PRACTICAL

, Spien STIMH:1885-part
 Clamik
 IC Timiz:
 iOmocraphs

Unique in concept-the home computer that grows as you do! The Acorn Atom
 Special features include * FULL SIZED KEYBOARD

 * ASSEMBLER AND BASIC * TOP QUALITY MOULDED CASE * HIGH RESOLUTION COLOUR GRAPHICS*The Acorn Atom is a definitive personal computer. Simple to build, simple to operate A powerful, full facility computer with all the features you would expect.
Just connect the assembled computer to any domestic TV and power source and you are ready to begin. (Power requirement: 8 V at 800 mA). There is an ATOM power unit available - see the coupon below.

Free with every ATOM, kit or built, is a computer manual. The first section explains and teaches you BASIC, the language that most personal computers and the ATOM operate in: The instructions are simple and learning quickly becomes a pleasure. You'll soỏ be writing your own programs. The second section is a reference
manual giving a full description of the ATOM's facilities and how to use them. Both sections ar fully illustrated with example programs. The standard ATOM includes: HARDWARE

- Full-sized QWERTY keyboard 6502 Microprocessor - Rugged injection-moulded case 2 K RAM 8 K HYPER.ROM - 23 integrated circuits and sockets - Audio cassette interface UHF TV output - Full assembly instructions

SOFTWARE

- 32-bit arithmetic $(\pm 2,000,000,000)$ High speed execution - 43 standard/extendèd BASIC commands Variable length strings (up to 256 characters) String manipulation functions 27×32 bit integer variables - 27 additional arrays Random number function PUT and GET byte WAIT command for timing - DO.UNTIL construction - Logical operators (AND, OR, EX•OR) Link to machine - code routines O PLOT commands, DRAW and MOVE

Your ACORN ATOM may qualify as a business expense. To order complete the coupon below and post to Acorn Computer for delivery within 28 days, Return as received within 14 days for full money refund if not completely satisfied. All components are guaranteed with full service/repair facility available.

Quantity	Item		Item price inc. VAT +p\&p	TOTALS	To: Acorn Computer Ltd., 4 a Market Hill, CAMBRIDGE CB2 3NJ I enclose cheque/postal order for $£$ Please debit my Access/Barclaycard No.
	ATOM KIT - 8 K ROM + 2 K RAM (MIN)		(19) $£ 140.00$		
	ATOM ASSEMBLED-8K ROM + 2 K RAM (MIN)		(26) $£ 174.50$		
	ATOM KIT - 12 K ROM + 12 K RAM (MAX)		(1) $£ 255.00$		Signature
	ATOM ASSEMBLED-12KROM+12KRAM (MAX)		($£ 289.50$		
	IK RAM SETS		(a) $£ 11.22$		Name (Please
	4K FLOATING POINT ROM (inc in 12KVersion)		(1) $£ 23.30$		Address
	PRINTERDRIVE (inc in 12K version)	6522 VIA	(6) $£ 10.35$		
		LS244 Buffer	(3) $£ 3.17$		
	MAINS POWER SUPPLY (1.3 amps)		(9) $£ 10.20$		Telephone No.
			TOTAL		

CONSTRUCTIONAL PROJECTS

GAMES TIMER by Stephen /bbs23With "booby" delay for added suspense
SECURITY SENTINEL Part 1 by W. C. Dickinson 32
Control Unit for a complete home security system PE TELETEXT Part 4 by David Short/and 48
Wiring and Testing-conclusion of series
PE DIAMATIC UPDATE by J.R. W. Ames and W. L. Blyth 52
Overcoming two common problems
DISCO DECK Part 3 by Ben J. Duncan 56
Final Cards
GENERAL FEATURES
SPEECH SYNTHESIS Part 1 by Dr. A. A. Berk 26
Fundamental theory of synthesised speech
SEMICONDUCTOR UPDATE by R. W. Coles 39
HNVM3008 MM58174 TLO11 40
Help, and calls for help
RESIDENT EDITOR by N. A. Climpson 43
Put the Editor in Monitor for instant use INGENUITY UNLIMITED 68
TL Logic Tester-Light Triggered Variable Pulse—R/C Failsafe and Servo Tester—Logic Probe Op-Amp Tester-Shoot Game
NEWS AND COMMENT
EDITORIAL 17
MARKET PLACE 18
New Products
INDUSTRY NOTEBOOK by Nexus 20
Looking on the bright side
SPECIAL OFFER . . . PE CONGRESS 31
Save $£ 15$ on the Congress Amplifier kit
NEWS BRIEFS 44
SPACEWATCH by Frank W. Hyde 47
False Alarms-The Viking Mission-The Sun
COUNTDOWN 51
POINTS ARISING 51
Micro Prompt-Programmable Sound Generator-PE Magnum PATENTS REVIEW 55
Ingenious ideas from original thinkers READOUT 61
A bumper batch of your letters
BOOK REVIEW 62
TURNTABLE OFFER 66For Disco and general audio applicationsOUR DECEMBER ISSUE WILL BE ON SALE FRIDAY, 14 NOVEMBER 1980(for details of contents see page 65)

[^0]
WATFORD ELEGTRONIISS
 33／35，CARDIFF ROAD，WATFORD，HERTS，ENGLAND

 ALL DEVICES BRAND NEW．FULL SPEC．AND FULLY GUARANTEEO．ORDERS ORDERS BY ACCESS NOW ACCEPTED Minimum order 10.00 plesEe）．TRADE CTO．OO．OVERSEAS OROERS POSTAGE ATCOST
VAT Exporf ordion
We atoch meny more hterns．It paye to vleit us．We are situated bahind Wotford Football Ground．Neareat Underground／Br．Rail Station：Warford High Strart．
Open Mondey to Saturday 9 ．m． \mathbf{t} p．m．Ample Free Car Parking space available．

POLYESTER CAPACITORS：（Axial Laad Type）
$400 \mathrm{~V}: 1 \mathrm{nF}, 1 \mathrm{n} 5,2 \mathrm{n} 2,3 \mathrm{n} 3,4 \mathrm{n} 7,6 \mathrm{n} 8,10 \mathrm{n}, 15 \mathrm{n}, 9 \mathrm{p} ; 18 \mathrm{n} 10 \mathrm{p} ; 22 \mathrm{n}, 33 \mathrm{n} 11 \mathrm{p} ; 47 \mathrm{n}, 68 \mathrm{n}$ 14p；

POLYESTER RADIAL LEAD CAPACITORS：250V；
ELECTAOLYTIC CAPACITORS：（Values are in $\mu \mathrm{F}$ ）

 16p； 470 20p；1000， $150030 \mathrm{p} ; 2200$ 36p；10V： $100{ }^{\circ} 7 \mathrm{p}$ ．
TAG－END TYPE；450V： 100μ F 180p；70V；4700 185 p
TAG－END TYPE；450V：100 μ F 180p；70V：4700 165p；64V： $2500110 \mathrm{p} ; 3300150 \mathrm{p}$ ；

33085 p ； 220060 p ．

$A C 118$
$A C 142$
$A C 117$
$A C 17$ かっ号加品

TAN
35 V
$1 \mu 5$
16 V
16 V
10 V
47μ
MY
100
0.0
0.
CE
日a
15
10
P
10

 NNN

95

ANTEX		
Soldering		
Irons		
C15W 390		
CX17w 398		
$\times 25 \mathrm{~W} 415$		
Spare bite 50		
Elemente 190		
Iron mtand 150		
$\begin{aligned} & \text { DIL SOCKETS Wire } \\ & \text { ITEXAS X X } \end{aligned}$		
8 pin 10p 25p		
16 pin 13p 46p		
20 pin $22 \mathrm{p} \quad 65$		
24 pin 30 p 78 p		
${ }^{28} \mathbf{8 8} \mathbf{\text { pin }}$		

SPECIAL

CMOS ICONT．
4077

£N
 \qquad

検

Marshall's

and cost conscious LEADER range of testgear.
Strevit thac: usimlunscory S

LBO S17A is 10MHe ronv
〔12500

aUAL tianct uselllustion s

IV Halle) lisi (it Ale

4910
1690
r 18900

- aubile tist cit ntis

(tis) 39 A When Flintiv
Generai tist giear
LCH 140 ICA Bensur
LVT 12 Foi Trutssilin Cling
LAT AJ Allemualor

amatiur radio
LOM 815 DIP Melen

LPM 880 RF Pawer Mentur
LPM 885 SWA Wall Metor
LAC 895 Anterna Conuller
LAC 896 Anterna Coumber

c 5000
 C 6000 C1900 C2500

C22500
C249

 f299
f2990
f290

Please send large SAE for special catalogue. All prices exclusive VAT/carriage.

The new Marshall's 80/81 catalogue is now available. A veritable treasure house of components, test gear, tools, etc.

Lots of old friends, but also many new products including leader test gear, Crimson Hi Fi Modules, Rechargeable NI Cad batteries and chargers (very competitive). More components including SN74ALS series, new tools etc. Available by post, UK 75p post paid:
Europe 95 p post paid: Rest of world $£ 1.35$ post paid.

SINCLAIR INSTRUMENTS Digital Multimeter

$$
\text { PDM35 € } 34.50
$$

- DM235 E 52.50
- DM350 £ 72.50

DM450 £ 99.00
Digital Frequency Meter
PFM200£ 49.80
Low Power Oscilloscope
SC110 £139.00
NEW
TF200 Frequency Meter £145:00
TGF 105 Pulse Generator
£ 85.00
CRIMSON ELEKTRIK HI FI MODULES
CE608 Power Amp £20.09 CE1004 " " £23.43 CE1008 " " £26.30 CE1704 " ." £33.48 CE1708 ". " £33.48
CPS1 Power Unit £19.52
CPS3 " . \quad E23.52
CPS6 ." ." £30.00
CPR1 Pre Amp © $£ 32.17$
CPR1S Pre Amp $£ 42.52$ All Prices + VAT + postage/ packaging
Don't forget! We also carry an impressive range of semi-conductors. passive' components, slectro mechanical components. tools etc.

DISCO LIGHTING KITSI!!

First class constructional projects, c/w glass fibre P.C.B.'s \& full instructions. No extra components needed to make a top rate working unit.

Order by phone - Access/Barclaycard/C.O.D.
Open Mon. - Sat. 9am - 5pm.

CAMBRIDGE LEARNING

SELF-INSTRUCTION COURSES
It's faster and more thorough than classroom learning: you pace yourself and answer questions on each new aspect as you go. This gives rare satisfaction - you know that you are really learning and without mindless drudgery. With a good self-instruction course you become your own best teacher.

Understand Digital Electronics
 In the vears ahead digital electronics will play an increasing part in

 your life. Calculators and digital watches mushroomed in the 1970's -soon we will have digital car instrumentation, cash cards. TV messages from friends and electronic mail.After completing these books you will have broadened your career prospects and increased your knowledge of the fast-changing world around you.

DIGITAL COMPUTER LOGIC AND
 ELECTRONICS $£ 7.00$

This course is designed as an introduction to digital electronics and is written at a pace that suits the raw beginner. No mathematical knowledge is assumed other than the use of simple arithmetic and decimals and no electronic knowledge is expected at all. The course moves painstakingly through all the basic concepts of digital electronics in a simple and concise fashion: questions and answers on every page make sure that the points are understood.
 Everyone can learn from it - students, engineers, hobbyists, housewives, scientists. Its four A4 volumes consist of: Book 1 Binary, octal and decimal number systems; conversion between number systems: conversion of fractions: octal-decimal conversion tables.
Book 2 AND, OR gates; inverters; NOR and NAND gates; truth tables; introduction to Boolean algebra.
Book 3 Positive ECL; De Morgans Laws; designing logic circuits using NOR gates; dual-input gates.
Book 4 Introduction to pulse driven circuits; R.S and J.K thip flops; binary counters; shift

registers; hall-adders.

DESIGN OF DIGITAL SYSTEMS £12.50

This course takes the reader to real proficiency. Written in a similar question and answer style to Digital Computer Logic and Electronics, this course moves at a much faster pace and goes into the subject in greater depth. Ideally suited for scientists or engineers wantirg to know more about digital electronics, its six A4 volumes lead step by step through number systems and Boolean algebra to memories, counters and arithmetic circuits and finally to an understanding of calculator and computer design.
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND. NOR and exclusiveNOR functions: multiple input gates; truth iables; De Morgans Laws; canonical forms; logic conventions; karnaugh mapping; three state and wired logic
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring. Johnson and exclusive - OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding: instruction sets; insiruction decoding; control programme structure.
Book 6 Central processing unit (CPU); memory organization: character representation: program storage: address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and

time sharing.

Flow Charts and Algorithms

are the essential logical procedures used in all computer programming and mastering them is the key to success here as well as being a priceless tool in all administrative areas -presenting safety regulations, government legislation, office procedures etc.

THE ALGORITHM WRITER'S GUIDE £4.00

explains how to define questions, put them in the best order and draw the flow chart, with numerous examples.

GUARANTEE No risk to you.

If you are not completely satisfied, your money will be refunded upon return of the books in good condition.
CAMBRIDGE LEARNING LIMITED, UNIT 26
RIVERMILL SITE, FREEPOST, ST. IVES, HUNTINGDON.
CAMBS., PE17 4BR, ENGLAND.
TELEPHONE: ST. IVES (0480) 67446
All prices include worldwide postage (airmail is extra - please ask for prepayment invoice).
Please allow 28 days for delivery in U.K.

Microcomputers are coming - ride the wave! Learn to program.

Millions of jobs are threatened but millions more will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation. Harder problems are provided with a series of hints so you
 never sit glassy-eyed with your mind a blank. You soon learn to tackle really tough tasks such as programs for graphs, cost estimates, compound interest and computer games.

COMPUTER PROGRAMMING IN BASIC

 $£ 9.00$Bookl Computers and what they do well; READ. DATA. PRINT, powers, brackets, variable names; LET; errors: coding simple programs.
Book 2 High and low level languages; flowcharting; functions; REM and documentation; INPUT. IF...TMEN, GO TO; limitations of computers, problem definition
Book 3 Compilers and interpreters; loops, FOR...NEXT. RESTORE; debugging: arrays; bubble sorting: TAB
Book 4 Advanced BASIC: subfoutines; string variables; files; complex programming;

examoles: glossary

THE BASIC HANDBOOK $£ 11.50$

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

A.N.S. COBOL $£ 4.40$

The indispensable guide to the world's No. 1 business language. After 25 hours with this course, one beginner took a consulting job, documenting oil company programs and did invaluable work from the first day. Need we say more?

ORDER FORM

Please send me the following books:-
Digital Computer Logic \& Electronics @ $£ 7.00$
Design of Digital Systems @ $£ 12.50$
Algoithm Writer's Guide @ £4.00
Computer Programming in BASIC @ $£ 9.00$
BASIC Handbook@ £11.50
ANS COBOL @ £4.40
Your Booklist (Free)
i enclose a cheque/PO payable to Cambridge Learning Lid.
for E.
('delete where applicable)
Please charge my:
*Access/American Express/Barclaycard/Diners Club/Eurocard/Visa/ Mastercharge/Trustcard

> Credit Card No..

Signature
Telephone orders from credit card holders accepted on 048067446 (Ansafone).
Overseas customers (incl. Eire) should send a bank draft in sterling drawn on a London bank. or quote credit card number.
Name
Address

Cambridge Learning Limited, Unit 26, Rivermill Site,
FREEPOST, St. Ives, Huntingdon, Cambs PE1 7 4BR, England.
(Registered in England, No. 1328762)

D.I.Y. KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. MINISONIC MK2 SYNTHESISER

A portable mains operated miniature sound synthesiser with keyboard circuits. Although having slightly fewer facillies than the large Formant and P.E. synthesisers the functions offered by this design give it great scope and versatility
Set of basic component kits fexcl. KBD F's \& tuning pots-
seo list for options avallable) and PCBs (incl layout charts)
$\begin{array}{rrr}* & \text { Sound Design" booklet KIT 38-25 } & \text { £80.12 } \\ & & \end{array}$
P.E. 128-NOTE SEQUENCER

Enables a woltage controlled synthesiser to automatically play pre programmed tunes of up to 32 pitches and 128 notes long. Programs are keyboard intiated and note length and rhythmic pattem are extemally variable.
Set of basic comps, PCBs and charts
Set of text photocopies
KIT76-7 \quad £35.56

P.E. 16-NOTE SEQUENCER

Sequences of up to 16 notes may be programmed by the use of external panel controls and fed into most voltage controlled synthesisers.

Set of basic comps, PCBs and charts
KIT 86-5 $\quad 533.60$
Set rext photocopies
£1.84

P.E.STRING ENSEMBLE

A multivoiced polyphonic string instrument symthe siser.
Set of basic comps, PCBs \& chants KIT 77-8 £107.88

ELEKTOR ELECTRONIC PIANO

A touch-sensitive multiple-voicing piano using the latest integrated circuit techniques for the keying and envelope shaping, and virtually eliminating "bee-hive" noise hitherto inherent in previous electronic planos.

5-octave set of basic comps and PCBs (as publ.)
Additional 3 -octave extension and basic parts and
PCBs (as published)
KIT 80-10 $\quad \mathbf{5} 56.36$
Set of text photocopies
f 1.81
ELEKTOR FORMANTSYNTHESISER
A very sophlsticatged synthesiser
who puts performance before price.
Set of basic comps, PCBs (as publ)
Set of text photocopies
KIT 66-14 £255.45

ELEKTOR DIGITAL REVERB UNIT

A very advanced unit using sophisticated ic. techniques instead of mechenical spring lines. The basic delay range of 24 to 90 mS can be extended up to 450 mS using the extension unit. Furher delays can be obtained using more extensions.

Main unit basic comps and PCB (as publ.)
Extension unit basic comps and PCB \{as publi,
$\begin{array}{ll}\text { KIT 7B-3 } & \quad 55.40\end{array}$
Text photocopy
KIT 78-4 $\mathbf{5 5 2 . 7 7}$

ELEKTORANALOGUE REVERB

Using i.c.s instead of spring-lines the main unit has a maximum delay of up to 100 ms , and the additional set extends this up to 200 mS . May be used in either mono or stereo mode. Main unit basic component set \quad KIT 83-1 $£ 29.49$ $\begin{array}{lll}\text { Additional Delay basic components } & \text { KIT 83-2 } \\ \text { PCB (as publ) to hold both kits } & \text { PCB99973 } & \text { £4.07 }\end{array}$ CB Text photocopy

PCB9973 £4.52

ELEKTOR RINGMODULATOR

Compatible with the Formant \& mostother

Set of basic comps \& PCB (as publ.)
Text photocopy
KIT 87-2

10\% DISCOUNT VOUCHER

 (PE 83)TERMS: Goods in current adverts \& lists over $£ 50$ goods value fexcl P\&P \& VATI. Correctly costed, C.W.O., U.K. orders only. This voucher must accompany order. Valid apply to credit card orders.

BASIC COMPONENTS SETS include all necessary resistors, capaciors, sémiconductors, potentiometers and transformers. Mardware such as cases, sockets, knobs, keyboards, etc. are not included but most of these may be bought separately. Fuller detalls of kits PCBs and parts are shown in our lists.

LAYOUT DIAGRAM8 are supplied free with all PCBs unless "as published"

NEW KITS

ELEKTOR CHOROSYNTH

A $2 \frac{1}{2}$-octave Chorus synthesiser with an amazing variety of sounds ranging from violin to cello and flute to clarinet amongs? many others. Experienced constructors can readily extend the oc tave coverage.

Basic comps. PCBs and charts but axcl. sw's
Text photocopy
KIT 100-8 \quad ¢44.39

ELEKTOR SEWAR

For use with Elektor Analague Reverb to give greater flexibility to the reverb effects.

Basic comps, PCB (as publ.) KIT 101-1 £22.53

ELEKTOR FUNNYTALKER

Incorporates a ring modulator, chopper \& frequency modulator to produce fascinating sounds when used with speech \& music signals.

Basic comps, PCB (as publ)
KIT 99-1 $\quad \mathbf{~} 9.60$
Text photocopy

ELEKTOR FREQUENCY DOUBLER

For use with guitars \& other electronic instruments to produce an output one octave higher then the input. Inputs and outputs may be mixed to give greater depth.

Basic comps. PCB las publ.)
KIT 98-1 \quad E5.48
Text photocopy

P.E. SPLIT-PHASE TREMOLO

A simple but effective substinute for a rotary cabinet. The output of an internal generator is phase-split and modulated by an inpu signal from an electronic gultar or other instrument. Output amplitudes, depth \& rate are variable. May be fed to one or two amplifiers.

Basic comps, PCB \& chart KIT 102-3 £17.58 Text photocopy 65p

P.E. MINISONIC WAVEFORM
 CONVERTER

A simple converter that modifies the Minisonic sawtooth waveform to produce triangle and sine outputs. Ideally one should be used with each Minisonic VCO. Basic comps, PCB \& chant

KIT 96-1 E3.98

DISCO-CROSS FADER

The cross-fade between 2 decks is switch-initlated and can be preset on the panel for a cross fade rate of between about $\frac{1}{2} \mathrm{sec}$ 8. 24 secs. Basically a stereo unit but may be used in mono Basic comps. PCB \& chart

KIT 94-1 $£ 11.83$

P.E.GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing. for example, flanging, vibrato, reverb, fuzz and tremolo as well as other fascinating sounds. May be used with most electronic instruments.

Set of basic comps, PCBs \& charts (excl. SWs)
Sel of rext photocoples
$\begin{array}{rr}\text { KITB5-5 } & £ 54.58 \\ & \\ & \end{array}$

P.E.PHASER

An automatically controlled 6 -stage phasing unit with integral oscillator.
Basic components, PCB \& chart KIT 8B-1 $£ 10.69$ 2-Notch extension, PCB \& chart KIT 88-2 E8.38 Textphotocopy

68p

ELEKTORPHASING 8 VIBRATO

Includes manual and automatic control over the rate of phasing \& vibrato, and has been siightly modfied to also include a 2 -input mixer stage.

Set of basic comps, PCB \& chart
Text photocopy

KIT 70-2 \quad E21.67

PHONOSONICS
MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

ELEKTOR RESONANCE FILTER

Allows a synthesiser to produce a more realistic simulation of natural musical instruments.

Set of basic comps, \& PCB (as publ.)
Text photocopy
K1T 82-2 $£ 22.45$

P.E. GUITAREFFECTS UNIT

Modulates the attack, decay and filter characteristics of a signal from most audio sources, producing 8 different switchable effects that can be further modified by manual controls.

Basic comps. PCB \& chart
KIT 42-3 \quad ¢10.37
Textohotocopy
28p

P.E. GUITAROVERDRIVE

Sophisticated versatile fuzz unit incl. variable controls affecting the fuzz quality whilst retaining attack and decay. and also providing filtering. Usable with most electronic instruments.

Basic components, PCB \& char
KIT 56-3 £11.22
Text photocopy
68p

P.E.SMOOTH FUZZ

Basic components, PCB \& char
KIT 91-1 E6.40 Text photocopy

55p

TREMOLOUNIT

A slightly modified version of the simple P.E. unit Basic components, PCB \& chart KIT 54-1 E3.74

GUITAR FREQUENCY DOUBLER

A slightly modified and extended version of the P.E. unit. Basic components, PCB \& chart Text photocopy

P.E. GUITAR SUSTAIN

Maintains the natural attack whilst extending note duration. sasic components, PCB \& chart

KIT 75-1

P.E.WAH-WAH UNIT

Can be controlled manually or by integral automatic control.
Basic components. PCB \& chart KIT 51-1 e4.93

P.E.AUTO-WAHUNIT

Automatically gives Wah or Swell sounds with each note played. Basic components, PCB \& chart KIT 58-1 £9.68

ELEKTOR WAVEFORM CONVERTER

Converts a saw-tooth waveform into sinewave, mark-space saw tooth, regular triangle, or square-wave with variable mark-space. Basic comps. PCB \& chart, but excl. sw's

$\begin{array}{ll}\text { KIT 67-1 } & 9.24\end{array}$

P.E. SWITCHED TONE TRERLE BOOST

Provides switched selection of 4 preser tonal responses. BIT 89-1 Kasic components, PCB \& chart

Text photocopy

P.E.TREBLE BOOST UNIT

$\begin{array}{lll}\text { Aimple treble boost unit with manual control depth. } & \\ \text { KIT 53-1 } & \text { E2.92 }\end{array}$

P.E.SYNTHESISER

The well acclaimed and highly versatile large scale mains operated synthesiser. Other circuits in our lists may be used with it to good advantage.

Basic comps. PC8s \& charts
KIT 23-33 £167.57
Set of text photocopies

ADD 15\% VAT
(or current rate if changed). Must be added to full total of kits, discount post \& handling on all U.K. orders. Does not apply to Exports, or photocopies.

ADD: POST \& HANDLING
U.K. orders: Keyboards add $\mathbb{C 2} .70$ each. Other goods: Unde £5 add 50p. under $£ 20$ add 75p. over £20 add $\mathbb{E 1}$ Recommended insurance against postal mishaps: add 500 for cover up to $£ 50, \mathbf{£} 1$ for $\mathbf{£ 1 0 0}$ cover, atc., pro-rata. Insurance must be added for credit card orders.
N.B. Eire. C.I.. B.F.P.O. and other countries are subject to higher export postage rates.

EXPORT OROERS ARE WELCOME but to avoid delay we advise you to see our list for postage rates. Al payments must be cash-with-order, in Sterling byinter-
nationat Money Order or through an English Bank. To obtain lis: - Europe send $\mathbf{3} \mathbf{5}$ p. other countries send obtain list - Europe send 35 p , other countries senc Note that we do not offer a C.O.D. service and that our terms are payment in advanca.

AND OTHER PROJECTS

PHOTOGRAPHS in enis adyertisement show two of our units containing some of The P.E. prolects bult from our kits and end are not for sale. though simall selection of other cases is avallable.
UST-Send samped addressed envelope with all U.K. requesis for ree list goving fuller detolis of PCBs. kits and other components
OVERSEAS anouliles for lise Euroose
send 35 p : other countries-send 75 p .

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKIMBER-ALLEN KEYBOARO8 as required for many published projects. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C , the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame. 3 Octave ($\mathbf{3 7}$ notes) £25.50 4 Octave ($\mathbf{4 9}$ notes) £32.25 $\mathbf{5}$ Octave (61 notes) £39.75 CONTACT ASSEMBLIES (gold-clad wire) - 1 required for each K8O note Type GJ - SPCO 33p ea. Type GB-2 pr N/O 37 $\frac{1}{2} \mathrm{p}$ è.

P.E.V.C.F.

A voltage controlled filter extracted from P.E. Minisonic project.

Basic comps, PCB \& chart KIT 65-1 E6.45

P.E. RING MODULATOR

Extracted from P.E. MInisonic project. Basic comps. PCB \& chart KIT 59-1 C0.35

WIND \& RAIN EFFECTS UNIT

A slightly modfied version of the original P.E. unit. Basic comps. PC8 \& chart KIT 28-1 £4.84 Text photocopy

P.E.ENVELOPE SHAPER

WITHOUTVCA

Provides full manual control over attack, decay. sustain and release functions, and is for use with an existing VCA.

Basic comps. PCE \& chart KIT 44-1 $\quad 85.73$ Text photocopy

P.E.ENVELOPE SHAPER WITH VCA

Has an integral Voltage Controlled Amplifier, and has tult manual control over the A. O.S.R. functions. Basic comps, PCB \& chart KIT 50-1 88.03 Text photocopy

P.E.CONSTANT DISPLAY FREQUENCY COUNTER

A 4-digit counter for 1 Hz to 99 kHz with 1 Hz sampling rate. Readout does not count visibly of flicker due toblanking.
Basic components, PCB \& chart
$\begin{array}{lll}\text { KIT 79-4 } & \text { £31.35 }\end{array}$

P.E. 6-CHANNEL MIXER

A high specification stereo mixer with variable input impedances.
Basic components. (excl.sw's.) and set of PCBs and charts.

KIT 90-B CE1.2 Extrs 2-channel set with PCB $\begin{array}{ll}\text { KIT } 90-9 & £ 11.62 \\ \text { Set of Text photocopies }\end{array}$

STEREOHEADPHONE

 AMPLIFIERExrracted from P.E. 6 -channal mixer. Basic components, PCB \& chart

KIT 92-1 \quad ⑤.68

DIGITAL EXPOSURE

UNIT
Controls up to 750° watts $\ln \frac{1}{2}$ second steps up to 10 minutes, with buitr-in audio alarm.

Basic components, PC8s \& charts

	KIT 93-3	E1.27
Text photocopy	E1.20	

P.E.DISCOSTROBE

A 4-channel light show controller giving a choice of sequential, random, or full strobe mode of operation, and with extra aidio input.

Basic components, PCB \& chart
KIT 57-2
c25.12
Text photocopy
78p

RHYTHM GENERATORS

Several available, Including programmable 16 beat 64000 pattern, 128 beat almost Infinite pattern, and pre-programmed 15 pattern using either M252 or M253 fhythm chips. A selection of effects instrument circuits is al so available.

P.E VOICE OPERATED

FADER

For automatically reducing music volume during talkover $=$ particularly useful for discos. Basic components, PCB \& char $\begin{array}{lrr} & \text { KIT 30-1 } & \text { E4,37 } \\ \text { Text photocopy } & 28 p\end{array}$

P.E. DYNAMIC NOISE

LIMITER

Very effective stereo circult for reducing the hiss touna in most tape recordings.
Basic components, PCB \& char
KIT 97.1 E8,07

von

P.E. DYNAMIC RANGE LIMITER

Preset to automatically control sound output levels. Basic comps, PCB \& chart KIT 62-1 E8.31

PRICES AAE CORAECT AT TIME OF PRESS
E. © E. DELIVERY SUENECT TO AVAILABILITY.

PHONOSONICS

The expert and personel guidance by fully quallfied tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field, You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guild Cortlicatos

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Radio Amateurs
Electrical Installation Work

Diploms Courses

Colour T.V. Servicing
CCTV Engineering
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering' \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other rechnical and professional courses are available including GCE.

To ICS, Dept 273A, Intertext House, London SW8 4UJ or telephone 01-622 9911 (all hours)

Micronta Auto Range Multimeter Gives you correct polarity, range and measurement - every time. Single function switch lets you choose DC 4 ranges; AC 4 ranges; DC current resistance. 4 ranges. LCD readout. Exclusive range hold facility. 22-196

60.95

Micronta 1000 Ohms Volt Multitester Very compact at $89 \times 59 \times 32$ mm . Easy to read colour meter, pin jacks for all 8 ranges. Reads AC V, DC current and ohms. Mirrored scale. 20-027

499 5^{3}

Micronta Transistorized Signal Tracer Spot circuit troubles, check RF, IF and audio signals from aerial to speaker on all audio equipment. It has built in 5 cm speaker with volume control. $50 \times 143 \times 38 \mathrm{~mm}$. 22-010

f9.95*

Micronta Dynamic

 Transistor Checker Shows current gain and electrodeopen and short circuit. Tests low medium or high power PNP or NPN types. Go/no-go tests from 5-50 m A on power types. "Quick-check" sockets. 22-024

 CHROMATRONICS, RIVER WAY, HARLOW, ESSEX.

Please send me

TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX. Telephone(0279)418611
NAME
PE/ $11 / 80$
ADDRESS

I enclose cheque/PO value \mathcal{E}
or debit my ACCESSIBARCLAYCARD account no.

\section*{Signature}
 GHROMATRONIES

PRIME COMPONENTS LOW PRICES
All our micro chipe are et micro pricen. Don't be fooled by low prices. We to
not offer tor sale sub-spec or rebranded devices. All our parts are guarantena not offer for sale sub-spec or rebranded devices. All our parts are guaranteed
new, first quatity, factory prime, full spac devices. It is also our policy to offer
you the best of new devices that become available and these are featured you the best of new devices that become available and these are featured formation." before ordaring. Official orders from Schools, Colleges, Universities
and Gov. Authorities accepted.

7400

SPECIAL OFFER!

4K CMOS RAM (1K $\times 4$) 450 NS
ONLY £6.95 (8 for £45).

The

10uW/BIT ITYP.) 5.0 V (OPANATNGI
Data Retention Voltage 2
Single $5 V$ Power Supply
Single $5 V$ Power Supply
18 PIN Plastic Package
Full Static Operation
Three State Output
InputVoutput TTl Compatible
Toshiba's TC5514P (industry type 6514) is a full static
using CMOS technology. Ultra low power dissipation
means it can be used as battery-operated portable memory systom and aiso as a non-volatile memory with battery back-up. Operates from a single 5 V
power supply with static operation, hence no refresh periods and a much simplified power supply circuit design. Three state outputs simplify memory expansion for minimum data retention voltage is 2 V , the battery back-up system needs only simple circuit. Toshiba's and noise margins. The TC 5514 P is moulded in a dual-

STEREO

S100 SOUND COMPUTER BOARD!

At last, an S-100 Board that unleashes the full power of two unbelievable Generel control to generate an Infinite number of special sound effects for games or any other program. Sounds can be called in BASIC, ASSEMBLY LANGUAGE eic.
KIT FEATURES

- Four parallal Computer IC's (AY-3-8910)
- Four parailel V/O ports on Board.
- On Board proto typing area.
- All sockets, parts and hardware are included.
- PC Board is soldermasked, silk screened with gold contacts.
- Easv, quick and fun to build. with full instructons.
- Uses Programmed Both BASIC and ASSEM8LY language programming
mples aro included
COMPLETEKIT . . Only $£ 559.98$ includes 60 page data manual.
AY-3-8910 chlp special price with purchase of BARE BOARD (2 chips) 15 SOFTWARE
SCL is now available 1 Our Sound Command language makes writing Sound Effects programs a SNAPI SCL elso in-
cludes routines for Register-Examine-Modłty, Memory-Examine-Modity and Play-Memory. SCL is available on CP/M compatible diskette or $2708 / 2716$. Diskette - £19.95, 2708- $£ 14.95,2718-£ 24.95$. Diskette includes the source. EPROM'S are ORG at EOOOH.

BOOKS

Please order books by reference no. and titie, and add 50p post \& packing for each book ordered

21168	Active Aviation Audio IC OpA The Chea CM Design of Activ Oesign of Op Am The Design of Phased-Lo Design of VMOS Ci Electronic How to Read Sc How to Use Integrated IC Con IC T Instrumentation: Learn Electronics Logic and Memory Experimen Logic and Memory Experiment Linear IC Principles, Oscilloscope A 99 Practical Ele Practical Low-Cost IC Projects 2nd Ed. Practical RF Communication Oata for Engineers and Technicians Regulated Power Supplies 2nd Ed. Security Electronics 2nd Ed. Solar Heating Troubleshooting with the Oscilloscope 3rd Ed. TV Typewriter Cookbook Video Security Systems Video Tape Recorders	Con		95	
21440		ronic		c6.75	
21558		Applica	ons 2nd Ed.	55.95	
21524		Video Co	bbook	4.50	
21398		Cookbo		$\underline{7.75}$	
21539		Filers with	Experiment	c5.95	
21537		ircuits	h Experiment	¢5.95	
21545		doop	cuits with Experimen	c6.75	
21686		its with	periments NEWI	¢3.95	
21618		ephone	rojects	c4.95	
21127		matic Di	grams 3rd E	$\underline{4.25}$	
21613		revits Lo	ic Elements 3rd Ed.	[4.50	
21527		ter Cool	ook	$£ 10.50$	
21695		cookbook	nd Ed	C11.25	
21416		Cookb		c8.50	
21601		sducers	nd Application	c8.95	
21482		'Troubl	hooting 2 nd Ed.	88.25	
21694		Circuits		¢4.46	
21542		sing TT	ntegrated Circuits - Book	c7.50	
21543		sing π	ntegrated Circuits - Book 2	67.50	
21568		riments	ad Projects 2 nd Ed.	c7.50	
21612		cations	Experiments	$\underline{6.75}$	
21635		nics P	cts 2 nd Ed.		
21599		¢3.50	3) DIGIT LIQUID CRYSTAL DISPLAY with 'low bet' indicator.		
21557					
			- High Contrast fatio - Wide Viewing Angle		
		¢ 8.75			
$\begin{aligned} & 21482 \\ & 21419 \\ & 21621 \\ & 21035 \\ & 21103 \end{aligned}$		87.50	- O.5ln Digit Height - ULTRA low Power Consumption LCD 106	106	
		¢4.50			
		c5.25	LED BAR GRAPH AND		
			ANALOG METER DRIVER		
$\begin{aligned} & 21313 \\ & 21339 \\ & 21521 \end{aligned}$		$\begin{aligned} & 77.50 \\ & 75.25 \\ & 7.50 \end{aligned}$	New from National IM3314. Drives IOLED directIy for making ber graphs. audio powor melers. analog metars. LED Oscillatars etc. Units can be stacked for more LEDE. A super versatile and truty		

MUSIC FOR YOUR EARS

Bullet's Electronic Music Maker TMi Kth has a single 28 Pin Microprocessor Chip with ROM

 that has been programmed to play the first 6 to 10 notes of the 28 popultar tunes listed below. Eachtune can easily be addressed individually of played sequentially at the push of a button. The 3 chime tune can easily be addressed individually or played sequentially at the push of a bution. The 3 chime
sequences are activated at any time by separate switch closures, so when used as a doortell, one sequences are activated at any time by separate switch closures, so when used as a doorbell, one
door can play songs while two others wll play different chimes. The unit has a 5 wet audio Amp
enid will run on either 12 VAC or 12 VDC. Constuction is very simple, works with any 8 or 16 ohm speaker, or horn speaker (not included). Tunes can be remotely programmed using a single rotary switch (not included), if desired.
Complete Kit £9.95. 240V Transformer optional.
Tunes: Toreador * William Tell * Hallelujah Chorus * Star Spangled Banner * Yankee Doodle *
 The End \& Blue Danube \& Brahrms Lullaby Westminstar Chime * Simple Chime * Descending Ordering information. Unless otherwise stated. for orders under $£ 50$ add 50 p
p\&p. Add 15% VAT to total books). All devices are brand new, fac-
tory prime and full spec and subjet tory prime and full spec and subject to
prior sales and avallability. Prices subject to change without notice. Minimum pect to change withou: notice. Minimum
telephone order using ACCESS is $\mathrm{C10}$. If ordering by post with
ACCESS, include name. address and card no.
written clearly. Please The XR2266 Decoder/Sense Drive Chip for toy c

ORIVE LIKE REALI ONLY E5.45! NEW FROM EXAR

This versatile 18 -pin dual in-line IC combines both the decoder and the sense and drive functions to cut remote control circuitry by at teast a factor of tw

Dept. PE3, 4 Meeting Street Appledore, Nr. Bideford, North Devon EX39 1 RY. Tel: Bideford (02372) 79507 Telex: 8953084

BLANK ALUMINIUM CHASSIS. 18 s.w.g. 2 tin. sides. 6×4 in. $95 p ;$
8×6 in. $51.40 ; 10 \times$ in $f 1.55 ; 14 \times 9$ in. $£ 1.90 ; 16 \times 6 \mathrm{in} .[1.85 ; 12 \times$ 8×6 in. $£ 1.40$: 10×7 in $£ 1.55 ; 14 \times \operatorname{Sin} . f 1$
3 in $£ 1 \cdot 20: 16 \times 10$ in. $£ 2.20 ; 12 \times \operatorname{Bin} . £ 1.70$
ALUMINIUM PANELS. I8 s.w.g. $6 x$ 4in. $24 \mathrm{p} ; 8 \times \overline{8} \mathrm{in}, 38 \mathrm{p}$; 10×7 in. $54 \mathrm{p} ; 12 \times \sin .44 \mathrm{p} ; 12 \times 8 \mathrm{sin} .70 \mathrm{p} ; 16 \times 6 \mathrm{in}$, 70 p ; $14 \times 9 \mathrm{mp}$. 94p:i $12 \times 12 \mathrm{in}$. $\mathrm{f}: 16 \times 10 \mathrm{in}$. 161.16 .
ALUMINIMUM ANGLE BRACKETS $6 \times \frac{x}{} \times \mathfrak{i n}$. 25 p
 HIGH VOLTAGE ELECTROLYTICS $32+32 / 350 \mathrm{~V}$

DE LUXE BSR HI-FI AUTOCHANGER

 Post on All BSR Single Player P207 cueing device. cer amic cartridge. $£ 15$ Garrard Single Player 6.200 metal turntable. 8SR. P182. Snake arm, flared Aluminium Turntable
B.S.R. Auro Changer. 1 lin. Turntable. Budget price. - $\mathbf{f 1 7 . 5 0}$ Steren ceramic, reliable unit, 3 -speed. £9.95 or $£ 18$ pair

Rapid Mall Order 50p minimum postage. Callers Welcome ccest Visa. Liete 20p. Closed Wod

Radio Components Specialists 337, WHITEHORSE ROAD CROYDON, SURREY, U.K, TEL: 01-684 1665.

๗円๗ COMPONENTS

Halifax Road, Keighley, West Yorkshire BD21 5HR

C/MOS prices as in previous imanes.				LINEAR CA74 ICG	. 20			
DATA RCA C/MOS Data Book RCA Power Data Book RCA Linear Data Book RCA Microdrocessor Data Book GIM Applications Booklets								
			3.50 3.50	DIODES				
			3.50					
			RCA Microdrocessor Data Book $\mathbf{3 . 5 0}$ GIM Applications Booklets $\mathbf{0 . 2 5}$	iN4001in4002				
			in4003					
POWER				IN4005				
2N 2102 . 60 2N 4036 . 55				$\begin{array}{ll}\text { IN4007 } \\ \text { IN4148 } & .07 \\ \end{array}$				
2N $3053 \quad .31 \quad 2 N 50383.09$								
2 N 3055 . 39 2N 5240 1.83				IN4148 . 04				
2N 3439	. 61	2N 5294		. 42				
2N 3440 . 43		2N 5296	. 35					
2N 3442	99	2N 6320	. 51	400 mW				
				RESISTORS 5\% carton film resistors. High stability, low noise ${ }^{\circ} \mathrm{W}$ E24 range of values $1 \mathrm{R}-1 \mathrm{M}$. 0 f for 5 pieces value only.				
Miniature Toggle E2O12-3 mp SPDT								
				transistors				
				2TX107				
				2TX109 . 09				
SM2-2-1 1 amp DPST ${ }^{\text {SM }}$								
SM2-3-1 amp DPDT . 61								
LED's								
MAN3640-7.6mm Orange $\quad 1.70$				$\begin{array}{ll}2 \times 500 \\ 21 \times 502 & .12 \\ \end{array}$				
				21×502 21×504				
(${ }^{\text {MV5O-2.3mm Red }}$ MV52-2.3mm Green			2.00 .14	21X504T1X750				
			. 21					
MV53-2.3mm Yellow			21	8 P				
MV5021-4.7mm Red			. 20	${ }_{16 \mathrm{P}}^{14 \mathrm{P}}$ (17				
MV5054/2-5mm Red			. 17					
			. 40	18 P	17			
MV5054/3-8mm Red			. 13	20 P				
MV52124 - Aectangular Green MV53124 - Reciangular Yellow			. 44	22 P (18	20			
(${ }^{\text {MV5 }}$ MV57124 - Rectangular Red			. 44	$\begin{aligned} & 288 \\ & 40 P \end{aligned}$	$\xrightarrow{25}$			
					35			

BARGAIN BASEMENT

Bargain box including: 6 off $\operatorname{IN4} 148$ 2 of 2 N 3055 H 2 off CA555CG 2 off CA741CG
Plastic box $7.5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 1.5 \mathrm{~mm} \quad \mathbf{1 2 . 0 0}$
Mixed bag of one dozen assorted heat sinks Including DIL fat pack and TO3
$\begin{array}{lll}7106 \mathrm{CPL} \text { digit to LCD - AD Converter } & \text { £8.98 } \\ 7107 & \text { diglt to LED - AD Converter } & \text { £8.46 }\end{array}$
 W21 8R2 5\% 13.50 per 100
11.70 per 100
11.70 per 100
Detave Generators
$\begin{array}{lr}\text { AY-3-0214 Top Octave Generators } & 6.00 \\ \text { AY-3-9410 Oual Tone Frequency Generators } \\ 2.33\end{array}$
24 V 16 W Soldering Irons
240 V 25 W Soldering Irons
Soldering Iron Stands - metal type
$\begin{array}{lll} \\ \text { Branwick Solderwick } & \text { spring type } & 1.80 \\ 2 \mathrm{~mm} \text { widex } & 1.40\end{array}$
Branwick Solderwick 2 mm wide $x 1$ metre
long 0.30 per reel
TO3 Heatsinks
10 for 0.50
12 for 0.50
V83 Heatsinks
V800 DIL Heatsinks
Bargain Box including: 6 off IN4148
2 off 2 N 3055 M
2 off $2 N 3055 \mathrm{M}$
2 off CA 555 CG
2 off CA 741 CG
Plastic box $7.5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 1.5 \mathrm{~mm} \quad £ 2.00$
7106 CPL digit to LCD - AD Converter
7107 digit to LEO - AD Converter $\begin{array}{r}\mathbf{8 . 4 6}\end{array}$
MAN 3M
0.48

FREE - one TO3 and ons DIL Heatsink whith every order received over $£ 5.00$ in

This is only a sample of our stock of over $\mathbf{2 , 5 0 0}$ components, if not listed please enquire.
Cash/Cheques/P.O's with order. P \& Padd 30p to all orders. Add 15\% VAT to total order All items ex. stock - orders by retum post.

no BATTERIES NO WIRES ONLY £37.99 PER PAIR

The modern way of instant 2-way communlcations Just plug into power socket. Ready to use. Crysta clear communications from room to room. Range S-mile on the same mains, phase. On/off switch Useful as inter-office intercom, between office and warehouse, in surgery and in homes. P. \& P. £1.85 Also F.M. 2 channel "touch" model $£ 49.95+$ VAT £7.50 $+\mathbf{P} \& \mathbf{P} £ 1.95$

£18.95

+ VAT $£ 2.85$
Latest iransistorlsed Telephone Amplifer, with detached plug-In speaker. Placing the recelver on to the cradle activates a switch for immediate two-way conversation without holding the handset. Many people can listen at a time. Increase efficiency in office, shop, workshop. Perfect for "conference" calls: leaves the user's hands free to make notes, consult fles. No long waiting, saves time with longdistance calls. On/ofi switch, volume control, con

DOOR ENTRY SYSTEM
No house/business/surgery should be without a DOOR ENTRY SYSTEM in this day and age. The modern way to answer the door in safety to unwanted callers. Talk to the caller and admit him only if satisfled by pressing a remote control button which will open the door electronically. A boon for the invalid, the aged, and busy housewife. Supplied complete di.y. kit with one internal Yale type surface latch lock); mains power unit. Yale type surface latch lock), mains power unit, $\mathbf{5 9 . 9 5}+$ VAT $£ 9.00+$ P\&P $£ 1 \cdot 95$. Kit with two Telephone $£ 69 \cdot 95+$ VAT £10. 50 + P\&P $£ 2 \cdot 15$ 10-day price refund guarantee on all hems
WEST LÓNDŌN" DIRECT SUPPLIES (PE 11) 169 KENSINGTON HIGH STREET.
LONDON, W8

ELECTRONICS/

 BUILD \& LEARNby R. A. Penfold price: £3.40 OIGITAL TECHNIQUES \& SYSTEMS by D.C. Green price: £5.50 ELECTRONIC FAULT DIAGNOSIS by I. R. Sinclair Price: $\mathbf{E S}^{\mathbf{3} .50}$
ELECTRONIC OESIGNER'S H/B
\qquad

HANDBOOK OF ELECTRONICS

CALCULATIONS FOR ENGINEERS 8
TECHNICIANS
by M. Kaufman Price: $£ 14.70$
H/B OF MICROCIRCUIT OESIGN \&
APPLICATION
Price: $£ 19.20$
UNDERSTANOING MICROPROCESSORS
Price: £4.00
INTROOUCTION TO MICROCOMPUTER
PROGRAMMING
by P.C. Sanderson Price: $£ 4.50$
THE COMPLETE MICROCOMPUTER
SYSTEMS H/B
by E. L. Safford
Price: $\mathbf{£ 8 . 2 5}$

TOWERS INTERNATIONAL

TRANSISTOR SELECTOR
by T. D. Towers
1980 Price: $\mathbf{1 0 . 5 0}$
ALL PRICES INCLUDE POSTAGE
THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET
LONDON W2 1 NP
Phone 01-402 9176
Closed Saturday 1 p.m.

Master Flectronics the new Practical way.

SEEING AND DOING

Conquer the 'Chip' - Basy-Fast-Bxciting !

AND MASTER ALL THE NEW TECHNIQUES IN MODERN ELECTRONICS.

Build an Oscilloscope.
Carry out over 40 full experiments including work on Digital Electronic Circuits.

Recognition of Electronic Components.
Understand and draw Circuit Diagrams.
Experience with handling Solid State Circuits and "Chips".
Testing and Servicing of Radio, T. V., Hi-Fi and all types of modern computerised equipment.

'Excellent value' indeed!

For just $£ 79.95$ (including VAT and $p \& p$) you get everything you need to build a personal computer at home...PCB, with IC sockets for all ICs; case; leads for direct connection to a cassette recorder and television (black and white or colour); everything!

Yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers at several times the price.

The ZX80 is programmed in BASIC, and you can use it to do quite literally anything from playing chess to managing a business.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. It immediately proves what a good job you've done; connect it to your TV...link it to an appropriate power source* ...and you're ready to go.

Your 2×80 kit contains...

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs-all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean
- Ready-moulded case
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be SAVEd and LOADed on to a portable cassette recorder.)
- FREE course in BASIC programming and user manual.
Optional extras
- Mains adaptor of 600 mA at 9 VDC nominal unregulated (available separately-see coupon).
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra RAM chips also available-see coupon):

[^1]
The untque and

valuable components of the Sinclair ZX80.

The Sinclai 2×80 is not just another personal computer. Quite apart from its exceptionanylow price, the ZX 80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teachyourself BASIC manual

The unique Sinclair BASIC interpreter offers remarkable programming advantages:

- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handling capability-takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The $\mathbf{Z X 8 0}$ also has string input to request a line of text when necessary Strings do not need to be dimensioned.
- Up fo 26 single dimension arrays.
- FOR/NEXT loops nested up to 26 .
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edlt facilities, allows modification of existing program lines.
- Randomise functlon, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions. USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with 22 standard graphic symbols.
- All characters printable in reverse under program control.
- Lines of unlimited length.

Fewer chips, compact design, volume productionmore power per pound!

The $\mathbf{Z X 8 0}$ owes its remarkable low price to its remarkable design: the whole system is packed on to fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the $\mathbf{Z X} 80$'s 1 K byte RAM is roughly equivalent to 4 K bytes in a conventional computer-typically storing 100 lines of BASIC. (Key words occupy only a single byte.) The display shows 32 characters by 24 lines. And Benchmark tests show that the ZX80 is faster than all other personal computers.

No other personal computer offers this unique combination of high capability and low price.

If the specifications of the Sinclair $Z \times 80$ mean little to you -don't worry. They're all explained in the specially-written 128-page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming - from first principles to complex programs. (Available separately-purchase price refunded if you buy a ZX 80 later.) A hardware manual is also included with everykit.

The Sinclair ZX80. Kit: £79.95. Assembled: £99.95. Complete!

The ZX80 kit costs a mere $£ 79.95$. Can't wait to have a 2×80 up and running? No problem! It's also available, ready assembled and complete with mains adaptor, for only $£ 99.95$.

Demand for the ZX 80 is very high: use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your ZX80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your $\mathrm{ZX80}$ as received within 14 days for a full refund. We want you to be satisfled beyond all doubt - and we have no doubt that you will be.

$\square \square \square \square$ 2×80

Science of Cambridge Ltd
6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: 0223311488

ZX80 softwarenow available!

See advertisements in Personal Computer World, Electronics Today Internationial, and other journals.

New dedicated software-developed independently of Science of Cambridgereflects the enormous interest in the $\mathbf{Z \times 8 0}$. More software available soon-from leading consult ancies and software houses

Please print

Name: Mr/Mrs/Miss
Address

PRACTICAL ELECTRONICS PROJECT 125 WATT POWER AMP KIT

SPECIFICATIONS

Max Ourput power Operating voltage (DC) Loads Frequency re spon Sensitivity for 100 watts Typical T.H.D. @ 50 watts 4 ohms load Dimensions Dimensions 0.1 \% The P.E. power amp kit is a module for high power applications - diseo units. guitar amplifiers, public address systems and even high power domestic systems. The unit is protected against short circuiting of the load and is sate in an open circuit condition. A large safety margin exists by use of generously rated components, the 50.80 Max 4.16 ohms
$25 \mathrm{~Hz} \cdot 20 \mathrm{kHz}$ 5 $25 \mathrm{~Hz} \cdot 20 \mathrm{kHz}$
output stage uses four $\mathbf{1 1 5}$ watt transistors normally only two would be used, result, a high powered rugged unit. The PC Board is backprinted, etched and re ady to drill for 50.80 Maz . ease of construction, and the aluminium chassis is proformed and ready to use. supplied with all parts and circuil diagrams.
 ACCESSORIES
 Suitable Mains Power Supply Unit
sutficient for one power amp ACCESSORIES available only when purchasing packs.

AS FEATURED IN PRACTICAL ELECTRONICS OCTOBERISSUE

DIY STEREO BARGAIN PACKS FEATURING FAMOUS BUILT MULLARD PREAMP MODULES

In easy to build form P.C.B.s backprinted. etched and drilled ready to use.

BUILD A 12 WATTS PER CHANNEL STEREO AMPLIFIER
ACCESSORIES AND L.S. KIT EXTRA (not available separately)
DIY PACK $12 \times$ power amp kits LP1182/preamp module, suitable for ceramic and auxiliary inputs. DIY PACK $2 \quad 2 \times$ power amp kits LP1184 preamp module suitable for magnetic. ceramic and auxiliary inputs. DIY SPEAKER KIT Two $8^{\prime \prime} \times 5^{\prime \prime}$ approx.

$$
4 \text { ohm bass. }
$$

DIY ACCESSOAIES Mains transtormer smoorhing capacitor rectifier $4 \times$ slider controls. for base. treble and volume.
plus f 1.60 p 8 p
ACCESSORIES: Available only at time of purchase of Bargain Packs

12+12 WATT AMPLIFIER

 NIT NOTE: tor use with 4108 ohms speakers. With up-to-the minute features. To complete you just supply screws, connecting wire and solder. Features include din input sockets for ceramic cartridge, microphone, tape of tuner.Outputs-tape, speakers and headphones. By the press of Outputs-tape, speakers and headphones. By the press of a
butron it trans forms into a 24 watt mono disco amplifier with twin deck mixing. The kit incorporates a Mullard LP1183 preame module, plus 2 power amplifier assembly kits and mains power supply. Also featured 4 slidet level controls, rotary bass and treble controis and 6 pusth button switches. Silver finish fascia panel with matching knobs. Easy to assemble teak simulate cabinet and ready made metal work. for further information instructions are available price 50 p . Free with kit. Size 94/" $\times 8$ 8" $^{2} \times 4$ " approx.
NOTE:
for use with 4108 ohms speakers.
plus 22.55 p\&

OFFER!
SAVE MONEY by purchasing $12+12$ amp kit, BSR
PRACTICAL ELECTRONICS CAR RADIO KIT
(Constructors pack 7)

- Incorporsies suppression circuits - Wow with tapo input socker

All the electronic components to build the radio. you supply only the wire and solder as featured in the Practieal Electronics March issue. Features: Pre-set tuning with five push button options. black illumins ted tuning. scale, with matching rotary control knobs. one, combining on/off volume and tone-control, the other for manual funing. each set on wood simulated fascia. The P.E Traveller has a 6 walls output, neg ground and incorporates an integrated circuit output stage, o Mullard IF module LP1 181 ceramic filter type, pro-aligned and assembled and a Bird pre aligned push bution tuning unit. The radio fits easily in or under dashboards
Complete with instructions.

CONSTRUCTORS PACK 7A

Suitable stainiess stael fully rerractable locking aerial and spanker (appror $6^{\prime \prime} \times 4^{\prime \prime}$) is $\mathbf{f 1 . 9 5}$ par pack parable as a kut compiet te 7 A may only be purchased at the same time os Pa NOTE: Conssuctor's pack 7A sold complete with radio kit $\mathbf{1 5 . 2 0}$ including p\&o. fEATURED PROJECTIN PRACTICAL ELECTRONICS.

$$
4 \text { ohm bass. }
$$

£25.50
p\&p $£ 4.50$.

BSR chassis record player deck with manual sel down and return. complete with stereo ceramic
 carlidge. $\mathbf{8 8 . 5 0}$ plus $\Gamma 2.75$ p\&op when purchased with amplifier available separately $\mathbf{£ 1 0 . 5 0}$ plus $£ 2.75 \mathrm{p} \& p$. TWO WAY SPEAKER KIT. 2 Phillips $8^{\prime \prime}$ approx speakers $\mathrm{f4} .75$ per stereo pair plus $[1.50$ p\&o when purchased with amplifier available separately $\mathbf{£ 6 . 7 5}$ plus $£ 1.50$ paro.
ALSO AVAILABLE Stereo magnetic pre-amp conversion kit all components including P.C.B. to convent your ceramic input on the $12+12$ amp to magnetic. $\mathbf{f 2 . 0 0}$ when purchased with kit featured above. $\mathbf{~} 4.00$ separately inc. plop.

30 + 30 WATT STEREO AMPLIFIER BUILT AND TESTED
Viscount IV unit in teak simulate cabinet silver finished rotary controls and pushbuttons with matehing fascia, red mains indicator and stereo jack socket. Functions switch for mic magnetic and crystal pickups. tape and auxiliary. Rear panel features fuse holder. OIN speaker and input socket $30+30$ watts. RMS $60+60$ watts peak for use with 4 to 8 ohm speakers. Size $143^{\prime \prime} \times 10^{\prime \prime}$ approx.
ready to play $£ \mathbf{3 2 . 9 0}$ ancuraso

323 EDGWARE ROAD. LONDON W2
21 b HIGH STREET, ACTON W3 6NG
ACTON: Mail Order only. No callers ALL PRICES INCLUDE VAT AT 15% All items subject to svailability. Price correct at 1.9 .80 subject to change without notice.

For further information send for instruction booklet wOTE: 20 plus stamped addressed envelope. Persons under 16 years not served without parent's authorisation.

BSR Manual singlu play record deck with auto return and cueing lever. Fitted with stereo ceramic carridge 2 speeds with 45 rpm spindle adaptor ideally suited for home or discouse.
$f 12.25^{\text {anperact }}$
 PHILLIPS RECORD PLAYER DECK GC037

Hi Fi record player deck 2 speed, damped cueing, auto shut-off, belt drive with floating sub chassis to minimise atoustic feedback. Complete with GP401 stereo magnetic cartridge-LIMITED STOCK UNBEATABLE DFFER AT
$£ 27.50$
BARGAIN OFFER!!

Size approx $13^{\prime \prime} \times 11^{\prime \prime}$

FFER!!

ARISTON PICK UP

Ariston pick-up arm manufactured in Japan.
Complete with headshell. Listed price over $£ 30.00$

100 WATT

 MONO DISCO AMPLIFIEROUR PRICE plus C2.50 p\&p

Brushed aluminiou fascia and rotary controls. Size approx $14^{\prime \prime} \times 4 " \times 10 \%$. Five vertical slide controts, master volume, tape leverl, mic level. deck levet, PLUS INTER OECK FAOER for perfect graduated change from record deck No. 1 to No. 2. or vice versa. Pre fade level controls (PRL) lets YOU hear next disc before fading it in. VU meter monitors output level. Output 100 watts RMS 200 watts peak.
$£ 76.00$

50 WATT MONO DISCO AMPLIFIER

Size appor $13 \%^{\prime \prime} \times 5 \%{ }^{\prime \prime} \times 63 \omega^{*} .50$ watts rms. 100 watts peak
gutput. Big teatures include two disc inputs, both for ceramic cartridges. tape input and microphona input. Level mixing controls fitted with integral push-pull switches. Independent bass and treble controls and master volume

£30.60

plus 53.20 p 8 p

[^2]
NOSTALGIA!

THE industrial revolution left its mark and today early machinery is a fascinating reminder of how things developed. A traction engine at full song, or one of the well preserved steam engines powering out of a station are awe inspiring sights. We can all explain something of their operation to the kids and show them the stack of coal, the fire and the steam. Even an old typewriter can be quite fascinating, but what will we leave behind from the m.p.u. revolution for others to marvel at!

The fascination of a UK 101 or a PET in seventy-five years' time does not seem to carry the same feelings-and how many of us could explain the basic operation? Presumably a few nostalgic types will keep them alive and perhaps specialist firms will make outdated chips to order. BASIC will probably be a lost language to most and maybe some will marvel at that old fashioned p.c.b. and the push button keys for communicating with the beast.

Possibly the preservation of a 6502 under a microscope will be of interest, but we doubt it. As technology moves on at its ever increasing pace "the man in the street" has less and less knowledge of the theory and circuit
operation of the equipment. As the operation of new technology products becomes easier, that already basic knowledge will diminish even further until we will blindly use the products without even trying to understand them.
This situation is of course already coming about; we wonder how many musicians understand the operation of the modern "computer organ" or of the new generation of programmable rhythm generations now becoming popular. Of course it is still necessary to understand music in order to do one's own original programming, but just how much longer will even that be necessary.

KEEPING UP

We hope that PE can continue to keep readers abreast of the general principles of high technology devices. It has always been our policy to explain circuit operation, although these days we cannot go into detailed circuit operation of I.s.i. devices. The PE Master Rhythm project starting next month will explain the principles of operation, in addition to providing full constructional information, on a rhythm unit we believe to be better than its commercial counterparts.

This issue looks at the next significant step in the development of artificial intelligence-the synthesised voice. We will show how to construct an interface for a speech synthesiser module so that our UK 101 can tell us where to get off. The computer is one of the main uses for synthesised speech, but not by any means the only one; we intend to publish a digital readout project with an add-on speech board for those that want it. The project, with luck, will come out early next year.

Finally we are pleased to bring you another component supplier's catalogue-free with next month's issue. Regular readers will have collected a number of free catalogues over the past few years and we anticipate this situation continuing. Next month all UK copies will carry the new larger format, 68 page Electrovalue catalogue. Electrovalue were the first British mail order component supplier to computerise their business and are now highly experienced in stock control, order processing, etc., by computer. They have had a working system for many years-some things are not as new as they seem.

Mike Kenward

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR
Jasper Scott PRODUCTION EDITOR

Jack Pountney ART EDITOR

Keith Woodruff ASSISTANT ART EDITOR John Pickering SEN. TECH. ILLUSTRATOR Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY

ADVERTISEMENT MANAGER \quad D. W. B. Tilleard $\} 01-2616676$ SECRETARY Christine Pocknell
 AD. SALES EXEC. Alfred Tonge 01-2616819
 CLASSIFIED MANAGER Colin Brown 01-2615762

[^3]
Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics). IPC Magazines Lid., Lavington House, 25 Lavington Street, London SE1 OPF, at 95p each including Inland/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.30$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 11.80$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

TOUGH CASE

With provision to accommodate almost everything except the kitchen sink, the Antler D532 deluxe tool case should be everything the budding service engineer needs.

With a frame made from hardened aluminium and moulded ABS shells, the case combines light weight with strength. Inside, there is a multi-pocket lid wallet to hold manuals, and tension tool straps which can be

swiftly adjusted to hold any shape or size of tool. The base area is left open to hold larger tools and instruments. As the case is likely to be quite heavy when in use, the swing handle is bolted on. Overall size of the case is $460 \times$ $340 \times 145 \mathrm{~mm}$.

Priced at $£ 42.50$ plus VAT, the Antler D532 is available from:

Toolrange Ltd., Upton Road, Reading RG3 2 JA.

THE PLATMETER

A dual range, dual accuracy indicator designed for use with platinum resistance thermometers with characteristics to BS 1904 or

DIN 43760 is announced by the Platline Division of Rosemount Engineering Co Ltd.

The 'Platmeter', which has an l.c.d. readout, is part of the Platine range of associated devices using platinum resistance technology. Designed to fill a gap between hand-held devices and bench-mounted instruments, the indicator is light in weight, readily held while in operation, and can also be placed on any flat surface for easy reading.

Its dual range facility enables temperature in the range of $120^{\circ} \mathrm{C}$ to $700^{\circ} \mathrm{C}$ to be resolved at the flick of a switch without the need to change the indicator or probe. This eliminates the tolerance errors in indicator and probe that are applicable to a single-range instrument.

The Platmeter is supplied compete with nickel cadmium batteries and charger. A warning that the battery voltage is low is indicated automatically at least 30 minutes before recharging is essential. An electrical interlock disconnects the battery when the probe is disconnected from the unit, preventing battery discharge.

Further information on the Platmeter is available from: Rosemount Engineering Co. Ltd., Durban Road, Bognor Regis, Sussex PO22 9QX (0243 863121).

TWELVE PLUS TWELVE

Pictured below is the $12+12$ watt stereo amplifier kit from RT-VC. Succeeding their 10 +10 watt model, the kit is based around the Mullard LP1183 pre-amp module. The amplifier features slider level controls, push button switches, and inputs for tape, tuner, mic and ceramic cartridge.

The kit comes complete with metalwork and an easily assembled wood finish cabinet-all that is needed are screws, solder and wire. The instructions and diagrams are quite easy to follow provided that they are thoroughly studied. As well as resulting in a satisfying finished product, the kit should provide the less experienced constructor with a good introduction to building more ambitious projects.

Priced at $£ 13.95$ plus $£ 2.55$ postage and packing, the kit is available from:

RT-VC, 21b High Street, Acton, London W3 6NG.

SOLAR EFFICIENCY

A new differential temperature switch (DTS) for use in solar heating systems is now available from Microvitec Limited. The DTS1 is controlled by silicon chips and is programmed to operate the circulating pump to achieve maximum energy transfer efficiency.

Microvitec analysed the latest research in this field which showed that the pump could consume more energy than a solar system extracted, if it operated at the wrong temperature differential. This is particularly important at low winter temperatures. A differential of $4.5^{\circ} \mathrm{C}$ between the paneis and the pre-heating cylinders proved optimal. With these figures Microvitec designed the DTS1 using semiconductor sensors which are capable of monitoring differential temperatures accurately.

The DTS 1 has two probes, one to monitor temperature at the exit point of the panels, the other at the exit from the cylinder to the pump. Thus they are placed at the highest and lowest temperature points in the system. The pump starts to operate when the temperature in the panels is $4.5^{\circ} \mathrm{C}$ above that in the cylinder. The sensors continue to read the temperature and the pump is switched off when the differential drops to $1.5^{\circ} \mathrm{C}$. The DTSI temperature hysteresis is therefore $3^{\circ} \mathrm{C}$ nominal.

The use of silicon chips has several advantages over thermistors which are traditionally used in these systems. The linear probes are highly stable and do not age. This means that performance does not vary and so considerably improves long term stability. The inclusion of integrated circuits, both in the
probes and the control panel, ensures long maintenance free operation. In addition, the DTS1 has been fitted with a test socket to allow the system to be checked without being dismantled.

The whole unit is encased in a fire-proof metal box making it easy and safe to handle. A further economic advantage is the low power consumption-the DTS 1 needs only 2VA (excluding the pump) to run. It is also interference free because of built-in suppression.

The DTS1 has been designed to British Standards 415 and 3861. The pump control switch can be changed to an override position from the normal automatic mode to check pump performance. Neon indicators show when the system is powered and also when the pump is working.

Microvitec's DTS1 is in full production and has already been installed by one manufacturer of domestic solar heating equipment with very satisfactory results.

Further details are available from: John Martinez-Perez, Microvitec Ltd., PO Box 188,
Bradford BD8 9HH (0274 499672).

CASIO PRESET SYNTHI

Casio, acknowledged as the world leaders in the calculator and watch market have just launched a new range of keyboards-musical, that is. With the painstaking market research that is characteristic of the Japanese, I've no doubt that they will prove popular, as they combine novelty with a compact size which is ideal for the modern home.

The Casiotone 201 has a 49 note keyboard with 29 digitally synthesised voices selectable by pressing any one of the 29 white keys. It is possible to preselect a total of four voices at any one time and alternate between these

whilst playing, so providing tonal variety. It is partially polyphonic inasmuch that chords of up to eight notes can be played together.

The internal amplifier delivers 2 watts and there are tone and vibrato facilities to expand its entertainment capability. Connections are provided for rhythm unit, reverb or external amplifier. The latter dramatically expands the possibilities of the 201 when used as a combo solo instrument, as was demonstrated by the Dooleys who helped Casio with the launch promotion.

The $\mathrm{M}-10$ is a smaller instrument of $2 \frac{1}{2}$ octaves and four preset voices.

The 201 is priced at $£ 285$ and the M-10 £79. For further information contact: Casio Electronics, 28 Scrutton Street, London EC2A 4TY.

THANDAR DMM

The latest addition to the Thandar range of low-cast test equipment is the TM352 l.c.d. multimeter. This is a battery operated $3 \frac{1}{2}$ digit instrument with a 0.5 in display with over-range indication.

The TM352 has an input impedance of $10 \mathrm{M} \Omega$ and covers 16 ranges: d.c. volts $100 \mu \mathrm{~V}$ to 1000 V (5 ranges), a.c. volts 100 mV to 1000 V (2 ranges), d.c. current $100 \mathrm{nA}-10 \mathrm{~A}$ (5 ranges) and resistance 1Ω to $10 \mathrm{M} \Omega$ (4 ranges).

There is an audible continuity check feature which will sound if the resistance is less than $130 \Omega \pm 50 \Omega$ and an hfe measurement facility. Range and function selection is via side moun-
ted push-button switches. The unit, which will operate for in excess of 150 hours from a single PP3 battery, has all its ranges protected by a 0.5 A fuse except for the 10 A range which is unprotected.

The TM352 is supplied complete with battery and test leads and accessories include a

universal test set, 40 kV high voltage d.c. probe and carrying case.

The TM 352 is priced at $£ 49.95$ excluding VAT and $p \& p$.
A. Marshall's (London) Ltd., Kingsgate House, Kingsgate Place, London NW6 4TA. (01-624 0805)

TANDY POCKET POWER

The new Tandy TR5-80 Pocket Computer is the latest addition to the TRS-80 range. This pocket-sized unit measures only $175 \times 70 \times 15 \mathrm{~mm}$ and retails at $£ 119$ including VAT.

The unit is battery powered and programmes can be loaded, and retained for up to 300 hours (the life of the battery), even when the power is switched off.

There are already eight packages of software available to cover varying needs. These include civil engineering, aviation, maths drill, business statistics, real estate, personal finance and a games package. These will
be priced from $\mathbf{8 8 . 9 5}$ to $\mathbf{8 1 3 . 9 5}$ (including VAT).

The Tandy Pocket Computer has a 4-bit CPU consisting of two microprocessors. It can carry 1.9 K of user memory (RAM) and a total of 11 K of ROM -7 K for the BASIC interpreter and approximately 4 K for the monitor. Using the cassette interface ($£ 17.95$), multiple programmes can be loaded from cassette tape without the previous programme being erased. Each programme in RAM can be executed selectively by a simple key input.

The machine has a display screen and a 57-key alpha-numeric keyboard. A user manual is included.

The Economy

The economic squeeze continues accompanied by well orchestrated cries of disaster from pressure groups under real or imagined threats. As I have often pointed out in this column, if all UK industry achieved the overall performance of the electronics industry there would be few problems.

But even electronics is now feeling the pinch. One sector which always gets a hammering in times of economic stringency is test and measuring instruments. Potential buyers tend to hold back and make do with what they already have. Instrument salesmen, faced with declining sales, have always been prone to make private deals with special discounts for favoured customers and not only for bulk orders.

Now I note that one leading company has publicly slashed catalogue prices by some 10 percent due, it is claimed, to increased manufacturing efficiency and production levels. The claim is no doubt entirely honest but it is market forces that have resulted in the reduction. In effect, the savings are being passed on to the buyer, or at least shared by both parties. If sales volume rises, then the manufacturer can still win. In fact everybody wins. It is the problematic 'if' in the equation that is the root of worry for the manufacturer who has traded some of his profit margin in the expectation of greater volume.

This homely example of elementary economics is the central theme of the Government economic strategy aimed at increasing the efficiency and therefore the competitive position of British industry. Critics of Government policy say that the strategy is too simplistic for what is called a complex modern industrial society. But at least it is something that people can understand. Of course nothing is starkly black and white, and never will be, but as a general principle it is true that firms have
the option of pricing themselves in or out of a market and that people can price themselves in or out of jobs.

It is impossible to forecast the eventual outcome of the squeeze if only because of the many factors which cannot be under Government influence. The general world recession in trade, for example, or the loss of a particular market like Iran and political instability elsewhere which may temporarily upset trade.

What can be said is that present policy is a marked change from former policies which have been tried and found wanting. It is a harsh doctrine, often seemingly unfair, and not without controversy in the Conservative party itself.

Monopolies

One of the most extraordinary facets of present economic policy is the almost quiescent reception given to proposals considered outrageous by many people only a couple of years ago, a heartening indication of public acceptance of the need for change. It seems hard to believe that the state monopoly in telecommunications has been in existence for 111 years. Now it is to go and there will be a free market for telecommunications services more like the American system where competition is fierce and efficiency unparalleled anywhere in the world.

Response was muted from the BPO and the Post Office unions. The Government played safe by only relaxing the existing monopoly and not smashing it. The same with the postal services. The changes were well discussed in advance and, from the viewpoint of those directly affected in entrenched positions, were probably less drastic than once feared.

The big surprise however, was in electricity supply which, subject to future legislation, will no longer be a state monopoly. Any organisation will be able to generate and distribute electricity on a commercial basis. This is a big jump from present legislation which allows private generation providing it is not a main part of the business. Some 15 percent of total electrical power consumption in the UK is already generated privately by industrial users.

Even if the legislation is introduced, and no date has yet been fixed, it is unlikely that it will have much practical effect in terms of direct competition with the electricity boards. Nonetheless, it will have a psychological effect in gingering up the performance of the state industry.

The erosion of the great state monopoies is an opportunity for private industry to step in. Whether and how the opportunity will be seized is still a matter for speculation although there is already considerable activity in telecommunications where the opportunities are greatest.

Inmos

So Inmos has received its second £25 million from public funds. The decision was
a long time coming and probably reflects on Government distaste for state funding. But Inmos had to give way on the siting of the UK production plant which is now to be in South Wales. This, again, is against the general principle of Government nonintervention in industrial management. It suggest that behind a facade of rigid conviction there is in fact at least a measure of flexibility in bending policy to meet political situations as they arise.

But six valuable months have been lost during. which the other semiconductor manufacturers have not been idle. Revised schedules in Inmos are for UK production of memories by mid-1982 and microprocessors in 1983. Sample Inmos memories are now available to the trade with first production from the US plant at Colorado Springs early next year. The UK plant, when it starts production, will have the advantage of moving straight into a mature product already de-bugged. A published revenue plan shows a fantastic growth curve starting at $£ 0.3 \mathrm{~m}$ this year rising to $£ 145.9$ million by 1984. Perhaps wisely, there was no public forecast of profits.

Buoyancy

Despite all the gloom stories the electronic industry remains buoyant. True that Plessey, at the time of writing, looks likely to lose a plum hoped-for contract worth f400m in Iraq to the French company Thomson CSF. But Plessey is prospering in general and so are others in electronics, both large and small.

TV, radio and the popular press are so obsessed with disaster that they fail to report success. An example is the Marconi Avionics contract from the US Air Force for new-technology head-up displays for fitting in F-16 fighters and A-10 close support aircraft. The development programme is for $\$ 13$ million and production options make the contract worth a potential $\$ 100$ million. Another is Standard Telephones and Cables f2Om contract for a new submarine cable between Greece and Cyprus. And there are plenty of other examples of enterprise virtually ignored.

Despite the excellent results of the past few months, industry leaders are hedging their bets by claiming only cautious optimism'. Even Racal Group chairman Ernie Harrison, normally bullish in sentiment, qualifies his optimism by referring to the inflation rate and the strength of the pound sterling. Yet Racal's order books are at record level as, indeed, are GEC-Marconi Electronics and Plessey.

One wonders why Britain's balance of payments last July, the best ever, were greeted by the media with utter scepticism rather than joy. Or why the mid-year reduction in inflation had a similar reception. Of course it would be stupid to ignore the many industrial and economic problems which will be with us for a long time yet. But, equally, we should not ignore the many bright aspects of our industrial performance.

ELECTRONICS

This new range of Electronics from Videotone redefines the words quality and value for money to a new high.

$\mathbf{3 0}$ watt amp MC input SA4130	$\mathbf{£ 7 5 . 0 0}$
Stereo Tuner ST4120	$\mathbf{£ 6 8 . 0 0}$
Cassette full features SC3200	$\mathbf{£ 9 8 . 0 0}$
50 Watt amplifier WA7700	$\mathbf{£ 7 7 . 0 0}$
20 Watt amplifier LA2020	$\mathbf{£ 5 8 . 0 0}$

CORAL CARTRIDGES

Fast becoming one of the top names MOVING COIL
UK's No. 1 Cartridge
MC $81 \quad £ 48.87$
777EX £35
777E £25
MOVING MAGNET
555SX £7.28
555E £14.22
666E \quad £32.48

HEAD AMP

H300 £51.75

T100 £24.75

HEADSHELLS

S100 £6
S101

£
£

MICROPHONES
MU 105-22
£29.30
MU 105-12
£22.25
MU 25 C
£17.39

TURNTABLES

Sansui SR222 Mk2 £69.00 JVC LA $11 \quad £ 64.00$
JVC SLQ 3
£140.00

A MESSACE FROM VIDEOTONE

Dear Customer You will find that ine productis value for manertised on this page are the best possible have elliminated large amounts of selling costs that other brands have to suffer. These savings are seling costs that other brands full brochures on any specific ite passed directly on to you. We have competent realistic staff of fic item you may be interested in and a help you in your choice. Our consumer protection packowrooms to comprehensive and we offer every form protection packages are We carry out our own servicing and are dedicated to you may require. Money. We are confident our prod are dedicated to giving Value for purchase with confidence our products are unbeatable. You may selected them from competitive sour Engineers have specially selected them from competitive sources throughout the world and Remember, you have 21 days trias. period on all products. That Is the measure of our confidence.

HEADPHONES

HP 90 Headphone
£12.65
HP 80 Headphone
$£ 9.69$
Superbly made with top flight performance.

SEND FOR OUR

LATEST FREE BROCHURE
AND DETAIL LIST OF LOCAL

SALES OUTLETS IN THE U.K.

ALL PRICES INCLUDE VAT

AITKEN BROS

35, High Bridge, Newcastle upon Tyne

EXP300

PB6 Kit

EXP300
550 contacts with two 50 -point BuS bars. Size $152 \times 53 \mathrm{~mm}$. $\mathbf{C 6} .95$. PROTO-BOARD 6 KIT 630 contacts, four 5 way binding posts, accepts up to 614 pln DIPs. \$10.98.

CSC LOGIC PROBES

LP-2 ECONOMY PROBE

Min. pulse width 300 nanoseconds, 300 KQ input impedance, rests circuits up to 1.6 MHz . Detecting pulse
trains or single-shot event in TTL. DTL. HTL and CMOS cwcults. $£ 20.95$.
LP-1 Memory Probe E35.65 LP-3 High Speed Memary Probe E56.75 CSC catalogue available. Please serd S.A.E.

CALSCOPE SUPER 6 £186.30

A portable single beam 6 MHz bandwidth oscilloscope with easy to use controls. High gain to $10 \mathrm{mv} / \mathrm{cm}$ and wide time base range from 1μ to $100 \mathrm{~ms} / \mathrm{cm}$. Full specification to re. quest. Please send S.A.E. Professional scopes you can afford.

CALSCOPE SUPER 10 f251.85

A dual trace 10 MHz instrument of the very highest performance and quality. It has an accuracy of 3% which is achieved by the use of buitt-in stabllised power supplies which keep the trace rock steady over a wide range of mains

SINCLAIR LOW POWER PORTABLE

 OSCILLOSCOPE SC110 £159.85The SC1 10 has a 10 MHz bandwidth and sensitivity down to 10 mV per division. Full trigger facilities are provided, including bright line, auto with TV line and frame positions. Please send for full spec. and illustrated brochure.

TMK 500 MULTIMETER 30,000 o.p.v. AC volts $2.5,10.25,100,250,500,1000$. DC volts. $0.25,1,2 \cdot 5,10,25,100,250,1000$. DC current 50 al . $5 \mathrm{MA}, 50 \mathrm{MA}$. 12 amp . Resistance $0-6 \mathrm{~K}$. 60K, 6 MEG , 60 MEG . Decibels. $-2010+56 \mathrm{db}$. Buzzer continuity test size, $160 \times 110 \times 55 \mathrm{MM}$. Batteries, leads. and carrying case included. PRICE 22.95 .

CSC EXPERIMENTOR BREADBOARDS
No soldering modular breadboards, simply plug components in and out of letter/number identified nickel-silvet contact holes. Stant small and simply snap lock boards together to bulld breadboards of any size.

SINCLAIR DM350
 SINCLAIR DM450

£83.96
£114.95
DM350 $3 \frac{1}{4}$ digit display DM450 dight display. Both provide six functions in 34 ranges. D.C. voltage $10 \mu \mathrm{~V}$ to $1200 \mathrm{~V}(100 \mu \mathrm{~V}$ on DM350) A.C. voltage 100 N to 750 V . D.C. current inA to 10A. A.C. current InA to 10A resistance 10 m の to $20 \mathrm{M} \Omega(100 \mathrm{~m} \Omega$ opn DM350). Accessories for DM350 \& 450 as for DM235 below. Full spec on request.

ease send S.A.E.

Sinclair PFM200 frequency meter
Size $157 \times 76 \times 32 \mathrm{~mm}$.
PDM35 below. £57.95.

SINCLAIR PDM35

DIGITAL POCKET MULTIMETER 500 V DC current (6 ranges) 1 nA to 200MA. Resistance (5 ranges) 1Ω to 20 MEG Ω. PRICE $£ 39.95$ AC Adaptor $£ 4.25$ de luxe padded carry ing case £1.95 MN 1604 Battery £1.28.
Size $157 \times 76 \times 32 \mathrm{~mm}$.
SINCLAIR DM235
BENCH-PORTABLE DIGITAL

MULTIMETER.

DC volts i4 ranges) 1 mV to $1000 \mathrm{~V} A C$ volts (4 rangest 1 MV to 750 V AC \& DC current $1 \mu \mathrm{a}$ to PRICE $\mathbf{~} 60.98$. Carrying case £8.95. AC adaptor/charger. $\mathbf{£ 4} \mathbf{- 2 5}$. Rechargeable Battery Pack. 88.96.

Size $255 \times 148 \times 40 \mathrm{~mm}$.

PANELMETERS

DIMS 60MM $\times 45 \mathrm{MM}, 50 \mu \mathrm{amp}, 100 \mu$ amp 1 MA , $5 \mathrm{MA}, 10 \mathrm{MA}, 50 \mathrm{MA} .100 \mathrm{MA} .500 \mathrm{MA}$, 1 amp, 2 $50-0-50 \mu$, $100-0-100 \mu a, 500-0-500 \mu a$. PRICE ع5.95.

DESOLDERING TOOL

Education Establishment Orders Accepted. PHONE OR SEND YOUR ACCESS OR BARCLAYCARD NUMBER

MANY board games suffer from one disadvantage; boredom for all players except one at any particular time. The project described here provides increased involvement for all players, and makes use of a well known fact that in games there is nothing more satisfying than another person's downfall. Each player has a randomly chosen time limit in which to make his move. If he fails to do so before a pulsing alarm sounds, he loses his turn. The author found that it raised Scrabble to a very exciting level. Two "booby" time delays of a few seconds can be included, and of course all players except the one making the move hope that the "booby" has been chosen. A flashing l.e.d. is included to show that the timer is functioning, and the alarm was made to pulse to give the player, perhaps 5 pulses, to put his word down.

HOW IT WORKS

Two gates of IC1 (a \& b) are connected as a fast astable multivibrator, see Fig. 1, whose frequency is within the audio range. The other two gates are connected as a slow oscillator, which drives the l.e.d. The output from the fast oscillator is fed to the clock pin of a 4017 decade counter with 10 decoded outputs, only one of which is high at any one time. Pin 13 (Clock inhibit) is held high by R6, but when the pushbutton S 2 is pressed, pin 13 goes low, allowing the 4017 to clock between the various outputs at very high speed. When the pushbutton is released, only one output remains high and causes C3 to charge up, the rate of which is dependent on the value of resistor randomly selected.

Diodes were needed to isolate the resistor outputs from each other, otherwise the capacitor would discharge through the other 9 outputs which are low. The capacitor feeds into a 555 via pins 2 and 6 , which have also been brought low by the pushbutton. This has caused the output pin 3 to go high. As the capacitor charges up, so it crosses the threshhold voltage, and pin 3 goes low. This is connected to one input of IC4d, thus allowing the slow oscillator pulses from IC1c and IC1d to be fed through, inverted, and gate the fast oscillator IC1a and IC1b via IC4a. The resulting audio pulses go via a one transistor amplifier to LS1.

Pushing S2 automatically resets IC3 by driving its inputs low, discharges C3, and sets the 4017 clocking through the various outputs again, ready for the next player.

COMPONENTS ...

Resistors	
R1	27 k
R2	68 k
R3, R4	4 M 7 (2 off)
R5	1 k
R6	100 k
R7	6 k 8
R8-R17	see text (10 off)
Capacitors	
C1	10 n polyester
C2	330 n polyester
C3, C4	100μ elect.
Transistors and Diodes	
TR1	BC109
D1-D12	IN 4148
D13	Red l.e.d.
Integrated Circuits	
IC1	4011
IC2	4017
IC3	555
IC4	4001
Miscellaneous	
LS1	miniature loudspeaker
S1	SPST toggle
S2	push to make
P.c.b.	
Battery clip	
L.e.d. clip	
Box	

Fig. 1. Circuit diagram

CONSTRUCTION

Use of a p.c.b. is recommended for trouble free construction, and a suggested design is given in Fig. 2. Do not forget to include the wire link. Make sure you get the orientation of the i.c.s and the polarity of the capacitors and diodes correct. Refer to Fig. 3. Any small suitable box may be used to house the project. In the prototype case small plastic feet were included, but this prevented the use of mounting bolts, which would have protruded too far, so the p.c.b. was held in place with two double sided sticky pads. The l.e.d. and switches were mounted on the top panel, as was the speaker, using impact adhesive. There is room for a PP6 battery and this provides many months of use.

The values of resistors for R8-R17 is really the choice of the individual constructor. The author chose values between 100 k and 1 M which gives a range of approx 15 secs. to 2 mins., but then decided to include two booby resistors of $47 k+68 k$ to give delays of about 5 secs. This added extra spice to the game.

Fig. 2. Printed
Circuit (actual size)

Fig. 3. Component Layout

A B B to LS 1
C \& D to 51
E to batt. pos.
F to batt. neg.
G\& \mathbf{H} to $\mathbf{S O}_{2}$
I tol.e.d. anode
J tol.e.d. cathode

In use, as each player completes a move, he/she presses the reset button for the next player. If the alarm sounds the player has his 5 pulses to make the move before it is forfeited.

The biggest name in solder worldwide

Economy pack for general non-electrical use. Replaces solid wire and stick solder.(B.S. 219 GradeL) Econopak 200 g reel of 3 mm dia. Size 16 A. £4.14 per reel.

Toolbox Reels.
Multicore 5 -core solder for general use. Suitable for electrical joints (B.S. 219 Grade C)
$40 / 60$ tin/lead 1.6 mm dia. Size 3 . $£ 3.91$ per reel. Saubit.
Multicore 5-core solder for radio, T.V. and similar work. Reduces copper erosion. Suitablefor service engineers and manufacturers using small quantities of solder 1.2 mm dia. Size 12. $\mathbf{e} 3.91$ per reel.

Multicore Wick.
Multicore solder wick for removing solder from virtually any joint 1.7 mm dia. Size $\mathrm{AB} 10 . £ 1.38$ per reel.

Aluminium Soldering.
Alu-Sol Multicore 4 -core solder for soldering most types of aluminium. No extra flux needed 1.6 mm dia. Size 4 . 11.50 per reed.

Products that help you make a better job of it.

Handy Dispensers
Per pack
PC11

for radio circuits.
AR140 for non-electrical applica tions, except aluminium for stainless steel and silver jewellery.

E1.15
tions, except aluminium
£1.38
E2.53
19A for printed circuit boards-non-corrosive.
${ }^{96 p}$
AL150 for aluminium.
E1.93
solder cream for stainless steel, jewellery and house-
hold products (non electrical). $\mathbf{E 3 . 2 2}$
solder cream for electronic andelectrical use
$£ 1.38$
BCA14 all purpose solder cream, non-electrical jointing and repairing.
£1.38

Soldering Flux Pastes.
Multicore soldering flux paste. Extra fast, non corrosive, rosin-flux for electrical and general purpose soldering.
Rosin R.F10.35g net. 69p per pack.
Multicore soldering flux paste for soft metals (except aluminium) and stainless steel. Non-electrical. Arax A.F. 14.35 g .69 p per pack.

Ersin Multicore 5 -core solder Contains non-corrosive flux for electrical applications.
1.2 mm dia. 200 g Econopak. Size 13A. $£ 4.14$ per reel.

Metal Soldering.
Arax Multicore 4 -acid-core solder for metal fabrication (not aluminium) and repairs. $40 / 60$ tin/lead 1.6 mm dia. Size $11 . £ 3.91$ per reel.

Wire Stripper and cutter.

Wire stripper and cutter with precision ground and hardened steel jaws. Adjustable to most wire sizes. With handle locking catch and easy-grip plastic covered handles. Ref: $9 . £ 2.69$ per pair.

Bib Hi-Fi Accessories Ltd., (Solder Division), Kelsey House, Wood Lane End,

All recommended retail prices shown are inclusive of VAT. If you have difficulty in obtaining any of these products send direct with 40 p for postage and packing. For free colour brochure send S.A.E.
have constructed a brass head which talked. The immediate result of this was, of course, an accusation of practising magic! In the Thirteenth Century, the very knowledgeable Albertus Magnus constructed an earthenware head which his disciple is said to have smashed in fright upon hearing it talk.

It is possible that some substance may exist for the claims of some of these early workers, by the action of reeds and organ pipes, but the principles offered by some philosophers are amusing at best. It was thought by one that a hollow pipe could be fashioned to collect human sounds and indeed complete sentences, and return them to the ear when uncorked. By this means, he thought, messages could be sent without paper, and talking heads constructed!

Such was the state of the art by the seventeenth and eighteenth centuries: the desire for progress outstripping, as usual, technology's capability for its fulfilment. Deception was still very common, and not very advanced. Charles II and his court were astonished by a speaking head, shown by one Thomas Irson, which answered questions whispered in its ear.

THESE articles describe the fundamental theory of the synthesis of human speech, and the application of this technique to general microcomputer output. An interface board, developed by Modus System Ltd., and based on an American product, is described as a project. This board, very much as the PE VDU did in its "day", provides any microcomputer user with output in the most up to date manner possible. As examples of its application, interfaces are described for the EDUKIT and the Compukit UK 101.

HISTORY

Since time immemorial, mankind has tried to emulate the natural phenomena of bird flight and song, the colours of flowers, human activity and speech, and many other things. To some extent, of course, time has produced a degree of success in each of these areas.

In early Greek and Roman times, apparent emulation of human speech was important for the purpose of convincing people of the validity of such religious institutions as oracular pronouncements and idol worship. Even in those times, technology was of some use in aiding this deception. The priests of antiquity were aware of the properties of the speaking tube, and some instances have come down to us of statues speaking by virtue of such a device connecting an unseen talker with the unmoving lips. In the Middle Ages, speech synthesis was professed by some individuals for less supernatural reasons, namely to prove their ingenuity, and often to impress the monarch. In Pope Sylvester II's reign (999 to 1003), he is said to

At the height of their wonderment, a page discovered in an adjoining room a "Popish priest" answering through a speaking tube. Other deceptions involved the exhibiting of figures seated on boxes filled with bellows and sound boxes etc, which upon very careful examination concealed a dwarf.

In 1779, The Imperial Academy of St Petersburg decided to offer their annual prize for solving the problem of describing the difference between the vowel sounds: A, E, I, O and U, and constructing a device to voice these sounds. Professor C. G. Kratzenstein (the inventor of the vibrating reed resonator as used in the harmonica) solved the problem. He produced five resonant cavities, excited by vibrating reeds, very much as the human vocal chords excite the vocal cavities.

In 1791 came Wolfgang Von Kempelen's invention consisting of a bellows to supply a constant supply of air, as with the lungs, to a vibrating reed and hand operated resonant cavity. Several other cavities and additions such as "hissing" sounds were included to emulate all the human sounds. The device was even capable of uttering complete sentences, a fact which has been later proved by Sir Charles Wheatstone in 1837 by his reconstruction (see Fig. 1) and subsequent improvement to the original device.

The general prevalence of deceptions, however, made it difficult for this first complete mechanical synthesis device to be accepted. Especially as the inventor, Von Kempelen, was himself party to a deception involving a supposed chess playing automaton which won many games before a legless Polish general was found concealed within!

(Scientific American 1972 226:48/58)
Fig. 1. Sir Charles Wheatstone's reconstruction of Van Kempelen's speaking machine. A bellows fed air into a reed which excited the hand controlled resonator. Four separate restricted passages were included for the consonamts and nasals.

Fig. 2. The Human vocal system consists of two main tracts: The oral tract and the nasal tract. Sounds are produced in the glottis and resonances set up within one or both cavities depending upon the position of the velum.

Von Kempelen's synthesiser marked a major milestone in the art, and remained essentially unmatched until electronics took over, and a machine called the "VODER" was constructed for the New York World's Fair in 1939. Up to this point, the general method of synthesis revolved around copying the actual physics of the human vocal tract, (Fig. 2.)

The physics of natural voice production are those of acoustic filtering. A "wide band noise source" is employed in the glottis, where the vocal chords vibrate under the action of the air forced from the lungs. This vibration excites the cavity between the glottis and the lips, and/or the nasal cavity depending upon the position of the velum. The filtering action which occurs, accentuates certain frequencies, and modifies the sound from the noise source in a complex but well understood manner.

The Voder worked on these principles but took the important step of creating an electronic analogy. Instead of actually expelling air through a set of controllable cavities, a broad band electrical noise source and a random noise generator were filtered electronically, and then amplified and fed to a loudspeaker. The control of the sounds was via a set of hand and foot controls, and as no logic existed for synthesising words, each word had to be produced by the deft manipulation of the controls "in real time". The difficulty of the process, and the complexity of the instrument, can be assessed from the fact that each operator required a year's training, six hours a day, to produce continuous intelligible speech.

PRINCIPLES OF VOICE PRODUCTION

A description of human speech may be given in two different but connected ways. An analysis of the basic phonetic components from which each word in the English language is composed may be performed, and those "phonemes", as they are termed, may be synthesised by a machine, and "called up" as required to produce any given word when written in terms of its phonemes. The other analysis of the voice involves a classification of the exact types of sound which are produced during the enunciation of a word. This would classify the frequencies, speed of production, volume, attack and decay, etc., of these sounds as the word is spoken. To form a word, the necessary frequencies must be produced and mixed in "real time".

The former of these two approaches is termed "phonetic synthesis", and the latter, "frequency synthesis" in the following.

PHÖNETIC SYNTHESIS

The phonetics of human speech may be split, broadly, into three main components. They are the "voiced", "fricative" and "plosive" sounds. These are described in Table 1. In some cases,

CLASS	DESCRIPTION	EXAMPLE
VOICED	Continuous sounds such as vowels-the glottis resonates	"a" as in "far" "o" as in "toe"
FRICATIVES	Hissing sounds-the glottis is not required	" s " as in "sound" "sh" as in "wash" " h " as in "hat"
PLOSIVES	Short sharp sounds	" t " as in "hat" " k " as in "make"
MIXTURES	More than one of these sounds may be produced at once	"th" as in "that" is a mix of the fricative "th" and a neutral voiced sound

Human speech may be broken into three main classes of sound or mixtures of these.

TABLE 1
two such sounds may blend into one, an example is given under "mixtures" in Table 1. The fricatives are produced by expelling air through a restricted opening such as between the tongue and the teeth. Try saying "this" slowly-you will notice that your tongue starts behind the teeth and moves back. Two fricatives are thus produced one after the other, the first of which is a mixture of a voiced sound (the vowel I) and a fricative (th). By this means, you could build up a complete catalogue of the types of sound necessary to produce each word in the English language. To do this, you would have to classify a few more scales of sound than the three simple ones shown above. This type of analysis is very valuable for speech synthesis, and is called "phoneme analysis". There are some thirty to fifty such phonemes, or basic speech units, from which the majority of English words may be synthesised. If a machine can be built to reproduce these noises, then each word can be written in terms of its phonemes, the information fed digitally to the machine and words produced. Table 2 lists some of the common phonemes with examples of their use, but is by no means complete.
There are several devices on the market which allow you to perform this type of phoneme construction. The word is first written in a code unique to each machine, and the data fed in, often under BASIC. The speech synthesiser then produces the

PHONEME	USAGE
Vowels: aw ae ah a e eh er	taught man calf make be excellent surge
PLOSIVES: b k t	bad computer top
FRICATIVES: th sh h	thanks rash have
SEMI-VOWELS: w	with yours
$\text { NASALS: } \underset{n}{m}$	$\frac{\operatorname{man}}{\operatorname{man}}$
OTHERS: 1	law ran

English words may be broken down into a number of basic units from which any word may be synthesised-these units are called phonemes. Some of them are illustrated here.

TABLE 2

phonemes thus indicated. in the correct time sequence to be heard as a word. The Microspeech Board by Tim Orr (see Micro Bus, PE June 1979) is an example of this type of system.

FREQUENCY SYNTHESIS

To understand the second type of speech synthesis, it is necessary to appreciate the exact frequency structure of the voice sounds themselves. The sound we hear when a word is spoken is composed of several basic frequencies which are mixed together in varying proportions as the word is spoken. In addition, the actual frequency pitches themselves change over the time of the word.

To view the actual frequencies and sounds encountered, the vocal tract should be examined again (Fig 2.) It is clearly seen that there are essentially two resonators available to us during oral speech. These are the full vocal tract from the Glottis to the lips, and the nasal tract. Each of these contributes to word production. It should be borne in mind that they act as resonant filters on the noise produced by the Glottis. The most important cavity of the two, is the tract ending in the lips. In English, the nasal passage is used for only a few sounds (n and m). The main tract may be viewed. ideally, as a single ended resonant cavity of around 17 cms in length. (Fig. 3.) Some ' O ' level physics reveals that the sort of resonances which such a pipe may suffer are only those of odd-multiple quarter-wavelength as shown. For the length of 0.17 m and the speed of sound under normal conditions of $330 \mathrm{~m} / \mathrm{s}$. the first three (and most significant) resonances will be as shown. Since the "noise source" which makes the cavity resonate contains all these frequencies, and more, these are available to be accentuated, or filtered out by the cavity. They are called the first three "Formants", and they change continuously during any utterance. Their ranges are given, very approximately. The reason for the frequency variations during word production, is concerned with the complexity of the vocal tract and the constant adjustments made by the musculature during normal speech.

E $E \leq 10$

Fig. 3. The first three resonances of a 17 cm long cylinder (with one closed end) are shown here. This gives a guide to the main resonances (Formants) of the vocal tract.

These formants may be adjusted in pitch and mixed in different amplitudes to produce the pure voiced vowel sounds. However. they are not sufficient to produce the nasal sounds, which rely on a separate resonator, or the fricatives which are full of random noise. Two more generators are thus necessary for the complete sound. This gives just five different generators to be controlled for a full synthesis. However, these controls involve volume as well as pitch over the time envelope of each word. This type of real time control requires something of the complexity of a microprocessor.

CONSTANT VOWELS

	F1	F2	F3
ee as in seed	240	2300	2900
oo as in wood	420	950	2400
o as in rod	770	1100	2500
aw as in door	570	900	2400

DIPHTHONG VOWELS:		
toy	F1	F2
prow	$400-500$	$1100-2100$

English vowel sounds are produced by adjusting the mix of formants present in the final sound. Diphthongs are produced by smoothly running vowels into each other.

TABLE 3

To illustrate the formant variation during voice production, Table 3 gives typical values to the formants during the constant and diphthong vowel sounds. To appreciate the difference, try saying these sounds to yourself in a normal tone, and listen for the pitch changes. you should not drop your voice as you say the words. The constant vowels use, essentially, constant pitches for the formants, while the diphthong gains its variation by changing the formant pitches as the vowel is sounded. Diphthongs may be considered as mixtures of vowel sounds, which run into each other. The total structure of the voice sounds includes fricative pitch and amplitude changes, as well as nasals. A com-

6667
Fig. 4. This "classical" voice synthesis unit requires just nine parameters to specify a single sound (four "volumes" and five frequencies). The "frame" of nine parameters is updated (typically) fifty times a second during the production of a word.
plete list is beyond our present scope, but a fuller picture is introduced below, when electronic voice synthesis is described in more detail.

STORAGE OF SPEECH

One interesting aspect of the above is concerned with the storage of speech in ways other than the conventional manner of grooved disc or magnetic tape. One's first instinct is to think of a system which simply digitises the sound waveforms, and stores them in memory for later retrieval and faithful reproduction. The simplest calculation, based on the evidence, shows that around 8 K to 10 K Bytes of memory are required for each second of speech-quality recording. This amount of memory is probably best handled by such devices as magnetic tape memories!

The best method for storing speech for output from a computer, is to use one of the approaches suggested by the above two analyses. Words may be stored as phonemes in comparatively small memory blocks, and presented to a "phoneme player" for output. Alternatively, information of frequency, amplitude, fricative content etc is stored digitally, for feeding to a set of sound generators in the correct time sequence, very much as the operators of the VODER would have done.

By one of these means, the common elements of English words are used to reduce the amount of storage necessary for each utterance. The complexity is confined to hardware frequency synthesisers, and controllers.

ELECTRONICS

The electronics of speech synthesis are very interesting, and some of the techniques can now be examined.

Once again it would be tempting to think of some very straightforward approach to the frequency synthesis in the second approach above. Perhaps variable oscillators would be useful, and when their outputs are mixed a perfect synthesis would result. However, it turns out to be considerably easier to attain a natural sound by simply copying nature, and applying controllable resonant filters to the output of a broad band noise generator. (Fig 4.) This provides an almost classical approach to speech synthesis, and would form the electronics for both approaches mentioned above. The first approach would accept phoneme data, and under microprocessor control adjust the frequencies and amplitudes accordingly. The second approach would store the actual values of all those variables and present them to the synthesiser at some sample rate to produce the complete word.

The different sounds arise as follows. The general pitch of the utterance is controlled by adjusting the frequency of the voice source. Pure vowels are produced by one volume and three frequency adjustments to the three formants, and perhaps the nasal resonator volume. Fricatives are produced by a frequency parameter and a volume, and plosives include sudden adjustment to the volume of random noise fed into the voiced channel. In Tim Orr's system, this "frame" of nine parameters is updated fifty times a second. The total effect of the system is considerably greater efficiency of storage than simply digitising speech without analysis.

The other common electronic system is that of Linear Predictive Coding. described below.

LINEAR PREDICTIVE CODING

This technique takes frequency synthesis to a logical ending. and filters, in an "intelligent" manner, the necessary formants and frequencies from a single excitation. It is important to realise that the central principle to which all these techniques are aimed is that of reducing speech to a small set of parameters for efficient memory storage. To this end, the number of parameters needed to specify a sound should be of the order of 10 or 12 , and this "frame" should be updated at a rate of around 40 or 50 times per second. The number of bits per parameter in a frame is the main variable, and the more bits, the more accurately the frame is specified. The Texas Instruments "Speak and Spell" unit is based around a Linear Predictive Coding (LPC) system. This system uses a maximum of 48 bits per frame at 50 frames per second i.e. 2400 bits of storage per second of speech.

Words are coded into special binary patterns by speaking them into a microphone connected to a large computer. On this machine, a program is running to convert the sound into codes for storage, and eventually for driving the synthesis unit. In this manner any word may be stored on ROM for later selection and playing.

Each word has a unique set of addresses in the final ROM. and a custom vocabulary may thus be formed. When a word is selected the bits associated with it are fed to the synthesiser which consists of a noise generator, and a 10 stage digital lattice filter, (Fig. 5.) The bits from the ROM are used to set up the filter components in order to produce a binary number which is fed to a digital to analogue converter. As the word is produced. the binary number changes, and the analogue output sounds like speech. In order to prevent sudden changes between frames, a certain amount of linear interpolation is included in the process,

E0640
Fig. 5. The Texas Instruments Linear Predictive Coding System codes words into the coefficients of a ten-stage digital filter. A maximum of 2400 bits of data per second of speech are required to adjust the filter coefficients, type of excitation and pitch and frequency as a word is produced.
which is controlled by a form of TI's TMS 1000.
The excitation has two time varying parameters, amplitude and pitch. For voiced sounds, a periodic excitation is used, for unvoiced sounds, pseudo random noise of constant amplitude is fed in.

The filter components themselves are quite interesting and along with the controller, ROM and all the other components, illustrates the complexity possible with modern microelectronics. Each of the ten stages (Fig. 6.) contains two adders, two multipliers and a shift register delay circuit. The filtering is thus produced by binary calculation in real time to model the time

E9,615
Fig. 6. This illustrates one of the ten stages in the lattice filter used to electronically model the Human Vocal Tract-The multiplication factor (used in both multipliers) is fed from the speech storage ROM.
varying functions of normal speech. A 10 kHz sampling rate is used for the filter; thus during the 100 micro seconds of one sample, two 14 bit additions, and two multiplications are performed. It is due to the difference in speed between these two operations that the delay is necessary. The ROM supplies just the multiplier coefficients for each stage. With judicious use of data, an average data rate of 1500 bits per second of speech may be achieved, giving 165 words, approximately, in a 131 K bit ROM. The output sounds excellent, and may be improved upon by incorporating more stages to the filter.

NEXT MONTH: SPEECH SYNTHESISER DESIGN

This project which will add speech synthesis to any microcomputer will be described along with interface examples for two popular microcomputers.

There will also be a special offer of a 24 -word speech board available for $£ 39.95$ (plus VAT).

Last October we gave you a free I.C. removal tool, and we still have a limited number available for those of you who missed out last time.

All you need to do is send a postal order for thirty pence (made payable to IPC Magazines) and a stamped self addressed envelope to:

Practical Electronics (I.C. Removal Tool), Westover House, West Quay Road, Poole, Dorset BH15 1JG.
(Please do not enclose any other correspondence.)

Including V.A.T. Postage \& Packing

PE, in conjunction with Wicca Systems Ltd., have arranged a special offer price on the PE Congress amplifier kit. The Congress amplifier was originally published in April, May and June 1980 and a full spec. and description appeared in the April issue. A brief spec. is given below for those not familiar with this design. The published specification was a result of independent tests carried out by Gordon J. King, the well-known hi-fi reviewer.

The normal price of the kit is over £85, but for the period of this offer PE readers can buy it for $£ 15$ less. Photostat copies of the original series of articles are available from Wicca for $£ 1.20$. The kit includes metalwork and printed front panel but not a case.

SPECIFICATION

Output, 30W continuous sínewave per channel both channels driven
Distortion factor at $1 \mathrm{kHz}, 0.024 \%$
Intermodulation distortion $19 \mathrm{kHz}+20 \mathrm{kHz}, 10 \mathrm{~dB}$ o/p per channel, $0.03 \% 1 \mathrm{kHz}$ product
Slew factor, >5 (ref. $14.8 \mathrm{~dB}, 1 \mathrm{kHz}, 8 \Omega$)
Damping factor, 66
PU overload threshold at $1 \mathrm{kHz}, 185 \mathrm{mV}$
Signal to Noise ratio (CCIR/ARM weighting), 85.7dB and 75 dB (p.u. input)
Stereo separation at $1 \mathrm{kHz}, 72 \mathrm{~dB}$ and 70 dB (p.u. input)
Crosstalk at $1 \mathrm{kHz}, 84 \mathrm{~dB}$ and 77 dB (p.u. input)
Frequency response $\approx 5.5 \mathrm{~Hz}-109 \mathrm{kHz}$ (-3 dB points)
Offer limited to UK and BFPO addresses only.

Offer-limited to UK and BFPO addresses only.
To: WICCA Systems Ltd. (P.E. Offer), 24 Hillcrest Parade, The Mount, Coulsdon, Surrey.

THE major problem with many available alarm units is that they can be easily disarmed without being triggered. Alarms are generally sensed by magnet/reed switches on doors and windows, metal foil on window glass and pressure mats under carpets. Unfortunately, as the use of alarm systems has become more widespread, the techniques of defeating these systems have also become common knowledge. The simple magnet/reed switch combinations that form the basis of most systems are easily detected with a compass. Once they are located they can be magnetically shunted with a powerful magnet or the glass cut and the switch shorted with a jumper wire. In large commercial systems these 'perimeter' sensors are usually employed as the first line of defence. They are then backed up by several other devices. Most domestic installations cannot be this elaborate due to the costs of the wiring involved. More often than not the economic considerations of domestic installations result in closed loop magnet/reed-
switch detectors being the sole method of detecting an intrusion. Whilst some form of alarm system is better than none at all, a conventional system does not offer as much in the form of a deterrent as it used to. This alarm unit has six independent alarm channels, each protecting a specific area of the premises, and these will respond to any combination of the following alarm conditions:

Pressure pad stepped on (normally open, close for alarm)
Magnet-switch(es) opened (normally closed, open for alarm)
Magnet-switch(es) shunted with a magnet or jumper wire (tampering by thief)
Window glass foil broken (normally closed, open for alarm)
Window foil shunted (tampering by thief)
Alarm wires cut (tampering by thief)
Alarm wires shorted (tampering by thief)
Standard fire detectors can be included in the loop.
Every alarm condition described above is detected using only one twin-conductor wire per channel. This feature not only improves the integrity of the system but also simplifies the installation of the system.

Each channel can be selected (Activated or Defeated) individually. Any alarm condition, even a momentary one, detected whilst the alarm system is activated will latch the alarm channel into alarm status. A noise suppression circuit prevents a.c. hum and impulse noise spikes which may be picked up by the field wiring from being sensed as an alarm. Alarm status is indicated by a flashing l.e.d. above the channel selector switch. This enables the source of the alarm to be identified and located quickly. Each channel can provide an immediate alarm or a delayed alarm, as required. Exit and entry delay timers are provided so there is no necessity to fit an external key switch. On activation the exit delay is initiated which allows you one and a half minutes to leave the premises before the system automatically arms itself. Upon re-entry the alarm channel which monitors the entrance will immediately trigger and lock into alarm status. The entry delay timer allows you one minute to defeat the alarm before the siren is triggered. If the alarm is not defeated within the allowed time the siren will begin sounding. An automatic validation circuit resets all alarm channels after the siren has been sounding for one and a half minutes. If the source of the alarm is no longer present the siren will silence and the alarm system will re-arm itself. If the alarm is still present or another channel is sensing an alarm the siren will continue to sound until the next validation cycle one minute later. The validation cycle will continue indefinitely until all channels are clear of alarms or the

system is manually reset. All timing intervals are easily adjusted to suit individual requirements.

SYSTEM TEST

One of the major problems presented by conventional designs which employ exit delays is that you never know if the system is in an alarm condition when you activate it. To find out you must generally go through an elaborate and time consuming test procedure. Another drawback is the uneasy feeling you get unless you make a hurried exit in order to "beat the clock". Clearly, neither of these circumstances is desirable.

The first problem has been eliminated by a completely automatic confidence test on activation of the system. Each time the alarm system is activated every alarm channel is enabled for 0.8 seconds. If any channel detects an alarm condition, the alarm status l.e.d. will begin to flash. Any selected (activated) alarm channel detecting an alarm during the 0.8 second test will cause the alarm system to abort the test cycle and lock into 'system fault'. This is indicated by an l.e.d. on the front panel. Only when all channels are clear of alarm conditions for the duration of the 0.8 second test cycle for channels which have alarm conditions are defeated) will the system proceed with the exit delay. When the system has passed the activation tests, the 'exit' delay will be initiated. This is indicated by an l.e.d. marked SYSTEM OPERATIONAL on the front panel and the green l.e.d. at the remote mimic illuminating. When the 'system operational' l.e.d. illuminates, you can leave the premises in confidence, knowing that the selected alarm channels will not initiate an alarm after the exit delay has ended.

The second problem has been alleviated by providing an l.e.d. mimic outside the normal exit point. This mimic duplicates two of the indications provided at the alarm control centre via two coloured I.e.d.s which are connected via a single twin-conductor wire. 'System operational' is indicated by the green l.e.d., 'system alarm' is indicated by the red l.e.d. When you close the exit door as you leave the premises a quick glance at the mimic will indicate the status of the system. The green l.e.d. indicates all clear, the red l.e.d. indicates you were too slow in leaving the premises. The 'system alarm' output of the control centre can also be wired to a solid-state signal unit mounted in your bedroom to provide a pre-siren alarm signal.

OPERATING CURRENT

During the design of this system special emphasis was placed on quiescent and operating current demands. When the alarm system is operating normally from the mains and the system is defeated, the only significant current is the 120 milliampere charge current for the nickel-cadmium batteries and 'power on' l.e.d. The remainder of the system only requires a negligible 10 microamperes. When the alarm system is activated and is passive, i.e. no alarms detected, the maximum battery current in the event of mains failure is 400 microamperes. This low current drain enables the alarm system to operate in the passive mode for well over three months without mains and still have plenty of power in reserve to operate the siren if an alarm is detected. Having the capability to operate for prolonged periods without mains power is particularly advantageous when you leave your house unattended during your holidays and wish to shut off the mains supply to minimise the risk of fire in your absence.

CIRCUIT DESCRIPTION

The complete circuit diagram of the system is shown in Fig 1.1. Each of the eleven logic blocks has been given a
series of numbers for component designations (1, 10, 20, 30,40 , etc): The alarm sensing circuit has three operating modes.
(a) It can detect an open circuit caused by the wires being cut, the opening of any of the series connected switches or if the metal foil tape on a widow is broken. (b) It can detect a short circuit caused by the wires being shorted, any of the specially modified series connected switches being shorted, or if a pressure pad is stepped on.
(c) The circuit will also detect if any of the modified switches is being magnetically shunted.

The operation of each of the six channels is the same and only one channel is shown in Fig 1.1.

ALARM CIRCUIT

IC10C and IC10D are cross coupled to form an alarm latch set-reset flip-flop. IC1OB ensures that the 'reset' (defeat) signal is given priority over the 'set' (alarm) signal. When the system is defeated a logic ' 1 ' from the reset bus is presented to pin 1 of IC10B and pin 13 of IC10D. This locks the flip-flop in a stable state with a ' 1 ' at the output of IC10C and a ' 0 ' at the output of IC10D. When the reset bus goes to ' O ' the flip-flop is free to latch into the alarm state upon presentation of a ' 1 ' to either input of IC10A. Pin 6 of IC10A is connected to the 'test bus' which is held at ' 0 ' by the pulldown resistor R5. When the 'test' switch, S70, is depressed, a ' 1 ' is applied to the 'test bus' which simulates an alarm condition at each of the six alarm channel inputs. The other input of IC10A monitors the alarm sensors in the area being protected. If the channel detects an alarm whilst the system is activated the output of IC10C will go to 'O'. This is coupled through D10 and S10 to the 'delayed alarm bus'. When IC10C goes to '0' IC10D goes to ' 1 '. If D11 is installed this ' 1 ' will be coupled to the 'immediate alarm bus' via S 10 . If S 10 is open both alarms will be ignored by the alarm control logic. The ' 1 ' at the output of IC10D is also coupled to TR 10 via R12 driving TR 10 into conduction. The voltage at the anode of D10 via R13 is pulsating at 4 Hz . Therefore D10 will flash whenever the channel detects an alarm. D10 will flash regardless of the position of S10.

TRI-MODE ALARM

Switch SA, diode D and resistor R are inside the enclosure for SA and form the heart of the 'Tri-Mode' operation. SA is positioned within the field of the magnet. Switch SB is positioned just outside the field of the magnet. When the door or window being protected is closed, SA will be.pulled closed by the field of the magnet. SB will remain open.

IC70 is a 4 Hz astable mutlivibrator which is used to flash the channel alarm indicator. If we momentarily lock the 4 Hz multivibrator into a stable state with ' $\overline{\mathrm{O}}$ ' at ' O ' and ' O ' at ' 1 ' this senses continuity in the alarm loop. Providing that SA is closed, diode ' D ' will pull down the input of IC1OA to ' 0 '. Germanium type diodes have been selected for use in this circuit as they have a low forward voltage drop (0.2 V). Four modified switches in series will drop 0.8 volts.

In order to ensure stability under low voltage conditions and maintain a high degree of immunity to noise, each channel should be limited to a maximum of four modified switches. As there are no voltage drops in the unmodified switches, any number of these can be used. If the closed loop is broken by cutting the wires or opening SA, R10 and VR10 puli the input of IC10A to ' 1 ' via R14. R11 and C10 have a time constant of approximately 60 ms . This ensures maximum immunity from any noise impulses picked up by the wiring between the alarm control centre and the sensing

COMPONENTS ...

Resistors	
R1, R2	$68 \frac{1}{2} \mathrm{~W}$ (2 off)
R3	
R4, R101	47 (2 off)
R5	$27 \frac{1}{2} \mathrm{~W}$
R10, R20, R30, R40, R50, R60	47 k (6 off)
R11, R21, R31, R41, R51, R61,	10M (15 off)
R14, R72, R74, R80, R87, R88,	
R95, R98, R99	
R12, R22, R32, R42, R52, R62,	10k (11 off)
R73, R82, R86, R93, R96	
R13, R23, R33, R43, R53, R63,	330 (9 off)
R85, R94, R97	
R70, R90	100k (2 off)
R71, R92	1M (2 off)
R75, R100	1k (2 off)
R81	200k
R83, R84	390k (2 off)
R89	560k
R91	3M9

All resistors $\frac{1}{4}$ W 5\% carbon except where otherwise stated.

D5, D10, D20, D30, D40, D50, IN4148 (25 off) D60, "D11, D21, "D31, "D41.
"D51, D61, D70, D80, D81, D82,
D83, D84, D85, D90, D91, D92,
D93, D100
ZD1, ZD3 BZY88C7V5 (2 off)
ZD2 BZY88C3V6

Transistors

TR1, TR10, TR20, TR30, TR40, BC337 (10 off) TR50, TR60, TR70, TR71, TR80, TR90
TR91.TR100 BC327 (2 off)
TR101
TIP31A

Integrated Circuits
IC10, IC20, IC30, IC40, IC50, IC60, CD4001 (9 off) IC70, IC80, IC81
IC90
CD4011

Switches
S10, S20, $\$ 30, \$ 40, \mathrm{~S} 50, \mathrm{~S} 60, \mathrm{~S} 80$ p.c.b. mounted 2 pole changeover (7 off)
S70
$4 \mu 710 \mathrm{~V} \operatorname{tant}(4 \mathrm{off})$
$16 \mu 10 \mathrm{~V} \operatorname{tant}$ (6 off)
47n polyester
$1000 \mu 25 \mathrm{~V}$ elect
10 n ceramic plate (6 off)

Capacitors C1
 C10, C20, C30, C40, C50, C60
 C70, C80, C81, C82
 C2, C71, C72, C83, C90, C91 C92

Potentiometers

VR10, VR20, VR30, VR40, VR50, VR60

Diodes
LED 1
LED 10, LED20, LED30, LED40.
LED50, LED60, LED80, LED90
LED91
D1, D2, D3
D4, D6
' R ' to zero and will be sensed as an alarm, with the maximum number of modified switches (four) in series shunting any one of the switches reduces the total loop resistance to $\frac{3}{4}$ of its nominal value. This reduction in loop resistance will also cause the Input of IC10A to go to ' 1 ', providing VR10 is adjusted properly. If a pressure mat or other shunt device is used the effect is similar to SB being closed.

AUTOMATIC SYSTEM TEST

Each time the system is activated an automatic system test is carried out. If this section is used in conjunction with the manual test switch (S70) the entire system can be checked in a few seconds.

If no alarms are detected and switch S80 is in the "defeat' position a ' 1 ' is presented to pin 2 IC808 and the inputs of IC81C via pull up resistors R84. The timing capacitor C82 is shunted by 580 and is discharged. The resistor R84 and capacitor C82 form timer ' A ' with a time constant of 1.6 secs.

A ' 1 ' is provided directly by S 80 to pin 13 of IC80D and to pin 1 of IC81B via D83. C81 and R83 form timer 'B' with a time constant of 1.6 seconds. IC80C and IC80D are crosscoupled to form a confidence latch set-reset flip-flop. With a ' 1 ' at pin 1 of IC808 the output of IC808 will be ' 0 ' which pulls down pin 8 of IC80C and discharges C80 via D81. R81 and C 80 form timer ' C ' with a time constant of 0.8 seconds. With a ' 0 ' at pin 8 of IC80C and a ' 1 ' at pin 13 of IC80D the flip-flop will be locked into a stable state with a '1' at the output of IC80C and a '0' at the output of IC80D.

When switch 580 is switched to 'activate', timer A is initiated which enables all the alarm channels: Providing that the system does not detect an alarm for 0.8 seconds (timer B) the system will pre-empt timer A and the exit delay will be initiated which is indicated by the 'system operational' l.e.d. illuminating. Once the l.e.d. is extinguished the system is armed and any alarm detected will start the alarm sequence.

R74 pulls pin 13 of IC80D down to ' 0 ' allowing the setreset flip-flop to change states if a ' 1 ' is presented to pin 8 to IC80C. The negative side of C82 is switched to V - by S80. This pulls pin 2 of IC808 and the inputs of IC81C to ' 0 '. R84 will begin to charge C 82 towards ' 1 ' (timer ' A^{\prime} '). $A^{\prime} O^{\prime}$ ' at the inputs of IC81C results in a ' 1 ' at its output. This ' 1 ' is coupled to pin 9 of IC81D via R88. The ' 1 ' at pin 9 of IC81D causes the output of IC81D to go to ' 0 '. This '0' enables (activates) all of the alarm channels for the duration of timer ' A '. 1.6 seconds. The ' O ' provided by timer ' A ' to pin 2 of IC80B allows IC80B to respond to the logic level at pin 1. Providing that no alarms are detected, pin 1 of IC80B will remain at ${ }^{\prime} 0^{\prime}$. A ' 0^{\prime} at both inputs of IC80B result in a ' 1 ' at its output which begins to charge C80 through R81 (timer ' B '). In approximately 0.8 seconds a ' 1 ' will be presented to pin 8 of IC80C which will cause the set-reset flip-flop to reverse states and lock with a ' 0 ' at the output of IC80C and a ' 1 ' at the output of IC80D. Once the confidence latch flip-flop has changed states it will remain locked in this mode until S80 is moved to the 'defeat' position. As soon as the flip-flop changes states the ' 1 ' at the output of IC80D is coupled to pin 1 of IC80B via D82. The ' 1 ' at pin 2 of IC80B forces its output to ' 0 ' and dumps the charge on C80 via D81. This ensures that no ambiguous inputs can be applied to the inputs of the flip-flop. The. ' 1 ' at the output of 1C80D also charges C82 to ' 1 ' via D82 and pre-empts timer ' A ' which switches the output of IC81C to '0' causing the output of IC81D to go to ' 0 ' disabling all the alarm channels. The ' 0 ' at the output of IC80C is passed to pin 5 of IC81A which allows IC81A to respond to any subsequent alarm signal presented to pin 6. The ' 1 ' at the output of IC80D is passed to pin 8 of IC90A
via interboard wire ' k '. This ' 1 ' also begins to charge C83 through R87. C83 and R87 form the 'exit delay' timer and have a time constant of approximately one and a half minutes. The output of IC81D will remain at ' 1 ' which inhibits the alarm sensing action of the alarm channels until the exit delay has elapsed and a '1' has developed across C83. This is presented to pin 8 of IC81D which causes its output to go to ' 0 ' which enables the alarm channel. Providing the system passes the activation test as detailed above, pin 8 of IC90A will remain at '1' for as long as the system is activated. Pin 9 of IC90A will only remain at ' \uparrow ' for the duration of the exit delay. When both inputs of IC90A are at ' 1 ' its output will be ' 0 '. A ' 0 ' at the output of IC90A forward biases TR91, via R96, illuminating LED91, indicating that the system has passed the activation tests and the exit delay is in progress. R97 limits the current through LED91, the 'system operational' l.e.d. and also develops the potential required by the external mimic l.e.d. As soon as the exit delay has elapsed the output of IC90A will return to a ' 1 ' and LED91 (and the remote mimic) will extinguish, indicating that the system is now armed.

ALARM STATUS

If the alarm is detected before timer B times out, the system will lock into 'system fault' and the alarm sequence will be disabled. The alarm channels will remain enabled after timer A has timed out so that the channel which caused the alarm can be indentified.

The ' O ' provided by timer ' A ' to pin 2 of IC80B allows IC80B to respond to the logic level at pin 1. If any of the selected alarm channels pull down the delayed alarm bus to ' 0 ' during the 0.8 second timing interval of timer ' B ' the following sequence takes place. The ' 0 ' at the inputs of IC80A is inverted to a ' 1 ' and is presented to pin 1 of IC80B. This causes the output of IC80B to go to '0' which dumps any charge that had developed on C80 via D81. The ' 0 ' on the delayed alarm bus also pre-empts timer 'C' by discharging C81 via R82 and D80. At this point the set-reset flip-flop will remain in its original state with a ' 0 ' at the output of IC80D as pin 8 of IC80C never reached ' 1 ' within the 0.8 seconds allowed. The ' 0 ' at the output of IC80D is coupled to pin 2 of IC81B. Pin 1 of IC81B is pulled to ' 0 ' by the common alarm bus at mentioned above. Both inputs of IC81B at ' 0 ' results in a ' 1 ' at its output. This ' 1 ' forward biases TR80, via R86, illuminating LED80. R85 limits the current through LED80, the 'system fault' l.e.d. The ' 1 ' at the output of IC818 is also coupled to the input of IC81D via LED85. R88 ensures that the output of IC81B has priority over the output of IC81C. Pin 8 of IC81D is pulled to '0' by the output of IC80D via D84. With pin 9 of IC81D locked to ' 1 ' the output of IC81D will remain at ' 0 '. This ensures that any alarm channel which detected an alarm will remain locked in alarm status when timer ' A ' times out. Since the set-reset flip-flop never changes states, pin 5 of IC81A will remain at ${ }^{\prime} 1{ }^{\prime}$ which prevents the alarm signal from initiating the alarm sequence by locking the output of IC81A to ' 0 '. The output of IC80D holds the input of IC81A at ' 0 ' via interboard wire ' k ' and D91, again locking the output of IC81A to ' 0 '. This prevents the 'immediate alarm bus' from initiating the alarm sequence.

ALARM'SEQUENCE

When the system has passed its activation tests and is armed, if any alarm channel detects an alarm then the alarm latch flip-flop will lock into alarm status and the channel alarm l.e.d. will begin flashing. If the alarm channel is selected the delayed alarm bus will be pulled down to ' 0 '. The ' 0 ' at pin 5 of IC81A combined with a ' O ' from the delayed
alarm bus at pin 6 of IC81A causes the output of IC81A to go to ' 1 '. This ' 1 ' is connected to the alarm logic p.c.b. via interboard wire ' Q ' and forward biases TR90 via R93 illuminating LED90, the 'system alarm' I.e.d. R94 provides current limiting for LED90 and develops the potential required by the external mimic and pre-siren signalling unit.

The ' 1 ' is coupled directly to pin 5 of IC90C and begins to charge C90 through R91. C90 and R91 form the 'entry delay timer and have a time constant of 1 minute. If the alarm channel has been wired for an immediate alarm the ' 1 ' at the output of IC10B will force the immediate alarm bus to '1' via D11. This ' 1 ' will charge C90 via R89 and interboard wire ' r '. The time constant of ten seconds provided by R89 and C90 serves to confuse anyone tampering with the system. The 'immediate alarm' is in fact a 10 second delayed alarm. As the siren will not go off immediately when the system has been tampered with the intruder never knows exactly what he has done to set off the alarm. This anxiety serves to deter any attempt to return and try again. If S80 is switched to defeat at any time the system will abort any sequences in progress and return to its quiescent state. R92 and R99 in conjunction with TR 100 provide hysteresis at the inputs of IC90B converting it to a Schmitt trigger. When C90 has charged sufficiently to present a ' 1 ' to IC90B the output of IC90B goes to '0'. TR100, R101, and TR 101 form a saturated switch with very high gain and very low saturation voltage across TR101. When TR100 is forward biased via R100 it drives TR 101 into saturation via R101. When TR 101 is conductting, an earth return is provided for the siren and it will begin to wail. D100 absorbs the spikes created by the commutator in the siren.

When C90 presented a ' 1 ' to IC90B it also presented a ' 1 ' to pin 6 of IC90C. IC90C now has a '1' at both inputs which causes its output to go to '0'. C91 will now begin to discharge into IC90C through R98. C91 and R98 are the 'validation reset' timer and have a time constant of one and a half minutes. In one and a half minutes C91 has discharged sufficiently to provide a ' O ' to the inputs of IC90D. Several things-happen in rapid succession at this point depending on the status of the alarm sensors.

AUTOMATIC RESET

If we look at the sequence of events based on the assumption that the alarm orginally detected is no longer present. Also that, when no alarms are being sensed by any of the other alarm channels and the input of IC90D reaches ' 0 ' the output will go to ' 1 '. This is coupled to the 'master reset bus' via D93 and charges C93 immediately. When the 'master reset bus' goes to ' 1 ' all of the channel alarm latches are reset to a 'safe' condition which causes the 'delayed alarm bus' to return to ' 1 '. The 'delayed alarm bus' ' 1 ' is coupled to pin 6 of IC81A forcing its output to '0'. TR90 will no longer be forward biased so LED90 will extinguish. C90 will discharge into IC81A via R90, R91 and D90. The time constant of R90. R91 and C90 is approximately one second. When C90 has discharged sufficiently to present a 0 ' to the input of IC90B which forces its output to ' 1 ', the saturated switch (TR100 and TR101) will cease to conduct silencing the siren. The ' 0 ' at the output of IC81A is also coupled to pin 5 of IC90C which forces its output to ' 1 '. C91 is charged immediately via D92 and presents a ' 1 ' to the input of IC90D. The output of IC90D goes to '0'. C92 now discharges into the output of IC810 via R95 and interboard wire ' J '. The time constant of C92 and R95 is approximately 300 ms which ensures that the 'master reset bus' remains at ' 1 ' long enough to completely clear the charge on C91. In effect, C92 and R95 develop a 300 ms 'validation reset' pulse from the output of IC90D. Once the 'master reset bus'
returns to ' 0 ' the alarm channels are re-activated and will continue to monitor the status of the field sensors.

If the original alarm is still present or if another channel is detecting an alarm when the 'validation reset' pulse is generated, then after the 300 ms delay, provided by C92 and R95, has elapsed and the 'master reset bus' has returned to ' 0 ', the alarm channel will immediately lock into alarm status. This will pull down the 'delayed alarm bus' to ' 0 ' which returns the output of IC81A to '1'. As C90 has only been discharging through D90, R90 and R91 for 300 ms as mentioned above, the time constant of R90, R91 and C90 is one second. Therefore, if an alarm is sensed the moment the 'validation reset' pulse ends, C90 will not have had sufficient time to discharge to ' 0 ' and silence the siren. The effect of this is that the siren will continue to sound until the source of the alarm is cleared and the 'validation reset' pulse resets the system or until the system is manually reset. The 'validation reset timer will continuously attempt to reset the system approximately once every minute for as long as the siren continues to run.

As mentioned above, once the 'entry delay' has been initiated, the only way to prevent the siren from going off at the end of the 'entry delay' is to manually defeat the system via $\mathbf{S 8 0}$. Once the siren begins to sound it can also be silenced by manually defeating the system. For the purpose of discussion, let us assume that the system has been activated for some time and you have just entered the premises. The moment you enter the premises the alarm channel which monitors the door you just entered will latch into alarm status and pull down the 'delayed alarm bus' to ' 0 '.

MANUAL REST

If the 'system defeat' switch, S80, is depressed, the following takes place. A ' 1 ' is applied to the 'inhibit bus' which disables the 4 Hz multivibrator and applies a reset signal to the 'operational' flip-flop (IC80C and IC80D). The 'operational' flip-flop is reset to a stable state with a ' 1 ' at the output of IC80C and a '0' at the output of IC80D. The ' 0 ' at the output of IC80D dumps any charge that was developed across C90 via D91 and interboard wire ' k '. This pre-empts the 'entry delay' and prevents the siren from sounding by locking the output of IC90B to ' 1 '. The ' 0 ' at the output of IC80D also dumps the charge on C83 via D84 and presents a ' 0 ' to pin 8 of IC81D. The ' 1 ' on the 'inhibit bus' charges C81 via D83 and presents a ' 1 ' to pin 1 of IC81B ensuring that its output remains at ' 0 '. The output of IC81C will remain ' 0 '. This results in both inputs of IC81D having ' 0 ' conditions. The output of IC81D will now go to ' 1 ' which forces the 'reset bus' to ' 1 ' via interboard wire ' J '. This ' 1 ' resets all alarm latch flip-flops to their 'safe' condition. At this point the entire system is in a power down mode and will ignore the status of all alarm inputs. The only loads on the mains supply will be the charging of the nickel-cadmium batteries and the illumination of the 'power on' l.e.d. The maximum load on the batteries in the event of mains failure will be the negligible 10 microamperes required by the logic.

In summary, placing 580 in the defeat position instantaneously pre-empts any activity in progress, resets all timers, and forces the system into a quiescent state with negligible current demands. The only loads present are placed on the mains supply; should the mains be lost in this mode the system will draw negligible current from the batteries.

NEXT MONTH: CONSTRUCTION

THIS WAY YOUR

ELEGTROVILTE catalogue IS ALWTIYS UP TO DATE

EVERY THREE MONTHS WE PUBLISH AN UP TO DATE PRICE LIST FOR USE WITH OUR CURRENT CATALOGUE. THESE ARE MAILED FREE VIA OUR COMPUTER TO REGULAR CUSTOMERS. IF YOU WOULD LIKE A FREE COPY JUST WRITE OR PHONE. ALSO FOR CURRENT 120 PAGE CATALOGUEFREE IF YOU SO WISH.
OUR MIII-SELECTION POINTS THE WAY! EXAMPLE ONE - SOLDERING IRONS

Oryx 50	$£ 12.08$ not	Antex X25	$£ 4.83$ net
Isotip	$£ 25.90$ not	Desolder tool SR3A	$£ 7.48$ net
Antex C	$£ 4.83$ not	500 gm reel solder	$£ 7.59$ net

EXAMPLE TWO - PRINTED CIRCUIT MATERIALS

150 m		Eteh Resist Pen	¢1. 21
SRBP S/S 1.38	D/S $£ 1.73$	Breadboards	
F/Glass S/S £ 2.19	D/S ¢2.48	Bimboard 12	c9. 23
Positive resist 75cc	¢1.67	Eurobreadboard	$¢ 5.56$ net
Ferric Chloride 500 g	c3.45	T-DeC	¢5.18
EXAMPLE THREE - SWITCHES 134 time switch adaptors			
Chrome toggle		Smiths TS 100	14.43
Std. SPST $65 p$	DPDT 89P	Wavechange Lo	$2 \mathrm{P6W}$

EXAMPLE FOUR - CAPACITORS BY SIEMENS

1. 1.5, 2.2, 3.3, 4.7nF, 10, 15, 22, 33, 47nF 8peach. $0.1 u 12 \mathrm{p} .0 .15 u 14 \rho .0 .22 u 18 \mathrm{p}$ $0.33 u 21 p .0 .47 u 27 p .0 .68 u 34 p .10 \mathrm{~mm}$ PCM $1 u 37$ p.
Electrolytic, axial. (uFM)
1/40 15p. 1/100 12p. 2.2/25 15p. 2.2/63 12p. $4.7 / 16$ 15p. $4.7 / 40$ 12p. $10 / 25$ 12p 10/40 13p. 22/25 13p. 22/40 13p. 22/63 19p. 47/10 13p. 47/25 16p. 47/40 19p.
$47 / 6320 \mathrm{p}$. up to $1000 / 16 \mathrm{~V} 32 \mathrm{p}$. then $1000 / 25 \mathrm{~V} 44 \mathrm{p}$. etc.
Also full supporting ranges of other ceramic, plastic and electrolytic caps.
EXAMPLE FIVE - POTENTIOMETERS BY RADIOHM
Single gang lin or log 34p (Twin types stereo matched) $\begin{array}{llll}\text { Twingang lin or log } & \text { 93p } & \text { Slider knobs } & \text { 10p each } \\ \text { Mono slider lin or log } & \text { 83p } & \text { Presets lin, horiz, or vert. } & \text { 12p }\end{array}$ EXAMPLE SIX - RESISTORS子. t. iw 2.3 p iw 6 p
Wirewound from 23 p
AND AS FOR SEMI CONDUCTORS THIS LISTIS BUTAFRACTION

1 N914	6p	40362	75p	B8103	43p	MPSA63	44p	TIP3055	69p
1 N4007	9p	40638	¢1.69	88104	70p	0447	14p	TIS43	40p
1 N4 148	5p	40673	99p	88105	37p	oa90	8 p	W02	35p
1N5402	19p	555	34p	C106D1	52p	OA202	16p	2N425E	¢4.49
2N1599	£1.01	556	58p	Cal40e	46p	OC29	f1.23	2TX107-9	14p
2N2369A	24p	AC128	36p	E1110	92p	OC36	£1.18	21×300	$14 p$
2N3055	$81 p$	AC176	67p	E1210	92p	T28000	f1. 20	27×500	16 p

$\begin{array}{lllllllll}\text { 2N2369A } & \text { 24p } & \text { AC128 } & \text { 36p } & \text { E110 } & \text { 92p } & \text { OC36 } & \text { £1.18 } & \text { 27X300 } \\ \text { 2N3055 } & \text { B1p } & \text { AC176 } & \text { 67p } & \text { E1210 } & 92 p & \text { T28000 } & \text { £1.20 } & \text { 2TX500 }\end{array}$ $\begin{array}{lrrrllll}\text { 2N3702 } & 11 p & \text { AD136 } & \text { f4.25 } & \text { LM301AN } & \text { 35p TIP31A } & 52 p \\ \text { 2N4443 } & \text { £1.78 } & \text { AD149 } & \text { £1.01 } & \text { LM324N } & 67 p & \text { TIP32A } & 52 p\end{array}$ 2N4443 £1.78 AD149 £1.01 LM324N 67p TIP32A 52p $\begin{array}{lrllllll}\text { 2N4444 } & \text { £2.28 } & \text { AD161 } & \text { 40p } & \text { LM380N } & \text { £1.14 TIP41A } & \text { 69p } & \text { Fortullrange - } \\ \text { 2N4991 } & \text { 72p } & \text { AD162 } & \text { 52p } & \text { LM3900N } & \text { 78p } & \text { TIP41C } & 74 p\end{array}$ $\begin{array}{llllllll}\text { 2N4991 } & \text { 72p } & \text { AO162 } & \text { 52p } & \text { LM3900N 78p TIP41C } & \text { 74p } & \text { see Catalogue. } \\ \text { 2N5457.9 } & \text { 45p } & \text { AF127 } & \text { 43p } & \text { MJE2955 £1.38 } & \text { TIP42A } & \text { 69p } & \end{array}$ 2N5457.9 45p AF127 43p MJE2955 C1.38 TIP42A 69p 40 HF 40 £2.25 ALIO2 £1.84 MJE3055£1.00 TIP42C $\quad 74 \mathrm{p}$ 40361 49p 8A379 29p MPSA12 42p TIP2955 69p
INFORMATION - To show everything we supply would take about seven pages of closely packed type in this joumal - the range is enormous, Including not only opto devices and ver advanced sophisticated trems, but all the everyday things you need as well down to nuts and washers! ITS ALL IN CATALOGUE 10 - OUR 120 PAGE CATALOGUE FREE FOR THE ASKING
PRICES AND V.A.T. - All prices quoted here include V.A.T. for U.K. orders. Overseas buyers deduct 13% when ordering.
POSTAGE - For orders up so $\mathbf{C 5 . 7 5}$ value (U.K.) please add 40p for p/p. If over, orders sent post free in U.K. Overseas orders sent at cost (Min. 40p).
DISCOUNTS $\mathbf{- 5 \%}$ allowed on non-net fitems if order value exceeds $£ 11.50,10 \%$ if order value exceeds $£ 29$. Quantity discount prices on mosi components.
ELECTROVALUE LTD. DEPT. PE/10, 28 st. Judes Road. Englefield Green, Egham. Surrey TW20 0H8. Phone Egham 33603 (STO 0784. London 87). Telex 264475 Northern Branch (Personal Shoppers only) 680 8urnage Line, 8 urnage. Manchester M19 iNA Phone (061) 4324945.

SPECIAL PURCHASE

OF TOP QUALITY LCD MULTIMETERS
AC/DC

CHOOSE FROM FOUR MODELS

- $3 \frac{1}{2}$ digit autoranging (volts/Ohms)
- 200 hours battery life (2 pencells)
- 10 amp AC/DC (6220 \& 6100)
- 1000v DC 600v AC
- $200 \mathrm{~mA} \mathrm{AC/DC}(6200 \& 6100)$
- Range hold facility $(6100 \& 6110)$
- Unit and range sign (6110 \& 6220)
- Continuity buzzer (6100 \& 6110)

RESOLUTION

100 yVDC. 1 mVAC
10 y A AC/DC. 0.1 Ohm
10 mA on 10A. AC/DC
OTHER FEATURES
(ALL MODELS)
Low power Ohms range.
Zero Adjust key.
Battery Warning.

ACCURACY 6100/6110
0.6% DC Volts
1\% DC Current 0.5% Resistance

6200/6220

0.8% DC Volts
1.3\% DC Current
1.3\% DC Current 1.4\% AC Current

OR CALL IN AND SEE FOR YOURSELF
Prices correct at $1 / 10 / 80$ E\&OE
Cubegate Limited OPEN 9-6 SIX DAYS A WEEK FREE

AUDIOELECTRONICS

301 EDGWARE ROAD. LONDON. W2 1BN
TELEPHONE 01.7243564 a
From $\mathrm{Mr} /$ Mrs/Miss (Block caps please).
Ref P.E.
Address
Please supply OtyModel(s)
IWe enclose (incl. 65p post).
Cha/PO Value
Or debit Barclay/Access No.

Seminonduetor DPDAIT
 featuring

EPROM CHALLENGE

When microprocessor programs have been developed and debugged in RAM, they can then be stored on cassettes or floppy discs for reloading when required, but many systems cannot afford the delay or the expense associated with "backing stores" of this type, and so for them, the speed and simplicity of ROM based software is required.
Read Only Memories come in all shapes and sizes, but the simplest and cheapest. the masked ROM, suffers from the serious disadvantage that the data is programmed in during the manufacturing process, and is thereafter immutable. This type of ROM is OK for software which is tried and tested and for distribution to a large market, but for the one-offs or ten-offs, or for microprocessor software which may still contain elusive "bugs", a less final method of inscribing the stored instructions is required.
Until recently, the most acceptable compromise between tapes and masked ROMs has been the EPROM (Erasable, Programmable, Read OnlylMemory). Those devices have appeared in three "generations" typified by the 1702A, 2708, and 2716 devices from Intel, with the latest devices being much easier to use and program than their predecessors. Despite the improvements made in recent years, however, the EPROM is still a difficult beast to handle. To erase the stored data, the chip itself must be exposed to dangerous, short wave, Ultra Violet light of high intensity for periods of up to one hour. To programme a single location, a voltage source of 25 V or more must be available, and a programme pulse lasting 50 milliseconds must be applied. This means a $2 \mathrm{~K} \times 82716$ device takes about two minutes to program, slow by RAM standards. (To write the same quantity of data into a RAM array would take less than one millisecond.)

Despite these disadvantages, the EPROM is extremely popular and available from numerous manufacturers, but things may start to change now that a new device, the EEPROM is becoming available. The extra " E " stands for "Electrically" making the new chips Electrically, Erasable, Programmable, Read Only Memories. The now technology is a strong candidate to eventually replace the EPROM in most, if not all, of its present applications, and consequently, the race is now on to produce the most successful EEPROM in the hope of fostering the next "Industry Standard."

One notable example of the new technology has recently been introduced by Hughes in the form of the HNVM3008 which is a IKx8 replacement for the popular 2708. The catalogue of desirable features
is extensive. Erasure takes not tens of minutes under a UV lamp, but only 100 microseconds and the application of a 17 volt supply in place of the operating supply of 5 volts. Programming is Just as easy, requiring the same supply voltage as erase and only 100 microseconds per byte, rather than the 25 volts and 50 milliseconds of the EPROM. The sophisticated HNVM3008 chip uses a mixture of CMOS and NMOS circuitry to gain the very low power consumption of 10 milliwatts (operational) and 25 milliwatts (during programming).
To sweep the field completely, the new EEPROMs must come down in price and go up in capacity, but already they represent a serious challenge to the traditional dominance of the EPROM.

IF YOU WANT TO KNOW THE TIME...

Ask an MM58174 from National Semiconductor.

If you happen to be a microprocessor, you now have another cheap simple way to tell the time of day and the date. Much better than those awful delay loops which kept you hanging around all day just decremating a register and whizzing round a silly loop without a minute to yourself to do anything really useful. That programmer deserved to be shot, treating you just like so much clockwork and wasting all those sophisticated resources tucked away in your logic arrays on nothing more than the creation of a clock. It's enough to make you trade in your crystal for a CR timing networkl Mind you, it wasn't much better when he discovered interrupts, was it.

Every ten milliseconds. Wham! off you had to go to that sneaky interrupt routine, incremating and decremating counters when you had just settled down to some really serious number crunching. And what a bother, zooming around saving your registers to stop that clock routine getting its grubby hands on them, and then all the fuss of getting them all back off the stack so that you could get on with the real job. And how about that awful wet Sunday when he decided to play about with the stack pointer to have data around. Along came that fateful interrupt, and off you went to the clock routine as usual, but when you executed the RETI instruction and tried to POP the return address into your Program Counter, all you got was a branch into the look-up table. It's a wonder you ever got out alivel All he has to do is look at his watch when he wants to know the time - he doesn't have to spend all day counting the seconds, and no one comes along and kicks him up the backside every minute so that he can cross it
off on his time sheet either. No, fellow microprocessors; it is high time that we of the thiking classes were treated with a little more respect, and provided with a proper timepiece, such as the MM58174.

The new device, a programmable realtime clock, should make micros everywhere very happy. It's completely self-contained, it will keep good time even when your micro is switched off for the night, and it is completely independent of the microprocessor while time keeping. Inside the chip, there are twelve count registers, toggling at rates between tenths of a second and tens of months, fed from a crystal timebase of 32.768 KHz . Talking to the clock is easy for the average microprocessor, each of the registers can be read via a four bit data bus so that information on the time of day, day of week, and date is available within a few microseconds. The micro stays boss too. Each of the count registers can be preset via the data bus after a valid address has been set out on the address bus to select it. The device is housed in a 16 pin DIL package. and will operate on less than 10 microamps when the supply voltage is reduced to 2.2 V from the normal operating level of 5 V .

For those programmers who still insist on interrupts, the MM58174 has an output which can be programmed to generate an interrupt at half second, five second, or one minute intervals, either continuously or on a one-off basis.

ON REFLECTION

A new solution, looking for problems to solve, has arrived from Texas Instruments in the form of a family of Wilson Current Mirrors. Up to now, current mirrors have only existed inside complex analogue integrated circuits where the tight matching of transistors on the same chip made them a possibility for the first time. Texas have decided that it's a shame not to let this useful circuit configuration see the light of day, and so they have produced a family of devices which are true three terminal mirrors, as used in all the best ICsI

They aren't too sure what you are going to do with them yet, they have even started a competition for the best application idea, but to help you on your way, let me say that the one thing the mirror is very good at is generating constant currents. The new devices all provide a constant current output proportional to a reference current input and independent of output voltage or temperature changes. The TLO11 has a fixed input/output current ratio of $1: 1$, the TLO 12 1:2, the TLO14 1:4, and the TLO21 2:1. They'll work with reference currents of up to 1 milliamp (2 for the TLO21) and they come in small three pin transistor packages.

The hardware and software exchange point for PE computer projects

M/C FOR TELEWRITING

Another method for direct telewriting on the UK 101 has been submitted by T. Wilson of Sittingbourne, Kent.

First set up in BASIC by pressing C and limiting the memory size.

```
            10 POKE 11,00: POKE 12, 5
    20 X=USR (X) : P=PEEK (1536)
    30 PRINT CHRS (P) ; : GOTO 20
```

Then enter machine code by restarting and pressing M. Type in the following:

$$
\begin{array}{ll}
\emptyset 5 \emptyset 020 \emptyset \text { FD } & \text { JSR FD } \emptyset \emptyset \\
\emptyset 5038 \mathrm{D} \emptyset \emptyset 6 & \text { STA } \emptyset 6 \emptyset \emptyset \\
05066 \emptyset & \text { RTS }
\end{array}
$$

Using Warm Start you may now type out all the standard characters, and more, by using CTRL plus a key. Use return and LF to start a new line, and CTRL/C to exit.

CLEAR OFF

SIR-The manual supplied with UK101 kit includes a short machine code routine for clearing the VDU screen. The following routine is shorter, and arranged for the specific task for clearing screen. The manual version is a more general routine for loading any section of memory of any length with a specified data byte.

nìn	A9 20	LDA \#\$20
	A00	LDY \#S00
	9900 DO	STA \$Ddad. Y
	9900 D1	STA \$D 100.
	9900 D 2	STA \$D2d.
	9900 D3	STA \$D300, Y
	C8	INY
	D F^{1}	BNE 'fill'

Michael Wood, Wakefield.

DREADFUL!

Sir-I am delighted to see that you are devoting space to supporting the UK101, which you published as a series of articles last year.

There is a need for a good system of data storage for this machine. The SAVE routines published are all very well but they lack sophistication and the other essentia/-simplicity!

If one compares a true SAVE operation on other computers, one can only describe these genuine attempts at a solution as a dreadful way to have to carry on, and with only limited commands.

We had mini-floppies, there is a Philips digital cassette recorder, and now the stringy-floppy.

How about an article/series on how to add on one of these to the UK101? For people like me this would preferably be available as a ready-constructed add-on as an alternative to a kit, which would appeal to many readers.

Allan Batch, Rugby.

EDITOR'S MAILBAG

Sir-Congratulations to Mr. Climpson for the very useful screen editor published in July's Micro Prompt. It gets rid of the cursor on Superboard after CONTROL \emptyset too, which is quite an achievement!

It had been pointed out that in the list of page zero addresses given by Mr. Hocking in his save-variables program location $\emptyset 088$ is, in fact, the high byte of the current BASIC line number in use and locations $\emptyset \emptyset 8 B, C$ are the GOSUB pointer.
E. J. Keeley,

National Personal Computer Users Association.

Sir-I have found the Editor program (by Nigel Climpson, in July PE) most interesting and useful, and I wish to thank you for not forgetting the Superboard owners. I have made the following addition to the program to cause it to limit the memory automatically for my 8 K machine without the need for remembering the memory size;
50001 POKE 133,184: POKE 134, 30
For a $4 K$ machine the line would be:
50001 POKE 133,184: POKE 134, 14
When saving the program on tape $/$ carried out the following routine:

1. Type SAVE (Return) LIST
2. Start recording (Return)
3. When program is completely SAVED do not stop the recorder, but instead slowly type RUN (Return)
4. When OK appears press return as required to activate the program and then use the Editor itself to copy line 50074, altering the line number to 50000 .
5. Type LIST (Return), which gives an assurance that only the new line 50000 exists.
6. Stop tape recorder.

To load the program from tape it is only necessary to play back the whole tape. The program is loaded and run, the line is copied and the editor is ready for use. Various error signals are given but all is well as long as the new line appears three times. To activate the editor after a warm start type RUN50000 (Return).

The reason for typing RUN slowly when recording is to give time on playback to stop loading. if it is desired to delete line 50076 before use.

For my Superboard I have found that byte 1F65 should be 1C for 28 decimal in line 50040) to allow the cursor to reach all lines on my screen, and eight Control D's are required to avoid blanks when a line is carried over.

I send you the above information in the hope that most of it is applicable to the UK101 or can easily be adapted for it.
F. S. Dewhurst, Keighley.

RAMLESS MESSAGES

Sometimes it can be helpful to print messages on tape before a LISTing to give information that does not need to be put into RAM, particularly if a lot of RAM is being used for variables and strings. The problem is that a straight:

PRINT "THIS IS A MESSAGE"

in SAVE mode will be recorded and played back, but there will be an accompanying Syntax Error message which looks tatty. The answer is to start the message with a colon.

PRINT ":THIS IS A MESSAGE"

will play back without a syntax error and will not load into RAM. This means that when the program has been fully developed it can be recorded with additional comments by adding a routine on the lines of the following:

50000 SAVE:?:?:?": THIS IS A MESSAGE ABOUT THE PROGRAM" 50010?": WRITTEN JULY 1980"

etc.
50090 LIST-49999
the program is SAVEd by RUN 50000
The resulting recording will contain the message but not lines 50000 onwards. The colon is also useful for improving the appearance of LISTing, as it can be used instead of REM to produce à blank line for spacing.

A further elegance can be added by getting the Compukit to print "RUN" instead of "OK" at the end of the listing, thus giving you a self running tape. The OK message is printed by a JMP \$A8C3 in locations 3,4,5 of the memory. As has been pointed out in the First Book Of Osi, changing the $\$ 4 C$ to $\$ 60$ in location 3 disables the OK, but if instead you put in a jump to your own message routine it will print anything you like. The ROM message printer prints a message which starts at an address loaded into its Y (hi byte) and X (lo byte) registers; the message being terminated by a NULL. Thus, in the routine shown it prints (CR) (LF) RUN (CR) (LF). It is activated by POKE 4,40:POKE 5,2 and will stay activated until COLD start or further POKEs.

Any message is possible provided it is terminated by a Null.

0228 AO O2
LDY@SO2; Load address of message (Hi)
022A A9 2F LDX@\$2F; Load address of message (Lo)
022C 4C C3 A8
022F JMP \$A8C3 ; Message printer from loc. 3,4,5, .BYTE 13,10, 'RUN', 13,10,0
022 F OD
0230 OA
023152
023255
0233 4E
0234 OD
0235 OA
0236 OO

Roger Derry,
London.

SHIFTY CHARACTERS-2

Sir-Oh dear, nearly a whole column wasted with a table of characters of the kevboard of the 101-a table one can so easily find for oneself by playing with the machine. And, Mr. Schofield has missed the whole point of the Shift Lock. Press it, and all the lower case letters (including k) are available where the upper case used to be. That is the reason, presumably, why the normal position of the Shift Lock is down, as it works in the same mode as a standard typewriter keyboard. Viz. up for lower case and down for upper case. Note also that when it is up, the Shift keys are still operative, so that if you wish to mix l.c. and u.c. (and you probably dol) then your strings are entered exactly as on a typewriter. Care is necessary with digits and punctuation, however.

What I would like to know is what CTRL. O does to disable the keyboard lexcept for Return) if tapped once. Tapping twice (or holding down) will produce the "large house." CTRL.M gives Return. What, if anvthing, do other control characters do?

May I conclude by saying how I enjoy reading your magazine. I would like to see some circuits which will enable the 101. the Edukit and similar machines to interface with the real world of temperature sensors, infra-red detectors, electric door locks and so on. As a teacher of Computer Studies it is more important to show pupils how the electronics can move mountains rather than win at games.
G. R. Morris, B.Sc., Cheshunt, Herts.
Oh dear, don't blame Mr. Schofield, we foreshortened his original material.

CONVERSION-POKE SOMEWHERE?

Sir-I have followed your series of articles on the COMPUKIT UK101 with great interest as several months ago I purchased an Ohio Superboard-unfortunately just before your series. However, undaunted I set about modifying my Superboard to become a UK 101.

I've now got the machine operating via a sub-board on 50 Hz . The sub-board runs on a 8 MHz clock and plugs into the original counter chain's i.c.sockets. The other aim was to get 48 characters per line instead of the difficult to read 24.

The problem is that there is something in the firmware that tells each line to only be 24 characters wide, because I now have viz:

Line 1 Line 2
Line 3 Line 4
Line 5 Line 6
etc.
With the help of our Digital Engineer at the T.V. station where I work I've PEEKed and POKEd but without success.

If I purchased the UK 101 Monitor ROM and/or the BASIC ROM('s) would this cure the problem? Orcan I POKE somewhere.
B.F. Bailey,
N.S.W., Australia.

INT AINT ACCURACY

The following is an extract from a letter from Mr. J. Plews of Sheffield:
"If I combine the truncated integer function with an exponential expression, I begin to get problems where accuracy is vital. eg:

PRINT INT(10/(2 $\uparrow 1))$

The 101 comes back with $4^{\prime \prime}$
"Is there any way of solving this problem by fooling the system etc? Has anvone else encountered this obstacle? Is there any chance of a new interpreter?

I would be interested in your response to this letter.

Help! Actually, if you run your example without INT you may find that the 101 is returning 4.99999 etc. Although the result may be as close as a gnat's whisker to the correct figure, you will automatically be ditching this accuracy for the next lowest integer when you implement INT. Any machine would do it! Presumably you don't want all those decimal places. Try:

10 INPUT N

20 PRINT INT(N+10/(2 个1))/10
If $\mathrm{N}=10$ this should return $4.9 \ldots$ a little closerl

Dr. BERK'S UPDATE

Sir-As you requested in your article in Practical Electronics, March 1980, I would like to let you know that I have carried out your suggested modification to run a 110 baud teletype from the 101 and all the evidence to date would indicate that it is very successful indeed.

I have made the modification switchable, the teletype being a fairly new Olivetti T.E.300.

Thank you for your most useful and informative articles; I look forward to more of them.
J.R. Haldene, Midlothian.

NEW ROOM ERROR

Sir-I have unearthed a simple error on the instruction-card that accompanies the new UK101 monitor, that nonetheless can cause a lot of difficulty.

The instruction card gives a helpful llst of vector addresses and subroutines entries, with Hex and Decimal versions of the addresses. Using these I couldn't get BASIC to set (POKE) my NMI vector and thus couldn't get my data collecting interrupt routine to run during BASIC programs. (All was OK so long as I stuck to machine code in the Monitor.) Although it took quite a while to find, the answer was simple-I had replied on the Decimal addresses on the instruction card, but some of them are wrong. The printed list goes wrong at 021 A Hex, listed erroneously as 540, should be 538. Thus NMI vector should go in Decimal 547 and 548 (an IRQ in 550 and 551) and not as printed on the card. The Hex addresses given on the card seem to be perfectly correct. The monitor seems to function well in every respect.
N. Blurton Jones,

University of London.

ARRAY OR DISARRAY?

Sir-I write with reference to a point raised in your March issue, within "Microprompt". The point to which I refer is: ?FRE(N) after running part, or whole of a program containing a DIM statement for a string variable array. e.g. DIMA\$(10).

The way to avoid the UK101 "locking up" is to type: CLEAR:?FRE (N).

This clears all variables and arrays. It does of course prevent you from finding out how much memory is occupied by variables or arrays used.
As a matter of interest, numerical values ocupy 6 bytes. Within an array they occupy onlv 4 bytes, plus an overhead for the whole array, which is dependant upon whether it is 1-, 2-, or 3-dimensional. The overheads for 1-, 2-, and 3-dimensional arrays are 13, 21 and 29 bytes respectively. For example, an array dimensioned with DIMX(9.9) will hold $10 \times 10=100$ variables. It would therefore occupy $100 \times$ 4 plus the overhead of $21=421$ bytes.

This is true when some values have been assigned to all dimensions. An empty array overhead is 6 bytes less per dimension. For instance, the same array X, above, would have an overhead of only 21-12=9 bytes whilst empty, or $21-6=15$ bytes with one dimension empty. (Why some one should dimension an array and leave it empty I dont knowl)

Each string variable occupies the same number of bytes as characters it contains with an overhead of 6 bytes. How much room a string variable array occupies I do not yet knowl

I hope this is of some interest. Finally. I would like "Microprompt" to be larger and in every issue. Certainly not Bi-monthly!
E. Cottam.

Par, Cornwall.

GETTING INTO PRINT PROBLEM

Sir-A short while ago I bought a secondhand Data Dynamics 390 ASCII printer. In spite of the fact that I was assured by the vendor that it was easy to link up to my UK101 (new MONITOR), I have been unable to find out how to do so. The only information that I have is that the printer requires an eleven bit word lone start bit, two stop bits, eight data bits) and that it has a current loop input and works at 110 Baud.

If any of your readers can help me to get the printer working. I should be most grateful.

Alan E. Wilmshurst,
Crowborough,
E. Sussex.
It should be emphasised that material presented in Prompt has not necessarily been proven by us. Neither can compatability with all generations of the computer equipment to which it relates be guaranteed.

Software and hardware designs submitted should be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

BASIC LINE RENUMBER

This program will renumber a UK101 BASIC program, or part of a program up or down. It will not, however, a/ter GOTO or GOSUB line numbers. The program can be loaded at any time when programming, and is brought into operation by typing RUN 20000. It is useful to use to "space out" part of a program to allow extra lines to be inserted. To understand the operation of the program, the workings of the BASIC interpreter, in particular, how it stores data in RAM, needs explaining.

```
20000 REM*"* LINE RENUMEERER FOR UK101 R"*OBEE**
    20010 REM*** I. PAWSJN FEGRUARY 1980
    20020 INFUT"RENUMBER DLD LINES FROM"; }
20030 INPUT"THROUGH TO",Y
20040 1FX)YTMEN20020
20050 INPUT"AS NEH LINE NUMBERS FROM"IZ
20060 INPUT "1N STEFS OF",IP
20060 IN=256
20080 DIMN(100.2)
20090 N(1, 1)=769
20100 FORT=1TOL00
20110 A=N(T,1)
20120 N(T+1,1)=PEEK(A+1)=B+PEEK(A)
20130 N(T,2)=PEEK (A+3) =B +PEEK(A +2)
20140 FRINTN(T, 2)INIT,1)
20150 IFN(T,2)=YTHEN20170
20160 NEXT
20170 FORT=1TO100
20180 A=N(T,1)+2
20190 IFN(T, 2)(XTHEN2O240
20200 POXEA, Z-INT (2/B)&B
20210 POKEA+1, INT(Z/B)
20220 Z=Z+P
20240 NEXT
20250 PRINTIPRINT
20260 FRINT"REMUMEERING COMFLETED*
20270 REM*** END OF PROCRAM *******
```

As the program is in BAS/C, all numbers are in decimal. The data is stored from address 769 onwards; the first two locations are the address of the start of the next line. The format is that the second location contents are multiplied by 256 and added to the contents of the first location. The following two locations contain the line number, in the same format as the address. The contents of the line follow, terminated by a 0 . The commands, GOTO, GOSUB are stored as a single number, 136 and 140. The line number following is stored in ASCII format, ie 100 as 494848,200 as 504848 and so on. The main problem, in adapting the program to renumber GOTO's and GOSUB's would be if the new line number had more or less digits than the previous one. This program is presented as a starting point for a complete renumberer, and I should be interested in readers' comments. Line 20140 can be omitted if a print-out is not required.

1. Pawson, Leicester

PEVDU KEMITRON STYLE

Because the Thompson-CSF CRTC chip is really intended for use in serial or "glass teletype" terminals, and is therefore equipped with its own rather slow cursor control system, problems can arise when attempting to use the PE VDU to best advantage as a memory-mapped VDU. As is mentioned briefly in part 3 of the PE VDU article, if a monitor program which generates its own cursor in software is to be used, the cursor control lines $\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{C}_{2}$ are best permanently set to 0 , and an initial pulse applied to the ST line (Fig. 4, part 3). This can be easily achieved if the ST line is wired to the reset circuit of the MPU. However, this is not the whole story. We
are now left with a flashing character and cursor line at the top left-hand corner of the screen. The cursor line is generated by the CRTC disabling the character generator at the appropriate time, and therefore this can be removed by breaking the track joining pin 15 of the CRTC to pin 11 of the 2513. and permanently grounding the latter.
This leaves the 2513 permanently enabled. To avoid the flashing character in the top left hand corner, the output routines in the interpreter or monitor used can be arranged to ignore completely the extreme left-hand column of the screen, while the clear-screen routine must of course include this column. This is the system adopted in the Kemitron NIBL-MM-memory mapped BASIC interpreter for the SC/MP, one version of which is specially configured to work with the PE VDU-though the principles described above could of course be incorporated in any interpreter or monitor program for any processor.

Details of the Kemitron system can be obtained from Greenbank Electronics, or the Chester Computing Centre, 21-23 Charles Street, Chester.

JUST A LITTLE SOMETHING . . .

100 REM $\star \star \star 8$ DIGIT BINARY TO DECIMAL CONVERT $\star \star \star$

110 REM $\star \star \star$ I. PAWSON DEC

 120 PRINT:PRINT
130 INPUT "INPUT 8 BIT BINARY NUMBER"; AS
140 IFLEN(AS) $><8$ THEN 100
$150 \mathrm{~B}=0$
160 FORX=1TO8
170 YS=MIDS(AS,X,1)
180 READA
$190 \mathrm{C}=\mathrm{VAL}(\mathrm{Y} \$)$
$200 \mathrm{~B}=\mathrm{B}+(\mathrm{A} \star \mathrm{C})$
210 NEXT
220 PRINT
230 PRINT "THE DECIMAL VALUE IS"; B
240 RESTORE
250 PRINT
260 GOTO130
270 DATA $128,64,32,16,8,4,2,1$
280 REM $\star \star \star$ END OF PROGRAM

LINE LENGTH HINTS

Sir-T. D. Allen of Poole wants to display 64 characters per line on his TV from a UK101. He has a problem! The suggestions that he makes are all based on software but the problem is mainly in the hardware.

As far as the software is concerned, changes must be made to a ROM in program locations FFEO and FFE1, cursor starting point and line length respectively.

The main problem is physically displaying the characters. The VDU RAM is scanned as 16 lines of 64 characters with TV horizonial sync pulses added at the end of every line. As everybody knows, a few characters are not displayed at each end of
the line. What is not often said is that more characters are lost during the fly-back of the TV trace and these can never be displayed.

The write-up in the UK101 book about VDU operation explains that clock pulse $C 7$ is not used and the result is that every row of dots is displayed twice. The logical conclusion is that using C7 instead of C6 to generate the horizontal sync should give a line twice as long with the 2 rows of dots side-by-side instead of one on top of the other. Putting the right values into FFEO and FFE1 (try BF and 3F) should then enable a complete set of 64 locations to be displayed, assuming that you can adjust and/or modify the TV as necessary. Display on a normally adjusted TV would not be possible.

You will have gathered that I have not tried this and there may well be problems, although the theory sounds good. It-should at least give food for thought.
R. L. Taylor,
Shepperton,
Middlesex.

PSG BUG

We received correspondence from Mr . Gossage of Harrow, Middlesex, pointing out an error in the address decoding of the PSG:
"It is stated that the Hex address used is $F \emptyset F \emptyset$. On the UK1 1 the whole 256 word block from $F O D$ to FOFF is used as the ACIA location-the two addresses are repeated throughout the page and so cannot be used by the PSG. Secondly, however, the circuit given will not show only at FOFØ but appear at many addresses from 00 C upwards. Inspection reveals that IC1 is not acting as an 8 input NAND.gate but as a 4-wide 2-input NAND OR gatethe output going low when any pair of inputs go high."
"The circuit will apparently work since it is, in effect, 'write only memory' and so although it appears at many memory locations it will not interfere with the micros use of the RAM."

The author, Mr. D. Coutts, has provided a fix for this, and apologises for the error: Change ICl to 74LS09 (same pin-outs), and add 2 N 3904 transistor and 470Ω resistor as shown below. This gives the PSG one address

only, and requires minimal interference to the p.c.b. Our correction to Fig. 8, is inlcluded too. Also, Mr. Gossage suggests transposing address lines A7 and A8 to place the PSG at F170 and F171-away from the ACIA.

RESIDENT EDITOR

MOST owners of microcomputers would be pleased if，for minimal hardware changes，they could provide themselves with an extra 1000 or so bytes of ROM storage．Into these 1000 bytes could be placed favourite machine code programs or perhaps some system software to extend the capabilities of their machines．These programs would of course be available from switch－on and be permanently stored．

This can be done for the UK101，but of course there is a snag．You will have to obtain a single supply 2716 EPROM and find some means of programming it．

The secret of this miraculous amount of available space lies in the Monitor ROM．Examination of the contents of the ROM discloses that it contains two almost identical sections at ad－ dresses in the ROM of $000-3 \mathrm{FF}$ and $400-7 \mathrm{FF}$ where 000 is located in the machine＇s memory map at F800．The major dif－ ferences in the two sections are that some of the jumps are to dif－ ferent addresses；and that one of the sections contains a routine to clear 2 K of video memory as against 1 K in the other．

The UK 101 only uses one of these two sections and I suspect that this comes about due to the machine＇s OSI heritage．

The point of all this is that we can dispose of the contents of the ROM from $000-3 F F$ and the UK 101 still works quite hap－ pily．It should be possible to gain a bit more space if you don＇t have a disc drive by removing part of the floppy bootstrap which runs from 400－4D4，but beware because some of the subroutines in this section are called from other areas of the Monitor．

910 98．48 AC F9 92 AD 58 02 91 FG 88 CE F9 92 20 39
 021 02 AO 23 91 F9 EE F9 22 DO 02 ES FA C8 20 3月 F9
 ク40 AC F9 0？A5 00 12 AD FA 92 FD 05 AD 580291 F9 950 A9 29 9D 00 D3 CA 83 CE F9 92 CE 0002 A9 9A $9 D$

 $990 \quad 1 D$ FO $4 C \quad 99$ A3 $38 \quad 9843$ AD FA 02 FO 08 AC FQ 12 JAJ AD EE O？ 91 FQ EE FA 12 AD FA D2 C9 13 FO 1 F C9
 ICO C6 FA $8 D$ FQ 02 AR 25 3B．F9 68 A8 A9 0060 A9 $0 ⿹$ ODO 8J FA 02 A9 D3 \＆5 FA AD OD D？BD F9 32 DO EG A9 OE0 00 3D FA $3 ? 85$ FQ A9 D3 55 FA A？ 29 日D ER 22 A9
 190 Fタ 12 AC F9 22 91 F9 BD F7 92 C\＆EEF9 I2 DJ 0？

 140 A9 9A 91 F9 B！A9 48 C5 OF DO 18 AD F9 2 ？E9 30 150 AC 58 F9 AD F9 O？E5 OF CQ OC FO 19 Cの $4 C$ FJ OC 169 C9 8C FO 98 C9 CC F9 $04201 D$ F9 60 4区 AC F9 02 170 A9 23 91 F9 68186949 90 182 E6 FA 8 CD F9 0220
 190 C8 CO OO DO F9 AS E2 EO D3 F0 06 E8 85 E2 1820
$1 A 0$ ED 69 AD 05 FA 88 O1 05 CEFS 02 FO 09 CA DS FS
130 AEFA $924 \mathrm{C} A 2 F 960$ FF FF FF FF FF FF FF FF FF 1CJ FF FF 29 5E FA C9 33 FO 13 CQ 24 DO F5 20 3F FA $1 D 0 \quad 8 D \quad 24 \quad 0220 \quad 3 F F A \quad 8 D 23 \quad 124 C \quad 6 C$ FA．A9 00 8D 23 $150128 D 20220$ 2C FA AA 20 2C FA 35 FA 20 2C FA 1Fり 85 F9 8A 48 A2 1020 2C FA \＆1 F9 68 AA E6 F9 DO 290 I？E6 FA CA DJ EC 29 3F FA CD 2402 D9 0820 3F
 290 CB DO 5020 61 FAC9 47 DH FGFO 9620 3F FA 18

 2CI ED 18 ク2 AO FF RD 19 O？4C Oी FEFFFFFFFFFF and then FFs until．

Of course you can＇t change the contents of the existing ROM and that is where the 2716 single supply EPROM comes in．

HARDWARE CHANGES

Assuming you have programmed the new ROM with the half of the Monitor you need to keep and with your own programs， now you need to make the hardware changes．To ensure that the 2716 is enabled properly some minor modifications need to be made to the computer＇s circuit board，and this is made slightly harder than necessary by the fact that the ROM addressing cir－

EDITOR－IN－MONITOR ROM

	20	0	F	6 C	FD	00	20	OC	rc	4 C	0.3	F	A 3		C
410	FF	8C	05	C 0	A2	04	85	91	Co	8 C	03	C	88	B	32 C
		0.3	CO	－	02	CO	A9	51	D0	09	A？	2		00	9
430	1 C	A9	FF	BD	02	CO	20	A5	FC	20	$F 7$	8 D	02	CO	29 A5
440	FC	09	98	80	02	C3	A2	18	21					A3	
	02	C	20	91	F	AD	31	C	30	B	D	03			3 －
	03	8 D	13	CO	A？	58	ED	10	CO	23	C	FC	5	E	ค 2
		FC			20					A	0	年	C		
	C8	DJ	F8	ES	FE	C5	FF	DO	2	85	F	A9	F	C	2．C0
491	69	A 0	FR	88	D0	FD	55	FF	CA	J	－	39	AD		0°
		FA			C3	60	A？	33		19		A			0 FB
430	60	48	AD	00	F0	4 A	4A	90	$F 9$	58	$3 D$	01	F0	6	49
4 C 0	8D	00	DF	49	FF	69		20	C	FC	A	58	CA	\％	69
	30							F	93	4	7	A3	A	0	4 E8
4E9	4 C	59	A 3	8A	48	$A E$	30	22	A？	29	9D	0	D	CE	0
	CA	A	9 A	$9{ }^{1}$	90	D3	68	AA	4 C	9	A				
	8 A	18	98	48	A	91	20	35	FC	29	C5	FC	D）	05	OA D
	F5	Fi	53		93	$0{ }^{1}$	2 A	E！		0	3	A9			129
	CS					$0 ?$			गA		ED	13	0？	3	
	BA	4 A	20	C	FD	D0	$2 F$	18	ว	6D	13	02	Aย		C
		15	03	D0	25	CE	1					5	A2	C	C
		88	D1		F9	AE	C	\bigcirc	59	35	A？	0	C9	02	\％ 47
	AO	Co	C？	23	F3	41	A	33	D						－
		14						CD	5	02	DJ	32	ก？	1	8E
	02	3D	16	02	A？	91	20	BE	FC	21	CF	FC	A	93	3
		3	F9		A 1		AD					19		D	13 A
	39	E	20	DJ	n？	A	Co	AD	15	12	29	7 7．	C？	20	507
	8 C	13	02	18	50	13	02		13	0	58	A	68	AA	A
	02	60	DO			2	D0		A0	08		9	97		60 D0
	38	$2 F$	20	5A	41	51	20	4 D	45	42	56	3	53	A	A
		45				5					57	30	00		5 5 4F
	40	PE	30	16	2D	3A	39	39	38	37	33	35	3	33	32 B
	A2	28	9 A	D8	En	FA	EA	EA	Ea	En	EA	EA	A？	9月	19 D0
		F5	A9	00											
		FF	E4		no		134		F 3		－	E？			
	1 I	C9	47		17	4 C	AD		En	20	93	E	33	EC	A？ग？
	20	D．		B1	FE	85									
	E	F	C	2	－	0.4	c．	00	，		E5	E	10		E6
	A 1	$0 \cap$	－	FE	35	FC	1 C	77	E	20	－		30	E1	A？ 90
	20	DA		A5											ๆ CF
	AD	00	FO	4	クリ	F	AD	－	，	EA	EA	En	？		5090
		70	00	C9	30	31		C？	3 n	30	23	C9	41	33	On
	47	10	36			3								03	A） 00
	$B 5$	FC	4A	4 A	$4 \wedge$	4 A	20	C． 2	FE	35	FC	$2)$	C	5．	－
		A	20			D1				59				39	C
	30	93	18	69	97	99	L	D1	c	50	．	0	OA	JA	A
		36	FC	35	FD	85	DJ	－8	59	A5		D			
		F	5												
	D	A？	28	9 A	no					99	17	－	38	DI	
		．				8C						－	25	－	AD E
	5	8 D	19	－	A	2.1		，	d			－		90	
	0	D0	C8	D3		39			F0	15	23	$2 D$	135	Cs	0 Fs
	20	BA				D		c		FA	－	57	D1	03	$1 C$ O
	03	C9	－	DO	0.3	4C	，	35	C9	$4 /$	D9	A．	10	00	C
	2F	4	F	5		4 D	29		00	20	2 D		13	AD	5
		22	68	20	－1	．	C9	O	D3	17	4	EA	18	ヘ	－
	，	2	31	FC		DJ		63	AA	58	F		CE	3	
	00	B2	－	O？		50		A	，	D	－	AD		02	D
	A9	FE	85	00	DF	C	0	DF	73	0	A？	－	？${ }^{\text {d }}$	00	D
，	0	D	79	，	A9	3	1 C	35	A6	69	C	93	32	19	19 A9
7 CO	FD	8 D	90	DF	A9	13	2.	90	D．	，	A	AD	0	0	A
		AD	01	Fo	63	EE	03	92	4 C	00	FD	FF	FF		
－	CD	$2 F$	01	00	03	FF	9	09	03	FF	9 F	6 C	18	02	6 C
750	02	6C	1 C	02	6C	IE	22	6 C	29	02	30	23	00		

cuit given in the COMPUKIT manual is not strictly accurate. The circuit changes are shown in Fig. 1 and are also described.

1) Locate pads W6 and W7. When I received my machine I had to cut the tracks on W6 and W7 and rewire them in the opposite sense to enable the standard Monitor ROM properly. For a 2716 these must be returned to their original state. This is because the 2716 requires a low on pins 18 and 20 to enable it.
2) Pin 21 is the naughty one. It is shown in the manual as being held at +5 V . On my machine at least it was not, but instead was strapped to pin 20 with a circuit board track. This means its

Fig. 1.

logic level goes up and down with pin 20 which is okay for the Standard ROM but stops a 2716 from working. It is necessary to cut this track and take it to +5 V .

Now, as to what to fill those 1000 or so empty holes with is
up to you. As an example this is how I partially filled mine.

EDITOR

The screen editor that was published in the July Microprompt now resides at $\emptyset \emptyset-182$ with the necessary address changes and an extension to compensate for terminal width. By changing two bytes at $6 \mathrm{~F} \emptyset$ and 6 F 1 to 74 and F 8 the EDITOR works immediately BASIC is called from RESET.

A rapid clear screen routine is located at 183-1A1, and 1A21B6 contain a program to generate tones of selectable frequency and duration through a small decoding circuit and speaker.

Finally a checksum loader occupies locations 1C2-2BD. This is very useful for loading and executing programs saved in checksum format from the Extended Monitor or Assembler/Editor. With all this there is still about $3 \emptyset \emptyset$ bytes to spare in the ROM so what next? Maybe a Renumberer or a Disassembler or a . . .?

This system has been working in my machine for about three months now and I haven't noticed any ill effects from the missing bits, and since the cost of 2716 EPROMs is continually falling you may consider it a worthwhile thing to do.

OW SAIF NOW!

MOTORING

1. BATTERY VOLTAGEINDICATOR
2. AMMETEA
3. ENGINE TE MPERATURE
S. DWELL METE HAZARO WAR NIN
hazabo warning and cascading
MEADLIGHT WARMING bY P. G. Wagsial'
AUTOMATIC CAR AERIAL oy M M Bennetl
HOUSEHOLD
DIGITAL TE MPE RATURE CONTROLLER OY D. COUIIS ONO P. MCAllisiot
UITRASONIC AURGLAAALARMDYG DAVIGS
PHOTOGAAPHIC
PE OIAMATIC brJ. R. Ames E Sc., and W. L. BMIA B.Sc.
oigital expo sure timen by join Becher
MUSICAL EFFECTS

GUTAR SOUNO MULTIPROCESSOR OY Dr. M. Sawichi and A, Kowaiewsht se
RADIO CONTROL
R.C. FAILSAFE Dy TOny Jonkins

TEST GEAR

A PRA돌CALONICE Publication...

Our new book PE Popular Projects is now on sale at newsagents and components stores; the contents of this book are shown above. The book costs $£ 1.25$ from retail outlets and is also available for $\mathrm{E} 1: 50$, UK post paid or £ 1.80 , overseas surface post paid, from Post Sales Department (PE Popular Projects), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE 1 OPF.

BRAINS AND BRAWN

EWARE, the intelligent public telephone is on the way! The Plessey designed PP2000 payphone might not only have a higher IQ than its user, it will probably prove tougher too--should it come to blows.Vandal-proof, fraud-proof, the stainless steel machine is said to be capable of withstanding an attack with a sledge hammer, chisel or crowbar. So far so good, but the microprocessor controlled creep doesn't hit back, it secretly sends out a 999 call.

Up to 80,000 of the "public call office" versions are expected to be in use in the UK before 1985 (1984 again). These telephones are honest. If you insert coins to the value of 60 pence for a long distance call, the machine will not only display digitally your diminishing credit as the call progresses, but should you hang up with, say, 10 pence still on the clock, it will refund the difference.
The PP2000 payphone is powered entirely from the telephone line, is very flexible in the face of rate increases or coinage changes, and informs the post office when the cash box is nearly full; and with that kind of versatility Plessey believe they should be able to grab a good share of the estimated overseas market of £50mp.a.

The PP2000 is a microprocessor controlled payphone developed by Plessey engineers at Liverpaol

SUPER OFFER

mini 20

 multimeter only $£ 19.50$

to Practical Electronics readers

INCLUSIVE OF POST PACKAGE V.A.T.

The Mini 20 Multimeter is an ideal instrument for the constructor.
This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 10$ on the normal retail price.

The 21 ranges cover all likely requirements. Operation is straight-forward, just turn the 22 -position selection switch to the required range.
Please complete both parts of the coupon in BLOCK CAPITALS ALCON INSTRUMENTS LTD, 19 Mulberry Walk, London SW3 6DZ.

Sensitivity $\quad 20 \mathrm{k} \Omega / \mathrm{V}$ d.c. $\quad 4 \mathrm{k} \Omega / \mathrm{V}$ a.c.
Ranges extend from 100 mV to 600 V d.c. $50 \mu \mathrm{~A}$ to 600 mA d.c. 0 to $2 k \Omega$

15 V to 1500 V a.c. 30mA to 3A a.c. 0 to $2 \mathrm{M} \Omega$

Movement protected by internal diode and fuse.
The instrument is supplied complete with case, leads and instructions.

OFFER CLOSES DECEMBER 31 st, 1980
Please allow 28 days for delivery

AND THERE＇S MORE WHERE THIS CAME FROM

It＇s a long time since one of our adverts was presented in＇list＇form ．but simply because we do not try to squeeze this lot in every time doesn＇t mean that it＇s not available．Our new style price list（now some 40 pages long）includes all this and more，including quantity prices and a brief description．The kits，modules and specialized RF components ．such as TOKO coils，filters etc．are covered in the general price list－so send now for a free copy（with an SAE please）．Part 4 of the catalogue is due out now（incorporating a revised version of pt．1）．

LINEARIG．NUMERIC LISTINGS

ITL N and LSN	
7400N	0.13
744.500	0.20
7401 N	0.13

\＆SYNTHESISERIC．

SAA
为
TDALO6
TDA1072
TDA1074B
TDA
号采至

HAl HAl HAl

HM
TMA
cm
cm

| $\substack{213 \\ \mathrm{CM1} \\ \mathrm{MCl} \\ \mathrm{MCl} \\ \hline}$ |
| :---: | :---: |

L

\section*{| M |
| :--- |
| M |
| M |}

HAL
HAL
TDA
MCl
MCl

SLu SL SL

775

SL SL SL SL

完

ULN
CA3
${ }^{\text {CA3 }}$

ปร కె 3 บ茥

UM39
LM39
KB4
KB4
$\begin{array}{ll}\mathrm{KB} 4412 & 1.95\end{array}$

Please send an
SAE with all
SAE with
enquiries．
Access／Barclayod
（min $£ 5$ please）
Callers welcome

CMOS 4000 SERIES

4

4001	0.17
4000	0.17
4002	0.23
4008	0.80

3123 E
3130 T 3140 E
3357 F 2
3900 N
3909 N
M3914N
3915 N
4400

TRANSISTORS

AUDIODEVICE

> $\begin{array}{lll}74175 N \\ 7 & 1.10\end{array}$
> $74176 \mathrm{~N} \quad 0.75$
> $\begin{array}{ll}74276 \mathrm{~N} & 0.75 \\ 74177 \mathrm{~N} & 0.78\end{array}$
> $74181 \mathrm{~N} \quad 1.65$
> 74151813.50 $\begin{array}{ll}74 L 5183 & 2.10 \\ 74184 \mathrm{~N} & 1.35\end{array}$ $74185 \mathrm{~N} \quad 1.34$ 74 TS190 0.92 $74192 \mathrm{~N} \quad 1.05$ $74 \mathrm{LS} 192,1.80$ $74193 \mathrm{~N}, 1.05$ 74 LS193 1.80 $74194 \mathrm{~N} \quad 1.05$ $\begin{array}{ll}74196 \mathrm{~N} & 0.99 \\ 74 \mathrm{~L} 5196 & 1.10\end{array}$ 74 S197 1.10
74198 N

1.50 $\begin{array}{ll}74198 \mathrm{~N} & 1.50 \\ 74199 \mathrm{~N} & 1.60\end{array}$ $\begin{array}{ll}74199 \mathrm{~N} & 1.60 \\ 74 \mathrm{LS} 247 & 0.93\end{array}$ \begin{tabular}{ll}
7415247 \& 0.93

7415257

\hline

 74 LS260 1.53 7452790.52 74 LS283 1.20 74152930.95 $\begin{array}{lll}74 L S 365 & 0.49 \\ 74 L S 366 & 0.49\end{array}$ $\begin{array}{lll}74 \text { LS } 366 & 0.49 \\ 74 L S 367 & 0.43\end{array}$ $\begin{array}{lll}745367 & 0.43 \\ 745368 & 0.49\end{array}$ 74 LS 3741.80

7425377

\hline
\end{tabular} 74153791.30

TUNING DIO

| 7415174 | 1.20 | BA121 | 0.30 |
| :--- | :--- | :--- | :--- | :--- | CAPACITORS

All 5 mm or less
CLHAMIC 50v 2 2 P 2 ，3P3，4P7，618 8P2，10P，15F，18P ．． 0.04 $22 \mathrm{P}, 27 \mathrm{P}, 33 \mathrm{P}, 47 \mathrm{P}$ $150 \mathrm{P}, 220 \mathrm{P}$ ． 700 P .0 .05 50P，220P， 270 P 0.055 330P，390P ，470P，． 0.055 1NO， $2 \mathrm{~N} 2,3 \mathrm{N3}, 4 \mathrm{~N} 7 \ldots 0.06$
1ON（ 0.01 UF ）$\ldots .0 .05$ 10， 0.05
0.06
0.09 2ZN，47N．．
$100 \mathrm{~N}, 220 \mathrm{~N}$ MONOLITHIC CERAMIC 10N，100N．．．．．．．．． FEEDTHR
INO SOLDER IN．．． 0.09 POLYESTER（SIPMENS） 10 mm LEAD SPACING $10 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N} .$.

POLYESTER（GENERAL
POLYESTER（GENERAL
1 OTm LEAD SPACING 10nm：LEAD SPACING
LON， $15 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N} .0 .06$ $220 \mathrm{~N} .$. 20 mm LEAD SPACING $220 \mathrm{~N}, 330 \mathrm{~N}, 470 \mathrm{~N} . . .0 .18$ MyIAR
Smm IEAD spacing $1 \mathrm{INO}^{2}, 10 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N} .0 .08$ 20mm LEAD SPACIMG POLYSTYRENE
10P，15P，18P，22P 27P，47P，56P，68P，． 0.08 100P．180P．220P， 270p，330P，390p．．．． 0.09
$470 \mathrm{P}, 680 \mathrm{P}, 820 \mathrm{P} \ldots 0.10$ 470P，680P，820P．．．0． 10 1N0，1N2，1N5， $1 \mathrm{NB}, .0 .11$
$2 \mathrm{~N} 2,2 N 7,3 N 3,3 N 9, ~ 0.12$ 2N2，2N7，3N3，3N9．． 0.12
4N7，5N6，6N8，10N． 0.13 TANTALLM BEAD CAPS $16 \mathrm{v}: ~ 0.22,0.33$ ． $0.68,1.0 \ldots \ldots, 0.18$ 16v： $2.2,4.7,10.0 .19$ 6v3： $22,47 . \ldots . .0 .0 .30$ ALUMIN ELECTROLYTICS
RADIAL IVERT．MOUNT） RADIAL（VERT．MOUNT） （uF／voltage） $1 / 63,2.2 / 50,4.7 / 35$ 10／16．15／16．22／10 33／6．3．．．．．． 10／63，22／50，．．．．．0．0 0 47／16．100／16．．．．．0．10 47／63，100／25，220／16 470／6．3．．．．．．．． 1000／10．．． \qquad

TOKO COILS AND FILTERS SEE THE EXTENSIVE SECTION
IN OUR NEW PRICE LISTS AND CATALOGUE

LF／HF FIXED INDUCTORS
－FULL E12 RANGE
78A series 1 UH－lmH 0.16
8RB series
$100 \mathrm{ut}-3 \mathrm{3nH}$
$33 \mathrm{mH}-120 \mathrm{~mW}$
0.19
lorph series
0.33

SCHOTTKY DIODE BAL MIXERS（SBLL $=$ MDI

SBLI 1－500 $\begin{array}{lll}\text { SBCL } 1-500 \mathrm{NHz} & 4.25 \\ \text { SBL }-8,1-200 \mathrm{Hzz} & 4.55\end{array}$ $\begin{array}{lll}\text { SBEC }-8 & 1-200 \mathrm{NHz} & 4.55 \\ \text { SEL } 1-x & 10-1000 \mathrm{NHz} & 5.75\end{array}$ | SBEL－X | |
| :--- | :--- |
| SRAI | $10-1000 \mathrm{FHz}$ | $\begin{array}{ll}\text { SRAL } .5-5000 \mathrm{~Hz} & 8.45 \\ \text { SRAl }-1.1-500 \mathrm{MHz} & 9.25\end{array}$ SRAIH $.5-500 \mathrm{HHz} \quad 13.35$ SRA3 ．025－200NHz 10.25

LCD Mo CM161．
Miniature cloc $12 / 24 \mathrm{hr}$ ．，alarm， day，date． All for．．．．．． 9.95

1000／16，470／63．．．0．23 1000／63．2200／16．．0．30 1000 100.
10000 70 ．．．．．．．． 0.88
AXIAL（HORIZ．MOUNT） $1 / 25,4.7 / 16,6 \cdot 4 / 25$
$10 / 16 \ldots0 .08$
 $33 / 16 \ldots \ldots . . .0 .0 .09$
$47 / 25,100 / 16 \ldots .10$ 100／25．．．
 1000／35，4700／16．．0．45 1000／50．．．．．．．．．．．． 0.58 RESISTORS
0．25N，58 El 2 CARBON
 $1.10 h \pi 1$ M．．．．．．．．． 0.05 HORI 2 CARBO 10 mm TYPE
100 ohms －2M5 HRRIZ CERMET PRESETS

FRANK W. HYDE

FALSE ALARMS

A number of false alarms have been detected recently in the American security networks which monitor possible attacks. It seems that the computers are in fact the culprits. There is a move to replace them because they now seem to be 'prone' to such mistakes.

Unfortunately there are other areas of definite danger of false alarms which are not so easily avoided. It is even more disturbing that the source of the false information was from the Vela satellite. It has taken ten months to solve the problem recorded in September 1979 and known as the 'event' of September 22. The task of the Vela satellites was to specifically monitor nuclear blasts. A statement released recently by the Department of Defence said that the 'event' was a nuclear blast. On the same day the official report of the panel of scientists, set up by the White House, was released and stated that the 'event' was probably not a nuclear explosion.

The panel set up by the White House was briefed to determine if the flash of light seen by the United States Vela satellite was or was not a nuclear blast. The work of the panel was carried out using computers and other relevant equipment in non government departments. The data examined and rechecked had the result that from the data over ten years the 'event' of September 22 differed from all the nuclear blasts recorded in one vital particular. This essential feature was that the light recorded by the two detectors on board differed'. If the detectors were in fact recording a nuclear blast, this would be at a great distance and therefore the two detectors would have recorded equal light intensity. As it turned out the records showed, in the case of 'event' September 22 , that there was a difference in intensity.

The explanation therefore must be that the effect was caused by some happening. The pattern of the recordings were significantly different from that expected from a nuclear explosion near the surface of the Earth. Such
anomalous behaviour was never observed in the 'Bhangmeter' recordings. The name Bhangmeter is given to the special recordings that are made of such incidents. There were similarities even to the characteristic 'double hump' profile. The panel came to the final conclusion that this particular event could be common to a number of other similar events.

The panel of investigators also compared the September 'event' with signals from thousands of incidents from the Vela spacecraft and others. These data included astronomical events, ordinary lightning, superbolt lightning, sunlight reflections from other spacecraft, sunlight reflections from meteorites near the satellites in regular orbits, and sunlight reflected from particles ejected from meteorites on collisions with spacecraft. Finally it was to be concluded that the last item, particles ejected from meteoroids, fitted the facts.

The investigation, apart from the reassurance, that, so far as the nuclear blast was concerned a false alarm was raised, held a bonus. Previous unexplained light flashes from the recordings of Pioneer 10 , on its way to Jupiter, as it passed through the asteroid belt. Collisions with small particles showed these light flashes. Such an event could be statistically expected from a Vela spacecraft once every ten years. A wider conclusion of data from all sources available leads to the conclusion that there was no corroborative evidence. The data included radioactive fallout, seismic signals and such incidents. There is a lesson here perhaps. Snap decisions are very dangerous and that all spacecraft should be under surveillance. Self monitoring would seem to be one solution. We have the technology.

THE VIKING MISSION

The Viking 1 Orbiter has run out of fuel. After four years circling the planet Mars, it has now been shut down. No more signals will be returned to Earth. However the Viking 1 lander will continue to operate and will be sending information back to Earth until 1994 according to present information.

The Viking 1 lander was the first spacecraft to land on another planet and continue sending data for more than a few minutes. It was launched from Earth on August 20, 1975 and arrived at Mars on June 19, 1976. The Viking 1 lander touched down on the surface the next day. The next mission Viking Orbiter 2 and Viking lander 2 was launched on September 9, 1975 and arrived at Mars on August 1976. The Viking 2 lander searched for a suitable landing place for almost a month before making its descent on September 3, 1976. Viking 2 Orbiter ran out of fuel on July 25, 1978 and the lander was turned off by control on April 12, 1980.

This leaves the Viking 1 lander operating on the surface of Mars at the Chryse Planitia 22.3 deg. North, 48.0 deg. West. The extension of the Mars mission beyond the four month period expected has proved more successful than was originally anticipated. The two spacecraft with their landers sent back more than 54,000 photographs of Mars and its two satellites. Each photographic frame contained twenty times more information than the previous Mariner mission in 1971. The
two Viking landers took 4,500 pictures which included high resolution pictures and stereoscopic pictures of the landing sites. The result of this mission is that 97% of the planet has now been mapped.
No organic molecules were detected. This does not necessarily mean that there is no life on Mars only that none was found at the landing sites. All the same it seems now very remote that there is life of a kind that our technology could recognise. Carbon dioxide was already known, so also was oxygen and water but in addition nitrogen, argon, neon, krypton and xenon were found in the atmosphere. The elements suggest that the Martian atmosphere must have been much denser in the past. The soil of the planet is similar to iron-rich clay.

Weather at the north site was much more variable than that at the southern site which was 20 degrees south. Here there were cyclones and weather fronts with ground frost. The highest temperature at the south site minus 31 deg. centrigrade and the lowest predawn temperature at the northern site was minus 124 centrigrade. It is still thought that under the sandy soil there exists an overall coverage of permafrost containing water which could be released if the surface got warm enough. There is considerable data to be studied particularly the geological conditions. This will occupy teams for several years.

LATE NOTE

Using the Goldstone radar antenna the operational team have detected water just below the surface of Mars in an area called Solis Lacus. They suggest that it lies $0.5-1$ metre below the surface over an area 480 km by 960 km . It is possible that there is a kind of pool, possibly of wet sand or a pool of soil. The observations which led to this conclusion were based on the changing reflection of the surface as the temperature changed.

THE SUN

Confirmation that the Sun has increased its energy output since the last solar minimum is now certain. The increase, a little under a half of one per cent, is significant. This is given in a report from the team at Lowell University. The principal person concerned is G. W. Lockwood. In the period of the solar minimum he suggested that there was evidence to show that the increase of the energy of the Sun could be determined by the increase in brightness of the planets and their satellites. The results of the work since 1976 has confirmed that Lowell was right. The satellites of Jupiter, Io, Europa and Callisto, together with the satellite Rhea of Saturn, have been monitored continuously since 1976 and now provides further confirmation that the Sun is a variable star.

Another major event came from the concentration of astronomers from 18 counties on a particular region of the Sun. Two large flares appeared on the Sun and each was on the limb. This enabled the maximum data to be recorded. The Solar Maximum Mission Satellite was also involved. All seven of the instruments aboard were in operation at the same time, so again maximum data was available.

REIETENT with INFRA-RED REMDTE CONTROL David Shortland

PART 4... WIRING AND TESTING

A^{F}FTER all the p.c.b.s have been constructed, carefully check each board against its component layout. Also check that all the joints have been soldered and there are no solder splashes shorting out any of the tracks.

A suitable layout for the case is shown in Fig. 4.1. Do not fit any of the p.c.b.s until all the case drilling has been completed. Make sure there are no pieces of swarf either in the case or on any of the boards before they are fitted into position. The UHF sockets should be mounted first and the p.s.u. board then fitted to the rear of the case. The two voltage regulators should be bolted directly to the case and then the transformer, mains switch, fuse and neon fitted. The three voltage rails should be checked before any connections are made to the system.
The decoder board holes should be drilled next and then the tuner board which is mounted above the decoder drilled. The tuner board is mounted using aluminium strips, formed as shown in Fig. 4.1, taking care that the top of the VSM, VDM and tuner do not protrude above the top of the case. The front panel must also be drilled to allow the four tuning pots to protrude.

The video summer board holes can be drilled next and then the receiver board mounted on the front panel with a hole drilled for the infra-red detector diode.

With all the case holes drilled the wiring between the boards can now be carried out. A complete wiring diagram of the system is shown in Fig. 4.2. Wiring and testing problems will be simplified if ribbon cable is used.

Using co-ax cable, solder the two UHF sockets; one should go to the tuner and the other to the modulator. The connections for the tuner and modulator are to the pins on the side of the components with the earth braid soldered onto each case.

BUFFER MODIFICATION (5050)

The F1 output (pin 20) from the SAA5050 TROM chip should be buffered as shown in Fig. 4.3 to ensure correct operation under all conditions. The resistor and transistor for the buffer can be soldered directly onto the decoder board as shown in Fig. 4.3.

Fig. 4.3. Buffer circuit modification for the decoder board. It may be necessary to increase the length of the leads of TR18 using tinned copper wire. Resistor R90 should be soldered to plug PL2 with the daughter board removed

TESTING

Before all the p.c.b.s are finally fitted into position the wiring should be very carefully rechecked. It is very important that the power supply rails to each p.c.b. are carefully checked. Take care that the daughter board is plugged in the right way round. Also check the three wire links on the daughter board. If everything is correct switch the unit on and check the supply rails on each p.c.b. If all the rails are correct, switch the system off and using two co-ax leads connect the aerial to the tuner via the UHF socket and the TV to the modulator via the other UHF socket.

With the TV switched on and tuned to channel 36, switch

Fig. 4.1. Wiring diagram for the complete system. Note the annotation of plug PL3 on the decoder board was shown incorrectly in Fig. 2.4 (F1 was omitted)
the system on. It should be possible to adjust the BBC1 tuning pot to obtain a picture. If there are any problems, the video output of the tuner board can be taken directly to the modulator on the video summer board. This will enable the tuner board to be set up if there are any problems with the decoder or video board adjustments. With the tuner adjusted using the setting up procedure given in Part 2 for the best picture available, remove the link to the modulator.

It should be possible to obtain a reasonable picture with the tuner correctly set up, which will allow the video summer board to be adjusted. (See Part 3.)

When the system is first switched into the telextext mode page 100 of the Ceefax magazine should be displayed. If there are any problems with the remote control circuits the output from IC1 pin 16 can be directly wired to the base of TR6 on the receiver unit, by-passing the infra-red link.

The audio section of the system has been designed around the TBA120S. The volume can be controlled by VR9 and the Quad coil L6 should be adjusted for the best sound reproduction.

TUNING POTENTIOMETERS

The tuning potentiometer VR2 should be adjusted for BBC1, VR3 for BBC2 and VR4 for ITV. This will ensure the correct channel is displayed when the channel is changed or the status button pressed.

CORRECTIONS

The p.c.b. layout for the tuner board which was shown in Fig. 2.3 is incorrect. The 4050 (IC3) buffer is a 16 pin not a 14 pin device. The correct design for the tuner board is shown in Fig. 4.4.

ALIGNMENT OF THE TELETEXT DECODER

The teletext board is supplied ready aligned and should require no adjustment. In the event of incorrect or no data being received, inspection of the remote control and i.f. sections of the receiver should be carried out first. These adjustments do not affect the actual display of characters on the TV screen. The four adjustments on the board are designed to take up tolerances in the SAA5030 and should therefore only be changed if the SAA5030 on the board is replaced. They should be carried out in the following order.

1. Field Sync. Adjustment. Using a scope, look at the video input to the decoder and the voltage on pin 13 of the SAA5030, adjust the $10 \mathrm{k} \Omega$ potentiometer until the leading edge of the pulse on pin 13 is $48 \pm 5 \mu$ s from the field sync. datum (the beginning of the first broad pulse as shown in the diagram).
2. Crystal Frequency Adjustment. A $5-65 \mathrm{pF}$ trimmer capacitor in series with the crystal adjusts the free running frequency of the oscillator. Connect pin 1 of the SAA5030 to +12 V so that the oscillator free runs and connect a 5 M 6

[6663]
Fig. 4.2. Internal layout of the case

Fig. 4.4. Corrected p.c.b. design for the Tuner board
resistor from pin 7 to 12 V . Using the scope, look at the incoming video and the sandcastle waveform on pin 5 at the SAA5030. The trimmer should now be adjusted until the two signals are stationary relative to each other. Remove the link and resistor.
3. Clock Phase Adjustment. Pin 20 of the SAA5030 may have a $33 \mu \mathrm{H}$ choke and a $5-65 \mathrm{pF}$ trimmer connected to it. This trimmer is used to adjust the phase of the data clock to ensure that the teletext data is latched at the optimum time. If for some reason the SAA5030 is replaced, these components should be removed and replaced with a 1 nF capacitor connected from Pin 20 to ground.
4. Clock Coil Adjustment. As stated earlier, the clock coil is pre-aligned using specialised test equipment and cannot be correctly set-up without such equipment. However, if the

SAA5030 is changed for some reason, it can be aligned approximately by using the following procedure.

Put the decoder in teletext mode and call up the Engineering Clock-Cracker' page. This is a special test page used for assessing the performance of the data clock. Now rotate the clock coil core clockwise until the decoder starts to make mistakes. Note this position. Rotate the core anticlockwise until the decoder makes mistakes again. Note this position. Set the core midway between the two marks. This should correspond to approximately one turn out from fully screwed in.

ACKNOWLEDGEMENTS

The author would like to thank Luke Theodossiou, who designed the Tuner circuit, for his help and assistance with the overall design, also lan Stuchbury, who developed the Video Summer, for his helpful comments.

Hountidun

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below.

Semiconductor International 80 Nov. 25-27. Metropole Convention

Centre. T1

BEX 80 Nov. 26-27. Exhibition Centre, Bristol. K
Breadboard Nov. 26-30. Royal Horticultural Halls, Westminster. T
BEX 81 Feb. 4-5. Pavilion, Bournemouth. K
Microsystems 81 (exhibition and conference) March 11-13. Wembley Conf. Centre, London. $\mathbf{Z} 1$
INSPEX 1981 March 16-20. NEC, Birmingham. Z1
Seminex 81 (seminars only) March 23-27. Imperial College, London. H1
BEX 81 March 25-26. Metropole, Brighton. K
The Northern Electronic Test \& Measurement Exhibition 81 March 31-April 2. Wythenshawe Forum, Manchester. T
BEX 81 April 8-9. Centre Hotel, Liverpool. K
All Electronics Show 81 April 22-24. Grosvenor Ho., Park Lane, London. F1
Computer Graphics 1981 April 28-30. The Barbican Centre, London. 0
BEX 81 April 29-30. Dragonara Hotel, Leeds. K
Entertainment 81 May 9-17 (weekday mornings trade only). NEC, Birmingham. B2
The European Consumer Electronics Show 81 May 10-13, Nuremburg Fair Centre, W. Germany. (Trade) I
BEX Train May 11-22. Calling at: Cambridge, Norwich, Leicester, Sheffield, Newcastle, Middlesbrough, Hull, Nottingham, Reading and Portsmouth. K
Defence Components Expo 81 May 12-14. Brighton Metropole. I
Semlab 81 June 2-5. Grand Hall, Olympia, London. The international scientific, educational, medical and industrial laboratory equipment exhibition. (Trade) I
Transducer Tempcon 81 June 9-11. Wembley Conf. Centre, London. T
Components 81 (Electronic Components Industry Fair) June 9-12. Earls Court, London. This show will alternate yearly with Electronics, now that the IEA amalgamation with Electrex has ceased. I
International Word Processing Exhibition \& Conf. 81 June 23-26. Wembley Conf. Centre, London. Z Solar Energy Exhibition Aug. 23-28, 1981. Brighton. M International Business Show 81 Oct. 20-29. NEC, Birmingham. A2 Electronics 82 (Sub-titled International Electronics Control and Instruments Exhibition) May 24-28, 1982. NEC. I

I Industrial Trade Fairs. \& 021-705 6707
K Douglas Temple Studios, 1046 Old Christchurch Road, Bournemouth
M Montbuild. 01-486 1951
0 Online Conferences. \& 089539262
T Trident International Exhibitions. \% 08224671
H1 Seminex Ltd. 089239664
T1 Kiver Communications UK, Millbank House, 171/185 Ewell Road, Surbiton, Surrey KT6 6AX.
Z1 IPC Exhibitions Ltd., 40 Bowling Green Lane, London EC1R ONE. 01-837 3636
A2 Hart Browne \& Curtis Ltd., 29 Sackville Street, Piccadilly, London WIX IDR. © 01-439 8556
B2 Brintex Exhibitions Ltd., 178-202 Great Portland Street, London WIN 6NH. ८ 01-637 2400

polints drisinc

MICRO PROMPT (September 1980)

The short m/c program under "Error Message Error" should read:

7 F and not 7A
$4 C$
$2 D$

$B F$ | AC |
| :--- |
| $2 D$ |
| |

PROGRAMMABLE SOUND GENERATOR

(September 1980)
Line 60 of the "Random Sound" program should read:
$Y=$ INT(RND(7)́․ 15): etc.
Also, see Micro Prompt for details of a decoding fix for the PSG.

MAGNUM METAL LOCATOR (Sept 80)

The p.c.b. shown on page 53 is not same size. A correctly sized one is available on application.

Overcoming problems that might have arisen in this popular design

MANY constructors are successfully using 'Diamatic' (published in PE Nov. 79 and now available PE Popular Projects) units both with two identical projectors and with two projectors of different model or manufacture. In a small number of cases though, problems have arisen when different projectors are used. This article describes the causes of the two problems and the way in which they can be overcome.

PHASE ERRORS

The Diamatic will not function correctly if there is a large phase difference between the 24 volt supplies of the two projectors although it is very unusual to find such a phase error because of the resistive load presented to the transformers by the projector bulbs. In some projectors however, the fan motor is connected auto-transformer fashion to the transformer primary and this highly inductive load causes a phase shift which appears on the secondary winding. Since the phase reference for both of the triac dimmers is taken from only one of the projectors-projector B-the lamp in projector A can behave in an unpredictable manner, especially at the extreme ends of the dimmer range.

The fault usually shows up when projector A is at its brightest and can result in a sudden switch to half power or even completely dark at the extreme end of the control range or when the 'Change' button is pressed. In this instance the triac in projector A is being fired very early in the mains cycle (Fig. 1a) and if A lags B firing can occur very close to the end of the previous cycle (Fig. 1b). The results of this change in the firing instant are not easy to predict, especially when the phase error is small and the firing pulses overlap the zero crossing.

EARTHING PROBLEMS

Some projectors have internal circuitry which is tied to earth, hence the lamp supply is not fully floating and when the centre rail of the Diamatic power supply is earthed large currents can flow causing damage to components in either the projector or the Diamatic. Clearly these problems can only occur if projector B from which the Diamatic derives its power supply, has a three core mains lead fitted as standard. If either of your projectors has a two core lead then use this as projector B and you will have a fully floating supply. If neither has a two core lead then it is safest to use a separate 24 V transformer to power the Diamatic. RS Components transformer No. 207-201 is suitable for this purpose. Remove the wire leading to SK2 pin 10 and connect this to one side of the 24 V supply, connect the other side to the junction of D3,D5 and R1, first having broken the track between here and TR201.

This will use the transformer to provide both power and phase reference. Provided no phase error problems are introduced this is a complete answer to earthing problems.

A NEW PHASE REFERENCE

If it is necessary to derive a separate phase reference for projector A or if the phase reference derived from the separate transformer is not satisfactory a method has to be found of generating a phase reference from the projector without introducing or reintroducing earthing problems. The simplest method is to use an opto-coupler. Inside this is an l.e.d. which illuminates the base of a phototransistor; when the l.e.d. is turned on the output transistor conducts without any physical connection being necessary. Signals can therefore be passed between two circuits at very different potentials with respect to earth, modern devices can offer a breakdown voltage of 2500 V or more.

Fig. 2 shows the circuit of the new phase reference pulse generator. D301-304 rectify the voltage across the secondary of projector A transformer can apply it via the current limiter (TR301, R302, 303 D305, 306) to the opto-coupler l.e.d. The l.e.d. must illuminate sufficiently to saturate the output transistor early in the mains cycle if sufficiently narrow pulses are to be obtained. If a resistor were used to produce this current $(15 \mathrm{~mA})$ within the required $300 \mu \mathrm{~s}$ of the start of the cycle then the current in the l.e.d. in midcycle would be $790 \mathrm{~mA}-13$ times the maximum rated

Fig. 2 Circuit diagram of now phase reference pulse generator
currentl Clearly a limiter is needed to remove the peaks, TR301, which saturates until D305, 306 conduct providing a reference to the base, performs this function. R301 ensures that some current always flows in the rectifier diodes and R304 helps the l.e.d. to turn off quickly by providing a path for the removal of minority carriers when TR301 switches off at the end of the cycle. C301 removes switching spikes which would otherwise disturb the operation of the circuit.

COMPONENTS

Resistors	Semiconductors		
R301	4 k 7	TR301	BFX85
R302	6 k 2	TR302	BC107
R303	750 hm	1C301	TlL 111 (Texas)
R304	10 k		R-S 307 -979
R305	10 k	C301	0.22μ FPolyester
R306	10k		
R307	2 k 2	D301-306	OA202

On the output side the $\mathrm{V}_{\text {a }}$ saturation voltage of the transistor within the isolator is too high to drive the Diamatic directly' so TR302, R305-307 provide a signal that is compatible with the original unit.

CONSTRUCTION AND INSTALLATION

The simple module may be built either on Veroboard or on the printed wiring board whose layout appears in Fig 3.

Before installing the module make a connection from the unused side of projector A transformer to the Diamatic unit. If the wiring diagrams of the original article have been followed this point will be available in the triac box between the projector A tags for 'change' and ' g ' of CSR101. Take this signal via the spare core in the lead to the Diamatic, to pin 11 of PL2. Now connect the a.c. inputs of the new module to pins 2 and 11 of SK2, thereby connecting the module directly across the secondary of transformer A .

Next join the module +6.2 V lead to the Diamatic positive supply and the -6.2 V lead to the negative supply (this connection can be made to any of several convenient links on the original p.c.b.). Finally remove the link on the main printed wiring board which joins the collector of TR 1 to R101,104 and connect the output of the module to the junction of these two resistors.

Connections are now complete and Fig. 4 shows how the module relates to the circuits of the main system. As the setting up of the Diamatic will only have to be changed very slightly a full functional test can now be carried out followed by slight adjustments to the presets for projector A if required.

If a separate power supply is used for the Diamatic it may be necessary to derive separate phase references for each projector. If this is the case build two of the new modules and connect one as previously described. To install the second module remove TR1 D1, 2, C1, R1, 3, 27, 28 and connect the output of the module to the junction of R201, 204. Connections to projector B transformer is via pins 6 and 10 of SK2 and the \pm power supplies are derived as previously described. An earth for the Diamatic box and its circuits can now be taken to the mains earth via the power supply cable with no danger of damage to any of the components.

In order to avoid earth and phase problems completely the 'belt and braces' approach is to use a separate transformer to power the Diamatic and two opto-isolator modules.

Fig. 3 (Above) P.c.b. and component layout

Fig. 4 (Right) Connection to rest of system

COMPUTERS AUDIO RADIO MUSIC LOGIC TESTGEAR CB GAMES KITS

- ${ }^{2}$ MPONENTS DEMONSTRATIONS SPECIAL OFFERS MAGAZINES BOOKS

It's all at Breadboard '80

This is the exhibition for the electronics enthusiast. From November 26-30 there is only one place in the universe for the electronics enthusiast to be - Breadboard '80, at the Royal Horticultural Hall in London. The majority of leading companies will be exhibiting, including all the top monthly magazines in the field. There will be demonstrations on most stands and many feature special offers that are EXCLUSIVE to Breadboard!

All aspects of this fascinating field are catered for, from CB to home computing, so whether you want to buy a soldering iron or a synthesiser - or just keep up to date with your hobby - don't miss Breadboard ' 80 .

Royal Horticultural Halls Elverton Street Westminster London SW1 November 26-30 1980

26th Nov - WEDNESDAY - 10am-6pm
27th Nov - THURSDAY - 10am-8pm
28th Nov - FRIDAY - 10am-6pm
29th Nov - SATURDAY - 10am-6pm
30th Nov - SUNDAY - 10am-4pm

REMOTE CONTROL VIA MAINS WIRING

Robert Hutton, of Esher Surrey, has filed a British patent application no. 2032664 (under the New Laws and dated October 1978) for an electrical control apparatus which, superficially at least, resembles a system currently being sold in the USA. The aim in each case is to provide remote control of electrical appliances by means of pulses communicating through the house mains wiring.

Figure 1 shows a sender or control unit which plugs into a mains socket Transistor T1, resistor R1, capacitors C3, C4 and transformer TR1 function as a feedback oscillator connected to the neutral and earth pins of a standard size mains plug 1. Capacitors C1, C2 block DC and the oscillator is powered by step down transformer TR2, rectifier diode D1 and smoothing capacitor C5. When control switch S1 is closed the plug impresses an oscillation on the house mains wiring.

Figure 2 shows a receiver unit which is plugged into another mains socket in the same house wiring. Isolating transformer T3 and blocking capacitors C6, C7 feed incoming oscillations to the resonant circuit formed by the secondary winding of transformer T3 and capacitor C8. Diode D2 outputs a rectified signal to the gate of thyristor SCR1 which is connected in series between the live pin of mains plug 2 and

Copies of Patents can be obtained from: the Patent Office Sales, St. Mary Crav, Orpington, Kent. Price 95p each.

the live pin of mains output socket 3 . The potentially confusing effect of spurious mains signals can be minimized by an extra capacitor downstream of diode D2 to slow down response of the thyristor to oscillation in the circuit TR3, C8.

WATCH IT

British patent 1563387 filed (under the Old Laws) by Staveley Swales of Northumberland gives details of a wristwatch transmitter suitable for use as a distress alarm signal by the elderly, sick or those in fear of kidnapping. The well worn idea las featured in many a James Bond novel and film) is to incorporate a small radio transmitter inside a wristwatch with a short extendable aerial. Frankly it seems highly unlikely that such a broad idea can still be validly patented but the illustrated circuitry may be of interest to PE readers. This is shown in Fig. 3. The frequency of IC tone
generator FX 205 is determined by R1, C1 and the period of transmission is determined by R2, C2. Two more RC networks connected between pin 3 of FX205 and transistor T1 serve as a low pass filter to remove unwanted harmonics. Transistor T1 serves as an AM current source which feeds AF modulation to the crystal controlled RF oscillator. T2. This uses a third overtone parallel resonant crystal and the RF power is developed in the circuit L1, C3.

FIG. 3.

Coil L1 is a step up transformer which matches the low output impedance of $T 2$ to the high impedance presented by the short aerial AE. The inventor advocates the use of this step up transformer to obtain correct electrical matching because in more conventional transmitters the output has a higher impedance than the aerial, whereas the reverse is the case in his arrangement. To keep dimensions of the transformer small, one transformer winding is made concentric to the other.

DISco
 DESH
 Part 3 BEN DUNCAN

THIS part rounds off card construction together with the Monitor amplifier board. The circuit for the final card (Card 4) is given in Fig. 12.

CARD 4

The Autofader is driven by a signal derived from the top of the microphone gain control. In the absence of a signal, the n-channel f.e.t.s TR3, TR4, are pinched off by negative bias applied via VR2 and R4. When a signal is applied to pin 3 on IC1, in excess of the voltage on pin 2, the output of IC1 saturates positively and charges C3. This lowers the negative bias on TR3 and TR4 and causes their drain/source resistance to decrease, thereby attenuating the music signal. The degree of attenuation is governed by the setting of VR3, which forms a potential divider in conjunction with R3, R4 and VR1 in Fig. 6. The input sensitivity of the Autofader is governed by the voltage set up on pin 2 of IC1 by VR1. Immediately an announcement finishes, IC1 reverts to its quiescent state and C3 discharges slowly at a rate set by VR2. Preset pots VR1-3 are all panel mounted because adjustments are required to suit different hall-acoustics and miking techniques. Spindle locks are provided to protect the shafts and to prevent accidental adjustments.

The stereo lines are applied to IC2 and 3. These are connected as unity gain buffers and feed the Sound-To-Light Mixer (IC5). The microphone line is applied to IC4, the gain of which is controlled by VR4. This preset is adjusted so that normal miking provides a signal at the mixer output that is roughly equal to the signal level from the stereo lines. The Cue l.e.d. Driver is simply a high gain amplifier (IC6) with limited frequency response (to minimise spurious operation) which turns TR1 hard on when a signal of suitable level is present. In turn, TR1 turns on the l.e.d.
The scintillating light caused by the peak detecting nature

Card 4 prototype
of this circuit is smoothed by C12. R22 and C14 attenuate the current spikes and hence noise generated by rapid switching of TR1. VR5 is set so that the l.e.d. discriminates between the lead-in grooves and the onset of modulation on a typical disc.

MONITOR AMPLIFIER

This utilises the SGS-Ates TBA810P i.c. power amplifier which has been chosen for its comprehensive protection and the ready availability of a p.c.b. The latter is particularly useful, since in common with all i.c. power amplifiers, the board layout is quite critical and finding a satisfactory p.c.b. layout is very much a 'cut and try' process. The circuit board is bolted directly to the front panel. The input to VR1 is either PFL (point 'Z' on Fig. 6) or from the mono output (pin 7 on Fig. 8); this switching is shown in detail later. It is important to note that the PFL signal is derived prior to RIAA bass boost, and is therfore lacking in low frequencies. However, the PFL is intended primarily for cueing up records and the lack of low frequencies is of no consequence. In fact, the predominantly midrange and treble response of the PFL signal is helpful in that it 'cuts through' amidst high ambient SPLs.

If the amplifier is required to drive headphones only, R4 should be inserted to reduce the putput power to some 400 mW . This resistive attenuation is preferable to lowering the gain (set by R1) because it does not affect the input overload margin. The value of R1 shown gives an input sensitivity of around 10 mV and input saturation occurs at 220 mV . C5 and C6 determine the bandwidth of the amplifier (15 kHz as shown) and may be increased in value if any h.f. instability occurs. Note that C5 is approximately five times the value of C6-this relationship must be maintained if the values are changed.

In this application, IC1 is protected against output short circuits, supply polarity inversion and also features thermal shutdown. The latter allows an area of copper on the p.c.b. to be used with confidence as a heatsink. To test the monitor amplifier, connect a 12 V supply and a loudspeaker. If I.f. instability occurs, check the earthing arrangements; interaction between input earth currents (pin 9) and the output return current (pin 10) is usually responsible. If all is well, apply a signal $<100 \mathrm{mV}$ to VR1, which should be temporarily wired to the p.c.b. to provide an input bias path.

The earlier version of the TBA810, suffixed ' S ', is substantially similar to the tatest ' P ' version and can be directly substituted. However, the ripple rejection in particular is not so good, and it may be necessary to increase the value of C4.

Monitor Amplifier

Resistors

R1
R2
R3
R4

Potentiometer

VR1

Capacitors

C1
C2
C3
C4
C5
C6
C7

33R + watt 5%
100R $\frac{1}{2}$ watt 5%
1R $\frac{1}{2}$ watt 5%
33R 1 watt 5% (see text)

10k single log slide pot (Maplin type FX57M)

100n polyester C280AE series $100 \mu 40 \mathrm{~V}$ axial electrolytic $100 \mu 40 \mathrm{~V}$ axial electrolytic $100 \mu 40 \mathrm{~V}$ axial electrofytic 3 n 3 polycarbonate
680p ceramic or polystyrene 100n polyester C280AE series $100 \mu 40 \mathrm{~V}$ axial electrolytic $1000 \mu 16 \mathrm{~V}$ axial electrolytic

Semiconductors

TBA 810 P (SGS-ATES)

Miscellaneous

SKT1-standard jack socket, insulated

Fig. 11. Monitor Amplifier circuit with p.c.b. below and layout right

Card 4

Recistors

R1	10 k
R2	$8 R 2$
R3	100 k
R4	5 k 6
R5-6	1 M
R7-9	100 k
R10-12	22 k
R13	1 k
R14	22 k
R15	100 k
R16-17	330 k
R18	1 k
R19-20	10 k
R22-23	470 R . $\frac{1}{2}$ watt
All $\frac{1}{4}$ watt, 5% unless otherwise stated	

Potentiometers

VR1 1 k rotary lin pot
VR2 470k rotary lin pot
VR3 $\quad 1 \mathrm{k}$ dual rotary lin pot
VR4 47 k open cermet preset
VR5, 6 100k open cermet preset

Capacitors

C1
C2
C3
C4, 5, 6, 7
C8, 9
C10, 11
C12, 13
C14, 15
C16. 17
C18,19-23

Semiconductors

IC1—7
TR1, 2
TR3. 4
D1
D2
D3, 4
$25 \mu 25 \mathrm{~V}$ axial electrolytic
220 n polycarbonate $4 \mu 725 \mathrm{~V}$ axial electrolytic 470n polyester C280AE series 100n polyester C280AE series $1 \mu 25 \mathrm{~V}$ axial electrolytic $10 \mu 25 \mathrm{~V}$ axial electrolytic $100 \mu 25 \mathrm{~V}$ axial electrolytic $100 \mu 40 \mathrm{~V}$ axial electrolytic 100n polyester C280AE series

74IC, 8 pin d.i.l. version

 BC1072N3819
BZY88C9V1
1N914
Panel l.e.d., green (RS type 586541)
7×8 pin d.i.l. sockets
JK 1 -Standard jack socket, insulated
Spindle locks, set of 3 (RS type 509-816, one pack only required

Card 3

Pin No.
1
input from music lines to peak indicator
Right input from music lines to peak indicator
Left output to VU meter
Right output to VU meter
Peak indicator output (Left) to indicator l.e.d. cathode
Peak indicator output (Right) to indicator l.e.d. cathode
Mono output to 3 pin male XLR socket
Left music input to Mono Mixer
Right music input to Mono Mixer
Microphone line into Mono Mixer
Microphone line, output to send-return switch
Input to Microphone Line Driver from VR3 (Slider)
Output of microphone equalisation stage to 'top' of VR3
T.CEN
B.CEN
B.MA
T.MA
T.MI
B.MI

Microphone input from transformer
Screen (OV) connection to transformer
-ve, 15 V
OV , to central earth point
$+\mathrm{ve}, 15 \mathrm{~V}$

Card 4

Connection

Input to autofader and SLM mixer from 13 on Card 3
Left autofader output to depth pot Then to Right autofader output to depth pot $\}$ point ' W ' To 'top' of autofader sensitivity pot To 'bottom' of autofader sensitivity pot To slider of autofader sensitivity pot Left music line into SLM mixer
Right music line into SLM mixer
To autofader rate control
SLM mixer output to jack socket Input to cue l.e.d. driver ' A ' from point ' X ' Input to cue l.e.d. driver ' B ' from point ' Y ' Output from cue l.e.d. driver 'A' to l.e.d. cathode Output from cue l.e.d. driver ' B ' to l.e.d. cathode

No connection
-ve, 15 V
OV, to central earth point
$+\mathrm{Ve}, 15 \mathrm{~V}$

Next Month: Wiring details

Readout...
 A selection from our Postbag

Readers requiring a reply to any letter must include a stamped addreesed envelope. Opinions expreseed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

Velikovsky

Sir-As one who has made an extensive study of Dr. Velikovsky's work, and that of the considerable number of scientists, historians, archaeologists, and others who have contributed towards further investigation of his theory, I would like to ask F. W. Hyde just exactly where and when did Velikovsky express a "conviction that the Earth came into being less than 4000 years ago", and just exactly when and where did he state that he "(did) not believe that there was a system before 1500 B.C. or thereabouts"?

Perhaps F. W. Hyde would care to consider rebutting his own mis-statements before tackling the statements Velikovsky actually made. Like the majority of Velikovsky-detractors, Hyde must prove his ability to read before I, for one, will be gullible enough to harken to his bizarre ideas.

I can find no reason to put Velikovsky's predictions within quotation marks. I find them to be perfectly logical and valid deductions from his main thesis, and, whilst I do not accept all that he claims, it is a fact that his record of success exceeds that of any other theorist. You may also care to note that my
own further investigations of his theory were considered of sufficient scientific merit to be accepted for publication in the Journal of Physics, part A: Maths \& Gen. (Oct 1978, vol. 11 no. $10 \mathrm{pp} .2107-2130$), and that paper has been commented upon (without derision) in New Scientist, Physics Bulletin, Science Digest, Electrical Review, and elsewhere, and a voluminous correspondence from many parts of the world, including well-known centres of learning, has been most encouraging.

As for Mr. Birch, he may like to know that Dr. Velikovsky was a scientist. He was a longtime colleague and personal friend of A. Einstein. At the time of Einstein's death, he had open on his desk a copy of one of Velikovsky's books, which, unlike so many other scientists(?), he was reading and taking very seriously. And, Mr. Birch, it is high time you learnt to read, as well. Velikovsky did not put forward the idea that hydrocarbons in ordinary comet tails would burst into flames when passing through the Earth's atmosphere. You have obviously taken your information second-hand from your guru Asimov (or was it Sagan?), and not bothered to do what any good scientist should do, i.e. check the data. Asimov (or Sagan), incidentally, in his (or his) latest book, states that if the world's rotation were to be stopped suddenly, then all loose ob-
jects would go flying off. Think about it, Mr. Birch BSc, then tell me again who is talking nonsense. Velikovsky didn't make silly mistakes like that. Asimov (and Sagan) make far too many.

And, by the way, I am not a gullible member of the non-scientific public. I am a qualified physicist and mathematician with twenty years' worth of experience in scientific research.
P. Warlow, Brentwood.

Sir-Mr. Hyde in his reply to Mr. Austin (Spacewatch June 1980) that 'there is no difficulty in dealing with Velikovsky's claims' but in fact there has been little critical analysis by the scientific fraternity. Mr Hyde admits that when Velikovsky came into the academic eye he was very badly treated but that since then he has been given a fair hearing reaching a peak in 1974 at the AAA symposium. Is Mr Hyde aware of the nature of this symposium, of the original proposal and its terms of reference and how after reading his paper Carl Sagan pleaded a prior appointment to dash away before his arguments could be discussed? The prior appointment was an appearance on the Johnny Carson t.v. show.

I too would like to see a reasoned argument from Hyde for the rejection of Velikovsky's theory especially since Mr. Hyde has already produced many thousands of words on the subject. Dr. Velikovsky in 'Worlds in Collision' made reference to plagues in Egypt in the wake of a cometry upheaval and now we have a new book by Prof. Fred Hoyle and N: C. Wickramasinghe titled 'Diseases from Space' wherein they propound the theory that epidemics on earth are due to this planet encountering a cloud of micrometeorites. No mention is made of Velikovsky in the

Bibliography or the Index of this book and no doubt the authors claim it to be original work despite the 30 years since the publication of 'Worlds in Collision'.

Reading Velikovsky's book 'Earth in Upheaval' it will be apparent that notable scientists over the past two hundred years have investigated geological and archeological evidence indicating cataclysmic upheaval of recent origin completely at variance with astronomers' claims of an orderly and unchanging solar system. Velikovsky produced a synopsis to explain a possible cause of these catastrophies. Established astronomers sensed a threat and attempted to suppress the publication of Velikovsky's books. The bizarre often attracts the attention of a very large number of people (as Mr. Hyde in Spacewatch April 1980 states) but then such publications do not arouse among the Scientific Establishment the furore that accompanied the publication of ' W in C '.

The ultimate (in the August issue) belongs to David Birch who quotes his B.Sc to show that he is not a member of the "gullible nonscientific public'. Original thought is obviously not necessary in attaining such qualification and indeed could be a handicap. If Mr. Birch were a little less vitriolic in his condemnation of Velikovsky relying less on copying Dr. Asimov's 'fascinating essays' but rather forming his own opinion after reading Velikovsky's books then his letter might be taken seriously.

Sorry point not taken.

R. K. G. Williams, Sutton Coldfield.

Sir-Many thanks for the opportunity to reply to the Letters published in your magazine in response to my communication on the theories of Velikovsky. I am sure that the tone of the letters, which both came from ardent pro-Velikovskians and spent more time niggling at me than defending against my criticisms, has served only to convince your readers that there is as little in Velikovsky's theories as they suspected. Both writers seem to think that my qualifications in Physics make me less able than them to talk on the subject and both infer that if I only read WinC I would be instantly converted to their way of thinking. Well, I have read it-I have also read most of the works of Von Daniken and the brothers Grimm. I enjoyed all but believed none.

Your readers may also wonder why one of the writers makes a sneering reference at an out of context quote from a book which he read so intently that he was unable to remember whether it was by Dr. Asimov or 'Carl

Sagan (both of whom are distinguished scientists and writers). The quote concerns a sudden halt in the rotation of the Earth. Why? Well, another of Velikovsky's claims is that the comet Venus stopped the Earth rotating, hence accounting for the story of Joshua in the bible. Now, the Earth is rotating at several kilometres per second. Should this rotation suddenly cease, Joshua and his soldiers (and all other loose objects) would continue moving at this speed! Furthermore, the Earth's energy of rotation would be dissipated as heat melting the Earth's crust!

Nonsense? I think Velikovsky supplies enough for all of us.

David G. W. Birch, Swindon.

Owing to a lack of space, Frank Hyde's reply will appear in the next issue. This correspondence is now closed.

Metal Detector

Sir-Following the publication of my metal detector circuit in Ingenuity Unlimited in the April 1980 issue of $P E$, a number of would-be treasure hunters have contacted me with problems regarding the operation of the unit. It appears that many constructors have found that the metal detector produces a continuous tone which cannot be defeated by the adjustment of VRI.

This has been found to be due to large leakage currents in C8 when an aluminium electrolytic is used, producing a large offset voltage at the inputs of ICl , which is outside the offset null range of VRI. A tantalum capacitor therefore MUST be used for C8. If offset problems are still encountered, then R10 could be reduced to 560 k to increase the range of VRI.

Additionally, using a tantalum capacitor for C7 would tend to improve the stability, but it should not be considered essential as the prototype units were quite satisfactory with aluminium types.

P.R. Williams
 Stevenage

Beyond BASIC

Sir-We are running a part-time 1 year course on the FORTH computer language, for Micro Computer enthusiasts who want to know 'what lies beyond BASIC?'.

To answer this question we are extending the kit building approach to software. Partici-
pants are asked to provide their own hardware. An 8 K UK 101 or any micro with equivalent facilities is suitable.

By courtesy of the Forth Interest Group the college is able to provide a language model and assembly listings for the 8080 Z80 6800 6809 and 6502 . The aim of the course is to help participants install and program in, this very interesting language.

The course runs for 1 year on Wednesday afternoons, fees will be around $£ 35$.

Bill Stoddart,
Department of Science,
Willesden College of Technology,
London NW 10

Marvellous Magnum

Sir-I must send praise to Mr. Andy Flind on his design of his metal locator. We have built two locators so far, both working first go with no problems (except the p.c.b. in the final article is not full size), with the possibility of another being built. Indeed, you now have three more regular readers.

On completion of the locator we spent most of the Bank Holiday using it. We used it over various terrain and modes, from our back garden to pebbles, sand, wet sand, rocks and salt water, and it worked every time and was stable. The only point of interest was that on our sandy beach the ground control became more critical. However, we have built various designs from b.f.o. to l.b. and no other locator has worked on that beach.

We have not as yet found a fortune, but we have located nails down to 9 inches, part of a gold ring 6 inches down, fishing weights down to 12 inches. Believe it or not we have located iron plates on the beach down to 3 feet, but became wary of these and discarded them. We have also discovered that it will pick up meteorites and stones containing iron, so beware.

We hope to get quite a bit of pleasure from this locator and indeed to recover some of the cost of making it. For interest the batteries are going low on our locators after approximately 50 hrs use. But it is still working with the batteries down to 6 V . The audio one isn't yet affected. I hope to see more publications from Mr . Flind. Please can you forward our thanks to him for a super design which is stable and -works well. Also the step by step guide was a great help in construction, as well as the coil set up procedure.
I. West,

Newhaven, Sussex.

INTEGRATED CIRCUITS
by R.G. Hibberd
Published by The Buttenworth Group
112 pages $110 \times 165 \mathrm{~mm}$. Price $£ 1.55$
\triangle NOTHER in the popular wide ranging 'questions and answers' series this book is aimed at helping anyone to understand something about these common devices.

It answers questions on fabrication technology and packaging. Introduces the various families; TTL, ECL, MOS, CMOS, digital, linear etc and concludes with a chapter on microprocessors.

The questions are shrewdly angled to produce portmanteau answers so. that even in a few pages a great deal of information is contained.

No other field of engineering has progressed so fast or so far as that of integrated circuits and any practising engineer or technician in electronics who requires an introduction to this important subject will find in this a suitable introduction.

Now circuit designing is as easy as pushing a lead into a hole... No soldering No de-soldering No heat-spoilt components No manual labour No wasted time

For quick signal tracing and circuit modification For quick circuit analysis and diagramming With or without built-in regulated power supplies Use with virtually all parts - most plug in directly, in seconds. Ideal for design, prototype and hobby

No	MOOEt,	no of SOLDEALESS TiE POINTS	capaciry (14 $\mathrm{CmOl} \mathrm{O}_{5}$ 5)	UNIT	PaCE INC PBP 15": VAl	OTHER enatuates
1	P8 6	630	6	9.20	11.73	Kit
2	PB 100	760	10	11.80	14.72	Kit
3	PB 101	940	10	17.20	2121	
4	PE 102	1240	12	22.95	27.83	
5	P8 103	2250	24	34.45	41.34	
6	P8 104	3060	32	45.95	54.56	
7	P8 203	2250	24	55.15	65.14	5V@1A
8	P8 203 A	2250	24	74.70	87.63	$5 \mathrm{~V} \pm 15 \mathrm{~V}$
9	PB 203AK	2250	24	59.00	69.57	$5 \mathrm{~V} \pm 15 \mathrm{~V}$

Tomorrow's tools for today's problems

 1 anved 2 anv Name Address
C.S.C. (UK) Limited, Dept. 5U

Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex. CB11 3AQ.
Telephone: Saffron Walden (0799) 21682
Telex: 817477
I enclose Cheque/P.O. for £ \qquad or debit my Barclaycarra, Access,

IAmerican Express card no. \qquad exp. date

American Express number and your order will be in the post immediately tick box \square

Shorage care

AT BARGAIN PRICESI
 Tー \Leftrightarrow

STEEL STORAGE CABINETS - 12 "w. $\times 5 \frac{3}{4} \mathrm{~d}$. WITH CRYSTAL CLEAR PLASTIC DRAWERS. IDEAL FOR COMPONENTS, PE. $09^{\prime \prime} 25$ small drawers $\quad £ 8.95$ PE. $11^{\prime \prime} 18$ comb. drawers $£ 10.45$ PE. $18^{\prime \prime} 38$ comb. drawers $£ 15.46$ PE. $22^{\prime \prime} 60$ small drawers $£ 17.75$ PLEASE ADD 90p TOWARDS P.\&P 3 CABINETS OR MORE CARRIAGE FREE
ALL PRICES INCLUDE VAT. free literature on request Send Cheque/P.O. direct to: Sumico Ltd CLARE, SUDBURY, SUFFOLK CO1O BAN.

PARNDON ELECTRONICS LTD.

44 Paddock Mead. Harlow. Essex. CM18 7RR. Tel: 027932700 (Dept. No. 21)
RESISTORS: $1 / 4$ Watt Carbon Film E24 range $\pm 5 \%$ rolerance. Migh quality resisiors made under strictly controlled conditions by automatic machines. Bandoliered and colour caded
£1.00 per hundred mixed (Min 10 per value)
$\mathbf{8 8 . 5 0}$ per thousand mixed. (Min 50 per value)
Special stock pack 60 values. 10 off each $£ 5.50$
DIODES: IN4148 3p each. Min order quantity - 15 items E1.60 per hundred
DIL SWITCHES: Gold plated contact in fully sealed base - solve those programming problems. 4 Way 86 p each. 6 Way $£ 1.00$ each. 8 Way $£ 1.20$ each.
DIL SOCKETS: High qually, low profile sockets.
8 pin-10p. 14 pin-13p. 16 pin-15p. 18 pin-19p. 20 pin- 25 p. 22 pin-29p. 24 pin-35p. 28 pin-39p. 40 pin -57 p.

ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN. ORDER - UK. £I 00. OVERSEAS \&5 • CASH WITH ORDER PLEASE

To avoid disappointment place an order with your newsagent now.
ENGIIIE TUNE-UP UNIT

A versatile digital bench test instrument that measures Volts, Amps, Ohms, Dwell, RPM.

Thus providing accurate information for engine tuning.

INDEX...

Volume 16 (1980) index with cross referencing for Constructional Projects, also lists all I.U.s, Points Arising, news, features, etc.

N1A

 rhythm generators can now produce very realistic and versatile imitations of percussion instruments. Next month we commence construction details of an up-to-the-minute design that compares with anything commercially available.
In Car Entertainment Offer
 readers on

 piay AM/FM stereo radio/cassette player or two different stereo cassette players and a choice of three types of speaker. All at prices that will blow your mind.catalogue; 68 pages packed full of products from this well known supplier.

PRACTICAL

To tie up with our Disco Desk series PE has been able to arrange a special offer on these BSR decks either singly or in pairs. The decks are also excellent for use with general purpose audio systems

THE DECK

\star BSR P182

* Fitted ADC, QLM 30 Mk III stereo magnetic cartridge
* Automatic cueing for $\mathbf{7 , 1 0}$ or 12 inch records
* Manual cue lever with viscous damping in both directions
\star S shaped pick-up arm with counter balance weight
* 3 speed with idler wheel drive
* Automatic and manual pick-up arm clip
* Dynamically balanced 4 pole motor
* Flared aluminium turntable
\star Rumble $>-29 \mathrm{~dB}$ relative to 1000 Hz at $1.2 \mathrm{~cm} / \mathrm{sec}$
\star Wow $<0.03 \%$ r.m.s. Flutter $<0.08 \%$ r.m.s.
* Ready wired phono output sockets
* 240 V 50 Hz with 450 mm (approx) long double insulated flying mains lead
* Transit screws
* Size approx $290 \times 330 \mathrm{~mm}$

To: RT-VC, 21 B High Street, Acton, London W3 6NG

Buy a microcomputer for under $£ 1,000$ and you could be on your own! Unless it's a Commodore PET.

Commodore produce Britain's number one microcomputer. But we don't stop there. We also insist on providing comprehensive support throughout our national dealer network

Our dealers can examine your needs and demonstrate which hardware and software will suit you best. Their trained engineers are always at hand and a 24 -hour field maintenance service is available. Your local dealer can tell you more about the following Commodore Services.

cThe Commodore PET
The Commodore PET computer range covers everything from the self-contained unit at under $£ 500$ to complete business systems at under $£ 2,500$.

CCommodore Business Software and Petpacks Our software range covers hundreds of applications. Business software includes Sales and Purchase Ledgers, Accounting, Stock Control, Payroll, Word Processing and more. In addition over 50 Petpacks are available covering such titles as Strathclyde Basic Tutorial, Assembler Development System, Statistics, plus our Treasure Trove and Arcade series of games.

C. Commodore Approved Products

Compatible products of other manufacturers with Commodore's mark of approval are also available.
C Commodore Courses
Commodore offer a range of residential träining courses and one day seminars. An excellent start. And when you have installed your system the PET User's Club Newsletter can keep you informed of new ideas and latest developments.

LONDON AREA Adda Computers Lid W5. O1-5795845
Stioncamb
Stiole
Sti3 01.13184213 ,
Mabe 01.9
H0.
T122,01-472 2107
Meswlean iei
Ec1.01-25
${ }^{\text {ctib }}$
TLC: Wowrid rading tod
S*1.01-7301795

home counties

G.M.Marketing,
ANDOVER. 790922 HSV Microcomputers. BASINGSTOKE. 62444 MMSLId Elex Systems 40601 ERACKNELLL, 52929 DDM Direct Data Marketing Lid,
BAENTWOOD, 229379 Lis. Amplicon Micro Systems Amplicon Micro Systems Lid,
BRIGHTON, 562163 RUF Computers (UK) Ltd. BURGESS HILL. 45211 T\& V Johnson (Microcomputers Cambridge Computer Store, CAMBRIDGE, 65334 Wego Computers Lid. CATERHAM, 49235 . Dataview Lid, Colchester, 78811 South East Computers Lid, Alpha Business Sysiems
HERTFORD 57423 HERTFORD, 57423 Brent Computer Systems,
KINGS LANGLEY, 65056 Isher-Woods Business Sy stem LUTON, 416202
South East Computers Ltd SOuth East Computers L
MAIDSTONE, 681263 MAIDSTONE, 68126 Micro Facilities Ltd,
MIDDLESEX, 01-979 4546 J. R. Ward Computers Ltd, Sumlock Bondain (EastAnglia) Ltd,
NORWICH, 26259 NORWICH, 26259 \& V Johns on (Microcomputer
Etc) Ltd, OXFORD, 721461 H.S.V.Microcomputers. SOUTHAMPTON, 22131 Super-Vision.
SOUTHAMP SOUTHAMPTON, 774023 Xitan Systems Ltd SOUTHAMPTON, 38740 SOUTHEND-ON-SEA, 62707 The Computer Room, TUNBRDGGE WELLS, 41645 Orchard Electronics.
WALLINGFORD 3552

Petalect Ltd
WOKING, 63901
Oxford Computer Systems.
WOODSTOCK

MIDLANDS AND

SOUTH HUMBERSIDE
Byte shop Computerland,
CPS (Data Systems)
BIRMINGHAM, 7073866
Camden Electronics.
BIRMINGHAM, 7738240
BIRMINGHAM, 7738240
Computer Services Midlands Ltd.
BIRMINGHAM, 3824171
Catlands (Computers) Lid.
BURTON-ON-TRENT, 812380
lbek Systems.
Jondane As sociates Lid,
Jondane As sociates Ltd,
COVENTRY, 664400
Davidson-Richards Lid.
DERBY, 366803
Caddis Computer Systems Ltd
HINCKLEY, 61354
H.B.Computers,

Taylor-Wilson Systems Led.
KNOWLE
KNOWLE, 6192
Machsize Ltd.
LEAMINGTON SPA. 312542
Otfice Computer Techniques Led.
LEICESTER, 28631
Lowe Electronics.
MATLOCK, 2817
Betos (Systems) Lid.
MOTINGHAM, 48108
Byteshop Computerand
Byteshop Computerand
NOTTINGHAM, 40576
俗
Keen Computers Ltd,
Tekdata Computing
STOKE-ON-TRENT, 813631
Systems Micros,
YELFORD, 460214
MCDowell Knages $\&$ Associates.
WORCESTER

YORKSHIRE AND

NORTH HUMBERSIDE
Ackroyd Typewriter \& Adding
Machine Co. Ltd. BRADFORD. 31835 Allen Computers.
Microware Computers Ltd,
HULL. 562107 (
Microprocessor Services,
HULL, 23146
Holdene Lid,
LEEDS. 459459

South Midla ands Communications L
LEEDS, 782326
Yorkshire Electronics Services Ltd
MORLEY 522181
Computer Centre (Sheflield) Lid
SHEFFIELD, 53519
Electronic Services,
SHEFFIELD, 668767
Hallam Computer Systems Ltd,
SHEFFELD. 66312
NORTH EAST
Dyson Instruments
DURHAM, 66937
Currie \& Maughan.
GATESHE AD, 774540
Wards (Otfice Supplies) Group.
GATESHEAD. 605915 Elfton Ltd.
HARTLEP
HARTLEPOOL, 61770
Fiddes Marketing Limited,
NEWCASTLE 815157
Newcastle Computer S
NEWCASTLE, 615325
Format Micro Centre.
MEWCASTLE, 21093
Tripont Associated Systems
Tripont Associated System
Consultants Ltd,
SUNDERLAND. 73310
SOUTH WALES AND
WEST COUNTRY
Radan Computational Ltd,
BATH, 318483
Computer Corner
SMREWSBURY, 597 tes
Bristol Computer Centre
BRISTOL, 23430
C.S.S. (Bristol) Lid.
BFISfoL, 779452

T\& V Johnson (Microcomputers
Sumlock BRISTOL. 422061
BRISTOL, 26685
Sigma Systems,
CARDIFF, 34869
Office and Business Equipment
(Chester) Ltd, DEESIDE, 817277
A.C. Systems,
EXETER, 71718.

Micro Media Sysiems
NEWPORT, 59276
J.M. Computer Serv
NEWQUAY, 2863

Devon Computers.
PAIGNTON, 526303
J.A.D. Integrated Services,

PLYMOUTH62616
Business Electronics
SOUTHAMPTON, 738248
Computer Suplies [5 wansea).
SWANSEA. 29004 .

NORTH WEST AND
NORTH WALES
Tharstern Lid,
BURNLEY, 38481
$8+B$ (Computers) Lt
BOLTON, 26644
Preston Computer Centre
PRESTON. 57684
Catiands (Computers) Ltd
Catiands Computers) Ltd
WILMSLOW. 527166
LIVERPOOL
Aughton Microsystems Ltd.
LIVERPOOL. 5487788
B.E.C. Computers,

LIVERPOOL, 2635738
LIVERPOOL. 5215830
MANCHESTER AREA
Byte shop Computeriand
MANCHESTER. 2364737
Computastore Lid.
Crtek (U.K.) Lid.
MANCHESTER, 8724682
Executive Reprographic Lid.
MANCHESTER, 2281637
N.S.C. Compler, 2281637
N.S.C. Computer Shops Lid.

Sumlock Electronic Services
Manchester) Lid.
MANCHESTER, 8344233
Professional Computer Services Lt
OLDHAM, 6244065
D. Kipping Ltd,
SALFORD, 8346367

AutomatedBusiness Equipment Ltd.
STOCKPORT, $061-4320708$
SCOTLAND
Holdene Microsystems Lid,
Microcemtre.
EDINBURGH, 5567354
Aethotrol Consultancy Services.
GLASGOW, 6417758
Byteshop Computerland
Byteshop Computerland,
GLASGOW, 2217409
Robox Ltew,
GLASGOW, 2215401
Mac MVERO, 212203
Thistle Computers.
KIRKWALL, 3140
IRELAND
Softechlid.
DUBLIN, 784739
Medical \& Scientific Computes
Services
Services Ltd. LISBURN. 77533

「 To: Commodore Information Centre,
| 360 Euston Road, London W1 3BL. 01-388 5702
Please send me further information about the Commodore PET.
Name
Position
Address

Intended application

NO \square
Crcommodore
This list covers deasers participating in our advertisine.

A selection of readers' original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to its merits.
Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere.

TTL LOGIC TESTER

[EA216]

THIS circuit for yet another logic tester differs from others by instead of lighting one I.e.d. for logic 1 and another for logic 0 , actually displaying a 1 or an 0 on a common anode seven-segment display:

When a pin is not connected or in tristate high impedence a dash is displayed. It utilises a single 7400 so if an "out-ofspec" display is obtained it can be built extremely cheaply. When the input is at It the output of IC1b goes low and segments b and c are lit. When the input is at 0 ICIc goes low and segments $\mathrm{a}, \mathrm{d}, \mathrm{e}$, and f and b and c via the diode are lit. When the input is not connected and 1 Clb and c are high so IC Id goes low and segment g is lit. The prototype was constructed on a piece of Veroboard and put in a small plastic box with a window cut-out for the display. An old meter test lead was used for the probe. The +ve and ground must obviously be relatively low input impedance. The tester doesn't upset logic circuits unless they are on the very limit of fan-out. The circuit could probably be adapted for CMOS by using a 4011 (or 74 C 00) and increasing the 1 k resistor accordingly.
A. C. Twist Leicester.

THIS relatively simple circuit, gives a standard pulse output, whose duration can be set by VR2 and C2. Every time the light falling on the photodiode is interrupted, the voltage on pin 2 of IC1 falls, this is compared to the potential on pin 3, which is set by VR1, causing the output on pin 6 to go high, this pulse is shaped and buffered by the two Schmitt triggers, IC2a and IC2b. The NAND gate inverts this pulse, which is changed back to a positive pulse by IC2c, the high pulse from IC2b, also charges up C2 via VR2. On reaching the threshold of Schmitt IC2d, the output of IC2d goes low, this switches off the NAND gate, consequently limiting the duration of the output pulse.
In the prototype a 15 watt bulb at 2 feet. was used for the light source.

> M. Miller, Reading, Berks.

TRIGGERED

R/C FAILSAFE AND SERVO TESTER

PROPORTIONAL R/C servos are controlled by pulses of 1 to 2 ms width which are repeated at approximately 20 ms intervals. If through some malfunction of the transmitter or receiver these pulses are not present, this circuit, which is connected between the receiver and servo, detects this condition and activates its own pulse generator to drive the servo. The pulse generator is adjustable enabling the servo to be driven to any desired "fail safe" position e.g. throttle to low position. A push button is also provided to inhibit the normal pulse input so that the servo may be driven from the internal pulse generator for the purpose of testing. By a simple rearrangement of the input and output circuitry, versions suitable for positive or negative pulse R/C systems may be constructed.

The circuit shown, consists essentially of a monostable (IC2 a/b) driving a gated oscillator (IC2 c/d). An OR gate (IC1 a/b) driven by the oscillator and input signal via the input inhibitor ($\mathrm{ICl} / \mathrm{c} / \mathrm{d}$) ensures that the output to the servo is provided from either the input signal or the gated oscillator. The monostable period is greater than 20 ms , therefore, the normal pulse input keeps it in its triggered state (output low). This inhibits the operation of the oscillator, whose output also remains low, thus allowing the input pulses to pass through the OR gate to the output. Should the input pulses cease, the monostable output goes high and the oscillator is enabled. Diodes in the oscillator circuit give an asymmetrical output consisting of an adjustable 1 to 2 ms pulse with a fixed 20 ms interval, similar to the original input
pulses.
The circuit shown above is suitable for positive pulse R / C systems which are by far the most commonly used. For negative pulse R/C systems (e,g, Horizon) the pulse input is inverted before and after the circuit.

> J. R. Shield,
> Blaydon,
> Tyne and Wear.

THIS logic probe uses a seven segment display on its side to indicate, in an easy to understand way, the state of the probe (Fig. 1). The symbols were designed to look like the trace on an oscilloscope. The decimal point is used to indicate that the probe is on, the other segments are used as in Fig. 1, and the loudspeaker (LSI) is used to indicate the frequency of an oscillation (if it is audible). IC If buffers the input to VRI which acts as a volume control, TR2 amplifies the signal to LS1 which may need a series resistor if the speaker has a low resistance. The symbols were chosen as the probe was designed for fault finding on a microprocessor system with logic levels of $+5 \mathrm{~V}, 0 \mathrm{~V}$, and -12 V . The circuit consists of three basic sections-detection, priority encoding (Fig.2) and display encoding (Fig. 3).

The detection stage consists of several circuits each detecting a different thingbelow ground detection is achieved by TRI which is turned on by an input which is below 0 V . If a different type of transistor is used R2 and R8 may need altering. When TR1 switches on, the output of IC1b goes high and the output of ICIc goes low. When the input is positive (logic

1) D1 conducts and the output of ICla goes low. When the input is negative (logic 0), D2 conducts and the output of ICle goes low. Transitions are detected by a 74123-IC2a, b wired up to detect falling edges and give an output pulse of approximately $\frac{1}{2}$ a second. When the output of ICla goes low (as the input rises to logic 1), IC2b is triggered, and its Q output (pin 12) goes low for $\frac{1}{2}$ a second-indicating a rising edge. A similar thing happens when the input goes negative and the output of ICle goes low triggering IC2b, indicating a falling edge. The time for which these symbols are displayed can be varied by altering R1, R2 or C1 and C2.

If the input goes low and high (rises and falls) within the $\frac{1}{2}$ second for which the monostables are triggered, both Q outputs will be low and the output of IC3a will also go low indicating an oscillation. These signals cannot be fed straight to a display as several occur at the same time, e.g. for an oscillation to occur rising and falling must also be present. If these were fed straight to a display all three symbols would appear on top of each other. Thie priority encoding stage ensures that only one symbol is displayed at once. The
operation of this stage is shown tabled. IC5 a 74147 decimal to BCD converter and priority encoder-converts decimal inputs into BCD but only the highest decimal input is converted into BCD. From the table (below)-the signal with the highest priority is oscillation with a decimal value of 7 . The 74147 has inverted outputs, so 7 in inverted BCD is 1,000 (on pins 9, 7, 6 and 14 of IC5). As IC6 does not have inverted inputs the signals are swapped over-oscillation decimal 7 on IC5 becomes decimal 0 to IC6. The outputs of IC6 are inverse so they need inverting by IC $4 \mathrm{a}, \mathrm{b}, \mathrm{c}$, d and IC3c, d .

These signals are fed to the diode matrix (D4-D18) which generates the required symbol (Fig. 1). The display is a common cathode type used on its side. The decimal point is connected to V_{cc} through a 330 resistor. The i.c.s are protected against reversed supply connection by D3. The complete probe was built into a small box with three sockets on the top for +5 V , ground and probe.
I. Mercer, Loughborough, Leicestershire.

ARRANGEMENT OF SEGMENTS

Detaction Signal	IC5 pin	$\underset{\text { dec. } \mathrm{i} / \mathrm{p}}{\text { IC5 }}$	$\begin{aligned} & \text { IC5 BCD } \\ & \text { DCBA } \end{aligned}$	After IC3b DCBA	IC6 pin	$\begin{gathered} \text { IC6 } \\ \text { dec. } 0 / \mathrm{p} \end{gathered}$
Oscillation	4	7	1000	0000	1	0
Falling edge	3	6	1001	0001	2	1
Rising edge	2	5	1010	0010	3	2
Below pround	1	4	1011	9011	4	3
Positive	13	3	1100	0100	5	4
Negative	12	2	1101	0101	6	5

A1 Hz oscillator feeds an EX-OR gate directly, and via the op-amp under test, connected as an inverter. The gate output will be high only if the two inputs disagree (i.e. antiphase). A green l.e.d. indicates the condition while the red l.e.d. shows up agreement. The tester is powered by a single 9 V battery with two Zeners giving a split supply. The c.m.o.s. gates use 4.3 volts for $V_{D D}$ and -4.3 volts for $V_{S S}$. A 4093 quad NAND Schmitt is used as the 1 Hz oscillator and l.e.d. drivers. A 4030 quad EX-OR is used as the phase detector. The op-amp is plugged into a test socket, which may be patched if desired for non-standard pinouts.
a) Op-amp functioning: A and B are antiphase, C is high, green on, red off.
b) Op-amp open circuit: A and B are in phase, C is low, green l.e.d. off, red l.e.d. on.
c) Op-amp stuck at fixed level: A and B alternately agree and disagree, C oscillates at 1 Hz , l.e.d.s flash alternately. On switch on the red i.e.d. will light first if the op-amp is stuck above ground and conversly if below ground.
S. Callaghan,

Gt. Baddow,
Essex.

OP-AMP TESTER

(EA2 12,

THIS circuit is similar to the $P E$ version a couple of years ago.
Fig. 1 is basically an electronic game, using l.e.d.s and a decade counter divider i.c., the clock frequency of which is obtained from a two NAND gates (IC2) oscillator. The l.e.d.s should be arranged in sequence, so that when l.e.d. 5 (pin 1, IC2) is logic 1 and $S 1$ is pressed, the clock is stopped or inhibited by the gate output of IC2 (c).

Cheats who press the button before 1.e.d. 5 illuminates, find the sequence resetting at 3 until SW 1 is released.
An alternative "Fire" button arrangement using one single throw push switch and an extra i.c. is shown in Fig. 2.

Completely disconnect R5 and replace this circuit in between xx and yy .

The speed of the oscillator can be changed by varying the values of C1 and R2.
L. Privett,
Barking,
Essex.

SHOOT GAME

Fig. 1

Fig. 2

BOOKS BY Babanl
 OPTOELECTRONICS

BOOKNO DESCRIPTION

BP6 Engineers \& Machinis is Rel. Tobles
SP24 2nd Book I'ansistor Equivs \& Sub ${ }_{\text {BP26 }}$ S2 Prolecis Using IC 741 (or equiv)

BP27 Guant Chart of Radio Electronic Semiconducto ${ }^{8}$ Legic Symbols
Build Melal \& Treasure Locators
Practical Repar 8 Renovation of Colour TVs Handbook of IC Audio Preamplifier
50 Cicis use Germ/Sil/Zener Diod
${ }_{\text {BP37 }}$ S0 Proiects using Relars / SCR 3/Triars
BP39 50 Field EHoct Trans Proiects
8P40 Digrtis IC Equivs \& Pin Connection
BP4 1 Linear IC Equivs \& Pin Connection
BP43 How to make Walhie Talkies
BPP44
BP45
PCC555 Projects (Revised a Enlarged Eanion)
BP46 Redio Circulis using ICs
BPa 7 Mobile Discotheque Handbook
P48 Eectronics Propects for Beginner
Popular Elecironic Projec
IC LM3900 Proiects
Electronic Music \& Cieatre Tope Aecording
Long Distance Television Reception (TVOX)
For the Enthusiast
Practical Electronic Calculations \& Formulae Radio Stations Guide
Electronic Security Devices
How to Build Your O wn Solid State Oscilloscope
50 Circuits using 7400 Serres ICs
Secona Book ol CMOS IC Projects
Practical Consiruction of Pre amps/Tone
Comtrols / Fillers $\&$ Attn
Begunners Guide to Orgral Techniques
Elements of Electronics - Book 1
Elements of Electronics - Book 11
Elements of Electronics - Book III
Single IC Projects
Beginners Guide to Microprocessors \& Computing Counter driver a numeral Dis
Choosing a Using your Mi -Fi
Eactronic Games
10 Transistor Radio Fault-Finding Chart
BP202 Handbook of Integrated Circuits Equ
BP2 11 First Bcok of Drode Characieristics \&
BP213 Electronic Circuits for Model Ralway
$8 p 22128$ Tested Tiansistor Propects
BP 22450 CMOS IC Projects
BP227 Beginners Guide to Bulding Electrens
RCC Ressitor Cotouf Code Disc Electronic Projecis
BRACKETS
Righiangle mouning brackets. Ideal for mounting. PCB. panels al cetera into boxes and cases.
18 SWG - Mid sieel
$18 S W G-M i l d ~ s l a e l ~-~ s h ~$
lace has 3.7 cm diam, hole
O/NO: 1726 Meight 15 cm . length 15 cm , width 10 cm
O/NO:1727 Meight 25 cm . lengrt 15 cm , width $10 \mathrm{~cm} \quad \mathrm{co.08}$
C0.07

NEW INCAEASED RANGE-ALL IST QUALITY LEDS (dittusnd
$\begin{array}{lll}\text { O/No. TYpe } \\ 1501 \text { ARL209 (TIL209) Sixe } & \text { Colour }\end{array}$ $\begin{array}{lll}1502 & \text { MiL3232 (TLL211) } & 3 \mathrm{~mm}(\cdot 125) \text { RED } \\ 1503 & \text { MIL3331 (OPL212A) } & 3 \mathrm{~mm}(\cdot 125) \text { GREEN } \\ 125) \text { YELLOW }\end{array}$ 1504 ARL4850 (FLV117) 1505 MLL5251 (TIL222)

SUPER'MI BRITE' TYP

1521 MLL32

522 (AP12 $5 \mathrm{~mm}(-2)$ RED

1514 ORP12 Light dependert
LED CLIPS
$1508 / 125$ pack of $5 \quad 125$ clips
$1508 / 2$ pack of $5 \quad 2$ clips

pisplays
 Displars DL703 7 s

 DL707 segment OP leh $\left(30^{*}\right.$ height) REO Single Digir DL527 segment OP leh (50" height) O/NO. 1524 Common Anode 22.08
RED Two Digit Reflector

 OPTO-ISOLATORS
Isolation Breakdown-Voltage 1500 -continuous fwd. curfent 100 CIL74 Single Channel 6 pin OIP standard type-optically coupled pair with intra-red LEO Emitter and NPN Silicon Photo Tran-
sistor
O/NO. 1497
f0.61
 CILO74 Multi-Channel 16 pin OIP four isolated Channels $\begin{gathered}\text { O/NO. } 1499\end{gathered} \begin{gathered}\text { E1.69 }\end{gathered}$ MELL II (TIL81) NPN LIGHT DETECTOR Silicon Photo Darlingion Amplifier-VCBO 30 V VECO IOV ic
100mA Ptot 300 mW LL Min. 0.5 TYD 2 mA 10100 mA nA
O/NO. 1495

WIRE CONNEGTORS

Entirely new range of connectors for Onscrete wire. Uniquely designed
Wirepost is sotdered to the P.C. Board. A pre struped wre is inserted into the connection and easily locked by pressing the housing down The wive is alternatively removed by lifing the housing. Tin alloy ptared contaris
Housing consists ol Therme plastic polyster.
1728 Single connector in
1729 Threeway connector
1730 Fourway con
co. 12 inc. VAT
E0.23 inc VAT
co.28 inc. VAT

FUSE HOLDERS AND FUSES

AUDIO LEADS

No.	FMro	¢980
113	35 mm Jack pivo io 3 5mm Jaxh plug Lengin 15 m	60.86
	Stis lengin 15 m	¢0.98
115	5 pmodin plug 1035	
116		0.98
117		¢1.44
	radios 2 me	0.78
118	5 pmolin pheno plu	
119		
120	Car stereo connecior Variable geometry plug to ht most car casseltes 8 -lfack carthdge and	
173	6 mm Coded Gurarat eod Mono Jeck plug to Mono	
${ }_{177}^{126}$	5 Spin in olug 10 Tanned open end Lengin $1.5 m$. 86
	5 mm DiN plug 10	
128		(1.92
129	5 pmodin plug 105 dim OiN piug muror mage	
130	20in	
	${ }^{5} 5$	ع0.78
131	5 pinoin plug 103 pin Oin plug 184 and 385	
132	${ }^{\text {Lengin }}$	(1.13
133	OiN plug 10	
	Dmas 3 5	ع0.86
	drm	c0.78
135	5	co. 88
136	coded stereo headohore extension lo	
	${ }_{\text {ACma }}^{\text {Brack }}$	

TRANSFORMERS

1 AMP MAINS Primary 240 V			
No.	Secondery	Price	
2026	6 V .0 .6 V 1 amp	[2.88	P \& ${ }^{\text {P 45p }}$
2027	$9 \mathrm{~V}-0.9 \mathrm{~V} 1 \mathrm{amp}$	c2.30	P\&P 45 p
2028	12 V 0.12 V 1 amp	c2.99	P \& P ${ }^{\text {5 5 }}$ p
2029	15 v .0 .15 V 1 amp	E3.16	P\& ${ }^{\text {P }}$ 66p
2030	30 V -0.30V1 1 mp	63.97	P \& P 86p

STANDARD MAINS Primary $\mathbf{2 4 0 V}$ Multu Lapped serondary mains transtormers ovalable in $1 / 2 \mathrm{amp}$. 1 amp
and 2 amp current raing Secondafy laps are $0.19 .25-33-40-50 \mathrm{~V}$ Voltages available by use of raps. 7, 8. 10.14.15.17.19.25.31
$33.40,25.025 \mathrm{~V}$ 33. 40.250 .25

No	Reang	Price		
2031	$1 / 2 \mathrm{amp}$	¢ 3.91	P \& $\mathrm{P}^{\text {P }}$	86p
2032	1 amp	¢5.06	P \&	$86 p$
2033	2 dmp	¢6.27	P \& P	11
2035	$240 \vee \mathrm{P}$	67.30	P \& P	

CASES AND BOXES

Keelmoor Ltd is a company which has been established for a long time - we supply the products you have often bought from other companies. Our precision watches and electrical goods are renowned for their superb quality and reliability.
We differ from other companies in that we import direct world-wide - that difference is passed on to you at unbeatable prices. Youreceive the goods faster and we provide a service and no catch guarantee of which we are justly proud.
We employ experts world-wide whose job it is to seek out products of the highest quality at the lowest possible prices. Illustrated here is just a tiny selection of our comprehensive range. Just compare these items with those seen elsewhere - we are confident the prices will amaze you. You can save 〔sfs's.

GENTS 5 FUNCTION LCD

A

ILLUSTRATED BELOWIS THE LADIES 5 FUNCTIONLCD This watch has the same time and auto calendar functions as the basic gents model described above, logether with backlight and adjustable strap to suit the daintiest of wrists. It's compact, pleasing appearance makes it a very practical day watch andit is also often used for boys and girls. Available in black or white face.

These are just a few of our fantastic offers remember. A free colour catalogue is posted with every order. Or just send large S.A.E. and we'll send you one.

FULLY GUARANTEED

We must emphasize all these items are fully guaranteed for one year. All electronic goods come complete with demonstration batteries which cannot be guaranteed. New batteries are available for only filp.

GENTS LCD ALARM WATCH This model represents fantastic, incredible value for money. The 6 digit display continuously shows hours, minutes and seconds, or may be changed at will to hours, minutes and date. Its effective alarm is extremely useful and may be set to any time within a 24 hr . period. In addition, there is an alarm indicator, 4 year calendar and snooze repeater.

BARCLAYCARD AND ACCESS
CARD
WELCOME.
SEE COUPON.

HERE IS THE AMAZING

12/24 HOUR ALARM/CHRONOGRAPH

Along with the usual time and date displays, this multi-functional timepiece has a 24 hour alarm and a io second stopwatch. The time may be set to operate in 12 or 24 hour mode and the date can be in English or American format. The day of the week is continuously indicated and the stopwatch display may. on command, be frozen to show split/laptime while the stopwatch continues to run. Stopwatch operation does not eflect normal time keeping. $\$ 12.95$ only for this model. Also available with solar energy panel to conserve energy during daylight hours for § 14.95

Abstract

From Watches to Clocks, from Calculators to Radios, from Binoculars to Tool Kits KEELMOOR is the name for the right quality at the right price. Your personal catalogue will tell you more - free with every order.

THE ULTIMATE GENTS LCD CALCULATOR/ALARM WATCH

If you want a watch from the top end of the market this is the one for you. Full calculator functions plus memory and percentage are combined with time and alarm functions to make this item an outstanding buy. Manufactured in Japan at the same factory that produces models for probably the most famous name in the watch business, this device represents sheer quality at an unbelievable price. Comes complete with backlight and button operating tool carried in the strap clasp. We advise you to order quickly whilst stocks last.

We don't think you'll find items of this quality anywhere corner and this is the way to make gift buying easier - and cheaper too.

WE ARE PROUD TO INTRODUCE THE AMAZING MELODY ALARM CHRONOGRAPH

Today's technology has produced this fine watch which incorporates a musical alarm which plays a complete verse of 'The Yellow Rose of Texas.' Other functions included are as for model number 1.

G §14.95p

NEW TO OUR RANGE, WE COMBINE PRECISION AND STYLE IN THIS-THE SUPER SLIM GENTS 5 FUNCTION CHRONOGRAPH

JUST TO GIVE YOU AN IDEA OF THE ULTRA SLIMNESS OF THESE WATCHES WE HAVE ILLUSTRATED A SIDE VIEW OF THE SUPERSLIM DIGITAL. BELOW, WE HAVE ELABORATED ON SOME OF THE TECHNICALITIES:-

These watches need no special functions to make them stand out in a crowd - their slimness serves that purpose. If you've been put off digital quartz watches in the past because you require an ultra-slim design, now is the time to change. Is equipped with standard 5 functions and backlight.
£9.95p
Keelmoor Led, 78 Castle Street, Melbourne, Derbyshire, DE7 IDY.

MAINS DIGITAL ALARM CLOCK

A very practically sized mains operated digital alarm clock - this item is extremely well finished and looks equally at home by the bedside or in the living room. With snooze/repeater alarm you could not even buy the components to build your own for this price. Available at the amazingly low price of only
£8.95p
AND FINALLY, WHAT MUST BE THE ULTIMATE IN SQUEEZING A QUART INTO A HALF PINT POT! THE INCREDIBLE MINIATURE LCD TRAVEL/ALARM CLOCK

As you can see from the photograph above this device is tiny and yet it continuously displays hours and minutes with auto calendar and night light. Invaluable for the busy traveller or simply for use in the modern home, it comes complete with its own travelling case and can easily be carried in top pocket or the smallest of handbags. It has even got a stand for upright position on table, shelf or sleeping compartment. An unusual gift to yourself or others at only $£ 10.95$. J

Every order dispatched by return, and is sent by recorded delivery. That is Keelmoor's Promise To You.

Switches any appliance up to 1KW on and oft at preser
times once per day. Kit contains: AY-5-1230 IC $0.5^{\prime \prime}$
LED display, mains supply. display drivers, switches LEDs, triac, PCBs \& full inCT1000K Basic Kit structions. CT 1000 K Basic Kit
CT 1000 KB with white box $(56 / 131 \times 71 \mathrm{~mm})$ Ready Built mm 17.40 E 22.50

MINI KITS

These Kits form useful subsystems which may be incorporated into larger designs or used alone
Kits include PCB, short instructions and all com Kits inclu
MK1 TEMPERATUPE CONTROLLER/
THERMOSTAT
Uses LM3911 IC to sense temperarure $180^{\circ} \mathrm{C}$ MK2 SOLID STATE RELAY
deal for switching motors, lights, heaters, etc from logic. Opto-isolated with zero voltage switching. Suppliad without triac. Select the re-
\& 2.60
quired triac from our range. quired triac from our range.
MK3 BAR/DOT DISPLAY
Displays an analogue voltage on a linear $10-$
element LED display as a bar or single dot. Ideal for thermometers, level indicators etc. May be stacked to obtain 20 to 100 element displays
Requires $5-20 \mathrm{~V}$ supply.
$\mathbf{E 4 . 7 5}$ MK4 PROPORTIONAL TEMPERATURE CONTROLLER
Based on the TDA1024 Zero voltage switch, this it may be wired to form a "burst fire" power connabling the proportional temperature. controller nabing temperature of an enclosure to be MK5 MAINS TIMER
MKS MAINS TIMER Based on the ZN1034E Timer IC this kit will switch a mains load on (or off) for a preset time
from 20 minutes to 35 hours. Longer or shorter from 20 minutes to 35 hours. Longer or shorter perlonss may be reaised by

TRIACS

$95 p$
$190 p$
$80 p$
$65 p$
$48 p$

MINI TRANSFORMERS

		Standard mains primaries 240 V a.c. 100 mA secondaries 6-0-6V$9-0-9 \mathrm{~V}$$12-0-12 \mathrm{~V}$			80p 85p 90p COME
CMOS					
4000	. 17	4019	. 42	4069	.19
4001	. 18	4023	. 22	4070	. 19
4002	. 18	4025	21	4071	. 18
4007	. 17	4026	1.30	4077	. 26
4011	. 19	4027	40	4081	. 20
4012	. 17	4028	. 50	4093	. 54
4013	. 38	4040	80	4501	24
4015	. 75	4049	. 38	4511	. 90
4016	. 35	4050	. 40	4514	1.80
4017	. 70	4060	1.08	4516	1.80

SPECIAL OFFERS

Orders must be received by $30 / 11 / 80$ $3 \frac{1}{2}$ digit Liquid Crystal Display. O.5" digits, d.i.I. 2N3442 Power Transistor $\quad 2$ for $\begin{array}{r}£ 5.95 \\ \hline 1.80\end{array}$

INTEGRATED CIRCUITS

74100 Ar

AY-5-1224 Clo
AY-5-1230/2 Clock/Timer CL7106 DVM (LCD drive)
M377 Dual 2W.Amp.
M379S Dual 6W Amp.
M380 2W Audio Amp.
LM382 Dual low noise Preamp
LM386 250 mW low voitage Amp.
LM1830 Fluid Level Detactor
LM2907 f-v Converter (8 pin)
M2917 f-v Converter (14 pin)
M3909 LED Flasher/Oscillator
LM3911 Thermometer
MM74C9114 digit display controller MM74C915 7 segment-8CO converter
MM74C926 4 digit counter with 7 seg .
S5668 Touchdimmer
S9263 Touchswitch 16 -way
SN76477 Complex Sound
TBA800 5W Audio Amp.
TBA810AS 7W Audio Amp.
TDA 1024 Zero Voltage Switch
TDA2020 20 W Audio Amp.
ZN1034E Timer
Data Sheets only. $10 p$ each device.

AND NOW A DIMMER
THAT MAKES TOUCH DIMMERS OBSOLETE
Two years ago TK Electronics launched a
rouchdimmer kit, the TO 300 K , which made knob, We have designed the light dimmer
controlled dimmers obsobetm. This was
such a grest success that many such a grest success that many
magazin*s and more retailers soon
produced similar designs. SO THAT transmitter to fit your hand and the price to fit your pocket
others May fol Low. TK have

will be selling remote control dimmers but you can have your TDRK 300 K kit NOW for only $£ 14.30$ tor the dimmer unit and $\mathbf{£ 4 . 2 0 \text { for the transmitter. For the }}$ more athletic of you, the TD300K is still available
$£ 2.00$.

DON'T FORGET to add 40p P\&P and 15% VAT to your total purchase $\rightarrow 2$

REMOTE CONTROL COMPONENTS
LD271 IR Emitrling Diode
SFH205 Photodiode Detector
SLA80 IC Puise Amp.
SL490 32 command encoder/transmitter
ML922 10 channel leceiver
ML922 10 channel receiver $\rightarrow 3$ analogue
ML926 16 ch
binary o/p
ML928 16 channel receiver 4 latched
binary o / p
ML929 16 channal raceiver 4 latched
binary ofp
nal receiver 4 latched
Data sheers per device
or device
depending on tange. cost
ALL COMPONENTS ARE ERAND NEW AND TO SPECIFICATION. ADD
VAT AT CURRENT RATE TO AEOVE PRICES. 4Op P\&P MAIL ORDER CALLERS WELCOME BY APPOINTMENT

HVTK Electronics

 wish ritionsishea

2) Wilmslow Audio
 THE firm for speakers!
 SEND 50p FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

AUDAX - AUDIOMASTER - BAKER O BOWER \& WILKINS - CASTLE CELESTION - CHARTWELL - COLES - DALESFORD DECCA EAGLE ELAC - EMI - FANE GAUSS GOODMANS - HARBETH ISOPHON I.M.F. JORDAN JORDAN WATTS KEF - LOWTHER - McKENZIE MISSION - MONITOR AUDIO - MOTOROLA - PEERLESS - RADFORD - RAM - ROGERS RICHARD ALLAN SEAS SHACKMAN STAG - TANNOY VIDEOTONE - WHARFEDALE

WILMSLOW AUDIO (Dept. P.E.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Tel: 0625529599
FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS ETC.
Tel: 0625526213
(SWIFT OF WILMSLOW) FOR HI-FI \& COMPLETE SPEAKERS

mullaro capacitors Special purchase of lactory clearance capachors enables us to offer: C280 Pohesters (Liquarice Allsorts) at 22 for 100 mixed . And Ministurs Electrolytica at $\mathrm{£1.50}$ lor 100 mixed. Pech of auch only $\{3$. These consist of spillages, Hoor sweepings. casmetic imperfects otc. As we have no time to sorl them they are mapnificent value for the constructor.
HUMIOISTATS Buy our Honeyowell Husuinity Contration. Membrane actuated, very sonsitiv. f" shatt. 250V, 3.75A Cantacts Itael lot gromhouses. contraliy heated homen. oftices atc. Build your ow, humidfisers or aterme. Fraction of orignal cost 90 pm .3 lor $\boldsymbol{\{ 2}$.
20 ASSOMTED ZENEA DIQDES
100 MIXED DIDDES includes: Zoner. power. bridge. germanium, silicon etc. All lull spec $\mathbf{C 4} 5$
$0.2^{\prime \prime}$ LEDS with 2 piece clipe
ULTRASOMIC TRAMSOUCERS Transmitter and receivel 40 KHz 14 mm dia. $\mathbf{5 3} .25$ pair
MIMIATURE REED SWITCHES We are the cheaspest! 12 for $\mathbf{f 1 . 0 0} 100$ for $\mathbf{C 4 . 2 0}$
G.E.C. UHF TRAMSISTOR TV TUNERS Hetery type with slow motion drive, leads and arrial socken $\mathbf{1} .503$ for $\mathbf{t} 3.50$ "too G.EC. " 2010° series atc."
DE LUXE FIARE GLASS PRINTED CIRCUIT ETCHING KITS Includes 150 sy ins. copper clad F/ti. bosrd I lt torric chloride 1 dalo etch rosist pen. Abresive cibener. Etch tray plus instructions. Speciel Price e4.ess 1 IU FE. C1. To mil. spoc. $\mathbf{\$ 1 . 2 5}$ 5 in FE. C1. To mil apec $\mathbf{C 5} .00$ 150 zq. in. simperine boord $£ 2.00$ 150 sq. In. Dowtho sited board $£ 3.00$

minlature mains transformers Top quality. Split bobbin construction will pive $4 \cdot 5 \mathrm{~V} \cdot 0 . \mathrm{4} \cdot 5 \mathrm{~V}$ at $\left.250 \mathrm{MA} .1 \mathfrak{l}^{\prime \prime} \times 1 \mathfrak{l}^{\prime \prime} \times 1\right\}^{\prime \prime}$, all soris ol uses $0 \mathrm{NLY} 90^{\circ}$. 3 㸱 $\mathbf{E 2 . 2 0}$.
 $1,000 \mu$ f 100 V hadial. $1 f^{\prime \prime} \times 2^{\prime \prime}$ ONLY 70p. 3 for $£ 1.50$.
bD181 7e Wath T.0.3 Power Transistiors. 50p ae. 3 for fI . 4AF1 Ahternator Diodes Ideal for makimp Battery Chargerz atc. 4 make 50 amp bridge 50 p me - Ve or +Ve case 2 of c. $\mathbf{5 1 . 5 0}$.
100. Full spec. now and marked Includes BC148. BC184L ME0412, BF274, BC154 arc. atce. C4.35 200 is above ond includes AC128, 2N3055, BFY50, BD131, BF200 mc. 51.05
Buy bulk and save meney, thase packs ane worth at wast doublie.
D/O SWITCH EANKS
Includes indement Wore mada lot varrious music centros pobe co erc Can dent and interdependent latching fypess multi

Knots for P / B Swithes fit $3 \frac{\mathrm{~mm}}{\mathrm{~s}} \mathrm{sq}$, shatt 10 tor ET .
Chrome or Spun Aluminium Finish
BULK BARGANS. STOCK UP FER SUMMER
300 mixed $\$ 8$ \& watl rusistors $[1.50$ 150 mixed 182 watt risistors $\$ 150$ 300 mixed capacitors, modern, most types 53.75 100 mased curamic and plate capz $\mathbb{£ 1 . 2 0}$ 400 mixed film resistors $£ 2.95$
100 muxed polystyrune caps $\mathbf{~} \mathbf{2 . 2 0}$ 100 mixed polrstyrisne caps $\mathbf{£ 2 . 2 0}$ 25 pots and prasals E1.50
25 presers, skale on etc. $\mathbf{~} 1.20$
20 VOH and thermistors $\mathbf{~} 1.20$
100 Hi wattage resistors wiewound at $\mathrm{\Sigma} 275$ 100 olectralyics, nlar values $\mathbf{E 2 . 2 0}$ 300 printed circuit resistors $\mathbf{~ C 1}$
300 printed circuit components $\$ 1.50$
TOOK MINLATURE THUMBWHEEL SLIDER PDTS tuning, gruphic equalisers elc. 10 for $£ 1$

MINIATURE LEVEL/BATT. METEAS 200μ
F.S.O. as fittod to many cassemte recordars 60 p

CLEF KITS - b

Migh Quality Electronic Musica Ingtuments under the personal suparvision of Specialist Designer A. J BOOTHMAN.
JOANNA 72 \& 88 PIANOS
Six and $7 \frac{1}{6}$ Octave Electronic Pianos with P.E. JOANNA Sensirive Action as used in the plano key ineria - a fectronically simulates any other design. Build this widely aclaimed professional insirument. for either domestic or Stage use, from our top quality Compo
SIX OCTAVES - £207
$7 \pm$ OCTAVES - $\mathbf{E 2 3 2}$
P.E. STRING ENSEMBLE
The versatile String Synthesizer with a fanlastic sound at an economic price. Split keyboard
COMPONENT KIT - £169
P.A.' - SPEAKERS - CABINETS
Units can be supplied to add to the Piano Stage Cabinets and portable tubular legs.
 \section*{\section*{CLEF PRODUCTS (ELECTRONICS)
 \section*{\section*{CLEF PRODUCTS (ELECTRONICS) LIMITED LIMITED

 (Dept. PE) 16, Mayfield Road, Bramhall, Cheshire SK7 1JU.

 (Dept. PE) 16, Mayfield Road, Bramhall, Cheshire SK7 1JU. 061-439 3297 061-439 3297

 Bean

 Bean

 Brichiontc

 Brichiontc HNCHIMA:} HNCHIMA:}
Do something PRACTICAL about your future.
Firms all over Britain are crying out for qualified people. With the right training, you could take your pick of these jobs Now, the British Institute of Engineering. Technology will train you in your spare time to be an Electrical Engineer.
You risk nothing! We promise to get you through your chosen course-or, refund your fee!
So, join the thousands who have built a new future through home study Engineering courses.

Courses in

C \& Elect. Technicians C \& G Elect. Installations Telecomms. Technicians Exams Television Servicing Radio Maint. \& Repairs (BIET) Pract. Radio \& Electronics Plus over 60 other home study courses.

POST COUPON FOR FREE 44 PAGE GUIDE BRITISH INSTITUTE OF Encinezring technology Aldermaston Court, Dept TPE08, Reading RG7 4PF.

NAME (Block capitals please)
ADDRESS
\qquad
Accredited by CACC
Member of $A B C C$

Make sure of your Heathkit catalogue... write now

Two speed organ rotor simulation plus a p.c.b. $\left(8^{4} \times 5^{7}\right)$. Kit includes all componenis . sockets throughoul/mains operation and stereo headphone. Driver p.c.b. Easily inteCOMPONENT KIT-E89
KEyboards
We believe that we have located the best

保

49 NOTE C-C

623.80
E37

$\mathbf{8} 45.00$

All Keyboards are easily cut to provide your required length and compass. Quantity en ain wina sepvic
We are specialists in Electronic Piano Manulacture and can build your Piano for you

INFORMATION

Please send S.A.E. quoting items of interest accepted, all prices include V-A.T., carriage \& Insurance.
VIsits
re welcome by appointment, otherwise Mail
EXPORT
Enquiries we come - in
Iact JAYCAR (Sydney)
Back up TELEPHONE advice is avnilable from the Designer to supplement the clear instructions included with the above Kits.

Freepost E
FREEPOST ON ORDERS ACCES Birmingham VAT INCLUSIVE PRICES: VISA B19 1BR ADO 30p P\& P CHEQUE 021-233-2400 24 HR PHONE ANSWERING SERVICE
ELECTRONICS ALL PAICES IN PENCE EACH UNLE SS OTHERWISE STATED

GMT ELECTRONICS PROJECTS
free-standing complete teletext unit - full spec TELETEXT DECODER BOARD + REMOTE HAND CONTROL teletext compatible tuner and p.s.u
teletext compatible pal encoder + modulator F.E.T. OUTPUT IOOW MONO POWER AMPLIFIER MODULE X-BAND DOPPLER RADAR ALARM MODULE - MARK II ONE AMP P.S.U. MODULE (SPECIFY 5 OR 12 VOLTS) SIMULATED INERTIA MODEL TRAIN CONTROLLER SIMULATED INERTIA SLOT RACER CONTROLLER MODEL TRAIN STEAM SOUND SIMULATOR MODULE

KIT BUILT UP £199-90 £275-00 £ $135-90 \quad$ £ $160-00$ £ 46-90 \& $57-00$ \& 22-90 \& $35-00$ £ 27-50 \& 35-00 \& $35-90$ \& $44-00$ \& $7-50$ \& $10-00$ \& 22-50 \& $35-00$ £ $27-50$ \& $40-00$ \& NA \& $5-\infty$

GMT ELECTRONICS, P.O. BOX 290, HAMPTON STREET, BIRMINGHAM B19 3JR

DM-2

MULTIMETER

- DC Volts AC Volts DC Current
Resistance.
-31/2 digit LCD
Auto Low Battery indicatio
- Auto Polarity \& Zero
- 1\% accuracy (DC volts)
- Designed around Intersil 7106 IC

FG-1a

FUNCTION GENERATOR

- 30 mV to 10 V pk -pk
- 1 Hz to 100 kHz
- DC coupled
* Sine, Square \& Triangle
- Separate TTL output
- Designed around Intersil 8038 IC
- Total cost around $\mathbf{E} \mathbf{3 0}$ (incl. case)
- Total cost around $£ 30$ (incl. case)

Provided in a JAYkit is a Printed Circuit Board, a punched and lettered Front Panel overlay, a Circuit Diagram and Instruction Sheet and a comprehensive and up to date Component List showing suppliers and current prices. Difficult to obtain pieces of hardware are supplied with the
\qquad Javen Developments, 21 Gladeside, Bar Hill, Cambridge CB3 8DY

Codespesed \#sctronios

Abstract

SOUND EFFECTS PCB brand new, made for spaceman robot tov. Gives 5 spaceman sounds with fashing LED's (speaker not supplieal. Entertain the kids for only 85p. FLUORESCEN REJECT CALCULATOS modem, ran function ceiculators with full memory. Most repsirable data, f2 35 each GIANT IED CIOCK DICPI AY dSto, E2.35 each. GIANT LED CLOCK DISPLAY non-multplexed. common cathode display panel. With data, E3.95 each. Whis Twarch Led Displar tiny. brigh displays for fed watches. Note display is housed in regless flatpack' packaga and requires fairy fine soldering. PLASTIC POLARtZING FILTER OOOS" thick plastic fitm. Any sigits wit data, 99p each to a maximum size of 19 inches - 250 feet. Only 3p par square Inch. SUPER QUALITY JACH SOCKETS gold plared contacts for high reliabilly. Mono 25 p Stereo 30 p each. CALCULATOR applications, and is supplied with applications booklet. 25p each. CALCULATOR CHIP NORTEC 4204 , four function and constant. With data and diagram, 80 p each. PUSH-BUTTON SWITCHES with 1 no contaci Imomentary actlonl With red button. 150 each. MINIATURE SLIDER SWITCMES with 2 pole change-over contacts. $16 p$ each. STATIC RAMS 2102 memories, with dara. only 99p each. AEJECT LED CALCULATORS some repairable but ex cellent value for spares. Yields lots of pants. $\mathbf{E 2} .50$ each. LIQUID CRYSTAL CLOCK DISPLAY dvm's etc. With data E5.25. PROFESSIONAL QUALTY. CONTROL KNOBS rotary knobs satin finish black nylon knobs to fit standard $z^{\prime \prime}$ 'D' shaped shatts. Coloured snap-In caps also vellow. Knob and coloured cap 20p (state cap colour required). Skirted rotary knobs As above but has 'flared' nut cover around base of knob. 27p each. (State cap colour required). Slider vellow. 14p each istate cor 8 mm shats. Available in black, white, grey, red, green, blue and switches, ideal for burglar alarms exc. Only 39p each. RECTANGULAR BAR MA GNETS smal but powerful. Purchased for use with above reed switches. 59p each. REED RELAYS 12 v d.e. coil, one n.o. contact. Smalk enough for PCB mounting. 79p each. POWER RELAYS 12 v d.c. Only E2.55 aach. Relay bases for above relays are 35p each. TRANSISTOR RADIO t.F: TRANSFORMERS ail brand new. May include several types. Ten transformers for 55p NYLON CABLE TIES 25 for 35p tries are 4" longl. SHRINK TUBE available in 3 bore sizes. Shrinks by approx 50% when heated. 2.4 mm bore 150 per metre. 4.8 mm bore 16 p per metre 12.7 mm bore 23 p per metre. TEN UNTESTED LED DISPLAYS Gambler? - ity these. Ten A comprehensive range of resistors and capacitors are now in stock, as follows. Resistors, tw A comprehensive range of resistors and capacitors are now in stock, as follows. Resistors, $\frac{1}{2}$, $\mathbf{5} \%$. 10 hm to 10 Megohms. ELECTROLYTIC CAPACITORS, 125 v$) 1 \mu \mathrm{~F}$ to 47 OHF . MYLA CAPACITORS (100v) $0001 \mu F$ to O $1 \mu \mathrm{~F}$. MULLARO CERAMIC PLATE CAPACITOR $(100 \mathrm{v}) 18 \mathrm{pF}$ to 4700 pF . For full range of values and prices see our free catalogue.

^[SATISFACTION GUARANTEED ON ALL ITEM'S OR FULL CASH REFUND NEW CATALOGUE (NO. B) NOW AVAILABLE - JUST SEND MEDIUM SIZED S.A.E POST AND PACKING PLEASE ADO 40p IOVERSEAS OADERS ADD E1.00) V.A.T. Aop isx rowt roph osso frour]

EHBOWASDMIE electronics

56 FORTIS GREEN ROAD MUSWELL HILL LONDON N10 3HN TELEPHONE 01-883 3705 01-883 2289

YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPONENTS

PETS

8N (8K RAM) £399

16N (16K RAM) £499

 32N (32K RAM) £599
ALL WITH NEW KEYBOARD AND

 GREEN SCREEN.
PERIPHERALS

Service \& Assistance available. Interfaces available are: $X-Y$ plotters, analogue to digital converter, 16 channel interfaces, bi-directional interfaces, etc.

EXTERNAL CASSETTE DECK SUITABLE FOR ALL PETS $£ 55$

UK101

£179 in kit form

 £229 ready built \& tested| INVADER |
| :--- |
| TAPE |
| $£ 5.00$ | £249 complete in case

NO EXTRAS REQUIRED

- FREE SAMPLER TAPE
- FULL QWERTY KEYBOARD

ASSEMBLER
EDITOR
TAPE
E14.95

- 8K BASIC
* RAM EXPANDABLE TO 8K ON BOARD (4K INC)
* KANSAS CITY TAPE INTERFACE
* New monitor allows full editing \& cursor control. £22

LATEST STOP PRESS AND PRICE LIST

send sae or phone for up to date PRICES of all our range of items stocked

CASES
Available for UK 101,
Superboard, NASCOM.
Approx. dim. $17^{\prime \prime} \times 15^{\prime \prime}$
$435 \mathrm{~mm} \times 384 \mathrm{~mm}$
Price $£ 24.50$
Post and packing $£ 1.50$

Unique stackable tape
storage unit. Interlocking
drawers. Drawers each
containing $2 \times \mathrm{C} 12$ tapes.
10 drawers $£ 9.50$
5 drawers $£ 5.25$
Single drawer $£ 1.10$

PRINTERS

TX-80 £375

 EPSON TX-80 $\mathbf{E 3 7 5}$Dot-matrix printer with Pet graphics Interface: Centronics parallel, options: PET, Apple and serial.

-MEMORY EXPANSION KIT

Suitable for UK101, Superboard expansion using 2114's. Each board has 16K RAM capacity.
Kit contains:

- On board power supply
* 4K EPROM expansion
- Fully buffered for easy expansion via 40 pin socket
- 8K KIT £99.95
* $\mathbf{1 6 K}$ KIT £139.90

MEMORY	
D. RAMS	$\mathbf{f} \mathbf{p}$.
4027	2.75
4050(35ONS)	2.35
4060(300NS)	2.39
4116	4.35
S. RAMS	
$2102 A$	1.09
$2102 A-2$	1.09
$2112 A$	2.25
21 LO2	98
$2114-4045$	2.95
4035	1.07
$4044-5257$	6.93
BULK PURCHASE	
8×2114	22.50
8×4116	29.95
8×21 LO2	7.00
BULK PURCHASE	
16×2114	39.95
16×21 LO2	13.00
32×21 LO2	25.00
64×21 LO2	45.00

EPROM'S	
2708	4.95
$2716(5 \mathrm{v})$	13.95
2532	39.95

ROM'S	
$2513(\mathrm{UC})$	5.95
$2513(\mathrm{LC})$	5.95

CPU'S	
6502	9.50
8080	4.75
9900	25.95
6800	5.90
280	8.95

BUFFERS	
81LS95	1.25
81LS96	1.25
81 LS97	1.25
81LS98	1.25
SN74365	52
SN74366	52
SN74367	52
SN74368	52
8T26	1.75
8T28	1.75
8T95	1.57
8 T96	1.57
8 T97	1.50
8 T 98	1.57

BAUD RATE GENS	
MC14411	$\mathbf{8 . 7 5}$
MM5307	$\mathbf{8 . 7 5}$

UARTS

AY-5-1013	3.45
AY-5-1015	3.98
MM5503	4.75
TMS 6011	3.55

Our catalogue contains small metal enclosures for every application including the attractive new G range cases, with unique integrated chassis and sloping visor front and the inexpensive kit-form Veropak. We've also got circuit boards, accessories, module frames and plastic boxes - all to the highest standard to give your equipment the quality you demand. Send 40 p to cover post and packing and the catalogue's yours.

VERO ELECTRONICS LTD RETAIL DEPT. Industrial Estate, Chandler's Ford,
Hampshire SO5 32R
Tel: (04215) 62829

FLADAR ${ }^{\text {TRANSFORMERS }}$
 PRIMARY $0-240 \mathrm{~V} 50 \mathrm{~Hz}$

SEND FOR OUR TRANSFORMER CATALOGUE PRICE £1.00 WHICH INCLUDES A 50 p VOUCHER OFF YOUR FIRST PURCHASE.

Type	Voltage	Current	¢	p/p	Type	Voltage	Current	¢	p/p
O6FEO6	6+6	0.54 EACH	1.99	60p	06FE60	15-0-15	0.4A	1.95	60p
12 FE 06	$6+6$	IA EACH	2.66	$75 p$	O8FE40	9-0-9	la	2.35	60 p
$20 F E 06$	$6+6$	1-6A EACH	3.36	75p	O8FE60	15-0-15	0.5A	2.35	60 D
50 FE06	$6+6$	3A EACH	4.02	90p	12FE40	9-0-9	$1.5 A$	2.60	75p
60FEO6	$6+6$	4A EACH	5.03	125p	12 FE 50	12-0-12	1A	$2 \cdot 60$	750
					12 FE 60	15-0-15	0.8A	$2 \cdot 60$	75p
06FEO9	9+9	0.3 EACH	1.99	60 p	20 FE 50	9-0-9	2A	3.30	75
08 FEO 9	9+9	O.5A EACH	2.40	60 p	20 FE60	12-0-12	1.6A	3.30	75p
12 FEO 9	$9+9$	O.7A EACH	2.66	75 p	20FE70	15-0-15	1.2A	3.30	750
20 FEO 9	$9+9$	1 A EACH	3.36	75p	20FE80	20-0-20	1 A	3.30	$75 p$
$50 F E 09$	$9+9$	2.54 EACH	4.02	900	2OFE100	30-0-30	0.6A	3.30	$75 p$
60 E09	$9+9$	3A EACH	5.03	125p	50FE50	9-0-9	5A	4.00	90p
					50FE70 50FE80	$15-0-15$ $20-0-20$	3A	4.00 4.00	$90 p$ 900
O6FE12	12+12	O.2A EACH	1.99	600	50FE110	$20-0-20$ $30-0-30$	1.4A	4.00 4.00	900
20FE 12	俍 $12+12$	O.3A EACH	3.36	75p	60FE70	15-0-15	1.4A	5.00	125p
SOFE 12	$12+12$	1.8 EACH	4.02	90p	60FE80	20-0-20	3A	5.00	125p
60 FE12	$12+12$	2.54 EACH	5.03	125p	60FE100	28-0-28	2.2A	5.00	125p
80FE 12	$12+12$	3A EACH	6.20	125p	6OFE1 10	30-0-30	3 A	5.00	125p
O6FE15	$15+15$	O.2A EACH	1.99	60p	80FE40	12-0-12	6 A	6.15	125p
$08 F E 15$	$15+15$	0.25A EACH	2.40	60p	80FE50	15-0-15	5A	6.15	125p
12 FE 15	$15+15$	O.4A EACH	2.66	75 p	80FE60	20-0-20	${ }_{5}^{4} \mathrm{~A}$	6.15	125p
20FE15	$15+15$	O-6A EACH	3.36	75p	80FE80	28-0-28	2.5A	6.15	125p
50FE15	$15+15$	1.5A EACH	4.02	90p	$80 F 670$	24-0-24	3A	6.15	125p
60FE15	$15+15$	2A EACH	5.03	$125 p$	80FE90	30-0-30	2.3A	6.15	125p
80FE1 5	15+15	3A EACH	6.20	125p					
					90 FE 50	15-0-15	5 A	6.30	150p
$06 F E 20$	$20+20$	0.15A EACH	1.99	60 p	90FE80	28-0-28	3A	6.30	150p
12 FE 20	$20+20$	O-25A EACH	2.66	75 p	90FE90	30-0-30	3A	6.30	150 D
2OFE20	$20+20$	O.5A EACH	3.36	75p	100FE50	15-0-15	4. ${ }^{\text {a }}$	6.60	150p
SOFE20	$20+20$	1-2A EACH	4.02	90p	100FE26	26-0-26	3.5A	6.60	150p
60FE20	$20+20$	1.5 A EACH	5.03	125p	100FE28	28-0-28	3A	6.60	150p
80FE20	20+20	2A		125p	100FE30	30-0-30	3A	6.60	$150 p$
					100FE36	36-0-36	3 A	6.60	150p
BATTER	Y CHA	ER TRA	R	ERS					
$48 F E 12$	0-6-12	4 A	5.00	125p	150FE 15	15-0-15	6 A	8.20	160p
66 FE 12	0-6-12	5A	5.80	125p	150FE26	26-0-26	5A	8.20	$160 p$
70FE 12	0-6-12	6 A	6.15	150p	! 50FE30	30-0-30	4A	8.20	160p
90 FE12	0-6-12	8A	7.40	150p	150FE36	36-0-36	4 A	8.20	160p
					150FE42	42-0-42	3A	8.20	160p
O6FE30	6-0-6	1.5A	1.95	60p	250FE28	28-0-28	8A	9.02	200 p
O6FE40	9-0-9	0.5A	1.95	60p	250FE30	30-0-30	7A	9.02	200p
O6FE50	2-0-12	0.5A	1.95	$60 p$	$250 F E 42$	42-0-42	5A	9.02	200p
FLADAR ELECTRIC SOUTHVIEW DRIVE P.O. BOX 19 WESTCLIFF-ON-SEA ESSEX 0702-613314			TRADE ENOUIRIES WELCOME			PAYMENT TERMS: C.W.O. Cheques. Postal Orders All Prices include 15\% V.A.T.			

ZETRON CLOCK RADIO Full fidelity AM-FM-LW radio with green tube electronic time display. Alarm, settable anywhere in 24 hour period, can also activate radio to provide wake-to-music facility. 60 minute sleep timer with auto shut-off and touch snooze control. Auto brightness control. Power failure indication.

£ 16.95 + 85p p\&p.

SEIKO QUARTZ LCD MEMORY. BANK CALENDAR WATCH
Displays hour, minute, second, month, day of the week and date in 12 hour indication - or 24 hour at the touch of a button. Button touch also display month and year and dates for

To: Mitrad, 68-70 High Street, Kettering, Northants.
Please send me:
Zetron clock radio(s) af $£ 17.80$ inc p\&p
Seiko Warch(es) at $£ 50.80$ inc p\&p
Pen Watch(es) at $£ 12.00$ inc $p \& p$
Total value of my order $£$
I enclose cheque/PO or debit my Access/Barclaycard

पारासरत्य
 +h:

No. Signature \qquad
Name
\qquad

Credit card holders may telephone (0536) 52202424 hours a day stating card number for immediate attention. All orders despatched within 48 hours. Delivery subject to availability. Full refund if not completely satisfied. Mirrad. Registered in England No. 1500613. Code: PE/1 1/80

The premier mail order house specialising in quality products and superior after-sales care.
a designated month with Sunday dates flashing. Stores dates in memory up to 11 ahead, flashes 'MEMO' on designated dates. Illuminated time and calendar display. Display flashes when battery nears life end. Stainless steel case and wrist strap (adjustable). In presentation case with instructions.

£49.95 + 85p p\&p.

PANTER QUARTZ PEN WATCH
Five function LCD pen watch showing hours, minutes, seconds, month and date. Computerised four year date memory. Ball point pen. Stainless steel case. Price includes presentation case and full instructions.

£12.00 inc. p\&p.

From the collection of 12 month guaranteed leading make products offered through Mirrad's 48 hour distribution system and backed by Mitrad's own service organisation. For complete product range, ring or write for catalogue. Trade price list available for bulk buyers.

MITRAD 68-70 High St., Kettering, Northants. Telephone 0536522024

PROGRESSIVE RADIO 31, CMEAPSIDE, LIVERPOOL 1220 Y

 hiniature mains transformers all 2 at

train operaing volta
 EA. SOD.

TRANSDUCERS. $4 O K H z$. AEC CSENDER E3.50 Pair.
 AMPME NOL COAX CON NECTORS. Plugs 47D, SOCkert 4 With gearbox 23 APM 78 B

 TMat case oniy $\mathbf{E 7} 75 \mathrm{p}$.
JACKSONS C280 50p sech. VARIABLE CAPS. 50 peoch.
 CRIMPING TOOL, for standard terminals also 6 gouge atrippar and wire cutter. Insubsted handies only Eie.su Cash with order please, omicial orders welcome from schools atc. please add 30ρ oost and packing. VAT inclusive-
ALL OADERS DESPAACHED BY RETUPN POST

Top Priority for every constructorHOME RADIO

- About 2,000 items clearly listed. - Profusely illustrated throughout. - Large A-4 size pages.
- Bargain list order form and 2 coupons each worth $25 p$ if used as directed, all supplied free.
Price f 1 , plus 50 p for post, packing and insurance.
Send cheque or P.O. for $£ 1.50$
HOME RADIO Components LTD Dept. PE, P.O. Box 92, 215 London Road. Mitcham, Surrey. kit of parts at $£ 200$ inclusive of VAT/postage \& packing, alternatively kits of parts for the various sub assembly as follows:

1. Transmitter
£19.00
2. Receiver
3. Decoder (supplied as a complete unit)
4. Summer Board
5. Tuner
£13.00
6. Power Supply
£87.00 All prices inclusive of VAT, £27.00 postage \& packing. £60.00
7. Hardware and other parts £16.00

We accept American Express: Access: Barclay Card: Diners Card: also our own Marshall's Credit Charge.
Phone your order now to Margaret O'Donnell on 01-624 0805

Marshall's

LERNA-KITS!

HIGH QUALITY EDUCATIONAL KITS

LATEST SOLID STATE TECHNOLOGY - DESIGNED \& MADE IN THE U.K.
DETAILED STAGE BY STAGE BUILDING INSTRUCTIONS
FREE ADVISORY SERVICE THROUGHOUT THE BUILDING

[^5] $£ 10$ postage overseas Air Mail.

0 years)

PE/ $\overline{11 / 819}$
Catalogue available on receipt 12p stamp.
*RS-232, 20 mA , IEEE 488 and Centronics $1 / 0$ "15 Baud rates to 9,600 - 100 Chrs. per second Bidirectional * 6 print densities 60,72, 80, 96 , 120 or 132 Chrlline *Self test switch * 96 Chrs. ASC II Standard *Auxilliary User Defined Ch. set "Tractor and fast paper feed/graphics " $2 k$ Buffer "Accepts 81/2"max. paper pressure feed and $9 \%^{\prime \prime}$ max. paper tractor feed.
 free
games

- 9 Digit extended Basic - Plugs straight into 8k Compukit requires no hardware mods. (5v.5A required for 610) 610 Expansion (8 k) ONLY £159 + VAT Disc Drive with DOS ONLY £285 + VAT

VERBATIM $5 \%^{\prime \prime}$ DISCS $£ 1.85$ each (min. 10) + VAT. STATIC RAM $21141.12 £ 3$ each + VAT $13+£ 2.50$ each + VAT

exatrov Stringy floppy

COMBINES ECONOMY OF CASSETTE WITH SPEED \& RELIABILITY OF DISC

16 k loads in approx. 24 secs. - Wafers to 75ft (48k approx.)

ONLY
£188

+ VAT
Stringy Floppy with 10 Wafers (Tapes) BUS EX. 2 for 1. Machine Lang. Monitor

Ohio Superboard II \& Challienger IP

with FREE RAM

- Ready Built "8k Microsoft in ROM, 6 digit floating point basic plus full features. $4 k$ RAM - expandable to $32 k$

> SUPERBOARD II (24×24 format) $£ 159+$ VAT SUPERBOARD II (48×32 format) $\mathbf{£ 1 9 9}+$ VAT POWER SUPPLY 5V.3A. . . . $£ 27$ + VAT CASE $£ 29$ + VAT CHALLENGER 1P ($\mathbf{2 4 \times 2 4}$ format) $\mathbf{£ 2 1 9}+$ VAT CHALLENGER 1P (48×32 format) $£ 259+$ VAT operation (Superboard is used in Challenger)

Please add V A.T. at 15%. Carrıage exira, will ad vise.at time of order. Official orders welcome 61 NEW MARKET SQUARE, BASINGSTOKE, HAMPSHIRE. RG21 1HWF

J. BIRKETT
 (Partners: J. H. Birkett, J. L. Birkett) Radio Component Suppliers 25 The Strait, Lincoln. LN2 1JF Telephone: 20767

TTLSN 7474 DUALD TYPE TRIGGERED FLIP-FLOP $=15$ P.
5 TO 12 VOLT MINIATURE RELAYS SPCO 5 Amp Contactis. 60 p
GLASS WIRE ENDED CRYSTALS $28 \mathrm{KHz}, 28.5 \mathrm{KHz}, 29.75 \mathrm{KHz}, 29.76 \mathrm{KHz}, 31.5 \mathrm{KHz}$ All
at 50 p each.
$87 G$ CRYSTA
Cis
PLSN 7486 QUAD EXCLUSIVE OR GATE ${ }^{\text {15 }} 15$ p.
ST53 PLESSEY RF SIGNAL TAANSISTORS 6 for 5 ap.
500 METRE OF PVCCABLE 13 Strands 1019 at E10. Carr. Paid.
 $80 \mathrm{p}, 2 \mathrm{~N} 5039120$ Volt 10 Amp e $£ 1.15,2 \mathrm{~N} 6354150$ Volt fo Amp $80 \mathrm{MHz}=\mathrm{f} 1.15,2 \mathrm{~N}$ 6496150 Voth 10 Amp $60 \mathrm{MHz}=81.15$.
GERMANIUM PNPOC 2O- 1 , AL $103=75 \mathrm{P}$, AD 149 - 75p
WIRE WOUND POTENTIOMETERS 2 Watt $2 \mathrm{~K}, 5 \mathrm{~K}$. 10 K , All 30 p each. 4 Watt $2.2 \mathrm{~K}, 100 \mathrm{~K}$ Boin at 30y
TOGGLE SWITCHES Long Dolly Type On-Off e 35 p .
CHROME BULGIN ONE MAKE ON EBREAK 30 p .
9 VOLTITRON 9 DIGIT SEVEN SEGMENT DISPLAY FG95A - 1 1.80.
MIDGET MICRO SWITCHES with Lever SPCO = 20p.
ONAD COMPARATOR LM 3201256×8 MASK PROGRAMMABLE ROM AND 4 BIT IN-OUT PORT with
${ }^{\text {data }}$ B7G CAYSTALS $327.56 \mathrm{KHz}, 327.86 \mathrm{KHz}, 10.025 \mathrm{KHz}$, MINIATURE DUAL CRYSTAL

HOUSE CODED TIL.C $7400,7410,74 L 00.7430,7453$ All at 6 for $50 p$.
50 OC 71 TRANSISTORS Untested for 75 p .
MINIATURE MULTITURNPOTENTIOMETERS 5 K Lin = 30p.
MINIATURE POTENTIOMETER 250 K Lin, 1 Meg Lin Both 4 for 50 p.
WIRE ENDED 3 OUH R.F. CHOKES AT 25 for 50p.
TRANSFORMERS 240 Volt Input, Output Type 1.24 Volt Tapped at 14 Volt ef1 30 (P \& 25 pl . Type 2 . $30-0$ - 30 Volt $500 \mathrm{~mA}=£ 1.30$ (P\& P 25 p). Type 3.45 Volt 2 Amp, 45 Volt 500 MA $\mathbf{\$ 3 . 5 0}$ (P\&P 90p). Type 4.20 Volt 1 Amp Twice 10 Volt 1 Amp Twice - 4.50 (P\&P

OP-TO ISOLATOR 1174 ar SOD each.
50 SILVER MICA CAPACCITOAS assoned for 75 .
300 TO 75 OHM BALUM TRAN FFORMERS
3DINIATURE TRANSISTOR TRANSFORMERS Input types impedance Ratio 100 K To 1 K $=35 \mathrm{p}$, Ratio 150 K To 1 K a 35 p , Ratio 20 K To $1 \mathrm{~K}=35 \mathrm{p}$, Driver Types 10 K To $2 \mathrm{~K}=35 \mathrm{p}$, Out

Overseas orders postage charged at cost

MAILORDER PROTECTION SCHEME

INTRODUCTION

The Office of Fair Trading have agreed that the notice of the Mail Order Protection Scheme to appear in periodicals carrying mail order advertising should appear as follows:-
'"MAILORDER ADVERTISING
British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfill orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.
Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Practical Electronics will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money retumed; and
(2) You write to the Publisher of Practical Electronics.summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as posslble after the Advertiser has been declared bankrupt or insolvent.

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded.

SERVICE TRADING CO

FT3 NEON FLASH TUBE
High intensily multi turn high voliage, neon glow
discharge flash tube Design for igninino timing elc.
is.

WHY PAY MORE?

 133 by 93 by 46 mm including rasi leads. Prica METERS (New) - 90 mm DIAMETER A.C. Amp., Tyoe 62T2, 0-1A, 0-5A, 10A, 0-20A, 50A
 D.C. Volt. $15 \mathrm{~V}, 30 \mathrm{~V}$.

All types $E 3.50$ ea, $+P$ \& P. 50 (f4. 80 incl Vat), ercept 0.50 a $0-1004$. D.C price $55.00+50 \mathrm{p}$. P. \& P. ($\mathbf{6 6} \mathbf{3 3}$ incl. VAT) HEAVY DUTY SOLENOID. mf. by tont operation. Aprox. 20 it. pull at
t. 25 in. Ex-equip.

12V D.C. SOLENOID

12 V. D.C. heavy duty Solenoid 4 Kp . pull. Easily removable from approx.). 5 -fig. Containing 4×24. D.C. Push Solenoids (1) it approx.). 5 -fig. Counter. 6 min, photo cells. Sub-min. Micro-
switches etc. etc. Ex-equip. London Transport Printer. Price $\mathbf{£ 9 . 0 0 + E 1 . 0 0} \mathrm{p}$. \& p . (total incl. VAT E11.50)
12V. D.C. Solenoid approx. 1 lb . pull. Price: $\mathbf{£ 1 . 4 0 \div \text { p. \& p. } 3 0 \mathrm { p }}$. $\mathrm{N} . \mathrm{M} .5$
(total incl. VAT $£ 1.96$). SOLENOIDS
WESTOOL SERIES D6 Model A3 24 V. D.C. Price $£ 1.50+50$ p p. \& p. (Total incl. VAT \&2.30)

WESTOOL SERIES D4 Model A. 24V. D.C. Price E1.00 +30 D p. \& p. (Total incl. VAT £1.50)

AG/GT 24V. D.C. 70 ohm Coll Solenoid. Push or Pull. Adjustable travel to $\mathbf{3 / 1 5} \mathrm{in}$. Fitted with mounting brackets and spark suppressor. Size: $100 \times 65 \times 25 \mathrm{~mm}$. Price: 3 for $\mathbf{2} .40+30 \mathrm{p}$. P. \& 800 WATT DIMMER SWITCH Easily fitted. Will control up to 800 W . of all lights except fluorescent at mains
50 p. p. \& p. (5.06 Inc. VAT).
 30p. (total incl. VAT E9.55).
MICRO SWITCHES
Sub. Min. Monemwell Lever m/s type 31
for $£ 3.50$ post paid ($£ 4.03 \mathrm{incl}$. VAT)
These V3 types.
Button type (Pye) 10 for $£ 3.00$ ($\mathbf{E 3 . 4 5}$ incl VAT)
Short Lever
(ff4.80 incl Vat)
Roller Type (Bonnella) 10 for $£ 3.50$. ($\mathbf{~} 4.03$ incl. VAT). N.M.S D.P. C/O lever m/switch mifg. by Cherry Co. USA. Precious metal low resistance
£2.93 (min. 10).

SOLID STATE EHT UNIT

 Sec, to a for upus operation. physics and electronics, eg. supplying neon or argon tubes
etc., EHT, starter or laser xenons csr lamps VAN de GRAFF generator, loss of vacuum detector, OUDINI coils etc Size: Length 155 mm , width 85 mm , height 50 mm . Weight
530 grammes, Price $\mathrm{C5} .00+75$ pence 530 grammas, Price
Total inc. VAT EB.71

A.E.G. CONTACTOR

Type LS6/L11. Coil 240 V 50 Rs . Contacts. ${ }^{3}$ make: 600 V
20 mp . break: $600 \mathrm{~V}: 20 \mathrm{amp}$. Price: $£ 5 \cdot 60+50 \mathrm{p}$. \& P (E6.90 inc. VAT \& P.). MAINS CONTRACTOR N.M.S ARROW-HART MAINS CONTRACTOR, Cat. No 130 A30. Coil 250 V . or 500 V . A.C. Contacts. 3 make 50 amp up
to 660 V . A.C. $20 \mathrm{h.p}$. at 440 V . 3 phase 50 Mz . Price: $\mathrm{E} 7.75+\mathrm{p}$. to 660 V . A.C. 20 h.p. at 440 V .3 phase 50 M
\& p . 1.00 (incl. VAT. total: 10.06). N.M.S.

SMITH BLOWER

Type FFB. 1706. Small, quiel. smooth running, 240 V , A.C
operation. Output aperture $45 \times 40 \mathrm{~cm}$. Overall size $135 \times 165 \mathrm{~cm}$, operation. Output aperture $45 \times 40 \mathrm{~cm}$. Overall size $135 \times 165 \mathrm{~cm}$.
Flange mounting. Price: $\mathbf{~} 4.25$. P. \&P. 75 p . Total: $\mathrm{£5} .75 \mathrm{inc}$. P.
\& VAT. N.M.S.
other iypes
AIRFLOW DEVELOPMENT LTD
Centrifugal Blower Unit powered by GEC 230/250V. 2850 r.p.m. motor producing approx. 120 c.f.m. Aperture $65 \times 90 \mathrm{~mm}$. Overa
size $222 \times 225 \times 195 \mathrm{~mm}$. Incl: Starter Capac. Price: $\mathbf{f 1} 8.00$ size
f2 2.00 p . \& p . (Total incl: VAT E 20.70)
24 volt. O.C. BLOWER UNIT
Precision 24 volt. D.C. 0.8 amp Elower that works well on 12 V 0.4 amp D.C. Producing 30 cu.f. min at normal air pressure INSULATION TESTERS NEWI
rest to IE E Spec Rugged metal conetruction suitable for bench of field work constant speed clutch Size L 8 in W 4 in H 6 in weight 81 b , 500 V . 500 megohms, £49.Post B0p I £57.27 Inc. VAT
 (f84.17ine VAT \& P. SAE for leafle)
Yet another outstanding offer
IMFO 600V Oubilier wire ended capacitors, :N.M.S 10 for $£ 1.50$ p\&p 50 p . I 2.30 inc VAT + p\&pl Min I

VARIABLE VOLTAGE TBANSFORMERS
INPUT 230/240V a.c. 50/60 OUTPUT 0-260V

0.5 KVA (21 amp (MAX)

KVA (5 amp MAX)
3 KVA 110 amp MAX)
.3 KVA 115 amp MAX) 15 KVA (25 amp MAX)

3-PHASE VARIA

TRANSFORMERS

Dual Inpur 200-240V. or 380-415V
3KVA 5 amp per phase max. \quad c106.43 Carriage, packing OKVA 16 amp per phase max.

LT TRANSFORMERS $13.0-13 \mathrm{~V}$ al 1 amp £ 2.50 P . \& P. SOp (£3-45 inc. VAT)
$0-4 \mathrm{~V} / 6 \mathrm{~V}-24 \mathrm{~V} / 32 \mathrm{~V}$ at 12 amp £ 20.35 P . \& P. £2.30 (£ 26.05 Inc
 a 12 V at 20 amp or $0-24 \mathrm{~V}$ at $10 \mathrm{amp} \mathbf{£ 1 2 . 0 0}$ P. \& P. © 1.50 (E15.53inc. VAT \& P.)
$0-6 \mathrm{~V} / 12 \mathrm{~V}$ at 10 amp $\mathbf{~} 9.10$ P. \& P. © 1.50 (E12.19 inc. VAT) - 26.34 inc VAT \& P.
$0-10 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V}$ at 10 amp f11.55 P. \& P. © 1.80 ($\mathbf{~} 15.35$ inc. VAT) Other types in stock: phone for enquirfes or send sae for leaflel.

HY-LIGHT STROBE KIT MK IV

Latest type Xenon white light Mash tube. Solid state
timing and triggering circuit $230 / 240 \mathrm{~V}$ a.c. operation. Designed for larger rooms. halls. etc. Speed adjuslable 1-20 f.p. 5 Light output greater inan many iso calied Joule) strobes. Hy-Light Strobe Kit MkIV. $£ 22.00+£ 1.50$
P \& P (incl. VAT total $£ 27.03$). Specially designed and reflector for Hy-Lipht E9.00. Posi £ 1.50 ($\mathbf{E 1 2 . 0 8}$ incl. VAT \& P.). Super My-Light Strobe (approx. 16 joules) Price £33. P \& P $£ 1.50$ (incl. VAT total £39.68). Suitable case £ $11.00+£ 1.50$ P \& P ($£ 14.38$ incl. VAT \& Super Hy Light Strobe Kit, details on receipt of foolscap sae

XENON FLASHGUN TUBES

Range available from stock. S.A.E. for details.
ULTRA VIOLET BLACK LIGHT
FLUORESCENT TUBES
4 ft .40 Watt f8.70 inc. VAT $£ 10.00$ (c sallers only).
2 ft .20 watt E 6.20 . Post 75 p.($£ 7.99$ inc. VAT + P.)
(For use in stan bi-pin fittings).
9 in . 8 watt £2.25. Post 35 p . ($\mathbf{£ 2 . 9 9}$ inc. VAT $+P$ P) 9 in .6 witt $\mathbf{6 2} 25$. Post 35 p . ($£ 2.99$ inc. VAT $+P$).
Cm .4 watt $£ 2.25$. Post 35 p . $£ 2.99$ inc. VAT $+P$.
 DC op ©4.50. Post 45 p. ($\mathbf{5} 5.69$ inc VAT + P)
400 watt UV lemp and ballast complete E 38.00 . Post E 3.50 (e47.73 WIOE RANGE OF DISCO LIGHTING EQUIPMENT S.A.E. (foolscap) for details.
PROGRAMME TIMERS
240 V A.C. operation. 12 individually adjustable cams. $\mathbf{8 7 . 5 0}+$
75 p . A P. ($\mathbf{(5 9 . 4 9 \text { Inc. VAT). A.T. }}$ 6 adjustable 6 fixed cams. Price $\mathbf{£ 8 . 0 0}+\mathbf{7 5}$ p p. \& p. (£7.76 Inc.

Superior Quality Precision Made
 NEW POWEA RHEOSTATS
 winding heavy duty brush assembly. continu-

ousivrated. $10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{kR} /$
$25 \mathrm{WAT} /$
1.5 kN , 80 . Pose $20 \mathrm{p}(83.45 \mathrm{VAT}$ P $1.5 \mathrm{kn}, \mathrm{f} 2.80$. Post 20 p ($\mathbf{E} 3.45 \mathrm{inc}$. VAT \& P) W0 WATT 250 € 2.90 . Post $25 p$ (E3.62 inc. VAT \& P.)
 Black, Sitver, Skirted knob calibrated in No
dia, brass bush. Ideal for above Rheostats $2 \& p$ each.
RELAYS \&
$230 / 240 \mathrm{~V}$ A.C. Relays: Arrow $2 \mathrm{e} / \mathrm{ol} 15 \mathrm{amp} £ 1.50$ (fi. 96 inc VAT \& P).
T.E.C. Open type 3 c/o. 10 amp \&1. 10 (E1. 50 inc. VAT \& P). KMK1 Relay. 230 V, A.C. 1 do . open type 10 amp contact, mf .
by "Keyswith" 80p. + 20 p . p. \& p. (E1.15 incl. VAT). 5 for e3. 75 postpaid ($\mathbf{~} 4.32$ incl. VAT).
D.C. Reloys: Open type $9 / 12 \mathrm{~V} 3 \mathrm{c} / \mathrm{o} 7 \mathrm{amp} \mathrm{£1.00}$ ($\mathrm{£1} 1.38 \mathrm{inc}$ VAT. \& P) Sealed 12 V 1 clo 7 amp octal base. E 1.00 (E 1.38 inc
VAT \& P) Sealed 12 V 2 do 7 amp octal base. E 1.25 ($£ 1.67 \mathrm{inc}$.

Hellermann Deutach. Mermetically sealed sub-min. Relay. 12
24 V . D.C. $2 \mathrm{c} / \mathrm{o} .850$ ohm coil. 0.2 pitch. P.C. mounting. L 28 mm. 24 V . D.C. $2 \mathrm{c} / \mathrm{o} .850$ ohm coil. 0.2 pitch. P.C. mounting. L. 20 mm
W. 10 mm . H. 12 mm . Fraction of maker's price: $£ 2.50$ postpaid (E2.88 incl. VATI. N.M.S.
Diemond H henvy duty A.C. relay $230 / 240 \mathrm{~V}$ a.c. iwo C/O contacts 25 amps res at 250 d.c. E2.50 otip 50p. (E3.45 inc

71 rpm KLAXON motors approx. 25 lb inch
28 ppm WNSCALE motors approx.
28 pm WYNSCALE motors approx. 201 lb inch 71 pm WYNSCALE motor approx. 101 lb inch A.C. supolied with auto transformer 240 V A.C. operation, $£ 9.25$ p. \& $0.75 p$. Total inc VAT £11.50.N.M.S.
19 rpm FHP $220 / 240 \mathrm{~V}$. a.c. reversible. new including capacitors. mt. CITENCO Price: E14.25 capacitors. mi. CITENCO.
inclus. VAT) NM. $30 \mathrm{rpm} .230 / 240 \mathrm{~V}$. a.c. 501b, in. mf. PARVALUX Price: $\mathbb{1} 1800+\mathbb{E} 1.50$ P. \& P. \{ $\mathbf{1} 18.98$ inclus. VAT). N.M.S
 16 mm . W. 6 kg .600 g . mi. FRACMO.
Prict E15.00 + E 19.50 P. \& P. IE18.98 inclus. VAN. N.M.S.
100 rpm .110 V . a.c. 115 lb . in., 50 Hz .2 .8 amp. single phase split capacilor
Totally enclosed. In-line gearbox. Length
250 mm . Dia. 135 mm . Spindle dis 15.5 mm , length 145 mm . Tested. Price: $812.00+$ C1.50 P. \& P. (E16.53 inclus. VAT. R. \& T. Sutable Transformer for 230/2 40 V
200 rpm. 35 lbs in. 115 V .50 Hz
Price: $\mathbf{F 1 8 0 0 + £ 1 . 5 0 \text { P. \& P. (C20.13 inclus. VAT). N.M.S }}$ Suitable Transformer for $230 / 240 \mathrm{~V}$. a.c
Price: $\mathbf{8 8} \mathbf{0 0}+\mathrm{£1}-00$ P. \& P. (E10.35 inclus. VAT). N.M.S. $1 \mathrm{ram} 230 / 240 \mathrm{~V}$ a.c. Synchronous gearea Motor, mf. MAYDON.

230V a.c. FAN ASSEMBLY

24V. D.C. GEARED MOTOR

24V. D.C. 200 rpm $101 \mathrm{bs} / \mathrm{ins}$. Continuously rated geared Motor mfg. by either Parvalux or Carter. Easily removable from heavy
alf. chassis containing $9 \times 24 \mathrm{~V}$. O.C. Solenoids, microswitches, friction clutch, precision gearing etc. etc. Ex-equipment London
 VAT E14.95).

4V. D.C. REVERSIBLE MOTOR

Parvalux type SD12L, 24 D.C. shunt wound Motor, either 133
pm 651 ls in Gearbox ratio $30: 1$. Current 6.8 amp. Rating continuous. Will operate on reduced power and speed at 9 V D.C. or ess. Size Dia. 16 mm , Width 150 mm , Shaft dia. 16 mm . Price
$\mathrm{E16.00}+\mathbb{2} .00 \mathrm{p}$, p . (20.70 imcl VAT) N.M.S. or 60 rpm E16.00 + 100 l .00 p in rating. Price as above. N. M.S.
100W Rheostat 1 ohm speed control available $\mathbf{£ 6 . 9 0}$ (£7.94
ROTARY CARBON VANE VACUUM \& COMPRESSOR.
Direct couplad to $1 / 3 \mathrm{~h} . \mathrm{p}$. $110 / 115 \mathrm{~V}$. A. C. Motor 4.2 amp .1380 irpm. Motor manuf. by A.E.I. or G.E.C. Pump by Williams. Max.
Vac. $25^{\prime \prime}$ M.G. Max. pressure cont. 10 p.s.i. Im. 15 p.s.i. Max, airflow 3 c.f.m. at "O" M.G. Price: $£ 30.00+53.00$ P \& P incl. VATI. N.M.S. Suitable transformer for
(13.80 incl. VATI. N.M.S.

COMPRESSOR

 Precision built USA. Morizontally opposed twin head diaphragm type producing 201bs. approx. P.S.I. per head. 3.5 plus C.F.M. Output virtuallypulse free. Powered by 110 V A.C motor size $30 \times 23 \times 15 \mathrm{~cm}$. Weight 7 kilos. Price $£ 25,00^{\circ}+£ 2$
Total incl. VAT $£ 31.05$). N.M.S.
Sultable transformer for 240 V op. E8.00 P. \& P. © 1.50 (E 10.93

VERY EXCEPTIONALOFFER

REDUCTION DRIVE GEAR BOX

Ratio $72: 1$. Input spindle $\frac{1}{4} \times \frac{1}{2} \mathrm{in}$. Output spindle $\frac{1}{2} \times 3$ in. long. Overall size approx: $120 \times 98 \times 68 \mathrm{~mm}$. All metal construction. Ex-equip. tested. Price: £2.00 50 p . (incl VAT $£ 2.88$)
A.C. Wkg. TUBULAR CAPACITORS.

5 mfd .440 V . A.C.	80p	7.5 mfd .	200 V . A.C.	£1.00
2 mfd 250V. A.C.	60p	10 mtd .	250 V . A.C	1. 1.00
2 mfd 450V. A.C.	78p	10 mfd	400 V . A.C	E1.75
2.2 mfd. 440 V . A.C.	75p	14 mfd	$400 V$. A.C.	f3.00
3 mfd . 440 V . A.C.	\$1.00	15 mfd .	250 V	
4.1 mfd. 440 V . A.C.	¢1.00	(Block)		c1.50
5 mfd . 400 V . A.C.	£1.25	19 mfd .	$280 \mathrm{~V}, \mathrm{~A} . \mathrm{C}$.	c2.00
5.3 mfd . 160 V . A.C.	${ }^{80 p}$	20 mfd .	250 V . A.C.	E2.25
5.4 mfd 280V. A.C.	75p	50 mfd .	370 V .	c5.00
6.5 mfd . 2 BOV . A.C.	¢ 1.00		(Block)	
P. \& P., up to 2.5	250.	ntd	mfd. 5	
Time Switch Venner Type				
ERD Time switch $200 / 250 \mathrm{~V}$ a.c. 30 amp contact 2 on/ 2 off every 24 hrs. at any manually pre-set				
time. 36 hour Spring Reserve and day omiting device. Built to highest Electricity Board				
speciflcation. Price f9.00. P. \& P. 75ρ (f11.21).				

($£ 11.21$).
SANGAMO WESTON TIME SWITCH
Type S251 2001250 V . a.c 2 arv2 off every 24 hours 20 amps contacts wlth override switch dia. 4×3 price f8, 50
50 p inc. VAT $£ 10.35$, Also available with Solar dlal. A. F T.

All Mail Orders Callers Ample Parking Space Showroom open Mon-Fri.

57 BRIDGMAN ROAD CHISWICK LONDON W4 5BB 019951560

ACCOUNT CUSTOMERS MIN. ORDER $£ 10.00$
N.M.S. New Manufacturers Surplus
R\& T Reconditioned and Tested

Personal callers only Open Saturdays
9 Little Newport Street, London WC2H 7JJ
Phone 01-437 0576

CEOICE OF 3 PRIMARY INPUTS

I.L.P. Toroidal Transformers are available in choice of $110 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}$, coded as follows: (Secondaries can be connected in series or parallel)
For 110 V Primary insert 0 in place of " X " in type number.
For 220 V Primary insert I in place of " X " in type number.
For 240 V Primary insert 2 in place of " X " in type number.
Example - 120VA $240 \mathrm{~V} 15+15 \mathrm{~V} .4 \mathrm{~A}=42013$.

* TYPES TO SPECIFICATION CAN BE SUPPLIED TO ORDER IN

QUANTITX, AGENCIES IN CERTAIN COUNTRIES AVAILABLE
ENQUIRIES INVITED
FREEPOST facility.
We pay postage on U.K. enquiries and orders. Simply address envelope to FREEPOST TS to address below. NO STAMP REQUIRED.

TO ORDER Enclose cheque/Postal Order/Money Order payable to l.L.P Electronics Ltd or quote your ACCESS or BARCLA YCARD account No. To pay C.O.D. add $£ 1$ extra to TOTAL value of order.

TRANSFORMERS
A division of I.L.P. ELECTRONICS LTD
FREEPOST T2 GRAHAM BELL HOUSEROPER CLOSE CANTERBURY CT2 7EP Phone (0227) 54718 Telex 965780

TUNEIN to the new-look

- New series featuring full instructions for constructing the PW 'HELFORD' Amateur Bands Transceiver
- 'Slim Jim' for 28 MHz -Survey of $\mathbf{2 m}$ MultiModes

November issue OUT NOW 65p

- December issue out Friday November 7 Full instructions for making a Synthesised Broadcast Bands Receiver electronically tuned to automatic scanning facility.
Plus FREE WORKSHOP TWEEZERS

Everything for OSI

The superior Superboard...

Ohio Scientific's Superboard has been around for some time now.- a superb introduction to small computing. Mutek now offer the superior Superboard - the same superb BASIC, the same keyboard, utterly reliable cassette interface and other features, but modified to run at double the standard speed and with more than double the standard display: 32 lines of 48 characters. More than twice the execution speed for BASIC than Commodore's Pet©; twice the display area of the UK101. The superior Superboard - a superbly practical small computer.

Enhanced C1 (C1E)
 £255

Complete with power supply, metal case and 4 K user memory.

Superboard E
 £195

Uncased version of C1E.
Upgrade service or kit to convert existing Superboard, C1 or UK101 systems to Mutek's enhanced specification (ask for details) .. £40
All prices quoted exclude VAT.

a superior monitor...

CEGMON, 'the best thing for OSI systems since OSI itself', is now available! CEGMON is a new monitor PROM for all Ohio Scientific BASIC-in-ROM systems (Superboard/C1, C2 and C4 series) and UK101, written by the organisers of the OSI UK User Group. It gives these systems the kind of features that only appear on machines at least twice the price - a full screen editor, an incredibly versatile screen-handling system, a built-in expanded machine-code monitor, and much more

- full screen editing - more flexible than simple line editing, the built-in twincursor screen editor allows you to edit, combine, copy or renumber program lines or text, copying from anywhere on the screen.
advanced display features - all output to the screen display can be directed through 'windows' whose position, height and width are all user-definable, and can be changed within programs quickly and easily. The 'window' format allows free mixing of text and graphics; protected non-scrolling areas; and sophisticated use of multiple scrolling and non-scrolling zones. 'Window'- and screenclear routines and cursor-positioning controls; text is printed from the top of the current 'window'. Probably the most flexible screen-handling system available today, it offers a whole new world in small-computer display.
- Machine-code support - memory 'modify' allows entry of text or graphics as well as hex instructions; tabular hex display of memory contents; breakpoint handler; complete load and save routines.
D and more! - revised keyboard routine for word-processing use; userdefinable input/output; OSI-compatible floppy-disc bootstrap on Superboard/ C1, C1E and UK101 versions.
All this packed into a single replacement PROM! Versions available for standard Superboard/C1; Mutek's enhanced Superboard/C1; OSI C2 and C4 series (cassette only); and UK101. Further details available on request; please specify version required when ordering.
Price: $\mathbf{£ 2 9 . 5 0}$ includes full documentation and reference card.

Mutek - improving personal computing. . .for less than you expect Mutek - the independent Ohio Scientific specialists - Quarry Hill, Box, Wilts. Tel: Bath (0225) 743289

DESIGNER APPROVED KITS

PE PHASER UNIT P.E.APRIL 1979

A supent six stage phaser that really gives your guitar liff off. Equals the best commercial models. Uses latest FET op-amps. Glassfibre p.c.b. COMPLETE KIT OF ALL PARTS AS SPECIFIED............ £16.50
Pack 1. All semiconductor devices... 5600 Pack 2. Resistors, capacitors \& preset pot
 Pack 4. Diecast box and feet .. $\mathbf{E} 50$ Separate parts: TLO62 80p, BF245B 50p, PC8 E1.50, 8 pin sockets (not included in kit) 21p each

PE SUSTAIN UNIT P.E. $\mathrm{ig7r}$

Superb quality, low noise, low distortion sustain unit equal to the very best commercial models. Suits all guitars. Glassfibre p.c.b. COMPLETE KIT OF ALL PARTS AS SPECIFIED $\mathbf{f 8 . 5 0}$
 Pack 2. All semiconductor devices .. $\mathbf{E 3}$ Pack 3. Footswitch, lacks. pot, knob, and battery clip......................... $\mathbf{E 3 . 2 5}$ Separate parts: XC5053R 50p, RPY58A 75p, Printed circuit board 95 p, Footswiten $\mathbf{5 1 . 8 0}$ each.

ORION AMPLIFIER	Complete set of semiconductors \qquad $£ 9.75$ Quality glass fibre p.c.b. printed with component locations \qquad E3.50
PE TV SOUND	
SEPARATOR	High quality glass fibre p.c.b. .. $£ 1.50$

P.E. SMOOTH FUZZ UNIT
 (P.E, September 1979)

This is the Fuzz unit you have been waiting for ! Smooth, clean tone with low noise and low current drain. Uses glassfibre p.c.b. and latest FET op-amp.
COMPLETE KIT OF ALL PARTS AS SPECIFIED..
. 88.50

POSTAGE \& PACKING 25p per order. Orders over $£ 10.00$ post free.
 All devices are top grade, brand new and to full manufacturers spec.
 PRICES DO NOT INCLUDE VAT. Add 15% to all prices.
 MAIL OROER ONLY
 DAVIAN ELECTRONICS
 13 DEEPDALE AVENUE, ROYTON, OLDHAM OL2 6XD.

	$00,0$	1	C	12010	
- Guaranteed same day Despatch					
- Q	uality Product			ast Stocks	
- F	Catalogue		C	mpetitive Prices	
Pack			Pack		
	10 PP 3 battery leads	50p	F11	10 BC 108 trans.	90p
A 72	103.5 mm jack plugs	80 p	F26	10 2N3704 trans.	80p
A73	103.5 mm jack sockets	80 p	F27	10 2N3819 trans.	190p
A 74	10 Std. jack plugs	130p		20 1N4002 diodes	75p
A75	10 Std. jack sockets	170p	H50	200 A 91 diodes	110p
A84	105 pin 180 DIN plug	120p		100 1N4 148 diodes	180p
A85	105 pin 180 sockets	100p	H70	5 C106D thyristors	200p
C20	10 Min . slide switch	130p		200.2 in . red LEDs	170p
C30	10 Push to make sw.	130p	J15	500.2 in . red LEDs	400p
C31	10 Push to break sw.	170p		1000.2 in . red LEDs	750p
C40	Pair Ultrasonics	350p		200.2 in. green LEDs	280p
C32	Submin. SPST toggle	${ }^{60} \mathrm{p}$		200.2 in . yellow LEDs	280p
C33	Submin. DPDT toggle	80p		4 FND500 CC displays	350p
C50	20 Texas 8 pin sockets	170p		5741 op amps.	
C51	20 Texas 14 pin sockets	200p		1 LM324 op amp.	50p
C52	20 Texas 16 pin sockets	220p		5 CA3140 op amps.	225p
E10	Resistor kit. 10 ea value	$\frac{1}{1} \mathrm{~W}$		5 NE555 timers	110p
	$4.7 \Omega 1 \mathrm{M} .650$ resistors	480p		54011 CMOS	130p
	1010 u 25 V radial elec	50p		4013 CMOS	40p
	10100 u 25 V radial	75p		4017 CMOS	75p
	10 lu 35 V tantalum	100p		4049 CMOS	45p
	100.1 C280 polyester	50p	M20	Dalo pen	880^{p}
For quality components at competitive prices by return of post Rapid Electronics must be your first choice!					
All prices include VAT. Please add 50 p postage and packing on orders below $£ 10$. Send SAE for our complete catalogue.					
Rapid Electronics Limited Hillcrof House, Station Road, Eynsford, Kent					

Now Casio take a.giant step forward in time with

THE ULTIMATE WATCHES

Send 12 p for details of this amazing range of watches NOW!

AA81
 LCD ANALOGUE/DIGITAL

Alarm Chronograph with countdown
Analogue. Independent hours and minutes with synchronous digital seconds, Dual time ability. Digital. Hours, minutes, seconds, day and date. Stopwateh. $1 / 100$ second to 12 hours. Net, lap and Ist and 2 nd place. Start/stop and 10 minute signals. Alarm. For 30 seconds with am azing "Star Burst" flashing display. Countdown Alarm. Normal and net times to I hour. Time signal. Half hourly and hourly chimes. Tone control. Lithium battery. Light. Water Resist. case 8.65 mm thick. Mineral glass ($£ 34.95$).

ONLY £29.95
for around 40 functions.

12 MELODY ALARM CHRONOGRAPHS

Countdown alarm. Date memories.

Hours. minutes. seconds, am. pm. 12 or 24 hour. Day. date and month auto calendar. Alarm. 7 melodies. one for each day of the week. Hourly time slgnal. With "Big Ben" type tune. Date memory. "Wedding March" or "Trinklied" choice.
Birthday and Christmas Memory.
Countdown alarm. From I second to 1 hour. Afte zero. count continues positively
zero. count continues positively.
Siopwaich. $1 / 10$ second to 1 him
slopwatch. $1 / 10$ second to 1 hour. Net. Lap etc. Pic (uresque moving display of notes played. Light.
Lithium. Glass, Water Resist. cases. M. I2 resi. trim. M. $1200 \mathrm{al\mid} \mathrm{~s} / \mathrm{s} 9.0 \mathrm{~mm}$ thick.

£24.95

If you are considering building either of these alarm systems save yourself time, aggravation and $£ £ £$ by purchasing one of our kits Each kit contains detailed step-by-step assembly and installation instructions and every item required to build an alarm control centre as illustrated in the articles. There are no extras to buy. Prices are all inclusive (U.K. only) and are valid for six months. Terms: CWO Access and Barclaycard orders welcome.

SECURITY SENTRY (July PE)

SCAO1
Security Sentry Alarm Control Centre. Includes: Silk screened and drilled case, drilled and tinned PCB, all screened and driled case, drilled and tinned PCB, all
PCB components, IC sockets, battery holder (less batteries) and all mounting hardware.
£12.95
SCAVCPPO1 Consists of the above kit and a caravan protection kit comprising: Siren, seven pin socket, magnet and reed switch, 20 Mtrs wire, wire staples \& hardware.
£26.70

SECURITY SENTINEL

DAS01 Security Sentinel Alarm Control Centre. Comprising: silk screened \& drilled case, sitk screened, drilled \& tinned PCB's, IC sockets, all'PCB components, battery holder (less batteries), mains transformer, and all hardware.
f45.95
DAS02
CSO2
Siren Kit. (Can also be used with SCAO1): $\begin{array}{r}\text { Siren, } 10 \\ \hline 53.95\end{array}$ Mirs wire, wire staples, and mounting hardware.
£8.75
TMSO1 Tri-Mode switch kit comprising: two magnet and reed switch assemblies, diode, resistors, \& hardware.
£1.95
Interested in a vehicle alarm system kit?? Write for details.
COMPU-TECH SYSTEMS
Laundry Loke Industrial Estate,
North Walsham, Norfolk
Tel: North Walsham 5600

100 METRE WATER RESISTANT

Alarm Chronographs with countdown.
Amazing 5 year lithium batery life. Hours, minutes seconds, am/pm. day. date and month. 12 or 24 hour Time is always visible regardless of display mode. Stopwatch. 1/100 second to 1 hour. Net. Iap. Ist and 2nd. Start/stop signal. 10 minute signal, Alarm. Sounds for 30 seconds
Time signal. Half hourly and hourly chimes. W-100. All resin. W-150B. All metal. W- I50C (not il lustrated) metal case/resin strap $\mathbf{E 2 5 . 9 5}$.

SECURITY
 SENTRY/SENTINEL

 As above but includes nickel-cadmium batteriesTel: Nort

NICKEL CADMIUM BATTERIES

	$\begin{aligned} & \text { AA (HP7) } \\ & 0.5 A H r \end{aligned}$	$\begin{aligned} & \text { SUB ' } C^{\prime} \\ & 1.2 \mathrm{Hr} \end{aligned}$	'C' (HP11) 1.65AHr	$\begin{aligned} & \text { 'C' (HP11) } \\ & \text { 2.0AHr } \end{aligned}$	$\begin{aligned} & \text { D' (HP2) } \\ & \text { 4.0AHr } \end{aligned}$	$\begin{aligned} & \text { PP3 } \\ & 0.1 \mathrm{AHr} \end{aligned}$
1-24	f0.85	£1,38	¢1.69	$\varepsilon 2.25$	£2.97	E3,79
25-49	¢0.82	E1. 28	¢1.58	¢2.10	¢2.77	
50-99	¢0.80	£1.24	$\varepsilon 1.52$	£2.02	£2,67	
100 up	$\bigcirc 0.70$	£1.15	C1.41	¢1.87	82.47	

All cells are brand new full spec devices from reputable mnfrs. All Nickel Cadmium cells fexcept PP3/ are supplied complete with solder tags and are 'VENTED' devices suitable for fast charge. CHARGERS - single or dual O / P to charge PP3, AA or SUB ${ }^{\circ} C^{\prime}$ cells in 12-14 hrs (chargers will charge ' C ' and ' D ' cells but with longer charging time). Units supplied complete in plug top case

£19.95 £32.50

JOIN THE KEYBOARD REVOLUTION!

 With the amazing new CASIOTONE 201A remarkable new concept in electronic keyboard instruments using a totally new technology to faithfully reproduce the pitch, timbre and harmonics of 29 instruments. A 4 -sound memory function allows switching between any 4 pre-selected in-
truments. This polyphonic instrument can play full chords of up 108 notes on its 29 white and 20 black keys spanning 4 octaves. Vibrato and tone switches Font volume and sustain pedal options. Echo jacks. $3 \times 3,34 \times 9 \frac{1}{4}$ inches. Weight 151 bs. Black or woodgrain
finish. AC only
ONLY £245 (r.,.p. 2285)

CASIOTONE M-10

Four instruments on the movel
Polyphonic playing of piano, organ, violin and flute. 19 white and 13 black keys span $2 \frac{1}{2}$ octaves. Vibrato switch. $2 \times 16 \frac{1}{2} \times 5 \frac{1}{4}$ inches. Weight 3.5 b . Integral speakers. O/p jack. Mains/battery.

ONLY $£ 69$ (r.t.p. 879)

with flying leads. Number of cells (10 max) In serles and type munt be specified for each re quired O / P when ordering.

SINGLE O/P CHARGER £5.04

DUAL O/P CHARGER £5.72
TRANSFORMERS - as used in chargers, 2×12 volt 0.25 amp secondarys 240 v primary, tag connections $£ 1.57$ each.

Data and charging circuits free with orders over $£ 10$ otherwise 30 p post. P\&P 10\% if order less than C10. 5\% if order over £10. Prices DO NOT INCLUDE VAT and this should be added
to the total order.

SOLID STATE SECURITY, Dept. (PE), Bradshaw Lane,

Parbold, Wigan, Lancs.
Telephone 02576-3018.

	"Let us quiote for your hard to get components for PE projects"
E MAILTRONX 1 TTO	CLAIREX CL705HL - £4.50 ea. PMI REF 02 - £4.00 ea.
Dept. PE, 3A Commercial St. Batey, W.Yorks WF 17, 5HJ	RS ITEMS A SPECIALITY!
	Send s.a.e. for priced parts list of PE projects (max. 4) stating month and project title.
	1 enclose 300* please send catalogue
name	
address	
	-refundable with future order over $£ 5.00$

TITAN TRANSFORMERS AND COMPONENTS CENTRAL HALL CHAMBERS GRIMSBY SOUTH HUMBERSIDE MAIL ORDER ONLY NT CRICES INCLUDE 15% TAL ORDER ALL PRICES INCLUDE 15\% V.A.T.

Phinted eincuit boaro types
\qquad

REF	AMPS	PRICE	P/P					
TTP 446	0.5 .2	1.79	50		TTP 447	$0.75 \cdot 2$	2.14	60
:---	:---	:---	:---					
TTP								

 \begin{tabular}{|l|l|l|l|}
\hline TTP 450 \& $2.08 \cdot 2$ \& 2.99 \& 85

\hline TTP 451 \& $4.18 \cdot 2$ \& 4.57 \& 120

\hline

\hline TTP 452 \& 8.33 .2 \& 5.68 \& 120

\hline
\end{tabular}

$0-9 \mathrm{v} 0.9 \mathrm{v}$

REF	AMPS	PRICE						
P/P				REF	AMPS	PRICE	P/P	
:---:	:---:	:---:	:---:					
TTP 460	0.30 .2	1.79	50					
TTP 461	0.50 .2	2.14	60					
ITP	60.2	2.3			TTP 4.61	$0.50 \cdot 2$	2.14	60
:---	:---	:---	:---					
TTP 463	0.60 .2	2.36	70					
THP	1.38 .2	2.99	85		TTP 484	1.38 .2	2.99	85
:---	:---	:---	:---					
TTP 465	$2.77-2$	4.57	120					
TTP	$5.55-2$	5.	120		TTP 465	$2.77 \cdot 2$	4.57	120
:---	:---	:---	:---					
TTP 466	$5.55 \cdot 2$	5.68	120					

ov. 12v 0v-12v

REF	AMPS	PRICE	P/P					
TTP					TTP 487	0.25×2	1.79	50
:---	:---	:---	:---					
TTP 480	0.382	2.14	0		TTP 468	$0.38-2$	2.14	60
:---	:---	:---	:---					
TTP 470	0.50 .2	2.36	70					
TTP 47	0.2	2.9	5		TTP 471	1.04×2	2.99	85
:---	:---	:---	:---					
TTP 47	2.09	57	120		TTP 472	2.08 .2	4.57	120
:---	:---	:---	:---	$0.15 \mathrm{v} 0.15 x$				

REF	AMPS	PRICE	P/P					
PIP					TTP 474	0.20 .2	1.79	50
:---	:---	:---	:---					
TTP	0.30 .2	2.4	0		TTP 475	0.30 .2	2.14	60
:---:	:---:	:---:	:---:					
TTP 477	0.4 .2	2.36	70		TTP 477	0.4 .2	2.36	70
:---	:---	:---	:---					
TTP 478	0.83 .2	2.99	85		TIP 478	$0.63 \cdot 2$	2.99	85
:---	:---	:---	:---					
TTP 479	$1.66-2$	4.57	120	$0.24 \times 0.24 \mathrm{~K}$				

| REF | AMPS | PRICE | P/P |
| :---: | :---: | :---: | :---: | | TTP 485 | 0.13 .2 | 1.70 | 50 |
| :--- | :--- | :--- | :--- |
| TTP 409 | 0.19 .2 | 2.4 | | | TTP 480 | 0.19 .2 | 2.14 | 80 |
| :--- | :--- | :--- | :--- |
| TTP 490 | 0.25 .2 | 2.30 | 70 | | TTP 498 | 0.25 .2 | 2.36 | 70 |
| :--- | :--- | :--- | :--- |
| TTP | 490 | 0.52 .2 | 2.99 | | $T T P 490$ | $0.52-2$ | 2.99 | 65 |
| :--- | :--- | :--- | :--- |
| TTP 500 | $1.04-2$ | 4.57 | 120 | | TTP 500 | $1.04-2$ | 4.57 | 120 |
| :--- | :--- | :--- | :--- |
| TTP 501 | $2.08-2$ | 5.68 | 120 |

TRANSFORMERS

 SECONDARY SERIES OR PARALLEL
P.C.B. OR CHASSIS MOUNTING

CHASSIS MOUNTING IYPES							
Ov-6vor-6y				Ov-9v Or- 9\%			
REF	AMPS	PRICE	P/P	REF	AMPS	PRICE	P/P
TTC 446	0.5-2	1.85	50	TTC 480	$0.30 \cdot 2$	1.85	50
TTC 447	0.75.2	2.20	80	TTC461	0-50.2	2.20	60
TTC 449	1.0.2	2.45	70	TTC 463	0-60-2	2.45	70
TTC 450	2.08.2	3.10	05	TTC 464	1.38.2	3.10	85
TTC 451	4.18.2	470	120	TTC 465	2.77-2	4.70	120
TTF 452	8.33.2	585	120	TTF 468	5.55.2	585	120

PEF	AMPS	PRICE	P/P
TTC 467	0.25.2	165	50
TTC488	0-38.2	2.20	60
TTC 470	0-50-2	245	70
TTC 471	1.04-2	$3 \cdot 10$	85
TTC 472	2-08.2	4.70	120
TTF 473	4.18.2	585	120

Ov-24y Ov-26y

REF AMPS PRICE PIP

REF	ANPS	PRICE	P/P
TTC 495	0.13 .2	1.85	50

THE 485	0.13 .2	1.85	50
TTC 496	0.19 .2	2.80	

TTC	0.18 .2	2.20	60
TTC 408	0.2.	2.5	6

TTC 498	0.23 .2	2.45	70
TTC 499	0.52 .2	3.40	35
TTC	1.04 .2	4.70	10

TTC 500	$1 \cdot 04 \cdot 2$	4.70	120
TTF 501	$2.08 \cdot 2$	5.85	120

mOUNTING KITS FOA p.C. trpes includes anUTS SCAEWS. WASHERS *Spacers		
va	KIT REF	PRaCE
12	5k 12	43
25	Sk 25	- ${ }^{\text {c }}$
so	Sk 50	52
100	SK 100	38
vasvolst-amps bip minc		

MAINS ADAPTORS 3PIN 13 AMP PLUG IN ADAPTORS. MADE IN UK

RT 100	$6-7.5-9 \mathrm{~V}$	3.85	10					
TT	6.7				TT 100	$6-7.5-9 \mathrm{~V}$	3.85	40
:---	:---	:---	:---					
TT 107	$\begin{array}{c}\text {-7. } \\ \text { RGGULATEO }\end{array}$	4.70	10					

DIGITAL VOLTMETER MODULE

Fully built and tested, ONLY

£11.95.
 vat

* Reads positive and negative voltages with a sensitivity of $0-+999 \mathrm{mV}$ and $0--99 \mathrm{mV}$
* Requires only single supply between 7 \& 12 volts (220mA)
* High accuracy $+0.1 \%+1$ digit
* Large bright $0.43^{\prime \prime}$ high efficiency displays
* 4 readings per second sampling rate
* Size only $41 \times 95 \times 10 \mathrm{~mm}$
* Supplied with full data \& applications information

This brand new, quality module manufactured by Autona Limited (who are one of the U.K's largest module manufacturers) means you can build accurate test equipment, multimeters, thermometers, etc. easily and at a fraction of the cost of ready-made equipment. Full details are provided showing how to measure A.C. voltage, current, resistance and temperature.
Send your cheque or P.O. ($£ 11.95+£ 1.79$ V. A.T. +50 pp. \& p. = f14.24) now to:-

Dept.P.E. 2
RISCOMP LIMITED
21 Duke Street
Princes Risborough
Bucks. HP17 OAT

BUCKINGHAMSHIRE'S NEW
ELECTRONICS CENTRE
8 miles off the M4O
50 minutes from London
Telephone: (084 44) 6326

FURTHER BARGAIN OFFER TO READERS OF THIS MAGAZINE
A QUANTITY OF MIRRORS THAT CHANGE INTO CLOCKS
THE MAGIC MIRROR MAINS ELECTRIC DIGITAL CLOCK EMBODYING ELECTRONIC CIRCUITRY
With a recommended retail price of $\mathbf{£ 3 2 . 0 0}$. now offered new with full guarantee but slightly marked cases for $£ 11.95$ each inc. V.A.T. or 5 for $£ 10.95$ each inc. V.A.T.

LARGER QUANTITY DISCOUNTS AVAILABLE (U.K. only).

Specification:

Blue fluorescemt display,
Hours - Minutes - Seconids Alth 9 minute snooze facility Send cheque or P.O. 10 :-
PRESCOTT CLOCK Bi WATCH CO. LTD. Prescott House, Hurnber Road, Lo
Tel: 01-452 9871

PLEASE MENTION PRACTICAL ELECTRONICS
 WHEN REPLYING TO ADVERTISEMENTS

2 in $\times 2$ in meters $500 \mu \mathrm{~A}, \mathrm{£4} .14$ 17p P.\& P.
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $500 \mu \mathrm{~A}$ and 1 mA VU meter, $\mathbf{£ 4 . 0 0}$ 26p P. \& P.
6 V BUZZERS. 50 mm diameter 30 mm high, 52p. 15p. P. \& P.
$4 \frac{1}{2} \mathrm{in} \times 34 \mathrm{in}$ METER. $30 \mu \mathrm{~A}, 50 \mu \mathrm{~A}$ or $100 \mu A, \Sigma 5.10$. 50 p P. \& P.

MICROPHONES FOR TAPE RECORDERS

 DM228R 200 ohm with 3.5 and 2.5 mm Jack Plugs $£ 1.70$ DM229R 50K with 3.5 and 2.5 mm Jack Plugs £2.25 DM18D 200 ohm with 5 and 3 pin Din Plugs $£ 1.99$ Postage on above microphones $17 p$e)
CARDIOID
DYNAMIC MICROPHONE

Model UD-130 Frequency response $50-15,000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50 K and 600 ohms. £8.02. 50p P. \& P.

PL258 Plug 33p; Socket 33p; PL259/SO239 Angled Connector
70p; 1 watt dummy lead 95p; 2m Rubber Neck Aerial with PL259 Plug $\mathbf{£ 3 . 3 0}$.

POST ON ABOVE ITEMS 14p.
All above prices include V.A.T. Send 40p for new 1980 fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate - Bolton . Lancs. BL2 1BA

When replying to Classified Advertisements please ensure
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatchlng orders with the minimum of delay.

RECEIVERS AND CDMPONENTS

TURN YOUR SURPLUS Capacitors. transistors. etc.. into cash. Contact COLES-HARDING CO.. 103 South Brink, Wishech. Cambs. 0945-4188. Immediate settlement.

BRANDN	
(50V-10p). $470-11 \mathrm{D}$. (40V-16p).	
Subminiature bead Tentalum electr	
15/25	
10\%	
E12 22 pf. to 1000 pf. E6 1500 pf. to 47000 pf. -2p.	
Polystyrene E12 Series 63V. Horizontal Mrig. 10 pf , to 820 pf . 3 3p. 1000 pf , to $10,000 \mathrm{pf}$.- 4 p .	
Miniature Polyester $\mathbf{2 5 0 V}$ Vert. Mig. E6 Series. . 01 to . 068 4p. 1 -Ep. 15. 22 - Ep. 33. 47-10p. . 68 - 12p. 1.0-16p. 1.5 - 22p. 2.2 - 24p.	
Mylar (Polyeater) Film 100V. Vertical Mounting. .001,.0022,.0047-3p. 01,.022-4p. .04, 05, 0.1-5p.	
Miniature Film Resistor Highatab. E12 Ser. 5\%. 0.125 W mixed carbon/matal 10 Q to $1 \mathrm{MO}-1 \mathrm{p}$. 0.25 W Carbon 1Ω to 10 MQ (10% over $1 \mathrm{MO} \Omega$) -1 p . $1 N 4148-2 p .1 N 4002$ 4p. $1 N 4006$ - ${ }^{2}$. $1 N 4007-7 p$. BC107/8/9 BC147/8/9, BC157/8/9, BF194 \& 7-10p.	
Dil Holders 8 pln-9p. 14 pin-12p. 16 pin-14p. LED's. 3 \& 5 mm . Red-10p. Green \& Yallow- 14 p .	
mmels for 3 mm	
20 mm . Fuseholders P.C. or Chassis Mig. 5 Fp .	
0 mW Zener diodes E24 series 2 V 7 to 33 V	
Prices VAT inclusive Post 15p. (Free over $£ 5.00$).	
127, Chesterfield Rd., Sheffield	

MIXEO. 100 transistors $£ 3.50$. 25 I.Cs £1.50. 100 Diodes £1. Post paid. Early radios. Valves. Interesting lists 15 p. Sole Electronics, P.E. 37. Stanley Street, Ormskirk, Lancs. L39 2DH.

CLEARANCE PARCELS: Transistors, Resistors, Boards, Hardware, 101 bs only $£ 5.801 \mathbf{1 , 0 0 0}$ Resistors $\mathbf{£ 4 . 2 5 , 5 0 0}$ Capacitors $\mathbf{1 3 . 7 5}$. BC108, BC171, BC204, BC230, 2N506I. CV7497 Transistors 10 70p, 100 £5.80. 2N3055, 10 for £3.50. S.A.E. Lists: W.V.E. (2), 15 High Street. Lydney, Gloucestershire.

TUNBRIOGE WELLS COMPONENTS, Ballards, 108 Camden Road, Tunbridge Wells. Phone 31803. No Lists. Enquiries S.A.E.

100 ASSORTEO COMPONENTS $115 p .100$ Assorted Resistors 60 p. 100 Assorted capacitors 150 p. 50 reed switches 200p. 10 mains neons 50 p. 10 Micro switches 150 p. Add 25 p P\&P. Durrants, 9 St. Mary's Street. Shrewsbury, Salop.

SMALL ADS

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 8.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London. SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

SERVICE SHEETS

SERVICE SHEETS from 50 p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards Sussex.

G.T. TECHN. INFO. SERVICE 76 Church St., Larkhall, Lanarks ML9 1 HE

Any single service sheel fl + large SAE 1,000 s of sheets/manuals always in stock Sole suppliers of all T.V. Repair Systems Giant Diagram Manual for Washing Machines Single tubs/twin tubs/auto - only $£ 13.50$
Repair Data any named T.V. $\mathbf{5} .50$ (with circuits, etc £7.00). SAE for newsleter, bargain offers etc Phone $0698 \mathbf{8 8 3 3 3 4}$ after 4pm.

日ELL'S TELEVISION SERVICES for Service Sheets on Radio, Tv tce f 1.00 plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tei: (0423) 55885.

SOFTWARE

MORE UKIO1 SOFTWARE from the guy who wrote "Le Passe-Temps". 4K logic: Bridge-it. 4K Graphics: Bombrun, Breakout, Wall-ball, Piranha. 8K: Galactic Hitchhiker (adventure), Startrek. Prices for these and previously advertised games: $4 \mathrm{~K} \quad £ 1.50$: 8 K £3.00. Circuit diagrams/Instructions for 4 P.I.A.s $1 / 2$ Meg, 110/300/600 Baud conversions $£ 2.00$. All inclusive prices from: Mr. S. Knight, 28. Simonside Walk, Ormesby, Cleveland.

UK 101 PROGRAMS

GENERAL SUBROUTINES
PROGRAMMABLE SOUND GENERATOR ROUTINES MANY USEFUL PROGRAMS ANO FACILITIES

3802 PROGRAMS

MAINLY WITH AN EDUCATIONAL BIAS. BEARINGS MATRICES MOASE, ETC. SA.E. for LiST.
DOLA SOFTWARE,
117 BLENHEIM ROAD
DEAL, KENT.
COMPUKIT software. well documented: Machine-code Life £4.00, Dogfight $£ 3.00$. Send SAE for cataiogue: B. Strulo. Meadow Cottage. Buxhall. Stowmarket, Suffolk IPI4 3DR.
ukiol shorthano basic. Machine Code Program loaded from Basic enables a whole Basic word to be typed one key (after command key). State old or new monitor and 8 K or 4 K memory size. Cassette and instructions for $\mathbf{C 5}+\mathbf{3 0 p}$ P\&P from P. P. PATAY, 3 West View. Tandridge. Oxted, Surrey.

UK101 KEYBDARO GRAPHICS. Program allows direct Keyboard access to all special graphic characters. Single keyy entry and display. User RAM not affected. Listings/notes £I. FORWARD, 54 Bourne Vale, Hayes, Bromley. Kent.

BOOKS AND PUBLICATIONS

any requesteo service sheet fl + Large S.a.E. Full repair data any named TV $£ 5.50$ (with circuits, layouts etc. f7). SAE brings newsletter, bargain offers, etc. AUSPEL, 76 Church St, Larkhall, Lanarks ML9 IHE.

THE MK 14 日OOK. Published by Macmillan, this big 216 page book covers every aspect of MK 14 programming in 17 chapters. SAE for full details. Also details of $1+\mathrm{K}$ memory expansion. $55.95+35 p$ p\&p. REDDITCH ELECTRONICS. 21 Ferney Hill Avenue. Redditch. Wores. B974RU.

FOR SALE

NEW BACK ISSUES of 'Practical Electronics' available 80p each Post Free. Open P.O./Cheque returned if not in stock BELL'S TELEVISION SERVICES, 190 Kings Road. Harrogate. N. Yorks. Tel: (0423) 55885

SINCLAIR 2×80, as new, used iwice. complete with manual and PSU. $£ 60$. Sheffield (0742) 737763.
PHILIPS PM 3210 Twin Beam 25 MHz Portable Oscilloscope. Excellent condition. 1275. Ring. 014278984.
ZX-B0/TRS-80 cassette programmes. Automatic calculator. Metric converter, $£ 2.40$ each inc. p\&p. S.A.E. for list. Toth. Dept. P.R., 46, Fist Avenue. Grimsby DN33 IDA

SERVICES

EPROM PROGRAMMING SERVICE. For types: 2708. 2704 2716 Dual rail. And 2508. 2758, 2516. 2532 Single rail. Please telephone Uxbridge 59130.

EOUCATIONAL

TV \& COMPUTER SYSTEMS SERVICING

18 MONTHS full-time Modular Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
- MONOTV \& CCTV
- colour tV \& VCR
- dIGITAL TECHNIQUES
- COMPUTERS \& MICROPROCESSORS

Each of the above Modules are 12 weeks In duration. Individual Modules can be arranged for applicants with suitable electronics background.
Tuition fees (UK \& Overseas) £ 400 per Module. 7 Computer Module $£ 500$.
Next session starts January 5th.
(Also available $2 \frac{1}{2}$ year course in Marine Electronics \& Radar.)

Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept. PEA11. Penywern Road, London SW5 9SU. Tel: 01-373 8721.

CITY \& GUILDS EXAMS
Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installalions, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS

Deph. 272A Interext House, Londoo SW8 4UJ
Tol. 01.6229911 (all hours)
State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a-higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Radio, IV, Audio Eng. and Servicing, Electronics,
Computers: also self-buid radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 272A fintertext Houre, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Depl. 272A Interrext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18
CAREERS in Marine Electronics. Courses commencing Septermber and January. Further details, the Nautical College, Fleetwood FY7 8JZ. Tel. 0391779123.

SITUATIONS VACANT

UNIVERSITY OF SUSSEX SCHOOL OFENGINEERINGAND

Electronics Technician

A vacancy exists in the School of Engineering and Applied Sciences for an Electronics Technician. The successful applicant will be required to assist in the teaching and research laboratories on a variety of interesting projects, should have had considerable experience with electronic circuits, preferably some
experience of Teletype Servicing. Salary on the scale £4431-f5097 pa or £4776$\lceil 5577$ pa depending on experience and qualifications.
Applications, in writing should be addressed to:
The Laboratory Superintendent,
School of Engineering and Applied Sciences,
University of Sussex,
Falmer, Brighton BN1 90T

MISCELLANEOUS

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Transmitter Receiver, Kit. Only $\mathbf{£ 1 2 . 9 5}$ plus 35p P. \& P. 'BrainFreeze' 'em with a MINI-STROBE Electronics Kit, pocket-sized "lightning flashes', vari-speed, for discos and parties. A mere $\mathbf{8} 5.93$ plus 35p P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR soundcatcher: ready-made multi-function modules $\mathbf{£ 6 . 8 5}$ each plus 35 p P. \& P
LOTS MORE! Send 30 p for lists. Prices include vat.

BOFFIN PROJECTS

4 Cuniffre Road, Stoneleigh
Ewell, Surrey (P.E.)

1 SEGMENT LED's at low cost 0.3 in , RH decimal, common cathode, FND70 series. Base diagram included. $£ 2$ plus SAE for three. F. Rose, 33, Wallace Drive, Eaton Bray, Beds.

CLEARING LABORATORY: scopes, generators, P.S.U.'s. bridges. analysers, meters, recorders, etc. 0403-76236.

NEW IC ULTRASONIC ALARM KITS
Single Unit construction - screw connections. 240 V operation with battery back-up option. 15-feet detection range internally preset. Deley on leaving and entry, invalic movement delay, seli-cancelling alarm, approx 2 mins. KITS INC. F/G (Piezo drive output) $\mathbf{1 6} 16.95$. 240V UAR (relay outpur contacts) $£ 19.65$. Piezo Sounder 12 V 18 mA 105 db 1 mer £8.20. Built and tested units KIT price $+\mathbf{£ 7} .00$. All prices inclusive - CWO - UK mail order.
G.J.D. ELECTRONICS, 105 Harper Fold Road Radcliffe, Manchester, M26 ORQ

SEEN MY CAT? 5000 Odds and ends. Mechanical, Electrical. Cat. free. Whiston Dept. PRE. New Mills, Stockport.

MAKE YOUR OWN PRINTED CIRCUITS

 Etch Resist Transfers - Starter pack 15 sheets lines, pads. I.C. pads) E1,60. Large range of single lines, pads. I,C, pads) E1.60. Lasheets in stock at 34 p per sheet.
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. Full in magazines by simple photographic process. 5 cm) instructions supplied. 2 sheers $(20 \times 2 \times 25 \mathrm{~cm})$ film $£ 1.80$. Orafting film $(30 \times 21 \mathrm{~cm}) 22 \mathrm{p}$ per film $£ 1.80$. Orafting film $130 \times 21 \mathrm{~cm}$) $\mathbf{2 2 p}$ per P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

PRINTED CIRCUIT BOARDS. Glass fibre tinned \& drilled. proto types to batch runs. Quick turn-round, competitive prices. Send s.a.e. for quotations R. D. ELECTRONICS, 12. Whiteoaks Road. Oadby. Leicester. 0533-716273.

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer - now greatly improved and very much faster. Aerosol cans with full instructions. $£ 2.25$. Developer 35p. Ferric Chloride 55 p. Clear Acetate sheet for master 14 p . Copper-clad Fibre-glass Board approx. 1 mm thick $£ 1.70$ sq. $\hat{\AA}$. Post/Packing 60p. WHITE HOUSE ELECTRONICS, P.O. Box 19, Castle Drive, Penzance, Cornwall.

UK 101
 ADD-ON COLOUR SYSTEM

DAZZLING COLOUR GRAPHICS FOR UK101 \& NASCOM

- Professional bit-addressabie 'plxel' system
- 3072 colour cell definition
- FREE SOFTWARE: PIot, LIne, Circle (Basic +280)
- Animated Demonstration Program
- Modulator included tor use with normal TV

KIT: only $£ 45$ Bullt \& Tested: only $\mathbf{£ 6 0}$
Also avaifable separately:
colour modulator

- RGB inputs, PALUUHF output
- Unlimited colour combinations
- TL etc interlace detalls supplled

KIT: only $£ 12$
Buill \& Tested: only $£ 18$

- please add VAT at 15% to all prices
- Barclay/Access orders accepted by felephone

WTLLIAM
Dower House, Billericay Roa
Herongate, rentwood,
STLART Essex cmiз3sD.

in use

SYSTEMS LEd Telephone: Brentwood (0277) 510244

SUPERE INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our yast range. are choosing the cases they require from our vast range.
Competitive prices start at a Low $£ 1.05$. Chassis punching Competitive prices start at a Low $£ 1.05$. Chassis punching facilites at very competituve prices, 400 models to choose from. Suppliers only to industry \& The Trade. BAZELL caster, LA1 6LT.

PRACTICAL ELECTRONICS P.C.B.'s
 $\begin{array}{lll}\text { Apr. } 80 & 2 \text { Wire Train Controller EP320 } £ 2.93 \\ \text { May } 80 & \text { Two Wire Train Controller EP } 326 \text { §3.02 }\end{array}$
 EP328/30 $£ 1.20$ pair Dynamic Semiconductor Tester EG311/2 £1.83 pa
 Jun. 80 Mastertune EP343 £3.80 (Not plated through)
 Jul. 80 Tape Slide Synch EP353 £1.28
 Jept. 80 DISCO deck EP $365 £ 3.26$ Sound Gen. EC14 $£ 2.53$
 For full list and current pcb's please send SAE. Pcb's also produced to customers own masters. Trade enquiries wetcome. Please write for quote. CWO Please. Postage. Please add 30 p postage and packing to complete order. Europe 65 p .
 14 Downham Road, Ramsden Heath Billericay, Essex CM11 1PU Binericay, Essex CM111PU Telephone 0268-710722

CENTURION ALARMS

BURGLAR ALARM EQUIPMENT AT UNBEATABLE VALUE JUST LOOK!
Ordar No
100 ALARM trigger module. 100% Solid Stata Battery operation. Pos. \& Neg. Rings. N/C for 4 -wire contacts. N/O for
Mate erc. One Amp Switching Capacity, Only Matk eic. One Amp Switching Capacity. Only
210 Quality White Flush fitting 4 -wire MAGNETIC REED CONTACT + matching magnet
220 Surface 4 - Wir MAGNETIC REED CONTACT
240 PRESSURE MAT. Standard sIze 4 -wire $30^{\prime \prime} \approx 15$
2250 PRESSURE MAT. Stait size 4 -wire $23^{\prime \prime} \times 81^{\prime \prime}$
280 Vibration detector. Pendulum tyoe in Ivory Case with
 390 BEST QUALITY BELL HOUSING. PVC coated metal, not to be confused with the chesper decoy covers. Fully signwrithen with
 Note: All equipment oparates on 12 Volts DC . 310 SCOOP Offer SMOKE ALARMS. Self-contained tonisation Type 11.5% obscuration) with low bertery weming at the
UNREPEATABLEPRICE of only $£ 8.75$ While Stocke UNREPEATABLE PRICE of only 58.75 While Stocke Lantli
Tomms: Add 15% VAT to Prices \& 40 Postage \& Packing.

ULTRASONIC TRANSDUCERS. $£ 2.85$ per pair $+\mathbf{2 5 p}$ P\&P Dataplus Developments, 81 Cholmeley Road, Reading, Berks.

GUITAR/PA

MUSIC AMPLIFIERS
100 watt suberb treble/bass overdrive. 12 monhs
quarantee. Unbeatable at $£ 49 ; 60$ watt $\mathbf{\text { f } 4 2 ;} 200$ watt quarantee. Unbeatable at $\mathbf{E 4 9 ;} 60$ watt f42; 200 watt
E68; 100 watt twin channel sep. treble/bass per channel E62; 60 watt $£ 52 ; 200$ watt $f 88 ; 100$ watt four channel sep. treble/bass per channel $£ 75 ; 200$ watt $£ 98$; slaves 100
watt $£ 34 ; 200$ wtt $£ 56$; fuz2 boxes. groat sound $£ 12.00$; bass fuzz f 12.90 ; overdriver fuzz with treble and bass boosters $£ 22 ; 100$ watt combo superb sound overdrive sturdy construction, castors, unbee satalie £98; twin chanei $\mathrm{E} 110 ;$ bass combo $£ 112$; speakers 15 in , 100 watn $£ 36$;
12 in. 100 watt $£ 24$; 60 watt $£ 16$; microphone Shure Unidyne B £25; 3-Channel sound/light' $£ 26$.

Send cheque or P.O. to:
WILLIAMSON AMPLIFICATION
62 Thorncliffe Avenue, Dukinfield, Cheshire. Tel: 061-308 2064

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply oyeglass, non-magnetic tweezers, watch screwdriver, case knife and screwback case opener, also one doz. assort. oush pieces, full instructions and battery identification chart. We then supply replacement batteries-you fit them. Begin now. Send $£ 9.00$ for complete kit and get into a fast growing business. Prompt despatch

BOLSTER INSTRUMENT CO

(PE18)
11 Percy Avenue, Ashford, Middx. TW15 2PB.
burglar alarm equipment. Latest Discount Catalogue out now! Phone C.W.A.S. Alarm 0274682674.
compukit high speed cassette starage Up to 10000 Baud for less than $£ 20.00$. 1200 Baud only $£ 2.00$, why wait for Discs? S.A.E. for details and new Software List. N. V. Davies. 11 Holloway. Haverfordwest. Dyfed.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4				
ENAMELLED COPPER WIRE				
SWG	1 lb	802	402	202
8 to 29	2.76	1:50	0.80	0.60
30 to 34	3.20	1.80	0.90	0.70
35 to 40	3.40	2.00	1.10	0.80
41 to 43	4.75	2.60	2.00	1.42
47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 30	6.50	3.75	2.20	1.40
TINNED COPPER WIRE				
14 to 30	3.85	2.36	1.34	0.90

Prices include P\&P, VAT and wire Data.
SAE for list. Dealer enquiries welcome. Reg office 22 Coningsby Gardens.

ENAMELLED COPPER WIRE

Cabinet and Flightcase Fittings

Fretcloths, Coverings, Mandles, Castors etc., Jacks and Sockets, Cannons, Bulgins, Revert Trays, Emilar Compression Drivers, AKG Mics, Celestion Speakers, ASS, Glassfibre Horns.
Send 30p Postal Order for illustrated cátalogues to:-

ADAM HALL (P. E. SUPPLIES)

Unit G, Carton Court, Grainger Road, Southend-on-Sea, Essex SS2 5BZ.
national Personal Computor Users Association, 11 Spratling Street, Manston, Ramsgate, Kent (S.A.E. Details).

> TIME EXACT?
> MSF CLOCK is ALWAYS CORRECT - never gains or loses, self setting at switch-on, 8 digits show Date. Hours, Minutes and Seconds, larger digit Hours and Minutes for easy QUICK-GLANCE time, auto GMT/BST and leap year, also parallel BCD output for computer or alarm and audio to record and show time on playback, receives Rugby 60 kHz atomic time signals, built-in antenna, 1000 Km range 12 V operation, ACCURATE antenna, 1000 Km range, 12 V operation, ACCURATE V.L.F.? EXPLORE 10-150k

> Each fun-to-bult kit includes all parts, printed circuit, case, postage etc, money back assurance so GET one NOW.

> CAMBRIDGE KITS
> 45 (FL) Old School Lane, Mitron, Cambridge.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for \qquad insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE 19 LS.

INDEXTO ADVERTISERS

Ace Mailtronix
Acorn .
Adam Hall (P.E. Supplies)
Aitken Bros.
Alcon
Ambit
Audio Elec.

Barrie Electronics
BIB Hi-Fi Accessories
BIET
Bi-Pak
Birkett J.
Boffin Projects
Bolster Instruments Co.
Breadboard Exhibitions 1980
British National Radio \& Electronics School
$\left.\begin{array}{llllr}\text { Cambridge Kits } & & & & \\ \text { Cambridge Learning } & \ldots & \ldots & \ldots & 94 \\ \text { Centurion Alarms } & \ldots & \ldots & \ldots & 9 \\ \text { Chromasonic Electronics } & \ldots & \ldots & 79 \\ \text { Chromatronics } & \ldots & \ldots & \ldots & 10 \\ \text { Clef Products } & \ldots & \ldots & \ldots & \ldots\end{array}\right) 77$

Cambridge Learning
Chromasonic Electronics
Chromatronics
Clef Products
Commodore
Computech
Computer Components (Teleplay)
Continental Spec
C.R. Supply Co

Davian
Dola Software
Doram
Dziubas
Cover II 22
45
46

64
25
77
72,73
86
93
94
54
13,85

4

38Cover IV
4,8585
11
78

74,75

83
86
12

64

6,7
93
91
93Riscomp Ltd.
Safgan 64
Saxon Entertainments
14, 15
14, 15
Science of Cambridge
Science of Cambridge
93
93
Scientific Wire Co.
SCS Northern 12
Sentinel Supply 76
Service Trading 87Stevenson
Solid State Security 22
Sumico 64
Swanley Electronics 84
Tandy 8,9
96
Technomatic
Tempus 91
T.K. Electronics
University of Sussex 93
Vero 82
Videotone 21
Watford ElectronicsWest London Direct SuppliesWilliamson AmplificationWilliam-Stuart SystemsWilmslow Audio

YOU NEED NEVER MISS AN IMPORTANT CALL AGAIN TWO CORDLESS TELEPHONE SYSTEMS - DIRECT FROM USA

THE ALCOM
only $£ 147$
Base station connects to your telephone line. Remote handset clips to your belt and gives you push-button dialling Charger in base unit

LOW COST TELEPHONE ANSWERING MACHINE
£99.95
vicroprocessor controlled answering machine. Plug into your phone line. Records any phone call messages. Remote oleeper enables you 10 listen to your messages from complete with mains adaptor, microphone, remote bleeper base unit, cassette with 30 sample pre-recorded messages.
44 NEN
TVGAME
BREAK OUT

BREAK OUT

Has got to be one of the Has got to be one of the
world's greates: TV games.

You really get hooked. As featured in ETI. Has also 4 other pinball ganes and lots of options. Good kit for up-grading old amusement games.
MINI KIT - PCB, sound E vision modulator, memory chip and de-code chip Very simple to construct

$$
\mathbf{f 1 4 . 9 0 ~ + ~ V A T ~}
$$

OR PCB $£ 2.90$ MAIN LSI $\mathbf{8 . 5 0}$ Both plus VAT

NEW MONITOR FOR COMPUKIT UK101

- In 2K Eprom 2716 - Allows screen editing - Saves data on tape - Flashing cursor Text scrolls down £22.00 + VAT

FOR THE COMPUKIT		Game Packs		Super Space Invaders (8K)	c8.50		
		Space Invaders	55.00				
Assembler/Editor	¢14.90			1. Four Games	E5.00	Chequers	£3.00
Screen Editor Tape	¢5.90	2. Four Games	¢5.00	Real Time Clock	$\underline{53.00}$		
All Prices exclusive VAT		3. Three Games 8K only	¢5.00	Case for Compukit	529.50		

ENGLISH COLOUR TV/ AMERICAN NTSC COLOUR MONITOR
£295

We give a full one year's
warranty on all our products.
WE ARE NOW STOCKING THE APPLE II EUROPLUS AT REDUCED PRICES

Getting Started APPLE II is faster, smaller, and more powerful than its predecessors. And it's more fun to use too because of bullt-in features like.

- BASIC - The Language that Makes Programming Fun. - High-Resolution Graphics (in a 54,000-Point Array) for Finely-Detailed Displays. Sound Capability that Brings Programs to Life. Hand Controls for Games and Other Human-Input Applications. Internal Memory Capacity of 48 K Bytes of RAM, 12 K Bytes of ROM; for Big-System Performance in a Small Package. Eight Accessory Expansion Slots to let the System Grow With Your Needs.
You don't need to be an expert to enjoy APPLE II. It is a complete, ready-to-run computer. Just connect it to a video display and start using programs (or writing your own) the first day. You'll find that its tutorial manuals help you make it

"Europes Largest Discount Personal Computer Stores"

Please add VAT to all prices - including delivery. Please make cheques and postal orders payable to COMPSHOP LTD. phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number

MAIL ORDER AND SHOP:
 CREDIT FACILITIES ARRANGED - send S.A.E. for application form

14 Station Road, New Barnet, Hertfordshire, EN5 10W (Close to New Barnet BR Station - Moorgate Line) Telephone: 01-441 2922 (Sales) 01-449 6596 Telex: 298755 TELCOM G

NEW WEST END SHOWROOM:

311 Edgware Road, London W2. Telephone: 01-262 0387

Opens Tuesday 16th September, 1980

 Opening Hours 9.45 am to 5.30 pm Tuesday to Saturday (Closed Monday)
Stereo Cassette Tape Deck

Utilising the superb JVC deck made for Tandberg and a ready-made pre-aligned, tested and guaranteed module, this cassette deck has a superb sound and a high quality specification. We've got everything you need (except cabinet) including full instruction leaflet for only $£ 39.95$. Order as XY36P (Cassette

Recorder Kit)

Space Invaders

Fight the space invaders, be a polaris captain or a spaceship commander. Full colour action on your own TV set and over 450 games to play.
Basic console with Combat cartridge (ACOOA) $£ 99.50+£ 2.50$ carriage All cartridges available including:
 All prices include VAT and carriage except where shown.

$0 \rightarrow \infty \quad D$
 Maplin Electronic Supplies Ltd
 All mail to:- P.O. Box 3, Rayleigh, Essex SS6 8LR Telephone: Southend (0702) 554155.
 Shop: 284 London Road, Westcliff-on-Sea,
 Essex. (Closed on Monday)
 Telephone: Southend 107021554000.

[^0]: © IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: *Use a 600 mA at 9 VDC nominal unregulated mains adaptor. Available from Sinclair if desired (see coupon).

[^2]:

[^3]: Editorial Offices:
 Practical Electronics, Westover House, West Quay Road, Poole. Dorset BH15 1JG Phone: Editorial Poole 71191
 Weregret that lengthy technical enquiries cannot be answered over the telephone (see below).
 Advertising Offices:
 Practical Electronics Advertisements, King's Reach Tower,
 King's Reach, Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G
 Make Up/Copy Dept.: 01-261 6601

[^5]: To:- LERNAKITS, 4 Cleveland Road, Jersey, Channel Istands. (Est
 Please supply . Kit at $£ . . .$.
 block caps please
 NAME
 ADDRESS \qquad
 \qquad
 (Dispatch is normally within 1 week of receipt of order)
 To:- LERN
 Please supply

