

THE ATARI VIDEO COMPUTER The GAMES SYSTEM $\mathbf{7 9 . 0 0}$ than 1300 differant game variations and options in twenty Game Program ${ }^{\text {TM }}$ cartridgas! Most Cartriages only $\mathrm{E} 13.90+\mathrm{VA}$ Prices may vary with special - editions Basic Maths, Airse editions Basic Maths, Airse
Battle, Black Jack Break Battle, Black Jack, Breakout
Surround, Spacewar, Video Surround, Spacewar, Video Olympics, Outlaw, Basketball Hunt \& Score*, Space War Sky Diver, Alr Sea Battle,
odebreaker*, Miniature Golf.
Extra Paddie Controllers -Keyboard Controllers $-\mathbf{5 1 4 . 9 0}+$ VAT $-\mathbf{E 1 6 . 9 0}+$ VAT SPACE INVADERS NOW IN STOCK E25

SPECIAL-ONCE IN A LIFETIME OFFERI
16K £399
32K £449
48K £499

EXIDY SORCERER

For Personal or Business Use 32 K or 48 K memory. 8 K Microsoft Basic in ROM. Dual Cassette 1/O, RS232 1/O. Parallel 1/0 (Centronics). Expansion available through optional extra $\$ 100$ Motherboard. 69 Key keyboard including 16 key numeric pad.

NEN TV GAME BREAK OUT

 Has got to be one of the world's greatest TV games. You reallyget hooked. As featured in ETI. Has also 4 other pinball games and lots of options. Good kit for up-grading oid amusement games.
MINI KIT - PCB, sound \& vision modulator, memow chip and de-code chip. Very simple to construct. $£ 14.90$ + VAT OR PCB $\mathbf{E 2 . 9 0}$ MAIN LSI $£ 8.50$ Both plus VAT
 \square any of our products. Refurbished ZX80's-fully guaranteed $\mathbf{£ 6 9 . 9 0}$ (Supply dependant upon stocks).

SPECIAL OFFER
 We will part exchange
 5is

 your Sinclair ZX80 for- Ideal for home, personal and business computer systems - $12^{\prime \prime}$ diagonal video monitor - Composite video input - Composite video input Compatible with many com puter systerns Solid-state circuitry for a stable \& sharp picture Video bandwidth - $12 \mathrm{MHz}+308$ input impedance .75 Ohms Resolution - 650 lines Minimum In Central 80% of CRT; 550 Lines Minimum beyond central 80%.

We have one of the largest collections of Computer Books under one roof, along with
racks of software for the PET and TRS80. racks of software for the PET and TRS80.
Come and see for yourself.

Come and see for yourself.

WE ARE NOW STOCKING THE APPLE II EUROPLUS AT REDUCED PRICES

Getting Started APPLE II is faster, smaller, and more powerful than its predecessors. And it's more fun to use too because of built-in features like:

- BASIC - The Language that Makes Programming Fun. - High-Resolution Graphics (in a 54,000 . Point Array) for Finely-Detailed Displays. Sound Capability that Brings Programs to Life. Hand Controls for Games and Other Human-Input Applications. Internall Mernory Capacity of 48 K Bytes of RAM, 12 K Bytes of ROM; for Big-System Performance in a Small Package. Eight Accessory
Slots to let the Systern Grow With Your Needs
Slots to let the System Grow With Your Needs.
You don't need to be an expert to enjoy APPL
You don't need to be an expert to enjoy APPLE II. If is a complete, ready-to-run computer. Just connect it to a video display and start using programs (or writing your own) the
first day. You'll find that its tutorial manuals help you make it first day. You'll find that its tutorial manuals help you make it
your own personal problem solver. your own personal problem solver.

We give a full one year's warranty on all our products.

We now have in stock demonstration models of the Atari 800 and Texas 99/4. Come and see them

NASCOM-2

WITH FREE POWER SUPPLY \& 16K RAM B BOARD only $£ \mathbf{3 0 5}$ VAT $\begin{gathered}\text { Subiect tio } \\ \text { Availibiliy }\end{gathered}$

NEW REDUCED PRICES

8K £399
16K £499
32K £599
RRP £795 for 32 K

The PEDIGREE PETS

use 8 K Microsoft Basic in ROM 8 K Pel 32 K \&

> Cassette Deck $\mathbf{C S S}$ extra Full range of soltware availa
> Interface PET IEEE - Centronics Parallel
> Not decoded $\mathbf{\Sigma 4 9 . 0 0 + V A T}$ Decoded $\mathbf{E 7 7 . 0 0}+$ VAT

Europes Largest Discount Personal Computer Store

Please add VAT to all prices - including delivery. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number. CREDIT FACILITIES ARRANGED - send S.A.E. for application form 14 Station Road, New Barnet, Hertfordshire, EN5 1QW Telex: 298755 TELCOM G Telephone: 01-441 2922 (Sales) 01.449 6596 OPEN - 10 am - 7 pm - Monday to Saturday Close to New Barnet BR Station - Moorgate Line , NOW in IRELAND at: 80 Marlborough St., Dublin 1. Tel: Dublin 749933
CONSTRUCTIONAL PROJECTS
DISCO DESK Part 1 by BenJ. Duncan 24
A mobile control console for high power, h.f. sound systems PROGRAMMABLE SOUND GENERATOR by D. Coutts 32
An almost unlimited range of sound effects for your Compukit PE TELETEXT Part 2 by David Shortland 42
Tuner and Decoder circuits
PE MAGNUM Part 2 by Andy Flind 52
Final construction and setting up
CLASS "A" AMPLIFIER by K. Garwell 5830W Stereo Design
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles 20
NSC 800 74LS610 MA 537
UK 101 TELEPRINTER INTERFACE by J. J. Trevillion 38
A simple alternative to an on-line printer
MICRO PROMPT 40
Another batch of original ideas
INGENUITY UNLIMITED 66
Alarm Clock Weekend Lockout—Four Digit to Six Digit Clocks-Quiz Win Indicator- Function Generator-Slave Flash Controller-Battery Check
NEWS \& COMMENT
EDITORIAL 17
MARKET PLACE 18
New Products
COUNTDOWN 21
POINTS ARISING 21
Digital Tachometer-Compukit Update-PE DMM—Micró Prompt—Constant Current Sources INDUSTRY NOTEBOOK by Nexus 23
Keeping up to date on the Electronics Industry
PATENTS REVIEW 51
New ideas from around the world
SPECIAL OFFER-AUTORANGING DMMS 57
NEWS BRIEFS 62
SPACEWATCH by Frank W. Hyde 64
News from Russia, and more details of the Satellite Power System
CASIO WATCH OFFER CORRECTION 65

OUR OCTOBER ISSUE WILL BE ON SALE FRIDAY, 12 SEPTEMBER 1980

(for details of contents see page 63)

[^0]WATFORD ELEGTRONICS
33/35. CARDIFF ROAD, WATFORD. HERTS. ENGLAND
MAIL ORDER. CALLERS WELCOME. Tel. WaHOOX $40588 / 9$

ALL DEVICES BRAND NEW. FULL SPEC. AND FULLY GUARANTEED. ORDERS AND EXPORT MOURY WELCOME. PAPADD AOP IO ALL ORDERS UNDER
 VAT
 We steck meny more itema. It pays to vieit ua. We are situated behind Warford Football Ground. Nearest Underground/Br. Reil Seation: Watlord High Street

$\begin{array}{ll}\text { POLYESTER RADIAL LEAD CAPACITORE: 2SOV: } & \text { ULTRASONIC } \\ 10 \mathrm{n}, 15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n} 5 \mathrm{~F} ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}, 100 \mathrm{n} 7 \mathrm{p} ; 150 \mathrm{n} \text { 10p; 220n. } & \text { TRANSDUCERS }\end{array}$ 330n 13p; 470 n $17 \mathrm{p} ; 680 \mathrm{n} 19 \mathrm{p} ; 1 \mu 22 \mathrm{p}_{\mathrm{i}} 1 \mu 530 \mathrm{p} ; 2$
ELECTAOLITIC CAPACITORS: (Values are in μ F).
$500 \mathrm{~V}: 1050 \mathrm{p} ; 47$ 7ep; 250V: 100 85p; 63V: 0.47, 1-0. 1.5. 2.2, 2.5, 3.3. 4.7.6.8.8p;
 330,470 32p; $25 \mathrm{~V}: 10,22,47,1008 \mathrm{p} ; 160,220,25015 \mathrm{p} ; 47025 \mathrm{p} ; 640,1000$ 35p;
$150040 \mathrm{p} ; 220045 \mathrm{p} ; 3300 \mathrm{7p} 4700 \mathrm{g5p} ; 18 \mathrm{~V}: 10,40,47 \mathrm{pp} ; 100,125 \mathrm{Bp} ; 220,330$
 $2000+2000120 p$
$33085 \mathrm{p}: 220080$

WATFORD ELECTRONICS

Continued from opposite side)

VOLTAGE REGULATORS

WATFORD'S BOOKSHOP CORNER. (No VAT on Books)

\section*{
 Build the Practical Electronics handheid DMM. This superb product offers professional precision with extended battery life. Five function operation (AC and DC VOLTS, AC and DC CURRENT, RESISTANCE) with ability to check diodes. $0.5^{\prime \prime}$ LCD display with 'Battery Low' warning. Auto-polarity, Auto-zero. Full protection against transients and overloads with ability to withstand mains on any range 0:5\% basic DC accuracy and 15 different ranges. It measures AC/DC voltages from 0.1 mV to 500 V . AC/DC current from $0.1 \mu A$ to $2 A$. Resistance from 0.1Ω to $2 \mathrm{M} \Omega$. 200 hour battery life.
 The Kit contains all parts needed to construct the multimeter plus assembly
 instructions, battery and test leads.

We also offer a calibration service ($£ 5.00+$ VAT) and a trouble-shooting and calibration service ($£ 7.50$ + VAT). Various other component parts are also available as listed.

The multimeter is also available fully assembled and calibrated at a cost of $£ 39.70+$ P\&P + VAT.

Lascar Electronics Ltd., Unit 1, Thomasin Road, Basildon,
Essex. Telephone No: Basildon (0268) 727383.

Enter the 80's with SAXON

Handysize Reels \& Dispensers OF THE WORLD'S FINEST CORED SOLDERTO DO A PROFESSIONAL JOB ATHOME

Ersin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.

WIRE
 STRIPPER \& CUTTER

Easily adjustable for most sizes of flex and cable. Fitted with extra strong spring fo automatic opening. Easy grip handles and handle locking device Ref 9
£2.48 inc. VAT.
MULTICORE WICK
for solder removal and desoldering. Absorbs solder instantly from tags, printed circuits etc.
 Only needs 40.50 Watts soldering iron. Quick and easy to use. Non-corrosive.

Size AB10 £1.38

SAVBIT

 handy solder dispenserContains 2.3 metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times. Size 5 90p

For soldering fine joints
Two more dispensers to simplify those smaller jobs PC115 provides 6.4 metres approx. of 0.71 mm solder for
fine wires, small
components
and printed circuits.
PC115 $£ 1.15$
Or size 19A for kit wiring or radio and TV repairs. 2.1 metres approx. of 1.22 mm solder.

Size 19A 97p

Ref.	Alloy	Diam. mm.	Length metres approx.	Use	Price
$\begin{gathered} \text { Size } \\ 3 \end{gathered}$	$\begin{gathered} 40 / 60 \\ \text { Tin/Lead } \end{gathered}$	1.6	10.0	For economical general purpose repairs and electrical joints.	£3.91
Size 4	ALU-SOL	1.6	8.5	For aluminium repairs. Also solders aluminium to copper, brass etc.	E6.00
$\begin{aligned} & \text { Size } \\ & 10 \end{aligned}$	$\begin{array}{\|c\|} \hline 60 / 40 \\ \text { Tin/Lead } \end{array}$	0.7	39.6	For fine wires. small components and printed circuits.	£3.91
$\begin{gathered} \text { Size } \\ 12 \end{gathered}$	SAVBIT	1.2	13.7	For radio, TV and similar work. Increases copper-bit life tentold.	£3.91

Sole UK Sales Concessionaires

Bib Hi-Fi Accessories Limited,
Kelsey House. Wood Lane End, Hemel Hempstead. Herts. HP2 4 RO.

Prices shown are recommended retail inc. VAT. From Electrical and Hardware Shops. In difficulty send direct. plus 40 p P\&P. Prices and specifications subject to change without notice.

Master Electronics the new Practical way.

SEEING AND DOING

Conquer the 'Chip' - Easy-Fast-Exciting !

AND MASTER ALL THE NEW TECHNIQUES IN MODERN ELECTRONICS.

0
Build an Oscilloscope.
Carry out over 40 full experiments including work on Digital Electronic Circuits.

Recognition of Electronic Components.
Understand arid draw Circuit Diagrams.
Experience with handling Solid State Circuits and "Chips".
Testing and Servicing of Radio, T.V., Hi-Fi and all types of modern computerised equipment.

D.I.Y. KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. MINISONIC MK2 SYNTHESISER

A portable mains operated miniature sound synthesiser with keyboard circuits. Although having slightly fewer faclities than the large formant and P.E. synthesisers the functions offered by this design give in great scope and versatility.
Set of basic component kits (excl, KEDR's \& funing pots -
see list for options available) and PCBs (incl. layout charts)
KIT 38-25 £80.12

"Sound Design" booklet

$\mathbf{8} .00$

P.E.128-NOTESEQUENCER

Enables a vottage controlled synthesiser to automatically play preprogrammed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and rhythmic pattern are extemally varlable.
Set of basic comps. PCBs and charts
Set of text photocopies
KIT78-7 £35.56

P.E. 16-NOTE SEQUENCER

Sequences of up to 16 notes may be programmed by the use of external panel controls and fed into most voltage controlled synthesisers.
Set of basic comps, PCBs and charts
Set text photocopies
KIT 86-5 £33.60

P.E.STRINGENSEMBLE

A rnultivoiced polyphonic string instrument synthesiser.
Set of basic comps. PCBs \& charts
KIT 77-8 £107.86

ELEKTOR ELECTRONIC PIANO

A touch-sensitive multiple-voicing piano using the latest integrated circuit techniques for the keying and envelope shaping, and virtually ellminating "bee-hive" noise hitherto inherent in previous electronic planos.

5-octave set of basic comps and PCBs (as publ.)
80-9 £146.66
Additional 3 -octave axtension and basic pats and PCBs (as published)

KIT 80-10 $\quad \mathbf{E 5 6 . 3 6}$
Set of text photocopies
£1.81

ELEKTORFORMANT SYNTHESISER

A very sophisticatged synthesiser for the advanced constructo
who puts performance before price.
Set of basic comps. PCBs (as publ,)
Set of text photocopies
KIT 66-14 $£ 255.45$
$\mathbf{~} 7.83$

ELEKTOR DIGITALREVERB UNIT

A very advanced unit using sophisticated i.c. techniques instead of mechanical spring lines. The basic delay range of 24 to 90 mS can be extended up to 450 mS using the extension unit. Further delays can be obtained using more extensions.
Main unit basic comps and PCB (as publ.)
Extension unit basic comps and PCB (as Rubli 78-3 E55.40
Text photocopy
KIT 78-4 $\quad \mathbf{5 2 . 7 7}$

ELEKTORANALOGUE REVERB

Using i.c.s instead of spring-lines the main unit has a maximum delay of up 10100 mS , and the additional set extends this up to 200 mS . May be used in either mono or stereo mode. $\begin{array}{lll}\text { Malnunit basic component set } & \text { KIT 83-1 } & \text { E29.49 }\end{array}$ PCB Additionat Delay PCB (as pubil) fohold both kits PCB9973 24.52

ELEKTORRING MODULATOR
Compatible with the Formant \& most other synthesisers Set of basic comps \& PCB (as publ.)
Text photocopy
KIT 87-2

BASIC COMPONENTS SETS include all necessary resistors, capacitors, semiconductors, petentiometers and transformers. Hardware such as cases, sockets, knobs, keyboards, etc. are not included but most of these may be bought separately. Fuller details of kits PCBs and parts are shown in our lists.

LAYOUT DIAGRAMS are supplied free with all PCBs unless "as published"

NEW KITS

ELEKTOR CHOROSYNTH

A $2 \frac{1}{2}$-octave Chorus synthesiser with an amazing variety of sounds ranging from violln to cello and flute to clarinet amongst many others. Experienced constructors can readily extend the octave coverage.
Basic comps, PCBs and charts but excl. sw's
Text photocopy
KIT 100-8 $\quad £ 44.39$

ELEKTOR SEWAR

For use with Elektor Analague Reverb to give greater flexibility to the reverb effects.

Basic comps, PCB (as publ.) KIT 101-1 £22.53 Text photocopy 60p

ELEKTOR FUNNY TALKER

Incorporates a fing modulator, chopper \& frequency modulator to produce fascinating sounds when used with speech \& music signals.

Basic comps, PCB (as publ.) KIT 99-1 $\mathbf{C 9 . 6 0}$
Text photocopy
40 p

ELEKTOR FREQUENCY DOUBLER

For use with gultars \& other electronic instruments to produce an output one octave higher than the input. Inputs and outputs may be mixed to give greater depth.

Basic comps, PCB (as publ.) KIT 9B-1 $\mathbf{~ E 5 . 4 8 ~}$
Text photocopy
20p

P.E.SPLIT-PHASE TREMOLO

A simple but effective substitute for a rotary cabinet. The output of an internal generator is phase-split and modulated by an input signal from an electronic guitar or other Instrument. Output amplitudes, depth \& rate are variable. May be fed to one or iwo amplfiers.

| Basic comps. PCB \& chart KIT 102-3 \quad £17.58 |
| :--- | :--- | :--- |
| $65 p$ |

P.E. MINISONIC WAVEFORM

CONVERTER
A simple converter that modifies the Minisonic sawtooth waveform to produce triangle and sine outputs. Ideally one should be used with each Minisonic VCO. Basic comps, PC8 \& chart

KIT 96-1 $\mathbf{~ © 3 . 9 8 ~}$

DISCO-CROSS FADER

The cross-fade between 2 decks is switch-initiated and can be preset on the panel for a cross fade rate of between bbout $\frac{1}{2} \mathrm{sec}$ \& 24 secs. Basically a stereo unif but may be used in mono $\begin{array}{lll}\text { Basic comps, PCB \& chart KIT 94-1 } & \text { £11.83 }\end{array}$

P.E.GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing. for example, flanging, vibrato, reverb, fuzz and tremolo as well as other fascinating sounds. May be used with most electronic instruments.
Set of basic comps, PCBs \& charts (excl. SWs)
Set of text photocoples
KIT 85-5 £54.56

P.E. PHASER

An automatically controlled 6 -stage phasing unit with integral oscillator.

8asic components, PCB \& chart KIT 88-1 $\mathbf{8 1 0 . 6 9}$
2. Notch extension, PCE \& chart KIT 88-2 86.38

Text photocopy
$\begin{array}{rr}\text { KIT } 88-2 & \text { E8.38 } \\ & \text { 88p }\end{array}$

ELEKTORPHASING \& VIBRATO

Includes manual and automatic control over the rate of phasing a vibrato. and has been slightly modified to also include a 2 -input mixer stage.
Ser of basic comps, PCE \& chart
Text photocopy
KIT 70-2 $\mathbf{2 1 . 6 7}$

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

ELEKTOR RESONANCE FILTER

Allows a synthesiser to produce a more realistic simulation of natural musical Instruments.

Set of basic comps. \& PCB (as publ.)
KIT 82-2 $\mathbf{~} 22.4 .5$
Text photocopy
57p

P.E. GUITAR EFFECTS UNIT

Modulates the attack. decay and filter characteristics of a signal trom most audio sources, producing 8 different switchable effects that can be further modified by manual controls.
Basic comps. PCB \& chart
KIT 42-3 £10.37
Text photocopy
28

P.E. GUITAR OVERDRIVE

Sophisticated versatile fuzz unit incl. variable controls affecting the fuzz quality whilst retaining attack and decay, and also providing filtering. Usable with most electronle instruments.

Basic components, PCE \& chart KIT 56-3 £11.22 Text photocopy

6\%

P.E.SMOOTH FUZZ

Basic components, PCB \& chart
KIT 9F-1 C6.40
Text photocopy
$55 p$

TREMOLO UNIT

A slightly modified version of the simple P. E. unit. Basic components, PCB \& chart KIT 54-1. $\mathbf{£ 3 . 7 4}$

GUITARFREQUENCYDOUBLER

A slightly modified and extended version of the P.E. unit. Basic components, PCB \& chart KIT 74Text photocopy

P.E.GUITARSUSTAIN

Maintains the natural attack whilst extending note duration.

Basic components. PCB \& chart	KIT 75-1	E8.73
Text photocopy	333 p	

P.E.WAH-WAHUNIT

Can be controlled manuelly or by integral automatic control.
Basic components. PCB \& chart KIT51-1 $£ 4.93$

P.E. AUTO-WAH UNIT

Automatically glves Wah or Swell sounds with each note played. Easic components, PCE \& chart KIT58-1 $\mathbf{~} 9.68$ Text photocopy

613p

ELEKTOR WAVEFORM CONVERTER

Converts a saw-tooth waveform into sinewave, mark-space saw tooth, regular triangle, or square-wave with variable mark-space. Basic comps, PCB \& chart, but excl. sw's

KIT 67-1 $£ 9.24$

P.E. SWITCHEDTONETREBLEBOOST

Provides switched selection of 4 preset tonal responses
Basic components, PCE \& chart
KIT 89-1 Basic components, PCB \& chart

P.E.TREBLEBOOSTUNIT

simple treble boost unit with manual control depth.

$$
\begin{aligned}
& \text { Besic components, PCB \& chart KIT 53-1 } \\
& \text { K2.92 }
\end{aligned}
$$

P.E.SYNTHESISER

The well acclaimed and highly versatile large scale mains opersted synthesiser. Other circuits in our lists may be used with it to good dvantage
Basic comps, PCBs \& charts
Set of text photocopies
KIT 23-33 £167.E.7

10\% DISCOUNT VOUCHER (PE 83)
TERMS: Goods in current adverts ollsts over 550 goods value fexcl P\&P \& VAT). Correctly costed. C.W.O., U.K. orders onl This voucher must accompany order. Valic until end of month on cover of P.E. Does no
apply to credit card orders.

ADD: POST \& HANDLING

U.K. orders: Koyboards add $£ 2.70$ each. Other goods: Under $€ 5$ add 50 p. under $£ 20$ add 75 p. over $£ 20$ add $£ 1$. Recommended insurance against postal mishaps: add 50p Recommended insurance against postal mishaps: add-50 Insurance must be added for credit card orders.
N.B. Eire, C.I. B.F.P.O. and other countries are subject to

ADD 15\%VAT

(or current rate If changed). Must be added to full total of kits. discount post \& handling on all U.K. orders. Doas not apply to Exports, of photocopies.

EXPORT ORDERS ARE WELCOME but to avoid delay we advise you to see our list for postage rates, All payments must be cash-with-order, in Sterling by International Money Order or through an English Bank. To obrain list - Europe send 35p, other countries send
75p.
that our terms are payment in C.O.D. service and

AND OTHER PROJECTS

PNOTOGRAPHS in this advertisement show two of our units containing some of the P.E. projects bulle from our kits and PCBs. The cases were built by ourselves and are not for sale. though a
UST-Send stamped addressed envelope with all U.K. requesis for free ist giving fuller details of PCBs, kits and ther components.

OVERSEAS onquiries for list Europe

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKIMBER-ALLEN KEYBOARDS as required for many published projects. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C , the Keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame. 3 Octave ($\mathbf{3 7}$ notes) £25.50 $\quad 4$ Octeve (49 notes) $\quad \mathbf{3 2 . 2 5} \quad 5$ Octave (61 notes) $\mathbf{£ 3 9 . 7 5}$

CONTACT ASSEMBLIES (gold-clad wire) - 1 required for each KBD.note:
Type GJ-SPCO 33p ea. Type GB-2 pr N/O $37 \frac{1}{2} p$ ea.

P.E.V.C.F.

A voltage controlled filter extracted from P.E. Minisonic project.

Basic comps, PCB \& chart KIT 65-1 E8.45

P.E. RING MODULATOR

Extracted from P.E. Minisonic project. Basic comps, PCB \& chart KIT 59-1 E6.35

WIND \& RAIN EFFECTS UNIT

A slightly modified version of the original P.E. unit. Basic comps, PCB \& chan KIT 2B-1 $\quad 8.84$ Textphotocopy

P.E.ENVELOPE SHAPER WITHOUTVCA

Provides full manual control over attack. decay sustain and release functions, and is for use with an existing VCA.

Basic comps, PCB \& chart KIT 44-1 E5.73 Text photocopy

P.E.ENVELOPE SHAPER
 WITH VCA

Has an Integral Voltage Controlled Amplifier, and has full manual control over the A.D.S.R. functions. Basic comps, PCB \& chart KIT 50-1 88.03 Text photocopy

P.E.CONSTANT DISPLAY FREQUENCY COUNTER

A 4-digit counter for 1 Hz to 99 kHz with 1 Hz sampling rate. Readout does not count visibly oflicker due to blanking.
Basic components. PCB \& chart
$\begin{array}{lll} & \text { KIT 79-4 } & \text { C31.35 }\end{array}$

P.E.6-CHANNELMIXER

A high specification stereo mixer with variable input impedances.

Basic components, (excl.sw's,) and set of PCBs and charts.

KIT 90-8
Extra 2 -channel set with PCB
Set of Text photocopies

f11.62

STEREO HEADPHONE

AMPLIFIER

Extracted from P.E. 6-channel mixer. Basic components, PCB \& chart KIT 92-1 £5.68

DIGITAL EXPOSURE

UNIT

Controls up to 750 watts in $\frac{1}{2}$ second steps up to 10 minutes, with built-in audio alarm. Basic components, PCBs \& charts

	KIT93-3	$\mathbf{E 2 3 . 2 7}$
	$\mathbf{E 1 . 2 0}$	

P.E.DISCOSTROBE

A 4 -channel tight show controller giving a choice of sequential, random, or full strobe mode of operation, and with extra audio input.

$$
\begin{array}{lrr}
\text { 8 a sic components, PCB \& chart } \\
& \text { KIT 57-2 } & \text { E25.12 } \\
\text { Text photocopy } & & 78 \text { p }
\end{array}
$$

RHYTHM GENERATORS

Several available, including programmable 16 beat 64000 pattern, 128 beat almost infinite pattern, and pre-programmed 15 pattern using either M252 or M253 rhythm chips. A selection of effects instrument circuits is also ayailable.

P.E VOICE OPERATED

FADER

For automatically reducing music volume during talkover - particularly useful for discos. Basic components, PCB \& chant KIT 30-1 £4.37 Text photocopy 28 p

P.E. DYNAMIC NOISE

LIMITER

Very effective stereo circuit for reducing the hiss founa in most tape recordings.

Basic components, PCB \& chart
KIT 97-1 58.07 T-

MERICAN

FXPRESS

PHONOSONICS

Make sure of your Heathkit catalogue... write now.

Keep up to date with the world's finest electronic kits-with the Heathkit catalogue.

48 product packed pages contain photographs and specifications of the widest possible range of kits. Everything from doorbells to digital clocks, multimeters to microcomputers.

Heathkit make it easy to build, easy on your pocket, and, as with 13 million Heathkit builders over 34 years, your success is guaranteed.

Make sure of your copy of the Heathkit catalogue. Send the coupon today, plus 25p in stamps and beat the demand.

To: Heath Electronics (U.K.) Limited, Dept (PE 9),
Bristol Road, Gloucester, GL2 6EE.
Please send me a copy of the Heathkit catalogue. I enclose 25 p in stamps.
Name
Address

$[\mathrm{M}]$	Freepost E Birmingham	- freepost on orders - access - vat inclusive prices visa
ELECTRO	021.233	- 24 HR PHONE ANSWERING SERVICE

ALL PAICES IN PENCE EACH UNLESS OTHE RWISE STATEO

GMT ELECTRONICS, P.O. BOX 290, HAMPTON STREET,
BIRMINGHAM B19 3JR

PE PHASER UNIT
P.E. APRiL 1979

A superb six stage phaser that really gives your guitar lift off. Equals the best commercial models. Uses latest FET op-amps. Glassfibre p.c.b. COMPLETE KIT OF ALL PARTS AS SPECIFIED............ £16.50 Pack 1. All semiconductor devices...00 Pack 2. Resistors, capacitors \& preset pot.. E3.75 Pack 3. Footswitch, jacks, por, knob, printed circin \& hardware............... 24.78 Pack 4. Diecast box and feet .. $\mathbf{£ 2 . 5 0}$
Separate parts: TLO62 80%, BF2458 50p. PCB $£ 1.50,8$ pin sockets (not included in kit) 21p each.

Superb quality, low noise, low distortion sustain unit equal to the very
best commercial models. Suits all guitars. Glassfibre p.c.b.
COMPLETE KIT OF ALL PARTS AS SPECIFIED. $\mathbf{8} .50$
Pack 1. Resistors, capacitors \& p.c.b. .. $£ 1.75$
 Pack 3. Footswitch, jacks, pot, knob, and battery clip.. Separate parts: XC5053R 50p, RPY58A 75p, Printed circuit board Separate parts: XC5053R 50
$95 p$, Footswitch f 1.80 esch.

PE TV SOUND SEPARATOR

Complete set of semiconductors ...75
Quality glass fibre p.c.b., printed with component locations $\mathbf{E 3}$
 Murata filters: SFE6.0MA 50p, CDA6.OMC 50p

P.E. SMOOTH FUZZ UNIT
 (P.E. Septamber 1979)

 This is the Fuzz unit you have been waiting for I Smooth clean tone with low noise and low current drain. Uses glassfibre p.c.b. and latest FET op-amp. COMPLETE KIT OF ALLPARTS AS SPECIFIED E8. 50POSTAGE \& PACKING 25p per order. Orders over £ 10.00 post free.
All devices are top grade, brand new and to full manufacturers spec.
PRICES DO NOT INCLUDE VAT. Add 15\% to all prices.

Bean Fhrchmionic MNCMAM:

Do something PRACTICAL about your future
Firms all over Britain are crying out for qualified people. With the right training, you could take your pick of these jobs.

Now, the British Institute of Engineering. Technology will train you in your spare time to be an Electrical Engineer.

You risk nothing! We promise to get you through your chosen course-or, refund your fee!

So, join the thousands who have built a new future through home study Engineering courses.

Courses in C \& G Elect. Technicians

 C \& G Elect. Installations -Telecomms. Technicians Exams Television Servicing Radio Maint. \& Repairs (BIET) Pract. Radio \& Electronics Plus over 60 other home study courses.
POST COUPON FOR FREE 44 PACE CUIDE BRITIS: INSTITUTE OF ENGINEERING TECENOLOGY

Aldermaston Court. Dept. TPEO6, Reading RG74PF,
NAME (Block capitals please) ADDRESS

POSTCODE
Other Subjects
Accredited by CACC
AGE

Britain's first com The Sinclair ZX80.
 £79.95
 Price breakdown
 ZX80 and manual: $£ 69.52$
 VAT: $£ 10.43$
 Post and packing FREE
 Please note: many kit makers quote VAT-exclusive prices.
 You've seen the reviews... you've heard the excitement...now make the kit!
 This is the ZX80. 'Personal Computer World' gave it 5 stars for 'excellent value. 'Benchmark tests say it's faster than all previous personal computers. And the response from kit enthusiasts has been tremendous.
 To help you appreciate its value, the price is shown above with and without VAT. This is so you can compare the $Z \times 80$ with competitive kits that don't.appear with inclusive prices.

 'Excellent value' indeed!

 'Excellent value' indeed!
 For just $£ 79.95$ (including VAT and p\&p) you get everything you need to build a personal computer at home ...PCB, with IC sockets for Sinclair ZX80.

 allICs; case; leads for direct connection to a cassette recorder and television (black and white or colour); everything!Yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers at several times the price.

The 2×80 is programmed in BASIC, and you can use it to do quite literally ahything from playing chess to managing a business.

The $Z \times 80$ is pleasantly straightforward to assemble, using a fine-tipped soldering iron. It immediately proves what a good job you've done; connect it to your TV... link it to an appropriate power source*... and you're ready to go

Your $\mathbf{Z X 8 0}$ kit contains...

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs-all manufactured by selected world leading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be SAVEd and LOADed on to a portable cassette recorder.)
- FREE course in BASIC programming and user manual.
Optional extras
- Mains adaptor of 600 mA at 9 V DC nominal unregulated (available separately-see coupon).
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra RAM chips also available-see coupon).

[^1] adaptor. Available from Sinclair If desired (see coupon).

The unique and

The unique and

valuable components of the

valuable components of the

The Sinclair $Z \times 80$ is not just another personal computer. Quite apart from its exceptionally low price, the ZX 80 has two uniquely advanced components: the Sinclair. BASIC interpreter; and the Sinclair teachyourself BASIC manual.

The unique Sinclair BASIC interpreter offers remarkable programming adyantages: - Unique 'one-touch' key word entry: the 2X80 eliminates a great deal of tiresome typing: Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.

- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handling capability-takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The $\mathrm{Z} \times 80$ also has string input to request a line of text when necessary: Strings do not need to be dimensioned.
Up to 26 single dimension arrays.
- FOR/NEXT loops nested up to 26.
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, elc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions. USR cause jump to a user's machine language sub-routine.
- High-resolution graphics with 22 standard graphic symbols.
- All characters printable in reverse under program control.
- Lines of unlimited length.

Fewer chips, compact design, volume production more power per pound!

The 2×80 owes its remarkable low price to its remarkable design: the whole system is packed on to fewer, newer, more powerful and.advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the $Z \times 80$'s 1 K byte RAM is roughly equivalent to 4 K bytes in a conventional computer-typlcally storing 100 lines of BASIC. (Key words occupy only a single byte.)

The display shows 32 characters by 24 lines
And Benchmark tests show that the ZX80 is faster than all other personal computers.

No other personal computer offers this unique combination of high capability and low price.

= now available!

See advertisements in Personal

 Computer World, Electronics Today Internationial, and other journals.New dedicated software-developed independently of Science of Cambridgereflects the enormous interest in the ZX80. More software available soon-from leading consultancies and software houses.

The Sinclair teach-yourself BASIC manual.

If the specifications of the Sinclair $Z \times 80$ mean little to you-don't worry. They're all explained in the specially-written 128 -page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming -from first principles to complex programs. (Available separately-purchase price refunded if you buy a $\mathbf{Z X 8 0}$ later.) A hardware manual is also included with every kit.

The Sinclair ZX80. Kit: £79.95. Assembled: £99.95. Complete!

The ZX80kit costs a mere £79.95. Can't wait to have a $\mathrm{ZX80}$ up and running? No problem! It's also available, ready assembled and complete with mains adaptor, for only £99.95.

Demand for the $Z \times 80$ is very high: use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your ZX80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your $Z \times 80$ as received within 14 days for a full refund. We want you to be satisfied beyond all doubt - and we have no doubt that you will be.

Science of Cambridge Ltd
6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: 0223311488.

ORDER To: Science of Cambridge Ltd, 6 KIngs Parade, Cambridge, Cambs., CB2 1SN. FORM Remember: all prices shown include VAT, postage and packing. No hidden extras. Please send me:

Quantity	Item	Item price ε	Total £
	SInclair ZX80 Personal Computer kit(s). Price Includes ZXBO BASIC manual, excludes mains adaptor.	£79.95	
	Ready-assembled Sinclair ZX80 Personal Computer(s) Price includes ZX 80 BASIC manual and mains adaptor.	$¢ 99.95$	
	Mains Adaptor(s) (600 mA at 9 VDC nominal unregulated).	8.95	
	Memory Expansion Board(s) (each one takes up to $3 K$ bytes).	12.00	
	RAM Memory chips-standard 1K bytes capacity	16.00	
	Sinclair ZX80 Manual(s) (manual free with every $\mathrm{ZX80} \mathrm{kit}$ or ready-made computer).	5.00	
NB. Your Sinclair 2×80 may qualify as a business expense.		TOTAL	
I enclose Please prin Name:	cheque/postal order payable to Science of Cambrid Mrs/Miss \qquad	Ltd for $£$	
Address			

VALUE

NEXT month your copy of PE will cost 65p. Value for money? We think so, but we are operating in one of the few areas of technology which has been characterised by falling prices over the years.

Back in November 1964 (Vol. 1 No. 1) $P E$ was $2 / 6 d$ or $12 \frac{1}{2} p$ in modern terms. Next month PE will cost more than five times that price. An Armstrong AM-FM Tuner Amplifier advertised in that first issue cost just $£ 37.10 .0$ and 37 feet of solder was 5/-; no VAT to add on in those days! So, although the price of technology has fallen, a five times increase on the cover price does not seem wildly out. Add to that the fact that the issues were then a smaller size and yes, we do still think PE is good value.

Fortunately, it would appear that many of you concur with our views as PE has been privileged to boast the highest total sales of any British electronic constructors' magazine for the past three years; we still hold that position. This boast is based on Audit

Bureau of Circulation figures of total copies sold.

OFFERS

As we have pointed out in the past, we believe our special offers give excellent value for money; this issue carries a double autoranging multimeter offer (page 57) and a corrected re-run of our Casio watch offer. There were some errors in the original Casio offer so we have published corrections and re-run it. If you took advantage of the previous offer, or if you are interested in a Casio watch at discount, turn to page 65.

FREE

Next month you will also get a free Transistor Identichart (see page 63) with your issue and November will carry another free chart. We have plenty of exciting projects planned for future issues and are anticipating other special giveaways and offers.

As we have said, PE is number one and we intend to stay there:

RECESSION

The country may be in a period of recession but we believe that this will only increase activity in the hobby electronics field. If you can build a project for half the cost of a commercial unit, it could make all the difference. To those that read more than do, perhaps being forced into something by economics will prove to be very enjoyable.

Even in these dark days when we are regularly fed on the alarming jobless figures and listen with dismay to reports of school leavers without jobs, the electronics industry in general continues to thrive. It is interesting to note that recent issues of such publications as Computer Weekly continue to be fat with job advertisements. There is much to encourage youngsters to take up electronics!

Mike Kenward

EDITOR

Mike Kenward

Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR
Jasper Scott PRODUCTION EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY

ADVERTISEMENT MANAGER
 SECRETARY Christine Pocknell
 AD. SALES EXEC. Alfred Tonge 01-2616819
 CLASSIFIED MANAGER Colin Brown 01-2615762

Editorial Offices:

Practical Electronics,
Westover House,
West Quay Road, Poole.
Dorset BH15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot bu answered over the telephone (see below).

Advertising Offices:

Practical Electronics Advertisements,
King's Reach Tower.
King's Reach, Stamford Street, SE1 9LS
Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-261 6601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from. advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Lid., Lavington House, 25 Lavington Street, London SE1 OPF, at 75 p each including in land/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.30$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

by
 David
 Shortland

FABULOUS FRED

A new electronic entertainments centre which looks as if it will be fun for adults as well as children is now available from Optim Toys.
Fabulous Fred incorporates ten different electronic games which use a sound generator as well as a visual display. The nine-note keyboard can be used as a simple organ, and the memory allows tunes of up to 50 -note length to be keyed in and played back.

Other games include 'Space Attack', 'Submarine Hunt', and 'Catch the Comet'. 'Baseball' and 'Roulette' are more complicated and involve the use of a board and betting chips.

Fabulous Fred should be available from many toy shops at around $£ 25$.

DIRECT TO WIRE

A new Direct to Wire Kit which offers 1,000 connections has been introduced by Verospeed.

Based on the GTH contact patented by BICC-Burndy, the kit includes eight types of
connector interlinked with M100 10 way ribbon cable, supplied on two reels, and a selection of pre-stripped ribbon cable in various lengths. Gas tight connections are achieved by direct insertion of tinned, stranded or solid conductors into the contact assemblies, thus precluding the use of noble metals and making considerable cost savings.

The kit offers the Research and Development Engineer the ability to incorporate the same products that are used in production and eliminates the need for value engineering.

Verospeed stock all replacement parts, which are also available individually. The kit is priced at $£ 39.95$, and is available direct from: Verospeed Ltd., Stansted Road, Boyatt Wood, Eastleigh, Hants. SO5 42Y (0703 618525).

COILY JUMPERS

The range of EZ test hooks, with their 'hypodermic' finger action, has been further extended by coil jumper leads.
To allow greater flexibility of movement, when making test connections, EZ Hooks are being introduced joined by a p.v.c. coil cordgauge 22SWG 26×36-which will expand

from closed position of 180 to 900 mm . The various size Hooks (44,57 and 127 mm) are all available in ten colour-coded colours connected by self-coloured cord. Further information on the entire range of EZ Hooks is available from: British Central Electrical Co. Ltd. (International Division), Unit 10, Carvers Industrial Estate, Southampton Road, Ringwood, Hants. BH24 IJS (04254 4617).

COMPUTER ACCESSORIES

A new microcomputer case which is suitable for the UK101, Superboard and Nascom 2 has just been introduced by Microtype. Known as the Model 3, it succeeds Microtype's previous model and is considerably larger than other cases on the market, with space for expansion boards, fan ventilation or other additions. Made in black ABS plastic, the Model 3 can be sprayed with cellulose based car paints if a different colour is required. A pre-cut keyboard panel is available for UK101, Superboard and Nascom 2 and a blank panel is available for those with 'homebrew' computers.

The price for the Model 3 is $£ 29.90$ including VAT and postage.
Also available from Microtype is their StakPak, a very neat cassette filing and storage system which should solve your program storage problems. The Stak-Pak consists of drawer sections in black plastic which lock together to form miniature cabinets of almost any height. Each drawer holds two cassettes and comes complete with index cards as well as two cassettes each loaded with 12 minutes of Agfa tape.
The price for five Stak-Pak drawer sections is $£ 6.60$ including VAT \& postage.

Microtype, PO Box 104, Hemel Hempstead, Herts. HP2 7QZ.

RECHARGEABLE BATTERIES

If you're fed up with constantly having to replace the batteries in your portable radio or electric shaver, you may be interested to know that a range of rechargeable cells from the Furukawa Battery Co. is now available from Marshalls, together with a range of constant current chargers made by Friemann \& Wolf.
The Nickel-Cadmium cells which are of the sealed sintered-plated type come in three different sizes, equivalent to HP7, HP11, and HP2 dry batteries. In normal use, a life of roughly 500 charge/discharge cycles may be expected.

The Friemann \& Wolf (FRIWO) chargers are available in two basic types, both being double insulated and meeting SEMCO, NEMCO and DEMCO standards. The smaller of the two, the Penlight 4 , accommodates up to four HP7 size cells, and maintains a charge rate of 50 mA nominal. All three sizes of cell can be charged using the larger Combibox FW611, and the charge current can be switched from 50 mA to 120 mA to give overnight recharging for each size.

Prices for the cells and chargers are as follows: S101 (HP7)-£0.98; sub C (HP11)-£1.75; sub D (HP2)-£1.95; Penlight 4- $£ 5 \cdot 50$; Combibox FW611$£ 13 \cdot 25$. Further information is available from: A. Marshall (London) Ltd., Kingsgate House, Kingsgate Place, London NW6 4TA.

MACLIN ZAND

Two new kits from Maclin Zand feature an electronic music generator and a sound effects unit. The music generator which can be used as a doorbell, toy or music box is preprogrammed to play 25 songs and three chime sequences. The song memory is an integral part of the chip and therefore cannot be reprogrammed.

The sound effects board has been designed around the SN76477 sound generator and includes a noise generator, VCO, noise filter, mixer, attack/decay circuit, audio amplifier and control circuitry. A prototype area is provided on the p.c.b. for experiments and among the many sounds available are oneshot controls for gun shots, explosions etc., bird sounds, sirens, race car crashes, steam trains, etc.,
The music generator is priced at $£ 9.95$ and the sound effects board is $£ 14 \cdot 99$. Both prices exclude VAT and $p \& p$.

Maclin Zand Ltd, 38 Mount Pleasant, London WCIX 0AP.

DOUBLE POLE TESTER

A range of pocket sized double pole testers is now available from Branco Tools Ltd.

The cheapest of the range is the Volt Check, which indicates a.c. and d.c. voltages between 4.5 V and 415 V and indicates d.c. polarity. In the middle of the range is the Multi Check which checks continuity between 0 and $20 \mathrm{k} \Omega$ and the direction of semiconductors, as well as indicating voltages within the same range as that of the Volt Check.

Pictured above is the Master Check, which measures d.c. and a.c. voltages in seven steps from 6 V to 415 V and indicates polarity. Prices range from $£ 4.30$ for the Volt Check to $£ 14.24$ for the Master Check. Further information on the whole range of testers is available from:

Branco Tools Ltd., 7 Birchway, Prestbury, Cheshire SK 10 4BD (0625 828478).

FUEL METERS

Two new petrol consumption meters are now available from Enviro-Systems in kit form. The FSX20 provides a system which will give an instantaneous digital readout of MPG, with a choice of two update frequencies to suit individual driving conditions, automatic clear-down under idling and simple owner calibration facility, which means the system is suitable for most vehicles with carburettor fuel systems and cable driven speedometer. A petrol injection option is available to compensate for fuel returned to the tank.

The FSX 10 provides a total gallons used read-out, and the overall fuel consumed with the average MPG. This kit requires a fuel sensor input only.

Both kits are suitable for 12 V negative earth vehicles only and come complete with digital transducers, p.c.b.s and all components. Construction and installation instructions are provided and a technical back-up service is available.

The FSX20 is priced at $£ 47 \cdot 50$, the FSX 10 is $£ 34.80$ and the petrol injection option is £65.90.
Enviro-Systems, Hampsfell Road, Grange-over-Sands, Cumbria LA 11 6BE.

NASCOM MEMORY

Microdata Computers are now offering a combined bubble memory and real time clock board which can be plugged into the standard 77 -way NASBUS. The capacity is 92,304 bits and the initialisation routines and operating system are supplied in a 2708 EPROM. They may be relocated anywhere within the RAM area and will operate with the NAS-SYS, T2, T4 and B-Bug monitors. Organised as 144 minor loops of 641 bits each, the average access time to the first bit of data is 4 milliseconds.

The real time clock has a deac battery back up, the capacity is sufficient to power the CMOS clock chip for approximately 12 months in the absence of system power.

The price of the complete board is $£ 750$ excluding VAT and p\&p.

Microdata Computers Limited, Belvedere Works, Bilton Way, Pump Lane, Hayes, Middlesex.

SUPERPET

Commodore's new ' 8000 Series' system which has been nick-named the SUPERPET, consists of an 80 -column version of the popular 32K PET. Text editing and report formating are faster and easier with the new wide screen display and the 8032 provides a resident operating system with expanded commands and functions for arithmetic, editing and disk management. For data input/output applications, an 8 -bit parallel Port and an IEEE-488 instrumentation bus are provided. The 8032 includes a 73 -key full business style keyboard and is priced at $£ 895$ plus VAT.

Also available is the new 8050 dual drive floppy disk which has been designed to complement the 8032 . The 8050 incorporates all the existing features of the current disk unit, but provides more powerful software capabilities and a one megabyte capacity.

The 8050 which is priced at $£ 895$ plus VAT utilises five $\frac{1_{4}^{\prime \prime}}{\prime \prime}$ diskettes and Micropolis drives.
Commodore Business Machines Limited, Information Centre, 360 Euston Road, London (01-388 5702).

Semicondurtor UPDATITEm FEATHRINE NsC800 74 LS610 MA537 R.W. Coles

COMPATIBLE MICRO (NSC 800)

All you microprocessor fans who have plumped for the intel 8080 family as your "pin-up" chip, need not worry about the obsolescence of all that hardware and software knowledge you have amassed. Many of you may have already upgraded to the Z80 processor from Zilog, and gained those by now well-known benefits of a more powerful instruction set, more CPU registers, and on-chip refresh for dynamic memories. Going from the 8080 to the $\mathbf{Z 8 0}$ is easy because the 8080 instructions are a sub-set of the $Z 80$ codes and most 8080 programs will run immediately on the $\mathbf{Z 8 0}$ with no alterations, an important advantage while system software is costing more than system hardware in many situations.

Intel's own improved 8080, the 8085, takes a different line by keeping an almost identical instruction set with only limited enhancements while reducing system hardware complexity and the need for peripheral devices by providing more "onchip" functions such as clock oscillator, bus controller, serial I/O, and several levels of direct-vector interrupt inputs. The 8085 also runs from a single 5 volt supply, like the $\mathbf{Z 8 0}$ but unlike the 8080 , and it runs faster than both the 8080 and the $\mathbf{2 8 0}$. The extra on-chip functions provided by the 8085 need extra pins which are not normally available within the limitations of a 40 pin package. Intel solved this problem by multiplexing the 8 data bus lines so that they also carry the 8 low order address bits during certain sections of an instruction cycle, as flagged by the ALE (Address Latch Enable) output. The L in ALE means, of course, that the availability of address information on the bus for only a limited period has to be overcome by latching this information externally. This need is normally satisfied by the use of special 8085 peripheral chips such as the 8155 RAM/IO/TIMER chip, and the 8355 ROM/IO chip which have internal address latches.

In short, you have a choice for 8080 upgrade. Choose either the big system power of the $\mathbf{Z 8 0}$ or the compact simplicity of the 8085 and its multiplexed bus.

Well, anyway, you did have to choose until recently, before National introduced the NSC800, a chip which must make all 80 fans drool with anticipationl Taking compatibility one stage further, National have made their new processor emulate both the 8085 and the 280 by combining.
the power of $Z 80$ instruction set with the simplicity of the 8085 bus. As if that in itself were not sufficient, National have also made other improvements to rectify some of the difficiencies of it's ancestors.

The most fundamental change is in the semiconductor technology used, NMOS for the 8080, Z80, and 8085 and a new CMOS process called $\mathrm{P}^{2} \mathrm{CMOS}$ for the NSC800. The advantage here is the wide supply voltage range possible (3 to 12 volts) and the very low power consumption which makes battery operation a real possibility. Despite its low power consumption the new chip will run as fast as the $\mathbf{Z 8 0}$ even to the extent of having a 4 MHZ high speed version, the NSC800A which equates to the Z80A.

One problem with the 280 is that the useful on-chip refresh for dynamic memories has only a 7-bit counter, and this makes it difficult to use with the coming generation of 64 K RAMs which need 8 bits. The NSC800 overcomes this shortcoming by providing the eighth bit.

So far as I know, this device is not widely available yet, but when it is, it must surely become the eighth bit standard for future designs.

MAP CHIP

Still on the subject of microprocessors, it seems that the 64 K address space of most micros, which has always seemed so huge that one could never imagine having the funds to fill it, is about to become too small!

The reason is that memory is getting cheaper and cheaper, and soon it will take just eight 16 pin chips to give a system all the memory it can address, thanks to the 64 K dynamic RAM devices now becoming available from Motorola, Texas Instruments and others. The effects this plentiful memory will have on system software and programming in general will be farreaching, but down at the hardware level there will be the problem of how to address more than that restrictive 64 K .

One possible solution is now available from Texas instruments in the form of a family of "Memory-mapper" devices which can be used to increase the memory space of, say, a 6800 or 8080 microprocessor to an incredible 16 megabytes! Now even if 64 K RAM chips drop in price to $£ 10$ each, a quick sum reveals that to fill that space you would need to raise over $£ 20,000$ for memory alone, so it seems likely that the problem has been solved for all time I

The new devices, part of the Low Power Shottky TTL family and coded 74LS610 to 74LS613, provide an extra eight bits of addressing to give a total of 24 for most micros. Address expansion is achieved by using the top four bits of the standard address bus to select one of sixteen twelve bit registers within the map chip. The contents of the selected register provide twelve further address bits to give the total of twenty-four required, effectively splitting the memory map up into 4096 pages each of 4096 words. The registers within the mapper have to be loaded undér software control of course, and this makes the expansion scheme less "transparent" to the programmer than a conventional twentyfour bit address counter. Since most programmers interact with their system via system software, however, this need not be a problem in day to day usage. A likely technique would be to load the registers with the addresses of consecutive 4 K blocks to provide a single 64 K 'Environment'. When more memory is needed, for a second user for example, system software would reload the registers to access further 64 K blocks. A total of 256 blocks are available, although it is most unlikely that all this space would be needed in any practical system.

The attraction of these devices is really that they will allow the upgrading of an "old fashioned" eight bit system to suit future system software. Whether it will be better to throw the old eight bit chips away and go for one of the new sixteen bit devices such as the $\mathbf{Z 8 0 0 0}$ or the 8086 which can already access more memory via an expanded address counter, remains to be seen.

The new devices run from standard TTL supplies and are housed in forty pin packages.

BIG IMAGE (MA537)

I realize that my offerings so far this month are not the sort of devices which the average reader is likely to be able to (or want to!! rush out and buy just yet. My final offering is even more exotic I am afraid, but nevertheless it does provide a fascinating glimpse of the capabilities of a Britlsh electronics firm, and a hint of what the future holds for us. After all, today's exotic device is tomorrow's 'jelly-bean' part

The device in question is made by GEC and coded the MA537, and it is a complete solid state TV image sensor in a very tiny package. On the face of it, it appears that this device opens the door to tiny video
cameras no bigger than, say, an instamatic, with full 625 line capability and a performance approaching that of conventional camera tubes. Combine a device such as with the LED and LCD image displays currently under development, and it seems likely that the whole concept of television and home video recording will be revolutionised within the next decade.

The MA537 is a CCD or 'Charge Coupled Device' image sensor which has an 8.5 mm by 6.4 mm sensor surface covered with an array of 576 by 385 photo detectors, all on one chip of silicon. The chip is split into two
roughly equal sections, one being used for image sensing and the other half for storage. The image sensor provides a basic Z88 line picture, with each line resolvable into 385 'pixels' or picture points, but by means of an ingenious trick with the clocking of the CCD image registers the number of lines is effectively doubled to provide compatibility with the interlaced 575 line image used in the so-called 625 line system. (The other lines are never displayed and form part of the field blanking interval.) The store half of the array is also photo sensitive but is normally shielded from any il-
lumination and used as a buffer to aid the transfer of data out of the device. Left unshielded, however, it can be used to provide a full-frame mode for enhanced resolution in special applications. In the normal mode, line image information is shifted out via a 400 element CCD analogue shift register, the extra 15 elements being available to provide a black reference level for each line.

The MA537 is packaged in a 30 pin flatpack and would probably cost an arm and a leg at present, but come the revolution. .

Nice try G.E.C., but now how about a colour version?

Houndidun

Edtech Ảug. 19-21. Holland Park School, London. Cl
Personal Computer World Show Sept. 4-6 Cunard Hotel, Hammersmith, London. M
Laboratory Sept. 9-11. Grosvenor Ho., Park Lane, London. E
Intron 80 Sept. 9-11. RDS, Simmonscourt Pavilion, Dublin. V
West of England Electronics Exhibition Sept. 9-11. Bristol Exhibition Centre. Q
Electrathon (Lucas battery vehicle race) Sept. 13, 1980. Fashioned on last year's event, this "whispering Grand Prix" is a contest for home made electric vehicles. It will again be held at Donington Park Race Circuit, nr. Derby. Details: 021-554 5252.
Avionics (symposium) Sept. University of Surrey. SI
Emix (Electronic Measuring Instruments Exhibition) Sept. 30, Oct. 1-2. Post House Hotel, Southampton. I
BEX (Business Equipment Exhibition) Oct. 1-2. The Guildhall, Plymouth. K
Emix Oct. 7-8. Centre Hotel, Newcastle. I
Emix Oct. 14-15. Guildhall, Cambridge. I
Drive Electric October 14-17. Wembley Conf. Centre, London. organiser: © 01-834 2333.
BEX Oct. 15-16. Assembly Rooms, Edinburgh. K
Engineering Ireland Oct. 15-18. Leopardstown Exhibition Centre. V
Testmex (exhibition and conference) Oct. 28-30. Wembley Conference Centre. T
Viewdata Exhibition for Professional \& Business People Oct. 29-31.
West Centre Hotel, London. ZI
Comper Nov, 4-6, Olympia. ZI
BEX Nov. 5-6. Sophia Gardens, Cardiff. K
Semiconductor International 80 Nov. 25-27. Metropole Convention Centre. T1
Breadboard Nov. 26-30. Royal Horticultural Halls, Westminster. T
Microsystems 81 (exhibition and conference) March 11-13, Wembley Conference Centre, London. $Z 1$
Inspex 1981 March 16-20. NEC Birmingham. ZI
Computer Graphics 1981 April 28-30. The Barbican Centre, London 0
Entertainment 81 May 9-17 (weekly mornings trade only). NEC Birmingham. $\mathbf{B 2}$
Components 81 (Electronic Components Industry Fair) June 9-12, 1981. Earls Court, London. This show will alternate yearly with Electronics, now the IEA amalgamation with Electrex has ceased. I Solar Energy Exhibition Aug. 23-28, 1981. Brighton. M
International Business Show 1981 October 20-29. NEC Birmingham. A2
Electronics 82 (formerly IEA, but now sub-titled International Electronics, Control and Instruments Exhibition) May 24-28, 1982. NEC. This show will alternate yearly with Components now that the IEA/Electrex amalgamation has ceased. I

E Evan Steadman. \& 079922612
I ITF. ® 021-705 $^{6} 707$
K Douglas Temple Studios, 1046 Old Christchurch Rd., Bournemouth.
M Montbuild. © 01-486 1951
O Online Conferences. / 089539262
Q Exhibitions For Industry Ltd. 8 08833-4371
T Trident International Exhibitions. \& 08224671
V SDL Exhibitions, 68 Fitzwilliam Square, Dublin, Ireland.
C1 Stereoscopic Television Ltd., $41 / 43$ Charlbert St., St. John's Wood, London NW8 6JN. 01-722 4139
S1 Society of Electronics \& Radio Technicians, 57-61 Newington Causeway, London SE1 6BL. 8 01-403 2351
T1 Kiver Communications U.K., Millbank House, 171/185 Ewell Road, Surbiton, Surrey KT6 6AX
21 IPC Exhibitions Ltd., 40 Bowling Green Lane, London ECIR ONE. © 01-837 3636
A2 Hart Browne \& Curtis Ltd., 29 Sackville Street, Piccadilly, London WIX IDB. 8 01-439 8556
B2 Brintex Exhibitions Ltd., 178-202 Great Portland Street, London W1N 6NH. \& 01-637 2400

Politis dilisme

ACORN REVIEW (August 1980)

Acorn Computers Limited are the suppliers of the Acorn modular system, peripherals and software reviewed last month. Science of Cambridge are not connected with this product and were incorrectly referred to. We apologise for any inconvenience caused.

COMPUKIT UPDATE (June 1980)

There is an error in Fig. 1 showing the software Baud rate circuit around IC57. RTS from IC 14 , pin 5, should go to IC57 pin 5 and not pin 4. On IC57, pins 3, 4 and 6 go to OV.

P.E. DMM (July 80)

In Fig. 5 the component overlay shows R6, 7, 8 (lower left) incorrectly numbered. They should be R9, 10, 11 respectively.

MICROPROMPT (July 1980)

Line 40 in Le Passe-Temps should read: DIMS (44), etc., Line 830 should read: $T(1)=T(I)+$ etc.,

CONSTANT CURRENT SOURCES (August 1980)
There are some ommisions in Fig. 4. D9 and D13 are BZY 88s, D10 is a BZY 885 V . TR2 is a 2 N 3055 and C4 is 100n.

THREE FOR FRE 背体 FROM CSC

Roll the dice－the electronic way！The digital dice gives you an instant score randomly chosen from 1 to 6 ，every time you press the button．No losing this under the table！
No． 8 QUIZ MASTER
Play your own＇Sale of the Century＇！Up to four contestants pit their wits；the first one to get the answer lights up his＇win＇light， and stops anybody else from having a go No． 9 MOVING TARGET GAME Test your reactions！A moving＇line of light＇ travels along from left to right，over and over again．You＇ve got to＇fire＇at just the right moment to score a hit．Fun for all the family！
Want to get started on building exciting projects，but don＇t know how？Now using EXPERIMENTOR BREADBOARDS and following the instructions in our FREE ＇Electronics By Numbers＇leaflets， ANYBODY can build electronic projects． For example，take one of our earlier projects，a L．E．D．Bar Graph；

You will need；One EXP 300 or EXP 350 breadboard， 15 silicon diodes， 6 resistors， 6 Light Emitting Diodes． Just look at the diagram，Select R1，plug it into the lettered and numbered holes on the EXPERIMENTOR BREADBOARD，do the same with all the other components， connect to the battery，and your project＇s finished．All you have to do is follow the large，clear layouts on the＇Electronics by Numbers＇leaflets，and ANYBODY can build a perfect working project．

For full detailed instructions and layouts of Projects，7， 8 and 9，simply take the coupon to your nearest CSC stock ist，or send direct to us，and you will recelve the latest ＇ELECTRONICS BY NUMBERS＇leaflet． If you missed projects，1， 2 and 3 ，or 4，5 and 6 ，please tick the appropriate box in the coupon．

PROTO－BOARDS

The ultimate in breadboards for the minimum of cost． Two easily assembled kits．

PB6 Kit， 630 contacts，four 5－way binding posts accepts up to six 14 －pin Dips．
PROTO－BOARD 6 KIT $£ 9.20$

PB 100 Kit complete with 760 contacts accepts up to ten 14 －pin Dips，with two binding posts and sturdy base．Large capacity with Kit economy．
PROTO－BOARD 100 KIT $£ 11.80$

EXP $48 \boldsymbol{〔} \mathbf{2} .30$ Four
more bus－bars in
＂snap－on＂unit．

The above prices are exclusive of PGP and 15\％VAT．

THE CSC 24 HOUR SERVICE TELEPHONE（0799） 21682

With your Access，American Express， Barclaycard number and your order will be in the post immediately
CONTINENTAL SPECIALTIES CORPORATION

C．S．C．（UK）LTD Dept．5PP
Unit 1，Shire Hill Industrial Estate，
Saffron Walden，Essex CB11 3AQ．
Tel：Saffron Waiden（0799） 21682 Telex： 817477

Climatic Change

After more than a year of Conservative government led by Mrs Thatcher there is still plenty of opportunity and, indeed, reason for vigorous debate in her economic policy and where it is leading. And not least in industry in general and the electronics industry in particular.

Electronics companies are having mixed results. Some are doing well, some less well. But this has always been the case whatever government has been in power. Of course trading conditions are tough and are likely to worsen. All the more reason to work harder to succeed. It is fact, not fancy, that hard working companies staffed by well motivated people have succeeded through good times and bad, and under Labour as well as Conservative governments. Racal and GEC are two prime examples.

What Mrs Thatcher and her colleagues are attempting is to change the attitude of organisations and people. To encourage them to face a real world rather than a dream world. Of course it is a tough policy and very unpleasant medicine.

It may not succeed. There are plenty of people about who hope it won't, some actively working against the policy. There are signs, however, that despite the nasty medicine and its direct and side effects, the majority believe it needs taking in the hope of a cure.

Subsidies

One of the attitudes which the Government is attempting to change is that of the begging bowl. It has long been my conviction that the practice of direct government hand-outs has done more harm than good to the electronics industry. It has always encouraged sloth. Why spend your own time and money on developing a new product when a government has promised to support it?

So the long delays start, fatal in a fastmoving industry like electronics. First the debate on the amount, then the allocation of funds (too little, too late is always the industry response), the formation of committees, further debate, the start of the programme, the work put in hand, by which time the market has been missed.

This is not to say that private venture, putting your money where your mouth is, is universally successful. There is the sad story of Martello, the privately developed long range three-dimensional defence radar from Marconi Radar Systems. This was a contender for the NATO installations in Scotland. The NATO nations in this case were paymasters and, looking for the best buy, chose' a US General Electric system as meeting all the technical requirements at the lowest cost. Marconi investment in Martello has been reported as being $\mathbf{£ 1 0}$ million and, as Martello sales prospects are now bleak, it looks as if Marconi Radar will lose money as well as prestige on the project.

The reaction was predictable. Cries of 'foul' from Marconi Radar. Hidden subsidies were suggested from the US Government who had largely or totally paid for the radar development and had already ordered similar models to equip a US Air Force radar chain in Alaska.

And yet within the same GEC-Marconi Electronics group of companies there is brisk overseas trade with, for example, the Clansman military radio funded entirely in its development and early production phases by the British taxpayer through the Ministry of Defence. There are plenty of other Ministry-funded projects in the Group which will be offered at attractive prices to overseas buyers. Even a version of the new air interception radar now in an advanced development stage for the Royal Air Force air-superiority F2 Tornado fighter.

When we look at Plessey we find not only more Clansman radios of Plessey manufacture going overseas but also versions of multi-million pound Ptarmigan military truck radio and Wavell data processing systems on offer, all funded from public money.

The fact is that we all play the same games and you can't win 'em all. Martello was a private gamble that so far hasn't come off.

In respect of subsidies in general the socalled 'hidden' subsidy of defence equipment funding has been of great benefit to the electronics industry. Defence electronics has always been the forcing ground for advanced technology since the initiation of radar development in the late 1930s. Anyone privileged to see the avionics fit of the Tornado aircraft, or the Mk2 maritime reconnaissance Nimrod or airborne early warning (AEW) Nimrod can see this is as true today as ever it was.

Such projects, distasteful as they may be in some circles, keep the Marconi's, Plesseys, Ferrantis and Cossors in the forefront of electronic skills and large scale project management and are a far more effective way of supporting the industry than the direct subsidy. At the end of the day you at least see something for your
money and with good prospects of overseas sales to friendly countries.

Racal-Decca

When David Elsbury joined Racal as a line test engineer back in 1956, straight out of national service in the Royal Air Force, he may have been ambitious but he could hardly have dreamed that one day he would be Chairman and Chief Executive of the Decca Group, now re-named Racal-Decca.

Elsbury, still a young 44-year-old, has long been tipped as the natural successor to Ernest Harrison who has led Racal to the top ranks in electronics with an unparalleled growth and export record. Now he is faced with the most challenging task of his career. Can Elsbury inject Racal gogo into ailing Decca? A spectacular instant turnround of fortune cannot be expected. But Elsbury-watchers, including Harrison himself, have every confidence that he can and will succeed.

Dave Elsbury's move to his new office at Chessington has opened the way to further well-deserved promotion for other Racal stars such as Gerry Whent and Bill Blake within Racal Tacticom and Racal Communications.

Among the flood of recent Racal announcements one is deserving of special mention. This is Racal-Redac's entry into the MPU business. Up to now Racal-Redac's computer-aided design (CAD) systems have been based on bought-in computers married to Racal-Redac software. The new low-cost ($£ 20,000$) Cadet printed circuit board design system is based on microprocessors and will be built entirely in-house. Such is the confidence of Eric Wolfendale, Racal-Redac's managing director, that he has put down a production line for 250 systems, an unprecedented figure for this type of equipment.

Plessey Success

Plessey Semiconductors, often the subject of ridicule in the past, had a record year in 1979/80 with 47 per cent increase in sales and excellent growth in the U.S.A. and Japanese markets. Almost 50 per cent of all production is now exported as a result of an intensive export drive. Turnover, at £ 19 million, is still modest by world semiconductor industry standards but an increase to $£ 25$ million in the current financial year has been forecast by a newly confident Ken Bradshaw, sales director.

Plessey Semiconductors will get some extra business through an agreement with the Canadian company Mitel on manufacture of ISO-CMOS circuits, as will GECMarconi. The ISO-DMOS integrated circuit is a refinement of CMOS and is particularly applicable to the telecommunications industry. The BPO has set up a pilot plant at the Telecom Research Centre and will establish an industry standard for the devices. While it is understood that main production from Marconi and Plessey will be for Britain's telephone network there will also be applications in other equipment for general sale.

fig. 1. Block diagram of main circuitry

In a design of this nature, the tone control characteristics can be emphatic without embarrassing consequences. For instance, the very low hum level makes possible a bass boost characteristic which approximately compensates for typical loudspeaker deficiencies. This permits the reproduction of low bass at lifelike levels, assuming that suitable loudspeakers and low rumble turntables are available. The plentiful bass boost is also helpful when 'thin' recordings are encountered; EP singles are often lacking in the lowest bass notes. The bass boost curve rolls off sharply below the audio band in order to minimise the amplification of rumble. Further rumble filtering is provided in the preceding stage. The treble control provides moderate boost and cut over a wide band of frequencies, without excessive midrange or high treble boost. The commonly encountered 20 dB boost at 18 kHz is simply not required in a good sound system, and
readily causes amplifier or horn overload and 'tinny' treble; deficiencies above 10 kHz usually indicate worn discs or stylii, or an inadequate loudspeaker system. Most of the distortion in the disc and line channels is generated in this stage.

The tone control stage feeds the send-return socket via the volume control. In its normal position, the send-return switch allows the signal to pass directly to the mono output, via the mixer, and also out of the 'send' pins on the socket. Thus both mono and stereo outputs are provided simultaneously. Depressing the send-return switch forces the signal to pass via auxiliary equipment and allows the signal to return by closing the switch in series with the 'return' pins on the send-return socket. Finally, the stereo music lines are mixed down to mono, together with the microphone signal, by a unity gain mixer.

SPECIFICATIONS

Disc

Input impedance
Sensitivity $\pm \frac{1}{2} d B$
Hum
Noise
Frequency response

47k
-43 dBm at 1 kHz ref 0 dBm out (5.5 mV)
-80 dB , unweighted
-70 dB , unweighted, 20 Hz to 20 kHz
$12 \mathrm{~Hz}-25 \mathrm{kHz}$ at -3 dB points

Input overload margin 41 dB
Distortion, harmonic at $+10 \mathrm{dBm}, 30 \mathrm{~Hz}-0.06 \%$
$1 \mathrm{kHz}-0.01 \%$
$10 \mathrm{kHz}-0.03 \%$

Line inputs

Input impedance
Sensitivity $\pm \frac{1}{2} d B$
Hum
Noise
Frequency response $\quad 30 \mathrm{~Hz}-50 \mathrm{kHz}$ at -3 dB points
Input overload margin 38 dB
Distortion, harmonic at $+10 \mathrm{dBm}, 30 \mathrm{~Hz}-0.06 \%$
$1 \mathrm{kHz}-0.008 \%$
$10 \mathrm{kHz}-0.03 \%$

Microphone

Input impedance	600 ohms
Sensitivity	-30 dBm at 1 kHz ref. OdBm out (25 mV)
Hum	-93 dB , unweighted
Noise	-80 dB (unweighted), $20 \mathrm{~Hz}-20 \mathrm{kHz}$, 200 ohm input load
Frequency response	$32 \mathrm{~Hz}-22 \mathrm{kHz}$ at -3 dB points
Input overload margin -40 dB	
Distortion, Harmonic 'at $+10 \mathrm{dBm}, 30 \mathrm{~Hz}-0.01 \%$	
	$1 \mathrm{kHz}-0.02 \%$
	$10 \mathrm{kHz}-\mathrm{O} .1 \%$

General

Slew rate, all stages
Distortion, any input,
Output clip level
$\geqslant 5.5 \mathrm{~V} / \mu \mathrm{s}$
$\leqslant 0.1 \%$ at $10 \mathrm{dBm}, 30 \mathrm{~Hz}-18 \mathrm{kHz}$ $+20 \mathrm{dBm}$
Mono and mic outputs provide OdBm at 100 ohm source impedance and will drive 600 ohm lines at +20 dBm Stereo lines provide 0 dBm at 350 ohm source impedance
Tone controls \& RIAA equalisation matched to within $\frac{1}{2} d B$ $O \mathrm{dBm}=776 \mathrm{mV}$ into an unspecified impedance

COMPONENTS

Resistors	
R1-4	47 k
R5-8	7 k 5
R9-12	470 R
R13-16	560 R
R17-20	100 k

(All $\frac{1}{2}$ watt metal oxide, 2\%)
Potentiometers

VR1-4
VR5-8 type 186-198)
VR5-8 1 k dual \log (Rivlin CS60 type, Maplin order code HB OOA)

Capacitors
C1-4
C5-8
C9-12
C13-16
C17-20
C21-24
C25-28
C29-32
C33-36
C37-38 Ion polycarbonate
$100 \mu, 40 \mathrm{~V}$ axial electrolytic
C39-40 100n polyester, C280AE series

Semiconductors

IC1-IC8 NE5534N or NE5534AN, 8 pin d.i.l. version

Miscellaneous

SKT1, 2-XLR 3 pin female sockets (Maplin BW90X)
SW1, 2-Miniature toggles (RS components type 316-973)
"Copper-clad single-sided epoxy-glass p.c.b. board incorporating $0.1^{\prime \prime}$ pitch edge connector (RS type 434-150) 8×8 pin d.i.l. sockets
$185 \times 90 \mathrm{~mm}$ aluminium screen, 22 s.w.g.

Facilities and functions (see numbered photo)

Music

Two stereo disc inputs from internal turntables A \& B (1-2)
$A+B$ line and disc inputs selected by rotary switches ($A \& B$)
Two stereo line inputs from female XLR's A \& B (3-4)
Internal preset disc balance controls
Line input level controls (5-6)
Line input earth-isolation switches (7-8)
Slider crossfading between line \& disc in any of 4 combinations (9)
Bass, treble and volume controls (10-12)
Music send-return socket provides stereo lines at OdBm (13)
Music send-return switch activates stereo return for insertion of graphic equalisers, limiters, expanders, etc. (14)
Music 'cancel' switch for audience participation and emergency announcements (15)

Microphone

Capacitor microphone input (Readily modified for moving coil microphones) from female XLR (16)
Bass and treble controls specially contoured for vocal applications (17-18)
Microphone gain control and on-off switch (19-20)

- XLR send-return socket providing (mono) microphone output at OdBm for routing to vocals amplifier (21)
Microphone send-return switch activates return for insertion of graphic equaliser, special effects, etc (22)

Output

XLR mono output from stereo lines and microphone line via a unity gain mixer. This output can be exclusively microphone or music if required, by depressing appropriate send-return switch. Also XLR stereo music output. (23)

Auxiliary

Output and PFL monitoring, the latter switchable to all music inputs (24-25)
Monitor level control (26)
4 watts into 4 ohms monitor amplifier, for phones or monitor speaker, with short circuit and thermal protection (27)
A \& B cueing indicators (yellow panel l.e.d.s) illuminate when disc modulation begins or line input exceeds an equivalent threshold (28-29)
Left and Right peak indicators (Red panel I.e.d.s) are set to illuminate at the nominal r.m.s. input level of the systems power (30-31), e.g: 500 mV , whilst $V U$ meters provide the desk OdB reference across the stereo lines (32-33)
Autofader on-off switch and locking panel-presets for depth, rate and sensitivity adjustments (34-37)
Remote push button turntable start switches and turntable lamp switches. Jack socket sound-to-light modulator output (38-42)
High reliability remote power supply with comprehensive protection.

MICROPHONE CHANNEL

The microphone input is designed for the Calrec CM654 capacitor microphone but input stage modifications are given to cover the majority of moving coil and capacitor microphones, including those which are balanced or phantom powered. A good vocals microphone is essential for discotheque applications, where 'close miking' is the rule. All cardiod microphones provide strongly accentuated low bass under these conditions. Windshields help, but microphones intended for vocal applications often incorporate compensation for 'close miking'. This virtually eliminates 'pop' and other explosive breath sounds and minimises the input transformer's overload margin requirements. A discotheque microphone may also be required to handle SPLs in excess of 100 dB if the operator shouts; capacitor microphones are particularly suited to handling high SPLs with low distortion.

Most of the distortion in the microphone channel is generated by the input transformer, but it is predominantly 2 nd harmonic and quite inaudible under normal conditions. The input stage has unity gain in order to avoid overloading the tone control stage, bearing in mind the high outputs
produced by close miking. The tone controls have been contoured as far as possible to suit vocals requirements, ie: for frequencies between 100 Hz and 10 kHz . The fundamentals of male and female speech lie around 130 Hz and 200 Hz respectively. These low frequencies provide the voice with body and character whilst the harmonics, particularly those around $1 \mathrm{kHz}-3 \mathrm{kHz}$ are essential for intelligibility.

With this in mind, the treble boost curve has been contoured to give relatively large amounts of boost around these latter frequencies, thus allowing vocals to 'cut through' if desired. It is difficult using the Baxandall network to bring the maximum boost up to the fundamental frequencies of the human voice. Maximum boost occurs, therefore around 50 Hz but in practice the characteristic is satisfactory provided a vocally compensated microphone is used.

The microphone signal passes to a line driver, capable of providing some +20 dBm into a 600 ohm load, via a gain control and the on-off switch. The microphone send-return switch is wired in the same manner as that previously described, and finally the microphone line feeds the mono mixer.

ANCILLARY FUNCTIONS

The auxiliary functions are shown in Fig. 2. The autofader drives an f.e.t. which shunts the music lines; attenuator $V R_{A}$ controls the fade depth. $V R_{C}$ and $V R_{B}$ adjust the sensitivity (i.e. microphone level required to trigger) and the fade-up rate of the circuit respectively. S_{A} disconnects the f.e.t. when the autofader is not required. A four way switch selects the right hand disc and line inputs for PFL (pre-fader listen) monitoring. In turn, a two way switch selects either PFL or output monitoring. A 4 watt amplifier is provided to drive either headphones or a monitor loudspeaker.

The cue l.e.d.s allow discs to be lined up rapidly and without the use of headphones. $V R_{D}$ is set to discriminate between rumble and music modulations on typical discs. The VU meter driver preset is normally set such that 776 mV on the stereo lines gives an 0 VU reading, though this is not conventional practice in broadcast sound equipment. The peak indicator switches on its associated l.e.d. for a few hundred milliseconds whenever a signal peak exceeds the nominal input sensitivity of the power amplifiers, eg: 500 mV

Fig. 2. Block diagram of auxiliary functions
$\left(-3 \frac{1}{2} \mathrm{Bm}\right)$. In this way, they warn that the power amplifiers are being driven close to clipping.

The 'sound-to-light mixer' provides a +10 dBm output for lighting effects. The microphone level in the mix is adjusted to match the level of the music signals under normal 'miking' conditions by means of preset $V R_{F}$.

CONSTRUCTION

Apart from the monitor amplifier, all the circuitry is contained on four pluggable cards; this greatly simplifies construction and debugging. Fig. 3 will be found helpful as construction progresses, as it shows how the circuitry on each card is interconnected. The power supply, whilst sophisticated, is simple to construct and is unlikely to require debugging. For this reason it will be presented later. For initial tests, $\pm 15 \mathrm{~V}$ and +12 V supplies are required. To test individual cards, very little current is required $(<100 \mathrm{~mA})$ and batteries are quite adequate if a good bench power supply is not available.

All the audio circuitry is built around the Signetics NE5534 op amp. This was introduced to Britain some 18 months ago and is truly described as 'high performance' in that it is the first op amp to approach the performance of the best discrete circuits. As a result, it has found wide acceptance in professional audio equipment. It has pin compatibility with the 741 C and features internal compensation for gains in excess of 10 dB . However, the addition of a small compensation capacitor ensures stability without compromising performance in the audio band. The low noise version, designated 'NE5534AN' is expensive but may be used to advantage in the disc input stage if desired.

The NE5534N, like the 741 is a hardy bi-polar device and does not require special handling precautions. However, it is not as cheap as the 741 and when the cards are initially tested it is wise to substitute the latter.

CARD 1

This card contains the disc and line input stages. With reference to Fig. 4, R1 provides the input bias current for IC1 and also the standard load for a magnetic cartridge. At high frequencies, the gain of IC1 falls to unity, therefore external compensation (C5) is required. R5 and R9 provide a gain of 24 dB and together with C9 also furnish RIAA treble cut. However, in the series feedback configuration used here, the gain of IC1 cannot fall below unity. Thus R13 and C13 are required to maintain treble cut at high frequencies. The.electrolytic capacitor C21 has significant reactance above 1 kHz and therefore C17 is added to ensure good treble response. Wherever possible throughout the audio circuitry nonelectrolytic coupling capacitors have been specified for this reason. VR1 doubles as a preset balance control and output attenuator as previously described.

IC5 provides unity gain and C33 with the crossfinder provides bass cut which closely complements the RIAA bass boost characteristic. For optimum screening and RF1 suppression all the disc inputs have independent OV connections and are quasi-balanced. This procedure is not so important at line input levels, and the OV connection for each stereo line input is commoned at the XLR input connector in any case. Panel mounted earth isolation switches are provided on these inputs to facilitate the control of hum loops. The supply rails adjacent to each op amp are

STEREO LINES OUT

Fig. 4. Disc and line input stages (Card 1), socket detail and line decoupling

Card 1 Edge Wiring

There are two line and disc (T and D) inputs, named $A+$ B, and each has a left (L) and a right channel (R).

For turntable " A ", the inputs are $D_{R A}+D_{L A}$
For turntable " B ", the inputs are $D_{R B}+D_{L B}$
For line input " A ", the inputs are $T_{R A}+T_{L A}$
For line input " B ", the inputs are $T_{R B}+T_{L B}$
Disc input earth connections are designated OV together with the appropriate code.

Showing a completed Card 1 and below a desk with the board assembly lid pulled back
decoupled at high frequencies for stability (C41 etc) and additional capacitors (C37-40) are provided to attenuate common mode RF1 and to decouple the supply rails at audio frequencies.

CARD 1 LAYOUT

The physical layout of Card 1 is shown in Fig. 5. The copper clad board specified in the components list must be cut to size. Note that the card aperture is not symmetrical and marking out and cutting should be done from the copper side of the board if the aperture position is to correspond to Fig. 4. Accurate cutting is facilitated by using a jigsaw fitted with a very fine blade, together with an $\frac{1}{8}$ in strip of straight aluminium as a guide along the inside of the cutting line.

The 24 edge connector strips should be covered with enamel paint to protect it during etching; paint is more consistent than etch resistant ink over such large areas. The p.c.b. pins are wired direct to the edge connector pins by 7/0.2 cable, except for pins 1-8 which require screened 'cable, and pins 9 and 23, which should be brought to the edge connector with $16 / 0.2$ cable to ensure a low impedance connection. Because the edge connector pins are cramped, all the leadout wires should be sleeved. Apart from allowing a high component density, 'hard wiring' in this fashion permits control over stray capacitance which cannot be achieved first go with 24 parallel p.c.b. tracks 1

When the board is completed, scrape away excess flux, using methylated spirits as a solvent, together with a stiff brush where necessary.

Check carefully for errors, then load the 8 sockets, preferably with 741 s . Note that the op amps belonging to the line inputs face in the opposite direction to those handling the disc inputs. Short all the inputs to OV and apply $\pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$ via 100 R current limiting resistors in each supply rail. If the supply current exceeds $30 \mathrm{~mA}(741 \mathrm{~s}$) or 70 mA (NE5534s), disconnect the supply and look for errors. If all is well, load the card with NE5534s and reconnect the supply. Then check the offset voltages at pin 6 on the i.c.s; note that a carelessly placed probe may prove fatal to the devices here. If the offset voltage is greatly in excess of 300 mV , disconnect and check again for errors, or for floating inputs. Finally, reconnect the supply and check the polarity of the offset at pin 6 on I.Cs 1-4. Then reorientate C21-24 if necessary. The screen can then be added (Fig. 5) and Card 1 is now completed. The same constructional and setting up procedure applies to the remainder of the cards; remember to allow for notably lower power consumption however on Card 2, and to short all inputs to the OV rail.
Next Month-more circuits.

PROGRAMMABLE SOUND WM MR, T10R D. COUTTS

THE GENERAL INSTRUMENT AY-3-8912 Programmable Sound Generator was designed to produce a variety of complex sounds under software control. By using a register stack the processor can load values into the sound chip and then carry on with other tasks while the sound is being generated.

It is easy to interface the i.c. with the UK101 and to add sound to your BASIC programs by means of the POKE command.

BLOCK DIAGRAM

Fig. 1 is a block diagram of the 8912 i.c. There are three tone generators and a nolse generator. The three tones can be fed out to outputs A, B and C. The noise can be added to any or all of the tones, or it can be output instead of a tone. The amplitudes of the nolse and tones can be set to one of sixteen fixed values, or they can be varied by means of an envelope generator. The envelope generator amplitude modulates the outputs and can be set for various options of fast or slow attack and decay, single shot or repeat, etc. allowing a wide variation of sounds. The three outputs are logarithmic.

PSG REGISTER ARRAY

Fig. 2 shows the register array in detail. Register \emptyset and register 1 are cascaded to give a 12 -bit word which sets the period of tone A, the top 4 bits of register 1 not being used and the bottom 4 bits forming bits $8,9,10$ and 11 of the 12bit word. The register can be set to any value between 1 and 4095 decimal. As the clock is divided by 16 before being fed to the tone generator, the output frequency is:

$$
f=\frac{\text { Fclock }}{16 \times R}
$$

where R lies between 1 and 4095 . Registers 2,3 and 4, 5 similarly control tone generators B and C. Register 6 is used to control a pseudo random noise generator. Only the bottom 5 bits are used, and again, the clock is divided by 16 before being fed to the noise generator.

Register 7 is the output control register. Bits 6 and 7 should always be set to one as we are outputting data to the PSG (Programmable Sound Generator). Setting bit \emptyset low will enable tone A to be output to channel A. If at the same time bit 3 is set low the noise generator will be mixed with tone A. If bit \emptyset is now set high only noise will be output on channel A. Likewise bits 1 and 4 control tone B and noise to channel B, and bits 2 and 5 control tone C and noise to channel C. Remember it requires a low or \emptyset to select a tone or noise, for example, writing 254 decimal to register 7 selects tone A.

Register 8 is used to set the amplitude of channel A in the fixed output level mode. Bits 5, 6 and 7 are not used. If bit 4 is set to \emptyset then the output amplitude is set at one of sixteen fixed levels by means of bits \emptyset to 3 . If bit 4 is set to a ' 1 ', however, bits \emptyset to 3 have no effect and the output amplitude is set by the envelope generator. Registers 9 and $1 \emptyset$ are
used similarly for channels B and C. Registers 11 and 12 are cascaded to give a 16 -bit word to set the envelope period. The clock is divided by 256 before being fed to the envelope control, so with a 2 MHz clock we can get a period range of about 0.1 Hz to 7800 Hz .

Register 13 determines the shape/cycle of the output as follows.

The envelope generator further counts down the envelope frequency by 16 , producing a 16 -state per cycle envelope pattern as defined by its 4 -bit counter output, E3, E2, E1, EØ. The particular shape and cycle pattern of any desired envelope is accomplished by controlling the count pattern (count up/count down) of the 4-bit counter and by defining a single-cycle or repeat-cycle pattern.

This envelope shape/cycle control is contained in the lower 4 bits ($\mathrm{B} 3-\mathrm{B} \emptyset$) of register 13. Each of these 4 bits controls a function in the envelope generator, as illustrated in the following:
Envelope Shape/Cycle Control Register (R13)

The definition of each function is as follows:

Hold When set to logic 1 , limits the envelope to one

 cycle, holding the last count of the envelope counter (E3-EO $=\varnothing$ or 1111 , depending on whether the envelope counter was in a countdown or count-up mode, respectively).Alternate When set to logic 1, the envelope counter reverses count direction (up-down) after each cycle.
NOTE: When both the Hold bit and the Alternate bit are ones, the envelope counter is reset to its initial count before holding.
Attack When set to logic 1, the envelope counter will count up (attack) from E3, E2, E1, E $\varnothing=\varnothing \varnothing$ to $E 3, E 2, E 1, E \emptyset=1111$: when set to logic \emptyset, the envelope counter will count down (decay) from 1111 to Øめ \varnothing.
Continue When set to logic 1 , the cycle pattern will be as defined by the Hold bit. When set to logic \emptyset, the envelope generator will reset to $\varnothing \varnothing$ after one cycle and hold at that count.
To further describe the above functions could be accomplished by numerous charts of the binary count sequence of E3, E2, E1, E \emptyset for each combination of Hold, Alternate, Attack and Continue. However, since these outputs are used (when selected by the Amplitude Control registers) to amplitude modulate the output of the Mixers, a better understanding of their effect can be accomplished via a graphic representation of their value for each condition selected, as illustrated in Fig. 3.

Fig. 2. Register array of AY-3-8912
$10 \quad R=61680: V=61681$
FORT = 0 TO 14: $X=$ INT
(RND(5) ${ }^{\circ} 255$) +1
25 IF RND(9)<. 5 THEN POKER,7: POKEV,248 IFRND (4)<.5 THEN
POKER,1: POKEV,0
GOSUB 1000
NEXT
FORT = 1 TO 5000: NEXT
$60 \quad Y=$ INT (RND(7)-15): FOR $T=1$ TO 255: POKER,Y POKEV,T: NEXT FORT $=255$ TO 1 STEP 1: POKER,Y: POKEV,T NEXT

76

80 1000

GOTO 20 POKER,T: POKEV,X: RETURN

Let the Sound Generator create its own sounds with this random program. Push it through a power amplifier for maximum effect.

Register 14 is the output port. Writing data to this register outputs it on pins 7 to 14 of the AY-3-8912.

CIRCUIT DIAGRAM

Fig. 5 shows the circuit diagram of the unit. IC3a and b provide a 1 to 2 MHz clock to the PSG. IC3c and IC4a provide a reset to the chip, R2 and C3 providing power on reset. The three output channels of the 8912 are mixed together and are amplified by IC6. The UK101 data lines D \emptyset to D7 are fed to pins 28 to 21 of IC5. Pins 7 to 14 of IC5 are the output port lines from register 14.

Two addresses are used to load the PSG, FØFØH and F $\emptyset F 1 \mathrm{H}$. IC1 decodes when address bits 2^{4} to 2^{7} and 2^{12} to 2^{15} are high. IC2 decodes when address bits 2^{1} to 2^{3} and 2^{8} to 2^{11} are low and R / \bar{W} is low. Address bit 2° goes to IC4C. When you write to address F $\emptyset \mathrm{FDH}$ pins 18 and 20 of IC5 go high and the data on the data lines is written into an address latch in the PSG, i.e. if you write \emptyset to $\mathrm{F} \varnothing \mathrm{F} \emptyset \mathrm{H}$ the address latch in the PSG points to register \emptyset. If you now write to address $\mathrm{F} \varnothing \mathrm{F} 1 \mathrm{H}$ then the data on the data lines will be written into the register pointed to by the address latch, i.e. if you write 128 to F 0 F 1 H then 128 will be written into the register pointed to by the address latch, in this case register zero.

CONSTRUCTION

Construction is straightforward using the circuit diagram, Fig. 5 and component layout, Fig. 7. Fit the wire links followed by the sockets (it is advisable to use sockets with CMOS and MOS devices). Fit the resistors and capacitors then fit the coil former L1 and wind on 60 turns of 30 SWG enamelled wire, fit two cores into L1. A Molex plug can be fitted to the output port if it is needed. Fit wires for reset switch S1 and for the speaker. Add wires for OV and +5 volts. If preferred the +5 volts could be brought in from the UK 101 via the spare pin on J 1 (pin 11). The p.c.b. is connected to the UK 101 via a 40 to 40 pin jumper cable.

If IC6 and IC7 are not fitted in the UK101 it will be necessary to fit two dil plugs in place of them, wired as shown in Fig. 8.

TESTING THE UNIT

Check the p.c.b. very carefully for any solder splashes causing shorts. Fit the i.c.s, connect the unit to the UK101 via a 40-way jumper cable and power up.

As stated previously, writing a number between 0 and 14 to address FDFDH (DECIMAL 61680) will set up an address latch in the i.c. to point to one of the registers R \emptyset to R14. If you then write to address $\mathrm{F} \varnothing \mathrm{F} 1 \mathrm{H}(61681$ DECIMAL) you can write data into the appropriate register.

Load the following program:

1ø	POKE	$6168 \emptyset, \emptyset$	(POINT TO REGISTER \emptyset)
$2 \emptyset$	POKE 61681,255	(LOAD 255 INTO REG. \emptyset	
			(TONE)
$3 \emptyset$	POKE	$6168 \emptyset, 7$	(POINT TO REG. 7)
$4 \emptyset$	POKE	61681,254	(SELECT REG. \emptyset TO O/P)
$5 \emptyset$	POKE	$6168 \emptyset, 8$	(POINT TO REG. 8)
$6 \emptyset$	POKE	61681,15	(SELECT O/P AMPLITUDE)
$1 \emptyset \emptyset$	$E N D$		

and run.
This outputs a single tone. To add noise change line 40 and ADD 70 and 80:

40	POKE	61681,246	(SELECTS TONE AND
NOISE ON A)			
70	POKE	$6168 \emptyset, 6$	(SELECTS REG. 6)
89	POKE	61681,1	(ENTERS NOISE VALUE)

Fig. 4. AY-3-8912 pin-outs

Fig. 6. Printed Circuit layout (actual size)

Fig. 7. Component layout

COMPONENTS

Resistors R1, R2	100 k (2 off)
R3	1 k
R4	4 k 7
R5	470
R6	10
R7, R8	10 k (2 off)
R9	$2 k 2$

Capacitors

C1, C2, C5	470 p (3 off)
C3	10μ tant, 10 V
C4, C9	$100 \mathrm{n}(2$ off)
C6	$4 \mu 7$ tant. 10 V
C7	47 n
C8, C10	100μ tant. 10 V (2 off)

Integrated Circuits

IC1	74LS38
IC2	74 LS33
IC3	4011
IC4	4025
IC5	AY-3-8912
IC6	LM386

Miscellaneous

41 RS coil former: 228-090 +2 cores: 228-107
S1 SPST push button
Speaker 8Ω

Fig. 8. Blanking plugs for IC6 and IC7 sockets on the 101
Enter the following:

10 POKE $6168{ }^{10}$
20 POKE 61681,2
30 POKE 61680, 7
40 POKE 61681,254
5ø POKE 61680, 8
60 POKE 61681,31
70 POKE 61680,12
80 POKE 61681,64
90 POKE 61680, 13
10ø POKE 61681, \emptyset
110 END
and run.
Change line $1 \varnothing \emptyset$
10ø POKE 61681,4
and run.
Change line 100
1ஏб POKE 61681,8 and run.

By referring to Fig. 3 you can check out all the waveforms by altering line 100.

Sweep frequency effects. Enter the following program:

10	LET	A $=100$	(INITIALISE A)
20	POKE	61680,2	
30	POKE	$61681, A$	(LOAD A INTO REG. 2)
40	POKE	$6168 \emptyset, 7$	
50	POKE	61681,253	(SELECT CHAN. B O/P)
60	POKE	61680,9	
70	POKE 61681,15	(SELECT FULL AMP. O/P)	
80	LETA $=A+2$		
90	IFA<20 20 GOTO 20		
100	GOTO 10		

and run. You get a decreasing sweep frequency.
Change the following lines:
10. LET A = 200

80 LET $A=A-2$

90 IF A>100 GOTO 20

and run. You get an increasing sweep frequency.
That checks out the unit. As you can see there is plenty of scope to add sound effects to your program. Short bursts of noise sound like gun shots, larger bursts sound like explosions. Tones can be played and the 3 channels allow chords to be output. All it takes is practice.

The unit may be fitted in a small case on its own or it may be mounted inside the computer case, as it is quite small.

10 INPUT'"REGISTER"; R
 20 INPUT '"CONTENT''; C
 30 POKE 61860, R: POKE 61681, C 40 GOTO 10

Learning to drive the sound generator will be much assisted by using the above program. You can load any register with any value directly, and discover how various control signals translate into actual sound. If you get in a pickle, push the reset button and start again.

THIS interface allows the use of a surplus teleprinter with the UK 101 or similar 6502 microprocessor based machine. To constructors on a restricted budget, this is a practical alternative to an expensive line-printer, accepting such disadvantages as the low rate of print, the restricted character set and the noisy mechanism.

A simple hardware addition is used, connected directly to the UK 101 bus expansion socket, whilst the software has been designed for ease of use. Description centres on the use of a CREED Type 54 teleprinter, which the author purchased relatively cheaply from a local surplus equipment dealer, although there is no reason why the interface could not be used with other 50 baud, solenoid operated teleprinters, with a minimum of modification.

MARDWARE

The author's teleprinter is fitted with a 240 volt synchronous motor which is to be preferred since it requires no setting up of speed. The teleprinter is operated by a solenoid which requires a drive of $\pm 35 \mathrm{~mA}$ for MARK/SPACE. This is obtained in the circuit of Fig. 1 by switching the polarity of 24 volts across the solenoid using a relay. This voltage is high to allow the inclusion of a series resistor, R2, to maintain the switching speed of the solenoid, due to its relatively high inductance. The relay is driven by direct memory-mapped software control, such that writing to address F100 sends a MARK, and F101, a SPACE.

Power for the additional logic can just be derived from the: UK 101 five volt supply, since only an additional 20 mA will be drawn by the low-power schottky devices.

No constructional details, or circuits of the ± 12 volt supply, are given since these are not critical.

SOFTWARE

A disassembled listing of the program (produced via the described interface) with a hexadecimal dump of the look-up tables used by the program, is shown in Fig. 2, whilst the flowchart of Fig. 3 makes the listing understandable.

The program is located in the last 512 bytes of RAM of a UK 101 containing 8 K of RAM, and uses RAM between addresses 0222 and 0266 for temporary storage. The program can

easily be relocated for machines with less memory, and it is worth considering storing the routines in EPROM for convenience.

The routines provide the required ASCII to BAUDOT conversion by the use of a look-up table. A second table is used to increase the limited BAUDOT character set by overprinting BAUDOT characters. The characters so produced are demonstrated in Fig. 4, the overprinting being achieved by storing the BAUDOT codes to be overprinted in an array (0227 to 0266) and copying them at the end of a line of text.

Other features of the software include automatic lower case to upper case conversion, and the simulation of the TAB function (CONTROL I) to aid formating.

A memory map of the program, including the entry points for useful subroutines, is shown in Table 1.

BASIC OPERATION

The software has been designed so that with a change to the UK 101 output vector, address 021 A , the teleprinter can be brought into use. Thereafter the output is controlled by the SAVE flag, address 0205, with output directed to the teleprinter only when the flag is set.

The initialisation subroutine provides a routine to change the output vector, clear the temporary storage used by the program, and position the teleprinter at the start of a new line.

At the beginning of a BASIC program, with the printer routines loaded and protected, the procedure to output to the teleprinter would be:
1 POKE 11,0 : POKE 12,30 : X = USR(X) : REM INITIALISATION
2 POKE 517,1 : REM SET SAVE FLAG
3 REM ALL OUTPUT NOW GOES TO TELEPRINTER AND VDU.
In machine code applications the procedure is also simple:
JSR \$1E00 For initialisation.
Thereafter:
JSR \$1E1D Outputs the ASCII character in the accumulator to the VDU and, if the SAVE flag is set, to the teleprinter.

Table 1. Memory map.

ADDRESS
0222
0223
0224
0225
0226
0227

1F96
1 FDC

ADDRESS
1 E00
1E1D
1F46
1F4B
1F5F
1F71
1F7B
1F7F
1F8D

FUNCTION
Accumulator Temporary Store.
Character Count.
Overprint Character Count.
Delay Counter.
Figures Case Flag.
Array Of Overprint BAUDOT
Character Codes. (64
Locations.)
Start of Main Look-Up Table.
(Terminated by 00.)
Start of Overprint Table.
(Terminated by 00.)
SUBROUTINE
Initialisation Routine.
Main Printing Routine.
Send FIGURES Case \& Set
Figures Flag.
Output BAUDOT Code In Accumulator.
2 milli-second Delay.
Send LETTERS Case \& Clear
Figures Flag.
Output Space.
Output Carriage Return.
Output Line Feed.

mICRD PROMPT

The hardware and software exchange point for PE computer projacts

EXPANDING GROUP

We have received the first newsletter proper from the UK101 User Group, which is accumulating members in the British Isles and overseas.

The group is doing some important work now, such as investigating the "sticking" FRE function, which Adrian Waters, the club organiser points out, is the tip of a serious ice berg concerning string data storage. A complex sound board is nearing completion, whilst behind the scenes the program library is swelling with games and educational software, and new languages such as PILOT.

The Newsletter, ROM, carries software news, hardware modifications, useful ROM and RAM locations, i.e. routine entry points, and a problem page. Equipment reviews are to become a regular feature.

There is no entry fee, and the subscription for six months membership is $£ 2.50$, which should be made payable to Adrian Waters, at: 117 Haynes Rd., Hornchurch, Essex.

The following hardware modification was supplied by the 101 User Group, the details having originated from club member Mr. R. Freeman.

2 MHz conversion

In the normal machine, the clock frequency of 1 MHz is presented at pin 37 of the 6502 chip by the B output pin of IC29. Because the 6502 can accept a faster clock, many members have increased the speed of their machines by the following modification:

The 2 MHz signal can be obtained from pin 8 of IC29 and applied to the 6502 by the \varnothing line at pin 37. The conversion can be implemented by cutting the track of the p.c.b. as shown in Fig. 1 and substituting the new link. Many members have included a changeover switch, although this cannot be used whilst the machine is working. without getting "hung up".

MODEM TO TANDY?

Sir-Firstly, thank you for an excellent magazine, it rivals any we have in the States.

Secondly, I picked up a copy of your February 1980 issue and am very interested in the Modem article by K. Amor. After much difficulty / also obtained part 2 in the March issue-expecting to learn how to connect this System to my Tandy TRS8016 K Level II-only to be very disappointed. I would be very interested in any information you or your readers might have to offer. I would also be interested in exchanging hardware and software with any of your readers. Thank you.

From the desk of Bryan McPhee, Capt., USAF,
2742 Virginia Trail, Browns Mills,
N.J. O8015, U.S.A.

SHIFTY CHARACTERS

Sir-The following useful feature of the UK101 is not mentioned in your series of articles or the instruction manual:

With Shift Lock up, the keyboard returns lower case letters. To input a few upper case letters or figures, press L.H. Shift and the key for the character required (ie. L.H. Shift cancels the effect of Shift Lock being up).

To obtain the normally shifted characters (eg. ") then press R.H. Shift and the appropriate key.

Please continue to publish the very useful articles in Micro Prompt on this excellent machine.
K. W. Lambert.

Halesowen,
W. Midlands.

Sorry, we thought people knew-Ed.

GET KEY FOR UK101

To get a kev from the kevboard without stopping the program, as in the input statement, run the following program, then each time you require a "Get Key" statement write:
(Line number) A8 = "Space": POKE 11, 34 : POKE 12.2: $X=$ USR (X)
After this line $A 8$ will be a space unless a key was pressed, in which case 48 will be equal the character of the key which was pressed.

Any 8 variable can be used, including array's. This can be used to replace the 'GET A8' statement as used on the PET. To set up the subroutine:
10 FOR A = 546 to 597
20 READ B : POKE A, B : NEXT
30 DATA $169,2,32,190,252,32$
40 DATA 198, 252, 208, 7, 10, 208
50 DATA 245, $169,32,208,28,74$
60 DATA 32, 200, 253, 152, 133, 252
70 DATA $10,10,10,56,229,252$
80 DATA $133,252,138,74,32,200$
90 DATA $253,24,152,101,252,168$
100 DATA $185,207,253,160,0,41$
110 DATA $127,145,105,96,0$
Once run this program can be erased if. required.
J. L. Brice, Ashford, Kent.

ERROR MESSAGE ERROR

Sir-l am a UK101 user who has, like many, been frustrated by the rather graphic error messages. The result of this has been the following short program to produce "standard" Microsoft BASIC error messages:

Enter monitor
type . 0222/29 (carriage return)

7A	$"$
AC	$"$
2D	$"$
BF	$"$

Reset andenter BASIC̈.
Type: POKE 538, 34 : POKE 539, 2

All error messages will then be standard. The program works by masking off the most significant bit of all characters printed. The BASIC stored messages all have the MSB set on the last character, and it is the omission of an instruction to clear this bit which caused the original error messages. Considering the complexity of the BASIC, such an omission in the error routine is understandable, but I hope this will be corrected.

New error messages	
Syntax error	SN error
Double dimension	DD error
Division by zero	10 error
Undefined statement	US error
Undefined function	UF error
Bad subscript	BS error
Long string	LS eror
Out of memory	OM error
Overflow	OV error
Continue error	CN error
String tempories	ST error
Type mismatch	TM error
Next without FOR	NF error
Function call error	FC error
Illegal direct	ID error
Out of string space	OS error
Out of data	OD error

MAP READING

Sir-You may wish to pass on to your readers an error discovered in the memory map of the UK101, found whilst implementing an 6821 //O port, at a dedicated address.

The ACIA which resides at $F O D O$ - $F \varnothing \varnothing 1$ is due to page select decoding repeated at a further 127 locations through Hex page FO. The memory map should thus be amended to show that ACIA resides from $F \varnothing \emptyset \emptyset$ - $F \emptyset F F$.

Readers might also like to note that an unbuffered data bus, terminates in a patch pad with 0.1 inch pitch spacing, to the left of the AC1A chip i.c. 14. This can only be used with selectable tristate logic, but as most 6502 compatible support devices have this facility, the cost of the AT28's may be saved.
M. C. Mannering,

Walthamstow.

It's faster and more thorough than classroom learning: you pace yourself and answer questions on each new aspect as you go. This gives rare satisfaction - you know that you are really learning and without mindless drudgery. With a good self-instruction course you become your own best teacher.

Understand Digital Electronics

In the years ahead digital electronics will play an increasing part in your life. Calculators and digital watches mushroomed in the 1970's -soon we will have digital car instrumentation, cash cards, TV messages from friends and electronic mail.
After completing these books you will have broadened your career prospects and increased you knowledge of the fast-changing world

around you.
 DIGITAL COMPUTER LOGIC AND ELECTRONICS $£ 7.00$

This course is designed as an introduction to digital electronics and is written at a pace that suits the raw beginner. No mathematical knowledge is assumed other than the use of simple arithmetic and decimals and no electronic knowledge is expected at all. The course moves painstakingly through all the basic concepts of digital electronics in a simple and concise fashion: questions and answers on every page make sure that the points are understood. Everyone can learn from it
students, engineers, hobbyists, housewives, scientists. Its four A4 volumes consist of;
Book 1 Binary, octal and decimal number systems; conversion between number systems; Book 1 Binary, octal and decimal number systems; con
conversion of fractions; octat-decimal conversion tables.
Book 2 AND, OR gates; inverters; NOR and NAND gates; truth tables; introduction to Book 2 AND,
Boolean algebra.
Book 3 Positive ECL; De Morgans Laws; designing logic circuits using NOR gates; dual-input Book
gates. gates.
Book 4 Introduction to pulse driven circuits; R-S and J-K flip flops; binary counters; shift registers; half-adders.

DESIGN OF DIGITAL. SYSTEMS $£ 12.50$

This course takes the reader to real proficiency. Written in a similar question and answer style to Digital Computer Logic and Electronics, this course moves at a much faster pace and goes into the subject in greater depth. Ideally suited for scientists or engineers wanting to know more about digital electronics, its six A4 volumes lead step by step through number systems and Boolean algebra to memories, counters and arithmetic circuits and finally to an understanding of calculator and computer design.
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND, NOR and exclusiveNOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; karnaugh mapping; three state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control programme strueture.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Flow Charts and Algorithms

are the essential logical procedures used in all computer programming and mastering them is the key to success here as well as being a priceless tool in all administrative areas - presenting safety regulations, government legislation, office procedures etc.
THE ALGORITHM WRITER'S GUIDE $£ 4.00$
explains how to define questions, put them in the best order and draw the flow chart, with numerous examples.

Microcomputers are coming - ride the wave! Learn to program.

Millions of jobs are threatened but millions more will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation. Harder problems are provided with a series of hints so you
 never sit glassy-eyed with your mind a blank. You soon learn to tackle really tough tasks such as programs for graphs, cost estimates, compound interest and computer games.

COMPUTER PROGRAMMING IN BASIC

£9.00
Book 1 Computers and what they do well; READ, DATA. PRINT, powers, brackets, variable names; LET; errors; coding simple programs.
Book 2 High and low level languages: flowcharting; functions; REM and documentation; INPUT, IF....THEN, GO TO: limitations of computers, problem definition.
Book 3 Compilers and interpreters; loops, FOR....NEXT, RESTORE; debugging; arrays; bubble sorting; TAB.
Book 4 Advanced BASIC; subroutines; string variables; files; complex programming; examples; glossary.

THE BASIC HANDBOOK $£ 11.50$

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

FORTRAN COL OniFD BOOK £5.40
 "If you have to lear. TINUL. 110 one actually wants to assimilate it for the anr $\$, uy this book. Forget the others-this one is

 so gc- ${ }^{-}$S. .elp you understand the standard, dense, boring. uninte Dlexts." New Scientist.A.N.S. COBOL £4.40

The indispensable guide to the world's No. 1 business language. After 25 hours with this course, one beginner took a consulting job, documenting oil company programs and did invaluable work from the first day. Need we say more?

GUARANTEE - No risk to you

If you are not completely satisfied your money will be refunded on return of the books in good condition.

Please send me:
...Digital Computer Logic \& Electronics @ $£ 7.00$
.Design of Digital Systems @ £12.50
..Algorithm Writer's Guide @ £4.00
Computer Programming in BASIC @ $£ 9.00$
....BASIC Handbook @ £11.50
....Fortran Coloring Book @ 55.40
....A.N.S. Cobol @ £4.40
FOUR WAYS TO PAY:

1) A U.K. cheque or a U.K. postal order (Not Eire or overseas)
2) A bank draft. in sterling on London bank (available at any major bank)
3) Please charge my Access/M.Ch \square Barclay/TrustC/Visa \square Am. Exp. \square Diners \square 4) Or phone us with these credif card details - 0480 67446 (ansaphone) 24 hour service

Card No..
THESE PRICES COVER THE COST OF SURFACE MAIL WORLDWIDE. AIRMAIL: Eup, N.AF Mid.E, add $1 / 3$ to price of books: Jpn. Aus, N.Z. Pcfc add \%h: elswohere add $1 / 2$

Name

Addrass
U.K. Delivery: up to 28 days CAMBRIDGE LEARNING,
Unit 24 Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR England.

Reg, in Eng. No. 1328762

PART 2... TUNER \& DECODER

N common with all teletext decoders, the Mullard module requires a high quality video signal from which the information is extracted. Since most readers will have little or no experience of working at TV i.f. frequencies (around 40 MHz) and insufficient test equipment, the use of a pre-aligned signal section becomes almost mandatory. The solution chosen is shown in block diagram form in Fig. 2.1.

The tuner is the Mullard U321 which is specifically designed for use in the UK. It features a PIN diode attenuator to provide very good signal handling when the signal from the aerial is too large and the a.g.c. system comes into operation. It is used by several TV setmakers and is thus readily available.

The i.f. section is that used in the Philips G11 TV chassis and comprises two modules which are soldered directly onto the p.c.b. The i.f. output from the tuner is applied to pin 1 of the vision selectivity module (VSM). This, as its name implies, carries out the required bandshaping to produce the correct response as determined by the specification of the broadcast signal in the UK. The output from this module is applied to pin 1 of the vision detector module (VDM). This detects the signal to produce a video output; generates an automatic frequency control (a.f.c.) signal which is externally added via R31 to the tuning voltage to counteract any tuning drift; generates an a.g.c. current which is applied to both the vision selectivity module and to the tuner; filters to the 6 MHz intercarrier sound signal which is added to the modulator since the video signal is stripped off this inside the module. Other filtering which is performed by this module is not of interest to us.

Turning our attention to the circuit diagram shown in Fig 2.2, it can be seen that the way the tuner and two modules are interconnected forms an extremely simple i.f. section with very few peripheral components. It runs from the stabilised +.12 V rail which is decoupled at r.f. and I.f. by R29, C11 and C13. The a.g.c. signal to the tuner is decoupled by C14 and C12 and current limited by R32. As mentioned earlier, a.g.c. is applied to both the i.f. pre-amplifier and to the tuner. The latter control signal is delayed, i.e., a.g.c. is gradually applied to the i.f. section first and when this reaches a certain point it is then also applied
to the tuner. This point is called the a.g.c. takeover point and is determined by the setting of VR1 in conjunction with D1.

The a.f.c. signal from pin 7 of the VDM is added to the tuning voltage via R31. Resistors R33 and R34 determine the quiescent voltage (around $5 \cdot 7 \mathrm{~V}$).

Turning our attention to IC1, this is a b.c.d. to 1 or 10 decoder/varicap driver which is operated from the stabilised 33 V rail. Only four of the available channels are used in our design. The i.c. decodes the four-bit word according to the table below:

A	B	C	D	O/P
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
0	0	1	1	4
0	1	0	0	5
0	1	0	1	6
0	1	1	0	7
0	1	1	1	8
1	0	0	0	9
1	0	0	1	10

When a channel is decoded, the output of the SL470 goes high and connects the appropriate tuning potentiometer to the +33 V stabilised supply. The tuning voltage is applied to the varicap diodes in the U321 tuner via R30.

The SL470 is driven by the buffer IC3 (4050).

> heitainkial tot tiod 10

SETTING UP

It is imperative that no attempt is made to adjust any of the coils in the tuner or modules. In fact the only adjustment to be made is the a.g.c. crossover point. This is done by tuning into a station and adjusting VR1 until the picture becomes slightly noisy (snow). The control is then backed off until the noise disappears and then backed off a little more from that point.

EC10
Fig. 2.1. Block diagram of the Tuner

Fig. 2.2. Circuit diagram of the Tuner Circuit

CONSTRUCTION

The p.c.b. design for the tuner is shown in Fig. 2.3 with the component layout in Fig. 2.4. The smaller components should be mounted first and the tuner, VSM and VDM mounted last. There is a wire link which should be fitted near one end of IC4.

The eleven connections from the tuner can be wired using ribbon cable. After soldering check the board carefully for any solder splashes and if everything is alright insert the two i.c.s.

DECODER

The circuit diagram of the decoder unit is shown in Fig. 2.5. The decoder has been designed around four dedicated LS1 integrated circuits. The main functions of the four i.c.'s are:

[^2]Fig. 2.5. Circuit diagram of the Decoder Board. Note that the decoupling capacitors C37 to C46 are not shown in the diagram

Fig. 2.3. P.c.b. design of the Tuner

Fig. 2.4. Component layout

Fig. 2.6. Component layout of the Decoder Board. Note C32 is not used on the supplied board

[6639]
Fig. 2.7. Circuit diagram of the Daughter Board

Fig. 2.8. P.c.b. design for the Daughter Board

COMPONENTS
 DAUGHTER BOARD

Resistors

R54, R55, R56

R57
Diodes
D14 to D19
Sockets
SK2 P.c.b.

5 k 6 (3 off) 4 k 7

BAW 62 (6 off)

21-way socket

Fig. 2.9. Component layout

Resistors	
R25, R26, R27, R28	4 k 7 (4 off)
R29	$4 \Omega 7$
R30	47 k
R31	2 M 2
R32	120
R33	56 k
R34	270 k
R35	5 k 60.5 W
R36	470 k
All resistors $\frac{1}{4} \mathrm{~W}$	5% carbon except where otherwise
stated.	

Capacitors

C10, C11
C12
C13.C14
C15
Semiconductors D8
D9
D10 to D13
IC3
IC4
Potentiometer
VR1
VR2 to VR5
Miscellaneous
Tuner 31131086246
VSM 311310825350
VDM 311310825330
P.c.b.

100 n (2 off)

220n
$220 \mu 16 \mathrm{~V}$ (2 off)
2 n 2

B2X 83 C3V9
TAA 550
IN4148 (4 off)
4050
SL470

2k2 preset
100 k tuning pots (4 off)

The TIC, TAC and TROM i.c.'s are MOS N-channel devices whereas the VIP is a monolithic bipolar type.

The decoder has two main functions: to extract the teletext data from the incoming video signal and to process it, writing the page data into memory this function uses the VIP and TAC chips. The second function is to convert the information in the memory into a video signal to display the text on the screen. The generation of characters is carried out by the TROM and the TIC provides all the timing signals from the TIC which are synchronised to the incoming video signal so that the text and television picture may be displayed together.

The video signal from the Tuner board is fed to pin 16 of the VIP via a coupling capacitor (C16). The VIP has two separate sections: a data retrieval section and a display clock generator.

The incoming video signal contains picture, sync and teletext data which is sliced and then the teletext information extracted. A clock signal is generated from the sliced data using the tuned circuit connected to pin 21. This signal (F7) is used to clock the data into the TAC chip.

The 6 MHz clock oscillator (pins 8,9) has its output (pin 6) taken to the TIC chip where it is used to provide a clock pulse every $64 \mu \mathrm{~s}$. This pulse is then passed back to the VIP where it is compared with the incoming line sync signals. This enables the timing system of the teletext display to be phase-locked with the incoming television picture signal.

DECODER

Resistors	
R37, R41, R50	$1 \mathrm{k5}$ (3 off)
R38	100 k
R39	680
R40, R49	$1 \mathrm{k}(2$ off)
R42, R43, R48	$6 \mathrm{k} 8(3$ off)
R44	33 k
R45, R46, R47	$1 \mathrm{k} 2(3$ off)
R51, R52, R53	470 (3 off)

All resistors $\frac{1}{4} \mathrm{~W} 5 \%$ carbon

Capacitors

C16, C29, C31	$1 \mu 25 \mathrm{~V}$ (3 off)
C17,C34, C35, C36	$1 \mathrm{n}(4 \mathrm{off})$
C18, C27	$10 \mu 25 \mathrm{~V}$ (2 off $)$
C19, C28	$330 \mathrm{p}(2$ off $)$
C20, C32	$100 \mathrm{n}(2$ off $)$
C21	47 p
C22, C24	$5-65 \mathrm{p}(2$ off $)$
C23, C25	$10 \mathrm{n}(2$ off $)$
C26	68 p
C30	$3 n 3$
C33	$68 \mu 25 \mathrm{~V}$
C37 to C46	$100 \mathrm{n}(10$ off $)$

Semiconductors

IC5	SAA 5030
IC6	SAA 5040
IC7	SAA 5020
IC8	74 SS02
IC9	74 LS83A
IC10, IC11	74 LS161 (2 off)
IC12, IC13	2614 (2 off)
IC14	SAA 5050

The PO (picture on) output to the 5012A, 5030 and 5050 from the TAC is used to switch the television video on or off (a 'high' for picture on and a 'low' for picture off).

A 'high' DE (display enable) output to the TROM enables the teletext display whilst in its 'low' state the display is disabled.

The $\overline{\mathrm{BCS}}$ (big character select) output to the 5020 and the 5050 is used to select the double height characters. A 'high' output is used for normal characters and a 'low' for double height characters.

The T/B (top/bottom) output to the 5020 (pin 18) selects whether a top or bottom half page is selected (a 'high' for top, and a 'low' for bottom).

The three state outputs for the memory addresses (pin 23 to 27) AO to A4 specify in which of the 24 screen rows the teletext data is to be written.

TIC SAA 5020

The 6 MHz clock signal (F6), which is used to derive the basic timings from the teletext display, is fed to pin 2 of the TIC from pin 6 of the 5030. This signal is sub-divided by the TIC down to 25 Hz , the frame rate of the television to generate all the timing signals for the teletext display.

The F1 output (pin 4) is a 1 MHz clock signal for the TROM and the TAC chips. The television display is synchronised by the internally generated sync signal $\overline{\text { AHS }}$ (after hours sync) output from pin 5. The CRS (character rounding select) output signal is required for correct character rounding of the small characters within the character generator.

The internal data processing and sync circuits of the VIP are reset using the $\overline{\mathrm{CBB}}$ (colour burst blanking). The internal control character flip-flops of the TROM chip are reset at the
start of each display line by the LOSE (load output shift register enable) output from pin 13.

TROM SAA 5050

The basic input to the TROM is character data from the teletext page memory. This is in the form of a 7-bit code which is fed to pins 4 to 10 . The TROM converts the data into a dot matrix pattern. The character generator ROM (4.3K bits) generates 96 alphanumeric and 64 graphic characters.

The video output signals consist of a monochrome output (pin 21) and red, green and blue signals (pins 24, 23, 22) which contain both character and background colour information. A blanking output signal is provided to blank out the television video when a newsflash or subtitle is displayed.

CONSTRUCTION

The decoder board is supplied ready built, tested and aligned. Before the board is installed the three wire links shown in Fig. 2.6. should be soldered. Check these wires carefully. The wiring for the decoder is also shown in Fig. 2.6. but it is recommended that constructors leave the wiring of the system until all the boards have been assembled.

DAUGHTER BOARD

The decoder board is interfaced to the video summer board via the interface circuit shown in Fig. 2.7. The RGB oufputs from the TROM have pull-up resistors to 12 V with catching diodes to prevent the outputs rising above 5 V . These outputs are then diode ORed together and produce a current via R57 which is then added to the luminance channel at the delay line input on the summer board.

The daughter board is mounted on the p.c.b. shown in Fig. 2.8. with the component layout shown in Fig. 2.9.

NEXT MONTH: VIDEO SUMMER AND P.S.U.

Marshalls

Build the P.E./Marshall's Teletext Project and convert your standard colour television receiver to receive Teletext and Oracle. We can supply either a complete kit of parts at $£ 200$ inclusive of VAT/postage \& packing, alternatively kits of parts for the various sub assembly as follows:

1. Transmitter
£19.00
2. Receiver
3. Decoder (supplied as a complete unit)
4. Summer Board
5. Tuner
6. Power Supply
7. Hardware and other parts
£13.00
$£ 87.00$ All prices inclusive of VAT, £27.00 postage \& packing.
£60.00
£16.00
£ 9.00

We accept American Express: Access: Barclay Card: Diners Card: also our own Marshall's Credit Charge.
Phone your order now to Margaret O'Donnell on 01-624 0805

Get a great deal from
 Marshall's

High Quality Electronic Musical Ingtruments under the personal super vision of Specialiat Designer A. J. MAN.

Six and $7 t$ O 88 PIANOS
unique $7 \frac{1}{4}$ Octave Electronic Pianos with P.E. JOANNA, which electronically simulates any other design. Build this widely aclalmed professional instrument, for either domestic or Stage use, from our top quality Compo-
nent Kits
SIX OCTAVES - £207
P.E. STRING ENSEMBLE

The versatile String Synthesizer with a fan tastic sound at an economic price. Split Kevboard facility with a range of impressive COMPONENTKIT - E169
P.A.'s - SPEAKERS - CABINETS Units can be supplied to add to the Piano Stage Cabinets and portable tubular legs.

ELECTRONIC ROTOR

Two speed organ rotor simulation plus a three phase chorus generator on a single c. sockets throughoul/mains operation and stereo headphone. Driver p.c.b. Easily integrates with existing organ.

COMPONENT KIT - £89

KEYBOAARDS

We believe that we have located the bes manufacturer of square front Keyboards, as used in our Kits, and can also supply Keyswitch hardware including the

$\begin{array}{ll}49 \text { NOTE C-C } & £ 23.80 \\ 73 \text { NOTE F-F } & £ 37.00\end{array}$
 73 NOTE F-F $\quad £ 37.00$

All Keyboards are easily cut to provide your aquired length and compass. Quantity en quiries welcome.

UUILOING SERVICE
We are specialists in Electronic Plano Manufacture and can build your Piano for you - see lists.

INFORMATION

Please send S.A.E. quoting items of interes elephone BARCLAYCARO orders can be accepted, all prices include V.A.T.. carriage \& Insurance.
VISITS
Are welcome by appointment, otherwise Mall Order Only.

EXPORT

Enquiries welcome - in Australia please conract JAYCAR (Sydney).
Back up TELEPHONE advice is available from the Designer to supplement the clear instructions included with the above Kits

CLEF PRODUCTS (ELECTRONICS) LIMITED

$4 \mathrm{i} \mathrm{in} \times 3 \mathrm{tin}$ METER. $30 \mu \mathrm{~A}, 50 \mathrm{\mu A}$ or $100 \mu \mathrm{~A}, \mathbf{£ 5} \mathbf{1 0}$. 50 p P. \& P.

MICROPHONES FOR TAPE RECORDERS DM228R 200 ohm with 3.5 and 2.5 mm Jack Plugs $\mathbf{£ 1 . 7 0}$ DM229R 50 K with 3.5 and 2.5 mm Jack Plugs DM18D 200 ohm with 5 and 3 pin Din Plugs fi99 Postage on above microphones 17p

CARDIOID DYNAMIC MICROPHONE

Model UD-130 Frequency response $50-15,000 \mathrm{c} / \mathrm{s}$. mpedance Dual 50 K and 600 ohms. £8.02. 50p P. \& P.

2 in $\times 2$ in meters $500 \mu \mathrm{~A}, \mathbf{£ 4 . 1 4}$ 17p P.\& P.
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $500 \mu \mathrm{~A}$ and 1 mA VU meter, $£ 4.00$ 26p P. \& P.

6 V BUZZERS. 50 mm diameter 30 mm high, 52p. 15 p . P. \& P.

MULTI- METER

$7 \mathrm{~N} \quad 360 \mathrm{TR}$ 20,000 ohm/volt RESISTANCE
RANGES
$\mathrm{X} 1, \mathrm{X} 10, \mathrm{X} 1 \mathrm{~K}$. X10K
£13.30
P.\&P. 75p

TRANSFORMERS Primary 240 V		
6-0-6V	100 mA	c0. 75
9-0-9V	75 mA	¢0.75
12-0-12V	50mA	¢0.85
12-0-12V	100 mA	18.05
Post on above transformers $45 p$.		
$9-0-9 \mathrm{~V}$	1 A	E1.80
12-0-12V	1 A	c2. 15
15-0-15V	1A	£2.51
30-0-30V	1A	£3. 10
6.3 V	$1 \frac{1}{1} \mathrm{~A}$	¢1. 80
6-0-6V	$1 \frac{1}{2} A$	¢2. 20
Post on above transformers 75p.		

PL258 Plug 33p; Socket 33p; PL259/SO239 Angled Connector
70p; 1 watt dummy lead 95p; 2m Rubber Neck Aerial with PL259 Plug $£ 3.30$.

POST ON ABOVE ITEMS 14p.
All above prices include V.A.T. Send 40p for new 1980 fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.

158 Bradshawgate - Bolton • Lancs. BL2 1BA

Copies of Patents can be obtainad from: the Patent Office Sales, St. Mary Cray, Orpington, Kent. Price £1.25 each.

There is now a serious world shortage of cobalt metal. This is largely due to the fact that cobalt is produced as a by-product of copper mining and most of the cobaltcopper ore mines are in Central Africa where the political situation is very unstable. The milltary and aerospace have first call on cobalt because it is an essential ingredient of high temperature alloys, as used for instance in jet engines. Loudspeaker manufacturers have for years used cobalt alloy magnets, for instance Alnico (aluminium-nickel-cobalt), because it offers high flux density. In turn this facilitates low leakage design by potting a compact magnet in a shield. In a colour TV set flux leakage sours the picture colours and hence potted cobalt magnets have been used almost exclusively in colour TV production. But the rising cost of cobalt has stimulated research into alternative approaches.

Two recent patents reflect this research and the worldwide trend away from cobalt as a magnetic material. UK patent application 2031 247, filed under the New Laws by Hokuto Onkyo Co. Ltd. of Tokyo and dating from 3rd October 1978, contains a legally very broad claim to the basic concept of potting ferrite instead of cobalt. Figures 1 and 2 show known, but supposedly unsatisfactory, designs in which a ferrite magnet 10 is shielded by a pot or cup. Figure 3 shows the Onkyo design. Yoke 1 houses ferrite magnet 2. Pole 3 extends through a gap in the yoke 1 which also houses voice coil 5 . The pole 3 has a cylindrical part 3a which merges into a tapered or frusto-conical part 3b. According to the rather vague wording of the patent this construction, along with the gap formed between pole cylinder 3a and yoke 1 . decreases permeance between the pole and yoke. The greater the sectional area of the magnet the easler it is to keep the permeance low. The inventor claims that this decreased permeance reduces flux leakage, making the magnets suitable for use in a colour TV loudspeaker.

Fig. 1

Fig. 2

Fig. 3
A similar claim is made by a Danish inventor in UK patent application 2034154, (which was filed under the New Laws) and dates back to October 1978. Although the aim is the same the approach is different. Figure 4 shows a known Alnico design. Central rod 4 is a permanent Alnico magnet inside a cylindrical pot 6. The Alnico rod backs onto base disc 2 and pole disc 18. As the inventor points out, such a compact fully shielded design has been possible because the Alnico rod 4 can be small due to the high magnetic efficiency of cobaltbased materials. But ferrite is less efficient and this makes similarly compact designs of inadequate magnetic strength. The new design is shown in Figure 5. A large ring 4 of ferrite is housed in a pot 6 which is integrated with rear pole disc 2 . Front pole piece 18 is slightly larger than the ring
magnet 4 and the whole combination is mounted in a cup 22. An alternative design, based on a solid disc magnet 4 is shown in Figure 6. The point of the invention is that the voice coil 12 is of much larger diameter than usual. This enables the large ferrite magnet to be used inside a pot rather than around the voice coil as an annular magnet. Again the claim is to a loudspeaker with insignificant flux leakage.

Fig. 4

Fig. 5

Fig. 6

LA
AST month the general principles of the GEB detector were explained, and construction of a machine began with a p.c.b. comprising power supply, auto-tuning and output stages. This month the remainder of the construction will be covered.

SEARCH COILS

It's best to begin by winding the search coils, which will be required for testing the front-end circuit board at various stages. The Magnum uses a pinpoint coil, for reasons explained last month; these are slightly harder to make than widescans but the results obtainable are well worth the effort. The coil assembly is based on a $10 \mathrm{in} \mathrm{dia}$. 'Melaware' plate, made from a very rigid plastic, obtainable from most stores selling picnic tableware.

The inside of the plate is thoroughly roughened with glásspaper to enable glassfibre resinto stick to it, and two ' L ' shaped plastic brackets are bolted to the top as in Fig. 6. These were cut from a thick, strong square-shaped clip intended for mounting square section plastic drain pipes to exterior walls, obtained from a local builders' merchants. They are bolted to the plate with 2BA countersunk screws with the heads inside, so nothing protrudes to foul the coils. A hole is drilled just behind one of the brackets to allow a 4core screened cable to pass through.

The two coils are wound on pins pushed into a suitable board. The larger transmitting coil is made with just five pins positioned as shown in Fig. 7a, on which 60 turns of 32 s.w.g. enamelled copper wire is wound. It can be tied temporarily with a few twists of wire and removed from the pins--this is fiddly but not too difficult-bent to the shape of Fig. 7b, and bound tightly with a spiral of thin bare wire such as 5 amp fusewire, leaving a loóp near the lead wires for use as a connection. Remove the temporary ties as the binding proceeds. A strip of aluminium cooking foil is then wrapped over the bare wire to form a Faraday shield, and this is held in place with another tight binding of the bare wire. Note that both wire bindings and the foil must have a gap-this is most important, as if the Faraday shield were allowed to form a complete 'turn' around the circumference of the coil it would render it, useless.

PICKUP COIL

The pickup coil is made in the same manner, consisting of 200 turns of 36 , s.w.g. enamelled copper wire wound around 16 pins placed in a 4 in diameter circle. Faraday shielding is fitted as on the transmitting coil, again with the all-important gap.

The transmitting coil can now be fixed in place on the former using a small quantity of fibreglass resin. A Holts' 'Fibreglass Repair Kit', obtainable from motoring accessory
shops, was used in making the prototype. The coil is best fixed in stages, using clothes pegs and weights to keep it in place as necessary. Apply the resin with a soft brush and have a jar of cellulose thinners handy to dunk the brush into the moment it starts to 'gel'. Push the 4 -core screened lead through the hole in the plate, connect the coil leads to two of the cores, and the Faraday shield to the screens. It can be difficult to keep the lead in place whilst the resin sets; one way of doing this is to drill two tiny holes on each side of it and secure it flat against the plate with a couple of twists of thin wire. The pickup coil is not fitted at this stage.

FRONT-END PCB

Start building the 'front-end' circuit board by fitting all the links. Then fit R1 to 3, C1, 2, and 26, D1, and TR1. Hook up the transmitting coil and apply power from the supply board. Continue using a resistor in series with the 18 volt battery in case any faults arise during tests, as described last month. The transmit oscillator should now be running, at between 15 and 16 kHz . This can be checked by placing a radio tuned to a weak longwave station very close to the coil-faint whistles due to harmonics of the transmitted signal beating with station carries should be present. Faint is the word, however, as the Magnum's oscillator produces a very clean signal. This and other parts of the circuit can be more easily checked with a 'scope of course, but if you have one you'll probably have realised this anyway.

Next fit R4 to 13, C3 to 8 and IC1. Apply power and check that IC1's d.c. output voltage (at pin 6) is equal to 5.6 V . Fit IC2, apply power and check IC2's d.c. output is $5 \cdot 6 \mathrm{~V}$. Fit IC3, hook up VR1 across points I and J, VR2 across points G and H, and fit some lengths of wire so that point M may be shorted to points K or L, and short one of these. It doesn't matter which at this stage. Apply power and check that IC3's d.c. output (pin 6) is $5 \cdot 6 \mathrm{~V}$. The output of IC2 should actually be switching from rail to rail at the oscillator's frequency but the average value of output should be $5 \cdot 6 \mathrm{~V}$. A fault will usually result in its being fully driven to one of the supply rails, so this is a useful test. Check that settings of VR1 (M shorted to L) and VR2 (M to K) makes little or no difference to IC3's output voltage.

It might be of interest to explain that in the original design, the pots were connected directly as they are in this test, and a 2-way switch was fitted to M, K and L. This provides 'Ground Reject' (VR2) and 'Discriminate' (VR1). However, on the first beach outing it was found that the 'Beach Effect' could only be rejected with the 'Discriminate' control: a predictable effect since beaches are usually conductive. This prevented the discrimination from being used to reject foil, of which large amounts are to be found on most beaches. To overcome this problem the switching was

FRONT-END BOARD
rearranged to provide a third 'Beach' position, in which VR2 is effectively switched into the discriminate circuit instead of the ground one. Thus VR2 can then be used to reject false signals from wet beaches in the same way as from ground, whilst VR1 can once again be used to check finds as intended.

Continue the construction by fitting R14 to 21 , C9 to 12 and TR2. Connect the pickup coil temporarily, apply power and check that the emitter voltage of TR2 is approximately 0.6 volts above the negative rail. Fit IC4, apply power and check IC4's output voltage (pin 6) is 5.6 V . Fit IC5, apply power and check that the output of IC5 is also $\mathrm{V} / 2$.

Fit R22 to 28 and C13 to 15 . Fit IC6, observing the usual CMOS handling precautions for this chip. Place the pickup coil in approximate position over the transmitting coil, apply power and monitor the top end of R22 with a meter. The voltage present should be somewhere between 2 and 8 . volts and should alter if VR1 or VR2 (whichever is selected by shorting M to K or L) is moved. Adjust the pickup coil position to obtain 5.6 V at the top end of R22. Note that the Faraday shields of the coils shouldn't touch even though they are both connected to the lead screens: if they touch on

both sides they can form a 'shorted turn' in the middle of the assembly. Small pieces of card should be placed between them to prevent this from happening.

Fit IC7, check it's output is the same as that at the top of R22, i.e. 5.6 V . Fit IC8. Check 5.6 V is still present at IC7 pin 6 -if not adjust coil position. Then check that $5 \cdot 6 \mathrm{~V}$ is also present at the output of IC8. This completes the construction of the front-end p.c.b.

HARDWARE ASSEMBLY

The rest of the hardware can be constructed next. This is made mainly from $\frac{3}{4}$ in diameter plastic plumbing pipe and fittings, assembled as shown in Fig. 8. It's simply glued and pushed together, making a very presentable handle and stem in a surprisingly short time. Wood dowelling is inserted at strategic points of the stem to prevent it from flattening when bolts are passed through it and tightened. The search coil is fixed by a length of studding passing through the two brackets and the end of the stem, with a wingnut at each end, so that it's tilt may be easily adjusted by the user. The control box base is secured to the shaft with two bolts, and the tuning button is fitted into the end of a bicycle handlebar
grip which is then pushed onto the plastic pipe, threading the wires through the pipe to emerge through a small hole close to the control box.

CONTROL BOX ASSEMBLY

The electronics now have to be assembled into the control box. The top should be cut to accept meter, pots and switch in the layout shown in Fig. 9. Note that the top only fits the base one way round before starting this! A pattern of holes can be cut in one of the aluminium side panels to act as a speaker fret, the speaker being glued into place. A clip to hold the three PP3 batteries is fashioned from sheet

Fig. 6 (left). Search plate mounting assembly
Fig. 7 (right). (a) Winding the transmitting coil; (b) Transmitting coil bent to shape; (c) Pick-up coil; (d) Positioning the coils
aluminium and wood and bolted to the same panel, and to the ends of the bolts a piece of Veroboard is attached to act as a conneccting block for the leads from the batteries and tuning button. Four 4BA bolts passing up through the base of the box act as stand-off pillars on which the two p.c. boards are mounted one above the other, the front-end board being uppermost.

The best way to make all the connections to the boards is with ribbon cable, soldering this to them before fitting them into the case and noting the poit to which each coloured wire goes. A headphone socket is optional: if required it may be connected as shown in Fig. 5. 'R' will have to be selected for the phones to be used, in the prototype a value of 100 ohms was found to be suitable. A 5-pin DIN plug and socket was used for the coil lead, whilst not strictly necessary this does allow for experimenting with different coils at a later date.

The box specified is supplied with feet which were discarded, the securing bolts being shortened a little to compensate.

SETTING UP THE SEARCH COILS

When all the components have been wired up the final tricky part has been reached; the setting up of the search coils. This must be done with metal parts such as the securing bolt and wing nuts in place, though there is no need to have the coil assembled to the stem. There should be no large metal objects close to the coil during this stage. This might also be a good time to mention that the machine can be affected by line timebase radiation from 625-line TV sets, so if you get a 'mushy' sound or a pulsed audio effect from it, check this first. Coil adjustment is actually not as critical as it is for a normal IB machine, but there is a best point and for a GEB machine it is the position where absolute minimum residual amplitude output (and maximum phase shift effect) is obtained from the pickup coil. (Conventional IBs usually work best with a slight 'offset' from absolute null.) This cannot be monitored with the phase sensitive detector in the machine itself, so the circuit of Fig. 10. should be lashed up and connected to IC4 output (top end of R19) and used with

consists of adjusting the pickup coil position for absolute minimum output from the amplitude monitoring test circuit, use resin to stick it down in stages, rechecking the adjustment at each stage. Final fine trimming can be done with only a small section of the pickup coil still moveable.

After the positioning of the coils has been completed the coils can be given a coat of resin, followed by a layer of chopped strand glassfibre mat and more resin, which produces a search head assembly that is neat, tough and totally waterproof. One word of caution; don't use more resin than you have to or the finished head may be heavier than necessary.

FINAL ASSEMBLY AND TESTS

All the test components can now be removed and the machine finally assembled and tested. If you've never used a GEB machine before, you're in for some pleasant surprises.

On switching on, the meter should self-zero within a couple of seconds and the tuning control should then be set just below the threshold of the audio tone. The sensitivity of this machine is quite incredible; on most inland sites you'll probably need to keep the sensitivity control set to around mid-point. With the switch in 'Ground' position, a point can be found on the 'Ground' control where moving the head to and from the ground has no effect whatever-on one side of this point there will be positive ground effect, on the other negative, so it's not difficult to find. Adjusting this control for wet beaches is the same, except that the switch should be set to 'Beach'.

Fig. 10. Circuit for setting up search coils
the 1 volt range of a testmeter to facilitate setting up minimum amplitude.

Set VR1, VR2 and VR3 to mid-point. Switch to 'Discriminate' and switch on. The meter monitoring amplitude will probably indicate full scale. Carefully adjust the pickup coil position until the reading falls-this may take some patience as it's easy to push the coil right past the null position without noticing it if you're too hasty. Remember to keep those Faraday shields apart! Once you have the coils somewhere near the null, try presenting metal objects to the coil whilst watching the centre-zero meter. A non-ferrous object such as a copper coin should cause it to rise, whilst a ferrous object such as a nail should cause a fall. If the opposite happens the phase of the pickup coil must be reversed, either by turning it over or by reversing its lead connections.

Once correct coil phase has been established setting up

Once an object has been located, the machine should be switched to 'Discriminate' and the nature of the object determined. A certain amount of ground effect will be apparent in this mode, depending upon the actual terrain being searched. Ferrous objects produce a negative response at all settings of the discrimate control, but as this control is advanced so the machine will begin to reject small pieces of silver paper, then larger pieces, thick foil, and finally pull rings. It should be noted that in the pull-ring reject setting, however, it will also reject silver coins up to about 10p size. All discriminators suffer from this problem; but the ability to reject scrap iron and foil without difficulty is an absolute boon. Some practice with assorted objects-coins, nails and scraps of foil etc., is recommended before setting forth with this machine.

The tuning 'Hold' button will be found necessary for discriminating and for pinpointing the exact position of finds.

So, Good Hunting! Don't forget you need a licence for your detector: application forms for this can be obtained from: The Home Office, Radio Regulatory Dept., Waterloo Bridge House, London SE1.

AITKEN BROS
35, High Bridge, Newcastle upon Tyne

Tel: 063226729

EXP300

PB6 Kit

EXP300
550 contacts with two 50 -point BUS bars. Size $152 \times 53 \mathrm{~mm}$. $\mathbf{£ 6 . 9 5}$. PROTO-BOARD 6 KIT
630 contacts, four 5 way binding posts, accepts up to 614 pin DIPs. $\mathbf{1 0 . 9 8}$

CSC LOGIC PROBES

LP-2 ECONOMY PROBE

Min. pulse width 300 nanoseconds, $300 \mathrm{~K} \Omega$ input impedance, tests circuits up to 1.5 MHz . Detecting pulse trains or single-shot event in TTL. DTL. HTL. and CMOS circuits. $\mathbf{£ 2 0 . 9 6}$.
$\begin{array}{ll}\text { LP-1 Memory Probe } \\ \text { LP-3 } & \text { High Speed Memory Probe }\end{array}$ CSC cetalogue availsble. Please send S.A.E.

CALSCOPE SUPER $6 \quad \mathbf{1 8 6 . 3 0}$

A portable single bearn 6 MHz bandwidth oscilloscope with A portable single beam 6MHz bendwidth oscilloscope with easy to use controls. Migh gain to $10 \mathrm{mv/cm}$ and wide time quest. Please send S.A.E.' Professional scopes you can afford.

CALSCOPE SUPER 10 £251.85
A dual trace 10 MHz insirument of the very highest performance and quality. It has an accuracy of 3% which is achieved by the use of buitt-in stabilised power supplies which keep the trace rock steady over a wide range of mains fluctuations. Full specification on request. Plesse send S.A.E.

SINCLAIR LOW POWER PORTABLE

OSCILLOSCOPE SC110 £159.8
The SC1 10 has a 10 MHz bandwidth and sensitivity down to 10 mV per division. Full trigger facilities are provided, including bright line, auto with TV line and frame positions. Please send for full spec. and illustrated brochure.

TMK 500 MULTIMETER 30,000 o.p.v. AC volts $2 \cdot 5,10,25,100,250,500,1000$. DC volts. volts $2 \cdot 5,10,25,100,250,500,1000.0 C ~ v o l t s . ~$
$0.25,1,2 \cdot 5,10,25,100,250,1000$. DC current $0.25,1,2.5,10,25,100,250,1000$. DC current $50 \mu \mathrm{a}, 5 \mathrm{MA} .50 \mathrm{MA}$, 12 amp . Resistance $0-6 \mathrm{~K}$. 6OK, 6 MEG , 60 MEG . Decibels. -20 to +56 db . Buzzer continuity test size, $160 \times 110 \times 55 \mathrm{MM}$. Batteries \& leads
PRICE £25.95.

CSC EXPERIMENTOR BREADBOARDS
No soldering modular breadboards, simply plug components in and out of letter/number identifled nickel-silver contact holes. Start small and slmply snap lock boards togather to build breadboerde of any size.

SINCLAIR DM350

£83்.95 SINCLAIR DM450 $£ 114.95$

Size $265 \times 148 \times 40 \mathrm{~mm}$
DM350 $3 \frac{1}{2}$ digit display DM45 $4 \frac{1}{2}$ dight display. Both provide six functions in 34 ranges. D.C. voltage 10 NV to $1200 \mathrm{~V}(100 \mu \mathrm{~V}$ on DM350) A.C. voltage $100 \mu \mathrm{~V}$ to 750 V . D.C. curremt InA to 1OA. A.C. current InA to IOA resistance 10 mQ io $20 \mathrm{M} \Omega$ ($100 \mathrm{~m} \Omega$ opn DM350). Accessories for OM350 \& 450 as for DM235 below. Full spec. on request. Please send S.A.E.
Sinclair PFM200 frequency meter
Size $157 \times 76 \times 32 \mathrm{~mm}$.
Range 20 Hz to 200 MHz . Accessories and illumtration as for
PDM35 below. 557.95 .

SINCLAIR PDM35

DIGITAL POCKET MULTIMETER
DC volts 14 ranges) 1 mV to 1000 V AC volts iv to 500 V DC current (6 ranges) 1 nA to 200 MA . Resistance (15 ranges) 10 to $20 \mathrm{MEG} \Omega$. PRICE £39.95 AC Adaptor $£ 4.25$ de luxe padded carrying case $\mathbf{£ 1} 1.95$ MN 1604 Battery $\mathbf{E 1} \cdot 28$. Size $157 \times 76 \times 32 \mathrm{~mm}$.

SINCLAIR DM235
 BENCH-PORTABLE DIGITAL

MULTIMETER.

BC volis it ranges) 1 mV to 1000 V AC volts 14 rangesi IMV to 750 V AC \& OC current 1 a a to 1000MA Resistance (5 ranges) 1Ω to $20 \mathrm{MEG} \Omega$. PRICE £60.98. Carving case $£ 8.95$. AC adaptor/Charger. £4.25. Rechargeable Battery Pack. £8.95. Size $255 \times 148 \times 40 \mathrm{~mm}$.

PANEL METERS

OIMS $60 \mathrm{MM} \times 45 \mathrm{MM} .50 \mu \mathrm{amp}, 100 \mu \mathrm{amp} 1 \mathrm{MA}$. $5 \mathrm{MA} .10 \mathrm{MA}, 50 \mathrm{MA}, 100 \mathrm{MA}, 50 \mathrm{MA}, 1 \mathrm{amD} .2$ 50-0-50 यа, 100-0-100 на. 500-0-500 на. PRICE £5.95.

DESOLDERING TOOL
Education Establishment Orders Accepted. PHONE OR SEND YOUR ACCESS OR BARCLAYCARD NUMBER ALL PRICES INCLUDE POSTAGE AND VAT.

CONGRESS AMPLIFIER

We supply all the designer approved parts for this exceptional kit, including high quality printed circuit boards and transformer.
Complete kit, excluding metalwork with 20% discount on parts.
$£ 73.74$
All parts to assemble pre-amp i.e. R's, C's, PCB's, semicons, controls etc, but excluding transformer with 10% discount on parts.
£41.79
All parts to build main amp board
£20.48
Mains transformer
£12.82
Smoothing caps \& clips
18.86

Front Panel
$£ 3.20$
Chassis (unpainted, pre-punched)
£13.40
Front panel and chassis not subject to reduction but if ordered together with complete kit available at special price of $£ 11.50$ This offer also applies to previous purchasers of complete kits.

MAIL ORDER ONLY.

Prices include VAT and p\&p
Please send A5 S.A.E. for full price details.
Terms: Cash with order. Cheques etc. should be made payable to:

CONGRESS ELECTRONICS PROJECT

Allow 14-21 days after sending order for delivery. Send order to:

Photostat of article available at $£ 1.20$.
WICCA SYSTEMS LTD, 24 HILLCREST PARADE, CDULSDON, SURREY. Tel. 01-6685256

J. BIRKETT

(Partners: J. H. Birkett. J. L. Birkett) Radio Component Suppliers

25 The Strait, Lincoln. LN2 1JF

MAINS TRANSFORMERS 240 Volt Input. Output 43 Volt $50 \mathrm{~mA}, 11$ Volt 2.5 Amp, 22 - 0 . 22 Volt $150 \mathrm{~mA}, 16$ Volt 120 mA .15 Voli 1.5 Amp, 20 V 275 mA at f 3.90 (P\&P $£ 1.20$). MULLARD OR TCC ELECTROLVTIC CAPACITORS 2240 uf 40v.w. 40p, 4500uf $25 \mathrm{v} . \mathrm{w} ., 40 \mathrm{p}, 6400 \mathrm{uf} 16 \mathrm{v} . \mathrm{w} ., 20 \mathrm{p}$, 6400ut $25 \mathrm{v} . \mathrm{w}$. . $35 \mathrm{p}, 16000 \mathrm{uf} 10 \mathrm{v} . \mathrm{w} ., 20 \mathrm{p}$, 25v.w., 40p, 6400uf
6 TO 12 VOLT RELAY Single Pole C. 0.5 Amp Contacts = 60 p. CAR TYPE LONG DOLLY ON-OFF SWITCHES - 35p.
HOUSE CODED TTL I.C' $7400,7410,74 \mathrm{~L} 00,7453,7430$ All at 6 for $50 p$.
ELECTRET MICROPHONEINSERTS with FET Pre-Amp et.85.
50. BC 107-8-9 TRANSISTORS untested assorted 60p.

SPECIAL 5 NPN DARLINGTON PAIRS in 14 PIN DIL. Package HFE 5000,10 Volt 500 mA - 50p, 3 for $£ 1$.

10 WATT ZENERS Stud Mounting. 4.7, 6.8, 7.5, 8.2, 12, 15, 18, 20, 24, 27, 30, 33, 36, 39, $43,47,51,62,68,75,82,91,100,120,130,150,180,200$ Volt All Good Devices 50p ach. 5 WATT PLASTIC WIRE ENDED 3.6, 4.3, 5.6, 6, 6.2, 7.5, 8.2,9, 10, 11, 12, 13, 14, 15 , $16,17,18,19,20,22,24,27,28,30,33,36,39,40,47,51,56,60,62,68,87$ Volt at 30 p asch. QUAD COMPARATORS TYPE LM 339 with date 50 p .
PAPER CAPACITORS 10 uf 370 Volt A.C.W. size $5 \frac{1}{2} \times 2+2 \times 1 \frac{1}{2}$ " $£ 1.50$.
CLOSE TOLERANCE CAPACITORS 1288pf, 1670pf,5979pf, 19669pf All $1 \% 125 \mathrm{v} . \mathrm{w}$., at $5 p, .01$ uf 2%. 11 uf 2% ot $8 p, 100,000$ pf (.1uf) 1\% 12p,
CRYSTALS Glass Wre Ended. $28 \mathrm{KHz}, 28.5 \mathrm{KHz}$ Both $\bullet 50 \mathrm{p}$.
WIRE WOUND POTENTIOMETERS 2 Watt $2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 4$ Watt 100K All 30p ach
MINIATURE TRANSISTOR TRANSFORMERS Input Types. Impedance Aatlo. IOOK to $1 \mathrm{~K}=35 \mathrm{p}$, Ratio 150 K to $1 \mathrm{~K}=35 \mathrm{p}$, Ratlo 20 K to $1 \mathrm{~K} \cdot 35 \mathrm{p}$, Input Type 10 K to $2 \mathrm{~K}-35 \mathrm{p}$, Output Types 250 mW 1.2 K to 8 ohm a $35 \mathrm{p}, 250 \mathrm{~mW} 500 \mathrm{ohm} 108 \mathrm{ohm}=35 \mathrm{p}, 500 \mathrm{~mW} 400 \mathrm{ohm}$ to 8 ohm . 35 p .
THYRISTORS (S.C.R's) 10 Amp Type 100 PIV 28p, 400 PIV $055 \mathrm{p}, 800 \mathrm{PIV}$ - 65 p .
LM 7542 DUAL CORE MEMORY SENSE AMPLIFIER * 50p.
SUB-MIINIATURE TOGGLE SWITCHES SPCO 0 50p each.
MINIATURE $1.75^{\prime \prime}$ Dig. 8 OHM LOUDSPEAKERS ${ }^{\circ} 85$ p.
25 AS SORTED PRE-SET POTENTIOMETERS For 60p.
POWER NPN TRANSISTORS BD 207 -55p, 8D 187 25p, BD 175 25p.
MAINS TRANSFORMERS 240 Volt Input. Type 1. 24 Volt Tapped at 14 Volt 1 Amp $\mathbf{~} 1.30$ (P\&P 25pl. Type 2.30-0.30 Vott 500 mA - E1.30 (P\&P 25p). Type 6. 16 Volt 2 Amp f 1.60 (P\&P 25p). Type 10.12 Volt 1 Amp e 1.60 (P\&P 25p).
200 ASSORTED $\frac{1}{8}, \Varangle$ WATT RESISTORS for $75 p$.
2N 706 TRANSISTORS unmarked good at 12 for 50p.
SIGNETICS HIGH SPEED TTL PRESETABLE DECADE COUNTER 8290-20p each.
Please add 20p for post and packing on U.K. orders under $£ 2$.
Overseas postage charged at cost.

PE is pleased to have been able to arrange this very special offer for readers on KAISE digital multimeters. The meters employ dual slope integration, $3 \frac{1}{2}$ digits, 10 mm high I.c.d. with unit and sign indications, autoranging on volt and ohm ranges and autopolarity. Battery life is approximately 200 hours and battery low indication, overrange indication, and push button zero adjustment on the lowest range are provided. Both meters measure approximately $155 \times 85 \times$ 28 mm and weigh approximately 250 g .

Unfortunately we do not have the space to give a full specification, which would take up the whole page. However, a condensed version for both instruments is given below:

DC Voltage $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$, accuracy $\pm 0.5 \%$ (6110) and $\pm 0.8 \%$ (6200), impedance approx: $10 \mathrm{M} \Omega$ on all ranges except 200 mV which is $100 \mathrm{M} \Omega$.

AC Voltage (frequency 40 Hz to 500 Hz) $2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 600 \mathrm{~V}$; accuracy $\pm 1 \%$, impedance approx $10 \mathrm{M} \Omega$.

DC Current 20 mA (6110 only), 200mA, 10A (6110 only) accuracy $6110 \pm 1 \%, 6200 \pm 1 \cdot 2 \%$, impedance $20 \mathrm{~mA}-10 \Omega$, $200 \mathrm{~mA}-1 \Omega, 10 \mathrm{~A}-0.01 \Omega$.

AC Current, as DC Current but $\pm 1.3 \%$ (6110), $\pm 1.4 \%$ (6200)
Resistance $200 \Omega, 2 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 200 \mathrm{k} \Omega, 2 \mathrm{M} \Omega$, accuracy $\pm 0.5 \%$ and $\pm 1.8 \%$ ($2 \mathrm{M} \Omega$ range) for $6110, \pm 0.8 \%$ and $\pm 2 \%$ ($2 \mathrm{M} \Omega$ range) for 6200 .

Low Power Resistance, as resistance but without 200Ω range, accuracy $\pm 1 \%$ and $\pm 2 \%$ ($2 \mathrm{M} \Omega$ range) for $6110, \pm 1 \cdot 2 \%$ and $\pm 2 \%$ ($2 \mathrm{M} \Omega$ range) for 6200 . Maximum open circuit voltage on this range is 0.4 V .
The 6110 also has a buzzer for continuity test and additional audible warning of overrange.

To: Maclin-Zand Electronics Ltd. (PE Offer), 38 Mount Pleasant, London WC1X OAP. Tel. 01-837 1165.
Mail order only

Class A Amplifier rame

THIS type of amplifier which was designed whilst looking for a suitable unit to use in a theatre has been developed with two particular requirements in mind: reliability and short circuit protection of the output.

DEGIGN CONSIDERMTIONS

Class A was attractive for two reasons, which can be illustrated by reference to the conventional R.C. coupled stage shown in Fig. 1. The circuit is asymmetrical, there being only one transistor, which gives a low component count. Also the quiescent current through the stage is defined by the resistors and hence is not temperature sensitive. There is a bonus also from this type of circuit, as the output transistor is never turned off, there is no crossover distortion.

Fig. 1. Conventional R.C. coupled stage
There is, of course, one serious drawback with Class A, it's poor electrical efficiency. Sometimes referred to as conversion efficiency; the ratio between actual power into the load and power supplied from the d.c. supply. The best that can be achieved is about 17 per cent and that ignores the emitter resistor. Which would mean that a 50 watt amplifier consumed at least 294 watts and getting rid of 244 watts of heat (294-50) can be something of a problem.

Fig. 2. Simple Class A circuit
If we look at a simplified Class A circuit without the complications of biassing and coupling as in Fig. 2 and consider the two limiting conditions. Firstly with TR1 just about cut off, i.e. the maximum positive excursion of the output. The current through the load R_{L} is $E / R+R_{L}$, but this current also flows through the collector resistor R; hence if W watts appears in the load, then $W R / R_{L}$ watts appear in this resistor,
which is wasted power. If R could be made very small this wasted power would also be small.

The other limiting condition appears when TR1 is Just about saturated (ignoring the small collector-emitter voltage), the current through R_{L} is zero and hence the power is zero whilst the current through the collector resistor R is E / R and the power $E^{2 /} / R$, all the power is wasted. If R could be made large then this wasted power would be reduced.

This shows the two conditions have conflicting requirements. When the output is positive going R must be small, when the output is negative going R must be large.

An emitter follower, Fig. 3, has the property of impedance

Fig. 3. Emitter follower circuit
reduction. The impedance \mathbf{Z} measured between emitter and OV (ground or signal earth) will be considerably less than the value of the base resistor R. Very roughly, it will be reduced in proportion to the current gain of the transistor, e.g. if the current gain is A then

$$
Z=\frac{R}{A} \cdot \text { approx. }
$$

Returning to Fig. 2. If an arrangement having the characteristics of an emitter follower could be associated with R the collector resistor; and in addition, if this arrangement could be switched on whilst the output signal was positive going (made low resistance) and inhibited (high resistance) whilst the signal was negative going, then this would solve the conflicting requirements.

The requirement is to reduce the value of R whilst the output is positive going, i.e. supplying current (conventional flow) not during positive half cycles, the two are quite different. The same point must be made about the converse situation. The value of R must be increased whilst the output is negative going, i.e. demanding current, not the same thing as during negative half cycles.

Fig. 4. Basic Cless A stege with an emitter follower
Fig. 4 shows a basic combination of a Class A stage (Fig. 2) and emitter follower (Fig. 3). This combination is called Composite Collector Load Class A. The emitter follower being switched in or out of use by the diode D1.

Considering first the positive going situation where current is being supplied to the output. The collector potential of TR1 will rise in an attempt to supply current to the output or load. This situation will reverse bias diode D1 and forward bias the base emitter junction of TR2 which then behaves as an emitter follower supplying current to the load. The current through R will be only a small proportion of the load current, or looking at it another way the combined ef-

fect will be that of a collector resistor considerably smaller than R actually is.

Now consider the opposite situation when TR1 collector is negative going attempting to draw current from the output. The diode D1 will be forward biased and the base emitter junction of TR2 reverse biased. TR2 is thus out of action and the effective collector resistance is R only. TR 1 thus absorbs the current from the load plus a small current via the resistor R.

CIRCUIT DESCRIPTION

The basic circuit shown in Fig. 4 illustrates the principle involved. To convert this to a practical design requires the addition of components to provide d.c. bias, the necessary a.c. drive to the base of TR1 and negative feedback to improve the performance. As shown in Fig. 5.

Resistors R1 and R2 establish the overall gain between input and output, which is equal to R2/R1. R2 also establishes the quiescent output voltage as equal to OV as the other input of the op-amp IC1 is referenced to $O V$.

Resistors R3 and R5 provide local negative feedback over the discrete components TR1, TR2 and TR3. This provides for a much more stable amplifier and greatly improves the distortion figures.

Resistor R4 serves two purposes. It reduces the power dissipated in TR3 enabling a TO5 assembly to be used and it also prevents any avalanche condition in the event of failure. For example, if TR2 failed in the short circuit mode the output would be driven fully positive. The negative feedback via R2 would cause TR3 to be turned hard on in an attempt to restore the output voltage and, of course, TR3 would break down. However, the presence of R4 will limit the current through TR3 to a safe value under these fault conditions.

The split collector resistor R6 and R7, together with C4, provides for bootstrapping to ensure that the base of TR2 never runs out of current, even as the output approaches the positive rail voltage. As the output voltage becomes more positive C4 causes the junction of R6 and R7 to also become more positive. This maintains a substantially constant current through R7 and hence the current handling capability of the output is reasonably constant also.

Capacitor C1 provides phase correction to the feedback loop. This may or may not be necessary and depends on component types used. The action of the switching diode D1 generates small transients and these are suppressed by C2 and C3.

Fig. 5. Improved Class A circuit

Fig. 6. Circuit diegram of one chennal of the Cless A emplfier. (Connections for R.H. chennal shown in brackets.)

Having discussed the theory behind the Class A design we can now look at a practical implementation of the idea.

PRACTICAL AMPLIFIER

The construction of a practical amplifier, as opposed to the discussion of a theoretical one, inevitably involves compromise, and the most important compromise is between power output and readily available components.

The complete circuit diagram of the amplifier is shown in Fig. 6 (the left channel). This design is quite capable of delivering 30 W into an 8 ohm load. Full drive (30 watts) is obtained with 350 mV peak input. However, it was felt that it would be desirable to have a higher transient capability, hence the power supply design shown in Fig. 7 provides for ± 30 volts as the quiescent supply voltages giving a transient capability approaching 60 watts. (The amplifier couldn't sustain this level for long as such a load rapidly reduces the supply voltages.)

Fig. 7. Power supply circuit

Internal view of amplifier

COMPONENTS

Resistors

"R1	22 k
"R2	220 k
"R3	12 k
"R4	100 k
R5	20
RR	1201 W
RR	100
R8	2201 W
RR9	1007 W
"R10	1003 W
"R11, R12	$1 \mathrm{k} \frac{1}{2} \mathrm{~W}(2$ off)
R13	560
R14	3 k 3

All resistors $\frac{1}{4}$ or $\frac{1}{3} W$ except where otherwise stated

Capacitors	
${ }^{+} \mathrm{C} 1$	1μ polyester
${ }^{\text {C2 }} 2$	4 p 7
${ }^{-1}$	3300p
C4	1 n
- C 5	$1000 \mu 25 \mathrm{~V}$
${ }^{*} \mathrm{C6}, \mathrm{C} 7$	$10 \mu 25 \mathrm{~V}$ (2 off)
C8, C9	$4700 \mu 40 \mathrm{~V}$ (2 off)
Semiconductors	
D1	1N4001
-D2, D3	10 V Zener BZY88 (2 off)
D4	20V Zener BZX6 1
D5	LD57A
TR1	BC303
TR2, TR3	MJE 3055 (2 off)
BR1, BR2	Bridge rectifier WO2 (2 off)
IC1, IC2	741 (2 off)

Miscellaneous
THE1, THE2 thermal safety switch $70^{\circ} \mathrm{C}$ (RS 339308) (2 off)

Fuse holders (3 off)
250 mA fuse (slow blow)
1.5 A fuse (2 off) (quick blow)
P.p.b.

Banana sockets (4 off)
6 -way DIN socket
Mains toggle switch
Suitable case
Veroboard
Transformer Douglas MT 79 FT (2 off)

- Two required for stereo design

CONSTRUCTION

The p.c.b. design for one channel of the amplifier is shown in Fig. 8 with the component layout in Fig. 9. All the components except TR2 and TR3 can be mounted on the board. The two resistors R9 and R10 should be set at least 10 mm from the p.c.b.

The mounting details of the p.c.b.s, thermal switches and output transistors are shown in Fig. 10. The transistors TR2 and TR3 should be mounted onto the heatsink using mica washers.

The Veroboard layout for the power supply unit is shown in Fig. 11. The prototype was fitted into a case $250 \times 180 \times$ 60 mm . The wiring diagram for the rear panel is shown in Fig. 12. The mains switch and the l.e.d. should be mounted onto the front panel.

Fig. 8. P.c.b. design for one channel of the amplifier.

Fig. 9. Component layout

Fig. 10. Mounting details for the heatsink
TEST PROCEDURE
a. With the mains input fuse FS1 fitted and FS2 and FS3 removed, connect a 6 k ohm 10 watt resistor in series with mains live and apply power. The power rails should run up to approximately their correct voltage ($\pm 30 \mathrm{~V}$). Switch off and discharge the rails using a convenient resistor.
b. Fit FS2 and FS3 and with no speakers connected apply power again via the 6 k resistor. A small voltage should appear at each rail, about half a volt or so.
c. If the two previous checks are good. Switch off, remove the 6 k resistor and apply full power. Check across each pair of speaker sockets in turn that there is no more than a few millivolts of d.c. present.
d. If check c fails, check first the voltages supplying IC1 and IC2. $\pm 10 \mathrm{~V}$.
e. Check there is no a.c. voltage at the speaker terminals.
f. With speakers (8 ohm) connected but no input connection there should be a noticeable, but not loud, 100 Hz buzz.
g. Check that this buzz disappears completely when the input pins are connected to OV. Pins a and e connected to pin f on socket 1. Under these conditions there should be no sound from the speakers.
h. Check that there is +20 V at pin d of socket 1 .

OPERATION

The amplifier is now ready to accept a nominal input of 350 mV peak output from a preamplifier. For inputs other than this the values of R1 and R2 should be changed, the

Fig. 11. Veroboard layout of the p.s u

Fig. 12. Wiring diagram for the rear panel.
relationship being a direct one, i.e. for a peak input of 175 mV the gain must be doubled which will be achieved by halving the value of $R 1$. For a peak input of 700 mV the gain must be halved, achieved by halving the value of R2. The limitations are that R2 should not be made larger than 220k. On the other hand, the 3 dB point of $\mathrm{C} 1, \mathrm{R} 1$ is 18 Hz , halving R1 without altering C 1 will raise this to 36 Hz by which point the loss of bass will be noticeable. Halving R1 and doubling C2 will maintain the status quo but values of C2 (which is not polarised) much more than $2 \mu \mathrm{~F}$ start to give an uncomfortably large component.

For those who would like to experiment with the circuit rather than build a $\mathrm{Hi}-\mathrm{Fi}$ system there are a number of comments which may be helpful. If higher continuous outputs are required the power supply must be uprated and the output stage fitted with cooling fins.

The circuit in Fig. 6 is deliberately bandwidth limited. It will be seen that the circuit is d.c. coupled with the exception of the input C1 and the bootstrapping C5. For d.c. coupling omit C1 and C5. The op-amp IC1 will require offset compensation and the output voltage/current capability will be limited by the current available in R9 and R10.

The high frequency capability is limited to avoid undue emphasis on system noise and to enable readily available components to be used, in particular the MJE3055 and 741 op-amp. To increase the high frequency capability these
components would have to be replaced. The 741 s with opamps with a better bandwidth and the MJE3055s with a superior high frequency device. The switching time of D1 at high currents and high frequencies will start to become noticeable and it will have to be replaced with a high speed device. Experiment with the values of C2, C3 and C4 if the type of op-amp or output transistor is changed.

COMPUTING CLUB

ACOMPUTING Club has been formed in the Falkirk area, to be known as the "Central Scotland Computing Club".
A Committee has been formed and it is planned to hold monthly meetings in Falkirk College of Technology, Grangemouth Road, Falkirk.

The Secretary is: James G. Lyon, 78 Slamannan Road, Falkirk, FKI 5NF, Tel: Falkirk 22430.

next month...

ए C 5 : 1 COUITER

An accurate three digit frame counter which should prove a valuable aid in the production of fades and single frame sequences.

RUDIO LERD TESTER

Many of the problems that occur in mobile PA systems are the direct result of lead failure. This unit provides a complete test sequence for the rigorous analyses of mono jack and cannon connectors to obviate this.

PRACTICAL

OUR OCTOBER ISSUE WILL BE ON SALE FRIBAY, SEPTENBER T2, 1980

FRANK W. HYDE

RE-RUN FOR RUSSIA

The success of Salyut-6 will influence Russia's thinking in the immediate future. Six new unmanned spacecraft have flown since June this year. The new thinking will involve considerable changes for they see this as an opportunity to catch up in the development of world space matters. To this end the new design will see a change in the interior layout of spacecraft. For example, in the past the instruments have been placed along the sides of the vehicles. In the future it is intended that the equipment shall be placed along the central axis of the station to facilitate man-machine interface.

Recently an official said that 'a considerable duration increase of time spent in space has shown us that this is economic and that we are now able to more reasonably assess the feasibility of long manned flights, particularly manned flights to Venus and Mars.' That the thoughts of Soviet scientists are turned in this direction by saying 'in the not too distant future', seems to show that they have hopes of catching up with the United States. Certainly the launch of Salyut6 has paved the way to such activities.

Already the Russians have plans for a station some 25 tons heavier than Skylab. The reports are that such a station will have a weight of $220,0001 \mathrm{~b}$ and be manned on a permanent basis with a constant complement of 12 cosmonauts. This is planned for the 1980s with a new launcher capable of $10-14$ million pound thrust. This is more powerful than Saturn-5. This of course can easily manage manned flights to the Moon and Mars.

The cosmonauts at present on Salyut-6 Valeriy Ryumin and Leonid Popov are, at the time of writing this page, in the eleventh week of the present mission. It is expected that they will stay for 6 months. The tasks that have currently been carried out successfully in-
cluded materials processing of which one was concerned with germanium. The team also replaced an outdated module in the stabilisation system and in the medical field carried out a special examination of each other's physical condition including an electrocardiogram after performing certain prescribed exercises.

A special simultaneous experiment was carried by the cosmonauts from the space craft and another group operating a Soviet launched balloon within the Earth's upper atmosphere. This was to monitor charged particles from above and below, as it were. It is intended to fly medical doctors on future space missions as do the United States. No significant problems have arisen during the Salyut-6 manned missions. There was an occasion when cosmonaut Romanenko had bad toothache. This was dealt with by medicine from the spacecraft's medical kit with instructions from the ground medical team. Dental equipment was sent up to the space station in case the patient should become worse. Medical opinion in the Russian ranks was that appendectomy could be successful in zero gravity. This being the case there was little to be feared on long missions.

In June Russia announced more details of the Soyus-T. Both the standard Soyus and the first Soyus-T will continue to be used in service while the new Soyus-T is improved and possibly this situation will continue until the Soviet winged recovery vehicle is ready for service. Work continues on this vehicle. The Soyus-T is more efficient in the use of fuel and one way in which fuel is conserved is by separating the orbital module before the reentry burn. This saves 10% in fuel. For the first time since the flight of the first Soyus in 1971 it was possible to fly round the Salyut and examine it visually and also with a camera.

New windows have been fitted to the Soyus because the previous design resulted in the windows becoming black during re-entry. The new design has layered windows, the blackened layer is to be jettisoned after reentry to allow the crew full visibility There are new spacesuits also for the Soyus-T crews. These are lighter and more efficient being free and manoeuvrable.

THE SATELLITE POWER SYSTEM

In the last issue of Spacewatch I gave some notes which covered the general idea of the Satellite Power System and answered some questions. In this issue more details will be given about the system.

THE SATELLITE

The Satellite will be a rectangular construction 10 kilometres in one direction and 5 kilometres at right angles to it. This will support the arrays of photo voltaic cells. The cells may be of gallium arsenide or silicon. Such a structure will be of considerable weight and of the order of 36,000 metric tons. As a great deal of it will be constructed in space the weight is only involved in the initial transportation first into a low earth orbit and then raised to synchronous orbit.

The transmitting antenna with the conversion units on which are mounted the DC/RF
converters will form the individual subassemblies of the transmitting antenna. This will have a diameter of 1 kilometre. Thus it will appear as an assembly of waveguides with a high density beam direct to the Earth. The transmitting antenna will be so arranged that the profile as presented to the ground antenna, the RECTENNA, has a highpower centre to the beam and taper off at the edges. This has been necessary because of the possible effects to the environment over a long period and short term effects due to local conditions (weather, accidental intrusion from other causes) and safety in general. To appreciate these necessities a description of the rectenna is needed.

THE RECTENNA

The Rectenna is a vast array of collecting dipoles and covers an area of $130 \mathrm{Km}^{2}$. It is expected to be in the form of 10 kilometres east to west and 13 kilometres north and south. By any standards this is a large area and involves the effect on the ground beneath it and the vagaries of meteorological conditions which may at one and the same time vary widely, differing from side to side or from end to end. Indeed considerations such as the number of lightning strikes, which are quite considerable in the latitude of 35° north, the position contemplated for the rectennas across America.

The centre of the microwave beam at a frequency of 2.45 GHz will at the rectenna have a power density of $23 \mathrm{~mW} / \mathrm{cm}^{2}$. The density will fall off towards the edges in such a way that at the site safety boundary will have reached the low level of $0.1 \mathrm{~mW} / \mathrm{cm}^{2}$. At the overspill edge the beam will have a density of $1.0 \mathrm{~mW} / \mathrm{cm}^{2}$. From the point of view of safety to human life the density of the beam will be way below possible ill effects. The hazards are more likely to effect other mechanical considerations and as suggested freak weather conditions.
These considerations will all come under the scrutiny of oiservers and research teams. This aspect will be dealt with in later issues of Spacewatch.

CONVERSION OF THE MICROWAVE POWER

The Conversion of the Microwave Power is likely to take the form of sub-units of RF-LF converters arranged in such a way that around the periphery of the rectenna site feed lines will link with normal grid system in operations. It will take different forms as to the distribution voltages depending on local medium and long distance transmission networks to be fed. The order of the thinking is to insert the SPS into the existing power grid. Cost and converience will determine this for it might call for local decisions as to which is the more economical. The first of the considerations is the effect on the environment as related to the public but also the possible long term effects on the flora and fauna of America and indeed its possible effect through modification of near space in terms of communications and meteorology. Of these matters more will appear in future issues of Spacewatch.

CORRECTION our Casio Watch Offer Unfortunately there were some errors in arranged for the benefit of published in the July issue. Since these errors to your attention. older watch, readers, we would like to bront cover illustration was of an

1. We indicated that
this is not the case.
2. The watch is stainless steel encased.
3. The watch on offer is 9.65 mm thick The alarm sounds for 30 seconds unless originally stated. due to our late decision to change to a watch with These mistakes were due display. Since we have unintentionaly money and a constant time and points, we will be pleased to refund quite clear that the readers on these points, We would like to make it auite postage if they so wish. We by Metac. guarantee will be honoured corrected

Including V.A.T Postage and Packing

THE OFFER

For some time PE has been trying to arrange a special offer on one of the very popular range of Casio watches. Until now this has not been possible due to the control of supply by Casio. However, Metac have now been able to purchase Casio outside the UK and this offer is the result.

We do not expect readers to be able to find this Casio watch advertised at less than the Metac price.

THE WATCH

CASIO ALARM CHRONO TYPE 83 QS 41B

Stainless steel, less than 10 mm thick, mineral glass, water resistant to 2 atmospheres (66 feet), Lithium battery giving approximately four years' life, four year calendar, accurate to within 15 seconds a month, full one year's guarantee.

THE FACILITIES

* Hour, minute, second, am/pm, date.
* Hour, minute, am/pm, day, date.
* Stopwatch to 12 hours measuring in $1 / 10$ second giving net time, lap time and 1 st-2nd place times. Indicator shows chronograph is running when normal time is displayed.
* Alarm setting, hour, minute, am/pm. Alarm sounds for 30 seconds unless cancelled. Indicator shows alarm is set.
* User optional hourly chime (two bleeps).
* Back-light.

To: METAC Electronics and Time Centre (P.E. Offer) 67 High Street, Daventry, Northants. Tel. 03272 76545.

To: METAC Electronics and Time Centre (P.E. Offer)
67 High Street, Daventry, Northants. Tel. 03272 76545.

Mail order only

Please send me .watch/es at $£ 21.95$ each

I enclose P.O./Cheque No..................... Value.........
\qquad
\qquad
\qquad

Please allow 21 days (maximum) for delivery (more for overseas orders)
OFFER EXTENDED TO OCTOBER 3, 1980

Name

Address

From: METAC Electronics and Time Centre (P.E. Offer), 67 High Street, Daventry, Northants.

A selection of readers. original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
Why not submit your idea? Any idea published will be awarded payment according to its merits.
Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.
Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere.

ONE result of the pressures of modern iving is the alarm clock. However, the type which must be set each night have a habit of being forgotten and the type which sound unless turned off tend to awaken their owners when they want a lie-in on Saturday morning. This circuit enables the user to selectively inhibit the alarm of his clock for either of the following two days-normally this would be operated on a Friday to stop the alarm for the weekend.

The complete circuit diagram is shown at right. The input on the left is a CMOS input which comes from the clock circuitry or mechanism. When the alarm of the clock is on, this output is high but when it is not on, or has been cancelled, it is low.

The two halves of ICl are connected as a two stage shift register. Every time the clock input is taken high, the data in the register is shifted one place to the right. Since the input of the register is low, zeros are shifted in from the left.

The complementary output of IC1b ($\bar{Q} 2$) is "ANDed" with input signal in IC2b and IC2c. Normally the shift register is full of zeros so that $\overline{\mathrm{Q}} 2$ is high. This means that the output of the unit is the same as the input.

Suppose that IC1b is in the one state. $\overline{\mathrm{Q}} 2$ would then be low and the output of the unit would remain low for the duration of any input pulse. However at the end of the pulse, the output of IC2a would go high and the shift register would be clocked. This would mean that another zero would be clocked into ICla but the one in IC \ddagger b would be replaced by the zero in IC1a. $\overline{\text { Q }} 2$ would go high and a further pulse would be passed without interruption. The action of the circuit has been to suppress one pulse applied to its input. It can be seen that the state of IC1b determines whether the next pulse will be inhibited and the state of ICl a does the same

ALARM CLOCK WEEKEND LOCKOUT

thing for the next pulse but one. Since the input is an alarm signal, the circuit will selectively inhibit this signal for the following two days.

To set the state of the flip-flops, three touch switches are used. Two of these set IC1a and IC1b respectively whilst the third resets both. Normally, the set and reset inputs are held low by RI-R3 but skin resistance across the touch contacts is much lower than these resistors so the input is pulled high, setting or resetting the desired flip-flops.

To indicate the state of the flip-flops, i.e. to tell the user which inhibits he has selected, two l.e.d.s are used. These are connected to $\overline{\mathrm{Q}} 1$ and to Q 2 ; since these signals are of opposite logical polarity, D1 is returned via a current limiting resistor to the positive supply line whereas D2 is returned to the ground rail. This means that either l.e.d. is on when the corresponding flip-flop is in the one state.

Both the input and output of the unit are at CMOS levels and it is up to the user to interface these to his clock and alarm circuitry: this should normally present no problem. The power supply can be anywhere between 5 V and 15 V and can often be borrowed from the clock. C1 is necessary to prevent noise on the power line from triggering the flip-flops.

The number of flip-flops could of course be made greater than two but this was thought to be the max mum needed since it corresponds nicely with a weekend.

Construction is not at all critical and can take any desired form. The touch switches and l.e.d.s can then be mounted on a convenient position on the clock.
P. M. Jessop,

Solihull,
West Midlands.

FOUR DIGIT TO SIX DIGIT CLOCKS

T
HERE are plenty of digital clocks in the market today. Most of them are four digit types with few of six digits available. These don't have functions like alarm, radio on and off etc. I have a design which might benefit those who own a four digit clock but would like to have a six digits displaying hours, minutes and seconds. A simple straightforward multiplexing method was used with a minimum number of components to reduce cost and complexity.

A MM5387 clock chip was used. This is the same as a MM5316 except it can drive displays directly. The circuit is for a common cathode l.e.d. display clock only.

The connections are as follows-the tens of hours and hours segment outputs from the i.c. are connected normally. The
tens of seconds and seconds segments were connected parallel to tens of minutes and minutes segments respectively. Two gates of a 7400 quad NAND gate form an oscillator and switch ICIc and TR3. They also switch TR1 and TR2. These control the displaying and blanking of seconds and minutes displays. TR3 switches the seconds display option of the clock.

The oscillator provides a square wave that switches IC1c/d, TR3. TR1 is n.p.n. and TR2 is p.n.p. Therefore when one conducts the other will be cut off. When TRI is conducting, the seconds display enable of the clock i.c. will go negative and the clock will be programmed to display hours and minutes. At the same time TR1 will also be conducting which enables displays

C and D.
When TR2 is not conducting, the seconds displays enable of the clock i.c. will go positive. This will program the clock to display seconds. At this time TR2 will be conducting enabling displays E and F.

As the oscillator functions at about 200 hertz the displaying of hours, minutes and seconds will be displayed continuously.

The circuit works well, the only problem being that there are problems in setting time so S1 was included which will cut off the six digit function. The time should be set with this in the off position.
P. Ratnam,

Penang,
Malaysia.

QUIZ WIN INDICATOR

F SI is shorted, the one shot will be triggered and LP2 will light for about 3 seconds assuming that the other stage is not already in a triggered state. While lamp one is alight any closure of $\mathbf{S} 2$ will not cause LP1 to light as the one shot is inhibited by a logical 0 at pin 2 . The same applies if the order is reversed.

Two contestants are positioned either side of the unit with fingers on the buttons. A question is asked and the first to answer pushes his button and his lamp lights. The. other lamp is inhibited and the win lamp resets itself after about 3 seconds ready for the next question.
J. Sarns,

West Mersea,
Essex.

THE circuit shown was designed to program a VCO in a synthesiser. Two waveforms are available; A sawtooth output from the wiper of VR3 and a squarewave from VR4. Both signals have a level of about 2 volts (peak to peak) about earth.

The novelty lies in the fact that the shape of both waveforms is continuously variable via VRI which provides base bias to both transistors. This in turn alters the ratio of the currents in each. Because the current flowing out of the transistors is passed into an integrator, then the voltage at pin 6 of IC1 is a function of the control. The remaining circuitry is of the standard integrator-Schmitt trigger loop, the output of IC2 deciding which transistor is turned on by forward biasing. VR2 will vary the current available to the transistors and hence the frequency of oscillation.
M. Rodgers.
Maltby,
S. Yorkshire.

FUNCTION GENERATOR

SLAVE FLASH CONTROLLER

THIS 555 circuit is used to control the operation of a slave flash unit. Here the phototransistor responds to ambient light levels. The 470 k variable resistor is used to set the l.e.d. to the 'just off' condition. When the master flash unit operates the CSR conducts operating the slave unit.

SI allows the slave unit to be set without discharging the flash.
R. C. MacKay, Grangemouth.

WHEN carrying out battery capacity checks, it is extremely useful to have a load that does not need constant adjustment to maintain a steady current as the voltage falls.

This circuit fulfills the requirement in that once the load is set the load current remains constant throughout the discharge time of the battery. In practice the 2N3055, and the 1 ohm resistor are mounted on a suitable heatsink. The circuit was used to test 12 V batteries and the load is variable between 0 and 3 amps .
D. Halliday,
Tewkesbury,
Glos.

BATTERY

CHECK

Don't buya
until you read this report
There are so many digital watches on the market, with varying functions, that the average person is bound to feel somewhat confused.

A new survey of the electronic watch industry has been produced to clarify this confusion and to give an unbiased and objective answer to the many questions that are constantly being raised.

* How accurate are electronic watches?
* Who makes Seiko's?
* What is the importance between brand names?
* Is solar power worth the extra money?
* What are the most important features in a watch?
* When will prices stop falling?

The survey answers all of these questions and tells you what to look for in a quartz watch; how they work; why the prices vary so much; what the future holds.

SPECIAL OFFER

Send today for this technical report, plus news of a unique Metac offer to beat all special offers.

Complete the coupon below and send it FREEPOST (no stamp required) and we will post, Same Day Despatch, the technical report giving you all you need to know about electronic watches and details of our special offer.

Whichis the best uatoh?

These four watches are very different in price, durability and functions. How would you choose between them?

This unbiased and objective report helps you to make this decision and gives you a deeper insight into the rapidly changing and exciting world of the micro-chip.

For your copy of the report complete and return the coupon to: Metac Electronic \& Time Centres, 24-hour Despatch Centre, FREEPOST, 47A High St., Daventry, Northants.

EIEGTROMATIT

$\begin{aligned} & \text { SIEMENS } \\ & \text { SEMMCONDCTOR } \\ & \text { CAPACITORS } \\ & \text { FERRITES } \end{aligned}$		NASCOM MICRO. COMPUTERS ANCILLARIES		VERO CASES \& KITS
ISKRA RESISTORS	$\begin{aligned} & \text { RADIOHM } \\ & \text { POTENTIOMETERS } \end{aligned}$		BREADBOARDS	
			SOLDER TOOLS	
	OPTO-ELECTRONICS		swiches	catalocile 0

GOOD DISCOUNTS AND FREE POSTAGE ON SUBSTANTIAL C.W.O. U.K. ORDERS COMPUTER-CONTROLLED SERVICE AIOS PROMPT DELIVERY 128-PAGE CATALOGUE FREE FOR THE ASKING

ELECTROVALUE LTD., (PE8), 28 St. Jude's Road, Englefield Green, Eghum.

 Surrey TW20 0HB. Phone: 33603 (London 87) STD 0784. Telex 264475.NORTHERN BRANCH (Personal Shoppars Only): 680 Burnage Lane, Burnage, Manchester M19 INA. Phone (061) 4324945.

Unique in concept-the home computer that grows as you do! Newl-The Acorn Atom Ele $\begin{aligned} & \text { An outstanding } \\ & \text { personal } \\ & \text { plusvaTand pEp. computer kit }\end{aligned}$

The ATOM - a definitive personal computer.

 Simple-to-build, simple-to-operate. But a really powerful full-facility computer. And designed on an expandable basis. You can buy a superb expanded plus VaTand p\&p package now-tailored to your needs. Or, you can

The standard ATOM kit includes:

- Full sized QWERTY keyboard Rugged polystyrene case - Fibreglass PCB 2 K RAM -8 K ROM 23 integrated circuits - Full assembly instructions including tests for fault-finding. (Once built, connect it to any domestic TV and power source) - Power requirement: 8 V at 800 MA . ATOM power unit available. See coupon. PLUS FREE MANUAL written in two sections-teach yourself BASIC and machine code for those with no knowledge of computers, and a reference section giving a complete description of the ATOM's facilities. All sections are fully, illustrated with example programs.

The ATOM concept

Adding chips into sockets on the PCB allows you to progress in affordable steps to large-scale expansion. You can see from the specifications that the RAM can be increased to 12 K allow. ing high resolution (256×192) graphics. Two further ROM chips, e.g. maths functions, can be added directly to the board giving a 16 K capacity. In addition to $5 \mathrm{I} / 0$ lines partly used by the cassette interface, an optional VIA device can provide varied I/O and timer functions and via a buffer device allow direct printer drive. An optional module provides red, green and blue signals for colour. An in-board connector strip takes the ATOM communications loop interface. Any number of ATOMs may be linked to each other - or to a master system with mass storage/
 $\sqrt{\text { buy just the standard Atom kit, and, as you grow in }}$ confidence and knowledge, add more chips. No need to replace your equipment. No need to worry that your investment will be overtaken by new technology. As you need more power, more facilities, you can add them!
-The picture shown demonstrates mixed graphics and characters in three shades of grey provided by the Standard Atom.
hard copy facility. Interface with other ACORN cards is simplicity itself. Any one ACORN card may be fitted internally.
So you can see there are a vast number of modular options and additions available, expanding with your ability and your budget.
The ATOM hardware includes:

- Memory from 2 K to 12 K RAM on board (up to 35 K in case) - 8K to 16K ROM (two 4K additions) 6502 processor Video Display allows high resolution (256×192) graphics and red, green and blue output Cassette Interface-CUTS 300 baud - Loudspeaker allows tone generation of any frequency -Channel 36 UHF Modulator Output Bus output includes internal connections for Acorn Eurocard.

The ATOM software includes:

-32-bit arithmetic ($\pm 2,000,000,000$) -High speed execution -43 standard/extended BASIC commands Variable length strings (up to 256 characters) -String manipulation functions -27 32-bit integer variables 27 additional arrays Prandom number function PUT and GET byte WAIT command for
 timing \bigcirc DO-UNTIL construction Logical operators (AND, OR, EX-OR) LINK to machine-code routines PLOT DRAW and MOVE.

> 4a Market Hill, CAMBRIDGE CB2 3NJ Return as received within 14 days for full money refund if not completely satisfied. All components are guaranteed with full service/repair facility available.

Simply ahead...

POWER AMPLIFIERS

ILP Power Amplifiers are encapsulated within heatsinks designed to meet total heat dissipation needs. They are rugged and made to last a lifetime. Advanced circuitry ensures their suitability for use with the finest loudspeakers, pickups, tuners, etc. using digital or analogue sound
 sources.

Model	Output Power R.M.S	Dis- tortion Typical at 1 KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	$\begin{aligned} & 15 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	100 dB	$-20 \cdot 0 .+20$	$105 \times 50 \times 25$	155	$\begin{array}{r} \mathbf{£ 6 . 3 4} \\ +95 p \end{array}$
HY50	$\begin{aligned} & 30 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	100 dB	-25-0.+25	$105 \times 50 \times 25$	155	$\left\|\begin{array}{ll} £ 7.24 \\ +£ 1 & 09 \end{array}\right\|$
HY 120	$\begin{aligned} & 60 \mathrm{~W} \\ & \text { into } 8 \end{aligned}$	0.01\%	100 dB	-35-0. +35	$114 \times 50 \times 85$	575	$\begin{array}{\|c\|c\|} \hline £ 15.20 \\ +£ 2.28 \\ \hline \end{array}$
HY200	$\begin{aligned} & 120 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	-45-0.+45	$114 \times 50 \times 85$	575	$\begin{array}{\|c\|} \hline £ 18.44 \\ +£ 2.77 \end{array}$
HY400	$\begin{aligned} & 240 \mathrm{~W} \\ & \text { into } 4 \end{aligned}$	0.01\%	100 dB	-45-0.+45	$114 \times 100 \times 85$	1.15 Kg	$\begin{aligned} & £ 27.68 \\ & +£ 4.15 \end{aligned}$

Load impedance - all models $4 \Omega-\infty$
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$

ILP PRE-AMPS ARE COMPATIBLE WITH ALL
ILP POWER AMPS AND PSUS

Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

POWER SUPPLY UNITS

AVAILABLE ALSO FROM WATFORD ELECTRONICS, MARSHALLS AND CERTAIN OTHER SELECTED STOCKISTS.

this time with two new pre-amps

When ILP add a new design to their audio-module range, there have to be very special reasons for doing so. Youexpecteven better results. We have achieved this with two new pre-amplifiers - HY6 for mono operation, HY66 for stereo. We have simplified connections, and improved performance figures all round. Our new pre-amps are short-circuit and polarity protected; mounting boards are available to simplify construction.
Sizes - HY6 - $45 \times 20 \times 40 \mathrm{~mm}$. HY66 $90 \times 20 \times 40 \mathrm{~mm}$. Active Tone Control circuits provide $\pm 12 \mathrm{~dB}$ cut and boost. Inputs Sensitivity -Mag . PU. -3 mV : Mic - selectable $1-12 \mathrm{mV}$: Allothers 100 mV : Tape O/P-100mV Main O/P -500 mV : Frequency response - D.C. to $100 \mathrm{KHz}-3 \mathrm{~dB}$

HY6

£5. 60

HY66
£10.60

- VAT £1 59

Connectors included
86 Mounting Board
78p + 12p VAT
866 Mounting Board $99 p+15 p$ VAT
 LOW DISTORTION - Typically 0.005\% S/W RATIO- Typically 90 dB (mag. P.U. -68 dB). high OVERLOAD FACTOR - 38 dB on Mag. P.U. LATEST DESIGN HIGM QUALITY CONHECTORS. REQUIRE ONLY POTS, SWITCHES, PLUGS AND SOCKETS. COMPATIBLE WITH ALL ILP POWER AMPS AND PSUS. NEEDS ONLY UNREGULATED POWER SUPPLY $\pm 15 \mathrm{~V}$ to $\pm 60 \mathrm{~V}$.

HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent tous by readers of this journal.

FREEPOST 2 GrahamBellHouse, RoperClose,
Canterbury, Kent CT2 7EP.
Telephone (0227) 54778

NO QuibBle 5 YEAR GUARANTEE 7.DAY DESPATCH ON ALL ORDERS BRITISH DESIGN AND MANUFACTURE FREEPOST SERVICE - see below

```
                                    NAME
```

 ADDRESS

DISCO LIGHTING KITS!!!

First class constructional projects, c/w glass fibre P.C.B.'s \& full instructions. No extra components needed to make a top rate working unit.

GTUSCAN'FROM TRANSAM

Take astep up toyournext Computer!

THE CONCEPT

How many ways are there to buildan S 100 system? Not many, and all expensive. TUSCAN changes all that.

Five S100 boards on one single board - just for starters. Plus five extra slots for future expansion.

What a combination! Z80 and S100 with the TRANSAM total package of system and applications software.

How do we do it? Our prices start at $£ 195$ and you can build up in easy stages to a fully CP/M compatible disc based system. Something to think about!

THE HARDWARE

The first Z80 single board computer with integral S100 expansion. British designed to the new IEEE (8 BIT) S100 specification, the TUSCAN offers total system flexibility. A flexibility available now.

The board holds the equivalent of a $Z 80 \mathrm{cpu}$ card, $8 \mathrm{k} \mathrm{ram}, 8 \mathrm{k}$ rom video and $/ / \mathrm{O}$ cards with 5 spare S100 expansion slots and offers a price/performance ratio which is hard to beat.

Just compare our price with acommercial S100ten slot motherboard with this specification.

THE SOFTWARE

TUSCAN offers the user the choice of system monitor, editor, resident 8 k basic, resident Pascal compiler or full CP/M disk operating system. All options are upwards
compatible and fully supported with applications software. Both $5 \frac{1}{4} 4^{\prime \prime}$ and $8^{\prime \prime}$ drives are supported in double density.

THE PACKAGE

TUSCAN is available in kit form or assembled. With several hardware and software options to suit your requirements and budget. Attractive desk top case also available holds $2 \times 514^{\prime \prime}$ Drives.

NOBODY DOES IT BETTER!

Send to Transam Components Ltd., 59/61 Theobalds Road, WC1
I am interested in the TUSCAN 280 based single board computer
with Slo0 expansion and enclose a S.A.E. for further details.
Name
Address
Telephone

New from Newnes Technical Books

Practical Electronics Handbook

Ian Sinclair
A useful and carefully selected collection of standard circuits rules-of-thumb and design data.

Covers passive and active components, discrete component circuits and linear and digital i.cs.

Describes the volume and function of typical circuits whilst keeping mathematics to a minimum.

160 pages $216 \times 138 \mathrm{~mm}$ £3.95 US $\$ 9.00$
Please send me Practical Electronics Handbook by Ian Sinclair 040800447 9. Find $£$. \qquad . enclosed

Newnes Technical Books

Borough Green, Sevenoaks, Kent, England.

Wilmslow Audio
 THE firm for speakers!

 SEND 50p FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT price list.AUDAX
BOWER \& WUDIOMASTER WILKINS CASTLE CAKER CELESTION
WILMSLOW AUDIO (Dept. P.E.)
SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Tel: 0625529599
FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS ETC.
Tel: 0625526213
(SWIFT OF WILMSLOW) FOR HI-F1 \& COMPLETE SPEAKERS

LIGHTING \& AMPLIFIER MODULES FROM L \& B

RING 01-689 4138
VISA LB31000SLC £29.90
LB31000SLSOUND TOLIGHT. ASUPERE PERFORMING SYSTEM AT ANINCREDIBLYLOW PRICE. 3 channels. 1000 w each. Fully fused. Veryhigh input impedance. Operates from \ddagger to 300 w sound input.

LB81000LC
$19 \times 9.5 \times 3 \mathrm{~cm}$.
LB41000LS SEQUENCER
LOGIC RANDOM SEQUENCER, WITH TWO SPEED CONTROLS OFFERING A WIDE RANGE OF EFFECTS
4 channels, 1000 w each. CMOS circuitry. Zero voltage fired.

LB41000LS £17.50
$20 \times 9.2 \times 3.5 \mathrm{~cm}$.
LB31000LD and 11000 LD DIMMERS. LLPOWER 3 \& SINGLE CHANNEL CLUBS/PUBS/THE 1000 w per channel. Fully fused phase controlled. Full input and individual Triac filters £14.70
$£ 6.70$
$20 \times 7.8 \times 3.5$

POWERAMPS, 250,150, 100\& 25WRMS. RUGGED TOUGH DEALING
POWER AMP MODULES
Full spec available in our catalogue.

LB250	LB150	L8100	L925
$10 \mathrm{~Hz} \text { TO } 25 \mathrm{KHz}$	10 Hz TO 25 KHz S/N1100B	$10 \mathrm{~Hz} \text { TO } 25 \mathrm{~K} \mathrm{~Hz}$	20 Hz TO 60 S/M94dB

OHz TO 25 KHz	10 Hz TO 25 KHz	12	20 Hz TO 60 KH
	S/N 110 AB		
100.1\%	THDO. 4%	THDO.1\%	TMD 0.07\%

PREAMPS

LBPA3. Complete stereo disco preamp system. Comprising of L\& R deck mixers, auto fade over decks, PFL outpu! drivers and its own regulators. LBPA2. General purpose chan. mixer/tonestage LBPA1. Siereo Hi-FiSystem

NEWILBACOY 18 dB boost control, to lift Bass mid o rreble bands. Available with cross-ove frequencies of 200 or 300 and 2 k or $\mathbf{3 k H z}$ (please specity) - £17.90 LBPSU1 +15 V supply for LBACO1 ROPELIGHTS NOW AVAILABLEI 8 merres in length Red/blue/gresn Complop. £45 + 6.75 VAT forward/reverse and automatic optlons from $2 / \mathrm{sec}$ to $2 / \mathrm{min}$ R.R.P. $\mathbf{£} 69+10.35$ VAT

YOU REQUIRE A BOARD THAT'S MIGHTY COMPETITIVE, HILIABLE, PERFORMANCE, TESTED AND INSPECTED, SUPPLIED WITH CONNECTION AND CCT, DGMAND GUARANTEED. IN TWOLETTERS YOUREQUIREL\&B.
All prices shown are inclusive of VAT (15\%) P/packing 50p in the UK except power supplies (') Trade and Overseas inquiries welcome. For your FREE catalogue send a $12 p$ stamp to:

BHBOWASOMTE electronics

56 FORTIS GREEN ROAD MUSWELL HILL LONDON N10 3HN

 TELEPHONE 01-883 3705 01-883 2289YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPONENTS

PETS

2001-8N (8K RAM)

£399

2001-16N (16K RAM) £499 2001-32N (32K RAM) £599 ALL WITH NEW KEYBOARD AND GREEN SCREEN.

PERIPHERALS

Service \& Assistance available. Interfaces available are:
$X-Y$ plotters, analogue to digital converter, 16 channel interfaces, bi-directional interfaces, etc.

UK101

£179 in kit form

 £229 ready built \& tested> TAPE
> $\mathbf{£ 5 . 0 0}$
NVADER £249 complete in case
NO EXTRAS REQUIRED

* FREE SAMPLER TAPE
* FULL QWERTY KEYBOARD
ASSEMBLER EDITOR
TAPE
£14.95
- 8K BASIC
* RAM EXPANDABLE TO 8K ON BOARD (4K INC)
* KANSAS CITY TAPE INTERFACE
* New monitor allows full editing \& cursor control. £22

LATEST STOP PRESS AND PRICE LIST

send sae or phone for up to date PRICES of all our range of items stocked

Available for UK101, Superboard, NASCOM. Approx. dim. 17" $\times 15^{\prime \prime}$ $435 \mathrm{~mm} \times 384 \mathrm{~mm}$ Price $£ \mathbf{2 4 . 5 0}$ Post and packing $£ 1.50$

$$
\begin{gathered}
\text { TAPES } \\
\text { Unique stackable tape } \\
\text { storage unit. Interlocking } \\
\text { drawers. } 5 \text { drawers each } \\
\text { containing } 2 \text { C12 tapes. } \\
\text { 10 drawers } £ 9.50 \\
\text { 5 drawers } £ 5.25 \\
\text { Single drawer } £ 1.10
\end{gathered}
$$

PRINTERS

TX-80 £395

EPSON TX-80 £395
Dot-matrix printer with Pet graphics Interface: Centronics parallel, options: PET, Apple and serial.

MEMORY	
D. RAMS	$\mathbf{f} p$.
4027	2.75
4050 (35ONS)	2.35
4060 (30ONS)	2.39
4116	4.35
S. RAMS	
$2102 A$	1.09
$2102 A-2$	1.09
$2112 A$	2.25
21 LO2	98
$2114-4045$	2.95
4035	1.07
$4044-5257$	6.93
BULK PURCHASE	
8×2114	22.50
8×4116	29.95
8×21 LO2	7.00
BULK PURCHASE	
162114	39.95
1621 LO2	13.00
3221 LO2	25.00
6421 LO2	45.00

EPROM'S	
2708	
276 (5v)	$\mathbf{4 . 9 5}$
2532	39.95

$2513(U C)$	5.95
$2513(\mathrm{LC})$	5.95

CPU'S	
6502	$\mathbf{9 . 5 0}$
8080	$\mathbf{4 . 7 5}$
9900	25.95
6800	5.90
280	8.95

81LS95	1.25
81LS96	1.25
81 LS97	1.25
81 LS98	1.25
SN74365	52
SN74366	52
SN74367	52
SN74368	52
8T26	1.75
8T28	1.75
8 T95	1.57
8 T96	1.57
8 897	1.50
8 T 98	1.57

BAUD RATE GENS	
MC14411	8.75
MM5307	$\mathbf{8 . 7 5}$

UARTS	
AY-5-1013	$\mathbf{3 . 4 5}$
AY-5-1015	$\mathbf{3 . 9 8}$
MM5503	$\mathbf{4 . 7 5}$
TMS 6011	$\mathbf{3 . 5 5}$

PLEASE ADD VAT 15\% TO ALL PRICES. POSTAGE ON COMPUTERS, PRINTERS \& CASSETTE DECKS CHARGED AT COST. ALL OTHER ITEMS P\&P 30p. PLACE YOUR ORDER USING YOUR ÁCCESS OR BARCLAYCARD (Min. Tel. order £5.00).
TRADE \& EXPORT ENQUIRIES WELCOME, CREDIT FACILITIES ARRANGED.

RECEIVERS AND COMPONENTS

tunbridge wells components, Ballards, 108 Camden Road, Tunbridge Wells. Phone 31803. No Lists. Enquiries S. A.E.
clearance parcels: Transistors, Resistors, Boards, Hardware. lolbs only $£ 5.801$ 1,000 Resistors $£ 4.25,500$ Capacitors $£ 3.75$. BC 108, BC171, BC 204, BC230, 2N5061, CV7497 Transistors 10 70p, 100 〔5.80. 2N3055, 10 for £3.50. S.A.E. Lists: W.V.E. (2), 15 High Street, Lydney, Gloucestershire.

TURǸ YOUR SURPLUS Capacitors, transistors, etc., into cash. Contact COLES-HARDING CO., 103 South Brink, Wisbech, Cambs. 0945-4 188. Immediate settlement.

BOURNEMOUTH/POOLE, Electronic components for the hobbyist, and friendly service. Why not pay us a visit. H \& H TELECTRICS LTD., 353 Ashley Road, Parkstone. 742643.

MODULAR SENSOR SYSTEMS

Signal processing/display systems:
$\mathrm{GaI} / \mathrm{Hr} \quad$ PCB and 4 digit display without case $\mathrm{L} / \mathrm{Hr} \quad$ requires 5 V DC 400 cycles input time
RPM \quad PCB and 4 digit display without case requires 5 V DC, $320 \mathrm{c} / \mathrm{sec}$ time base input
£ 35.95
Total Galls Complete system in case with reset.
Total Litres 12 V DC power supply.
MPG, Km/L Complete system in case.
£29.95
or L/iookm 12V DC power supply
$£ 44.75$
All above prices include VAT, $p \& p$ UK. These systems are ideally suitable for automotive and other speed/flow measurement projects.

ENVIROSYSTEMS LTD.,
Hampsfell Road, Grange-over-Sands, Cumbria LA11 6BE.
Telephone: 04484 4233/4

SMALL ADS

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $\mathbf{f 8 . 0 0}$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Lid". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

POTENTIOMETERS. Resistors, D.I.L. Sockets-Quality Com ponents at Keen prices. Send Large S.A.E. for lists. T. Milner. 203 Goodman Park, Slough, Berkshire SL2 5NP.

100 DIOOES 85p. 50 Transistors 95 p. 10 I.Cs 75p. All mixed. Post Paid. Lists 15p. Sole Electronics, (P.E.) 37 Stanley Street, Ormskirk, Lancs. L39 2DH.
100. ASSORTED COMPONENTS 115 p . 100 . assorted resistors 60 p . 100 . assorted capacitors 150 p. 50 . reed switches $\mathbf{2 0 0}$. 10. mains neons 50 p. 10. Micro Switches 150 p. Add 25 p P\&P. DURRANTS, 9 St. Mary's Street, Shrewsbury, Salop.

MISCELLANEOUS

UK 101 SOFTWARE. Try our original programmes (on cassette) GRAPHIC PAINT BRUSH-GRAPHIC PLOTTER etc. Working programmes that will give you ideas of your own. S.A.E. M \& B SERVICES, 182a, High Street, Margate, Kent.
printed circuit boards. Glass Fibre tinned \& Drilled, Prototypes to batch runs. Quick turn-round, competitive prices. Send S.A.E. for quotations. R.D. ELECTRONICS, 12. Whiteoaks Road, Oadby, Leicester. 0533716273.

GUITAR/PA

MUSIC AMPLIFIERS
100 watt superb treble bass. overdrive. 12 months
 100 watt win channel sep. treble/bass per channel $£ 58 ; 60$
watt $£ 50 ; 200$ watt $\varepsilon 72$, 100 wart four channel 680 watt $£ 50 ; 200$ watt $£ 72 ; 100$ wart four channel sep. treble/bass per channel £75; 200 watt £98; sleves 100
watt $£ 34 ; 200$ watt $£ 50$; fuzz boxes, great sound $£ 10.00$. watt £34; 200 watt $£ 50$; fuze boxes, great sound $£ 10.00$;
bass fuzz $£ 10.90$; overdriver fuzz with treble and bass bassters $£ 20.00 ; 100$ watt combo supert sound overdrive. sturdy construction, castors. unbeatable e98; twin channei £105; bass combo £105; speakers 15 in . 100 watt $\mathrm{E38}$; 122 n . 100 watt $£ 23$; 60 watt $\mathrm{E16}$; microphone Shure

Send cheque or P.O. to:

WILLIAMSON AMPLIFICATION 62 Thorncliffe Avenue, Dukinfield, Cheshire. Tel: 061-308 2064

LOGIC ANALYSER/PULSE CATCHER in kit
 game to test your reactions in kit form
$\mathbf{E 9 . 7 5 \text { inc. } p \& p . ~}$ Both projects supplled with full instructions and high quality glass fibre tinned P.C.B.'s.

HERTS ELECTRONICS,
 6 Dunlin Road
 Hemel Hempstead, Herts HP2 6LU

digital watch batteries, any sort 75 p each + p.p. Send S.A.E. or 15 p with number or old battery to Disclec, 511 Fulbridge Road, Werrington, Peterborough PE4 6SB.

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state TransmitterReceiver Kit. Only $£ 12.95$ plus 35 p P. \& P. 'BrainFreeze' 'em with a MINI-STROBE Electronics Kit, pocket-sized 'lightning flashes', vari-speed, for discos and parties. A mere 85.95 plus 35 p P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR soundcatcher: ready-made multi-function modules $\mathbf{£ 6 . 8 5}$ each plus 35p P. \& P
LOTS MORE! Send 30 p for lists. Prices include VAT.

BOFFIN PROJECTS
4 Cunliffe Road, Stoneleigh
Ewell, Surrey (P.E.)
burglar alarm equipment. Latest Discount Catalogue out now! Phone C.W.A.S. Alarm 0274682674.
clearing laboratory: scopes, generators, p.S.U.'s, bridges, analysers, meters, recorders, etc. 0403-76236.

CENTURION ALARMS
 burglar alarm equipment at UNBEATABLE VALUE JUST LOOK!

Order No
100 ALARM TRIGGER MODULE. 100\% Solid Stare. Ballery operation, Pos \& Neg hings. NCC for 4 wite conlacis. W/O lor Mals eicc. Dne Amp switching
 mateching magne!
220 Surface 4 -WIe MAGNEIC REEO CONTACC

260 VRERSATION MAT. Stair Size 4. wire ${ }^{23^{\circ}} \times{ }^{6} \times 1$

+ self-zdhesive backing. Adiustabie Sensitivity
3 SO SIX INCH UNOER DOME BEL
390 BEST OUAUTY BEL HOUSING PUC 390 BEST DUALITY BELL HOUSING. PV.C. coated Metal, not to be conlused
with cheaper decoy covers Fully Sign Written with our Cenul with cheaper decoy covers Fully Sign Written with our Centurion in-
signo.

Nots: Al Equibmont Operates on 12 volu dC
710 SCOOP Offer SMOKE ALARMS, Self-Contained lonisation Type (1.5\% obscuration) With Low Battery Warning at the UNREPEATABLE PRICE OF ONLY f8.75p While Stocks Last I! !

No Minimum Order. Access telephone Orders welcome on 0484-35527 or Sene S.A.E. for Full List to

CENTURION ALARMS ELECTRONIC SALES Dept. PE, 265 Wakefield Rd.. Hudderstield, W. Yorks. HD5 9BE.

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, self setting at switch-on, 8 digits show Date, Hours, Minutes and Seconds, larger digit Hours and Minutes or easy QUICK-GLANCE time, auto GMT/BST and leap year, also parallel BCD output for computer and can record when an event occurs, receives Rugby time signals, built-in antenna, 1000 Km range. now get ABSOLUTE TIME - always, $£ 54.80$
SIG. GEN., $10 \mathrm{~Hz}-200 \mathrm{KHz}$, logic and variable sine and square wave outputs, if harmonics, $£ 12.80$.
Each fun-to-build kit includes all parts, printed circuit, case,
postage etc, money back assurance so SEND off NOW.
CAMBRIDGE KITS
45 (FJ) Old School Lane, Milton, Cambridge.

MAKE YOUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack (5 sheets, lines, pads, 1.C. pads) $£ 1.60$. Large range of single sheets in stock at 34 p per sheet.
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. Full instructions supplied. 2 sheets ($20 \times 25 \mathrm{~cm}$) negative paper and 2 sheets ($18 \times 24 \mathrm{~cm}$) positive film
sheet.
1.80. Drafting film $(30 \times 21$
.
17p stamp for lists and information. P\&P 30p/order P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4

ENAMELLED COPPER WIRE

SWG	1 lb	8 oz	4 oz	$20 z$
8 to 29	2.76	1.50	0.80	0.60
30 to 34	3.20	1.80	0.90	0.70
35 to 40	3.40	2.00	1.10	0.80
41 to 43	4.75	2.60	2.00	1.42
47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 30	6.50	3.75	2.20	1.40
TINNED COPPER WIRE				
14 to 30	3.85	2.36	1.34	0.90

Prices include P\&P, VAT and wire Data. SAE for list. Dealer enquiries welcome. Reg office 22 Coningsby Gardens.

Cabinet and Flightcase Fittings

Fretcloths, Coverings, Handles, Castors etc.. Jacks and Sockets, Cannons, Bulgins. Reverb Trays. Emilar Compression Drivers, AKG Mics, Celestion Speakers. ASS. Glassfibre
Send 30 p postal order for illustrated catalogue to:-

ADAM HALL (P. E. SUPPLIES) Unit G, Carton Court, Grainger Road.

 Southend-on-Sea, Essex S\$2582.RYDER ORGAN SYSTEM
The W.W. classical design for fullsize keyboards, including couplers. Expanded range of units now includes chorus, vibrato, combination stop-control and a new reverb. Data, p.c. boards, from:
HIYKON LTD. (P).
Woodslde Croft. Ladybridge Lane.
Bolton BLI 5ED.
ENAMELLED COPPER WIRE

ultrasonic transoucers. $£ 2.85$ per pair +25 p P\&P. Dataplus Developments, 81 Cholmeley Road, Reading, Berks.

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer - now greatly improved and very much faster. Aerosol cans with full instructions. 22.25 . Developer 35p. Ferric Chloride 55 p. Clear Acetate sheet for master 14p. Copper clad Fibre-glass Board approx. 1 mm thick $£ 1.70 \mathrm{sq}$. ft. Post/Packing 60 p. WHITE HDUSE ELECTRONICS, P.O. Box 19, Castle Drive, Penzance, Cornwall.

SEEN MY CAT? 5000 Odds and ends. Mechanical. Electrical. Cat frec. Whiston Dept. PRE, New Mills, Stockport

SOUNDEFFECTS NASCOM

Add phasers, explosions, music and other effects just like the professional arcade machines. to your own programs. Controlled by simple poke statements or
desired in machine code, this 3 channel synthesizer can produce almost any sound. Using stereo output and carefully designed hardware truly dynamic effects can be created using a minimum of processor time. The unit
also Includes 2 -bii parallel $1 / 0$ ports for con-
irol/monitoring/keyboard scanning appllcatons. Complete built and tested with demonstration program Send S.A.E. or phone for details. Sar

C12 data cassette with details 55 p inc.

7 SEGMENT LED's at low cost 0.3 in , RH decimal, common cathode, FND70 series. Base diagram included. £2 plus SAE for three. F. Rose, 33, Wallace Drive, Eaton Bray, Beds.

UK101 Hardware:

Programmable Sound Generator Add another dimension to your UK 101. We will supply the P.C.B. list of parts, Hardware and Software instructions and Software on tape. All for only $£ 9.50$.

UK101 Software on Tape:

Our most popular programs: $4 K$ Alien Invaders; $8 K$ Home Finance. Our latest program: $8 K$ Asteroid Runner, and our Other firm favourites: $4 K$ Snakes and Ladders; $4 K$ Fruit Machine; 4 K The My-mY Game; 4 K Drawing Machine. $£ 3.00$
each or $£ 5.00$ for any two including P\& P. Cheque or P.O. or just S.A.E. for details to Marick Dept. 12, 1 Branksome Close, Paignton, S. Devon TQ3 1EA.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass, non-magnetic tweszers, watch screwdriver case knife and screwback case opener, also one doz. assor push pieces, full instpustions and battery identification chart. We then supply reptacement batteries-you fit them. Begin now. Send E 9.00 for complete kit and get into a fast growing business. Prompt despatch
BOLSTER INSTRUMENT CO.
(PE16)
11 Percy Avenue, Ashford, Middx, TW15 2PB.

SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a Low $£ 1.05$. Chassis punching facilities at very competitive prices, 400 models to choose (Dept. No. 23), St. Wüfrids, Foundry Lane, Halton, Lancaster, LA 16 LT .

PLEASE MENTION PRACTICAL ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS.

EDUCATIONAL

NORTH CHESHIRE COLLEGE SERVING THE COMMUNITY 2 'A' LEVEL PASSES? WHAT NEXT?
We can offer you a pleasant campus MIDWAY BETWEEN LIVERPOOL AND MANCHESTER .
A Study bedroom of your own... A Friendly Social Life
And we still have places on our UNIVERSITY OF MANCHESTER VALIDATED B.A. and B.Ed. COURSES.
B.A. (Combined Humanities) Subjects on offer: Audio-Visual Communications, English. Environment, Sociology, Physical Education, Theatre Studies.
Nearly all combinations of two of these subjects are possible. The most popular combinations result in the following programmes:-
LITERATURE AND THEATRE STUDIES
MEDIA AND COMIMUNICATIONS
RECREATION AND ENVIRONMENT.

B.Ed. WE OFFER TWO THREE YEAR COURSES:-
 Primary School Teaching

Secondary School Teaching in either English, Environmental Studies or Physical Education (Supporting studies in some shortage subjects are available)
A FOURTH YEAR STUDY COULD LEAD TO THE B.Ed. (Hons) DEGREE.
For further information and application forms contact:-

> ADMISSIONS (PLET), North Cheshire College,

> Padgate Campus, Fearnhead,
> Warrington WA2 ODB. Telephone: Padgate 814343.

TV \＆COMPUTER SYSTEMS SERVICING

18 MONTHS full－time Modular Diploma course to include a high percentage of practical work．

－ELECTRONIC PRINCIPLES

－MONOTV \＆CCTV
－colour TV \＆Vcr
－digitaltechniques
－COMPUTERS \＆
MICROPROCESSORS
Each of the above Modules are 12 weeks in duration．Individual Modules can be arranged for applicants with suitable electronics background．
Tuition fees（UK \＆Overseas）£360 per Module．－Computer Module $£ 450$ ．
Next session starts September 15th．
（Also available $2 \frac{1}{2}$ year course in Marine
Electronics \＆Radar．）
Prospectus from：

LONDON ELECTRONICS COLLEGE

Dept：PEA9， 20 Penywern Road， London SW5 9SU．Tel：01－373 8721.

CITY \＆GUILDS EXAMS
Study for success with ICS．An ICS homestudy course will ensure that you pass your C．\＆G．exams．Special courses for：Telecoms．Technicians，Electrical Installations，Radio，TV \＆Electronics Technicians， Radio Amateurs．Full detaits from：

ICS SCHOOL OF ELECTRONICS
Dept．Y272 Intertext House，London SW8 4U Tel． $01-62299$ II（all hours）

State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job．Take the first step now－write or phone ICS or details of ICS specialist homestudy courses on Radio，TV，Audio Eng．and Servicing，Electronics， Computers：also self－build radio kits．Full details from：

ICS SCHOOL OF ELECTRONICS
Dept．Y272 Intertext House，London SW8 4UJ
Tel．01－622 9911 （all hours）
State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers．Covers principles，practice and align－ ment with numerous illustrations and diagrams．Other courses for radio and audio servicing．Full details from：

ICS SCHOOL OF ELECTRONICS
Dept．Y272 Intertext House，London SW8 4UJ Tel． $01-62299$ II（atl hours）

State if under 18

FOR SALE

NEW BACK ISSUES of＂Practical Electronics＂available 80p each Post Free．Open P．O．／Cheque returned if not in stock－ BELL＇S TELEVISION SERVICES， 190 Kings Road， Harrogate，N．Yorks．Tel：（0423） 55885.

UK 101 CASED \＆ASSEMBLED with colour graphics， 8 K RAM manual and cassettes $£ 350$ o．n．o．Tel．0767－317550 or 0767.317317

SERVICE SHEETS

BELL＇S TELEVISION SERVICES för Service Sheets on Radio，Tv， etc $£ 1.00$ plus S．A．E．Colour TV Service Manuals on request． S．A．E．with enquirles to B．T．S． 190 Kings Road，Harrogate， N．Yorkshire，Tel：（0423） 55885.

SERVICE SHEETS from 50 p and S．A．E．Catalogue 25 p and S．A．E．Hamilton Radio， 47 Bohemia Road，St．Leonards， Sussex．

SITUATIONS VACANT

INDUSTRIAL ELECTRONICS：Are you an Electronic Test Technician or Service Mechanic？Have you had an appren－ ticeship followed by at least 5 years recent practical ex－ perience with a manufacturing or servicing organisation？If so we can offer you employment as an INSTRUCTOR， with good promotion opportunities and pensionable securi－ ty at Gloucester，Bristol，and Swindon skillcentres．Starting salary $£ 6,000$ p．a．rising by two increments to $£ 7,110$ p．a． For more information contact Miss A．Curran，M．S．C． T．S．D．II，Park Place，Clifton，Bristol，Telephone Bristol 20661.

IndUSTRIAL ELECTRONICS．Ate you an Electronic Wireman／Tester or Prototype Wireman？Hàve you had an apprenticeship followed by at least 5 years recent practical experience？If so we can offer you employment as an INSTRUCTOR，with good promotion opportunities and pensionable security at Bristol，and Swindon skillcentres． Starting salary $£ 6,000$ p．a．rising by two increments to $\mathbf{~} 7,110$ p．a．For more information contact Miss A．Curran， M．S．C．T．S．D．11，Park Place，Clifton，Bristol．Telephone Bristol 20661.

BOOKS AND PUBLICATIONS

any requesteo service sheet \＆！＋Large S．A．E．Full repair data any named TV $\mathbf{£ 5 . 5 0}$（with circuits，layouts etc． £7）．SAE brings newsletter，bargain offers，etc．AUSPEL， 76 Church St，Larkhall，Lanarks ML9 IHE．
b00ks．800ks．bogks．－Large range of Electronic Books in stock．Send S．A．E．for list．Servio Radio，（Dept PE9）， 156／8 Merton Road，Wimbledon，SW 19 IEG．

SEND FOR OUR TRANSFORMER CATALOGUE PRICE $£ 1.00$ WHICH INCLUDES A 50p VOUCHER OFF YOUR FIRST PURCHASE．									
Type	Voltage	rent	\＆	$p / 0$	Type	Vota	Curre		
	6	0．5A EACH	－99	60			0.4 A	95	${ }^{600}$
	－ $\begin{gathered}6+6 \\ 6+6\end{gathered}$	1． 1 A EACH	2．${ }^{2} .36$	${ }^{750}$	O8FE	－9．0．9	0．5A ${ }^{1 /}$	${ }_{\substack{2 \\ 2.35 \\ 2.35}}^{\text {2 }}$	60 D
	${ }_{\substack{6+6 \\ 5 \\ \hline \\ \hline}}$	${ }^{3 A}$ EACH	${ }^{4.02}$			${ }^{9} 9$	1.5 A		755
							－．6A		75
		0.3 A 0.5 A	$\begin{aligned} & 1 \cdot 99 \\ & 2.40 \end{aligned}$	600	20FE 20	－${ }_{\text {9．0．9 }}^{12-9}$	${ }_{1}{ }^{2} \cdot 6 \mathrm{~A}$ A	． 30	${ }^{750}$
	${ }_{\substack{\text { cos } \\ 9+9 \\ 9+9}}$	－ 7 IA EACM		${ }^{750}$	20F70	边	${ }_{\text {1．} 21}^{1 / 2 A}$		${ }_{7}^{75}$
	9＋9	2．5A EACM			20FE		0.6 A		75
	9＋9	3A EACH	5.03	1250	50FE	${ }^{\text {9，0}}$	${ }_{3}^{5 A}$		900
	12	0．2A EACH	2．40	${ }_{600}^{60}$	50FE		，${ }^{\text {a }}$	4．00	90
	2＋12		2．40	${ }^{60} 5$	50\％E10	－	${ }^{1.4 A} 4$	4.00 5.00	
		1．8A EACH	5．03	1250	60FEE		2．2AA	5．00	（125p
	12＋12	3A EACH		125		$30-0$	${ }_{3 A}$	5.00	
	15	O．2A EACH	． 99		${ }^{80} 8 \mathrm{Ef} 40$	12－0．12	${ }_{5}^{6 A}$	6．15	
	ctis		为	${ }^{75}$			${ }^{\text {A A }}$	－6．15	
		－ 1.6 AACACH		750			2．5A	S．15	250
	（15＋15	${ }^{2} \mathrm{SAEACH}$	5．03	${ }^{125} 5^{\circ}$		30－0－30	2．3A	6． 15	125p
	$20+20$ $20+20$	O．15A EACH $0.25 A ~ E A C H$	${ }_{2}^{1.69}$		90FE80		${ }_{3}^{3 A}$	30 30	
					－			－ 6.60	边
								6．60	
	O＋20	2A EACH			－	23－0．30	$\begin{array}{r} 3 A \\ 3 A \end{array}$		
		ger trans							
48 FFE 12 66 F 12	－6－12								
66FE12 9 9FE 12	｜cele $\begin{gathered}0-6.12 \\ 0-6-12 \\ 0-12\end{gathered}$	$\begin{aligned} & 5 A \\ & 6 A \\ & 8 A \end{aligned}$	¢．15		M50，		${ }_{4}^{5 A}$	20	90
							${ }_{3}^{4 A}$		仿
O6FEE30	$\begin{gathered} 6-0-6 \\ 9-0.9 \\ 2 .-0.92 \end{gathered}$	$\begin{aligned} & 1.5 A \\ & 0.5 A \end{aligned}$	$\begin{aligned} & 1.95 \\ & 19.95 \\ & 1.95 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 60 \end{aligned}$		$\left.\right\|_{28} ^{428}$			$\begin{aligned} & 200 \\ & 20200 \\ & 2000 \\ & 2000 \end{aligned}$
			TRADE ENQUIRIES WELCOME						
FLADAR ELECTRIC SOUTHVIEW DRIVE PO．B0× 19							${ }_{\text {N }}$ The		
PO．BOX 19 WESTCLIFF．ON SEA ESSEX 0702－613314							es inclu	15	A．

AT BLINKIN＇LAST

 COLOURBOARD II THE NEW 5OHZ COLOUR VERSION OF OHIO SCIENTIFIC＇S SUPERBOARD IIIS HERE AND LIKE A TON OF BRICKS DOWN CRASHES THE PRICE OF ST HERE AND LIRE A TON OF BRICKS DOWN CRA
STANDARD SUPERBOARD II

 adaptor £4．20，connector kit $£ 13.95$ ． Microvision TV $£ 89$ ，mains adaptor $£ 6.88$
PDM $35 ~ £ 34.23$ mains adaptor $£ 4.20$ case £2．07．DM350 £76．70，DM450 £102．17，DM235 £55．55．Accessories for all $\mathbf{3}$ models：－rechargeable batteries case cs．90．Enterprise prog catculator $£ 19.95$ ．TG 105 pulse generator $£ 87$ ．
Bench frequency counter $£ 150$ ． SOHZ UK BLACK AND WHITE
SUPERBOARD II $£ 159.95+15 \%$ VAT
POSTFREE． POST FREE． COLOURBOARD II £205＋15\％VAT． THE UNIQUE SPECIAL
 ＊board these items are at the reduced －prices shown first．Also sold separ－ －ately at the bracketed prices．Add 2
 －£20（£24）．Case £23（E26）．Cassente －recorder E13（í15）．Colour Conver－ sion Board $\mathrm{E45}$（f45）．Super Print
800 MST printer f 399 （ E 399 ）

EATTERY ELIMINATOR KIT

 100 ma radio types with press－slud con－ $\begin{aligned} & \text { nectors } \\ & 4 \frac{1}{2}+4 \frac{1}{2} \vee £ 1.92,6+6 v £ 1.92,9 \\ & 9\end{aligned} 9 \mathrm{q} £ 11.92$. S7．44， $5 \mathrm{v} 4 \mathrm{4A}$ E12．60．Stablized 8 －way
types $3 / 41 / 6 / 7+/ 9 / 12 / 15 / 18 \mathrm{v}$ 100ma types $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{1 / 9 / 12 / 15 / 18 \mathrm{~V}} 100 \mathrm{ma}$
$\mathbf{2} 2.60,1 \mathrm{~A}$
$\mathbf{K 6 . 5 0}, 2 \mathrm{~A}$ £9．84．Stabilized £2．60， 1 A 26．50， $2 \mathrm{~A} \mathrm{E9.84}$ ．Stabilized
 $£ 12.10$ ． 12 v car convertor $6 / 7 \frac{1}{2} / 9 \mathrm{v} 1 \mathrm{~A}$
£1．35．

BATTERY ELIMINATORS

3－way switched type with 4 －way multijack $6 / 7 \frac{1}{1} 9 v \quad 300 \mathrm{ma} £ 3.14$ ． 100 ma radio models with press－siud connectors 9 y
$£ 3.77,9+9 \mathrm{v} \mathrm{£4.99}$ ．Fully stabilized model £3．77 $9+9 \mathrm{v}$ £4．99．Fully stabilized model
$3 / 6 / 7 \frac{1}{2} / 9 \mathrm{v} 400 \mathrm{ma}$ e 8.50 ．Car convertor $3 / 2 / 7 \frac{1}{2} / 9 \mathrm{v}$ input，output $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 \mathrm{v}$
12 v 800 ma £ 2.76 ．

SWANLEY ELECTRONICS
 Dept．PE， 32 Goldeel Rd．，Swanioy，Kent BR8 8EZ．

Mail order only．Please add 35 p postage．Prices Include VAT unless stated．Lists 27 p post free．Overseas customers deduct 13% ．Official credit orders welcome．

BUILD A SYNTHESISER!

SPECIAL SKILLS

SPECIAL EQUIPMENT REQUIRED

Using Dewtron (Reg'd)

PROFESSIONAL MODULES
Over 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, well-tried range of Dewtron synthesiser and other effects modules. Also "Mister Bassman" Bass Pedal Units. Send 35p for Musical Miracles Catatogue NOWI

DESIGN ENGINEERING (WOKINGHAM) LTD.

 254 RINGWOOD ROAD, FERNDOWN, DORSET BH22 9AR.QUALITY REEL TO

REEL \& CASSETTE TAPE HEADS + MECHANISMS
POPULAR UNIVERSAL CASSETTE TAPE HEADS
 812-01 Mono Record/Pisyback........ ©4.02 C42RPS18 Sterso TWIN GAP R+PI25.21

 B24.07Stereo R/P, (Dolby Sum)....a7.87 C44 APH03 Quad \% track R/P................. 813.17 CA2 RPH20 Stered SENDUST R/P.... E9. 28 C44RP2ESD1 Quad \% track combined CA2RPIESO1 Stereo combined $\mathrm{R} / \mathrm{P}+\mathrm{Erane}$ \qquad
 SEND FOR OUR FULL CATALOGUE 50 p including P. \& P

FUEL ECONOMY - in kil form

kit form to save £E££££'s from start to finish
You have a choice from two kits:
FSX20 gives accurate instantaneous digital mpg readings to obtain maximum fuel economy. Standard features include choice of two update frequencies, automatic clear down under idling and owner calibration facility.
FSX10 gives a digital gallons used reading to allow determination of total fuel and average mpg .
Kits are complete with all necessary components and comprehensive instructions. All components guaranteed for 12 months, full technical backup services available.

ENVIROSYSTEMS LTD., Dept.PE,
Hampsfell Road, Grange-over-Sands, Cumbria, LA11 6BE.
Tel: 04484 4233/4
Name
Address

Phone your order with Access or Barclaycard

	inc. VAT \& p\&p.	Qty Rqd.
FSX20	$£ 47.50$	
- Pl option	$£ 65.90$	
FSX10	$£ 34.80$	

I enclose cheque/
POs for ε
Cheque No

- Petrol Injection

Summertime Special Offers

All our normal discount prices for ALARM CHRONOGRAPHS and CALCULATOR WATCHES

OFFER CLOSES

SEPTEMBER 6th 1980 SUBJECT TO AVAILABILITY

Send 25 p for our illustrated catalogue
Our normal service is BY RETURN OF POST. However in anticipation of heavy demand, please allow up to 14 days for delivery.

BLANK ALUMINIUMCHASSIS. 18 s.w. 8.2 tin. sides. $6 \times$ tin 95 pp 8×6 in. $51.40: 10 \times 7 \mathrm{in}, .1 .55 ; 14 \times \sin , 51.4$, ALUMINIUM PANELS. 18 s.w.e. $6 \times$ 4in. $24 \mathrm{p} ; 8 \times \overline{6} \mathrm{in}$. 38 p ; 94 pi $12 \times 12 \mathrm{in}$. E1: 16×1 ioin. 21.16 . 16×10

 high voltageelectrolytics

DE LUXE BSR HI-FI AUTOCHANGER

Rapid Mail Order Service. Callere Welcom
Acceee- Vies. Liste 20p. Closed Wed.
Radio Components Specialists 337 WHITEHORSE ROAD
CROYDON. SURREY, U.K. TEL $01-6841665$

COMPONENTS
Halifax Road, Keighley,
West Yorkshire BD21 5HR
All our products ere guaranteed high quality components from leading Semiconductor Manutacturers.

Cash/Cheques/P.0's with order. P \& Padd 30p to all orders. Add 15\% VAT to total order. All items ex. stock - orders by return post.

ELECTRONIC TESTING
 \& FAULT DIAGNOSIS

by G. C. Loveday Price: $\mathbf{£ 5 . 5 0}$
DIGITALTECHNIQUES \& SYSTEMS
by D. C. Green
price: $\mathbf{5} 5.50$
ELECTRONIC FAULT DIAGNOSIS
by I. R. Sinclair
Price: $£ 3.50$
ELECTRONIC DESIGNER'S H/B
by K. Hemingway
Price: $£ 13.50$
HANDBOOK OF ELECTRONICS
CALCULATIONS FOR ENGINEERS \&
TECHNICIANS

by M. Kaufman
 Price: $£ 14.70$

H/B OF MICROCIRCUIT DESIGN \&

APPLICATION
by D. F. Stout
Price: $\mathbf{£ 1 9 . 2 0}$
UNDERSTANDING MICROPROCESSORS by Texas Inc. Price: $£ 4.00$
INTRODUCTION TO MICROCOMPUTER
PROGRAMMING
by P. C. Sanderson
Price: $£ 4.50$
THE COMPLETE MICROCOMPUTER
SYSTEMS H/B
by E. L. Safford
Price: $\mathbf{8 8 . 2 5}$
TOWERS' INTERNATIONAL
TRANSISTOR SELECTOR
by T. D. Towers
1980 Price: $£ 10.50$
ALL PRICES INCLUDE POSTAGE
THE MODERN воок со.
BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET

 LONDON W2 1 NPPhone 01-402 9176
Closed Saturday 1 p.m.

The modern way of instant 2-way communications. Just plug into power socket. Ready to use. Crystal clear communications from room to room. Range $\frac{1}{2}$ mile on the same mains phase. On/off switch. Volurne control, with 'buzzer' call and light indicator. Useful as inter-office intercom, between office and warehouse, in surgery and in homes. P. \& P. £1. 75
F.M. 2 channel "touch" model $£ 47.95$ + VAT £7. 20 + P. \& P. $£ 1.85$.

Latest transistorised Telephone Amplifier with detached plug-in speaker. Placing the receiver on to the cradle activates a switch for immediate two-way conversation without holding the handset. Many people can listen at a lime. Increase efficiency in office, shop, workshop. Perfect for "conference" calls: leaves the user's hands free to make notes, consult files. No long waiting, saves
time with long-distance calls. On/off switch, volume contime with long-distance calis. On/ off switch, volume con-
trol, conversation recording model at $\mathbf{£ 2 0 . 9 5}+$ trol, conversation recordin
VAT $£ 3 \cdot 15$, P. \& P. \&1-15p.

DOOR ENTRY SYSTEM

No house/business/surgery should be without a DOOR ENTRY SYSTEM in this day and age. The modern way to answer the door in safety to unwanted callers. Talk to the caller and admit him only if satisfied by pressing a remote control button which will open the door elec-
tronically. A boom for the invalid, the aged and busy tronically. A boom for the invalid, the aged and busy housewife. Supplied compiete d.i.y. kit with one internal
Telephone, outside Speaker panel, electric door lock Telephone, outside Speaker panel, electric door lock release (for Yale type surface latch lock), mains power
unit, cable (8-way) 50 ft and wiring diagram. Price unit, cable (8-way) 50 ft and wiring diagram. Price $£ 49.95+$ VAT $£ .50+$ P. \& P.
Telephones $£ 59.95+$ VAT $£ 9 \cdot 00$ + P. \& P. $£ 1.95$.

VISA

WEST LONDON DIRECT SUPPLIES (PE9)
169 KENSINGTON HIGH STREET, LONDON W8

MONTORS MONITORS MONITORS

Uncased from 3" to 12" Cased from 5" to 20"

Semi professional or professional available from stock.

Monitor PCB's including Transformers and Tubes also in stock.

Phone or write for details.

CROFTON ELECTRONICS

Crofton Electronics Limited 35 Grosvenor Road, Twickenham, Middx. Tel:01 8911513

TOP PRIORITY for every constructor.

HOME RADIO CATALOGUE

Price $£ 1.50$ including postage, packing, insurance.

- Over 2,000 items clearly listed.
- Profusely illustrated throughout
- Over 100 A-4 size pages.
- Bargain list included free.
- Catalogue contains details of simple Credit Scheme.

HOME RADIO (Components) LTD.,
Dept. PE., P.O. Box 92, 215 London Road, Mitcham, Surrey. Phone 01-543 5659

C3OO|ES2OO

high performance electronic ignition,to add power, economy, reliability, sustained smooth peak performance, instant all weather starting, to your car.
Surefire has sold in its thousands in ready made form from big name accessory firms, but it is now available in quality kit form to fit all vehicles with coil ignition up to 8 cylinders.
ES200. A high performance inductive discharge ignition incorporating power integrated circuit (special selection): electronic variable dwell circuit (maximises spark energy at all speeds): pulse processor
(overcomes contact breaker problems). Coil governor (protects coil). Long burn output. Negative earth only. Compatible with all rev. counters. C300. In it's ready built form (心3000) it came top of all systems tested by an independent national authority July' 79. A high energy
capacitive discharge ignition incorporating a high output short circuit proof inverter, top grade Swedish output capacitor, pulse processor circuit, transcient overload protection. Fast rise bidirectional output ideal for fuel injection, sports carburation, ofly engines. Compatible with most rev. counters. (Low cost adaptors available for rare cases Applicatıon list enclosed with each kit. Note: Vehıcles with Smiths. Jaeger rev. counters code RVI on dial will require adaptor type TCI). What's in the kits. Surefire's own precision anodised aluminium extruded case. P.C. mounted security chang eover switch. static timing light. Special selection Motorola semı-conductors, Capacitors, esistors etc. selected after 5 years experiencc. Glass fibre pcb. solder. complete down to last washer.
Fully itlustrated comprehensive instructions and full technical back up service.
Dept. PE2
Suretron Systems (UK) Lid.
Bath (0225) 23194
Address

CAPACITORS:

Mullard Ceramic $63 v$ range 1 pF to 10,000 pF E 24 range all at $£ 0.06$ each
Siemens Ceramic 63v B37448/9
.01: .022: .033: .047mF @ £0.06
.068: .1mF @ £0.08: .22mF@
£0. 11
CSF High Voltage Ceramic Discs Prices $£ 0.07$ to $£ 0.18$ Range 100 pF to 10.000 pF
Voltage range up to 6 Kv .
See catalogue for details. Comprehensive range Siemens Layer Polyester Caps: . 001 to 3.3 mF

Prices $£ 0.07$ to $£ 0.63$.
See catalogue for details. Large range of Muliard/Siemens Electrolytic Axial/Radial Capacitance values 1.0 mF to $10,000 \mathrm{mF}$
Voltage ranges $25 \mathrm{v}: 40 \mathrm{v}$: 63 v : 100 v :
Prices and types as catalogue Also Mullard C280; Siemens B32231/4 and B32110. All prices net + VAT and postage/packaging.
TOOLS BAHCO
Side Cutter with Bezel.
Side Cutter without Bezel
End Cutter without Bezel.
Vero Metal Shears.
Other items as catalogue.

BOXES \& CASES

Soe catalogue for full range Aluminium boxes 13 sizes. Rexine Covered boxes 7 sizes. NEW RANGE TMEC CASES Send S.A.E. for details \& types Price range. $£ 14.04$ to $£ 17.00$ ABS PLASTIC BOXES
$3^{\prime \prime} \times 2 \%^{\prime \prime} \times 1{ }^{3 \prime \prime}$ $33 / /^{\prime \prime} \times 23 \%^{\prime \prime} \times 1 \frac{33^{\prime \prime}}{8} \quad$ Prices as $412^{\prime \prime} \times 3{ }^{\prime \prime} 4^{\prime \prime} \times 1 \frac{1}{2 \prime}$ $8^{\prime \prime} \times 434^{\prime \prime} \times 3^{\prime \prime}$
BAZELLI INSTRUMENT CASES 5 sizes.
Miscellaneous hardware including Vero Board: Superstrips: Vero Breadboard. Vero boxes (see catalogue for full range).

Card Frames: Fliptop boxes: etc etc.

NEW COMPONENTS

Pack

Pack No.
A10
A30 10 pp3 battery leads. 50 p
A30 10 Red or black crocodile clips. 45p
A60 10 Red or black phono plugs. 80
$\begin{array}{ll}\text { A61 } & 10 \text { single phono sockets. } 70 \mathrm{p} \\ \text { A70 } & 102.5 \mathrm{~mm} \text { unscreaned lack plugs. } 80\end{array}$
A72 103.5 mm unscreened jack plugs. 80 p
$\begin{array}{ll}\text { A73 } & 103.5 \mathrm{~mm} \text { chassis sockets. } 80 \mathrm{p} \\ \text { A74 } & 10 \text { Standard mono jack plugs. } 130\end{array}$
A74 10 Standard mono jack plugs. 130p 170 p
AB4 $105 \operatorname{pin} 180^{\circ}$ DIN plugs. 120p
A85 5 Standard to 100° DIN chassis sockets. 100p
C20
C2
C3 Miniature DPDT
slide switches. 130 p
10 Miniature push to make switches. 130 p
10 Miniature push to break switches. 170 p
Pair af ultrasonic transducers. 350p
20 Texas 8 pin sockets. 170 .
20 Texas 14 pin sockets. 200 p
C52 20 Texas 16 pin sockets. 220p
E10 Resistor kit 10 each value 4.70 to $1 \mathrm{M} . \nmid \mathrm{W}$ type.
Totel of 650 resistors. 480
$1 W 5 \%$ carbon resistors. 18 p per 20.
104.7 u 63 v radial electrolytic

E34 1010 u 25 v radial electrolytics. 50p
E37 $10100 u 25 v$ radial electrolytics. $7 \mathrm{~F}_{\mathrm{p}}$
$\begin{array}{ll}\text { E44 } & 10 \text { 1u } 35 \mathrm{v} \text { tantalum capacitors. } 100 \mathrm{p} \\ \text { E50 } & 100.01 \mathrm{u} \text { Mullard C280 polyester } 50 \mathrm{p}\end{array}$
E54 100.1 Mullard C280 polyester. 50p
$\begin{array}{ll}\text { F11 } & 10 \mathrm{BC} 108 \text { transistors. } 90 p \\ \text { F15 } & 10 \mathrm{BC} 184 \mathrm{~L} \text { transistors. } 90 p\end{array}$
17 10 8C214L transistors. $90 p$
F26 102 N 3704 transistors. 80
F27 102 N3819 transistors. 190p
F29 102 N 3905 transistors. 90 p
$\begin{array}{ll}\text { F41 } & 42 \mathrm{~N} 3055 \text { transistors. 200p } \\ \text { F46 } & 57805\end{array}$
$\begin{array}{lll}\text { F46 } & 57805 & 1 \mathrm{~A} 5 \mathrm{~V} \text { requiators. } 300 \mathrm{p} \\ \mathrm{H} 10 & 20 \text { iN4002 rectifer diodes. } 75 \mathrm{p}\end{array}$
H10 201 N 4002 rectifier diodes. 75 p
H50 200 A 91 signal diodes. 110 p
H60 100 1N4 148 signal diodes. $180 p$

H75 5 TIC2460 $16 A 400 \mathrm{~V}$ triacs. 520 p
$\begin{array}{ll}J 10 & 200.2 \text { in red LEDs. } 170 p \\ J 15 & 500.2 \text { in red LEDs. } 400 p\end{array}$
$\begin{array}{ll}\mathrm{J} 20 & 1000.2 \text { in red LEOS. } 750 \mathrm{p}\end{array}$
J 30200.2 in green LEDs. 280 p
J50 200.2 in yellow LEDS. $280 p_{p}$
J80
$\begin{array}{ll}\mathrm{J} 80 & 4 \text { FND500 displays. } 350 \mathrm{p} \\ \mathrm{K} 10 & 5741 \text { operational amps } 8\end{array}$
$K 10 \quad 5741$ operational amps 8 pin. 90p
K25 5 LM301A operational amps. 8 pin. 140p
K30 1 LM324 operational amplifiers. 50 p
K80 5 CA3140 operational amps. 225p
K60 5 NE555 timers. 110p
M10 82114 LP memories. 2800p
All prices include VAT. Please add 50p carriage on all
orders below E10. Send SAE for our deralled list. Mail
RAPIDELECTRONICS
Hillcraft House, Stetion Road, Evnsford, Kont

Godespeed Hectronics

P.O. BOX 23, 34 SEAFIELD ROAD, COPNOR, PORTSMOUTH, HANTS.

 PO3 5BJGIANT 0.8^{*} LEO clock display, common cathode, nonmultiplexed. With data $£ 3.95$ each. ALARM clock module with 0.7^{4} LED display. With data $£ 5.99$ each. and FREE socket, 85.25 each. FLUORESCENT reject calculators. Modern, 10 function with full memory Most repairable but no g 'tees $\mathbf{E 2} .99$ each. TEN, transistors IF, transformers. All brand new. May include several types. 55 p for 10 . CLOCK CHIP MM5316 I.C (has alarm output). Brand new, with data $\mathbf{£ 2 . 3 5}$ each POLARIZING filter, plastlc, O.OO6" thick Any size cut from 1 sq . in. to max. size $19^{\prime \prime} \times 250$ feet. 3 p per sq. inch. MOMENTARY (push to 'make') switch. Red cap. 15p each. SLIDE switch, 2 pole c.o. $16 p$ each. TWO calculator keyboards (not compatible with 4204 calc. chip). 99p the pair. MULTIMETER CHIP. MM5330 i.c. to build $4 \frac{1}{2}$ digit d.m.m. (needs additional circuitry). With data $\mathbf{£ 3 . 5 5}$ each. KNOBS SIIder control knobs, fits 5 or 8 mm shafts. State colour 14p each. Rotary control knobs, black (18 mm diam) with coloured cap. state colour required. 20p each. Skirted rotary knob, same as rotary control knob above but has 'flared' skirt around base. State cap colour required. 27p each. Colours available, black, red, green, blue, yellow, grey, white. 8 DIGIT common cathode calculator display. $0.1^{\prime \prime}$, multiplexed, with data, 99p each. LED WRISTWATCH CHIP with data, 95p each. LED WRISTWATCH DISPLAY matches above watch chip. With data, 95p each. NOTE the wristwatch chip and display are housed in 'legless flatpack' style and require some fairly fine soldering. QUALITY jack sockets. mono 25 p each, stereo 30 p each. LM555 timer l.c. with applications booklet. 25p each. MEMORIES 2102 static RAM, with data, 99p each. NORTEC 4204, 4 function calc. chip. With data, $80 p$ each. UNTESTED 0.1" LED displays. 10 single digit displays for 95 p . ' U ' to test.

POSTAND PACKING PLEASE ADD 40p
(Overseas Orders Add E1)
For your FREE copy of our latest catalogue please sond MEDIUM sized SAE
VAT ADD 15% TOTOTAL COST
luding Post and Pbcking)
'CASH BACK' Setiafaction Guarantee on all items.

Toroidal Transformens

Yet another new development from I.L.P

We use advanced winding technology to make our toroidal tuansformers. They have only half the weight and height of their laminated equivalents within the range and are appreciably more efficient. Our toroidals cost virtually the same as their now outdated laminated equivalents and hum is down to a negligible tenth of what it used to be. Each $/ \perp$ P. toroidal transformer is supplied with rigid mounting hit comprising centre boht, two neoprene and one stoal washar.

TYPE	VA	SECONOAAY RMS VOLTS	SECONOAAY RMS CUAMENT	OIMENSIONS OIA-HT	$\begin{aligned} & \text { WEIGHT } \\ & \text { KG } \end{aligned}$	PAICE
2×010	50	$5+5$	4.16	$70 \times 40 \mathrm{~mm}$	0.9	THUWSFRMEAS IIM TMUS RAWGE
2×011		$9+9$	277			
2×012		$12+12$	208			$\mathrm{f} 540$
2×13		$15+15$	1.66			
2×014		$18+18$	1.38			$\begin{aligned} & +f 1.10 \mathrm{P} / \mathrm{F} \\ + & \mathrm{CO} 0 \mathrm{gsp} \mathrm{VAT} \end{aligned}$
2×015		$22+22$	1.13			
2×016		$25+25$	1.00			
3×010	80	$5+5$	5.84	$90 \times 30 \mathrm{~mm}$	1.0	transformers
3×011		$8+9$	444			
3×012		$12+12$	333			IW This mange
3×013		$15+15$	286			[5.70m
3×014		$18+18$	222			+ 11.20 pip
3×015		$22+22$	1.81			+81.04 vat
3×016		$25+25$	1.60			
4×010	120	$6+8$	10.00	$90 \times 40 \mathrm{~mm}$	1.2	transforme bs im Twis rawge
4×011		$9+9$	666			
4×012		$12+12$	500			
4×013		$15+15$	4.00			16.72
4×014		$18+18$	133			+ 11.30 p/p
4×015		$22+22$	272			+ 81.20 vat
4×016		$25+25$	2.40			
5×018	180	$25+25$	3.20	$110 \times 40 \mathrm{~m}$ 困	1.8	
5×017		$30+30$	286			
6×016	300	$25+25$	5.00	$110 \times 50 \mathrm{~mm}$	28	
6×017		$30+30$	500			

NOTE: For 220V Primary please insert I in place of X in type number. Example: 120 VA 240V $15+15 \mathrm{~V} .4 \mathrm{~A}=42013$ For 240 V Primary please insen 2 in place of X in type number.

Curtom deagn and $0 . E$..... anquires melcamed
FREEPOST

We pay dostage on

 your enquivies and orders. Eimply address your en-velape: FREEPOST T2 relape: FREEPOST T2
ILP ELECTROMICS ILP ELECTRONICS.
Graham Bell Graham Bell House
Ropear Cloes. Comer bury CT2 7EP. bary CT2 7EP.
(No slamp requited)
(No slamp requited).

ILP ELECTRONICS, ROPER CLOSE, CANTERBURY CT2 TEP

```
Please supply.
```

I enclose Cheque Postal Orders \square International Maney Order Access Barclaycard Account No.... Name \qquad
\qquad

INDEX TO ADVERTISERS

Acorn Computers
82 North Cheshire College

Global
80

10
80

7, 82
72, 73, 87
81

74

13
3
78

50, 86

12 PKG Electronics.
Progressive Radio
Proto Design
81 Radio Component Specialists 84
85 Radio \& T.V. Components 16

Saxon Entertainments	\ldots	\ldots	$\ldots 4,74$
Science of Cambridge	\ldots	\ldots	14,15
Scientific Wire Co.	\ldots	\ldots	$\ldots .81$

Semi-Comp Northern
Sentinel Supply
Suretron
Swanley Electronics
Cover III

Tandy
8, 9
Tempus ... 83
T.K. Electronics 70

Technomatic 88
Transam Components 75

69 Watford Electronics 2,3
West London Direct Supplies 84
Wicca Electronics 56
Williamson Amplification 80
Wilmslow Audio $\quad . . \quad \ldots \quad . .$.

[^3]8
$$
3
$$84
5680

SERVICE TRADING CO

FT3 NEON FLASH TUBE
High intensity mulfi turn high voltage, neon glow
discharge flash tube. Design for ignition timing eic. discharge flash tube. Design for ignition timing etc.
E1.50. P. \& P. $25 p(\mathbb{}) .01$ inc. VAT) 3 for E3. P. \&

WHY PAY MORE?

volts $10-50 \quad 250500$ TYpe MFI5A a.c. d.c.
0.1000 Ma Sensing 0 - 10 133 by 93 by 46 mm including iesi leads.

METERS (New) - 90 mm DIAMETER A.C. Amp., Type $62 \mathrm{~T} 2.0-1 \mathrm{~A}$
A.C. Volt, $0-150 \mathrm{~V} .0-300 \mathrm{~V}$. D.C. Amp., Type 65C5, 0-2A, 5A, 0-10A, 0-20A O-50A, $0-100 \mathrm{~A}$.
D.C. Vott. 15 V .30 V All types $£ 3.50$ ea. + P. \& P. 50 p (E4. 60 incl. VAT), except 0.50 A HEAVY DUTY SOLENOID. mf by Magnetic Devices. $240 V$. AC. Intermit-
1 ent operatıon. Approx. 20 Ib. pull at
125 in. Exequip. Tested. Price: 4.75 $75 \mathrm{p}, \mathrm{P}$, \& P. IE6-33 inc. VAT \& P.)

12 V D.C. SOLENOID

12V. D.C. heavy duty Solenoid 4 Kp . pull. Easily removable from
plate. All. chassis containing $4 \times 24 \mathrm{~V}$. .C. Push Solenoids $11 \frac{\mathrm{lb}}{2} \mathrm{lb}$. approx.). 5 -fig. Counter. 6 min photo cells. Sub-min. Microswitches etc. etc. Ex-equip. London Transport Printer. Price: 12V. D.C. Solenoid approx. 1lb. pull. Price: £1 (total incl. VAT £1.96).
p. 30 p.
N.M.S.

SOLENOIDS
WESTOOL SERIES D6 Model A3 24 V . D.C. Price $£ 1.50+50 \mathrm{p}$ p. 8 p. (Total incl. VAT £2.30)

WESTODL SERIES D4 Model A. 24V. D.C. Price f1.00 +30 p
p. \& P. Toral Incl. VAT $\mathbf{1} 1.50$) p. ap.

AG/GT 24 V. D.C. 70 ohm Coil Solenoid. Push or Pull. Adjustable travel $103 / 16$ in. Fitted with mounting brackets and spark sup-
pressor. Size: $100 \times 65 \times 25 \mathrm{~mm}$. Price: 3 for $£ 2.40+30 \mathrm{p}$. P. \&

800 WATT DIMMER SWITCH
Easily fitted. Will control up to 800 W , of alf lights
except fluorescent at mains voltage. Price: $\mathbf{5 3 . 9 0}$ 50 p . p. \& p. (E5.06 inc. VAT).
 30p. (total incl. VAT £9.55).

MICRO SWITCHES

Sub. Min. Honeywell Lever m/s type 3115 m 906 ft .1
for $\mathbf{~} 3.50$ post paid ($\mathbf{~} 4.03$ incl. VAT) for $\mathbf{~} 3.50$ post
These $V 3$ types
Buton type (Pye) 10 for $£ 3.00$ ($£ 3.45$ incl VAT) Short Lever
(4.60 incl VAT)
Roller Type (Bonnella) 10 for E3.50. (E4.03 inct. VAT). N.M.S. D.P. C/O lever $\mathrm{m} / \mathrm{swltch} \mathrm{mfg}$, by Cherry Co. USA. Precious metal
low resistance contacts. 10 for $\mathbf{5 2 . 2 5}$ P. \& P. 3Op. Total inc. VAT

MERCURY SWITCH

Size $27 \mathrm{~mm} \times 5 \mathrm{~mm}, 10$ for $\mathbf{£ 5} .00$
(incl. VAT ©E.12) min quantity 10
Heay duly type, size $38 \times 16 \times 10 \mathrm{~mm}$, minimum quantity 10 .
c7. 80 post paid ($\mathbf{~} 8.63$ inc. VAT \& P)
A.E.G.CONTACTOP

Trpe LS8/L11. Coll 240 V 50 Rs . Contacts - 3 make: 600 V :
20amp. 1 break: $600 \mathrm{~V}: 20$ amp. Price: $\mathbb{E 5} \cdot 50+50 \mathrm{p}$ P. \& P. IES.90 inc. VAT \& P.). 20 amp. Price. $2.50+50 \mathrm{~N}$ N.M.S ARROW-HART MAINS CONTRACTOR, Cat. No. 130A30. Coil 250 V . or 500 V . A.C. Contacts. 3 make 50 amp up
to 660 V . A.C. $20 \mathrm{h.p}$. at 440 V .3 phase 50 Hz . Price: $\mathbf{\Sigma 7 . 7 5}+\mathrm{p}$ 8 p. £1.00 (incl. VAT, total: £10.06). N.M.S.

SMITH BLOWER

Type FF8. 1706. Small, quiet, smooth running 240 V, A.C. operation. Output aperture $45 \times 40 \mathrm{~cm}$. Overall size $135 \times 165 \mathrm{~cm}$
Flange mounting. Price: $\mathbb{E} 4.25$. P. 8 P . 75 p . (Total: $\mathbf{E 5 . 7 5} \mathrm{inc}$. P Z_{3} VAT. N.M.S.

AIRFLOW DEVELOPMENT LTD

 Centrifugal Blower Unit powered by GEC $230 / 250 \mathrm{~V}$. 2850 r.p.m.motor producing approx. 120 cf .f.m. Aparture $65 \times 90 \mathrm{~mm}$. Overall
size $222 \times 225 \times 195 \mathrm{~mm}$, Incl: Sidrter Capac. Pice: $£ 16.00+$
 24 volt. D.C. BLOWER UNIT
Precision 24 volt. D.C 0.8 amp 8 lower that works well on 12 V
0.4 amp $0 . C$ Producing $30 \mathrm{cu.ft}$ min at normal air pressure.
INSULATION TESTERS NEW!
Test to I E E Spec Rugged metal construction suitable for bench or field work constant speed
cluteh Size L Bin W 4 in H 6in weight $61 \mathrm{lb}, 500 \mathrm{~V}$. 500 megohms, f49.Post 80 p I E57.27 Inc. VAT a P. 1000 V 1000 M . E55. Post 80p
 (EG4.17 Inc. VAT \& P. SAE for leallet.
Yof anopher outstanding offer.
IMFO 600V Oubilier
230 V a.c. FAN ASSEMBLY
Powertul consinuous
6 tin. of 4 blade 3 in .
124.20 met. YAT

VARIABLE YOLTAGE TRANSFORMERS

INPUT 230/240V в.c. 50/60 OUTPUT 0-260V 200 watl 1 amp inc. a.c.
0.5 KVA (2 amp IMAX)
.1 KVA (5 amp MAX)
2 KVA 110 amp MAX
.3 KVA (15 amp MAX
5 KVA 125 amp MAX $15 \mathrm{KVA}(50 \operatorname{amp} \mathrm{MAX})$

3-PHASE VARIAB

TRANSFORMERS

3KVA (max. 15 amp.)
6 KVA (max. 30 amp .)

LT TRANSFORMERS
 VAT \& P. O-6V/12V at $20 \mathrm{amp} £ 1470 \mathrm{P}$ \& P. E1. 50 I£18.63 inc. VAT)
0.12 V at 20 amp or $0-24 \mathrm{~V}$ at 10 amp E 12.00 P . \& P. E 1.50 IE15-83inc VAT \& P P
O.6V/12V at 10 amp f8. 25 P. \& P. E 1.25 (f 10.93 inc. VATI $0-6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 2$
I£ $23.58 \mathrm{inc}$. VAT \& P.$)$
$0-10 \mathrm{~V} / 1 \mathrm{~N} / 18 \mathrm{~V}$ at $10 \mathrm{amp} \mathrm{£} 10.50 \mathrm{P} . \& \mathrm{AP}$. E 1.50 (E13.80 inc. VAT) Uther types in stock: phone for enquiries or send sae for leallet.

HY-LIGHT STROBE KIT MK IV

Latest type Xenon white light Hash tube. Solid state timing and triggering circuit $230 / 240 \mathrm{~V}$ ac operation Designed for lagger rooms. halls. etc Speed adjustable
$1-20$ f.p.s Light output greater than many (so called 4 Joule) strobes. Hy-Light Strobe Kit Mk IV. E22.00+f1.50 and reflector for Hy-Light $£ 9.00$. Post $£ 1.50$ ($£ 12.08$ Incl. VAT \& P.). Super Hy-Light Strobe (approx. 16 joules) Price £33. P \& P P 1.50 (incl. VAT total ©39.68) Suitable case £11.00 + ¢1.50 P \& P (£14.30 incl. VAT \&

XENON FLASHGUN TUBES

Range avallable
SAE
O' detants

ULTRA VIOLET BLACK LIGHT FLUORESCENT TUBES
4h. 40 Watt $£ 8.70$ inc. VAT £10.00 (callers only).
2 ht .20 watt $£ 6.20$. Post 75 p. ($\mathbf{2} 7.99$ inc. VAT + P.)
(For use in stan bi-pin fittings). (27.99 inc. VAT + P.)
12 in . 8 watt $£ 2.80$. Post 35 p . ($\mathbf{~} 3.62$ inc. VAT $+P$).
9 in. 6 watt $£ 2.25$. Post 35 p. ($£ 2.99$ inc. VAT $+P$ P).
6 in. 4 watt $£ 2.25$. Post 35 p. ($\mathbf{2} 2.99$ inc. VAT $+P$.
Complete ballast unit, for either $6^{\prime \prime}$. $9^{\prime \prime}$ or $12^{\prime \prime}$ tube 230 V AC op £4.50. Post 45 p . (55.69 inc. VAT +P). Also available for 12 V
DC op © 4.50 . Post 450. (55.69 inc VAT. P) 400 watt UV lamp and ballast complate f 38.00 . Post $\mathrm{C} 3 \cdot 50$ (547.73 Incl. VAT + P). 400 watt UV lamp only £14.00. Post (84.73 incl. VAT + P). 400
E 1.50. ($£ 17.83$ incl. VAT + P).
WIDE RANGE OF DISCO LIGHTING
EQUIPMENT S.A.E. (foolscap) for details.
PROGRAMME TIMERS
 $\stackrel{5}{6}$ adjustable 6 fixed cams. Price $\mathbf{£ 6 . 0 0}+75$ p p. \& p. $\{\mathbf{1} 7.76$ inc.

Superiot Ouality Prectsion Made
 NEW POWER RHEOSTATS

winding heavy duty brush assembly, continu-

ously rated.
25 WATT
 50 WATT 2500 f 2.90 Pos* 25 p 53.821 n
100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} \Omega^{\prime} 1.5 \mathrm{k} / / 2.5 \mathrm{k}$ 3 kn 6.90 c \& p . 35 p (88.34 incl. VAT).

black, Siver. Skirtad knob caltbrated in Nos. $1.91 \frac{1}{3}$ in

RELAYS

 Wide range of ACavailable from sto:
Uher types avallahle - phone for details. N.M.S.
VAT \& PI.
T.E.C. open pype 3 c/o. $10 \mathrm{amp} £ 1 \cdot 10$ (© 1 - ह0 inc. VAT \&i P).

KMKI Relay. 230 V, A.C. $1 \mathrm{c} / \mathrm{o}$. open type 10 amp contact, mt. by "Kerswitch" 80p. + 20 p. p. \& p. ($\mathbf{1} 1.15$ incl. VAT). 5 for ¢ 3.75 postpaid ($\mathbf{~} 4.32$ incl. VAF).
D.C. Melays: Open type 9/12V 3 c/o 7 amp $£ 1.00$ (E1. 38 inc.

 VAT \& P). 24V. Seated 3 c/o 7 amp 11 -pin c1.35 (£1.7
VAT \& P). (amps = contact rating). P\& P on any Pelay 20 p.
Hellarmann Deutach. Hermetically sealed sub-min. Relay. $12-$ 24V. D.C. 2 c/o. 850 ohm coll. 0.2 pitch. P.C. mpunting. L. 20 mm . (22.88 incl. VAT). N.M.S.
Dibriond A haevy duty A.c. relay $230 / 240 \mathrm{~V}$ a.c.. iwo C/O VAT \& p8pl. Special base 50 p . (incl VAT 58 p) 50 N .

All Mail Orders Callers Ample Parking Space Showroom open Mon-Fri

ACCOUNT CUSTOMERS MIN. ORDER £ 10.00

9 Little Newport Street, London WC2H 7JJ Phone 01-437 0576

STEP INTO A NEW WORLD WHEN YOU DISCOVER

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project.

Over 5,000 of the most useful components - from resistors to microprocessors - clearly described and illustrated.

[^0]: - IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles published in PRAĊTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: *Use a 600 mA at 9 VDC nominal unregulated mains

[^2]: SAA 5020 (TIC) Timing chain
 SAA 5030 (VIP) Video input processor
 SAA 5040 (TAC) Teletext data acquisition and control SAA 5050 (TROM) Teletext ROM, character generator

[^3]:

