PRACTICAL

мапсн эяво
 55p

Also featured in this cosur...

Co - Co Co Meter

$$
\begin{aligned}
& \text {...Spedill Oif: }
\end{aligned}
$$

EUROPE'S FASTEST SELLING ONE BOARD COMPUTER

* 6502 based system - best value for money on the market. \star Powerful 8 K Basic - Fastest around \star Full Qwerty Keyboard $\star 4 \mathrm{~K}$ RAM Expandable to 8 K on board. * Power supply and RF Modulator on board. \star No Extras needed - Plug-in and go. \star Kansas City Tape Interface on board. * Free Sampler Tape including powerful Dissasse mpler and Monitor with each Kit. \star If you want to learn about Micros, but did'nt know which machine to buy then this is the machine for you.

The Compukit UK101 comes in kit form with all the parts necessary to be up and working, supplied. No extras are needed. Ater plugging in just press the reset keys and the whole world of computing is at your fingertips. Should you wish to work in the machine code of the 6502 then just press the M key and the machine will be ready to execute your commands and programs. By pressing the C key the world of Basic is open to you.
This machine is ideal to the computing student or Maths studeri, ideal to teach your children arthmetic, and is also great
Because of the enormous volume of users of this kit we are able to offer a new reduced price of $\mathbf{f 1 9 9}+$ VAT

Please add VAT to all prices - Delivery at cost, will be advised at time of purchase. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order quoting BARCLAYCARD. ACCESS, DINERS CLUB or AMERICAN EXPRESS number.
CREDIT FACILITIES ARRANGED - send S.A.E. for application form.
14 Station Road, New Barnet, Hertfordshire, EN5 1QW Telex: 298755 TELCOM G Telephone: 01-441 2922 (Sales) 01-449 6596
OPEN - $10 \mathrm{am} \cdot 7 \mathrm{pm}$ - Monday to Saturday
Close to New Barnet BR Station - Moorgate Line.

VOLUME 16 No. 3 MARCH 1980

CONSTRUCTIONAL PROJECTS

AUDIO ISOLATOR by G. Davies 22Banish shocks and hum loops
ENLARGER TIMER by R. Besson 33
Photographic process timing controlCAR RADIO40
A 5 push button set with 6 W output
ACOUSTICALLY COUPLED TELEPHONE MODEM by Kenneth Amor 54
Part 2-Construction and applications
A SIMPLE CONVERSATION AID by J. M. Watt M.B., Ch.B. 62
Amplifier for the hard of hearing
DIGITAL FREQUENCY METER by Michael Tooley B.A. and David Whitfield B.A., M.Sc. 72
10 Hz to 5 MHz Portable unit
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles 25
8041/ISBC, Super E-line
TRANSISTOR PARAMETERS by R. A. Hatton 29
Common emitter h-parameters discussed
INGENUITY UNLIMITED 58
Wah-wah pedal—200W Temperature controller—Hexadecimal display—Guitar tremolo COMPUKIT UPDATE by Dr. A. A. Berk 68
Graphics and cassette speed revelations
NEWS AND COMMENT
EDITORIAL 17
MARKET PLACE 18
INDUSTRY NOTEBOOK by Nexus
21
21
Almanac for the '80s
BREADBOARD REVIEW 26
NEWS BRIEFS 30, 79
COUNTDOWN 63
PATENTS REVIEW 64
WATCH OFFER 65
SPACEWATCH by Frank W. Hyde 66
MICRO-PROMPT 67
POINTS ARISING 71
READOUT 80
COMPUTER CASE OFFER 81
SPECIAL SUPPLEMENTP.A. LOUDSPEAKER SYSTEMS by Ben Duncan 44For Discos and Rock Bands44OUR APRILISSUE WILL BE ON SALE FRIDAY, 14 MARCH 1980(for details of contents see page 61)

[^0]
WATFORD EEEGRRNIES

33/35, CARDIFFROAD, WATFORD, HERTS, ENGLAND' MAIL ORDER. CALLERS WELCOME. Tel. Watford 40588/9

Abstract

ALL DEVICES BRAND NEW. FULL SPEC. AND FULLY GUARANTEED. ORDERS DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/P.O.A OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL INSTITUTIONS OFFICIAL ORDERS ACCEPTED. TELEPHONE ORDERS BY ACCESS NOW ACCEPTED (MINimum order E10.OD Phase). TRADE ANDEXPOHT NNGUIRY WELCOME. P \& ADO 30 P TO ALL ORDERS UNDER

VAT

Export orders no VAT. Applicable to U.K. Customers only. Unless
atated otherwiso, all prices are exclusive of VAT. Please add 15% to the total cost.

Foothat Ground. Neareat Underground/Br. Rail Station: Watford High Streord.

Superb value. Building electronic kits is an enjoyable and very rewarding pastime.

And with Heathkit, it's also an easy way of making a wide range of useful electronic devices making a wide range of useful electronic devices
from doorbells to microcomputers, from car main tenance products to test equipment.

Top quality. Heathkit kits not only give you the pleasure of 'doing it yourself' but also the satisfaction that every kit is of the highest quality.

The step-by-step instructions, compiled by experts, make it easy for beginners and 'old hands' alike. And with Heathkit's excellent after sales service complete success is guaranteed. After all, 13 million kit builders over the last 34 years can't be wrong.

Excellent choice. To find the best kits, all you need is the Heathkit catalogue.

 \title{
Choose the
 \title{
Choose the World's finest kits.
} World's finest kits.
}

It contains detailed specifications of our comprehensive range to aid you in your selection.

Send for your copy today. Or if you're near our showrooms in Tottenham Court Road, London or Bristol Road, Gloucester, just call in and browse around.
T To: Heath (Gloucester) Limited. Dept. (PE3). Bristol Road.Gloucester. GL2 6EE.

Please send a copy of the Heathkit catalogue. I enclose 20p in stamps

N.B. If you are already on the Heathkit mailing list you will

Electronic Systems Ltd

P.E. ULTRASONIC CLEANER

All the designer approved parts, including fibre glass case, to complete this exciting project as featured in the January 1980 issue.

£68.00

ELEGTROALUE

 CATALOCUE 10 HAD YOURS YET?
Our computer has already

 selected thousands of our customers to whom our new catalogue has automatically been sent. If you would like a copy too, simply send us your name and address. It's
(You don't even have to pay postage) (in U.K.)

ITS A GOOD DEAL BETTER FROMELECTROVALUE

- We give discounts
on C.W O. orders, except for a few items market Net or N in our price lists. 5% on orders, list value 10% on orders list value £25 or more
Not applicable on Access or Barclaycard purchase orders.
- We pay postage in U.K.
on C.W.O. orders list value $£ 5$ or over. If under, add 30p handling charge.
- We stabilise prices.
by keeping to our printed price lists which appear but three or four times a year.

- We guarantee

all products brand new, clean and maker's spec. No seconds, no surplus.

Appointed distributors for SIEMENS VERO, ISKRA, NASCOM and many others.

OUR NEW CATALOGUE No 10

Full 128 pages. Thousands of items. Improved classification for easier selection. Valuable working information. Illustrations. Separate quick-ref price list.

ELECTBO/ALUE LTD

HEAD OFFICE (Mail Orders)
28(B) St. Judes Road, Englefield Green, Egham, Surrey
TW20 OHB. Phone: 33603 (London prefix 87. STD 0784) Telex 264475.

NORTHERN BRANCH (Personal Shoppers Onty) 680 Burnage Lane, Burnage, Manchester M19 1NA Phone: (061) 4324945.

D.I.Y. KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. 128-NOTE SEQUENCER

Enables a voltage controlled synthesiser to automatically play pre programmed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and rhythmic pattern are externally variable.

Set of basic component kits, PC8s and layout charts Set of text photocopies

P.E. 16-NOTESEQUENCER

Sequences of up to 16 notes may be programmed by the use of external panel controls and fed into most voltage controlled synthesisers.
Ser of basic component kits, PCBs and layout charts
Set text photocopies
KIT 86-5 $£ 27.99$
P.E. STRINGENSEMBLE

A multivoiced polyphonic string instrument synthesiser
Set of basic component kits, PCBs \& layout charts
KIT 77-B \quad f92.89

P.E.JOANNA PLUSORGAN VOICING

A modified version of the P.E. 5 -octave piano that retains all the
original facilities and includes switchable organ voicing circuitry
Set of basic component kits. PCBs \& layout charts
"Sound Design" booklet
KIT 71-7 £119.87

ELEKTORELECTRONIC PIANO

A touch-sensitive multiple-voicing piano using the latest integrated circuit techniques for the keying and envelope shaping. and virtually eliminating "bee-hive" noise hitherto inherent in previous olectronic pianos.
5 -octave set of basic components and PCBs (as published)
Additional 3-octave extension and basic KIT $80-9$ f136.4
PCBs (as published) KIT 80-10 E54.62
Pers las publishod
KIT 80-10 £54.62

P.E. MINISONIC MK2 SYNTHESISER

A portable mains operated miniature sound synthesiser with keyboard circuits. Although heving slightly fewer facilities than the ferge Formant and P.E. synthesisers the functions offered by this design give it great scope and versatllity

Set of basic component kits (excl. KBD R's \& tuning pots see list for options available) and PCBs fincl, layout charts
"Sound Design" booklet KIT 38-25 £1.00

P.E.SYNTHESISER

The well acclaimed and highly versatile large scale mains operated synthesiser. Other circuits in our lists may be used with it to good advantage.

Main Unit basic component kits, PCBs \& layout charts
KIT23-31 £101.43
Keyboard Unit basic component kits, PCBs \& layout charts
Main Unit set of text photocopies
Keyboard Unit set of text photocopies
$\mathbf{2} .30$

ELEKTOR FORMANTSYNTHESISER

A very sophisticatged synthesiser for the advanced constructor who puts performance before price.
Ser of basic component kits, PCBs (as published)
Set of text photocopies KTT 66-14 £247.80

BASIC COMPONENTS SETS include all necessary resistors. capacitors, semiconductors, potentiometers nd harmers. Hardware such as these may be bouth. are not Fuller details of kits PCBs and parts are shown in our lists.

LAYOUT DIAGRAMA8 are supplied free with all PCBs unless "as published"

P.E.GUITAR EFFECTS UNIT

Modulates the attack, decay and filter characteristics of a signa rom most audio sources, producing B different switchable effects hat can be further modified by manual controls.
Basic parts with foot switches, PCB \& layout chart

ext photocopy

KIT 42-3 $\quad \mathbf{5 1 0 . 0 2}$

ELEKTOR DIGITALREVERB UNIT

A very advenced unit using sophisticated i.c. techniques instead of mechanical spring lines. The basic delay range of 24 to 90 mS can be extended up to 450 mS using the extension unit. Further delays can be obtained using more extensions.
Main unit basic component kit and PCB (as published)
KIT 78-3 £
Extension unit basic component kit and PCB
KIT 78-4
£48.85 Text photocopy 86p

ELEKTORANALOGUE REVERB

sing i.c.s instead of spring-lines the main unit has a maximum delay of up to 100 mS , and the additional set extends this up to 200 ms . May be used in either mono or stereo mode.

Main unit basic component set KIT 83-1 $\mathbf{E 2 9 . 4 9}$ $\begin{array}{lll}\text { Additional Delay basic components } & \text { KIT 83-2 } & \mathbf{E 2 0 . 0 7} \\ \text { PCB (aspubl) to hold both kits } & \text { PCB9973 } & \mathbf{~ 4 . 3 1}\end{array}$ $\begin{array}{lrr}\text { PCB (aspubl.) to hold both kits } & \text { PCE9973 } & \text { E4.31 } \\ \text { Text photocopy }\end{array}$

P.E. GUITAR MULT\|PROCESSOR

An extremely versatile sound processing unit capable of producing for example, flanging, vibrato, reverb, fuzz and tremolo as well as other fascinating sounds. May be used with most electronic struments.
Set of basic component kits, PC8s \& layout charts
Set of text photocopies
KIT 85-5 \quad £54.37

P.E.PHASER

An automatically controlled 6-stage phasing unit with integral scillator.

Basic components, PCB \& chart KIT 8B-1 E10.14 2-Notch extension, PCB \& chant KIT 88-2 86.36 Textphotocopy

ELEKTORPHASING \& VIBRATO

Includes manual and automatic control over the rate of phasing \& vibrato, and has been slightly modified to also include a 2 -input ixer stage
Set of basic components, PCB \& leyout chart
Text photocopy KIT 70-2 821.67

P.E. PHASING UNIT

A simple but effective manualiy controlled phasing unit
Basic components, PCB \& chart KIT 25-1 £3.52
Text photocopy
$E 3.52$

PHASINGCONTROLUNIT

For use with Phasing Kit 25 to automatically control rate of phasing. Basic components, PCB \& chart KIT 36-1 EE. 21 Text photocopy

P.E. SWITCHED TONE TREBLE BOOST

Provides switched selection of 4 presertonal responses. $\begin{array}{lll}\text { Basic components, PCB \& chart } & \text { KIT 89-1 } & \text { E3.82 } \\ \text { Text photocopy }\end{array}$

P.E.TREBLE BOOST UNIT

$\begin{array}{lll}\text { A simple treble boost unit with manual control depth. } \\ \text { Basic components, PCB \& chart } & \text { KIT 53-1 } & \text { £2.76 }\end{array}$

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

ELEKTOR RESONANCE FILTER

Allows a synthesiser to produce a more realistic simulation of natural musical instruments. Set of basic components \& PCB (as published)
Textphotocopy
KIT B2-2 \quad £19.90

P.E.GUITAR OVERDRIVE

Sophisticated versatile fuzz unit incl. variable controls affecting the fuzz quality whilst retaining attack and decay, and also providing filtering. Usable with most electronic instruments.

Basic components, PCB \& chart KIT 56-3 E9.35 Textphotocopy

P.E.SMOOTH FUZZ

Basic components, PCB \& chat Text photocopy

TREMOLO UNIT

A slightly modified version of the simple P.E. unit.
Basic components, PCB \& chart KIT 54-1 E3.23

GUITARFREQUENCYDOUBLER

aslightly modified and extended version of the P.E. unit.

Basic components, PC8 \& chart	KIT 74-1	£4.97
Text photocopy	$39 p$	

P.E.GUITAR SUSTAIN

Maintains the natural attack whilst extending note durgtion.

Basic components. PCB \& chart	KIT $75-1$
Text photocopy	
$\mathbf{E 5 . 8 4}$	

P.E.WAH-WAH UNIT

Can be controlled manually or by integral automatic control.
Basic components, PCB \& chart
KIT 51-1

P.E.AUTO-WAHUNIT

Automatically gives Wah or Swell sounds with each note played. Basic components, PCB \& chart \quad KIT 58-1 flay
EB.43 Basic components, PCB \& char

ELEKTOR WAVEFORM CONVERTER

Converts a saw-tooth waveform into sinewave, mark-space sawtoth, regular triangle, or square-wave with variable mark-space. Basic components, PCB \& chart,
but excl. sw's
KIT 67-1 $\mathbf{E 9 . 2 4}$
P.E.V.C.F.

A voltage controlled filter extracted from P.E. Minisonic project.
Basic components, PCB \& chart KIT-65-1 £7.88

P.E.RING MODULATOR

Etracted from P.E. Minisonic project. KIT 59-1 \&6.05
8asic components. PCB \& chart

ELEKTOR RING MODULATOR

Compatible with the Formant \& most other synthesisers.
Set of basic components \& PCB (as published)
Text photocopy
KIT 87-2

10\% DISCOUNT VOUCHER

(PE 83)

TERMS: Goods in current adverts \& lists over $\mathbf{E 5 0}$ goods value lexcl P\&P \& VAT). Correctly costed. C.W.O. U.K. orders only This voucher must accompany order. Valid until end of month on cover of P.E. Does not apply to credit card orders.

ADD: POST \& HANDLING

U.K. orders: Keyboards add $£ 2.30$ each. Other goods: Under $€ 5$ add 25 p, under $£ 20$ add 50 p. over $£ 20$ add 75 p Recommended insurance against postal mishaps: add 50 for cover up to $£ 50$, £ 1 for $£ 100$ cover, e1c., pro-rata. Insurance must be added for credit card orders.
N.B Eire. C.I.. B.F.P.O. and other countries are subject to
higher expont postage rates.

ADD 15\% VAT

 (or current rate if changed). Must be added to full total of kits, discount post \& handling on all U.K. orders. Does no apply to Exports, or photocopies.EXPORT ORDERS ARE WELCOME but to avoid delay we advise you to see our list for postage rates. All payments must be cash-with-order, in Sterling by International Money Order or through an English Bank. To
obtain list - Europe send 25 p , other Countries send obtain
50 p.
Note that wo do not offer a C.O.D. envice and
Note that we do not offer a C.O.D. eervice and

AND OTHER PROJECTS

PHOTOGAAPHS in this advertisement show two of our units containing some of the P.E. projecta built from our kits and CBs The cases were built by ourselves and are not for sale. though amall selection of other cases is available.
U8T-Send stamped addressed onvelope with all UK. requests for free list giving fuller details of PCBs. kits and other components

OVERSEAS enquities for list Europe send 20p: Other countries-send 50p.

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKIMBER-ALLEN KEYBOARD8 as required for many published projects. The manutacturers
claim that these are the finest moulded plastic keyboards available. All octaves are C to C . the
keys are plastic, spring-loaded, fitted with actuators. and mounted on a robust aluminium frame.
3 Octave ($\mathbf{3 7}$ notes) £25.50 $\quad 4$ Octave (49 notes) $\quad \mathbf{E 3 2 . 2 5} \quad 5$ Octave (61 notes) $\quad \mathbf{~} 39.75$
CONTACT ASBEMBLIES (gold-clad wire) - 1 required for each KBD note:
Type GJ - SPCO 25 $\frac{1}{2}$ p ea. Type GA - 1 pr of contacts, normally open 24p ea. Type GB - 2 pr
N/O 28 $\frac{1}{2}$ pea. Type GC-3 pr N/O $37 \frac{1}{2} p$ ea. Type GE-4 pr N/O 4elp ea. Type GH - 5 pr N/O
581p ea. Type 4PS - 3 pr N/O plus SPCO 87p ea

P.E. NOISE GENERATOR

Extracted from the P.E. Minisonic.
Basic components, PCB \& chart
KIT60-1 $\mathbf{8 4 . 0 0}$

WIND \& RAIN EFFECTS UNIT

A slightly modified version of the original P.E. unit. Basic components, PCB \& chart
$\begin{array}{lll}\text { Text photocopy } & \text { KIT 28-1 } & \text { E4.68 } \\ & & 28 \mathrm{p}\end{array}$

P.E.ENVELOPESHAPER

 WITHOUT VCAProvides full manual control over attack, decay, ustain and release functions, and is for use with an xisting VCA
Basic components, PCB \& chart
Text photocopy
c5. 24
P.E.ENVELOPESHAPER

WITH VCA

Has an integral Voltage Controlled Amplifier, and has full manual control over the A. D.S.R. functions, Basic components. PCB \& chart
$\begin{array}{lrr} & \text { KIT 50-1 } & \mathbf{~} 7.34 \\ & 58 p\end{array}$

P.E.TRANSIENT

GENERATOR

An ADSR envelope shaper without VCA, and additionally providing Repeat-triggering enabling a ynthesiser to be programmed for mandolin or banjo effects.
Basic components, PCB \& char
KIT 63-2 $\quad \mathbf{5 7 . 1 3}$

P.E.EXTERNAL-INPUT

SYNTHESISER-INTERFACE

Allows external inputs such as guitars, microphone etc., to be processed by synthesiser circuits. Besic components. PCB \& char

KIT 8:-1 £3.23

P.E.TUNING FORK

Produces 84 switch-selected frequency-accurate tones with an LED monitor clearly displaying beatnote adjustments.

Set of basic components, incl. power supply, PCBs \& charts KIT 46-3 E23.32 Textphotocopy

K19

P.E.TUNINGINDICATOR

A simple 4-octave frequency comparitor for use with synthesisers and other instruments where the full versatility of KIT 46 is not required.

Basic components, PCB \& chart, but excl. sw.
Textphotocopy
E8p

P.E.DYNAMIC RANGE
 LIMITER

Preset to automatically control sound output levela. Basic components, PCB \& chart

KiT 62-1

P.E.CONSTANT DISPLAY

 FREQUENCY COUNTERA 5 -digit counter for 1 Hz to 55 kHz with 1 Hz sampling rate. Readout does not count visibly r flickar due toblanking.
Basic components, PCB \& char KIT 79-2 £32.28
Text photocopy
78p

P.E.6-CHANNELMIXER

A high specification stereo mixer with variable input impedances.

Basic components, (excl.sw's,) and set of
PCBs and charts.
Extra 2-channel set wi
KIT 90-8 EE1.35
KIT90-9
KIT 90-9 \quad е9.69

STEREO HEADPHONE

AMPLIFIER

Extracted from P.E. 6-channel mixer. Basic components, PCB \& chart

KIT 92-7
f5.04
DIGITAL EXPOSURE

UNIT

Controls up to 750 watts in $\frac{1}{2}$ second steps up to
0 minutes, with built-in audio alarm.
Basic components. PCBs \& charts
$\begin{array}{lrr} & \text { KIT 93-3 } & \mathbf{£ 2 2 . 4 0} \\ & \mathbf{~ T e x t ~ p h o t o c o p y ~} & \\ & & \end{array}$

P.E. DISCOSTROBE

A 4-channal light show controlier giving a choice of sequential, random, or full strobe choice of sequential, random, or full strobe
mode of operation, and with additional audio inmode

Basic components, PCB \& chart

	KiT 57-2	$\mathbf{6 2 3 . 7 9}$
Text photocopy	$78 p$	

RHYTHM GENERATORS

Several availabie, including programmable 16 beat 64000 pattern, 128 beat almost infinite pattern, and pre-programmed 15 pattern using

P.EVOICEOPERATED

FADER

For automatically reducing music volume during talkover - particularhy useful for disco work.

Basic components, PCB \& chart
KIT 30-1
£4.37

TAPE NOISE LIMITER

Very effective circuit for reducing the hiss found in most tape recordings.

Basic components, PCB \& chart KIT 6-3 £4.13

barclaycard
EXPRES:

The NEW Marshall's 79/80 catalogue is just full of components

and that's not all . . .

... our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall's.
These include Audio Amps. Connectors, Boxes, Cases, Bridge Rectifiers, Cables, Capacitors, Crystals, Diacs, Diodes, Displays. Heatsinks, I Cs, Knobs, LEDs. Multimeters. Plugs. Sockets, Pots, Publications, Relays, Resistors, Soldering Equipment, Thyristors, Transistors. Transformers, Voltage Regulators, etc. etc
Plus details of the NEW Marshall's budget Credit Card. We are the first UK component retailer to offer our customers our own credit card facility
Plus - Twin postage paid order forms to facilitate speedy ordering
Plus - Many new products and data
Plus 100s of prices cut on our popular lines including I Cs Transistors, Resistors and many more
If you need components you need the new Marshall's Catalogue
Available by post $65 p$ post paid from Marshall's, Kingsgate House, Kingsgate Place, London NW6 4TA. Also available from any branch to callers 50p.

Retail Saies: London: $\mathbf{4 0}$ Cricklewood Broadway, NW2 3ET. Tel: $01.4520161 / 2$. Also 325 Edgware Road, W2. Tel: 01 -723 4242. Glasgow: 85 West Regent Street, G2 2QD. Tel: 041-3324133. And Bristol: 108A Stokes Croft, Bristol. Tel: $0272426801 / 2$.

THE NEW

$8^{\prime \prime}$ MONITOR KIT SUITABLE FOR CCTV AND VDU APPLICATION INCORPORATING THE LATEST IN CIRCUITRY DESIGN
THE KIT COMPRISES OF: 8" TUBE, SCAN COIL ASSEMBLY, PC BOARD WITH ALL COMPONENTS MOUNTED AND FULLY TESTED FOR 16VDC OPERATION
SPECIAL INTRODUCTORY OFFER FOR THIS NEW PRODUCT

$\mathbf{E 4 9 . 5 0}+\mathbf{V A T}$

BELL SYSTEM (TELEPHONES) LTD.
Unit 9 Alston Works Alston Road Barnet Herts EN5 4EL Telephone: 01-441 3734

Telex: 299360 BSTL

FUNCTION GENERATOR

DIGITAL
MULTIMETER

- DC Volts AC Volts.
DC Curren Resistance
- 3½ digit LCD
- Auto Low Battery indication
- Auto Polarity \& Zero
- 1\% accuracy (DC volts)
* Designed around Intersil 7106 IC

1 mV to 1000 V iv to 500 V 0.1 mA to 0.2 A 1Ω to $20 \mathrm{M} \Omega$

- 30 mV to 10 V pk -pk
- 1 Hz to 100 kHz
- DC coupled
* Sine, Square \& Triangle
- Separate TTL output
* Designed around Intersil 8038 IC
* Total cost around $£ 25$ (incl. case)
- Total cost around $£ 30$ (incl. case)

Provided in a JAYkit 15 a Printed Circuit Board, a punched and lettered Front Panel overlay, a Circuit Diagram and Instruction Sheet and a comprehensive and up to date Component List showing suppliers and current prices. Difficult to obtain pieces of hardware are supplied with the

ENGINEERS

H2ll

YOURSELF FOR A

 i 1 亿ina|l|ituDo you want promotion, a better job, higher pay? "New opportunities" shows you how to get them through a lowcost, Home Study Course. There are no books to buy and you can pay as you learn.

MORE PAY!

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 44-page free book NOW! No obligation, nobody will call on you. It could be the best thing you ever did.

CHOOSE A BRAND NEW FUTURE HERE

EASILY CONVERTED TO UPPER AND LOWER CASE PARALLEL. ASC II AND STROBE. FULL DOCUMENTATION OF CONVERSION INCLUDING CIRCUIT DIAGRAMS. NEEDS 5 VOLT D.C. POWER SUPPLY.
ONLY $£ 38.00+15 \%$ V.A.T. $\quad \mathrm{p}+\mathrm{p} £ 1.00$
Access \& Barclaycard welcome. Send for full Catalogue and Booklist.
MAIL ORDER \& CALLERS: NEWBEAR, 40 Bartholomew Street, Newbury, Berkshire. Tel: (0635) 30505
CALLERS ONLY: Mersey House, 220-222 Stockport Road, Cheadle Heath, Stockport, Cheshire. Tel: (061 491) 2290

ST-45 SPECIFICATION
VERTICAL SYSTEM
Sensitivity $10 \mathrm{mv} / \mathrm{div} 5 \mathrm{v} / \mathrm{div}$ in 9 cal . steps Bandwidth (3dB)
DC Coupled DC 5 MHz
AC Coupled $5 \mathrm{~Hz}-5 \mathrm{MHz}$
Risetime $70 \mu \mathrm{sec}$
Input Impedance $1 \mathrm{M} \Omega+22 \mathrm{PF}$ approx. (for all ranges) 50Ω for $10 \mathrm{mv} / \mathrm{div} 50 \mathrm{mv} / \mathrm{div}$ input coupling AC CND DC
Accuracy $\pm 5 \%$

HORIZONTAL SYSTEM

Time base speeds
$50 \mathrm{~ms} /$ div $1 \mu \mathrm{sec} / \mathrm{div}$ in 15 cal . steps with $\times 5$ Multiplier to 250 mse /div and $\times 5$ Expansion to $200 \mathrm{nsec} / \mathrm{div}$
External - X sensitivity $1 \mathrm{v} / \mathrm{div}$
External - X Bandwidth 500 KHz
Accuracy $\pm 5 \%$
ACCESSORIES
Passive Probe switched (X1. REF. $\times 10$)
Passive Probe switched
100 MHz bandwidth $£ 11.50+$ VAT BNC to 4 mm Socket Adaptor $\mathbf{E} 2.95+$ VAT

ORDERS TO: SAFGAN ELECTRONICS LTD.
56 Bishops Wood, St. Johns, Woking
Surrey GU21 30B or Tel: Woking 66836.
Please send me..................... ST-45-S..
I enclose PO/Cheque .. (Goods + 15% VAT + £3.00 p\&p)
Name..
Address

- Ex vatuk

ALL PRICES IN PENCE EACH UNLESS OTHERWISE STATED

PlasticBoxes

Our servo IC gives you a complete servo control system on a chip.

It's specially designed for the pulse-width position servo mechanisms you use in all types of model control.

ZN419CE gives you a low external component count and high output drive capability.

Send for the data sheet today, and a full list of stockists
Ferranti Electronics Limited, Fields New Road, Chadderton, Oldham OL9 8NP Telephone:061-624 0515

FERRANTI Semiconductors

AURA SOUNDS

are pleased to announce the

FRANZ LAMBERT

U.K.TOUR 1980

FRANZ LAMBERT, the world's most entertaining organist will be touring the UK in March 1980. The audiences for FRANZ LAMBERT's 1979 tour were so enthusiastic that we expect a very heavy demand for tickets. So book early! Tickets from Box Offices for all venues except Kensington, which should be booked through AURA SOUNDS.
Evening Concerts-
March 3rd - Colston Hall, Bristol
March 6th - Kensington Town Hall, London
March 8th - Free Trade Hall, Manchester
March 9th - Town Hall, Birmingham
March 10th - City Hall, Sheffield March 11 th - Fairfield Hall, Croydon March 14th - The Dome, Brighton

AURA SOUNDS 14-15 Royal Oak Centre, Brighton Road, Purley, Surrey Tel: 01-6689733 and at 17 Upper Charter Arcade, Barnsley, W. Yorks

Tel: Barnsley (O226) 5248(PE 3)

QUARTZ LCD
5 Function
Hours, mins, secs month, date, auto calender, back-light, quality metal bracelet.
£6.65
Guaranteed same day despatch. Very slim, only 6 mm thick.

SOLAR QUARTZ LCD 5 Function

Genuine solar panel with battery back-up. Hours, mins., secs., day, date. Fully adjustable bracelet. Back-light. Only 7 mm thick.
£8.65
Guaranteed same day despatch.
M1

SOLAR QUARTZ LCD Chronograph

HANIMEX
Electronic
LED Alarm Clock

Features and Specitication
Hour minule deplay Large LED display with
om and alarn on midicator 24 Hours durm win
om and alarm on madicator 24 Hours slarm w
on off contral Display flashing for power foss indicaton Repeatabie 9 mirsute snooze Displav bright dim modes control Size 5
$236^{\prime \prime}(131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm})$ Weight 143 lbs 1065 kq) AC power 220 V .
$£ 10.20$ Thousands sold
Mains operated.
Guaranteed same day despatch.

FRONT-BUTTON Alarm Chrono

QUARTZ LCD Ladies Day Watch

Dnly $25 \times 20 \mathrm{~mm}$ and 6 mm thick.
Hour, minutes, seconds, day, date, backlight and Elegant metal
bracelet in silver or gold fully adjustable to suit very slim wrists.
State colour preference.
£7.55
Guaranteed same day despatch. M15

EXECUTIVE ALARM WATCH

6 Functions plus Alarm Conference signal, 5 minute snooze alarm. Conference signal sounds 4 secs., before main alarm to give advance warning and an option to cancel. Snooze sounds 5 mins., after main alarm and is always preceeded
by the conference signal

£12.55

M60

HOW TO OROER

Metac Wholesale shown also minimum order details. or Edgware Rd. 01-723475324 hours a day.

QUARTZ LCD
 SLIM 11 Function chrono

6 digit, 11 functions. Hours, mins., secs., day date, day of week 1/100th, $1 / 10$ th, secs. 10X secs., mins., Split and lap modes. Back-light, auto calendar Only 8 mm thick.
Stainless steel bracelet and back.
Adjustable bracelet. Metac Price

£9.55
Thousands sold!
Guaranteed same day despatch. M3
QUARTZ LCD
ALARM 7 Function

SOLAR QUARTZ LCD Chronograph with
Alarm
Dual Time Zone
Facility
6 digits. 5 flags
22 functions.
22 functions.
Solar panel with battery back-up. 6 basic functions. Stop-watch to 12 hours 59.9 secs., in $1 / 10 \mathrm{sec}$., steps.
Split and lap timing modes.
Oual time zones.
Alarm. 9 mm thick. Back-light f 1795
Fully adjustable brack-lig
M 7
QUARTZ LCD
Ladies Fashion Watch
Elegant bracelet in
bronze/gold finish or silver colour.
Hours, mins, secs, day. date, backlight and auto calendar. Adjustable for the slimmest of wrists. State colour preference
£14.95
Guaranteed same day daspatch M17

(1)

MACY QUARTZ

 ANALOGUEAutomatic Calendar Day and Date infinite bracelet. This mans watch has elegance as well as the robust appearance provided by a watch with traditional features. Accuracy is provided by a quartz crystal powered by a long life miniature battery.
£24.95

Payment can be made by sending cheque. postal order. Barclay. Access or American Express card numbers. Write your name, address and order details clearly, enclose 40 pence per single item for post and packing or the amount stated in the advert. All products carry \dagger year written guarantee and full money-back 10 day reassurance. Battery fitting and electronic calibration service is available to customers at any Metac shop. Ali prices include VAT currently at 15\%

Trade enquiries - send for a complete list of prices for all the goods advertised plus many more not
Telephone orders: Credit card customers can telephone orders direct to Daventry (03272) 76545
Service Enquiries 03272-77659
CALLERS WELCOME Shops open 9-30am-6.00

Hours, mins., secs,. month, date, day. 6 digits, 3 flags plus continuous display of day and date or seconds. Back-ligh Only 9 mm thick.
£9.55

Guaranteed same day dispatch
M4

ALARM CHRONO with 9 world time zones
-6 digits, 5 flags.

- 6 basic functions. - 6 basic functions. - 8 further time zones. - Count-down alarm.
- Stop-watch to 12 hour Stop-watch
59.9 secs.
59.9 secs.
in $1 / 10$ sec. steps. - Split and timing modes. - Alarm.
- 9 mm thick.
- Back-light.
£24.55

QUARTZ LCD Ladies Cocktail Watch

Highly functional watch which also suits those
special occasions. Beautifulty designed Beautifulty designed
with a very thin bracelet With a very thin bracelet
which retains strength as which retains strength as wellas elegance Hours, mins, secs, day date backight and autocalenda Braceter fully adjustable to suit slim wrists.
£15.55

Metac price breakthrough for an Alarm Chronograph with Oual Time £13.55

OUTSTANDING FEATURES

- DUAL TIME. Local time always visible and you can set and recall any other time zone (such as GMT). Also has a light for night viewing.
- CALENDAR FUNCTIONS include the date and day in each time zone. - CHRONOGRAPH/STOPWATCH displays up to 12 hours, 59 minutes. and 59.9 seconds.
- On command, stopwatch display freezes to show intermediate (split/lap) time while stopwatch continues to run. Can also switch to and from timekeeping and stopwatch modes without affecting either's operation.
- alarm can be set to anytime within a 24 hour period. Al the designated time, a pleasant, but effective buzzer sounds to remind or awaken youl
Guaranteed same day dispatch. M16

South of England
327 Edgware Road
LONDON W. 2
Telephone: (01) 7234753

Britain's first comp

A complete personal computer for a third of the price of a bare board.

Also available ready assembled for $£ 9995$

The Sinclair ZX80.

Until now, building your own computer could easily cost around $£ 300$ - and still leave you with only a bare board for your trouble. The Sinclair ZX80 changes all that. For just $£ 79.95$ you get everything you need to build a personal computer at home... PCB, with IC sockets for all ICs; case; leads for direct connection to your own cassette recorder and television; everything!
And yet the ZX80 really is a complete, powerful, full-facilizy computer, matching or surpassing other personal computers on the market at several times the price. The ZX80 is programmed in BASIC, and you could use it to do quite literally anything from playing chess to running a power station.
The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. Once assembled, it immediately proves what a good job you've done. Connect it to your TV set... link it to an appropriate power source *. and you're ready to go.

Your 2X80 kit contains...

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs - all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to any portable cassette recorder (to store programs) and domestic TV (to act as VDU).
- FREE course in BASIC programming and user manual.
Optional extras
- Mains adaptor of 600 mA at 9 V IC nominal unregulated (available separately - see coupon).
- Additional memory expansion board plugs in to take up to 3 K bytes extra RAM chips. (Chips also available see coupon.)
*Use a 600 mA at 9 V DC nominal unregulated mains adaptor. Available from Sinclair if desired (sec coupon).

Two unique and valuable components of the Sinclair ZX80.
The Sinclair $Z \mathrm{X} 80$ is not just another personal computer. Quite apart from its exceptionally low price, the ZX 80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teach-yourself BASIC manual.
The unique Sinclair BASIC interpreter... offers these remarkable programming advantages

- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you run them.
- Excellent string-handling capability - takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The ZX 80 also has string inputto request a line of text when necessary. Strings do not need to be dimensionied.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up 26.
- Integer names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions, USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with 22 standard graphic symbols.
- All characters printable in reverse under program control.
... and the Sinclair teach-yourself BASIC manual.
If the features of the Sinclair interpreter listed alongside mean little to you-don't worry. They're all explained in the specially-written 96 -page book free with every kit! The book makes learning easy, exciting and enioyable, and represents a complete course in BASIC pro-gramming-from first principles to complex programs. (Available separately-purchase price refunded if you buy a ZX 80 later.)

Fewer chips, compact design, volume production more power per pound!

The ZX 80 owes its remarkable low price to its remarkable design: the whole system is packed onto fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the ZX80's 1 K byte RAM is roughly equivalent to 4 K bytes in a conventional computer, because the ZX80's brilliant design packs the RAM so much more tightly. (Key words, for instance, occupy just a single byte.)

To all that, add volume production -and you've that rare thing: a price breakthrough that really is a breakthrough.

The Sinclair ZX80. Kit: £79.95. Assembled: £99.95. Complete!

The ZX80 kit costs a mere $£ 79.95$. Can't wait to have a ZX80 up and running? No problem! It's also available, ready assembled, for only ${ }^{6} 99.95$.

Whether you choose the kit or the readymade, you can be sure of world-famous Sinclair technology - and years of satisfying use. (Science of Cambridge Ltd is one of the Sinclair companies owned and run by Clive Sinclair.)

To order, complete the coupon, and post to Science of Cambridge for delivery within 28 days. Return as received within 14 days for full money refund if not completely satisfied.

Science of Cambridge Ltd
6 Kings Parade, Cambridge, Cambs., CB2 ISN. Tel: 0223211488.

Order Form

To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN. Remember: all prices shown include VAT, postage and packing. No hidden extras.

Please send me:

Quantity	Item	Item price	Total
	Sinclair ZX80 Personal Computer kit(s). Price includes ZX80 BASIC manual, excludes mains adaptor.	79.95	
	Ready-assembled Sinclair ZX80 Personal Computer(s). Price includes ZX80 BASIC manual, excludes mains adaptor.	99.95	
	Mains Adaptor(s) (600 mA at 9 V DC nominal unregulated).	8.95	
	Memory Expansion Board(s) (takes up to 3K bytes).	12.00	
	RAM Memory chips - standard IK bytes capacity.	16.00	
	Sinclair ZX80 Manual(s) (manual free with every 7.X80 kit or ready-made computer).	5.00	
NB. Your Sinclair ZX80 may qualify as a business expensc.		TOTAL	
I enclose a cheque/postal order payable to Science of Cambridge Ltd, for \mathcal{L} Please print Name: $\mathrm{Mr} / \mathrm{Mrs} / \mathrm{Miss}$			
Address			

New 'L' series irons, designed to latest safety standards. Outstanding performance, lightweight and easy maintenance. New non-roll GRP safety handles. Ceramic and mica insulated elements enclosed in stainless steel shafts.

Fully earthed with screw connected 3-core leads. Interchangeable, non-seize ironcoated bits.

MODEL LC18 18 watts

Lightweight, high-performance iron for all soldering from calculators to T.V. sets. Fitted with 3.2 mm bit and complete with spare bits $1.6 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and $4.7 \mathrm{~mm} . £ 7.89$ including $P \& P$ and V.A.T. 240 volts standard but also available 12 and 24 volts.

MODEL LA12 12 watts

Similar to LC18 but with extra slim shaft and bits for fine work. Fitted with 2.4 mm bit and complete with spare bits 1.2 mm and 3.2 mm £6. 69 including P \& P and V.A.T. 240 volts standard, also available 6, 12 and 24 volts.

No. 3 SAFETY SPRING STAND for LC18 \& LA12

Complete with sponge and location for spare bits $£ 3.63$ including P \& P and V.A.T.

JOIN UP WITH LITESOLD.

C35S CORDLESS SOLDERING IRON

Built-in rechargeable batteries and twin spotlights. Heats in seconds. Solders safely anywhere. Complete with mains charger, sponge, 3 different tips and screwdriver. Best of its kind available.
£23.93 including P \& P and V.A.T.

Safe 100 watt instant-heat, trigger operated tool. Heats and cools in seconds. With spotlight. For difficult or large joints, and shaping plastics. Ideal domestic and workshop tool. Complete with 2 spare tips, spanner, solder and flux $£ 13.65$ including P \& P and V.A.T.

LIGHT SOLDERING DEVELOPMENTS LIMITED

YOURS DISGUSTEDLY

DEAR Sir, I am disgusted that in your recent car washing machine project you failed to give the winding details of the special toroidal transformer used in the automatic brush plunger. It would also have been very useful to have exact dimensions of the stainless steel slop tank to enable me to make one up.
I was annoyed to find this article was little more than a kit review, because some parts are only available from one supplier and no manufacturer's name has been given."
"Dear Sir, I am disgusted that in your recent automatic flasher project no kit of parts seems to be available. I have had to buy the p.c.b. from one supplier, the case from another and other components from a third source. Would it not be possible to arrange a kit of parts from one supplier for all your projects. This would greatly assist readers.'
These are of course fictitious letters but are typical of many we receive.
Assuming we have identified a requirement amongst readers for a car wash and have achieved a useful, inexpensive, working design-maybe after years of trying-we find that some of the components required are not available to the hobbyist and others
have to be specially made. The toroidal transformer, for instance, employs a new core material, only available from one industrial supplier who operates a minimum order charge of $£ 20$ (not at all unusual). The core then requires a primary winding of 1,000 turns and a secondary of 400 turns.

The questions we must ask ourselves are:
(1) Are many readers going to want to wind their own toroids and, if so, is it a practical proposition.
(2) Can we arrange manufacture of the complete transformer at a realistic price.
In view of the complexity of this particular component and the fact that by manufacturing in quantity our supplier can obtain transformers at a very good price, there is only one practical answer.

Moving on to the slop tank; the supplier imports a special pressed stainless steel tank-essential for normal operation of the design-from the States. Is it really worth giving full details to enable constructors to buy the stainless and make up a tank. Have you tried working stainless steel? Once again we must decide if this is a practical proposition for most readers. Obviously it is not, so we are back with our one kit supplier.

The truth in many situations is that a number of parts are so specialised it is only practicable to source a complete kit (or the special bits individually).

Going to the other argument, the second letter is one that we see more often.

It would be most unfair if we went to one supplier and asked him to supply kits; that excludes all the others. If we make no recommendations all retailers have the chance to supply. However, it takes time to assess demand and decide if it is worth buying-in any parts they do not normally carry. They must also decide if their price would be competitive with other companies who may also sell the kit.

It is our policy only to mention specific companies if: they have an involvement in the design; or they can supply parts not readily available to the hobbyist; or they own copyright. We believe this is in everyone's interest, it allows competition on most projects and ensures parts are available to readers. It also allows us to bring you some exceptional designs which might otherwise be lost.

EDITOR

Mike Kenward

Gordon Godbold ASSISTANT EDITOR Mike Abbott TECHNICAL EDITOR David Shortland PROJECTS EDITOR. Jasper Scott PRODUCTION EDITOR
 Keith Woodruff - ASSISTANT ART EDITOR
John Pickering sen. TECH Illlustrator Isabelle Greenaway TÉCH. ILLUSTRATOR Colette McKenzie SECRETARY

ADVERTISEMENT MANAGER

 SECRETARY AD. SALES EXEC. ClLASSIFIED MANAGER
Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from advertisers: where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 75p each including Inland/Overseas $\mathrm{p} \& \mathrm{p}$.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.10$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

CLEANING KIT

The CK-90 multi-purpose cleaning kit from 3 M has been designed 10 clean recording heads, guides, capstans and tape paths. The cleaning solution which is also suitable for computer systems and typewriters is quick drying, leaves no residue, is non-flammable

and will not harm metals, plastics or painted surfaces.

Each kit contains two 4 oz bottles of solution. ten double-ended cleaning wands and fifty lint free wipes.

The kit is priced at $£ 11.50$ and is available from accessory shops.

MICROPROCESSORS FOR HOBBYISTS

A new book which has just been published called Microprocessors for Hobbyists is based on two popular series from PE (Microprocessors Explained and Home Com puters) both of which were written by our regular contributor R . W. Coles.

The book is a general introduction to microprocessors. typical architecture, instruction sets. machine code programming and peripheral chips.

The home computer section covers a
typical system, the S 100 bus structure, various peripherals available and a guide to choosing a suitable system. The final chapter deals with software and the high level language BASIC. A glossary of terms is also included to explain many of the "buzz words" used with microprocessors.

Copies of the book (1SBN 0-408-00414-2) which is priced at $£ 2.95$ including p\&p are available from. Newnes-Butterworths Borough Green, Sevenoaks, Kent.

ELECTROVALUE

The latest Electrovalue catalogue which is now available covers a wide range of items including chokes, coils, i.c.s. books and a very comprehensive range of ferrite components. There is also a complete range of Nascom microcomputers and peripheral devices.

The cataloguc is available free of charge together with a separate price list which is valid until the end of July. Updated price lists can be obtained by sending a stamped addressed envelope to Electrovalue, 28 St. Judes Road, Englefield Green, Surrey TW20 0HB.

NEWTRONICS

Newtronics have moved to larger and more convenient premises close to Highgate tube station.

At their new showroom they will be demonstrating the popular ELF II and the new Explorer $/ 85$ computer kits and peripherals. The company are now supplying products direct to the consumer with the result that all their prices have been drastically reduced. The EIf II is reduced from $£ 79.95$ to $£ 59.95$ with all peripherals being reduced prorata.

Newtronics, 255 Archway Road, London N6 5BS.

NEW CASE

A new size of vacuum-formed case has been introduced by Vero to compliment their existing range. Although specially designed for housing a keyboard and display panels, this enclosure has wide ranging applications in the instrument field.

Vacuum-formed from black textured ABS, the case is supplied in two sections which screw together. A flat area is provided at the rear of the case for cable entry.

This intermediate size, with outside dimensions of $340 \times 360 \times 130 \mathrm{~mm}$ is supplied with an anodised aluminium front panel 254×170 $\times 2 \mathrm{~mm}$ thick, four self-adhesive rubber feet and case assembly screws.

The price of the case $(75-2439 \mathrm{~K})$ is $£ 16.71$ excluding VAT and $p \& p$.
Vero Electronics Limited, Industrial Estate, Chandler's Ford, Eastleigh, Hants.

L.C.D. CONNECTORS

A range of snap-on connector strips which provide an alternative to dual in-line mounting for liquid-crystal displays is now available from Hamlin Electronics. The strips, which

are available with pin lengths of 0.1 or 0.2 in . are supplied in 2 in . lengths for a range of standard displays, and have pin compatibility with the standard dual-in-line pins.

Hamlin Electronics Ltd., Diss, Norfolk, IP22 3AY.

DEMA SYSTEMS

The Dema electronic ignition unit which is claimed to provide both petrol economy and improved performance is being marketed by Maywood Technical Developments Ltd.

The system takes a 5 to 15 V supply directly from the coil and stores 400 V in the units capacitor. The points which normally determine the build up time are used simply to trigger off a thyristor. A variable pulse width circuit determines when the voltage should be fed to the HT coil and the spark plug. The unit monitors the revs and varies the length of time the spark is at the plug in order to achieve complete combustion.

The system is priced at $£ 49.50$ including VAT and p\&p. For further information contact M.T.D. Ltd., Peake House, 232 High Street, Harlington, Hayes, Middlesex.

FLUKE DMM

The latest DMM from Fluke is a $3 \frac{1}{2}$ digit handheld DMM ideally suited for test and service applications. Fluke claim it is the first handheld DMM to offer logic level detection, direct temperature readout. a peak-hold facility and intermittent short circuit detection in addition to a full DMM capability.

Among the many features on the 8024 A are direct temperature measuring capability from -100° to 1625° with any K type thermocouple. a peak-hold facility to store and display any a.c, or d.c. voltage or current peak, fast audible continuity checking and TTL logic state indication by visual or audible signal.

The peak-hold facility opens up many interesting applications such as transient detection for example in motor or lamp starting. Additionally, with hazardous circuits the operator can safely remove the leads before reading the display.

In logic cireuits, the 8024 A gives an instant visual or audible indication of TTL logic high or low. Fast response means it can also detect pulses or pulse trains up to 100 kHz . On low frequencies. the tone warbles to give an indication of frequency level.

A fast 50μ s settling time means that it is practically impossible to heat its high speed response even by rumning the leads very quickly down, say, an edge connector. Continuity is positively indicated by an arrow

pointing up or down or by a 100 ms 2 kHz bleep.

The 8024 A has $3 \frac{1}{2}$ digit readout and a basic d.c. accuracy of 0.1 per cent. Temperature accuracy is 3 degrees ± 1 digit from -20 to $+300^{\circ} \mathrm{C}$ and the instrument is specified for a full one year. The price of the 8024 A is $£ 135$ ex VAT and $p \& p$.

For details contact Fluke International Corporation, Colonial Way, Watford, Herts. WD2 4TT.

LOGIC MONITOR

The LM-2 logic monitor from CSC is for testing digital i.c.s. It simultaneously displays the static and dynamic logic states at each pin of a 14 or 16 pin dual in-line circuit. The device comes complete with an isolated power supply and has a selectable threshold control which allows it to be used with a variety of logic families.

There are two basic units which comprise the LM-2: the connector/display unit which clips over the circuit under test and contains the comparator circuitry and 16 l.e.d. indicators: and the power-supply module. which contains a precision reference power supply and a logic-family selection switch covering CMOS. HTL. TTL. DTL and RTL circuitry.

The threshold switch is used to select the appropriate logic family, a clip lead is connected to the negative or ground line of the circuit
under test (except for CMOS. when an additional positive lead is provided), and the clip module is slipped over the circuit under test.

Typical of states that can be seen from the monitor's 16 l.e.d. display are gate inputs rising and falling, pulses passing from circuit to circuit, flip-flops changing state, and decoders and encoders accepting and recording information.

Because of the self-contained power supply, there is no loading of the circuit under test-a problem that can cause logic-level shifts, false triggering and power-supply loading with some types of equipment. In addition. the power supply, in conjunction with the comparators, also provide a constant-current drive to the display indicators, ensuring uniform brightness.

CSC Shire Hill Industrial Estate, Saffron Walden, Essex CBl1 3AQ.

BAR CODE READER

A handheld light pen which reads standard black and white bar codes and outputs the digitally coded information. is now available from Jermyn-Mogul Distribution.

Manufactured by Hewlett-Packard and called the HEDS-3000 Digital Bar Code Wand, this low cost device is completely selfcontained. comprising optical sensor, amplifier and digitiser.

Features include a single, non-critical supply voltage. a replaceable low friction tip, push to read switch, full TTL and CMOS compatibility and solid state reliability throughout.

Apart from its already obvious use in supermarkets, a major demand for this device will be in the field of portable data entry as bar code scanning is not only faster than keyboard
entry but inherently more accurate.
One particularly interesting application is in service and repair where bar code labelled

printed circuit boards automatically set the parameters of the test equipment.

The price of the HEDS-3000 is $£ 61.79$ ex VAT. Jermyn-Mogul Distribution, Vestry. Estate, Sevenoaks, Kent. 073250155.

VSWR/POWER METER

A combined VSWR and power meter offering direct reading of both functions without interpolation is now available from Zycomm Electronics.

In operation, the unit is autoranging for power output. covering 20 W to 2 kW in three ranges for $1.8-30 \mathrm{MHz}$ and $50-150 \mathrm{MHz}$, and 2 W to 200 W for the $430-470 \mathrm{MHz}$ range. VSWR from 1:1 to infinity can be measured.

Separate sensing heads are supplied to

cover each frequency range. and these can be connected at any position in the feed lineincluding the mast head for precise radiated power indication. Press switches on the front panel allow the selection of the appropriate head, and the display of forward and reverse power as either peak or r.m.s. readings.

The electronic comparator included in the unit allows constant readout of VSWR irrespective of power variation, i.e. gives true indication during speech on SSB.

The price of the meter is $£ 147.20 \mathrm{inc}$. VAT. Zycomm Electronics Ltd., 47, 49 and 51 Pentrich Road, Ripley, Derbys.

The Perfect Lead...

 Acorn Microcomputer System 1Price $£ 65$ plus VAT in kit form
This compact stand-alone microcomputer is based on standard Eurocard modules, and employs the highly popular 6502 MPU (as used in APPLE, PET, KIM, etc). Throughout, the design philosophy has been to provide full expandability, versatility and economy.

Specification

The Acorn consists of two single Eurocards.

1. MPU card

6502 microprocessor
512×8 ACORN monitor $1 \mathrm{~K} \times 8$ RAM
16-way I/O with 128 bytes
of RAM
1 MHz crystal
5 V regulator, sockets for 2 K EPROM and second RAM I/O chip.
2. Keyboard card

25 click-keys (16 hex, 9 control)
8 digit, 7 segment display CUTS standard crystal controlled tape interface circuitry.
Keyboard instructions:
Memory Inspect/Change
(remembers last address used)
Stepping up through memory
Stepping down through memory

Set or clear break point
Restore from break
Load from tape
Store on tape
Go (recalls last address
used)
Reset
Monitor features
System program
Set of sub-routines for use in programming
Powerful de-bugging facility displays all internal registers
Tape load and store routines

Applications

As a self teaching tool for beginners to computing. As a low cost 6502 development system for industry. As a basis for a powerful microcomputer in its expanded form.
As a control system for electronics engineers.
As a data acquisition system for laboratories.

START WITH SYSTEM 1 AND CONTINUE AS AND WHEN YOU LIKE

Acorn Controller $£ 35$ plus VAT (min config.)

Acorn Memory 8 k £ 95 plus VAT (kit form)

the CPU card of System 1, it allows for up to $41 / 2 \mathrm{kEPROM}$, $11 / 4 \mathrm{k}$ RAM and $32 \mathrm{I} / \mathrm{O}$ lines. It has on board 5 V regulator and optional crystal control. Custom programs may be developed on System 1 and the card makes an ideal dedicated hardware module.

A fully buffered memory card allowing up to 8 k RAM plus 8 k EPROM on one eurocard, in an Acorn system both BASIC and DOS may be contained in this module. Static RAM (2114) is used and the card may be wired into other systems.

A memory mapped seven colour VDU interface with adjustable screen format. Full upper and lower ascii and teletext graphics are features of this module which along with programmable cursor, light pen, hardware scroll etc., make this the most advanced interface in its class.

Acorn Software in ROM

Acorn Computers Ltd. 4A Market Hill, Cambridge, Cambs. Cambridge (0223) 312772.

Order Form

Please send me the following:(qty) Acorn Microcomputer kit @ $£ 65$ plus $£ 9.75$ VAT.
(qty) Acorn Memory kit @ £95 plus $£ 14.25$ VAT.
(qty) Acorn VDU kit @ $£ 88$ plus $£ 13.20$ VAT.
(qty) Acorn Power Supply (for System 1 only) @ $£ 5.95$ plus £ 0.89 VAT.
(qty) Acorn Microcomputer assembled and tested @ £79 plus $£ 11.85$ VAT.
\square (qty) Acorn VDU assembled and tested @ £98 plus $£ 14.70$ VAT.

[^1]

Outlook

Never, in recent years, has the crysta! ball been so clouded by external events. both political and economic. The domestic scene is unclear enough with the impact of contraction of heavy industries and industrial unrest, but when international factors are added the only certainty is uncertainty. Nobody knows the eventual outcome of the Iranian revolution, of the Rhodesia elections, of the U.S. elections, the nuclear power debate, arms limitations, the expected deaths or resignations of the elderly leaders in the USSR, the future cost and availability of oil, world interest rates and inflation, squabbles in formerly stable institutions like NATO and the European Common Market.

The list seems endless and probably is, the only good point emerging being a gradual realisation that no nation can plan and conduct its affairs in isolation from events elsewhere, maybe many thousands of miles distant and sometimes, by world standards, of only a minor character.

But through all the turbulence of the late 1970 s and now for at least the early years of the 1980 s if not beyond, the electronics industry has not only survived but has grown. Growth may have been erratic, profits wobbled, ownership of companies changed, as is characteristic of a dynamic industry in response to surges in demand and in rapid technological change, but the trend is still upwards. Apart from oil, electronics is probably the safest business to be in. But oil is said to be finite while electronics will go on for ever, which is a cheerful note for a winter's day.

Trend

The general trend was revealed in recent financial results of industry leaders. GEC showed a dip in profits, the result of heavy involvement in general engineering which was affected by the long engineering workers' strike. GEC's electronic companies continued to prosper. Racal only just
scraped home with an unblemished record of 25 years of continuous growth and profits. In their case the engineers' strike was probably more marginal in effect, the major obstruction being the greatly increased value of the pound sterling in the international market.

But both the Racal and GEC are still active on the takeover trail. Avery is now in the bag for GEC and was followed by the acquisition of the industrial robot company Hall Automation Ltd. Racal, at the time of writing, had not revealed an expected bid for all or part of Decca but, in the interim, extended overseas activities through buying 65 percent of the New York based Vikonics for $\$ 1$ million. This company will become Racal-Vikonics and as it is in the systems security business will be complementary to and a first-class U.S. outlet for Racal-MESL which came into the Group in January 1979. Racal has the option of buying the remaining shares in due course although some are likely to remain with Vikonics' founders as an incentive.

It is tedious to list orders but two are worth mentioning as significant in trend. First, for GEC whose Marconi Space and Defence Systems has booked its first defence order from China. It is for five FACE (Field Artillery Computing Equipment) systems worth $£ 1$ million with long-term business expected to follow. Second, for Racal-Milgo who in a single month recently won export orders worth $£ 3 \frac{1}{4}$ million. Only six years ago total exports for a whole year were less than this figure. The record month coincided with Racal-Milgo's move to a new headquarters building with 24,000 sq.ft. of floor area at Fleet, Hants.

Plessey, too, looks in much finer shape than for a long time and is firming everything up with yet another reorganisation.

Distribution

Although there are a handful of large electronics component distributors in the UK and lately a sprinkling of specialist MPU and instrument distributors, most are comparatively small businesses. We all used to believe that all the little firms would eventually be swallowed up by the big fish so that perhaps only six or seven "supermarkets" would blanket the country. We were wrong. True there are some big 'uns and doing very nicely thank you, but the great bulk are over 100 small independent companies carrying on the tradition of the corner shop.

The name of the game is customer service and this is an area where the small company can, and obviously does, score. It also attracts new entrants willing to have a go on their own rather than continue working in a big organisation.

The most recent example is House of Instruments (HI) which opened for business on January 1, 1980, from premises in Saffron Walden, Essex. The key figures are Gordon Pope and Fred Hutchinson both exexecutives from Gould Advance, Pope giving up his job as chairman and Hutchinson as instrument manager. It needs courage these days to start a new business but the
two principles are extremely well-known, have a fine track record in the business and have some good products lined up as well as four salespeople on the road.

Crime

We have all heard of computer crime but nobody knows its extent. Interpol suggests that industrialised nations are losing as much as 2.5 percent of gross national product through fiddles by white-collar workers with the bulk being due to computer fraud. But this must be guesswork as it is admitted that computer fraud can be conducted successfully for years without detection.

At a recent Interpol conference some 50 basic types of fraud were listed but each has so many variations and subtleties that a full catalogue is a practical impossibility. The solution is that police fraud squads should now receive specialist training in computer technology and programming.

Fall of France

Chauvinistic France after years of struggle has at last surrendered to Sony advances. The news is that the Japanese company will open its first factory in France in 1981. It will be sited at Bayonne, close to the Spanish border, turning out tape recorder cassettes with a French workforce of 300 people. Sony has had a sales subsidiary in France since 1964 and has been hoping to expand ever since. The French government have now reversed their policy of exclusion in the interests of hoped-for exports and almost certain import savings to satisfy France's domestic market currently estimated at 25 million cassettes per year. Sony video cassettes will also be produced at Bayonne.

Spin-off

I recently spent an interesting day at the Royal Signals and Radar Establishment, Malvern. This was the home of the former TRE which generated so many war-winning inventions 40 years ago. I am pleased to report that a later generation of boffins are still at it as hard as ever although the urgency is less great than in the hectic years of World War 2.

Among the projects unveiled were a new battlefield radar for ground troops, highly portable, and a novel helicopter-borne radar which uses one of the rotor blades as the scanning antenna.

Those who are worried about the level of defence spending may be re-assured that all the money spent and the technology won does not go down the military drain. Much of it goes virtually as a free gift to industry and some is charged for. RSRE has two Queen's Awards for Technology under its belt, both won in 1979, a unique event for a single organisation.

Some of the fundamental research looks as far ahead as 1995 which even the most forward-looking commercial companies would have difficulty in financing. At the same time RSRE is still supporting older projects such as the Rapier missile system which has seen continuous improvement and is a world best-seller for Britain.

Audio

G.Davies

THE audio opto-isolator is powered from a nine volt PP3 battery and completely isolates input from the output via an infrared light beam. Applications include safer connections from guitar to amplifier, microphone to PA, and is ideal for out of doors where added safety is required. It is also ideal when connection from one amplifier to another without the problem of earth loops is required. The unit switches on when the input jack is inserted. See Fig. 1

SPECIFICATION

Maximum input 100 mV R.M.S. (impedance up to 500 k) Output up to 100 mV R.M.S. (impedance greater than 50k)

COMPONENTS

Resistors

R1, R2
R3
1M(2 off)
10k
R4 100k
k
All resistors $\frac{1}{4}$ W 5\%
Potentiometers
VR1 100k hor. min. preset
Capacitors

C1	$10 n / 50 \mathrm{~V}$ cer.
C2. C4	$4 \mu 7 / 16 \mathrm{~V} \operatorname{tant} .(2 \mathrm{off})$
C3	$100 \mathrm{n} / 35 \mathrm{~V} \operatorname{tant}$

Integrated circuits
IC1 741
IC2 CNY171

Miscellaneous

ABS box $100 \times 75 \times 40 \mathrm{~mm}$
Printed circuit board
Stereo jack sockets (2 off)
PP3 battery and clip

CIRCUIT DESCRIPTION

Resistors R1 and R2 form the bias for the 741 op. amp and C 1 decouples the input. The input signal modulates the input bias for IC 1 applied to the non-inverting input. The output of IC1 is fed through the I.e.d. of the opto-coupler, IC2, the current being limited by R5. Negative feedback is applied from the potential developed across R5 to ensure low distortion driving the l.e.d. in a true current mode. (The voltage developed across R5 is proportional to the current passing through it, and the l.e.d.)

R4, R3 and C2 give an a.c. voltage gain of ten to provide adequate drive to the l.e.d

The phototransistor in the opto-coupler in the configura tion shown, acts as a current source which is converted into a voltage across VR1. The output voltage is limited to 0.6 volts peak to peak because of the forward voltage drop of the transistor junction. To ensure maximum output swing, the output transistor is biased at approximately 300 mV by adjusting VR1 and measuring the d.c. voltage between pins 5 and 6 of IC2 with a high impedance meter. The pot VR1 can be adjusted by applying an input signal and adjusting for minimum distortion.

CONSTRUCTION

All components are p.c.b. mounted (see Figs. 2 \& 3) and the whole p.c.b. assembly fits into two holes 12.5 mm diameter, 38 mm between centres in the side of an ABS box. To mount the jack sockets onto the p.c.b., junior hacksaw saw cuts in between the pads form an ideal solution for easy assembly

Fig. 1. Full circuit diagram. The input stereo jack socket is wired so that insertion of a mono jack plug will connect the battery to the circuit, thus eliminating the need for an ON/OFF switch

Fig. 2. Printed circuit layout (full size)

66287

MORE BIG VALUE FROM YOURTANDY STORE

6-DIGIT FREQUENCY COUNTER
 Counts frequencies

 from 100 Hz to over 45 MHz with 100 mS gate time. Accuracy is 3 ppm at $25^{\circ} \mathrm{C}$ or less thien $\pm 30 \mathrm{Mkz}$ on 10 MHz! Overloadprotected 1-megprotected 1-meg mV up to 30 MHz Req. 9 V battery 22-351. REG PRI
£79.95
DIGITAL IC LOGIC PROBE

Unique circuitry makes it a combined level detector, pulse detector and pulse stretcher. Hi-LED indicates logic " 1 ". Lo-LED is logic " 0 ". Pulse LED displays pulse transitions to 300 nanoseconds, blinks at 3 Hz for high frequency signals (up to 1.5 MHz). Input impedence: 300 K ohms. With $36^{\prime \prime}$ power cables impeden

REALISTIC DX 300
General coverage receiver Quartz-synthesised tuning digital frequency readout. 3-step RF Attenuator. 6range preselector with LEO ind icators. SSb and CW demodulation. Speaker Code oscillator. Batteries (not included) or 12V DC. 20-204.

кс рас£229.95

DYNAMIC TRANSISTOR CHECKER

Shows current gain and electrode open and short circuit. Tests low, medium or high power PNP or NPN types. Go/no-Go test from 5.50 mA on power types. 22-024.

REG. PRICE
£9.95
mes pace $£ 19.95$

MULTITESTER

Dual FET imput for accuracy and minimum loading. 11.5 cm mirrored scale. DC volts, 0-1-3-10-30-100-300-1000. DC current 0-100 a. 0-3-30300 milliamp. Resistance - $30-300-3 k-301 \mathrm{C}-1$ megaohm. 0-100-1k-101C-100K-3 megaohms. Req. 9 battery. 22-209.

£29.95

SIGNAL INJECTOR
For RF, IF, AF circuits. Maximum accuracy. Easy pusthbutton operation. Needs two "AA" hatteries. 22-4033 $£ 2.79$

AC/DC CIRCUIT

TESTER

Accuracy in 1-300 volts
ranges. Safe in live/dead
circuits. Needs two "AA
batteries. 22-4034. Ret face £1.99

VARIABLE POWER SUPPLY

Power project boards. IC's, other low-voltage DC equipment. Load regulation: less than 450mVat 1 amp at 24 V DC. Ripple: less then 25 mV . Maximum output current: 1.25 amps . Switchable colour-coded meter reads $0-25 \mathrm{~V}$ DC and $0-1.25 \mathrm{amps}$. Three-way binding posts take wires, banana plugs or dual banana plugs with $0.75^{\prime \prime}$ centres. For $220 / 240 \mathrm{VAC}$ 22-9123
$£ 35.95$
нeq prect $£ 35.95$

You save because we design manufacture, sell and service Tandy have over 7.000 stores and deaierships worldwide. Over 2.500 products are made
specifically for or by Tandy at 16 tactories around the world. The quality of our products has been achieved by over 60 years of continuous technological advancement.

ffaturing

SLAVE CHIP

When any digital processor (such as a microprocessor chip) needs to converse with the outside world it usually has to rely heavily on external peripheral control logic circuits. This logic external to the processor itself can be minimised by trading off hardware for software; so that the processor becomes intimately involved in the transfer of data to or from the peripheral, perhaps a tape cassette or a printer.

The software solution certainly looks good from the circuit complexity point of view. A complete asynchronous serial $1 / O$ scheme can be implemented in software with the use of only two microprocessor pins and a couple of external buffers to replace the few dozen TL packages which could be needed otherwise. The trouble is that software (or rather firmware in ROM) is quite expensive to write, and this method does not involve the CPU in a great deal of time wasting activity when in many situations its talents are urgently needed elsewhere. The software solution is therefore suitable only for very simple applications where the CPU doesn't have a lot of other things to do anyway.

For those more important CPUs, who find dealing with troublesome peripherals a tiresome job, the semiconductor manufacturers have produced dedicated $1 / O$ controllers which do some of the often needed jobs in hardware but with all the necessary logic squeezed on to a single LSI chip. The best known of these devices is probably the UART/USART/ACIA chip which can be used to relieve a processor of the need to control, slow, asynchronous serial I/O transfers. Data transfer of this sort, to and from teletypes, VDUs and other serial devices, can be a painfully slow process with the wide variety of transmission rates and data formats making the task quite complex. The necessary serial to parallel and parallel to serial registers, parity checking logic and start and stop bit insertion can all be done by the UART controller which the processor can treat just like a section of its own memory.

SOFT OR HARD?

Taking stock then, you can do it in software, or you can do it in hardware, but unfortunately, you can only do it with LSI hardware if it is an I/O function which is so common that the semiconductor manufacturers find it economic to make a special device to do the job. If you happen to be an industrial microprocessor user, however,
there will be many occasions wheré your particular I/O control function is so special that you either have to go back to software or put up with a board full of TTL. Or, rather, you did have to until Intel introduced their 8041 A Universal Peripheral Interface chip.

The 8041 A is actually a complete microprocessor system in a 40 pin package, like the 8748 we considered last month, but unlike the 8748 the 8041 is optimised for use as the "slave" of a main processor such as the 8080,8085 or 8086 . The main processor converses with the 8041 over its normal eight bit data bus while the 8041 itself takes over all the time consuming data and formating and timing operations under the control of its own built in ROM based software. This solution provides the system designer with the best of both worlds: The flexibility of software driven I/O with all the convenience of a single LSI chip to do the work.

This is great for the industrial user who needs a thousand of these chips all with the same program, but what about those oneoff jobs where ROM mask costs cannot be absorbed? Is it back to TTL? Well no, because good old Aunty Intel has considered the plight of small users like us and has programmed up an 8041 with a set of nine general purpose 1/O routines which can be individually selected via the system bus.

The routines are aimed mainly at industrial applications such as switch sensing, motor speed control, stepper motor drive and simple serial I/O communications, but many other uses suggest themselves. This "custom" chip is coded ISBC 941 and it has all the usual facilities of the 8041 including 16 programmable $1 / 0$ lines which can be used individually to implement functions such as pulse counting, pulse generation, period and frequency measurement and sensor monitoring.

The ISBC 941 comes in a 40 pin package, runs from a 5 V supply, and can use either its own internal clock oscillator or one derived from the main processor clock.

E-LINE MUSCLE (SUPERELINE)

I like to buy British, but it is very difficult sometimes, especially in the electronics field. I know that Texas Instruments, National Semiconductor, General Instrument, Motorola, and several other American semiconductor firms do manufacture devices here, but when you buy from these firms, as of course you must
in many instances, there is usually no guarantee that the devices you get will really be British or that your purchase will benefit the British economy in any way.

I for one have my fingers crossed that the ambitious plans of the new British Inmos memory and microprocessor organisation will bear fruit in due course, but until that great day arrives you can still do your bit for Britain by using the home-grown discrete transistors like those from Ferranti. Now we all have to use discrete transistors from time to time, don't we, and (own up now) I bet you use devices from Texas or Motorola without even thinking about it. Well don't, because if you need a good range of plastic silicon transistors you can't do much better than to buy them from our very own Ferranti Semiconductors.

Their main range of devices, which I would like to commend to you, is the family known as "E-line". This range comes in a plastic package of a very compact and neat design, and family members can be recognised by the fact that their code number begins "ZTX". These devices are by no means new, but you may not be too familiar with it because Ferranti don't have the same kind of advertising budget as some of their competitors. If my own experience with E-line devices is anything to go by however, they certainly make up for their lack of advertising in the quality of their transistors and you can pick just about any combination of polarity (n.p.n./p.n.p.), current gain, and voltage rating you are ever likely to need from this versatile family.

Well so much for the unashamed plug of a British manufacturer-now for the hot news. To augment their existing range of E line devices Ferranti have now introduced a brand new range of plastic transistors called "Super E-line". "Super" is the right word too, because 1 don't know of any other manufacturer anywhere who can pack so much power into such a tiny plastic T092 type package. Super E-line devices will dissipate 1.5 W at a case temperature of 25 degrees C, and they'll handle voltages of up to 100 V . Under surge conditions these very muscular transistors can sink 6 amps, and they have a minimum gain of 25 at 2 A or 55 at 1 A .

These sort of specs make Super E-line ideal for use in audio amplifiers, relay and lamp drivers, and anywhere else you need a very small device with a very hairy chest. In many circuits you will be able to use Super E-line in place of much bulkier power devices.

So do yourself a favour and buy Britishit really is best sometimes!

BREADBDARD Risul|elu

LAST year over the period December 4-8. the second Breadboard was held at the Royal Horticultural Halls. Westminster. At this annual event for the amateur of the technology, electronics was unchained from its usual husiness-like decorum, and the sixty or so exhibitors combined to produce a preChristmas electronic menagerie of synthesisers. effects units and microprocessor music; and a fulgurous psychodelia of lighting novelties. including a laser at the Watford Electronics stand.

The exhibition provided a panoptic view of the state of the art. with no unfair bias towards computers. musical instruments. hi-fi or anything else. although a radio enthusiast need not have spent long at the show. Robots demonstrated their agility, and cybernetic bits and pieces were seen "lopping" around under battery power. How long before some of the visitors fit this description? Demonstrations of various keyboard instruments by the maestros took place in listening areas. We even found Alan Boothman playing the PE String Ensemble

SHARP MZ80K

The Newbear display included the Sharp MZ80K personal computer. This system is based on the Z80 microprocessor with a 14 K extended BASIC. 10 in VDU (40 characters x 25 lines). 78 key ASC 11 keyboard. 50 pin connector for system expansion and a music synthesizer with 3 octaves. The machine is available in a range of memory sizes (6 K . $10 \mathrm{~K}, ~ 18 \mathrm{~K}, ~ 22 \mathrm{~K}, ~ 34 \mathrm{~K}$ plus 14 K for the BASIC) and a PASCAL compiler will be available in the near future.

The cassette speed at 1200 b.p.s. is quite fast and the machine includes a tape counter.

The music synthesizer can be programmed ether in BASIC or machine code and the volume is adjustable from inside the case. The two instructions for the synthesizer are MUSIC and TEMPO with the TEMPO instruction either increasing or decreasing the length of the note

The Basic has to be loaded from cassette which takes about 2 mins but this system does enable other languages to be used.

The price of the machines range from $£ 520$. Newbear Computing Store Ltd., 40 Bartholomew Street, Newbury, Berks. (0635 30505)

WEST HYDE DEVELOPMENTS

TheWest Hyde stand had a wide range of cases and components on display including their latest keyboard enclosure, the Bocon Commander. This moulded ABS case has anodised aluminium front and rear panels with the rear aperture accepting a 19 in rack frame 100 mm high. The housing which has been designed to accept most proprietary keyboards is priced at $£ 77.50$ ex VAT and p\&p.

A catalogue covering the complete range of cases. components, test equipment and tools is available free of charge from West Hyde Developments, Unit 9, Park Street Industrial Estate, Aylesbury, Bucks HP20 1ET.

THE DIGITAL WAY

A device of considerable potential seen at the show is called a "Graph Transducer". A versatile interface between the analogue and digital worlds. this invention can form part of a range of instruments which synthesise virtually any waveform. graphically equalise. and allow serial analogue control.

Produced by Turner Electronics under licence from Aragorn Dynamics, the S201S is a completely digital graphic equaliser of electrically similar characteristics to conventional units. but which allows narrow band frequency control superior to tone controls, and presents no interface problems. Cascading permits resolution to the desired degree. Specification: 2×10 bands at 1 octave spacing. S / N ratio $>80 \mathrm{~dB}$ below IV. Distortion $<0 \cdot 1 \%(20 \mathrm{~Hz}-20 \mathrm{KHz})$. The AD2000 series console comprises four stereo equalisers.

Operated in the Voltage versus Time Mode the Graph Transducer forms the basis of a range of units called "Arbitrary Waveform and Control Sequence Generators" which are capable of envelope shaping. wave form generation (timbre or tone), and. for example. sequential lighting control. The cycle pattern is set up using precision conductive plastic slider potentiometers and the time-base can be varied from microseconds to hours. An exceptionally stable logarithmic VCO is incorporated.

With the S 103 unit, a counter indicates incremental status, measures frequency and

CLEF PRODUCTS

The very busy Clef Products st and featured the PE String Ensemble (March-July 78) which is still a very popular design with constructors. Also on display were Clef"s latest piano kits which have been based on the successful PE Joanna design with considerable refinements. The two designs are a $7 \frac{1}{1}$ octave (88 note) and a 6 octave (72 note). A stage version of the 6 octave piano is also available which requires an external amplifier and speaker whilst the domestic versions contain

their own power amplifier and will operate with either a speaker or an external amplifier/speaker system.

Clef can supply ready built and tested instruments with full service instructions.

The price of the String Ensemble is £164.00, the 6 octave piano is $£ 184.00$ and the $7 \frac{1}{\mathrm{~J}}$ octave $£ 209.00$ part kits are also available.

For a complete price list covering all Clef"s kits. contact Clef Products, (Electronics) Ltd., 16 Mayfield Road, Bramhall, Cheshire.

voltage, and an auto-ranging integrator smoothes the clastic signal. By superimposing the synthesiser"s output on an existing waveform using a dual beam scope. the output can be adjusted to follow the original waveshape. In fact, using the memory mapped Computer Interface Board also available, a computer is conceivable which could learn to imitate any sound just by listening to it.

Two units from the range (S 101 and S 102) can be used to form a very superior conventional music synthesiser. Program card templates can remember waveforms.

Some sample prices are: S20IS Stereo Equaliser-£ 142 . S101 Control/Waveform Source-£184. AD2000 Equaliser Bank£694. Details are available from Precision Instrument Laboratories, Instrument House, 727 Old Kent Road, London SEI5.

TRANSPORTABLE ORGAN

If your last project was encased in a tobacco tin then it may not be a good idea to attempt to build one of the organs seen on the Aura Sounds stand, although Wersi do say that the Saturn (pictured below) is based on their "novel" d.i.y, method which makes construction easier. The console comes assembled, and prefabricated laced wiring harnesses eliminate one of the main causes of error.

The Saturn is described as a transportable organ, and has a list of attributes too long to quote here. Basically it has five-octave polyphonic keyboards. with an overall eight octaves available from a master generator providing a range of simultaneously available waveforms. The fixed stops give: Principal. Cello, Horn. Accordion. Trombone and Sax-
aphone all at 6: English Horn. Principal. Viola. Clarinet. Oboc. Schalmei and Trumpet all at 8°. plus others.

The piano section gives: Celeste. Kinura. Honky Tonk. Harpsichord and Banjo, with tremolo. echo and damper functions

Wersivoice rotating battle effect is included. along with auto accompaniment, and somewhere inside the cabinet is a string orchestra! Just to utilise any remaining space. a sound computer is also incorporated to give 32 user adjustable preset buttons. So if you have $£ 5197$ in your pocket. plus some petty cash for loudspeahers to go with it, the Saturn could be yours.

Anra Sounds, 14/15 Royal Oak Centre, Brighton Road, Purley, Surrey.

COMPSHOP

The main feature on the Compshop stand was our Compukit UK 101 which has rapidly established itself as the country's fastest selling single board computer.

Also on display was the ITT 2020 which is the English version of the Apple II microcomputer. Compshop, 14 Station Road, New Barnet, Hertfordshire.

CHROMATRONICS

The Chromascope from C hromatronics is a video synthesiser which can create a whole range of abstract colour patterns on a TV set. The display which responds to a musical input is available in kit form for $£ 169.95$ inc. VAT,

The kit includes a cabinet. components ready built encoder, modulator power supply and manual. Chromatronics Coachworks House, River Way, Harlow, Essex CM20 2DP.

COMPETITION WINNER

The winner of our Lektrokit competition (Sept 79) Mr. D. J. Speakman was at the exhibition to receive his prize of a Powerace 102 with a jumper wire kit and 16 pin test clip.

Our Advertisement Manager Mr. D. Tilleard (left) presented the prizes together with Mr. G. Wilson of Lektrokit. lowing projects in PRACTICAL ELECTRONICS Use this order form for a year's supply to be posted to you.
ANNUAL SUBSCRIPTION RATES (including postage and packing) inland and overseas £10.60.

PRACTICAL

SUBSCRIPTION ORDER FORM
Please send me Practical Electronics each month for one year. I enclose a Sterling cheque/international money order for.. (amount).
please use block letters
NAME Mr/Mis/Miss
ADDRESS -

POSTCODE

Make your crossed cheque/MO payable to : IPC Magazines Lid., and post to: Practical Electronics. Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS. Practical Electronics is published in England by IPC Magazines Ltd. Regd. No. 53626. Regd. Office: King's Reach Tower, Stamford Stieet, London, SE1 9LS. A subsidiary of Reed Intamational Logd.

EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build a breadboard of any size
All EXP Breadboards have two bus-bars as an integral part of the board. if you need more than 2 buses simply snap on 4 more bus-bars with the ard of an EXP 48.

EXP $325 £ 1.60$ The ideal breadboard for 1 chip circuits Accepts $8,14, .16$ and up to 22 pin ICs. Has 130 contact points tncluding two 10 point bus-bars.

EXP $350 £ 3.15$ Speciaily designed for working with up to 40 pin ICs perfect for 3 \& 14 pin ICs
Has 270 contaci points including two 20 point bus-bars

EXP 300 f 5.75 The

most widely bought bread-board in the UK With 550 contact points, two 40 point bus-bars, the EXP 300
will accept any size IC and up to 6×14 pin DIPS.
EXP 600 f 6.30 Most MICROPR JCESSOR projects in magazines and educatronal books are built on the EXP 600

EXP $650 \mathbf{E 3 . 6 0}$ Has $\cdot 6$ "centre
spacing so is perfect for
MICROPROCESSOR applications

EXP 4B £2.30 Four
more bus-bars in "snap-on" unit

The above prices are exclusive of PGP and 15% VAT.

THE CSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and your order will be in the post immediately
CONTINENTAL SPECIALTIES CORPORATION

CSC (UK) LTD. EUROPE, AFRICA, MIDEAST
Dept 6EE Shire Hill industrial Estate Units 1 and 2 Saffron Walden, Essex CB113AQ
Tel: Saffron Waiden (0799) 21682. Telex: 817477
there's rain or moisture in the atmosphere. The current drawn from the battery is negligable so it can be left switched on for up to a year
WOBBLY WIRE GAME
All the fun of the farr, in your own homel Test your skill at building and plaving this version of the popular game, where a 'wand' has to be moved from one end of a wire to the other, without the loop at the end of the wand ever touching the wire

HIGH QUALITY CONTINUITY

TESTER

An invaluable piece of test gear for testing and fault finding circuits and wiring. Pure continuity checks can be carried out without being affected by adjoining circuitry.
Want to get started on building exciting projects but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instruction in our FREE "Electronics by Numbers" leaflets, ANYBODY can build electronic projects.
Look at the diagram, select RI, plug it in to the letter numbered holes on the EXPERIMENTOR
BREADBOARD, do the same with the othe
components, connect to battery and ANYBODY can build a perfect working project

YOU WILL NEED

e.g. LED Bar Graph (a previous project)
components EXP300 or EXP350
D1 to D15 - Silicon Diodes
R1 to R6 Resistors
LED 1 to LED 6 Light emitting diodes
For the full detailed instructions, including "Electronics by Numbers" circuit diagrams, simply
take the coupon to your nearest CSC stockist or send direct to us and you will recerve "THREE FREE PROJECTS FROM CSC"
If you missed Free project No's 1, 2 and 3, please tick the appropriate boxin the coupon

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assembled kits

PB6KIt, 630 contacts, four 5 -way binding posts accepts up to Six 14-pin Dips
PROTO-BOARD 6 KIT £9.20

PB 100 Kit complete with 760 contacts accepts up to ten 14 -pin Dips, with two binding posis and sturdy base Large capacity with Kit economy.
PROTO-BOARD 100 KIT £11.80

Treansistor Daూaneltersoo

If the amplitude of applied signals is small it is more convenient to replace the transistors by an equivalent circuit for determining externally, circuit parameters. Here common emitter hparameters are discussed.
|OOKING through transistor data sheets can be very frustrating if you don't know what the mass of data means or how it can be applied in designing a circuit. This article explains what the most commonly quoted parameters mean, and their relevance to a transistor circuit.

COMMON EMITTER MODE

Fig. 1 shows an n.p.n. transistor connected in the common-emitter mode, with normal voltage supplies and current flows labelled. Fig. 2 illustrates the typical output characteristics for such a transistor, and similar graphs can be found on most data sheets. The transistor is a current controlled device, and in the common-emitter mode a large current gain is possible, as shown by Fig. 2 where I_{c} is the collector current in mA , and I_{b} is the base current in $\mu \mathrm{A}$.
Note that the collector current depends only on the value of the base current, and not on the collector voltage (which means that V_{ce} can be a constant voltage power supply). For a given value of I_{b}, I_{c} is nearly constant for all values of $V_{c e}$. except near 0 volts and at very high levels (not illustrated, but typically about 50 volts). To appreciate what happens at these two extremes, look at the diode equivalent in Fig. 3 of a transistor. The collector-base diode is reverse biased, and the emitter-base diode is forward biased for normal operation. Fig. 4 shows the current flow in a semiconductor junction diode, and it will be noticed that in the reverse biased condition there is a sudden increase in current flow when the voltage at point A is reached. This is a result of avalanche breakdown, which will cause the destruction of the junction, and must not be allowed to occur. Hence for "safe" operation of the device the voltage at point B must not be exceeded. As the other diode is forward biased there is little voltage drop across it, and consequently approximately all $V_{c e}$ is dropped across the reverse biased collector-base diode, and so a maximum value of $V_{c e}$ must be stated to prevent destruction of the transistor from too high a power supply voltage. This parameter is quoted as $\mathrm{V}_{\text {ceo }}$ (max), the O suffix indicating that this voltage is measured with the base open circuit.

It will be noted from Fig. 4 that between zero volts and point C no current flows in the forward biased diode. This means that before current can flow into the emitter there must be at least this small voltage present across the baseemitter. It is called the "knee" voltage, and for silicon devices it is 0.7 volts. This explains why $V_{\text {ce, }}$, as illustrated in Fig. 2, must have a minimum value (point A) before collector current will flow.

When the base current is zero, it is also evident from Fig. 2 that a small collector current, shown by B, flows. This is the leakage current which arises from the reverse biased diode across the collector-base.

R. A. HATTON

Figs. 1 and 2. Transistor in common emitter mode with output characteristics

Figs. 3 and 4. Diode equivalent of transistor with diode voltage/current characteristic

Fig. 5. Hybrid parameter circuit
Where i indicates input, o output, f forward, r reverse, e common emitter. Solving the equations for various circuit conditions:

$$
h_{i e}=\left.\frac{v_{b e}}{i_{b}}\right|_{v_{c e}=0} \quad \begin{array}{ll}
& \begin{array}{l}
\text { input resistance with output } \\
\text { short-circuit (ohms) }
\end{array}
\end{array}
$$

$h_{r e}=\left.\frac{v_{b e}}{v_{c e}}\right|_{i_{b}=0}$
$h_{f e}=\left.\frac{i_{c}}{i_{b}}\right|_{V_{c e}=0}$
$h_{o e}=\left.\frac{i_{c}}{v_{c e}}\right|_{i_{b}=0}$
output admittance with input open-circuit (mhos)

Fig. 6. Simplified hybrid parameter circuit

This current, which should be as small as possible in a good transistor, is termed $I_{\text {ceo }}$, the 0 suffix indicating that it is measured with the base open circuit. This leakage current flows in addition to the required collector current, and so the actual collector current $I_{c}=\beta I_{b}+I_{\text {ceo }}$, where β is the current ratio I_{c} / I_{b}, which is the ratio of output current to input current or current gain. This is an important parameter in circuit design, and β, which is called the common-emitter current gain, is usually found on data sheets as $h_{f e}$.

HYBRID PARAMETERS

The h parameters are derived from a model of the transistor. Fig. 4 shows this for small signal changes about an operating point, and is known as the hybrid-parameter equivalent circuit for a common emitter bipolar transistor.
The input side consists of the base circuit resistance $h_{i e}$ and a voltage generator to take account of the junction potential, and it produces a voltage given as $h_{r e} . V_{c e}$, where $h_{r e}$ is the reverse voltage transfer ratio. The output side consists of a current generator which produces a current given by $h_{f e} i_{b}$ (small letters indicate small signals) or $\mathrm{i}_{\mathrm{c}^{\prime}}$ and a paralle resistance which covers the output admittance (inverse of resistance) $h_{o e}$. The parameters are defined by the following two equations:
input voltage $v_{\mathrm{be}}=h_{\mathrm{ie}}, i_{\mathrm{b}}+\mathrm{h}_{\mathrm{re}} \cdot \mathrm{v}_{\mathrm{ce}}$
output current $i_{c}=h_{f e} \cdot i_{b}+h_{\text {oe }} \cdot v_{c e}$
Of these parameters $h_{r e}$ and $h_{o e}$ are usually very small, and consequently they are often neglected in circuit calculations in order to simplify things. Fig. 6 shows the simplified model, using just $h_{\text {fe }}$ and $h_{\mathrm{ie}^{\prime}}$ and Fig. 7 shows a common-emitter amplifier with its (simplified) model equivalent circuit.

As may be expected, the larger the current flowing through a semiconductor device, the larger the quantity of heat which is dissipated through the bulk of the material. There comes a point when the material has too high a current flowing through it to allow the necessary rate of dis-

Fig. 7. Simple common emitter amplifier and its hybrid equivalent circuit
sipation for safe operation. This results in the destruction of the device, and you will find stated in data sheets the maximum collector current above the device will break down- i_{c} max.

POWER DISSIPATION

The manufacturer also quotes the maximum power dissipated by the transistor, and when this power has been reached it must equal the electrical power input, given approximately by $V_{\text {ce }} \cdot I_{c}$, and, of course, must not be exceeded. It may be necessary to calculate the power dissipation of a transistor when mounted on a heatsink, in which case the following equation would be used:

$$
P_{\max }=\frac{\left(T_{i}-T_{a}\right)}{\left(\theta_{1}+\theta_{2}+\ldots\right)}
$$

Here T_{i} is the maximum junction temperature for safe operation, and T_{a} is the ambient air temperature around the device (which will probably be above room temperature, because of the surroundings). θ_{1} is the thermal resistance between the junction and the transistor mounting base, and can be found on the data sheet as $R_{\text {th(j-case) }}$ and it is expressed in $\mathrm{C}^{\circ} / \mathrm{mW} . \theta_{2}, \theta_{3}$ etc., are the thermal resistances of all other components in the heat flow path to, and including, the heat sink.

One final point, while considering temperature, $I_{\text {ceo }}$ is very much temperature dependant so any quoted value must be at a stated temperature (usually room temperature) and steps must be taken in a design to exclude the effect of temperature.

The new Vero catalogue will be included in the despatch as soon as these are available.

Price of all this? 40 p plus 20 p postage from-Greenweld, 443 Millbrook Road, Southampton SOI 0HX.

IEETE LAUNCHES TRAINING SCHEME

T
HE Institution of Electrical and Electronics Technician Engineers (IEETE) has just published comprehensive training requirements for Technicians in electrical and electronic engineering. The scheme follows the pattern adopted for Technician Engineers. published by the Institution in 1977, and is designed to be supplemented by programmes applicable to the different sectors of industry. Organisations conducting training schemes to meet their own specific needs are being encouraged to submit them to the Institution for approval.

The publication of the two IEETE schemes highlights the importance of sound practical training in the qualifying process which, combined with an appropriate academic award, ensures that Technician Engineers and Technicians are equipped to meet the demands of rapidly advancing technology.

Further information and copies of both schemes are available from The Secretary, IEETE, 2 Savoy Hill. London WC2R OBS. Telephone 01-836 3357.

Your CommodorePETSystem The Commodore PET is Britain's best selling microcomputer and the most popular choice in every field:-
 * In Education for teaching Computerscience

 and as a teaching aid for other subjects.* In Science and Engincering for solving
problems and for monitoring laborator: equipment.
* In Business the PET wsstem can be put to a wide range of functions indluding Pay roll. Accounting. Statiotical Analvis.. Stock Control and Word Prowrssing.

Not least of its attractions is the price of a PE'T - from $£ 550$ for a self contained unit. to under $\mathcal{E} 2,500$ for the complete system including Floppy Disk Linit and high-speed Printer. Ask your nearest Commodore dealer below for details about Commodore hardware, software and training courses.

TRANDAM

COMPONENTS AND SYSTEMS FROM TRANSAM COMPUTERS
-CP/M
-BASIC

- PASCAL

TRITON IS IMPRESSIVE!
PRACTICAL COMPUTING REVIEW DEC. 79.

TRITON
 COMPUTER SYSTEM.

Designed for ease of construction and flexibility. Kits come complete and all components and software are available separately. UK designed and supported. Fully documented hardware and software and a totally flexible approach to system building. Powerful and easy to use system monitors - a range of languages available Firmware is Eprom based and upgrading from one level to the next is easy.
L4.1 with $1 k$ monitor $2 k$ basic
L5.1 with 1.5 k monitor 2.5 k basic

- L6.1 with $2 k$ monitor $7 k$ basic
$\begin{array}{r}£ 286 \\ \mathbf{£} 294\end{array}$
£294
$£ 399$
£409
f611
- L8.1 4k ed/mon 20k res pascal
f 97
L9.1 CP/M disc based system
- 8k ram card kit (2114L)
$\begin{array}{r}\text { f31 } \\ +50\end{array}$
- Motherboard expansion 8 slot
£50
$\begin{array}{r}\text { £ } 80 \\ \mathbf{~} 595\end{array}$
$\begin{array}{r}6595 \\ \mathbf{f 7 9}\end{array}$
$\begin{array}{r}£ 79 \\ £ 29.50\end{array}$
- Transam BD80 Bi-dir printer
- TVM1 0 video monitor 9
DETAILS OF TRITON FEATURES

FULL RANGE OF MICRO SUPPORT CHIPS - IN STOCK

FULL RANGE OF MICRO SUPPORT CHIPS - IN STOCK										
SN74ISOON	22	SN74LS54N	21	SN74LSI38N 95	SN74LS1950N 85	SN74LS325N 2.55	SUPPORT			
SN74LS01N	22	SN74LS55N	21	SN74LS139N 96	SN74LS196N 120	SN74LS326N 255	8212	2.20	2101	2.32
SN74LS02N	28	SN741S63N	150	SNTALSI45N 1.20	SNT4LS197N 1.20	SN74LS327N 2.65	8216	2.80	21021	1.20 2.32
SN74iSO3N	28	SN741573N	35	SN74LSI4BN 1.75	SN744S221N 1.25	SN744S352N 1.36	8224		2112	2.48
SN74LSOAN	28	SN741S74N	40	SN74LS151N 85	SN74LS240N 2.20	SN74LS353N 150	${ }_{8228}{ }^{\text {a }}$ (8)	4.00	${ }_{6810}$	4.00
SN74LS05N	28	SN741575N	45	SN74LS153N ${ }^{60}$	SN741S241N 1.90	$\begin{array}{ll}\text { SN74LS365N } & 65 \\ \text { SN74S } 366 \mathrm{~N} & 65\end{array}$	${ }^{8228} 81$	1.75	8154	11.50
SN74LS08N	20		35	SN74LS154N 1.80	SN74LS2242N 1.90	SN74ES366N ${ }^{\text {SN7 }}$	-81264	1.90	21141.450	5.50
SN74LS09N	22	SN744S78N	35	SN74LS155N 1.25	SN74LS243N 1.95	SN74LS367N 68	8728 6522	8.75	${ }_{21141} 1250$. 60
SN74LS10N	18	SN7415838N	. 15	SN74LS156N 125	SN74iS244N 2.10	SN744S368N ${ }^{\text {SN74LS373 }}$	${ }_{8251}^{6522}$	5.75	74C920	11.00
SN74LS11N	28	N74L585N	40	74LS157N 60	SN74LS247N 126	SN74LS374N 1.70	8253	11.00	$74 \mathrm{C921}$	11.00
741S12N	25 55	SN74LSESON	85	SNT4LST160N 1.15	SN74LS248N 195	SN74LS375N 12	8255	5.00	74 C929	11.00
SN74IS14N	89	SN74LSSIN	99	SN74LS16IN 1.15	SN74LS249N 1.30	SN74LS377N 1.75	8257	11.00	4027	5.00
SN74LS15N	25	SN74LS92N	90	SN74LS162N 1.15	SN74LS251N 145	SN74LS378N 1.32	8259	12.50	4044 4045	
SN74IS20N	20	SN74LS938N	65	SN74LS163N 90	SN74LS253N 125	SN74LS379N 1.40	${ }_{6402}^{8155}$	12.50	4080	7.00
SN74LS21N	${ }_{28}^{28}$	SN74LS95AN	20	SN74iS164N SN74 S165N 1.50 1.70		SN74IS388N 57	68821 P	4.50	2107	7.80
SN744S22N	${ }^{26}$	SN74LS96N	39	SN744S165N 1.70	SN74LS259N 1 A5	SN74IS390N 1.98	6850 P	4.60	4116158	1800
SN74LS26N	${ }_{35}^{29}$	SN741S107N	39	SN74LS168N 195	SN74LS260N 39	SN74LS393N 1.50	6852 P	5.50	4118	20.00
SN74IS28N	35	SN74LS112N	39	SN74LS169N 1.95	SN74LS261N 3.50	SN74LS395N 180	AY. 52376	11.50	280 P 10	8.00
SN74LS30N	25	SN74LS 113 N	4	SNT4LS170N 2.50	SN74LS266N 39	SN74LS396N 1.70	MC14411	12.00	280CTC	5.00
SN741532N	27	SN74LS114N	4	SN74LSIT7N 2.20	SN744S273N 1.85	SN74LS398N 275 SN 7415399 N 1.60	M57109	12.43	280APIO	
SN74LS33N	39	SNJALSI22N	79	SN74LS174N 1.15	SN74LS279N 18	SN74LS399N 1.60	M57160	10.00		
SN74LS37N	29	SN774S123N	9	SN74LS175N 105	SN74LS283N 1.80	SN74iS445N 125	TMS6011	5.00	1702	5.00
SN74LS38N	29	SN74LS124N	1.50	SN74LSIBIN 2.75	SN74LS290N 1.80	SN74LS447N 1.25	811595	$1 . \mathrm{BO}$	5204	5.00
SN744S40N SN74LS42N	25 79	SN744S125N SN74LS 26 N	85	SN/44S1901 1.75	SN74LS293N 180	SN74LS490N 195	81 LSS6	1.80	2708	8.00
SN74LS47N	95	SN74LS 132 N	75	SN74LS192N 1A5	SN74LS235AN220	\$N74LS668N 95	${ }^{81 L S 97}$	1.80	2516	25.00
SN74LS48N	95	SN74LS133N	39	SN74LS193N 1.75	SN77LS298N 220	SN744S669N 95	81 Ss 8	1.80	2532	60.00
SN74LS43N	1.09	SN74LS136N	40	SN74LS194AN 189	SN741S324N 1.80	SN74LS670N 2.70				

CP/M
AVAILABLE NOW FOR
Disc operating eystem complate with text editor, assembler, debugger, system utilities and complete file management. Makes Triton fully CP/M compatible and able to run CP/M based software. Triton will support up to four 54 or 8^{n} drives single or double density fulf CP/M software user group facilities available. SAE for details.

TCLPASCAL cp/M compatible
A standard Pascal compiter avaitable on a resident (20k Eprom besed configuration or availabie to run under CP/M on $8^{\prime \prime}$ disc plus documentation. CP/M version $£ 90$--P. O. A

\section*{DILPLUG SOCKETS \& SWITCHES
 | W/WHAP SKTS | | OLL SKTS | | dil plugs | | DILSWITCHES | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8015 | 0.20 | 8010 | 0.14 | 1401L | 0.80 | 4 DIL | 1.20 |
| 140 ${ }^{\text {L }}$ | 0.35 | 140 ll | 0.15 | 16 DL | 0.85 | 7016 | 1.75 |
| 16011 | 0.42 | 16 HL | 0.17 | SCDTC | | 8016 | 180 |
| 180 LL | 0.60 | 180 L | 0.24 | 14016 | 1.30 | 16 w 2lf. | 4.95 |
| 240 LL | 0.52 | 20011 | 0.21 | 160 ll | 1.50 | 24w ClF | 8.20 |
| 2801L | 0.74 | 24011 | 0.30 | 240 IL | 2.80 | | |
| 40 IL | 0.95 | $\begin{aligned} & 28011 \\ & 48011 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 0.50 \end{aligned}$ | 2ERO INSERTION FDRCE | | | |

DPS. 1 MAINFRAME - PASCAL SYSTEM

ITHACA
PASCAL/Z
build your own
Pascal Micro Development
system. $\mid E E$ S100 bus system frame Supports K2 ASSEMBLE/Z and

S100 BOARDS
8K Static RAM board (450 ns) $£ 123.75$ 8 K Static RAM board (250ns) f146.25 $\begin{array}{ll}Z 80 \mathrm{cpu} \text { board }(2 \mathrm{MHz}) & £ 131.25 \\ 280 \mathrm{cpu} \text { board }(4 \mathrm{MHz}) & £ 153.75\end{array}$ 280 cpu board (4MM Prototype board (bare board) Video display board (64×16, 128U/L Ascu)
Disc controller board Disc controller board
$K 2$ disc operating system ASSEMBLE/Z Macro

VISIT OUR SHOWROOM

WE ALSO STOCK:- A comprehensive range of books-magazines. VERO products including S 100 and Eurocard and Wire Wrap equipment, weller soldering

CRYSTALS		4 MHz	2.10	F8 (3850)	9.50	-
100k	3.00	4.43 M	1.00	8080A	8.33	
200k	3.70	5 MHZ	2.70	6809	24.00	
$1 \mathrm{MHz}_{2}$	3.80	6 MHz	2.70	280	1.00	
1008k	3.50	7 MHz	2.70	2804	15.00	
1843k	3.00	7.188 M	2.50	8085 A	12.95	
2 MHz	1.50	8 MHz	2.70	${ }^{6502}$	8.00	
2457k	3.05	10 MHz	2.70	SCMP 11	10.00	
3276 k	2.70	10.7 M	2.70	6802	13.95	

TRANSAM COMPONENTS LTD, 12 CHAPELSTREET, LONDON NW1

\section*{MULTIWAY CONNECTORS
 | insulation piem | | | $\begin{aligned} & 4.60 \\ & 4.74 \end{aligned}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 20 wey plug | 2.30 | $36 / 72$ | | | |
| 26 way plug | 2.70 | 40/80 | 5.00 | | |
| 34 way plug | 3.30 | 43/86 | 5.50 | | |
| 50 way plug | 4.60 | 50/100 | 5.80 | | |
| 20 way skt | 3.40 | GDLD. 158 PITCH | | | |
| 26 way skt 34 way skt | 4.00 | 6/12 | 1.25 | | 8 |
| 33 way skt | 8.80 | $10 / 20$ $12 / 24$ | 1.50 2.00 | WOUOHO | |
| EDGE CDNM PCE | | 15/30 | 2.20 | | |
| GOLD. $1^{\prime \prime} \mathrm{PITCH}$ | | 18/36 | 2.30 | $11+1$ |) |
| 22/44 | 3.20 | $22 / 44$ | 2.65 | 哏 | |
| 25/50 | 3.60 | 28/56 | 3.30 | (1) | |
| 28/56 | 3.90 | 36/72 | 3.90 | | |
| 30/60 | 4.15 | 43/86 | 4.60 | 64 way OIN male 64 way DIN femals | $\begin{aligned} & 2.50 \\ & 4.50 \end{aligned}$ |

CATALOGUE

Tel: 01-4028137 Telex: 444898

Fig. 1.
Circuit of
Enlarger Timer
in

ANALYSER

The analyser section has a bridge network consisting of VR1 (known as the time dial) forming two arms, the third is R1, which is the reference from which the time dial is calibrated, against the resistance of the cadmium sulphide cell that makes up the fourth arm. VR2 is used to calibrate the unit for various speeds and makes of paper. Across the bridge is the 9 volt supply, which provides the potential and polarity at the output depending upon the resistance of the cell and where the wiper arm of VR1 is set (disregarding VR2 for the moment).

When the wiper of VR1 is at the zero side of the 9 volts the voltage appearing at the wipers (being the output of the bridge) will be out of balance. The negative output goes to the input of the op amps which will have a positive output if the inverting input is more negative than the non inverting input.

It should be noted that the inputs of the two op amps are reverse connected so that when there is a voltage at their inputs their outputs are out of phase i.e. one will have a positive output and the other will have a negative output. Since VR1 wiper of the bridge goes to (-) of IC 19 b and (+) of IC19a only the former will have a positive on its output causing D9 to be forward biased and illuminating it. This l.e.d. is termed low (10 '), meaning that VR1 needs to be rotated to a higher dial reading. Moving VR1 wiper towards positive will eventually balance the bridge so that there is no voltage across the inputs of the op amps.

As the wiper arm of VR1 passes through balance the output of the bridge will now be positive with respect to VR2 wiper causing IC19a to have a positive output bringing on D8 ('hi').

TIMER

The timer section can be divided into three areas, clock, control and counter with display. Decade counters make up the clock circuit deriving its timing from the mains frequency. The input is squared by D4 and C7 then passed to IC14 which divides by 5 to give a 0.1 second pulse that goes to S7 and to IC15 which further divides by 10. A 1 second pulse will result that is used to indicate the decimal point on the three digit display, as well as going into IC16 to divide it by 6 to give a 0.1 minute clock pulse. This pulse also goes to S7 which will select whether the display, that can read up to 99.9 , will be in minutes or seconds.

Pins 2 and 3 of the 7490 chips are the reset pins and if both of these go high the b.c.d. output will be zero, and will stay that way until one or both inputs go to a low. When these chips are used as straight decade dividers resetting them is easy, however, as pins 2 and 3 of IC16 are used to reset automatically when the count reaches 6 it becomes slightly more complex to reset it to zero on demand. IC17 wired as two OR gates solves the problem.

Under operating conditions pins 5 and 9 of IC17. have a low on them that has no effect, allowing the outputs 8 and 9 of IC 16 to pass through the NOR gates to 2 and 3 of IC 16 . When the reset pulse comes along the high that is now on pins 5 and 9 of IC 17 will pass onto 2 and 3 of IC16 regardless of what is on 6 and 8 of IC17. If this resetting wasn't done, clock errors could occur in the minute timing because at the first clock pulse there could be a number stored in IC16 which may only need another pulse on its input to give an output pulse. In other words 0.1 minute will be on the display yet only 1 second has passed.

The control circuitry consists of IC1 and IC2 and three thumbwheel switches, S8, 9 and 10 . When S4 is pushed the debounce circuit IC1a and IC1b does two things, the low going pulse at pin 6 sets a second bistable IC2c and IC2b to
put a high on pin 9 of IC1c to enable the 50 Hz on pin 10 to get through, as well as turning TR 1 on that energises the relay to bring on the enlarger. A second function of the high going pulse at IC 1 a , pin 3 is to reset all the 7490s, and since R14 ties the reset line to a low, and C6 stops the high on pin 3 of IC1a from having any further effect on them, they will commence to count at the same time the enlarger comes on. After 2 seconds a low appears on pin 5 of IC 1 b that comes from pin 10 of IC17 and is used to reset the debounce circuit for further timing.

A problem occurs with this arrangement in that timing cannot be achieved below 2 seconds, because until this circuit is reset a low appears on pin 3 of IG2b. This stops IC2b/2c from being reset by the low going pulse that will come from pin 12 of IC2a when the time set by the thumbwheel switches is achieved, however it is extremely unlikely that the enlarger will be on for less than 2 seconds. One advantage of using this pulse to reset the debounce circuit is that a SPDT push button is not necessary.

Two other push buttons are used in the control circuitry and they are S 5 and S 6 . 55 will stop the count by resetting IC2b/2c putting a low on IC1c inhibiting the 50 Hz and turning the enlarger off with the display not affected by this action. To continue the timing, S 6 is pushed setting $/ \mathrm{C} 2 \mathrm{~b} / 2 \mathrm{c}$, allowing the 50 Hz to pass once more. These switches allow the exposure to be stopped and then commenced again without losing track of the time.

COUNTER AND DISPLAY

The counter and display section is made up of a very common circuit in three decade counters ICs 4,5 and 6 with seven segment displays driven by ICs 7,8 and 9. Connected to the b.c.d. outputs of IC4, 5 and 6 are hex inverters, connected to form buffers between the decade counters and thumbwheel switches S8, 9 and 10 . The buffers are necessary because whatever number is selected it is connected to the common, e.g. if 5 is selected 1 and 4 are commoned, consequently without the buffers pins 8 and 12 of the 7490 would also be connected giving a false display.

When the time that is selected by the thumbwheel switches is reached the b.c.d. output from the 7490 s will match the b.c.d. of the switches which now will have a high on all commons. These highs go to IC2a putting a low on its output pin 12 which resets $1 \mathrm{C} 2 \mathrm{~b} / 2 \mathrm{c}$ stopping the count and turning the enlarger off. The elapsed time will be on the display and will stay there until the start button is pushed.

ALARM

The remaining circuitry consisting of a 555 chip IC18 and a bistable IC1d and IC3c is used to turn on an alarm via S 1 . As mentioned when the timer reached its count a low appeared on pin 12 of IC2a. Besides being responsible for stopping the count it is also used to reset IC1d and IC3c. When this happens the low going pulse at pin 11 of IC1d is differentiated by C5/R11 which triggers IC18, that is wired up as a monostable, to give a high out of pin 3 to energise a small solid state buzzer.

The time the buzzer will be on depends upon the RC network R9/C4 which will be about 1 second with the components in circuit.

The purpose of the bistable is to stop the 555 from triggering every time the thumbwheel switches are moved. By its action no more trigger pulses can appear until it is set again by pushing the start button S 4 .

Leading zero blanking can be wired into the circuit if desired as well as lamp test.

The switch S2 associated with the safelight is wired so that in the auto position RLA 1 will control when the safelight

Fig. 2. Underside of printed circuit board
is on, i.e. with the enlarger on the safelight is off and vice versa. In the manual position the safelight is on ali the time. This allows working with black and white papers (cutting, developing) while the timer is being used for the developing of films. It saves unplugging the safelight and putting it in a wall plug

The timer is very useful in controlling motorised agitators when developing films or colour paper and this is what was in mind when the buzzer circuit was put in as it allows other work to be carried out, without having to constantly worry about the time

S1 keeps the alarm from sounding which can be annoying when exposing paper. For colour work the safelight switch is put in the off position

CONSTRUCTION

It is recommended that the double sided p.c. board shown be used due to the number of i.c.s in the circuit. The cost of the board is a small price to pay for the ease in constructing the circuit. If using the board begin at the bottom section of the board by inserting and soldering pieces of wire at the pads that have a dot next to them as these are used to connect both sides of the board together. Under two of the

7447 chips there are pads that have two dots and these will also have to have the wire "pins" if leading zero blanking is required. There should be 14 joins plus the two for blanking.

The i.c. sockets can now be inserted if they are to be used otherwise solder the chips direct to the board making sure they are correctly orientated by taking note that on the top of the board pin 1 is marked for all chips as is the last two digits for all the TTL i.c.s. After making sure all the pins on the chips are soldered insert the diodes and resistors and solder them on the bottom side of the board. Turn the board over and you will notice that some of the components go through pads which have to be soldered to the component leads as they are also used to complete the circuit from top to bottom, as do some of the capacitors that can now be inserted.

Finally the regulator chip can be mounted by carefully bending the leads so that the hole through the metal tag will line up with the one in the board having the copper area that is the heat sink. This now completes the main board.
The display board is fairly straightforward as it only has the three displays and R40 which is used to limit the current to D10 which is the indicator for the calibration dial. A 40 pin 0.6 in socket can be used if desired.

Fig. 3. Topside of printed circuit board

Mounting and wiring the mains voltage components should now commence paying attention to the safelight switch and making sure the lamp sockets bypass the fuse. A power switch can be mounted on the back of the panel if desired. Once all the chassis mounting components are in place (all but the main board) the wiring of the board to the chassis can go ahead. The board should ideally be mounted in edge connectors that are mounted on the front panel.

Ribbon cable is a definite advantage especially for the displays and b.c.d. switches, heavier gauge wire will be necessary for the 6 volts from the transformers. After checking the wiring you are in a position to turn the unit on.

TESTING

Place the alarm switch on, sec/min switch to sec., focus to off, safelight to auto and the three thumbwheel switches on 111. When power is applied the buzzer will sound and a random number will appear on the display that will read 0 when the start button is pushed. The display should now be counțing at a 0.1 second rate and will continue so until either the stop button is pushed or the count reaches 111 . If the stop button was pushed, the continuous button once pushed will allow the count to continue until 111 is reached. Failure for this to happen or if the count stops at some other
number then the odds are the thumbwheel switches are wired up incorrectly.

While the unit is counting the decimal point in the units display will be flashing at a second rate and anything plugged into the enlarger socket will be on. This will go off at the end of the count and whatever is plugged into the safelight socket will come on. Flicking the focus switch to on will switch the enlarger on and turn off the safelight that can be turned back on by placing the safelight switch to manual. The only time the buzzer should sound (other than when the unit is first turned on) is when the display reaches whatever is set by the thumbwheel switches.

DIALS

The two dials are made of 3 in diameter perspex and are shown full size in Fig. 5. Calibration batons and numerals can be used from Letraset. Accuracy of the time dial depends upon the quality (tolerance) of the 5 k lin potentiometer and if in doubt it will be necessary to calibrate your own dial using 1 or 2 per cent resistors.

Four 100k and four 10k in parallel and series combinations will give all the times necessary.

For the CL705HL cell the following values with times, will

Fig. 4. Component overlay for the printed circuit board
be needed, 10 k for $1 \mathrm{sec}, 20 \mathrm{k}$ for 2 secs, 100 k for 10 secs, 150 k for 15 secs etc. These resistors take the place of the cell during calibration with the calibration dial at 0 .

To zero calibrate short out VR2 with a piece of wire. The hole in the centre of the dials need to be enlarged to just over $\frac{3}{8}$ in so that it clears the potentiometer mounting screw. Ideally, D8 and D9 should be a dual colour type l.e.d. that is situated under the time dial both to partially illuminate the dial and act as a marker. D10 is a single red type used to illuminate the cap dial.

The advantage of the dual type is that it will always be on so at, or near, balance the dial reading can easily be seen.

COMPLETION

In the prototype the fascia panel was made up of thin gauge aluminium as it is not loaded. Two bends are introduced to produce a sloping front and the whole drilled to suit components purchased

USING THE ANALYSER

There are two basic methods of taking readings, one is the integrated (average) that uses a diffusion screen under the lens to give an average light to the cell and is the method that I use on most occasions. If the negatives are not average then the spot method may have to be used. Separate calibrations are necessary for both methods.

INTEGRATED METHOD

Make a test print using an "average" negative. Select what you consider to be the best exposure as the analyser accuracy for all future exposures depends upon this step. Say 10 seconds gave the best print. Leaving the enlarger exactly as it was for the test print put the cell on the masking frame.

The diffusion screen is placed under the lens making a note where you put it as it needs to be in the same position for future prints. A good idea is to make a holder similar to the one used to hold the red filter that is on most enlargers.

COMPONENTS

Resistors	
R1	$100 \mathrm{k} 1 \%$
R2	100 k
R3, R4	$330(2 \mathrm{off})$
R5	470
R6	1502 W
R7	751 W
R8	3 k 3
R9	4 M 7
R10	3 k 3
R11	15 k
R12, R13	3 k 3
R14	56
R15-R17	3 k 313 off)
R18-R40 330 (23 off)	
All $5 \% \frac{1}{4}$ W carbon film	

Capacitors

C1	$470 \mu 16 \mathrm{~V}$ elect
C2	$1000 \mu 16 \mathrm{~V} \mathrm{elect}$
C3	$2000 \mu 16 \mathrm{~V}$ elect

C4-C12

Diodes

D1-D3	1N4001 (3 off)
D4	BZY88C-4.
D5-D6	BZY88-6.2(2 off)
D7	1N4001

D7 1N4001 D8-D10 TIL209 (3 off) (D8-D9) preferably MV5491. XC5491 two colour I.e.d.)

Integrated Circuits

IC1 74LSOO

IC2 74LS10
IC3 74LSOO IC4-IC6 74LS90 IC7-1C9 74LS47 IC10-IC13 74LSO5 IC14-IC16 74LS90 IC17 74LSO2
IC18 555 IC19 MC1458
IC20 7805

Transistor TR1	Photocell R41-CL705HL (Clairex) Ace Mailtronix, Tootal St. Wakefield, West Yorkshire
Switches	
S1	Single pole on/off
S2	Single pole three way
S3	Single pole on/off
S4	Press to break
S5	Press to break
S6	Press to break
S7	Single pole change over
S8-S10	BCD thumbwheel (3 off)
Displays	
X1-X3	FND507 (3 off)

Miscellaneous

Miniature buzzer $6-9 \mathrm{~V}, 15 \mathrm{~mA}, \mathrm{T1}$-Mains transformer with independent $6 \mathrm{~V}, 0.5 \mathrm{~A}$ independent secondaries (R.S. 207-194)

Control fascia of timer. The enlarger, safelight and probe sockets are arranged at the back. ' Hi ' and 'Lo' I.e.d.s appear at either side of the display

Now with the time dial on 10 seconds and with the safelight switch in auto (as the cell is sensitive to all colours) adjust the calibration dial until the l.e.d.s are both on and make a note of the reading on the calibration dial. Whenever that brand and grade of paper is used, just set the calibration dial to it. If you use several types of paper make a calibration for all of them

SPOT METHOD

The only difference between this method and the integrated one is the diffusion screen isn't used and the cell looks at a shadow (brightest portion)

A diffusion screen can be made from a piece of perspex that has been rubbed with a piece of fine emery paper. Another suitable material is draughtmen's tracing film or they are available from photographic shops.

Fig. 5. Full size details of dials

THE PE Traveller car radio has been designed around a pre-aligned tuner unit, ceramic filter and 6 watt audio amplifier i.c. The result of this design is a receiver which is straightforward in both construction and alignment. The Traveller, which costs approximately half the price of an equivalent commercial car radio and is available in complete kit form from RTVC, achieves an excellent performance, with one long wave and four medium wave push buttons and includes tone control.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Traveller is shown in Fig. 1. The aerial signal which is fed to the aerial tuning circuit via the r.f. choke L1 is impedance matched to the wide band amplifier designed around TR1. The input to this amplifier is protected against static discharge by the voltage dependent resistor (R1)

The output of the wide band amplifier (TR1 collector) is fed to the input of mixer/oscillator circuit. The resistor R8 sets the internal a.g.c. range of the prealigned i.f. module and a second a.g.c. line is fed to the input of the wide band amplifier via resistor R7. The value of this resistor can be altered to adjust the sensitivity of the receiver or a 100 k preset resistor can be used. Any adjustment of the sensitivity will of course be a compromise between sensitivity, signal handling, interference etc. The maximum signal capacity of the set can be achieved by ensuring TR 1 is ultimately reverse biased by the a.g.c. circuit. However, one problem encountered when using an amplifier in front of a self oscillating mixer is r.f. blocking.

the excess leads from the components including the pins above the wave change switch S1. Carefully check the orientation of the electrolytic capacitors and the transistor TR1. Also check that there are no solder splashes shorting out the p.c.b. tracks

A small modification should be carried out to the tuner unit before the p.c.b. is fitted. The switch bar at the back of the tuner should be removed and the modified switch bar and p.c.b. mounting bracket fitted in its place. Take care not to disturb the slide biasing spring fitted underneath the switch bar. A self tapping screw should be used to "tap" the two holes on the mounting bracket.

The tone, volume and on/off switch S2 should be fitted to the tuner unit and the capacitor C14, resistor R 10 and wire links soldered as shown in Fig. 4. The p.c.b. can now be mounted onto the tuner unit using two self tapping screws

Fig. 2. Printed circuit board design

Fig. 3. Component layout

The switch bar (shown arrowed) should be removed and the modified unit screwed on to the tuner in its place. Check the operation of the pushbuttons before the printed circuit board is fitted into position.

Fig. 4. Complete wiring diagram for the Traveller

COMPONENTS ...

Resistors

R1	VDR 6 V
R2	220 k
R3, R9	$10 \mathrm{k}(2$ off)
R4, R5	$680(2$ off)
R6, R11	$1 \mathrm{k8}$ (2 off)
R7,R8, R10	47 k (3 off)
R12	22
R13, R15	$100(2$ off)
R14	1

R14
1
All resistors $\frac{1}{2}$ W 10\% carbon

Potentiometers

VR 1

Capacitors

C1, C2, C3, C18
C4
C5, C12, С16, C19
C6, C7
C8, C13
C9
C10
C11, C14, C17
C15
C20, C22
C21, C23
C24, C25 (feed through
capacitors)
VC1

VC2
Semiconductors

TR1

IC1

Duai concentric log with on/off switch (approx. 20k)

2n2 (4 off)
56n
47 (4 off)
680p (2 off)
10μ (2 off)
1n
4n7
10n (3 off)
220μ
100n (2 off)
1000μ (2 off)
1 n (2 off)
Attached to tuner
approx. 80p max
140p max

BF394 or BF195
TBA 810 S

Miscellaneous
LP1181 r.f. - i.f. module. Tuner unit. P.c.b. Control knobs. Aerial socket

L1 r.f. choke, L2, L5 I.w. coils L3, L4 attached to tuner, L6 supply choke.

Constructor's Note

A complete kit of parts for the Traveller is available from Radio \& TV Components (Acton) Ltd., 21 High Street, Acton, London W3 6NG. The price is $£ 10.50$ plus £. 1.75 p. \& p. (pack 7).
with insulated washers. Before tightening the screws ensure the switch bar lug is located into the arm of S 1 . The operation of the wave change switch (S1) should then be checked by pressing the two push buttons nearest the tuning control. The movement should be the same in both directions. If necessary release the screws and adjust the position of the p.c.b. until the switch movement is correct

The indicator lamp LP1 should be fitted next and the p.c.b. should be wired to the tuner unit (Fig. 4). The back panel of the radio should be drilled to accept the battery and speaker feed-through capacitors (C24, C25) (Fig. 4). Before soldering the battery and speaker capacitors clean the panel and terminals with emery cloth. The connections to the back panel should be made before the panel is fitted into position. The earth braid should be fitted to the case using a 6BA screw and nut.

TESTING AND ALIGNMENT

Oscillation may be prevented on longwave if the oscillator coil's inductance (L5) is too far out from its correctly aligned position. To overcome this problem unscrew the core of the coil (anticlockwise) so that the plastic top of the core is approximately 2 mm above the can. If the problem still occurs the value of $R 3$ should be reduced.

For simplicity, "bench alignment" is recommended. The speaker, 12 V supply and aerial (if an r.f. signal generator is not available) should be connected, then the set switched on and tuned to the medium wave. The scale (attached to the escutcheon) should be held in front of the radio and the set manually tuned to 250 metres. Adjust the trimmer (VC2) on the p.c.b. to receive radio 3 (247 metres). Switch to the longwave, tune to 1500 metres and adjust the I.w. oscillator coil (L5), with a non-metallíc tuning tool, to receive Radio 4. Adjust the I.w. aerial coil (L2) for maximum output.

If an r.f. generator is available tune the set to the extreme h.f. end on m.w. and adjust the trimmer (VC2) on the p.c.b. to receive 1620 kHz modulated signal. On I.w. tune to the extreme l.f. end and adjust the I.w. oscillator coil (L5) to receive a 150 kHz modulated signal. Then set the generator to 200 kHz and tune the set to receive this signal $(1500$ metres) and adjust the I.w. aerial coil (L2) for maximum output.

After the set has been correctly aligned fit the back and top panels into position using self tapping screws.

NEXT MONTH: Installation and suppression.

SPECIAL SUPPLEMENT

Fig. 1. Showing the various parts and operation of the horn
accept poor sound quality" is a common view, but this statement needs careful qualification. Running a sound system into severe overload on peaks is often acceptable, but indistinct vocals are not. The concept of live sound quality embraces far more than the main criterion of domestic sound quality-harmonic distortion. The vagaries of hall acoustics, phase interactions in multiple speaker arrays and the frequent need to push sound systems to their limits are other criteria which are unique and crucial to the sound quality of a live performance.

SOUND LEVELS

Discotheque levels lie between 105 dB and 115 dB , yet a Ione soprano can exceed 104 dBA , a symphony orchestra can notch up 115 dBA , jazz bands have been measured at 125 dBA and a lone rock drum kit at one metre can hit 130 dB . Audience noise in excess of 120 dBA has also been measured. These figures put typical rock concert levels of between 110 and 125 dB into sharp perspective, especially when it is borne in mind that many musical instruments are capable of exceeding the threshold of pain (125dB) on their own.

HORN LOADED LOUDSPEAKERS

Most PA systems spend their life on the road, and apart from the need for exceptional physical robustness, size and weight must be sensibly limited if life on the road is to be tolerable. The heaviest and bulkiest items in a PA rig are the loudspeakers; clearly, the fewer needed the better. Thus very efficient loudspeakers are sought. It is pertinent to bear in mind that direct radiator (infinite baffle) loudspeakers are, at best, 2 per cent efficient.

If high sound quality is required, then this can only be achieved in exchange for even lower efficiency, as exemplified by domestic high fidelity loudspeakers, which are frequently less than 0.5 per cent efficient. Vented (bass reflex) enclosures offer somewhat higher efficiency, typically around 2-8 per cent, but only at low frequencies.

Prior to the birth of heavy metal rock and giant outdoor festivals, it was rarely considered necessary to amplify a whole band, and column loudspeakers were adequate for vocal amplification. Then, about a decade ago, the quintessential rock band Iron Butterfly used a 30 year old RCA loudspeaker design on stage at the Albert Hall, and a power revolution had begun.

Iron Butterfly had discovered the RCA "W-Bin", a hornloaded loudspeaker designed for cinemas. Horn loading provides the most efficient loudspeaker action; horn loudspeakers are typically $25-50$ per cent efficient. Moreover, the best horns provide arguably the most realistic
sound reproduction available. There is no doubt that for high power sound reproduction, horn loudspeakers are superior to all others on the basis of sound pressure level (SPL) per f , size, weight, sound quality and control of dispersion.

Inevitably, horn loudspeakers are the mainstay of live sound systems. Thus a knowledge of horn characteristics is essential if high power sound systems are to be competently engineered.

THE HORN

The horn is an acoustic transformer, matching the elasticity of air (a low impedance) with the stiffness (high impedance) of a loudspeaker diaphragm, by a graduated change in air pressure (Fig. 1). This transformer action is the secret of the horn's high efficiency. If a horn is asked to reproduce sufficiently long wavelengths, then adequate air pressure cannot be achieved at the throat. The horn then reverts to direct radiation, and its output falls sharply. The horn is thus a high pass filter, and cannot be used below this critical point, known as the cutoff frequency.
The area of the throat and the mouth, the flare curve, the cutoff frequency, and the length of a horn are closely related by physical equations. This relationship of five variables leads horns to have very definite and critical dimensions, unlike other loudspeakers.

Whenever a diaphragm moves, it causes distortion, particularly intermodulation distortion. This is perceived as "muddiness" and is very objectionable at high levels. A direct radiator diaphragm must move large distances to produce high SPL's, especially at low frequencies. Large diaphragm movements produce correspondingly large amounts of intermodulation distortion. The movement of a horn loaded diaphragm is typically 10 to 500 times less for the same sound output, thus horns can be driven harder without incurring excessive levels of intermodulation products.
The author's horn stack. The mouth of the horn is $\mathbf{6 f t}$ high and the wide dispersion piezo-electric treble horns (3) are $10 f t$ from ground level. The giant bass horn (1) has a frequency range of $20-280 \mathrm{~Hz}$ and the diffraction midhorn (2) a range of $\mathbf{2 5 0 H z} \mathbf{- 3 k H z}$

In exchange for greatly reduced levels of intermodulation distortion, horns produce low order harmonic distortion. This is a consequence of the high air pressure at the throat, which causes air overload distortion. The magnitude of this distortion is governed by the flare curve, the power input and the horn's operating bandwidth. The flare curve is usually exponential or tractrix (involute cantenary) for high power sound systems, these curves being a compromise between efficiency and air overload distortion.

Limiting the operating bandwidth of any loudspeaker reduces intermodulation distortion, but bandwidth limitation in horn loudspeaker systems is especially useful, since it also minimises air overload distortion. Crossover networks, to achieve these limitations, are considered later.

Air overload distortion is predominantly 2 nd harmonic, and is thus palatable to the ear. Thus horn loading exchanges low efficiency and high levels of dissonant intermodulation distortion (IMD) for high efficiency, critical dimensions and low order, and hence innocuous, harmonic distortion.

HORNS IN PRACTICE

Horn dimensions are closely related to the wavelengths of the sound they handle, thus bass horns (affectionately known as bass bins) are inherently large. Ideally, for smooth frequency response, the perimeter of a horn's mouth should be four times greater than the lowest wavelength to be reproduced. Thus for a cutoff frequency of 20 Hz , a mouth of $40,000 \mathrm{ft}^{2}$ is indicated! Clearly some compromises must be accepted in practice. This figure assumes loading into free space.

Each time the solid angle of radiation is halved, the mouth area can be halved. Likewise, if a higher cutoff frequency and a less than perfectly regular response is accepted, the mouth area can be greatly reduced. For example, a typical PA horn which is wall loaded lagainst a wall and on the floor, and thus radiating into a solid angle of π radians) and exhibits a 60 Hz cutoff frequency, will only require mouth dimensions of 3 ft by $2 \frac{1}{2} \mathrm{ft}$.

Because horn length and mouth size are closely related, a horn with a nominal cutoff frequency of 60 Hz with smaller mouth dimensions is possible, or instead, a lower cutoff frequency for any given mouth size. This is achieved by foreshortening the horn, that is, cutting it short before its mouth area expands to excessive dimensions.

Foreshortened bass bins exhibit a highly irregular response over the first two octaves, which result in coloured and distorted low bass. Thus it is far better to sacrifice the low frequencies and attain a smooth response than to drive a horn below its legitimate cutoff frequency. Table 1 shows the minimum mouth dimensions for wall loaded bass bins.

Table 1. The minimum mouth dimensions of bass bins for audibly smooth frequency response.

Mouth Area $\left(\mathbf{f t}^{\mathbf{2}}\right)$	Min. driving frequency in Hertz Wall loaded	Corner loaded
28.0	30	20
15.7	40	29
10.1	50	35
7.0	60	42
5.1	70	50
3.9	80	62
3.1	90	65
2.5	100	71
ft^{2}	Hz	Hz

This table can be used to ascertain the minimum frequency at which a bass bin may be driven for an audibly smooth frequency response, regardless of manufacturers' specifications, which are rarely euphemistic.

In practice, few bass bins are sufficiently big to have a regular frequency response below 60 Hz for reasons of mobility. Corner loading extends the response, as shown in the table, but mounting bins in a corner is not often possible.

It is common to use vented enclosures to cover the first two octaves; many bass bins have reflex ports which are driven by the rear radiation from the diaphragm. This seems an elegant solution, but it is far better to use a separate vented enclosure and to enclose the rear of the horn driver. The compression chamber so formed linearises the response of the horn.

For all their advantages, bass horns are a perpetual problem in live sound systems. The three best solutions if smooth frequency response is desired are:
(1) Use a giant bass horn to provide smooth response down to 20 Hz or lower.
(2) Use a readily portable bass horn, typically responding down to 60 or 50 Hz , together with several (less efficient) vented cabinets to cover $20-60 \mathrm{~Hz}$.
(3) Corner load the above horn to provide a smooth response down to $35-42 \mathrm{~Hz}$, and accept the absence of the lowest audio frequencies. (In practice, a frequency response which rolls off sharply around 40 Hz is quite adequate in live sound systems.)
Midrange and treble horns are small and rarely need to be compromised in the manner that bass horns are. However, they may also suffer from an uneven response over the first octave above their cutoff frequency, which is heard as a "honk". This characteristic has given horns a bad name, but it is simply a case of inexpert application. The simple solution is to drive a honking horn at a higher frequency, that is, crossover at a higher frequency.

CROSSOVERS AND BANDWIDTH LIMITATIONS

A small direct radiator will handle the entire audio bandwidth, but limiting the bandwidth over which a loudspeaker operates greatly lowers IMD, particularly at high powers. Moreover, air overload distortion in horns is proportional to the operating bandwidth. For this reason, horns are rarely driven over more than three octaves.

When a horn is driven below its cutoff frequency, the diaphragm is no longer pressure loaded and it reverts to direct radiation. This implies large amplitude diaphragm excursions, which quite apart from producing highly distorted sound, may endanger the diaphragm. This effect is particularly fatal to high frequency horns, since they commonly use compression drivers which are designed solely for horn loading and cannot withstand the large diaphragm movements that are inherent to direct radiation. Clearly a good, steep crossover network is essential in horn loudspeaker systems if driver damage is not to occur.

The simplest crossover networks are passive (Fig. 2). In order to handle high powers-even over 50 watts-without great losses, these are expensive.

The performance of the simple LC filter illustrated is dependent upon the loudspeaker to which it is connected, and the combination presents a capricious load to the power amplifier, which may be upset. For these reasons, more complex LC or RLC networks are used in domestic sound systems. These provide very good performance, but unfortunately at the expense of efficiency. For this reason alone, crossover networks which appear in series with loudspeakers are to be strongly depreciated in high power

Fig. 2. Simple LC filter arrangements

Fig. 4. Typical 3, 4 and 5 way systems
sound systems. Furthermore, any form of network in series with a loudspeaker can give rise to an audible "dullness", especially when the characteristically transparent sound of horn loudspeakers is considered.
The vast majority of professional high power sound systems now employ active crossovers. The term "active" indicates that the crossover filters use active devices; transistors or op-amps. Such filters are usually located immediately prior to the power amplifiers. By imposing bandwidth limitations in the small signal stages, a separate amplifier is required for each frequency band (Fig. 3). Thus a three-way active crossover uses three amplifiers and is said to be "tri-amplified".

The advantages of this method far outweigh the cost of additional amplifiers:
(1) Active filters can be readily produced with steep slopes without the great losses inherent in steep passive filters. Steep slopes allow horns to be driven harder and closer to their cutoff points with less risk of damage. Active filter slopes are commonly two to four times steeper than passive filter slopes.
(2) Switchable slopes and crossover frequencies are a practical proposition. It is possible to compensate for the difference in cutoff frequency of a bass bin when it is wall or corner loaded.
(3) The load resistance of an active filter is well defined. This ensures predictable filter performance.
(4) The power amplifiers are connected directly to their respective loudspeakers. This ensures good damping at low frequencies.
(5) Around 50 per cent of the energy of rock music lies below 350 Hz , thus amplifier clipping occurs initially in
the bass power amplifier(s). The resultant high order harmonics are directed solely to the bass bins, whose drivers are incapable of reproducing these high frequencies efficiently. Thus they are masked by legitimate (urtdistorted) high frequency signals.
(6) Intermodulation distortion is minimised in the power amplifiers as well as in the loudspeakers.
(7) Amplifer-loudspeaker combinations can be optimised, particularly in terms of power and impedance.
As a result of factors $1,5,6$ and 7 , a system using active filters can be driven much harder before the sound becomes "dirty". Thus a 1,000 watt tri-amplified system sounds much louder than a 1,000 watt system using passive filters. The improvement in sound quality is also far from subtle.

For an acceptable level of air overload distortion, the operating bandwidth of a horn is usually limited to three octaves. Thus a minimum of three horns is needed to cover the audio band. Starting at 40 Hz , the typical crossover frequencies will be around 320 Hz and 2.5 kHz . Restricting the bandwidth even more, and using many horns to cover the audio spectrum may appear to be a means to very high quality. Whilst this is broadly true, anomalies around the crossover points, particularly if they infringe upon the critical midrange frequencies, are troublesome. Moreover, the proliferation of amplifiers and horns would be costly and leads to great bulk and weight.

The law of diminishing returns sets in after five way systems, and tri- and quad-amplification are the most common configurations. Fig. 4 illustrates typical 3,4 and 5 way systems. Note that it is difficult to avoid the critical midrange frequencies $(750-3,000 \mathrm{~Hz})$ with the 5 way system if the number of octaves handled by each filter is to be kept
reasonably constant. Note also that the bass filters have a bandpass characteristic, in order to protect the bass bins from high level signals below their cutoff frequency.

POWER AMPLIFIERS

All loudspeakers are readily damaged by excessive power inputs over long periods. When sound systems are operated by people who are not technically minded, it is always a good rule to use a loudspeaker rated at 10 to 100 per cent over the amplifier power. In high power systems, it is preferable for the loudspeakers to be overloaded before the power amplifiers, because the sound of an overloaded loudspeaker is much more pleasant than that of an amplifier driven into clipping. This assumes that the sound engineer is familiar with the sound of a distressed horn, and does not prolong its agony for any longer than absolutely necessary.

One of the essences of live music, especially rock, is the crescendo. It is necessary to try to achieve real dynamic range, because of this it is often not possible for sound systems to handle rock crescendos at realistic levels. One solution is to reduce the dynamic range requirements by using a limiter, but this greatly detracts from the performance. A compromise solution is to accept that something has to be overloaded on occasions, and this is usually the bass loudspeakers. A good 100 watt, 15 inch driver will, for instance, accept 500 watts of programme for a few seconds without undue distress. This reserve power handling capability should only be needed or used at climatic points, otherwise the loudspeakers will not live long.

In a tri-amplified system, each horn will usually have its own amplifier. High frequency horns generally use compression drivers which are capable of providing SPL's in the region of 140 dB at full power, thus it is unlikely that they will need to be overloaded. Compression drivers are quite easily damaged by excessive inputs, thus it is unwise to use an amplifier rated in excess of 100 W to power a horn rated at "100 watts programme". If the horn is rated at "100 watts r.m.s.", then it is in order to drive it with a slightly higher power amplifier provided (a) the system is never driven with pure sine waves and (b) the excess power capacity is only used sparingly. Bearing in mind that clipping will usually occur in the bass channels first, the bass amplifiers should be rated well above the r.m.s. rating of the loudspeaker amplifier powers, typically being two to five times greater.

The majority of professional power amplifiers on the market are very good, but the distortion figures at the maximum power output, particularly at the extremes of the audio band, are always revealing. Also, a good power amplifier should drive impedances well below its nominal load impedance at full power. In PA applications, the need for absolute reliability cannot be overstressed. Amplifiers with massive heatsinks, "redundant" output stages, thermal cutouts, failure and status indicators, welded steel cases, robust panel components and readily accessible fuses or circuit-breakers are a great help.

HORN DISPERSION CHARACTERISTICS

PA loudspeaker dispersion characteristics should be neither laser-like nor omnidirectional. When sound emanates from an aperture much smaller than the wavelength of that sound, the aperture is said to be a point source, and the radiation is omnidirectional. The wavelength of a 200 Hz note is about five feet. At this frequency then, a 15 inch direct radiator acts as a point source. A bass bin, however, has dimensions which approach five feet, and thus bass bins are relatively directional at this, and higher frequencies. The larger a horn's mouth, the lower the frequency

Fig. 5. The midrange diffraction horn
at which sound dispersion can be channelled forwards. Therefore, giant horns are to be preferred at outdoor concerts, where sound that does not reach the audience directly is lost sound.

Unlike direct radiators, the dispersion characteristics of high frequency horns are readily tailored. Direct radiators are invariably very directional at high frequencies, but the flare of a horn can be modified to diffract sound waves and provide very wide vertical and horizontal dispersion. The midrange diffraction horn (Fig. 5) has flares which suggest wide vertical dispersion. Indeed, diffraction horns are regularly seen mounted sideways, in the mistaken belief that this gives the best dispersion! In fact, the dispersion is typically 150 degrees in the horizontal plane when the horn is used as illustrated. This dispersion is a result of diffraction about the sharp vertical (unflared) edges of the horn.

If we couple lots of small horns, which approach point sources, to a common driver, we can achieve wide dispersion, and because the total mouth area of the horn (equal to the sum of the individual horns or segments) is large, the cutoff frequency can be low. Also, each segment points in á slightly different direction, which further promotes wide angle dispersion. The dispersion characteristics are thus partially controlled by the segments, which gives such a horn very flexible dispersion properties. This is the multicellular horn (Fig. 6), with a dispersion angle of 150 degrees by 60 degrees vertical. Many horns which look like multicells are merely bifurcated.

Fig. 6. A 5×2 multicellular horn (Vitavox)

Fig. 7 (left). The acoustic lens

Fig. 8 (right). A radial horn

Fig. 9 (left). A "JBL" style long throw ''mid-bin'"

The acoustic lens (Fig. 7) defies visual analysis. It diffracts sound, but not only in the direction implied by the slanted plates. In fact, the dispersion is predominantly horizontal, being typically 140 degrees by 40 degrees. The lens is currently popular in live sound systems, but its cutoff frequency is usually quite high, and it usually has to be used with direct radiators. It is inferior to the multicellular horn in terms of efficiency, cost and dispersion flexibility. Moreover, the multicell has a much lower cutoff frequency, although the levity of a lens makes it amenable to roadies!

The wide dispersion horns described so far are used to cover the front rows at a large venue, or for comprehensive coverage in clubs and small halls. These are short throw horns. In larger halls, narrow dispersion horns are required to supply concentrated sound to the rear seats; these are long throw horns, and are usually of the radial variety (Fig. 8). However, in four way systems, high bass frequencies (200 to 600 Hz) are often handled by the "JBL" style long throw "mid-bin", as depicted in Fig. 9. Both types of long throw horn have typical dispersions of 60 degrees by 30 degrees vertical.

THE MINIMUM SOURCEIDEAL

When several loudspeakers operating over the same bandwidth are close together, interaction occurs and spurious phase cancellations result. This "phase distortion" causes colouration (which is displeasing to the ear) and upsets the dispersion properties of loudspeakers. It can also exacerbate acoustic feedback problems. To minimise phase distortion, the minimum number of sound sources lover each band) should be used. This is an especially good reason for never using direct radiators in high power sound systems. A horn will replace 10 to 50 direct radiators, thus it is possible to get much nearer to the minimum source ideal using horns; indeed, in small PA systems it is often possible to achieve the ideal of only one sound source over each band of frequencies.

THE STACK

PA horns should be stacked up-hence "the stack". For small halls, where wide dispersion is all that is required, assuming a tri-amplified system is used, a three horn stack is ideal. This consists of bass, midrange and treble horns in ascending order. In larger halls, long throw mid and treble horns may be necessary, hence a minimum of five horns.

Interactions between long and short throw horns can be minimised by thoughtful angling and stacking. If higher SPL's are required, additional three or five horn stacks can be used. The stack is thus a module. However, the concept of a stack as a certain physical configuration must be dispensed with when several stacks are used in tandem. If they are merely used like building bricks, serious phase irregularities will occur; a rearrangement of the components of the composite stack is usually necessary. As SPL requirements increase, given that efficiency cannot be augmented, a proliferation of horns is inevitable, and skill is required in order to produce good results.

STACKS FOR SMALL HALLS

The author's horn stack shown on the second page of this supplement uses a giant bass horn with a cutoff frequency of 2 Hz when corner loaded. A midrange diffraction horn provides wide angle coverage, and for low cost, piezoelectric diffraction horns are used above 3 kHz . Several are required to counter the "deadness" common to small halls which have been acoustically treated. Note the strategic angling for minimal interaction. The stack is often at audience level, thus the midrange and treble horns are mounted well above head level to prevent excessive sound absorption. This stack weighs 80 kg and is equivalent to 2 tonnes of direct radiator loudspeaker cabinets!

Table 1 shows that corner-loading a bass bin provides the lowest cutoff frequency, but wall loading is often the best that can be achieved. When using a single bass bin, however, wall loading is negligible. In this case, providing a solitary bin with baffles (Fig. 10) will greatly enhance the low frequency response. If a separate vented enclosure is used, this should be stacked immediately above the bass bin(s). Using the high frequency horns described earlier, Figs. 11a and 11 b show alternative and broadly equivalent approaches to horn stacks for small venues, where wide dispersion is all that is required.

STACKS FOR LARGE HALLS

In large halls, long throw horns are required to reach the furthermost seats, though these should not be used unless

Fig. 10. A bass bin fitted with baffles

Fig. 11a (above) and 11b (right). Alternative approaches to horn stacks for small venues
absolutely necessary. Bass reflex enclosures do not have long throw properties, thus large numbers of bass bins will be required to project the low bass; when these are tightly stacked together, they provide highly effective mutual wall loading which greatly augments their bottom end response. Fortunately, the inevitable phase irregularities resulting from this arrangement will usually cause cancellation well above the bass crossover point.

The long throw horns should preferably be mounted well above the main stack, typically on the proscenium arch or on scaffolding, as shown in Fig. 12. In the side view of this stack note that the long throw horns are angled downwards, into the audience. Otherwise the sound is likely to hit the rear wall-and be reflected back! This slap-back echo is a perpetual problem in clubs with low ceilings and the need to build stacks high whenever possible cannot be overemphasised. As stack height increases, it becomes progressively easier to set the long throw horns at an angle that discriminates between the rear wall and the rear seats. If scaffolding is not available, it will be necessary to mount the long throw horns on top of the stack. A wedge provides the necessary 10 degrees to 15 degrees of downwards tilt.

Fig. 12. A horn stack with long throw horns mounted above the main stack and angled downwards

A " 5 kW "' horn loaded stack made up of: two Cerwin-Vega bass bins each with two 750W 18in drivers (frequency range $\mathbf{4 0 - 2 5 0 H z}$); five "Philishave" bins-shown in the centrethese are Martin 212 midrange horns, 250W each (frequency range $250-1500 \mathrm{~Hz}$); 8 JBL 2350 radial horns- 80 degrees by 60 degrees dispersion-100W each (frequency range $1500-4800 \mathrm{~Hz}$); four JBL 2345 radial horns- 90 degrees by 40 degrees dispersion-100W each (frequency range $\mathbf{4 8 0 0 H z}-16,000 \mathrm{~Hz}$) ; these incorporate four JBL Bullet treble horns which cover the same frequency range. (Courtesy Muscle Music)

Fig. 13. An impressive PA stack

An alternative, and very impressive looking stack is depicted in Fig. 13. It is currently fashionable to use acoustic lenses and direct radiators in place of the multicellular horn for short-throw midrange and treble. However, the low efficiency of these units takes us away from the minimum number of sources once again. When a stack of this kind is used, or several of the stacks illustrated in Fig. 12 are partnered, it is expedient to angle the high frequency speakers away from each other as much as possible to minimise interaction (Fig. 14). Excessive angling, however, will cause a lot of sound to hit side walls which is not helpful! Likewise, boxes containing arrays of piezo-electric horn tweeters usually have bevelled fronts.

STEREO

So far it has been assumed that the sound system has a stereo format, with stacks either side of the stage. This layout is far from ideal. A minority of the audience will be suitably seated to hear an acceptable stereo effect. Transient sounds from percussive instruments will sometimes be heard as two discrete signals out of time with the music. Many sound engineers limit stereo to drums and special effects, hence the stacks will be working largely in mono. If we dispense with stereo altogether, then phase anomalies between the two stacks can be eliminated. A central horn cluster on the proscenium arch is sometimes a viable solution, and works very well.

The heavy bass bins may have to remain on stage, but by a suitable choice of crossover frequency, their phase anomalies can be minimal. In theory, the vertical displacement of the $\mathrm{mid} /$ treble horn cluster is not readily sensed by the ears. However, people differ and the cluster can be distracting, particularly if it is more visible than the musicians!

Another idea, akin to tri-amplification, is to split up a sound system such that separate amplifiers and loudspeakers are used for drums, keyboards, vocals, etc. The advantages are similar: the sound is subjectively louder, it is cleaner and the imagery is also greatly improved, giving a better impression of live performance rather than a glorified discotheque plus stage act. This is, of course, the situation in a small band without a "PA"!

MIXING

In a four piece jazz-rock band, for instance, it is possible to increase the power of the instrument amplifiers to around 300 watts before the drum kit requires amplification. At this point it would be usual to consider mixing the whole band and using a common sound system. If the advantages of mixing could be sacrificed for sound quality and imaging, an alternative step would to be use a "drums amplifier". Each instrument would retain its own separate "sound system", little intermodulation can occur and the music remains totally realistic in terms of imagery.

Fig. 14. Angling of $h . f$. horns for minimum interaction

A rear view of the 5 kW stack, shown on the previous page, together with a $\mathbf{2 k W}$ sidefill stack (shown on the extreme right) for stage monitoring. Also shown are two 5ikW amplifier and crossover racks. (Courtesy Muscle Music)

The mixing desk used with the equipment shown above and on the previous page. The group can be seen in the background together with the sidefill stack and 5 kW stack which are just visible above the equipment on the right

With a little ingenuity and a few wires, sound balance could still be controlled by someone off stage. For small bands, the important point is to avoid using a common sound system until it is both absolutely necessary and sufficient funds are available to purchase good equipment of high power handling capacity. It is often far better to hire a good PA system when the need arises than to own cheap but inadequate equipment.

Always place your amplifiers as close as possible to the loudspeakers so that the shortest possible speaker cables can be used. Although it is feasible to have long speaker leads with little power loss by using $6 \mathrm{~mm}^{2}$ and similarly massive cables, the large capacitance and inductance of such cables may have insiduous effects on sound quality, quite apart from the great cost. For lengths under 5 metres, $1 \mathrm{~mm}^{2}$ two core sheathed p.v.c. cable is ideal, though butyl rubber cables are somewhat tougher.

Budding sound engineers are reminded that in large PA rigs, unseen, and sometimes rather humorous, dangers can lurk. In 1972, a well-known British manufacturer equipped the Lincoln rock festival with a 10 kW system. This promptly blew someone off the stage when an organist hammered on a chord miked through the system!

FURTHER READING
Paul Klipsch—Loudspeaker performance (Wireless World, February 1970)
Jack Dinsdale-Horn loudspeaker design (Wireless World, March-June 1974)
Adrian Hope--Hearing Damage (Studio Sound, August \& December 1975)
Dave Martin-Speaker technology for sound reínforcement (Studio Sound, March 1976)
Stephen Court-Quality performance IStudio Sound, November 1976)
Richard Galbraith—Rock music and hearing loss (J.AES, March 1977)
Ken Dibble—Design considerations for a PA speaker system (Studio Sound, May 1977)
Terry Nelson-Sound on stage (Studio Sound, May 1978)

CMOS		4020	50p	4050	25p
		4022	50p	4060	80p
		4023	13p	4066	30p
		4024	40p	4068	13p
4001	13p	4025	13p	4069	3 p
4002	13p	4026	90p	4070	13 p
4007	13p	4027	28p	4071	13 p
4009	30p	4028	45p	4072	13 p
4011	13p	4029	50p	4081	13p
4012	13p	4040	55p	4093	$36 p$
4013	28p	4041	55p	4510	60 p
4015	50p	4042	55p	4511	60 p
4016	28p	4043	50p	4518	65p
4017	47p	4046	90p	4520	60 p
4018	55p	4049	25p	4528	60p
FULL DETAILS IN CATALOGUE					

TTL		7473	$20 p$	74141	$55 p$
7400	$10 p$	7474	$22 p$	74145	$55 p$
7401	$10 p$	7476	$25 p$	74148	$90 p$
7400	74150	$55 p$			
7402	$10 p$	7485	$55 p$	74151	$40 p$
7404	$12 p$	7486	$20 p$	74154	$65 p$
7406	$22 p$	7489	$135 p$	74157	$40 p$
708	$12 p$	7490	$25 p$	74164	$55 p$
740	$10 p$	7492	$30 p$	74165	$55 p$
7413	$22 p$	7493	$25 p$	74170	$100 p$
7444	$39 p$	7494	$45 p$	74174	$55 p$
7420	$12 p$	7495	$35 p$	74177	$50 p$
7427	$20 p$	7496	$45 p$	74190	$50 p$
7430	$12 p$	74121	$25 p$	74191	$50 p$
7432	$18 p$	77122	$35 p$	74192	$50 p$
7442	$38 p$	74123	$38 p$	74193	$50 p$
7447	$45 p$	7425	$35 p$	74196	$50 p$
7448	$50 p$	74126	$35 p$	74197	$50 p$
7454	$12 p$	74132	$45 p$	74199	$90 p$

OPTO

LED's $0.125 \mathrm{in}, 0.2 \mathrm{in}$ each $100+$ $\begin{array}{llll}\text { Red } & \text { TIL209 } & \text { TIL220 } & 9 \mathrm{p} \\ \text { Green } & 7.5 \mathrm{p}\end{array}$ $\begin{array}{lllll}\text { Green } & \text { TIL211 } & \text { TIL221 } & 13 p & 12 p \\ \text { YeHow } & \text { TIL213 } & \text { THL223 } & 13 p & 12 p\end{array}$ Clips DISPLAYS
$\begin{array}{llll}\text { DL704 } & 0.3 \text { in CC } & 130 \mathrm{p} & 120 \mathrm{p} \\ 130 \mathrm{p} & 120 \mathrm{p}\end{array}$
DL707 0.3 in CA

SKTS

by Texas

 $\begin{array}{lrllll}8 \text { pin } & 8 p & 18 p i n & 14 p & 24 \text { pin } & 18 p \\ 14 p i n & 10 p & 20 \text { pin } & 16 p & 28 p i n & 22 p\end{array}$ 16pin 11p 22pin 17p 40pin 32 p 3 lead T018 or T05 socket. $10 p$ each Soldercon pins: $100: 50$ p 1000:370p
PCBS

Size in.	0.1 in	0.15 in.	Vero
2.5×1	$14 p$	-	Cutter $80 p$.
2.5×3.75	$45 p$	$45 p$	
2.5×5	$54 p$	$54 p$	Pin insertion
3.75×5	$64 p$	$64 p$	toot $108 p$
3.75×17	$205 p$	$185 p$	
Single sided pins per 100 $40 p$ $40 p$			

pins per 100 40p-40p
Top quality fibre giass copper board. Single sided. Size $203 \times 95 \mathrm{~mm} .60 \mathrm{p}$ each
'Dalo' pens. 75 p each

RESISTRS

Carbon film resis ors. High stab
low noise 5%
E12 series, 4.7 ohms to 10 M . Any mix $\begin{array}{llll} & \text { each } & 100+ & 1000+ \\ 0.25 W & 1 p & 0.9 p & 0.8 p\end{array}$ 0.5 W develooment packs 1 p Special development packs consisting of 10 each value from 4.7 ohms to $0.0 .25 \mathrm{~W} £ 5.70$ METAL FILM RESISTORS Very high stabinty. low noise rated at 2 W 1%. Avalable from 5 lohms to 330 k E24 series. Any mix

0.25 W	each	$100+$	$1000+$
	4 p	3.5 p	3.2 p

PLEASE WRITE FOR YOUR

STEVENSOM FREE COPY OF OUR 80 PAGE CATALOGUE OF COMPONENTS.
OVER 2500
ITEMS LISTED

LNEAR

LF356 M301AN 80 p NE531 9 $\begin{array}{lll}\text { LM308 } & 60 \mathrm{p} & \text { NE555 } \\ \text { M } 318 \mathrm{~N} & 75 \mathrm{p} & \text { NE5 }\end{array}$ A SELECTIONI LM318N 75p NE567 100 p A SELECTION 709
741 \qquad
$\begin{array}{ll}7106 & 850 p \\ 7107 & 900 p\end{array}$
$\begin{array}{lr}\text { CA3046 } & 900 p \\ \text { CA } & 50\end{array}$
CA3080 70 p LMC1458 32p ZN425E 390p
CA3130 90p MM57160 590p ZN1034E 200p

TRANSISTOA

ORS

AC

STEVENEON Electronic Components

SPECIAL OFFERS

A range of special offer items valid during February. All orders placed for these items must be received during February

Pack of $3 \times$ LM380
Pack of 30×1 N4001
Pack of $4 \times$ FND500
Pack of 15×2 N3702
Pack of $15 \times$ BC107

Special pack of nuts + bolts containing
over $6004 \mathrm{BA}+6 \mathrm{BA}$ nuts, bolts and
washers
330p 250p
Pack of 4 red +4 black crocodile clips . $64 p 50 p$
Mixer control knobs, per 100 (mixed)
colours to suit

MULTIMETERS

A really smart looking multimeter with an impressive specification for such a small size. The very clean scale in white and green on a black background makes this meter very easy to read. The D.C. Impedance of this meter is 4 K ohms per volt
which is exceptionally good compared
with the vast majority of multimeters of
a similar size.
$£ 5.95$ each.

SPECIFICATION
DC Volts
AC Volts
DC Current
Resistance

PANELMETERS

High quality $2^{\prime \prime}$ wide view meters. Zero adjustment. Bask illumination wiring. Available in 50 uA, 100 uA. $500 \cup \mathrm{~A}$. $1 \mathrm{~mA}, 100 \mathrm{~mA}, 500 \mathrm{~mA}, 1 \mathrm{~A} . £ 4.95 \mathrm{ea}$ VU meter similar style. $£ 1.50$ ea.

SLIDE POTENTIOMETERS

Good quality 60 mm
travel slider with
80mm fixing centres
Available from $5 k-500 k$
in \log and linear. $55 p$ each.
Suitable black knobs 6p ea. Coloured knobs 10p ea.
We now offer one of the widest ranges of components at the most competitive prices in the U.K. See catalogue for full details. We welcome callers at our shop in College Rd Bromley, from Mon-Sat, 9am-6pm (8pm on Weds and Fridays). Special offers always available.
We also provide an express telephone order service. Orders received before 5 pm are shipped same day. Contact our sales office now with your requirements. TELEPHONE: 01-464 2951/5770.

Quantity discounts on any mix TTL, CMOS, 74LS and Linear circuits: $100+10 \%, 1000+15 \%$. Prices VAT inclusive. Please, add 50 p for P \& P. no charge for orders over $£ 15$, Oificial ord
welcome. All prices valid to April 1980 .

BARCLAYCARD
\& ACCESS WELCOME.
Mail orders to: STEVENSON (Dept PE)

KAcuustically Couplephone Modent

CONSTRUCTION

THE SYSTEM is constructed on four boards, two of which are non clad Veroboards, and the remaining two are i.c. stripboards which have edge connector pads that are notused in the Modem. See Figs. 2.2, 2.3, 2.4 and 2.5.

$$
v^{\prime \prime \prime} .
$$

APPLICATIONS INFORMATION

The following section deals with uses to which the acoustic modem may be put. It deals with various applications; many enabling things to be done over a telephone that could not normally have been achieved without the use of this device.

Data transfer from a data bus on any minicomputer, or for that matter any device that presents its output in parallel form is possible. Obtain and study the AY-5-1013A data sheet.

This Integrated circuit is probably the most useful device ever produced for data transmission and interfacing with microprocessors etc. Basically its function is to accept a parallel 8 bit word, and when it is told, clock that data out in serial format, inserting its own start, stop, and parity checking bits automatically. The device is split into two parts, transmitter and receiver. It is designed to interface directly a parallel output device to a modem.

Having incorporated this device in the acoustic modem system the possibilities are endless in terms of data that may be sent over long distances. A block diagram of the UART is "shown in Fig. 2.1, as a transmitter with associated waveforms.

It so happens that General Instruments produce another Integrated circuit that is able to interface directly with the 'UART'. This i.c. is General Instruments 2376 Keyboard Encoder. This device is a Read-Only Memory (ROM) that will

Fig. 2.1(a). UART Transmitter block diagram

Fig. 2.2. Modem Transmitter board

Fig. 2.3. Modem
Receiver board

Fig. 2.4. LED Driver board

Fig. 2.5. Power Supply board

OVER RUN
Fig. 2.7. Circuit for automatic

Send/Receive
encode all the characters on a standard "OWERTY" (typewriter) keyboard and produce an output in parallel ASCII along with a strobe pulse. Keyboards have become inexpensive now and some of them are already encoded using the 2376 ROM. The Parallel output and strobe from such a keyboard may be used to directly load the AY-5-1013A UART with ASCII code and then send by FSK via the modem to the distant terminal.

SIGNALS IN DC LEVELS

It is even possible to send and receive low frequency signals, and d.c. may also be transmitted using Binary coded data, since our UART may be loaded with any 8 bit parallel data. From 8 bits of data we could resolve a quantity into $2^{0}+2^{1}+2^{2}+2^{3}+2^{4}+2^{5}+2^{7}+2^{8}$ parts which decimally speaking $=1+2+4+8+16+32+64+128$ which is equal to 255 . The method used to convert a d.c. voltage or a slowly changing signal to 8 bit binary is known as Analogue-to-Digital conversion. A very useful integrated circuit can be used to do just this. It is the Ferranti ZN425E. This chip will accept an analogue signal and decode it into 8 bit parallel data. It will also work in the reverse mode converting the digital data to an analogue signal.

There is a worthwhile modification to the acoustic modem to further improve its versatility. This is to do away with the Send/Receive switch and arrange for remote Send/Receive under the control of an external device. This modification is outlined in Fig. 2.7.

A Range of Performance from...
 ...HAMEG

HM307 Single Froce $D C-10 \mathrm{MHz}$ Plus Built in Component Tester

\& 48 149

Dual raceDC-20MHz, $5 \mathrm{mV} / \mathrm{cm}$. Full $X-Y, 30 \mathrm{MHz}$ Trigger, Plus TV Trigger250

HM412 Dual Trace DC- 20 MHz , $2 \mathrm{mV} / \mathrm{cm}, X-Y, 40 \mathrm{MHz}$ Trigger, Plus SweepDelay350

HM512 Dual Trace DC-50 MHz. $5 \mathrm{mV} / \mathrm{cm}, X-Y, 70 \mathrm{MHz}$ Trigger Sweep Delay,
Plus Single Shot. Sweep Delay and After Delay frigger
HM812 Dual Trace as per HM512.

Plus Storage, Automatic Storage and Variable Persistence

For FULL DETAILS and DISTRIBUTOR LIST Contact

Hameg Ltd., 74-78 Collingdon St.,

Luton, Beds.

LU1 1RX.

PERFORMANCE AND RELIABILITY ARE THE SEALS FIRMLY STAMPED ON THE COMPLETE HAMEG RANGE AND IT IS A COMPLETE RANGE

Prices UK List ex VAT

A selection of readers original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought
Why not submit your idea? Any idea published will be awarded paymen according to its merits.
Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere

WAH-WAH PEDAL

MANY guitarists will be familiar with the Wah-W ah pedal, but many of the available makes or published designs are often unsatisfactory-especially for professional use. As a guitarist, I have found that some units have a very small or uneven range, whereas others are too harsh-often with annoying 'clicks', which give a scratchy sound, which totally spoils higher notes. Even commercially available units have disadvantages-notably in background noise, changing in volume as the pedal is moved, and. of course. price.

So, with these problems in mind, it was decided to sit down to design a really highquality unit, delicately balanced between the harsh and smooth sounds. This circuit produces a subtle but effective sound, perfect for guitars or other electric instruments, and may be used as a treble booster.

This unit is best built as a pedal. One of the jack sockets (usually the input) should be replaced with a switched socket to connect the negative supply when a plug is inserted. A foot-switch should be fitted to by-pass the circuit. The value of the potentiometer depends on the swing of the pedal, but it should be made to give a swing from 0 to 50 k .

The unit is simple to construct and gives a really superb sound-especially if used with the recently published 'phaser'. A really worthwhile project.

Richard Fuller, Much Hadham, Herts.

200 WATT TEMPERATURE CONTROLLER

THE temperature controller described was designed for propagator heaters rated up to 200 watts, but can be used in many applications where good control is required. The stability is typically within $0.5^{\circ} \mathrm{C}$ of the set point and the temperature range is approximately 10 to $40^{\circ} \mathrm{C}$.

For safety considerations, the temperature sensor is electrically isolated from the mains side of the controller and con nected to earth. This means that if the device itself becomes damaged in any way. there would be no danger.

A National Semiconductor LX5700H integrated circuit temperature transducer is used as the sensor. This has an operational amplifier fabricated on the same chip and gives an output directly proportional to degrees Kelvin at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$. (Note: ${ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273.2$.)

The output is compared with a stable reference voltage by means of the differen tial amplifier 1 CL . Potentiometer VRI determines this reference voltage which thus sets the operating temperature of the controller.

If necessary, the lower and upper limits can be extended by altering RI and R2 respectively. However, one should have in mind that the maximum permissible temperature is restricted by the operating temperature range of the sensor which is -85 to $+125^{\circ} \mathrm{C}$ for the one used. The output from ICI is applied via TRI to the unijunction transistor (TR2) firing and triac switching circuit to provide full-wave, phase-controlled a.c. power to the load.

The 2.7V Zener diode D2 in series with the lok base resistance is included to ensure TRI can switch hard off even if the output voltage swing from 1 Cl does not fully approach the supply voltage.

The pulse transformer Tl provides isolation for the triggering pulses and the supply to the unijunction trigger circuit is isolated from the mains with transformer T2. This supply is then rectified and clamped to 20 volts by the Zener diode D4. The Zener diode DI and associated capacitor C1 provides a 6.2 V smoothed d.c. supply for the preceding circuitry. As the reference voltage is taken off this supply

D1 should preferably be a temperature compensated Zener such as a Muliard 1N82I or RS 283-097.

The mains filter is provided to suppress radio frequency interference caused by triac switching. It should be mentioned that as the triac is rated at 8 A it is only necessary to increase the rating of the filter to improve the maximum power capability of the controller (e.g. RS 238-435 for 2A or $238-\mathbf{3 9 0}$ for 5 A load). However, if used at maximum power, the triac must be mounted on a heat sink having a thermal dissipation of $4^{\circ} \mathrm{C} / \mathrm{W}$ (e.g. RS 401/497). Alternatively, as the tab is electrically isolated, it may be fixed directly to the chassis for heat dissipation.

The sensor itself can be made into the form of a probe by insulating with sleeving and encapsulating with silicon rubber compound or expoxy resin.
D. Wedlake,

University College.
Newport Rd.,
Cardiff,
CF2 ITA.

SIMPLE GUITARTREMOLO

FROM switch-on, C1 starts to charge via R1, R2, and VR1 (VR1 determines the rate of charge/discharge and therefore the frequency of operation). When Cl reaches $\frac{2}{3}$ of the supply voltage, pin 7 switches to the low state, C1 then dis charges through pin 7, via R2, VR 1. Discharge stops when the voltage across C decreases to $\frac{1}{4}$ of the supply, this activates the trigger (pin 2) and the cycle starts again.

The output from pin 3 is used to drive the l.e.d. via a 470 ohm resistor. The light from this varies the resistance bf R4 which via C3 and VR2, short-circuits the line and consequently attentuates the signal, VR2 controls the depth of attentuation

Although the output from the 555 is a square-wave this is not really noticeable except at low frequencies, which are not normally used for this application anyway.
is important to house the unit in a light-proof box.
A.R. Curtis,

Bedhampton, Hants.

HEXADECIMAL DISPLAY

T
THIS four-digit display is capable of dis playing the letters $\mathrm{A}-\mathrm{F}$ as well as the digits $0-9$, making it ideal for use with microprocessors, in the monitoring of address buses for example. However, it may be used in frequency meters, clocks, etc., although using 7447 s would be easier in these latter cases. It is designed to act as a direct drive display, but may be used as a multiplexed display by applying the inputs directly to IC8 and the display drivers, leaving out ICs $1-7$.

ICIb, VRI, and Cl form an oscillator which clocks the two-stage counter IC4.

The outputs are decoded by IC 5 to mul tiplex the display. ICla, IC2, and IC3a-c reset the two flip-flops; SI controls at which point in the count they reset. It is therefore possible to alter the number of operating digits in the display.

ICs 6 and 7 are multiplexers, controlled by IC 4 , which sequentially feed each of the four four-bit binary data inputs through to the decoder IC8. The sixteen outputs are fed to a diode matrix.

The seven diode matrix outputs are fed through invertors and current-limiting resistors to a common anode display ($4 \times$

FND507, $2 \times$ DL727, etc., etc.). Nonl.e.d. displays may be used, provided that suitable display drivers are used, and that no more than 16 mA are required per segment. The gates ICSa-d will source $800 \mu \mathrm{~A}$ to operate the display drivers. The decimal points may be separately driven, if they are required. L.c.d. displays should not be used.

R. G. Stubbs,
 Dartford,
 Kent.

A hi-fi stereo amplifier producing 30 W r.m.s. per channel and employing a new high quality hybrid power amplifier IC for ease of construction.

This design has switchable active filters for scratch and rumble giving 12 dB per octave roll off. The filters are switched completely out of circuit when not in use to obtain excellent noise figures. The amplifier also has a tone defeat facility which switches the tone control network out of circuit. Other facilities are; inputs for phono, aux, tuner, tape and a mono/stereo switch.

A complete kit of parts will be available.
To enable a hi-fi system to be put together at an exceptional price we have also been able to arrange a special offer on a pair of Videotone GB3 bookshelf speakers.

This special offer is available on an individual basis to all readers.
The GB3 speakers are an improved version of the Videotone Minimax 2 which has been highly acclaimed by the hi-fi press over the past five years and has been favourably compared with monitor speakers.

This unusual design enables a number of model locomotives to be individually controlled on one interconnected layout. Construction for a four channel controller will be described in detail but it is possible to extend the unit up to ten channels.

8 Pare Suptlomerdt... UIDED for EVERYONE

PRACTICAL

DEAFNESS is one of the most disabling afflictions amongst the elderly. While not life endangering this condition causes considerable hardship and places many restrictions upon the sufferer. These mainly elderly people tend to miss vital parts of a conversation, misunderstanding the simplest of messages resulting in them being regarded as slow witted and dull. The effort of repeating a casual remark three or four times is enough to deter most of us from even attempting to hold a conversation with anyone who is 'hard of hearing'. The result is that the deaf often become isolated and ignored. Whereas the blind receive sympathy all too often the deaf receive nothing but contempt and irritation.

HEARING AIDS

The electronic design and construction of hearing aids is no problem in the age of microelectronics. However, conventional hearing aids while having the advantage of cosmetic concealment and portability are often inadequate when conversation rather than the stereotyped responses of everyday life is required. It is the striving for cosmetic acceptability (very important if they are to be worn and not rejected in embarrassment) which renders these hearing aids acoustically rather than electronically poor.

Moulded earpieces may be worn comfortably and inconspicuously, but are poor at reproducing the lower frequencies because of their size. The sound from such earpieces is of necessity distorted and may cause problems even for those of us with normal hearing.

The other acoustic/electronic interface is the microphone. Here again size may be the problem in the behind the ear type of hearing aid where the size of the sound receiving surface is limited. This restriction causes low sensitivity and distortion. The pocket type of hearing aid is less attractive to the wearer because of the unsightly cord leading to the ear, but it can incorporate a reasonably sized microphone with minimal distortion. The disadvantage of this type of aid is that it is usually hidden in the clothing and is liable to pick up the rustle of the fabric as the wearer moves.

In order to hold a conversation with a relatively deaf person, a device with better acoustic rather than electronic properties than the conventional hearing aid would be of use. A circuit was therefore built which would amplify a
signal from a microphone and supply a pair of earphones. In fact the results obtained using a cheap crystal microphone insert, and a pair of inexpensive headphones was quite encouraging, and the prototype unit is now in daily service being preferred by the patient to her NHS hearing aid for one-to-one conversation, and watching television.

THE CIRCUIT

The input from a high impedance microphone is fed to IC1 through C1. The 741 i.c. functions as a high gain preamplifier driving the push pull output stage. The gain obtained by the 741 may be varied by changing the value of R5, the gain increasing as the resistance is increased. Base bias for the output transistors is provided by the R3, R4, D1, network, the forward voltage across D1 separating the bases sufficiently to reduce crossover distortion.

The circuit diagram in Fig. 1 shows this simple unsophisticated device which is easily constructed by most people in a very short time, and costs little more than $£ 1$ (the microphone and earphones, may be bought for about $£ 5$).

COMPONENTS .

Resistors

R1	$33 k$
R2	$33 k$
R3	$10 k$
R4	$10 k$
R5	$180 k$

All $\frac{1}{2} \mathrm{~W}$ carbon 10%
Capacitors

C 1	0.33μ	
C 2	100μ	16 V electrolytic

Semiconductors

D1	IN 4002
TR1	BC 142
TR2	BC 143
IC1	741

Miscellaneous
0.1 in Veroboard. Stereo jackplug socket. PP7 battery. $3 \frac{1}{2} \mathrm{~mm}$ jack plug and socket. Microphone (crystal insert is sufficient). Light coax, cable. Headphones

Fig. 1. Circuit of Conversation Aid
A Veroboard layout is presented in Fig. 2, the output of the mono amplifier being supplied to the headphones.

The whole unit including a PP7 battery was housed in a plastic box 5 in $\times 2.5$ in $\times 2.5$ in and the microphone was attached using light weight coaxial cable, and a $3 \frac{1}{2} \mathrm{~mm}$ jack plug and socket.

APPLICATION

Cheap and simple electronics can play a useful role in alleviating the problems of deafness once the idea of miniturisation is abandoned. Concealed hearing aids are a great benefit to the deaf, but they have their limitations. The

Fig. 2. Veroboard Layout
device described will not help the truly 'stone deaf', but may do much to retain or restore the domestic harmony and social life of the 'hard of hearing'.

Honnidnun

Waveform And Function Generators (mini) Feb. 19-21. National Microprocessor and Electronics Centre. London (close to Tower of London). All mini-exhibitions held at this centre run concurrently with a permanent exhibition of electronics. LI
BEX Feb. 20-2 1. Pavilion Bournemouth. K
IEA/Electrex Feb. 25-29. National Exhibition Centre, Birmingham. I Wire Preparation (mini) Mar. 4-6. National Microprocessor and Electronics Centre. London. L 1
Keyboards And Switches (mini) Mar. 18-20. National Microprocessor and Electronics Centre, London. Ll
Viewdata March 26-28. Wembley Conference Centre, London. O Computer-Aided Design (conference \& exhibition) March 31-April 2. Metropole, Brighton. Details: CAD 80/0483-31261
Small ATE April 1-3. National Microprocessor and Electronics Centre, London. LI
Applying Microprocessors April 8-10. National Microprocessors and Electronics Centre, London. L1
Seminex April 14-18. Dept. Physics, Imperial College, London, H1
Communications 80 April 14-18. National Exhibition Centre. I
Calibration April 15-17. National Microprocessor and Electronics Centre, London. El
Welsh Amateur Mobile Rally April 20. Memorial Hall. C
Electronic Test \& Measuring Information April 22-24. Wythenshaw Forum, Manchester. T
International Conference On The Electronic Office April 22-25. London Penta Hotel. Organised principally by the Institute of Electronics \& Radio Engineers. 99 Gower St., London WC1E 6AZ
North Midlands Mobile Rally April 27. Drayton Manor Park, Tamworth, Staffs. Details: Norman Gutteridge, 68 Max Rd., Quinton, Birmingham.
All-Electronics Show April 29-May 1. Grosvenor House, London. E
The Mersey Micro Show April 30-May 2. Adelphi Hotel, Liverpool. O Compec Europe May 6-8. Centre International Rogier, Brussels. L

Great British Electronics Bazaar June 20-22. Alexandra Palace, E
Intel Fair June 24. Wembley Conference Centre, London. U.
Tempcon July 1-3. Wembley Conference Centre. Exhibition devoted to temperature control \& measurement. T
Transducer July 1-3. Wembley Conference Centre. T
Microsoftware (symposium) July 7-10. University of Sussex. S 1
The 1980 Microcomputer Show July 10-12. Royal Lancaster Hotel, London. 0
Avionics (symposium) Sept. University of Surrey. S 1
Harrogate International Festival of Sound Aug. 16-19 (18 \& 19 trade). The Exhibition Centre + hotels. X

E Evan Steadman, 34-36 High st., Saffron Walden, Essex. 60799 22612
C Barry College of F.E. Radio Society, College of Further Education, Colcot Rd, Barry, S. Glam. CF6 8YJ.
H1 Seminex Ltd., 79 High st., Tunbridge Weils, Kent. TN1 1 XZ. 6 0892 39664/5
I Industrial Trade Fairs, Radcliffe Ho., Blenheim Court, Solihull, W. Midlands B91 2BG. 021-705 6707
K Douglas Temple Studios, 1046 Old Christchurch Rd., Bournemouth, Dorset BH1 LLR. 02020533
L Iliffe Promotion, Dorset Ho., Stamford St., London SE1 9LU. 6 01-2618437/8
O Online Conferences, Cleveland Rd., Uxbridge, Middx. UB8 2DD. § 089539262
T Trident International Exhibition, Abbey Mead Ho., 23a Plymouth Rd., Tavistock. Devon PL19 8AU. 08224671
U Brian Crank Associates, 58 London Rd., Southborough, Kent. 6 0892-3181238414
X Exhibition \& Conference Services, Claremont Ho., Victoria Ave., Harrogate, Yorks. © 0423-62677
L1. P. Smith, London World Trade Centre, Europe House, London E1 9AA. 6 01-488 2400
SI Society of Electronic \& Radio Technicians, 57-61 Newington Causeway, London SE1 6BL. / 01-403 2351

Copies of Patents can be obtained from: the Patent Office Sales, St. Mary Cray, Orpington, Kent Price 95p each

NOISE ELIMINATOR

Pioneer of Japan has filed a British patent application (No. 2020 131, dating back to March 1978 under the new laws) which describes an interesting idea for rejecting unwanted noise from audio circuits. The invention is directed primarily at car stereo systems but could have wider applications.

In a car system the cassette deck or radio receiver sections are coupled to the amplifier section by screened leads, but noise from the ignition, windscreen wipers and switches can still breakthrough and pollute the reproduced programme signal. Moreover if power supply current for the amplifier also flows in the screens, any ripple in the power supply will superimpose on the audio signal. These problems are especially noticeable with modern car systems, which are of very high amplification power and aim at true high fidelity. Interference can be rejected by the use of a transformer or photo coupler ahead of the amplifier, but the additional components are expensive if distortion or band limiting is to be avoided. Pioneer now claim that a differential amplifier system is the solution.

As shown in figures 1 and 2 , audio source A (tape deck or radio receiver) feeds amplifier B via a pair of differential am-

FIG. 1

FIG. 2

plifiers. The first differential amp (for the left channel) is based on transistors Q1, 02 with their emitters connected commonly through load resistors R1, R2. A constant current source transistor Q 5 is collector coupled to the emitters of Q1 and Q2. The second diff amp (for the right channel) is similar i.e. transistors Q3, Q4, load resistors R3, R4 and transistor 06 (Fig. 2).

If a noise voltage e_{n} is induced between the terminals E_{in}, E 2 this voltage is directly applied to common input $\mathrm{E}_{\text {in }}$ and common terminal E2. So noise e_{n} is applied to the bases of transistors Q1, Q3. Audio signal e_{i}, on which the noise voltage e_{n} is superimposed is applied to the input terminals $L_{\text {in }}$ and $\mathrm{R}_{\text {in }}$, so a corresponding signal is applied to the bases of transistors Q1, Q4. A differential signal appears at the outputs $\mathrm{L}_{\text {out }}$ and $\mathrm{R}_{\text {out }}$ of the diff amps. This signal exactly corresponds to the audio signal output from the source A. So there is no trace of noise e_{n} at the output terminals $L_{\text {out }}$ E2, and $R_{\text {out }}$. Hence the amplifier B produces a noise-free signal.

Pioneer point out that because the circuit does not rely on a bulky transformer or photocoupler it can be reduced to i.c. chip form and mass produced at low cost and of very compact size.

ANTI-SOUND

The concept of anti-sound is not new. For years engineers have been working towards a system which mimics ambient noise, but in anti-phase, so that the net result is silence. The Munich company Messerschmitt-Bolkow-Blohm GmbH already has several patents on inventions in this field and is now applying for protection on an interesting idea intended to overcome one of the major problems to date. This is non-linearity between the noise sensor and the anti-noise generator. UK patent application no. 2019695 (filed under the new laws and dating back, hopefully not significantly, to 1 April 1978), offers lengthy mathematical back up for Messerschmitt's claim to success with an apparently novel approach. This involves the integration of both the sound sensor and sound generator into a single unit.

Figure 1 shows a combined sensor/generator with a thin walled diaphragm

1 which seals air space 3 in a housing 2. A capacitive distance measuring device 4 determines the time characteristics of the deflection of the diaphragm caused by arriving sound. A signal derived according to the maths in the patent is transmitted to a control 5 which applies a voltage proportional to the deflection signal to a grid electrode 6 beneath the diaphragm. The diaphragm generates appropriate sound waves to interfere with those which it
senses, thereby reducing the ambient sound level in the immediate vicinity.

Figure 2 shows a slightly different combined unit, with a rigid plate diaphragm 11 buckled into housing 12 to seal a vacuum 13. A control force is derived from an accelerometer 14 and applied to the diaphragm 11 via control circuit 15 for a magnet and moving coil arrangement 16. The diaphragm is thus again driven to transmit sound waves which interfere with those which it senses.

FIG. 1

FIG. 2

For some time now we have been on the lookout for a well presented ladies digital watch that would make a good offer. The problem with
most inexpensive ladies watches is that the case that would make a good offer. The problem with
most inexpensive ladies watches is that the case design is often ugly, bulky, flashy or a combination of all three. However, when this particular ladies of all three. However, when this particular ladies
watch appeared in the office and girls from other magazines in the building started asking for them we knew we had a winner.

The watch is a straightforward design with a built-in light. It displays time, date and seconds with a four-year calendar, is I.c.d. and has no extra gimmicks. It comes in a stainless or gilt case with matching fully adjustable bracelet and has a black face surrounding the display. Above all, it is neat and good looking for everyday use.

The twenty or so watches now in use by various staff, their wives or daughters, have proved completely reliable over the past three months; each watch comes with a year's guarantee. In short a nice, no nonsense watch at an excellent price.

To: Videotime Products (PE Ladies Watch Offer), 56 Queens Rd., Basingstoke, Hants. RG21 1 RER. Tel. (0256) 56417 \& 26620 (offer limited to UK and Eire

FRANK W. HYDE

INDIA AND HER SATELLITES

Since the first satellite coverage of India, when a geostationary craft was moved to a position to serve for a trial period, plans were finalised for the future of the continent's own system. The geostationary craft was the ATS6 and was used to test the use of television educational methods. This craft was moved back to its position about a year later and proceeded with its normal tasks.

India has now leased one quarter of an Intelsat 4 A transponder which has been operating with the first of the Insat ground stations. Testing of the first domestic link, between Madras and Delhi began operation in August 1979 and completed its task in November, Another experiment aboard the Ariane as a passenger payload, is an Indian built two transponder experimental satellite which is due for launching in 1980.

In addition to the transponder India has built two scientific satellites. These were launched by Russia.

At the present time the finalising of the design of a remote sensing satellite for dealing with natural resources to be launched in the 1983-1984 period in a polar orbit, is in progress.

COVERAGE AND CONTROL

The whole continent including remote islands, Andamans and Nicobar, will be covered with levels of ground facility. These are large earth stations with two 14.6 m antennae, medium stations with one $14 \cdot 6 \mathrm{~m}$ antenna and remote area terminals. In addition to these principle stations there will be more than 100 meteorological platforms for data collection and six mobile ground stations. There will also be a number, not defined, of low cost ground stations which will be used for direct television coverage.

The Master Control Facility will be at Hassan in Southern India, a Network Control

Facility will be at New Delhi and the third major facility will be the Meteorological Data Utilisation Centre also at Delhi.

The Master Control Facility will provide orbit raising as well as in-orbit control. It is expected that this will be completed by October 1980. The Metec-ological Facility will be completed before first launch.
Insat 1-A is expected to reach full utilisation by mid 1982. Insat 1-B will be launched in the second half of 1982.

Insat is a joint venture of the nation's Space Department, Posts and Telegraph Department of the Ministry of Communications, Indian Meteorological Department of the Minsitry of Tourism and Civil Aviation, and Doordarsham, the Television section of the Ministry of Information and Broadcasting.

The Space Department is the responsible body for establishment of the space facilities. The Post and Telegraph Department is responsible for the telecommunications ground system and for the utilisation of the ground systems whilst the Meteorological Department is responsible for similar facilities in regard to meteorology.

LAUNCH OF INSAT 1-A and 1-B

Insat is designed so that it may be launched either by shuttle or by the NASA/McDonnel Douglas Delta 3910 expendable booster. India's agreement with NASA provides for a Delta back-up option should a shuttle slot not be available. In either case a McDonnel Douglas payload assist module will be used to boost the satellite from a low earth orbit to the geostationary orbit. One of the Satellites will be at final orbit longitude $74^{\circ} \mathrm{E}$ and the other at longitude $94^{\circ} \mathrm{E}$.

The satellites will have twelve transponders for telecommunications and two for television and radio direct broadcasting. The telecommunications transponders will receive ground signals at $5935-6425 \mathrm{MHz}$. and transmit on down link frequencies of $3710-4200 \mathrm{MHz}$. The minimum output will be 32 dbw equivalent isotropic radiated power after seven years in orbit.

The television transponders will receive at $5855-5935 \mathrm{MHz}$. and will transmit at 2555 2635 MHz . They are designed to have a final life output of 42 dbw . All the transponders will have a bandwidth of 36 MHz .

The telecommunications transponders will provide 6,000 channels interconnecting a network of 35 fixed and mobile earth stations of various sizes and capacities. Conventional systems will be used in heavily populated areas but in remote or sparsely populated areas small receiver aerials only will be employed. The low cost receiving aerials will be between three and four metres in diameter. Disaster warnings and ordinary radio programmes could be given in this direct broadcast network.

RADIOMETER

The satellites will carry a high resolution radiometer which will make available at two hourly intervals visible and infra red images of the whole Earth. The visible images $0.55-0.75$ micrometres will have a resolution of 2.5 km and the infra red $10 \cdot 5-12 \cdot 5$ micrometres a resolution of 11 km .
The other facilities are 100 unattended land
and sea based data collection platforms. These will transmit meteorological data, hydrological and oceanographic data to the Delhi centre. Radiometric data will be down linked on a discrete channel at 4034.55 MHz . Collection platform data will have a 200 kHz bandwidth at 4038.1 MHz . The up-link for this data will be 402.75 MHz .

Observations of weather systems will include cyclones, sea surface and cloud top temperatures, water bodies, snow and other terrain changes which will include areas adjacent to India. Thus the close watch of cyclones will enable forcasts up to 12-24 hours in advance of other available methods. This will advance warning times by the direct broadcast system.

The snow coverage facilities are expected to assist the regulation of reservoirs for irrigation, irrigations control and flood control. The sea surface temperature is expected to make it possible to make earlier forecasts of the onset of monsoon periods. In fact there are all the facilities for the Indian continent to control the utilisation of its own natural resources and agriculture.

The meteorological information will be transmitted in real time from the Delhi Earth Station to the New Delhi Data Centre over a microwave link. The New Delhi Centre will analyse process and store data from the platforms and transmit processed images over telecommunications lines to the forecasting offices of the Meteorological Centre.

THE EARTH STATIONS

Five of the stations will have very high gain facilities of the order of $31 \mathrm{db} /{ }^{\circ} \mathrm{K}$. These will be located at the main switching centres of the National Communications system. They will provide remote area communications and an up-link for feeding the ordinary television networks. They will also provide the telephone trunk service. All but the station at Shillong will have two antennae so that there can be simultaneous links with Insat 1-A and 1-B.

Twelve medium sized stations will be erected at Leh and Jullunder in the north of India, Lucknow, Patna, Bhubaneshwar, Ahmedabad and Jaipur in the centre, Hyderabad and Ernakulam in the south, the Laccadive Islands in the Southwest and the Andaman and Nicobar Islands in the southeast. These will provide trunk telephone service and Television up-link feed. The gain of these stations will be $27.5 \mathrm{db} /{ }^{\circ} \mathrm{K}$.

Twelve remote area terminals with a gain of $19.7 \mathrm{db} /{ }^{\circ} \mathrm{K}$ will be used for the telephone service only. These will be at Srinagar in the north, Arunachal Pradesh, Nagaland, Imphal, Mizoram, Agartala and Gangtok (Sikkim) in the north east, Bujand Johpur in the west, Goa and Pondicherry in the south and Minicoy south of the Laccadives, in the southwest.

Six mobile terminals are also to be included in the system. Four of them will be stations which are transportable having gains of 19.7 $\mathrm{db} /{ }^{\circ} \mathrm{K}$. The remaining two will be emergency stations which can be airlifted or moved on jeeplike vehicles. These will be capable of providing both telephone and televisión uplink feed service. All the high frequency ($4-6 \mathrm{GHz}$) earth stations will be linked via the control centre at New Delhi.

THE SATELLITES

The satellites will use three axis stabilisation with a precision momentum bias attitude control system. Two off-axis momentum wheels will be used in the primary mode and a single pitch and yaw wheel. Two-axis infrared earth sensors and a digital sun sensor provide attitude reference. Spacecraft thrusters will fire to unload the wheels.
The antennae reflectors will be deployed when the satellite is in orbit. The circular reflector 1.4 metres in diameter will be used for all the $6-\mathrm{GHz}$ up link reception. Down link will use half of the $4-\mathrm{GHz}$ channels. This reflector will use dual band horns for transmit and receive.

A 1.5×1.6 metre reflector at the opposite end of the satellite will transmit the remaining 4 GHz channels and also the 2.5 GHz down link signals. The antennae produce circular beams but are so designed that the edges limit the flux outside the territory of India. Four printed circuit crossed dipole antennae will be mounted on the earth viewing face of the satellite for the reception of UHF signals from the data collection platforms.

The satellite will weigh $1,279 \mathrm{lbs}$ when in geostationary orbit. The overall dimensions, when all the arrays, antennae. and solar sail are extended, will be $5.8 \times 1.4 \times 17.9$ metres.

The solar sail, to counteract the effect of the
solar wind on the asymmetrical solar array, is a ten foot high conical array.

POWER ARRAY

The solar power array is made up of five panels arranged with a vacant panel area to allow a clear view for the meteorological sensor. The array is 11.5 sq metres and designed to produce 900 W at the end of the spacecraft's seven year life design.

A boost motor for control at apogee uses liquid propellant. This together with the solar sail and the microprocessor control system are innovations not in operation in any earlier design.

SECRET POLLING

Here is a suggestion for a "secret" key polling subroutine on the UK 101, sent in by J. M. Leach of Deal, Kent.

100 POKE 11, 0 : POKE 12, 253 : X=USR (X) ; A=PEEK (531) : RETURN

Now try

10 GOSUB 100 : PRINT CHR\$

 (A) ; GOTO 10The routine described will return any single character from the keyboard without the need to press the RETURN key. This is useful in computer games. However, we should point out that this routine will wait until a key is pressed before commencing execution.

The method suggested in PE November 1979, on page 30 , whereby the keyboard buffer address (57988) is POKEd with the appropriate Row number, and the PEEKed for the expected Column number, has one major advantage. With this method, the machine will sweep past the statement and ignore it if no key is pressed. The more dynamic, or realtime games need this feature, so that if there is no operator response, the machine will continue to animate the screen graphics.

When the latter is used, Control C must first be disabled by POKEing 530, 1 . Use the keyboard matrix diagram of page 14 in the Compukit Manual for Row and Column numbers. You will soon discover the relative merits of these two methods.

101 USERS' GROUP

Sir-Having read your magazine for some years now I have always been interested in your many and varied projects. In the last few months I have followed with great interest your series on the Compukit UK101. l own one of these and it was verv reassuring to see a magazine of your standing devoting so much space to this item.

Recently / have started a user group for
the UK101 and all the members have at some time read the series. For this reason, when I decided to expand the club, I thought it wise to contact you.

The group serves as a clearing house for programs as well as providing useful hints on construction and most other aspects of the 101. We hope to be able to produce a newsletter in the very near future, and perhaps a cassette or two of the most popular programs.

Adrian Waters,
101 Users Group.
For further information, contact: Mr. Waters, Cadover, 117 Haynes Rd., Hornchurch, Essex.

DODGEY DIMENSIONS

Sir-I have built the UK101 and consider it to be superb value. However, recently / discovered a bug in my machine. If during a program I DIMension a string array with the first subscript having one of the following values: 1, 3, 4, 6, 7, 9, 10, etc., the machine hangs up when the program has been run, followed by ?FRE(O). When reset, Warm Start ? FRE (O) gives O TERROR.
eg.
10 DIM A\$(3)
RUN
?FRE(0) . . . hangs up
Warm Start
TFRE(0) O T ERROR
10 DIM A\$ $(5,3)$
RUN
PFRE(0) 7302
OK
Not dimensioning means the machine defaults to 10 and is therefore expensive on memory. My solution at the moment is to DIM at the next highest acceptable number. This results in a loss of memory. All other statements perform normally. I would appreciate any advice on this problem.

Our Compukit does the same. Does anyone have a solution to this?

REACTION TO UFOs

Two CHAMP Programs have been submitted by Peter Davies of Birmingham.

The first program is a "Reaction Timer" which records the time between a signal on the display and the microprocessor being interrupted by one of the keys on the keyboard being pressed. The program first clears RAM register O which is used to store the display data. The index registers are cleared and stored with data for the subsequent delay. A delay of approximately 10 seconds follows, after which, eights are displayed to signal the user to press one of the keys. After a delay of approximately ten milliseconds a three digit counter is incremented. The counter is continually incremented every ten milliseconds until the microprocessor is interrupted.

When an interrupt occurs the contents of the three digit counter are converted to 7-segment code using the subroutine in CHOMP. LOKY. The code is then continually displayed until the reset button is pressed.

Since there is a three digit counter, times between 10 milliseconds and 4.44 seconds are recorded. If a key is pressed before the first delay has run out, the display will show 000 making it very difficult to cheat. Also after 4.44 seconds the display will show 000 to prevent the counter from starting again.
Reartion Tiner

Adtress	Data	Mnemuir	
200	42	JU\% ?	
1	05	9	
2	CO	Nicp	
3	47	JEM?	Intarrunt Voctor
4	${ }_{4}{ }_{\text {A }}$	${ }_{4} \mathrm{~A}$	
5	2^{9}	FIN:	
6	00	∞	
7	Po	SRC ${ }^{\circ}$	Clare fam
?	FC	CLE	rekistar 0
9	30	${ }_{\text {WF }}{ }^{\text {W }}$	
A	72	1520	
B	C_{7}	071	
c	2 C	Fer 0	
D	¢0	-	Clants repirters
E	?	FIM E	For counter
F	00	∞	
210	30	FIMO	
1	∞	00	loade rapistore
$?$?	FIM ?	For folizy
3	${ }^{\circ}$	Or	
4	24	FTM 4	
5	AA	AA	
6	\cdots	1590	
7	16	16	
\%	$7 \uparrow$	1531	10 second
9	16	16	delay
A	- 72	15>	
B	16	1%	
c	73	15? $=$	
D	18	16	
E	74	15,	
F	15	18	

The initial 10 second delay can be altered by having different values at address 215.

The second program is a game called "Destroy". The idea is that the user controls a ground base and must destroy U.F.O's flying overhead. This program will be shown in the next Micro Prompt.

TORPEDO RUN

This program in BASIC, simulates a submarine attack on a ship which moves across the screen from left to right, disappears from the screen, then reappears on the left but slightly lower down. A torpedo is fired by pressing 1 on the keyboard. The number of torpedoes used is displayed on the screen. A maximum of nine torpedoes may be fired, after which the computer comments on your performance.

Hits are achieved by the torpedo striking amidships. The ship then stops in its tracks and an explosion is seen. The number of hits achieved is also displayed on the screen.

4 CLEAR
5 FOR Z $=1$ TO 30 : PRINT : NEXT
$10 \quad \mathrm{~A}=53248$: $\mathrm{C}=54240$
15 FOR I = 1 TO 1024
$20 \mathrm{~A} 1=\mathbf{A}+1: \mathbf{A} 2=\mathbf{A}+2: \mathbf{A} 3=$ $A+3: A 4=A+4$
$25 \mathrm{~A} 5=\mathrm{A}+5: \mathrm{A} 6=\mathrm{A}+6: \mathrm{A} 7=$ $A+7: A 8=A+8$
$30 \mathrm{~A} 9=\mathrm{A}+9: \mathrm{B} 1=\mathrm{A}+10: \mathrm{B} 2=$ $\mathrm{A}+11: \mathrm{B} 3=\mathrm{A}+12$
32 POKE 54123, 84 : POKE 54134, 72
35 POKE B3, 196 : POKE B2, 158 : POKE B1, 158
40 POKE A9, 159 : POKE A8, 160 : POKE A7, 161
45 POKE A6, 160 : POKE A5, 159 : POKE A4, 158
50 POKE A3, 158 : POKE A2, 198
: POKE A1, 32
52 POKE 530, I
55 POKE 57088, 254 : POKE 57088 , 127
60 IF Q = 1 THEN 500
65 IF PEEK (57088) $=127$ THEN V $=\mathrm{V}+1$: GOTO 500
$70 \mathrm{~A}=\mathrm{A}+1:$ FOR $\mathrm{G}=1$ TO 50: NEXT G
71 POKE 54125, (48 + V)
72 IF C2 =A9 THEN 600
73 IF C2 = A8 THEN 600
74 IF C2 $=A 7$ THEN 600
75 IF C2 = A6 THEN 600
78 NEXTI
$80 \mathrm{Q}=0$: GOTO 10
$500 \quad \mathrm{Q}=1$
$510 \mathrm{C} 1=\mathrm{C}: \mathrm{C} 2=\mathrm{C} 1-64: \mathrm{C} 3=\mathrm{C} 1$ $+64$
520 POKE C 1, 149: POKE C2, 193 : POKE C3, 32
$530 \mathrm{C}=\mathrm{C}-64: \mathrm{T}=\mathrm{T}+1:$ IF $\mathrm{T}=17$ THEN 550
540 GOTO 70
$550 \mathrm{C}=54240: \mathrm{T}=0: \mathrm{Q}=0$
560 IF V $=9$ THEN 700
570 GOTO 70
600 POKE (C2 - 64) , 9
610 P = P+1
620 POKE 54136 , (48 + P)

630 FOR D = 1 TO 2000 : NEXT D
640 GOTO 78
700 FOR $\mathrm{Z}=1$ TO 30 : PRINT : NEXT
710 IF P < 3 THEN PRINT" STAY A CIVILIAN!"’: GOTO 770
720 IF $P<5$ THEN PRINT " REPORT FOR AN EYE TEST " : GOTO 770
730 IF P < 7 THEN PRINT " YOU DID WELL" : GOTO 770
740 IF P < 9 THEN PRINT " VERY IMPRESSIVE ": GOTO 770
750 PRINT " EXCELLENT CAPTAIN SIR "
770 PRINT : PRINT : PRINT : PRINT : PRINT
780 INPUT " ANOTHER PATROL ?"; P \$
790 IF P \$ = "Y" THEN 4
800 FOR Z $=1$ TO 30 : PRINT : NEXT
810 PRINT " ENJOY YOUR SHORE LEAVE"
820 PRINT : PRINT : PRINT : PRINT : PRINT
830 END

Lines 5.700 and 800 clear the screen. $X=$ USR (X) could be used instead. to cause a jump to a machine code routine resident in a protected area of RAM. A suitable machine language routine for clearing the screen was published in PE September 1979.
Lines 35 - 50 dictate the shape of the ship
Lines 72-76 detect a hit
Line 520 dictates the shape of the torpedo
Lines 500-570 controls the torpedo travel

> The program is a result of experimenting with the graphics on the Compukit 101 and is certainly not meant to be a lesson in the art of programming. It is a program that runs on less than $2 K$ of memory, and may be of some use to the newcomer to the 101.
> M.D. E. Connor,
> Swansea.

COMPUKIT UPDATE

NOW that many people are running Compukits, it is possible to sit back and take stock of the situation. As with any new device teething troubles have emerged, but are now mostly resolved by modification to the p.c.b.. The main purpose of this column is to keep Compukit owners, and anyone else interested, abreast of current developments in software and hardware. There are several updates which will be of interest to readers, and these are presented below.

CASSETTE TAPE SPEED

The cassette interface has provoked a large number of questions and comments on the Compukit, and I shall attempt to answer the most frequent one here.

The speed of transfer of cassette information is dependent upon the clock frequency sent to the ACIA (IC 14). If you double this frequency, each byte sent serially from it, will appear in half the time and hence recording will occur at twice the rate (600 BAUD). If the clock speed is doubled again, 1200 BAUD will be achieved. There is one major problem, however. Reading information back from the tape and converting audio frequency signals to digital waveforms, depends upon the tape speed being reasonably constant both in the short term and over a long period of time. The ACIA's normal clock speed, producing 300 BAUD, is quite consistent with all normal variations, and even tolerates most speed variations between different machines. If you refer to the cassette interface diagram in your Compukit

Manual, you will notice that data acquisition depends upon the time-constant of monostable IC69, and a comparator, effectively, IC63.
The timing of this arrangement is independent of tape speed, and as the speed of data retrieved is increased, the tolerances in this system must be more and more exact. The device cannot be expected to function reliably at, say, 1200 BAUD.

Some speed variation does seem possible, however, and doubling the frequency of the Tx clock has produced some reliable results. If you would like to try faster cassette storage, perform the following modification (refer to cassette interface diagram).

At present. pin 9 of IC63 (7474) is connected to Tx clock (pins 4 and 3 of IC I4). Take Tx clock from pin 11 of IC63 instead of pin 9. This bypasses IC63's divide by two function. This modification is worth experimenting with, as several people claim full success. Try modifying and then recording and playing back on the same machine.

The Software of the Compukit takes care of cassette handling automatically for any Tx clock frequency, as it handshakes with the ACIA during the process. Some adjustment to the value of R53 and C11 may prove fruitful if the above modification remains unsuccessful.

110 BAUD TELETYPE

The cassette interface is also used to run serially interfaced printers such as the Anadex. Many people have asked if it is possible to run standard 110 BAUD Teletypewriters. The answer now appears to be yes. This is something new, and hence apologies to those who have asked this question before and been given a negative answer.

The problem is that doubling or halving frequencies to change from 300 BAUD to $600,1200,150,75$ etc. is easy. Multiplying by $110 / 300$, however, is not so simple. It requires an interesting calculation around the design characteristics of the 74163 synchronous presettable binary counter. In the present system, a frequency of 125 kHz (output C3 from IC59) is divided by 13 using IC57 and one NAND gate (IC58). IC63 then divides this by 2 to supply a frequency of 4.8077 kHz to the Tx clock of IC 14. 4.8 kHz is the correct frequency for a 300 BAUD rate. This is derived from Freq./BAUD rate $=16$. Here, a 10 -bit frame is used consisting, technically, of one start bit, one byte and one stop bit.

To derive the correct rate for 110 BAUD teletypes, a Tx clock of 1.76 kHz is necessary. IC 57 may be fed with 31.25 kHz from output C5 of IC60 (pin 14) and then made to divide this by

Fig. 1. Before and after TTY modification
nine. IC63 then divides by two and forms a Tx clock frequency of approximately 1.736 kHz which is within about 1.4 per cent of the required frequency and quite accurate enough for this application.

The only problem lies with the format of each frame sent to the teletype. 110 BAUD machines expect two stop bits along with the byte being sent, and the Compukit software sends just one, via IC 14`s internal registers. However, I have an old RO35 working beautifully from the Compukit with the following mod., and I should be most grateful for any feedback on. its success in general. This is at present a send only mod., and no thought has been given to receiving from a teletype as the Compukit has its own full keyboard.

The mod. is shown in Fig. 1, and consists of:
(1) cutting the connection between IC58 pin 4 and IC57 pin 12 ,
(2) joining pins 4 and 5 of IC58 (still joined to pin 11 of IC57),
(3) joining pin 11 of IC63 to pin 12 (instead of pin 11) of IC57,
(4) feeding pin 2 (CLK) of IC57 from output C5 (pin 14 of IC60) instead of C3.
It is worth making this modification switchable if it is to be used to any extent.

Fig. 2. Compukit's screen address map

		$\begin{array}{\|l\|} \hline 0 \\ 0 \\ \hline \end{array}$	$\left\|\begin{array}{l} 12-23 \\ \mathrm{C}- \\ \hline \end{array}\right\|$	$\begin{aligned} & 24 \square \\ & 18-\square \\ & \hline \end{aligned}$	$\begin{aligned} & 36 \\ & 24 \end{aligned}$
DECIMAL	HEX.				
53248	D000				
53312	D040				
53376	D080				
53440	D0C0				
53504	D100				
53568	D140				
53632	D180				
53696	DIC0				
53760	D200				
53824	D240				
53888	D280				
53952	D2C0				
54016	D300				
54080	D340				
54144	D380				
-54208	D3C0				54254 (DEC.)

0	1	2	3	4	5	6	7	8	9

 K
 1 0
$20 \downarrow \boldsymbol{~} \downarrow$ $30 \quad$ P $\quad \vee \quad$ SP 40 （ ）＊＋，－．ノ 0 1 $\begin{array}{lllllllllll}50 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & : & 1\end{array}$ 60 〈 $=$ 〉 \quad P \quad A B C DE
 C $\quad \begin{array}{lllllllllll}80 & P & Q & R & S & T & U & U & H & X & Y\end{array}$ H A
R $90 \quad 2 \quad[\quad 1 \quad$ 〕 \quad－$a \quad b \quad c$
 \mathbf{S}
\mathbf{E}
\mathbf{T} $190 \backslash \vee\rangle\langle\wedge\rangle$

 220 （ 1 ，，（ ） $0<1$ 230
 250
Fig．3．UK 101 character set．Note that CHR \＄183－187 are chequered（i．e．halftones）

GRAPHIC CHARACTER SET AND VDU

To change the subject entirely many people have asked for a copy of the graphic character set with the numbers by which they can be "reached". For instance, if you type:

PRINT CHRS(53)

the character " 5 " appears on the screen.
The diagram in Fig. 3 shows the complete character set with numbers to be placed inside the CHRS function for their printing. To select the correct value of a given character, add its row and column numbers together. For instance. PRINT CHR\$(179) gives the " \Rightarrow " sign.

The manual supplies a program to help with identifying these characters, but the diagram presents them for "hard copy" reference.

As to the screen address of each character slot. Fig. 2 shows the VDU address map in decimal and hexadecimal for reference. The map has 16 lines and 48 character positions per line. Your TV may show less- experiment with the following to find out:

The first character on each line is given an address. and the top of the map supplies an offset to be added to this for addressing each character on a given line. To simplify the diagram, the 48 characters on each line are split into fields of 12 characters. each with decimal and hexadecimal ranges of offset for each field. For instance, at the centre of the screen there is a square of four character positions. These are addressed as shown in Fig. 4.

Fig. 4. Addresses of centre block of characters

	D1D7 (HEX)	D1D8	
	53719 (DEC)	53720	
	D217	D218	
53783	53784		

Try printing the numbers: $1,2,3.4$, as below, in these positions before reading on:

12
34
There are two ways to do this:
(a) Use the machine code monitor and load the numerical code for $1,2.3 .4$ in hexadecimal addresses: D1D7.D1D8.D217. D218.
(b) Use POKE as follows:

POKE 53719.49
 POKE 53720.50
 POKE 53783.51
 POKE 53784.52

In (a), the codes for 1,2,3,4 are determined by changing the decimal codes in Fig. 2 to hexadecimal; i.e., 49 (decimal) for " 1 " becomes 31 in hexadecimal. 50 (decimal) becomes 32 (hex) and so on. In order to use the machine code monitor in any application. it is essential to be fully conversent with hexadecimal numbering. and its conversion to and from the decimal system. This subject is quite large and complex, and will be dealt with in the next edition of this column, to appear in two months time.

If you examine the end of each line in Fig. 3, you will notice that the address of each line ending (the 48th character on a line) is not contiguous with the address of the start of the next line. For instance, the last character on the first line has address $53248+47$ which equals 53295 (decimal). The second line starts at address 53312 and not 53296. There are 16 character addresses missing, in fact, on the end of each line. These addresses are valid Read/Write memory locations, but do not appear on the screen. They could be used as scratchpad memory by your own machine code routines. Be a little careful how you re-enter BASIC after a low level routine. as BASIC prints "OK" followed by the cursor as well as at least one line of spaces and possibly a screen scroll-up if the cursor is on the lowest line.

A final note concerns a problem mentioned by two people; it appears to be a rare condition. but if the characters on your VDU display scem to flicker after an hour or two of use, several actions are worth trying. First and foremost. clean all the solder flux from your board using methylated spirit or one of the excellent flux solvents on the market. Play special attention to IC28 and any areas where there is an 8 MHz signal line. If this does not work fully, try changing IC 28 and/or adjusting the values of R81 and C60. This capacitor may not be supplied as a small disc ceramic and it may help to change it for one.

It only remains for me to wish all of you who have a Compukit. the very best of luck with your programming, especially if this is your first contact with the art. My feeling is that the ability to program and use a computer, as well as the basic skills of soldering and familiarity with silicon chips, etc., will form a most important area of general knowledge in the future. The Compukit has already played an important part in accelerating this process.

polits bilisnt

CORRECTION TO SOFTY REVIEW IN JANUARYISSUE.

A note of correction is in order for the SOFTY Review (Jañuary issue). The origin of the word "Firmware". in that article is stated in a manner which has often been heardperhaps erroneously. The more common meaning, which should have been included; is that it is firm and unchangeable if stored in ROM. Many thanks to those who have been so PROMpt to point this out!

We would also like to correct two other inaccuracies in the review. Firstly Phil Morris is not "of Videotime Products" but provided a limited design service for the interface board-he is chief designer of PCL Lid. Secondly Videotime Products market Softy but do not manufacture it.

CONSTANT DISPLAY FREQUENCY METER

(August 1978)

It has recently come to light that 74123 devices from some manufacturers are not compatible with the requirements of the Frequency Meter, and will not oscillate correctly with the circuit as published. In order to achieve correct oscillation it may be necessary to disconnect the end of R2 that is on Pin 13 of IC1 and take it direct to the +5 V line.

COMPUKIT-4 (November 1979)

Two corrections to PIA, Fig. 4.1. Reset (pin 34) should go to

* $\quad+5 \mathrm{~V}$, pulsed to OV for reset. Pin 25 should go to 02 (pin 31 on J 1 . Also, current amplification is necessary to drive the l.e.d.s.

The address decoding of Fig. 4.3 is incorrect. The two lower NOR gates should be OR gates.

ACOUSTIC MODEM (February 1980)

*The Test Oscillator "earthy" o/p line, shown in Fig. 4, should be taken from OV and not the bottom end of the $10 \mu \mathrm{~F}$ capacitor. Michael Tooley в.А.

THE digital frequency meter to be described here is a general purpose low-cost unit. It has been designed using some recently available devices to allow the meter to be used for portable applications. The facilities available to the user may easily be extended beyond the basic needs of portable applications, and the performance may be enhanced by the addition of the v.h.f. prescaler which will be described

DESIGNFEATURES

The specification of the portable DFM is shown opposite. Only two front panel controls are provided; range selection, and a combined power switch and level control. The display readout is limited to 4 digits in order to minimise power dissipation and cost.

A block diagram for the complete instrument is shown in Fig. 1. The input amplifier and all of the logic is included on a single p.c.b. (shown by the dotted line), with only the controls, displays and input/output sockets external to the board. The circuit is simple to set up, requiring only one preset adjustment (adjustment of the time standard oscillator frequency to exactly 1 MHz).

CIRCUIT DESCRIPTION

The circuit diagram of the input amplifier, level shifter and waveform shaper is shown in Fig. 2.

The input amplifier consists of a voltage limiter followed by a high impedance amplifier. The peak amplitude of the signal applied to the gate of the junction FET, TR1, is limited to approximately $\pm 600 \mathrm{mV}$ by the action of R1, D1 and D2. The FET itself is used in a self-biasing circuit. The gate is tied to ground by R2, and the stage presents a high impedance to the signal. The d.c. source potential is produced by the current flowing in R3, and this provides the necessary negative bias. The source load is decoupled to a.c. by C2 to give a low frequency roll-off at approximately 10 Hz , while the high frequency performance is enhanced by C1

The excursion limits of the voltage waveform at the emitter of TR2 are varied by the setting of VR1, allowing variation of the level as required for the level shifting function. The actual switching levels of the waveform shaper are preset by the characteristics of the Schmitt-input gate, IC1c.

Fig. 3 shows the overall response characteristics of the input stages to sinewave signals.

CONTROL LOGIC AND SIGNAL GATE

The circuit diagram of the control logic and signal gate is shown in Fig. 4.

The control logic governs the sampling rate of the instrument (the rate at which the input frequency is re-measured), and performs all of the necessary "housekeeping" functions,

SPECIFICATION

Frequency Range:

Input Sensitivity:

Display Ranges:

Front Panel:

Rear Panel:

Power Requirements:

10 Hz to 5 MHz (minimum) 8 Hz to 7 MHz (typical performance)
Better than 200 mV r.m.s. 10 Hz to 5 MHz
10 mV r.m.s. at 1 kHz (typical)

1. 1 Hz to 9.999 kHz (kHz units)
2. 10 Hz to 99.99 kHz (kHz units)
3. 100 Hz to 999.9 kHz (kHz units)
4. 1 kHz to 9.999 MHz (MHz units)

Display range selector switch (S 1)
Input level control (VR1)/power switch (S2)
Signal measurement inlet (SK 1)
TL power indicator (D 18)
kHz display units indicator (D4)
MHz display units indicator (D8)
Display over-range indicator (D3)
4-digit decimal point display
Mains indicator
6 volt d.c. inlet sockets (SK4 and SK5)
D.c. supply fuse (F2)

1 MHz TTL outlet (SK2)
$1 . \mathrm{kHz}$ TTL outlet (SK3)
Mains inlet socket
+5 volts d.c. at 160 mA (standby)
+5 volts d.c. at 250 mA (maximum)
Power from 6 V battery supply or mains regulator

[60288
Fig. 1. Block diagram of the D.F.M.
ensuring, for example, that the display counters are all reset to zero before the input signal is re-sampled. The signal gate acts on commands from the control logic and provides the counting/display circuitry with the number of pulses which is appropriate to the range selected and to the input signal frequency.

Fig. 2. Circuit diagram of the input amplifier, level shifter and waveform shaper
A 555 timer, IC2, is arranged as a control astable which has an output with a HIGH:LOW ratio of approximately $7: 2$. The signal sampling sequence is initiated by HIGH-to-LOW transition of the astable output. This transition causes the next LOW-to-HIGH transition of the selected clock signal to invert the normal output states of IC3a, driving the Q output HIGH, and opening signal gate, IC1a. The next LOW-to-

Fig. 3. Input stage response characteristic
HIGH clock edge restores the state of the outputs on IC3a, thereby closing the signal gate. The Q output on 1 C 3 b is also driven HIGH, and this allows the accumulated count to be transferred to the display latches, as well as inhibiting IC3a until the start of the next sampling period. The LOW-toHIGH transition of the control astable output completes the display latching and, after a short delay introduced by R9 and C6, clears the counters ready for the next sampling period. The circuit is then dormant until the next HIGH-to-

Fig. 4. Circuit diagram of the control logic and signal gate

Fig. 5. Timing diagram

LOW astable transition, when the whole sequence is repeated. A timing diagram for the operational sequence is shown in Fig. 5.

The rate at which the signal is re-sampled is set by the combination of R6, R7 and C4/C5. The values of these components have been chosen, within the other design constraints, to give a sampling rate which, on ranges 2 to 4 , is slow enough to allow the display to be easily read, yet fast enough to allow alterations to be made to the input signal frequency without the display becoming tedious. The resolution of range 1 requires that a much longer re-sampling interval is used, hence the different value of capacitor.

TIME STANDARD OSCILLATOR AND DIVIDER CHAIN

The portable DFM is designed to provide the user with display resolutions of between 1 Hz and 1 kHz , and employs gate sampling periods of between 1 second and 1 msec , respectively, for this purpose. The signals used to generate these sampling intervals are pulse trains of frequencies 1 Hz , $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz , to give display resolutions of 1 Hz ,

COMPONENTS . . .

Resistors	
R1, R11, R12, R13	10 k (4 off)
R2, R10	1 M (2 off)
R3, R8	1 k (2 off)
R4	1 k 5
R5	330
R6	47k
R7	27k
R9	100
*R14	270 (7 off)
*R15	150 (7 off)
R16, R17.R18	470 (3 off)

All resistors $\frac{1}{4} W 5 \%$ carbon.
*See text.

Capacitors

C1
C2, C3, C5
470p polystyrene
C4, C10, C13, C14, C16. 100μ elect. (3 off) C22
C6, C9, C11, C12, C15, $\quad 10 n$ ceramic (8 off) C17, C18, C21
C7, C8
22p polystyrene (2 off)
C19
C20
VC1
2200μ elect.
220 n polyester
2-22p trimmer
Semiconductors
D3, D4, D8, D18
D5, D6, D7, D9, D10.
1N4148 (2 off)
TIL209 (4 off)
D11, D12
D13, D14, D15, D16, D17 IN4001 (5 off)
D19
TR1 2 N3819
TR2 BCY70
IC1 74LS132
IC2 555
IC3 4013
IC4 4049
IC5 4068
TR3-TR6 2N3906 (4 off)
IC6
IC7, IC8, IC9
IC 10
IC11
IC12
IC13
4020 B
40160 (3 off)
74LS74
ZN1040E
74LS32
5 V 1 A i.c. regulator
Miscellaneous
SK1 BNC or similar coaxial socket to mount on front panel
SK2-5 4mm sockets or similar to mount on rear panel
S1 3P 4W rotary switch
S2 2P mains switch (combined with VR1 1 k linear)
F1 100 mA fuse and holder
F2 500 mA fuse and holder
T1 9-0-9V 500 mA transformer
N1 Mains neon
4-digit multiplexed I.e.d. display (see. text)
Display filter
Printed circuit board, Veroboard
Case (Vero G-range 3G)
$\times 11 \mathrm{MHz}$ crystal

Constructor's Note

Components and p.c.b. are available from Howard Associates, 59 Oatlands Avenue, Weybridge, Surrey KT1 9SU.
$10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz , respectively. In this case, it is the pulse repetition frequency (p.r.f.) of the generating signals which is important, rather than the individual mark and space intervals.

The time standard oscillator is used to generate a reference signal at a p.r.f. of 1 MHz . A 1 kHz gating signal is derived from this reference, and the remaining signals are then produced from this by a chain of decade dividers. The circuit details for the time standard oscillator and divider chain are shown in Fig. 6.

Fig. 6. Circuit diagram for the standard oscillator and divider chain

The oscillator circuit uses a single inverter, IC4a, in a feedback loop with a 1 MHz crystal, $\times 1$, used to determine the frequency of oscillation. Fine frequency adjustment is provided by $\vee C 1$, and the d.c. path around the loop is completed by R10. A second inverter, IC4b, is used to buffer the oscillator output and to improve the waveform shape. The resulting 1 MHz reference signal is brought out to SK2 on the rear panel for external use

The oscillator output from IC4b is applied to the input of a 14 -stage ripple counter, IC6. This counter, in combination with the decoder IC5, is arranged to produce an output at 1 kHz p.r.f. This is achieved by configuring the decoder to detect a count of 2000. A reset pulse is then generated to the counter, giving the stage an overall division ratio of 1000:1. The output, which is also brought out to SK3, is then at a p.r.f. of 1 kHz , and mark: space of approximately 1:1.

The pulse trains at $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 1 Hz are generated successively by the decade synchronous counters, IC7, IC8 and IC9, respectively. The use of CMOS devices throughout the oscillator and divider stages improves the stability, guarantees oscillator startability, and reduces the power dissipation when compared to equivalent TTL designs.

COUNTING AND DISPLAY CIRCUITS

The pulse counting and display circuits are shown in Fig. 7. A single VLSI device is used to perform all of the functions of a 4-digit counter, memory latch, 7 -segment decoder, and display driver. The use of a multiplexed display drive also allows the constructor a wide choice of display devices. Four

Fig. 7. Circuit diagram of the pulse counting and display circuit
discrete 7 -segment l.e.d. displays or a 4-digit multiplexed display may be used. Further, the ZN1040E may be programmed to drive either common anode or, with slightly more external components, common cathode types of display.

The pulse train periodically produced by the signal gate (COUNT) is counted by the decade counters within IC11. The resulting count is then saved in the memory latches following the TRANSFER command from the control logic. The decade counters are then cleared down ready for the next measurement cycle. The latched count value is decoded into an equivalent 7 -segment drive format. The internal multiplexing circuits then cause this segment drive information to be presented at the segment drive outputs; each of the 4 digits being strobed in turn. The appropriate "digit select" output is enabled synchronously with the segment outputs, causing only the required segments of the selected digit to become illuminated. In this way, each of the 4 displays are scanned in turn; the scan rate being set by C9. The brightness of the displays is set by R15, with the transistors TR3 to TR6 being used to enable each of the 4 common anode displays in turn. The circuit thus causes the number of pulses presented on the COUNT input line to be displayed to the user. The remaining circuitry is used to handle display over-ranging, decimal point control. and range indication functions.

The maximum number of pulses which may be counted and displayed by the circuit shown is 9999. If an "overflow" indicator is fitted, then this could also be used as an extra 'half" digit in the display. For example, a 12 kHz signal may be displayed on range 1 by using the display to show "2000", while the overflow indicator provides the missing leading " 1 ".

IC10a is used to detect any over-range indication from IC11 and IC10b is used as a memory latch, causing D3 to be illuminated in the event of overflow. As with the remainder of the circuits, the detector and latch are cleared and reloaded each time the input signal is re-sampled. Correct operation of the display in overflow mode is ensured by using the $\overline{\mathrm{Q}}$ output of IC10b to disable the leading-zero suppression facility whenever an over-range condition is detected.

The decimal point logic required to illuminate the decimal point is arranged for common anode displays having the decimal point to the right of the digit. The negative-AND gates of IC12, together with the discrete OR function provided by D9 to D12, allow S1A to enable the appropriate decimal point cathode synchronously with the related segment cathodes. The steering diodes, D5 to D7, ensure correct operation of the decimal point while illuminating the " kHz " l.e.d. on ranges 1, 2 and 3. An advantage of this circuit configuration is that the complication of a multi-wafer

Fig. 10. P.c.b. design for the D.F.M

Fig. 8. P.s.u. circuit diagram
rotary switch is avoided; only a standard 3-pole 4-way switch is required.

POWER SUPPLY

The power supply circuit shown in Fig. 8 is a single +5 V d.c. rail at up to approximately 300 mA . This particular arrangement is suitable both battery and mains operation. In portable applications, a 6 V battery pack is connected to SK4 and SK5, otherwise the mains supply is used as shown. In either case the instrument power is switched by S2.

Capacitors C20 and C21 are used to remove high frequency noise from the supply rail which would otherwise adversely affect the performance of the time standard oscillator. D15 is used to bias the regulator, IC 13, to overcome the voltage drop introduced by D16 in the switching circuit. The facility of battery operation may be omitted by the removal of diodes D15 and D16 (replace them with wire links), and the omission of D17, SK4 and SK5.

The Veroboard design for the p.s.u. is shown in Fig. 9.

Fig. 9. Veroboard layout of the p.s.u.

Internal view of the D.F.M.

Fig. 12. Wiring diagram for discrete display

Fig. 13. D.F.M. wiring diagram

CONSTRUCTION

The p.c.b. design for the D.F.M. is shown in Fig. 10, with the corresponding component layout in Fig. 11. It is recommended that the i.c.s and any thick film resistor networks are mounted in d.i.l. sockets. Constructors should also note that many of the i.c.s are CMOS types, and these should be handled with the usual care.

The p.c.b. has been designed to allow thick film resistor networks to be used for R14 and R15. In the case of R15, the substitution of different networks provides a simple method of adjusting the display brightness. Thus, the use of higher-valued ($220 \Omega, 270 \Omega$ or higher) or lower-valued
(100』) networks allows the display characteristics to be tailored to the particular application. Lower resistance values will increase the brightness of the display, but will also have the effect of increasing the current consumption correspondingly, and vice versa. The value of R14 should not be varied significantly from the value specified.

The input signal frequency is displayed to the user on a 4digit seven-segment l.e.d. display. The display requires only 12 connections between the p.c.b. and the display hardware; these may conveniently be made with a short length of ribbon cable (with or without $0.1^{1 "}$ pitch plugs and sockets). Alternatively, the multiplexed display may be synthesized from four discrete common anode displays. Fig. 12 shows how four typical displays should be interconnected; the simplification in wiring effort offered by the multiplexed display is self-evident! Whichever type of display is adopted, the operational characteristics will be identical.

The printed circuit board is mounted on the base plate of the case with four pillars, while the remainder of the components and controls are mounted either on the front or on the rear aluminium panels. The interconnection wiring is illustrated in Fig. 13.

The power supply components are mounted on the rear panel, with the regulator attached to the panel (using an insulating kit) to provide the necessary heatsink. The Veroboard circuit is mounted in the case on four small pillars.

News Briefs

TELESOFTWARE

ANEW way of using the Oracle Teletext service will enable future teletext receivers to play games, calculate mortgages and tax returns, run educational courses and a lot more.

The electronic signals which are used to carry the teletext information within the TV broadcast are very similar to those used in computer technology, so by replacing pages of written text with pages of a computer program a viewer has simply to select the program of his choice from Oracle. And like the information already on Oracle, these telesoftware programs would be free of charge.

In the future, by adding a microprocessor to the design of TV sets, they will be able to receive, decode and execute telesoftware programs in addition to receiving normal Oracle information. No special technical knowledge will be needed as operating telesoftware will be as easy as selecting pages on Oracle.
The applications of telesoftware on Oracle are almost as varied as the imagination. For example, it will allow future TV sets to play a wide range of video games. And by simply selecting a new program the set can instantly become a highly specialised but simple-to-use calculator. The same TV can become a flexible home educational unit. with a wide range of subjects, which may be learnt as fast or as slowly or as often as required by the individual. It could let you know your social security entitlements or even help detect credit card fraud. Telesoftware will also permit future Oracle receivers to display higher definition graphics and handle different alphabets, such as Russian or Greek-perhaps even still-pictures.

In co-operation with ITV. Mullard Applications Laboratory have designed and built an experimental telesoftware receiver.

Further research is under way already to establish compatible technology standards for a future telesoftware service. ITV is now investigating many areas of application for the system, including its use in education, work on which is being given a high priority. It is hoped that in the future telesoftware will become as integral of the Oracle service as the news headlires or weather forecast are today and will provide the viewer with even more value for money from his television screen.

Readout... A selection from our Postbag

Readers requiring a reply to any letter must include a stamped addressed envelope
Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

AY3 Anybody?

Sir-May I. through your columns. make mention of an anomalous situation that has come to my notice. Following Mr. LentonSmith's article in PE (September 1978) on the TDA 1008 gating/divider i.c.. I was anxious to use these in an organ I am building, only to find that no supplier stocks any of the AY3 series which is necessary for the full range of pitches. I have searched catalogues and many advertisements. but every firm which stocks the 1008 only has the AY1 top octave generator, which is inadequate.

I have enquired of the manufacturers, General Instruments, who tell me that the AY3 series is still made, and it would therefore seem that amateur suppliers do not bother to read data sheets before deciding what to stock.

If I have missed any supplier who does stock the AY3. perlaps they would let me know. Otherwise, I can only advise your readers that they should save their money by not buying the TDA 1008, and go back to the tedious business of hand-building diode gates.
B. D. Arnold,

Worthing.

Hazard

Sir-I wondered if through your magazine I may draw attention to a small but definite radiation hazard originating in certain exGovernment equipment which was available for a considerable period after the last War.

The specific item which caused me to write this letter is a revolution counter which contains two large moving coil meters with edgewise scales about 10 mm long, scaled 6 -14-18-22-26-30 and marked "Engine Speed Hundreds of r.m.p.". The graduations and numbers are filled with Radium activated luminous paint very thickly applied. From previous experience with an ex-Government watch which had burn marks on the dial from the paint on the fingers I decided recently to do some tests on the meters. (I work at the University of Birmingham). The results confirmed my suspicions. At (10 cm 4 inches) from the scales a Geiger counter registered 1000 counts per second. Interposing $1 \frac{1}{2} \mathrm{~mm}$ aluminium sheet to remove beta and alpha emission reduced this to 100 c.p.s. However. since a Geiger counter is only one or two per cent efficient for gamma rays the true rate would be several thousand per second. Although I am not qualified to make an accurate assessment of the activity a rough calculation indicates several millicures which I believe is a quantity that would require a licence if used for teaching purposes.

I therefore suggest that anyone having old
ex-Government equipment with luminous type dials or pointers (warning, it will no longer be luminous because of degeneration of the phospor) should have them properly disposed of-not burned, buried or dumped on the local tip.

Radium is dangerous if ingested and burning will simply spread it about as most readers will realise.
B. Manning,

Kidderminster.

Coded

Sir-R. W. Coles, in Semiconductor Update. seems less than au fait with codes and cyphers.

There certainly are unbreakable codes despite the best computers. Both in theory, and in practice, there is no way of breaking ciphers based on true random numbers as long as each number sequence is used only once.

The codes that are broken are based on pseudo random numbers, or similar, but even here long sequences of messages are necessary to break into a new sequence of code.

The real gem of modern ciphers is the "trap door" cipher. Each user will publish his own code for anyone to send messages to him. Using a secret second code he will decipher the messages but no one else can succeed in this aim. A further technique is double encoding which gives 100 per cent proof that the message is from the named sender not a fraudulent source. The sender uses his secret code and the others published code. The receiver uses the others published code and his own secret code. No one else can use this combination.

In theory the trap door method can be decoded by computer by well known techniques. The snags are that the biggest and fastest of possible computers would take many millions of years to do what the known code will solve in seconds. So far no one has been able to find a short cut. Those wishing to use their own randon number techniques should beware of most published and commercial methods. These collapse under quite simple analysis. For example many always end in odd or even digits or alternate between them, on a regular basis.

To begin to have any value, even in less esoteric uses, a random series should pass the basic test that, in any base, any one digit will be followed by all possible other digits, and itself, in approximately equal proportion when averaged over a few thousand digits. A simple program, using a two dimensional array, will soon show up any fault here.
R. G. Silson,
Tring.

Career

Sir-I read with interest your section on industry in the November issuc of Practical Electronics and it seems to me that you could maybe supply me with some information.

Starting in October. 1980, I will be entering university to study one of the following courses, so could you advise me which course of study would lead an honours graduate to the best possible position on entering industry (involved with microprocessor systems, which seem to be playing an ever increasing role in industry) in terms of pay and promotion prospects. Either an honours graduate from Strathclyde University in one of their new degrees, first instituted in 1979. or an honours graduate in physics who has undergone "postgraduate" study in "microprocessors and digital electronics". which I know Glasgow University offers.

Unbiased advice from particular companies and universities is hard to come by.

Vincent Farrelly,
Glasgow.

We asked our Industry Notebook contributor Nexus to offer Mr Farrelly some advice:

You will realise that it is equal!! as difficult for us to forecast emplowment prospects in the mid-80s, when you will have qualified in vour chosen profession, as it is for yourself to do so. What can be said with absolute cerlaim! is that an! degree student in electronics will be in demand, both in the United Kingdom and overseas. There is an acute shortage of such people now and this is likely to continue to the end of this century and bevond. So vou need have no fear of umemplovment in the future, whatever specialised discipline you embark upon.

As to the choice of courses open to you, this in our opinion depends very much on your personal interests. If you read Computer Science and Microprocessor Sustems then you are firmly in the computer sector, admilted! very broad inchuding inciustrial automation but with emphasis on applications.

The course in Electronic and Microprocessor Engineering appears to be more broadly based in electronics with microprocessors and their design and application coming as a speciality later. You will observe that there is a great deal of overlap, the difference between the two courses being one of emphasis, the first towards application, the second towards engineering.

Your third option, a phisics degree, gives vou manly openings for specialisation as a post-graduate including, of course, microprocessors. This would provide, one imagines, much greater flexibility if, for example, lou decided after the first vear or two that microprocessors were rather boring and that you might prefer to be a muclear engineer or enter some other branch of electronic engineering.

Onl! lou can make the choice but any science- based degree will stand pou in good stead for the future. Provided lou have a good grounding in electronics lou will find that most industrial compamies or organisations, if lou prove your capability and are clearly keen to advance, will encourage you in your chosen specialisation at a later date.

Nexus

Including V.A.T. Postage \& Pack
This beautiful orange and black finish plastic case is available for Superboard II, Compukit UK 101 or, with an uncut keyboard panel for mounting many other hobby computers. It is supplied with a mounting wedge to give a suitable keyboard angle and fixing screws for Superboard or Compukit. The case is strong enough to support a small portable TV or video monitor and has ventilation slots and a cable access panel at the back. It does not carry the "PE Compukit" badge shown in the photograph.
The dimensions of the case (with Superboard keyboard cut out) are shown below-case material is approximately 2 mm thick with 4 mm radius corners. We recommend that the power regulator fitted to Compukit boards is mounted on a heatsink and fixed to the outside back of the case.

The illustration shows part of our own office system employing this case. PE has been able to arrange this special price so don't miss out as the offer closes Friday 29th February 1980.

Simply ahead. . ILP'S NEW GENERATION OF HIGH

With I.L.P. performance standards and quality already so well established any advances in I.L.P. design are bound to be of outstanding importance

- and this is exactly what we have achieved in our new generation of modular units. I.L.P. professional design principles remain
- the completely
adequate heatsinks,
protected sealed circuitry,
rugged construction
and excellent performance.
These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have concentrated on improvements whereby our products will meet even more stringent demands such, for example, as those revealed by vastly improved pick-ups, tuners, loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system. I.L.P. modules are for laboratory and other specialised applications too.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there

PERFORMANCE MODULAR UNITS

VALUES OF COMPONENTS FOR CONNECTING TO HY5 Volume $-10 \mathrm{~K} \Omega \log$ Bass/Treble $-100 \mathrm{~K} \Omega$ linear. Balance $-5 \mathrm{~K} \Omega$ linear.

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$. and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions
£4.64 + 74p VAT

THE POWER AMPLIFIERS

Model	Output Power R.M.S.	Dis- tortion Typical at 1KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	15 W into 8Ω	0.02%	80 dB	$-20-0-+20$	$105 \times 50 \times 25$	155	$£ 6.34$ $+95 p$
HY50	30 W into 8Ω	0.02%	90 dB	$-25-0+25$	$105 \times 50 \times 25$	155	$£ 7.24$ $+£ 1.09$
HY120	60 W into 8Ω	0.01%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$£ 15.20$ $+£ 2.28$
HY200	120 W into 8 Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 50 \times 85$	575	$£ 18.44$ $+£ 2.77$
HY400	240 W into 4Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 100 \times 85$	1.15 Kg	$£ 27.68$ $+£ 4.15$

Load impedance - all models 4-16
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{~Hz}-3 \mathrm{~dB}$
NO QUIBBLE
5 YEAR GUABANTEE
PSU $30 \pm 15 \mathrm{~V}$ at 100 ma to drive up to
five HY5 pre-amps $£ 4.50+£ 0.68$ VAT
PSU 36 for 1 or 2 HY30's $£ 8.10+£ 1.22$ VAT
PSU 50 for 1 or 2 HY50's £8. $10+\mathbf{£ 1 . 2 2 \text { VAT }}$
PSU 70 with toroidal transformer for 1 or
2 HY 120 's $£ 13.61+£ 2.04$ VAT
PSU 90 with toroidal transformer for
1 HY200 £13.61 + £2.04 VAT
PSU180 with toroidal transformer for
1 HY400 or $2 \times$ HY200
$£ 23.02+£ 3.45$ VAT
7. DAY DESPATCH ON ALL ORDERS
INTEGRAL
HEATSINKS
BRITISH DESIGN AND
MANUFACTURE
FREEPOST SERVICE
see below

ALL U.K. ORDERS DESPATCHED POST PAID HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.

트투TRONICE LTD.
FREEPOST 2 Graham Bell House, Roper Close,
Canterbury, Kent CT2 7EP
Telephone (0227) 54778
Telex 965780

Please supply
Total purchase price f
I enclose Cheque \square Postal Orders \square International Money Order \square Please debit my Account/Barclaycard Account No.

NAME
ADDRESS

Signature

OF FAMOUS STIRLING SOUND MODULES ALL AT 25\% OFF LIST PRICE

UNIT ONE

Stereo Pre-amp/Control Unit 50 mV in for 200 mV out. $10-16 \mathrm{~V}$ operation. Bass \pm 15 dB ; Treble $\pm 15 \mathrm{~dB}$. Balance control; Volume control. Ceramic P.U., radio or tape inputs. WITH MODERN CONTROL PANEL FASCIA

UNIT TWO

Controls as UNIT ONE but for magnetic cartridge input.
R.I.A.A. corrected. 5 mV in for 200 mV out. WITH MODERN CONTROL PANEL FASCIA
£14.62 £10.95
Inc. VAT and P / P in UK

UNIT THREE COMBINED INPUT

 SELECTOR/FILTER UNITSix push buttons give CERAMIC P.U./MAG. P.U./RADIO/TAPE RECORD-REPLAY/HIGH CUT FILTER/LOW CUT FILTER. STEREO. Yhis unique module may be cut across middle and positioned to suit any convenient size layout. Front panel fascia included. Just what every ambitious constructor needs. DIN sockets at rear.
$£ 7.95 £ 5.95$

BASIC UNITS

About $3^{\prime \prime} \times 2^{\prime \prime}$ for constructors wishing to build to their own assembly designs. Prices inc. P/P and VAT.
SS.100 E3.69 E2.64
Basic active stereo tone control module to provide $\pm 15 \mathrm{~dB}$ on bass at 30 Hz and on treble at 10 KHz

SS. 101 f3.25 £2.42 tape, radio, etc
SS. 102
f5.22 83.90 Stereo pre-amp for mag. pick-ups $\mathbf{S . 1 0 3 ~ E 2 . 3 4 ~ E 2 . 3 0 ~}$ 3W mono d.c. amp. S.103/3
Stereo amp. $3+3 W, 2$ i.c.s

Type	Capacity mAh	Voltage	Charge rate mA/12hrs	Dia. \& thickness mm	Price inc. VAT
NC20	200	1.24	20	24.8×7.4	$45 p$
NC28	280	1.24	28	34.4×5.3	60 p
NC50	500	1.24	50	34.3×9.5	$80 p$
MC90	900	1.24	90	50.5×8.3	$1.20 p$
NC175	1.750	1.24	175	50.7×14.9	1.75

ORDER NOW WHILE STOCKS STILL
AVAILABLE

> Very simple, charging circuit required. Indefinite shelf life. Perfect for models, portable equipment etc.

TO ORDER

Please send cash with order. Minimum order $£ 3.00$ plus $30 \mathrm{p} \mathrm{p} / \mathrm{p}$ in UK. Orders over $£ 10$ carr paid. UK. All prices inc. VAT.

All prices inc. VAT in UK. P/P free on almost all items. To pay by Access or Barclaycard, just tell us your number.
(PE38) 222-224 West Road, Westcliff-on-Sea, Essex SSO 9DF. Telephone 037085542

PE PHASER UNIT
P.E. APRIL 1979

A superb six stage phaser that really gives your guitar lift off. Equals the best commercial models. Uses latest FET op-amps. Glassfibre p.c.b.
COMPLETE KIT OF ALL PARTS AS SPECIFIED.............£15.95*

 Pack 2. Resistors, capacitors \& preset pot ...3.75*
Pack 3. Footswith, packs, pot, knob. printed cricuit \& herdware............4.25*
 Separate parts: TLO62 80p, BF2458 50p, PCE £1.50, 8 pin sockets not included in kit) 21p each.

PE SUSTAIN UNIT P.E., © $197 T$

Superb qualiry. low noise, low distorion sustain unit equal to the vary best commercial models. Suits all guiters. Glassfibre p.c.b.
COMPLETE KIT OF ALL PARTS AS SPECIFIED... \qquad . $£ 7.95^{\circ}$
Pack 1. Resistors, capacitors \& p.c.b. .. 1.75 ack 2. All semiconductor devices......
Pack 4. Diecast box and faet battery clip. \qquad £1.75
£2.75 ack 4. Diecast box and feet ... Separate parts: XC5053R 50p, RPY58A 75p, Printed circuit board 95p, Footswitch £1.50 each.

| ORION |
| :--- | :--- |
| AMPLIFIER |

PE TV SOUND SEPARATOR

Complete set of semiconductors. rs \qquad Murata filters: SFE6.OMA 50\%, CDA6.OMC 50p.

PE FUZZ UNIT

STOP

PRESS!
This is the Fuzz unit you have been waiting for $!$ Smooth, clean tone with low noise and low current drain. Uses glassfibre p.c.b. and latest FET op-amp. COMPLETE KIT OF ALL PARTS AS SPECIFIED £7.95

POSTAGE \& PACKING 15 p per order. Orders over $£ 5.00$ post free. All devices are top grade, brand new and to full manufacturers spec. Send S.A.E. for our data sheet and price list of Ferranti semiconductors.

PRICES DO NOT INCLUDE VAT. Add 15% to all prices. MAIL ORDER ONLY CALLERS BY APPOINTMENT

DAVIAN ELECTRONICS 13 DEEPDALE AVENUE, ROYTON, OLDHAM OL2 6XD.

Amplifiers from HiAmp. All fully short circuit and open circuit protected with thermal limiting. Making these amplifiers indestructable from stress other than incorrect supply voltage.

1) $\mathbf{£ 5 . 1 9} 10$ watts into 4 ohm $.1 \%$ distortion max. $30 \mathrm{~Hz}-80 \mathrm{KHz}$, supply voltage $\pm 18 \mathrm{v}$.
2) $\mathbf{£ 6 . 7 9} 20$ watts into 4 ohm $.1 \%$ distortion max
3) $\mathbf{£ 1 5 . 7 9}$
4) $£ 23.32100$ watts into 4 ohm 1% distortion max. $30 \mathrm{~Hz}-80 \mathrm{KHz}$, supply voltage $\pm 32 \mathrm{v}$.
All prices include P.' P.
Make your own keyboards - ML-3 the reccapable switch. ML-3 individual keyboard switch with reccapabie top allowing lettering by individual

$$
\begin{array}{lll}
\text { Only: } & 1-10 & 30 p \text { each } \\
& 11-50 & \text { 27p each }
\end{array}
$$

JONES ELECTRONIC SUPPLIES

588 ASHTON ROAD, HATHERSHAW. OLDHAM, OL8 3HW Tel: 061-6529879 Telex: 668250

HI-FITONEARMBARGAINS

- from Britain's Leading Audio Store

ARISTON 8A 100

- low mass high quality arm, S shaped Low compliance Universal SME type Head 5 nell Complete with anti-skating device SONIC $\mathbf{P} \mathbf{1 5} \mathbf{5 . 9 5}$

AUDIO TECHNICA AT-1007
S shaped arm Low complance magnestum unversal head shell Low capacitance heads High trackabilly Soric PRICE $£ 29.95$
ALL LEADING MAKES OF HI-FI and MANY OTHER ACCESSORY BARGAINS AVAILABLE FROMTHECOMMUNICATIONSCENTRE:

[^2]

[^3]
LIGHTING \& AMPLIFIER MODULES FROML\&B

JUST LOOK AT THESE PRICES!

SUPERIOR HIGH QUALITY LIGHTING CONTROL MODULES. ALL 1000 WATTS PER
CHANNEL NO POWER SUPPLIES NEEDED. ALL READY TO GOI

PREAMPLIFIERS

LBPA1 Stereo disc

with mic. $£ 30.70$

- LB25 -

25W, RMS 4
$10 \mathrm{~Hz}-50 \mathrm{kHz}$
T.H.D. $0.1 \% 90 \mathrm{~dB}$ S $/ \mathrm{N}$
± 11.20

-LB31000SL -

 3 channel Sound-Light. Zeroswitching, high sensitivity \& input impedance. Excellent
Separation Separation.
Excellent for disco's.

-LB41000LS -

 4 channel sequencer. Suedorandom with two speed conDisco/band lighting $\mathbf{E 1 7 . 5 0}$ effects. LB31000LDchannel tamp dimmer. Co ol from full off to $\begin{array}{ll}\text { Ideal for } & \text { E14.70 } \\ \text { trage lighting. } & \end{array}$ ge lighting.

POWER SUPPLIES LB25PSf11.20 LB250PS

NEW.
-LB11000LD Super tiny single channel $\begin{array}{ll}\text { For stage } & \mathbf{~} 6.70 \\ & \end{array}$ lighting.
f6.70
-LB31000SLC All the advantages of the 31000 SL , active filters \& automatic chasing in th
$\mathbf{~} 29.90$

- LB81000LC 8 channel chase. Chase rate \& return speed controls. Op tional foot switch trigger/trig A breakthrough in $£ 26.50$ modular technology. $£ \mathbf{2 6 . 5 0}$
- LB250 -

250W R.M.S. 4Ω $10 \mathrm{~Hz}-20 \mathrm{kHz}$ T.H.O. $0.3 \% 110 \mathrm{~dB}$

£39.50

- LB100 -

OOW R.M.S. 40 $10 \mathrm{~Hz}-25 \mathrm{kHz}$ 0. $0.4 \% 80 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ £18.20

All prices inctude VAT. P/packing FREE in U.K. except power supplies (f) Quantity/trade and overseas inquiries welcome. For further informations send a SAE to L\&B EY ROAD W. CROYDON URREY CRO 3EB. TEL: 01-689 4138

Microcomputers are coming - ride the wave! Learn to program
Millions of jobs are threatened, but millions more will be created through the microcomputer revolution. Will YOU sink or swim? Be one of the people who welcomes computers and the end of boring jobs.
Learn BASiC - the language of the smali computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency - all you need to start with is a knowledge of simple arithmetic and the use of decimals. And you don't need a computer.
This unique course comes as four A4 books, written by three authors well-known in the fields of microcomputing, selfinstruction and writing clear English. In 60 straightforward lessons you learn the five essentials: problem definition, flowcharting, coding the program, debugging, and preparing clear documentation.
Every lesson has thought-provoking questions and we never ask for mindless drudgery. You will know that you are mastering the material and feel a rare satisfaction. Harder problems are provided with a series of graded hints, a unique and really helpful approach. So you never sit glassy-eyed with your mind a blank. First time through, you may need to read most of the hints, but you will soon learn to tackle tough programming tasks - such as writing programs for computer games, preparing graphs on an output printer, calculating compound interest tables and estimating costs.
COMPUTER PROGRAMMING IN BASIC $£ 7.50$
Book 1 Computers and what they do well; READ, OATA, PRINT, powers, brackers variable names, LET; errors: coding simple programs. Book 2 High and low level languages; flow charting; functions; REM and documentation; INPUT, IF .THEN, GO TO; limitations of computers, problerm definition.
Book 3 Compilers and interpreters; loops, FOR ...NEXT; RESTDRE; debugging; arrays, bubble sorting; TAB.
Book 4 Advanced BASIC ; subroutines; string variables; files; complex programming; exampies; glossary.

THE BASIC HANDBOOK £11.50

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

FORTRAN COLORING BOOK £5.40

"It you have to learn Fortran (and no one actually wants to assimilate it for the good of the soull buy this book. Forget the others-this one is so good it will even help you understand the standard, dense, boring, unintelligible texts." New Scientist.

A.N.S. COBOL $£ 4.40$

Covers the most widely used computer language in business today. It teaches how to write a COBOL program and compile it effectively, paying proper attention to spelling, punctuation, and format.

THE ALGORITHM WRITER'S GUIDE £3.75

FLOW CHARTS \& ALGORITHMS help you present: safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.
The Algorithm Writer's Guide
explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to

Cambridge Learning Enterprises

Understand Digital Electronics

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be 'phoning people by entering their name into a telephone which would automatically look up their number and dial it for you

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

DIGITAL COMPUTER LOGIC AND ELECTRONICS $£ 7.00$

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer
Book 1 Binary, octal and decimal number systems; conversion between number systems.
Book 2 AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables.
Book 3 Positive ECL; De Morgans Laws; designing logic circuits using NOR gates Book 4 R-S and J-K flip flops; binary counters, shift registers and half adders

DESIGN OF DIGITAL SYSTEMS £11.50

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include:

Book 1 Octal, hexadecimal and binary number systems: conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR NAND. NOR and exclusive-NOR functions; multiple inpui gates: truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three state and wired logic Book 3 Half adders and full adders; subtractors; serial and parallet adders; processors and arithmetic logic units (ALUs); multiplication and division systems
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring Johnson and exclusive-OR feedback counters: random access memories (RAMs) and ead only memories (ROMs)
Book 5 Structure of calculators; keyboard encodirig; decoding display data; register systems; control unit; program ROM; addess decoding; instruction sets; instruction decoding; control programme structure
Book 6 Central processing unit (CPU): memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupi priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

O-LEVEL ENGLISH LANGUAGE £7.00

More and more jobs require a C-GRADE PASS, and over 250,000 people fail to get this every year. Will one of them be in your family? This new course, written by experts in a style that's serious yet fun to read, shows you how to mark your own work and compare it with the work of other people in their exam year. Set your own pace and assess your results immediately with no postal delays: watch your speed and standards improve. In Book 1 learn how you will be marked on COMPREHENSION, Book 2 covers SUMMARY,
PUNCTUATION \& SPELLING, and Book 3 coaches you in the principles of COMPOSITION. Size: 3 A4 volumes totailing 250 pages.

SELF-INSTRUCTION COURSES

CAMBRIDGE LEARNING ENTERPRISES, UNIT 28 ,
RIVERMILL SITE, FREEPOST, ST.IVES, HUNTINGDON,
CAMBS PE17 4BR, ENGLAND
TELEPHONE: ST.IVES (0480) 67446
All prices include worldwide postage (airmail extra)
If order comes to $£ 15$ or more, deduct $£ 2$
Please allow 21 days for delivery
GUARANTEE No risk to you.
If you are not completely satisfied your money will be
refunded when books are returned in good condition.
Please send me the following books:
.....Computer Programming in BASIC (4 books) at $£ 7.50$
. The BASIC Handbook at $£ 11.50$
. FORTRAN Coloring Book at $£ 5.40$
A.N.S. COBOL at $£ 4.40$

Algorithm Writer's Guide at $£ 3.75$
. Digital Computer Logic \& Electronics (4 books) at
£7.00
Design of Digital Systems (6 books) at $£ 11.50$
. O-Level English Language (3 books) at $£ 7.00$
I enclose a "cheque/PO payable to Cambridge Learning Enterprises for \mathbf{f}
Please charge my
(*delete where applicable)
*Access/Barclaycard/Nisa/ Eurocard/Mastercharge/Trustcard Diners Club.

Account No

Signature

Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers (inc. Eire) should send a bank draft in sterling drawn on a London Bank, or quote credit card number

Name

Address

Cambridge Learning Enterprises, Unit 28, Rivermill Site FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR, England.
U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

BAKER LOUDSPEAKERS ''SPECIAL PRICES'" Post $£ 1.50$ each					
Model	Onms	${ }_{\text {in }}^{\text {inc }}$	Power Watts	Type	Our Price
Major		12	30	Hi-Fi	512
Deiluxe Mk II	4. 8. 16	12	15	Hi-Fi	$E 14$
Superb	8, 16	12	30	Hi-Fi	¢22
Auditorium	8, 16	12	45	Hi-Fi	220
Auditorium	8. 16	15	60	Hi-Fi	${ }^{230}$
Group 35	8. 16	12	40	${ }^{\text {PA }}$	${ }_{512}$
Group 45	4.8.16	12	45	PA	c15
Group 50	4.8.16	12	60	PA	c20
Group 50	8. 16	15	75	PA	c30
Group 75	4.8.16	12	75	PA	c24
Group 100	8, 16	12	100	PA	¢29
Group 100	8.16	15	100	PA	${ }^{235}$
Disco 100	8. 16	12	100	Disco	¢29
Disco 100	816	15	100	Disco	¢35

> 4CHANNEL TRANSISTOR MIXERS Add musical highlights and sound effiects to recordings. Will mix MMicrophone, records, witap sepand tuner battery oparate controls into single with swith for output. 9 volt Two channel stereo working. $\mathbf{E 8 . 0 0}$

MINI MODULE BAFFLE KIT Post $£ 1$. EMF 15×8 iin. 3-way Loudspeaker System over \& Ready Cut Baffle. Full assembly instructions supplied. Response 60 to 20000 c.p.s. 12 watt RMS 8 ohms $£ 1095$ per kit. Two kits $£ 20$. Suitable Bookshelf Cabinet $£ 9.50$ each. Post $£ 1.60$.

SINGLE RECORD PLAYER Fitted with auto stop, stereo cartridge. Baseplate. Size 11

$\times 8 \frac{1}{2} \mathrm{in}$. Turntable Size 7 in . diameter a.c. mains 240 V 3 | speeds plays all size records. |
| :--- |
| Two tor $£ 15$. Post f 1 one or two. |
| $\mathbf{7} .95$ |

NEW BSR SINGLE PLAYER $\mathbf{~} 24.50$
Model P182 Model P182 3-speeds flared aluminium turntable. B.S.R. De-Luke Autochanger with stereo
cartridge, plays all size records. 20.00
 Two inputs with volume controls. Master treble bass and
volume controis. Suitable for all loudspeakers. $\mathbf{\text { f65. Post }} \mathrm{£1.60}$. R.C.S. SOUND TO LIGHT DISPLÁY MK II Complete kit of parts with R.C.S printed circuit Three 1000W channels Will operate from 200 mV signa
source CABINET extra $\mathbb{4} 4 \mathrm{KIT}=\mathbf{£ 1 8 . 0 0}$
R.C.S. 10 WATT AMPLIFER KIT This kit is suitable for record players, tape play back. guitars. electronic instruments or small PA
systerns. Two versions are available. The mono kit uses systerns. . wo versions are available. The mono kit uses
13 semiconductors. The stereo kit uses 22 semiconductors. Both kits have printed front panel and volume, bass and treble controls. Spec. 10W output into 8 ohms W into 150 mms . Response $20 \mathrm{c} . \mathrm{s}$ to $30 \mathrm{Kc.s}$ Size $9 \frac{1}{2} \times 3 \times 2 \mathrm{in}$. A/C mains operated.

$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p} .500 \mathrm{mF}$ 12 V 15 p ; $25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$. 1000 mF 12V 17p; 25 V 35 p ; $50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p} .2000 \mathrm{mF} 40 \mathrm{~V}$ 60p; 25V 42p. 2500 mF $50 \mathrm{~V} 62 \mathrm{p} .3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V}$ 65p. $2700 \mathrm{mF} 76 \mathrm{~V} \mathrm{E1}$. 4700 mF 63 V £1-20. 5000 mF 6 V 2 Fj 12 V 42 pj 25 V $75 \mathrm{p} ; 35 \mathrm{~V}$ 85p. 5600 mF 76 V \&1.75. 1200 mF 76 V 0 p.				
HIGH VOLTAGE ELECTROLYTICS				
8/350V 22p	8+8/450V	50 p	$50 \cdot 50 / 300 \mathrm{~V}$	
6/350V 30p	$8 \cdot 16 / 450 \mathrm{~V}$	50	32-32/45	
/500V 75p	$16+16 / 450 \mathrm{~V}$		$100 \cdot 100$	
OOV £1.20	32			

WOOD PLINTH CUT FOR B.S.R. £4.
Size: $16 \times 14^{3} \times 3$ in. Teak Venered Size: $16 \times 143 \times 3 \frac{1}{2}$ in. Teak Veneerred
METAL PLATH CUT FOR B.S.R. METAL PLINT
ORGARRARD Size: $16 \times 14 \times 3 \mathrm{in}$. £4. Silver or 8 lack finish. Post $\mathbf{£ 1} 1$. TINTED PLASTIC COVERS ALL POST $£ 1.60$
Sizes: $14 \frac{1}{2} \times 12 \frac{1}{2} \times 3$ in $£ 3.50 .16 \times 14 \times 3 \frac{1}{2} .55$
 $15 \frac{1}{4} \times 13 \frac{7}{3} \times 4 \mathrm{in} . \mathbf{£ 4 . 1 7 \frac { 1 } { 4 } \times 9 \frac { 1 } { 2 } \times 3 \frac { 1 } { 2 } \mathrm { in } . \mathbf { f l } ^ { 2 } .}$
$18 \times 13 \frac{1}{2} \times 3$ in. $£ 6.18 \times 12 \frac{1}{2} \times 3$ in. $\mathbf{£ 6}$.
$18 \times 13 \frac{1}{4} \times 3$ in. $£ 6.18 \times 12 \frac{1}{2} \times 3$ in. E 6.
$18 \times 13 \frac{3}{4} \times 3 \frac{1}{2}$ in. with stand up hinges $£ 7$.
R.C.S. LOW VOLTAGE STABILISED
POWER PACKKITS POWER PACK KITS Post 45p 12.95
All parts and instructions with Zener diode printed circuit,
rectifiers and double wound mains transformer input 200 rectifiers and double wound mains transtormer input 200
240 V a.c. Output voltages available 6 or 7,5 or 9 or 12 V d.c. up to 100 mA or legs. Size $3 \times 2 \frac{1}{3} \times 1 \mathrm{l} \mathrm{in}$.
Please state voltage required.

RADIO COMPONENT SPECIALISTS 337 Whitehorse road, croydon, u.k.

Minimum post 30p. Accese and Barclaycard Same day despatch Radio Booke and Componente Liste 20p Open9-6 Sat. 9-5 (Closed Wedresday all day). Tel. 01-684 1685

Great new Crofton Treble

Self contained MONITOR PCB
 all leads and scan coil assembly. Tubes and transformers available separately from stock. £35.50

Self contained 10" MONITOR The unbeatable 10 " Aztec, complete and ready to go.
£85.00
THE SOUGHT AFTER

* OHID SUPERBGARD in *
(All prices ex VAT and P\&P)
Fully constructed at $£ 188.00$

CROFTON ELECTRONICS

Crofton Electronics Limited, 35 Grosvenor Road. Twickenham,Middlesex. Tel:01 8911923

STORAGE CABINETS

Metal Cabinets $12^{\prime \prime}$ wide $\times 5 \frac{3}{4}{ }^{\prime \prime}$ deep, finished blue with transparent plastic drawers.
Type H No. of Drawers Price (ins) Sm MedLge
$\begin{array}{llllll}1118 & 11 & 15 & 2 & 1 & \mathbf{£ 1 0 . 7 5}\end{array}$ $\begin{array}{llllll}1633 & 16 & 30 & 2 & 1 & \mathbf{£ 1 3 . 7 5}\end{array}$ $\begin{array}{llllll}1838 & 18 & 35 & 2 & 1 & \mathbf{1 1 5 . 7 5}\end{array}$ $\begin{array}{llllll}2236 & 22 & 30 & 4 & 2 & \\ \mathbf{1 1 7 . 8 5}\end{array}$ 22602260 - $\mathbf{~} 17.95$
Access/Barclaycard welcome Prices include VAT and Post. Cheque/P.0. to: Millhill Supplies (Tools),
35 Preston Crowmarsh, Benson, Oxon OX9 6SL.

ELECTRONICS

Euild your own oscilliscope

Learn to draw and understand circuits.

Carry out over 40 experiments

TECHNIQUES
From watches to sophisticated instrumentation,
Digital Electronics adds scope to hobby or career.

No previous knowledge is necessary - Just clip the coupon for a brochure

VALVE MAIL ORDER CO.
Climax House Fallsbrook Road, London SW16 6ED

SPECIAL EXPRESS MAIL ORDER SERVICE

Open daily to callers: Mon.-Fri. 9 a.m. $-5 \mathrm{p} . \mathrm{m}$. Valves, Tubes and Transistors . Closed Saturday Terms C.W.O. only - Tel, 01-677 2424-7
Quotations for any types not listed S.A.E. Post and Packing 30p per order
All prices include VAT

MINIATURE MAINS TRANSFORMERS 1000 uf. 100V. Redial, $1 \mathbf{1}^{\prime \prime} \times 2^{\prime \prime}$. ONLY 70p. 3 for $£ 1.50$. 80131's 4 for $£ 1.0$	
urimsanio musso	
1, mour neo mura ion one	
manuen in omi	
1220	
Lue mie	
 149A BROOKMILL RD., D	PIT, DEPT, P.E. EPTTORO, LONDON, SEB

SOME THINGS YOU CAN DO WITHOUT...

but the HOME RADIO CATALOGUE

 is Top Priority for every constructor- About 2,500 items clearly listed and indexed.
- Profusely illustrated throughout.
- 128 A-4 size pages, bound in full-colour cover.
- Bargain list of unrepeatable offers included free
- Catalogue contains details of simple Credit Scheme

HOME RÁDIO (Components) LTD.,
Dept. PE., 234-240 London Road, Mitcham, Surroy CR4 3HD Phone 01-648 8422
POST THIS COUPON
with cheque or P.O. for $£ 1.30$
1
1
1
1
1
1
Please write your Name and Address in block capitals
NAME.
ADDRESS
$4-\infty$

when going
to press

STARCHASER 4000

THE NEWFOURCHANNEL LIGHTING CONTROLLER

- 4 channels 750 W each
- over 1000 different sequence patterns and effects 3 alternative sound triggers - A.G.C. - simulated strobing O zero reference triac firing O superb TUAC quality and reliability $£ 99.00$ inc. VAT.

4 CHANNEL SOUND TO LIGHT SEQUENCE CHASER

* RCA 8A Triacs

1000W per channel Switched master control for'sound operation from $1 / 2 \mathrm{~W}$ to 125 W * Speed control for fixedrate sequence from 8 per minute to 50 per second * Full logic integrated circuitry with optical isolation for amplifier protection. £22.95 Model 501500 W per channel, as above without sound triggering. $£ 14.95$

3 CHANNEL LIGHT

* RCA 8A Triacs
* 1000W per channel
* Each channel fully suppressed and fused
* Master control to operate from 1W
* Full Wave control
£22.95

ADD SEQUENCE CHASING \& DIMMING EFFECTS FOR TUAC 3 CHANNEL LIGHT

* Speed Control 3 per minute to 10 per second
* Full logic integrated circuitry
* Dimmer control to each channel
£17.50

Send for our free 28 page catalogue, please enclose a stamp.
FRONT PANELS FOR LIGHTING EFFECTS MODULES (complete with switches, neons \& knobs)
 $£ 9.00$

4 LSM 1 Size: $6 \frac{1 / 2^{\prime \prime}}{} \times 4 \frac{1}{2}$ $£ 7.75$

S1LMB Combined with 3SDMI. Size: $9^{\prime \prime} \times 4 \frac{1}{2^{\prime \prime}}$. $£ 10.00$

	For S1LMB Size: $8^{\prime \prime} \times 4 \frac{1}{2}$ $£ 9.00$	$\left[\begin{array}{r}\text { ge } \\ 0\end{array}\right.$	4LSM1 Size: $6 \frac{1}{2} 2^{\prime \prime} \times 4 \frac{1}{2} 2^{\prime \prime}$ $£ 7.75$	$\left[\begin{array}{cccc} \bullet & 0 & \bullet \\ \bullet & \bullet & \bullet & 0 \\ {[} \end{array}\right]$	S1 LMB Combined with 3SDMI. Size: $9^{\prime \prime} \times 41 / 2^{\prime \prime} \cdot £ 10.00$

TUAC MAIN DISTRIBUTORS (Callers Only) Birmingham, George Matthews, $85 / 87$ Hurst Street (Tel 6221941
London. Garland Bros. Depilard Broadway. (Tel 016924412) London. Session Music, 163 Mucham Road, (Tel 01-672 3413) Mon-Sa1 10am to 5.30 pm) Closed Wed Luton, Luton Disco Cenire. 88 Wellington Street, 1 Tet 411733 Manchester, Ai Music, 88 Oxford Street. (Te| 2360340). Middlesborough, Salcoglen, 43 Borough Road. (Tel 242851 Watford, Component Cenire, 7 Langley Roud, (Tel 45335)

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

———WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

STEREO PRE-AMPLIFIER POWER AMPLIFIER

CPR 1-THE ADVANCED PRE-AMPLIFIER
The best pre-amplifier in the U.K. The superiority of the CPR 1 is probabty in the disc stage. The overload inargin is a superb 40 dB , this together with the
high slewing rate ensures clean top, even with high outbut cartridges tracking heavily modulated records. Common-mode distortion is eliminated by an unusual design. R.I.A.A. is accurate to 1 dB ; signal to noise ratio is 70 dB relative to $.5 m \mathrm{~V}$: istortion <0.5
ol power amp signal levels Signal to noise ta to bring tape, tuner, etc. up T.H.D. $20 \mathrm{~Hz}-20 \mathrm{kHz}<008 \%$ at any level. F.E.T. muting. No controls are fitted There is no provision for tone controls. CPR 1 size is 138 ~ $B C, 20 \mathrm{~mm}$. Sunplv to ± 15 volts.
MC 1-PRE-PRE-AMPLIFIER
Suitable for nearly all moving-coil carridges. Send for details.
X02 : X03-ACTIVE CROSSOVERS
x02 - two way. X03 - three way. Slope 24dB/octave. Crossover points set to order
REG I-POWER SUPPLY
The requlator module, REG 1 provides 15-0-15v to power the CPR 1 and MC, it can be used with any of our power amp supplies or our small transformer TR 6 . The power amp hit will accommodate it.

POWER AMPLIFIERS
it would be pointless to list in so smalla a space the number of recording stutios educational and government establishments, etc. 'who have been usingCRIMSON amps satisfactorily for quite some time. We have a reputation for the highest quality at the lowest prices. The power amp is available in five types, they all have he same specification: $1 . H . \mathrm{H}$. Yypically 0,0 any power 1 kHz 8 ohms; response $10 \mathrm{~Hz}-35 \mathrm{kHz}$, -3 dB ; stability unconditional; protection-drives any load saiely: sensitivity 775 mV (250 mV or 100 mV on request); size $120,{ }_{80}$. 25 mm .

POWER SUPPLIES

We produce suitable power supplies which use our superb TOROIDAL translormers only 50 mm high

PRE-AMPLIFIER KIT

This includes all metalwork, pots, knobe etc. to make a complete pro-emp with the CPR 1 (S) module and the MC i (S) if required.

 X02........ $£ 15.16 \times 03 \mathbf{£ 2 3 - 5 8}$ OWER AMPLIFIER MODULES
 $\begin{array}{ll}\text { CE } & 1004100 \mathrm{~W} / 4 \text { ohms } \\ \text { CE } \\ 1008 & 35-0-35 \mathrm{v} \\ 100 \mathrm{~V} / 8 \mathrm{hmms} & \text { 45-0-45v } \\ \text { £25.02 }\end{array}$ $\begin{array}{lll}\text { CE } 1704170 \mathrm{~W} / 4 \text { ohms } 45-0-45 \mathrm{v} & \mathrm{E} 31.00 \\ \mathrm{CE} 1708170 \mathrm{~W} / 8 \text { ohms } 60-0.60 \mathrm{v} & \mathrm{f} 33.97\end{array}$ CE $1708170 \mathrm{~W} / 8$ ohms $60-0-60 \mathrm{~V}$ E3 TOROIDAL POWER SUPPLIEE CPS1 for 2. CE 608 or $1 \times$ CE 1004
CPS2 for $2 \times$ CE 1004 or $2 / 4 \times$ CE 608 CPS 1704 CE 1704 . CE 1008 or 1 CPSA for 1 CE 100 O . PS5 for $1 \times$ CE 1708. . f17.12 CPS6 for $2 \times$ CE 1704 or $2 \times$ CE HEATSINKS Light duty 50 . $2{ }^{\circ} \mathrm{C}$ W Medium duty, $50 \mathrm{~mm}, 2^{\circ} \mathrm{C} / \mathrm{W}$ Medium Disco/group, isomm, 4.100 mm , $£ 2.35$ Fan, 80 mm , state 120 or 240 v ... f f 19.70 Fan mounted on two drilied $65^{\circ} \mathrm{C}$ max. with ${ }^{2}$ two $4^{\circ} \mathrm{C} / \mathrm{W}$,

Pra-amp Ki POWER f38.07 POWER AMP PRE-AMPS: These are : able in two ver-ions-one two ver-
uses standard components, and the other (the S) uses
MO resistors orersistors resisessary and tantalum capaitors.
 CPI …. $\mathbf{\Sigma 4 0 . 8 7}$
 POWER SUPPLY D
$\begin{array}{ll}\text { REGI } & \text { f66.90 } \\ \text { TR6 } & \text { f1.97 }\end{array}$ BRIDGE
DRIVER, EDI ORIVER, EDI Obtain up to 340 W mps ${ }^{2}$ and this module BDI E5.75

CRIMSON ELEKTRIK 1A STAMFORD STREET LEICESTER. LE1 6NL Tel: (0533) 553508
> U.K.-prease alow up to 21 daye All prices shown are UK only and include VAT and post. COD 90p extra, E100 limit. Export is no problem, please write for specific quote. Send large SAE or 3 International Reply Coupons for detailed information.

> BADGER SOUND SERVICES LTD. WOOD STREET, LYTHAM ST. ANNE LANCASHIRE FY8 100 DOWN HI-FI AND VIDEO CENTRE 66, ABBEY ST., BANGOR N. IRELAND

	P.A.'s - SPEAKERS - CABINETS Units can be supplied to add to the Component Kits. including Domestic or Stage Cabinets and portable tubular legs. NEW/ELECTRONIC ROTOR Two speed organ rotor simulation plus a three phase chorus generator on a single p.c.b. ($\mathrm{B}^{\prime \prime} \times 5^{\prime \prime}$). Kit includes all components/ IC sockets throughout/mains operation and stereo headphone. Driver p.c.b. easily integrates with existing organ components kit P89.
High Quality Electronic Musical Instruments under the perzonal eupervizion of Specialist Designer A.J. BOOTHMAN.	KEYBOARDS We believe that we have located the best manufacturer of square front Keyboards, as used in our Kits, and can also supply Keyswitch hardware including the industry standard soft plated contact springs.
JOANNA 728 \& 8 PIANOS Six and $7 \frac{1}{1}$ Octave Electronic Pianos with unique Touch Sensitive Action as used in the P.E. JOANNA, which electronically simulates	49 NOTE C-C $£ 23.80$ 73 NOTE F-F $£ 37.00$ 88 NOTE A-C $£ 45.00$
piano key inertia - a feature not available in any other design. Build this widely aclaimed professional instrument, for either domestic or Stage use, from our top quality Compo-	All Keyboards are easily cut to provide your required length and compass. Quantity enquiries welcome.
nent Kits. SIX OCTAVES - £184 $7 \pm$ OCTAVES - £209	BUILDING SERVICE We are specialists in Electronic Piano Manufacture and can build your Piano for you - see lists.
P.E.STRING ENSEMBLE The versatile String Synthesizer with a fantastic sound at an economic price. Split Keyboard facility with a range of impressive voices.	INFORMATION Please send S.A.E. quoting items of interest. Telephone BARCLAYCARD orders can be accepted, all prices include V.A.T., carriage \& Insurance.
COMPONENT KIT - ¢164	visits Are welcome by appointment, otherwise Mail Order Only
Back up TELEPHONE advica is availabte from the Designer to supplement the clear instructions included with the ebove Kits.	EXPORT Enquiries welcome - in Australia please contact JAYCAR (Sydney).

Dept PE 1, 56 FORTIS GREEN ROAD. MUSWELL HILL, LONDON, N10 3HN

Handy size reels and dispensers

of the world's finest cored solder to do a professional job at home

Ersin Multicore Solder contains 5 cores of

on-corrosive flux that instantly cleans heavily xidised surfaces and makes fast, reliabl soldering easy. No extra flux is required
handy size reels of
SAVBIT, 40/60, 60/40 and ALU-SOL solder alloys
These latest Multicore solder reeis are ideal for the toolbox
Popular specifications cover all general and electrical applications, plus a major advance in soldering aluminium. Ask for a free copy of 'Hintson Soldering' containing clearinstructions to makeeveryjobeasy

Ref.	Alloy	Diam. (mm)	Length metres approx.	Use	Price inc. VAT
$\begin{gathered} \text { Size } \\ 3 \end{gathered}$	$\begin{gathered} \hline 40 / 60 \\ \text { Tin/Lead } \end{gathered}$	1.6	10.0	For economical general purpose repairs and electrical joints.	£3.22
$\begin{gathered} \text { Size } \\ 4 \end{gathered}$	ALU-SOL	1.6	8.5	For aluminium repairs. Also solders aluminium to copper, brass etc.	£3.22
$\begin{gathered} \text { Size } \\ 10 \end{gathered}$	$\begin{gathered} 60 / 40 \\ \text { Tin/Lead } \end{gathered}$	0.7	39.6	For fine wires, small components and primted circuits.	£3.22
$\begin{gathered} \text { Size } \\ 12 \end{gathered}$	SAVBIT	1.2	13.7	For radio, TV and similar work. Increases copper-bit life tenfold.	23.22

Sole U K Sales Concessionaires
Bib H-FI Accessories Limited,
Kelsey House, Wood Lane End
Hemel Hempstead, Herts. HP2 4RO

Prices shown are recommended retailunc VAT. From electrical and hardware shops in difficulty send direct plus 20p P \& P Prices and specifications subject to change without notice

SOLDERING FLUX PASTES
ERSIN' A non-corrosive, rosin based flux for general and electrical soldering in conjunction with 'Ersin' Multicore solders. Ref AF14 60pinc. VAT 'ARAX' For general metal joining in conjunction with 'Arax' Multicore solders.

BIB WIRE STRIPPER and CUTTER

Easily adjustable for most sizes of flex and cable. Fitted with extra strong spring for automatic opening. Easy grip handles and handle locking device.
Ref $9 \quad £ 2.48$ inc VAT

EMERGENCY SOLDER

Self-fluxing, tin/lead solder tape that melts with a match.
For electrical and non-electrical applications.
Size ES36
55p inc. VAT

MULTICORE WICK

for solder removal and desoldering
Absorbs solder instantly from tags, printed circuits, etc. Only needs $40-50$ watt soldering iron. Quick and easy to use.
Non-Corrosive. Size AB10 E1.29 inc. VAT

ECONOPAK

A reel of 1.2 mm 'Ersin' Multicore solder for general electrical use. Size 13A f2.99 inc. VAT

A reel of 3mm 'Arax'
Multicore solder for general non electrical use.
Size 16A
$£ 2.99$ inc. VAT

AITKEN BROS

35, High Bridge, Newcastle upon Tyne Tel: 063226729

PB6 Kit

CSC LOGIC PROBES
 \section*{EP-2 ECONOMY PROBE}

Min. pulse width 300 nanoseconds, $300 \mathrm{~K} \Omega$ input impedance, tests circuits up to 1.5 MHz . Detecting pulse trains or single-shot event in TTL, DTL, HTL, and CMOS circuits_ £20.95.
LP-1 Memory Probe
LP-3 High Speed Mamory Probe \quad E56.75 CSC catalogue available. Please send S.A.E.
CALSCOPE SUPER $6 \quad £ 186.30$
A portable single beam 6 MHz bandwidth oscilloscope with easy to use controls. High gain to $10 \mathrm{mv} / \mathrm{cm}$ and wide time base range from $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$. Full specification to re quest. Please send S.A.E. Professional scopes you can afford. CALSCOPE SUPER 10 £251.85
A dual trace 10 MHz instrument of the very highest performance and quality. It has an accuracy of 3% which is achieved by the use of built-in stabilised power supplies which keep the trace rock steady over a wide range of mains fluctuations. Full specification on request. Please send S.A.E.

TE20D TECH R.F.SIGNAL

GENERATOR

Accurately covers 120 KCS to 500 MCS in 6 bands. Directly calibrated. Variable
Price $\mathbf{f 5 2 - 5 0}$ ($\mathbf{f 5 0 . 5 8}$ to callert
TE22D TECH AUDIO GENERATOR
Sine \& square wave audio generator. Sine wave range - 20 cps to 20 K cps in four bands.
Square wave range 20 cps to 15 K cps in four bands 240 V A.C. Size $140 \times 215 \times 170 \mathrm{~mm}$.

TMK 500 MULTIMETER 30,000 o.p.v. AC volts $2 \cdot 5,10,25,100,250,500,1000$. DC volts $0.25,1,2.5,10.25,100,250,1000$. DC current $50 \mu \mathrm{a}, 5 \mathrm{MA}, 50 \mathrm{MA}, 12 \mathrm{amp}$. Resistance $0-6 \mathrm{~K}$, 60K, 6 MEG , 60 MEG . Decibels. -20 to +56 db Buzzer continuity test size. $160 \times 110 \times 55 \mathrm{MM}$ Batteries \& leads included. PRICE 825.95 .

CSC EXPERIMENTOR BREADBOARDS
No soldering modular breadboards, simply plug components in and out of letter/number identified nickel-silver contact holes. Start small and simply snap lock boards together to build breadboards of any size.

SINCLAIR DM350 £83.95 SINCLAIR DM450 $\quad \mathbf{~} 114.95$

Size $255 \times 148 \times 40 \mathrm{~mm}$.
DM350 $3 \frac{1}{2}$ digit display DM450 $4 \frac{1}{2}$ digit dispiay. 8oth provide $3 \frac{1}{2}$ digit isplay DM4SO $4 \frac{1}{2}$ digit dispiay. 80 th $1200 \mathrm{~V}(100 \mu \mathrm{~N}$ on DM350) A.C. voltage $100 \mu \mathrm{~V}$ to 750 V D.C. current 1 nA to 10A. A.C. current 1 nA to 10 A resistance $10 \mathrm{~m} \Omega$ to $20 \mathrm{M} \Omega(100 \mathrm{~m} \Omega$ opn DM350). Accessories for M350 \& 450 as for DM235 below. Full spec on request. Please send S.A.E. 000 frequency meter
inclair PFM200 frequency meter
Size $157 \times 76 \times 32 \mathrm{~mm}$.
PDM35 be to illustration as for DM35 below. £57.95.

SINCLAIR PDM35

DIGITAL POCKET MULTIMETER
$D C$ volts (4 ranges) 1 mV to $1000 \mathrm{~V} A C$ volts $1 V$ to 500 V DC current (6 ranges) 1 nA to 200 MA . Resistance current i 6 ranges) $1 n A$ to 200MA £39.95 AC Adaptor $£ 4.25$ de luxe padded carr (ngcosef1 95 MN 1604 Battery 51 28. Size $157 \times 76 \times 32 \mathrm{~mm}$.

SINCLAIR DM235

BENCH-PORTABLE DIGITAL

MULTIMETER.

DC volts (4 ranges) 1 mV to $1000 \mathrm{~V} A C$ volts 14 ranges) 1 MV to $750 \mathrm{~V} A C \& D C$ current $1 \mu \mathrm{a}$ to 1000MA Resistance (5 ranges) 1Ω to $20 \mathrm{MEG} \Omega$. PRICE £60.98. Carrying case £8.95. AC adaptor/charger. £4.25. Rechargeable Battery Pack. £8.95.
Size $255 \times 148 \times 40 \mathrm{~mm}$.

PANEL METERS

DIMS $60 \mathrm{MM} \times 45 \mathrm{MM} .50 \mu \mathrm{amp}, 100 \mu \mathrm{amp} 1 \mathrm{MA}$, $5 \mathrm{MA}, 10 \mathrm{MA}, 50 \mathrm{MA} .100 \mathrm{MA}, 500 \mathrm{MA}, 1 \mathrm{amp}, 2$ amp, 25 V dc, 30 V dc, 50 VAC .300 Vac , " S ", "VU" $50-0-50 \mu a, 100-0-100 \mu$ а. 500-0-500 на. PRICE £5.95.

DESOLDERING TOOL

SUCTION PUMP

Education Establishment Orders Accepted PHONE OR SEND YOUR ACCESS OR BARCLAYCARO NUMBER
ALL PRICES INCLUDE POSTAGE AND VAT.
4tin \times 3tin METER. $30 \mu \mathrm{~A}, 50 \mu \mathrm{~A}$ or $100 \mu \mathrm{~A}, £ 5.10 .40 \mathrm{p}$ P. \& P .

MICROPHONES FOR TAPE RECORDERS OM228R 200 ohm with 3.5

 and 2.5 mm Jack Plugs DM229R 50 K with 3.5 and 2.5 mm Jack Plugs £1.70 OM18D 200 ohm with 5 and 3 pin Din Plugs $E 1.99$ Postage on above microphones 17p
cardioid DYNAMIC MICROPHONE
Model UD-130 Frequency response $50-15,000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50 K and 600 ohms. £8.02. 45p P. \& P.
2 in $\times 2$ in meters $500 \mu \mathrm{~A}, \mathbf{£ 4 . 1 4}$ 17p P.\& P.
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $500 \mu \mathrm{~A}$ and 1 mA VU meter, $\mathbf{£ 4 . 0 0}$ 21p P. \& P.
6 V BUZZERS. 50 mm diameter 30 mm high, 52p. 15p. P. \& P.

TRANSFORMERS Primary 240V		
6-0-6V	100 mA	ع0. 75
9-0-9V	75 mA	¢0.75
12-0-12V	50 mA	¢0.85
12-0-12V	100 mA	£1.05
Post on above transformers 45 p .		
9-0-9V	1A	£1.80
12-0-12V	1A	c2. 15
15-0-15V	1 A	£2.51
$30-0-30 \mathrm{~V}$	1A	£3. 10
$6.3 V$	$1 \frac{1}{2} A$	¢1.80
6-0-6V	$1 \frac{1}{2} A$	ع2. 20
Post on above transformers 60p.		

All above prices include V.A.T. Send 40p for new 1980 fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate - Bolton • Lancs. BL2 1BA

FLADAR ${ }^{\text {TRANSFORMERS }}$
 PRIMARY O-240V 50Hz

IF YOUR REQUIREMENT IS NOT FEATURED BELOW SEND FOR OUR TRANSFORMER CATALOGUE PRICE 40p														
Type	Voltage	urrent	L	p/p	Type	Voltage	Current	¢	p/p					
O6FEO6	${ }_{6}^{6+6}$	O. 5A EACH	1.82	60 p	60FE24	$24+24$	1.2 AEACH							
O8FE06	${ }_{6+6}^{6+6}$	O.6A EACH	2.19	${ }_{6}^{60 \mathrm{p}} 7$	B0FE24	24+24	1.5A EACH	5 $\begin{array}{r}56 \\ 3.74 \\ \hline\end{array}$	${ }^{120 \mathrm{p}}$					
	${ }^{6+6}$	1.6 EACH	3 06	$8{ }_{8}$	60FE28	2888	-1.1A EACH	4.58	102 p					
50 FEO		3A EACH	374	84 p	80FE28	$28+28$	1.4 EACH	566	120p					
60 F06				102p			O. 354 EACH		84p					
06FEO		03 A		60 p 60 p	50FE30 60 FE 30	$30+30$ $30+30$ $30+30$	0 75A EACH 1 A EACH	3.74 4.58 4	84 p 102 p 102					
O8FE	9	O5A EACH			60FE30 80 FE 30		1A EACH	4.58	102 p 120 p					
12 FEO 20FEO9	-9+9	- 15 1A EACH	2. ${ }^{2}$	${ }_{84 \mathrm{p}}^{72 \mathrm{p}}$	80 E30		$1.2 A E A C H$							
50FEO9	9+9	25 EACH	3.74	84 p	multitap range Voltages available 3, 4, 5, 6, 8, 9, 10. 12. 15. 18, 20, 24. 30									
$60 \mathrm{FEO9}$	$9+9$	3AEACH	4.58	102p										
06FE 12	12+12	$025 A$ EACH	82	60p										
O8FE	$12+12$	$\bigcirc 3$ O EACH	243	${ }_{6}^{60 p}$	3OFE		1 A		${ }^{84}{ }^{\text {p }}$					
12 FEE	12+12	$0.5 A E A C H$ $0.8 A E A C H$		72 p 84 p	60FE36		$2 \mathrm{2A}$		12020					
50FE1	$12+12$	$1{ }_{1} 8$ 8A EACH	3.74	84p	80 FE36		3 A	5.	120p					
6 OFE12	$12+1$	2 5A EACH	4.58	102 p	CENTRE TAP SECONDARY									
80FE 12				120p										
O6FE	$15+$	O2A	1.82 2.19	60 p	O6FE	9-0	$1{ }^{1}$	$\left\lvert\, \begin{aligned} & 1.80 \\ & 2.16 \\ & 2\end{aligned}\right.$	60 p 60 p 72					
O8FE	$\xrightarrow{15+}$	$0.25 A$ $0.4 A$ EACH 	2.19	- ${ }_{\text {60p }}^{72 \mathrm{p}}$	$12 \mathrm{FE50}$ 20 FE 80	12-0-12	$1{ }_{1}^{1 A}$	2.40 3.00	72 p 84					
20FE	$15+$	O. 6 A EACH	3.06	84p	50 FE 80	20-0-20	2 A	3.70	84 p					
50 FE	$15+15$	15 A EACH	3.74	84 p	60FE100	28-0-2	2.24	50	102p					
COFEL 8	15	3A EACH	4.66	120 p										
					OFE5	15-0-15	6 A							
06FE2	$20+20$	015 EAACH		60 p	9OFEBO	30-0-30	3 A	580	120p					
$12 \mathrm{FE2}$	20+20	$025 A E A C H$ $0.5 A$	2.43 3.06	72 p 84 p	100FE26	26-0-26	354 354 5		138p					
20FE2	$20+20$ $20+20$	1. 1.2 EAACH	3. 34	84p	$100 \mathrm{FE2}$	28-0		6.05 6.05	138 1380 138					
$605 E$	$20+2$	$1.5 A$ EAC		122 p	100FE36	36-0-36	3 3A	6.05	138 p					
CHARGER TRANSFORMERS						5-0								
					150FE26 150 FE30	26-0-2	4A	7.47	150 p					
48 FE	0-6-12				150 FE36	36-0-36	4 A	47						
${ }^{666 E 12}$	0-6-12	$5 A$ $6 A$	5.30 5.66	102p	lifofen	42-0-42	${ }^{3 A}$	7.47 8.60	150p					
90FE 12	0-6-12	8A	6.75	138p	250 FE 3	30-0-3	${ }^{\text {A }}$		175p					
12FE24	$24+24$	0.2 AEACH		72p	250FE4	42-0-42	5.5A	8.60	175p					
FLADAR ELECTRIC P.O. BOX 19 WESTCLIFF-ON-SEA ESSEX. 0702-613314			TRADE ENQUIRIES WELCOME			PAYMENT TERMS: C.W.O. Cheques, Postal Orders All Prices include 15\% V.A.T								

First the EuroBreadBoard Now the EuroSolderBoard

Design on a EuroBreadBoard - Instal on a EuroSolderBoard

First the EuroBreadBoard

Will accept $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to .85 mm dia leads.
500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, low resistance ($<10 \mathrm{~m}$ ohms) nickel silver contacts
$£ 6.20$ each or $£ 11.70$ for 2 including 1 or 2 EuroSolderBoards FREE
Now the EuroSolderBoard
New 100 mm square, 1.6 mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm dia fixing hotes.
E2.00 for set of three ESB's or FREE with every EuroBreadBoard)

And don't forget the EuroSolderSucker

Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pcb pads and track. Primed and released by thumb, it costs only

Snip out and post to David George Sales,
Unit 7. Higgs Industrial Estate, 2 Herne Hill Road, London SE24 OAU
David George Sales,
Unit 7, Higgs Ind. Est., 2 Herne Hill Rd., London SE24 OAU.
Please send me:-
1 EuroBreadBoard
(plus 1 free EuroSolderBoard) @ $£ 6.20$ ○
or 2 EuroBreadBoards
(plus 2 free EuraSolderBoards) @ $£ 11.70$ O Tick
or 3 EuroSolderBoards
or 1 EuroSolderSucker
@ $£ 2.00 \bigcirc$
All prices are applicable from Jan. 1 st 1980 and include VAT \& PP but add 15% for overseas orders.
Name.
Company.
Address.

Tel. No
Please make cheques/P.O. payable to David George Sales and allow 10 days for cheque clearance and order processing

Build your child an exciting world of knowledge

The ten streams of learning

1. Nature's Kingdom
2. Great Beginnings
3. Our Island's Story
4. The Mysterious Earth
5. This Modern Age
6. The Arts 7. Finding Out
7. Other People's Countries
8. Great Men and Women
9. Our World in the Making

World of Knowledge magazine is the most exciting new development in learning aids for \mathcal{C} children. All mankind's achievements - past and present --are
presented week by week in 10 stimulating and absorbing streams of learning using the most up-to-dategraphic and illustrative techniques available. With the authoritative backing of a team of distinguished academic advisers, headed by Lord Asa Briggs, Chancellor of the Open University, World of Knowledge is structured to provide a complete understanding of the world about us and is a unique opportunity for your children to discover the adventure of finding out.

THE TTL DATA BOOK

 FOR DESIGN ENGINEERSby Texas Instruments
Price: $\mathbf{£ 6} \mathbf{6 0}$

NEWNES BOOK OF AUDIO

by K.G. Jackson

Price: $\mathbf{5 5 . 4 5}$
ELECTRONIC DESIGNER'S H/B
by K. Hemingway
Price: $\mathbf{£ 1 3 . 2 5}$
TELETEXT \& VIEWDATA
by S.A. Money
Price: $\mathbf{£ 6 . 0 0}$
Z-80 MICROPROCESSOR PROGRAMMING 8 INTERFACING BOOKI
by E.A. Nichols Bk I
Price: $\mathbf{£ 7 . 4 5}$
BEGINNER'S GUIDE TO INTEGRATED CIRCUITS
by I.R. Sinclair Price: $\mathbf{£ 3 . 2 0}$
LOGIC \& MEMORY EXPERIMENTS USING TTLIC'S BOOKI
by D.G. Larsen Price: $\mathbf{£ 7 . 6 0}$
THE PHILIPS GUIDE TO BUSINESS
COMPUTERS \& THE ELECTRONIC OFFICE
by N. Enticknap Price: $£ 4.00$
ELECTRONIC PROJECTS IN THE
WORKSHOP
by R.A. Penfold
Price: $\mathbf{£ 2 . 5 0}$
RADIO \& ELECTRONICS FOR TECHNICIAN ENGINEERS
Price: $\mathbf{£ 4 . 7 0}$

* All prices include postage *

THE MODERN

 BOOK CO.BRITAINS LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET LONDON W21NP
Phone 01-4029176
Closed Saturday 1 p.m

Gadesasead Hectrinices

P.O. BOX 23, 34 SEAFIELD ROAD, COPNOR, PORTSMOUTH, HANTS. PO3 5BJ
8 DIGIT 0.1" LED DISPLAY multiplexed, common cathode. 99p each. DIGITAL ALARM CLOCK MODULE with 0. "' $^{\prime \prime}$ display. With data $\mathbf{5} .99$ each data, $£ 4.99$ each. MM5316 digital alarm clock chip with data $\mathbf{\text { E } 2 . 2 9 ~ e a c h . ~ R E J E C T ~ C A L C U L A T O R S ~}$ Untested, but good value for spares. £2.50 each. LED WRISTWATCH I.C. Mostek MK5030, with data 95p each. LED WRISTWATCH DISPLAY type DIS501 $0.1^{\prime \prime}$ digits. With data 95p each SUPER SAVER Purchase an MK 5030 and a DIS501 for only $£ 1.50$ the pair. NOTE the MK5030 and DIS501 are housed in a 'legless flatpack style package and require some fairly fine soldering. 20 KEY KEYBOARDS calculator keyboards, 2 for 99p fnot for use with NORTEC4 204 calc. chip). 4 DIGIT 0.8" LED DISPLAY common cathode, with data $£ 3.75$ each. DIGITAL MULTIMETER CHIP MM5330 I.C. to build a $4 \frac{1}{2}$ digit multimeter. With data $£ 3.49$ each. SUPER QUALITY JACK SOCKETS $\dot{j}^{\prime \prime}(6.35 \mathrm{~mm})$ jack sockets, mono 23p each, stereo 25p each. SLIDE POT KNOBS please state colour required, 11p each. HOTARY VOLUME CONTROL KNOBS nice style, 18 mm diam. Black with coloured cap. Please state colour required, 18p each. 10 LED DISPLAYS Untested material. $0.1^{\prime \prime}$ digits, common cathode, 95p. 6 DIGIT 99p. 555 TIMER IC. with data and apathode, booklet, 23p POLARIZING FILM max $19^{\prime \prime}$ wida booklet, 23p. POLARIZING FILM max. $19^{\text {" wide any }}$ SWITCHES 2 pole chat An BUTTON SWITCHES spring with Wortec 42044 function each constant with date 80 p 2102 MEMORIES Dynamic memorles for 8op. micro's. With data 95p each. MM5314 digital clock chip with data 5499 each WRISTMATCH Cock supplied with polarizers and data sheet $99 p$ each NEW CATALOGUE AVAILABLE FROM IANUA SEND S.A.E. FOR YOUR FREE COPY.
POST \& PACKING PLEASE ADD 35 .
PST \& PACKING PLEASE ADD 35p
(OVERSEAS ORDERS ADD 90)
V.A.T AOO 15\% TOTHETOTALOF

Fu GOODSANDP\&P.
Full SATISFACTION GUARANTE E on all items

C.J. Communications

FLOPPY DISKS

Our high quality disks are manufactured in Santa Clara, California.
All disks are delivered free of defects in materials and workmanship.

Performance is guaranteed for a minimum of 12 months.

514" SINGLE £24.75 per 10
" DOUBLE $£ 32.40$ per 10
8" SINGLE £26.50 per 10
, DOUBLE $£ 44.15$ per 10
Also available in single units

PLEASE SPECIFY EQUIPMENT WHEN ORDERING

CONTINUOUS FORMS

We offer a comprehensive form design service to meet your special requirements.

Send details of your needs.

Stock forms

$11^{\prime \prime} \times 81 / 2^{\prime \prime}(2,000 \mathrm{~s}) £ 9.50$
$11^{\prime \prime} \times 91 / 2^{\prime \prime}(2,000 \mathrm{~s}) £ 10.60$

All our prices include VAT and delivery. SAE for lists

> 9, DALE CLOSE, TODDINGTON, Nr. DUNSTABLE, BEDS. LU5 6EP.

Tel.: (05255) 2207

30
 Wilmslow Audio

THE firm for speakers!

SEND 30p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

> AUDAX - AUDIOMASTER - BAKER BOWERS \& WILKINS - CASTLE - CELESTION CHARTWELL - COLES - DALESFORD DECCA EMI•EAGLE ELAC FANE GAUSS GOODMANS I.M.F. ISOPHON JR JORDON WATTS KEF LEAK LOWTHER McKENZIE MONITOR AUDIO • PEERLESS RADFORD - RAM RICHARD ALLAN - SEAS SHACKMAN STAG TANGENT - TANNOY VIDEOTONE - WHARFEDALE - YAMAHA

WILMSLOW AUDIO (Dept. P.E.)
SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Discount HI-FI, etc. at 5 Swan Street
Tel.: Wilmslow 529599 for Speakers
Tel.: Wilmslow 526213 for $\mathrm{Hi}-\mathrm{Fi}$

PLEASE MENTION PRACTICAL ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS

LB ELECTRONICS
 PROCESSORICS (ALL FULL SPEC.)

1702A $\mathbf{£ 2 . 5 0 , 2 7 0 8} \mathbf{£ 7 . 2 5 , 2 7 1 6}$ single rail $£ \mathbf{2 8 . 5 0}, \mathrm{LM} 323 \mathrm{~K} 5$ volts 3 amps £4.50, 7805 £1, 7812 £ 1.
DIL SKTS LOW PROFILE: 8 way $12 \mathrm{p}, 14$ way, $15 \mathrm{p}, 18$ way $\mathbf{2 0 p}, 16$ way $\mathbf{1 7 p}, 20$ way $23 \mathrm{p}, 22$ way $\mathbf{2 8 p}$, 28 way 45p, 24 way 35 p , DIL 16 WAY HEADER SPECIAL OFFER ONLY 45p.
74116 SPECIAL OFFER 75p, 741254 for $£ 1,74198$ 75p, 74194 50p, 7418180 p .
MM5240 character generator + data $\mathbf{£ 3 . 5 0}$.
4 digit EX calculator display 4 for $£ 1+$ data
P.E.T. edge connector (memory expansion) $£ 1.40$.

74LS, C.MOSS, sub miniature toggles, 74 TTL , and computer equipment is stocked, i.e. V.D.U. printers etc. vast range of power supplies for callers.
L.B. ELECTRONICS, 11, HERCIES ROAD, HILLINGDON,

MIDDLESEX.
UXBRIDGE 55399
(Just off A 40)
OPEN: Monday, Thursday, Friday and Saturday 9.30-6.00

BACK IN BUSINESS

DORAM ELECTRONICS LTD, a name well known in the home electronics market, are back in business under new management. We aim to combine our many years experience supplying components worldwide with personal service to our new customers.

NEW PROJECT PACKS:

+ Vocoder - 10 channels - Speech input sen sitivity $10 \mathrm{mv} \ldots 7.7 \mathrm{v}$. Frequency range 30 $16,000 \mathrm{~Hz} \quad$ Price on request
+ Top Preamp - High quality Hi-Fi pre-amplifier for 'mıni' systems. Low noise IC design.
£34.30
+ Steam Train Sound Effects Unit - Can be fitted inside model train, PCB only $75 \times 27 \mathrm{~mm} \quad £ 5.50$ VAT inclusive prices. Postage add 40p

COMPONENTS We stock a large range of TTL, CMOS. Linear and Microprocessor IC's. plus Transistors, Diodes. Resistors and Capacitors etc
PROJECT PACKS We can supply 'Project Packs' containing all the electronic components, PCB and instructions for over 100 different magazine projects. These range from simple circuits suitable for the beginner to very advanced designs, like our user-programmable TV GAMES COMPUTER system.
PRICE LIST For our new Price List send a large SAE to
Doram Electronics Ltd., Dept PE, Fitzroy House, Market Place, Swaffham, Norfolk. PE37 70H.
Tel: Swaffham (0760) 21627 . Telex: 817912
A DE BOER COMPANY

PROGRESSIVE RADIO 31, CHEAPIDEE, LIVERPOOL L 220

 MIMIATUNE MAMS TMAM FONMENA. ALL 240 VAC PRIMARY. $6-0-6100 \mathrm{~mA}, 9-0-975 \mathrm{~mA}, 12 \cdot 0-1250 \mathrm{~mA}$ all 75 p each. 12 V 200 mA 75 L . 6 V 500 mA \& 1.10 p . $0-6 \mathrm{~V}-0-6 \mathrm{~V} 280 \mathrm{~mA}$ ह1. 30 p .
PULSE TRAMEFOHMEAE, $1: 1$ (GPO trop) $30 \mathrm{p} .1: 1$ plus 1 min . P. C. mounting 60 p .
MINIATUME EOLID STATE BUZZERE. $33 \times 17 \times 15 \mathrm{MM}$. output at 3 feet 70 db , only 15 mA drain, 4 voltages
available. $6-9-12$ or 24 VOC 80p esch.
LOUD EUZZER. B-12 volts 6 Gp. GPO type adjustable buzzer $6-12$ volts 27 p .
POCKET MULTIMETER. MODEL WHiti 2,000 ohms per volt, 1,000 volts AC/DC, 100 mA DC current, 2 rasistance rangas to 1 mag . 26.9 sep .
soLDE
BUCK
SOLDER BUCKER. High suctionitefion nozzle. C4.0pp.
МоTO

AMPHENOL 0 . HIGH IMPEDENGE HEADPHONES, mano 2000 ohms imp transducer typa adiustabia band and pedded eap.

INTEACOM UNITE (can be used as baby slarm) supplied with approx. 60° cable, call bution, 2 way 85.25 peir, way 27.2 ep . WIRELESS INTERCOM, 2 units both operate on 240 VAC and mains connected. AM trequency 180 KHz , 229.94p.
CONDEMSER TIE PIN MICROPHOME. Omni. 1 K imp., uses deaf add battery (suppliodi C4.95p. LOW COsT CONDEMEER MIKE. Stick type. Omni, 600 ohms. orvoff switch, standard jack plug only 22.88p. EMEO7 CONDEMBER MICROPHOME. Mighly polighad metal stick mike. unt directional, 600 ohms. $30-18 \mathrm{KHz}$. ondoft meral case only 27.78 p .
 24.*sp, $6^{01} 15$ watts 8 ohms adjustabie bracket 83.26 p.

CAIMING TOOL, for standard terminals also 6 gauge stripper and wire cutter. insulated handles only $£ 2.30$. Cash with order please, official orders weicome from schools etc., plasse add 30p post and packing. VAT inchusive.
SAE for /atest illustrated stock list?

POSITRON COMPUTERS LTD

6800 SPECIALIST SUPPLIERS

[^4]
OHIO SCIENTIFIC SUPERBOARD 2 * $4 \times 4 \times 4$

 We are the only people who include a in our special offer on Supetboard 2 50 Hz model for British TV sets. Full key board and cassette interface and uses your
TV as a vDU. 8 K basic. 4 K ram. Fully assembled E 188 . 15% VAT, post free. SINCLAIR PRODUCTS PFM200 $£ 51.95$, case $£ 3.40$, adaptor
〔3.40. connector kit $£ 11.27$. Microvision £91.44, mains adaptor E6.88. PDM35 E29.76, mains adaptor £3.40, case €3.40.
DM350 £7182 DM450 102.17 DM 355 f51 95 Accessories for all 3. DM 235 rechargeable batteries $£ 7.99$, mains adap-
tor/charger $£ 3.94$, case $£ 8.90$, Enterprise tor/charger $£ 3.94$. case $£ 8.90$, Enterprise
prog calculator E 19.95 . New SC1 1010 MHz prog calculator f19.95.
oscilloscope 144.95 .
Chess champion 6 £49.95. Chess challenger 7 E84. Voice chess challenger $£ 227.95$. Checker challenger 2 \& 46 . Checker
challenger 4 f 84 . Star chess 622 Grandschallenger 4 €84. Star chess $£ 62$. GrandsVideocarts $£ 12.60$. Philips $G 7000$ Videopak home computer $£ 149$. Videopaks $£ 12.95$. Atari Videocomputer $f 147$. Cartridges f 14.85 (except chess $£ 43.95$ and backgamTV GAMES
Tank battles k kit $£ 8.34$. AY- $3-8500$ chip
$£ 3.00$. kit $£ 4.26$. Stunt cycle AY-3-8760 chip $£ 13.71$, kit $£ 4.95$. 10 game paddle 2 AY-3-8600 chip $£ 10.25$, kit $£ 7.03$. Racing
car chip AY-3-8603 $£ 13.63$. Modified shoot kit $£ 5.28$. Rifle kit $£ 5.27$. Colour generator

Kit E9.05
 MAINS TRANSFORMERS

6-0-6V $1 \frac{1}{2} a f 2.60 .9-0.9 V 75 \mathrm{ma} 76 \mathrm{p}$. 1 a £2.80. $15-0-15 \mathrm{~V} 1 \mathrm{a}$ £ 3.15 .
JC12 AND JC20 AMPLIFIERS
Integrated circuit audio amplifier chips with data and printed circuits. JC12 6 Watts CONTINENTAL SPECIALITIES PRODUCTS
EXP300 E6.61. EXP350 £3.62. EXP325
£1.84. EXP650 £4.14. EXP48 £2.64. LP2 E20.70.

PRINTED CIRCUIT MATERIALS

PC etching kits:- economy $£ 2.42$. standard
$£ 4.46 .40 \mathrm{sq}$ ins $\mathrm{pcb} 45 \mathrm{p} .1 \mathrm{lb} \mathrm{FeC} 1 £ 1.30$. Etch resist pens:- economy 50 p , dalo 84 p .
Drill bits $1 / 32^{\prime \prime}$ or 1 mm 30 p . Etching dish Drill bits $1 / 32^{\prime \prime}$ or 1 mm 30p. Etching dis
92 p . Laminate cutter 90 p.

SWANLEY ELECTRONIC

DEPT PE, 32 Goldsel Rd., Swanley, Kent BR8 8EZ.
Callers by appointment. Please add 30 p to the total cost of your order for postage. Prices include VAT unless stated. Lists 24 p post free. Overseas customers deduct 13%. Official credit orders welcome.

S-DECS AND T-DECS
S-Dec f 3.79 . T-Dec 4.59 . u-DecA £4.69. BATTERYELIMINATORS
3 -way types with switched output and 4 way multi-jack'- $3 / 4 \frac{1}{1} / 6 \mathrm{~V} 100 \mathrm{ma} £ 2.39,6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ $300 \mathrm{ma} £ 3.14 .100 \mathrm{ma}$ radio types with press
stud connectors $9 \mathrm{~V} £ 3.57$. 6 V £3.57.412
 64.79. Cassette recorder mains unit $7 \frac{7}{2} \mathrm{~V}$ 100 ma with 5 pin din plug f3.57. Fully stabilized type $3 / 6 / 7 \frac{1}{2} / 9 \mathrm{~V} 400 \mathrm{ma}$ E5.89. Car
convertors 12 V dc input, output 9 V 300 ma convertors 12 V dc input, output 1.19 . output $7 \frac{1}{2} \mathrm{~V} 300 \mathrm{ma} \mathrm{f} 1.19$. output 3/4 $1 / 6 / 7 \frac{1}{1 / 9 / 12 V} 800 \mathrm{Ma}$ \{2. 66 .
BATTERYELIMINATOR KITS 100 ma radio sypes with press-stud connec-
 Cassette type $7 \frac{1}{2} V 100 \mathrm{ma}$ with din plug $4 \frac{1}{1 / 6 / 7 / 8} \frac{1}{2} / 11 / 13 / 14 / 17 / 21 / 25 / 28 / 34 / 42 \mathrm{~V}$
14 12 V dc output $6 / 7 \mathrm{~F} / 9 \mathrm{~V} 1 \mathrm{~A}$ stabilized $£ 1.35$. 12 V dci output 6 OẄVERKITS
The first price is the kit without iransformer the bracketed price includes transformer 8
 ($£ 7.30$). Variable voltage models $2-18 \mathrm{~V}$ 100 ma €2.12 (f2.981, $1-30 \mathrm{~V} 1 \mathrm{~A} \mathrm{E} 3.18$ (E6.20) $1-30 V 2 A$ E4.98 (E111.24).
BI-PAK AUDIO MODULES AL30A £4.08. PA12 £8.38. PS $12 £ 1.58$
 PA100 E17.33. SPM80 E4.74. 8MT80 PA100. Stereo 30 E 2157 MA60 538.27
COMPONESTS
COMA
1 N 41480.9 p . 1 N 40023.1 p 7418 dil 18 p .
72314 dil 33 p . NE555 8 dil 24 p bc 183 72314 dil 33p. NE555 8 dil 24 p bc 183
bc213. bc547. bc549 4.9p. bc 182 . bc 184 bc 212 , bc $214, \mathrm{bc} 548 \mathrm{5} 5 \mathrm{Fp}$. tip 31 c . tip 32 c
36 p . tip $41 \mathrm{c} 40 \mathrm{p} . \mathrm{bd} 131$ bd 13227 p . plastic 36 p . tip41c 40 p . bd 131 . bdi32 27 p . plastic equiv bcy 72.5 p . fuses 20 mm , 5 mm car-
tridge $15, .25,5,1,2,35 \mathrm{Amp}$ quickblow 1p, anti-surge 3.6 p. resistors 5% IW E 12
10 R to 10 M polyester capacitors 250 V .015 of one value. 1.5 p .01 mf 3.0 p .022 .033 mt 33 p 047 mt $3.5 \mathrm{p} .15, .22 .33,47 \mathrm{mf} 4.9 \mathrm{p}$ polystyrene 10 n 4 p . ceramic capacitors 100 pf 3 p . 1n2 to 47 n 2 p . electromic capacitors 50 V E6 22 pf to 5 p .25 V 5 . 10 mf 5 p .16 V 22.33 mf . 1.2 mi 1000 mf . 10 p . 100 mf 6 p .32 .33 mf 5 p .47 . 470 mf 9 p 33 V 7 p . preset pots subminature 0.2 W 7 to or vert 100 to 4 M 7 subminiature 0.1 W horiz 4 K 7 to 2 M 2 or or lin potentiometers $\frac{1}{4} \mathrm{w}$ 4 K 7 to 2 M 2 log or lin single 27 p . dual 79 p .
10 red LEDs 9.7 p ic sockets 8 dil 8.7 p .14 dii
10.1 p .16 dil 12 p . ip. 16 dil $12 p$.
\qquad

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatchiong orders with the minimum of delay.

RECEIVERS AND COMPONENTS

TUNBRIDGE WELLS COMPONENTS. Ballards, 108 Camden Road, Tunbridge Wells. Phone 31803. No Lists. Enquiries S.A.E.

BRAND NEW COMPONENTS BYRETURN $\begin{array}{lll}\text { Electrolytic Capacitors } \\ 0.47 & 18 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V} . & 1.0, \\ 2.2 & 4.7 & 10\end{array}$ $1000 / 15 \mathrm{v}$-15p. $1000 / 25 \mathrm{v}$-18p. $1000 / 40 \mathrm{v}-35 \mathrm{p}$. Subminiature bead Tantalum electrolyticas. $1 \mathbf{1 4 p}$. $22 / 16 \mathrm{~V}, 33 / 10 \mathrm{~V}, 47 / 6 \mathrm{~V}, 68 / 3 \mathrm{~V}$ \& $100 / 3 \mathrm{~V}-30 \mathrm{p}$. $15 / 25 \mathrm{~V}$, $22 / 25 \mathrm{~V}$. $47 / 10 \mathrm{~V}-35 \mathrm{p}$. $\quad 47 / 16 \mathrm{~V}-60 \mathrm{p}$ Subminiature Ceramic Caps. E12 Series 100V. Vertical Mounting Ceramic Plate Caps. 50V. E12 22 pf. to 1000 pf. E6 1500 pf. to 47000 pf.-2p. Polystyrane E12 Series 63V. Horizontal Mntg. 10 pf . to 820 pf - $\mathbf{3 p}$. 1000 pf . to $10,000 \mathrm{pf}$. 4 p . Miniature Polyester 250 V Vart. Mrg. E6 Series. Mylar (Polyester) Film 100V. Vertical Mounting. $.001, .0022, .0047$ 3p. 01, 022-4p. 04, 05. 0.1-5p. Miniature Film Resiazors Highatab. E12 Ser. 5\%. 0.125 W mixed camon/metal 10 Q to 1 MO - 1 p . 0.25 W carbon 1Ω to $10 \mathrm{M} \Omega(10 \%$ over $1 \mathrm{MO} \Omega) 1 \mathrm{p}$. 1N4148-2p. 1 N4002-4p. IN4006-6p. 1 N4007-7p. BC107/8/9: 8C147/8/9. BC157/8/9, 8F194 \%-10p. 8 Pin i.c's. 741 Op. amp.-18p. 555 Timer-24p. Dil Holders 8 pin- $9 p$. 14 pin- 12 p . 16 pin- 14 p . LED's. 3 \& 5 mm . Red 10p. Green \& Yellow- 14 p . 20 mm . Fuseholders P.C. or Chassis Mtg. 5 pp . Solid A1. knobs $15 \mathrm{~mm} .-25 \mathrm{p} .25 \mathrm{~mm} .-\mathbf{3 5 p} .30 \mathrm{~mm}$. -60 p . 400 mW Zener diodes E24 series 2 V 7 to $33 \mathrm{~V}-8 \mathrm{Pp}$. Prices VAT Inclusive Post 10p. (Free over £4). THE C. R. SUPPLYCO. 127, Chesterfield Rd., Sheffield S8 ORN.

COMPONENTS AT SILLY PRICES. 1000 mixed resistors $\mathbf{£ 3 . 6 0}$ SAE Lists. W.V.E.3, Craigo Farm, Tintern, Gwent.
P.C.8.s Paxolin $10 \frac{1^{\prime \prime}}{} \times 4 \frac{1}{2}^{\prime \prime} 4-\mathrm{f} 1.30 .12^{\prime \prime} \times 9 \frac{1}{2}^{n} 85 \mathrm{p} .16^{\prime \prime} \times$ $11 \frac{1^{\prime \prime}}{} \mathrm{£1.40}$. D.S. $10^{\prime \prime} \times 8 \frac{1}{2}{ }^{\prime \prime} 85$ p. Fibre Glass $12^{n} \times 8^{\prime \prime} £ 1.70$. $14^{\prime \prime} \times 6^{\prime \prime} £ 1.60 .13 \frac{1}{2}^{n} \times 11 \frac{1}{2}^{\prime \prime} £ 2.50$. D.S. $10 \frac{1}{2}{ }^{\prime \prime} \times 7^{\prime \prime} £ 1.35$ $8^{\prime \prime} \times 7$ £1.15. Three Assorted M.C. Meters $£ 2.50 .300$ smal £3.75. List 15 p refundable. Post 20 p. Insurance add 15 p.

> J.W.B. RADIO

2 Barnfield Crescent, Sale, Cheshire M33 1 NL

TURN YOUR SURPLUS Capacitors, transistors, etc., into cash. Contact COLES-HARDING CO., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settlement.

I 8 J ELECTRONIC COMPONENTS - Quality Components sensible prices. Same day service. Send a stamped addressed envelope for full list. 98 Burrow Road, Chigwell, Essex. 1G74HB.

SMALL ADS

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 8.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

100 ASSORTED Components 115 p . 100 assorted resistors 75p. 100 assorted capacitors 150 p . 50 reed switches 200 p . 10 mains neons 50 p . 20 Micro Switches 150p. Add 25p P\&P. DURRANTS, 9 St. Mary's Street, Shrewsbury, Salop.
SURPLUS Stocks of Electronic Components at less than wholesale prices. SAE brings free lists. Bardwell Lid., 212 Studley Lane, Dronfield-Woodhouse, Sheffield, S185YP.

CUTPRICECOMPONENTS

Linear: SL610C, RF amp $\mathbf{\text { £2.76. SL613C, Limiting amp }}$ $\mathbf{£ 3 . 1 0}$. SL640C, Modulator $£ \mathbf{£ 3 . 4 5}$. SL680C. XTAL osc. maint circuit E1.70. SL301A, Matched NPN pair e3.00. Anzac DS $318.5-500 \mathrm{MHz}$ power splitter $£ 5.00$. $1 / 2115,100 \mathrm{pF}$ (nom.I Varactpripde $\mathbf{£ 0 . 5 0}$. XR4 $136 \mathrm{CP} \times 741$'s in one 14 f0.60 709 Op .omp 20 SU5367 High slaw FET input op $\mathrm{f}^{3.70}$. DC-DC Cenverters VP5 e.g. derive - 5 v from | op. amp $£ 3.70$. DC-DC equerterg |
| :--- |
| $+5 v$ |
| £6.90. $5 / 120$ derive derive $-5 v$ from | £14.50. LM340K-5.0, 1 an 5 v reg. in TO3 can $£ 1.20$. $78 \mathrm{MO6}$. $\frac{1}{2}$ amp, 6 v reg. in g 399 ce E 1.00 . Ax $1218-414$ pin DIL relay 5 voperation $£ 130$.

Digital: TLL: 74154 (1.00. $54193 \times 1.50,8242$ £0.50 CMOS; 4016 £0.30. 4023 f0.22. 404% sp. 80.1702 A UV raseable PROM 4.50. Passive: ?" Square conger pots 10 top ads.) £1.70, 20 k (side ads.) £1.70. CD5/25 Omex 3.5 pF MNUSED 2 GUARANTEEO NO
OROERS LESS THAN f5 PLEASE AOO SEP POST SENOTO

WIRRAL SEMICONDUCTORS,
177 Brookdale Ave., Greasby, Wirral,

VHF CONVERTOR, $45-220 \mathrm{MHz} 29-30 \mathrm{MHz}$ IF. Ideal feed HF receiver. $\mathbf{1 6 . 8 0}, \mathrm{SAE}$ details, lists other items. H. Cocks, Bre Cottage, Staplecross, Robertsbridge, Sussex. Tel: 058083-317.

10 LEDS. Mixed colours/sizes $\mathbf{2 1 . 1 5}$. Lists 15p. Sole Electronics, (P.E.) 37 Stanley. Street, Ormskirk, Lancs. L39 2DH.

FOR SALE

fOR SALE. Expanded Nascom 1 and Motorola D2. Offers? Ring Dave 0539-27789.

NEW BACK ISSUES of "Practical Electronics" available 80 p each Post Free. Open P.O./Cheque returned if not in stock - Bell's Television Services, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

MINISONIC II SYNTHESISER, in cabinet, full working order, just needs final setting up. $£ 125$ o.n.o. Phone Stuart: Sutton Valence 3624.

A LARGE QUANTITY of Plessey and Linotype-Paul equipment is expected to become available for sale during the next two years. Items include:: Transmitters, receivers, LBXD's, page printers, recorders, verifiers and keyboard desks. Also becoming available:I Honeywell 4200 system, used computer magnetic tapes and sundry computer room furniture. Some items are available now. Enquiries are invited, please contact Director of Supply, British Railways Board, Railway Technical Centre, London Road, Derby DE2 8UP. Telephone Derby 42442 Ext; 3455. Reference 53/230.

PRACTICAL ELECTRDNICS 1969 to 1977 approx 100 copies. Offers Manchester 773-3965.

HOBBYISTS'S Surplus components sale. Electrolytics, Fans, Relays, etc. Very cheap. SAE. J. H. Rudge, 225 Lyndon Road, Solihull, West Midlands.

BACK ISSUES Vol. 1 No. 1. to Vol. 5 No. 8. Except Vol. 4 No. I. Offers or G.B. Stamps. 3 Merrion Avenue, Bognor Regis, Sussex. B.R. 822986.

BOXED 3'" Message Tapes 550' 20p. BASF LR56 tape $5 \frac{3}{4}{ }^{\prime \prime \prime}$ reels $900^{\prime} £ 1.20$. R. Southern, 551 Chorley Old Road, Bolton, Lancs.

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

AERIALS

AERIAL BOOSTERS

Improves weak VHF Radio and Television reception.
B45-UHF TV, BII-VHF Radio. B11A-2 metres For next to the set fitting. Price $\mathbf{E 6}$.

SIGNALINJECTOR
A complete range of AF and RF frequencies up to the UHF Band. Price £5.00.
S.A.E. for Leaflets.

ACCESS

ELECTRONICMAILORDER LTD,
 62 Bridge Street

Ramsbotton, Bury, Lancs, BL09AG.

BOOKS AND PUBLICATIONS

WHY NOT START YOUR OWN BUSINESS REWINOING ELECTRIC MOTORS. A genuine opportunity to success. LARGE PROFITS. You can't help but make money if you follow the easy, step by step, instructions in our fully illustrated Manual showing how to rewind Electric Motors, Armatures and Field coils as used in Vacuum Cleaners, Electric Drills and Power Tools. NO PREVIOUS KNOWLEDGEIS REQUIRED, as the Manual covers in 13 Chapters, where to obtain all the work you need, materials required, all instructions rewind charts and how to take data etc. A gold mine of information. How to set up your home workshop and how to cost each job to your customer, $£ 4.50$ inclusive of P. \& P. UK CWO. to INDUSTRIAL SUPPLIES, 102 Parrswood Rd., Withington, Manchester 20, Dept. PE.

TTLDESIGN CONSIDERATIONS

A booklet for hobbyists covering cascading, floating, debouncing, decoupling, clocks, regulators, simple interfacing etc. Wellillustrated. 75p inc. P\&P. PCB Decent sized offcuts, single sided paxolin. $6^{\prime \prime} \times 4 \frac{1}{2}{ }^{\prime \prime}$ and $6 \frac{1}{2} " \times 3 \frac{1}{2} " .4$ pieces 60p inc. P\&P and VAT.
ACORN OWNERS We have a program that sends random morse characters (adjustable speed) for learning purposes. A record is kept of the characters sent so that you can check afterwards to see how you did. Program (with instructions) $\mathbf{f 2}$. Cassette $\mathbf{£ 3 . 2 0} \mathbf{i n c}$. P\& P etc.
Plan for interface to loudspeaker $\mathbf{f 1}$ inclusive.
PAWBOOKS
117, Blenheim Road, Deal, Kent.
ANy Requesteo service sheet $\mathbf{£ 1}$ + Large S.A.E. Full
 £7). SAE brings newsletter, bargain offers, etc. AUSPEL, 76 Church St, Larkhall, Lanarks ML9 1HE.

SERVICE SHEETS

bell's television services for Service Sheets on Radio, Tv, etc $\mathbf{f 1 . 0 0}$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel:(0423)55885.

SERVICE SHEETS from 50p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

SITUATIONS VACANT

Small but rapidly expanding Amusement Machine Co. requires a keen person interested in Electronics, experience is preferred but training will be given. A driving licence is essential and a knowledge of Artwork for Deck Renovation on Pintables would be an asset.
Excellent working conditions: Salary negotiable.
ABBEY LEISURE
Abbey Wood, Middle Barton, Oxon.
Or ring: Steeple Aston 40221

EDUCATIONAL

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build tadio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 5272 Intertext House, London SW8 4UJ
Tel. 01-6229911 (all hours)
State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from

ICS SCHOOI.OF ELECTRONICS
Dept. S272 Intertext House, London SW8 4UJ
Tel. 01-6229911 (all hours) State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICSSCHOOL OF ELECTRONICS
Dept. S272 Intertext House, London SW8 4UJ Tel. 01-622 9911 (all hours) State if under 18

TELEVISION $\&$ VIDEO SYSTEMS SERVICING

-18 MONTHS full-time Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
- MONO \& COLOUR TELEVISION
- closed circuit television
- VIDEÓ CASSETTE RECORDING
- digital techniques teletext
- COMPUTER \& MICROPROCESSORS
Shortened courses for applicante with suitable electronics background.

Next session sterts April 21 st.
(Also available $2 \frac{1}{2}$ year course in Marine Electronics \& Radar for employment as ships Radio Officer.)

Prospectus from

LONDON ELECTRONICS

 COLLEGEDept. PEA3, 20 Penywern Road,
London SW5 9SU. Tel. 01-373 8721.

ACCESSORIES

sTYLI Cartridges for MUSIC CENTRES, \&c. FREE List No. 29 for S.A.E. includes Leads, Mikes, Phones \&c. FELSTEAD ELECTRONICS, (PE), Longley Lane, Gatey, Cheadle, Ches. SK 84 EE

APPOINTMENTS

MANCHESTER POLYTECHNIC Department of Mechanical, Production and Chemical Engineering ELECTRONICS/ELECTRICAL TECHNICIAN. To work on development and maintenance of electrical apparatus, instrumentation and microprocessor systems. The successful candidate will have the opportunity of working on several projects from the idea stage to final prototype. A Union Membership Agreement is in operation under which new employees are required to join a recognised union. Salary scale: Technician $\frac{3}{4} £ 4,080-£ 5,067$. Removal expenses scheme. For further particulars and application form (returnable by 29 February 1980) please send a selfaddressed envelope marked "T/466 to the Secretary, Manchester Polytechnic, All Saints, Manchester, M156BH.

miscellaneous

ULTRASONIC TRANSDUCERS. $£ 2.85$ per pair +25 p \mathbf{P}. \& \mathbf{P}. Dataplus Developments, 81 Cholmeley Road, Reading, Berks.

NO LICENCE EXAMS NEEDED

To uperate this miniature. solid-state Trans mitter-Receiver Kit. Only $£ 10.70$ plus 25 p P. \& P Brain-Freeze' 'em with a MINI-STROBE Elec rumics Kit. pocket-sized 'lightning flashes', vari speed. for discos and parties. A mere $\mathbf{2} \mathbf{4 . 5 0}$ plus 25 p P. \& P. Experiment with a psychedelic DREAM I,AB, or prick up faint speech/sounds with the BIG EAR sund-ratcher: readv-made multi-function modules. $\dot{x} 5$ each plus $25 p$ P. \& P
IOTS MORF.! Send 250 for lists. Prices include

BOFFIN PROJECTS
 4 Cunliffe Road, Stoneleigh Ewell, Surrey (P.E.)

PRINTED CIRCUIT BOARDS. Glass Fibre Tinned \& Drilled From your own or Published Designs 12p per sq. ins. Plus $30 p$ post. R. D. Electronics. 12 Whiteoaks Road, Oadby, Leicester. 0533716273.

NICKEL CADMIUM
 BATTERIES

Rechargeable and suitable for fast charge HP7 (AA) $\mathbf{1 1 . 0 5}$ SUB C £1.36, RP
All the above nickel cadmium batteries are brand new and are guaranteed full spec. devices. All cells are supplied complete with solder tags (except PP31. Brand new full spee. RECHARGEABLE SEALEO LEAD ACID maintenance free b4.07. 2.6 amp hr . $6 \mathrm{~V} £ 5.23$.
Quantity prices available on request. Data and charging circuits free on request with orders over $£ 10$ otherwise 30 p post and handling (specify battery type). Please add 10%
$P \& P$ in orders under $10-5 \%$ over f10. VAT at the curren rate should be added to total order. Cheques, Postal Orders
Mail order to:SOLID STATE SECURITY DEPT (PE), 10 Bradshaw

TOP QUALITY FIBREGLASS S/s + D/S Circuit Board approx 150 sq ins. $\mathbf{£} 1.50+30$ p PP. C.W.O. to: Paul Collins, 12 Mil Meadow. Ivybridge. Devon PL21 OAN.

MAKE YOUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack (5 sheets, lines, pads, I.C. pads) $£ 1.60$. Large range of single sheets in stock at 34p per sheet.
Master Positive Transparencies from P.C. Iayouts in magazines by simple photographic process. Full instructions supplied. 2 sheets ($20 \times 25 \mathrm{~cm}$) negative paper and 2 sheets $(18 \times 24 \mathrm{~cm})$ positive film $£ 1.30$.
S.A.E. lists and information. P\&P 25p/order except P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

CLEARING LABORATORY. Scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.
> I.C. EXPERIMENTER'S KITS
> -earn abour modern electronics with our new series of Kits on digital logic technigues. Each Kir contains specially selected I.C. 5 , Holders, Veroboard, L.E.D.S. and
Available at $\mathbf{E} 5.00$ each (including P. \& P.) Kit One-Gates Kit Two-Flip-Flops Kit Three-Shift Registers
> Kit Four-Counters Kit Five-Displays S.A.E for further details to

> AUTOMATED HOMES
> 69 High \$treet, Ryton, Coventry, CV8 3FJ
P.C. BOARDS

FOR INDUSTRY 'and' THE AMATEUR

- One off or production runs
- Assembly of P.C.Bs or kits
- Expert hand soldering
- Design service if required
- Artwork \& Photography

SEAHORSE ELECTRONICS LTD.
Unit 2 Picow Farm Road
Service Industry Estate,
Runcorn, Cheshire.
(09285) 7595

SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p . Chassis punching acilites ar very comper ind pry, The Trade BAZELI fom. Suppliers only to industry a he Trad. BAZ Dept. No. 23), St. Wilfrids, Foundry Lane, Halton, Lan aster, LA 6LT.

NI-CAD BATT. PACKS. Contains 9-AA cells, 5 sub C cells (1AH). Mains charger $£ 9.50$ inc p.p. E.D.S. 66 Brook Lane, Warsash. Southampton.

MK14 Full size Display. Replace calculator display with \div inch FND 500 Displays. P.C.B.. filter, simple instructions £2. MK14 Complete Keyboard Kit £i0. Useful programming notes 75 p. Rayner. 'Kismet', High Street, Colnbrook, Bucks

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4

ENAMELLEDCOPPERWIRE

SWG	11 b	$80 z$	$40 z$	$20 z$
10 to 29	3.10	1.86	1.10	0.80
30 to 34	3.50	2.00	1.15	0.80
35 to 39	3.95	2.36	1.34	0.98
40 to 43	5.10	2.97	2.28	1.42
44 to 46	6.00	3.60	2.50	1.91
47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69
SILVER PLATEDCOPPERWIRE				
14 to 22	5.30	3.03	1.85	1.20
24 to 30	6.50	3.75	2.20	1.40

Reg. office: 22 Coningsby Gardens.

MSF CLOCK

NOW Get ABSOLUTE TIME, always correct, never gain or loses, auto GMT/BST, 8 digits show Date, Hours. Minutes and Seconds, also second-in-a-month STOP
CLOCK and parallel BCD CLOCK and paraliel $8 C D$ output, receives Rugby time
signats built-In antenna. EXACT TIME $£ 48.80$ signals buln-manterna. EXACT TIME £48.80 60 KHz Rugby Receiver, as in MSF Clock, 1000 Km range audio and serial data outputs. $£ 13.70$
V.L.F.7EXPLORE $10-150 \mathrm{KH}$ Roceiver $£ 10.70$

Still NO AADIO 47 Get ALL the NEWS 200 KHz Convertor, suits any Medium Wave receiver $£ 11.40$.
Each fun-to-build kit inctudes all parts, printed circuif, case, postage etc, money back assurance so SEND off NOW.

CAMBRIDGEKITS
45 (FC) Old School Lane, Milton, Cambridge.

TRANSISTOR TESTER

Measures hFE (gain) values from 10 to 500 nominally at -3% accuracy and from 500 to 1,000 nominally at . 6% accuracy. Battery and case no included
Send $\mathbf{£ 4 . 9 5}$ for kit, full construction and user in structions or send SAE for more details.

J.B. ENTERPRISES

6 Rydal Drive, Tunbridge Wells, TN4 9ST

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require

 battery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass, non-magnetic tweezers, watch screwdriver, case knife and screwback case opener, full instructions and battery identification chart. We then supply replacement batteries-you fit them. Begin now. Send $£ 7.50$ for complete kıt and get into a fast growingbusiness. Prompt despatch.

WATCH BATTERY REPLACEMENT CO. 11 Percy Avenue, Middx., TW15 2PB

PRACTICALELECTRONICS P.C.B.'s Profassional quality glassfibre. Fris roller tinned and drilled. Sept. 79 Waveform generator EG $161 £ 1.58$
Oct. 79 Input channel amp EP158. Set of 6 pcb's $\mathbf{E 5 . 6 1}$ Nov. 79 Diamatic EC10 £2.26
$\begin{array}{ll}\text { Dec. } 79 \begin{array}{ll}\text { Digital dark room timer EG } 199 & \text { Ulirasonic burglar alarm EP200 EG } 126 \text {. Set of } 2\end{array} \\ & \text { pcbss } £ 2.06\end{array}$
Cost a call EP2 $16 £ 1.36$
Car solid state EG 192, 204. 207, 210 \& EA46
Set of 5 pcb's E4.45 or 96p each
Jan 80 Scratch \& rumble filter EP232 £1.03
Feb 80 Dynamic noise limiter EG276 £1.98. Pso, EG274, 83p. Set of two £2.60.
For full list and current pcb's please send SAE. Pcb's also produced to customers own masters. Trade enquiries welcome. Please write for quote. CWO Please. Postage - Please add $30 p$ postage and packing to compiete order.

PROTO DESIGN
14 Downham Road, Ramsden Heath Binericay, Essex CM11 1PU Telephone 0268-710722

CABINET FITTINGS FOR

Stago Loudspeakers and Amplifier Cabs Freticloths, Coveringes. Strop \& Recess Hondes, Feet, Costors, Jocks 8 Sockers. Connons, Bulgin 8 woys, Reverb Troys, Locks \&, Hinges, Corners, Irim, Speoker Bolts eic.
Send $2 \times 9 p$ Stamps for samples and illustrated catalogue
ADAM HALL (P.E.SUPPLIES) Unir 3. Carlton Court, Grainger Road Southend-on-Sea, Essex.

SEEN MY CAT? 5000 Odds and ends. Mechanical. Electrical Cat. free. Whiston Dept. PRE. New Mills, Stockport.

RYDER ORGAN SYSTEM
(Wireless World)
A classical design with full-size keyboards. Couplers, capture, etc., can be included.
Cassette. p.c. boards, data, from:HIYKON LTD. (P),
Woodside Croft, Ladybridge Lane, Bolton BL1 5ED

MEMORY MART
'UK 101 ' 'Superboard' 4 KRAM
Memory Expanaion
537.60

Memory Expantion
$21141 \mathrm{k} \times 4$ each
$£ 4.70$
2708 UV prom each
ع.7.00
$\rho \& P$ and VAT included if cash with order C.O.D. 60ρ expra.

MEMORY MART
24 Ashleigh Estate, Crundale,
Haverfordwest, Dyfed, South Wales.

PLEASE

When replying
MENTION

to

PRACTICAL

Advertisments
ELECTRONICS

ORDER FORM please write in block capitals

Please insert the advertisement below in the next available issue of Practical Electronics for \qquad
insertions. I enclose Cheque/P.O. for £ ..
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

NAME	Send ro: Classified Advertisement Manager PRACTICAL ELECTRONICS
ADDRESS.	GMG, Classified Advertisements Dept., Room 2337, King's Reach Tower, Stamford Strear, London SE1 9LS. Telephone 01-261 5846 Rate:
	24p per word, minimum 12 words. Box No. 60p extra.

BUILD A SYNTHESISER!

Using DEVVEOL (Reg'd)
PROFESSIONAL MODULES
Over 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, welltried range of Dewtron synthesiser and other effects modules.

Send 25p for Musical Miracles Catalogue NOW!

254 RINGWOOD ROAD, FERNDOWN, DORSET BH22 9AR

Mail Order Protection Scheme

The Publishers of 'Practical Electronics' are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owning to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.
In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with 'Practical Electronics' within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence. For the purpose of this scheme, mail order advertising is defined as:-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail order advertising are excluded.

INDEX TO ADVERTISERS

Abbey Leisure		\ldots		100
Acom		...	\ldots	20
Adam Hall (P.E. Supplies)		\ldots	\ldots	102
Aitken Bros.		\ldots	...	94
Aura Sounds			\ldots	12
Automated Homes		\ldots	...	101
Bamber	\ldots	\ldots	\ldots	57
Barrie Electronics		\ldots		
Bell Systems		...		8
BIET		\ldots	..	10
Bib Hi-Fi Accessories	ies Ltd.	..	.	94
Bi-Pak		.	.	85
Bi-Pre-Pak				84
Birkett, J.				97
Boffin Projects				101
British National P	Radio			
School		89
Cambridge Kits		\ldots		102
Cambridge Learning				86,87
Chromasonic Electronics		-	\ldots	93
C.J. Communications		\ldots	\ldots	97
Clef Products		\ldots	\cdots	92
Codespeed		\ldots		96
Commodore ...				31
Computer Components (Teleplay)				over II
Concept Elec.		
Continental Spec.	28
Crimson Elektrik	...	\ldots	\ldots	92
Crofton Electronics	s		\ldots	88
C.R. Supply Co. .	\ldots			100
Davian Electronics	...	\ldots	\ldots	84
Delta Tech				97
Dewtron				103
Doram Electronics				99
Dziubas		\ldots	\ldots	95
Ecoscope Instrumen	ents Ltd	\cdots		102

Published approximately on the 1Sth of each month by IPC Magazines Lid., Westover House. West Quay Road, Poole, Dorset Bhis iJg. Printed in England by Chapel River Press, Andover, Hants,
Subscription Austris and New Zealand - Gordon \& Gotch (A/sia) Ltd; South Africa - Central News Agency Ltd.
Practical Electronss and OVerseas elo. 60 payabie to ipC Services, Oakield House, Perrymount Road, Haywards Heath, Sussex
Trade at more than the recommended selling price shown on he cover. excluding Eise where the selling prite is subject to VAT, and that it shall, not be lent, resold, hired out or otherwise disposed of by way of
mutiated condition or in any unauthorised cover by way of Trade, or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

SERVICE TRADING CO

FT3 NEON FLASH TUBE

METERS (New) - $\mathbf{9 0} \mathbf{~ m m ~ D I A M E T E R ~}$ A.c. Amp.,Type 62 T2. O AA. 0.5 A . $0-20 \mathrm{~A}$.
A.C. Amp Trpe 55 C 50.

All types £3.50 вa. + P \& P 50 p (E4.32
0 100A. DC. price $\mathbf{5} 5.00+50 \mathrm{P}$ \& P HEAVY DUTY SOLENOID mf, b
Magnetic Devices. 240V. A.C. Intermit125 in. Ex-equip. Tested. Price E4A. 75
750 P \& P ($\mathrm{E6} .33 \mathrm{inc}$ VAT \& P) a.C. SOLENOID pye ether type $176 / 2$

240 AC Approx 10 at $\frac{1}{\frac{1}{2}}$ inch, WESTOOL TVPE MMB Madel 2240 V AC. Approx 1 Ilb pul

AG/GT 24V. D.C. 70 ohm Coil Solenoid. Push or Pull. Adjustable travel to $3 / 16$ in. Fitted with mounting brackets and spark sup
pressor sizee $100 \times 65 \times 25 \mathrm{~mm}$. Frice 3 for $\mathbf{f 2 . 4 0}+30 \mathrm{p}$. P. ${ }_{8}$
P (min 3 offlce 3.11 inc. VAI \& P.)
MINIATURE UNISELECTOR

P \& P 35p (£3.85

MICRO SWITCHES
Sub Min. Honevwell Lever \mathbf{m} / s type 3115 m 906 t 1
for $\mathbf{f 3 . 5 0} \mathbf{~ p o s t ~ p a i d ~ (~} \mathbf{f} \mathbf{4 . 3 7 \mathrm { incl } \text { VAT) }}$ These $V 3$ types.
Button type (Pye) 10 for $\mathbf{£ 3 . 0 0}$ ($\mathbf{£ 3 . 8 0} \mathbf{8 0} \mathrm{incl}$. VAT)
Short Lever
Short Lever type 16 amp , rating (Grouzet) $\mathbf{£ 4 . 0 0}$
(f4.95 incl. Vat)
Roller Type (Bonnelia) 10 for $\mathbf{£ 3 . 5 0}$. ($\mathbf{4 . 3 7}$ incl.
Roller Type (Bonnelia) 10 for $\mathbf{£ 3 . 5 0}$. ($\mathbf{(4 . 3 7}$ incl.
Ur (1) hever miswitich mfy by Cherry Co USA Precious mela
low contacts 10 for $\mathbf{£ 2 2 5}$ P \& P 30p. Total inc VA
MERCURY SWITCH
vanilable voltage thansformens

 \section*{}

TRANSFORMERS

TRANSFORMERS

LT TRANSFORMERS

 $0-6 V 12 V$ at 20 amp $\mathbf{£ 1 4 . 7 0 P}$ \& P \& $50(£ 18.63 \mathrm{nc}$ VAT) ($£ 15.53 \mathrm{mc}$ VAT $\& P$) ($\mathbf{E 2 3 . 5 8}$ inc. VAT \& P)
O-10V/1N/ 18 V at $10 \mathrm{amp} \mathbf{£ 1 0 . 5 0 ~ P . \& P . ~} £$). 50 ($\mathbf{£ 1 3 . 8 0} \mathbf{~ i n c . ~ V A T ~}$
Other fypes in slock. phone for enquires or send sae for

XENON FLASHGUN TUBES

ULTRA VIOLET BLACK LIGHT
FLUORESCENT TUBES

 $\mathbf{£ 3 . 5 0}$. Posi 45 p . ($\mathbf{£ 4 . 5 4} \mathrm{inc}$ VA
C
400 watt UV lamp and baliast complete $£ \mathbf{~} \mathbf{3 8 . 0 0}$. Post $£ 3.50$

SQUAD LIGHT

A new conception in light control Four channels each capable of handling 750 watts of spotights, floodights or dozens of small
mains lamps. Seven programs ail speed controled plus flash modulation, effectively giving 14 different displays. Makes soundto light obsoiete. Electrically and mechanically noise free
Price $\mathbf{E 6 0 . 0 0} \mathrm{p} \mathrm{\&} ; 75 \mathrm{p}$ ($\mathbf{E 6 9 . 8 1}$ incl.
WIDE RANGE OF DISCO LIGHTING

ously Vate. $10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{kN} /$
$\mathbf{2 5}$ WAT/
50 WAT 250 .
50 WATT 250 E 2.90 . PoSI 25 ($\mathbf{E} 3.62 \mathrm{inc}$. VAT \& P.)
100 WATT $15102550 / 100 / 250 / 500 / 1 \mathrm{k} \Omega 1.5 \mathrm{k} \Omega / 25 \mathrm{k} \Omega$
$35 \mathrm{k} \Omega \mathbf{£ 5 . 9 0} 8 \mathrm{p} .35 \mathrm{p}(\mathbf{f 7 . 1 9}$ inc. VAT).
Black, Silver, Skirted krob calbrated
RELAYS
Wide range of AC

KMKI Relay. 230 V , A.C. I cho. open type 10 amp contact, mf.
by Keyswitch $\mathbf{8 0 p}$. 20 p . $\& \mathrm{p}$. ($\mathbf{~} 1.15$ incl. VAT). 5 for by "Kerswitch 80p.
E3.75 postpaid ($\mathbf{2} 4.32$ ind.
D.C. Relays: Open type $9 / 12 \mathrm{~V} 3 \mathrm{c} / \mathrm{o} 7 \mathrm{amp} \mathbf{£ 1 . 0 0}(\mathbf{f 1} \mathbf{3 8}$ inc
$V A T$

$V A T \& P$) (amps contact ratingl. P\& P on any Relay $20 p$
Hellermann Deutsch. Hermetically sealed sub-min. Relay. 12 -
24 V . DC. $2 \mathrm{C} / \mathrm{o}$.850 ohm coil. O .2 pitct. P.C. mounting. L. 20 mm ,
(2.88 incl VAT). N.M.S. Fraction of maker's price: $\mathbf{£ 2 . 5 0}$ postpaid Very Special Offer: 9-12V D.C. 2 mat
for $\mathbf{£ 1 . 7 5}+25$ P P\&P (incVAT $\mathbf{~} 2.30$)
Dimmond \mathbf{H} heavy duty A.C. relay $230 / 240 \mathrm{~V}$ a.c. two C/O
contacts 25 amps res at 250 ac. $\mathbf{£ 2} \mathbf{2 5 0} \mathrm{p} \& \mathrm{p} 50 \mathrm{p}$. $\mathbf{f} 34 \mathrm{4}$ inc
 $1000 \mathrm{~V} 1,000 \mathrm{M} \Omega$. $f 55$. Post 80 p ($\mathbf{5 6 4 - 1 7}$ Inc. VAT \& P. SAE for leafle
IMFD 600V Dubilier
$230 V$ a.c. FAN ASSEMBLY.

SERVICE TRADING CO
All Mail Orders
Callers
Ample Parking Space
Showroom open Mon-Fri.

57 BRIDGMAN ROAD CHISWICK LONDON W4 5BB 019951560
ACCOUNT CUSTOMERS MIN. ORDER £ $10 \cdot 00$

9 Little Newport Street, London WC2H 7JJ Phone 01-437 0576

A 63-key ASCII keyboard with 625-line TV interface, 4 -page memory and microprocessor interface. Details in our catalogue.

Our catalogue even includes some popular car accessories at marvellous prices.

A 10-channel stereo graphic equaliser with a quality specification at an unbeatable price when you build it yourself. Full specification in our catalogue.

These are just some of the metal cases we stock. There are dozens of plastic ones to choose from as well. See pages 52 to 57 of our catalogue.

A nlassive new catalogue from Maplin that's even bigger and bette
than before If yot ever buy electronic ever buy electronic the one catalogue you must not be without. Over 280
pages - some intul colout-it's a comprehensive gurde to electronic components with hundreds of photographs and illustiations and invaluable data
Our bi-monthly newsleiter contans guaranteed prices special ofters and all the latest news from Mapin.

Mobile amateur radio, TV and FM aerials plus lots of accessories are described in our catalogue.

A digitally controlled stereo synthesiser the 5600 S with more facilities than almost anything up to $£ 3,000$. Build it yourself for less than £750. Full specification in our catalogue.

A superb range of microphones and accessories at really low prices Take a look in our catalogue - send the coupon now!

An attractive mains alarm clock with radio switching function and battery back up! Complete kit with case only £18.38(incl. VAT \& p \& p) MA1023 module only $£ 8.42$ (incl. VAT).

All mail to:-
P.0. Box 3, Rayleigh, Essex SS6 8LR.

Telephone: Southend (0702) 554155.
Shop: 284 London Road, Westcliff-on-Sea, Essex (Closed on Monday).
Telephone: Southend (0702) 554000

[^0]: - IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Acorn Computers L.td. 4A Market Hill, Cambridge, Cambs. (0223) 312772. Regd. No. 1403810

[^2]: ALL GOODS SUPPLIED WITH FULI
 2 YEARS GUARANTEE
 OPEN $900 \mathrm{am}=600 \mathrm{pm}$ Mon Sat
 csonc soundaudio
 248-256 Tottenham Court Road London Wi
 Tel HIFI Dept 01.5809311 RADIO Dept 01.6371908

[^3]: P
 M

[^4]: MC 6800 Microprocessing Unit
 MC $6802 \mathrm{MPU}+128$ Bytes RAM + Clock
 MC 6810128×8 Static RAM
 Kúc 6821 Peripheral interface Adaptor
 MC 6850 Asynchronous Communications Interface Adaptor
 MC 6852 Synchronous Serial Data Adaptor
 MC 68A00 1.5 MHz Microprocessing Unit
 MC 688002.0 MHz Microprocessing Unit
 $£ 10.95$

 MK 41181024×8 Static RAM 250 ms
 MOTOROLA 6800 D2 EVALUATION KIT
 This highly professional kit is an excelient introduction to the 6800 system, for the beginner. The kit comes complete with a detailed assembly quide, description of circuit operation, program ming examples, and book of data sheets for the 6800 family devices. Requires only a 5 V power supply

 Prices include Post and Packing. Please add VAT at 15\%

 Cheques or P.O. with order to Dept. MC (PE), Positron Computers Lid., 39 Wigan Ad., Aehton-in Makerfield, Nr. Wigan, Lancs. WN4 9AR.

