PRACTICAL

The Compukit UK 101 has
everything a one board 'superboard' should have

* Uses ultra-powerful 6502 microprocessor
* 50 Hz Frame retiesh for steady clear picture USA products with 60 Hz frame etresh always esults in jirtery dispiays
* 48 chars by 16 lines - $1 K$ memory mapped video system providing high speed access to screen display enabling animated games and graphs
* Extensive 256 character set which includes ful upper and lower case alphanumerics Greek symbols characters enabling you to torm almost any shape you characters enabling you to form almost any shape you
desire anywhere on the screen
* Video output and UHF Highgrade modulator 18 M

Bandwidth) which connecis direct to
of your TV Channe 36 UHF

* Fully stabilised 5 V power supply including trans former on board
* Standard KANSAS cuy tape intertace providing high reliabilty program storage - use on any standar
* 4K user RaM expandable 8K on board £49
extra
* 40 line expansion intertace socket on board for attachment of extender card containing $24 K$ RAM and disk contioller (Ohio Scientific compatible)
* 6502 machine code accesstbe through powertu

Machine code monmon board
High quality thr
mounted on sockets
mounted on sockets * Protessional 52 Key keyboard in 3 colours - sofi ware polled meaning that all debouncing and key decoding done in software
COMMANDS
STATEMENTS NEW NULL RUN STATEMENTS GOTO GOSUB IF GOTO IF THEN ENDUT FOR NEXT ON GOTO ON GOSUB POKE PRINT REAC REM RESTORE RETURN STOP
EXPRESSIONS
OPERATORS

- NOT ANDOR $\rangle\langle\ll\rangle=\left\langle\right.$ RANGE $10^{32}+10+10^{+32}$

VARIABLES
$A B C \quad Z$ and two letter valiables

- 8K Microsoft Basic means conversion and from Pet, Apple and Sorcerer easy Many compatible programs already in print SPECAL CHARACTERS
(a) Erases line being typed, then provides carriage return, line feed
CR Carriage Return - must be at the end of each line.
CONTROL/C Execution printing of a lis is interrupted at the end of a line.
"BREAK IN LINE XXXX" is printed, in dicating line number of next statement to be executed or printed.
CONTROL/O No outputs occur until return made to cummand mode. If an Input statement is encountered elther another CONTROLIO is typed, or an error occurs

Simple Soldering due to clear and consise instructions compiled by

 Dr. A.A. Berk, BSc.PhDNO EXTRAS NEEDED JUST HIT 'RETURN' AND GO.

Build, understand, and program your own computer for only a small outlay.

KIT ONLY 2219
including RF Modulator \& Power supply.
Absolutely no extras.

Available ready assembled and tested, ready to go for £269 + VAT

FUNCTIONS
ABS $(X) \quad \operatorname{COS}(X) \quad$ EXP (X)
OG $(x) \quad$ PEEK (1) POS 11 RND (x)
SPC(I) SQR(X) TAB(I) TAN(X)
$\operatorname{FRE}(X) \quad \operatorname{INT}(X)$

$\operatorname{SGN}(X) \quad \operatorname{SIN}(X)$

USR(I)
STRING FUNCTIONS
ASC(X\$) CHRSS(1) FRE(X\$) LEFT\$(XS RIGHT\$(XS.1) STR $\$(X)$
LEN(X\$) MID\$(X\$.IJ)
EN(X\$)
VAL(X\$)

COLOUR ADD-ON CARD AVAILABLE SOON

Enables you to choose your foreground the background colour anywhere on the screen. Flash any character on the screen at will. Full documentation and parts in kit form.

VOLUME 16 No. 1 JANUARY 1980

CONSTRUCTIONAL PROJECTS

SCRATCH AND RUMBLE FILTER by R. A. Penfold 22
Reduce turntable and record surface noise
ULTRASONIC CLEANER 41
Cavitation cleaning for small objects
SCINTILLATING PENDANT by Owen Bishop 48
Electronic jewellery
50
50
Provides $0.5 \mathrm{~A} / 5 \mathrm{~V}$ for miniature servo testing 55
Construction and interfacing
26
SEMICONDUCTOR UPDATE
27
SOFTY REVIEW by A. A. Berk B.Sc., Ph.D.MPU development tool under the microscopeINGENUITY UNLIMITED35
Simple Autofade-R/C Servo-Car Burglar Alarm—Phased White Noise- Glow Plug Supply-Disco Cross-Fader-Low Pass FilterWIEGAND EFFECT-B. Dance M.Sc39
New vehicle ignition technique SWITCHING REGULATORS by D.L. H. Smith 64
Theory and suggested circuits
CALCULATOR CHIPS AS LOGIC DEVICES by P. A. Birnie 69
Circuits using the G.I. C683
NEWS AND COMMENT
EDITORIAL 17
MARKET PLACE 18
New products
SPACEWATCH 32
Pioneer II, Magnetic Field, Tailpiece
SEIKO WATCH OFFER 34
NDUSTRY NOTEBOOK 47
Inside industry
PATENTS REVIEW 62
READOUT 63
A selection of readers' letters
NEWS BRIEFS 66, 71
COUNTDOWN 71

OUR FEBRUARY ISSUE WILL BE ON SALE FRIDAY, 11 JANUARY 1980
(for details of contents see page 33)

[^0]

VOLTAGE REGULATORS									
1A	TO3								
5 V	7805	145p	7905	220p					
12 V	7812	145p	7912	220					
15 V	7815	145p							
18 V	7818	145p							
1 A	T0220 Plastic Casing								
5 V	7805	65p	7905	75					
12 V	7812	65	7912						
	7815	65p	7915						
18 V 24 V	7818	${ }^{65 p}$	7918						
24 V	7824								
100 mA	T092	Plastic Casing							
5 V	$78 \mathrm{LO5}$		79 LO	65p					
6 V	$78 \mathrm{L62}$								
8 V	78L82	30							
12 V	78 L 12	30 p	7912						
15 V	78L15		$791.5{ }^{\text {7 }}$						
CA3085	595		LM323K	K25					
LM300H	$\begin{array}{ll}\mathrm{H} & 170 \\ \mathrm{H} & 140\end{array}$		LM325N						
LM305H			LM326N	N 240					
LM309K	135350		LM327N	270					
317 K			LM723	39					
$78 \mathrm{HO} 5 \mathrm{5V} / 5 \mathrm{~A} 595 \mathrm{p}$. $78 \mathrm{H6}$, 5 to $24 \vee 650 p$.									
SWITCHES			TOGGLE 2A 250V						
SLIDE 250V			SPST						
1ADPDT Clofe 14									
			${ }^{\text {OPDT }}$ pole on						
$\frac{1}{3}$ A DPDT			SUB-MIN						
PUSH BUTTON TPGGLE									
Spring loaded			SP changeover						
SPST on			SPST biased						
SPDT C/ov			SPDT 6 lags						
MIMIAT									
miniature Non Locking			3 pole c/over						
Push to make 215 Push Break 25 ROCKER:5A. 250V. SPST 23									
ROCKER: (white) 5 A 250 V SP changeover centre off									
ROCKER: Lights red when on Chrome Bezel 3A 250 V SPT									
potarr: "Make-A-Switch" Make your own multiway Switch. Adjustable									
Stop Shafting Assembly.									
Mains Switch DPST io fit									
Break Before Make Wafers, 1 pole/ 12 way. $2 p / 6$ way. $3 p / 4$ way. $4 p / 3$ way.									
6p/2 way									
Spacer and Screen									
ROTARY: (Adjumable Stop)									
ROTARY: Mains 250 V AC, 4 Amp				-					

OHIO SUPERBOARD II OnlV £188.00 ex stock Yes, we are now selling this single board microcomputer at only $\mathrm{f} 188,00$. Due to the recent devaluation of US Dollar against $£$ Sterling, we have been able to purchase Superboards at lower price. Naturally, we wish to pass this price advantage on to our customers. Buy now to avoid disappointment should Mrs. Thatcher \& Co. decide to devalue the pound.
Superboard II is supplied fully assembled and tested to British T.V. spec. Requires +5 V at 3 A and a Video Monitor or V with RF Converter to be up and running. (Data sheet supplied. We can also supply the RF Converter and Power Supply in kit form or ready-built).
8 k Microsoft BASIC IN ROM. 4 k Static RAM on BOARD expandable to 8 k . Full 53 Key Keyboard with Upper/Lower Case \& user programmabitity and a lot more. See it for yourself. Continuous demonstration on at our retail shop.
Specially designed case for Superboard available at $£ 25.00$.

$\begin{array}{llll}1.008 \mathrm{MHz} & 323 p & 10.7 \mathrm{MHz} & \mathbf{3 2 3 p} \\ 1.80 \mathrm{MHz} & 385 \mathrm{p} & 12 \mathrm{MHz} & 392 \mathrm{p} \\ 1.832 \mathrm{MHz} & 362 \mathrm{p} & 14.318118 \mathrm{M} & 300 \mathrm{p} \\ & 302\end{array} \quad \begin{aligned} & \text { UHF Modulator } 250 \mathrm{p} . \\ & \text { Wide Bandwidet }\end{aligned}$
Wide Bandwidth Special for
Computer 470p.
Full Ascii KEyBOARD

Model 756

Low cost, ready-buith, tested $\&$ Guaranteed. Full technical details

KEYPADS

4x4 matrix, push button reed
switches assembly. switches assembly. Extremely
reliable. Only 450p.

TRANSFORMERS (mains Prim. $220-240 \mathrm{~V}$)
$6-0-6 \mathrm{~V} \quad 100 \mathrm{~mA}: ~$
$-0-9 \mathrm{~V} \quad 75 \mathrm{~mA}: \quad 12-0-12 \mathrm{~V}$

$12 \mathrm{~V}-3 A 12 \mathrm{~V}-3 \mathrm{~A}: 15 \mathrm{~V}-25 A+5 \mathrm{~V}-25 A$ 195p. 12VA: 4.5-1.3A 4.5V-1.3A: 6V-1.2A 6V-

 $\begin{array}{lll}\text { 24VA: } & 6 \mathrm{~V}-1.5 \mathrm{~A} & 6 \mathrm{~V}-1.5 \mathrm{~A}: 9 \mathrm{~V}-1.2 \mathrm{~A} \\ 12 \mathrm{~V}-1 \mathrm{~A}-1.2 \mathrm{~A} \\ 12 \mathrm{~V}-1 \mathrm{~A}: & 15-8 \mathrm{~A} & 15-8 \mathrm{~A}: \\ 20 \mathrm{~V}-6 \mathrm{a}\end{array}$ | $12 \mathrm{~V}-1 \mathrm{~A}$ |
| :--- |
| $20 \mathrm{~V}-6 \mathrm{~A}$ |
| | $50 V A: 6 V-4 A 6 V-4 A ; 9 V-2.5 A 9 V-2.5 A: 12 V-$ $2 \mathrm{~A} 12 \mathrm{~V}-2 \mathrm{~A}: 15 \mathrm{~V}-1.5 \mathrm{~A}$ 15V-1.5A: 20V-1.2A

$20 \mathrm{~V}-12 \mathrm{~A}: 25 \mathrm{~V}-1 \mathrm{~A} 25 \mathrm{~V}-1 \mathrm{~A}: 30 \mathrm{~V}-8 \mathrm{~A} 30 \mathrm{~V}-8 \mathrm{~A}$ $100 \mathrm{VA} \cdot 12 \mathrm{~V} 4 \mathrm{~A} 12 \mathrm{~V} 4 \mathrm{~A} \quad 350 \mathrm{p}(50 \mathrm{p}$ p p$)$ 100VA: $12 \mathrm{~V}-4 \mathrm{~A} \quad 12 \mathrm{~V}-4 \mathrm{~A} ; \quad 15 \mathrm{~V}-3 \mathrm{~A} \quad 15 \mathrm{~V}-3 \mathrm{~A}$; $20 \mathrm{~V}-2 \cdot 5 \mathrm{~A} \quad 20 \mathrm{~V}-2 \mathrm{5A} ; 30 \mathrm{~V}-1.5 \mathrm{~A}$ 30V-1.5 40V-1 25A 40V-1 25A:50V-1A 50V-1A
(N.B. P\&P charge to be added above our normal
postal charge.)

Plastic Boxes

BACK IN BUSINESS

DORAM ELECTRONICS LTD, a name well known in the home electronics market, are back in business under new management. We aim to combine our many years experience supplying components worldwide with personal service to our new customers.

NEW PROJECT PACKS:

$+\quad$ Universal Digital - This versatile unit can replace analogue meters with an fsd from 1 to 100 V or 10 mA to 1 Amp . Three 7 -segment LED display. £14.65

+ Touch Tuning - Can be used with most varicap tuned front ends to select up to 9 pre-set channels. Digital channel display. $\mathbf{£ 1 7 . 8 0}$
+ DJ Killer - Detects the sound of a voice on the radio and cuts off the audio until music is transmitted. $\quad \mathbf{~ 7 . 6 5}$

VAT inclusive prices. Postage add $40 p$

COMPONENTS We stock a large range of TTL, CMOS. Linear and Microprocessor IC's, plus Transistors. Diodes, Resistors and Capacitors etc.

PROJECT PACKS We can supply 'Project Packs' containing all the electronic components. PCB and instructions for over 100 different magazine projects. These range from simple circuits suitable for the beginner to very advanced designs, like our user-programmable TV GAMES COMPUTER system.

PRICE LIST For our new Price List send a large SAE to
Doram Electronics Ltd., Dept PE, Fitzroy House, Market Place, Swaffham, Norfolk. PE37 7QH
Tel: Swaffham (0760) 21627. Telex: 817912
A DE BOER COMPANY

START 1980 WITH
 AURA SOUNDS

the OUUEREI spociailist
Enjoy the long winter evenings with KITS KITS KITS KITS something for everyone
ORGANS, PIANOS, MIXERS SYNTHESISERS, RHYTHM UNITS

Visit one of our showrooms at 14-15 Royal Oak Centre, Purley (016689733)
or
17 Upper Charter Arcade, Barnsley
(0226 5248)
or send $£ 1$ for our literature
I enclose $£ 1$ for the WERSI literature
NAME. \qquad
ADDRESS \qquad
\qquad
\qquad
\qquad

First the EuroBreadBoard Now the EuroSolderBoard

Design on a EuroBreadBoard - Instal on a EuroSolderBoard

First the EuroBreadBoard

Will accept $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to .85 mm dia leads,
500 individual connections PLUS 4 in tegral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, low resistance ($<10 \mathrm{~m}$ ohms) nickel silver contacts
$£ 6.20$ each or $£ 11.70$ for 2 including 1 or 2 EuroSolderBoards FREE

Now the EuroSolderBoard

New 100 mm square, 1.6 mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm dia fixing holes.
$£ 2.00$ for set of three ESB's or FREE with every EuroBreadBoard)

And don't forget the EuroSolderSucker

Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pcb pads and track. Primed and released by thumb, it costs only $£ 7.25$ in cluding VAT \& PP

Snip out and post to David George Sales,
Unit 7. Higgs Industrial Estate, 2 Herne Hill Road, London SE24 OAU
David George Sales,
Unit 7, Higgs Ind. Est., 2 Herne Hill Rd., London SE24 OAU.
Please send me:-
1 EuroBreadBoard
(plus 1 free EuroSolderBoard) @ $£ 6.20$ ○
or 2 EuroBreadBoards
(plus 2 free EuroSolderBoardsi
or 3 EuroSolderBoards
@ $£ 11.70$ ○
Please
@ $£ 2.00 \bigcirc$
All prices are applicable from Jan. 1 st 1980 and include VAT \& PP but add 15% for overseas orders.
Name
Company.
Address.

Tel. No

Please make cheques/P.O. payable to David George Sales and allow 10 days for cheque clearance and order processing

B-PREPAK

MORE BIGVALUE FROM MOURTANDYSTORE

SIGNAL
TRACER
Spot circuit troubles and
check RF, IF and audio
signals from aerial to
speaker on al audio
equipment. With 9 V
battery, instructions.
22-010.
$£ 9.95$

REALISTIC DX 300

General coverage receiver. Quartz-synthesised tuning, digital frequency readout. 3-step RF Attenuator. 6range preselector with LED indicators. SSb and CW demodulation. Speaker. Code oscillator. Batteries (not included) or 12V DC. 20-204.
wes max $£ 229.95$

DYNAMIC TRANSISTOR CHECKER

Shows current gain and electrode open and short circuit. Tests low, medium or high power PNP or NPN types. Go/no-Go test from 22-024.

REG. PRICE

$£ 9.95$

You save because we design. manufacture, sell and service. Tandy have over 7,000 stores and dealerships worldwide. Over 2,500 products are made
specificaliy for or by Tandy at 16 factories around the world. The quiality of our products has been achieved by over 60 years of continuous technological advancement

6-DIGIT
 FREQUENCY COUNTER

Counts frequencies from 100 Hz to over 45 MHz with 100 ms gate time. Accuracy is 3 ppmat $25^{\circ} \mathrm{C}$ or less thien $\pm 30 \mathrm{Mkz}$ on 10 MHz ! Overloadprotected $1-\mathrm{meg}$ input. Sensitivity, 30 mV up to 30 MHz Req. 9 V battery 22-351. REG. PRICE
$£ 79.95$
DIGITAL IC LOGIC PROBE

MULTITESTER

Dual FET imput for accuracy and minimum loading. 11.5 cm mirrored scale. DC volts, 0-1-3-10-30-100-300-1000. DC current 0-100 a. 0-3-30300 milliamp. Resistance 0-30-300-3k-30 1C- 1 megaohm. 0-100-1k-101C-100K-3
megaohms. Req. 9V battery 22-209.

$£ 29.95$

SIGNAL INJECTOR
For RF, IF, AF circuits. Maximum accuracy. Easy pushbutton operation. Needs two "AA" batteries. 22-4033
mes macif2.79
Unique circuitry makes it a combined level detector, pulse detector and pulse stretcher. Hi-LED indicates logic " 1 ". Lo-LED is iogic " 0 ". Pulse LED displays pulse transitions to 300 nanoseconds, blinks at 3 Hz for high frequency signals (up to 1.5 MHz). Input impedence: 300 K onms. With 36 "power cables 22-300.
ref mace19.95
AC/DC CIRCUIT TESTER
Accuracy in 1-300 volts ranges. Safe in live/dead circuits. Needs two "AA" batteries 22-4034.

pec pace: $£ 1.99$

VARIABLE POWER SUPPLY

Power project boards. IC's, other low-voltage DC equipment. Load regulation: less than 450 mV at 1 amp at 24 V DC. Ripple: less then 25 mV . Maximum output current: 1.25 amps . Switchable colour-coded meter reads $0-25 \mathrm{~V}$. DC and $0-1.25 \mathrm{amps}$. Three-way bind ing posts take wires, banana plugs or dual banana 22-9123

TANDY
DEALER

Most items also available sign in your area.
The largest electronics retailer in the world. Offers subject to availability. Instant credit avaılabie in most cases
OVER 170 STORES AND DEALERSHIPS NATIONWIDE.

KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. 128-NOTE

PROGRAMMABLE SEQUENCER

Enables a voltage controlled synthesiser to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and rhythmic pattern are externally variable.
$\begin{array}{lrr}\text { Set of basic component kits } & \text { KIT } & 76-5 \\ \text { Set of PCBS \& lavout charts } & \text { KIT } & \mathbf{7 6 - 6} \\ \text { Se.82 } & \mathbf{E 8 . 8 8}\end{array}$
Set of text photocopies
P.E. 16-NOTE

PROGRAMMABLE SEQUENCER
Sequences of up to 16 notes may be programmed by the use of external panel controls and fed into most voltage controlled synhesisers.

KIT 86-3	£22.80	
Set of basic component kits	KIT 86-4	£6.03
Set of PCBs		

Set text photocopies
$\begin{array}{rr}\text { KIT } 86-4 & \text { E } 8.09 \\ & \text { \& } 1.84\end{array}$

P.E.STRING ENSEMBLE

Set of basic component kits KIT 77-6 Eee.70 $\begin{array}{lll}\text { Set ot PCBs \& layout charts } & \text { KIT 77-7 } & \mathbf{~} 24.19\end{array}$

P.E. JOANNAPLUS ORGAN VOICING

A modified version of the P.E. 5 -octave piano that retains all the riginal facilities and also includes switchable organ voicing circuitry.
$\begin{array}{lll}\text { Set of basic component kits } & \text { KIT 71-5 } & \text { £90.38 }\end{array}$ Set of PCBs \& layout charts KIT 71-6 $£ 29.61$

ELEKTOR ELECTRONIC PIANO

A touch-sensitive multiple-voicing piano using the latest integrated circuit techniques for the keying and enverope shaping. and virtually eliminating "bee-hive" noise hitherto inherent in previous electronic pianos.

5-octave set of basic components
5 -octave set of PCBs (as published)
Additional 3 -octave extension
basic parts
Additional 3-octave set of PCBs
as published)
KIT 80-6 $\quad 4110.39$ KIT 80-7 $\mathbf{8 2 6 . 0 2}$
KIT 80-5 E45.05

Set of text photocopies
KIT $80-8$ e9.65

P.E. MINISONIC MK2 SYNTHESISER

 A portable mains operated miniature sound synthesiser with keyboard circuits. Although having slightly fewer facilities than the large Formant and P.E. synthesisers the functions offered by this design give it great scope and versatility.Ser of basic component kits (excl. KBD
R's \& tuning pots - see list for options
available "Sound Design" booklet

KIT 38-23
C87.08

P.E. SYNTHESISER

The well acclaimed and highly versatile large scale mains pepated synthesiser. Oiher circuits in our lists may be used with it to good advantage

Main Unit basic component kits Main Unit set of PCBs \& layout chant Keyboard Unit basic component kits Keyboard Unit set of PCBs \& layout
charts Keyboard Unit set of text photocopie

ELEKTOR FORMANT SYNTHESISER

-

A very sophisticated synthesiser
Set of basic component kits
Set of PCBs (as published)

KIT 66-12 E193.88 KIT 66-13 E53.82

COMPONENTS SETS include all necessary resistors. capacitors, semiconductors. potentiometers and transformers. Hardware such as cases, sockets, knobs,
keyboards, etc. are not included but most of these may keyboards. etc. are not included but most of these may
be bought separately. Fuller details of kits, PCBs and be bought separately. Fuller details of kits, PCBs and parts are shown in our lists.

Layout diacmams are supplied free with all PCBs unless "as published"

P.E. GUITAR EFFECTS PEDAL

Modulates the attack, decay and filter characteristics of a signal from most audio sources, producing 8 different switchable effects that can be further modified by manual controls.

hat can be further modified by manual controls.		
Basic parts with foot switches	KIT 42-1	E8.45
Basic parts with panel switches	KIT 42-2	E5.85
PCB \& layout chart	PCB 42A	E1.87
Text photocopy		28p

Text photocopy

ELEKTOR DIGITAL REVERE UNIT

A very advanced unit using sophisticated i.c. techniques instead of mechanical spring lines. The basic delay range of 24 to 90 ms can be extended up to 450 mS using the extension unit. Further delays can be obtained using more extensions.

Main unit basic component kit KIT 78.1 Main unit PCB (as published) PCB 9913 23.69 Extension unit basic component kit KIT 78-2 447.68 Extension unit PCB (as published) KIT 78-2 PCB $788 \quad 1.16$

ELEKTOR ANALOGUE

REVERB UNIT

Using i.c.s instead of spring-lines the main unit has a maxium delay of up to 100 ms , and the additional set extends this up to 200 ms . May be used in either mono or stereo mode.
$\begin{array}{llll}\text { Main unit basic component set } & \text { KIT 83-1 } & \mathbf{8 2 9 . 4 8}\end{array}$ Additional Delay basic components \quad KIT 83-2 $£ 20.07$ PCB (as publ.) to hold both kit PCB 99

PE CUTT

AR MULTIPROCESSOR
An extremely versatile sound processing unit capable o producing, for example, flanging, vibrato, reverb. fuzz and tremolo
as well as other fascinating sounds. May be used with most elec tronic instruments.

Set of basic component kits KIT 85-3 e43.7\% $\left.\begin{array}{lll}\text { Set of PCBs \& layout charts } & \text { KIT 85-4 } & \mathbf{E 1 0 . 6 2} \\ \text { Set of text photocopies } & & \\ \hline\end{array}\right) . \begin{aligned} & \text { E2.62 }\end{aligned}$

P.E. PHASER

An automatically controlled 6 -stage phasing unit with integra oscillator.

Set of basic components, incl.,
PCB \& chart
Text photocopy
KIT 88-1 E10.14

ELEKTOR PHASING

VIBRATO UNIT
Includes manual and automatic control over the rate of phasing \& vibrato, and has been slightly modified to also include a 2 -input mixer stage.

Sel of basic components KIT 70-1 $£ 18.11$
PCB \& layout chart PCB 70A $£ 2.56$
Text photocopy

P.E. PHASING UNIT

A simple but effective manually controlled phasing unit
Set of basic components incl.
PCB \& chart KIT 25-1 E3.62

PHASING CONTROLUNIT

For use with Phasing Kit 25 to automatically control rate of phasing

Sel of basic components incl
PCB \& chart
KIT 36-1 $\mathbf{\text { E5.2 }}$
Text photocopy

P.E. SWITCHED TONE

TREBLE BOOST
Provides switched selection of 4 preset tonal responses. Set of basic components.
CB \& chan KIT 89-1 Text photocopy
53.82

P.E. TREBLE BOOST UNIT

A simple treble boost unit with manual control of depth Set of basic components.
PCB \& chart KIT 53-1 $£ 2.76$

PHONOSONICS
MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

ELEKTOR RESONANCE FILTER

Allows a synthesiser to produce a more realistic simulation of
natural musical instruments.
PCB (as published)
$\begin{array}{lr}\text { KIT 82-1 } & \mathbf{1 8 . 6 1} \\ \text { PCB } 9951 & \mathbf{E 3 . 2 8}\end{array}$

Text photocopy

P.E. GUITAR OVERDRIVE

Sophisticated versatile fuzz unit including variable controls affecting the fuzz quality whilst retaining the attack and decay. and also providing filtering. Can be used with other electronic in
Set of basic componen
Text photocopy
PCB 56A
67.57
51.78
$88 p$
P.E. SMOOTH FUZZ

Set of basic components
PCB \& chart
KIT 91-1 E8.01

TREMOLO UNIT

A slightly modified version of the simple P.E. unit
Set of basic components.
PCB \& chart KIT 54-1 E3.23
GUITAR FREQUENCY DOUBLER
A stightly modified and extended version of the P.E. unit.
Set of basic components.
PCB \& chart
KIT 74-1 $\mathbf{E 4 . 9 7}$
P.E. GUITAR SUSTAIN

Maintains the natural attack whilst extending note duration
Basic components. foot switches, KIT 75-1 E5.6A
PCB \& chart
Basic components, panel switches.
PCB \& chart
KIT 75-2 $\mathbf{~ 4 . 0 8}$
Text photocopy
38p

P.E. WAH-WAH UNIT

Can be controlled manually or by integral automatic control.
Set of basic components. KIT 51-1
PCB \& chart
P.E. AUTO-WAH UNIT

Automatically Wah or Swell sounds with each note played.

Basic components, foot		
switches, PCB \& chart		
Basic components, panel	KIT 58-1	E8.43
switches, PCB \& chart		KIT 58-2
Text photocopy		E8.31
		E8p

ELEKTOR WAVEFORM CONYERTOR

Converts a saw-tooth waveform into sinewave, mark-space saw looth, regular triangle. or square-wave with variable mark-space ratio.

Basic components. PCB \& chart.
but excl. sw's.
KIT 67-1 89.24

P.E.VOLTAGE CONTROLLED

FILTER
Extracted from P.E. Minisonic project
Set of basic components
PCB \& chart
PCB \& chart KIT 65-1 E7.88
P.E. RING MODULATOR

Extracted from P.E. Minisonic project.
Set of basic components. KIT 59-1 $\mathbf{~ E C B ~}$ \& $_{1}$ chart

ELEKTOR RING MODULATOR

Compatible with the Formant \& most other synthesisers. Set of basic components KIT 87-1 PCB (as published) PCB 79040 Text photacopy

10\% DISCOUNT VOUCHER (PE 70)
TERMS: Goods in current adverts \& lists over $\mathbf{5} 50$ goods value lexcl P \& P \& VATI. Correctly costed. C.W.O. U.K. orders only. this voucher must accompany order.
until end of month on cover of P.E. Does not apply to credit card orders.

ADD: POST B HANDLINC

U.K. orders: Keyboards add $£ 2.30$ each. Other goods: Under £5 add 25 p. under $£ 20$ add 50 p, over $£ 20$ add 75 p. Recommended insurance against postal mishaps: add 50p for cover up to $£ 50$, E 1 for E 100 cover, etc., pro-rata. Insurance must be edded for credit card orders.
N.B. Eire. C.I., B.F.P.O. and other countries are subject to higher export postage rates.

ADO 15\% VAT

(or current rate if changed). Must be added to full totall of
goods, discount, posit goods, discount, post \& Does not apply to Exoorts.

EXPORT ORDERS ARE WELCOME but to avoid
delay we advise you to see our list for postage rates. All delay we advise you to see our list for postage rates. Al payments must be cash-with-Order, in Sierling by nter-
national Money Order or through an English Bank. To obtain list - Europe send 25p. other countries send 50p.

PHONOSONICS • DEPT PE81 • 22 HIGH STREET • SIDCUP • KENT DA14 6EH

AND OTHER PROJECTS

PHOTGGRAPHS in this advertisement show two of our units containing some of
the P.. . propects ouill from our kits and PCBs The cases-were Dull oy ourselves and are not for saie though a smatl selection of other cases is avaliable?

LIST-Send stamped addressed envelope with all U.K. requests for free list giving fuller details of PCBs. kits and ther component
OVEASEAS enquiries for list Eurode

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKIMBER-ALLEN KEYBOARBOS as required for many published projects. The manufacturers laim that these are the finest moulded plastic keyboards available. All octaves are C to C, th
 Octave (49 notes)
5 Octave (61 notes)
CONTACT ASSEMBLIES (gold-clad wire) - 1 required for each KBD note Type GJ - SPCO 25 $\frac{1}{2}$ p ea. Type GA - 1 pr of contacts, normally open 24p ea. Type GB-2 pr
 $58 \frac{1}{2}$ pea. Type 4PS - 3 pr N/O plus SPCO 57p ea

P.E. NOISE GENERATOR

Extracted from the P.E. Minisonic
Set of basic components.
WIND \& RAIN EFFECTS UNIT

24 TUNE DOOR CHIMES

DOOR TUNES $£ 17.13$ + VAI.
Waddington's Videomaster announce a doorbell that doesn go Britinggg. Ding Dong or Bumen Instead it plays you seieci for your mond, the season or whe visitor you are expecting to call Doos tunes is not oniy greas fun and a wonderfut ice breaker, but is also very functionally and beautituly designed to enhance vour home There something for Chnsimas, samething for your continenta vistors or your relations from the states, and even something for the Queen. Door tunes is easy to irstali and kas separate convois for volume, tone and tempo

T.V. GAMES

PFOGRAMMABLE EZQ. $50+$ YAI

COLOUR CARTRIOGE T.V. GAME
The TV ganie can be compared to an audin cassetre dech and is programmied to play a mulnuude of ditterent games in COLOUR, using various plug-in cannidges. At long last a TV game is avadable which will keep pace with mproving technology by aliowngy you to extend your library of games with the purchase of additional cantriges as new games are developed. Each carnidge contains up to ten differen action games and the first cantinge contaning ten sports garies is incuded iree with the console. Other cartridges are currenty avalable to enable you to play such garnes as Grand Pnx Molut Racing, Super wipeour and Siunt Rider Furmer carringes are to be released lazer mis year. induoing Tank Battie, Hunt the sut and Targer The console comes complete with two removable laystick player conirals to enabie you to move in all fous direction hall serve and tage fire buyons. Dhe fearues anclude several difliculty oprion swiches, aunomatic on screen several dificuiry opmon swiches, huromatic an scree lifelike sounds are rransmitted through the TV's spoake simulaing the actual game being piayed. Manulaciured by Waddington's Videomaster and 10 Gam COLOUR SPORTSWORLO E2250 + VAT

CHESS COMPUTERS

STAR CHESS - ELSK. 08 + VAT PLAY CHESS Against your partmer
using your own TV to display the board and pleces Star Chess is a new absorting game for two players, which will interes: and excite atl ages. The unit plugs into the aerial sockel of your TV Sel and dispiays the board and pieces in fill colour lor black and whutel on your IV screen. Eased on the moves of chess It adds even more excilement and interesi to the game. For those who have never played Star chess is a novel introduction to the classic game chess. for the experienced chess plaver, there are whole new dimensions ol unpredictablifiy and chance added to conventionai chess gape moves hin each piece can als conventonai chess type moves, bun each piece can als
 and iwelve mionths quar antee

CHESS CHALLENGER 7 - f 6 湅 65 + VAT PLAY CHESS AGAINST THE COMPUTER
The stylish, conipact, portable console can be set 10 play al seven ditferem levels of ablity trom beginnet to exper
including "Mate in two" and "Chess by mal" The conipuler wall only make responses which obey international chess Whl only riake responses which obey in!ernational ches
rules. Castling, on passam, and pronioung a pawn are al included as par of the corsputer's programme. possibie to enter any given problen) from magazines of newspapers or alkenatively establist your own boa position and watch the computet reaci the posstions of all pieces can be verlied by using the computor meniory recall bution
Price inctudes unit with wood gramed housing, and Staunton design chess pleces. Conipuler plays btack or white and aganst nsell and comes coniplete with a mains odaptut and 12 months guarantee
OTHER CHESS COMPUTERS IN OUA RANGE INCLUDE CHESS CHAMPION - B LEVELS $547.39+$ VAT CHESS CHALLENGER - 10 LEVELS - f 138.70 + VAT.
BORIS - MULTH-LEVEL TALKING DISPLAY $£ 16304$

ELECTRONIC CHESS BDARD TUTOR $£ 17.17$ + VAT.
A special bulk purchase of these amiazing chess reaching machines enables us 10 offer them at anly f 1975 less than simple batiery peerared mache eiecronic chess huror anyone to play chess and mprove their garne right up to champonshi, leve. Mis machine is nor only tor tora enler chess ilso ior esiabishied players waming no play 32 chess pleces, a 64 page explanarory bookkiel and a set ot 32 pragressive programnie cards including 5 begimners cards, 16 check male posilions, 9 minnature garties, 5 openings, 3 end ganies, 28 chess problemis and 2 mastei

DRAUGHTS COMPUTERS

ChECKER CHALLENGER 2 LEVELS $\mathbf{4 3 . 0 0}$ + VAT LEVELS 978.00 + VAT The draughts compurer enables you to sharpen your skills, imiprove your game, and play whenever you want the conaputer incorporates a sophisticated, reliable, decision naking meroprocessor as is brain lis heyh level o thinking ablity enables it to respond with is best counter moves like a skilied hunian opponen You can seleci offence or defence and change playing difliculty levels at any time postions can be verined oy compure! memiory
 set problemis Curnputer mames complete with instuctions

FOR FREE BROCHURES - SEND S.A.E

For FAEE illustrated brochutes and reviews on TV and chess ganes please send a s
\qquad (o order by telephone please quate your nanue, address and AccessiBarclaycard numiter

AJD DIRECT SUPPLIES LIMITED, Dept. PE12 102 Bellegrove Road
Welling Kent DAI6 30D. Tel: $01-3039145$ (Dayl $01-8508652$ (Everings)

MELODY

Multi Alarm

Chronograph

CASIO F-8C

3 Year Battery life.

CASIO CALENDAR 200
 47CS-23B-1 Black. Stainless steel. Hours, mins, 10 second symbol, second (by flash). am/pm. Month, day, date. Auto-calendar set from 1901 to 2009. Full month calendar display Dual time function. Accuracy 10 secs per
 month. Battery life approx 15 months. £59:95 M37

SEIKO CHRONOGRAPH

67 High Street, DAVENTRY
 Northamptonshire

Telephone: 0327276545

South of England
327 Edgware Road LONDON W. 2
Telephone: (01) 7234753

SOLAR QUARTZ LCD Chronograph

HANIMEX
Electronic
LED Alarm Clock

Features and Specitication
Hour/minute display Large LED display with onioff control Display flasting for power loss indication Repeatable 9 -minute snooze Display bright/dim modes contuol Size $5.15^{\prime \prime} \times 393^{\prime \prime} \times$ $236^{\prime \prime} 1131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm}$ Weight 1.43 lbs 1065 kgl AC power 220 V
$£ 10.20$ Thousands sold
Mains operated.
Guaranteed same day despatch.

SOLAR QUARTZ LCD 5 Function

Genuine solar panel with battery back-up Hours, mins., secs., day, date. Fully adjustable bracelet. Back-light. Oniy 7mm thick.
£8.65

Guaranteed same day despatch.

FRONT-BUTTON
Alarm Chrono Dual Time 6 digits, 5 flags. 22 functions. hours and mins., plus optional seconds or date display. AM/PM indication, month, Continuous display of da 59.9 secs., in $1 / 10$ second Split and lap timing modes. Dual time zones. Only 8 mm thick.
Back-light. Fully adjustable open bracelet.
Guaranteed same day dispatch

M2

QUARTZ LCD
 SLIM
 11 Function chrono

6 digit, 11 functions. Hours, mins., secs., day date, day of week. 1/100th, 1/10th, secs 10 X secs., mins., Split and lap modes. Back-light, auto calendar Only 8 mm thick. Stainless steel bracelet and back.
Adjustable bracelet. Metac Price

£10.65 Thousands sold!
Guaranteed same day despatch. M3

SOLAR QUARTZ LCD

 Chronograph with
Alarm

Dual Time Zone
Facility
6 digits, 5 flegs. 22 functions. Solar panel with battery back-up. 6 basic functions. Stop-watch to 12 hours 59.9 secs., in $1 / 10$ sec., steps.
Split and lap timing modes.
Dual time zones.
Alarm. 9 mm thick. Back-light. 27.95
Fully adjustable bracelet.

QUARTZLCD

Ladies Fashion Watch
Elegant bracelet in
bronze/gold finish or
silver colour.
Hours, mins, secs, day, calendar. Adjustable for the slimmest of wrists. State colour preference.

£14.95

Guaranteed same day despatch M17

HOWTO ORDER

Payment can be made by sending cheque, postal order, Barclay, Access or American Express card numbers. Write your name, address and order details clearly, enclose 40 pence per single item for post and packing or the amount stated in the advert. All products carry 1 vear written guarantee and full money-back 10 day reassurance. Battery fitting and electronic calibration service is available to customers at any Metac shop. All prices include VAT currently at 15%.
Metac Wholessle:
Trade enquiries - send for a complete list of prices for all the goods advertised plus many more not shown also minimum order details.
Telephone orders: Credit card customers can teleptrone orders direct to Daventry (03272) 76545 or Edgware Rd. 01-723 475324 hours a day.

Service Enquiries 03272-77659
CALLERS WELCOME Shopsopen 9-30am-6.00

QUARTZ LCD ALARM 7 Function

Hours, mins., secs, month, date, day. 6 digits, 3 flags plus continuous display of day and date or seconds. Back-light Only 9 mm thick.
£12.65

Guaranteed same day dispatch.

ALARM CHRONO

 with 9 world time zones- 6 digits. 5 flags.
- 6 basic functions. - 8 further time zones. - Count-down alarm. - Stop-watch to 12 hours 59.9 secs.
in $1 / 10$ sec. steps.
- Split and timing modes. - Alarm.
- 9 mm thick.
- Back-light.
- Futly adjustable bracelet.
£29.65

QUARTZLCD Ladies Cocktail Watch Highly functional watch which also suits those which also suits those special occasions. Beautifully designed with a very thin bracelet which retains strength as well as elegance.
 Hours, mins, secs, day, date, backlight and autocalendar. Bracelet fully adjustable to suit slim wrists
 State gold or silver finish.
 £19.95
 Guarantead same day despatch M18

OUTSTANDING FEATURES

- DUAL TIME. Local time always visible and you can set and recall any other time zone (such as GMT). Also has a light for night viewing.
- calendar functions include the date and day in each time zone. - CHRONOGRAPH/STOPWATCH displays up to 12 hours. 59 minutes. and 59.9 seconds.
On command, stopwatch display freezes to show intermediate (split/lap) time while stopwatch continues to run. Can also switch to and from timekeeping and stopwatch modes without affecting either's operation.
- ALARM can be set to anytime within a 24 hour period. At the designated time, a pleasant, but effective buzzer sounds to remind or awaken youl
Guaranteed same day dispatch. M16
North \& Midlands
67 High Street, DAVENTRY Northamptonshire
Telephone: 0327276545

South of England
327 Edgware Road LONDON W. 2
Telephone: (01) 7234753

Fits all 12 v negative-earth vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISESEVERYTHINGNEEDED
Die pressed case Ready drilled alumumum extrucker
base and heat sulik. coil menunting cipps and accessories All kit
components are guar antexd for a pu: ;ixl of 2 years from date of
purchase Fully illustratediassembly and installation instructions are included

Roger Clark the world famous rally driver says "Sparkrite electronicignition systems are the best you can buy.
0 GH PE PERF
 TGNAT COE ELECTRONIC IGNITION Electronict Dasign Aspociptes. Dept. PE1179, 82 Eath St, Walcell, WS1 3DE

Electronics Design Associates, Dept. PE180 82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 614791

Name
 Address

Phone your order with Access or Barclaycard		
Ine VAT and P.P	quantity reo'd	
$\times 5 \mathrm{KIT} £ 16.95$		Cheque No
access or barclay card no.		Send SAE if brochure only requred

STARCHASER THE NEWFOUR CHANNEL LIGHIING CONTROLLER FROM TUAC LIGHIING CONTROLLER FROM TUAC LIGHIING CONTROLLER FROM TUAC 4000
 - 4 channels
 750W each o over 1000 different sequence
 patterns and effects 3 alternative sound triggers A.G.C. simulated strobing zero reference triac firing O superb TUAC quality and reliability $£ 99.00$ inc. VAT

3 CHANNEL LIGHT MODULATOR

* RCA 8A Triacs
* 1000W per channel
* Each channel fully suppressed and fused
* Master control to operate from 1 W to 125 W
* Full Wave control
£22.95

ADD SEQUENCE CHASING \& DIMMING EFFECTS FOR TUAC 3 CHANNEL LIGHT MODULATOR - 3SDMI per second
*Full logic integrated circuitry

- Dimmer control to each channel
£17.50

Front panels for lighting effects modules (complete with switches, neons \& knobs)

Send for our free 28 page catal ogue, please enclose a stamp.

S1LMB Combined with 3SDMI. Size: $9^{\prime \prime} \times 412^{\prime \prime} . £ 10.00$

TUAC Ltd., 119/121 CharImont Road, SW17. Tel: 01-672 3137/9080 PRICE INCLUDES VAT. P+P.FREE (at $\mathbf{1 . 1 0 . 7 9)}$

SEMICONDUCTORS,

TRANSISTORS

Type	Price	Type	Price	Type	Price	Type	Price	Trpe	Price
AC126	¢0. 21	BC148	¢0.08	BC549	¢0.12	B		27×108	
AC127	c0. 21	$8 \mathrm{BC149}$	c0.08	BC550	¢0. 16	BU105/02	£2.24	21×109	
AC12B	$\underline{6} 0.18$	8 C 157	¢0.12	8 C 556	¢0.16	$8 \mathrm{CU204}$	f1.61	$2 \mathrm{~K} \times 300$	¢0.13
ACI2BK	c0. 30	BC158	f0. 12	BC557	¢0.15	BU205	£1.61	ZTX500	£0.14
ACl 32	c0. 23	BC159	¢0.12	BC55B	c0.14	BU208		2N1613	£0.23
AC134	£0. 23	BC167	¢0.14	BC559	f0. 16	MJE2955	f1.04	2N1711	£0. 23
AC 137	¢0. 23	BC168	¢0.14	BD115	c0.58	MJE3055	£0.69	2N1889	£0.51
AC141	£0.25	BC169	f0.10	8D116	$\underline{60.92}$	MJE3440	£0.60	2 N 1890	
AC141K	¢0.35	BC169C	£0.12	$8 \mathrm{8D121}$	C0.75	MPF102	£0.40	$2 N 1893$ $2 N 2147$	¢0.35 f0.86
AC142	¢0. 23	8C170	f0. 10	$8 \mathrm{8D124}$	¢0.81	MPF104	£0.40	2N2147	f0.86
AC176	¢0. 21	8C171	£0.10	8D131	f0. 40	MPF105	£0.40		
AC176K	¢0.30	${ }^{8 C} 172$	¢0.10	$8 D 132$ BD 133	${ }_{60.40}$	MPSA05	E0.23	2N2160	f0.15
AC178	£0. 29	BC 173	£0. 10	BD133	¢0.46	MPSA06	f0.23	2N2192	E0.44
AC179	£0.29	BC177	£0.18	8D135	c0. 44	MPSA55	£0.23		${ }^{2} 0.44$
${ }^{\text {ACl }}$ AC180	¢0.23	$8 C 178$ $8 C 179$	£0.18	BD136 BD 137	c0.40 $\mathbf{c 0 . 4 0}$	MPSA5	¢0.23	2N2194 2N2217	c0. 25
AC180K	¢0.32	${ }_{8 C 179}^{8 C 179}$	¢0.18 $\mathbf{f} 0.29$	BD137 BD 138	C0.40	OC22		2N2218	f0.25
AC181	£0.23	BC180 BC181	¢0.29	80138 $8 D 139$	C0.41	${ }^{\text {OC2 }}$	£1.73 $\mathbf{f 1}$	2 N 2218 A	f0.25
AC181 AC187	£0.32	BC181	¢0.10	$8 D 139$ 80140	c0.41	OC 24	¢1.55	2N2219	f0. 23
AC187K	¢0.32	BC183	t0. 10	8D155	¢0.92	$\mathrm{OC}^{\mathrm{C} 25}$	£1.15	2N2219A	¢0.25
AC1B8	¢0. 21	BC183L	£0.10	BD175	c0.69	${ }^{0} \mathrm{C} 26$	£1.15	2 N 2904	c0. 23
AC1B8K	E0.32	BC184	£0. 10	8D176	$\underline{6} \mathbf{6 9}$	${ }^{0} \mathrm{C} 28$	f0.92	2N2904A	f0. 24
AD140	80.69	8C207	¢0.13	8D177	¢0.78	OC29		2 N 2905	¢0. 20
AD142	C0.98	BC208	¢0.13	BD 178 BD 179	60.78 $\mathbf{f 0 . 8 6}$	OC35	f1.03	2N2905A 2N2906	c0. 23
AD143	¢0.86	BC209	£0.14	8D179 8D203 den	$\begin{array}{r}\text { f0. } \\ \mathbf{f 0 . 9 2} \\ \hline\end{array}$	OC70	f0.27	2N2906	£0.18 $\mathbf{f 0 . 2 1}$
AD 149	¢0.69	8C212	£0.10	BD203 BD204	¢0.92	OC71	f0.17	2N2907	¢0.23
AD 161	¢0.40	BC212L	c0.10	BD204 BDY20	¢0.92	TIC44	¢0. $\mathbf{1}$	2N2907A	¢0.25
AD162	¢0.40	BC213	f0.10	BDY20	£0.92	${ }_{\text {TIC44 }}$	¢0. $\mathbf{f 0 . 4 0}$	2N2926G	¢0.10
162MP	£0.81	BC214	¢0.10	BF458	£0.43	TIP29A	¢0.46	2 N 2926 Y	$¢ 0.09$
AF 124	£0.35	8C214L	c0. 10	8F459	£0.44	TIP298	¢0.48	2N29260	c0.09
AF 125	£0.35	BC227	¢0.18	BF594	£0. 35	TIP29C	f0.51	2N2926R	¢0.09
AF126	£0.35	BC238	c0.18	BF596	£0.32	TIP30A	£0.46	2N2926B	¢0.09
AF 127	£0.37	BC251	c0.17	BFR39	£0. 28	TIP308	$\underline{10.48}$	2N3053	£0.18
AF139	f0.40	BC251A	c0.18	BFR40	£0.29	TIP30C	¢0.50	2N3054	f0.46
AF186	¢0.58	BC301	c0. 32	BFR79	£0.32	TIP31A	£0.46	2N3055	
AF239	f0.47	8C302	¢0. 33	BFR80	£0.32	TIP318	¢0.48	2N3614	£1.15
ALIO2	f1.38	BC303	¢0.32	BFX29	£0.25	TiP31C	¢0.50	2N3615	£1.21
AL 103	£1.36	${ }^{8 C 304}$	¢0.44		£0.35	TIP32A	¢0.46		
AU104	f1.61	${ }^{8 C} 327$	¢0.18	BFXB4	¢0.25	TIP328	$£ 0.48$ $\mathbf{8 0 . 5 0}$	2N3646 2N3702	£0.09
AU110 AUl13	£1.61	BC328 8 C 337	£0.17	BFX86	+0.28	TIP32C	£0.50	2N3703	£0.09
BC107A	£0.09	BC338	£0.17	BFK87	£0.25	TIP418	¢0.52	2N3704	¢0.08
BC107B	£0.10	BC440	£0.35	BFX88	£0.25	TIP41C	£0.55	2N3705	£0.08
BC107C	£0.12	BC441	£0.35	BFY50	£0.18	TIP42A	¢0.50	2 N37	£0.09
BC108A	¢0.09	8C460	¢0.44	BFY51	£0.18	TIP428	¢0.52	2 N 37	¢0.09
BC108B	£0. 11	BC461	f0. 44	BFY52	£0.18	TIP42C	¢0.55	2N3708	¢0.08
BC108C	¢0.12	BC477	¢0. 23	B1P19	f0.44	TIP2955	£0.69		£0.08
BC109A	f0.0s	BC478	£0.23	BIP20	¢0.44	TIS43	£0.25	2N3710	¢0.08
${ }_{\text {BC }}{ }_{\text {BC109 }}$	f0.10 f0. 12	$8 C 479$ $8 C 547$	£0.23 $\mathbf{f 0 . 1 2}$	BIP19/ 20MP		TIS90	£0. 20 $\mathbf{8 0 . 2 3}$	$\begin{aligned} & \text { 2N3711 } \\ & \text { 2N3819 } \end{aligned}$	f0.21
- ${ }_{8 C 109}^{8 C 147}$	f0. f0.08	BC547 $8 C 548$	$\mathfrak{£ 0 . 1 2}$	20MP	$\begin{gathered} \mathbf{£ 0 . 9 2} \\ \mathbf{E 0 . 5 1} \end{gathered}$	UT46 ZTX 107	$\begin{array}{r} £ 0.23 \\ £ 0.11 \\ \hline \end{array}$	$\begin{aligned} & 2 N 3819 \\ & 2 N 3820 \\ & \hline \end{aligned}$	£0.40

74 SERIES TTL ICs

CMOSICs

Type	Prico	Type
	$\mathrm{c}^{10.92}$	ca3
CA3014	$\begin{array}{r}11.55 \\ \\ \text { co. } \\ \hline\end{array}$	Ca3100
CA3020	$f 1.95$	Im304
CA3028	c0.92	LM308
${ }_{\text {ca3035 }}$	¢1.81	LIM 309.
CA3036	f1.15	LM320-5V
CA3042	f1.72	LM320-12V
CA3043	f2.12	LM320-15V
ca3046	¢0.80	LM320.24V
CA3052	f1.84	LM380
${ }^{\text {ca3054 }}$	${ }_{\text {f1 }}$	LM3900
CA3081	61.72	MC1303L
${ }^{\text {ca3 }}$ O89	f2.30	MC1
ca3090	${ }_{6}$	MC

LINEAR ICS

Prices
1.06
TYpe
MC1350

THY
1 Rmp
volis
50 100 THY 100

$$
20
$$

SILICON RECTIFIERS RECTI
200 mA
1592050
s

OPTOELECTRONICS
800 THY A A/800
olts No:
50 THY3A/50
100 THY3A1005 amp
Volts5 amp \quad TO 66
Volts No:
50 THY5A/50
100 THY5A/100
200 THY5A/200
THY5A/400
600 THY5AN600
BOO THY5A 800noig

 | $0 / n$ |
| :--- | :--- |
| 150 |
| 150 |
| 150 | ~~~

RED
GREEN
RED
GREEN Price
£0.11
$£ 0.16$
$£ 0.16$
$£ 0.11$
$£ 0.16$
$£ 0.16$
$£ 0.12$

$\mathbf{£ 0 . 1 1}$
$\mathbf{£ 0 . 1 1}$
$\mathbf{£ 0 . 6 3}$
$\mathbf{£ 0 . 4 0}$

$\mathbf{£ 0 . 1 7}$
$\mathbf{£ 0 . 2 0}$ Price
£0.11
$£ 0.16$
$£ 0.16$
$£ 0.11$
$£ 0.16$
$£ 0.16$
$£ 0.12$

$\mathbf{£ 0 . 1 1}$
$\mathbf{£ 0 . 1 1}$
$\mathbf{£ 0 . 6 3}$
$\mathbf{£ 0 . 4 0}$

$\mathbf{£ 0 . 1 7}$
$\mathbf{£ 0 . 2 0}$

SOCKETS

TERMS: CASH WITH ORDER. CHEOUES, P.O.'S PAYABLE TO BI PAK AT ABOVE ADDRESS.
ACCESS \& BARCLAYCARD ACCEPTED.

COVER P.\&P.

Send your orders to:DEPT. PE1, PO BOX 6, WARE, HERTS. Tel: 0920-3182 Visit our NEW shop: 3 BALDOCK ST., WARE, HERTS. Telex: 817861

[^1]
A Range of Performance from... ...HAMEG

PERFORMANCE AND RELIABILITY ARE THE SEALS FIRMLY STAMPED ON THE COMPLETE HAMEG RANGE AND IT IS A COMPLETE RANGE

HM307 Single Trace DC-10MHz Plus Built in Component Tester

149
HM312 Dual Trace DC-20MHz. $5 \mathrm{mV} / \mathrm{cm}$, Full $X-Y .30 \mathrm{MHz}$ Trigger, Plus TV Trigger
HM412 Dual Trace DC-20MHz $2 \mathrm{mV} / \mathrm{cm}, X-Y, 40 \mathrm{MHz}$ Trigger. Plus Sweep Delay 350
HM512 Dual Trace DC-50 MHz $5 \mathrm{mV} / \mathrm{cm}, X-Y, 70 \mathrm{MHz}$
Trigger Sweep Delay.
Plus Single Shot, Sweep Delay and After Delay

Trigger

580
HM812 Dual Trace as per HM512 Plus Storage, Automatic Storage and Variable Persistence

The NEW Marshall's 79/80 calalogue is just full of components

and that's not all. . .

... our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall's
These include Audio Amps, Connectors, Boxes, Cases, Bridge Rectifiers, Cables, Capacitors, Crystals, Diacs, Diodes, Displays. Heatsınks, I.Cs, Knobs. LEDs, Multimeters. Plugs, Sockets, Pots, Publications, Relays, Resistors, Soldering Equipment, Thyristors. Transistors. Transformers. Voltage Regulators, etc., etc
Plus details of the NEW Marshall's 'budget' Credit Card. We are the first UK component retailer to offer our customers our own credit card facility
Plus - Twin postage paid order forms to facilitate speedy ordering
Plus - Many new products and data
Plus 100 s of prices cut on our popular lines includir.g I Cs. Transistors, Resistors and many more
If you need components you need the new Marshalls Catalogue
Available by post 65 p post paid from Marshall's, Kingsgate House, Kingsgate Place, London NW6 4TA. Also available from any branch to callers 50 p

[^2] Regent Street, G2 2QD. Tel: 041-3324133. And Bristol: 108 A Stokes Croft. Bristol. Tel: $0272426801 / 2$.

REACTIVE TELLY

TO ANY that are hesitant at plunging into the depths of computer programming we would like to recommend them to it. The fascination of learning to think things through in a logical sequence and finding a TV to be a reactive medium after so many years of soap operas can be quite a revelation. Programming in itself probably accounts for hobby computing being such a fast growing pastime, it is most certainly addictive. Even if you find it difficult to dream up applications for the new toy don't be put off-they will probably take second place for a few months anyway.

The computer is, however, a hard task master, it does not tolerate sloppy work--even a journalist well used to checking copy can find the requirement for correctness in programming frustrating at first, no comma can be omitted. Once the basics (excuse the
pun) are mastered, these previously passive punctuation marks take on new meanings, together with a few rather odd words, a range of numbers, letters and characters, they are capable of captivating the mind.

It is a new experience to spend hours gazing at a TV screen and reel achievement and satisfaction at the end of a productive session.

At first the hobby tends to be hermit like and stunts conversation and other interests to a far greater extent than the latest American repeats on the other channels-you don't get the news either! However, after a few weeks of late nights and bleary eyes, not to mention a wife who still thinks that peek and poke sound rather ominous, one comes out of it and starts to swap programs and even make the computer pay for itself. Our Modem to be published next month should assist the swopping of the latest program or chips full of data.

USEFUL?

Perhaps soon the step to becoming a useful tool will be taken by our office system—nicknamed Hall At the present time Hal is rather a detraction, with a proliferation of new games being tried by all-apparently our Senior Illustrator is required in the Air Force, having excelled at Hectic; and we thought there was an age limit!

We hope that in due course all our indexing will be looked after by Hal. "He" will, we hope, help to lay out our issues, keep a check on the literary budget, write our standard letters, address hundreds of labels-even assist with project design and, most importantly, help us with our expenses. We could, of course, soon be receiving programs for Microbus from Hal via our Modem. It is just a start, but it is a start and we are all learning because of it.

Just don't expect any free time if you do invest!

Mike Kenward

EDITOR

Mike Kenward

Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR *

Jack Pountnoy ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR John Pickering SEN. TECH. ILLUSTRATOR Isabelle Greonaway TECH. ILLUSTRATOR *
D. W. B. Tilleard ${ }^{3}$
D. W. B. Tilleard ${ }^{3}$ Christine Pocknell

01-261 6676
Alfred Tonge, 01-2616819
Colin Brown 01-261 5762

Editorial Offices:
Practical Electronics. Westover House, "
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot be answered over the telephone (see below).

Advertising Offices:
Practical Electronics Advertisements,
King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS
Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-2616601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 75 p each including Inland/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 3.75$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

EXTRAEYE

Any constructors having problems seeing the new micro-technology will be interested in a highly efficient magnifier called the Handstand, it can be used as a hand-held magnifier or it may be inserted into a simple stand.

The lens, the wide rim protecting it and the flat handle are made as a single integral moulding from a high-grade acrylic material, which is shatter-resistant and has a better light transmittance than any glass lens. It has a diameter of 96 mm (approx 4 inches), permitting both eyes to be used to view the work. Magnification is about 2 times.

The unit is available from large stores, op tical accessory outiets, stationers, hobby and craft shops at about $£ 4.40$ including VAT.

Combined Optical Industries Ltd., 200 Bath Road, Slough SLI 4DW.

SCOPE PROBES

A new range of scope probes designed for use with all popular makes of oscilloscopes is being launched by Electronic Brokers.

The probes are available in three different forms-model X1 or X10 and model X1X10

which is a switched probe. Each kit is supplied with a set of accessories, including a spring hook tip, i.c. tip, BNC adaptor and a trimmer tool. Model X 10 has a bandwidth of 100 MHz and the Xl a bandwidth of 20 MHz . Maximum working voltage is 600 V d.c., including peak a.c.

All three probes have a cable length of 1.5 metres and are supplied in a zip-up plastic wallet. Prices start from $£ 9.00$ a kit plus VAT and $p \& p$.

For further information contact Electronic Brokers Etd., 49/53 Pancras Road, London NW 1 2QB (01-837 7781).

THE EDUKIT

A new MPU system aimed at teaching about micros from scratch is to be launched by Modus Systems. The EDUKIT is believed to be the first machine available for under $£ 30$. It is based around the COSMAC processor and comes with a carefully written manual produced by the designer Dr. A. A. Berk.

Rather than reading a book, those wishing to extend their knowledge to include the micro revolution can buy this complete package and practice on their own machine at very low cost.

The manual is suitable for technical and non-technical people of all ages. As well as describing construction, use of machine-code, hardware control etc., it guides the user to bigger machines once the basics have been learned on the EDUKIT.

The machine has hex keypad and hex display, 256 bytes of RAM, runs from a 6 volt dry battery or a 5 volt supply and has special command keys for loading and running programs and correcting mistakes. Plenty of 1/O lines are included to form the basis of a simple but powerful control device. Indeed, the COSMAC MPU is very well set up for exactly this application.

As a special introductory offer, the EDUKIT is available from Modus Systems., 29A, Eastcheap, Letchworth, Herts., at £29.99 inc. VAT. plus 80p p\&p.

BRAIN BANK

The Brainbank Electronic Information Centre represents a new generation of pocket companions following on from calculators and mini TVs. It is a learning aid, phrase book and translator for foreign languages; a library of general knowledge, education and entertainment topics; and a personal filing system combined.

The unit has a series of plug-in interchangeable memory cells, which provide this hand-held, machine with an infinitely variable store of information. This effective and novel learning laboratory for foreign languages has a powerful and immediate translation facility of up to three languages at a time.

Each language cell holds 1,200 of the most frequently used words which can be stored both in alphabetical order and by groups of
up to 50 in categories such as Travelling. Clothing, and Food.
Operation is via an A to Z keyboard, which includes numerals and punctuation. The unit is also programmed with 25 complete and 25 partial phrases which can be added to give full sentences, for example "May I introduce . . .", "I'd like to say . . .". Spelling mistakes are automatically corrected and a "phonetic" cell aids pronounciation.
Currently six language cells are availableEnglish, French, German, Spanish, Italian and Portuguese, with Japanese and Arabic due in

the next few weeks. All the remaining major languages will be available during the next four months.

As an Information Centre, the unit has a built-in metric conversion facility, while memory cells containing comprehensive details on diet and nutrition programs. First 'Aid, Taxation and a Thesaurus are already complete.

The unit is housed in a robust case which measures $7 \times 3 \times 1 \frac{1}{2}$ in and weighs 14 oz . It is powered by four standard alkaline penlight batteries which give ten hours continuous use. or by rechargeable nickel cadmium batteries. "Brainbank" is sold complete with mains adaptor and battery recharger and one free cell. The price is around $£ 150$ and additional cells cost under $£ 20$.

Further details Ring Group, Gelderd Road, Leeds LS 12 6NB. (0532 632421).

CATALOGUES

The latest catalogue from Ace Mailtronix is now available at a cost of 30 p with a 30 p voucher which is redeemable with orders over $£ 5 \cdot 00$. Ace can also supply all RS stock items and have also helped many readers obtain particularly difficult to get components. So the next time you are looking for an awkward item try Ace Mailtronix, Tootal Street, Wakefield, West Yorkshire WF 15 JR.

Also available now is the latest edition of Ambit International's Tecknowledgey series (the third) which follows the style of the other two with plenty of constructional circuits and component information. All three editions are available for $£ 1.50$ which includes p\&p.

Ambit International, 2 Gresham Road, Brentwood, Essex CM14 4HN (0277 216029).

The latest TK Electronics catalogue contains a wide range of components and includes applications for triacs, UJT, timers and dimmers. The catalogue is available free of charge from TK Electronics, 106 Studley Grange Road, London W7 2LX (Please send a stamped addressed envelope). Both TK and WATFORD ELECTRONICS can supply the chip (AY-3-1270) used in the Digital Temperature Controller (Oct. '79).

NEW SCOPE RANGE

Hameg is a new name in the high performance low cost oscilloscope market. Though until now relatively unknown in this country the company has established a dominant position in the West German market.

Their current range of products extends from the single trace HM 30710 MHz instrument, which features a built-in component tester, up to the 50 MHz dual trace HM8 12 with storage and sweep delay facilities.

The HM312 is a dual trace oscilloscope with a vertical amplifier bandwidth of $\mathrm{dc}-20 \mathrm{MHz}$ and $5 \mathrm{mV} / \mathrm{cm}$ sensitivity. Full $\mathrm{X}-\mathrm{Y}$ operation is achieved by switching channel 2 into the horizontal deflection system. This amplifier system is complemented by a wide

LOW COST MULTIMETER

The new MINI 20 multimeter from Alcon Instruments has been designed specifically to cover the needs of the lower end of the market.

Built in ABS plastic, with a full-view antistatic cover and the simplest of controls, this instrument is ideal for applications where simplicity is the keynote.

One rotary-switch selects any 27 ranges in a.c.. d.c. (both V \& I) or resistance. The scale used is provided with an anti-parallax mirror

and clear calibrations to avoid ambiguity and error. The only other control is the ohms zero potentiometer, which projects from the right hand side of the instrument-case.

Only two terminations are used $(4 \mathrm{~mm}$ banana) so there is no possibilty of confusion in selecting a wrong socket for a probe, and the ranges provided cover most situations.

Sensitivity is $20 \mathrm{k} \Omega / \mathrm{V}$ d.c. and $4 \mathrm{k} \Omega / \mathrm{V}$ a.c. Accuracy is 2 per cent on d.c. and on resistance, and 3 per cent on a.c.-sufficient for most professional uses and other applications.

range calibrated timebase with 18 sweep speeds from $0.5 \mu \mathrm{~s}-0.2 \mathrm{~s} / \mathrm{cm}$.

The complete range and prices excluding VAT are as follows: HM 307-3 ($£ 149$), HM 312-8 (£250), HM 412-4 (£350), HM 512-8 ($£ 580$) and the HM 812-2 $(£ 1,325)$.

For further information contact Hameg Ltd., 74-78 Collingdon Street, Luton, Bedfordshire LUll RX (0582 413174).

Ranges extend from 100 mV to 600 V d.c., 15 V to 1500 V a.c., $50 \mu \mathrm{~A}$ to 600 mA d.c., 30 mA to 3 A a.c., and up to $2 \mathrm{k} \Omega$ and $2 \mathrm{M} \Omega$ on resistance. There are also five dB ranges corresponding to the five a.c. voltage ranges.

An internal battery provides power for the resistance ranges and protection is by both movement diode and fuse.

The instrument comes complete with case. leads and instructions at $£ 27.37$ including VAT.

Alcon Instruments, 19 Mulberry Walk SW3 (01-352 1897)

CASIO WATCHES

Four of the latest range of C asio watches are shown below. The F-8C has an eight digit readout of hours, minutes, seconds and date with a four year calendar. Both the F-8C and the F-200 sports have black resin cases and straps with the F-200 incorporating a stopwatch.

The 95QS-31B and 81CS-36B are stainless steel chronographs with six digit readouts and calendars pre-programmed to the year 2029. These models also have alarm and stop watch facilities. Prices F-8C (£10.95), F-200 (£15.95), 95QS-31B (£23.95) and the 81CS36B (£35.95).

Tempus, The Beaumont Centre, 164-167 East Road, Cambridge, CBI 1DB (0223 312866).

LEDCo

The LEDCo company manufacture and market a wide range of replacement panels and modules for colour TVs.

A typical example is the CDA panel (colourdifference amplifier) fitted to the Pye 691, 693 and 697 chassis. The main problem with the board has been the heat generated by the four valves which have resulted in charred p.c.b.s and oxidisation of valve pins and holder contacts. The new replacement panel, which

requires no soldering, is a solid state design and is available with details of setting-up procedure, expected voltage reading and a circuit diagram.

Another development is a solid state replacement for the PL802 which plugs right into the existing holder and requires no modifications.

For further information about these and other replacement panels. LEDC0, 189a Livingstone Road, Thornton Heath, Surrey, CR4 8JZ (01-653 7575).

pH METER

The 6030 pH meter has been designed for the rapid and accurate determination of pH , millivolts and temperature values.

The unit measures over the range $0-14.00 \mathrm{pH}$ to a resolution of 0.01 pH and has completely automatic temperature compensation over the range $0-100^{\circ} \mathrm{C}$. In the temperature measurement mode the instrument will measure from $-149.9^{\circ} \mathrm{C}$ to $199.9^{\circ} \mathrm{C}$ to a resolution of $0.1^{\circ} \mathrm{C}$. This is effected by the use of a high accuracy platinum resistance probe.

In the millivolt mode the instrument will measure over the range $\pm 999 \mathrm{mV}$ to a resolution of 1.0 mV

A voltage output for each of the measuring modes is provided at the rear of the instrument and offers a 1 mV per least significant digit output.

The Model 6030 is supplied complete with one plastic bodied, gell filled combination pH electrode, one PRT probe plus buffer powders. A convenient pH temperature compensation electrode holder is available which clamps to the front of the instrument.

CHASERS

Two new modules have been introduced to the existing range of lighting control units from L\&B Electronics.

The LB8 $1000 \& C$ is an eight channel chaser capable of controlling a substantial number of lights.

A chase speed control allows a wide variation of chase rates whilst a second control allows a delay to be introduced between the

end of the chase cycle and the start of a new one. During this delay period, all the lamps remain off. Again the wide range enables this delay to be set to virtually zero, if required, so the sequence appears to start immediately after the finish of the last one. Both controls are mounted at the board edge, allowing easy presentation to your front panel.

Because the system logic allows only one channel of lamps to be powered at any given instant, the mains current consumption will
never exceed the loading of one channel, ie, four amps max, although up to 8000 watts may be connected. This is a considerable advantage meaning that the module can be connected to a domestic mains supply, with a tremendous number of lamps (eighty 100 W spots for instance). As each triac is triggered near to mains zero, no interference is produced on nearby amplifier equipment, and the use of heavy duty triacs and in-line fusing

gives protection against overload. Full logic design, using CMOS i.c.s, means no additional power supplies are required, so connection remains simple.

Additional features allow the chaser to be footswitch triggered (ideal for band stage effects). In this mode, the module may be set to give one chase cycle per footswitch pulse, or can be triggered into continuous cycles from a single pulse. Further trigger output and input pulses allow modules to be connected in series,

The price of the 6030 is $£ 199$ plus VAT and $\mathrm{p} \& \mathrm{p}$.

Channel Electronics (Sussex) Ltd., P.O. Box 58, Seaford, Sussex BN25 3JB (0323 894961).

TOP CDI SYSTEM AS KIT

Electronic ignition systems have the general advantage of greatly extending the life of contact breakers and plugs, also affording a fat spark for easy starting and obviating misfiring at high engine speeds.

Suretron Systems have for a number of years been mąrketing both the ES2000 and C3000 with the latter figuring very favourably against stern competition in "Which" magazine tests. Now, on special offer, this company provides the same electronics and therefore performance in kit form renumbered as the ES200 and C300. Purchasing either shows a considerable price saving, almost half the price of its completed counterpart. These are ES200-£13.95 and C300-£17.95 which includes VAT and postage.

Suretron Systems (UK), Ltd, Piccadilly Place, London Road, Bath, BA1 6PW.
to form $16,24,32,40$, etc., channels (there is no limit to the number), hence forming a line .or tunnel of lamps, that may indeed be set to run as a continuous chase, or be footswitch controlled.

Each p.c.b. is fully assembled, tested, supplied with full wiring instructions, circuit diagram, and guaranteed for a year.

The LB31000SLC is a sound-to-light chaser. When fed. by a music source the module acts as a sound-to-light system, flashing three banks of lamps, bass, middle and treble. However, when the music signal ceases or becomes sufficiently low enough, the system automatically switches to a chase mode. Upon return of the music signal, the sound-to-light display is instantly resumed.

Five controls, mounted on the board, allow variation of chase speed, master volume for the sound input and individual bass, mid and treble settings for the perfectionist.

No additional components are required. The system is simply wired to the mains, the three banks of lights, and the music input (usually derived from across the speaker terminals). You will need a suitable case/panel.

Each board is thoroughly tested and inspected, guaranteed for a year and provided with wiring instructions and circuit diagram.

The price of the 81000 LC is $£ 25 \cdot 50$ and the 31000 SLC is $£ 28.90$ including VAT, plus 50 p postage and packing.

L\&B Electronics, 45 Wortley Road, West Croydon, Surrey, CR0 3FB.

LOW COST SCOPE

Manufacturers of the ST-45 claim to have reached the peak of performance-quality to price ratio with the introduction of the SAFGAN ST-45 oscilloscope.

This single trace oscilloscope with 5 MHz bandwidth, $10 \mathrm{mV} /$ div sensitivity and a display area of $6.4 \mathrm{~cm} \times 8 \mathrm{~cm}$ with a graticule ruling of 8×10 divisions. The vertical amplifier which has $1 \mathrm{M} \Omega$ plus approx 22 pf input impedance uses a FET input stage followed by stages consisting of transistor arrays in order to achieve minimal drift of the trace with temperature changes. Input attenuator stages are set for best-pulse shapes and has ± 5 per cent accuracy on all ranges. 50Ω input impedance attenuator settings are useful for r.f. work.

Overall time base speed range from $250 \mathrm{~ms} /$ div to $200 \mathrm{~ns} /$ div including multiplier and $\times 5$ expansion facilities; all timebase speeds are calibrated to ± 5 per cent accuracy. External -x senstivity is $\mathrm{IV} / \mathrm{div}$ with 500 kHz bandwidth.

Trigger level and +ve , -ve slope selection

on both internal and external trigger modes is also incorporated.

The instrument is mains powered with an approx power consumption of 10 watts.

Aluminium covers are black with p.v.c. finish and are fairly scratch proof.

The price of the ST-45 is $£ 125.00$ plus VAT.

Safgan Electronics Ltd., 56 Bishops Wood, St. Johns, Woking, Surrey GU21 2QB (04862 66836).

NEW COMPONENT SUPPLIERS

Our cover subject this month is the product of a new component supplier. This company-WICCA Electronic Systems Ltd-have been able to source the transducer and tank in order to develop the Ultrasonic Cleaner and have had the coil and transformer specially wound and the cases made up to form a complete kit for the project. WICCA are also now supplying various other components including a new Sanyo dual 30W amplifier module (STK 463) and a sound to light unit, see their advertisement in this issue for more details. WICCA Electronic Systems Ltd., Orchard Works, Church Lane, Wallington, Surrey.

FERGUSON TX9

The first TV to feature Ferguson's revolutionary TX9 single board chassis is now available. This new colour set is a 14 inch portable model called the Moviestar 3755 and Market Place recently had the opportunity to visit the production line at Gosport in Hampshire to see how the set is being assem-

The 14in Moviestar model 3755.
When Ferguson decided to design a completely new TV they realised that to compete with foreign manufacturers the new set would have to be automatically assembled to a very large degree, using the most up-to-date techniques available. This decision involved the company in a massive $£ 10$ million plus investment programme which when finished will make the Gosport factory the most advanced automatic TV production line in the UK.

The single board chassis has 70 per cent of its components automatically tested, inserted and soldered. After the rest of the components have been fitted the complete board is tested and assembled into the cabinet without the need for any further soldering.

Using automatic insertion techniques the component density of the p.c.b. can be greatly increased. Also as the number of components has been greatly reduced compared with their 9000 series chassis the overall effect is a

The automatic insertion system is computer controlled with the components being fed from a bandolier to the machine head where they are crimped into the p.c.b.
reduction in human errors and an increase in both performance and reliability in the set.

The 3755 model will be followed by 16 in , 18 in and 20 in versions, each driven by the TX9 chassis without the need for any component or electrical.changes. The TX9 also consumes less power than most other CTV's (50 per cent less than the 9000 series) and therefore generates less heat inside the receiver resulting in increased component life.

- An optional 12 or 24 V battery converter which has been designed for in-set installation is also available. Further developments will include Teletext, Viewdata and infra-red/ultrasonic remote control models.

One area where the 3755 will get a very good reception is servicing. If a set should need attention the engineer will find the chassis easily accessible and because it can be positioned vertically free access is available to both sides of the p.c.b. If the fault cannot be

After assembly the chassis is checked to assess picture alignment.
traced the chassis can be replaced in minutes.
Another advantage in using the same chassis in the $14 \mathrm{in}, 16 \mathrm{in}, 18 \mathrm{in}$ and 20 in models is that the range of parts required for servicing is greatly reduced.

As TV production-like most areas of electronics-is a fiercely competitive business it is good to see a British company with the foresight and confidence to manufacture a well designed product to fill a definite market gap and using advanced production techniques to ensure a competitive price (around £250).

Ascratch filter can be very effective at reducing the noise generated when playing worn or dust impregnated records. This type of filter merely attenuates high frequency signals above about 6 or 7 kHz , and the background "crackle" of surface noise consists mainly of frequencies above this level. Comparatively little of the programme signal will be in this high frequency range, and so the noise is considerably attenuated with little, although admittedly some, of the wanted signal being lost.

A rumble filter operates at the opposite end of the audio frequency spectrum, and rolls off the low frequency response of the system below about 50 Hz . This can be used to reduce noise produced by record warps or pressing imperfections.

Again, there will obviously be some loss of the wanted signal, but this will only be minimal. Most of the frequency range affected by a rumble filter lies below the lower limit of the audio spectrum. It may seem to be pointless to attenuate noise which cannot be heard, but it is not necessarily superfluous to do so. Record warps can generate strong low frequency signals which will vary the amplifier's biasing either side of its normal central level. This can cause the main signal to be clipped on one set of half cycles when the low frequency signal is at or close to its peak positive or negative level. Even if clipping does not occur, intermodulation distortion can still cause audible phasing type effects to be produced.

Although some hi-fi amplifiers and receivers incorporate scratch and/or rumble filters, this is by no means a feature of all designs. Also, many amplifiers and receivers that do have these filters only have simple 6dB/octave types. These can be quite effective, but do not give a level of performance equal to that of a sophisticated filter having an attenuation rate of 12 dB /octave or more. It is possible to use an add-on scratch and rumble filter with most hi-fi systems, and it is a high performance unit of this type that forms the subject of this article.

BASIC FILTERS

Ideally a scratch filter would not attenuate frequencies below the turn-over frequency, and would eliminate all signals above this frequency. Similarly, an ideal rumble filter would not affect signals above the turn-over frequency, and would block signals below this frequency. Simple passive filters fall well short of this goal, and give an ultimate roll off rate of only about 6 dB /octave as well as significant losses at frequencies well within the passband.

A basic R-C high pass filter uses the arrangement shown in Fig. $1(a)$. The component values are chosen so that the impedance of C is low in relation to that of R at pass frequencies, and the impedance of C is roughly equal to that of R at the desired cut off frequency. Thus, there is little attenuation at pass frequencies, and a loss of about 6 dB at the cut off frequency, increasing by about $6 \mathrm{~dB} /$ octave below this due to the losses produced by the increasing impedance of C.

A basic R-C low pass filter is shown in Fig. $1(b)$ and operates in much the same way as the high pass circuit. However, the capacitor and resistor have been swapped over so that as the impedance of C falls with increasing frequency, losses through R increase, as does the attenuation through the circuit.

The relatively slow roll off rate of these circuits can be greatly improved by using two or more filters in series. Unfortunately this still tends to leave significant losses at frequencies well below the cut off frequency.

ACTIVE FILTERS

This problem can be overcome by using an active filter of the type outlined in Fig. 1(c) (high pass) and Fig. 1 (d) (low pass).

Taking Fig. 1(c) first, the series capacitance of C1 and C2 forms a simple high pass filter in conjunction with R1. The output from this network is taken to a buffer amplifier, and bootstrapping resistor R2 introduces positive feedback between the output of the buffer amplifier and the junction of $\mathrm{C} 1-\mathrm{C} 2$.

Whereas the negative feedback normally employed in audio circuits has the effect of flattening any variations in frequency response, positive feedback has the opposite effect and tends to increase any such variations. This is desirable in this case since it produces a fast roll off rate.

Fig. 1(a) Basic R-C high pass filter (b) low pass filter (c) active high pass (d) active low pass

At pass frequencies R2 does not have any real effect on the circuit since any change in voltage at the junction of C1 and C 2 will be matched by an identical change at the output of the buffer amplifier. No voltage is developed across R2, and it is effectively nonexistent.

If R2 has a suitable value, at frequencies where the circuits response is beginning to fall slightly it will tend to reinforce the input signal, flattening the response and preventing the very gradual initial roll off that occurs with passive filters. Filters of this type often actually have a small peak in the response just above the cut off frequency.

At frequencies where C1-C2 and R1 introduce significant losses, voltage changes at the left hand end of R2 will no longer be fully matched by a change in potential at the other end. This results in some of the input signal current flowing through R2, and this component then effectively forms a second high pass filter network in conjunction with C 1 . This increases the attenuation rate to about $12 \mathrm{~dB} /$ octave.

Thus this type of circuit does not attenuate signals that are well below the cut off frequency, and has a fairly fast attenuation rate. By using two or more R-C networks at the inpút it is possible to obtain an extremely rapid roll off rate.

The low pass version of this filter configuration functions in the same basic manner as the high pass one, but the resistive and capacitive circuit elements are, of course, transposed in order to obtain the correct filter action.

CIRCUIT

The complete circuit diagram of the scratch and rumble filter appears in Fig. 2.

The buffer amplifier for the rumble filter uses TR 1 in the emitter follower mode. This has R6 as its emitter load and is biased by R4 and R5. Two sets of filter components are used at the input, the first consisting of C3, R1, C4, and R2, and the second one using C5, R3, C6, and the input impedance of the buffer amplifier. The latter is mainly determined by the

COMPONENTS

Asterisked components should be repeated for a stereo channel

Resistors

Capacitors :

C1*	100n type C280
C2*	$4.7 \mu 16 \mathrm{~V}$
C3*	470n type C280
C4*	470n type C280
C5*	470n type C280
C6*	$470 n$ type C280
C7*	6.8 n polystyrene
C8*	3.3 n polystyrene
C9*	10 n polystyrene ${ }^{\text {3 }}$
C10*	\%* 680p polystyrene
C11*	$10 \mu 25 \mathrm{~V}$ electrolytic
C12.	2,200 $\mu 25 \mathrm{~V}$ electrolytic
C13.	$330 \mu 16 \mathrm{~V}$ electrolytic

Semiconductors

TR1*	BC109	-
TR2*	BC109	
TR3	BFY51	
D1	1N4001	
D2	1N4001	
D3	BZY88C13V 400mW Zener	*
Switches		
S1-53	Double pole rotary on/off sw	itches (3 off)

Transformer
T1 Standard mains primary, $12-0-12 \mathrm{~V}$ secondary of $\tilde{*}$ 50 or 100 mA rating
*
Fuse

- FS $1 \quad 1 \frac{1}{4}$ in 100 mA

Miscellaneous

Main printed cirçuit board, and P.S.U. printed circuit board
Case of metal construction and having dimensions of about $203 \times 152 \times 63 \mathrm{~mm}$ (see text)
Three aluminium control knobs
Panel neon indicator having integral sertes restiftor for mains operation
1 $\frac{1}{4}$ in in-line fuseholder

* Phono input and output sockets (SK1 and SK2)

Wire, grommet, solder, etc

Fig. 2 Complete circuit

(a)
$d B$

EP228

Fig. 3(a) Frequency response graph of rumble filter and (b) response of scratch filter

Negligible noise and distortion are introduced by the unit since both active stages have 100 per cent negative feedback.

MAINS P.S.U.

The circuit has a current consumption of about 3 mA from 12 V , and will work well on any supply potential from about 9 to 18 V . A 9 V battery supply can be used, but the prototype is powered from the simple mains power supply circuit given in Fig. 5.

This uses a push-pull rectifier and smoothing circuit feeding a conventional emitter follower series regulator. This gives an extremely well smoothed output of approximately 12 V . S 3 is the on/off switch.

Note that if an alternative mains supply unit is used, this must have a low ripple output since any noise on the supply lines will be coupled into the main signal path by the biasing resistors in the main circuit.
values of the two biasing resistors. S1 can be used to bypass the filter components and eliminate the filtering. C2 is merely a d.c. blocking capacitor.

As can be seen from the frequency response graph of Fig. 3 (a), the rumble filter has a -6 dB point at about 40 Hz , and a roll off rate of approximately $18 \mathrm{~dB} /$ octave.

TR2 is used in the emitter follower mode and is the buffer amplifier for the scratch filter. It has R11 as its emitter load resistor and is biased from the emitter of TR1 via filter resistors R7 to R10. C7 to C10 are the capacitive elements of the low pass filter, and again, two filter sections are used. When only the high pass filtering is required, S 2 can be used to bypass the low pass filter networks. C11 provides d.c. blocking at the output.

The frequency response of the scratch filter is shown in Fig. 3 (b). The -6 dB point is reached at a little in excess of 7 kHz , and the response then falls away at about 18 dB / octave.

Fig. 4 P.c.b. and component layout

Fig. 5 Mains p.s.u.

Fig. 6 Component assembly for panels

Fig. 7 P.c.b. and component layout for p.s.u.

CONSTRUCTION

The housing for the prototype consists of a $203 \times 152 \times$ 63 mm chassis and base plate to which a wood grain finish for top and sides was added to give a better appearance.

The filter components are assembled on a printed circuit board using the copper backing pattern and component layout illustrated actual size in Fig. 4. Of course, for stereo operation it is necessary to make up two of these p.c.b. assemblies, one for each channel.

A separate printed circuit board is used to accommodate most of the power supply components. Details of this and the other power supply wiring are provided in Fig. 7. The negative supply rail, and the earthy connections to the input and output sockets, are all carried by the metal chassis plus the mounting bolts and spacers for the p.c.b.s.

USING THE UNIT

It is necessary to connect the filter between the preamplifier output and the power amplifier input. Many amplifiers have a "tape monitor" facility or something of this nature which enables this to be easily achieved. it is not really feasible to use the unit with equipment which does not have such a facility unless it is fitted with a suitable preamplifier to enable it to be connected between the record deck and a high level input of the amplifier.

Semiconductor IPDATIE FEATURING 8294
 2920

JAMES BOND CHIP

If I were 'M' I would send our Jim off to Intel for a crash course in microprocessor encryption techniques before that bunch from SMERSH and SPECTRE get there.

Gone forever, it seems, are the five letter groups and secret code books of yesterday's spy, and disappearing too is the need for rack sized encryption and decryption systems at the FO and the ACME Import/Export Co. Intel have spoiled all the fun by designing a chip to do both jobs and, horror of horrors, anyone can buy one!

The mathematics of code generation and code breaking reached their zenith during the second world war, and as we now know, we (the British) were much better at breaking codes than the Germans were at generating them. It became obvious with the dawn of the computer age that there could be no such things as an unbreakable code, and the effectiveness of a code is now judged not by whether it can or cannot be cracked but simply by how long it would take the fastest available computer to crack it! It is quite feasible to generate codes which would take hundreds of years to crack, but for most commercial purposes a code which will afford a few years, or even a few weeks protection is quite adequate. Think of the cost of tying up a mainframe computer for a few weeks just to crack one message.

Because more and more "sensitive" commercial data is being transmitted from computer to computer over telephone and satellite links and being carried around on magnetic tapes or discs, the US government has identified the need for a data encryption standard which can be used by anyone who requires this kind of security. An algorithm has been produced by the National Bureau of Standards which will generate codes secure enough for all but MI5 and the CIA, and to implement this algorithm, Intel has produced the 8294 data encryption/decryption device. The 8294 is used as a peripheral chip in a microprocessor based system using an 8080 or similar CPU chip, and is therefore as easy to use as, say, an 8251 USART device. The 8294 fits into a 40 pin package and runs from a single 5 volt supply. It accepts data in 64 bit (8 byte) blocks and encrypts or scrambles it at the rate of 640 bits per second using a 64 bit "key" supplied by the user. The 8294 is normally controlled by the microprocessor but data can be transferred to and from the 8294 either under software control or by means of the much faster Direct Memory Access (DMA) technique. With the chip initialised and an
eight byte key entered, encryption or decryption is achieved by simply entering eight data bytes and reading back the eight converted bytes. Simple, eh, Jim!

ANALOGUE MICRO

It had to happen I suppose. All you die-hard analogue fans who still feel that microprocessors will never replace the 741 op-amp or those lovely tuned filters using rows of carefully wound inductors and precision capacitors, stand by for a few nagging doubts!

Intel have done it again, by introducing a radical new microprocessor chip with analogue inputs and analogue outputs, to challenge traditional linear circuit designs in some of their most hallowed sanctuaries.

Imagine a single 28 pin chip running from plus and minus five volt supplies. To the input of the chip you connect a wideband audio signal, and from the output you get a filtered 1 kHz tone whenever the input signal is in-band. Sounds like a conventional 1 kHz bandpass filter circuit, but in this case it's the Intel 2920 analogue microprocessor, and you tune the filter not by means of precision RLC components but by means of software instructions! Fed up with a 1 kHz bandpass filter? No problem. The 2920 program is stored in an on-chip erasable PROM memory, so just give it a dose of UV light and reprogram for 500 Hz . Fed up with filters altogether? Why not program up a function generator, or a fullwave rectifier or a logarithmic amplifier or-well the mind boggles! Actually you can do even more, because the 2920 has four separate multiplexed analogue inputs, and eight separate sample-hold output amplifiers, some or all of which can be programmed as TTL compatible logic outputs (to indicate under or over frequency in the filter example, perhaps).

Take heart all you clever analogue circuit fans, because you still need the same skills as before to design a 2920 application program, only the hardware really changes. To describe a filter you require a mathernatical function whether you use LC components or the 2920 . When you use the 2920 however, instead of choosing component values to suit the mathematical function, you write a software program instead. You still have to be a bit of a cleverclogs to get the function correct in the first place of course, and there is really very little scope for suck-it-and-see tuning techniques when using the new approach!

Internally, the 2920 has an analogue to digital converter at its front-end and a digital to analogue converter to generate outputs. Each time the A to D takes a sam-
ple of the input signal, the 2920 executes its entire program of up to 192 instructions. The time it takes to do this determines the input sample rate and hence the bandwidth of the system. With the longest program possible, single input frequencies of up to 6.5 kHz can be dealt with (13 kHz sample rate).

The architecture of the 2920 is not comparable to any "normal" microprocessor because of the requirement for fast accurate computation and the lack of any external data or address bus needs. Instruction words are actually 24 bits wide, and the internal arithmetic unit uses 25 bit precision to reduce error accumulation. Because the 2920 is timed from a crystal controlled clock source, the time and temperature drifts of conventional low frequency components can be all but eliminated.

So there it is you linear fans, time to retrieve that microprocessor primer from the waste paper basket!

ZERO VOLTAGE SWITCH

The SL446A from Plessey is a zero voltage switch intended for use in the on/off control of triacs and this device incorporates zero voltage point triggering in order to minimise radio interference.

Typical circuit for providing linear temperature control over a range of $+5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$.

Main applications are in switching resistive loads and replacing mechanical thermostats in central heating systems, washing machine heaters, water heaters and electric irons.

The device has a spike filter for reliable triggering and a pulse generator with a bistable arranged to eliminate half wave firing. A voltage sensing circuit inhibits the firing pulses when the supply is inadequate to guarantee proper circuit operation.

Another zero voltage switch in the same range is the SL441A which can be used to regulate a.c. power by varying the number of mains cycles applied to the load in a fixed timing period.

S©fTY Review...

A. A.BERK b.sc. Ph.d.

SOFTY is one of the first in a new and exciting line in the micro scene-the information available to the public via advertising has, to date, made it unclear as to the exact position of this machine in the market place. The following article indicates the role of the system to both the hobbyist and the industrial user as well as describing its internal hardware and software structure. Thanks are due to Videotime Products for lending us a Softy for review.

How often, I wonder, have you wished you could pick up an MPU of any type and plug it into a totally general development tool, press a few keys and learn the instruction set by trial and error? Then, after experimenting with several processors, choose the most appropriate and write for it a set of routines to control your house, drive your car, or let you win ceaselessly at Startrek. The final software would then be blown into EPROM, and a system is born!

The snag is always with what is known as Firmware, i.e. initial program stored in non-volatile memory which makes your machine react with some degree of intelligence when switched on-called Firmware because it is normally supplied by the firm which sells the machine. All well and good, unless you wish to design and build the thing yourself. In order to do this you must write your own Firmware to enable the loading of data and programs into memory from a keyboard, running a display, editing, accepting interrupts, interfacing to a cassette, blowing programs onto EPROM etc., etc., etc. Many of these functions, so important in the stage of program and system development, may be quite useless to the final product-only being required, perhaps, to control a few sensors and solenoids in a washing machine! Clearly the general Firmware development tool would be a boon to anyone interested in micros. This is undoubtedly the slot which SOFTY tries to fill.

Softy may be used in three main ways:-
a) as a 2 K block of embryonic Firmware forming part of the memory map of a system under development;
b) as an intelligent EPROM programmer for 2708's and 2716's;
c) as an MPU system in its own right for hardware control purposes.
Other areas are possible but considerably less appropriate-for instance, games could be played on its VDU or floating point calculation facilities developed, as with any other computing device.

I have purposely avoided mention, so far, of the particular MPU used in Softy-the reason being that Softy is a tool for a specific purpose and, as such, is more important for the facilities it offers than for the particular hardware it uses to achieve this end. Also, you will probably never see a Softy advertised with full 8 K BASIC or expandable to 64 K of memory and twin floppy discs. The MPU used in the SC/MP.

00250

BLOCK DIAGRAM

Referring to the block diagram, a reasonably familiar overall pattern is discovered with bus lines, RAM, ROM, MPU, I/O ports, cassette etc. The details show some differences from the usual format; an EPROM burner is included, for instance, along with special RAM for the VDU cursor. The main difference is, however, in Softy's firmware itself. This is set up, basically, to manipulate the contents of three blocks of RAM - two $\frac{1}{2} \mathrm{~K}$ pages and an area of 128 bytes of "scratchpad". Commands for the editing features as well as control of the ultra-fast cassette interface and EPROM burner are not typed in with alphanumeric characters but, instead, appear on the keys of the keyboard and are accessed via a "function" key, exactly as on a scientific calculator.

The VDU picture, as seen in the photographs, constantly displays 512 bytes in hexadecimal digit pairs. An area of reversed video (white characters on black) is also available at top and bottom of the TV picture-if your TV can show it. This is part of the 128 bytes of "scratchpad" RAM included in the INS 8154 RAM/IO chip. The screen itself is divided into four main areas of 128 bytes each, by shading, to assist the user in estimating the size and positioning of blocks of information. In addition, the user memory is used to store those posi-
tions on screen which are to be highlighted in a very bright shade for various purposes described below.

At the top of the screen four lines of reversed video may be displayed by adjusting the height control of one's set. Only the bottom one of these four is of major importance. It contains various useful bytes of information, such as current cursor address and contents of the SC/MP's registers. The meanings of these locations are shown in the annotated photograph.

The I/O ports of the 8154 device are used to scan the keyboard matrix, but may be utilised for hardware control and are brought out to the edge tracks below the keyboard-see the photograph of the p.c.b.

EDIT COMMANDS AND POWER UP

As seen on the heading photo, most of the keyboard keys have a dual purposei.e. hex digits as well as commands accessed by first pressing the FN key.

After power-up, the RESET key is pressed, giving a random collection of bytes on the screen randomly highlighted by bright patches corresponding to 1 's in the cursor memory. The FN key is pressed twice to clear the cursor memory with the exception of the bright patch over the top left byte. This patch denotes the write-cursor position-i.e. where it.
next byte of information will appear if the keyboard keys are operated. To alter this byte, two hex digits must be keyed in, after which the user automatically moves onto the next location. The cursor may be stepped backward or forward by using the appropriate keys and hence any byte displayed may be altered-writing only occurring to the cursor position.

If the back or forward cursor keys are held down, the cursor moves a step at a time automatically until the 16 th step when it will revert to stepping up or down the screen vertically one line at a time. When the cursor meets the top or bottom of the screen, the $\frac{1}{2} \mathrm{~K}$ page displayed changes to the next adjacent-this may be the other half of the 1 K of RAM or one of the two EPROM pages-if the user steps off the edge of the screen too many times (i.e. into a non-existent page), the machine aborts and must be reset before continuing. After reset, the cursor is at the top of the 1 K of screen RAM and just below the user EPROM section. Thus, moving the cursor back takes it into the bottom of the lower $\frac{1}{2} \mathrm{~K}$ page of EPROM. The contents of the EPROM placed in the zero-force EPROM socket may be copied into screen RAM by the "copy" command-accessed by pressing FN, followed by the "C" key. The full 1 K is copied into the screen RAM by this process and may be altered by moving the cursor around and pressing hex keys
as described above. If required, the whole 1 K may be stored on, or recalled from, cassette by the "RECORD", or "RECALL", Commands. Alternatively, an erased EPROM may be inserted into the zero-force socket and the 1 K RAM contents burned into it by the "BURN" Command. In this way, EPROMS are very conveniently copied with or without modification in around 2 minutes.

Other text editing commands include a block shift. The cursor is positioned over the final member of a block to be shifted and the DEFINE Command pressed (after the FN key, of course). Backward shifts of the cursor leave behind highlighted bytes on the screen. When the complete block to be shifted (a maximum of 127 bytes) has been highlighted, the SHIFT Command is entered. This allows the back and forward cursor keys to shift the entire highlighted block one position at a time for 16 moves, followed by movements of one line at a time, throughout the 1 K of screen RAM. This provides a very graphic and useful block manipulation facility.

In order to search for all occurrences of a given byte, the MATCH command is used followed by the byte to be matched. All occurrences are highlighted-yet another use for the cursor RAM. The extra highlights may be erased by pressing FN twice. This function has been used to highlight the word SOFTY on the screen photo.

The whole 1 K of RAM may be filled with l's (FF) by the CLEAR Command. This is used for selective block storage on EPROM. The erased EPROM contains just l's-during programming some of these are turned into zero's according to the data presented. If a block of the EPROM is to be left unprogrammed, it must be presented with FF bytes only. Thus, the screen RAM may be filled with FF and a selected area written to by cassette or keyboard. The "BURN" Command will then store this block in the EPROM leaving the rest to be programmed at a later date.

The Softy firmware may be copied into RAM by the FIRM Command for modification by the user. This firmware comes on EPROM anyway and may thus be copied into RAM, modified and then blown into an erased EPROM for immediate use. Who says computers can't reproduce!

PROGRAMMING COMMANDS

So far, screen editing and storage have been described without reference to the executing and testing of the routines being developed. As explained above, the heart of the Softy system is a SC/MP and routines for the SC/MP may be executed in screen RAM, EPROM or Scratch Pad

using various other commands on the keyboard-this facility is useful for developing programs for the SC/MP microprocessor without any extra hardware. The register contents are continuously displayed at the top of the screen, as indicated, and large numbers of uses can be envisaged for the machine as a controller.

There is a very graphic offset calculation facility included on the Softy, which is accessed via the FIX Command. This causes the current position of the cursor to be stored. The cursor may then be moved to any new position within the program under development. The offset between stored and current cursor locations is continuously displayed at the top of the screen, as are the absolute addresses of the two cursor locations. The current address location of the cursor is always displayed at top left of the screen, and screen RAM starts at address OCOO.

DEVELOPING GENERAL SYSTEMS

Most of the above editing, storage and program writing facilities would be very useful for developing any MPU system and it is here that the Softy finds its most exciting application. The system is designed to look like a 2 K block of intelligent memory. That is, it has data, address and control busses to fit into any system at any base address. While the target system is not processing and using
the busses, Softy may be used to Write a program into screen RAM using all its facilities for making the job easy. When finished, the program is automatically in the embryonic system's memory for running on the target's MPU, using the Softy VDU for output as necessary. No editing firmware or even RAM is necessary in the test system-Softy supplies it all.

The manufacturers, Videotime Products, have now produced an interface card with all the address and data bus lines fully demultiplexed, along with general address decoding to allow any bus-oriented MPU to be used. The designer sets up links on the interface p.c.b. to decide where in the MPU system's memory Softy will sit. All that is needed is an MPU with its own processer clock and RESET switch to develop a complete MPU system. The MPU Address and Data busses, plus R/W, are connected to the interface board and Softy takes over for program writing and hands back control to the external MPU for execution.

The final software is blown into EPROM and, along with some RAM etc., may be attached to the MPU system under development to complete the machine. The photograph of the whole system shows the interface board connected to a prototyped Z 80 system. The prototype contains MPU, clock and RESET switch.

Videotime are hinting at producing a variety of such MPU p.c.b's, for different processors, to save the prototyper even the trouble of connecting Veroboard and ribbon cables to his favourite MPU!

HARDWARE AND CONSTRUCTION

I did not have the opportunity to make up a kit from scratch and can only comment from an external viewpoint. The p.c.b. is covered with solder-resist and has a silk-screened component legend which should make construction easy. Tracks are no closer than usual, though components are a bit crammed around the DIN socket and a large Mylar capacitor did impede adjustments to the cassette interface pot quite considerably.

The keyboard is of the "click" calculator type and showed the usual tendency towards variation in performance but seemed adequate for the job.

My version was not through-plated and thus contained pins through the p.c.b.-perhaps a little disappointing on an article not made "down" to a price in most other ways-but again, in my experience, perfectly adequate. It was very nice to see a zero-force socket for the EPROM as standard, as well as u.h.f. modulator giving excellent TV performance.

The EPROM programmer will program both 2708's and multi-supply 2716's (in two halves) and these devices require several supply voltage levels. Videotime sell a small Power Supply Unit which proved adequate to power the complete system as shown in the photo-i.e. including a simple target system.

The EPROM burner is straightforward and controlled by a 555 timer to program at the maximum theoretical speed for the 2708 family of EPROMS (around 110 seconds). A 27 volt supply is included in the Videotime power supply unit for this purpose, but is left unconnected, for purposes of safety, until required.

The cassette interface is controlled by software and is little more than a couple of lines connected to serial-in and serialout pins of the SC/MP processor. As a consequence, the "Transwift" system runs at over 2000 Baud (equivalent) and is considerably less prone to tape-speed variations than many other simple interfaces. The cassette plugs into a Din socket, just above the keyboard, which is wired to the international standard.

The cursor RAM is formed by a single bit by IK 2102 chip. This is accessed by the VDU counter circuitry at the same time as the main VDU RAM and fed to the video mixing circuitry to brighten the VDU picture at the necessary locations as the electron beam strobes across the TV tube. While the SC/MP is not processing a program in user memory, it hands the Address and Data busses over to the VDU counters which address one of the four memory pages displayable.

The page selected depends upon the state of two I/O lines on the 8154 chip which are kept updated by the firmware. The memory map of the system is not given and this appears in Table 1.

The address map depends upon a 74 LS42 decoder and could easily be changed if necessary-though what this would do to the firmware, I can't imagine! A system under development would see Softy mapped out as in Table 1 , in its memory, but at a different base address from 0000 if required.

TABLE 1

Address	Memory selected
$0000-03 F F$	SOFTY's 2708-based firm-ware
$0400-07 F F$	RAM/IO (8154) with some addressing redundancy 2708 (or 2716) Socket for user's EPROM
$0800-0 B F F$	VDU RAM (workspace) in two $\frac{1}{2} K$ pages of display

The VDU, of course, is a very specialised binary data display device and has nothing to do, for instance, with displaying ASC11 characters. It is a device for displaying the exact binary contents of 512 memory locations-in hexadecimal digits directly. Thus, a special character generator ROM is used. The VDU electronics presents the 8 bits from any memory location to the ROM as two 4 bit "nybbles", for conversion into hexadecimal characters on a TV screen. This obviates the necessity for the usual
software routines used to convert bytes into nybbles and nybbles into ASC11 codes.

MANUAL AND SOFTWARE

As can be seen from the above, the software is thoughtful and very graphic. A few more traps against inappropriate commands could have been included, I feel, even though the whole thing is contained in just 1 K of ROM. Try block shifting into the EPROM, for instance, and everything is lost-or, as mentioned, try shifting the cursor to a non-existent page and the machine locks completely.

A lot more description of the software itself would be of considerable use in modification and, most importantly, in using subroutines contained within the firmware. It is an excellent idea to include a special command for copying it to screen RAM-but of little use without, at least, an annotated listing.

The manual makes it clear from the beginning that Softy is a tool for those who know what they are doing. To this end it is very concise and makes reference to other literature, such as data sheets on specific devices. A reference table is given of the SC/MP instruction set, as well as an architecture diagram for both the SC/MP and the RAM/IO and a potted description of the RAM/IO's use as a parallel I/O port.

The Softy circuit diagram is given in complete detail as well as an adequate explanation for anyone familiar with MPU engineering. This is most useful for those willing to take the basic tool and use or modify it in their own way.

Construction is hardly covered at all but should be quite clear due to the component position labelling on the p.c.b.all component numbering starts at the top right of the p.c.b. and should save endless
hours of searching for a particular number of component.

Another section of the manual includes interfacing to the external systemthough the SC/MP data sheet is essential
to a complete understanding of the device. Control signals and memoryselect logic are mentioned as well as product and program development.

An interpretive language of a very simple nature is actually listed for use in development, along with a couple of elementary sample programs to help the user familiarise him or herself with the system. The final section of the manual explains the software (annotated listing included) for interfacing Softy with an exGPO BAUDOT code printer. A little more on hardware would be useful at this point, along with methods of attaching it to the more common 8-level ASC11 machines.

Any well thought out tool can be made to perform wonders in the right hands. Think how a good engineer can extract complex information from an electrical device using just an oscilloscope. Softy is in this class-it is a well-constructed bench tool for anyone dealing with MPU products and requiring development and test facilities. It should not be placed in the lengthening string of hobbyist computers, each vying with the next for higher level languages and more photographic VDU displays.

Acknowledgement

The Softy was originally designed--hardware and software-by Barry Savage. Phil Morris, of Videotime Products, has updated the machine and designed the interface board for prototyping a general MPU system.

FRANK W. HYDE

PIONEER 11

Pioneer 11 is on its way out of the Solar system and into the Galactic space and none will know of its final fate. Its last encounter was the planet Saturn. At that time it had travelled more than 2,000 million miles from Earth, having started its journey in April 1973. The vehicle has more than justified the costs involved and is yet another tribute to the technology of space engineering. The first flypast was concerned with the planet Jupiter and opened the first chapter of a new view and model of the largest body in the Solar system. While Pioneer 11 continued its journey toward Saturn aided by the kick (gravitational) of the fastest rotating body, the Voyagers were to open the second chapter of the chronicle of Jupiter.

However all might well have been lost for there was a near case of disaster as Pioneer II approached Saturn's rings from the underside. The vehicle was at a distance from Saturn of 2.53 Radii 23 minutes, after crossing the plane of the ring system inside the orbit of Saturn's moon Janus, but not quite at the A ring. Calculations show that the spacecraft passed about 900 miles below and 1,500 miles slant distance to the "Pioneer Rock". It was discovered as a result of the change of behaviour of some of the on-board instruments. The charged particle instruments showed that during the time of the near encounter the flux of the $2-4 \mathrm{MEV}$ electrons dropped to a level a thousand times less over about 10 seconds.

The period of the drop-out indicates a body of the order of 124 miles in diameter. Earlier it had been thought that there was another body about this diameter. It is a $50-50$ chance that this "Pioneer Rock" is that object. It would be unlikely that it could be discovered from earth based telescopes, being obscured by the ring
system. A further confirmation of the "new" moon came from the magnetometer data. The short time resoltion instrument which showed a ten second oscillation at 15 seconds after the dip in the particle counts. Thus the conclusion was reached that this was a small body in the plane of the ring system, a body that was conductive.

The deflections of the path of the spacecraft have been studied. These are caused by the gravitational fields of three of the Saturnian satellites Iapetus, Rhea and Titan. The indications are that these three moons are of low density and made up of ices in the main with little rock or iron. These data also confirm that the flattening at the poles is as predicted but that the shape is not ellisoidal as it would be if the planet was homogeneous. It would seem likely that there are extensive areas of inhomogeneities. Some depressions may be as much as 75 miles.

Nothing has so far come to light to cause rethinking of the present models of Jupiter or Saturn. That is that the interior core of Saturn is about the same size of that of the Earth but three times as dense and consists of rock and iron. Around this would be a layer of metallic hydrogen which probably extends to about 0.58 of radius of the planet. Above that a layer of liquid hydrogen and then the atmosphere a gaseous mixture about 200 miles deep. It is here that there may be some need for remodelling.

MAGNETIC FIELD

The magnetic field is not so extensive as that of Jupiter. The magnetic field and the pulsating magnetosphere extended out to about a hundred Saturn radii before the spacecraft was free. This is half the distance found in the case of Jupiter. The magnetic field was very uniform which suggests that it is an uncomplicated dipole field. The dipole axis is within 0.1 degree of the spin axis. This fact is unique for the Solar system. The centre of the field does not coincide with the centre of the planet and is southbound at the equator. This is not unusual.

The magnetic field rotates with the planet at its rotational period of 10 h 14 m and this means that as it is faster than the orbiting satellites a "wake" is created in front of the satellites. The satellites would be subject. that is those inside the magnetosphere, to some disturbance. In fact a wavelike disturbance did appear when Pioneer 11 crossed Titan's orbit. A symmetry was observed in the stable inner region of the magnetosphere. This is partly responsible for the "cleaning up" of trapped radiation.

It had been anticipated that Saturn's ring would clear any charged particles in the inner area of the magnetosphere. It has been stated if this were not so Saturn would show strong radio emission. There is some confirmation of that in the writer's own experience. When observing Jupiter radiation in 1962 it was decided to use the $1,000 \mathrm{ft}$. radio telescope at Aricebo to "look" also at Saturn. No sign of radiation was observed. It was concluded that

Saturn did not radiate or there was a mechanism to stop the radiation. This shows the importance of the spacecraft missions.

Some of the preliminary results show some details of various conditions. For example the infra-red radiometer could not detect the unlit side of the planet's rings. Even the Sun side was indicating a temperature of 70 K . Some readings were available to provide average values for the A and B rings. The temperature of Titan at the cloud tops was about 75 K . It is not expected that day and night temperatures will be available.

A weak hydrogen glow was detectable throughout the saturn system. It was noted that the ultraviolet emission brightened when the scan crossed the ring plane. This indicates that hydrogen clouds are present. Also it was noted that in the north and south polar regions brightening also occurred but was absent in equatorial regions. Ultra violet was detected at Titan but it extended only a short distance from the moon. It is unlikely that hydrogen cloud filled the satellite's orbit. It seems that the temperature at the exosphere, $1,110 \mathrm{~K}$, is rather lower than that of Jupiter.

ATMOSPHERE

A model of the atmosphere has been constructed which shows a surface pressure of about 15 atmospheres. Here the layer is hydrogen and helium at $-65^{\circ} \mathrm{F}$ this merges into clouds of water-ammonia at a temperature of $45^{\circ} \mathrm{F}$ succeeded by a layer of water ice clouds starting at $9^{\circ} \mathrm{F}$ and falling to $-63^{\circ} \mathrm{F}$. The next layer is possibly ammonium hydrosulphide ice clouds falling to $-135^{\circ} \mathrm{F}$. Then another layer of clear hydrogen and helium falling to $-210^{\circ} \mathrm{F}$ with ammonia ice clouds, above this a thin ammonia haze at $-280^{\circ} \mathrm{F}$ at a pressure now down to 1 atmosphere. Above this level very thin dust particles followed by the rest of the clear upper atmosphere again hydrogen and helium, at 0.1 atmosphere the temperature falls to $-306^{\circ} \mathrm{F}$ rising again to $-240^{\circ} \mathrm{F}$ at the level which has fallen to 0.01 atmosphere.

The satellite Iapetus exhibits a peculiar exterior appearance. It is about 900 miles in diameter and shows a wide difference in brightness very high one side and dark the other. The bright side is consistant with highly reflective material ice or snow but it is not possible to determine at this stage the composition of the dark side. lapetus is the farthest satellite from its parent.

TAILPIECE

There is evidence to show that the Sun is shrinking. The Sun has been measured at noon on every day since 1750. The disk is measured at high noon on the transit telescope. The mechanics are that as the limb crosses the fixed meridian wire the time is noted and when the trailing limb crosses the wire the time is noted once more. From these two timings the horizontal solar diameter is determined.

To: Practical Electronics,
Dept: PE1A, Rochester X, Kent ME99 1AA
Please send me the Seiko Watch(es) as indicated at $£ 79.75$ each, incl. p. \& p.
I enclose P.O./cheque No.Value..

No. of watches required
Name

Address
..

Tel. No. (Home or Work)

Cardholder's Address

Signature
No. of watches required \quad Name ..

From Practical Electronics,
Dept: PE1A, Rochester X, Kent MEg9 1AA

CUT ROUND DOTTED LINE

Orders are normally despatched within 28 days but please allow time for carriage. You will be notified if a longer delay may be expected.
Remittances may be by Access, Barclaycard, postal order or cheque (Name and address on back of cheques, please), crossed, and made payable to IPC Magazines Ltd. This offer is open to readers in England, Scotland, Wales, Northern Ireland and Channel Islands only. It is not available in Eire or overseas. Offer cioses on 29th February, 1980.
Please complete both parts of the coupon in BLOCK CAPITALS.
If paying by Access or Barclaycard, please do not send your credit card.
 A selection of readers'
original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
Why not submit your idea? Any idea published will be awarded payment according to its merits.
Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheats, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.
m\%

R/C SERVO

(N the servo circuit shown in Fig. 1, ZTX300 and ZTX500 transistors are used throughout because of their small size. They are rated at 500 mA which is more than sufficient for small modern servo motors.

The circuit works as follows: The 555 is connected as a monostable whose period is controlled by R5/C2 and the control voltage on pin 5 . This voltage is derived from VR1, the servo feedback potentiometer and RA/RB.TR 1 is a simple inverter. TR2 and TR3 are switched by TR1 and the output of the 555. Three possible conditions of the circuit can occur. (2a) shows the input pulse and the 555 period equal and both TR2 and TR 3 cut off. (2b) shows the input pulse shorter than the 555 period. Now TR3 can switch on for a short while. This drives the motor via TR4, TR5, TR6. Similarly, in (2c), TR2 drives the motor via TR7, TR8, TR9, C3 and C4 smooth out the drive between pulses. The motor is connected by the servo gearing to the potentiometer, VR1. Thus the motor will move the potentiometer until the input and the 555 period are equal again.

Fig. 3 shows a simple servo tester circuit. This is simply a 555 connected as an astable to simulate the output of the decoder, i.e. a variable negative pulse of between one and two milliseconds every twenty or so milliseconds. Using this tester it is then useful for setting all them servos to the same neutral position which is very useful on a multi-channel system.

RA/RB should be selected to suit the servo used.
N. Roche, Willingdon, Sussex.

Fig. 1

Fig. 2

Fig. 3

CAR BURGLAR ALARM

The unijunction TRI is used as a time delay device with the switch-on time determined by RI/C1 (33 kilohms gives a switching delay of approximately 10 seconds). When the unijunction switches, the o/p pulse via C2 triggers CSR1 which activates either the car horn(s) or some external audible warning device.

R4 is used as a hold on path for SCR 1 to prevent switch-off of the thyristor due to the interruptions of the car horn circuitry.

The circuit thus enables the driver to switch on the alarm internally before shutting the rear door, and vice versa when opening the door.
C. Guthrie,

Hardgate.
Clydebank.

PHASED WHITE NOISE

THis circuit, using the SN76477N sound effects chip, produces a phased white noise output when VR1 is rotated, such as would be obtained by a system using several phase shift stages being fed with an input from a conventional white noise generator. The white noise section comprises the LSI chip, together with its associated components, which provide the programming requirements.

A single BC 108 transistor feeds an 8 ohm speaker, together with a series resistor, which provides an audio output. In many cases the audio output will be taken directly to an amplifier, mixer or tape recorder.

Pin 3 of the SN76477N is connected, via R1, to the output of an astable multivibrator constructed around $\frac{1}{2}$ IC1 (7400). VR1a and VR1b (dual gang pot) control the astable's rate.

The phasing effect is produced because the SN76477N exhibits a kind of voltage controlled filter effect when a slow clocking oscillator is connected to pin 3 of the device. If the speed of the external clock is below that of the SN76477N's internal noise oscillator then the internal oscillator is overridden and external circuit takes over.
The circuit can be used to provide numerous special effects such as jet engines, rainstorm, thunder, wind, etc., in its present form. By connecting a 100 n capacitor from pin 21 to ground, a 1M pot from pin 20 to ground and re-programming pins $25,26,27$ as follows: pin 25-logic 0, pin 26-logic 0, pin 27logic 1.

A further range of aircraft, helicopter and train sound effects can be obtained by operating VR1. The circuit can be easily constructed on 0.1 in Veroboard and its recommended that a 28 pin DIL socket be used for IC 1.

If the speaker output is not required omit TR1, R3, speaker, R4 and C3 and connect a 47 k resistor from pin 11 to ground, a 10 k resistor between pins 12 and 13 and connect to external amplifier via a $2 \cdot 2 \mu / 10 \mathrm{~V}$ (C6) electrolytic capacitor with + ve terminal to pin 13. It is hoped these notes will encourage experimentation with this interesting and versatile i.c.

> R. Otterwell, Rochdale, Lancs.

GLOW PLUG SUPPLY

THIS circuit provides a regulated $2 \mathbf{V}$ or 1.5 V supply for glow plug engines and overcomes the problems of battery internal resistance and connecting lead resistance by sensing the voltage at the plug terminals.

The internally regulated voltage at pin 4 is divided down and applied to pin 3 as the reference input. If the voltage at the +ve sense input differs from this then the output from pin 6 varies inversely to compensate. The -ve sense input is effectively connected in series with the negative supply lead, any voltage drop due to this lead's resistance is reflected into pin 3 by the level changing action of D1, the preset across D 1 allowing 2 V or 1.5 V plugs to be accommodated.

The circuit is current limited to 5A by R1. the meter indicating o / c or s / c plugs and also plugs wet with fuel oil by a higher than normal reading. The unit is operated from a 12 V battery which is normal field equipment for use with electric starters etc. Heavy duty twin cable can be used as connecting leads, the outer conducter carrying the plug current and the inner the minute sensing current.
R. MacFarlane,

Newtonhill,
Aberdeen.

A SEMI- AUTOMATIC

DISCO CROSS-FADER

THE circuit shows a semi-automatic crossfader for discotheque applications. A cross-fade is effected merely by operating a toggle switch.

The MFC 6040 electronic auto-attenuators are operated by mutually symmetrical control voltages. The resistors RI (a-d)-R6 (a-d) are selected to give a range of time constants from 0.5 to 16 seconds for
the cross fading action. These are selected by two rotary switches, one for each deck, beforehand.

It is advisable to keep the signal inputs below 100 mV to avoid excessive harmonic distortion. At 100 mV this varies from 0.6 per cent $\left(\mathrm{V}_{\mathrm{s}}=9\right)$ to 1 per cent $\left(\mathrm{V}_{\mathrm{s}}=18\right)$. In any case, the i.c.s have a gain of 13 dB (approx.).

C 1 and C 2 can be electrolytics, since leakage is not a critical factor, the charging current always being maintained on the relevant capacitor.

Ben Duncan, Market Rasen, Lincoln.

LOW PASS FILTER

The circuit is basically an integrator with negative feedback which converts it into a low-pass filter. Because the output stage of the 3080 acts as a current source, it is important that there should be no load on it apart from the capacitor, especially if very long time-constants are required. This is achieved by buffering the output with an f.e.t. input operational amplifier, and con necting the feedback resistor, $R 2$, to the inverting input of the buffer, which is held at the same voltage as the non-inverting input by op-amp action.

It can be shown that the transfer function of the filter

$$
\frac{V 0}{V 1}=\frac{-\mathrm{R} 2}{\mathrm{R} 1} \cdot \frac{1}{1+\mathrm{sCl} 1 / \mathrm{k}}
$$

which is the expression for a low-pass filter with time constant of Cl / k. The time constant is inversely proportional to the control current, I $\hat{\mathbf{c}}$ and will vary between Ims and Is with the $2 \cdot 2 \mathrm{uF}$ capacitor shown, for I_{c} in the range $0.1-100 \mu \mathrm{~A}$.

The main drawback of the 3080 in this application is that the peak output current is limited to the value of the control current. To allow a reasonable input range, the signal must be attenuated at the output of the 3080 by a factor G where:

$$
\mathrm{G}=\frac{\mathrm{R} 1}{\mathrm{R} 2}>\underset{\text { Peak }}{20 \mathrm{~V} 1}
$$

To restore the signal level at its output the buffer has a gain of G. For the circuit shown G is 20 so a peak input of 1 V can be accommodated.

Applications for this circuit include an envelope generator for synthesisers, where the long time constants obtainable are particularly useful, and since all the parameters can be current/voltage controlled, the circuit lends itself to remote control.
J. J. Lambe,

Farnborough,
Hants.

THE classical method of timing the ignition sparks in a vehicle requires a cam to open a pair of contacts, but most vehicle owners will be aware of the troubles which can occur when these points are not cleaned and set at regular intervals. Some of the simpler electronic systems employ a pair of contacts, but the ignition coil current does not flow through these contacts and the absence of sparking at the contacts greatly increases reliability. More advanced timing systems have employed magnetic and optical contactless sensors which produce pulses at the correct times. This article describes a new type of contactless magnetic sensor which enables considerably simpler circuits to be used than with other contactless systems and which is therefore considerably cheaper.

WIEGAND WIRE

The new system employs a small, thin specially processed wire known as a Wiegand wire (after John R. Wiegand who discovered an unusual switching effect). A section diagram of a distributor using this technique is shown in Fig. 1. The Wiegand wire is located in the lower leg of a slotted structure which also carries two magnets. The permanent magnet in the upper leg provides a saturating flux to the Wiegand wire in the absence of a rotating vane.

The rotating vane is made of a soft magnetic material and has as many fingers as the number of cylinders in the vehicle. When one of these fingers passes through the slot between the saturating magnet and the Wiegand wire, it effectively provides a short circuit for most of the magnetic flux from the upper magnet so that the small magnet in the lower leg provides the flux required to reset the magnetic switching wire. This small magnet is orientated so that it provides a flux of the opposite polarity to that from the upper saturating magnet.

A coil of wire is wrapped around the Wiegand wire. Each time the magnetism in the wire is reset, a sharp pulse is produced across this sensing coil. The amplitude of the pulse is typically a few volts, so it can be used without further amplification to trigger an electronic ignition circuit. The low impedance of the coil avoids any troubles due to noise pick up. The pulse is very sharp, the width of the pulse at half the peak height being typically $20 \mu \mathrm{~s}$, so the timing can be made very accurate.

Fig. 1. A section of a distributor employing a Wiegand wire to generate the timing pulses

A Wiegand distributor; note the rotating vane made of a soft magnetic material

An advantage of the new technique is that no wires are required to carry any power to the sensing head. The two output leads from the coil (one of which can be earthed) are the only output connections required and this greatly simplifies the wiring.

[EP213

The time of switching of the Wiegand wire is a threshold effect determined by the level of the magnetic flux, so the pulses have the same amplitude and duration over the entire speed range of the vehicle from 'tick-over' to the maximum permissible engine revolution rate.

This type of ignition timing system can operate over a very wide temperature range with excellent stability. Indeed, the Wiegand wire is able to operate from $-196^{\circ} \mathrm{C}$ (liquid nitrogen temperature) up to more than $260^{\circ} \mathrm{C}$ where the insulation of the wire may fail. The magnetic flux required to produce switching is almost constant over the temperature range. The output pulse amplitude variation with temperature is less than 5 per cent over a wide temperature range.

The output pulse from the Wiegand sensing coil is passed to a transistor switching circuit which allows a tank capacitor to discharge through the ignition coil so as to produce the ignition spark at the correct time. It is claimed that maximum combustion efficiency can be ensured using this system which maintains the accuracy of the timing to 0.25 degree.

Wiegand systems are immune to the presence of dust, smoke, fuel or other vapours, vibration, dirt and moisture. There are no contact points to maintain and the system can provide a rate of engine revolution indication if required. A great advantage is the simplicity of the sensing unit and associated circuitry. The use of a Wiegand distributor will not alone improve the performance of a perfectly tuned engine, but it will normally improve considerably the reliability of racing cars under severe environmental conditions.

THE WIEGAND EFFECT

The Wiegand Effect is exhibited by wires made of a ferromagnetic material which have been suitably worked at the correct temperatures. Initially a homegenous wire about 0.25 mm in diameter and little more than 10 mm in length is taken; this wire is cold worked by twisting and stretching it, after which it is thermally tempered at about $300^{\circ} \mathrm{C}$.

The wire thus produced has a magnetically 'soft' inner core which is easily magnetised by a weak magnetic field, but this inner core is surrounded by a shell of magnetically 'hard' material which requires a much larger field to magnetise it.

In the absence of an external magnetic field, the field from the outer shell of the Wiegand wire will pass through the soft core material with the result that the total external field due to the core and outer shell will be negligible. If an asymmetrical field is now applied so that its polarity is essentially parallel to the shell of the wire, a sudden reversal of the polarity of the field of the core occurs as the external field reaches a certain threshold intensity know as $H_{\text {ser }}$. The flux from the core and from the shell now re-inforce each other externally so that the external magnetic field is greatly increased.

Fig. 2. A Wiegand wire (a) with no external applied magnetic field and (b) with an applied field great enough to reverse the direction of magnetisation of the core. Note the external field from the wire is much greater in (b) than in (a)

The Wiegand electronic ignition system on the right hand side employs only 17 components against the $\mathbf{4 0}$ components used in the conventional magnetic pick up system

When the external field falls and changes its polarity, the field in the core of the Wiegand wire switches back to its original direction. This occurs at an external field value $H_{\text {reset }}$ which is much smaller than $\mathrm{H}_{\text {ser }}$.

In a typical system, a coil of perhaps 1000 turns on a short Wiegand wire will produce output pulses of well over 1 V across a 2 k load. The pulse amplitude can be increased to over 10 V if required. The pulse of the opposite polarity is much smaller in the normal asymmetrical drive system. In some systems a stronger external field is used so that the polarity of the shell is reversed after the polarity of the core has been reversed; in this case the switching is symmetrical.

OTHER USES

Apart from the use of the Wiegand Effect in vehicles for ignition timing and sensing the rate of engine revolution, it could also be used for sensing the rotation of each of the road wheels in anti-skid braking systems; when a wheel locks, the brake fluid pressure would be released for a fraction of a second before being re-applied so as to obtain the maximum braking effect automatically.

Wiegand sensors could also be used to provide data to a microprocessor which could control the ignition timing and the fuel/air mixture automatically so as to provide the best performance under all conditions.

Wiegand wires are also used in other applications, such as in plastic cards which control the access of people to certain areas or to railway stations, etc. and can be employed in electronic touch keys and for measurement of liquid flow. IInformation on Wiegand products can be obtained from Sensor Engineering Co., Echlin Rd., Brandford, Connecticut 06405, U.S.A.)

ULTRASONICS is the term given to sound waves beyond audibility. This varies between individuals so it may be said that frequencies of 16 kHz or greater are ultrasonic. If ultrasonic waves are propagated through a liquid then cavitation takes place. Cavitation is the term that refers to the formation of bubbles or cavities in the liquid. A typical example of cavitation is the churning of ships propellers which can considerably erode the propeller blades.

When cavitation is caused by the passage of ultrasonic sound, however, the effect can be usefully used for the cleaning or dispersion of dirt. This action is due to the high pressure caused locally by the collapse of the cavities. This happens when a region of compression, following rarefaction, leads to a pressure that can collapse a cavity. The gas or vapour in a bubble at this time is greatly compressed and when it collapses it produces a powerful shock wave that is responsible for the cleaning action.

Bubbles may be gas filled, vapour filled or a complete , void. Gas filled bubbles take several pressure cycles to form

and are dependent on dissolved gas in the liquid. The production of vapour bubbles or voids is very rapid and the cavity's life is short. Most of the noise produced by an ultrasonic cleaner is due to the formation and collapse of these cavities.

Ultrasonics are extremely useful when it is desired to clean items that have many small interstices such as items of jewellery or small mechanical or electronic assemblies. Ultrasonic cleaning is also used for items that have a patina such as old coins, since it will not damage this layer and therefore detract from an object's value.

CIRCUIT DESCRIPTION

The circuit diagram of the Ultrasonic Cleaner is shown in Fig 1. The tank's basic resonance centres on approximately 33 kHz . IC1 is.connected as an oscillator, the frequency of which can be adjusted by VR1 mounted on the front panel of the finished unit, ailowing adjustment in use. IC1, a 4047 CMOS device, has a combined oscillator and divide by z

E6236
Fig. 1. Complete circuit diagram of the Ultrasonic Cleaner
latch, so the basic frequency is set at around 66 kHz , the actual output after the divide by 2 latch being a square wave of frequency around 33 kHz , with a precise $50 / 50$ duty cycle. R2, D1 and C3 derive a 9 V supply for the CMOS i.c. The resistor R 9 prevents damage to IC1 whilst connecting VR1.

The output of IC1 is amplified by transistors TR1 and TR2 to give a voltage swing at TR2's collector of 40Vpk-pk. The collector voltage of TR1 is held low by TR2 whose base voltage is maintained by R4, D2 and D3 at approx. 1.2 V . This arrangement overcomes the problem of the collector base capacitance of TR1 limiting the maximum rate of rise of the output voltage. TR3 and TR4 provide current amplification to drive the primary of T 2 via C 4 .

The output of T2 is used to drive the output transistors TR5 and TR6 and R8 limits the maximum current. The reverse voltage helps to switch off the transistor quickly

Internal view of the Cleaner

Fig. 2. P.c.b. design for the Cleaner.

Fig. 3. Component layout.
which is the reason for using the drive transformer. L1 matches the parallel capacitance of the transducer to the secondary of T3 further improving the overall efficiency.

The power supply consists of transformer T1, bridge rectifier BR1, and smoothing capacitor C1. The fuse (FS1) and front panel mounted neon illuminated switch S1 complete the circuit.

CONSTRUCTION

The transducer should be glued to the tank bottom using Araldite. The quick setting type is not suitable. The surfaces to be stuck must be thoroughly cleaned using a de-greasing solvent and the tank bottom lightly abraided. The transducer should be stuck centrally on the tank bottom by the aluminium end, which has been shot blasted to help adhesion. The tank should be inverted over a 40W light bulb so that the adhesive heat cures. The transducer face should be coated with adhesive, applied to the pre-heated tank, and a length of tape used to keep the transducer in contact with

the tank. This can be removed when the glue has hardened. The lamp should be left on for one hour after mounting the transducer and the tank should not be used until the glue has had at least 36 hours to set. This is critical to the final performance of the finished unit, and care should be taken to get best results.

The p.c.b. design of the Ultrasonic Cleaner is shown in Fig 2 and the component layout is shown in Fig 3. After soldering and checking the p.c.b. it can be mounted on the aluminium mounting bracket which doubles as a heatsink. The output transistors TR5 and TR6 must be isolated using mica mounting kits (Fig 5). The output transistors should be

E6 239

Fig. 5. Heatsink mounting for TR5 and TR6
soldered after they are clamped down to the heatsink. Care should be taken soldering IC1 which should be put in last. An i.c. socket may be used if preferred.

BASE PLATE

The base plate should be fitted into the cover of the unit and mounting holes drilled (two holes each side).

The components that mount onto the base plate are the mains transformer T1, the clip for capacitor C1, the p.c.b., inductor L1, the bridge rectifier and the four rubber feet. These components should be fitted to the base plate as shown in Fig. 7 , taking care not to foul the tank. L1 should be glued to the base plate with araldite and must not be bolted through.

COMPONENTS

Resistors	
R1	43 k
R2, R4	$8 \mathrm{k} 2(2$ off $)$
R3	10 k
R5	3 k 3
R6	4 k 7
R7	27
R8	$18(2.5 \mathrm{~W})$
R9	150 k
VR1	10 k

All resistors $\frac{1}{3} \mathrm{~W} 5 \%$ carbon unless otherwise stated

Capacitors

C1	$4700 \mu 40 \mathrm{~V}$
C2	15μ polystyrene
C3	$2 \mu 2$ tant 16 V
C4	100 n
Semiconductors	
D1	
D2, D3	BZY 88C 9V1 Zener
REC 1	1N4148 (2 off)
TR1	BR18A
TR2	BC182A
TR3	2N5550
TR4	2N2904A
TR5, TR6	BFY50
IC1	TIP33C
	4047

Inductors

L1
T1
T2
T3
(UTWEL 1)
Mains transformer 80VA 2A sec (UTWET 1)
(UTWET 2)
(UTWET 3)

Miscellaneous

[^3]

Fig. 7. Base plate wiring and drilling details

The mains switch, potentiometer VR1 and the mains fuse holder mount directly onto the fibre glass cover.

WIRING UP

The mains lead to the fuse holder and switch should be wired next (Fig 6). A 4BA tag should be soldered to mains earth for clamping to one of the transformer mounting bolts and the leads from the switch to the transformer should be about $5^{\prime \prime}$ long. The wiring to the base plate components can be carried out next. VR1 is connected with screened leads to the p.c.b. and the screens at the pot end should be soldered to the pot body. After the leads from the switch to the tank cover and transformer have been wired clamp the earth lead

TESTING

To test the unit fill the tank with water to within about an inch from the top and switch on, adjust VR1 until maximum activity is noted in the water. If a point cannot be found then recheck the p.c.b. for errors. The simplicity of the circuit should mean first time results.
Articles to be cleaned are suspended in the tank in the centre. If required wire holders can be made up to help support items.
When the prototype unit was tested in the office an ink drawing pen, which had been blocked up and left for three years, was placed in the tank. The result was a completely cleaned and working pen in a couple of minutes.

Now, the complete MK 14 micro-computer system from Science of Cambridge

VDU MODULE. £33.75
($£ 26.85$ without character generator) inc. p \& p.
Display up to $1 / 2 \mathrm{~K}$ memory (32 lines $\times 16$ chars, with character generator; or 4096 spot positions in graphics mode) on U'HF domestic TV. Eurocard-sized module includes UHF modulator, runs on single 5 V supply. Complete asciiu pper-case character set can be mixed with graphics.

POWER SUPPLY. £6. 10 inc. \mathbf{p} \& p .
Delivers 8 V at 600 mA from $220 / 240 \mathrm{~V}$ mains sufficient to drive all modules shown here simultaneously. Sealed plastic case, BS-approved.

MK 14 MICROCOMPUTER KIT §46.55 inc. p \& p.
Widely-reviewed microcomputer kit with hexadecimal keyboard, display, 8×512-byte PROM, 256-byte RAM, and optional $16-$ lines $1 / O$ plus further 128 bytes of RAM.

Supplied with free manual to cover operations of all types - from games to basic maths to electronics design. Manual contains programs plus instructions for creating valuable personal programs. Also a superb education and training aid - an ideal introduction to computer technology.

Designed for fast, easy assembly; suppliea with step-by-step instructions.

Science of Cambridge Ltd

6 Kings Parade, Cambridge, CAMBS., CB2 1SN. Tel: 0223311488.

PROM PROGRAMMER.

\&11.85 inc. p \& p.
Use to transfer your own program developed and debugged on the MK 14 RAM to PROM (745571) to replace SCl0S monitor for
special applications, e.g. model railway
control. Software allows editing and verifyng.

To order, complete coupon and post to Science of Cambridge Return as received within 14 days for full money refund if not completely satisfied.

Please send me:
$\square M K 14$ standard kit TT £.46.55
\square Extra RAM (m) 4.14 per pair. \square RAMI/Odevice in $£ 8.97$.
\square VDU module including character generator "f 633.75 .
$\left.\square V^{\prime}\right) \mathrm{U}^{\prime}$ module without character generator "f $£ 26.85$.
1 encluse cheque $/ \mathrm{Mo} / \mathrm{P}^{\mathrm{O}}(\mathrm{)}$ for L . \qquad - total

Name

\square Cassette interface module wit 5.25 .
\square PROM programmer à 111.85 .
\square Power supply π (6.10.
\square Full technical details of the $\mathbf{M K}$ it
System, with order form.
All prices include $p+p$ and vat.

Address (pleave print)

$\text { Gomanc } 51 \text { ectronics }$		
Low Power Schottky TTL EMST0GM		
verapaouct		
		Cheques, POS; Money Orders to be made payable ROMANE ELECTRONICS,
		Driv
		M 33 3LE
		Tol 061-962-2606

A new book for the home electronics constructor Microprocessors for Hobbyists

Ray Coles

* An introduction to microprocessors based on two popular series in Practical Electronics
* Covers the architecture of microprocessor chips and systems, programming memory and input-output components
* Describes home computers together with a comparison of different models and the appropriate software
* A comprehensive glossary of terms is included to explain the 'buzz-words' of the microprocessor scene
$1980 \quad 96$ pages £2.95 (US 86.75)

U11Newnes TechnicalBooks

Chaos Ahead?

Every 20 years the nations of the world get together to examine the international regulations on radio communications services. Are they working well? Is the available spectrum being used efficiently? Should power limitations be imposed on short wave broadcast propaganda stations? Should amateur radio be squeezed out in favour of more essential services? These and many other questions.

This great jamboree is called the World Administrative Redio Conference, abbreviated to WARC 79. It is held under the auspices of the International Telecommunications Union. Twenty years ago at WARC 59 there were 87 participating countries. The self-determination movement and further progress in decolonisation has boosted the number of countries to 140 and, not unnaturally, all the new members are extremely proud of their new status as independent selfgoverning nation states.

The old rules still apply, one nation one vote. Little Fiji with 580,000 population, for example, has the same voting power as the UK's 56 million, the USA's 215 million or the Soviet Union's 257 million. This is not to say that wisdom is proportional to population or that the big powers should bulldoze their own demands through the conference. What happens in practice, however, is that the less prosperous countries which, almost by definition, are less able to form fairly balanced technical judgements, tend to vote either in solidarity with their own blocs or to side with the more prosperous countries from which they are already receiving or hoping to receive aid. There is also an unfortunate, but again natural, trend for newly emergent nations to take a swipe at their former "oppressors" whatever the merits of a proposal put forward quite honestly on purely technical and operational grounds.

The first big squabble came with the appointment of the WARC 79 chairman. The first nominated was from New Zealand, rejected by the non-aligned countries. Next was one from India, not acepted by the Western Group. Surely nobody would object to a candidate from neutral Switzerland? Not so, this worthy individual being rejected by the non-aligned group and the Western group. Eventually, after much behind-the-scenes lobbying, an Argentinian, R.J.P. Severini emerged as chairman.

One fears that more so than ever before, WARC 79 has become a political more than a technical conference. Even though the numerous sub-committees working entirely at the technical level make sound decisions their work may well be frustrated by the national and international voting pattern.

Attending WARC are some 2,000 delegates if you include official "observers" with special interests who will be lobbying in the corridors. I hope they enjoy their long sojourn in Geneva. Originally scheduled as a 10 -week event ending on November 30, I forecast that this conference will go down in history as WARC 79/80. But better to have an extended conference with sensible results than a hodge-podge of ill thought out decisions which can only lead to even more chaos on the radio waves in the years ahead.

Telecom 79

Also in Geneva was the great Telecom 79 exhibition. This one for the world's telecommunications equipment manufacturers is staged every four years by the International Telecommunications Union, an agency of the United Nations. ITU's secretary-general M. Mili opened Telecom 79 by reminding us that there are some 400 million telephone lines today and that present projections indicate some 1,400 million by the end of the century. At today's prices this means the spending of an extra $\mathbf{f} 1$ trillion during the next 20 years.

No wonder this exhibition was chosen as the first launch platform for Britain's System X, the all-digital telephone system of the future. System X is a joint development between the British Post Office, Standard Telephones \& Cables, Plessey and GEC. Overseas marketing is through a newly-formed consortium company, British Telecommunications Systems (BTS).

The BPO has endorsed the system (could it do otherwise?) by ordering the first nine System X exchanges which will go into service from 1981 onwards. BTS is not expecting quick results in exports but is taking the long-term view. System X cannot sell on technical merit alone. The big markets are in countries which have no indigenous telecommunications industry and they need financial support to invest in huge capital projects. They may also demand a share in the manufacture of equipment. So any negotiations tend to be complicated and lengthy.

At Geneva System X was one of the few digital systems demonstrated live-a great point in its favour against what is likely to become fearsome competition from the leading European and US manufacturers.

MEDE 79

The Military Electronics Defence Expo ' 79 staged at Wiesbaden was a frightening showcase of ingenuity. Military electronics is one field in which the Japanese have, as yet, made no impact. Except that one could not fail to note that nearly all the audiovisual displays of missiles homing on to targets and other awesome scenes were using Sony VCR equipment. At least aiding and abetting if not participating directly!

There was in fact one Far Eastern exhibitor, Veterans Electronics Communications Incorporated, who make combat radio, manpacks and vehicle-mounted, in the Phillippines. Their marketing arm is Vetronix Inc. and the company slogan is "High technology aimed at low budget targets". Translated this means Asia, Africa and South America. Their appearance in Europe could well have been not so much to sell here as to look for new lines to manufacture under licence.

This trend, which I have commented on before, is steadily growing. Technology transfer, today's big business, is tomorrow's threat, that is unless you can stay ahead in technology. But looking over the prime exhibits from the USA and Europe there seemed little chance of the tiddlers in electronics ever catching up with the big fish. They haven't the technical design teams or the financial resources. Even in the West costs are becoming so prohibitive that joint ventures are ever more necessary.

One can argue that all military spending is waste but one is also forced to the conclusion that the United Kingdom would indeed be in a sorry state in terms of overseas trade balance and unemployment but for exports of defence equipment with the very high added value afforded by high technology. A single example illustrates the point. Plessey alone have already completed their first $£ 100$ million of sales on Clansman equipment and they are only one of four British contractors on the project.

An interesting point on design philosophy arose during the technical conference at MEDE. Surprisingly two different viewpoints were expressed from the same company, RCA, although the speakers were from different divisions of the company and talking on different topics.

Our speaker, a software orientated person, was singing the praises of standard hardware in which software changes could be rapidly made to accommodate new or different applications as the military need dictated. This is a commonly accepted doctrine.

A second RCA engineer took the opposite view pointing out that hardware costs are constantly falling while software costs are constantly increasing. The implication here is that versatile systems can be implemented more economically through plug-in hardware modules. This speaker went so far as to state, "Ten years ago it appeared that software-controlled processing in a general purpose computer would provide maximum flexibility at minimum costs. In fact real-time software has proven to be very expensive and inflexible".

THIS project wàs designed as a piẹce of jewellery for evening wear. It producés a scintillating light Êffect from an array of light emitting diodes and could equally well bermade.up as a pin-on brooch or as a bracelet. There can be many varieties on' the original theme so that the fitha[product can be unique in appearance and activity.

CIACUIT'DESCRIPTION
Th circuit is based on two CMOS i.c.s (Fig. 1). R1 is included for extra protection against static discharge. The CD4060B together with the timing capačitor C1 and resistors R2 and R3 provide an astable multivibrator and a 14-stage binary dividing chain. Outputs from stages 1, 2, 3 and 11 are not available. Reading from pin 7 down to pin 3 represents the multivibrator frequency divided by $16,32,64$. $128,256,512,1,024,4,096,8,192$ and 16,384 respectively. These outputs, with the exception of that from pin 15 $(\div 1.024)$ and pin 2 (not used) are fed to the CD4052 dual analogue multiplexer/de-multiplexer. The function of one half
 through which current can flow in either direction, juisi ess in an ordinary mechanical switch, except that the path through the switch in positions $\mathbf{0}$ to 3 has a resistance uf about' 120 ohm. Though we are calling this a switch, for this is how it functions, in fect the I.c. contains a number of CMOS transmission gates, under the control of the Inhtibit and the two control inputs A and B. With inhlbit input high the switch is open-circuit. With inhibit input low, orre channel becomes closed-circuit, or "ON":

	Inputs	Channel On
B	A	
0	0	0
0	1	1
1	0	2
1	1	3

The two analogue switches of the i.c. are used to direct the outputs from IC1 to the five I.e.d.s D1 to D5. D6 is lit directly

Fig. 1. Circuit diagram of the Pendant
from the output of pin 15, IC1. Four l.e.d.s D1 to D4 are connected so that they are illuminated in turn, depending on inputs to A and B, but only when the output of IC1, pin 14 is high. D5 is illuminated if one of the outputs it is connected to (pins 6, 13, 1 or 3 in turn) is high. The effect of this is to produce a sequence of illumination that is apparently

E0 235
Fig. 2. Function diagram of IC2
random. The sequence is further complicated by the inhibiting action which cuts out some stages altogether. This action also ensures that for at least 50 per cent of operating time none of the l.e.d.s D1 to D5 are lit, so doubling battery life. D6 operates independently of IC2 and thus creates a further apparent randomness.

Fig. 3 and Fig. 4. P.c.b. design and component layout
The circuit has low current consumption $(0.08 \mathrm{~mA}$ when no l.e.d.s are lit and about 10 mA per l.e.d. lit) so it will run for 10 hours or more from 4 button-cells. Though CMOS i.c.s and l.e.d.s can both be run from supplies of 3 V , reduction of voltage increases the switch resistance and the intensity of light emission becomes too low for good effect.

COMPONENTS

Resistors

R1	100 k
*R2	4 k 7
*R3	47 k
*See text	
All resistors	$0.125 \mathrm{~W}, 10 \%$

Capacitor

$$
\mathrm{C} 1 \quad 1 \mu \quad 35 \mathrm{~V} \text { tantalum bead }
$$

Semiconductors

D1 to D6 light-emitting diodes of constructors choice
IC1 CD4060BE

IC2 CD4052BE

Miscellaneous

Materials for mounting, according to individual design Plastic resin kit, necklace chain, button cells (4 off) type 675.

CONSTRUCTION

The p.c.b. design and component layout are shown in Figs. 3 and 4. If it is intended to hang the pendant from a chain, the p.c.b. may be extended to form a projecting lug with a hole drilled through it for attachment. Constructors will have realized that there are many ways of connecting the two i.c.s, with each way producing its unique sequence of illumination. At this stage you may prefer to set up the circuit on a bread-board and try varying the connections to obtain different effects. Some modification of the p.c.b. pattern may then be decided upon. Select the values of C1 and R3 to obtain the rate preferred and alter R2 so that its value is about 10 per cent of R3. There is also a choice of l.e.d.s.

The l.e.d.s should be mounted as close as possible to the board, so that their tops project only slightly above the upper surfaces of the i.c.s.

PRESENTATION

Here there is infinite scope for individuality and artistic ability. Some points have already been mentioned and it is important to work out these details fully before commencing construction. When the prototype circuit-board was complete and working, it was inverted in a cylindrical mould made from aluminium kitchen foil and cast into a discshaped block of clear resin. The front and edges of the disc were covered with irregularly shaped fragments of transparent plastic. Since the inner surface of each piece

E624]

Fig. 5. Layout and connection of batteries
was corrugated, refraction caused the light from each l.e.d. to appear as a streak, its orientation depending on the orientation of the corrugations. A simple way of covering the l.e.d.s could be to cast the circuit in a disc of resin in a mould made from crumpled foil; the resin could be coloured red or any other shade by mixing in a few drops of pigment before pouring it into the mould. If you are really skilled you could contemplate mounting the circuit in an ornamental bezel, or perhaps cover it with a filigree network through which the i.e.d.s protrude. Alternatively, you could buy a ready-made mount and design the p.c.b. to fit it.

BATTERY CONNECTION

In the prototype, a second resin disc was cast on the back of the p.c.b., leaving 4 circular pits to hold the button cells, and using wire and foil strips to make the connections to the terminal pins on the board, and between cells (Fig. 5). The pendant was backed with a thin disc of Formica.

C.R.FRANCIS b.Sc.Ph.D.

M^{\prime}ANY remotely controlled models operate very satisfactorily with simple on/off commands. The undercarriage of a model aircraft may be retracted or extended by this type of command for example, and similar applications abound. For more sophisticated control however, some form of proportional response is required. Imagine that we wish to steer a model car by some form of remote control, say radio control. By using two separate on/off commands we could arrange the wheels to be straight or hard left, or straight or hard right, and steering would be possible, if a little jerky. Using a proportional system the wheels could be made to imitate, or follow, the movements of a knob on the control set. The mechanical movements of the wheels would be carried out by connecting them to a servo-mechanism.

Now many proportional control systems may be used which do not involve electromechanical devices; such as voltage control of the frequency of a radio tuner through a varicap diode, or, more relevantly, control of an electric

Fig. 1. Layout of a typical servo. The potentiometer wiper is normally directly coupled to the output shaft, which is driven through reducing gear by the electric motor

Fig. 2. Block diagram of the servo tester

motor by pulse width modulation of the power supply. The most commonly used method in radio controlled models however, is the electromechanical servo mechanism, or servo.

TYPICAL SYSTEM

A typical modern radio control system uses pulses of variable width to transfer information. A short pulse will cause the servo to move to one end of its travel, a long pulse makes it move to the other end and intermediate pulses result in an intermediate position. A typical servo will contain an electric motor to drive its movements, a potentiometer to monitor these movements, mechanical linkages between these two, and a control circuit. These are all shown in Fig. 1.

Typical characteristics for the control pulses are as follows:
Frame length (the interval between successive pulses)20 ms
Pulse length -1 ms to 2 ms for complete range of travel Positive pulses

Many servos may be included in a system by interleaving the control pulses, so that proper decoding and routing of the pulses will give simultaneous control. It is often convenient to operate a servo in isolation from the rest of such a system, and in this case a servo tester is ideal.

THE TESTER DESCRIBED

The servo tester to be described will control servos with the characteristics listed above, and furthermore the frame length is variable, from 10 to 20 ms , and the pulses can be positive or negative going. Instructions will be given so that departures from these parameters may be accommodated. The tester can also supply up to 500 mA at 5 V to the servo under test. This should be adequate for most miniature servos, though electronic control of anything other than a small electric motor will require a more suitable power supply.

BLOCK DIAGRAM

A block diagram of the servo tester is shown in Fig. 2 and we can see that is is very simple. An astable multivibrator produces pulses of fixed length (about half a millisecond) but variable repetition frequency; this defines the frame length. The inverter is necessary simply to achieve the correct polarity for the triggering of the next stage, a monostable multivibrator.

When triggered this produces an output pulse whose length is variable, between 1 and 2 ms . These pulses may be inverted, or not, in the final stage, to produce negative or positive going pulses.

CIRCUIT

A circuit diagram of the complete instrument is shown in Fig. 3. The astable multivibrator is built around a 555 timer; for convenience a 556 dual timer was used in the prototype, since another 555 is required for the monostable multivibrator. Although the 556 is specified in the circuit diagram and component list, two 555 s may be used if preferred.

Fig. 3. Circuit diagram of the servo tester

When operating as an astable multivibrator the timer i.c. monitors the voltage on the timing capacitor, C 1 , as it charges through R1 and D2. The output voltage is, at this time, high. When the voltage on $C 1$ reaches $2 / 3$ the supply voltage, V_{co} the output voltage switches low and C1 starts to discharge through VR1, VR2 R2 and D1, into the discharge pin. When the voltage on C 1 has dropped to $1 / 3 \mathrm{~V}$ cc the trigger pin is activated, which restarts the sequence.

The period when the output is high, t_{1}, is governed simply by R 1 and C 1 . The low output period, t_{2}, is controlled by VR1, VR2, R2 and C1. The relationships are:

$$
\begin{aligned}
& \mathrm{t}_{1}=0.7 R 1 \mathrm{C} 1 \\
& \mathrm{t}_{2}=0.7(V R 1+V R 2+\mathrm{R} 2) \mathrm{C} 1
\end{aligned}
$$

R1 and $C 1$ are chosen so that t_{1} is shorter than any of the pulses required from the monostable. A period of $500 \mu \mathrm{~s}$ is suitable.

The second timer unit, IC1b, which is a monostable multivibrator, requires negative-going signals to trigger. Inversion is carried out by IC2, a CA3140, which is connected as a comparator. The output of IC1a is compared with a voltage of $\frac{1}{2} V_{c o}$ and the output of IC2 is high or low, if this output voltage is less than or greater than $\frac{1}{2} \mathrm{~V}_{c o}$ respectively. The output of IC 1 a is thus inverted. A CA3140 is used here (and for (C3) since the power supply is only 6 V . A 741 will not operate reliably from such a supply.

The operation of a second timer as a monostable multivibrator is very straightforward. When a negative going signal is detected at the trigger pin its timing capacitor, C3, starts to charge via R5, VR3 and VR4, and the output goes high. When C3 charges to $2 / 3 \mathrm{~V}_{\mathrm{co}}$ the output goes low and C3 rapidly discharges. The circuit is now ready to be retriggered. The time for which the output remains high, t_{3}, is controlled by R5, VR3, VR4 and C3, as shown by the equation

$$
t_{3}=1 \cdot 1(R 5+V R 3+V R 4) C 3
$$

The output from this timer is a train of pulses with the required time characteristics. The remaining parts of the circuit give the voltage characteristics we have specified.

Fig. 4. Modification to the circuit to provide pulses of +5 V

SUPPLY

A 5 V supply is provided for the servo under test, but the pulses are of only 4 V , which will normally be satisfactory. This situation arises because the CA3140 which is used as a comparator in the output polarity switching stage can only swing up to 2 V below V_{cc} The voltages to be compared here are half the output from IC 1 b , and $\frac{1}{4} \mathrm{~V}_{\mathrm{cc}}$ These are routed via S2 to the inputs of IC3, so that either the inverting or noninverting action occurs.

If positive pulses only, of the full 5 V , are required, then the modifications shown in Fig. 4 may be employed. Here the output is taken straight from the monostable stage, but is limited to 5.1 V by the Zener diode, D5.

The 5 V supply is provided by TR1. The emitter of this transistor is held about half a volt negative of its base, if sufficient current into the base is available. The 2 N3053 is rated at 700 mA maximum collector current, so the 500 mA required for our supply is within its capabilities. At this level of collector current, quite a large base current is required to maintain the emitter about 0.5 V negative of the base, so R10 has to have a low value. This means that with no load, D3 is also approaching its rated power dissipation if a 400 mW type is used. To avoid trouble here a 1W type is recommended, though in the prototype a 400 mW Zener was used without overheating.

Since D3 is a 5.6 V Zener diode the emitter of TR1 should be held at about 5.1V, but remember Zener diodes are normally of 10 per cent tolerance. The output voltage is therefore only nominally 5 V .

Veroboard was used in the construction of the prototype. A suitable layout is given in Fig. 5; note that the size of the piece of board was chosen so that it could be supported in slots in the plastic case. A heat dissipating clip was attached to TR1, though it is probably unnecessary. The wiring up of the various off-board components of the front panel, or lid, is illustrated in Fig. 6. Careful cable routing enables the board to be removed from the case easily for adjustments.

ADJUSTMENTS

Only two adjustments are necessary. The frame length control, VR1, is calibrated 10 ms to 20 ms . Set the control to its mid-point, 15 ms . Now adjust VR2 while observing the output on an oscilloscope, or with a frequency counter. Vary VR2 so that the period between successive leading edges of the pulse train is 15 ms , or if a frequency counter is being used, until the frequency is 66.7 Hz . Check now that at each

Fig. 5. Veroboard layout

Fig. 6. Control panel wiring

end of the scale the markings are correct. Be prepared to accept some inaccuracies, bearing in mind component tolerances.

Next VR4 is similarly adjusted so that the 1 ms to 2 ms scale on the pulse length control is correct. An oscilloscope should be used for this measurement.

If no oscilloscope is available, but accurate measurements of resistance and capacitance can be made, then the necessary adjustments can still be carried out. First measure the capacitance of the timing capacitors C1 and C3, the resistance of R2 and R5, and the range of VR1 and VR3. The equations

$$
\begin{aligned}
t_{2} & =0.7(V R 1+V R 2+R 2) C 1 \\
\text { and } t_{3} & =1.1(V R 3+V R 4+R 5) C 3
\end{aligned}
$$

may then be used to find the required value for VR2 and

VR4. A value is found for VR2 so that the extreme values of VR1 give values for t_{2} of 10 ms and 20 ms respectively. Similarly with VR4 and t_{3}.

These equations should also be used to chose suitable components if time characteristics different from those in the prototype are required. If a pulse length of about half a millisecond or less is required, then the astable multivibrator pulse length must be reduced to a value less than the shortest output pulse. This may be done by increasing R1 in accord with the equation

$$
t_{s}=0.7 R 1 \mathrm{C} 1
$$

Do not reduce R1 much less than a kilohm. If a shorter time is then required, reduce C1 instead, but remember that R2, VR1 and VR2 will need changing to maintain t_{2}.

INTRODUCTION TO MICROCOMPUTING
Volume 0 The Beginners Book A. Osbourne . . £ 5.95
Volume I Basic Concepts . A. Osbourne . . £ 5.95
Volume II Some Real Products
Volume III Some Real Support Devices
Understanding Microcomputer \& Small Computer Systems
An Introduction to Personal \& Business Computing
Getting Acquainted with Micros
Getting Involved with your Own Computer,
A guide for Beginners
A. Osbourne . . $£ 18.95$
A. Osbourne . . $£ 11.95$

Scelbi
£ 7.56

The First Book of Microcomputers Moody
A Consumers Guide to Personal Computing and Microcomputers
R. Zaks
puter,
anut Butter \& Jelly Guide to Micro's
BASIC BOOKS
Beginning Basic
Introduction to Basic
Some Common Basic Programmes
Illustrated Basic
Learning Basic Fast
The Basic Wor kshop
Discovering Basic
The User's Guide to North
Star Basic
Basic with Business Applications
Basic and the Personal Computer
P. E. Gosling
P. J. Hartley
A. Osbourne

Alcock
De Rossi
K. Schoman Jnr.
R. E. Smith

R. Rogers
Hayden
\quad Critchfield

$£ 10.36$

A Guided Tour of Computer
Programming in Basic
Basic Basic
Advanced Basic
Dwyer/Kaurman
J. S. Coan
J. S. Coan
£ 4.16

PASCAL

Pascal: User Manual \& Report
Problem. Solving Using Pascal Programming in Pascal
A Practical Introduction to Pascal An Introduction to Programming \&

Problem Solving with Pascal
Introduction to Pascal

SC/MP

Guide to SC/MP Programming .
A Guide to Kitbug. KEMITRON

COBOL

| Cobol Programming | . . . Nickerson |
| :--- | :--- | :--- |
| Learning Cobol Fast | De Rossi . . . |
| 6.95 | |
| 6.20 | |

Larning Cole
6800 BOOKS
6800 Programming for Logic Design A. Osbourne . .
$\begin{gathered}\text { 6800 Assembly Ianguage } \\ \text { Programming A. Osbourne . . } \\ \text {. . } \\ 6.95\end{gathered}$
Using the 6800 Microprocessor £ 5.65
77.68 6800 Microprocessor Design Manual £ 7.50

6800 Software Gourmet Guide . Scelbi £ 7.95
Practical Microcomputer
Programming (6800)
The 6800 Microprocessor
6800 Applications Manual .
Programming the 6800 Micro
6800 System Design Data
Z80 BOOKS
Z80 Programming for Logic Design
Z80 Technical Manual
Z80 PIO Technical Manual
Z80 Programming Manual
Z80 Microcomputer Handbook
Practical Microcomputer
Programming (Z80).
Z8000 PLZ/ASM Manual

Hayden
Springer-Verlag
Springer-Verlag
P. Grogono
A. Addyman .

Schneider . . £ 9.50
Welsh
Weller . . . £14.95

Motorola . . . $£ 10.50$
Southern . . . £ 8.00
Motorola . . £ 2.00

A. Osbourne	.	$£ 5.95$	
Zilog	.	.	$£ 4.00$
Zilog .	.	.	$£ 2.75$
Zilog	$£ 4.50$	
W. Barden	.	.	$£ 6.95$
Weller	.	.	$£ 19.55$
Zilog .	.	.	$£ 11.50$

8080 BOOKS

Practical Microcomputer		
8080A Bugbook. .	Larson	$£ 6.95$
8080A/8085 Assembly Language		
Programming		£ 6.95
8080 Programming for Logic Design	A. Osbourne	± 5.95
8080 Software Gourmet Guide	Scelbi	$£ 7.95$
8080/8085 Software Design	(Titus)	± 7.50
An Editor/Assembler for 8080/8085	£11.50
6502		
The Best of Micro 6502 Journal	- ${ }^{\circ}$ -	£ 5.99
6502 Applications Handbook	Zaks	£ 8.95
First Book of Kim	. . .	£ 7.00
6500 Hardware Manual .		£ 7.50
6500 Programming Manual		± 7.50
Programming the 6502 SYBEX	Zaks	£ 7.95
Programming a Micro. 6502	Caxton Fost	£ 7.95

FORTRAN
Elementary Computer Programming
Fortran IV Boguslausky . . £ 6.30

GAMES

32 Basic Programs for the PET COMPUTER . . . £ 9.95
101 Basic Computer Games £ 5.50
Games, Trick \& Puzzles for a
Hand Calculator . . .
Games with a Pocket Calculator
Star Ship Si
Game Playing with Basic
£ 5.10
Game Playing with Computers D. Spencer 10.20
Game Playing with Basic £ 4.20

SARGON-A Chess Computer Program
in Z80 Assembly Language
Chess \& Computers 9.50

Chess \& Computers \& Machine . . D. Levy 7.16
Chess Skill in Man \& . . $£ 11.84$

57 Practical Games \& Programs $\begin{aligned} & \text { in Basic £ } 6.40\end{aligned}$
COOKBOOKS

Active Filter Cookbook	Lancaster.	£10.45
CMOS Cookbook	Lancaster.	£ 6.95
OP-AMP IC Cookbook	Jung	£ 9.50
IC Timer Cookbook	Jung	$£ 7.50$
TTL Cookbook	Lancaster.	£ 6.95
T.V. Typewriter Cookbook	Lancaster.	£ 7.50
Cheap Video Cookbook	Lancaster	£ 4.30
PROGRAMMING		
Intro. to TRS80 Graphics	Inman	£ 5.75
Design of Well Structured Programs	Alagic .	$£ 10.00$
Chemistry with a Computer	Cauchon	$£ 7.96$
Top-Down Structured Prog. Techniques	McGowan	£12.50
Computer Input Design	Woolridge	£ 8.85
Computer Output Design	Woolridge	± 9.70
MISC.		
Microprocessor Data Manual	Bursky	£ 4.80
Best of Byte	. . .	£ 8.50
Scelbi Byte Primer	Scelbi	± 9.95
The Best of Creative Computing Vol	1 . . .	£ 6.95
The Systems Analyst	Atwood	± 6.60
Bipolar \& CMOS Memory Databook	Harris .	£ 4.50

Terms:
 "INSTANT DESPATCH SERVICE"
 SEND FOR FULL BOOKLIST.

Credit Sales (min. £10). Barclaycard and Access welcome.
All book prices include post and packing.

WICCA III Electronic Systems Ltd

P.E. ULTRASONIC CLEANER

All the designer approved parts, including fibre glass case, to complete this exciting project as featured in this issue
+p.p. £2 50 £68.00

STK 463

Hybrid stereo power amp I.C. delivers 30W R.M.S into 8 ohms from each channel, all contained in one package approximate size as outline to this item. From one of the worids leading manufacturers this new IC features only 0.5 mV output norse and THD of 07% and IMD of 1% at 1 W . Price includes P.C.B data sheet and additional support components to complete. Just add pre-amp and power supply (not supplied) to build a
high quality stereo amp.
£15.80 |IIIIIIIII PS463

Toroidal transformer, bridge rec and smoothing caps and instructions to make a suitable power supply for the STK $463 \mathbf{£ 1 3 . 8 0}$ p.p. £2.00

CPLM1

A versatile self contained sound to light unit comprising red, green and blue lamps in moulded cases that snap together to form columns on modulator Extra snap together lamp cases to extend column or to construct extra lamp columns are available with lamps. Sockets on rear of unit enable up to 1000 watts of lamps to be connected to each channel. No need to connect to amplifier as modulator has a built in microphone, just connect to mains and its ready to go

£29.50

p.p. $£ 2.50$
extra lamp holders with lamps $£ 4.50$ p.p. $£ 100$ each

Send large S.A E. for further details of all our products.
Terms C.W.O Add $£ 1.00$ p.p. unless stated. Prices do not include VAT, add 15\% to total order and carriage price. Send order to

WICCA ELECTRONIC SYSTEMS LTD

Orchard Works, Wallington, Surrey
Phone: 01-669 6047
MAIL ORDER
CALLERS BY APPOINTMENT ONLY

Our name is probably a new one to you, but we've been supplying technicians, workshops and hobbyists for a long time now. The personal service we give seems to have been appreciated, so we are now offering a component service nationally.
We don't give world shattering discounts, but our prices are very competitive; and our stock goes right through the range down to the most mundane plug or socket, which many suppliers don't even bother with. And if you only want one item - we'll sell you only one.
At GEAR you're known by your name and not a number, and any problems you have - just write or 'phone and our engineers are there to help. That's what personal service is all about.
SEND SAE OR PHONE FOR FREE COMPONENT/PRICE LIST.
PRIC INCLUDE VAT \& POST \& PACKING - NO EXTRAS TO PAY.
All components are manufacturers full spec. devices. (min. order by post $£ 1$.)

ロM-D
digital MULTIMETER

- DC Volts. AC Volts. Resistance.

1 mV to 1000 V .1V to 500 V 0.1 mA to 0.2 A 1Ω to $20 \mathrm{M} \Omega$

- $31 / 2$ digit LCD
- Auto Low Battery indication
- Auto Polarity \& Zero
- 1\% accuracy (DC volts)
* Designed around Intersil 7106 IC
* Total cost around $£ 30$ (incl. case)

Provided in a JAYkit is a Printed Circuit Board, a punched and lettered Front Panel overlay, a Circuit Diagram and Instruction Sheet and a comprehensive and up to date Component List showing suppliers and current prices. Difficult to obtain pieces of hardware are supplied with the
kit.
Javen Developments, 21 Gladeside, Bar Hill, Cambridge CB3 8DY

THE EPROM programmer is a straightforward device to add to any Bus-oriented MPU system, and this month an interface is described for the Compukit in particular, and other machines in general. A particularly simple machine to interface would be the KIM, for instance, since its " K " outputs provide 1 K blocks of address decoding automatically. The only other connections are Data Bus, Address Bus and a single Read/Write line-again brought out to convenient external connections on the KIM.

Also, the rest of the hardware of the programmer is described along with Construction, Setting Up and Troubleshooting.

MEMORY AND SWITCHING

As explained last month, IC3 provides the cycling addresses for RAM and EPROM while programming. During this time, the RAM places data to be "burned" on to the programmer's internal Data Bus. It is essential that none of this is allowed on to the MPU's Data Bus to cause a conflict. Tri-State buffers (IC7 \& 14) perform this isolation when their ENABLE lines are held at a logic 1 by IC13 as explained below.

In addition, the MPU Address Bus must be disconnected from the EPROM and RAM while IC3 is cycling, and IC3's counter addresses must be allowed through. This function is performed by the selectors IC10, 11, and 12 when their pin 1 's are held at a logic 0 by IC1. A zero from IC1 is also allowed through to pins $1,4,5$, and 13 of IC13 during programming. This holds pins 11, 3 and 6 at logic 1. Pin 11 holds IC7 in its Tri-State mode and the RAM in its "READ" state to allow data out of the RAM. Pin 3 of IC 13 holds IC 14 Tri-State and pin 6 is unused in the program mode. The R/W line from the MPU is also ineffective during programming as IC13a and IC13d are held with their outputs "high" by the above. Finally, the Chip Select pins of the RAM are held "low" by IC1's $\overline{\mathrm{Q}}$ output via IC10.

While the machine is programming, IC9b produces 5 volt programming pulses to be converted to 27 volts for the EPROM. TR 1 , TR2 and TR3 perform this function. While Q and \bar{Q} of IC9b are at 1 and 0 respectively, TR1 is on forcing TR2 on and TR3 is off. This connects the program pin of IC4 (pin 18) to the 27 volt supply via R4, and TR2's "on" resistance. When the opposite condition holds, TR3 turns on and TR1 and TR2 off forcing pin 18 of IC4 to Ground through R4, R3 and TR3's on resistance.

Using p.n.p. and n.p.n. transistors (TR2 and TR3) in this mode ensures that almost all of the current supplied by the 27 volt supply is used by IC4 and very little sunk to Ground. At no time (theoretically) is the +27 volt supply connected to Ground via the output transistors. The only consistent path to Earth is via TR1, which, with R12 and R11 in series, will draw something of the order of half a milliamp from the 27 volt supply. This is, of course, apart from the normal leakage of TR2 and TR3 when off, and during the fast change over from off to on, which is at relatively low repetition rate.

EPROM REQUIREMENTS

The 2708 specifications demand that, during programming, $\overline{\mathrm{CS}}$ (pin 20) be held at +12 volts. Thus, switch S 1 is connected to supply this as well as the 27 volt program pulse to IC4. The difference between 2708 and 2716 are catered for by links L1-L8. The 2716 must receive +12 volts on pin 24 during programming instead of +5 volts, therefore L1 and L3 are replaced by L2. L7 is replaced by L8 so that when $S 1$ is switched out of program mode, +5 volts is again applied to pin 24. Pin 20 is A10 and not $\overline{\mathrm{CS}}$ on the 2716, thus links L5 and L6 are used to apply a logic 1 or 0 to this pin, to select one or other 1 K half of the 2716 . Pin 18 doubles as the $\overline{C S}$ and Program pin, and hence, out of the program mode, linking L4 supplies the ENABLE signal from IC13b.

Thus, during Program mode, the machine is disconnected from all external systems. Addresses are generated internally by the counters and fed to the EPROM and RAM. The latter, being in Read mode, places data to be programmed'on the internal Data Bus which is collected by the EPROM and "burned in" over a number of progam pulses.

When IC1 is reset, the machine re-enters its normal Read/Write mode. $\overline{0}$ of IC15 is at a " 1 " and hence pins 1 of IC10, 11 and 12 select the external Address Bus which is then allowed to communicate with the RAM and EPROM.

The ENABLE line (pin 2 of IC8) must be low to select the EPROM programmer, and the host. microcomputer generates this signal as a normal part of its address decoding. The nature of the decoding decides which locations in memory the EPROM programmer occupies. When it is selected, the ENABLE must go "low" which, through IC8a and IC10, sets a logic 1 on pins 1 and 13 of IC13. This allows the R/W from the MPU system to gate a zero on $\overline{\text { WRITE or READ (to IC7 or IC14) depending upon whether it }}$ is performing a write or read operation respectively. During READ, R/W is "high" which, via IC13, places a zero on WRITE. This controls data direction through IC7 and IC14. If the RAM is to be selected, either the MPU system or the user must place a zero on the external A1O line-this becomes a zero on $\overline{\mathrm{CS}}$ to the RAM.

To select the EPROM, a logic one on A10 becomes zero (via IC13b) on the $\overline{C S}$ pin of IC4 as long as S1 is in the nonprogram position. The MPU system may thus use the RAM and EPROM as normal blocks of memory. Programs may be written to, and run, in either.

LED INDICATOR

While programming, the l.e.d. on IC8 is off, giving a positive indication of the state of the machine. If the l.e.d. is off after power up or at any time, a zero may be applied to the RESET line via IC1 and the programming cycle stops. A READY (and READY) signal is generated by the EPROM programmer and may be used by the MPU system to determine when the programmer is "BUSY". The positive-going "Program Initiate Pulse", via IC1, may also be generated by the MPU system, or a push switch operated by the user.

CONSTRUCTION

The machine has been designed for ease of construction. All connections are made to the bottom of the board, except for through-pins, and the odd discrete component whose lead may act as a through-pin. All i.c.s point the same way and all external connections are labelled on the p.c.b.'s upper surface. See Figs. 2.1, 2.2 and 2.3.

External wire links appear on the p.c.b. only insofar as they provide flexibility of options as described in the text, and they may well be replaced by switches for convenience.

A good plan is to through-pin the board first. In general pins will not push right through the board and they should not be forced to do so. Push enough of the pin through to connect the two sides of the p.c.b., solder both sides and clip off the excess pin length. This produces a very neat aspect to the board. The exception is for the externally connected pins which may be left unclipped to facilitate solder or crocodile clip connection.

The i.c. sockets should be inserted and soldered next, followed by the discrete components. Make sure that regulators, diodes, transistors and capacitors are connected up correctly as shown in the component overlay diagram, or permanent damage will result. The correct positioning of transistors and i.c. regulators is indicated on the p.c.b.'s upper surface. Finally, insert the i.c.'s and turn to the set-up and testing section.

INTERFACE

Interfacing is a question of physically connecting wires for Data, Address and Read/Write lines, and arranging the address decoding.

A general interface with full MPU control of all lines is quite possible but is a little inappropriate for the majority of users, hence Fig. 2.4 suggests a simple interface where control is mostly directed by switches.

A two-bit I/O port on the MPU system could easily be utilised to provide 1's and O's for $\overline{\text { RES (Reset) and PROG }}$ (program initiate). A further line could accept the READY signal from the EPROM programmer. However, most systems will require an EPROM programmer reasonably rarely and special software would be required for a fully MPU-controlled machine.

Thus, the EPROM programmer reset line is connected to a Ground switch and pull-up resistor, and the Program-Initiate pin to a +5 V switch and pull-down resistor for hand use. A power-up reset is also suggested with a capacitor across the Reset switch. A 1 K Address-Decode line is assumed here, thus only A0-A9 are fed to the programmer and A10, again, is set by hand to select RAM or EPROM. If a 2 K or larger Address Decode line is available this may be connected to ENABLE and the programmer's A10 connected to the MPU's A10 line: RAM and EPROM are then addressable together.

If two separate 1 K decode lines are available (as with KIM and COMPUKIT). then Fig. 2.5 suggests how they may be connected to achieve the same result. Here, a zero on $\overline{\mathrm{D} 1}$ or $\overline{\mathrm{D} 2}$ forces ENABLE to zero via nand gates a and b. If D1 is low, then D2 must be high and gate c receives two " 1 's, forcing A10 low which selects the RAM. If $\overline{\mathrm{D} 2}$ is low and $\overline{\mathrm{D} 1}$ high, then c receives a logic 1 and a 0 . This forces A10 high, selecting the EPROM. A later section deals with interfacing directly to the COMPUKIT.

SETTING UP AND TESTING

Assuming the EPROM programmer has been connected to the MPU system via Data Bus, Address Bus, ENABLE and R N W lines, the correct links should be inserted for the EPROM type chosen. Table 1 describes all the link options

Fig. 2.4 Simple interface
on the board. Of course, any or all of the links could be replaced by appropriate switches if the links are to be changed frequently.

L5 and L6 must not both be connected simultaneously, even momentarily, as the power supply will be shorted. By using L5 and L6, each half of the 2716 is programmed separately, since the RAM holds just 1 K of data and the 2716 has 2 K . Connecting L1, L3, L7, excludes L2, L4, L8 and vice-versa. L9 is connected only for programming and a switch in this position (as for L5 and L6 if 2716's are to be used) would be most advantageous.

L10 should always be in place unless pin 1 of IC8 is required as a further ENABLE input. This can be used to simplify Address Decoding in some systems. In this case, L10 is left unconnected and pin 1 of IC8a connected to a top-side pad of the edge connector for external connections via the edge socket. L10 is assumed connected in the following.

Certain checks are worth making when first using the machine. Make sure, before applying mains, that the secondary windings of the mains transformer are connected correctly-centre tap to the centre pin.

AT SWITCH-ON

When first switching on, leave the EPROM out and L9 unlinked. Check the -5 V and +12 V supplies at the EPROM socket. Check +27 V at L9.

The 12 volt regulator may become very hot during use. This can be replaced by a 1 Amp device at a very small cost if the overheating is excessive. Similarily, R1 dissipates some heat, and this can be replaced by two $\frac{1}{2} \mathrm{~W} 2 \mathrm{~K}$ resistors in parallel or a 1 W 1 K resistor if the problem is excessive.

TABLE 1

LINKS
L1, L3, L7
L2, L4, L8
L5
L6
L9
L10 Places a " 1 " on pin one of IC8. This is Places a "1" on pin one of IC8. T
normally connected-but see text.

Neither of these modifications proved necessary on the prototype, even after many hours of use.

If the l.e.d. is off after switch-on, short $\overline{\text { RESET }}$ to zero momentarily. If the light remains off, check the +5 V supply and then refer to the Troubleshooting section. Assuming everything is okay, check that the RAM is working, by Reading and Writing to it using the MPU system's monitor. The RAM must be selected by connecting A10 to zero if the MPU system does not perform this action automatically (see the section on interfacing). A small memory test program may be written to check that information can be written to, and read from, each location in the RAM.

If the RAM operation is satisfactory, check that S1 is in the non-program position and plug the EPROM into its socket. The EPROM should then be selected by ensuring that A10 is at "one". A test may be performed without sacrificing the contents of the EPROM in the following manner. The RAM should be filled with random data and either the EPROM absent or S1 in the non-program position. Set the programming cycle going by applying a positive pulse to the PROGRAM line. The Address lines to EPROM should be oscillating with AO (pin 8) changing the most rapidly, A1 (pin 7) at half that speed and so on up to A9 (pin 22). At the same time, DO-D7 should all be oscillating and R4 should be applying 0.5 ms pulses at 27 volts to pin C of S 1 with L9 linked. These are all necessary conditions for the correct working of the system.

PROGRAMMING

Ideally, the sequence of operation is as follows. 2708 or 2716 links should be selected as in Table 1, with L5 or L6 in place if a 2716 is being used. A zero is placed on A10 and the RAM contents changed to the selected data for programming into the EPROM. If necessary, the contents of RAM may be checked-perhaps by running a program in the RAM block. Parts of the EPROM which are to remain unchanged must be presented with FF during programming and the corresponding blocks in RAM should contain FF, as explained in Part 1 last month.

Check that S1 is in the program position, link L9 and apply a logic 1 to the program line on IC1. The I.e.d. should switch off for about two minutes. During this time, the EPROM is being programmed. When the programming cycle is over, switch S1 back, take A10 to a "one" and check that the contents of the EPROM have been altered correctly. This may be done in several ways. A very convenient method of such verification is to write a program which compares the EPROM contents byte for byte with the contents of the RAM, or some "mirror" of the RAM contents in the MPU's RAM. An Error message could signal any disparities which may arise. Alternatively, if a program has been stored, it may be run in-situ in the EPROM.

L9 should be removed for safety, as soon as programming has finished.

TROUBLESHOOTING

The test given in the above section is a good one for checking that counters, address switches and the 27 volt switch are all working, as well as the RAM itself.

If reading from RAM and EPROM or writing to RAM is not occuring, check connection between MPU and pins of IC10, 11, 12, 7 and 14 with a continuity tester and check that, while out of program mode, address information is passing through to Address pins of RAM and EPROM. A similar check may be made for data on IC7 and 14. An oscilliscope is helpful in troubleshooting, and will normally narrow down the fault very quickly to a poorly-soldered joint, missing component or a solder bridge.

IC13's connections, particularly, should be checked very carefully throughout the system with a continuity tester, as this component forms a major link in the control of the machine.

If the programming cycle is not even starting, check that IC1 can be turned on and off by PROG and RESET. Check the connections to IC9, where all the clocking information is generated, and check for appropriate length pulses on pins 13 and 5. Do not be alarmed if the $20 \mu \mathrm{~s}$ turns out to be $30 \mu \mathrm{~s}$ or the 0.5 ms is ± 10 or 15%.

If the cycling is occuring but never stops, check that IC8c is connected correctly and read through last month's explanation of the working of the Program Timing and Control sections.

The usual theme for troubleshooting is to start at the clock, make that work and follow it right through the system. Again, a 'scope and a continuity tester are very important.

COMPUKIT INTERFACE

The EPROM programmer has been designed, in part, to be plug-compatable with the Compukit, and this section describes the actual connection necessary.

As in Fig. 2.4, connections for the Data Bus, Address Bus (A0-A9), RN Line and ENABLE line must be provided for the interface. The first three groups are quite straightforward. The ENABLE line, however, varies from system to system.

The EPROM programmer, illustrated in Fig. 2.4 acts like a 1 K block of RAM or EPROM, depending upon the state of A10. That block of memory must be inserted into the memory map of the MPU system and only enabled for the appropriate 1 K of Memory Addresses. The KIM has a set of outputs (called K outputs) used specifically for this purpose of "slotting in" external blocks of memory.

[6264]

Fig. 2.5 Enable decode for Compukit and Kim

If a machine does not provide those external addressdecoding lines, it is usually possible to replace an internal 1 K block of Memory with the external block by using the internal block's dedicated Address Decoding line. This techinique is used on the Compukit. IC38 and IC52 on the Compukit are removed from their sockets and the EPROM programmer plugged into their place. This places the memory of the programmer in the address block: $1 \mathrm{COO} \rightarrow 1 \mathrm{FFF}$. Of course, any of the 1 K blocks from 0400 onwards may be used, but this will restrict the BASIC workspace. $0000 \rightarrow 03 F F$ may not be used as this provides scratchpad for the COMPUKIT's monitor program. Fig. 2.5 shows the Connection diagram for the above interface.

The Programmer's +5 V power may be supplied by a Compukit with improved regulator heat-sinking. Two d.i.l. plugs and ribbon cable are most convenient for this link up and the cable may be soldered to an edge-connector socket which is plugged into the programmer's edge-connector surface. This forms a very neat job and allows instant unplugging of the devices when not in use.

The Address Decoding RS7 is supplied by IC38's socket in Fig. 2.6, as is the R/W line and Address Bus. Only half of the Data Bus is available at IC38's socket, hence the connection to IC52's socket. Use of the machine is quite simple. A10 is set to a low level to select the RAM and the program switch is off. $\overline{R E S E T}$ is brought low if the l.e.d. is off and the machine is ready for use. (Check that L 10 is connected).

If some of the EPROM is to remain unprogrammed, a short BASIC program is written to fill addresses 1 COO-1FFF with FF before the RAM is filled with a block of information to be stored in the EPROM. A program is given below for this process. The only point to remember is that all addresses and data are in decimal in BASIC.

$$
\begin{aligned}
& 10 \text { FOR I }=7168 \text { TO } 8191 \\
& 20 \text { POKE I, } 255 \\
& 30 \text { NEXT }
\end{aligned}
$$

This can be checked by replacing line 20 by:

$$
20 \text { IF PEEK (1) < >255 THEN PRINT I }
$$

Any locations not containing FF (255 in decimal) will be found and their addresses printed out on the screen. The erased EPROM may be checked by taking A10 "high" (which selects EPROM) and running this program.

The RAM may now be filled with binary information either by resetting the Compukit and using " M " to enter the machine code monitor, or by using the Compukit's powerful extended machine code monitor.

To program the EPROM, L9 is connected, the program switch (S1) thrown, and PROG brought high momentarily. When the l.e.d. comes on again, switch S1 back, remove S9, bring A10 to a high level and read the EPROM through to check the contents.

If Fig. 2.5 has been used to replace the upper 2 K of memory with the programmer, the EPROM and RAM may be read and compared directly by the Compukit to verify EPROM contents. The connections for this would require IC37 and IC51 to be removed and RS6 (pin 8 of either socket) would be connected to $\overline{\mathrm{D} 2}$ (Fig. 3). $\overline{\mathrm{D} 1}$ would be connected to RS7 (pin 8, of IC38). The RAM would then reside at addresses $1 \mathrm{COO} \rightarrow 1$ FFF and the EPROM at addresses $1800 \rightarrow 1$ BFF (DECIMAL $6144 \rightarrow 7167$).

The following program would check EPROM against Ram:
10 FOR I = OTO 1023
20 IF PEEK $(6144+1)<>\operatorname{PEEK}(7168+1)$ THEN PRINT ($6144+1$)

30 NEXT

This will print out those addresses in EPROM which disagree with the RAM contents.

TABLE 2

Special EPROM programmer signals	Function
A10	HIGH level selects EPROM LOW selects RAM
RESET	LOW pulse stops programming cycle
PROG	HIGH pulse initiates programming cycle
ENABLE	LOW level selects RAM or EPROM depending upon A10
READY (output)	LOW level output from here implies programming cycle has stoppedI.e.d. in ON condition
READY (output)	Inverse of READY line

Fig. 2.6 interface for Compukit
If this occurs, the RAM should be checked through for correct data and the EPROM reprogrammed. If a few unrelated locations remain unprogrammed, then either the EPROM was not fully erased or the chip is faulty. If many locations are incorrect, the programmer's operation must be suspected.

Adding the programmer to the Compukit, as in Fig. 2.6, does not in any way restrict the Compukit's memory, as 1 K of RAM is still available in the programmer for normal use. This 1 K of RAM, however, has the added advantage that its contents may be stored permanently.

ERASING

Erasure of the EPROM consists of shining a strong Ultra Violet light through the transparent quartz window in the package's upper surface. Short wave UV is required (around 2500 Angstrom units) and exposure time varies from 8 minutes to one hour or more, depending mainly upon UV intensity. A medicinal "sunray" light has been found to perform erasure quite effectively, and some experimentation for erasure time is essential.

Erasers may also be purchased and several are advertised in this magazine. In addition, PE has published an EPROM eraser (June 1978) as part of the CHAMP articles and this would be an excellent inexpensive alternative.

CONCLUSION

For many years, the problem of non-volatile memory storage has been solved by media such as paper-tape, disc and cassettes. These media are still important for mass storage. However, the coming of Micros has led to the need for permanent alterable storage of small capacity. This need is satisfied by the 2708 family and the EPROM programmer described here in an inexpensive, but hightly flexible manner.

In addition, anyone attempting the development of an MPU system from scratch, may use another system plus the programmer to produce the all-important and previously elusive System Monitor required by any machine when first powered up.

Copies of Patents can be obtained from the Patent Office Sales, St. Mary Cray, Orpington, Kent Price 95p each

TOUCH SENSITIVE CONTROLS

Two recently published British patent applications disclose proposed improvements in touch sensitive controls. Application number 2013032 (filed under the new laws and dating back to July 1977) describes an idea by Jacques Lewiner and Claude Hennion of France. The aim is to provide a touch-sensitive electret suitable for use as a multiple key keyboard, for instance in a musical instrument. But according to the inventors the same principle can be adopted for the construction of sound and shock wave sensors.

Fig. 1 shows a touch sensitive electret which is already known. A sandwich is formed from outer electrodes 1 and 2, inner electret 4 and rigid spacers 6 . The electret is of conventional dielectric foil with a permanent electric charge on at least one face F. In practice the electrode 1 is often formed by metalisation of a flexible electret 4 to give a combined thickness of less than 100 microns. When pressure is applied the charged face F moves temporarily closer to the electrode 2 and a small current flows in circuit 3. The spacers provide essential limiting of the electret movement but, being rigid, prevent the contacting areas of the electret from contributing any signal. This reduces overall efficiency.

Fig. 2
Fig. 2 shows the invention. The rigid spacers 6 are omitted and an elastic layer 7 of elastomer is sandwiched between the electret 4 and electrode 2. The elastomer is more flexible, or softer, than the electret and has very high electrical resistivity, in the order of 10^{15} ohms/cm to 10^{17}
ohms $/ \mathrm{cm}$. Because of its deformability the elastomer layer offers relatively little physical resistance to movement of the electret, but because of its high resistivity, prevents the formation of an inter-electrode conduction path. The inventors suggest that a silicon-based compound, for instance siloxane, is ideal. Impedance adaptation circuits are suggested to make the response more linear with pressure and frequency.

Thorn of Upper St. Martin's Lane, London, have filed a British patent application (2013 984) which dates back to January 1979 and claims touch sensitive controls for electrical circuitry, particularly a domestic liquidiser or blender. The claim to a patent monopoly is very broad and doubtless readers will have their own views on whether Thorn's ideas were, or were not, new in early January 1979 when the application was filed. (The legal procedures open to readers who believe that ideas are not as new as inventors claim were detailed on page 68 of Practical Electronics April 1979).

Fig. 3

Thorn proposes a strip of conductive foam of which the electrical resistance changes with finger pressure to produce an analogue control signal. This signal is used to govern the speed and duration of operation of a drive motor for a liquidiser. One foam touch control increases motor speed, another decreases motor speed, a third increases duration of the motor operating cycle and the other decreases the cycle duration. Fig. 3 shows one type of foam control. A strip of conductive foam 11 is sandwiched between flexible contact 12 and rigid contact 13. Pressure on contact 12 compresses the foam to decrease the resistance between contacts 12, 13. Another type of control is shown in Figs. 4 and 5. Foam strip 211 carries contacts 212,213 and is supported by insulators 214, 215. Parallel conductors 216,217 extend along the underside of the strip. A

Fig. 4

Fig. 5
voltage is applied across contacts 212,213 to create a potential gradient along the strip and pressure on the foam causes the conductors 216, 217 to assume the potential existing at the pressed point. Hence the voltage appearing at 216,217 is independent of actual pressure.

Thorn suggest digital circuitry on which the analogue control signals operate. Essentially this relies on a clock pulse generator and divide by 16 counters with lines of l.e.d.s which are gated to display the desired time of motor operation as a bar of lights whose length varies with selected time. The l.e.d.s also indicate selected speed in a similar manner. A motor interface circuit uses a triac/diac combination to govern speed by phase control.

Readout... A selection from our Postbag

Readers requiring a reply to any letter must include a stamped addressed envelope. Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

Public Radio Facility

Sir, I am pleased to read the positive comments in your editorial addendum (on p. 67 Oct '79 P.E.) following the article $C B$ in the UK by Dr. Mark Sawicki. The writer of the article did not refer to the many overwhelming disadvantages of the present useage in the 27 MHz spectrum using amplitude modulation and in fact ignored the more than probable granting of v.h.f. or u.h.f. Public Radio Facility. Possibly frequencies in the 420 430 MHz part of the u.h.f. spectrum will be granted, being eminently suited to local portable, mobile and base useage. Narrow-band f.m. will of course be used for a variety of technical reasons.

Not only is the present Trans-Atlantic lingo-apeing an insult to anyones intelligence but the propogation characteristics in the 27 MHz region combined with aerial inefficiencies and proneness to interference combine to make that part of the spectrum the most unsuited to the task for which the public require it i.e. local personal communications. Pity the poor person stuck up on a mountainside with a 1 watt (a very enthusiastic rating more than likely!) hand-held unit with short whip aerial trying to get 20 miles or more with racous foreign interference to contend with. On u.h.f. there could be a community based repeater made avaiable for an emergency channel with built-in automatic scanning in all units to lock into such emergency transmissions.

Even now some users on 27 MHz are trying to boost their range through the use of socalled linears which are very efficient at producing harmonics, especially when used by non-technical persons. Already some of the few users here in Ireland (illegal of course) have managed by using mistuned aerials or amplifiers to be heard on 2nd, 3rd and 4th harmonics, in addition to causing interference with their high power fundamental to paging and model control users. Advertising in the newpspapers and shop-windows is open and blatant, and the whole situation is fast getting out of control.

Hopefully the Personal Radio Service will shortly be announced on v.h.f. or u.h.f on a basis similar to that being advocated by the C.B.A. (Citizens' Band Association). There is some reluctance by the authorities however as to the possible release of frequencies for private communications.

The low price of some 27 MHz units now being made available is I am sure due to massive over production and subsequent cashflow problem. Dealers have to empty warehouses quickly. Let us hope that the resultant flow of equipment on to the market does not influence the introduction of an out-
dated and technically inferior service. British technology and production can rise to the challenge of a good v.h.f. or u.h.f. f.m. service.

Those who support 27 MHz must not have had experience of the quality of v.h.f. otherwise they must want to join the nest of furtive clandestine operators trying to "work the skip", just a cult. I look forward to the announcement in British Parliament of an enquiry into the possible granting of a Public Radio Service.
D. Walsh, Co. Tipperary.

ROMs

Sir, Our ROMs have arrived! Our Compukit is working! But what a gruelling experience it has been. We saw the prototype on April 2nd and, under the impression that we were amongst the privileged few to have heard of it at this early stage, ordered immediately for delivery in about "ten weeks"-i.e. June 11th. By the time of the Chancellor's speech, delivery was promised for the end of June or "early July" so we paid in full while VAT was still 8 per cent. We collected the kit on July 5 th with the ROMs promised for "two or three weeks", then "definitely August 15 th". On the 15th it was again "two or three weeks"; three weeks later on September Sth it was "they are at Heathrow". On September 8th we got more impatient as term was approaching and we had already proved our Compukit worked (with Superboard ROMs), but we were satisfied with "We'll have them early next week and will post them to you by first class post on Tuesday or Wednesday". The following Thursday, the 13 th, it was "Yes, we've sent them all off today". On Saturday 15 th it was "I'm not sure at the moment but I'll check the files and if we haven't sent yours off already we'll send them off first thing on Monday . . . We posted them all off on Thursday and Friday".

On Tuesday 18th things changed: "You'll get yours next week-we sent 800 off last week to those who ordered their kits when it was announced in February and March". February? We saw nothing in print about the kit until May, and I have still not discovered where this "announcement" was made.

On Thursday 27th: Actually it was 500 . . or 460 . . sent off last week. The next batch of 1,000 is "at Heathrow" due to arrive on Saturday and to be posted to us "next week". By October 10th I had written three letters to COMPshop (ne'er any reply) and located Compukit owners with and without ROMs (the one with had ordered his kit three months after us). By the 18th we were told that two sets posted to us must have "got lost in the
post" so another set was posted on the 19th by recorded delivery and this arrived on the 20th. More than four months late--but for the last six weeks we had been led to expect delivery almost every day. Perhaps we have wronged COMPshop-could the Post Office have lost all their replies as well as the two earlier sets of ROMs?

Incidentally, have you tried giving a "Memory size" of 20 or 30 thousand bytes? You will get a pleasant surprise! It is also interesting to compare strings in immediate mode, and to find how soon the random number generator recurs (it's after 1861 calls). However, we do find the Compukit to be excellent value for money and would now be building our second if we thought we could trust the supplier-but now we are waiting eagerly for the Nascom 2 we ordered an hour before the ROMs arrived!
C. C.H. Dawkins, Felsted School, Essex.

Unfortunately, as you are aware, the problems have affected many readers. At least Comp. now have kits (with ROMs) in stock.

Computerised

The purpose of my letter is to give profuse praise for the newest of my project completions-i.e. COMPUKIT UK 101 by Dr. Berk. After excruciating-and obviously unavoidable-delays in obtaining the BASIC ROMs, my computer worked first time and it has delighted and astonished me since that first magic moment. I am totally impressed and already, in my field of secondary education, it has proved to be a boon, and unforeseen uses loom. Exciting possibilities are glimpsed and oh! how I wish I were more capable of programming my ideas. My ineptness in this respect is a barrier, which, in middle years, is slow in being absorbed. I have great visions and moderate expertise to make them manifest.

I offer some suggestions for future consideration and the very fact that I take the trouble to write to you about them should add emphasis to my concern:

1. A "feed-back" column with short snippets. 2. This is the most important request:

An article on graphics. I really would appreciate a structured article on the use of POKE and PEEK and their use in producing diagrams etc.
3. Your last article showed that POKE 530, 1 disables the CONTROL C use. What other facilities are there available hidden away in the ROM's? For example: I would like to write messages in immediate mode-more than one line produces SYNTAX ERROR. If I use the SHIFT P @ line feed I am left with @ which I do not want. Am I able to disable the @ sign but still
obtain a new line?
I hope my letter conveys my real pleasure and appreciation and I hope my suggestions are constructive.
J. W. Coulthard, York.

We will be starting a "Computing Corner" -possibly next month-with some of the ideas you sent in. We will also look at your other suggestions.

Switching Regulators

D.L.H. Smith ${ }_{\text {b.s. }}$

THE SWITCHING regulator is a relatively new circuit for the control of d.c. voltages. It takes the place of a normal series regulator in a power supply. The basic problem with series regulators is that, because of the voltage drop across the pass transistor, they tend to be very inefficient. The ratio of output power to input power is typically in the range of $30-40$ per cent in good conditions.

Because in switching regulators the regulating transistor is either switched on or off, very little power is dissipated in it, and efficiencies in the order of $70-80 \%$ are possible.

Apart from the obvious advantage of higher efficiency, the switching regulator has other advantages. Because of the nature of operation, a switching regulator can not only convert voltages down, but can also convert them up. and even invert the polarity. Consequently they have a wide use as unisolated d.c. to d.c. converters.

HOW THEY WORK

The basic switching-down regulator circuit is shown in Fig. 1. This consists basically of the following elements: switching transistor TR, storage inductor L, smoothing capacitor C, commutation diode D , and a controlling circuit (which will be discussed later).

When the input voltage Vin is applied to the circuit, the control circuitry senses that the output voltage Vout is low, and switches the transistor on at time t_{1}. A current I_{L} flows through the inductor L into the load. The current in L reaches a peak value Ipeak, and the transistor is switched off at time t_{2}. The inductor is now storing an energy equal to $0.5 \mathrm{~L} \mathrm{I}^{2}$ peak. The current now flows into the capacitor C , the diode D completing the circuit. So energy is transferred from the inductor L to the capacitor C . The energy stored in the capacitor is equal to 0.5 C V^{2} out, and provided that the energy dissipated in diode D is small, we can say that $0.5 \mathrm{C} \mathrm{V}^{2}$ out $=0.5 \mathrm{~L} \mathrm{I}^{2}$ peak.

Now that C is charged up, it can supply current to the load. As the voltage across C falls due to the load, the control circuitry senses this and the transistor is turned on once again at time t_{3}, repeating the cycle. If the load takes little current from the output, the interval between the transistor switching on and off is large, and if more current is taken, the interval between switching is much shorter, and capacitor C is charged up more often, thus providing more current. These conditions are clearly illustrated by the two waveform diagrams Figs. 2 and 3.

The control circuitry consists basically of a voltage comparator, which compares the output voltage with a reference level. This feeds a voltage controlled oscillator, which then drives an output transistor. All these functions are normally included on one i.c.

SWITCHING-UP AND INVERTING REGULATORS

Since the switching regulator circuit works by the transference of the energy in the storage inductor to the capacitor, there is no reason why we cannot make the output

E0 223
Fig. 3. As above but for high load current
voltage higher than the input voltage, provided we decrease the output current. However, we need to change the position of the commutation diode to prevent the smoothing capacitor from discharging back to the lower voltage input. The new circuit configuration is shown in Fig. 4.

When the transistor T turns on, the current in inductor L increases up to a peak current, storing energy as before. When the transistor is turned off, the only way the current from the inductor L can flow is through the diode D , transferring its stored energy to the capacitor C.

By using yet another circuit configuration, it is possible to invert the input voltage, so where the input voltage is positive with respect to ground, the output voltage is negative with respect to ground. In this case, it is possible for the magnitude of the output voltage to be greater than or less than the value of input voltage. The circuit used is shown in Fig. 5. It works in a similar way to the previous circuit, with a few changes, as explained here. The transistor TR is first turned on. the current through

Fig. 6. Internals of the TL497. Pins 9 and 12 are N.C.
the inductor L again rises to a peak value. When the transistor is turned off, the current in the inductor flows into the capacitor C, charging it up. Again, the commutation diode D completes the circuit, but it is now in the opposite direction. charging the capacitor C negatively, which provides the negative output voltage.

CONTROL CIRCUITRY

One i.c. that provides all of the necessary functions for the circuits described is the Texas Instruments TL497. A block diagram of the i.c. is shown in Fig. 6.

For low output power circuits, the internal transistor and diode can be used as the switching transistor and commutation diode.

Operation of the i.c. is as follows: Pin 1 senses the output voltage (suitably divided down) and compares it with the internal 1.2 volts reference. If the output voltage is too low, the comparator voltage increases and drives the oscillator faster. The oscillator then switches the internal transistor. The current limit senses the voltage between pins 14 and 13 (across which there is normally a low value resistor). If the current flowing is too great, the oscillator is disabled.

Pin 4, the substrate, must be connected to the most negative voltage point in the circuit. This is so that the voltage appearing at pin 1 is of correct polarity. Pin 2 is always connected to ground.

In the case of higher output power circuits, the internal transistor is used to switch an external transistor, and an external diode is used, normally a fast switching type.

PRACTICAL EXAMPLES

Three practical examples are considered:
(i) Switching-down regulator, with an input of 11-15 volts, and an output of 5 volts at 1 Amp (Fig. 7).
(ii) Switching-up regulator, with an input of 11-15 volts, and an output of 24 volts at 300 mA (Fig. 8).
(iii) Inverting-regulator, with an input of +12 volts, and an output of -12 volts with respect to ground (Fig. 9).
All of these circuits have quite high peak inductor currents, and hence need inductors which can handle this current at the required frequency. These can be wound on ferrite cores. Mullard type LA4348, or similar, with an inductance-per-turn factor (A_{L}) of 100 .

In all of these designs an input capacitor C 1 is included. This provides a charge store, to prevent current spikes occurring in the input leads. Capacitor C2 is the timing capacitor. which determines the length of the transistor conduction time (and hence peak), and the maximum operating frequency.

The resistor dividing chain R4 and R5 attenuates the output voltage to 1.2 volts so that it can be compared with the TL497's internal 1.2 volts reference. Capacitor C 4 is included in the switching-down regulator circuit to improve the stability of the attenuated 1.2 volts signal.

Resistor R1 is the circuit current sensing element. Current sensing performs two functions: (i) When switched on, the current sensing circuitry "soft-starts" the unit. This means that a large initial inrush of current through the transistor. which might damage it, is prevented. (ii) If too much output current is drawn, the current sense circuitry will limit it, preventing any damage. The current sense circuitry operates when the voltage across R1 increases above one transistor Vbe drop (about 0.6 volts).

In the circuits shown in Figs. 7 and 9, a T1P 42 p.n.p. main switching transistor is used. When the TL497's internal transistor switches on, the T1P 42's base is connected to ground via R3, the base current limit resistor, and hence is turned on. R3 was chosen as 27Ω, so that the T1P 42 base current (I base) would be great enough for the equation β I base $>$ Ipeak, the

E6220
Fig. 7. Switching-down regulator. Coil: 25 turns of 20 SWG on Mullard LA4348 ferrite

[60229]
Fig. 8. Switching-up regulator. Coil: 77 turns of 26 SWG on LA4348
peak transistor current (where β is the transistor current gain). In the switching-up circuit (Fig. 8), a T1P 41 n.p.n. main switching transistor is used. When the internal TL497 transistor is switched on, current flows via R3 through it into the T1P 41 base, turning it on. The base current limit resistor is chosen for the same reasons already discussed.

The base-emitter resistor, R2 in all of the circuits acts as a stored-charge damping resistor. This rapidly removes the stored charge in the transistor's base, enabling faster switching and hence higher circuit efficiences.

NEW ASSOCIATION

A^{\top}A meeting in London recently an association was formed for computer retailers, which, it is hoped will be the end user's best guarantee of service and support. Called the "Computer Retailers' Association", it is also anticipated that every reputable firm in the industry will become a member.

The purpose of the Association is to maintain and improve standards within the industry and represent the industry to the outside world, government and press etc.

Companies willing to subscribe to the Association's code of practice should apply to Ms. Heather Hodgson, 47 Creswell Road, Newbury, Berks. Tel. Newbury 42486.

Fig. 9. Inverting regulator. Coil: 27 turns of 20 SWG on LA4348

Finally, consideration must be given to the commutation diode. Normal rectifier diodes are very inefficient at these high frequencies. This is because they have a relatively high forward voltage drop, and a long reverse-recovery time (the time taken to switch from the conducting state to the non-conducting state). An ideal diode for these circuits is the BYX 71-600 fast switching diode.

The i.c. connections for the different types of circuit are shown in the following practical examples, Figs. 7, 8 and 9. Notes on construction: The current sense resistor between pins 13 and 14 should be at least a 2.5 watt resistor. The switching transistor and the BYX 71-600 should both be mounted on a heatsink insulated with mica washers and bushes.

All of these practical circuits have a peak inductor current of between 2 and 3 Amps and an overall efficiency of about 70 per cent.

CONCLUSION

Switching regulators do have some disadvantages; they tend to cost more than simple series regulators and have a larger output ripple voltage, in the region of $100-200 \mathrm{mV}$. However, this is not much of a problem for many of the applications in which they are used.

Switching regulators are a relatively new type of circuit, which have been made possible by the introduction of low-priced control i.c.'s and fast switching diodes. They are beginning to find widespread use in industry, especially where efficiency is important.

BACK AGAIN!

oram Electronics Ltd. is to be relaunched under the ownership of the Dutch "De Boer" Group, who will run mail order for both kits and components based on the current Dutch catalogue rather than the previous Doram range. However, warranties for goods purchased during the Electrocomponents ownership will be honoured.

RAIBC

- HE NEW address of the Radio Amateur Invalid and Blind Club is 9 Rannoch Court, Adelaide Road, Surbiton, Surrey KT6 4TE.
The RAIBC, which last year celebrated its Silver Jubilee, comprises invalid and blind amateur radio enthusiasts, and local representatives who assist with visits, repairs and advice. The sole condition of membership is an annual subscription of $£ 1$ minimum for "Radial" the club newsletter, issued every six weeks. Details from the secretary, Mrs. F. E. Woolley.

TL		${ }^{7473}$	20p		55
7400		7475	${ }_{\text {22p }}^{228}$	${ }_{74148} 74145$	${ }^{550}$
7401	100	7476	20 p	74150	55p
7402	100	7485	55p	74151	400
7404	120	7486	${ }_{1}^{20 p}$	74154	65 p
06	22 p	7489	${ }^{1355}$	74157	40 p
7408	122	7492	25	74164	55p
7410	100	7492	${ }^{20 p}$	70	55p
7413	220	7493	25		50p
7414	39p	7494	45	7474	55p
20	120	7495	${ }^{355}$	74177	500
7427	20 p	7496	${ }^{55}$	7490	50p
	12p	74121	250	74191	500
32	18 p	74122	35D	74192	500
	38 p	74	38p		50p
	45 p	74125	35p	7496	5
4 48	50				Sop

OPTO

LED's 0.125in. 0.2in each 100+ $\begin{array}{lllrr}\text { Red } & \text { TIL209 } & \text { TIL220 } & 9 p & 7.5 p \\ \text { Green } & \text { TIL211 } & \text { TIL221 } & 13 \mathrm{p} & 120\end{array}$ $\begin{array}{llll}\text { Green } \\ \text { Yellow TLL213 TIL223 } & \text { 13p } & 12 \rho\end{array}$ Clips 3p
DISPLAYS
$\begin{array}{llll}\text { DL704 } & 0.3 \mathrm{nCC} & 130 \mathrm{CC} & 120 \mathrm{D}\end{array}$
$\begin{array}{lllr}\text { DL707 } & 0.3 \text { in CA } & 130 \mathrm{p} & 120 \mathrm{p} \\ \text { FND500 } & 0.5 \mathrm{nCCC} & 100 \mathrm{n} & 80 \mathrm{p}\end{array}$

SKTS

Low profive

$80 \mathrm{in} \quad 8 \mathrm{p} \quad 18 \mathrm{pin} \quad 14 \mathrm{p} \quad 24 \mathrm{pin} \quad 18 \mathrm{p}$
 3 lead T018 or T05 socket. 10 peach Soldercon pins: 100:50p 1000:370p

PCBS.

VEROBOARD

 \qquad
 \qquad $\begin{array}{lll}\text { 54p } & \text { 54p } & \text { Pin insertion } \\ \text { 64p } & 64 \mathrm{p} & \text { tool } 108 \mathrm{p}\end{array}$ $3.76 \times 47-2050-185 p$
 $\begin{aligned} & \text { Single sided } \\ & \text { pinsper } 100\end{aligned} 400+400$
 Top quality fibegtess copper board. Single sided. Size $203 \times 95 \mathrm{~mm}$. 600 each.
 Dalo' pens. 75p each

RESISTORS

Carbon fitm resistors. High stability ow noise 5%.
10 M
$\begin{array}{llll}\text { E12 series. } & 4.7 \text { ohms to } \\ & \text { each } & 10 \mathrm{M} \text {. Any mix } \\ 0.25 \mathrm{~W} & 1 \mathrm{p} & 0.9 \mathrm{p} & 1000+ \\ 0.5 \mathrm{~W} & 150 & 1.20 & 1 \mathrm{p}\end{array}$ 0.5 W Special development packs consisting of 10 of each value from 4.7 ohms to 1 Megohm (650 res) 0.5 W E.50. 0.25 W £5.70. METAL FILM RESISTORS Very high stabitty, ew noise rated at $1 / 4 \mathrm{~W}$ 1\%. Available from 5 tohms to 330 k in
E24 series Any mix:
AdD 30 wish all WE WISH ALL
OUR CUSTOMERS A MERRY CHRISTMAS AND A
HAPPY NEW YEAR

LIMEAR						
THIS IS ONLY		LM308	600	NE556	600	
		LM318N	750	NE567	100p	
ECTION!		LM324	450	RC4136	100p	
709	35p	LM339	450	SN76477	230p	
741	160	LM378	2300	TBAB00	70p	
747	45p	LM379S	410p	TBA810S	00p	
748	30p	LM380	75p	tDA1022	620p	
7106	850p	LM3900	50p	TL081	45p	
7102	9000	LM3909	65p	TL084	125p	
CA3046	550	LM3911	100p	2N414	800	
CA3080	70p	MC1458	32 p	2N425E	390p	
CA3130	90p	MM5716	590p	2N1034E	2	
TRAMSISTORS				$2 T \times 500$	16 p	
			2N697	12p		
		BCY72		14 p	2N3053	18p
AC127	17p	BC131BD132	35p	2N3054	50p	
AC128	16p		35p	2N3055	50p	
AC176	18p	BD139	35p	2N3442	135p	
AD161	38p	BD140	35p	2N3702	8 p	
AD162	380	BFY50	${ }^{15 p}$	2N3703	$8 p$	
$\mathrm{BC} 107$$\mathrm{BC} 108$	8 p	BFY51	15p	2N3704	$8 p$	
	8 p	BFY52	15p	2N3705	$9 p$	
${ }_{\text {BC1 }}^{\text {BC108C }}$	10 p	M 32955	98p	2N3706	9 p	
BC109	89	MPSA06	200	2N3707	$9 p$	
BC109C	10p	MPSA56	20p	$2{ }^{\text {N2708 }}$	85	
BC147	7 p	TIP29C	$60 p$	2N3819	15p	
${ }^{8 C 148}$	$7 p$	TIP30C	700	2 N 302	4400	
BC177BC178	14 p	TIP31C	65p	2N3904	8 p	
	14.0	TIP32C	80 p	2N3905	8 p	
BC179	14p	TIP2955	65p	2N3906	8 p	
BC182	100	TIP3055	55p	2N4058	12p	
BC182L	100	2 TX107	14p	2N5457	32p	
BC184 BC184L	10 p	2 TX108	14p	2N5459	32p	
	10p	2 TX300	16p	2N5777	50p	
${ }_{\text {BC2 }}$ BC12	100					
BC212L	10p	DIODES				
BC214 BC214L	100					
	10p					
${ }^{\text {BC2 }}$ BC477	$19 p$	1N914 in4001		1N4006		
BC478BC548	19p	1 1N4002		BZY88se		
	100	ITT Full	spec. prom	oduct.		
		1N4148	- 1.4	0/100		

Stevenson
 Electronic Components

CHRISTMAS SPECIALS ${ }^{\circ}$?
 A range of special offer items valid

 during December. All orders placed for these items must be received during December,
Murata Ultrasonic Transducers, per pair 550 p 280p PCB etch kit. Contents:
5 assorted sheets Alfac. Pound of Ferric
Chloride. Dalo pen. Fibre glass PCB.
$375 p 325 p$
Resistor Development Pack.
10 off, each $1 / 8 \mathrm{~W}$ value from 4.7Ω to 1 M 570p 470 p
Polyester Development Pack
5 off, each value from 0.01uF to 2 u 2 . 620 p
Texas sockets. Must be in multiples of 100 .

8 pin, per 100
14 pin, per 100
16 pin, per 100
Pack of $10 \times$ NE555 ——20反 200p
Pack of $10 \times$ PP3 clips -60p 45p
Pack of 10 crocodile leads (20 clips) 145p 90p
Pack of $6 \times \mathrm{C} 106 \mathrm{D}$ thyristors 270p 220p
Pack of 70×1 N4148 140p 100p
Expo Reliant drill 665p 550p
Expo Titan drill 10300 890p

LEDs, Pack of 10×0.2 Red
10×0.2 Green
10×0.2 Yellow
-350p 290p
AY51013P UART $\quad 360 \mathrm{p} 325 \mathrm{p}$
2114 Low Power 300nS $\quad .535$ 450p

2708 EPROM	1505	
$S S .2$ Breadboards	1085	990 p

PANEL METERS

\square High qualıty $Z^{\prime \prime}$ wide view meters, Zero adjustment. Back illumination wiring.
Available ir $50 \mathrm{uA}, 100 \mathrm{uA}, 500 \mathrm{uA}$, $1 \mathrm{~mA}, 100 \mathrm{~mA}, 500 \mathrm{~mA}, 1 \mathrm{~A} . £ 4.75$ ea. VU meter similar style. E1.40 ea.

SLIDE POTENTIOMETERS

Good quality 60 mm travel slider with
80 mm fixing centres
Available from $5 k-500 \mathrm{~K}$
in \log and linear. 55p each.
Suitable black knobs $6 p$ ea. Coloured knobs 1up ea.
We now offer one of the widest ranges of comportents at
the most competitive prices in the U.K. See catalogue for
full details. We welcome callers at our shop in College Rd,
Bromley, from Mon-Sat, 9am-6pm (8pm on Weds anet
Fridays). Special offers always available.
We also provide an express telephone order service.
Orders received before 5 pm are shipped same day.
Contact our sales office now with your requirements.
TELEPHONE: 01-464 2951/5770.
Quantity discounts on any mix TTL, CMOS.
74 LS and Linear circuits: $100+10 \%, 1000+$
15\%. Prices VAT inclusive. Please add 30p for
carriage. All prices valid to April 1980.
Official orders welcome.
BARCLAYCARD
\& access welcome
Available in blue, black, green, brown, red, white
and vellow. Plugs: 110 each Sockets: 120 each PHONO PLUGS AND SOCKETS Insulated plug in red or black Screened plug $9 p$
$13 p$
Single socket

Mail orders to: STEVENSON (Dept PE)

Handy size Reels \& Dispensers

OF THE WORLD'S FINESTCORED SOLDERTO DO A PROFESSIONAL JOB ATHOME

Ersin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required

SAVBIT

handy solder dispenser

Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Savbit Solder Savbit increases life of copper bits by 10 times
Size 5 78p
For soldering fine joints

Two more dispensers to simplify those smaller jobs PC115 provides 6.4 metres approx. of 0.71 mm solder for fine wires, small components and printed circuits PC115 92p Or size 19A for kit wiring or radio and TV repairs. 2.1 metres approx. of 1.22 mm solder Size 19A 83p

> SAVBIT, 40/60, 60/40 \& ALU-SOL Silloses

These latest Multicore solder reels are ideal for the toolbox. Popular specifications cover all general and electrical applications, plus a major advance in soldering aluminium. Ask for a free copy of 'Hints on Soldering' containing clear instructions to make every job easy.

Ref.	Alloy	Diam. mm.	Length metres approx	Use	Price
$\begin{gathered} \text { Size } \\ 3 \end{gathered}$	$\begin{gathered} 40 / 60 \\ \text { Tin/Lead } \end{gathered}$	1.6	10.0	For economical general purpose repairs and electrical joints.	3.22
$\underset{4}{\text { Size }}$	ALU-SOL	1.6	8.5	electrical joints For aluminium repairs. Also solders aluminium 10 copper, brass etc.	$£ 3.22$
$\begin{gathered} \text { Size } \\ 10 \end{gathered}$	$\begin{gathered} 60 / 40 \\ \text { Tin/Lead } \end{gathered}$	0.7	39.6	For fine wires. small components and printed circuits.	£3.22
$\begin{gathered} \text { Size } \\ 12 \end{gathered}$	SAVBIT	1.2	13.7	For radio TV and similar work. Increases copper bit life tenfold	$£ 3.22$

MULTICORE WICK

for solder removal and desoldering. absorbs solde instantly from
tags, printed circuits etc.
Only needs 40.50 Watts soldering iron. Quick and easy to use. Non corrosive

Ptices shown are recommended refẹil inc. VAT. From Electrical

Calculator Chips as Logic Devices P.A.Birnie

POCKET calculators have now become a familiar part of life to most people and their price has dropped to a very low level- $£ 4$ for a standard 4 function machine being about average. This acceptance of calculators has not, surprisingly, extended to the most important part of the machine-the calculator chip itself which has been totally ignored by constructors as a very versatile and cheap device capable of performing a wide range of functions. A typical example is the General Instruments C680 series calculator chips, typified by the C-683, an 8 digit 4 function plus percent device which costs only $£ 3.00$ (one off) and with the addition of a few components will perform 8 digit up/down count with display decode and drive and other functions normally found in more expensive devices. The C-683 also operates on a nominal 9 volt supply making it CMOS compatible.

CALCULATOR OPERATION

For those unfamiliar with calculator operation, it is essential that the method of keying in information and display driving is thoroughly understood. Due to the requirement to limit the number of pins on the packages of calculator chips. it is essential that multiplex techniques are used and the "standard" display

Fig. 1. Multiplexed keyboard system
multiplexing method is without exception adopted. The chip outputs seven segment drives and 9 digit drives plus a decimal point "segment" drive with one digit of the display having its digit driver enabled for a short period (a few hundred microseconds) and the segment drives then turn on the appropriate segments for that particular digit. Then the next digit of the display has its digit driver enabled for a similar period, segment drives as required for this digit being applied. Thus each digit driver is enabled in turn and it should be clear that if, say, all segments "a" in each display are commoned to a segment drive
output (and b, c.....g), then by controlling the seven segment drive outputs and the nine digit drive outputs, the nine digit display can be operated using only 16 connections. The alternative approach where each segment is driven continuously requires 63 connections for the segments plus one for the common return.

KEYBOARD

Turning now to the keyboard, for a basic calculator, keys $0-9,+-x \div \%=$ C/CE are needed. 18 in all and these could be individually wired to the calculator chip. Instead of this, the keyboard itself is operated in a multiplexed mode as illustrated in Fig. 1. For simplicity, an eight digit keyboard is

Fig. 2. Key matrix for the C-683
shown, although in practice many keys are interconnected in this type of matrix to reduce interconnections to a minimum. If we have four waveforms D1, D2, D3, D4 as shown and these are applied to the key matrix, then when say button 2 is depressed, the D3 waveform will appear at Kb. By simple gating, it would be possible to tell that button 2 was the one that was depressed as only this button will produce the 'high' pulse at this time i.e. in phase with D2. If the key matrix for the C-683 is studied (Fig. 2), then it can be seen that the number of wires from keyboard to chip is reduced from 19 to 12. Now comes the clever trick-the display drive circuitry produces digit drive waveforms, nine in all to enable, one at a time, the display digits. If these are applied to the D1-D9 keyboard connections then the keyboard only needs a further three connections to the chip.

Fig. 3. Keyboard and display drive connections

Internal circuitry as before can detect which key has been depressed by detecting the phase of the signal received on one of the three keyboard "row" outputs. Thus in Fig. 3, a block diagram shows the keyboard and display drive connections required and by referring to Fig. 4, the pin-out diagram for the $\mathrm{C}-683$, the purpose of most of the pins on the i.c. can be seen. Other pins are an oscillator enable pin, pin 14 which is tied to ground by a 470 k resistor for normal operation and supply and ground connections. In the G1 calculator chip range, all the chips in the family have common keyboard and display pinout for ease of printed circuit board stocking by the calculator manufacturer. More complex calculators such as the C-596 15 function scientific use the spare pins $(9,10,11)$ to extend the keyboard to more rows, giving a greatly increased number of functions.

NOTE:
EA73]
THE OSCILLATOR IS ENABLED BY CONNECTING A b7OK $\pm 10 \%$ RESISTOR FROM VGG TO PIN 16 .

Fig. 4. Pin-out diagram for the C-683

CIRCUIT FUNCTIONS

Now that the theory of operation of the calculator chip has been established, it is necessary to investigate how, in practice, it can be made to perform a circuit function. Let us assume that we want to perform simple addition of a pulse stream, with the ability to count up or down. Some intelligent probing round the chip reveals that to perform multiple addition, the operations $+1=$ need to be performed each time a pulse is to be added to the total in the calculator chip registers. Normally this would be performed by key depressions but when the chip is performing

Fig. 6. Circuit to simulate key depression

Fig. 6. Output waveforms of Fig. 5
an "in-circuit" function, it is obviously necessary to use logic to simulate switch closures. The circuit shown in Fig. 5 can be used to generate the necessary waveforms in the following manner. The fully decoded decade counter CD4017 is clocked by a free-running oscillator with a period of about 50 ms and by connecting the 9 th output of the counter to the clock inhibit input (pin 13), the counter will normally be in the halted state with output 9 high and all other outputs low. If a short positive going pulse is now applied to the reset pin, the counter will be reset and immediately start to count up to 9 again. Fig. 6 shows the waveforms associated with this device. Outputs 1,3 and 5 are now used to simulate keyboard operations +. 1 and $=$ respectively by means of IC2 and IC3. Thus for a + input, the calculator chip expects to see its D3 signal connected to Ko and this is performed by NANDing D3 with the digit 1 output (pin 2) of IC1, and using part of IC3 to OR this signal into the Ko input of the calculator chip. Similarly D1 is NANDed with digit 3 and fed to the Kn input after inversion by part of IC3, and D2 is NANDed with digit 5 and OR'd to the Ko input. Alternative digit outputs from the decade counter must be used to simulate the gap between pressing keys and the frequency of the drive oscillator must be such as to allow the calculator chip time to perform its keyboard input validation function and arithmetic operations before the next signal is input. The use of an oscillator period of 50 ms or greater appears satisfactory for addition and subtraction but longer periods of about 200 ms are necessary for multiplication and division. In the basic circuit shown in Fig. 5, Sl allows either D3 or D4 to be the first signal connected to Ko, D3 causing an addition to take place and D4 a subtraction. The resistors R1 to R3 are necessary to act as pull-down elements on the calculator chip digit drive leads since these are open drain outputs which can source current, but do not actually switch a logical level.

UP/DOWN COUNTER

Using the circuit shown in Fig. 5, an up/down counter of up to 8 digits can be constructed and with the addition of a display and a few associated components, (Fig. 7) a four digit counter display module can be made at very low cost.

The addition of other components can allow the multiplication and division functions of the C-683 to be used, but this does introduce some complications as it is necessary to input the numbers, not as say binary but as a 1 out of 10 . This can be done by using some decoder chips and an outline circuit is shown in Fig. 8. The CD4067 is a $16: 1$ multiplexer which is used here to select digit drive outputs from the calculator chip

Fig. 7. Circuit diagram of a four digit counter display
according to the binary address applied. Thus for a binary address 0101, digit drive D5 is routed to the Kn input on the C-683, causing a " 5 " to be entered into the calculator chip-since 0101 represents 5 in 8421 -b.c.d. code, the circuit clearly enters our "A" number. The next operation involves the digit 3 output of the CD4017, this being gated with D5 and then routed to the Ko input of the calculator chip causing the function multiply to be performed. If D6 was routed, divide would be performed. When the digit 5 output of the CD4017 occurs. it causes the quad 2:1 data selector-CD4019, to select the "other" input number and this is applied in b.c.d. form to the $16: 1$ multiplexer as before to cause the second number to be input to the

Fig. 8. Outline circuit for multiplication and division
calculator. Finally digit 7 output from the CD4017 is used to gate D2 from the C-683 into Ko on the same chip, causing the equals function to be performed and the answer to be displayed.

The description so far given illustrates only simple applications and with a little thought, circuitry can be constructed to say accumulate pulses over a period of time, divide the total by a fixed factor and then cancel the display to allow the process to be performed again.

Houndidun]

Organisers: Please send details of exhibitions, club open days and other events to Mike Abbott at least six weeks in advance. Inclusion will be subject to space etc.

BEX (Business Equipment Exhibition) Feb. 6-7. Queens Hall, Leeds. K BEX Feb. 20-21. Pavilion, Bournemouth. K
IEA/Electrex Feb. 25-29. National Exhibition Centre, Birmingham. I Viewdata March 26-28. Wembley Conference Centre, London. 0 Computer-Aided Design (conference \& exhibition) March 31-April 2. Metropole, Brighton. Details: CAD 80/0483-31261
Seminex April 14-18. Dept. Physics, Imperial College, London. H1 Communications 80 April 14-18. National Exhibition Centre. I Electronic Test \& Measuring Information April 22-24. Wythenshaw Forum, Manchester. T
International Conference On The Electronic Office April 22-25. London Penta Hotel. Organised principally by the Institute of Electronics \& Radio Engineers. 99 Gower St., London WC IE 6AZ
North Midlands Mobile Rally April 27. Drayton Manor Park, Tamworth, Staffs. Details: Norman Gutteridge, 68 Max Rd., Quinton, Birmingham.
All-Electronics Show April 29-May 1. Grosvenor House, London. E
The Mersey Micro Show April 30-May 2. Adelphi Hotel, Liverpool. O Compec Europe May 6-8. Centre International Rogier. Brussels. L
Great British Electronics Bazaar June 20-22. Alexandra Palace. Many improved features this year, to enhance the unique atmosphere of the "Ally Pally". There will be free "bring-and-buy" sales for all visitors. E Intel Fair June 24. Wembley Conference Centre, London. U
Tempcon July 1-3. Wembley Conference Centre. Exhibition devoted to temperature control \& measurement. T
Transducer July 1-3. Wembley Conference Centre. T
The 1980 Microcomputer Show July 10-12. Royal Lancaster Hotel, London. 0

E Evan Steadman, 34-36 High st., Saffron Walden, Essex. 0799 22612
H1 Seminex Ltd., 79 High st., Tunbridge Wells, Kent, TN11XZ. 0892 39664/5
I Industrial Trade Fairs, Radcliffe Ho., Blenheim Court, Solihull, W. Midlands B91 2BG. 021-705 6707
K Douglas Temple Studios, 1046 Old Christchurch Rd., Bournemouth, Dorset BH1 ILR. $\$ 02020533$
L Iliffe Promotions, Dorset Ho., Stamford St., London SE1 9LU. (01-261 8437/8
O Online Conferences, Cleveland Rd., Uxbridge, Middx. UB8 2DD. -0895 39262
T Trident International Exhibitions, Abbey Mead Ho., 23a Plymouth Rd., Tavistock, Devon PL19 8AU. 08224671
U Brian Crank Associates, 58 London Rd.. Southborough, Kent. (0892-31812 38414

ON THE BUTTON

|BA has just awarded a $£ 16 \mathrm{M}$ contract for the high power u.h.f. trans| mitters needed to launch ITV's fourth channel in November 1982.

Divided, roughly equally, between Marconi and Pye, the contract covers the supply and installation of equipment necessary to transmit to 80 per cent of the entire population at the inauguration date of the new channel.

The fourth channel will be the first programme service to open in the UK where virtually all viewers already have receivers and aerials for a new entertainment dimension at no extra cost. A little initial aggravation in band searching will be inevitable but at last that unused button will have meaning.

Simply ahead.. ILP'S NEW GENERATION OF HIGH

 any advances in I.L.P. design are bound to be of outstanding importance

- and this is exactly what we have achieved in our new generation of modular units. I.L.P. professional design principles remain
- the completely
adequate heatsinks, protected sealed circuitry,
rugged construction and excellent performance. These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have concentrated on improvements whereby our products will meet even more stringent demands such, for example, as those revealed by vastly improved pick-ups, tuners, loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system. I.L.P. modules are for laboratory and other specialised applications too.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there PERFORMANCE MODULAR UNITS

VALUES OF COMPONENTS FOR CONNECTING TO HY5 Volume $-10 \mathrm{~K} \Omega \log$. Bass/Treble $-100 \mathrm{~K} \Omega$ linear. Balance $-5 \mathrm{~K} \Omega$ linear.

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$. and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.
$\mathbf{f 4 . 6 4 + 7 4 p}$ VAT

THE POWER AMPLIFIERS

Model	Output Power R.M.S.	Dis- tortion TYpical at 1 KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	15 W into 8Ω	0.02%	80 dB	$-20-0-+20$	$105 \times 50 \times 25$	155	$£ 6.34$ $+95 p$
HY50	30 W into 8Ω	0.02%	90 dB	$-25-0+25$	$105 \times 50 \times 25$	155	$£ 7.24$ $+£ 1.09$
HY120	60 W into 8Ω	0.01%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$£ 15.20$ $+£ 2.28$
HY200	120 W into 8Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 50 \times 85$	575	$£ 18.44$ $+£ 2.77$
HY400	240 W into 4Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 100 \times 85$	1.15 Kg	$£ 27.68$ $+£ 4.15$

Load impedance - all models 4-16 Ω
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{~Hz}-3 \mathrm{~dB}$
THE POWER SUPPLY UNITS

I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer, the other with toroidal transformer, having half the weight and height of conventional laminated types.

PSU $30 \pm 15 \mathrm{~V}$ at 100 ma to drive up to five HY5 pre-amps $£ 4.50+£ 0.68$ VAT for 1 or 2 HY30's $£ 8.10+£ 1.22$ VAT PSU 50 for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT PSU 70 with toroidal transformer for 1 or 2 HY120's $£ 13.61+£ 2.04$ VAT PSU 90 with toroidal transformer for 1 HY200 £13.61 +£2.04 VAT
PSU180 with toroidal transformer for 1 HY400 or $2 \times \mathrm{HY} 200$
$£ 23.02+£ 3.45$ VAT

NO QUIBBLE 5 YEAR GUARANTEE 7. DAY DESPATCH ON ALL ORDERS INTEGRAL HEATSINKS BRITISH DESIGN AND MANUFACTURE FREEPOST SERVICE -see below

ALL U.K. ORDERS DESPATCHED POST PAID HOW TO ORDER, USING FREEPOST SYSTEM Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.

FREEPOST 2 Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP.
Canterbury, Kent CT2
Telephone (0227) 54778

Total purchase price $£$

I enclose Cheque \square Postal Orders \square International Money Order \square Please debit my Account/Barclaycard Account No.

NAME
ADDRESS

Signature

588 ASHTON ROAD, HATHERSHAW. OLDHAM, OL8 3HW Tel: 061-6529879 Telex: 668250

TRANOAN PRODUCTS

TRITON
 SINGLE BOARD PERSONAL COMPUTER

Three new exciting expandable systems designed for ease of construction and flexibility. Kits come complete with case, power supply, full keyboard, PCB. All components available separately. See catalogue. Full hardware \& programming manual available. The system is easy to expand and is well supported. Features:- 2, 2.5 or 7k basic in Eprom (See catalogue)

From
4 graphic characters

Pascal | E286 |
| :--- |
| +VAT |

BI DIRECTIONAL

MATRIX PRINTER £595 +VAT
The BD80 is a low cost, 80 column line printer with microprocessor control to provide excellent reliability and performance.

- 5×7 Dot matrix	- Futl asch char set	84 lines per minute
- 10 char per inch	10 lines/sec	Self test
- 6 lines/inch	paper advance	. Fully cased
- 400 char buffer	112 char/sec	

\section*{S100 boards
 8k Static RAM board (450 ns) 8 k Static RAM board (250ns) 280 cpu board (2 MHz) z80 cpu board (4MHz)

$2708 / 2716$ EPROM board Prototype board (bare board) Video display board $(64 \times 16$
$128 U /$ Ascil) 128u/L Asciil
 K2 disk operating system $£ 148.25$
$£ 131.25$ $£ 131.25$
$£ 163.75$ $£ 163.75$

263.75 863.76 £ 108.75
£ 131.25
 Assemble/z Macro Assm $\quad \mathbf{£ 3 7 . 5 0}$} A
 unique PRINTER FAST AND RELIABLE

Switch selectable baudrate from 110 to 9600 on a standard V24 and R5232 interface. Send SAE for further details. Ideal printer for Triton or any system requiring high speed reliable hard copy. We can supply consumables.

TRITON. Expand your Triton simply and easily with our new 8 -slot motherboard complete with its own P.S.U. takes 8 plug-in Euro cards. Plugin 8 k RAM card and Eprom cards now available. CP/M disc interface available. Kit complete with PSU +1 set connectors.

PCBCOMESMS				
PC8 connectors				
-1"	Price	6/12	11.25	
22/44	£3.20	12/14	£1.60	
25/50	£3.60	10/20	¢2.00	
28/56	£3.90	15/30	£2.20	
30/60	£4.15	18/36	£2.38	
35/70	£4.60	22/44	22.68	
36/72	£4.75	28/56	¢3.30	
40/80	f5.00	36/72	¢3.90	
43/86	¢5.50	43/82	84.60	
50/100	$\mathbf{f 5 . 8 0}$ (S100 BUS) Plus Vat			

EXPANSION MOTHERBOARD

COMPONENTS

 SN74LSDUN SN74 1505 S
SN74LSOBH
SN7 SW74SLOM
SN74SOM SW77SL09H
SW74S10H
SM74SI

\qquad SNT4L514N
SN74LS15N

 SNTH S 20 N

SN74LS32N | SN74LS32N |
| :--- |
| SNT74 | SN74LS3N

SN74LS37N
SH74LS39N

TRITON DOCUMENTATION

Available separately as follows
Prices include $P \& P$
Triton manual. Detailed circuit description and constructional details and user documentation on level 4.1 monitor and basic $\mathbf{£ 5 . 7 0}$ L4.1 Listing listing of 1 k monitor 2 k tiny basic
$\mathbf{E 5 . 7 0}$
$\mathbf{E 4 . 2 0}$ L5.1 User documentation on level 5.1 firmware $\quad \mathbf{E 1 . 2 0}$ L5. 1 Listing listing of $\mathbf{1 . 5 k}$ monitor and 2.5 k basic $\mathbf{£ 5 . 5 0}$ L6.1 User documentation on 7 k basic interpreter $\mathbf{£ 1 . 8 0}$ Motherboard, 8k Ram and 8k Eprom constructional details $\mathbf{£ 5 . 0 0}$ User group newsletter subscription $£ 4$ per annum. Triton software send SAE for list of programs available for Triton.

TRAP!
 Triton resident assembly

language package

Links via the L6. 1 monitor and new scientific basic to make Triton a stand alone development system. Trao is an 8k package in EPROM and resides on our EPROM card. Set of 8×2708 only E80 including document.

- EDITOR

EDITOR	BREAKPOINT
ASSEMBLER	SINGLESTEP
DUSASSEMBLER	TRACE
SYMBOLTABLE	PROGRAMME LOAD
CREATEE	
DEVELOPMENT SYSTEM	

MEMORY AND SUPPORT CHIPS (Prices exclude VAT)

SUPPORT		TMS6011	500	4118	20.00	LINEARS		LM74BCN-8	45	7815K	1.50	CMOS-FULL	
8212	220	811595	1.80	ZBPP 10	10.00	Lm301AH	30	LM7 4 CCN	45	7824K	1.56		
8216	228	811598	1.00	280 CTC	10.00	LM301AN-8		L21458	72	7905	1.10		
8224	2.00	81L597	180	2804 PlO	14.00	(mini Dopl	. 30	LM1458m-8	4	7912	1.10	STOC	
8226	2.20	814598	1.80	280 CTC	1400	Lмз00	91	LM14880	05	7915	1.10		
8228	4.20	RamS				LM309k		LM1490	${ }_{1} .05$	${ }^{7924}$	1.16	CPU'S	
${ }_{8238}$	4.20	2101	232	EPROMS		(Tr03)	145	L1414890	1.25	7905K	1.00	${ }^{8080}$	4.33
8245	18.08	2102L-4	1.20	1702	E.00	Lmalis	1.28	${ }_{\text {LM } 149502 \mathrm{~N} \cdot 14}$	0	${ }_{7}^{7912 \mathrm{~K}}$	1.00	${ }^{6800}$	${ }^{10.00}$
${ }^{8246}$	${ }_{5}^{11.00}$	2111	232	${ }_{2704}$	1.00	LM318N	225	${ }_{\text {LM3302 }}^{\text {LM3 }}$	${ }_{05} 15$	${ }_{7924 \mathrm{~K}}$	1.48	${ }_{280}^{280}$	
8251	5.00	2112	2.48	2708 2516	1.00 23.00	LM323K	10	[m3402N	1.26	7924K	1.8	${ }_{8085} 88$	${ }_{12} 1208$
${ }_{8253} 8$	11.00	5810	4.08	${ }_{2716}$	2200	${ }^{\text {LM324N }}$	7	LM3900\%	1.4	DIL sockets		8502	12.04
8255	${ }^{6} 100$	8154	1195	2532	${ }_{50} 22.00$	LM339N	5	товоср	1.44	a 01	14	${ }_{\text {SCMPII }}$	1200
8257	11.00	2114	6.50	ROMS	Grido	${ }_{\text {LM5 }}^{\text {LMS }}$	30	rosicr	05	14 OLI	. 16		
8259	1250	21021-3	1.80	R0M 7289		${ }^{\text {LMS }}$ S 5108 CN	. 75	T082cs	1.29	180 dL	17	${ }^{8980}$	31.00
8292	13.00	74 c920	11.00	745472	12.00	${ }_{\text {imposcN }}$	31	T1093CN	1.05	18 oll	14	9809	37.00
${ }_{68219}$	4.60	$14 \mathrm{Cs21}$	11.00	745470	5	(m232CN	\ldots	TOSCN	1.60	20 dH	11	W/WRA	37.00
6821P 6850 P	4.50	74 C929	11.00	74S473	12.4	1 M 723 CN	41	VOLT PEES		24 cm	21	8011	20
${ }_{6852 P}$	5.50	4027	6.00	74S474	12.45	${ }_{\text {LM733 }} \mathrm{CN}$	1.30	Volt regs		280 LL	33	14 dill	35
AY.5.2376	11.50	4044	8.15	745471	5.50	[m739CN	1.30	${ }_{7812}$	0	48	5	1801	42
MC14411	12.00	4050	6.6	1/0		Lm741CH-14	33	7815		CAYSTALS		180 Cl	00
M57109	1243	4060	7.00	2513	7.50	Lm741CNS	25	7824	\cdots	100k	100	24010	5
M57160	10.00	2107	7.00	${ }_{98364}$	10.96	LM747CN-14	78	${ }^{7805 \mathrm{~K}}$	1.50	200\%	371	2801	74
M57161	10.00	4116	0.00	14412	12.00	LM747CH	1.11	7812k	1.50	IMHz	300	40 Oll	5

HOME COMPUTING CATALOGUE

If you're in town, visit our showroom in Chapel Street, next to Edgware Road tube station. We have Tritons on display plus a comprehensive range of components and accessories, specifically for personal computer users Books, mags, tapes, data, cables plus much more. Showroom open 6 days a week. (Half day Thurs., from 1.30).

TRANSAM COMPONENTS LTD. 12 CHAPEL STREET LONDON. NW1 TEL: 4028137
$4 \frac{\mathrm{in}}{} \times 3 \mathrm{i} \mathrm{in}$ METER. $30 \mu \mathrm{~A}, 50 \mathrm{uA}$ or $100 \mu \mathrm{~A}, \mathbf{£ 6 . 4 0 . 2 5 \mathrm { p } \text { P. \& P. }}$

MICROPHONES FOR
 TAPE RECORDERS

DM228R 200 ohm with 3.5
and 25 mm Jack Plugs $\mathbf{£ 1 . 7 0}$ DM229R 50K with 3.5 and 25 mm Jack Plugs
DM18D 200 ohm with 5 and 3 pin Din Plugs £1.99
Postage on above microphones 17p

CARDIOID DYNAMIC MICROPHONE

Model UD-130 Frequency response $50-15,000 \mathrm{c} / \mathrm{s}$ Impedance Dual 50 K and 600 ohms. £8.02. 33p P \& P
$\operatorname{lin}_{17 \mathrm{p}} \times 2$ in \& P .
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100_{\mu} \mathrm{A}$ $500 \mu \mathrm{~A}$ and 1 mA VU meter, 86.16 . 17p P.\&P
6 V BUZZERS. 50 mm diameter 30 mm high, 52p. 15p. P. \& P

TRANSFORMERS Primary 240 V		
6-0-6V	100 mA	£0.75
9-0-9V	75 mA	E0.75
12-0-12V	50 mA	¢0. 85
12-0-12V	100 mA	£1.05
Post on above transformers 45p.		
$9-0-9 \mathrm{~V}$	1 A	¢1.80
12-0-12V	1 A	£2.15
15-0-15V	1A	£2.51
30-0-30V	1A	E3. 10
6.3 V	$1 \frac{1}{2} \mathrm{~A}$	£1.80
6-0-6V	$1 \frac{1}{2} A$	E2. 20
t on above transformers 60p.		

All above prices include V.A.T. Send 40 p for new fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request

M. DZIUBAS

158 Bradshawgate • Bolton • Lancs. BL2 1BA

astRA-Paк
 92 GODSTONE ROAD

WHYTELEAFE SURREY CR3 OEB

7400	0.10	7483	0.58	14166	0.78	4021	0.90	4160	S	Infear		6 pin	0.12
74400	0.23	7484	0.88	74167	2.00	4022	0.80	4161	1.05	CA3045.14	0.40	18 pin	16
7401	0.11	7485	0.68	74170	1.50	4023	0.15	4162	1.05	CA3046 14	0.50	20 pin	0.18
7402	0.11	7486	0.22	74172	6.30	4024	0.50	4163	1.05	LM380N.14	0.95	22 pin	0.22
7403	0.11	74586	0.42	74173	1.15	4025	0.15	4164	1.05	LM381N 14	1.40	24 p.n	0.24
7404	011	7489	1.65	74174	0.65	4026	1.15	4174	1.05	Lm710-14	0.30	28 pin	0.26
74 HO 4	0.23	7490	0.32	74175	0.60	4027	0.42	4175	0.98	LM711N-14	0.30	40 pin	0.37
7405	0.12	7491	0.64	74S175	1.00	4028	0.65	4194	1.05	MC1310P-14	0.88	811595	1.25
74H05	0.23	7492	0. 36	74176	0.58	4029	0.76	4404	0.48	NE555-8	0.20	811596	1.25
7406	0.22	7493A	D. 30	74177	0.58	4030	0.46	4412	0.19	NE556-14	050	811597	1.25
7407	0.22	7494	0.12	74178	1.50	4031	1.95	4428	0.38	NE25018-14	0.80	811598	1.25
7408	0.13	7495	0.50	74179	$\uparrow .50$	4032	0.88	4445	0.90	SN75110N	0.40	MICROP	OR
7409	0.13	7496	0.48	74180	0.85	4033	125	4449	0.19	SN76003N	1.60	CRYST	
7410	0.11	7497	1.90	74181	0.58	4034	1.15	4501	0.18	SN76013N	1.25	FREQ	
74 HIO	0.23	74100	0.85	74182	0.70	4035	1.00	4502	0.80	SN76023N	1.25		
7411	0.17	74104	0.39	145182	1.50	4036	2.70	4503	0.68	SN76033N	1.60	0100	3.50
74 ${ }^{\text {H11 }} 1$	0.23	74105	0.38	74 H_{183}	0.75	4037	0.85	4506	0.50	SN7647/N	2.50	0.262	3.50
7412	0.15	74107	0.24	74184	1.30	4038	0.95	4507	0.52	TAA550B	032	0.300	3.50
7413	0.24	14109	0.32	74185A	1.30	4039	2.75	4508	2.50	taabili	0.88	1000	3.25
7414	0.50	74110	0.36	74186	5.00	4040	0.58	4510	0.92	TBA120S	0.66	1.008	25
74H15	0.23	74111	0.58	74188	2.70	4041	0.12	4511	0.92	tBa64 IA	1.50	1.8432	3.50
7416	0.23	74113	0.30	74190	0.68	4042	0.67	4512	0.92	tBa800	0.78	2000	3.25
7417	0.23	74116	1.50	74191	0.68	4043	0.80	4513	1.85	tbabios	0.75	2.097	325
7420	0.11	74118	0.80	74192	0.62	4044	0.80	4514	2.30	Iba820S	0.68	2.457	3.25
7421	0.20	74119	1.50	74193	0.62	4045	1.25	4515	2.60	TCA270S0	1.60	3276	2.60
7422	0.16	74120	0.95	74194	0.62	4046	1.05	4516	0.99	t0a 2020	3.00	3579	2.60
7423	0.21	74121	0.25	74195	0.60	4047	0.85	4517	3.75	2N414	0.80	3.932	2.60
7425	0.23	74122	0.39	74196	0.72	4048	0.48	4518	0.90	voltage		4.000	2.60
7426	0.23	74123	0.38	74197	0.58	4049	0.33	4519	0.50	Regulators		4433	2.60
7427	0.24	74125	0.32	74198	1.00	4050	0.40	4570	0.95	(M300H-7099	0.75	4.915	2.60
7428	0.26	74126	0.35	74199	1.20	4051	0.72	4521	2.20	LM309K. T03	1.30	5.000	2.60
7430	0.11	74128	0.75	74221	1.30	4052	0.72	4522	1.25	UA723-14	0.32	5.068	2.60
74530	0.23	74130	0.50	74273	2.05	4053	0.72	4526	1.25	7805-10220	0.70	5.185	2.60
7432	0.22	74132	0.55	74278	1.65	4054	1.00	4527	1.40	7812-70220	0.70	5.875	2.60
7433	0.30	74134	0.38	74279	1.10	4055	1.05	4528	0.92	7815-10220	0.70	6.000	2.60
7437	0.21	${ }_{7} 7135$	0.70	74283	1.65	4060	1.00	4529	1.30	7824.T0220	0.70	6.144	2.60
7438	0.21	74136	0.52	74284	3.40	4066	0.48	4530	0.78	7905. 70220	0.78	6.553	2.60
7440	0.12	74131	0.80	74293	1.30	4067	3.25	4531	0.99	7912.T0220	0.78	8.000	2.60
7441	0.50	74141	0.55	74298	1.80	4088	020	4532	1.20	7915.T0220	0.78	8867	2.60
7442	0.40	74142	1.95	74390	1.75	4069	0.17	4534	5.20	LOW PROFILE		10000	-
7443	0.70	74143	2.50	74393	1.25	4070	0.17	4536	3.60	DIL SDCKETS		12.000	2.60
7444	0.70	74144	2.50	cmos		4071	0.17	4538	1.25	8 pin	0.09	13.516	-
7445	0.52	74145	0.55	4000	0.13	4072	0.17	4539	0.99	14		8000	
7446	0.60	74147	1.40	4001	0.15	4073	0.17	4541	1.05				
7447	0.48	74148	1.25	4002	0.15	4075	0.17	4543	1.50	LEO's			
7448	0.56	74150	0.68	4006	0.85	4076	0.84	4549	3.92				
7450	0.11	74151	0.48	4007	0.16	4077	0.21	4553	3.60		1		0.09
7451 74452	0.11 0.23	74153 74154	0.48 0.82	4008 4009	0.78 0.40	${ }^{4078}$	0.18 0.17	4554 455	1.25 0.75	YELLOW GEEE	. 1	14	O.14
7453	011	74155	0.50	4010	0.40	4082	0.18	4556	0.75	Led clip	0.2	25	0.35
7454	0.11	74156	0.50	4011	0.15	4085	0.63	4557	3.25	TMS 4030409	996-81T	DYNAMIC	RANDOM
7460	0.11	74157	0.50	4012	0.15	4086	0.63	4558	1.25	ACCESS (210	17) M	MEMOP	PIN
1470	0.25	74158	0.68	4013	0.40	4089	1.35	4559	3.95			2.76	
7472	0.22	74159	1.90	4014	0.78	4093	0.60	4560	1.98	300ms max.	access	tume 470 m	ns max, read
7473	0.25	74160	0.60	1015	0.70	4094	1.68	4561	0.72	or write cycte	time.	TL compa	ility on all
7474	0.25	74161	0.58	4016	0.40	4095	0.90	4562	5.50	inputs No pul	ull up	resistors n	needed. Low
74574	0.42	74162	0.62	4017	0.12	4096	0.90	4566	1.42	power dissipatio	ian. 350	0 mW operat	ating 0.3 r
7475	0.30	74163	0.62	4018	0.75	4097	3.30	4588	2.50	standby. Single,	e low c	apacitance c	clock.
7476	0.25	74164	0.68	4019	0.42	4098	0.95	4569	1.60	Data sheet avai	ailable		
7480	0.43	74165	0.68	4020	0.88	4099	1.40	4580	4.98	2.40 each 4-	-10\%	8-20\%	

Microcomputers are coming - ride the wave! Learn to program

Millions of jobs are threatened, but millions more will be created through the microcomputer revolution. Will YOU sink or swim? Be one of the people who welcomes computers and the end of boring jobs.
Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency - all you need to start with is a knowledge of simple arithmetic and the use of decimals. And you don't need a computer
This unique course comes as four A4 books, written by three authors well-known in the fields of microcomputing, selfinstruction and writing clear English. In 60 straightforward lessons you learn the five essentials: problem definition, flowcharting, coding the program, debugging, and preparing clear documentation
Every lesson has thought-provoking questions and we never ask for mindless drudgery. You will know that you are mastering the material and feel a rare satisfaction. Harder problems are provided with a series of graded hints, a unique and really helpful approach. So you never sit glassy-eyed with your mind a blank. First time through, you may need to read most of the hints, but you will soon learn to tackle tough programming tasks - such as writing programs for computer games, preparing graphs on an output printer, calculating compound interest

tables and estimating costs

COMPUTER PROGRAMMING IN BASIC $£ 7.50$

Book 1 Computers and what they do well; READ, DATA, PRINT; powers, brackets, variable names; LET; errors; coding simple programs
Book 2 High and low level languages; flowcharting; functions; REM and
documentation; INPUT, IF... THEN, GO TO; limitations of computers, problem definition.
Book 3 Compilers and interpreters; loops, FOR...NEXT; RESTORE; debugging arrays; bubble sorting; TAB
Book 4 Advanced BASIC; subroutines; string variables; files; complex programming; examples; glossary.

THE BASIC HANDBOOK £11.50
This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

FORTRAN COLORING BOOK $£ 5.40$

"It you have to learn Fortran (and no one actually wants to assimilate it for the good of the soul) buy this book. Forget the others-this one is so good it will even help you understand the standard, dense, boring, unintelligible texts." New Scientist.
A.N.S. COBOL
£4.40
Covers the most widely used computer language in business today. It teaches how to write a COBOL program and compile it effectively, paying proper attention to spelling, punctuation, and format.

THE ALGORITHM WRITER'S GUIDE £3.75

FLOW CHARTS \& ALGORITHMS help you present: safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions
The Algorithm Writer's Guide
explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

Cambridge Learning Enterprises

Understand Digital Electronics

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be 'phoning people by entering their name into a telephone which would automatically look up their number and dial it for you.
These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you

DIGITAL COMPUTER LOGIC AND ELECTRONICS $£ 7.00$

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer
Book 1 Binary. octal and decimal number systems; conversion between number ystems
Book 2 AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth Book
Book 3 Positive ECL: De Morgans Laws; designing logic circuits using NOR gates Book 4 R-S and J-K flip flops; binary counters, shift registers and half adders.

DESIGN OF DIGITAL SYSTEMS £11.50

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include

Book 1 Octal, hexadecimal and binary number systems; conversion between numbe systems; representation of negative numbers; complementary systems; binary mulins 20 and AND function
Book 2 OR and AND functions; logic gates; NOT, exclusive OR NAND. NOR and exclusive-NOR functions; multiple inpur gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic Book 3 Half adders and full adders; subtractors; serial and parallel adders, processors Book 4 Flip flops; shift registers: multiplication and division systems
Book fip lops, shit registers, asycunters; ring Johnson and exclusive-OR feedback counters: random access memories (RAMis) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; registe systems; control unit; program ROM; address decoding; instruction sets; instruction decoding: control programme structure
Book 6 Central processing unit (CPU): memory organization, character epresentation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming: assemblers; computers; executive programs; operating systems and time sharing.

O-LEVEL ENGLISH LANGUAGE £7.00

More and more jobs require a C-GRADE PASS, and over 250,000 people fail to get this every year. Will one of them be in your family? This new course, written by experts in a style that's serious yet fun to read, shows you how to mark your own work and compare it with the work of other people in their exam year. Set your own pace and assess your results immediately with no postal delays: watch your speed and standards improve. In Book 1 learn how you will be marked on COMPREHENSION, Book 2 covers SUMMARY
PUNCTUATION \& SPELLING, and Book 3 coaches you in the principles of COMPOSITION. Size: 3 A4 volumes totalling 250 pages.

PETION

CAMBRIDGE LEARNING ENTERPRISES, UNIT 26 ,
RIVERMILL SITE, FREEPOST, ST.IVES, HUNTINGDON
CAMBS PE17 4BR, ENGLAND
TELEPHONE: ST.IVES (0480) 67446
All prices include worldwide postage (airmail extra) If order comes to $£ 15$ or more, deduct $£ 2$
Please allow 21 days for delivery
GUARANTEE No risk to you
If you are not completely satisfied your money will be refunded when books are returned in good condition

Please send me the following books:
Computer Programming in BASIC (4 books) at $£ 7.50$
The BASIC Handbook at $£ 11.50$

Bo

Algorithm Writer's Guide at $£ 3.75$
Digital Computer Logic \& Electronics (4 books) at £7.00

Design of Digital Systems ($\mathbf{6}$ books) at $£ 11.50$
O-Level English Language (3 books) at $£ 7.00$
I enclose a *cheque/PO payable to Cambridge Learning Enterprises for f
Please charge my
(*delete where applicable)
*Access/Barclaycard/Visa/ Eurocard/Mastercharge/Trustcard Diners Club.

Account No

Signature

Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers (inc. Eire) should send a bank draft in sterling drawn on a London Bank, or quote credit card number

Name
Address

Cambridge Learning Enterprises, Unit 26, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR, England

ELEETADITVKKit

 DENSHI KITS— SPECIAL OFFER
". . . fun and entertainment as well as education"-

(EVERYDAY ELECTRONICS mag.)

The SR-3A kit (over 100 circuits) and the SR-3A de luxe kit (over 105 circuits) are available again; at little more than their 1977 prices
Circuits are constructed by plugging the encapsulated components into the boards provided, following the Instruction manual. Technical details are also given concerning each project. The components are used over and over again and you can design your own circuits too, or use the kit as a useful testing board.
No previous experience of electronics is required but you learn as you build-and have a lot of fun too. The kits are safe for anyone.

SR-3A KIT

£29.95

$$
\left(16 \frac{1}{2} \times 10 \times 2 \frac{1}{2}{ }^{\prime \prime}\right)
$$

Build over 100 projects including 3-TR reflex radio receiver, 3-TR racio eceiver with RF amplifier, 2-TR reflex radio receiver. 3-TR amplifier tor crystal mike, 3-TR amplifief for speaker/mike, 3-TR signal tracer, Morse Code trainer, 2-TR electronic organ, electronic metronome, electronic bird, electronic cat, electronic siren, electronle gun, 2-TR sleeping aid, high voltage generator, discontinuity warning device, water supply warning device, photoelectric alarming device, 3-TR burglay alarm, 3-TR water supply warning device, 3-TR water level warning device, 3-TR photoelectrle alarming device, Morse Code trainer with sound \& light, discontinuity warning device with sound \& light, water level warning devlce with sound \& light, lectronic metronome with sound \& light, buzzer with sound \& light, wireless mike, wireless telegraph set, wireless discontinuity warning device, wireess water level warning device, wireless water supply warning device. wireless photoelectric warning device etc. etc.

SR-3A de luxe KIT

£39.95
(illustrated $16 \times 14 \times 3 \frac{1^{\prime \prime}}{}$)
Similar to SR-3A, more components including solar cell and additional Speaker unit plus sophisticated control panel.
All kits are guaranteed and supplied complete with extensive construction manuals PLUS Hamlyn's "All colour" 160 page book "Electronics" (free of charge whilst stocks last).
Prices include batteries, educational manuals, free book, VAT, p\&p (in the UK), free introduction to the British Amateur Electronics Club.
Cheque/P.O./Access/Barclaycard (or 16p. for illustrated literature) to DEPT. EE.

ELECTRONI-KIT LTD. RECTORY COURT, CHALVINGTON, E.SUSSEX, BN27 3TD (032 183 579)

MINIATURE MAINS TRANSFORMERS
Top quality. Split bobbin construction will give $4.5 \mathrm{~V}-0-4.5 \mathrm{~V}$ at 250 MA . $1 \frac{1}{\prime \prime}^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{} \times 1 \frac{1}{2^{\prime \prime}}$, all sorts of uses. DNLY 90p. 3 for $\mathbf{£ 2 . 2 0}$. 1000 uf, 100 V , Radial, $1 \mathbf{f}^{\prime \prime} \times 2^{\prime \prime}$. ONLY 70p. 3 for $£ 1.50$. BD131's 4 for $£ 1.00$

SENTINEL SUPPLY, DEPT. P.E.
149A BROOKMILL RD., DEPTFORD, LONDON, SEB

FLADAR TRANSFORMERS
 PRIMARY 0-240V 50Hz

IF YOUR REQUIREMENT IS NOT FEATURED BELOW SEND FOR OUR TRANSFORMER CATALOGUE PRICE 40p

Type	Voltage	Current	£	p / p	Type	Voltage	Current	¢	p/p		
O6FE06	$6+6$	0.54 EACH	182	60p	60FE24	$24+24$	1.2A EACH	4.58	102p		
O8FE06	$6+6$	0.64 EACH	219	$60 p$	$80 \mathrm{FE24}$	$24+24$	1.5A EACH	5.66	$120 p$		
12 FEO 6	6+6	1 A EACH	2.43	72p	50FE28	$28+28$	0.75 A EACH	3.74	84 p		
20FEOG	$6+6$	16 AEACH	306	$84 p$	60 FE2 8	$28+28$	1.1 EACH	4.58	102p		
50FEO6 60FE06	$6+6$ $6+6$	3A EACH	3.74 4.58	84 $102 p$	80FE28	$28+28$	$1.4 A$ EACH	5.66	1200		
					20FE30	30+30	0. 35 A EACH		84p		
06FEO9	9+9	0.3A EACH	182	60p	50 FE 30	$30+30$	0.75 EACH	3.74	$84 p$		
O8FE09	$9+9$	0.5 EACH	219	$60 p$	60FE30	$30+30$	1 EACH	4.58	102p		
$12 \mathrm{FEO9}$	$9+9$	O.75A EACH	2.43	$72 p$	80 FE 30	$30+30$	1. 2 AEACH	5.66	120p		
$20 \mathrm{FEO9}$	$9+9$	1-5AEACH	306	$84 p$	MULTITAPRANGE						
60FEO9	$9+9$ $9+9$	$2.5 A E A C H$ $3 A$ EACH	3 4.58	$84 p$ $102 p$							
60 EO9.	$9+9$ $12+12$	0.25A			VOLTAGES AVAILABLE 3, 4, 5,-6, 8. 9, 10 ,$12.15,18,20,24,30$						
O8FE12	$12+12$	O. 3 A EACH	2.19	60 p							
12 FE 12	$12+12$	\bigcirc-5A EACH	2.43	$72 p$	60FE36		2 A	4.80	102p		
20FE12	$12+12$	$0.8 A$ EACH	3.06	$84 p$	80 E36			5.88	120p		
50FE12	$12+12$ $12+12$	1.8AEACH	3.74 4.58	$84 p$ $102 p$	CENTRETAP SECONOARY						
BOFE 12	$12+12$	3AEACH	5.66	$120 p$							
O6FE15	$15+15$	O.2A EACH	1.82	60p	O6FE30	$9-9$	-80A		${ }^{60} \mathrm{p}$		
OBFE 15	$15+15$	$0.25 A$ EACH	219	$60 p$	O8FE40	12-0-12			60 p 720		
$12 \mathrm{FE15}$	$15+15$	O.4A EACH	2.43	72 p	20 FE80	20-0-20		3.00	84 p		
20FE15	$15+15$	O.6A EACH	3.06	84 p	50 FE 80	20-0-20	2A	3.70	$84 p$		
50FE 15	15+15	1.5A EACH	3.74	84 p	60FEl00	28-0-28	2.2A	4.50	102p		
60FE 15	$15+15$	2 A EACH	4.58	102p		28-0-28					
80FE15	$15+15$	3A EACH	5.66	120p	80FETO	24-0-24	3A	5.66	120p		
O6FE20	$20+20$	O.15A EACH			90FE50	15-0-15	$6 A$ $3 A$	5.80 5.80	120 p		
12 FE 20	$20+20$	$0.25 A$ EACH	2.43	72 p	90FE80	36-0-30	3.5A	5.80 6.05	120 p		
20FE2	$20+20$	$0.5 A$ EACH	3.06	$84 p$	100 FE 28	28-0-28	3.5A	6.05	1380		
$50 \mathrm{FE2O}$	$20+20$	1. 2 A EACH	3.74	$84 p$	100 FE 30	30-0-30	3 3A	6.05	1388		
60FE2O	$20+20$	1.5A EACH	4.58	102p	100FE36	36-0-36		6.05	$138 p$		
80FE20	$20+201$	2A EAC	5.66	120p							
CHARGER TRANSFORMERS					$150 F E 15$ $150 F E 26$ $15-0-15$ $1506-0-26$		7 A	7.47	150p		
					5A	7.47	150p				
48FE 12	0-6-12	4A		102p			150 FE30	$30-0-30$ $36-0-36$	4 A	7.47	150p
66FE 12	0-6-12	5A	5.30	102p	$150 F E 42$$250 F E 28$.	42-0-42	3 A	747	150 p		
70FE 12	0-6-12	6A.	5.66	120p		250FE28 $28-0-28$ $250 F E 30$ $30-0-30$		8A	$8 \cdot 60$	175p	
90FE12	0-6-12	8A	6.75	138p					860	175p	
32FE24	$24+24$	O.2A EACH	2.43	72p	250FE42 ${ }^{\text {\| }}$ 42-0-42 ${ }^{\text {\| }}$ 5-5A			860	175p		
FLADAR ELECTRIC P.O. BOX 19 WESTCLIFF-ON-SEA ESSEX. 0702-613314			TRADE ENQUIRIES WELCOME			PAYMENT TERMS: C.W.O. Cheques, Postal Orders All Prices include 15% VAT					

"Once upon a time the oscilloscope was adequate for most development Engineers." With the advent of micro's this is not enough !!

What you now need is ...

... the complete visual development system. Softy Development Kit - £99.95 + VAT Softy Built - £119.95 + VAT

CAN YOU AFFORD TO BE WITHOUT ONE ?

SUPERBOARDII

(4k RAM)

Plastic Case

- £26 + VAT

G10 Ram expansion with 8k

- £188 + VAT

IP FD Floppy Disc Drive

- £ 312 + VAT

Additional 4 k Ram $(8 \times 2114)-£ 35+$ VAT
PAL Colour Graphics Card

- TBA

Software Cassettes from
$£ 5.50+$ VAT
(Range of 65 programs)
PLEASE NOTE, OHIO SOFTWARE WILL ONLY RUN ON OHIO PRODUCTS.

THE RADOFIN

The Radofin Teletext Decoder comes complete with remote controller and will operate with most colour or black and white television sets
The Radofin Teletext Decoder enables you to use your present TV set to receive all Teletext transmissions in your area. It is not necessary to buy or rent another TV set. You merely plug youraerial into the Radofin Teletext Decoder and a simple your aerialinto the Radofin Teletext Decoder and a simple connection beiween the Decoder and your y set gives you full Radofin Teletext service. With Teletext you get instant other subjects. And because it does not depend on the sound it is of great benefit to the deaf.
This 'State of the Art' Teletext Decoder incorporates the very latest technology and includes the following features

Double height character facility

Resolution doubled for easier viewing.
True PAL colour for faithful reproduction
Meets latest broadcast specifications by BBC and IBA
Push button channel change
Unnecessary toremove the unit to watchnormal TV programmes
Silent keys to remote controller-tone iells vou a new entry is
being made
Gold plated circuit board for long life and high reliability Stylish cabinet to suit all decors
Dimensions: Main Cabinet- 400 mm length. 205 mm depth. 105 mm height. Remote contraller- 112 mm depth, 63 mm width. 20 mm height (average) Input voltage: 240 volts $A C 50 \mathrm{~Hz}$

Ready built to plug into aerial $£ 185$ plus VAT

TOTAL AMPLIFICCAION FROM CRIMSON ELEKTRIK

——WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

STEREO PRE-AMPLIFIER POWER AMPLIFIER

CPR 1-THE ADVANCED PRE-AMPLIFIER
The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably in the disc stage. The overload inargin is a superb 40dB, this together with the high slewing rate ensures clean top, even with high outout cartridges tracking
heavily modulated records. Common-mode distortion is eliminated by an unusual design. R.I.A.A. is accurate to 1 dB : signal to noise ratio is 70dB relative to 35 mV ; distortion $<.005 \%$ at 30 dB overload 20 kHz .
Following this stage is the fiat gain/balance stage to bring tape, tuner, etc. up To power amp. signal levels. Signal to noise ration 85db; slew-rate $3 \mathrm{~V} / \mathrm{uS}$:
T.H.D. $20 \mathrm{~Hz}-20 \mathrm{kz}<008 \%$ at any level. F.E.T. muting. No controls are fitted. There is no provision for tone controls. CPR isize is $\$ 38, ~ 80,20 \mathrm{~mm}$. Supplv to be $\pm t 5$ volts.

MC 1-PRE-PRE-AMPLIFIER
Suitable for nearly all moving-coll cartridges. Send for details.
X02 : $\times 03$ - ACTIVE CROSSOVERS
$\mathrm{XO2}$ - two way. X03 - three way. Slope $24 \mathrm{~dB} /$ octave. Crossover points set to order
within 10%.

REG 1-POWER SUPPLY

The regulator module, REG 1 provides $45-0-15 \mathrm{y}$ to power the CPR 1 and MC 1 It can be used with any of our power amp supplies or our small translormer TR 6

POWER AMPLIFIERS

It would be pointless to list in so small a space the number of recording studios, amps satis and government establishments, etc. 'who have been using CfIMSON quality atsactorily for quite some time. We have a reputation for the highest gave the same specification. The power amp is avaiable in flve types, they all T.I.D. insignificant; slew rate limit $25 \mathrm{~V} / \mathrm{uS}$; signal to noise ratio 110 dB ; frequency response $10 \mathrm{~Hz}-35 \mathrm{kHz},-3 \mathrm{~dB}$; stability unconditional; protection-drives any load safely: sensitivity $775 \mathrm{mV}(250 \mathrm{mV}$ of 100 mV on request) ; size 120 . 80 . 25 mm .

POWER SUPPLIES

We produce suitable cower supplies which use our superb TOROIDAL transformers only 50 mm high with a $120-240$ primary and single bolt fixing (includes capacitors/bridge rectifier).

PRE-AMPLIFIER KIT

This includes all motalwork, pots, knobe atc. to make a complete pre-amp with the CPR 1 (S) module and the

ACTIVE CROSBOVERS XO2.......f16.16 X03........E23.58 CE $60860 \mathrm{~W} / 8$ ohms $35-0.35 \mathrm{~V}$ ES 19.52 $\begin{array}{ll}\text { CE } 1004 & 100 \mathrm{~W} / 4 \text { ohms } 35-0.35 \mathrm{v} \\ \text { CE } 100 \mathrm{E} & \mathrm{E} 19.52 \\ \text { C23.02 }\end{array}$ CE $1704170 \mathrm{~W} / 4$ ohms $45-0-45 \mathrm{v}$ €25.96 | CE $1708170 \mathrm{~W} / 8$ ohms $60-0-60 \mathrm{y}$ | E 31.00 |
| :--- | :--- | TOROIDAL POWER SUPPLIES CPS1 for 2. CE 608 or $1 \times$ CE 1004 E16.56 CES2 508. CPS3io CE t704 $2 \times$ CE 1008 or 1 , £ 18.80 CE 4704 : CPS5 for $1 \times$ CE 1008. CPS 6 for $2 \times$ CE 1704 or CE 1708 HEATSINKS Light duty, $50 \mathrm{~mm}, 2^{\circ} \mathrm{C} / \mathrm{W}$......

Medium $1.4^{\circ} \mathrm{C} / \mathrm{W}$
 Fari, 80 mm , state 120 or $240 \mathrm{v} \ldots \mathrm{E} 19.70$ Fan mounted on two drilied 100 mm heats inks. $2^{2} .4^{\circ} \mathrm{C} / \mathrm{W}$. $65^{\circ} \mathrm{C}$ max. with two 170 W
Todules. 31.05
THERMAL cúrouT, $70^{\circ} \mathrm{C}$. . £1.54

CRIMSON ELEKTRIK
1A STAMFORD STREET, LEICESTER. LE1 6NL

$$
\text { Tel: }(0533) 553508
$$

U.K.—please for dow up to 21 days

 Afl prices shown are UK only and include VAT and post. COD gop extra, £ 100 timit. Export is no problem, please write for specific quote. Send large SAE or 3 International Reply Coupons for detailed information.
istributors:

BADGER SOUND SERVICES LTD. 46 WOODSTREET, LYTHAM ST. ANNES, LANCASHIRE FY8 10G MINIC TELEPRODUKTER BOX 12035: 8.750 12
UPPSALA 12, SWEDEN

Great new Crofton Treble

 all leads and scan coil assembly.
Tubes and transformers available separately from stock.
£35.50
The unbeatable 10 " Aztec, complete and ready to go.
£85.00

THE SOUGHT AFTER

*ロHIO SUPER日OARD II *
(All prices ex VAT and Pap)
Fully constructed at £188.00

CROFTON ELECTRONICS

Crofton Electronics Limited, 35 Grosvenor Road, Twickenham, Middlesex. Tel:01 8911923

Mail Order Protection Scheme

The Publishers of 'Practical Electronics' are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owning to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.
In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with 'Practical Electronics' within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence. For the purpose of this scheme, mail order advertising is defined as:-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail order advertising are excluded.

CHIOMASOMNE Electronics
 your soundest connection in the world of components

Dept PE 1,56 FORTIS GREEN ROAD, MUSWELL HILL, LONDON, N10 3HN

ELEGTROVALUE

 CATALOCUE 10 Ready early December> Our computer has already selected thousands of our customers to whom our new catalogue has automatically been sent. If you would like a copy too, simply send us your name and address. It's

(You don't even have to pay postage)

ITS A GOODDEAL BETTER FROMELECTROVALUE

- We give discounts
on C.W.O. orders, except for a few items market Net or N in our price lists
on orders, list value £10 or more 10\% on orders list value Not applicable on Access or Barclaycard purchase orders
- We stabilise prices. by keeping to our printed price lists which appear but three or four times a year.
- We guarantee
all products brand new, clean and maker's spec. No seconds, no surplus.
(We pay postage in U.K. on C.W.O. orders list value $£ 5$ or over. If under, add 30p handling charge.
- Appointed distributors for SIEMENS, VERO, ISKRA NASCOM and many others.

OUR NEW CATALOGUE No 10

Over 120 pages. Thousands of items. Improved classification for easier selection. Valuable working information. Illustrations. Separate quick-ref price list.

ELEGTROVALUE LTD

HEAD OFFICE (Mail Orders)
28(B) St. Judes Road, Englefield Green, Egham, Surrey
TW20 OHB. Phone: 33603 (London prefix 87. STD 0784) Telex 264475.

NORTHERN BRANCH (Personal Shoppers Only) 680 Burnage Lane, Burnage, Manchester M191NA Phone: (061) 4324945.

HOME COMPUTING BARGAINS
Full keyboard, cassette interface, use your TV as a VDU:- Ohio Scientific Superboard II full price now includes frea power supply and modulator kit $\mathrm{f} 188+15 \%$ VAT fand TRS80 level 2 basic, 16 K ram, include SINCLAIR PRODUCTS
SINCLAIRPRODUCTS
PFM200 $£ 51.95$, case
£3.40, adapto £3.40, connector kit full £ 11.27. Microvision TV £91.44. mains adaptor £6.88. PDM35 £29.76, mains adaptor $£ 3.40$, case $£ 3.40$ DM350 £71.82. DM450 £ 102.17. DM 235 £52.66. Accessories for all 3 models:
rechargeable batteries $£ 7.99$, mains adap tor/charger £3.94, case £9. Enterprise prog calculator $£ 23.27$. New 10 MHz scope $£ 145$ COMPUTEA GANES
Chess challenger 7 £84. Voice challenger challenger 4 £84. Atari video computer £147. Cartridges f14.32. Star Chess E62 CONTINEINTAL
CONTINENTAL SPECIALITIES
EXP 300 £6.61. EXP350 13.62 . EXP 325 f1.84. EXP650 £4.14. EXP4B E2.64. LP2 TVGAMES
Tank battles kit £6.34. AY-3-8500 chip chip £13.63, kit $£ 4.00 .10$ game paddle 2 AY-3-8600 chip $£ 10.25$, kit $£ 7.03$. Racing car 65.28 Rifle kit 55.27 Colour gen shoo kit f9. 05 Joystick 220 K E1. 80 generato MAINS TRANSFORMERS
$6-0-6 \mathrm{~V} 100 \mathrm{ma} 76 \mathrm{p},{ }^{\frac{1}{2} \mathrm{a}} \mathrm{a}$ E2.60, 9 -0-9V 75 ma 76 p , 1a $£ 2.22,2 \mathrm{a} £ 2.89,120-12 \mathrm{~V}$ JC12 AND JCZO AMPLIFIERS
Integrated circuit audio amplifier
data and printed circuits. JC12 6 Watts f2.08. JC2O 10 Watts E 3.14
FERRANTIZN414
IC radio chip 85p. extra parts and pcb for
radio f4.10. case fi 06而
PRINTED CIRCUIT MATERIALS
PC etching kits:- economy $£ 2.32$, standard
£ 4.36 .40 sq ins pcb 660 , 1 FeC
. 130 etch resist pens:- economy 50p, dalo 84 p drill bits $1 / 32^{\prime \prime}$ or 1 mm 27 p . etching dish
89p. laminate cutter 82D
S-DECSANDT-DECS

S-Dec $£ 3.79$. T-Dec ©4.59. u-DecA $£ 4.69$

BATTERY ELIMINATORS
3 -way types with switched output and 4 way 300 ma 5314 , stud connectors $9 \mathrm{v} £ 3.57,6 \mathrm{v} £ 3.57 .41 \mathrm{v}$ $£ 3.57,9+9 v £ 4.79,6+6 v £ 4.79,4 \frac{1^{2}}{3}+$ $41 v$ ¢4.79. cassette recorder mains unit 31 100 ma with 5 pin din plug E3.57. fully stabilized type $3 / 6 / 7 \frac{1}{2} / 9 \mathrm{v} 400 \mathrm{ma}$ £5.76. car convertors 12 v dc input, output 9 V 300m 3/41/6/71/9/12v800ma E2.66.
BATTERYELIMINATOR KITS
100 ma radio types with press-stud connec
 cassette type $7 \frac{1}{2} \mathrm{v} 100 \mathrm{mb}$ with din plug $f 149$ heavy duty 13 way types $4 \frac{1}{2} / 6 / 7 / 8 \frac{1}{2} / 11 / 13 / 14 / 17 / 21 / 25 / 28 / 34 / 42 \mathrm{v}$ $1 \mathrm{~A} £ 4.95,2 \mathrm{~A} £ 7.72$. car convertor input 12
dc, output $6 / 7 \frac{1}{2} / 9 \mathrm{~V} 1 \mathrm{~A}$ stabilized $£ 1.35$ STABILIZED POWER KITS
The first price is for kit without transformer. the bracketed price includes transformer. 8 -

 100 ma £2.12 (E2.98), $1-30 \mathrm{~V} 1 \mathrm{~A} \quad$ £2.98 (£5.95), 1-30v 2A £4.98 ($£ 11.24$).
BI-PAK AUDIO MODULE
AL30A £4.O8. PA12 £8.38. PS 12 £ 1.58 PA 100 £ 17.33 . SPM 80 E4.74. BMT80 £6.08. Stereo 30 $\mathbf{C} 21.57$. MA60 E38.27.
COMPONENTS COMPONENTS
1 N4148 O.9p. 1 N4002 3.1p. 7418 dil 18 p . 72314 dil 39 p . NE555 8 dil 25p. bc 183 bc212, bc214, bc548 5p. tip31c, tip32 30p. tip41c 39p. bd131, bd 13227 p . plastic equiv bc 1075 p . fuses $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ car-
tridge $15,25, .5,1,2,3,5 \mathrm{Amp}$ quickblow trigge.15,.25, 5, 1, 2, 3. 5 Amp quickblow 10 R to 10 M 1 p . 0.8 p for $50+$ of one value. polyester capacitors $250 \mathrm{v}, 015,068$, 1 mf $4.5 \mathrm{p} .01, .033, .332 .8 \mathrm{p}, .022, .047 \mathrm{mf} 3.3 \mathrm{p}$, 22, 47 mf 4.9 p polystyrene capacitors E12 ceramic capacitors 50 V EG 22 pf to 47 n 2 p . electrolytic capacitors $50 \mathrm{v} .5,1,2 \mathrm{mf} 5 \mathrm{p}, 25 \mathrm{v}$ 5, $10 \mathrm{mf} 5 \mathrm{p}, 16 \mathrm{v} 22,33 \mathrm{mf} 5 \mathrm{p}, 47,68 \mathrm{mf}$ 3.5p, $100 \mathrm{mf} 8 \mathrm{p}, 330,470 \mathrm{mf} 9 \mathrm{p} .1000 \mathrm{mf}$ 10p. zeners 400 mW E $242 \mathrm{v7}$ to 33 v 7 p . preset pots subminiature 0.1 W horiz or vert 100 to 4 M 76 d . potentiometers 1 WW 4 K 7 to 2 M 2 log or lin single 27 p , dual 67 p . ${ }^{\mathrm{m}} \mathrm{red}$ LEDs 9.7 p . ic sockets B^{2} dil 8.7 p .14 dil
10.1 p .16 d 12 p .

SWANLEY ELECTRONICS
 DEPT PE, 32 Goldsel Rd., Swanley, Kent BR8 8 EZ.

Mail order only. Please add 30ρ to the total cost of your order for postage. Prices include VAT unless sta
welcome.

The new all British designed single board MICROCOMPUTER

SEMEL-ABACUS

IN KIT FORM

* Supplied with 16K of RAM
\star Uses the powerfull Z-80 Microprocessor
* Space for upto 32K RAM on board
\star 8K Full Basic
\star VDU Memory Mapped
$\star 64$ Characters by 16 Lines
* Tape Interface
\star Single Board Construction
\star RS 232 Printer Interface
* Plugs into a standard TV set
* Full alphanumeric Characters plus 64 User Definable Graphics
* Stabilised power supply

OPTIONAL
\star Colour Graphics
£376.50

* Expansion board to full 64 K Memory
* Analougue Interface

STRUTT

ELECTRICAL AND MECHANICAL ENGINEERING LTD.
3C, BARLEY MARKET ST., TAVISTOCK, DEVON. PL19 05F Tel: TAVISTOCK (0822) 5439 Telex: 45263

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BSR DE LUXE AUTOCHANGER

Plays $12^{\prime \prime}, 10^{\prime \prime}$ or $7^{\prime \prime}$ records

 unit backed by BSR reliability Stereo Caramic Cartridae AC 200/250V Size $131 / 2 \cdot 111 / 4 \mathrm{in}$ speeds. Above motor board $33 / \mathrm{in}$. Below motor board $21 / 21$ E20 Post \&1 60
HEAVY METAL PLINTHS ONLY

 Silver grey finish. Post $\mathbb{C} 60$ Silver grey finish £3.50Model ' B ' Size $16 \times 133 / 4 \times 3$ in

AS ONLY
$14_{1 / 2} \times 121 / 2 \times 3$ in $£ 3.50$ each
$151 / 4 \times 131 / 2 \times 4$ in $£ 4.18 \times 131 / 2 \times 4$ in $£ 6$ $171 / 4 \times 91 / 2 \times 31 / 21 \mathrm{n}$. $18 \times 121 / 2 \times 3$ in $£ 6$. Post $£ 160$
$141 / 2 \times 143 / 4 \times 21 / 21$ Rosewood sides $£ 4$.

BSR P182 3 speeds flared aluminium turntable " S " shape arm, cueing device. ceramic cartridge $£ 24$. Post $£ 160$ device Bias compensator $\mathbf{£ 2 8}$. Magnetic $\mathbf{£ 5}$ extra

GARRARD HI-FI

MINI CHANGER Model 2025

E 8.95
Post $£ 160$
B.S.R. P163 BELT DRIVE QUALITY DECK Manual or automatic play. Two
Precision balanced arm. Slide Precision balanced arm
in head, cueing device in head. cuein
Bargain price

$$
\text { £ } \mathbf{3 0} \text { Post £ } 1.60
$$

Surale magnetic cartridge $\mathbf{£ 8} .50$

ELAC HI-FI SPEAKER

 8in. TWIN CONE Large ceramic magnetBass resonance $40 \mathrm{c} / \mathrm{s}$
8 ohm impedance
8 ohm impedanc
10 watts RMS
$£ 5.95$

20 watt woote
£7.95 Post 75p
LOW VOLTAGE POWER PACK for MODELS Ready made famous make Will supply 10 volts D.C. at
400 mA With terminals and mains lead $\mathbf{£ 2 . 7 5}$ post 50 p 400 mA With terminals and mains lead $\mathbf{E 2 . 7 5}$ Post 50 p

POTENTIOMETERS
5 Kn to 2Mn. LOG or LIN //S 35p. DP 60p. tereo L/ 8 spp . DP

RELAYS. 12V DC 95p. 6V DC 85p. 24GV AC 85p
RELAYS. ${ }^{\text {BLANK ALUMINIUM CHASSIS. } 6 \times 4-85 p ; ~} 8 \times 6-$ £1.40; $10 \times 7-£ 1.55 ; 12 \times 8-£ 1.70 ; 14 \times 9-£ 1.90 ; 16 \times$ $6-£ 1.85 ; 16 \times 10$-E2.20. ANGLE ALI. $6 \times 3 / 4 \times 3 / 41$ - $20 p$. ALUMINIUM PANELS. $6 \times 4-24 p ; 8 \times 6-38 p ; 14 \times$
3-40p; $10 \times 7-54 p ; 12 \times 8-70 p ; 12 \times 5-44 p ; 16 \times$ 6-70p; 14×9-54p; $12 \times 12-$ - 12 ;16 $1610-£ 1.16$. YARICAP FM TUMER HEAD with cIrcuit \& connection Some technical knowledge required $£ 4.95$.
TAG \$TRIP 28 -way 12p.
TAPE OSCILLATOR COIL. Valve type, 35 p .
BAIDGE RECTIFIER 200 V PIV $1 / 2 \mathrm{amp} 50 \mathrm{p} .8 \mathrm{amp} £ 2.50$. TOGGLE SWITCHES SP 30p. DPST 40p. DPDT 50p
MANY OTHER TOGGLES IN STOCK. Pleese enquire. PICK-UP CARTAIDGES ACOS. GP91 £2.00. GP94 £2.50. SONOTONE SAMC BIamond 5 watt 10 watt 15 watt 15 . CASSETTE MOTOR, 6 volt $£ 1.00$. CASSETTE MECHANISM. Mono heads no motor $\mathbf{E 3 . 0 0}$

MAINS OPERATED SOLID STATE

AM/FM STEREO TUNER
001240 V AC Mans
 F.M. A.M Stereo Tuner

Covering M W.. A.M 540 1605 KHz . 88.108 MHz Ferrite rod aerial for M W FuH AFC and AGC on AM | Indicator Bull-in Pre-amps |
| :--- | with vapiable output adjust

control Max o/p Voltage 600 mVRM S into 20 K Simulated wide. Ain high x $91 / 2$ in deep approx 28 Post $£ 160$

RCS SOUND TO LIGHT KIT Mk. 2 E 18 kitor parts to build a 3 channel sound to light unit Easy to build Full instructions supplied. Cabinet $\mathbf{£ 4 . 5 0}$ extra Will operate from 200 MV to 100 watt signal

RCS "MINOR" 10 watt AMPLIFIER KIT This kit is sultable for record players. guitars. tape playback electronic instruments or small PA systems Two versions
avalable Mono, £12.50; Stereo. £20. Post 45p Specification 10 W per channel, input 100 mV . size $91 / 2 \times 3 \times 2$ in approx SAE details Full instructions supplied AC mains powered Input can be modified to sult gutar
R.C.S. STEREO PRE.AMP KIT. All parts to buld this pre-amp Inputs for high. medium or tow imp per channel
$£ 2.95$
Can be ganged to make mult-way stereo mixers
Post 35p
MAINS TRANSFORME AS

C35品
64.60
8.50

65.80
68.50
62.50

HEATEA TRANSFORMER $63 \mathrm{~V} 1 / 2 \mathrm{amp} 62.003 \mathrm{amp}$ 62.50
c 2.20

EAKERS £3.95 ea.
Globe shaped cases in high gloss mouldings ol red or green. are
Globe shaped cases in high gloss mouldings

LOW VOLTAGE ELECTROLYTICS
, 2. 4, 5, 8, 16, 25, 30, 50, 100. 200mF 15 V 10p
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} ; 420 \mathrm{mF} / 500 \mathrm{~V}$ £1.30 2000 mF GV 25p; $25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 80 \mathrm{p} ; 1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $2500 \mathrm{mF} 50 \mathrm{~V} 82 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$.
$2500 \mathrm{mF} 50 \mathrm{~V} 82 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$.
$4500 \mathrm{mF} 64 \mathrm{~V} 2 ; 4700 \mathrm{mF} 63 \mathrm{~V}$ £1.20. $2700 \mathrm{mF} / 76 \mathrm{~V}$ £ 1. $5000 \mathrm{mF} 35 \mathrm{~V} 85 \mathrm{p} .5600 \mathrm{mF} / 76 \mathrm{~V}$ £ 1.75. HIGH VOLTAGE ELECTROLYTICS
8/350V 22p $\quad 8+8 / 450 \mathrm{~V}$ 50p $\quad 50+50 / 300 \mathrm{~V} 50 \mathrm{p}$ $\begin{array}{rrrr}16 / 350 V & 30 p & 8+16 / 450 \vee & 50 p \\ 32 / 52+32 / 450 V & 75 p\end{array}$ $52 / 500 \vee 75 \mathrm{p} \quad 32+32 / 350 \mathrm{~V}$ 50p $150+200 / 275 \mathrm{~V} 70 \mathrm{p}$ MANY OTHER ELECTROLYTICS IN STOCK
SHORT WAVE 100 pf air spaced gangable tuner. 95p. TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}, 50 \mathrm{pF}, 5 \mathrm{p}$. 100 pF , 150 pF . 15 p CERAMIC, 1 pF to 001 mF . 5p. Silver Mica 2 to 5000 pF . 5p. 20p; 500v-0 001 to 0.05 12p; $0115 p ; 02525 p ; 04735 p$. MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SUB-MIN MICRO SWITCH, 25p. Single pole change ove TWIN GANG. $385+385 \mathrm{pF} 80 \mathrm{p}$; 500 pF slow motion 75 p . $365+365+25+25 \mathrm{pF}$. Slow motion drive 85p. 120 pF 50 p TRANSISTOR TWIN GANG, 50p.
NEON PANEL INDICATORS 250V. Amber or red 30p. ILLUNINATED ROCKER SWITCH. single pole Red $65 p$.
RESISTORS. 100 to $10 \mathrm{M} 1 / \mathrm{WW} .1 / 2 \mathrm{~W}$. $1 \mathrm{~W} .20 \% 2 p ; 2 \mathrm{~W} .10 p$. HIGH arability. $1 / 2 \mathrm{~W}$ 2\% 10 ohins to 1 meg . 12 p .

ELECTRO MAGNETIC

PENDULUM MECHANISM 95p posi 30p SV DC operation over 300 hours continuous on SP2 battery fully adjustable swing and speed Ideal displays

BAKER SUPERB $£ 24$

12 in 25 watt
Quality loudspeaker. low cone resonance ensures clear reproduction of the deepest tweeter cone Full range reproduction with remarkable efficiency in the uppe 3gister
Bass resonance
Usotul response
BAKER "BIG-SOUND" SPEAKERS. POSI E1 60
'GTOUP 100' 'GISCO 100' 'Group 50/15'

12 meh $\quad \mathbf{1 0 0}$ watt $\quad \mathbf{2 9}$\begin{tabular}{l}
12 inch

100 watt

 $\mathbf{£ 2 9}$

15 nch

75 watt
\end{tabular}$\quad £ \mathbf{3 5}$

BAKER LOUDSPEAKER, 12 INCH. 60 WATT.
GROUP 50/12,4 OR 8 OR 16 OHM. HI HOW
UULL RANGE PROFESSIONAL QUALITY E25 RESPONSE $30-16.000$ CPS
st $\mathbb{1} 160$
WITH ALUMINIUM PRESENCE CENTRE DOME
TEAK VENEERED HI-FI SPEAKER CABINETS
For $61 / 2$ in speaker and tweeter E8.50 Post 75
SPEAKER COVERING MATERIALS. Samples Large S A
LOUDSPEAKER CABINET WADDING 18 in wide 20p
R.C.S. 100 watt

VALVE
AMPLIFIER
CHASSIS

controls Suts all way mixing master volume treble and bass chassis is sutable speakers this protessional quality amplifier power is required for all groups. disco. PA where high quality outpur socket Produced by demand for a quality valve amplifier 100 V line output to order £10 extra Send for featlet Sultable carrying cab £21 Price $\mathbf{£ 1 0 5}$ carr $\mathbf{6 6} 00$ GOODMANS TWIN AXIOM 8 inch dual cone loudspeaker 8 ohm. 15 watt hi-fi unit $£ 10.50$.
£1.90. 3-way $950 \mathrm{cps} / 3000 \mathrm{cps}$ ch 20
£1.20. 3-WaY $950 \mathrm{cps} / 3000 \mathrm{cp5}$. E2.20.
LOUDSPEAKERS PM 3 OHM 7×4 in $£ 1.50$; $61 / 2$ in $£ 1.95$;
$8 \times 5 i n, £ 1.90$; Bin , £2.50.

PHILIPS LOUDSPEAKEA, 8 in, 4 ohms, 4 watts $\mathbf{E 2 . 5 0}$.
RICHARD ALLAN TWIN CONE LOUDSW \mathbf{B} in diameter $4 \mathrm{~W} £ 2.50$. 1 In diameter
8in diameter $4 W \mathrm{E} 2.50$. 10 in diameter $5 W$ E3.50;
MOTOROLA PIEZO ELECTRIC HORN TWEETER. £6.50

 and P.A 4 inputs speech and music 4 way mixing
Output $4 \quad 8 / 16$ ohms AC Mains Separate reble and bass controls Master volu
$£ 85$
BAKER 50 WATT AMPLIFIER
£65 Post 160

Superior quality ideal for Halls/PA systems Disco sand Groups Two inputs with Mixer Volume Controls Master Bass Treble and
Gain Controls 50 watts RMS Three loudspeaker outlets 4816 ohm AC 240 V (120 V available) Blue wording on black cabine

ALUMINIUM HEATSINKS. FINNED TYPE.
Izes 5 " $\times 4^{\prime \prime} \times{ }^{\prime \prime} 95 p$
JACK PLUGS Mono Plestic 25p; M oral 30p.
JACK PLUGS Stereo Platicic 30p; Metel 35p.
JACK SOCKETS Mono Open 20p; Clasod 25p,
JACK SOCKETS Stereo Opon 20 p .
2.5 mm and 3.5 mm JACK SOCKETS 15 p.
2.5 mm and 3.5 mm JACK PLUGS $15 p$

IN TYPE CONNECTORS
ockets 3 -pin, 5 -pin 1Op. Free Sockett 3 -pin, 5 -pin 25p
PHONO PLUGS and SOCKETS ea. $10 p$.
Free Socket for cable and an. 15 p.
Scroened Phomo Plugs ea. 15p.
TV CONVERGENCE POTS 15p tach
Values $=5,7,10,20,50,100,200,250,470,2000 \mathrm{ohms}$ MONO PRE-AMPLIFIEA. Mains operated complement amplifiers withoul low phono and tape inpur stages This free- a standing cabinet incorporates circuitry for automatic RIAA equalisation on magnetic
phono input and N AB equalisation for tape

AITKEN BROS

35, High Bridge, Newcastle upon Tyne

Tel: 063226729

EXP300

PB6 Kit

EXP300

50 contacts with two 50-point BUS ars. Size $152 \times 53 \mathrm{~mm}$. $\mathbf{2 6} .98$. PROTO-BOARD 6 KIT 630 contacts, four 5 way binding posts. accepts up to 614 pin OIPs. £10.98.

CSC LOGIC PROBES

LP-2 ECONOMY PROBE

Min. puise width 300 nanoseconds, 300 KQ input impedance, tests circuits up to 1.5 MHz . Detecting pulse rains or single-shot event in TTL. OTL. HTL, and CMOS circuits. $\mathbf{2 0 0 . 9 5}$.
LP-1 Memory Probe E36-65 LP-3 High Speed Memory Probe E58.75 CSC catalogue available. Please send 8.A.E. CALSCOPE SUPER $6 \quad £ 186.30$
A portable single beam 6 MHz bandwidth oscilloscope with easy to use controls. High gain to $10 \mathrm{mv} / \mathrm{cm}$ and wide time base range from $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$. Full specification to request. Please send S.A. E. Professional scopes you can afford. CALSCOPE SUPER $10 \quad £ 251.85$ A dual trace 10 MHz instrument of the very highest performance and quality. It has an accuracy of 3% which is achieved by the use of built-in stabilised power supplies which keep the trace rock steady over a wide range of mains fluctuations. Full specification on request. Plesse send S.A.E. TE20D TECH R.F. SIGNAL
GENERATOR

Accurately covers 120 KCS to 500 MCS in 6 bends. Oirectly calibrated. Variable RF attenuator 240 VAC. Size $140 \times 215 \times 170 \mathrm{~mm}$.
Price £52. 50 (f 50.58 to cellore).
TE22D TECH AUDIO GENERATOR
Sine \& square wave audio generator. Sine wave range - 20 cps to 20 K cps in four bands
Square wave range 20 cps to 15 K cps in four band 240 V A.C. Size $140 \times 215 \times 170 \mathrm{~mm}$.

TMK 500 MULTIMETER 30.000 o.p.v. AC volts $2 \cdot 5,10,25,100,250,500,1000$. DC volts. $0.25 .1,2 \cdot 5,10,25,100,250,1000$. DC curren $0.25 .1,2 \cdot 5,10,25,100,250,1000$. DC current
$50 \mu \mathrm{a}, ~ 5 \mathrm{MA}, 50 \mathrm{MA}, 12 \mathrm{amp}$. Resistance $0-6 \mathrm{~K}$ 50ua. 5 MA . 50 MA . 12 amp. Resistance $0-6 \mathrm{~K}$
60 MEG . 60 MEG . Decibels. -20 to +56 db Buzzer continuity test size. $160 \times 110 \times 55 \mathrm{MM}$ Batteries \& leads included. PRICE E25-95.

CSC EXPERIMENTOR BREADBOARDS
No soldering modular breadboards, simply plug components in and out of letter/number identified nickel-silver contact holes. Start small and simply snap lock boards together to build breadbosids of any siza.

SINCLAIR DM350
 $\mathbf{8 7 9 . 9 5}$ $£ 114.95$
 Size $255 \times 148 \times 40$

Size $255 \times 148 \times 40 \mathrm{~mm}$.
OM 350 3 $\frac{1}{2}$ digit display DM450 $4 \frac{1}{2}$ digit display. Both provide six functions in 34 ranges. D.C. voltage $10 \mu \mathrm{~V}$ to
 D.C. current 1 nA to 10 A . A.C. Current 1 nA to 10 A tosistance $10 \mathrm{~m} \Omega$ to $20 \mathrm{M} \Omega(100 \mathrm{~m} \Omega$ opn DM35O). Accessories for DM350 \& 450 as for OM235 below. Full spec on reques Please send S.A.E.
Sinclair PFM200 frequency meter Size $157 \times 76 \times 32 \mathrm{~mm}$.
Range 20 Hz to 200 MHz . Accessories and illustration as for
POM 35 below. $\mathbf{£ 7 . 9 5}$.

SINCLAIR PDM35

DIGITAL POCKET MULTIMETER
$D C$ volts (4 ranges) 1 mV to 1000 V AC volts 1 V to 500 V DC current (6 ranges) 1 nA to 200 MA . Resistance (5 ranges) 1Ω to 20 MEG . PRICE £34.95. AC Adaptor $£ 3.95$ de luxe padded carrying case $£ 3.50 \mathrm{MN} 1604$ Battery $£ 1.28$.
Size $157 \times 76 \times 32 \mathrm{~mm}$.
SINCLAIR DM235

BENCH-PORTABLE DIGITAL

MULTIMETER.

OC volts 14 ranges 1 mV to 1000 V AC volts 14 anges) 1 MV to 750 V AC \& DC current $1 \mathrm{\mu}$ to 1000 MA Resistance (5 ranges) 1Ω to $20 \mathrm{MEG} \Omega$. PRICE £57.95. Carrying case £9.95. AC adaptor/charger. E4.50. Rechargeable Battery Pack. £9.70 Size $255 \times 148 \times 40 \mathrm{~mm}$.

PANEL METERS

DIMS $60 \mathrm{MM} \times 45 \mathrm{MM} .50 \mu \mathrm{amp}, 100 \mu \mathrm{amp} 1 \mathrm{MA}$. $5 \mathrm{MA}, 10 \mathrm{MA}, 50 \mathrm{MA}, 100 \mathrm{MA}, 500 \mathrm{MA}$. 1 amp, 2 50-0-50~а, 100-0-100 на, 500-0-500 на. PRICE £5.95.

DESOLDERING TOOL
SUCTION PUMP
Education Establishment Orders Accepted
PHONE OR SEND YOUR ACCESS OR
BARCLAYCARD NUMBER FOR SALES OVER E 10.

FIRST

and STILL BEST!
We've been producing our Electronics Components Catalogue for over 20 years. During that time we've learned a lot, not only in the art of catalogue production but in building a business that serves the needs of constructors. Little wonder that we have a reputation second to none for our catalogue - and for the service that backs it up. Experience both for yourself. Just send $£ 1.30$ with the coupon and a catalogue will come by return of post.

TREAT
 YOURSELF for XMASI

- About 2,500 items clearly listed and indexed. - Profusely illustrated throughout.
- 128 A-4 size pages, bound in full-colour cover.
- Bargain list of unrepeatable offers included free.
- Catalogue contains details of simple Credit Scheme.
hOME RADIO (Components) LTD.,
Dept. PE., 234-240 London Road, Mitcham, Surroy CR4 3HD

Please write your Name and Address in block capitels
NAME.. $4-\infty$ ADDRESS .
\qquad 1

The opportunities in electronics, today, and for the future are limitless - throughout the world. Jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, TV and all associated equipment - can make for a varied, interesting and highly renumerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equipment coming on to the world market.

We give modern training courses in all fields of electronics - practical D.I.Y. courses - courses for City \& Guilds exams, the Radio Amateur licence and also training for the new Computer Technology. We specialise only in electronics and have over 40 years experience in the subject.

All the training can be carried out in the comfort of your own home and at your own pace.

A tutor is available to whom you can write at any time for advice or help during your work.

and a career.

COURSES AVAILABLE:-

CITY \& GUILDS CERTIFICATES IN TELECOMMUNICATIONS AND ELECTRONICS.RADIO AMATEUR LICENCE.
COMPUTER TECHNOLOGY WITH HOME TRAINING COMPUTER.

DIGITAL ELECTRONICS.BEGINNERS PRACTICAL COURSE.RADIO AND TELEVISION SERVICE.AND MANY OTHERS.

WE ARE AN INTERNATIONAL SCHOOL
SPECIALISING IN ELECTRONICS TRAINING ONLY AND HAVE OVER 40 YEARS EXPERIENCE IN THIS SUBJECT.
AND MANY OTHERS.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

Free 32 page

RS
 I

VALVE MAIL ORDER CO.
Climax House
Fallsbrook Road, London SW16 6ED
SPECIAL EXPRESS MAIL ORDER SERVICE

[^4]

A Conference and Exhibition to help you come to terms with the Second Industrial Revolution * al he WEMBLEY CONFERENCE CENTRE IANUARY 30 -FEBRUARY 1

CONFERENCE SESSIONS enable you to share the
experience of experts in the microtechnology field
A BUYERS' FORIM helps you to establish
effective criteria for selection of goods and
services.
A PROFESSIONAL DEVELOPMENT SEMINAR
inlroduces managers to the use of microprocessors in business and industry.

AN EXHIBITION where you can talk personally
with the suppliers of microtechnology products and services.
Admission to the exhibition is free. You may book
in on the spot for conference sessions, or obtain
further details of fees and a booking form from:
NOCROSVITEAS
CONFERENCE Room 821. Dorset House. Stamford Street, London. SE19LU.

J. Birkett

Radio Component Suppliers

25 The Stait, Lincoln LN2 1JF. Tel: 20767

PCPLCAPMEIOR
YHF-UHF FETS BF 256 C 4 for $75 \mathrm{p}, \mathrm{E} 304$. 4 for E 1 .
HIGH SPEED CMOS HEF 4518 BF . $55 \mathrm{p}, 5$ for f 1 .
HIGH SPEED CMOS HEF4518BF 55p, 5 for $£ 1$
50. PLASTIC BC 107-8-STRANEtSTORS untested for 60p.
50. PLASTIC PNP TRANSISTORS untested for B0p.
50. ASSORTED 2 WATT ZENERS untested © 60p.
50. T05 1 AMP S.C.R's untested for £1.
25. 5 AMP STUD MOUNTING S.C.R's untested 75 p .
10. 20 AMP STUD MOUNTING DIODES untested e EOp
20. 10 ANP-STUDTWOUNTTNGDABEE-ume6ted $60 p$
10. ASSORTED PUSH BUTTON BANKS less knobs £1.30.
$1000 \mathrm{pf} 6 \mathrm{~K} . \mathrm{V} . \mathrm{W}$. DISC CERAMICS at 6 for 20p.
FETS N CHANNEL 2N 3819 20p, 2N 4092 15p, 2N 4093 15p, 2N
4118 A 15p, 2N 4302 15p, 2N 4392-15p, 2N 4869A 15p, E111 10p.
E113 15p, VHF-UHF F3OO 2 . 1 .
300 To 75 ohm BALUM TRANFORMERS 20p each.
ELECTROIYTIC CAPACITORS 2000uf 450 v .W. $5 \frac{1_{2}^{\prime \prime \prime}}{} \times 3^{\prime \prime}$ - $£ 2.25$
TEXAS BRIDGES 100 PIV 1 amp 20p, 200 PIV 4 amp 60 p .
TEXAS BRIDGES 100 PV amp 20p, 200 PIV 4 amp $80 p$
ELECTROLNFFESZ $2350+2350$ uf $63 v . W .-5000+5000$ uf $25 v . w$., both $95 p$. HULLARD POLYESTER CAPACITORS. 1 Uf $160 \mathrm{v} . \mathrm{W}$. Werordoz-
 TANTALUM CAPACITORS . $1 \mathrm{uf} 35 \mathrm{v} . \mathrm{w} ., \mathrm{C}$. $22 \mathrm{uf} 35 \mathrm{v} . \mathrm{w} ., .38 \mathrm{uf} 35 \mathrm{v} \mathrm{w} ., .47 \mathrm{uf}$ $35 v . w ., 1$ uf $35 v . w ., 2.2 u f 35 v . w ., 3.3 u f 16 v . w ., 4.7 \mathrm{uf} 16 \mathrm{v} . \mathrm{w} ., 4.7 \mathrm{uf} 35 \mathrm{v} . w ., 6.8 \mathrm{uf}$
 25p ea. 100uf 10v.w., 150 uf 10 v.w., both 25p.
MOS PRE-AMPLIFIER I.C. TAA 320 with circuits $\mathbf{~ 3 5 p}$.
MULLARD PRE-AMPLIFIER I.C. TAA 435 with data 30p
WIRE WOUND POTENTIOMETERS 2 watt type 2 K or $10 \mathrm{~K}, 4$ watt 5 K or 100K. All 25p.
PIN PLUGAND SOCKETS with 2 metres of cable as fitted to $\mathrm{Hi}-\mathrm{Fi} 75 \mathrm{p}$.
MAINS TRANSFORMERS 240 volt input. Type 1.24 volt tapped at 14 volt 1
amp e E1.30 (P\&P 25p). Type 2. 30-0-30 voit 500 mA . \&1.30 (P \& P 25p). Type 3. 45 volt 6 amp a $\mathbf{2} .50$ (P\&P 95p). Type 4. 20 amp 1 amp Twieem 10 volt
 (P\&P 85p). Type 6
S.C.R's 10 amp type 100 PIV 28p, 400 PIV $55 \mathrm{p}, 800 \mathrm{PIV}$ 65p

PARMEKOTRANSFORMER tYpe 5082/1 ratio 1 to 4.2 40p (P\&P 15p).
TRANSFORMER 240 volt input, output 26 volt 332 mA 75p (P\&P 25p).
METAL FILM RESISTORS all 0.5% tol. $100,150,360,619,750,820,910$, $1 \mathrm{~K} 2.2 \mathrm{~K}, 3.9 \mathrm{~K}, 5.1 \mathrm{~K}, 6.2 \mathrm{~K}, 10 \mathrm{~K}, 18 \mathrm{~K}, 75 \mathrm{~K}, 150 \mathrm{~K}, 200 \mathrm{~K}, 392 \mathrm{~K}, 597 \mathrm{~K}, 600 \mathrm{~K}$, All
at 6 p each. at $6 p$ each.

Electronics Makeajob-or hobby-ofit.....

The opportunities in electronics, today, and for the future are limitless - throughout the world - jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, T.V. and all associated equipment - can make for a varied, interesting and highly renumerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equipment coming on the world market.
We give modern training courses in all fields of electronics practical D.I.Y. courses - courses for City and Guild exams, the Radio Amateur Licence and also training for the new Computer Technology. We specialise only in electronics and
 have over 40 years of experience in the subject. - Details sent without any obligation from

Wilmslow Audio

THE firm for speakers!

SEND 30p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS,
CROSSOVERS, ETC. AND DISCOUNT PRICE LIST
AUDAX * AUDIOMASTER BAKER
BOWERS \& WILKINS - CASTLE CELESTION
CHARTWELL - COLES DALESFORD
DECCA - EMI - EAGLE © ELAC © FANE
GAUSS - GOODMANS • I.M.F. ISOPHON
JR - JORDON WATTS - KEF - LEAK - LOWTHER
McKENZIE - MONITOR AUDIO \& PEERLESS
RADFORD - RAM - RICHARD ALLAN - SEAS
SHACKMAN - STAG - TANGENT - TANNOY
VIDEOTONE - WHARFEDALE YAMAHA

WILMSLOW AUDIO (Dept. P.E.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Discount Hi-Fi, etc. at 5 Swan Street

Tel. : Wilmslow 529599 for Speakers
Tel,: Wilmslow 526213 for Hi-Fi

BUILD A SYNTHESISER!

SPECIAL SKILLS SPECIAL EQUIPMENT

REQUIRED

Using Dewtront (Reg'd) PROFESSIONAL MODULES

Over 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, welltried range of Dewtron synthesiser and other effects modules Send $\mathbf{2 5}$ p for Musical Miracles Catalogue NOW!

D.E.W. LTD.

254 RINGWOOD ROAD, FERNDOWN, DORSET BH229AR

McLAREN AUDOO BY POSTAT DISCOUNT PRICES.

20w per channel Amplifier only $\mathbf{£ 5 2 . 9 5}$ Post Free

McLoren. Scotiond's leading oudio manufacłurer, offer a fully guoronteed 20 w per chonnel stereo amplifies direct trom the factory for ust $£ 52.95$ posi free. Features base, treble, volume balance controls and push button selectors tor P/U, Radio, Auxillary, Tape, Mono, Hi-filter and On/Oft Hormonic distortion better thon 0.05% ot -3dB of full rated output. Superb black finish with wood surfound. Send cheque or PO to GR International Electrontcs. Almondbank, Perthshire PHI 3NQ. Goods sent by security delivery within 21 days of recerpt Full money bock guarantee if not sotisfied, For further intormation or details of cossette players, 8 trocks, matched record deck or speakers, write or phone Mr W Lafto, Almanabank (073 883) 441

SUPER SPOT DISCO SYSTEM 2

\star Fully enclosed drive unit $\star 8$ triacs \star Fused \star Suppressed * Expandable using slave units connected via 9 way socket - Stand takes 16 Spots \uparrow Regd. Design

* Fully adjustable \star Fully isolated audio input and output sockets *

	8uilt 8 tested		Kit	

Price includes: Spot stand, Swivel spot holders, Coloured spot lamps, Sequence drive or slave unit, Fitting kit for ceiling hung \& surface or wall mounting V.A.T. Post \& Packing and Guarantee

NOBLE ELECTRONICS (PW)

26 Uloyd Street, Atrincham, Cheshire WA 14 2DE.
Tel: 061-9414510

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour T.V. Servicing
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE.

SUPERSOUND 13 HI-FI MONO

AMPLIFIER

HARVERSONIC MODEL P.A.

TWO ZERO

an ackanced solid state general purpose mono amplitier surtable Guitar. Gram, elc Fesatures 3
 noividually controited inputs (asa
input has e separate 2 stage pre-amp.l. Input i 15 mV into 47 K input 2.15 mV into 47 k (suitable for use with mic. or guitar etc.). Full mixing facilntes with luil ranie for gram. tuner, or tape etc. inputs plug into standind luil range bass \& treble controls All socket on rear of chassis for an 8 ohm or 16 ohm Outpul Output in excess of 30 watts muslc power. Very attractively finished purpose built cabinet made from black vinyl covered steel, with a brushed anodised aluminum front escutcheon. For ac mains operation $200 / 240$ volts. Size approx 121 in wide $\times 5$ in high $\times 7$ tin deep.
Special introductory price $£ \mathbf{£ 9 . 0 0}+£ 2.50$ carriage and packing.
"POLYPLANAR" WAFER-TYPE, WIDE RANGE
ELECTRO-DYNAMIC SPEAKER
Size $11 \frac{3}{3}$ in $\times 14$) in $\times 1 \frac{1}{2}$ in deep. Weight 19oz. Power handling
20 W R.M.S. (40W peak). 40 Hz -20K Hz. Can be mounted on ceilings, walls, doors, unde tables, etc, and used with or without batfle. Send S.A.E. Ior full tables, etc, and used with or without batie. Send S.A.E. for full
details. Only $\mathbb{E 8} .80$ sach $+P$. \& P. (one 90 p, two $\mathbb{E 1 . 1 0 \text {). Now }}$ available in 8 in round version. 10 watts R.M.S. $60 \mathrm{~Hz}-20 \mathrm{kHZ}$
$\mathbf{f 6 . 3 0}+\mathrm{P}$. \& P . (one 65 p , two 78 p .).

Open 9.30-5.30 Monday 10 Friday. 9.30-5 Sarturday Closed Wednesday.
Prices and specrications correct at lime of press. Subject

MAINS OPERATED SOLD STATE AM/FM STEREO TUNER
 200.240 V Mains operaled Solnd State FM A M Stereo
Tuner Covering MW AM $540-1605 \mathrm{KHz}$ VHF F FM $88-108 \mathrm{MHz}$
Buidt-in Ferrite rod aerial for
$M W$ Full $A F C$ and $A G C$ on $M W$ Full AFC and AGC on A M and FM Stereo Beacon
Lamp Indicator Bult in Pre Lamip indicator Built in Prevolitage adjustable by pre-sel contol Max o/o Voltage 600 mV R M S into 20 K Simulated Teak finish cabinet Will maich aimost any amplitier Size 8 in wide high : 9tin deep approx
Limited number only at $£ 29 \cdot 00+£ 1.50$ P. \& P
STEREO MAGNETIC PRE-AMP Sens. 3 mV in for 100 mV out 15 to 35 V neg. earth. Equ. $\pm 1 \mathrm{~dB}$ fram. 20 Hz to 20 KHz . Input
impedance 47 K Size 1 in $\times 2 \mathrm{in} \times$ fin $\mathrm{H} . \mathbf{f 3 . 2 0}+20 \mathrm{p} . \mathrm{P}$. P
Mullard LP 1159 RF-IF module 470 kHz : E2.50 + P. \& P. 20p. Full specification and connection details suppleo. output. $7-8 \mathrm{~V}+$ earth. Supplied pre-aligned, wion MHz 1.F diagram with precision-geared F.M. gang and 323 PF +323 PF A.M. Tuning geng only f.3.40 + P. \& P. 35 p .

10/14 WATT HI-FI AMPLIFIER KIT

A stylishly finished monaural amplifier with an output of 14 wetts from 2 EL84s in push-
pull. Super reproduction of pull. Super reproduction of negligible hum. Separate in-
puts for mike and gram allow ocords and announcements
 follow each other. Fully
 ransformer to match $3-1$ shrouded section wound output volume controls, and spesker and 2 independent provided giving good lift and cut. Valve line-up 2 ELE84s, ECC83, EF86 and EZ80 rectifier. Simple Instruction booklet $50 \rho+$ S.A.E. (Free with parts). All pars sold separately. ONLY $£ 18.40 \mathrm{P}$. \& P .
$£ 1.40$. Also available ready built and tested $£ 22.50 \mathrm{P}$. \& P . 1.40

WNAIR \& REXINE SPEAKERS \& CABINET FABRICS app. 54 in. wide. Our price $\mathrm{E2}$
S.A.E. for samples.

HARVERSONIC SUPERSOUND $10+10$ STEREO AMPLIFIER KIT

A really first-class Hi-FI Stereo Amplifier Kit Uses 14 transistors including Silicon Transistors in the first five stages on each channel resulting in even lower norse level with improved
sensitivity integral pre-amp with Bass. Trebie and two Volume controls. Suitable for use with Ceramic or Crystal cartridges Very simpte to modify to suit magnetic cartidge-instructions included Output stage for any speakers from 8 to 15 ohms. Compact design all parts supplied including driled metalwork. high quality ready orilled printed circuit bosrd with component identification clearly matching knobs. wire. solder, nuts. bolts-no extras to buy Simple step by step instructions enable any consiructor to build an ampitier to be proud of Brief soecincalion, Power output is watts A MS per Channel inio 5 ohms Frequency response $=3 \mathrm{aB}$ $12-30.000 \mathrm{~Hz}$ Sensitivity better than 80 mV into $1 \mathrm{M} \Omega$ Full power Treble cut approx to -16 dB Negative leadback 18 dB over man armp. Power requirements 35 V at 1 A .
Overall size 12 in wide $\times 8$ in deep $\times 2$ in high.
Fully detailied 7 page construction manual and parts list free with AMPLIFIEA KIT PUS Iarge SAE
AMPLIFIEA KIT
(Magnetic input components 33 p extra)
Magnenic
E14.95P \& P 80p
POWER PACK KIT
ع6.20 P \& P 95p
CABINET E6.20 P.

Full atter sales service

HARVERSONIC STEREO 44

A solid state stereo amplifier chassis. with an output of $3-4$ watts per channel into 8 ohm speakers Using the latest high technology integrated circuit amplifiers with buitt in short term tharmal
overload protection All componenis including fectifier smoothing capacitor. fuse. tone control. volume controls. ? pin din soofaker sockets and 5 pin din tape rec play socket are mounted on the printed circuin panel Size approx 9_{1} In. 2^{2} in . 1 In max depth Supplied brand new and tested with knobs, brushed anodisec atuminium 2 way escutchecn (10 allow the amplifier to be mounted
horizontally or vertically) at only $\mathbf{E 1 0 . 4 0 + 5 0 p} P$. \& P. Mains horizontally or vertically) at only $\mathbf{£ 1 0 . 4 0}+50 \mathrm{p}$ P. \& P . Mains
transformer with an output of 97 V a.c. at 500 mA can be transtormer with an output of 17 V a.c. at 500 mA can be
supplied at $\mathrm{E2.15}+40$ p P . P . If required. Fuil connection details supplied.

STEREO DECODER
SIZE 2". $3^{\prime \prime}$. $\frac{1}{n^{*}}$ ready buitt. Pre-algned and tested for $9-16 \mathrm{~V}$ neg. earth operation. Can be titted to almostany FM VHF radio or tuner.
Stereo beacon light can be fitted if required. Full details and instructions (inclusive of hints and tips) supplied. E8.20 plus 20p P. \& P. Stereo beacon inght if required 40 p extra.

HARVERSON SURPLUS CO. LTD.

(Dept. P.E.) 170 MERTON HIGH ST., MERTON, LONDON, S.W. 19 Tel: 01-540 3985
(Please write clearly)
PLEABE NOTE: P. A P. CHARGES QUOTED APPLY TO U.K. ONLY chamged extra.

LIGHTING \& AMPLIFIER MODULES FROM L\&B

 JUST LOOK AT THESE PRICES!SUPERIOR HIGH QUALITY LIGHTING CONTROL MODULES. ALL 1000 WATTS PER

PREAMPLIFIERS LBPA1 Stereo disc tape $\quad \pm 14.50$ LBPA2. 4 channel gen. purpose mixer E13.50 LBPA3. Stereo dlsco with mic. \quad ②7.00

- LB25 -

25 W, RMS 4Ω
$10 \mathrm{~Hz}-50 \mathrm{kHz}$
T.H.D. $0.1 \% 90 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$
$£ 8.20$

- L8310008L

3 channel Sound-Light. Zero switching, high sensitivity \& input impedance. Excellen Excellent for Excellent
disco ${ }^{\text {s. }}$. disco ${ }^{\circ}$ 4 channel sequencer. Suedo randorn with two speed controls.
Disco/band llghting 814.90 effects.

- LB31000LD 3 channel lamp dimmer. Con-
trol from full off to full on. ideal for stage lighting.

All prices include VAT. Add 50p p/packing. Quantity/trade and overseas inquiries welcome. For further information send a SAE to:

46 WORTLEY ROAD, W. CROYDON
SURREY CRO 3EB. TEL: 01-889 4138

Codesseed Electronics

PO BOX 23, 34 SEAFIELO ROAD, COPNOR. PORTSMOUTH, PO3 5BJ ELECTRONIC MAIL ORDER SPECIALISTS Now, Full 8 pec. Dovicee
LED WRISTWATCH I.C. Super value I.C. in 24 pin legless flatpack
for maximum space saving. With data. A snip at only 99p Cat. no. 208 ste package 0.1" LED WRI8TWATCH DISPLAY. Also in a 'legless flatpack' style package, this \star CASH BAVER \star Purchase one each of catalogue numbers 208 AND 209 for only C1.EO.
COM
POLARIZING FILTER MATERIAL $0.006^{\prime \prime}$ thick plastic film. Any size cut - even 1 sq. inch. Max. width 19^{n}, any length. Only 2 p per sq, inch. Cat. No. 701 .
BRIGHT ORANGE DI\&PLAY 9 digit, 7 segment gas discharge display. $0.25^{\prime \prime}$ high digits. With data 78p. Cat. No. 310.
quires additional circuitry. Supplied with data and circuit. Only $£ 3.95$. Cal meter. Re quires additional circuitry. Supplied with data and circuit, Only E3.95. Cat. No. 404. athode, multiplexed, with $0.1^{\prime \prime}$ digits. $£ 1.00$. Cat. No. 306.
MNS 314 CLOCK CHIP. A super value digital clock chip for only $\mathbf{£ 1 . 9 9 \text { . With data. }}$ Cat. No. 207.
4 DIGIT LCD. A high contrast, easy to solder display with four $0.5^{\prime \prime}$ high non multiplexed digits. f8.95 each with data. Cat. No. 206.
transformer and switches for complete clock. With data giant $0.84^{\prime \prime}$ LED display. Add GIANT LED DISPIAY, Common cathock. With data only E6.EO. Cat. No. 205. ain LED DI8PLAY. Common cathode, non-multiplexed super 4 digit LED clock WRIs TWATCH LCD 8 . A high contrast $3 \frac{1}{2}$ digit wristwatch LCD with centre colon MEMORIE8. MM2 102 static 1024 bit memories. A snip at 99p each. With data sheet. Cat. No. 102.
 board. 2 keyb ind
10 HYBRID CIRCUITS. 8 resistors and 8 capacitors built into each hybrid circuit deal values for semiconduchor circuits. Excellent for minimizing PCB componen space. 10 Hybrids for $80 p$. Cat. No. 801 .
change-over) 16p each. Momentary switches (spring loaded) wider switches (2 pole each. Mono jack sockets 23p each. Stereo jack sockets 25p each. Slide control knobs (state colour) 12p each. Rotary control knobs (push-on). Black with coloured cap state colour) 20p each.
REJECT CALCULATORE. Productionted Items
tripped down (not much wrong with some we tested) Only
104. DIEPLAY8. Untested - no guarantes) 10 seven segment LED displays. $0.127^{\prime \prime}$ digits common cathode. 10 for E1.00. Cat. No. 311.

Santige and Packing plowes add 36p. (Overseas orders add 90p)
8atiafaction guarnanteed or return for replacement or refund. send medium *ized $8 . \mathrm{A}$. E. for your free copy of our new Autumn Cirtalogua
(Inout No. 6).

Codespeed' = Design, Development and Production temme are ako at your earvice for quantity/betch production.

THE NEXT STEP FORWARD IN TIME

CASIO MEANS DIGITAL - New Lithium batteries lasting up to 5 years or more, totally eclipse most SOLAR watches

COMPUTER GAMES

Fairchild Grandstand (Microprocessor). Video Entertainment Computer. (Special offer) $£ 69.50$ UFO Master Blaster Station. Guide missiles to destroy UFO's. Score against the clock. £22.50 Grandstand 4-in-1. Calculator/Auto Race/Code Breaker (as Mastermind)/Blackjack. $£ 22.50$ Grandstand Adam. Tune Memory/Pathfinder/ Ditio (as Simon Says)/Bounce. $£ 22.50$ Amaze-A-Tron. Over 1 million mazes. 8 games. 1 or 2 players. Electronic sound effects. f 17.25 Grandstand Solitaire. Absorbing. $\quad \mathbf{1 4 . 9 5}$

CASIO CALCULATORS

AQ-2000. Clock, calendar, 2 alarms, stopwatch, time memory, countdown alarm. $\quad £ 24.95$ MO-11. Micro version of above $£ 26.95$ CO-82. Clock. 4 alarms, snooze, light. $\$ 19.95$ HQ-21. Quartz clock and calculator. $\quad \mathbf{\$ 1 0 . 9 5}$
Scientifics with non-volatile memory
FX-310 (8 digits) 50 sci functions.
$\$ 17.95$ FX-5 10 (10 digits) 50 sci functions. $£ 19.95$ FX-2600 (8) 43 sci funct. Ultra slim $£ 19.95$ FX-3200 (10) 43 sci funct. Ultra slim $\mathbf{£ 2 1 . 9 5}$ Others: FX-80 £15.95. FX-68 $£ 19.95$
Non-volatile Programmables
FX-501P 154.95
FX-502P $£ 74.95$
FA-1 Adaptor/Cassette interface

There is no present like the time

CASIO LADIES WATCHES

Superbly styled stainless steel cases, with mineral glass face, water resistant to 100 feet, LC display of hours, minutes, 10 seconds, seconds by flash, am/pm; and with day, date
and month.

86QL-10B
$\mathbf{£ 2 6 . 5 0}$

86QL-12B
£31.95
26CGL-20L
Gold plated $£ 53.25$

SUPER VALUE CHRISTMAS PRESENT

HQ-21 6 digit clock and calculator with full memory, \%. Two AA batteries last 1 year $\frac{3}{4} \times 3 \times 5 \frac{3}{8}$ inches.

ONLY $£ 10.95$

81CS-36B
LC Display of hours, minutes, seconds, day; And with day, date, month and year calendar pre-programmed to 2029.
4-5 YEAR BATTERY 1/100 second chronograph to 7 hours.
Net, lap and first \& 2nd place times. User optional 12 or 24 hour display 24 hour alarm. User optional hourly chime.
Backlight.
Mineral glass.
Stainless steel case.
Water resistant to
100f (3 at.)

WE ARE NEVER KNOWINGI.Y UNDERSOLD AND WIL TRY AND MATCH OR BEAT ANG THE: ADVERTISER HAS STOCKS

If yOU WANT A WATCH WITH
Chnume plating that mav wear off after a few months.
 may not be ahle to replace. A matule with around 2
take weeks to repair
A duhious or non existent spares service.
If you want a watch that the manufacturer doesii put his name on THEN DON T BUY A CASIŌ

GET THE MIDAS TOUCH BEFORE YOUR FRIENDS DO SUPERSWITCH Midas Touch Dimmer

 The softest touch on the brushed aluminium panel of this beautifully styled control is all that is required to switch lights on and off and to vary lighting brilliance.Touch Midas with the fingertips and the light is on. Touch again and it's off. Allow the finger to rest on the panel and the light intensity changes smoothly through a cycle from bright to dim and back again. Removing the touch during the cycle sets the lighting at the level required. Once set, this brigheness level will
on/off operations.

Meets latest BS for
RF interference.
$£ 14.95$

CASIO CHRONOGRAPHS

Constant display of hours, minutes, seconds, $\mathrm{am} / \mathrm{pm}$ and day (12 or 24 hour) Dual time (12 or 24 hour). Automatic day, date, month, year calendar pre-programmed to 2029 Chronograph measures net, lap and 1st and 2nd place times from $1 / 100$ second to 7 hours. Backlight. Mineral glass face. Guaranteed water resistant to 66 or 100 feet

NEW MODEL
95QS-32B
4 YEAR BATTERY Superbly styled brass case heavily chrome plated.
Water resistant to 66 feet.
(RRP $\mathbf{\text { fet. }}$ 27.95)
$£ 23.95$

95QS-31B
(Left)
4 YEAR BATTERY
S/S jacket. W.R. to 66 feet.
(£27.95)
$£ 23.95$
95CS-31B
(Right)
5 YEAR BATTERY Solid S/S case. W.R. to 100 feet.
(£34.95)
£29.95

(£17.95) $£ 15.95$

F-8C time/date

3 YEAR BATTERY Hours, minutes, seconds, date, day $\mathrm{am} / \mathrm{pm}$. Auto 28, 30, 31 day calendar. Backlight. Resin case/strap.
Mineral glass. W.R. to 66 feet.
(12.95) $\mathcal{L} 10.95$
NB. This watch does not

have a stopwatch.
Most CASIO products available from stock. Send 25p for illustrated brochures and membership of our CHRISTMAS CLUB. EXTRA DISCOUNTS on many items.

Dept. PE, Beaumoni Cẹntre, 164 - 167 East Rd. Cambridge CB 1_{k}^{1} DB. Tel. 0223312866

SURPLUS stocks of Electronic Components at less than wholesale prices. SAE brings free lists. Bardwell Ltd., 212 Studley Lane, Dronfield-Woodhouse, Sheffield, S185YP.

BRAND NEW PCB's, slightly imperfect due to error in Silk Screen Printing, various sizes and layout plus a few very large boards with components. Please send SAE. Portbuild Ltd.. 57 Amberwood Rise, New Malden. Surrey.

1007400 SERIES IC +100 Diodes 4148 type. Marked and Unmarked. Untested. $100+100 \mathrm{£} 1.50$. STE Ltd., UniCom Building, Edenbridge, Kent. TN 86 EW .
COMPONENTS AT SILLY PRICES. 1000 mixed resistors $\mathbf{\$ 3 . 6 0}$. SAE Lists. W.V.E.3, Craigo Farm, Tintern, Gwent.
TUNBRIDGE WELLS COMPONENTS, Bailards, 108 Camden Road, Tunbridge Wells. Phone 31803. No Lists. Enquires S.A.E.
$11 \frac{1}{2}$ E1.40. D.S. $10^{n} \times 8 \frac{1}{2}{ }^{n}$ 85p. Fibre Glass $12^{n} \times 8^{n}$
$\mathbf{£ 1 . 7 0}$. D.S. $10 \frac{1}{2}{ }^{\prime \prime} \times 7^{\prime \prime} £ 1.3^{2} .8^{\prime \prime} \times 7^{\prime \prime} £ 1.15$. Unit with 6
silicon diodes 600 V 20 amp . 8 SCRs $400 \mathrm{~V} 16 \mathrm{amp}, 6$
Vinkors, W.W. resistors etc. £6.75. 300 small components,
trans. diodes Ef.85. 7 lbs. assorted components f3.75. List
15 p refundable. Post 20 p. Insurance add 15 p.
2 Barnfield Crescent, Sale, Cheshire M33 1 NL

100 ASSORTED COMPONENTS $115 p, 100$ Resistors assorted $\frac{1}{6}$ W 75p, 10 Mains Neons 50 p, 20 Micro-switches $150 \mathrm{p}, 50$ Reed switches $\mathbf{2 0 0 p}$, 50 assorted capacitors $\mathbf{1 5 0 p}$, add 25 p P\&P. Durrants, 9 St. Marys Street, Shrewsbury, Salop.

[^5]
SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 6.60$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

VHF CONVERTOR, $45.220 \mathrm{MHz} 29-30 \mathrm{MHz}$ IF. Ideal feed HF receiver. $\mathbf{8 6 . 8 0}$, SAE details, lists other items. H. Cocks, Bre Cottage, Staplecross, Robertsbridge, Sussex. Tel: 058083-317.

CUT PRICE COMPONENTS

 SL640C D.B. modulator $\mathbf{£ 3 . 0 0 \text { . SL6BOC crystal osc. main- }}$ ${ }^{\text {taining }}$ circuit f1.50.
74154 TL $\mathbf{f 0 . 8 0 .}$
78MO6 6 volt regulator $\mathbf{f 0 . 7 0}$.
XR4136CP quad 74114 pin DIL $£ \mathbf{0 . 7 0}$.
CA3080AS op. transconductance amp. 8 pin TO5 £0.60.
SN72709DN op. amp (709) 14 pin DH £0. 20.
CMOS: 4016 £ $0.25,4047 \mathrm{£0.80}$.
VP5 5 volt DC-DC converter $\mathbf{£ 6 . 0 0}$
 adjust) £1.50.
AX121B-4 14 pin DIL relay 10 watts. 5 volt nominal coil voltage £1.12.
For orders less than $£ 5$ please add 25 p P. \& P Send to:

WIRRAL SEMICONDUCTORS,
177 Brookdale Ave.,
Greasby, Wirral, Merseyside L49 1 SR.

TURN YOUR SUAPLUS Capacitors, transistors, etc., into cash. Contact COLES-HARDING CO., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settlement.

BOOKS AND PUBLICATIONS

Why not start your own business hewinoing electaic MOTORS. A genuine opportunity to success. LARGE PROFITS. You can't help but make money if you follow the easy, step by step, instructions in our fully illustrated Manual showing how to rewind Electric Motors, Armatures and Field coils as used in Vacuum Cleaners, Electric Drills and Power Tools. NO PREVIOUS KNOWLEDGE IS REQUIRED, as the Manual covers in 13 Chapters, where to obtain all the work you need, materials required, all instructions rewind charts and how to take data etc. A gold mine of information. How to set up your home workshop and how to cost each job to your customer, $\mathbf{8 4 . 0 0}$ plus 30 p P. \& P. UK CWO. to to your customer, $\mathbf{~} 4.00$ plus $30 p$ P. \& P. UK CWO. to
INDUSTRIAL SUPPLIES, 102 Parrswood Rd., INDUSTRIAL SUPPLIES, 102
Withington, Manchester 20, Dept. PE.

ROMANIAN ELECTRONOGRAPHY, tobiscopes, electrokinesis. biogravity, hallucinophotography, dermoptics, psychotronic generators, Kirlianography. SAE $4^{\prime \prime} \times 9^{\prime \prime}$: chotronic generators, Kirli
PARALAB, Downton, Wilts.

TTL DESIGN CONSIDERATIONS

A booklet packed with information on TTL circuit building. Debouncing, decoupling, fan out, floating, buffers, open collector gates, regulators, race hazards, clocking, sinking, ground planes, cascading, simple interfacing, and much more. If you use TTL this has got to be helpful - well illustrated. 75 p inclusive of P.\&P. etc.

PAWBOOKS,

117 Blenheim Road, Deal, Kent.
ANY REOUESTEO SERVICE SHEET f 1 + Large S.A.E. Full repair data any named TV $\mathbf{£ 5} .30$ (with circuits, layouts etc.〔7). SAE brings newsletter, bargain offers, etc. AUSPEL, 76 Church St, Larkhall, Lanarks ML9 1HE.

SERVICESHEETS

BELL'S TELEVISION SERVICES for Service Sheets on Radio, Iv, etc $£ 1.00$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel: (0423) 55885.

SERVICE SHEETS from 50p and S.A.E. Catalogue $\mathbf{2 5 p}$ and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, S.A.E. H
Sussex.

BUSINESS OPPORTUNITIES

IN VIEW OF current Government moves towards free enterprise in the sale of telephones and their installation we may be presented with the largest instant growth industry opportunity of the decade. We are the largest reproduction telephone manufacturers and importers in the U.K. We wish to grasp these opportunities. You are interested in handling sales and/or installation of a wide variety of decorative telephones. You wish to grasp these opportunities. Please write for details. enclosing $2 \times 10 \mathrm{p}$ stamps for a brochure of our telephones if required, and enclosing relevant details about yourself which will be held in strict confidence. CONVERSATION PIECES, 55 Swindon Road, Cheltenham, Glos. Cheltenham 35707.

RECORD ACCESSORIES

sTYLI Cartridges for MUSIC CENTRES, \&c. FREE List No. 29 for S.A.E. includes Leads, Mikes, Phones \&c. FELSTEAD ELECTRONICS,(PE), Longley Lane, Gatey, Cheadle, Ches.SK84EE.

AERIALS

AERIAL BOOSTERS

Improves weak VHF Radio and Television reception.
B45-UHF TV, B 1 1-VHF Radio. B11A-2 metre radio. For next to the set fitting.
Price f6. S.A.E. for leaflets. ACCESS ELECTRONICMAILORDER LTD, 62 Bridge Street,
Ramsbotton, Bury, Lancs, BLO 9AG.

ACCESSORIES

INSTRUMENT CASE Steel with $\frac{t^{\prime \prime}}{}$ Alum. Heat sink moulded front panels 9 items C.K.D. $£ 1.50$ P.P. C.W.O. Tennex Ltd., Stock Road, Industrial Estate, Southend 68608.

FOR SALE

MK 14 MICROCOMPUTER, working, with P.S.U., Keyboard, and Tape interface. £45.0704-34085.
heathkit 'IM-36' Transistor - Tested, scarcely used. (Not Home-Built). £35. AVO Model ' 8 ' MK V. As New, $\mathbf{f 6 0}$. 051-355 2833.

MK14 with P.E. Cassette interface, extra RAM, Auxilliary Keyboard, loudspeaker 135 . 0934-832025. (Weston-SMare).

ISSUE 2 MK14, Cassette interface, no power supply, $£ 24$. Hinds, 109 Summerland Lane, Newton, Swansea.

COMPUKIT UK101 in full working order with extra 4 K R.A.M. $£ 355$ O.N.O. Tel: $01-6750855$.

NEW BACK ISSUES of "Practical Electronics" avallable 70 - Bell's Television Sen P.O./Cheque returned if not in stock Yorks. Tel: (0423) 55885.

EDUCATIONAL

TELEVISION 8 VIDEO SYSTEMS SERVICING

18 MONTHS full-time Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
- MONO \& COLOUR TELEVISION
- Closed circuit television
- VIDEO CASSETTE RECORDING
- digital techniques teletext
- COMPUTER \&

MICROPROCESSORS
Shortened courses for applicants with suitable electronics background.

Next session starts January 7th.
(Also available $2 \frac{1}{2}$ year course in Marine Electronics \& Radar for employment as ships Radio Officer.)
Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept. PEA1, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721.

TECHNICAL TRAINING

Get the training you need to move up into a higher pard job. Take the first step now-write or phone ICS for details qf ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics Computers: also self-build radio kits. Full details from:

ICSSCHOOLOF ELECTRONICS
Dept. Q272 Intertext House, London SW8 4UJ Tel. 01-6229911 (all hours) State if under 18

CITY \& GUILDS EXAMS

 Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Teshnicians, Radio Amateurs. Full details from:ICS SCHOOL OF ELECTRONICS
Dept. Q272 Intertext House, London SW8 4UJ Tel. 01-62299|| (all hours) State if under 18

COLOUR TV SERVICING

 Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:ICS SCHOOL OF ELECTRONICS
Dept. Q272 Intertext House, London SW8 4UJ Tel. $01-6229911$ (all hours)

State if under 18

MISCELLANEOUS

NORTHERN IRELAND. Build your own Computer. Nascom-1 Microcomputer kits. From P\&O Computers (N.I.). 81 Dublin Road, Belfast, BT2 7HF. Tel: 22010. Evenings. Donaghmore 312 Belfast 621706.
P.C. BOARDS

FOR INDUSTRY 'and' THE AMATEUR

* One off or production runs
* Assembly of P.C.Bs or kits
* Expert hand soldering
* Design service if required
* Artwork \& Photography

SEAHORSE ELECTRONICS LTD. Unit 2 Picow Farm Road Service Industry Estate, Runcorn, Cheshire. (09285) 7595

CLEARING LABORATORY. Scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.

RYDER ORGAN SYSTEM

(Wireless World)
A classical design with full-size keyboards. Couplers, capture, etc., can be included.
Cassette. p.c. boards, data, from:HIKON LTD. (P),
Woodsida Croft, Ladybridge Lane, Bolton BLI 5ED.

NO LICENCE EXAMS NEEDED

Fo uperate this miniature. solid-state Trans-mitter-Receiver Kit. Only $£ 10.70$ plus 25p P. \& P. 'Rrain-Freeze' 'en with a MINI-STROBE Electronics Kit. pucket-sized 'lightning flashes', varipreed. fur discos and parties. A mere $\mathbf{2 4 . 5 0}$ plus 25 p P. \& P. Experiment with a psychedelic DREAM I.AB. or pick up faint speech/sounds with the BIG F.AR sund-catcher: ready-made multi-function modules. \&.5 each plus 2.5 p P. \& P.
LOTA MORE: Send 25 p for lists. Prices include VAT.

BOFFIN PROJECTS

4 Cunliffe Road, Stoneleigh
Ewell, Surrey (P.E.)

SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90p. Chassis punching facilities at very competitive prices, 400 models to choose from. Suppliers only to Industry \& The Trade. BAZELLI (Dept. No. 23), St. Wilfrids, Foundry Lane, Halton, Lancaster, LA 6LT.

MAKE YOUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack (5 sheets, lines, pads, I.C. pads) $£ 1,60$. Large range of single sheets in stock at 34 p per sheet.
Ferric Chloride-1 1b bags 80p (P\&P 50p) ${ }^{-}$
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. Full in magazines by simple photographic process. Fum
instructions supplied, 2 sheets $(20 \times 25 \mathrm{~cm})$ negative paper and 2 sheers ($18 \times 24 \mathrm{~cm}$) positive film $£ 1.30$.
S.A.E. lists and information. P\&P 25p/order except*
P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE
solar cells. Batteries, Paneis, Thermoelectric Generators, heat pipes, books etc., Details; Edencombe Ltd., 34 Nathans Road, N. Wembley, Middx. HA0 3RX.

PRACTICAL ELECTRONICS P.C.B.'s

Professional quality glassfibre, Fry's roller tinned and drilled Prof 79 Auto ranging multimeter. Set of 5 pcb's $£ 8.27$ Aug. 79 Door chime $E G 140 / 3$. Set of 2 pab's $£ 1.96$
 Oct. 79 Input channel amp EP $\begin{gathered}\text { Digital temp controller EC9 E1,90 }\end{gathered}$ Nov. 79 Diamatic EC10 £2.26
Dec. 79 Digital dark room timer EG199 E1.55 pcb's £2.06
Car solid state EG192, 205, 208, 211 \& EA46 Set of 5 pcb's $£ 4.45$. Individual pcb's 96 p For full list and current pcbs please send SAE. Pcb's also produced to customers own masters. Trade enquiries welcome. Please write for quote. CWO Please.
Postige - Please add 25 p postage and packing to complete order.

[^6]
MSF CLOCK

NEW. Shows continuous Date, Hours, Minutes, Seconds, 8 digit LED - larger digits for Hours and Minutes, also parallel BCD output, auto-reset after power failure, auto GMT/BST and leap year, only $5 \times 8 \times 15 \mathrm{~cm}$, built-in 60 KHz antenna, 1000 Km range, all parts, case, printed circuit, instructions, postage etc, money back assurance, send $£ 48.80$ for the RIGHT TIME - NOW.

CAMBRIDGE KITS
45 (FA) Old School Lane, Milton, Cambridge.
ULTRASDNIC TRANSDUCERS. $\mathbf{£ 2 . 8 5}$ per pair +25 p P\&P Dataplus Developments, 81 Cholmeley Road. Reading. Berks.
P.C.B.'s FROM P.E.DESIGNS. in high quality glass fibre drilled \& tinned April 79 Phaser 90p. May 79 Sound op Switch 84p.
Autoranging Multimeter set $\mathbf{£ 5 . 6 0} \mathbf{~} \mathbf{1}$. 70 .
Sept 79 Smooth Fuzz 70p. Waveform Generator $£ 1.20$ October 79 VLF Receiver Set $£ 1.80$. Digital temp controller $\mathbf{£ 2} .00$ mixer $£ 1.00$.
For latest prices ring ($\mathbf{O 2 5 4}$) 73755 . Quotations for P.C.B.' from customers artworks send SAE, to

22 Ambleside Drive, Darwen, Lance. BB3 3BG

BOOST YQUR CAR
 RADIO witt this ASTONISHING HIGH GAIN ELECTRONICAERIAL

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer - now greatly improved and very much faster. Aerosol cans with full instructions $£ 2.25$. Developer 35p. Ferric Chloride 55p. Clear Acetate sheet for master 14p. Copper-clad Fibreglass Board approx. Imm thick £I. 70 sq. ft. Post/packing 60p. WHITE HOUSE ELECTRONICS. P.O. Box 19 Castle Drive, Penzance, Cornwall.

CABINET FITTINGS FOR

Stage Loudspeakers and Amplifier Cabs Fretcluths, Coverings, Strop \& Recess Mondles, Feet. Costors, Jocks \& Sockets, Connons, Bulgin 8 woys, Reverb Troys, Locks \& Hinges, Corners, Irim, Speoker Bolts etc.
Send $2 \times 9 p$ Stamps for samples and illustrated catalogue
ADAM HALL (P.E. SUPPLIES) Unit 3. Carlton Court. Grainger Road Southend-on-Sea, Essex.

SEEN MY CAT? 5000 Odds and ends. Mechanical. Electrical Cat. free. Whiston Dept. PRE. New Mills, Stockport.

USE A REAL KEYBOARD
BRAND NEW, BUILT \& TESTED.
PROFESSIONAL QUALITY.
60 KEYS INCLUDING CURSOR CONTROL. STEPPED ROWS, TYPEWRITER STYLE. AUTO REPEAT. UC + LC ASCII CODED. £44.75 (£53.19 inc. p. \& p. and VAT). S.A.E. for details. TIMEDATA Lid.
57 Swallowdale, Basildon, Essex.

QUALITY ELECTRONIC COMPONENTS AT LOW PRICES
Write or telephone for free pamphlet to:HARRISON BROS.
Dept. P.E. Box 55, Westcliff-on-Sea, Essex SSO 7LO
Telephone: Southend-on-Sea 32338

NICKELCADMIUM BATTERIES

 Rechargeable and suitable for fast charge HP7 (AA) £1.05SUB C $1.36, \mathrm{HPl\mid}(\mathrm{C}) £ 1.98, \mathrm{HP2}$ (D) $£ 3.02$, PP3 $£ 3.79$, PP3 charger £5:40.
All the above nickel cadmium batteries are brand new and ere guaranteed full spesc. devices. All cells are supplied complete with solder tags (except PP3). Brand new full spec.
RECHARGEABLE SEALED LEAD ACID maintenance frae batteries suitable for burglar alarms otc. $1-2$ amp hr. 6 V £4.07. 2. 6 amp hr. 6 V E5. 23.
Quantity prices avaitable on request. Data and charging cir-
cuits free on request with orders over $£ 10$ othervise 30 cuits free on request with orders over £ 10 otherwise 30 p post and handling (spacify battery type). Please add 10%
PaP in orders under $\mathrm{E} 10-5 \%$ over f (0 . VAT at the current rate should be added to total order. Cheques, Postal Orders. Mail order to:
MOLIO STA
80LID STATE 8ECURITY DEPT (PE) 10 Bradahavy
Lane, Parbold, Wigan, Lancs. Tal: 025754726.
> I.C. EXPERIMENTER'S KITS Learn about modem electronics with our new series of Kits on digital logic techniques. Each Kit contains specially selected I.C.s. Holders, Veroboard, LE. L.S, and
Available at $\mathbf{E 5} .00$ each (including P. \& P.) Available at EF .00 each (including P. \& P.)
Kit One-Gates Kit Two-Flip-Fl Kit One-Gates Kit Two-Flip-Flops
Kit Three-Shift Registers
Kit Kit Four-Counters
> AUTOMATED HOMES 69 High street, Ryton, Coventry, CV8 3FJ.

MORSE CODE TUITION AIDS
Cassette A: 1-12 w.p.m. for amateur radio examination. Cassette B: 12-24 w.p.m. for professional examination preparation. Each cassette are type C90.
Morse Key and Buzzer unit for sending practice.
Prices each cassette (including booklots) $£ 4.75$. Morse Key Prices include postage etc., Overseas Airmail $£ 1.50$ extra.

MHELELECTRONICS (Dept. PE)
12 Longshore Way, Mitton, Portemouth P04 BLs

GUITAR/PA MUSIC AMPLIFIERS

100 watt supert treble/bass overdrive. 12 months guarantes. Unbeatable at f44; 60 watt E37; 200 watt 288; 100 watt
twin channel sep. treblebass per channel E5s; 60 watt twin channel sep. treble/bass per channel 2Be; 60 watt EAS;
200 watt $\mathrm{E72}$; 100 watt four channel seo. treble/bass per channel $£ 75 ; 200$ watt E92; slavas 100 watt E32; 200 watt £80; fuzz boxes, great sound $\mathbf{2 8}$.80; bass fuzz E9. 50 ; over driver fuzz with treble and bass boosters $\mathrm{K1}$ ह. 80 ; 100 over combo supert sound overdrive, sturdy construction, castors, speakers $\$ 5 \mathrm{in}$. 100 watt $£ 35 ; 12 \mathrm{in}$. 100 watt $£ 23$; 60 watt E15.00; microphones Shure Únidyne 8 E28. Send cheque or P.O. to:
WILLIAMSON AMPLIFICATION
62 Thorncliffe Avenue, Dukinfield, Cheshire. Tel: 061-3445007 or 061-308 2064

WITIT OUALTTY KITs firom demanar

Easy-to-build, sure-fire kits with full English instructions Latest IC circuit designs

PLEASE MENTION PRACTICAL ELECTRONICS When replying to Advertistments

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for \qquad
insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

NAME .. Sendtassified Advertisement Manager
PRACTICAL ELECTRONICS
ADDRESS
(
King' Reach Tower, Stamford Street.
London SE1 9LS. Telephone 01-2615846
Rate:
20p per word. minimum 12 words. 8ox No. 60p extra.
Company registered in England. Registered No. 53626. Registered Office: King's Rcach Tower, Stamford Street, London SE1 9LS

POSITRON COMPUTERS LTD

6800 SPECIALIST SUPPLIERS

MC 6800 Microprocessing Unit
MC $6802 \mathrm{MPU}+1288$ ytes RA
MC 6810128×8 Static RAM
MC 6850 Asynchronous Communications Interface Adaptor
MC 6852 Synchronous Serial Data Adapto
MC 68 AOO 1.5 MHz Microprocessing Unit
MC 688002.0 MHz Microprocessing Unit
MK 41181024×8 Static RAM 250ns

66.95

16.95
10.95
£3.50
£3.50
£4.40
£4.40
84.40
$£ 4.40$
$\mathbf{8 4 . 9 0}$
£ 9.90
ع10.90 $£ 23.95$

MOTOROLA 6800 D2 EVALUATION KIT
This highly professional kit is an excelient introduction to the 6800 system, for the beginner. The kit comes complete with a detailed assembly guide, description of circuit operation, programkit comes complete with a detailed assembly guide, description of circuit operation, programsupply. supply

Prices include Post and Packing. Please add VAT at 15%
Cheques or P.O. with order to Dept. MC (PE), Positron Computars Lid., 39 Wigan Rd., Ashton-in Makerfield, Nr. Wigan, Lancs. WN4 9AR

PLEASE MENTION PRACTICAL ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS

MORE SCOPE FOB YOUB WONEY

KRAMER \& CO., 9 OCTOBER PLACE, LONDON, N.W.4. TeI: 01-203 2473

INDEX TO ADVERTISERS

Adam Hall (P.E. Supp Aitken Bros. A.J.D. Supplies	s) 93 -84 $-\quad 9$
Alcon Instruments	2
Astra Pak	$\rightarrow 76$
Aura Sounds	
Automated Homes	4
Barrie Electronics	74
Bib Hi-Fi Accessories	68
Bi-Pak	4,15
-Pre-Pak	
Birkett J.	86
Boffin Projects	.. 93
British National Radio \& Electronics School	85
Butterworths	46
Cambridge Kits	93
Cambridge Learning	77,76
Chromasonic Electronics	.. 81
Clef Products	84
Codespeed	90
Computer Components (Teleplay)	Cov
Crimson Elektrik	80
Crofton Electronics	0
C.R. Supply Co.	92
Davian Electronics	
Delta Tech	88
Design Engineering	89
Doram Electronics	4
Dziubas	76
Ecoscope Instruments	Ltd. 93
E.D.A.	2
Electroni-Kit	8
Electronic Mail Order	Ltd. 92
Electrovalue	82

```
Fladar
Gear T.V. Audio Centre
George, David Sales
G.R. International
Hameg
Harrison Bros
Harversons
Hiykon Ltd
Home Radio
Fladar
Gear T.V. Audio Centre
George, David Sales G.R. International
Hameg
Harrison Bros
Hiykon Ltd
Home Radio
```

```
l.C.S. Intertext
```

l.C.S. Intertext
I.L.P. Electronics

```
I.L.P. Electronics
```

Jayen Developments
Jones Electronic Supplies 74
J.W.B. Radio
Kam Circuits
Kramer \& Co
L \& B Electronics
London Electronics
Maplin Electronics
London Electronics
Maplin Electronics
Marshall A.
Metac
Mhel Electronics
Microdigital
Microsystems
Modern Book Co
Newbear
Noble Electronics
P.A.W.K. \& I. Yates
Pawbrooks
Phonosonics
P.A.W.K. \& I. Yates

Phonosonics
7495
90
llege 93Cover IV
1011
9468
8686
9553
898. 9
90Positron Computers95
87 Powell T.
Progressive Radio \qquad74
Proto Design 93
Radio Compo83
R.S.T. Valve 86
Components Cover III
Romane Electronics

Saxon Entertainments

Saxon Entertainments Science of Cambridge Science of Cambridge Scientific Wire Co.
5
45
5
45 89, 93 89, 93 89,93
72,73 89,93
72,73Seahorse ElectronicsSentinel SupplySentinel Supply
Solid State SecuritySquires, RogerStar PartsStevensons ElectronicComponentsStrutt ElectricaSwanley Electronics
VeroVideotime3
79
TandyTechnom
Tempus
Transam Component
West
Wisca Electronics2, 3
93 Williamson Ampli

MICROELECTRONICS

[^7]
 $£ 3,000$. Build it yourself for less than £750. Full specification in our catalogue.
Our catalogue even includes some popular car accessories at marvellous prices.

A 10-channel stereo graphic equaliser with a quality specification at an unbeatable price when you build it
yourself. Full specification in our catalogue.

Breadboard
and better than last year. It's

These are just some of the metal cases we stock. There are dozens of plastic ones to choose from as well. See pages 52 to 57 of our catalogue.

A massive new cataiogue from Maplin that's ever: bigger and hetter ever buy electionic ever buy electrontic components, this he one catalogue you must not be
without Over 280 with hout Over - some in full colour-It'sa comprehensive gulde to electronlic
components with components h photogiaphs and plictogtraphs and
illions and page atter page of nvaluable data

ELECTRONICSUPPLIES LTD

All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR.

Telephone: Southend (0702) 554155.
Shop: 284 London Road, Westcliff:on-Sea, Essex. (Closed on Monday)
Telephone: Southend (0702) 554000.

[^0]: - IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]:

[^2]: Retail Sales: London: 40 Cricktewood Broadway, NW2 3ET. Tel: 01 - $4520161 / 2$. Alsc 325 Edgware Raad. W2. Tel: 01 -723 4242 . Glasgow: B5 West

[^3]: Case \& tank
 Fuse holder
 Fuse 1A
 Neon switch (S1)
 Two transistor mounting kits
 Heatsink
 Transducer X1

 ## Constructor's Note

 A complete kit of parts for the Ultrasonic Cleaner can be supplied by WICCA ELECTRONIC SYSTEM LTD., ORCHARD WORKS, CHURCH LANE, WALLINGTON SURREY.

 The kit price is $£ 68.00$ plus VAT and $£ 1.81$ p\&p.

[^4]: Open daily to callers: Mon.-Fri. 9 a.m. -5 p.m. Valves, Tubes and Transistors - Closed Saturday Terms C.W.O. only • Tel. 01-677 2424-7 Quotations for any types not listed S.A.E.

 Prices correct when going
 Post and Pecking 30p per order
 All prices include VAT Tolox 948708

[^5]: 200 mixed components $£ 4$. Sole Electronics, 37 Stanley Street. Ormskirk, Lancs L39 2DH.
 T g J ELECTRONIC COMPONENTS - Quality Components sensible prices. Same day service. Send a stamped addressed envelope for full list. 98 Burrow Road, Chigwell, Essex. IG74HB.

[^6]: 14 Downham Road, Ramsden Heath Billericay, Essex CM11 1PU Telephone 0268-710722

[^7]: Published approximately on the 15 th of each month by IPC Magazines Lid., Westover House, West Quay Road, Poole, Dorset BH15 IJG. Printed in England by Chapel River Press, Andover, Hants.
 Sole Agents for Austali and New Zealand -Gordon \& Gotch (A/sial Lesid

 Subscriptions INLAND and OVERSEAS $£ 10.60$ payable to IPC Services, Oakfield House, Perrymount Road. Haywards Heath, Susser.
 Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subite of the Publishers first given, be lent, resold, hired out or otherwise disposed of by way of mutlated condition or in any unauthorised cover by way of Trade, or affixed to or as part of any publication or advertising. literaryy or pictorial matter whatsoever.

