PRACTICAL

= =CTRONICE

CASO WATCH OFFBR SINCLAIR ZX80 REVIEW

8 MHz Super Quality Modulators	$\mathbf{£ 4 . 9 0}$
6MHz Standard Modulators	$\mathbf{£ 2 . 9 0}$
C12 Computer Grade Cassettes	10 for $\mathbf{£ 4 . 0 0}$
Super Multi-rail P. S.U. $+5-5+12 \mathrm{v}$	$\mathbf{£ 2 9 . 5 0}$
Anadex Printer Paper -2000 sheets $£ 25.00$	

THE ATARI VIDEO

 COMPUTER SYSTEMAtari's Video Computer System now offers more than 1300 different game variations and optons in twenty great Game Program TM cartridges! Have fun while you sharpen your mental and physical coordination. You can play rousing, challenging. sophisticated video games, the games that made Atari famous. You'll have thrill after thrill. whether you're in the thick of a dogfight, screeching around a racetrack, or dodging asteroids in an alien galaxy. With crisp bright colour (on colour TV) and incredible, true-to-life sound effects. With special circuits to protect your TV.

Cargridges now available

All at $£ 13.90$ each + VAT
Basic maths, Airsea Battle, Black Jack, Breakout, Surround, Spacewar, Video Olympics, Outlaw, Basketball, Hunt \& Score*, Space War..Sky Diver, Ail Sea Battle Codebreaker*. Miniature Golf
$\begin{array}{cc}\text { Extra Paddle Controliers } & \text { "Keyboard Controllers } \\ -£ 14.80+\text { VAT } & -\mathbf{1 6 . 9 0}+\text { VAT }\end{array}$ E16.90 + VAT

MINI KIT - PCB, sound \& vision modulator, memory chip and de-code chip Very simple to construct. $\mathbf{£ 1 4 . 9 0}+$ VAT OR PCB $£ 2.50$ MAIN LSI $£ 8.50$ Both plus VAT

Your choice of freebies with every Nascom 2 purchased from us either FREE POWER SUPPLY OR FREE GRAPHICS ROM OR FREE VERO CASE TO TAKE NASCOM 2
Microprocessors Z Z80'A. 8 bit CPU. This will run at 4 MHz but is selectable between $1 / 2 / 4 \mathrm{MHz}$. This CPU has now been generally accepted as the most powerful, 8 bit processor on the market.
INTERFACE
INTERFACE
Keyboard New expanded 57 key Licon solid state kevboard especially built tor Nascom. Uses standard Nascom, monitor controlled, decoding.
T.V. The Iv peak to peak video signal can drive a montor directly and is also fed to the on-board modulator to drive the domestuc T.V.
I.O. On-board UART (Int.6402) which provides serial handling for the on-board casserte interface or the RS232/20mA teletype interface
The cassette interface. is Kansas City standard at either 300 or 1200 baud. This is a link option on the NASCOM-2. The-RS232 and 20mA loop connector will interface directly into any standard teletvpe.
The input and output sides of the UART are independently
switchable between any of the options switchable between any of the options
i.e it is possible to house input on the cassette and output on the printer
PIO There is also a cotally uncommitted Parallet $1 / 0$ (MK3881) giving 16, programmable, 1/0 lines. These are addressable as 2×8 bit ports with complete handshake controls.
Documentation Full construction article is provided for those who buy a kit and an extensive software manual is provided for the monitor and Basic.
Basic The Nascom 2 contains a full 8 K Microsoft Basic in one ROM chip with additional teatures like DEEK, DOKE. -
 Fully converted to UK T.V. Standard. Comes complete with easy 10 follow manuals. UK Polver Supply - Cassette Leads - Sample tapes. Special box to enabie you to plug into your
wh TV. Recommended for tirst time buyers Just plug in and go Full Range of Software Available

NEW REDUCED $\left.\begin{array}{r}\text { PRICE } \\ \text { PK } \\ \text { PK } \\ 16 \mathrm{~K} \\ \mathbf{£ 4 4 9} \\ 32 \mathrm{~K} \\ \mathbf{£ 6 4 9}\end{array}\right\}$ RRP £795 for 32 K

Very popular for home a business use. 8 K Microsoft Basic in ROM. 8K Pet 32 K \& 16 K witr new improved keyboard Exira cassette deck $\mathbf{£ 5 5}$ Full range of so
-

viden 100
12" BLACK \& WHITE OW COST VIDEO MONITOR RRP $£ 79$ only $£ 69$

- Ideal for home, personal and business computer systems - $12^{\prime \prime}$ diagonal video monitor - Composite video input - Composite video input - Compatible with many computer systems Solid-state circuitry for a stable \& sharp picture - Video bandwidth - $12 \mathrm{MHz}+3 \mathrm{DB}$ - Input impedance $\mathbf{- 7 5}$ Ohms Resolution - 650 lines Minimum In Central 80% of CRT; 550 Lines Minimum beyond central 80%.

Please add VAT to all prices - Delivery at cost, will be advised at time of purchase. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number. CREDIT FACILITIES ARRANGED - send S.A.E. for application form. 14 Station Road, New Barnet, Hertfordshire, EN5 1QW Telex: 298755 TELCOM G Telephone: 01-441 2922 (Sales) 01.4496596 OPEN • $10 \mathrm{am} \cdot 7 \mathrm{pm}$ - Monday to Saturday Close to New Barnet ' $B R$ Station - Moorgate Liné.

PRACTICAL

 VOLUME 16 No. 7 JULY 1980

CONSTRUCTIONAL PROJECTS
TAPE/SLIDE SYNCHRONISER by R. A. Penfold 34
Automatic System for audio/visual shows PE DMM by Martin Kent 42
$3 \frac{1}{2}$ digit multimeter with a professional performance at low cost
PE DFM by D. Mottram 50
Pocket-sized I.c.d. meter and prescaler SECURITY SENTRY by William Dickinson 64
Comprehensive protection against unauthorised entry and theft
GENERAL FEATURES
SINCLAIR ZX80 REVIEW by Mike Abbott 22
To have and to hold-first impressions
SEMICONDUCTOR UPDATE 27
ICL 7660 TDA1099SP LS7220
VIDEO-THE SLOW REVOLUTION by R. Miles 28
The evolution of the video cassette recorder
SPARKRITE REVIEW 39
Clip on ignition kit
VIDEO INFORMATION 49
JVC open the first Video Information Centre INGENUITY UNLIMITED 58
Moving Lights-Noise Gate-Model Traffic Lights-
Accurate Kitchen Timer-TTL/CMOS Debounced Switch-Stepset SequencerMICRO PROMPT68
A bumper bundle of original software
NEWS \& COMMENT
EDITORIAL 17
MARKET PLACE 18
New Products
INDUSTRY NOTEBOOK by Nexus 21
What's happening inside Industry
POINTS ARISING 25
WATCH OFFER 33
Casio at discount
COUNTDOWN 37
SPACEWATCH by Frank W. Hyde 40
READOUT 63
Readers' views
PATENTS REVIEW 73

OUR AUGUST ISSUE WILL BE ON SALE SATURDAY, 26 JULY 1980
(for details of contents see page 41)

[^0]

AT Export ordore no VAT. Applicable to U.K. Cuatomers only. Unlezz We stock many more iteme. It pays to viajt Ua, We are situated hehind Wetford
Football Ground. Neareat Underground/Br. Rais Station: Watford High Streat. Open Monday to Saturday $9 \mathrm{am} . \mathrm{m} .6 \mathrm{p} . \mathrm{m}$. Ample Free Car Parking apace available.

POLYESTER CAPACITORS: (Axial Lead Type)
400V: $1 \mathrm{nF}, 1 \mathrm{n5}, 2 \mathrm{n} 2,3 \mathrm{n} 3,4 \mathrm{n} 7,6 \mathrm{n} 8,10 \mathrm{n}, 15 \mathrm{n}, 9 \mathrm{p} ; 18 \mathrm{n} 10 \mathrm{p} ; 22 \mathrm{n}, 33 \mathrm{n} 11 \mathrm{p} ; 47 \mathrm{n}, 68 \mathrm{n} 14 \mathrm{p}$;

ELECTROLYTIC CAPACITORS: (Values are in μ F).

 $330,47032 \mathrm{p} ; 100050 \mathrm{p} ; 25 \mathrm{~V} ; 10,22,47,80,1008 \mathrm{p} ; 160,220,25015 \mathrm{p} ; 4702 \mathrm{sp} ; 640$
$100035 \mathrm{p} ; 150040 \mathrm{p} ; 120045 \mathrm{p} ; 3300 \mathrm{7lp} ; 470085 \mathrm{p} ; 16 \mathrm{~V}: 10,40,47 \mathrm{p}: 100,125$ 8p; $220,33014 \mathrm{p}$; 47020 p 4700 110p; 3300 85p; 2200 60p.

TANTALUM BEAD CAPACITORS 35 V : $0.1 \mu \mathrm{~F}, 0.22,0.33,0.47,0.68,1.0$. $1 \mu 5,2 \mu 2,3 \mu 3,4 \mu 7,25 \mathrm{~V}: 10,20 \mathrm{~V}: 6 \mu 8$, $16 \mathrm{~V}: 2 \mu 2,4 \mu 7,1015 p$ each. 16V: $22 \mu, 28 p ; 47,100,50 \mathrm{p} ; 22070 \mathrm{p}$; 10V: $15 \mu, 22,33,24 \mathrm{p} ; 10035 \mathrm{p}$; 6V: 47 $\mu, 68 \mu, 100$ 28p; 3V: 100 20p.		POTENTIOMETERS LA8 OR EGEN Carbon Track. 0.25 W Log \& 0.5 W Linear values. 500 , $1 \mathrm{~K} \& 2 K$ (LIN ONLY) Single $5 \mathrm{~K} \Omega-2 \mathrm{M} \Omega$ single gang $5 \mathrm{~K} \Omega-2 \mathrm{M} \Omega$ single gang D / P swith $5 \mathrm{~K} \Omega-2 \mathrm{M} \cap$ dual gang stereo 1w Wire-wound 50n-20K		N) $\begin{array}{ll} \\ \\ \\ \\ & 29 p \\ & 29 p \\ & 69 p \\ & 88 p\end{array}$
MYLAR FILM CAPACITORS 100V: 0.001, 0.002,0.005,0.01 $\mu \mathrm{F}$ 6p $0015,002,0.03,0.04,005,0.056 \mu \mathrm{~F} 7 \mathrm{p}$ $0.1 \mu \mathrm{~F}$ 8p, 0.2 10p. SOV: $0.47 \mu \mathrm{~F} \quad 12 \mathrm{p}$				105
		SLIDER POTENTIOMETERS $0.25 \mathrm{~W} \log$ and linear values 60 mm track $5 \mathrm{~K} \Omega 500 \mathrm{k} \Omega$ Single gang 10K 500 K , Dual gang Self-Stick graduated Alum. Bezels		
CERAMIC CAPACITORS 50V Range: 05 pF to 10 nF $15 \mathrm{nF}, 22 \mathrm{nF}, 33 \mathrm{nF}, 47 \mathrm{nF} 5 \mathrm{p} \quad 100 \mathrm{nF}$ 7p				
		PRESET POTENTIOMETERS0.1 W 5OR-2.2M Minl. Vert. \& Horiz.		
POLYSTYRENE CAPACITORS: 10 pF to 1 nF . 6p. $\quad 1.5 \mathrm{nF}$ to 47 nF 10 p .				
SILVER MICA (pF) 2, 3.3, 4.7, 6.8, 8.2, 10 , 12, 18, 22, 27, 33, 39 47, $50,56,68,75,82$. $85,100,120,150,180$. 200, 220. 11 peach. 250, 270, 300, 330. 820pF 16peach. 1000. 12001 18ヶ2.	TRIMMERS Miniature		RESISTORS-Erie make 5\% carbon Miniature High Stability. Low Noise	
	2-5pF: 3-10pF:			
			RANGE val. 1	
			25W2ח2-4-M7 E24	
			0.5W 2 22 -4.M7 E12	
	COMPRESSION		1 W 2n2-10M E12	
	3-40pF: 10-80pF	30p	Metal Film 100 1 M	
	$25-200 \mathrm{pF}$ $100-500 \mathrm{pF}$	33p		
	$\begin{aligned} & 100-500 \mathrm{pF} \\ & 400-1250 \mathrm{pF} \end{aligned}$		100 . price applies to Resistor not mixed values.	ors of each trpe

TRANSISTOR

 BC3078BC308B ~

\section*{$\begin{array}{ll}\text { C15W } & 395 \\ \text { CXI } & \\ & 395\end{array}$
 \qquad 395

395
410
395

49
 \qquad fonstand 160
 | DIL SOCKETS (TEXAS) Low Wire | | |
| :---: | :---: | :---: |
| | | |
| | 10p | 5p |
| 14 pin | 12p | 35p |
| 16 pin | 13p | 46 |
| 18 pin | 1 5p | |
| 20 pin | 22p | 65p |
| 22 pin | 25p. | 70p |
| 24 pin | 35p | 78p |
| 28 pin | 39p | 85 |
| | | 105 |
| 40 pin | | |

ZERO nsertion DILIC

Socket 24 pin $\mathbf{£ 6 . 5 0}$ f6.50

CMOS

ICNT

WATFORD ELECRONICS
Continued from opposite side)

OPTO ELECTRONICS LEDS Plus. Clip			VOLTAGE REGULATORS					
			14	TO3				
Grn 12		18	5 V	7805	145p	7905	220p	
Yellow		22	12V	7812	145p	7912		
2" R		15	15 V	7815	145p			
and Amber		18	18 V	78181	45p			
		18	1 A	TO220 ${ }^{\text {P }}$	Plastic C	Casing		
		36	5 V	7805	60 p	7905	$65 p$	
2N5777		45	12 V	7812	60 p	7912	65p	
OCP71		120	15 V	815	60 p	7915	$65 p$	
ORP12LD271 Infra Red (emit)		63	18 V	7818	$60 p$	7918		
		40	24 V	7824	${ }^{60} p$			
TIL32 Infra Red (emit)		58	100 mA	TO92	Plastic	asi		
SFH2O5 (detector)		70	5 V	78L05	30p	79105	65	
TIL78 (detector)		70	6 V	78162	30p			
			8 V	78182	30p			
OPTO is olators		48	12 V	78 L 12	30p	$79 \mathrm{Cl2}$	65p	
IL $111 / 2$ or 117		100	15 V	78.15	$30 p$	79 L 15		
7 Segment Displays (Red Displays) TH312 \& $313{ }^{\prime \prime}$			CA3085	95		LM323K		625
			LM300H	170		LM325N		240
TIL312 \& 313.3'		15	LM305H	140		LM326N		240
TIL321 $\mathbf{5}^{\prime \prime} \mathrm{C} . \mathrm{An}^{\text {a }}$		115	LM309K	135		LM327n		270
DL704 - 3". C.C.h		99	LM317k			LM723		39
DL707 3"C. Canod		99	78 HO 5	5V/5A	595p	rBA		85
DL747.6" An $8^{\prime \prime}$ Orange C.		180	UA78HG	+ 5 to		TDA		120
		250	+2		65			
		120	SWIT	CME		OGGL		
FNO357$3^{\text {² Green }}$ C.A.$+1.3^{\text {m }}$ Red or Green		150	SLIDE			SPST		
		150	SLIDE 2	OV				34
Eargraph 10 seg. Red		225	1 1 DPDT			PPOT		38
Liquid Crystal Display 31 digit 8)5p; 4 digit 975p			+A DPDT			pole o		
			4 pole 2	way	24	UB-M		
0.150 .10 .15			PUSH	BUTT				
$0.10 .15$			Spring 1	de		SPST ong		4
			Latching					85
	2p 30		SPST on	off	60	DPOT 6 ta		70
			SPOT Cl	over	65 85	DPOT C/O		79
			DPDT 6			DPOT Bia		115
			miniat	URE		3 pole a		
			$\begin{aligned} & \text { Non Loc } \\ & \text { Push to } \end{aligned}$	aking make	15p	Push B		
200 VQ board			Push to	change c	cover m	omenta		85p
		$90 p$	ROCKER	R: 5A. 2	50V. SP			
140p Veroblock		24p	ROCKE	R: (wnit	(e) 5A	250 V		
G PEN and Spool 325p ooll 80p; Combs 7pea.			ROCKER: Lights red when on. Chrome					
EURO BREADBOARD $£ 5.20$			Bezel. 3A 250V. DPST ROCKER: (White) 10A250V 85p ROTARY: "Make-A-Switch" Make your					
BIMEOARDS			Accommodates up to 6 Wafers. $\quad 90 \mathrm{p}$					
			Break	fore ma	ke Wat	ers. Silv		
				2 way	,	por		
AD BOARDS ingle- Double ied sided $110 p$ 0 $110 p$ $195 p$			Mains DPST Switch to Screen \& Spacers					
	$\begin{gathered} \text { SRBP } \\ 9.5^{\circ} \times 8.5^{\circ} \\ 95 p^{\circ} \end{gathered}$							
			ROTARY: (Adjuetable Stop Typo) 1 pole/2 to 12 way. $2 \mathrm{p} / 2$ to 5 way, 3 pole/ 2 to 4 way, 4 pote 2 to 3 way					
500 pins 250p								
			ROTARY: Mains 250 V AC, 4 Amp					52p

WATFORD'S BOOKSHOP CORNER. (No VAT on Books)

Silicon Chip \& You			
Running Wild: Next	250p	Some Common BASIC Programs	750p
Industrial Revolution		32 BASIC Programs for PET	960p
The Mighty Micro			

32 BASIC Programs for PET $\quad 960$ p
250p Computerisation for small businesses 490 50p 280: A Computer chess progrem 950p 400 p 280 Assml. Lang. Programming 750p 280 Microcomputer Handbook 690p 750 C202 Programming the 5502750 Programming Microcomputer 6502 Introduction to PASCAL 700p CNOS Cookbook And many more Titles

UHF Modulator Modulator
Wide Bandwidth Mod
250 Special for Computers 450p Kwitch assembly marix, Reed 350

full ASCll Keyboar

Model 756
$\frac{139.95}{}$
We stock thousands more hems Why not pay us a vist the next time minutes drive from Junction 5 . eic. all on display.

DIL PLUGS (Headera) 14 pin 35p; 24 pin 185 p 16 pin 39p; 40 pin 375p DIL Sockete on opp. page)			
'D' CONNECTORS (Cennon type)			
			Covers
	Pluga $70 p$	$\begin{gathered} \text { Sockets } \\ 90 p \end{gathered}$	plastic
15 way	95p	125p	$114 p$
25 way	140p	198	
	210p	29	135
11	EDGE CONNECTORS double type		
switches	2×10	way 5 way	$\begin{aligned} & 85 p \\ & 99 p \end{aligned}$
(SPST)	2×18	way 115	p 120 p
4 way	2×2	way 130p	p 135p
110p	2×25	way 149	p 160p
6 way	2×30	way 170	
120p	2×36	way 194 way $210 p$	
B way 1450	2 x 4	way 232	

TRANSFORMERS (mains Prim. $220-240 \mathrm{~V}$)
$6.0-6 \mathrm{~V}$ 100mA: $9-0.9 \mathrm{~V}$ 75mA: $12-0-12 \mathrm{~V}$
75 mA 8VA type: 6V..5A 6V-5A: 9V.-4A 9V.4A 12V-3A 12V-.3A: 15V-.25A 15V-25A 215p 1.2 A : $2 \mathrm{~V}-5 \mathrm{~A}$ - 12 V -.5A $\quad 23 \mathrm{~V}-1.2 \mathrm{~A}$ 6V 24VA: 6V-1.5A 6V-1.5A: 9V-1.2A 9V-1.2A $12 \mathrm{~V}-1 \mathrm{~A}$ 12V-1A: $15-8 \mathrm{AA}$ 15.8A: 20 V -6A 20V-6A 320 p (55p pa P) 50VA: $6 \mathrm{~V}-4 \mathrm{~A}$ 6V-4A: $9 \mathrm{~V}-2.5 \mathrm{~A} 9 \mathrm{~V}-2.5 \mathrm{~A}$; 12V2 A 12V-2A: $15 \mathrm{~V}-1.5 \mathrm{~A}$ 15V-1.5A; 20V-1.2A
$20 \mathrm{~V}-1.2 \mathrm{~A}: 25 \mathrm{~V}-1 \mathrm{~A} 25 \mathrm{~V} \cdot 1 \mathrm{~A}: 30 \mathrm{~V} .8 \mathrm{~A}$ 30V. 8 A $365 p(60 p p \& p)$ $20 \mathrm{~V}-2.5 \mathrm{~A} \quad 20 \mathrm{~V}-2.5 \mathrm{~A}: 30 \mathrm{~V}-1.5 \mathrm{~V}$. $30 \mathrm{~V}-1.5 \mathrm{~A}$ $40 \mathrm{~V}-1 \cdot 25 \mathrm{~A} 40 \mathrm{~V}-1 \cdot 25 \mathrm{~A} ; 50 \mathrm{~V}-1 \mathrm{~A} 50 \mathrm{~V}-1 \mathrm{~A}$ (N. B P\&P charge to 696p (74D D\& postal charge.)

PE PROJECTS: Rhythm Generator, Diamatic

Superboard II
8k MICROSOFT BASIC 4k RAM comes ready built (no hidden kit repair charges) fully expandable to $32 k$ dual floppy Standard system with printer. Superboard $50 \mathrm{~Hz} \mathrm{£159.95}+$ VAT 610 Expansion Board 8k RAM ONLY £159.95 + VAT
IP CD3P Minifloppy Disc, Cased

NEWBUILT
48×32 VIDEO VERSION

50 Hz version NO FLICKER

PERFORMANCE IMPACT PRINTER The ideal companion for PET, APPLE, TSR80. Exidy, Superboard, Compukit, Ohio Challengers and most micro's
Rugged metal enclosure makes it ideal for home computing, small business systems. data logging etc.
RS-2.32, 20mA. IEEE 488 and Centronics I/O 16 Baud Rates to 19,200
60 Lines per minute. Bidirectional
5 print densities $72,80,96,120$ or 132 Chr/Line Self Test Swirch '2k Buffer

- Tractor and Fast Paper Feed/Graphics

Model 800 MST ONLY $£ 399$ + VAT

ZT DRIVING COMPUTER

*MPG Instant *MPG Average "Gals. used since fillup "Miles to empty "Elapsed time

INTELLIGENT EPROM PROGRAMMER Connects directly to TV. Develop, Copy, Burn, Verify 2708, 2716 and with modification 2516.

ONLY £120 + VAT Built \& Tested
$£ 100+$ VAT Kit. $£ 20+$ VAT BuiltPowerSupply
!!!! SPECIAL SCOOP !!!! Verbatim Discs in fives
$51 / 4^{\prime \prime}-£ 1.85$ (each) + VAT
$8^{\prime \prime} . \quad \mathbf{~} 2.20$ (each) + VAT

VIDEO GENIE based on TRS80

Utilises Z80, 12 k level II Basic, 16k RAM, Integral Cassette Deck, UHF O1P. all TRS80 features ONLY $£ 369$ + VAT

STRINGY FLOPPY

Combines economy of cassette with speed $\&$ reliability of disc. (TRS80 exp.int.not rea.) ONLY £189 + VAT (inc. 20 wafers (Tapes)

New from Newnes Technical Books

Beginner's Guide to Digital Electronics

Ian Sinclair

Digital electronics affects us all - pocket calculators, digital watches, TV games, microprocessors and computers all make use of digital technology. This book provides a readable introduction to the methods, circuits, and applications of digital electronics, with practical hints and exercises.
1980192 pages approx. 0408004495 £3.25 US $\$ 7.50$
Other recent titles

110 IC Timer Projects for the Home Constructor

Jules H Gilder
1980128 pages 0408004800 £3.95 US\$9.00

Microprocessors for Hobbyists

R W Coles
197996 pages 0408004142 £2.95 US $\$ 6.75$

Questions and Answers Integrated Circuits

R G Hibberd
1979120 pages 0408004665 £1.75 US $\$ 4.00$
$\mathbb{\mathbb { N }}$ Ewnes Technical Books

FLADAR ${ }^{\text {TRANSFOPMMERS }}$
 PRIMARY $0-240 \mathrm{~V} 50 \mathrm{~Hz}$

SEND FOR OUR TRANSFORMER CATALOGUE PRICE $£ 1.00$ WHICH INCLUDES A 50p VOUCHER OFF YOUR FIRST PURCHASE.									
Type	Vollage	Current	\pm	p/p	Type	Votage	Current	E	p/p
O6FEO6	${ }_{6+6}^{6+6}$	0.5A EACH	1.99	${ }^{60}$	O6FE60 O8FE40	15-0-15	0.4A	1.95 2.35	60 p
$12 \mathrm{FEO6}$	${ }^{6+6}$	1. 1 AEACH	2.66	75 p	O8FE40	9-0-9	${ }^{1 / 4}$	2.35 2.35	60 p
20FEO6 50FEO6	${ }_{6+6}^{6+6}$	1.6A EACH	($\begin{aligned} & 3.36 \\ & 4.02\end{aligned}$	75p	OBFEE0 12 FE 40	$\xrightarrow{15-0-15}$9-0.9	$0.5 A$ $1.5 A$	2.35 2.60	${ }^{60 p}$
S0FEO6	$6+6$ $6+8$	- 3A EACH	4.03	${ }^{955}$	12 F 50	${ }_{12}^{9}$	1.	2.60	75p
					$12 \mathrm{FE60}$	15-0.15	- 0 8A	2.60	75
O6FEO9	9+9	O. 3 A EACH	1.99	60 p	20 FE50	- ${ }_{\text {9-0.9 }}^{12}$	1.6A	3.30 3.30	${ }^{75 p}$
08FE09	9+9	0.5A EACH	2.40	${ }^{60}{ }^{\text {75 }}$	$20 F 660$ 20FE70	- ${ }_{\text {12-0-12 }}^{12-0.15}$	1.6 A 1.2 A	3.30 3.30	75p
$20 \mathrm{FEO9}$	${ }_{9+9}$	1A EACH	3.36	75	20 FE80	20-20	1 1A	3.30	${ }^{75}$
50FEO9	$9+9$	2.64 EACH	4.02	90 p	2 FEF 100	30-0-30	0.6A	3.30	75
60FE09	$9+9$	3A EACH	5.03	125p	50FE50	9-0-9	5A	4.00	900
	12+12	0.24 EACH		60p	50FE80	-	2 A	4.0	${ }_{90 p}$
O8FE12	$12+12$	O. 3 A EACH	2.40	60 ¢	50FE110	30-0-30	1.4 A	4.00	900
20FE12	12+12	O.8A EACH i. 8 EACH	3.36 4.02	75	60FE70 60 FE 80	$15-0-15$ $20-0-20$	${ }_{3}^{4 A}$	5.00 5.00	${ }_{125 p}^{125}$
60 FE 12	$12+12$	2.5A EACH	5.02	125	60FE100	28-0-28	2.2A		125p
80FE 12	$12+12$	3A EACH	6.20	125 p	60FE1 10	30-0-30	3 3A	5.	125p
06 FE 15	$15+15$	0.24 EACH	1.99	6^{60}	80FE40	12-0-12	6 6A		125p
O8FE15	$15+15$	O-25A EACH	2.40	60 \%	8 FFE50	15-0-15	5A	6.15	
12 l 2FE15	15+15	0.4 A EACH $0.6 A$ EACH	2.66	75	8OFE60 $80 F E 80$	20-0-20	$\begin{array}{r}4.5 \\ \hline \text { 4 }\end{array}$	6.15 6.15	${ }_{125 p}^{125 p}$
50FE15	$15+15$	1.5A EACH	4.02	$90{ }^{\text {9 }}$	80 FE70	24-0.24	3A	6.15	125 p
60 FE15	15+15	2 AAEACH	5.03	1250	80FE90	30-0-30	2.3A	6.15	125p
80FE15	$15+15$	ACH	6.20	125p					
O6FE20	20+20	0.15A			90FE50 90FEB0	$15-0-15$ $28-0-28$	6A 3	6.30 6.30	$150 p$ $150 p$
12FE20	20+20	O.25A EACH	2.66	75	90FE90	30-0.30	3A	6.30	150 p
20FE20	20+20	0.5A EACH	3.36	75p	100 FE 50	15-0-16	4A	6.60	150p
50FE20	20+20	1. 24 EACH	4.02	${ }^{900}$	100FE26	26-0-26	3.5A	6.60	150p
60FE20	俍 $20+20$	1.5A EAC	5.03	125p	100FE28	28-0-28	3 3A	6.60	150 p
B0FE20	O+2	2A E	6.20	125p	100FE30	30-0-30	3 A		
BATTERY CHARGER TRANSFORMERS					10	36-0-36	3A		
48FE12	0-6-12	4A	5.00	125	150FE15	15-0-15	6 6A	8.20	160p
66FE12	0-6-12	5A	5.80	1250	150FE26	26-0-26	5A	8.20	1600
7OFE12	0-6-12	6A	6. 15	150 p	150FE30	30-0-30	4 A	8.20	1600
90FE12	0-6-12	BA	7.40	150 p	150FE36	36-0-36	4 A	8.20	160p
					150 FE 2	42-0-42	3 A	8.20	160 p
06 OFE30	6-0.6		1.95		$250 \mathrm{FE28}$	28-0-28	${ }_{7}{ }^{\text {8A }}$	9.02 9.02	
O6FE40	9-0-9	O. 5 A 0.5 A	95	600	250FE30	- $\begin{aligned} & 30-0.30 \\ & 42.0-42\end{aligned}$	7A		
FLADAR ELECTRIC P.O. BOX 19 WESTCLIFF-ON-SEA ESSEX. 0702-613314			TRADE ENQUIRIES WELCOME			PAYMENT TERMS: C.W.O. Cheques. Postal Orders All Prices include 15\% V.A.T			

mullard capacitors Special purchase ol tactory clearance capacitors enables us 0 otter: C280 Potrenters (Liquarice Allsorts) at $\mathrm{E2}$ tor 100 murad And Ministurs Eloctuelrice al 11.50 for 100 mixed Pack of asch only $\mathbf{E} 3$.	miniatune mains transformens Top quality. Split bobbin construction will give $4.5 \mathrm{~V} \cdot \mathrm{0}-\mathrm{-4.5V}$ al 250 MA $\left.\left.1 \mathfrak{q}^{*} \times 1\right\}^{*} \times 1\right\}^{*}$. all sonts of uses. ONLY 900 3 tor $\mathbf{E 2 2 0}$ 2200 ut 40 V Radial $11^{\prime \prime} \times 2^{2 \prime} \quad 60 \mathrm{og} 3$ tor E 1.50 . 1.000 A 100 V Radial $11^{\circ} \times 2^{*}$ anty 70 p . 3 lor f 1.50.
Impertecis ate. As we have no time to sorn them they are manniticent value for the constructor.	20 mm AMTI SURGE FUSES 630 mA . 800 mA 1A 1 1.24A. 1.6A. 2A. 2.54. 3.15A 12 of of acch iype 548 .
 Buy our Honeyewell Humitity Controller. Membrane actualed. wery sonsitive. $t^{\prime \prime}$ shat, 250V, 3.75 A Contucts ldoel lof greonhouses. centrally hasted homes. potices atc. Buile pour anat humdifiers or alarms. Fraction of original cost 90^{p} es. 3 for $\mathbf{f 2}$.	tramsistor packs 100. Full spec, new and marted. Includes BC148, BC184L MEO412. BF274, BC154 otc. etc. P 4.95 200 is shove and includes AC128, 2N3055. BFY50. $80131.8 F 200$ atc. CD . 5 Buy bulk and save mongy. thase picks are worth of least doulte.
i wall and 400 MW . f1.50 100 mexe otouts Includes: Zener. powet. bridge. ger manium. zilicon ete. All full spec $\{4.95$	M/L SWITCH BANKs Them cout I forume I Were made tor verious music canems
Red 4 for 50p. Green and Yollow 4 for 80 p .	Knobs lor P/B Swinchas. Fit $3 \frac{1}{\frac{1}{m m}} \mathrm{mq}$. shatt. $10 \mathrm{fr} £ 1$ Chrome or Spun Aluminfum Finish.
ultansonic tramsducens Fransmilter and receiver 40 kHz 14 mm dia E 3.25 pari.	bulk bargains, stock up for summ 300 muxed \ddagger \& \ddagger wat resistors E1 50 150 mixed is 2 wat rasistors $\mathrm{f1} .50$ 300 mued capaciors, modern, mast types $[3.75$ 100 mizes crasmic and piste caps f 1.20 400 mived him resistors $\{2.95$ 100 mixed polystytrane caps E 2.20 25 pots and prese:s $\mathrm{f1} .50$ 25 presms, stelmon oce $E 1.20$ 20 VORs end themistors t 1.20 100 Hi wothepe ersisiters wirmound mc. $\mathbf{5 2 . 2 0}$ 100 electrolvicza níar vilues $[2.20$ 300 printed citcuit rasistors $\mathrm{f1}$ 300 pinited dicuil components E 1.50
minature reeo swithes	
Wo are the cheopestl 12 lor E1.00 100 lo	
Rotary trye with slow motion drive. leeds ind secial soci	
¢1.50 3 lof $£ 3.50$ "for G.E.C. "2010" series ate.	
PRINTEO CIRCUIT ETCHING Kits Includes 150 sq ins copper clad $1 / 6$ board 1 lb ferric chlaride 1 delo etch resist pen. Abresing tesner. Etch tray plus instructions. Special Price $\mathbf{4} .95$ 1 is FE. C1. To mil. spec $\$ 1.25$ 5 H FE. C1. To mil spoce 55.00 150 so in . Simpter suded boart E 2.00 150 sg in . Deution wifed board $£ 3.00$	
	IOOK MMIATURE THUMBWHEEL SLIDER POTS Very neat. can be banted side by side. Ideal lor v. copp tuning prophic equalisers etc. 10 tof fl
	MINIATUAE LEVEL/BATT. METERS 200 μ F.S.D. as firted to many cassette nocorders 80p
$50 \mathrm{P} P \& P$ on all above tema. Cheque or $P .0$, with order to: SENTINEL SUPPLY, DEPT. P.E. 149A BROOKMILL RD., DEPTFORD, LONDON, SE8	

D.I.Y. KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. 128-NOTE SEQUENCER

Enables a voltage controlled synthesiser to automatically play pre programmed tunes of up to 32 pitches and 128 notes lang Programs are keyboard initiated and note tength and mythmic pattern are externally variable.
Set of basic component kits, PC8s and layout charts
$\begin{array}{llll}\text { Sel of } & \text { KIT76-7 } & \text { £35.56 }\end{array}$

P.E.16-NOTE SEQUENCER

Sequences of up to 16 notes may be programmed by the use of oxtemal panel controls and ted into most votrage controlled ynthesisers.
Set of basic component kits, PCBs and layout charts
Set text photocopies
KIT 86-5 $\quad 233.60$

P.E.STRINGENSEMBLE

A multivaiced polyphonic sting instrument synthesiser.
Set of basic component kits, PC\& \& layout chars
KIT 77-8 £107.86

P.E. JOANNA PLUS ORGAN VOICING

A modified version of the P.E. 5-actave piano that retains all the original facilities and includes switchable organ voicing circultry. Sot of basic component kits, PCBs \& layout chars $\begin{array}{llll} \\ \text { "Sound Design" booklet } & \text { KIT 71-7 } & \text { £127.12 } \\ \text { £1.00 }\end{array}$

ELEKTOR ELECTRONICPIANO

A touch-sensitive multiple-voicing piano using the latest integrated circuit techniques for the keying and envelope shaping, and virtually aliminating "bee-hive" noise hitherto inherent in previous lectronic pianos.
5-octave set of basic components and PCBs (as published)
Additional 3 octave artension and basic PCBs (as published) KIT 80-10 E58. 36 Set of text photocopie
P.E. MINISONIC MK2 SYNTHESISER

A portable mains operated miniature sound synthesiser with keyboard circuits. Although having slightly fewer facilities than the large Formant and P.E. synthesisers the functions offered by this design give it great scope and versathity.

Set of basic component kits (excl, KBDR's \& tuning pots see list for options available) and PCBs (incl. layout charts)
$\begin{array}{lll}\text { "Sound Design" booklet } & \text { K1.00 }\end{array}$

P.E. SYNTHESISER

The weil acciaimed and highly versatile large scale mains operated synthesiser. Other circuits in our lists may be used with it to 000 d avantage.
Main Unit basic component kits. PCBs \& layout charts Keyboard Unit basic component kits, PCBs KIJ 23-31 £101.43 KIT23-32 $£ 60.4$ Main Unit set of text photocopies \quad E5.91

ELENTORFORMANTSYNTHESISER
A very sophisticatged synthesiser for the advanced constructo whe puts performance betore price.

Set of basic component kits, $\mathrm{PC} \mathrm{S}_{5}$ (as published)
Set of text photocopies
KIT 66-14 $£ 252.45$

£7.83

BASIC COMPONENTS SETS include all necessary resistors, capachors, semiconductors, potentiometer and transformers. Hardware such as cases, sockets, knobs, keyboards, etc. are not included but most of these may be bought separately. Fuller details of kits PCBs and parts are showh in our lists

LAYDUT DIAGRAMS are supplied free with all PCBs unless "as published

P.E.GUITAREFFECTS UNIT

Modulates the attack, decay and fiker characteristics of a signal from most audio sources, producing 8 different switchable effects that can be further modified by manual controls.

Basic parts with foot s witches, PCB \& layout chart

Text photocopy

KIT 42-3 $\quad 10.37$

ELEKTORDIGITALREVERB UNIT

A very advanced unit using sophisticated l.c. techniques instead of mechanical spring lines. The basic deley range of 24 to 90 ms can be extended up to 450 mS using the extension unit. Further delays can be obtained using more extensions

Main unit basic component kit and PCB (as published)
KIT 78-3 $\quad 555.40$
Extension unit basic component kit and PCB (as published)
Text photocopy
86p

ELEKTOR ANALOGUE REVERB

Using I.c.s instead of spring-lines the main unit has a maximum delay of up to 100 mS , and the additional set extends this up to 200 mS . May be used in either mono or stereo mode.

Main unit basic component set K1T 83-1 £29.49 $\begin{array}{llll}\text { Additional Delay besic components } & \text { KIT B3-2 } & \text { £20.07 } \\ \text { PCB (as oubl.) to hold both kits } & \text { PCB9973 } & £ 4.52\end{array}$ PCB (as oubl.) to hold both kits

P.E.GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing. for example, flanging, vibrato, reverb, fuzz and tremolo as well as other fascinating sounds. May be used with most electronic instruments.

Set of basic component kits, PC8s \& layout chart
Set of text photocopies
KIT 85-5 £54.56

P.E. PHASER

An automatically controlled 6 -stage phasing unit with integral oscillator

Basic components, PCB \& chart KIT 88-1 £10.69 2-Notch extension, PCB \& chart KIT 88-2 \quad f6.38 Text photocopy 68p

ELEKTORPHASING \& VIBRATO

Includes manual and automatic control over the rate of phasing a vibrato, and has been sifghtly modified to also include a 2 -input mixer stage.

Set of basic components, PCB \& layout chart
Textphotocopy
KIT 70-2 E21.67

P.E.PHASINGUN:T

A simple but effective manually controlied phasing unit. Basic components, PCB \& chart

KIT 25-1
Text photocopy

PHASING CONTROLUNIT

For use with Phasing Kit 25 to automatically control rate of phasing Basic components, PCB \& chart KIT 36-1 £5.21 Text photocopy $\begin{array}{ll}\text { KIT 38-1 } & \text { £5.21 } \\ & 10\end{array}$

P.E. SWITCHEDTONETREBLEBOOST

Provides swithed selection of 4 preset tonal responses. Basle components, PCB \& chart KIT 89-1 \quad \&4.34 Text photocopy.

P.E.TREBLEBOOSTUNIT

A simple treble boost unit with manual control depth.
Basiccomponents, PCB \& chart KIT53-1 £2.92

ELEKTORRESONANCEFILTER

Allows a synthesiser to produce more realistic simuiation of natural musical instruments. Set of basic components \& PCE (as published)
Text photocopy
K1T 82-2 $£ 22.45$

P.E. GUITAR OVERDRIVE

Sophisticated versatlie fuzz unit inel. variable controls affecting the fuzz quality whilst retaining atteck and decay, and also providing filtering. Usable with most electronic instruments.
Text photocopy
$\begin{array}{rr}\text { KIT 56-3 } & 11.82 \\ & 680\end{array}$
P.E.SMOOTHFUZZ

Basic components, $P C B$ \& chart
KIT 91-1 E6.40
Text photocopy
55p

TREMOLOUNIT

A slightly modified version of the simple P.E. unit.
Basic components, PCB \& chart KIT 54-1 £3.74

GUITARFREQUENCYDOUBLER

A slightly modified and extended version of the P.E. unit.
Basic components, PCB Kith 74-1 £6.19
Textphotocopy

P.E.GUITAR SUSTAIN

Maintains the natural artack whilst extending note duration.
8asle components. PCB \& chart
KIT 75-1
Text photocopy

P.E. WAH-WAH UNIT

Can be controlled manually or by integral automatic control.
8 asic components, PCB \& chart
KIT 51-1

P.E. AUTO-WAH UNIT

Automatically gives Wah or Swell sounds with each note played. Basic components. PCB \& chart KIT58-1 E9.68 Text photocopy

ELEKTOR WAVEFORM CONVERTER

Corverts a saw-tooth waveform into sinewave, mark-space saw cooth, regutar triangle, or square-wave with varisble mark-st ace. Basic components, PCB \& chart.
but excl. sw's KIT67-1 \&9.24
P.E.V.C.F.

A voltage controlled filter extracted from P.E. Minisonic project. Easic components, PCE \& ctiart KIT-65-1 E8 \&

P.E.RING MODULATOR

Extracted from P.E. Minisonic project.
8asic components, PCB \& chart
KIT 59-1 £6,36

ELEKTOR RING MODULATOR

ompatible with the Formant \& most other synthesisers.
Set of basic components \& PCB (as published)
Textphotocopy
KIT 87-2 Ce.84

10\% DISCOUNT VOUCHER (PE 83) TERMS: Goods in current advers of lists
over $£ 50$ goods value (excl $P \& P$ \&ATr Correctly costed. C.W.O. U.K orders This voucher must accompany order. Valic until end of month on cover of P.E. Does no apply to creadit card orders
U.K. orders: Keyboards add $\mathbf{f} \mathbf{2 . 7 0}$ each. Other goods: Under f 1 add 35 p . under $\mathrm{£20}$ add 75 p . over $£ 20$ add f 1 . Recommended insurance against postal mishaps: add 50 p for cover up to $\mathbf{£ 5 0}$, $\mathbf{£ 1}$ for $\mathbf{£ 1} 100$ cover, etc., pro-rata. insurance must be added for credit card orders.
N.B. Eire, C.I.. B.F.P.O. and other countries are subject to
higher export postage rates.

ADD 15\% VAT

(or current rate if changed). Must be added to full total of kits, discount post \& handing on all U.K. orders. Does not apply to Exports, or photocopies.

EXPORT ORDERS ARE WELCOME but to avoid EXPOAT ORDERS ARE WELCONE but to avoid delay we advise you to see our ist for postage rates. Al national Money Order or through an English Bank. To obtain list - Europe send 35p, other countries send
${ }^{75 p}$.
Not that we do not offer C.D.D. servicit and
thet our terms are patyment in advance.

AND OTHER PROJECTS

PHOTCORAPHS in this advertisement show two of our units containing some of The P.E. projects bult from our kits and PCBs. The cases were buill by oursetves and are not for sale. though a small selection of other cases is available.
LIST-Send stamped addressed envelope with all U.K. requests for free list giving fulter details of PCBs. kits and
other components.

OVERSEAS enquilies for list Europe-
send 35 p : other countries-send 75 p .

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKIMBER-ALLEN KEVBOARDS as required for many published projects. The manufacturers ctaim that these are the finest moulded plastic keyboards available. All octaves are C to C , the keys are plastic, spring-loaded, fitied with actuators, and mounted on a robust aluminium frame. $\mathbf{3}$ Octave (37 notes) £25.50 4 Octave ($\mathbf{4 9}$ notes) $\quad £ 32.25 \quad 5$ Octave (61 notes) $£ 39.75$

CONTACT ASSEMBLIES \{gold-clad wire - 1 required for each KBD note
Type GJ - SPCO 33p ea. Type GA - 1 pr of contacts, normally open 33p ea. Type GB-2 pr N/O $37 \frac{1}{2} p$ ea. Type GC - 3 pr N/O $52 \frac{1}{1}$ p ea. Type GE -4 pr N/O $63 p$ es. Type GM - 5 pr N/O $82 \frac{1}{2} p$ ea. Type 4PS - 3 pr N/O plus SPCO 78p ea.

P.E. NOISE GENERATOR

Extracted from the P.E. Minisonic.
Basic components, PCB \& chart KIT60-1 E4.84

WIND \& RAIN EFFECTSUNIT
A slightly modifled version of the original P. E. unit. Basic components. PCB \& chan

Text photocopy
KIT 28-1 E4.68

P.E. ENVELOPE SHAPER

 WITHOUTVCAProvides fuli manual control over attack, decay. sustain and release functions, and is for use with an existing $\vee C A$.

Basic components. PCB \& char
Text photocopy
KIT 44-1
55.73

P.E.ENVELOPESHAPER
 WITHVCA

Mas an integral Voltage Controlled Amplifier, and has full manual control over the A.D.S.R. functions. Basic components. PCE \& chart
Text photocopy
KTT 50-1 58.03

P.E.TRANSIENT

GENERATOR

An ADSR envelope shaper without VCA and additionally providing Repeat-riggering enabling a synthesiser to be programmed for mandolin or banjo effects.

Besic components. PCB \& chart
Textphotocopy

P.E.EXTERNAL-INPUT

SYNTHESISER-INTERFACE
Allows external inputs such as guitars, microphon etc., to be processed by synthe siser circuits.

Basic components, PCB \& chart
KIT B1-1
£3.90

P.E.TUNING FORK

Produces 84 switch-selected frequency-accurate tones with on LED monitor clearly displaying beatnote adjustments.
Set of basic components, incl. power supply.
PCBs \& charts
KTT 46-3 E23.32

P.E.TUNINGINDICATOR

A simple 4 -octeve frequency comparitor 4 or use with synthesisers and other instruments where the full versatility of KIT 46 is not required.

Basic components, PCB \& chart, but excl. sw. Text photocopy
$\begin{array}{rr}\text { KIT 69-1 } & \text { £8.19 } \\ & 580\end{array}$

P.E.DYNAMIC RANGE
 LIMITER

Preset to automatically control sound output levels. Basic components, PCB \& chart KIT 62-1 $£ 5.31$

P.E.CONSTANT DISPLAY FREQUENCY COUNTER

A 5 -digit counter for 1 Hz to 55 kHz with 1 Hz sampling rate. Readout does not coumt visibly or flicker due to blanking

Basic components. PCB \& chart
Text photocopy
31.35
780

P.E:6-CHANNEL MIXER

A high specification stereo mixer with variable input impedances.

Basic components, (exel.sw's,) and set of PCBs and charts.
KIT90-8 $\mathbf{C 6 1 . 2 5}$
Extra 2 -channel set with PCB $\begin{array}{lr}\text { KIT } \\ \text { Sel of Text photocopies } & £ 11.62 \\ & £ 1.50\end{array}$

STEREOHEADPHONE

AMPLIFIER

Extracted from P.E. 6-channel mixer.
Basic components. PCB \& chart
KIT 92-1 \quad £5.68

DIGITAL EXPOSURE

UNIT
Controls up to 750 watts in $\frac{1}{2}$ second steps up to 10 minutes, with built-in audfo alarm.

Basic components, PCBs \& charts $\begin{array}{lrr} & \text { Kit 93-3 } & \text { £23.27 } \\ & \text { E1.20 }\end{array}$

P.E.DISCOSTROBE

A 4 -channel light show controller giving a choice of sequential, random, or full strobe mode of operation, and with additional audio input.
Basic components, PCE \& chart
KIT 57-2
128.12
$78 p$

Text photocopy

RHYTHM GENERATORS

Several available, including programmable 16 beat 64000 pattern. 128 beat almost infinite pattern, and pre-programmed 15 pattern using either M252 or M253 rhythm chips. A selection of effects instrument circuits is also a vailable.

P.E VOICE OPERATED

FADER
For automatically reducing music volume during talkover - particularly useful for disco work.
Basic components, PCB \& chart

$$
\text { KIT } 30-1
$$

$£ 4.37$

TAPE NOISE LIMITER

Very effective circuit for reducing the hiss found in most tape recordings.

Basic components, PCB \& chart
KIT 6-3
£4.43

MMEPICAN
FQPRESS

Paclaycare
|r nos

CAPACITORS:

Mullard Ceramic 63 v range 1pF to 10,000 pF E 24 range all at $£ 0.06$ each
Siemens Ceramic 63v B37448/9 .01: .022: .033: .047mF@ £0.06 .068: . 1 mF @ £0.08: .22mF @ £0. 11
CSF High Voltage Ceramic Discs
Prices $£ 0.07$ to $£ 0.18$ Range
100pF to 10.000 pF
Voltage range up to 6 Kv .
See catalogue for details.
Comprehensive range Siemens
Layer Polyester Caps: . 001 to
3.3 mF

Prices £0.07 to £0.63.
See catalogue for details.
Large range of Mullard/Siemens
Electrolytic Axial/Radial
Capacitance values 1.0 mF to $10,000 \mathrm{mF}$
Voltage ranges $25 v$: $40 v$: $63 v$: 100v:
Prices and types as catalogue Also Mullard C280; Siemens B32231/4 and B32110. All prices net + VAT and postage/packaging.

TOOLS BAHCO

Side Cutter with Bezel.
Side Cutter without Bezel.
End Cutter without Bezel.
Vera Metal Shears.
Other items as catalogue.

BOXES \& CASES
See catalogue for full range Aluminium boxes 13 sizes. Rexine Covered boxes 7 sizes. NEW RANGE TMEC CASES Send S.A.E. for details \& types Price range. $£ 14.04$ to $£ 17.00$ ABS PLASTIC BOXES
$3^{\prime \prime} \times 214^{\prime \prime} \times 1 \frac{3}{8}{ }^{\prime \prime}$
$33 / 4^{\prime \prime} \times 234^{\prime \prime} \times 1 \frac{3}{8}{ }^{\prime \prime}$
Prices as $412^{\prime \prime} \times 3 \frac{1}{4}{ }^{\prime \prime} \times 1 \frac{112^{\prime \prime}}{} \quad$ catalogue
$8^{\prime \prime} \times 43 /^{\prime \prime} \times 3^{\prime \prime}$
BAZELLI INSTRUMENT CASES 5 sizes.
Miscellaneous hardware including
Vera Board: Superstrips:
Vero Breadboard.
Vero boxes (see catalogue for full range).

Card Frames: Fliptop boxes: etc etc.

1980 CATALOGUE	
U.K.: 65p post paid	Mroshollis
Europe 85p post paid	
Rest of World $£ 1.25$	
post paid	
Mail order: $01-6248582$	

A. Marshall (London) Ltd., Kingsgate House, Kingsgate Place, London NW6 4TA Industrial Sales: 01-328 1009
Mail Order: 01-624 8582
Also retail shops: 325 Edgware Road, London W2.
40 Cricklewood Broadway, London NW2. 85 West Regen! St.. Glasgow.
108 A Stokes Croft Bistol

TTL see catalogue for full range				SOLDERING EQUIPMENT IRONS-ANTEX
SNT400N	c0. 14	SNT491an	E0.54	
SN7401N	¢0.14	SN7492N	${ }_{\text {coibl }}$	15 watt C15 £3.95
SN7403N	E0. 14	SN749an	E0.80	15 watt CCN f4. 20
SNT404N	co. ${ }_{\text {cois }}$	SNT495N	${ }_{\text {cose }}$	17 watt CON
SN7405N	${ }_{\text {cose }}$	SNTMStin	E1.80	17 watt CX17 £4.20
SN7407N		SN77100N	${ }_{\text {E1/ }}$	25 watt $\times 25$ ¢ 4.20
SN7408N	${ }_{\text {coi }} \mathbf{6 0 . 1 5}$	SN7407N		Stand £1.50
Sn7aso	E0. 15	SN74190N	c1.20	Stand E1.50
SN7atin	${ }_{\text {col }}^{60.15}$	SN7121N	C0.48	DESOLDERING TOO
SN74	${ }^{20} \mathbf{8} .28$	SN7123N	${ }^{60.42}$	
	${ }_{60.47}$	SN74124N	${ }_{\text {c0, }}$	Solder E
	¢0. 22	SN771414	c0.50	
	${ }_{\text {c0. }}^{\text {c0, } 15}$	SN74145N	${ }_{\text {ci }} \mathbf{5 0 . 6 4}$	SINCLAIR INSTRUMENTS
	${ }^{20} 19$	SNT4150N	60.79	Digital Multimeter
(SN7426N	${ }_{\text {cos }}^{60.19}$	SN74151N SN74153N	${ }_{\text {cois }}^{\text {c0.55 }}$	PDM35 £ 34.50
	${ }_{\text {coil }} \mathbf{5}$	SN74154N	${ }_{\text {cose }} 8.90$	DM235 £ 52.50
SN7332N SN7337	E0.21	SN74157N	${ }_{\text {cois }}$	DM350 ¢ 72.50
SN7338N	${ }_{\text {coin }}$	SN74160AN	${ }_{60}^{80.70}$	
SN7441AN SN7442N N7445	E0.52	SN74162AN	c0.70	DM450 E 99.00
	${ }_{60} \mathbf{6 0 . 4 0}$	SN74163AN	${ }_{\text {co }}^{\text {co }}$ 80	Digital Frequency Meter
SN7445N		(incticis	¢0080	PFM200 £ 49.80
SN7747AN	c0.45	SN17174N	E0.80	Low Power Oscilloscope
SN7450N	co. 15	SN74175N	${ }_{\text {co. }}^{60.53}$	SC110 £139.00
(entis3	${ }_{\text {col }}^{\text {co. } 15}$	SNTh17\%	${ }_{\text {coin }}^{60.73}$	
SN7460N	E0.15	SN74181N	E1.65	CRIMSON ELEKTRIK
	${ }_{\text {c0.24 }}$	SN7482N	${ }_{\text {E1. } 29}$	MODULES
SN7472N	${ }_{\text {cose }} \mathbf{2 5}$		${ }_{\text {E1 }}^{\text {E1, } 10}$	CE608 Power Amp £18.26
SN7744N	${ }_{60.31}$	${ }_{\text {SNTM }}$	${ }_{\text {cle }}$	CE1004 " " £21.30
SN7476N	c0. 26 c0.	SN7499n	¢ 6.26	CE1008 " . ¢23.91
SN7481N	${ }^{\text {co. } 71}$	SN74991N	${ }^{20.79}$	
SN7482N	${ }_{\text {co. }}^{\text {c0. } 65}$	SNTM92N	${ }_{\text {co. }}^{69}$	CE1708 " " £30.43
SN7484N	c0.95	SN74196N	${ }_{60} 97$	CE1708 E30.43
		SN7497N	co. 74	CPS 1 Power Unit £16.96
SN74B6N SN7489N SN7490A	${ }_{\text {cil }}$	SN74999N	${ }_{61.09}$	CPS3 " " £20.43
	¢0.33			CPS6 " \quad "26.09
KNOBS \& SWITCHES				CPR1 Pre Amp £29.57
Big selection as catalogue				CPR1S Pre Amp £38.70
Also Resistors; Presets; Pots;				All prices + VAT + postage/ packaging

U.K. RETURN OF POST MAIL-ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE

R.C.S.LOW VOLTAGE
POWER PACK KITS
Post $50 \mathbf{1} \mathbf{2 . 9 5}$
All parts and instructions with Zener diode prined circuit reccifiers and
double wound mains reansormer input 20-240 a.c. Output voltages available 6 or 7.5 or 9 or $12 \mathrm{Vd.c}$. up to 100 mA or less.
Size $3 \times 2+\times 1$ it in. Please state voltage required. THE"INSTANT"BULK TAPE ER ASER Suitable for casserties, and all sizes of taper reels.
 HEAD DEMAGNETISER PROBE ES.00

BLANK ALUMINIUM CHASSIS. 18 s.w. 8.2 tin. sides. 6×4 in. 95 sp ;

ALUMINIUM PANELS. I8 s.w. 8.6×4 in. $24 \mathrm{p} ; 8 \times 6 \mathrm{in} .38 \mathrm{p} ; 10 \times$

 $12 \times 5 \times 3$ in $.2,6 \times 4 \times \operatorname{4in} .51 .3010 \times 7 \times 3 \mathrm{in}, \AA 2.20$.
HIGH VOLTAGE ELECTROLYTICS
$\underset{8 / 800 \mathrm{~V} ~}{81.20} \mathrm{FIGH}$ ELECTROLYTICS

BAKER 50 WATT 69 50 WATT

Post E 2 \square
Superior quality ideal for Halls/PA systems. Disco's and Groups. Two inputs with Mixer Voiume Controls. Master Bass, Treble and Gain Controls, 50 watts RMS. Three loudspeaker outlets $4,8,16 \mathrm{ohm}$. AC 240 V (120 V available). Blue wording on black cabinet.
BAKER 150 Watt AMPLIFIER 4 Inputs 889 DRIII. SPEFD CONTROLLER/LIGHT DIMMER KIT. Easy to build kit. Controls up to 480 watts AC mains. Printed circuit and components

Post $50 \mathrm{p} \mathbf{5} \mathbf{3} \mathbf{2 5}$ STEREO PRE-AMP KIT. All parts to build this pre amp. 3 in puts for high medium or low gain per channel., with volume control and P.C.

R.C.S.SOUND TO LIGHT DISPLAY MK 2

Complete xit of parts with R.C.S. printed circuic, Three

 channets. Up to 1,000 watts each. Will operate from $200 \mathrm{My}{ }^{\circ} \mathrm{O}$100 wats s signal source. Suitabie for home $\mathrm{Hi}-\mathrm{Fi}$
f 8° and all Disco Amplifers. Cabinet extra 54.50 . In Post 500
200 Watt Rear Refiecting White Light Bulbs. Ideal for Disco 200 Watt Rear Reflecting White Light Bubbs. Ideal for Disco
Likhts. Edison Screw 75 peach or 6 for $£ 4$, or 12 for $£ 7.50$. Likhts. Edison Screw 75 p each or 6 for 54 , or 12 for 87.50 . MAINS TRANSFORMERS Primary 240V A.C. ALL POST 999 P
250-0.250V $70 \mathrm{~mA} .6 .5 \mathrm{~V}, 2 \mathrm{~A}$. $250-0.250 \mathrm{~V} 7 \mathrm{~mA} .6 .5 \mathrm{~V}, 2$
$250-250 \mathrm{~V} 80 \mathrm{~mA} .6 .3 \mathrm{~V} 3$
 $220 V 45 \mathrm{~mA}, 6.3 V$ VA GENERALPUR POSELUWW VOLTTAGE.

Tapped outputs available $2 \mathrm{amp} 3.4,5.6 .8 .9 .10 .12$

2 amp 3.4. . 6 . 8. $9.10 .12,15$, 18.25 and 30 V

6 and $12 V 3$ amp

BAKER LOUDSPEAKERS "SPECIAL PRICES'

	Poat 11.50 each				
Madet	Ohms	Stze in.	Power	Type	Our
Major	4.8.16	12	30	$\mathrm{Hr}_{\mathrm{H}-\mathrm{F}}$	${ }_{511} 12$
Supert	8,16	12	30	Hi-F	220
Auditorium	8. 16	12	45	HiFl	220
Audhorium	8, 16	15	60	Hi-FI	c29
Group 35	4. 8,16	12	40	PA	12
Group 43	4, 8, 16	12	43	PA	215
Group 50	8, 16	12	60	PA	120
Group 75	8.16	12	23	PA	222
Group 100	8, 16	12	100	PA	526
Group 100	8. 16	15	100	PA	129
Disco 100	8.16	12	100	Disco	226
Disco 100	8.16	15	100	Disco	\&29

R.C.S. LOUDSPEAKER BARGAINS

 E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$. SPEAKER SALE!

With tweeler. And erosso
lliusirated.
15 W model with tweeter ony.
G00DMANS 20 Watt Woofer Size 12×10 in. 4 ohms. Hi-Fi Bass unit.
GDODMANS TWIN AXIOM 8.15 Watt

R.C.S. MINI MODULE HI-FI KIT $15 \times 8 \frac{1}{4}$ in. 3-way Loudspeaker System, EMI 5 in, Bass 5in., Middle 3in. Tweeter with 3-way Crossover and Ready Cut Baffie. Full assembly instructions supplied.
Response $=60$ to 20000 cps 12 watt RMS. 8 ohm.
$\mathbf{£ 1 0 . 9 5}$ per kit. Two kits $£ 20$.
Postage $\mathbb{f} \mathbf{1}$ per kit.

Make sure of your Heathkit catalogiue... write now:

yampron

Keep up to date with the world's finest electronic kits-with the Heathkit catalogue.

48 product packed pages contain photographs and specifications of the widest possible range of kits. Everything from doorbells to digital clocks, multimeters to microcomputers.

Heathkit make it easy to build, easy on your pocket, and, as with 13 million Heathkit builders over 34 years, your success is guaranteed.

Make sure of your copy of the Heathkit catalogue. Send the coupon today, plus 25p in stamps and beat the demand.

To: Heath Electronics (U.K.) Limited, Dept (PE7),
Bristol Road, Gloucester, GL2 6EE.
Please send me a copy of the Heathkit catalogue. I enclose 25 p in stamps.

Name
Address
N.B. If youre already on the Heathkit mailing list you wil

Soldermes
Iron ofice FREE FREE

SPARKRITE $\times 5$ is a lugh performance. Iop) (puality inductive
 D I Y world It has beeen tried, iestexd and provern fon be utterly reliable Assemblyonly takes 12 hours andinstallatur1 even less due to the patented clip oni rasy fittinct The suparb iechminal chesigh of the. Sparkritecircuit elunuates problems of the. contact breaker There is ino misfire clue to contact breaker bounce whiclo iseslmmated electronically by a pulse' suppression circuit which preverits the tirnt firmg if the points bounce open at hish R P M
Contact breaker burti is c-lommated by reducing the curreilt by 95° "of the nerm

There's alse a mingue' externderd dwat|l circuit which allows the esonl at leniger period of timu tostorents emer gy lufome
 built instatici fumengleg̣ht systems fumetion light anki securnty chancuerover switch Will werk all at: c:oniminis

Fits all 12 v negative-earth vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISESEVERYTHINGNEEDED
Die pressed case. Ready drilled ahmumum extructect base and heat surk. conl mumutimg clıps and accessories All kıt components are guarantexd for a per : ixl of 2 ye'ars from date of purchase Fully illustratorlassembly ancl installation instructions are included

All the reliability, accuracy and style you would expect from the most expensive watches.
 wait 28 days for your watch, so we

 M18 Ladies quartz LCD

 M18 Ladies quartz LCD

 Fashion Watch

 Fashion Watch}

Metac have become synonymous with quality and extreme good value.

We are particularly proud of this reputation and preserve it by meticulously selecting and carefully checking every product we sell.

Our customers are consequently guaranteed a stylish, accurate and reliable timepiece which should cost considerably more than Metac's special offer prices.

24 hour despatch. This is another unique Metac service.

We don't believe, unlike other companies, that you really want to

have opened a special 24 hours despatch centre.

The centre now guarantees that every order received by 3.30 pm will be safely and securely on its way back to you the same day.
uarantee. Every watch is guaranteed for one year.
And, as with all Metac products, we will be pleased to refund your money if you are not completely satisfied with the watch, and return it within 10 days.

Credit card holders may telephone 0327276545 or (01) 7234753 and place orders immediately, without completing the coupon. 24 hour senvice.

M64

£1495
Mans dual time quartz alarm chronograph with 6 digits,
5 indicators and 22 functions.

Highly functional, but beautifully designed watch, suitable for those special occasions.

Displaying hours, mins, secs, day and date, the watch also has an auto calendar and a backlight.

The slim but strong bracelet is fully adjustable and is available in a silver or gold finish.

M64 Mans dual time quartz alarm chronograph with 6 digits,

5 indicators and 22 functions.

For business people with overseas contacts and responsibilities this is the ideal watch.

Local time is always visible, but in addition the watch can be set, and recall, a second time zone, in either 12 or 24 hour formats, and displays a day and date for each zone.

The chronograph/stopwatch displays up to 12 hours, 59 minutes and 59.9 seconds.

On command, the stopwatch display freezes to show intermediate (split/lap) time while the stopwatch continues to run and neither function affects the normal timekeeping.

The alarm can be set to any time within a 24 hour period.

To complete the functions, there is also a 4 year calendar and a fully adjustable stainless steel strap.

M15 Lates suate
 LCD Day Watch

This slender watch displays hours, mins, secs, day and date and has an auto calendar and a backlight.

Only $25 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6 \mathrm{~mm}$ thick this elegant watch has a bracelet, in silver or gold finish, and is fully adjustable to suit very slim wrists.

M17 Ladies quartz LCD Cocktail Watch

Only 6 mm thick, the watch displays hours, mins, secs, day, date and has an auto calendar and backlight.

The fully adjustable bracelet has a bronze/gold or silver finish.

M30 Mans dual time melody alarm chronograph with

 count-down timer, 34 functionsA very impressive new watch ata superbly low price and with so many useful functions.

There are 5 independent working modes; normal watch, count-down alarm, alarm, dual time zone, $1 / 100$ th sec. chronograph.

In addition, the watch can display the day of the week in French, German or English.

The count down timer can be used for a variety of applications from boiling an egg to reminding you your parking meter time has expired. Both the count.down alarm and the normal alarm have a clear musical tone.

For the businessman the time zone feature could be a real advantage. Just programme the second time zone and it will be permanently recorded for easy reference.

And as a stop-watch here's a great timepiece for sporting events and for timing recordings.

There's the conventional stop/start counter plus a lap timer which enables first and second places to be timed.

Longer timing intervals, such as journey times can be recorded while the watch is reading its normal time.

M3 Mans quartz LCD with 6 digits and 11 functions

Only 7 mm thick and with a fully adjustable stainless steel bracelet, this watch is ideal for all ages.

The normal functions are hours, mins, secs, day, date, and day of week.

But as a stop-watch, which does not affect normal timekeeping you also have $1 / 100$ th and $1 / 10$ th secs., split, lap and journey timing, a four year calendar and a backlight.

Also available is a solar version.
This is the same watch but incorporated is a solar energy panel which converts normal daylight into electricity. During periods of darkness the watch instantly operates by battery without losing its accuracy.

M4 Mans quartz LCD alarm with 6 digits and 9 functions

A very useful watch with an effective, loud alarm but still only 8 mm thick.

The normal functions are hours, mins, secs, date, day of week, four year calendar and a backlight.

In addition, there is a 24 -hour alarm, a 5 -minute snooze feature and a 4 second pre-alarm conference bleep.

The conference signa! is a bleep, 4 seconds before main alarm to give advance warning and the option to cancel.

After the main alarm stops the snooze repeater alarm sounds 5 minutes later, unless previously cancelled.

To complete the functions, there is also a 4 year calendar and a fully adjustable stainless steel strap.

M16 Mans dual time quartz alarm chronograph with 6 digits, 5 indicators and 22 functions.

This watch has the same functions as M64 except the time is in the 24 hour format only.

A solar version is available.
This is the same watch but incorporated is a solar energy panel which converts normal daylight into electricity.

During periods of darkness the watch instantly operates by battery without losing its accuracy.

Meviac
ELECTRONICS \& TIME CENTRES

Callers may buy from our shops in: London, 327 Edgware Rd, W2 Daventry, 47 High St, Northampton, 11 St. Giles Square.

To:Metac Electronics \& Time Centres, 24-hour Despatch Centre, 47 High Street, Daventry, Northants.
Please send me the following watches:

VOYAGER STEREO MIXER
 Size $9^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$ Weight 1.2 kg
 * 4 channel 1000W each * 4 basic sequence pattern selections * 3 types of flip-plop selections * Speed \& level control sliders * Automatic operation or via audio input * Full wave control with logic integrated circuitry * Fully suppressed and fused * Superb TUAC quality and reliability
 * 2 Mag deck channels + tone controls * Aux channel complete with tone controls * Mic channel with tone controls * Full autofade * Full headphone/Q facility * Precision L.E.D. VU output/Q facility * Size $25^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$.
 Send for our FREE 28 page catalogue. Please enclose a stamp.

TUAC MAIN DISTRIBUTORS

Birmingham, George Matthews, 85/87 Hurst Street,
(Tel: 6221941).
Cheshire, Cookles Disco Centre, 126 West Street, Crewe,
(Tel: 0270 214739).
London, Garland Bros., Depiford Broadway, (Tel: 01 -692 4412) London, Session Music, 163 Mitcham Road, Tooting, SW17. (Tel: 01.6723413) Mon-Sat 10 am to 5.30 pm . Closed Wed.) Kingston, ABC Music, 56 Surbiton Road, Kingston, Surrey. (Tel: 01.546 9877).
Luton, Luton Disco Centre, 75 Wellington Street, (Tel: 411733) Manchester, A1 Music, 88 Oxford Street, (Tel: 2360340). Middleshorough, Salcoglen, 43 Borough Road, (Tel: 242851). Watford, Component Centre, 7 Langley Road, (Tel: 45335).

DISCO LIGHTING KITS!!!

First class constructional projects, c/w glass fibre P.C.B.'s \& full instructions. No extra components needed to make a top rate working unit.

LK1	3 channel sound-to-light.	LK2	3 channel 3kW
£9.90	300 w/channel tv - 100w input	£17.90	zero voltage firing
LK3 £5.50	2 kW slider dimmer suitable for clubs/pubs. A professional unit c/w face plate.	$\begin{aligned} & \text { LK4 } \\ & £ 16.50 \end{aligned}$	200 mV - 100 watts input. 4 channel 4 kW audio - forward/reverse auto - two speed ranges.
	S C/w panel, prehensive s \& full rantee Carriage on		Suitable case for LK $1 / 2 / 4 \mathrm{E} 3.50$ 100w spots ES or BC £1.50. Coloured pigmy lamps 65p.

No batteries or wires needed. just plug into the mains and get clear, powerful 2 -way commains ation get clear, powerful 2 -way con.
munication, will work well on same mains cir. cuit up to a f-mile distancel Ideal inter-office communication, room to room, office to shop or baby alarm, velume control, and call bution. $\mathbf{£} \mathbf{3 2 . 0 0}$ inc. VAT $+\mathbf{£ 2 . 5 0} \mathbf{p \& p}$. Send £34.50.
Access accepted. Send Name, Address \& No.
(C.)

Yes, there are
plenty of cable reels about, some good, some not so good. This is THE good one, with specis! features hard to surpass. It has TWO sockets for use with standard flat-pin 13 amp . plugs run two appliances at once. Then the Safery Pesture, a sarey cul out - if yolly overioad the reel, the cat out automatucall disconnect. prolecting appliances, cable reel and possiby reducing fire hazasd, wih 3 core cable, about is metres, nearly so feet. all contained in strons a tractive case with winder knobs and carry han die. Ideal houschold appliances, Lawn Mowers
etc. A bargain at $£ 14.85$ plus $£ 2.15$ p ${ }^{2} p$. Senil etc. A ba
£17.00.

MORE BIGVALUE FROM MOURTANDYSTORE

6-DIGIT
 FREQUENCY COUNTER

Counts frequencies from 100 Hz to over 45 MHz with 100 mS gate time. Accuracy is 3 ppm at $25^{\circ} \mathrm{C}$ or less thien $\pm 30 \mathrm{Mkz}$ on 10 MHz ! Overload-
protected 1 -meg
input. Sensititity, 30 mV up to 30 MHz . Req. 9 V battery.
22-351. REG. PRIC

£79.95

TRANSISTORIZED SIGNAL
TRACER
Spot circuit troubles and check RF, IF and audio signals from aerial to speaker on all audio equipment. With 9V battery, instructions 22-010.

Rec mace9.95

REALISTIC DX 300

General coverage receiver. Quartz-synthesised tuning, digital frequency readout. 3-step RF Attenuator. 6. range preselector with LED indicators. SSb and CW demodulation. Speaker. Code oscillator. Batteries (not included) or 12V DC. 20-204.

DYNAMIC
 TRANSISTOR CHECKER

ReG price $£ 229.95$

Shows current gain and electrode open and short circuit. Tests low, medium or high power PNP or NPN types. Go/no-Go test from $5-50 \mathrm{~mA}$ on power types.

нає ferac $£ 19.95$

DIGITAL IC LOGIC PROBE

Unique circuitry makes it a combined level detector, pulse detector and pulse stretcher. Hi-LED indicates logic " 1 ". Lo-LED is logic " 0 ". Pulse LED displays pulse transitions to 300 nanoseconds, blinks at 3 Hz for high frequency signals (up to 1.5 MHz). Input impedence: 300 K ohms. With $36^{\prime \prime}$ power cables. 22-300.

Handy sizereels
and
and dispensers to do a professional job at home

Ersin Multicore Solder contains 5 cores of - corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required handy size reels of
SAVBIT, 40/60, 60/40 and $A L U-S O L$ solder allovs
These latest Multicore solder reels are ideal for the toolbox.
Popular specifications cover all general and electrical applications. plus a major advance in soldering aluminium. Ask for a free copy of 'Hintson Soldering' containing clear instructions tomake everyjobeasy.

Ref.	Alloy	Diam. (mm)	Length metres approx.	Use	Price inc. VAT
$\begin{gathered} \text { Size } \\ 3 \end{gathered}$	$\begin{gathered} \hline 40160 \\ \text { Tin/Lead } \end{gathered}$	1.6	10.0	For economical general purpose repairs and electrical joints.	$£ 3.91$
$\begin{gathered} \text { Size } \\ 4 \end{gathered}$	ALU-SOL	1.6	8.5	For aluminium repairs. Also solders aluminium to copper, brass etc.	£6.90
$\begin{aligned} & \text { Size } \\ & 10 \end{aligned}$	$\begin{gathered} 60 / 40 \\ \text { Tin/Lead } \end{gathered}$	0.7	39.6	For fine wires, small components and printed circuits.	$£ 3.91$
$\begin{gathered} \text { Size } \\ 12 \end{gathered}$	Savbit	1.2	13.7	For radio. TV and similar work. Increases copper-bit life tenfold.	$£ 3.91$

SOLDERING FLUX PASTES
ERSIN' A non-corrosive, rosin based flux for general and electrical soldering in conjunction with 'Ersin' Multicore solders Ref AF14 69p inc. VAT 'ARAX'. For general metal joining in conjunction with ' 4 rax Multicore solders.

BIB WIRE STRIPPER and CUTTER

Easily adjustable for most sizes of flex and cable. Fitted with extra strong spring for automatic opening. Easy grip handles and handle locking device.
Ref $9 \quad £ 2.48$ inc. VAT

EMERGENCY SOLDER

Self-fluxing, tin/lead solder tape that melts with a match. For electrical and non-electrical applications. Size ES36 69p inc. VAT

MULTICORE WICK

for solder removal and desoldering Absorbs solder instantly from tags, printed circuits, etc. Only needs $40-50$ watt soldering iron. Quick and easy to use. Non-corrosive. Size AB10 £1.38 inc. VAT

ECONOPAK

A reel of 1.2 mm 'Ersin' Multicore solder for general electrical use. Size $13 \mathrm{~A} \quad £ 4.14$ inc. VAT

A reel of 3 mm 'Arax
Multicore solder for general non electrical use.
Size 16 A £4.14 inc. VAT

AITKEN BROS
35, High Bridge, Newcastle upon Tyne Tel: 063226729

EXP300

PB6 KIt

EXP300

550 contacts with two 50 -polnt BUS bars. Size $152 \times 53 \mathrm{~mm}$, E6.95.
PROTO-BOARD 6 KIT
630 contacts, four 5 way binding posts accepts up to 614 pin DiPs. $\mathbf{1 0} 98$.

CSC LOGIC PROBES

LP-2 ECONOMY PROBE

Min. pulse width 300 nanoseconds. $300 \mathrm{~K} \Omega$ input impedance, tests circuits up to 1.5 MHz . Detecting pulse trains or single-shot event in TTL. OTL. HTL, and CMOS circuits. £20.95.
LP-1 Mamory Probe E35.65 LP-3 High Speed Memory Probe 256.75

CALSCOPE SUPER $6 \quad \mathbf{1 8 6 . 3 0}$

A portable single beam 6 MHz bandwidth oscilloscope with easy to use controls. High gain to $10 \mathrm{mv} / \mathrm{cm}$ and wide time base range from $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$. Full specification to re quest. Please send S.A.E. Professional scopes you can afford.

CALSCOPE SUPER 10 £251.85

A dual trace 10 MHz instrument of the very highes performance and quelity. It has an accuracy of 3% which is achieved by the use of built-in stabillised power supplles which keep the trace rock steady over a wide range of mains
fluctuations. Full specification on request. Please send SA.E.

SINCLAIR LOW POWER PORTABLE

 OSCILLOSCOPE SC110 £159.85The SC1 10 has a 10 MHz bandwidth and sensitivity down to 10 mV per division. Full trigger facilities are provided, including bright line, auto with TV line and frame positions. Please send for full spec. and illustrated brochure.

TMK 500 MULTIMETER 30,000 o.p.v. AC volts $2 \cdot 5,10,25,100,250,500,1000$. DC volts $0.25,1,2.5,10,25,100,250,1000$. DC current $50 \mu \mathrm{a}, 5 \mathrm{MA} .50 \mathrm{MA}, 12 \mathrm{amp}$. Resistance $0-6 \mathrm{~K}$, 60K. 6 MEG , 60 MEG . Decibels. -20 to +56 db . Buzzer continuity test size, $160 \times 110 \times 55 \mathrm{MM}$ Batteries \& leads included. PRICE E25.95.

CSC EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter/number identified any size.

SINCLAIR DM450

SINCLAIR DM350
£83.95 £114.95

DM350 $148 \times 40 \mathrm{~mm}$
Drovide $3 \frac{1}{2}$ digit display OM450 $4 \frac{1}{2}$ digit dlsplay, Both 1200 V six functions in 34 ranges. D.C. voltage $10 \mu \mathrm{~V}$ to D.C. current inA $10 \mathrm{~m} \Omega$ to $20 \mathrm{M} \Omega$ (100 mQ opn DM350). Accessories for DM350 \& 450 as for DM235 below. Full spec. on request. Please send S.A.E.
Sinclair PFM200 frequency meter
Size $157 \times 76 \times 32 \mathrm{~mm}$.
Range 20 Hz to 200 MHz . Accessories and illustration as for POM35 below. $£ 57.95$

SINCLAIR PDM35

DIGITAL POCKET MULTIMETER
DC volts 14 ranges) 1 mV to 1000 V AC volts 1 V to 500 V DC current (6 ranges) inA to 200 MA . Resistance (5 ranges) 1Ω to 20 MEGQ . PRICE E39.95 AC Adaptor $£ 4.25$ de luxe padded carrying case £1.95 MN 1604 Battery £1.28.
Size $157 \times 76 \times 32 \mathrm{~mm}$

SINCLAIR DM235

BENCH-PORTABLE DIGITAL
MULTIMETER.
$O C$ volts (4 ranges) 1 mV io 1000 V AC volts 14 ranges) 1 MV to 750 V AC \& DC current 1μ to 1000 MA Resistance (5 ranges) 1Ω to $20 \mathrm{MEG} \Omega$. PRICE $\mathbf{f 6 0} \mathbf{6 8}$. Carrying case $\mathrm{f8} .95$. AC adaptor/charger. £4-25. Rechargeable Battery Pack. f8.95.
Size $255 \times 148 \times 40 \mathrm{~mm}$,

PANEL METERS

DIMS $60 \mathrm{MM} \times 45 \mathrm{MM}, 50 \mu \mathrm{amp}, 100 \mu \mathrm{amp} 1 \mathrm{MA}$. $5 \mathrm{MA} .10 \mathrm{MA} .50 \mathrm{MA} .100 \mathrm{MA}, 500 \mathrm{MA}, 1$ amp, 2 50-0-50 a , 100-0-100 a , 500-0-500 a . PRICE £5.95.

DESOLDERING TOOL

SUCTION PUMP
£6.45

Education Establishment Orders Accepted.
PHONE OR SEND YOUR ACCESS OR
ALL PRICES INCLUDE POSTAGE AND VAT

IN PRAISE OF THE READER

THE great strength of PE has always been its readers. That may sound like an unusual statement but basically it's true. Just look carefully at any issue, and, with a little thought, you will realise what we mean.

Take last month for instance, out of five projects four were originally designed and built by readers for their own use, either at home or work. Add to that four pages of IUs, all contributed by readers, and three pages of Microbus much of which also came from readers; plus a controversial page of Readout. Not only do you buy and read the issues but you also write a good proportion of them!

But that is not the only strength we derive from you, in many cases we have your brand loyalty (for want of a better phrase), we know that many have been readers from issue one. You have changed with us from one or two transistor projects through to hobby computers, electronic pianos and high quality test gear. At one time many thought that the IC would never be used in any number by hobbyists, with
your help that idea was quickly changed. Very often it has been demand from you that has made devices available through retailers. Devices that were built for industry have been ingeniously employed by the hobbyist and a second market has grown.

Some of your designs have been taken up by industry in various forms, and many companies have long recognised the wealth of information in our pages. Without you these ingenious ideas would be few and we, would all be the poorer.

We appreciate your loyalty, your ingenuity, your comments and criticisms. Understandably, most of you only write to us when you have a grievance or a problem with a project, but thankfully your letters often contain that extra line which says "Why do you give so much space to musical projects?", or "How about an electronic boomerang?", or : perhaps even "Great mag, keep it upl". They are all noted and give us the feedback we require to point PE in the right direction and hopefully keep you happy.

Keep the designs and comments
coming, and bash us if you want-one -kick won't change our shape, but 'your's may not be the only boot hitting that spot!

Lastly, thank you for your patience, our June issue was published a month late due to the NGA dispute with the printers (we really put our foot in it in the May editoriall. We still expect to be able to bring you 12 issues this year but it will take some time before we are back to normal publishing dates.

FOOD FOR THOUGHT

It appears to us that although most readers receive good,service, there is a small element of mistrust, misunderstanding and possibly dissatisfaction with some mail order suppliers; we would like your general views on buying components by post, including any ideas you may have. In turn we hope to be able to publish your views and those of the retailers; to show both sides the others' problems, and to make you aware of your legal rights and the protection our mail order scheme affords should things go wrong.

Mike Kenward

EDITOR

Mike Kenward

Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICALEDITOR
David Shortland PROJECTS EDITOR
Jasper Scott PRODUCTION EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN.TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY

ADVERTISEMENT MANAGER D.w. B. Tilleard SECRETARY Christine Pocknell
 AD. SALES EXEC. Alfred Tonge 01-2616819
 CLASSIFIED MANAGER Colin Brown 01-2615762

Editorial Offices:

Practical Electronics,
Westover House,
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot be answered over the telaphons (see below).

Advertising Offices:
Practical Electronics Advertisements, King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-2616601

Technical Queries

We are unable to offer any advice on. the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 75p each including Inland/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.10$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

CLAMPING DOWN

If you are a hi-fi accessory enthusiast, you will no doubt be unable to resist the latest offering from BIB-their Record Clamp.

Being yet another accessory that cashes in on poor quality pressings, the BIB Record Clamp is primarily intended to flatten warped records, thereby reducing vibration and im-

proving sound quality. This it does by clamping the record firmly to the turntable, when it is locked to the centre spindle. A stroboscopic disc is also incorporated in the clamp, so that the playing speed may be checked. The RRP for the clamp is $£ 2.48$ including VAT, and it should be available from most hi-fi dealers and record retailers.

THANDAR

Sinclair Electronics have introduced two new products to their Thandar test equipment range.

The TF200 is a bench/portable frequency meter covering the range 10 Hz to 200 MHz with an 8 digit l.c.d. readout. An external prescaler unit will be available in the future to increase the upper frequency capability to 600 MHz .

The instrument can be operated either from internal batteries or an external a.c. adaptor. Typical battery life is over 200 hours.

The TG105 is housed in the same case style as the TF200 and this general purpose pulse generator covers a range of 5 Hz to 5 MHz . The period and pulse width controls are independently adjustable whilst the output is continuously variable in two switched ranges to a maximum of 10 V from a 50 ohm source. A TTL output is also provided.

Operating modes include free-run, triggered, gated and one shot, with complement and square wave functions effective on both the 50 ohm and TTL outputs. Jitter free pulse trains with duty cycles of 0% to 100%
can be achieved with a special inhibit circuit to blank the output when the pulse width is set larger than the period.

The TG 105 which is a mains operated instrument retails at $£ 85$ whilst the TF200 is £145. (ex VAT and p\&p).
A. Marshall's (London) Ltd., Kingsijate House, Kingsgate Place, London NW6 (01624 0805).

RHYTHM COMPUTER

As easy to use as a pocket calculator with a programmable versatility only limited by the imagination is the new DR 55 Doctor Rhythm.

Measuring $211 \times 116 \times 53 \mathrm{~mm}$ and weighing only 850 g the unit is truly pocket size affording the musician a portable drummer which can provide the sounds of bass drum, hi-hat and rim shot.

Six 16 -step rhythm patterns and two 12 step patterns are available supplemented by a variable level accent control. An A and B function switch allows inversion of the patterns. An optional footswitch is available for starting and stopping.

At $£ 89.50$ a worthwhile investment for the soloist requiring more than a metronome accompaniment. Further information from Brodr Jorgensen (UK) Ltd, Great West Trading Estate, 983 Great West Road, Brentford, Middlesex.

SOFTY

Two new products designed for direct connection to the SOFTY Intelligent EPROM Programmer Card have been announced by GP Industrial Electronics Ltd. The first product is a Conversion Card which enables SOFTY to program the 2508,2758 , (INTEL 2716) and 2532 single rail EPROMs.

Device type and 1 K blocks are selectable by 4 way p.c.b. slide switches. The programming socket is a lever operated zero insertion force. Supplied built and tested, complete with a d.i.p. jumper for connection to SOFTY for £46.00 inclusive of VAT and post and packing.

The second product is the SOFTY Printer Card. This uses a 40 column electrosensitive matrix printer, and allows "push button" printing of the EPROM/RAM/Intercursor contents from the SOFTY card. The number of characters per line is selectable, from 1 to 16 bytes. A spare EPROM socket is provided for user programs eg. disassemblers etc. Supplied built and tested, the price is $£ 166.75$ inclusive of VAT and post and packing.

Both products are availabie ex-stock. Full details are available from GP Industrial Electronics Ltd, Skardon Works, Skardon Place, North Hitl, Plymouth P14 8HA. Telephone (0752 28627.)

BUDGET SOLDERING AIDS

Tri-tronic Marketing of Rugby have introduced three soldering aids which, even if you buy all three at once, won't break your bank.

Their British-made Type 1 Soldering Iron is only 18 watts, yet its output is comparable to that of most 25 watt irons. Also, it is only 7.7 inches long and weighs just 4.25 ounces, so that it is ideally suited to the hobbyist. The iron comes complete with a $\frac{1}{\frac{1}{9}}$ inch diameter bit and 6 feet of cable, and is priced at $£ 4-72$.

To complement the iron, a robust bench stand is available, finished in red anodised aluminium, and complete with cleaning sponge. The price of the stand is $£ 4.78$.

Also available from Tri-tronic is a professional grade de-soldering braid which is used by many major electronic equipment manufacturers. The braid is vacuumised for high speed reaction and incorporates a noncorrosive flux. For either 0.8 mm or 2.2 mm width braid, the price for a $5 \frac{1}{2}$ foot reel is 94 p.

All three prices quoted above include VAT and $p \& p$, and the products are available from: Tri-tronic Marketing Ltd., 75 Albert Street, Rugby, Warwickshire, CV21 2SN.

COMING UNSTUCK

If, like many people, you have been put off using instant "Super-glues" because of the annoying habit the glue has of finding its way onto the wrong surfaces (fingers in particular), you will be pleased to hear that Loctite have come up with a remedy to the problem. Their "Gluematic" is an effective dispenser which enables one to control the flow of glue so that

anything from a pinhead to a large blob can be deposited. This is effected by means of a spring-loaded applicator tip. Light pressure on the tip releases a small amount of glue, and the flow increases with heavier pressure on the tip. A childproof twist/lock safety cap is also incorporated.

Undoubtedly, the Gluematic makes the use of instant glue much safer and more controllable. It retails at $£ 1 \cdot 75$, and is available from hardware and DIY stores, and branches of Woolworths.

DIGITAL PANEL METER

A digital panel meter which is microprocessor compatible has recently been introduced by μ Data Systems. Their MP12T combines a $4 \frac{1}{2}$ digit liquid crystal display with a 12 bit binary data interface.

Tri-state TTL compatible outputs are byte organised, enabling it to be used as a direct memory-mapped interface to a microprocessor. In addition, full UART handshake logic is incorporated, and a further countserial output enables two-wire data transmission and minimum cost high voltage isolation.

Precision timing is provided by a 6.5536 MHz crystal oscillator and the band-gap reference voltage has a temperature coefficient of 20 ppm . Accuracy is 0.025 per cent and sensitivity is digitally adjustable between $10 \mu \mathrm{~V}$ and $500 \mu \mathrm{~V}$ per count via the Trescex expansion system.

The price for one-off is $£ 79+V A T$, and further information is available from: John Nichols μ Data Systems, Office Suite 1, Coach Mews, The Broadway, St. Ives, Huntingdon, Cambs. PE17 4BN. (0480 63570)

TV BOOSTERS

Antiference recently announced the introduction of two new high powered masthead amplifiers for TV/FM reception, together with an associated power supply unit. They are the UP2300 (15 dB gain), the UP3300 (27 dB gain), and the PU1240 power unit.

The new amplifiers incorporate entirely new sophisticated active devices which operate at 12 volts d.c. with power supplied via the downlead. They provide extremely high output capability and improved gain characteristics, and have separate VHF and UHF inputs. Both amplifiers are housed in a weatherproof

moulding which is designed for mast or surface mounting. The power unit has been specially developed for remote powering of the two amplifiers, and provides a stabilised 12 V d.c. negative earth supply.

All three models are avilable from usual stockists, and approximate prices are: UP2300-£16; UP3300/£23; PU1240-£15. Antiference Ltd., Aylesbury, Bucks HP19 3BJ (0296 82511)

EXPLORER 85

Newtronics the computer section of HL Audio are the sole distributors for the Explorer 85 microcomputer system. At the heart of the system is the new 8080A chip from Intel and the MPU is compatible with the vast repertoire of 8080 based programs.

The EXPLORER 85 is meant to form the centre of a "Main-Frame" type computer system-its basic board has room for 4 K RAM, 8 K ROM/EPROM, two fully buffered and decoded S-100 Bus sockets, ROM-I/O chip to hold the system monitor, two 8 -bit $1 / 0$ ports, cassette-file interface. An S-100 expansion frame, which bolts rigidly to the basic board, gives six S-100 slots which will allow
standard S-100 boards to slide in for any available function.

The system comes in many levels, but for £297 plus VAT Newtronics will sell you a kit for levels A, B and D plus a video terminal board with ASC11 keyboard for direct access to a TV or video monitor. This gives the user 4 K RAM, a very powerful 2 K ROM-based Machine-Code Monitor, two S-100 Bus slots (to run anything from extra RAM to discs), ASC11 input, Video/TV output, cassettebased files, plenty of parallel and serial I/O ports.

Newtronics Ltd., 138 Kingsland Road, London E2 88Y.

HOME RADIO

With the ever increasing cost of batteries many constructors will be interested in the battery eliminator kit for a PP9 available from Home Radio. This kit which can be assembled in a matter of minutes using a screwdriver and only requires a 13 amp plug. The complete unit can be inserted into an old PP9 battery case or a suitable case can be provided for an extra $£ 1.50$ plus VAT.

The kit is priced at $£ 2.80$ including VAT and p \& p.

Home Radio (Components) Ltd., 234-240 London Road, Mitcham, Surrey, CR4 3HD.

First the EuroBreadBoard Now the EuroSolderBoard

Design on a EuroBreadBoard - Instal on a EuroSolderBoard

First the EuroBreadBoard
Will accept $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to .85 mm dia leads.
500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, low resistance ($<10 \mathrm{~m}$ ohms) nickel silver contacts
£6.20 each or $£ 11.70$ for 2 including 1 or 2 EuroSolderBoards FREE

Now the EuroSolderBoard

New 100 mm square, 1.6 mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm dia fixing holes.
£2.00 for set of three ESB's of FREE with every EuroBreadBoard)

And don't forget the EuroSolderSucker

Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pcb pads and track. Primed and released by thumb, it costs only £7.25 including VAT \& PP

Snip out and post to David George Sales,
Unit 7. Higgs Industrial Estate, 2 Herne Hill Road, London SE 24 OAU David George Sales,
Unit 7. Higgs Ind. Est., 2 Herne Hill Rd., London SE24 OAU. Please send me:-

	1 EuroBreadBoard	$£ 6.20$	0	
or 2 EuroBreadBoards	$£ 11.70$	0	Please	
or 3 EuroSolderBoards	$£ 2.00$	0	Tick	
or 1 EuroSolderSucker	$£ 7.25$	0		

All prices are applicable from Jan. 1 st 1980 and include VAT and PP but add 15% for overseas orders.
Name .
Company.
Address.

Tel. No

Please make cheques/P.O. payable to David George Sales and allow 10 days for cheque clearance and order processing PE. 7

CAMBRIDGE Learning Instruction ENTERPRISES

Courses

Microcomputers are coming - ride the wave! Learn to program. Millions of jobs are threatened but millions will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency, with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program,
 debugging, and clear documentation
BOOK 1 Computers and what they do well: READ, DATA, PRINT, powers, brackets, variable names; LET; errors; coding simple programs. BOOK 2 High and low level languages; flowcharting; functions; REM and documentation; INPUT, IF...THEN, GO TO; limitations of computers, problem definition. BOOK 3 Compilers and interpreters; loops, FOR....NEXT, RESTORE; debugging; arrays; bubble sorting: TAB BOOK 4 Advanced BASIC; subroutines; strings; files; complex programming; examples; glossary.
Also THE BASIC HANDBOOK (BHB) £11.50 An encyclopaedic guide to the major BASIC dialects. A must if you use other peoples' programs
and: ALGORITHM WRITER'S GUIDE (AWG) £4.00 Communicate by flow chart! Learn to use Yes/No questions for: procedures, system design, safety, legislation etc.

Understand Digital Electronics

Written for the student or enthusiast, this
 course is packed with information, diagrams, and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters, and simple arithmetic circuits; and finally to an understanding of the design and operation of calculators and computers
BOOK 1 Decimal Octal, hexadecimal, and binary number systems and conversion between number systems; negative numbers: comptementary systems. BOOK 2 OR and AND funclions, mutip/e-inout gates; Iruth tables; De Morgan's Laws: canonical forms; logic conven-
tions; Karnaugh mapping; three-state and wired logic. BOOK 3 Halt full, serial, and parallel adders: subtraction: processors and ALU's; multiplication and division. BOOK 4 ffip floops: adders; subiraction; processors and Alus; multiplication and division.
shift registers; asynchronous, synchronous, ring, Johnson, and exclusive-OR feedback shim registers; asynchronous, synchronous, ring, Johnson, and exclusive-OR teedback
counters; ROMS and RAMS. BOOK 5 Structure of calculators; keyboard encoding: decoding display-data; register systems; control unit; PROM; address de-coding. BOOK 6 CPU; memory organisation character representation; program storage; address modes; inpul/output systems; program interrupts; interrupt priorities; programming, assemblers; computers; executive programs; operating sustems.
DIGITAL COMPUTER LOGIC \& ELECTRONICS. (DCL) £7.00 A course covering the material in italics above, but at a slower pace. (4 vols)
GUARANTEE - No risk to you. If you are not completely satisfied your money will be refunded without question, on return of the books in good condition.

CAMBAIDGE LEARNING ENTERPAISES, RIVERMILL SITE, FREEPOST, ST. IVES,
HUNTINGDON.
$\begin{array}{ll}\text { PLEASE SEND ME:- } & \text { CPB } \quad \text { (£9.00) } \\ & \text { BHB }(£ 11.50) \\ & \text { AWG }(£ 4.00) \\ & \text { DDS }(£ 12.50) \\ & \text { DCL }(£ 7.00)\end{array}$
Quantity

FOUR WAYS TO PAY:
II A U.K. cheque or a U.K. postal order (Not Eire or overseas)
2) A bank draft, in sterling on a London bank (available at any major bank)
3) Please charge iny Access/M.Ch Barclay/TrustC/Visa \square Am. Exp. \square Diners \square 4) Or phone us with these credit card details - 048067446 (ansaphone) 24 hour service.

Card No .

Signed.

THESE PRICES COVER THE COST OF SURFACE MAIL WORLDWIDE. AIRNIAIL: Eur, N.Af. Mid.E. add $1 / 2$ to price of books: Jpn. Aus, N.Z. Pefc add \%/: elsewhere add $1 / 2$
Name.
Address.

Cambridge Learning Enterprises, Unit 22 Rivermill Site. FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR England. U.K. Delivery: up 2021 days (or send 50 p for 1 st ci.p.) Proprietors: Drayridge Lid., address as above, Reg. in Eng. No. 1328762

Youth at the Helm

Full marks to 33 -year-old Alan Sugar for getting Amstrad Consumer Electronic Ltd off the ground with a successful public flotation. As a by-product, if he wasn't one already, he became a millionaire, at least on paper, and good luck to him.

He started his company at the age of 21 as a wholesale distributor of car accessories but soon after spotted an opening in the burgeoning hi-fi industry, first in making tinted dust covers and then into amplifiers and the rest. Today Amstrad has a full range of equipment for home and in-car entertainment and host of new products in the pipeline for release this year and next.

It reminds you of William Morris starting off with his bicycle repair business in Oxford and finishing up as Lord Nuffield although, in this case, I should hate to see Amstrad in the sorry state that has overtaken the once-proud Morris and Austin marques within the present BL Cars. A better example is the young Bill Hewlett and Dave Packard getting together in the backyard to form what today is the mighty Hewlett-Packard organisation. Or, for that matter, the young Marconi, who, at the time, appeared to be off his rocker, the complete nut-case and an Italian one at that.

What is so extraordinary about Alan Sugar is not that he is still young and clearly talented in business matters but that he moved into a sector in which most British companies were fighting a rearguard action in face of increasing threat from Far East sources, principally Japan. It seems to me that Sugar wasn't a fool who rushed in but an astute operator who used the opposition to his own advantage. It was they who established the market, he who found
the slot in quality and price, the simple formula with sales appeal. He may, too, have taken a leaf from the book of Clive Sinclair in using sub-contractors to make much of the product line to his designs and yet avoiding the mistakes which led to the failure of the old Sinclair Radionics.

Every business needs a bit of luck. Sugar's came with the pound gaining strength while the yen weakened. Still, which ever way you look at it, Amstrad is an achievement which shows that anyone with guts can still have a go at running his own show. It also dispels the depressing myth that we can't compete, although it has to be admitted that a percentage of Amstrad equipment is imported-from the Far East!

Fears

Apex, the white-collar union, has called for a 30-hour week, more basic pay, longer holidays and early retirement. Terrified by the prospect of the electronic office and a supposed slackening of demand for clerical staff, Apex is naturally out to protect its membership. And yet there are plenty of examples where resistance to new ideas and methods by a workforce has resulted in bankruptcy and no jobs at all.

There is bound to be greater productivity, possibly job loss, in the electronic office. That's what it's all about but I often wonder if the case is not overstated. Not many years ago there was uproar over computers being used for generating pay-rolls and other routine and boring office tasks. But there was no mass unemployment, only a quick and happy adaptation with a new field of job opportunities automatically opened up for operators and programmers, not to mention all the work generated in building the computers, installing them and servicing them during their lifetime.

Finniston

It now seems clear that nobody is really happy with the reforms in the engineering profession as proposed in the Finniston Report. The civil engineers have even gone so far as to say that their inclusion in the new Engineering Authority, if it ever gets set up, would weaken their international standing. Other interested parties are not nearly as high and mighty. But there are some oddly phrased statements being bandied around. I see Mr John Sampson, general secretary of the UK Association of Professional Engineers, is quoted, for example, as saying. 'The top level muscle required to drag industry and the establishment into the engineering dimension can only be effectively wielded by a very highly respected individual reporting direct to the prime minister.' Who does he have in mind-could it be Mr John Sampson?

The debate continues and the problem, if there is one, remains. The mountains of paper work resulting from Finniston should keep some Apex clerical workers busy for a
few months-and that can't be bad.

Mystery

Sealed lips are the order of the day in the mystery of inmos, GEC/Fairchild, the NEB, and the Government. A year ago everything looked all set for two British-based large volume IC manufacturers to be in production this year and next. Whatever may be happening behind the scenes nobody is prepared to admit.

But there is plenty of speculation. Is Schlumberger, now owner of Fairchild, disenchanted with the idea of the joint GEC/Fairchild project? Is the recently reorganised NEB, not to mention the Government and, particularly, Industry Minister Sir Keith Joseph, disenchanted with the idea of Inmos? Is it really on the cards that GEC's Sir Arnold Weinstock has been contemplating investing in Inmos, thus relieving the problem of further taxpayer funding?

Kite-flying is rampant, permutations of possibilities almost endless.

Meantime, what we would all like to know is exactly how Inmos has spent its first $£ 25$ million. What are the circuits, where are they, and how and when will they be marketed?

I ask only because I have read that a vice-president of record-breaking Intel has forecast that what with inflation and the expense of the very latest technololgy it could cost $\$ 50$ million to build a fabrication plant by 1985. The vice-president is Willard Kauffman in charge of Intel's component production. He should know what he is talking about and by my reckoning $\$ 50$ million at 1985 prices is a lot less than $£ 23$ million which is today's equivalent.
inmos, of course, hasn't started building yet. True, there has been reported pilot production in the USA but how does this help Britain? True, there is an engineering and administration staff in the UK at Bristol. But still no product and no production. How about a little public accountability? Inmos and the NEB surely have a duty to let the shareholders (i.e. we the taxpayers) know the current state of play.

A wards

It wasn't just the technology and export achievement of Decca that Racal bought. Racal got Decca's previous Queen's Awards to Industry as well. The Racal Group itself scooped up another three this year, one for technology and two for exports, bringing their score to 13 . Add in the ten held by Decca and the Group including Racal-Decca now has a grand total of 23.

Strangely enough, one of the export awards went to a non-electronics product, the Airstream anti-dust safety helment. It co-incided with the 100,000 th to be produced (50 per cent exported) and this particular figure was hit two years, yes two years, ahead of the original target. This is the sort of good news that keeps Racal rolling. Other companies please copy.

REVIEW

By MIKE ABBOTT

PRODUCED by Science of Cambridge, the ZX80 is undoubtedly excellent value for money, whether purchased as a kit or ready-built. The Z80 based system incorporates a UHF modulator so that it can plug directly into your television aerial socket and go! All you need is a 9 V 600 mA unregulated supply. All leads are supplied, including that for a domestic tape recorder, to allow use of its built-in cassette interface for saving programs. Memory expansion is available up to 16 K bytes, but the basic machine has 1 K byte of RAM which Sinclair claim is used so efficiently that it's equivalent to 4 K bytes on a "conventional" computer. We did not check this, but Sinclair also claim that the ZX80 is faster than all other personal computers, and so a comparison was made between a Commodore PET, our UK101 and the ZX80, each working through a simple benchmark test chosen to be independent of their different dialects of BASIC. The winning order was: ZX80, UK101 and PET.

FIRSTIMPRESSIONS

The case comes in two halves, which fasten together with plastic rivets to form a pleasant unit in appearance, measuring $175 \times 220 \times 35 \mathrm{~mm}$. These lightweight pressings are about as robust as plastic egg cartons, however, and it is immediately apparent that the p.c.b. gives strength to the case, rather than the reverse. Although there is a regulator with heatsink, the ventilation slots seen in the photograph turn out to be printed black stripes in reality. The case is probably not strong enough to take real slots! Affordability is the name of the game, and so mere adequacy should not be criticised, particularly as the all important p.c.b. is of excellent quality and design, in the ZX80.

The touch sensitive keyboard is fabricated integrally on the p.c.b. and looks smart enough. Membrane switches are used, and these sensitive and easy to clean keypads seem likely to enjoy increased popularity in the future.

CONSTRUCTION

Assembly was self-explanatory, with little risk to the i.c.s because the soldering stage involved mainly sockets and discrete components. A separate leaflet giving assembly instructions is supplied, and this is fairly thorough. It gives, in addition to the assembly procedure, convenient component identifications and colour codes alongside each item in the components list. With 47 nF capacitors stamped as 473 Z etc., the beginner will appreciate this.

At this stage I would like to reveal the fact that my ZX80 did not work initially due to a construction error on my part. In the belief that my kit was two diodes short, I had made up the deficit with surplus ones, only to find that the short-fall was due to my. having put two diodes in what were intended to be vacant positions. If time is not on your side, mistakes like this are all too
easily made, and so I proffer this warning. If at the end of the day your ZX80 fails to operate, check not only that components are in the right place, but that there is nothing where there shouldn't bel It costs $£ 10$ to put this microcomputer through Sinclair's debugging system-PE did not receive a bill, but you will!

UP AND RUNNING

Deviations from the norm are manifold in the ZX80, and this has made the machine fun to review but difficult to know where to begin.

A manifest curiosity relates to the keyboard, and what Sinclair describe as "key word" entry at a single touch. This refers to such words as INPUT, GOTO, RUN, LIST etc, being printed on the screen by one key press, and is claimed to save you up to 40 per cent typing time, although it must depend upon whether you are developing, or merely running a program. Many "key words" do not begin with the letter of the key to which they are assigned, which can lead to a conflict with one's own reflexes to begin with, that is if you are used to pecking out words like GOSUB in the old fashioned way.

There is a kind of "anticipation logic" associated with the keyboard too! If you take, for example, the U Key; this has three functions. With Shift, it prints the dollar sign, and without Shift it prints U. It can also print IF, but just how can a twocondition switch provide three functions? Well, the key assignments are cleverly arranged so that the machine can assume certain needs. In the case of the U Key, there is no legal way in ZX80 syntax, that a U can follow a line number, and so the "anticipation logic" assumes you want IF . . . and that's what you get! All other key words are juggled thus.

Some of the inflexibilities of the ZX80 may stem from the aforementioned. Only one instruction per line is allowed, and LET is not optional. If it was, you might start a line with $\mathrm{U}=\mathrm{X}$ +1 , which would confuse the "anticipation logic".

THE DISPLAY

Large clear characters appear on a rock steady display in reverse field video (black characters on white background). A full screen contains 32 columns by 24 rows of characters, and amazingly enough, the VDU operating firmware does not facilitate scrolling. When a full screen is reached, if your program does not execute a Clear Screen instruction (CLS) before undertaking further printing, it will "kick out" and throw up the Screen Full error message.

At each and every keystroke there is an extremely irritating flicker on the screen, particularly when typing in NEW, which causes a complete eruption. There is no key-repeat function, and when repetitive "dabbing" at any of the membrane switches is necessary; Rubout, for example, concentrating one's eyes on the restless display becomes difficult.

There are ten special graphics characters accessible direct from the keyboard, each available in reverse video by printing the appropriate CHR\$, thus providing twenty fairly standard graphics symbols of the kind found on larger machines. Producing bar graphs is quite feasible.

The video display is not memory mapped. In fact, with a total of only 1 K of RAM there is no way the VDU could be memory mapped, since 768 locations would be snatched away for screen refresh alone. The processor presumably returns to PRINT statements on an interrupt basis, which would explain why the screen goes blank during any processing-such as FOR/NEXT loops-and this places animated real-time graphics outside the realms of possibility. Many disadvantages may result from this.

EDITING

Microcomputers running an interpreted BASIC generally have a small vocabulary of error messages, such that if a program with an error is run, when the mistake is encountered, the machine will stop and display the appropriate message. This might read:

SYNTAX ERROR IN LINE 150 or UNDEFINED STATEMENT ERROR IN LINE 70 etc.

Many machines have numbered error codes which amount to the same thing, and although no computer can comment on the logic of your program, it can tell you where you have entered invalid instructions-after you have tried running the program! This is where the ZX80 differs, at least in the case of syntax, because it will not accept a line in which you have a syntax error, at the programming stage.

The cursor plays an important roll in this function because it can enlighten you the moment you make a mistake, or merely remind you that something needs correcting sooner or later. Let me give you an example.

Supposing you wish to type the following instruction:

10 PRINT "SOFTWARE RULES OKAY"

The normal cursor awaits at the bottom of the screen:
K
You type in:

10 PRINT L (three key presses)

The cursor suddenly turns into a reverse-field L. Note that the cursor symbol is described as reverse-field relative to the ZX80's normal display.

The l is telling you that the computer is not expecting any further single-touch key words. This relates to what I described earlier as "anticipation" logic, so that, using the former example, the U Key would actually print U now, and not IF. In other words, the cursor reflects the computers expectations.

To continue, opening quotes are now needed.

10 PRINT "LS

Now you find yourself with a two-character cursor clumsily lopping along. The S stands for Syntax error, and while it is present, the line will not be accepted. If you were to hit New Line (Return) now, nothing would happen, and this is because you have opened quotes and not yet closed them.

To finish, typing the remainder gives

10 PRINT "SOFTWARE RULES OKAY" L

Pressing New Line now sends line 10 to the top of the screen to join any previously written lines . . . A "greater than" symbol always points to the last line entered.

This leads automatically to discussion of the Editing firmware. Two arrows, obtained by Shift 6 and 7, allow the $>$ symbol to be moved up and down the listing to select the line to be edited. After pressing the Edit key, two further arrows, Shift 5 and 8, allow the cursor to be moved along the Edit line, which by now will have appeared at the bottom of the screen. Insertion, alteration and deletion of characters in the usual way is then possible.

You may be wondering how lengthy programs are listed on a machine with no scroll capability. In short, there is a scroll which can be executed incrementally on a listing by moving the $>$ symbol downwards using the "downward arrow" key. When the $>$ symbol (which, incidentally, is called the Current Line Cursor) hits the bottom line, it scrolls the listing from then on.

Hyphenated LIST commands are not valid for listing blocks of program, but, according to the manual, if you type LIST, followed by a line number, the machine will list your program from that line down to the bottom of the screen. My machine seemed to have a mind of its own about that! I always got the line I wanted, but embedded in a block of program listing of the machine's own choice. If I asked for LIST from a line number already displayed further down, I got the same program block back with the Current Line Cursor readjusted to that line. Fair enough I suppose!

There is in the manual an explanation of the computer's logic for listing specific lines. This seemed little help to me when seeking out certain blocks of lines.

ZX80 BASIC

The ZX80 can only perform "integer" arithmetic; that is to say, whole numbers. Calculations on low value figures can therefore produce pretty meaningless results unless you have implemented a software solution-which is easy enough although heavy on memory! This means that the machine will not accept a decimal point in a listing (the dreaded S appears). It is interesting to note that the S came up even when I tried to reply to an INPUT with a number containing a decimal point. That cursor is ever vigilant! Any number which contains a decimal point as a result of an algorithm will be truncated, even at an intermediate stage. An example, for readers who are not familiar with the limitations of integer arithmetic:

$$
\begin{array}{ll}
10 & \text { LET A }=5 / 2 \\
20 & \text { LET A }=\text { A }^{*} 2 \\
30 & \text { PRINT A } \\
& \text { gives the result 4 }
\end{array}
$$

Enough criticism! There is one versatile aspect of ZX80 BASIC which impressed me, and that is GOTO n , where n can be a variable. This, I think, does more than compensate for the absence of ON n GOTO, found on other machines.

I decided not to waste editorial space repeating facts about the ZX80 which can be found in Sinclair's ubiquitous two-page advertisements, but to confine this review primarily to subjective judgements. For this reason there are no lengthy lists of BASIC verbs and functions here. There are indeed no mathematical functions, although the manual shows how square roots can be resolved by software.

There are a couple of novel string functions, and these are:
TLS (string) which returns the string contained within the brackets minus the first character.

CODE (string) which returns the code number of the first character in the string. This is not the ASCII code! !!

The non standard $\mathbf{Z X 8 0}$ character code table is given in the manual, and it is interesting to note that complete key words such as CONTINUE, RANDOMISE, CLEAR etc., can all be thrown up on the screen by a single PRINT CHR $\$$ (code number) statement.

A pseudo-random number generator allows the following functions:
$\operatorname{RND}(\mathbf{X}) \quad$ which provides a random interger in the range 1 to \mathbf{X}.

RANDOMISE which initialises the random sequence to a number, using the number of frames supplied to the television since it was switched on. This eliminates the likelihood of a random number based program following the same trend each time the machine is switched on.

RANDOMISE n which sets the start of the random number sequence to n . This would be useful if you wanted a random number based program to deliberately do what RANDOMISE avoids, i.e. repeat a pattern or trend each time after switch-on, or execution of this function.

The ZX80 advertisement refers to a "Timer under program control". This refers to the PEEKing and POKEing of the TV frame counter, and not standard BASIC real-time.

Undoubtedly software and expansions for the ZX80 will be forthcoming, but for the benefit of those who know absolutely nothing about computers, yet have read the Sinclair advertisement,' in its minimal form you would at present be hard pressed to run a power station or even play chess with the ZX80.

Another claim which might mislead the novice is: "Lines of unlimited length". They may indeed be! But this can only be in the form of extended PRINT statements or prolonged Boolean expressions, such as:

IF $A=1$ OR $A=5$ AND $K=6 \ldots$. etc.
This may be very handy indeed, but the hidden truth is that only one statement per line is legal, thereby relegating the colon to its literary function only.

Some ZX80 statements are: ABS(n), REM and STR\$(n). There is no TAB function, although a software implementation of this is given in the manual.

Other minor observations are that NEXT must be followed by the operator; NEXT Z for instance. INPUT statements may not contain messages or prompts between quotes. For example:

INPUT "NAME"; N\$

is illegal. A prior print statement would be necessary for "NAME?"

INPUT statements can only handle single variables. For example:

INPUT X,Y,Z
is illegal. You would require three separate INPUT statements to do this.

With regard to speed, a quick check was carried out to verify Sinclair's claim to processing speed. Below is the program used, and the time taken by two other machines which happened to be available at the time.

10 FOR A = 1 TO 5000		TIMES
20 LET X $=$ A*2		
25 LET X $=$ X $/ 2$	ZX80	30 sec.
30 NEXT A	UK101	40 sec.
40 PRINT "FINISHED"	PET	50 sec.

It should be borne in mind that the ZX80 had the advantage of processing integer only arithmetic, but Clive Sinclair is quoted as saying that, with its clock speed of 3.25 MHz , the ZX 80 will remain faster when used with the floating point ROM which is now in the pipeline. This ROM, incidentally, will incorporate logarithm and trigonometry functions too.

HARDWARE

The unit measures $218 \times 170 \times 50 \mathrm{~mm}$ and weighs $340 \mathrm{~g}(12$ oz. .), and is based on the NEC Z80 $\mu \mathrm{P}$.

All firmware is stored in one ROM, christened the "SuperROM". This i.c. houses the BASIC interpreter, operating system, monitor and character set. A 46-way edge connector pad $(23+23 \mathrm{pin})$ at the edge of the p.c.b. allows for expansion and interfacing. Memory expansion boards are available which can add up to 3 K bytes each.

There is no PIO (Parallel Input/Ouput) device on-board. The polarized expansion connector carries the Address Bus and Data Bus, along with the Z80's "single wire" control lines.

Memory comprises two 2114L RAMs; the remaining i.c.s, excluding the regulator, being 74LS series TTL devices.

OPERATING MANUAL

The ZX80 Operating Manual is dubbed "A Course in BASIC Programming". It contains minimal inside information about the hardware and firmware and so would displease the "wires and
machine code" man, but instead is an excellent introduction to BASIC, or at least, the ZX80's dialect of the language.

There is little one can say about this as a training manual because it is so good! It is well printed, clearly laid out, and very considerately written for the beginner, and it has some quaint chapter titles. A latter chapter called " 4 K BASIC FOR ZX-80" gives a summary of the "user's view" of the machine, and for the technically hungry, an elementary "computer's eye view" of how things are organised. There is also a glossary of terms and statements. The appendix gives a number of useful address locations in the $\mathbf{Z X} 80$'s memory.

So, the ZX80, plus this manual, will make learning BASIC easy and pleasurable. Although there are many more instructions at your finger-tips with an extended BASIC, they are the ones which make programming easier, and so learning the language with Sinclair's package should nevertheless be effective and worthwhile.

CASSETTE INTERFACE

The cassette interface is Sinclair's own (300 baud), and conventional SAVE and LOAD commands are used to write and read data using a domestic cassette recorder. There is no VERIFY or named program firmware, and curiously for a machine of this kind, variables and data are SAVEd too; after LOAD you should start with GOTO 1 instead of RUN to get the benefit of this.

The manual implies that you may not record successfully with your cassette player running on mains power, and that you may need to switch to battery power. I did not have this trouble, but using a Sony TC-207, recording programs could not be achieved with the Earphone lead connected simultaneously with the Mic. lead. The earphone plug had to be removed. I later discovered an addendum slip to this effect.

The display, unrefined as ever, produced ugly patterns whilst cassette handling.

CONCLUSION

I see the ZX 80 in the classroom, and in workshop control applications. Perhaps even hidden in the executive's top draw, to be pulled out at lunch times to resume training. For these situations, the machine is excellent, and eminently suited to teaching children the art of computer programming. It is of little use scientifically at present, with only integer capability and no mathematical functions, and this to some extent wastes the boasted processing speed of the machine.

At the time of writing it seemed appropriate to advise that a firm delivery date be secured before purchasing the ZX80 microcomputer.

A ZX80 Users Club has been formed, membership of which costs $£ 6$ p.a. ($£ 10$ overseas), which includes the newsletter and the Software Bank Index. For details, write to:
ZX80 Users Club, PO Box No. 159, Kingston upon Thames, Surrey KT2 5UQ.

polinis dilsint

AMMETER (December 1979)

Fig. 7, component layout. There are two R1s, so the most central R1 should be altered to read R7. There are also two D13s. The end-mounted diode is D13, and the flat-mounted one should read 015.

The supply leads should, of course, be taken from Chassis, and the Ignition Switch (non-battery side).

DIGITAL FREQUENCY METER (March'80)

The p.c.b. layout in fig. 10 shows pins 26,27 and 28 of IC1 1 linked to another track. These pins are not used and it is therefore necessary to break and isolate the tracks from pins 26, 27 and 28 .

In Fig. 13 the link from S2b to diode D4 should be taken to the right-hand side of D4 and not the laft as shown.

Some of the connections to the multiplexed l.e.d. display in Fig. 7 are incorrect, the pin numbers should be in ascending order from 1 to 16 (from left to right). The p.c.b. layout is correct.

Semiconductor UPDATITEm featuring

NEW VOLTS FOR OLD

How many times have you put together your ideal circuit and then discovered that just one of those naughty chips needs a negative supply? Own up now. It happens to me all the time!

In the past you either had to redesign the whole thing using cunning tricks and five volt OP-AMPS like the LM324, or you gave in, added some noughts to the cheque and built a new power supply to suit. If you could stand the cost, the board space, and the resulting noise and inefficiency you could have used a switching DC to DC convertor, but that was never an attractive solution where only a low current negative rail was required to bias one or two chips.

Enter the ICL 7660 from Intersil. problem solved. This cunning new device turns any positive voltage you give it into an equivalent negative voltage. You've only got a plus five volt logic supply? Well, with the ICL 7660 in circuit you've got a minus five volt supply too, so you can power those phase-locked loops or that A to D convertor. A twelve volt car battery? You mean plus and minus twelve volts, ideal for those 741 OP AMPS.

The doubting Thomas's among you are no doubt saying you've heard it all before, and next you expect to hear about the $£ 20,00$ price tag. Not so with the ICL 7660 , in hundreds it costs only $£ 1.23$ (OK, so you don't want a hundred, let's say about two quid then). Think it's bound to be big? Forget it, this little performer comes in a plastic eight pin mini-clipl OK, OK, so how much does the transformer cost. You don't need one. just two 10 MFD capacitors, and you can draw up to 40 mA .

Intersil haven't told me how the thing actually works; but it's a fair guess that they chop the positive supply up with a CMOS switch, pass it through one of those capacitors to destroy the DC level, and then rectify it and smooth it with the other capacitor. I don't want to take my guesswork too far, but it's likely to be a synchronous switching rectifier, rather than a diode, to avoid the otherwise inevitable diode drop. A synchronous rectifier would also explain the very high efficiency of up to 98% with a 5 K load.

If you need, say, minus ten volts from your 5 volt logic supply don't despair, just cascade two 7660s and you are in business. 40 mA not enough current? Then wire some 7660 s in parallel, easy isn't it If you aren't into analogue circuits at all, then
think how this device could provide the negative supply for those dynamic RAM chips, or that RS232 interface, or

MANY LEGGED BEASTIE

One tends hardly to raise a yawn these days, on encountering yet another weird and wonderful I.C. package, but the TDA 1099 SP from Thomson CSF had me checking the biro mark on the bottle of Johnnie Walker just in case I had tipped too much into my glass. With the (modest as usual) consumption verified, and after a couple of blinks, yes it was true. The TDA 1099 SP really did look like a plastic power transistor, but with no less than eleven pins, all in a neat row. Further investigation showed that the TDA 1099 SP is actually a dual (stereo) audio power amplifier in a single package which provides a very creditable ten watts per channel into 2 ohm loads. Especially designed for car radio systems, this new chip appears to be virtually indestructible.

I blanched when I read about the conditions it is designed to withstand, because I had no idea that a 12 volt car system could inflict such nasties on our unsuspecting electronics.

The TDA 1099 will handle:
(i) $50 \mathrm{~ms}, 40$ volt transients.
(ii) Extended operation at 28 volts.
(iii) Normal operation at 18 volts (possible if you get regulator problems).
(vi) Short circuits on the outputs.
(v) Polarity inversion. (Garages sometimes connect batteries up the wrong way round, the TDA 1099 SP will stand the current until the fuse blows I)

Despite this macho image, the new chip will provide a very lady like fidelity for those who enjoy that kind of thing in their cars. Distortion is typically only 0.2% at 4 W , cross talk is at neg 60 dB , the bandwidth is well beyond my appreciation at 20 KHz , and the signal to noise ratio is 75 dB even at full power.

The package design is unique and Thomson claim that it is well suited to the rugged enviroment to be found in a car.

QUITE A COMBINATION

There have been quite a number of circuits published for ingenious electronic combination locks, but most have suffered from their need for numerous ICs (usually

TL or CMOS) and a host of support components. You can reduce the chip count by using a micro' of course, but this is overkill with a capital ' O ', unless you can use the spare capacity of the processor for other jobs too. There has been a need for some time for a simple, cheap, combination lock circuit based on a single dedicated chip, and now at last someone has done something about it.

The firm is LSI Computer Systems Inc. (Quite a mouthful) and the chip is the LS7220. This new chip has been designed primarily for automotive applications, to replace the ignition key for example, but there is no reason why it should not be pressed into service anywhere that a convenient security lock is required. The LS 7220 comes in a 14 pin plastic DIP, and will run from 5 to 18 volt supplies with a very low consumption (40 microamps maximum at 12 volts). You would normally wire the chip up to a keypad where any four of the switches are wired to inputs $11,2,3$ and 4 , and all unused switches are wired to the RESET input. To open the lock you have to hit only the four valid keys in exactly the right sequence. If you get it right, a lock control output switches to control a relay and presumably a solenoid lock. An additional output is provided to control a lock status indicator LED. Four keys used in this way provide 5040 sequence possibilities, not sufficient for the Crown jewels perhaps, but adequate for many day to day applications. As with all practical car security systems, there can be a problem if you need to let someone else have access to your vehicle, to park it perhaps or to service it. The LS 7220 removes the need for you to give these casuall users the combination by providing a SAVE input which, in effect, allows you temporarily to disable the lock once you have 'Logged-on' with the correct combination, even though you may turn the ignition off and leave the car. Turning off the ignition without using the SAVE feature causes the lock to operate, but fortunately a pin is provided for a 'Convenience delay' capacitor so that you can actually escape from your car before the lock imprisons youl

It all sounds terribly complicated to me, and I wouldn't want one on my car, but I might just find a use for it on my piggybank. You can get the LS 7220 in the UK from Radiofort Sentex Ltd., Radiofort House, 73A Shenley Road, Boreham Wood, Herts. (01-207 1957).

THE proliferation of home video recorders which seems to have taken many people by surprise is merely the latest stage in an evolutionary process that began in earnest thirty years ago-just after the Second World War, that had seen tremendous advances made in electronics. Many of these being applicable to television, which had been neglected during those years-even in America. The time was ripe for new developments. Companies that had been working on wartime contracts now found themselves out on a limb; looking for new products to fill their production capacity, and provide work for the returning thousands. Some came across the Magnetophon: Telefunken's audio recorder, used by wartime German radio stations and taken by the Allies as reparations. Thought, turned into action.

MAGNETIC TAPE DEFICIENCES

The result was that all sorts of deficiencies in the magnetic recording process were made apparent that the limited requirements of the audio signal hadn't revealed. To cope with the very high upper video frequencies for example, required either an incredibly small head gap or a phenomenally high writing speed. In the event, because the materials then available to designers didn't allow head gaps to be reduced by the necessary amount, writing speeds of up to $40 \mathrm{~m} / \mathrm{sec}$ were used, which caused both wear problems and used up enormous reels of tape very quickly.

It also became apparent that the video signal couldn't be recorded directly onto the tape if the bandwidth was to be recovered in its entirety. In fact, only a little more than half proved recoverable. The fault lying with the playback head. Where the directly proportional increase in its output with frequency at the rate of $6 \mathrm{~dB} /$ octave, could continue only until either the resonant frequency of the head was reached or the wavelength approached the width of the head gap, when the output would rapidly collapse to zero, while at the bottom end of the frequency scale, the correspondingly low output tended to merge in with the system noise. The difference between floor and ceiling being a constant 10 octaves; whereas 18 octaves were

The microprocessor controlied HR-7700E is JVC's latest and most advanced VTR.
necessary if a well defined picture was to be reproduced-say 20 Hz to 5 MHz .

Two approaches were tried. In one, the bandwidth was divided up into two or more frequency spectra. While in the other, it was modulated onto a fixed carrier frequency. VERA, the Vision Electronic Recording Apparatus developed by Mr. Peter Axon for the BBC, used both; the low frequencies-from near d.c. to 100 kHz -modulated the frequency of a 700 kHz carrier, while the high frequencies-from 100 kHz to 3 MHz were AM recorded onto a separate track (a 3 MHz bandwidth being quite adequate for the monochrome 405 line system). Audio, was also recorded FM, on a parallel track. The tape/writing speed was $5 \mathrm{~m} / \mathrm{sec}$; tape width- 12.7 mm . Running time, 15 minutes.

AMPEX

Several other recorders of similar design were under test. But it was Ampex, experimenting with rotary head designs, that in 1956 would win the race with their four head (Quadruplex) recorder; for the writing speed could be very much higher ($41.148 \mathrm{~m} / \mathrm{sec}$ European broadcast standard) and the tape speed very much slower ($39.7 \mathrm{~cm} / \mathrm{sec}$ EBS). The entire video signal was frequency modulated onto a carrier, so that the bandwidth necessary to carry the information was now determined by the sidebands produced, which could be held down to around 4 oc taves. An additional advantage was that limiting could be applied to counter amplitude changes at such high writing speeds.

However, the complexity of the rotating head system that had made success possible, Fig. 1, now militated against the recorder's use in other than broadcast applications. There was little room for tolerance. Four heads spaced 90 degrees on the periphery of a wheel, spinning at 250 r.p.s., perpendicular to the motion of the 50 mm tape. The tape formed into a curve of just over 90 degrees around the headwheel by a vacuum guide. Each head laying down transverse tracks containing 16 lines of video information with 2 lines of overlap. Their sequential switching being determined by the sync pulse coming off the tape. With a "rotary" transformer to get the signals in and out again. And a control track to keep all of the dynamic components at their theoretically correct positions (this, and the audio track, being on opposite edges of the tape, outside the video portion). It was no wonder that the price was a cool $\$ 50,000$!

This was beyond the means of the potential industrial, commercial and educational users, who would constitute a very

EO 358
Fig. 1. Quadruplex format
much larger market. So an alternative recording system was required. One that would provide reasonable quality pictures, without needing to be of broadcast standard. A much smaller and lighter machine that could be moved around, and eventually become truly portable. One that could be sold at a competitive price.

ROTARY TWIN HEAD RECORDERS

The answer lay in a patent filed in 1953 by Eduard Schueller of Telefunken, detailing a rotary twin head recorder using helical scanning. Where a tape was wrapped in a shallow helix around a large diameter horizontal drum. Scanned by the two heads rotating inside, through a narrow slit in the wall. Each oblique track-much longer than in Quadruplex-containing all of the information necessary for a 20 ms field. With again, audio and sync tracks recorded on opposite edges by separate fixed heads.

50360
Fig. 2. Helical scan system
Actually, the early helical scan recorders tended to have just the one head, to remove the switching and matching necessary with the broadcast machines, Fig. 2. Although the effects of unmatched heads would naturally be far less noticeable in alternate fields than in 16 line "bands". This single head rotated at 50 r.p.s.; and writing speeds were typically around $25 \mathrm{~m} / \mathrm{sec}$ depending on the circumference of the drum. Tape speeds varied between $12 \mathrm{~cm} / \mathrm{sec}$ and $25 \mathrm{~cm} / \mathrm{sec}$ with the 25 mm or 50 mm tape looped 360 degrees around the drum in what was known as the alpha wrap-because of its resemblance to the Greek letter. The first VTR to break the $£ 1,000$ price barrier, the Philips EL3400, was of this type; for the first time incorporating the now common ferrite pole tips to reduce head wear.

A: AL PHA WRAP

B: OMEGA WRAP

C: 180° OMEGA WRAP

E0359
Fig. 3. Tape wrapping arrangements
For this, along with tape wear caused by contact with these rapidly scanning tips and by the tapes passage around a stationary drum, were the penalties being paid for the dramatic reductions in size and cost. Problems that were eased somewhat by an alternative wrapping arrangement: omega Fig 3b, where contact was less than 360 degrees. The few lines that were missed because of this, being of no consequence if the blank was fixed at either the top or bottom of the picture. But, although both of these arrangements are still in use today, it was the 180 degree omega wrap Fig 3c that really eased the problems. It did require two heads, which re-introduced switching-so as to avoid their both contributing noise-and the problem of their

The LVR system from Toshiba employs a continuous tape loop with the audio and video encoded together.
uneven wear; but these factors were becoming of less significance as both design and technology advanced.

In the same year that Philips announced their sub- $£ 1,000$ industrial recorder-1964; Sony announced a 180 degree omega wrap helical for just $£ 200$! Not surprisingly it received a good deal of media coverage, as the first VTR to fall within the reach of the domestic user; including a demonstration on the BBC children's programme, "Blue Peter", when it appeared in Britain in '66-at almost twice the price.

It did cheat a little however; recording only every other field, playing that back twice for a properly interlaced frame. Reducing the recording bandwidth to a mere 1.5 MHz . The two heads (record/playback \& playback only) rotated at 25 r.p.s., as is usual with a 180 degree wrap. The 12.5 mm tape ran at $19 \mathrm{~cm} / \mathrm{sec}$. No RF modulator was fitted though, so playback had to be through an in-built pivoted monitor; a small one, that subjectively improved the results.

But who wanted to pay for a small screen, when they already had a large one? Or a monochrome system, when colour was obviously going to be the thing of the future? And to put up with the inconvenience of open reels, when the advantages of cassettes and cartridges were already being made available to users of audio recorders? Not too many as it turned out. Not in the domestic market, anyway; although it was quite well received by industrial and educational users (well, at under $£ 400$, it would be).

A subsequent version sprouted a couple of extra heads, to record chrominance in the guard bands between the luminance tracks. But it, and the few other skip-field helicals that appeared at intervals over the next ten years, were an evolutionary deadend in the ascent towards a sure-fire domestic formula. Although the Matsushita-National VX2000 did achieve the distinction, in 1976, of being first to exceed 60 minutes playing time-a figure that had become something of a psychological barrier. But it was never marketed in Europe, and was really obsolete before it was ever announced.

BETA 1

For, almost exactly a year earlier, Sony had brought out their Beta 1 cassette recorder that exploited a more elegant means of making the most of a given length of tape: slant azimuth (Fig. 4.). Allowing the bands of blank tape left between the tracksguarding against crosstalk - to be eliminated; increasing the recording density and thus reducing the tape running costs. Now, crosstalk was dealt with at the FM luminance carrier frequencies of around 4 MHz by slanting the azimuth angles of the two heads by plus and minus 7 degrees; creating enough distinction between their respective tracks to achieve around -30 dB at-
tenuation. While, at the much lower frequency $(686 \mathrm{kHz})$ where the converted chrominance signal was located (and the effectiveness of the technique was reduced to about -10 dB), attentuation was achieved by phase shifting and a comb filter. Quad machines record luminance and chrominance together, but domestic recorders and some of the other helicals separate them and record "colour under" on an AM sub-carrier.

Fig. 4 Slant azimuth tape system
But, unlike the VX2000 recorder, it remained within the 60 minute time barrier; and so it was a target for the same criticisms that were being directed at the Philips N1500, introduced in 1974. Too little time for recording feature length films off-air, and for playing the pre-recorded cassettes that would be needed to bring variety to the consumers viewing and to stimulate sales. Too little time for even an hour long programme, if the recorder was activated by the integral timer and the start of the programme was delayed-as common an occurrence then, as now.

VHS

Therefore, in late '76, JVC announced their VHS (Video Home System) format; which better exploited slant azimuth by offering a maximum of two hours from a cassette. Sony, who had offered their Beta format to JVC's sister company, Matsushita, were not amused; and within a few months brought out their two hour Beta 2 format-supported by Sanyo and Toshiba. Matsushita dropped their VX2000, and went VHS. The chance for a united Japanese front had gone.

In Europe, Grundig went slant azimuth and brought out their own two hour modification to the basic Philips VCR (Video Cassette Recorder) format. Philips followed suit by announcing their own two hour long play version-VCR-LP; and launched their new N 1700 recorder onto the British market at the end of 1977. Within a few months, PAL versions of VHS and Beta formats hit the British market with maximums of three and three and a quarter hours playing time respectively. Philips squeezed another half hour out of their two hour cassette with longer, thinner tape in reply. And Grundig reduced the linear tape speed of theirs to give a maximum of four hours playing time with a format they called: SVR (Super Video Recorder).

INCOMPATIBLE SYSTEMS

At the end of 1978 then, the consumer was faced with a choice of four, totally incompatible, formats; each one attempting to seduce him with unique features. Whereas, in fact, they were very similar indeed. All used helical scanning; although with different drum diameters and thus, writing speeds: from a low of $4.83 \mathrm{~m} / \mathrm{sec}$ VHS, to the $8.1 \mathrm{~m} / \mathrm{sec}$ of VCR-LP. All wrapped 12.5 mm tape 180 degrees around the drums; although the means of drawing it out of the cassettes and the paths taken were different with each (Fig. 5). As were the tape speeds; in this case, Beta being the slowest with its extra narrow- 30
microns-video tracks, at $1.87 \mathrm{~cm} / \mathrm{sec}$ and VCR-LP the fastest at $6.5 \mathrm{~cm} / \mathrm{sec}$. Giving the Philips N1700 the best picture and sound quality. Although the co-axially mounted spools did cause some reliability problems, and made the cassettes rather bulky by comparison with the VHS and Beta ones-the same with the Grundig off shoot.

They all featured drop-out compensation-a one line video memory-to fill in any detail lost by dust on the tape, etc. Also,

Fig. 5 Sony's U-loading
eight channel tuners; with limited forward timing, on one channel only. The Philips and Grundig recorders made do with just RF inputs and outputs, plus mic; while the Japanese machines added video and audio. Sound however, was as much the poor relation of video as in most television receivers, with average bandwidths from 80 Hz to 8 kHz and other figures to match.

But, although video has fared rather better because of the rotating heads, its bandwidth was still limited to 3 MHz ; and that was only achieved by straining the technology to its limits. In fact, if the performance of magnetic tape had not improved dramatically over the past twenty years, even the advances in electronics would not have allowed home video recording to become a reality. Narrow tracks and low writing speeds, require low noise levels to achieve an acceptable picture. Techniques such as noise coring are certainly important factors, but are not substitutes for high coercivity particles. While the physical properties of the tape must combine low friction to reduce wear in the penetrating heads (they protrude through the slot in the drum), with just enough abrasivity to keep them clean. This latter degree of self-maintenence, together with the much improved binders that have largely overcome the tendency of early coatings to break up and clog heads and guides, removes the temptation for owners to attack the works with good intention. And the problems that would occur without regular maintenence.

NEW FORMATS

After the initial rush by manufacturers to get a video recorder onto the market-mostly JVC's machine with a bit of cosmetic reworking; 1979 saw two distinct trends emerging: the upgrading and diversification of the basic machines, and an injection of variety in the shape of three new formats. Having ap-
parently decided that the facilities offered by the first crop were the least that the consumer desired; they set about building on these to make the products that much more desirable. The timer, for example; originally operative over a mere three days, now gave the user the chance to be away for a week or more without having to miss a favourite programme, or several programmes on one or more channels. And programmes could now be located automatically by identification pulses at their beginnings and ends.

Variations of fast and slow playback were other features introduced; and with them another problem; change the speed of the tape, and the angle of the head path is changed. Thus, it will deviate from the track that it's scanning, if that track has been recorded at the normal speed: following a more shallow path at high speed and a steeper one as the speed is reduced. With noise bars as the result. A compromise adopted by JVC in their HR3600 recorder, is to have one extra width head just wide enough to cover the angle change.

DYNAMIC TRACK FOLLOWING

A rather more elegant answer was forthcoming from Philips, in their new V2000 format-co-developed by Grundig. Dynamic Track Following; where the heads are made to follow the tracks by the application of a specific voltage to the piezoceramic plates on which they are mounted. A technique that had previously been confined to machines of broadcast quality. But even if speed variations had not been anticipated, the need for precise alignment of heads to their tracks was essential with the video tracks being as narrow as 22.6 microns. Particularly so, with the unique turn-over cassette that's been adopted; reducing the 12.5 mm tape to two self-contained $\mathbf{6 . 2 5 m m}$ lengths (Fig. 6). Which was partly done to increase the tape speed to $2.44 \mathrm{~cm} / \mathrm{sec}$ (impossible otherwise with such narrow tracks) to maintain a tolerable sound quality - enhanced 8 dB by a noise suppression process. And partly to increase the maximum playing time to two times four hours (useful to someone thinking of starting a programme archive).

Fig. 6 V2000 format

Actual control of the video heads is acheived by their writing auxiliary signals with constant frequency (every four tracks) during recording, in the sequence: head 1 with $f 1=102 \mathrm{kHz}$, head 2 with $\mathrm{f} 2=117 \mathrm{kHz}$, head 1 with $\mathrm{f} 4=164 \mathrm{kHz}$ and head 2 with $f 3=149 \mathrm{kHz}$, and so on, (Fig. 7). When the heads do overlap adjacent tracks during playback, the difference between the wanted auxiliary signal and the crosstalk one becomes the means to correct the deviation. The directional information-up or down,

50357
Fig. 7. Control frequencies for video heads
being supplied by whether the overlap results in a difference signal of high or low frequency. Should both heads deviate equally in the same direction, then the control voltage is fed to the capstan servo instead. During recording, tolerances and ageing can be compensated for by writing an additional burst of 1.5 lines duration within the vertical blanking interval at a frequency of $\mathrm{f} 5=222 \mathrm{kHz}$ (Fig. 8). The head then switches to playback for another 1.5 lines to read the burst on the previous track at a level dependent on its distance from the latter. Measurements from both heads are then compared, and the difference provides the voltage to control one of the heads-the other being fixed. As all of these frequencies are well below the 625 kHz of the chrominance carrier, no interference is caused. And the whole DTF process does away with the need for a sync track.

The first two machines-naturally from Philips and Grundig, although interest is being shown by others in their new formatare now available. Of the two, the Philips VR2020 is the more sophisticated; with more use made of the microprocessor for control and programming. Although Grundig's Video 2×4 isn't backward; and it is the first European machine to feature front loading of the cassette (Sharp were the first, with their VHS machine to the NTSC standard).

LVR's

The other two formats announced will also be held back until later this year. Both of them LVR's (longitudinal video recorders), having a fixed head laying down parallel tracks along the tapes length. But there the similarity ends. The BASF format is a bi-directional one, running 8 mm tape back and forth at $4 \mathrm{~m} / \mathrm{sec}$, recording 72 two and a half minute tracks, with a turn-around time of just 100 ms -exactly five fields, during which the head steps down a track. A design reminiscent of several prototypes that have appeared over the years-one of them using a

Fig. 8. Additional 1.5 lines to compensate for tolerances and ageing
modified Collaro tape deck and disappeared when the obstacles proved too great (BASF have now been working on it for over eight years). In basic layout it's very similar to the Newell bidirectional recorder that appeared in 1967-conceived as a computer data store, that kept the tape in tension by having the tape reels pressed tightly against a large capstan taking the tape past the head. Although BASF have introduced refinements such as air-guiding and automatic take-up when the feed spool is inserted (the other remains in the machine) (Fig. 9). They have also incorporated the first digital timebase corrector into a domestic machine. Which, in addition to steadying the jittery sync pulses at that velocity, also removes wow and flutter from the two audio channels; encoded in with the video on FM carriers at 100 to 200 kHz . Second generation recorders may also incorporate a field store to fill in the 100 ms gap, if cost can be reduced enough.

That's one problem that Toshiba's LVR won't have to face; they've gone for a continuous loop, covering the 12.5 mm tape with 300 tracks of twenty four seconds duration. Also with

Fig. 9 BASF's LVR system
video and audio encoded together. But whether an air cushion and back-coated lubricant can solve the friction problem of drawing tape out of a cartridge at $5.5 \mathrm{~m} / \mathrm{sec}$ as Toshiba claim, will only be answered when they go into production.

But, in one form or another, LVR's seem destined to stay. They can be made smaller and lighter than helical scan machines, with fewer moving parts. Ultimately, both companies hope to reduce the size to the point where the recorder can be integrated into a solid-state video camera. And with Kodak rumoured to be working on an LVR, one can believe them. Another advantage they possess is that, with a multi-track head, a full tape can be duplicated in just the time it takes to play one track. And such short tracks will allow very rapid access, with the head stepped to the right one.

1979 also saw the VHS and Beta formats becoming size conscious; with the result that there are now several portables on the market, with more to follow (in the larger NTSC market first). Achieving their reduced size by having optional tuner/timers and a.c. adapters (like BASF's LVR), for normal domestic use. Giving users with more creative tendencies the best of both worlds: personal productions with a colour or monochrome camera, and the recording of broadcast programmes and the playing of videograms (a rapidly growing area).

It was thought that software producers were going to wait for the video disc; but the continuing delay and the uncertainty as to which format will come out on top has forced them to press on. As the intention is to provide a playback only medium, having the one format would ensure a healthy market. But there's still a gulf between those who favour the more elegant optical approach and those who prefer the cheaper mechanical one. The
former are led by Philips, whose VLP machine has already been test marketed in Georgia USA; using laser light reflected back from the encoded video and stereo audio signals etched into the disc. While the latter approach is favoured by JVC and RCA; where the disc and a stylus form the two halves of a low value capacitor, with the encoded signals producing capacitance variations. The only real difference between these being that the RCA disc has guiding groves; whereas JVC's stylus has to be centred by a servo, from tracking signals contained in a parallel spiral. The Philips laser is centred by information derived from any deviation of the reflected beam from its sensor. As it's now forty-five years since Baird's seven bob 78's were offered for sale in Selfridges, it's about time there was a replacement.

But of all the things that are likely to come in the future, the most far reaching must be the eventual changeover from analogue to digital recording. With audio coming first, and then video. Sony have already demonstrated a fiftieth generation copy to show the stability inherent in pulse code modulation. While Ampex are aiming at a super high bit rate of 1000 Mbs ; using helical scanning, with each head composed of a stack of 25 or 30 thin film inductive heads. Aimed, naturally, at the broadcast user. But, like video recording itself, the principles will filter down to the bottom consumer level given time (although BASF suggest that audio quality with their LVR might make domestic digital superfluous?).

The only thing that does seem certain about the future of home video, is that the rate of new developments will continue to confuse the public for sometime to come. Confuse everyone, with all of the claims and counter claims that manufacturers throw up through their public relations and advertising, where everything is unique. Providing a continued stimulus for articles on the subject.

A new book for the home electronics constructor

Microprocessors for Hobbyists

Ray Coles

* An introduction to microprocessors based on two popular series in Practical Electronics
* Covers the architecture of microprocessor chips and systems, programming memory and input-output components
* Describes home computers together with a comparison of different models and the appropriate software
* Includes a comprehensive glossary of terms to explain the 'buzz-words' of the microprocessor scene
$1980 \quad 96$ pages $£ 2.95$ US $\$ 6.75$

$\mathbb{\mathbb { N }}$ ewnes Technical Books

Butterworths has companies in Australla, Canada, New Zealand, South Africa and the USA, where local prices apply.

THE OFFER

For some time PE has been trying to arrange a special offer on one of the very popular range of Casio watches. Until now this has not been possible due to the control of supply by Casio. However, Metac have now been able to purchase Casio outside the UK and this offer is the result.

NOTE . . . The watch on offer is that shown and described on this page. This is the latest version from Casio and it was decided to offer this new watch, which gives a constant time and date display, in preference to the older watch shown on the cover.
We do not expect readers to be able to match or beat this offer, or to find any Casio watch at less than the normal price, other than through Metac.

THE WATCH

CASIO ALARM CHRONO TYPE 83 QS 41B

Stainless steel case less than 9 mm thick, mineral glass, water resistant to 2 atmospheres (66 feet), Lithium battery giving approximately four years' life, four year calendar, accurate to within 15 seconds a month, full one year's guarantee.

THE FACILITIES

- Hour, minute, second, am/pm, date.
\star Hour, minute, am/pm, day, date.
* Stopwatch to 12 hours measuring in $1 / 10$ second giving net time, lap time and 1 st-2nd place times. Indicator shows chronograph is running when normal time is displayed.
* Alarm setting, hour, minute, am/pm. Alarm sounds for 60 seconds unless cancelled. Indicator shows alarm is set.
\star User optional hourly chime (two bleeps).
* Back-light.

To: METAC Electronics and Time Centre (P.E. Offer) 67 High Street, Daventry, Northants. Tel. 03272 76545.

From: METAC Electronics and Time Centre (P.E. Offer), 67 High Street, Daventry, Northants.

WITH the aid of our tape/slide synchroniser you can give a professional touch to your slide shows. The unit will automatically operate the motorised slide change mechanism of a projector at the appropriate times, while a tape of background music and/or a commentary is being played. The music/commentary is carried on one channel of a stereo tape, while short bursts of audio tone are recorded onto the other channel at the points where slide changes are required.

The synchroniser really consists of two separate circuits; a tone generator which can be used to record the slide-change signals onto the tape at the same time as the music/commentary is being recorded, and an electronic switch which will operate the slide change mechanism of the projector when it receives the audio tone signals. The design described here is for an inexpensive battery operated synchroniser which should be sensitive enough to work properly with any reel to reel or cassette recorder.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Tape/Slide Synchroniser unit is shown in Fig. 1.

The tone generator, which is based on IC1, uses a well known configuration. IC1 is a 741C operational amplifier, and R3 to R5 are connected to make this operate as a type of Schmitt Trigger. If the inverting input is taken above $\frac{2}{3} \mathrm{~V}+$, the output of IC1 goes low. Taking the inverting input below $\frac{1}{3} V+$ causes the output of IC1 to go high.

At switch on, C5 will be uncharged and the inverting input will be at the negative supply rail voltage. IC1's output therefore goes high, and C5 charges up via R6. When the charge on C5 exceeds $\frac{2}{3} V+$ the output of IC1 triggers to the low state, and C5 then starts to discharge through R6. This continues until the charge on C 5 drops below $\frac{1}{3} \mathrm{~V}+$, whereupon the output of IC1 returns to the high state and C5 starts to charge up by way of R6 once again. Thus the circuit continuously oscillates producing a squarewave signal at the output of IC1. The specified component values give an operating frequency of about 4 kHz , but the precise frequency of the tone generator is not of great importance.

As the output of the tone generator is rather high in amplitude, being several volts peak to peak, it is connected to the left hand channel of output socket SK2 via the attenuator R7 and R8. The right hand channel of SK2 connects direct to input socket JK3, and the music or commentary signal is applied to JK3. S2 controls the negative supply to the tone generator, and is pressed to produce the required short bursts of signal. It may sometimes be more convenient to use an external switch contained in a small hand-held box, and such a remote control switch can be connected to JK4.

The left hand output from the tape recorder, which con-

Fig. 1. Complete circuit diagram of the Tape/Slide Synchroniser
tains the tone bursts, is fed via VR1 to the high gain common emitter amplifier of TR 1 . The preset VR 1 can be used to reduce the sensitivity of the unit if it should prove to be oversensitive for the particular recorder being used.

The capacitor C2 couples the amplified signal at TR1's collector to the base of the second common emitter stage of TR2. This second stage has no standing base bias, and TR2 only conducts when the output signal from TR 1 is positive going and more than about 0.6 volts in amplitude. During the bursts of audio tone TR2 will become conductive during positive going input half cycles to its base, and pulses of current are then supplied to its collector load; relay coil RLA/1 and capacitor C3. The capacitor C3 integrates the pulses of current to provide a continuous d.c. signal which energises the relay coil while the audio tone is present. Of course, in the absence of the tone there is only an input of background roise, and this is insufficient to activate the unit. Thus the relay is only operated during the bursts of tone, and a pair of normally open relay contacts are used to activate the slide change mechanism of the projector during each tone burst.

The diode D2 is the usual protective diode that is included across high inductive loads in semiconductor circuits. There is no danger of TR2 passing an excessive collector current into the low collector load impedance of C3 and the relay coil, since the base drive current cannot be high enough to produce such a current. D1 ensures that the input signal to TR.1's base swings symmetrically either side of the negative rail, and that the unit functions correctly. S1 is the on/off switch for the tone detector circuitry.

The right hand channel input from the tape recorder is coupled direct to JK1, and from here it is taken to the amplifier. C8 couples the output from the tone generator to the input of the tone detector. This enables the projector slide change mechanism to be activated and the audio tone to be recorded merely by operating S2, and this is a helpful feature when preparing a tape. There is no need to switch out this signal path during playback, since it has a minimal shunting effect on the input of the tone detector.

The current consumption of the tone generator is only about 1 mA , and the tone detector circuit consumes only about $180 \mu \mathrm{~A}$ under quiescent conditions, rising to approximately 25 mA during the brief periods when the relay is activated. The unit can therefore be economically powered from a small 9 volt battery.

COMPONENTS . . .

Resistors	
R1	
R2	1 M 2
R3, R4, R5	33 k
R6	$56 \mathrm{k}(3$ off)
R7	15 k
R8	$10 k$
Al	4 k 7

All resistors $\frac{1}{3} \mathrm{~W} 5 \%$ (10% over 1 M)

Potentiometer

VR1

Capacitors

C1	47 n C280
C2	$1 \mu 25 \mathrm{~V}$ elect
C3	$10 \mu 25 \mathrm{~V}$ elect
C4	$100 \mu 10 \mathrm{~V}$ elect
C5, C8	$10 \mathrm{n}(2$ off) C280
C6, C7	$100 \mathrm{n}(2$ off C280

Semiconductors

D1, D2	1N4148 (2 off)
TR1, TR2	BC109 (2 off)
IC1	741 C

Switches

S 1

S2
Rotary on/off switch or s.p.s.t. toggle
Push to make, release to break

Miscellaneous

Relay Omron 306 ohm 12 volt coil, single changeover contact.
Sockets.
JK1, 2, 3, and 43.5 mm jacks (4 off, see text)
SK1 and SK2 3 way DIN types (2 off, see text)
Metal instrument case about $152 \times 114 \times 44 \mathrm{~mm}$
Printed circuit board
Control knob
PP3 battery and connector to suit

Fig. 2. P.c.b. design

Fig. 3. Component layour

CONSTRUCTION

Switches S1, S2, and JK4 are mounted on the front panel, while the other five sockets are mounted on the rear panel of the case. On the prototype 3.5 mm jacks are used with 3 way DIN types being used for SK1 and SK2. However, these can be changed to types which better suit the equipment with which the unit is employed.

Except for the battery and C8, all the other components are mounted on a printed circuit board; the copper track pattern is shown in Fig. 2 with the component layout shown in Fig. 3. The specified relay is a printed circuit mounting type which fits direct onto the board, and it is therefore not advisable to use a substitute relay. However, the circuit will work with any relay having a $6 / 12$ volt coil with a resistance of about 200 ohms or more. Make sure though, that the relay has at least one normally open contact for a changeover contact that can be used as a normally open type) of adequate rating. The contact ratings of the specified relay are considerably more than adequate for any normal projector. A wiring diagram for the front and rear panels is given in Fig. 4.

TESTING AND USE

The finished unit can be tested by switching S1 to the "on" position and pressing S2 a few times. The relay should be heard to open and close as S2 is operated, even if VR1 is well backed off (adjusted well in a clockwise direction).

In use, when preparing a tape SK2 is coupled to the input of a recorder, JK2 connects to the projector's remote control

Fig. 4. Wiring diagram for the front and rear panels
socket, and JK3 is fed with the music/commentary signal. S 2 is then operated so that the recording level for the left hand channel of the recorder can be set at about OdB. The tone detector requires a minimum input level of about 30 mV r.m.s. for reliable operation, and any recorder should be capable of producing such an output signal from a OdB

Internal view of the Tape/Slide Synchroniser
recording level. Next the slide projector is set up with the first slide ready for projection, preparations are made so that the music/commentary is ready to be recorded, and then recording commences. After the music/commentary for the first slide has been recorded, S2 is operated so as to change to the next slide and record the synchronisation tone. This process is continued until the final slide is reached, and the recording is stopped when the final piece of music/commentary has been completed.

If the tape is now rewound to the beginning, SK1 is coupled to the output of the tape recorder, and the amplifier is fed with the output from JK1, the projector should automatically change the slides at the appropriate times. R1 should be set for maximum sensitivity, and will only need to be backed off somewhat if the background noise from the recorder causes the unit to operate continuously.

The unit can be used with a mono recorder as a sort of programmed slide timer. In this case the tone generator is used to record short bursts of tone to give slide changes at the required intervals during playback into the tone detector, and there is no recorded commentary or music.

Hounidinum

Microsoftware (symposium) July 7-10. University of Sussex. S1 Automation Exhibition July 8-10, 1980. Gloucester City College of Technology. Three half-day seminars to run concurrently: uP applications and interfacing, modem welding and CAD are the topics. Organised by the Low Cost Automation Centre of the college.
The 1980 Microcomputer Show July 10-12. Royal Lancaster Hotel, London. 0
London Computer Fair July 11-12. Polytechnic of North London Theatre. Organised by the North London Hobby Computer Club, this is the first exhibition of its kind, including retail exhibitors, hobbyists, club stands, seminars, workshops, surgeries, a bazaar and jumble sale. This event should be great fun for the amateur and commercial computerist, as well as the casual onlooker.
BAEC Amateur Electronics Exhibition July 12-19. The Esplanade Shelter, Penarth, near Cardiff, S. Glam. Open evenings from 7pm, and weekend afternoons. B
Computer Graphics (exhibition \& conference) Aug. 12-14. Metropole, Birmingham. \mathbf{O}
Harrogate International Festival of Sound Aug. 16-19 (18 \& 19 trade). The Exhibition Centre + hotels. X
Edtech Aug. 19-21. Holland Park School, London. C1
Personal Computer World Show Sept. 4-6. Cunard Hotel, Hammersmith, London. M
Laboratory Sept. 9-11. Grosvenor Ho., Park Lane, London. E
Intron 80 Sept. 9-11. RDS, Simmonscourt Pavilion, Dublin. V
West of England Electronics Exhibition Sept. 9-11. Bristol Exhibition Centre. Q
Electrathon (Lucas battery vehicle race) Sept. 13, 1980. Fashioned on last year's event, this "whispering Grand Prix" is a contest for home made electric vehicles. It will again be held at Donington Park Race Circuit, nr. Derby. Details: \wp 021-554 5252.
Avionics (symposium) Sept. University of Surrey. S1
Emix (Electronic Measuring Instruments Exhibition) Sept. 30, Oct. 1-2. Post House Hotel, Southampton. I
BEX (Business Equipment Exhibition) Oct. 1-2. The Guildhall, Plymouth. K
Emix Oct. 7-8. Centre Hotel, Newcastle. I
Emix Oct. 14-15. Guildhall, Cambridge. I
Drive Electric October 14-17. Wembley Conf. Centre, London. Organiser: © 01-834 2333.
BEX Oct. 15-16. Assembly Rooms, Edinburgh. K
Engineering Ireland Oct. 15-18. Leopardstown Exhibition Centre. V

Testmex (exhibition and conference) Oct. 28-30. Wembley Conference Centre. T
Viewdata Exhibition for Professional \& Business People Oct. 29-31. West Centre Hotel, London. Z1
Compec Nov. 4-6. Olympia. ZI
BEX Nov. 5-6. Sophia Gardens, Cardiff. K
Semiconductor International 80 Nov. 25-27. Metropole Convention Centre. T1
Breadboard Nov. 26-30. Royal Horticultural Halls, Westminster. T
Microsystems 81 March 11-13. Wembley Conf. Centre, London. L
Inspex 1981 March 16-20. NEC Birmingham. Z1
Computer Graphics 1981 April 28-30. The Barbican Centre, London. 0 Entertainment 81 May 9-17. "Audio, Video and Television Fair". NEC, Birmingham. Weekday mornings are trade only. B2
Components 81 (Electronic Components Industry Fair) June 9-12, 1981. Earls Court, London. This show will alternate yearly with Electronics, now the IEA amalgamation with Electrex has ceased. I International Business Show 1981 October 20-29. NEC Birmingham. A2
Electronics 82 (formerly IEA, but now sub-titled International Electronics, Control and Instruments Exhibition) May 24-28, 1982. NEC. This show will alternate yearly with Components now that the IEA/Electrex amalgamation has ceased. I

B British Amateur Electronics Club, 26 Forrest Road, Penarth, S. Glamorgan.

E Evan Steadman. 079922612
ITF \& 021-705 6707
K Douglas Tèmple Studios, 1046 Old Christchurch Rd., Bournemouth.
L Iliffe Promotions. © 01-261 8437.
M Montbuild. © 01-486 1951
O Online Conferences. 089539262
Q Exhibitions For Industry Ltd. © 08833-4371
T Trident International Exhibitions. f 08224671
V SDL Exhibitions, 68 Fitzwilliam Square, Dublin, Ireland.
X Exhibition \& Conference Services, Claremont Ho., Victoria Ave., Harrogate, Yorks. \& 042362677
C1 Stereoscopic Television Ltd., $41 / 43$ Charlbert St., St. John's Wood, London NW8 6JN. § 01-722 4139
S1 Society of Electronic \& Radio Technicians, 57-61 Newington Causeway, London SE1 6BL. \& 01-403 2351
TI Kiver Communications U.K., Millbank House, 171/185 Ewell Road, Surbiton, Surrey KT6 6AX.
Z1 IPC Exhibitions Ltd., 40 Bowling Green Lane, London ECIR ONE. © 01-837 3636
A2 Hart Browne \& Curtis Ltd., 29 Sackville Street, Piccadilly, London WIX IDB. ¢ 01-439 8556.
B2 Brintex Exhibitions, 178 Great Portland Street, London. 01-637 2400

The standard ATOM kit includes:

- Full sized QWERTY keyboard Rugged polystyrene case - Fibreglass PCB 2 K RAM -8 K ROM 23 integrated circuits - Full assembly instructions including tests for fault finding. (Once built, connect it to any domestic TV and power source) - Power requirement: 8 V at 800 M A. ATOM power unit available. See coupon. PLUS FREE MANUAL written in two sections-teach yourself. BASIC and machine code for those with no knowledge of computers, and a reference section giving a complete description of the ATOM's facilities. All sections are fully illustrated with example programs.

The ATOM concept

Adding chips into sockets. on the PCB allows you to progress in affordable steps to large-scale expansion. You can see from the specifications that the RAM can be increased to 12 K allow. ing high resolution (256×192) graphics. Two further ROM chips, e.g. maths functions, can be added directly to the board giving a 16 K capacity. In addition to $5 \mathrm{I} / 0$ lines partly used by the cassette interface, an optional VIA device can provide varied I/O and timer functions and via a buffer device allow direct printer drive. An optional module provides red, green and blue signals for colour. An in-board connector strip takes the ATOM communications loop interface. Any number of ATOMs may be linked to each other-or to a master system with mass storage/

The picture shown demonstrates mixed graphics and characters in three shades of grey provided by the Standard Atom.
hard copy facility. Interface with other ACORN cards is simplicity itself. Any one ACORN card may be fitted internally.
So you can see there are a vast number of modular options and additions available, expanding with your ability and your budget. The ATOM hardware includes:

- Memory from 2 K to 12 K RAM on board (up to 35 K in case) - 8 K to 16 K ROM (two 4 K additions) 6502 processor Video Display allows high resolution (256×192) graphics and red, green and blue output Cassette Interface-CUTS 300 baud - Loudspeaker allows tone generation of any frequency - Channel 36 UHF Modulator Output Bus output includes internal connections for Acorn Eurocard.

The ATOM software includes:

-32-bit arithmetic ($\pm 2,000,000,000$) - High speed execution - 43 standard/extended BASIC commands Variable length strings (up to 256 characters) -String manipulation functions - 27 32-bit integer variables 27 additional arrays random number function PUT and GET byte WAIT command for timing \bigcirc DO-UNTIL construction Logical operators (AND, OR, EX-OR) LINK to machine-code routines PLOT DRAW and MOVE.

COCORN
4a Market Hill, CAMBRIDGE CB2 3NJ

Your ACORN ATOM may qualify as a business expense. To order complete the coupon below and post to Acorn Computer for delivery within 28 days. Return as received within 14 days for full money refund if not completely satisfied. All components are guaranteed with full service/repair facility available.

Please send me the following items:

Quantity		Item	Hem price inc. VAT+p\&p	TOTALS
	ATOM KIT 8 K +		(1) £140.00	
	ATOMASS $8 K+$	(MIN)	(a) 174.50	
	ATOMKIT $12+$	(AX)	(a) $£ 255.00$	
	ATOMASS $12+$	MAX)	(1) $£ 289.50$	
	IKRAM SETS		(4) $£ 11.22$	
	4K FLOATING P	ROM	(a) $£ 23.30$	
	PRINTER DRIVE	6522 VIA	(G) $£ 10.35$	
		LS 244 Buffer (pair)	(a) $£ 3.17$	
	MAINS POWER	Y (1.5 amps)	(a) $£ 10.20$	
			TOTAL	

To: Acorn Computer Ltd., 4a Market Hill, CAMBRIDGE CB2 3NJ I enclose cheque/postal order for $£$
Please debit my Access/Barclaycard No.
Signature
Name (Please print)
Address

Telephone No.
Registered No: 1403810. VAT No: 215400220

Sparkrite M R f UII

THE Sparkrite X5 ignition supplied by EDA is of the inductive discharge type which greatly reduces current through the contact breaker points, extends the dwell time and eliminates problems caused by contact bounce, thus giving longer point life and an improved spark at high revs. It is not our purpose to analyse the performance of electronic ignition systems in this review. Much has been published in the motoring press and such magazines as Motoring Which on the merits of these systems. We do however believe that electronic ignition systems can play an important part in helping to keep the engine in tune and running efficiently and this is very beneficial when trying to obtain the best and most economical performance.

THE KIT

The Sparkrite system is obviously a professional product-the basic kit comes in a formed polystyrene package complete with all parts, including wire, solder, silicon grease for transistor mounting and even a windscreen sticker for the car. Before commencing construction we read through the instructions and checked off all parts against the components list. This operation is greatly simplified by the very clear listing of all parts, even the complete newcomer to electronics should encounter no problems as resistor, capacitor and Zener colour code and markings are provided for easy identification.

The instructions are an example to all kit compilers, they include a straightforward section on soldering for the beginner, including diagrams; an explanation of resistor colour code (in addition to the references in the components list) an excellent and well illustrated section on assembly and five pages on fitting the unit to different vehicles. Finally the instructions give a circuit diagram and an excellent and detailed description of the theory and operation of the circuit.

CONSTRUCTION

Having carefully read the instructions we had every confidence that the kit would be straightforward to assemble and this confidence turned out to be fully justified. The only area where a novice might find difficulty is the assembly of the insulation and mountings for TR4 and its bracket, this assembly is however well covered by a simple line drawing in the instructions.

All the parts fitted without any problems and there was just enough solder, the only extra item necessary was some varnish which the instructions suggest should be used on both sides of the p.c.b. before final assembly. In our view this could cause problems if it is later found that a part has been incorrectly fitted, as the varnish would prevent easy removal and refitting, this could happen even though the instructions advise a construction check before varnishing. We suggest it may be prudent to test the unit before varnishing the board.

Assembly of the kit including fitting the correct terminals took slightly less than two hours. Fitting took about 10 minutes and the unit worked first time.

FITTING

On most cars fitting is greatly simplified by the clips provided which allow the unit to be clipped to the ignition coil. It is then a simple matter-having selected and fitted the correct connections from a good range supplied-to connect up the unit and try it out.

On some cars it may not be possible to mount the ignition system on the coil, and with this in mind, EDA have supplied adaptor plates which enable the unit to be screwed to any flat surface. The connecting wires provided should be long enough to cover all situations.

CIRCUIT

The circuitry makes use of a high voltage Darlington transistor which switches the coil
current. Additional facilities provided are a conventional/off/electronic switch and a lamp in series with the contact breaker which is used for static ignition timing. The unit should work with all types of tachometer and details for connecting to cars with tachometers are included.
EDA operate a technical and after sales department that will help with any problems. They will also repair any kits that do not work-no charge is made if this is due to a faulty component but a nominal charge may be made if parts are damaged or incorrectly assembled.

The assembled unit clips neatly onto the coil.

PRICE

The Sparkrite X5 is available for negative earth vehicles only from Electronics Design Association, Dept. PE, 82 Bath Street, Walsall, WSI 3DE, phone (0922) 614791 for $£ 16.95$ including VAT, postage etc. Last, but by no means least all components are guaranteed for two years from date of purchase.

FRANK W. HYDE

MARS AND ITS MOONS

The name of Laplace has been linked with the possible solution of the problem of the origin of Phobos and Deimos the Moons of Mars. A French team have suggested that the Laplace equations can offer an explanation of the capture orbits which would lead to the present near circular orbits. The fact that the present orbits are nearly circular and closely aligned with the equator, is the normal outcome of satellites formed at the same time as the parent body and not of capture. It would be unusual for them to be captured asteroids, for example, because they would be in elliptical orbits and at random angles. It is therefore difficult to accept capture in the time scale as now understood.

In Toulouse at the Centre National d'Etudes Spaciales three people, Anny Casenove, Anthony Dobravolskis and Bernard Largo have worked the evolutionary orbits again, but this time going backwards to the origin of the parent body. Examination of the orbital behaviour of the satellites in relation to Mars in its orbiting round the Sun has persuaded them that the Laplacean equations can provide the answer. The orbital plane depends on the average distance between the parent body and the satellite. This is affected by the tidal forces between them and results in the satellite orbit becoming more circular as it draws nearer to the parent.

As the satellites exist today the orbits are determined by the planets and the Laplace orbit lies near the equatorial plane. This is the observed situation. Looking back in time there comes a point when the satellites are more than 14 Martian radii from the planet. When that situation arises, the Sun's influence becomes important. The results of the calculations made by the team indicate it could have been possible for capture to have taken place when the orbits were close to the orbital plane of the Solar System. If this is so then a major objection to the capture theory has been disposed. It also provides a good support for the
interpretation of the Viking pictures.

WORLD SPACE ACTIVITIES

In the last issue of Spacewatch a first look was given at this aspect of space endeavours. The USSR have already begun their programme with the new long term space mission with two cosmonauts one of whom is undertaking such a mission for the first time, indeed it is his first entry into space. There is the known intention of Russia to use 'add-on' method of setting up a space station and platform. This mission is the spearhead of a new series.

In the near future it would seem that emphasis will be partly on syhcronous orbital satellites for communications development. This will cover both military and civilian activities. Partly, this can be seen to be an effort to 'catch up' with the free world. Generally they are three to five years behind in this area. The USSR flew four new missions during 1979. As far as is known the programme is as follows.

Raduga Domestic Television and Telephone Relay

This is also given the designation of Stationar. Raduga numbers 1, 2 and 5 have been put into parking orbits at 80 deg East L. under the designation Stationar 1, Raduga numbers 3 and 4 have been parked at 35 deg East L . which is a Stationar 2 place. Radugas could have a capability to perform the required military communications relay. The fifth of these spacecraft was launched in April '79.

Ekran Domestic Television Relay

This is also designated Stationar 1. Four of this type have already been launched to a 99 deg . East L. parking place, Ekran 3 on February 21st 1979 and continued till all four were launched by the 4th of October 1979.

Gorozot Television Relay

This was positioned mainly for the 1980 Olympics. Two spacecraft have been launched into an assigned parking place at 13.5 deg West Longtitude. The first of these failed to achieve geostationary orbit. A replacement was launched on July 5th 1979. This spacecraft has a Stationar designation 4. Gorozot 3 at 58 deg . East L. is at a Stationar 5 reserved area. It is expected that these will be re-positioned after the Olympics.

Louch International Communications

There are 8 spacecraft to be put in position around the Earth. They are designed to compete with the Intelsat 5 system. The first launch is expected in 1981. These craft will have an up-link frequency of 14 GHz and a down link of 11 GHz .

Gals Military Communications

This project has been delayed. They operate in the 8.7 GHz band at 25 deg West L., 45 deg . East L., 85deg East L., and 170 deg West L. The function of these craft is to serve the same purpose as the United States. Defence Satellite Communication System.

Volna Mobile Communications

Seven spacecraft round the Earth are planned to offer similar facilities as Marisat and Aerosat in the free worid. This project, a major one, has been delayed. It was scheduled for 1980.

Two important new areas of the USSR programmes are the Earth Resources and Ocean Surveillance Resources Monitoring. On the Military side Russia has already launched Cosmos 1,094 and 1,096 . These craft went into identical orbits inclined at 65 deg . Until then, these spacecraft had been launched singly. The most recent mission was that one spacecraft trailed the other with a daily overlapping coverage. They were nuclear powered and since the loss of one by premature entry over Canada, no more have been launched. Using two craft together enhances the ability to track moving shipping, a technique also used by America.

THE JAPANESE PICTURE

The Japanese programme so far has given them the experience of 19 satellite launches and some 300 sounding and observation rockets. They expect to operate on a much larger scale in the 1980s. A maritime observation satellite will be launched using the three axis control. This will be a first time for the Japanese. The vehicle is expected to be launched in 1984

While the Space Agency will continue to enter into contracts with RCA and Messerschmit-Boelkow-Blohm companies it is intended that Japanese technology will be extended. They also propose to reduce their dependence on the USA for launchings. The intention is to provide their own facilities. Three launch vehicles are being developed. The first of these will become operational in 1981. This will be known as $\mathbf{N}-2$. The second will be named M-3S-kai-1 and a third one designated $\mathrm{H}-1$ which will be ready in the mid 1980s. The' present launchers will be improved. In February 1980 NASDA launched an ECS-b. Its weight was 5601b. This was for experimental communications in the millimeter waveband. Two operational satellites will be launched in 1982 and 1983 into geostationary orbits at 135 deg East Longitude These two satellites are being developed by the Mitsubishi Electric/Ford group. The Nihon Electric/Hughes group will develop a satellite to be placed in orbit which will be geostationary at 140 deg East Longitude in midsummer 1981. NASDA is initiating the development of a maritime satellite for geodetic survey in 1983 with the eighth and last N-1 launcher. This is being developed by Mitsubishi Heavy Industries/Kawass-kiCanon Camera.

A maritime satellite MOS- 1 will be the first of the 3 -axis stabilised vehicles. It will weigh 1,6501b. and will go into a solar synchronous orbit in 1984.

The Japanese ministry are seeking a paddle equipped three-axis vehicle in 1986 under NASDA sponsorship. A large programme is being studied and will include astronomical and X-ray observations of galaxies and nebulae. The orbital configurations will be 217×373 miles and 186×621 miles.

Tokyo University has a plan for an ambitious project for the study of Halley's Comet and Venus. The Space agency has plans for the participation of Japanese astronauts in the shuttle programme. Much activity is expected in the development of higher thrust motors and strap-on boosters.

next month...

"e tarien
 P123 ceecex : 25
 ${ }^{7}{ }^{13} \mathrm{i}$, 85

Weilher to
tobay
CLCJ\#Y F Fe:
respiy ipp + BR:GAT

PE MAGIUM Metal locator

Hunt for buried relics, coins or jewellery with this supersensitive detector.
It will detect a coin at a search range of.a foot providing both meter and audio indication with full ground effect elimination. Coupled with its low cost it represents the best in what's available in the dif:y. market.
Type approved by the Home Office.

OUR AUGUST ISSUE WILL BE ON SALE SATURDAY, 26 JULY 1980.

PE
 D MMMARTIU KEITT

THE PE DMM is a $3 \frac{1}{2}$ digit handheld multimeter with liquid crystal display which has been designed to provide professional performance at very low cost. A multimeter is probably the most frequently used item of test equipment in any workshop and a digital multimeter can offer greater accuracy and reliability than moving-pointer types.

The heart of the instrument is the Intersil ICL 7106 which is an LSI circuit containing a complete single range voltmeter, thereby minimising the amount of circuitry required to build a multimeter. Fifteen measurement ranges are provided and the specifications listed make this an extremely versatile workmate. Use of an LCD display gives large, easily read digits and a very long battery life.

MULTIMETER BASICS

Digital displays are superior to mechanical types in that they are mechanically much more robust whilst providing increased resolution of reading and higher potential accuracy. A $3 \frac{1}{2}$ digit display has a full scale reading of 1999 and a possible resolution up to one part in two thousand, or 0.05%. Liquid crystal displays are becoming well known for their microamp current consumption and high visual contrast even in direct sunlight. Laser sealing techniques used in LCD manufacture result in an operating life in excess of fiftythousand hours.

Numerous techniques are available for conversion of analogue information to digital data but the most commonly used is dual-slope integration. The block diagram of a dualslope analogue-to-digital convertor is shown in Fig. 1.

The input voltage is applied to the integrator and the counter starts to count clock pulses. After a prescribed number of counts, time interval T, a reference voltage of opposite polarity is applied to the integrator. The accumulated charge on the integrating capacitor at this instant will be proportional to the average value of the input voltage over the interval T . The counter again starts counting from zero and the integral of the reference is a negative going slope with gradient of $V_{\text {ref }} / R C$. When the integrator output reaches zero, the counter is stopped and its output will be proportional to the input voltage. By choosing the value of $\mathrm{V}_{\text {ref }}$ accordingly, the full scale count can be set to a convenient number. In the case of the ICL 7106, full scale of two thousand counts is achieved when $V_{\text {in }}=2 \times V_{\text {ref }}$ and a 100 mV reference voltage is normally used. For inputs exceeding full scale, the 7106 is designed to display a 1 in the most significant digit with following digits suppressed.

Conversion accuracy of a dual-slop a/d convertor is independent of component values and clock frequency and is primarily dependent on reference voltage stability.

CIRCUIT DESCRIPTION

The complete circuit diagram of the PE DMM is shown in Fig. 2

IC1 is the 7106 integrated circuit which forms a 200 mv f.s.d. voltmeter. The input impedance of the a/d convertor is greater than 100 megohms to ensure that negligible curren is drawn from the circuit being measured, providing optimum accuracy. An input filter to limit input noise voltagels is formed by C5 and R18, the latter also assists with overload protection of IC1 by restricting the input current under gross overload conditions.

An on-chip reference voltage is provided at pin 32 of IC which is maintained at approximately 2.8 volts below th: positive supply rail. The reference voltage is a critical part of any a/d convertor since all inputs are compared against the reference. To optimise voltage reference stability, a bandgar) voltage reference device, IC4, is used which operates from 4 the on-chip 2.8 volt reference. The reference voltage output

Fig. 1. Block diagram of a dual slope a/d convertor
of bandgap devices depends inherently on the properties of transistor junction potentials. The V_{be} of a junction depends upon bulk properties and doping levels of the semiconductor material, its long term stability is essentially unaffected by surface phenomena. A potential divider is formed by resistors R19, R22, R23 and VR1 to adjust the output of IC4 to produce an extremely stable 100 mV reference, while C6 eliminates any noise voltages.

The frequency of the interval clock oscillator is controlled by C10 and R25, the values chosen provide a frequency of approximately 48 kHz to produce a conversion rate of three readings per second with good rejection from 50 Hz pick-up.

The a/d convertor is inherently auto-zero in its operation, such that when the inputs are shorted together the digital outputs are guaranteed to be zero, to eliminate the need for offset adjustments. The auto-zero capacitor C8 prevents noise voltages affecting the above function. The integrator time constant is set by C7 and R24.

DISPLAY REQUIREMENTS

The 7106 drives liquid crystal displays direct and the square wave backplane signal is provided at pin 21 . LCDs require a.c. drive signals since steady d.c. potentials can burnin the segments. For a particular segment to be turned on, it must be driven by a signal of equal amplitude but opposite phase to the backplane signal.

Voltage comparator integrated circuits are designed to produce a logic 1 output when the difference between the inputs is positive and a logic 0 when the difference is negative. This is the basis of the auto-polarity circuitry within IC1 which drives the negative polarity bar directly from pin 20. Decimal points are selected by a section of the range switch S3b and the correct LCD drive is provided by two dual-input Exclusive-OR gates within IC5. Examination of the truth table of an Exclusive-OR gate will show that the output is high if one or other of the inputs is high, but the output is low if both inputs are high. If one of the inputs is used as a control input, when it is low it will allow through the gate a high or low level as applied to the second input. When the control input is high it will invert the level applied to the second input. Resistors R30 and R29 hold the control inputs, pins 6 and 1, of IC5 at a normally low level by using the test output, pin 37, of IC1. The backplane signal is applied to IC5 pins 5 and 2. When either R30 or R29 is taken to a high level by S3b, the respective gate acts as an invertor to provide an output in antiphase to the backplane input and so provide the required LCD drive signal.

When using battery-operated instruments, it is important to know when the battery voltage is dropping to a level where performance of the instrument may be impaired. The liquid crystal displays which are supplied in the kit of parts
available from Lascar Electronics incorporate "LO BAT" wording which can be turned on when the battery voltage has dropped such that 20% of useful life remains. The operator therefore receives advance warning of battery failure while being able to maintain accurate readings until the battery can be changed.

A potential divider is formed across the supply rails by R26 and R27. When the supply voltage drops to approximately 7 volts, TR1 collector is taken low, making IC5d pin 10 high. IC5c becomes' an invertor for the backplane signal and turns on the low battey warning display segments.

INPUT CONDITIONING

The multimeter will accept a wide range of a.c./d.c. voltage and current inputs together with resistance measurement but all input levels require conversion to a voltage in the range $0-200 \mathrm{mV}$ d.c. In order to make them compatible with the a/d convertor.

Comprehensive overload protection is incorporated on all measurement ranges up to at least mains voltage to minimise any possibility of damage which may otherwise be caused by inadvertently selecting the wrong range.

Now let us consider how the single range voltmeter is made into a multimeter.

SPECIFICATION

Function	F.s.d.	Resolution	n Accuracy	Protection
Volts (d.c.)	200 mV 20 V	$\begin{aligned} & 0.1 \mathrm{mV} \\ & 10 \mathrm{mV} \end{aligned}$	$0.5 \% \pm 1$ digit	$\pm 500 \mathrm{~V}$ d.c. for one minute
	500 V	IV		
Current (d.c.)	$200 \mu \mathrm{~A}$	$0.1 \mu \mathrm{~A}$	$0.5 \% \pm 1$ digit	2A/250V
	20 mA	$10 \mu \mathrm{~A}$	$0.5 \% \pm 1$ digit	
	2000 mA	- 1 mA	$2 \% \pm 1$ digit	
Volts (a.c.)	200 mV	0.1 mV	$1.25 \% \pm 5$ digits	500 V a.c. for
	20 V	10 mV		one minu
	500 V	1 V		
Current (a.c.)	$200 \mu \mathrm{~A}$	$0.1 \mu \mathrm{~A}$	1.75\% ± 5 digits	2A/250V
	20 mA	$10 \mu \mathrm{~A}$	$1.75 \% \pm 5$ digits	
	2000 mA	A 1 mA	$3 \% \pm 5$ digits	
Resistance	200Ω	0.1Ω	$0.75 \% \pm 3$ digits	300 V d.c./a.c.
	$20 \mathrm{k} \Omega$	10Ω	$0.75 \% \pm 3$ digits	r.m.s.
	$2 \mathrm{M} \Omega$	$1 \mathrm{k} \Omega$	$0.75 \% \pm 3$ digits	
Input impedance			OM Ω	
Max. common mode voltage			00V d.c.	
Battery type				
			P3, approximately operating life.	y 200 hrs
Case size			ength 145 mm , w height 29 mm .	idth 92 mm ,

Fig. 2. Circuit of DMM

DC VOLTAGE AND CURRENT RANGES

Switch S1 selects d.c. or a.c. functions whilst connecting the battery supply to the appropriate sections of circuitry via S1a and S1c. With the switch in the centre "Off". position, S1b and S1d isolate the input of the a/d convertor to prevent damage. Once the d.c. functions are selected, S2b and S2d route the input to either current, voltage or resistance measurement stages. For the 200 mV d.c. range the input is connected straight to the 200 mV f.s.d. a/d convertor but the 20 V and 500 V ranges are passed through an attenuator formed by R1-R5. The attenuator resistors are extremely stable 0.25% metal film types and the input resistance of the instrument on voltage ranges is set at the standard value for DVMs of 10 megohms.

Voltage dependent resistor R12 is connected across the input terminals to clamp any transient high voltage spikes which may otherwise cause damage to the instrument. The VDR normally exhibits extremely high resistance such that it does not affect measurement accuracy but when the threshold voltage is exceeded, the device alters rapidly to a low resistance to shunt out transients. With S2 switched to current measurement, S3c.switches into circuit one of three shunt resistors, R6-R8, which are 0.5% metal film types. A $2 A$ fuse connected in the common line protects against excessive input currents whilst diodes D4 and D5 protect the instrument from the application of high input voltages, including mains supply.

AC VOLTAGE AND CURRENT RANGES

When S1 selects a.c. functions, capacitor C1 is connected in series with the input to remove any d.c. component present. Voltage inputs are fed through the input attenuator as before and current inputs are fed through the shunt resistors.

IC3 is a TLO61 operational amplifier connected as a precision rectifier. Alternating inputs are rectified by diodes D6 and D7 with the positive component sampled by R14 then filtered by R17 and C4. The op-amp has a j.f.e.t. input resulting in high input impedance and the supply current consumption is only $250 \mu \mathrm{~A}$ which makes it ideal for battery operation. The circuit is mean sensing and calibrated to indicate the r.m.s. value of sine wave inputs by adjustment of VR3.

RESISTANCE RANGES

For resistance measurement, a constant-current generator is used with currents selected to develop up to 200 mV across the unknown resistance.

A TLO61 j.f.e.t. op-amp is used as a buffered reference source, the output voltage of which is set by the potential divider R20, R21 and adjusted by VR2. S3d selects range resistors R9, R10 and R11 which set constant currents of $1 \mathrm{~mA}, 10 \mu \mathrm{~A}$ and 100 pA respectively through the collector of TR2. Open-circuit voltage is 1 volt which will place the display into overrange condition, indicating infinite resistance in the absence of an external resistor.

COMPONENTS

Resistors			
R1	9M	Metal film	0.25\%
R2	900k		0.25\%
R3	90k	"	0.25\%
R4	9 k	.,	0.25\%
R5	1k	.,	0.25\%
R6	1k	"	0.5\%
R7	10	"	0.5\%
R8	0.5	wire wound	5\%
R9	1k	metal film	0.5\%
810	100k	"	0.5\%
R11	10 M	"	0.5\%
R12	400 V	VDR	
R13	1 M	carbon film	5\%
R14	10 M	..	5\%
R15	18k	"	5\%
R16	18k	,	5\%
R17	100k	"	5\%
R18	10 M	"	5\%
R19	1 k	"	5\%
R20	1 k	"	5\%
R21	4k7	"	5\%
R22	18k	,	5\%
R23	1k	"	5\%
R24	47k	"	5\%
R25	100k	"	5\%
R26	1M	"	5\%
R27	680k	"	5\%
R28	1 M	"	5\%
R29	1M	"	5\%
R30	1M	"	5\%
R31	6 k 8	"	5\%
R32	10N	"	5\%

Switches

S1 4 pole 3 wayswitches
S2
S3

Capacitors			
C1	47n	polyester	250 V a.c.
C2	100n		100 V
C3	100 n	"	100 V
C4	100 n	"	100 V
C5	10 n		400 V
C6	10μ	tantalum bead	16 V
C7	220n	polyester	100 V
C8	$470 n$	".	100 V
C9	100n		100 V
C10	100p	polystyrene	

Semiconductors

D1 1 N4004

$\begin{array}{ll}\text { D2 } & \text { 1N4004 } \\ \text { D3 } & \text { MR504 }\end{array}$

D4 MR504

$\begin{array}{ll}\text { D5 } & \text { MR504 } \\ \text { D6 } & \text { 1N4148 }\end{array}$

$\begin{array}{ll}\text { D7 } & 1 \text { N4148 } \\ \text { TR1 } & \text { BC237 }\end{array}$

TR2 BC307

IC1 ICL7106

IC2 TLO61CP
IC3 TL061CP

IC4 ZN423

IC5 MC14070BCP

IC6 $3 \frac{1}{2}$ digit LCD display

587-298 R.S.

Miscellaneous

2 sets of 20 way soldercon pins, 4 p.c.b. 20 mm fuse clips, FS1-2A, through board pins- 10 off, PP3 and battery connector, p.c.b. 4 mm terminals, 4 spire clips.
Note: A complete kit of parts for the PE DMM is available from Lascar Electronics Ltd., Unit 1, Thomasin Road, Burnt Mills, Basildon, Essex, SS13 1LM, price $£ 39.04$ which includes p\&p and VAT. A calibration service is available for an inclusive charge of $£ 5.60$. Calibration and fault finding is $£ 8.50$ plus parts. (Tel: Basildon (0268) 727383)

Fig. 3. (below) Topside of p.c.b
Fig. 4. (right) Underside of p.c.b

Diodes D1-D3 protect the resistance measurement circuitry from the application of high input voltages which may arise when inadvertently working on live equipment. The diodes will shunt the input voltage and cause the fuse to blow if an input current of 2A is reached. In general, equipment under test should be switched off when checking resistances.

CONSTRUCTION

The use of an LSI a/d convertor greatly reduces component count and when combined with a double-sided printed circuit board the construction of such a comprehensive instrument becomes relatively straightforward.

The high cost of plated through hole connections is avoided by using pins designed for through board connection, or alternatively copper wire could be used. Solder-resist coated boards are supplied in the kit of parts available from Lascar Electronics. The coating eases the soldering of small connections which may be grouped close together, such as integrated circuit pins, although soldering should only be attempted with a fine-tipped iron. Circuit stability is also improved as the coating helps to exclude moisture from the glass-fibre board. There are ten through-board pins which should be soldered in place before components are mounted onto the board.

Printed circuit board patterns for the upper and lower surfaces are shown in Figs. 3 and 4 respectively whilst the component layout is shown in Fig. 5. The pads shown in Fig. 3 are top surface solder joints which should all be soldered to complete circuit continuity. Due to the access required for top surface solder joints, the integrated circuits and transistors should be fitted first noting the orientation on the board. IC1 and IC5 are MOS construction and although the types specified are protected from static discharge they should be handled carefully and soldered in place without use of excessive heat.

The three slider switches should now be fitted and checked to ensure that they are sitting perpendicular to the board to ensure alignment of the toggles with the front panel cutouts.

Chassis mounting clips for the 20 mm fuse may now be fitted to the underside of the board together with a pair for the spare fuse position if required.

The resistors should then be fitted, noting the difference between the critical range-setting metal-film resistors and the non-critical carbon-film resistors. The variable calibration resistors should be fitted, followed by the capacitors and diodes.

Two strips of soldercon pins are used as sockets for the liquid crystal display and should now be soldered in place, followed by the two input leads and the battery connector.

Fig. 5. Component assembly on p.c.b
At this stage, carefully check the board for any assembly errors and then ensure that all joints have been soldered, particularly all top-surface joints. Ensure that there are no short-circuits particularly around the integrated circuits and switches where connections are grouped close together.

The liquid crystal display should be carefully removed from its packaging and gently inserted into the socket pins. The display pins are very fragile and it will be found easiest if one row of pins is located first but not pushed fully in. The second row should now be located in the sockets and after checking the location of all pins, the display may be pushed fully home.

TESTING AND CALIBRATION

After ensuring that there are no unsoldered joints or shortcircuits the 2A fuse should be fitted and the protective film over the display removed.

Set S1 to d.c. position, S2 to V, and S3 to 20 V range. With a PP3 battery connected to the supply leads the current consumption should be typically 2 mA and the display should read 0.00 with the negative sign alternating. If an offset of one or two digits is present, an insulated wire link should be added to the underside of the board from C5 to D4 as shown on the component layout.

Measure the voltage between the Lo input lead and positive rail which should be between 2.4 V and 3.2 V .

MEASUREMENT DEPENDENCE

All measurements made by the instrument are dependent upon the setting of VR1 which adjusts the f.s.d. of the a/d convertor. D.c. calibration may be accomplished by comparison with a meter of known accuracy or by using a standard cell. A full calibration service is offered by Lascar Electronics. The a.c. voltage ranges should be calibrated by comparison techniques and VR3 adjusted accordingly.

Resistance ranges should be calibrated using standard resistors of 0.5% grade or better. With the input leads opencircuit the display should be 1 together with decimal point according to range selected, with the subsequent digits suppressed indicating overrange or infinite resistance. When the input leads are shorted together the display should be all zeros.but on the 200 range there will be a small offset of two or three digits due to switch resistance.

Calibration of current ranges is not necessary but these ranges may be checked using standard resistors and a known voltage source.

FINAL ASSEMBLY

The 4 mm input terminals should be fixed to the front of the instrument case and the self-adhesive foam strip positioned between the terminals inside the case to cushion the battery.

The moulded bezel should be fixed to the front of the case and the display window to the rear of the bezel.

The printed circuit board should be carefully located onto the four moulded pillars inside the case top, ensuring that the input and battery leads are accessible. Four spire clips are used to secure the board to the pillars. Input leads may now be soldered to the appropriate terminals and a PP3 battery clipped in place.

The instrument should be given a functional test and the lower half of the case may be secured using the four selftapping screws provided.

We mean it
The new 30AX colour tube system from Mullard doesn't need innumerable twists and turns of a screwdriver to set it up.

It needs no adjustments at all. Because every one has been 'designed out' Every tube that leaves our factory is completely pre-adjusted by us. Leaving only the turn of one screw to affix or remove the coil.

No dynamic convergence adjustments.
No colour purity adjustments.
And no raster orientation adjustment.
As for what it has to offer, the 30AX's focus is sharper and its definition greatly improved.

Its in-line guns and specially built coil provide. the best picture shape yet.

And rest assured itll stay that way. In a slim
110° package that trims about $3^{\prime \prime}$ off conventional
$22^{\prime \prime} 90^{\circ} \mathrm{TV}$ cabinet depths.
Some features of the 30AX however, are a little more established.

Like its excellent colour registration. High brightness. Soft flash protection. Fast warm-up. And of course, greater overall reliability. This is the new 30AX colour tube system.

If you'd like more information about it simply write to us here at Department MCG, Mullard Limited, Mullard House, Torrington Place, London, WC1E 7HD.

Video Information Centre...

In the words of celebrity tape cutter Alan Pascoe, "We've had the Old Vic, we've had the New Vic, now this is JVC's VIC". Kurt Lowy, JVC's Managing Director, explained its purpose, "The Video Information Centre is modelled on similar showrooms established by our company in Japan very successfully. It is the first one of its kind to be opened outside Japan. Its purpose is not only to promote JVC products but fundamentally to do really what the name signifies-provide an information centre for the public and the dealer" (I'm quoting from the text this time).

Unofficially, it was suggested that it was also to feed information back to the parent Victor Company of Japan on the trends in our small but relatively sophisticated market (explaining why America wasn't chosen, where video is already big business). It was further suggested that it was also part of JVC's preparations for a European confrontation with the new Philips/Grundig V2000 video format, which is a more advanced format than VHS. Both of which may well be true, but it is a fact that JVC have to date been the company most active in backing the home video concept so there's no inconsistency here. It will also be used for a comprehensive programme of dealer training.

Marketing politics aside, the VIC at 82 Piccadilly marks the beginning of a new stage in home video. A consolidation of the past couple of years of rather toe-dipping effort, and a more optimistic face set to the future. Underlining the point that, whatever changes do occur on the video scene-and they're likely to be many, the basic video-for-everyone concept is here to stay. At least until technology confronts us with some wonderful new way of recording the high-days and holidays of our lives. Even the chill winds of our economic winter are unlikely to cause more than a few shivers in the hallowed halls of consumerism.

PROBLEMS

Of course, there are still a few problems requiring attention. Mr. Kurt Lowy again, "The facts are that despite impressive amounts of TV and press advertising most potential users are still not aware to what use they can put a video tape recorder. Very few people realise how relatively economical it is to use video cameras, and that slides or home movies on film are transferrable to tape, as well as many other features." To prove this we were shown a tape recorded in Croydon, where the passers by were quizzed as to just what they did know. Not very much, except that it was damned expensive. So VIC has an uphill task ahead of it; to educate the populace into an awareness of the diverse potential of the video recorder, so that when it comes to emptying their bank accounts they'll do so secure in the knowledge that they're getting a bargain.

But the VIC is more than just a showroom and an information centre, it's also a small facilities house providing a variety of basic video services. Let me give you a guided tour of the place. By the plate glass front there's the Camera Corner, where people will be able to try out the current models on Green Park across
the road and the passing Rolls Royces. There's the VHS Corner, displaying their range of video cassette recorders with monitors above to check the results. There's also a library of JVC and other pre-recorded cassettes for preview; such things as, "Iron Men and Steel Machines" a history of motor racing, and "The Bubblies" apparently a sensation on children's TV. And now the facilities. Telecine transfer, where film can be copied onto video tape-Standard and Super $8 \mathrm{~mm}, 16 \mathrm{~mm}$, and 35 mm slides, by prior arrangement of course. And an Album Video Corner, where photographs and printed matter can be copied, with the facility for adding a sound track via an audio cassette recorder. There's a fourth comer too, the Audio Video Corner featuring the latest of JVC's hi-fi and video home entertainment equipment.

It's the studio however, and its attendant facilities that form the productive hub of the place. Not a large studio-about 3 metres by 10 metres, but large enough for the simple programme production envisaged. For which there's 13.5 kW of lighting and two cameras. One the CY 8800 EK-from the top of JVC's range, the other the GC 4100 EK-a high quality camera from their domestic range, married to a special effects generator and chromakey unit. From the main control room signals go to the editing room, where electronic editing is performed using UMatic format video cassette recorders. There are also facilities for copying video tapes onto the VHS format in the dubbing room. As many as eight copies at a time from VHS, U-Matic, Beta or Philips VCR formats.

COMPETITION

If the tape's a good one, then a competition announced at the opening will seem like a heaven sent opportunity for its producer to go onto bigger things. It doesn't matter whether he or she is an amateur or a professional or what the subject is, the only requirement is that is shouldn't exceed twenty minutes. Presumably, life is just too short for the international panel of judges to have to sit through anything longer?? The winner of this Third Tokyo Video Festival will receive a trip to Japan, together with cash and equipment, and there will also be prizes for the runners up.

Also announced at the opening, was Matsushita's decision to adopt JVC's Video High Density capacitive video disc system in preference to their own pressure pick-up system (the two companies having close financial ties). A predictable move which now leaves just three systems in the running; the other two being the Philips Video Laser Player-being test marketed in Atlanta, Dallas and Seattle, and RCA's Selectavision-which is also being readied for market. JVC's system also allows digital audio discs to be played, by connecting a PCM decoder.

When the VIC's first anniversary is celebrated on the 12 th of February next, the battle between the rival video disc systems should just be getting under way in earnest. With fortunes riding on the results, it should prove very interesting.

Reginald Miles

PE

D FM

THE FOLLOWING design is for a battery operated pocket frequency meter, with a basic range of 10 Hz to more than 2 MHz . This design incorporates a unlt-counter facility and a battery voltage monitoring circuit. Also an on board voltage regulator is provided, enabling the unit to be powered from dry cells, calculator PSU or car battery (via the cigar lighter socket). The meter could be used with the Prescater module to give a digital readout of a mobile radio transmitter. This design offers a considerable cost saving over similar units, but with a very professional finish.

FEATURES

The Frequency meter has a large 6 digit liquid crystal display of which $4 \frac{1}{2}$ digits are used by the counter chip, and the 6 th as a flag to indicate range and battery condition. A l.c.d. is used in preference to I.e.d. so as to prolong battery life; the prototype consumed only 5 mA with all segments on.

In the Unit counter mode the meter acts as an electronic totalizer with a maximum count of 19,999. There are two frequency ranges $0-20 \mathrm{KHz}$ with a resolution of 1 Hz , and $0-3 \mathrm{MHz}$ with 1 KHz resolution. However, it is possible to obtain 1 Hz resolution by switching to the lower range.

A socket is provided to power a VHF prescaler, and the decimal point is automatically shifted when the plug is inserted Construction is greatly simplified by the use of a single p.c.b. which holds all.components except sockets.

SPECIFICATION

Power supply
Frequency range
Ranges

Unit counter
 Display

Input voltage
Accuracy
Size

9 VPP 3 battery or external d.c. supply $8-20 \mathrm{~V}$.
$0-2 \mathrm{MHz}$ (0 to over 150 MHz with prescaler).
$0-20 \mathrm{KHz} 1 \mathrm{~Hz}$ resolution (KHz). $0-5 \mathrm{MHz} 1 \mathrm{KHz}$ resolution (MHz). $10-150 \mathrm{MHz}$ with Prescaler. 0-19,999 units.
6 digit I.c.d. ($4 \frac{1}{2}$ digits used for counter).
200 mV - 20 V .
± 1 digit depending on crystal timebase typically 20 ppm .
$168 \mathrm{~mm} \times 90 \mathrm{~mm} \times 32 \mathrm{~mm}$ (including sockets).

FREQUENCY MEASUREMENT

The timebase consists of a single chip IC4 (7207A) and a crystal, the frequency of which is 5.24288 MHz which is unusual, but can be obtained with the 7207A as a kit from most Intersil distributors. The gate sample time is kept at one second regardless of range, the reason for this is that l.c.d.s have a slow response time. The last digit would become blurred with a faster gate time.

Fig. 3. shows the sequence of events when in the frequency counter mode.

1) The counters are enabled for 1 second.
2) After the counters are disabled the display latches are updated and then frozen.
3) Then the counters are reset and the cycle is repeated.

CIRCUIT DESCRIPTION

Transistors 1 and 2 form a simple but very effective buffer stage, with an a.c. coupled input, which is very useful when measuring a signal with high d.c. bias. The output from the buffer is fed to a Schmit inverter IC1d which "cleans up" the signal before feeding to the counters. The decade counters IC 5-7 and switches IC8, S1, 2, 3 divide the input signal by 1,100 or 1000 (depending on range). With the prescaler unplugged, the signal is divided by 1 or $1000(\mathrm{KHz} \& \mathrm{MHz}$ respectively), when the plug is inserted pins 5 \& 6 of IC1 are forced low by R1, enabling the divider chain to divide by 100. With the prescaler plug inserted the decimal point is automatically positioned correctly.

Fig. 2. Full circuit diagram

Fig. 3. Timing

UNIT COUNT MODE

In the Unit count mode, switch 3a takes IC1 pin 2 low, thereby permanently enabling the counters, also the analogue switches of IC8 disconnect the timebase, store and reset outputs and resistors R6 and R13 tàke IC2 pins 34, 33 low and high respectively. In this state IC2 acts as a basic counter with $\mathrm{S4}$ a as the reset.

LCD DRIVERS

The counter chip IC2 produces a back-plane output and all $4 \frac{1}{2}$ digits are controlled directly.

Fig. 5. shows two methods of producing the signals for the flags and decimal points. In the first, the KHz and MHz

flags are controlled by switches $1 a$ and $2 a$, which select either BP or inverted BP (BP). Another method is to use an exclusive OR gate as a programmable inverter.

50360
Fig. 5. LCD drivers

VOLTAGE REGULATORS AND MONITOR

TR3, D1 and R5 form a simple voltage regulator and as the current consumption of the unit is very low the transistor does not require a heat sink.

The Low Battery indicator is controlled by IC6 which compares the battery voltage with a reference made with D2 and R10, if the voltage across R9 is less than the reference (3.9V) IC6's output swings high turning on the Low Battery flag.

If Nickel-Cadmium batteries are to be used, they can be charged by using a 9 V calculator PSU, an additional wire and a resistor (14) are required.

CONSTRUCTION

All components except the sockets and battery are mounted on one double sided p.c.b. To save the high cost of plated-through holes, solder pins are used to connect the two sides.

Start by cutting out the pieces from the p.c.b. as shown in Fig. 6. Insert and solder the solder pins and cut off the excess stem. Solder in all the resistors and capacitors, diodes and transistors (solder all leads on both sides). Do not force the resistors in place as the paint is easily damaged, revealing the metal end-caps, which could short against the p.c.b. tracks. I.c. sockets and Soldercon pins should be used as the board is easily damaged when unsoldering faulty i.c.'s, Soldercon pins are used for the display and IC2 as there are a few solder pins under the chip which prohibits the use of a 40 pin socket. The crystal is held in place by a pad of double sided sticky tape and the leads are soldered on both sides. Solder in the switches and insert all i.c.'s and the display.

Clean the board with meth's or thinners, and wire the three sockets and the battery lead as in Fig. 8, and re-check all components and wiring. Make sure that the display is in the right way around, and that none of the pins is touching.

TESTING AND CALIBRATION

Connect a PP3 battery and switch on, press the reset button and the display should read four zeros with a decimal point before the third digit, if not switch off immediately.

Apply a signal of known frequency to the input (eg. 50 Hz from a low voltage transformer). If the meter does not give the correct reading check the input circuit and timebase with a logic probe or scope if available.

To check the battery monitor circuit, connect a variable PSU or a poor battery, the "Low Battery" flag comes on at about 7.5 V which means the battery still has plenty of life left.

As for calibration, once the meter has been proved to work there is only the crystal to be trimmed, by adding capacitors to the pads on the under side of the p.c.b. Although the crystal frequency can be trimmed, the accuracy of the unaltered timebase is extremely high.

COMPONENTS

Resistors

R1, R11	$10 \mathrm{k}(2 \mathrm{off})$
R2, R6, R8, R12.	
R13	100 k (5 off)
R3	4M7
R4	4 k 7
R5	2k2
R7, R9	6 k 8 (2 off)
R10	470
R14	270 See text

All resistors $\frac{1}{4}$ W 5\%

Capacitors	
C1	$2 \mu 1$ tant. bead
C2	10μ axial elect.

Transistore and Diodes

D1	5 V6 Zener 400 mW
D2	3 V9 Zener 400 mW
D3	1N4001
TR1-TR3	BC108 (3 off)

Integrated Circuits

IC1	CD4093B
IC2	ICM7224
IC3	CD4070
IC4	ICM7227A
IC5	CD4518B
IC6	TLO81
IC7	CD4518B
IC8	CD4066

Display
$X 1 \quad$ 6-digit I.c.d. 40 -pin d.i.I. display
Switches
S1-S3
3-way interlocking
S4 1-way push-to-make
S5 1-way push-to-make/push-to-break
Miscellaneous
$\mathrm{X} 1 \quad 5.24288 \mathrm{MHz}$
Soldercon pins
Sockets for i.c.s
BNC connectors
2.5 mm and 3.5 mm jack sockets

Case---Bocon Major BOC 707
PP3 battery
Perspex for Bezel

A complete kit of parts is available from Watford Electronics.

FINAL ASSEMBLY

Cut out a rectangular window ($32 \mathrm{~mm} \times 75 \mathrm{~mm}$) in the box with an Abrafile. See Fig. 9. Screw four pieces of 6BA studding, 15 mm long, into four of the plastic bushes and remove the other two bushes with a pair of cutters. Fit four 5 mm spacers over the studding and fit 6BA nuts on top, but not on the two at the switch end of the case. Fix the p.c.b. and panels in place with 6BA nuts and washers.

A simple display bezel can be made with a piece of 1.5 mm perspex, and using white Letraset on a piece of thin black card behind, the bezel is held in place with four 8BA nuts and bolts.

Fig. 6. Printed circuit layout (actual size)

Fig. 7. Printed circuit layout (component side)

Fig. 8. Component overlay

Fig. 9. Fascia label for DFM (actual size)

PRESCALER

THE PRESCALER to be described here was designed to be used with the PE Digital Multimeter, although it could be used with almost any frequency meter. The prescaler extends the measuring range to over 150 MHz (typically200 MHz) making it ideal for 2 m work. The circuit is built into a module that plugs in between the frequency meter signal input socket and test lead (or whip aerial). The unit also has an onboard voltage regulator with a supply range of about 8-18VDC.

CIRCUIT DESCRIPTION

The i.c. used is an Emitter Coupled Logic (ECL) prescaler manufactured by Plessey. It has a fixed division ratio of 100 . that is, if a signal of 150 MHz is applied at the input, the output frequency is 1.5 MHz . The output stage is similar to low power Schottky TTL at 5 V , so should be well within the range of most frequency meters. The chip has an on-board Zener diode, therefore providing a regulator is simply a matter of adding a transistor, and as the current consumption of the i.c. at 5 V Is only 35 mA TR 1 does not require a heatsink.

The maximum input frequency depends on the slew rate of the signal; if a square wave with a fast rise time is applied, the unit can be used down to d.c. Although for practical reasons the minimum input frequency should be limited to 10 MHz . Resistor R3 should only be added if the circuit starts to oscillate with the input disconnected, as it reduces the sensitivity of the prescaler circuit.

CONSTRUCTION

All components are mounted on the one p.c.b., do not insert R3 until the unit has been tested. An i.c. socket should be used for IC1 as the p.c.b. may be damaged if the chip has to be removed. Drill a small hole in the end of the case for the supply lead, see Fig 14. The p.c.b. should then be inserted into the case and held in place by the two solder tags.

THE PROTOTYPE

The prototype was tested using a high frequency signal generator which had a low output voltage, but worked very well when used with the prescaler. The author found that the unit measured from about 10 MHz to over 200 MHz with a very high degree of accuracy. Also the prototype worked reliably down to 100 mV and did not require a resistor across the input to prevent oscillation.

Fig. 12. Printed circuit layout (actual size)

[6]35] [6360)

E5365
Fig. 11. Circuit diagram of Prescaler

PRESCALER

 COMPONENTSResistors

R1	1 k 3
R2	10
R3	100 k see text
All resistors	W

Capacitors
C1 100 n Polystyrene

C2. C3 $\quad 10 \mathrm{n}$ Ceramic (2 off)
Transistors
TR1 BC108
Integrated Circuits IC1

SP8629 (Plessey)

Miscellaneous

Case, BNC module, p.c.b., 2.5 mm jack plug, 8 pin i.c. socket, p.c.b.

Fig. 13. Component overlay

Fig. 14. Mechanical construction

Freepost Birmingham B19 1BR 021-233.2400 $\quad 24$ HR PHONE ANSWERING SERVICE

Adasha public address equipment Adasho

M12 CONDENSOR CARDOID - 600 OHM
M2O ELECTRET CONDENSOR, OMNI-DIRECTIONAL - 600 OHM
M21 ELECTRET CONDENSOR, UNI-OIRECTIONAL - 600 OHM
M3O DYNAMIC CARDOID, BALL WINDSHIEL - $50 \mathrm{~K} / 600$ OHM
MAB ELECTRET PAGING, CARDOID. (CAST BASE) - 600 OHM
MSO COMMUNICATIONS, OMNI-DIRECTIONAL. (HAND HELD) - 600 OHM

MICROPHONE STANDS
M121 BANQUET STANO, CAST BASE -11" TO 182"
M122 TRIPOD TABLE STAND, SCREW IN LEGS - 4 $\mathfrak{k}^{\prime \prime}$
M124 FOLING FLOOR STAND - UP TO 60*
MI25 STUDIO FLOOR STAND, SCREW IN LEGS - UP TO 63
MIZ9 SOLIO BASE FLOOR STAND, CAST BASE - UP TO 54"
MI 30 FLOOR STAND WITH CURVED BOOM, SCREW IN LEGS - UP TO 592"
£ 7.66
£ 5.11
£14.49
£20.70
$£ 17.25$
£31.05

MICROPHONE ACCESSORIES

M142 12" FLEXIBLE GOOSENECK STEM - CHROME FINISH
M143 20" FLEXIBLE GOOSENECK STEM - CHROME FINISH
MI7O GOOSENECK FLANGE ADAPTOR - BLACK SPRA YEO CASTING
MIO40 WINOSHIELD COVER (BUSBY - MEDIUM (ENTRY 17MM DIA.) PER PAIR
£ 4.83
£ 2.14
MIO41 WINDSHIELD COVER (BUSBY - LARGE (ENTRY 32MM DIA.) PER PAIR

MIXER

M104 SIX CHANNEL STEREO MIXER ANO PRE-AMPLIFIER - BATTERY POWERED £62.10 (accepts highs low impedonce microphones, ond has R.I.A.A. input)

$\triangle B=50 \mathrm{~A}$ A.c./D.c.

All Solid State
Power: SOW RMS
S.N.R.: 55dB

Rotary \& Slide V.U. Meter

Inputs: 3 - Mic $(0.5 \mathrm{mV})$
1 - Mog Phono (3 mV)

- Aux (200 mV)

$£ 89.70$
A $\triangle \square$ SHOULDER PA SYSTEM

Power: 5W RMS, Ronge i mile Batteries: 6-12V

LES MEGADHONE (SEP. MIKE)
Power: 16 W , Range: $\frac{1}{2}$ mile Botheries: $8-1 \frac{1}{2} \mathrm{~V}$

为 plorreod tom o core weredor.

A 2 PAOFESSIONAL
All Solid Stote Power: 175W RMS S.N.R.: 55d8

Rotory and Slider Control V.U. Meter

Inputs: 4 - Mic (0.5 mV)

1-Mag Phono (3 mV)
1-Aux (200 mV)
£276.00

 V.U. Mowne wot on to

SPEAKER SYSTEMS - CABINETS
LIO6 1OW, 8 OHM - BLACK FOAM FRONT, 'TEAK' FINISH, 8" DRIVER. PER PAIR £35. 19
LIIO 4OW, 8 OR 16 OHM (SPECIFY WHICH) - BLACK 'V YNIDE' COVERING $£ 69.70$ (fitled with metal corner prutectors and complete with a slip-on cover)

SPEAKER SYSTEMS - HORNS

LJ3 5W, 8 OHM WEATHERPROOF HORN, SUITABLE FOR VEHICLE USE
L74 1OW, 8 OHM METAL HORN
LT6 1OW, 8 OHM WEATMERPROOF A.B.S. HORN
IT $15 \mathrm{~W}, 8,660$, 1 KO, 2KO, 4KO, IOOV LINE WEATHERPROOF ALUMINIUM L78 $20 \mathrm{~W}, 8,500,600$, $1 \mathrm{KO}, 2 \mathrm{KO}, 100 \mathrm{~V}$ LINE WEATHERPROOF ALUMINIUM L78-8 AS FOR L78, BUT 8 OHM IMPEDANCE ONLY
£26.91

Cables
22 MICROPHONE CABLE, HEAVY OUTY, SINGLE, GREY
£28.98
($10 / 0.2 \mathrm{~mm}$ centre conductor, 100 m reel)
Z25 FIGURE 8 FLEXIBLE, RIB POLARISED, GREY ($13 / 0.2 \mathrm{~mm}$ conductors, 100 m reel)
229 TWO CORE OVAL, GREY
0 m reel)
255 oAMP MAINS LEAD, THREE CORE, ORANGE ($24 / 0.2 \mathrm{~mm}$ conductors, 50 m reel)

Z56 13 AMP MAINS LEAD, THREE CORE, ORANGE
£27.25
($40 / 0.2 \mathrm{~mm}$ conductors, 50 m reel)

ALL PUBLIC ADORESS EQUIPMENT SUBJECT TO 10\% DISCOUNT ON COLLECTED ITEMS TRADE ENQUIRES WELCOME

A selection of readers original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to its merits.
Articles submitted for publication should conform to the usual practices of this journal, e.g with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere.

MOVING L/GHTS

T- HE display is built around IC 1 which is wired in a three phase clock configuration. The clock is driven by the variable frequency oscillator formed by the two gates of IC2. The components used were found to give a good range of speeds.

The output from the clock is fed to one of the NAND gate inputs and the rother is connected to the oscillator. This was found to give a more well defined display. IC4 was used to buffer the outputs and S1 was incorporated to produce either one on and two off or vice versa at the display.
$\mathbf{S} 2$ is a reverse switch. The prototype display consisted of six l.e.d.s in series with an 820 ohm resistor for each output and
the whole system operated from a twelve volt supply.
A. W. Cunningham, Strathblane, Glasgow.

Afull complement of effects pedal, while providing sound variety to a performer. can be a pain in the neck in circumstances where gains are left high and nothing's going on. Here is a circuit to overcome this at a fraction of the cost of its commercial equivalent:

When a d.c. voltage is applied to pins 2 and 3 of IC2 it will attenuate the signal. 3 volts gives no attenuation.

RI and CI control the rise time of the switch and therefore switching TR3 on through VRI into the control input of the MC3340P. VR 1 controls the voltage and therefore the amount of attenuation.

R2. C1 and C2 control the release time and will both be fairly low, i.e. 1-10uF. The higher the value then the slower the release time.

The unit will work on a PP3 but VRI
will have to be lower and it is better to keep the instruments volume control flat out. and use the trigger level instead or a substantial amount of signal may be lost in quiet passages.

> C. Bishop,
> New Barnet, Herts.

MODEL

TRAFFIC

LIGHTS

|N Fig. 1 TR1 and TR2 form an astable multivibrator with an operating frequency of about 0.5 Hz . The output from TR 1 collector drives a 7493 four bit binary counter. Two 7400 i.c.s decode the counter output and drive the three l.e.d.s.

The complete cycle of operations takes about 32 seconds and the l.e.d.s are on as follows:

Green	12 seconds
Amber	4 seconds
Red	12 seconds

Red and Amber 4 seconds If required to simulate operating at a crossroads, a single 7400 i.c. will drive a complementary set of l.e.d.s as shown in Fig. 2.

> M. J. Rendle,
> Hooe,
> Plymouth.

Fig. 1 A

Fig. 2 -

ACCURATE KITCHEN TIMER

THE method of pulse-count selection embodied in this circuit may be new to some readers and has many other applications where a simple, and above all presentable, means of selecting 0 to 99 (or more) steps is required.

IC1 is a 14 -bit binary counter fed by a trimmable oscillator, resulting at pin 3, one negative going pulse per minute; these pulses clock the two cascaded BCD counters in the CD4518. The required time is
selected on the two (minutes, and tens of minutes) thumbwheel BCD switches thus inhibiting the alarm through the NOR gates formed by the diodes. At the end of the set time all diodes will be reverse biased and the alarm sounds and latches on by disenabling the 4518 ; the timer is silenced by switching off or, if the same period is required immediately, pressing the reset button.

Accuracy of 0.5 per cent (0.9 of a
second on a 3 minute egg) was obtained in prototypes, down to a supply of 6.5 volts: at about 4 mA 'counting' current a 9 volt battery lasts for many months.

The simplicity and accuracy of this form of selection is a great improvement on any mechanical timer and using one i.c. and two switches to access any digit in a count of 100 is economical too.

David Ian, East Molesey, Surrey.

TTL/CMOS

DEBOUNCED

Adebounced switch is a necessity when experimenting with logic circuits, especially flip-flops and counters. The switch described here has been designed so that, simply by changing the i.c., it can be used with either the TTL or CMOS logic families.

The circuit is basically a simple $\mathrm{R}-\mathrm{S}$ bistable built round a 14 -pin di.i.l. i.c. holder. When the unit is to be used with TTL logic a 7400 is inserted in the holder. while with CMOS logic a 4011 is employed. Both these i.c.s are quad 2 -input NAND gates, only the gates connected to

SWITCH

pins $1,2,3$ and $12,13,14$ being used (these pin connections are the same in both i.c.s).

Although unused TTL inputs can be left floating, unused CMOS inputs must be tied to one or other of the supply railsR1 and R2 satisfy this requirement. Unused CMOS gates must be similarly dealt with, but in this case there is a problem in that the unused gate connections of the 7400 and 4011 do not coincide; however by connecting them in the combination shown, the NAND truth table is observed for either of the i.c.s.

The switch is powered from the circuit being experimented on, and the l.e.d., of course, indicates the logic state of the output.

A. F. Olivera,
Varyl Begg,
Gibraltar.

STEPSET SEQUENCER

THERE are two main types of sequencer commonly used with synthesisers: those which are programmed by using the instrument keyboard, and those which are set up using a bank of potentiometers. There are advantages and disadvantages associated with both types. The main advantage of the potentiometer system is that the sequence can be altered while it is running. A distinct advantage of the keyboard system is the speed and accuracy with which it can be set up.

The circuit described here was designed to include both these advantages. It uses a bank of ten potentiometers for programming, but to attain the speed and accuracy desired, adjustment of the potentiometers causes the unit's output voltage to vary in steps, each step being equivalent to a one semitone change in the frequency of the synthesiser's oscillators. Each of the potentiometers can be positioned to select any one of the 32 available discrete steps, giving a range of 32 semitones or about two and a half octaves.

ICla forms a clock oscillator variable from 0.75 Hz to 55 Hz , which determines
the tempo of the sequence. The clock pulses thus produced are used to step the decade counter, IC2 which sequentially addresses the programming potentiometers, VR5 to VR14. The l.e.d.s, D8 to D17 are also sequentially addressed to indicate which potentiometer is being addressed. The voltage tapped from each sequenced potentiometer is routed to the comparator, IC3 which compares the potentiometer voltage with the output from the D-A converter. The D-A converter is formed by IC4, a 7 -stage binary counter; R15-R24, the R/2R network; and IC5, the buffer amplifier. If the potentiometer voltage is higher than the D-A voltage, the output of IC3 will swing negative enabling the 50 kHz oscillator, IClb. This causes IC4 to count up until the D-A voltage exceeds the potentiometer voltage, when the output of IC3 will swing positive, inhibiting the 50 kHz oscillator. IC4 is reset each time the sequencer steps so that the count always starts at zero. The D-A voltge is inverted by IC6 and passed to the output VR4 sets the output offset voltage ("tune" control), and VR3 sets the output
voltage law which can be between $0.5 \mathrm{~V} /$ octave and $1 \mathrm{~V} /$ octave. This should be adjusted so that one semitone steps are generated in the synthesiser. Since IC6 inverts the D-A voltage, VR5 to VR 14 must be wired so that their top ends are at 0 v .

An envelope shaper trigger is available from the monostable formed around TR1 and TR2. This generates sustain times from 15 ms to 0.75 s .

The sequencer can be single stepped with S2 in the "step" position, by pressing S 1 . In this mode, the tempo generator runs at 10 Hz so that IC 4 is reset frequently to allow the D-A converter to follow changing potentiometer voltages.

The sequence length can be altered between 2 and 10 steps using $S 3$, which determines the reset point. Manual reset is possible using S4.
P. R. Williams,

Stevenage,
Herts.

TUSCANFROM TRANSAM

Readout...

A selection from our Postbag

Readers requiring a reply to any letter must include a stamped addressed envelope.
Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

Doram Diagram

Sir-Some time ago I purchased a Doram signal generator, order code 991-906 which provided an audio signal from 20 Hz to 20 KHz with variable amplitude for system testing and signal tracing. This kit was obtained from the old Doram Electronics Ltd. in Leeds but unfortunately the instructions and circuit diagram were not included in the kit. Though the company is now back in business, they are unable to supply the necessary information.

My reason for writing to you, is to ask whether you have on file or, could obtain from your readers, the circuit diagram and instructions for making up this kit. All the parts, including the box were thoughtfully provided, but without the requisite circuit diagram, it is not possible for me to make up the signal generator.

> J. C. Benson Reigate

Attention Computer Users!

Sir-May we publicise the long-overdue founding of the National Personal Computer Users Association, which is intended to pool the vast combined computing resources of owners and users of all types of personal computers in the United Kingdom and to disseminate information between members.

Hardware, software, applications and programming enquiries involving a wide variety of machine code and high level languages are routed through the Association in order that members may take advantage of the experiences of owners of machines similar to their own. Programs, subroutines, software information and useful ROM routines and RAM locations not publicised by manufacturers will, of course, be of particular interest to other members and will be included in regular newletters. In addition various national research projects proposed by mem-
bers are undertaken, the current one being the analysis of human speech dialects.

Naturally the Association is also able to provide consensus opinions of its' wide membership to organisations and publications involved in servicing the personal computer industry while maintaining the complete anonymity of its' members and to purchase hardware at bulk discount prices on behalf of members when practicable.

A nominal annual subscription of $£ 8$ is necessary to cover overheads, and membership application forms will be provided on receipt of an S.A.E.

E. J. Keeley, NPCUA,
11, Spratling Street, Manston,
Ramsgate,
Kent.

In correspondence and discussions with both readers and retailers it has become apparent to us that there is an element of misunderstanding, mistrust and possibly dissatisfaction with mail order buying. To promote a better understanding between all concerned we propose to investigate the whole area and publish a feature explaining the problems and the legal rights involved.

With this in mind we would like to hear from you with your views and ideas on this subject. Unfortunately we cannot undertake to answer all letters but expect to be able to give a representative readers view in the forthcoming article.

Mike Kenward,
Editor.

SiPlidil Sillill

THIS compact and totally self contained security system should prevent your caravan and its contents from becoming another police statistic and may prevent your well-earned holiday from being ruined by thieves or vandals. Although this system was designed to protect caravans it will work equally well in protecting garden sheds, garages, small houses, cottages and flats.

FEATURES

Several unique features incorporated into the design of the alarm control centre provides comprehensive protection against removal or entry by unauthorised persons. Special attention to quiescent current demands and the use of CMOS integrated circuits in the design ensure maximum life of the internal batteries.

A battery test is provided via a light emitting diode. Whenever the system is activated the l.e.d will momentarily illuminate, indicating that the batteries are in good condition. As the quiescent current of the alarm system is less than 40 microamperes, the four MN1400 alkaline batteries can be expected to last well over a year in normal service.

The break-in protection of the alarm system provides exit and entry delays before the siren is triggered so there is no need to fit an external lock switch to the caravan. When leaving the alarm switch on the concealed alarm control centre is placed in the "Activate" position whereupon the owner has one and a half minutes to leave the caravan. Upon re-entry an alarm latch is triggered the moment the door is opened. However, a thirty second delay is provided to give the owner time to place the alarm switch in the "Defeat" position before the siren is triggered. If the alarm switch is not placed in this position within thirty seconds the siten will begin to sound and continue to sound for two and a half minutes before automatically resetting. However, in the initial cause of the alarm is still present, the siren will retrigger. This will continue until the source of alarm activation has been removed or the alarm switch is cycled through
the battery test function and then returned to the "Defeat" position. Cycling through the battery test function to silence the alarm, i.e. moving the alarm switch from "Activate" to "Defeat" twice, has been done intentionally in order to confuse any unauthorised person who may be tampering with the system in an effort to silence the siren.

Tow-away protection is provided by a self-activating section of the alarm system which operates completely independently of the break-in protection section and the position of the alarm switch. No would-be thief is likely to risk attracting the attention of the police by driving down the road without the brake and turn signal lights on the caravan in operation. Therefore he will, in all likelihood, connect the caravan's seven pin lighting plug to his vehicle before attempting to tow it away. A seven pin socket which mates with the caravan's plug is employed to detect tampering with the plug contacts and also provides a convenient place to stow it when it is not in use, thereby protecting it from the elements. Additional protection is provided by leaving the caravan's levelling jack down and looping the cable leading to the plug around the levelling crank before insertirg it into the sensing socket. When the plug is inserted into the sensing socket the alarm will automatically activate itself in three minutes.

If the plug is removed (or the cable cut) after the arming interval has elapsed, the siren will sound immediately and will continue to sound until manually reset by the alarm switch. If the plug is re-inserted into the sensing socket after the siren begins to sound the siren will continue to sound for one and a half minutes before automatically silencing itself. The alarm will then return to the activated state and continue to monitor the status of the plug.

Whenever the owner has to rernove the plug the alarm switch is cycled through the battery test function. This will inhibit the alarm sensing action of the sensing socket for three minutes, ample time to remove the plug without initiating the alarm sequence.

Fig. 1 Circuit diagram

POWER SUPPLY

Power is supplied by four MN1400 alkaline batteries, B1 through B4. The quiescent current of the system is primarily determined by R1 and R2, and to a lesser degree on R14, R15 and R16 as the integrated circuits draw negligible current. The battery supply is split into two sections, $\mathrm{V}++$ and $V+$. The $V++$ section supplies the high current demands of the siren at terminal (7) and battery test secton. The $\mathrm{V}+$ supply is decoupled from the noise and spikes present on the V ++ supply via R22 and C6 and supplies the alarm logic.

BATTERYTEST

Assume that S1 is in the "Defeat" position and is moved to the "Activate" position. C7, which was previously shunted by S1 and therefore completely discharged, will rapidly charge through R17, R18 and the base-emitter junction of TR1. This will momentarily forward bias it developing a 6 volt pulse at the collector which overcomes the 3.6 volt barrier potential of D6 leaving 2.4 volts to illuminate D5. D6 will always require 3.6 volts to overcome the barrier potential, therefore as the battery voltage drops the voltage available to D5 will drop. When the battery potential is approximately 4 volts it will no longer illuminate when S 1 is cycled, indicating that the batteries should be replaced.

RESET

The 6 V pulse produced at the collector of TR3 when S 1 is moved from the "Defeat" to "Activate" position is connected to the junction of steering diodes D2 and D3 appearing at pin 6 of IC1d via D3 and will reset the siren latch flip-flop at a safe condition. The reset pulse steered through D2 will be discussed in the tow-away protection system.

SIREN LATCH AND DRIVER

IC1c and IC1d are cross-coupled to form a set-reset flipflop. A logic ' 1 ' at pin 1 of IC1c is an alarm condition. A logic ' 1 ' at pin 6 of IC1d is used to reset the flip-flop to 'safe' condition.

When an alarm condition is sensed by ICIc the siren latch flip-flop will lock with a logic ' 1 ' at pin 4 of IC1d. The flipflop will. remain locked in this state until a reset pulse is presented to pin 6 of IC1d. Pin 4 of IC1d drives a modified Darlington pair consisting of R20. TR2 R21 and TR3 into conduction providing an earth return for the siren at terminal (8). This configuration exhibits a very low saturation voltage across T'R3 when it is conducting which minimises power losses. Diode D10 absorbs the spikes created by the siren

BREAK-IN PROTECTION

Break-in protection is provided by a closed loop consisting of a magnetic door switch and optional window foil/magnetic switches protecting access points to the caravan.

Assume that S1 is in the "Defeat" position. This will fully charge C5 and place a logic ' 1 ' at the inputs of IC2a and IC2c. IC2b and IC2c are cross-coupled to form an alarm latch flip-flop. A logic '1' at the input of IC2a and IC2c will lock the flip-flop to the safe condition with a logic ' O ' at the output of IC2c and inhibit IC2a so ignoring the status of the alarm sensing input.

When S1 is moved to the "Activate" position C5 will begin to discharge through R13. In approximately $1 \frac{1}{2}$ minutes (exit delay) a logic ' O ' will be present at IC2a and IC2c enabling this section of the alarm. The alarm sensing input of IC2a (pin 13) is normally held at logic ' 1 ' via R14, the closed magnetic switch loop and R15.

Fascia and legending

ALARM SEQUENCE

When the closed alarm loop is broken R16 will pull the alarm sensing input down to logic ' O '. With both inputs of IC1a at logic ' O ' a logic ' 1 ' is produced at its output. This logic ' 1 ' is coupled to the alarm input of IC2b and IC2c via a transient suppression network consisting of R12 and C13. The alarm latch flip-flop will reverse states and will have a logic ' 1 ' at the output of IC2c and a logic ' O^{\prime} at the output of IC2b. The logic '1' at the output of IC2c will begin to charge C3 via R8 and R9 in approximately 30 seconds (the entry delay) C3 will be charged to a logic ' 1 ' which will cause the flip-flop to lock to the alarm condition and sound the siren. The logic ' O ' at the output of IC2b will pull down the input of IC1d via D6 and R10 so that any 'safe' condition status presented by the tow away section of the alarm (via R7) will be ignored.

If the owner places S1 in the "Defeat" position within the thirty second entry delay period the alarm sequence will be pre-empted and the alarm latch will return to a safe condition.

AUTO AND MANUAL RESET

Prior to switching into the alarm state C4 is charged to a logic '1' via blocking diode D9. Once in the alarm state C4 will begin to discharge through R11. In approximately $2 \frac{1}{2}$ minutes C4 will have discharged sufficiently to present a logic ' O ' at the input of IC2d. This is inverted to a logic ' 1 ' and presented to the junction of steering diodes D11 and D12. D11 steers a logic '1' reset pulse to IC1d resetting it to a safe condition silencing the siren. D9 steers a logic ' 1 ' to the inputs of IC2a and IC2c which resets the alarm latch flipflop to a safe condition. This places a logic ' 1 ' at the output of IC2b which charges $C 4$ back to logic ' 1 ' thereby changing the output of IC2d back to logic ' O '. The logic ' O ' at the output of IC2d rapidly discharges C3 via D7 and R9. At this point the alarm system is completely reset to the safe condition and C5 once again begins to discharge through R13. Momentarily the system will re-activate itself and will react to whatever the status of the closed loop is at the moment e.g. if the loop is closed, the alarm will remain silent; if the loop is still open, the alarm sequence will repeat indefinitely.

To defeat the alarm sequence once it has been initiated S 1 is cycled through the battery test function and returned to the "Defeat" position. This places a logic ' 1 ' at the input of IC2a, inhibiting the alarm sensing input and the input of IC2c locking the alarm latch flip-flop to the safe condition. The siren latch will also be reset to the safe condition by the pulse produced by the battery test circuit.

CARAVAN TOW-AWAY PROTECTION

If the unit is to be used in a domestic application this section should not be used. D1, D2, D4, C1, C2, C8 and R1 can be omitted. R2, R3, R4, R6 and R7 must be retained to pullup IC1 a, IC1 b and IC1d.

IC1a, IC1b and associated components form an automatic activating and self-resetting circuit which detects tampering with the seven pin caravan plug. A seven pin socket, SK1 is employed as a sensing device. This section of the alarm operates completely independently of the "Activate/Defeat" switch.

OPERATION

Assume that the alarm control is defeated and you have just parked your caravan. C2 will be fully charged through R2, R3 and R4, presenting a logic ' 1 ' to pin 9 of IC1b which will inhibit the alarm sensing input at pin 8 . The output of

IC1b will be a logic ' O ' which is a safe condition. The input of IC1 a will be pulled up to a logic '1' by R2. IC1a inverts this to a logic ' O^{\prime} ' and couples it to IC1b via a transient absorbing network consisting of R5 and C8. This logic ' O ', which represents an alarm condition, will be inhibited be the logic ' 1 ' present at pin 9. The same conditions would be present if the alarm control centre was activated.

When the caravan's 7 pin plug is inserted into its socket, the circuit is closed between terminals (1) and (2) via the brake light circuit of the caravan. This presents a logic ' O ' at the input of IC1 a and begins to discharge C2 through R1, R3 and R4. A 3:1 ratio between R1 and R2 has been selected to help minimise the effects of moisture in the 7 pin socket and reduce quiescent battery current. Whenever the 7 pin plug is inserted the input of IC1a will be approximately 1.4 v which is slightly below the minimum threshold for logic' O^{\prime}. The logic ' O ' at the input of IC1a is inverted to a logic ' 1 ' which is passed to IC1b as a safe condition. In approximately 3 minutes C 2 will be discharged sufficiently to present a logic 'O' to pin 9 of IC1b which enables the gate to pass an alarm condition if detected.

If, at any point past the 3 minute 'activate delay' the 7 pin connector plug is removed by an unauthorised person, input of IC1 a is pulled up to logic ' 1 ' by R2, IC1 a inverts this and presents a logic ' O ' to pin 8 of IC1b. C1 is discharged immediately into IC1a via D1. IC1b now has logic ' O ' at both inputs resulting in a logic ' 1 ' at its output. This logic ' 1 ' is coupled to the 'alarm' input of the set-reset flip-flop via D4 charging C3 to $V+$ in the process. The logic ' 1 ' at the input of the siren latch flip-flop locks it to the alarm state and activates the siren. The siren will run until the system is manually reset or until the caravan's 7 pin plug is reinserted.

When the 7 pin plug is removed the resistance across pins 3 (31) and 6 (54), caravan socket numbers in parentheses, must exceed 300,000 ohms for proper circuit operation. Liberal application of petroleum jelly to the exposed connections on the socket will ensure that this condition is met under adverse weather conditions and in saliferous environments.

AUTO AND MANUAL RESET

When the caravan's seven pin plug is reinserted the input of IC1 a will be pulled down to a logic 'O' which is inverted by IC1d and presents a logic ' 1 ' at the output which begins to charge C1 via R6. After approximately $1 \frac{1}{2}$ minutes C1 will be charged sufficiently to present a logic ' 1 ' to IC1d via R7 which will reset the siren latch flip-flop to a safe condition.

When the caravan plug must be removed, S1 is cycled through the battery test function. The six volt reset pulse

Fig. 2 P.c.b. and overlay (Board design copyright Compu-Tech Systems)
produced at the junction of the steering diodes D2 and D3 when the l.e.d. illuminates will charge C 2 to a logic ' 1 ' via D2. This will inhibit the alarm sensing action for approximately 3 minutes, ample time to disconnect the caravan plug without activating the alarm.

All of the time delays given are nominal and are dependent on the combined tolerances of the timing resistors and capacitors, the logic thresholds of the integrated circuits, and to a lesser degree, on the battery potential. The time delays given in the text can be expected to vary $\pm 30 \%$ from the figures given. The time delays given in the text can be adjusted to suit your individual requirements by increasing or decreasing the values of the resistors or capacitors tabulated below in direct proportion to the change in time desired.

Break-in Protection

Break-in	Protection
Exit Delay	R13 and C5
Entry Delay	R8 and C3
Reset Delay	R11 and C4

Tow-away Protection

> Activate Delay R3, R4 and C2

Reset Delay R6 and C1

CONSTRUCTION

Construction is generally straightforward. The battery holder is glued to the case first. The printed circuit board is then assembled, noting that diodes D2, D3 and D4 are mounted underneath the socket for IC1. The unit is then mounted in the selected location. The siren, seven pin sensing socket, and magnetic door switch are then installed and the wires routed back to the alarm control centre. These wires along with the two battery wires are then connected to the p.c. screw terminals provided. Once the batteries are installed the system can be tested and put into service.

The hardware and software exchange point for PE computer projects

GOOD GAME! GOOD GAME!

This game, in Compukit BASIC, was briefly reviewed in the last issue of Practical Electronics, along with other programs by the same author. As promised, the full listing appears below. Note that the stars represent multiplication signs (i.e. asterisks).

1 REM "LE PASSE-TEMPS" A. KNIGHT 15/12/79
25 ? ${ }^{\text {st }}$) The object of the game is to get FOUR"
26 ? "IN A LINE"
28 ?" 2) The board is a 6 by 7 matrix, and a line"
29 ?"may be horizontal, vertical or diagonal."
30 ?‘3) Columns are filled from the base upward."
32 ?"4) In play, only three keys are used:" : ?
33 ?* a) Shift left moves the pointer left."
34 ?" b) Shift right....."
35 ?* c) The space bar drops your marker to the"
36 ?" foot of the selected column"
40 DIMS(44), T(11) : POKE530, 1: ?: GOT060
50 FOR I = 1 TO 4000: NEXT
$60 \mathrm{MS}=$ "HIT 'Z' TO CONTINUE" : GOSUB970
$70 Q=57088$: POKEQ, 253: IF PEEK(Q)><223 THEN 70
$80 \mathrm{E}=0: \mathrm{F}=0: \mathbf{G}=0:$ FOR $\mathrm{A}=1$ TO $42: S(A)=0:$ NEXT
90 ?TAB(16)" LE PASS-TEMPS" :?:?
91 ?: ?TAB(7) "SCORES" : ? : ?
92 ?"YOU"; TAB(9)S 1
93 ?: ?"ME"; TAB(9)S2 : ?
94 ?"DRAWN"; TAB(9)S3 : ? : ? : ?
95 RESTORE
$100 \mathrm{~L}=53338$: DATA 136, 143, 209, 208
110 FOR T = 1 TO $13:$ IF T/2 $=$ INT(T/2) THEN RESTORE
120 READ A, B : FOR C $=1$ TO 28 STEP 4
125 IF T = 1 THEN 140
126 POKEL, 143 : POKEL+29, 136
130 POKEL+C, A : POKEL+C+ 3, B
140 NEXT C : $L=L+64$: NEXT T
$150 \mathrm{~N}=36$: FOR C $=1$ TO 7 : $\mathbf{N}(\mathbf{C})=\mathbf{N}: \mathbf{N}=\mathbf{N}+\mathbf{1}: \mathbf{N E X T}$
$160 \quad R=53336: C=4$
170 S $=$ S $1+$ S2 + S3 $:$ IF $S / 2<>$ INT(S/2) THEN 495

200 MS = "MY MOVE": GOSUB950
$205 \mathrm{~V}=0: \mathrm{X}=0: \mathrm{Y}=0: \mathrm{Z}=0$
210 FOR J=1 TO 7: C = C +1 : IF $\mathrm{C}>7$ THEN $\mathrm{C}=1$
$220 \mathrm{P}=\mathrm{R}+\mathrm{C} \star 4$: IF $\mathrm{N}(\mathrm{C})>0$ THEN GOSUB 700
230 IF F THEN 450
240 NEXT
250 IF X THEN C = X : GOTO450
260 IF Y THEN C = Y:GOTO330
270 IF Z THEN C = Z : GOTO330
$310 \mathrm{C}=\mathrm{INT}($ RND $(1) \star 7+1):$ IF N(C)<1 THEN 310
$320 \mathrm{~V}=\mathrm{V}+1:$ IF $\mathrm{C}<>4$ AND $\mathrm{V}<5$ THEN 310
330 IF $\mathrm{N}(\mathrm{C})<8$ THEN $\mathrm{F}=0$: GOTO450
340 IF V<10 THEN 400
350 IF $\mathrm{V} / 3=\mathrm{INT}(\mathrm{V} / 3)$ THEN MM $=1:$ MS $=$ "NOW WHAT DO I DO?" : GOSUB970

360 IF $\mathrm{V}<21$ THEN 400

370 FOR $\mathrm{A}=1$ TO 500 : $\mathrm{Q}=$ INT(RND(1)太 $940+53260$)
$380 \mathrm{~J}=\operatorname{INT}($ RND $(1) \star 256)$ POKEQ, J
390 NEXT: E = 1:GOTO640
$400 \mathrm{~N}(\mathrm{C})=\mathrm{N}(\mathbf{C})-7: \mathbf{Z}=0$ GOSUB700: $\mathrm{N}(\mathrm{C})=\mathrm{N}(\mathrm{C})+7$
410 IF F THEN $F=0:$ IF $\mathrm{V}<9$ THEN 310
420 IF Z THEN $Z=0$: IF $\quad \mathrm{<}<6$ THEN 310
430 IF X THEN X = 0 : GOTO310
$450 \mathrm{X}=\mathrm{R}+63+\mathrm{C}$ * $4+128 \star$ ($\mathrm{N}(\mathrm{C}$)-C) $/ 7$
470 FOR $B=1$ TO 2 : POKE X + B, 154 : POKE X+B+64, 155: NEXT
$480 \quad \mathrm{~S}(\mathrm{~N}(\mathrm{C}))=5: \mathrm{N}(\mathrm{C})=\mathrm{N}(\mathrm{C})-7$
490 IF F THEN MS = "I WIN!": GOSUB970 : $\mathbf{S 2}=\mathbf{S 2 + 1}$: GOTOS0
495 MS = "YOUR MOVE" : GOSUB950
$500 \mathrm{P}=\mathrm{R}+\mathbf{C}$ * 4 : POKEP,31 :
POKEP+1,31 : POKE 30,1
510 POKEQ,254:IF T = 251 THEN T=253: GOTO520
$515 \mathrm{~T}=251$
516 IF $\operatorname{PEEK}(\mathrm{Q})=254$ THEN MM = $1:$ MS $=$ "RELEASE SHIFT LOCK" : GOSUB970 GOTO495
520 IF PEEK (Q) = T THEN 550
530 POKEQ,253 : IF PEEK(Q) = 239 THEN 600
540 GOTO510
550 IF T $=253$ AND C <7 THEN $\mathbf{C}=\mathbf{C}+1$
POKEP $+1,31$

705 FOR $A=0$ TO 11: $T(A)=0$: NEXT A
$710 \mathrm{I}=0: \mathrm{M}=\mathrm{N}(\mathrm{C})$
720 FOR U = M TO M+21 STEP7: IF U> 42 THEN 740
$730 \quad \mathrm{~T}(\mathrm{I})=\mathrm{T}(\mathrm{I})+\mathrm{S}(\mathrm{U})$
740 NEXTU:I $=\mathbf{I}+1$
750 FOR $\mathbf{A}=\mathbf{C}-3$ TO $\mathbf{C}+3:$ IF $A<1$ THEN $A=1$
760
770
FOR B $=\mathbf{A}$ TO A $+3:$ T(I) $=$ $\mathbf{T}(\mathbf{I})+\mathbf{S}(\mathbf{M}-\mathbf{C}+\mathrm{B}): \mathbf{N E X T} \mathbf{B}: \mathbf{I}=$ I+1

FOR $D=0$ TO $3: T(I)=$ $\mathrm{T}(\mathrm{I})+\mathrm{S}(\mathrm{N}): \mathbf{N}=\mathbf{N}+\mathbf{8}: \mathbf{N E X T} \mathbf{D}$ $: I=I+I$
800
810
820

840
850 FOR H = O TO I: $\mathrm{D}=\mathrm{T}(\mathrm{H})$; IF $D=4$ THEN $E=1$
860 IF $\mathrm{D}=15$ THEN $\mathrm{F}=\mathrm{C}$
870 IF $D=10$ THEN $Z=C$
880 IF D $=3$ THEN X $=$ C
890 IF H AND D $=2$ THEN $Y=C$
900
910
920
950 FOR $\mathrm{A}=1$ TO $7:$ IF $S(A)=0$ THEN 970
960 NEXT $\mathbf{A}: \mathbf{M} \$=$ "IT'S \mathbf{A} DRAW": $\mathbf{G}=1$
970 TTAB(47); CHR\$(13);
980 TTAB (22-LEN (MS)/2) M\$; CHRS(13);
1010 IF MM = O THEN 1040
1020 FOR D $=1$ TO 600 : NEXT : $\mathbf{M M}=\mathbf{0}: \mathbf{M S}={ }^{*} \%:$ GOTO970
1040 POKE54220,32
1070 IF G THEN G $=\mathbf{0}: \mathbf{S 3}=\mathbf{S} \mathbf{3}+1$: GOTO50
1080 RETURN

101 SCREEN EDITOR

A screen editor has been sent in by $N . A$. Climpson, which to use is simplicity itself. Loading this software is easy too, for machine code is transported into the Compukit's memory by a self-destructing BASIC program.

The program occupies 324 bytes of RAM, two zero page addresses $00 \mathrm{F9}$ and 00FA and five addresses, 02F6-02FA in an area of RAM not used by BASIC. It is located for the 8 K machine at memory locations 7865 to 8189 (decimal) so that it can be protected from BASIC. A response of 7850 to MEMORY SIZE? on a cold start is satisfactory.

Key memory locations for editor program in an 8 K Compukit.	
00F9	Low byte of V.D.U. RAM address
00FA	High byte of V.D.U. RAM address
02F6	Input cursor position temporary
02F7	Character temporary
02F8	stores
02F9	Edit cursor horizontal position
02FA	Edit cursor vertical position
1F2D-1F4D	Editor entry and key pressed detection
1EB9-1ED1	Control B routine
1ED2-1EED	Control D routine
1EEE-1F2C	Rubout routine
1F4E-1F96	Control U routine
1F87-1F97	Handles edit cursor over top line
1F98-1FB2	Return routine. Initialises stores
1FB3-1FD5	Control F routine
1FD6-1FF3	Subroutine senses scroll up and repositions edit cursor one line up
1FF4-1FFD	Subroutine for saving character about to be sat on by edit cursor and substituting cursor character
1 F64	Number of scrolling lines on screen

The functions are accessed through the use of Rubout, and the control key plus U, D, F and B.

Control U moves the edit cursor up
Control F copies forward
Control B moves the edit cursor backwards
Control \mathbf{D} deletes on the edit line
Rubout True backspace
The line to be altered is displayed anywhere on the screen using LIST.

With Control U an Edit Cursor separates from the Input Cursor and moves vertically up the screen. (If it goes off the top it reappears at the bottom.)

The Edit Cursor is stopped at the selected line and moved forward with Control F. Each

50606 IATA $152,72,172,247,2,173,248,2,145,249$
50008 JATA $136,206,249,2,32,244,31,164,168,169$
50010 DATA $9,96,76,185,30,152,72,32,214,31$
5012 DATA 172,249,2,169,35,145,249,238,249,2
5014 DATA $298,2,230,250,200,32,244,31,104,168$
50816 UATA 169,0,96,202,16,4,232,76,153,163
50018 IIATA $138,72,152,72,172,249,2,174, \pm, 2$
5092 IIATA $173,250,2,240,5,173,248,2,145,249$
50922 DATA $169,32,157,0,211,202,136,206,249,2$
50424 एAIA $206,0,2,169,95,157,0,211,206,246$
50026 DATA 2,173,250,2,240,3,32,244,31,104
50028 DATA $168,164,170,164,0,96,32,186,255,201$
50830 ШАТА $21,240,26,261,28,240,182,201,4,240$
50032 DATA $150,201,2,240,143,201,6,240,111,281$
50834 [IATA $13,240,80,32,214,31,76,153,163,56$
50536 DATA $152,72,173,250,2,240,8,172,249,2$
50838 DATA $173,248,2,145,249,238,259,2,173,250$
50040 DATA $2,201,16,240,31,201,1,208,6,173$
50642 DATA $0,2,141,249,2,173,249,2,233,64$
50844 DATA 176,2,198,250,141,249,2,168,32,244
50646 DATA $31,104,168,169,0,96,169,0,141,250$
50648 DATA $2,169,211,133,250,173,9,2,141,249$
50050 IATA $2,298,230,169,0,141,250,2,133,249$
50652 DATA $169,211,133,250,169,32,141,248,2,169$
50654 IJATA $204,141,246,2,141,249,2,169,13,96$
50556 DATA $152,72,32,214,31,173,248,2,172,249$
50558 DATA $2,145,249,141,247,2,205,238,249,2$
5006 DATA $288,2,230,250,32,244,31,194,168,173$
50562 IITA $247,2,76,153,163,72,173,0,2,205$
56064 DATA 246,2,16,13,56,173,249,2,233,64
50066 [АTA $176,2,198,250,141,249,2,173,0,2$
5068 DATA 141,246,2,104,96,177,249,141,248,2
50976 DATA 169,95,145,249,96
50072 FOR I= 7865 TO 8189:READ A:POKE I,A:NEXT
50074 POKE 536,45:FOKE 537,31
50076 NEW
character the Edit cursor moves past on the old line is copied by the Input cursor on a new line at the bottom on the screen. The auto repeat facility can be used. Return at any stage enters the new line displayed at the bottom of the screen.

Extra characters are inserted into the new line by halting the Edit Cursor at the appropriate position and entering characters through the keyboard. Resumption of Control F copies the rest of the old line to the new one
at the bottom of the screen.
Deletions can be made at any point by pressing Control D which displays a \# for each deleted character on the old (Edit) line and gives no input on the new (Input) line.

Changing of characters is accomplished by copying forward to the "correction" point, entering new characters through the keyboard, typing Control D over the unwanted characters on the Edit line and continuing to copy forward over the remainder.

Use of Control B allows movement of the Edit Cursor to the left without moving the Input Cursor. This feature is incredibly useful, allowing you to repeat phrases on a line, or, in conjunction with Control U, move the Edit Cursor around the screen to pick out phrases listed eisewhere and make a new composite line. One use of this function is in the condensation of programs, since several single BASIC statements can be brought together on one line with ease.

This editing facility cannot be used to alter the Input Line; only a previously entered program line.

On long statements which run to a second line, the Edit Cursor needs typically sixteen Control Ds to carry it over the undisplayed part of the video memory if blanks are to be avoided on the Input Line. Also, on two-line statements, Rubout should not be used to retreat from the second line to the first.

The program listed here should be loaded and RUN, to shift the machine code into memory. It is probable that you will not require the services of the Editor immediately, in which case RETURN will have been pressed during programming; but if the Editor is required immediately after loading, it is necessary to press Return to initialise certain memory locations.

The Editor is a compromise between versatility and memory consumption, but will nevertheless be most useful to 101 users.

The Editor will still be present in RAM after a Reset and Warm Start, but it must be reactivated by the POKE statements in line 50074 of the BASIC listing.

Warning: These two POKES must be executed simultaneously on the same instruction line or the machine will lock-up.

EDITOR DISASSEMBLED

1EB9	98	TYA	
1EEA	48	PHA	
1EBB	ACF902	LDY	\$3279
1EBE	ADF8 82	LDA	\$62F8
1EC1	91F9	STA	(\$F9), Y
1EC3	88	DEY	
1EC4	CEF902	DEC	\$02F9
$1 E C 7$	20F41F	JSF	\$1FF4
1ECA	68	PLA	
1ECB	A8	TAY	
1ECC	A990	LDA	*508
1ECE	$6 \pm$	RTS	
1ECF	4CB91E	JMP	\$1E89
1ED2	98	TYA	
1EU3	48	PHA	
1E14	20061F	JSR	\$1FD6
1EI7	ACF9 92	LDY	\$2F9
IEUA	A923	LDA	\# $\$ 23$
1EDC	91F9	STA	(\$59), Y
IEDE	EEF962	INC	\$02F9
1EE1	D062	BNE	\$1EES
1EE3	E6FA	INC	\$FA
1EES	C8	INY	
1EE6	20F41F	JSR	\$1FF4
1EE9	68	PLA	
1EEA	A8	TAY	
1EEB	A906	LDA	\# 38.
1EED	60	RTS	

IEEE	CA	UEX		1F28	68	PLA	
1EEF	1064	BPL	\$1EF5	1F29	AA	TAX	
1EF1	E8	INX		1F2A	A909	LDA	\# $\$ 00$
1EF2	4C99A3	JMP	\$A399	1F2C	60	RTS	
1EF5	8A	TXA		1F2D	29BAFF	JSR	\$FFBA
1EF6	48	PHA		1F30	C915	CHP	\#\$15
$1 E F 7$	98	TYA		1F32	F91A	BEG	-1F4E
1EF8	48	PHA		1F34	C91C	CMP	
1EF9	ACF902	LDY	\$02F9	1F36	F986	BEQ	\$1EEE
1EFC	AE9602	LDX	\$0280	1F38	C904	CMP	W $\$ 04$
1EFF	ADFAQ2	LIJA	\$62FA	1F3A	F996	BEO	\$1ED2
$1 F 62$	F905	BEA	\$1F69	1F3C	C992	CMP	\#\$82
1F84	ADF 802	LDA	\$12F8	1F3E	F98F	BEQ	\$1ECF
1F 07	91F9	STA	(\$F9), Y	1F40	C906	CMP	H506
1F69	A920	LDA	- $\$ 20$	1F42	F06F	BEO	\$1FB3
1F0B	90093	STA	\$0390, x	1F44	C980	CMP	H50D
1Fe	CA	DEX		1F46	F 054	BEO	\$1F98
1F8F	88	DEY		1F48	20061F	JSR	\$1FD6
1F10	CEF902	DEC	\$02F9	1F4B	4C99A3	JMF'	\$ A399
1F13	CE9802	DEC	\$6200	1F4E	38	SEC	
1F16	A95F	LDA	\# $\$ 5 \mathrm{~F}$	1F4F	98	TYA	
1F18	900003	STA	\$1300, X	1F59	48	PHA	
1F1B	CEF602	DEC	\$62F6	1F51	ADFAD2	LDA	\$62FA
IFIE	ADFAQ2	LDA	\$ 2 FA A	1F54	F008	BEQ	\$1F5E
1F21	F003	BEO	\$1F26	1F56	ACF992	LDY	\$02F9
1F23	20F41F	JSR	\$1FF4	1F59	ADF892	LDA	\$02F8
1F26	68	PLA		IF5C	91F9	STA	(\$F9), Y
1F27	A8	TAY		IFSE		INC	\$02FA

PEVDU SOFTWARE?

Sir-I have recently built the PE VDU. with which I am most pleased.

Could you suggest where I might obtain suitable operating software to drive the VDU and full keyboard. The micro 1 am using is the issue 2 MK14 with new monitor.

Also, can you suggest how I might remove the scan lines from my screen lonly apparent when VDU board is connected to TV set). I am going in direct video.

$$
\begin{aligned}
& \text { N. F. Harris } \\
& \text { Burton-on-Trent }
\end{aligned}
$$

101 TRICK

Here is a tip sent in by J.D. Owen of Dyfed.
100 PRINT CHRS (13); TAB(48)CHRS (13);

110 PRINT (new information);
Line 100 clears the bottom line of the VDU before line 110 reprints new information. This prevents the previous information from scrolling up the screen.

A similar trick is to replace line 100 with:
POKE 512, 205

TV TEASER

Sir-I own a UK 101 and wish to display 64 characters per line. In your articles on the UK101 you say that this may be achieved by getting the TV to underscan, but you also say that the software is arranged to limit the line, length to 48 characters to prevent loss of information. How is it possible
to alter this-would a machine code routine work, or some "POKEs", or would the ROMs need rewriting?

I would be very grateful if someone could answer this problem as $/$ feel that 64 columns would be very useful.

> T. D. Allen
> Poole.

Has anyone actually done this?

TELEWRITING

Sir-In the January 'Readout' column, Mr. J. W. Coulthard asks if it is possible to use the COMPUKIT UK101 keyboard in immediate mode without getting "7SN ERROR" on every line. The following program, which makes use of a machine code sub-routine given in the Manual, will allow the keyboard to be used to write messages on the screen, or to work a Printer as a Typewriter:
200 POKE 11, 237 : POKE 12, 254
$210 X=U S R(X): A=P E E K(531)$
220 IF A =13 THEN PRINT CHR\$ (10):
230 PRINT CHR\$ (A):
240 GOTO 210
This program could easily be modified (by changing line 230) to produce graphics characters and enable pictures to be drawn.

A modified form of this program was used to produce this letter using my COMPUKIT and a Printer.

G. L. Steer,
Ewell.
Surrey.

HOLD THAT VARIABLE!

Debugging a program which, for instance, starts with a series of input statements, can be laborious. Each time an unsuccessfully run program is listed and subsequently edited, all variables are lost, and on re-running, one has to input all the data again. Only if the program text has not been altered is it possible to re-run a program without loss of variables by using the GOTO statement in Command Mode.

A program to maintain all the variables throughout that inevitable debugging phase has been written by Richard Hocking of Wellingborough.

When a new line is inserted into the program, the Text End Pointer (and program text) are moved down, but the Variable and Array Store are not copied down. The Variable and Array End Pointers are then reset fo the same as the Text End Pointer), to ensure that it is not possible to recall a variable which has been overwritten when the text was copied down.

This program overcomes the problem by modifying the input routine as follows. Firstly the Text End Pointer is set equal to the Array End Pointer. Then, when a new line is inserted, everything up to the Array End Pointer is copied down by the correct amount, and the new line is inserted in its correct place. Thus the variable and array information is preserved without corruption. Then if the pointers for the text, variables, arrays and strings are reset to

F6	ADFAD	L	+
1F64	C914	CMP	\#\$10
$1 F 66$	F91F	BEQ	\$1F87
1F68	C991	CM	\|1
1F6A	0006	BNE	\$1F7
1F6C	ADOS02	LDA	\$0200
1F6F	8DF992	STA	\$02F
72	ADF9 92	LDA	\$02
1F75	E940	SBC	\#\$4
$1 F 77$	B982	BC	$1 F$
79	C6FA	UEC	\$FA
1F78	8DF90	STA	10
1F7E	A8	tay	
1F7F	28 F	JSR	
1782	68	PLA	
$1 F 83$	A8	tay	
1584	A900	LDA	\#
1F86	60	RTS	
1587	A901	LDA	\#S
$1 F 89$	8DFA02	STA	sp2FA
1F8C	A9D3	LDA	\#sD3
1F8E	85FA.	STA	\$FA
1790	AD0062	LDA	\$200
1593	8DF902	STA	\$02F9
1F96	DgE6	BME	\$1F7E
$1 F 98$	A94	LDA	\#\$01
1F9A	8DFA02	STA	\$02F
F9D	85F9	ST.	

1F9F	A9D3	LDA	H 103
1FA1	85FA	STA	\$FA
1FA3	A929	LDA	\# 520
1FA5	8DF892	STA	192F8
1FAB	A9CC	LDA	\# $\$$ CC
IFAA	80F602	STA	102F6
IFAD	8 DF9 92	STA	\$92F9
1FAg	A901	LDA	\# 500
1FB2	68	RTS	
1FB3	98	TYA	
1FB4	48	PHA	
1F 55	20D61F	JSR	\$1FD6
1F68	ADF 802	LDA	\$62F8
1 FBB	ACF982	LDY	\$62F9
1FBE	91F9	STA	(\$F9), Y
1FCQ	8DF762	STA	\$02F7
1FC3	C8	INY	
1FC4	EEF902	INC	302F9
1FC7	D062	BNE	\$1FCB
1FC9	E6FA	INC	\$FA
1 FCB	20F41F	JSR	\$1FF4
1FCE	68	PLA	
IFCF	A8	TAY	
1FD0	ADF792	LDA	\$62F7
1FD3	4C99A3	JMP	\$ A399
1FD6	48	PHA	
1FD7	A00 092	LDA	\$0200
IFIA	CJF692	CMP	302F6

1FDD	1000	BPL	SFEC
1FDF	38	SEC	
1FE0	ADF992	LDA	\$02F9
1FE3	E949	SBC	H 4 $^{\text {\% }}$
1FE5	B062	BCS	S1FE9
1FE7	C6FA	DEC	1FA
1FE9	8DF9 92	STA	32F9
1FEC	AD0092	LDA	\$0200
1FEF	8DF602	STA	\$02F6
1FF2	68	PLA	
1FF3	60	RTS	
1FF4	B1F9	LDA	(\$59), Y
1FF6	8DF882	STA	102F8
1FF9	A95F	LDA	- $\$ 5$ F
1FFB	91F9	STA	(\$F9),
1FFD	60	FTS	
1FFE	A2A8	LDX	\# ${ }^{\text {A8 }}$
2909	202920	JSR	\$2020
2903	202620	JSR	\$2020
2006	202020	JSR	\$2020
2009	262020	JSR	\$2020
200 C	202620	JSR	\$2620
200 F	292620	JSR	\$2920
2012	202620	JSR	\$2029
2915	292020	JSR	\$2020
2018	292020	JSR	\$2020
201B	282820	JSR	\$2020
201E	292020	JSR	\$2020

their true values, all the variables etc. may be recalled as normal.

Below I have written a list of Zero Page: addresses (which I believe to be correct) and which should help in understanding how the program works, and may prove useful to other UK101 users.
$\left.\begin{array}{ll}\text { Addresses } & \begin{array}{l}\text { Usage } \\ \text { 01,02 }\end{array} \\ \text { Contains address to } \\ \text { which program jumps } \\ \text { after RESET W. } \\ \text { Contains length of input }\end{array}\right\}$

10 DaTA $44,3,2,16,25,169,253,141,0,223,169$
20 DATA $16,44,0,223,240,10,173,0,240,74$
30 DATA $144,238,173,1,240,96,238,3,2,32,0$
40 DATA $253,72,138,72,44,44,2,16,70,165$
50 DATA $127,205,38,2,240,48,48,21,238,38,2$
60 DATA $238,36,2,208,3,238,37,2,238,34,2$
70 DATA $208,3,238,35,2,208,228,206,38,2$
80 DATA 206,36,2,201,255,208,3,206,37,2
90 DATA $206,34,2,201,255,208,3,206,35,2$
100 DATA $208,203,162,4,189,39,2,149,128,189$
110 DATA $33,2,149,122,202,208,243,169,0,141$
120 DATA $44,2,104,170,104,201,13,240,1,96$
130 DATA $72,138,72,186,189,8,1,201,169,240$
140 DATA $6,165,19,201,58,48,4,104,170,104$
150 DATA $96,201,49,48,248,169,255,141,44,2$
160 DATA $162,10,181,122,157,33,2,202,208,248$
170 DATA $165,127,133,123,165,128,133,124,208$
180 DATA $223,169,45,141,24,2,169,2,141,44,2$
190 data $141,25,2,96$
500 FOR I $=557$ TO 744
510 READ X
520 POKE I, X
530 NEXT
540 POKE11,219: POKE12,2: $x=\operatorname{USR}(x)$
550 NEW

The BASIC portion of the program POKEs the machine code program (DATA statements) into the memory space between 0222 H and 022 E 8 H , and then executes the machine code, finally erases the BASIC.

VIDEO PINPOINT

Here is a short program for the 101 which allows character slot location on the display, in relation to its video RAM address. It was submitted by T. Wilson of Sittingbourne, Kent, and produces an arrow on the screen which can be moved around like so:

Key 1	UP
Key 2	DOWN
Key 3	LEFT
Key 4	RIGHT

The corresponding RAM address of the arrow's position appears at the top right of the screen. Very useful for setting up animated graphics! The program itself, if examined, gives a good insight into the POKEing of graphic characters around a memory mapped video screen. The Video RAM is located at 53248-54271 decimal on the UK101.
10 FORR=ITO16: ? :NEXT
15 POKE54221,32
$20 \mathrm{~S}=53795: \mathrm{PL}=16$
25 GOSUB50
$30 S=S+D: D=0$
35 POKES,PL:IFS<>T THENPOKET,32
40 GOSUB 100
45 GOTO25
50 REM * KEYBOARD *
55 POKE530,1:POKE57088,127
60 P=PEEK(57088):POKE 530,0
65 T=S
70 IFP $=127$ THENPL $=16: D=-64$
75 IFP $=191$ THENPL $=20: \mathrm{D}=+64$
80 IFP $=223$ THENPL=22: $\mathrm{D}=-1$
90 IFP $=239$ THENPL $=18: \mathrm{D}=+1$
93 IFS + D 54271 OR S+D<53248
THEND $=0$
95 RETURN
100 REM* DISPLAY *
105 ES=STRS(S)+" ${ }^{\text {T }}$
$110 \mathrm{~N}=0$
$115 \mathrm{~L}=\mathrm{LEN}$ (ES)
120 FORR $=53357$ TO $53356+\mathrm{L}$
$125 \mathrm{~N}=\mathrm{N}+1$;POKER, ASC(MIDS(ES,N,1))

130 NEXT

140 RETURN

We added line 93 to confine the arrow to within the video RAM limits.

ALL'S WELL . . .

Sir,-Some time ago $/$ wrote to you regarding a problem I had with my Compukit UK101. My machine's "Rubout" operated by leaving a trail of arrows, and I wanted to update it so that the cursor erased characters on screen. I had not had much luck so I wrote to you for advice.

I am pleased to say that due to the helpfulness of a young lady at Comp Components my machine is now updated. After a lot of ROMs being passed between me and Comp Components the correct combination was reached to make Rub-Out erase characters on screen. 1 in fact had to change BASICs 1 and 4, and Monitor ROMs.

I hope this may be of use to other readers trying to update their machines.
S. A. Smith

Kingston upon Thames.

RANDOMISING ROUTINE

The following information has been submitted by David Swash of Southampton.

After RESET, the RND(X) function always starts at the same point in the pseudo-random series; an undesirable characteristic, particularly in games programs.

The following is a simple randomising routine which may be included in any program, after the instructions (if any).

900 ?"TO START—PRESS *C’"
910 POKE 530, 1
920 POKE 57088, 251
$930 \mathrm{ZZ}=$ RND (7)
940 IF PEEK (57088)= 191 THEN 960
950 GOTO 920
960 ?
970 POKE 530, 0

The distribution of numbers within the 1861 number series is not even, as the following table shows. This may be significant when making decisions based on the probability of a random number being within a certain range.
$\left.\left.\left.\begin{array}{lr}\text { Range from } & \text { Nos. in range } \\ 0 & 162 \\ 0.1 & 188 \\ 0.2 & 203 \\ 0.3 & 202 \\ 0.4 & 188 \\ 0.5 & 180 \\ 0.6 & 170 \\ 0.7 & 189 \\ 0.8 & 184 \\ 0.9 & 195\end{array}\right\} 943 \begin{array}{l} \\ 0.9\end{array}\right\} \begin{array}{l} \\ \end{array}\right\}$

Initially, after RESET, the random number generator produces 2800 different numbers and then repeats the last 1861 of these. The distribution within the first 2800 is still uneven, however, being as follows:

Here are three miscellaneous tips thrown in for good measure:
(a) If RETURN is pressed in reply to an INPUT statement (l.e. no data) then, as described in the manual, the program is aborted. However, it can be restarted by using CONT, which results in a repeat of the INPUT request.
(b) Quotes can be omitted from character strings in DATA statements fout not in assignments).
(c) There is an additional BASIC error code:
$B \sqrt{ }$-Attempt to reference an array beyond its dimensioned bounds.

Copies of Patents can be obtained from: the Patent Office Sales, St. Mary Cray, Orpington, Kent. Price 95p each.

REMOTE CONTROL

Airfix Products have a new British patent application (2 026 747), filed in July 1978 under the new laws, which sets out to improve the remote control of DC motors, especially those used in model railways. In the simplest model railway control systems only a single locomotive can be run independently on a particular length of track at any one time. Digital control systems have been proposed which give independent control of more than one train on the same length of track. But according to Airfix there have been problems over interaction between different locomotives, largely due to the electrical interference generated by the brushes and commutators used in DC motors. Airfix point out that if high frequency control waveform bursts are superimposed on a 50 Hz wave, the motor
will respond more reliably. The lengthy patent explains practical ways of putting this theory into practice.

Figure 1 shows a system which permits control of both the direction of rotatation and power (hence speed) of a DC motor. Power Supply Unit provides 20 volt AC on line 13 and also DC to master oscillator 14. This oscillator feeds a fixed frequency output signal to digital divider 15 which provides different frequency outputs for different control channeis. Only one of four outputs is shown, selected and fed to NAND gate 16 for one of four channels. PSU also supplies low voltage AC to waveform shaper 17 which outputs a 50 Hz square wave operating between logic levels zero and one. Phase switch 18 allows either logic zero or logic one to be switched
onto positive half cycles of the waveform on line 13. Monostable 19, with time constant and pulse width variable at 20 , outputs also to NAND gate 16.

At the receiver, a detector 21 is tuned to the frequency of the selected channel of divider 15 and so provides an output to solid state switch 22 whenever it detects its preset frequency, i.e. whenever a signal is routed onto line 13 through gate 16. Switch 22 then feeds power to motor M, which is driven by a positive or negative half cycle of the waveform supplied along line 13 from the PSU.

Monostable 20 has a maximum pulse width of one half cycle of the 50 Hz waveform on line 13 and is variable within this limit by control 20. Because the selected frequency is present only during the positive or negative half cycle (depending on the setting of phase switch 18) current is supplied to the motor in one sense only and the power produced depends on the duration of the selected frequency on each half cycle. Extensive details are given in the patent of a full 16 channel control system operating on this basic principle.

SHORT PROTECTION

The Rank Organisation, naming Winfried Kummel as inventor, has filed a new British patent application (2026 274) for a simple but interesting approach to the protection of amplifiers against output short circuits, for instance in their loudspeaker load. High powered amplifiers are now common, with power ratings of 500 watts and even above available. Any short circuit of the output either causes the transistors to self destruct or oscillate in the HF region and damage the loudspeaker tweeters. Protection circuitry suitable for low powered amplifiers often cannot act fast enough for such high power ratings.

The new invention is based on the wellknown facts that (a) an electromagnetic field is formed around any conductor which carries an electric current and (b) if a second conductor is laid alongside the first, a proportional current is induced in it. Rank suggest that this induction can be used to operate a safety circuit. Although the system is primarily intended to protect audio amplifiers against loudspeaker short circuits, the theory is clearly applicable in a wide range of generator-load situations. But whether the idea will be adjudged new
and patentable by the British Patent Office is an open question.

In its simplest form the protection circuit (Fig. 1) relies on a passive conductor 13 closely parallel to a conductor 11 which carries power from amplifier 10 to loudspeaker load 12. When sensor 14 detects current above a threshoid value in the line 13, a risk situation is signalled. The conductors 11 and 13 can be either conventional flex or the conductor and braiding of a screened cable.

Figure 2 shows a simple device 18 for setting the threshold and an op amp 20 for operating relay 21 when the current in line

13 passes the pre-selected value. As relay 21 changes state its contacts 15 disconnect, and so protect amplifier 16. Alternatively (Figure 3) the op amp can control Schmitt trigger 22 which cuts off the mains supply to the amplifier 16.

An extension of the idea (Flgure 4) feeds the op amp signal to a comparator 23 which also receives a part of the input signal being fed to amplifier 16 . The comparator produces a correction signal on line 24 which varies the output of the amplifier 16 either to protect the loudspeaker 17 or, in feedback fashion, to minimise distortion.

Simply ahead...

POWER AMPLIFIERS

ILP Power Amplifiers are encapsulated within heatsinks designed to meet total heat dissipation needs. They are rugged and made to last a lifetime. Advanced circuitry ensures their suitability for use with the finest loudspeakers, pickups, funers, etc. using digital or analogue sound
 sources.

Model	Output Power R.M.S.	Dis. tortion Typical et 1 KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	$\begin{aligned} & 15 \mathrm{~W} \\ & \text { inso } 8 \Omega \end{aligned}$	0.02\%	100 dB	$-20 \cdot 0 \cdot+20$	$105 \times 50 \times 25$	155	$\begin{array}{r} \mathbf{£} 6.34 \\ +95 p \end{array}$
HY50	$\begin{aligned} & 30 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	100 dB	$.25 \cdot 0 \cdot+25$	$105 \times 50 \times 25$	155	$\begin{aligned} & £ 7.24 \\ & +£ 109 \end{aligned}$
HY 120	$\begin{aligned} & 60 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	$\cdot 35 \cdot 0 \cdot+35$	$114 \times 50 \times 85$	575	$\begin{array}{\|c\|} \hline \\ +\quad £ 2.28 \\ \hline \end{array}$
HY200	$\begin{aligned} & 120 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	$-45 \cdot 0 \cdot+45$	$114 \times 50 \times 85$	575	$\begin{aligned} & \mathrm{E} 18.44 \\ & +62.77 \end{aligned}$
HY400	$\begin{aligned} & 240 \mathrm{~W} \\ & \text { into } 4 \Omega \end{aligned}$	0.01\%	100 dB	$-45-0 \cdot+45$	$114 \times 100 \times 85$	1.15 Kg	$\begin{array}{r} 627.68 \\ +\quad £ 415 \end{array}$

ILP PRE-AMPS ARE COMPATIBLE WITH ALL ILP POWER AMPS AND PSUS

Load impedance - all models $4 \Omega-\infty$ Input sensitivity - all models 500 mV Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

ILP Power Supply Units with transformers made in our own factory are designed specifically for use with ILP power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled laminated transformer, for smaller PSU's = in the other, for larger PSU's, ILP toroidal transformers are used which are half the size and weight of laminated equivalents, are more efficient and have greatly reduced radiation.
PSU $30 \pm 15 \mathrm{~V}$ at 100 mA to drive up to $12 \times$ HY 6 or 6 \times HY6. 6
$\mathbf{£ 4 . 5 0 + £ 0 . 6 8 V A T}$
THE FOLLOWING WILL ALSO DRIVE ILP PRE - AMPS
PSU 36 for 1 or 2 HY 30 's $£ 8.10+£ 1.22$ VAT PSU 50 for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT PSU60 with toroidal transformer for
$\mathbf{1 H Y} 120 \quad £ 9.75+£ 1.46$ VAT
PSU 70 with toroidal transformer for 1 or $\mathbf{2 H Y 1 2 0 ' s} \quad \mathrm{E} 13.61+\mathbf{~} 2.04$ VAT
PSU 90 with toroidal transformer for
1 HY200 £13.61+£2.04 VAT
PSU 180 with toroidal transformer for
1 HY 400 or $2 \times$ HY $200 £ 23.02+£ 3.45$ VAT

AVAILABLE ALSO FROM WATFORD ELECTRONICS, MARSHALLS AND CERTAIN OTHER SELECTED STOCKISTS.

When ILP add a new design to their audio-module range, there have to be very specialreasons for doing so. Youexpect even betterresults. We have achieved this with two new pre-amplifiers - HY 6 for mono operation, HY6-6 for stereo. We have simplified connections, and improved performance figures all round. Our new pre-amps are short-circuit and polarity protected; mounting boards are available to simplify construction.
Sizes - HY6-45 $\times 20 \times 40 \mathrm{~mm}$ HY6.690 $20 \times 40 \mathrm{~mm}$. Active Tone Control circuits provide $\pm 12 \mathrm{~dB}$ cut and boost. Inputs Sensitivity - Mag. PU -3 mV : Mic - selectable $1-12 \mathrm{mV}$. Allothers 100 mV : Tape O/P -100 mV Main O/P -500 mV : Frequency response-D.C. to $100 \mathrm{KHz}-3 \mathrm{~dB}$.

+ VAT 840

Connectors included
86 Mounting Board
B6-6 Mounting Board

\square
\square
\square
\squareLOW DISTORTION - Typically 0.005\% S/M RATIO- Typically 90 dB (mag. P.U.-68dB).
high overload factor - 38 dB on mag. P.u.
LATEST DESIGN HIGH QUALITY CONMECTORS. REQUIRE ONLY POTS,SWITCHES, PLUGS AND SOCKETS. COMPATIBLE WITH ALL ILP POWER AMPS AMO PSUS. MEEDS OMLY UNREGULATED POWER SUPPLY $\pm 15 \mathrm{~V}$ to $\pm 50 \mathrm{~V}$.

* ALL U.K. ORDERS DESPA TCHED POST PAID HOW TO ORDER, USING FREEPOST SYSTEM Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - wepay postage onalletters senttousbyreaders of this journal.

FREEPOST GrahamBellHouse, Roper Close.
Canterbury, Kent CT2 7EP. Canterbury, Kent CT2 7EP.
Telephone (0227) 54778 Telex 965780

Please supply
 Ienclose Cheque \square PostalOrders \square International Money Order Please debit my Access/Barclaycard AccountNo.

NAME
ADDRESS

Signature

SECURITY SENTRY

We are pleased to offer the following kits for the Security Sentry Alarm System project outlined in this issue. The kits contain every item required to assemble and install a complete alarm system as described in the article. Detailed step-by-step assembly, installation, and testing instructions are furnished with kit SCAO1.

SCAO1 Security Sentry Alarm Control Centre. Includes: Silk screened and drilled case, drilled \& tinned PCB, all PCB components, IC sockets, battery holder (less batteries), and mounting hardware.
£12.95
CPPO1 Caravan Protection Package. Includes: Siren, Seven pin socket, 20 Mirs wire, wire staples, magnet \& switch, and all necessary hardware.
$£ 14.45$
CSO2 Siren Kit. (Use with SCAO1 in domestic applications). Includes: Siren, 10 Mitrs wire, wire staples, and all necessary hardware.
$£ 8.75$
PCB-SCA01 Printed Circuit Board Only.
£1. 25

SPECIAL COMPLETE SYSTEM OFFERS

SCAO1 + CPPO1 Complete Caravan Alarm System £26.70
SCA01 + CSO2 Domestic Alarm System (requires wire \& sensors for the alarm loop)
$£ 20.90$
All prices quoted above are valid for six months. All prices include packing, postage and VAT. Terms: CWO, Access \& Barclaycard orders welcome.
We also market a comprehensive vehicle alarm system kit, write for details.

COMPU-TECH SYSTEMS
Laundry Loke Industrial Estate,
North Waisham, Norfolk

 white or colour); everything!

Yet the ZX80 really is a complete, powerful. full-facility computer, matching or surpassing other personal computers at several times the price.

The $Z \times 80$ is programmed in BASIC, and you can use it to do quite literally anything from playing chess to managing a business.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. It immediately proves what a good job you've done : connect it to your TV... link it to an appropriate power source * . . . and you're ready to go.

Your ZX80 kit contains ...

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs-all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean
- Ready-moulded case
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be SAVEd and LOADed on to a portable cassette recorder.)
- FREE course in BASIC programming and user manual.
Optional extras
- Mains adaptor of 600 mA at 9 V DC nominal unregulated (available separately-see coupon).
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra RAM chips also available -see coupon).

Use a 600 mA at 9 VDC nominal unregulated mains adaptor. Available from Sinclalr If desired (see coupon).

Fewer chips, compact design, volume production more power per pound!

The $\mathbf{Z X 8 0}$ owes its remarkable low price to its remarkable design: the whole system is packed on to fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the $\mathbf{Z} \times 80$'s 1 K byte RAM is roughly equivalent to 4 K bytes in a conventional computer - typically storing 100 lines of BASIC. (Key words occupy only a single byte.)

The display shows 32 chatacters by 24 lines. And Benchmark tests show that the ZX80 is faster than all other personal computers.

No other personal computer offers this unique combination of high capability and low price.

(now available!

See the advertisements in Personal Computer World (June) and Electronics Today international (July)

New dedicated software-developed independently of Science of Cambridge reflects the enormous interest in the ZX80. More software available soon - from leading consultancies and software houses

The Sinclair teach-yourself BASIC manual.

If the specifications of the Sinclair ZX80 mean little to you-don't worry. They're all explained in the specially-written 128 -page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming - from first principles to complex programs. (Available separately - purchase price refunded if you buy a $\mathrm{ZX80}$ later.) A hardware manual is also included with every kit.

The Sinclair ZX80. Kit: £79.95. Assembled: £99.95. Complete!

The $\mathbf{Z X 8 0}$ kit costs a mere $£ 79.95$. Can't wait to have a $\mathrm{ZX80}$ up and running? No problem! It's also available, ready assembled, for only £99.95.

Demand for the ZX 80 is very high: use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your ZX80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your $Z \times 80$ as received within 14 days for a full refund. We want you to be satisfied beyond all doubt - and we have no doubt that you will be.

Science of Cambridge Ltd

GOOD DISCOUNTS AND FREE POSTAGE ON U.K ORDERS OVER E5.75 (inc. V.A.T.) COMPUTER-CONTROLLED SERVICE AIDS PROMPT DELIVERY 128-PAGE CATALOGUE FREE FOR THE ASKING
ELECTROVALUE LTD., (PE8), 28 St. Jude's Road, Englefield Green, Egham, Surrey TW20 OHB. Phone: 33603 (London 87) STD 0784. Telex 264475.
NORTHERN BRANCH (Personal Shoppers Only): 680 Bumage Lane, Burnage, Manchester M19 1NA. Phone (061) 4324945.

CONGRESS AMPLIFIER

We supply all the designer approved parts for this exceptional kit, including high quality printed circuit boards and transformer.
Complete kit, excluding metalwork with 20% discount on parts.
$£ 73.74$
All parts to assemble pre-amp i.e. R's, C's, PCB's, semicons, controls etc, but excluding transformer with 10% discount on parts.
$£ 41.79$
All parts to build main amp board
£20.48
Mains transformer
£12.82
Smoothing caps \& clips $£ 8.86$
Front Panel
£3.20
Chassis (unpainted, pre-punched) $\quad £ 13.40$
Front panel and chassis not subject to reduction but if ordered together with complete kit available at special price of $£ 11.50$ This offer also applies to previous purchasers of complete kits.

MAIL ORDER ONLY.

Prices include VAT and p\&p
Please send A5 S.A.E. for full price details.
Terms: Cash with order. Cheques etc. should be made payable to:

CONGRESS ELECTRONICS

PROJECT

Allow 14-21 days after sending order for delivery. Send order to:

WICCA SYSTEMS LTD, 24 HILLCREST PARADE, COULSDON, SURREY. Tel. 09-668 5256

NEW $\star \star$ Star Buys $\star \star$ FROM CASIO

We predict that this stylish watch will be a best seller!

Hours, minutes, seconds, am/pm, day and date. Automatic four year calendar. 1/100 second chronograph to 12 hours, measuring nex, lap and first and second place times. Backlight. 2 year lithium battery. Water resistant, resin case with stainless steel trim. Mineral glass. A rugged. light weight watch and chronogr aph for the sporisman.

Something to sing about with twelve programmed melodies!

CASIO
ML-90

MELODY
MAKER

RRP $£ \mathbf{2 1 . 9 5}$

ONLY
$£ 19.95$

Clock, hourly chimes, calendar to 1999. Aiarm 1:- 7 different melodies changing daily, a fixed meiody or buzzer. Alarm 2:- a fixed melody or buzzer. Date memory 1:- "Happy Birthday". Date memory 2:- "Wedding March" or "Drinking Song". On December $24 / 25$ plays "Jingle Beils". Calculator with 11 -note keyboard, full access memory, square roots, $\%, 7 / 32 \times 2 \dagger \times 4 f$ inches. Waliet. I year batteries.

CASIO

110QS-37B
As F-300 above but with chrome plated case and stainless steel bracelet.

RRP£19.95
only £17.95
$11105-34 B$ similar to above but without stopwatch function. $£ 14.95$
F-8C Resin cased version. $£ 8.95$
NEW SEIKOS
SOLAR Alarm Chrono DER 028

Provisional specification "Silver Wave" 100 m water resistant. O.K. for swimming, skiing etc Comprehensive display. programmable weekly alarm. interval countdown alarm. hourly chimes. $1 / 100 \mathrm{sec}$ stopwatch. 10 year rechargeable battery

ONLY

£69.95

DFT-038 "Silver Wave" alarm chrono $£ 49.95$
OTHER NEW SEIKOS - SAE for details.
OVER 35 watches to ChOOSE FROM!

ILLUSTRATED CATALOGUE

Casio and Seiko products. Send 25p to: TEMPUS (Information and Service Centre), 19.21 Fitzroy Street. Cambridge CB1 IEH. (Refundable on purchase)

Casio's guarantee is only valid if goods are purchased from an authorised dealer, who WON'T advertise lower prices than ours. Nevertheless we promise to BEAT (sensible) lower prices IF the advertisers have stocks.

Send for our FREE LEAFLET

 "'The whole truth about digital watches."
OUR BEST SELLING CALCULATOR

FX-8100

1 year batteries Hours. minutes. seconds. am/pm, day. Calendar preprogrammed to year 1999 24-hour alarm. Alarm uimer. interval umer, or $1 / 100$ second 2nd place. Fractions. \%, cube revts 5 . Frects parentheses. hyperbolics, standard deviations, co-ordinates. conversions.
X to Y . X to M .
t×2fxst" (RRP 427.95)
ONLY £24.95

HUNDREDS SOLD!

OTHER CALCULATORS

LC-781 58.95. MC-34 \&11.99. HR-10 E29.95, Whih elock etc. CQ-82 £13.95. PW-81 £14.95. AQ-1500 £14.95. AQ-2200 £19.95. MQ-12 £19.95. ML-71 £22.95. ML-81 £22.95. ML-82 £19.95.

SCIENTIFICS, wlth elock. FX-7100 $\mathbf{2 2 4 . 9 3}$. Others. FX-81 $£ 12.95$. FX- 100 £ 15.99. FX- 330 £ 15.95 . FX- 510 £ 19.95 . FX- $3200 £ 21.93$ FX-501P £54.95. FX. 502P \&74.95. FA-1 £19.95. FREE Master

RETURN OF POST SERVICE

Postal and telephone orders received before 4.00 p.m. will normally be despatched the same day by FIRST CLASS POST
Send your order by FREEPOST (2nd class post - no stamp requred). Please phone urgent orders or use first class mail.

You asked for a metal version of the best selling C-80. Here it is!

CASIO
C-801

Watch
Calculator
Stopwatch
Dual time

RRP $£ 39.95$

ONLY
£34.95

Finger touch keyboard. Hours, minutes, seconds, am/pm, and day. Day, date, month, calendar pre-programmed to 2001. Professional 24 hour stopwatch measuring net. lap and first and second place times to $1 / 100$ second. Dual time (24 hour). 8 digit calculator. Backlight. Water resistant chrome plated case. with stainless steel bracele1.
C-80 black resin cased version $\mathbf{£ 2 4 . 9 5}$.

EXECUTIVE ALARM

 CHRONOGRAPHSFull month calendar, tone control, hourly chimes.

79CS-51B
Stainless steel
(£44.95) £39.95

Hours. minutes, seconds, am/pm and date. Calendar display. Day, date, month and year. Monthly calendar from the year 1901 to 2099. $1 / 10 \mathrm{sec}$. stopwatch to 12 hrs . Nef. lap. Ist \& 2nd. 24 hour alarm with 10 step tone control. Hourly chimes, backligh, lithium battery. 8.6 mm thick. Mineral glass, water resistant.

81QS-35B ALARM CHRONOGRAPH
Now available from stock again.

Stainless steel. mineral glass Water resistant. 5 YEAR BATTERY, Hours. minutes. seconds, day: and day, date. month and year. 12 or 24 hour display. 24 hour alarm. hourly himes. Stopwatch from 1/100 econd to 7 hours: net, lap and Ist and 2nd place times.
(£34.95) $£ 29.95$
81QS-35B

Now available gold
plated
81QGS-35B £34.95
Many other CASIO watches available from stock. Ladies models from £12.95.

PRICE includes VAT, P\&P. Send your Company Order, Cheque or P.O. or phone your ACCESS or B'CARD number to:

CT 4000 CLOCK/APPLIANCE TIMER KIT PO

The CT4000 has been designed to preser the state fon or offi) of four
outputs ar four times per day for up to 7 days in advance, enabling the unit to control tape recorders, appliances, central heating, lights. otc. The times are set on a $0.1^{\prime \prime}$ high red LED display by means of a keyboard and the output stites are displayed on four LEDs. Each outpur can swith (MK2). The kit includes a PCB digit LED dispiay, transformer, plus all other components and a screnn printed and driled box which can also accommodate up to 4 E25.25

D.V.M. THERMOMETER KIT

Based on the ICL7106. This kit
contains a PCB contains a PCB, resistors, and $0.5^{\prime \prime}$ liquid crystal display. Components are also included to enable the basic DVM kit to be mometer using a single diode as the sensor. Re-
quires a 3 mA 9 V supply (PP3 battery).
£ 20.75

MINI KITS

These Kits form usefui subsystems which may be incorporated into larger designs or used alone.
Kits include PCB. short instructions and all com-
MK1 TEMPERATURE CONTROLLER/
Uses THERMOSTAT
Uses LM3911 IC to sense temperature $180^{\circ} \mathrm{C}$ maxt. and triac to
500 W E3.20
MK2 SOLID STATE RELAY
Ideal for switching motors, lights, heaters ete from logic. Opto-isolated with zero voltage from logic. Supploisolated with zero voltage MK3 BAR/DOT DISPIAY
MK3 8AR/DOT DISPLAY
Displays an analogue voltage on a linear 10 element L.ED display as a bar or single dot. Ideal stacked to obtain 20 to 100 element displays.
Requires $5-20 \mathrm{~V}$ supply.
$\mathbf{£ 4 . 7 5}$ MK4 PR 5 -20V supply.

TOUCH CONTROL LIGHTING KITS These KITS replace light switches and control up to 300 Watts of lighting. No rewiring, fit plaster depth boxes, insulated touchplates. Easy to follow instructions. TD300K TOUCHDIMMER. Single toucholate with alternate action. Brief touch switches lamp on and off, longer touch dims or brightens lamps. Neon lamp helps find the switch in the dark $£ 1.50$
TDE/K Extension kit for TO300K for 2 -way TDE/K Extension kit for TD300K for 2 -way
Switching, etc.
TSD 300 K TOUCHSWITCH Single touchplate small knob controls brightness TSA3OOK TIME DELAY TOUCHSWITCH. $\begin{array}{ll}\text { Turns off after preset delay }\left\{2 \text { secs. to } 3 \frac{1}{2}\right. & \text { mins. }) \\ \text { LD } 300 \mathrm{~K} \text {. Conventional light dimmer } & \mathbf{C 2} .90\end{array}$

INTEGRATEO CIRCUITS

He 745 Timer 741 Op. Amp. AY-5-1224 Clock
 AY-5-1230/2 Clock/Timer

AY-3-1270 Thermometer
ICL.7106 DVM (LCD drive)
LM377 Dual 2W Amp
LM3795 Dual 6W Amp.
LM380 2W Audio Amp.
LM382 Dusillow noise Preamp
LM386 250 mW W low voltage Amp.
LM 1830 Fluid Level Detector
LM2907 f-v Converter (8 pin)
LM2917 f-y Converter (14 pin)
LM3909 LED Flasher/Oscllator
LM3911 Thermometer
MM74C9114 digit display controller MM74C9157 segment-BCD converter
MM74C9264 digit counter with 7 seg S5668 Touchdimmer
S9263 Touchswitch 16 -wa
T8A800 5W Audio Amp.
TBA810AS 7W Audio Amp.
TDA1024 Zero Voltage Switch
TDA2020 20 W Audio Amp.
ZN1034E Timer
All iCs supplied with data sheets.
Data Sheets only. $5 p$ each device $21 p$
$19 p$

82.60 | £2.60 | s |
| :--- | :--- |
| $\mathbf{f 4 . 5 0}$ | |

DO MAGAZINE REMOTE CONTROL PROJECTS MAKE YOU SEE INFRARED?

How many times have you considered building a remote control project but were put off by the dozens of ICs. special coils, lenses and other hard to get components, not to mention the need for a well equlpped lab. to set the unit up. T. K. ELECTRONICS have changed all that. Three ICs can buill a sophisticated system that requires only a capacitor and resistor to set the clock frequency (which can
drift by, up to 20% without affecting performance). Control radios, hi-fi lincluding bass, treble and volume), lighting. toys. garage doors, etc. Still not convinced? then look at the prices!
 ML928 $\begin{array}{lll}\text { O } & \text { outputs) } & \text {-channel Receiver (4 latched binary ourputs) } \\ \mathbf{~} 1.20 \\ \mathbf{~} 1.20\end{array}$ Dara sheets (per device)
These ICs can also be used with ultrasonic and rado links, depending on range, cost and speed of

If you do not require a sophisticated multi-channel remote control, we have developed a simple
single-channel ON/OFF infra red transmitter and receiver. The transmirter unit comes complete with a hand held box and requires a PP3 (9V) battery. The receiver includes a triac capable of switching up to 500 W at 240 V a.c. and comprises a preamplifier, bistable latch and a mains power supply. making the unit completely self-contained. The small size of the receiver enables the unh to "built into" all kinds of equipment from lamps to tape recorders. The minimum range is 20 feer.
suitable box for the receiver is avaliable if required.
only $£ 12.00$

[- triacs			SPECIAL OFFERS Orders must be recaived by 30.7.80.	
	tic Cass			
		1650	(10x 8 -pin sockets	${ }_{c}^{6} 1.05$
		1900	(10x16-pin sockets	c1.40
		${ }^{80}{ }^{80}$	(1)	40,
ALL COMPONENTS ARE BRAND NEW AND TO SPECIFICATION ADD VAT AT CUFRENT RATE TO ABOVE PRICES PLUS 40p PR P			10.741	c1. ${ }^{\text {c1. }}$
			${ }^{25 \times 0.2}{ }^{\text {ORP12 }}$	(1.50
			mall order-ciulers welcome by appoin	

Superboard $2 £ 159.95+15 \%$ VAT post free.
Colourboard 2 This is the new colour version Colourboard 2 (This is the new colour version
of Superboard) $£ 205+15 \%$ VAT. of Superboard) £205 + 15% VAT.
if Special offer:- If bought with super- of the reduced prices shown first. Also sold
separately at the bracketed prices. Add Z 15% vat. Modulator and power supply $\%$ SINCLAIR PRODUCTS
PFM200 £51.95, case £2.07, adaptor〔4.20, connector kit €13.95. Microvision T £89, malns adpator £6.88. PDM35 £34.23,
adaptor $£ 4.20$, case $£ 2.07$. DM 350 £76.70, adapror £4.20, case £2.01. DM350 £76.70 Accessories for all 3 models:- rechargeable batespries $£ 8$, adaptor/charger $£ 4.20$, case
£8.90. Enterprise prog calculator f 19.95 . New SC110 10 MHz oscilloscope $£ 144.95$. COMPUTER GAMES
New sensory chess challenger 8 £ 109. Chess Chalienger 7 £75. Ster chess $£ 62$. Atar TV GAMES
TV GAMES AY-3-8500 chip $£ 5.95$, kit $£ 4.26$. Stunt cy-
cle AY-3-8760 chip $£ 13.71$, kif $\mathbb{C 4} 95$. 10 cle AY-3-8760 chip
game paddle 2 AY-3-8600 chip £ 10.25 , kit
7 7.03. Aacing car chio AY-3-8603 £13.63. g7.O3. Racing car chip AY-3-8603 f13.63
Modified shoot kir $£ 4.28$. Colour generato Modified
MAINS TRANSFORMERS
$6-0.6 \mathrm{~V}$ 100ma 80 p , $1 \frac{1}{2} \mathrm{al}$ £2.60.9-0.9V 75 ma 80 p , 1 a f 2.40 . 2 a f 3.94 . $12-\mathrm{U}-12 \mathrm{~V}$ JOM A $99 \mathrm{p}, 1 \mathrm{E} 2.90$ 15-0-15V
JC12 AND JC20 AMPLIFIERS
Integrated clrcult audio amplifier chips with data and printed circuits. JC
$£ 2.08$. JC 2010 W atts $£ 3.54$.
CONTINENTAL SPEC.PRODUCTS EXP300 £6.61, EXP350 £3.62, EXP325
£1.84, EXP650 £4.14, EXP4B 2.64 PAINTED CIRCUIT MATERIAIS

PC atching kits:- economy $£ 2.42$, standard

SWANLEY ELECTRONICS DEPT PE, 32 Goldsel Rd. Swanley, Kent BR8 $8 E Z$.

 Mail order only. Please add $35 p$ postago.Prices include VAT unless stated. Lists 270 posi free. Overseas customers deduct 13%. OHicial credth orders welcome.

PROGRESSIVE RADIO

SCP 4SONOUCTORS. fexas 1038 T03 power trans 50p TBABOO 50 p .7418 pin 22p. NE 555 24p. TAG4443 SCR 45p. 72314 PIN REGS. 35p. AD $161 / 2$ MATCHED PARS 70p. 2N5062 SCR 18p. 1 N4005 10 for 35p. 60238 28p. BD438 28 p. MPUI3I P.U.T's $40 \mathrm{~V}, 200 \mathrm{~mA}, 375 \mathrm{M} / \mathrm{N}$ 15p esch. 2 N 3773 £1.75. Intra Red 0.2° LEDs 30 p . all 75 p each. 12 V 200 mA 75 p . 6 V 500 mA Et. 10 p. $0-6 \mathrm{~V}-0-6 \mathrm{~V} 280 \mathrm{~mA}$ \&1. 30 p
PULEE TMANBFORMERS. $1: 1$ (GPO TyPe) 30 p . $1: 1$ plus 1 min . P. C. mounting 600
MINIATURE SOLID STATE BUZZER. $33 \times 17 \times 15 \mathrm{~mm}$, output at 3 feet 70 db, only 15 mA drain. operating range 4-15VDC75peach.
FOCKET MULTMMETER. MODEL MMEs 2000 .
rasistance ranges to 1 meg. $\mathbf{E 5} .50 \mathrm{p}$.
OLDER SUCKER. High suctiontaflon nozzle, E4.65p
MOTORA TRANSDUCERS. 40 KHz ., REC/SENDEA 23.60 pair.
cassette mot 3 V modet type 22p. 12 V model 5 Dole 35 .p. Replacement 12 VOC 8 frack motors 55 p . Ex. equip. $\mathrm{B}-7$ voli AMPNENDL CONX CONNECTORS. Flugs 47p, Sockets $42 p$, E.bows $90 p$, Aeducers 13p, 8 NC plugs, crimp $38 p$. рінсе E2.75.
SPECIAL OFFER STEREO MEAOPHONES. 8 ohms. ad,
INTERCOM UNITS (CDO be used as baby alarm) supplied with appron. 60 cable, call button, 2 way $E 5.25$ pair, 3 $180 \mathrm{KHz}, 129.950$
MINIATURE TIE PIN MICROPHOME. Ómni, IK imp.. usas doof aid battery (suppliod) 24.96 p . LOW COST
 switch only ET.9sp DYNAMIC ETICK MIRE. CARDIOD, dual in melal case only 27.78 p .
Puelic ADDFE 88 HO
C4.95p, $6^{\circ} 15$ watts 8 ohms adfutzable bracket EB. 280
CRIMPING TOOL, for standard terminals also 6 gauge stripper and
wire cutier, msulated hendies only $\mathbf{E z} 30$

STORAGE CABINETS

Metal Cabinets $12^{\prime \prime}$ wide $\times 5 \frac{3^{\prime \prime}}{}$ deep, finished blue with transparent plastic drawers.

Type H No. of Drawers Price (ins) Sm MedLge

1118	11	15	2	$\mathbf{1}$	$\mathbf{£ 1 0 . 7 5}$
1633	16	30	2	1	$\mathbf{£ 1 3 . 7 5}$
1838	18	35	2	1	$\mathbf{£ 1 5 . 7 5}$
2236	22	30	4	2	$\mathbf{£ 1 7 . 8 5}$
2260	22	60	-	-	$£ 17.95$

Prices include VAT and Post. Cheque/P.O. to: Millhill Supplies (Tools).
35 Preston Crowmarsh, Benson, Oxon OX9 6SL.

EHBOMASOMTE electronics
 56 FORTIS GREEN ROAD MUSWELL HILL LONDON N10 3HN TELEPHONE 01-883 3705 01-883 2289

your soundest connection in the world of components

Demonstration At Our Shop (enter through stationers)

NOW AVAILABLE
Low cost computer in kit form

UK101

NO EXTRAS NEEDED SIMPLY HIT 'RETURN' AND GO

As seen in
P.E.

August to November '79

Kit price
only $£ 199+$ VAT

EXTRA 4K MEMORY $8+2114$ ONLY

NCLUDED FREE

Sample tape with extended machine code moditor and disassembler

Price includes RF modulator and power supply
ABSOLUTELY NO EXTRAS NEEDED

Also availabel ready assembled, tested and ready to go
only $£ 249$ + VAT

Build, understand, and program your own computer for
only a small outlay

$$
\text { AVASLABLESOON }
$$

COLOURADD-ONCARD

STOP PRESS

The latest edition of our 'STOP PRESS' is now available, and contains an up-to-date price list showing all the iterns that we stock. Just send an S.A.E. or phone for your FREE copy

[^1]TRADE and EXPORT inquiries welcome. Phone your oiders through our ORDER-RING line quoting your Access or Barclaycard number (Min. tel order E5).

Toroidal Transformers

Yet another new development from I.L.P

Toroidal transformers have only half the weight and height of their laminated equivalents and are appreciably more efficient. Fields of radiation are far more restricted. Having our own manufacturing division, we are able to offer 25 types in a useful range of outputs at competitive
prices. A strong mounting kit is supplied with each transformer.

TYPE	VA	SECONDARY RMS VOLTS	SECDNDARY RMS CURRENT	DIMENSIONS OIA-HT	WEIGHT KG	PaIce	
2×010	50	$6+6$	4.16	$70 \times 40 \mathrm{~mm}$	0.9	EACH $£ 5.40$ +1.10 P8 P +98p VAT	
2×011		$9+9$	277				
2×012		$12+12$	208				
2×013		$15+15$	1.66				
2×014		$18+18$	1.38				
2×015		$22+22$	1.13				
2×016		$25+25$	1.00				
3×010	80	$6+6$	6.64	$90 \times 30 \mathrm{~mm}$	1.0	$\begin{aligned} & \text { EACM } \\ & \mathrm{f} 5.76 \\ & +\Gamma 1.20 \text { P } 8 \mathrm{P} \\ & +£ 1.04 \text { YAT } \end{aligned}$	
3×011		$9+9$	4.44				
3×012		$12+12$	133				
3×013		$15+15$	266				
3×014		$18+18$	222				
3×015		$22+22$	1.81				
3×016		$25+25$	1.60				
4×010	120	$6+6$	10.00	$90 \times 40 \mathrm{~mm}$	1.2	еасн £6.72 + 11.30 P8P + 11.20 VAT	
4×011		$9+9$	6.66				
4×012		$12+12$	5.00				
4×013		$15+15$	4.00				
4×014		$18+18$	133				
4×015		$22+22$	272				
4×016		$25+25$	240				
5×016	160	$25+25$	120	$110 \times 40 \mathrm{~mm}$	1.8	EACH	+1A0 P8
5×017		$30+30$	256			f8.88	+ $¢ 1.54$ VAT
6×016	300	$25+25$	8.00	$110 \times 50 \mathrm{~mm}$	26		+ [2.50 Pg P
6×017		$30+30$	5.00			112.27	+ 1207 Vat

$\begin{array}{ll}\text { Notes: } & \text { For } 110 \mathrm{~V} \text { Primary please insert } 0 \text { in place of } X \text { in type number } \\ & \text { For } 220 \mathrm{~V} \text { Primary please insen } 1 \text { in place of } X \text { in type number }\end{array}$
For 240 V Primary please insert 2 in place of X in type number
Example 120VA $240 \mathrm{~V} 15+15 \mathrm{~V}, 4 \mathrm{~A}=42013$
Types to customer specification can be supplied to order in quantity: Enquiries invited.

	ILP ELECTRONICS, ROPER CLOSE, CANTERBURY CT2 7EP
FREEPOST	
We pay posiage on	Please supply ..
enquilies and orders	
$\begin{aligned} & \text { Address your } \\ & \text { envelopes } \end{aligned}$	I enclose Cheque [Postal Orders \square International Money Order \square Access \square
FREEPOST. T2 ILP	
ELECTRONICS.	Barclaycerd Account No.
Greham Bell	
House. Roper Close. Cantarbury	Name...
CTz 7 EP. NO	
STAMP REQUIREO.	Address..

SOUTH EAST ENGLAND'S ELECTRONICS CENTRE

Interested in Electronics? Then why not pay us a visit and see our vast range of Test Equipment, Oscilloscopes, PSUs, Computer Equipment, Government Surplus, VDUs, ICs, Transistors, Relays, Motors, Bulbs, Cable Transformers, PCBs, Resistors, Amplifiers, etc., etc.
$\star \star$ THIS MONTHS SPECIALS $\star \star \star$

SUPER 77 KEY

KEYBOARD KIT

We've done it againI We've purchased a lerge quantity of CP CLARE toD quality keyboard reed switches plus full OWERTY keytop sets and thrown in a PCB to enable you to customise the keys just as You want them, just add and wire an encoder chip and you can arrange Ascin, £100.00. Supplied with layout and assembly info at only E28.99 + £1.50pp.
Miniature 5 V 3 amp PSU, compact fully requlated, + crowbar protection. $\mathbf{E 8 . 6 0}+\mathbf{P} \& \mathrm{P} 70 \mathrm{p}$ Super value PCB pack. Contents include I.C's res. caps etc., otc. Guaranteed to include TTL and CMOSI 6 Boards. Our choice. $\mathbf{£ 2 . 5 0}+$ PPP 60p
Wire wrap patch panels inc. 1018 pin and 5414 pin gold plated DIL WW sockets +64 TTL and

49 key coded QWERTY keyboard, 8 bit output delayed strobe. 5 V reil, TTL output. Ex-equip. untested. Supplled with edge conn. \& connection diagram. $£ 20.00+$ P\&'P $£ 1.60$

NE555 10 for $£ 2.40$. 74110 for $£ 1.80$. 1 N4004 18 for £1.00.0.125" RED LEDS 12 for £1.00. 2N3055H (RCA) 4 for £2.25. 1S44/1N414850 for £1.00. Stock list 50p. Where P\&P not shown please add 40p per order.
Prices include VAT.
\star ELECTRONIC EQUIPMENT ANO COMPONENTS PURCHASED FOR CASH \star OPEN 9.30 TO 5.30 MONDAY TO SATURDAY
\star RETAIL ANO TRADE

* NO PARKING RESTRICTIONS
- ACCESS \& BARCLAYCARD

SURREY. 01-6897702

JONES ELECTRONIC SUPPLIES

588, ASHTON ROAD, OLDHAM, LANCS. OL8 3HWL.
Tel: 061-652 9879. Telex: 668250. ALL PRICES INCLUDE VAT

Shop open Mon., Thurs., Frid. 9 am- 7.30 pm . | Weds. \& Sat. 9 am- 6.00 pm |
| :--- |
| V. |

Stockists of Lektrokit Breadboard, Vero, CMOS, TLL, Resistors, Capacitors etc. Barral Kits 99p each Leech Amplifiers \& Speakers

BK1 8 Rotary switches (3 position) 8K2 $20500 \mathrm{~K} \Omega$ presets
BK3 5 push to make switches
BK4 4 to 2206 amp power transistors BK5 25 TTL devices
BK6 5 thyristers 2N5061.8 amp 400V BK7 50 assorted diodes, inc. zenners BK8 50 assorted NPN/PNP transistors

MAKE YOUR OWN KEYBOARDS

ML3 Individual keyboard switch with re-cappable top allowing lettering by individual. Only $(1-10) 30 p$ each. $(11-20) 27 p$ each. $(20-100)$ 25p each. P\& P 30 p per 10.
Ni-cad batteries to military spec., high discharge re-charge capabilities in parallel AA 1-25 p\&p 20p each C 2-90 p\&p 20p each D 3-50 p\&p 20p each NEW SHOP AT 495, OLDHAM ROAD, ROCHDALE, LANCS.

Tal: Rochdale 49757

LB ELECTRONICS
 PROCESSOR ICS (ALL FULL SPEC.)

1702A $£ 2.50,2708 £ 6.25,2716$ single rail $£ 28.50$, LM323K 5 volts 3 amps £4.50, 7805 £1, 7812 £1, 214 £4.50.
DIL SK TS LOW PROFILE: 8 way 12 p, 14 way, 15 p, 18 way 20 p, 16 way 17p, 20 way 23 p, 22 way 28 p, 28 way 45 p, 24 way 35 p, DIL 16 WAY HEADER SPECIAL OFFER ONLY 45p.
74116 SPECIAL OFFER 75p, 741254 for £1, 74198 75p, 74194 50p, 74181 80p, TIL 209 RED $10 \mathrm{p}, 2^{\prime \prime}$ RED 12 p . MM5240 character generator + data $£ 3.50$. 4 digit EX calculator display 4 for $£ 1+$ data.
P.E.T. edge connector (memory expansion) $£ 1.40$.

74LS, C.MOSS, sub miniature toggles, 74TTL, and computer equipment is stocked, i.e. V.D.U. printers etc. vast range of power supplies for callers. ALL ITEMS P/P 30p.
L.B. ELECTRONICS, 11, HERCIES ROAD, HILLINGDON,
 MIDDLESEX. UXBRIDGE 55399

OPEN: Monday, Thursday, Friday and Saturday 9.30-6.00.

The modern way of instint \ddot{y}-w \quad communicat lons. Just pling into power socket. Ready to use. Crysta clear communication On/on roonl to rooni. Range ghle on the bame mains phase indicator. Useful as inter-office intercom, between office and warehouse, in surgery and in homes. P. \& P. $£ 1.75$ F.M. 2 channel "touch" model $\mathbf{5 4 7 . 9 3}+$ VAT $£ 7.20+$ P\&P£1.85	
4-STATION INTERCOM Solve your communication problems with this 4-8tation plastle cabinets for desk or will mounting, Cali/talk/listen Surgery, Schools, Hospltals and Office Operates on one gV nectin wirss each 66 f.. battery and other accessories. Price $\mathbf{2 1 1 . 9 5}+$ VAT $£ 4.80+$ PQP $_{2} 1.75$. TELEPHONE AMPLIFIEA	
()	
Litent Itrinuisurised Treiep hone Amplifier with deleached plugg. the handeet. Mans people can histen nt a time. Increases E20.95 + VAT $£ 3.15$. P. \& P. $£ 1.15$ P.	
DOOR ENTRY SYSTEM No house/business/surgery should be without a DOOR ENTRY sYSTEM in this day and agee the modern way to answer and admit him only it sat liffed by pressing a remote control button which will open the door electronically. A boom for the invalid. the aged and busp housewife. Supplied complete d.I.y. kit with one internu! Telephone, outhide speaker pane), electric door lock release (for Yale type surface latch lock), Telephones $£ 59 \cdot 95+$ VAT $\varepsilon 9 \cdot 00+$ P. \& P. $£ 1 \cdot 95$. maclantaro VISA 10-day price refund guarantee on all thema.	
KENSINGTON HIGH STREET, LONDON W8	

THE firm for speakers!

SEND 50p FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

AUDAX AUDIOMASTER BAKER
BOWER \& WILKINS CASTLE CELESTION
CHARTWELL COLES DALESFORD
DECCA EAGLE ELAC EMI FANE
GAUSS GOODMANS IARBETH
ISOPHON I.M.F. JORDAN JORDAN
WATTS KEF LOWTHER MCKENZIE
MISSION MONITOR AUDIO MOTOROLA
PEERLESS RADFORD RAM ROGERS
RICHARD ALLAN SEAS SHACKMAN STAG
TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO (Dept. P.E.) SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Tel: 0625529599
FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS ETC.
Tel: 0625526213
(SWIFT OF WILMSLOW) FOR HI-FI \& COMPLETE SPEAKERS

Top Priority for every constructorHOME RADIO CATALOGUE

- Over 2,000 items clearly listed. - Profusely illustrated throughout. - Over 100 A-4 size pages. - Bargain list included free.

Send cheque or P.O. for E 1.30
HOME RADIO Components LTD Dept. PE, P.O. 8ox 92,215 London Road. Mitcham, Surrey. 01-6488422

PLEASE MENTION PRACTICAL ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS

high performance electronic ignition,to add power, economy, reliability, sustained smooth peak performance, instant all weather starting, to your car.
Surefire has sold in its thousands in ready made form from big name accessory firms, but it is now available in quality kit form to fit all vehicles with coil ignition up to 8 cylinders.
ES200. A high performance inductive discharge ignition incorporating a power integrated circuit (special selection): electronic variable dwell circuit (maximises spark energy at all speeds): pulse processor (overcomes contact breaker problems). Coil governor (protects coil). Long burn output. Negative earth only. Compatible with all rev. counters C300. In it's ready built form (C3000) it came top of all systems tested by an independent national authority July' 79 . A high energy capacitive discharge ignition incorporating a high output short circuit proof inverter top grade Swedish output capacitor, pulse processor circuit. transcıent overload protection. Fast rise bidirectional output ideal for tuel injection, sports carburation, orly engines. Compatible with most rev. counters. llow cost adaptors available for rare cases. Application list enclosed with each kit. Note: Vehicles with Smiths Jaeger rev. counters code RVI on dial will require adaptor type TCII.
What's in the kits. Surefire's own precision anadised aluminium extruded case. P.C. mounted security changeover switch, static timing light. Special selection Motorola semi-conductors. Capacitors. resistors etc. selected after 5 years experience. Glass fibre pcb. solder. complete down to last washer.
Fully illustrated comprehensive instructions
and full technical back up service.

Suretron Systems (UK) Ltd
Dept. PE2
Piccadilly Place, London Rd., Bath BA1 6PW. Tel: Bath (0225) 23194
Name
Address
Phone orcler with Access/Barclaycard

VAT and P \& P/nc | Quantity |
| :---: |
| required | (enclose

4 in $\times 3+$ in METER. $30 \mu \mathrm{~A}, 50 \mu \mathrm{~A}$ or 100μ A, £5.10. 50p P. \& P.

MICROPHONES FOR
TAPE RECORDERS
DM228R 200 ohm with 3.5
and 2.5 mm Jack Plugs $£ 1.70$
DM229R 50K with 3.5 and
2.5 mm Jack Plugs
£2.25
DM18D 200 ohm with 5
and 3 pin Din Plugs £1.99
Postage on above microphones
17p

CARDIOID DYNAMIC MICROPHONE

Model UD-130 Frequency response $50-15,000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50K and 600 ohms. £8.02. 50p P. \& P.

2 in x 2in meters $500 \mu A, \mathbf{£ 4 . 1 4}$ 17p P.\& P.
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $500 \mu \mathrm{~A}$ and 1 mA VU meter, £4.00. 26p P. \& P.

6 V BUZZERS. 50 mm diameter 30 mm high, 52p. 15p. P. \& P.

MULTI- METER
$7 \mathrm{~N} \quad 360 \mathrm{TR}$ 20,000 ohm/volt RESISTANCE
RANGES
$\times 1, \times 10, \times 1 K$, $\times 10 \mathrm{~K}$
£13.30
P.\&P. 75p

TRANSFORMERS Primary 240V		
6-0-6V	100 mA	80.75
$9-0-9 \mathrm{~V}$	75 mA	c0.75
12-0-12V	50 mA	£0.85
12-0-12V	100 mA	£1.05
Post on above transformers 45p		
$9.0-9 \mathrm{~V}$	1 A	¢1.80
12-0-12V	1A	E2.15
15-0-15V	1 A	£2.51
$30-0-30 \mathrm{~V}$	1A	E3. 10
6.3 V	$1 \frac{1}{8} \mathrm{~A}$	11.80
6-0-6V	$1 \frac{1}{2} A$	E2. 20
Post on above transformers 75 p		

PL258 Plug 33p; Socket 33p; PL259/SO239 Angled Connector 70p; 1 watt dummy lead 95p; 2m Rubber Neck Aerial with PL259 Plug $\mathbf{£ 3 . 3 0 .}$

POST ON ABOVE ITEMS $14 p$:
All above prices include V.A.T. Send 40p for new 1980 fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.

M. DZIUBAS
 158 Bradshawgate - Bolton - Lancs. BL2 1BA

ORION
AMPLIFIER
PE TV SOUND SEPARATOR

P.E. SMOOTH FUZZ UNIT
 (P.E. September 1979)

This is the Fuzz unit you have been waiting for I Smooth clean tone with low noise and low current drain. Uses glassfibre p.c.b. and latest FET op-amp.
COMPLETE KIT OF ALL PARTS AS SPECIFIED $\mathbf{8 . 5 0}$
POSTAGE \& PACKING 25 p per order. Orders over $£ 10.00$ post free
All devices are top grade, brand new and to full manufacturers spec.
PRICES DO NOT INCLUDE VAT. Add 15% to all prices.

MAIL ORDER ONLY
CALLERS OYAPPOINTMENT
DAVIAN ELECTRONICS
13 DEEPDALE AVENUE, ROYTON, OLDHAM OL2 6XD.

b-CLEF KITS - b

High Quality Electronic Musical Instruments under the personal supervision of Specialist Designer A. J. BOOTHMAN.

JOANNA 72888 PIANOS
Six and $7 \frac{1}{\text { Octave Electronic Pianos with }}$ unique Touch Sensitive Action as used in the
P.E. JOANNA, which electronically simulates piano key inertia - a feature not available in any other design. Build this widely aclaimed or Stage use, from our top quality Component Kits.
SIX OCTAVES - £207
71 OCTAVES - $£ 232$
P.E. STRING ENSEMBLE

The versatile String Synthesizer with a fantastic sound at an economic price. Split Keyboard facility with a range of impressive voices.

COMPONENT KIT - £169
'P.A.'s-SPEAKERS - CABINETS
Units can be supplied to add to the Piano Component kits, including Domestic or

CLEF PRODUCTS (ELECTRONICS) LIMITED
 (Dept. PE) 16, Mayfield Road, Bramhall, Cheshire SK7 1JU.
 061-4393297

MONTORS MONITORS MONITORS

Uncased from $3^{\prime \prime}$ to $12^{\prime \prime}$ Cased from 5" to 20"

Semi professional or professional available from stock.

Monitor PCB's including Transformers and Tubes also in stock.

Phone or write for details.

CROFTON ELECTRONICS

Crofton Electronics Limited 35 Grosvenor Road, Twickenham, Middx. Tel:01 8911513

LIGHTING \& AMPLIFIER MODULES FROM L \& B

RING 01-689 4138

LB31000SLC
£29.90

LB31000SL SOUND TO LIGHT. A SUPERB PERFORMING SYSTEM AT AN INCREDIBLY LOW PRICE. 3 channels. 1000 w asch. Fully fused. Very high input impedance. Operates from $\frac{1}{6}$ to 300 w sound input.
Third order fllters. Zero voltage fired.
Master/No/Base/Mid/Treble controls.
 AFULLY DIGITAL 8 CHANNEL CHASER, ALLOWING VARIATION OF CHASE SPEED AND CHASE RETURN DELAY,
1000w per channel. CMOS eircultry.
£26.50
LB81000LC
$19 \times 9.5 \times 3 \mathrm{~cm}$.
L841000LS SEQUENCER
LOGIC RANDOM SEQUENCER, WITH TWO SPEED CONTROLS OFFERING A WIDE RANGE OF EFFECTS.
4 channals, 1000 weach. CMOS circuitry Zerovoltage fired.
LB31000LD
$20 \times 7.8 \times 3.6$
NEWI LBACO1

POWER AMPS. 250, 1 50, $100 \& 25$ WRMS
UGGED TOUGH DEALIN
Full spec availabie In our catalogue.

$\mathbf{£ 3 9 . 5 0 | £ 2 6 . 5 0 | £ 1 8 . 2 0 | £ 1 1 . 2 0 |}$

 PREAMPSLBPA3. Complete stereo disco preamp system. Comprising of L\&R deck mixers mic mixer, deck and mic tone stages, mic auto fade over decks, PFL, output drivers and its own regulators. LBPA2. General purpose LBPA1 Stereo
Mi-Fi System

LBPA $3-\mathrm{M}$

 Relay delayed speaker

E31000SLC SOUND TO LIGHT/CHASER THE MOST ADVANCED SOUND TO GMT MODULE AVAILABLE, WITH UTOMATIC SWITCHING TO CHASE UPON ABSENCE OFA MUSIC INPUT.

3 Channels, 1000 w each. Fully fused Very high input impedance. Electronic filters 5 HZ to 70 KHz bandwidth. Operates from $\frac{1}{4}$ to 300 W sound input. Triac zero voltage triggering Master Vol/Bass/Mid/Treble/Chase speed controls LB31000SL
£21.40 rrigered A red. Can be colswitc cascaded to form $16,24,32$ chan etc.
 18 dB boost control, to lift Bass mid or treble bands. Available with cross-over frequencies of 200 or 300 and $2 k$ or $\mathbf{3 k H z}$ (please specify) - £17.90 LBPSU4 +15 V supply for LBACO 1 ROPELIGHTS NOW AVAILABLE metres in length Red/blue/green
vellow. R.R.P. $\mathbf{~} 45+6.75$ VAT Complete control units with
fonward/reverse and automatic options from $2 / \mathrm{sec}$ to $2 / \mathrm{min}$ POWER SUPPLIES Four types of powertul supply units for our power amps. Consisting of a varnish LBRLD 1 impregnated mains rransformer and

connecting device,	LB250PS	£24.50
placed between	LB150PS	$£ 18.00$
Amp \& Spk.	LB100PS	$£ 14.70$
$£ 5.70$	LB25PS	$\mathbf{£ 1 1 . 2 0}$

YOU REQUIRE A BOARD THAT'S MIGHTY COMPETITIVE, RELIABLE, MANUFACTURED FROM TME HIGHEST QUALITY COMPONENTS, OF HIGH PERFORMANCE, TESTED AND INSPECTED, SUPPLIED WITH CONNECTION AND CCT, DGMAND GUARANTEED. IN TWO LETTERS YOU REQUIRE L\&B.
All prices shown are inclusive of VAT (15\%)
P/packing 50p in the UK except power supplise ($£ 1.00$) Trade and Overseas inquiries welcome.
For your FREE catalogue send a $12 p$ stamp to:

45 WORTLEYROAD WEST CROYDON SURREY CROJEB

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

100. ASSORTED COMPONENTS 115 pp . 100 . assorted resistors 60 p. 100 . assorted capacitors 150 p. 50 . reed switches 200 p. 10. mains neons 50 p. 10. Micro Switches 150p. Add 25p P\&P. DURRANTS, 9 St. Mary's Street, Shrewsbury, Salop.
RESISTORS $\mathbf{3 / 4 p}$, Capacitors Ip, Computer Boards from $40 \mathrm{p}+$ Knobs, switches, chokes, etc., SAE List:- J. Graves, 17 St. Albans Road, Leicester.

TURN YOUR SURPLUS Capacitors, transistors, etc., into cash. Contact COLES-HARDING CO., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settlement.

100 DIDOES 85p. 50 Transistors 95p. 10 I.Cs 75p. All mixed. Post Paid. Lists 15p. Sole Electronics, (P.E.) 37 Stanley Street, Ormskirk, Lancs. L39 2DH.
bOURNEMOUTH/PODLE. Electronic Components for the Hobbyist, and FRIENDLY Service. Why not pay us a visit. H \& H Telectrics Lid., 353 Ashley Rd., Parkstone. 742643.
tunbhidge wells components, Ballards, 108 Camden Road, Tunbridge Wells. Phone 31803. No Lists. Enquiries S.A.E.

T \& J electronics components - Quality Components Sensible Prices. Same day Service. Send 30 p in stamps for our full lists. 98 Burrow Road, Chigwell, Essex. IG74HB.

SMALL ADS

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 8.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

FOR SALE

FOR SALE. 200 Accuron unused but faulty hand calculators. 70p each. or $£ 100$ lot. S \& M Myers Lid., 100/106 Mackenzie Road, N7. 609.0091
"OSCILLOSCOPE" - Scopex 10MHz, 2 Beam Mint. $£ 250$ new, accept around $£ 170$. Stevenage (0438) 724093.

NEW BACK ISSUES of "Practical Electronics" available 80p each Post Free. Open P.O./Cheque returned if not in stock BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorks. Tel:(0423) 55885.

MK. 14 MICROCOMPUTER with Power Unit, and owners Manual. £40. Tony Lawson 01-806 5616.
COMPUKIT SOFTWARE: Startrek, Zombie, Life, Digiclock (HMS), Anti-Aircraf, Computer Torpedo-boat ${ }^{*}$, X-wing fighter*, Hangman. All use excellent Graphic Displays. ("Fast real-time.) 5 k required. $£ 3.00$ each. K. A. Spencer, 33 Alpine Gardens, Bath, BAI 5PD.
PRACTICAL ELECTRONICS 1964 to 1975 inclusive in binders. Offers to Box No. 83.
FOR SALE. Acorn 650z scarcely used. Power Supply not home made. £60.00. 021-353 7726.
MAGS PE from 69-75, WW 69-74, PW 70-75, EE 71-77, introduction to microcomputers Volume 2, Volume 3. Offers. Tel: Esher 63930 (Evenings).
SOPHISTICATED CUSTOM PA $\mathbf{8 8 5 0}$, PE Stereo Recorder $\mathbf{2 6 0}$, Stereo Cartridge $£ 25$. Work required. Tel. 01-540 0852.
SCOPEX 4DI0A Dual Channel scope, $10 \mathrm{MV} / \mathrm{CM}$ sensitivi'ty, Z MOD, manual, mint condition 1165 . MK14, extra R.A.M. RAM. 1/0, keyboard, large display with $1 / 0$ port monitor, documentation 265. Pip Wilson. 01-735 5221 Days, 01-690 1602 Evenings.

EDUCATIONAL

CITY GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio. TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. W272 Intertext House, London SW8 4UJ Tel. $01-6229911$ (all hours) State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-buld radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. W 272 Intertext House, London SW8 4UJ
Tel. 01 -622991। (all hours)
State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and ciagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS

Dept. W272 Intertext House, London SW8 4UJ
Tel. 01-622991i (all hours)
State if under 18

TELEVISION \& VIDEO SYSTEMS SERVICING

18 MONTHS full-time Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
- mONO \& COLOUR TELEVISION
- CLOSED CIRCUIT TELEVISION
- VIDEO CASSETTE RECORDING
- DIGITALTECHNIQUES TELETEXT
- computer \& MICROPROCESSORS
Shortened courses for applicanta with suitable electronics background.

Next session starts September 15 th.
(Also available $2 \frac{1}{2}$ year course in Marine Electronics \& Radar for employment as ships Radio Officer.)
Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept. PEA7, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721.

SITUATIONS VACANT

London Borough of

 NewhamEAST HAM COLLEGE OF TECHNOLOGY High St. South, London E6 4ER.

Principal: K. R. BISHOP, B.Sc (Econ.) FRSA DEPARTMENT OF ELECTRICAL \& ELECTRONIC ENGINEERING

TECHNICIAN GRADE $\mathbf{T} 2$ required to be respon-

 sible for both the Elementary and Advanced Electronic laboratories. Relevant theoretical and practical experience in electronics essential.Ability to service Test Gear an advantage.

$$
\text { Salary: } £ 4,380-£ 4,620 \text { p.a. inclusive. }
$$

Application forms may be obtained by writing to the College Administrative Officer enclosing an addressed envelope. Completed forms should be returned within 14 days of the appearance of this advertisement.

Between them; the BBCs four Radio networks provide excellent entertainment across a broad spectrum of tastes, but have you ever wondered what goes on behind the scenes, when a programme is broadcast? If you have, and you can demonstratea practical interest in high quality sound
reproduction - say taping your own music, hi-fi, perhaps running a disco - we'd like to hear from you. We are looking for young men and women to join us in Broadcasting House. You could be in our Control Room where all the Radio networks are routed or you could be acting as an operator for a D.J. in a studio.

You'll need to be aged 18-24, with a good general standard of education, quick to learn, and adaptable.

We'll give you 3 months initial training at our residential centre at Wood Norton, Evesham - after that on the job training is a continuous process for the next three years or so. Your work will be varied, being responsible for programme continuity, covering technical quality, balance and volume control, routing, and switching programmes.
Starting salary is $£ 4080$ per annum (currently under review) increasing with experience. We'll also pay you substantial allowances for the shift work involved.
So if your present job doesn't have the future you want, or you are leaving school this year, write to Bob Neal, Engineering Recruitment, Broadcasting House, London WIA 1AA.

The flying brain. We need your brain to keep it flying.

No wonder we see ourtechnician apprentices as the elite of the engineering trades.

When theswing-wing,multi-role Tornado comes into service, it'll be qualified apprentices who'll be vital to the whole life support system that will work on the ground to keep it flying.

And the Tornado doesn't have that 'flying brain' nickname for nothing.

Some of the mostadvancedtechnology in the world has gone into its design.

The complexity of its propulsion and air-frame systems reflects the changing face of aircraft engineering. Its advanced avionics opens up new skills in electronics.

There's even a diagnostic computer on the flightline to help the technical team keep the Tornado at peak

And if you take up an RAF Apprenticeship now, you could be a key man in that technical team soon after you qualify.

To apply for an RAF Apprenticeship you need to be $16-18 \frac{1}{2}$ (or, exceptionally, up to 21.)

You can apply if you're expecting to get at least 4 GCE '0'level sat Grade Corover,including Maths and a specified science or technical subject. Or if you already have these ' O ' levels, or acceptable equivalent qualifications.

You'll get a TechnicianEducation Council award, and you'll qualify two years faster than you would in the average industrial apprenticeship.

And we'll give you management training in your third year to open up evengreater opportunities-including
the chance of a commission.
To find out more, call in at your local RAFCareersInformationOfficethe address is in the phone book. Or cut out the coupon.

In a few years time you could be the mastermind behind the flying brain.

RAF Apprentices.

To: RAF Careers PE FB1, London Road,
Stanmore, Middx. HA7 4PZ.
Please send me details
Name.
Address \qquad
\qquad

Date of Birth
Formal application must be made in the U.K.
Train for a trade. 0

UMIST

ELECTRONICS

TECHNICIAN
REF: MAU/50/FJ An electronics technician is required in the Microelectronics Applications Unit. The main duties will be assisting in the construction of electronic equipment for instructional and project development in the field of microelectronics and microprocessors, and the servicing of laboratory instruments. Adaptability and some relevant experience is necessary, and familiarity with digital circuitry would be an advantage. Candidates should preferably hold ONC. OND or equivalent qualifications, and must be at least 24 years of age.
Commencing salary appropriate to age and experience within the scale $£ 4257-£ 4974$ per annum.
Requests for application forms, quoting the above reference should be sent to the

Establishment Section.
Registrar's Department, UMIST.
PO Box 88, Manchester, M60 1QD.
As soon as possible after the appearance of this advertisement.

WHETHER sea-going or shore-based, an exciting life awaits you as a Marine Radio Officer. Full details from The Principal, Barking College of Technology, Dagenham Road, Romford, RM7 0XU. (Telephone Romford 66841).

BOOKS AND PUBLICATIONS

ANY REQUESTEO SERVICE SHEET £I + Large S.A.E. Full repair data any named TV $\mathbf{E 5 . 5 0}$ (with circuits, layouts etc. £7). SAE brings newsletter, bargain offers, etc. AUSPEL, 76 Church St, Larkhall, Lanarks ML9 IHE.

BOOKS. BOOKS, BOOKS. - Large Range of Electronics relays, LED Indicators for all Serial I/O. D/A and single notes on MK 1475 p. Rayner, 'Kismet', High Street, Colnbrook, Bucks.
INTROOUCTION TO MICROPROCESSORS And Computing (Starter book) £2.30. Send SAE for descriptive list of micro, electronic IC project books and solderless breadboard. EDUCATIONAL DATA AND TECHNICAL SERVICES, 59 Station Road, Cogenhoe, Northampton NN7 ILU.

SERVICE SHEETS

BELL'S TELEVISION SERVICES for Service Sheets on Radio, Tv, etc $\mathbf{£ 1 . 0 0}$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel: (0423) 55885.

SERVICE SHEETS from 50 p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

UK 101 SOFTWARE ON TAPE From the guy who wrote "Le Passe-Temps" (see P.E. May) GAMES PROGRAMS @ 11.50: Noughts and Crosses, Blackjack, King Albert Skilful Card (Patience), Dambusters, Codebreaker (as Mastermind). Battleships, Le Passe-Temps, Hangman, Lunar Lander, Armless Bandit. Nim, Solitaire. Life, Hexapawn, Awari, Roulette, Craps. FOR THE YOUNGSTERS: Number games, Snap etc., RockScissorsPaper etc., Word Games. (Any three for $£ 4$. Additional programs $\mathbf{1 1}$ each). 8K programs@ £2.50: Steeplechase, Stockmarket, Stud Poker. OTHER PROGRAMS UK 10151 each). Programming in basic 56. Probability theory tutor $£ 2.50$. Maths puzzles $£ 2.50$. Also available for the superboard (please state) S.A.E. for latest additions to Mr. A. Knight, 28, Simonside Walk, Ormesby, Middlesborough, Clevel and. Tel. M`Bro. 321266. (POST + VAT INCL. PRICES).

?
RYDER ORGAN SYSTEM
The W.W. classical design for fullsize keyboards, including couplers. Expanded range of units now includes chorus, vibrato, combination stop-control.
Data, p.c. boards, from:
HIYKON LTD. (P).
Woodside Croft, Ladybridge Lane, Bolton BL1 5ED.

FREE 1980 AMTRON CATALOGUE with new range of kits and equipment cabinets. Send S.A.E. AMTRON UK LTD., 7 Hughenden Road, Hastings, Sussex TN34 3TG. Tel. Hastings 436004.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4				
ENAMELLED COPPER WIRE				
SWG	11 b	$80 z$	402	$20 z$
8 to 29	2.76	1.50	0.80	0.60
30 to 34	3.20	1.80	0.90	0.70
35 to 40	3.40	2.00	1.10	0.80
41 to 43	4.75	2.60	2.00	1.42
47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 30	6.50	3.75	2.20	1.40
TINNED COPPER WIRE				
14 to 30	3.85	2.36	1.34	0.90
Prices include P\&P, VAT and wire Data. SAE for list. Dealer enquiries welcome. Reg office 22 Coningsby Gardens.				

MK14 CORNER. Interface Board, includes fiag driven mains relays. LED Indicators for all Serial I/O, D/A and single step chips, and prototype area; also suitable for other Microcomputers; PCB and circuit $£ 3.95$. Replace calculator display with $\frac{1}{2}$ " FND 500^{\prime};; PCB, filter, instructions $£ 1.95$. Ready Built replacement Keyboard $\mathbf{\AA 1 1}$. Useful notes on MK14 75p. Rayner, 'Kismet' High Street, Colnbrook, Bucks.

UK 101 SOFTWARE. Try our original programmes (on cassette) GRAPHIC PAINT BRUSH-GRAPHIC PLOTTER etc. Working programmes that will give you ideas of your own. S.A.E. M \& B SERVICES, 182a, High Street, Margate, Kent.

> MAKE YOUR OWN PRINTED CIRCUITS
> Etch Resist Transfers - Starter pack (5 sheets Etch Resist
lines, pads, I.C. pads) $£ 1.60$. Large range of single lines, pads, I.C. pads) $\mathbf{~ 1 . 6 0 . L a r}$
sheets in stock at 34 p per sheet.
> Master Positive Transparencies from P.C. layouts Master Positive Transparencies from P.C. layouts instructions supplled. 2 sheets ($20 \times 25 \mathrm{~cm}$) negative paper and 2 sheets $\mathbf{f 1 . 8 0}$. Drafting film $(30+21 \mathrm{~cm}) 22 p$ per film E 1
sheet.
> 17p stamp for lists and information. P\&P 30p/order
> P.K.G. ELECTRONICS

> OAK LODGE, TANSLEY, DERBYSHIRE

PRINTEO CIRCUIT boards. Glass fibre tinned \& drilled to customers specifications, $£ 12 p$ per sq ins. Plus 30 p post. Art Work designs undertaken. R. D. ELECTRONICS, 12 Whiteoaks Road, Cadby, Leicester. 0553-716273.

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer - now greatly improved and very much faster. Aerosol cans with full instructions. $£ 2.25$. Developer 35p. Ferric Chloride 55 p. Clear Acetate sheet for master 14 p . Copper-clad Fibre-glass Board approx. Imm thick $£ 1.70$ sq. ft. Post/Packing 60p. White house electronics, P.O. Box 19, Castle Drive, Penzance, Cornwall.

BURGLARS

Safeguard your home, shop etc. from burglärs and vandals with the best D.I.Y. equipment available. Send S.A.E. for comprehensive price list, or 86 . for one of our fully weather-
proofed steel Bell/Boxes the professionals use. Lawrence, 61a Now Road, Chipponham, Witehire "Don't buy in Kits, buy in bits"

ULTRASONIC TRANSDUCERS. $\mathbf{£ 2 . 8 5}$ per pair +25 p \mathbf{P}. \& \mathbf{P}. Dataplus Developments, 81 Cholmeley Road, Reading, Berks.

GUITAR/PA

MUSIC AMPLIFIERS
$\begin{aligned} & \text { watt c50; } 200 \text { watt } £ 72 ; 100 \text { watt four channel sep. } \\ & \text { trabie/bass per channel £75; } 200 \text { watt } \mathbf{f 9 8} \text {; slaves } 100\end{aligned}$
$\begin{aligned} & \text { trabie/bass per channel £75; } 200 \text { watt } £ 98 \text {; slaves } 100 \\ & \text { watt } £ 34 ; 200 \text { watt } £ 50 \text {; fuzz boxes, great sound } £ 10.00 \text {; }\end{aligned}$
$\begin{aligned} & \text { watt } \mathrm{E34;} 200 \text { watt e50; tuzz boxes, great sound e10.00; } \\ & \text { bass fuzz } £ 10.90 \text {; overdriver fuzz with treble and bass }\end{aligned}$
boosters $£ 20.00$; 100 watt combo supert sound overdrive
sturdy consiruction, castors, unbeatable c9s; twin channel

> Unidyne E Wat
> Send cheque or P.O. to:
> WILLIAMSON AMPLIFICATION
> 62 Thorncliffe Avenue, Dukinfield, Cheshire.
> Tel: 061-308 2064

SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a Low $£ 1.05$. Chassis punching facultues at very competituve prices, 400 models to choose from. Suppliers only to Industry \& The Trade. BAZELL (Dept. No. 23), St. Wilfrids, Foundry Lane, Halton, Lancaster, LA 1 6LT.

ENAMELLED COPPER WIRE

SWG	1 lb	$\frac{1}{1}$ lb	$1.1 \mathbf{l b}$
$10-19$	2.95	1.70	0.85
$20-29$	3.05	1.75	0.95
$30-34$	3.45	1.90	1.00
$35-39$	3.75	2.10	1.15
$40-43$	4.95	2.75	2.15
$44-46$	5.90	3.50	2.40

FREE WIRE TABLES WITH EACH ORDER. INDUSTRIAL SUPPLIES,
102 Parrswood Road, Withington,
Manchester 20.
Prices include P \& P in UK

ELECTRONIC IGNITION. Manufacturers surpius P.C.Brds, tested $£ 2.75$ each. Phone (01) 6436111 After 6 pm.

DOLA SOFTWARE

UK 101 and ACORN programs
Subroutine library in Basic and Machine code for UK 101, Graphics and original games. Programs for Morse Code. Music and Teletype interface for Acorn.

General hardware interfacing. S.A.E. for list.
117, Blenheim Road, Deal, Kent.
UK 101 basic renumbering programme tape, listing and data for $£ 4$. Send cheque to: P. J. Barden, 517 Becontree Ave., Dagenham, Essex.

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never galns or loses self setting at switch-on, 8 digtrts show OATE, HOURS, MINUTES and SECONOS, larger digit Hours and Minutes for easy QUICK-GLANCE time, auto GMT/BST
and leap year also second-in-a-month STOP CLOCK and parallel BCD output - for your computer, alarm etc. ideal for navigation, synchronising events, astronomy etc, receives Rugby time signals, 1000 Km range, now get ABSOLUTE TME, £48.80.
60KHZ RUGBY RECEIVER, as in MSF Clock, serial data Output, built-in antenna, $\mathbf{1} 13.70$.
V.LF. EXPLORE $10-150 \mathrm{KHz}$, Receiver $£ 10.70$.
Each fun-to-build kit includes all parts, printed circuit, case, postage etc. money back assurance so SEND oH NOW.

CAMBRIDGE KITS

45 (FG) Old School Lane, Mitton, Cambridge.

SEEN MY CAT? 5000 Odds and ends. Mechanical. Elec trical. Cat free. Whiston Dept. PRE, New Mills, Stockport.

HELIPHONIC MUSIC: latest supersound electronic techniques. Technical data: $£ 1$ plus SAE $7 \times 10^{\prime \prime}$. Paralab, Downton, Wilts.

UK101. 4 Novel Games on Cassette; Blockade, escape, space war and fighter pilot. A mere $£ 6$ from David Poole, LTP, Cavendish Labs, Cambridge University, Madingley Road, Cambridge.

P.C. BOARDS
FOR INDUSTRY 'and' THE AMATEUR
- One off or production runs
- Assembly of P.C.Bs or kits
- Expert hand soldering
- Design service if required
- Artwork \& Photography
SEAHORSE ELECTRONICS LTD.
Unit 2 Picow Farm Road
Service Industry Estate, Runcorn, Cheshlre.
(09285) 75950

burglar alarm equipment. Latest Discount Catalogue out now! Phone C.W.A.S. Alarm 0274682674.

Cabinet and Flightcase Fittings

Fretcloths, Coverings. Handles, Castors etc., Jacks and Sockets, Cannons, 8 ulgins. Reverb Trays, Emilar Compression Drivers, AKG Mics, Celestion Speakers, ASS. Glassfibre Horms.
Send 30 p in stamps for illustrated catalogues to:-

ADAM HALL (P. E. SUPPLIES)
 Unit 3, Granger Road,

Iv to scope conventer. Simply plugs into TV aerial socket to convert to large screen oscilloscope. (Components cost approx £12). Circuit \& Plans £3. KERR, 27 Coles Road, Milton, Cambridge, CB4 4BL.

DIGITAL WATCH BATTERY PIEPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass, non-magnetic tweezers, watch screwdriver. case knife and screwback case opener, also one doz. assort. push pieces, full instrustions and battery identification chart We then supply replacement batteries-you fit them. Begin now. Send $\mathrm{EP9.00}$ for complete kit and get into a fast growing
business. Prompt despatch.
BOLSTERINSTRUMENTCO. (PE14)
11 Percy Avenue, Ashford, Middx. TW15 2PB.

CIEARING LABORATORY: scopes, generators, P.S.U.'s, bridges, analysers, meters, recorders, etc. 0403-76236.

ELECTRONIC COMPONENTS \& ACCESSORIES: We Offer yOu a first class service at the right price, all orders processed the same day. Send now for 1980 catalogue 30 p refundable on first order over $£ 1.00$ or return catalogue within 10 days for a full refund to: LIGHTNING ELECTRONIC COMPONENTS (PE) Freepost, Tamworth, Staffs. B77 IBR.

NEW IC ULTRASONIC ALARM KITS
Single Unit construction - serew connections. 240 V operation with battery back-up option. 15 -feet detection
range internally preset. Delay on leaving and entry involid range internally preset. Delay on leaving and entry, invelid
movement delay, selt-cancelling alarm, approx 2 mins. KITS movement delay, seli-cancelling alarm, approx 2 mins. KITS
INC. F/G PCB, A8S $80 X$, HARDWARE ALI COMPS. 240 V UNS (Piezo drive output) $£ 16.95 .240 \mathrm{~V}$ UA/R (relay output contacts) $£ 19.65$. Piezo Sounder 12 V 18 mA 105 db 1 mtr . c8.20. 8uilt and tested units KIT price $+£ 7.00$. All prices Inclusive - CWO - UK mail order.
G.J.D. ELECTRONICS, 105 Harper Fold Road Radcliffe, Manchester, M26 ORQ

UK101 SOFTWARE. General Subroutines, Graphics, Digital Clock, etc. S.A.E. for List. 117 Blenheim Road, Deal, Kent.

ACORN SOFTWARE. Monitor Coinmentary, Frequency Counter, etc. S.A.E. for list. 117 Blenheim Road, Deal, Kent.

PLEASE MENTION PRACTICAL ELECTRONICS

When replying
to

Advertisements

J. BIRKETT

(Partners: J. H. Birkett,J.L.Birkett) Radio Component Suppliers

25 The Strait, Lincoln. LN2 1JF

10 WATT STUD MOUNTING ZENERS $4.7,6.8,7.5,8.2,12,15,18,20,24,27,30,33$, $36,39,43,47,51,62,68,75,82,91,100,120,130,150,180,200$, Voli all at 50 p each. 5 WATT PLASTIC ZENER DIODES Wire Ended 3.6, 4.3, 5.6, 6, 6.2, 7.5, 8.2,9, 10. 11.13 14, 15, 16, 17, 18, 19, 20, 22, 27, 36, 39, 40, 47, 51, 58, 60, 62, B8, 87 Volt All at 30 p each. 1 WATT ZENERS 3.6,5.6, 6.8, 8.2, 9.1, 11, 12, 13, 15, 16, 20.22, 27, 30, 36, 56, 62, 81, 110, 120, 130, 150, 160, 180. 200 Volt. All at 15p each.
LM 7542 DUAL CORE MEMORY SENSE AMPLIFIER at $50 p$.
P4001-50p, N8223B 50p, AM931159C E1.50, C1702A E E 3.50 , MC 846 - 30p, IM5600CP © E1, MC 2007F - 50p, 2516N © £1.15, SN15836 = 30p, SN15846 = 30p, 4102 - £1.50, N8875A 50p, SN74154-60p, AM250559C E2, 63000J - 50p, 5803C E1.15, MC1414 60 p .
MIOGET \& TO 12 VOLT SINGLE POLE CHANGE OVER RELAY 5 amp Contacts 60p. SUB-MINIATURE SPCO TOGGLE SWITCHES 50 p each.
BECKMAN 3 DIGIT 7 SEGMENT GAS DISCHARGE ORANGE DISPLAYS TYpe SP 353 e E1.95.
9 VOLT ITRON 9 DIGIT SEVEN SEGMENT DISPLAY TYPE FG 95A E E1.80.
SPECIAL 5 NPN DARLINGTON PAIRS in 14 PIN DIL Package HFE 500010 volt 500 mA with connections 50p.
PAPER CAPACITORS 10 uf 370 Volt A.C.W. $5 \frac{1}{2} \times 2 \frac{1}{2} \times 1 \frac{1}{2}=\mathbf{1} 1.50$.
STUDMOUNTING DIODES 100 PIV 10 Amp $15 p, 100$ PIV 30 Amp 25 p.
50. BC 107-8-9 TRANSISTORS Assorted untested 60p.
50. MULLARD C280 CAPACITORS assorted for 60p.

10 ASSORTED PUSH BUTTON ASSEMBLIES less knobs e \&1.30.
THYRISTORS (S.C.R's) 10 Amp Type 100 PIV - 28p, 400 PIV $55 p, 800$ PIV - $65 p$.
MINIATURE TRANSISTOR TRANSFORMERS Indut Types Impedance Ratio. 100K To $1 \mathrm{~K} \cdot 35 \mathrm{p}$, Ratio 150 K To $1 \mathrm{~K} \cdot 35 \mathrm{p}$, Ratio 20K To 1 K a 35 p , Driver Type 10 K To $2 \mathrm{~K} \cdot 35 \mathrm{p}$, Output types 250 mW 1.2 K to 8 ohm - $35 \mathrm{p}, 250 \mathrm{~mW} 500 \mathrm{ohm}$ To 8 ohm $35 \mathrm{p}, 500 \mathrm{~mW}$ 400 ohm To 8 ohm e 35p.
WIRE ENDED RF CHOKES 30 uH at 25 for 50 p .
OP-TO ISOLATORS 1 L- 74 with data at 50 p .
CLOSE TOLERANCE CAPACITORS 1288pf. 1670 pf , 5979pf, 19669pf All 1\% 125v.w., at
5p each, . Oluf 2\%,. 1 luf 2% 8p. 1 uf 1\% at 12p.
VALVE HOLDERS b7G, b9A 8oth 10p, Ceramlc 890 - $15 p$.
QUAD COMPARATOR LM 339 with data 50p, OP-AMPS MC 1439G a 3 for $£ 1$.
50. OC 71 TRANSISTORS untested for 75 p .

NKT 274 or NKT 214 TRANSISTORS PNP $10 \mathrm{p}, 6$ for 50p.
TLI.C's $7400,7410,74 L O 0,7453,7430$ All 6 for 50 p .
MINIATURE MULTI-TURN $5 K$ LIN POTENTIOMETER at 30 p .
MINIATURE SINGLE TUAN POTENTIOMETERS Short Spindle 250K Lin 1 Meg Lin 8oth MINIAT
MAINS TRANSFORMERS 240 Volt Input 24 Volt Tapped at 14 vot 1 amp es 30 IP 8 P MAINS TRANSFORMERS 240 Volt Input, 24 Volt T
25 p), Type $2.30-0-30$ Volt 500 mA © 1.30 (P\&P 25 p).
25 pl , Type 2 . $30-0-30$ Volt 500 mA e E1.30 (P\&P 25 p).
WIRE POTENTIOMETERS 2 watts $2 \mathrm{~K}, 5 \mathrm{k}, 10 \mathrm{~K}, 4$ watt 100 k All 30 p each.
Please add 20p for post and packing on U.K. orders under $\mathcal{E 2}$.
Overseas postage orders at cost.

BUILD A SYNTHESISER!

SPECIAL SKILLS SPECIAL EQUIPMENT REQURED

Using Dewtron (Reg'd) PROFESSIONAL MODULES

Over 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. The long-popular, well-tried range of Dewtron synthesiser and other effects modules and "MISTER BASSMAN" base pedal accompaniment unit.

Send 35p for Musical Miracles Catalogue NOWI
D.E.W. LTD.

254 RINGWOOD ROAD, FERNDOWN, DORSET BH229AR

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisments where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are refurned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, PRACTICAL ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not walt until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc, received as a result of answering such advertisements. Classified advertisements are excluded.

Godespese
 Esectronics

P.O. BOX 23, 34 SEAFIELD ROAD, COPNOR, PORTSMOUTH, HANTS.,

 PO3 5BJRESECT FLUORESCENT CALCULATORS Modern, fluorescent, 10 function calculators with memory. Most repairable but no guarantees. £2.99 each. ALARM CLOCK I.C. MM5316, brand new, with data E2. 29 each. POLARIZING FILTER $0.006^{\prime \prime}$ thick plastic film. Any size cut, max. size $19^{\prime \prime}$ by 250 feet. 2p per square inch. DIGITAL MULTIMETER CHIP MM5330 I.C. to build a $4 \frac{1}{4}$ digit multimeter. With data $£ 3.49$ each. WRISTWATCH LCD supplled with polarizers and data, 99p each. 0.8" LED DISPLAY 4 digit, common cathode, with data. $£ 3.75$ each. LED ALARM CLOCK MODULE with $0.7^{\prime \prime}$ hlgh digits. With data $\mathbf{f 5} .99$ each. 10 UNTESTED LED DISPLAYS you to test. 0.1 " dlgits, common cathode 99p. LED WRISTWATCH I.C. Mostek MK5030, with data $95 p$ each. LED WRISTWATCH DISPLAY type DIS501, 0.1" digits. (Matches MK5030 I.C.). With data 95p each. NOTE the MK5030 and DIS501 are in legless flatpack' style package and require some fairly flne soldering. 20 KEY CALCULATOR KEYBOAMDS 2 for $99 p$ (not for use with NORTEK 4204 calc. chipl. REJECT LED CALCULATORS Some repairable, but all good value for spares, $\mathbf{f} 2.50$ Some repairable, bur all good value for spares. $\mathbf{\text { E }} 2.50$ contacts, 15 p. PUSH BUTTON SWITCHES spring load (momentary) with one n.o. contact 14p. LM555 TIMER I.C. supplied with applications booklet 23 p each. LED CALCULATOR DISPLAY 8 digit, comeach. LED CALCULATOR DISPLAY 8 digin, common cathode, multiplexed, 0.1^{*} digits. With data 99p. men. With data 95p. CALCUIATOR CHIP microm204, 4 function and constane With data 80p. MINI REED RELAYS 500 ohm coil 12 V dic One ne TELT. 79 p each QUALITY SUB-MINIATURE REFD rack. 79p each. GUALITY SUB-MINIATUKE CAOLETIES 25 ivwrops for onl 35 .

POST AND PACKING ADD 35
(OVERSEAS ORDERS ADD E1)
MORE GOODIES IN OUR CATALOQUE. SEND MEDIUM SIZED SAE FOR YOUR FREE COPY,
VA. ADD 15\% TO TOTAL COST
. A. (INCLUDINB POST AND PACKING).
Full SATISFACTION GUARANTEE OM all Full SATISFACTION GUARANTEE on all items.

NEW EDITION
TTL DATA BOOK
FOR DESIGN ENGINEERS
by Texas Instruments
Price: $\mathbf{8 8 . 0 0}$

WIRELESS WORLD GUIDE TO

 BROADCASTING STATIONS 18th ed. 1980.Price: $\mathbf{E 3 . 2 0}$
ELECTRONICS FAULT DIAGNOSIS
by I. R. Sinclair Price: $\mathbf{£ 3 . 0 0}$ UNDERSTANDING SOLID STATE ELECTRONICS
by Texas
Price: $£ 4.00$
ELECTRONIC GAME PROJECTS
by F. G. Rayer
Price: £2.50
HANDBOOK OF SIMPLIFIED SOLID STATE CIRCUIT DESIGN
by J. D. Lenk
Price: $\mathbf{£ 6 . 2 0}$
A PRACTICAL INTRODUCTION TO ELECTRONIC CIRCUITS
by M. H. Jones
Price: $\mathbf{f} 5.00$
BASIC FOR HOME COMPUTERS A SELF TEACHING GUIDE
by B. Albrecht
Price: $\mathbf{5} 5.90$
PRACTICAL HI-FI SOUND THE COMPLETE GUIDE TO PERFECTLISTENING IN THE GOME
by R. Driscoll
Price: $\mathbf{E 7 . 0 0}$
TOWERS' INTERNATIONAL TRANSISTOR SELECTOR
by T. O. Towers. 1980 ed .
Price: $\mathbf{£ 1 0 . 5 0}$

* ALL PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET LONDON W2 1NP

Phone 01-4029176
Closed Saturday 1 p.m.

INDEX TO ADVERTISERS

Acorn Computers
Adam Hall (P.E. Supplies)
Aitken Bros
Barrie Electronics
BBC
Bib Hi-Fi Accessories
Bi-Pak
Birkett J.
Bolster Instruments Co.
British National Radio \& Electronics School
Butterworths

Cambridge Kits
Cambridge Learning
Centurion Alarms \& Electronics
Chromasonic Electronics
Clef Products
CMI
Codespeed
Computech Systems
$\begin{array}{llll} & \ldots & \ldots & 1 \\ & \ldots & \ldots & 95\end{array}$
Computer Components (Teleplay)
Continental Spec.
Crofton Electronics
C.R. Supply Co.

David George Sales
Davian
Dewtron
Display Electronics
Dola Software
Doram
Dzuibas

E.D.A

Electrovalue
Fladar
G.J.D.
G.M.T.

Heathkit
Hiykon Ltd.
Home Radio

94
84
93
80
88

Jones Electronics Supplies

Keelmoor

Lawrence
Cover II L.B. Electronics
L \& B Electronics
London Borough Newham
London Electronics College

Maplin Electronics

20 Marshall A

88
 Motac

ICS. Intartext
I.L.P. Electronics

Industrial Supplies
Interface Components
Jayen Developments

Micro Circuits
Mighty Micro
Millhill Supplies
Modern Book Co
Mullard
Progressive Radlo 93
Proto Design 93
94

Radio Component Specialists
Radio \& T.V. Components 9
R.A.F. 92
9310
9393
86
7.90 14.87
Saxon Entertainments 78, 79
74, 75, 8493
8776
Cover IV12. 13
5
863
Williamson Amplification 95 Williamson Amplification
Scientific Wire Co.
93
93
Seahorse Electronics
Seahorse Electronics Cover III
Semi-Comp. Northern 86
Sentinel Supply 4
88
Swanley Electronics 82
Tandy Corporation 15
Tempus 81
Technomatic 96
Tornel Electronics. 14
T.U.A.C. 14
Umist 93
Wilmslow Audio 93

SERVICE TRADING CO

FT3 NEON FLASH TUBE

High intensity multi turn high voltage, neon glow
discharge flash tube. Design for ignition timing erc. \rightarrow 500 (c4.03 inc. VAT \& P)

WHY PAY MORE

MULTI RANGE METER TYO MF15A a.c. A.c. 133 by Sensilivily 9000 V 24 range. d 46 mm including test lead
130

METERS (New) - 90 mm DIAMETER A.C. Amp., TYpe 62T2.0-1A
A.C. Voht $0-150 \mathrm{O} .0-300 \mathrm{~V}$.
D.C. Amp Trpe 65C5. 0-24 0-10A 0-204
 HEAVY DUTY SOLENOID, mi. by
Magnetic Devices. 240 V . AC intermitent operation. Approx. 20 lb . pull at 25 in. Ex-equip. Tested. Price: $\mathbf{f 4} 75$ 12 V D COIENOID 12V. D.C. heavy dury Solenoid 4 Kp . pull. Easily removable from approx). 5 -fig. Counter. 6 min. photo cells. Sub-min. Micro switches etc. etc. Ex-equip. London Transport Printer. Price $\mathbf{£ 9 . 0 0}+\mathrm{£} 1.00$ p. \& p. (total incl. VAT $£ 11.50$). 12V. D.C. Solenoid approx. 1lb. pull. Price: $£ 1.40+$ p. \& p. 30 p.
(total incl. VAT $£ 1.96$). SOLENOIDS
WESTOOL SERIES D6 Model A3 24 V . D.C. Price $\mathbf{f} 1.50+50 \mathrm{p}$ p. \& p. (Total Incl. VAT £2.30)

WESTOOL SERIES D4 Model A. 24V. D.C. Price $\mathbf{E 1 . 0 0}+\mathbf{3 0} \mathrm{p}$ p. \& p. (Total incl. VAT £1.50)

AG/GT 24V. D.C. 70 ohm Coil Solenoid. Push or Pull. Adjustable Iravel to $3 / 16$ in. Fitted with mounting brackets and spark sup-

800 WATT DIMMER SWITCH

Easily fitted. Wilt control up to 800 W . of all lights

REED SWITCHES. Size $28 \mathrm{~mm} \times 4 \mathrm{~mm}$ dia. Price: 10 for $\mathbf{\text { E } 1 . 0 0}$ +p. \& p. 20 p. (1otal incl.
30p. (total incl. VAT $\mathbf{8 9 . 5 5)}$

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230,240V a.c. 50/60 OUTPUT 0-260V
200 watt (1 amp inc. a.c.
$1 \mathrm{KVA}(5$ amp MAX)
$2 \mathrm{KVA}(10$ amp MAX)
$.2 \mathrm{kVA}(15 \mathrm{amp} \mathrm{MAX})$
.5 KVA 25 amp MAX) 10 KVA (50 amp MAX)

3-PHASE VARIA

 \section*{TRANSFORMERS
 \section*{TRANSFORMERS
 3KVA (max. 15 amp)
 $\begin{array}{lll}\text { 6KVA (max. } & 30 \text { amp. }) & £ 106-43 \\ \text { All plus Carriage }\end{array}$ OKVA (max. 50 amp) E327.43}

LT TRANSFORMERS

$13-0-13 \mathrm{~V}$ at $1 \mathrm{amp} £ 2.50$ P. \& P. 50 p (E3.45 inc. VAT)
$0-4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}$ at 12 amp \& 18.50 P . \& P. © 1.90 (£ 23.46 inc UAT \& PI $-6 \mathrm{~V} / 12 \mathrm{~V}$ at $20 \mathrm{amp} £ 14.70 \mathrm{P} .8 \mathrm{P}$. £1-50(£18.63inc. VAT)

$06 \mathrm{~V} / 12 \mathrm{~V}$ at 10 amp £8.25 P. \&i P. £1.25 (e10.93 inc. VAT)
$0-6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$ at 20 amp $£ 19.00 \mathrm{P}$. \& P . $£ 1$ $0-6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$
E23-58 inc. VAT \& P.
$0-10 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V}$ at $10 \mathrm{amp} \mathrm{£10-50P}. \mathrm{\& P.£1.50} \mathrm{(} \mathrm{\mathbf{} \mathrm{\$ 13}-80 \mathrm{inc}$. VA $)}$

HY-LIGHT STROBE KIT MK IV

Latest ivpe Xenon white light tlash lube. Solid slate timing and triggering circui: $230 / 240 \mathrm{~V}$ a.c. operation Designed for larger rooms. halls, etc. Speed adjustable
120 f.p.s. Light output greater than many iso called 4 Joule) strobes. Hy-Light Strobe Kit Mk IV $£ 22.00+£ 1.50$ and reflector for Hy-Light $£ 9.00$. Post f 1.50 ($\mathbf{£ 1 2 . 0 8}$ inct. VAT \& P.). Suitable

\section*{XENON FLASHGUN TUBES
 | Pange avatable |
| :--- |
| $S A E$ tor dolaís |
 }

ULTRA VIOLET BLACK LIGHT FLUORESCENT TUBES
4ft. 40 Watt $£ 8.70$ inc. VAT $£ 10.00$ (callers onlv).
2 ft.
20 watt f 6.20 . Post 75 p. ($\mathbf{E 7 . 9 9}$ inc. VAT $+P$.
For use in stan bi-pin fittingss.

OC op £4.50. Poss 45 p . (E5.69 inc VAT
400 watt UV lamp and ballast complate $£ 38.00$. Post $£ 3.50$
$(£ 47.73$ incl VAT + P) 400 watt UV lamp only $£ 14.00$ Post E47.73 incl. VAT + P). 400 watt UV lemp only f14.00. Pos WIDE RANGE OF DISCO LIGHTING
EQUIPMENT S.A.E. (foolscapl for det

PROGRAMME TIMERS

6 adjustable 6 fixed cams. Price $\mathbf{f 6 . 0 0}+75$ p p. \& p. (E7.76 inc

Superior Quality Precision Made NEW POWER RHEOSTAJS

New ceramic construction. embedded

25 WATT $10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{kN} /$
$1.5 \mathrm{k} \Omega$. £2-40. Post 20 pif2.99Inc. VAT \& P.)
50 WATT 250 § $£ 2.90$. Posi 25 (E3.62 Inc.
50 WATT 250 ก £2.90. Posi 25 p (£3.62 Inc. VAT \& P)
 Black. Sitver, Skirted knob calibrated
dia. brass bush. Ideal lor above Rheostats 240 each
dia. brass bush. Ideal for above Rheostats $24 p$ each.
Wide range of $A C$ and $O C$ relays
availabie from atock. Phone or write
Uther types available - phone for details. N.M.S. 230/240V A.C. Relave: Arrow $2 \mathrm{c} / \mathrm{o} .15 \mathrm{amp} \mathrm{f} 1.50$ (f 1.96 inc VAT \& PI.
T.E.C. ope
KMKI Relay. 230V. A.C. $1 \mathrm{c} / \mathrm{o}$. open type 10 amp contact, mf by "Keyswitch" 80p. + 20p. p. \&i p. (E1.15 incl. VAT). 5 to E3.75 postpaid ($\mathbf{~} 4.32 \mathrm{incl}$. VAT
D.C. Relays: Open type $9 / 12 \mathrm{~V} 3$ c/o 7 amp f 1.00 (f1.38inc AT \& Pl. Sealed 12 V 2 clo 7 amp octal base. f 1.00 (f 1.38 inc VAT \& P). Sealed $12 \mathrm{~V} 3 \mathrm{c} / \mathrm{o} 7 \mathrm{amp} 11$-pin. $\mathrm{£1.35}$ ($\mathrm{f1} .78 \mathrm{inc}$ VAT \& PI. 24 V . Sealed 3 c/o 7 amp 11 -pin $£ 1.35$ ($£ 1.78$ inc
VAT \& P). (amps = contact ratingl. PaP on any Relay 20 p .

Hellarmann Deutach. Hermetically sealed sub-min. Relay. 1224 V. D.C. 2 c/o. 850 ohm coil. 0.2 pitch. P.C. mounting. L. 20 mm . W. 10 mm. H. 12 mm . Fraction of maker's price: $\mathbf{\text { E } 2 . 5 0 ~ p o s t p a i d ~}$ $\mathbf{2 . 8 8}$ incl. VATI. N.M.S
Diamond H hesvy duty A.C. relay $230 / 240 \mathrm{~V}$ a.c. two C/O VAT + p\&p). Special base 50 p . (incl VAT 58 p)
4.5rpm SIGMA motors approx. 351bs inch

2 rpm KLAXON motors approx. 251 b inch 71 rDm WYNSCALE motor approx. 101 lb inch above four motors are designed for 110 V A.C. supplied with auto wansformer 240 V .
 A.C. operation. $\mathbf{£ 7 . 7 5}$ p. \& p. 75 p. Total incl. VAT £9-78. N.M.S.
19 rpm FHP $220 / 240 \mathrm{~V}$.r a.c. reversible. torque 14.5 kg Gear ratio $144-1$. Brand
new including capaciors. mf . CITENCO. Price: E14.25 + $+\mathbb{1} .25 \mathrm{P} .8$ \& $\mathrm{R}=(\mathrm{E17.83}$
inclus. VAT) NMS
$30 \mathrm{rpm} .230 / 240 \mathrm{~V}$. a.c. 50 lb in. mf. PARVALUX.
56 rpm .240 V . a.c. 50 lb in, 50 Hz
 Price: f1500 + E1.50 P \& P (E18.98 clus. VATI. N.M.S.
100 rpm .110 V . a.c. 115 lb in. 50 Hz .28 amp. single phase, split capaciar.
Immense oower.
Totally enclosed. In-line gearbox. Length
250 mm . Oia. 135 mm . Spindle dia
 operation. Price $\mathbf{8 8 . 0 0 + 7 5 p \text { p. P. \& P. (f10 Transformer for } 2 3 0 / 2 4 0 \mathrm { V }}$

200 rpm .35 lbs in. 115 V .50 Hz .
Price: $£ 16.00+$ f 1.50 P. \& P (20.13 inclus VAT). N.M.S

12V. O.C. type SO2. Shun $\frac{1}{1} \mathrm{ph}$ continuously rater 4000 rpm .
M. PARVALUX. Price: $£ 10.00+75 \mathrm{p}$. P. \& P . (f 12.35 inclus.
$1 \mathrm{pmm} 230 / 240 \mathrm{~V}$, a.c. Synchronous geared Motor, mf. HAYDON.
 VATI. N.M.S.
1.400 rom 115 V. a.c. Motor, HP $\frac{1}{\text { P }}$ continuously rated. Fitred with
anti-vibration cradie mounting. Mf. FRACMO. Supplied com piete with Transformer for $230 / 240 V$. a.c. operation. Price $\mathrm{f10.00}+\mathrm{£1} .00$ P. \& P. (E12.65 intus. VAT. N.M.S
24V. D.C. GEARED MOTOR
24V. O.C. 200 rpm 10 lbs /ins. Continuously rated geared Motor mfg . by either Parvalux or Carter. Easily removable from heavy ali. chassis containing $9 \times 24 V$. D.C. Solenoids, microswitches,
friction clutch, precision gearing etc. etc. Ex-equipment London Transport Ticket Printer. Price: $\mathbf{f 1 1 . 0 0}+\mathbf{6 2 . 0 0}$ p. \& p. (total incl.
Trate VAT f14.95).
24V. D.C. REVERSIBLE MOTOR
Parvalux type SO12L, 24 O.C. Shunt wound Motor, either 133
rom 651 lbs in Gearbox ratio $30: 1$. Current 6.8 amp. Rating con rpm 65 lbs in Gearbox ratio $30: 1$. Current 6.8 amp. Rating con-
tinuous. Will operate on reduced power and speed at 9 V D.C. or less. Size Dia. 16 mm . Width 150 mm , Shaft dia. 16 mm . Price f16.00 + E2.00 p. As above. N.M.S. ROTARY CARBON VANE VACUUM 8 COMPRESSOR.
Direct coupled to $1 / 3$ h.p. $110 / 115 \mathrm{~V}$. A.C. Motor 4.2 amp .1380 rom. Motor manuf. by A.E.I. or G.E.C. Pump by Williams. Max
Vac. $25^{\prime \prime}$ H.G. Max. pressure cont. 10 p.s.i.
 Suitable transformer for 240 V . op. $£ 10.00$ P. \& P. $£ 2.00 ~$

COMPRESSOR

Precision bult USA. Horizontally opposed win head diaphragm type producing 2OIbs. approx. P.S.I. per pulse tree. Powered by 110 V A.C. motor size $30 \times 23 \times 15 \mathrm{~cm}$. Weight
kilos. Price $£ 25.00+£ 2.00$ P. \& P (Total incL. VAT £31.05). Suitable transformer for 240 V op. £8.00 P. \& P. £ 1.50 ($\mathbf{~ N 1 0 . 9 3}$ VERY EXCEPTIONAL OFFER

REDUCTION DRIVE GEAR BOX

Ratio $72: 1$. Input spindle $\frac{1}{2} \times \frac{1}{2} \mathrm{in}$. Output spindle $\frac{3}{3} \times 3$ in. long. Overall size approx: $120 \times 98 \times 68 \mathrm{~mm}$. All metal construction. Ex-equip. tested. Price: $\mathbf{\text { 2 } 2 0 0}$ 50p. (incl VAT £2.88).
A.C. Wkg. TUBULAR CAPACITORS

Fraction of makers price. Motor start etc,				
1.5 mfd .440 V . A.C.	60 p	7.5 mfd	200V. A.C.	E1.
2 mtd 250V. A. C.	60 p	10 mtd .	250V. A.C.	f1.00
2 mfd . 450 V . A.C.	75p	10 mtd .	400 V . A C	c1.75
2.2 mfd 440V. A.C.	75p	14 mfd .	400 V . A.C.	£3.00
3 mfd .440 V. A.C.	¢1.00	15 mfd .		
4.1 mfd 440 V:A.C.	£1.00	(Block)		c1.50
$5 \mathrm{mfd} .400 \mathrm{~V} . \mathrm{A} . \mathrm{C}$.	f1-25	19 mf	280V. A	C2.00
5.3 mfd 160V. A.C.	60p	20 mfd	250 V . A.C	c2. 2
5.4 mfd 280 V . A.C	75p	50 mfd	370 V	
6.5 mid $280 V$ A.C.	¢1.00			
P. \& P., up to 2.5 mfd . 25 p .3 mfd tp 20 mfd . 50 p .50 mfd .				
£1.50. All plus V.A.T. N.M.S.				
Time Switch				
Venner Type ERD Time switch 200/250V a				
30 amp contact 2 on $/ 2$ off every 24 his. at any				
manually pre set time 36 hour Spring Reserve and day omiting device 8 uilt to highest Elec-				
Tricity Board specification. Price $£ 9.00$.				
R. \& T. SANGAMO WESTON TIME SWITCH				
Type S251 200/250V a.c. 2 on/2 off every 24 hours 20				
amps contacts with override switch dia. 4×3 price $\mathbf{8} 8.00 \mathrm{P}$ \& P				

50 p ine. Vat 9978

[^2]All Mail Orders Callers
Ample Parking Space Showroom open Mon-Fri

57 BRIDGMAN ROAD CHISWICK LONDON W4 $58 B 019951560$

Personal callers onfv Open Saturdzvs 9 Little Newport Street. London WC2H 7JJ
Phone 01-437 0576

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project.

Over 5,000 of the most useful components - from resistors to microprocessors - clearly described and illustrated.

[^0]: - IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: All prices are EXCLUSIVE of VAT. Postage and packing 30 p (compurers charged at cosi). CALLERS WELCOME Hours $9.00 a m=5.00 \mathrm{pm}$ (enter through stationers).

[^2]: Also available with $\times 3$ price EB .00

