PRACTICAL

FEBRUARY T9EO OES

 OCTOBER 1979

LOW COST SUPERBOARD IN KIT FORM

The Compukit UK101 has
everything a one board 'superboard' should have.

* Uses ultra-powerful 6502 microprocessor * 50 Hz Frame retresh for steady clear piciure IU.S.A products with 60 Hz frame refresh always results in jitiery displays)
* 48 chars by 16 tines - 1 K memory mapped video system providing high speed access to screen display enabling animated games and graphs
- Extensive 256 character set which includes full upper and lower case alphanumerics. Greek symbols for mathematical consiants and numerous graphic characters enabling you to form almost any shape you desire anywhere on the screen
* Video oulpul and UHF Highgrade modulator 18 Mz Bandwidth) which connects direct to the aerial socket of your TV. Channel 36 UHF.
Fully stabilised 5 V power supply including trans former on board.
Standard KANSAS city tape intertace providing high reliability program storage - use on any standard domestic tape or cassette recorder.
* 4 K user RAM expandable to 8 K on board $\mathbf{~} 49$
exira. 40 line expansion interface socket on board for attachment ol extender card containing 24K RAM and disk controller. (Ohio Scientific compatible).
. 6502 machine code accessible through powerful
2 K machine code monitor on board.
High quality thru plated P.C.B. with all I.C.'s mounted on sockets
- Professional 52 Key keyboard in 3 colours - soff. ware polled meaning that all debouncing and key decoding done in soltware
COMMANDS
CONT LIST NEW NULL RUN
STATEMENTS DEF DIM END FOR
CLEAR DATA $\begin{array}{lllll}\text { CLEAR DATA DEF } & \text { DIM } & \text { END FOR } \\ \text { GOTO GOSUB IF GOTO IF. THEN INPUT LET }\end{array}$ NEXT ON GOTO ON GOSUB POKE PRINT REAC REM RESTORE RETURN STOP
EXPRESSIONS
OPERATORS
\& NOT.AND.OR $>\lll \ll=$ RANGE 10^{-32} to 10^{+32}
VARIABLES
A.B.C $\quad Z$ and \pm wo leller variables

The above can all be subscripled when used in an array Siring variabies use above names plus $\$$.e g AS

-8K Microsoft Basic means conversion 10 and from Pet, Apple and Sorcerer easy. Many compatible programs already in print. SPECIAL CHARACTERS
(4) Erases line being typed. then provides carriage return, line feed.

Erases lasi character typed.
CR Carriage Return - must be at the end of each line.

Separates statements on a line
CONTROL/C Execution or printing of a list is interrupted at the end of a line.
"BREAK IN LINE $X X X X$ "" Is printed, in dlcating line number of next statement to be executed or printed.
CONTROL/O No outputs occur until return made to cummand mode If an Input state ment is encountered. either another CONTROLIO is typed, or an error occurs.
? Equivalent to PRINT

Simple Soldering due to clear and consise instructions compiled by Dr. A.A. Berk, BSc.PhD

NO EXTRAS NEEDED JUST HIT 'RETURN' AND GO.

Build, understand, and program your own computer for only a small outlay.

KIT ONLY £219 + VAT

including RF Modulator \& Power supply.
Absolutely no extras.

Available ready assembled and tested, ready to go for
£269 + VAT

FUNCTIONS
ABS (X)
ATN(X)
$\begin{array}{ll}\text { LOG }(X) & \text { PEEK }(1) \\ \text { SPC }(1) & \text { SQR }(X)\end{array}$
FRE $(X) \quad \operatorname{INT}(X)$
$\operatorname{SGN}(X) \quad \operatorname{SIN}(X)$
SGN(X)
USA(I)
$\operatorname{SIN}(X)$
STRING FUNCTIONS
ASC(X\$) CHR\$S(1) AIGHT \$(X\$.I)
LEN(X\$) MID\$(X\$.J.J)
LEN(X\$)
VAL(X\$)

COLOUR ADD-ON CARD AVAILABLE SOON

Enables you to choose your foreground the packground colour anywhere on the screen. Flash any character on the screen at will. Full documentation and parts in kit form.

CONSTRUCTIONAL PROJECTS

DYNAMIC NOISE LIMITER by R.A. Penfold 19Improves cassette recorder performanceSOLDERING IRON CONTROLLER by M.S. Dhingra30
Controls tip temperature
ACCOUSTICALLY COUPLED TELEPHONE MODEM by K. Amor 39
Computer communication system
ELECTROSTAT by P. Dakin 46An electronic thermostat4 CHANNEL DIGITAL MEMORY by C. Harding56Storage facility for oscilloscopes
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R.W. Coles 29
ZN419CE, 87C48, MCM68732
THE ULA by E. Fry B.Sc. 34
Uncommitted Logic Array
STRICTLY INSTRUMENTAL by K Lenton-Smith 45
MICROBUS by D.J.D. 53
Micro Magician, Frequency Generator and 8080 Two-Byte Jump
INGENUITY UNLIMITED60
Tape/Slide Sync, Voltage Sensitive Relay, 'Jacked Up' Regulator, Waveform Convertor for Minisonic, Car Cassette Power Supply, Rhythm Code Generator, Automatic Car Aerial Control, 3-lamp 2-wire Controller, Scope Calibrator
NEWS AND COMMENT
EDITORIAL 15
MARKET PLACE 16
New products
MICRO PROMPT 23
News and ideas on PE designs for micros
INDUSTRY NOTEBOOK by Nexus 24
Inside Industry
SPACEWATCH by Frank W. Hyde 27
COUNTDOWN 28
NEWS BRIEFS 28, 55
BOOK REVIEWS 36
COMPUTER CASE OFFER 37
PATENTS REVIEW 38
PE/LEKTROKIT COMPETITION RESULTS 38
POINTS ARISING 38Ultrasonic Cleaner, Ultrasonic Burglar Alarm, Digital Temperature ControllerOUR MARCH ISSUE WILL BE ON SALE FRIDAY, 8 FEBRUARY 1980
(for details of contents see page 33)

[^0]
WATFORD ELEGTRONIISS
 33/35, CARDIFF ROAD, WATFORD, HERTS, ENGLAND

all devices brand new. Full spec. and fully guaranteed. orders DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/P.O. OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL INSTITUTIONS OFFICIAL ORDERS ACCEPTED. TELEPHONE ORDERS BY ACCESS NOW ACCEPTED (Minimum order ELO.OO flassa). YADE E10.00. OVERSEAS ORDERS POSTAGE AT COST.						
VAT Export ordere no VAT. Applicable so U.K. Cuttomers only. Unieas stated othervieo, all prices are excluaive of VaT. Please add 15% to the total cost. We atoch many more items. It paya to visit ue. We are aituated behind Watford Footboll Ground. Nearest Underground/Br. Fail Station: Watford High Street. Open Monday to Saturday 9 a.m.- 8 p.m. Ample Free Car Parking apace available.						
POLYESTEA CAPACITOAS: (Axial Lead Type) 400V: $1 \mathrm{nF}, 1 \mathrm{n} 5,2 \mathrm{n} 2,3 \mathrm{n} 3,4 \mathrm{n7}, 6 \mathrm{n} 8,10 \mathrm{n}, 15 \mathrm{n}, 9 \mathrm{p} ; 18 \mathrm{n} 10 \mathrm{p} ; 22 \mathrm{n}, 33 \mathrm{n} 11 \mathrm{p} ; 47 \mathrm{n}, 68 \mathrm{n} 14 \mathrm{p}$; 100 n 17p; 150n, 220n 24p; 330n, $470 \mathrm{n} 41 \mathrm{p} ; 680 \mathrm{n} 48 \mathrm{p} ; 1 \mu \mathrm{~F} 64 \mathrm{p} ; 2 \mu 282 \mathrm{p}$. 160 V : $10 \mathrm{nF}, 12 \mathrm{n}, 39 \mathrm{n}, 100 \mathrm{n}, 150 \mathrm{n}, 220 \mathrm{n} 11 \mathrm{p} ; 330 \mathrm{n}, 470 \mathrm{O}$ 19p; $680 \mathrm{n}, 1 \mu \mathrm{~F} 22 \mathrm{p}$; $2 \cdot 2 \mu \mathrm{~F}$ 32p; 4 - $\mu \mathrm{F}$ 36p. 1000V:10n, 15n 20p; 22n 22p; 47n 26p; 100n 38p; 470n 53p; 1 $\mu \mathrm{F}$ 175p.						
TAG-END TYPE: 450V: 100uF 180m; 70V: 4700 1650; 64V: 2500 980; 3300 1300: 50V: 2200 99p; 3300 105p; 40V: 15,000 399p; 4700 120p; 4000 92p; 3300 93p; 2500 85p; 2200 85p; $2000+2000$ 120p; 30V: 4700 90p; 25v: $6400105 p ; 4700$ 85p; 3300 80D; 220060 D .						
TANTALUM BEAO CAPACITORS $2.2 \mu \mathrm{~F}, 3.3,4.7,6.8 .25 \mathrm{~V}: 1.5,10,20 \mathrm{~V}$: $1.5 \mu, 16 \mathrm{~V}$: $10 \mu \mathrm{~F}$ 13p each. 16 V : $15 \mu, 2225 \mathrm{p}$; 47, 100, 22040 p . 10v: $15 \mu, 22,3320 \mathrm{p} ; 10035 \mathrm{p}$; 8 V : $47 \mathrm{~N}, 68,100$ 30p; $3 \mathrm{~V}: 100$ 20p.			POTENTIOMETERS (A8 or EGEN) Carton Track, 0.25W Log 80.5 W Linear values. $500 \Omega 1 \mathrm{~K} \& 2 \mathrm{~K}$ (LIN ONLY) Single $5 K \cap-2 M Q$ single gang $5 K \Omega-2 M Q$ single gang D / P switch $5 \mathrm{~K} \Omega-2 \mathrm{MQ}$ single gang D/P $5 \mathrm{~K} \Omega-2 \mathrm{M} \Omega$ dual gang stereo $5 K \Omega-2 M \Omega$ dual gang stereo			
MYLAR FILM CAPACITORS $100 \mathrm{~V}=0.001,0.002,0.005,0.01 \mu \mathrm{~F} / 6 \mathrm{p}$ $0.1 \mu \mathrm{~F}, 0.2, \quad 10 \mathrm{p}$. $\quad 50 \mathrm{~V}: 0.47 \mu \mathrm{~F} \quad 12 \mathrm{p}$			0.25 W log and linear values 60 mm rrack $5 \mathrm{~K} \cap 500 \mathrm{k}$ 人 Single gang 10kn $500 \mathrm{k} \Omega$ Dual gang Self-Stick graduated Alum. Bezels			
CERAMIC CAPACITORS 50 V Hange: 0.5 pF to 10 nF 15nF, 22nF, 33nF, 47nF5p 100 nF 7p						
			PRESET POTENTIOMETERS 			
10 pF to 1 nF . 6p. 1.5 nF to 47 nF 10p.						
3.3 .4 .7 6.8. 8.2. 10 . 47, 18, 68, 75, 32, 85: 100, 120, 150, 180. $200,220,9900$,250,270 250.360,390$490,470,6008$ 820 pF 16 peach . 1000.2000 pF 20 p.	TRIMMERS miniature 2.5pF:3-10pF; $3-30 \mathrm{DF}, 3-50 \mathrm{OF}$ $5-25 \mathrm{pF}, 65 \mathrm{p}$ 22 p 5-25pF; 65pF 88pF 30p			AESISTORS-Erie make 5% carbon Miniature HIgh Stabibity. Low Noise		
				$1 \mathrm{~W}{ }^{20}$	E12 ${ }^{\text {Ep }}$	

LINEAR	ICM7555 LD130	$\begin{array}{r} 89 \\ \hline 452 \end{array}$	$\begin{array}{\|ll\|} \hline \text { NE565A } & 120 \\ \text { NE566 } & 160 \end{array}$	COMPUTER	FS80102 205	
IC's		490	$\begin{array}{ll}\text { NE567V } & 170 \\ \text { NE570 }\end{array}$	IC'S	SN74LS	3118
70275	LM10	350	NE570 375	2102-2 225	N745	895
709C8 ${ }^{\text {pin }} 35$	LM301A	30	NE571 420	2111-195	SN75450	120
70914 pin 38	LM308T	110	RC4136D 120	2112-2N 250	SN75451	70
710	LM311H	120	SAD 10241350	${ }_{2114} 439$	SN7545	70
72314 pin 39	LM318H	205	SG3402 295	2708 2708	SN7545	225
7418 pin 17.	LM 324 A		SN76003N 170	2768 27108 975	TMS6	355
7 Cl 14 pin 78	LM339		SN76013N 140	${ }_{411616 \mathrm{~K}} 1025$		
748 C 8 pin 36	LM 348	90	SN76013ND 130	4047 750		
7538 pin 810 150 159	LM349 LM379	125		6502 995		
810 AY-1-0212 A80 589	LM 380	375 80	SN76023N 140 SN76023ND 130	$\begin{array}{ll}74500 & 60 \\ 74504 & 73\end{array}$	ITEX	
AY-1-1313A 660	LM381N	145	SN76033N 175	745132350	7400	11
AY-1-1320 315	LM381AN	248	SN76115N 215	745138 250	7401	11
AY-1-5050 190	LM382	125	SN76131 110	74S158 524	7402	11
AY-1-5051 145	LM386	99	SN76227N 115	$745188 \quad 210$	7403	12
AY-1-6721/6 195	LM387	150	SN76660	$\begin{array}{ll}745189 & 158 \\ 745194 & 750\end{array}$	$7{ }^{7405}$	18
AY-3-1270 840	LM389	93	SP8629 450	$745195 \quad 795$	7406	28
AY-3-8500 390	LM733	125 50	TAA621AX1 250	745241 195	7407	38
AY-5-1013 480	-M3900	60	TAA960 ${ }^{\text {T }}$	745262 895 $74 S 287$ 325	7408 7409	17
AY-5-1230 450	LM3909N	70	TAD 100 l 59	745470 325	7410	11
AY-5-1315 560	LM3911	125	TBA120S 70	$\begin{array}{lll}745472 & 1150\end{array}$	7411	20
AY-5-1317A630	LM3914	258	TBA540	74S475 825	7412	17
AY-5-3500 510	LM13600	125	TBA5500 330	811595125	741	30 45
AY-5-3507A 415	M253AA		TBA641-A121	81L596 125		45
AY-5-40100 735	MC1204	250	BXI or BX11250	811597 $A Y-5-2376$ 137 880	7417	30
CA3011 100	MC1301	79	TBA651 180	CP1610 920	7420	16
CA3014 137	MC1303	88	TBA800 90	MC1488 85	7421	
CA3018 68	MC1304P	260	TBA810S 95	MC1489	7422	17
CA3020 170	MC1310P	150	TBA820 70	MC14411 958	7423	27
CA3023 170 CA3028A 80	$\mathrm{MCl}^{\mathrm{MCl} 312 \mathrm{~Pa}}$	195 350	TCA965 ${ }^{\text {T }}$ TCO	MC14412 1080 MK 40274 K 325	7425 7426	27 36
CA3035 240	MC1496L	92	TTA1004 290	MK 4027-2 470	7427	27
	MC15	225 79	TDA1008 310	MK4027-3 445	7428 7430	17
CA3045 140	MC3302	150	TDA1024 105	MK4027 ${ }^{\text {M }}$ 350	7432	
CA3046 210	MC3340P	120	TDA2020 320	MK4118-4 2099	7433	40
CA3048 350	MC3360	120	Tl061C 76		74	30
CA3075 CA3080e 175 10	MC3401	52	TLO62CP 125	745288210	74	33
CA308OE CA3081 190		135	TIOR 19	TMS 4027325	7440	15
CA3081 CA3089E 190 10	MK50398	637	$\begin{array}{ll}\text { TLO64CN } \\ \text { TLO72CP } & 199 \\ 125\end{array}$	TMS2716 1950		$8{ }^{4}$
CA3090AO 398	MM5303	635	TLO74CN 199	TMS 4039250	7443	15
CA3123 200	MM5307	1275	TLOB1CP 52	TMS 40451083	7444	112
CA3130 90	MM57160		TLO82CP 96	CPU2-5	7445	94
CA3140 70	MSM5626	320	TLOB3CP 105	Z80 4M 1099	7446	94
	NE518	210	TLO84CP 130	288 P10 660	7447	57
	NE544	185	UAAI80 198	Z80 CTC 595		17
ICM7205 1150	NE555	20	ZN414 90			
ICM7215 1050	NE556DB	60	ZN424E 130		7453	17
ICM7216A 1950	NE560	325	ZN425E 415		745	17
1 ICM 721681950	NE561	395	2N1034 200	AY-5-1013 399	7460	17
[CM7216C 1950	NE562	410	ZN104OE 685	SFF96364E 1050	7470 7472	28 28
CM7217A 790	NE564	425		SFC71301 820		

A
A
A
A
A
A
A
A

TAANSISTORS

\section*{FASTE SAFER C MONITOR

 LM-1
 LOGIC MONITOR}

ONLY £28.70

plus 15% VAT, plus post and packing Total $£ 34.44$ including box and instruction manual.

Europe, Africa, Mid-East: CSC UK LTD. Dept. 4 S. Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Telephone: SAFFRON WALDEN 21682.

Electronic Systems Ltd

P.E. ULTRASONIC CLEANER

All the designer approved parts, including fibre glass case, to complete this exciting project as featured in the January 1980 issue

+ p.p. £2.50 £68.00

SANYO

STK 463

Hybrid stereo power amp I.C. delivers 30 W R.M.S. into 8 ohms from each channel, all contained in one package approximate size as outline to this item. From one of the worlds leading manufacturers this new I.C. features only 0.5 mV output noise and THD of - 07% and IMD of $\cdot 1 \%$ at IW. Price includes P.C.B., data sheet and additional support components to complete. Just add pre-amp and power supply (not supplied) to build a high quality stereo amp.
$\mathbf{£ 1 5 . 8 0}$
IIIIIIIII PS463

Toroidal transformer, bridge rec and smoothing caps and instructions to make a suitable power supply for the STK $\mathbf{4 6 3} \mathbf{£ 1 3 . 8 0}$ p.p. $£ 2.00$

CPLM1

A versatile self contained sound to light unit comprising red, green and blue lamps in moulded cases that snap together to form columns on modulator. Extra snap together lamp cases to extend column or to construct extra lamp columns are available with lamps. Sockets on rear of unit enable up to 1000 watts of lamps to be connected to each channel. No need to connect to amplifier as modulator has a built in microphone. just connect to mains and its ready to go.
£29.50
extra lamp holders with lamps $£ 4.50$ p.p. $£ 1.00$ each

Send large S.A.E. for further details of all our products.
Terms CW.O. Add $£ 1.00$ p.p. unless stated. Prices do not include VAT, add 15% to total order and carriage price. Send order to

WICCA ELECTRONIC SYSTEMS LTD

Orchard Works, Wallington, Surrey
Phone: 01-669 6047
MAIL ORDER
CALLERS BY APPOINTMENT ONLY

Put a Clamp on those small jobs with NODEX quick-grip vice

Dimensions

 Overall length Overall width Overall height Jaw opening Jaw height Jaw width Weight - 850 grammes150 mm The patented locking system of the 130 mm Nodex vice allows for instantaneous 50 mm locking or loosening for use as a vice 70 mm or as a press. Usable horizontally or 35 mm vertically on the bench top or on the 70 mm bench edge.

Descriptive leaflet and general catalogue available from:

SPECIAL PRODUCTS DISTRIBUTORS LTD.

81 PICCADILLY, LONDON W1V OHL

Tel: 01-6299556
Cables: Speciprod London W1

The Perfect Lead... Acorn Microcomputer System 1

Specification
The Acorn consists of two single Eurocards.

1. MPU card

6502 microprocessor 512×8 ACORN monitor $1 \mathrm{~K} \times 8$ RAM
16-way I/O with 128 bytes of RAM
1 MHz crystal
5 V regulator, sockets for 2K EPROM and second RAM I/O chip.
2. Keyboard card

25 click-keys (16 hex, 9 control)
8 digit, 7 segment display CUTS standard crystal controlled tape interface circuitry.
Keyboard instructions:
Memory Inspect/Change (remembers last address used)
Stepping up through memory
Stepping down through memory

Set or clear break point Restore from break Load from tape
Store on tape
Go (recalls last address used)
Reset
Monitor features
System program
Set of sub-routines for use in programming Powerful de-bugging facility displays all internal registers Tape load and store routines

Applications

As a self teaching tool for beginners to computing. As a low cost 6502 development system for industry. As a basis for a powerful microcomputer in its expanded form.
As a control system for electronics engineers.
As a data acquisition system for laboratories.

START WITH SYSTEM 1 AND CONTINUE AS AND WHEN YOU LIKE

Acorn Computers Lid.
4A Market Hill, Cambridge, Cambs. Cambridge (0223) 312772.
the CPU card of System 1, it allows for up to $4 \frac{1}{2} \mathrm{k}$ EPROM, $11 / 4 \mathrm{k}$ RAM and $32 \mathrm{I} / \mathrm{O}$ lines. It has on board 5 V regulator and optional crystal control. Custom programs may be developed on System 1 and the card makes an ideal dedicated hardware module.

A fully buffered memory card allowing up to 8 k RAM plus 8 k EPROM on one eurocard, in an Acorn system both BASIC and DOS may be contained in this module. Static RAM (2114) is used and the card may be wired into other systems.

A memory mapped seven colour VDU interface with adjustable screen format. Full upper and lower ascii and teletext graphics are features of this module which along with programmable cursor, light pen, hardware scroll etc., make this the most advanced interface in its class.

Acorn BASIC - a very fast integer BASIC in $4 k$
Acorn COS - a sophisticated cassette operating system with load and save and keyboard and VDU routines in 2 k
Acorn DOS - a comprehensive disc operating system in 4 k

Order Form

Please send me the following:
(qty) Acorn Microcomputer kit @ $£ 65$ plus $£ 9.75$ VAT.
(qty) Acorn Memory kit @ $£ 95$ plus $£ 14.25$ VAT.
(qty) Acorn VDU kit @ $£ 88$ plus $£ 13.20$ VAT.
(qty) Acorn Power Supply (for System 1 only) @ $£ 5.95$ plus £ 0.89 VAT.
(qty) Acorn Microcomputer assembled and tested @ $£ 79$ plus $£ 11.85$ VAT.
\square (qty) Acorn VDU assembled and tested @ $\mathbf{£ 9 8}$ plus $£ 14.70$ VAT.

KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. 128-NOTE

PROGRAMMABLE SEQUENCER
Enables a volrage controlled synthesiser to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long Programs are keyboard initiated and note length and rhythmic pattern are externally variable.
$\begin{array}{lll}\text { Set of basic component kits } & \text { KIT 76-5 } & \text { £28.92 } \\ \text { Set }\end{array}$ Set of text photocopies KIT 76-6 \quad £5. 66

P.E. 16-NOTE

PROGRAMMABLE SEQUENCER

Sequences of up to 16 notes may be programmed by the use o external panel controls and fed into most voltage controlled syn-
Sesisers.
$\begin{array}{lll}\text { Set of basic component kits } & \text { KIT } 86.3 & £ 22.90\end{array}$ et of PCBs KIT B6-4 \quad E5.09
P.E. STRING ENSEMBLE

A multivoiced string instrument synthesiser
$\begin{array}{lll}\text { Set of basic component kits KIT 77-6 } & \text { E88.70 }\end{array}$ Set of PCBs \& layout charts KIT 77-7 £24.19

P.E. JOANNA PLUS ORGAN VOICING

A modified version of the.P.E. 5-octave piano that retains all the original facllities and also includes switchable organ volcing circuitry.
$\begin{array}{lll}\text { Set of basic component kits } & \text { KIT 71-5 } & \text { E90.38 }\end{array}$ Set of PCBs \& layout charts KIT 71-6 $£ 29.51$ "Sound Design" bookle

ELEKTOR ELECTRONIC PIANO

A touch-sensitive multiple-voicing piano using the latesi integrated circuit techniques for the keying and envelope shaping. and virtually eliminating "bee-hive noise hitherto inherent in previous electronic pianos.
5 -octave set of basic components KIT 80-6 £110.39 5 -actave set of PCBs (as published)
Additional 3-octave extension
basic parts
KIT 80-7 \quad \&28.02
KIT 80-5 £45.05
Additional 3 octave set of PCBs
(as published)
$\begin{array}{ll}\text { KIT } 80-8 & £ 9.55 \\ & f 1.81\end{array}$

P.E. MINISONIC MK2 SYNTHESISER

A portable mains operated miniature sound svntheslser with keyboard circuits. Although having slightly fewer facilities than the large Formant and P.E. synthesisers the functions offered by this design give it great scope and versatility.

Set of basic component kits fexcl. KBD
R's \& tuning pots - see list for options available

KIT 38-23 687.05
Set of PCBs fincl. layout charts)
"Sound Design" booklet
KIT 38-24 $\quad \mathbf{5 9 . 8 7}$

P.E. SYNTHESISER

The well acclaimed and highly versatile large scale mains operated synthesiser. Other circuits in our lists may be used with to good advantage.
Main Unit basic component kits KIT 23-27 e88.95 Main Unit set of PCBs \& layout charts Keyboard Unit basic component kits Keyboard Unit set of PCBs \& layout charts
Main Unit set of text photocopies
Keyboard Unit set of text photocopies

KIT 23-28 \quad 14.48

 KIT 23-29 f52.06KIT 23-30 $\mathbf{E 8 . 4 9}$ E5.91

ELEKTOR FORMANT SYNTHESISER

A very soohisticated synthesiser for the advanced constructo who puts performance before price

Set of basic component kits
Set of PCBs (as published)
Set of text photocopies

KIT 66-12 $£ 193.68$
$\begin{array}{lr}\text { KIT 66-12 } & \text { E193.68 } \\ \text { KIT 66-13 } & \text { f53.92 }\end{array}$

COMPONENTS SETS include all necessary resistors, capacitors. semiconductors, potentiometers and transformers. Hardware such as cases, sockets, knobs, keyboards. etc. are not included but most of these may parts are shown in our lists.

LAYOUT DIAGRAMS are supplied free with all PCBs unless "as published".

P.E. GUITAR EFFECTS PEDAL

Modulates the attack, decay and filter characteristics of a signa from most audio sources, producing 8 different switchable effects that can be further modified by manual controls.

Basic parts with foot swirches KIT 42-
Basic parts with panel switches KIT 42-2
PCB \& layout chart PCB 42A 1.67

ELEKTOR DIGITAL REVERB UNIT

A very advanced unit using sophisticated i.c. techniques instead of mechanical spring lines. The basic delay range of 24 to 90 ms can be extended up to 450 mS using the extenslon unit. Further delays can be obtained using more extensions.
$\begin{array}{llr}\text { Main unit basic component kit } & \text { KiT 78-1 } & \mathbf{8 4 9 . 9 9} \\ \text { Main unit PCB (as published) } & \text { PCB 9913 } & \mathbf{E 3 . 6 9}\end{array}$ $\begin{array}{lll}\text { Main unit PCB (as published) } & \text { PC8 9913 } & \text { £3.89 } \\ \text { Extension unit basic component kit } & \text { KIT 78-2 } & \mathbf{8 4 7 . 6 9}\end{array}$ Extension unit PCB (as published) PCB 788 E1.16

Text photocopy

ELEKTOR ANALOGUE

REVERB UNIT

Using i.c.s instead of spring-lines the main unit has a maxłum delay of Up to 100 mS , and the additional set extends this up to 200 ms . May be used in either mono or stereo mode.
$\begin{array}{lll}\text { Main unit basic component sés } & \text { KIT 83-1 } & \text { £29.49 }\end{array}$ Additional Delay basic components KIT 83-2 £20.07 PCB (as publ.) to hold both kits PCB 997

Text photocopy

P.E. GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing, for example, flanging vibrato, reverb, fuzz and tremolo producing, for ex fascinating sounds May be used with most etec tronic instruments. Set of basic component kits KIT 85-3 £43.75 Set of PCBs \& layour charts KIT 85-4 $£ 10.62$ Set of text photocoples $\mathbf{~} 1.52$

P.E. PHASER

An automatically controlled 6-stage phasing unit with integra oscillator

Set of basic components, incl.
PCB \& chart
KIT 88-1 E10.14 Text photocopy

ELEKTOR PMASING8.

VIBRATO UNIT

Includes manual and automatic control over the rate of phasing \& vibrato, and has been slightly modified to also include a 2 -input
mixer stage.
Set of basic components
$\begin{array}{ll}\text { KIT 70-1 } & \text { C19.11 } \\ \text { PCB 70A }\end{array}$ Text photocopy

PCB 70A

P.E. PHASING UNIT

A simple but effective manually controlled phasing unit Set of basic components inct
PCB \& chart KIT 25-1 £3.52

PHASING CONTROL UNIT

For use with Phasing Kit 25 to automatically control rate of phasing.
PCB \& chart
KIT 36-1
f5.21

Text photocopy
P.E.SWITCMEDTONE

TREBLE BOOST
Provides switched selection of 4 preset tonal responses. Set of basic components.
PCB \& chart KIT 89-1 83.82

P.E. TREBLE BOOST UNIT

A simple treble boost unit with manual control of depth. Set of basic components,
Set of basic components, KIT 53-1
PCB ${ }^{\text {chart }}$ Khal

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS. KITS AND COMPONENTS TO A WORLD-WIDE MARKET

ELEKTOR RESONANCE FILTER

Allows a synthesiser to produce a more realistic simulation of natural musical instruments
Set of basic compon
PCB (as published)
KTT 82-1 \quad E16.61

Text photocopy

P.E. GUITAR OVERDRIVE

Sophlsticated versatile fuzz unit including variable controls affecting the fuzz quality whilst retaining the attack and decay and atso providing filtering. Can be used with other electronic in-
struments.
Set of basic components
KIT 56.1 $87 . \mathrm{E}^{2}$
PCB \& layout chart
Text photocopy

P.E. SMOOTH FUZZ

Set of basic components.
PCB \& chart
KIT 91-1 $£ 5.01$

TREMOLO UNIT

A slightly modified version of the simple P.E. unit.
Set of basic components.
PC8 \& chart KIT 54-1 E3.23

GUITARFREQUENCY DOUBLER

A slightiy modified and extended version of the P.E. unit.
Set of basic components.
PCB \& chart
KIT 74-1 \quad 4.97

P.E. GUITAR SUSTAIN

Maintains the natural attack whilst extending note duration
Basic components, foot switches,
PCB \& chant
Basic components, panel switches,
Basic compon
KIT 75-1 £5.64
PCB \& chart
KIT 75-2 $£ 4.08$

P.E. WAM-WAMUNIT

Can be controlled manually or by integral automatic control. Set of basic components,
PCB \& chart
KTT 51-1 53.99

P.E. AUTO-WAH UNIT

Automatically Wah or Swell sounds with each note played.

Basic components, foot Switches, PCB \& chart	KIT 58-1	£8.43
Basic components, panel switches, PCB \& char	KIT 58-2	$£ 5.31$

switches, PCB \& chart

ELEKTOR WAVEFORM CONVERTOR

Converts a saw-tooth waveform into sinewave, mark-space saw
tooth. regular triangle, or square-wave with variable mark-space ratio.
Basic components, PCB \& chart.
KIT 67-1 $£ 9.24$

P.E. VOLTAGE CONTROLLED

FILTER

Extracted from P.E. Minisonic project. Set of basic components,
PCB \& chart
KIT 65-1 $\quad 87.88$
P.E. RING MODULATOR

Extracted from P.E. Minisonic project
Set of basic components.
PCB \& chart
KIT 59-1 E8.08

ELEKTOR RING MODULATOR

Compatible with the Formant \& most other synthesisers.		
Set of basic components	KIT $87-1$	
PCB (as published)	PCB 79040	$£ 1.74$

PCB (as published
KIT 87-1
64.86
$f 174$

38p

10\% DISCOUNT VOUCHER (PE 70)

TERMS: Goods in current adverts \& list over $£ 50$ goods value fexcl P\&P \& VATI. Correctly cosied, C.W.O., U.K. orders only his voucher must accompany order. Valid until end of month on cover
apply to credit card orders.

ADD: POST BANDLING

U.K. orders: Keyboards add E 2.30 each, Other goods: Under £ 5 add 25 p , under $£ 20$ add 50 p , over $£ 20$ add 75 p . Recommended insurance against postal mishaps: add 50p for cover up to $\mathrm{£50}$. E1 for E100 cover, etc., pro-rata. Insurance must be added for credit card orders. N.B. Eire, C.I., B.F.P.O. and other countries are subject to

ADD 15\% VAT

tor current rate if changed). Must be added to full total of
goods, discount goods, discount. post \&
handling, on all U.K. orders. Does not apply to Exports.

EXPORT OADEAS ARE WELCOME but to avoid delay we advise you to see our list for postage rates. All payments must be cash-with-order, in Sterling by International Monay Order or through an English Bank. To obtain
50p.

AND OTHER PROJECTS

PHOTOGRAPHS in thls advertisement the P.E. propects bult from our kits and PCBs. The cases were built by ourselves and are not for sale. though a small selection ol other cases is avalable.

UST-Send stamped addiessed envelope with all U.K. requesis for free list giving fuller details of PCBs. kuts and other components.

OVERSEAS enquiries for list Eurode send 20 p : other countries-send 50 p .

KIMBER-ALLEN

KEYBOARDS AND CONTACTS

KIMBER-ALLEN KEVBOAROS as required for many published projects. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C , the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame. 3 Octave (37 notes)
4 Octave (49 notes)
5 Octave (61 notes)
CONTACT ASSEMBLIES (gold-clad wire) - 1 required for each KBD note Type GJ - SPCO $25 \frac{1}{2} p$ ea. Type GA- 1 pr of contacts, normally open 24p ea. Type GB-2 pr $58 \frac{1}{2} p$ ea. Type 4PS - 3 pr N/O plus SPCO 57p ea

P.E. NOISE GENERATOR

Extracted from the P.E. Minisonic.
Set of basic components. PCB \& chant

KIT 60-1

WIND \& RAIN EFFECTS UNIT

A slightly modified version of the original P.E. unit. Set of basic components,
PCB \& chart
KIT 28-1
Text photocopy
P.E. ENVELOPE SHAPER

WITHOUT VCA

Provides full manual control over attack. decay, sustain and release functions, and is for use with an existing VCA.

Set of basic components,
PCB \& chart
KIT 44-1 \quad E5.24
P.E.ENVELOPE SHAPER

WITH VCA
Has an integral Voltage Controllad Amplifier, and has full manual control over the A, D,S,R functions

Set of basic components,
PCB \& chant
KIT 50-1
Text photocopy

P.E. GENERATOR

An ADSA envelope shaper without VCA, and additlonal providing Repeat-triggering enabling a synthesiser 10 be programmed for mandolin or banjo effects.

PCB \& layout chart
Text photocopy

P.E.EXTERNAL-INPUT

SYNTHESISER-INTERFACE
Allows external inputs such as guitars. microphones etc., to be processed by synthesiser circuits.

Set of basic components.
PCB \& chart

P.E.TUNING FORK

Produces 84 switch-selected frequency-accurate tones with an LED monitor clearly displaying beat-note adjustments. Set of basic components.
PCB \& chart
Power Supply components. PCB \& chart
Text photocopy

P.E.TUNING INDICATOR

A simple 4-octave frequency comparitor for use with synthesisers and other instruments where the full versatility of KIT 46 is not required.
Set of basic components.
PCB \& chart, but excl. sw. Text photocopy

P.E. DYNAMIC RANGE LIMITER

Preset to automatically control sound output levels. Set of basic components. PCB \& chan
P.E. CONSTANT DISPLAY

FREQUENCYCOUNTER

A 5 -digit counter for 1 Hz to 55 KHz with 1 Hz sampling rate. Readout does not count visibly of flicker due to blanking. $\begin{array}{llr}\text { Set of basic components } & \text { KIT 79.1 } & £ 28.45 \\ \text { PCB (as published) } & \text { PCB 79A } & £ 3.33\end{array}$ Text phomcooy
P. O. E. OELIVERY SUBECT TO AVAILABILITY.

INTEGRATED CIRCUITS

301
31
32
32
3

18 $32-15$

 323 324$341-15$ $341-1$
356

56
09

748
748
4001

4
4046
4049
4066
4069
4069
4136
4136
AM2833
AY-1-0212
$A Y-1-1320$
$A Y-1-6721 / 6$
CA3046
CA3080
CA3080
FX209
M252
MC3340
MC3340
MCM6810
RC4195
SAD1024
SG3402
TDA1022
TDA1022
TLO74
TLA
$\times 2207$
XH2207
ZN425
ZN425
7400
7400
7402
7402
7404
7404
7413
7413
7420
7420
7447
7447
7472
7472
7473
7473
7474
7474
7489
7489
7490
7490
7493
7493
74121
74121
74123
74123
7805
7805
7808
7808
7812
7812
7815
7815
7818

MMEACAN EXPRESS

garciancamo
VEA

PHONOSONICS
$48 p$
$220 p$
220p
562p
$87 p$
$87 p$
$101 p$
48 p
$51 p$
$1005 p$
$24 p$
$57 p$
154 p
1710
c25.60
ع 32.25
C 39.75

The new

 Toolrange catalogue

still the only catalogue of itskind

The New Toolrange Catalogue is still the only comprehensive single source of electronic tools and production aids.
The product range has almost doubled since last year and now over 2,000 tools, toolkits and service aids are illustrated in full colour.
Products from over 100 top manufacturers are available from stock.
Over 60,000 catalogues are now in circulation. If you don't have one simply write, telephone or telex Toolrange for your free copy.
toolrange Telephone: Reading (0734) 22245 Telex: 847917
U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

BAKER LOUDSPEAKERS "'SPECIAL PRICES'

Madel	Ohm*	Size in	Power Watts	Type	Our Price
Major		12	30	Hi-Fi	112
Deluxe Mk II	4. 8. 16	12	15	$\mathrm{Hi}-\mathrm{Fl}$	¢14
Supert	8, 18	12	30	Hi-Fi	c2z
Auditorium	8.16	12	45	Hi-Fi	c20
Auditorium	B. 16	15	80	H1-Fi	c30
Group 35	8. 16	12	40	PA	C12
Group 45	4.8. 16	12	45	PA	E15
Group 50	4.8. 16	12	60	PA	c20
Group 50	8. 16	15	75	PA	830
Group 75	4.8.16	12	75	PA	c24
Group 100	8. 16	12	100	PA	c29
Group 100	8, 16	18	100	PA	c35
Disco 100	8. 16	12	100	Disco	¢29
Disco 100	8, 16	15	100	Disco	C35

$$
\begin{aligned}
& \text { Add musical highlights and sound effects to recor- } \\
& \text { dings. Will mix Microphone, records, tape and tuner } \\
& \text { with separate controls into single output. } 9 \text { volt } \\
& \begin{array}{l}
\text { battery operated with switch for } \mathbf{~ E 8 . 0 0 ~} \\
\text { Two channel stereo working. }
\end{array} \\
& \text { MINI MODULE BAFFLE KIT Posi £1. } \\
& \text { EMI } 15 \times 8 \frac{1}{2} \text { in. 3-way Loudspeaker System } \\
& 5 \mathrm{in} \text {. Bass, } 5 \mathrm{in} \text {. Middle, } 3 \mathrm{in} \text {. Tweeter; } 3 \text {-way Cross- } \\
& \text { over \& Ready Cut Baffle. Full assembly instructions } \\
& \begin{array}{l}
\text { supplied. Response } 60 \text { to } 20000 \text { c.p.s. } 12 \text { watt } \\
\text { RMS } 8 \text { ohms } £ 10.95 \text { per kit. Two kits } £ 20 \text {. }
\end{array} \\
& \text { RMS } 8 \text { ohms £10.95 per kit. Two kits } £ 20 \text {. } \\
& \text { Sultable Booksheff Cabinet } £ 9.50 \text { each. Post } £ 1.60 \text {. }
\end{aligned}
$$

SINGLE RECORD PLAYER
Fitted with auto stop, stereo cartridge. Baseplate. Size 11
$\times 8 \frac{1}{2} \mathrm{in}$. Tumtable Size 7 in . diameter a.c. mains 240 V 3 speeds plays all size records.

NEW BSR SINGLE PLAYER E24.50 Model P182 3-speeds flared aluminium turntable.
" S " shaped arm, cueing device, stereo ceramic cartidge. B.S.R. De-Luxe Autochanger with stereo
carridge, plays all size records. Post f1.60 20.00
ALL PURPOSE TRANSISTOR MIXER AMPLIFIER spoorh and muatic 4 way, mixing.
Output $4 / 8 / 16$ ohm,
Output 4/a/16 ohm, w.c. Mains 240 V .
Separate treble ano bass controls
1005 Post
BAKER COMPACT 50 WATT AMPLIFIER

TDEAL FORDISCOS, GROUPS, PUBLIC ADDRESS Two inputs with volume controls. Master treble bass and
volume controls. Suitable for all ioudspeakers. $£ 65$. Post $£ 1.60$ R.C.S. SOUND TO LIGHT DISPLAY MK II Complete kit of parts with A.C.S. printed circuit. Three 1000W channels Will operate from 200 mV signal
source. CABINET exira 4 4.
KIT $=\mathbf{f 1 8 . 0 0}$
R.C.S. 10 WATT AMPLIFER KIT This kh is suitable for record players, tape play back. gultars, electronic instruments or small PA
systems. Two versions are available. The mono kht uses systems. Two versions are available. The mono kit uses
13 semiconductors. The stereo kit uses 22 semicon13 semiconductors. The stereo kit uses 22 semicon-
ductors. Both kits have printed front panel and volume ductors. Both kits have printed front panel and volume,
bass and treble controls. Spec. 10 W output into 8 ohms 7 W into 150 hms . Response $20 \mathrm{c} . \mathrm{s}$ to 30 Kc .s. Size $9 \frac{1}{\frac{1}{2}} \times 3 \times 2 \mathrm{in}$. AVC mains operated.
 Easy to build. Full instructions supplied
LOW VOLTAGE ELECTROLYTICS
$1,2,4,5,8,16,25,30,50.100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p} .500 \mathrm{mF}$
$12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} \cdot 25 \mathrm{~V} 35 \mathrm{p}$ $12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$. $1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p}$; $50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p} .2000 \mathrm{mF} 40 \mathrm{~V} 60 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} .2500 \mathrm{mF}$
$50 \mathrm{~V} 62 \mathrm{p} .3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 6 \mathrm{p}, 2700 \mathrm{mF} 76 \mathrm{~V} \mathrm{E}$. $50 \mathrm{~V} 62 \mathrm{p} .3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} . \mathrm{g} .2700 \mathrm{mF} 76 \mathrm{~V} \mathrm{E} 1$ $75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p} .5600 \mathrm{mF} 76 \mathrm{~V}$ \&1.75. 1200 mF 76 V ©ip.

HIGH VOLTAGE ELECTROLYTICS $\begin{array}{lll}8 / 350 \mathrm{~V} 22 \mathrm{p} & 8+8 / 450 \mathrm{~V} 50 \mathrm{p} & 50+50 / 300 \mathrm{~V} 50 \mathrm{p} \\ 16 / 350 \mathrm{~V} 30 \mathrm{p} & 8+16 / 450 \mathrm{~V} 50 \mathrm{p} & 32+32 / 450 \mathrm{~V}\end{array}$ $\begin{array}{rrr}16 / 350 \mathrm{~V} 30 \mathrm{p} & 8+16 / 450 \mathrm{~V} 50 \mathrm{p} & 32+32 / 350 \mathrm{~V} 75 p \\ 32 / 500 \mathrm{~V} 75 \mathrm{p} & 16+16 / 450 \mathrm{~V} 50 \mathrm{p} & 100+100 / 275 \mathrm{~V} 65 \mathrm{p}\end{array}$ | $32 / 500 \vee$ | $75 p$ | $16+16 / 450 V$ | $50 p$ |
| :--- | :--- | :--- | :--- |
| $50 / 500 \vee$ | $100+100 / 275 V$ | $65 p$ | |
| 1.20 | $32+32 / 350 \mathrm{~V}$ | $50 p$ | $150+200 / 275 V$ |
| $70 p$ | | | | MANY OTHERS IN STOCK

WOOD PLINTH CUT FOR B.S.R. E4.
Size: $16 \times 14 \pm \times 3$ tin Teat Veneered
SIze: 16×14 x 3 tin. Teak Veneered
METAL PLINTMCUT FOR B.S.R. METALPLINT OR GARRARD
Size: $16 \times 14 \times 3 \mathrm{in} . £ 4$. Silver or Black finish. Post $\mathbf{E} 1$. TINTED PLASTIC COVERS ALL POST $£ 1.60$
Sizes: $14 \frac{1}{2} \times 12 \frac{1}{4} \times 3 \mathrm{in}, £ 3.50 .16 \times 14 \times 3$ in. $£ 5$

$18 \times 13 \frac{1}{4} \times 3 \mathrm{in} . \mathrm{£6.18} \mathrm{\times 121} \times 3 \mathrm{in}$. $\mathrm{E6}$.
$18 \times 13 \frac{1}{4} \times 3 \frac{1}{2} \mathrm{in}$ with stand up hinges $£ 7$.
R.C.S. LOW VOLTAGE STABILISED

rectifiers and double wound mains transformer input 200
240 V a.c. Output voltages available 6 or 7.5 or 9 or 12 V 240 V a.c. Output voltages available 6 or 7.5 or
d.c. up to 100 mA or less. Size $3 \times 2 \frac{1}{2} \times 1 \frac{1}{2}$ in.
Please state voltage required.
MAINS TRANSFORMERS All POST $75_{\text {p each }}$ $250-0-250 \mathrm{~V}$ romA 63.2 A
$250-0-250 \mathrm{~m}$
300 mA
6 $\mathrm{BV}^{2} 5 \mathrm{~S}$ E 3 V 1 A
 220V 45 mA 63 V 2 A

 $20-0-20 \mathrm{~V}$ 1A 83.50 . 30V $1+\mathrm{A}$ E3 30.2 V .
9 V 3 amp E3.50. $60 \mathrm{~V}, 40 \mathrm{~V}$. 20 V IA E4.
 AUTO TRANSFORMERS 115 V to 230 V or 230 V to 115 150W E7; 250W CA; 400W E9; 500 W E10. CMARGER TRANSFORMERS inDut 200/250V for 6 or 12 V
1 HA E4.25. 3 amp $£ 4.4$ A 27.25 . 11 A E4.25. 3 amp £4. 4 A 87.25 .
FULL WAVE BRIDGE CMARGER
$1 \frac{1}{8}$ A 85p: 4 A E1.EO. HALF WAVE $12 \mathrm{~V} 1+\mathrm{A}$ 3Ep. 12 V outpuis

 THE "INSTANT" BULL TAPE ERASER
Surtable lor Cassentes
 Mead demagnetiser $£ 5.00$

RADIO COMPONENT SPECIALISTS 337 Whitehorse Road. CROYdon. u.k.
Minimumpost 30p. Acceseand Barclaycard Same dey despatch Radio Booke and Componenta Liste 20p Open 9-6 Sat. 9-5 (Closed Wednesday all day). Tel, 01-684 1685

MORE SCOPE FOR YOUR MONEY

WE STOCK THE PRODUCTS OF

EAGLE KNIPEX NEWNES WELLER SERVISOL JAYBEAM DRAPER BARNARD'S SPIRALUX \& BABANI GREENPAR

B. BAMBER ELECTRONICS
 5 STATION ROAD LITTLEPORT, CAMBS. PHONE: (0353) 860185

1980 Electronics Catalogue now available price $75 p+20 p$ postage. If you send $£ 1.55$ you will receive our Catalogue plus six bi-monthly Shortform Catalogues to keep you up to date with prices and special offers.

TRANDAMA PRODUCTS

TRITON
 SINGLE BOARD PERSONAL COMPUTER

The choice is yours！One of the most versatile computers around today．Using the Triton main
PCB as a starting block．The single board holds CPU，VDU， 8 K memory
tape I／O，power supply and comes complete with case， full keyboard， 64 graphics the Triton System builds in many ways to suit your
budget and requirements．All
parts are available separately．The system is easy to expand and is well supported，with comprehensive documentation．

NEW FIRMWARE OPTIONS

14.1

The level 4.1 Triton consists of Triton main PCB with
$L 5.1$ Complete Kit．
£286
Trtion Kht with 4 K firmware in EPROM 1.5 K monitor £294
L6．1 Titon with 7K scientific basic．Complete with $\mathbf{E} \mathbf{3 9 9}$
L7．1 Triton with 8K TCL extended basic In EPROM．Full
27．NEW string handling and all the standard features of full $£ 409$
L8．1 NEW Triton with resident PASCAL in EPROM．Now TCL f611
L9．1 NEW New CP／M compatible disk interface for Trion．Will New CP／M compatibse disk interface for Trion．Will double diensiry or sided．enequirses min of 16 KK RAM． The ultimate on flexibility and plenty of CP／M based －

NOW ON TRITON！

＊TCL EXTENDED 8K BASIC ＊TCL＊PASCAL COMPILER
＊CP／M＊DISK INTERFACE
TCL PASCAL ALSO AVAILABLE TO RUN UNDER CP／M． £92－ON $8^{\prime \prime}$ DISK．
CP／M IS THE TRADE MARK OF DIGITAL RESEARCH TCL IS THE TRADE MARK OF TCL SOFTWARE PRODUCTS

Sn74．Soon	． 18	SnTALSAON	25	SM7atS113N	μ	SN74LSI65N	1.70	SNTALS248N	195
SN74iSO1N	18	SN74LSA2M	． 1	SNTALSILAN	4	SN74LS168W	1.75	SNT4TS249N	1.30
SN74LSO2N	20	SN／4SATM	15	SN74S122N	． 18	SN74LSI63N	1.95	SNTalS251N	1.46
Sn7LSO3n	． 18	Sn74sam	15	SN741S123N	99	SN74LS169N	185	SN741S253m	1.25
Sn74LSO4N	20	Snlalsagn	1.08	SN7／LS124N	1.50	sn74Lsijon	250	SN74t5257N	1．40
Sw74LS05	28	SN74LS5an	19	SN7415125N	85	SN74S173N	220	SN74LS258N	93
SN7LLS08N	20	SN74555m	21	sw74S128N	${ }_{6}$	SN74iS174N	3.15	SN7415259N	1.45
SNTASLOSN	22	sm74isb3m	1，50	SN74LS132N	75	SN74S175N	1.05	SN74IS260N	38
SNT4LSION	． 18	SNT41S73	35	SN74LS133H	3	SN74LS191M	276	SN74LS261N	150
Sm74511N	21	SN74LS74n	40	SN74LS136N	15	Sm74LSigon	1.75	SN741S266＊	31
SN74IS12M	35	SNT4ST5N	48	Sm74tS138N	40	Sm74tsigim	1.75	sh74LS273n	1.85
SN74SI3m	． 56	Sn74tSibn	35.	SN74LS145N	121	SN74S192N	1.45	Sm74LS279n	79
Sw741S14＊	19	SN74LS78	35	SN74 1 S146\％	1．75	SN74LS193＊	1.75	SN74LS280N	1.75
SNTMLSISN	25	SN74LSB3AN	1.15	SN74LSISIN	45	SN74LS194AN	1.69	SN74LS2833	180
SN74S20N	20	SN74IS85N	1.10	Sh74LS153N	${ }^{60}$	SN74LSIS5AN	35	SN74LS290N	1.80
Sm74iszim	21	Sm74is86M	40	Sm74LSISAN	1.80	SN74LS198N	1.20	SN74LS293w	$1{ }^{10}$
SN74IS22N	21	SNT4LS90N	． 5	SW74L5155N	125	SN74LS597N	1.20	SN74LS295AN	220
SN74LS26\％	29	SN74tS91\％	38	SM74LSI5EN	1.25	SA7415221N	$t 25$	SNTLIS298N	220
SN74LS27m	15	Sn7als9zm	90	Sm741S157\％	60	SN74S240N	22.8	SN74LS324N	10
SN74LS28N	35	SN74LS938N	65	SN74LST59N	13	SN74LS241N	1.90	5N74LS325N	2.55
SW74S30N	25	Sn74LS95AN	1.20	SN74LSI60W	1.15	SN74LS242H	1.90	SN74S326N	255
SN74LS32N	27	Sm74S96N	1.75	SN74．S161N	1.15	SN74LS243N	195	SM74S327N	255
54744333	33	SN74S107N	39	SN7415182N	1.15	SN74LS244N	2.10	SN74L3352N	1.35
SNT4S37M	21	SN74S109N	39	SH74IS183N	90	SN7LS245N．	360	SN74LS353N	1.50
SN74538N	21	SN745112M	39	SM74L5164	1.50	SN74LS247\％	125	SN74LS365N	66

TRITON DOCUMENTATION

Available separately as follows
Prices Include P\＆P
Triton manual．Detailed circuit description and constructlonal details and user documentation on level 4.1 monitor and basic $\quad \mathbf{£ 5 . 7 0}$ L4．1 Listing listing of 1 k monitor 2 k tiny basic $\mathbf{~} 4.20$ L5．1 User documentation on level 5.1 firmware $\mathbf{£ 1 . 2 0}$ L5．1 Listing listing of 1.5 k monitor and 2.5 k basic E 5.50 L6．1 User documentation on 7k basic interpreter $£ 1.80$ Motherboard， $8 k$ Ram and $8 k$ Eprom constructlonal details $\mathbf{E B . 0 0}$ User group newsletter subscription $\mathbf{£ 4}$ per annum．Triton software send SAE for list of programs available for Triton．

EXPANSION MOTHERBOARD
 TRITON．Expand your Triton simply and easily with our new 8 －slot motherboard complete with its own P．S．U．takes 8 plug－in Euro cards．Plug－ in $8 k$ RAM card and Eprom cards now available．CP／M disc interface available． Kit complete with PSU＋ 1 set connectors．

S100 boards

8k Static RAM board（450ns） 8k Static RAM board（250ns） 280 cpu board（ 2 MHz ） 2709／27 16 EPROM 2708／27 16 EPROM board Prototype board（bare board） Video display
128U／L Ascli）
128U／Ascli）
Disk controller board
K2 disk operating system
Assemble／2 Macro Assm

ITHACA DPS 1
your
Pascal／z
Build your own Pasca
Micro Development
system．IEEE－S 100
bus system using
DPSI mainframe．
Supports K2，assemble／2
and pascal $1 / 2$ on $8^{\prime \prime}$ disk．
We stock the tull range of ITHACA products．－
PCBCONNECTORS

PCB con	ctors	－156＊	Price	
－1＂	Price	6／12	¢1．25	
22／44	£3．20	12／14	E1．50	
25／50	£3．60	10／20	¢2．00	
28／56	$\underline{53.90}$	15／30	¢2．20	
30／60	£4．15	18／36	¢2．36	
35／70	¢4．60	22／44	£2．65	
36／72	$¢ 4.75$	28／56	£3．30	
40／80	£5．00	36／72	£3．90	
43／86	¢5．50	43／82	£4．60	
50／100	¢5．80	0 BUS	Plus Vat	

TRAP！

Triton resident assembly
language package
Links via the L6． 1 monitor and new scientific basic to make Triton a stand alone development system．Trap is an $8 k$ package in EPROM and
resides on our EPROM card．Set of 8×2708
only $£ 80$ including documan

－EOITOR

ASSEMBLER BREAKPOINT
DISASSEMBLER TRACE
SYMB PL TABLE PROGRAMME LOAO
CREATE OEVELOPMENT SYSTEM

MEMORY AND SUPPORT CHIPS（Prices exclude VAT）

HOME COMPUTING CATALOGUE

If you＇re in town，visit our showroom in Chapel Street， next to Edgware Road tube station．We have Tritons on display plus a comprehensive range of components and accessories，specifically for personal computer users． Books，mags，tapes，data，cables plus much more． Showroom open 6 days a week．（Half day Thurs．，from 1．30）．

TRANDAM

Electrovalue

 CATALOGUE 10 HAD YOURS YET?> Our computer has already selected thousands of our customers to whom our new catalogue has automatically been sent. If you would like a copy too, simply send us your name and address. It's

(You don't even have to pay postage) (in U.K.)

ITS A GOOD DEAL BETTER FROM ELECTROVALUE

- We give discounts
on C.W.O. orders, except for a few items market Net or N in our price lists.
5% on orders, list value
10% on orders list value 10\% £25 or more.
Not applicable on Access or Barclaycard purchase orders.

We pay postage in U.K. on C.W.O. orders list value $£ 5$ or over. If under, add $30 p$ handling charge.

We stabilise prices.
by keeping to our printed price lists which appear but three or four times a year.

- We guarantee

all products brand new, clean and maker's spec. No
seconds, no surplus.

OUR NEW CATALOGUE No 10

Full 128 pages. Thousands of items. Improved classification for easier selection. Valuable working information. Illustrations. Separate quick-ref price list.

ELECTROVALUE LTD

HEAD OFFICE (Mail Orders)
28(B) St. Judes Road, Englefield Green, Egham, Surrey
TW20 OHB. Phone: 33603 (London prefix 87. STD 0784) Telex 264475.

NORTHERN BRANCH (Personal Shoppers Only) 680 Burnage Lane, Burnage, Manchester M 191 NA Phone: (061) 4324945.

The new all British designed single board MICROCOMPUTER

SEMEL-ABACUS

IN KIT FORM

\star Supplied with 16 K of RAM
\star Uses the powerfull Z-80 Microprocessor
\star Space for upto 32K RAM on board
\star KK Full Basic
\star VDU Memory Mapped
$\star 64$ Characters by 16 Lines

* Tape Interface
\star Single Board Construction
\star RS 232 Printer Interface
\star Plugs into a standard TV set
* Full alphanumeric Characters plus 64 User Definable Graphics
\star Stabilised power supply OPTIONAL
- Colour Graphics
£376.50
* Expansion board to full 64 K Memory
- Analougue Interface

STRUTT

ELECTRICAL AND MECHANICAL ENGINEERING LTD.
3C, BARLEY MARKET ST., TAVISTOCK, DEVON. PL19 05F Tel: TAVISTOCK (0822) 5439 Telex: 45263

SOLAR QUARTZ LCD 5 Function

Genuine solar panel with battery back-up. Hours, mins., secs., day, date. Fully adjustable bracelet. Back-light. Only 7 mm thick.
£8.65
Guaranteed same day despatch.

M2

FRONT-BUTTON

Alarm Chrono
Dual Time 6 digits, 5 flags 22 functions. Constant display of
hours and mins, plus hours and mins., plus optional seconds date display. AM/PM indication, month, dat Continuous display of day
Stop-watch to 12 hours 59.9 secs. in $1 / 10$ secon 59.9 secs., in $1 / 10$ second st
Split and lap timing modes. Sual time zones.
Dual time zones
Back-light. Fully adjustable
Back-light. Fully adjustable $£ 22.65$
Guaranteed same day dispatch
M6

QUARTZ LCD Ladies Day Watch

£14.95
QUARTZLCD
Ladies Fashion Watch
Elegant braceletln bronze/gold finish or silver colour.
Hours, mins, secs, day. date, backlight and auto calendar, Adjustable for State colour preference.

EXECUTIVE ALARM

 WATCH6 Functions plus Alar Conference signal, 5 minute snooze alarm. 4 secs, bence signal sounds 4 secs., before main alarm lo give advance war
an option to cancel. an option to cancel.
Snooze sounds 5 mins. after main alarm and is always preceeded by the conference signal.
£14.95

QUARTZ LCD
 sum
 11 Function CHRONO

6 digit, 11 functions. Hours, mins., secs., day, date, day of week. 1/100th, $1 / 10$ th, secs., 10X secs., mins., Split and lap modes. Back-light, auto calendar Only 8 mm thick. Stainless steel bracelet and back.
Adjustable bracelet. Metac Price

f10.65 Thousands sold I Guaranteed same day despatch. M3
SOLAR QUARTZ LCD Chronograph with Alarm
Dual Time Zone
Facility
6 digits. 5 flags. 22 functions. Solar panel with battery back-up. 6 basic functions. Stop-watch to 12 hours 59.9 secs., in $1 / 10$ sec. steps.
Split and lap timing modes.
Dual time zones.
Alarm, 9 mm thick. Back-light. 227.95
Fully adjustablet
Fully adjustable bracelet. M 7

Guaranteed seme day despartch M17

MACY QUARTZ ANALOGUE

Automatic Calendar Day and Date infinite bracelet. This mans watch has elegance as well as the robust appearance provided by a watch with traditional features. Accuracy ts provided by a quartz crystal powered by a long life miniature battery.
£24.95

Hour'minute display. Large LED display with p.m. and alarm on molicator. 24 Hours alarm with on/off control. Disolay flashing for power loss bright/dim modes control. Size: 5.15" $\times 3.93^{\prime \prime} \times$ $2.36^{\prime \prime}(131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm})$. Weight: 1.43 lbs 10.65 kgl . AC power 220 V .
f10.20 Thousands sold! Mains operated.

Guaranteed same day despatch.

HOWTO ORDER

Payment can be made by sending cheque, postal order, Barclay. Access or American Express card numbers. Write your name, address and order details clearly, enclose 40 pence per single item for post and packing or the amount stated in the advert. All products carry 1 year written guarantee and full money-back 10 day reassurance. Battery fieting and electronic calibration service is avallable to customers at any Metac shop. All prices include VAT currently at 15%.
Motac Wholesale:
Trade enquiries - send for a complete list of prices for all the goods advertised plus many more not shown also minimum order details.
shown also minimum order details. or Edgware Rd. D1-723 475324 hours a day.

Sersice Enquiries 03272-77659
CALLERS WELCOME Shops open 9-30am-6.00

QUARTZ LCD ALARM 7 Function

Hours, mins., secs, month, date, day. 6 digits, 3 flags plus continuous display of day and date or seconds. Back-light Only 9 mm thick.
£12.65

Guaranteed same day dispatch.
M4
ALARM CHRONO with 9 world time zones

- 6 diglts, 5 flags. - 6 basic functions. - 8 further time zones. - Count-down alarm. 59.9 secs.
in $1 / 10$ sec. steps.
- Split and timing modes.
- Alarm.
- 9 mm thick.
- Back-light.
£29.65

Metac price breakthrough for an Alarm Chronograph with Dual Time

only

£18.95

OUTSTANDING FEATURES

- DUAL TIME. Local time always vislble and you can set and recall any other time zone (such as GMT). Also has a light for night viewing.
- CALENDAR FUNCTIONS Include the date and day in each time zone. - CHRONOGRAPH/STOPWATCH displays up to 12 hours, 59 minutes, and 59.9 seconds.
- On command, stopwatch display freezes to show intermediate (split/lap) time while stopwatch continues to run. Can also switch to and from timekeeping and stopwatch modes without affecting either's operation.
- ALARM can be set to anytime within a 24 hour period. At the designated time, a pleasant, but effective buzzer sounds to remind or a waken youl Guaranteed same day dispatch. M16

South of England 327 Edgware Road LONDON W. 2
Telephone: (01) 7234753

MICRODIGITAL1980

Apple II plus
 Nascom2

Apple II Plus will change the way you specitically designed to hardle the day to day activlties of education, business. inancial planning, scientific calculation and entertainment.

A tast extended 10K BASIC with 9.digit precision and graphics extensions.
HIGH RESOLUTION GRAPHICS On a matrix of 280×192 individually addressable points.
AUTO.START ROM
With power on boot of applications With power on boot of applications
programs, reset protection and improved screen editing INTERNAL MEMORY EXPANSION TO 64 K BYTES
For bia system performance at a low cost.
EIGHT EXPANSION SLOTS
To let the system grow with your needs
Apple II Plus, Nett V.A.T. Total Apple 11 Plus,
16K RAM....
$750.00 \quad 112.50862 .50$ APPLE PASCAL
Apple Pascol is the new extension to microcomputer power
Pascal Incorporating UCSD PASCAL TM, offers extended leatures in a complete interactuve package employing todays
most sophisticaled structured programming language It pro advanced capabilities that boost pertormance and cut development time tor large business, scientific and educational programs.
This sofiware package provides the most powertul sel of tools yet available tor the
microcompuler programer
Nett VA.T Tolal $\begin{array}{llll}\text { APPLE Pascal } \\ \text { System } & 29600 & 4440 & 34040\end{array}$ FLOPPY DISCS
Gives your system immediate access to large quantities of data. The subsystem consists of an intelligent interiace card, a
powerful Disk Operating System and one or two mini-floppy drlves
Floppy disk
Nett V.A.T. Total
Subsystem 398.00 59.70457 .70 and connecting and connecting 398.0059 .70457 .7 Parallel Printer Interlace Card Allows you to connect almost any popular printer to your apple, A BASIC program can produce hard-copy oulput at essily as it prints to the TV monitor screen. Command interpretation and printer control details are handled by the firmware bult into the card, to eliminate
Parallel Printer
Nett V. A. T. Total
110.0016 .50126 .50
Interlace Card

Communications Intesface Card Allows your Apple to "talk" (through a terminals over ordinary telephone and load programs over the phone, send messages to remote terminals or access your office computer from the comfort of your home

Nett V.A.T. Total
Communications
$110.00,16.50126 .50$

High Speed Serial Interlace Card Allows Apple to exchange data with
pinters, plotters and computers in serial printers, plotters and compu

High Speed Seria.
Nett V.A.T. Total
Interlace Card
10.0016 .50126 .50
applecromputar

280 AB bit CPU. This will run at 4 MHz but is selectable between $1 / 2 / 4 / \mathrm{MHz}$. Hardware
$12^{2} \times 8^{\prime \prime}$ Card
Alf bus lines are to the Nasbus
specilications
All bus lines are full bullered
Memory
On board, addressable memory
2 K Monitor - Nas-svs 1
IK Monitor - Nas.svs 1
1 K Work space/User RAM (MK411B)
(MK3600 ROM)
8K Static RAM/2708 EPROM

Keyboard
New expanded 57 Key Licon solid state keyboard especially built for Nascom controlled. decoding.
The T.V. Peak to peak video slgnal can The T.V. Peak to peak video signal can
drive a monitor directly and is also fed to the on board modulator to drive the domestic T.V
$1 / 0$
provides serial handling tor the on-board cassette interface or the RS $232 / 20 \mathrm{~mA}$. telety pe interface. The cassette interlace is Kansas City standard al either 1200 or
300 baud. This is a link operation on the Nascom-2
Plo
There is also a totally uncommitted PIO lines Character Generator The 1 K video RAM drives a 2 K ROM character generator providing the standard ASCII Character set with som additions, 128 characters In all There is second 2K ROM socket for an on-board graphics package which is coftware se
Nascom- 2 in kit Nett V.A.T. Total $\begin{array}{lrrrr}\text { Nascom.2 in kit } \\ \text { form Supply... } & 295.00 & 44.25 & 339.25 \\ \text { Power Supply } & 24.50 & 3.68 & 28.18\end{array}$ $\begin{array}{llll}\text { Power Supply } & 24.50 & 3.68 & 28.18 \\ \text { Graphics ROM:- } & 15.00 & 2.25 & 17.25\end{array}$ REED RELAY BOARD
Put your Nascom to work
Microdigital Relay Board
16 Reed Relay Boall. 16 Reed Relays, totally isolated 200 mA 50 V.D.C. SW max each. Operate and

- Siease lime 1 ms (including bounce) plated edge connectors and silk screened component layout.
- Plugs directly into Nasbus, does not intertere with normal Nascom operation, all interupt and D.M.A Daisy Chain Links carried on. Draws only 250 mA from each All + and +12 V Rails.
socketed, easy to build, and easy
program in Basic or Machine Code
Occupies 2 consecutive ports, link
selectable - several boards can-be used
on one Nascom system.
- Output is via front edge connector on connectors for connection to con
devices.
Applications
Light display
Industrial process control
Industrial process control
Model Railway Control.
Mre programmed music generation
Hobots, Central Heating Systems
Stepping Motors
Netl VA.T. Total
P.C.B. (+ Manual)...... $15.00 \quad 2.25 \quad 17.25$

Assembled
$60.00 \quad 9.0069 .00$

Rockwell Aim 65

Wide 20 column printout
Versatile 5×7 dot matrix format
Complete 64 - character ASCII - Fast 120 lines per minute

Quiet thermal operation
Full Size Alphanumeric Keyboard Standard 54 key, terminal-style layout 26 alphabetic characters
10 number characters
22 special characters
9 control functions
3 User defined functions
True Alphanumenc Display
20 characters wide
16. segment characters

High contrast monolithic characters Complete 64 - character ASCII Phanumeric for
Read/Write Memory, using R2114 Static AAM devices. Available in 1 K byte and 4 K byte version.
0332 Stitor Program Memory, using accept additional 2332 ROM or 2532 PROM devices, to expand on-board Program memory up to 20 K bytes F6532 RAM Inpui/Output. Timer (RIOT) combination device. Multipurpo lo: AlM 6522 Versatile interiace Adaptor (VIA) devices, which support AlM65 and user functions.

AIM. 65 with $1 K$
AK BASIC ROM
4 K ASSEMBLER RASM. ASE (includes P.S.U.)
\qquad Nett
249.50
31500
70.00 Total MOTHERBOARD 136.50

Texas

The remarkable TI.99/4 Home Computer. rephes music, sound and BASIC all built in. Plus a unique, new Solid State Speech Synthesizer and T.1.'s pecial Solid State Software
The T.I.99/4 was designed to be the first true home computer - skilled computer asers and beginners alike will be able to put it to effective use right away You can begin using the TI Home Computer minutes after unpacking it; simply snap in Solid State Soltware Module, touch a few on the screen
Powerful TI-Basic: Accuracy and power or demanding technical applications, yet easy to use for the beginner. 13 digit. floating point Basic, with special features and extensions for colour, sound and graphics.
16 -colour graphics capability - Easy to use, high resolution graphics with special eatures that let you define your own characters, create onimated displays charts, graphics and more, with a resolution of 256×192 individually addressable polnt
Music and sound effects: provides outstanding audio capability. Build three. duration and volume quickly and simply

CPU: 9900 lamally, 16 bit microprocessor CPU: 9900 lamally, 16 bit mic
plus 256 byte scraichpad RAM

Memory

Total combined memory capacity 22 K Bytes

Sharp

SHARP MZ-BOK
2. 80 based CPU.
4 K Byte monitor in ROM

4K Byte monitor in ROM
Internal memory capacity from 4 to 48 K RAM Internal memory capacity

10 in video displey, 40 chars of 24
80×50 bit mapped graphics
Extensive character set with upper. lower case, graphics etc
Full' 79 Key Keyboard
Built in music synthesizer with 3 actaves.
Buit in music synthesizer with 3 oct
Fast reliable cassette unit with to pe counter 1200 bps

- Wide variety of system soltware on

50 pin bus connector for system

A complete personal computer system for the microcomputer user. at an economic price The Sharp comes complete with al necessary pernpherals, sample software and excellent documentation - giving the tlexibility and ease of use. At the heart of he machine is the $\mathbf{Z}-80 \mathrm{CPU}$ - widely accepted as the most pawerful 8.bit CPU on the market A 4 K byte system monito controls system operation. From 4 to 48 K of RAM can be resident on board; enough room for the most demanding
pplications
An extensive craphics character set, plus 3
ctave sound qeneratos and last cassette
unit hi-resolution video monitor
complement these basic facilities. I: has the ease of use and compactness of "black box' peripherals and facilities for expansion.
Sharp Basic occupies 14 K of RAM and normal microcomputer implementations.

Internal RAM
16K Bytes
modules)
mplug in software
30K Bytes Reyboard:
Staggered OWERTY Layout, lull travel with overlay for second functions.
Sound:
Octaves, 3 simultaneous toner plus noise
Colours 16
Graphics resolution: 256×192
Input/Output:
Composite video and audio output for
monitor. Intedace for 2 audio cassette
with system memory and address signal
vailable. Mini-earphone jack. Hand
controller interface.
Built in soffware:
and control soltware
Size: 25.9 38.17.1 cm
Display:
Uses colour monitor, 24 lines of 32
Console
Nett V A.T. Total
569.5785 .43655 .00
Console
Modules

250.00

Speech synthesizer
Speech synthesizer 45,00
Please note these are estimated prices only

Bigger and better than ever!
 Acorn
 This compact stand alone micro computer is based on Eurocard modules, and is based on Eurocard modules, 5 MPU Take a look at the full specifications, and see how Acorn meets your requirements.
 The Acorn consists of two single
 Eurocards: 1. MPU card; 6502 microprocessor, $512 \times$ 8 ACORN Monitor. 1 K x 8 RAM: 15 way I/O with 128 bytes of RAM; 1 MHz cryatal: 5 V reg. sockets ior 2 K EPROM and second RAM $/ / \mathrm{O}$ chip.
 2. Keyboard card; 25 click.keys 16 hex, 9 control): 8 digit. 7 seament display. CUTS standard crystal controlled tape interlace circuilry.
 Acorn Operating Manual
 With Acorn, you'll receive an operaling manual that covers computing in full. from tirst principles of binary arithmetic, to efficient hex programming with the 6502 instruction set. The manual also includes a listing of the monitor programs and the instruction set, and other useful tabulations; plus sample programs
 Nett V.A.T Total $65.00 \quad 9.7574 .75$ Acorn Memory
 A high quality fibre glass, through hole plated, PCB with solder resist and has provision for 8 K of RAM (2114) and BK of EPROM (2732). $\begin{array}{llll} & \text { 8K RAM (Kit) } \ldots . & 95.00 & \text { Nett } \\ & 14.25 & 109.25\end{array}$ ACORN V DU
 The Acorn V.D U Board connects to the Acorn Computez Bus and contains memory mapped character storage RAM which is transparently written to or read trom, by the C.P.U
 An MC 6845 programmable controller 1 C . Provides all the synchronisation signals to drive a 625 line 50 fields per second character R. $A M$. Characters are then fed to an SAA 5050 character generator IC which produces the necessary dot patterns to create the characters to relresh the V.D U
 The SAA 5050 produces Teletext slandard characters and has Red, Green and Blue drive outputs giving coloured characters or graphics. $\begin{array}{lllll}\text { V DU Card (Kı) } & \text { Nett } & \text { VAT } & \text { Total } \\ 8800 & 1320 & 10120\end{array}$ (a)

 25 Brunswick Street, Liverpool L2 OPI Tel: 051 - 2360707 (24 Hour Mail Order) 051-227 2535/6/7/8 (All other Depts.)

Please Send Me:

I Enclose

Cheque/Postal Order No
Barclaycard No.
Access No.
Name
Address
Post Code

Great 1980

DINDY LOW NOISE CASSETTES

$\begin{array}{lll}\text { SJ30 } & 10 \mathrm{C} 30 & 15 \mathrm{~min} \text { per side } \\ \text { SJ55 } & 10 \mathrm{C} 46 & 23 \mathrm{~min} \text { perside (LP) }\end{array}$ $\begin{array}{ll}\text { SJ31 } & 10 \mathrm{C} 9045 \mathrm{~min} \text { per side } \\ \mathrm{SJ} 32 & 10 \mathrm{C} 12040 \mathrm{~min} \text { per side }\end{array}$

ALL REDUCED!

PAKS

RESISTOR PAKS		
18213	60 dw resistors	1000hm-8200hm
16214	60 w resistors	$1 \mathrm{~K}-8.2 \mathrm{~K}$
16215	60 \% w resistors	10K-82K
16216	60 fw resistors	100K-820K
ALL 4 at SPECIAL PRICE of 81.80		
16217	$40 \frac{1}{\frac{1}{2}}$ w resistors	1000hm-8200hm
16218	40 fw resistors	1K-8.2K
16219	40 fw resistors	10K-82K
16220	40 fw resistors	100K-820K
ALL 4 et SPECIAL PRICE of E1.80		

IC SOCKET PAKS F.E.T.'s

IC SOCKET PAKS

TRANSISTORS

DIODES

LINEAR

Electronic Compint consisting of a fantastic assortment of Switches, Relays
Board-Semiconductors, wire. hardware, eic., eic., eic.
This is a large box and is sent separate to your order
CALCULATOR CHIP

GOM2-C500 24 pin MOS
IC INSERTION/EXTRACTION TOOL

Sale SPECIAL OFFER! COMPONENT PAKS

0/No	Quentity	
S.11	200 Resistors mixed values	0.50
S. 2	200 Carton resistors $\frac{1}{\text { + }}$ - we	0.
S. 3	100 i watt miniarure resistors mixed values	0.50
SJ4	$60 \frac{1}{2}$ watt resistors mixed values	0.50
SJ5	50 1-2 watt resistors mixed pot valueg	0.50
S. 56	50 Precision resistors 1-2 ${ }^{\circ}$ tol. mixed	0.5
SJ7	30-5-10 watt wirewound resistors mix	0.50
S. 1	150 Capacitors mixed types \& values	0.60
SJ12	60 Electrolytics all sorts mixed	0.50
S. 13	50 Polyester/polystyrene capacitors mix	0.50
S. 14	50 C 280 type capacitors mixed	1.00
S. 15	40 High Quality electrolytics $100-470 \mathrm{mf}$	1.00
SJ16	40 Low Vts Electrolyties mixed up to 10 v	0.5
S.117	20 Electrolytics transistor types mixed	0.50
-S.18	20 Tantalum bead capacitors mixed	0.50
SJ20	2 large croe clips 25A rated	0.30
SJ21	Large 71/" Mains Neon Tester' scre	0.85
SJ22	Small pocket size 'Mains Neon Tester'	0.55
SJ23	Siemens 220v AC Relay OPOT contacts 10 amp rating - housed in plastic case	
SJ24	Black PVC tape (i) $15 \mathrm{~mm} \times 25 \mathrm{~m}-$ strong tape for electrical \& household use 0.35 per roll 1.60	
S. 25	100 Silicon NPN uransistors all perfect \& coded mixed types with data \& equivalent sheet	2.50
S. 26	100 Silicon PNP transistors all perfect \& coded mixed types and cases data and equivalent	
S. 27	50 Assorted pieces of SCR's diodes \& rectifiers incl. stud types all perfect - no rejects fully coded - data incl.	
SJ28	20 TTL 74 series gates - assorted 7401 - 746	
S.J33	PC Board - mixed bundle PCB fibregiass $/$ paper single \& double sided - super valuel	0.75
SJ34	200 sq . ins. (approx) copper clad paper board	0.8
SJ35	100 sq. ins. (approx) copper clad fibre glass	0.80
SJ49	8 dual gang carbon pots log \& lin mixed value	
SJ50	20 assorted slider, knobs - chroma/black	1.0
SJ61	1 Switchbank 5 way incl. silver knobs	0.5
SJ52	1 pak of vero board approx 50 sq , ins mixed	1.00
SU53	1 Mammoth I.C. Pack: approx. 200pcs assorted fall-out integrated circuits including logic 74 series, linear-audio and O.T.L many coded devices but some unmarked - you to identify	
SJ54	20 slider pots mixed values \& sizes	1.00
SJ56	6100 K lin 40 mm slider pots	0.50
S. 157	6100 Klog 40 mm slider pots	0.50
SJ58	61 Klin 40 mm slider pots	0.50
S.559	65 K lin 40 mm slider pots	0.50
SJ60	$45 \mathrm{~K} \log 60 \mathrm{~mm}$ single	0.50
SJ6 1	4 100K $\log 60 \mathrm{~mm}$ single	0.50
SJ62	515 mm chrome knobs standard push fit	0.50
SJ63	1 Instrument knob - black winged $\mathbf{1} 29 \times 20$ m with pointer $f^{\prime \prime}$ standard screw fit	n)
S. 64	1 Instrument knob - blackusilver aluminium top (17 $\times 15 \mathrm{~mm})$ f" standard screw fit	0.12
MET	ASE DUAL S LIDER POTS: $\mathbf{4 5 m m}$ travel	
SJ65	10K log	
SJ66	100K lin 0.2	
S.J67	Chrome slider knobs to fit o.	
SJ6B	ZTX300 type transistor NPN pre-formed for P/C Board cotour coded blue - all perfect	1.00
SJ69	30 2TX500 type transistor PNP pre-formed for P/C Board colour coded white - all perfect	1.00
SJ70	25 BC 107 NPN TO106 case perfect transistors code C1359	1.00
S. 711	25 BC1 77 PNP TO106 casu perfect transistors code C1395	
SJ72	42 N3055 silicon power NPN transistors TO3	∞
SJ73	6 TO64 SCRs 5 Amp a ssorted $50 \mathrm{v}-400 \mathrm{v}$ all coded	
SJ74	B way ribbon cable - colour coded individually insulated solid tinned copper conduction	
S. 75	FM coax cable - plain copper conduction cel polythene insulated and plain copper braided PVC sheath - impedance 75 ohms 0.10	llular d
S. 78	1 Board containing 2×5 pin DIN sockets 180 0 2-2 pin OIN loudspeaker sockets	0.30
SJ77	A 5 pin DIN 180° chassis/normal socket incl. OPOT switch	0.20
SJB3	5 Germ. OCP71 type photo transistors	1.00
SJ84	$10 \mathrm{B0131}$ NPN transistors low Hfe rejects	0.50
S.85	6 PNP Darlington Power Transistors T0-126	0.50
SJ86	5 PNP TO-3 germ. power transisiors at VLTS10-20VCB	0.50
SJ87	20 Asst. heat sinks T01/5/18/92	0.50
SJBB	2 Post Office relays	0.50
SJ189	20 Mixed values 400 mW zener diodes 3-10v	1.00
SJ90	20 Mixed values 400 mW zener diodes $11-33 \mathrm{v}$	1.00
SJ91	10 Mixed values 1 W zener diodes 3-10v	0.50
S.922	10 Mixed values iW zener diodes 11-33v	0.50
SJ95	B Slilicon Bridge Rectifers up to 4Amp	
	$200 v+$ Data	1.50
SJ96	1 Battery holder to take $6 \times$ HP7's	c0.10
16168	5 assorted ferrite rods	0.50
16169	2 tuning gangs MW/LW	0.50
16170	50 meters asst. colours single strand wire	0.50
16171	10 Reed switches	0.50
16172	3 Micro switches	0.50
16173	16 assorted pots	0.50
16177	1 pack assorted hardware	0.50
16178	5 Main slider switches assorted	0.50
16179	1 pack assorted tag strips	0.50
16180	15 a ssorted control knobs	0.50

[^1]
BREADBOARD

AT THE time of writing the Breadboard exhibition is pulling in the crowds in London and the editorial staff of PE are at full stretch manning the stand, visiting exhibitors and producing this issue-we hope it doesn't show! Breadboard looks like becoming the premier event for the electronics hobbyist. In only its second year it has attracted large crowds, is very well presented and has an excellent atmosphere-even though it is sometimes difficult to talk to people over the raucous noise being generated by various synthesisers, organs, discos etc. (organisers please note!).

An exhibition such as this gives us a chance to meet casual and dedicated readers. We take the opportunity to discuss various projects and enquire into your views on PE. Thankfully most are full of praise and often some new project ideas get thrown up for our consideration. Some, of course, are not so happy-unfortunately we have failed to please them. It would appear that in these cases we are not giving enough space to their particular subject or, more commonly, we are giving
too much space to another facet of our hobby in which they are not interested.

The problem is, having talked to a number of readers, often with widely varying views, just what do we do with all the information. It is all too easy to twist it around so that it fits in with our own views, or to balance out two divergent attitudes and take the middle path; which may in fact please neither party.

For instance, two comments which came up were (a) we carry too many microprocessor oriented articles and (b) we give too much space to music and audio projects. Now we could please both parties by cutting back on these subjects, but wait, we know these are very popular areas by the number of kits and components sold2000 Compukits (at $£ 250$ each) at the last count and excellent quantities of mixers, guitar sound multiprocessors etc. So we would probably offend many readers by cutting.back on either subject. We do try to keep the balance right, to be aware of new trends and to provide the right information at the right time but it's not easy to please everyone.

PROJECTS

One thing that fascinates us is that virtually all the comments are concerned with projects. Although we try to publish about five projects, or parts thereof, each month these normally make up less than half of our total number of editorial pagespresumably everyone is over the moon with the rest of the contents?

Another interesting angle is uncovered when one enquires as to how many projects most readers construct during a year-the average is probably about one project per reader per year. So why are some readers so much in favour of reading about their pet subject but so much against learning, or even just reading, about ideas and circuitry from another discipline? Any comments?

Finally, our thanks to all those who visited our stand at Breadboard. To those who live too far away or who just could not come along-it's a great event-if you get the chance we would be pleased to see you next time.

We hope to publish a review of the exhibition next month; our apologies to those who have seen it all first hand.

Mike Kenward

EDITOR

Mike Kenward

Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
David Shortiand PROJECTS EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR

ADVERTISEMENT MANAGER D. W. B. Tilleard
 SECRETARY Christine Pocknell $\mathbf{0 1 - 2 6 1 6 6 7 6}$
 AD. SALES EXEC. Alfred Tonge 01-2616819
 CLASSIFIED MANAGER Colin Brown 01-2615762

Editorial Offices:
Practical Electronics,
Westover House,
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot be answered over the telephone (see below).

Advertising Offices:
Practical Electronics Advertisements, King's Reach Tower,
King's Reach. Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-261 6601

Technical Queries

We are unable to offer_any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 75 p each including In land/Overseas p \& p.

Binders

Binders for PE are available from the same address as back numbers at $£ 3.75$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

AUDIO VISUAL

Two new $A V$ machines have just been launched on the market. The 340 model is a cassette recorder with four identical audio channels, each with full metering facilities and Dolby Noise Reduction. Each channel has two inputs, microphone and line, a fixed level

line output, and a controlled output which can give in excess of +8 dBm .

Independent record selectionvis provided for each pair of tracks to facilitate stereo recording (tracks 1 and 2) or all four tracks simultaneously. If required, tracks 1 and 2 can be recorded first then tracks 3 and 4 added whilst replaying tracks 1 and 2. Alternatively, tracks 1 and 2 can be recorded after tracks 3 and 4.

The 330 model has two audio channels with a separate sync track for audio visual applications.

The two audio channels have full metering facilities and Dolby Noise Reduction and each audio channel has the same specification as the 340 . They sync channel also provides full metering facilities and selection for the use of normal and special tapes.

When the 330 is used with external sync pulse coding/decoding equipment, the sync channel has a single line input and a line output. It also has an internal sync pulse generator triggered by a button on the front panel to provide a recorded pulse for direct connection to a projector.

For further details including price and delivery contact: Neal-Ferrograph, Simonside Works, South Shields, Tyne \& Wear NE34 9NX.

FLUKE DMM

Microprocessor techniques have allowed Fluke to incorporate some very useful features in their latest low cost $4 \frac{1}{2}$ digit 8050A DMM. This highly accurate bench/portable model with 39 measurement ranges and nine functions also provides unique dB computing and offset modes in addition to a high performance true r.m.s. capability.

In the dB mode, the 8050A DMM allows the user to call up any of 16 reference impedance levels from 8 to 1.200 ohms and to display the readings directly in dBs.

Additionally, a reference/offset mode allows any input signals to be stored either as a reference value for relative dB readings or as an offset against any reading. In offset mode, the user can zero-out any lead resistances for really high resolution impedance measurements or set up a reference offset and display
only the variance from that reading.
These absolute and relative dB modes with offset greatly simplify measurements in audio, amplifiers and telecommunications circuits as .well as in production testing where only the variance from the stored value may be required. The offset facility is available on all functions such as a.c./d.c. volts or amps, resistance or conductance.

The high resolution $4 \frac{1}{2}$ digit l.c.d. display is matched by a basis d.c. accuracy of 0.03 per cent specified over a full year. A.c. or d.c. measurements can be made down to $10 \mu \mathrm{~V}$, 10 nA or 10 milliohms.

In addition to its volts, ohms and amps ranges, the 8050 A also has two conductance ranges for high impedance measurements to

100,000 Megohins, as well as low power ranges for in-circuit measuring.

A wide range of accessories such as high voltage probes, current transformers, shunts, temperature and r.f. probes, remote hold probe, battery pack, and safety leads make the 8050 A a complete measurement system for the bench or field.

The 8050 A is priced at $£ 199$ ex. VAT and carriage.

Fluke International Corporation, Colonial Way, Watford, Herts WD2 4TT.

BOOTS VIDEO

All Boots audio departments are now selling the Ferguson VHS Videostar recorder (Model 3 V 00) which has a maximum recording time of 3 hours.

The 3V00 has a remote hand-held "pause unit" which can be used to edit unwanted material during recording or playback. Boots

will also carry a wide range of blank video tapes not only for the Videostar and other VHS recorders but also for machines using VCR and Beta format tapes.

Also available is a full colour catalogue of 45 pre-recorded programmes and feature films.

The price of the $3 V 00$ is $£ 595.00$ with blank cassettes from $£ 6.95$ to $£ 16.95$ and prerecorded films from $£ 17.50$.

ELECTRONIC NOTEBOOK

Like the first model introduced last year, the Toshiba LC-1038MN calculator offers alpha-numeric facilities which has now been expanded to a full ten digit alphabetic and/or numeric entry and display, plus sign. There is an independent 30 -register memory bank, each register able to retain data consisting of 10 -alphabetic characters and 10 -numerals. The addition of a 26 -location world-time display, plus clock/calendar and alarm. There is instant retrieval of the world-time display; the calendar indicates month, date and day of

week; and the alarm can be set up to one year in advance and to prompt an alpha display.

The calculator is ideal for the storage of information in constant use, but which is subject to frequent change such as currency exchange rates; share buying and selling prices; bank and audit card balances; train and plane departure and arrival times; stock levels; metric conversion factors; travellers cheque numbers.

The LC-1038MN operates on batteries lasting around 9,000 hours; is sized $70 \times 10 \times$ 137 mm and weighs $80 \mathrm{~g}(2.80 \mathrm{z})$. It is priced around $£ 75$, plus VAT.

SAFETY TESTER

Clare Instruments Limited have developed a portable safety test unit for checking double insulated and earthed electrical equipment.

The V152, will flash test double insulated appliances at 4 kV . Another noteworthy feature, is the high current used for earth bond testing (25 A at 8 V). Too many testers, at present available, offer only a simple continuity check for this important test.

The unit operates from a mains supply and the appliance under test is plugged into the 13 amp socket on the front panel of the tester. When the test button is pressed, neon lamps indicate that the series of tests is completed, with green lights for passes and red lights for failures.

The tester which is housed in a hardwood case is priced at $£ 144.50 \mathrm{ex}$. VAT and p\&ep.

Clare Instruments Limited, Clare Works, Woods Way, Goring-by-Sea, Worthing.

NEGATIVE ION GENERATORS

Most of the air around us is electrically neutral with only a few of the air molecules gaining or losing electrons and therefore acquiring a positive or negative charge.

The effect of these charged molecules, which are called air ions, on individual health has been researched over many years and it has become clear that it is the balance of negative and positive ions rather than high ion concentration which is important.

Research has also shown that sufferers from asthma, hay fever and bronchitis can benefit from having the air they breathe charged with negative ions. There is also considerable evidence that ion depletion, such as

occurs in offices or crowded rooms, produces discomfort, drowsiness, fatigue and loss of mental and physical efficiency.

The concentration of negative ions in the air can be increased using a negative ion generator. Two such generators have just been introduced by J. P. Bell Ltd., the Kobelair Model 20 is a desk unit suitable for individual usage whereas the Model 40 is suitable for rooms up to 40 cubic metres (1500 cubic feet) with a maximum effectiveness over a range of 0.5 to 2.5 metres (2 to 8 feet).

The model 20 is priced at $£ 57.50$ and the Model 40 at $£ 98.50$ excluding VAT and $p \& p$.
J. P. Bell (Machinery) Ltd., Jubilee works, London Road, Woolmer Green, Knebworth, Herts.

SUPERDECK FOR MPUs

The V\&T Superdeck is a high speed cassette unit which will, under CPU control, find any file stored on a C60 cassette (one megabit of unformatted memory on each side) in under one minute using fast forward and fast reverse speeds (up to 50 i.p.s.).

Other features of the Superdeck include: 5000 baud CUTS format as standard (which can be switched to other lower speeds, error detection and correction (it will also write protected areas of tape containing hard errors), it will write into the first empty file, on tape or into any file number or name specified (unless that particular file is write protected in which case an error message is generated).

At the present time only a Z80 operating system is available.

The unit which connects to any 8 bit I/O port and UART includes a 240 V supply unit.

The price of the Superdeck is $£ 110$ plus VAT and p\&p. V\&T Electronics, 82 Chester Road, London N19.

WIRE BIN

The WB-16 wire bin has been designed for both storage and wiring table use, keeping assorted wires separated in their correct size groups and preventing wasteful tangling.

The sixteen wire storage tubes have adjustable depth stops to take wire lengths from 25 mm and 350 mm . The price of the WB- 16 is £33.81 excluding VAT and p\&p.

OK Machine \& Tool (UK) Ltd, Dulton Lane, Eastleigh, Hants. SO5 4AA

PANEL MOUNTED CASES

A new range of panel mounted cases which are ideal for housing projects such as clocks, meters, counters etc., have just been introduced by Perancea Ltd.

The black ABS cases are supplied with two front panels, one is an anti-reflective filter for displays and the other is anodised aluminium for mounting controls. Other features include

p.c.b. guides and slots, matt black clip-on bezels and optional mounting clamps for wood or metal panels.

There are four sizes of cases available, $96 \times$ 48 mm and $72 \times 36 \mathrm{~mm}$ front panels in two lengths 120 mm and 75 mm .

These cases could also make excellent housings for our Car Instrument Devices if the l.e.d. mountings were altered.

Distributors for the cases include Watford Electronics, Home Radio and Bi-Pak all of whom advertise in the magazine.

EPI

The 1978 edition of the Electronic Projects Index is now available. This index covers all the constructional projects published in sixteen magazines including PE, radio, television, hi-fi and computing. The projects are arranged under thirty six headings arranged alphabetically from aerials to Zener testers.
Other information given with each article includes a component guide and method of construction used, i.e: p.c.b., Veroboard etc.

The index is priced at $£ 1 \cdot 30$ including p\&p, and is available from M.L. Scaife, Central Library, Northumberland Square, North Shields, Tyne \& Wear, NE30 IQU.

ELECTRONICS 79

The Electronics 79 Show was held this year at Olympia and many of the leading UK component manufacturers and distributors were exhibiting there together with equipment, instrumentation and packaging companies.

VIEWDATA

The latest Viewdata adaptor from Labgear, the 7050 Viewdapta, was on display. This is a compact unit for receiving Viewdata which can be used with an existing TV set without modification to the receiver.

The 7050 consists of a desk top keyboard and a wall mounted Viewdata Processing Unit which are connected together via a multiway cable. A built in loudspeaker gives an audible indication of engaged, dialling and other tones obtained.

TRIACS AND THYRISTORS

Motorola were showing their range of 15 to 40A triacs which they have now fitted into a TO-3 base type package with push-on terminals.

These 200 to 800 V triacs are primarily designed for full-wave control to a.c. loads and are electrically isolated from the mounting base with a high isolation voltage of 2500 V . Applications include appliance controls, power supplies, solid-state relays, heating and motor controls.

Motorola were also displaying their 8 A MCR 72 thyristor which needs just $30 \mu \mathrm{~A}$ to trigger on and can easily be directly coupled with an MPU or other driver i.c. for power control applications.

CIRCUIT TESTER

Among the many instruments on display Vero Systems had their "Soundout" touch sensitive cable continuity tester on display which uses the body as a conductor leaving both hands free of probes.

The unit which is battery operated (9V) has a dual input impedance ($15 \mathrm{M} \Omega$ and $2.5 \mathrm{k} \Omega$) and is available in two versions with the MK Il model having the additional feature of an earphone for noisy environments or where more than one unit is in use.

Both units have a volume control and are supplied with an interchangeable crocodile lead. A wrist strap and probe lead are available as accessories. The price of the MK I is $£ 20.00$ and the MK II is $£ 24.00$.

ZIP SOCKETS

With the high cost of LS1 circuits many constructors are now using zero insertion pressure sockets to prevent pin damage to components whilst they are being inserted.

The BFI range of ZIP sockets included several new types never exhibited before. The socket range is one of the most compichensive currently available and may be used for almost any device, including multi-pin integrated circuits axial lead components, power transistors and non-standard hybrid circuits.

Of particular interest is a new range of sockets for use with LSI devices in test equipment or development "breadboards". The sockets will accept 28 ($0.4^{\prime \prime}$ pitch), 42 and 64 pin devices with no insertion pressure, thus eliminating the lead damage and distortion which can occur when leads are forced into spring contact sockets.

Each socket has a lever at one end which is connected to an internal cam. The device is simply dropped into the socket and the lever flicked up to positively clamp the leads inside the socket. This protects the leads from
damage and ensures a good electrical connection. When the lever is released the device may be removed without force.

PLASMAPANELS

Included in the Thompson-CSF display was their TH 7604 plasma-panel module which is intended for low-capacity alphanumeric-display applications.

This module which includes all the necessary panel-drive electronics has a power consumption of less than 30 W . Being a.c. driven, the panel itself features inherent storage which means that the high-intensity display is also free of flicker,

The module's overall dimensions are $295 \times$ $125 \times 57 \mathrm{~mm}$. Its useful panel area ($219 \times$ 52 mm) permits displaying up to 6 lines of 40 characters (5 by 7), with the possibility of adding underlining or a mobile cursor.

BREADBOARD KIT

The latest kit from the CSC is the protoboard PB-203AK. This kit, featured in a special pre-release offer in PE (Nov. 79), contains all the components needed to make a solderless breadboard unit with three regulated d.c. power supplies.
The kit comes complete with all the elec-

tronic components, case and breadboard modules, as well as nuts, bolts, connecting wire and solder. The assembly instructions have been written without any assumptions about the constructor's past experience.

The finished Proto-Board incorporates three large breadboards plus four long busbars and one shorter one, giving a constructional area sufficient for 24 integrated circuits in 14 pin packages. In addition, terminal posts allow connection to earth and to the $+5 \mathrm{~V}, 1 \mathrm{~A}$ and $\pm 15 \mathrm{~V}, 0.5 \mathrm{~A}$ power supplies. The power supplies are independent and fully regulated, and the $\pm 15 \mathrm{~V}$ supplies can be internally adjusted over the range $7-18 \mathrm{~V}$. The three power-supply rails allow the board to be used with most types of circuitry, including TTL and CMOS logic.

The PB-203AK is supplied with an earthed metal case measuring $248 \times 168 \times 83 \mathrm{~mm}$, and is still available for a short period at a special offer price of $£ 55.00$ excluding VAT and p \& p.

ALTHOUGH compact cassettes have certain advantages over other forms of recording medium, they have the major disadvantage of a comparatively poor signal-to-noise ratio unless they are used in conjunction with some form of noise reduction system. Many pre-recorded cassettes are encoded using the Dolby system and are capable of excellent results, but there are still numerous pre-recorded cassettes currently available that are non-Dolby as are many cassettes purchased some time ago.
The dynamic noise limiter (DNL) which forms the subject of this article was designed for use with a high quality cassette deck to enable an improved signal-to-noise ratio to be obtained when playing non-Dolby cassettes. Of course, the unit can also be employed with a cassette deck which

Fig. 1. Block diagram
does not incorporate any form of noise reduction circuitry when playing any cassette. It can also be used in addition to some other form of noise reduction system to further increase the dynamic range. This can effect a very worthwhile improvement when the original recording is fairly old, and a significant amount of tape hiss has been recorded onto the cassette. It is even possible to use the unit to improve noisy f.m. radio reception, or any other programme source that is affected by low level high frequency noise.

DNL PRINCIPLE

Tape noise consists mainly of high frequencies, or to be more accurate, it is this high frequency content that tends to be most noticeable and objectionable. Turning back the treble control while playing a cassette will show this quite clearly by apparently greatly reducing the noise. It is by reducing the upper frequency response during playback that a DNL effects a reduction in tape noise, but it only applies the full amount of treble cut at low signal levels. It is then that the noise is most noticeable.

At high signal levels the treble cut is removed to some degree, and at very high signal levels it is totally eliminated. The increased tape noise will not be audible as it will be masked by the main signal.

In this way a DNL provides a very significant reduction in background noise, but there is a minimum loss of treble response.

Fig. 2. Complete circuit diagram of the DNL

The DNL described in this article operates in the manner shown in the block diagram of Fig. 1. The input signal is split into two parts which are then mixed in a simple passive mixer circuit. One part of the signal is simply inverted before being fed to the mixer, and the other part is fed to the mixer via a high pass filter and a voltage controlled attenuator. The high pass filter rolls off signals below about 4 kHz .

The two signals at the mixer are out of phase and therefore tend to cancel one another out. However, as only high frequencies are present at one input, it is only these high frequencies that are attenuated to a significant extent. Under quiescent conditions the VCA is adjusted to balance the two inputs and so optimise the high frequency cut. The output of the mixer is coupled to a low gain amplifier which compensates for circuit losses and provides the unit with almost exactly unity voltage gain.

Some of the output from the high pass filter is used to generate a control voltage for the VCA. An active rectifier and smoothing network are used to provide this voltage. Under low signal conditions only a very small voltage will be generated, and this will not greatly affect the circuit. Higher signal conditions will produce a large enough voltage to significantly attenuate the signal through the VCA. The higher the signal level, the great the attenuation.

If the output from the VCA is reduced, the high frequency cancelling, effect on the signal from the inverter will also be reduced, and so the higher the input signal level, the less the amount of treble cut that the circuit applies. Thus the desired circuit action is provided.

The reason the active rectifier stage is fed from the high pass filter rather than the main input is that high frequency signals mask the tape noise far better than low or middle frequencies do. The unit is therefore designed to respond more readily to high frequency input signals.

CIRCUIT DESCRIPTION

The circuit diagram for one channel of the DNL is shown in Fig. 2. TR 1 is used as a conventional high pass filter of the type often encountered in rumble filters, but the component values have been modified to provide a much higher cut off frequency of course. TR1 is connected in the emitter follower mode and so the filter has approximately unity voltage gain at pass frequencies.

The VCA is formed by R9 and TR2, the latter being a JUGFET which is used here as a voltage controlled resistance. TR3 is used as the inverting amplifier and this is a common emitter stage. As the emitter resistor (R13) is not bypassed and is equal in value to the collector load resistor (R11), this stage has almost unity voltage gain. R12 and R14 form a simple passive mixer circuit and TR4 is used as the output amplifier. TR4 only needs a voltage gain of a little

COMPONENTS ...

Resistors	
*R1	1 k 5
*R2	27k
*R3	33k
*R4	4 k 7
*R5	33k
*R6	220
-R7	68k
*R8	10k
*R9	5k6
*R10	1 M 5
-R11	2k2
*R12	33k
*R13	2k2
-R14	22k
-R15	4 k 7
*R16	$1 \mathrm{M8}$
-R17	2k2
All resistors $\frac{1}{4}$ W 5\% (10\% over 1M)	
Potentiometers	
*VR1	47k hor preset
*VR2	1 M hor preset

Capacitors	
"C1	$15 n$
- C 2	10 n
-C3	$100 n$
- C 4	$100 n$
-C5	100n
*C6	$100 n$
-C7	100n
- C8	100 n
* C9	$10 \mu 16 \mathrm{~V}$ elect
${ }^{\text {C }}$ C10	150 n
C11	$680 \mu 25 \mathrm{~V}$ elect
C12	$100 \mu 16 \mathrm{~V}$ elect
C13	100 n

All capacitors C280 type except where otherwise stated
Semiconductors

"IC1	CA3140T
IC2	78L12
TR1	BC109C
TR2	BF244B
TR3	BC109C
TR4	BC109C
"D1	1N4148
D2	1N4001
D3	1N4001

Switches

S1 Rocker switch d.p.s.t.
S2 Rocker switch d.p.d.t.
Transformer
T1 Mains primary, 12-0-12V 50 mA secondary. miniature type with flying leads (M.E.S.)

Miscellaneous
BEC case type GB1a or similar
Four phono sockets
Miniature panel neon
p.c.b.
*Indicates that two devices are required for stereo operation

Fig. 3. Frequency response (low level inputs)
more than two in order to make good the losses in the circuit, and so again an unbypassed emitter resistor is used to introduce negative feedback and set the voltage gain of the stage at the required level.

IC1 is used as a form of active rectifier, and its voltage gain is controlled by feedback potentiometer VR1. This enables the input signal level required in order to remove the treble cut to be varied over a considerable range so that the unit is suitable for use with any normal cassette deck.

VR2 enables the bias on TR2 gate to be adjusted and this control is set to slightly reverse bias TR2 so that there is only a small amount of attenuation through the VCA under quiescent conditions, and the two inputs to the mixer are precisely balanced. Only positive going output signals are produced from the active rectifier in the presence of a suitable input, and these have the effect of raising the voltage at the lower end of VR2 and removing the reverse bias from TR2. This increases the attenuation through the VCA and removes the treble cut.

C5 integrates the output pulses from the rectifier in order to prevent significant distortion, but the attack and decay times are both short so that the circuit quickly responds to changes in dynamic level. As is normal for this type of device, the circuit has hysteresis. This simply means that the attack time is faster than the decay time, which helps the unit to act as fast as possible without generating significant distortion.

The hysteresis is produced by D1 and R8. C5 is charged through the relatively low impedance of R8, but it cannot discharge through the same path since D1 prevents this. Instead it must discharge into the relatively high impedance of R7. This is the only reason for including D1 in the circuit since the CA3140 used in the IC1 position is only operated from a single supply rail, and will provide a rectifier action without D1.

With a high level input the frequency response of the unit is virtually flat over the audio spectrum, but on low level in-

50271
Fig. 4 a \& b. Switching alternatives
puts the frequency response of Fig. 3 is obtained on the prototype. The attenuation rate is about 12 dB per octave from 3.5 kHz to 8 kHz . There is a slight peak in the response at approximately 3 kHz and the roll off rate above 8 kHz is only very gradual, but neither of these points are of any real consequence in practice.

P.S.U. AND SWITCHING

The filter is powered from a simple stabilised mains p.s.u. This is quite straight forward and consists of a push pull rectifier and smoothing network feeding a monolithic regulator i.c. A well smoothed and regulated output is provided, and the regulator i.c. has output current limiting and thermal overload protection circuitry.

In most cases it will be desirable to have some means of switching the unit out of circuit so that the cassette deck can be used normally. Some amplifiers and receivers have built in switching in the form of a tape monitor facility, or something of this nature, which could be used to accomplish this. An alternative is to use the simple in/out switching arrangement used on the prototype and shown in the circuit of Fig. 4a. This leaves the filter input permanently connected to the cassette deck output, but this does not seem to affect performance even if the cassette deck is used while the filter is switched off.

If preferred, the system shown in Fig. 4b can be used. Here the filter is switched completely out of circuit when the

Internal view
switch is in the "out" position, but a four pole switch is required. It would be possible to gang the on/off and in/out switches, but if this is done care must be taken to ensure that mains hum is not picked up in the in/out switch wiring. Also, care must be taken to ensure that the mains wiring cannot accidentally come into contact with the input or output wiring!

CONSTRUCTION

The prototype unit was housed in a BEC cabinet but any case of mainly metal construction and having similar dimensions $(230 \times 150 \times 50 \mathrm{~mm})$ should also be suitable. The filters and power supply are constructed on two separate p.c.b.s and these are shown in Figs. 5 to 8 respectively. The negative supply rail connection between the two panels is carried via the mounting bolts and the metal case. The earth connections between the filter p.c.b. and the input and output sockets is obtained in the same manner. The filter and p.s.u. boards should be mounted as far apart as possible.

ADJUSTMENT AND USE

In use the filter is either connected between the cassette deck output and the "tape" input of the amplifier, or it is

Fig. 5. P.c.b. design for the main board
Fig. 6. Component layout

Fig. 7. P.c.b. design for the p.s.u.

Fig. 8. Component layout
connected into the tape monitor or some similar facility. In either case both the input and output leads should be proper screened types.

Initially VR2 is adjusted in an almost fully clockwise direction and a blank cassette is played through the system to provide a source of tape noise. If VR2 is now adjusted in an anti-clockwise direction a point should be reached where there is a slight but noticeable null in the noise, with further adjustment causing a rise in the pitch and intensity of the
noise. The correct setting for VR2 is at this null point and both channels are adjusted in this way.
The best setting for VR 1 can be found by trial and error. The further it is adjusted in a clockwise direction, the lower the input signal level at which the treble cut starts to be lifted. It should therefore be adjusted as far in a clockwise direction as possible without the lifting of the treble cut becoming audible on low level signals.

The hardware and software exchange point for PE computer projects

If you have ever built a computer, or computer peripheral using plans from the pages of PE, then it is likely that you would have appreciated some "follow up" data on such matters as interfacing and software. Keep an eve on this new column then, if you have constructed Champ, the UK101 or a peripheral device such as our printer or VDU; for it is from this column that we hope hints and snippets of information. short programs, applications and discoveries will spring forth eternal with your help of course!

Sir-Having recently built the Compukit 101 computer, 1 must say that $/$ am
delighted with it, although it has its limitations lone small annoying one being the lack of PRINT USING).

I find that I am learning BASIC by using the computer (hit and miss), and am following your article on learning BASIC.

However, as far as my programming is concerned, one or two things have so far eluded me, and I hope that you or your staff can help.
(a) What are the POKE commands to switch to printer, and to VDU, when writing programs in BASIC.
(b) Having written and loaded a program which has variables giving running totals, how can I load and save these updated programs? II have a feeling that machine code, POKE, or something of the like is involved but what?) (I have already worked
out that to run these programs, RUN sets the variables to 0 , and I have to use GOTO 1 to run them without clearing the variables. The books on BASIC I have do not mention these things, which for a real beginner are a nightmare).

lain Corrance

Glasgow

Ideally, to carry data over, and update it at will, a cassette file should be generated so that the operating program is recorded on one tape and a data file on another. Alas, the 101 does not have cassette file firmware, but we have been told it can be done using machine code routines which of course can be accessed from BASIC via USR(I). An alternative, if somewhat clumsy, is to list as DATA statements those variables you wish to maintain, before re-recording the program.

We shall endeavour to answer all questions in due course. Next month we will be publishing a game for the 101 called "Torpedo Run", and give details of an independent UK 101 users club.

Shake-out

Whatever people may say of the electronics industry they can never accuse it of being dull. Change is always around. It is difficult enough to keep track of the technology, even harder to keep up with business fortunes, changing markets and who owns what, and how performance and expectations will be affected by the dynamic economic climate both at home and abroad.

How the tight monetary policy, stiffened even further by the mid-November increase in interest rates, will affect the electronics industry in the UK is still anyone's guess. So is the long-term effect of the abolition of foreign currency exchange after 40 years of restriction. And what happens in the USA affects the whole of the Western world. The dollar is unhealthy, and the USA is in another energy crisis as well as being unsettled by the run-up to the Presidential election.

Pity the poor managers and market analyists struggling with their five year business plans, so beloved and promoted by the business schools! There are so many variables in the equation in these turbulent days that it is practically impossible to formulate a coherent long term policy.

Confusion and an uncertain future, however, has not deterred people from having a go at seizing what they see as good business opportunities. Expect Racal to make further acquisitions soon. Action in this respect may also be anticipated from GEC and Thorn. Expect, too, to see more foreign investment in the UK during 1980 , not excluding the Japanese. There is some timidity among overseas investors on labour relations problems in the UK but fortunately the record in the electronics industry is almost miraculously good. Apropos the Japanese, Toshiba alone already has manufacturing plants in seven countries outside Japan. This trend will continue.

God and Virtue

How do the Japanese do it? Have they some secret formula denied to the rest of the industrial world? There have been many attempts at analysis.

In two recent commentaries one suggests that the secret is that to a Japanese company and its employees the customer is regarded as God. Actually, not an attitude to be despised although strange for a country whose religious beliefs are principally in Buddhism which has no God and Shinto in which the object of veneration in the shrine may be anything from a stone to a household utensil in which resides the spirit.

The other preaches a virtuous circle of good industrial relations allowing management to get on full time with managing and innovation, coupled with lifetime jobs generating confidence in accepting new technology by employees instead of, as in the UK, resisting it.

In all the years of Industry Notebook I never imagined I should use such a heading as that abovel Nonetheless, such abstract concepts are very real to the Japanese character with their singing of company songs before taking to their work benches, and their dedication to a cause as exemplified by the terrifying suicide attacks by Kamikaze pilots in World War 2.

Sting Ray

Marconi Space and Defence Systems have won their biggest ever contract in the Sting Ray project. More than $\mathbf{f} 200$ million in the first instance and probably worth $£ 800$ million over its lifetime of 20 years. Among the other heady statistics, 50,000 man years of work spread over a dozen cities (if you include the subcontractors) make good reading.

Sting Ray is a lightweight homing torpedo with an advanced on-board computer, a multi-mode, multi-beam sonar which detects and tracks the target while resisting false echoes and enemy countermeasures, and a quiet yet high speed propulsion system. Deliveries to the Royal Navy should start in the early 1980s and there are expectations of it being adopted by other NATO navies.

Energy

The energy crisis persists but it is now almost a way of life, the previously unthinkable $£ 1$ per gallon being now a matter of history. The Americans have a conservation policy well reflected in energy-saving campaigns in manufacuring plants strongly re-inforced by publicity in house journals. But are they taking it seriously? I had my doubts when I read in one house journal from an electronics company that temperature in the offices and factory was being maintained at a steady $78^{\circ} \mathrm{F}$. Surely a misprint, but then I read that the company dress code had been relaxed to permit jackets off and ties loosened. Slowly the penny dropped. This was the Texas summer, not the UK winter. Their problem is cooling as well as heating. As much as 20
per cent is being saved by some companies by simple expedients and even further gains by the addition of MPU-controlled fine tuning of air conditioning.

Paradox

The EMI Scanner, according to the medical profession, was the greatest advance in medical diagnostics since the Röntgen's discovery of X-rays in 1895. Its creator, Godfrey N. Hounsfield, had engineering ambitions when he was a five year old tot, yet he was a late developer who didn't complete his formal engineering education until he was 30 . But his most useful period of training, on his own admission, was self-tuition between the ages of 13 and 19-an encouragement to every hobbyistl

Few people could ever have recelved so many awards and honours for a single invention, culminating in a Nobel Prize and even more recently the 1979 Aachen and Munich Prize for Technology and Applied National Sciences. And he deserved every one of them as well as the gratitude of the sick.

What a fantastic success story for the man and, initially, for the product which up to the mid 70 s was a jack-pot profit maker for EMI. Then came the big cut backs in procurement in the USA, then the biggest market, and an increasing flood of competitive equipment. As the honours poured in for Godfrey Hounsfield the debts poured in for EMI.

Bad organisation, bad management, bad luck? It is difficult to analyse, no single factor being responsible. Hounsfield's great technological achievement still stands, whatever the fortunes of his employer. All the same, one imagines he must be looking over the past five years with very mixed feelings.

A similar story, perhaps less dramatic is the scanning electron microscope, a worldbeater for Cambridge Instruments, a company now in the protective embrace of the National Enterprise Board but still losing millions on a good product. And older readers may remember the British company Perdio who bravely produced the first transistor portable radio in the world before going broke.

Does it pay?

Does it pay to be first in the field? There is much to be said for the "me-too" philosophy which, put crudely, means letting someone else bear the major development costs and carry the burden of breaking open the market, then moving in at the right moment saying "me-too". I recall Motorola, in its early and middle period in semiconductors, regarding Fairchild as the innovator, Tl as the market developer and themselves as the "me-too" company with special skills in manufacturing coming in later with fast delivery and keen prices.

On the bid front Decca looks even more vulnerable. Thorn, at the time of writing, was still battling for EMI and GEC for Avery, their bid having been upped to a $£ 98$ million package.

Now, the complete MK 14 micro-computer system from Science of Cambridge

VDU MODULE. £33.75

($£ 26.85$ without character generator) inc. p \& p.
Display up to $1 / 2 \mathrm{~K}$ memory (32 lines $\times 16$ chars, with character generator; or 4096 spot positions in graphics mode) on UHF domestic TV. Eurocard-sized module includes UHF modulator, runs on single 5 V supply. Complete ascii upper-case character set can be mixed with graphics.

POWER SUPPLY. $£ 6.10 \mathrm{inc}$. p \& p .
Delivers 8 V at 600 mA from $220 / 240 \mathrm{~V}$ mains sufficient to drive all modules shown here sumicitant odrive all mouly
simultaneos
\& 11.85 inc. p \& p.
Use to transfer your own program developed and debugged on the MK 14 RAM to PROM (74S571) to replace SCIOS monitor for special applications, c.g. model railway control. Software allows editing and verifying.
MK 14 MICROCOMPUTER KIT
§ 46.55 inc . p \& p .
Widely-reviewed microcomputer kit with hexadecimal keyboard, display, 8×512-byte PROM, 256-byte RAM, and optional 16-lines I/O plus further 128 bytes of RAM.

Supplied with free manual to cover operations of all types - from games to basic maths to electronics design. Manual contains programs plus instructions for creating valuable personal programs. Also a superb education and training aid - an ideal introduction to computer technology.

Designed for fast, easy assembly; suppliea with step-by-step instructions.

Science of Cambridge Ltd

6 Kings Parade, Cambridge, CAMBS., CB2 ISN. Tel: 0223311488.

se debur MK 14 RAM PROM

To order, complete coupon and post to Science of Cambridge Return as received within 14 days for full money refund if not completely satisfied. To: Science of Cambridge Lid, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Please send me:
\square MK 14 standard kit (17) $£ 46.55$
\square Extra RAM (4.14 per pair.
\square RAM I/O device (0) 28.97 .
\square VDU module including character generator (1) $\{33.75$
IVDU module without character generator (10) $£ 26.85$.
I enclose cheque/MO/PO for \mathcal{L} \qquad
\square Cassette interface module (10) [7.25.
-PROM programmer (ill L11.85.
\square Power supply (II) C6.10.
\square Full technical details of the MK 14
System, with order form.
All prices include p+pand vat.
(total).

Name

Address (please print)

DORAM ELECTRONICS LTD, a name well known in the home electronics market, are back in business under new management. We aim to combine our many years experience supplying components worldwide with personal service to our new customers.

NEW PROJECT PACKS:

+ Universal Digital - This versatile unit can replace analogue meters with an fsd from 1 to 100 V or 10 mA to 1 Amp . Three 7 -segment LED display.
£14.65
+ Touch Tuning - Can be used with most varicap tuned front ends to select up to 9 pre-set channels. Digital channel display. $£ 17.80$
+ DJ Killer - Detects the sound of a voice on the radio and cuts off the audio until music is transmitted.
£7.65
VAT inclusive prices. Postage add $40 p$

COMPON ENTS We stock a large range of TTL, CMOS. Linear and Microprocessor IC's, plus Transistors. Diodes, Resistors and Capacitors etc.
PROJECT PACKS We can supply 'Project Packs' containing all the electronic components, PCB and instructions for over 100 different magazine projects. These range from simple circuits suitable for the beginner to very advanced designs, like our user-programmable TV GAMES COMPUTER system.

PRICE LIST For our new Price List send a large SAE to
Doram Electronics Ltd., Dept PE, Fitzroy House, Market Place, Swaffham, Norfolk. PE37 70H.
Tel: Swaffham (0760) 21627. Telex: 817912
A DE BOER COMPANY

- CLEF KITS -

High Quality Electronic Musical Instruments under the personal super-
vision of Specialist vision of Specialist Designer A. J
BOOTMMAN

JOANNA 72 \& BBPIANOS
Six and $7 f$ Octave Electronic Pianos with unique Touch Sensitive Action as used in the P.E. JOANNA, which electronically simulates any other design. Build thls widely aclaimed professional instrument, for sither domestic or Stage use, from our top quality Compo-
nent Kits.

SIX OCTAVES - ¢184
P.E. STAINGENSEMBLE

The versatile String Synthesizer with a fantastic sound at an economic price. Split voices.
COMPONENT KIT - £164
Back up TELEPMONE advice is available from the Designer to supplement the clear inatr
above Kits.
P.A. - SPEAKERS - CABINETS Units can be supplied to add to the Compo-
nent Kits, including Domestic or Stage Cabinets and portable rubular legs.
SUB-KITS
Aeduce the cash outlay during the building process - details in the lists.

KEYBOAROS

We believe that we have located the best manufacturer of square front Keyboards, as
used in our Klts. and can also supply Keyswitch hardware including the industry standard sott plated contact springs.
$\begin{array}{lr}49 \text { NOTE C-C } & \text { E23.80 } \\ 73 \text { NOTE F-F } & \varepsilon 37.00\end{array}$

83 NOTEFFF	E37.00
NOTE A-C	
45.00	

Ail Keyboards are easily cut to provide your required length and compass. Quantity en quifies welcome.

NEW KITS

This space reserved for December release of lectronic Rotorl (See us at BREADBOARD

GUILDING SERVICE
We are specialists in Electronic Plano -see lisis.
DEMONSTRATION CASSETTES
Please specify Ensemble or Piano at £1.50 each for ten minute content. Cost may be deducted from subsequent orders.
INFORMATION
lease send S.A.E quoting items of interast Telephone BAACLAYCARD orders can be accepted, all prices include V.A.T., carriage of Insurance
VISITS
Are welcome by apoointment, otherwise Mall Order Only.
EXPORT
Enquiries welcome - in Australia please con tact JAYCAR (Sydney).

CLEF PRODUCTS (ELECTRONICS) LIMITED

(Dept. PE) 16, Mayfield Road, Bramhall, Cheshire SK7 IJU 061-439 3297

LIGHTING \& AMPLIFIER MODULES FROM L\&B

 JUST LOOK AT THESE PRICES!SUPERIOR HIGH QUALITY LIGHTING CONTROL MODULES. ALL 1000 WATTS PER CMANNEL NO POWER SUPPLIES NEEDED. ALL READYTO GO

PREAMPLIFIERS LBPA1 Stereo disc/ tape F 14.50 LBPA2. 4 channel gen. purpose mixer $£ 13.50$ LBPA3. Stereo disco with mic. $£ 27.00$

- LB25 -
$25 \mathrm{~W}, \mathrm{RMS} 4 \Omega$ $10 \mathrm{~Hz}-50 \mathrm{kHz}$
T.H.D. $0.1 \% 90 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$
$\mathbf{£ 8 . 2 0}$

3 channel Sound-Light Zero switching, high sensitivity \& switching, high sensitivity Separation. $\begin{array}{ll}\text { Excellent for } \\ \text { disco } \\ & 18.90\end{array}$ disco ${ }^{\circ}$ s.

- LBA1000LS -

 4 channel sequencer. Suedorandom with two speed con-trols. Disco/band lighting $\mathbf{~ e f f e c t s . ~} 14.90$
-LB31000LO3 channel lamp dimmer. Contral from full off to full on. Ideal for $\mathbf{~ 1 2 . 9 0}$ stage lighting.

NEW.

-LB11000LD -

 Super tiny single channel lamp dimmer lighting.55.70

- LB31000SLC All the advantages of the 31000 SL , active filters 8 automatic chasing in the
$£ 28.90$

- LB81000LC -

 8 channel chase. Chase rate \& return speed controls. Optional foot switch trigger/trig o/p for module cascading. A breakthrough in $\begin{aligned} & \text { modular technology. }\end{aligned}$. 25.50 .

All prices include VAT. Add 50 p p/packing. Quantity/trade and overseas inquiries welcome. For further information send a SAE to:

> L\&B

ELECTRONICS
45 WORTLEY ROAD, W. CROYDON SURREY CRO 3EB. TEL: 01-6894138

DEATH OF A SATELLITE
One of the most remarkable satellites launched in recent years is the United Kingdom, ARIEL V. It has enjoyed 5 years of great activity. When it was originally launched it was not expected that its operable life would be much more than a year because the propane fuel thrusters would run out of gas. This would deprive the control centre of means to "point" the satellite at suitable targets. The amount of data accumulated for the estimated period alone would have been a major contribution. In fact the satellite has been operational far beyond expectations. This has been due to the expertise developed by the team at the control centre, the Appleton Laboratory near Slough at Ditton Park.

Among other things this team developed a technique which enabled them to economise the gas use thereby adding years to the useful operation. This in itself was a magnificent contribution. Even when the gas was finally exhausted, use was made of the Earth's magnetic field to maintain some control. In all this the team have been very modest. This official statement of the record of this mission is extremely restrained:
"The success of Ariel V is twofold: Outstanding scientific observations have been made by Ariel V and have established the UK group at the forefront of X-ray Astronomy.
"The technical expertise and knowhow in the fields of satellite and data management which have been built up in the Control Centre at the Appleton Laboratory are second to none and invaluable for subsequent projects, and could be an important factor in the UK involvement in future international space programmes."
Ariel V was launched on the 15 th of October 1974 to make observations of cosmic X -ray sources. With 5 years of observations completed it is clearly the most successful UK satellite to date, both operationally and scien-
tifically. The spacecraft, designed and constructed for SRC by Marconi Space and Defence Systems, contains six scientific experiments provided by the Mullard Space Science Laboratory, of University College London, The University of Leicester, Imperial College, London and the Goddard Space Flight Centre of the US.

TECHNICAL ACHIEVEMENTS

The establishment of the Ariel V Control Centre at Slough in 1974 was the beginning of a major initiative in the area of satellite control and space data support as a complement to the established space project management. It is being further improved for support of the Infra-Red Astronomical Satellite (IRAS).

The staff responsible for the design of the Ariel V covered the following expertise. Electronics, real time software, data communications, celestial mechanics, operational research and large scale data processing. The electronics were needed for the building of the special computer interfaces and data display equipment; the real time software knowledge was needed for the satellite control and data reception; data communications skill was required for the setting up of links between Control Centre real time computers, the Laboratory mainframe computer, back-up computers and computers at four University sites. The celestial mechanics knowledge was required for the design of orbit prediction programmes, attitude computation and observation programmes; O.R. techniques were used to optimise the gas control, finally data base on a large scale was needed for preprocessing of the satellite data.

The Control Centre had two objectives:

1. To control the spacecraft and its experiments and, by monitoring the critical satellite sub-systems, keep the satellite in a safe and healthy state.
2. To interact rapidly with the astronomers.

FLEXIBILITY

Both these objects were achieved successfully. The second objective was however the most successful for it had a major impact on the programme. The key was the observing programme which was so flexible that astronomers were able to interact with the Control Centre and alter plans within an hour or so. The system operates as follows. The prime Ground Station for Ariel V is the NASA Ground station at Quito in South America. The satellite passes over Quito every 90 minutes. During a satellite pass commands are sent to the satellite and data received from it on-line in the Control Centre. As soon as the raw telemetry data are received they are checked and re-formatted. Orbit and Attitude computations are carried out and data tapes created for each experimenter. These preprocessed data are then transmitted by Post Office lines to Birmingham, Imperial College, Leicester and the Mullard Space Science Laboratory. Data will be received within 45 minutes of the satellite passing over Quito. Thus it is feasible for the experimeter to examine his on-line data and request a change in the observing programme in time for the next pass. This important feature was a basic requirement for the Control Centre because of
the nature of the experiments. Frequently one of the two scanning experiments would detect an X-ray source which was new. The versatility of the control would enable the satellite to be manouevred so that the four pointing experiments could examine this source in detail. The value of this facility is very great for the reason that many sources are transient and in a few hours could fall in brilliance below detectable level.

MAGNETIC MANOEUVRES

In the early days the attitude of the satellite was controlled by the propane gas jets at the base of the satellite. The gas was expected to last a year, in the event it was prolonged by nearly three years by the ingenuity of the control team. The gas finally ran out in June 1977. Since then attitude has been controlled by using a magnetic dipole cancellation system. This was of course not installed for that purpose but to prevent magnetic drift. In a sense it could be said that it was used in reverse. Since the satellite has an equatorial orbit it passes through the field lines of the earth's magnetic field. By passing a small current round the loop the earth's field was used to control the attitude of the satellite. The torques made available thus, were able to achieve manoeuvre rates of 10% day in right ascension and 0.5% day in declination.

The death of Ariel V is expected between the middle of January and February 1980.

THE EXPERIMENTS

Project Scientist: Professor A. P. Willmore, Department of Space Science, University of Birmingham.
A. University College London's Mullard Space Science Laboratory, Holmbury St. Mary, Dorking.
Measurement of X-ray source positions and sky survey in the energy range 0.3 to 30 keV . This pointing experiment uses a rotation modulation collimator with proportional counters and channel electron multipliers as X-ray detectors, together with a collimated photomultiplier for optical star detection. Principal Investigator: Professor R. L. F. Boyd.
B. Physics Dept., University of Leicester, University Road, Leicester LE1 7RH.
Sky survey in the energy range 1.5 to 20 keV . This scanning experiment, which views from the side of the spacecraft, uses large proportional counters. Principal Investigator: Professor K. A. Pounds.

C. UCL Mullard Space Science Laboratory.

 Study of the spectra of individual sources in the 2 to 30 keV range. This is a pointing experiment using a proportional counter. Principal Investigator: Professor R. L. F. Boyd.D. Physics Dept., University of Leicester. Measurement of the polarisation of X-rays from 1.5 to 8 keV . This pointing experiment will determine polarisation or line emission by means of a Bragg crystal spectrometer using moveable plane crystals. Principal Investigator: Professor K. A. Pounds.
F. Physics Dept., Imperial College, London SW7.
The study of sources of high energy X-rays up to 2.0 MeV . This pointing experiment uses an active collimator, a caesium iodide scintillator and photomultiplier detectors. It is designed to investigate the energy spectra and time variations of known sources and to measure the spectrum of the diffused cosmic X-ray background. Principal Investigator: Professor H. Elliot.

G. Goddard Space Flight Centre, Greenbelt,

 Maryland, USA.An all-sky monitor in the energy range 3 to 6 keV . This survey experiment uses two pinhole sensors to detect transient effects in the X -ray sky enabling the other experiments to make the earliest possible measurements on these important phenomena. Principal Investigator: Dr. S. S. Holt.

ARIEL 6

Ariel 6 which followed Ariel 5 has also a lifetime of about one year. It has not so far achieved full design operation because the control system has been subject to interference from both Russian and American radar systems. The effects are varied but one
troublesome one is that the satelite switching is corrupted. However valuable data is still being acquired.

THE MAGNETIC FIELD SATELLITE (MAGSAT)

MAGSAT is for the purpose of studying the movements of the Earth's crust and the location of mineral deposits. It is a polar orbiting satellite, and is designed to measure the Earth's near surface magnetic fields and indirectly crustal features related to earthquakes. During the life-span of this satellite which is 120 days it will measure the strength and trace the direction of both the global magnetic field and surface magnetic fields. The surface magnetic fields are caused by the electric currents effect of magnetic storms and by certain elements in the Earth's crust. For example one large magnetic surface anomaly is due to an iron deposit in Africa. This was detected by a satellite magnetometer. After making this survey it will be possible to make available maps of the Earth's surface showing the location of magnetic irregularities and a global magnetic field model.

Having completed the surface irregularities it will be possible to gain a better understanding of the evolution of the crust of the Earth and the various geological processes
which have led to the formation of ore and petroleum deposits. This satellite possibility has only recently been understood when satellites, carrying magnetometers for the measurement of the global fields, mainly due to the Earth's core and working in low orbits showed anomalies which were localised.

It has been known for many years that some rock formations are better conductors of electricity than others and that these played a part in indicating where mineral and petroleum deposits could be found. What was a surprise was that satellite location was possible. The data produced by six satellites carrying magnetometers has led to this special satellite experiment. It is hoped also to shed more light on the reversing of the Earth's magnetic field over cycles of time. It is known now that the field suddenly collapses and slowly rises but in the opposite mode where north becomes south. The building up may take a longer time perhaps a thousand years. There are many consequences of such a happening. It could be responsible for sudden destruction of species of animals or other life.

The clues to drift of continents may help to anticipate earthquake events when the magnetic and gravitational anomalies are better understood. This project will involve most countries in the world over the next two years.

Houndidun

Organisers: Please send details of exhibitions, club open days and other events to Mike Abbott at least six weeks in advance. Inclusion will be subject to space etc.

BEX Feb. 20-2 1. Pavilion Bournemouth. K
IEA/Electrex Feb. 25-29. National Exhibition Centre, Birmingham. I
Viewdata March 26-28. Wembley Conference Centre, London. O Computer-Aided Design (conference \& exhibition) March 31-April 2. Metropole, Brighton. Details: CAD 80/0483-3126I
Seminex April 14-18. Dept. Physics, Imperial College, London. HI
Communications 80 April 14-18. National Exhibition Centre. I
Electronic Test \& Measuring Information April 22-24. Wythenshaw Forum, Manchester. T
International Conference On The Electronic Office April 22-25. London Penta Hotel. Organised principally by the Institute of Electronics \& Radio Engineers. 99 Gower St., London WCIE 6AZ
North Midlands Mobile Rally April 27. Drayton Manor Park, Tamworth, Staffs. Details: Norman Gutteridge, 68 Max Rd., Quinton, Birmingham.
All-Electronics Show April 29-May 1. Grosvenor House, London. E The Mersey Micro Show April 30-May 2. Adelphi Hotel, Liverpool. 0 Compec Europe May 6-8. Centre International Rogier, Brussels. L
Great British Electronics Bazaar June 20-22. Alexandra Palace. E Intel Fair June 24. Wembley Conference Centre, London. U.
Tempcon July 1-3. Wembley Conference Centre. Exhibition devoted to temperature control \& measurement. T
Transducer July 1-3. Wembley Conference Centre. T Microsoftware (symposium) July 7-10. University of Sussex. S 1
The 1980 Microcomputer Show July 10-12. Royal Lancaster Hotel, London. 0
Avionics (symposium) Sept. University of Surrey. S I
Harrogate International Festival of Sound Aug. 16-19 (18 \& 19 trade).
The Exhibition Centre + hotels. X

E Evan Steadman, 34-36 High st., Saffron Walden, Essex. 0799 22612
HI Seminex Ltd., 79 High st., Tunbridge Wells, Kent. TNI IXZ. 0892 39664/5
I Industrial Trade Fairs, Radcliffe Ho., Blenheim Court, Solihull, W. Midlands B91 2BG. 021-705 6707
K Douglas Temple Studios, 1046 Old Christchurch Rd., Bournemouth, Dorset BHI ILR. 02020533
L Iliffe Promotion, Dorset Ho., Stamford St., London SE1 9LU. ζ 01-261 8437/8
O Online Conferences. Cleveland Rd., Uxbridge, Middx. UB8 2DD.万 089539262
T Trident International Exhibition, Abbey Mead Ho., 23a Plymouth Rd., Tavistock. Devon PLI9 8A U. $\int 08224671$
U Brian Crank Associates, 58 London Rd., Southborough, Kent. 0892-31812 38414
X Exhibition \& Conference Services, Claremont Ho., Victoria Ave., Harrogate. Yorks. (0423-62677
SI Society of Electronic \& Radio Technicians, 57-61 Newington Causeway, London SE1 6BL. Ø 01-403 235 I

SEASIDE COMPUTER CLUB

ACOMPUTER club in the Bournemouth area has successfully taken off, the first meeting of which was held at the Poole Arts Centre on October 28th last year.

The response was very good and the club looked all set to form a committee. A second meeting was organised for November 30th at Kinson Community centre, where it was expected that a representative from Tandy would demonstrate some equipment.

Details from Robin Pink, 10 Harbour View Road, Poole, Dorset.

MODELCIRCUIT

If you are interested in the radio control of model 'planes, ships, cars or robots, then you will be very pleased with the Ferranti ZN419CE device because it could save you money on servos. For the uninitiated, servos are used in radio control models to position control surfaces and other mechanisms. Their great advantage over the now rather outdated "on-off" escapement actuator is that they provide a proportional control action which is not jerky.
The R/C modeller controls his creation by adjusting a joystick potentiomenter which causes the transmitter to send out a pulse width modulated signal where the width of pulses is proportional to the deflection of the control. If more than one control function is required, then the associated pulse width signals are time multiplexed and sent to the model in a repeating sequence.

At the receiver the separate channel signals are recovered by demultiplexing, and it is the function of the servo to respond to the changing width of individual channel pulses by producing at its output an angular change proportional to the joystick deflection at the transmitter. The servo output is linked to control surfaces or engine controls, with the result that the model responds in a smooth, proportional manner to every new control setting selected by the modeller.
The, clever bit, as if you hadn't guessed, is turning those variable width pulse signals into a proportional mechanical movement, and that is where the Ferranti ZN419CE comes in. The motive power for the servo is usually provided by a small d.c. motor linked via gearing to the output shaft or lever, and to a variable potentiometer which rotates in synchronism with the servo output. The pot is there to provide information on the present servo output setting, and the pulse signal is there to tell the servo system what new setting is required. Inside the ZN419CE there is a monostable which has to be connected to the servo-pot so that the monostable pulse width is proportional to the pot position. A pulse comparator in the chip compares the monostable pulse width with the received pulse width for the channel, and the result is an error pulse which is stretched and used to turn on one of a pair of external p.n.p. drive transistors which control the motor current.

The motor turns to drive the servo pot (and of course the servo output shaft) until the monostable pulse width is equal to the
received pulse width, whereupon the motor stops.

A great deal of "electrickery" is necessary to produce a practical servo decoder and driver, but fortunately you can get most of it in the 14 pin package of the ZN419CE.

Complete servo modules are already available for R/C modellers of course, but by using the ZN419CE in a home-built servo it should be possible to save money. It would also be possible to use this device in "special" servos, just what you need, perhaps, for that towering microprocessor based robot you've been working on in the garage!

CMOS SINGLE CHIPPER

Intel were one of the first in the field with a true single-chip microprocessor CPU, RAM and ROM all in a single 40 pin package. Their original 8048 and 8748 devices have now been joined by a whole family of similar devices such as the 8021 , $8022,8035,8039,8041$ and 8741 featuring various combinations of memory and inpuz/output lines.

Most of these devices are of little interest to hobbyists because they utilise maskprogrammed ROM to hold their programs, but those with a " 7 " as their second digit are useful, even for one-off projects, because they employ program memory of the erasable and reprogrammable (EPROM) variety.
The 8748 for example, although intended as a prototyping aid for the pin compatible 8048, can be very useful where the small size of a single chip system is desirable. It contains within its 40 pin package a digital processor system complete with 1 K of EPROM, 64 bytes of RAM a programmable counter/timer and no less than 27 lines of I/O.

Hats off to Intel then for a useful workhorse, but it is not the 8748 I want to tell you about because it isn't really new. The 87C48, however, is very new and it comes from Intersil, the CMOS wizards of Cupertino, California. It seems that Intersil have an agreement to second source the highly successful Intel device, but although identical to the 8748 in most respects, the 87 C48 adds that magic ingredient, CMOS technology, to make a good thing even better. It runs from a 5 volt supply, just like the NMOS 8048 but the Intersil device consumes a maximum of 50 miW against well over 300 mW for the Intel part at the same 6 Mhz clock frequency.

Rumour has it that the 87C48 will actually cost less than the 8748 when it starts to appear on stockists shelves early in 1980, a fact which could make it very attractive for battery powered hobby projects. One problem though, the 87C48 uses a different EPROM technology to that of its Intel cousin and cannot therefore be programmed by using a standard 2716 programmer and a pin-out adapter. Putting together a special programmer circuit may prove to be well worth the effort, however!

HALF A LOAF

Talking of EPROMs, you may already know about the current world shortage of devices such as the 2716, an effect which has apparently been caused by the popularity of 5 volt EPROM technology in general, combined with a long delay before the appearance of alternative sources to challenge Intel.

Some second sources have appeared however, notably Texas Instruments, closely followed by a collection of Japanese manufacturers, but now Motorola have made a surprise entry into the fray by introducing not just another second source for the 2716, but a brand new device with four times the capacity, the MCM68764. This monster $8 \mathrm{~K} \times 8$ EPROM has leapfrogged the biggest Intel device, the $4 \mathrm{~K} x$ 82732 , and will surely carve out a useful niche for its canny manufacturer-you could get a fair sized BASIC interpreter into a single MCM687641
Making a device with no less than 65,536 separate bits to go wrong is quite a challenge but Motorola obviously hope to achieve useful yields. Those devices that do get rejected may not be wasted however, because Motorola have also announced the MCM68732 which is, surprise surprise, half of an MCM 68764!
They don't saw an MCM 68764 down the middle, they just use a reject device where one complete half of the memory is still fully serviceable. The new ' 32 comes in two versions, -1 or -0 , where the suffix indicates whether the most significant address bit (pin 21) should be tied permanently high or low. This technique is becoming more widespread as memories grow in size, and Intel themselves already sell "partial" versions of some of their memory parts, particularly 16 K dynamic RAMs.
Half a loaf is better than none seems to be a fitting motto for tomorrow's memary makers
 temperature of soldering irons. The unit can also be used for other appliances like a colour developer bath etc., where a very accurate temperature within the range of $\pm 0.5^{\circ} \mathrm{C}$ is required to be maintained, by a single adjustment.

In the ordinary solid state heat control systems, power to the element is usually delivered through a triac. At the preset temperature level the triac is switched off. Power to the element is switched on with the differential drop of the controller which is in the order of $\pm 2^{\circ}$ to $\pm 5^{\circ} \mathrm{C}$. Such 'on-off' control produces large overshoots and undershoots and therefore the heat regulation is coarse.

For more accurate control, power is delivered to the element continuously. Only the duty cycle of the power is varied to achieve the maintaining level. The variation of duty cycle or the pulse width, controls the temperature. Such a method is termed as proportional heat control system as it draws the energy in proportion to the requirement. The temperature control characteristics of the above two systems are shown in Fig. 1.

SCHEMATIC

A block schematic of the proportional heat control unit is shown in Fig. 2. A1 is an integrator, which integrates any error signal developed due to the difference in sensor diode drop and set reference. The resulting integrated voltage change on biasing resistance R regulates the charging current to capacitor C of the square wave generator $A 2$. The charging and discharging of C determines the output pulse width of A2. The regulated pulse width in turn controls the duty cycle of the firing of the triac correcting the sensor temperature and returning the sensor voltage to that of reference. As the sensor temperature is gradually corrected, the pulse width of $A 2$ also changes due to decreasing error. At equilibrium, the pulse width stays at the maintaining level, when the error signal is zero. Maintainance of the constant temperature is possible only due to the holding feature of integrater A1. When the integrator input error signal is at zero level, the integrator output holds at existing level, this in turn holds the controller output pulse width. The resultant input and control curves are shown in Fig. 3.

Fig. 1. Control characteristics of (a) on/off controller (b) proportional controller

CIRCUITT

The circuit diagram of the system is shown in Fig. 4. General purpose 741 operational amplifiers are used for the integrator as well as multivibrator.

The split supply to the system is ± 5.6 volt derived from a centre tapped transformer T1 and regulated by Zener diodes D3 and D4. Capacitors C1 to C4 serve for storage and to supply ripple free current.

Two 6 volt batteries can also be used. Silicon diode (D5's) negative temperature coefficient characteristics has been used for the sensor. For this purpose the author used a diode type 1N914, however silicon n.p.n. transistors like BC107 etc., with the base and collector tied, can also be used with the same accuracy.

Current to the sensor diode is limited within 1 to 5 mA by resistance R3.

Fig. 2. Block diagram
The sensors output is fed to the inverting input at pin 2 of integrator IC 1 , through a resistor R8. The reference signal is generated by a 2.2 volt Zener diode D6 and this reference potential is divided by the chain VR1, VR2, R6, and R5. While VR1 is the calibration preset, VR2 is the control potentiometer.

The potential at the wiper of VR2 is fed to the noninverting input at pin 3 of integrator IC1 through a resistor R7. C5 is the integrating capacitor. Its value in combination. with R8 defines the rate of charge.

Integrator output at pin 6 is fed to C6 of the multivibrator formed around IC2, through resistor R9. The potential here regulates the charging current of C6 and therefore the output pulse width at pin 6 of the multivibrator IC2.

The frequency of the multivibrator is defined by the value of R 12 , which is about 70 Hz with the values used. The ratio of R11 to R10 defines the maximum mark-to-space ratio, that is the maximum conduction period for the triac during one cycle of the multivibrator.

The pulse width controlled output at pin 6 of IC2 swings between the positive and negative supply lines and rectified by diode D7 to give positive pulses for triac firing. These are fed to the gate of the triac through current limiting resistor R13. The triac remains on during the entire positive gate pulse period providing a supply to the soldering iron.

ASSEMBLY

The p.c.b. of the control unit is shown in Fig. 5 and the component placement in Fig. 6. Fix the components in place with due care for polarities. The assembled p.c.b., supply transformer, triac and the three pin socket outlet should be mounted in a suitable metal box.

Mount the triac on a heatsink, well insulated from the

Fig. 3. Control graphs
metal cover. Fix the control pot VR1 on the front of the cover, with a knob graduated evenly to read 200° to $300^{\circ} \mathrm{C}$ for its full variation.

Clamp the sensor diode onto the metal body of the soldering iron, near the insulated handle grip, well away from the tip. This is because silicon diodes operation is limited to $150^{\circ} \mathrm{C}$. Further, for a $100^{\circ} \mathrm{C}$ variation of tip temperature from 300° to $200^{\circ} \mathrm{C}$, a variation of $10^{\circ} \mathrm{C}$ from 145° to $135^{\circ} \mathrm{C}$ is present at the location indicated, making it the best place for monitoring the tip temperature. Connect the sensor leads with the control unit by means of a screened shielded cable, caring for the proper polarity of the diode.

CALIBRATION

Before energising the unit, check once again that all connections are made properly. Now switch on the supply to the unit, without a soldering iron at the socket outlet and measure across Zener diodes D3, D4 and D6 that the voltages are $+5 \cdot 6,-5 \cdot 6$ and $+2 \cdot 2$ volts with respect to common point. Also check the functioning of free-running multivibrator by a multimeter set to the range 10 volts d.c.

Fig. 4. Circuit diagram

COMPONENTS

Resistors	
R1, R2	5601 W
R3	3 k 9
R4	1 k
R5	$2 \mathrm{k} 2 \%$
R6	512%
R7, R8	220 k
R9, R11	10 M
R10	1 M
R12	2 M 2
R13	150

Capacitors

C1, C2	250μ elect
C3, C4	$1,000 \mu$ elect
C5	100 n polyester
C6	1μ polyester

Semiconductors

D1, D2, D7	1N4001
D3, D4	BZX85-5.6 1.3W Zener
D6	BZY88-5.6 400mW Zener
IC1-1C2	741
D5	1N914
CSR1	C206D 400V/3A triac

Potentiometers

VR1	10 k
VR2	100 linear

Transformer
T1 230V pri.-9-0-9V. 400 mA sec

Miscellaneous
S1
Double pole mains on/off, FS 1-2A fuse, LP1-mains neon

Fig. 5. P.c.b. layout of controller
Fig. 6. Component layout and external wiring
between pin 6 of 1C2 and neutral, oscillations should be observed.

Now, energise the soldering iron from a normal supply source, not through the unit, and let it heat for about thirty minutes, to get the iron's temperature and in turn the sensor's output stabilised. Keep pot VR1 set to maximum resistance and turn the control potentiometer anticlockwise, i.e. at $200^{\circ} \mathrm{C}$ mark. Connect a multimeter set to the 10 volt d.c. range between pin 6 of IC1 and common point.
The voltage indicated will be zero. Now slowly reduce the resistance of VR1 until' the meter needle remains at about 5 V . Slow needle movement is due to integrator action.
Now turn VR2 to its other extreme $\left(300^{\circ} \mathrm{C}\right)$, and the meter needle will swing back to zero value.

With careful setting of VR1, arrange that the transition of the meter deflection from 0 to 5 volt commences at exactly mid position of the control pot VR2, i.e. at $250^{\circ} \mathrm{C}$ mark. You
will be able to achieve this state in two to three steps. Now plug in the soldering iron at the socket outlet of the control unit and temperature control is yours.

CRR-RA
 IO...

A five push button long and medium waveband car radio for under $£ 11$. This design employs an excellent tuner head with a ceramic i.f. module and 6 W i.c. output stage to give exceptional performance for price. Our article will give full constructional details.

Digitul Frequency Illeter

Four frequency ranges giving 10 Hz to 5 MHz minimum, at 200 mV sensitivity. A detailed article and straightforward construction, plus a 200 MHz prescaler make this one of the best designs ever published.

I JiTA

Provides greatly enhanced safety for the musician, singer or disc jockey by isolating the microphone or instrument from the amplifier. Also overcomes earth loop problems.

PLUS . . . SPECIAL SUPPLEMENT; P.A. LOUDSPEAKER SYSTEMS for Discos and Rock Bands.

PRACTICAL

OUR MARCH ISSUE WILL BE ON SALE FRIDAY 8 FEBRUARY 1980

CUSTOM designed integration may be every designers dream, but it is the financial planners nightmare, for with every i.c. needing its own individual mask the cost is enormous and must be borne by the buyer. Therefore, custom designed integration is usually confined to applications involving large volume production, and is impractical for smaller low cost projects.

Universal logic elements endeavour to maintain the advantage of custom circuits while reducing some of their disadvantage. They are produced as standard devices designed to fit user application with little modification required, this consisting of custom design for the metallisation mask used on a standard logic array. Such universal logic elements appear in the ROM, PLA (programmable logic array) and ULA (uncommitted logic array) and it is this which will be looked at.

allatrachetmanen

As the name implies, the ULA consists of a single chip containing an array of uncommitted gates or cells in which the silicon wafers are processed up to the stage just before the final metallisation and then stored. Each cell is separate and all that is required is a mask for an interconnection pattern, this being designed for the users specific circuit requirements. As the individual component in each cell can be readily interconnected, a combination of linear and digital circuits can be produced.

The success of the ULA is due to Ferranti who developed the CDI (collector diffusion isolation) process. A feature of CDI which gives it its facility is that the bulk semiconductor material used within the i.c. can be used for supply and ground return currents. This process greatly assists the manufacture of ULAs as all power rails are removed from the top interconnection plane, enabling the interconnection pattern to be devoted to purely programming the cells.

A schematic diagram of the CDI process is shown in Fig. 1.

The low resistivity of the collector isolation diffusion allows supply connections to be made without metal, and earth connections can be made direct as the epitaxial p layer is on a ρ type substrate.

Fig. 1. The CDI process

Fig. 2. Basic uncommitted cell

Fig. 3. Gate cell

A	B	C	\mathbf{Q}
0	0	0	$=1$
1	0	0	$=0$
0	1	0	$=0$
1	1	0	$=0$
0	0	1	$=0$
1	0	1	$=0$
0	1	1	$=0$
1	1	1	$=0$

Fig. 4. Logic symbol and truth table

Fig. 5. Collector ORing to increase fan-in

Fig. 6(a). Input interfacing (b) Output interfacing
The basic uncommitted cell (Fig. 2) consists of three transistors and four resistors, thus providing the usual RTL logic. Though each individual component can be connected as required, the most common cell connection to be found in the array is shown in Fig. 3. This is called the basic gate cell. It is a positive NOR gate, giving great versatility as a basic building block. Fig. 4 shows the truth for this gate. How these gates can be used as complete circuit functions will be shown later.

INCREASING FAN IN

An example of inter-cell connecting can be seen when designing for a higher fan-in, as in Fig. 5, where components from two cells are used to increase the fan-in to five. This technique termed 'collector ORing' can be used to increase the fan-in up to a maximum of ten. The remaining transistor and two resistors can be used in some later stage.

Owing to the cell being uncommitted, interfacing can be achieved directly for most types of logic and circuitry. In Fig. 6 we see how interfacing is done by using components from one cell. As the maximum input current for the interface gate is in the order of $40 \mu \mathrm{~A}$, it allows several gates to be driven
from any of the typical logic families. For example TTL will drive up to ten ULA interface gates, CMOS, ten also. DTL up to six, etc. Output interfacing is capable of driving much lower numbers though, such as $\Pi L-t h r e e ~ g a t e s . ~ T h i s ~ c a n ~$ be increased by paralleling the interface gates, thus three ULA gates will drive nine TTL gates.

ULA is also capable of driving directly l.e.d.s, and discrete transistors, etc, and in such a mode of operation a total of 10 mA drive current is available.

APPLICATIONS

The basic uncommitted cell can be connected to provide a large variety of linear and digital circuits. A few of the many ways in which the basic ULA can be used as building blocks are shown in Figs. 7 to 10.

Fig. 7. Operational amplifier, using 13 components from three cells

Fig. 8. Basic oscillator, using ten components from two cells and external timing R/C network

Fig. 9. Analogue voltage comparator using 17 components from four cells

Fig. 10. D type flip-flop using all components from $\mathbf{6}$ cells
An example of how an entire array may be committed to perform a set function is shown in Fig. 11. An automatic control for an item of photographic equipment, containing all the necessary logic in one 28 pin i.c. package. It utilises approx. 140 of the cells, and replaces an equivalent 20 packages of MSI.

Fig. 11. A photographic control system using ULA
To summarise then-ULA, because of low cost and quick availability is ideal for smaller projects, and as an evaluation vehicle. It saves space and assembly costs. Both reliability and performance are greatly improved; basically everything that custom designed integration offers, but cheaper and faster.

TELECOMMUNICATIONS SYSTEMS FOR TECHNICIANS 1
by Walker \& Danielson
Published by Newnes-Butterworths
$\mathbf{1 0 3}$ pages. Price $£ 2.95$

Primarily intended for TEC (Technician Education Council) level students taking courses in electronics. telecommunications and marine radio, this volume should prove popular to a wide readership as it covers a wide range of subjects at elementary level; information transmission, radio, radar, radio navigation. telephony. telegraphy, routing and data communication.

The text is well illustrated by over 180 diagrams and where applicable, BS symbols are maintained throughout.

To check recall simple revision exercises-terminate each chapter.

SEMICONDUCTOR TECHNOLOGY

Edited by G. W. A. Dummer
Published by Pergamon Press
$\mathbf{2 0 3}$ pages. Price $\mathbf{f 2 0}$

THis is a collection of papers read at the Seminex technical seminars held at Imperial College, London. during the period 10-14 April, 1978. Topics cover a variety of developments in semiconductor technology.

TELEVISION PRINCIPLES AND PRACTICE

by Zarach \& Morris
Published by Macmillan Press

$\mathbf{2 9 4}$ pages. Price $£ 12.50$ hardback, $£ 5.95$ paperback

ANOTHER volume that caters for the various television options within the TEC framework as well as City and Guilds courses.
Throughout, circuits relate to modern TV receivers which include transistor, i.c.s., thyristors, etc.

The first three chapters cover the science of colours and the formation of monochrome and colour signals. Then follows a review in block form of the receiver which forms the basis of circuit analyses for future chapters.

Throughout the book emphasis is placed on the practical aspects of TV servicing and as such should prove invaluable to anyone professionally involved whether experienced or just beginning a career. This applies equally to the enthusiastic amateur.

AUDIO SYSTEM DESIGN FOR SCHOOLS AND COLLEGES
 by R. H. Welch, B.Sc.
 Published by NCST Trent Polytechnic 195 pages. Price $£ 2.75$

| N contrast to many books on this subject which set out the relative merits of design bricks in the audio chain tailored to a specification with the inevitable juxtaposing of commercially available systems, this book introduces the basic ideas necessary for the enquiring reader to design and build his own.

Aimed primarily at sixth formers and college students it forms an excellent practical guide and reference for the construction of turntable, pick-up arm, amplifier and loudspeaker cabinets etc., in project work allied to formal Engineering courses.

Albeit motivated academically it is pitched at a level which should prove enlightening to anyone brave enough to go it alone on a di.y. system. Take heart, lasers and digital encoding aren't mentioned.

Including V.A.T. Postage \& Packing

This beautiful orange and black finish plastic case is available for Superboard II, Compukit UK 101 or, with an uncut keyboard panel, for mounting many other hobby computers. It is supplied with a mounting wedge to give a suitable keyboard angle and fixing screws for Superboard or Compukit. The case is strong enough to support a small portable TV or video monitor and has ventilation slots and a cable access panel at the back. It does not carry the "PE Compukit" badge shown in the photograph.
The dimensions of the case (with Superboard keyboard cut out) a e shown below-case material is approximately 2 mm thick with 4 mm radius comers. We recommend that the power regulator fitted to Compukit boards is mounted on a heatsink and fixed to the outside back of the case.
The front cover illustration shows part of our own office system employing this case. PE has been able to arrange this special price so don't miss out as the offer closes Friday 29th February 1980.

BATTERY ALTERNATIVE

The Secretary of State for Industry has patented (British patent No 1552436 which dates from 1976 and is thus issued under the old laws), an interesting idea for storing large quantities of electrical energy by chemical means other than a vast and expensive battery of electrolytic cells. The inventor, Albert Montgomery, suggests that the system could be used either to even out the peak and low load demands on an electric power station or to drive a vehicle.

The invention relies on a reversible exothermic chemical reaction, that is to say a reaction which produces heat from the mixture of two materials which are aubsequently recovered and regenerated by electrolysis. This process is, under some conditions, more efficient at the bulk storage of energy than a conventional battery.

Fig. 1 shows the flow diagram for the cycle of the combination of the two materials

FlG. 1.

to produce a heat output from exothermic chemical reaction and a resultant electrolytic separation of the reaction product resulting from this. Recombination to produce the original materials for recycling is effected by the electrical energy input.

Fig. 2 shows the basic "circuit". Two stainless steel vessels, 1, 2 contain sodium and sulphur respectively. These raw materials are fed through valves to reaction vessel 5 which is of heat and corrosionresistant material. Copper conduit 6 for a fluid to be heated (for instance water or gas) is coiled round the vessel 5 .
The sodium and sulphur react together to form sodium polysulphide with the release of considerable quantities of heat energy. This energy is taken up by the fluid in the coil 5 and led off to a load.
The load is a heating stage for an electric turbine or vapour engine for a vehicle, such as a Stirling cycle heat engine
The spent polysulphide is fed to recovery cell 10 which has a blind-end tube of solid beta-alumina electrolyte. This tube defines a cathode. 9 inside an anode 12. A 3 volt d.c. supply is fed through the electrodes to the polysulphide, and sodium ions are conducted through solid electrolyte 11 to the anode while the sulphur remains in the cathode 9.

Regenerated sodium and sulphur are then recycled to the containers 1 and 2 . Thus the patented energy storage system has a capacity limited only by the size of the storage containers.
Supplies of polysulphide can be converted to sulphur and sodium throughout the entire period when there is excess power available, for instance during low-load night conditions on the national grid, and supplies of sodium and sulphur recombined to provide heat and generate power during the

entire period when there is a heavy load on the grid. In this way large quantities of electrical energy can be stored at far more economical price than with conventional batteries and without recourse to exotic alternative energy storage techniques, such as pumping water up a hill, lifting weights up a slope or compressing gas into vast reinforced cylinders or underground caves.

The fact that the British government has patented the invention suggests that its practical use is under serious consideration. The idea could perhaps also be applicable to domestic central heating. The chemicals would be separated on night storage rates and combined during the day to produce hot water for central heating.

PE/LEKTROKIT PRIZES

The following prizes were awarded as a result of the PE/Lektrokit competition run in our September 1979 issue.

1 st Prize a Lektrokit Powerace 102, a jumper wire kit and 16 pin Test Clip goes to Mr. D. J. Speakman of Braintree for his dual timebase submission.

Runners up prizes have been awarded to Mr. T. Johansson of Sweden for a l.e.d. logarithmic level meter; Mr. I. M. Crann of Brecon for a novel tone generator for electronic organs and to Mr. T. Davies of Swansea for a combined voltmeter/logic scope.

Due to the very limited number of entries, first, third, fourth and seventh prizes only have been awarded.

pollits dilishlir

ULTRASONIC CLEANER (January 1980)

The value of C2 should be 150 pF and not 15μ. ULTRASONIC BURGLAR ALARM IDecember 1979)

The 18 V battery voltage should be wired through the keyswitch instead of the neutral lead.
DIGITAL TEMPERATURE CONTROLLER (October 1979)
The wiper and top end of VR 1 should go to +9 V and not to IC 1/14 (p.c.b. is correct).

ASCII CODE
Every Alphanumeric character to be transmitted differs in bit pattern, and even the number of bits varies. It is possible to identify the whole of the ASCII character set using only seven bits, plus the start and stop bits. Fig. 2 shows this set of characters with their respective logic levels.

A code can be obtained for every Alphanumeric character, and many other characters to be found on certain keyboards.

THE MODEM
The acoustic modem is able to deal directly with the waveform shown in Fig. 1, because it is in serial form. A typical period for one bit is ten milliseconds, thus allowing one character to be transmitted in approximately 100 milliseconds. The bit period may be varied depending upon whether electromechanical or all electronic data transmission/receiving equipment is being used.

Having applied data to the Modem we now wish to transmit same over many miles to a fellow computer user, and it is a question of sending and receiving this digital information over long distances without tampering with post office equipment. The answer is, of course, the acoustically coupled telephone modem. By inserting the handset of a domestic telephone into this device, data may be transmitted and received at will, albeit somewhat slowly.

The principle of operation employs frequency modulation techniques involving the phase locked loop principle. A full explanation of how the complete system works is given in conjunction with the circuit diagrams of Figs. 5, 6 and 7.

Constructional dimensions are given for both the standard telephone handset and the trimphone version. Of course, two such acoustic modems will be required to set up a data link, but it is assumed that each enthusiast would construbt just one modem.

THE FREQUENCY SHIFT KEYED TRANSMITTER
The voltage controlled oscillator section of the phase locked loop (IC2) is utilised for the 1000 Hz tone. The capacitor C1 and resistors VR2, VR3 are responsible for setting this initial frequency. This 1000 Hz tone would be present for the logic level " 0 " on the input of the transmitter. This situation is so when TR1 is turned off. If now a logic level " 1 " is applied to the data input, IC1, using double negation, follows the input voltage level and therefore turns on TR 1, effectively connecting R3, VR2 in Parallel with R4, and VR3. The new resistance value produced by this resistor combination produces a new VCO frequency of 1200 Hz which is the frequency representing logic level " 1 ". Pin 4 on IC2 (4046) contains the frequency shifting signal that is applied as base current to TR2 via R6. TR2 drives the miniature loudspeaker producing the two audible tones which represents the corresponding logic levels of input data. When the modem is in the "Send" mode the 1000 Hz tone can clearly be heard from within the modem.

SETTING UP THE FSK TRANSMITTER

(a) Switch the Modem to SEND.
(b) Apply a short circuit to the data input.
(c) Connect a frequency meter to TP.
(d) Adjust VR3 until 1000 Hz is shown on frequency meter.
(e) Now remove the short circuit from the input and apply +5 V with respect to the common connection.
(f) Adjust VR2 until the new frequency becomes 1200 Hz l.e. 200 Hz change between " 0 " and " 1 ".
(g) An audible indication will verify that all is well as these two frequencies are trimmed.
When this has been carried out it is worth applying a low frequency square wave to the data input of the transmitter to ensure that the frequency shift operation follows the logic levels being applied. A circuit suitable to carry out this test is shown in Fig. 4.

THE RECEIVER SECTION

Let us assume we are receiving the transmitted signal from a distant modem. The modem at our end picks up from the telephone handset the faint signals and applies them to an audio amplifier (IC3). A gain of approximately 100 was found to be sufficient to provide a working signal for the phase locked loop (IC4). C2 couples the FSK (FrequencyShift Keying) signal to pin 2 of IC4. Diodes D5, D6, across R16 serve to provide some degree of limiting, as well as protection to IC4's input. Limiting by D5, D6 prevents amplitude modulation interference. The timing components VR1, C3, determine the frequency that the phase locked loop will free run at. This frequency should be adjusted to be 1100 Hz , i.e. between the two FSK frequencies to be received. When a logic " O " is received $(1000 \mathrm{~Hz})$ at pin 2 of IC4, the phase locked loop will lock onto this causing the voltage controlled oscillator of the PLL to suddenly shift from 1100 Hz to 1000 Hz . As this happens, the output signal from the phase comparator (pin 7 of IC4) becomes negative with respect to the reference potential at pin 6 of IC4. This potential difference will force the d.c. comparator IC5 to swing negative and this output signal will be caught at approximately -0.5 V by $D 7$ when the logic " 0 " is received. If now we receive a logic " 1 " signal $(1200 \mathrm{~Hz})$ at pin 2 of IC4, the PLL will lock with its VCO frequency at 1200 Hz , resulting in the phase comparator output becoming greater than the d.c. reference on pin 6 of IC4. Thus the voltage comparator IC5

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\mathrm{B} & \mathrm{D} & \mathrm{O} & \mathrm{D} & \mathrm{O} & \mathrm{O} & \mathrm{D} \mid \mathrm{O} & \mathrm{P} & \mathrm{~F} & \mathrm{~F}|---| & \mathrm{B}
\end{array}
$$

* = ONE BIT TIME $\quad F=$ STOP BITS
$B=$ START BIT $\quad P=$ PARITY CHECKING BIT
D = DATA BITS
66200

Fig. 1. ASCII code format, in this case representing the character " M "

b7 \rightarrow b 5	000	001	010	011	100	101	110	111
$\mathrm{b}_{4} \rightarrow$ b 1								
0000	NUL	DLE	SP	0	(a)	P		p
0001	SOH	DC1	!	1	A	a	a	q
0010	STX	DC2	"	2	B	R	b	r
0011	ETX	DC3	\#	3	C	S	c	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENO	NAK	\%	5	E	U	e	u
0110	ACK	SYN	8	6	F	v	f	v
0111	BEL	ETB	,	7	G	W	9	w
1000	BS	CAN	1	8	H	X	h	x
1001	HT	EM)	9	1	Y	i	y
1010	LF	SUB	*	:	J	z	,	2
1011	VT	ESC	+	;	K	[k	
1100	FF	FS	,	$<$	L	1	,	
1101	CR	GS	-	$=$	M]	m	\}
1110	So	RS	period	$>$	N	\wedge	n	
1111	SI	us		?	0	-	-	DELete

Fig. 2. The ASCII code, showing the binary equivalents of each character
responds with an output voltage positive going. It will in fact saturate in the positive direction at about 4.4 volts, providing an adequate, logic level to become our Data output. C5 is chosen for determining the lock range of PLL, while R19, C6, R20, C7, R21, C9 form a filter network preventing the possibility of the VCO frequency, or harmonics, upsetting the output comparator.

Fig. 3. Block schematic of the Modem link-up. The system is half-duplex. Serial pulse repetition rates should be no higher than the VCO Tx frequency. Input levels are TTL. Applications might include micro' link-ups at 110 Baud, VDU communication using a 20 mA loop, facsimile transfer etc. Trials with the Modem included a link-up with a teletype from Bebington (Merseyside) to Luton

Fig. 5. FSK transmitter of Acoustic Modem

Fig. 6. FSK receiver section

Fig. 7. PSU. $\pm 5 \mathrm{~V}$ at 100 mA

COMPONENTS . . .

Resistors	
R1	$18 k$
R2	$5 k 6$
R3	$47 k$
R4	$27 k$
R5	$1 M$

R6, R8-R10,R19-R21 10k (7 off)
R7 82
R11,R12 270 (2 off)
R13 100k
R14,R16,R17 1 k (3 off)
R15 100k nom. (subject to trimming)
R18, R22 2 k 2 (2 off)
All resistors $5 \% \frac{1}{4} \mathrm{~W}$ unless otherwise stated

Capacitors

C1, C3
47n WIMA FKC-3 temp. stable or equiv. (2 off)
$\begin{array}{ll}\text { C2 } & 100 \mathrm{n} \\ \mathrm{C} 4, \mathrm{C} & 1000 \text { p (2 off) }\end{array}$
C5
$220 n$
C6-C8 $\quad 22 \mathrm{n}$ (3 off)
C10. C11 $\quad 1000 \mu / 25 \mathrm{~V}$ (2 off)
C12.C13 470n (2 off)
Ratings and types not critical unless specified

Potentiometers

VR1, VR2, VR3
10k preset (3 off)
VR4
4 k 7 preset

Transistors and Diodes

TR1, TR2, TR4	BCi09 (3 off)
TR3, TR5	BC147 (2 off)
D1, D2	1N916 (2 off)
D3	l.e.d. (red)
D4	I.e.d. (green)
D5, D6	OA202 (2 off)
D7	$4 \mathrm{V7}$ Zener (BZY 88)
D8-D11, D12-D15	1A 50V rectifier bridge (2
Integrated Circuits	
IC1	CD4011
IC2	4046
IC3, IC5	741
IC4	565
IC6, IC7	5 V 1 A regulator (plastic)

Miscellaneous

Crystal microphone insert
Miniature loudspeaker $8 \Omega 100 \mathrm{~mW}$
Transformer 0-12V: 0-12V:3VA
1/O d.i.n. socket (3 -pin)
Double-pole, double-throw switch (send/receive)
Veroboard $137 \times 64 \mathrm{~mm}(5 \times 2.5$ ins.)
1.c. board type: PCB421 available from West Hyde Developments Ltd.

CONSTRUCTOR'S NOTE

A complete set of components for the Acoustically Coupled Telephone Modem is available from Watford Electronics (see advertisers' index).

MODEM OWNERS' REGISTER

Having got you to build the modem, your computer will be on the look-out for other machines to talk to, and so it is our endeavour to compile a list of all PE Modem owners who wish to "ASCIImunicate". We hope response will be sufficient to provide a useful list on request, so send us your details (listed below) and a S.A.E.

Suggested details: Name, address, telephone number, system, micro' used, peripherals and reason for incorporating the modem (in brief please).

PO REGULATIONS

We believe the specification of the PE Acoustic Modem conforms to the Post Office regulations governing the use of devices acoustically coupled via the Public Switched Telephone Network. However, it should be noted that under the Post Office Act 1969 accoustically coupled devices should not be used with Post Office maintained plant without the prior consent of the Post Office.

Applications for the evaluation of private equipment ffor which a charge in excess of $£ 50$ will be payablel may be made to the Post Office once the supplier is satisfied that the equipment meets the requirements given in Technical Guide No. 32, available from: Post Office Telecommunications Headquarters, Service Department Sv 1.1.3.3, Tenter House, 45 Moorfields, London EC2Y 9TH.

ACOUSTIC MODEM

E6260
Fig. 12. Transmitter Test Point waveforms. When no input is applied and the Modem is switched to Transmit, the 1 Ms square wave will appear continuously at Test Point 2

RECEIVER CHECK

(a) Look at signal on TP3 to ensure it is at least 250 mV peak to peak when receiving from distant modem.
(b) If not, the gain of IC3 may have to be raised by increasing R 15 (100k).
(c) With no signal being received, adjust VR1 until the frequency meter placed on TP4 reads 1100 Hz .
(d) With Data being received observe TP5 and refer to receiver waveforms information.

DATA INDICATOR AND OUTPUT OPTIONS

Signals from both the transmitter and receiver are fed to I.e.d.s D3 and D4. This allows us to monitor the data both when we are sending and also receiving. It should be made clear that the modem will not be doing both at once, being half-duplex.

TR3 switches on when the output of gate (IC1) goes high (Transmit Mode) or when Pin 6 of IC5 goes positive (Receive Mode). This will result in (D3) turning on and indicating a logic " 1 " level being present. As TR3 is turned on, R12 is virtually connected to ground, thus turning off TR5. The transistors TR3 and TR5 form a "see-saw" stage. When one is off the other is on, so that when no base current flows in TR3 it is a sure sign that a logic " 0 " is being received or transmitted, thus TR5 will be turned on and the "0" l.e.d. will be illuminated.

TP5 would normally be the receiver output point. It might be that a 180° signal is required to drive the device coupled to the modem. If this is so, connect the output of the modem to the open collector of TR4, i.e. TR4 will be turned on when " O " is being received. This is suitable for coupling to a teletypewriter.

Fig. 13. Receiver waveforms. Example shown is the ASCII character " M ". The l.f. pulses, i.e. logic 0 , are a burst of 1 ms puises for the duration of the bit. The h.f. burst (logic 1) contains bit blocks 0.83 ms wide. For Teletype operation the output bit duration is about 10 ms

In the concluding article next month we shall give stripboard layout diagrams for the three boards, plus a considerable amount of applications information and device data showing how the modem can be improved and/or adapted to suit particular link-up requirements

by K. Lenton-Smith

ANEW instrument was presented at the recent Trade Fair-the Sharma HX80. The manufacturers, Keith Hitchcock, have been mentioned previously in this column in connection with their Doppler-effect speaker systems. Early last year I heard the prototype in action and had an opportunity to examine its very compact circuitry. Played through a rotary speaker, it was a Hammond tone-wheel organ recreated.

At first sight, the HX80 is a fairly conventional portable organ, drawbar controlled with 49 notes on the upper and 37 notes on the lower manual. The 18 -note pedal clavier has either 8^{\prime} or 10^{\prime} pitch available. Generation is by digital pulse trains and, by splitting the waveform into segments at differing voltage levels, versatile tone synthesis is achieved. The sine waves produced by this means are mixed (Fourier synthesis) in the normal way.
The group of nine drawbars on the upper manual has been arranged so that $5-1 / 3^{\prime}$ is replaced by $1-1 / 7$ '-which is a very odd frequency in relation to the chromatic compass but is possible because of the tone generator used. It is seven times the fundamental frequency and if the latter is taken as $\mathrm{A} 440 \mathrm{~Hz}, 3080 \mathrm{~Hz}$ falls between F and G! Use of the seventh harmonic is not new (one of the overtones in a square wave in fact) but this unusual mutation drawbar provides extra tone colouring.

Other drawbars control 8^{\prime} and 4^{\prime} string tone, variable sustain, attack, decay and ambience (a form of reverberation). A single switch alters the compass of the manuals down one octave so that 32^{\prime} to 2^{\prime} pitches are substituted. The lower manual has no mutations but separate sustain covers the $16^{\prime} 8^{\prime} 4^{\prime} 2^{\prime}$ and 1^{\prime} pitches. Presets, three vibrato controls and a transposer also feature. Priced at under $£ 700$ including VAT, the HX80 will interest those looking for a comprehensive but fully portable instrument (though a tone cabinet is required). Basically this is a 'straight' organ without too many gimmicks and is made in the UK.

PIANOCORDER

The Pianola is a rarity these days and, like the fairground organ, uses punched paper rolls. The Kemble Piano Co. has the UK marketing rights for the first electronic version-the Pianocorder. Using cassette tape, digital pulses are recorded as a pianist plays the original. On playback, pulses from the tape are decoded and applied to solenoids on playing key or expression pedal. For teaching purposes, this could be
a most useful aid as, unlike hearing a magnetic tape recording of the conventional type, the Pianocorder's keys are seen to move-and the playback speed can be varied at the teacher's will.

As this article goes to press, the Pianocorder is being demonstrated at the Chappell Music Centre, New Bond Street, London W1.

NO GO

An interest in electronic music can have its problems as friends may ask for your help in sorting out a small problem caused by transportation or rough usage. Of course, the cause is always obscure, inspection lighting inadequate and time is of essence! If the reader is inadvertently involved, a few guidelines may help:

Modern instruments, and organs in particular, have circuitry that is far more complex than a decade ago. A service manual (or at least block diagram) is essential as CMOS devices are often the order of the day-and it is wise to know what you are dealing with. Instruments in the home are often on nylon carpeting so circuit boards should not be treated with abandon. Although protection diodes are normally employed, the board should be considered as an extension to the i.c. Some special purpose devices are difficult to find so if in doubt earth yourself and obviously use a low leakage iron, also earthed.

If the instrument has been moved without its back panel in place, printed circuit boards can easily get damaged. Equally, forcing it into position over misaligned guides can split the board. If a crack is diagnosed, remove p.c.b. sockets with great care as solid conductors are often used. Run a little cyanoacrylate adhesive into the crack and clamp the board flat for the few minutes it takes to set. After removing the clamp, broken tracks can be patched: clean the copper strip locally with a small, sharp blade (a scalpel is ideal) and solder small bridges of tinned copper across the breaks.

Commercial instruments are designed for easy replacement of sub-assemblies and thus contain many connectors and a wiring harness similar to those used in the car industry. Slide-on tags for multiple connection to a common point are often used and are also reminiscent of BL products. They may be perfectly good for cars, but can cause noise and breakthrough in organs if used for signal earth purposes. Vibration from internal speakers or in transportation can cause them to get noisy or to simply
disconnect themselves: remedies being either to tighten to the maximum or risk the wrath of the professiona! serviceman by chopping off the tags and making a really sound job by soldering!

TESTING

Digital meters can be very useful at times but, due to the time taken to sample, are not satisfactory for reading moving voltages/currents, e.g. percussion circuits. Although this also applies to analogue meters to some degree, the reaction of a pointer gives a much better idea of the circuit's action. Incidentally, I would suggest that any prospective purchaser takes a good look at a detailed specification of the digital meter in mind as advertisements often omit essential points. Despite claims of high accuracy, current readings are often subject to voltage burdens which, in some models, will cause errors of 25 per cent or so. My own digital meter, which is widely advertised, often refuses to auto-zero itself (and it's no flukel). At least these meters normally have very high input impedance, but analogue meters should be capable of 20kSN.
A box containing an i.c. amplifier, speaker and battery is a useful tool for tracing audio paths. My version has a switched jack socket so that the battery is connected when the test lead jack is inserted: I don't need to remember to switch off before putting it back on the shelf. The connecting cable has a longer earth wire, terminated by a croc clip, so that the probe (inner of the screened lead) can be taken from end to end of an instrument without having to find a new signal earth point repeatedly.
An oscilloscope is perhaps something of a luxury for fault-finding and more useful at the design stage. Assuming that there is no intention of checking the waveform supplied to a top octave synthesiser, which will be in the MHz range and a simple square wave, the timebase range needs to be modest only. Vibrato will call for about 7 Hz as the slowest trace, though unless there is good persistence, flicker makes the display's usefulness questionable. About 15 kHz will be just about the maximum required for the X plate, but a simple 'scope will show whether the waveform is what it is supposed to be and if tone filters are having the required effect. Be careful where the 'scope is connected into the instrument, that the input coupling capacitor is above suspicion and if it should be earthed for that particular application. If in doubt with expensive CMOS devices, test elsewherel
I have not mentioned a CR bridge as most meters can cope with resistor measurement fairly well. Some can also handle capacitors but if not, a single 4001 package and a few discrete components can be assembled into a direct reading capacitor adaptor. Where valve circuitry is concerned-and plenty still exist and work well-it pays to check values of discrete components. Resistors can change their values alarmingly when age and high voltages come into play, so don't always believe the colour of the multiplier band: 10k resistors can easily become 100k in the course of time.

THERE are many types of thermostat in use around the home and in industry. The majority make use of the bimetal strip or bar and for general use there is nothing wrong with them. However, where a wide range, close tolerance, or economical use of energy is required an electronic thermostat is far superior.

The advantage of the circuit to be described here is that the temperature of a body can be held, if necessary, to within $0.1^{\circ} \mathrm{C}$ (ideal for photographic and similar uses) and the economic value is that it does not overheat the body wasting energy in the process. (Fig. 1).

The circuit is designed to give bursts of full power, of sufficient duration to overcome heat losses, and maintain a constant temperature.

The circuit is built around the SGS-ATES L121 i.c. This device incorporates a zero voltage detector, amplifier, comparator, internal power supplies with reference voltages, output stage for triggering triacs or thyristors, and will work from any single phase $50-60 \mathrm{~Hz}$ supply.

CIFUuIT DESCRIPTIOF

The block diagram of the L121 is shown in Fig. 2. The supply to the i.c. is via Rs which limits the supply current to approximately 30 mA . The mains frequency signal is clipped to $\pm 12 \mathrm{~V}$ at the clipping and rectification stage. Pins 8 and 10 are the i.c.s dual internal supply smoothing. This smoothed supply is regulated by the voltage regulating stage, and used to supply the other internal functions, and also produce a 1.5 volt reference at pin 4 , and a positive supply output at pin 6 .
The zero cross detector determines when the supply on pin 9 crosses zero volts relative to pins 12 and 13 , and whether it is positive, or negative going. Signals from this detector are fed to the ramp generator, control logic and output logic stages. The ramp generator produces a linear rising voltage, the rate of which is determined by C1 (pin 1) and R1 (pin 16). This is referred to as the time base. The voltage of this ramp is from less than 1 V to approximately 6 V , and is fed directly to the comparator.

The amplifier is a high gain d.c. operational amplifier, which is used to amplify the sensor output voltages to a suitable level for the comparator.

The comparator compares the relative levels of the amplifier output (pin 2) with the time base signal (pin 1) and will enable the chopper and control logic when the ramp voltage exceeds that of the amplifier output, as shown in Fig. 3. This has the effect of turning the heater on and off at a rate set by the time base.

The output logic stage determines the gate pulse polarity

50260
Fig. 1. Comparison between an electrical and a mechanical thermostat

$E 6255$
and also synchronises it with the zero voltage of the mains (zero cross detector signal), and this reduces radio frequency interference (R.F.I.) produced by the triac to a very low level.

The control logic is such that it triggers the chopper stage when the voltage from the ramp exceeds the voltage at pin 2 , and for a time dependent on C2, which means that the triac switches at a mains voltage of approximately $\pm 10 \mathrm{~V}$.

To eliminate this transistor TR2 can be included, as in Fig. 4. TR2 inverts the control logic output and feeds it directly to

[6258]
Fig. 3. Waveforms and phase relationships
the chopper. This has the effect of triggering the triac while the mains voltage is between zero and $\pm 10 \mathrm{~V}$, which will reduce R.F.I. to an absolute minimum.

Fig. 4 shows the circuit diagram of the Electrostat with a range of $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$, and a variable time base of 1 second to 1 minute. The minimum time base of the system is set by R1 and C1, with TR1 increasing the value of C1 by a factor dependent on the gain of the transistor as the resistance of VR1 is increased.

Diodes D2 and D3 are extra clipping diodes so that under fault conditions, no high voltages can appear on pin 9. of the L121. The sensor of the system is a thermistor connected to the inverting input of the amplifier as shown in Fig. 5. The 1.5 volt reference from pin 4 is compared with the potential difference across the thermistor, the difference amplified, and fed to the comparator as described earlier. If the amplifier gain is high i.e. 50 or more, any small change in

50256 Fig. 4. Circuit diagram of the Electrostat ('see text) NEUTRAL

Fig. 5. Block diagram of the amplifier, comparator and ramp generator
thermistor potential will result in a large change in output from the amplifier, which will be acted upon by the other circuit functions, to return the sensor voltage near to the reference level. This situation is ideal for photographic work where a temperature can be controlled to within $0.1^{\circ} \mathrm{C}$ or better, depending upon the location of the sensor, and the thermal resistance of the object being heated.

The exact value of time base and temperature setting components depends upon every particular application. Table 1 lists some possible uses and suggested values.

Application	Temp. Range Centigrade	Time Base and C1 Value	Amplifier Gain R4 \& VR3 Value
Photographic	20-40	15-5s	50-100
Heater		$10 \mu-47 \mu$	$500 \mathrm{k}-1 \mathrm{M}$
Fermentation	15-30	$1 \mathrm{~s}-30 \mathrm{~s}$	20-50
Heater		$10 \mu-330 \mu$	200k-500k
Fish Tank	20-30	30s-120s	20-50
Heater		$330 \mu-1200 \mu$	200k-500k
Room	15-25	60s-180s	20-50
Heater		$600 \mu-1800 \mu$	200k-500k
Immersion	40-80	15s-120s	20-70
Heater		$150 \mu-1200 \mu$	200k-700k
TABLE 1			

TIME BASE SELECTION

The time base is set by R1 and C1. This time must be shorter than the time it takes for the heat to travel through the medium to the thermistor (thermal time constant). Transistor TR1 is used to increase the effective value of C1 to several hundreds of times its true value when long time bases are required, and where a large capacitor would be impractical. Typical time bases range from 1 second to several minutes.

The manufacturers of the i.c. recommend that R1 be set at 100 k and C 1 selected to give the required time using the formula:

$$
\mathrm{C} 1=\frac{1 \cdot 2 \mathrm{~TB}}{\mathrm{R} 1}
$$

where; VR1 $=0 \Omega$

$$
R 1=100 k
$$

C1 in Farads
TB in seconds (1 second minimum)
When the time base needs to be 1 minute or more, T 1 is used to magnify C1:

C1 (effective) $=$ C1 (true value) \times TR1 hfe
where TR 1 is a BC 184L
hfe $=250$ to 900
and VR1 value is greater than 1 M or omitted.

THERMISTOR AND TEMPERATURE SETTING RESISTOR SELECTION

A thermistor similar to the types GM 473 or VA 3410 is recommended as their operating range is $-60^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$, and their resistance is fairly large at mid-range (approximately 47 k at $25^{\circ} \mathrm{C}$). The range of resistances at various temperatures is given in Table 2. Referring to Fig. 5, it can be shown that:

$$
\begin{equation*}
R(\max)=5.33 R t(\text { max temp }) \tag{1}
\end{equation*}
$$

and Rp paralleled with Ra

$$
\begin{equation*}
R p / / R a=(5.33 \times R t(\min t e m p))-R(\max) \tag{2}
\end{equation*}
$$

If $R p$ parallel with. $R a$ is a preferred value ± 20 per cent, use the preferred value. If not use the next biggest preferred value and calculate Ra:

$$
\begin{equation*}
R a=\frac{(R p v / / R a) \times R p v}{R p v-(R p v / / R a)} \tag{3}
\end{equation*}
$$

Select the range of temperature required and substitute in the equations the relevant values of thermistor resistances from Table 2.

Temperature (Centigrade) Approx Resistance (Ohms)

-60	10 M
-30	1 M
0	159 k 7
10	100 k
20	$59 k$
25	47 k
30	37 k 7
40	24 k 8
50	16 k 7
60	$11 \mathrm{k5}$
70	$8 k 1$
80	$5 k 9$
90	
100	
150	

TABLE 2
Example

Photographic Heater

Preferred range $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
$R(\max)=5.33 \times R t(\max)$

$$
=5.33 \times 24.8 k
$$

$$
=132 \cdot 2 \mathrm{k}
$$

Nearest preferred value $120 k$
$R \mathrm{R} / / \mathrm{Ra}=(5.33 \times \mathrm{Rt}($ min $)-\mathrm{R}($ max $)$
$=(5.33 \times 59 \mathrm{k})-120 \mathrm{k}$
$=194.5 \mathrm{k}$
Nearest preferred value $220 k$
$R a=\frac{(R p v / / R a) \times R p v}{R p v-(R p v / / R a)}$
$R a=\frac{194.5 k \times 250 k}{250 k-194.5 k}$
=876k

Nearest proferred value 1 MS

Amplifer Gain

The amplifier gain is set by the ratio of R2, VR2, and R3:

$$
\begin{equation*}
\text { Gain }=\frac{R 2+V R 2}{R 3} \tag{4}
\end{equation*}
$$

CONSTRUCTION AND TESTING

The p.c.b. design and component layout for the Electrostat are shown in Figs. 6 and 7. Triac CSR 1 should be of an adequate rating and mounted on a heatsink using a suitable insulating kit.

Care must be taken when assembling the triac on to the heatsink, and ensure the neutral is connected to the MT1 terminal. For 110 V supplies R5 must be reduced to 3.3 k 4 W . Fuse FS1 is 50 mA , and the load should be fused at a suitable value.

Fig. 6. P.c.b. design

Fig. 7. Component layout

COMPONENTS

```
Resistors
    R1,R2 100k (2 off)
    R3 10k
    *R4
    R5 6k8 7W (3k3 4W for 110V)
    R6 33k
    R7 220k
    *Ra
```

All resistors $\frac{1}{4} \mathrm{~W} 10 \%$ except otherwise stated.

Potentiometers

VR1, VR2 1 M Lin. (2 off)
*VR3
Capacitors
*C1

C2	$10 n$
C3	220 n
C4, C5	$220 \mu 16 \mathrm{~V}(2$ off $)$ elect.

Semiconductors

D1	1N4148
D2, D3	BZX61 15 V (2 off)
TR1, TR2	BC184L (2 off)
CSR1	2N5574 (or any 400V triac with a suitable
	current rating for the load)
TH1	VA3410
IC1	L121 (Quarndon Electronics, Slack Lane,
	Derby.)

Miscellaneous
LP1, LP2 Mini mains neon (2 off)
FS1 50 mA fuse
P.c.b.

Connector block
Heatsink to suit triac
Suitable case
JK 13.5 mm jack socket
*See text

[E0262]
Fig. 8. Terminal block wiring
The wiring for the terminal block is shown in Fig. 8. The thermistor can be built into a probe as suggested in Fig. 9 and is connected to the circuit via JK1.

Having checked the circuit for correct placing of components, carefully examine around the i.c. for solder splashes and joined tracks. When all is satisfactory, connect the load and the supply, and switch on. If the thermistor is "cold". relative to the temperature setting, the "off" neon indicator LP2 will light immediately. If the "on" neon LP1 lights adjust VR3 to minimum, and check the "off" neon lights.

If neither neon lights, turn off and check all connections. Also check pin 8 for +12 V , and pin 10 for -12 V , with respect to pins 12 and 13. Next check pin 1 for ramp voltage. If satisfactory check pin 2 for voltage swing by adjusting VR3. If an oscilloscope is available, check pins 11 and 15 for control pulses, and pin 7 for output pulses.

Fig. 9. Probe construction
The setting of the sensitivity resistor VR2 will depend on the thermistor location within the medium and the time base. For maximum sensitivity, a time base much shorter than the thermal time constant of the body is preferable.

The sensitivity is best set by trial and error, or if a storage oscilloscope is available, monitor pin 2 for several minutes and adjust VR2 until a still flat trace is obtained.

If the sensitivity is set too high, the system will be under damped and the temperature could vary by a large amount around the required value. Similar results will be seen if the sensitivity is set far too low.

If in use R.F.I. is present, try adding TR2, R6 and R7. as shown in Fig. 4, and omit capacitor C2.

Having checked that the unit works, it can now be built into a unit to suit your own application. If a metal case or front panel is used ensure it is earthed. Remember, for safety DO NOT connect the earth to the neutral.

Where calibration of VR3 is required, it should be against a digital thermometer, or a laboratory standard mercury thermometer, located in the same area of the body as the units sensor.

AURA SOUNDS are the first company to successfully market WERSI kits in the UK. We offer a unique evening and weekend telephone support service and pride ourselves on our friendly and individual service. We import direct from Germany.

If you would like to know more about WERSI pop into one of our modern showrooms for an on-the-spot demonstration. You'll get no high-pressure selling from us. Alternatively, fill in the coupon for all the information you require.

WHY WERSI?

A fresh approach and top quality are the secret behind WERSI's worldwide success. The advanced technology used in WERSI organs should dismiss any apprehension against the do-it-yourself construction of an organ. It also offers unlimited possibilities for exploring new areas of musical experience. New aids for the organist help even the beginner to enjoy the instrument from the start and the advanced musician will reach new heights of satisfaction. The novel approach to organ building is highly acclaimed by professional musicians like Klaus Wunderlich as well as by the demanding home organist.
Today WERSI is one of the leading organ manufacturers in the world and exports to over 25 countries.
D-I-Y organ building is no longer the exclusive pastime of a few technically versed buffs. The construction phases consist of assembling printed circuit boards, the installation of the sub units and hardware and the wiring. The organ console comes to you already assembled and complete. Prefabricated laced wiring harnesses contain almost all wiring, eliminating a major source of problems.

WERSI MAKES DO-IT-YOURSELF CONSTRUCTION EASIER THAN EVER BEFORE AT A FRACTION OF THE PRICE OF THE FULLY ASSEMBLED WERSI RANGE. GET THE FACTS NOW.

AURA SOUNDS 14-15 Royal Oak Centre, Brighton Rd., Purley, Surrey. Tel: 01-668-9733 and at 17 Upper Charter Arcade, Barnsley, W. Yorks Tel: Barnsley (0226) 5248.

MTCFO-EUS

 Compiled by DJD.

 Compiled by DJD.}

Abstract

Appearing every two months, Micro-Bus will present ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data books. The most original ideas will probably come from readers working on their own microcomputer systems, and payment will be made for any contribution featured here. This is also the place to air your views, in general, on this new technology, so let's be hearing from you!

MICRO MAGICIAN

THE following unusual program turns the computer into a magician, enabling it to find a card chosen secretly by a spectator. Two versions of the program are given; one in BASIC, and one in machine code for the 6502.

The presentation of the trick is as follows: only the thirteen cards of one suit are used for the trick. The cards are fanned out face down, and the spectator removes one and remembers its value. The remaining pile of cards is cut once, and the spectator replaces the selected card wherever he likes. The pile is then divided into two, and the two halves are shuffled together. Finally the cards are fanned out face-up on the table, and the order of the cards is typed into the computer. After a brief pause the computer announces which was the chosen card.

Although the trick is based on a simple principle, it leads people to believe that the computer's powers extend to mind-reading, and this belief is strengthened by occasional failures of the computer to guess the card correctly.

By way of illustration, try locating the chosen card in the sequence shown in Fig. 1. The cards were originally in order, ace up to king from left to right, and the sequence shown is the result of following the procedure described above.

HOW THE PROGRAMS WORK

The programs work by comparing the new order of the cards with their previous order; for each card a number is calculated which represents how far the processes of shuffling and cutting have moved that card away from its previous neighbours. The higher this score, the more out of sequence is the card concerned. After calculating this score for each of the 13 cards, the card with the highest score is taken to be the one that was chosen, and in most cases this will be correct. However, in some cases the computer cannot be certain about which card was chosen; for example, if the card is returned to its original position then any card could have been chosen. Also, less obviously, if the card is re-inserted one place to one side of its original position it is impossible to tell whether it, or its neighbour, was the chosen card since the same sequence of
cards would result in each case. The reason for cutting the pack before the card is replaced is to encourage the spectator to replace the card in a different position.

Fig. 1. Find the chosen card in this sequence, which results from a presentation of the trick described in the text

When the programs are first executed they assume that the cards were originally in numerical order, ace up to king. If the cards are not initially in order the program will probably get the first attempt wrong, but in some ways it is more impressive to do the trick without arranging the cards first, and attribute the initial failure to "warming up"! On subsequent operations of the program the initial order is replaced by the new order of the cards, as typed in; the order of the cards should not be disturbed when the trick is repeated.

CARD TRICK PROGRAMS

The two versions of the card-trick program work in comparable ways. The cards are represented internally by the numbers 1 to 13 . The programs are divided into three sections. First, the new sequence of cards is read in. Secondly, each of the cards in the previous sequence is searched for in the new sequence, and its position there is subtracted from the positions of each of the cards that were its neighbours in the previous sequence. The sequence is considered to be circular, so if the difference between two positions turns out negative then 13 is added to it. The card's distance from one neighbour, plus its distance from the other neighbour, is saved as that card's score. Finally, the card with the maximum score is found and displayed as the chosen card.

The critical part of the trick is that the cards should only be shuffled once, and the shuffle should be of the sort that divides the packet of cards into two halves and merges the two halves back into one pile (e.g. a riffe shuffle). The cards can be cut at any time, and as many times as wished, but each time the packet of cards should only be cut into two piles.

BASIC VERSION

The BASIC version of the card trick, Fig. 2 , closely follows the above description. The subroutine at 500 looks up the card T in the array containing the previous sequence of cards, A , and returns in X the position of T in that array. The program uses only integer arithmetic, and so can work with integer-only BASIC interpreters.

0010 REM *** CARD TRICK ***
0020 DIM A(13), B(13),S(13)
0030 FOR $J=1$ TO 13: A(J)=J: NEXT J
0040 PRINT "ENTER YOUR CARDS"
0050 FOR $\mathrm{J}=1$ TO 13: $\mathrm{S}(\mathrm{J})=0$
0060 INPUT B(J): NEXT J
0070 T=A (13): GOSUB 500
0080 FOR $J=1$ TO 13: $\mathrm{L}=\mathrm{X}: \mathrm{R}=\mathrm{T}$
$0090 \mathrm{~T}=\mathrm{A}(\mathrm{J}):$ GOSUB 500
$0100 \mathrm{Q}=\mathrm{X}-\mathrm{L}: \mathrm{IF} \mathrm{Q}<\mathrm{O}$ THEN $\mathrm{Q}=\mathrm{Q}+13$
$0110 \mathrm{~S}(\mathrm{~T})=\mathrm{S}(\mathrm{T})+\mathrm{Q}: \quad \mathrm{S}(\mathrm{R})=\mathbf{S}(\mathrm{R})+\mathrm{Q}$
0120 NEXT J
$0130 \mathrm{M}=\mathrm{O}$
0140 FOR $J=1$ TO 13: A $(J)=B(J)$
0150 IF $\mathrm{S}(\mathrm{J})<\mathrm{M}$ GOTO 170
$0160 \mathrm{Z=J}: M=S(J)$
0170 NEXT J
O18O PRINT "YOU PICKED THE ": Z
0190 GOTO 40
0500 FOR K=1 TO 13
0510 IF $T=B(K)$ THEN $X=K$
0520 NEXT K: RETURN
Fig. 2. BASIC version of the card trick enables the computer to find a chosen card

6502 VERSION

The program for the 6502, Fig. 3, was developed on an Acorn system and uses two routines in the Acorn monitor, so if the program is used with another 6502 system these will have to be modified. Subroutine DISPLAY is a display and keyboard-scanning routine which displays the segment patterns from locations $0010-0017$, and waits for a keypress (although it can be made to give a single sweep of the display without waiting). It returns with the hex value of the key pressed in the A-register, the X-register is preserved, and the Y -register is zeroed. Subroutine HEXTD generates the segment pattern for the hex number in the lower four bits of the Aregister, and stores this in display location Y .

When the program is executed at 0200 the display will go blank. The sequence of cards should then be entered using the hex keys, with ace $=1$, ten $=\mathrm{A}$, jack $=\mathrm{B}$, queen $=\mathrm{C}$, and king $=\mathrm{D}$. When the last card is entered the micro will display its guess at the chosen card. The program is then ready to repeat the trick.

Fig. 4. Programmable frequency generator; the frequency is determined by the number at the output port

For simplicity, 14 bytes are allocated for each of the arrays, the zeroth byte not being used. Subroutine SCAN performs the same function as the subroutine in the BASIC verion.

MODIFICATIONS

The programs can also guess two, or more, chosen cards, though with less reliability; for example, to find two chosen cards the programs should be modified to display the cards with the two highest scores. The programs can also be modified to work with any number of cards, and as the number of cards is increased the likelihood of the computer getting the card wrong diminishes. Thirteen cards is a happy medium; it is not too time-consuming to type in the order, while at the same time the computer's powers are indisputable!

FREQUENCY GENERATOR

The following circuit enables a micro to act as a programmable frequency generator. It uses a low-cost digital-to-analogue converter to drive a voltage-controlled oscillator, and to illustrate its operation a program is given which will play monophonic melodies. The circuit and program wére submitted by Mr.P.V. Bayley of Newcastle, and what follows js based on his description:
"The circuit, Fig. 4, was designed for use with an 8080 microprocessor, but is suitable for any 8 -bit micro. It can generate frequencies covering an overall range of at least three octaves, and incorporates a variable pitch control.

CIRCUIT DESCRIPTION

"Data from an 8 -bit output port is fed to the inputs of the ZN 425 E 8-bit digital-to-

Fig. 3. Card trick program for the $\mathbf{6 5 0 2}$ micro

		1	MUSIC	PROGR	
0000		1			
		dusic	LXIB	0100月	; SET AdDress Prr
0003	110008	LOOP	LXID	0800日	;TEMPO FACTOR
0006	OA		LDAX	B	
0007	D300		out	0	;OUTPUT TO PORT
0009	C600		ADI	0	; TEST $^{\text {acc. }}$
000B	Cal800		Jz	STOP	
OOOE	AF		XRA	A	; CLEAR ACC.
OOOF	1B	delay	DCX	D	
0010	BA		CMP	D	
0011	C20F00		JN2	delay	
0014	03		INX	B	; POINT TO NEXT
0015	C30300		JMP	LO	
0018	76	STOP	HLT		

Fig. 5. Program for the 8080 micro which, with the circuit of Fig. 4, plays tunes stored in memory

Fig. 7. (7a above, 7b right) Routines for the 8080 which implement two-byte jump instructions
$C 8, C 8, C 4, C 4, C 2, C 2, B C, B C, 08, B C, 08, B C, 08, B C, C 2, C 2,08, C 2,08, C 2,08$. $\mathrm{CB}, \mathrm{CB}, \mathrm{C4}, \mathrm{C4}, \mathrm{C2}, \mathrm{C2}, \mathrm{C4}, \mathrm{C4}, \mathrm{BF}, \mathrm{BF}, 08, \mathrm{BF}, 08, \mathrm{BF}, 08, \mathrm{BF}, \mathrm{C} 4, \mathrm{C4}, \mathrm{CC}, \mathrm{CC}$.
$C 8, C 8, C 4, C 4, C 2, C 2, B C, 8 C, 08, B C, 08, B C, 08, B C, C 2, C 2,08, C 2,08, C 2,08$.
$C 8, C 8, C 4, C 4, C 2, C 2, C 4, C 4, B F, B F, 08, B F, 08, B F, 08, B F, 08, B F$.
$C 8, C 8, C 4, C 4, C 2, C 2, B C, B C, 08, B C, 08, B C, 08, B C, B C, B C, 08,08$.
C8, C8, D4 , $04,08, D 4,08, D 4,08,04,08,04, D 1,08, D 4, E 0, E 0, D A, D A, D 4,04$.
D1, $\mathrm{D1}, 08, \mathrm{D1}, 08, \mathrm{D1}, 08, \mathrm{D1}, 08, \mathrm{D1}, 0 \mathrm{D}, \mathrm{DA}, \mathrm{D4}, \mathrm{D4}, \mathrm{D1}, \mathrm{D1}$.
D4, 04, 08, $04,08,04,08, C C, C C, 08, C C, 08, C C, 08, C 8, C 8,08, C 8,08, C 8,08, C 2, C 2$.
O8, C2, C2, C3, C3, $\mathrm{BE}, \mathrm{BE}, 08, \mathrm{BE}, 08, \mathrm{BE}, \mathrm{C}, \mathrm{C}, \mathrm{C4}, \mathrm{C4}, \mathrm{C2}, \mathrm{C} 2, \mathrm{BC}, \mathrm{BC}, 08, \mathrm{BC}, 08$.
$B C, B C, B C, 08,08$.

Fig. 6. Data for a simple tune to illustrate how the frequency generator can be controlled by a micro

analogue converter. The output feeds the noninverting input of a $741 \mathrm{op}-\mathrm{amp}$ used as a buffer amplifier, and this should be calibrated as follows: first VR1 is used to give an output of OV at pin 6 when OOH is output to the port; then VR2 is used to adjust for an output of 3.6 V when FFH is output to the port.
"A second 741 amplifier drives a voltagecontrolled oscillator; this is the oscillator section of a 565 phase-locked loop. VR3 is used as an overall pitch control and can be adjusted to provide a maximum frequency of over 6 kHz . At a mid-range setting the circuit will cover the range 200 Hz to 2400 Hz with good linearity. Note that the 565 operates from \pm 10 V supplies, derived from $\pm 15 \mathrm{~V}$ with two zener diodes.

MUSIC PROGRAM

"The circuit was used with the program shown in Fig. 5, which produces simple tunes. The values required to produce a musical scale are first determined, and then the tune is written as a sequence of these values, stored in memory starting at 0100 H . Different note durations can be obtained by repeating the
same note code, and blank intervals are obtained by any low-value code, such as 08 H . A zero byte denotes the end of the tune.
"The program was run on a Limrose Electronics MPT8080 microtutor, and to enter data for the tune it is necessary to change the first instruction of the program to C 3 H (jump), and then single-step the first three bytes. After entering the data for the tune make sure that the next location contains OOH , and then change the first instruction back to 01 H .
"The data in Fig. 6 are for a lively tune which should be fairly well known."

TWO-BYTE JUMP FOR 8080

Jumps in the 8080, whether conditional or unconditional, are all three bytes long: one byte for the op-code, and a two-byte destination address. The following programs, submitted by M. R. Reynolds of Surrey, show how to implement two-byte jump instructions which can be used to save memory in a small system. The second byte of the instruction gives the low-order byte of the destination address.
"The program of Fig. 7a uses just four
bytes of memory to implement a two-byte unconditional jump instruction. It makes use of one of the eight restart instructions, which are one-byte subroutine calls to fixed addresses. They have the format ' 11 AAA 111 ' (binary) and cause the return address, the address after the restart instruction, to be pushed onto the stack, and control passed to the subroutine starting at 'OOAAAOOO' (binary). The program in Fig. 7a uses the F7 instruction which jumps to a subroutine at 0030 H , and the routine simply substitutes the byte following the F7 instruction for the low-order byte of the return address. The return instruction then causes a transfer to that address. Note that this is not a relative jump, although one could be implemented with a longer subroutine.
"A conditional jump can be implemented as shown in Fig. 7b. The extra increment and decrement are needed to skip the address byte if the condition is not met. This example uses the FF instruction, which causes a jump to 0038 H . The condition in the conditional return instruction is the inverse of the condition required for the overall jump; for example, RNZ would be required for a "jump if zero' instruction."

45,000 ICs for $£ 52.50$

The 1980 edition of the IC Master contains more IC data than ever before. Even though some 5,000 redundant parts have been deleted, it nevertheless provides details of more than 45,000 different ICs including 5,000 new devices.

Included in the price of $£ 52.50$ is postage and packing and comprehensive up-dates which are issued automatically at 3 -monthly intervals. The 1980 IC Master is available from Paterson Steadman and Partners Ltd., 34/36 High Street, Saffron Walden, Essex CB10 IEP.

GIRL OF THE YEAR

The 1979 Girl Technician Engineer of the Year is Mrs Ann CoxHorton, age 26, an electrical contracts engineer from Chertsey, Surrey. At a recent ceremony in London she was presented with the prize of $£ 250$ and an inscribed rose bowl by Sir Montague Finniston, FRS, Chairman of the Committee of Inquiry into the Engineering Profession.
Sponsored by The Caroline Hasiett Memorial Trust and the IEETE, this award aims to focus attention on electrical and electronic engineering as a worthwhile professional career for women.

Ann Cox-Horton is employed by T Clarke \& Co Limited, a London firm of electrical contractors. She is responsible for contracts valued at up to $£ 1 \frac{1}{2}$ million, including the work of up to 50 people.
The runner-up, Mrs Barbara Needham, 27, a senior research engineer from Harlow, Essex, received a special award of $£ 150$.

Barbara Needham works for Standard Telecommunication Laboratories Limited in Harlow, Essex.

Experimenter's design for equipping the standard oscilloscope with a charge storage facility so that pulses can be examined at leisure.

WITH the recent advent of microprocessor systems and the availability of cheap digital electronics, more home constructors are using these to replace conventional analogue circuitry. In the design, development and de-bugging of these circuits the need often arises to display a low frequency pulse train, or trains, on an oscilloscope for visual analysis. This is quite difficult on a normal oscilloscope because of the nature of the time base scan, especially if the pulses are narrow. Also charge storage and memory scopes tend to be prohibitively expensive for the amateur.

It was decided therefore to produce a unit which would display pulses of TTL level $(+5 \mathrm{~V})$ on a normal oscilloscope with no modifications to the oscilloscope. This would include the facility for storing a train of pulses and freezing them on the screen for closer scrutiny. To extend its usefulness further it was designed to display four separate inputs on the oscilloscope as four separate traces.

BLOCK DIAGRAM

Fig. 1 shows a block diagram of the complete unit. The four input signals are fed into a quad tri-state buffer the output of which is multiplexed by a four-way data selector. This is clocked by clock 1 via a divide by four counter and the resulting waveform is available from an output stage in a single wire format.

Outputs from the tri-state buffer are also routed to the memory storage section. This consists of a 256×4 RAM which is controlled by a fast clock (clock 2) and an eight bit binary counter. Another clock (clock 3) operating at a slow rate steps another eight bit counter. The outputs of the counters are fed to a sixteen bit comparator which produces controlling pulses for the output trigger and the read/write phase of the RAM.

CIRCUIT DESCRIPTION

The input channels (Fig. 2) are fed into a quad tri-state buffer IC1. This is controlled by a signal from the comparator circuitry which enables information to appear at the output

SPECIFICATION

4 TLL compatible channels
3 ranges of sweep time (1) 0-1s
(2) $0-10 \mathrm{~s}$
(3) $0-100 \mathrm{~s}$

Manual trigger mode or continuous memory cycling Trigger output for oscilloscope with I.e.d. indicator Mains power supply
Frequency response using all channels
(1) Store mode- $0-250 \mathrm{~Hz}$
(2) Free run mode- $0-10 \mathrm{MHz}$
of the buffers with a high level. With no enable present the output of the buffers are high impedance and do not interfere with the read phase of the RAM. These outputs are then multiplexed by IC2, a four way data selector. This is controlled by a two stage counter (IC3) and a clock (IC4) which is formed from a Schmitt trigger and runs at approximately 500 kHz .

Fig. 1 Block diagram
Fig. 2 Complete circuit

\curvearrowleft

 (

TR 1 and its associated components form a simple three bit digital to analogue converter. The three inputs to this R2, R3 and R4 are connected to the signal output of IC2 and its two data selector input lines. Information on these last two lines effectively shifts the level of the output from TR1, and gives four distinct traces on the oscilloscope screen. TR1 also provides a buffered, low impedance output and is biased in the emitter follower mode by D2 which has its anode connected to chassis potential (as do the ground connections of the TTL i.c.s) and the cathode to power supply zero volts. This effectively produces a negative bias on the emitter of TR1 and eliminates the need for a negative supply rail.

STORAGE

The storage section of the unit consists of a 256×4 RAM IC13, and this is also connected to the outputs of the tristate buffers. The address lines on the RAM are controlled by an eight bit counter IC14 and IC15. These are clocked by a counter running at 256 kHz .

These address lines are also fed into a sixteen bit comparator (IC9 and IC10).

The other eight inputs of the comparator are provided by the outputs of another eight bit counter (IC7 and IC8) which is clocked by a calibrated oscillator. This is the sweep oscillator*which provides the scanning times.

Thus the signals from the two eight bit counters are compared and IC11 produces a pulse only when the outputs from these are coincidental. This pulse is then used to produce a write instruction to the RAM which then stores input data.

The frequency of the slow clock (clock 3) is set to values of $256 \mathrm{~Hz}, 25 \cdot 6 \mathrm{~Hz}$ to give variation in storage rate. Once the waveform has been stored, at an appropriate scanning rate, the output scanning rate can be increased to expand out the trace to see more detail. Triggering in the unit is provided by IC5 and IC6. This is available in three modes:

1. Single shot
2. External or internal trigger
3. Continuous run

In the first mode the monostable IC12 gives a pulse from push button switch S 6 from a manual trigger when desired. In the external or internal trigger mode triggering is achieved from an external pulse or from input channel 1. An l.e.d. is used to indicate correct triggering.

S4 selects the continuous triggering mode which causes the unit to cycle information into the memory continuously. The output trigger pulse is available through S3 via SK6 and is of TTL level.

POWER SUPPLY

This is a conventional transformer derived mains power supply with a full wave diode bridge rectifier.

Zener dioder D1 provides the reference voltage and TR1 supplies the necessary current, which is approximately 300 mA , and should have a heatsink attached.

CONSTRUCTION

The prototype was built on two pieces of Veroboard, which were stacked horizontally, one containing the memory and address dividers and the other the oscillators, trigger circuit and power supply. However, the layout of these is not critical and everything could be accommodated on one board.

A case was made for the unit out of aluminium but proprietary cases can be used.

The prototype was made compatible in appearance with

COMPONENTS

Resistors

R1	1 k 2
R2	1 k
R3	2 k
R4	4 k 7
R5	1 k
R6	470
R7	270
R8	33 k
R9	470
R10	1 k
R11	1 k
R12	1 k
R13	1 k
R14	1 k
R15	910 k
R16	220

0.5W 5\% carbon

Capacitors

C1	$4 n 7$	mylar
C2	$4 n 7$	mylar
C3	$1 n$	mylar
C4	$330 n$.	carbonate
C5	470μ	10 V elect
C6	1000μ	10 V elect
C7	$100 n$	mylar
C8	$100 n$	mylar

Integrated Circuits

IC1	74126	IC9	7486
IC2	74153	IC10	7486
IC3	7474	IC11	7430
IC4	7413	IC12	74121
IC5	7400	IC13	2112
IC6	7474	IC14	7493
IC7	7493	IC15	7493
IC8	7493	IC16	556

Transistors

TR1	BC108
TR2	2 N3053

Diodes	
D1	BZY88-6.2400 mW Zener
D2-D6	1N4001 (5 off)

Potentiometers	
VR1	
VR2-VR4	20k
V	100 k (3 off)

Switches

S1	Mains on/off double pole
S2	Two pole four way
S3	Single pole change-over
S4	Single pole on-off
S5-S6	Press to make

Fig. 3 Component layout for prototype boards. Since the unit is primarily a piece of experimenters test gear which will readily translate for stripboard assembly no cutting or intenviring details are given just a guide for component placement
the author's oscilloscope with the front panel containing input sockets and selection switches. The back panel houses the output and trigger sockets and mains input lead switch and fuse.

SETTING UP AND CALIBRATION

For accurate calibration a digital frequency meter should be used, however, a signal generator can be used for frequency comparison.

The following adjustments should be made:

			Measurement
Adjust	S2 range	Measure Pins	
VR1	-	256 kHz	IC16/5
VR2	1 s	256 Hz	IC16/9
VR3	10 s	25.6 Hz	IC16/9
VR4	100 s	2.56 Hz	IC16/9
		$(390 \mathrm{~ms})$	

USING THE UNIT

The unit should be connected to the Y input of one of the oscilloscope's channels (or channel) and the external trigger of the oscilloscope connected to the trigger output of the unit. The Y gain of the oscilloscope should be set to approximately 0.5 volts per centimetre and the timebase to 100 milliseconds per centimetre.

Four traces should appear on the screen with random information on each one. This can be cleared by pressing the sweep trigger button leaving four straight lines.

Connect a low frequency pulse generator (1 Hz approximately) to the input (channel 1) and switch the unit to the 10 second sweep range. A trace of 1 Hz pulses will slowly be produced on the top trace from left to right and halt when the scan reaches the right-hand margin of the screen.
The input can now be removed and the waveform will remain until the power is removed to the unit.

The unit can also be used in continuous mode where the memory will constantly refresh at the end of each scan. Also the trace can be returned to the time origin by use of the sweep trigger button.

LIMITATIONS

When using the unit care should be taken not to exceed higher frequencies than the maximum stated.

It is useful to note that the trace is actually broken up into 256 sections and at for example 1 second sweep rate the minimum pulse duration that can be recorded is 4 ms in 5 . If a too high frequency is fed in, depending on its harmonic relationship with the number of bits a lower frequency is produced on the screen, therefore it is useful to know the approximate value of the frequency of the waveform to be measured.

Since the unit writes in all four channels simultaneously one waveform cannot be served while 3 new ones are recorded.

MODIFICATIONS

Although designed for TTL level signals, by using a simple CMOS buffer on the input the usefulness is extended by increasing the input impedance and the level of input. Longer sweep times can be produced by using more ranges with extra capacitance on clock 3. As the sweep time is 256 times longer"than the time interval of the 556, sweep periods of up to 100,000 seconds are feasible.

A selection of readers: original circuit ideas it should be emphasised that these designs have not been proven by us They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded paymen according to its merits.
Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbrevia tions and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.
Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

TAPE/SLIDE SYNC

SHOWN are circuits for a Tape/Slide Synchroniser. First of all the commentary is recorded onto the tape in the normal way and whenever it is necessary for the slide projector to advance one slide, S 1 is pressed which records a burst of ultrasonic sound onto the tape. When the recorder is played back (connected to the projector via the 'tuned amplifier' Fig. 2) the relay closes and advances the slide projector one slide every time an ultrasonic sound is detected.

The oscillator should be tuned to the right frequency simply by connecting the output to the input of the tuned amplifier, and adjusting VRI until RLAI closes. The circuit only amplifies frequencies of about 48.2 kHz .

The output of the 741 is amplified by TR1 and 2 which switches on the relay. The circuit works well despite the fact that the recorders response is very low at 48.2 kHz . A small mono recorder works better than an expensive stereo tape deck because the latter usually have bias oscillators running at about $60-90 \mathrm{kHz}$ which might beat with the synchronisers' output.
R.N. Johnson.

Coulsdon Surrey

VOLTAGE SENSITIVE RELAY

The circuit diagram as shown right is an electronic relay with two wires on the input side and three wires at the output. The input leads are connected to the voltage to be sensed. Its range is from 10 V a.c./d.c. to 20 V a.c./d.c. The relay is a 6 volt/ 30 ohm coil type with changeover contacts rated for $5 \mathrm{~A} / 230 \mathrm{~V}$ a.c.

The heart of the control system is a general purpose operational amplifier type 741. The control voltage is rectified by diode D1 and filtered and stored by capacitor Cl . The non-inverting inpul (pin 3) is fed with a Zener regulated fixed potential of 3.9 volts, whereas the inverting input (pin 2) is variable and can be set by a preset potentiometer VRI to any desired voltage. It is only by adjustment of this pot that a control point is achieved.
The output of the 741 changes state with input potential difference of as low as I millivolt. The positive going output at pin 6 biases a switching transistor through a diode and 10 kilohm resistor. The transistor in turn energises a relay whose normally open and normally closed contacts could be used in a number of applications. The differential at which the relay is desired to be operated is provided by positive feedback to non-inverting input. by a 10 k preset pot VR2 in parallel with C2.
Any desired hysteresis can be set by VR2. An electrolytic is used at the base of switching transistor TRI to avoid chattering of the relay on a.c. operation.

Automatic Temperature controller

This application is shown below. Here a slight modification in the control circuit of the VSR is needed. R1 is removed and a thermistor with long leads substituted. The thermistor is placed near the heating source. Its resistance will change with heat resulting in control initiation. The preset potentiometer VRI now can be set for the desired temperature. The n.c. contacts of the relay can be used for opening the heater circuit when desired temperature has reached. In this case the input supply' to the VSR is obtained by a low voltage transformer and regulated by a Zener.

Twilight switch

Alternative connections to the VSR (shown in outline) provide a light switch. Here RI is replaced by an l.d.r. The resistance of this increases with a decrease in ambient light and thus initiates the
switching operation. The n.o. (normally open) contacts are connected in series with the load and supply. Thus the lamp load lights up on falt of ambient light at preset value.
M. S. Dhingra. Chittaranjan.

India.

WHEN a precise voltage source is required for a particular application, it is common practice to modify the output voltage of a voltage regulator by "jackingup" the common. i.e. raising its potential above ground. This useful method has its disadvantages. In the event of a shortcircuit the common would become reversed biased and the regulator would loose its protection. thus resulting in its destruction.

In the circuit shown the germanium diode DI prevents the common becoming more than 0.2 volt reverse biased under short circuit conditions and thereby protecting the regulator from damage.

The addition of C2 is to ensure stability. Diodes D2 and D3 (as an example) raise the output voltage by about 1.3 volts.
J.A. Barrow

Rugby
Warwickshire

'JACKED UP'

REGULATOR

WA VEFORM CON VERTOR FOR MINISONIC

THIS circuit will convert an input of sawtooth shape into a triangle shape and then convert the triangle waveform into a synthesised sine waveform. IC1 amplifies the input signal to a level of 15 V peak to peak. The value of R1 should be chosen according to the input level. RI should in fact be chosen as ($100 \times$ peak-to-peak input voltage) kilohms. For Minisonics 1 and 2, R1 should be 39 kilohms. and 100 kilohms respectively. IC2 is a differential amplifier which inverts the positive going half cycle with respect to the negative going half cycle. With a certain amount of smoothing from C 4 this produces an output of about 7.2 V peak-to-peak which is triangular in shape. VR1 should be adjusted to give a triangle output of IV peak-to-peak for Minisonic 2. Of course the level can be any value up to 7.2 V depending on what suits the constructor's application.

The triangle output is then fed into IC3 which is another differential amplifier and identical to IC2's circuitry. This produces an output of about 3.5 V peak-to-peak which is triangular in shape and twice the frequency of the input triangle waveform. This double frequency triangle wave controls the amount of attentuation in the voltage controlled attentuator built around TRI and IC4.

As the input triangle wave approaches either its positive or negative peaks the gain of the output stage gradually decreases by the action of the double frequency wave at the gate of the f.e.t. TR 1 . This has the effect of rounding off the peaks. The shape produced is a very good approximation of a sine wave.

Setting up is quite simple. First the wiper of VR2 must be taken to its 0 V end. VR3 is now adjusted to give an output level of around 500 mV r.m.s. VR2 can
now be adjusted until the best approximation of a sine wave is produced. An os cilloscope would be useful here but I have found that the adjustment can be made fairly accurately by ear. With the output connected to an audio amplifier VR2 should be adjusted until the sound contains fewest harmonics. Finally VR3 should be readjusted to give an output of about 350 mV r.m.s. (IV peak-to-peak).

The circuit can be used as a triangle to sine convertor quite simply by leaving out IC2 and its associated circuitry.
P.G. Ludgate High Wycombe Bucks.

car cassette POWER SUPPLY

THIS unit enables a 6 V cassette player or recorder to be powered from the 12 V car battery. while drawing only 100 mA in excess of the cassette player's consumption. Short-circuiting the output of the unit does not damage the circuitry, and only 2A flows, whereas the unit can provide 6 V at up to 800 mA .

RI limits the short-circuit current to about 2 A . and reduces the power dissipation of the series regulator transistor TRI, which acts as an emitter follower with the base voltage provided by R2/DI. (Note that DI must be rated at IW or greater.)

The complete unit fits easily into the smallest size of diecast case. which can also act as a heatsink for TR 1 .
N. Riddiford

North Shields
Tyne \& Wear.

Our catalogue contains small metal enclosures for every application including the attractive new G range cases, with unique integrated chassis and sloping visor front and the inexpensive kit-form Veropak. We've also got circuit boards, accessories, module frames and plastic boxes - all to the highest standard to give your equipment the quality you demand. Send 40 p to cover post and packing and the catalogue's yours.

VERO ELECTRONICS LTD RETAIL DEPT. Industrial Estate, Chandler's Ford,

Great new CroftonTreble

all leads and scan coil assembly. Tubes and transformers available separately from stock.

The unbeatable $10^{\prime \prime}$ Aztec, complete and ready to go.

THE SOUGHT AFTER

* OHIO SUPERBOARD п ${ }^{\text {* }}$
(All prices ex VAT and PaP)
Fully constructed at $£ 188.00$

CROFTON ELECTRONICS

Crofton Electronics Limited, 35 Grosveror Road, Twickenham, Middlesex. Tel: 018911923

RHYTHM CODE GENERATOR

The circuit shown was used to generate the 4 bit BCD rhythm select code required by the rhythm generator i.c. M252. It could also be used in any application that requires the generation of a 4 bit BCD word, for example, a hexadecimal keyboard.
If a pushbutton is pressed, the two SN74148 priority encoders code the 16 inputs to a 4 bit BCD word. This word is latched into the SN74175 quad latch by the combined GS outputs (pins 14) of the priority encoders. Capacitor C1 is used to show the edge of the latching signal so that latching takes place when the input data is valid.
The outputs of the quad latch can be decoded back to 16 bits by a SN74154 and the outputs used to drive l.e.d.s to give a visual indication of the button pressed, or as in this example the rhythm selected.
E.J. Weremiuk, Brantham,

Essex.

AUTOMATIC CAR AERIAL CONTROL

IN February 1977, a circuit was published in "Ingenuity Unlimited" for the automatic control of an electric car aerial. The circuit described here is an alternative approach to the problem. The prototype has been in trouble-free use for over four years. It may be operated by the radio on/off switch so that the aerial is only raised when needed, or, if preferred, by the ignition switch. No additional switch is
necessary. The device may be left permanently connected to the car battery, since the leakage current when the radio is switched off is very low.
The main control circuit may be used either by connecting terminal \mathbf{B} to the radio on/off switch (or the ignition switch) and shorting C and D , or by shorting A and B and connecting C to an additional control circuit. The main circuit contains

two relays, each with two changeover contacts. When the radio is turned on (or the ignition if preferred) RLA switches on, the motor starts to wind up the aerial, C1 charges up and, after a delay (adjusted by the preset VR2), RLB switches on and stops the motor. When RLA switches off, the aerial starts to wind down, Cl discharges and, after a delay (adjusted independently by VR2), RLB 2 switches off and again stops the motor. VRI and VR2 are adjusted so that the aerial winds completely up and down, the motor making about two revolutions against the slipping clutch for good measure.

If RLB has two changeover contacts, the spare set may be used to mute the radio whilst the aerial is winding up, to prevent crackling from the loudspeaker, e.g. by shorting the volume control. If the radio has a tape recorder socket through which the audio signal passes by means of a shorting plug, that can be used to make the connections to the muting contacts without disturbing the radio internally. A stereo radio would, of course, need a more complex system, or extra contacts in the relay.
D. A. Petty,

Aylesbury, Bucks.

THERE are many published circuits which enable two lamps to be controlled along two wires giving provision for either lamp or both lamps to be illuminated at any one time.

The circuit described below enables three lamps to be controlled along two wires enabling any one lamp to be illuminated at any one time. It was originally designed for a busy office to convey the instructions of 'Engaged', 'Wait' and 'Enter'.
The circuit is powered by 12 volts a.c. which is derived from the mains. The three lamps are controlled by $\mathbf{S} 1$ which gives the four possible operations. In position 1 no lamps are on, since no power is being applied to the wires a and b. In position 2, the alternating current from the transformer is half wave rectified by D1, making wire a positive with respect to b . TR1 and hs associated components respond to this and so LP1 is illuminated. TR1 is prevented from conducting when S1 is in the a.c. position (position 4) by D4, R1, and D8. These ensure that Cl is charged by the negative half cycles so that TR1 will be made non-conducting.

In position 3 the alternating current is again half wave rectified, but this time wire a is negative with respect to wire b. The circuitry for LP2 is the same as that for LP1 except that it is connected the other way round to the wires a and b.

In position 4 of SI, an alternating voltage is applied to a and b . The circuitry for LP3 works in the following way; with S1 in position 2 (wire a positive) TR3 is conducting so keeping TR4 nonconducting. In position 3 (wire a negative), D7 is reversed biased so that LP3 is again

not illuminated. With an alternating voltage, the negative half cycles reduce the voltage across C3 to a sufficiently low level that TR3 is non-conducting. TR4 becomes conducting so allowing LP3 to light.

The 200 uF electrolytic capacitors in
each lamp circuit offers a small amount of smoothing to the half rectified a.c., producing approximately 10 volts d.c. across each lamp when alight.
J. P. Kemp, Kings Norton, Birmingham.

SCOPE CALIBRATOR

THIS simple circuit can be used to check oscilloscope Y-amplifier Volts/ Cm calibration accuracy, and to set the frequency compensation trimmer R4 on a high input impedance oscilloscope probe.
IC la and IC1b form a simple multivibrator type circuit, and IC1c acts as a pulse shaper. (The unused gate, IC Id, is connected so as to minimise battery current consumption.) The output is an excellent square-wave having fast rise and fall times with flat top and bottom base lines. Frequency is about 1 kHz .

The output feeds the simple ladder attenuator (two per cent resistors should be used if high attenuation accuracy is required). VR1 should be set to give 2.0 V at point X with respect to 0 V .

D1 provides a stabilised 5V for the IC so that the ladder network receives a constant level square wave. Battery current drain is about 25 mA .
A. Andrews, Brighton.

(5025)

Simply ahead.. ILP'S NEW GENERATION OF HIGH

With I.L.P. performance standards and quality already so well established, any advances in I.L.P. design are bound to be of outstanding importance - and this is exactly what we have achieved in our new generation of modular units. I.L.P. professional design principles remain - the completely adequate heatsinks, protected sealed circuitry, rugged construction and excellent performance. These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have concentrated on improvements whereby our products will meet even more stringent demands such, for example, as those revealed by vastly improved pick-ups, tuners, loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system.
I.L.P. modules are for laboratory and other specialised applications too.

and staying there

PERFORMANCE MODULAR UNITS

VALUES OF COMPONENTS FOR CONNECTING TO HY5 Volume - $10 \mathrm{~K} \Omega \log$.
Bass/Treble $-100 \mathrm{~K} \Omega$ linear. Balance $-5 \mathrm{~K} \Omega$ linear.

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$. and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.
$\mathbf{f 4 . 6 4 + 7 4 p \text { VAT }}$

THE POWER AMPLIFIERS

I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer, the other with toroidal transformer, having half the weight and height of conventional laminated types.

Model	Output Power R.M.S.	Distortion Typical at 1 KHz	Minimum Signal/ Naise Ratio	Power Supply Voltage	Size in mm	Weight in gms	$\begin{aligned} & \text { Price + } \\ & \text { V.A.T. } \end{aligned}$
HY30	$\begin{aligned} & 15 \mathrm{~W} \\ & \text { into } 8 \Omega \\ & \hline \end{aligned}$	0.02\%	80 dB	$-20-0 .+20$	$105 \times 50 \times 25$	155	$\begin{aligned} & \mathbf{£ 6 . 3 4} \\ & +95 p \end{aligned}$
HY50	$\begin{aligned} & 30 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	90 dB	$-25-0+25$	$105 \times 50 \times 25$	155	$\begin{aligned} & £ 7.24 \\ & +£ 1.09 \end{aligned}$
HY 120	60 W into 8Ω	0.01\%	100dB	-35-0-+35	$114 \times 50 \times 85$	575	$\begin{array}{r} £ 15.20 \\ +£ 2.28 \\ \hline \end{array}$
HY200	$\begin{aligned} & 120 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100dB	-45-0.+45	$114 \times 50 \times 85$	575	$\begin{aligned} & £ 18.44 \\ & +£ 2.77 \end{aligned}$
HY400	$\begin{aligned} & 240 \mathrm{~W} \\ & \text { into } 4 \Omega \\ & \hline \end{aligned}$	0.01\%	100dB	$-45-0-+45$	$114 \times 100 \times 85$	1.15 Kg	$\begin{aligned} & £ 27.68 \\ & +£ 4.15 \end{aligned}$

Load impedance - all models $4 \cdot 16 \Omega$
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{~Hz} \cdot 3 \mathrm{~dB}$

NO QUIBBLE

5 YEAR GUARANTEE
7. DAY DESPATCH ON

ALL ORDERS
INTEGRAL
HEATSINKS
BRITISH DESIGN AND
MANUFACTURE
FREEPOST SERVICE

PSU $30 \pm 15 \mathrm{~V}$ at 100 ma to drive up to诸 HY5 pre-amps $£ 4.50+£ 0.68$ VAT for 1 or 2 HY30's $\quad £ 8.10+£ 1.22$ VAT for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT with toroldal transformer for 1 or $\mathbf{2 H Y 1 2 0 ' s} \quad \mathbf{£ 1 3 . 6 1 + £ 2 . 0 4}$ VAT with toroidal transformer for
1 HY200 $\quad £ 13.61+£ 2.04$ VAT
PSU. 180 with toroidal transformer for
$£ 23.02+£ 3.45$ V AT

PSU 36
PSU 50
PSU 90

- ALL U.K. ORDERS DESPATCHED POST PAID HOW TO ORDER, USING FREEPOST SYSTEM Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.
 Canterbury Kent CT2 7EP.
Telephone (0227) 54778

Please supply

Total purchase price $£$

I enclose Cheque \square Postal Orders \square International Money Order \square Please debit my Account/Barclaycard Account No.

NAME
ADDRESS

RST
VALVE MAIL ORDER CO.
Climax House Fallsbrook Road, London SW16 6ED

SPECIAL EXPRESS MAIL ORDER SERVICE

[^2]Post and Packing 30p por ordor
to press
All prices include VAT Telex 948708

A Conference and Exhibition to help you come to terms with the Second Industrial Revolution. at the WEMBLEY CONFERENCE CENTRE JANUARY 30-FEBRUARY 1 rom 9,30 meach diar

CONFERENCE SESSIONS enable you to share the experience of experts in the microtechnology field.

A BUYERS' FORUM helps you to establish
effective criteria for selection of goods and
sarvices.
A PROFESSIONAL DEVELOPMENT SEMINAR
introduces managers to the use of microprocessors
in business and industry.
AN EXHIBITION where you can talk persanally
with the suppliers of microtechnology products
and services
Admission to the exhibition is free. You may book
in on the spot for conference sessions. or obtain
further details of fees and a booking form from
MKRESVSTEMS
CONFERENCE Room 821. Dorset House, Stamford Street, Landon. SE19LU.

FIRST and STILL BEST!

We've been producing our Electronics Components Catalogue for over 20 years. During that time we've learned a lot, not only in the art of catalogue production but in building a business that serves the needs of constructors Litle wonder that we have a reputation second to none for our catalogue - and for the service that backs it up. Experience both for yourself. Just send $£ 1.30$ with the coupon and a catalogue will come by return of post.
START THE NEW YEAR WELL with a home radio catalogue

- About 2,500 items clearly listed and Indexed.
- Profusely illustrated throughout.
- 128 A-4 size pages, bound in full-colour cover.

Bargain list of unrepeatable offers included free.

- Catalogue contains detalls of simple Credit Scheme.

HOME RADIO (Components) LTD.,
Dept. PE., 234-240 London Road, Mitcham, Surrey CR4 3HD
Phone 01-648 8422
POST THIS COUPON
with cheque or P.O. for E1.30Please write your Nome and Address in block capitals
NAME
\qquad
home radio (Components) LTD., Dept. PE
(Regn. No
234-240 London Road, Mitcham, Surrey. CR4 3HD London 912966

Build the World Famous CHROMA~CHIME

Give your friends a warm welcome
This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.

- Handsome purpose built ABS cabinet
- Easy to build and install
- Uses Texas Instruments TMS1000 microcomputer - Absolutely all parts supplied including I.C. socket - Ready drilled and legended PCB included - Comprehensive kit manual with full circuit details - No previous microcomputer experience necessary - All programming permanently retained is on chip ROM - Can be built in about 3 hours! - Runs off 2 PP3 type batteries.

- Fullv Guaranteed

* Saue pounds on normal retail brice by building yourself.

TMS1000N-MP0027AMicro-

 computer chip available separately if required. Full 24 tune spec device supplied with data sheet and fully guaranteed.New low price only $£ 4.95$ inc. p\&p
R/C MODELLERS - LISTEN FOR THE C.B. MENACE GET A 27 MHZ MONITGR

* Audibly confirm your channel's clear.
* Tunes over whole $27 \mathrm{mh} x$ model band. (CB)
* Receives normal broadcast AM/FM
bands as well.
* Sensitive with telescopic aérial.
* Totally portable.
* Runs on standard batteries.

This neat three band Superhet receiver notonly provides an invaluable service, checking your channel and $T X$, but gives normal broadcast reception when you need it as well.
Costing less than a decent Servo, you'll
find it cheap and reassuring insurance!

ALL CHROMATRONICS PRODUCTS SUPPLIED WITH MONEY BACK GUARANTEE

Please send me:
P.E. 1279

TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX
NAME
ADDRESS

I enclose cheque/PO value $£$ or debit my ACCESS/BARCLAYCARD account no.

Signature

Microcomputers are coming - ride the wave! Learn to program
Millions of jobs are threatened, but millions more will be created through the microcomputer revolution. Will YOU sink or swim? Be one of the people who welcomes computers and the end of boring jobs.
Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency - all you need to start with is a knowledge of simple arithmetic and the use of decimals. And you don't need a computer.
This unique course comes as four A4 books, written by three authors well-known in the fields of microcomputing, selfinstruction and writing clear English. In 60 straightforward lessons you learn the five essentials: problem definition, flowcharting, coding the program, debugging, and preparing clear documentation.
Every lesson has thought-provoking questions and we never ask for mindless drudgery. You will know that you are mastering the material and feel a rare satisfaction. Harder problems are provided with a series of graded hints, a unique and really helpful approach. So you never sit glassy-eyed with your mind a blank. First time through, you may need to read most of the hints, but you will soon learn to tackle tough programming tasks - such as writing programs for computer games, preparing graphs on an output printer, calculating compound interest tables and estimating costs.

COMPUTER PROGRAMMING IN BASIC £7.50

Book 1 Computers and what they do well; READ. DATA, PRINT; powers, brackets, variable names; LET; errors; coding simple programs.
Book 2 High and low level languages; flowcharting; functions; REM and documentation; INPUT. IF...THEN, GO TO; limitations of computers, problem definition.
Book 3 Compilers and interpreters; loops. FOR...NEXT; RESTORE; debugging; arrays; bubble sorting; TAB.
Book 4 Advanced BASIC; subroutines; string variables; files; complex programming; examples; glossary.

THE BASIC HANDBOOK £11.50

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

FORTRAN COLORING BOOK £5.40

"It you have to learn Fortran (and no one actually wants to assimilate it for the good of the soul) buy this book. Forget the others-this one is so good it will even help you understand the standard, dense, boring, unintelligible texts." New Scientist.

A.N.S. COBOL £4.40

Covers the most widely used computer language in business today. It teaches how to write a COBOL program and compile it effectively, paying proper attention to spelling, punctuation, and format.

THE ALGORITHM WRITER'S GUIDE £3.75

FLOW CHARTS \& ALGORITHMS help you present: safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.
The Algorithm Writer's Guide
explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

Cambridge Learning Enterprises

Understand Digital Electronics

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be 'phoning people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

DIGITAL COMPUTER LOGIC AND ELECTRONICS $£ 7.00$

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.

Book 1 Binary, octal and decimal number systems; conversion between number systems.
Book 2 AND. OR, NOR and NAND gates and inverters; Boolean algebra and truth tables.
Book 3 Positive ECL; De Morgans Laws; designIng logic circuits using NOR gates Book 4 R-S and J-K flip flops; binary counters, shift registers and half adders

DESIGN OF DIGITALSYSTEMS £11.50

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic. Book 3 Half adders and full adders; subtractors; serial and parallal adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring. Johnson and exclusive-OR feedback counters: random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control programme structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program Interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

O-LEVEL ENGLISH LANGUAGE £7.00

More and more jobs require a C-GRADE PASS, and over 250,000 people fail to get this every year. Will one of them be in your family? This new course, written by experts in a style that's serious yet fun to read, shows you how to mark your own work and compare it with the work of other people in their exam year. Set your own pace and assess your results immediately with no postal delays: watch your speed and standards improve. In Book 1 learn how you will be marked on COMPREHENSION, Book 2 covers SUMMARY,
PUNCTUATION \& SPELLING, and Book 3 coaches you in the principles of COMPOSITION. Size: 3 A4 volumes totalling 250 pages.

SELF-INSTRUCTION COURSES

CAMBRIDGE LEARNING ENTERPRISES, UNIT 27. RIVERMILL SITE, FREEPOST, ST.IVES, HUNTINGDON, CAMBS PE17 4BR, ENGLAND
TELEPHONE: ST.IVES (0480) 67446
All prices include worldwide postage (airmail extra) If order comes to $£ 15$ or more, deduct $£ 2$
Please allow 21 days for delivery
GUARANTEE No risk to you.
If you are not completely satisfied your money will be refunded when books are returned in good condition.

Please send me the following books:
......Computer Programming in BASIC (4 books) at $\mathbf{£ 7 . 5 0}$
.....The BASIC Handbook at $\mathbf{E 1 1 . 5 0}$
... FORTRAN Coloring Book at $£ 5.40$
......A.N.S. COBOL at $\mathbf{£ 4 . 4 0}$
......Algorithm Writer's Guide at £3.75
Digital Computer Logic \& Electronics (4 books) at $£ 7.00$

Design of Digital Systems (6 books) at $£ 11.50$
..... O-Level English Language (3 books) at $£ 7.00$
I enclose a *cheque/PO payable to Cambridge Learning Enterprises for \mathbf{E}.
Please charge my
("delete where applicable)
*Access/Barclaycard/Nisa/ Eurocard/Mastercharge/Trustcard
Diners Club.
Account No.

Signature

Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers (inc. Eire) should send a bank draft in sterling drawn on a London Bank, or quote credit card number.

Name

Address

Cambridge Learning Enterprises, Unit 27, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR, England.

TOTAL AMPLIFICAION FROM CRIMSON ELEKTRIK

_-WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

STEREO PRE-AMPLIFIER POWER AMPLIFIER

CPR 1-THE AD.V ANCED PRE-AMPLIFIER
The best pre-amolifier in the U.K. The superiority of the CPR 1 is probably high slewing rate ensures clean loo, even with high outout cartridges tracking heavily modulated records. Common-mode distortion is ellminated by an unusual design. R.I.A.A. Is accurate to 1 dB ; slgnal to nolse ratlo is 70 dB relative to 3.5 mV : distortion < 005% at 30 dB overload 20 kHz

Following this stage is the flat gaintbalance stage to bring tape, tuner, etc. up to power amp. slonal levels. Slgnal to nolse ration 8sdb; slew-rate $3 \mathrm{~V} / \mathrm{US}$;
T.H.D. $20 \mathrm{H}_{2}-20 \mathrm{kHz}<.008 \%$ at any level. F.E.T. muting. No controls are fitled. There is no provision for tone controls. CPh 1 slze $1 \mathrm{~s} 138 \approx 8 C=20 \mathrm{~mm}$. Sunplv to be ± 15 volis.
MC 1-PRE-PRE-AMPLIFIER
Sultable for nearly all moving-coll cartridges. Send for detalls
X02 : X03 - ACTIVE CROSSOVERS
X02 - two way, X03 - three way. Slope $24 \mathrm{~dB} / \mathrm{octave}$. Crossover points set to order within 10\%.

REG I-POWER SUPPLY
The regulator module, REG 1 provides $\mathbf{1 5 - 0 - 1 5 v}$ to power the CPR 1 and MC 1 It can be used with any of our power amp supplies or our small fransformer TR 6. The power amp *il will accommodate it.

POWER AMPLIFIERS

It would be pointiese to list in so small a space the number of recording studlos educatlonal and government establishments, etc, who have been usingCRIMSON amps satlsfactorlly for quite some time. We have a reputation for the highes have the same specificallon: T.H.D. typically -01% any power 1 kHz ; 8 ohms. T.I.D. Insignificant; slew rate limit $25 \mathrm{~V} / \mathrm{uS}$; signal to noise ratio 110 dB ; frequency response $10 \mathrm{~Hz}-35 \mathrm{kHz}$, 3 dB ; stablity unconditional; protection-drives any load safely; sensitivity 775 mV (250 mV or 100 mV on request); size t20. 80 . 25 mm .

POWER SUPPLIES
We produce suitable power supplles which use our superb TOROIDAL transformers only 50 mm high with a 120-240 orimary and single bolt fixing (ineludes capacltors/bridge rectifier).

PRE-AMPLIFIERKIT
This includes all metalwork, pots, knobe atc! to make a complete pre-amp with the CPR 1 (S) module and the MC 1 (S) if required.

ACTIVE CROSSOVERS
X02......E15.16 X03........e23.58 POWER AMPLIFIER MODULES $\begin{array}{ll}\text { CE } 60860 \mathrm{~W} / 8 \text { ohms } 35-0-35 v & £ 19.52 \\ \text { CE } 1004100 \mathrm{~W} / 4 \text { ohms } 35-0-35 \mathrm{v} & \mathrm{E} 23.02\end{array}$
 CE $1704170 \mathrm{~W} / 4$ ohms $45-0-45 \mathrm{v}$ £ C 31.0 CE $1708170 \mathrm{~W} / 8$ ohms $60-0-60 \mathrm{~V}$ £ 33.97 TOROIDAL POWER SUPPLIES
CPSIIOR $2: C E 608$ or $1 \times$ CE 1004 E1 CPS1 Ior $2:$ CE 608 or $1 \times$ CE 1004
CPS2 for $2 \times$ CE 1004 or $2 / 4 x$ CE 608 CPS 3 1or 2 a CE 1008 or 1 . CE 1704 CE 1704 2 A CE 1008 or $1 \times$ \&18.80 CPSS for $1 \times$ CE 11008 CPSE for $2 \times$ CE 1704 or $2 \times$ C CES 17082 HEATSINKS Light duty. $50 \mathrm{~mm}, 2^{\circ} \mathrm{C}$ W MCIS $\ldots 33.17$ Medium power. 100 mm $1 \cdot 4^{\circ} \mathrm{C} / \mathrm{W}$........................ Disco/group, $150 \mathrm{~mm}, 1.1^{\circ} \mathrm{C} / \mathrm{W}$ Fant 80 mm , state 120 or $240 \mathrm{~V}, \ldots$ 100 mm heatsinks, $2 \propto .4^{\circ} \mathrm{C} / \mathrm{W}$ $65^{\circ} \mathrm{C}$ max. with two 170 W

Pre-amp Kit

POWER E38.07

 POWER AMP PRE-AMPS PRE-AMPS: able in two ver-slons-one uses slandard components. and the other (the S) usesMO where necessary and tantalum capaeltors. CPRI $\mathbf{E} 31.65$ $\mathrm{MCl} \ldots .$. £ 21.28 POWER SUPPLY $\begin{array}{lll}\text { REGI } & \mathbf{E 6 . 9 0}\end{array}$ Obtain up to 340 W using $2 \times 170 \mathrm{~W}$ amps and thls
module BDI 55.75

TR6..... E1.97 BADGEA SOUND SERVICES LTD BRIDGE
DRIVER, BDI 46 WOOD STREET, LYTHAM ST. ANNES

CRIMSON ELEKTRIK IA STAMFORD STREET, LEICESTER. LE1 GNL Tel: (0533) 553508
U.K.-please allow up to 21 daye All prices shown are UK only and include VAT and post. COD 90p extra, £100 limit. Export is no problem, please wite for specific quote. Send large SAE 3 International Reply Coupons for etalled information. LANCASHIRE FY8 100
DOWN HI-FI AND VIDEO CENTRE 66, ABBEYST., BANGOR N. IRELAND

Wilmslow Audio

THE firm for speakers!

SEND 30p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

AUDAX © AUDIOMASTER BAKER BOWERS \& WILKINS - CASTLE CELESTION CHARTWELL COLES - DALESFORD DECCA EMI EAGLE - ELAC FANE GAUSS GOODMANS I.M.F. ISOPHON JR - JORDON WATTS - KEF LEAK O,LOWTHER McKENZIE MONITOR AUDIO - PEERLESS RADFORD - RAM - RICHARD ALLAN - SEAS SHACKMAN STAG TANGENT TANNOY VIDEOTONE WHARFEDALE YAMAHA

WILMSLOW AUDIO (Dept. P.E.) SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

[^3]Tel.: Wilmslow 529599 for Speakers
Tel.: Wilmslow 526213 for $\mathrm{HI}-\mathrm{Fi}$

CLEARANCE SALE

Large quantity of electronic goods, equipment, instruments and components, both perfect and faulty for sale by Mail Order Only.

Electronic watches, clocks, clock/radios, audio equipment, in-car entertainment, toys and novelties at bargain prices.

Quantities of damaged and faulty goods for you the enthusiast to repair or strip. Make one good item from two faulty ones etc.

We are acting agents for a large inporter clearing his post-Christmas surpluses.

Send large stamped addressed envelope NOW for our January/February lists.

MELBOURNE PRECISION ENTERPRISES LTD., 78 Castle Street, Melbourne, Derby.

EHROWRSOMNE electranies orders upon request or S.A.E

Dept PE 1, 56 FORTIS GREEN ROAD, MUSWELL HILL, LONDON, N10 3HN
TEL: 018833705018832289

92 GODSTONE ROAD WHYTELEAFE SURREY CR3 OEB									VAT must be added at 15% to all prices shown. P\&P 25p . VAT. Send SAE for full catalogue including books. resistors, capacitors. vero, etc.				
7400	0.10	7483	0.58	74166	0.7	4021	0.80	4160	1.05	LINEAR			
74400	0.23	7484	0.88	74167	2.00	4022	0.80	4161	1.05	CA3045-14	DAD	18	0.16
7401	0.11	7485	068	74170	1.50	4023	0.15	4182	1.05	CA3046-14	0.50	20 pin	0.18
7402	0.11	7486	0.22	74172	6. 30	4024	0.50	4163	1.05	LM380N-14	0.85	22 pin	0.22
7403	0.11	74586	0.42	74173	1.15	4025	0.15	4164	1.05	LM381N-14	140	24 pin	0.24
7404	0.11	7489	1.65	74174	0.65	4028	1.15	4174	1.05	[M710-14	0.30	28 pin	0.26
$74 \mathrm{HO4}$	0.23	7490	0.32	74175	0.60	4027	0.42	4175	0.98	LM711 14	0.30	40 pin	0.37
7405	0.12	7491	0.64	745175	1.00	4028	0.65	4194	1.05	MC1310P-14	0 38	811595	125
74405	0.23	7492	0.36	74176	0.58	4029	0.75	4404	0.48	NE555-8	020	81 1598	1.25
7408	0.22	7493A	0.30	74177	-58	4030	0.46	4412	0.19	NE556-14	0.50	811597	1.25
7407	0.22	7494	0.72	74178	1.50	4031	1.95	4428	0.38	NE25018.14	080	811598	1.25
7408	0.13	7495	0.50	74179	150	4032	088	4445	0.90	SN75110N	0.40	MICA	OR
7409	0.13	7496	0.48	74180	0.15	4033	1.25	4449	0.18	SN76003N	1.80	CRYS	
7410	0.11	7497	1.90	74181	0.58	4034	1.15	4501	0.18	SN76013N	125	FREQ	
74410	023	74100	0.85	74182	0.70	4035	1.00	4502	0.10	SN76023N	1.25	Mh	
7411	0.17	14104	0.39	745182	1.50	4036	2.70	4503	0.88	SN76033N	150	0.100	50
74411	0.23	74105	0.38	$74 \mathrm{H183}$	0.75	4037	0.85	4506	0.50	SN76477N	250	0.262	3.50
7412	0.15	74107	0.24	74184	1.30	4038	0.95	4507	0.52	TAA5508	0.32	0.300	3.50
7413	0.24	74109	0.32	741854	1.30	4039	2.75	4508	2.50	TAA6618	088	1.000	3.25
7414	0.50	74110	0.36	74186	5.00	4040	0.58	4510	0.92	TBA120S	066	1.008	3.25
74415	0.23	74111	0.58	74188	2.70	4041	0.72	4511	0.92	t8a641A	1.50	1.8432	3.50
7416	0.23	74113	0.30	74190	0.68	4042	0.67	4512	0.92	tbaboo	0.78	2.000	3.25
7417	0.23	74116	1.50	74191	0.68	4043	030	4513	1.85	T8AB10S	0.75	2097	325
7420	011	74118	080	74192	0.62	4044	0.80	4514	2.30	T8A8205	0.68	2.457	3.25
7421	0.20	74119	1.50	7193	0.82	4045	1.25	4515	2.60	TCA270S0	1.60	3.276	2.60
1422	0.16	74120	0.95	74194	0.62	4046	1.05	4516	0.99	tdazo20	3.00	3.579	2.60
7423	0.21	74121	0.25	74195	0.60	4047	0.85	4517	3.75	ZN414	0.80	3.932	2.50
1425	0.23	74122	0.39	74196	0.72	4048	0.41	4518	0.90	voliage		4000	2.60
1426	0.23	74123	0.38	74197	0.58	4049	0.13	4519	0.50	aegulators		4433	2.60
7427	0.24	74125	0.32	74198	1.00	4050	0.40	4520	0.35	LM300N- 7099	0.75	4.915	2.60
7428	0.26	74126	0.35	74199	120	4051	0.72	4521	2.20	LM309K.T03	1.30	5.000	2.80
7430	011	74128	0.75	74221	1.30	4052	0.72	4522	1.25	UA123-14	0.32	5068	2.60
74530	0.23	74130	0.50	74273	2.05	4053	0.72	4526	125	7805-T0220	0.70	5.185	250
7432	022	74132	0.55	74278	1.65	4054	1.00	4527	1.40	7812.T0220	0.70	5.875	2.60
7433	0.30	74134	0.38	74279	1.10	4055	1.05	4528	0.92	7815.70220	0.70	8.000	2.60
1437	0.21	74135	0.70	74283	1.65	4060	1.00	4529	1.30	7824-T0220	0.70	6.144	2.60
7438	0.21	74136	0.52	74284	3.40	4086	0.48	4530	0.78	7905-T0220	0.78	5553	2.60
1440	0.12	74137	0.80	74293	1.30	4087	3.25	4531	0.99	7912-70220	0.78	8000	2.60
7441	0.50	74141	0.55	74298	1.80	4088	0.20	4532	1.20	7915.T0220	0.78	8.867	2.60
7442	040	74142	1.95	74390	1.75	4069	0.17	4534	5.20	LOW PRDFILE		10.000	2.60
7443	0.70	74143	2.50	74393	1.25	4070	0.17	4538	3.60	DIL SOCKETS		12.000	2.60
7444	0.70	74144	2.50	CMOS		4071	0.17	4538	1.25	8 pin	0.09	13.516	2.50
7445	0.52	74145	0.55	4000	0.13	4072	0.17	4539	0.99	14 pin		18.0	
7446	0.60	74147	9.40	4001	0.15	4073	0.17	4541	1.05				
7447	0.48	74148	1.25	4002	0.15	4075	0.17	4543	1.50	LEO:			
7448	0	74150	0.68	4006	0.85	4076	0.4	4549	392			25*	
7450	0.11	74151	0.48	4007	0.16	4077	0.21	4553	3.60				
7451	0.11	74153	0.48	4008	0.78	4078	0.18	4554	1.25	Yellow			
74452	0.23	74154	0.82	4009	0.40	4081	0.17	4555	0.75	GRets	0.1		
7453	0.11	74155	050	4010	0.40	4082	0.18	4556	0.76	Led clip			
7454	0.11	74156	0.50	4011	0.15	4085	0.63	4557	3.25	TMS 4030409	9681	OXMAMIC	100m
7460	0.11	74157	0.50	4012	0.15	4086	0.63	4558	1.25	ACCESS (210)	74) M	Emory	N OH
7470	0.25	74158	0.68	4013	0.40	4089	1.35	4559	3.95			76	
7472	022	74159	1.90	4014	0.78	4093	0.50	4560	1.98	300ms max. a	ctess	time 470	k. ond
7473	0.25	74160	0.60	1015	0.70	4094	1.68	4581	0.72	or write cycle	time 1	In compa	on all
7474	0.25	74161	0.58	4016	0.40	4095	0.90	4562	5.50	inpurts. No pull	Il up	resistors	low
74574	0.42	74162	0.62	4017	0.72	4096	0.90	4568	1.42	power diss ipatio	on. 35	0 mW operi	0.3 mW
7475	0.30	74163	0.62	4018	0.75	4097	3.30	4588	2.50	standby. Single	low ca	pactionce	
7476	0.25	74164	068	4019	042	4098	0.95	4569	1.60	Datas sheet avail			
7480	0.43	74165	0.68	4020	0.98	4099	1.40	4580	498	2.40 each 4 -	10\%	8.20\%	

STORAGE CABINETS

Metal Cabinets $12^{\prime \prime}$ wide $\times 5 \frac{3^{\prime \prime}}{}{ }^{\prime \prime}$ deep, finished blue with transparent plastic drawers.

Type H No. of Drawers Price (ins) Sm MedLge

1118	11	15	2	1	$£ 10.75$
1633	16	30	2	1	$£ 13.75$
1838	18	35	2	1	$£ 15.75$
2236	22	30	4	2	$£ 17.85$
2260	22	60	-	-	$£ 17.95$

Access/Barclaycard welcome Prices include VAT and Post. Cheque/P. \mathbf{O}. to: Millhill Supplies (Tools).
35 Preston Crowmarsh. Benson.
Oxon OX9 6SL.

Electronics Make ajob-or hobby-ofit

The opportunities in electronics, today, and for the future are limitless - threughout the world - jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, $T . V$. and all associated equipment - can make for a varied, interesting and highly renumerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equipment coming on the world market.
We give modern training courses in all fields of electronics. practical D.I.Y. courses - courses for City and Guild exams, the Radio Amateur Licence and also training for the new Computer Technology. We specialise only in electronics and
 have over 40 years of experience in the subject. - Details sent without any obligation from

NAME
ADDRESS

STARCHASER THE NEWFOUR CHANNEL LIGHTING CONTROLLER FROM TUAC

 - 4 channels

 - 4 channels 750W each over 1000 different sequence
 patterns and effects 3 alternative sound
 triggers A.G.C. O simulated strobing O zero reference triac firing superb TUAC quality and reliability $£ 99.00$ inc.VAT.

4 CHANNEL SOUND TO LIGHT SEQUENCE CHASER -4LSM1

3 CHANNEL AUTO SOUND TO LIGHT - AFL 6

 essary.

* RCA 8A Triacs
£17.50 * 500W perchannel * 2 channels flip flop, 1 channel sound to TLAC
light * Fully automatic via built in mic. * No connection to amp neccatalogue, please enclose a stamp.

Send for our free 28 page

TUAC MAIN DISTRIBUTORS (Callers Only)
Birmingham, George Matthews, 85/87 Hurst Street, (Tel: 6221941)
Canterbury, Socodi, 9 The Friars, (Tel: 60948).
Crewo, Cookies Disco Centre, 126/128 West Street, (Tel: 4739). Exeter, Electrosure, Fore Street, (Tel: 56687).
London, Garland Bros., Deptford Broadway, (Tel: 01-692 4412). London, Session Music, 163 Mitcham Road, Tooting,
(Tel: 01.6723413) Mon-Sat 10 am to 5.30 pm . Closed Wed.
 Manchester, A1 Music, 88 Oxford Street, (Tel: 236 0340). Middlesborough, Salcoglen, 43 Borough Road, (Tet: 242851).

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to.our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Cours es

Colour T.V. Servicing
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical engineering, Installations \& Contracting

Other Carear Courses

A wide range of other technical and professional courses are available including GCE.

Post this coupon or 'phone today for free ICS careers guide.

Name
Address

Age

To ICS, Dept. R273, Intertext House, London SW8 4UJ
or telephone 01-622 9911 (all hours)

HI-FI TONE ARM BARGAINS

- from Britain's Leading Audio Store

ARISTON 8A 100-low mass
high quality arm. S shaped. Low compliance. Universal SME type Mead f nell. Complete with anti-skating device. SONLC $£ 15.95$

AUDIO TECHNICA AT-1007
S shaped arm. Low compltance magnesium universal head shell. Low capacitance heads. High trackability SONIC PAICE £29.95
ALL LEADING MAKES OF HI-FI and MANY OTHER ACCESSORY BARGAINSAVAILABLEFROMTHECOMMUNICATIONS CENTRE:

2 yEARS GUARANTEE

a EuTUPEN 900 am 600 mm Mon S .
CSONIC SOUND AUDIO
rel HI Fi Dept 015809311 RAOIO Dedi Lond 01637 : 908

OHIO SCIENTIFIC SUPERBOARD 2
 We are the only people who include a froe power supply and modulator kit

 in our special offer on Superboard 2 This superb home computer has a full key board and a cassette interiface and uses your N as a vdu 8 K besic. 4 K ram. Fully assembledSINCLAIR PRODUCTS
FM200 £51.95, case £3.40, adaptor \&11.27. Microvision TV 1.44, mains adaptor $\mathbf{\text { C6.88. PDM35 }}$ 29.76, mains adaptor £3.40, case £3.40. DM350 £71.82. DM450 £102.17. DM236 £51.95. Accessories for all 3 models:rechargeable batteries £7.99, mains adapprog calculator $£ 22.95$. Now SCi 10 10 M Hz oscilloscope E144.95.
COMPUTER GAMES
Chess champion 6 £49.95. Chess challenger 7 E84. Voice chess challenger $£ 227.95$. Checker challenger 2 £46. Checker challenger 4. £84. Star chess $\mathbf{8 6 2}$. GrandVideocarts $£ 12.60$. Philips G 7000 Videopak home computer £149. Videopaks £12.95. Atari Videocomputer f147. Cartridges $\mathbf{1 4 . 8 5}$ fexcept chess $£ 43.95$ and backgammon £33.95).
CONTINENTAL SPECIALITIES
RODUCTS
EXP300 £6.61. EXP350 £3.62 EXP325 1.84. EX
C20.70.

TV GAMES
Tank battles kit C6.34. AY-3-8500 chip £5.27, kit E4.26. Stunt cycle AY-3-8780 chip $£ 13.63$, kit $£ 4.00$. 10 game paddle 2
AY-3-8600 chip $£ 10.25$, kit $£ 7.03$ Racing car chlp AY-3-8603 f13.63. Modified shoot kit $£ 5.28$. Rifle kit $£ 5.27$. Colour generator kit f 9.05 . Jovstick 220 K f 1.80 .
MAINS TRANSFORMERS
$6-0-6 \mathrm{~V} \quad 100 \mathrm{ma} 76 \mathrm{p}, 1 \frac{1}{2} \mathrm{a}$ £2.60, $9-0-9 \mathrm{~V}$
$75 \mathrm{ma} 76 \mathrm{p}, 1 \mathrm{a}$ 100 mg 92 D . 1 A £2.75. 15-0-15V 1 e8.09
JC12 AND JCZO ANPLIFIERS
Integrated circult audio amplifier chips with Integrated circuit audio amplifier chips with £2.08. JC20 10 W atts $£ 3.14$. PAINTED CIRCUIT MATERIALS
 E4.36. 40 sq ins pcb 66 p . $1 \mathrm{lb} \mathrm{FeCl} \mathrm{£1.30}$. dritl bits $1 / 32^{\prime \prime}$ or 1 mm 27 p. oiching dish 39 . laminate cutter 820 .

SWANLEY ELECTRONICS
 DEPT PE, 32 Goldsel Rd., Swanley, Kent BR8 8 EZ.

Moil order only. Please add 30ρ to the totel cost of your order for postage. Prices include VAT
unless sfated. Lists 24ρ post free. Overseas customers deduct 13%. Official credit orders welcome.

S-DECS AND T-DECS u-DecB £7.16. 16 dill adaptor $£ 2.31$. BATTERYELIMINATORS 3-way types with switchad output and 4 way multi-jack:- $3 / 4, / 6 v 100 \mathrm{ma} £ 2.39,6 / 7 \frac{1}{2} / 9 \mathrm{v}$ 300 ma £3.14. 100 ma radio types with press
stud connectors $9 \mathrm{v} \quad £ 3.57,6 \mathrm{v} £ 3.57$, 41 v £3.57.9 $+9 v$ £4.79.6 +6 v £4.79, $41+$ $41 v 84.79$. casserte recorder mains unit $3+4$ 100 ma with 5 pin din plug $£ 3.57$. fully stabilized type $3 / 6 / 7 \frac{1}{2} / 9 \mathrm{v} ~ 400 \mathrm{ma}$ f5.76. car convertors 12 v de input, oulput 9 v 300 ma $\frac{1}{3 / 4 \frac{1}{2} / 6 / 7+1 / 9 / 12 v 800 \mathrm{ma} £ 2.66 \text {. } \mathrm{f} \text {, outpu }}$ BATTERYELIMINATOR KITS
100 ma radio types with press-stud connec tors $4 \frac{1}{4} \mathrm{f} £ 1.49,6 \mathrm{v} £ 1.49,9 \mathrm{v} £ 1.49,4 \frac{1}{2}+$ $4 \mathrm{v} \mathrm{f} 1.92,6+6 \mathrm{v} \mathrm{f} 1.92,9$
cassette type $.7 \frac{1}{2} \mathrm{v} 100 \mathrm{ma}$ with din plug f 1.49 heavy duty 13 way whoes $41 / 6 / 7 / 8 \frac{1}{2} / 11 / 13 / 14 / 17 / 21 / 25 / 28 / 34 / 42 v$ 1A £4.95, 2A £7.72. car convertor input 12 de, output $6 / 7 \frac{1}{2} / 9 \mathrm{~V} 1$ A stabilized $£ 1.35$
STAB LIZED POW RR KITS The first price is for kit witho
the bracketed price includes uranstiormer way types $3 / 41 / 8 / 7 / 1 / 9 / 12 / 15 / 18 \mathrm{v} 100 \mathrm{ma}$ £ 1.74 (E2.50), 1A £2.98 (E5.10), 2A £4.10 ($£ 6.87$). variable volitage models $2-18 \mathrm{v}$ (55.95), 1-30v2A 4.98 (11 24)
BI-PAK AUDIO MODULES
AL30A C4.08. PA12 f8.38. PS 12 f 1.58 T538 $£ 2.70$. S450 £25.06. AL60 £5.06. PA100 £17.33. SPM80 £4.74. BMT80 £6.08. Sterso 30 £ 21.57 . MA60 £38.27.
1 N 41480.9 p . 1 N 40023.1 p .7418 dil 18 p 72314 dil 31 p . NE555 8 dil 25 p . bc 183 . bc213. bc 547 , bc 5494.2 p. bc 182, bc 184 bc212, bc 214 , bc548 5p. tip 31 c , tip32c 30p. tip 41 c 39p. bd 131 , bd 13227 p . plastic equidge $15,25, .5,1,2,3,5 \mathrm{Amp}$ quickblow 1 p . anti-surge 3.6 p . resistors 5% quich E12 10R to $10 \mathrm{M} 1 \mathrm{p}, 0.8 \mathrm{p}$ for $50+$ of one value polyester capacitors 250 v .015 . .068, 1 mi $\frac{1.5 p}{} .01, .033, .332 .8 \mathrm{p}, .022, .047 \mathrm{mf} 3.3 \mathrm{p}$. 63 v 10 to 1000 pt 3 p . In2 2 to 10 n 4 p . ceramic capacitors 50 V E6 22pf to 47 n 2 p . electrolytic capacitora $50 \mathrm{v} .5,1,2 \mathrm{mf} 5 \mathrm{p}, 25 \mathrm{v}$
$5,1 \mathrm{mf} 5 \mathrm{p}, 16 \mathrm{v} 22,33 \mathrm{~m}, 5 \mathrm{p}, 47,68 \mathrm{mt}$ $3.5 \mathrm{p}, 100 \mathrm{mi} 6 \mathrm{p}, 330,470 \mathrm{mi} 9 \mathrm{p}, 1000 \mathrm{~m}$ 10p. zeners 400 mW E24 $2 \vee 7$ to 33 v 7 p . preset pots subminiature 0.1 W horiz or ver
100 to 4 M 76 p . potentiometers tw 4 K 7 倍 100 to $4 \mathrm{M7} 7 \mathrm{bp}$. potentiometers iw $4 k 7$ io
 LEDs $9.7 p$. ic so
10.1 d .16 dil 12 p

mplifiers from HiAmp. All fully short circuit and open circuit protected with thermal limiting. Making these amplifiers indestructable from stress other than incorrect supply voltage.

1) $£ 5.1910$ watts into 4 ohm . 1% distortion max. $30 \mathrm{~Hz}-80 \mathrm{KHz}$, supply voltage $\pm 18 \mathrm{v}$
2) $£ 6.7920$ watts into 4 ohm $.1 \%$ distortion max. $30 \mathrm{~Hz}-80 \mathrm{KHz}$, supply voltage $\pm 22 \mathrm{v}$.
3) $£ 15.7950$ watts into 4 ohm 1% distortion max. $30 \mathrm{~Hz}-80 \mathrm{KHz}$, supply voltage $\pm 22 v$.
4) £23.32 100 watts into 4 ohm $.1 \%$ distortion max. $30 \mathrm{~Hz}-80 \mathrm{KHz}$, supply voltage $\pm 32 \mathrm{v}$.
All prices include P.'P.
Make your own keyboards - ML-3 the reccapable switch. ML-3 individual keyboard switch with reccapable top allowing lettering by individual.
Only: 1-10 30p each 51-100 25p each 11-50 27peach P.\& P.30p.

JONES ELECTRONIC SUPPLIES
 TON ROAD HATHERSHAW OLDLIES

 Tel:061-6529879 Telex:668250

The NEW Marshall's 79/80 caralogue is just full of components

and that's not all

... our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall's
These include Audio Amps, Connectors, Boxes, Cases, Bridge Rectifiers. Cables, Capacitors, Crystajs. Diacs, Diodes, Displays, Heatsinks, I.Cs, Knobs. LEDs, Multimeters, Plugs, Sockets, Pots, Publications, Relays, Resistors, Soldering Equipment, Thyristors. Transistors, Transformers, Voltage Regulators, etc. etc.
Plus details of the NEW Marshall's 'budget' Credit Card. We are the first UK component retailer to offer our customers our own credit card facility
Plus - Twin postage paid order forms to facilitate speedy ordering
Plus - Many new products and data
Plus 100s of prices cut on our popular lines includir.g I.Cs. Transistors, Resistors and many more.
If you need components you need the new Marshall's Catalogue
Available by post 65 p post paid from Marshall's, Kingsgate House, Kingsgate Place, London NW6 4TA. Also available from any branch to callers 50 p.

Retail Sales: London: 40 Cricklewood Broadway, NW2 3ET. Tel: $01.4520161 / 2$. Also 325 Edgware Road, W2. Tel: 01-723 4242. Glasgow: 85 West Regent Street, G2 20D. Tel: 041-332 4133. And Aristol: 108A Stokes Croft, Bristol. Tel: $0272426801 / 2$.

MINIATURE MAINS TRANSFORMERS
Top quality. Split bobbin construction will give $4.5 \mathrm{~V}-\mathrm{0}-4.5 \mathrm{~V}$ at 250 MA $1 \frac{1}{\prime \prime}^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{} \times 1 \frac{1^{\prime \prime}}{2}$, all sorts of uses. DNLY 90p. 3 for $£ 2.20$.

1000 uf. 100 V . Radial, 1$\}^{\prime \prime} \times \mathbf{2}^{\prime \prime}$. DNLY 70p. 3 for $\mathbf{£ 1 . 5 0}$.
B0131's 4 for $\mathbf{£ 1 . 0 0}$

20 mm ANTI SURGE FUSES 630mA coumA. 1A. 1.24A.1.6A. 2A. 2.5A 3.15A 12 of of sach type EAB

TRAMSISTOR PACKS

 100. Full spec. new and marked. Includes BC148. BC184L ME0412, BF274. BC154 mtc. etc. E485 200 as above. and includes AC12B, 2N3055. BFY50. B0131, 8F200 mc. 83.96Buy bulk and save money. hese packs aro worth at loosi double.

Inve cone a fortumel Wore made for various music contros. Includos indopandent and interdependont latching trpes multi

BULK BARGAINS. STOCK UP FOR SUMMEA
300 mixad $\$$ a \ddagger watt resistors E 1.60
150 mixad is 2 watt resistors $\mathrm{E1}$ so
300 mixed capacitors, modern, mosi types $\mathbf{E 3 . 7 8}$
100 muxd caramic and olatic cags Cl 20
400 mixed film resistors $[2.15$
100 mixed polvstytene caps $\mathbf{1 2 . 2 0}$
100 mixed polystryene caps t
25 pots ind prisisis 15
25 prosers skifanon arc E 120
100 Histur
100 Hi-watlage lasistors wriowound Mc. $\{2.20$
300 mina
300 orinted arcuil componmis $\boldsymbol{t 1} 50$

100K MINIATUGE THUMBWHEEL SLIDER PDTS Very nest, can be banked side by side Ideal for \%. cap tuning. grophic equalizers ote. 10 for ह1
miniaturie leveldbatt. meters $\mathbf{2 0 0 \mu}$ F.S.O. as fitted to many cassette recorders 80 p

SENTINEL SUPPLY, DEPTT. P.E.
 149A BROOKMILL RD. DEPTFORD, LONDON, SE8

J. BIRKETT

(Partners: J. H. Birkett. J. L. Birkett) Radio Component Suppliers 25 The Strait, Lincoln. LN2 1JF

SMALL GLASS I POLE MAKE REED RELAY with Magnet 150 pair MINIATURE 12 VOLT RELAYS -2 Pole Change Over Contacts ${ }^{\circ} 80 \mathrm{p}$.
WIRE WOUND POTENTIOMETERS 2 watt 2 K . 10 K , 4 watt 100 K All 30 p each
WIRE WOUND POTENTIOMETERS 2 watt $2 K, 10 K, 4$ watt 100 K .
2 N 657 TOS NPN 100 VOLT 800 mA TRANSISTORS 25 p each.
2N 657 TO5 NPN 100 VOLT 800 mA TRANSISTORS a $25 p$ each.
PRECISION METAL FILM RESISTORS 0.5% 32, 39, 39.2. 68, 82. 82.5, 100, 121, 150 $270,330,332,360,365,470,562,619,620,680,681,700,750,820,909,910,1 \mathrm{~K}$ $2.15 \mathrm{~K}, 2.2 \mathrm{~K}, 3.01 \mathrm{~K}, 3.9 \mathrm{~K}, 5.1 \mathrm{~K}, 6.2 \mathrm{~K}, 10 \mathrm{~K}, 18 \mathrm{~K}, 75 \mathrm{~K}, 150 \mathrm{~K}, 200 \mathrm{~K}, 392 \mathrm{~K}, 597 \mathrm{~K}, 600 \mathrm{~K}$ 1.21 M . All at $6 p$ each.

ALLDY DIE CAST BOXES $6^{\prime \prime} \times 3.3 / 16^{\circ} \times 2^{\prime \prime}-3$ for $\mathbf{E 2 . 8 5}$.
VHF FETS $8 F 256 \mathrm{C}$ at 4 for 75 p , E304 at 4 for $£ 1$.
THYRISTORS (S.C.R's) 10 Amp Type. 100 PIV - 28p, 400 PIV - 55p, 800 PIV - 65p, TIC 47. 200 PIV 300 mA 18 p

MAINS TRANSFORMERS 240 Volt Input. Type 1.24 volt Tapped at 14 volt 1 amp $\mathbb{E} 1.30$ (P\&P 25p), Type 2. 30-0-30 volt 500mA - $\mathbf{~} 1.30$ (P\&P 25p). Type 3.45 volt 6 amp - $£ 4.50$ (P\&P95p). Type 4.20 volt 1 amp Twice 10 Voll 1 amp Twice e £4.50 (P\&P 95p). Type 5.45
 8.30 volt 1.75 amp (P\&P 25 p).

IRON CORED LFF. CHOKE 2 mH .4 amp - 50 p (P\&P 2Op)
MOS PRE-AMP I.C. TAA 320 with clrcuits e 35p.
50. 2 watt ZENERS assorted untested 60p.
60. OC 71 TRANSISTORS untested 75 .
25.5 mp STUD MOUNTING S.C.R's untested 95 p .
50.1 amp TO5 S.C.R'a untested 21
20. 10 amp STUD MOUNTING DIODES untested 60 p
50. DISC CERAMICS assorted 60p
50. BC 107-8-9 TRANSISTORS untested assorted 60p
50. AC 128 TAANSISTORS Branded but untested 960 p.
10. ASSORTED PUSH BUTTON ASSEMBLIES less knobs \& $\mathbf{£ 1 . 3 0}$
20. PHOTOTRANSISTORS AND DARLINGTONS Assorted untested e $£ 1$

DISC CERAMICS $50 \mathrm{v} . \mathrm{w}$. 22 pf, 33pf, 270 pf , 330 pf, 2,200 pf, . 01 uf - 25 p doz
TANTALUM CAPACITORS . Iuf $36 \mathrm{v.w.}, \mathrm{.22uf} 35 \mathrm{v} . \mathrm{w}$ 。, $33 \mathrm{uf} 35 \mathrm{v.w.}$, . $47 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$., 1 uf
 10v.w., Both 25 p uf 16 v .
ELECTROLYTICS CAPACITORS 2800 u 100 w . E1, $2000 \mathrm{uf} 450 \mathrm{v.w.}$. of
PAPER TYPE 1 Ouf $370 \mathrm{VAC} .5 \frac{1}{4}^{\circ} \times 1 \frac{1 ⿻^{\prime \prime}}{2} \times 1 \frac{1}{2^{\prime \prime}}$ e f1.50.
GRIDGE RECTIFIERS 100 PIV $1 \mathrm{amp}=20 \mathrm{p}, 200$ PIV 4 amp • 60 p
DISC CERAMICS 1000 pf 6 Kv .w., of 6 for 20p, $1000 \mathrm{pf} 10 \mathrm{Kv.w.w} 4 \mathrm{p}$ each.
X BAND GUNN DIODES with data e $£ 1.65$.
VHF-UHF STRIPLINE FETS 2 N 4417 with data $\mathbf{\ell 2 . 2 0}$
HOT CARRIER DIODES 5082-2800 at 3 for El 1.
SPECIAL 5 NPN DARLINGTON PAIRS in 14 Pin Dil package HFE 5000500 mA 10 voit with connections at 50p each.

Please add $20 p$ for post and packing, unless otherwise stated, on
U.K. ordars under $\mathfrak{\text { 2 }}$. Overseas postage charged at cost

YOUR COMPLETE RANGE OF ELECTRONIC HARDWARE...

BIMENCLOSURES

ALL METAL BIMCASES
Red, Grey or Orange 14 gwg Aluminium removable top and bottom covers. 18 swg black mild steel chassis with fixing support brackets.

BIM 3000
$(250 \times 167.5 \times 68.5 \mathrm{~mm})$ £15.52

MINI DESK BIMCONSOLES
Orange, Blue, B lack or Grey ABS body incorporates 1.8 mm pcb guides, stand-off bosses in base with 4 BIMFEET supplied. 1 mm Grey Aluminium panel sits recessed with fixing screws into integral brass bushes.
BIM $1005(161 \times 96 \times 58 \mathrm{~mm}) € 2.48$ BIM $1006(215 \times 130 \times 75 \mathrm{~mm}) € 3.48$

ALL METAL BIMCONSOLES

All aluminium, 2 piece desk consoles with either 15° or 30° sloping fronts, sit on 4 self-adhesive non-slip rubber feet. Ventilation slots in base and rear panel for excellent cooling See 15° Sloping Panel 30° Stoping Pane I BIM 7151 ($102 \times 140 \times 51(28) \mathrm{mm}$) BIM 7301 ($102 \times 140 \times 76 / 28) \mathrm{mm})$ BIM $7152(165 \times 140 \times 51(28) \mathrm{mm})$ BIM $7302(165 \times 140 \times 76[28] \mathrm{mm})$ BIM $7.153(165 \times 216 \times 51[28] \mathrm{mm})$ BIM $7303(165 \times 183 \times 102[28) \mathrm{mm})$ SiM7154 ($165 \times 211 \times 76[33] \mathrm{mm})$ BIM $7304(254 \times 140 \times 76[28] \mathrm{mm}) \quad £ 14.83$ BIM7155 ($254 \times 211 \times 76[33) \mathrm{mm})$ BIM $7305(254 \times 183 \times 102[28) \mathrm{mm}) ~ £ 16.36$ BIM7156 ($254 \times 287 \times 76[33) \mathrm{mm}$) BIM $7306(254 \times 259 \times 102[28) \mathrm{mm}) ~ £ 17.71$ BIM7157 ($356 \times 211 \times 76(33) \mathrm{mm}$) BIM $7307(356 \times 183 \times 102[28) \mathrm{mm}) ~ £ 18.83$ BIM $7158(356 \times 287 \times 76(33) \mathrm{mm})$ BIM $7308(356 \times 259 \times 102[28) \mathrm{mm}) £ 19.92$

AES \& DIECAST BIMBOXES

6 sizes in ABS or Diecast Aluminium. ABS moulded in Orange, Blue, Black or Grey. Diecast Aluminium in Grey Hammertone or Natural. All boxes incorporate 1.8 mm pcb guides, stand-off supports in base and have close fitting flanged lids held by screws into integral brass bushes (ABS) or tapped holes (Diecast).
$(50 \times 50 \times 25 \mathrm{~mm})$
$(100 \times 50 \times 25 \mathrm{~mm})$
$(112 \times 62 \times 31 \mathrm{~mm})$
$(120 \times 65 \times 40 \mathrm{~mm})$
$(150 \times 80 \times 50 \mathrm{~mm})$
$(190 \times 110 \times 60 \mathrm{~mm})$
N/ABS

BIM2002/12 5109 BIM2003/13 £1.09 BIM2004/14 £1.51 BIM2005/15 £1.72 BIM2006/16 £2.69

Diecast
BIM5001/11 BiM5002/12 BIM5002/12 BIM5003/13 BIM5004/14 BIM5005/15 BIM5006/16

Hammertone £1.54
£1.66
E2.24
E2.81
£3.19 E2.11
E 2.72

A lso available in Grey Polystyrene with no slots and self-tapping screws
BIM $2007 / 17(112 \times 61 \times 31 \mathrm{~mm}) \quad £ 1.06$

BIM $6005(143 \times 105 \times 55.5(31.5] \mathrm{mm}) \in 2.76$ BIM $6006(143 \times 170 \times 55.5(31.5) \mathrm{mm}) £ 3.58$ BIM $6007(214 \times 170 \times 82.0(31.5) \mathrm{mm}) £ 4.83$

- EUROCARD BIMCONSOLES

 Orange. Blue, Black or Grey ABS 2) body accepts full or $1 / 2$ size Eurocards, with bosses in the base for direct fixing. 1.8 mm wide pcb guides incorporatedand 4 BIMFEET supplied. 1 mm
Grey aluminium lid sits flush with body
top and held by 4 screws into integral brass bushes.

BIM $8005(169 \times 127 \times 70[45] \mathrm{mm}) \quad £ 4.71$
В1M $8007(243 \times 187 \times 103[66] \mathrm{mm}) \mathrm{£} 6.70$

BIMTOOLS + BIMACCESSORIES

MAINS BIMDRILLS

Small, powerful 240 V hand drill complete with 2 metres of cable and 2 pin DIN plug. Accepts all tools with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ or $.125^{\prime \prime}$ dia. shanks Drills brass, steel, aluminium and pcb's. Under 250 g , off load speed 7500 rom . Oranoe ABS. high impact, fully insulated body with integral on/off switch $£ 11.21$
Mains Accessory Kit 1 includes $1 \mathrm{~mm}, 2 \mathrm{~mm}, .125^{\prime \prime}$ wist drills, 5 burrs and 2.4 mm collet $\mathbf{£ 2 . 6 4}$
Mains Kit 2 includes Mains BIMDRILL as above, 20 assorted drills, mops, burrs, grinding wheels and mounted points, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and $.125^{\circ \prime}$ collets. Comflete in transparent case measuring $230 \times 130 \times 58 \mathrm{~mm} £ 23.57$

BIMDAPTORS

Allows pcb's to be flat mounted sandwich fashion in BIMBOXES, BIMCONSOLES, and all other enclosures having 1.5 mm wide vertical guide slots. One plastic BIMOAPTOR on each corner of pcb(s) enables
assembly to be simply slid into place. 54 mm long, 10
slots on 5 mm spacing and can be simply snipped off to length. $£ 1.15$ per pack of 25 .

BIMFEET
11 mm dia. 3 mm high, grey rubber self-adhesive enclosure feet
£0.81 per pack of 24.

12 VOLT BIMDRILLS
2 small, powerful drills easily hand held or used with lathe/stand adaptor. Integral on/off switch and 1 metre cable.
Mini BIMORILL with 3 collets up to 2.4 mm dia. E 8.62
Major BIMDRILL with 4 collets up 103 mm dia.
£ 8.62
$£ 14.49$
Accessory Kits 1 have appropriate drills and collets as above plus 20 assorted tools. Mini Kit 1 - £16.10, Major Kit 1 - £20.70. Accessory Kits 2 have appropriate drills, collets plus 40 tools and mains-12V dc adaptor. Mini Kit $2-£ 36.22$.
Major Kit 2 - £41.97. Accessory Kits 3 as appropriate Kits 2 plus stand/lathe unit. Mini Kit 3 - £48.30, Major Kit $3-£ 54.05$.

BIMPUMPS

4

2 all metal desolder- BIMIRONS

 ing tools provide high suction power and have easily replaceable screw in Teflon tips. Primed and released by thumb operation with in-built safety guard and anti-recoil system. BIMPUMP Major (180 mm long) $£ 8.51$ BIMPUMP Minor (150 mm long) £ 7.24Type 30 General Purpose 27 watt iron with long life, rapid change element, screw on tip, stainless steel shaft and clip on hook. Sivled handle with neon. 84.37 Type M3 Precision 17 watt iron, quick change tip. Iona life element, siyled handle with clip on hook. £4.71

EIMEOARDS

DIL COMPATIBLE BIMBOARDS

Accept all sizes (4-50 pin) of DIL IC packages as well as resistors, diodes, capacitors and LEDs. Integral Bus Strips up each sude for power lines and Component Support Bracket for holding lamps, switches and fuses erc. Available as single or multiple units, the latter mounted on 1.5 mm thick black aluminium back plate which stand on non slip rubber feet and have 4 screw terminals for incoming power.
BIMBOARD 1 has 550 sockets, multiple units utilising 2,3 and 4 BIMBOARDS incorporate 1100,1650 and 2200 sockets, all on 2.5 mm ($0.1^{\prime \prime}$) matrix.

BIMBOARD 1 £ 8.23

BIMBOARO 2 £19.99
BIMBOARD 3 £29.07 BIMBOARD 4 £ 38.14
DESIGNER PROTOTYPING SYSTEM 1. 2, or 3 BIMBOAROS mounted on BIM 6007 BIMCONSOLE with Integral Power Supply $(\pm 5$ to $\pm 15 \mathrm{Vdc} @ 100 \mathrm{~mA}$ and $\mathrm{fixed}+5 \mathrm{Vdc} @ 1 \mathrm{~A}$) All O/P's fully isolated. Short circuit and fast fold back protection. Power rails brought out to cable clamps that accept stripped wire or 4 mm plug.

DESIGNER 1 £58.65
DESIGNER 2 £64.97
DESIGNER 3 E71.30

AITKEN BROS

35, High Bridge, Newcastle upon Tyne

Tel: 063226729

PB6 Kit

EXP300
550 contacts with two 50 -point BUS bars. Size $152 \times 53 \mathrm{~mm}$. $\mathbf{~} 6.95$.
PROTO-BOARD 6 KIT
630 contacts, four 5 way binding dosts, accepts up to 614 pin OiPs. $£ 10.98$

CSC LOGIC PROBES

LP-2 ECONOMY PROBE

Min. pulse width 300 nanoseconds, $300 \mathrm{~K} \Omega$ input 1 impedance, tests circuits up to 1.5 MHz . Oetecting pulse cuits. ©20-95.
LP-1 Memory Probe
$\begin{array}{ll}\text { LP- } & \text { Memory Probe } \\ \text { LP-3 High Spead Memory Probe }\end{array}$
$\begin{array}{r} \\ \hline\end{array} \mathbf{3 5 . 6 5}$
CSC catelogue availablo. Please mend S.A.E

CALSCOPE SUPER 6 £186.30

A portable single beam 6 MHz bandwidth oscilloscope with easy to use controls. High gain to $10 \mathrm{mv} / \mathrm{cm}$ and wide time base range from 1μ s to $100 \mathrm{~ms} / \mathrm{cm}$. Full specification to reuest. Please send

CALSCOPE SUPER 10 £251.85

A dual trace 10 MHz instrument of the very highest performance and quality. It has an accuracy of 3% which is achieved by the use of built-in stabilised pawer supplies which keep the trace rock steady over a wide range of malns fluctuations. Full specification on request. Please send S.A.E. TE20D TECH R.F. SIGNAL

GENERATOR

Accurately covers 120 KCS to 500 MCS in 6 bands. Oirectly calibrated. Variable RF attenuator 240 VAC. Sire $140 \times 215 \times 170 \mathrm{~mm}$

Price $\mathbf{E 2} 50$ ($\mathbf{5 0} 5.58$ to collors)

TE22D TECH AUDIO GENERATOR
Sine a square wave audio generator. Sine weve range -20 cps to 20 K cps in four bends
Square wave range 20 cps to 15 K cps in four bands 240 V A.C. Size $140 \times 215 \times 170 \mathrm{~mm}$.

Price £63.34 (£81.31 to callers).
TMK 500 MULTIMETER 30.000 o.p.v. AC volts $2.5,10,25,100,250,500,1000$. DC volts. $0.25,1,2.5,10,25,100,250,1000$ DC current 50 нa. $5 \mathrm{MA}, 50 \mathrm{MA}, 12$ amp. Resistance $0-6 \mathrm{~K}$.
 Buzzer continuity test size, $160 \times 110 \times 55 \mathrm{MM}$. Buzzer continuity test size, $160 \times 110 \times 55 \mathrm{MM}$ PRICE E25.95.

CSC EXPERIMENTOR BREADBOARDS
No soldering modular breadboards, simply plug components in and out of letter/number identified nickel-silver contact holes. Start small and simply snap lock boards together to bulld breadboards of ony size.

SINCLAIR DM350
$£ 79.95$
£114.95
Size $255 \times 148 \times 40 \mathrm{~mm}$
DM350 $3 \frac{1}{2}$ digit display DM450 $4 \frac{1}{2}$ digit display. Both provide six functions in 34 ranges. O.C. voltage $10 \mu \mathrm{~V}$ to $1200 \mathrm{~V}(100 \mu \mathrm{~V}$ on OM350) A.C. voltage $100 \mu \mathrm{~V}$ to 750 V . D.C. current InA to 10A. A.C. current inA to 10A resistance $10 \mathrm{~m} \Omega$ to $20 \mathrm{M} \Omega$ ($100 \mathrm{~m} \Omega$ opn DM350). Accessories for OM350 \& 450 as for OM235 below. Full spec. on request. Please send S.A.E.
Sinclair PFM200 frequency meter Size $157 \times 76 \times 32 \mathrm{~mm}$.

Range 20 Hz to 200 MHz . Accessories and illustration as for POM35 below. 257-95.

SINCLAIR PDM35

DIGITAL POCKET MULTIMETER
$0 C$ volts (4 ranges) 1 mV to 1000 V AC voits 1 V to 500 V DC current (6 ranges) 1 nA to 200 MA Resistance (5 ranges) 1Ω to 20 MEGQ . PRICE E34.95. AC Adaptor $£ 3.95$ de luxe padded carry
 Size $157 \times 76 \times 32 \mathrm{~mm}$.

SINCLAIR DM235

BENCH-PORTABLE DIGITAL

MULTIMETER.

OC volts (4 ranges) 1 mV to 1000 V AC volts (4 anges) 1 MV to 750 V AC \& DC current 1μ to 1000MA Resistance (5 ranges) 10 to 20 MEG Ω PRICE £57.95. Carrying case £9.95. AC adap tor/charger. £4.50. Rechargeable Battery Pack.E9.70 Size $255 \times 148 \times 40 \mathrm{~mm}$

PANEL METERS

DIMS $60 \mathrm{MM} \times 45 \mathrm{MM} .50 \mu \mathrm{amp}, 100 \mu \mathrm{amp} 1 \mathrm{MA}$ $5 \mathrm{MA}, 10 \mathrm{MA}, 50 \mathrm{MA} .100 \mathrm{MA}, 500 \mathrm{MA},{ }^{1}$ amp, 2 50-0-50нa, 100-0-100~a, 500-0-500на. PRICE £5.95.

DESOLDERINGTOOL
8.45

SUCTION PUMP
Education Establishment Orders Accepted.
PHONE OR SEND YOUR ACCESS OR ALL PRICES INCLUDE POSTAGE AND VAT

What's new from Heathkit?

IM 2212-Auto Ranging DMM

IO 4105-Single Beam 5 MHz Oscilloscope

IM 5217 - Portable Multimeter

Plus
*GD 1290 - VLF Metal Locator

* HX 1681 -CW Transmitter
* IR 5201 - XY Recorder
* Cl 1525-Car Temperature Indicator

These brand new self-assembly kits are designed to the highest specification.

The step-by-step instructions make them easy to build at your leisure in your own home.

And first class quality makes them excellent value for money.

Details of the full Heathkit range are available in the Heathkit catalogue. Send for your copy now.

Hand-held DMM

To: Heath (Gloucester) Limited, Dept. (PE 12), Bristol Road, Gloucester, GL2 6EE.

Please send a copy of the Heathkit catalogue. lenclose 20p in stamps.

There are Heathkit Electronics Centres at 233 Tottenham Court Road,
London (01-636 7349) and at Bristol Road, Gloucester (0452 29451).

The opportunities in electronics, today, and for the future are limitless - throughout the world. Jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, TV and all associated equipment - can make for a varied, interesting and highly renumerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equipment coming on to the world market.

We give modern training courses in all fields of electronics - practical D.I.Y. courses - courses for City \& Guilds exams, the Radio Amateur licence and also training for the new Computer Technology. We specialise only in electronics and have over 40 years experience in the subject.

All the training can be carried out in the comfort of your own home and at your own pace.

A tutor is available to whom you can write at any time for advice or help during your work.
and a career.

COURSES AVAILABLE:-

CITY \& GUILDS CERTIFICATES IN TELECOMMUNICATIONS AND ELECTRONICS.radio amateur licence.
COMPUTER TECHNOLOGY WITH HOME TRAINING COMPUTER.DIGITAL ELECTRONICS.BEGINNERS PRACTICAL COURSE.RADIO AND TELEVISION SERVICE
AND MANY OTHERS.

WE ARE AN INTERNATIONAL SCHOOL SPECIALISING IN ELECTRONICS TRAINING ONLY AND HAVE OVER 40 YEARS EXPERIENCE IN THIS SUBJECT.

RECEIVERS AND COMPONENTS

T \& J electronic components - Quality Components sensible prices. Same day service. Send a stamped addressed envelope for full list. 98 Burrow Road, Chigwell, Essex. 1G74HB

tunbrigge wells components, Ballards, 108 Camden Road, Tunbridge Wells. Phone 31803. No Lists. Enquiries S.A.E.

200 mixed components $\mathbf{5 4}$. Sole Electronics, 37 Stanley Street, Ormskirk, Lancs L39 2DH

INTERESTING

COMPONENTS

RF LINEAR: SLBIOC E2.76, SL613C E3.10, SL640C £3.45, SL6BOC f1.70, SL301A E3.00, ANZAC' DS 31855^{-} 500 MHz in phase 2 way power splitter £5.00, MV2 115 100pF (NOM) varactor diode $\mathbf{C O} .50$.
AF LINEAR: XR4 136 CP QUAD 741 E1.00, CA3080AS co. 80, 709 co. 30, SU536T high SLEW FET Input OP AMP E3.70.
DIGITAL: TTL; 74154 £1.00, CMOS; 4016 ع0.30, 4047 £0.80.
MISC: VP5 DC-DC converter, 5 V in, isolated 5 V our 0.9 . Derive -5 V from +5 V £ 8.90 , AXi $1218-4$ DIL relay 5 V operation $\mathrm{fl} .30, \mathrm{t}^{-}$square cermet pots 10 K (top adiust) f1.70, 20 K (side adj.) $\mathbf{~} 9.70$.
No extras except for orders less then 55 . please add 300 SEND TO:
WIRRAL SEMICONDUCTORS
177 Brookdale Avenue, Greasby, Wirral, Merseyside L49 1SR

VHF CONVERTOR, $45-220 \mathrm{MHz} 29-30 \mathrm{MHz}$ IF. Ideal feed HF receiver. £6.80, SAE details, lists other items. H. Cocks, Bre Cottage, Staplecross, Robertsbridge, Sussex. Tel: 058083-317.

TURN YOUR SURPIUS Capacitors, transistors, etc., into cash. Contact COLES-HARDING CO., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settement.

SMALL ADS

The prepaid rate for classlfied advertisements is 20 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $\mathbf{E 6 . 6 0}$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Lid". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

SURPLUS Stocks of Electronic Components at less than wholesale prices. SAE brings free lists. Bardwell Ltd., 212 Studley Lane, Dronfield-Woodhouse, Sheffied, S185YP.
P.C.B.s Paxolin $10 \frac{1}{n}^{\prime \prime} \times 4 \frac{1}{\prime \prime}^{4-E 1.30 .12^{\prime \prime} \times 9 \frac{1}{2}} 85 \mathrm{pp} \cdot 16^{\prime \prime} \times$ $11 \frac{1}{4}^{\prime}$ E1.40. D.S. $10^{\prime \prime} \times 81^{\prime \prime} 85$ p. Fibre Glass $12^{\prime \prime} \times 8^{\prime \prime}$ E1.70.
 $8^{\prime \prime} \times 7^{\prime \prime} £ 1.15$. Three Assorted M.C. Meters $£ 2.50 .300$ small components. trans. diodes $£ 1.60$. 7 lbs assorted components E3.75. List 15 p retundable. Post 20p. Insurance add 15p

J.W.B. RADIO

2 Barnfield Crascent, Sale, Cheahire M33 1 NL.

100 ASSORTED COMPONENTS $115 p, 100$ Resistors assorted fW 75p, 10 Mains Neons 50 p, 20 Micro-switches $150 \mathrm{p}, 50$ Reed switches 200 p , 50 assorted capacitors 150 p, add 25 p P\&P. Durrants, 9 St. Marys Street, Shrewsbury, Salop.

COMPONENTS AT SILLY PRICES. 1000 mixed resistors $\mathbf{£ 3 . 6 0}$. SAE Lists. W. V. E.3, Craigo Farm, Tintern, Gwent.

BOOKS AND PUBLICATIONS

any requested service sheet $\mathrm{E} 1+$ Large S.A.E. Full repair data any named TV $\mathbf{£ 5 . 3 0}$ (with circuits, layouts etc. 87). SAE brings newsletter, bargain offers, etc. AUSPEL, 76 Church St, Larkhall, Lanarks ML9 IHE.

TTL DESIGN

 CONSIDERATIONSA booklet for Hobbyists covering cascading, floating, debouncing, decoupling, clocks, regulators, slmple interfacing, etc. $75 p$ incl. P \& P P CB Decent size offcuts, single sided (paper) 6 " \times $4 \frac{1}{\prime \prime}$ and $6 \frac{1}{2} \frac{1}{2}^{\prime \prime} \times 3 \frac{1_{2}^{\prime \prime}}{2} 4$ pieces 60p incl. $\mathrm{P}_{\&} P$ and

PAWBOOKS

117 Blenheim Road, Deal, Kent

ROMANIAN ELECTRONOGRAPMY, tobiscopes, electrokinesis. biogravity, hallucinophotography, dermoptics, psychotronic generators, Kirlianography. SAE $4^{\prime \prime} \times 9^{\prime \prime}$: PARALAB, Downton, Wilts.

SERVICE SHEETS

bell's Television services for Service Sheets on Radio, Tv, etc $£ 1.00$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel: (0423) 55885.

SERVICE SHEETS from 50 p and S.A.E. Catalogue 25p and
SERVICE SHEETS from 50 p and S.A.E. Catalogue 25p and
S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards. S.A.E.
Sussex.

AERIALS

AERIALBOOSTERS

Improves weak VHF Radio and Television reception.
B45-UHF TV, B11-VHF Radio. B 11 A-2 metre radio. For next to the set fitting. Price £6. S.A.E. for leaflets: ACCESS ELECTRONIC MAILORDER LTD. 62 Bridge Street,
Ramsbotton, Bury, Lancs, BLO 9AG.

FOR SALE

ACORN 6502 MICROCOMPUTER System in sack cabinet $3+\mathrm{K}$ RAM, extra memory board \& $1 / 0$. Complete with P.S.U., VDU board and modulator, Remote Keyboard. Fully Operational. Bargain onfy $\{120$ o.n.o. 01-462 3681 . (Bromley, Kent).

NEW BACK ISSUES of "Practical Electronics" available 80p each Post Free. Open P.O./Cheque returned if not in stock -Bell's Television Services, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885
TWENTY WATTS RMS Stereo Amplifier. TV Sound separator. Both Home Made. Offers. Colin, 35 Lansdowne Road, W. Ewell, Surrey, KT19 9QJ. 01-393 3558.
ORGAN: ELVIN GROSVENOR KIT Assembled and working. 2 Keyboards, pedals. 26 stops, piano, vibrato, phasing, reverb, sustain, rhythm unit. Console cabinet, stool. All circuits available. Ideal for Electronic Enthusiast and orgary learner. $\mathbf{5 0 0}$ o.n.o. Bedford 68838.

FINANCIAL CRISIS FORCES SALE. Superboard $£ 200$, Apple II plus $£ 800.2114$ Rams $£ 3$, EPROMS 2716 - £22, 2708 E5. Aylesbury 631200.

TELERUIPMENT S51B OSCILIOSCOPE, DC-3MHz, 100 MV sensitivity, working order and tidy. £45. 021-308 5877.
MINISONIC MK II separate keyboard, black vinyl cases, fully functional, extras, $£ 240$. Iver 653944
P. A. AMPLIFIER Custom built with 'Crimson Elektrik' modules 170 W 2 channel into 8 OHMS $£ 100$ o.n.o. Tel: Kettering 4992.

229 MAG'S PE, PW, ET1, EE, etc. $£ 13$. Callers only. Tel: Newcastle 774441.

EDUCATIONAL

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS or details of ICS specialist homestudy courses on Radio. TV, Audio Eng. and Servicing. Electronics, Computers: also self-buld radio kits. Full details from:

ICSSCHOOL OF ELECTRONICS Dept. R272 Intertext House, London SWB 4UJ
 Tel. 01-6229911 (all hours)
 State if under 18

CITY GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICSSCHOOL OF ELECTRONICS
Dept. R272 Intertext House, London SW8 4UJ
fel. 01-6229911 (all hours)
State if under 18

COLOUR TV SERVICING

Learn the lechniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servising. Full details from:

ICS SCHOOL OF ELECTRONICS Dept. R272 Intertext House, London SW8 4UJ Tel. 01-6229911 (all hours) State if under 18

Commissioning Editor

If you have a solid background in electronics, a good knowledge of current needs and trends and experience in book publishing, then there is an ideal opportunity for you with Newnes Technical Books as a Commissioning Editor.
Your role will be to sign up suitable authors for a wide range of books on subjects that include electronics theory and construction, personal computer principles and programming as well as electrical and electronics servicing and repair. Ideally you would have an academic qualification although this is not as important as enthusiasm, application and an editorial flair.
Salary negotiable around $£ 7000$ according to experience + company car.
Our modern offices are in pleasant rural surroundings, about 50 minutes from London.

Applications in writing to:
Linda Stammers,
Personnel Assistant,

\squareButterworth \& Co. (Publishers) Ltd., Borough Green, Nr. Sevenoaks, Kent.
Butterworths

ACCESSORIES

sTYLI Cartridges for MUSIC CENTRES, \&c. FREE List No. 29 for S.A.E. includes Leads, Mikes, Phones \&c. FELSTEAD ELECTRONICS, (PE), Longley Lane, Gatey, Cheadie, Ches. SK 8 4EE.

TAPE EXCHANGES

RECOROER OWNERS (Cassette/reel) can now speak to the World! All ages.... every interest. Send stamp: WORLDWIDE TAPETALK, 35 The Gardens, Harrow.

MISCELLANEOUS

SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p. Chassis punching facilities at very competitive prices, 400 models to choose from. Suppliers only 10 Industry \& The Trade. BAZELLI (Dept. No. 23), St. Wilfrids, Foundry Lane, Halton, Lancaster, LA 6LT.

RYDER ORGAN SYSTEM
(Wireless World)
A classical design with full-size keyboards. Couplers, capture, etc., can be included.
Cassette. p.c. boards, data, from:HIYKON LTD. (P),
Woodside Croft, Ladybridge Lano, Bolton BLI 5ED

NI-CAO BATT. PACKS. Contains 9-AA cells, 5 sub C cells (1.2AH). Mains charger $£ 8.50$ inc. P. \& P. E.D.S. 66 Brook Lane, Warsash, Southampton.
QUALITY ELECTRONIC COMPONENTS
AT LOW PRICES
Write or telephone for free pamphlet to:-
HARRISON BROS.
Dept. P.E. Bix 55 . Westclit-on-Sea,
Telephone: Southend-on-Sea 32338

PRIMTED CIRCUITS. Make your own simply, cheaply and quickly! Goiden Fotolak Light Sensitive Lacquer - now greatly improved and very much faster. Aerosol cans with full instructions $£ 2.25$. Developer 35p. Ferric Chloride 55 p . Clear Acetate sheet for master 14p. Copper-clad Fibreglass Board approx. 1 mm thick $\mathbf{£ 1 . 7 0} \mathrm{sq}$. f. Post/packing 6 g. WHITE HOUSE ELECTRONICS, P.O. Box 19, Castle Drive, Penzance, Cornwall.
video sales engineer required by Studio 99 Video, the leading industrial and commercial CCTV systems company. High Level sales experience required and some video/electronics knowledge essential. Good salary, company car. Phone Roger Betts 01-328 3282.

MISCELLANEOUS

clearing labohatory. Scopes, recorders, testmeters, bridges, audio, R.F. generators, iurntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.

SIGHT FOR SORE EYES

STICKIES are printed self-adhesive labels that stick to the top of ICs. They turn a board-full of ICs into a working circuit diagraml See at a glance where to place your soldering iron or test probe. Use STICKIES for building and de-bugging prototypes, fault-finding. experimenting, teaching - even deslgning PCB layouts.

STICKIES come in handy-size packs for 7400- or 4000 -series ICs. Each pack contains a sensible mix of more than 60 different IC types.
120-label packs 80p.
480-label packs £2.80, 2-10 packs £2.50 each. 11 + £2.20 each.

Prices include $\mathbf{1 5 \%}$ VAT and first-class postage.
Please state whether TTL or CMOS required.
Official orders welcome.
Let others suffer the sore eyes - try a pack of STICKIES and see the difference.

For your STICKIES by return of post contact
CONCEPT ELECTRONICS, 8 Bayham Road, Sevenoaks, Kent, TN13 3XA 10293 514110).

UK80t Subroutine Library. Fast graphics, Hex conversion. Dates etc. plus sophisticated screen drawing program. S.A.E. for detaiis from UK 101, Crayford Meadow, Great Mongeham, Deal, Kent.

CABINET FITTINGS FOR

Stage Loudepeakers and Amplifier Cabs Froteloths, Covarings, Strap 8 Recess Hondles, Feot, Costors Jacks \& Sockets, Connont, Bulgin 8 woys, Reverb Trays locks \& Hinges. Corners, Trim, Speaker Bolts ote
Send $2 \times 9 \mathrm{p}$ Stamps for samples and illustrated caralogue
ADAM HALL (P.E. SUPPLIES)
Unit 3. Carlton Court. Grainger Road Southond-on-Sea, Essex.

SEEN AIY CAT? 5000 Odds and ends. Mechanical. Electrical. Cat. free. Whiston Dept. PRE. New Mills, Stockport.

MSF CLOCK

NEWI Gives ABSOLUTE TIME, always corract. never gains or loses, auto-reset after power failure, auto
GMT/BST and leap year, 8 digits show Date. Hours Minutes, Seconds, receives Rugby 60 KHz time signal 1000 KM range, 488.80.
PROGRAM YOUR OWN tunes on a Programmabla Chime, ANY tune - not 1 of 24 , make up vour own,
ds speaker, 223.50.
Each fun-ro-bulld kit includes all parts, printed circult, case.

CAMBRIDGE KITS
45 (FB) Old School Lane, Mitton, Cambridge.

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only $£ 10.70$ plus 25p P. \& P. - Brain-Freeze' 'em with a MINI-STROBE Electronics Kit. pocket-sized lightning hashes, Varispeed. for discos and parties. A mere E4.50 pus $25 p$
P. \& P. Fxperiment with a paychedelic DREAM P. \& P. Fxperiment with a psychedelic DREAM FAB. or pick up faint speech/sounds with the BIG modules. \&5 each plus 25 p P. \& P .
LOTS MORF! Send 25p for lists. Prices include VAT.

BOFFIN PROJECTS

4 Cunliffe Road, Stoneleigh Ewell, Surrey (P.E.)
I.C. EXPERIMENTER'S KITS Learn about modern electronics with our new series of Kits on digltal logic tochniques. Each Kit contains specially
selected I.C.s. Holders, Veroboard, LE.O.S, and Instructions. selected I.C.s. Holders, Veroboard. LE.
Available at $\mathbf{f} 5.00$ each (including P. \& P.) Kit One-Gates Kit Two-Flip-Flop
Kit Three-Shift Register
Kit Four-Counters Kit Fou SA E for further derails -Displays
AUTOMATED HOMES
69 High Street, Ayton, Coventry, CV8 3FJ.

PRACTICAL ELECTRONICS P.C.B.'s

Professional quality glassfibre, Fry's rolier tinned and drilled.
May 79
Sept. 79 Waveform generator EG161 11.58
Oct. 79 hput channel amp EP158. Set of 6 pcb's $\mathbf{\text { f } 5 . 6 1 ~}$
Nov. $79 \begin{aligned} & \text { Digital temp controller EC9 E1.90 } \\ & \text { Diamatic EC } 10 £ 2.26 \\ & \text { Digitaliter }\end{aligned}$
Dec. 79 Uigital dark room timer EG199 ©1,55 pob's $£ 2.06$. Cost a call EP2 18 ¢1.36
Car solid state EG 192, 204, 207, 210 \& EA46
Set of 5 pcb's E4.45 or 96p each Set of 5 pcb's $\mathbb{C 4 . 4 5}$ or 96 pp each
Jan 80 Scratch \& rumble filter EP232 £1.03
EP230 $\mathbf{~ 1 . 2 3 . ~ S e t ~ o f ~ t w o ~} \mathbf{£ 2 . 0 5}$
For full list and current pcb's please send produced to customers awn masters. Trad. Pcb's also welcome. Please witte for quote. CWO Please Postage - Please add 30 p postage and packir
plete order. PROTO DESIGN PAOTO DESIGN
14 Downham Road, Ramsden Heath
Billericay, Essex CM11 1PU
Telephone $0268-719722$

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4 Aeg. Otfice 22 Coningsby Gardans.
ENAMELLED COPPER WIRE

SWG	1 tb	8 oz	4 oz	202
10 to 19	2.83	1.55	.80	.64
20 to 29	3.03	1.76	1.00	.75
30 to 34	3.25	1.86	1.07	.80
35 to 40	3.60	2.08	1.22	.89
41 to 43	4.84	2.71	2.07	1.38
44 to 46	5.37	3.25	2.29	1.80
47	8.37	5.32	3.19	1.91
48 to 49	15.96	9.58	6.38	3.51

\section*{SILVER PLATED COPPER WIRE
 | $14,16,18$ | 4.30 | 2.39 | 1.53 |
| :--- | :---: | :---: | :---: |
| $20 \& 22$ | 5.32 | 3.03 | 1.86 |
| $24 \& 26$ | 6.06 | 3.57 | 2.13 |
| $28 \& 30$ | 7.00 | 4.10 | 2.50 |
| Fluxcore $60 / 40$ | Solder | 22 swg | 65 ft |
| | | 18 swg | 22 ft |
| | | 80 p | |
| | | | 80 p |}

Tinned Copper Wire, $6 \mathrm{~mm} 23 \mathrm{swg} 1 \mathrm{lb} £ 4.00 \quad 10 \mathrm{lbs} £ 20$ Wire Wrapping Wire $\quad 30$ awg 82 ft fl .10 Wire Wrapping Tool \& 4 Reels $\begin{aligned} & \text { £6.0 } \\ & \text { CARLES }\end{aligned}$ Por Moter

NICKELCADMIUM BATTERIES

Rechargable and suitable for fast charge HP7 (AA) E1.05
SUQ C 81.36 . HPII (C) $£ 1.98$ HP2 (D) 83.02 . PP3 £3.79, PP3 charger $\mathbf{E} 5 \cdot 40$.
All the above nickel cadmium batteries are brand new and are guaranteed tull spec. devices. All cells are supplied complete with solder tags fexcept PP3). Brand new full spec.
RECHARGEABLE SEALEO LEAD ACID maintenance free batteries suitable for burglar alarms etc. 1.2 amp hr . 6 V £4.07. 2.6 amp hr. $6 \mathrm{~V} \mathbf{~ 5 5 . 2 3 .}$
Quantity prices available on request. Oata and charging circuits fres on request with orders over f 10 otherwise 30 p post and handling (specify battery type). Please add 10%
P\&P In orders under $£ 10-5 \%$ over f 10 . VAT at the current rate should be added to total order. Cheques, Postal Orders, Mail order to:-
SOLID STATE SECURITY DEPT (PE), 10 Bradshaw SOLID STATE SECURITY DEPT (PE), 10 B
Lane, Parbold, Wigan, Lancs. Tal: 025754726.

PRINTED CIRCUIT BDARDS. Glass Fibre Tinned \& Drilled. From your own or Published Designs $12 p$ per sq. ins. Plus 30p post. R. D. Electronics, 12 Whiteoaks Road, Oadby Leicester. 0533716273.

MICRDCOMPUTER KITS. Build you own Computer. Nascom etc. From P\&O Computers (N.I.) 81 Dublin Road, Belfast, BT2 7HF. Tel: 22010 Evenings 621706.

P.C. BOARDS

FOR INDUSTRY 'and' THE AMATEUR

- One off or production runs
- Assembly of P.C.Bs or klts
- Expert hand soldering
- Design service if required
- Artwork \& Photography

SEAHORSE ELECTRONICS LTD. Unit 2 Picow Farm Road Service Industry Estate, Runcorn, Cheshire. (09285) 7595

BOOST YGUR CAR RADIO WTHTHMS RADIO astonisting high gain electronicaerial

MAKE YOUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack (5 sheets, lines, pads, I.C. pads) $£ \mathbf{1 . 6 0}$. Large range of single lines, pads. I.C. pads)
sheets in stock at $34 p$ per sheet.
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. Full In magazines by simple photographic process. Full
instructions supplied. 2 she日ts $(20 \times 25 \mathrm{~cm})$ negative paper and 2 sheets $(18 \times 24 \mathrm{~cm})$ positive negative
film $£ 1.30$
S.A.E. lists and information. P\&P 25p/order except
P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

ULTRASONIC TRANSDUCERS $\mathbf{2} 2.85$ per pair $+\mathbf{2 5 p}$ P. \& \mathbf{P}. Dataplus Developments, 81 Cholmeley Road. Reading, Berks.

GUITAR/PA
 MUSIC AMPLIFIERS

100 watt superb treble/boss overdrive. 12 months guarantee. Unbeatable at £44; 60 watt E38; 200 watt E60; 100 watt twin channel sep. treble/bess per channel
£58; 60 watt $£ 48 ; 200$ watt $£ 72 ; 100$ wett four channel sep. rreble/bass per channel $\mathbf{C 7 5 ;} 200$ watt £92; slaves 100 sep. tebie/ 200 watt $£ 50$; tuzz boxes, great sound $£ 10.00$; bass fuzz 110.90 overdriver fuzz with treble and bass boosters £18.00; 100 watt combo superb sound overdrive, sturdy construction, castors, unbeatable $£ 90$; win channei
f100; bass combo $\mathrm{f105}$; speakers 15 in ; 00 watt $£ 35$.
 Unidyne BE28.

Send cheque or P.O. to:

WILLIAMSON AMPLIFICATION
62 Thorncliffe Avenue, Dukinfield, Cheshire. Tel: 061-308 2064

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME
FULL RANGE AVAILABLE. SAE FOR LISTS. E1.25 for Booklet "Nickel Cadmium Power" plus Catalogue. Write or CAITOANWOIDFIELD, WEST MIDLANDS, O2 1-354 9764, or see them at TLC, 32 Craven Street, Charing Cross. London WC2.
C. C. CONSULTANTS. Printed Circuit Boards for the Popular EE Labcentre are now in stock and are still available for the special price of $£ 5.50+\mathbf{3 5}$ p P. \& P. Remittance with order to Dept. (PE3) Gainsborough Drive, Worle, Weston-SuperMare, Avon, BS22 9PP.

PANELS, SCALES, CHASSIS AND FACIAS

Screenprinted to your special layout requirements, one-offs or quantity production.

Ashman and Clough Ltd.,
Designers and Printers,
7 Chapel Lane, Blisworth,
Northampton. (0604) 858274.

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the adyertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

PLEASE
 MENTION
 When replying
 PRACTICAL ELECTRONICS
 Advertisements

BUILD A SYNTHESISER!

Using Dewtron (Reg'd) PROFESSIONAL MODULES

Over 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, welltried range of Dewtron synthesiser and other effects modules.

Send 25p for Musical Miracles Catalogue NOW!

D.E.W. LTD.

254 RINGWOOD ROAD, FERNDOWN, DORSET BH229AR

Godespesd Electronics

P.O. BOX 23, 34 SEAFIELD ROAD, COPNOR, PORTSMOUTH, HANTS. PO3 5BJ

CALCULATOR CHIP Nortec 4204, 4 function and K With data 85p. MM5314 Digital clock chlp, with data, f1.99 aach. MM5316 Dlgital alarm clock chip, with data, £2.49 each. DIGITAL ALARM CLOCK - MODULE with $0.8^{\prime \prime}$ LED display. With data, E6.50 each. 4 DiGIr 0.8 LED ISP WRISTWATCH Wh data E3.95 5030 with data 990 arch ICo Mostek MK SM DISPLAY data $99 p$ tach. With data 99p each. SUPER SAVER - Purchase an MK5030 AND a DIS501 for only $£ 1.50$ the pair. NOTE The MK5030 and DIS501 are packaged in legless flatpack format and require some fairly fine soldering. 20 KEY KE YBOARDS calculator style keyboards, 2 for £1.00. MM2102 MEMOAIES Dynamic memories for your micros. With data 99p each. DIGITAL multimeter. With data $\mathbf{\varepsilon 3 . 9 5}$ each. 6 DIGIT 0.1 LEO OISPLAY COmmon Cathode 99p. LM555 TIMER I.C. with data and applications booklet. 25p each. SLIDER SWITCHES 2 pole change-over $16 p$ each. PUSH BUTTO SWITCHES spring loaded (momentaryl with 1 n.o. contact isp each. POLARIZING MATERIAL at only $2 p$ per square inch. QUALITY JACK SOCKETS ${\frac{1}{}{ }^{\prime \prime}}^{\prime \prime}(6.35 \mathrm{~mm})$ jack sockets, Mono 25p each, Stereo 28p each. SLIDER CONTROL KNOBS plesse state colour required. 18p each. with coloured cap, please state colour required, 220 each. WRISTWATCH LIGUID CRYSTAL each. GERMANIUM DIODES for only 50p. 10 SWITCHING DIODES for only 35 p. 4 DIGIT CLOCK L.C.D. O.5" digits, supplled with dasa, 86.95 each. REJECT CALCULATORS Untested. but good value for spares. $\mathbf{E 2 . 5 0}$ each. 10 LED DISPLAYS Untested material. O.1" common cathode digits, 99p.
formation on our full range of components please send a Stamped Addressed Envelope for your FREE copy of our latest catalogue.

POST AND PACKING ADD 35p (OVERSEAS ORDERS ADD 90p
full SATISFACTION GUARANTEE on all thems.
THE TTL DATA BOOK FOR DESIGN ENGINEERS
Price: $£ 6.00$
NEWNES BOOK OF AUDIOby K.G. JacksonPrice: $£ 5.45$by K. Hemingway
Price: $\mathbb{1} \mathbf{1 3 . 2 5}$TELETEXT \& VIEWDATAby S.A. MoneyPrice: $\mathbf{£ 6 . 0 0}$
2-80 MICROPROCESSOR PROGRAMMING\& INTERFACING BOOKIby E.A. Nichols BkIPrice: £7.45
BEGINNECIRCUITSby I.R. SinclairPrice: $\mathbf{£ 3 . 2 0}$
LOCIC \& MEMORY EXPERIMENTS USINGTTLIC'S BOOKIby D.G. LarsenPrice: $£ 7.60$THE PHILIPS GUIDE TO BUSINESS
COMPUTERS \& THE ELECTRONIC OFFICEby N. EnticknapPrice: $\mathbf{2 4 . 0 0}$
ELECTRONICPROJECTSIN THEWORKSHOPPrice: $\mathbf{£ 2 . 5 0}$
HNICIANby R.A. Penfold
ENGINEERS
by D.A. JacobsPrice: $£ 4.70$* All prices include postage *
THE MODERNBOOK CO.
BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREETLONDON W21NP
Phone 01-4029176

INDEX TO ADVERTISERS

[^4] OLDER SUCK
MURATA TRAN DUCENS. 40 KHz . REC/SENDER C3. 50 poir.
nt 12VDC 8 track motores $88_{\text {p. }}$ Ex, equip. 5-7 volt gearbox 21 APM 7 Fp .
acoro 93p. BNC plugs, crimp 38p piece £2.75.
obe, standard stereo plug anly tez.98p.
haporox. 60 cable, call button. 2 way 68.28 pair. 3 $180 \mathrm{kHz}, \mathrm{czs} .06$
deaf aid battery lsupplied) R4 98p. LOW COst
 500 ohm or $20 \mathrm{~K}, 70-15 \mathrm{KMz}$ surective oleck (ane. 5" round 8 warta, 8 ohme, adiustable orecket CA.Esp, $0^{\circ} 15$ wans dims ac,urcole
and wire cutter, inmula ted hanales only E2.30. please add 30 p post and packing. VAT inclusive
ALL ORDEAS DESPATCHED BY RETURN POST

RELAYS SIEMENS, PLESSEY, etc. RELAYS. WIDE RANGE OF A.C. AD D.C. RELAYS FT3 NEON FLASH TUBE
 P. 50p ($£ 4.03$ inc. VAT \& P).

RODENE UNISET TYPE 71 TIMER

WHY PAY MORE?
MULT RANGE METER TYpe MF15A a.c. d.c.
volts $10-50,250,500$, 1000 . Ma 0-5. 0-10 and
$0-100$. Sensitivity 2000 V .24 range, diameter
133 by 93 by 46 mm including test leads. Price 133 by 93 by 46 mm including test leads.
C 7.00 plus $50 \mathrm{p} P$ \& P. $\mathbf{| 8 . 6 3}$ inc. VAT \& P.

METERS (New) - 90 mm DIAMETER A.C. Amp., Type 62T2, 0-1A
A.C. Volt. $0-150 \mathrm{~V}, 0-300 \mathrm{~V}$.
D.c. Amp., Type 65C5. 0-2A. 0-10A 0-20A., 0-50A. 0-100A

VARIABLE VOLTAGE TRANSFORMERS
INPUT 230/240V a.c. 50/60 OUTPUT

VARIABLE 0-260V

200 watt (1 amp inc. a.c. voltmeter $\mathbf{~} 14.50$ | 0.5 KVA $(21$ amp (MAX) |
| :--- |
| 1 KVA | .2 KVA (10 amp MAX) .3 KVA (15 amp MAX)

5 KVAA MA 10 KVA $(25$ amp MAX)
10 KVA $(50$ amp MAX $)$ 15 KVA (75 amp MAX) TRANSFORMERS

3KVA (max. 15 gmp.)

6KVA (max. 30 amp.)
10 KVA (max. 50 amp.)
LT TRANSFORMERS

 $\mathrm{O}-6 \mathrm{~V} / 12 \mathrm{~V}$ at $20 \mathrm{amp} £ 14.70 \mathrm{P}$. \& P. f 1.50 (£18.63 inc. VAT)
0.12 V at 20 amp or 0.24 V at $10 \mathrm{amp} £ 12.00 \mathrm{P}$. \& P . £1.50 (f15.53inc. VAT \& ${ }^{\text {P }}$.)
O-6V/12V at 10 amp \&8-25 P. \& P. £1.25 (£10.93inc. VAT)
$0-6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$ at $20 \mathrm{amp} £ 19.00$ P. \& P. $£ 1.50$ $0-6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$
(E 23.58 inc. VAT $\mathrm{P} P$.)
$0-10 \mathrm{~V} / 1 \mathrm{~N} / 18 \mathrm{~V}$ at $10 \mathrm{amp} \mathbf{£ 1 0 . 5 0}$ P.\&. P. £1-50 (£13.80 inc. VAT) Other types in stock: phone for enquiries or send sae for leafle

HY-LIGHT STROBE KIT MK IV Latest type Xenon white light flash tube. Solid state timing and triggering circuit $230 / 240 \mathrm{~V}$ a.c. operation Designed for larger rooms. halls. etc. Speed adjustable $1-20$ f.p.s. Light output greater than manv (so called 4 Joule) strobes. Hy-Light Strobe Kit Mk IV. Post $£ 1.50$ $(\mathbf{£ 2 2 . 0 0}+\mathbf{£ 1 . 5 0} \mathbf{P} \& P$ inc. total $£ 27.03)$. Specially designed case and reflector for Hy-Light £9.00. Post f 1.50 ($\mathbf{f 1 2} \mathbf{2} 08$ inc. VAT \& P1. Super Hy-Light Strobe Kit. Price $\mathbf{£ 3 8} \cdot \mathbf{5 0}+\mathbf{£ 3} \mathbf{- 5 0}$ P. \& P. (incl, total $\mathbf{£ 4 8 . 3 0}$).

XENON FLASHGUN TUBES
 Aange avaitable SAE for details

ULTRA VIOLET BLACK LIGHT
FLUORESCENT TUBES
4ft. 40 Watt f8. 70 inc. VAT f10.00 (callers only) 2 ft .20 watt £6.20. Post 75 p. (f7.99 inc. VAT + P.) (For use in stan bi-pin ittings) Mir i 12 in 8 watt $£ 2.80$. Post $35 p$. ($(3.62$ inc. VAT + P)
9 in. 6 watt $£ 2.25$. Post 35 . ($£ 2.99$ inc. VAT + P). 6 in. 4 watt $9 \mathrm{in}$.6 watt $£ 2.25$. Post 35 p . ($£ 2.99 \mathrm{inc}$. VAT + P). 6 in .4 watt
$£ 2.25$. Post 35 p . (E2.99inc VAT + P). Complete ballast unit for either $6^{\prime \prime}, 9^{\prime \prime}$ or $12^{\prime \prime}$ tube 230 V AC op
$£ 3.50$. Post 45 p . ($\mathrm{E4} 4.54$ inc VAT + P). Also available for 12 V DC op $£ 3.50$. Post 45 p . ($\mathbf{4} \cdot \mathbf{5 4}$ inc VAT +P). 400 watt UV lamp and ballast complete $£ 38 \cdot 00$. Post $£ 3.50$
$(£ 47.73$ incl. VAT + P). 400 watt UV lamp only $£ 14.00$. Post $(\mathbf{~} 47.73$ incl. VAT + P). 400
$\mathbf{£} 1.50 .(\mathbf{E} 17.83$ incl. VAT + P).
SQUAD LIGHT
A new conception in light

 of spotlights. floodlights or dozens of small mains tamps. Seven
programs all speed controlled plus flash modulation, effectively programs all speed controlled plus flash modulation, effectively giving 14 different displays. Makes sound-to-lig
S.A.E. (Foolscap) for further details.

Price $\mathbf{f 6 0 . 0 0}$ p\&p 75 p $\{\mathbf{~} \mathbf{6 9 . 8 1}$ in
WIDE RANGE OF DISCO LIGHTING
EOUIPMENT

50 WATT 250Ω £ 2.90 . Post 25 p (E3. $\mathbf{8 2}$ inc. VAT \& P)
100 WATT 1/5/10/25/50/100/250/500/1k贝il $5 \mathrm{k} \Omega / 2,5 \mathrm{k} \Omega$ $13.5 \mathrm{k} \Omega$ £5.90 p. 81 P 35 p (£7.19 inc. VAT). Black, Silver, Skirted knob calibrated in Nos
dia. brass bush. Ideal for above Rheostats 24 p each.

- E A $\quad \begin{aligned} & \text { Wide range of } A C \text { and } D C \text { relays } \\ & \text { availabie from stock. Phone or write } \\ & \text { in your enquiftes. }\end{aligned}$

230/240V A.C. Relay : Arrow 2 c/o. 15 amp $\mathbf{f 1 . 5 0 (£ 1 . 9 6}$ in VAT \& P).
T.E.C. ope
pen type 3 c/o. $10 \mathrm{amp} £ 1-10(\mathbf{~} 1.50$ inc. VAT \& P).
KMKI Relay. 230V. A.C. 1 c/o. open type 10 amp contact, mf. by "Keyswitch" $80 \mathrm{p} .+20 \mathrm{p}$. p.
£3.75 postpaid ($\mathbf{(5 . 3 2}$ incl. VAT).
D.C. Fiblay: Open type $9 / 12 \mathrm{~V} 3$ c/o 7 amp $£ 1.00$ ($£ 1.38$ inc. VAT 8 P) Sealed 12 V ico 7 amp octal base. $£ 1.00$ ($£ 1.38$ inc.
VAT \& P) Sealed 12 V 2 c/o 7 amp octal base. $£ 1.25$ ($£ 1.67 \mathrm{inc}$. VAT \& P). Sealed 12 V 3 cog 7 amp 11 -pin. $£ 1.35$ (f 1.78 inc.
VAT $\&$ P) 24 V Sealed 3 do 7 amp 11 pin $£ 1.35$ (f 1.78 inc. VAT 8 P). 24 V . Sealed 3 clo 7 amp 11 -pin $£ 1.35$ ($\mathrm{f1} 1.78$
VAT \& PI. (amps $=$ contact rating). P\& P on any Relay 2 Op . Vory Special Offer: 9-12V D.C., 2 make contacts, new IT.T. 3 for $£ 1.75+25 p$ P\& P. (inc VAT $£ 2.30$).
for £1.75 $+25 p$ P8P. (inc \mathbf{H} hoavy duty A.c. relay $230 / 240 \mathrm{~V}$ a.c. two C / O

41 $\frac{1}{2} \mathrm{rpm}$ SIGMA motors approx. 351bs inch 28 rpm WYNSCALE motors approx. 20 tb inch 71 rpm WYNSCALE motor approx. 101 b inch Above tour motors are designed for 110 V A.C. supplled with auto transformer 240 V . A.C. operation. $£ 7.75$ p. \& p. 75 p. Total incl. VAT E9-78. N.M.S.

19 rpm FHP $220 / 240 \mathrm{~V}$. a.c. reversible
torque 14.5 kg . Gear ratio $144-1$ Brand new including capacitars. mi. CITENCO. Price: £14.25

30 rpm. $230 / 2 \Delta 0 V$ a.c. 50 lb in mf PARVALUX
Price: $\mathbf{E 1 5 - 0 0}+£ 1.50$ P. \& P. ($\mathbf{f 1 8 . 9 8 \text { inclus. VAT). N.M.S. }}$
56 rpm .240 V . a.c. 501 b . in. 50 Hz
 inclus. VAT). N.M.S.

100 rpm .110 V . a.c. 115 Jb in., 50 Hz .2 .8 amp. single phase spit capacitor.
Immense power. Continuously rated
Totally anclosed Fan-cooled In box. Length 250 mm . Dia. 135 mm . Spindie dia. $15-5 \mathrm{~mm}$, length 145 mm . Tested. Price: $\mathbf{£ 1 2 . 0 0 +} \mathbf{£ 1 . 5 0}$
P. \& P. ($£ 55.53$, inclus. VAT).A. \& T. Suitable Transformer for $230 / 240 \mathrm{~V}$. operation. Price $\mathbf{£ 8 . 0 0}+75$ p. P. \& P. ($£ 10.06$ inc.

200 rpm .35 lbs in 115 V .50 Hz
Price: $\mathbf{£ 1 6 . 0 0 + £ 1 . 5 0 \text { P. \& P. (£20.13 inclus. VAT). N.M.S. }}$ Suitable Transformer for $230 / 240 \mathrm{~V}$ a.c.
Price: $£ \mathbf{8 . 0 0}+£ 1.00$ P. \& P. ($\mathbf{£ 1 0 - 3 5}$ inclus. VAT). N.M.S

12V. D.C. 'ype SD2. Shunt $\frac{1}{3} p^{\text {h }}$ continuously rated 4000 ipm.
Mf. PARVALUX. Price: $£ 10^{-60}+75 p$. P. \& P. $(£ 12.35$ inclus.
$1 \mathrm{rpm} 230 / 240 \mathrm{~V}$, a.c. Synchronous geared Motor, mf. HAYDON. 2.rpm $230 / 240 \mathrm{~V}$. a.c. Synchronous geared Motor, mi.
CROUZET. Either type $\mathbf{£ 2 . 9 0}+30 \mathrm{p}$. P . A P . ($£ 3-68$ inclus. VATI. N.M.S.
1.400 rpm 115 V . a.c. Motor, HP $\frac{1}{\text { 骨 continuously rated. Fitted with }}$ anti-vibration cradie mounting. Mr. FRACMO. Supplied complete with Transformer for $230 / 240 \mathrm{~V}$. a.c. operation. Price:
$\mathbf{£ 1 0 . 0 0 + £ 1 . 0 0 ~ P . ~ \& ~ P . ~} \mathbf{\{ 1 1 2 . 6 5 \text { inclus. VATI. N.M.S. }}$
ROTARY CARBON VANE VACUUM \& COMPRESSOR.
Direct coupled to $1 / 3$ h.p. $110-115 \mathrm{~V}$. A.C. motor 4.2 m 1380 r.p.m. Moror manu. by A.E., pump by Wilharns. CFM air flow a inches H.G. cont.
$£ 25$ incl. VAT \& p. \& p. $£ 32.20$. A.C. operation, $\mathbf{£ 8}$ p. \& p. $£ 3$ incl Suitable transformer for 240V. A

VERY EXCEPTIONAL OFFER

REDUCTION DRIVE GEAR BOX
Ratio 72 :1. Input spindle $\frac{1}{4} \times \frac{1}{2} \mathrm{in}$. Output spindle $\frac{\pi}{3} \times 3$ in. long. Overall size approx: $120 \times 98 \times 68 \mathrm{~mm}$. All metal construction. Ex-equip. tested. Price: $£ 2.00+$ 50 p. (incl VAT £2.88).

A.C. Wkg. TUBULAR CAPACITORS.

SANGAMO WESTON TIME SWITCH Type S251 $200 / 250 \mathrm{~V}$ a c 2 or 2 off every 24 hours. 20
amps contacts with override switch dia. 4×3 price Es .00 P \& P amps contacts with override switch dia. 4×3 price $\mathbf{E 8 . 0 0}$
50p inc. VAT £9.78. Also available with Solar dial. R. \& T .

MINIATURE 24-HOUR TIMESWITCH

New Manutactur

All Mail Orders Callers Ample Parking Space Showroom open Mon-Fri.

57 BRIDGMAN ROAD CHISWICK LONDON W4 5BB 019951560
ACCOUNT CUSTOMERS MIN. ORDER $£ 10.00$

Personal callers only Open Saturdays
9 Little Newport Street, London WC2H 7JJ
Phone 01-437 0576

This superb organ - build the first working section for just over $£ 100$. Full specification in our catalogue.

Touch operated rhythm generator, the 'Drumsette'. Censtruction details 25p. (Leaflet MES49). Specification in our catalogue.

Multimeters, analogue and digital, frequency counter, oscilloscopes, and lots, lots more at excellent prices. See cat. pages 106 and 183 to 188 for details.

61-note touch-sensitive piano to build yourself: Full specification in our catalogue.

A massive new catalogue from Maplin that's even bigger and better than before. If you ever buy electronic components, this is the one catalogue you must not be without. Over 280 pages - some in full colour - it's a comprehensive guide to electronic components with hundreds of thotographs and illustrations and page after page of invaluable data.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one readymade with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

Speakers from $1 \frac{1}{2}$ inch to 15 inch; megaphone. PA horns, crossovers etc.
They're all in our catalogue. Send the coupon now!

ELECTRONICSUPPLIESLTD

A wide range of disco accessories at marvellous prices. Our catalogue has all the details.

A very high quality 40 W per channel stereo amplifier with a superb specification and lots of extras Full construction details in our catalogue.

A genuine 150 W per channel stereo disco to build yourself. Full specification in our catalogue.

All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR.

Telephone: Southend (0702) 554155.
Shop: 284 London Road, Westcliff-on-Sea, Essex.
(Closed on Monday).
Telephone: Southend (0702) 554000.

[^0]: - IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Send your orders to: BI-PAK PO BOX 6 WARE HERTS. SHOP AT: 3 BALDOCK ST. WARE HERTS.
 TERMS: CASH WITH ORDER, SAME DAY DESPATCH, ACCESS,
 BARCLAYCARD ALSO ACCEPTED. TEL: (0920) 3182. GIRO 3887006
 ADD 15\% VAT AND 50p PER ORDER POSTAGE AND PACKING
 -APPX. COUNTBY WEIGHT

[^2]: Open daily to callers: Mon.-Fri. 9 a.m.-5 p.m. Valves, Tubes and Transistors. Closed Saturday Prices correct Terms C.W.O. only - Tel. 01-677 2424-7 Quotations for any types not listed S.A.E.
 when going

[^3]: Discount HI-FI, etc, at 5 Swan Street

[^4]: Acom
 Adam Hall (P.E. Supplies)
 Aitken Bros.
 Ashman
 Aura Sounds
 Automated Homes
 Bamber
 Bi-Pak
 Boffin Projects
 British National Radio \& Electronics School Butterworths
 Cambridge Kits
 Cambridge Leaming
 Chromasonic Electronics
 Chromatronics
 Codesperad
 Computer Components (Teleplay)
 Concept Elec.
 Continental Spec
 Crescent Radio
 Crofton Electronics
 C.R. Supply Co.

 Delta Tech
 Design Engineering
 Doram Electronics
 Ecoscope Instruments Lid.
 ED.A.
 Electronic Mail Örder Liod.
 Electrovalue
 Fladar
 Flairline Supplies
 Harrison Bros.
 Heathkit
 Hiykon Ltd
 Home Radio
 C.S. Intertext
 I.LP. Electronics

 Jayen Oevelopments
 J.W.B. Radio

 Kramer \& Co.
 L \& B Electronics
 Maplin Electronics
 Marshatl, A.
 Melbourne
 Melbourne Mart
 Metac
 Microdigital
 Millhill
 Mícrosystems '80
 Modern Book Co
 Modern
 Monolith
 P.A.W.K. \& I. Yates

 Pawbrooks
 P.K.G. Electronics

 Progressive R
 Proto Design
 Radio Component Specialists
 .S. T. Valve Mail Order
 Sandwell Plant Ltd.
 Science of Cambridge
 Scientific Wire Co.
 Seahorse Electronics
 Sentinel Supply
 Service Trading
 Sonic Sound Autio
 Special Products
 Star Parts
 Stevensons Electronic Components
 Strutt Electrica
 T.K. Electronics

 Technomatic
 Traonsame Components
 T.U.A.C.

 Watford Electronics
 Nicca Electronics
 Williamson Amplification
 Wirral Semiconductors
 upplies

