chimes $£ 25.00$.

F300 Sports Chronograph (right). 8 digits, hours minutes, seconds. date and day indicator, $1 / 100$ bimes, to 12 hours. Resin casc, s / s trim. Water resist. glass. Light. Metal version $£ 17.95$.

F80E Alarm Chronograph (far right). 8 digit display of hours. minutes, seconds. am/pm and date. 24 hour alarm, hourly chimes. $1 / 10$ second stopwatch to 12 hours: net. lap 1 st and 2 nd place. Resin case/strap
Water fesist Mineral glass. Nightlight. 830 S 41 B . S/s jacker version $\mathbf{~} 19.95$.

£24.95 £29.95
For around 40 functions.

100 METRE WATER RESISTANT

Alarm Chronographs with countdown. Amazing 5 year lithium battery life. Hours. minutes. seconds, am/pm, day, date and month. 12 or 24 hour.
Time is always visibie regardless of display mode. Stopwatch. $1 / 100$ second to I hour. Net, lap, st and 2nd. Start/top signal. 10 minute signal. Alarm. Sounds for 30 seconds.
Countdown Alarm. Normal and net times to 12 hours. Start/stop and 10 minute signals. Time signal. Half hourly and hourly chimes. illustrated) s / s case/resin strap $£ 25.95$.

OTher casio watches. Remember we will beat lower prices by $2+\%$.
8 digit basie watehes. F7C 28.95 . 1110 S .34 B £14.95
Chronographs. $95 \mathrm{QS}-36 \mathrm{~B}$ £19.95. 560S 38 B Digital/analogue $£ 14.95$ Calculator/chronographs. C80 $£ 24.95$. C801 $£ 29.95$.
Alarm chronos. $810 \mathrm{GS} .35 \mathrm{~B} \quad £ 29.95 .810 \mathrm{~s}$. 35 B all

LADIES MODELS with stopwatch or dual dime. Other ladies madats from 510.95 10 34.95 . Da
-Providing the advertiser has stocks and we still make a small profit
Send $\mathbf{2 5}$ p for our illustrated catalogue of Casio and Seiko products.

JOIN THE KEYBOARD REVOLUTION!

With the amazing new CASIOTONE 201.
A remarkable new concept in electronic keyboard instruments using a totally new rechnology. Pitch imbre and harmonics of 29 instruments have been measured. digitalised and stored in electronic chip memory for faithful reproduction.
A-sound memory function allows swithing between any 4 pre-selected instruments.

CASIOTONE M-10

Four instruments on the move! Polyphonic playing of piano. organ, violin and fuute.
19 white and
3 swich. $2 \times 16+\times 5+$ inches. Weight 3.51 t . Integrat switch. $2 \times 164 \times 5{ }^{10}$ inches. Weight 3.51 b . Integral
speakers. $0 / \mathrm{p}$ jack. Mainsibattery. ONLY 169 (r.,.p. \&79)

THE SPACE INVADERS ARE BACK!

This time right in your pocket. An action packed speed ganie hat will give you hours of skilful entertainment and chair gripping excitement. Never another dull spare moment. Also an 11 -note melody calculator, pre-programmed "When Th Saints Go Marching $1 n^{\prime \prime}$. Fully memory, \%. Auto power of facility.

MG-880 (left)
$+\times 2 \frac{1}{3} \times 4 \frac{1}{2}$
$£ 10.95_{\text {(}}(12.95)$.
MG. 770 (right)
MG. 770 (right)
Kiss touch keys
$5 / 32 \times 3 亡 \times 2 t$
(E14.95) $£ 12.95$

12 PRE-PROGRAMMED MELODIES
Clock. calendar, II note melody maker, calculator. square roots, \%. Alarm 1; 7 tunes. one for each day. Alarm 2; a fixed cune. Hourly chimes. Date memories; 4 anniversary tunes. MQ-1200 (below). Desk or bedside. Built-in speaker. Volume control. Nightlight. Po
$1-9 / 16 \times 6 \times 2 \frac{1}{4}$ inches.

Other Casio calculators, P.O.A. Remember, we will BEAT lower prices by $2 \frac{1}{2} \%^{*}$

DFI 048 (lett) Alarm, countdown alarm, hourly chimes stopwatch to $1 / 100$ second: net. lap. 1st and 2 nd.
$£ 49.95$
DER 048 Solar powered (right). Weekly programmable alarm, 16 hour interval countdown alarm timer, hourly chimes. $1 / 100$ second stopwatch
DER 018100 meter water resistant version.

DUO DISPLAY Analogue/digital watches from $£ 57.50$.

Keelmoor Ltd is a company which has been established for a long time - we supply the products you have often bought from other companies. Our precision watches and electrical goods are renowned for their superb quality and reliability.
We differ from other companies in that we import direct world-wide - that difference is passed on to you at unbeatable prices. You receive the goods faster and we provide a service and no catch guarantee of which we are justly proud.
We employ experts world-wide whose job it is to seek out products of the highest quality at the lowest possible prices. Illustr ated here is just a tiny selection of our comprehensive range. Just compare these items with those seen elsewhere - we are confident the prices will amaze you. You can save £〔§'s.
GENTS 5 FUNCTION LCD
A

ILLUSTRATED BELOW IS THE LADIES 5 FUNCTION LCD. This watch has the same time and auto calendar functions as the basic gents model described above, together with backlight and adjustable strap to suit the daintiest of wrists. It's compact, pleasing appearance makes it a very practical day watch andit is also often used for boys and girls. Available in black or white face.

These are just a few of our fantastic offers remember. A free colour catalogue is posted with every order. Or just send large S.A.E. and we'll send you one.
§5.95p

FULLY GUARANTEED
We must emphasize all these items are fully guaranteed for one year. All electronic goods come complete with demonstration batteries which cannot be guaranteed. New batteries are available for only 60 p .

GENTS LCD

 ALARM WATCH This model represents fantastic, incredible value for money. The 6 digit display continuously shows hours, minutes and seconds, or may be changed at will to hours, minutes and date. Its effective alarm is extremely useful and may be set to any time within a 24 hr . period. In addition, there is an alarm indicator, 4 year calendar and snooze repeater.BARCLAYCARD AND ACCESS CARD

WELCOME. SEE COUPON.

HERE IS THE AMAZING
12/24 HOUR ALARM/CHRONOGRAPH

From Watches to Clocks, from Calculators to Radios, from Binoculars to Tool Kits KEELMOOR is the name for the right quality at the right price. Your personal catalogue will tell you more - free with every order.
 QUARTZ LCD DRESS WATCH
This attractive ladies model with the standard 5 functions of hours, minutes, seconds, month and date has literally sold in tens of thousands. Available in gold or silver colours with 'sugar coated' finish. Please state first and second choice of square, round or oval design.

THE ULTIMATE GENTS LCD

CALCULATOR/ALARM WATCH

If you want a watch from the top end of the market this is the one for you. Full calculator functions plus memory and percentage are combined with time and alarm functions to make this item an outstanding buy. Manufactured in Japan at the same factory that produces models for probably the most famous name in the watch business, this device represents sheer quality at an unbelievable price. Comes complete with backlight and button operating tool carried in the strap clasp. We advise you to order quickly whilst stocks last.

We don't think you'l find items of this quality anywhere else at the price we offer. Order now, Christmas is round the corner and this is the way to make gift buying easier - and cheaper too.

WE ARE PROUD TO INTRODUCE THE AMAZING MELODY ALARM CHRONOGRAPH

ACTUALLY
PLAYS
THE YELLOW ROSE OF TEXAS

BUT AS YOU CAN SEE FROM THE DETAILS BELOW THIS CHRONOGRAPH IS NO MERE NOVELTY

Today's technology has produced this fine watch which incorporates a musical alarm which plays a complete verse of 'The Yellow Rose of Texas'. Other functions included are as for model number I with stop watch.

G
 £14.95p

NEW TO OUR RANGE, WE COMBINE PRECISION AND STYLE IN THIS-THE SUPER SLIM GENTS 5 FUNCTION CHRONOGRAPH

These watches need no special functions to make them stand out in a crowd - their slimness serves that purpose. If you've been put off digital quartz watches in the past because you require an ultra-slim design, now is the time to change. Is equipped with standard 5 functions and backlight.

£9.95p

Keelmoor Ltd, 78 Castle Street, Melbourne, Derbyshire, DE7 1DY.

MAINS DIGITAL ALARM CLOCK

A very practically sized mains operated digital alarm clock - this item is extremely well finished and looks equally at home by the bedside or in the living room. With snooze/repeater alarm you could not even buy the components to build your own for this price. Available at the amazingly low price of only

AND FINALLY, WHAT MUST BE THE ULTIMATE IN SQUEEZING A QUART INTO A HALF PINT POT! THE INCREDIBLE MINIATURE LCD TRAVEL/ALARM CLOCK

As you can see from the photograph above this device istiny and yet it continuously displays hours and minutes with auto calendar and night light. Invaluable for the busy traveller or simply for use in the modern home, it comes complete with its own travelling case and can easily be carried in top pocket or the smallest of handbags. It has even got a stand for upright position on table, shelf or sleeping compartment. An unusual gift to yourself or others at only § 10.95 . J

Every order dispatched by return, and is sent by recorded delivery. That is Keelmoor's Promise To You.

THE KEELMOOR PROMISE Keelmoor have a tremendous reputation to uphold. both in the retail and whole. sale trades and so. with every product sold, we automatically give the Keelmoor Promise. This includes:-

- NO RISK GUARANTEE. Try any of these tiems for 15 days and il you are not completely satistied with the quality and value simply return it for a complete reiund.
- ONE YEAR'S FUL.

GUARANTEE on all products

- BACK UP SERVICE serond to nore

15 DAY TRIAL COUPON.
To Keelmoor tid. 78 Castle Street, Melbuurne. Derby DE7 IDY
To Keelmoor Lid. 78 Casile Street, Melbourne. Derby DE 7 IDY
Please send me the items indicated in the boxes below. I understand that if am not completely satistred. I may return the goods undamaged within 15 days and my money will be relunded in full.

AMF:Mrs, Miss.Ms, Mr
Aburtas

enchism a cheque Prit KEEL MOOR LTD

nı.
TOTAL Please add 50 p per inem $\mathrm{P} \& \mathrm{P}$.
The advertisements to wotch for
All goode diepotelied by return.
PF.

Guess who builds this great
 Logic Probe...YOU!

With this easy-to-build Logic Probe Kit from CSC and just a few hours of easy assembly-thanks to our very descriptive step-by-step manual-you have a full performance logic probe.

With it, the logic level in a digital circuit is indicated by light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from either leading edge. You'll be able to probe deeper into logic with the LPK-1, one of the better tools from CSC.

Complete, easy- to-follow instructions help make this a one-night project.

C.S.C. (UK) Limited. Dept. $5 Z$ Unit 1, Shire Hill Industrial Estate, Safiron Walden, Essex. CB11 3AO Telephone: Saffron Walden (0799) 21682
Telex: 817477.

CONTINENTAL SPECIALTIES CORPORATION. DEPT. $5 Z$ Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex.
Name
Address
Inc P\&P and 15\% VAT
LPK-1 £14.86
I enclose cheque
PO for \mathcal{E}
FREE Catalogue
Phone your order with Access, Barclaycard
or American Express Card No.
Aherican Express

FLADAR ${ }^{\text {TRANSFOPMERSS }}$
 PRIMARY $0-240 \mathrm{~V} 50 \mathrm{~Hz}$

Type	tage	urrent	ε	p／p	Type	Voltage	Curren		p／p				
O6FE	${ }_{6}^{6+6}$	0．5A EACH	． 96	${ }^{60}$	O6FE60		${ }^{0.4}{ }^{\text {A A }}$						
	${ }_{\substack{6+6 \\ 6+6}}^{6}$	1．6A EACH		75	OBFE	15－0－15	0．5A	${ }_{2} 2.35$	$6{ }^{60}$				
50fEO6	${ }_{\text {c }}^{\substack{6+6 \\ 6+6}}$	3A EACH ${ }^{\text {a }}$	4．02	1250	${ }_{1}^{22}$		${ }^{1.5 A}{ }^{\text {i }}$	O	${ }^{75}$				
							0．8A		750				
$\begin{aligned} & \text { O6FEO9 } \\ & \text { O8FEE } \end{aligned}$	$\xrightarrow[9+9]{9+9}$	$\begin{gathered} 0.3 \\ 0.5 \end{gathered}$	咗	$\begin{gathered} 600 \\ 600 \\ 750 \end{gathered}$	20 FE 50	－${ }_{\text {a }}^{9-0-9}$	${ }_{\text {2 }}^{\text {2 }}$ 2A	30	75				
－ 212 FEO	$\stackrel{\text { 9＋9 }}{9+9}$	${ }^{\text {A E EACHCH}}$		$7{ }^{5}$	20	－	${ }_{1}{ }^{1} \times$	30	${ }^{75}$				
S0FE．99	$\stackrel{9+9}{9+9}$	2．5A EACH	4．02	${ }^{925}{ }^{90}$	20 20		0.6 A	30	750				
					䣅		$\begin{array}{r}3 A \\ 3 A \\ \hline\end{array}$	－00	边				
O8FE	边 $\begin{aligned} & 12+12 \\ & 12+12 \\ & 12\end{aligned}$			600	50fe		1．4A	O0	5				
S0FE12		－1．8A 1.8 EA		750	Ofe		${ }^{3 A}$	5.00	5				
	12＋12	2． 5 SA EACH	（5．03	${ }^{125}$	60FE1	2e－0．28	2．2A	5．00	125p				
O6FE	15＋15	0．25	1．99	600			${ }_{5 \text { 5A }}^{8 \text { A }}$						
		${ }_{0}^{0.25}$		${ }^{6} 5$									
50	$\xrightarrow{15+}$	－${ }^{0.6 A E A C H}$		$75{ }^{7}$	${ }_{8}^{80 F E 85}$	${ }^{28-0-28}$	2．5A						
60		${ }^{\text {2 }}$－EACH	5．03	20	80 ¢ 90	30－0．30	2．3A	6.15	${ }^{25}$				
O6FE20	20＋20			${ }_{750}{ }^{60}$			$3 A$ $3 A$ 3						
20FE20			3．36	75	100F	込	A		op				
		1． 2	4．02	${ }^{90}$	1000E	26－0－2	3 A						
Cofte	－	2 EACH	（ 5.20	${ }_{25 p}^{25}$	100	边	${ }^{3 A}$						
battery charger transformers					100Fe36	15－0．15							
CoFE12		${ }_{6}^{5 A}$											
$90 \% \mathrm{E} 12$	${ }^{0-6-12}$	${ }_{8 \mathrm{AA}}^{6 \mathrm{~A}}$	$\left\lvert\, \begin{aligned} & 6 \cdot 15 \\ & 7 \cdot 40 \end{aligned}\right.$	${ }^{150 p}$	150 F	边	${ }^{4 A}{ }^{4} \times$		\％				
				50	25	288．0．28	${ }_{8 \text { 8A }}$		里				
		｜		op	250FE32		${ }^{7 \text { A }}$						
flauak electric SOUTHVIEW DRIVE po bux ${ }^{19}$			TRADE ENQUIRIESWELCOME			PAYMENT TERMS： C．W．O．Cheques．							
WLSTCXIFF ON SEAESSEX 1702 （1133													

OHIO SCIENTIFIC	
5	5OHZ BLACK ANO WHITE SUPERBOARO II £159＋ 15% VAT POST FREE 5OHZ $V A T$.
SHARP COMPUTEAS Please add 15\％VAT．MZ80K E438．MZ8O1／O £96．MZ80P3 £515．MZ80FD E772．PC1211 SINCLAIR PRODUCTS ZX80 kit p．o．a．ZX80 assembled p．o．a．SC 110 Oscilloscope $£ 144.95$ ．PFM200 $£ 51.95$ ． Microvision TV £89．PDM35 $\mathbf{F 3 4 . 2 3 \text { ．DM } 2 3 5}$〔56．55．DM350 £76．70．DM450 102.17. Enterprise prog calculator £19．95．TG105 c87． TF200 £150． COMPUTER GAMES Chess challenger 7 f79．Sensory chess E107．Carriages $\mathbf{E 1 4 . 8 5}$（except space in vaders $£ 27.50$ ，chess $£ 43.95$ and backgam－ mon £33．96）．	SUPER PRINT 800MST The ideal impact matrix printer for Super－ 96． 120 or 132 chrline Tractor and fice－ $\begin{aligned} & \text { word processor propam } \\ & \text { components } \\ & £ 359\end{aligned}+15 \%$ VAT．
SWANLEY ELECTRONICS Oept．PE， 32 Goldeal Rd．，Swanley，Kent BA8 8 EZ．	

IN EASY REACH OF ALL THE MAJOR NORTHERN ROUTES, (M1, M62, M61, M18, A1, A38 ETC.). NO PARKING PROBLEMS AS OUR MODERN SHOWROOM IS ADJACENT TO THE MAIN MULTI-STOREY CAR PARK. PHONE US, AND WE WILL DIRECT YOU PERRSONALLY TO OUR DOOR!

AURA SOUNDS**"********)

 CENTRE OF THE NORTH17, UPPER CHARTER ARCADE, METROPOLITAN CENTRE

BARNSLEY, SOUTH YORKSHIRE

TEL: 0226-5248 (CLOSED THURSDAYS)

cosmos

hEAL WERSI SOUNO AT A BUDGET PRICE

SATURN

THE NEW PROFESSIONAL TWIN WERSIVOICE MODEL

CLASSICA
CLASSICAL CHURCH MODEL

LET OUR TECHNICAL STAFF SHOW YOU HOW, WITH THE BENEFIT OF OUR UNIQUE TECHNICAL BACK UP SERVICE, EVEN A NEWCOMER TO ELECTRONICS CAN BUILD

HIS OWN FAMOUS-SOUND WERSI ORGAN AT AN
 (4 A HIS OWN FAMOUS-SOUND WERSI O

P PLEASE SEND ME THE FULL WERSI INFORMATION PACKAGE. FOR WHICH I ENCLOSE \&1.
NAME (BLOCKCAPITALS).
ADDRESS
PE12 PLEASE SEND TO PURLEY ADORESS

HEAR WERSI IN THE SOUTH AT AURA SOUNDS LTD PURLEY
14-15 ROYAL OAK SHOPPING CENTRE, PUPLEY, SURREY. TEL: 01-668-9733 (CLOSED MONDAYS)

SPECIAL PURCHASE

KAISE

 OF TOP QUALITY LCD MULTIMETERS

> CHOOSE FROM FOUR MODELS
> - $3 \frac{1}{2}$ digit autoranging (volts/Ohms)
> - 200 hours battery life (2 pencells)
> - $10 \mathrm{amp} \mathrm{AC} / \mathrm{DC}(6220 \& 6100)$
> - 1000v DC 600v AC
> - $200 \mathrm{~mA} \mathrm{AC/DC}(6200 \& 6100)$
> - Range hold facility (6100 \& 6110)
> - Unit and range sign ($6110 \& 6220$)
> - Continuity buzzer (6100 \& 6110)
> 100 yVDC. 1 mVAC
> 10 yA AC/DC. 0.10 hm
> 10 mA on 10A. AC/DC
> (ALL MODELS)
> Low power Ohms range
> Zero Adjust key.
> Battery Warning
> In circuit resistance test.
> Size $155 \times 85 \times 28 \mathrm{~mm} .250 \mathrm{~g}$
> - All prices Include batteries/leads
> and UK VAT (UK c/p 65p)
> - Order by post or telephone
> with Barclay or Access
> 0.5% DC Volts
> 1\% DC Current
> 1.2\% AC Curren
> 0.5% Resistance
> 0.8% DC Volts
> 1.3% DC Curren 1.4% AC Current 0.8% Resistance
> 6200 £39.95
> 6220 £49.95
> 6100 £64.95
> 6110 £74.95

OR CALL IN AND SEE FOR YOURSELF
Prices correct at 1.11.80 E\& OE

J. BIRKETT

(Partners: J. H. Birkett, J. L. Birkett) Radio Component Suppliers 25 The Strait, Lincoln. LN2 1JF Telephone: 20767

MAINS TAANSFORMER 250 Volt - input, Out 43 Volt $50 \mathrm{~mA}, 11$ Vott, 2.5 Amp, 22-0-22 Volt $150 \mathrm{~mA}, 16$ Volt $120 \mathrm{~mA}, 15$ Volt 1.5 Amp, 20 Volt 275 mA , at $£ 3.90$ (Ps\& P £1.20) TTLI.C• 7400 - 20p, 74 LO 2 - 22p, 7440 22p, 74 LS 38 - $30 \mathrm{p}, 74 \mathrm{LS} 138$-40p. 5 MHz CRYSTALS in $10 X$ Case for 50 p .
SUB-MINIATURE MULLARD DISCS, 1000 pf 63 vw , at 25 p doz.
10WATT ZENER DIODES $4.76,75,8.2,12,15,18,202427,30,33,36,3943,47$ $51,62,68,75,82,91,100,120,130,150,180,200$ Volt All at 50 p each
5 WATT PLASTIC WIRE ENDED ZENER DIODES 3.6. 4.3, 5.6. 6, 6.2, 7.5, 8.2, 10, 11 . $13,14,15,16,17,18,19,20,22,27,36,39,40,47,51,56,60,62,68,87$ Volt Ail at 30 p MINIATURE 6 To 12 VOLT S.P.C.O. RELAY with 5 Amp Contacts 60 p.
MAINS TRANSFORMERS 250 Volt Input. Type 1.24 Volt Tapped at 14 Volt 1 Amp MAINS TRANS FOMERS 250 Volt Input. Type 1.24 (P\&P 25p). Type 4.20 Volt 1 Ampl 2 . 10 Volt 1 Amp 2 e 14.50 (P\&P 95p). TYpe 5.45 Volt 2 Amp, 45 Volt 500 mA - E3. 50 (Ps, P 95 p). Type 6.16 Volt 2 Amp $£ 1.60$ (P\&P 25p), Type 8.30 Volt 1.75 Amp $£ 1.60$ (P\&P 25 pl . Type 10.24 Volt 2 Amp e $£ 1.60$ (P\&P 25p
T.V. SAW FILTERS Untested at 3 for 50 p

UNIJUNCTION TRANSISTORS $2 N 4871$ 22p, MEV21 22p, MU 4894 22p, $4 J D 529$
WIRE WOUND РOTENTIOMETERS 2 WATT $2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 4$ WATT 100 K All at 30 p
50. BC 107-8-9 TRANSISTORS Assorted untested 60p.
50. AC 128 TRANSISTORS Branded but untested 60 p
50. OC 71 TRANSISTORS untested a 75p.
50. 2 WATT ZENERS Assorted untested 60 p
20. PHOTO TRANSISTORS ANDDARLINGTONS assorted untested - £1
10. 20 AMP DIODES untested $\approx 60 \mathrm{p}$.
20. 10 AMP DIODE untested 60 .
50. 1 AMP S.C.R's TO5 Case untested et

METAL FILM AESISTORS 0.5% Tol. 32, 39, 39.2, 68, 82, 82.5, 100, 121, 150, 270, 330, $332,360,365,470,562,619,620,680,681,700,750,820,909$ ohm, $1 \mathrm{~K}, 2.15 \mathrm{~K}, 2.2 \mathrm{~K}$ $3.01 \mathrm{~K}, 3.9 \mathrm{~K}, 5.1 \mathrm{~K}, 6.2 \mathrm{~K}, 18 \mathrm{~K}, 75 \mathrm{~K}, 150 \mathrm{~K}, 200 \mathrm{~K}, 392 \mathrm{~K}, 597 \mathrm{~K}, 600 \mathrm{~K} .1 .21 \mathrm{M}$ All at 6 p each 20 WAY LUCAR TAG CONNECTING BLOCK 60 p
20 WAY LUCAR TAG CONNECTING BLOCK G 60p.
 6496 Efi. 15 .
PLASTIC BC 108 or BC 212 TRANSISTORS at 6 for $50 p$
500Mir. REEL OF PVC CABLE 13 Strands . 019 E10. 4500 PIV 2 Amp SILICON DIODES \& $£ .50$ each

If you're into MICROPROCESSORS then they should be into an M P UroBreadBoard

* MPU Section accepts $24,28,40$ \& 64 pin DIL microprocessors
* Auxiliary Areas accept any .3 " or .6 " RAM, ROM or peripheral chip
* Power Bus Strips on all sides
* 5 incoming turret Power Terminals
* Component Support Bracket included
* Over 1400 contact points
* Alpha-Numeric column and row indexing
* Eurocard size ($160 \mathrm{~mm} \times 100 \mathrm{~mm}$)
* Slots onto all BIMBOARDS
* Non-Slip rubber backing
* Ideal for schools and colleges
* Long life, $<10 \mathrm{~m}$. ohms, nickel silver contacts The PROFESSIONALS breadboard that BEGINNERS can start on BOSS INDUSTRIAL MOULDINGS LTD

2 Herne Hill Rd, London SE24 0AU, England Telephone 01-7372383 Telex 919693 Cables \& Telegrams: LITZEN LONDON SE24

Please send me MPUroBreadBoard(s) at the special, limited period, introductory offer price of $£ 15.00$. This price includes VAT \& PP, is applicable from Sept 11980 but please add 15% for Overseas Orders, make cheques/P.O. payable to BOSS Industrial Mouldings Ltd and allow 10 days for order processing and cheque clearance etc.
1 enclose a cheque/P.O. to the value of $£$ \qquad
Name
Company
Address

COMPUTER SPEECH

ADD VERBAL OUTPUT TO A COMPUTER OR LOGIC SYSTEM OFANY KIND AT SPECIALINTRODUCTORY PRICES
24-WORD (ref. S2A - see below for spec.) speech synthesiser board: $£ 39.95+80 p$ PP + VAT, INTERFACE KIT: $£ 14.95+80 p$ PP + VAT
N.B. Full tech. spec. comes with speech board, prices can only be held definitely until end of Dec.

AS DESCRIBED IN THIS ISSUE OF P.E.

The basic speech boards which we offer provide fixed 24 or 64 word highly intelligible vocabularies at a remarkably low cost. The unit is based around the excellent Telesensory Instruments (TSI) speech products for which Modus is the sole UK distributor

These boards require à TTL interface, binary latches, special power supply, audio band-pass filter, edge-connector, plug and socket to driving computer or logic system. All this is included on our interface kit: $£ 14.95+80 p$ PP + VAT. All that is required is the speech synthesis board itself, a small transformer and an 8 ohm loudspeaker. Controls are included for frequency, volume and tone.

All speech synthesiser boards are supplied with full tech. specs and their connection to any logic system (MPU or not) is very straight forward.

SPEECH SETS AND PRICES:

S2A (24-words) (calculator vocabulary! £39.95 + 80p PP + VAT
"OH". '"ONE" '"TWO".
"THREE" "FOUR" "FIVE"
"SIX" "SEVEN" "EIGHT"
NINE" "TIMES-MINUS"
EQUALS" "PERCENT"
"LOW" "OVER" (for \div)
ROOT" "EM" \| M)
TIMES" "POINT"
W" "MINUS"
PLUS" "CLEAR" "SWAP"

S2B (64 words) (standard English set) E 67.50 + BOP PP + VAT All words as for S2A board plus: "ZERO"'.'TEN" "ELEVEN" "TWELVE". etc. TWUNDRED" THOUSAND SECONDS" AND DOLLARS DEGREES POUNDS CENTS 'TOTAL L FEET' PLEASE CENTIMETRES" 'VOLTS OHMS HERTZ "AMPS "DC": "AC UP" ${ }^{\text {GD }}$

S2C 164 words. (ASC11 vocabulary) C $67.50+80 \mathrm{p}$ PP +VAT SPACE.. . X-POINT' DOLLARS" "PERCENT "AND" "APOSTROPHE" "LEFT PAREN". RIGH PAREN" "STAR" "PLUS" COMMA. "SLASH. ZERO" "ONE 'TWO "tc. "CEMICOLON" "LON" THAN" "EOUAES. GREATER THAN "MARK" "AT" "A" "B" "C" elc. "LOWER CASE" tone
"UPPER CASE". UP ARROW' 'CONTROL"

MODUS SYSTEMS LTD

Phone: Lelchworth (04626) 74468/76392.
29A Eastcheap, Letchworth, Herts SG6 30A.

GET TO GRIPS WITH THE MICRO PROCESSOR itSELF WITH

THE EDUKIT

our speech board

 Designed by Dr: A. A.BERK (see P.E. review (April edition) \& P.E. special- offer May and June)

TECHNICAL SPEC.

- CMOS 1802 Processor (RCA) - excellent MPU for control.
** 256 bytes of RAM - plenty for learning machine code.
* Hexadecimal display - large and readable.
* Full hex keyboard - positive "click" type switches.
* Full manual - starts at soldering, ends with control circuits
** Loudspeaker output - simple audio experiments.
- Excellent for all ages from secondary school level upwards.

The EDUKIT has proven a great success providing an excellent introduction to silicon chip technology from the bottom upwards. Many schools and colleges are using the kit, and sales now extend world wide. The machine is not meant to form the basis of a large and expandable personal computer system. The EDUKIT teaches all those things which a purely BASIC running machine cannot. l.e. the basis of hardware electronic control, down-to-earth Bits and Bytes, Machine Code etc. - and all this at a really throw away price. The manual is written by Dr. A. A. Berk to impart educational understanding from the beginning.
1802 USER'S MANUAL (essential for full understanding of MPU used in EDUKIT) $\mathrm{E} 4.75+50 \mathrm{p}$ PP
FULL SOCKET SET for EDUKIT: $\mathbf{£ 2 . 9 9}+$ VAT (PP included).
EPROM PROGRAMMER P.C.B. £8.95 (fully inc.)
(For 2708's \& multi supply 2716's).
See P.E. Dec. 79 and Jan. ' 80 for full description of programmer, along with-interface to COMPUKIT.

ELECTROVILIUE OUV:REAS

Although originally organised to serve the U.K. market, thanks to our computer, we are able to meet the demands of a steadily growing number of customers overseas with speedy and reliable service We make it as simple as possible for you to order from our. EV Catalogue ' 81 which we shall be happy to send on request.

FOR A FREE COPY

send us your name and address without delay and we shall send you Catalogue ' 81 by surface mail by return. If you want Catalogue ' 81 sent by air, please include one U.S. dollar or equivalent with your instructions.

ELECTROVALUE

ELECTROVALUE LTD., 28 ST. JUdES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB. TEL: (S.T.D. 0784) 33603. TELEX: 264475

PROGRESSIVE RADIO 31, CHEAPSIDE, LIVEAPOOL L2 2D

 MIMATURE MAMS TPANSFORAERS. AUp 240VAC PRIMARY 6

$$
2 \text { vpes } 6 \text { or } 1 \text { zVDC } 75 \text { p each. }
$$

$$
15 \mathrm{~mA} \text { drain, operating votag }
$$

 resistance ranges to 1 meg \&5.50p.
SOLOER SUCKKER, High Suction/teflon nozzie, E4.05.
TRANSDUCERS, 40 KHz . REC/SENDER 33.50 poir.
 AMPHENOL COAX CONNECTORS. Pluga 47p, Sockets 42p. EIbow 90 AC 11.20 p . 13 p . Back to back sockets 65 p , Back to back plugs 65 p .
MGH IMPEDENCE HEAD
piece 22.75 .
SPECIAL OFFER STEREO MEADP HONES, \& ohms, odjustable, standard stereo plug only C2.95。
SPO
INTEACOM UNITS
INTEACOM UNITS (can be used as baby alarm) supplied with adpro. 60 cablo. cull outton. 2 was 18.25 pair, 3 way E7.25p. WIAELESS INTERCOM, 2 units both optrate on 240 VAC and mains connected AM trequency

 MARalcase only fl. 750 , Special clearance offer of tools, (11 Side Cutters. (2) Long nused Pliers, (3) Heaw duty pliers, mantetod handies, ail at C1.00 atch.
CRIMPING TOOL. for standard terminals also 6 gauge stripper and wire cutter, insulated handetes only $\mathrm{C2}, 30$.

250 V d.c. working POLYESTER CAPACITORS
Prices per pack of five $01 \mathrm{uF}, .022 \mathrm{uF}, .047 \mathrm{uF}$, 35p. .22uF-.47uF 60p. 1.OuF-2.2uF £1.60.

AERIAL AMPLIFIERS

 Aerial amplifiers can produce remarkable improvement on the picture and sound in fringe or difficult areas.B45 - for mono or colour this is tunable over complete UHF television band.
B11 - for stereo or standard VHF/FM radio.
B12 - for VHF television band 1 \& 3 All amplifiers are complote and ready to use.
Battery type PP3 or 8 v to 18 vdc , next to the set type fitting. Prices $\mathbf{£ 6 . 7 0}$ each.

SIGNAL INJECTORS with (pre-set) variable AF, which emits RF harmonics into the UHF band. Protected up to 300 volts dc. Complete with leads $\mathbf{£ 5 . 7 0}$ each.
All prices include VAT at 15%. P\&P per order 30p. SA.E. for leaflets. Access cards.
ELECTRONIC MAILORDER LTD, 62 Bridge Street, Ramsbottom,
Via Bury, Lancs. BL0 9AGT. Tel. Ramsbottom 3036.

and 'goodbye' mediocrity.

Our dual trace CS-1830, from Trio, is no ordinary 30 MHz oscilloscope.

Its domed mesh PDA rectangular c.r.t., with its internal graticule, gives outstanding brightness and clarity with only minimal parallax error.

It has a trigger delay function, which eases the measurement of complex waveforms; a $2 \mathrm{mV} / \mathrm{div}$. vertical sensitivity, to help measure ultra-weak signals; and a bandwidth of d.c. to 30 MHz . And much, much more.

In short, the Trio CS-1830 is the means of measuring high frequency, pulsed, video, audio or digital signals. There are simply none more precise; and none more practical.

And 'hi!' to the rest of the Trio range.

- CS-1577A: dual-trace; d.c. to 35 MHz - CS-1566A: dual-trace; d.c. to 20 MHz - CS-1560A11: dual-trace; d.c. to $15 \mathrm{MHz} \bullet$ CS-1352: dual-trace; d.c. to 15 MHz portable - CS-1562A: dualtrace; d.c. to $10 \mathrm{MHz} \bullet$ CS-1575: dualtrace; d.c. to 5 MHz - CS-1559A: single-trace; d.c. to $10 \mathrm{MHz} \bullet$ and now, MS-1650: dual-trace; d.c. to 10 MHz ; digital storage.

	Freepost E Birmingham B19 1BR	FREEPOST ON OROERS - vat inclusive prices - ADD 30p P\& P	$\begin{aligned} & \text { - ACCESS } \\ & \text { VISA } \\ & \text { CASH } \\ & \text { CHEQUE } \end{aligned}$
	021.233.240	24 HR PHONE ANS	

GMT ELECTRONICS, P.O. BOX 290, HAMPTON STREET,
BIRMINGHAM B19 3JR

NEED ENCLOSING?

Now, CSC are really in the hardware business, with a series of plastic cases ideally suited to applications ranging from hand-held probes to hi-fi equipment. CSC cases are moulded in robust plastic and come with all the necessary screws, covers and, where appropriate, battery compartments, connectors and transparent panels for displays. And CSC can provide customer-specified variations for large-quantity orders. Fill in the coupon for more details.
CSC (UK) Ltd, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Telephone: (0799) 21682. Telex: 817477.

A
BRING YOU THE NEW
TESTER 20
$20 k \Omega / \mathrm{N}$ a.c. \& d.c.
THE
PROFESSIONAL SOLUTION TO
GENERAL
MEASUREMENT PROBLEMS
$£ 43.06$
Inc. VAT and complete with carrying case, leads and instructions.

The best instrument for the workshop. school. roolbox. TV shop and anywhere accurate information is needed quickly and simply.
Accuracy: d.c. ranges 2%. a.c. $\& \Omega 3 \%$.
40 ranges: d.c. $\mathrm{V} 100 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 10.0 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. d.c. $1.50 \mu \mathrm{~A}$ $100 \mu \mathrm{~A} .300 \mu \mathrm{~A}, 1.0 \mathrm{~mA}, 3.0 \mathrm{~mA}, 100 \mathrm{~mA}, 30 \mathrm{~mA} .100 \mathrm{~mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$. a.c.V $10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. a.c. $1.3 .0 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA} .1 .0 \mathrm{~A}, 10 \mathrm{~A}$. $\Omega 0-5.0 \mathrm{k} \Omega .50 \mathrm{k} \Omega .500 \mathrm{k} \Omega, 5.0 \mathrm{M} \Omega, 50 \mathrm{~m} \Omega$. db from -10 to +61 in 5 ranges.

For details of this and the many other exciting instruments in the Alcon range, Including multmeters, component measuring, automotive and electronic instruments please write or telephone:

- FREE INTERFACE CABLE

 WORTH
*RS-232, 20 mA , IEEE 488 and Centronics I/O * 15 Baud rates to 9,600 * 100 Chrs. per second Bidirectional * 6 print densities $60,72,80,96$, 120 or 132 Chr/line *Seff test switch * 96 Chrs. ASC II Standard * Auxilliary User Defined Ch. set "Tractor and fast paper feed/graphics " $2 k$ Buffer "Accepts $81 / 2^{\prime \prime}$ max. paper pressure feed and $91 / 2 "$ max. paper tractor feed.
with up to 32k RAM expansion

- Plugs straight into 8k Compukit requires no hardware mods. (5v.5A required for 610) 610 Expansion (8k) ONLY £159 + VAT Disc Drive with DOS ONLY $\mathbf{f} 285$ + VAT

VERBATIM 5% " DISCS $£ 1.85$ each (min. 10) + VAT STATIC RAM $21141-12 \mathrm{E3}$ each + VAT $13+\varepsilon 2.50$ each + VAT

exatron Stringy floppy

COMBINES ECONOMY OF CASSETTE WITH SPEED \& RELIABILITY OF DISC

16k loads in approx. 24 secs. - Wafers to 75 ft (48k approx.)

Stringy Floppy with 10 Wafers (Tapes) BUS EX. 2 for 1. Machine Lang. Monitor

Ohio Superboard II \& Challenger IP with faee ram - the no fuss start to Micro's. *Ready Built " $8 k$ Microsoft in ROM, 6 digit floating
 point basic plus full features. 4k RAM - expandable to $32 k$

SUPERBOARD II (24×24 format) $£ 159$ + VAT SUPERBOARD II (48×32 format) $£ 199+$ VAT POWER SUPPLY 5v.3A. $£ 27+$ VAT CASE $£ 29+$ VAT CHALLENGER $1 P(24 \times 24$ format $) £ 219+$ VAT CHALLENGER $1 P(48 \times 32$ format $) \mathbf{£} 259+$ VAT (Superboard is used in Challenger)

Please add V.A.T. at 15%. Carriage exira, will advise at time of order. Official orders welcome 61 NEW MARKET SQUARE, BASINGSTOKE, HAMPSHIRE. RG21 1HWF Telephone: Basingstoke (0256) 56468 and 56417

READ ALL ABOUT IT - all the latest on home entertainment equipment and ideas in . . .

HI FI YEARBOOK AND HOME ENTERTAINMENT 1981

Published again in November, this new 1981 edition in larger magazine size means more comprehensive coverage of the whole range of home entertainment equipment, from aerials to headphones, from microphones to video recorders and from radios to electronic organs. Backed by authoritative articles on developments in the world of Hi Fi , plus details of stockists, Hi Fi Yearbook and Home Entertainment 1981 is essential reading for enthusiasts and buffs. Available from leading newsagents and bookshops from 1st November 1980. Price $£ 3.00$.

If you have difficulty in obtaining your copy order direct from the publishers @ $£ 3.50$ inclusive.

Generai Sales Manager, Room 205, Quadrant House, The Quadrant, Sulton, Surrey SM2 5As

ORDER FORM

To: General Sales Manager, Room 205, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

Please send mecopy/copies of the Hi Fi Yearbook and Home Entertainment 1981 @ £3.50 including postage and packing. Cheque/postal order should be made payable to IPC Business Press Ltd.

Registered in England No. 677128.

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That vour letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

FLAT CABLE. Laminated, various sizes available. S.A.E. for list. Steve King, 61. Coldean Lane, Brighton, Sussex.

BOURNEMOUTH/POOLE, electronic components for the hobbyist. and friendly service. Why not pay us a visit. H \& H Telectrics Lid., 353 A shley Road. Parkstone. 742643.

YOUR OWN P.C.B's \& FRONT PANELS
EASILYMADE, NO COMPLICATED PROCESSES Full details S.A.E.
Orafting packs: pcb £1.80; panel £2.25. Processing packs: pcb $\left(3^{\prime \prime} \times 4^{\prime \prime}\right)$ モ3.72, panel $\left(5^{\prime \prime} \times 6^{\prime \prime}\right) £ 3.48$. Drills, etchant, pcb board and all materials available.
WE ALSO SUPPLY R.S. QUALITY COMPONENTS LYNWOOD ELECTRONICS 20. Stourcliffe Avenue, Bournemouth, BH6 3PT.

TUNBRIDGE WELLS COMPONENTS, Ballards, 108 Camden Road. Tunbridge Wells. Phone 31803. No Lists. Enquiries S.A.E.

SMALL ADS
The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $\mathbf{6 8 . 0 0}$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Lid". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

CLEARANCE PARCELS: Transistors, Resistors, Boards, Hardware, 101 bs only $\mathbf{E 5 . 8 0 1} 1,000$ Resistors $\mathbf{\varepsilon 4 . 2 5 , 5 0 0}$ Capacitors 83.75 . BC108, BC171, BC 204, BC230, 2N5061. CV7497 Transistors 10 70p, 100 £5.80. 2N3055, 10 for $£ 3.50$. S.A.E. Lists: W.V.E. (2), 15 High Street, Lydney, Gloucestershire.
BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 3 years. Forresters (National Radio Supplies) Late Holdenhurst Rd. Now at 36, Ashley Rd., Boscombe. Tel. 302204 Closed Weds.
100 ASSOATED COMPONENTS 115 p. 100 Assorted Resistors 60p. 100 Assorted capacitors 150p. 50 reed switches 200p. 10 mains neons 50 p. 10 Miero switches 150 p. Add 25 p P\&P. Durrants. 9 St. Mary's Street, Shrewsbury. Salop.

Electronic Components at very Low Prices - 32.768 KHz Watch Crystal C 1.38 each - 25 KHz Ultrasonic Microphones: Transmitter/Receiver E2. 2.56 per pair
$-35 \times 25 \times 8 \mathrm{~mm}$ Microphone Insert
Spec. Sensitivity - 58 db at I KHz: Response $50-7 \mathrm{Khz}$; Capacity
1.400 pF F 60.58 s ench

- 12V D.C. Coil Miniature Single Pole C/O Relay £1.15 each.

Minimum order value is $\mathbf{£ 5}$
Post and Packing is 30p per order.
Send cheques or Postal order to:
IMPECTRON LTD.,
Foundry Lane, Horsham,
W. Sussex RHI3 5PX.

TURN YOUR SURPLUS Capaciors, transistors. etc., into cash. Conace COLES-HARDING CO.. 103 South Brink. Wisbech, Cambs. 0945-4188. Immediate settement.
MIXED. 100 transistors $£ 3.50$. 25 I.Cs $£ 1.50 .100$ Diodes £1. Post paid. Early radios. Valves. Interesting lists 15 p . Sole Electronics. P.E. 37, Stanley Street. Ormskirk, Lancs. L39 2DH.

SERVICE SHEETS

SERVICE SheETS from 50 p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

G.T. TECHN. INFO. SERVICE

76 Church St., Larkhall, Lanarks ML9 1HE Any single service sheer $f l+$ large $S A E$ 1,000 s of sheets/manuals always in stock. Sole suppliers of all T.V. Repair Systems
Giant Diagram, Manual for Washing Machines Single tubs/twin tubs/auto - only $£ 13.50$ Repair Data any named T.V. $\mathbf{\Sigma 5 . 5 0}$ (with circuits, etc. £7.00). SAE for newsleter, bargain offers etc. Phone 0698883334 after 4pm.
bell's television services for Service Sheets on Radio, Tv, etc $\mathbf{f 1 . 0 0}$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel: (0423) 55885.

SOFTWARE

ukiol shorthano basic. Machine Code Program loaded from Basic enables a whole basic word to be typed one key (after command key). State old or new monitor and 8 K or 4 K memory size. Cassette and instructions for $£ 5+30$ p P\&P from P. P. Patay. 3 West View. Tandridge. Oxted, Surrey.
HP4IC.PRDGRAMMABLE CALCULATOR plus two memory modules and software. Five months old, the lot for $£ 220$. O.V.N.O. Telephone: Fareham 280642.

COMPUKIT SOFTWARE, Word Processor, Calendar Diary, Editor Mailing List. Line Renumber, 10000 Baud Cassette Routine etc. S.A.E. for details N. V. Davies, It Holloway, Haverfordwest. Dyfed.
INVASION. Exciting M/C game for UK 101 with free pools predictor. Both use under $\mathbf{4 K}$. Send $£ 2.50$ for tape to Mr. A. Pettitt. 2. Caburn View, Firle, Lewes, Sussex.

OHIO SCIENTIFIC MEMORY test program from 2 K to 48 K in IK blocks for basic in ROM versions. £ 1 for Isiting. SAE to K. Yeap. 71 North Grove. London NIS.

THE ZX80 MAGIC BOOK £4.75

Edition 2, includes 15 plus programs, Music, Othello, Animals and others. Programming tips, Using USR. Hardware notes.

Timedata Ltd.,
 57, Swallowdale,
 Basildon,
 Essex.

2X80 games-maze $(1 \text { \& } 11)_{\text {. Batteships, Pontoon, Slot }}$ machine. Maths quiz, Guess the Number. All on one cassette. Send $\mathbf{5 6} 50$ to P. Bramwell, 87, Anderson Crescent, Great Barr, Birmingham B43 7ST.
UK101 VIDED Hardware modification doubles video display giving 32 lines by 48 characters. BASIC writes to top 16 lines leaving bottom 16 lines for graphics etc. For detailed step by step instructions send $£ 5$ cheque or postal order to:- D. Butler, 82 Banks Lane, Riddlesden, Keighley, W. Yorks.

EDUCATIONAL

CAREERS in Marine Electronics. Courses commencing September and January. Further details, the Nautical College, Fleetwood FY7 8JZ. Tel. 0391779123.

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
 Depl. 272B Intertext Houre, London SW8 4US

Tel. $01-6229911$ (all hours)
State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a-higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics. Computers: also self-build radio kits. Fuli details from:

ICS SCHOOL OF ELECTRONICS
Deph. 2728 Imerext House, London SW8 4UJ
Tei. 01-622 9911 (all hours)
State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Oiher courses for radio and audio servicing. Full derails from:

> ICS SCHOOL OF ELECTRONICS
> Dept. 272B Intertext House, London SW8 4UJ.
> Tel. 01-6229911 (all hours)
> State if under 18

SERVICE ENGINEERS Take alook at Kodak

This is your opportunity to take a look at Kodak and find out about installing, maintaining and repairing an exciting range of equipment used in the photographic industry, including microfilmers, processors and printers, on customers' premises throughout the U.K. We are expecting a high standard from you. You will need a sound knowledge of practical electronics coupled with mechanical skills, preferably having had previous servicing experience. In return we can offer the rewards and promotion prospects expected when you join a large international company and potential earnings in the range $£ 7,000$ $£ 8,000$ p.a. (under review) including some overtime,
 attractive employee benefits.
We are looking for men or women aged 21 and over to join our teams of service engineers strategically placed around the U.K. to meet the service needs of our customers.

Full training on our equipment will be provided and on completion of training a Company vehicle is provided where it is needed to cover the territory.

Please write to Mr. C. Long, Personnel Department, A1t, Kodak Limited, P.O. Box 66, Station Road, Hemel Hempstead, Herts. HP1 1JU, giving details of education, experience and personal information.

Assistant Film Recordists

MANCHESTER

To work in sound transfer and dubbing areas operating sound recording and reproduction equipment for a wide range of programmes．Some mobile film recording work involved．Candidates must have professional experience and practical knowledge in this field，current driving licence and normal hearing．
Salary：£5，425－£6，725 p．a．（starting salary in accordance with qualifications and experience）．
Candidates lacking experience may be considered for appointment as TRAINEES at a starting salary of $£ 3,865$ p．a．
Relocation expenses considered．
Contact us immediately for application form（quote ref．2390／PE and enclose s．a．e．）：BBC
Appointments，London W1A 1AA．Tel．01－580 4468 Ext． 4619.

B⿴囗大 tv

Earn £20－£100 p．w． in your spare time

Flip－Calleing the revolutionary net Flip－Caller telephone to your friends button dialling and controlled push－ Sells itself Genamery re－call． For detalls write to Dept．IPI IDO SUPERPHDEE

BOOKS AND PUBLICATIONS

any requested service sheet El ＋Large S．A．E．Full repair data any named TV $£ 5.50$（with circuits，layouts etc． f7）．SAE brings newsletter，bargain offers，etc．AUSPEL， 76 Church St，Larkhall，Lanarks ML9 1HE

MICROPROCESSORS．Application and reference manuals 8 ， 16 Bit．MOT T1 and AMD advanced micro device．SAE list．Steve King，61，Coldean Lane，Brighton，Sussex．

FOR SALE

COMPUKIT UKIOI $8 K$ ．new monitor，built and cased， assembly tape etc．$£ 300$ o．n．o．Tel． 0280702750.

30 NOTE ORGAN PEDAL BOARO solid oak，fully sprung £45． Eastleigh 619295．

BACK ISSUES：P．E．Vol 9 （bound），Vols 10,11 （unbound）． P．W．Vols 46，47， 48 （bound）49，（unbound）．Television Vols 22，23，（bound） 24,25 ，（unbound）．Offers please． Poynter， 26 Hanbury Close，Chesterfield，Derbyshire．

ACORN Microcomputor with edge connector，extra programs and monitor commentary．ESO．Tcl． 0277 822691.

COMPUKIt AK ALIEN INVAOERS CASSETTE $£ 2.00$ ．Steven Hall， 14，Christchurch Lane，Lichfield，Staffs．

NEW BACK ISSUES of＇Practical Electronics＇available 90p each Post Free．Cheque or uncrossed p／o returned if not in stock－BELL＇S TELEVISION SERVICES， 190 Kings Road，Harrogate．N．Yorks．Tel：（0423） 55885.

MISCELLANEOUS

VIDEO MUSIC

The amazing Videograph，as featured recently in Electronic Today International，links your Hi－FI with any Colour TV to produce a Fantasia of hypnotic visual effects．The system displays stereo music as brillantly coloured wavelorms minded a squarewave signal generator is puilt－in permitting advanced demonstratoons of transient response etc．Truly the ultimate accessory for any Hi－Fi system
DYY KIT ONLY £33．95
Case \＆Controls $£ 15.95$
or READY BUILT $£ 69.95$
WILLIAM
Oower House，Billericay Herongate，Brentw
Essex CM13 35 D ． Telephone：Breniwood（02771 810244

OPIICAL FIBRES．Carry light．Tough，wire－like，excellent for communications，lighting，electrical isolation，etc．Introduc－ tory pack totals sixteen feet of four assorted types，plus il－ lustrated guide．Send £3．55．Quantum Jump Ltd．，53， Marlborough Road，Tuebrook，Liverpool．

Cabinet and Flightcase Fittings

Fretcloths，Coverings，Handles，Castors etc．，Jacks and Sockets，Cannons，Bulgins，Reverb Trays，Emilar Compres－ sion Drivers，AKG Mics，Celestion Speakers，ASS，Glassfibre Horns．
Send 30p Postal Order for illustrated calalogues to：－
ADAM HALL（P．E．SUPPLIES）
Unit G，Carton Court，Grainger Road

GUITAR／PA
MUSIC AMPLIFIERS
100 watt superb treble／bass overdrive． 12 months quarantee．Unbeatable at £49； 60 watt £42； 200 wat E68； 100 wati twin channel sep．treble／bass per channel
$\mathbf{E 6 2} ; 60$ watt $£ 52 ; 200$ watt $£ 78 ; 100$ watt four channel sep．treble／bass oer channel £75： 200 watt £98；slaves 100 watt $£ 34 ; 200$ watt $£ 56$ ；fuzz boxes，great sound t12．00； bass fuzz £12．90；overdriver fuzz with treble and bass boosters E22； 100 waft combo supert sound overdrive sturdy construction，castors，unbeatable $£ 98$ ；twin channel 12 in ． 100 watt 224 ； 60 watt $£ 16$ ；microphone Shure Unidyne B £25；3－Channel sound／ilght £26． Send cheque or P．O．to：
WILLIAMSON AMPLIFICATION
62 Thorncliffe Avenue，Dukinfield，Cheshire． Tel：061－308 2064

SUPERB INSTRUMENT CASES BY BAZELLI，manufactured from P．V．C．Faced steel．Hundreds of people and industrial users are choosing the cases they require from our vast range Competitive prices start at a Low $£ 1.05$ ．Chassis punching facibties at very competitive prices， 400 models to choose from．Suppliers only to Industry \＆The Trade．BAZELLI （Dept．No．23），St．Wilfrids，Foundry Lane，Halton，Lan caster，LA 1 6LT．

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME

FULL RANGE AVAILABLE．SAE FOR LISTS．£1．45 for Booklet＂Nickel Cadmium Power＂plus Catalogue．Write or
call：Sandwell Plant Lid． 2 Unlon Drive，BOLOMERE call：Sandwell Plant Lid． 2 MINTON Drive， 1

TEMPERATURE GAUEES． $0-120^{\circ} \mathrm{C}$ Black dial．Chrome bezel． Remote sensor on $38^{\prime \prime}$ capilliary．Snap fitting in 55 mm hole．£1．85（incl．P\＆P）L．E．M．Services，239，Rugby Road， Leamington Spa，Warwickshire．0926－30622．

ELECTRONIC CONSTRUCTION KITS SUPER CHIP．I． Using the super radio chip Ferrantl ZN414．This powerful little radio is ideal for the inexperienced constructor as it is so easy to butld and operate．Makes a great pocket radio and works for months on a sim－ ple 1.5 v battery．Complete with earpiece，ferrite rod aerial．tuning capacitor，volume control，ZN\＆14 Integrated circuit and one transistor for really super reception．Complete with ready dritled case size $105 \mathrm{~mm} x 70 \mathrm{~mm} \times 40 \mathrm{~mm}$ ．All necessary parts to build the kit in－ cluding baseboard and pictorial plans．Price E6．95，p\＆p 56p． SUPER CHIP 2. The same super radio as above，but has an I．C．ZN414 plus two transistors added plus a loudspeaker to make a nice little pocket loudspeaker receiver．Also very easy to construct from the plans and parts supplied．Complete kit of parts including plans and ready drilled case $10 \mathrm{~mm} \times 75 \mathrm{~mm} \times 33 \mathrm{~mm}$ ．Price $\mathbf{E 8} 25$ ，p8p 65 p ． Super AM／FM MW／Aircraft Radlo．Ready buitt pockel recelver．Fully zested and operational．Prica C10．25，pkip 60p． Cheques and P．O．＇s made payable to GLOBAL ELECTRONIC ENTERPRISES St．John＇s Works，St．John＇s，Bedford，Beds． Free catalogue sent with order or $45 p$ on request．

MK14 CORNER．Interface Board，includes flag driven mains relays，LED Indicators for all serial I／O，A／D and single step chips，and prototype area；also suitable for other Microcomputors；PCB and circuit £3．95．Replace calculator display with $\frac{1}{*}$＂FND 500＇s；PCB，filter instruc tions $£ 1.95$ Ready Built replacement Keyboard $£ 11$ ．Useul notes on MK 14 75．Rayner，＇Kismet＇High Street，Coln brook，Bucks．

RYDER ORGAN SYSTEM REVERBERATION
A new design for organs gives smooth，natural sound．Demo r－to－r． or cassette，on loan，deposit $£ 1.50$ ， refund £ 1.00 （UK only）．

HIYKON LTD．（P）． Woodside Croft，Ladybridge Lane， Bolton BL1 5ED

THE SCIENTIFIC WIRE COMPANY PO Box 30，London E． 4				
ENAMELLED COPPER WIRE				
SWG	1 lb	8 za	402	202
8 to 29	2.76	1：50	0.80	0.60
30 to 34	3.20	1.80	0.90	0.70
39	3.40	2.00	1.10	0.80
40 to 43	4.75	2.60	2.00	1.42
47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 30	6.50	3.75	2.20	
TINNED COPPER WIRE				
14 to 30	3.85	2.36	1.34	0.90
Prices include P\＆P，VAT and wire Data． SAE for list．Dealer enquiries weicome． Reg office 22 Coningsby Gardens．				

AS SUPPLIED: TO POST OFFCE 8.GOVT DEPSS

Newest, neatest Newest, neatest

 for storing small parts and components: resistors, capacitors diodes, transistors. etc. Rigld plastic units interlock together in vertical and horizontal combinations. interlock together in verical and label slots. 10 and 20 have space dividers, Bulld up any size cabinet for wall, bench or table top.SINGLE UNITS (1D) $\left(5 i n+2 \frac{1}{4} n+2 \frac{1}{2} \mathrm{n}\right)$ E4.90 DOZEN DOUBLE UNITS (2D) ($5 \mathrm{in}+4 \frac{1}{2} \mathrm{in}+2$ ifin $\mathbf{~} 7.50$ DOZEN
TREBLE (3D) £7.50 for 8
DOUBLE TREBLE 2 drawers, in one outer case (6D2). e 10.90 for 8
Extra large size (6D1) $£ 8.50$ for 8 .
PLUS QUALITY DISCOUNTS
Orders over E60, less 5\%. Packing/Postage/Carriage: Add $£ 1.30$ to all orders under £ 10 . Orders $£ 10$ and over, please dd 10% carriage

QUOTATIONS FOR LARGER QUANTITIES
Please add $\mathbf{1 5 \%}$ V.A.T. to total remittance.
All prices correct at time of going to press

f99 SYNTHESISER DIY. Professional results easy-build. SAE. Dewtron, 254 Ringwood Road, Ferndown, Dorset, BH22 9AR.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass, non-magnetic tweezers, watch screwdriver. case knife and screwback case opener, also one doz. assort push pieces, full instructions and battery identification chart. We then supply replacement batteries-you fit them. Begin now. Send f 9.00 for complete kit and get into a fast growlng business. Prompt despatch

BOLSTER INSTRUMENTCO.

(PE19)

11 Percy Avenue, Ashford, Middx. TW15 2PB.
AMAZING ELECTRONIC PLANS: Lasers-burning, cutting, rifle. light shows. Ultrasonic Force Fields - weaponry, satellite T.V., giant tesla, split the atom; lots more. Catalogue 75p. Plan Centre, St John Street, Bridgnorth, Shropshire.

TIME RIGHT?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, self setting at switch-on. 8 digits show Date, Hours, Minutes and Seconds, larger dlglt Hours and Minutes for easy QUICK-GLANCE time, auto GM T/BST and loap year, also parallel BCD output and audio to record and
show time on playback, receives Rugby 60 KHz atomic show time on playback, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range. now ABSOLUTE ACCURACY, £54.80
V.L.F. 7 EXPLORE $10-150 \mathrm{KHz}$. Receiver $£ 13.70$.

KHZ RUGBY RECEIVER, as In MSF Clock, serial data and audio outputs, E15.70.
Each fun-fo-build kit includes all parts, printed circuit, case, postage efc, money back assurance so GET one NOW.

CAMBRIDGE KITS

45 (FM) Old School Lane, Milion, Cambridge.
CLEARING LABORATORY: scopes, generators, P.S.U.'s, bridges, analysers, meters, recorders, etc. 0403-76236.

UK101
 ADD-ON COLOUR SYSTEM

NASCOM 182

(LAN

DAZZLING COLOUR GRAPHICS FOR UKIO1 \& NASCOM

- Professional bit-addressable "pixel' system
- 3072 colour cell definition
- FREE SOFTWARE P + 8 background
- AREE SOFTWARE: Plot, Line, Circle (Basic + 280)
- Modulator Included for use with
kr : only $£ 45$
Also avallable separately
COLOUR MODULATOR
- RG B inpuls, PALUHF output
- Unllmited colour combinations
- TL etc interface details supplied
- 1000 's already in use.

KIT: only $£ 12$ Built \& Tested: only $£ 18$

- please add VAT at 15% to all prices
- Barclay/Access orders accepted by telephone

WILLIAN $\begin{aligned} & \text { Dower House, Billericay Road } \\ & \text { Herongate, Breniwood }\end{aligned}$
STLIART
SYSTEMS Lto Telephone: Breniwood 102771810244

MAKE YOUR OWN PRINTED CIRCUITS

 Etch Resist Transfers - Starter pack 15 sheets Etch Resistlines, pads, I.C. pads) $£ 2.00$. Large range of single lines, pads, I.C. pads) $£ 2.00$. Large range of singl Master Postive Transperencies f
Master Positive Transparencies from P.C. layouts In magazines by simple photographic process. Full Instructions supplied. 2 sheets $(20 \times 25 \mathrm{~cm})$ negative paper and 2 sheets (18 $\times 24 \mathrm{~cm}$) positive film £1.80. Drafting film $(30 \times 21 \mathrm{~cm}) \mathbf{2 2} \mathrm{p}$ per 17 p s

Pr lists and information. P\&P 30p/order
P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE.
burglar alarm eguipment. Latest Discount Catalogue Out now! Phone C.W.A.S. Alarm 0274682674.
PSYCHOTRONIC GENERATORS, gravity lasers. electrokinesis. electrophotography, skinvision. SAE $4 \times 9^{\prime \prime}$ Paralab, Downton. Wilts.

PRACTICAL ELECTRONICS P.C.B.'s
 \section*{Apr. 80 - Wire rain Controller EP32O £2.93}

May 80 Two Wire Train Controller EP $326 £ 3.02$
EP328/30 £1.20 pair
Dynamic Semiconductor Tester EG311/2 £1.83 pair
Mastertune EP343 $£ 3.80$ (Not plated through)
Greenhouse Temp. Control EP358 $£ 1.90$
Greenhouse Temp. Control EP358 £1.90
Jul. 80 Tape Slide Synch EG353 £1.28
Sept. 80 DISCO deck EP365 $\$ 3.26$
Sept. 80 DISCO deck EP365 £3.26
Sound Gen. EC14 £2.53
Oct. 80 Disco deck AE202 $£ 3.11$
Disco deck AE202 £3.11
Cine frame Counter EG40898p
For full hist and current pcb's please send SAE. Pcb's also produced to customers own masters. Trabe enquiries wetcomod. Please write lot quolt. CWO Please Postege. - Please add 30 p postage and packing io complete order, Europe 65 p.

14 Downham Road, Ramsden Heath
 Billericay, Essex CM1 11 PU

Telephone 0268-710722
CREED TELEPRINTED. $75 R$ Mk 2 £55. ICL Keyboard 76 keys $£ 25$. Solaftron scope CD78. 2 beam E.H.T. fault. $£ 30$ Variacs, all sizes. 01-669 4528.
SEEN MY CAT? 5000 Odds and ends. Mechanical. Electrical. Cat. free. Whiston Dept. PRE. New Mills, Stockport.
ULTRASONIC TRANSOUCERS. $£ 2.85$ per pair +25 p P\&P. Dataplus Developments, 81 Cholmeley Road, Reading. Berks.
national Personal Computor Users Association, 11 Spratling Street, Manston, Ramsgate. Kent (S.A.E. Details).

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Electronics for insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

TRANSEORMERS IN A RANGE OP

75 TYPES

We use advanced winding technology to make our toroidal transformers. They have only half the weight and height of their laminated equivalents and are appreciably more efficient. Our toroidals cost virtually the same as the older types which they are rapidly replacing. Induced hum is reduced by a factor of ten. Supplied with rigid mounting kit with centre bolt, steel and neoprene washers.

30vs 1×010 IX011 1×012 1×012 1×013 1×013 1×014 1×015 1×016 1×016 1×017

 70 mm dia. $\times 30 \mathrm{~mm}$Weight 0.45 Kg \& 11 $(+£ 1.00$ p.p. +0.86 VAT) SYPE
REONDARY SECONDARY
RMS

$$
1 .+1.10 p . \mathrm{p} .+0.94 \mathrm{VAT})
$$

80 mm dia. $\times 35 \mathrm{~mm}$ Weight 0.9 Kg
$\{5.19$

2×010 2×011 2×012 2×013 2×014 2×015 2×016 2×017 2×028 2×029 2×030

$6+6$
$9+9$
$12+12$
$15+15$
$18+18$
$22+22$
$25+25$
$30+30$
110
220
240

90 mm dia. $\times 30 \mathrm{~mm}$
Weight 1 Kg
25.76

	c	(+21.30p.p. + £1.20 VAT)
4X011	$9+9$	6.66
4X012	$12+12$	5.00
4X013	$15+15$	4.00
4X014	$18+18$	3.33
4X015	$22+22$	2.72
4X016	$25+25$	2.40
4X017	$30+30$	2.00
4X028	110	1.09
4X029	220	0.54
4X030	240	

CHOICE OF 3 PRIMARY INPUTS

I.L.P. Toroidal Transformers are available in choice of $110 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}$, coded as follows: (Secondaries can be connected in series or parallel)
For 110 V Primary insert 0 in place of " X " in rype number.
For 220 V Primary (Europe) insert 1 in place of " X " in type number. For 240 V Primary (U.K.) insert 2 in place of " X " in type number.

Example - 120VA $240 \mathrm{~V} 15+15 \mathrm{~V} .4 \mathrm{~A}=42013$.

* CUSTOMER DESIGN ENQUIRIES INVITED.

QUANTITY PRICE LIST AVAILABLE.
FREEPOST facility.(U.K. only).
Simply address envelope to FREEPOST to address below. NO STAMP REQUIRED.
TO ORDER Enclose cheque/Postal Order/Money Order payable to IL. P Electronics Lld or quote your ACCESS or BARCLA YCARD
account No. To pay C.O.D. add 1 extra to TOTAL value of order account No. To pay C.O.D. add extra to available from ELECTROVALUE and MARSHALLS.

TRANSFORMERS

WORKSHOP TWEEZERS - THE FIRST YL

One of the most active of the early amateur YL operators was Barbara Dunn 6YL (later G6YL). who was involved in monitoring the famous Southern Cross on its transatlantic flight 50 years ago. Ron Ham recounts 6 YL's achievements

- PW ‘TWYNHAM’ ANALOGUE DIGITAL MULTIMETER

Combining two instruments seems an attractive idea - until you want to measure, say, voltage and frequency together. The PW 'Twynham' is a mainspowered multimeter which gives you simultaneous analogue and digital readouts for both accuracy and trendwatching. Full instructions are given for making this useful device.

PRACTICAL WIRELESS

December issue OUT NOW 65p

INDEX TO ADVERTISERS

VIDEOTEX

- the new television -
telephone information services
by R. Woolfe
ELECTRONICTEST EQUIPMENT
F F.G. Ray
ELECTRONIC MUSIC SYNTHESIZERS
by D.T. Horn price: $\mathbf{£ 4 . 0 0}$
POWER SUPPLY PROJECTS
by R. A. Penfold
price: $\mathbf{£ 2 . 0 0}$
99 PRACTICAL ELECTRONIC
projects
by H. Friedman
price: $£ \mathbf{£} .60$
1001 THINGS TO DO WITH YOUR
PERSONAL COMPUTER
by M. Sawusch price: $£ 5.75$
LC CIRCUITS
by R. P. Turner price: $£ 4.15$
DESIGN OF TRANSISTOR CIRCUITS WITH EXPERIMENTS
by Dr. K. A. Pullen, Jr price: $£ 9.40$
THE MASTERIC COOKBOOK
by C. L. Hallmark
price: $\mathbf{£ 7 . 0 0}$
RADIO \& T.V. SERVICING 1979/80 MODELS
by R. N. Wainwright price: $£ 15.60$
ALL PRICES INCLUDE POSTAGE
THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET LONDON W2 1 NP
Phone 01-4029176
Closed Saturday 1 p.m.

When replying
to
Advertisements

R.C.S. LOUDSPEAKER BARGAINS

 E2.60. 10in. $83 \cdot 50.12 \mathrm{in}$ \& $4 \cdot 50$

 £3. 10 in . $£ 3.50$. 12 in . $\{4.50 .10 \times 6 \mathrm{in}$. $£ 3.50$. | R.C.S. LOW VOLTAGESTABILISED |
| :--- |
| POW PACK KITS 90.100 mA |

Poss $50 € 2.95$
All parts and instructions with Zener diode printed circuit. rectifiers and
double wound mains tran sformer input $260-240$ a.c. Output voltages double wound mains transformer input 200.240 a.c. Output voltages
available 6 or 7.5 or 9 or 12 V d.c. up to 100 mA . Siale voluage. available 6 or 7.5 or 9 or 12 V d.c. up to 100 mA . Stale voliage
Mains power paek 9 volt 400 ma stabillsed, with overlond
cuthut. IIze $3 \times 3+\times 2+$ price A.SU post 5 Up.
THE "INSTANT" BULK TAPE ERASER
Suitable for cassettes, and all sizes of tape reels
$\begin{array}{ll}\text { A.C. mains } 200 / 240 \mathrm{~V} \text {. } \\ \text { Leanet S.A.E. } \\ \text { E7.50 } & \text { Post } \\ 50 \mathrm{p}\end{array}$
HEAD DEMAGNETISER PRORE E5.00

A.C. ELECTRIC MOTORS POST 50p. 2 Pole. $240 \mathrm{~V}, 2 \mathrm{Amp}$. Spindle - $1.43 \times$ 0.212 in . $£ 1.75$. 2 pole 240 V . 15 Amp . Double spindle - 1.75×0.16 in. Each 51.50 . 2 Pole. 120 V . 5 A mp. Spindle 0.75×0.2 in. Two in series $=240 \mathrm{~V} .75 \mathrm{p}$ 240 V .3 Amp . High Speed and Powerful. Spindle - $0.5 \times 0.25 \mathrm{in} .52 .95$

BLANK ALUMINIUM CHASSIS. 18 s.w.e. 2 tin. sides. 6×4 in. $95 p$: $8 \times 6 \mathrm{in}.\{1.40: 10 \times 7 \mathrm{in} .\{1.55 ; 14 \times 9 \mathrm{in}$. $£ 1.90: 16 \times 6 \mathrm{in} . £ 1.85 ; 12 \mathrm{x}$ $3 \mathrm{in} . £ 1 \cdot 20: 16 \times 10 \mathrm{in}, £ 2 \cdot 20: 12 \times \sin , £ 1.70$.
ALUMINIUM PANELS. 18 s.w.g. $6 \times 4 \sin .24 \mathrm{p} ; 8 \times 6 \mathrm{in} .38 \mathrm{p}$;
$10 \times 7 \mathrm{in} .54 \mathrm{p}: 12 \times 5 \sin .44 \mathrm{p}: 12 \times 8 \mathrm{in} .70 \mathrm{p}: 16 \times 6 \mathrm{in}$. 70 p ; $14 \times 9 \mathrm{in}$.

ALUMINIMUM ANGLE BRACKETS $6 \times \frac{1}{c} \times 1 \mathrm{in}$. $25 p$.
ALUMINIUM BOXES. MANY SIZESIN STOCK.

HIGH VOLTAGE ELECTROLYTICS				$32+32 / 350 \mathrm{~V}$	- 50p
$18 / 800 \mathrm{~V}$	11.20	S0/500V	14.20	$50+50 / 500 \mathrm{~V}$	11.80
$16 / 500 \mathrm{~V}$...73p	.220/450V	-.. 95	$40+80 / 500 \mathrm{~V}$	82

DE LUXE BSR HI-FI AUTOCHANGER

Rapid Mall Order 50p minimum postage. Callers Welcome. Accese- Visa. Liste 20p. Closed Wod.
Radio Components Specialists
337, WHITEHORSE ROAD
CROYDON, SURREY,U.K. TEL: 0I-684 1665.

SERVICE TRADING CO

FT3 NEON FLASH TUBE

High intensity mult turn high voltage. noon glow
discherge liash fube. Design for ignition timing evt. E1.50. P. \& P. 25 p (£2.01
P. 50 p (E4.03 inc. VAT \& P).

WHY PAY MORE?

 volts 10 - 50 . 250 . 500 . 1000 MF15A Ma a.c. od.c. 10. 133 by 93 by 46 mm including test leads. Price METERS (New) - 90 mm DIAMETER A.C. Amp., Type 62T2, 0-1A, 0-5A, 10A. 0-20A, 50 A
O-50A, Volt. 15 V .30 V
 HEAVY DUTY SOLENOID, mf. by tem operation. Approx. 20 lb. pull at
1.25 in. Ex-equip Tested. Price: $\mathbf{E} 5.50$ 2V. P. \& P. ($£ 7.19$ inc. VA
 12V. D.C. heavy duty Solenoid 4 Kp . pull. Easily removable from plate. Ali. chassis containing $4 \times 24 \mathrm{~V}$. D.C. Push Solenoids ($1 \frac{1}{2}$ ib.
approx.). 5 -fig. Counter. 6 min. photo cells. Sub-min. Microswitches etc. etc. Ex-equip. London Transport Printer. Price $£ 9.00+£ 1.00$ p. \& p. (total incl. VAT $£ 11.50$)
12V. D.C. Solenoid approx. 1 lb . pull. Price: $£ 1.40$ + p. \& P. 30 p.
(total incl. VAT $£ 1.96$). SOLENOIDS
WESTOOL SERIES D6 Model A3 24V. D.C. Price $\mathbf{£ 1 . 5 0 + 5 0 p}$ p. \& p. (Total incl. VAT £2.30)

WESTOOL SERIES D4 Model A. 24V. D.C. Price $£ 1.00+30 p$ AG/GT 24 V . D.C. 70 ohm Coil Solenoid. Push or Pull. Adjustable travel to $3 / 16$ in. Fitted with mounting brackets and spark sup-
pressor. Size: $100 \times 65 \times 25 \mathrm{~mm}$. Price: 3 for $£ 2.40+30$ p. P. \&

800 WATT DIMMER SWITCH

Easily fitted. Will control up to 800 W of alf lights
except fluorescent at mains voltage. Price: $£ 3.90+$

REED SWITCHES. Size $28 \mathrm{~mm} \times 4 \mathrm{~mm}$ dia. Price: 10 for E1.00

MICRO SWITCHES
Sub. Min. Honeywell Lever m / s type 3115 m 906 ft . These $V 3$ types.
Button type (Pye) 10 for $£ 3.00$ ($£ 3.45$ incl VAT)
Short Lever type 16 amp. rating (Grouzet) $\mathbf{£ 4 . 0 0}$
Short Lever type 16 amp . rating (Grouzet) $£ 4.00$
$(\$ 4.60$ incl VAT)
(Roller Type (Bonnella) 10 for $\mathbf{£ 3 . 5 0}$. ($\mathbf{£ 4 . 0 3} \mathbf{i n c l}$. VAT). N.M.S D.P. C/O lever $\mathrm{m} / \mathrm{switch}$ mfg. by Cherry Co. USA. Precious metal low resistance contacts. 10 for $£ 2.25$ P. \& P. 30p. Total inc. VAT
N.M.S.
$\mathbf{£ 2 . 9 3}(\mathrm{min} .10$).

SOLID STATE EHT UNIT

Input 230 V ac. Fully isolated output 10 mm spark. Approx.
15 kv . Built in 10 sec . Timer. Easily modified for $20 \mathrm{sec}, 30$ sec, to a continuous operatio
Designed for boiler ignition. Dozens of uses in the field of physics and electronics, eg. supplying neon or argon tubes
etc., EHT, starter or laser xenons csr lamps VAN de GRAFF generator, loss of vacuum detector, OUDINI coils etc
 530 grammes. Price $\mathbf{5 5} \cdot 00+75$ pence post \& packing.
Total inc. VAT E6.71.
N.M.S.

A.E.G. CONTACTOR

Trpe LS $6 / \mathrm{L} 11$. Coil $240 \mathrm{~V} 50^{\circ}$ Rs. Contacts -3 make: 600 V
2 Oamp. I break: $600 \mathrm{~V}: 20 \mathrm{amp}$. Price: $£ 5.50+50 \mathrm{p}$. \& P 20amp. I break: $600 \mathrm{~V}: 20 \mathrm{amp}$. Price: $£ 5 \cdot 50+50 \mathrm{p}$ P. \& P
(£6.90 inc. VAT \& P.).
N.M.S ARROW-HART MAINS CONTRACTOR, Cat. No.
 \& p. £ 1.00 (incl. VAT, total: $\mathbf{f 1 0 . 0 6) \text { . N.M.S }}$

SMITH BLOWER

Type FF8. 1706. Small, qulet, smooth running, 240 V . A.C. operation. Output aperture $45 \times 40 \mathrm{~cm}$. Overall size $135 \times 165 \mathrm{~cm}$.
Flange mounting. Price: $£ 4.25$. P. $\&$ P. 75 p . (Total: $£ 5.75 \mathrm{inc}$. P. \& VAT, N.M.S.
available SAE for details
AIRFLOW DEVELOPMENT LTD,
 motor
size
$222 \times 225 \times 195 \mathrm{~mm}$. Incl: Starter Capac. Price: $£ 16.00$ $\mathbf{£ 2 . 0 0}$ p. \& p. (Total Incl: VAT $\mathbf{£ 2 0 . 7 0)}$ N.M.S 24 volt. D.C. BLOWER UNIT
Precision 24 volt. D.C. 0.8 amp Blower that works well on 12 V 0.4 amp D.C. Producing 30 cu.f. min at normal air pressure.
f4.50 P. \& P. 75 (inc. VAT f6.04). N.M.S. INSULATION TESTERS NEW!
Test to I E E Spec Rugged metal conatruction suitable for bench or field work constant speed 500 megohms. E49.Post 80 p ($£ 57.27$ inc. VAT \& P.). $1.000 \mathrm{~V} \quad 1,000 \mathrm{M} \Omega$. $£ 55$. Post 80 p
 (884.17 inc. VAT \& P. SAE for leafle
IMFD 600 V Dubilier wire ended capactors ' N.M.S

VARIABLE VOLTAGE TRANSFORMERS
INPUT 230/240V a.c. 50/60 OUTPUT 0-260V

200 watt (1 amp inc. a.c. voltmeler $\mathbf{0 . 5} \mathbf{K V A} 4.50$

 $.1 \mathrm{KVA}\left(5 \frac{1}{2} \operatorname{amp}\right.$ (MAX)$2 \mathrm{KVA}(10 \mathrm{amp}$ MAX $)$
$3 \mathrm{KVA}(15 \mathrm{amp} \mathrm{MAX})$
$.3 \mathrm{KVA}(15 \mathrm{amp} \mathrm{MAX})$
10 KVA (50 amp MAX)
3-PHASE VARIA

TRANSFORMERS

Dual Input 200

3KVA 5 amp per phase max. \quad £106.43 Carriage, packing $\begin{array}{rlrl}\text { 6KVA } & \text { amp per phase max. } & £ 159.37 & \text { \& VAT extra. } \\ \text { 10KVA } 16 \text { amp per phase max } & £ 327.43 & \end{array}$

LT TRANSFORMERS

$13-0-13 \mathrm{~V}$ at 1 amp £2.50 P. 8 P. 50 p (£3.45 inc. VAT)
$0-4 \mathrm{~V} / 6 \mathrm{~V}-24 \mathrm{~V} / 32 \mathrm{~V}$ at 12 amp £20.35 P. \& P. £2.30 (£26.05 inc. VAT \& P.)
$0-6 \mathrm{~V} / 12 \mathrm{~V}$ at $20 \mathrm{amp} £ 16.20$ P. \& P. $£ 1.00$ ($£ 19.78 \mathrm{inc}$. VAT) $) ~$ 0.12 V al 20 amp or $0-24 \mathrm{~V}$ at $10 \mathrm{amp} £ 12.00$ P. \& P. f 1.50 $0-6 \mathrm{~V} / 12 \mathrm{~V}$ at $10 \mathrm{amp} \mathbf{£ 9 . 1 0 \mathrm { P } . \& \mathrm { P } . £ 1 . 5 0 \text { (} £ 1 2 . 1 9 \mathrm { inc } \text { . VAT) }) ~}$ $0-6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$ at $20 \mathrm{amp} £ 20.90$ P. \& P. $£ 2.00$ (E26.34 inc. VAT 0 -10V/17V/18V
Other

XENON FLASHGUN TUBES

Range available from stock. S.A.E. for details.

ULTRA VIOLET BLACK LIGHT

FLUORESCENT TUBES

4tt. 40 Watt $£ 8.70$ inc. VAT $£ 10.00$ (caliers only)
$\mathbf{2 f t} .20$ watt $£ 6.20$. Post $75 p$ ($£ 7.99$ inc. VAT $+P$.)
2 in 8 in stan bi-pin fittings). 80.92 ine Vat

Complete ballast unit, for either $6^{\prime \prime}, 9^{\prime \prime}$ or $12^{\prime \prime}$ tube 230 V AC op
$£ 4.50$. Post 45 p. ($\mathbf{\Sigma} 5.69$ inc: VAT + P). Also available for 12 V 4.50. Post 45 p . (55.69 inc. VAT + P). Also available for 12 V CC op $£ 4.50$. Post 45 p . (£5.69 inc VAT + P).
400 watt UV lamp and ballast complete $£ 38.00$. Post $£ 3.50$ ($£ 47.73$ incl. VAT + P). 400 watt UV lamp only $£ 14.00$. Post f1.50. ($\mathbf{E} 17.83$ incl. VAT + P).

PROGRAMME TIMERS

$240 V$ A.C. operation. 12 individually adjustable cams. $£ 7.50+$
$75 p$ P. \& P. ($£ 9.49$ inc. VAT). R.T. 6 adjustable 6 fixed cams. Price $£ 6.00+75$ p p. \& p. (£7.76 inc.

Superior Quality Precision Made NEW POWER RHEOSTATS

New ceramic construction, embedded
ously rated. $10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{kN} /$
25 WATT
1.5 kO £2.80: Post 20 p ($\mathbf{£ 3 . 4 5 \mathrm { inc } \text { . VAT \& P.) }}$ 50 WATT 250 .

 $\begin{array}{ll}100 \text { WATT } 1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} \Omega / 1 \cdot 5 \mathrm{k} \Omega / 2.5 \mathrm{k} \Omega \\ . / 3.5 \mathrm{k} \Omega \text { E } 6.90 & \text { p. } 8 \text { p. } 35 \mathrm{p}(\mathbf{~} 8.34 \mathrm{incl} \text { VAT) }\end{array}$ - Black, Silver, Skirted knob calibrated in Nos. $1-9 \quad 1 \frac{1}{1} / n$ dia. brass bush. Ideal for above Rheostats 24 p each.
Wide range of $A C$ and $D C$ frelars
available from atock. Phone or writo Uther types available - phone for details. N.M.S. 230/240V A.C. Relaye: Arrow $2 \mathrm{c} / \mathrm{o} .15 \mathrm{amp} £ 1.50$ ($\mathbf{£ 1} \mathbf{9 6} \mathrm{Inc}$ T.E.C. open type $3 \mathrm{c} / \mathrm{o} .10^{\circ} \mathrm{amp} \mathrm{E1}$.10 ($\mathbf{1} 1.50$ inc. VAT \& P). KMKI Relay. 230 V . A.C. $1 \mathrm{c} / \mathrm{o}$. open type 10 amp contact. mf.

D.C. Relays: Sealed $12 \mathrm{~V} 1 \mathrm{c} / \mathrm{o} 7$ amp octal base $£ 1.00$ ($£ 1.38$ inc. VAT \& P). Sealed $12 \mathrm{~V} 3 \mathrm{c} / \mathrm{o} 7 \mathrm{amp} 11$-pin $£ 1.35$ ($£ 1.78$

Hellormann Deutsch. Hermerically śealed sub-min. Relay. $12-$ 24 V. D.C. $2 \mathrm{c} / \mathrm{o} .850$ ohm coil. 0.2 pitch. P.C. mounting. L. 20 mm . v. 10 mm . 12 mm . Fraction of ($\mathbf{\Sigma 2} .88$ incl. VAT), N.M.S.

GEARED MOTORS

71 rpm KLAXON motors approx. 25 fb inch 71 mpm WNSCALE motors approx. 20 lb inch Above four motors are designed for 110 V A.C. supplied with auto transformer 240 V A.C. operation, $£ 9.25$ p. $\&$ p. 75 p. Total incl. VAT E11.50. N.M.S.
19 rpm FHP $220 / 240 \mathrm{~V}$. a.c. reversible, new including capacitors. mf. CITENCO.
 $30 \mathrm{rpm} .230 / 240 \mathrm{~V}$. a.c. 50 tb in. mf. PARVALUX VATI. N.M.S 56 rpm .240 V , ace. 50 lb . in. $50 \mathrm{~Hz}, ~$
0.7 amp . Shatt length 35 mm . Dia 6 mm . Wi. $6 \mathrm{~kg} .600 \mathrm{~g} . \mathrm{mf}$. FRACMO Price: $£ 15.00+\kappa 150$ P. \& P. $1 £ 18.98$ 100 rpm .110 V . a.c. 115 lb in., 50 Hz .2 .8 amp. single phase split capacitor Totally enclosed. In-line gearbox Length 15.5 mm . length 145 mm . Tested. Price: $£ 12.00+\mathrm{f} 1.50 \mathrm{P}$ ($\mathbf{1 5 . 5 3}$ inclus. VAT). R. \& T. Suitable Transformer for $230 / 240 \mathrm{~V}$ operation. Price $\mathbf{£ 8 . 0 0}+\mathbf{7 5 p}$. P. \& P. ($\mathbf{£ 1 0 . 0 6}$ inc. VAT).
200 rpm .35 lbs in. 115 V 50 Hz .
Price: $\mathrm{f} 16.00+£ 1.50 \mathrm{P}$. 8 P (f 20.13 inclus. VAT). N.M.S. Suitable Transformer for $230 / 240 \mathrm{~V}$. a.c.
Price: $£ 800+£ 1.00 \mathrm{P} . \& \mathrm{P}$. $(£ 10.35$ inclus. VAT). N.M.S
$1 \mathrm{rpm} 230 / 240 \mathrm{~V}$, a.c. Synchronous geared Motor, mf. HAYDON. $2 \mathrm{rpm} 230 / 240 \mathrm{~V}$. a.c. Svnchronous oeared Motol Mf AATI.
N.E.C. geared Motor 152 R.P.M.
2001b. inch. 230 A.C. 50 hz . Ratio 9.2 to i. Non reverse. Incl. capacitors.
Fraction of makers Price $£ 35.00$ plus car. and VAT. Also available 230A.C.

 N.M.S. £16.00. \& P. f1.00. (total incl. VAT \& p. £19.55)

230V a.c. FAN ASSEMBLY

2f. D.C. 200 p m ali. chassis containing $9 \times 24 \mathrm{~V}$. D.C. Solenoids, microswitches friction clutch, precision gearing etc. etc. Ex-equipment Transport Ticket Printer. Price: $\mathbf{£ 1 1 . 0 0 + £ 2 . 0 0 \mathrm { p } \text { . } 8 \mathrm { p } p \text { . (total incl. }}$
24V. D.C. REVERSIBLE MOTOR
Parvalux type SD12L, 24 D.C. Shunt wound Motor, either 133 rpm 65 lbs in Gearbox ratio $30: 1$. Current 6.8 amp. Rating continuous. Will operate on reduced power and speed at $9 V$ D.C. or
less. Size Dia. 16 mm , Width 150 mm , Shaft dia 16 mm . Price less. Size Dia. 16 mm , Width 150 mm , Shaft dia. 16 mm . Price
$\mathbf{£ 1 6 . 0 0}+£ 2.00$ p. \& $\mathbf{~ p . ~ (~} \mathbf{2 0} \mathbf{2 0 . 7 0 \text { incl. VAT). N.M.S. or } 6 0 \mathrm { rpm }}$ 100lb in rating. Price as above. N.M.S.
100W Rheostat 1 ohm speed control available $\mathbf{£ 6 . 9 0}$ ($£ 7.94$ 100W Rhe
ROTARY CARBON VANE VACUUM \&i COMPRESSOR. Direct coupled to $1 / 3 \mathrm{~h} . \mathrm{p}, 110 / 115 \mathrm{~V}$ A.C. Motor 4.2 amp. 1380 rom. Motor manuf. by A.E.I. or G.E.C.
Pump by Williams. Max. Vac. $25^{\prime \prime}$ H.G. Max pressure Cont 10 p.s.i. Int. 15 p.s.i. Max. air-flow 3 c.f.m. at "0" H.G. Price: Suitable transformer for 240 V . op. $£ 10.00$ P. \& P. £2.00

WATER PUMP

Mig. by S.P.A. Astaisi of Italy. $220 / 240 v$ A.C. $50 \mathrm{hz}, 2800$ outlet. Delivery approx. 40 gals per min. at 10 bs head ${ }^{\text {g }}$, infet £20.12) NM Price £16.50. P. \& P. £1.00. (Total incl. VAT \& P

VERY EXCEPTIONAL OFFER

REDUCTION DRIVE GEAR BOX

Ratio 72 :1. Input spindle $\frac{1}{4} \times \frac{1}{2}$ in. Output spindle $\frac{1}{\frac{1}{2} \times 3}$ in. long. Overall size approx: $120 \times 98 \times 68 \mathrm{~mm}$. All metal construction. Ex-equip. tested. Price: $£ 2.00$ 50p. (incl VAT £2.88).
A.C. Wkg. TUBULAR CAPACITORS.

On	60	5.4 mfd	280V A.C	
ind. 250 V A.C.			280 . A.C.	
2 mfd .45	75 p	7	280 V A.	
2.2 mfd .440 V . A.C.			250V. ${ }^{\text {C }}$.	£1.00
$3 \mathrm{mfd} .440 \mathrm{~V} . \mathrm{A} . \mathrm{C}$.	¢1.00	10 mfc	$250 V$. A.C.	£1.00
4.1 mid 440V. ${ }^{\text {ch }}$	¢1.00	19 mfd .	280 V . A.C.	£2.00
4.1 mid 440V. A.C.	¢1.00	20 mfd .	$250 V$. A.C.	£2.25
5 mfd . 400 V . A. .	£1.25	50 mfd .	370 V .	¢5-00
5.3 mfd. 160 V . A.C.	60p		(Block)	
P. \& P., up to, 2.5 E1.50. All plus V.A.T	$\begin{aligned} & \text { fd. } 25 \mathrm{p} . \\ & \text { N.M.S. } \end{aligned}$	mid to 2	mid. 50p.	50 mfd .

Time Switch Venner TYpe
ERD Time switch $200 / 250 \mathrm{~V}$ a.c. 30 amp contact 2 on/ 2 off every 24 hrs . at any manually pre-set
time 36 hour Spring Reserve and day omitting time. 36 hour Spring Reserve and day omitting
device. Built to highest Electricity Board device. 8uilt to highest
specification. Price $£ \mathbf{9 . 0 0}$

SANGAMO WESTON TIME SWITCH
Type S251 $200 / 250 \mathrm{~V}$. a.c. 2 on/2 off every 24 hours. 20
amps contacts with override switch dia. 4×3 price $£ 8.50$ P \& P
50 p inc. VAT $£ 10.35$. Also available with Solar dial. R. \& T.

All Mail Orders Callers Ample Parking Space Showroom open Mon-Fr

ACCOUNT CUSTOMERS MIN. ORDER $£ 10.00$

Personal callers only Open Saturdays 9 Little Newport Street, London WC2H 7JJ Phone 01-4370576
 comprehensive guide to electronic components with thousands of photographs and illustrations and page after page of invaluable data. We stock just about every useful component you can think of. In fact, well over 5000 different lines, many of them hard to get from anywhere else. Hundreds and hundreds of fascinating new lines, more data, more pictures and a new layout to help you find things more quickly.

[^3]
[^0]: - IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and. reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: -Use a 600 mA at 9 VDC nominal unregulated mains

[^2]: Prianchio Please add VAT 15% to all prices. Postage on computers. printers and cassette decks charged at cost, all other V/SA items, P\&P' 30p. Place your order using your Access or Barclaycard (Min. tel order £5). Trade and export. enquiries welcome, credit facilizies arranged.

[^3]: Maplin Electronic Supplies Ltd.
 All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR.
 Telephone: Southend (0702) 5541 55. Sales (0702) 552911.
 Shops:
 159-161 King Street, Hammersmith, London W6. Telephone: (01) 7480926. 284 London Road, Westcliff-on-Sea, Essex. Telephone: Southend (0702) 554000. Both shops closed Mondays.

