PRACTICAL

Alectronice

NIW GIATI SUPERPRINITS pLUS Fil: Fill

for every one you send for processing by the Practical Electronics Colour Print Service SUPERPRINTS
$\sum_{\mathcal{L}}$ for only 1 p extra

Photography cañ cost you a lot lêss these days if you know how logo about it..Hundreds of thousands of magazine readers are delighted with this reliable Colour Print Service - and the replacement films that come FREE every time they use it! So why dont you give it a try? Here's what you do. 'Send any make of colour print film inside the envelope enclosed in this issue. Or fill in the coupon below and send it with your film in' a strong envelope to: Practical Electronics Colour Print Service, Freepost, Teddington, Middlesex, TW11 8BR. No stramp is required. Send.no money

We are so confident in the reliability of the service and the quality of our prints, every one of which is checked by professionals, at our laboratories, that you don't, pay until you have received them!
Luxury colour print's
You will be amazed at the crisp, sharp, hi-definition sheen finish of the prints we supply... with elegant rounded corners and borderless to give you maximum picture area. And now with the new. Giant Superprints you get 30% more picture area for just 1p: exira per print.

Unbeatable value
Prices are much less than those you would pay in most shops - quite apart from the FREE Kodak Colour film, worth at least £1.44.* The FREE film is the same size as the one 'you sent for processing.

The new Giant Superprints cost you only 17 p each, compared with 16 p for the standard enprints available with this service. A furthel charge of $£ 1$ is made towards development, postage and packing. The offer is limited to the UK. For Eire, CI and BFPO a handling surcharge will be made.
Free Album Sheets
One album voucher is sent with each film we process. Collect 3 vouchers and we send you a set of FREE album sheets.

More benefits to you
You beñefit in two additional: ways. Firstly, you enjoy a personal service with every care taken over each indiviḍual order. And secondly, you pay only for what you get - with no credit vouchers as with many other companies. An invoice comes with your prints, so.it. is a straight "business transaction.
*Kodak Recommended Retail Prices: $110 / 20-61.44 ; 126 / 20-61.51 ; 135 / 24-$ £1.67; 135/36- 12.12.

-

USE THISLABEL If You haveno ENVELOPE, OR PASSITTOA FRIEND.ITIS USED TO SEND Your prints \& FREE FILM

Offer exc. Minolta Eo Sub-miniature. Roll film $20 p$ surcharge, 400 ASA $20 p$ surcharge. Superprints can only be produced from Kodacolour II, C41 and Agfa C.VS cassette and cartridge film. Prices correct at time of going to press.
From: Practical Electronics Colour Print Service, Freepost, Teddington,
Middlesex, TW11 8BR. Please print my film Superprint/Standard Eriprint size (delete size which is not required).
$\mathrm{Mr} / \mathrm{Ms}$
Address

Prints aire normally despatched within four working days,of receipt of film.

CONSTRUCTIONAL PROJECTS

DOORBELL MONITOR by J. A. Barrow 30
Logs calls and lights up for callers
PE TELETEXT Part 1 by David Shortland 38
Introduction, transmitter and receiver circuits
PE MAGNUM METAL LOCATOR Part 1 by Andy Flind 51
Supersensitive detector that puts practicality into divination CONSTANT CURRENT SOURCES by I. Millar 60Equipment for Electrochemistry
GENERAL FEATURES
ACORN REVIEW by DrA. A. Berk 22
System 3
STRICTLY INSTRUMENTAL by K. Lenton-Smith 26
Matching the speaker signal from your organ to an external amplifier
SEMICONDUCTOR UPDATE by R. W. Coles 33
7910 UAA1003 MN9106
ELECTROCHEMISTRY by A. T. Kuhn MA DPhil 35
A molecular marvelMICROBUS by D.J.D.46Morse-code Generator-Bulls and Cows for ZX80-Inverted Characters on VDU-Digital Alarm Clock
INGENUITY UNLIMITED 66
Hex Keypad-Multiplexer-Keyboard Scanner-Inexpensive A-to-D Converter-Portable Tennis
NEWS \& COMMENT
EDITORIAL 17
MARKET PLACE 18
New products
INDUSTRY NOTEBOOK by Nexus 21
What's happening inside industry
CAPACITOR OFFER 45
A bargain not to be missed
SPACEWATCH by Frank W. Hyde 49
Solar Energy and the Satellite Power System
PATENTS REVIEW 59
READOUT 70

OUR SEPTEMBER ISSUE WILL BE ON SALE SATURDAY, 16 AUGUST 1980
(for details of contents see page 29)

[^0]
WATFORD ELEGTRONIGS
 33／35，CARDIFF ROAD，WATFORD，HERTS，ENGLAND

ALL DEVICES BRAND MEW，FULL SPEC．AND FULLY GUARANTEED ORDERS DESPATCHED BY RETURN OF PDST．TERMS OF BUSINESS： CASH／CHEOUE／POB ORBANKERSDRAFT WITH ORDER．GOVERNMENTAND EDUCATIONAL INSTITUTIONS OFFICIAL ORDERS ACCEPTED ITELEPHONE ORDERS BY ACCESS NOW ACCEPTED Minimum order £ 10.00 plaase）．TRADE El0．00，OVEMSEASORDERPOSTAGE AT COST．

VAT Export ordert no VAT．Applicable to U．K．Customers only．Unleas We stock many more iterme．It pays to vieft ue．We are situated bohind Watford Football Ground．Nearest Underground／Br．Rait Station：Watford High Street，
Open Monday to Saturday 9 ．m．－6p．m．Ample Froe Car Parking apace available

POLYESTER CAPACITOR\＄：（Axial Lead TYpe）
 1000V：1On， $15 \mathrm{n} 20 \mathrm{p} ; 22 \mathrm{n} 22 \mathrm{p}$ ；47n 26p；10́On 38p；470n 53p； 1μ F 175 p

POLYESTER RADIAL LEAD CAPACITORS：25OV；
10， $15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n} 5 \mathrm{~F} ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}, 100 \mathrm{n} 7 \mathrm{p} ; 150 \mathrm{n} 10 \mathrm{p} ; 220 \mathrm{n}$,
ULTRASONIC
TRANSDUCERS

$10,15,2211 \mathrm{p} ; 32 \mathrm{p} ; 260 \mathrm{~V}: 10065 \mathrm{p}$ ；63v：0．47，1．0，1－5．2－2，2．5，3．3．4．7．6．8，8p；

 $14 \mathrm{p} ; 47020 \mathrm{p} ; 1000,150030 \mathrm{p} ; 220036 \mathrm{p}$ ．
TAG－END TYPE： $450 \mathrm{~V}: 100 \mu \mathrm{~F} 180 \mathrm{p} ; 7 \mathrm{~V}$ ． 50V：2200 99p；3300 135p；40V：4700 130p；4000 92p；3300 98p；2500．2200 90p； $2000+2000120 p$
33085 ； $220060 p$

TANTALUM BEAD CAPACITORS $35 \mathrm{~V}: 0.1 \mu \mathrm{~F}, 0.22,0.33,0.47,0.68,1.0$ ． $1 \mu 5,2 \mu 2,3 \mu 3,4 \mu 7.25 \mathrm{~V}: 10,20 \mathrm{~V}: 6 \mu 8$ ． 16V： $2 \mu 2,4 \mu 7,10$ 16V： $22 \mu 32 \mathrm{p}$ ；47， 100 58p； 22075 p ； 10V： $15 \mu, 22,33$ 28p； 100 40p；6V： $47 \mu, 68 \mu, 10032 \mathrm{p}$ ；3V： 10030 p．			POTENTIOMETEAS IAB or EGEN Carbon Track， 0.25 W Log 80.5 W Linear values． 500Ω ， 1 K \＆ 2 K （LIN ONLY）Single $5 \mathrm{KO}-2 \mathrm{M} \cap$ single gang $5 \mathrm{~K} \Omega-2 \mathrm{M} \Omega$ single gang O / P switch $5 \mathrm{~K} \Omega-2 \mathrm{M} \cap$ dual gang stereo 1W Wire－wound 50n－20K			29p 29p 69p 88p
MYLAR FILM CAPACITORS $100 \mathrm{~V}: 0.001,0.002 .0005,0.01 \mu \mathrm{~F}$ 6p $0.015,0.02,0.03,0.04,0.05,0.056 \mu \mathrm{~F} 7 p$ $0.1 \mu \mathrm{~F} 8 \mathrm{p}$ ；50V： $0.47 \mu \mathrm{~F} 12 \mathrm{p}$ ．						105p
			SLIDER POTENTIOMETERS 0.25 W log and linear values 60 mm rack $5 \mathrm{~K} \Omega 500 \mathrm{~K} \Omega$ Single gang 10Kの $500 \mathrm{~K} \Omega$ Dual gang Seff－Stick graduated Alum．Bezela			60p
						$80 p$ 33 p
			PRESET POTENTIOMETERS 0．1W 50n－2．2M Minl．Vert．\＆Horiz． $0.25 \mathrm{~W} 100 \mathrm{O}-3.3 \mathrm{M} \Omega$ Horiz．larger 0．25W 250＠－4．7M＠Vert． Precision Cermet IW 100n－100K			
POLYSTYRENE CAPACITORS： 10pF to 1 nF 8 p ； 1.5 nF to 47 nF 10p．						$\begin{aligned} & 10 p \\ & 10 p \\ & 90 p \end{aligned}$
	THIMMERS Miniatur			RESISTORS－Erie make 5% cabon Miniature High Stability，Low Noise		
$\begin{aligned} & 2,3.3,4,76.8,8,2,10 \\ & 12,18,22,27,33,39 \end{aligned}$	3．30pF 3－50pF 28p					
$12,18,22,27,33,39$, $47,50,56,68,75,82$ ．	5－25pF：65pF B8pF 35p					
85，100，120，150， 180.				0 25W2＠2－4 M7 E24	2 p	
200， 220 11peach	COMPRESS			low ${ }^{\text {O }}$ SW2－4 M7 E1		
250，270，300，330，						
			33p	1\％O5W 51＾1ME24		
	100－500pF		45p			
	400－1250pF		58p			

郘路

 ڤRANSISTO

为 \because 릉

Enter the 80's with SAXON

STEREO DISCO SYSTEMS

WITH LIGHT SHOW \& DISPLAY

12 mth E 21.49 or 24 m

JUST PLUG IN

 AND GO!! 4CH AMP 667.50

All systems complete with loudspeakers, leads, \& 2 years warranty

CRED SYSTEMS
CW LOUDSPEAKERS

SAXON

ENTERTAINMENTS 333 WHITEHORSE ROAD CROYDON
SURREY CRO 2HS

£30 FREE!

Vouchers with our new catalogue over 200 items of disco systems, lighting and accessories. Send £1.00 now.

EXAMPLES:
Fuzz lights Projectors from Strobes Rope lights 8 mtr Disco stands Echo chambers 100W speaker 10 way chaser
100 W twin horn bin 800 W spot bank

$£ 399$

 £125 $£ 55$Mixers, mics, amplifiers, goosenecks, light units, bubble machines, mirror balls, helicopters, bins, consoles, and much more.

AND IF WE HAVENT GOT IT - WE'LL GETIT!

Full range of Pluto, D.J. Lightomation products in stock
Send £1 now for your catalogue - worth E3011!

Ref
102
103
104
105
106
107
118
119
109

PM $120 / 240$ Sec $120 / 240 \mathrm{~V}$ CT Aef $_{0.0}$

Aef	VA	
-07	20	
149	60	37
150	100	8.38
151	200	12.28
152	250	14.61
153	350	18.07
154	500	22.52
155	750	32.03
156	1000	
158		56.99 8.92
159	3000	95.33
-P	240 V	

CASED AUTO TRANSFORMERS 240 V cable in 115 V USA flat pin outier.

VA	Price	P\& \&	Ref
20	6.65	1.03	$56 W$
75	8.50	1.31	$64 W$
150	11.00	1.31	$4 W$
250	12.56	1.67	$69 W$
500	20.13	1.89	$67 W$
1000	30.67	2.65	$84 W$
2000	00.97	$0 . A$	$95 W$

CONTINUOUS

 RATINGS

IL \& CREDITENQUIR
CROYDON TOORDER
Send cheque/crossed POS or Telephone (01) 6846385 Access/Barclaycard. Telephone orders accepted For Credit Sates \& Enquiries Ring

D.I.Y. KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. MINISONIC MK2 SYNTHESISER

A portable mains operated miniature sound synthesiser with keyboard circults. Although having slighty fewer facilitites than the large formant and P.E. synthesisers the functions offered by this design give it great scope and versatility.

Set of basic component kits (excl. KBD R's \& tuning pots -
see list for options available) and PCBs (incl. Layout charts)
KIT 38-25 $\mathbb{E 8 0 . 1 2}$
"Sound Design" booklet
81.00

P.E. 128-NOTE SEQUENCER

Enabies a voltage controlled synthesiser to au tomatically play preprogrammed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and inythmic pattern are externally variable.

Set of besic comps, PC8s and charts
Set of text photocopies
KIT76-7 $\quad \mathbf{E 3 5 . 5 6}$

P.E.16-NOTE SEQUENCER

Sequences of up to 16 notes may be programmed by the use of external panel controls and fed into most voltage controlled synthesisers.
Set of basic comps, PCBs and charts
Ser text photocopies
KIT 86-5 $\quad \mathbf{E 3 3 . 6 0}$

P.E.STRINGENSEMBLE

A multivoiced poiyphonic string instrument synthesiser.
Set of basic comps. PCBs \& charts
KIT 77-8 \quad £107.66

ELEKTOR ELECTRONIC PIANO

A touch-sensitive multiple-voicing piano using the latest integrated circuit techniques for the keving and envelope shaping, and virtually eliminating "bee-hive" noise hitherto inherent in previous electronic pianos.

5 -octave set of basic comps and OCBs (as publ.) KIT $80.9 \quad 1446.68$ Additional 3 -octave extension and basic parts and
PCBs (as published)
Set of text photocopies KIT 80-10 $\quad \mathbf{5 5 6 . 3 8}$

ELEKTOR FORMANT SYNTHESISER

A very sophisticatged synthesiser for the advanced constructor who puts performance before price. Set of basic comps. PCBs (as publ.)

Set of text photocopies
KIT 66-14 ع252.48

ELEKTOR DIGITALREVERBUNIT

A very advanced unit using sophisticated i.c. techniques instead of mechanical spring lines. The basic delay range of 24 to 90 mS can be extended up to 450 mS using the extension unit. Further delays can be obtained using more extensions. Main unit besic comps and PCB (as publ.) Extension unit basic comps and PC8 (as publ) KIT 78-3 f55.40 Text photocopy

ELEKTOR ANALOGUE REVERB

Using i.c.s instead of spring-lines the main unit has a maximum delay of up to 100 mS , and the additional set extends this up to 200 mS . May be used in either mono or stereo mode.
$\begin{array}{llll}\text { Main unit basic component set } & \text { K1T B3-1 } & \text { E29.49 }\end{array}$
$\begin{array}{lll}\text { Additionai Delay basic components } & \text { KK K3-2 } & \text { £20.07 } \\ \text { PCB (as publ) }\end{array}$ PC8 (as publ.) to hold both kits PCB9973 84.52 Text photocopy

ELEKTOR RING MODULATOR

Compatibie with the Formant \& most other synthesisers

 Set of basic comps \& PCB (as publ.)Text photocopy
KIT87-2

10\% DISCOUNT VOUCHER (PE 83)

TERMS: Goods in current adverts \& lists over $£ 50$ goods value (exel P\&P \& VAT). This voucher must accompany order. Valid unitil end of month on cover of P.E. Does not apply to credit card orders.

BASIC COMPONENTS SETS include all necessary resistors, capacitors, semiconductors, potentiometers and transtormers. Hardware such as cases, sockets, knobs, keyboards, etc. are not included but most of these may be bought separately. Fuller details of kits PCBs and parts are shown in our lists.

LAYOUT DIAGRAMS are supplied free with all PCBs unless "as published

NEW KITS

ELEKTOR CHOROSYNTH

A $2 \frac{1}{\frac{1}{-} \text {-octave Chorus synthesiser with an amazing variety of }}$ sounds ranging from violin to cello and flute to clarinet amongst many others, Experienced constructors can readily extend the oc tave coverage.
Basic comps, PCBs and charts but excl. sw's

Text photocopy

KIT $1008 \quad 44.39$

ELENTOR SEWNAR

For use with Elektor Analague Reverb to give graater flexibility to the reverb effects
Basic comps, PC8 (as publ.) KIT 101-1 E22.53
Text photocopy

ELEKTOR FUNNYTALKER

Incorporates a ring modulator, chopper \& frequency modulator to produce fascinating sounds when used with speech \& music signals.

Basic comps, PCB \{as publ.\} KIT 99-1 $\mathbf{£ 9 . 6 0}$
Text photocopy

ELEMTOR FREQUENCY DOUBLER

For use with guitars \& other electronic instruments to produce an output one octave higher than the input. Inpuis and outputs may be mixed to give greater depth.
Basic comps, PCB \{as publ.)
KIT 98-1 E5.48
Text photocopy
20p

P.E. SPLIT-PHASE TREMOLO

A simple but effective substitute for a rotary cabinet. The output of an internal generator is phase-split and modulated by an input signal trom an electronic gular or other instrument. Output amplitudes, depth \& rate are variable. May be fed to one or two amplifiers.

Basic comps, PCB a chart

KIT 102-3 17.58
Text photocopy
65p

P.E. MINISONIC WAVEFORM CONVERTER

A simple converter that modifies the Minisonic sawtooth waveform to produce triangle and sine outputs. Ideally one should be used with each Minisonic VCO.
8asic comps, PCB \& chart KIT 96-1 E3.98

DISCO-CROSS FADER

The cross-fade between 2 decks is switch-Initiated and can be preset on the panel for a cross fade rate of between about $\frac{1}{2} \mathrm{sec}$ 24 secs. Basically a stereo unit but may be used in mono. 8asic comps. PCB \& charr

KIT 94-1 111.83

P.E. GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing. for example, flanging, vibrato, reverb, fuzz and tremolo as well as other fascinating sounds. May be used with most electronic struments
Set of basic comps. PCBs a charts
$\begin{array}{rr}\text { KIT } 85-5 & £ \mathbf{5 4 . 5 6} \\ & £ 2.52\end{array}$
Sel of text photocopies

P.E. PHASER

An automatically controlled 6 -stage phasing unit with integral scillator.
Gasic components, PCE \& chart KIT88-1 E10.89
2-Notch extension, PCB \& chart KIT 88-2 E8.38
Text photocopy

ELEKTOR PHASING \& VIBRATO

includes manual and automatic control over the rate of phasing \&
vibrato, and has been slightly modified to also include a 2 -input mixer stage.

Set of basic comps, PCE \& chart
KIT 70-2 $£ 21.67$
Text photocopy
67p

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS. KITS AND COMPONENTS TO A WORLD-WIDE MARKET

ELEKTOR RESONANCE FILTER

Allows a synthesiser to produce more realistic simulation of
natural musical instruments.
Set of basic comps, \& PCB (as publ.)
Text photocopy
Кіт 82-2 $\mathbf{2 2 . 4 5}$

P.E.GUITAREFFECTS UNIT

Modulates the attack. decay and filter characteristics of a signal from most audio sources, producing 8 different switchable effects that can be further modified by manual controls.

Basic comps, PCB \& chart
KIT 42-3 £10.37
Text photocopy
28p

P.E. GUITAR OVERDRIVE

Sophisticated ver satile fuzz unit incl. variable controls affecting the
fuzz quality whilst retaining attack and decay, and also providing
filtering. Usable with most electronic Instruments.
$\begin{array}{llr}\text { Basic components, PCB \& chart } & \text { KIT 56-3 } & \text { E11.82 } \\ \text { Text photocopy } & 68 \mathrm{p}\end{array}$
P.E. SMOOTH FUZZ

Basic components, PCB \& chart
KIT 91-1 f:8.40
Text photocopy
55p

TREMOLOUNIT

A slightly modified version of the simple P.E. unit.
Basic components, PCE \& chart KIT 54-1 £3.74

GUITAR FREQUENCY DOUBLER

A slightly modified and extended ver sion of the P.E. unit. Basic components, PC日 \& chart KIT 74-1 $\mathbf{~ 5 . 1 9}$ Text photocop

P.E. GUITAR SUSTAIN

Maintains the natural antack whilst extending note duration.
Basic components, PCB \& chart
KIT 75-1
Text photocopy

P.E.WAH-WAH UNIT

Can be controled manually or by integrst automatic control.
Basic components, PCE \& chart
KIT 51-1

P.E. AUTO-WAH UNIT

Automatically glves Wah or Swell sounds with each note played. $\begin{array}{lll}\text { Basic components, PCE \& chart } & \text { KIT } 58-1 & £ 9.68 \\ \text { Text photocopy } & 58 \mathrm{p}\end{array}$

ELEKTOR WAVEFORM CONVERTER

Converts a saw-tooth waveform into sinewave, mark-space saw

tooth. regular triangle, or square-wave with variable mark-space.
Basic comps. PCE \& chart, but excl. sw's
KIT 67-1 f.9.24
P.E.SWITCHEDTONETREBLE BOOST

Provides switched selection of 4 preset tonal responses.
Basic components, PCB \& chart
KIT 89-1 $\begin{array}{lrr}\text { Basic components, PCB \& chart } & \text { KIT 89-1 } & \text { 4.34 } \\ \text { Text photocopy } & 78 p\end{array}$

P.E.TREBLE BOOST UNIT

A simple treble boost unit with manual control depth.
Basic components, PC8 \& chart KIT 53-1 £2.92

P.E. SYNTHESISER

The well acclaimed and highly versatile large scale mains operated synthesiser. Other circuits in our lists may be used with it to good advantage.

Basic comps, PCEs \& charts
Set of text photocopies
KiT 23-33 £167.37

EXPORT ORDERS ARE WELCOME but to avoid
dełay we advise you to see our list for postage rates. All payments must be cash-with-order, in Sterling by International Money Order or through an English Bank. To obtain list - Europe send 35p, other countrias send 75 p .
Not
Note that we do not offer a C.O.D. service and
Note that we do not offer a C.O.D. s
that our terms ere payment in advance.

AND OTHER PROJECTS

PHOTOGAAPHS in this advertisement show two of our units containing some of the P:E projects built from our kits and PCBs. The cases were buill by ourselves and afe not for sale. though a small selection of other cases is available.
LIST-Send slamped addressed envelope with all U.K. requests for tree envelope with all U.K. requests for tree
list giving fulier detats of PCBs. kits and other components.

OVERSEAS enquiries for list Europo
send 35p: other countries-send 75 p.

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKIMBER-ALLEN KEYBOAROS as required for many published projects. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are \mathbf{C} to \mathbf{C}, the keys are plastic, spring-loaded, fitted with actuators. and mounted on a robust aluminium frame. $\mathbf{3}$ Octave ($\mathbf{3 7}$ notes) $\mathbf{£ 2 5 . 5 0} \quad 4$ Octave (49 notes) $\mathbf{~} 32.25 \quad 5$ Octave (61 notes) $\mathbf{£ 3 9 . 7 5}$

CONTACT ASSEMBLIES (gold-clad wire) - 1 required for each KBD note Type GJ - SPCO 33pea. Type GA - 1 pr of contacts, normally open 33pea. Type GB-2 pr N/O $37 \frac{1}{2} p$ ea. Type 4PS - 3 pr N/O plus SPCO 78p ea.
P.E.V.C.F

A voltage controlled filter extracted from P.E. Minisonic project.

Basic comps, PCB \& chart KIT 65-1 £8.45

P.E. RING MODULATOR

Extracted from P.E. Minisonic project. Basic comps. PCB \& char KIT 59-1

WIND \& RAIN EFFECTSUNIT

A slightly modified version of the original P.E. unit. Basic comps, PCB \& chart KIT 28-1 $£ 4.84$ Text photocopy

P.E.ENVELOPE SHAPER
 WITHOUTVCA

Provides full manual control over attack. decay. sustain and release functions, and is for use with an existing VCA

Basic comps, PCB \& chart KIT 44-1 f5.73 Text photocopy

P.E.ENVELOPE SHAPER WITH VCA

Has an integral Voltage Controlled Amplifier, and has full manual control over the A.O.S.R. functions. Basic comps. PCB \& chart KIT 50-1 $\mathbf{~} 8.03$ Text photocopy

P.E.CONSTANTDISPLAY FREQUENCY COUNTER

A 4 -digit counter for 1 Hz to 99 kHz with 1 Hz sampling rate. Readout does not count visibly or flicker due to blanking
B asic components, PCB \& chart KIT 79.4
831.35

Text photocopy
$78 p$

P.E.6-CHANNEL MIXER

A high specilication stereo mixer with variable input impedances.

Basic components, (excl.sw's,) and set of PCBs and charts.
Extra 2-channel set wit 90-8 E81.25 KIT90-9 $\mathbf{£ 1 1 . 6 2}$

STEREOHEADPHONE

AMPLIFIER
Exiracted from P.E. 6-channel mixer
Basic components. PCB \& chart
KIT 92-1 $\quad \mathbf{5} .68$

DIGITAL EXPOSURE

UNIT
Controls up to 750° watts in $\frac{1}{2}$ second steps up to 10 minutes, with built-in audlo alarm.
Basic components, PCBs \& charts
$\begin{array}{ll} & \text { KIT93-3 } \\ \text { E23.27 }\end{array}$

P.E. DISCOSTROBE

A 4 -channel light show controller giving a choice of sequential, random, or full strobe mode of operation, and with extra audio input.

Basic components, PCB \& chart
KIT 57-2
525.12 Text photocopy
$78 p$

RHYTHM GENERATORS

Several available, including programmable 16 beat 64000 pattern, 128 beat almost infinite pattern, and pre programmed 15 pattern using ather M252 or M253 rhythm chips. A selection of effects instrument circuits is also available.

P.EVOICE OPERATED

FADER

For automatically reducing music volume during talkover - particularly useful for discos. Ba sic components. PCB \& chart

Text photocopy
£4.37

P.E. DYNAMIC NOISE

LIMITER

Very offective stereo circuit for reducing the hiss found in most tape recordings

Basic components, PCB \& chart
KIT 97-1 88.07

P.E.DYNAMIC RANGE
 LIMITER

Preset to automatically control sound output levels. Basic comps, PCB \& chart KIT 62-1 £5.31

J. BIRKETT

(Partners. J. H. Birkett,N.L.Birkett)

 Radio Component Suppliers
25 The Strait, Lincoln. LN2 1JF

10 WATT STUD MOUNTING ZENERS 4.7, 6.8, 7.5, 8.2, 12, 15, 18, 20, 24, 27, 30, 33 36, 39, 43, 47, 51, 62, 68, 75, 82, 91, 100, 120, 130, 150, 180, 200, Volt All at 50p each. 5 WATT PLASTIC ZENEA DIODES Wire Ended 3.6, 4.3. 5.6, 6. 6.2. 7.5. 8.2, 9, 10. 11.13 $14,15,16,17,18,19,20,22,27,36,39,40,47,51,56,60,62,68,87$ Volt All at $30 p$ each. WATT ZENERS $3.6,5.6,6.8,8.2,9.1,11,12,13,15,16,20,22,27,30,36,56,62,91$ $110,120,130,150,160,180,200$ Volt. All at 15 p each
LM 7542 DUAL CORE MEMORY SENSE AMPLIFIER at 50p.
P4001-50p, N82238-50p, AM931159C E1.50, C1702A E3.50, MC B46 - 30p IM5600CP \& E1, MC 2007F - 50p, 2516N - £1.15, SN15836-30p, SN15B46 - 30p, 4102 E1.50, N8875A 50p, SN74154-60p, AM250559C.E2, 6300DJ. 50p, 5603C E1.15, MC1414 60p.
MIDGET 6 To 12 VOLT SINGLE POLE CHANGE OVER RE
SUB-MINIATURE SPCO TOGGLE SWITCHES = 50p each
BECKMAN 3 DIGIT 7 SEGMENT GAS DISCHARGE ORANGE DISPLAYS TYPE SP 353 - 1.95 .
9 VOLT ITRON 9 DIGIT SEVEN SEGMENT DISP LAY TYpe FG $95 A$ E E1. 80
SPECIAL 5 NPN DARLINGTON PAIRS in 14 PIN DIL Package HFE 500010 volt 500 mA with connections e50p.
PAPER CAPACITORS 1 Ouf 370 Volt A.C.W. $5 \frac{1}{2} \times 2 \frac{1}{2} \times 1 \frac{1}{2}=\mathbb{1} 1.50$.
STUDMOUNTING DIODES 100 PIV $10 \mathrm{Amp}=15 \mathrm{p}, 100$ PIV 30 Amp - $\mathbf{2 5 p}$.
50. BC 107-8-9 TRANSISTORS Assorted untested 60p.
50. MULLARD C280 CAPACITORS assorted for $60 p$.

10 ASSORTED PUSH BUTTON ASSEMBLIES less knobs E1.30.
THYRISTORS (S.C.R's) 10 Amp Type 100 PIV $28 p, 400$ PIV - 55p, 800 PIV $-65 p$.
MINIATURE TRANSISTOR TRANSFORMERS Input Types Impedance Ratio. 100K To $1 \mathrm{~K} \cdot 35 \mathrm{p}$, Ratio 150 K To $1 \mathrm{~K}-35 \mathrm{p}$, Ratio 20 K To $1 \mathrm{~K} \bullet 35 \mathrm{p}$, Driver Typa 10 K To $2 \mathrm{~K}-35 \mathrm{p}$ Output types 250 mW 1.2 K To $8 \mathrm{ohm} \cdot 35 \mathrm{p}, 250 \mathrm{~mW} 500 \mathrm{ohm}$ TO $8 \mathrm{ohm} \cdot 35 \mathrm{p}, 500 \mathrm{~mW}$ 400 ohm To 8 ohm 35 p.
WIRE ENDED RF CHOKES 30 uH at 25 for 50 p .
OP-TO ISOLATORS $1 \mathrm{~L}-74$ with data at 50 p .
CLOSE TOLERANCE CAPACITORS 1288pf, 1670pf, 5979pf, 19669pf All 1\% $125 \mathrm{v.w.}$, 5p each. . 01 uf $2 \%, .11$ uf 2% - Bp. 1 uf 1\% at 12p.
VALVE HOLDERS b7G, b9A Both 10p, Ceramic B9D e 15p.
QUAD COMPARATOR LM 339 with data 50p, OP-AMPS MC 1439G e 3 for E1
50. OC 71 TRANSISTORS untested for 75 p

20 PHOTO TRANSISTORS AND DARLINGTONS assorted Untested ec1.
NKT 274 or NKT 214 TRANSISTOAS PNP ${ }^{10} \mathbf{1 0 p} 6$ for 50p
TTLL.C's 7400, 7410, 74LOO, 7453, 7430 All - 6 for 50p
MINIATURE MULTI-TURN 5K LIN POTENTIOMETER at 30p.
MINIATURE SINGLE TURN POTENTIOMETERS Short Spindle 250K Lin \& Meg Lin Both 4 for 50p.
MAINS TRANSFORMERS 240 Volt Input, 24 Volt Tapped at 14 volt 1 amp $\mathbf{~} \mathbf{f} .30$ (P\&P 25p). Type 2. 30-0-30 Volt 500 mA - $\mathbb{1} 1.30$ ($\mathrm{P} \& \mathrm{P} 25 \mathrm{p}$). WIRE POTENTIOMETERS 2 watts $2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 4$ watt 100 k All 30p each.

Please add 20p for post and packing on U.K. orders under $\mathbf{£ 2}$
Overseas postage orders at cost

GOOD DISCOUNTS AND FREE POSTAGE ON SUBSTANTIAL C.W.O. U.K. ORDERS COMPUTER-CONTROLLED SERVICE AIDS PROMPT DELIVERY 128-PAGE CATALOGUE FREE FOR THE ASKING
ELECTROVALUE LTD., (PEB), 28 St. Jude's Road, Englefield Green, Egham, Surrey TW20 OHB. Phone: 33603 (London 87) STD 0784. Telex 264475,
NORTHERN 8RANCH (Personal Shoppers Only): 680 Burnage Lane, Burnage. Manchester M 19 1NA. Phone (061) 4324945.

The Acorn modular system

A range and price unmatched by any other manufacturer in the world. Designed and produced in Britain.

For the absolute beginner... System One

A compact stand alone microcomputer based on standard Eurocard modules, and employing the highly popular 6502 MPU (as used in APPLE, PET, KIM, etc). Throughout, the design philosophy has been to provide full expandability, versatility and economy. Many thousands have already been sold throughout the world.

System One is complemented by a range of totally compatible eurocards including:

- 8K+8K Static RAM and EPROM £95	- Laboratory Interface (isolated inputs, high current
- Colour Prestel Compatible VDU Interface $£ 88$	outputs) $£ 122$
- Versatile (serial, parallel, RS232 etc) Interface $£ 69$	-6809 CPU Card £98
- Dual Minifloppy Controller £45	- Professional Keyboard (parallel ASCII encoded) £96
- PROM/EPROM Programmer (Bipolar and UV erasable)£55	- AIM 65 Bus Interface adaptor £33
- A to D, and D to A Interface (12 bit, high speed) $£ 132$	- PAL Encoder £22.50
- Printer Interface (for 12 data 3 strobe) $£ 60$	All prices exclude VAT

Available soon:

- 80×24 character VDU Interface
- IEEE Bus Interface (Full implementation)
- 32K Dynamic RAM Card
- Real time clock with CMOS RAM
- 5V/12V Switched mode power supply (1" deep)

All these cards utilise 'state of the art' devices and represent an elegant and long lasting solution to today's requirements.

...and the absolute professional

System Three

System 3, contains the 6502 CPU, 16K RAM with DOS and BASIC, VDU Interface, Disc controller and 5" drive, Printer Interface, backplane and power supplies. The entire unit costs about $£ 1,000$ and can be added to or reformatted as required.

If you need the facilities of the 6809 processor this can be substituted for the 6502 CPU (all other hardware remairis unchanged.)
Acorn's fast BASIC combined with what is probably the most efficient disc operating system available may be linked with a control oriented ONLI BASIC addition for laboratory control, or an accounts/stock control package for small businesses.
 A twin disc System Four is available if two drives and several peripheral interfaces are required in one case. Full service and software facilities available. For more information and order form ring or write to Acorn Computer Limited, 4a Market Hill,
CO D Cambridge, CB2 3NJ
Cambridge (0223) 312772

Marshall's

Build the P.E./Marshall's Teletext Project and convert your standard colour television receiver to receive Teletext and Oracle. We can supply either a complete kit of parts at $£ 200$ inclusive of VAT/postage \& packing, alternatively kits of parts for the various sub assembly as follows:

1. Transmitter
£19.00
2. Receiver
£13.00
3. Decoder (supplied as a complete unit)
4. Summer Board
5. Tuner
$£ 87.00$
All prices inclusive of VAT,
$£ 27.00$
£60.00
6. Power Supply
£16.00
7. Hardware and other parts
£ 9.00

We accept American Express: Access: Barclay Card: Diners Card: also our own Marshall's Credit Charge.
Phone your order now to Margaret O'Donnell on 01-624 0805

> Meta great deal bram

CT4000 CLOCK/APPLIANCE TIMER KIT TO

The CT4000 has been designed to preset the state (on or off) of four outputs at four times per day for up to 7 days in advance, enabling the unit to control tape recorders, appliances, central heating, lights, etc. The fimes are set on a $0.1^{\prime \prime}$ high red LED display by means of a
keyboard and the outout siates are disolayed on four LEDs. Each keyboard and the output states are displayed on four LEDs. Each State Relay Kit (MK2). The kit includes a PCB, keyswitches, 1.C., 4 digit LED display, transformer, plus all other components and a screen printed and drilled box which can also accommodate up to 4 Solid State Relay Kits. 25.25

D.V.M. THERMOMETER KIT

Based on the ICL7106. This kit contains a PCB, resistors, presets, capacitors, diades. IC and $0.5^{\prime \prime}$ liquid crystal display. Components are also included to enable the basic OVM kit to be
modified to a Digital Ther-

MINI KITS

These Kits form useful subsystems which may be ncorporated into larger designs or used alone. Kits include PCB shor instructions and all com onent
MKY TEMPERATUAE CONTROLLER/
Uses THERMOSTAT
max). and 11 IC to sense temperature $180^{\circ} \mathrm{C}$
500 W E3.20
MK2 SOLID STATE RELAY
IKW
Ideal for switching motors, lights, heaters, etc. rom logic. Opto-isolated with zero voltage switching. Supplied without trisc. Select the re-
quired triac from our range.
E2.80 MK3 BAR/DOT DISPLAY
Displays an analogue voltage on a linear 10 element LED display as a bar or single dot. Ideal or thermometers, level indicators etc. May be stacked to obtain 20 to 100 element displays.
Requires $5-20 \mathrm{~V}$ supply. MKA PROPORTIONA

CONTROLLER
Based on the TDA 1024 Zero voltage switch, this kit may be wired to form a "burst fire" power con roller or a "proportional temperature" controlle nabiling the temperature of anclosure to be 1.5KW $£ 5.25 \quad 3 \mathrm{KW}$ £5.55 MK5 MAINS TIMER
Based on the ZN1034E Timer IC this kit will switch a mains load on (or off) for a preset time from 20 minutes to 35 hours. Longer or shorter periods may be realised by minor componen
changes. Maximum load 1 KW

TDUCH CONTROL LIGHTING KITS These KITS replace light switches and control up lepth boxes, insulated toucholates. Easy to follow instructions.
TD300K TOUCHDIMMER. Single touchplate with alternate action. Brief touch switches lamp on and off, longer touch dims or brightens lamps. Noon amp helps find hit swith in the dark. 2 E.50 SWitching, EtC.
TSD3OOK TOUCHSWITCH E DIMMER. Single touchplate, small knob controls brightness TSABOOK TIME DELAY TOUCHSWITCH. 1 or ater preset delay (2 secs. to $3 \frac{1}{2} \frac{\text { mins.) }}{\mathrm{f} 4.30}$
LD300K. Conventional lighe dimmer

INTEGRATED CIRCUITS

$\begin{array}{ll}\text { ATMMMM, } & 555 \text { Timer } \\ & 741 \text { Op. Amp. } \\ \text { AY-5-1224 }\end{array}$

AY-6-1230/2 Clock/Timer
AY-3-1270 Thermometer
CL7106 OVM (LCD drive)
LM377 Dual 2W Amp.
LM380 2W Audio Amp
LM382 Dual low noise Preamp LM386 250 mW low voltage Amp. LM 1830 Fluid Level Detector M2907 f-v Converter (8 pin) LM3909 LED Flasher/Osclilator
LM3911 Thermometer
LM3914 Dov/Bar Driver
MM74C9114 digit display controller MM74C915 7 segment-BCD converter MM74C926 4 dig't counter with 7 seg of
S9263 Touchswitch 16 -w
SN76477 Complex Sound Generator
TBA800 5W Audio Amp.
TBA810AS 7W Audio Amp.
TDA2020 20 W Audio Amp.
ZN1034E Timer
All ICs supplied with data sheets.
Data Sheets only, 5 p each device.

DO MAGAZINE REMOTE CONTROL PROJECTS MAKE YOU SEE INFRA RED?

How many times have you considered building a remote control project but were put off by the dozens of ICs, special coils, lenses and other hard to get components, not to mention the need for a
well equipped lab. to set the unit up. T. K. ELECTRONICS have changed all that. Three ICs can build a sophisticated system that requires only a capacitor and resistor to set the clock frequency (which can drift by up to 20% without affecting performance). Control radios, hi-fi (including bass, treble and volume), lighting. toys, garage doors, etc. Still not convinced then look at the prices

LD271 IR Emitting Diode
SL480 IC Pulse Amplifier

SL480 IC Pulse Amplifier
$\begin{array}{ll}\text { ML490 Keyboard Controlled Encoder/Transmitter } \\ \text { ML922 } & \text { 10-channel Recelver \& } 3 \text { Analogue Outputs }\end{array}$ ML926 16-channel Receiver (4 Momentary binary ML928 16 -channel Receiver (4 latched binary outputs) Data sheets (per device) operation. For more derails, why not give us a ring - we will be pleased to advise you.

Nan
 KIT

If you do not require a sophisticated multi-channel remote control, we have developed a simple single-channel ON/OFF infra red transmitter and recelver. The transmitter unit comes complete with
a hand held box and requires a PP3 (9V) battery. The receiver Includes a triac capable of switching up to 500 W at 240 V a.c. and comprises a preamplifier, bistable latch and a mains power supply, making the unit completely self-contalned. The small size of the recelver enables the unit to be built into all kinds of equipment from lamps to tape recorders. The minimum range is 20 fget. A suitable box for the receiver is available it required.

$£ 12.00$

 |SPECIFICATION ADD VAT AT CURRENT RATE TO ABOVE PRICES PLUS 40p PR P

mall order - Callens welcome by appointment.

Be it career, hobby or interest, like it or not the Silicon Chip will revolutionise every human activity over the next ten years.

Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.

Learn the technology of the future today in your own home.

ELECTRONICS

Build your own oscilloscope.

Learn to draw and understand circuits.

Carry out over 40 experiments.

COMPUTER TECHNOLOGY
Learn to operate and programme your own home computer.

TECHNIQUES
From watches to sophisticated instrumentation,
Digital Electronics adds scope to hobby or career.

No previous knowledge is necessary. - Just clip the coupon for a brochure

CAPACITORS:
Mullard Ceramic 63 v range 1pF to 10,000 pF E 24 range all at $£ 0.06$ each
Siemens Ceramic 63v B37448/9
.01: .022: .033: . $047 \mathrm{mF} @ £ 0.06$.068:.1mF @ £0.08:.22mF @ E0. 11
CSF High Voltage Ceramic Discs Prices $£ 0.07$ to $£ 0.18$ Range 100 pF to 10.000 pF
Voltage range up to 6 Kv .
See catalogue for details.
Comprehensive range Siemens Layer Polyester Caps: . 001 to 3.3 mF

Prices £0.07 to £0.63.
See catalogue for details.
Large range of Mullard/Siemens Electrolytic Axial/Radial
Capacitance values 1.0 mF to
$10,000 \mathrm{mF}$
Voltage ranges 25 v : 40 v : 63 v : 100v:
Prices and types as catalogue Also Mullard C280; Siemens B32231/4 and B32110. All prices net + VAT and postage/packaging.
TOOLS BAHCO
Side Cutter with Bezel.
Side Cutter without Bezel. End Cutter without Bezel.
Vero Metal Shears.
Other items as catalogue.

BOXES \& CASES
See catalogue for full range. Aluminium boxes 13 sizes. Rexine Covered boxes 7 sizes. NEW RANGE TMEC CASES Send S.A.E. for details \& types Price range, $£ 14.04$ to $£ 17.00$ ABS PLASTIC BOXES
$3^{\prime \prime} \times 214^{\prime \prime} \times 1 \frac{3}{8}{ }^{\prime \prime}$
$33 / 4^{\prime \prime} \times 234^{\prime \prime} \times 1 \frac{3}{8} \quad$ Prices as
$41 / 2^{\prime \prime} \times 334^{\prime \prime} \times 11 / 2^{\prime \prime} \quad$ catalogue
$8^{\prime \prime} \times 4 \frac{13 " 1 "}{} \times 3^{\prime \prime}$
BAZELLI INSTRUMENT CASES 5 sizes.
Miscellaneous hardware including
Vero Board: Superstrips:
Vero Breadboard.
Vero boxes (see catalogue for

Card Frames: Fliptop boxes: etc etc.
1980 CATALOGUE U.K.: 65p post paid Europe 85p post paid Rest of World $£ 1.25$ post paid Mail order: 01-624 8582

A. Marshall (London) Lid., Kingsgate House, Kingsgate Place, London NW6 4TA Industrial Sales: 01-328 1009
Mail Order: 01-6248582
Also retail shops: 325 Edgware Road, London w2.
40 Cricklewood Broadway, London NW2. 85 West Regent St., Glasgow.
108 A Stokes Crott Bristol.

TTL see catalogue for full range				SOLDERING EOUIPMENT IRONS-ANTEX
SNTIOON	c0. 14	SN7T91AN	${ }^{\text {co. } 54}$	
${ }_{\text {S }}$	${ }_{60.14}$	SNT792N	${ }_{\text {co }}$	15 watt C15 £3.95
SNHOON	coild	SN7498N		15 watt CCN £4.20
SNTHON	${ }_{20} \mathbf{6} 0$	SN7496N	c0.34	
SNTH06N	${ }^{\text {cos }}$ 24	${ }_{\text {SNAF992N }}$	${ }_{\text {E1 } 1.80}$	17 watt CX17 £4.20
SNT707N	¢026		C1, ${ }_{\text {coid }}$	25 watt X25 £4.20
	${ }_{\text {E0. }}^{\text {E. } 15}$	SNT4118N	C0, ${ }_{\text {ci }}$	Stand £1.50
	cois	(enctil2	coter	DESOLDERING TOOL
SNT12N	co. 28	SN/7122N SNA 2123 N	c0.48	Solder f6.50
SNT714N	${ }_{60.47}^{60.47}$	SN77120N	c0.53	Solder E6.50
SNT412N	c0. 22	SN714in	co. 50	
¢	colis	SN74145N	${ }_{\text {cien }}$	SINCLAIR INSTRUMENTS
SN7425N	E0. 19	SN74150N	E0. 79	Digital Multimeter

PDM35 £ 34.50
" DM235 £ 52.50
" DM350 E 72.50
DM450 £ 99.00
Digital Frequency Meter
PFM200 £ 49.80
Low Power Oscilloscope
SC110 £139.00
CRIMSON ELEKTRIK HI FI MODULES
CE608 Power Amp $£ 18.26$
CE1004 " " E21.30

CE1008 " " £23.91
CE1704 " \quad ". £30.43
CE1708 " " $£ 30.43$
$\begin{array}{lll}\text { CPS1 Power Unit } & \mathbf{£ 1 6 . 9 6} \\ \text { CPS3 } & \text { " } & \text { £20.43 }\end{array}$
CPS6 ".
CPR1 Pre Amp £29.57
CPR1S Pre Amp $£ 38.70$ All prices + VAT + postagel packaging

$31 / 2$ DIGILC METERKII

Build the Practical Electronics handheld DMM. This superb product offers professional precision with extended battery life. Five function operation (AC and DC VOLTS, AC and DC CURRENT, RESISTANCE) with ability to check diodes. $0.5^{\prime \prime}$ LCD display with 'Battery Low' warning. Auto-polarity, Auto-zero. Full protection against transients and overloads with ability to withstand mains on any range. 0.5% basic DC accuracy and 15 different ranges. It measures AC/DC voltages from 0.1 mV to 500 V . AC/DC current from $0.1 \mu \mathrm{~A}$ to 2 A . Resistance from 0.1Ω to $2 \mathrm{M} \Omega$. 200 hour battery life.

The Kit contains all parts needed to construct the muitimeter plus assembly instructions, battery and test leads.

We also offer a calibration service ($£ 5.00+$ VAT) and a trouble-shooting and calibration service ($£ 7.50$ + VAT). Various other component parts are aiso available as listed.

The multimeter is also available fully assembled and calibrated at a cost of $£ 39.70+P \& P+V A T$.

Lascar Electronics Ltd., Unit 1, Thomasin Road, Basildon, Essex. Telephone No: Basildon (0268) 727383.

 cassette recorder and television (black and white or colour); everything!

Yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers at several times the price.

The ZX 80 is programmed in BASIC, and you can use it to do quite literally anything from playing chess to managing a business.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. It immediately proves what a good job you've done: connect it to your TV. .. link it to an appropriate power source * ... and you're ready to go.

Your $\mathbf{2 \times 8 0}$ kit contains...

- Printed circuit board, with IC sockets for allics.
- Complete components set, including all ICs-all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean.
- Ready-moulded case
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be SAVEd and LOADed on to a portable cassette recorder.)
- FREE course in BASIC programming and user manual.

Optlonal extras

- Mains adaptor of 600 mA at 9 VDC nominal unregulated (available separately-see coupon).
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra RAM chips also available -see coupon).

[^1]
The unique and valuable components of the

Sinclair ZX80.

The Sinclair $\mathrm{ZX80}$ is not just another personal computer. Quite apart from its exceptionally low price, the ZX 80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teachyourself BASIC manual.
The unique Sinclair BASIC interpreter offers remarkable programming advantages: Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.

- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handlling capability-takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The ZX80 also has string inputto request a line of text when necessary. Strings do not need to be dimensioned. - Up to 26 single dimension arrays.
- FOR/NEXT loops nested up to 26.
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions, USR causes jump to a user's machine language sub-routine.
- High-resolution graphles with 22 standard graphic symbols.
- All characters printable in reverse under program control.
- Lines of unlimited length.

Fewer chips, compact design, volume production more power per pound!

The ZX80 owe its remarkable low price to its remarkable design: the whole system is packed on to fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the ZX 80 's 1 K byte RAM is roughly equivalent to 4 K bytes in a conventional computer - typically storing 100 lines of BASIC. (Key words occupy only a single byte.)

The display shows 32 characters by 24 lines. And Benchmark tests show that the ZX80 is faster than all other personal computers.

No other personal computer offers thls unique combination of high capability and low price.

The Sinclair teach-yourself BASIC manual.

If the specifications of the Sinclair $\mathbf{Z X 8 0}$ mean little to you-don't worry. They're all explained in the specially-written 128-page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming - from first principles to complex programs. (Available separately - purchase price refunded if you buy a ZX80 later.) A hardware manual is also included with every kit.

The Sinclair ZX80. Kit: £79.95. Assembled: £99.95. Complete!

The ZX80 kit costs a mere £79.95. Can't wait to have a $\mathbf{~ X} 80$ up and running? No problem! It's also available, ready assembled, for only $£ 99.95$.

Demand for the $\mathrm{ZX80}$ is very high: use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your ZX80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your ZX 80 as received within 14 days for a full refund. We want you to be satisfied beyond all doubt - and we have no doubt that you will be.

Science of Cambridge Ltd

6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: 0223311488.

ZX80 software now available!

See the advertisements in Personal Computer World (June) and Electronics Today International (July).

New dedicated software - developed independently of Science of Cambridge reflects the enormous interest in the $\mathrm{ZX80}$. More software available soon - from leading consultancies and software houses.

PE TELETEXT

BACK in June ' 79 an announcement was made that we would be publishing a Teletext system in the near future. A lecture on Teletext was presented by PE at the Great British Electronics Bazaar and development was under way. Since that time our Projects Editor David Shortland has been developing a system. Why has it taken so long? A brief look at the problems we have had to overcome will answer this question and we are sure will be interesting to all readers.

The PE Teletext was first discussed at a meeting in London involving two representatives of Mullard (who had developed the chips and system we were to use), a director and technical representative of Marshall's- (who were, as a Mullard distributor, to provide parts and technical expertise) and the Editor.

After that meeting things started to move quite fast, a range of components and boards were supplied by Marshall's and David set to work building' a system that would interface directly to the set. It was felt that this was the most satisfactory way to obtain the quality of picture we required, and Mullard claimed to have a number of interface circuits for various sets that they would make available to us.
Work proceeded at a reasonable pace until David came to build the interface
board to match the system to his own Philips set. Mullard provided a "circuit idea" which did not give enough information, so David approached Philips who were using the chips in their set. Philips of course own Mullard so we expected some "company" line and agreement.

Philips informed us that what we were trying to do would not work. A visit to Philips followed. More investigation and more questions to Mullard indicated that the interface circuits they had supplied were theoretical. What was more worrying was that we were discovering a very high proportion of existing sets were not suitable for a direct interface, mainly due to the i.f. not being good enough.

Having wasted a few months because of misleading information we decided that we had two options: 1) Drop the whole thing, 2) Redesign to incorporate a u.h.f. modulator so that the system could plug in the aerial socket of any set.
We chose the latter option, Marshall's supplied more parts and David started work again. The system looked good, we planned publication for the April issue and were only waiting for a colour modulator board to set the whole thing up for cover shots. Then more problems, the quality of the final picture was not up to the standard we required and relied too heavily on a high signal strength. A criticism we had of other
systems and a problem we were determined to avoid.

It looked for the second time as if the whole project would come to grief. This time we were saved by some developments at Mullard. A new PAL encoder chip had been developed and Mullard kindly supplied us with pre-production units to try in our system. The new chips worked well and at last we had the quality we were after.

But wait! Mullard had yet to decide to produce the chip so again we were in danger of loosing the project. Luckily they have gone ahead and we are finally able to publish the long awaited system.

The change to an external plug-in unit and the use of the new developments from Mullard have pushed up the anticipated price. But we believe the quality now available is better than any other plug-in system and we are proud to bring you PE Teletext.

The story has been shortened-for instance, our main contact at Mullard left and Marshalls' technical man left before we had got very far. Some of the chips originally used are now in short supply, so alternatives have had to be found. David's wife gave birth to twins, severely testing his development time and concentration! Looking back it's a wonder anything came forth. Part one starts on page 38.

Mike Kenward.

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR
Jasper Scott PRODUCTION EDITOR

Jack Pountney ART EDITOR

Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY

ADVERTISEMENT MANAGER D.w.B.Tilleard SECRETARY Christine Pocknell $\}$ 01-261 6676 AD. SALES EXEC. Alfred Tonge 01-2616819 CLASSIFIED MANAGER Colin Brown 01-2615762
 ADVERTISEMENT MANAGER \quad D.W.B. Tileard $01-2616676$

Editorial Offices:
Practical Electronics, Westover House,
West Quay Poad, Poole, Darset BH15 1JG Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot be answared over the telephone (see below).

Adverising Offices:
Practical Electronics Advertisements, King's Reach Tower. King's Reach, Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-261 6601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available, from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 75 p each including In land/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.30$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH1 6 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

GUNNED DOWN

Anyone who is rewiring their house, or installing microbore central heating pipes would find their job made easier by the use of one of the Arrow range of tacking guns, now available from Telequip of Bristol.

Four different sizes of gun and twelve different sizes of staple are available, and cable sizes from 5 to 15 mm diameter can be fastened with a considerable saving in time and money over conventional cable clips.

All guns retail at $£ 20.90$ plus VAT, and further details of the range can be obtained from: Telequip, 2 Oakfields Road, Clifton, Bristol BS8 2AL. (0272 312271)

ERASE YOUR EPROMS

A range of ultraviolet EPROM erasers, manufactured by the U.S. Spectronics Corporation, is now available in this country from Chiptech Ltd.

Claimed to be the fastest and most efficient erasers of their size on the market, they have been designed primarily for the small systems and computer hobbyist at a cost which is well
within their reaç.
The cheapest of the range, the PE-14. has the capacity to erase up to 6 EPROM chips in as little as 19 minutes. A similarly rated unit, the PE-14T, is fitted with a 60 -minute timer to automatically shut off the unit.

The PE-24T, which is a faster and more powerful version of the PE-14 series, will erase up to 9 EPROMS at once, in as little as 15 minutes.

All erasers are fitted with safety interlocks and housed in gold anodised aluminium casings, which combine to make them extremely safe.
Prices for the range are as follows: PE-14-£56; PE-14T-£76.58; PE-24T$£ 111$.22. Further information is available from: Chiptech Lid., Unit 1, Tewin Court, Welwyn Garden City, Hertfordshire AL7 IAU. (07073 33260)

WORK CENTRE

One of the best multi-position work holders to come on the market so far is the new 324 work-centre, made by Panavise and distributed by Toolrange, which provides a versatile and compact unit for constructors working on p.c.b.s.

The 324 consists of the 312 Tray Base mount with six useful component compartments, the standard 300 vice base, permitting positioning through a 360 degrees hemisphere, the 315 p.c.b. Holder and the 371 Solder Sta-

tion. The 315 p.c.b. Holder handles circuit boards up to 200 mm wide and 4 mm thick and extra pairs of arms and an extension bar are available to enable several p.c.b.'s to be worked on at once. The 371 Solder Station consists of a wire spring soldering iron holder, capable of holding most popular irons, a shaped sponge which fits the tray base and a combined wire and solder reel holder. (Soldering iron, reel of solder and wire not supplied).

The price of the complete station is $£ 35.00$ + VAT and delivery is ex-stock from: Toolrange Lid., Upton Road, Reading, Berks. RG3 2JA (0734 29446)

SAXON CATALOGUE

Saxon Entertainments are well known among the disco fraternity, and their 1980 catalogue is now available, and packed with everything from jack plugs to complete disco consoles.

Saxon's comprehensive range includes some exciting lighting effects units, and as well as the "pay and play" complete systems, there are chassis speakers, turntables, cabinet fittings-in fact everything you need to build your own disco system.

The catalogue also contains ten vouchers worth a total of $£ 30$. One voucher may be used towards each $£ 30$ worth of equipment purchased.

To obtain your copy of the catalogue, send £1 to: Saxon Entertainments 327/333 Whitehorse Road, West Croydon, CR0 2HS (01-684 0098)

PET PROGRAMMER

A hardware/software package which turns the Commodore Pet into a powerful and flexible programmer for 4 K type 2532/2732 EPROMs is now available from GR Electronics Lid. of Newport, Gwent. It complements the company's existing programmer for
$2516 / 2716$ devices, both allowing Pet users to produce firmware to run on their own, or other microcomputer systems.

Owners of the 3016, large keyboard Pet can use the package to give themselves up to 12 K of custom-written firmware housed in the machine's three spare EPROM sockets. Older type 2001 Pets can also benefit, but using an adaptor for the memory expansion connector.

The new programmer is for 5 V rail type 2532/2732 EPROMs, and comprises a plug-in circuit board which uses the IEEE port for data, the user port for control lines and takes 5 V power from the Pet's external cassette drive. Full EPROM programming software is supplied on cassette, with functions including READ/WRITE to and from RAM and EPROM, sequencing, verification and READ/WRITE/MODIFY with addresses and data in hex.

And extension socket is also available for the convenience of users programming EPROMS in batches. It incorporates a header, extension cable and plinth-mounted zero insertion force socket which allows all device handling to be carried out adjacent to the Pet's keyboard.

Although both 2532 and 2732 (Intel) EPROMs can be programmed with the GR Electronics device, only the 2532 is directly compatible with the new Pet's internal ROM sockets.

The price of the programmer board and software is $£ 80$ plus VAT, and the extension is $£ 35$ plus VAT. Both may be obtained direct from: GR Electronics Ltd., Fairoak House, Church Road, Newport, Gwent NPT 7EJ. (0633 214147)

SIMWOOD

The latest DMM from Simwood is the MC545. This $4 \frac{1}{2}$ digit meter has a measurement capability of 19999 and a basic d.c. accuracy of 0.05 per cent. The 545 will operate from either a.c. mains or batteries with rechargeable cells available as an option.

Press-button selection is available for all functions and ranges (five funtions and 26 ranges). Typical measurement accuracies are:

between 0.15 and 0.8 per cent on the resistance range; 0.05 per cent on the d.c. voltage range and 0.5 per cent on the a.c. voltage range.

The 545 which has overload protection on every function and range measure $180 \times 64 \times 200 \mathrm{~mm}$ and weighs approximately I 42 kg . Each instrument is supplied complete with an operator's manual, test leads, spare fuses and batteries. The 545 is priced at £139.00.

Simwood Limited, Garretta Hall, Shalford Green, Essex.

GOT A LIGHT, MIC?

A new, small, lightweight microphone, with appearance, handling and performance features ideally suited to highly professional on-cameras or on-stage use, has been announced by Shure Electronics Limited.

Designated the SM63-CN, the new unit is less than six inches long and weighs only 2.8 oz ., making it significantly more comfortable to handle and considerably less obtrusive in performing situations than any other comparable microphone.

The SM63-CN is a dynamic, omnidirectional type with an output that is about 6 dB higher than larger, comparable units. Other performance advantages include a controlled low-frequency rolloff to ensure natural sounding voice and music pickup, as well as smooth high frequency response for an overall clear, crisp clean sound similar to some condenser microphones.

Additionally, the SM63-CN features a hum-bucking coil that makes it insensitive to strong hum fields, such as those produced by studio lighting; a mechanical-elastomer isolation system that makes it resistant to handling noise; built-in breath and pop filter; and a robust polyester grille that is impervious to dents, rust and moisture.

Normal list price of the SM63-CN is £ 57.00 plus VAT, which includes a swivel adapter, windscreen and three-pin audio connectors on both ends of the cable. For further information contact: Shure Electronics Ltd, Eccleston Road, Maidstone, ME15 6AU (0622 59881)

HI-FI ON THE MOVE

If high fidelity is important to you wherever you are, you will no doubt drool over the three new portable radio/cassette recorders recently introduced by JVC. All three models have the facility of metal tape compatibility which will certainly help to give you the sound quality you're after.

The RC M80L (FM/ MW/ LW/ SW) uses a portable version of the JVC synthesiser tuning system with 32 l.e.d. indicators, and has a 12 station random preset capability, with automatic station scanning.

A twin motor, full logic, solenoid operated tape transport, and optional remote control are particularly noteworthy features of the RC M60L, while the 15 watts per channel RC M70L has a 16 programme multi music scanner.

Once you have decided which model best suits your needs, all you then need to do is find between two and three hundred pounds. Recommended prices for the three models are as follows: RC M60L- $£ 220$; RC M70L$£ 240$; RC M80L- $£ 290$, though if you shop around, you should be able to get about ten per cent off. Pictured above is by far the best looking of the three, the RC M70L.

SOUND BOX

A simple tone generator sound box which is suitable for use with both the UK 101 and the Ohio Superboard II is now available from John Mortimer Electronics.

The unit is not based on the GIM AY-38910 , sound chip, but employs a VCO which can be activated direct from the keyboard. It is available either ready assembled and tested or in kit form. All that is required to construct the kit, comprising a couple of CMOS chips, transistors, and about ten potentiometers, is a soldering iron, solder and wire cutters. When asembled the unit is easily connected to either computer and will run off the on-board power supply unit. Unlike more sophisticated sound generators, this unit is easy to control, with hardware volume control and tuning, and can produce music from a simple program of keyboard row address POKEing.

Each box comes complete with full instructions and a cassette of interesting effects. The kit is priced at $£ 14.95$ or assembled for $£ 19.95$ (including VAT and $\mathrm{p} \& \mathrm{p}$).

John Mortimer Electronics, PO Box 71, Norwich NR6 7JE.

MK14

The long awaited full-length programming guide for the Science of Cambridge MK 14 will be available in September. The book which is called Understanding Microprocessors with the MK14 contains just about every aspect of MK14 Assembly language/machine code programming, from number systems and addressing modes to number crunching, interrupts, DMA, multiprocessing and realtime applications. The appendices include a useful instruction set summary, a full listing. for the "Hi-lo Game" (used in the text as an example of designing a complex program), and circuits for a $1 \frac{1}{2} \mathrm{~K}$ memory expansion.

Priced at $£ 5.95$ plus 35 p p\&p the book will be available direct from Tony Watson, Globe Book Services, Little Essex Street, London WC2.

WHY WERSI?

A fresh approach and top quality are the secret behind WERSI's worldwide success. The advanced technology used in WERSI organs should dismiss any apprehension against the do-it-yourself construction of an organ. It also offers unlimited possibilities for exploring new areas of musical experience. New aids for the organist help even the beginner to enjoy the instrument from the start and the advanced musician will reach new heights of satisfaction. The novel approach to organ building is highly acclaimed by professional musicians like Klaus Wunderlich as well as by the demanding home organist.
Today WERSI is one of the leading organ manufacturers in the world and exports to over 25 countries.
D-I-Y organ building is no longer the exclusive pastime of a few technically versed buffs. The construction phases consist of assembling printed circuit boards, the installation of the sub units and hardware and the wiring. The organ console comes to you already assembled and complete. Prefabricated laced wiring harnesses contain almost all wiring, eliminating a major source of problems.

WERSI MAKES DO-IT-YOUSELF CONSTRUCTION EASIER THAN EVER BEFORE AT A FRACTION OF THE PRICE OF THE FULLY ASSEMBLED WERSI RANGE. GET THE FACTS NOW.

AURA SOUNDS 14-15 Royal Oak Centre, Brighton Rd., Purley, Surrey. Tel: 01-668-9733

and at 17 Upper Charter Arcade, Barnsley, W. Yorks. Tel: Barnsley (O226) 5248.

so that the Irish Government pays $£ 2,000$ towards the cost of a house to attract key people, mainly from the UK.

Ireland has an export growth rate in electronics of 50 percent per annum. It sounds fantastic until you remember the base line of absolute zero only ten years ago. In fact by world standards the true figures of size are not outstanding. One of the oldestestablished American companies in Ireland is Digital Equipment Corporation who set up an operation in Galway in 1971 but still employs only just over 1,000 workers.

Present projections are that total electronic exports of all types will reach a level of $£ 400$ million this year, roughly equivalent to the turnover of a company the size of Racal in the UK.

Ireland has done remarkably well as an off-shore assembly area but has as yet little indigenous innovative capability. There is therefore no real threat to high technology countries. Nonetheless Ireland has a foot on the ladder and deserves watching.

UK Employment

With so much talk of recession and redundancy a heartening note appeared in the annual report of the Electronic Engineering Association which covers the activities of companies solely engaged in the electronic capital goods sector of the market. The employment trend remains upwards with almost 100,000 people employed (a two percent increase) and this despite the fact that widespread use of ICs and now LSI is continually reducing the labour content of assembly and wiring.

Output of the capital goods sector rose by 20 percent in 1979 to over $£ 1.4$ billion which allowing for inflation is an underlying growth rate of five percent. Direct exports are running at the rate of 42 percent to which should be added the equipment sold to others in the UK for export in their own products such as aircraft and ships.

Forward order books are at their highest ever level and still lengthening. The only serious difficulty is, 'Too many employers competing for too small a pool of high skilled people'. a situation in which the EEA's outgoing President, J. W. Sutherland, comments that the scope for immediate remedy is sorely limited'.

This year's EEA President is Dr. P. E. Trier who graduated as a Mathematical Wrangler from Cambridge. After war-time and post-war employment with the Royal Naval Scientific Service he joined the Philips Group and was director of the Mullard (now re-named Philips) Research Laboratories at Redhill from 1953-69. He is now a director of Philips Industries, the parent organisation of all the Philips Companies in the UK.

As a mathematician, engineer and industrialist, Dr. Trier ought to be uniquely qualified to find out why there are always conflicts between industry and Customs and Excise exports statistics. Even if improved correlation of the figures won't tell us where we are going it would as least tell us with greater certainty where we have been.

Scanner Sold

The sale by Thorn-EMI of their X-ray scanner business to US General Electric for f 17 million is a sad end to an enterprise once so full of promise. EMI's breakthrough in medical diagnostics was sensational. So, at first, were the profits. US GE came in as a me-too company and then still more companies elbowed into the business. In the end EMI couldn't stand the losses, some f26 million in the past two years, and the recently formed Thorn-EMI just had to give up.

It is a pity that a brilliant invention which has done so much for suffering humanity should have seen such vicious in-fighting for market shares. There were patent disputes all round and part of the deal with US GE is that Thorn-EMI will now receive royalties in return for a licence on the patents.

Thorn-EMI is not, however, entirely out of the business. They still have their latest model which, apparently, US GE didn't want, and they have an interest in a new body-scanning technique using the principle of nuclear magnetic resonance in place of traditional X-rays. An experimental machine is to be tried out at Hammersmith Hospital. But it is clear that Thorn-EMI will approach further entry into the scanner market with more than usual caution.

Good News

Britain's first System X telephone exchange is entering service this month (July) six months ahead of schedule. Other big BPO up-date programmes include extending the radio paging system to cover most of the UK through more than 250 VHF transmitters, and replacement of all the pay phones with a new type controlled by microprocessor. On the broad front there will be a 50 percent increase in telephone system capacity by 1990.

Among recent defence orders is one worth $£ 50$ million for Type 2016 sonar systems for the Royal Navy and a $£ 75$ million development contract for a Mk 2 version of the British Aerospace Sky Flash radar-guided air-to-air missile. The aerospace sector of industry which includes radar, radio and electronic navigation aids exported nearly $£ 400$ million of equipment in the first quarter, all set for yet another record year.

New Scotland Yard is to have a $£ 40$ million up-date of command and control systems for the Metropolitan Police. The BPO has ordered 215 noise measuring sets from Eddystone Radio to enhance detection and rectification of radio interference sources. Robot enthusiasts will be delighted to hear that 28 of them are being installed on the new Mini Metro production lines at BL cars. And Marconi Communications Systems has completed ahead of schedule a second earth satellite terminal worth $£ 1.75$ million in Bahrain, the 17 th Marconi major earth terminal to enter service throughout the world.

 ACORN Revideuvoo Dr. A.A.BERK

THIS REVIEW should start-"from little acorns, giant oak trees grow". The machine is Science of Cambridge's modular computer system, starting with System One and ending with System Four. The photographs show the System Three level lent by S. of C. for review. To a great extent it is the Software which distinguishes this machine; and, as the photograph shows, its compatibility as a Prestel terminal for the Post Office's new remote processing link. The video from the machine is in full colour, which unfortunately cannot be appreciated from accompanying photos.

HARDWARE AND PRICES

There are four system levels of the computer-the first, called System One, is more commonly known as the Acorn Computer (see PE review Sept. 79). This consists of two boards--a 6502based processor and memory board, plus the display, keyboard and cassette interface p.c.b. The photograph here shows what happens to the basic Acorn when it is expanded. Facia panels are added along with sockets to fit a backplane. The keyboard and display sections are removed and the two p.c.b.s slotted into a backplane and rack of the 19 in . Eurocard variety.

The System One costs $£ 65$, and the System Two with card frame, backplane (and four sockets), CPU board, cassette and VDU interface, 4K RAM, Software monitor and 4K BASIC will set you back $£ 285$ as a kit. A further $£ 200$ will buy a fully assembled and tested version, with the additions of case, 5 V 3 A PSU, buffered backplane and 8 sockets, 4 K more of RAM, front panels, connectors and an 8 K BASIC. At the time of writing, software was being supplied in EPROM (2732's) and an EPROM surcharge of $£ 50$ on the System Two was in force. Each additional component is available separately from S. of C., and this is one of the great advantages of the device, a small start does not imply that you'll need to buy a different computer to gain greater sophistication.

The System Three takes the user to mini-floppy disk storage, all neatly fitting into the rack, and the System Four adds another rack to give maximum expandability for the system up to full memory and two $5 \frac{1}{4}$ " drives. The System Three photographed here has three 8 K RAM boards, CPU card, cassette interface card, VDU card, PSU, fully socketed card rack (with one blank panel here) and mini floppy. The total cost without TV monitor would be around $£ 1,300$ assembled and tested (including an ASCl 1 keyboard, which comes cased).S. of C. will also sell you a Sony Trinitron colour monitor for $£ 350$. The total disk storage included is $80-90 \mathrm{~K}$.

Physically, the p.c.b.s are a high-quality plated-through product which seem easy enough to assemble and are, of course, fully solder-resist coated. The VDU Controller used is the 6845, which is fast becoming the industry standard, and the disk controller-the 8271 chip. S. of C. supply data sheets on all the devices used within their system at $£ 1$ each.

Expansions to the basic system include a Universal Interface board with parallel and serial ports, for hardware control, and a 6809 board to evaluate this processor via a software monitor (which is also included).

The photographs of the working system show a picture of the Post Office's "Busby" logo for a very good reason-S. of C. provide software and hardware to interface with the Prestel and Teletext System.

DISK OPERATING SYSTEM

The Disk Operating System (DOS) has some pleasant and sophisticated features which make its operation neat and less time-consuming than some others. Generous abbreviations are allowed, and qualifiers may be used to separate out a portion of the catalogue for special use. All the usual features are present-definition of drive number (0 and 1 only, as a maximum of 2 drives exist), protection for given files etc. Eight

characters are allowed for a file name on disk, and these may be non alpha-numeric. Error messages are quite informative and not just numeric.

Automatic "booting" of a program stored on disk is possible on RESET, and the disk is given an "option" number by the OPTION command to allow the following modes:

Option 0: do nothing upon RESET (i.e. stay in DOS)
Option 1: load the file "BOOT"
Option 2: run the file "BOOT"
Option 3: execute the file "BOOT".
The last option allows the file called "BOOT" to contain Commands as if typed in from the keyboard. Thus, if BOOT contains the Bytes "BASIC" (a five-byte string: B,A,S,I,C,); then, assuming the BASIC interpreter is resident on the disk, BASIC will be booted in automatically on RESET.

Any other commands may be contained in "BOOT" for this option, and BOOT is called a "command" file-very useful for some clever software tricks.

Automatic messages may be produced upon accessing given files, and these give programs a more professional and "turnkey" air when used along with Option 3 above. Other DOS commands available are the usual LOAD, SAVE and DELETE for disk files; EXEC and GO for executing machine-code routines directly and INFO to find out about the files stored in a disk, usually after a CAT command, to display the catalogue of existing files. The information returned is: qualifier, whether or not protected, file name, LOAD and RUN addresses, length of file and start-sector on disk.

The DOS also produces a familiar set of disk error messages such as "clock error", "sector not found" etc., which can help to locate bugs in the hardware of the drive if necessary.

SOFTWARE AVAILABLE ON THE SYSTEM

The languages available for the system are BASIC, LISP and 6502 Assembler, while the potentially ubiquitous PASCAL is in preparation. In addition to these, many games are in existence, and a word-processing package (described below) is also in existence.

BASIC

The Basic on disk has some very interesting and uncommon features, as it was originally conceived to control psychology experiments. Multi-statement lines are allowed, separated by semicolons; and abbreviations (with a full stop) are allowed for all
the BASIC keywords, down to the minimum number of letters necessary to make the word unique (this is as for DOS). Additionally, spaces are more important than usual in BASIC. A useful feature is that the "@" sign stands for a variable which determines the fields within which numbers in a PRINT statement are printed. If (a) equals 5 , for instance, then 5 spaces (including sign if negative) are reserved for printing each number (right justified) when commas are used in the PRINT list.

The processor card contains 1 K of RAM and 104 of these locations are reserved especially for the upper-case single-letter variable names (A, B, C, etc.). These are always tested first, and provide a set of fast-access variables. In addition, single lowercase letters are available for line labels. Thus:

10 a PRINT "hello"
20 Goto a
would put "hello" endlessly onto the screen.
A feature called "word indirection" is available whereby the result of a calculation can be stored directly into a given set of four contiguously addressed bytes. In such a process, direct access to the Addresses of data bytes is thus greatly simplified. In addition, hexadecimal numbers may be used directly within a calculation by using the $£$ sign as a prefix. Thus, PRINT $£ A F$ gives the result 175 , on the screen. Thus Hex numbers may be added and printed using:

PRINT £AF $+£ 13$
this gives the result C2-great for hex calculations! The DOUNTIL statement is provided in System Three BASIC, allowing loops to be processed until a given condition is satisfied. This can be useful in numerical methods for instance, or in control functions.

The statement "LINK" allows machine code statements to be run from BASIC, in a similar manner to the more familiar "USR" function. Bytes, complete frames of 4 bytes and strings, may be "got" from and "put" to sequential data files using the usual variety of statements which one would expect in a disk BASIC. All the familiar BASIC statements are available, with the usual optional use of LET and END statements. No ELSE is allowed in IF statements, and the basic BASIC supplied has no floating point package. This is available as an extension.

Another extension is the graphic package which functions as follows: The screen is divided into 78×75 dots or Pixels (picture elements). The Busby picture shows the resolution of the system. Individual pixels are rather large, but adequate for Teletext and Prestel.

To set up a pattern on the screen, several commands are available. CLEAR clears the screen and places it in graphics mode, as well as setting the colour of the pixels to be plotted. PLOP, MOVE and DRAW then allow lines and points to be displayed on an X,Y Co-ordinate system based at the bottom left-hand corner of the screen.

LISP

Finally, the language LISP is supplied if required. This package, produced by OWL Computers, appears to be well thought out and reasonably documented, though perhaps a little difficult to follow for the beginner-the program is adapted from a version written for the Apple computer.

FLOATING POINT EXTENSION

The F.P.E. allows accuracy of $9 \frac{1}{2}$ digits in a range from 10^{-38} to $10+38$, approximately. All the standard integer BASIC statements have F.P. equivalents-mostly using the prefix F. For instance, FINPUT is as for INPUT, but uses a floating point variable only. In this way, the F.P.E. is a true add-on and is not fully integrated into the BASIC on the machine.

SCREEN EDITOR

This program allows the computer to be used, effectively, as a word-processor. Files containing letters or documents may be input from the keyboard and printed out on a hard-copy printer. Normally, a word-processor would organise words on the screen to prevent their being split from one line to the next. This does not appear to be the case with the screen editor, though upon print-out the words are organised so that no splits occur, and the text can be justified. The absence of "arrow keys" to move the cursor around the screen is a drawback from the operator point of view. He has to memorise which of the keys perform which cursor movement commands-though the keys are arranged in a logical manner on the keyboard.

Special letters are left in the text to signal particular printing modes, such as justification, given line-widths and the centering of a heading on the page. Strings may be located, deleted, and changed as normal. Only one character may be inserted after the cursor for each use of the insert command, which is rather limiting as far as speed is concerned. Text is entered one page at a time, and the operator must not exceed this limit, or an overflow message occurs. A page is defined as a full screen.

The version of the editor supplied with the machine for review appeared rather combersome and slow to use compared with other packages, but this may well have been due to the rather scant and embryonic documentation accompanying the program.

Science of Cambridge can provide software and hardware which will interface the Acorn system with Prestel and Teletext

LISP is a language which is orientated towards the processing of strings and lists of characters as opposed to scientific and numerical calculations, though calculations are possible. Complex data structures are easy to construct, and the language can process and act upon complex "Boolean" or logical conditions. This type of programming is suitable for highly interactive routines using human language for communication. The computer can easily be made to act as if it understands syntax and grammar. As an example, as a demonstration of LISP's capabilities, OWL computers have a program called DOCTOR which pretends to be your psychiatrist, and asks personal questions in an English conversation-could become addictive!

CONCLUSION

The system is modular, as mentioned before, and appears to be well conceived from a hardware point of view, if tather expensive. The software is still in development, but is quite wide. My version only ran a converted colour monitor, and it would be interesting to see the resolution through the encoder and UHF modulator on a domestic TV.

The exact market place of the machine is difficult to assess. Medium-sized business applications would be difficult with such small disk space, and the system would have to be cheaper for the hobbyist to buy it. That leaves Education and hardware control. Both of these would surely benefit from the modularity and Input/Output expansions available.

MOTORING

SOLID STATE CAR INSTRUMENTS by Michael Tooley B.A. and David Whitfield B.A., M.Sc.

1. BATTERY VOLTAGE INDICATOR
2. REV COUNTER

10
3. AMMETER
4. ENGINE TEMPERATURE 13
5. DWELL METER 16

HAZARD WARNING AND CASCADING 18
HEADLIGHT WARNING by P. G. Wagstaff 21
AUTOMATIC CAR AERIAL by S. M. Bennett 24
HOUSEHOLD
DIGITAL TEMPERATURE CONTROLLER by D. Coults and P. McAllister 27
ULTRASONIC BURGLAR ALARMby G. Davies 32
HOME FREEZER ALARM by P. E. Chaplin 37
PHOTOGRAPHIC
PE DIAMATIC by J. R. Ames B.Sc., and W. L. Blyth B.Sc. 40
DIGITAL EXPOSURE TIMER by John Becker 55

MUSICAL EFFECTS

SMOOTH FUZZ by D. S. Gibbs and I. M. Shaw C. Eng. M.I.E.E. 62
PHASER by D.S. Gibbs and I. M. Shaw C. Enig. M.I.E.E. 65
GUITAR SOUND MULTIPROCESSOR by Dr. M. Sawickiand A. Kowalewski B.Sc. 69
RADIO CONTROL
R. C. FAILSAFE by Tony Jenkins 85

TEST GEAR
WAVEFORM GENERATOR by Michael Tooley B.A. and David Whitlield B.A.. M.Sc.
PULSE GENERATOR by Michael Tooley B.A. and David Whilfield B.A..M.Sc.

practical A ELECTTRONICS Publication...

With electronics playing such an important role in every aspect of modern living PE have pleasure in presenting the pick of some of its most popular projects in this 96 -page book. Two of these projecls are completely new, the remainder are as originally publishedin PE save for the incorporation of certain desginer approved amendments or corrections.

Our new book PE Popular Projects is now on sale at newsagents and component stores; the contents of this book are shown above. The book costs $£ 1.25$ from retail outlets and is also available for $£ 1.50$, UK post paid or $£ 1.80$, overseas surface post paid, from Post Sales Department (PE Popular Projects). IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE 1 OPF.

by K. Lenton-Smith

Aproblem that can confront the electronic musician is fitting a further amplifier and speaker system to an existing installation. Though apparently simply in theory, the task can be complicated if the instrument is not provided with a preamplified output and the end product is supplied only to the speaker terminals.

MATCHED PAIR

The practical difficulty is matching the main speaker signal to a further amplifier. It is possible, of course, to find a preamplified source somewhere in the instrument's circuitry but the main speaker signal can be useful in other respects: for the moment we will assume that the speaker signal has to be the starting point.
Another speaker in parallel would seem to be the simplest solution, but would not only result in a mismatch but probably endanger the output transistors. Placing a (say) 50 k potentiometer across the main speaker and feeding the extension amplifier from its slider will give results of sorts but losses in tonal quality will perhaps be unacceptable.

Ruling that out, we try a step-up transformer: here the primary can act as a dummy load if the main speaker is to be switched out. Although this will give better results than using a simple pot., there will still be losses in tonal quality.

UNCOMMON

In the early days of the transistor, available types were of low gain, high leakage and very restricted in their cut-off frequency. It was not unusual to have to resort to common base configuration in order to handle even the i.f. of a suphet receiver-perhaps operating at 470 kHz . Today's device is a totally different matter and alpha cut-off is no problem anyway where audio frequencies are concerned. Where common (or grounded) base is employed, the stage will handle low impedance inputs and provide a high impedance output with voltage gain-which is precisely what we are looking for in this instance. The input signal is fed to the emitter, the base ground to a.c. but biased as usual and the signal taken from the collector. A suggested circuit is shown in Fig. 1.

Power for this stage can be derived from the extension amplifier, using a suitable
series resistor to ensure that the Zener diode's dissipation is within bounds. If the constructor intends to use the extension system for a doppler-effect speaker, a dummy load must be presented to the main amplifier if switching is envisaged.

LIMITER

The main speaker signal is useful as the source for driving a spring unit, so both this drive and the signal for the common base
amplifier can come from the same point. Assuming that one side of the main speaker signal is earthed, Fig. 2 shows a suitable system that was used by Hammond in their $\mathrm{M}-100$ series instruments. An appropriate lamp to use is 6 V 0.36 W , where the filament has a d.c. resistance of some 14Ω. It acts as the volume limiter and is, only likely to glow on loud passages. The reverberation spring can be driven directly as indicated in Fig. 2 or this same signal can be reduced resistively and fed to the reverberation drive amplifier if it is already incorporated in the spring unit.
With a little care, the pre-amplified signal from the spring unit can be mixed with the output from the common base stage so that the extension amplifier handles both signals. It is a wise precaution to refer to the instrument's service manual to ensure that the main speaker is not provided with a push-pull, centre tapped to earth, signal. If this is the case, suitable resistors will have to be inserted after the limiter to avoid losing half of the signal because of the common earth between the main and extension amplifiers.

Fig. 1. Common Base Stage

Fig. 2. Limiter

MONITOR

Whilst dealing with practical aspects, the musician reader will hardly need reminding that recording at the keyboard can be problematcial at the best of times. However, nothing is more annoying than having to use a pre-amplified tape recorder that has to be carted to the hi-fi system (possibly in another room?) to check each result. Some organs can be used to play back tape-though this may have to be monophonic-but headphone facilities are ideal. In order to preserve the musical train
of thought, the simple circuitry of Fig. 3 may be found useful.

This can be built in mono or stereo form on the smallest stripboard available (both amplifiers being identical) and possibly mounted somewhere inside the recorder, borrowing power from that source. The nominal 10 V is not critical but allows small electrolytics to be used: the series resistor must again be chosen to limit the zener diode's dissipation. Quiescent current is some 2 mA and the quality of reproduction is excellent for this purpose. Two components call for comment: the $1 \mathrm{M} \Omega$ feedback
resistor controls volume and can be varied to suit individual taste, whilst the 330 K inverting input resistor may require amendment according to the tape recorder's output signal.

Headphones with mylar diaphragms can be extremely sensitive and, should there be any tendency to overload, a series resistor-say 100』-in each output lead of this type of phone will overcome the problem. A simple but effective system of checking musical efforts quickly is a great help in getting the required resulteventually!

Fig. 3. Stereo Headphone Amplifier

GUSCAN'FROM TRANSAM

Take astep up toyour next Computer!

THE CONCEPT

How many ways are there to build an S 100 system? Not many, and all expensive. TUSCAN changes all that.

Five S100 boards on one single board - just for starters. Plus five extra slots for future expansion.

What a combination! $\mathrm{Z80}$ and $\mathrm{S100}$ with the TRANSAM total package of system and applications software.

How do we do it? Our prices start at $£ 195$ and you can build up in easy stages to a fully CP/M compatible disc based system. Something to think about!

THE HARDWARE

The first Z80 single board computer with integral S 100 expansion. British designed to the new IEEE (8 BIT) S100 specification, the TUSCAN offers total system flexibility. A flexibility available now.

The board holds the equivalent of a 280 cpu card, $8 \mathrm{k} \mathrm{ram}, 8 \mathrm{k}$ rom video and L / O cards with 5 spare S100 expansion slots and offers a price/performance ratio which is hard to beat.

Just compare our price with a commercial S100ten slot motherboard with this specification.

THE SOFTWARE

TUSCAN offers the user the choice of system monitor, editor, resident 8 k basic, resident Pascal compiler or full CP/M disk operating system. All options are upwards
compatible and fully supported with applications software. Both $51 / 4^{\prime \prime}$ and $8^{\prime \prime}$ drives are supported in double density.

THE PACKAGE

TUSCAN is available in kit form or assembled. With several hardware and software options to suit your requirements and budget. Attractive desk top case also available holds $2 \times 514^{\prime \prime}$ Drives.

NOBODY DOES IT BETTER!
Send to Transam Components Ltd,., 12 Chapel Street, London NW1

J.A. Barpow inegrihesAn indiifator which givesa silent flashing displey to the harid of hearing orin noisy environments and loge calls in your ahsence

HERE is a useful gadget for the deaf, the hard of hearing, or, the enthusiast who likes to play music very loudly! Primarily designed to overcome the problem of not hearing someone at the door by providing a visual indication, it has the additional feature of a memory, which indicates whether you missed a caller while you were out.

The complete unit can be made very compact as it can be simply connected to the existing bell-push wires.

CIRCUIT

IC1a and b, R3, R4 and C3 in Fig. 1 form a low frequency oscillator which is switched on when the threshold voltage at pin 2/IC1a is exceeded. The output is connected to TR 1 via R5 which drives the l.e.d.s D3 and D4. The power for the circuit is from the bell battery.

Consider the circuit in the following state with C2 fully charged and pin $4 / I \mathrm{C} 1 \mathrm{~d}$ at logic ' 1 '. A logic ' 0 ' at pin $2 / \mathrm{ICi}$ a ensures the oscillator is off. Pin $11 / \mathrm{IC} 1 \mathrm{~b}$ is at logic ' O ' so ho l.e.d.s are lit. Shorting point ' A ' to ' B ' causes C 2 to discharge rapidly through D2, so when the power returns to the circuit (i.e. when the bell push is released) C2 starts to charge via R2 causing a logic ' 1 ' to be present at pin 2/IC1a-the oscillator then functions and the l.e.d.s flash for a period determined by R2, C2 (about 30 seconds with values shown). During oscillations pin $3 / I \mathrm{C} 1$ a goes to a logic ' O ' causing the latch (gates c and d) to change state. Pin 4/IC1d becomes logic ' O^{\prime}. This state remains until S1 is pressed when pin 11/IC1b then becomes a logic ' 1 ' and the l.e.d.s light, indicating that the oscillator has been activated. While the switch is held depressed, capacitor C4 will charge via 98 and the logic level at pin $6 / \mathrm{IC} 1 \mathrm{~d}$ will change to a ' O ' after about 2 seconds, resetting the latch and cancelling the lit l.e.d.s.

ALTERNATIVE SUPPLY

The circuit was designed for use with battery operated bells, but use with a.c. types up to a maximum of 10 V r.m.s. is possible using additional circuitry shown in Fig. 1.

Diode D1 prevents circuit damage if input connections are reversed during installation, in which case the bell will ring continually.

CONSTRUCTION

The components are mounted on 0.1 in Veroboard as shown (in Fig. 2) which in turn is mounted onto the lid of a small plastic box. Two holes were drilled in the lid to form a

COMPONENTS

Resistors	
R1	$1 \mathrm{k} \quad 0.5 \mathrm{~W}$
R2	3 M 6
R3	56 k
R4	2 M
R5	10 k
R6	100 k
R7*	180
R8	10 M
R9*	

All resistors 0.25 W carbon except where otherwise stated
"Selected for 6V operation

Capacitors

C 1	$100 \mu 16 \mathrm{~V}$ elect
C 2	10μ tantalum 16 V
C 3	100 n polyester
C 4	220 n polyester

Semiconductors

$\left.\begin{array}{ll}\text { TR1 } & \text { BC } 109 \\ \text { IC1 } & 4093 \\ \text { D1 } & \text { IN4006 } \\ \text { D2 } & \text { OA200 } \\ \text { D3 } \\ \text { D4 }\end{array}\right\}$

Miscellaneous

S1 D.p.d.t. push switch (miniature) Veroboard (0.1 in) 3 in $\times 2.2$ in REC1 - 100 mA bridge rectifier. Plastic box.
 monitor

'key-hole', which enabled the unit to be fitted on a wall with one round-headed screw-the keyhole locating over the head of the screw.

CHECKING

After making connections to the bell-push wires, press the switch and release. L.e.d.s should flash for about 30 seconds then extinguish. Press S 1 and hold, the l.e.d.s should light for about 2 seconds then extinguish. Press S1 again and the l.e.d.s should remain off.

The unit should be sited, of course, where it can be easily seen-perhaps close to the television or stereo.

In normal operation it looks after itself-switching itself off 30 seconds or so after the bell push was pressed. When, however, the memory facility is required, the push button on the unit should be depressed until the l.e.d.s extinguish before going out. Then, on your return, press the button again-if the l.e.d.s do not light, then visitors did not call in your absence.

POIITS ARESIE

SPLIT-PHASE TREMOLO (May 1980)

1) The bottom end of VR1 should go to earth (as defined by the centre point between the power supply lines) and not to the $-6 \vee$ supply.
2) The 'In' and 'Out' positions on switch S1, as marked on the circuit diagram, should be interchanged.
3) The three jack sockets (JK 1, 2 and 3) should all have their screens connected to earth, and not to the -6 V supply.
Either R10 or R13 may be replaced by a preset variable resistor of value around 4 k 7 . The setting of this variable resistor should be so as to cause the signal amplitude across it to be the same as the signal amplitude across the remaining fixed resistor. Omission of this adjustment may cause the extremaly discerning listener to observe that the modulation depths on the iwo channels is not quite identical. The difference in modulation depths is, of course, caused by the emitter load having a signal generated across it by virtue of the base current which flows through it. Adjustment of the preset variable resistor as described above results in the cancellation of this effect.

VOYAGER STEREO MIXER

 price
 Mixer at an incredibly low
 ONLY £159.00.

* 2 Mag deck channels + tone controls * Aux channel complete with tone controls * Mic channel with tone controls * Full autofade * Full headphone/Q facility * Precision L.E.D. VU output/Q facility * Size $25^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$

Send for our FREE 28 page catalogue. Please enclose a stamp.

(m)tuAC
TUAC Ltd., 119 Charlmont Road, SW17 Tel: 01-672 3137/9080 PRICE INCLUDES VAT. P+P FREE TO ORDER BY POST. Make cheques/P.O.s payable to TUAC LTD. or quote Access/Barclaycard No. and post to TUAC LTD. 119 Charlmont Road, London SW17 9 AB. We accept telephone orders from Access/Barclaycard Holders. Phone 01-672 9080.

TUAC MAIN DISTRIBUTORS

Birmingham, George Matthews, 85/87 Hurst Street. (Tel: 622 1941).
Cheshire, Cookies Disco Centre, 126 West Street, Crewe, Tel: 0270 2147391.
London, Garland Bros., Deptiford Broadway, (Tel: $01-6924412$). London, Sassion Music, 163 Mitcham Road, Tooting, SW17. (Tel: $01-67234131$ Mon-Sat 10 arm to 5.30 pm . Closed Wed.) Kingstion, ABC Music, 56 Surbiton Road, Kingston, Surrey. (TeI: 01-546 9877).
Luton, Luton Disco Centre, 75 Wellington Street. (Tel; 411733). Manchester. A1 Music, 88 Oxford Street, (Tel: 23603401. Middlesborough, Salcoglen, 43 Bo. .dgh Roac, (Tel: 24285) Watford, Component Centre, 7 Langley Road, (Tel: 45335).

MAGNUM METAL DETECTOR

Construction details in this issue
All electrical components available from Maplin Electronic Supplies Limited

> All mail to:-
P.(). Box 3. Rayleigh. Evsex SS6 8LR Telephone: Southerd (0702) 554155

Shop:
$28+$ Landon Road. Westeliff-on-Ses.
Esstx
(Clowed on Monday)
Telephone: Southend (0702) 554000

mImIATURE MAINS TRANSFORMERS Top quality. Solut bobtin construction will give $4.5 \mathrm{~V}-0-4.5 \mathrm{~V}$
 3 for C2 20.
2.200 нit 40 V Radial $11^{\prime \prime} \times 2^{\text {" }} 60 \mathrm{p}$. 3 for $£ 1.50$

20 mm ANTI SURGE FUSES

20 mm ANII SURGE FUSES
$630 \mathrm{~mA} .800 \mathrm{~mA} .1 \mathrm{~A}, 1-24 \mathrm{~A} .1 \cdot 6 \mathrm{AA} .2 \mathrm{~A} .2-5 \mathrm{~A}, 3.15 \mathrm{~A} .12$ of one rype $\mathrm{f1}, 12$ of eech type f 7.100 of ane type f 7.100 one troe fle 12 of type f4s.

TRANSIETOR PACKS
100. Futl spec, now and marked includes BC148, BC1841

200 as above and includas AC128, 2N3055. BFY 50 , 80131, 8F200 me 64.85
Buy bulk ond save money, thast packs ore worth at leas doubli.

P/L SwITCH BAWKS
The ceen a fortunel Were made far various muzic cantion Includes independent and interctepentent tatching types multi:

Knobs for P/8 Switchas Fit $3 \$ \mathrm{~mm}$ sq. shaft. 10 for f 1 . Chrome or Spun Aluminium Finish.
BULK BARGAINS. STOCK UP FOR SUMMER 300 mixad $\frac{1}{4} \frac{1}{2}$ walt rasistors $£ 1.50$ 150 mixed is 2 wath rusistars $\$ 1.50$ 300 mived capacitors. modetn. most types $£ 1.75$ 100 mixed crramic and plate caps $\$ 120$ 400 mixed film resistors 12.95 100 muxed polvzstrene caps $\mathbf{E 2} 20$ 25 pots and prasers Cf 1.50 25 prosurs. skalmon me. © 120 20 VDRe and the mintors \&1 20
100 Mi -wattape misistors wifrwound atc. $\mathbf{f 2 . 2 0}$ 100 electrolvics. nice values $\mathbf{~} 2.20$ 300 printed circuil resistors [I 300 prianted arcuir componmin $£ 1.50$
COOK MINIATURE THUMBWHEEL SLIOER POTS Very notit. can be banked side by side. Ideal for y cas tuning. praphic equalisers ete 10 tor fI

MIMIATURE IEVEL/BATT. METERS 200μ
F.S.D. as fitted to many caszutto recorders 80p

50 p \& \& P on all above hems. Cheque or $\mathrm{P} . \mathrm{D}$. with order to
SENTINEL SUPPIY, DEPT. P.E.
149A BROOKMILL RD., DEPTFORD, LONDON, SE8

Semiconductor TPDATITE featuring 7910 UAA1003 MN9106 R.W. Coles

DESERT ISLAND CHIPS

If like me, you feel that some things are better left as they are, unimproved by generous helpings of electronic technology. then your interest in my first two devices this month may be tinged with something of a sense of foreboding.

The Stylophone was tolerable, no worse in fact than the kids tin drums and xylophones which preceded it, I even manage a wry smile when greeted by a perky rendition of "Colonel Bogey" from one of those dreadful musical door bells. I do get just a little peeved, though, when forced into a corner with one of those "Space Invaders" games which makes continuous rude noises while I'm trying to enjoy my pint, but at least I can leave them behind in the pub.

The thing that worries me about the new 7910 series of six integrated-circuit-musicmakers is that they are so easy to use and so cheap that I have a vision of our homes being inundated with musical food mixers, vacuum cleaners, clocks, tooth brushes, and biscuit tins in the not too distant future.

The 7910 series can provide a tune for every occasion including "Home on the Range". "Mary had a little Lamb" and "Greensleeves", and four of the chips can also imitate door chimes and produce bleeping alarm noises. Two specials in the range are dedicated for clock applications, producing ersatz "Westminster Chimes" no less.

The thing which sets these chips apart from the microprocessor door bells of yesteryear is the fact that they (a) come in diddy 16 pin DIP packages (b) run from a single 1.5 V battery, with a standby drain of typically 2 micro amps and (c) they are selling; even in small quantities, at less than f 2 each.

The secret seems to be that the 7910 series is not based on a true microprocessor architecture but on a dedicated design with no "fat". The tunes are produced by an on chip combo which consists of an oscillator, two envelope generators, an output pre-amp and a collection of ROMs. The ROMs define the tunes, and custom programming is therefore possible at the mask level. The melody ROM, twelve bits wide and 128 words deep, can store 128 notes or rests, the tempo ROM provides cadences from prestissimo to largo, and the control ROM welds the whole thing together by keeping track of start addresses, tune selections, and sequence repetitions.

The pre-amp provides at least 150
microamps of base current for an external pair of transistors in a push-pull configuration, but apart from those devices, only a few cheap passives and a pen cell are all you need to drive you and your friends crazy.

The 7910 serles are only available in the U.S.A. at the moment, from Epson America Inc., (who live never heard off). If you can't wait, they live at 23844 Hawthorne Blvd., Torrance, CA 90505.

SPEAKING CLOCK

As if the threat of musical biscuit tins were not enough, it seems we are also faced with the prospect of alarm clocks which rouse us from our slumbers with a spoken announcement of the time, no doubt delivered in a supercilious tone of "voice". This terrifying prospect is brought to us courtesy of 1 TT Semiconductors, in the shape of a forty pin NMOS integrated circuit coded UAA1003.

All those pins are needed because the new device is designed to be connected to the seven-segment multiplexed display outputs of your favourite digital clock chip in parallel with the display LEDs. Yes, that's right, it not only speaks, it understands digital clock-ese too.

The UAA1003 can speak up to 25 separate words; and can be programmed to string these in any sequence to amaze and delight your friends. Each word consists of a number of staircase shaped pulses lasting 10 milliseconds and produced via an onchip 7 bit digital-to-analogue converter to give 128 possible amplitude levels.

One problem though, they haven't taught the UAA1003 to speak English yet, only French and German, so unless you relish the thought of being awakened by "Bonjour. Il est sept heurs et demi" (Followed no doubt by a quick burst of "Mary had a little Lamb" from the Teasmaid), you will have to wait a few weeks before "modding" your trusty alarm clock. Your alarm clock should have no trouble powering the UAA1003 when it arrives though, it only needs five millamps at 5 volts.

Personally 1 am working on suitable countermeasures. In my wardrobe there is a well used hob-nail boot which I occasionally fling with unerring accuracy at the frisky cats who sometimes frequent my garden at night. I wonder if the UAA1003 could stand a direct hit from that!

NOVOL CHIP

I have mentioned the ingenious NOVOL devices before in this column. They are
made by Plessey (yes they really are British) and their strength lies in the clever combination of high speed but volatile MOS memory and slower but non-volatile MNOS latches. The mixture yields memory devices which can be written-to and read-from like any other memory part in normal operation, with the added advantage that the contents of the memory can be saved almost indefinitely, even without power, after the application of a short SAVE pulse to effect a transfer to the MNOS section. This technology is invaluable where the loss of data due to power loss must be avoided and the data must also be easlly changed during normal operation with power applied.

When power is reapplied to a NOVOL device, the data stored in the long-term MNOS latches can be recalled by applying a five micro second pulse to a RECALL input.

The only reservations I have had about NOVOL in the past have concerned the limited number of "save" cycles possible (about a million), and the fact that only small arrays, such as four bit latches for example, were available.

Well, the first problem is a fact of life with MNOS, but I withdraw my second reservation now that I have seen data on the MN9106/7/8 series of NOVOL counter chips. The MN9106 is a six decade upcounter complete with a multiplexed seven segment display driver and overflow logic, capable of counting at up to 200 Khz . The 25 bits of count data (6×4 bits and 1 bit for overflow status) can be stored in an MNOS array by application of a 10 millisecond SAVE pulse, and recalled rapidly when required so that the count can continue from where it had stopped, when the power failed for example.

The other devices in the series have certain decades changed into divide by six counters to provide a timer function. The MN9 107 counts 99 hours, 59 minutes, 59 seconds and the MN9108 counts 9999 hours 59 minutes (or 9999 minutes 59 seconds).

The nonvolatility of these counters makes them suitable for applications where in the past only electro-mechanical gadgets could be used, things like car odometers, hours-run indicators and production line parts counting could all benefit from NOVOL technology.

The MN9106 series all operate from a 12 volt supply, can be interfaced to CMOS or TTL logic, and come in 24 pin packages.

We mean it

The new 30AX colour tube system from Mullard loesn't need innumerable twists and turns of a screwdriver to set it up.

It needs no adjustments at all. Because every one las been 'designed out' Every tube that leaves our actory is completely pre-adjusted by us. Leaving only the turn of one screw to affix or remove the coil.

No dynamic convergence adjustments.
No colour purity adjustments.
And no raster orientation adjustment.
As for what it has to offer, the 30AX's focus is sharper and its definition greatly improved.

Its in-line guns and specially built coil provide the best picture shape yet
24 And rest assured it'll stay that way. In a slim
110° package that trims about $3^{\prime \prime}$ off conventional $22^{\prime \prime} 90^{\circ} \mathrm{TV}$ cabinet depths.

Some features of the 30AX however, are a little more established.

Like its excellent colour registration. High brightness. Soft flash protection. Fast warm-up. And of course, greater overall reliability. This is the new 30AX colour tube system.

If. you'd like more information about it simply write to us here at Department MCG, Mullard Limited, Mullard House, Torrington Place, London, WC1E 7HD.

Electrochemistry and the instrumentation it needs

A.T. Kuhn m.a. dphil.

WHAT IS electrochemistry? And whatever it is, why is chemistry rearing its ugly head in a magazine devoted to electronics? Taking the quick answers to these questions, we can say first that electrochemistry is that branch of science which deals with the frontiers between electricity and chemistry. Just how important this little branch of science is, one must judge for oneself. Suffice to say that it underlies the working of batteries, and accumulators; it provides the explanation of corrosion, and at the same time suggests how we might combat it. It is the means used for production of all the world's aluminium, much of its magnesium, all of its chlorine and many other vital chemicals besides. Electroplating and anodising, electrophoretic paint deposition on cars or refrigerators, the monitoring of medical parameters, prevention of damp in old buildings by electroosmotic action-one could go on and on!

As for the second question, the Editor has decided to run a series of projects (not consecutively) which will encompass the complete range of the major instruments required to study or demonstrate this important discipline, either in research laboratories or in colleges or secondary schools. These instruments will be specified to the full professional level required for research at the highest level. In many cases, they will not be cheap to build-but then their commercial counterparts with comparable performance would cost many times the same amount. In many cases too, options will be shown by means of which the builder can construct a less expensive machine, to be upgraded at a later date when funds permit.

THE SCOPE OF ELECTROCHEMISTRY

One of the best-known electrochemists today, Professor J. O'M. Bockris, of Texas, has shown how the subject can be divided into "lonics" and "Electrodics". The first term relates to events taking place in solutions of conducting media, for example salts or acids dissolved in water, while the second relates to the interface between a metal or other conductor, and the solution in which it is immersed.

IONICS

Far and away the mose important measurement we make in relation to water and other species dissolved in it, is pH , or acidity. To a first approximation, we can define this as:

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

and in the laboratory, in the food, drug or chemical industry, we are constantly concerned with the acidity of whatever we are making, for not only must the value be right but also we can use it as a guide to all sorts of other things happening. But then the biologist, the gardener or soil scientist, the aquarist, the doctor and vet, are all concerned with the application of this same term to their own discipline. There are many ways in which we can measure this quantity. But the most commonly used one is to use a pH electrode, and, having first calibrated it against solutions whose pH is known, we can measure pH by measuring the potential difference generated between this electrode and another one, the response of which is not affected by the pH of a solution. This voltage must be measured with a circuit of moderately
high impedance, of the order of 10^{8} Ohms or so, and this requires special design. Formerly this was done with electrometer valves, but now we have FET op. amps. The technique of pH measurement with an electrode is some 40 years old or so. But in the last decade a staggering advance has been made, in that we now have a series of Ion-specific Electrodes which can be used in very much the same way, to measure the concentrations of $\mathrm{Cl}^{-}, \mathrm{F}^{-}$or Na^{+}in a solution.

Numerous ion-selective electrodes are now available. Their number increases every year. There cannot be an easier way of measuring the calcium levels in milk or the amount of nitrate in drinking water than by using one of these new electrodes. The principles on which they operate are very similar to the glass electrodes used to measure pH , and both devices follow more or less closely the relationship known as Nernst's Equation:

$$
\begin{equation*}
\mathrm{E}=\mathrm{E}_{0}+\frac{2 \cdot 3 \mathrm{RT}}{\mathrm{nF}} \log \left[\mathrm{Cl}^{-}\right] \tag{1}
\end{equation*}
$$

where E_{0} is a constant, and E is the measured voltage. The other terms relate to the concentrations of the ions we wish to measure. In practical terms, these electrodes are still a little more difficult to use than the pH electrodes which preceded them. The actual slope of the relationship between $\log (X)$, where X is a species and the measured voltage is not always that suggested by equation (1), where the factor

$$
\frac{2.3 \mathrm{rl}}{\mathrm{nF}}=0.059 \mathrm{~V} \text { at room temperature. }
$$

but can deviate some way from it . Therefore these instruments must incorporate variable slope controls.

Fig. 1. Two electrode system

Fig. 2. Three electrode system showing working counter, and reference electrodes

From the measurement of pH or pX , it is only a step to an instrument which uses this information to actuate some means for controlling the same parameter. This is sometimes known as a pH stat or auto-titrator and the commonest use is perhaps in the treatment of effluent discharges from factories, where a discharge must be held between pH 6 and 8 to be acceptable. The actual pH of the effluent is measured and if it is too acid, a valve is actuated, to effect addition of some alkali.

ELECTRODICS

-The second major branch of electrochemistry, electrodics, deals with the passage of a current from a metal electrode and into solution. Though much research has been published in the past hundred years in this exciting field, a great deal remains to be done, not least in the field of electro-organic chemistry; that branch which deals with the reactions of organic molecules at electrodes, where they are reduced or oxidised (at the cathode or anode respectively) or can undergo a range of other fascinating reactions such as dimerisation (doubling up). Here is a vast territory for novel ideas and research, and what is more, as such things go, the tools for this research are far less costly than those required for almost any other branch of chemistry. Indeed, apart from certain items of glassware, the instruments required will be those it is planned to present in the coming series.

The first laws of electrolysis are those laid down by Sir Michael Faraday, over a hundred years ago, in which he stated that a given quantity of electrical charge (the Faraday 96,500 coulombs) will liberate one gramme-molecule of a given substance for every electron required in the reaction. This opens up a number of important experiments, for we now know that by passing a certain charge (a known current for a known time), we can release precisely determined amounts of material. Indeed, the ampere is defined as a standard in these terms, as the current, passed for one second, which will deposit the appropriate amount of silver from a solution of this metal. However in practical terms, we face a problem, since the effective resistance of an electrolyte solution with two electrodes immersed in it, is rarely constant, and varies not only with temperature but also with time, as substances deposit on the electrodes the latter change their behaviour thus simulating a change

Fig. 4
in resistance. For this reason, and unlike the electronics scientist, the electrochemist frequently requires the constant current device in place of the constant voltage source more commonly found in physics. With a constant current device, we can set up a current of, say, 50 mA and know that it will hold at this value even though the voltage required to drive that current changes from perhaps 10 volts initially to as much as 18 volts after 30 minutes. Designs for two such units are presented in this issue. One is a simple single transistor unit with an output from $0-20 \mathrm{~mA}$ or so. The second is a more advanced unit with switchable ranged outputs up to 3A.

If we wish to learn more about what is taking place during an electrolysis with two electrodes dipping into an electrolyte, we soon recognise that, in such a simple system, we cannot distinguish between what is happening at one electrode from that happening at the other. The reason for this is the voltage required to drive a current from an electrode into solution or vice-versa is related to it by:

$$
V=a+b \log i
$$

where a and b are constants which depend on the metal used, its size, condition (roughness) and what electrolysis reaction is taking place. We can describe an electrode whose voltage is changed as current flows according to this equation, as being polarised. Note that it is a non-linear relationship between current and voltage; in other words, one of the few cases where Ohm's Law is not obeyed. So with two electrodes in a beaker, each obeying the above law, and the ohmic drop through the solution as well, we end up with:
(anode or positive electrode) $\mathrm{V}=\mathrm{a}+\mathrm{b} \log \mathrm{i}$
(cathode, negative electrode) $\mathrm{V}^{\prime}=\mathrm{a}^{\prime}+\mathrm{b}^{\prime} \log \mathrm{i}$
All the constants are different, but the same current, i, must flow into the solution at one electrode and and out at the other.

Adding these two terms together, we get an equation that describes the voltage across a cell:

$$
V_{\text {cell }}=a^{\prime \prime}+b^{\prime \prime} \log i+i R
$$

where the last term expresses the ohmic resistance of the electrolyte in the cell and leads etc. $\mathrm{V}_{\text {cell }}$ is what we measure with a voltmeter across the two electrodes when current i flows, E is the voltage across the same two electrodes before we pass voltage and V and V^{\prime} apply to each of the two electrodes. \mathbf{R} is the resistance of the electrolyte. The "Working" electrode is the one we are interested in, the one whose current-voltage characteristics (measured against the reference electrode) are plotted in Figs. 3 and 4. The "Counter" electrode we must have to ensure continuity of current flow through the solution. The "reference" electrode, because it passes no current, other than the leakage through the high impedance voltmeter, is assumed to be constant. Because three things are changing all at the same time, it is not possible to isolate any one effect. The solution is simple. Instead of adopting the circuit as in Fig. 1, we go rather for the three-electrode system shown in Fig. 2. The third electrode is called a reference electrode. Because no current flows through it, other than the minute drain due to the voltage measurement circuit, it is not polarised and remains at the same voltage even though the voltage of the other two electrodes, through which we are forcing current, does change.

If we take two electrodes, and lead is the most easily obtainable metal, dip them into weak sulphuric acid and pass a gradually increasing current, we can get values of V and i, and plot them. The result should be like that shown in Fig. 3. If we can obtain some semi-logarithmic graph paper, the result will instead be a straight line the gradient of which gives us "b" from the equation above, while the intercept is "a". The better our electrode is, the greater the value of "a" and a great deal of industrial research is now concerned with looking for novel electrode materials having a better value of "a" for key reactions
such as hydrogen evolution or oxygen evolution (both involved in the "hydrogen economy") or for the chlorine evolution reaction. A more sophisticated instrument for following the relationship between current and voltage, is the potentiostat. This, unlike the constant current supply (or galvanostat) is a feedback device which measures the potential between the electrode whose behaviour we are anxious to study (working electrode) and the reference electrode, and compares this value with a pre-determined voltage which has been set up. By regulation of the current flowing in the circuit working electrode to counter electrode, that is to say variation not only of the magnitude but also the sense of this current, the desired potential is held constant. We may, in some cases, wish not so much as to hold this potential constant, but rather to vary it in a linear manner as a function of time. In such a case, we need a ramp generator, which is coupled to the sensing side of the potentiostat.

MAKING MEASUREMENTS

With these instruments, we have the essentials for doing electrochemical experiments. However a certain number of other peripherals are also desirable. The measurement of current and voltage call for some thought. Current can be measured either using a d.c. ammeter in series with the instruments, or by measurement of voltage drop across a fixed-value precision resistor. Electrochemistry is unusual as a discipline, in that currents in a single experiment may vary from a few microamperes to an ampere or more. Thus, auto-ranging current measurement devices, though not widely used at present, would be useful. A further difficulty arises because, for reasons that will be explained, the resistor across which the p.d. is measured (sometimes known as the "counting resistor") may well stand 50 V off earth potential, or even more. This calls for a voltage follower with rather special properties. The same wide span of currents (expressed as voltage drop across a resistor) could also suggest a log-response amplifier.

Application of a given current with measurement of the resulting voltage, or the converse process of maintaining a defined potential in order to observe the current, are the two most basic techniques we use in electrochemistry. By changing either the applied voltage or current and observing the value of the other parameter, we can obtain a graph of current vs. voltage, and from this graph a great deal can be learned about the nature of the reaction. Is the current responsive to stirring? What is the effect of change of temperature or pH or concentration of any other species? There is nothing like a little simple automation, and application of a simple voltage ramp either to the potentiostat or the galvanostat allows us to monitor one parameter while the other is continuously changing. We can feed the input and output to an $\mathrm{X}-\mathrm{Y}$ chart recorder and go away for our tea until the scan is complete. For a faster scan, we shall use an oscilloscope to record the $\mathrm{i}-\mathrm{V}$ trace, though more recently this has been challenged by the transient-recorder.

SOME EXPERIMENTS

In the project series, it is intended that all the instrumentation required for the study of electrochemistry will be described. That is to say a pH or pX meter, a constant current unit, a potentiostat, a function generator and a log amplifier. If space permits current followers and voltage followers as well as coulometers will also be described. Other equipment which is useful is an oscilloscope and, or, a V-t chart recorder. What sort of experiments can we do with this equipment? All sorts of ideas come to mind. The following simple experiments are suggested:
i) Take 2 lead plates and place them in a beaker with dilute sulphuric acid. Apply a d.c. current (approximately 100 mA
per cm^{2} for a few hours) and we have now formed a simple lead acid battery. Measure the voltage at open circuit. It should be approximately 2.01 Volts. Now connect the constant current unit across the two plates and pass current in the reverse direction. The "battery" will be discharged. Measure the voltage while this is being done and it will slowly decrease for several minutes (or longer if you have a low current or a good battery) until suddenly the voltage will plunge downwards. This is called the knee of the discharge curve, and if we measure the charge passed (in ampere hours) from start of discharge till the knee, we obtain the capacity of the battery - it won't be as good as an Exide!
ii) Take a clean metal electrode and plate onto it a thick layer of metallic copper from an acid copper sulphate bath. Using a constant current unit, measure the charge required. After the experiment, use a microscope to measure the thickness of the deposit. From Faraday's law and the Avogadro number, you can estimate the size of a copper atom.
iii) Using a potentiostat and a dilute solution of sodium hydroxide (take care this does not splash!) follow the rate of hydrogen evolution at electrodes made of silver, gold, lead, iron or other metals. See how some are much better electrodes and evolve the same amount of gas at a lower voltage. Use a burette upturned to collect the hydrogen and verify Faraday's law (but do not forget to correct for water vapour pressure).
iv) Using a potentiostat as a zero-resistance ammeter, connect a piece of steel and a piece of copper through the ammeter to one another. When both are immersed in water, you will observe a current flow and after a time, evidence of the corrosion of the steel will be seen. With this instrument, which measures current without imposing any "meter resistance" even at the micro-ampere level, we can follow the corrosion process. Similar experiments can be done using stainless steel, only here the currents will rapidly decrease as the metal passivates and forms its protective skin. Scratch that skin and the current will shoot up again.
v) Make up a solution with small amounts of copper, iron and zinc salts in it, in dilute acid. Using a 25 mV per sec. voltage ramp from the function generator connected to the potentiostat observe the current traced out. It should show three distinct plateaus corresponding to the three metals in solution and this principle forms the basis of polarographic analysis, each metal plating out as the potential becomes more negative.

The foregoing experiments are intended only as a guide to show some of the wide range that can be tackled with the equipment whose construction will be described in detail in later issues. These being scientific instruments, it follows that there is a wide range of textbooks in which electrochemistry is explained and discussed and ideas for experiments are suggested. A list of these books will be supplied by the author on request. It must be confessed that it is mainly with schools and colleges in mind that the present series has been launched, and the authors of the various articles will be happy to help interested readers in every possible way, whether in the construction of their instruments or in using them once they are built. Where possible, queries will be referred to the nearest known scientist working in the field to the address of the questioner. Happy experimenting!

PART ONE...

David Shortland

THE PE Teletext system, which has been designed around the Mullard set of dedicated LSI chips, enables a TV set to decode and display the magazine information services transmitted by both the BBC and ITV networks (Ceefax, Orbit and Oracle).

The teletext information is transmitted in digital form along with the normal television signal using the spare lines in the field blanking interval which is usually of 25 lines duration. Some of these lines are used for test and signalling purposes and although any of them can be used for teletext transmissions, only lines $17(330)$ and 18(331) are used at present.

To reduce setting up and alignment problems the decoder board is available fully aligned and tested. The video summer board which has been designed by Mullards enables an excellent teletext display to be obtained via the aerial socket of a TV.

BLOMRDIADRAM

A block diagram of the system is shown in Fig. 1.1. The aerial signal is fed to the tuner board where the video and audio information is extracted. The audio signal is then taken direct to the video summer board. The tuner board is also used for remote control channel changing. If a channel change key is pressed on the infra-red transmitter then a four-bit binary signal is sent to the tuner from the receiver to operate the changeover.

The video signal is fed to the decoder board where the teletext information is retrieved and then checked for errors. The decoder board also generates all the timng signals for the teletext display. After checking, the information is stored in two $1 K \times 4$ static RAMs ready to be displayed. When enabled the RAM outputs are converted by a character generator into a dot matrix pattern. The matrix is in a 7×5 dot form for each character but as the character generator also has a character rounding facility to improve character definition, this effectively increases the matrix to 14×10 dots. The outputs from the decoder board are then taken via an interface daughter board to the video summer board where the colour burst and audio signals are added to the

Fig. 1.1. Block diagram of the PE Teletext system
composite video signal which is then sent via a UHF modulator to the TV.
The system is connected to the TV via its aerial socket and in order to receive a good teletext display the aerial must be capable of delivering a strong signal to the set. If there are any problems with the reception then the teletext display information will be corrupted with random data and if the corruption is very bad then no text at all will be displayed.

When the system is first switched on or the reset button pressed BBC1 is automatically selected. Either of the other two channels can be chosen by pressing the appropriate button. The channel change buttons on the remote control are dual function: in the teletext mode they are the page selection numbers 1, 2, 3, etc.

REMOTE CONTROL FUNCTIONS

When the teletext mode is first selected after switch on, page 100 is automatically selected. Any other page in the magazine can be selected by pressing the appropriate page selection numbers (0 to 9) in turn. As each digit is entered the page number is built up in the left-hand corner of the screen. When the final digit, of the three digit number, has been entered the page header turns green lall except the left-hand page number) and the green page number in the header will "rotate" showing each page number as it is transmitted. When the selected page is transmitted the page number stops rotating and after the page has been captured the header reverts to white and the page is displayed.

HOLD

Some of the pages in the system contain more information than can be displayed on the screen at one time. To overcome this they are divided into a number of sub-pages and a different page is transmitted during each sweep of the system. As each sub-page is sent it is automatically displayed. The particular page in the series being shown is displayed in the right-hand corner of the screen, below the time (e.g. $1 / 4,2 / 4$, etc, etc). The hold key facility enables any rotating page to be held indefinitely. After pressing the hold key the word hold will appear in the top-right hand corner of the screen in place of the 24 hr clock. The hold command can be cancelled by pressing the text button.

TIME

If the time button is pressed when the television picture is being viewed the 24 hr clock will be inset in the video picture. The clock will disappear after 5 seconds.

TEXT

The text command switches the system into the teletext mode and page 100 (the index) of either Ceefax or Oracle is

Screen displays (Ceefax system).

Screen displays (Ceefax system)
displayed depending on which channel was selected before the text button was pressed. This does not apply to BBC2 as the Orbit index is on page 200.

TOP, BOTTOM AND NORMAL

When in the teletext mode the top and bottom buttons select the double height characters and displays one half of the page for easier viewing at a distance. The normal button changes the display back to a full page. If a new page is selected whilst the double height characters are being used the top half of the new page will appear irrespective of which half page was previously selected.

REVEAL

Pages in the system which have parts of their display concealed (i.e. quiz pages) can have these parts displayed by pressing the reveal button.

PICTURE

To switch the system back to the television picture when it is in the teletext mode, press the picture mode.

TIMED TEXT

The timed text button enables any single page in the system to be stored for viewing at a pre-determined time. To use the timed text mode, switch the system into text and select the teletext page to be stored, then press timed text. This will replace the 24 hr clock with the letter ' T ' followed by a flashing 00.00 display. The page selection buttons can then be used to set the time the page is to be viewed (e.g. for 8.35 pm press 2035). When this has been completed press the cancel button to return the system to the picture. When the pre-determined time is reached the page number appears in the top left-hand corner of the screen. The page can be viewed by pressing the text button. The time code
can be cleared from the decoder by pressing the cancel time text key.

STATUS

The television channel being viewed can be identified at any time by pressing the status button. The channel is displayed in the left-hand corner of the screen for 5 seconds.

RESET

The reset button puts the system into the television mode and cancels all previous teletext commands.

MIX

The mix button will inset the page header into the television picture.

NEWSFLASH

If the new page is a newsflash or subtitle page then the system automatically switches back to the television video and the newsflash or subtitle information is inset into the picture. Switching back from a newsflash or subtitle page automatically turns the video off.

REMOTE CONTROL TRANSMITTER

The infra-red remote control unit which is used to control all the teletext functions is based on time-ratio discrimination and does not require any accurate timing components. The circuit diagram of the transmitter unit which is shown in Fig. 1.2 has been designed around the SAA5000 LSI chip and can transmit up to 32 commands.

To protect the system against interference of reflections the data is encoded as shown in Fig. 1.3. When a command is entered on the keypad a short pseudo-random sequence is transmitted followed by a 24-bit data stream which comprises a 7 -bit start code and a 5 -bit message. This 12-bit

E0370

E0303

Fig. 1.2. Circuit diagram of the Transmitter unit
sequence is then inverted and transmitted again. When a key is pressed the whole data stream is automatically transmitted so the user does not have to keep the key depressed for any specific period of time. The receiver will not respond until the whole 24 -bits have been received and checked.

The transmitter automatically 'powers up' when a key is pressed and will revert to standby when the transmission is completed. The push buttons are connected to 12 pins of IC1 with pins 10 to 15 being held high. When a button is pressed a high is conriected to one of the input pins (4 to 9). These pins are connected to ground via resistors R1 to R6 which are pull-down resistors used to determine the input sensitivity of the chip. As the circuit 'powers up' an on chip oscillator produces a 24-bit data stream at pin 16. The oscillator is timed via resistor R7 and capacitor C1 with its frequency being used to determine the output data bit rate. The output signal is fed to TR1 which provides the base current to operate TR2. The resistor R13 defines the current for the epitaxial gallium arsenide l.e.d.s which when forward biased emit radiation in the near infra-red region. As high currents are used in the transmitter (approx 4 amps), which is supplied by C3, great care should be taken not to touch the pins of IC1 when the transmitter is being operated. This is because the time duration of the current pulses through the output diode can be greatly increased resulting in the diodes being permanently damaged.

56870

Fig. 1.3. Encoding system for the transmitter data

CONSTRUCTION

The transmitter circuit is mounted on a double-sided p.c.b. which is shown in Fig. 1.4. Before any components are mounted on the board all the through board links, shown in Fig. 1.5. by the square pads, should be soldered using tinned copper wire. After soldering, check all the links for continuity with a multimeter. The components are mounted on one side of the board and the switches on the other. The pushbutton switches can be soldered next and as they can only be mounted one way round, carefully check the orientation before soldering. With the switches soldered, turn the board over and mount the components. Make sure the components are mounted as close as possible to the p.c.b. especially the transistor TR2. An i.c. socket should be used for IC1.

The two infra-red diodes are fitted into the end of the case using l.e.d. holders. The wiring for the diodes is shown in Fig. 1.6 along with the p.c.b. mounting details.

The p.c.b. should be mounted into the case before the i.c. is inserted. The case should be drilled to allow the 23 pushbutton switches to pass through. The p.c.b. should be mounted using 6BA counter sunk screws and the board spaced away from the case using either 6BA nuts or a spacer. When the board has been fitted into position check that each key operates correctly without fouling the case.

The keys can be annotated using rub-on transfers either on the key tops or on the case. If they are put on the keys then clear varnish should be used to protect them from wear. The battery can be held in place using double-sided tape.

RECEIVERCIRCUIT

The receiver circuit shown in Fig. 1.7 detects the infra-red signals from the transmitter via the photo-diode D5. A gyrator circuit designed around TR3 improves the rejection

COMPONENTS . . .

TRANSMITTER BOARD

Resistors	
R1-R6	6 M 8 (6 off)
R7	220 k
R8,R10	$10 \mathrm{k}(2$ off)
R9	470
R11	47
R12	22
R13	$1 \Omega 52.5 \mathrm{~W}$

All resistors $\frac{1}{4} \mathrm{~W} 10 \%$ except where otherwise stated

RECEIVER BOARD

Resistors	
R14,R15,R20	$1 \mathrm{M}(3$ off)
R16	330 k
R17, R23	$10 \mathrm{k}(2$ off)
R18	47 k
R19	8 k 2
R21	470 k
R22	4 k 7
R24	27 k
All resistors $\frac{1}{4} \mathrm{~W}$	10\% carbon

Capacitors	
C 1	180 p
C 2	1 n 8
C 3	330μ 10V elect.

Semiconductors	
D1	BZV46 C2VO
D2	BAW62
D3,D4	CQY89 (2 off)
TR1	BC328
TR2	BD433
IC1	SAA5000

Miscellaneous
 PP3 battery

Battery connector
Holders for l.e.d.s (2 off)
Case pac-tec type HP
P.c.b.

Switches (23 off)
Holder for i.c.

Capacitors	
C4	$1 n$
C5	$470 n$
C6	$2 \mu 2$ 10V elect.
C7	$22 n$
C8	$68 \mu 10 \mathrm{~V}$ elect.
C9	$27 p$
Semiconductors	
D5	BPW34
D6,D7	BAW 62 (2 off)
TR3,TR4	BC159 (2 off)
TR5	BC148
TR6	BC149
IC2	SAA $5012 A$

Miscellaneous
P.c.b.

Holder for i.c.
*See Fig. 1.7.

Constructor's Note

A complete kit of parts or individual boards for the PE Teletext system will be available from A. Marshall's ILondon) Ltd., Kingsgate House, Kingsgate Place, London NW6 4TA. The main decoder board, which is mounted on a double-sided p.c.b. with plated-through holes, will be supplied ready bult, tested and aligned. The board is not suitable for home construction and its design will nọt be published.
of low frequencies whilst allowing the maximum response to the narrow transmitted pulses. The output from the diode (D5) is a.c. coupled to the voltage amplifier of TR4 and TR5. The response of the amplifier which is controlled by C6 and the feedback capacitance of TR5's collector has been designed to cut off low and high frequency interference. The high frequency cut off also improves the stability of the amplifier. The output of the amplifier is a.c. coupled via D6 and D7 to the base of TR6. The diodes D6 and D7 eliminate any noise which is generated in D5.

The 24-bit message code is applied to pin 22 of IC2 where it is decoded and checked for errors. The DATA output (pin 5) pin of IC2 provides a 7-bit output, 5 bits of which are identical to the input message code and the other two bits control the mode of the system (i.e. TV or teletext). The DLIM output of the chip (pin 7) is clocking pulse which is used to clock the output dated from IC2. The internal functions of the circuit are controlled by an oscillator which is timed by the resistor and capacitor connected to pins 18 and
19. The 4-bit outputs from the chip (pins 2,3,8 and 21) are used to select the TV channel to be viewed.

Fig. 1.6. Wiring diagram for the infra-red diodes (D3 and D4) and the mounting details for the p.c.b.

Fig. 1.4. Double-sided p.c.b. design for the Transmitter

Fig. 1.5. Component layout for the transmitter board which also shows the through board links (square pads)

Fig. 1.7. Circuit diagram of the Receiver unit. The range of the transmitter can be increased by fitting a plastic lens in front of D5

Fig. 1.8. Receiver p.c.b. design

Fig. 1.9. Component layout

RECEIVER CIRCUIT

The receiver circuit is mounted on the p.c.b. shown in Fig. 1.8. All the components, except for the photo-diode D5, should be mounted on the board as shown in Fig. 1.9. A holder should be used for IC2 and after all the components have been soldered into position the p.c.b. can be turned
over and the diode D5 soldered onto the track side of the board taking care that it is correctly orientated.

The inter wiring for the receiver board and the complete system will be covered after the construction of the rest of the boards.
NEXT MONTH: CONSTRUCTION CONTINUED

200 Mullard ceramic capacitors with drawer $\mathbf{£ 6 . 5 0}$ including VAT p. \& p.

130 Siemens layer capacitors with two drawers $\mathbf{£ 1 3 . 5 0}$ including VAT p. $\mathbf{\&}_{\mathbf{1}}$ p.

We have arranged that these special offer packs are available to PE readers from Marshalls. The packs represent excellent value for money, the ceramics are normally sold by Marshalls at $6 p$ each and the Siemens layer type at $7 p$ to $36 p$ each (depending on value).

PACK 1. 200 Mullard 63 V d.c. working minature ceramic plate capacitors, 0.1 inch lead spacing.

Tolerance-1-10pf $\pm 0.25 \mathrm{pF}$
$22-330 \mathrm{pf} \pm 2 \%$
$470 \mathrm{p}-1 \mathrm{n} \pm 5 \%$
$2 \mathrm{n} 2-10 \mathrm{n} 10 \%$

The pack contains 10 each of the following values: $1 p$, $2 \mathrm{p} 2,3 \mathrm{p} 3,4 \mathrm{p} 7,6 \mathrm{p} 8,10 \mathrm{p}, 22 \mathrm{p}, 33 \mathrm{p}, 47 \mathrm{p}, 68 \mathrm{p}, 100 \mathrm{p}, 220 \mathrm{p}$, 330p, 470p, 680p, $1 \mathrm{n}, 2 \mathrm{n} 2,3 \mathrm{n} 3,4 \mathrm{n} 7,10 \mathrm{n}$.

PACK 2. 130 Siemens self-healing layer capacitors with polyester dielectric, 7 mm pin spacing except 1 u which is 10 mm .

Tolerance $\pm 10 \%$
250 V or 400 V up to $100 \mathrm{n}, 100 \mathrm{~V} 220 \mathrm{n}$ to 1 u .
The pack contains 10 of each of the following values: 1 n , $2 n 2,4 n 7,6 n 8,10 n, 22 n, 47 n, 68 n, 100 n, 220 n, 470 n$, $680 \mathrm{n}, 1$ u.

To: Marshall's (PE Capacitor Offer), Kingsgate House, Kingsgate Place, London NW6 4AT. Tel. 01 6240805.

Appearing every two months, Micro-8us presente ideas, adplicatinns, and programe for the most popular microprocessora; ones that you are unlikely in find in the manufocturera' date books. The most original ideas often come trum readere warking on thrii own syetoms, and peymant will be mado for any contribution featurad.

THE five topics in this month's Micro-Bus are all totally unrelated, and include an automatic Morse-code generator, a game for the ZX80, and a program to multiply enormous numbers together.

MORSE-CODE GENERATOR

The following program was developed on an Mk14 microcomputer by Andrew Chadwick of Hull to produce Morse code as a teaching aid for a Scout troop. The program has other uses, such as the automatic generation of call signs and test sequences, and can easily be modified to generate Morse code from characters as they are typed in at a keyboard. The message to be transmitted is simply set up in memory and, using a look-up table, the program translates the message into Morse-code format and transmits it via the flag outputs of the microprocessor. The message is written using the simple code of 1 for A, 2 for B, etc., as shown in Fig. 1. A blank (39) must be inserted between each word, and the message must finish with the end-of-message character 37. A simple

CHARACTER	$\begin{aligned} & \text { HEX } \\ & \text { CODE } \end{aligned}$	MORSE CODE
A	1	- -
B	2	-..
C	3	-. -
D	4	-. \cdot
E	5	-
F	6	. -
G	7	--.
H	8	...
1	9	-
J	10	---
K	11	--
L	12	- -
M	13	--
N	14	-.
0	15	--
P	16	.--.
0	17	--. -
R	18	-.
S	19	\cdots
T	20	-
U	21	\cdots
v	22	. . . -
w	23	---
X	24	- - -
Y	25	
Z	26	

CHARACTER	$\begin{aligned} & \text { HEX } \\ & \text { CODE } \end{aligned}$	MORSE CODE
0	27	-----
1	28	----
2	29	..---
3	30	, . . -
4	31
5	32
6	33	- \cdot. \cdot
7	34	--. .
8	35	---.
9	36	----
End of message	37	.-. -.
Erase/Error	38	
Blank	39	(dot)
Long space	40	(2 dash)

Fig. 1. List of characters with their Morse codes, and the hexadecimal codes used by the program in Fig. 4.
modification would enable the program to generate Morse code from a message written in ASCII.

The output can be fed directly to a highimpedance speaker by connecting the speaker between flag 0 or 1 , and ground. Alternatively

[60367]

Fig. 2. Interface circuit to enable the Mk14 to drive the auxiliary input of a tape recorder.
the output can feed a tape recorder via the simple interface shown in Fig. 2, which reduces the output to about 400 mV peak to peak, suitable for an auxiliary input.

MORSE CODE

The Morse code for the letters and numbers consists of a series of up to five dots and/or dashes, and the program uses a look-up table to convert the character to be transmitted into a single byte which specifies the Morse code; see Fig. 3. The three low-order bits of this byte, DO to D2, indicate how many dots or dashes there are in the Morse code for the character, and whether or not they will be sounded. Values of one to five imply one to five dots and dashes which will all be sounded, whereas six and seven imply one and two dots/dashes respectively which will not be sounded. This format enables spaces to be treated in a similar way to characfers.

The upper five bits in the byte, D4 to D7, give the Morse code itself, a one representing a dash and a zero representing a-dot. D4 corresponds to the first dot or dash.

MORSE PROGRAM

The program, shown in Fig. 4, takes up the whole of the MkI4's standard 256 bytes of RAM. It is divided into three sections: a lookup table from OF1B to OF43 containing the Morse-code bytes for the various characters, the main program from OF44 to OFC2, and a subroutine from OFC3 to OFF6. The subroutine generates either a tone or a space of length equivalent to either a dot or a dash. Which of these possible outputs is produced is determined by the two variables DDF (Dot/Dash Flag) and MSSF (Master Sound/Silence Flag) which are set up by the main program before the subroutine is called. Setting DDF to 0 gives an output of dot length whereas 1 gives an output of dash length.

CHARACTER	MORSE CODE	FORMAT IN LOOK-UP TABLE Binary	Hexadecimal

Fig. 3. Examples showing how the Morse codes for the characters are stored within one byte.

Setting MSSF to 0 gives no output, whereas 1 indicates that a tone is to be produced.

PROGRAM OPERATION

Before execution of the program the speed of transmission, in words per minute, is set as

Morse-code byte, and transmits it a dot or a dash at a time by giving the two variables DDF and MSSF the necessary values, and then calling the subroutine. A dash has three times the length of a dot, and the space between each dot and dash is the same length as

		1	MORSE-CODE GENERATOR		
	OEOO	mess	-	OECO	JMESSAGE AREA
	OFOO	RAM	-	OFOO	,RAM
	OFC2	SUBR	-	OFC2	
	0017	MON	-	$001 F$, MONITOR
		;			
0000			. $=$ orlb		; CODe tables:
OF18			. byte	012.00C,	,008,001,024
OF21			, byte	028,004.	,074,028,014
OF27			. ByTE	01A,00A,	,034,05c,013
OF2D			. BYTE	003,009,	,044,033,046
OF33			. byte	06c,01C.	,op5,085,OC5
OF39			. Byte	085,005,	,010,030,070
OF 35			. BYTE	055.005.	,01F,000
OF4 4	Cloe	ENTRY:	LOI	H (mess)	tP1 M MESSAGE
0 F 46	35		XPAH	1	
OF47	C400		LDI	L (MESS)	
$0 \cdot 49$	31		XPAL	1	
OF4A	Csof		LDI	H(RAM)	\% P2 $=$ RAM
OFAC	36		хРА	2	
OF40	c400		LDI	L(RAM)	
OP45	32		xpal	2	
OF50	C40F		LDI	H (SUBR)	,P3 = SUBROUTINE
OFS2	37		XPa,	3	
OF53	C4C2		LDI	L (SUBR)	
OF55	33		XPAL		
OF56	C400		LDI	x^{\prime} ¢	binitialize milc
OP58	CAl3		ST	MILC(2)	- AND E To
orsa	01		xaE		, zero.
OF58	AR13	ADD:	ILD	MILC (2)	;ADD SPEED
Of5D	c212		LD	WPM (2)	, SPECIFIED IN
OrF5	02		CCL		; WPM TO E
0 F 60	70		ADE		1 until carry
OF61	01		xae		generated.
OF62	06		CSA		
OF63	$94 F 6$		JP	ADD	,MILC= $256 /$ WPM
OF65	c501	GETL:	LD	al (1)	;GET LETTER
OF67	D4FO		ANI	x^{\prime} FO	fCONUERT FROM
OF69	${ }^{02}$		CCL		3 basE 10 TO
OF6A	1 c		SR		3 baSE 16.
OF6B	O1		xaE		
OF6C	10		LDE		
OF6D	1 C		SR		
OF6E	1 c		SR		
OF6E	70		ADE		
OF70	01		xaE		
OF71	CIFF		LD	-1(1)	
of73	D60\%		ANI	x ' OF	
OF75	70		ADE		
OF76	F41A		ADI	T015P	JADD LOOK-UP
OF78	01		XAE		- table disp.
OF79	C280		LD	-128(2)	, GET CODE FROM
OF78	cals		ST	CODE (2)	3 table s save.
OF70	D407		ANI	$\times 107$; REMOVE CODE
OF7F	cal6		ST	DDC (2)	JSTORE NO, DOTS
OF81	03		SCL		3 OR DASHES.
OF 82	FCO6		car	x '06	1SEE IF SOUND
OF84	9406		JP	SDDC	3 OR SILENCE.
OF86	C401		LDI	x'01	,SET MSSF=1
OFs8	CAl4		ST	MSSF (2)	FOR SOUND.
orsa	9009		JMP	ROT	
OF8C	02	SDDC:	CCL		, SILENCE:
00^{80}	F401		ADI	x '01	ןSET DDC
OFBF	CA16		ST	DDC (2)	1 Correctly.
OF91	C400		LDI	$x \cdot \infty$, SET MSSF=0
0 F 93	CAl4		ST	MSSF (2)	1 FOR SILENCE.
OF95	c215	ROT :	LD	CODE (2)	, GET CODE
OF97	1 E		RR		, GET FIRST DOT
OF98	1 E		RR		; or dasa into
OF99	CA15		ST	CODE (2)	, LOW BIT + 1
OF9B	c215	SIG:	20	CODE (2)	, GET DOT/DASH
OF9D	${ }^{15}$		RR		- into low bit
OF9E	Cals		ST	CODE (2)	

ofao	D401		ANI	$\mathrm{x}^{\prime} 01$,TEST LOW Bit
ofat	CA17		ST	DDF (2)	, SET DDF
ofat	c214		LD	MSSF (2)	,SET SSSF FROM
ofab	Cal8		ST	SSSF(2)	; MSSF
Ofas	$3 F$		xPPC	3	, SEND FIRST . $/-$
ofas	C400		LDI	X ${ }^{\circ}$: SEND ONE DOT
OFA8	CA17		ST	DDF (2)	1 space.
OFAD	CAl 8		sT	SSSP(2)	
ofaf	3 F		XPPC	3	
orbo	BA16		DL.D	DDC (2)	ITEST FOR ANY
OPB2	9CE 7		JNZ	SIG	1 More
OPB4	3 F		XPPC	3	SEND ONE DASH
OFB5	3 F		xPPC		, space.
OFb6	C215		LD	CODE (2)	,TEST ff Just
OFB8	E4MA		XRI	$\mathrm{X}^{\prime} \mathrm{AA}$	1 SENT END.
ofba	9Cas		JNZ	GETL	I NO-GET ANOTHER
orbc	C400		LDI	E (MON)	IJUMP BACK TO
OFBE	37		XPA	3	3 TO MONITOR.
Ofb	c4lf		LDI	L(MON)	
orcl	33		xpaL	3	
ofc2	3 F		XPPC	3	j RETURN.
] subroutine to		SEND DOT/DAS	
orcs	C217	Start:	Lo	- DDF (2)	jDOT OR DASH TO
orcs	9804		32	DOT] be Sent?
orc 7	C406		LDI	DALE	; DASH: GET THE
ofcs	9002		JMP	STLE	1 LENGTH.
OfCB	C402		LDI	DOLE	?DOT: GET LENGTH
OFCD	Cal9	STLE:	ST	OLD (2)	,STORE LENGTH
OFCF	C213	SILC:	LD	MILCL (2)	, SET TNHER COUNT
OFD 1	cala		ST	ILC (2)	; From master
OFD 3	C218	TSSF:	LD	SSSF (2)	JTEST FOR SOUND
0 ODS	980E		J^{2}	SIL	- OR SILENCE.
0 OD7	$\mathrm{C4O}^{3}$		Lol	${ }^{1} \cdot 03$, SOUND: Generate
0 FD9	07		CAS		- TONE ON PO.Fl
OFDA	C400		LDI	$x \cdot \infty$	
OFDC	8FO2		DLY	$\times 102$	
OFDE	C400		LDI	$x \cdot 00$	
OFEO	07		CAS		
OFE1	8 FO 2		DLY	$\times 102$	
OFE3	9004		Jmp	DILC	
OFES	C400	sIL:	LOI	='00	isllence, wait
OFE7	aFO4		DLY	$\mathrm{x}^{\prime} 04$	
OFE9	baia	DILC:	DLD	ILC(2)	ftest inner
OFEB	9CE6		JNz	TSSF	- COUNT.
OFED	ral9		DLD	ouc (2)	:TEST OUTER: IF
OPEF	9 CDE		3N2	SILC	; 2ERO STOP.
OFF1	C401		tDI	$x{ }^{\text {'OL }}$, SO SET OUTPUT
OFF 3	07		cas		3 TO MEAN
OFF4	$3 F$		XPPC	3	; RETURN
OFF5	90ce		JMP	start	f FOR RE-CALL
		,			
		\% Const	AnTS AND	RAM OFPSETS	
	0002	DOLE	-	2	, DOT LENGTH
	0006	dale	*	6	IDASM LENGTH
	0012	WPM	-	012	3 WORDS/MTNUTE
	0013	MILC	*	013	ITNNER LOOP COUNT
	0014	MSSF	-	014	; SOUND/SIIENCE
	0015	CODE	-	015	: Morse code
	0016	DDC	-	016	:DOT/DASH COUNT
	0017	DDF	-	017	jot/dash plag
	0018	SsSF	-	018	islave s/S flag
	0019	OLC	-	019	fouter loop count
	cola	ILC	-	014	, inner loop count
	OOIA	TDISP	-	O1A	fLOOK-UP TABLE
	0000		.END		

Fig. 4. Program for the Mk14 generates Morse code from a message stored in memory.
the first program feature in Micro-Bus to run on the Sinclair ZX80 BASIC-programmed microcomputer. It was devised by S. Murrell of Sunderland. The computer generates a random 4 -digit 'code' which the player must try and deduce in eight or less attempts. Each digit in the code can be from 1 to 6 , and each guess is entered as a string of four digits followed by a NEWLINE. The computer replies with a solid rectangle for each 'Bull', or correct digit in the correct position, and a shaded rectangle for each 'Cow', or correct digit in the wrong position. Each digit may only contribute towards one Bull or one Cow.

PROGRAM OPERATION

The program, shown in Fig. 5, works as follows. The computer first generates a code in the array $\mathbf{Z}(0)$ to $\mathbf{Z}(3)$. The guess string is then entered into G\$, and the program converts it into an array of four numbers in $G(0)$ to $G(3)$.

```
10 PRINT "MASTERMIND"
30 PRINT
30 PRINT "NO.OF YOUR MY"
```



```
60 PRINT
70 DIM \(Z(3)\)
80
DIM
X(3)
\begin{tabular}{l}
90 \\
90 \\
90 \\
DIM \(G(3)\) \\
\hline
\end{tabular}
100 FOR \(I=0\) TO 3
110 LET \(2(1)=R{ }^{3}\)
20 NEXT I
130 NEXT I
130 LET A=1
\(1: 0\) INPUT GS
150 PRINT A,
160 PRINT GS
170 LET B=0
BO FOR \(\mathrm{I}=0\) TO 3
200 LET G(I)-CODE(GS)-28
210 LET GS-TLSGS)
220 TF NOT X(I)
220 tF NOT X(I)-G
LeT \(X(1)=10\)
230 LET X(1)=10
\(240 \mathrm{LET} G(1)=11\)
250 LET G(I)=1
250 LET B \(\operatorname{CRE}+1\)
270 NEXT I
280 FOR \(J=0\) TO 3
290 FOR I=0 TO 3
300 IF NOT X(I)-G(J) THEN GO TO 340
\(30 \mathrm{LET} X(I)=10\)
320 LET G(J) \(=11\)
340 NEXT I
350 NEXT
350 NEXT 3
370 PRINT 1 BE 4 THEN GO TO 410
```



```
390 LET A-A+1
100 GO TO 140
10 PRINT
120 PRINT -yOU WIN... WELL DONE"
430 GO TO 460
450 PRINT "I WIN..THE NUMBER WAS " \(n 2(0): 2(1) ; 3(2) ; z(3)\)
460 PRINT
470 PRINT 480 PRINT \({ }^{4}\) HIT NEWLINE TO PLAY AGAIN"
180 PRINT
90 CLEAR
500 CLEAR
500 INPUT \(\$ ~\)
500 INPU
510 CLS
```

Fig. 5. Mastermind program for the 2X80; the task is to guess the computer's code.

The computer makes a copy of its code in $\mathbf{X}(0)$ to $\mathbf{X}(3)$, and compares this, element by element, with the guess array. If there is a match a Bull is scored, and a white block is printed. The matching numbers in X and G are converted to 10 and 11 respectively so that they will not be counted as Cows later on. Next, the number of Cows is obtained by comparing every element of the array X with every element of the array \mathbf{G}; for every match a shaded rectangle is printed, and again the elements are set to 10 and 11 so that they will not be counted again. Finally, if the score is four Bulls the code has been correctly guessed, and the human has won; otherwise the computer will declare a victory after the eighth attempt.

In the program listing of Fig. $5^{\text {(*) }}$ is used to
represent a solid rectangle, which is obtained on the ZX80 by typing SHIFT-W, and "+" represents a shaded rectangle, which is obtained by typing SHIFT-T.

64-DIGIT MULTIPLY

The following short program for the humble Mk 14 can multiply two numbers together to give a result of up to 64 digits, thus amply demonstrating the superiority of the microcomputer over the pocket calculator! The program, shown in Fig. 6, was written by Geoff Phillips who edits the Mk 14 Users

Fig. 6. Program for an Mk14 will multiply two numbers together to give an answer of up to 64 digits.

Group magazine 'Complement and Add' where the program first appeared.

The two numbers to be multiplied are stored in BCD format, two decimal digits per byte; the first number may be up to 30 decimal digits long, and the second up to 32 decimal digits long. The result is produced as a

BCD number of up to 64 digits. The program is surprisingly short, yet takes only two seconds, on average, to perform the calculation.

The numbers should be entered into memory as follows:

OBOO Highest digits of first operand
OBOF Lowest digits of first operand
OB 10 Highest digits of second operand
OBIF Lowest digits of second operand
The program should then be executed from OF12, and the answer will be put into memory as follows:

OB20 Highest digits of answer
OB3F Lowest digits of answer.

INVERTED CHARACTERS ON VDU

The Mk14 VDU interface can be adapted to display reverse-video characters (black character on white background) mixed in with normal characters (white character on black background) with the addition of the simple circuit shown in Fig. 7. The circuit was sub-

[60 361

Fig. 7. Circuit to enable an Mk14 VDU to display characters in inverse video.
mitted by Anthony D. Love of Swansea, and is designed so that the state of bit 6 of the character determines how the character is displayed. If the bit is zero, the character is displayed in reverse video: otherwise it is displayed normally. Thus, for example, $\mathrm{X}^{\prime} 41$ will give an A displayed normally, and $X^{\prime} 01$ will give a reversed \mathbf{A}.

CIRCUIT OPERATION

The circuit checks that the byte presented on the data bus is in fact for display by checking that the tri-state address-line buffers are enabled; i.e. that pin 1 of IC9 or IC 10 is low. The graphics/characters input is also checked to ensure that the VDU is in character mode and, if not, sets the invert-video input high to prevent the circuit from interfering with the graphics.

The necessary logic is contained in a 74LS32 Quad 2-input OR gate package, which should be situated as close as possible to the VDU board. All the unused inputs are connected through a Ik resistor to the positive supply rail.

DIGITAL ALARM-CLOCK

The following program will make an Acorn (System One) function as an alarm clock. The time is displayed as 'hours-minutes-seconds' on the 7 -segment displays, and at the set alarm time A's replace the dashes on the displays and the output line PBO oscillates at 0.5 Hz so that a buzzer or relay can be operated; the normal display is resumed after one minute. The program, shown as a hex dump in Fig. 8, was submitted by Peter Mayne, whose 'Data Find Routine' was featured in the last Micro-Bus.

Fig. 8. Hex dump of a digital alarmclock program for the 6502-based Acorn microcomputer.

To set up the clock execute the program from 0200 . You should then enter the correct time as a sequence of six digits; for example, at 7.30 and 20 seconds enter '073020'. Then enter the alarm time as a sequence of four digits; for example, if the required time is 7.31 enter '0731'. Finally type any control key to start the clock. The speed at which the clock runs is controlled by the value at 0240; since the Acorn runs from a 1 MHz crystal the clock can be extremely accurate.

ADDENDUM

The following modifications to the 'LowCost SC/MP System' which appeared in the April Micro-Bus are recommended by the author, Andrew Ailken.

6636

Fig. 9. Modification to the 'Low Cost SC/MP System' in the April Micro-Bus.

In the main circuit of Fig. 3 the $\overline{\mathbf{C E}}$ signal to the RAMs should be gated with a signal which is high when NRDS or NWDS is active to prevent a conflict on the databus; see Fig. 9.

In the hex keyboard circuit of Fig. 4 the D input of the 7474 latch should be connected to the Q output, not to the \bar{Q} output as shown, so that the flip/flop will toggle correctly.

FOR THE YEAR 2000

The year 2000 is the present target date for the Satellite Power System. Already some five years of intensive research has shown that there are many facets to the ultimate success, some with spin-off and some showing a whole new field of technology. In this issue of Spacewarch a general outline of what is to be the main approach to the utilisation of Solar Energy by the United States will be reviewed. This will show not only the magnitude of the concept but also the attention to the environment and the philosophy of living in the next century. It can be seen perhaps that the thinking is not only world wide in its operation but initiates the practical possibilities and benefits for mankind.

In this project is embodied the basic dreams for a future in which man turns technology toward the concept for "The resources of the Earth for the benefit of the people of the Earth" and leads that benefit toward every man, woman and child that lives and will continue to live on Planet Earth.

THE SYSTEM

The basic principle is the collection of the energy of the Sun and its conversion into electromagnetic waves transmitted to an aerial system on Earth where it is converted to a form suitable for the existing power lines. This, the Satellite Power System, is one of the possibilities of the tapping of the power of the Sun.

THE SATELLITE

This would take the form of a flat structure 10 km long and 5 km wide, and to this will be attached a high power beam antenna 1 km in diameter. To it would be assembled the d.c. r.f. power amplifiers and waveguides.

At the Earth end there will be the collecting antenna, which, because it rectifies the microwave beam from the satellite, is given the name of rectenna. This will be 13.2 km by

10 km at a location of 35° latitude. Other locations nearer the equator could be of different design.

The frequency of operation will be 2.45 GHz . This frequency is chosen because it has been established that at a power of $23 \mathrm{~mW} / \mathrm{cm}^{2}$ it will have negligible effect on the environment and human as well as animal life.

The satellite would be put first into a low earth orbit (LEO), then later raised to the geostationary orbit (GEO).

The first impact of the magnitude of the items in the satellite and the physical extent involved, leads to some queries. It is perhaps easier to accept the receiving antenna dimensions on the ground and be less concerned with any hazards that might be involved. Each situation needs some answers. In order to get the psychological aspect in perspective and relieve anxieties of misunderstanding, the fears will be answered in advance.

The question that first arises is the safety of such large units even at the distances from the Earth when geostationary orbits are considered. Questions like: will it be stable? Can it de-orbit like Skylab? Is it likely to be a danger to people on the ground? The answer is that the density of the atmosphere at the geostationary orbit level is very low and generally satellites are considered to have a very long lifetime; indeed theoretically an indefinite lifetime. The construction of the SPS satellite is however rather different from the usual type of satellite. It will have a much smaller mass to area ratio than previous satellites and would be more subject to atmospheric drag.

The SPS satellite has been designed for a 30 year life and the orbital decay would lie between 0.25 and 2,500 metres. That is less than one part in ten thousand in the worst condition. The other associated components such as the work platforms, the normal construction facilities, the personnel and their vehicles would be less influenced since these would have higher mass to area ratios. There will be perturbations from solar radiation and from lunar and solar gravity effects. Also there are the variations like the ellipticity of the Earth. These effects would be slightly larger than the atmospheric drag but it would be a normal part of station-keeping to correct such conditions.

NO HAZARD?

Perhaps the short answer is that there is no reason to suppose that there would be any increased hazard to these large assemblies and little likelihood of danger situations. The units can be large because gravity is small.

Another question that might be raised is: How vulnerable will the units be to random events like meteor showers? This is not very likely. The large scale is such that built-in redundancy would take care of this. It must however be said that overt action military or otherwise could do damage, but when examined this is unlikely except in case of deliberate hostilities. This aspect will be considered later.

Another question might be: What is the possible danger from terrorism or the activities of rivals. The answer here is that when the system is fully operational there would be 60 satellites and a similar number of ground units
(rectenna and associated facilities). Here the very nature of the organisation is such that normal security would be of such a nature as to take care of such possibilities. Therefore, short of war, the possibility is remote, since a pilot beam first is needed to enable the system and give the instruction to the satellite to focus the beam on the rectenna. If the transmitting antenna is pointed away from the rectenna the beam will at once de-focus. In this case there would only appear a level of background which would preclude any damage from the antenna pointed to the Earth.

One of the areas where doom thinking has taken root is the question of damage to the ozone layer and the creation of a "Greenhouse Effect".

The answer to this can be positive. Most of the ozone is between 10 and 40 km in the Stratosphere. Intensive investigation of this area has continued over the past ten years. The effects from the effluents from SPS rocket launches is negligible. Above the 50 km level the ozone is less than 1 per cent of the peak value in the Stratosphere. However there is the possibility that over the 70 km level there may be an increase of ambient water concentrations. There are complex chemical mechanisms which control ozone at these levels, but is still not considered to be a hazard.

So far as the Greenhouse Effect is concerned, this is more difficult to deal with though there is no expectation that the situation would be aggravated by the advent of the satellites.

NEW NIGHT SKY

Some people are concerned about the aesthetic effects on the night sky. This has been considered carefully and the answer is that the satellites will be visible on clear nights. The actual brightness would be about 1/I000 of the light of the moon. In the night sky the satellites would be most noticeable at midnight and equivalent to the light of Venus. Binoculars with a magnification of seven would show them as rectangular objects and not as points of light. It could be said that they will enhance the aesthetics because of the general appearance. There would be a contrast between the random stars of the constellations and they would present an apparent straight line of objects of equal brightness. They would appear to be separated by a distance of slightly less than that of the stars in Orion's belt.

At intervals of six months, the satellites would be eclipsed and would pass through the Earth's shadow at about midnight for a number of days in succession. This would be an occurrence similar to a lunar eclipse. The satellites would first dim and then redden when reaching the edges of the shadow then darken and appear a few minutes later.

Consideration of these matters is continuing and being constantly updated. The next issue of Spacewatch will contain more technical details of the design and the conversion systems from the microwave transmissions to the feeding of the power lines for general distribution. After this aspect then, the possible effects on the future of meteorological conditions will be noted with the ecological and resource effects.

IT'S AS BASY AS A,B,C...

A EXP 650 For microprocessor chips: $£ 3.60$
B EXP 300 The most widely sold breadboard in the UK; for the serious hobbyist. $£ 5.75$
C EXP $600.6^{\prime \prime}$ centre channel makes this the Microprocessor Breadboard. $£ 6.30$
D EXP 4B An extra 4 bus-bars in one unit. $£ 2.30$
E EXP 325 Built in bus-bars accepts $8,14,16$ and up to 22 pin ICS. $£ 1.60$
F EXP 350270 contact points, ideal for working with up to 3×14 pin DIPS. $£ 3.15$
G PB6 Professional breadboard in easily assembled kit form. $£ 9.20$ (Not illustrated.)
H PB 100 Kit form breadboard recommended for students and educational uses. $£ 11.80$ (Not illustrated.)

\& IT'S AS EASY AS 1,2,3 with THE EXPERIMENTOR SYSTEM	
	1. EXP 300 PC which includes one item. A matchboard
SCRATCHBOARD	
-BREADBOARD	
- MATCHBOARD	Exp 3 Ex which includes four items . Two marct biords and

The above prices do not include P\&P and 15% VAT
TOMORROW'S TOOLS TODAY

C.S.C. (UK) Limited, Dept. 500 Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Tel: Saffron Walden (0799) 21682 Telex: 817477

ADDRESS

1 enclose cheque/PO for $£$ \qquad or debit my Barclaycard, Access, American Express card			
No. \qquad Exp. date \qquad or Tel: (0799) 21682 with your eard number and your order will be in the post immediately.			
$\begin{aligned} & \text { A EXP } 650 \\ & \text { £5.00 } \end{aligned}$	Onty. Reqd.	$\begin{gathered} \text { B EXP } 300 \\ \text { C7.76 } \end{gathered}$	Onty. Read.
$\begin{aligned} & \text { C EXP } 600 \\ & \text { ¢8.39 } \end{aligned}$	Onty. Reqd.	$\begin{gathered} \mathrm{D} \text { EXP } 4 \mathrm{~B} \\ \mathrm{f3.50} \end{gathered}$	Onty. Read.
$\begin{gathered} \text { E EXP } 325 \\ \text { E } 2.70 \end{gathered}$	Onty. Reqd	$\begin{gathered} \text { F EXP } 350 \\ \text { E4. } 48 \end{gathered}$	Onty. Reqd.
$\begin{aligned} & \text { G PB6 } \\ & \text { £11.73 } \end{aligned}$	Onty. Reqd.	$\begin{aligned} & \text { H PB } 100 \\ & \text { f14.72 } \end{aligned}$	Onty. Read.
Experimentor System			
1 EXP 300 PC E2.38	'Onty. Reqd.	$\begin{gathered} 2 \text { EXP } 302 \\ \text { E2.79 } \end{gathered}$	Onty. Reqd.
$\begin{gathered} 3 \text { EXP } 303 \\ \text { E11.04 } \end{gathered}$	Qnty. Read.	$\begin{aligned} & 4 \text { EXP } 304 \\ & \text { f11.85 } \end{aligned}$	Onty. Reqd.
Boxed prices include P \& P and 15\% VAT If no dealer in your area contact CSC direct.			FREE catalogue tick box \square
Continental Specialties Corporation, (U.K.) Limited, Dept. 500.			
Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex. Tel: (0799) 21682			

...ASK OUR DEALERS.

35 High Bridge, Newcastle Upon Tyne, NE1 1EW. Tel: 063226729.
ARROW ELECTRONICS LTD.,
Leader House, Coptfold Road, Brentwood, Essex. Tel: 0277226470.
BASIC ELECTRONICS LTD.,
18 Epsom Road, Guildford, Surrey, GU1 3JN.
Tel: 048339984.
BI.PAK SEMICONDUCTORS,
P.O. Box 6, Ware, Herts.

Tel: 09203442.
F. BROWN \& CO.,

45 George IV Bridge, Edinburgh, EH1 1EJ, Scotland.
Tel: 031225 3461. Telex: 922131.
THE CHILDRENS SHOP \& TACKLE BOX.,
73-75 High Street, Ryde, Isle of Wight.
Tel: 098363437.
CUBEGATE LTD.,
301 Edgware Road, London, W2 1BN.
Tel: 017243565.
ETESON ELECTRONICS,
15b Lower Green, Poulton-Le-Fylde, Blackpool, FY6 7JL. Tel: 0253885107.

H. GEE ELECTRONIC SUPPLIES,

 94a Mill Road, Cambridge, CB1 2BD. Tel: 0223358019.LEEDS AMATEUR RADIO, 27 Cookridge Street, Leeds, LS2 3AG. Tel: 0532452657.
MARSHALLS,
108A Stokes Croft, Bristol. Tel: 0272426801.
85 West Regent Street, Glasgow, G2, Scotland. Tel: 0413324133.
325 Edgeware Road, London, W2. Tel: 017234242.
40 Cricklewood Broadway, London, NW2 3ET. Tel: 014520161.

RASTRA ELECTRONICS LTD.,

275-281 King Street, Hammersmith, London, W6. Tet: 017483143 . Telex: 24443 RASTRA G.

SHUDEHILL SUPPLY COMPANY,
53 Shudehill, Manchester, M4 4AW. Tel: 0618341449.
SPECTRON ELECTRONICS (M/C) LTD.,
7 Oldfield Road, Salford, M5 4NE.
Tel: 0618344583.
SWANLEY ELECTRONICS,
32 Goldsel Road, Swanley, Kent, BR8 $8 E Z$. Tel: 032264851.

TECHNOMATIC LTD.,

17 Burnley Road, London, NW10 1ED. Tel: 01452 1500. Telex: 922800.

TOMORROW'S TOOLS TODAY

Also ask your locat stockist.
If no'dealer in your area, contact CSC direct.

C.S.C. (UK) Limited, Dept. 500 Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex C811 3AQ. Tel: Saffron Walden (0799) 21682 Telex: 817477

Pulse induction detectors are another matter however; good ones are very sensitive indeed and some of the most expensive detectors currently available are these. They operate by exposing the gound to powerful pulses of magnetism and listening between the pulses for signals due to eddy currents set up in any metal objects present in the field. Despite their sensitivity they have a couple of important drawbacks. Their battery consumption is heavy due to the power required by the pulsed transmitter, and they are extremely sensitive to even tiny ferrous objects. Their use is thus primarily restricted to beach searching, where objects are likely to be buried at considerable depths, and where large holes can be easily and rapidly dug. On inland sites, their users can become discouraged by the frequent digging of large holes in hard ground to recover rusty nails, etc.

This leaves the induction balance types which have become more or less the standard general purpose detector for both serious treasure hunters and detecting hobbyists alike. It has two coils in its search head, one of which is fed with a signal which sets up an alternating field around it. The other coil is placed so that normally the field around it balances and it has no electrical output. A metal object approaching the coils will distort the field, resulting in an imbalance so the the pickup coil will produce an output. This can be amplified and used to inform the operator of a "find" in a variety of ways. Frequently in simple detectors an audio modulated transmitted signal is used, the output from the pickup coil then being amplified and demodulated like an AM radio signal. There are many possible coil arrangements, but most detectors available today use one of the two shown in Fig. 1. Fig. 1 (a) shows a "widescan" coil, so called because its most sensitive area (shaded) extends right across the coils Fig. 1(b) shows a "pinpoint" type, also known as a " 4 B ". In the author's experience the pinpoint is by far the better coil in use, as widescans have poor pinpointing ability and tend to give false signals for ferrous objects off centre, coins on edge and the like. It's noticeable that many of the best imported American machines use pinpoint coils.

DISCRIMINATION

All of this is fine, but there are a couple of extra refinements necessary in a really good metal detector. One of these is the ability to discriminate between unwanted junk such as silver paper, scraps of iron etc, and desired objects. The other is some means of eliminating false signals due to "ground effect". Ground capacitance effects can easily be prevented by Faraday shielding around the coils, but most inland soils contain a proportion of iron oxide which gives a signal similar to a piece of ferrite. Beaches wet with seawater on the other hand are slightly conductive, and this too causes false signals to be produced in the pickup coil. Obviously some means of "tuning out" these effects will improve the detector considerably.

Fig. 1 (left). 'Widescan' coil layout; (right) 'Pinpoint' coil layout

Fortunately the signals from the search coil consist of more than just amplitude variations; they also contain information in the form of phase shifts which differ markedly according to the type of object causing the signal. With a relatively simple phase sensitive detector therefore, a machine can be designed which will totally reject ground effects and can also, with practice on the part of the user, eliminate the majority of the rubbish detected without the necessity of having to dig it up!

NOMENCLATURE

Some of the terms used by manufacturers to describe their machines in recent years have been somewhat confusing so, before we proceed, a note on these may not be amiss. 'VLF' stands for "very low frequency". The ability to discriminate from phase information against thin section objects like foil depends on frequency. At higher frequencies, 'Skin effect' eddy current conduction makes such discrimination ineffective. Therefore manufacturers began using lower and lower frequencies, at least one machine actually worked at less than 2 kHz . This created problems of its own, as at such low frequencies sensitivity to cupro-nickel coins is not so good and " Q " problems arise in the coil design. Most detectors nowadays operate somewhere between 10 and 20 kHz , where discrimination is still excellent but sensitivity and coil design problems do not arise.
"GEB" means "ground exclusion balance" and refers to the phase sensitive means of excluding ground effect. "TR" means 'transmit-receive", and is often used to describe the discriminate mode, suggesting that the machines operate with different frequencies or coil configurations in the different modes-they don't; the only thing that is changed between modes is the phase reference point. It is not possible to avoid ground effect and discriminate at the same time, so one normally searches in GEB mode, and on finding an object, checks it with the discriminate mode before digging. Beer can pull rings can be rejected by the way, but machines capable of doing this will also reject any cupro-nickel coin smaller than a $10 p$ when set to do so. It is probably better to tolerate the rings-many charities now collect these anyway.

BLOCK

Fig, 2 (dotted) shows a schematic of the Magnum detector. The drive oscillator sets up a field around the search coil, and the pickup coil is positioned so that it only gives an electrical output when a metal object distorts this field. The operating frequency of these stages is approximately 15 kHz . Signals from the pickup coil are amplified, buffered and then inverted so that non-inverted and inverted versions of it are simultaneously available. These are fed to the two inputs of an electronic changeover switch, operated by a reference signal derived from the drive oscillator. This reference signal has first been passed through a phase shifting network which can be adjusted as required by the user. The output from the switch is passed through a 3rd order low-pass active filter with a cut-off point set at 40 Hz , which removes practically all of the 15 kHz signal, leaving only the average d.c. level.

Any given signal producing object causes changes in both magnitude and phase of the received signal, so by adjusting the phase shift network correctly a point can be found where these changes either cancel out or cause a net fall in the d.c. level, enabling unwanted signals from ground, foil, iron etc, to be eliminated. Incidentally, most similar designs to date have used either pulse sampling phase detectors, or have selected only half-cycles of the input signal. The use of the

inverter and changeover switch requires very few extra components and greatly improves the signal-to-noise ratio, ultimately resulting in more sensitivity.

After the filter, the d.c. signal is amplified. It is only changes in the signal that are of interest, so a means of "tuning out" the initial standing d.c. level is required. In simple machines this is a manual control, but the need for readjustment after each operation of the phase controls-say switching from "ground" to "discriminate"-makes some form of automatic tuning desirable. On most commercial machines a "tune" button resets the output to zero every time it is pressed, but these are notoriously prone to drift. Attempts to use continuously resetting systems have been made, but this tends to lower the overall sensitivity as most manufacturers use rather crude filtering, resulting in considerable delay in the response to a detected object. In effect the autotune tries to reset the output to zero at the same time as the detected object is trying to cause it to rise! The highly efficient filtering used in this design ensures an instant response to a signal, so a continously resetting tuning system can be used. This does away with all the drift problems, and allows the machine to be used continuously at maximum sensitivity if required. A "freeze" button is provided to stop the tuning action whilst pinpointing the exact position of finds or discriminating.

After the autotune and amplifier stage the signal is fed to a centre-zero meter; in "discriminate" this indicates positive for "good" finds and negative for "bad" ones. Then it goes to a further amplifier with a control which sets the point at which the audio output is to start. The output from this is of course still d.c., so it is chopped up by an audio oscillator, providing a signal which only needs a power output stage to drive the loudspeaker.

CIRCUIT

Fig. 2 shows the complete circuit of the machine. TR 1 and associated components form the drive oscillator, which provides a very pure 15 kHz sinewave output. IC1 buffers part of this signal and the circuitry around IC2 introduces the phase shift as required. In "ground" the available shift is about -10 to +40 degrees, whilst in "discriminate" and "beach" it is about 0 to -170 degrees. IC3 is a comparator; the 3130 was chosen for its high slew rate and good output drive signal for the CMOS switch IC6. TR2 is the received signal preamp and is connected as a common base amplifier. This and oscillator TR1 are both based on designs which have been used in several manufactured machines because they are simple and work well. The receive coil L2 is untuned; this, coupled with the low impedance input load of TR2 ensures the predictable phase response required for reliable discrimination. The output of TR2 is at high impedance so IC4 acts as a buffer, whilst IC5 is a unity gain inverter. IC6 is connected as a CMOS electronic changeover analogue signal switch. IC7 and IC8 together are the 3rd order low-phase active filter.

IC9 is a d.c. amplifier and also the auto-tune stage. The action of this is probably easier to understand if one first considers an ordinary op-amp inverting amplifier, as shown in Fig. 3. If the +input is at 0 volts, the -input must also be at 0 volts, so if a voltage is applied to the input resistor $R_{\text {in }}$ the output will change until it restores the 0 voits at the -input via R_{f}. Now consider the effect of placing a capacitor at point " x ". If the output is connected directly to the -input, it will go to 0 volts. If at the same time a voltage is applied to $\mathrm{R}_{\text {in }}$, the capacitor will acquire a charge. If the output is now disconnected from the -input it will remain at 0 volts because the capacitor will retain the charge necessary to

COMPONENTS

Resistors

R1, $4,5,7,8,19,20,29,35,38,46,48,-10 k$.
R2, 16, - 15 k
R3,-3k3
R6, 9, 21, 47, 4 k 7
R10,-3k9
R11, 49,50,-2k2
R12,-1k
R13, 17,30,-100k
R14,-180k
$R 15,28,32,34,43,-22 k$
R18,-2M2.
R22, 23, 44. -33 k
R24, 25-27k
R26, 27, -39 k
R31, 39, -1 M .
R33, 37,-220k
R36,-270k
R40,-47k
R41,-6R8
R42,-470k
R45,- 2 k 7 .

Potentiometers

VR1, 2,-47k log carbon.
VR3-1 M lin. carbon.
VR4, 100 k lin. carbon.
VR5,-10k log. with switch.
VR6.-10k preset, sub min horizontal.

Capacitors

C1, 10,-47n polyester
C2,-470n polyester
C3, 7, 9, 16, 18, 21,-10n polyester
C4, 5, 6,-1n polystyrene
C8, 12, 13, 14, 15,-100 n polyester
C11,-22p polystyrene
C17. -1μ polycarbonate
C19, $-4.7 \mu 63 \mathrm{~V}$ electrolytic
C20, 24, 25, 26-470 $\mu 16 \mathrm{~V}$ electrolytic
$\mathrm{C} 22,-470 \mu 25 \mathrm{~V}$ electrolytic
$\mathrm{C} 23,-10 \mu 25 \mathrm{~V}$ electrolytic

Diodes

D1 to 8,-1 1 N914.
D9-BZY88C 5V $6,5.6$ volt Zener.

Transistors

TR1, 4, 9,-BC214L
TR2, 5, 6, 8,-BC184L.
TR3-2N3819.
TR7-BFX29.

Integrated Circuits

IC1, 2, 5, 7, 8, 12, 13,-741 8-pin d.i.l.
IC3,-CA3130 8-pin d.i.I. or TO79.
IC4, 9, 10,-CA3140 8-pin d.i.I. or T079.
IC6,-4007UBE (CMOS).
IC11,-ICM7555-low power 555 timer 8-pin d.i.I.

Miscellaneous

S1, 4-pole 3-way rotary switch, S2, pushbutton, miniature, press to make, Meter, 100-0-100 microamp centre zero, LS1- $2 \frac{1}{2} \mathrm{in}$. 80 hm Loudspeaker, 12 off 8 -pin di.I. i.c. holders, 1 off 14 -pin d.i.l. i.c. holder, 5 -pin DIN plug and socket, Headphone socket, 3 PP3 battery clips, 32 and 36 SWG enamelled copper wire, 5A bare tinned copper fuse wire, 2 metres of 4 -core individually screened cable, Case, Vero type 75-1411-D, 6 control knobs, approx 25 mm skirt, Plus plastic plumbing components, "Melaware" plate, glassfibre repair kit etc. to make coil, stem and handie -see text.

Kits available from Maplin Electronic Supplies Ltd.
offset the input voltage. A change in the input voltage will now be reflected in a change in the ouput voltage, the gain being given by $R_{t} / R_{i n}$. In this way an amplifier can be constructed using only one op-amp which will offset large d.c. input voltages and yet provide high d.c. amplification of very small input voltage changes.

In the main circuit TR3 provides a means of connecting the output to the -input. The output is divided by R33 and R34 and fed through R31, so that the reset rate is relatively slow but continuous, as TR3 is normally conducting. If the tuning error is very large however, as it would be after switching on or operating the discriminating controls, D5 or D6 will conduct and greatly accelerate the tuning rate. D3 and D4 prevent the gate junction of TR3 from becoming forward biased at any time.

VR4 sets the threshold of IC10 and is normally adjusted to that it's output is at negative rail voltage. On receipt of a signal it rises towards positive. IC11 is a low-power 555 timer connected as an astable oscillator, giving very short (about 100 microsecond) negaative pulses at about 400 Hz . Thus TR5 is normally on and turns off only during these pulses so after R40 any output from IC10 is chopped into short positive going pulses. This is the ideal waveform to create lots of noise with an economic power consumption. The volume control in a design such as this is normally only required to limit the maximum noise level, so in this design VR5 and TR4 act as an adjustable clamp. In this way the sensitivity is not reduced if the volume has to be kept turned down. TR6 and TR7 are a complementary Darlington pair, their current gain enabling the signal to drive the loudspeaker or headphones.

SUPPLIES

Two separate power supplies are used in this machine. The bulk of the circuitry is supplied with 18 volts from two PP3 batteries in series, regulated by the circuit around IC12 and IC13. With so many op-amps its far easier to arrange the design around a centre-tapped supply, so the reference generated by the Zener is buffered by IC13. It is then doubled by IC12, TR8 and TR9, to give a regulated positive rail of twice the Zener voltage, nominally +11.2 volts. This arrangement has been used in preference to an integrated regulator since it will operate until the battery voltage has fallen to only 0.1 volt above the regulator output. Most integrated regulators require a differential of at least 2 volts, which in practice means that the batteries have to be replaced rather more frequently. The total power consumption of all this circuitry is about 20 mA , less than many radios at normal volume.

Power for the loudspeaker output stage comes from a separate 9 volt battery, as this is the simplest way of avoiding decoupling difficulties in this very sensitive circuit. An extra PP3 is far smaller than the decoupling capacitors which would otherwise be required! Only the one power supply switch is required as the output draws no current unless an input signal is present.

Fig. 3. Op-amp inverter

CONSTRUCTION

Construction is on two printed circuit boards and should be adhered to as this is a very sensitive circuit indeed; the result of any changes may well prove to be severe instability!

The two boards are stacked vertically in the final assembly resulting in a control box which is smaller and neater than many very expensive manufactured products.

The board containing the power supply, autotune and output should be built first as the power supply will be required for testing the "front end" board (Fig. 5).

ASSEMBLY DETAILS

Start construction by fitting the six links. The fit R45 to R48, C22 to C25, ZD 1, TR8, TR9, IC12 and IC13. Apply the 18 volt battery via a 100 mA meter and a 220 ohm series resistor, which will limit the current if any faults are present. It's as well to use this resistor throughout the testing of both boards. After a brief surge as the eletrolytics charge the current should settle to about 5 mA . Check that about 11 volts appears across C25, and about 5.5 volts across C24. This completes the power supply section.

Continue by fitting R40 and R41, C19 and C20, TR6 and TR7. Hook up the speaker, apply the 9 volt power supply via the 100 mA meter and a 100 ohm resistor, again in case a fault is present. After a brief surge the current drawn should drop to zero. A finger on R40 and the battery positive at the same time should cause a crackle and an indicated current flow. Fit R42 to R44, C21, TR5 and IC11. IC11 is the lowpower 555 timer; despite the manufacturers' notes to the contrary these are a little sensitive to handling so treat it with care and use a holder. I.c. holders are advisable throughout in fact; there is ample room for them. Apply both power supplies. A finger on 9 volts positive and on R40 should now produce the 400 Hz output tone, albeit possibly at rather low volume. After this the 100 R resistor can be left out of the 9 volt supply during testing, although the 220R in the 18 volt supply should be retained. Fit TR4 and hook up VR5. Apply power supplies, place fingers on R40 and 9 volts positive, and check that the volume can be controlled with VR5. This is one of those many jobs in electronics for which one requires three hands!

Fit R33, R34, R36 to R39, C18, and IC10. IC10 may be in

Fig. 4. Connections to controls and headphone jack socket. Other connections as marked on p.c.b. overlays

BOARD ASSEMBLIES

Power supply, autotune and output board

Front-end board in position

Fig. 5. Etching detail and board layout for power supply, autotune and output
either an 8-pin d.i.l. package, or the round metal T079 version. You can now hook up VR4 and apply power. It should be possible to turn the output tone on and off with VR4gradually, since the input of IC10 at this stage is effectively taken to the supply centre-tap via R33 and R34 which reduces its gain somewhat. If there is no output tone check that the volume isn't turned right down.

FINALTEST

Fit all the remaining components to this board. Hook up S2, VR3 and the meter. Short the input point to the battery centre-tap. Apply power; the meter-should return to zero within a couple of seconds due to the autotune action. Adjust VR4 to just below the tone threshold point. Touch the

18 volt battery positive with one hand, and, taking a 10 M resistor in the other, touch the top end of R29 via the resistor. This should produce a brief burst of tone and a positive jump on the meter, which will then return to zero. Repeat this procedure whilst pressing S2-the sound and meter deflection produced should then be continuous. Press the button, and touch either of the 18 volt battery leads and the bottom of C17. This should cause the meter to drive fully up or down, and its full scale deflection can then be adjusted with VR6.

Next month: details will be given of the remainder of the construction and using the detector.

First the EuroBreadBoard Now the EuroSolderBoard

Design on a EuroBreadBoard - Instal on a EuroSolderBoard
First the EuroBreadBoard
Will accept $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to .85 mm dia leads.
500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, low resistance ($<10 \mathrm{~m}$ ohms) nickel silver contacts
$£ 6.20$ each or $£ 11.70$ for 2 including 1 or 2 EuroSolderBoards FREE
Now the EuroSolderBoard
New 100 mm square, 1.6 mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm dia fixing holes.
£2.00 for set of three ESB's or FREE with every EuroBreadBoard)

And don't forget the EuroSolderSucker

Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pcb pads and track. Primed and released by thumb, it costs only £7. 25 including VAT \& PP

Snip out and post to David George Sales,

Unit 7. Higgs Industrial Estate. 2 Herne Hill Road, London SE 24 OAU

David George Sales,

Unit 7. Higgs Ind. Est., 2 Herne Mill Rd., London SE24 OAU.
Please send me:-

	1 EuroBreadBoard	$£ 6.20$	0	
or	2 EuroBreadBoards	$£ 11.70$	0	Please
or	3 EuroSolderBoards	$£ 2.00$	0	Tick
or	1 EuroSolderSucker	$£ 7.25$	0	

All prices are applicable from Jan. 1st 1980 and include VAT and PP but add 15% for overseas orders.
Name
Company
Address.

Tel. No

Please make cheques/P.O. payable to David George Sales and allow 10 days for cheque clearance and order processing PE. 8.

Allthese advantages... NOL Smoother running - Continual peak performance - Longer battery \& plug life - Improved fuel consumption - Improved acceleration/top speed
 Extended energy storage

SPARKRITE X5 is a high performance. top quality meluctive discharge electronic içintion systemin chesigneed for the eflectronics D.I Y. world it has lxecen tried, tested ancl proven to the utterly relable Assemblyonly takes $1 \cdot 2$ hours andmatallation $/$ Lion even less due to thes patented 'clip on' atasy fittunct,

The superb technical clesigin of the:
Sparkntecircut elimuitates problems of the. contact breaker There: is no minsfire (die' to contact breaker boimce whinchiselınurated electronically by a pulser suppresssiont circuit which preverilts the cint firmeg of the points boumce ((x)erl) at high R P M
Contact breaker burn is cilmumated by reducmeg the curtent liy $95^{\circ}{ }^{\circ}$ of the nermi

Theres is also a umgue externderf dwe ill Circant which allews the' eothla lemerey period of tame fostorents emergy tu-fore dischargung to thex plengs Therumit metheters buit in statw turnuly light systems function tight and serctarly changerovar switah Will work all reve commeris

Fits all 12 v negative-earth vehicles with coil/distributor ignition up to 8 cylinders. THE KII COMPRISESEVERYTHING NEEDED
Die pressed case. Rerady drilled alumumum extructed
base and herat sulk. coil mounturg clips and accessories All kit components are (juar anteexf for a per rixit of 2 yerars from date of purchase Fully illustrated assumbly aunt instaltation metructions are included

LOW-LIGHT VIEWFINDER

English Electric Valve Company Ltd. patents (BP 1559 586, filed in 1976 under the old laws) a greatly simplified low-light tv system. Such a system can, for example, be used as the viewfinder for a camera operating in the invisible infra red (or ultra-violet) regions. Normally an infra-red camera, with a vidicon tube of the thermalimaging or pyro-electric type, requires a separate monitor as a viewfinder which in turn requires external synchronization. This is expensive and the aim is to provide an inexpensive viewfinder built into the camera.

In many respects the new invention borrows from ideas as old as televisioni.e. mechanical scanning by synchronously locked discs in the Baird system. A pyroelectric tube produces an output signal only when its target area is either heating up or cooling down under the influence of infrared. No output is produced in a steady state condition so the tube must be associated with a shutter which regularly interrupts the infra-red image. Normally, the tube target gives a positive signal from areas that are warming up and a negative signal from areas that are cooling down. The negative signals are then all inverted electronically

Copies of Patents can be obtained from : the Patent Office. Sales, St. Mary Cray, Orpington, Kent
so that a constant polarity output is fed to a display tube viewfinder. But clearly synchronization between the tubes is all important.

Fig.l.

Figure 1 shows a camera with a pyroelectric pick-up tube 1 and an imaging lens 2. Monitor display tube 3 provides the reconstituted image on phosphor screen 4 a The image from lens 2 is chopped by cylindrical shutter 5 which rotates with a cylinder 8 on axis 12 around both the pick-up and display tubes. The shutter can provide one cut-off per revolution (Figure 2) or two cut-offs per revolution (Figure 3). The crux

FIG. 2.

FIG. 3.
of the invention is the provision of deflection coils on the body of the cylinder 8. These thus rotate in mechanically locked synchronism with the shutter; so both the tv tubes display a deflection pattern which is synchronously locked irrespective of the speed at which the cylinder rotates.

An AC scanning field is fed to the deflector coils and the reproduced picture is superimposed on a tv raster pattern. Although, as shown in Figure 5, this may

well be non linear, i.e. the raster lines may be non parallel, this is of no consequence. Both the camera tube and the diplay tube are mechanically locked to exactly the same scan pattern, so the displayed picture shows no distortion of shape.

THIRD MADLEY AERIAL

WORK HAS started on a new space communications aerial for the PO at Madley in Herts. This erection is necessary to keep pace with the enormous volume of overseas telephone calls from the UK, currently ten million a month, and doubling every four years. With telex and computer data increasing as fast, the $£ 7.5 \mathrm{~m}$ project will add to the satellite earth station's $£ 17 \mathrm{~m}$ worth of existing hardware. The PO is spending an overall $£ 1000 \mathrm{~m}$ annually on new plant to constantly update Britain's communications with the rest of the world.

A $£ 3 \mathrm{~m}$ contract goes to Marconi Communications Systems, who will supply everything except the dish itself, and its control electronics and receivers. The remainder of the aerial and its electronics will be supplied by the Mitsubishi Electric Corporation. To be completed in

1981, the aerial will work with a satellite in a geostationary orbit 23,000 miles above the Indian Ocean, one of the eight satelites now operating the Intelsat (International Telecomms Satellite Organisation) global system. "Madiey Three". will be a 32 m diameter dish capable of transmitting 2000 telephone calls and two TV programmes simultaneously. Its satellite is capable of handling up to 12,000 calls at once.

TI 58/59 CLUB

ANATIONAL TI 58/59 calculator club has been started by Mr. R. M. Murphy of the Dept. Electronics Engineering, University College Swansea, Singleton Park, Swansea.
The basis of the club will be direct exchanging of programs, or purchase of programs at 50 pence each. There will be a newsletter every two months, and since a PDP $11 / 32$ computer is to be used for administration, the club should be very efficient. Guide books on conversion, upgrading and such things as a cheap cassette interface, will be available.

Work is taking place to interface a SC/MP micro' to the calculator to drive a 10 -digit, 16 -segment alphanumeric display.

Membership will cost $£ 5$, or $£ 3$ to those who include a program plus flow diagram and instructions.

WHEN dealing with purely electronic circuits, whose resistance changes little with time, it matters little whether one uses a constant current or constant voltage source, and indeed most electronic engineers are quite content to use the latter. However as soon as we move either to heavier current loads-where resistive heating becomes significant-or to more complex systems such as electrolyses, where total cell impedance depends on the sum of resistance through the electrolyte and reaction impedance, a constant current source becomes mandatory for any quantitative measurements. Briefly to elaborate on the foregoing terms, it will be obvious that passage of any significant current through the electrolyte will cause resistive heating and thus lower the solution resistance. In this, its behaviour differs from the resistance coefficient of a metal, which is of opposite sign. It will be noted that the sign of the solution temperature coefficient, like that of an electric arc or a fluorescent tube, could induce a runaway condition. The second component is the so-called reaction impedance, that is to say, the resistance to passage of current at the electrodes themselves. This is a function of electrode materials, their size and not least, the type of electrolysis taking place. In short, the simplest electrolysis can in practice require a voltage increase of 50% or more in order to maintain a given current. Nothing could better demonstrate the need for the type of equipment to be described here. Knowing that current remains invariant with time, enables us to perform experiments such as the experimental verification of Faraday's Laws, where total charge passed is current \times time. Then too, using the same principle, we can pass a known charge and thereby generate a given quantity of a chemical or a metal ion. Such techniques are widely used in analysis where they correspond to an electrochemical means of "weighing out" from a bottle, but are far more accurate in most cases. Used with an oscilloscope the constant current source can tell us about species adsorbed on an electrode surface, for as long as many species exist, the potential will change only slowly, if at all. Once they are all gone, it will rise sharply. Last but not least, by passing a constant current, and measuring the rate of potential change of an electrode, we can determine the effective capacitance, from the simple equation:
$i=C \cdot d V / d t$

That capacitance is directly related to surface roughness, or the presence of foreign species adsorbed on its surface. In short, this is a most useful tool.

Early constant current sources consisted simply of a high voltage-up to 100 V DC connected across the electrolysis cell through a substantial resistance (which of course was required to dissipate a substantial wattage without too much temperature rise). But some years ago, solid state power sources began to find favour.

DESIGN AND SPECIFICATION

Our specification will depend on the purposes for which we use the constant current source, or galvanostat, as it is often known. The prime question relates to the current output. For such work, an output of 20 mA will suffice, especially when electro-analysis is the major interest. But for much other work, such as studies in electrolysis of brine, or battery research, a higher output, such as $1-2 A$ is more useful, in that it enables us to do what we wish on electrodes of reasonable size, say $1-5 \mathrm{~cm}^{2}$ in area. The second feature must of course be current stability, and this is defined both with respect to time, into a constant load, and also with respect to load variation, over a short space of time. A one per cent constancy would be the lowest acceptable value, while a figure such as 0.3 per cent would be better. Again, the effect of ambient temperature on output current should not be neglected here, and can be lumped into the above figures.

Finally we have two further specifications to meet. Ripple content should be less than 0.1 per cent and then there is the question of rise-time which depends very much on the proposed duty. But in some applications the device is switched onto load extremely fast, using a mercury-wetted reed relay or a CMOS and VMOS switch. Into a purely resistive load, the rise time shoud be fast-of the order of 1 microsecond.

Various circuits have been published, from time to time, which fulfil these specifications.

We shall show here the construction of two units. The simpler one, based on a design of Dr. Colin Vincent, of the University of St. Andrews, is a single transistor galvanostat.

It will deliver up to 22 mA . The more sophisticated instrument is based on a design that was evolved at Salford University. It will deliver from 5 microamperes to 3 Amperes in 6 switched ranges. To extend the utility of the latter instrument, we have included a switch to convert it from constant current to constant voltage mode. The range switch and tenturn potentiometer then provide a voltage range from OV to 30 V .

A further feature incorporated in this instrument is an input socket which allows an applied voltage function to control the current output as a function of time. Thus by application of a square wave voltage function, the corresponding current output will be produced. Suitable function generators are readily available commercially, though their construction will form the basis of a future article in this series.

20mA GALVANOSTAT

a) Circuit

The circuit consists of a full wave rectified power supply comprising:-T1, D1, D2, C1, C2 and R1 which delivers approximately 30 V D.C. Transistor TR1 operates in the common base mode giving a very high impedance collector circuit. The current flowing in the load R_{L} (collector current) is determined by the voltage applied to the transistor base V_{p} and the value of R_{3}, and is approximately equal to:

$$
\frac{V_{P}-V_{B E}}{R_{3}}
$$

where $V_{B E}$ is the potential drop across the base emitter junction; this being about 0.6 V for a silicon transistor.

Therefore the maximum load current for the circuit is

$$
\frac{6.2-0.6}{270}=\text { approx. } 20 \mathrm{~mA}
$$

By varifying the base voltage using VR1 the output current can be varied between 1 and 20 mA . The circuit will keep the current constant to 0.1 per cent for 1 hour after reaching working temperature. In order to keep the circuit under load and at working temperature when not in use, a standby clearing load has been incorporated consisting of S2 and R4. The ability to supply maximum output current into high resistance loads is restricted by the available output voltage of 30 V .

CONSTRUCTION

The circuit is constructed on a small printed circuit board no particular problems being envisaged.

The original circuit was constructed in a small metal box measuring $135 \times 80 \times 55 \mathrm{~mm}$.

CALIBRATION

The circuit was loaded with a 100 ohm 0.5 watt resistor and allowed to warm up for one hour.

The scale was then marked by adjusting VR1 and measuring the output current with a meter.

Fig. 1. Circuit diagram of 20 mA Galvanostat

Fig. 3. Component overlay

COMPONENTS . . .

Resistors	
R1	100
R2	$2 k 7$
R3	270
R4	430

All $0.5 \mathrm{~W} 2 \%$ Thick Film
Potentiometers
VR1 5k lin 1 watt wirewound

Capacitors

C1, C2 100μ
63 V Electrolytic (2 off)

Semiconductors

D1.D2	1N4001 (2 off)
D3	BZY88 6.2 V 400 mW
TR1	BFY50 (2N3053)

Transformer
T1 240 V primary
20-0-20 V r.m.s. Secondary 1.2 VA printed circuit mounting R.S. Components 207-908

```
Miscellaneous
    S1 DPDT Min. toggle
    S2 SPDT Min toggle
    Fuseholder + 1A Fuse
    240V Neon
    P.c.b.
    Output socket
```


3A GALVANOSTAT

CIRCUIT

The circuit provides an output voltage of up to 30 V d.c. at currents up to 3 A .

The circuit functions as either a constant voltage or constant current power supply, depending on the position of function switch S3.

The output voltage or current is dependent on how much output transistors TR2 and TR3 are turned on by operational amplifier IC 1, and TR 1.

Initial setting of voltage or current is achieved by adjusting the voltage at the non-inverting input of IC1 using VR1 to vary the reference voltage derived from the Zener diode

stabilising network R1, D9, R2, D10 and C2. Resistors R3 and R4 determine the limits within which VR1 operates.

The circuit can be controlled externally, e.g. from a sweep generator via the external input socket SK1. For full output a control voltage of one volt d.c. is then required.

In the constant current mode, one of the resistors R8-R 13, selected by range switch S4, is connected in series with the load. Voltage developed across this resistor is fed back to the inverting input of IC1 so that if the output current increases the voltage across R8-R13 will increase thus causing the output voltage of the circuit to decrease holding the output current constant. The reverse occurs should the output current drop.

Fig. 5. Printed circuit for op. amp. power supply board (actual size)

Fig. 6. Component overlay for above

COMPONENTS . . .

Resistors

R1	4 k 7	Thick Film
R2	1 k 5	Thick Film
R3	5 k 1	Metal Oxide
R4	110	Metal Oxide
R5	39 k	Thick Film
R6, R7, R12	$1 R$	2.5W Wirewound (3 off
R8	10 k	Thick Film
R9	1 k	Thick Film
R10	$100 R$	Thick Film
R11	$10 R$	Thick Film
R13	0.33	2.5W Wirewound
R14, R15	1 k	Thick Film (2 off)
R16	270	Thick Film

All resistors $\frac{1}{2}$ W 2% unless otherwise stated.
Potentiometers

VR1	1 k	3 W 10 turn linear
VR2	10 k	Enclosed cermet preset linear

Capacitors

C1	4700μ	63 V	Can electrolytic
C2	1000μ	25 V	Wire ended electrolytic
C3, C4	100 n	Disc	Ceramic (2 off)
C5, C6	220μ	63 V	Wire ended electrolytic

Capacitors		
C1	4700μ	63 V
C2 2	1000μ	25 V
C3, C4	100 n	Disc
C5, C6	220μ	63 V

Semiconductors			
D1-D4	4A	200 V	Bridge rectifier
D5-D8	1A	50 V	Bridge rectifier
D9	BZY88	15 V	400 mW Zener diode
D10	BZY88	5.1 V	400 mW Zener diode
D11, D12	BZX61	30 V	1.3W Zener diode (2 off)
D13	BZY88	7.5 V	400 mW Zener diode
TR1	2N3053		
TR2	2N3055		
TR3	2N3055		
1 C 1	MC1436	(Mot	

Transformers

T1 240V Primary 0-15V.0-15V 100VA Secondary
T2 240V Primary 0-20, 0-20 6VA Secondary (R.S. Components) printed circuit mounting

Switches

S1, S2
S3
S4
DPDT Miniature toggle: 250 V AC 1A (2 off) DPDT Miniature toggle 1P6W Rotary 6A 30V DC

Miscellaneous

Fuseholder and fuse
Neon
Sockets
Printed circuit board
Heatsinks
Case

In the constant voltage mode R8-R 13 are shorted by S3B and IC1 inverting input is grounded via R5 by S3A. Capacitors C3 and C4 provide supply decoupling for IC1.

The output voltage is provided by T1, D1-D4 and C1 , and IC1 has a separate power supply providing +30 V and -7.5 V . Switch S 5 was also incorporated to reverse the polarity of the output.

CONSTRUCTION

The prototype circuit was constructed on two printed circuit boards, one for the main circuit and one for the operational amplifier power supply. C1 was mounted separately and resistors R8-R 13 were mounted directly on S4.

TR2 and TR3 were mounted on a heatsink with a thermal capacity of $1.1^{\circ} \mathrm{C}$ per watt, which was mounted away from the case on 10 mm spacers to give improved ventilation. A small clip-on heatsink was also fitted to TR1.

SETTING UP AND USE

Firstly the offset null is adjusted. With both inputs of IC1 grounded, adjust VR2 to give OV at IC1 output.

The circuit will supply between $10 \mu \mathrm{~A}$ and 3 A in six overlapping ranges, although when using the $1 A$ and $3 A$ ranges, the output transistors will become quite hot (up to $65^{\circ} \mathrm{C}$), and load resistances of not less than 1Ω should be used on the $1 A$ range and 8Ω on the $3 A$ range.

When used as a constant voltage power supply the output current should be restricted to 1 A .

Houndoloun

Computer Graphics (exhibition \& conference) Aug. 12-14. Metropole, Birmingham. 0
Harrogate International Festival of Sound Aug. 16-19 (18 \& 19 trade).
The Exhibition Centre + hotels. X
Edtech Aug. 19-21. Holland Park School, London. C1
Personal Computer World Show Sept. 4-6. Cunard Hotel, Hammersmith, London. M
Laboratory Sept. 9-11. Grosvenor Ho., Park Lane, London. E
Intron 80 Sept. 9-11. RDS, Simmonscourt Pavilion, Dublin, V
West of England Electronics Exhibition Sept. 9-11. Bristol Exhibition Centre. Q
Electrathon (Lucas battery vehicle race) Sept. 13, 1980. Fashioned on last year's event, this "whispering Grand Prix" is a contest for home made electric vehicles. It will again be held at Donington Park Race Circuit, nr. Derby. Details: \wp 021-554 5252.
Avionics (symposium) Sept. University of Surrey. S1
Emix (Electronic Measuring Instruments Exhibition) Sept. 30, Oct. 1-2. Post House Hotel, Southampton. I
BEX (Business Equipment Exhibition) Oct. 1-2. The Guildhall, Plymouth. K
Emix Oct. 7-8. Centre hotel, Newcastle. I
Emix Oct. 14-15. Guildhall, Cambridge. I
Drive Electric October 14-17. Wembley Conf. Centre, London. Organiser: 01-834 2333.
BEX Oct. 15-16. Assembly Rooms, Edinburgh. K
Engineering Ireland Oct. 15-18. Leopardstown Exhibition Centre. V

Testmex (exhibition and conference) Oct. 28-30. Wembley Conference Centre. T
Viewdata Exhibition for Professional \& Business People Oct. 29-31. West Centre Hotel, London. Z1
Compec Nov. 4-6. Olympia. Z1
BEX Nov. 5-6. Sophia Gardens, Cardiff. K
Semiconductor International 80 Nov. 25-27. Metropole Convention Centre. T1
Breadboard Nov. 26-30. Royal Horticultural Halls, Westminster. T
Solar Energy Exhibition Aug. 23-28, 1981. Brighton. M

E Evan Steadman. 079922612
I ITF. \& 021-705 6707
K Douglas Temple Studios, 1046 Old Christchurch Rd., Bournemouth.
M Montbuild. © 01-486 1951
O Online Conferences. 089539262
Q Exhibitions For Industry Ltd. 8 08833-4371
T Trident International Exhibitions. 608224671
V SDL Exhibitions, 68 Fitzwilliam Square, Dublin, Ireland.
\mathbf{x} Exhibition \& Conference Services, Claremont Ho., Victoria Ave., Harrogate, Yorks. 042362677
C1 Stereoscopic Television Ltd., 41/43 Charlbert St., St. John's Wood, London NW8 6JN. © 01-722 4139
S1 Society of Electronics \& Radio Technicians, 57-61 Newington Causeway, London SE1 6BL. 01-403 2351
T1 Kiver Communications U.K., Millbank House, 171/185 Ewell Road, Surbiton, Surrey KT6 6AX
Z1 IPC Exhibitions Ltd., 40 Bowling Green Lane, London ECIR ONE. 6 01-837 3636

A eelection of readers' original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought. Why not submit your idea? Any idea published will be awarded payment according to its merits.
Articles submitted for publication should conform to the usual prac. tices of this journal, e.g. with regard to abbrevia tions and circuit symbols. Diagrams should be on separate sheets. not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

A HEX KEYPAD

THE accompanying circuit shows a hexadecimal keyboard interface which can be used as both a peripheral to a microprocessor or for inserting data under DMA. It gives visual indication of the output on a bank of eight leds.

Each key is strobed low in turn by the configuration of IC1 and IC2. When a closed key is found, C1 is discharged and the clock IC6b stopped. IC2 clocks on the up-stroke, so IC6a is included to stop extra pulses reaching the counter. As the voltage on CI falls, it produces a clock pulse for IC5, which is wired as a divide by two counter. Falling edges on IC5's output, latch the four bit number on IC2 (representing the button pressed) alternately into IC3 and IC4. CI debounces the keys.

If the circuit is used for DMA, the output can be connected to the data bus. The two hex digit byte is entered and the Chip Enable pin of the memory strobed low to insert the byte. If a wrong number is entered, it can be re-entered before the $\overline{\mathrm{CE}}$ line is strobed.

If the circuit is used as a peripheral, then it must be interfaced through a tri-state buffer like the 74125 , in which case it would have to be polled. A cheaper method of interface is via a 7401 NAND gate with open collector outputs. Because this performs an inversion, the data should be taken from the \bar{Q} outputs of the 7475 .
D. Greaves,
Romsey,
Hants.

MULTIPLEXER

THE circuit is of a four digit multiplexer, which was designed to facilitate the use of a multiplex connected type of l.e.d. display. The circuit can also be used to advantage with unmultiplexed l.e.d. displays, but the total current which may be drawn from each digit driver is limited to 40 mA . Alternatively discrete transistor drivers could be used. The type of display for which this circuit was intended is the miniature calculator displays now available at low cost. With the values of R5-R I I the current per segment is just over 3 mA , which will give adequate brightness in most applications. The circuit is for common cathode l.e.d. displays.

The circuit functions as follows: IC1 and IC2 form a divide by four counter with decimal outputs, which is used to
scan the digits and multiplexer gates, simultaneously.
IC9 is an inverting buffer with 40 mA open collector outputs. These are wireO Red together to enable the BCD outputs of the counters to be connected to the inverters of IC7 and so to the decoder driver i.c., one after the other in sequence. With their respective digits. IC7 reinverts the BCD information because it becomes inverted by the NAND gates. R1-R4 pull up the open collector outputs of the NAND gates.

IC8 is the BCD to decimal decoder driver IC and is for common cathode type displays. R5-R 11 are the current limiting resistors for the digits. The remaining two inverters of IC7 are used to form a multivibrator which is used to clock the divide
by four decimal counter. C3 and C4 are supply decoupling capacitors and should be spaced approximately 4 IC's apart. Common anode type displays could be used with a 7447 for IC8. Discrete digit drivers must be used. More than four digits could be displayed by the use of more 7401 s and a suitable decimal decoded counter.
C. F. Shorto,

Weymouth,

THIS circuit produces a 4 bit binary word for a key pressed on a keyboard.
IC1 is wired in its astable mode. Pulses produced at pin 3 are taken to IC2, a 4 bit binary counter. The three most significant digits are taken to IC5, a BCD to decimal decoder. The outputs of this are low on select. As IC2 counts, one row of the keyboard matrix is low, followed by the next in sequence, thus the scanning action is produced. If a key is pressed then that row becomes low when IC5's "scan" reaches it. One of IC 3 b's inputs also becomes low at this moment, the output going high. ICs 3 a and 4 a detect when the clock is high and the output " A " of IC2 is low. IC4b detects when IC3b and IC4a are high and enables the latch, IC6. The "D" input to IC6 is derived from a column which contains the lower eight keys of the keyboard. A correct four bit binary code will then be obtained

If a new key is pressed, its binary code will be accepted regardless of the code already present. Both true and complementary outputs are obtainable.

The whole circuit was constructed on stripboard, with ribbon wire interfacing the keyboard. Outputs were accessible via solder con pins for easy connection to a breadboard. Two 100 n ceramic capacitors are also necessary for decoupling especially near IC1.

> A. Piper
> Newport Pagnell, Bucks

INEXPENSIVE A-TO-D CONVERTER

THE circuit shown converts the input voltage from VR2 into a four bit binary number suitable for many computer games (e.g. lunar landing). More bits can easily be added, however this method of conversion will not be sufficiently accurate for more than eight bits. Four i.c. packages are used.

Initially counter IC1 is set at zero; however it is quickly clocked by the astable configuration IC4c and IC4d. As it counts, the four resistors R1 to R4 produce an increasing voltage proportional to the count. When this voltage is higher than the voltage at the wiper of VR2, IC3's output swings to +5 V which saturates transistor TR1 and stops the clock. Now the count on IC1 points to the input voltage and it can be read via the buffer IC2. IC4a and IC4b detect the end of the reading and reset the counter so the cycle re-starts.

Although during the counting period the reading on ICI is incorrect, this will never be noticed because it is pointless reading the converter more than twice a second, as the user will not have appreciably moved VR2. VR1 is set to give a full scale setting of VR2 of all ones (1111).
D. Greaves,
Romsey,
Hants.

PORTABLE TENNIS

THE circuit diagram is shown up above and if the logic is followed through, the circuit operation should be fairly self explanatory.

To start a game the "Reset" button is pressed to clear any scores on the counters. A player then serves by pressing his "Serve" button. After a period of time the 'ball' reaches the other player. This is signified by his l.e.d. lighting up. While this is, lit he must press his "Bat" button to return the ball. If he fails to press the button at the right time, this is a miss and registers a point on his opponent's score counter. If he hits it then, after a period of time, it reaches the first player lighting up his l.e.d., he tries to hit it and so on. Each miss is counted as a point on the other player's counter.

Some skill is required in playing this game since the time taken for the "ball" to cross the "court" does not remain constant. Rather the time taken decreases during play until either a player misses a
ball or the counter has gone through the eight speeds. At this time it reverts to the slowest speed and gets faster again.

Serving triggers the monostable IC3a and b or IC5a and b. At the completion of its cycle it sends a pulse, which is generated by IC 3 c and d or IC 5 c and d, to the other player's circuitry. The period of monostables IC 3 a and b and IC5 a and b is determined by the resistor selected by the counter IC6. Each second hit advances the counter until it is reset.

A suggested top-panel layout is shown right.

Incidentally, a sort of doubles game can be produced by inserting another push switch across each of the "Bat" switches. Thus if one player missed the "ball", the other would have a good chance of hitting it.
P. Bailey, Rutherglen, Glasgow.
Glasgow.

$$
0
$$

Readout... A selection from our Postbag

Readers requiring a reply to any letter must include a stamped addressed envelope.
Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

Velikovsky: Pure Myths

Sir-While leafing through my father's copy of PE (June 1980) I was rather surprised to find a serious letter supporting the ridiculous theories of Immanuel Velikovsky. In the letter, Mr. Austin "looks forward to reasoned argument" on the subject. For those readers interested in such, I should like to recommend the book 'The Stars in Their Courses' by Dr. Isaac Asimov which contains, among other fascinating essays, a chapter entitled 'Worlds in confusion', from which I shall draw a few comments to the attention of your readers.

Velikovsky's book was claimed to be the work of a scientist (which Velikovsky is not) who had proved the Bible to be true. The basis of his theory is that Jupiter spewed out a huge comet, leaving behind the Red Spot, which careered about the solar system causing no end of interesting effects, before settling down to become Venus. The book is full of nonsense physics and ludicrous assumptions. For example, Velikovsky states that the laws of astronomy predict that a satellite will rotate slower than its planet and then points out that this is not so for the inner planet of Mars, thus demonstrating that all astronomic laws are wrong. It looks very nice but is nothing but transparent twaddle. There is nothing any astronomic law predicts about the speeds of rotation, which depend only on the primary and satellite distance and mass. In fact, the inner satellite of Mars has a rotational period of exactly that predicted by physics.

Velikovsky also makes heavy use of medieval Jewish legends and the writings of the ancients, taking metaphor and legend as fact, and constructs his own chronology to fit his "facts". His theory contains glaring errors of chemistry and physics that could be spotted by an A-level student (in one part he transforms hydrocarbons into carbohydrates in the space of a paragraph although the two classes of compound are completely different), and mis-interpretation of scientific observation. He uses scientific results when they agree with his theory and throws them away when they do not. He draws heavily on the spectroscopic analysis of comets tails without explaining why scientists who cannot handle the simple calculations of celestial mechanics should be trusted with such complex analysis!

When he needs a rain of fire to explain certain biblical tales he hits on the theory that the hydrocarbons in comets' tails will burst into flame when passing through the Earth's atmosphere. Is this plausible? No sir, not a
chance. Gas does not come much thinner that that in comets' tails and it certainly would not burn in the atmosphere. You may say how do we know? Well, in 1910 we passed through the tail of Halley's comet and absolutely nothing happened! (as predicted by the scientists and completely opposite to the phrophets of doom).

I could go on, but do not think it necessary. In short, Velikovsky's work is nonsense and demonstrates nothing except the gullibility of the non-scientific public. It has more in common with crank mail (Dear Sir, I have recently disproved the theory of relativity, etc., etc.) than a serious work. Copernicus developed his Sun-centred theory only because he was a thorough student of the Earth centred theories; Einstein developed relativity while a thorough student of Newtonian mechanics. Point taken?

David G. W. Birch, B.Sc., Swindon.

The AY-3 Saga

Sir-Last year I wanted a GIM integrated TOG, the AY-3-0214, to make a copy of the Wersi master oscillator for my Maplin organ. Recent comment in your magazine reminds me of this.

GIM very promptly sent me their product guide, and the data sheet on their music i.c.s. In the back of the product guide are listed their distributors so I set out to contact them. (I had already tried about 10 of the retailers who advertise the AY-1-0212 and other GIM

ICs in the various hobby magazines and they were all useless, so I suggest that Mr. Partridge's solution does not work!) (Readout May 1980). Of the distributors, one was down-right rude, two just did not want to know. Crellon Electronics were helpful but said that they had to order a minimum of 25 , and did not wish to be left with 24 . They could only supply if I would have 25 , at $£ 13.50$ each!-fair enough.

I then wrote to GIM again and thanked them for the information but suggested that it was a pity that their excellent i.c.s were not available, and told them why. Within a week or so II received a letter from them, stating that if I wrote to Semiconductor Specialists at West Drayton, they would now be able to supply me, which indeed they did for the sum of £13.80. Previously they had "not got it in stock." and "had never had it" and "didn't want to know about getting it".

So if your readers are trying without success to obtain GIM i.c.s then I suggest they write to: General Instruments MicroElectronics Ltd., Regency House, 1/4 Warwick Street, London WIR SWB. They won't supply directly, but they do seem to be quite good at waking their distributors up!

Lastly, since buying that i.c. I have seen that it is on the "Doram" list at $£ 10 \cdot 10$. Oh well, you can't win them all.
A. Jaques,

Urmston, Manchester.

CPUs: The Last Word

Sir-Re the letter by C. R. Harris in your June issue, I would like to point out that the article was originally credited to Roy Featherstone, now at Edinburgh researching into artificial intelligence, and secondly, that the ultimate CPU described has the advantage over its silicon rivals of being mass produced by unskilled labour!

Tim Sutherns,
President, S.U. Computer Club, Southampton.

	BC108 FALLOUTS		
uncoded - You to tosi- Vallu all tho wayl O/No. SJI 127.41 .00 por Pak	Manufacturers out of spec on volts or gain neither - Metal TO 18 case - You test. O/No. SJ124. 50 for $\$ 1.00$	BD131 TO-126-NPN untested O/No. SJ84. 26 for $\mathrm{E1.00}$ SCR's TO66 SC ${ }^{\text {Alt }}$ good unisusect tor /No. S. 130,10 for $£ 1.00$	
SIL OIOOES		AERI	litage regulato
${ }^{200}$ Mixed Diodos -mainly SILICON markeg and uncoded - you to sor \& tost Outratending Valuol 0/No. SJ128. 54.00 poo Pak.			
A 10	GERM. TRANSISTORS	Stereo 30	XAS NPN
5 watt Audio Amplifier Module. Special Clearance Offer O/No. AL20. £2.50	0 INo. SJ 126.50 pee ET .00 GERM. Power trans. 	Completo 7 watl per channel Stereo Amplifier 	
Headphones		CIAL SALE PRICE	
NEW. Improved Lightweight Stereo Headphones including double headband and quency $30-18000 \mathrm{~Hz}$ ALL Black. O/No. 885 . E4.00 As above but with coiled lead and rotary volume O/No. 884. $£ 7.00$	with lid and fixing screws. Find $: 72 \mathrm{~mm} \times 50 \mathrm{~mm} \times 25 \mathrm{~mm}$	UR	
HEADPHONE ACCESSORIES	BI-PAK'S OPTO BARGAIN OF THE YEAR!		oisc ceramic cap
	Valued at over $£ 10$ - Normal Retail - ment Oisplays both Common Cathode and Common An- node PLUS bubbte rype displays - like OL-33. Photo Tran sistors - similar to OCP71 and Photo Detectors - like MEL11-12. This whole Dack of 25 devices will cost just j-12. This whole pack of 25 devices will cost you		Disc Ceramic Cap. Mixed values covering plete range $3 P F-4,700 \mathrm{PF}$. super value O/No. SJ121.E1.00
ANTEX			SWITCHES
	AND we guerentee your money beck if you are not completely entisfied. FULL deta atc included. 0/No. SJ 120		
	SILICON TRANS.		LE.D.
Special Sele Price O/No. 1320. £1.00 o/No. 1321 . 11.50			
PLUGS \& SOCKETS		NPN TRANSISTORS	
ONo. SJI 12.8 . 1.00 por Pouk No. 5123.6 pro 81.00			
CAPACITORS			OODMENTS
TRANSFORMERS		METAL SLIOERS	

Send your orders to: Dept PE8, BI-PAK, PO BOX 6, WARE HERTS SHOP AT: 3 BALDOCK ST, WARE, HERTS
TERMS: CASH WITH ORDER, SAME DAY DESPATCH, ACCESS
BARCLAYCARD ALSO ACCEPTED. TEL: (0920) 3182. GIRO 3887006 ADD 15% VAT AND 50p PER ORDER POSTAGE AND PACKING.

Build the World Famous

 CHROMA~CHIME

Give your friends a warm welcome
This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide. circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.

- Handsome purpose built cabinet
- Easy to build and install
- Uses Texas Instruments TMS1000 microcomputer
- Absolutely all parts supplied including I.C. socket
- Ready drilled and legended PCB included
- Comprehensive kit manual with full circuit details

- No previous microcomputer experience necessary
- Can be built in about 3 hours!
- Runs off 2 PP3 type batteries.
- Fully Guaranteed
* Save pounds an narmal retail price by building yourself.

ALL CHROMATRONICS PRODUCTS SUPPLIED WITH MONEY BACK GUARANTEE PLEASE ALIOW 7-21 DAYS FOR DELIVEAY
Please send me: PE.8.80.
TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX.
NAME
ADDRESS

I enclose cheque/PO value \mathcal{E}
or debit my ACCESS/BARCLAYCARD account-no.

Signature

CONGRESS AMPLIFIER

We supply all the designer approved parts for this exceptional kit, including high quality printed circuit boards and transformer.
Complete kit, excluding metalwork with 20% discount on parts.
£73.74
All parts to assemble pre-amp i.e. R's, C's, PCB's, semicons, controls etc, but excluding transformer with 10% discount on parts.
£41.79
All parts to build main amp board $£ 20.48$
Mains transformer $£ 12.82$
Smoothing caps \& clips $£ 8.86$
Front Panel
$£ 3.20$
Chassis (unpainted, pre-punched) $\mathbf{£ 1 3 . 4 0}$
Front panel and chassis not subject to reduction but if ordered together with complete kit available at special price of $\quad \mathbf{£ 1 1 . 5 0}$ This offer also applies to previous purchasers of complete kits.

MAIL ORDER ONLY.

Prices include VAT and p\&p
Please send A5 S.A.E. for full price details.
Terms: Cash with order. Cheques etc. should be made payable to:

CONGRESS ELECTRONICS
 PROJECT

Allow 14-21 days after sending order for delivery. Send order to:

Photostat of article available at $£ 1.20$.

WICCA SYSTEMS LTD, 24 HILLCREST PARADE, COULSDON, SURREY. Tel. 01-668 5256

UNREPEATABLE HI-FI BARGAIN

 3 WAY LOUDSPEAKER KIT C/W BAFFLE (pre-cut)Comprises:
$\star 6 \frac{7}{\prime \prime}$ linen surround bass unit
$\star 5^{\prime \prime}$ mid-range unit

* $3^{\prime \prime}$ tweeter
* 3 way crossover, fixing screws \& baffle
- 20 watts handling capability.

Full instructions provided
Must be heard to be believed!!
$£ 9.95+£ 1$ carr. or two kits for $£ 20$ carr. free.

SAXON ENTERTAINMENTS

327-333 Whitehorse Rd., Croydon, Surrey CR0 2HS.
(01) 6840098.

Order by phone - Access/Barclaycard/C.O.D.
Open Mon. - Sat. 9am - 5pm.

 until you read this report
There are so many digital watches on the market, with varying functions, that the average person is bound to feel somewhat confused.

A new survey of the electronic watch industry has been produced to clarify this confusion and to give an unbiased and objective answer to the many questions that are constantly being raised.

* How accurate are electronic watches?
* Who makes Seiko's?
* What is the importance between brand names?
* Is solar power worth the extra money?
* What are the most important features in a watch?
* When will prices stop falling?

The survey answers all of these questions and tells you what to look for in a quartz watch; how they work; why the prices vary so much; what the future holds.

SPECIAL OFFER

Send today for this technical report, plus news of a unique Metac offer to beat all special offers.

Complete the coupon below and send it FREEPOST (no stamp required) and we will post, Same Day Despatch, the technical report giving you all you need to know about electronic watches and details of our special offer.

40page
illustrated report. Retail price © 4.50 but just $£ 1$ to our readers.

Whichis the best watch?

Simply ahead...

POWER AMPLIFIERS

ILP Power Amplifiers are encapsulated within heatsinks designed to meet total heat dissipation needs. They are rugged and made to last a lifetime. Advanced circuitry ensures their suitability for use with the finest loudspeakers, pickups, tuners, etc. using digital or analogue sound
 sources.

Mode 1	Output Pawer R.M.S	Dis. tortion Typical at 1 KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	$\begin{aligned} & 15 \mathrm{~W} \\ & \text { into } 8 \Omega \\ & \hline \end{aligned}$	0.02\%	100 dB	-20-0. +20	$105 \times 50 \times 25$	155	$\begin{array}{\|l\|} \hline £ 6.34 \\ +95 p \end{array}$
HY50	$\begin{aligned} & 30 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	100 dB	. $25.0 .+25$	$105 \times 50 \times 25$	155	$\begin{array}{\|l\|} \hline £ 7.24 \\ +£ 109 \end{array}$
HY120	$\begin{aligned} & 60 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	-35 0. +35	$114 \times 50 \times 85$	575	$\begin{array}{r} £ 15.20 \\ +£ 2.28 \\ \hline \end{array}$
HY200	$\begin{aligned} & 120 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	-45 0. + 45	$114 \times 50 \times 85$	575	$\begin{aligned} & £ 18.44 \\ & +£ 2.77 \end{aligned}$
HY400	$\begin{aligned} & 240 \mathrm{~W} \\ & \text { into } 4 \Omega \end{aligned}$	0.01\%	100 dB	-45-0.+45	$114 \times 100 \times 85$	1.15 Kg	$\begin{array}{\|cc\|} \hline £ 27.68 \\ +£ 4 & 15 \\ \hline \end{array}$

Load impedance - all models $4 \Omega-\infty$
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

POWER SUPPLY UNITS

ILP Power Supply Units with transformers made in our own factory are designed specifically for use with ILP power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled laminated transformer, for smaller PSU's - in the other, for larger PSU's, ILP toroidal transformers are used which are half the size and weight of laminated equivalents, are more efficient and have greatly reduced radiation.
PSU $30 \pm 15 \mathrm{~V}$ at 100 mA to drive up to $12 \times$ HY 6 or 6 $\times \mathrm{HY} 66$
$\mathbf{£ 4 . 5 0}+\mathbf{£} 0.68$ VAT
THE FOLLOWING WILL ALSO DRIVE ILP PRE-AMPS PSU 36 for 1 or 2 HY30's $£ 8.10+£ 1.22$ VAT PSU 50 for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT PSU60 with toroidal transformer for

1 HY 120
£ $9.75+£ 1.46$ VAT
PSU 70 with toroidal transformer for 1 or 2 HY120's $£ 13$.
PSU 90 with toroidal transformer for 1 HY200 E13.
1 HY400 or $2 \times$ HY 200 £ $23.02+£ 3.45$ VAT

AVAILABLE ALSO FROM WATFORD ELECTRONICS, MARSHALLS AND CERTAIN OTHER SELECTED STOCKISTS.

this time with two new pre-amps

 }

When ILP add a new design to their audio-module range, there have to be very special reasons for doing so. You expecteven better results. We have achieved this with two new pre-amplifiers - HY6 for mono operation, HY66 for sterea. We have simplified connections, and improved performance figures all round. Our new pre-amps are short-circuit and polarity protected; mounting boards are available to simplify construction. Sizes - HY6 - $45 \times 20 \times 40 \mathrm{~mm}$. HY66 $90 \times 20 \times 40 \mathrm{~mm}$. Active Tone Control circuits provide $\pm 12 \mathrm{~dB}$ cut and boost. Inputs Sensitivity - Mag. PU. -3 mV : Mic - selectable $1-12 \mathrm{mV}$: Allothers 100 mV : Tape $0 / \mathrm{P}-100 \mathrm{mV}$: Main O/P -500 mV : Frequency response - D.C. to $100 \mathrm{KHz}-3 \mathrm{~dB}$.

17

£5.60

+ VAT 84p
HY66
stereo
£ 10.60
- VAT £I 59

Connectors included
86 Mounting Board
78p + 12p VAT
B66 Mounting Board $99 p+15 p$ VAT

* ALL U.K. ORDERS DESPA TCHED POSTPAID HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - wepay postage on allletters sent tous by readers of this journal.

FREEPOST 5 Graham Bell House, Roper Clase, Canterbury, Kent CT2 7EP.
Telephone (0227) 54778

NO QUIBBLE 5 YEAR GUARANTEE 7.DAY DESPATCH ON ALL ORDERS BRITISH DESIGN AND MANUFACTURE FREEPOST SERVICE -see below

Please supply.
Total purchase price \mathbf{E}.
Ienclose Cheque \square Postal Orders \square International Money Order \square
Please debitmy Access/Barclaycard Account No.. .

NAME
ADDRESS

Signature

SPECIAL OFFER
of $£ 34.10$ (inc. P\&P \& VAT) extended due to demand.

Deisgned by
Dr. A. A. BERK

- see PE review (April edition) and PE special offer in May and June.

THE EDUKIT

The EDUKIT has proven a great success providing an excellent introduction to silicon chip technology from the bottom upwards. Many schools and colleges are using the kit, and sales now extend world-wide. The machine is not meant to form the basis of a large and expandable personal com
puter system. The EDUKIT teaches all those things which a purely BASIC-running machine carnot puter system. The basis of hardware electronic control, down-to-earth Buts and Bytes. Machine Code etc. - and all this at a really throw-away price. The manual is written by Dr. A. A. Berk to impart educational understanding from the beginning.
The success of the EDUKIT allows us to extend the PE special offer $\mathbf{£ 3 4 . 1 0 \text { (fully inclusive of P\&PP }}$ and VAT.

GET TO GRIPS WITH THE MICROPROCESSOR ITSELF WITH THE EDUKIT.

MODUS SYSTEMS LTD
 Phone Letchworth (04626) 74468
 29A EAST CHEAP, LETCHWORTH, HERTS SG6 3DA.

TECHNICAL SPEC.

- CMOS 1802 Processor (RCA)- excelient MPU for control.
- 256 bytes of RAM - plenty for learning machine code.
** Hexadecimal display - large and readable.
*. Full hex keyboard - positive "click" type switches
*. Full manual - starts at soldering, ends with control circuits.
- Excellent for all ages from secondary schooi level

EPROM PROGRAMMER
 For 2708's \& (multi-supply) 2716's

£37.30

inc. P\&P, VAT and PCB (available separately)

Designed by Dr. A. A. BERK

As featured in PE project: DEC '79, JAN '80.
Ever wanted to save your programs in solid-state to prevent their having to be recalled each time? 2708: are now cheap enough to allow those simple applications to be stored "forever". The Eprom programmer is memory mapped to allow its addition to any bug-oriented machine. See PE articles for
easy

ADDITION TO COMPUKIT.

TECH. SPEC:

* Ik of use - RAM included - just write program into this RAM. press the butron and the programmer "burns" it in automatically.
- Easy verification - Eprom can even be used in-situ on the board.
*. 3-level power supply included - just needs $9-0-9 \mathrm{~V}$ transformer and +5 V supply

COMPUTER SUNDRIES

1802 USER'S MANUAL (essential for full understanding of 1802 . MPU used in EDUKIT) $83.99+$ Sop P\&P.
Full socker sel for EDUKIT $-\mathbf{1 2 . 6 0}+$ VAT $+\mathbf{3 0 p}$ P\&P.
EPROM PROGRAMMER PCB - 28.45 inc. YAT \& P\&P
SPECIAL OFFER (I OFF) - ITT 2020 (Apple) Computer System 48K RAM, 2 disk drives, cen tronics printer card, all in good condition - $£ 1,249+$ VAT.
FLOPPY DISCS $-5 \frac{1}{f}$. hard or soft sectored $\$ 3.30+$ VAT.
PRINTER PAPER - 80 column sprocket-fed - for Anadex, CITOH, Dolphin, Paper Tiger, etc \&21.25 for 2,000 sheets.
PROGRAMMABLE INTELLUGENT VDU - (6800 based) green phosphor, full professional stan
dards, RS232, any band up to 9600 , solid, robust keyboard $-£ 745+$ VAT $+£ 10$ carriage.

MAIL ORDER PROTECTION SCHEME

INTRODUCTION

The Office of Fair Trading have agreed that the notice of the Mail Order Protection Scheme to appear in periodicals carrying mail order advertising should appear as follows:-
"MAIL ORDER ADVERTISING
British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfill orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.
Mail Order Protection Scheme
If you order goods from Mall Order advertisements in this magazine and pay by post in advance of delivery, Practical Electronics will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Practical Electronics summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded.

SOUTH EAST ENGLAND'S
 ELECTRONICS CENTRE

Interested in Electronics? Then why not pay us a visit and see our vast range of Test Equipment, Oscilloscopes, PSUs, Computer Equipment, Government Surplus, VDUs, ICs, Transistors, Relays, Motors, Bulbs, Cable Transformers, PCBs, Resistors, Amplifiers, etc., etc.
$\star \star \star$ THIS MONTHS SPECIALS $\star \star \star$

We've done it agalnl We've purchased a large quantity of CP CLARE top quality keyboard reen switches plus full QWERTY keytop sets and thrown In a PCB to enable vou to customise the keys just as YOU wamt them, just add and wlre an encoder chip and you can arrange ASCII, BAUDOTS anything! Adding up to a quality keyboard which would normally cost around £100.00. Supplied with layour and assembly info at only $£ 26.99+£ 1.50$ pp .
Miniature 5 V 3 amp PSU, compact fully regulated, + crowbar protection. $\mathbf{8 8 . 5 0}+\mathrm{P} \mathrm{\&}$ P $70 p$ Super value PCB pack. Contents include IC: s res caps etc., etc Guaranteed to Include ITL and
CMOSI 6 Boards, Our choice. $\mathbf{~} 2.50+$ PPP 600
Wire wrap patch panela inc. 1016 pin and 5414 pin gold plated DIL WW sockets +64 TLL and
OTL I.C s dim. $6^{*} \times 7^{7} . f 8.95+P \&_{8} P 85 p$

49 key coded QWERTY keyboard, 8 bit output, delayed strobe, 5 V rail, TTL output. Ex-equip. un-
tested. Supplied with edge conn. \& connection diagram. $820.00+\mathrm{P} \& \mathrm{P} \in 1.60$
 £1.00.0.125" RED LEDS 12 for $\mathbf{£ 1 . 0 0 . 2 \text { N3055H (RCA) }}$ 4 for $£ 2.25$. $1 \mathrm{~S} 44 / 1$ N4 14850 for $\mathbf{£ 1 . 0 0}$. Stock list 50p. Where P\&P not shown please add 40p per order.
Prices include VAT.

- ELECTRONIC EQUIPMENT AND COMPONENTS PURCHASED FOR CASH
\star OPEN 9.30 TO 5.30 MONDAY TO SATURDAY $\quad \star$ RETAIL AND TRADE \star NO PARKING RESTRICTIONS \quad ACCESS \& BARCLAYCARD

64-66 MELFORT ROAD
THORNTON HEATH
SURREY. 01-689 7702

SERVICE TRADING CO

FT3 NEON FLASH TUBE

High intenstity multi turn high voltage, neon glow
discharge flash tube. Design for ignition timing etc.
f1.50. P. \& P. 250 ($\mathbf{2} 2.0$ inc. VAT) 3 for $£ 3$. P. \& £1.50. P. \& P. $25 p$ ($£ 2.01$
P. 50 (4.03 Inc. VAT \& P)

WHY PAY MORE?

 MULTI RANGE METER TYP MF15A a.c. d.c.volts 10.50 .250 .500 .1000 . Ma o-5. $0-10$.
0 - 100 . Sensitivity 2000 V .24 range diamer 133 Dy 93 by 46 mm including tesi leads. Pricp
METERS (New) - 90 mm DIAMETER
A.C. Amp., Type 62T2, 0-1A. 0-5A, 10A, 0-20A, 50 A.C. Vort. $0-150 \mathrm{~V}, 0-300 \mathrm{~V}$.
D.C. Amp., Trpe 65C5, 0-2A, 5A, 0-10A. 0-20A. D.C. Amp., Trpe 65 C
O-50A. O-100A.
DOV \qquad . Volt. $15 \mathrm{~V}, 30 \mathrm{~V}$
All types $£ 3.50$ ea. + P. \& P. 50 p ($\mathbf{5} 4.60$ incl. VAT), except 0.50 A HEAVY DUTY SOLENOID mf. by HEAVY DUTY SOLENOID mf. by
Magnetic Devices. 240 V . A.C. Intermitent operation. Approx. 20 lb . pult at
$1-25$ in. Ex-equip. Tested. Prlce: $£ 4.75$

12V D C SOLENOID
12V. O.C. heavy duty Solenoid 4 Kp . pull. Easily removable from plate. All. chassis containing $4 \times 2 \mathrm{dV}$. D.C. Push Solenoids (1 $\frac{1}{2}$ Ib.
approx.). 5 -fig. Counter. 6 min . photo cells. Sub-min. Microswitches etc. etc. Ex-equip. London Transport Printer. Price:

12 V . D.C. Sotenoid approx. 1Ib. pull. Price: $\mathrm{E1} .40+$ p. \& p. 30p.
(total incl. VAT $£ 1.96$).
SOLENOIDS
WESTOOLSEAIES 06 Model A3 24V. D.C. Price $21.50+50$ p p. \& p. (Total inct. VAT £2.30) WESTOOL SERIES DA Model A. 24 V. D.C. Price $£ 1.00+30 p$ p. \& p. (Total incl. VAT $£ 1.50$)
N.M.S. AG/GT 24V. D.C. 70 ohm Coil Solenoid. Push or Pull. Adjustable travel to $3 / 16 \mathrm{in}$. Fitted with mounting brackets and spark sup-
pressor. Size: $100 \times 65 \times 25 \mathrm{~mm}$. Price: 3 for $\mathbf{E 2} .40+30 \mathrm{p}$. P. \&

800 WATT DIMMER SWITCH

Easily fitted. Will control up to 800 W . of all Hghts
except fluorescent at malns
50 p p. \& p. ($£ 5.06$ inc. VAT).
 +p. (total incl. VAT £9.55).
30p.

MICRO SWITCHES

Sub. Min. Honeywell Lever m/s type
for $\mathbf{~} 3.50$ post paid (f 4.03 incl . VAT)
These V3 types.
Button type (Pye) 10 for $£ 3.00$ ($£ 3.45$ incl Vat
Short Lever type 16 amp. rating (Grouzet) £4.00
(E4.60 incl VAT)
Rofler Type (Bonnella) 10 for $\mathbf{8 3 . 5 0}$. (E4.03 incl. VAT). N.M.S
D.P. CJO lever m/swltch mifg, by Cherry Co. USA. Precious metal
low resistance contacts. 10 or $£ 2.25$ F. \& P. 30p. Total inc. VAT low resistance contacts. 10 or $£ 2.25$ P. \& P. 30p. Total inc. VAT
N.M.S
MERCURY SWITCH
Size $27 \mathrm{~mm} \times 5 \mathrm{~mm}, 10$ for 55.00
(Incl. VAT E6.12) min quantity 10 .
Heary duty type size $38 \times 16 \times 10 \mathrm{~mm}$. minimum quantity 10.
E7. 60 post paid ifs. 63 inc. VAT \& P.).
A.E.G. CONTACTOR

Type LS6/L11. Coil 240 V 50 Rs Contacts - 3 make: 600 V 20amp. 1 break: $600 \mathrm{~V}: 20 \mathrm{amp}$. Price: ES. $80+50 \mathrm{p}$ P. A. P.
(EB.90 inc. VAT \& P.).
ARROW-HART MAINS CONTRACTOR, Cat. No. 130A30. Coil 250 V . or 500 V . A.C. Contacts. 3 make 50 amp up to 660 V . A. C. 20 N . p. at 440 V . 3 phase 50 Hz . Price: $\mathrm{E7} .75+\mathrm{p}$. p. Et.00 (inct. Va, total: E10.06). N.M.S.

SMITH BLOWER

Type FFB. 1706 . Small. quiet. smooth running. 240 V . A.C. operation. Output aperture $45 \times 40 \mathrm{~cm}$. Overafl size $135 \times 165 \mathrm{~cm}$.
Flange mounting. Price: $\mathbf{C 4 . 2 5}$. P.\& P. 75p. (Total: $£ 5.75 \mathrm{inc}$. P . 8. VAT. N.M.S.

24 volt. D.C. BLOWER UNIT Precision 24 volt. D.C. 0.8 amp Blower that works well on 12 V 0.4 amp O.C. Producing 30 cu.t. min at
£. 50 P. \& P. 75 (inc. VAT E6 04). N.M.S.

INSULATION TESTERS NEWI

 Test to I E E Spec Rugged metal construction clutch Size L 8 in W 4 in H 6 in weight 8 lb , 800 V . 500 megohms. f49.Post 80 p ($\mathbf{5} 57.27$ Inc. VAT a P.). $1.000 \mathrm{~V} 1,000 \mathrm{M}$, E5S. Post 800 Yet another outsianding offor.
IMFD 600 V Dubilier wire 10 for $£ 1.50$ p\& p SOp. 1 E2. 30 inc VAT 230V a.c. FAN ASSEMBLY. Powartul continuouatry rated a.c. motor comoleta. with 5 disd powertul continuoualy
6 tin. or 4 bleos 3 in .

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/240V a.c. $50 / 60$ OUTPUTO-260V
1 KVA $2 \frac{1}{5}$ amp (MAX)
.2 KVA (10 amp MAX)
3 KVA (15 amp MAX)
io KVA (25 amo MAX)

3-PHASE VARIABLE VOLTAGE

TRANSFORMERS

BKVA (max. 15 amp.$)$ BKVA (max. 30 amp .)
 $\mathbf{8 1 0 8 . 4 3}$ All plus Carriage $\mathbf{£ 1 5 9 . 3 7}$ OKVA (max. 50 amp .) $[327.43$

LT TRANSFORMERS

$13-0-13 \mathrm{~V}$ at 1 amp £2.50 P. \& P. 50p [£3 . 46 Inc. VATI
$0.4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}$ at 12 amp f18.50 P. \& P. £ 1.90 (£23.46 inc.

 $0-6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$ at 20 mp m 19.00 P . \& P. $£ 1.50$
$(\mathbf{C 2 3 . 5 B}$ inc. VAT \& P.) $0-10 \mathrm{~V} / 1 \mathrm{~N} / 18 \mathrm{~g}$ at 10 amo 10.50 P .8 P . £ 1.50 (E1 3.00 inc . VAT)

HY-LIGHT STROBE KIT MK IV

Latest type Xenon white light tlash rube. Solıd state
timing and triggering circuit $230 / 240 \mathrm{~V}$ a.c. operation. Designed for larger rooms, halls, etc. Speed adjustable $1-20$ f.p.s. Light output greater than manv iso called 4 Joule) strobes. Hy-Light Strobe Kit Mk IV. $£ 22.00+£ 1.50$ P \& P lincl. VAT total £27.03). Specially designed case
and reflector for Hy-Light $£ 9.00$. Posi $£ 1.50$ (12.08 and reflector for Hy-Light $£ 9.00$. Posi $£ 1.50$ ($£ 12.08$
Incl. VAT \& P.). Super Hy-Light Strobe (approx. 16 joules) Incl. VAT \& P.). Super Hy-Light Strobs (approx.
Price £33. \& P P .1 .50 (incl. VAT total $\mathbf{\varepsilon 3 9 . 6 8 \text {). }}$. Suitable case $\mathrm{E} 11.00+£ 1.50 \mathrm{P}$ \& P ($\mathbf{1} 14.30 \mathrm{Incl}$. VAT \&
P. \& P .).

XENON FLASHGUN

 TUBESAange avalable from stock

ULTRA VIOLET BLACK LIGHT FLUORESCENT TUBES
4t. 40 Wrat $£ 8.70$ inc. VAT $£ 10.00$ (kallers only).
24.20 watt $£ 6.20$. Post 750 .($\mathbf{~} 7.99$ hc. VAT + P)

 9 in .6 watt $£ 2.25$. Post 35 p . ($£ 2.99$ Inc. VAT + P).
Bin. 4 watt £2.25. Post 35 . (2.99 inc. VAT +P .
 f4.50. Post 45p. ($£ 5.69$ inc. VAT +P). Also avaliable for 12 V 400 watt UV lamp and bollast complete E38.00. Post $£ 3.50$ ($E 47.73$ incl. VAT + P), 400 watt UV lamp only E14.00. Post £1.50. ($£ 17.83$ incl, VAT +P).
WIDE RANGE OF DISCO LIGHTING EOUIPMENT S.A.E. (foot scap) for details.

PROGRAMME TIMERS

 6 adjustable 6 fixed cams. Price $\mathbf{\Sigma 6 . 0 0}+\mathbf{7 5 p}$ p. \& p. (E7.70 inc.

Superior Quality Precision Made NEW POWER RHEOSTATS
 NEW POWER RHEOSTATS

winding heavy duty brush asse, continu.
25 WATI
$\mathbf{2 5}$ WATT $10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{kO}$,
$1.5 \mathrm{k} \Omega$ £ 2.40 . Post 20 p I 22.99 inc. VAT \& P

50 WATT 250 Q $£ 2.90$. Post 25 p (E3. 62 inc VAT \& P)
100 WAT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} \Omega / 1 \cdot 5 \mathrm{k} \Omega / 2 \cdot 5 \mathrm{k} \Omega$ Black, Silver, Skirted knob calibrateo

in your enquiries.
Uther types available - phone for details.
$230 / 240 \mathrm{~V}$ A.C. Releyw: Arrow 2 c/o. $15 \mathrm{gmp} £ 1.50$ (f1.98 inc VAT \& PI.
T.E.C. open type $3 \mathrm{c} / \mathrm{o}$. $10^{\circ} \mathrm{amp}$ \&1. 10 (E 1.50 inc. VAT \& P).

KMKI Rolav. 230 V, A.C. $1 \mathrm{c} / \mathrm{o}$. open type 10 amp contact, mf. by "Kevswitch" 80p. + 20p. p. \& p. ($\mathbf{1} 1.15$ incl. VAT). 5 for E 3.75 postpaid ($\mathbf{E} 4.32$ incl. VAT).
O.C. Rolaya: Onen ivpe $9 / 12 \mathrm{~V} 3 \mathrm{c} / \mathrm{o} 7 \mathrm{amp}$ e 1.00 (fi. 38 inc VAT \&, PI Sealed 12 V 1 clo 7 amp octal base. $\mathrm{E1.00}$ (fl 1.38 inc VAT \& P). Sealed 12 V 3 ef 7 amp 11 -pin. E1.35 (f1.78 inc

Hellermann Deutach. Hermetically sealed sub-min. Relay. 12 24 V. O.C. 2 clo. 850 ohm coil. 0.2 pitch. P.C. mounting. L. 20 mm $\mathrm{W} .10 \mathrm{~mm} . \mathrm{H} .12 \mathrm{~mm}$. Fra
[$2.88 \mathrm{hml}, \mathrm{VAT}] . \mathrm{N}, \mathrm{M}, \mathrm{S}$.
Diemond H heavy duty A.C. relay $230 / 240 \mathrm{~V}$ a.c. iwo C/O VAT + papl Special base 50 p finci Vat 58 p
4.5rpm SIGMA motors approx. 351 bs inch
$7+\mathrm{rpm}$ KLAXON motors approx 251 b inch

7 frpm KLAXON motors a pprox. 25 lb inch
28 rpm WYSSCALE motors approx 20 tb in
71 rpm WYNSCALE motor approx. 1 OIb inch Above four motors are designed for 110 V . A.C. supplied with auto transtormer 240 V . A.C. operation. $£ 7.75$ p. \& p. 75 p. Total licl. VAT E9.78. N.M.S.
19 rpm FHP $220 / 240 \mathrm{~V}$. $3 . \mathrm{c}$. reversible.
torque 14.5 kg . Gear ratio $144-1$ - Brand
 $30 \mathrm{ipm} .230 / 240 \mathrm{~V}$, a.c. 50 lb . in. mf. PARVALUX. Price: $£ 1500+$ E1.50 P. \& P. (E18.98 inclus. VATI. N.M.S.
 Price: E1500 ${ }^{+}$E1 50 P. \& P. IE18.98 inclus. VAT). N.M.S.
100 rpm . 110 V . a.c. 115 tb in. 50 Hz 2.8 amp. single pha
immense power.
Totaily enclosed. In-line gearbor, Length
 15.5 mm , length 145 mm . Tested. Price: $£ 12.00+£ 1.50 \mathrm{P}$ \& $\& \mathrm{P}$.
($\mathbf{\Sigma 1} \mathbf{5 . 5 3}$ inclus. VAT). R. \& T. Suitable Transtormer for $230 / 240 \mathrm{~V}$ roperation. Price $\mathbf{E} 8.00+75 p$. P. \& P. ($£ 10.06$ Inc. VATR.
200 rpm .35 lbs , in. 115 V .50 Hz .
P20.13 inclus. VAT). N.M.S Price: $\mathbf{E 8} 00+$ E1.00 P. \& P. (E10.35 inclus. VAT). N.M.S.

1 pm $230 / 240$ V, a.c. Synchronous geared Motor, mf. HAYDON.

VATI. N.M.S.
1.400 rpm 115 V . ac. Motor, HP \% continuously ratad. Fined with
anti-vibration cradie mounting Mh. FRACM6. Supolied com-anti-vibration crade mounting
plete with Transformer for $230 / 240 V$. a.c. operation. Price:

24V. D.C. GEARED MOTOR

24V. D.C. 200 rpm $101 \mathrm{bs} / \mathrm{in}$. continuously rated geared Motor
24V. D.C. 200 rpm
mfg. by either Parvalux or Carter. Easily removable from heavy
ali. chassis contalning $9 \times 24 \mathrm{~V}$. O.C. Solenoids, microswitehes. alf. chassis contalning $9 \times 24 \mathrm{~V}$. O.C. Solenoids, microswitehes. friction clutch, precision gearing etc. etc. Ex-equipment London
Transport Ticket Printer. Price: $\mathbf{1} 11.00+£ 2.00 \mathrm{p}$. \& p. (total incl. VAT $\mathbf{1} 14.95$).
24V. D.C. REVERSIBLE MOTOR
Parvalux type SD12L, 24 D.C. shunt wound Motor, alther 133 rpm 65 lbs in Gearbox ratio $30: 1$. Current 6.8 amp. Rating Con-
tinuous. Will operate on reduced power and speed at 9 V .C. or less. Size Dia. 16 mm , Width 150 mm , Shaft dia. 16 mm . Price ess.
$16.00+£ 2.00$ p. \& p. (20.70 incl. VAT). N.M.S. or 60 rpm
100 in rating. Price as above. N.M. 1001 b in rating. Price as above. N.M.S.
100W Rheostat 1 ohm speed control available $\mathbf{8 6} .90$ (E7.94
ROTARY CARBON VANE VACUUM 8 COMPRESSOR.
Direct coupled to $1 / 3 \mathrm{~h} . \mathrm{p} .110 / 115 \mathrm{~V}$. A.C. Motor 4.2 amp . 1380 irpm. Motor manuf. by A.E.I. or G.E.C. Pump by Williems. Mex. Vac. 25° H.G. Max. pressure cont. 10 p.s.i. int. 15 p.s.i. Max. airflow 3 c.f.m. at "O" H.G. Price: $£ 30.00+£ 3.00$ P. \& P. (t 37.95
incl. VAT). N.M.S. Suitable ransformer for 240 V . op. $£ 10.00$ P. \& P. $£ 2.00$ (E13.80 incl. VAT). N.M.S
COMPRESSOR
Precision bullt USA. Horlzontally
opposed iwin head diaphrape type opposed iwin head diaphragm type
producing 201bs. approx. P.S.I. per head. 3.5 plus C.F.M. Output virtually pulse free. Powered by 110 V A.C,
motor size $30 \times 23 \times 15 \mathrm{~cm}$. Weight 7
 motor size
kilos. Price $£ 25.00+£ 2$
(Total incl. VAT £31.05).
Suitable transformer for 240 V op. $\mathbf{8 8 . 0 0 ~ P . ~ \& ~ P . ~} \mathrm{f} 1.50$ (E10.93
N.M.S. inc. VAT). VERY EXCEPTIONAL OFFER
REDUCTION DRIVE GEAR BOX.
Ratio 72 :1. Input spindle $\frac{1}{4} \times \frac{1}{2}$ in. Output spindle 1×3 in. long. Overall size approx: $120 \times 98 \times 68 \mathrm{~mm}$. All metal construction. Ex-equip. tested. Price: $£ 2.00+$ 50 p . (linel VAT E2.80).

A.C. Wkg. TUBULAR CAPACITORS.

Fraction of maker	6^{60}	7.5 mfd .	200V.A.C.	£1.00
2 mfd 250V. A.C.	60p	10 mfd .	250V. A.C.	81.00
2 mfd 450V. A.C.	78p	10 mfd .	400V. A.C.	[1.75
2.2 mfd .440 V . A.C.	$75 p$	14 mfd .	400 V . A.C.	c3.00
$3 \mathrm{mfd} .440 \mathrm{~V} . \mathrm{A} . \mathrm{C}$.	[1.00	15 mfd .	250 V	
4.1 mfd. $440 \mathrm{~V} . \mathrm{A} . \mathrm{C}$.	ع1.00	(Block)		14.50
5 mfd 400V. A.C.	¢1. 25	19 mfd .	280V, A.C.	22.00
5.3 mfd . 160 V . A.C.	$60 p$	20 mfd .	250V. A.C.	f2.25
5.4 mfd. 280V. A.C.	75p	50 mfd .	370 V .	c5.00
6.5 mfd. 280 V . A.C.	f1.00		(Bloc	

Vermer Type ERD Time switch 200/250V a.c.
30 amp contact 2 on $/ 2$ off every 24 hrs. at any and day omitting device. Built to highest Elec-
trictry Board specificatlon. Price
E9.00. triclty ${ }^{\text {Board }}$ specificatlon.
P. \& P. 75 (f19.22). R. \& T.

SANGAMO WESTON TIME SWITCH

 Type S251 $200 / 250 \mathrm{~V}$. a.c. 2 on/2 on every 24 hours. 20 50p inc. VAT E9.78. Also available with Solar dial. A. \& T.
All Mail Orders

 Callers Ample Parking Space Showroom open Mon-Fri.

ACCOUNT CUSTOMERS MIN. ORDER $£ 10.00$

Personal callers only Open Saturdays
9 Little Newport Street, London WC2H 7JJ
Phone 01-437 0576

CAMBRIDCE LEARNING ENTERPRISES
 Instruction Courses

Microcomputers are coming - ride the wave! Learn to program. Millions of jobs are threatened but millions will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency, with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program,
 debugging, and clear documentation
BOOK 1 Computers and what they do well: READ, DATA, PRINT, powers, brackets, variable names; LET; errors; Coding simple programs. BOOK 2 High and low level languages; Flowcharting; functions; REM and documentation; INPUT, IF....THEN, GO TO; limitations of
 RESTORE; debugging; arravs; bubble sorting; TAB BOOK
strings; files; complex programming; examples; glossary.

Also THE BASIC HANDBOOK (BHB) £11.50 An encyclopaedic guide to the major BASIC dialects. A must if you use other peoples' programs
and: ALGORITHM WRITER'S GUIDE (AWG) £4.00 Communicate by flow chart! Learn to use Yes/No questions for: procedures, system design, safety, legislation etc.

Understand Digital Electronics

Written for the student or enthusiast, this course is packed with information, diagrams, and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters, and simple arithmetic circuits; and finally to an understanding of the design and operation of calculators and computers
 BOOK 1 Decimal Octal, hexadecimal, and binary number systems and conversion between number systems; negative numbers; complementary systems. BOOK 2 OR and AND functions; multiple-input gates; truth tables; De Morgan's Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic. BOOK 3 Half, full, serial, and parallel adders: subtraction; processors and ALU's; multiplication and division. BOOK 4 月ip Ilops; shift registers; asynchronous, synchronous, ning, Johnson, and exclusive-OR feedback counters; ROMS and RAMS. BOOK 5 Structure of calculators; keyboard encoding; decoding display-data; register systems; control unit; PROM; address de-cading. BOOK 6 CPU; memory organisation character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming, assemblers; computers; executive programs; operating systems.
DIGITAL COMPUTER LOGIC \& ELECTRONICS. (DCL) £7.00 A course covering the material in italics above, but at a slower pace. (4 vols)
GUARANTEE - No risk to you. If you are not completely satisfied your money will be refunded without question, on return of the books in good condition.

CAMBRIDGE LEARNING ENTERPRISES, RIVERMILL SITE, FREEPOST, ST. IVES. HUNTINGDON.

PLEASE SEND ME: -

CPB	$(£ 9.00)$	\square
BHB	(£11.50)	\square
AWG	$(£ 4.00)$	\square
DDS	$(£ 12.50)$	
DCL	$(£ 7.00)$	

Quamtity DDS ($\mathbf{(1 2 . 5 0)}$ DCL ($\mathbf{~ 7 7 . 0 0)}$

FOUR WAYS TO PAY
I) A U.K. cheque or a U.K. postal order (Nor Eire or Overseas)
2) A bank draft, in sterling on a London bank (available at any major bank)
3) Please charge Iny Access/M.Ch Barclay/TrustC/Visa Am. Exp. \square Diners \square 4) Or phone us with these credit card details - 048067446 (ansaphone) 24 hour service.

Card No

Signed
THESE PRICES COVER THE COST OF SURFACE MAIL WORLDWIDE. AIRMAIL: Eur, N.Af, Mid.E. add $1 / 2$ to price of books: Jpn, Aus, N.Z, Pcfc add \%: elsewhere add $1 / 2$

Name
Address.

Cambridge Leaming Enterprises, Unit 23, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR England. U.K. Delivery: up to 21 days
Proprietors: Drayridge Lid., address as above, Reg. in Eng. No. 1328762

COLOURBOARD II

THE NEW 5OHE COLOUR VERSION OF OHIO SCIENTIFIC'S SUPERBOARD II
IS HERE AND LIKE A TON OF BRICKS DOWN CRASHES THE PRICE OF TON OF BRICKS DOWN CR
STANDARD SUPERBOARD II

5OHZ UK BLACK AND WHITE SUPERBOARD II $£ 159.95+15 \%$ VAT POST FREE.
COLOURBOARD II $\mathbf{2} 205+\mathbf{1 5 \%}$ VAT.

SINCLAIR (THANDAR) PRODUCTS

SC110 10 MHz oscilloscope (illustrated) £144.95. PFM200 $£ 51.95$, case $£ 2.07$. adaptor $£ 4.20$ connector $k i t ~ £ 13.95$. POM35 £34.23, mairis adaptor $£ 4.20$, case £2.07. DM350 £76.70, DM450 £102.17. DM 235 £55.55. Accessories for all 3 models:- rechargeable batteries
$\mathbf{E 7 . 9 9}$ mains adzotor/charger $\mathbf{~} 4.20$, case $£ 8.90$. Enterprise prog calculatior c19.95.

SWANLEY ELECTRONICS

Dept. PE 32 Goldsel Rd Swerey, Kont BR8 8 Ez

Mail order only. Please add 35p postage. Prices include VAT unless stated Lists 27 p post free. Overseas customers deduct 13%. Official credit orders weicome.

THE firm for speakers! SEND 50p FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

AUDAX - AUDIOMASTER - BAKER BOWER \& WILKINS - CASTLE CELESTION - CHARTWELL COLES - DALESFORD DECCA EAGLE ELAC EMI FANE GAUSS - GOODMANS - HARBETH IISOPHON I.M.F. JORDAN JORDAN WATTS - KEF - LOWTHER - McKENZIE MISSION - MONITOR AUDIO - MOTOROLA - PEERLESS - RADFORD - RAM - ROGERS RICHARD ALLAN - SEAS - SHACKMAN STAG - TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO (Dept. P.E.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Tel: 0625529599
FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS ETC.
Tel: 0625526213
(SWIFT OF WILMSLOW) FOR HI-FI \& COMPLETE SPEAKERS

Thenew

 Toolrange catalogue
\qquad

still the only

 catalogue of itskindThe New Toolrange Catalogue is still the only comprehensive single source of electronic toois and production aids.
The product range has almost doubled since last year and now over 2,000 tools, toolkits and service aids are illustrated in full colour.
Products from over 100 top manufacturers are available from stock.
Over 60,000 catalogues are now in circulation. If you don't have one simply write, telephone or telex Toolrange for your free copy.

AITKEN BROS

35, High Bridge, Newcastle upon Tyne

Tel: 063226729

EXP300

PB6 Kir

EXP300

550 contacts with two 50 -point BUS bars. Size $152 \times 53 \mathrm{~mm}$. $\mathbf{\text { C8.95}}$.
PROTO-BOARD 6 KIT
630 contacts, four 5 way binding posts. accepts up to 614 pin DIPs. 110.98 .

CSC LOGIC PROBES

LP-2 ECONOMY PROBE
Min. pulse width 300 nanoseconds, $300 \mathrm{~K} \Omega$ input impedance, tests circuits up to 1.5 MHz . Detecting pulse cults. $\mathbf{E} 20.95$.
LP-1 Memory Probe LP-3 High Speed Memory Probe [56.75

CALSCOPE SUPER $6 \mathbf{£ 1 8 6 . 3 0}$

A portable single beem 6 MHz bandwidth oscilloscope with easy to use controls. Migh gain to $10 \mathrm{mv} / \mathrm{cm}$ and wide time base range from $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$. Full specification to request. Piease send S.A.E. Professional scopes you can afford.

CALSCOPE SUPER 10 £251.85

A dual trace 10 MHz instrument of the very highest performance and quality. It has an accurecy of 3% which is achieved by the use of built-in stabilised power supplies which keep the trace rock steady over a wide range of mains

SINCLAIR LOW POWER PORTABLE

 OSCILLOSCOPE SC110 E159.85The SC 110 has a 10 MHz bandwidth and sensitivity down to 10 mV per division. Full trigger facilities are provided, including bright line, auto with TV line and frame positions. Please send for full spec. and illustrated brochure.

TMK 500 MULTIMETER 30.000 o.p.v. AC volts $2.5,10,25,100,250,500,1000$. DC volts. $0.25,1,2 \cdot 5,10,25,100,250,1000$. DC current $50 \mathrm{ya}, 5 \mathrm{MA}, 50 \mathrm{MA}, 12 \mathrm{amp}$. Resistance $0-6 \mathrm{~K}$ 60K, 6MEG. 60MEG. Decibels. -20 to +56 db Buzer continuity test size, $160 \times 110 \times 55 \mathrm{MM}$ Batteries \& leads included. PRICE £25:95.

CSC EXPERIMENTOR BREADBOARDS
No soldering modular breadboards, simply plug components in and out of letter/number identified nickel-silver contact holes. Start smal! and simply snap lock boards together to build breadboards of any size.

SINCLAIR DM350
 £83.95 SINCLAIR DM450 £114.95
 Size $255 \times 148 \times 40 \mathrm{~mm}$

DM350 $3 \frac{1}{2}$ diglt display DM450 $4 \frac{1}{2}$ digit display. Both provide six functions in 34 ranges. D.C. voltage $10, \mathrm{~N}$ to 1200 liop 1 M . D.C. current ina to 1OA. A.C. current InA to IOA resistance 10 mQ to 20 MQ ($100 \mathrm{~m} \Omega$ opn DM350). Accessories for DM350 \& 450 as for DM235 below. Full spec. on request Please send S.A.E.

Sinclair PFM200 frequency meter

Size $157 \times 76 \times 32 \mathrm{~mm}$.
Range 20 Mz to 200 MHz . Accessories and illustration as for PDM35 below. ᄃ57-95.

SINCLAIR PDM35

DIGITAL POCKET MULTIMETER
DC volts (4 ranges) imV to $1000 \mathrm{~V} A C$ volis iV to 500 V DC current (6 ranges) 1 nA to 200 MA Resistance (5 ranges) 1Ω to 20 MEGQ. PRICE ing case $\mathbf{f} 1.95 \mathrm{MN} 1604$ Battery f 1.28
Size $157 \times 76 \times 32 \mathrm{~mm}$.

SINCLAIR DM235

BENCH-PORTABLE DIGITAL
MULTIMETER
DE voits "(4 ranges) 1 mV to 1000 V AC volts 14 angest IMV to $750 \mathrm{~V} A C \& D C$ current 1μ to 1000MA Resistance (5 ranges) 1Ω to $20 \mathrm{MEG} \Omega$. PRICE f60.98. Carrying case f8.95. AC adaptor/charger. £4.25. Rechargeable Battery Pack. E8.95.
Size $255 \times 148 \times 40 \mathrm{~mm}$.

PANEL METERS

DIMS $60 \mathrm{MM} \times 45 \mathrm{MM} .50 \mu \mathrm{amp}$, $100 \mu \operatorname{amp} 1 \mathrm{MA}$ $5 \mathrm{MA}, 10 \mathrm{MA}, 50 \mathrm{MA}, 100 \mathrm{MA}, 500 \mathrm{MA}, 1$ amp, 2 0-0-50ua 100-0-100ua 500-0-500 нa PRICE E5.95.

DESOLDERING TOOL

Education Establishment Orders Accepted. PHONE OR SEND YOUR ACCESS OR ALL PRICES INCLUDE POSTAGE AND VAT.

MONTORS MONITORS MONTORS
 Uncased from $3^{\prime \prime}$ to $12^{\prime \prime}$ Cased from 5" to $20^{\prime \prime}$
 Semi professional or professional available from stock.
 Monitor PCB's including Transformers and Tubes also in stock.
 Phone or write for details.
 CROFTON ELECTRONICS

Crofton Electronics Limited 35 Grosvenor Road, Twickenham, Middx. Tel:01 8911513

PROGRESSIVE RADIO 31, CHEAPSIOE, LIVERPOOL 122 DY

 PULSE TRANSFORMERS $i: 1$ (GPO type) $30 \mathrm{p}, 1: 1$ plus 1 min P. C. Mounting 80
MINIATURE SOLID STATE BUZZE R. $33 \times 17 \times 15 \mathrm{~mm}$. output at 3 feet 7 OCbib, only 15 mA drain, operating range 4-15VOC 75p each.
-12 voits 63 o. Rotury Alarm ziren, 12 VDC . Rod plastic body and mounting brackel $68 \times 75 \mathrm{~mm}$
COCKET MULTIMETER. MODEL NHE5 2.000 orms per voit. 1.000 voits AC/OC. 100 mA OC current, 2

MURATA TRANSDUCERS. 40 KH Z, REC/SENDER C 350 pair

13p. BNC plugs. crimp

HIGH IMPEDENCE HEADPHONES, mono 2.000 chms imp. wansducer npe, adiustable band and padded ear| Piece C2. 75. |
| :--- |
| SPECIAL |

OFFER STEREO HEADPHONES. 8 onms, adiuntable, standard stereo plug onlv $\mathbf{2 2 . 9 5 p}$
 180KHz, $\mathbf{1} 29.95 \mathrm{p}$.
 CONDENSER MICE Stich typo Omil 600 ohme. orviot switch, standard lack plug only 52.95 P . EM 807
 metal case only ET .75 F .

LB ELECTRONICS

PROCESSOR ICS (ALL FULL SPEC.)
1702A $£ 2.50,2708 £ 6.25,2716$ single rail $£ 28.50$, LM323K 5 volts 3 amps £4.50, 7805 £1, 7812 £1, 214 £4.50.
DIL SKTS LOW PROFILE: 8 way $12 p, 14$ way, $15 p, 18$ way 20 p, 16 way 17 p, 20 way 23 p, 22 way 28 p, 28 way 45 p, 24 way 35 p, DIL 16 WAY HEA DER SPECIAL OFFER ONLY 45p.
74116 SPECIAL OFFER 75p, 741254 for $£ 1,74198$ 75p, 74194 50p, 74181 80p, TIL 209 RED 10p, - ${ }^{\prime \prime}$ RED 12p.
MM5240 character generator + data $£ 3.50$.
4 digit EX calculator display 4 for $£ 1+$ data.
P.E.T. edge connector (memory expansion) 11.40.

74LS, C.MOSS, sub miniature toggles, 74 TTL , and computer equipment is stocked, i.e. V.D.U. printers etc. vast range of power supplies for callers. ALL ITEMS P/P 30p.
L.B. ELECTRONICS, 11, HERCIES ROAD, HILLINGDON, MIDDLESEX.
UXBRIDGE 55399
(Just off A40)
OPEN: Monday, Thursday, Friday and Saturday 9.30-6.00.
barciaycard
vish

Toroidal Transformers

Yet another new development from I.L.P
 (covered by 5 year guarantee)

 _ - TRANSFORMERS

 _ - TRANSFORMERS

 A division of ILP ELECTRONICS LTD.

 A division of ILP ELECTRONICS LTD. Gairan Bell House Roper Close. Gairan Bell House Roper Close. Canterbury CT2 7 EP 10227154778 Telex 965780

 Canterbury CT2 7 EP10227154778 Telex 965780}

We use advanced winding technology to make our toroidal transformers. They have only haff the weight and height of their laminated equivalents within the range and are appreciably more efficient. Our toroidals cost virtually the same as their now outdated laminated equivalents and hum is down to a negligible tenth of what it used to be. Each / \perp. . toroidal transformer is supplied with rigid mounting kit comprising centre bolt, two neoprane and one steel washer.

TYPE	VA	SECONDARY RMS VOLTS	SECONDARY RMS CURREMT	OIMENSIONS OIA-HT	$\begin{aligned} & \text { WEIGHT } \\ & \text { KG } \end{aligned}$	PRICE
2×010	50	$6+6$	4.16	$70 \times 40 \mathrm{~mm}$	0.9	transfoamers th This Range
2×011		$9+9$	277			
2×012		$12+12$	208			
2×013		$15+15$	1.66			£5.40 ${ }_{\text {c }}$
2×014		$18+18$	1.38			+ E1.10 P9
2×015		$22+22$	1.13			+ fo.98p vat
2×16		$25+25$	1.00			
3×010	80	$6+6$	6.64	90x 30 mm	1.0	transformeas in this rance
3×011		9+9	444			
3×012		$12+12$	333			
3×013		$15+15$	286			£5.70.
3×014		$18+18$	222			$+\mathrm{fl}, 20 \mathrm{Pip}$$+\mathbb{C 1 . 0 4} \mathrm{VaT}$
3×015		$22+22$	1.81			
3×018		$25+25$	1.60			
4×010	120	6+6	10.00	$90 \times 40 \mathrm{~mm}$	1.2	TRANSFORMERS IN THIS RANGE
4×011		$9+9$	686			
4×012		$12+12$	5.00			
4×13		$15+15$	4.00			f6.72
4×014		18+18	3.33			$\begin{aligned} & + \text { C } 1.30 \mathrm{PDP} \\ & +61.20 \mathrm{var} \end{aligned}$
4×015		22+22	272			
4×016		$25+25$	240			
5×018	160	$25+25$	3.20	$110 \times 40 \mathrm{~mm}$	1.8	
5×017		30+30	286			. 8.88 e + 51.54 VAT
6×046	300	25+25	8.00	$110 \times 50 \mathrm{~mm}$	28	
6×017		30+30	500			112.27 $\mathrm{e}+\mathrm{E222}$ vat

NOTE: For 220 V Primary please insert 1 in place ol X in type number. Example. $120 \mathrm{VA} 240 \mathrm{~V} 15+15 \mathrm{~V} .4 \mathrm{~A}=42013$
For 240 V Primary please insert 2 in place ol X in type number. Custom design and O.E.M. enquiries welcomed.

FREEPOST

We pay postage on

 your enquiries and orders Simply address your en velope: FREEPOST 12 ILP ELECTRONICS. Graham Bell House, Ropery Close. Canter: bury Cta INe.[^2]
High performance, low cost

AUDIO SIGNAL GENERATOR

Battery model AO113. £29.50
(UK tax extra £4.40) Mains version £36.00
(+ UK tax $£ 5.40$)
Spec. $10 \mathrm{hz}-100 \mathrm{KHz}$. Output Iv rms, attenuated. Distortion better than $.02 \%(1 \mathrm{KHz})$

TELERADIO ELECTRONICS

325 Fore Street, Edmonton N90 OPE. Tel. 8073719.
Also RF signal generators. SWR meters. MVMt. Function (sweep Generators) etc.
Details sent on request.

Top Priority for every constructorHOME RADIO CATALOGUE

- Over 2,000 items clearly listed. - Profusely illustrated throughout. - Over 100 A-4 size pages.
- Bargain list included free.

Send cheque or P.O. for $£ 1.30$
HOME RADIO Components LTD Dept. PE. P.O. Box 92,215 London Road, Mitcham. Surrey
$01-6488422$

$6^{\prime}-C$ C	TS- 6
	ELECTRONIC ROTOR
10	All Kerooarest are asilv cut to provide vour required quifoght quite welcom.
	BUILDING SERVICE We are specialists in Electronic Plano - see lists.
${ }_{i z}{ }_{z}$ OCTAVES- 232	information
P.E.STRING ENSEMBLE The versatle String Synthesizer with a fan- tastic sound at an economic price. Split	
oices. COMPONENT KIT - 169	EXPORT Enquiries welcome - in Australia please con- tact JAYCAR (Sydney).
pa:s-speakers-cabinets Units can be suspied to dod to the Piano 	Back up TELEPHONE advice is available from the $\begin{aligned} & \text { instructions included with the } \\ & \text { clear } \\ & \text { above Kite. }\end{aligned}$
CLEF PRODUCTS (ELECTRONICS)	
(Dept. PE) 16, Mayfield Road, Bramhall, Cheshire SK7 1JU. 061-439 3297	

RECEIVERS AND COMPONENTS

tunbrioge wells components, Ballards, 108 Camden Road. Tunbridge Wells. Phone 31803. No Lists. Enquiries S.A.E.

TURN YOUR SURPLUS Capacitors, transistors, etc., into cash. Contact COLES-HARDING CO., 103 South Brink. Wisbech, Cambs. 0945-4188. Immediate settlement.

bournemouth/podle. Electronic Components for the Hob byist, and FRIENDLY Service. Why not pay us a visit. H \& H Telectrics Lid., 353 Ashley Rd., Parkstone. 742643.
T\& Jelectronics components - Quality Components Sensible Prices. Same day Service. Send 30 p in stamps for our full lists. 98 Burrow Road, Chigwell, Essex 1G74HB.

SLOAN ELECTRONIC EQUIPMENT 117 Orby Drive, Belfast BT5 6AG		
NE555 B pin DIL	10 -way rotary switch. Make before break.... 22p	741 DIL 18p
$\begin{gathered} \text { PP3 } \\ \text { Battery } \\ \text { Clip } \\ \mathbf{1 2 p} \end{gathered}$	2-pole changeover. 8 A 250 v a.c. rocker .. 22p	
	BC337 9p. BFY52 20p	100 Resistors 85p
	35p Post and Pack	

Phototransistors - TIL 78. Brand New devices 0.40p each Inc P\&P. Quantity price on application. Trilec Instruments Lid., 17 Church Street, Mki Lavington, Devizes, Wilts. Tel: Lavington 2361.
RESISTORS $\frac{1}{4} \mathrm{~W}$ and +W surplus to requirements 50 p per hundred. Send S.A.E. for Lists. PHONOSONICS, 22 High Street, Sidcup, Kent, 01-3026184.
2000 brand new Capacitors Silver-Micre Pulse Bead Electrolitics etc., Fantastic value £32. Post Paid. Zero VAT. 200. Mixed sub-min skeleton presets $£ 5$. (Free with Capacitors) Calder Components, 19 Sandbeds Road, Pellon, Hallifax.

SMALL ADS

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $\mathbf{£ 8 . 0 0}$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Lid". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classlfied Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.
100. ASSORTED COMPONENTS 115p. 100. assorted resistors 60 p . 100 . assorted capacitors 150 p . 50 . reed switches 200 p . 10. mains neons 50 p. 10. Micro Switches 150 p . Add 25p P\&P. DURRANTS, 9 St. Mary's Street, Shrewsbury, Salop.

CLEARANCE PARCELS: Transistors. Resistors, Boards, Hardware, 101 bs only $£ 5.80$! 1,000 Resistors $£ 4.25,500$ Capacitors 13.75 . BC108, BC171, BC204, BC230, 2N506I, CV7497 Transistors $1070 \mathrm{p}, 100 £ 5.80 .2 \mathrm{~N} 3055$, 10 for $£ 3,50$. S.A.E. Lists: W.V.E. (2), 15 High Street, Lydney, Gloucestershire.

EX EQUIPMENT Radiospares 30 O-HM microphone transformers $£ 1.75$. Components + Designs for Digital Music Synthesisers, Mixers. Amplifiers. SAE list. M. Bryant, 49 Mowbray Grove, South Querensferry, West Lothian.
PDTENTIOMETERS, Resistors, D.I.L. Sockets-Quality Components at keen prices. Send large S.A.E. for lists. T. Milner, 203 Goodman Park, Slough, Berkshire SL2 5NP.

100 DIODES 85p. 50 Transistors 95p. 10 I.Cs 75p. All mixed. Post Paid. Lists 15p. Sole Electronics, (P.E.) 37 Stanley Street. Ormskirk, Lancs. L39 2DH.

SERVICE SHEETS

BeLL'S TELEVISION SERVICES for Service Sheets on Radio, Tv, etc $£ 1.00$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yortshire, Tel: (0423) 55885.

SERVICE SHEETS from $\mathbf{5 0 p}$ and S.A.E. Catalogue $\mathbf{2 5 p}$ and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

EDUCATIONAL

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. X272 Imertext House, London SW8 4U)
Tel. 01-6229911 (all hours)
State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a-higher paid job. Take the first step now-write or phone ICS lor details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-buld radio kits. Fuli details from:

ICSSCHOOL OF ELECTRONICS
Dept. X272 Intertext House, London SW8 4UJ
Tel. 01-6229911 (all hours)
State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Depl. X272 Intertext House, London SW8 4U Tel. 01-6224911 (all hours) Slate if under 18

BOOKS AND PUBLICATIONS

introduction to microprdcessors And Computing (Starter book) £2.30. Send SAE for descriptive list of micro, electronic IC project books and solderless breadboard EDUCATIONAL DATA AND TECHNICAL SERVICES, 59 Station Road, Cogenhoe, Northampton NN7 ILU.
any requested service sheet $£ 1$ + Large S.A.E. Full repair data any named TV $£ 5.50$ (with circuits, layouts etc. £7). SAE brings newsletter, bargain offers, etc. AUSPEL 76 Church St, Lark hall, Lanarks ML9 1HE

B00ks. B00ks. BoDKs. - Large range of Electronics Books in stock. Send S.A.E. for list. Servio Radio, (Dept PE8). 156/8 Merton Road. Wimbledon, SW 19 IEG.

FOR SALE

37 note keybdards with 3 Pole Contacts $£ 15$ each. Brand New Top quality I.C.'s ICL8038 £2. CA $72325 \mathrm{p}, 741 \mathrm{15p}$, 748 25p. Pots 10K LiN 10p. 250K LiN Tandem 20p. Alao have brand new synthesizers complete with Audio Lead and instruction book. Guaranteed for I year and after sales service. All at manufacturers clearance prices. Ring Banbury 58792 before 2 p.m. or after 5.30 .
FDR SALE "P.E.JOANNA" Electronic Piano ES5. Double Beam Oscilloscope £12. Phone Derby 73408.
'SOLARTRON' modern double-beam oscilloscope Type CD 1400^{\prime}. plug in modules. Exceptional condition, $£ 180$ or V.N.O. OSI-355 2833 (evenings). Also "Heathkit' transistor-tester, NOT HOME BUILT. Type IM-36. Reasonable offer?

NEW BACK ISSUES of "Practical Electronics" available 80p each Post Free. Open P.O./Cheque returned if not in stock BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate. N. Yorks. Tel:(0423) 55885.

SITUATIONS VACANT

inoustrial electronics: Are you an Electronic Test Technician or Service Mechanic? Have you had an apprenticeship followed by at least 5 years recent practical experience with a manufacturing or servicing organisation? If so we can offer you employment as an INSTRUCTOR, with good promotion opportunities and pensionable security, at Gloucester, Bristol and Swindon skillcentres. Starting salary $£ 6,000$ p.a. rising by two increments to $£ 7,110$ p.a. For more information contact Miss A. Curran, M.S.C T.S.D., 11 Park Place, CLifton, Bristol. Telephone Bristol 20661.

WHETHER sea-going or shore-based, an exciting life awaits you as a Marine Radio Officer. Full details from The Principal, Barking College of Technology, Dagenham Road, Romford, RM7 0XU. (Telephone Romford 66841).

INDUSTRIAL ELECTRONICS. Are you an Electronic Wireman/Tester or Prototype Wireman? Have you had an apprenticeship followed by at least 5 years recent practical experience? If so we can offer you employment as an NSTRUCTOR, with good promotion opportunities and pensionable security at Bristol and Swindon skillenetres. Starting salary $£ 6,000$ p.a. rising by two increments to £7,110 p.a. For mor information contact Miss A. Curran, M.S.C., T.S.D., 11 Park Place, Clifton, Bristol. Telephone Bristol 20661

MISCELLANEOUS

COMPUKIT SOFTWARE \& INFORMATION. Basic Line Renumber, only uses $1 / 2 \mathrm{~K} .4 \mathrm{~K}$ or 8 K version cassette $£ 2.95$ inc. Also Full Screen Editor, Calendar \& Diary, Alphabetical Directory etc. S.A.E. for details \& Free Information Sheet. N. V. Davies, 11 Holloway, Haverfordwest, Dyfed.

RYDER ORGAN SYSTEM
The W.W. classical design for fullsize keyboards, including couplers. Expanded range of units now includes chorus, vibrato, combination stop-control and a new reverb. Data, p.c. boards, from: HIYKON LTD. (P).
Woodside Croft, Ladybridge Lene. Bolton BLI 5ED.

UK 101 GAMES TAPE, 6 Different; Breakout, Pontoon, Torpedo, Air-Attack, Invader, Space-Station. All for $£ 6$ inclusive. G. C. Church (Software), 40 Begonia Close, Chelmsford, Essex.

P.C. BOARDS

FOR INDUSTRY 'and' THE AMATEUR

- One off or production runs
- Assembly of P.C.Bs or kits
- Expert hand soldering
- Design service if required
- Artwork \& Photography

SEAHORSE ELECTRONICS LTD. Unit 2 Picow Farm Road Service Industry Estate, Runcorn, Cheshire.
(09285) 75950

SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a Low $\mathbf{£ 1 . 0 5}$. Chassis punching faciltites at very competutive prices, 400 models to choose from. Suppliers only to Industry \& The Trade. BAZELLI (Dept. No. 23), St Wilfrids, Foundry Lane, Halton, Lancaster, LA 1 6LT.

SOUNDEFFECTS \& MUSIC NASCOM

Add phasers, explosions, music and other effects just like the professional arcade machines, to your own programs. Controlled by simple poke satathesizer can desired in machime codse, sound. Using stereo output and carefully designed hardware truly dynamic effects can be created using a minimum of processor time. The unit also includes 28 -bit parallel $1 / 0$ por
Complete bullt and tested with demonstration program and instructions.

Ensicompen
57 Parana Court. Sprowston, Norwich.

ENTHUSIASTS!

We need you to - ASSEMBLE P.C.B.'s VERIFY PERFORMANCE Materials supplied. Why not make your hobby pay? BURGESS LANE \& CO. LTD, Thornton Works, Thornton Avenue, London W4 IQE. 01-994 5752

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4				
ENAMELLED COPPER WIRE				
SWG	116	802	402	
8 to 29	2.76	1.50	0.80	0.6
30 to 34	3.20	1.80	0.90	0.7
35 to 40	3.40	2.00	1.10	0.8
41 to 43	4.75	2.60	2.00	1.4
47	8.37	5.32	3.19	2.5
48 to 49	15.96	9.58	6.38	3.6
SILVER PLATED COPPER WIRE				
14 to 30	6.50	3.75	2.	
TINNED COPPER WIRE				
14 to 30	3.85	2.36	1.34	
Prices include P\&P, VAT and wire Data. SAE for list. Dealer enquiries welcome.				
SAE for list. Dealer enquiries welcome.				

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME FULL RANGE AVAILABLE. SAE FOR LISTS. £1.45 for Booklet "Nickel Cadmium Power" plus Catalogue. Write or call: Sandwell Plant Ltd. 2 Union Drive, BOLDMERE, call: Sandwell Plant Ltd., 2 Union Drive, 8OLDMERE, SUTTON COLDFIELD WEST MIDLANDS. $021-3549764$, SUTTON COLDFIELD, WEST MIDLANDS, 021-354 9764 , or see them at TLC. 32 Craven Street, Charing Cross, or see them London WC2.

6D
PLASTIC STORAGE DRAWERS
AS SUPPLIED: TO POST OFFRE \& GOVT DEPTS

Newest, neatest systern ever devised for storing small parts and components. resistors, capacitors. diodes, transistors. etc. Rlgid plastic units
interlock together in verticsl and horizontal combinations Transparent plastic drawers have label slots. 10 and 20 have space dividers. Build up any size cabinet for wall, bench or table top.
SINGLE UNITS (1D) $(5 \mathrm{in}+2 \mathrm{tin}+2 \mathrm{fin}) \quad$ E3.90 DOZEN DOUBLE UNITS (2D) $\left(5 \mathrm{in}+4 \frac{1}{2} \mathrm{in}+2 \frac{\mathrm{tin}}{\mathrm{t}}\right.$ E6.50 DOZEN TREBLE (3D) E5.90 for 8 .
DOUBLE TREBLE 2 drawers, in one outer case (6D2). c8.90 for 8.
Extra large size (601) E7.90 for 8 .
PLUS QUALITY DISCOUNTS
Orders over f60, less 5\%. Packing/Postage/Carriage: Add E1.30 to all orders under £10. Orders E10 and over, please add 10% carriage.

QUOTATIONS FOR LARGER QUANTITIES Please add 15\% V.A.T. to total remitrence.
All prices correct at time of going to press

(PE8) 124 Cricklowood
Brosdway. London Brosdway. London N.W.2. Tol: 01-450 4844.

UK 101 SOFTWARE. Try our original programmes (on cassette) GRAPHIC PAINT BRUSH-GRAPHIC PLOTTER etc. Working programmes that will give you ideas of your own. S.A.E. M \& B SER VICES, 182a, High Street, Margate, Kent.

MAKE YOUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack (5 sheets, lines, pads, I.C. pads) $£ 1.60$. Large range of single sheets in stock at 34 p per sheet.
Master Positive Transparencies from P.C. Iayouts in magazines by simple photographlc process. Full instructions supplied. 2 sheets ($20 \times 25 \mathrm{~cm}$) negative paper and 2 sheets $(18 \times 24 \mathrm{~cm})$ positive film $£ 1.80$. Drafting film $(30 \times 21 \mathrm{~cm}) 22 \mathrm{p}$ per sheet.
17D stamp for lists and information. P\&P 30p/order P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE
PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer - now greatly improved and very much faster. Aerosol cans with full instructions. £2.25. Developer 35p. Ferric Chloride 55 p. Clear Acetate sheet for master 14 p . Copper-clad Fibre-glass Board approx. Imm thick $£ 1.70$ sq. ft. Post/Packing 60p. White house electronics, P.O. Box 19, Castle Drive, Penzance, Cornwall.

BURGLARS

Safeguard your home, shop etc. from burglars Sad vandals with the best D.I.Y. equipment and vandals with the best D.I.Y. equipment availabie. S6, for one of our fully weather-
list. or proofed steel Bell/Boxes the professionals use.
Lewrence. efia Now Road, Chipponham, witahire.
"Don't buy in Kite, buy in biks"

SEEN MY CATf 5000 Odds and ends. Mechanical. Electrical. Cat free. Whiston Dept. PRE, New Mills, Stockport.

PRACTICALELECTRONICS P.C.B.'s

 Professional quality glassfibre, Fry's roller tinned and drilled.For full list and current pcb's please send SAE. Pcb's also produced to customers own masters. Trade enquiries
wetcome. Please write for quote.

PROTO DESIGN
14 Downham Road, Ramsden Hoath BillericaF, Essex CM11 1PU

Cabinet and Flightcase Fittings
Fretcloths, Coverings. Handles, Castors etc., Jacks and Sockets, Cannons, Bulgins, Reverb Trays, Emilar Compression Drivers, AKG Mics, Celestion Speakers, ASS, Glassfibre Horns.

Send 30 p in stamps for illustrated catalogues 10

ADAM HALL (P. E. SUPPLIES)

Unit G, Carlton Court, Grainger Road, Southend-on-Sea, Eseox SS2 58Z.

MK14 CORNER. Interface Board, includes flag driven mains relays. LED Indicators for all Serial I/O, D/A and single step chips, and prototype area; also suitable for other Microcomputers; PCB and circuit £3.93. Replace calculator display with $\frac{1}{2}$ " FND 500's; PCB, fitter, instructions $£ 1.95$. Ready Built replacement Keyboard £11. Useful notes on MKI4 75p. Rayner, 'Kismet' High Street, Colnbrook. Bucks

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass, non-magnetic tweezers, watch screwdriver, case knife and screwback case opener, also one doz. assort. push pieces, full instrustions and battery identification chart. We then supply replacement batteries-you fit them. Begin how. Send $\mathbf{£ 9 . 0 0}$ for complete kit and get into a fast growing business. Prompt despatch.
BOLSTER INSTRUMENTCO.
(PE15)
11 Percy Avenuo, Ashford, Middx. TW15 2PB.

CLEARING LABORATORY: scopes, generators, P.S.U.'s, bridges, analysers, meters, recorders, etc. 0403-76236.

When replying to Classified. Advertisements please ensure.
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

GUITAR/PA
 MUSIC AMPLIFIERS

100 watt supert treble bass, overdrive. 12 months querantee. Unbeatable at cu8, 00 watt twin channel sep. treble/bass per channel $£ 58 ; 60$ watt E50; 200 watt E72; 100 watt four channel sep. treble/bass per channel f75; 200 watt f98; slaves 100 watt £34; 200 watt £50; fuzz boxes, great sound $£ 10.00$ bass fuzz $\$ 10.90 ;$ overdriver fuzz with treble and bass boosters $£ 20.00 ; 100$ waft combo superb 50 und overdrive
sturdy construction, castors, unbeatable $£ 98$; twin channel ع105; bass combo 105 ; speakers 15 in .100 watt £38 12 in. 100 watt £23; 60 watt $£ 16$; microphone Shure Unidyne B E26.

Send cheque or P.O. to:
WILLIAMSON AMPLIFICATION
62 Thorncliffe Avenue, Dukinfield, Cheshire. Tel: 061-308 2064

DIGITAL WATCH BATTERIES, any sort 75 peach. Send SAE or 15 p with number old battery to Disclec, 511 Fulbridge Road, Werrington, Peterborough PE4 6SB.

UK 101 baSic renumbering programme tape, listing and data for 54 . Send cheque to: P. J. Barden, 517 Becontree Ave.. Dagenham, Essex.
burglar alarm equipment. Latest Discount Catalogue out now! Phone C.W.A.S. Alarm 0274682674.
printed circuit boards. Glass Fibre tinned \& Drilled, Proto types to batch runs. Quick turn-round, competitive prices. Send S.A.E. for quotations. R. D. Electronics, 12 Whiteoaks Road, Oadby, Leicester. 0533-716273.

SINCLAIR 2×80 (Unexpanded) Programs. Five for $£ 2$, on Cassette. or S.A.E. for details. Milner, 251 Henley Road, Coventry.

ULTRASONIC TRANSDUCERS. $£ 2.85$ per pair $+25 p$ P\&P Dataplus Developments, 81 Cholmeley Road, Reading, Berks.

PRINTERS' 80-Columns Plain Paper. RS232 Centronics 1EEE 20 mA Interfaces $£ 375$ + VAT. Eproms $2708 £ 5.40 \mathrm{p}$ (+VAT) $2716 £ 21.60$ (+VAT). Postage 35 p. Software for most micros. Zero-One Electronics, 36 Oaklands Avenue, Thornton Heath, Surrey CR4 7PH.

CENTURION ALARMS

guhglar alarm equipment at unbeatable value just
Ordes No
100 ALARM TAIGGER MOOULE, 100% Solid State. Battery opecation. Pos 8 Neg fings. N/C for 4 -wire conlacts. N/O for Mors etc. One Amp switching capacity. Only.
10 Ouality White Flush fitting 4 -wire MAGNEIIC REED CONTACT + 220 Sufface 4 -wire MAGNETIC REED CONTACT
240 PRESSURE MAT. Standard Size 4 wire $30^{\prime \prime} \times 15^{n}$
50 PRESSURE MAT. SIal Size 4 -wira $23^{\circ} \times 8$
60 VIBPATION DETCTOR Pen 4 . \times by" \ldots...........f $£ 1.73 \mathrm{p}$
sell.adheiv OEECTOR, Pendulum Type in Iwory Lase with contacted Lid
 with chenper decay covers. Gully Sign Written with oul Cenfurion insignia
400
OECOY PV.C. BELL COVER f9.50
f6.60p
Nota: All Equipment Opurates on 12 Voth OC
110 SCOOP OHtw SMOXE ALARMS. Sell-Comtained Ionisation Type 11.5% obscuration) With Low Batery Warning at the UNREPEATABLE PMICE OF
ONLY fB.75p While Stocks Larill
Torms: Add 15% VAT to Prices +40 p Postage \& Packimg

No Minimum Order. Access telephone
Orders welcome on: SAE. for Full List to CEMTURION ALARMS \& EIECTRONIC SALES, W. Yorks. H05 98E

TIME?

MSF CLOCK is ALWAYS CORAECT - never gains of loses self setting at switch-on, B digits show Date. Hours Minutes and Seconds, larger digit Mours and Minutes or easy CUICK GLANCE rime, also second-in-a-mont STOP CLOCK and parallel BCD ourput - for your computer, alarm erc, receives Rugby lime signals, 1000 K range, now get ABSOLUTE TME-aiways, 54.80 . GOKMZ RUGBY RECEIVER, as in MSF Clock, serial data
output, built-in antenna, E15.70.
Each fun-to-build kit includes all parts, printed circuit, case postage etc, money back assurance so SEND off NOW. CAMBRIDGE KITS
45 (FH) Old School Lane, Milton, Cambridge.

PLEASE MENTION

ST-45 SPECIFICATION

VERTICALSYSTEM

Sensitivity $10 \mathrm{mv} / \mathrm{div} 5 \mathrm{v} / \mathrm{div}$ in 9 cal , steps
Bandwidth (30B)
DC Coupled DC 5 MHz
AC Coupled 5 Hz
hisetime $70 \mu \mathrm{sec}$
input impedance $1 \mathrm{M} \Omega+22 \mathrm{PF}$ approx. (for all anges) 50 , for $10 \mathrm{mv} / \mathrm{div} 50 \mathrm{mv} / \mathrm{dlv}$
nput coupling AC CND DC
Input volts: 40
Accuracy $\pm 5 \%$
HORIZONTAL SYSTEM
Time base speeds
$50 \mathrm{~ms} /$ div $1 \mu \mathrm{sec} / \mathrm{div}$ in 15 cal . steps with $\times 5$ Multiplier to $250 \mathrm{msec} / \mathrm{div}$ and $\times 5$ Expansion to $200 \mathrm{nsec} / \mathrm{div}$
External - X sensitivity Iv/div
External - X Bandwidth 500 KHz
Accuracy $\pm 5 \%$
ACCESSORIES
Passive Probe switched (X 1 . REF. $\times 10$) ONC to 4 mm Sock Adept + VAI

f137: SAFGAN ST-45

 SINGLE TRACE OSCILLOSCOPE $10 \mathrm{mv} / \mathrm{div}-5 \mathrm{MHz}$ BRITISH ONE YEAR GUARANTEE
TRIGGER

Internal 0.5 div $(20 \mathrm{~Hz}-2 \mathrm{MHz})$, 1 div $(2 \mathrm{MHz}-$ ${ }_{\text {External }}^{5 \mathrm{MHz}} 100 \mathrm{mv} \quad(20 \mathrm{~Hz}-2 \mathrm{MHz}), 200 \mathrm{mv}$ $12 \mathrm{MHz}-5 \mathrm{MHz}$ Bright Line Auto
Trace free runs in absence of signal Trigger Level selects rriggering point
Trigger (+ lve and (- - ve slope select Trigger $1+i v e$ and (-) ive slope selection FRONT PANEL
Black-Sitver-White-ST-45-S The Silver Scope or Black-Gold-White-ST-45-G The Gold Scope GENERAL
Blue display graticule rulad 8×10 div
$(6.4 \mathrm{~cm} \times 8 \mathrm{~cm})$ $(6.4 \mathrm{~cm} \times 8 \mathrm{~cm})$
Power consumption 10VA approx.
Mains selection $200 \mathrm{~V}-220 \mathrm{~V}-240 \mathrm{~V}$ rms ($40 \mathrm{OHz}-60 \mathrm{~Hz}$) ($40 \mathrm{OHz}_{z}-60 \mathrm{~Hz}$)
Size: H 215 m
Size: H $215 \mathrm{~mm} ;$ W $165 \mathrm{~mm} ; 0280 \mathrm{~mm}$
Weight 10 lbs 4.5 kg approx.
Case aluminium with black pve finish and black hancle, scratch-resist front panel, black control knobs, black feet ond tilt bar.
Safgan Electronics Ltd.
56 Bishops Wood, St. Johns,
Woking, Surrey GU1 3QB

ORDERS TO: SAFGAN ELECTRONICS LTO.
56 Bishops Wood, St. Johns, Woking

Surrey GU21 30B or Tel: Woking 66836.

Please send me......................ST-45-S
ST-45-G
I enclose PO/Cheque - \qquad
\qquad
\qquad Adaptor
Name.
\qquad
Address.......
-Ex VAT UK

ERBOMASOMCE electronics

56 FORTIS GREEN ROAD MUSWELL HILL LONDON N10 3HN

TELEPHONE 01-883 3705 01-883 2289

YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPONENTS

PETS

2001-8N (8K RAM)
£449
2001-16N (16K RAM) £549 2001-32N (32K RAM) £649
ALL WITH NEW KEYBOARD AND GREEN SCREEN.
PERIPHERALS
Service \& Assistance available. Interfaces available are:
$X-Y$ plotters, analogue to digital converter, 16 channel interfaces, bi-directional interfaces, etc

EXTERNAL CASSETTE DECK SUITABLE
FOR ALL PETS £55

LATEST STOP PRESS AND PRICE LIST

send sae or phone for up to date PRICES of all our range of items stocked

| CASES- |
| :---: | :---: |
| Available for UK101. |
| Superboard, NASCOM, |
| Approx. dlm. $17^{\prime \prime} \times 15^{\prime \prime}$ |
| $435 \mathrm{~mm} \times 384 \mathrm{~mm}$ |
| Price $£ 24.50$ |
| Unique stackable tape |
| storage unit. Interiocking |
| drawers. 5 drawers each |
| containing 2 Ci 2 tapes. |
| 10 drawers $£ 9.50$ |
| 5 drawers $£ 5.25$ |
| Single drawer $£ 1.10$ |

PRINTERS

TX-80 £395

EPSON TX-80 £395
Dot-matrix printer with Pet graphics Interface: Centronics parallel, options: PET, Apple and serial.
-MEMORY EXPANSION KIT
Suitable for UK101, Superboard expansion using 2114 's. Each board has 16 K RAM capacity.

Kit contains:

* On board power supply
* 4K EPROM expansion
* Fully buffered for easy expansion via 40 pin socket
- 8к кіт £99.95
- $\mathbf{1 6 K}$ KIT $£ 139.90$

EPRON'S	
2708	4.95
$2716(5 v)$	13.95
2532	39.95

	ROM'S
$2513(U C)$	
$2513(L C)$	5.95

6502	$\mathbf{9 . 5 0}$
8080	4.75
9900	25.95
6800	5.90
$\mathbf{Z 8 0}$	$\mathbf{8 . 9 5}$

81 LS95	1.25
81 LS96	1.25
81 LS97	1.25
811598	1.25
SN74365	52
SN74366	52
SN74367	52
SN74368	52
8 T26	1.75
8 T28	1.75
8 T95	1.57
8T96	1.57
$8 \mathrm{T97}$	1.50
8 T 98	1.57

BAUD RATE GENS	
MC14411	$\mathbf{8 . 7 5}$
MM5307	$\mathbf{8 . 7 5}$

UARTS	
AY-5-1013	3.45
AY-5-1015	3.98
MM5503	4.75
6011	3.55

PLEASE ADD VAT 15\% TO ALL PRICES. POSTAGE ON COMPUTERS, PRINTERS \& CASSETTE DECKS CHARGED AT COST. ALL OTHER ITEMS P\&P 30p. PLACE YOUR ORDER USING YOUR ACCESS OR BARCLAYCARD (Min. Tel. order £5.00). TRADE \& EXPORT ENQUIRIES WELCOME, CREDIT FACILITIES ARRANGED.

Superior quality ideal for Halls/PA systems. Disco's and Groups. Two inputs with Mixer Volume Controls. Master Bass. Treble and Gain俗 $4,8,16$ ohm. AC BAKER 150 Watt AMPLIFIER 4 Inputs

R.C.S. SDUND TD LIGHT DISPLAY MK
 Complete kit of parts with R.C.S. printed circuit. Three channels. Up to 1.000 watts each. Will operate from 200 My to 100 watts signal source. Suitable for home $\mathrm{Hi}-\mathrm{Fi}$ I and all Disco Amplifiers. Cabinet extra \& 4.50 . £ 18 Post 500 200 Watt Rear Reffecting White Light Bulbs. Ideal for Disco Lights. Edison Screw 75 peach or 6 for $£ 4$, or 12 for $£ 7.50$. MAINSTRANSFORMERS Primary 240V A.C. ALLPOST $99 p$ $250.0-250 \mathrm{~V} 70 \mathrm{~mA} .6 .5 \mathrm{~V} .2 \mathrm{~A}$.. $300-0.300 \mathrm{~V} 120 \mathrm{~mA} .2 \times 6.3 \mathrm{~V} 2 \mathrm{~A}$ C.T.; 5 V 2 A. 220V $45 \mathrm{mA.6.3V} 2 A$.
 Tapped outputs available

 CHARGER TRANSFORMERS amp..................
 FULL WAVE BRIDGE CHARGERS RECTIFIER 6 or 12 V outputs, 2 amp.... 75 p . 4 amp.... $£ 1.75$

 R.C.S. LOUDSPEAKER BARGAINS3 ohm. $6 \times 4 \mathrm{in} . £ 1.50,7 \times 4 \mathrm{in} . £ 1 \cdot 50.8 \times 5 \mathrm{in} . £ 2.50 .6 \mathrm{fin} . ~$
$£ 2.60 .20 .8 \mathrm{in}$.
 $2 \mathrm{in} . \mathbf{5 4} \cdot 50.160 \mathrm{~mm} 6 \times 4 \mathrm{in} .21 .50 .7 \times 4 \mathrm{in}, \mathcal{5} 50.5 \mathrm{in}, \mathrm{f1} \cdot 50.8 \mathrm{in}$ 3. 10 in 16 . 12 . $1.50 .10 \times 6$ in 53.50
R.C.S.LOW VOLTAGE STABILISED

Post 50012.95
POWER PACKKITS
inted circuit, rectifiers and
All parts and instructions with Zener diode printed circuit, recufiers and
double wound mains transformer input $200-240$ a.c. Output voltages double wound mains transformer input $200-240$ a.c. Out
available 6 or 7.5 or 9 or $12 \mathrm{~V} \mathrm{d.c.up}$ to 100 mA or less.
size $3 \times 2+\times 1+i n$. Please state voltage required.
THE "INSTANT" BULK TAPE ERASER
Suitable for cassettes, and all sizes of taperels. Suitable for cassettes, and all sizes of tape reels.
A.C.mains 200/2

HEAD DEMAGNETISER PROBE £S.00

BLANK ALUMINIUM CHASSIS. 18 s.w.g. 2 in. sides. $6 \times 4 \mathrm{in}$. 95 p ;
 10×7 in $54 \mathrm{p} ; 12 \times \sin .44 \mathrm{p}: 12 \times \mathrm{s}, 6 \mathrm{in} .70 \mathrm{p} ; 16 \times 6 \mathrm{in} .70 \mathrm{p} ; 14 \times 9 \mathrm{in}$. $94 p ; 12 \times 12 \mathrm{in}$, 1 : 16×10 in. 51.16 .
ALUMINIMUM ANGLE BRACKETS
ALUMINIUM BOXES. MANYSIZESINSTOCK $\times \frac{1}{2} \mathrm{in}$. 25 p .
$4 \times 2 \times 2 \mathrm{in} .86 \mathrm{p}: 3 \times 2 \times \operatorname{lin} .60 \mathrm{p} ; 6 \times 4 \times 2 \mathrm{in} .11: 8 \times 6 \times 3 \mathrm{in} . £ 1.90 ;$
$12 \times 5 \times 3 \mathrm{in} .52 ; 6 \times 4 \times 4 \mathrm{in} . £ 1.50 .10 \times 7 \times 3 \mathrm{in} . £ 2.20$. HIGH VOLTAGE ELECTROLYTICS

DE LUXE BSR HI-FIAUTOCHANGER

 Post on All

BSR Single Player P207 cueing device, ceramic cartridge. $\mathbf{£ 1 5}$ Garsard Single Player 6-200 metal turntable cueing device, aluminium arm. Siereo cartridge.
B.S.R. Auto Changer. 1lin. Turntable. Budget price. $\mathbf{£ 1 7 . 5 0}$

RSC Disco Deck 3 speed Stereo
$\mathbf{1 9 . 9 5}$ or $£ 18$ pair

Rapid Mail Order Service. Callers Welcome Access - Visa. Lists 20p. Closed Wed.

Radio Components Specialists

337 WHITEHORSE ROAD
CROYOON, SURREY, U.K. TEL 01-684 1665

SCS Components
 All our products are guaranteed high quality from leading Semiconductor Manufacturers.
 Halifax Road, Keighley, West Yorkshire BD21 5HR

Cash/Cheques/P.0's with order. P \& P add 30p to all orders. Add 15\% VAT to total order. All items ex. stock - orders by return post.

Codespeed Electronics

INDEX TO
 ADVERTISERS

9
83

Computer Components (Teleplay)
Continental Spec.
Crofton §lectronic
C. R. Supply Co

David George Sales
Dewtron
Display Electronics
Doram
Easicomp Lid.
E.D.A.
E.D.A.
Electrovalue

Fladar
Flairline Supplies
Hiykon Ltd.
Home Radio
I.C.S. Intertext
I.LP. Electronics

Jayen Developments
Keelmaor

Lascar

Lawrence
LB: Electronics
Maplin Electronics

- Marshall. A.

Cover IV, 32

Metac
Micro Circuits
Madern Book Co
Modus Systerns
Mullard
Phonosonics
PKG Electronics
Prescolt Clocks
Proto Design
Radio Component Specialists
Radio \& T.V. Components
Ramar Constructor Services

Satgan
Sandwell Plant Ltd.
Saxon Entertainments
Science of Cambridge
Scientific Wire Co.
Seahorse Electronics
Service Trading
Semi-Comp Northern
Sentinel Supply
Sloan Electronic Equipment
Swanley Electronics

Teleradio

T.K. Electronics

Technomatic
Toolrange
Transam Componants
T.U.A.C.

Watford Electronics
Wisca Electronics
Williamson Amplification
Wilmsiow Audio

THIS MONTH'S STAR BUYS

8 digit calculator with finger touch keyboard. I/ 100 second chronograph; net, lap and 1st and 2nd place. Dual time, 24 hour system. Chromed case, s / s bracelet.

Many other CASIO watches available from stock. Ladies models from $£ 12.95$.

Calculators

FX-7100 £24.95. FX-8 100 £24.95.
MC-34 £11.95. HR-10 £29.95.
Hours, minutes, seconds, am/pm, day and date. Automatic calendar.
second chronograph to 12 hours; net lap and 1 st and 2 nd place times. Backlight. 2 year lithium battery. Water resistant case. Mineral glass face. F300. Resin case, s / s trim. (RRP 514.95). 110QS-37B. Chromed case, s / s bracelet. (£19.95).

WATCHES

F-8C (Resin) now only
$\varepsilon 8.95$
111OS-35B Comprehensive display £14.95

Chronographs

95QS-36B $1 / 100$ second, 12 or 24 hour. Dual time. Solid
\qquad
Alarm chronographs with hourly chimes
830S-41B $1 / 10$ second. Comprehensive display. S/s jacket
$\$ 24.95$
83QGS-41B Gold plated $£ 29.95$
81 QS -40 B 1/100 second. 12 or 24 hour. Chrome plated case
810S-35B Solid $s / s \quad £ 29.95$
81QGS-35B Gold plated £34.95
79QS-39B 8 digits. Universal calendar. Chrome plated
$£ 29.95$

MELODY 90 (ML-90)

Clock. hourly chimes. calendar to 1999. Alarm 1:- 7 different melodies changing daily, a fixed metody or buzzer. Alarm 2:- a fixed melody or buzzer. Date memory 1:- "Happy Birthday". Date memory 2:- "Wedding March" or "Drinking Song". On December $24 / 25$ plays "Jingle Bells". Calculator with 11 -note keyboard, full access memory. square roots, $\%, 7 / 32 \times 2 \frac{1}{4} \times 4 \frac{1}{4}$ inches. Wallet. 1 year batteries.

ONLY £19.95

SUMMERTIME SPECIAL OFFERS

FREE on request

With any purchase made from this section before September 30th 1980 GENTLEMAN'S DIGITAL WATCH with comprehensive display and long life battery from world famous manufacturer. Value around £12. An ideal working watch for you or a present for someone else.
Offers subject to availability.

FREE on request

With any purchase made from this section before September 30th 1980. GENTS DIGITAL WATCH, around $£ 17$, or LADIES DIGITAL WATCH, around £15, or CALCULATOR/CLOCK, around $£ 17$.

Offers subject to availability.

Chronograph watches

$950 S$-42B. 1/100 second. 12 or 24 hour. Dual time. S/s encased
56QS-38B. Analogue/digital $\quad \mathbf{2 4 . 9 5}$ C-80. Calculator, dual time

Clock calculators

PW-8I £14.95. AQ-1500 £14.95. AQ-2200 £19.95 ML-71 £22.95. ML-81 £22.95. ML-82 £19.95.

Scientific calculators
FX-510 £19.95. FX- 3200 £21.95.

Watches

56QS-50B. Analogue/digital
$£ 34.95$
79CS-51B. Alarm chrono with universal calendar,
59CS-33B. Alarm, slim dress £44.95
Calculator
FX-8000. Stopwatch. 2 countdown alarms. Full scientific
£ 31.95
SEIKO. Latest water resistant alarm chronographs from $\mathbf{~ 4 9 . 9 5 \text { . Other models from }}$ £39.95. New analogue/alarm £69.95.

RETURN OF POST SERVICE (subject to availability).
Send 25p for our illustrated catalogue of Casio and Seiko products.
Price includes VAT, P\&P. Send cheques, PO or phone your Access or Barclaycard number to:
TEMPUS
Tempus (Dept. PE)
FREEPOST, 164-167 East Road
Cambridge CB1 1BR. Tel. 0223312866

[^3]

THE ATARI VIDEO COMPUTER SYSTEM

Atarle Video Computer Syatern now offers more than 1300 different game variations and options in twenty great Game Program TM cartridgesl Have fun while you sharpen you You can play rousing coordination, You can play rousing, challenging,
sophisticated video games, the sophisticated video games, the You'll have thrill after thrill whether you're in the thick of whether youre in the trick dogfight, screeching asteroids in an alien galaxy With crisp brigh colour (on colour TV) and incredi colour (on colour TV) and brediWie, special circuits to protect With special your T.
Cargridges now available
Basic maths, Airsea Battle, Black Basic maths, Airsea Battle, Black Jack, Breakout, Surround Spacewar, Video Olympics, Score*, Space War, Sky Diver, At Score*, Space War, Sky Diver, At

Miniature Golf.
Extra Paddle Control
\qquad - $1 \mathrm{c}^{2}$ Controllers

$\star 6502$ based system - best value for money on the market. \star Powerful 8K Basic - Fastest around * Full Owerty Keyboard * 4 K RAM Expandable to 8 K on board. \star Power supply and RF Modulator on board. $\begin{gathered}\text { No Extras needed - Plug-in and go. } \star \text { Kansas City Tape }\end{gathered}$ Interface on board. * Free Sampler Tape including powerful Dissassembler and Monitor with each Kit. \# If you want to learn about Micros, but didn't know which machine to buy then this is the machine for you.

Build. Understand and Program vour own Computer for only a small outlay.

KIT ONLY £199 + VAT
NO EXTRAS NEEDED
AVAILABLE READY
ASSEMBLED \& TESTED
READY TO GO FOR E249 + VAT

Specially designed case for Compukit in orange/black.
With room for accessories. $\mathbf{2 g} .50+$ VAT
6502 Assembler/Editor for Compukit \quad E14.90
The Compukit UK101 comes in kit form with all the parts necessary to be up and working, supplied. No extras are needed. Ater plugging in just press the reset keys and the whole world of computing is at your fingertips. Should you wish to work in the machine code of the 6502 then just press the M key and the machine will be ready to execute your commands and programs. By pressing the C key the world of Basic is open to you.
This machine is ideal to the computing student or Maths student, ideal to teach your children arithmetic, and is also great fun to use.
Because of the enormous volurre of users of this kit we are able to offer a new reduced price of $\mathbf{E 1 9 9}+$ VAT

 Your choice of freebies with every Nascom 2 purchased from us either FREE POWER SUPPLY OR FREE GRAPHICS ROM OR FREE VERO CASE TO TAKE NASCOM 2

Microprocessors Z80A. 8 bit CPU . This will run at 4 MHz but is selectable between $1 / 2 / 4 \mathrm{MHz}$. This CPU has now been generally accepted as the most powerful, 8 bit processor on the market
INTERFACE
Keyboard New expanded 57 key Licon solid state keyboard especially built for Nascom. Uses standard Nascom, monitor controlled, decoding.
T.V. The Iv peak to peak video signai can drive a monitor directly and is also fed to the on-board modulator to drive the domestic T.V.
1.O. On-board UART (Int.6402) which provides serial handling for the on-board cassette interface or the RS232/20mA tetetype interface.
The cassette interface is Kansas City standard at either 300 or 1200 baud. This is a link option on the NASCOM-2. The RS232 and 20 mA loop connector will interface directly into any standard teletype.
The input and output sides of the UART are independently switchable between any of the options
i.e. it is possible to house input on the cassette and output on the printer:
PIO There is also a totally uncommitted Parallel I/O (MK3881) giving 16, programmable, 1/0 lines. These are addressable as 2×8 bit ports with complete handshake controls.
Documentation. Full construction article is provided for those who buy a kit and an extensive software manual is pro vided for the monitor and Basic.
Basic The Nascom 2 contains a full 8 K Microsoft Basic in one ROM chip with additional features like DEEK, DOKE.
SET, RESET for simple programming.

Fully converted to UK T V. Standard. Comes complete with easy to follow manuals. UK Power Supply - Cassette Leads asy to follow manuals. UK Power Supply - Cassette Leads - Sample tapes. Special box to enable you to plug into your and go. Full Range of Software Available
 for 32 K

The PEDIGREE PETS
Very popular for home \& business use 8 K Microsoft Basic in ROM. 8 K Pet 32 K \& 16 K with new improved keyboard. Extra cassette deck $\mathbf{5 5 5}$ Full range of software available -

- Ideal for home, personal and business computer systems - 12" diagonal video monitor - Composite video input - Composite video input - Compatible with many computer systems Solid-state circuitry for a stable $\&$ sharp picture Video bandwidth - $12 \mathrm{MHz}+3 \mathrm{DB}$ - Input impedance -75 Ohms
Central 80% Resolution 650 lines Minimum In Central 80% of CRT; 550 Lines Minimum beyond central
80%.

Please add VAT to all prlces - Delivery at cost, will be advised at time of purchase. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number. CREDIT FACILITIES ARRANGED - send S.A.E. for application form.
14 Station Road, New Barnet, Hertfordshire, EN5 1QW Telex: 298755 TELCOM G Telephone: 01.441 2922 (Sales) 01-449 6596 OPEN - 10 am $\cdot 7$ pm - Monday to Saturday Close to New Barnet BR Station - Moorgate Linē.事 NOW in IRELAND at: 80 Marlborough St., Dublin 1. Tel: Dublin 749933

STEP INTO A NEW WORLD WHEN YOU DISCOVER
 กกสล

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project. Over 5,000 of the most useful components - from resistors to microprocessors - clearly described and illustrated.

Catalogue now available in all branches of WHSMITH 届 Price $£ 1.00$

[^0]: - IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we goto press.

[^1]: -Use a 600 mA at 9 V DC nominal unregulated mains adaptor. Available from Sinclair if desired (see coupon).

[^2]: ILP ELECTRONICS, ROPER CLOSE, CANTERBURY CT2 7EP Please supply \qquad
 \qquad
 \qquad International Money Order \square Access \square I enclose Cheque [Postal Orders [International Money Order \square No. \qquad Name.... Address.

[^3]: Sole Agents for Australiz and New Realand - Gordon a

