

COMPUKIT UK10I EUROPE'S FASTEST SELLING ONE BOARD COMPUTER

Simple Soldering due to clear and concise instructions compled by
Dr. A.A. Berk, BSC. PhD
$\star 6502$ based system - best value for money on the market. \star Powerful 8K Basic - Fastest around \star Full Qwerty Keyboard $\star 4 \mathrm{~K}$ RAM Expandable to 8 K on board. \star Power supply and RF Modulator on board. \star No Extras needed - Plug-in and go. \star Kansas City Tape Interface on board. \star Free Sampler Tape including powerful Dissassempler and Monitor with each Kit. \star If you want to learn about Micros, but did'nt know which machine to buy then this is the machine for you.

Build, Understand and Program
your own Computer for
only a small outlay.

KIT ONLY $\mathbf{£ 1 9 9}+$ VAT
NO EXTRAS NEEDED
AVAILABLE READY
ASSEMBLED \& TESTED
READY TO GO FOR E249 + VAT
Specially designed case for Compukit in orange/black
The Compukit UK101 comes in kit form with all the parts necessary to be up and working, supplied. No extras are needed. Ater plugging in just press the reset keys and the whole world of computing is at your fingertips. Should you wish to work in the machine code of the 6502 then just press the M key and the machime will be ready to execute your commands and programs. By pressing the C key the world of Basic is open to you.
This machine is ideal to the computing student or Maths student, ideal to teach your children arithmetic, and is also great fun to use.
Because of the enormous volume of users of this kit we are able to offer a new reduced price of $\mathbf{f} \mathbf{1 9 9}+$ VAT

$\bigcirc 8$ 8MHz Super Quality Modulators	tors $\mathbf{E 4 . 9 0}^{0}$
6 MHz Standard Modulators	£2.90
C12 Computer Grade Cassettes 10	(10) for $\mathbf{£ 4 . 0 0}$
Super Mult-rall P.S.U. $+5-5+12 \mathrm{v}$ £29.50	
Nascom \| with Nas-sys Special	Special Price
Kıt ${ }^{\text {It }}$ \} Limited quantities	石 $\quad \mathbf{E 1 2 5 . 0 0}$
Assembled	£140.00
ETI Breakout Game - Chip and PCB	nd PCB $\quad \mathbf{f 9 . 9 0}$
S100 Expansion Motherboard for Nascom I	for $\quad \mathbf{E 3 9 . 0 0}$
Anadex Printer Paper - 2000 sheets	sheets $\quad \mathbf{£ 2 5 . 0 0}$
Floppy Disks 5 $1 / 4{ }^{\prime \prime}$ Hard \& Soft	
Sectored	¢3.50
Floppy Disk Library Case 51/4"	E3.50
Lexicon Language Translator	£125.00
Modules for Lexicon	$£ 29.00$
Eprom Boards	£63.00
8K Static Ram Boards - S100	[$\quad \mathbf{1 1 1 0 . 0 0}$
Grandstand Video Game	£59.00
Cartridges for Grandstand	£11.99
George Risk Ascii Keyboard	E39.00
Cartrıdges for Atarı	
- Fulil Range in Stock	£13.90
Interface PET IEEE - Centronics	nics Parallel
Not decoded	£49.00
Decoded	£77.00
Interface to Centronics parallel for TRS80	el for $\mathbf{£ 7 5 . 0 0}$
Verocases for Nascom 1 \& 2 etc.	2 etc ¢ $£ 2.50$
Keyboard Cases	¢9.90
Electric Pencil for TRS80	00

Fully converted to UK TV Standard Comes complete with easy to foliow manuals UK Power Supply - Cassette Leads Sample tapes Special box to enable you to plug into your and go Full Range of Software Available

- Ideal for home, personal and business computer systems - $12^{\prime \prime}$ diagonal video monitor - Composite video input - Composite video input - Compatible with many computer systems - Solid-state circuitry for a stable \& sharp picture Video bandwidth $-12 \mathrm{MHz}+3 \mathrm{DB}$ Input impedance 75 Ohms - Resolution - 650 lines Minimum In Central 80% of CRT; 550 Lines Minimum beyond central - 80%.

PRACTICAL

ELECTRONICS
 VOLUME 16 No. 6 JUNE 1980

CONSTRUCTIONAL PROJECTS

PE CONGRESS Part 3 by Graham Jackson 26
Final construction and testing
BENCH PSU by J. P. MacCaulay 34
Variable voltage and current limit
MASTERTUNE by B. J. Hamill 39
A useful tuning aid for guitarists
GREENHOUSE TEMPERATURE CONTROLLER by P. R. Williams 58
Energy saving control unit
DIGITAL TACHOMETER by G. I. Williams 64
A general purpose workshop r.p.m. meter
GENERAL FEATURES
WERSI AND CLEF SOUND PROCESSOR KITS REVIEWED 24
Adding the effect of rotating speakers electronically
SEMICONDUCTOR UPDATE by R. W. Coles 32
MPD 7801 HEDS-1000 XRL556 BT155
COLOUR BLINDNESS by Dr. Janet Voke 48
Types, testing and recommendations
INGENUITY UNLIMITED 52
Motor Reversal-555/556 Quick Tester-Lamp Flasher-
Stereo Balance Meter-Op Amp Battery Supply-Model Railway Signal Controller-Frequency Tester/Missing Pulse Detector
Digital Capacitance Meter-Minefield Game-68
Z80 Routine-Solutions to Problems
COMPUKIT UPDATE by Dr. A. A. Berk71
Know your Hex Code
NEWS AND COMMENT
EDITORIAL 17
MARKET PLACE 18
New Products
INDUSTRY NOTEBOOK by Nexus 23
What's happening inside Industry
EDUKIT OFFER 31
NEWS BRIEFS 36
SPACEWATCH by Frank W. Hyde 45
The Students Satellite, Hipparcos, Japan's Loss, Soviet Activity READOUT 46
Our Readers air their views
COUNTDOWN 47
BOOK REVIEWS 47
PATENTS REVIEW 62
POINTS ARISING 676 Channel Mixer

[^0]

Enter the 80's with SAXON

£30 FREE!

Vouchers with our new catalogue over 200 items of disco systems, lighting and accessories. Send $\mathbf{£ 1 . 0 0}$ now.

EXAMPLES:

Fuzz lights
1226.50

Projectors from
Strobes $£ \mathbf{E 5} \mathbf{£ 2 2 0}$
Rope lights 25^{\prime}
Disco stands
Echo chambers
$\mathbf{£ 4 2 . 5 0}$
$£ 23.50$
100W speakers
$\varepsilon 75$
10 way chaser 100W twin horn bin $£ 110$ 800W spot bank

AND IF WE HAVEN'T GOT IT - WE'LL GET IT!

SAXON
ENTERTAINMENTS
ALL MAIL \& CREDIT ENQUIRIES TO
33 WHITEHORSE ROAD CROYDON

Send cheque/crossed POS or Telephone (01) 6846385 Access'Barclaycard. Telephone orders accepted
SURREY CRO 2HS
For Creart Sales \& Enquiries Ring
SUE ABEGG ON (01) $6848007 / 0098$
CROYDON TO ORDER
P.A

All systems complete with loudspeakers, leads, \& 2 years warranty

STEREO DISCO SYSTEMS
WITH LIGHT SHOW \& DISPLAY

GXL 200W with PDF BINS ${ }_{\text {(illus) }}$
 $\mathbf{£ 5 0 2}$ inc. carr. \& VAT \quad Deposit $£ 102$ $\mathbf{1 2}$ mth e $\mathbf{E 4 0 . 1 7}$ or $\mathbf{2 4} \mathbf{m t h} \mathbf{£ 2 3 . 5 0}$
 CUSTOM CENTAUR 400/600W with four PDF 100A Bins
 STANDARD CENTAUR 100W
 £309 inc. caer. \& VAT
 12 mthe $£ 24.80$ or 24 mth ef14.51
 SUPER CENTAUR 200W

Full range of Pluto, D.J. Lightomation products in stock
Send £1.00 now for your catalogue - worth £3011!

AITKEN BROS

35, High Bridge, Newcastle upon Tyne Tel: 063226729

EXP300

550 contacts with two 50 -point BUS bars. Size $152 \times 53 \mathrm{~mm}$. $£ 6.95$.
PROTO-BOARD 6 KIT
630 contacts, four 5 way binding posts, accepts up to 614 pin DIPs. E10.e8.

CSC LOGIC PROBES

LP-2 ECONOMY PROBE

Min. pulse width 300 nanoseconds. $300 \mathrm{~K} \Omega$ input impedance, tests circuits up to 1.5 MHz . Detecting pulse cuits. $\mathbf{E 2 0 - 9 6}$.
LP-1 Memony Probe
LP-3 High Speed Memory Probe
CSC catalogue available. Pleace send S.A.E.

CALSCOPE SUPER 6 £186.30

A portable single beam 6 MHz bandwidth oscilloscope with easy to use controls. High gain to $10 \mathrm{mv} / \mathrm{cm}$ and wide time base range from $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$. Full specification to request. Please send S.A.E. Professional scopes you can afford.

CALSCOPE SUPER 10 £251.85

A dual trace 10 MHz instrument of the very highest performance and quality. It has an accuracy of 3% which is achieved by the use of built-in stabilised power supplies which keep the trace rock steady over a wide range of mains fluctuations. Full specification on request. Please send S.A.E.

SINCLAIR LOW POWER PORTABLE

OSCII OSCOPE SC110
The SC1 10 has a 10MHz bandwidth and sensitivity down to 10 mV per division. Full trigger facilities are provided, including bright line, auto with TV line and frame positions. Please send for full spec. and illustrated brochure.

TMK 500 MULTIMETER 30,000 o.p.v. AC volts $2 \cdot 5,10,25,100,250,500,1000$. DC volts. volts $2 \cdot 5,10,25,100,250,500,1000$. DC volts. $0.25,1,2.5,10,25,100,250.1000$. DC current
50 ua, $5 \mathrm{MA} 50 \mathrm{MA}, 12 \mathrm{amp}$. Resistance $0-6 \mathrm{~K}$. $50 \mu \mathrm{a}, ~ 5 \mathrm{MA}, 50 \mathrm{MA}, 12 \mathrm{amp}$. Resistance $0-6 \mathrm{~K}$.
$60 \mathrm{~K}, 6 \mathrm{MEG}$
60 MEG . Decibels. -20 to +56 db . Buzzer continuity test size. $160 \times 110 \times 55 \mathrm{MM}$. Buzzer continury test size $160 \times 10 \times 55 \mathrm{MM}$ PRICE $\mathbf{f} 25.95$.

CSC EXPERIMENTOR BREADBOARDS
No soldering modular breadboards, simply plug components in and out of letter/number identified nickel-silver contact holes. Start small and simply snap lock boards together to buld breadthoards of any size.

SINCLAIR DM450

£83.95
2114.95

Size $255 \times 148 \times 40 \mathrm{~mm}$
DM350 $3 \frac{1}{2}$ digit display DM450 $4 \frac{1}{2}$ digit display. Both provide six functions in 34 ranges. D.C. voltage $10 \mu \mathcal{N}$ to provide six functions in 34 ranges. D.C. Vorese to 1200 N to 750 V D.C. current 1nA to 10A. A.C. current 1nA to 10A resistance $10 \mathrm{~m} \Omega$ to $20 \mathrm{M} \Omega(100 \mathrm{~m} \Omega$ opn DM350). Accessories for DM350 \& 450 as for DM235 below. Full spec. on request. Please send S.A.E.
Sincteir PFM200 frequency meter
Size $157 \times 76 \times 32 \mathrm{~mm}$,
Range 20 Hz to 200 MHz . Accessories and illustration as for PDM35 below. $£ 57.95$

SINCLAIR PDM35
DIGITAL POCKET MULTIMETER
DC volts (4 ranges) 1 mV to 1000 V AC volts 1 V to 500 V DC current (6 ranges) 1 nA to 200 MA Resistance (5 ranges) 10 to 20 MEGO PRICE E39.95 AC Adaptor 84.25 de luxe padded carrying case f1.95 MN 1604 Battery $\mathbf{E 1} 28$.
Size $157 \times 76 \times 32 \mathrm{~mm}$.
SINCLAIR DM235
BENCH-PORTABLE DIGITAL

MULTIMETER.

DC volts (4 ranges) 1 mV to 1000 V AC volts $(4$ ranges) 1 MV to 750 V AC \& DC current 1 pa to 1000MA Resistance (5 ranges) 1Ω to $20 \mathrm{MEG} \Omega$. PRICE f60-98. Carrying case f8.95. AC adaptor/charger. £4-25. Rechargeable Battery Pack. E8.95.
Size $255 \times 148 \times 40 \mathrm{~mm}$.

PANEL METERS

DIMS 60MM $\times 45 \mathrm{MM}$. 504 amp , 100 m amp 1 MA
 50-0-50~a, 100-0-100~а, 500-0-500~а. PRICE E5.95.
desoldering tool

Measure Resistance to 0.01Ω
At a Price that has no resistance at all New/Elewco prectsow Digital Multimeter M1200B

YOUR OPPORTUNITY TO BUY THIS SUPERB DMM AT THIS PRICE FOR A LIMITED PERIOD ONLY.

THE ULTIMATE IN PERFORMANCE MEASURES RESISTANCE TO 0.01 OHMS, VOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE!

FEATURES

- $3^{1 / 2}$ digits $0.56^{\prime \prime}$ high LED for easy reading
- $\quad 100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.01 \Omega$ resolution
- High input impedance 10 Megohm
- High accuracy achieved with precision resistors, not unstable trimpots
- Input overload protected to 1000 V lexcept 200 mV scale to 600 V)
- Auto zeroing, autopolarity
- Mains (with adaptors not supplied) or battery operation-built-in charging circuitry for NiCads - Overrange indication
- Hi Low power ohms, Lo for resistors in circuit, Hi for diodes
MODEL 7010 FREQUENCY COUNTER
9 DIGITS 10 HZ to 600 MHz ONLY £120 + VAT
(Complete with built-in Nicads)
- Range 10 Hz to 600 MHz
- 9 red 0.4 LED digits
- NBS Calibration traceability
- Black Anodized Aluminium Case
- 3 Gate times - LED indicator
- 1 ppm TXCO
- 10 MHz time base
- Optional external clock input E 15 + VAT

- 1 Megohm and 50 ohm inputs

AC/DC or Nicad rechargeable battery operation

- Full year guarantee
- Comprehensive manual

Miniature size - weight 1 lb

To Macin-Zand Electronics Lid
1st Floor, Unit 10. East Block
38 Mount Pleasant, London WC $1 \times$ OAP
Please send me DMM M 1200B ($\mathbf{E 6 6 . 7 0}$ incl) Frequency Counter 7010 (£138 inc)
1 enclose cheque / PO /Bank Draft for $£$
Name
Address

Also available from retail shop:

Audio Erectronics,

301 Edgwine Road
London, W. 2
Telephone:
$01-7243564$
(C) N Zand

Elemco precision Sole UK Distributor ME
Maclin-Zand Electronics Ltd 38 Mount Pleasant,London WC1XOAP Tel. 01-8371165/01-2787369

MICROCHIPS AT MICRO PRICES	LOWEST PRICES			
Compare our prices before you buy elsewhere. All brand new, prime. memorifs	DL 704/DL 707 FND 500/FND 510 MV571 64 Red bar display			
	THE MOST VERSATILE LUQUID CRYSTAL DISPLAY			
	$1.2425+100+$ $\mathbf{E 6 . 4 5} \mathbf{£ 5 . 5 0} \mathbf{£ 4 . 9 5}$			
UAAT AY-5. 1013 A AY-3.1015	5" Field effect LCD display featuring $3^{1 / 2}$ digits, colon,			
CHARACTER GENERATOR RO-3.2513 UC FLOPPY DISK CONTROLLER	plus/minus sign, 3 decimal points and "LO BAT" indicator.			
FD 1771 Single Density IBM Compatible 22.00 FD 1791 Oual Density 45.00 IBM Compatible .	thermometers, $A M / F M$ radio readouts. Just look at the features. Ultra low power con.			
SUPPORT DEVICES	sumption, high contrast ratio			
KEYBOARD ENCODE:	viewing angle, rapid res			
-5-2376				
INTERSIL CHIPS ARE DOWN	ques, superior MTBF, reflective aluminium foil. Over 300,000 already sold! Perfect interface			
Due to bulk purchase we are able to offer unbeatable prices on INTERSIL CHIPS. Compare our prices below distributors!	for Intersil 7106 and 7116. 40 PIN DIL			
$\begin{array}{ll}\text { ICL7107CPL } & \mathbf{6 . 9 5} \\ \text { IC } \\ \text { IC8038CCPD }\end{array}$	SE 01 Sound Effects Kit NEW			
$\begin{array}{lr}\text { ICL8038CCPD } & \mathbf{2 . 9 5} \\ \text { CCM } 7216 \text { AIJ } & \mathbf{1 8 . 7 5}\end{array}$				
LINEAR ICS	The SE-O1 is a complete kit that contains all the parts to			
7093				
$\begin{array}{lll}723 & \text { 33p } \\ 741 \\ \text { 17p } & \text { NE } \\ \text { N }\end{array}$	gramabiesound eftectsgenerator			
747 ${ }^{48}$				
	generator arsigned aroung			
LM301AN LM311	new Texes $)^{*} 1$ \%			
	Sound Chipd the bord			
VOLTAGE REGULATORS				
$7805 / 781255 p$ 78 HO5SC 5.75 $7905 / 791265 p$ 78 HGKC	various com. binations of the SLF			
UNIVERSAL SCR	Oscillator			
C1060 400V 5a 35p				
NEW! The AY3-8910 is a 40 pin LSI chip with three oscillators. three amplitude controls programmable noise generator, three mixers an envelope generator, and three D/A converters that are controlled by 8 BIT WORDS No external pots or caps required This chip hooked to an 8 bit microprocessor chip or Buss (8080. 280. 6800 etc) can be solftware controlled to produce almost any sound. It will play three note chords, make bangs. whistles, sirens. gunshots explosions bleets	One Shot. and Envelope Controls A Quad Op Amp IC is used to implement an Adjustable Pulse Generator. Level Comparator and Multiplex Oscillator for even more versatility. The $31 / 4^{\prime \prime} \times 3^{\prime \prime}$ PC Board features a prototype area to allow for user added criccuitry. Easty programmed to duplicate Explotion, Pheeer Guns, Steemn Trains, or almost an infinte number of other sounde. The unit has a multiple of applications. The low price includes all parts. assembly manual. programming charts. and detaled 76477 chip specifications it runs on a 9 V battery (not included). On board 100 MW amp will drive a small speaker directly, or the unit can be connected to your stereo with incredible results' (Speaker not included) COMPLETE KIT ONLY £14.99 P\&P 67p + VAT			
provisions to control its awn memory chips with two id ports The chip requires $+5 \mathrm{~V} @ 75 \mathrm{ma}$ and a standard TTL clock oscillator A truly incredible circuit. Only £ 825 + VAT 60 page manual with S-100 interface instructions and several programming examples $\mathbf{\ell 2 . 2 5}$ extra (No VAT)	FIom T 1 TLA90 BAR/DOT DRIVER IC. Drives 10 LEOs with adjustable anatog steps Units are cascadable up to 10 (100 steps) Orives LEDs directly Great for voltage, current or audio displays. Similar in features to LM3914 with specs and cricuit notes OMLY NEW! Matching red bar display MV57164 2.25p			
Texas Instruments $\left[3 \ldots \quad \begin{array}{l}\text { Matching red bar display } \\ \text { MV571 } \\ \text { 2.25p }\end{array} \quad\\|/\\| / \\| / 1\right.$				
Contacts Price 8 PIN 06	Ondering information: For orders under E50 add $50 \mathrm{p} \rho \& \rho$ Add 15% VAT to total All tiems are subject to prior sale and theretore subject to avallabilty Prices are subject to change without notice			
14 PIN 07	4 Meeting Streer Appledore, Mr. Bideford Morth Devan EX39 1 RY Tel. Bideford (02372) 79507 Telex 8953084			
16 PIN 08				
18 PIN				
20 PIN				
22 PIN .14				
24 PIN 15				
28 PIN 18				
40 PIN 25				

D.I.Y. KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. 128-NOTE SEQUENCER

Enables a voltage controlled synthesiser to automatically play preprogrammed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and thythmic pattem are externally variable.
Set of basic component kits, PCBs and layout charts
Set of text photocopies
KIT76-7 E34.58

P.E. 16-NOTE SEQUENCER

Sequences of up to 16 notes may be programmed by the use of external panel controls and fed into most voltage controlled synthesisers.

Set of basic component kits, PCBs and layout chart
$\begin{array}{lll}\text { Set text photocopies } & \text { KIT B6-5 } & \text { £27.99 } \\ & & \text { £1.84 }\end{array}$

P.E.STRING ENSEMBLE

A multivoiced polyphonic string instrument synthesiser Set of basic component kits, PCBs \& layoutcharts KIT 77-8 $\mathbf{e 9 2}$.89
P.E. JOANNA PLUS ORGAN VOICING

A modified version of the P.E. 5 -octave piano that retains all the original facilities and includes switchable organ voicing circuitry.

Set of basic component kits, PCBS \& layout charts
"Sound Design" booklet
KIT 71-7 $£ 119.87$

ELEKTOR ELECTRONIC PIANO

A touch-sensitive multiple-voicing piano using the latest integrated circuit techniques for the keying and envelope shaping, and virtualty eliminating "bee-hive" noise hitherto inherent in previous electronic pianos.

5-actave set of basic components and PCBs (as published) KITBO-9 £136.41 Additional 3-octave extension and basic parts and $\begin{array}{llll}\text { PCBs (as published) } & \text { KIT B0-10 } & \text { £54.62 }\end{array}$

P.E. MINISONIC MK2 SYNTHESISER

A portable mains operated miniature sound synthesiser with keyboard circuits. Although having slightly fewer facilities than the large Formant and P.E. synthesisers the functions offered by this design give it great scope and versatility.

Set of basic component kits (excl. KBD R's \& tuning pots see list for options available) and PCBs (incl. layout charts) Sound Design" booklet $\quad £ 1.00$

P.E. SYNTHESISER

The well acclaimed and highly versatile large scale mains operated synthesiser. Other circuits in our lists may be used with it to good advantage.

> Main Unit basic component kits. PCBs \& layout charts KIT 23-31 £101.43 Keyboard Unit basic component kits, PCBs \& layout charts $\begin{array}{llll}\text { Main Unit set of text photocopies } & \text { KIT 23-32 } & \text { E.0.4 } \\ & & \text { E5.9 }\end{array}$ Keyboard Unit set of text photocopies

ELEKTOR FORMANT SYNTHESISER

A very sophisticatged synthesiser for the advanced constructor who puts performance beforeprice.
Set of basic component kits, PCBs (as published
Set of text photocopies KIT 66-14 E247.e日

BASIC COMPONENTS SETS include all necessar resistors, capacitors. semiconductors, potentiometer and transformers. Hardware such as cases, sockets knobs, keyboards, etc. are not included but most of these may be bought separately. Fuller details of kits PCBs and parts are shown in our lists.

LAYOUT DIAGRAM8 are supplied free with all PCBs unless "as published

P.E.GUITAREFFECTS UNIT

Modulates the attack, decay and filter characteristics of a signal from most audio sources, producing 8 different switchable effects hat can be further modified by manual controls.
Basic parts with foot switches, PCB \& layout chan
Text photocopy
KIT 42-3

ELEMTOR DIGITALREVERB UNIT

A very advanced unit using sophisticated i.c. techniques instead of mechanical spring lines. The basic delay range of 24 to 90 ms can be extended up to 450 mS using the extension unit. Further deiays can be obtained using more extensions.

Main unit basic component kit and PCB (as published)
KIT 78-3
f53
Extension unit basic component kit and PC8 (as published) KIT 7B-4 ع48.85
Textphotocopy
88p

ELEKTOR ANALOGUE REVERB

Using i.c.s instead of spring-lines the main unit has a maximum delay of up to 100 ms , and the additional set extends this up to 200 mS . May be used in either mono or stereomode.
Main unit basic component set \quad KIT B3-1 $£ 29.49$ Additional Delay basic components KIT B3-2 £20.07 PCB (as publ.) to hold both kits PCB9973 e4.31 Text photocopy

P.E. GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing. for example, flanging, vibrato, reverb, fuzz and tremoto as well as other fascinating sounds. May be used with most electronic instruments.

Set of basic component kits. PCBs \& layout charts
Set of text photocopies
KITB5-5 $£ \mathbf{E S 4 . 3 7}$

P.E. PHASER

An automatically controlled 6 -stage phasing unit with integral oscillator.

Basic components, PCB \& chart KITBB-1 £10.14 2-Notch extension, PCB \& chart KIT B8-2 E8.38

ELEKTOR PHASING 8 VIBRATO

Includes manual and automatic control over the rate of phasing \& vibrato, and has been slightly modified to also include a 2 -input mixer stage.

Set of basic components, PCB \& layout char
Text photocopy
67 p

P.E. PHASING UNIT

A simple but effective manuatly controlled phasing unit Basic components, PCB \& chart Text photocopy

PHASING CONTROLUNIT

For use with Phasing Kit 25 to automatically control rate of phasing Basic components, PCB \& chart KIT 36-1 E5.21 Text photocopy 10p

P.E. SWITCHED TONE TREBLE BOOST

Provides switched selection of 4 preset tonal responses. Basic components, PCB \& chart KIT 89-1 Text photocopy

78

P.E.TREBLEBOOST UNIT

A simple treble boost unit with manual control depth. Basic components. PCB \& chart KIT 53-1 £2.76

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

ELEKTOR RESONANCE FILTER

Allows a synthesiser to produce a more reallstic simulation of atural musical instruments.
Setof basic components \& PCB (as published)
Text photocopy
$\begin{array}{lr}\text { KITB2-2 } & \text { £19.90 }\end{array}$

P.E.GUITAR OVERDRIVE

Sophisticated versatile fuzz unit incl. variable controls affecting the fuzz quality whilst retaining attack and decay, and also providing filtering. Usable with most electronic instruments.

Text photocopy Text photocopy
P.E. SMOOTH FUZZ

Text photocopy

TREMOLO UNIT

A slightly modified version of the simple P.E. unit
Basic components, PCB \& chart KIT 54-1 £3.23

GUITARFREDUENCY DOUBLER

A slightly modified and extended version of the P.E. unit.
Basic components, PCB \& chart KIT 74-1 84.97
Text photocopy

P.E. GUITAR SUSTAIN

Maintains the natural attack whilst extending note duration
Basic components. PCB \& chart
Text photocopy
KIT 75-1 85.64

P.E.WAH-WAH UNIT

Can be controlled manually or by integral automatic control. Basic components, PCB \& chart KiT 51-1 £3.98

P.E. AUTO-WAH UNIT

Automatically gives Wah or Swell sounds with each note played. Basic components. PCB \& chart
Text photocopy

ELEKTOR WAVEFORNCONVERTER

Converts a saw-tooth waveform into sinewave, mark-space saw tooth. regular triangle, or square-wave with variable mark-space.

Basic components. PCB \& chart,
but excl.sw's
KIT 67-1 $\mathbf{~} \mathbf{8 . 2 4}$
P.E.V.C.F.

A voltage controlled filter extracted from P.E. Minisonic project. Basic components, PCB \& chart

KIT-65-1 87.8

P.E. RING MODULATOR

Extracted from P.E. Minisonic projec Basic components. PCB \& chart KIT 59-1 E8.08

ELEKTOR RING MODULATOR

Compatible with the Formant \& most other synthesisers.
Set of basic components \& PCB (as published)
Text photocopy

10\% DISCOUNT VOUCHER

(PE 83)

TERMS: Goods in current adverts \& lists over $£ 50$ goods value (excl P\&P \& VAT).
Correctly costed CW.O. U.K orders on Correctly costed, C.W.O., U.K. orders only, until and of month on cover of P.E. Does not apply to credit card orders.

ADD: POST \& HANDLINE

U.K. orders: Keyboards add $£ 2.30$ each. Other goods: Under $£ 5$ add 25 p . under $£ 20$ add 50 p . over $£ 20$ add 75 p . Recommended insurance against postal mishaps: add 50 p for cover up to $£ 50$, $£ 1$ for $£ 100$ cover, etc., pro-rata. Insurance must be added for credit card orders.
N.B. Eire, C. I. B.F.P.O. and other countries are subject to N.B. Eire, C.., B.F.P.O. and
higher export postage rates.

ADD 15\%VAT or current rate if changed) Must be added to full total of kits. discount post \& handling on all U.K. orders. Does not apply to Exports. or photocopies.

EXPORT ORDERS ARE WELCOME but to avoid delay we advise you to see our list for postage rates. All payments must be cash-with-order, in Sterling by international Money Order or through an English Bank. To btain list - Europe send 25p; other countries send Not.
Note that we do not offer a C.O.D. service and

AND OTHER PROJECTS

PHOTOGAAPH in this advertisement show two of our units containing some of the P.E. projects built from our kits and PCBs. The cases were built by ourselves and are not for sale, though a sma

LisT-Send stamped sodressed envelope with all U.K. requests for free list giving fuller details of PCBs. kits and other components.
OVERSEAS enquiries for list Europesend 20p: other countries-send 50 p .

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSclaim that these are the finest moulded plastic keyboards available. All octaves are C to C . the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame. 3 Octave (37 notes) $\mathbf{2 5 5 . 5 0} \quad 4$ Octave (49 notes) $\quad \mathbf{~} 32.25 \quad 5$ Octave (61 notes) $\quad \mathbf{~} 39.75$ CONTACT ASSEMBLIES (gold-clad wire) - 1 required for each KBD note
Type GJ - SPCO 25 $\frac{1}{2}$ p ea. Type GA - 1 pr of contacts, normally open 24p ea. Type GB - 2 pr N/O 28 $\frac{1}{2} p$ ea. Type $G C-3$ pr N/O $37 \frac{1}{\frac{1}{p}}$ ea. Type GE-4 pr N/O 4etp ea. Type GH - 5 pr N/O $58 \frac{1}{2} p$ ea. Type 4PS - 3 pr N/O plus SPCO $87 p$ ea.

P.E. NOISE GENERATOR

Extracted from the P.E. Minisonic.
Basic components, PCB \& chart
KIT60-1 e4.00
WIND \& RAIN EFFECTS UNIT
A slightly modified version of the original P.E. unit.
Basic components, PCB \& chart
Text photocopy KIT 28-1 E4.68

P.E.ENVELOPE SHAPER

WITHOUTVCA

Provides full manual control over attack, decay sustain and release functions, and is for use with an existing VCA.
Basic components, PCB \& chart
Text KIT 44-1 $\mathbf{\text { E8.24 }}$

P.E.ENVELOPE SHAPER WITH VCA

Has an integral Voltage Controlled Amplifier, and has full manual control over the A.D.S.R. functions.

Basic components, $P C B$ \& chart
Text photocopy
£7.34

P.E.TRANSIENT

GENERATOR

An ADSR envelope shaper without VCA, and additionally providing Repeat-triggering enabling a synthesiser to be programmed for mandolin or banjo effects.

Basic components, PCB \& chart
KIT 63-2 57.13
Text photocopy
E8p

P.E.EXTERNAL-INPUT

SYNTHESISER-INTERFACE

Allows external inputs such as guitars, microphone etc., to be processed by synthesiser circuits.
Basic components, PCB \& chart
KIT 81-1 $\mathbf{8 3 . 2 3}$

P.E.TUNING FORK

Produces 84 switch-selected frequency-accurate tones with an LED monitor clearly displaying beatnote adjustments.

Set of basic components, incl. power supply,
PCBs \& charts KiT46-3 £23.32
Text photocopy

P.E.TUNING INDICATOR

A simple 4-octave frequency comparitor for use with synthesisers and other instruments where the full versatility of KIT 46 is not required.
Basic components, PCB \& chart, but excl. sw.
KIT 69-1 88.19
Text photocopy

P.E.DYNAMIC RANGE

LIMITER

Preset to automatically control sound output levels. Basic components, PCB \& chart KIT 62-1 $£ 5.03$

P.E.CONSTANTDISPLAY

 FREQUENCYCOUNTERA 5 -digit counter for 1 Hz to 55 kHz with 1 Hz sampling rate. Readout does not count visibly or flicker due to blanking.

Basic components, PCB \& chart
$\begin{array}{lll}\text { Text photocopy } & \text { KIT 79-2 } & \text { 232.28 }\end{array}$

P.E.6-CHANNEL MIXER

A high specification stereo mixer with variable
input impedances.
Basic components, (excl.sw's.) and set of
PCBs and charts.
Extra 2-channel set KIT 90-8 e51.35 Extra 2-channel set with PCB $\mathbf{\text { KIT 90-9 }}$ Set of Text photocopies 81.50

STEREOHEADPHONE

AMPLIFIER
Extracted from P.E. 6-channel mixer.
Basic components, PCB \& chart
KIT 92-1 E5.04
DIGITAL EXPOSURE
UNIT
Controls up to 750 watts in $\frac{7}{2}$ second steps up to 10 minutes, with built-in audio alarm.
$\begin{array}{ll}\text { Basic components, PCBs \& charts } \\ & \\ & \\ & \\ & \\ & \mathbf{1 T} 92.40\end{array}$
Textphotocopy $\mathbf{£ 1 . 2 0}$

P.E. DISCOSTROBE

A 4-channel light show controller giving a choice of sequential, random, or full strobe mode of operation, and with additional audio inmod.
Ba

Basic components. PCB \& chart
KIT 57-2
£23.79
Text photocopy
78p

RHYTHM GENERATORS

Several available, including programmable 16 beat 64000 pattern, 128 beat almost infinite pattern, and pre-programmed 15 pattern using either M252 or M253 rhythm chips. A selection of effects instrument circuits is also available.

P.E VOICE OPERATED

FADER

For automatically reducing imusic volume during talkover - particularty usefua for disco work.
Basic components, PCB \& chart

$$
\text { KIT30-1 } \quad 4.37
$$

TAPE NOISE LIMITER

Very effective circuit for reducing the hiss found in most tape recordings.
Basic components. PCB \& char
KIT 6-3 $\quad 4.13$

AMEBICAN
 FxpBES

SUPPLIERS OF GOMPONENTS THAT GOUNT						
SIEMENS SEMI CONDUCTOR CAPACITORS FERRITES		NASCOM MICRO COMPUTERS AND ANCILLARIES		BAASES KITS		
ISKRA RESISTORS	RADIOHM POTENTIOMETERS		BREADBOARDS			
			SOLDER TOOLS			
	OPTO ELECTRONICS		Suich	catalocue 10		
OUR MINI-SELECTION POINTS THE WAY!						
EXAMPLE FOUR - CAPACITORS BY SIEMENS \qquad 						
EXAMPLE FIVE - POTENTIOMETERS BY RADIOHM						
EXAMPLE SIX - RESISTORS 						
AND AS FOR SEMI CONDUCTORS packed type in this journal - the range is enormous including not only opto devices and very PRICESS AND V.A.T. - All pirices quoted here include V.A.T. tor U.K. orders. Oversseas POSTAGE - For orders up to $£ 5.75$ value (U.K.) please add $40 p$ for p / p. If over, orders sent post free in U.K. Overseas orders sent ar cost (Min. 40p) DISCOUNTS - 5\% allowed on non-net items if order vatue exceeds $£ 11.50 .10 \%$ if order ELECTROVALUE LTD. Dopt PEs, 28 st. Judee Rond, Englafield Green, Egham, Surray TW20 04B. Phome Eghem (8 TD 0784. From London 87) 33603 TElox 284475. M19 iNA Phorn Personal Shoppers onlyl 680 Burnage Lane, Manchester						

MORE BIGVALUE FROM MOURTANDYSTORE

ロM-D

DIGITAL MULTIMETER

- DC Volts AC Volts. DC Current Resistance
* 31/2 digit LCD
- Auto Low Battery indication

Auto Polarity \& Zero

- 1\% accuracy (DC volts)
- Designed around Intersil 7106 IC
- Total cost around $£ 30$ (incl. case)

FG-1a

FUNCTION GENERATOR

* 30 mV to 10 V pk-pk
- 1 Hz to 100 kHz
- DC coupled
- Sine, Square \& Triangle
- Separate TTL output
- Designed around Intersil 8038 IC
- Total cost around £30 (incl. caso)

Provided in a JAYkit is a Printed Circuit Board, a punched and lettered Front Panel overlay, a Circuit Diagram and Instruction Sheet and a comprehensive and up to date Component List showing suppliers and current prices. Difficult to obtain pleces of hardware are supplied with th kit. Jayen Developments, 21 Gladeside. Bar Hill, Cambridge CB3 8DY

Automotive Transducers

Presently used exclusively by automotive equipment manufacturers these sensors are now available for your automotive projects
Manufactured from high quality engineering plastics these unique sensors give a 5 V square wave output signal, TTL and CMOS compatible, which is proportional to flow or speed over the ranges normally experienced in automotive applications

Speed Sensor >
This optoelectronic sensor fits to any speedometer cable with cable core dia up to 3.2 mm and gives an output frequency of 10 pulses per revolution. 89.95 (incl. VAT, p\&p)

- Flow Sensor

This versatile flow sensor can be used for a variety of liquids flowing in either direction, giving a linear digital output signal related to flow over the range of $1.5-1001 / \mathrm{hr}(0.3-22$ g / hr). Connects to hoses with an internal diameter of $4-8 \mathrm{~mm}$. $£ 12.65$ (incl. VAT, p\&p)
Enviro Systeme Ltd., Hempsfeh Roed, Grange-over-Sande, Cumbria.
Name
Address

Please send me
speed sensors and
flow sensors
*I enclose my cheque/P.O. for
or

* debit my Access/Barclaycard No.
* Delete whichever does not apply.

8
EnviroSystems Ltd., Hampsfell Road, Grange-over-Sands, Cumbria. Tel: 044844233

YourCommodore PETSystem The Commodore PET is Britain's best selling microcomputer

 and the most popular choice in every field:-* In Education for teaching Computer Science and as a teaching aid for other subjects. * In Science and Engineering for solving problems and for monitoring laboratory equipment. * In Business the PET system can be put to a wide range of functions including Payroll, Accounting, Statistical Analysis, Stock Control and Word Processing.

Not least of its attractions is the price of a PET - from $£ 550$ for a self contained unit, to under $£ 2,500$ for the complete system including Floppy Disk Unit and high-speed Printer. Ask your nearest Commodore dealer below for details about Commodore hardware, software and training courses.

MITRAD A REALLY SUPERB PIECE OF MODERN TECHNOLOGY MITRAD

GENTS DIGITAL ANALOGUE CHRONOGRAPH

GENTS DIGITAL ANALOGUE CHRONOGRAPH

COMPLETE PRICE BREAKTHROUGH
JUST LOOK AT THIS OUTSTANDING WATCH
(i) 6 functions (hour, min., sec., month, date, weekday)
(ii) Chronograph resolution
(iii) Automatic 4 year calendar.
(iv) Five buttons control all functions.
(v) Back light available.

The above watch is a new style digital analogue, featuring complete up to date modern technology. The watch basically constitutes a traditional hand watch plus a modern digital watch, both battery powered.

Hours, mins., and seconds are on constant display and with the press of a button, month, date and weekday is displayed.
This unique timepiece also has a chronograph built in which runs to a $1 / 100$ th \sec., and has a 12 hour capacity.

OFFERED AT ONLY
£29.95 + P/P

Features include (i) The chronograph can be frozen. (ii) Two people can be timed simultaneously, and (iii) split and lap mode facilities are available.

The watch is finished off with an elegant infinite adjustable stainless steel strip.

Wiring Accessories

The Vero range of wiring accessories are all highest quality 'professional' products, carefully selected to ease your interconnection problems. There's a full range of pins and DIP sockets (including low-profile) for solder or wire wrapping techniques and the popular Verowire prototype wiring system. Add these to our established range of boards, boxes, frames and cases and you've got all you need for your project. It's all in our catalogue - just send 40 p. and it's yours by return.

GENTS MEMORY CALENDAR ALARM CHRONO

A really successful watch incorporating all the latest technology. Hours, mins., secs., weekday and snooze alarm indication on constant diaplay.
A further two optional display modes are available, one being the calendar and month which can be increased or decreased to give the appropriate month of the year.
A $1 / 100$ th second chronograph with split and lap mode.
Facilities are built into the watch with a 12 hour capacity.
A 24 hour alarm with a 10 minute snooze function is also standard to this watch. A further feature is the backlight and fully adjustable stainless steel bracelet.

f19.95

NEW - ZETRON L.C.D. CALCULATOR - NEW

Superb value in the economy range of L.C.D. calculators What more could you ask for? This marvel of the silicon chip era boasts the following. Four basic functions, chain and mix ed operations, constants for four functions, \% calculations including discounts and mark ups, automatic accumulation in four functions.
*PLUS * Square root facility. *PLUS* Memory facility. *AUTO POWER OFF (7 minutes)

All this for modest $\mathbf{£ 4 . 9 5}$

GENTS ALARM CHRONO (12/24 CYCLE)

A really superb watch. It can be set as a 12 or 24 hour watch with hours, mins., secs. Am/pm and weekday indication always on display. A unique calendar is built into the watch. You can have month followed by date or date followed by month its entirely up to you.
A 24 hour alarm can be set to anytime within a 24 hour period.

The chrono has a 12 hour capacity and runs at $1 / 10$'s split and lap mode facilities are available.
Battery hatch, mineral glass, long life battery, and a closely woven adjustable stainless steel strap finish the watch off with impeccable looks.
f16.50

GENTS QUARTZ ANALOGUE

A truly superb timepiece with extreme accuracy. A choice of two colours on this outstanding watch are available. Blue or White.

The calendar in the watch can be set to give a readout in either French or English with date indication being automatic.

An infinite adjustable stainless steel strap is built in as part of the watch.

The watch is fitted with a long life battery and comes with luminous
 markings to aid night time vision.

YES ONLY £19.95

NEW - QUARTZ L.C.D TIMER - NEW

A new style timer incorporating split second accuracy. The timer is finished in a strong black plastic case with large L.C.D. readout of hours, min., and secs. A further optional display mode of month, date, and weekday is available.
The timer incorporates a $1 / 100$ th sec. chronograph with numerous facilities.
(i) The timer can be frozen. (ii) Two people can be timed simultaneously.
(iii) Split and lap mode facilities are available.
A strong black cord is attached to the timer which aids movement at sporting events. Battery replacement is made easy with screw back.

Offered at only
£19.95

WE ARE ABLE YET AGAIN to offer you the above watches, plus the complete ZETRON range. All at unrivalled prices. Just look at the following points.
(i) $\mathbf{4 8}$ hour despatch guaranteed on both retail and trade orders.
(ii) Full instructions and 12 month manufacturers guarantee.
(iii) Our own free back up service.
(iv) $\mathbf{1 0}$ day full money refund if not completiely satisfied.
(v) Free felt presentation case with each watch.

PHONE OR WRITE for free full comprehensive catalogue on the complete range of watches we offer. Large discounts available for bulk buyers. Trade lists on application. Agents wanted everywhere. P/P per item 85p which includes insurance.
Cheques or PO's made payable to MITRAD and sent to (Dept PE), 58 Windmill Ave, Kettering, Northants, NN16 8PA.
(0536) 522024.

Britain's first comp

A complete personal computer for a third of the price of a bare board.

Also available ready assembled for $£ 9995$

The Sinclair ZX80.

Until now, building your own computer could easily cost around $£ 300$ - and still leave you with only a bare board for your trouble.
The Sinclair ZX80 changes all that. For just £79.95 you get everything you need to build a personal computer at home...PCB, with IC sockets for all ICs; case; leads for direct connection to your own cassette recorder and black and white or colour television; everything! And yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers on the market at several times the price. The ZX80 is programmed in BASIC, and you could use it to do quite literally anything from playing chess to running a power station.
The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. Once assembled, it immediately proves what a good job you've done. Connect it to your TV set...link it to an appropriate power source ${ }^{*}$.. and you're ready to go.

Your $\mathbf{Z X 8 0}$ kit contains...

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs - all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be SAVEd and LOADed on to any portable cassette recorder.)
- FREE course in BASIC programming and user manual.
Optional extras
- Mains adaptor of 600 mA at 9 VDC nominal unregulated (available separately - see coupon).
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra RAM chips also available - see coupon.)
*Use a 600 mA at 9 V DC nominal unregulated mains adaptor. Available from Sinclair if desired (see coupon)

Two unique and valuable components of the Sinclair ZX80.

The Sinclair ZX80 is not just another personal computer. Quite apart from its exceptionally low price, the ZX 80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teach-yourself BASIC manual.
The unique Sinclair BASIC interpreter... offers remarkable programming advantages:

- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handling capability - takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The 7.X80 also has string inputto request a line of text when necessary.
Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up 26.
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable en try of machine code instructions, USR causes jump to a user's machine language sub-routine.

High-resolution graphics with
22 standard graphic symbols.

- All characters printable in reverse under program control.
- Lines of unlimited length.

... and the Sinclair teach-yourself

BASIC manual.

If the features of the Sinclair interpreter listed alongside mean little to you-don't worry. They're all explained in the specially-written 128-page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC pro-gramming-from first principles to complex programs. (Available separately - purchase price refunded if you buy a ZX80 later.) A hardware manual is also included with every kit or built machine.

Fewer chips,
compact design, volume production more power per pound!
The ZX80 owes its remarkable low price to its remarkable design: the whole system is packed on to fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the ZX80's IK byte RAM is roughly equivalent to 4 K bytes in a conventional computer-typically storing 100 lines of BASIC. (Key words occupy only a single byte.)
The display shows 32 characters by 24 lines.
And Benchmark tests show that the ZX80 is faster than all other personal computers.
No other personal computer offers this unique combination of high capability and low price
The Sinclair $\mathbf{Z X 8 0}$. Kit: $\mathbf{£ 7 9 . 9 5}$. Assembled: £99.95. Complete!
The ZX80 kit costs a mere $£ 79.95$. Can't wait to have a ZX80 up and running? No problem! It's also available, ready assembled, for only $£ 99.95$.
Whether you choose the kit or the readymade, you can be sure of world-famous Sinclair technology-and years of satisfying use. (Science of Cambridge Ltd is one of the Sinclair companies owned and run by Clive Sinclair.)
To order, complete the coupon, and post to Science of Cambridge for delivery within 28 days. Return as received within 14 days for full money refund if not completely satisfied

Science of Cambridge Ltd
6 Kings Parade, Cambridge, Cambs., CB2 ISN. Tel: 0223311488.

Order Form

To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN. Remember: all prices shown include VAT, postage and packing. No hidden extras.
Please send me:

NEW

12+12

AMPLIFIER KIT

An opportunity to build your own 12 watts per channei stareo amplifier with up-to-the-minute features. To complete you just supply screws. conmecting wire and solder. Features include din input sockets for ceramic cartridge, microphone, tape or tuner. Outputs-tape. speakers and headphoness. By the press of a button it transforms into a 24 watt mon
disco amplifier wath twin deck mixing The kin incorporates a Mullard LP1183 pre-amp module. plus 2 power amplifier assembly kits Also featured 4 slider fevel controls, rotary bass and trabie controls and 6 push button switches. Silver finish fascia panel with matching inobs. Easy to assemble teak simulate cabinat and ready made metal work. For further information instructions are avalable pricte 50 p . Free
Size $94^{\prime \prime} \times 84^{\prime \prime} \times 4^{\prime \prime}$ approx.
with kut. NOTE: for use with 4 to 8 ohms speakers. p\&ip f 2.55 , TWO WAY SPEAKER KIT To suit above amp. Comprising 2 , $8^{\prime \prime}$ approx Phillips base unit, and $2,31 / 2^{\prime \prime}$ approx tweeters with crossover capacitors $£ 4.95 \mathrm{p} \mathrm{\& p} \mathrm{f} 1.65$.
Available only to first time purchasers of ths $12+12 \mathrm{kit}$.

50WATT MONO
 DISCO AMP
 £ $\mathbf{3 0 . 6 0}$

$p \& p 13.20$
$\times 634^{\prime \prime}$
Size spprox $13 \mathrm{~K}^{\prime \prime} \times 51 / 4^{\prime \prime} \times 634^{\prime \prime}$
50 watts rms. 100 watts peak output. Big features include two disc inpuis. both for ceramic cartridges, tape input and microphone input. Level mixing; controls fitted with infegral push-pull switches. mindapendent bass and trable controls and master volume.

$30+30$ WATT STEREO AMPLIFIER

Viscount IV unit in teak simulate cabinet Silver finosh rotary controls and Pustiouitons mith matching fascia, red mains indicator and stero ackik socket.
Functions swith for mic magnetic and crystal pickips. tape tuner and auxilan Rear panel features fuse holder DIN speaker and input socket $30+30$ watts RMS $60+60$ watts paak for use winh 4 to 8 ohm speakers. P? ? ? Size 143 " " $\times 3^{\prime \prime} \times 10^{\prime \prime}$ approx.
BUILTAND READYTO PLAY p\&p f3.30 TOULCI

\square
PACK $12 \times$ LP 1173 10w RMS output power audio amp modules.
+1 LP $1182 / 2$ Stereo pre amp for cerame +1 LP 1 182/2 Stereo pre amp for ceramic and auxiliary anput. mint 5.00

2
PACK 2×1 2 117310 w RMS output power audio ampo modules +1 LPI 184/2 Stereo pre amp for magnatic. ceraminc and auxiliary inputs \quad illus. our Paice 57.15 pap f1.15
ACCESSORIES Suitable mains power supply parts, consisting of maws transformer, bridge rectifier, smoothing capacitor and set of rotary
stereo contrals for treble, bass. stereo controls for treble. bass.
volume and balance
?3. 11 plus paqp $6 L 6$
Two Way Speaker Kit Comprising of two $8^{\prime \prime} \times 5^{\prime \prime}$ approx 4 ohm bass and two $31 / h^{\prime \prime} 15$ ohm mid-range tweeter with two cross-over capacitow.

323 EDGWARE ROAD, LONDON W2 21 B HIGH STREET, ACTON W3 GNG ACTON: Mail Order only. No callers ALL PRICES INCLUDE VAT AT 15% all items suapect to aveilestiting. Price correct at and suhject to cheone withont notice.
WOTE: Parsons wadar 16 yara mot sarved without parent's mothorisation.
$£ 76.00$ 100 WATT MONO DISCO AMP Anse rastia and rotary controls. Size approx. $14^{\prime \prime} \times 4^{\prime \prime} \times 104$ Frwe vartical slide controis, master volume, tape ievel, mic level, dect level, PLUS INTER DECK FADER for perifact graduated change from record deck Wo. I to No. 2 or vice verse. Pre fade level control (PFL) lets YOU hear next disc batort fading it in. WU meter monitors output fevel. Outpet 100 watts RMS 200 watts peak.

BSR P200

Belt drive chassis turnable $2=0.4$
unit semi-automatic, cueing device. plap $\mathrm{C3} 00$ Shure
to suit.
to suit. 6 Magnetic Cartridg
£7.95

30 Manual single play return and cuerng leverd tinted with a stereo ceramic cantridge 2 speeds with 45 r Pm spindle adaptor ideally sutied for home $\left.\begin{array}{c}\text { or disco use } \\ \text { OUR PRICE }\end{array}\right\}$ PHILLIPS RECORD PLAYER DECK GCO37 Hifi record player dack bell drive complete with GP401 magnetic cartridge-LIMITED STOCK. $\mathbf{E 2 7 . 5 1}$ complete. BUYER COLLECT ONLY.

\section*{BARGAIN OFFER

Ariston pick-up arm

Ariston pick-up arm

Ariston pick-up arm
Complete with headshell.
Complete with headahell.
Listed price over f 30.00 .

GOING UP

NINETEEN eighty looks like being the year in which i.c.s started on the never ending spiral of price increases which most other products tend to follow. Until recently, most of the i.c.s. employed in any great number have tended to continually fall in price. The only exceptions to this rule have been those devices in limited production, or those that for various reasons the manufacturer wished to phase out.

Over the last couple of years most major suppliers have "rationalised" their range in order to be cost effective on their own specialised products, but generally speaking, due to heavy competition, most prices have fallen steadily. There is no doubt that many of the more popular devices have for some time been available at incredibly low prices-some of them had become uneconomic to produce. Many manufacturers used the precious metal surcharge, slapped on virtually every device by all suppliers, to redress the price problem. It gave them the chance to increase prices without having to explain why.

At the same time as the surcharge some i.c.s were becoming scarce. Whether this has been deliberate or not it has most certainly enabled prices to rise and has led to something of a black market in various devices. It has also been possible to tell from the quoted price the availability of components from some distributors; high prices generally indicating an ex-stock situation and vice-versa.

HOBBYIST MARKET

To a great extent this situation has not had much effect on the hobbyist market, some protection being afforded by the stocks carried by retailers. It has, however, posed various problems for the retailer, particularly when faced with a protracted supply position and no devices on the shelf. Should he, for instance, buy from the black market and keep his customers supplied "at a price" or should he refrain from stoking the inflationary fire and advise the quoted delivery date or make a refund?

Perhaps his biggest problem is that of convincing you, the buyer, that he is
doing his best in a difficult situation. Simply because "Bloggs Components" can still supply their remaining stock immediately, at the old price it does not follow that he ought to be able to do the same. Obviously retailers buy in bulk and it may be some time before one supplier has to up his price, especially if he has a slow turnover or a large stock. The increases therefore hit different retailers at different times, but in this competitive retailing area no one can afford to charge over the odds for any readily available device.

With the cost of plastic rising in line with oil and the continually increasing manufacturing costs we believe that the end has come to cheaper and cheaper devices. Most i.c.s are still very cheap in relation to their complexity and the vast capital investment necessary for their production. We can therefore expect to pay more for our devices in future, the only consolation being that as they become more complex we should be able to build better projects for the same cost!

Mike Kenward

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 75p each including Inland/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 4 \cdot 10$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10 \cdot 60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

CAPACITANCE METER

The new Model 820 portable capacitance meter from Havant Instruments Limited is an economical multi-range instrument combining digital accuracy with complete portablilty. Its ten ranges cover capacitances from $0 \cdot 1 \mathrm{pF}$ to 1 Farad. Accuracy is 0.5 per cent or 1 per cent of full scale, and resolution down to 0.1 pF , according to range.

In use the capacitor leads are simply inserted into a pair of slots and the capacitance is indicated on the clear 4 -digit l.e.d. display. A flashing display provides over-range indication. Provision is also made for using jack plugs when measuring in-circuit capacitances.

The Model 820 is ideal for production line, laboratory, or home use, and has a robust moulded case which weighs only 675 g (1.51 $\mathrm{lb})$. It will operate with rechargeable or disposable cells and there is provision for a charger. A tilt stand, spare fuse and 26 -page operating manual are supplied.

The 820 costs $£ 80$ plus VAT and $p \& p$, and is available from: Havant Instruments Ltd, Unit 3, Westfields, Portsmouth Road, Horndean, Hants. (0705 596020).

THE STRIPPER

If you need a new pair of strippers or cutters, read on. AB Engineering have introduced a low priced combined wire stripper and cutter known as the AB MK 001. As well as its attractive price, the AB MK 001 has the added advantage of easily adjustable stripping depth-all you need to do is turn the knurled

knob. Clean wire cutting is effected by means of a curved cutting edge, which results in a secateur-like action. A retaining clip is also provided to ensure that the cutter stays closed when not in use.

Priced at $£ 2 \cdot 15+$ VAT, the AB MK 001 is available direct from the manufacturers: AB Engineering Company, Timber Lane, Woburn, Beds. MK 17 9PL.

THIRD HAND

Here's an answer to the prayers of those constructors who find that they weren't provided with enough limbs-the Telpro Multi-Purpose Work Holder.

Unlike most miniature vices, this one has reversible jaws. One side has a series of holes
which enable it to grip objects from 1 mm diameter (such as component leads) up to 20 mm diameter. The opposite side is serrated, so that flat objects such as p.c.b.s can be firmly held. Both metal and soft nylon jaws are supplied, and a spring loaded knob allows the clamp pressure to be varied. To give complete versatility, the clamp is mounted on a universal joint, giving 360° rotation and 180° tilt. It can of course be locked in any position.

Also, there's no danger of your project creeping across the bench while you're working, as the detachable stand is provided with suction feet.
The price of the Telpro Multi-Purpose Work Holder is $£ 15+$ VAT \& p\&p, and it can be purchased direct from the manufacturers: Tele-Production Tools Ltd, Stiron House, Electric Avenue, Westcliff-on-Sea, Essex SSO 9NW.

INSTANTIRON

From 'Down Under' comes a miniature soldering iron, the Scope Mini-Super-Speed. It reaches its operating temperature in only five seconds, and power and temperature can be controlled simply by moving the fingertip control lever. The iron uses a $3 \cdot 3 \mathrm{~V}$ transformer as a power supply, and a remarkably compact carbon heater gives up to 75 W power. Even when the iron is at its hottest, the handle remains completely cool, as the element is situated right at the tip of the stainless-steel shaft.

The Scope Mini-Super-Speed Iron retails at $£ 12 \cdot 50+$ VAT, and the 3.3V Safety Transformer retails at $£ 7.50+$ VAT. An element and tip spares pack is also available at $£ 2.50+$ VAT. All Scope products can be purchased direct from: Toolrange Ltd., Upton Road, Reading RG3 2JA.

SCOPEX

With so many engineers and technicians using oscilloscopes for field work today there is a definite need to ensure that the scope is well protected against any accidental damage which may be caused in transit. To protect their range of scopes Scopex have introduced a complete range of travel cases.

Two types are available; a heavy duty quilted p.v.c. case with a dense foam sandwich or an aluminium extruded edge model.

The prices for the p.v.c. cases range from $£ 18.00$ to $£ 22.00$ with the aluminium models priced between $£ 49.00$ and $£ 58.00$ (all prices exclude VAT and $p \& p$).

Scopex Instruments Limited, Pixmore Industrial Estate, Letchworth, Herts, SG6 1JJ (04626 72771).

REED SWITCH

Hamlin Electronics has introduced a new flush-mounted axially operated proximity switch which is particularly suited for use with burglar alarms. Known as the Type RP113, the reed-switch device is easily fitted into a hole drilled in the door frame, with the operating magnet similarly fitted to the door.

The switch measures 28 mm in length x 7.62 mm in diameter, and is supplied with two pairs of leads; one pair can be looped back into the circuit. Four reed-switch options are available: low-cost Form A (normally open); standard Form A; high-power Form A; and standard Form C (single-pole/double-throw).

The retail price should be approximately 67 p for the standard Form A, and the switches should be available from Radio Resistor Ltd. In case of difficulty contact: Hamlin Electronics Europe Ltd., Diss, Norfolk. IP22 3AY. (0379 44 II).

VIDEO WARS

The war between the Video manufacturers hotted up recently when Sony introduced their latest model, the C7. Using the well known Betamax system, the C 7 is considerably more sophisticated than previous models, and will, according to Sony, set the standard for other manufacturers.

Among various features such as infra-red remote control, and a digital clock/timer which enables a very high degree of programming flexibility, is 'Picture Search', which Sony claim is unique to the C 7 . The facility enables the user to run the tape forwards or backwards at up to twenty times the normal speed with the picture still on the screen. Thus a particular place in the tape can be easily pinpointed. Sports enthusiasts will also be pleased to note that the slow-motion playback shows every frame-not just one or two frames out of every five as with many other machines.

Retailing at $£ 721$ including VAT, the Sony C 7 is available from most Sony dealers.

PROTOTYPE BOARDS

OK Machine \& Tool have introduced a new series of 'Circuit Mount' boards for electronic projects and prototypes. All boards feature solderless insertion type sockets on 0 - lin centres and each row has five common points. Larger boards also feature 40 -point bus lines, while a separate bus strip module is also available. Furthermore, all boards can accept standard component leads including d.i.p.s, while interconnections are easily made using standard 22SWG $(0.64 \mathrm{~mm})$ solid wire.

Circuit Mount prototype boards are available in a range of sizes from small modules designed to hold a single i.c. up to 1020 point panel-mounted boards complete with binding posts. All separated modules are interlocking and also feature screw holes for permanent mounting.

Units are available directly from:
OK Machine \& Tool (UK) Ltd., Dutton Lane, Eastieigh, Hants SOS 4AA. (0703 610944.)

TX10 LAUNCHED

Following the success of their TX9 single board colour TV chassis for 14 to 20 in sets, Ferguson has now developed a TX 10 single board chassis for colour receivers with 110° tubes (20 to 26 in screens).

The slimline cabinet styling has been achieved by splitting the single board chassis during manufacture and using a $30 \mathrm{AX} 110^{\circ}$ inline tube with high brightness and fast warm up.

Power consumption has been reduced to less that 70 watts at black level-hitherto it has been around 150 watts for 110° chassis. This reduction in power means less heat is

generated resulting in longer component life and improved reliability.

The TX 10 chassis is electrically isolated which means servicing can be carried out with a greater degree of safety whilst the mains power is on. The isolated chassis also enables the addition of external sockets for video, audio, home computers, etc., which can be plugged in easily and safely.

At present only basic 22 in TX 10 sets are being manufactured but the following options can be exercised in the future without affecting the basic chassis: simple or sophisticated remote control, sweep tuning, bass and treble control, teletext, Prestel, hi-fi outputs, extension loudspeakers, headphone socket and audio outputs.

Thorn Consumer Electronics Ltd., 284 Southbury Road, Enfield, Middlesex, EN1 1TJ.

BLACK DOOR SUPPLIER

Behind a rather uninviting black door in a South London suburban back street lies an "Aladdin's Cave" full of electronic goodies of every description. Everything in fact from new semiconductor devices of which a reasonably large range is stocked, right up to daisy wheel printers, Tektronix 'scopes, computer tape drives and virtually every description of test gear and computer peripheral.

Most of the equipment, which is used is in remarkably good condition and anyone with an interest in practical electronics (with a small " p " this time) could loose themselves for an hour or two just looking through what's

available. Warning-it is very difficult to come away without parting with a few readies!

We discovered an excellent VDU and keyboard unit in a smart case for about $£ 49$ and the 77 key, keyboard kit shown above which sells for about $£ 27$. We could have picked out about ten items which represent incredible value for money, without looking too deeply so, if you have some time to spare, pay a visit, and say Market Place sent you; there's even room to park.

Where is it: Display Electronics, 64.66 Melfort Road, Thornton Heath, Surrey, 01-689-7702 (they do mail order too). It's not far from Thornton Heath Station.

STORACALL

Storacall has just launched their new Ansamaster II telephone answering computer. This unit is the first to use a microcomputer to monitor each function of the machine and can inform the user through a alpha-numeric display; how much time has elapsed while recording the outgoing announcement, how many calls have been received, which call is being listened to during playback, whether a call is being taken, and whether the user has mis-operated the unit, or if there is a fault with either of the two cassettes.

Among its many features are included fast forward, fast rewind, an answer only facility,

variable length outgoing announcement, builtin microphone and call monitor facilities. The most important feature, however, is the remote recall that enables the user to listen to his messages without returning to his home or office. Unlike most other remote controlled answering machines, the Ansamaster II does not use bulky and expensive pocket activators. Instead a changeable voice code is used, which is programmed by five changeable code switches on the back of the unit. This means that it is easy for more than one person to use the unit and greater security is gained as the code can be changed at will.

The Ansamaster II can be purchased outright or rented from $£ 3.36$ per week.

Storacall Ltd. 28 York Street, Twickenham, Middlesex (01-891 3321).

TEXAS TI-99/4

The latest home computer from Texas Instruments is the TI-99/4. This system uses TI's own extended BASIC and has a total memory capacity of up to 72 K : 16 K RAM, 26 K ROM and 30 K of ROM in each of the solid state software modules. These plug-in pre-programmed modules which have been written by TI cover, Home Management/Personal Finance, Education and Entertainment. Each module is a complete program with its own extra memory capacity. The concept was developed by TI for their range of advanced programmable calculators.

A sub-program in the TI-BASIC enables you to use up to 16 colours on the screen at one time and to specify the colours of the characters and the background display. Another sub-program allows the playing of tones over a five octave range with up to three notes (for computer music) and one noise tone (for sound effects) available simultaneously. The duration and volume of the sound can also be controlled.

Among the accessories available for the TI$99 / 4$ is a speech synthesizer, which gives the computer a vocabulary of over 200 words.

The price of the TI-99/4 is $£ 655$ with the speech synthesizer priced at $£ 79.95$ and memory modules available from $£ 16.95$ to $£ 44.95$ (all prices inclusive of VAT).

For further information contact Scan Computers, Ltd., Chanctonbury House, Church Street, Storrington, Sussex (09066 4342).

CASIO

For their fx-8100 calculator Casio have incorporated a clock, calendar, alarm, two countdown timers and a stopwatch into a scientific calculator which has 46 functions and can handle up to five levels of parenthesis.

The clock which has an accuracy of ± 3 seconds a day is based on the 12 hr system and displays hrs, mins, secs, PM and day of week. The calendar has been programmed to the year 2000 and requires no adjustment but must be reset after replacing the batteries.

The three alarm functions include a main alarm which once set will sound the buzzer for 20 secs at a preset time everyday until it is

cleared. The other two alarms are of the countdown type; timer 1 can be set by entering hour and minute digits up to 9 hrs and 59 min or it can be set in minutes up to 99 mins. When preset time has elapsed the buzzer sounds for 20 secs and is automatically cleared whereas timer 2 will sound the buzzer each time the preset period has elapsed. The stopwatch function allows for timing periods up to $9 \mathrm{hrs}, 59 \mathrm{~min}, 59$ secs and 99/100ths of a second. Normal, net and lap times can all be measured.

Also included with this calculator is a comprehensive instruction book which covers all aspects of operating the $\mathrm{fx}-8100$.

The price of the $\mathrm{fx}-8100$ is $£ 24.95$ excluding VAT and p\&p. Tempus, (Dept. PE), Beaumont Centre, 164-167 East Road, Cambridge, CBI 1DB.

CSC CATALOGUE

The latest 36 page catalogue from Continental Specialties Corporation covers the company's range of counter timers, frequency counters, pulse generators, logic probes and analysers. Instrument cases as well as solderless breadboard systems are also covered and the catalogue includes the company's latest digital capacitance meter (model 3001) which provides direct $3 \frac{1}{2}$ digit reading of capacitance from 1 pF to $199.9 \mu \mathrm{~F}$.

The catalogue is available free of charge from CSC, Shire Hill Industrial Estate, Saffron Walden, Essex. CBll 3AQ.

VMOS power f.e.t.s

A selector guide covering a wide range of VMOS power f.e.t.s is now available from Hunter Electronics. Breakdown voltages range from 40 to 600 volts with low on resistances (down to 0.3 ohms). The devices are available in a variety of packages including 14 pin di.i. complementary devices.

Hunter Electronic Components Limited, 55 High Street, Burnham, Bucks. (06286 65421).

Youcant beat The System

The Experimentor System ${ }^{\text {TM }}$ - a quicker transition from imagination

Experimentor Matchboard" pre-drilled PCBs.

When you have a circuit idea that you want to make happen, we have a system to make it happen quicker and easier than ever before: The Experimentor System.

You already know how big a help our Experimentor solderless breadboards can be. Now we've taken our good idea two steps further.

We've added Experimentor Scratchboard workpads, with our breadboard hole-and-connection pattern printed in light blue ink. To let you sketch up a layout you already have working so you can reproduce it later.

With Experimentor Matchboard you can go from breadboard to the finished product nonstop! We've matched our breadboard pattern again, this time on a printed circuit board, finished and ready to build on. All for about $£ 1.32$.

There's even a letter-and-number index for each hole, so you can move from breadboard (where they're moulded) to Scratchboardim (where they're printed) to Matchboardiм (where they're silkscreened onto the component side) and always know where you are.

When you want to save time and energy, you can't beat The Experimentor System.

Status

When I commented at length on the Finniston Report in the April issue of PE the views expressed were my own first instant reaction to the new proposals. Since then there has been a substantial volume of published letters in the professional engineering journals and the broad consensus of opinion appears to be at best lukewarm to the ideas set out in the Report. Other engineers, it seems, are equally as sceptical as I was, and still am, on the merits of the proposals and the effect, if any, of their implementation.

Most engineers, while generally contented in working at their chosen profession, are unhappy with their status and relate this to earnings. A distinctive title such as the present Chartered Engineer or proposed Registered Engineer is not sufficient in itself to command respect.

Well, it's all a question of the 'going rate' for the job. There is no question that professional engineers are undervalued in society in both earnings and respect. Most, I fancy, while welcoming more respect would far sooner have a higher income. At one stage, not long ago, their salaries were actually falling behind the rate of inflation so, in real terms, salaries were sliding down. The results of this year's IEE salary survey show that the hypothetical average electrical/electronic engineer enjoyed an increase of 18.5 percent in salary, up from $£ 7204$ to $£ 8580$. Although the inflationary trend is now upwards towards 20 percent this is not true of the whole year in review and so there is a marginal gain. But not nearly enough. Far too many engineers have a gross income below that of many categories of manual or craft labour.

On the vexed question of pure status, disregarding salary level, it is a pity that the news media generally refer to organised workers in the engineering industries as 'engineers' without qualification and generally only in a context of dispute with employers.

Despite all the rumblings of dissatisfaction there is no mass exodus of young engineers to better paid but less congenial jobs in the mines, on building sites, or on oil rigs. Neither is there evidence that senior engineers are busy retraining for more lucrative posts in law or medicine. One is left with the conclusion that despite all their grievances, some real, some imaginary, most if not all engineers prefer to stay put. One consolation is that the present chronic shortage guarantees that any engineer worth his salt need never be without comparatively enjoyable employment for the forseeable future.

Suite 210

Suite 210 could well become a catchphrase for success in the electronics industry. For it was in Suite 210 in the London International Hotel that Racal's Ernie Harrison planned the coup that brought Decca into the Racal empire. It was here that on a Sunday evening Harrison got together with Decca Chairman Nigel Graham Maw and their respective merchant bank advisers and agreed the attempt to swing the institutional investors into backing Racal against the powerful GEC counter-bid. By the following Thursday Racal had a guarantee of over 50 percent of Decca's voting shares and the battle was won.

With the addition of Decca, Racal now has some 20,000 employees of which some 6,000 plus are overseas. Turnover is targeted at $£ 500$ million for $1980-81$ and pre-tax profit $£ 90$ million. Much depends on re-organisation in Decca on which Ernie Harrison will concentrate in the coming months since officially moving in to Decca's head office at 1500 hours on April 1. Racal is now a true multinational with 15 companies in the USA alone. Paradoxically, having recently pulled out of South Africa, Racal now finds itself back there again through a Decca subsidiary.

Resurgence

Plessey now looks in much better shape. Their third quarter results showed sales for the nine months up 13 percent at $£ 526$ million but more important was the 31 percent increase in operating profit to $\mathbf{£ 4 0}$ million over the same period last year. Lossmaking Garrard has now gone and other loss-leaders like the remaining BPO Contracts for Strowger exchanges are on their way out.

On recent visits to Plessey establishments I noticed there was quite clearly an uplift in morale. And it wasn't just the disappearance of the threat of a Racal takeover, it now being considered that Racal will take some time digesting Decca before making any more predatory moves.

The uplift is more due to the realisation that Plessey has a strong product line and a newly aggressive attitude in the market place. This is particularly noticeable in the electronics group. Plessey Electronic Systems Ltd., employing some 9,000 people and now achieving sales of some
$£ 200$ million a year with greatly improved operating profit and a sharp rise in exports. Plessey Marine's factory at Newport, Gwent, is being doubled in size and Plessey Defence Systems is busy building new production areas on the site at Christchurch formerly occupied by the MOD Signals Research and Development Establishment (SRDE) which has now moved to Malvern and is incorporated into the Royal Signals and Radar Establishment (RSRE).

The new wave of optimism is not confined to the big military systems in which Plessey has special expertise. Perseverance in the difficult semiconductor market is also paying dividends. Plessey Semiconductors achieved over $£ 1$ million of sales to the USA alone last February for high-speed dividers. On the broader export front some $£ 20$ million of orders were taken in the past year and the forward order book is worth £ 11 million for semiconductors.

Overall, throughout the whole group, Plessey's forward order book is of the order of $£ 1,000$ million. Quite a transformation.

Avionics

Avionics is one sector which is perennially buoyant. The new Boeing 757 and 767 airliners now being designed will have their pilots trained on British Redifon flight simulators to be delivered over the next three years. The new orders from Boeing bring Redifon's current order book for simulators up to some $£ 80$ million.

Ultra Electronics has won a £ 14 million contract for sonobuoys. MEL has won a $£ 10$ million production order for Sea Archer radars which will be built in a new factory at Dunfermline.
"Small is beautiful" is a saying appropriate to the precision rate gyroscope built by Marconi Avionics. Weighing only $402 s$ and only slightly larger than your thumb the 10,000 th recently came off the production line. This little marvel has been worth $£ 50$ million worth of business in its lifetime so far and is still in production at the rate of 100 a month.

Prestel Lift-off

1908 will be make or break year for the BPO Prestel viewdata service. The less than 3,000 present subscribers it is hoped will be boosted to tens of thousands by the end of the year as more and more Prestelequipped TV sets roll out from the factories. A new 3-chip Teleview system for viewdata was unveiled at the Paris Components Show in April by General Instrument Microelectronics. GIM say the whole lowcost system will go on a 6 in by 4 in singlesided p.c.b. and enables access to Prestel, Ceefax and Oracle through a normal TV set.
The BPO for its part has done well to provide a constantly up-dated data base of 150,000 pages of information. And a new development is Picture Prestel to be introduced towards the end of the year. This will enable full colour photographs to be used on Prestel pages but viewers will need another modification to their sets to receive them.

Wersi and Clet SOUND PROCEBOOR NITB Reviewed

0VER the last few years, the name of Wersi has established itself in the UK with its large range of high quality musical instrument kits. The company, formed in 1969, originates from Halsenbach in West Germany, and aimed from the start to provide kits that were "technically the most advanced on the international market". A few minutes study of their lavish catalogues soon verifies this and their present range consists of eight large-scale organs, that include a portable combo organ, spinet and theatre style home organs, an electronic "church organ" and their top Galaxy W4SKT organ. There are also other instruments such as string orchestra and electric touch-sensitive piano as well as audio mixers, amplifiers, speakers/cabinets and a host of special effects boxes.

WERSIVOICE

The Wersivoice sound processor adds the effect of rotating speakers to the electronic organ without having to use the mechanical "Leslie" type of amp/speaker system. The sound from a Leslie cabinet is comparable to the Doppler effectwhere moving sound appears to a stationary listener to change pitch. In the cabinet is a mechanical motor-operated rotating speaker for covering mid/high range frequencies with a separate section that houses bass range speakers. These are fixed and usually have cones pointing downwards with either a rotating drum underneath or some form of electronic "tremolo" modulation built into the amplifier control system. The rotating speaker unit operates at two speeds selected by a control box fitted to the organ or by foot-switches. Ideal running speeds preferred by most organists are a slow rotation of 0.6 Hz and a fast spin of 6 Hz . The slow "chorale" effect makes a straight organ output sound rich and ecclesiastical, and is highly desirable for any kind of electronic organ. Changing to the fast "vibrato" speed gives the traditional Hammond theatre organ
sound that is great for jazz and lively music with lots of punch from percussion tabs.
The Wersivoice has another effect provided at the touch of a button-String Choir. If a single sound is fed into the unit, in the "Choir" mode the output gives a "multiplied" version of the input. It can make an instrument sound like several instruments playing in unison or a solo voice sound like more than one singer. It is most effective on straight string tone from the organ (usually a sawtooth waveform) which will become transformed into a rich string orchestra.

MAKING IT

The kit can be purchased in two forms-one for mounting as a "chassis" unit plus transformer, power supply and switchbank straight into the console of an electronic organ, or as a free-standing item with wood cabinet cover. I chose the latter and this was delivered in a small package along with the wooden cover and two manuals, one with the instructions and the other with general assembly notes.

Having spent some time reading the manuals, the component bags were laid out on a workspace in their numbered order, 1-47, ready for assembly. To build the kit you need a $15-25$ watt soldering iron with a $\frac{1}{8}$ in bit or less plus holder, small wire-cutters, wire stripper, small flat-ended screwdriver and a general purpose voltmeter for testing the completed unit. Before mounting components on the board, a small piece has to be cut out using a fretsaw to allow the circuit board to clear components on the front panel.

Assembling order was set out in a logical manner, with wire links first, followed by diodes, resistors, i.c. sockets, bridge rectifier, voltage regulator, solder pins and capacitors. By installing a particular capacitor, the speed of rotation, when switched from slow to fast, increases slowly. This simulates the mechanical inertia of the motor-driven

Leslie system. It can be left out for immediate speed changes. The transistors used are rugged silicon types that require no heat sink during soldering. To finish the board came the switch assembly, presets and transformer.

All i.c.s were supplied on pieces of polystyrene in their component bags-a little disconcerting when CMOS devices were identified. Two of my chips did not function correctly and as they were marked WIC4000 I began to suspect the Wersi equivalents of CD4000 were undoubtedly affected by inadequate packing precautions. Actually, this was not so, as they were really LM3900N i.c.s-but two points became obvious here: first, handle i.c.s with due care and second, Wersi numbers do not correspond to standard i.c. markings!

Once the 13 i.c.s are mounted correctly, the circuit board was finished, taking about $3 \frac{1}{2}$ hours to complete. Chassis preparation is now undertaken, with front and rear panel hardware mounted and linking wiring so straight-forward that no wiring harnesses are required. The clamp provided for the mains wire was a little small and could penetrate the outer casing if fastened too tight. The only other fault was that the switch buttons were scratched on insertion into the front panel opening due to rough edges on the chassis. It's worth putting a small file on these or you'll probably end up with some unsightly control buttons.

This is one of Wersi's smallest "complete" kits and has no awkward assembly steps at all for you to encounter, taking about two evenings to build. In order to get the best sound from the Wersivoice a series of 15 tests are made during initial operation of the unit, using a d.c. voltmeter in the $20-30 \mathrm{~V}$ d.c. range. Checkpoints with important voltages are all screen-printed on the circuit board and the unit passed all the tests satisfactorily.

IN USE

A straight organ sound was fed to an input and the output sent to an amp/speaker system with very good results immediately evident. The different controls provided plenty of variety in operation. There is a "Volume" slider, a manual "Speed" control slider and pushbuttons for switching "Effect On," "Choir", or fast and slow "Vibrato", with the actual depth of both these effects selected by combinations of "Deep" and "Flat" buttons. Switches worked silently except for "Effect On" which gives a noticeable click unless a high input signal is used so that the main output volume slider level can be reduced. The "Deep" button provides a degree of feedback
(presetable) which can give a high-pitched whine if too much feedback is used, the same as in flanging effects. There are two input jack sockets with levels that can be adjusted between 50 V r.m.s. to 1 V r.m.s. and one signal jack output. If the unit does not function then there is not much advice given in the manual, although a careful check of circuit board locations and wiring should solve any problems. Still, there is always help from the shop you purchased from if really stuck and for the more experienced the circuit diagrams will prove sufficient for diagnosis.

The two effects of "rotating sound" and "string choir" are put in one package because they both rely on the use of bucket brigade delay chips. In fact, the heart of the circuitry consists of three analogue (bucket brigade) shift registers, clocked by three independent VCOs with basic shift frequency of $50-250 \mathrm{kHz}$. These are themselves frequency modulated by two further VCOs, the first giving a set $0.5-0.6 \mathrm{~Hz}$ for "Choir" mode and the second giving slow to fast "Vibrato" from $0.5-7 \mathrm{~Hz}$. Combinations of these two control voltages are used so that the output signal receives complex phase frequency and amplitude modulation.

The circuitry used produces a depth of phase-modulation that is more than adequate to get the traditional Leslie effect and can produce interesting results with electric guitar, piano, trumpet, violin and synthesiser as well. In "Choir" mode, it gives the typical string machine sound from a sawtooth waveform (with suitable sound envelope) that is so popular today. The actual effect on the voice is not as dramatic-simply adding "thickness" which contains the fast vibrato modulations.

THE Clef electronic rotor CPK 1200 is a new edition to the range of electronic musical instrument kits from Clef Products, and comes from the same designer of the popular $P E$ "Electronic Piano" and "String Ensemble" projects. Clef specialise in high quality touch sensitive electronic pianos up to full $7 \frac{1}{4} \mathrm{Oc}$ tave size, and the study of the use of analogue delay lines for both the $P E$ "String Ensemble" and the current range of electronic pianos has led to the design of a system which provides both rotating speaker simulation and three phase chorus.

KIT CONTENT

The kit is designed for easy integration into electronic keyboard instruments or may be built as a stand-alone unit for guitar or microphone driven effects. The complete effects system is contained on one small p.c.b., ($8 \mathrm{in} \times 5 \mathrm{in}$), Containing 20 i.c.s, and the total kit also includes a mains transformer, a four-way push button switch unit which can be mounted in a remote position for convenient operation, and a stereo headphone driver board which gives easy realisation of one of the most useful features of this type of rotor simulation. All the integrated circuits in the system are commonly available types, and sockets are provided throughout avoiding any risk involved in soldering. Printed circuit board markings adopt the
component value principle which avoids the tedious process of looking up resistor and capacitor values before insertion into the board. Due to the compact size adopted for the unit, the soldering operation must be carried out carefully and some of the wire links are best inserted before any of the components. Careful inspection of the tracks is required after soldering to ensure that bridging has not occured.

The kit includes adequate instructions and circuit information to complete the project and integrate it into your system, and as with all Clef products telephone advice can be obtained direct from the designer.

OPERATING MODES

The four way push button switch unit allows selection of either the chorus or two speed rotor mode, with three positions for the latter. The chorus mode is of three-phase type with adjustable depth and slow/fast modulator balance. In the rotor mode run-up and run-down characteristics are all important. Three buttons are labelled "Off", "Slow", and "Fast".

A change from "Off" or "Slow" to "Fast" always produces a run-up effect, whilst a change from "Fast" to "Slow" produces a run-down effect. Changing from "Fast" or "Slow" to "Off" instantly kills the rotating effect, and controls are provided to adjust "Rotor Depth", "Slow Speed", and "Fast Speed".

Showing the finished Wersivoice, kit packs and board assembly

An optional remote control switch box is provided as standard in this kit and is useful for placing on an instrument or fastening via its screw holes to the underside of the organ console nearest the player's left end of the keyboard. It can be purchased in three ways: As a basic chassis kit for $£ 156$, as a free-standing kit for $£ 201$, and as a ready built unit for £304 (prices quoted include VAT). In my opinion, these prices are rather high.

Mike Beecher

OPTIONAL TWO CHANNEL OPERATION

The rotor is unique in providing a second channel facility which gives an increased spatial effect due to its electronically created anti-phase output. This extra feature can be utilised by the addition of a second power amplifier and a small speaker. The stereo rotor effect produced is permanently available from the headphone driver board.

The price of the rotor kit is $£ 89$ and it can be obtained direct from Clef Products (Electronics) Limited, 16, Mayfield Road, Bramhall, Cheshire, SK 7 1JU.

Adrian Boothroyd

The Clef Products rotor kit with the board assembled

AST month we looked at the operation and construction of the pre-amp section of the PE Congress amplifier. In this concluding article final wiring and chassis details will be given. We start, however, with a description of the main amplifier circuitry.

MAIN AMP

The amplifier is based on a hybrid module made by Sanyo, which is a stereo, or dual, 30W amplifier needing a minimum of support circuitry. Transistor TR 17 forms a 6 mA constant current source which is used as an active load for the class A drive amplifier within the module. This significantly improves the performance of the module against using a boostrapped resistive load, especially with regard to crossover distortion. The performance of this module with a minimal increase in distortion with frequency, in conjuction with only a small amount of feedback, indicates that the internal power devices are designed to have a high transition frequency, which is probably the factor which gives the module its excellent transient characteristics.
The module also relies solely on the loudspeaker fuse for protection, which, in the absence of a.c. load line protection, allows difficult reactive loads to be driven (see published specification in the April edition). This does mean, however, that the specified fuses must be used. These are of the 20 mm 3 amp quick blow type, which are also used in the positive and negative rails.

The feedback network also encloses the fuse which helps to compensate for any resistance between the fuse and its mounting clips. This in conjunction with the recommended 4 mm speaker sockets and banana plugs gives good low impedance coupling to the loudspeaker leads, helping to maintain the best obtainable performance.

A further advantage of the module is the absence of any adjustment for quiescent current, this being set internally. The hybrid construction allows for excelient temperature stability. The module must not, however, be used without first mounting onto a suitable heatsink. The aluminium chassis detailed in this article provides adequate heatsinking under all types of use, but should be sprayed matt black for best results.

POWER SUPPLY

The power supply is very straightforward consisting of diodes D14-17, which mount directly onto the main amp board to help simplify interconnection, transformer T1, and capacitors C29-32. To get the best results and to meet the published specification, two capacitors of $4,700 \mu$ (or one of $10,000 \mu$) on each rail must be used, and the transformer must have good regulation with a rating of 125 VA .

To enable the transformer to be small enough to fit in the chassis, high quality grain-orientated laminations must be employed. A toroidal transformer could be used, but the greater expense is not warranted as no advantage in performance is given if the physical layout shown is used.

General layout and wiring of the PE Congress

Fig. 13. Wiring of the volume and balance controls
Fig. 14. (Below). Layout and wiring of the phono socket board. Note that the only holes through this board are for the ten sockets and the four fixing holes. Both views below are of the copper side of the board.

Fig. 15. Layout and wiring of the main amplifier p.c.b. Note the ground A link to the pre-amp board and the wire link from \mathbf{G} to \mathbf{G}

WIRING

The wiring between the pre-amp and main amp board must be followed as shown, as two grounds on the main amp board go back to the pre-amp board via the volume and balance controls (Fig. 13). This stops any noise pick up at the main amp. The grounds are connected by the outer screens of the screened cable, the return being by a single lead back to the main output ground of the main amp board (Fig. 15) and then to C29-32 and the OV tap on the transformer. If the main amp is used in isolation it should only be operated when the two separate grounds have been connected to the main ground going to the common connections of C29-32 with the board layout shown.

The ground connection to the chassis is made at the phono input board (Fig. 14); no other ground connection should be made apart from mains earth which goes to a solder tag on one of the transformer mounting bolts (Fig. 17).

The unit has been designed for straightforward wiring that should present no problem. Screened lead must be used for all signal leads. The only components that are not board mounted are the main amp power supply capacitors, the mains switch and mains fuse, and the balance and volume controls. All fuses in the amplifier are the 20 mm size.

Fig. 16. Drilling and bending diagram for the chassis. It is suggested that mounting holes for the p.c.b.s are marked through the board fixing holes with the boards in place to ensure accurate alignment. If the holes are marked out after bending 1.5 mm should be added to all dimensions taken from the bends, all measurements to be made on the outside of the chassis

Fig. 17. Wiring of the supply components not mounted on the p.c.b.s

TESTING

When the amplifier has been completed, before connecting the loudspeakers and switching on, the following tests should be made. Firstly, disconnect the leads from the transformer to the pre-amp. The centre tap lead may be left connected. Ensure the correct fuses are fitted to the board and in the mains fuse holder and then with no load connected to the loudspeaker sockets, plug in with the mains switch in the off position, i.e. with the switch rocker set so that it projects at the bottom. If the neon lights then recheck the switch connections. If not then switch on at the switch. The neon should light.

Check the voltages across the power supply capacitors. These should be $\pm 38 \mathrm{~V}$. Next, check the voltage across the loudspeaker terminals; these should be less than 70 mV (0.07 V). If a fuse should fail, switch off immediately. Recheck all connections and the polarity of the diodes and smoothing capacitors. If these are correct, double check the resistors R53, R51 which are the feedback resistors. If these are wrong they can lead to instability which can cause fuse failure. The STK463 modules are-very robust, and show no significant difference between samples. Failure should never occur if the directions to its use and wiring are followed carefully.

If everything checks out then connect the transfomer leads to the pre-amp. Checking and testing was detailed last month. In the event of a short, then R59 or R64 will fail. These should protect the rest of the pre-amp except for a wrongly polarised electrolytic. If everything checks out, try out the amplifier.

Provided care is taken in construction no problem should be experienced.

AUTHOR'S NOTE

In the weeks leading to this series of articles, the amplifier was tried with various programme material on very expensive and very critical monitor loudspeakers. The PE Congress has given extremely good results, and was capable of allowing these speakers to give their full range. Comparisons have been made with much more expensive amplifiers and in many cases the Congress has been adjudged to be better.

I personally make no claims other than the extreme care and many hours I have devoted to this project, and I hope that my experience of the results is borne out by all that decide to build this design.

Please note TR105 is incorrectly shown, the flat should be towards the back edge of the board in Fig. 12 i.e. rotate 180 degrees. Transistor TR115 has been designated TR11; TR115 is near 114 and 116. A small link should be added to the p.c.b. to join R4 and R8 to C2 and C6 positive (back left of board in Fig. 12). Also the "back" end at R63 should be joined to the D23 positive line and not to TR19 and the link as shown in Fig. 12. Boards supplied by Wicca Electronic Systems Ltd., will be correct.

Now there's no excuse for not learning about microcomputers, for this could be the ultimate microprocessor course. Study at home or school with the aid of the accompanying manual, and learn, hands on, how to make the "chip" do what you want it to do, working with your own personal machine.

You may hear Edukit called the "throw away" computer! Well, maybe the price is throw away, but Edukit is a training tool that can be put to good use in its retirement. Here are some vital statistics:

[^1]
Please complete both parts of the coupon in BLOCKCAPITALS
To: Modus Systems Ltd., 29a East Cheap, Letchworth, Herts. SG6 3DA
Please send me \square
Edukits at $£ 34.10$ each
I enclose P.O./Cheque No Value
Name
Address
\qquad
Please allow 28 days for delivery
Name
Address
From: Modus Systems Ltd., 29a East Cheap, Letchworth, Herts. SG6 3DA. Tel: 0462674468

Seminondurtor TPDATIE
 FEATURNG mPD 7801 HEDS-1000 XRL556 BT155

LAND OF THE RISING CHIP

So far the American semiconductor industry has had the microprocessor market more or less to itself. By being first, and by implementing aggressive sales and research programmes they seemed to be so far ahead of the competition that they might never be overtaken.

You may have been wondering why the Japanese are not more prominent in this important field, they are after all, major exporters of cars and electronic consumer goods, and it is difficult to see how they could maintain their competitive edge in these fields without homegrown micros, especially now that these devices are becoming so cost effective for the replacement of electro-mechanical components, and essential for the addition of attractive new features such as digital tuning.

The fact is, those canny Japanese semiconductor manufacturers have not been idle, and there are already numerous examples of their micro know-how on the market. These devices have been mainly second-sources or pseudo-copies of existing American microprocessors up to now, but already Japanese suppliers are building up a good reputation for high quality and low prices, not only for microprocessors but also for support circuits such as memory and peripherals. The time is now ripe for the Japanese to launch a frontal assault on the American giants, and it looks as though the first shots have already been fired.

Take the mPD 7801 from the Nippon Electric Company for example. When I first saw the data on this chip I thought that someone had turned my dreams into silicon. I have always liked the powerful and compact instruction set of the Intel 8080, and judging by the sales figures so do a lot of other people. To keep the basic 8080 system competitive into the 1980 s, Intel introduced the 8085 which is faster, has more on chip facilities, and runs from a single 5 volt supply. To make it work in small systems, Intel also introduced the 8155 RAM-Timer-I/O chip, and the 8355 ROM-I/O chip; only three forty pin packàges to make up a complete system with 2 K bytes of ROM and 256 bytes of RAM. Pretty neat, but just look at the mPD 7801!

All into one (quite compact) 64 pin package, NEC have stuffed 4 K bytes of ROM (enough for a Monitor and Tiny BASIC!) 128 bytes of RAM, a 12 bit timer, 46 parallel $1 / O$ lines and 2 serial I/O lines, three external and two internal vectored interrupts, and last but not least, an 8085 compatible central processor which runs the standard 8080 instruction set with some useful additions. As if all that wasn't
enough, they have even given their CPU 2 register banks, just like the $\mathbf{Z 8 0}$, and made access to external memory easy for the sacrifice of 24 1/O lines as data and address buses.

In large quantities all this is expected to cost less than $£ 15$, and so we can expect to see some very low cost home computers before long, not to mention TV games, car computers, robots and all the rest. If the Americans aren't careful, we could soon see an electronic equivalent of Pearl Harbour!

BIFOCALS

Now that bar-codes are an everyday fact of life on everything from baked beans to library books, the race is on to make the readers or "wands" as cheap, compact and reliable as possible. A new device from Hewlett Packard, the HEDS-1000, could go a long way towards meeting all three requirements.

The new device is a high resolution optical reflective sensor and emitter which comes in an elongated eight lead TO5 can. The end of the can is open and inside is a cunning double (or bifurcated) lens of high precision. Mounted on the base of the can are two semiconductor chips, one being the LED light source and the other an IC photo detector. The emitter output is focussed by one half of the lens into a spot less than 0.2 mm . in diameter a few millimetres in front of the package, the other half of the lens acts to focus the reflected light from this spot on to the detector chip.

Using the HEDS-1000, bar-code reading is easy, the device will run from a single supply in the 3.5 to 20 volt range and the whole package is sealed for durability and easy cleaning. The use of a visible light source helps when reading coloured (as opposed to black and white) bar codes, and the precision glass bifuricated lens eliminates the need for careful alignment.
O.K. for supermarkets, but what about hobby applications? Well there must be lots of uses for such a neat device. Microprocessor buffs will know that software has been published in bar-code form in paper-back books, so the HEDS 1000 could be used to build a reader which is more reliable than the usual "lash-ups". With a spot size of 0.19 mm . the new device could also be used to detect objects as small as a single human hair, and all sorts of size and pattern recognition systems could be built with it, its up to you!

TWO TIMER

You all know about the 555 timer chip I'm sure. A really useful building block which can form the basis of monostables, astables, modulators and a host of other

circuits.

Some time ago I covered a new improved 555 which did everything that its predecessor did but without the current glitches on the supply lines during switching, and with a consumption many times less for the same timing stability. The "improved" 555 has been a big success and following on this there has been a demand for duals and quads with the same advantages. I don't know of any "quad" super-555s, but Exar Integrated Systems have produced a "dual", coded XRL556 and every bit as desirable as their XRL555 single.

The XRL556 comes in a 14 pin DIL package and consumes only one fifteenth of the power of a "standard" 556 when in standby mode. It runs from 2.5 V to 15 V supplies and can source 100 mA when triggered. Timing stability is excellent with typically 0.5 per cent initial accuracy and only $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature drift. Surprisingly, the XRL556 does not use CMOS technology but rather an improved bipolar process employing lon implantation.

QUICK TURN OFF

If you need to switch power efficiently, you need a thyristor. Just a few milliwatts of trigger power applied for a short period will turn on many amps of current, and switch-off occurs automatically in a.c. circuits as the current through the device drops to zero at the zero voltage crossover point. For these reasons, thyristors and their close cousins the triacs, are almost universally used to control a.c. mains power in everything from light dimmers to oven controllers. The snag is that the construction of a thyristor semiconductor chip involves the use of larger geometries than are used in the fabrication of conventional transistors, and this tends to make the thyristor a rather slow switch, suited only to low frequency applications such as those involving the 50 Hz mains supply.

This limitation is inherent in thyristor construction, and has largely prevented their use in higher frequency circuits where their efficiency could be put to very effective use, in inverter and ultrasonic generator applications, for example.

To ease the situation, Mullard have recently introduced the BT 155 series of Fast Turn-Off thyristors which are optimised for use in high frequency applications. To those weaned on the nanosecond performance of TTL gates, the BT155's 9-12 microsecond turn-off time may seem no big deal, but this is actually quite an improvement over conventional thyristors, and remember, the BT155 can hoid-off over 650 volts and pass peak currents of over 100 amps when triggered!

nexir monit

CASID MATCH OFFER SINCLAIR ZX80 REVIEW

PRACTICAL

EL=CTRONICE

: בNCH Ps.U. J.P. MacCaulay

ONE of the most important pieces of equipment for the home electronics constructor and experimenter is a variable power supply. Although the supply requirements of circuits vary greatly, most require a supply between 1.5 V and 30 V and a current of less that 1 A . The power supply described here will provide a stabilised supply voltage which is infinitely variable between $O \mathrm{~V}$ and 26 V and also features an infinitely variable current limit up to an ampere.

Due to the rapidly falling price of integrated circuits and especially quad op. amp. devices, it has now become feasible to build such a power supply at a relatively low price. The quad op. amp. which is the basis for this particular project is the LM324 from National Semiconductor. This device contains four 741 type operational amplifiers which have the added advantage of having inputs and outputs which can go to ground even when operated from a single power supply. This feature enables one to design a power supply that can deliver extremely low output voltages, and thus replace 1.5 V batteries when required.

CIRCUIT DESCRIPTION

Fig. 1 shows the full circuit of the supply, and this breaks down into three functional blocks. First the mains voltage is stepped down by T1, rectified by the bridge D3-D6 and smoothed by C1. So far the circuit follows that of a simple unstabilised supply. A stable reference voltage is obtained from the output of IC1a which functions in the following manner.

The op. amp. is used as a d.c. amplifier, the input voltage being provided by the stabilised potential across D8, which is applied to the non inverting input. On switch-on the voltage here is zero so that the Zener appears, for an instant, as an open circuit. However, the bias current which flows out of the op. amp.'s inputs, although only of the order of a few tens of nano-amps, is sufficient to hold the inverting input at a slightly lower voltage than the non inverting.

In consequence, the output of the op. amp. goes towards the positive rail, stabilising at twice the Zener voltage. Since the output is constant it follows that a constant current flows through both R1 and D8. The net result is a very stable and virtually ripple free voltage available at the output of the amp. This voltage is applied to the potentiometer VR1.

The slider of VR1 picks off a portion of the stabilised output and applies it to the non inverting input of $I C 1 b$. This op. amp. contains the output current stage TR1 and TR2 in its feedback loop. These transistors are operated in the emitter-follower mode to provide a high input impedance and a low output impedance; the ideal conditions for a voltage regulator. By connecting these transistors as a darlington pair the current gain is extremely high, so preventing loading on the output of the amplifier. The amplifier itself is more or less identical to the circuit around

IC1a. The voltage gain of the stage is defined by the ratio of the feedback resistors R4 and R5.

Because the output stage is inside the feedback loop the output voltage at the emitter of TR2 is precisely twice the voltage fed into the non inverting input of IC1b.

CURRENT LIMIT

A variable current limit is an extremely useful feature, especially when working on experimental rigs where a stray wire can cause catastrophic currents to flow, leading to scrapped projects. This facility can also be used to measure the exact value of electrolytic capacitors by using the formula $\mathrm{C}=1 \mathrm{t} / \mathrm{N}$. The procedure here is to select a value of current I and time the period, t, required for the capacitor to charge to a known voltage V . This facility comes in very useful for selecting known values of C for timing circuits etc.

The current limit circuitry is somewhat unusual and slightly more complex than is normal. This is due to the adjustable facility. The current that flows into the load also flows through R7 and develops a voltage across it.

The output voltage from the supply is fed into the non inverting input of IC1d which forms a simple d.c. amplifier with a gain of two. In consequence the output of the amp. tries to reach twice the input voltage, but is prevented by D2 in the feedback loop, VR2, across the diode, samples the output voltage of IC1d which remains at 0.6 V above the output voltage of the supply. The sample, from the slider of VR2, is fed into IC1c whilst the voltage across R7 is also fed into this amp. Because no feedback is employed the op. amp. acts as a comparator between these two voltages. When the voltage fed from the slider of the potentiometer is exceeded by the voltage across R7 the output of IC1c goes low, reducing the voltage at the base of TR1. At the same time current is drawn through D7 and R6 indicating the current overload.

Fig. 1. Full circuit diagram of PSU
Since the voltage drop across R7 is directly proportional to the current being taken by the load, and since the pot track is linear, it follows that this can easily be calibrated.

CONSTRUCTION

Construction starts with the stripboard panel which is shown in Fig. 2.

This is fairly straightforward as long as care is taken to ensure that all the semiconductors are correctly inserted. Once completed, the board should be given a thorough visual inspection. Firstly, ensure that all the diodes are orientated correctly and that all the links are in place. Turn

Fig. 2. Stripboard layout (actual size)
the board over and check that the breaks in the tracks are correctly made. Lastly, examine the soldered joints to make sure that none are "dry" and that none of the solder has bridged any of the tracks. Once satisfied that all is okay the flying leads should be attached. These need not be longer than 230 mm .

Next, take the case and drill it to accept the stripboard, transformer and power transistor etc. The legends should now be applied with Letraset and fixed with a proprietary spray varnish.

When this is done the pots and sockets etc, should be mounted in their appropriate positions and the flying leads from the board terminated.

Having checked that all is well the circuit can be tried out and calibrated.

CALIBRATION

There is no reason why a milliammeter with a suitable damping resistor should not be used to give direct reading of the output voltage.

For this purpose a meter calibrated 0-3 is ideal. Meters though, are expensive and so in this design the equipment is calibrated by means of a multimeter, appropriate markings can be made around VR1 and VR2. Voltage calibration is accomplished simply by monitoring the output voltage with a multimeter and marking up accordingly.

The current limit control is calibrated by setting the output voltage to about 10 V and connecting a multimeter across the output in the current measuring mode. This should be started with the multimeter switched to a range which will safely indicate in excess of 1A. From here the current limit can be calibrated downward, and with care, the calibration can be resolved to 1 mA . Once this has been accomplished the power supply is ready to use.

News Briels

MICROPROCESSOR COMPETITION WINNERS

0N MARCH 17th at a London hotel, awards were presented to the winners of the British Microprocessor Competition, sponsored jointly by the National Research Development Council and the National Computing Centre. Aimed at encouraging British innovation in the application of micro's in products and services, the event's 218 entrants were mainly private individuals, with the remainder from educational and research establishments.

The first category required a working model and commanded a cheque for $£ 10.000$. The winner was Sinar Agritec Ltd., with a portable grain moisture meter. For second prize, $£ 5,000$ went to a research team from Manchester University Institute of Science and Technology. This was for an easy-to-program computer for numerical control lathes. To Grundy Terminals Ltd., went a cheque for $£ 2,000$ for their stock control system in which a light pen is used to select parts quickly from a set of diagrams.
Ideas on paper constituted the second category, and the first prize of $£ 2,000$ was won by MDB Electronics for a portable electrocardiograph. Mr. Christopher Goss claimed second prize for his voice synthesiser design for the severely speech handicapped. Using available
synthesis chips, the microprocessor employs clever algorithms to produce complete sentences.

A special prize of $£ 500$ was also awarded to two pupils of the Royal Grammar School, Newcastle. Development to a deadline of their computer controlled theatre lighting system, and demonstration of it to the press after the award, undoubtedly gave Graeme Harker and Anthony McKay a valuable taste of the real world outside school. Using a PET, their system allows fingertip fade in/out of preprogrammed stage lighting combinations. Screen representation takes the form of a histogram to give instant visual status.

Sinar Agritec's grain moisture meter was a fine example of how a micro' can simplify-not complicate-the controls of a device. It uses a sensitive weighing mech anism, the technique of which was under wraps at the time of writing, and also measures temperature automatically. It then takes from the user via a simple control, the grain type being measured, to give an instant readout of moisture content. Capacit ance is used to detect the moisture, and of course any presence of water affects the weight per given volume as well as the volume affecting the capacitance - it takes a micro' to sort all that out! Why moisture? Well, grain moisture needs to be known for storage preparation, harvest timing, malting processes, and pricing in commercial transactions.

British ingenuity continues to produce the goods!

Prototype Agritec Moisture Computer. The winner!

LONDON COMPUTER FAIR

THE North London Computer Club, having formed the Association of London Computer Clubs, has now arranged a London Computer Fair. This will be held at their home base, the Polytechnic of North London (opposite Holloway Road tube station), on July 11-12, 1980. The exhibition/bazaar will take place in the polytechnic's theatre between 10 am and 5 pm each day, with an admission fee of 50 p .

Clive Sinclair will be opening the event on the Friday, when there will also be an educational computing Seminar. Saturday will include a commercial users "questions and answers" workshop, and an obsolete equipment bazaar, followed in the afternoon by a software and hardware jumble sale.

The event should suit the amateur, commercial user, and interested onlooker; because there will be retail exhibitors, club stands and "surgeries". Telephone Robin Bradbeer on 01-607 2789 for further details.

IEC CATALOGUE

THE INTERNATIONAL Electrotechnical Commission's 1980 edition of the Catalogue of Publications is now available in English and French. It contains a comprehensive list of international electrical and electronic standards adopted in over 100 countries. The IEC is based at 1 Rue De Varembé, 1211 Geneve 20, Switzerland.

ALL PRICES IN PENCE EACH UNLESS OTHERWISE STATED

${ }^{T}$ is a sad fact that many groups who think nothing of investing in kilowatts of amplification still rely on crude methods, or even on guesswork when it comes to tuning up.

The device described in this article is designed to simplify and improve the accuracy of guitar tuning. The circuit is crystal-controlled and generates six output frequencies corresponding to the six strings of a guitar, feeding these to a small loudspeaker, or, alternatively, to a pair of stereo headphones; in the latter modification, the spare channel of the headphones may be used to monitor the output of the guitar amplifier.

PRINCIPLES OF OPERATION

The circuit is basically a programmable frequency divider built round a 12 -bit CMOS counter. The maximum possible output code from this counter therefore corresponds to decimal 4095, and division by any number up to 4096 is possible using suitable auxiliary logic. The frequencies required for the six strings of the guitar are listed in the table.

	TABLE 1
Note	Frequency (Hz)
E2	659.25
B1	493.88
G1	392.00
D1	293.67
AO	220.00
EO	164.81
The six strings and their frequencies	

DIVIDER LIMIT

The operating frequency limit for CMOS devices is of the order of a few megahertz, but power consumption rises sharply as the upper limit is approached. For this reason, the input frequency to the divider was limited to 1 MHz .

The maximum permissible error in frequency which will remain undetected even by the most expert musician is of the order of 0.05 per cent of the true frequency. Table 2 lists the division ratios required to generate the frequencies in Table 1; the maximum relative error is well within the required limit.

Division ratios to produce the frequencies

THE CIRCUIT

The astable formed by IC8c and IC8d feeds pulses to the twelve-bit counter IC1. The output code from this counter passes to the six 8 -input NAND gates IC2-IC7, the outputs of which go low when the following codes appear on the outputs Q1-Q12 of IC1.

IC2	011011110100	758
IC3	001011111100	1012
IC4	110111110010	1275
IC5	011001010110	1702
IC6	000001110001	2272
IC7	010110111101	3034

Codes which drive the NAND gates low

One of the outputs of IC2-IC7, selected by S2, is inverted by IC8b which controls IC9a; this flip-flop is positive-edge triggered, while IC1 is negative-edge triggered. When IC1 reaches the required count-on the falling edge of the clock pulse-the output of IC8b goes high, taking the " D " input of IC9a high; this means that, on the next rising edge, $\overline{\bar{Z}}$ of IC9a goes low for the first time in the count cycle. This output is NORed with the clock pulse by IC8a, so that the output of IC8a is high during the next low period of the clock, and this resets IC1 one pulse after the selected count is reached.

The output of IC8a passes to IC9b, in which "D" and " \bar{Q} " are interconnected, and which therefore functions as a

Fig. 1. Circuit of Mastertune.
divide-by-two stage, providing the required output frequency according to the setting of S2.

CONSTRUCTIÓN

As will be apparent from the circuit diagram a large number of interconnections are required for this device, as the outputs of IC1 must feed six 8 -input NAND gates. It would, of course, have been possible to get away, with just one NAND, a 6 -pole 8 -way switch, and 48 bits of wire. The CMOS way, is however, easier, cheaper and more reliable.

To simplify the interconnection problem, a double-sided p.c.b. is used. If you do make it yourself, a few hints may be useful. Start by really cleaning both sides of the board thoroughly with a non-abrasive cleaner. Then coat one side of the board with masking tape-it's a good idea to run round the edges with a resist pen before doing so. Now lay out the resist pattern for side one of the board-and don't etch it till you're absolutely sure it's right-remember, mistakes count double!

Once side one is o.k., drill through those holes which also have connections on side two, and any holes which involve components other than i.c.s-including the connecting wires to the switches, etc. When that's done, draw out the resist for side two, using the drill holes as points of reference, and taking care to avoid any other holes in the vicinity. Now side one gets the masking tape treatment, and side two is etched, after which we're almost there!

All that now remains to be done is to connect sides one and two, and drill the remaining holes. Any connections to i.c.s, supply lines etc., should be soldered on both sides of the board, where appropriate-if socket pins are used, this is

COMPONENTS

Resistors

R1	10 k	$\frac{1}{4} \mathrm{~W}$	10%	
R2	10Ω	$\frac{1}{2} \mathrm{~W}$	10%	or link (see text)
R3	4 k 7	$\frac{1}{4} W$	5%	
R4	10 M	$\frac{1}{4} \mathrm{~W}$	10%	

Capacitors

C1, C2 47pF polystyrene

Switches

S1 Single pole single throw
S2 Single pole six way rotary

Semiconductors

TR1 BC 108 or BFY 50 (see text)
IC1 4040
1 C2-7 4068
IC8 4001
IC9 4013

Miscellaneous

Loudspeaker (8 ohm). 1 MHz crystal. Two 6 volt batteries or a 12 volt power supply. Verocase 202 . Soldercon pins.

Fig. 4. Component overlay of p.c.b.

no problem. The remaining connections on side two, apart from the output common to the loudspeaker (this powers IC's 1 and 8 on the other side) are associated with the outputs (Q1-Q12) of IC1. All these connections must be wired through the board, and all the lines except Q12 have at least one such connection. It's worth noting that the output lines from IC1 are arranged in numerical order (Q1-Q12) on side one of the board, working downwards so that players of more exotic stringed instruments need not feel left out.

FREQUENCY

The formula for calculating the frequency is

$$
\frac{5 \times 10^{5}}{N}=x \mathrm{~Hz} .
$$

where x is the required frequency and the logic gives a low input to IC8b when the count on IC1 reaches N -1.

The power supply required for satisfactory operation of the crystal oscillator is 12 volts. In the prototype, a small transformer and bridge rectifier was used, but a pair of small 6 -volt batteries can be squeezed into the case. If a mains power supply is used, make sure that the positive line is earthed, as this is also the common terminal of a stereo jack socket if used for connection to an external guitar amplifier. The BC108 specified will drive a single eight ohm headphone at reasonable volume, but if connection to several sets of headphones simultaneously is required, TR1 should be a BFY 50, and R2 should be inserted in place of the wire link to avoid overrunning the transistor.

The completed Mastertune unit

CASE

The case used for the prototype was a Vero case 202, and this provides room for the p.c.b. and a small power pack or small batteries. If several output sockets are to be fitted, or if larger batteries are required, a larger box should be substituted.

In the prototype, the power consumption, driving a single eight ohm loudspeaker, was about 12 mA .

BIMBOARDS A Breadboard for every project

LARCE PROJECTE

BIMBOARDS 2,3 and 4.
Utilise 2, 3 or 4 BIMBOARD 1 's on 1.5 mm matt black base plate standing on 4 non-slip rubber feet. 4 screw terminals for input power lines plus 2, 3 or 4 Componant Support Brackets. BIMBOARD 2 £ 21.17 . BIMBOARD 3 £28.22. BIMBOARD 4 £ $\mathrm{E}_{6.12}$
PLANNED PROUECTE
BIMBOARD LAYOUT PAD.
Paper reprints of PC
BIMBOARD lat you neatly plan you
committing it to any BIMBOARD. ©0. 65

MUULTI-POWNEA PROLECTE For circuits requiring
extra pair of Bus Lines. BIMBUSTRIP $£ 2.50$

FUN PROJECTS

Our BIMBOOK - 'Adventure in MicroElectronics' contains 20 fun projects all designed to fit into a BIMBOARD 1

BIMBOOK £2.15
Step by step instruc- arucervass tions show into exactly which holes the verious compo nents plug.

MTNI DESK BIMCONSOLES (1 BIM1005 ($161 \times 96 \times 58$)

ALL METAL BIMCASE (2) BIM $3000(250 \times 168 \times 69)$ (Red, Orenge, Grey)

MULTI PURPOSE BIMBOXES (3) BIM4003 ($85 \times 56 \times 29$)
BIM4004 ($111 \times 71 \times 42$
BIM4004 ($111 \times 71 \times 42$)
KEYBOARD BIMCONSOLES (4) 81M7400 (355 $\times 178 \times 102) \quad £ 19.60$ $\sin 7401(431 \times 178 \times 102) \quad £ 22.54$ (Black Base - Sand or Grey Top) MPU DISPLAY BMMCONSOLES (5) BIM7501 ($250 \times 260 \times 112[33]$) $£ 40.37$ BIM7502 ($350 \times 260 \times 112[33])$ £ 43.87 BIM7503 ($430 \times 260 \times 112[33$)) $£ 47.09$ BIM7504 (350×431×112[33] BIM $7505(430 \times 431 \times 112[33]$ (M7505 ($50 \times \times 43 \times 112[33$) $£ 47.98$ BIM7506 (600x43 $11 \times(33), £ 50.6$ $\begin{array}{ll}\text { BIM7507 }(360 \times 431 \times 200(33)) & \text { £77.51 } \\ \text { BIM7508 }(430 \times 431 \times 200[33)) \\ \mathrm{EB1.30}\end{array}$ BIM7509 ($500 \times 431 \times 200[33])$) $£ 86.8$ BiM7509 (500x431 2000 [33]) E86 Whdth +25 allows for wood sides
White Top / sloping panel, B lack White Top / sloping panel, Black

AES \& DIECAST BIMBOXES (6)

(All BIMENCLOSURES available in Blue, Grey, Orange, Black unless statad)

OIL COMPATIBLE BIMBOARDS, DESIGNERS \& ACCESSORIES
 DESIGNERS (11) '1' £61.53, ' 2 ' £67.2B, ' 3 ' £73.02 BIMBUSTRIP (14) £2.50 BIMBOARD LAYOUT PAD (15) £0.65 12 VOLTS BIMDRILLS (16) Mini Drill $£ 8.10$ MiniKit 1 E15.12 Majorkit $£ 19.44$ MAIN8 BIMDRILL (17) BIMIRON (18) Major Drill $£ 13.60$ Mini Kit 2 £34.02 Major Kit 2 £39.42 Mains Kit 1 £ 2.48 Mini Kit 3 £45.36 MajorKit 3 £50.76 MainsKit 2 E22.14 BIMSTATION (19) £11.96
BIMPRESS (20) $£ 167.90$ BIMDIP (21) $£ 11.50$ BIMPUMP (23) Major $£ 7.99$ BIMDAPTORS [25] (24) $£ 1.08$ BIMSNIPS (22) $£ 3.15$ BIMPUMP (23) Minor $£ 6.80$ BIMFEET [24] (25)
$£ 0.77$

EMALL PROJECTE

BIMBOARD 1. Accepts . $3^{\prime \prime} \& .6^{\prime \prime}$ DIL IC's and MPU's plus components with $.25-.85 \mathrm{~mm}$ dia. laads. 550 double sided $1 \mathrm{~A}, 10 \mathrm{~m} .0 \mathrm{hms}$ max. nick el silver contacts on.$^{\prime \prime}$ matrix. Bus strips running up each side. Interlocking lugs \& slots on all sides plus Component Support Bracket for Pots, Switches etc. Rows and columns of holes are numbered or lettered. BIMBOARD 1 £6.90.

ADVANCED PROJECTE

DESIGNERS 1, 2 and 3.
Full prototyping units utilising 1, 2 or 3 BIMBOARD 1's mounted on a BIM 6007 BIMCONSOLE. 220/240Vac I/P via IEC plug and socket. Adjustable ± 5 to $\pm 15 \mathrm{Vdc}$ © 100 mA . Fixed $+5 \mathrm{~V} @ 1 \mathrm{~A}$. Fully isolated O/P's. Short circuit, fast fold-back, protection. Power rail cable clamps atong top of BIMCONSOLE accept stripped wire or 4 mm plug. Component Support Bracket also included. DESIGNER 1 £61.53, DESIGNER 2 £67.28, DESIGNER $3 £ 73.02$

PCBS

VEROBOARD

$\begin{array}{lll}\text { Size in. } & 0.1 \mathrm{in} . & 0.15 \mathrm{in} . \\ 25 \times 1 & \text { Vero } \\ 26 \mathrm{p} & - & \text { Cutter 110p. }\end{array}$ 2.5×3.75
2.5×5
2.5×5
3.75×5
3.75×17
3.75×17
$\begin{array}{ll}60 \mathrm{p} & 53 \mathrm{p} \\ 70 \mathrm{p} & 65 \mathrm{p} \\ 75 \mathrm{p} & 75 \mathrm{p}\end{array}$
SS pins/100 45p 45p
Fibreglass board, $203 \times 95 \mathrm{~mm}: 80 \mathrm{p}$ each.

RESISTORS

Carbon film resist-
ors High Stability $10 w$ noise 5\%.
E12 series. 4.7 ohms to 10 M . Any mix $\begin{array}{llll} & \text { each } & 100+ & 1000+ \\ 0.25 W & 1 \mathrm{p} & 0.9 \mathrm{p} & 0.85 \mathrm{p}\end{array}$ 0.5 W $2 p$
Special development packs consisting of 10 of each value from 4.7 ohms to 1 Meg METAL FILM RESISTORS very high stability, low noise rated at $1 / \mathrm{W}$ 1%. Avallable from 51 ohms to 330 k in E24 sertes Any mix. $0.25 \mathrm{~W} \quad 4 \mathrm{p}$ $\begin{array}{ll}100+ & 1000+ \\ 3.7 p & 35 p\end{array}$ POTENTIOMETERS
Preset vertical or horizontal 100 ohms 1 M
Rotary $5 K-2 \mathrm{M} 2$ Log
R Rotary $5 \mathrm{~K}-2 \mathrm{M} 2$ Log or Lin double 90 p Slide 60 mm travel 5 k -500k Log or Lin, single
Suitable knobs for above with coloured
caps in red, blue, green, grey, yellow and black. Rotary controls $16 p$ each. Slide type 12 p each.

MISC.

Murata Ultrasonic Transducers 64 mm 8 ohm speakers 64 mm 64 ohm speakers SRB 17 W soldering ir Reel of 22 430p each Desoldering tolder (39.6 m) 3200 each Precision screwdriver set $\quad 170 \mathrm{p}$ each Titan Electric drill 1095p each Minaiture 606 and 909

SWITCHES

TOGGLE
Standard Miniature
Subminiatur SLIDE Standard Miniature

SPST 36p OPDT 50p SPDT 75 D DPDT $85 p$ - OPT DPDT $17 p$ ROCKER (10A rating) : ROTARY
ROTAR
1P12W, 2P6W, 4P3W or 3P4W 51p each Key operated DPDT (Yale key) 395p each PUSH

Non locking - push to make $16 p$ each
 Locking

REGULATORS

LM309K 1400 LM317T 220p LM323K 480p

100mA + ve	1A + ve		1A-ve	
78L05 30p	$780570 p$	$790585 p$		
78L12 30p	7812	$70 p$	$791285 p$	
78L15 30p	7815 70p	$791585 p$		

TRA		$2 S$		TIP32C TIP2955 TIP3055	$\begin{aligned} & 60 p \\ & 66 p \\ & 53 p \end{aligned}$
AC127	220	BC548	11p	ZTX107	12p
AC128	22p	BCY71	16p	ZTX108	12p
AC176	22p	BCY72	$15 p$	ZTX300	14p
AD161	40p	BD131	40p	ZTX500	15p
AD162	40p	BD132	40p	2N3053	25p
BC107	10p	BD139	33p	2N3054	56p
BC108	10p	BD140	33p	2N3055	D
BC108C	12p	BFY50	23p	2N3702	$9 p$ 90
BC109	10p	BFY52	23p	2N3706	9 p
BC109C	12p	MFY52	100p	2N3719	20p
BC147	9 p	MPSA06	16p	2N3904	10p
BC148	9p	MPSA56	16p	2N3905	10p
BC177	16p	TIP29C	60p	2N3906	10p
BC178 BC182	10p	TIP30C	48p	2N5459	33p
BC182L	10p	TIP31C	50p	2N5777	$50 p$
BC184	10p	DIODES			
BC184L	$10 p$	1 N914	4 p	1 N4006	7p
BC212	10p	1N4148	3p	1 N5401	14p
BC212L	$10 p$	1 N4002	5p	BZY88se	8p
BC214L	10p	1N4148	1.50	100.	

CAPACITORS

High quality foil type 63 V working 5% 22pf to 100pf 7 p each 1500pf to 0.01 uF TANTALUM BEAD
$0.1,0.15,0.22,0.33,0.47,0.68$
$1 \& 2.2 \mathrm{uF} @ 35 \mathrm{~V}$ $1 \& 2.2 u F @ 35 V$
$4.7 .6 .8,10 u F$ 22@16V,47@6V,100@3V MYLAR
$0.001,0.01,0.022,0.033,0.047 \ldots 4 p$ each POLYESTER
Mullard C280 series
0.01, $0.015,0022,0.033,0.047,0.068,0.1$. 6p ea. $0.15,0.22$
$0.33,0.47$ 0.33 .0.
0.68
0.68
1.0 uF

CERAMIC
Plate type 50 V . Available in E12 series from 22 pF to
0.047 FF
MINIATURE TRIMMERS
Miniature film type, in 1.4pF-5pF, 2pF-22pF,
$2 p F-22 p F, 2 p F-10 p F, 5.5 p F-65 p F .22 p$ each
RADIAL LEAD ELECTROLYTICS

$63 V$	047	1.0	2.2	4.7	10	$6 p$ each
			22	33	47	$8 p$ each

	100			16p each	
			220	$20 p$ each	
$25 V$	10	22	33	47	$6 p$ each

100	22	33
	220	
	470	8p each
1000	$12 p$ each	

PACKS

 Spectally developed packsintended for development

V/W CF resistor, 10 each value E12 series $1 / 2 \mathrm{~W}$ CF resistor, 10 each value E12 series 530 each 4.7 ohm to 1 Megohm (650 total) 850 peach

Preset potentiometers 5 each value
from 100 ohms to 1 Megohm (65) - 390p each
Polyester capacitors 5 each value
0.01 to 2.2 uF (70)

Ceramic plate capacitors 10 each value
22 pF to $0.01 \mathrm{LF}(3101$

		socket	socket
2 pin	$8 p$	$8 p$	$12 p$
3 pin	$12 p$	$10 p$	$12 p$
5 pin 180°	$12 p$	$11 p$	$17 p$
5 pin 240°	$14 p$	$11 p$	$22 p$

JACK PLUGS AND SOCKETS

	unscreened	screened	socket
2.5 mm	$10 p$	$15 p$	$8 p$
3.5 mm	$10 p$	$16 p$	$9 p$
Standard	$16 p$	$30 p$	$19 p$
Stereo	$23 p$	$39 p$	$22 p$

1 mm PLUGS AND SOCKETS
Suitable for low voltage circuits, Red \& Black
Suitable for low voltage circuits, R
Plugs: $8 p$ each. Sockets: $9 p$ each
4 mm PLUGS AND SOCKETS
Avalable in blue, black, green, brown, red, white
and yellow. Plugs 18p each. Sockets: 15p each.

INEAR		LM10	400p	LM3909	72p	TBA800	$80 p$
		LM301A	30p	LM3914	280p	TBA810S	1100
709		LM308	70p	LM3915	280p	TDA1008	350p
	40p	LM318	85p	LM3911	120p	TDA1022	630p
741	18p	LM324	52p	LM13600	160p	TDA1024	120p
747	50p	LM339	55p	MC1496	80 p	TDA2020	360p
748	35p	LM348	100p	LM1458	40p	TL071	75p
7106	850p	LM377	170p	LM1830	180p	TL072	135p
AY-1.021?	660p	LM378	230p	MC3340P	135p	TL074	200p
CA3046	70p	LM3795	4100	MC3360P	135p	TL081	45p
CA3080	75 p	LM380	80p	MM57160	650p	TL082	85p
CA3130	90p	LM381	140p	NE531	110p	TL084	125p
CA3140	50p	LM382	120p	NE555	23p	TL170	600
FX209	820p	LM383	200p	NE556	$60 p$	XR2206	390p
ICM7555	100p	LM386	90 p	NE566	120p	$\times \mathrm{R} 2207$	450p
ICM7556	POA	LM387	120p	NE567	120 p	ZN414	80p
LF347	135p	LM389	100p	NE570	420p	ZN419	POA
LF351	$45 p$	LM391	170p	NE571	460p	2N424	150p
LF353	85p	LM1310	140p	NE5537	POA	ZN425E	420p
LF355	92p	LM2917	280p	RC4136	100p	ZN460	360p
	95p	LM2924	160p	SAD1024	1310p	ZN1034	230p
$\begin{aligned} & \text { LF356 } \\ & \text { LF357 } \end{aligned}$	92p	LM3900	60p	SN76477	230p		
NICRO		2112	220p	CPU's		SUPPORT	
		2114 LP	420p	6800	650p	6810	350p
		4116	620p	8080A	610p	6821	600p
		2708	680p	Z80	1090p	6850	550p
$21 \mathrm{LO2}$	120p	2716	1980p			AY5-1013	3700

We now offer one of the widest range of components at the most competitiv
prices in the U.K. See catalogue for full details. We welcome callers at our
shop in College Road, Bromley, from Mon - Sat 9am - 60 m (80m on Wed
Fridays). Special offers always available. We atso provide an express telephone
order service. Telephone orders recieved before $5 p m$ are shipped same day
TELEPHONE ORDERS: 01-464 2951/5770.
Details of our entire range of components are contained in our new 1980/81 catalogue containing over 100 iltustrated pages. Price 50 p includes post. age ($\& 50 \mathrm{p}$ voucher). Prices VAT inclusive

BARCLAYCARD \& ACCESS WELCOME
Piease add 50 p carriage on orders under $£ 15$. Official orders welcome

THE STUDENTS SATELLITE

The National Aeronautics Space Administration (NASA) will provide space for a piggy back load on board the Thor-Delta vehicle which will carry the Solar Mesosphere Explorer. The piggy load is the student satellite Uosat. This is the first satellite to be completely built by a college as a project. The University responsible is Surrey, in conjunction with the United Kingdom branch of the Amateur Satellite Corporation (Amsat). The project has backing from the British Aerospace industry.
The launch is scheduled for September 1981, in a planned orbit which will be polar at a height of 530 km . The principal objective of Uosat is to afford radio enthusiasts with the means of studying the propagation of radio waves in the ionosphere. To this end Uosat will be equipped with radio beacons operating at $7,14,21$ and 28 MHz popular amateur operational bands. The satellite will also have on board radiation counters and a three axis magnetometer supplied by a United States enthusiast. The initial design has already been completed by the University of Surrey. British Aerospace Dynamics have undertaken the structural analysis. Ferranti Ltd have provided a prototype low power minicomputer and the Science Research Council have donated solar cells which were left over from UK-6.

The satellite is being built in three stages. The first is the breadboard which is expected to be completed by August 1980. The engineering model stage should be completed by December this year. The flight model has then to be completed by August 1981. The arrangements for testing have already been made which will include the thermal and vibration stress conditions. The budget for the project is very small by ordinary satellite standards-some $£ 85,000$. This, however, is supplemented by the aid being given by industry. It is, however, a reminder that the
amateur eventually invades every field of human endeavour with a major contribution to the furtherance of knowledge.

HIPPARCOS

Hipparcos, named after a Greek astronomer who lived about 200 BC , has been chosen by the European Space Agency as a new astronomy vehicle. Its principle object will be Astrometry. This is the measurement of star positions and their velocities. Hipparcos is expected to provide data on the Big Bang. The proposal at the moment is to put it in a geostationary orbit in mid 1986. The cost of Hipparcos and its payload is expected to be around $£ 80$ million. The mass would be 375 kilogrammes, of which some 120 kilogrammes would be experimental payload. It would be launched by an Ariane launch vehicle and will have a design life of 2.5 years.

If, however, the United States decide after all to fund the Halley comet mission then Hipparcos may be delayed, for the European Space Agency will want to participate in the mission.

JAPAN'S LOSS

The experimental Comsat which the National Space Development Agency (Nasda) launched failed to reach its orbit and was lost. This is the second failure that Japan has suffered. The satellite ECS-b was launched from Tanegashima on February 22. The boost motor, to inject it into the geostationary orbit planned, fired three days after launch but after only 8 secs. into the burn the satellite was lost. This suggests that the boost motor exploded.

SOVIET ACTIVITY

A survey of the Soviet Space Programme compiled from a number of sources establishes a fairly good picture of the next several years of progress. It is expected that there will be extensive manned space activity. The development of their sychronous orbit communications systems and the expected flights to Venus seem to be major activities. Although it is not known for certain whether they have a plan for a shuttle like programme, this cannot be ruled out. In view of the special development of the remote controlled vehicles which they have and the expertise they have attained in the man-machine interface operations, they must be near to a reusable winged vehicle, which will probably emerge during the next five years. At the moment the re-usable vehicles used as transports have shown the viability of the design, and costs must already be cut considerably. Using expendable boosters it may well be that a boost launch and a winged return will be achieved during the next decade. An important point to be borne in mind is their techniques of hard landings. Given the ability to get off with large loads, they may already have conceived a design for a controlled motor return. The modular system they have makes simple addon standard units a simple and easy build up to extensive space stations, any of the units of which could successfully return.

In December last a new Soyus T was launched. This is an up-dated manned transport compared with the earlier Soyus spacecraft. It would not be difficult to speculate what might be done towards a
return unit. One of the new units they have is the Proton booster. For the third time the Russians repeated during 1979 a mission using the Proton booster to carry two vehicles into orbit. In each case they made only one or two revolutions before being returned. The recovery in each case was around dawn. The latest mission of this kind involved Cosmos 1,100 and Cosmos 1,101 . This was during May 1979. The analysis of these missions made by the United States showed that they were part of a manned space flight programme, but the nature of the flights have not been determined.

VENUS MISSIONS

The USSR plan two missions to Venusone in 1981 and another in 1984. They will have acquired a substantial amount of data before the next United States mission in the late 1980's. For the 1981 mission there will a dual lander surface imaging type similar to the previous ones with the Venera 9 and Venera 10. In the 1984 mission they will cooperate with France. The plan on that occasion will be to use balloons to carry gondolas into the Venusian atmosphere.

LUNAR MISSIONS.

It is now several years since there has been a lunar mission and it does not appear that any such missions are being planned at the moment. It would seem that a lunar landing is not part of the Russians' programme.

RESOURCES RESEARCH SPACECRAFT

Last year a series of missions began with what the Russians called Ocean Resources spacecraft. Cosmos 1,076 was launched into an orbit, near circular and inclined at 82 deg. It was relatively heavy and launched by a booster similar to military designs. This was in Februàry 1979. In May and October (or between those times) a series of missions were flown in a rather unusual manner. They were earth resources missions and seemed to be related to the crop seasonal time. Ten spacecraft were launched and recovered after flying at the inclined orbit of 82 deg . All of them had a photographic task as a declared object. The United States do not rule out military objects as well. There have indeed been many military missions but this is not of course known in detail.

Undoubtedly there will be much space station activity. The deploying of large structures must be expected, first of all large antennas. It has always been a feature of Soviet plans to use space 'platforms'. In personal discussions with the space people before the Apollo missions it was revealed that Soviet plans for manned planetary landings revolved around space platform facilities. They now have the capability of carrying out such missions. During 1980 a new vehicle, a more highly sophisticated Salyut will be launched. This is intended to step up the activities.

In recent years the number of launches has been very high as shown by the following figures:-1978-88, 1977-98, 1976-99, 197589. In 1979 the launches amounted to 87.

The proposals and trends of both the USSR and the USA will be given in some detail in the next issue of Spacewatch.

Readout... A selection from our Postbag

Readers requiring a reply to any letter must include a stamped addressed ervelope.
Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

Velikovsky versus Hyde

Sir,—As a regular reader of Frank Hyde's Spacewatch I was saddened to read his April column, wherein he chose to join the ranks of the many who try to pre-empt any objective evaluation of the theories of Velikovsky. His use of such words and phrases as "bizarre", "gullible", "no basic credibility" does no service to himself nor to the pursuit of science. His contribution to the debate on the assessment of veracity in science is minimal. The acceptance of a theory by the majority is not. necessarily proof of its veracity. The heliocentric theory of the solar system has not always been accepted in the Western world. The speculations of Hyde may appear to be bizarre to some not versed in current theories of the origin of the Solar System but such a feeling is neither proof for nor against such a theory. If it should transpire that observations from probes and results from computer modelling and simulations come up with some conclusions that were predicted by the Velikovsky model(s) then why should he not be extended the courtesy of having his precedence acknowledged?

I look forward to a reasoned argument from Hyde for the rejection of the Velikovsky theory so that I may resolve my own uncertainties about whether to acept Velikovsky or reject him. So far, his opponents, in resorting to argument by value-judgement words and sometimes not very honourable behind the scenes lobbying, have failed to help me resolve my conflict.

Perhaps we should remind ourselves that computers, in general, only come up with the answers that are predetermined by the program they obey. Those that don't have not yet been made!
W. G. C. Austin,

Newcastle-upon-Tyne.
I am sorry that I have offended Mr Austin by my remarks in the April issue. However, there is no difficulty in dealing with the Velikovsky claims which have increased over the past decade. To do so in a short letter would be difficult, for when someone puts forward a point of view which stems from a conviction that the Earth came into being less than 4000 years ago, a good many words are required to show the many facts against such a view. Indeed my own small attempt has already run into many thousands of words.

Mr Austin takes me to task for the statement in April Spacewatch which dealt with another aspect of the past history of the solar system. His statement that Velikovsky's
'predictions' might be confirmed puts him in rather a difficulty because Velikovsky does not believe that there was a system before 1500 $B C$ or thereabouts: The fact is that there have been statements and speculations by astronomers and physicists (who do not claim them as 'predictions') that have proved to be valid. In the case of the radiations from Jupiter, I too can point to certain statements made by myself which were later proven. These statements are in fact a direct rebuttal of the 'predictions' made by Velikovsky. Mr Austin has asked for reasoned argument for the rejection of Velikovsky claims but he does not say which of the claims he means. I will gladly answer any questions if Mr Austin will formulate them.

It is difficult to understand sometimes why people assume that when a theory is challenged it is the challenger who is the persecutor. It is true that when Velikovsky came into the academic eye he was very badly treated but this has long passed and great efforts were made to give him a fair hearing by many eminent academics. This reached a peak when he was offered the freedom of the American Association for the Advancement of Science in 1974, he did not accept the opportunity so far as astronomy was concerned but dealt only with his theories of the loss of several hundred years of Egyptian history.Frank W. Hyde.

On the fence?

Sir,-Although I follow your editorial argument with "Disgustedly", in PE of March 1980, have you not rather missed the essential point?

The projects you describe are the major feature of your magazine, and of course "Practical etc" means you expect us to make them. It is not really part of the exercise to ferret out who supplies the essential bits. I find that I can spend upwards of a $£ 1$, i.e. more than the cost of the magazine, merely to identify suppliers, and on top of that there is post and packing, minimum order charges and so on. Whilst, therefore, I agree with your policy not to mention specific companies etc., whose side are you on, the suppliers or the readers? Surely, anything you can do to ease our identifying the supplier must increase the numbers of readers actually making your projects?

If, for example, you "encouraged" suppliers to advertise that they will supply all the parts for a project, as do some of your "Practical" colleagues, even though such suppliers might charge a bit more it would probably still be cheaper and certainly as competitive than the present system.

In short, you really must come down off
that fence and decide whose side you are on. The dealers can have no grounds for complaint, especially if more projects are made, and since at the very least it would save them the labour of packing tiny parcels of parts. The only complaint possible would lie with the Post Office, and even there the reduction of parcels might even speed the posts, not to mention the many letters of enquiry and reply, so you might even be doing something of national importance as well as for us.
D. Hart,

Aylesbury.

Might we suggest that with a collection of three or four catalogues from mail order suppliers most of your component buying problems will be solved. We are sure that you will be able to get parts for nearly all our projects from one supplier. We do of course encourage suppliers to advertise kits, and we also send out p.c.b. artwork and issue copyright licences to any companies requesting them. As you say you agree with our policy, we cannot understand what it is you want us to do. We are already quoting suppliers where we anticipate difficulty-so, what fence? and where are the sides?-Ed.

The Ultimate CPU

Sir-On reading about such devices as the IU 101 microprocessor (April p. 24) one really begins to wonder what these semiconductor experts will think of next!

However, I have to tell you that even this amazing device is far from being the most powerful machine of its kind. Another CPU exists against which the IU101 seems puny by comparison, and what is more, was being mass-produced in vast quantities long before the IU101 had ever been thought of?

I enclose details of this amazing device as published in the journal of the Southampton University Computer Club.

SYSTEM SPECIFICATION

Available now! Hybrid parallel processor, combining the benefits of both digital and analog techniques. The whole system presents an incomparable processing capability, the great store capacity alone renders all present machines obsolete.

TECHNICAL SPECIFICATION

Total store:
10^{799} Bytes!. Although the actual core storage available to the user is lower than this figure, which includes peripheral handling and a number of pre-programmed system macros. Speed:

Absolute figures are difficult due to the nature of a parallel processor. However, individual operations can take from 1.5 s to as long as 12 s . This slow speed is not a real disadvantage in real-time situations as complex network operations can take as little as 90 secs. to complete.

Data Busses:

Analog data is handled by the processor by frequency modulated sawtooth impulses. Two types being provided; slow carrier (150-300 Hz) with an amplitude of $200 \mu \mathrm{~V}$ and fast

carrier ($1-2 \mathrm{kHz}$. typ.)

Environment:

Humidity tolerance $0-100 \%$ with little reduction in efficiency at extreme levels. Ambient temperature:
$310 \pm 0.7 \mathrm{~K}$ Peak efficiency
$310 \pm 5 \mathrm{~K}$ Maximum tolerance
Pre-programmed temperature macros are available to ensure system stability. Power: Supplied by the processor's own 'fuel-celltechnology' modules. Running costs are
negligible. Maintainence: minimal, should last a lifetime.

Peripherals:

The unit comes ready wired with a wide range of peripherals: Optical character readers, A/D Auditory convertors for verbal input, Vocoder and slow speed hard copy facilities.
General:
Weight is minimised by molecular microcircuit techniques (typical weight of the CPU
without peripherals is only 1.4 kg .). The CPU itself comes ready cased ($150 \times 200 \times 150$ mm typ.)
Needs to sleep!
Unfortunately this incredible device does not constitute a 'first' for British technology. Although the Designer was at one time thought to be an Englishman, He is now considered to be of extra-terrestrial origin.
C. R. Harris,

Brighton.

Hountidnun

Hevac (heating and air conditioning) May 19-23. NEC.
International Word Processing (Exhibition and Conference) May 20-23. Wembley Conference Centre. O
East Suffolk Wireless Revival May 25. Grounds of Ipswich Area Civil Service Sports Association, Straight Rd., Bucklesham. V1
Electronic Hotel June 4-5. West Centre Hotel, London. Z1
Satellite Communications (Conference) June 18-19. London Press Centre. 0
Great British Electronics Bazaar cancelled
Intel Fair June 24. Wembley Conference Centre, London. U
The Energy Show June 24-26. National Exhibition Centre, (NEC), Birmingham. $\mathbf{Z 1}$
Tempcon July 1-3. Wembley Conference Centre, Exhibition devoted to temperature control \& measurement. T
Transducer July 1-3. Wembley Conference Centre. T
Microsoftware (symposium) July 7-10. University of Sussex. S1
The 1980 Microcomputer Show July 10-12. Royal Lancaster Hotel, London. 0
BAEC Amateur Electronics Exhibition July 12-19. The Esplanade Shelter, Penarth, near Cardiff, S. Glam. B
Computer Graphics (exhibition \& conference) Aug. 12-14. Metropole, Birmingham. 0
Harrogate International Festival of Sound Aug. 16-19 (18 \& 19 trade). The Exhibition Centre + hotels. X
Edtech Aug. 19-21. Holland Park School, London. C1
Laboratory Sept. 9-11. Grosvenor Ho., Park Lane, London. E
Intron 80 Sept. 9-11. RDS, Dublin. V
West of England Electronics Exhibition Sept 9-11. Bristol Exhibition Centre Q .

THE COMPLETE BOOK OF ELECTRIC VEHICLES

By Sheldon R. Shacket

Published by Davison Publishing Ltd.
168 pages. $215 \times 280 \mathrm{~mm}$. Price £3.95.

T
HIS book is packed with photographs and facts recording man's endeavour to go electric on the roads, both past and present. The pages are full of surprises, such as, that a non-rechargeable electric car was designed and built as far back as 1834. Even more surprising is the
description of an era of thriving production-line electric cars which was designed and built as far back as 1834. Even more surprising is the
description of an era of thriving production-line electric cars which came and went in the USA around the turn of the century. There is a
picture of a delightfully elegant Detroit Electric car of 1915 which had came and went in the USA around the turn of the century. There is a
picture of a delightfully elegant Detroit Electric car of 1915 which had range and speed capabilities as respectable as many of today's efforts.
That a past generation had elevated the state of the art to such a height, range and speed capabilities as respectable as many of today's efforts.
That a past generation had elevated the state of the art to such a height, gives the electric car advocate a sense of loss when reading through early pages.
The incongruity of the space-aged bullet-shaped cars with top speeds

Avionics (symposium) Sept. University of Surrey. S1
BEX (Business Equipment Exhibiton) Oct. 1-2. The Guildhall, Plymouth. K
BEX Oct. 15-16. Assembly Rooms, Edinburgh. K
Engineering Ireland Oct. 15-18. Leopardstown Exhibition Centre. V
Testmex (exhibition and conference) Oct. 28-30. Wembley Conference Centre. T
Compec Nov. 4-6. Olympia. $\mathrm{Z1}$
BEX Nov. 5-6. Sophia Gardens, Cardiff. K
Semiconductor International 80 November 25-27. Metropole Convention Centre. T1
Breadboard Nov. 26-30. Royal Horticultural Halls, Westminster. T

B British Amateur Electronics Club, 26 Forrest Road, Penarth S. Glamorgan.

E Evan Steadman. 6079922612
K Douglas Temple Studios, 1046 Old Christchurch Rd., Bournemouth
O Online Conferences. 089539262
Q Exhibitions For Industry Ltd. $/$ 08833-4371
T Trident International Exhibitions. 608224671
U Brian Crank Associates, 58 London Rd., Southborough, Kent. © 0892-31812 38414
v SDL Exhibitions, 68 Fitzwilliam Square, Dublin.
X Exhibition \& Conference Services, Claremont Ho., Victoria Ave., Harrogate, Yorks. $\varnothing 042362677$
C1 Stereoscopic Television Ltd., 41/43 Cbarlbert St., St. John's Wood, London NW8 6JN. f 01-722 4139
S1 Society of Electronic \& Radio Technicians, 57-61 Newington Causeway, London SE1 6BL. 01-403 2351
T1 Kiver Communications U.K., Millbank House, 171/185 Ewell Road, Surbiton, Surrey KT6 6AX.
V1 Jack Tootill, G41FF, 76 Fircroft Rd., Ipswich, Suffolk IP1 6PX. Send s.a.e. (9×5 ins.) for details.
Z1 IPC Exhibitions Ltd., 40 Bowling Green Lane, London EC1R ONE. © 01-837 3636.
of only 50 m.p.h. seen towards the end of the book, make you think that perhaps even modern electric vehicles should have the "vintage" look as part of their selling attraction.

Just as the relative economics of the internal combustion engine eclipsed the electric chariot in the "first round", now, in 1980, it could be these economics which depose the i.c.e. driven vehicle. The book helps you judge for yourself the possibilities ahead, because just about every prototype or production vehicle to be built, in just about every country in the world (with an emphasis on the USA), seems to be described. The work of private individuals as well as the big conglomerates is represented, invariably with exciting pictures.

Electric bicycles are shown, monorails and rapid transit systems, commercial vehicles, and, there are two chapters devoted to the principles of electricity and motors in the context of electric transport. To put matters into a final perspective, the world's various energy sources and alternatives are discussed. This material is sure to rivet the enthusiast to many hours of reading, its prime revelation being just how much research and prototyping is going on in the field.

It is refreshing to see such a busy catalogue of innovation centred on the motor car, the industry of which seems to regard progress as primarily bashing out the body shell to a different shape and spraying it a different colour. The ancient petrol engine will eventually be drummed out, and more and more motorists will cease to be seduced merely by the chromework. If you read this book you will be among them! It is well researched, and excellent value for money.
M. A.

Colours and how we see them. have intrigued the layman and specialist alike for many centuries. Scientists and technologists from a wide variety of fields must consider colour in industry for standards and specifications. Designers and artists, photographers and sales staff are just some of the professionals who must have a critical eye for the many hundreds of hues that the eye can detect. Colour is used extensively to aid identification and code information in commerce, industry, education, navigation and military spheres. In many cases the correct identification of a colour code is essential for safe and efficient work; mistaken identity could result in serious accidents, not only to an individual and his immediate colleagues, but in the case, for instance of electrical wiring, to all who subsequently operate the hardware.

Although most of us enjoy a remarkable sense of colour appreciation it is often forgotten that one in twelve men, accounting for eight per cent of the male population, have varying degrees of difficulty with colour identification. Only in extreme cases are those individuals truly blind to colours, as they are often so unfortunately labelled, but instead a whole range of colours, particularly the reds, browns, oranges, yellows and greens, appear as a single sensation to their eyes and this may have significant and even dangerous consequences.

Over two million men in Britain alone may be at risk at home and at work from this common handicap; in the electronics field these errors in colour identification are most noticeable. Yet despite the reliance upon the visual sense for the identification of cables, wires and electronic components, there has been virtually no attempt by safety groups and manufacturing organisations to consider the problems of the colour defective individual. The new coding system for flexible domestic wiring is less confusing for the colour defective, but when the history is traced it becomes clear that standardising bodies and professional associations have rarely given this consideration major priority. It is disturbing that many manufacturers take no measures to screen prospective employees with colour vision tests. As a result, in at least one major company in the UK a large quantity of colour-coded capacitors had to be discarded recently because the wrong coloured stripes had been applied to the components by a colour defective operative. The financial and social consequences of such mistakes can be considerable. It is disturbing to consider the number of colour blind electricians who could make fatal errors simply as a result of mistaken colour identification.

HOW WE SEE COLOURS

Ever since Sir Isaac Newton's famous discovery at Cambridge of the nature of colour in the seventeenth century, the
splitting up of white light by a prism into the seven spectral colours. there have been a great many theories about how we perceive such a wide gamut of hues. Scientists began considering the mechanisms of human colour perception seriously around the time when there was a concentrated effort to understand energy in all its forms, in Britain at the beginning of the nineteenth century. It is important to remember that we are dealing with a narrow bandwidth (the visible range) of electromagnetic radiation which shares a number of common features with the shorter wavelength ultra-violet, x-rays and gamma rays, and the longer wavelength infra-red radiation, microwaves and radio waves. As Newton first pointed out "the rays are not coloured themselves". Colour sensations result only as a consequence of the interaction of light energy with the eye's light sensitive chemicals which lie in the retinal cone-like recep-

(Reprinted with permission from Electrical Review)
tors, and the brain's 'translation' of the coded message; colour is a truly perceptual phenomenon.

Around 1850 James Clark Maxwell, a Scotsman and one of the greatest theoretical physicists of all time, experimented with the additive mixing of colours. He showed that yellow could be produced by combining red and green lights in equal proportion, and white when all three "primaries" were added together.

Since Newton had shown that colour was not a property of the light itself, it was suggested by Sir Thomas Young, at the turn of the nineteenth century that the trichromatic nature of colour must be associated with the eye. Young had suggested that three photo-sensitive receptor mechanisms, responding maximally to red, green and blue light were involved, and later the German physiologist and physicist Herman von Helmholtz refined this basic idea suggesting that a definite overlapping of the sensitivities of the three mechanisms would allow the coding of all colour sensations.

It was almost a hundred years later that the existence of three kinds of chemicals in the monkey and human retina was substantiated by two independent groups working in the USA in the mid 60's and physiologists in Britain working at Cambridge and London Universities analysed the light reflected back from the living eye to confirm this theory. The coding of colour signals in this trichromatic form at the retina is similar to the principle of colour television, with a separate coding for luminance or brightness data. Beyond the retina the signals (which are converted from a chemical to an electrical form at an early stage in the receptors) are paired in an opponent (red-green, blue-yellow,
black-white) manner, and remain in this form until they are interpreted in the visual centres of the brain; this format is also akin to the transmission of colour television with its economical use of band-width space.

FAULTS IN COLOUR PERCEPTION

The fault of defective colour vision is thought to lie at an early stage in the retina with some change in the photo pigments being responsible; more frequently the red and green channels are affected. Where one photo pigment mechanism is inoperative or absent the colour perception is considered to be dichromatic (two colours). Monochromatism (total colour blindness involving perception restricted to black and white) is rare in an inherited form. Anomalous trichromats are less severely handicapped, having the three pigment groups present but one is defective; these account for about 5 per cent of the total, dichromats make up the remainder. Depending on whether the red, green or blue channel is affected the Greek terms protan, deutan and tritan apply respectively. A mild green defective is medically known as a deuteranomalous trichromat; the more severe form being a deuteranope. A mild red defective is called a protanomalous trichromat and the red deficiency is known as protanopia.

Although colour vision defects are classified into convenient groups a whole spectrum is met in practice. Pale or desaturated colours present the trichromat with problems, whereas trouble with deep hues is typical for the more severe defective. Common confusions will be discussed later.

Percentages given are to the nearest per cent.
Colours completely missed by Deuteranopes

Brown not seen on Brown	$\mathbf{3 \%}$
Red not seen on Red	$\mathbf{4 \%}$
Red not seen on Brown	3%
Green not seen on Brown	3%
Grey not seen on Brown	$\mathbf{3 \%}$
Orange not seen on Light Brown	$\mathbf{2 \%}$

Table 1. Errors in naming bands on resistors made by 16 green blind observers (deuteranopes). From a study by Voke (1976).

Percentages given are to the nearest per cent.
Colours completely missed by Deuteranomalous trichromats.

Brown not seen on Brown	1%
Grey not seen on Light Brown	1%
Grey not seen on Brown	1%
Red not seen on Red	1%
Red not seen on Brown	2%
Green not seen on Brown	1%

Table 2. Errors in naming coloured bands on resistors by twenty-two green weak observers (deuteranomalous). From a study by Voke (1976).

ACQUIRED DEFECTS

Faults in colour perception are usually inherited and of the red-green variety but cases of acquired colour deficiency can arise during life, accompanying a disease or resulting as a sideeffect of medication or toxic poisoning and they can involve blue vision. The elderly are particularly susceptible, and there is, in any case, a gradual deterioration in colour vision after the fourth decade. Multiple sclerosis, diabetes mellitus, anaemia, malnutrition, chronic liver disease, and many eye diseases are just a few examples from the more common conditions involved. A head injury can lead to a temporary or permanent disturbance in colour perception. Excess of tobacco and/or alcohol can also affect colour perception. Toxic substances used in industry may also be a cause-carbon disulphide, monoxide and tetrachloride, sulphanilamide, thallium and lead, ethanolamine, manganese, mercury and hydrogen sulphide are examples. Acquired defects differ from the inherited class by being often progressive in nature, affecting even the whole colour sense, if the cause is not identified and treatment effected rapidly. They can be confined to just one eye or part of the eye space or field.

The severity of a colour vision defect is of far greater consequence industrially than the type of defect. To detect and classify a colour anomaly solely is far from adequate for industrial selection-what really matters is whether a deficiency significantly handicaps the individual in his work. Obviously the

Colours grouped show similar percentages of errors.

Table 3. Colours most frequently misnamed by deutans in resistor and capacitor trials.
severe form of dichromatism presents the greatest problem in everyday life. Such people consider a confined region of the visible spectrum to be neutral. In practice grey is confused with red and blue-green by the red defective and with a purple-red and an almost true green by the green defective. The first record of dichromatism was made in 1684 in the Philosophical Transactions of the Royal Society. John Dalton, the famous atomic chemist gave the first clear description of his own protanopia a century later. The electromagnetic spectrum appeared to him in varying shades of blue and yellow with purple alone as a possible third hue. He described blood as "a bottle green colour".

A GENETIC̄ CHARACTERISTIC

Abnormal colour perception affects around eight per cent of males in developed countries but a significantly lower proportion, in rural isolated groups and nomadic populations. Only one in two hundred women show colour vision defects and this is accountable by the simple, predictable genetic mode of transmission. Mothers "carry" the condition to sons without themselves showing signs of the abnormality; when a "carrier" marries a colour defective man there is a fifty-fifty chance that the
daughters will show a degree of colour defect themselves, the remainder being carriers so the proportion is low among women. It is fortunate that in the electronics industry a great many women assembly operatives are employed for this reduces the likelihood of mistakes due to colour identification.

COLOUR CONFUSIONS

In a study directed at establishing the likely consequence of defective colour vision in those concerned with identifying the colour codes of electronic components, the author found that anomalous trichromats made an average of 7.5 per cent of errors, suggesting one likely mistake in the identification of twelve resistors. Dichromats show a much greater risk misnaming 20 per cent of the sample of twenty-seven assorted resistors; they could be expected to place incorrect values on one out of every two resistors (total eight bands). Complete failure to identify the presence of a band was also more frequent for the severe defectives than the milder group. See Tables 1 and 2. The band pairs green and brown, red and brown, and green and red give greatest difficulty to all red-green anomalous. Deutans, the green defectives, additionally confuse blues and violets readily. See Table 3. It is highly desirable that dichromats should not be employed in operations requiring reliable recognition of colour codes involving three or more categories.

MULTI-PURPOSES

Colour is used industrially and commercially in a variety of situations to reinforce hazard warnings, to control the movement of vehicles in transport, to code the contents of pipes and containers, gas and medical cylinders, pressure ratings, in addition to the obvious areas of cables and wires. Where possible colour should be ancilliary to pattern codes and the hues should be as deep as possible, painted at numerous intervals particularly at the source and termination of supply pipes. International effort has been concentrated to agree strict specifications for signal colours used in transport where there is little clue in the form of shape or position. Careful thought was given to this aspect when the British Standard 1376 Colours for Light Signals was revived. A blue-green colour was agreed for the green signal as being more reliably recognised than a yellowishgreen by both colour normals and colour defective observers. The choice of red for danger and green for safety is unfortunate and although studies reveal no higher incidence of traffic accidents among colour defective drivers, fatal accidents are on record as being caused by anomalous colour vision and in a number of European countries restrictions are placed on protanopes. However in other areas the potential problems of the eight per cent colour anomalous have been largely neglected. A green defective might well confuse the steam and water code for pipelines as set out in BS 1710-green for water and silver grey for steam. Of greater consequence perhaps might be confusion by the red-defective between the violet of acids and alkalis and the light blue for air. Since greens, oranges, yellows, browns and reds are confused readily by all red-green defectives, a pipeline of combustible liquids (light buff code) could well be mistaken for one of water (green) or a container of electrical wires (orange).

Cartridge fuse-links for telecom work as set out in BS 2950 involve a range of eleven hues with many likely confusions for the colour defective. Only extreme anomalous trichromats and all dichromats might be handicapped with normal cartridge fuses whose code incorporates white, blue, yellow, red and green.

COLOURED CABLES-A RECENT IMPROVEMENT

The colour coding of a cable is used for identification purposes only like the examples cited above, whereas colour signifies a definite numerical value for electronic components. It
is therefore surprising that more attention has been given to the problems of confusion experienced by colour defective observers with wires than resistors. However objective methods are available for obtaining values of resistance and capacitance whereas it is difficult to replace the human observer for many wiring jobs.

It is pleasing that considerable efforts have been made to reduce the number of colours involved and the colour combinations for cables. Before 1939 the earth lead in the domestic wiring was coded brown; the three core code for flexible wiring using black, red and green were introduced because of the obvious associations but the colour defective was not considered. Before the European standard of brown, blue and yellow/green stripes was introduced efforts were made by the Chairman of the Society of Dyers and Colourists in 1968/9 to request a change on the grounds of likely difficulty for the colour anomalous. Despite helpful persistence little attention was given by the authorities to the voice of visual experts in this matter. Nevertheless the new coding system is viewed as an improvement by the eighteen colour defective individuals interviewed by the author. In pairing coloured wires protanopes frequently confuse green and orange when they appear in a double-twisted

Table 4. Common errors made in pairing single wire.
form such as is used in Post Office cables. Most varied confusions are made by deuteranopes (involving green with brown, green with red, orange with brown, red with brown, orange and red), similar confusions to the resistor bands. See Table 4.

TESTING REQUIREMENTS AND RECOMMENDATIONS

As so often happens, lessons are learned after the event, and the colour industries have had to pay a high price for some mistakes of colour identification. It is in the interests of both employer and employee that defects of colour vision should be identified before an employment arrangement is agreed, so that where there are slight or major differences from normal the possible consequences can be clearly established and assessed in the light of each individual situation.

The personal disappointment felt by a youngster who has set his or her heart on a specific vocation, only to be refused on the grounds of faulty colour perception is a saddening experience for all involved, one that could be avoided if better counselling facilities were available to such children. Employers and trade unions and associations, professional bodies and recruiting agencies all need to be aware of the extent of handicap imposed by a colour vision defect in their specific field and set their standards accordingly.

Sadly, but understandably, it is usually the financial aspects which most concern industry and business. Production rates are all important and it is simply not efficient to employ someone who may be slow or indecisive or inaccurate when judging colours in the colour orientated industries. Little attempt has been made in the past however, to evaluate just how capable the colour defective is at an occupational task which requires some degree of colour identification. As a result standards have often been set arbitrarily and testing methods have not been properly
evaluated. The colour defective individual has often been misunderstood and occasionally the victim of unfair discrimination.

Although it is likely that the numbers of severely colour defective individuals employed in the electrical assembly industry are small on account of a degree of self-selection and the large numbers of women operatives, greater attention should be given to the matter of colour vision testing. Screening for defective colour vision is a simple matter, there are excellent simple tests to separate out the eight per cent of men who have some degree of deficiency; false colour tests, of which the Ishihara is most widely known, serve this purpose adequately when used with an appropriate daylight source though they do not test for most acquired defects. Unfortunately there is no way of checking for faulty colour vision unless proper tests are applied. In the occupational context, more are usually required. The severity of the defect is of far greater consequence industrially than the type. In the last two decades there has been a considerable improvement in the types of testing methods available. Diagnostic tests which indicate the severity and type of both inherited and acquired defects are now available at a modest price. Yet industry continues to use out-dated and inferior procedures.

Separation of the 'safe' defective from the 'unsafe' is most important. During the last war it was recognised that many pilots with a slight green handicap (the deuteranomalous group) were able to carry out flying duties adequately. A test was designed by US military medical personnel to separate individuals into the safe/unsafe category. This has now been modified considerably in Britain, after further evaluation and appears in a simple book format, The City University Test, marketed by Keeler Instruments, 21/27 Marylebone Lane, London W1. It is easy and quick for the layman to use and interpret, and costs only a few pounds. More sophisticated tests for industry are available to indicate colour discrimination ability. One which uses a visual screener approach is the Lovibond Colour Vision Analyser produced by the Tintometer Company, Salisbury. Scores given by a large number of colour defectives on both these tests were found to give a much better correlation with practical ability than simple screening tests in the author's study.

Trade tests, which simulate the job in practice, such as a selection of coloured wires which must be identified, are valuable, but these can seldom be standardised and great care must be taken to ensure that the conditions are similar to those typically encountered in practice, e.g. dirty cables, or resistors and poor illumination. Trade tests should therefore be used with a clinical test, but employees should always have the option to show their performance in practice with such a simulation of the job in question.

It is true that great care and experience is needed to avoid rejecting the suitable and accepting the unsuitable and mistakes will undoubtedly arise but by a careful choice of a diagnostic test and a suitable pass/fail level a much more realistic screening procedure could be adopted, suited to the needs and requirements of individual industries. Costly errors could then be avoided and a fairer selection scheme would result.

In addition standardisation bodies should consider introducing tolerance limits for the colour codes of electronic components to reduce the variability between manufacturers and within batches from one manufacturer. These typical variations add to the difficulty of colour identification. Careful control of the brightness values and contrast and an effort to use only highly saturated (deep) hues would greatly assist the colour defective individual.

Although colour vision defects can be crudely identified by simple common mistakes in colour identification, only proper testing methods will indicate the existence of a defect for certain, and details of its type and severity. Such tests are usually available as part of the National Health eye examination by ophthalmic opticians.

len

THE circuit shown will flash mains lamps of up to 500 W at a variable rate between 0.2 Hz and 5 Hz . It is simple to build, inexpensive and is easily connected in series with the lamp to be controlled.

The flasher has obvious applications in the disco and entertainments field but could also be used as an emergency signal. It could flash the hall or porch light of an aged or disabled person's house should they require assistance.

The part of the circuit to the left of the dotted line is a conventional dimmer circuit with one exception. An l.d.r. is used to vary the time constant instead of a potentiomenter.

The remainder of the circuit is a basic neon oscillator where D2 rectifies the a.c. and VR1 controls the rate at which the neon flashes.

The neon is mounted close to the l.d.r., when the neon flashes it lowers the resistance and changes the phase. The pulse is fed to the triac via the diac. Thus the load flashes in sympathy with the neon.

R3 effectively lengthens the flash of the neon allowing the load to reach full brilliance. L1 and C1 are for suppressing RF1.
Finally the whole unit must be fitted in a light-proof box.

P. F. Farthing,
Melksham,
Wiltshire.

OP AMP
 BATTERY SUPPLY

HERE is a design to end all the problems associated with running sensitive op amp circuitry from battery supplies.

The circuit shown runs from two 9 V bat teries in series and provides a centre tapped plus or minus supply of nominal 6 V , actually about 5.8 V , and current of 50 mA from either
side. Quiescent current is about 4.5 mA and an 1.e.d. lights to warn of impending battery failure.
A. J. Flind, Taunton,
Somerset.
\qquad
MODEL RAIL WAY SIGNAL CONTROLLER

T
HE circuit shown is designed to control a three aspect colour light signal when connected with other signals as shown in Fig. 2 and Table 1. The previous signal is not essential (if one is not installed board connections 1, 2 and 4 should be left unconnected but the next signal must be installed in order to control the "distant signal" part of the signal, (i.e. the green and amber lamps). If no next is installed, like when coming to the end of the line, a two aspect signal should be used-with a circuit designed for a two aspect signal.

When a train enters the section of track controlled by the signal its motor draws power from the train controller through R2 (see Table 2). This produces a p.d. of about 1 V across R2 and hence across the base-emitter junction of TR1. (The BZX83C 4.7 Zener diode protects the base-emitter junction from excess voltages caused by short circuits of the track caused by derailments.)

This p.d. switches on TR1 which in turn switches on TR2. This changes the logic state at pin 2 of ICla from 1 to 0 . This makes IC 1 a
pin 3 go to logic state 1 , this in turn makes IC2a pin 1 (and IC2b pin 5) go to logic 0 . This in turn makes IC2b pin 4 go to logic state 1 , this, because it is connected to IC2a pin 3, now keeps IC2a pin 1 at logic state 0 and IC2b pin 4 at logic state 1 . These now remain like that even if the train stops or is removed from the track.

Because IC2b pin 4 is in logic 1 state the Darlington pair consisting of TR3 and TR4 are switched on and cause the red lamp to light. Also, because IC2c pin 11 and IC2d pin

Board connec- tion No.	Table I
1	Connected to: on control board of previous signal
2	7on control board of previous signal
3	Connected to track (see Fig. 2)
4	5 on control board of previous signal
5	4 on control board of next signal
6	on control board of next signal 7

Table 2
Gauge of

railway	Value of R2
"OO"	2.7 ohms 5 W
"N"	10 ohms 5 W

For others use the equation $R 2=\frac{1}{\sqrt{I}}$
Where $\mathrm{I}=$ current ${ }^{\circ}$ drawn by train when moving at slowest normal speed.

9 are at logic 1 state when IC2b pin 4 is at logic 1 state, neither the amber or green lamps may light.

When the train enters the section controlled by the next signal the control circuit of this signal makes board connection 7 and hence IC1b pin 5 go to logic 0 . This causes IC 1 b pin 6 to go to logic 1 causing IC2b pin 4 to go to logic 0 . This extinguishes the red lamp, and allows IC2c pin 13 to go to logic 1 hence lighting the amber lamp. When the next signal in its turn is cleared IC2c pin 12 goes to logic

Fig. 2 -

Fig. 3 -

1 hence extinguishing the amber lamp and IC2d pin 8 goes to logic 0 hence causing pin 10 to go to logic 1 , lighting the green lamp.

The signal can also be changed by pushing the push switches but when the clear switch is pushed the amber lamp will light if the next signal is in the danger position and the green lamp only if the next signal is clear.

TR5, RLA and associated components are an optional extra; the relay contacts may be used to stop trains when the signal is in the danger position, operate level crossing gates etc. The TIL209 l.e.d. may be mounted on the control panel (with the two push switches) and will light when the signal is in the danger position.

The power supply to the control board must be independent of the train controller (i.e.
from an independent transformer winding or separate transformer) if not the circuit will short out each time the train controller output is reversed to allow trains to run backwards.

Fig. 3 shows a modification enabling a 2 aspect signal to be used where there is no "next" signal. IC2c, IC2d, TR6, TR 7, the amber lamp and associated components are omitted and TR8 is connected through a 10 kilohm resistor to IC2a pin 1.
C. R. Bray,

Cheddar,
Somerset.

frequency tester/ MISSING PULSE DETECTOR

built this circuit to examine a pulse generator for reliability. It was important that the pulse generator would neither miss a pulse nor generate a spurious one.

To detect missing pulses the time constant of the 74123 monostable is decreased until the upper pair of diodes is lit. The lower pair of diodes will light if a pulse is missed or if the frequency of the input falls and the lowest diode will stay lit until 'Reset' is pressed.

To detect spurious pulses the time constant of the monostable is increased until the lower pair of diodes is lit. The upper pair of diodes will light when an extra pulse is detected or when the input frequency rises. The uppermost diode will stay lit until 'Reset' is pressed.

If the time constant of the monostable cannot be altered sufficiently by the variable resistor the capacitor C1 can be changed.

> P. R. Turner, St. Helens, Lancs.

Metar ELECTRONICS \& TIME CENTRES

QUARTZ LCD
11 Function
Slim Chronograph

6 digit, 11 functions
Hours, mins., secs., dav.
date, day of week,
$1 / 100$ th, $1 / 10 \mathrm{th}$, secs.,
$10 \times$ secs., mins.
Split and Iap modes.
Back-light, fauto calendar.
Only 8 mm thick.
Stainless steel bracelet and baok.
Adjustable bracelet.
Also avaitable:

SAME DAY DESPATCH.
M3 Price includes POST \& PACKING

OUARTZ LCD

Ladies Day Watch

Hours, mins., secs.
date, back. lay, ligh, auto
date, back light, auto
calendar.

Fully adiustable bracelet. Only $25 \times 20 \mathrm{~mm}$ and
6 mm thick.
Siver or Gold.

HANIMEX Electronic LED

Alarm Clock

Features and Specification:
Hour, minute display. Large LED display with p.m. and alarm on indicator. 24 Hours alarm with on/off control. Display flashing for power loss indication. Repeatable 9 -minute snooze. Display bright/dim modes control. Size 5.15" $\times 3.93^{\prime \prime} \times 2.36^{\prime \prime}(131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm})$.
Weight: $1.43 \mathrm{lbs}(0.65 \mathrm{~kg})$.

M13

Price only Also avaitable: | SOLAR | CHRONOGRAPH |
| :--- | :---: |
| M9 | Price $£ 11.95$ |

QUARTZ LCD ALARM
with Snooze Alarm

6 functions plus Alarm. Conference signal, 5 minute snooze alarm Conference signal sounds 4 secs. before main alarm to give advance warning and an option to cancel. Snooze sounds 5 /mins. after main alarm and is always preceeded by the conference signal.

Price only SAME DAY/DESPATCH. $£ 9.95$
M4 Price includes POST \& PACKING

QUARTZ LCD

Ladies Cocktail Watch
Beautifully designed with a very thin bracelet.

Hours., mins., secs., day, date, backlight and autocalendar. Bracelet fully adjustable to suit slim wrists. State Gold or Silver finish. Only $25 \times 20 \times 6 \mathrm{~mm}$. M18 SAME DAY DESPATCH

QUARTZ LCD
 5 Function

Hours, mins., secs., month, date, auto calendar, back light, quality metal bracelet. 6 mm thick.

Mains operated.

Thousands sold!

QUARTZ LCD
ALARM CHRONOGRAPH
with 12/24 display

Hours, mins, secs, day of week. Month, date, day of week, alarm,
hour, mins., a.m./p.m. 24 or 12 hour display mode. Alarm test. Chronograph, lap time, stop watch $1 / 10$ E13.95
Also available: SOLAR ALARM CHRONO M7 Price $£ 17.95$ secs.
M16 Price includes POST \& PACKING

METAC GUARANTEE

All METAC products carry 12 months guarantee and we also refund your money if not satisfied with our goods or service in the first 10 days.
METAC's well equipped service centre minimises service delays. Please note, we do not delay your order to clear cheques.
Telephone your order using Barclaycard/Access
Number on on 03272 76545 01-723 4753
24 hour answering service OR COMPLETE THE COUPON

WHOLESALE MAIL ORDER

Send for our trade price list and order details. Sell our products to your friends and earn yourself
£f£'s

NEW 24 HOUR DESPATCH SERVICE

METAC have opened a new even faster Mail Order and Service Centre at DAVENTRY. Orders received before $3.30 \mathrm{p} . \mathrm{m}$. will be despatched same day

VISIT OUR ELECTRONIC TIME CENTRES AND SEE ONE OF THE MOST IMPRESSIVE QUARTZ WATCH RANGES IN BRITAIN

LONDON
327 EDGWARE ROAD, LONDON W. 2
\section*{DAVENTRY}
67 HIGH STREET,
DAVENTRY, NORTHANTS.

Telephone: 01.723 4753

NORTHAMPTON
ST. GILES SQUARE NORTHAMPTON
(Opens 1st February, 1980)

WHEN heating a greenhouse during the winter months, it is desirable to keep the minimum temperature only just above that required for the least hardy plants so that energy and fuel bills can be saved.

Thermostatically controlled heaters are available on the market, but these are invariably of the electro-mechanical type and are thus inherently inaccurate and unreliable. They also exhibit a large amount of hysteresis between the switching points, partially due to the thermal inertia of the comparatively large mass of metal which forms the temperature sensing element. This large value of hysteresis means that the temperature must be set higher to allow for the lower temperature excursions, thus wasting energy and money.

It is also desirable to control the upper temperature limit during the summer months without the need for constantly adjusting the greenhouse ventilators. This can be implemented using an extractor fan controlled by an electromechanical thermostat, but with similar problems. Reliability is of the utmost importance when the temperature control system has to protect a large collection of valuable plants.

This temperature controller has been designed to perform both the above mentioned functions with reliability and accuracy as the foremost considerations. No mechanically operated contacts are used as triacs perform the switching of the heater and fan. The unit has a fast reaction time, and both the upper and lower temperature limits can be easily varied over a wide range.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Temperature Controller is shown in Fig. 1. The thermistor TH1 is used as a temperature sensor with the volt drop across TH1 and R15 used to determine the voltage at pin 3 of IC 1 and pin 2 of IC2.

If the temperature at the sensor is higher than that set on VR1, the output of IC1 (pin 6) will swing positive switching on TR1, the triac CSR1, LP1 and the load which in this case is the extractor fan.

A negative gate current is used to trigger the triacs because they are more sensitive in this mode. The capacitors C1 and C2 suppress any mains voltage transients with R1 and R2 used to limit the discharge currents from the capacitors when the triacs switch on. A small amount of positive feedback is applied via R9 to IC1. This results in a hysteresis of $\pm 0.5^{\circ} \mathrm{C}$ which is essential to prevent erratic operation.

The heater control circuit operates in a similar manner using VR2, IC2, TR2 and CSR2. The heater socket (SK2) is energised when the temperature at the sensor is lower than that set on VR2.

The power supply, which is formed by T1, D1, D2 and C3, requires no regulation since the resistances around the inputs of the op-amps form a bridge and only the resistance ratios affect the switching points rather than specific voltages. Great care should be taken to ensure the metal case is well earthed.

Fig. 1. Circuit diagram of the Temperature Controller

CONSTRUCTION

The p.c.b. design for the Controller is shown in Fig. 2 with the component layout in Fig. 3. The triac CSR2 should be soldered to the copper side of the p.c.b. and then boited to the case. A mica washer smeared with thermally conductive grease should be used to insulate the triac from the case.
The p.c.b. should be connected to the sockets, lamps and potentiometers as shown in Fig. 4, using heavy gauge multistrand wire for all the mains connections, and miniature solid wire for the potentiometer connections.

The two potentiometer scales shown in Fig. 5 will give a fair accuracy within the linear regions of the scale, but much improved accuracy over the whole scale range is however possible by selecting the thermistor, TH1 to within ± 5 per cent of 4 K 7 at $25^{\circ} \mathrm{C}$, rather than the normal ± 20 per cent. This is a very worthwhile exercise, and a sample of half a dozen or so thermistors should contain a suitable component.

Fig. 6 shows the construction of the sensing unit which protects the thermistor while allowing free air circulation around it. The prototype unit was constructed using a plastic base, cut from the bottom of a 35 mm film canister. The thermistor is soldered to a screened cable up to about 3 metres long, which is passed through a grommet hole in the base. The thermistor is then centralised in the base, which is then almost filled with epoxy resin. Before the resin is set, a piece

SPECIFICATION

Temperature ranges:
Output power:
Thermal time constant:

Heater 0 to $20^{\circ} \mathrm{C}$ Fan 20 to $50^{\circ} \mathrm{C}$ Heater 2 kW max Fan 200W max 30 secs.

COMPONENTS . . .

Fig. 2. P.c.b. design

Fig.3. Component layout

Fig. 4. Wiring diagram

Internal view of the Controller

Fig. 5. Potentiometer scales

Fig. 6. Sensing unit construction
of wire mesh suitably cut and shaped, is placed over the thermistor, with the rim immersed in the resin.

SETTING UP

Because of the high voltages on the p.c.b. in this project, and the fact that the d.c. rails operate at mains neutral potential, no presets were included. The only setting up required is to position the control knobs relative to their scales.

Firstly, the sensing unit is taken to a known temperature, preferably close to the fan operating temperature that will be commonly used. VR1 is then adjusted to a position midway between the switching points. Note that the loads should be connected since without them, LP1 and LP2 will light even when the triacs are switched off, due to the small amount of current passed by C1 and C2. The control knob is then loosened and positioned to indicate the correct temperature. This procedure is then repeated for the heater using VR2.

USING THE UNIT

The unit should be installed in the greenhouse well away from any possible sources of dripping water, and connected to the mains supply via a fused plug.

The heater can take the form of electric tubes, a convector heater or a fan heater, the latter being preferable since it more effectively searches out any cold corners.

The extractor fan should preferably be large and slow rather than a small fast type since the latter can cause a draught which is often detrimental to the health of the plants. It can be positioned against a side ventilator or, as with the prototype unit, a roof ventilator. It should be borne in mind that there must be a path for cool air to freely enter the greenhouse, such as an alternative ventilator, or a slightly open door. However, many greenhouses have enough gaps and cracks to allow sufficient air flow without additional ventilation.
The sensing unit should be positioned at the same height as the majority of the plants. It should not be in the direct hot air flow from the heater, or too near the door or a ventilator.

Once installed, the unit will give many years of accurate, consistent and worry free protection to those valuable plants.

Make sure you get every issue when you're following projects in PRACTICAL ELECTRONICS Use this order form for a year's supply to be posted to you.
ANNUAL SUBSCRIPTION RATES (including postage and packing) inland and overseas £10.60.

practical
 를 RaN|RE $\begin{aligned} & \text { SUBSCRIPTION } \\ & \text { ORDER FORM }\end{aligned}$

Please send me Practical Electronics each month for one year. I enclose a Sterling cheque/international money order for. (amount).

PLEASE USE BLOCK LETTERS
NAME Mr/Mrs/Miss
ADDRESS

POSTCODE

Make your crossed cheque/MO payable to : IPC Magazines Ltd., and post to : Practical Electronics. Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS. Practical Electionics is published in England by IPC Magazines LId. Regd. No. 53626. Regd. Office: King's
Reach Tower, Stamford Street, London, SE1 9LS. A subsidiary of Reed International Ltd.

DOLBY RADIO

Dolby Labs have over recent years made several proposals for the transmission of Dolby-encoded radio signals. The aim is to reduce high frequency background noise by around 10 dB in a manner comparable to the reduction of noise from cassette tape by Dolby encoding at the record stage. But the Dolby proposal for FM transmission also involves modification of the preemphasis characteristic. As it will be many years (if ever) before all broadcasts are in Dolby code there is obviously a need for automatic instruction of the listener and/or receiver circuitry when modified signals are being received.

Recently published British patent application 2022375 (filed under the new laws and dating back to March 1978) explains the Dolby proposal for providing an

automatic telltale of an encoded broadcast. The trick is to incorporate a tone in the audio spectrum which will not be audible and will not interfere with existing tones, eg. the stereo pilot tone.

Figure 1 shows the transmitter. Bass band ($L+R$) is summed in matrix 4 with an identification tone of low amplitude and high frequency which is generated by crystal controlled circuit 6. To facilitate detection at the receiver, amplitude modulator 5 can increase the tone level whenever high level, high frequency components are present in the audio signal. Normally, however, the amplitude of tone generator 6 is adjusted to produce a tone which is 70 dB below the level of 100% modulation. The tone frequency is around 15 kHz .

Figure 2 shows the receiver. This is generally of conventional type but phase locked loop decoder 18 multiplies the 19 kHz stereo pilot tone by a factor of four, and the resultant 76 kHz signal is applied to

Copies of Patents can be obtained from : the Patent Office Sales, St. Mary Cray, Orpington, Kent Price 95p each
divider 22. This divides by five to provide a stable $15 \cdot 2 \mathrm{kHz}$ signal for one input of mixer 24. Band pass filter 20 receives the output of combiner 21 which extracts any tone from the decoded L and R signals, and feeds it to a second input of mixer 24. The $15 \cdot 2 \mathrm{kHz}$ signal beats with any 15 kHz identification tone in mixer 24, and a difference

tone of 200 Hz is produced. This is filtered at 25 to attenuate stray modulation products. Tone detector 26 senses the presence of any 200 Hz tone and either automatically triggers Dolby-decoding and a change in de-emphasis time constant or switches a light to signify the reception of an encoded broadcast and advise the listener to switch the circuits manually.

REVERB DEVELOPMENTS

UK press visitors to the Acoustic Research Laboratories in Norwood Massachusetts last Summer heard a demonstration of the experimental surround sound system built by Bob Berkovitz of AR. This produced a remarkable feeling of space in a small room and, most interesting of all, offered a wide choice of spacial effect. Now British patent 1559 832, from Teledyne Acoustic Research and Robert A. Berkovitz discloses working details of the system. The aim is to derive a reverberation pattern from conventional two channel stereo material which closely resembles that heard in large concert halis.
The concept of artificial reverberation is old, dating back at least to the 1940's and the work of Haas. Essentially a fraction of the main stereo signal is delayed and fed to additional loudspeakers behind and around the listener. But with systems so far proposed the delay is fixed and often sounds artificial. According to the AR system the delay pattern can be varied in its overall character (to give the listener a choice of apparent hall size) and the individual delay are varied inside the chosen character parameters to produce the effect of multiple reflections.

Figure 4 shows the basic system. Stereo input signals 169,171 feed primary stereo speakers 163, 165 in conventional manner. In addition the stereo input is summed at 179 and fed to a delay system 183 which provides sixteen delayed signals for sixteen loudspeakers around and above the listener. These reproduce the mix of the primary stereo signals, delayed in time and displaced in azimuth. The delay 183 can be of either analogue or digital character. Digital delay is more flexible, albeit more expensive. The system demonstrated in Norwood used digital delays and the patent describes it in some detail.

Essentially the input signal is converted from analogue waveform into digital words and these words are fed into the data input of a RAM with several thousand storage locations. Each storage location has an address, and "read" and "write" commands . from shift registers enter and recall words from the RAM with varying delays. The system is programmed to produce a chosen reverberation pattern of individual delays by selection of the address words entered into the shift registers. In practice the incoming analogue signals are sampled at 32 KHz (to give a bandwidth of around 15 KHz) and the delay constants range up to 256 milliseconds, in steps of one millisecond. The feeling of spaciousness results from the system ability to impart different delay constants for each of the channels passing through the delay block 183.

Maintain the lead with Acorn 6809

. . . the 6809 designed from the start with the programmer in mind readily supports high level languages and built as it is on the experience of the 6800 is likely to become the standard 8 -bit microprocessor for the foreseeable future.

Technology leader in microprocessors the 6809 is now available from Acorn Computer with full supporting hardware on a eurocard paired with the Acorn VDU interface at a special Acorn VDU interface at a special
introductory price. $\mathrm{MM}^{\text {roan a }}$ SPECIAL OFFER 2 $\stackrel{3}{3}$

Acorn is offering their two most powerful modules as the basis for a 6809 development system requiring the addition of keyboard, power supply and monitor. For existing owners of Acorn Systems, the 6809 CPU card is a direct plug-in replacement for the 6502 CPU and can be used with all the supporting cards presently consisting of 8 K memory, tape interface, VDU interface, Floppy disc drive, Analogue to digital/digital to analogue and Universal interface.

For newcomers to Acorn the two card system can readily be linked to terminals printers, etc., the operating system firmware is designed for modularity and has disc bootstrap.

- MK RAM
- Direct printer drive
- ASCII keyboard input
- Fully buffered address and data bus
- 2 K operating system with

Printer routine
VDU routine
Cassette load and save
Disc bootstrap
Trace
All usual debug facilities

All Acorn modules are covered by a moneyback guarantee and a fast repair/advice service, kits are supplied with full assembly instructions and operating details including where necessary sample programs.

Acorn Computer,

4a Market Hill, Cambridge CB2 3NJ

ACORN 6809

VDU

- Seven colours
- Teletext compatible
- Upper and lower ASCII and graphics
- Memory mapped
- Transparent access
- Programmable screen format
- RGB \& Sync output
- Light pen facility
- Single 5 v rail
- Fastest execution time of any 8 -bit processor
- More addressing modes than any other processor
- Position independent code
- Re-entrant programming
- High level language efficiency
- Indirect, indexed and auto increment/decrement
- Four 16 -bit registers
- Super powerful instruction set including multiply
- 6800 software compatibility
Please send me the following
qty \square 6809/VDU kit Special offer @ £160 + £24 VAT £184
$\square 6809$ CPU kit @ £95 + £14.25 VAT £109.25
\square VDU Interface kit @ $£ 88+£ 13.20$ VAT £101.20
\square Details on all Acorn cards
I encase Cheque/PO to value..............
Name
Address
Acorn Computer Aa Market Hill Carnbridge C82 3NJ

FमF:TFB

G.I.WILLIAMS

THIS instrument was designed as a general purpose tachometer for measuring shaft speeds of rotating devices between 0 and 10,000 r.p.m. and has proved useful both in the laboratory and workshop.

It derives its timing reference from 50 Hz mains frequency and counts either over a 6 s or 60s period. The pick-up probe uses a reflective opto-switch, thus there is no physical contact between the pick-up probe and the rotating shaft. The tachometer is designed around the 7217 4-decade counter chip.

CIRCUIT DESCRIPTION

A 50 Hz signal, squared by D1, is fed into a divider chain IC1-IC4. These i.c.s are CD4018 counters and are configured to divide by $10,10,6$ and 10 respectively. This arrangement gives one pulse every 6 seconds from IC3 and one pulse every 60 seconds from IC4. S1 selects either the 6 s or 60 s pulse to gate (via inverter IC7c) the count pulses from TR1. The 6 s or 60 s selected pulse also triggers IC5 which is connected as a monostable, this in turn triggers an identical monostable IC6. These monostables provide approximately 8 ms pulses for Store and Reset of the 7217 counting circuit. The 4 -digit l.e.d. display is driven directly by the 7217 chip. $\mathrm{A}+5 \mathrm{~V}$ regulated supply is produced by the power supply circuit and the voltage regulator IC9.

THE PROBE

The probe uses a "reflective opto-switch", which is an infra-red emitting l.e.d. source and photodarlington transistor sensor, arranged so that it senses a change from white to black. The optimum sensing distance is about 4.6 mm from the face. The prototype opto-switch was mounted at the end of a short probe made from 1 cm , square aluminium channel section, and connected to the electronics by one metre of 4-core miniature screened wire.

To use the tachometer, a piece of back insulating tape is placed around the shaft of the device being measured anda piece of white insulating tape is placed on top of the black tape to cover half the circumference. This forms one black and white segment per revolution. The reflective optobitch is then placed 4 to 5 mm away from the shaft and speed measurements taken. For applications where speed adjustment is being undertaken the 6s gate time can be used to detect speed over a shorter time.

COMPONENTS
 ```.".```

Resistors	
R1	270
R2	100 k
R3	1 k
R4, R7	$10 \mathrm{k}(2$ off)
R5, R6	120 k (2 off)
R8	100
R9	4 k 7

All resistors $0.5 \mathrm{~W} 10 \%$ carbon
Capacitors
$1000 \mu / 25 \mathrm{~V}$ elect. (2 off) 220 n polyester 470 n polyester 47 n cer. (2 off) 68 n polyester (2 off) $100 \mathrm{n} / 30 \mathrm{~V}$ disc (3 off) $220 \mu / 25 \mathrm{~V}$ elect.

Transistors and Diodes

TR1	2N3705
D1	BZX85 4V7
D2	1N4148
D3-D6	1A bridge rectifier

Integrated Circuits

IC1-IC4	CD4018 (4 off)
IC5, IC6	NE555 (2 off)
IC7	CD4001
IC8	7217 or ICM $72171 J 1$
IC9	7805

Miscellaneous
T1
Mains 240 V transformer, $6-0-6$ volts at $0.5 A \mathrm{sec}$.
X1 4 digit 7 -seg, display, 0.5 in. com. anode. (example: RS type 587-024)
Opto switch, reflective type RS 307-913
Si Single pole c/o
Case $\quad 205^{\circ} \times 120 \times 70 \mathrm{~mm}$ plastic
5 pin DIN plug \& socket
Stripboard 0.1 in., nuts and bolts etc.

Constructor's Note

If the 4 digit display is to be the same as that used in the prototype, i.e. RS type 587-024, this may be obtained from ACE Mailtronix Ltd. The specified opto-switch may also be purchased from ACE, the VAT \& carriage inclusive prices of these items being $£ 6$ each.

ACE Mailtronix, Tootal St., Wakefield, W. Yorkshire, WF1 5JR.
Alternatively, most high street electrical retailers and component suppliers have an RS account, and should be willing to order the specified parts.

VARIATIONS

The tachometer has been designed for ease of speed measurement and thus only one segment per revolution has been used. The disadvantage of this is that a long gate time is needed (60 seconds) in order to accumulate r.p.m. A count is produced on the transition from white to black. For increased accuracy (especially at low speeds) and a lower sampling time (1 second), a disc with 60 black segments can be constructed.

CONSTRUCTION

The unit was constructed in a plastic box measuring 205 $\times 120 \times 70 \mathrm{~mm}$ using 0.1 in . stripboard. A 28-pin i.c. socket was used for the counter module and the probe was attached via a 5 -pin DIN plug and socket. IC9 was mounted on a $76 \times 50 \mathrm{~mm}$ aluminium plate which acted as ε heat sink.

polnts nilishic

6 CHANNEL MIXER (Sept. 1979)

To achieve the input impedance specification R2 should be deleted from Fig. 2. If different input impedances are required these can be achieved by switch required resistance values (the resistance is approximately equal to the input impedance) across the input with an extra switch.

For a continuously variable gain control, R9 and R10 should be removed, and a 100 kilohm log potentiometer connected between points (4) and (7) on the circuit diagram (see Fig. 2). The inclusion of this potentiometer however can reduce the overbad capability of the pre-amp and an eye should be kept on the overioad indicator.

More input channels can be connected in a similar manner to the existing channels. This means increasing the number of 22 kilohm mixing resistors connected to the pan pots and to point (See Fig. 3). Also more switch positions should be allocated to the p.f.f.l. switch to select the extra input channels.

If it is decided to eliminate the pan pots and use three input channels for the left output and three for the right, then the two 22 kilohm mixing resistors should be replaced with a 47 kilohm mixing resistor.

Biasing problems with the headphone amplifiers can be resolved with the inclusion of two pots in place of R23 and R27 (Fig. 5) These should be 47 kllohms and 470 ohms
respectively. The first is adjusted so that the voltage r the emitter of TR8 is half the supply voltage. The colle , of TR8 should now be disconnected and a milliammeter connected between it and the positive supply rail. The 470 ohm pot is then adjusted so that the quiescent current is 10 mA .

Constructors may wish to build an integrated circuit version of the headphone amplifiers based on a LM377 dual 2 W audio amplifier i.c. The circuit diagram of these is given below.

Abstract

Appeering overy two monthe, Micro-Bus presents ideas, applications, and programa for the mose popular microprocessors; onos that you are unlikely to find in the manutacturera' date books. The momt original ideat often corma from reedere working on their own systems, and peyment will be made for any contribution featured.

|N this month's Micro-Bus we feature an auto-ranging digital capacitance meter which only requires three CMOS i.c.s, three resistors, and an Mk14 (or other SC/MPbased) microcomputer. The meter will give a digital display, automatically selecting a range of $\mu \mathrm{F}, \mathrm{nF}$ or pF depending on the capacitor's value. The circuit and program, shown in Figs. 1 and 2, were designed by A. C. Dickens of Leicester, and he writes:
"I have constructed several capacitance meters during the past few years, but have not found any of them easy to use for a quick test of a lot of capacitors, especially large electrolytics. This design enables keen electronics enthusiasts to make greater use of their Mk 14s in a very practical way. The user simply programs the computer, presses the GO button, and the value of the capacitor is displayed in $\mu \mathrm{F}, \mathrm{nF}$ or pF (the pF range is very inaccurate for small values of capacitance). For values up to $9999 \mu \mathrm{~F}$ the measurement time never exceeds about one second, so a large number of electrolytics from bargain packs can be tested and sorted in a very short time."

OPERATION

"The full circuit of the capacitance meter is shown in Fig. 1. Initially all flag outputs are at logic 0 , so only SWD is energised to keep the unknown capacitor, Cx, discharged. When GO is pressed the program sets the range to 05 ; this value is copied into the status register of the micro, which sets flags 0 and 2 to logic 1. Thus SWD is switched off, and the capacitor charges via SWA and R1. When the voltage across $C x$ exceeds the switching voltage of the AND gate to which it is connected, SENSE-B is taken high. Incidentally, a switch is included in the connection to SENSE-B so that the unit will not interfere with the cassette interface unit. During charging of Cx the micro executes a count loop which repeatedly adds one into the memory locations OFOC and OFOE used by the monitor. If when SENSE-B goes to logic 1 the count is larger than 8 , then this value is displayed together with the units, $\mu \mathrm{F}$. If, however, the count is less than 8, the next range is selected by adding 1 to the range number. After a short discharge time SWB is switched on, and Cx now charges through SWB and R2. The computer then displays the number of count loops together with the units nF , unless the count is again less than 8 , in
which case the pF range is selected by adding another 1 to the range number. Approximate values are given for R1 and R2, but when the system has been set up these must be adjusted to obtain the greatest accuracy."

DATA FIND ROUTINE

The following program, designed for use with an Acorn micro, will find all the locations which contain a specified piece of data between two specified addresses. It was written by Peter Mayne of London, and makes use of three routines in the Acorn monitor. The program, shown in Fig. 3, gives prompts in the leftmost display digit of \mathbf{F} for the 'from' address, T for the 'to' address, and D for the data. Each entry is terminated by a control key, such as M. So, for example, to find all the locations between 0200 and 0300 that contain A9 you would enter:

$$
0,2,0,0, \mathrm{M}, 0,3,0,0, \mathrm{M}, \mathrm{~A}, 9, \mathrm{M} .
$$

After each address displayed any control key
will get to the next address. If the data does not occur in the spécified range, a return is made to the monitor's dots.

This is one of several interesting programs that Peter Mayne has written for use with an Acorn micro, and some of these will be presented in Micro-Bus over the next few months.

MINEFIELD GAME

The following game called 'Minefield' was invented by V. W. Morley of Staffordshire, and is designed for use with an Mk 14 interfaced to the Practical Electronics VDU (as described in the October 1978 issue). Alternatively with slight modification the program will work with a Mk 14 VDU.

If the program is executed at OF21, with the screen cleared, a minefield will be displayed. Pressing GO a second time sets in motion the tank, which is represented by an ' X ' moving across the screen towards the mines. A mine can be jumped and defused at

Fig. 1. Auto-ranging digital capacitance meter interface circuit

		:	AUTO-RANGING CAPACITANCE METER		
		;			
	0000	DISP	$=$	ODOO	; DISPLAY ADDRESS
	0 FOO	RAM	$=$	OFOO	; RAM AREA
	015A	DISPA	$=$	O15A	; ADDRESS TO SEGMENTS ROUTINE
	000 C	LCOUNT	$=$	12	; RAM OFFSETS:
	OOOE	hCOUNT	=	14	
		;			
0000			. $=0 \mathrm{~F} 20$		
OF20	C4OD	START:	LDI	H (DISP)	;POINT Pl TO DISPLAY
OF22	35		XPAH	1	
OF23	c400		LDI	L (DISP)	
OF25	31		XPAL	1	
OF26	C40F		LDI	H (RAM)	; POINT P2 TO RAM
OF28	36		XPAH	2	
OF2\%	C400		LDI	L (RAM)	
OF2B	32		XPAL	2	
OF2C	C401		LDI	H (DISPA)	;POINT P3 TO DISPA ROUTINE
OF2E	37		XPAH	3	; IN MONITOR.
OF2F	C459		LDI	L (DISPA)-1	
OF31	33		XPAL	3	
OF32	C405		LDI	5	; SET RANGE TO 5
OF34	C80A		ST	RANGE+1	
OF36	C400	CLEAR:	LDI	\bigcirc	;SET COUNT TO ZERO
OF38	CAOC		ST	LCOUNT	
OF3A	C400		LDI	\bigcirc	
OF3C	CAOE		ST	HCOUNT	
OF3E	C405	RAINGE:	LDI	5	
OF40	07		CAS		;SELECT RESISTOR
OF41	03	LOOP:	SCL		
OF42	c20c		LD	LCOUNT	; INCREMENT COUNT IN
OF44	68		DAE		; DECIMAL.
OF45	CACC		ST	LCOUNT	
OF47	C20E		LD	HCOUN'	
OF49	68		DAE		
OF4A	caoe		ST	HCOUNT	
OF4C	06		CSA		; READ INPUT
OF4D	D420		ANI	020	; ISOLATE SENSE-B
OF4F	9 CO 2		JNZ	TEST	; HIGH2
OF51	90EE		JMP	LOOP	
OF53	C400	TEST:	LDI	0	
OF55	07		CAS		;START CAPACITOR DISCHARGE
OF56	C20E		LD	HCOUNT	
OF58	9C18		JNZ	DISPLY	;OUT OF RANGE?
OF5A	C20c		LD	LCOUNT	
OF5C	D4F8		ANI	OF8	
OF5E	9 Cl 2		JNZ	DISPLY	; LESS THAN 8
OF60	CODE		LD	RANGE+1	;SET NEXT RANGE
OF62	02		CCL		
OF63	F401		ADI	1	
OF65	C8D9		ST	RANGE +1	;MODIFY BYTE
OF67	03		SCL		
OF68	FCO8		CAI	8	
OF6A	9806		JZ	DISPLY	
OF6C	8FFF		DLY		; COMPLETELY DISCHARGE
OF6E	8FFF		DLY		; CAPACITOR.
OF70	$90 \mathrm{C4}$		JMP	CLEAR	;TRY NEXT RANGE
OF72	cocc	DISPLY:	LD	RANGE+1	;GET CURRENT RANGE
OF74	03		SCL		
OF75	FCO6		CAI	6	
OF77	980A		JZ	R2	
OF79	9402		JP	R3	
OF7B	9 coc		JNZ	R1	
OF7D	C 473	R3:	LDI	073	; SEGMENT CODE FOR P
OF7F	CaOl		ST	+1 (2)	; RANGE DIGIT
OF81	900A		JMP	FARAD	
OF83	C454	R2:	LDI	054	; SEGMENT CODE FOR N
OF85	caol		ST	+1(2)	; RANGE DIGIT
OF87	9004		JMP	FARAD	
OF89	C41C	R1:	LDI	OlC	; SEGMENT CODE FOR U
OF8B	CaOl		ST	+1 (2)	; RANGE DIGIT
OF8D	C471	FARAD:	LDI	071	; SEGMENT CODE FOR F
OF8F	CAOO		ST	(2)	; UNITS DIGIT
OF91	3F	MONITR :	XPPC	3	;DISPLAY RESULT
OF92	90FD		JMP	MONITR	; ILLEGAL RETURN
OF94	908A		JMP	Start	; NUMBER KEY RETURN
	0000		. END		

Fig. 2. SC/MP program for the auto-ranging capacitance meter

Fig. 3. 6502 program, for use with an Acorn microcomputer, will search for a specified byte

OC50		;	SHORT BINARY-TO-DECIMAL ROUTINE FOR 280	
			OCSOH	
		DEC: DEFS	5	;FOR RESULT
Oc5 5	FOD8	CONTAB: DEFW	-10000	
OC57	18FC	DEFW	-1000	
OC59	9CFF	DEFW	-100	
OC5B	F6FF	DEFW	-10	
		;		
		ORG	$\mathrm{OC7OH}$	
OC70	215FEA	BINDEC: LD	HL, 59999	; FOR TEST
$0 C 73$	ED73920C	LD	(STAKSV+1)	
0 C 77	31550C	LD	SP, CONTAB	; POINT TO TABLE
OC7A	-01500C	LD	BC, DEC	
0c7d	D1	LOOPl: POP	DE	
OC7E	3EFF	LD	A, ${ }^{1}$	
OC80	19	LOOP: ADD	HL, DE	
0 C 81	3 C	INC	A	
OC82	DA800C	JP	C, LOOP	
OC85	ED5 2	SBC	HL , DE	; RESTORE
Oc87	02	LD	(BC) , A	; SAVE DIGIT
OC88	03	INC	BC	
$0 \mathrm{C89}$	7B	LD	A, E	
OC8A	FEF6	CP	-10	;ALL DONE?
OC8C	C27DOC	JP	NZ, LOOP1	
OC8F	7D	LD	A, L	
0С90	02	LD	(BC), A	; SAVE REMAINDER
0 C 91	310000	STAKSV:LD	SP,O	;TO BE MODIFIED
$0 C 94$	C9	RET		

Fig. 5. Improved $\mathbf{Z 8 0}$ routine to convert a binary number to decimal
the same time by pressing the ' F ' key on the Mk 14 just before the tank collides with the mine. If the mine is hit the tank and mine are destroyed displaying 'BANG' where the mine was. A new tank then starts from the beginning and the score, which is displayed in the top left-hand corner of the screen, is incremented by one. When ten tanks have been destroyed the program stops. Pressing GO twice then reloads the minefield and starts the game again, with the last 'BANG' still displayed as the target to beat.

As a slight departure from normal policy the program in Fig. 4 is presented as a hex dump rather than as a full assembler listing. However, the operation of the program is fairly straightforward, and there should be no problem discovering how it works.

MINEFIELD

| OF2O | 3 F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllll}\text { OF2O } & 3 \mathrm{~F} & \text { C4 } & 30 & \text { C8 } & \mathrm{FC} & \mathrm{CA} & 04 & 36 \\ \text { OF28 } & \text { C4 } & 20 & 32 & \text { C4 } & \text { O } & \text { CE } & 15 & \mathrm{~B} 8\end{array}$ $\begin{array}{lllllllll}\text { OF28 } & \text { C4 } & 20 & 32 & \text { C4 } & \text { OO } & \text { CE } & 15 & \text { B8 } \\ \text { OF } 30 & \text { FO } & 98 & \text { O2 } & 90 & \text { F6 } & 3 F & \text { C4 } & 04\end{array}$ $\begin{array}{lllllllll}\text { OF } 30 & \text { FO } & 98 & \text { O2 } & 90 & \text { F6 } & 3 F & \text { C4 } & \text { O4 } \\ \text { OF } 38 & 36 & \mathrm{C4} & \text { O1 } & 32 & \mathrm{C4} & 30 & \mathrm{CA} & \text { Co }\end{array}$ $\begin{array}{lllllllll}\text { OF38 } & 36 & \text { C4 } & \text { O1 } & 32 & \text { C4 } & 30 & \text { CA } & \infty \\ \text { OF4O } & \text { C4 } & \text { O4 } & 36 & \text { C4 } & \text { O6 } & 32 & \text { C4 } & 04\end{array}$ $\begin{array}{lllllllll}\text { OF } 40 & \text { C4 } & \text { O4 } & 36 & \text { C4 } & \text { O6 } & 32 & \text { C4 } & \text { O4 } \\ \text { OF48 } & 35 & \mathrm{C4} & 09 & 31 & \mathrm{CH} & 58 & \mathrm{CE} & \mathrm{O} 2\end{array}$ $\begin{array}{lllllllll}\text { OF48 } & 35 & C 4 & 09 & 31 & C 4 & 58 & \text { CE } & 02 \\ O F 50 & C E & 01 & 8 F & 66 & C 4 & 20 & C E & \text { FD }\end{array}$ | OF5O | CE | Ol | 8 F | 66 | $\mathrm{C4}$ | 20 | CE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OFD | | | | | | | |
| OF 58 | CE | Ol | 8 F | 66 | $\mathrm{C5}$ | Ol | 98 | $\begin{array}{lllllllll}\text { OF5 } & \text { CE } & 01 & 8 \mathrm{~F} & 66 & \mathrm{C5} & \text { Ol } & 98 & 02 \\ \text { OF60 } & 90 & 32 & \mathrm{C4} & 20 & \mathrm{CE} & \text { Ol } & \mathrm{CE} & \mathrm{OL}\end{array}$

OF68	CE	Ol	$\mathrm{C4}$	42	CD	Ol	C 4

$\begin{array}{lllllllll}\text { OF7O CD } & \text { Ol } & C 4 & 4 \mathrm{E} & \text { CD } & \text { Ol } & \text { C4 } & 47 \\ \text { OF78 } & \text { CD } & \text { Ol } & \text { C4 } & \text { O4 } & 37 & \text { C4 } & \text { Ol } & 33\end{array}$

$\begin{array}{lllllllll}\text { OF88 } & 98 & 02 & 90 & \text { B4 C4 } & \text { OO } & 37 & \mathrm{C4} \\ \text { OF90 } & 22 & 33 & 90 & 8 \mathrm{C} & \mathrm{C} 4 & \mathrm{OD} & 37 & \mathrm{C4}\end{array}$

$\begin{array}{llllllll}\text { OF98 } & \text { OO } & 33 & \text { C3 } & \text { O7 } & \text { E4 } & \text { EF } & 98 \\ \text { OFAO } & \text { O2 } \\ \text { OA } & \text { C4 } & 20 & \text { CE } & \text { FD } & \text { CE } & \text { Ol }\end{array}$
 ofbo 90 9A

Fig. 4. SC/MP program for the Minefield game

BEST Z80 ROUTINE

Readers were challenged to improve on the execution times of the binary-to-decimal routines presented in the October 1979 MicroBus. The published routine for the Z80 took 1631 cycles to convert the worst-case number EA5FH to its decimal equivalent 59999, and several routines have been received which improve on this figure. Readers were unanimous in avoiding use of the index registers, IX and IY, since the indexed addressing instructions take many more cycles than the equivalent instructions using HL or BC as pointers. The best routine, shown in Fig. 5, was submitted by D. J. Smith of the Midlands Amateur Computer Club, and it reduces the number of cycles to 1245 . The routine modifies itself at STAKSV and so could not be put into ROM,
but a temporary location could equally well have been used to hold the stack pointer, at a cost of only 10 cycles. A similar, but slightly slower, routine was submitted by $B . G . W$. Lloyd of Brighton, and he summarises the improvements as follows:

1. The slow 2-byte SBC instruction is replaced by the single-byte ADD instruction.
2. Register pair BC is used instead of IX as a pointer to the result.
3. The biggest saving comes from using the stack pointer, instead of IY, to reference the table of powers of ten; thus the POP instruction can be used instead of LD and INC. The original stack pointer is saved and restored again at the end of the routine.
Incidentally, several readers were puzzled by the fact that in Table 1 the number of executions of the inner loop was given as 32 , not 36. This was because the time for the last execution of the inner loop was included in the time for the outer loop, which was executed 4 times. This approach was chosen to make the calculation simpler in the case of the 6502, because its branch instruction at the end of the loop is one cycle shorter when the branch is not taken.

SOLUTIONS TO NINE PROBLEMS

Finally this month, here are the solutions to the nine programming problems posed in the last Micro-Bus.
One. The first problem asked for a program to find the highest prime factor of a number using the following hypothetical instruction set (where X and Y represent any of the four registers $A-D$, and L represents a label):

LD	X,Y	Load X with the value in Y
DEC	X	Subtract 1 from the value in X

The solution, shown in Fig. 6, uses just 14 instructions and is believed to be the shortest possible. To the right of the solution is shown an equivalent BASIC program which can be used to verify that the algorithm works. It is, however, very difficult to explain exactly how it works, and a flowchart of the program is not very enlightening. One reason why the program is so difficult to understand may be that it breaks all the rules of structured programming; for example, it contains two

Fig. 6. Two programs to find the largest prime factor of a number, using a minimal instruction set
mis-nested loops, at labels LOOP and NEXT. If any reader can come up with a concise explanation it will be included in a future MicroBus.

The simple instruction set given above is described in the Mk 14 booklet 'Further Applications Programs', available from Science of Cambridge, where it is referred to as the 'MINIL' language. The prime factor program of Fig. 6 is one of four MINIL programs given in the booklet, and for readers who enjoy the challenge of programming in such a primaeval instruction set the booklet includes the listing of an interpreter which will enable MINIL programs to be run on a SC/MP processor.
Two. The five ways of loading zero into the accumulator on a SC/MP micro, using just two bytes, are:

	C400	LDI 0
	C000	LD 0
	D400	ANI 0
	D000	AND 0
and	40,60	LDE, XRE.

The problem, devised by Geoff Phillips, appeared in the third issue of the Mk 14 Users Group Magazine 'Complement and Add'. Readers interested in joining the club should write to: Geoff Phillips, 8 Poolsford Road, London, NW9 6HP.
Three. The larger of two numbers, \mathbf{A} and \mathbf{B}, can be printed without using the IF statement by the following BASIC statement:

$$
\operatorname{PRINT}(\mathrm{A}+\mathrm{B}+\mathrm{ABS}(\mathrm{~A}-\mathrm{B})) / 2
$$

where ABS is a standard BASIC function giving the absolute value of its argument (regardless of sign). The solution relies on the fact that given any two numbers, one can be expressed as their average plus half their difference, and the other as their average minus half their difference.

This problem is adapted from page 6 of Donald E. Knuth's scholarly work 'The Art of Computer Programming', Volume 3.
Four. A little experimentation shows that there is no way, on the 6800 , of reversing the bits in a byte in under 10 cycles using software alone. However, the problem did not prohibit the use of hardware in its solution; if an 8 -bit output port is wired to an 8-bit input port as shown in Fig. 7, the instructions:

$$
\begin{array}{ll}
\text { STAA } & \text { PORTA } \\
\text { LDAB } & \text { PORTB }
\end{array}
$$

will set B to the reversal of A, as required, in just 9 cycles on the 6800 . The method can be used for any desired rearrangement of bits by appropriately wiring the connections between PORTA and PORTB. The problem is not

Fig. 7. Connection between two 8-bit ports to implement a 'reverse' instruction
without practical importance; the operation of reversing the bits in a number is used by some Fast Fourier Transform programs as an essential part of the efficient algorithm.
Five. The shortest way to toggle the carry bit on the 6502,6800 or 6809 is by means of the instructions:

> RORA
> EORA $\$ \$ 80$
> ROLA.

These instructions require four bytes for each micro, and leave the accumulator unchanged, as required.
Six. The single BASIC statement:

$$
\begin{aligned}
& \text { PRINT } \mathrm{A} *(1-\mathrm{ABS}(\mathrm{SGN}(\mathrm{~N}-\mathrm{X}))) \\
&+\mathrm{B} *(1-\mathrm{ABS}(\mathrm{SGN}(\mathrm{~N}-\mathrm{Y}))) \\
&+\mathrm{C} *(1-\mathrm{ABS}(\mathrm{SGN}(\mathrm{~N}-\mathrm{Z})))
\end{aligned}
$$

will print one of the three values, A, B or C , depending on whether N has the value X, Y or Z respectively. The solution makes use of the standard BASIC function SGN which returns $-1,0$ or 1 depending on whether its argument is respectively less than zero, equal to zero, or greater than zero. Some BASICs will allow Boolean expressions in statements which evaluate to 1 if they are true and 0 if they are false. In this case the statement can be written more simply as:
PRINT A $*(N=X)+B *(N=Y)+C *(N=Z)$. Seven. The effect of the two SC/MP instructions 'LDI 0, CAI 0 ' does not depend on the value of the two arguments; for example, 'LDI 23 , CAI 23 ' gives exactly the same result. Thus the instructions can be replaced by 'LDE, CAE' which, in half the number of bytes, achieve the same effect no matter what the contents of E are.
This trick is described on page 49 of the revised edition of the Mk14 'Microcomputer Training Manual'.
Eight. The following four single-byte instructions produce, for the 6502, the same effect as the 6800's ASRA instructions:

> PHA
> ROLA
> PLA
> RORA.

Nine. The following instructions for the 6800 will load the X register with the value of HERE, wherever the routine is positioned in memory:

$$
\begin{array}{llll}
\text { HERE } & \text { BSR } & *+2 & \\
& \text { TSX } & & \\
& \text { LDX } & 0, \mathrm{X} & \mathrm{X}=\mathrm{HERE}+2 \\
& \text { INS } & & \\
& \text { INS } & & \\
& \text { DEX } & & \\
& \text { DEX. } & &
\end{array}
$$

The routine uses the BSR instruction to push the program counter onto the stack, from where it is loaded into the X register. The routine formed part of a self-replicating program presented in the June 1979 MicroBus.

Note that an equivalent effect can be obtained on the 6809 by the instruction:

HERE LDX HERE,PCR

which uses program-counter relative addressing to give code which is position-independent.

COMPUKIT UPDATE

I am indebted to Mr. C. S. K. Clapp of Bracknell for the following ideas. He has suggested a way in which the BAUD rate of the serial data may be adjusted by software.

Fig. 1 shows his circuit modification to the p.c.b. This modification allows the BAUD rate and other parameters to be changed by storing the appropriate data in IC14's internal register. The address of this register is 61440 (decimal), and the statement: POKE 61440,82 selects 110 BAUD operation. IC 14 is quite a complex chip, and is even capable of checking and generating parity bits in the serial data. Resetting, or using: POKE 61440,17 selects 300 BAUD back again. When set up, the ACIA (IC14) produces one start bit and two stop bits automatically. This may also be changed at will by storing the right data at address 61440. In order to appreciate the full potential of this chip, it is essential to read the ACIA data sheet in detail.

AST time I wrote an update, I promised a short course in Hex-- adecimal arithmetic and associated theory. This is presented here in order to help you understand the 6502 code in more detail, as well as the conversions between machine code and the decimal based PEEK and POKE statements. However, my first task is to present some comments on my last update, and introduce some suggestions from readers.
Last time, a memory map of the VDU screen was given, to allow you to place general patterns on display, and manage the screen contents directly. Unfortunately, some readers have confused the difference between those locations on the screen which the Compukit's software uses, and the ones which are available to the user. It is certainly true that the cursor is always written to to the user. It is certainly true that the cursor is always written to
the screen several spaces in from the left. All BASIC statements start from here and the BASIC interpreter never allows characstart from here and the BASIC interpreter never allows charac-
ters to be written over to the extreme left margin. This means that the only way to fill screen spaces over to the extreme left hand side of the display is to use POKE, or the machine code hand side of the display is to use POKE, or the machine code
monitor. However, the majority of TV sets will not, in fact, display very many spaces to the left of the cursor, and that is the reason for the BASIC interpreter's apparent waste of display reason for the BASIC interpreter's apparent waste of display
space. To retrieve some of the missing left hand positions, the screen contents must be moved over to the right by reducing the
value of resistor R34. Of course, this also removes an equal screen contents must be moved over to the right by reducing the
value of resistor R34. Of course, this also removes an equal quantity of the right hand side of the display, and it is up to you to decide which side is the more important.
Also last time, the set of characters which the Compukit is able to display was presented, and I made no mention of the source of this valuable piece of hard copy. This was originally source of this valuable piece of hard copy. This was originally
produced on a "Video Writer" with the compliments of Mr. Hardman of Jayman Electro Devices Ltd. My thanks to him, and apologies for the omission.

We should point out that the graphics chart as published, in no way reflects the output quality of the Video Writer-Ed.
I suggested a method of producing hard copy from a standard Teletype, working at 110 BAUD. In that section, it was stated
that the Compukit gives out just one "stop" bit when comTeletype, working at 110 BAUD. In that section, it was stated
that the Compukit gives out just one "stop" bit when communicating information serially. This is certainly an error, and comes from an early scoping of the serial data. In fact, two "stop" bits are given out, and hence the data will automatically be compatible with industry standard teletypes.

SOFT BAUD RATE

E0330 Fig. 1. Modification for software BAUD rate

Mr. Clapp also broaches the question of incompatibilities between different versions of the Compukit. There are two versions of the ROMs which are found in the machine, and this explains the differences in behaviour which occur. The very first version of these ROMs was produced by General Instruments and did not allow the "Rub Out" key to backspace the cursor and delete an error on the screen. The second ROM set was produced by Synertek, and these do allow on screen editing. This is the simplest method of deciding which ROM set is resident in any given machine.

The other difference between the two ROMs is one of screen positioning. The first set place the cursor one space left of the position found by using the second set. The idea is to ensure that no matter how bad the TV set, the BASIC information is never lost to the left.

Of course, there are many different versions of the p.c.b. on which the machine is built, and the differences are too numerous to mention. The very latest version has green solder resist on it to facilitate soldering without bridging. Also, many different types of discrete component had to be supplied, depending upon availability, as is usual with such large volumes.

Let me once again say that your ideas and comments are read with great interest, and hopefully, these will continue to flow and appear on these pages.

WHAT THE HEXADECIMAL?

I should now like to turn to the business of Hexadecimal notation. In order to make the ideas clear, let us start with some of the properties of our decimal system- the one we use every day. When a number such as 3124 is written down, we all have an idea of the meaning of this notation. It means three thousands, plus one hundred, plus two tens (i.e. twenty) plus four (units). Each digit implies a certain quantity of some power of ten. A thousand is ten raised to the power 3.

$$
1000=(10)^{3}
$$

Similarly, a hundred is ten to the power 2 , ten is ten to the power 1 and, finally, one is ten to the power zero. (Any non zero number raised to the power zero gives one).

The number 63124 also includes ten to the power four six times and so on.

Our counting system uses just the ten digits 0 to 9 to describe any number by the method above. We say that the "base" of our system is ten. This presumably originates from our having ten figures. If we were endowed instead with eight fingers, we should certainly be using the "Octal" system, having just eight digits (0 to 7) and we should have to replace powers of ten with powers of eight in the above.

In a similar way, the Hexadecimal system is based upon the number sixteen. Hence, comparison with the above would suggest that sixteen digits are necessary. That is, we need sixteen
single digit numbers to be able to count in Hexadecimal (Hex for short). Our decimal system is able to supply the first ten, but then it is necessary to invent six others. Any six symbols would do, but for convenience, the first six letters of the alphabet are used. Thus the sixteen Hex digits are 0 to 9 and A, B, C, D, E and F. A is the next digit after 9 , and hence is the Hex equivalent of ten. B is the next number, i.e. eleven, and so on.

Table 1 shows the Hexadecimal counting system, and the decimal and binary equivalents of each digit. This diagram also highlights one of the most important aspects of the system i.e. to represent binary in a manageable form. Notice how a pattern of four l's and 0's may be conveniently written as one Hex digit.

HEXADECIMAL	DECIMAL	BINARY	
0	0	0000	
1	1	0001	
2	2	0010	TABLE 1. NUMBER
3	3	0011	CONVERSION
4	4	0100	
5	5	0101	
6	6	0110	
7	7	0111	
8	8	1000	
9	9	1001	
A	10	1010	
B	11	1011	
C	12	1100	
D	13	1101	
E	14	1110	
F	$\cdot 15$	1111	

To count above the digit F in Hex, the same rules apply as for Decimal. That is, counting proceeds as follows: $0,1,2,3 \ldots$ 9, A, B . . E, F, 10, 11, 12, . . . IE, 1F, 20, 21, etc.

The address of any memory location in an MPU system, is given by the binary state of sixteen Address Bus lines. That is, each memory location has a unique pattern of 1's and 0's to identify it. These sixteen binary digits are best described using hex because just four digits are necessary instead of sixteen. BASIC uses Decimal to identify memory locations, and this is where most of the confusion arises. Thus, Address D308, for instance, is clearly a Hex Address, but in BASIC would be written as 54024. The reason for this is exactly as described earlier. Each hex digit implies a number of powers of sixteen, as follows:
4096's
D

256's
3

16's
0
l's
8

To arrive at the Decimal equivalent of this Hex number, add up the following:

$$
\begin{array}{llll}
\mathrm{D} \times 4096 & 3 \times 256 & 0 \times 16 & 1 \times 8
\end{array}
$$

The D is equivalent to thirteen in decimal, and hence $D \times 4096$ equals 53248; add this to the other values and 54024 is the result. Note that 1 is sixteen to the power zero, 16 is sixteen to the one, 256 is sixteen to the two and 4096 is sixteen to the three.

The next step is to be able to convert Decimal into Hex-see if you can generate a suitable alogorithm, and then write a program to do the conversion for you. The clue is that the number must first be divided by 4096 (if less than 65535), to determine the amount of " 4096 's" in the number.

That's all for this month, except to wish you all the best, and happy computing!

summary

To assist in the appreciation of each numerical counting system, the following set of "clock" chains form an analogy.

Each individual clock should be thought of as a counter/divider, dividing the absolute number of input pulses according to the counting system it belongs to. Each clock, therefore, represents a digit.

In the Decimal system each clock divides by ten. Overflow pulses are generated as the dial pointer returns to zero after a revolution. It took 5762 pulses to obtain the reading of 5762 .

In the Octal system each clock divides by eight. The dial numbers on, for example, the 4th clock face, represent quantities of 512 , and so here the number 5762 has an entirely different value to its decimal counterpart.

The Binary clock (or digits) divide by two. This system is suited to digital electronics for the obvious reason that ON/OFF or $+5 \mathrm{~V} / 0 \mathrm{~V}$ will readily represent any number.
The Hexadecimal system employs 16 states per digit, which, keeping to the analogy, means that these clocks divide by sixteen. Recourse to the alphabet for the extra states has resulted in 0-9, A-F. The readout illustrated is 3 F 8 A ; and what the F on the 3rd clock is telling you is that there are 15 lots of $256(15 \times 256)$. A full conversion to decimal would be:
$(3 \times 4096)+(15 \times 256)+(8 \times 16)+(10$ $\times 1)=16266$
i.e. $3 \mathrm{~F} 8 \mathrm{AH}=16266$ decimal (H stands for Hex)

WHY WERSI?

A fresh approach and top quality are the secret behind WERSI's worldwide success. The advanced technology used in WERSI organs should dismiss any apprehension against the do-it-yourself construction of an organ. It also offers unlimited possibilities for exploring new areas of musical experience. New aids for the organist help even the beginner to enjoy the instrument from the start and the advanced musician will reach new heights of satisfaction. The novel approach to organ building is highly acclaimed by professional musicians like Klaus Wunderlich as well as by the demanding home organist.
Today WERSI is one of the leading organ manufacturers in the world and exports to over 25 countries.
D-I-Y organ building is no longer the exclusive pastime of a few technically versed buffs. The construction phases consist of assembling printed circuit boards, the installation of the sub units and hardware and the wiring. The organ console comes to you already assembled and complete. Prefabricated laced wiring harnesses contain almost all wiring, eliminating a major source of problems.

WERSI MAKES DO-IT-YOUSELF CONSTRUCTION EASIER THAN EVER BEFORE AT A FRACTION OF THE PRICE OF THE FULLY ASSEMBLED WERSI RANGE. GET THE FACTS NOW.

AURA SOUNDS 14-15 Royal Oak Centre, Brighton Rd., Purley, Surrey. Tel: 01-668-9733 and at 17 Upper Charter Arcade, Barnsley, W. Yorks. Tel: Barnsley (0226) 5248.

\qquad

- SEVEN MATCHING POWER SUPPLY UNITS (FDUR WITH TOROIOAL TRANSFORMERS).
- EASY ASSEMBLY DESIGNS WITH WELL PRESENTED INSTRUCTIONS.

I.L.P. constructional modules are different. Whereas most others come with components neatly arranged on open P.C.Bs with little else, I.L.P. modules are encapsulated within totally adequate heatsinks and need no extra components to complete them. As a result, I.L.P. power amplifiers, pre-amp and matching power supply units are infinitely more rugged, impervious to working in extremes of temperature and can be easily positioned to requirement. No additional metal work is needed to take away heat, connections are minimal and utterly simple. Circuitry, workmanship and performance are of the highest standards, equal to the demands of loudspeakers, pick-ups, tuners, digital signals etc. even more exacting than those of today, making amplifier systems less than the best completely inadequate. Now study the tested and guaranteed specs. for I.L.P. That is why more people in more countries prefer these British designed and made modules.

Why toroidal?

Toroidally wound transformers are more compact than their conventionally laminated equivalents, being only half as high and heavy. Their circular profile ensures greater operating efficiency and as such are particularly valuable in heavy duty applications. We have our own production section for winding and making toroidal transformers enabling us to offer this much sought-after type at competitive prices. Four of the larger models in our range of power supply units are now supplied with this type.

and staying there

 PERFORMANCE MODULAR UNITS

 PERFORMANCE MODULAR UNITS}

VALUES OF COMPONENTS FOR CONNECTING TO HY5 Volume - $10 \mathrm{~K} \Omega$ log. Bass/Treble - $100 \mathrm{~K} \Omega$ linear. Balance $-5 K \Omega$ linear.

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$. and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$ Special strips are provided for connec ting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions
$£ 4.64+74 p$ VAT

THE POWER AMPLIFIERS

THE POWER SUPPLY UNITS (Laminated and Toroidal)
I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer, the other with toroida transformer, having half the weight and height of conventional laminated types.

Model	Output Power R.M.S.	Dis- tortion TYpical at 1KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	15 W into 8 Ω	0.02%	80 dB	$-20-0-+20$	$105 \times 50 \times 25$	155	$£ 6.34$ $+95 p$
HY50	30 W into 8 Ω	0.02%	90 dB	$-25-0-+25$	$105 \times 50 \times 25$	155	$£ 7.24$ $+£ 1.09$
HY120	60 W into 8 Ω	0.01%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$£ 15.20$ $+£ 2.28$
HY200	120 W into 8 Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 50 \times 85$	575	$£ 18.44$ $+£ 2.77$
HY400	240 W into 4 Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 100 \times 85$	1.15 Kg	$£ 27.68$
$+£ 4.15$							

Load impedance - all models 4-16 Ω
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response-all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

PSU $30 \pm 15 \mathrm{~V}$ at 100 ma to drive up to five HY5 pre-amps $\mathbf{£ 4 . 5 0 + £ 0 . 6 8 \text { VAT }}$ PSU 36 for 1 or 2 HY30's $£ 8.10+£ 1.22$ VAT PSU 50 for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT PSU 60 (Toroidal) forone HY $120 £ 9.75+£ 1.46$ VAT PSU 70 with toroidal transformer for 1 or

2 HY120's £13.61 + £2.04 VAT
PSU 90 with toroidal transformer for
1 HY200 $\quad \mathbf{£ 1 3 . 6 1}+£ 2.04$ VAT
PSU180 with toroidal transformer for 1 HY400 or $2 \times$ HY200
$£ 23.02+£ 3.45$ VAT

NO QUIBBLE
 5 YEAR GUARANTEE
 7. DAY DESPATCH ON
 ALL ORDERS
 INTEGRAL
 HEATSINKS
 BRITISH DESIGN AND
 MANUFACTURE
 FREEPOST SERVICE see below

ALL U.K. ORDERS DESPATCHED POST PAID HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.
 Canterbury, Kent CT2 7EP. Telephone (0227) 54778

Please supply
I Total purchase price £
I I enclose Cheque \square Postal Orders \square International Money Order \square
Please debit my Account/Barclaycard Account No
I NAME
1 ADDRESS
I ADDRE
Signature

mulamo capactton: Spocias purchase of lactory clesrance capacitors ensbies us 100 misad And Miniars Eloctintice in f1.te for 108 mixat Peck of asch only E 3. Thase consist of spillages. fioor sunginges cosmmic imporitects atc. As wo have no time to sort them thoy are magnificint value fer the censituactor.	minatuine mans Taymaromiane Tap quality. Splin bobtin construction will oive $4.5 \mathrm{~V}-0.4 .5 \mathrm{~V}$ 3 for 2.2 zt . 2.200 ut 40N Reved $1^{\prime \prime} \times 2^{\prime \prime}$ 80. 3 for $81-50$.
	20-m ADTI SUREE FUSES 630 mA 800 mA 1A 1.24 A 1.6A, 2A. 2.5A.3.15A. 12 df of ent tree fich
 moniman sctuatul, wey masitive $t^{\prime \prime}$ stwatc. 25NN, 3.75a 	
27 ASSOMTED ZEWEN DHODES1 Watt and 400wW. E1.50	
1 IT MUXED DNDEES Includes: Zoner. pewwr. tridep. pramaivem, zilicon otc. All tull spec. 84.05 0-2" LEDS with 2	P/E (twiten camxs
	Chrome or Spun Aluminium Finish.
gtmasomac thuseucess Transmitter and receiver 40 kHz 14 mm dia. $\mathbf{5 3 . 2 5}$ peir.	
	Bulx Rancaums, sTocx UP fon summen 300 mind if it wom maiders 81.50 150 mimed 1 \& 2 with meinters 81 .5t 300 mixed capactors, modem, mest tras 23.75 100 nimut corranic ant plote capp 1.20 400 mined film rexistors 52.55 100 mixad polytytien cape 52.20 25 mas and puots $\mathrm{E1} 5 \mathrm{~F}$ 20 VDRe and theminaters 1120 100 anctroptics, aice wives 52.20 300 mintud circuit resimetry $\mathrm{E1}$ 300 mintad circoit commenta E1.50
Minlatume reep swicmes We an the cheapest! 12 for $\mathbf{E 1 . 0 0} 100$ for $\mathbb{4} \mathbf{2 4}$	
£1.50 3 for f3.EA "tor GE.C. " 2010° series me"	
DE LUXE FIBEE OLASS Mante Chicur ETCMIME MTS	
 phos intructions. Enviel Pine e4.85 18 FR.C1. To mil tuce. 21.25 EBE FE. C1. To mil. mpe. 55 150 an in. ender and beand E2.ett 	 tranian. propic madiswe atc. It for El
	reque or P.O. with order to: PLY, DEPT. P PTFORD, LOMDOM,

VOYAGER STEREO MIXER

 price
 Mixer at an incredibly low
 ONLY £159.00.

* 2 Mag deck channels + tone controls * Aux channel complete with tone controls * Mic channel with tone controls * Full autofade * Full headphone/Q facility * Precision L.E.D. VU output/Q facility * Size $25^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$.

Send for our FREE 28 page catalogue. Please enclose a stamp.
 Tel: 0167231379080 PRICE INCLUDES VAT. P+P FREE TO ORDER BY POST. Make cheques/P. O. payable to TUAC LTD. or quote Access/Barclaycard No. and post to TUAC LTD. 119 Charlmont Road, London SW17 9AE We accept telephone orders from Access/Barclaycard Holders. Phone 01.6729080.

TUAC MAIN DISTRIBUTORS

Birminghem, George Matthews, 85/87 Hurst Street, (Tel: 622 1941).
Cheshire, Cookies Disco Centre, 126 West Street, Crewe. (Tel: 0270 214739).
London, Garland Bros., Deptford Broadway, (Tel: 01-692 4412) London, Sassion Music, 163 Mitcham Road, Tooting, SW17. (Tel: 01 -672 3413) Mon-Sat 10am to 5.30pm. Closed Wed.) Kingston, ABC Music, 56 Surbiton Road, Kingston, Surrey. (Tel: 01-546 9877).
Luton, Luton Disco Centre, 75 Wellington Street, (Tel: 411733) Manchestar, A1 Music, 88 Oxford Street, (Tel: 236 0340). Niddlestorouph, Salcoglen, 43 Borough Road, (Tel: 242851) Wetford, Component Centre, 7 Langley Road, (Tel: 45335).

CLEF PRODUCTS (ELECTRONICS) LIMITED

(Dept. PE) 16, Mayfield Road, Bramhall, Cheshire SK7 1JU. 061-439 3297

STORAGE CABINETS

Type 1838

Metal Cabinets $12^{\prime \prime}$ wide $\times 5 \frac{3}{4}{ }^{\prime \prime}$ deep, finished blue with transparent plastic drawers.
Type H No. of Drawers Price (ins) Sm MedLge

1118	11	15	2	1	$\mathbf{£ 1 0 . 7 5}$
1633	16	30	2	1	$£ 13.75$
1838	18	35	2	1	$\mathbf{£ 1 5 . 7 5}$
2236	22	30	4	2	$£ 17.85$

$\begin{array}{llllll}2236 & 22 & 30 & 4 & 2 & \text { £17.85 }\end{array}$ 22602260 - \quad £ 17.95
Access/Barclaycard welcome Prices include VAT and Post. Cheque/P.O. to: Millhill Supplies (Tools). 35 Preston Crowmarsh. Benson, Oxon OX9 6SL.

[^2]
CUBOWASOMNE electronics 56 FORTIS GREEN ROAD MUSWELL HILL LONDON N10 3HN TELEPHONE 01-883 3705 01-883 2289

Demonstration At Our Shop (enter through stationers)

NOW AVAILABLE
Low cost computer in kit form
UK101
NO EXTRAS NEEDED SIMPLY HIT 'RETURN' AND GO

As seen in
P.E.
August to November '79

Kit price only £199+VAT

EXTRA 4K MEMORY $8+2114$ ONLY $\mathbf{£ 3 2 . 0 0}+$ VAT

INCLUDED FREE

Sample tape with extended machine code moditor and disassembler

Price includes RF modulator and power supply
ABSOLUTELY NO EXTRAS NEEDED

Also availabel ready assembled, tested and ready to go only £249 + VAT

Build, understand, and program your own computer for only a small outlay

AVAILABLESOON

COLOUR ADD-ON CARD

STOP PRESS

Allthese advantages... NWM
 Instant all-weather starting Smoother running - Continual peak performance - Longer battery \& plug life - Improved fuel consumption Improved acceleration/top speed Extended energy storage

Fits all 12 v negative-earth vehicles with coil/distributor ignition up to 8 cylinders

Dit: paysisel cise Re

purchase

Roger Clark the world famous rally driver says"Sparkrite electronicignitionsystems are the best you can buy
QTontite ELECTRONIC IGNITION
Electronica Design Aasociates, Dept. PE1179, 82 Bath St., Walsall, WS1 3DE

Electronics Design Associates, Dept. PE 6/80 82 Bath Street, Walsall, WS1 3DE. Phone : (0922) 614791

Name

Address

Inc. VA, 1 and P P P	quanitit reoot.
X5KIT £16.95	
access or barclay cario no	

Microcomputers are coming - ride the wave! Learn to program. Millions of jobs are threatened but millions more will be created. Learn BASIC- the
 language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation.
Book1 Computers and what they do well; READ, DATA, PRINT, powers, brackets variable names; LET; errors; coding simple programs
Book 2 High and low level languages; flowcharting; functions; REM and documentation; INPUT, IF....THEN, GO TO: limitations of computers, problemn definition.
Book 3 Compilers and interpreters; loops, FOR....NEXT, RESTORE; debugging; arrays bubble sorting: TAB.
Book 4 Advanced BASIC: subroutines; string variables; files; complex programming examples; glossary

Understand Digital Electronics

Written for the student or enthusiast, this course is packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits and finally to an understanding of the design and operation of calculators and computers.

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems. Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws canonical forms; logic conventions; karnaugh mapping; three state and wired logic Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and ALU's; .multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring Johnson and exclusive--OR feedback counters; ROMS and RAMS
Book 5 Structure of calculators; keyboard encoding; decoding display data: register systems; control unit; program ROM; address decoding.
Book 6 CPU; memory organisation; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming. assemblers; computers; executive programs; operating systems.

GUARANTEE - No risk to you

If you are not completely satisfied your money will be refunded without question, on return of the books in good condition
 Cambridge Lemmirt Entepris.
Please send me:
Computer Programming in BASIC (4 books) © 97.50
.Design of Digital Systems (6 books) © $£ 11.50$
All prices include worldwide surface mailing costs (airmail extra)
IF YOUR ORDER EXCEEDS E18 DEDUCT 12
I enclose a cheque/P.O. payable to Cambridge Learning Enterprises for
E...
or please charge my Access/Barclaycard/Diners Club/American Express. Signed.
account no
Telephone orders from credit holders accepted on 0480-67446
(ansaphone). Overseas customers (inc. Eire) send a bank draft in sterling on a London bank, or quote credit card and number.
Name.
Address. .

Cambridge Learning Enterprises, Unit 21, Rivermill Site, FREEPOST,
St. Ives, Huntingdon, Cambs PE17 4BR England.
Proprietors: Drayridge Ltd., address as above. Reg. in Eng. No. 1328762.

TRANDAAM

COMPONENTS AND SYSTEMS FROM TRANSAM COMPUTERS

TRITON
COMPUTER SYSTEM.
Designed for ease of construction and fiexibility. Kits come complete and all components and software are available separately. UK designed and supported. Fully documented hardware and software and a totally flexible approach to system building. Powerful and easy to use system monitors - a range of languages available. Firmware is Eprom based and upgrading from one level to the next is easy.

- L5.2 with 1.5 k monitor 2.5 k basic $\mathbf{8 2 9 4 . 0 0}$ - L7.2 with 2 k mon 8 k extended basic $\mathbf{£ 4 0 9 . 0 0}$ - L8.2 4k ed/mon 20k res pascal 8611.00 - L9.2 CP/M disc based system 8k ram card kit (21141) 8k eprom cards (ExCL 8-2708) - Trap-res assm/edit etc (8-2708) - Transam BD80 bi-dir printer - TVM 10 video monitor 9^{n} - Eprom prog (2708) kit

SEND FOR OUR CATALOGUE FOR FULL

FUL RANEE OF MICRO SUPPIRT CNIPS - IN STOCK										
Stindisoun	2	SN74US54N	21	SN74SI38N	SN7US19Sin	SK74S325N 2	\%upponit		5	
SM74 501 L	22	SN74S5SN	21	SN74S139N	SN74S1980 120	Sm74s328N 205	8212	2.2	2101	2.32
SM745S22.	2	SN744563N	15	Sm74S145N 129	SN74S1974 1.28	S 57445327 M 215	8218	2.0	2102 L	120
SNT4SO3N	2	SN74S33N	3	SND4S148N 1.75	SN74S221N 12	SN74S352N	8224	2	2111	2.32
SN74 SOM	2	SN744344	4	Sh74SISIN	SNT4S240N 22.	SN744S353m	3853 (F8)	10	2112	2010
SN74505	$2{ }^{2}$	SN144S75	4	SN74S153N	SN74S241N	SN74S385\%	8228	42	6810	
S674 SOM	2	SN74S760N	3	S/17415154	Snd 74.52424	SN74 S366N ES	8728A	1.15	8154	11
Sivilsas	2	SN74S78N	115	Sm74S155N 125	SN745243\% 185	SN74 53367 N	8T28	1.0	2114.450	
SN74S11N	2	SN74TS85N	1.10	SN74S156N ${ }^{\text {SN7 }}$	SNT4S24M 210	SNTH4S3888	6522		21144.250	
SN74S12N	21	SN74S88N	1.4	SN74LS 580	SN745247N 125	SN74S373N	${ }_{8}^{8251}$		$74 \mathrm{Cs20}$	
SN74S13N	5	SN74LS900	-	SW74 5160 N	Sm74S240k in	SN74LS375N 72	8255		746929	11
SN74S14N		SN742S91N		SN74S181N 1.15	SN745249413	SN74LS377 1.75	8257	11	4027	
SN74S1SN	25	SN744S922		SN74S162N 1.15	SN7445251N 145	SN744S378N 1.8	8259	12.	4044	
SN74S20N	2	SN74LS93EN	12	SN74S163n			8155	12.	4045	
- SN74S21N	28	SN74S95AN	${ }_{176}^{17}$	SN74S164N ${ }^{\text {SNO }}$	SN744S257N 1/4	SNTH4S38in 3 It	6402		4080	
SN74S22N SN74LS28N	2	SN74LS107W	1.76	SN74S165N 1.70	SN74S250N	\$N74453880 57	6821P	4.	2107	
SNTH4S27N	3	SN74S109\%		SN74S168N 1	SN774S26		885		4116158	109\%
SN74528N	3	SN74SS12\%		SN744S189N	SN74L5281N	SN14LS	${ }^{6852 P}{ }^{\text {ar }} 52378$			
SNT4LS300	2	SN74S113N	4	SN74SITON 20	SN74S266N 3	SN74S	AY. 2378	11.	280810 80 CTC	
SN74632N	27	SW74S114M	4	SN74LS173N 220	SNTHS5273	SN744S398\% 27	M57109	12.43	z80apio	
SN744S33M	3	SN74S122N	78	SN74S174N 1.15	SN745279\% 7	SN74S399\%	M57160	10		
SN14.537N	2	SN745123N		SN74S175N 185	SN14S280 ${ }^{\text {a }}$	SN74S4241	M57161	10	Eproins	
SN74500	25	SN74LS125N		SN74S181N 27	SN74S2	SN74 S44SN 15	TM56011		1702	5.00
SN74452N	7	SNT745126N	-	Sm7US1910 ifit	SN74S2	SNOT4S490\%	814595 814598		5204 2708	
SN74SA7M		SN74 ${ }^{\text {S }}$ S 132 L	76	SN74S192N 14	SN74S2954, 220	SN74LSE	814598		2708 2516	
SN745484		SN74S133N	3	SN74S193N 17	SK74S298N 24	SN1745683	814598	14	2532	0
SN74S489	10	SN74LS138N	4	SN74LSI G4N1	SN74LS324N 1 ma	S47415870N 2.7				

DPS. 1 MAINFRAME - PASCAL SYSTEM

VISIT OUR SHOWROOM

WE ALSO STOCK:- a comprehensive range of books and magazines,
VERO products including S 100 and Eurocard and Wige Wrap VERO products including, S100 and Eurocard and Wire Wrap tapes, dikettes, connoctors and OK Tool range.
Systems continuously on display in our showroom

cmrstals		4 MHz	2.10	F8 (3850)	5.6	
100k	3.00	4.43 m	1.80	8080 A	6.3	
200k	3.70	5 MHz	2.70	6809	24.4.	
1 MHz	168		2.76	280	2	
1008k	3.60	7 MHz	2.76	280A	150	
1843k	3.00	7.188 M	2.68	88085	12.5	
${ }_{24574}$	1090	${ }^{81042}$	2.70	6502	de4	
2457k	3 W	1004 Hz	2.78	SCMP 11	100	
3278k	2.16	10.7 m	2.70	6802	13.55	

TRANSAM COMPONENTS LTD, 12 CHAPEL STREET, LONDON NW1

CP/M avaliable now for TRITON

Dise operating eystem complete with text editor, nasembler, dabugoer, eyatem urilltien and complote filo maingurin. Mares Thuon finy CP/M compatible and towr st or E° dirtvee eingle or double deneity full CP / M softruere uedr group focimitios or avaluble. SAE for dotatie. CP/M Divk + meruiple (6) C75.00

DISK DRIVES \& POWER SUPPLIES

SA400 $5 J^{\prime \prime}$ drive
SA800
drive
$\mathbf{f} 205.00$
$\mathbf{f} 380.00$
Power one quality power suppliez
CP249
$\mathrm{CP} 3232 \times 5 \mathrm{PSU}$
$\mathbf{£ 3 3 . 0 0}$
$\mathbf{f 6 0 . 0 0}$
CP205 $1 \times 8^{\prime \prime}$ PSU
£ 78.00

TCL PASCAL - CP/M COMPATIBLE
A standard Pascal compiler available on a resident (20k) Eprom based configuration* or available to run under CP/M on 8^{n} disc plus documentation. CP/M version E120.00

DILPLUG SOCKETS \& SWITCHES

	kT3	0 OLS		B1LPL		DILS*TT	Hes
80 LL	02	8 HH	8.14	14014	0.4	40 LL	120
14011	0.35	14016	0.15	18Dil	0.65	7 OH	1.75
180 LH	12	160 IL	8.17	scot		B0IL	19
1801 L	0	18011	0.24	140 H	130		4
24014	65	20814	0.27	16011	1.50	24wZIF*	420
28DIL	0.74	24811	0.3	24016	2.0	24w	$\underline{20}$
40015	4.85	$\begin{aligned} & 2801 \mathrm{LI} \\ & 4801 \mathrm{~L} \end{aligned}$	0.3		MOINS	10N FOAC	

DOUBLE DENSITY S100 DISK CONTROLLER

Suitable for Triton,
DPS-1 etc.
Built and tested will drive Shugart
compatible $8^{\prime \prime}$ or $5 \frac{1^{\prime \prime}}{4}$. Drives single or double-sided Uses the 1791 chip and CPU independent crystal. Manual $50 p$ + SAE. BOARD £195.00 +VAT

The finest amplification kits from Crimson Elektrik

CPR 1 - THE ADVANCED PRE-AMPLIFIER. The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably in the disc stage. The overload margin is a superb 40 dB , this together with the high slewing rate ensures clean top, even with high output cartridges tracking heavily modulated records. Common-mode distortion is eliminated by an unusual design. R.I.A.A. is accurate to 1 dB ; signal to noise ratio is 70 dB relative to 3.5 mV , distortion $\quad 005 \%$ at 30 dB overload 20 kHz .

Following the stage is the flat gain/balance stage to bring tape, tuner, etc. up to power amp. Signal to noise ratio 86 dB : slew-rate 3V/uS: T.H.D. $20 \mathrm{~Hz}-20 \mathrm{khz} \quad 008 \%$ at any level. F.E.T. muting. No controis are fitted. There is no provision for tone controis. CPR size is $138 \times 80 \times 20 \mathrm{~mm}$. Supply to be ± 15 volts.
MC 1-PRE-PRE-AMPLIFIER. Suitable for nearly all moving-coil cartridges. Send for details.

X02: X03 - ACTIVE CROSSOVERS. X02 - two way, X03 - three way. Slope $24 \mathrm{~dB} /$ octave. Crossover points set to order within 10%.
REG 1 - POWER SUPPLY. The regulator module, REG 1 provides $15-0-15 \mathrm{v}$ to power the CPR 1 and MC 1. It can be used with any of our power amp supplies or our small transformer TR 6 . The power amp kit will accommodate it
** NEW ISSUE 5 **
POWER AMPLIFIERS. Our new issue 5 power amplifier modules have automatic shut-down that will not allow serious overloads for more than 0.1 sec - thus vastly increasing reliability at elevated temperatures. Other improvements to the circuitry have improved the subjective qualities which keeps CRIMSON even further ahead of the fiełd.
POWER SUPPLIES. We produce suitable power supplies which use our superb TOROIDAL transformers only 50 mm high with a $\mathbf{1 2 0 - 2 4 0}$ primary and single bolt fixing
(includes capacitors/bridge rectifier).

All prices shown are UK only and include VAT and post COD 90p extra f 100 limit, Export
s no problem plese write for specitic quote Send large SAE or Coupons for detailed information specific quote. Send large SAE or 3 International Reply

POWER AMPLIFIER KIT. The kit includes all metalwork, heatsinks and hardware to house any two of our amp modules plus a power supply. It is contemporarily styled and its quatity is consistent with that of our other products. Comprehensive instructions and full back-up services enable a novice to build it with confidence in a few hours.
PRE-AMP KIT. This includes all metalwork, pots, knobs, etc., to make a complete pre-amp with the CPR 1 (S) module if required.

CONGRESS AMPLIFIER

We supply all the designer approved parts for this exceptional kit, including high quality printed circuit boards and transformer.
Complete kit, excluding metalwork with 20% discount on parts.
£73.74
All parts to assemble pre-amp i.e. R's, C's, PCB's, semicons, controls etc, but excluding transformer with 10% discount on parts.
£41.79
All parts to build main amp board
$£ 20.48$
Mains transformer
£12.82
Smoothing caps \& clips
$\mathbf{£ 8 . 8 6}$

MAIL ORDER ONLY.

Prices include VAT and p\&p

Please send A5 S.A.E. for full price details.
Terms: Cash with order. Cheques etc. should be made payable to:

CONGRESS ELECTRONICS PROJECT

Allow 14-21 days after sending order for delivery. Send order to:

WICCA SYSTEMS LTD, 24 HILLCREST PARADE, COULSDON, SURREY. Tel. 01-668 0034.

Top Priority for every constructorHOME RADIO CATALOGUE

- Over 2,000 items clearly listed. - Profusely illustrated throughout. - Over 100 A-4 size pages.
- Bargain list included free.

Send cheque or P.O. for $£ 1.30$
HOME RADIO Components LTD Dept. PE, P.O. Box 92, 215 London Road, Mitcham, Surrey.

01-6488422

J．BIRKETT

（Partners：J．H．Birkett，J．L．Birkett） Radio Component Suppliers
 25 The Strait，Lincoln．LN2 1JF

10 WATT STUD MOUNTING ZENERS 4．7，6．8，7．5，8．2，12，15，18，20，24，27，30， 33 $36,39,43,47,51,62,68,75,82.91,100,120,130,150,180,200$ ，Voit All at $50 p$ each 5 WATT PLASTIC ZENER DIODES Wire Ended 3．6，4．3，5．6，6，6．2，7．5，8．2，9，10， 11,13 4．15，16，17，18． $19,20,22,27,36,39,40,47,51,56,60,62,68,87$ Volt All at 30p each． WATT ZENERS 3．6，5．6，6．8，8．2，9．1，11．12，13，15，16，20，22，27，30，36，56．62， 9 10，120，130，150，160，180， 200 Volt．All at $15 p$ each．
MM 7542 DUAL CORE MEMORY SENSE AM PLIFIER at 50p．

 £1．50，N8875A 50p，SN74154－60p，AM250559C E2，63000J 50p，5603C 10cet 8 Ta 12
HIDGET 6 Ta． 12 VOLT SINGLE POLE CHANGE OVER RELAY 5 amp Contacts © 60p UB－MINIATURE SPCO TOGGLE SWITCHES \＆50p each
BECKMAN 3 DIGIT 7 SEGMENT GAS DISCHARGE ORANGE DISPLAYS Type SP 353 甲 £1．95．
PECIAL B NPN DARLINGTON PAIRS in 14 PIN DIL Package HFE 500010 volt 500 mA with connectionse 50 p ．
PAPER CAPACITORS 10 uf 370 Volt A．C．W． $5 \frac{1}{2} \times 2 \frac{1}{2} \times 1 \frac{1}{2}^{\prime \prime}$＠ $\mathbf{£ 1 . 5 0}$ ．
STUDMOUNTING DIODES 100 PIV 10 Amp 16 p ， 100 PIV 30 Amp a 25p．
50．BC 107－8－9 TRANSISTORS Assorted untested \＆60p．
50．MULLARD C280 CAPACITORS assorted for 60 p ．
10 AS\＄ORTED PUSH BUTTON ASSEMBLIES less knobs ef1．30
THYRISTORS（S．C．R＇s） 10 Amp Type 100 PIV e 28p， 400 PIV E5p， 800 PIV e 65p
MINIATURE TRANSISTOR TRANSFORMERS Input Types Impedance Ratio．100K To 1K 35p，Ratio 150 K To 1 K 『 35 p ，Ratio 20 K To 1 Ke 35 p ，Driver Type 10 K To 2 K － 35 p ， Output types 250 mW 1.2 K To $8 \mathrm{ohm} 35 \mathrm{p}, 250 \mathrm{~mW} 500 \mathrm{ohm}$ To $8 \mathrm{ohm} 35 \mathrm{p}, 500 \mathrm{~mW}$ 400 ohm To 8 ohm e 35p．
WIRE ENDED RF CHOKES 30 uH at 25 for 50p．
OP－TO ISOLATORS $1 \mathrm{~L}-74$ with data at 50 p ．
CLOSE TOLERANCE CAPACITORS 1288pf．1670pf．5979pf．19669pf All $1 \% 125 \mathrm{v} . \mathrm{w}$ ．，at 5peach， 01 uf $2 \%, .11$ uf 2% 8p． 1 uf 1% at 12p．
VALVE HOLOERS b7G，b9A Both 10p，Ceramic B9D 9 15p．
QUAD COMPARATOR LM 339 with data－50p，OP－AMPS MC 1439Ge 3 for $\mathrm{f1}$ ．
50．OC 71 TRANSISTORS untested for 75p．
OPHOTO TRANSIS TRA AND DARLINGTONS assorted Untested e f1
NKT 274 or NKT 214 TRAN SISTORS PNP e 10p， 6 for 50p

NTIOMETER at 30p．
MINIATUHE SINGLE TURN POTENTIOMETERS Shor Spindie 25OK Lin 1 Meg Lin Both 4 for 50p
 25p），Type 2．30－0－30 Volt 500 mA \＆$£ 1.30$（P\＆P 25p）
WIRE POTENTIOMETERS 2 warts $2 K, 5 K, 10 K .4$ watt 100k All 30p each．
Please add 20p for post and packing on U．K．orders under $£ 2$.
Overseas postage orders at cost．

LOW COST SCOPES

All scopes plus $£ 3$ P\＆P＋VAT

KRAMER \＆CO．， 9 October Place，London NW4 Tel： 203 2473．Telex： 888941 Attn．K7 Dept．P．E． Open：Mon－Fri．S．A．E．for further details．

LIGHTING \＆AMPLIFIER MODULES FROM L\＆B

01－689 4138

YOU＇VE ALL HEARD OF OUR SUPERB MODULES．AND IF YOU HAVEN＇T，IT＇S TIME YOU DID，SO READ ON！SHOWN HERE are a range of the most reliable systems on the MARKET．

LB31000SLC
LB31000SLC SOUND TO LIGHT／CHASER． THE MOST ADVANCED SOUND TO LIGHT MODULE AVAILABLE，WITH UPON ABSENCE OF A MUSIC INPUT．

3 Channeis， 1000 weach．Fuly fused Very high input impedance．Electronic filters． 5 HZ to 70 KHz bandwidth．Operates from + to 300 w sound input．Triac zerovoltage trige日ring

LB31000SLSOUNDTO LIOHT A SUPERE PERFORMING SYSTEM AT AN INCREDIBLY LOWPRICE． 3 channels． 1000 w each．Fully fused． 3 channels． 1000 weach．Fully fused． from to to 300 w sound input．
Third order filters．Zero voltage fired
Master／Nol／Base／Mid／Treble controls．

$20 \times 9.7 \times 3.5 \mathrm{~cm}$ ．

LB81000LC CHASER AFULLY DIGITAL8 CHANNEL CHASER，ALLOWING VARIATION OF CHASE SPEED ANDCHASE RETURN DELAY．
£26．50
LB81000LC
$19 \times 9.5 \times 3 \mathrm{~cm}$ ．

LB41000LS SEQUENCER
LOGIC RANDOM SEQUENCER，WITH TWO SPEED CONTROLS OFFERING AWIDE RANGE OF EFFECTS．
4 channels， 1000 w each．CMOS circuitry
Zero voltage fired
1000w per channel．CMOS circuitry． Zero voltage fired．Can be footswitch trigerered．Additional modules can be cascaded to form $16,24,32$ chan e be

POWER AMPS，250，150，100 8，25WRMS
RUGGEDTOUGH DEALING
POWER AMP MODULES
Full spec available in our catalogue．

system．Comprising of $L \& R$ deck mixers， mic mixer．deck and mic tone stages，mic autofade over decks．PFL．outpu drivers and its own regulators． LBPA2．General purpose
chan．mixer／tone stage． LBPA1，Stereo Hi－Fi System

LBPA1 f19．50

 LBPA2 f17．20 LBPA3－M（magnetic deck inputs） $\mathbf{f} \mathbf{3 0 . 7 0}$ LBPA3－C（ceramic
LBPA3－M

 LBPA3－C（ceramic$20.4 \times 9.5 \mathrm{~cm}$ ，
deck inputs） $\mathbf{f} \mathbf{3 0 . 7 0}$
YOU REQUIRE A BOARD THAT＇S MIGHTY COMPETITIVE，RELIABLE MANUFACTURED FROM THE HIGHEST QUALITY COMPONENTS．OF HIGH PERFORMANCE，TESTED AND INSPECTED，SUPPLIED WITH CONNECTION AND CCT，DGM AND GUARANTEED．IN TWOLETTERS YOU REQUIRELEB．
All prices shown are inclusive of VAT（15\％） P／packing FREE in the UK except power supplies（ f 1.00 ） Trade and Overseas inquiries welcome． For your FhEE catalogue send a 12 p stamp to

LBRLD1 Relay delayed speaker connecting device Alaced betwe $\mathbf{£ 5 . 7 0}$
 LB250PS £24．50 LB150PS £18．00 LB100PS £14．70 LB25PS £11．20

 name accessory firms, but it is now avalable in quality kit form to fit all vehicles with coil ignition up to 8 cylinders.
ES200. A high performance inductive discharge ignition incorporating a power integrated circuit (special selection): electronic variable dwell circuit (maximises spark energy at all speeds): pulse processor (overcomes contact breaker problems). Coll governor (protects coil) Long burn output. Negative earth only. Compatible with all rev. counters
C300. In it's ready buit form (C3000) it came top of all systems tested by an independent national authority July' 79. A high energy
capacitive dischargeignition incorporating a high output short circuit proof inverter, top grade Swedısh output capacitor, pulse processor circuit, transcient overload protection. Fast rise bidirectional output ideal for fuel injection, sports carburation, oily engines. Compatible with most rev counters LLow cost adaptors avaitable for rare cases. Application inst enclosed with each kit. Note: Vehicles with Smiths Jaeger rev. counters code RVI on dial will require adaptor type TCl) What's in the kits. Surefire's own precision anodised aluminium extruded case P.C. mounted security changeover switch, static timing light. Special selection Motorola semi-conductors. Capacitors, resistors etc selected after 5 years experience Glass fibre pcb, solder complete dowrs to last washer
Fully illustrated comprehensive instructions and full technical back up service.

Piccadilly Place, London Rd., Bath BA1 6PW. Tel: Bath (0225) 23194

Name

Address

Phone order with Acce VAT andP\&PIme	Barclaycaral	Quantity required	lenclose thy/PO's
ES200: Neg	£ 5-3-95 $\quad 111.95$		
C300: Pos	£17.95 115.95		
C300: Neg	£575 ¢1595		Chy No.
Tacho Adapt. TCl	¢ 3.90		

MONTORS MONTORS MONTTORS

Uncased from 3" to 12" Cased from 5" to 20"

Semi professional or professional available from stock.

Monitor PCB's including Transformers and Tubes also in stock.

Phone or write for details.

CROFTON ELECTRONICS

Crofton Electronics Limited 35 Grosvenor Road, Twickenham, Middx. Tel:01 8911513

Tramsverters:

Linear
Amplifiers

Recelve
Converters

MMT28/ MMT144/28 MMT432/144 MMT1296/144
(10m)
$(2 \mathrm{n}$ (2m)
$(70 \mathrm{cms})$
$(70 \mathrm{cms})$
$\left(\begin{array}{l}(2 \mathrm{~m}) \\ (2 \mathrm{cms})\end{array}\right.$
2 m 25 watt)
2 m 100 watt) 2 m 100 watt
70 cms 50 watt)
$(10 \mathrm{~m})$

PRICES EXCLUDE VAT 115% BUT INCLUDE DELIV
(Finger Touch Keyboard)
Hours, minutes, seconds, day, am/pm, and
day, date, month auto calendar to 2009.8 day, date, month auto calendar to 2009.8
digt calculatar; $6+2$ double display. digt calculator; $6+2$ double display. 1/100th sec, net, lap, 1st and 2nd race times. Dual Time (24 hour) night light. Mineral 12 month battery life. R.R.P. £29.95

CASIO FBO ALARN CHRONOGRAPH

Hours, minutes, date, $\mathrm{am} / \mathrm{pm}$ and optional seconds or
alpha day. 24 hour alarm alpha day. 24 hour alarm hourly chimes. Stopwatch net, lap, 1st \& 2nd place times. Black resin case/strap stainless steel back and front
trim. 3 year battery. urim. 3 year battery R.R.P. £24.95

ONLY £19.45
R.R.P M012
£24.95
Only f19.45

CALCULATING ALARM CLOCKS

MQ12 6 digit clock 200 year auto calendar with fuil month display. Alarm, stopwatch, $1 / 10 \mathrm{th}$ second to 10 hrs net, lap, and 1 st \& 2 nd
place times. 8 digit calculator, full memory $\%$ "kiss" keys. Waliet. 1. place battery life. Also Melody $81 £ 22.45$ ML. 71 card version $£ 22.45$. Both musical. All other Canio watches and ceacrelatori P.O.A. Terms of besioness: All above include VAT P\&P and insurance. Send cash, cheques or PO's, Phone Barclaycard and Access n
Electronica. Phone (0353) 860185 , callers welcome. Tues-Sat. $9.30 \mathrm{am}-5.30$ pm. Casio details. Please send 20 p for details
of watches or calculators or both.

ONLY £23.95

B. BAMBER ELECTRONICS DEPT: P.E. 5 STATION ROAD LITTLEPORT CAMBS CB6 10E

Codespeed Electranios

P.O. BOX 23, 34 SEAFIELD ROAD, COPNOR, PORTSMOUTH, HANTS. P03 5BJ
REJECT FLUORESCENT CALCULATORS Modem, fluorescent. 10 function calculators with memory. Most repairable but no guarantees. 22.9 each. ALA with data $£ 2.29$ each. POLARIZING FILTER 0.006 thick plastic film. Any size cut, max, size $19{ }^{\circ}$ by 250 CHIP MM5330 IC Wip M. 3.49 I.c. to build a $4 \frac{2}{2}$ digit multimeter. With data E3.43 each. Whis Wa ch Lco supplied with polarizers and data, sap each. 0.8 LED Dish LED ALARM CLOCK MODULE with 0 " each. LED ALATE ELOCK M 10 UNTESTEO Migh digits. With data E5.95 each. 10 UTLSTEO LED 99p. LED WRISTWATCH I.C. Mostak MK5030 with data 95 wash LED wristuatch oisplay with data 95p each. LeD Whistwarch oisplar type DIS501, $0.1^{\prime \prime}$ digits. (Matches MK5030 I.C.). With leagess flatpack style package and require some fairly fine soldering 20 KEY CALCULATOR fine soldering. 20 KEY CALCULATOR 4204 calc. chip. REJECT LED CALCULATORS 4204 calc. chip). REJECT LED CALCULATORS each. MINI SLIDE SWITCHES 2 pole change-over each. MT, 15 . PUSH BUTTON SWITCHES spring contacts, 15p. PUSH BUTHON (momentary) with one n.o. contact 14p. LMEs5 TIMER I.C. supplied with applications booklet 23p each. LED CALCULATOR DISPLAY 8 digit, common cathode, multiplexed, $0.1^{1 "}$ digits. With data 98p. 2102 MEMORIES Dynamic memories for the mlcro men. With data 95p. CALCULATOR CHIP Nortec 4204,4 function and constant. With data 80 p . MINI REED RELAYS 500 ohm coil, 12 V d.c. One n.o. contact. 79p each. QUALITY SUB-MINIATURE REED swITCHES brand new, extremely sensitive 39p each $4^{4 \prime}$ CABLE TIES 25 tywraps for only 35 p .

POST AND PACKING ADD 35p (OVERSEAS ORDERS ADD E1)
more goodies in our catalogue. send MEDIUM SIZED SAE FOR YOUR FREE COPY.
V.A.T. ADD 15\% TO TOTAL COST Full satisfaction auarantee on ill hema.

SCS Components

Ingrow Lane, Keighley,
West Yorkshire BD21 5HR

Cash/Cheques/P.O's with order. P \& P add 30p to all orders. Add 15\% VAT to total order. All items ex. stock - orders by return post.

O.E.M. PLATE POWER AMPLIFIEBS

MADE IN ENGLAND

L.P. offer for prompt delivery, a range of O.E.M. Plate Power Amplifiers in three useful output ratings These units are typical of IL.P. design and manufacture - encapsulated circuitry. rugged construction, just five pin connections, trouble-free mounting, no output capacitor or other external components to be added, and operation from split line power source. PRICES ARE KEENLY COMPETITIVE, QUALITY AND MANUFACTURE OF THE HIGHEST POSSIBLE STANDARDS. Modules can also be manufactured to customer's own design.

UNIT PRICE FOR	100 +	250 +	500 +	1000 +	2500 +	5000 +
HY 120P $60 W$ rms 8Ω	$£ 10.30$	$£ 9.37$	$£ 8.51$	$£ 7.74$	$£ 7.04$	$£ 6.40$
HY 200P $120 W$ rms 8Ω	$£ 13.18$	$£ 11.98$	$£ 10.89$	$£ 9.90$	$£ 9.60$	$£ 8.18$
HY 400P $240 W$ 4Ω	$£ 19.26$	$£ 17.51$	$£ 15.92$	$£ 14.47$	$£ 13.16$	$£ 11.96$

HY 120P and HY 200P
HY 400P
$116 \times 50 \times 23 \mathrm{~mm}$
$116 \times 75 \times 23 \mathrm{~mm}$

A divisior, of I.L.P. ELECTRONICS LTD., GRAHAM BELL HOUSE. ROPER CLOSE, CANTERBURY, KENT, CT2 7EP (0227) 54778 : Telex 965780

FLADAA ${ }^{\text {TRANSFORMERS }}$
 PRIMARY $0-240 \mathrm{~V} 50 \mathrm{~Hz}$

SEND FOR OUR TRANSFORMER CATALOGUE PRICE f 1.00 WHICH INCLUDES A 50p VOUCHER OFF YOUR FIRST PURCHASE.									
Type	Voltage	Current	£	p / p	Type	Voltage	Current	£	p / p
O6FE06	${ }_{6}+6$	0.5 A EACH	1.99	600	O6FE60	15-0-15	0.4 A	1.95	60p
12FE06	${ }^{6+6}$	1 A EACH	2.66	75 p	O8FE40	9-0-9	1 A	2.35	60p
20FE06	$6+6$ $6+6$	$1.6 A E A C H$ 3A EACH	3.36	750	O8FE60	${ }^{15-0-15} 9$	0.5 A i .5 A	2.35 2.60	${ }^{60}$
60FEO6	${ }_{6+6}^{6+6}$	3A EACH	5.03	125p	12 FE50	120-12	$1{ }^{1}$	2.60	75
					12 F	15-0-	-8.8A	2.60	${ }^{75 p}$
O6FE09	$\stackrel{9+9}{9}$	O. 3 FA EACH	1.99	${ }^{60 p}$	20FE50	- ${ }^{9-0-9}$	${ }_{1}^{2} \begin{array}{r}\text { 2A }\end{array}$	3.30 3.30	75 p
O8FEO9	$\stackrel{9}{9+9}$	O.5A EACH	2.46	${ }^{60} 5$	$2 \mathrm{l} 20 \mathrm{FE60}$	$\xrightarrow{12-0-12}$	1.6 A	3.30 3.30	75p
20FEO9	$9+9$	1 A EACH	3.36	75.	20 FE 80	20-0-20	1 A	3.30	75 p
50FE09	${ }_{9}^{9+9}$	2 5A EACH	4.02	90 p	20 FE 100	$30-0-30$	0.6 A	3.30	$75 p$
60FEO9	9+9	3A EACH	5.03	125p	50FE	$\xrightarrow{9-0-9}$	5A	4.00	90 p
				60 p	S0FE80	-$15-0-15$ $20-0-20$	2A	4.00 4.00	${ }^{90 p}$
O8FE	$12+12$	O. 3 A EACH	2.40	60 p	50 FE 110	30-0-30	1.4 A	4.00	90 p
$2 \mathrm{COFE1}$	12+12	O.8A EACH	3.36 4.02	${ }^{750}$	60FE70 605 F		${ }_{3}^{4 A}$	5.00	${ }^{125 p}$
60FE12	2+12	2.5 EAACH	5.03	125	60FE100	28-0-28	$2 \cdot 2 \mathrm{~A}$	5.00	125
80FE12	$12+12$	2 3A EACH	6.20	125 P	60FE110	30-0-30	3 A	5.00	125p
O6FE15	$15+15$	O.2A EACH	1.99	${ }^{60}$	80FE	$\left\lvert\, \begin{aligned} & 12-0.12 \\ & 15-0-15 \end{aligned}\right.$	${ }_{5}^{6 A}$	6.15	$\left\lvert\, \begin{aligned} & 125 \mathrm{p} \\ & 1250 \end{aligned}\right.$
O8FE15	\| $\begin{aligned} & 15+15 \\ & 15+15\end{aligned}$	O.25A EACH	2.40	${ }^{60}{ }^{60}$	80FE50	$\left\{\begin{array}{l} 15-0.15 \\ 20-0-20 \end{array}\right.$	5A	6.15	${ }^{125}$ 125p
$2 \mathrm{OFE15}$	15+15	O. 6 A EACH	3. 36	750	80 FE80	28-0-28	2.5A	6.15	${ }^{125}$
50FE15	15+15	1.5 A EACH	4.02	900	80 FE 70	24-0-24	3A	6.	5p
80FE15		${ }^{24}$ SA EACH	5.03 620	${ }_{125} 125$	80FE90	30-0-30	2.3A	6.	25p
					90 FE50		5A	6.30	150p
O6FE20	20+20	O. 15 AAEACH	1.99	${ }^{60}$	90FEEO	28-0-28	$3 A$ $3 A$	6.30 6.30	150 p
12FE20	20+20	O.25A EACH		${ }_{75 p}^{75}$	90\%FE90	-	$3 A$ $4 A$	6.30 6.60	150p
50 FE20	20+20	1.24 EACH	4.02	${ }^{900}$	$100 F E 26$	26-0-26	3.5A	${ }_{6} 6.60$	150p
60 FE20	20+20	1.5 EAACH	5.03	125p	100FE28	28-0-28	3A	6.60	150 p
80FE20	O+	2A EACH	620	25p	100FE30	30-0-30	3 A	6-60	500
48FE12	0-6-12	4A		125p	150 FE 15	15-0-15	6A	8.20	
66 FE 12	0-6-12	5A	5.80	125p	150FE26	26-0-26	5A	8.20	160p
70FE 12	-6-12	6A	6.15	150 p	150 FE 30	30-0-30	4 A	8.20	P
90FE12	0-6-12	8A	7.40	150p	150FE	36-0-36	4A	2	160 p
					150	42-0-	3 3A		
O6FE30	- 6 -0-6	1.5 A 0.5 A	11.95 1.95	60p	250FE28	280-0-38	${ }_{7 A}$	9.02 9.02	
O6FE50	${ }_{\text {2-0.12 }}^{9}$	- 0.5 A	1	600	250FE4	-	5A		200p
FLADAR ELECTRIC P.O. BOX 19 WESTCLIFF-ON-SEA ESSEX. 0702-613314			TRADE ENQUIRIESWELCOME			PAYMENT TERMS: C.W.O. Cheques. Postal Orders All Prices include 15% VAT.			

LB ELECTRONICS

PROCESSOR ICS (ALL FULL SPEC.)
1702A $£ 2.50$, $2708 £ 6.25,2716$ single rail $£ 28.50$, LM323K 5 volts 3 amps £4.50, 7805 £1, 7812 £1,214 £4.50.
DIL SKTS LOW PROFILE: 8 way 12p, 14 way, $15 \mathrm{p}, 18$ way $\mathbf{2 0 p}, 16$ way 17p, 20 way 23p, 22 way 28 p, 28 way 45p, 24 way 35p, DIL 16 WAY HEADER SPECIAL OFFER ONLY 45p.
74116 SPECIAL OFFER 75p, 741254 for $\mathbf{~ 1 , ~} 74198$ 75p, 74194 50p, 74181 80p, TIL 209 RED 10p, $\cdot \mathbf{2}^{\prime \prime}$ RED 12p.
MM5240 character generator + data $\mathbf{£ 3 . 5 0}$.
4 digit EX calculator display 4 for $£ 1+$ data.
P.E.T. edge connector (memory expansion) $\mathbf{£ 1 . 4 0}$.

74LS, C.MOSS, sub miniature toggles, 74TTL, and computer equipment is stocked, i.e. V.D.U. printers etc. vast range of power supplies for callers.
L.B. ELECTRONICS, 11, HERCIES ROAD, HILLINGDON,
 MIDDLESEX.
UXBRIDGE 55399
(Just off A40)
OPEN: Monday, Thursday, Friday and Saturday $9.30-6.00$.

JONES ELECTRONIC SUPPLIES
588, ASHTON ROAD, OLDHAM, LANCS. OL8 3HW. Tel: 061-652 9879. Telex: 668250. Shop ALL PRICES INCLUDE VAT Shop open Mon., Thurs., Frid. 9 am- 7.30 pm.
Stockists of Lektrokit Breadboard, Vero, CMOS, TTL, Resistors, Capacitors etc. Leech Amplifiers \& Speakers
Barrel Kits 99p each.
BK 18 Rotary switches (3 position)
BK2 $20500 \mathrm{~K} \Omega$ presets
BK3 5 push to make switches
BK4 4 to 2206 amp power transistors
BK5 25 TTL devices
BK6 50 thyristers 2N5061.8 amp 400V
BK7 50 assorted diodes, inc. zenners
BK8 50 assorted NPN/PNP transistors

MAKE YOUR OWN KEYBOARDS

ML3 individual keyboard switch with re-cappable top allowing lettering by in dividual. Only (1-10) 30p each. (11-20) 27p each. (20-100) 25p each.P\&P 30 p per 10.
Ni-cad batteries to military spec., high discharge re-charge capabilities in parallel.
AA 1-25 p\&p 20p each C 2-90p\&p 20p each D 3-50 p\&p 20p each NEW SHOP AT 495, OLDHAM ROAD, ROCHDALE, LANCS. Tel: Rocholele 49757

U.K. RETURN OF POST MAIL-ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE

RCS.LOW YOLTAGESTABILSED
All parts and instructions with Zener diode printed circuit, rectifiers and double wound mains transformer input $200-240$ a.c. Output voitages available 6 or 7,5 or 9 or 12 V d.c. up to 100 mA or less.
Size $3 \times 2+1$ in. Please state voltage required.
THE"INSTANT"BULKTAPE ERASER Suitable for cassettes, and all sizes of tape reels. A.C. mains $200 / 249 \mathrm{~V}$.
Leafiet $\mathrm{S} . \mathrm{A} . \mathrm{E}$.

HEAD DEMAGNETISER PROBE \&s 50 p

BLANK ALUMINIUM CHASSIS, 18 s.w.8. $2 \frac{1}{2}$ in. sides, $6 \times 4 \mathrm{in} .95 \mathrm{p}$; $8 \times 6 \mathrm{in} . £ 1.40 ; 10 \times 7$ in. $£ 1.55 ; 14 \times 9$ in. $£ 1.90 ; 16 \times 6$ in. $£ 1.85 ; 12 \times$
3 in. $£ 1.20 ; 16 \times 10$ in. $£ 2.20 ; 12 \times 8$ in. $£ 1.70$. ALUMINIUM PANELS, 18 s.w. $\mathrm{g} .6 \times 4 \mathrm{in} .24 \mathrm{p} ; 8 \times 6 \mathrm{in} .38 \mathrm{p} ; 10 \times$
$7 \mathrm{in} .54 \mathrm{p} ; 12 \times 5 \mathrm{in} .44 \mathrm{p} ; 12 \times 8 \mathrm{in} .70 \mathrm{p} ; 16 \times 6 \mathrm{in} .70 \mathrm{p} ; 14 \times 9 \mathrm{in} .94 \mathrm{p} ; 12$ $\times 12$ in. $1 / 16 \times 10 \mathrm{in}$. fl 1.16 .
ALUMINIUM ANGLEBRACKET $6 \times 3 \times 3 \mathrm{in} .20 \mathrm{p}$.
$4 \times 2 \times 2$ in. $86 \mathrm{p}: 3 \times 2 \times 1 \mathrm{in} .60 \mathrm{p} ; 6 \times 4 \times 2 \mathrm{in}, \ldots 1 ; 8 \times 6 \times 3 \mathrm{in} .51 .90$
HIGH VOLTAGE ELECTROLYTICS
$8 / 800 \mathrm{~V} £ 1 \cdot 20.50 / 500 \mathrm{~V} £ 1 \cdot 20.50+50 / 500 \mathrm{~V} £ 1.80$.
$\begin{array}{ll}16 / 500 \mathrm{~V} 75 \mathrm{p} .220 / 450 \mathrm{~V} 95 \mathrm{p} . & 40+80 / 500 \mathrm{~V} £ 2 \mathrm{~V} \\ 32 / 500 \mathrm{~V} 75 \mathrm{p} . & 16+32+32 / 500 \mathrm{~V} 2\end{array}$

BAKER aif AMPLIFIER
£69
uperior quality ideal for Halls/PA systems. Disco's and Groups. Two nputs with Mixer Volume Controls. Controls. 50 watts RMS. Three loudspeaker outlets $4.8,16 \mathrm{ohm}$. AC 240 V (120 V available). Blue wording on black cabinet.
BAKER 150 Matt AMPLIFIER 4 Innuts E89 DRILL SPEED CONTROLEERLIGHT DIMMER KIT Easy to build kit. Controls upto 480 watts AC mains.
Printed circuit and components
STEREO PRE-AMP
TEREO PRE-AMP KIT. All parts to build this pre-amp 3 inputs for high medium or low gain per channel, with volume control and P.C Board. Can be ganged to make multi-way stereo mixers. $£ 2.95$

Complete kit of parts with R.C.S. printed carcuit. Three channels. Up to 1,000 watts each. Will operate from 200 MV to 100 watts signal source. Suitable for home Hi -Fi and all Disco Amplifiers. Cabinet extra $£ 4.50$. Post 50p 200 Watt Rear Reflecting White Light Bulbs. Ideal for Disco Lights. Edison Screw 75peach or 6 for $£ 4$, or 12 for $£ 7.50$. $250-0-250 \mathrm{~V} 80 \mathrm{~mA} .6 .3 \mathrm{~V} 3.5 \mathrm{~A} .6 .3 \mathrm{~V} 1 \mathrm{~A}$.. $330-0-330 \mathrm{~V} 200 \mathrm{~mA} .6 \cdot 3 \mathrm{~V} 3 \mathrm{~A}+6.3 \mathrm{~V} 2 \mathrm{~A}+6 \cdot 3 \mathrm{~V} 2 \mathrm{~A} ~ £ 10.60$ $300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 2 \times 6.3 \mathrm{~V} 2 \mathrm{~A}$ C.T.; 5 V 2 A $\mathbf{f 1 0 . 0 0}$ 220 V 45 mA .6 .3 V 2 A . 52.50 52.20 GENERAL PUR POSE LOW VOLTAGE. \qquad Tapped outputs available AUTO TRANSFORMERS 115 V to 230 V or 230 V to 115 V 150 W \qquad CHARGER TRANSFORMERS 6 and 12 V 3 amp.................. 444 amp \qquad FULL WAVE BRIDGECHARGERS RECTIFIERS. 6 or 12 V outputs. $2 \mathrm{amp} . . . \mathrm{I} .1$ $4 \mathrm{amp} . . .11 .75$	

Cash price include VAT.
Minimum post and packing 50p.
List 20p.
Phone Access Barclay VISA

BAKER LOUDSPEAKERS "SPECIAL PRICES"

Poet 81.80 ench					
Model	Obms	Stize kn.	Power Watte	Type	Orr Price
Major	4,8, 16	12	30	H1-Fi	112
Deluxe ME I	8, 16	12	15	HiFi	814
Superb	8, 16	12	30	Hi-F	522
Adinoriam	8, 16	12	45	Hi-F	220
Andioriam	8, 16	15	60	$\mathrm{Hi}-\mathrm{Fi}$	¢30
Group 35	4,8, 16	12	40	PA	112
Gromp 45	4,8, 16	12	45	PA	115
Group 50	8, 16	12	69	PA	520
Group 30	4,8,16	15	75	PA	830
Gromp 75	8, 16	12	75	PA	E24
Gromp 100	8,16	12	109	PA	¢29
Group 100	8, 16	15	100	PA	535
Diveo 100	8,16	12	109	Disco	£29
Disco 100	8, 16	15	100	Disco	¢35

R.C.S. LDUDSPEAKER BARGAINS
$3 \mathrm{ohm} .6 \times 4 \mathrm{in} . £ 1.50 .7 \times 4 \mathrm{in} . £ 1.50 .8 \times 5 \mathrm{in} . £ 2.50 .6 \frac{1}{2} \mathrm{in} . £ 2 \cdot 20.8 \mathrm{in}$
$£ 2 \cdot 60.10 \mathrm{in} . £ 3 \cdot 50-12 \mathrm{in} £ 4 \cdot 50$.
$8 \mathrm{ohm} .2 \mathrm{in} . £ 1 \cdot 50.3 \mathrm{in} . £ 1.50 .5 \mathrm{in} . £ 2 \cdot 20.10 \mathrm{in} . £ 3.12 \mathrm{in} . £ 4$.

E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$. SPEAKER SALE!

With tweeter. And crossover.
10W. State 3 or 8 ohm.
Illustrated.
15 W model with tweeter
8 ohms only.
GDDDMANS 20 Watt Woofer
Size $12 \times 10 \mathrm{in}$. 4 ohms.
Hi -Fi Bass unit.
GDODMANS TWIN AXIDM 8-15 Wor
8in. 8ohm Hi-Fi Twin Cone $\mathbf{f 1 0 . 5 0}$ Post $£$
R.C.S. MINI MODULE HI-FI KIT $15 \times 8 \frac{1}{4}$ in. 3 -way Loudspeaker System, EMI 5 in, Bass 5 in., Middle 3in. Tweeter with 3-way Crossover and Ready Cut Baffle. Full assembly instructions supplied.
Response $=60$ to 20000 cps 12 watt RMS. 8 ohm.
f10.95 per kit. Two kits f 2 D .
Postage fl per kit.

SOUTH EAST ENGLAND'S ELECTRONICS CENTRE Interested in Electronics? Then why not pay us a visit and see our vast range of Test Equipment, Oscilloscopes, PSUs, Computer Equipment, Government Surplus, VDUs, ICs, Transistors, Relays, Motors, Bulbs, Cable Transformers, PCBs, Resistors, Amplifiers, etc., etc.
 $\star \star \star$ THIS MONTHS SPECIALS $\star \star \star$

We've done it againf We've purchased a large quantity of CP CLARE top quality keyboard reed switches plus full OWERTY keytop sets and thrown in a PCB to enable you to customise the keys just as YOU want them, just add and wire an encoder chip and you can arrange ABCII,
BAUDOT 8A00.00. Supplied with layout and assembly info at only $£ 28.99+£ 150$
Miniature 5 V 3 amp PSU, compact fully regulated, + crowbar protection. E8.50 + P\&P 70 p Super value PCB pack. Contents include I.C's res. caps etc., otc. Guarenteed to include TTL and
CMOS 6 Boards, Our choice. $8280+$ PPP 60 p Wire wrap patch panels inc. 1016 pin and 5414 pin gold plated OIL. WW sockets + 64 TTL and

49 key coded OWERTY keyboard, 8 bit output, delayed strobe, 5 V rail, TTL output. Ex-equip. un-
tested. Supplied with edge conn. 8 connection diagram. $£ 20,00+$ \& $\&$ f 1.60
 $\mathbf{£ 1 . 0 0 . 0 . 1 2 5 ^ { \prime \prime }}$ RED LEDS 12 for $\mathbf{£ 1 . 0 0}$. 2N3055H (RCA) 4 for $£ 2.25$. 1 S44/1 N4 14850 for $£ 1.00$. Stock list 50p. Where P\&P not shown please add 40p per order.
Prices include VAT.

* ELECTRONIC EQUIPMENT AND COMPONENTS PURCHASED FOR CASH \star OPEN 9.30 TO 5.30 MONDAY TO SATURUAY $\quad \star$ RETAIL AND TRADE * NO PARKING RESTRICTIONS
\star ACCESS \& BARCLAYCARO

THE BEST OF BOTH WORLDS

STAR BUYS FROM CASIO

81QS-35B Alarm

 Chronograph Stainless steel. Mineral glass. Water resistant. 5 YEAR BATTERY.Hours, minutes, seconds. day;
And day, date, month and
24 year. 12 or 24 hour display.
24 hour alarm, houriy chimes.
Stopwatch from $1 / 100$ second
to 7 hours; net, lap and Ist
and 2nd place times.
(£34.95) $£ 29.95$

95QS-36B Chronograph
Similar to above but with dual time (12 or 24 hour) in lien of alarm and chimes
£19.95

83QS-41B Alarm Chronograph S/s encased
Mineral glass.
Water resistant.
3 YEAR BATTERY
Hours, minutes, seconds, date.
am/pm; or hours, minutes. am/pm; or hours, minutes. 24 alph day date, am ampm. 24 hour alarm, hourly chimes. Stopwatch from $1 / 10$ seco st and 2nd place Nigh ONLY £24.95

F-80 Alarm Chronograph. As above but black resin case/strap with S / S back and front trim.

C-80 Calculator

Watch

(Finger-touch keyboard) Hours, minutes, seconds, Mours, minutes, seconds,
am/pm, day. Day, date, month auto calendar pre-programmed to 2009. Professional 24 hour stopwatch; net, lap, Ist \& 2nd place to $1 / 100 \mathrm{sec}$.
Dual time. 8 digit calculator. Nightlight. Water resistant. Glass. Black resin case/strap $44.9 \times 35.8 \times 10.2 \mathrm{~mm}$.
ONLY $£ 24.95$

111QS-348. Hours, minutes, seconds, am/pm, day and date. Chrome.
$£ 14.95$

Casio's new LCD Analogue/Digital Stopwatch, countdown, 12 or 24 hour display.
Time ditplay. Digital: Hours, minutes, seconds, am $/ \mathrm{pm}$ (optional 12 or 24 hour display). Analogue: Seconds. Time/calendar ditplay. Digital: Month, date, day. Analogue Hour, minute.
Stopwatch: Measuring net, lap and first and second place times from $1 / 10$ second to 59 minutes, 59.9 seconds.
Countdown. Measuring capacity 60 minutes, in $1 / 10$ second units. Setting to 1 second. Countdown can be stopped and restarted for net time measurement.
Calcadar. Auto 4 year. Case. 8.3 mm thick. Water resintant. Mineral glass. Backlight. 2 year battery.
56QS-50B Stainless. Available now (£39.95) \&34.95
56Qs-38B Chrome plated. Av soon (£27.95) \&24.95

NEW SCIENTIFICS

FX-100. 10 digits.
7,500 hours batteries.
44 scientific functions. Six levels parentheses. Standard deviations. Standard deviations.
Co-ordingtes conversion. Fractions, cube roots. FIX, SCI, NORM, RND ENG, RAN (random no.) $7^{\prime \prime} \times 3^{\prime \prime} \times 5 \frac{1}{1 "}^{\prime \prime}$

$$
£ 15.95
$$

FX-8100
1 YEAR BATTERIES Hours, minutes, seconds, am/pm, day. Calendar pre-programmed to year 1999. 24 hour alarm. Alarm timer, interval timer, or $1 / 100$ second stopwatch: net, lap, ist and 2nd, place. Fractions. \%, cube roots. 5 levels parentheses, hyperbolics, standard deviations, co-ordinates, X co X to Y, X $\frac{1}{4} \times 2 \frac{3}{4} \times 5 \mathbf{t}^{\prime \prime}$ (RRP $\mathbf{2} 27.95$
Only $\mathbf{1 2 4 . 9 5}$

AQ-2200
Permanent display of full month calendar. Clock, alarm, hourly chimes. Stopwatch from $1 / 10$ second to 10 hours; net, lap 1st and 2nd place times. Calculator with fuil memory, \%, . One year batteries. $9 / 32 \times 2 \frac{1}{4} \times 4 \frac{t^{\prime \prime}}{2}$ ${ }^{(521.95)} £ 19.95$
 $3 / 16 \times 3 \frac{1}{2} \times 2 \frac{3}{8}{ }^{\prime \prime}(\mathbf{f} 21.95)$.

$£ 19.95$

MELODY 81

(£24.95) £22.95
Clock, calendar, two musical alarms, countdown timer. Stopwatch from $1 / 10 \mathrm{sec}$ to 12 hours; net, lap, 1st \& 2nd place Calculator with full memory, $\%$, square roots.
$5 / 16 \times 4+\times 2 t^{n}$ $5 / 16 \times 4 \frac{1}{4} \times 2 \frac{1}{4}$. 1 year batteries.
ML-71. As ML-81 but without and alarm. $3 / 16 \times 3 \ddagger \times 2 \mathbf{t}^{\prime \prime}(£ 24.95)$.
$£ 22.95$
AQ-1500 £14.95. PW-81 14.95 . MQ-6 £19.95. FX-330 £17.510£19.95. FX-81 £ 12.95

Send 25p for our illustrated catalogue of Casio and Seiko products.
Price includes VAT, P\&P. Send cheques, PO or phone your Access or Barclaycard number to:

TMMPUS

Dept. Pt. Beaumont Centre, 164167 Iast Rd., Cambridge CBI IDB.

Tel. 0223312866

NEW 1980 EDITION
 WORLD RADIO T.V. HANDBOOK

Complete directory of International Radio T.V.

Price: $\mathbf{£ 9 . 5 0}$
1980 THE RADIO AMATEUR'S H/B
by A.R.R.L.
Price: $\mathbf{8 8 . 0 0}$
HOWTO MAKE PRINTED CIRCUIT BOARDS by J. Gotdberg

Price: £4.35
HOW TO USE INTEGRATED CIRCUIT LOGIC ELEMENTS
by J.W. Streater Price: $\mathbf{£ 4 . 5 0}$
HOW TO BUILD ELECTRONIC PROJECTS
by D. R. Malcolm Jr. Price: E5.25
VIDEOCASSETTE RECORDERS THEORY 8 SERVICING
by G. P. McGinty Price: $\mathbf{I 8 . 9 5}$
UNDERSTANDING MICROPROCESSORS
by Texas Instruments Price: $\mathbf{\$ 4 . 0 0}$
RADIO \& ELECTRONIC LABORATORY H/B
by M. G. Scroggie Price: $\mathbb{1} 8.95$
BASIC ELECTRONIC CIRCUITS
by P. M. Buckley Price: $\mathbf{\text { E5.50 }}$

MORE BASIC COMPUTER GAMES

 by D. H. AhlPrice: $\mathbf{5 6 . 0 0}$

\star ALL PRICES INCLUDE POSTAGE *

THE MODERN
 BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET LONDON W2 1 NP

Phone 01-402 9176
Closed Saturday 1 p.m

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisments where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please re tain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, PRACTICAL ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc, received as a result of answering such advertisements. Classified advertisements are excluded.

We mean it
The new 30AX colour tube system from Mullard doesn't need innumerable twists and turns of a screwdriver to set it up.

It needs no adjustments at all. Because every one has been 'designed out'. Every tube that leaves our factory is completely pre-adjusted by us. Leaving only the turn of one screw to affix or remove the coil.

No dynamic convergence adjustments.
No colour purity adjustments.
And no raster orientation adjustment.
As for what it has to offer, the 30AX's focus is sharper and its definition greatly improved.

Its in-line guns and specially built coil provide the best picture shape yet.

And rest assured it'll stay that way. In a slim
110° package that trims about $3^{\prime \prime}$ off conventional
$22^{\prime \prime} 90^{\circ} \mathrm{TV}$ cabinet depths.
Some features of the 30AX however, are a little more established.

Like its excellent colour registration. High brightness. Soft flash protection. Fast warm-up. And of course, greater overall reliability. This is the new 30AX colour tube system.

If you'd like more information about it simply write to us here at Department MCG, Mullard Limited, Mullard House, Torrington Place, London, WC1E 7HD.

RECEIVERS AND COMPONENTS

TUNBRIDGE WELLS COMPONENTS, Ballards, 108 Camden Road, Tunbridge Wells. Phone 31803. No Lists. Enquiries S.A.E.

TURN YOUR SURPLUS Capacitors, transistors, etc., into cash: Contact COLES-HARDING CO., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settlement.

BOURNEMOUTH/POOLE. Electronic Components for the Hobbyist, and FRIENDLY Service. Why not pay us a visit. H \& H Telectrics Ltd., 353 Ashley Rd., Parkstone. 742643.

COMPONENTS AT SILLY PRICES. 1000 mixed resistors $\mathbf{£ 3 . 6 0}$. SAE Lists. W.V.E.3, Craigo Farm, Tintern, Gwent.

RECORD ACCESSORIES

STYLI Cartridges for MUSIC CENTRES, \&c. FREE List No. 29 for S.A.E. includes Leads, Mikes, Phones \&c. FELSTEAD ELECTRONICS, (PE), Longley Lane, Gatey, Cheadle, Ches. SK84EE.

BOOKS AND PUBLICATIONS

ANy REQuested SERvice Sheet $\mathbf{1 1}+$ Large S.A.E. Full repair data any named TV $£ 5.50$ (with circuits, layouts etc. £7). SAE brings newsletter, bargain offers, etc. AUSPEL. 76 Church St, Larkhall, Lanarks ML9 1HE.

FOR SALE

NEW BACK ISSUES of "Practical Electronics" available 80p each Post Free. Open P.O./Cheque returned if not in stock BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate. N. Yorks. Tel:(0423) 55885.

FOR SALE UK 101 Fully Expanded to $8 K$. $£ 250$ o.n.o. K. Leeder, 16 William St., Kings Lynn, Norfolk.

WANTED

WANTED SYNTHESISER and Sequencer Reeves. Tel. 021747 8489.

SMALL ADS

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 8.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

AERIALS

AERIAL BOOSTERS

Improves weak VHF Radio and Television reception.
B45-UHF TV, BH-VHF Radio. B1 1 A-2 metres Fornext to the set fitting. Price $\mathbf{f 6}$.

SIGNALINJECTOR
A complete range of $A F$ and $R F$ frequencies up to the UHF Band. (Variable AF).
Price £5.00. S.A.E. for Leaflets. ACCESS
ELECTRONIC MAILORDER LTD,
62 Bridge Street,
Ramsbotton, Bury, Lancs, BL0 9AG.

EDUCATIONAL

CITY G GUILDS EXAMS

Study for success with ICS. An ICS homesuludy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. V272 Intertext House, London SW8 4UJ
Tel. 01 -622 9911 (all hours)
State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Full detalls from:

ICS SCHOOL OF ELECTRONICS
Dept. V272 Intertext House, London SW8 4UJ
Tel. 01-6229911 (all hours)
State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and ciagrams. Other courses for radio and audio servicing. Full details from:

ICSSCHOOL OF ELECTRONICS Dept. V272 Intertext House, London SW8 4UJ Tel. 01-622991। (all hours)

State if under 18

SERVICE SHEETS

BELL'S TELEVISION SERVICES for Service Sheets on Radio, Tv, etc E 1.00 plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel:(0423) 55885.

SERVICE SHEETS from 50 p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

MISCELLANEOUS

SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a Low $\mathbf{1 1 . 0 5}$. Chassis punching facilties at very competitive prices, 400 models to choose from. Suppliers only to Industry \& The Trade. BAZELLI (Dept. No. 23), St. Wilfrids, Foundry Lane, Halton, Lan-
caster, LA1 6LT.

BUILD YOUR OWN PARALLEL-TRACKING HI-FI PICKUP ARM. Simple opto-electronic design as published in
Wireless World now available in kit form. Send s.a.e for Wireless World", now available in kit form. Send s.a.e. for
details to: \mathbf{J}. Biles Eng., 120 Castte Lone, Solihuli, West details to:
Midlands.

UK 101 SOFTWARE ON TAPE From the guy who wrote "Le Passe-Temps" (see P.E. May) GAMES PROGRAMS @ £1.50: Noughts and Crosses, Blackjack, King Albert Skilful Card (Patience), Dambusters, Codebreaker (as Mastermind), Battleships. Le Passe-Temps, Hangman, Lunar Lander. Armless Bandit, Nim, Solitaire, Life, Hexapawn, Awari, Roulette, Craps. FOR THE YOUNGSTERS: Number games, Snap etc., Rock ScissorsPaper etc., Word Games. (Any three for $£ 4$. Ad ditional programs $£ 1$ each). 8 K programs @ $£ 2.50$ Steeplechase, Stockmarket, Stud Poker. OTHER PROGRAMS UK $101 £ 1$ each). Programming in basic $£ 6$. Probability theory tutor $\mathbf{£ 2 . 5 0}$. Maths puzzles $\mathbf{£ 2 . 5 0}$. Also available for the superboard (please state) S.A.E. for latest additions to Mr. A. Kright, 28, Simonside Walk, Ormesby, Middlesborough, Cleveland. Tel. M'Bro. 321266 . (POST + VAT INCL. PRICES)

RYDER ORGAN SYSTEM
The W.W. classical design for fullsize keyboards, including couplers. Expanded range of units now includes chorus, vibrato, combination stop-control.
Data, p.c. boards, from:
HIYKON LTD. (P),
Woodside Croft, Ladybridge Lane,
Bolton BL1 5ED

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Transmitter Receiver Kit. Only $\mathbf{E 1 0 . 9 5}$ plus 25p P. \& P. 'Brain Freeze' 'em with a MINI-STROBE Electronics Kit, pocket-sized 'lightning flashes', vari-speed, for discos and parties. A mere $\mathbf{X} 4.75$ plus 25 p P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR soundcatcher: ready-made multi-function modules, $\mathbf{\ell 5 . 4 5}$
each pius 25 p P \& P. LOTS MORE! Send 30p for lists. Prices include VAT.

BOFFIN PROJECTS
 4 Cunliffe Road, Stoneleigh
 Ewell, Surrey (P.E.)

ELECTRONIC IGNITION. Manufacturers surplus P.C.Brds, tested $£ 2.75$ each. Phone (01) 6436111 After 6 pm .

MAKE YOUR OWN PRINTED CIRCUITS

Etch Resist Transfers - Starter pack (5 sheets lines, pads, I.C. pads) $£ 1.60$. Large range of single sheers in stock at 34 p per sheet.
Master Positive Transparancies from P.C. layouts in magazines by simple photographic process. Ful instructions supplied. 2 sheets ($20 \times 25 \mathrm{~cm}$) negative paper and 2 sheets ($18 \times 24 \mathrm{~cm}$) positive film $£ 1.30$.
S.A.E. lists and information. P\&P 30p/order
P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

COMPUKIT SOFTWARE
Planet landing - on any one of 20 planets 1 - if you dare. 86.00. Gambling Pac I - fruit Machine and Craps - E5.00. WarPac 1 - Submarine \& Artillery E5.00.
All on tape ready to run. Price fully inclusive. Send Cheque/p. O. to:
Chequeprio. to: Po Box 71, Deamond Drive, Norwich, NR6 7JE. (Mail Order).
Speedy assurance. We also buy superior quality software.

ULTRASONIC TRANSOUCERS. $£ 2.85$ per pair +25 p P. \& P Dataplus Developments, 81 Cholmeiey Road, Reading, Berks.

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer - now greatly improved and very much faster. Aerosol cans with full instructions. $£ 2.25$. Developer 35 p. Ferric Chloride 55 p. Clear Acetate sheet for master 14 p. Copper-clad Fibre-glass Board approx. 1 mm thick $\mathbb{1 1 . 7 0}$ sq. ft. Post/Packing 60p. WHITE HOUSE ELECTRONICS, P.O. Box 19, Castle Drive, Penzance, Cornwall.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4				
ENAMELLED COPPER WIRE				
SWG	1 lb	802	40z	202
10 to 29	3.10	1.86	1.10	0.80
30 to 34	3.50	2.00	1.15	0.80
35 to 39	3.95	2.36	1.34	0.98
40 to 43	5.10	2.97	2.28	1.42
44 to 46	6.00	3.60	2.50	1.91
47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 22	5.30	3.03	1.85	1.20
24 to 30	6.50	3.75	2.20	1.40
Prices £2 plea enquirie	de P\& add come.	and VA SAE	Orc	under ealer
Reg. office: 22 Coningsby Gardens.				

UK101. 4 Novel Games on Cassette; Blockade, escape, space war and fighter pilot. A mere 56 from David Poole, LTP, Cavendish Labs, Cambridge University, Madingley Road, Cambridge.

GUITAR/PA/

MUSIC AMPLIFIERS

100 watt supert treble/bass, overdrive. 12 months
guarantee. Unbeatable at $\mathrm{E} 46 ; 60$ watt $\mathrm{f} 38 ; 40$ watt f 34 ; guarantee. Unbeatable at £46; 60 watt $£ 38 ; 40$ watt $£ 34$
200 watt $\mathbf{~} 60 ; 100$ watt twin channel $9 e p$ treble/bass per channel $\mathbf{£ 5 8 ; 6 0}$ watt $\mathbf{£ 4 8 ;} \mathbf{2 0 0}$ watt $\mathbf{£ 7 2} \mathbf{7 5} ; 100$ watt four channel sep. treble/bass per channel $£ 75$; 200 watt $£ 92$ slaves 100 watt $£ 32$; 200 watt $£ 50$; fuzz boxes, great sound f10.00; bass fuzz $£ 10.90$; overdriver fuzz with treble and bass boosters $£ 18.00 ; 100$ wat combo superb sound
overdrive, sturdy construction, castors, unbeatable $£ 92$ overdrive, sturdy construction, castors, unoeatable $£ 92 ;$
twin channel $£ 100$; bass combo $£ 105$; speakers 15 in. 100 watt $£ 35$; 12 in. 100 watt $£ 23 ; 60$ wátt $£ 16$; microphone Shure Unidyne $\mathbf{B} \mathbf{E 2 6}$.

Send cheque or P.O. to:

WILLIAMSON AMPLIFICATION

62 Thorncliffe Avenue, Dukinfield, Cheshire. Tel: 061-308 2064

EPROMS $2708 \mathbf{£ 5 . 4 0 ,} 2716 £ 21.60$ postage 35p. Software for most micros. S.A.E. For Lists ZERO-ONE ELECTRONICS. 36 Oaklands Avenue, Thornton Heath. Surrey.

P.C. BOARDS

FOR INDUSTRY 'and' THE AMATEUR

- One off or production runs
* Assembly of P.C.Bs or kits
* Expert hand soldering
- Design service if required
* Artwork \& Photography

SEAHORSE ELECTRONICS LTD.
Unit 2 Picow Farm Road Service Industry Estate, Runcorn, Cheshire. (09285) 75950

FREE 1980 AMTRON CATALOGUE with new range of kits and equipment cabinets. Send S.A.E. AMTRON UK LTD., 7 Hughenden Road. Hastings, Sussex TN34 3TG. Tel. Hastings 436004 .

CABINET FITTINGS
Stage Loudspeakers and Amplifier Cabs Fretcloths, Coverings, Strop \& Recess Handles, Feet, Castors, Jacks \& Sockets, Cannans, Bulgin 8 ways, Reverb Trays, Locks \& Hinges, Corners, Trim, Speaker Bolts etc.
Send $2 \times 9 \mathrm{p}$ Stamps for samples and illustrated catalogue
ADAM HALL (P.E. SUPPLIES)
Unit 3, Cariton Court, Grainger Road Southend-on-Sea, Essex.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass, non-magnetic tweezers, watch screwdriver case knife and screwback case opener, full instructions and battery identification chart. We batteries--you fit them. Begin now. Send $£ 7.50$ for complete kit and get into a fast growing business. Prompt despatch.
WATCH BATTERY REPLACEMENT CO (PE13)
11 Parcy Avenue, Ashford, Middx. TW15 2PB.
BURGLAR ALARM EQUIPNENT. Latest Discount Catalogue out now! Phone C.W.A.S. Alarm 0274682674.

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME FULL RANGE AVAILABLE. SAE FOR LISTS. E1. 25 for calk: Sandwell Plant Ltd. 2 Union Drive, BOLDMERE SUTTON COLDFIELD. WEST MIDLANDS, O2 $1-3549764$. or see them at TLC. 32 Craven Street, Charing Cross,
interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots. 1D and 2D have space dividers. Build up any size cabinet for wall, bench or table top.
SINGLE UNITS (1D) ($\left.5 \mathrm{in}+2 \frac{1}{\mathrm{i}} \mathrm{in}+2 \frac{1}{\mathrm{i}} \mathrm{in}\right)$ £3.90 DOZEN DOUBLE UNITS (2D) (5 in $\left.+4 \frac{1}{2} \mathrm{in}+2 \frac{1}{4} \mathrm{in}\right) \mathbf{E 6 . 5 0}$ DOZEN TREBLE (3D) E5.90 for 8.
DOUBLE TREBLE 2 drawers. in one outer case (6D2), E8.90 for 8.
Extra large size (6D1) $\mathbf{£ 7 . 9 0}$ for 8 .
Orders over E80, less 5\%. Packing/Postage/Carriage: Add £1.30 to all orders under $£ \mathfrak{i} 0$. Orders $£ 10$ and over, please add 10% carriage.

QUOTATIONS FOR LARGER QUANTITIES
Please add 15\% V.A.T. to total remittance.
All prices correct at time of going to press.

SEEN MY CAT? 5000 Odds and ends. Mechanical. Electrical. Cat. free. Whiston Dept. PRE. New Mills, Stockport.

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, 8 digits show Date, Hours, Minutes and Seconds, auto CLOCK and parallel BCD output, receives Rugby time signals, 1000 Km range, ABSOLUTE TIME, £48.80.
6OKHz RUGBY RECEJVER, as in MSF Clock, buit-in antenna, serial data output. $\mathbf{£ 1 3 . 7 0}$
V.L.F.? $10-150 \mathrm{KHz}_{\mathrm{Hz}}$ feceiver $\mathbf{E 1 0 . 7 0}$

NO RADIO 47 200 KHz Converter, suits any M.W. receiver, get ALL the NEWS, $\mathbf{E 1 1 . 4 0}$.
Each fun-to-build kit includes all parts, printed circuit, case. postage etc, money back assurance so SEND off NOW.

CAMBRIDEE KIT8
46 (FF) Oid School Lane, Milton, Cembridge.

UK 101 BASIC RENUMBERING PROGRAMME tape, listing and data for £4. Send cheque to: P. J. Barden, 517 Becontree Ave., Dagenham, Essex.

CENTURION ALARMS COMPLETE D.I.Y. ALARM SYSTEMS 	

CLEARING LABORATORY: scopes, generators. P.S.U.'s, bridges, analysers, meters, recorders, etc.0403-76236.

PRACTICAL ELECTRONICS P.C.B.'s

Professional quality glassibre, Fr's roller tinned and drilled
Feb $80 \quad$ Dynamic noise limiter EG276 £1.98. Pso, EG274
Feb $80 \quad \begin{gathered}\text { Dynamic noise limiter } E C \\ \mathbf{8 3 p} \text {. Set of two } \$ 2.60 .\end{gathered}$
Feb 80 Electrostat EG257 £1.73.
Electrostat EG257 £1.73.
Audio isolator EG28688p. Frequency meter EG290 $£ 3.43$.
Apr $80 \quad$ Entarger timer EP295 E8.48. May 80 Two wire train controller EP320 £2.93p May 80 Two wire train control
EP328/30 £1.20p
For full list and current pcb's please send SAE. Pcb's also produced to customers own masters. Trade enquiries weicome. Please write for quote. CWO Please. Pontage - Please add 30 p postage and packing to com-
PROTO DESIGN
is Downham Road. Ramsden Heath

MEMORY MART

"UK 101 "Superboard"' 4K RAM Memory Expansion

MEMORY MART
 19 Weatherby Gardens,
 Hartley Wintney, Hants.

SITUATIONS VACANT

UNIVERSITY OF SUSSEX

Vacancies in Electronics

Are you interested in new technology? Vacancies exist 'in our electronic laboratories for suitably experienced technicians within a salary scale f 3948 to f 4974 . Duties include building and/or servicing electronic equipment for research and teaching using the latest equipment in a pleasant environment with excellent conditions of service.
If you feel you have the ability to make a useful contribution and at the same time increase your own technical knowledge, apply in writing, giving details of age and experience etc., to.

The Laboratorv Superintendent, School of Engineering \& Applied Sciences, University of Sussex, Brighton
BN190T.

All the others are measured by us...

At Marconi Instruments we ensure that the very best of innovative design is used on our range of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design, Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation. If you are interested to hear more, please fill in the following details:-

Return this coupon to John Prodger, Marconi Instruments Limited, FREEPOST, St. Albans, Herts, AL4 OBR. Tel: St Albans 59292

LONDON COLLEGE OF FURNITURE

TEC DIPLOMA IN MUSICAL INSTRUMENT STUDIES

(SPECIALISING IN ELECTRONICS)

A full-time 2 -year course is offered in those aspects of electronics related to the building and repair of equipment associated with the music industry.
Students will be encouraged, particularly in the second year of the course, to involve themselves in project work related to electronic instruments and ancilliary audio equipment.
A further 2 -year full-time course leading to a TEC Higher Diploma (subject to validation) may be offered where appropriate.

For details apply to:
Senior Administrative Officer London College of Furniture 41-71 Commercial Road, London E1 ILA.

The Department of Electronic and Communications Engineering is planning some new full-time and part-time courses, commencing October 1980.
These have been designed to take account of recent advances in digital and software techniques, and emphasis is placed on these during all the courses.

$\mathrm{BSc}($ Hons $)$ in Electronic and

 Communications Engineeringa novel degree course designed to prepare engineers for the demands of the eighties and nineties. Entrance qualifications - two good ' A ' level passes in Maths and Physics, or equivalents.

Higher Diploma (TEC) in

Electronics and Communications Engineering a full-time two year course stressing the practical applications of electronics engineering, especially microprocessor technology. Entrance qualifications - a good 'A' level pass or TEC Diploma or Certificate in appropriate subjects.

Higher Certificate (TEC)

is a part-time course following similar lines to the HD (TEC). Entrance qualification - TEC Certificate in appropriate subjects. Both TEC courses are of a unit structure, and all three courses aim to produce engineers for industry. Some industrial training is included in the HD (TEC).

Department of Electronic and Communications Engineering, Polytachnic of North London Details from Secretary,
Holloway Road, London N7 80B. Tel. 01-607 2789. Ext. 2161.

The Polytechnic of NorthLondon

BUILD A SYNTHESISER!

NO $\begin{gathered}\text { SPEClial skilis } \\ \text { SpECiAL } \\ \text { EqUIPMENT }\end{gathered}$ REQUIRED

Using Devetron (Reg'd) PROFESSIONAL MODULES

Over 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. The long-popular, well-tried range of Dewtron synthesiser and other effects modules and "MISTER BASSMAN" base pedal accompaniment unit.

Send 35p for Musical Miracles Catalogue NOW!
D.E.W. LTD.

254 RINGWOOD ROAD, FERNDOWN, DORSET BH22 9AR

TECHNOMATIC LTD

Accepted

Naw GIATI SUP PRPRINIS plus file film

 for every one you send for processing, by the Practical Electronics Colour Print Service SIANTPhotography can cost you a lot less these days if you know how to go about it. Hundreds of thousands of magazine readers are delighted with this reliable Colour Print Service - and the replacement films that come FREE every time they use it! So why don't you give it a try? Here's what you do. Send any make of colour print film inside the envelope enclosed in this issue. Or fill in the coupon below and send it with your film in a strong envelope to: Practical Electronics Colour Print Service, Freepost, Teddington, Middlesex, TW11 8BR. No stamp is required. Send no money

We are so confident in the reliability of the service and the quality of our prints, every one of which is checked by profsssionals at our laboratories, that you don't pay until you have received them!
Luxury colour prints
You will be amazed at the crisp, sharp, hi-definition sheen finish of the prints we supply...with elegant rounded corners and borderless to give you maximum picture area. And now with the new Giant Superprints you get 30% more picture area for just Ip extra per print.

Unbeatable value
Prices are much less than those you would pay in most shops - quite apart from the FREE Kodak Colour film, worth at least 61.44** The FREE film is the same size as the one you sent for processing.

The new Giant Superprints cost you only 17 p each, compared with $16 p$ for the standard enprints available with this service. A further charge of El is made towards development, postage and packing. The offer is limited to the UK. For Eire, CI and BFPO a handling surcharge will be made.
Free Album Shects
One album voucher is sent with each film we process. Collect 3 vouchers and we send you a set of FREE album sheets.

USE THIS LABEL IF YOU HAVE NO ENVELOPE, OR PASSIT TOA FRIEND. IT IS USED TO SEND YOUR PRINTS \& FREE FILM -

Offer exc. Minolta Go Sub-miniature. Roll film $20 p$ surcharge. 400 ASA 2% surcharge. Superprints can only be produced from Kodacolotiv: III, C41 and Agfa CNS cassette and cartridge film. Prices correct at time of going to press.

From: Practical Electronics Colour Print Service, Freepost, Teddington; Middlesex, TW11 8BR. Please print my film Superprint/Standard Enprint size (delete size which is not required).
$\mathrm{Mr} / \mathrm{Ms}$
Address

More benefits to you
You benefit in two additional way's. Firstly, you enjoy a personal service with every care taken over each individual order. And secondiy, you pay only for what you get - with no credir vouchers as with many other companies. An invoice comes with your prints, so it is a straight business transaction.
*Kodak Kecommended Retail Prices: $110 / 20-61.44 ; 126 / 20-61.51 ; 135 / 24-$ £1.67; $135 / 36-£ 2.12$.

STEP INTO A NEW WORLD WHEN YOU DISCOVER |R

For beginners or professionals, the Maplin catalogue will help you find just about everything yourveed for your project.

Over 5,000 of the most usefulcomponents - from resistors to microprocessors - clearly described and illustrated.

[^0]: - IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: * RCA COSMAC $1802 \mu \mathrm{P}$
 * $130 \times 210 \mathrm{~mm}$ glass fibre p.c.b.
 * Twenty switch keypad-sixteen hexadecimal keys plus four control keys.
 * Two 2111s (organised as 256 bytes of memory)
 * Users Club for cross pollination of ideas and applications.

 See the April issue of Practical Electronics for a full review of Edukit.

[^2]: PROGRESSTVE RADTO 31, CHEAPSIDE, LVERPOOLLL2DY
 SEEMICONDUCTOAB. Texas R1038 TO3 power trens. EOp, TBA800 EOp. 7418 pin 22p. NE555 24p. TAG4443

 MUNIATUAE SOLID ETATE BUZZER. $33 \times 17 \times 15 \mathrm{~mm}$, output at 3 feet 70 db , only 15 mA drain, operating renge
 LOUD eUFEA. 6-12 volts ev. GPO type edjustable burzer 6-12 volts 27 p.
 resistance ranges to 1 meg. ev.E0p.
 solperk evcren.
 soldeik sucken. High suctiont tofion nozzle, e4.6Sq
 MUIATA TMAN soUCERS. 40 KHz ., REC/SENDER E3. 00 pair

 IIGH IMPEDSNCE diece $£ 2.78$.

 way 27.25 UNITE (can be uedd as baby alamm) supplied with approx. 60° cable, call burion, 2 way et. 25 pair, 3 180 KHz . What wis INTEACOM, 2 units both operate on 240 VAC and mains connected, AM frequency

 motal case only 27.74 .

 ipper and wire cutter, insulated handies only $\mathbf{£ 2 . 3 0}$ SAE for tatest illustrated stock IIst.
 ALL OADERS DESPATCHED BYR RETURN POST

