PRACTICAL

WATCHE

LOW COST SUPERBOARD IN KIT FORM

The Compukit UK 101 has
everything a one board 'superboard' should have.

* Uses ultra-powerful 6502 microprocessor
- 50 Hz Frame retrest for steady clear picture (U.S.A. products with 60 Hz trame refrest always results in jittery displays)
* 48 chars by 16 lines - 1 K memory mapped video system providing high speed access to screen display enabling animated games and graphs.
* Extensive 256 character set which includes ful upper and lower case alphanumerics. Greek symbols for mathematical constants and numerous graphic characters enabling you to torm almost any shape you desire anywhere on the screen
- Video output and UHF Highgrade modulator 18 Mz Bandwidth) which connects direct to the aerial socket of your T.V. Channel 36 UHF
* Fully stabilised $5 V$ power supply including trans. former on board
* Slandard KANSAS city tape intertace providing high reliability program storage - use on any standard domestic tape or cassette recorder.
* 4 K user RAM expandable to 8 K on board $£ 49$
* 40 line expansion interface socket on board for *tachment of extender card containing 24K RAM and disk controller. (Ohio Scientitic compatible).
disk 6502 machine code accessible through powerful 2 K machine code monitor on board.
* High quality thru plated P.C.B. with all I.C. s
mounted on sockets
* Prolessional 52 Key keyboard in 3 colours - solt. ware polled meaning that all debouncing and key decoding done in software
COMMANDS
CONT LIST
STATEMENTS NEW NULL RUN
CLEAR DATA DEF DIM END FOR GOTO GOSUB IF GOTO IF. THEN INPUT LET NEXT ON.GOTO ON.GOSUB POKE PRINT REAL
REM RESTORE RETURN STOP EXPRESSIONS
OPERATORS
I.1 NOT.AND.OR. $\rangle\left\langle\rangle\rangle=\left\langle=\right.\right.$ RANGE $10^{-32} 1010^{+32}$ VARIABLES
A.B.C. Z and two letter variables

The above can all be subscripled when used in an array String variables use above names plus $\$$.e.g.A $\$$

-8k Microsoft Basic means conversion to and from Pet, Apple and Sorcerer easy. Many compatible programs already in print. SPECIAL CHARACTERS
@ Erases line being typed, then provides carriage return, line feed.

Erases lasi character typed.
CR Carriage Return - must be at the end of each line.

Separates statements on a line.
CONTROLC Execution or printing of a list is interrupted at the end of a line.
"BREAK IN LINE XXXX" is printed, indicating line number of next statement to be executed or printed.
CONTROL/O No outputs occur until return made to command mode. If an Input statement is encountered. either another CONTROLIO is typed, or an error occurs.

COLOUR ADD-ON CARD AVAILABLE SOON

Enables you to choose your foreground the background colour anywhere on the screen. Flash any character on the screen at will. Full documentation and parts in kit form.

12"BLACK \& white LOW COST VIDEO

monitoa

SYSTEM £138 , vax

Atari's Video Computer System now ofters more than 1300 different game variatlons and options in twenty great Game Program ${ }^{\text {TM }}$ cartridges! Have fun while you sharpen your mental and physical coordination. You can play rousing, challenging, sophisticated video games, the games that made Atari famous.
You'll have thrill ater thrill, whether you're in the thick of a dogfight, screeching around a
racetrack, or dodging asteroids in an alien galaxy. With crisp bright colour (on color TV) and Incredible, true-to-life sound effects. With special circults to protect your TV.
Cartridges now availabie All at $£ 13.90$ each + VAT Basic Maths, Airsea Battle, Black Jack, Breakout, Surround, Spacewar, Video Olympics, Outlaw, Basketball, Hunt $\&$ Score ${ }^{\circ}$, Space War, Sky Diver, Alr Sea Battle Codebreaker *, Minlature Golf

Extra Paddle Controllers - $\mathbf{£ 1 4 . 9 0 + \text { VAT }}$

- Keyboard Controllers $-\mathbf{~} 16.90+$ VAT

SHORT C12 CASSETTES for COMPUTER PROGRAMMES 10 for $£ 4.00$

-12" diagonal video monitor
Composite video input

- Compatible with many computer systems - Solid-state circuitry for a stable \& sharp picture
- Video bandwidth . $12 \mathrm{MHz}+30 B$
- input impedance . 75 Ohms
- Resolution. 650 lines Minimum In Central 80% of CRT; 550 Lines Minimum beyond
central 80%.

Onily $\mathbf{£ 7 9}+$ VAT

Simple Soldering due to clear and consise instructions compiled by Dr. A.A. Berk, BSc.PhD

NO EXTRAS NEEDED JUST HIT

'RETURN' AND GO.

Build, understand, and program your own computer for only a small outlay.

KIT ONLY £219 + VAT
including RF Modulator \& Power supply. Absolutely no extras.

Available ready assembled and tested, ready to go for £269 + vat

FUNCTIONS
ABS(X)
LOG(X) AIN(X) FRE (X) SQR(X)
$\begin{array}{ll}\text { FRE }(X) & \operatorname{INT}(X) \\ \operatorname{SGN}(X) & \operatorname{SiN}(X)\end{array}$ USR(I)
STRING FUNCTIONS
 RIGHT\$ $\times \$.1$)
$\operatorname{LEN}(X \$)$ MIDS(X\&I.J) VAL(X\$)
$\cos (x)$

STR\$(X)
POS(I) RND(X) TAN(X)

Please add VAT to all prices - Delivery at cost, will be advised at time of purchase. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order quoting BARCLAYCARD, ACCESS, DINERS CARD or AMERICAN EXPRESS number.
CREDIT FACILITIES ARRANGED - send S.A.E. for application form.
14 Station Road, New Barnet, Hertfordshire, EN5 1QW Telex: 298755 TELCOM G Telephone: 01.441 2922 (Sales) 01.449 6596
OPEN • $10 \mathrm{am} \cdot 7 \mathrm{pm}$ - Monday to Saturday
㭗 NOW OPEN ALL DAY SUNDAY - For Shop Sales Only 步
Close to New Barnet BR Station - Moorgate Line.

COMPUTER COMPONENTS

VOLUME 15 No. 12 DECEMBER 1979

CONSTRUCTIONAL PROJECTS
EPROM PROGRAMMER-1 by A. A. Berk B.Sc., Ph.D.
Memory-mapped peripheral for the 2708 family 24
ULTRASONIC BURGLAR ALARM by Gilbert Davies
Versatile movement detection system 34
DIAMATIC-2 byJ. R. W. Ames B.Sc. and W. L. Blyth B.Sc.
Programmable Audio Visual Unit, construction and setting up 40
COST-A-CALL CALCULATOR by A. P. Don/eavy
Keep a check on your phone bill 65
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles Z8000 7110 AY-3-1350 23
MICROBUS by D.J.D.
Seven programs/variations for Mk 14 68
INGENUITY UNLIMITED
Audio Millivoltmeter-Hex Keyboard For SC/MP—Tele-Games Mod—DC/DC Voltage Multiplier 72
NEWS AND COMMENT
EDITORIAL17
MARKET PLACE
New Products 18
COUNTDOWN 29
POINTS ARISING
Digital Temperature Controller-6 Channel Mixer 29
PATENTS REVIEW
Precipitation Sensor-Liquid Magnet 30
SPACEWATCH by Frank W. Hyde
UKIRT-Shuttle Schedule 39
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 47
SEIKO WATCH OFFER 61
READOUT
A selection of readers' letters 62
NEWS BRIEFS
Prestel testing the international market 70
INDEX FOR VOLUME 15 78

SPECIALSUPPLEMENT

SOLID STATE CAR INSTRUMENTS by Michael Tooley B.A. and David Whitfield B.A., M.Sc.48. No. 3 Ammeter-No. 4 Temperature Gauge-No. 5 Dwell Meter-Hazard Warning and Cascading

> OUR JAN UARY ISSUE WILL BE ON SALE FRIDAY, 14 DECEMBER 1979
> (for details of contents see page 33)

[^0]
WATIORN ELEETRONICS

33/35, CARDIFF ROAD, WATFORD, HERTS, ENGLAND

ALL OEVICES BRAND NEW. FULL SPEC. AND FULLY GUARANTEED. ORDERS DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/P.O.: OR BANKERS DRAFT WITH ORDER. GOVERNMENT ANO EDUCATIONAL INSTITUTIONS OFFICIAL ORDERS ACCEPTED. TELEPHONE OROERS BY ACCESS NOW ACCEPTED (Minimum order f10.00 please). TRADE AAD EXPORT MNOUIRY WELCOME. P \& P ADD 30p TO ALL ORDERS UNDER c10-00. OVERSEAS ORDERS POSTAGE AT COST.								
IAT Export orders no VAT. Applicable to U.K. Customere only. Uniess stated otherwies, all prices are exclusive of VAT. Please add 15% to the total coen.								
We tock many more items. It pays to visit us. We are situased behind Wetford Footbeli Ground. Neareti Underground/Br, Rail Station: Warford High Street. Open Mondey to Saturday 9 a.m. $\mathbf{~} 6$ p.m. Ample Free Car Parking apace available.								
POLYESTER CAPACITORS: (Axial Lead Type) $400 \mathrm{~V}: 1 \mathrm{nF}, 1 \mathrm{n5}, 2 \mathrm{n} 2,3 \mathrm{n} 3,4 \mathrm{n7}, 6 \mathrm{n} 8,10 \mathrm{n}, 15 \mathrm{n}, 9 \mathrm{p} ; 18 \mathrm{n} 10 \mathrm{p} ; 22 \mathrm{n}, 33 \mathrm{n} 11 \mathrm{p} ; 47 \mathrm{n}$, 6Bn 14p; 100 n 17p; $150 \mathrm{n}, 220 \mathrm{n} 24 \mathrm{p} ; 330 \mathrm{n}, 470 \mathrm{n} 41 \mathrm{p} ; 680 \mathrm{n} 48 \mathrm{p} ; 1 \mu \mathrm{~F} 64 \mathrm{p} ; 2 \mu 282 \mathrm{p}$. 160 V : $10 \mathrm{nF}, 12 \mathrm{n}, 39 \mathrm{n}, 100 \mathrm{n}, 150 \mathrm{n}, 220 \mathrm{n}$ 11p; $330 \mathrm{n}, 470 \mathrm{n}$ 19p; 680n, 1 $\mu \mathrm{F}$ 22p; $2-2 \mu \mathrm{~F}$ 32p; 4.7 μ F 36p. 1000v: IOn. 15n 20p; 22n 22p; 47n 28p; 100n 38p; 470n 53p; 1 $\mu \mathrm{F}$ 175p.								
POLYESTER RADIAL LEAO CAPACITORS: 250V: $10 \mathrm{n}, 15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n} 5 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}, 100 \mathrm{n} 7 \mathrm{p} ; 150 \mathrm{n} 10 \mathrm{p} ; 220 \mathrm{n}$, 330n 13p; 47 On 17p; 680n 19p; $1 \mu 22$ p; $1 \mu 5$ 30p; $2 \mu 234$ p.				$\begin{aligned} & \text { ULTRAS } \\ & \text { TRANSD } \\ & 40 \mathrm{KHZ} 35 \end{aligned}$				
LLECTROLYTIC CAPACITORS: Axial lead iype (Values are in μ F). 								
$100050 \mathrm{p} ; 40 \mathrm{~V}: 22,33 \mu \mathrm{~F} 8 \mathrm{p} ; 10012 \mathrm{p} ; 2200,330085 \mathrm{p} ; 4700 \mathrm{98p} ; 35 \mathrm{~V}: 10,337 \mathrm{p}$; 330. $47032 \mathrm{p} ; 100050 \mathrm{p} ; 25 \mathrm{~V} ; 10.22 .47 \mathrm{fp} ; 80,100,160 \mathrm{8p} ; 220,25013 \mathrm{p} ; 470,640$ 								
TAG-END TYPE: 450V: 100 uF 180n: 70V: 4700 765o: 64V: 2500 98p: 3300 130p: 50V: 2200 99p; 3300 105p; 40V: 15,000 399p; 4700 120p; 4000 92p; 3300 93p; 2500 85p; 2200 85p; 2000 + 2000 120p; 30V: 4700 90p; 25V: $6400105 p ; 470085 p ; 3300$								
35V: $0.1 \mu \mathrm{~F}, 0.22,0.33,0.47,0.68,1.0$, $2 \cdot 2 \mu \mathrm{~F}, 3 \cdot 3,4.7,6.8 .25 \mathrm{~V}: 1.5,10$. 20 V : 1.5μ. 16V : $10 \mu \mathrm{~F}$ 13p each. 16V: $15 \mu, 2225 \mathrm{p}$; 47, 100, 22040 p . 10V: $15 \mu, 22.3320 \mathrm{p}$; 100 35p; 6V: $47 u .68,100$ 30p; 3V: $10020 p$.								
		Carbon Track. 0.25 W Log 80.5 W						
		Linear values. 5 K (LIN ONLV Single						
		$5 \mathrm{~K} \Omega-2 \mathrm{MQ}$ single gang						
		$5 \mathrm{~K} \Omega-2 \mathrm{M} \Omega$ single gang D / P switch $5 \mathrm{~K} \Omega-2 \mathrm{M} \cap$ dual gang stereo						
MYLAR FILM CAPACITORS 100V: $0.001,0.002,0.005,0.01 \mu \mathrm{~F}$ $0.015,0.02 .0 .03,0.04,0.05,0.056 \mu \mathrm{~F}$ 7p$0.1 \mu \mathrm{~F}, 0.210 \mathrm{p} . \quad 50 \mathrm{~V}: 0.47 \mu \mathrm{~F} \quad 12 \mathrm{p}$								
		SLIDER POTENTIOMETERS $0.25 \mathrm{~W} \log$ and linear values 60 mm rack 5 KO 500 kO Single gang $10 \mathrm{~K} \Omega 500 \mathrm{~K} \Omega$ Dual gang Self-Stick graduated Alum. 8 erels						
CERAMIC CAPACITORS 50V Range: 0.5 pF to 10 nF $15 n$ F, $22 n \mathrm{nF}, 33 \mathrm{nF}, 47 \mathrm{nF} 5 \mathrm{p} \quad 100 \mathrm{nF} 6 \mathrm{p}$								
POLYSTYRENE CAPACITORS: 10pF to $1 \mathrm{nF}, 6 \mathrm{p}$. 1.5nF to 47 nF 10p.					O.2	100n-3.3N $250 \mathrm{M}-4 \mathrm{M}$		$0 p$
$\begin{aligned} & \text { SILVER MICA (pF) } \\ & 3.3,4.7,6 \cdot 8,8.2,10, \\ & 12,18,22,27,33,39, \\ & 47,50,68,75,82,85, \\ & 100,120,150,180, \\ & 200,220,9,300,330, \\ & 250,270,4300,600 \& \\ & 360,390,470,600 \\ & 820 \mathrm{pF} \\ & 16 p, \text { each. } \\ & 1000,2000 \mathrm{pF} \\ & \text { 20p. } \end{aligned}$	TRIMMERS miniature							
	2.5pF; 3-10pF; 3-30pF: 3-50pF 22p 5-25pF: 65pF 88pF 30p		Miniature High Stability, Low Noise RANGE Val 1-99 100+					
			0.5 W 20	$\begin{aligned} & E 24 \\ & E_{12} \\ & 1 \cdot 5 p \\ & 2 p \end{aligned}$				
			1 w 20	E12				
	COMPRESSION		2\% Metal Film 10n-1M					
			1\% 0.5W 510					
	$\begin{array}{ll}25-200 \mathrm{pF} & 33 \\ 100-500 \mathrm{pF} & 45\end{array}$		100 - price applies to Resistors of asch type not mined values.					

 \qquad

ANTEX Soldering

CMOS
(CONT.)

ถi 	内Nin

8

45

WATFORD ELECTRONICS

(Continued from opposite side)

OHIO SUPERBOARD II Only £188.00 ex stock
es, we are now selling this single board microcomputer at only £188,00. Due to the recent devaluation of US Dollar against f Sterling, we have been able to purchase Superboards at lower price. Naturally, we wish to pass this price advantage on to our customers. Buy now to avold disappointment should Mrs. Thatcher \& Co. decide to devalue the pound.
Superboard II is supplied fully assembled and tested to British T.V. spec. Requires +5 V at 3 A and a Video Monitor or TV with RF Converter to be up and running. (Data sheet supplied. We can also supply the RF Converter and Power Supply in kit form or ready-built)
8k Microsoft BASIC IN ROM. 4k Static RAM on BOARD expandable to 8k. Full 53 Key Keyboard with Upper/Lower Case \& user programmability and a lot more. See it for yourself.
Continuous demonstration on at our retail shop.
Specially designed case for Suderboard available at $£ 25.00$.

1.008 MHz	$323 p$	10 MHz	323 p	
1.03 MHz	10.7 MHz	323 p	UHF Modulator 250 p	

UHF Modutator $\mathbf{2 5 0}^{50}$.
Wide Bandwid
Computer $470 p$.
Full Ascii KEY8OARD Model 756
Low cost, ready-built, tested \& Guaranteed. Full technical details supplied. Only $\mathbf{4 9 . 7 5}$

KEYPADS

4×4 matrix, push button reed seliable. Only 450p.
TRANSFORMERS (mains Prim. 220-240V) 6-0-8V $100 \mathrm{~mA}: 9-0-9 \mathrm{~V}$ $75 \mathrm{~mA}: 12-0-12 \mathrm{~V}$ 85 mA : $6 \mathrm{~V}-5 \mathrm{~A}$ 6V-.5A; $9 \mathrm{~V}-4 \mathrm{~A}$ 9V-4A: 8VA type: 6V-5A 6V-.5A; 9V-.4A 9V-.4A: $12 \mathrm{~V}-3 \mathrm{~A} ~ 12 \mathrm{~V}-3 \mathrm{~A}: 15 \mathrm{~V}-25 \mathrm{~A} 15 \mathrm{~V}-25 \mathrm{~A} 195 \mathrm{p}$.
$12 \mathrm{VA}: 4.5-1.3 \mathrm{~A} \quad 4.5 \mathrm{~V}-1.3 \mathrm{~A}: 6 \mathrm{~V}-1.2 \mathrm{~A} 6 \mathrm{~V}-$

 $12 \mathrm{~V}-1 \mathrm{~A} \quad 12 \mathrm{~V}-1 \mathrm{~A}$; 15-.8A 15.-8A; 20V-.6A $20 \mathrm{~V}-6 \mathrm{~A}$ 290p (45p p\& p)

 2A 12V-2A: $15 \mathrm{~V}-1.5 \mathrm{~A}$ 15V-1-5A: 20V-1.2A $20 \mathrm{~V}-1 \cdot 2 \mathrm{~A}: 25 \mathrm{~V}-1 \mathrm{~A} 25 \mathrm{~V}-1 \mathrm{~A} ; 30 \mathrm{~V}-8 \mathrm{BA} 30 \mathrm{~V}-8 \mathrm{~A}$ | $350 p(50 p p l p)$ |
| :--- |
| $15 \mathrm{~V}-3 \mathrm{~A}$ |
| $\mathrm{~V}-3 \mathrm{~A}$ | $100 \mathrm{VA}: 12 \mathrm{~V}-4 \mathrm{~A} \quad 12 \mathrm{~V}-4 \mathrm{~A}: 15 \mathrm{~V}-3 \mathrm{~A}$ ($15 \mathrm{~V}-3 \mathrm{AA}$: $20 \mathrm{~V}-2 \cdot 5 \mathrm{~A} \quad 20 \mathrm{~V}-2.5 \mathrm{~A}: 30 \mathrm{~V}-1 \cdot 5 \mathrm{~A} 30 \mathrm{~V}-1.5 \mathrm{~A}$

$40 \mathrm{~V}-1.25 \mathrm{~A} 40 \mathrm{~V}-1.25 \mathrm{~A}: 50 \mathrm{~V}-1 \mathrm{~A} 50 \mathrm{~V}-1 \mathrm{~A}$ 650 p $160 \mathrm{p} p \&$ (N.B. P\& P charge to be added above our normal (N.B. P\& © char
postal charge.)

Why wait for a kit computer when you can buya fully built and tested Superboard III off the shelf? SUPERBOARDII (4k) - £188 + VAT

Europes lowest cost $8 k$ Basic in Rom Microcomputer

* Guaranteed no flicker * No bother, fully built and tested
* No extra's except "volts ' n ' amps'

YOU CAN'T LOOSE - DON'T BE LEFT BEHIND
IF YOU DON'T OWN A MICRO ALREADY !!

SPARKRITE X5 is a high pearformance top curality uxdective

 Sparkrote circut elmumates aposiblems of the contact brepaker Thume' is ine nusfire' (itu' tos contact breaker bexumes whelt Ise thomanaterd elecir omically ly a pulst' suppuie'Ssi(3n circuat whach preverats tix tunit firme if the
 Contact breaker bum in is ellimmate ed by

 circent wotheh allesws the conl a fomenel
 chacharementor the pheses The inht methethe. buill mstatic: timmefleyht systo lught and sercurity diamereiven switeh Will work all revivimaters

Fits all 12 v negative-earth vehicles with coil/distributor ignition up to 8 cylinders
THE KIT COMPRISESEVERYTHINGINEEDED

base and heat smk coul mountmg cipps amd accerssorıe's All kit components are cuar autexed for apur ;ixd of 2 years from date of purchase Fully illustraledassembily amel mstallatum msiructions are included

$$
\begin{aligned}
& \text { ELECTRONIC IGNTTION } \\
& \text { Easign Associatos, Dopr. PE1179, } 82 \text { Bath St., Waleale }
\end{aligned}
$$

Electronics Design Associates, Dept: PE1279
82 Bath Street, Walsall, WS 1 3DE. Phone: (0922) 614791
Name
Addres

inc. VA I. and PP.

X5KIT $£ 16.95$	
acciss onantity recoo.	

I encose cheque PO's to

E

Cheque No.
Send SAE if brocture ontr requíed

S.\&R. BREWSTER LIMITED

WHY PAY MORE?

for Miniature Soldering Irons \& Accessories

$\because R \cdot B$.18 watt Soldering Iron available in 12,110\& 240 Volts. fitted with No. 20 bit	. 64.43	P Enrit EACH $+\quad 24 p$
SPARE BITS	No. 19 size 1.5 mm or No. 20 size 3 mm or No. 21 size 4.5 mm or No 22 size 6 mm No. 78. I.C. Desoldering Bit Nó. 1920 Long Life Bit	$\begin{array}{r} 52 p \\ f 1.04 \\ . f 1.12 \end{array}$	$\begin{array}{r} +10 p \\ 10 p \end{array}$
SAFETY STAND		¢4.23	70p
SOLDER	Savbit 0°	61 p	$+9 p$
	Savbit 10°	32p	+ 5 p
	Lowmelt 10	$76 p$	+40p

INDUSTRIAL/RETAIL ENQUIRIES WELCOME FOR THE ABOVE s.f. -

We also Offer \& Recommend for Mail Order \& Personal Callers Only

Oryx 50 Temperature Controlled Soldering Iron
Spare tipe for above
Isotip quick charge rechargeable Soldering Iron
Spare tips for above.
Cable 0.2 Colours 100 meter ree
0.1 Veroboard $33^{\prime \prime} \times 111 / 2^{\prime \prime}$

Copper Clad board single sided
Watchmakers Side Cutters
Watchmakers Pliers
Transformer $100 \mathrm{VA} 2 \times 12 \mathrm{~V} 4.1 \mathrm{~A}$

OTHER ITEMS ALSO AVAILABLE ASK FOR LIST S.A.E.
MAIL ORDER DEPT.
86-88 Union Street, Plymouth
PL1 3HG Tel:(0752)65011

MINIATURE MAINS TRANSFORMERS

Top quality. Split bobbin construction will give $4.5 \mathrm{~V}-0-4.5 \mathrm{~V}$ at 250 MA . $1 \frac{1}{\prime \prime}^{\prime \prime} \times 1 \frac{1}{2} \times 1 \frac{1^{\prime \prime}}{}$, all sorts of uses. ONLY $90 p .3$ for $\mathbf{£ 2 . 2 0}$. 1000 uf, 100V, Radial, $17^{\prime \prime} \times \mathbf{2}^{\prime \prime}$. ONLY 70p. 3 tor $£ 1.50$.

80131's 4 for $\mathbf{£ 1 . 0 0}$
 Bury our Honerwel| Henifiry Cemretle
Mombrane actuated, wery senshive. $f^{\prime \prime}$ sthent. 250V. 3.75 A Contacts ldeal for groenhouses. contralify heatod homes. officas atc. Build your awn humidifiars or alarms. Fraction of oripinal cost $90_{\mathrm{p}} \times 4.3$ for $\mathbf{E 2}$.

CASsETTE MOTORS
Seff Repulating. will operata B.12V. Idoal for medelers. machunical switching otc. 2000 A.P.M. appron $8 \mathrm{Op}_{\mathrm{p}}$ at.

ULTRASONIC TRAMSDUCERS Transmitter and receiver, 40 kHz 14 mm. diem. 6425 mm .

S E P POLE REED RELAYS DM BOAMO 12 V igeal tor bufglar alarms. model nitways enc $\mathbf{6 2 4 5}$

100 MIMIATURE REEO SWITCHES We are the cheapeatl $£ 3.30$
G.E.C. UHF TAANSISTOR TV TUNERS

Ratary typa with slow motion dime. leads and errial socker f! 503 for $\mathbb{f 3} .50$

MAKE CHEAP EATTERY ELIMIMATORS

Fully shrouded mine mains translormers. 240 V in $8-0-8 \mathrm{~V}$ at 100 MA out Complate with mains liad and plug. ex now quip. EO_{p}

DE LUXE FIBRE GLASS
PAINTEO CIRCUIT ETCHIMG KITS
Incluses 150 sq ins. copper chad F/G boand 1 lb terric chlorin 1 dalo atch resizt pan. Abrasine cios mer. Etch tray plus instructiona speciel Prien $\mathbf{~} 4.85$
1 1 EE. CI. To mil. space $\mathrm{f1} 25$
150 se in. simen the board $f 200$
150 sc in. Oemberm board f 300

SMOME AMO GAS DETECTOR Usen TGS 105 plug in $\mathbf{3 e n}$ zor, housed in mat $3 \frac{1}{2}^{\circ}$ die cast box, led indicator, 29y. (12y by attering 3 component veluest. Will aporate lomp or rolory, with date and circuines.es

Relays for abow il te ntate vollape

TRANSISTOA PACKS

100. Full spoc. naw and marted. Includes BC148, BC184L ME0412. 8F274, BC154 orc. ric. f 4.95 200 as abow and includes AC128, 2N3065, BFY50. 80131, 8F200 ec. E595
Buy bulk and save monary, these packs are worth at baat double

P/B SwITCH BAMKS
Thewe caet a fertuapl Were made for vanious music contros. pole co act Can be moditiod. Carit ter rapeoned 3 Benter for fI BULK BARGGAMS. STOCK UP FOR SUM MER 300 mixed $\& \& \frac{1}{2}$ wat ressistors $\mathbf{t 1 . 5 0}$ 150 mized is 2 wat resistocs $\mathrm{f1} 50$ 300 mized capaciors. modern, most trpes f3. 30 100 maded caramic and plate cooss $\$ 120$ 400 mixed $71 / \mathrm{m}$ resistors E 295 100 mixed polystryene caps $£ 2.20$ 25 pots and promis [1 50 25 premis, skelaton ate. C120 20 VORs and themistors $\mathbb{1} 120$
100 M -waltage rasiztors wirtwound me $\mathbf{f 2} 20$
100 abctrolytics, nice valuen $[2.20$
300 printed dicult imistors $f 1$ 300 printed dircuit compenents $\mathbb{C 1 . 5 0}$

100K MINLATURE TMUMBWHEEL SLIDER PDTS Very neta. can be banked sider by side ldoal for v. cap Tuning. graphic equalisers atc. 10 for fl 100K STERED SLIOER POTS
Good qualisy. 25p ase 5 for $\mathbf{f 1}$
MIMIATURE LEVEL/EATT. METEAS $200 \mu \mathrm{~A}$
F.S.O. as firtud to many cassatte racorders 80 p

SENTINEL SUPPIV, DEPT. P.E.
149A BROOKMILL RD. DEPTFORD, LONDON, SE8

Britains Best Breadboard Buy at Breadboard 79

FREE ENTRY TICKET WORTH $£ 1.00$ WITH EVERY PURCHASE

All over Britain, hobbyists are discovering Britain's Best Breadboard Buys. At the London Breadboard exhibition '79 on Stand Nos. F1, F2 and G1, G2, CSC will be exhibiting their full range of breadboards.

Here is your chance to obtain a special ticket for Breadboard '79 worth $\mathrm{£1} .00$ absolutely FREE

Cut out the coupon below and take it along to one of our listed dealers, and make a purchase of any of our breadboards and receive your special FREE ticket - see you at Breadboard '79.
Take the coupon to any of these main dealers

LONDON

Rastra Electronics Ltd. . 279-281 King Street, Hammersmith, London W6
Cubegate Lid., Audio Electronics, 301 Edgware Road, London W2 1BN
Technomatic Lid., 17 Burnley Road, London NW 10 IED Precision Instrument Labs., instrument House,
727 Old Kent Road, London SE 15

MANCHESTER

Shudehill Supply Co. . 53 Shudehill, Manchester M4 4AW

BUCKINGHAMSHIRE

West Hyde Development, Unit 9, Park Street Industrial Estate. Aylesbury, Bucks HP20 IET
Best Electronics (Slough) Lid. Unit 4 Farnburn Ave., Slough. Bucks SLI 4XU

KENT

Lawtronics, 13a High Street, Edenbridge, Kent TN8 5AX NEWCASTLE
Aitken Bros., 35 High Bridge, Newcastle upon Tyne SCOTLAND
Marshalls, 85 West Regent Street, Glasgow G2
F. Brown E Co. 45 Gearge IV Bridge, Edinourgh EH1 1E3

LEEDS

Leeds Amateur Radio Club, Cookridge Street, Leeds 1
HERTFOROSHIRE
BI-PAK, 3 Baldock Street, Ware, Herts

CONTINENTAL SPECIALTIES CORPORATION

CSC UK LTD. EUROPE, AFRICA, MIDEAST Dept 5CC2 Shire Hill Industrial Estate Units 1 and 2. Saffron Walden, Essex CB11 3AQ

Tel: Saffron Walden (0799) 21682. Telex: 817477

EXP 650
EXP 325 Built in bus-bars accepts 8, 14, 16 and up to 22 pin ICS . $£ 1.60$
EXP 350270 contact points, ideal for working with up to 3×14 pin DIPS. $\mathbf{£ 3 . 1 5}$ EXP 650 For microprocessor chips. $£ 3.60$ EXP 4B An extra 4 bus-bars in one unit. £2.30
EXP 300 The most widely sold breadboard in the UK; for the serious hobbyist. £5.75 EXP $6006^{\prime \prime}$ centre channel makes this the Microprocessor Breadboard. $\mathbf{£ 6 . 3 0}$
PB6 Professional breadboard in easily assembled kit form. $\mathbf{£ 9 . 2 0}$
PB100 Kit form breadboard recommended for students and educational uses. $£ 11.80$

The Experimentor System

4 ways to order Experimentor Systems

1. EXP 300 PC which includes one item. A matchboard pre-drilled PCB - $£ 1.32$
2. EXP 302 which inctudes three items. Three 50 -sheet scratchboard workpads $-£ 1.68$
3. EXP 303 which includes three items. Two matchboards and an EXP 300 solderless breadboard - $£ 66$
4. EXP 304 which includes four items. Two matchboards and EXP 300 breadboard and a scratchboard workpad - 99.30

The above prices do not include P\&P and 15% VAT
This coupon entitles the holder to a free ticket worth $£ 1.00$ to Breadboard ' 79 , with the purchase of any

$\begin{aligned} & \text { 1. Exp } 325 \\ & : 2.0 \end{aligned}$	Onty. Reqd.	$\begin{aligned} & \text { 2. EXP } 350 \\ & \text { 4.48 } \end{aligned}$	Onty. Reqd.
$\underset{\substack{3 . \operatorname{EXP} \\ E 50}}{ }$	Onty Requd	$\begin{aligned} & \text { 4. EXP } 4 B \\ & 53.50 \end{aligned}$	Onty.Reqd.
$\begin{aligned} & \text { 5. EXP } 300 \\ & 7 . \% \end{aligned}$	Ontr.Reqd.	$\begin{aligned} & \text { 6.EXP } 600 \\ & \text { E0.38 } \end{aligned}$	Oniy.Reqd.
$\begin{gathered} \text { 7.P86 } \\ {[11.73} \end{gathered}$	Onty.Reqd.	8.PB 100 114.7	Onty. Reqd.

Expenmentor System

$\left\lvert\, \begin{aligned} & \text { 1. EXP } 300 \mathrm{PC} \\ & \mathrm{E2} 30 . \end{aligned}\right.$	Oniv.Reqd.	$\text { 2.EXP } 302$	Onty.Reqd.
3. EXP 303 f11.04	Onty.Reqd.	$\begin{aligned} & \text { 4. EXP } 304 \\ & \text { E11:菏 } \end{aligned}$	Onty.Read.

NAME
ADDRESS

FREE catalogue tick box \square
I enclose cheque/PO for f or debit my Barclaycard, Access, American Express card
No. Exp. date
or Tel: (0799) 21682 with your card number and your order will be in the post immediately.
1.C. TEST CLIPS 10% discount for $25+$ clips. 15% for $100+$.
8 Pin £4.50, 14 Pin £2.73, 16 Pin £2.88, $18 \operatorname{Pin} £ 6.06,20$ Pin £7.00, 22 Pin £7.43, 24 Pin £8.41, 28 Pin £9.24, 36 Pin £12.09, 40 Pin $£ 12.73$.
ALL CIRCUIT EVALUATORS Breadboards plus power supplies
OWERRACE 101 6-15VDC 600mA plus $0-15 \mathrm{~V}$ meter. Price $\mathbf{~} 68.55 p$
PERE $102+5 \mathrm{VDC}$ - 1 A plus 3 logic indicators a pulse detector, logic switches. data switches, POWERACE $103+5 \mathrm{VDC}=750 \mathrm{~mA}$ plus $+15 \mathrm{VDC}=250 \mathrm{~mA}-15 \mathrm{VDC}=250 \mathrm{~mA}$. Also meter ($15-0$ 15 VDCl .2 logic indicators, 2 logic switches and 2 data switches. Price $\mathbf{〔 9 9 . 8 0 p}$.
SUPERSTRIP BREADBOARDS 840 solderiass, plug-in tie points. Accommodates up to 914 pin DIPs. Price £10.07p with 10% discount for 10 superstrips or 15% discount for $25+$.
Fuli range of breadboards, I.C. test clips, fibtion cable assemblies available (mostly ex-stock). Send large SAE for catalogue and price lists.

LOW PROFILE DIL SOCKETS BY TEXAS

8 PIN	$13 p$	18 PIN	25p	24 PIN	33p
14 PIN	$14 p$	20 PIN	$27 p$	28 PIN	$43 p$
16 PIN	$16 p$	22 PIN	$28 p$	40 PIN	$53 p$

VERD PRODUCTS Vero wiring Pen 290p. $2 \times$ Spare Spools 100 p. Spot Face Cutters 95p. Veroblock Breadboards 325p. Veroboard PCB's $-2.5^{\prime \prime} \times 5^{\prime \prime} 65 p$. .5" $\times 3.75^{\prime \prime} 55$ p. $2.5^{\prime \prime} \times 17^{\prime \prime} 195 p .3 .75^{\prime \prime} \times 5^{\prime \prime} 72$ p. $3.75^{\prime \prime} \times 17^{\prime \prime} 282 p$. MEMORIES 2214 500p. TMS 2516 Single Supply $£ 27.00$
6477 Sound Generator Chip 210p.
LIGMTEMITTING DIDDES

AED	TiL209	Price	TiL220	Price
YELLOW	TIL212	$22 p$	TIL224-1	15p
GREEN	TIL232	$20 p$	TIL234-1	$20 p$
TIL				

All orders, large and small, will be dealt with IN STRICT ROTATION. Please add 15\% V.A.T. to all orders olus 30p for P \& P (P \& P E1 for Poweraces). Expon orders no V.A.T. but postage at cost air/surface. Prompt delivery on all orders.

Cheques, POs, Money Orders to be made payable ROMANE ELECTRONICS, Sales Dept.,
64 Newlyn Drive,
Sale, Cheshire.
M33 3LE
Tel 061-962-2606

A new edition from Wawnes Technicell Books

Questions and Answers Integrated Circuits Second Edition

R. G. Hibberd

Covers in easy-to-follow Q \& A format, all main types of integrated circuits. A new chapter on microprocessors and their application has been added for this new edition.
1979
108 pages
£1.55
(US \$3.50)

In the same series

Q \& A Electronics, Clement Brown
$\mathrm{Q} \& \mathrm{~A} \mathrm{Hi}-\mathrm{Fi}$, Clement Brown
Q \& A Radio Repair, Les Lawry-Johns

Q \& A Radio and Television - Fourth Edition, H. W. Hellyer and I. R. Sinclair £1.55 each (US \$3.50) For further information please send for a free colour brochure describing these and many other publications.

Newnes-Butterworths

Borough Green, Sevenoaks, Kent TN15 8PH. Tel: (0732) 884567

Butterworths have companies in Australia, Canada, New Zealand, South Africa and the USA, where local prices apply

20×20 WATT STEREO AMPLIFIER
Viscount IV unit in te ak simulate cabinet Siver finish rot ary controls and
pushouttons with malching tascia. red mamns indicalor and stero jack sockel.

 AMS 40×40 watrs peak for use with 8 to 15 onm speakers. Sive $14 *$ " $\times 3^{\prime \prime} \times 10^{-3}$ appra× NEW leatule-Units now
£ 31.90
includes a buith in four channel stereo sound facility.
13.00 p\&p

30×30 WATT AMPLIFIER
IN KIT FORM
dete in every detail same tacilities as Viscount IV, but with 30×30 ouipul. 60×60 watts peak For use with 4 to 15
ohms speaket

$£ 31.50$

pap

SPECIAL.OFFER

$\mathbf{3 0} \times 30$ WATT AMPLIFIER KIT with BSR P200 belt drive deck and Shure M75 cartridge.
$£ 57.00$
M75
$+p \& \rho 6.00$

EMI SPEAKER BARGAIN

Stereo pair 350 kut. System consisis of surround $21 / 2^{\prime \prime}$ approser widax folled cros sover components and circuir diagram. Frequency response 20 Hz 1020 KHz . Power handling 15 watts RMS 20 watts max

f18.25

Per stereo pair
© 3.65 psip

BSR P200
Bell divive shassis tumntable unit $\mathbf{£ 2 5 . 5 0}$ semi -automatic. cueing device $p<8 \subset 2.60$ A.D.C. alm 30 Mk Ill Magnetic Cartridge to suit

BSR

 elurn and cue ing lever deck with auto ceramic canridge 2 speeds with 45 r pm spindie adaplor reeally sulted for home OUR PRICE $£ 11.25 \quad$ p\& GARRAMD DECK MODEL CC 10A irred mint seree ceramit arit

UNIT AUDIO STAND

in cheome with de corative woo chame wid decarick Mini Meleor castors
\{3.95 $\quad 2.25 \mathrm{p}$ \& $24^{\prime \prime} \times 121 / 2^{\prime \prime} \times 1112^{\prime \prime}$

BARGAIN FOR

 PERSONAL SHOPPERS ONLY Altone UA4
Stereo System

Features 8 watt total output. Full size BSR manual turntable with cueing and auto return. Socket for tape in and out and stereo headphones
complete with speakers $£ \mathbf{£ 5} .75$
Micro Cassette Recorder
Pocket size-home or office use or
when travelling.
£14.25
Battery operated fluorescent camping lamp.
Runs off 8 U 2 batteries.
E4.80

PACK 2 2x LPI173 10w. RMS output power audio amp modules +1 LP $1184 / 2$ Stereo pre amp for magnetic. ceramit and auriliary inputs.

H1S. OUR price
$\{7.65$

ACCESSORIES

Suirabie mains power supply parts. ectitier, smopthing capactitor, bid set Comprising of two 8 " $x 5$ " appron at rotary ste reo controls for treble. bass. volume and balance
$£ 3.00$
plus $โ 1.50 \mathrm{p}$ \& p

ACCESSORIE S ARE ONLY AVAILABLE TO THOSE CUSTOMERS WHEN BUYING OUR BARGAIN PACKS
THE10 10 AMPLIFER KIT

$10+10$ AMPLIFIER KIT
 An opportunity to buy a 10 watts per channel stereo amplifier kit which is suitable for use with a ceramic cartridge. The amplitier utilises proven Mullard modules and is available at a very competitive prica. The amplifher ktl comes complete with instructiors and includes: a Mullard LP1 183 stereo preamplifier module, wo LP 1173 power amplifiers with integral he atsinks, a power supply. Zobel networks. front and back mounting panels. a tinished fascia panel, all convol potentiometers foass, treble. volume and balancel. switches, input. ourpur and headphone to house the fimished unit Size approximately
 , $f 12.25$

BARGAINS FOR PERSONAL SHOPPERS

LCD Solar 5 function with backdite
stainless steal finish case and strap
LCO Solar Chrono 9 function with backlite stainless ste el finish case and strap

Chrom stop watch 9 function with back lite
stainless steel finish case and strap.
Solar Alarm LCO
stainless ste el case and strap
AM/FM DIGITAL CLOCK RADIO Accurate 4 Digit Electronic Clock with $Y_{2}^{\prime \prime}$ LED display Buzer and snoore timel $£ 12.20$

100 Watt Power Amp Module Matns power supply for above unit OECCA 20 w Stereo speaker kit comprising 28 " approx bass units + $23 \mathrm{~h}^{2 \prime}$ approx tweeter inc erossovers
VIOEOMASTER Super Score TV Game with pistol mams operation
PORTABLE RADID/CASSETTE RECORDER
AM/FM with clock. LW, MW. SW, VHF
mans/battery operation
ISP Aadio Cassente recorder Mains/Batter, AM/FM
built in mic auto stop.
$£ 7.40$
£9.55
$£ 8.95$
$£ 21.95$

100 WATT
MONO DISCO AMP
 Brushed alumimium

> lascia and rolam controls
five verical slide conirols, mas ier volume tape level mictienal PLUS INTER DECK FADER Ior perfect graduated changa from record deck No. It No. 2 of vice versa Pie tade level control (PFL) lets You hear next disc before lading it in VU meter monitots outpul tevel Oulpul 100 walls RMS 200 watts

50 WATT MONO

 DISCO AMP
£30.60

p\&p 12.70
Size approx. $13 \%{ }^{\prime \prime} \times 5 \%^{\prime \prime} \times 6 \%^{\prime *}$
50 watts rms. 100 watts peak output. Big features include wo disc inputs, both for ceramic cantridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches. Independent bass and treble controls and master volume.

IFOR PERSONAL SHOPPERS ONLY

 DUO II SPEAKERSAltractive teak finish. modern design. incorporating 2 speaker units -8" ppror wooter and $21 / 2^{\prime \prime}$ approx tweeter 45 to 1800 Mz Impedance 8 ohms Power 15 walts RMS
 syor $\quad £ 16.50$

FOR PERSONAL SHOPPERS ONIY

STEREO RADIOGRAM CABINET

Finished in a natural teak veneer with opening top. Easily modified to accommodate stereo equipment of your choice.

Price $\mathbb{f 1 0 . 9 5}$

Personal Shoppers EOGWARE ROAD LONDON W2 Tel: $01-7238432.9 .30 \mathrm{am}-5.30 \mathrm{pm}$. Closed all day Thursday ACTOM: Mail Drder only, No calleis goods of sparched tomaimlamo anom aneland omiy

Simply ahead. . ILP'S NEW GENERATION OF HIGH

and staying there

PERFORMANCE MODULAR UNITS

HY5 PRE-AMPLIFIER

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$. and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$ Special strips are provided for connec ting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.
$\varepsilon 4.64+74 \mathrm{p}$ VAT

THE POWER AMPLIFIERS

Model	Output Power R.M.S.	Distortion Typical at 1 KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	$\begin{aligned} & \text { Price + } \\ & \text { V A T } \end{aligned}$
HY30	15 W into 8Ω	0.02\%	80dB	-20-0-+20	$105 \times 50 \times 25$	155	$\begin{array}{r} £ 6.34 \\ +95 p \\ \hline \end{array}$
HY50	30 W into 8Ω	0.02\%	90 dB	25-0- +25	$105 \times 50 \times 25$	155	$\begin{aligned} & £ 7.24 \\ & +£ 109 \\ & \hline \end{aligned}$
HY120	60 W into 8Ω	0.01\%	100dB	$-35-0 \cdot+35$	$114 \times 50 \times 85$	575	$\begin{aligned} & £ 15.20 \\ & +£ 2.28 \\ & \hline \end{aligned}$
HY200	$\begin{aligned} & 120 \mathrm{~W} \\ & \text { into } 8 \end{aligned}$	0.01\%	100dB	-45-0-+45	$114 \times 50 \times 85$	575	$\begin{array}{r} £ 18.44 \\ +\quad £ 2.77 \\ \hline \end{array}$
HY400	$\begin{aligned} & 240 \mathrm{~W} \\ & \text { into } 4 \Omega \end{aligned}$	0.01\%	100dB	-45-0-+45	$114 \times 100 \times 85$	1.15 Kg	$\begin{array}{\|l\|l} £ 27.68 \\ +£ 4.15 \end{array}$

Load impedance - all models 4-16 Ω
Input sensitivity - all models 500 mV
Input impedance - all models $1.00 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

THE POWER SUPPLY UNITS
I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled trans. former the other with toroidal transformer having half the weight and height of its conventional laminated types.

PSU 36 for 1 or 2 HY 30 's $£ 8.10+£ 1.22$ VAT PSU 50 for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT PSU 70 with toroidal transformer for 1 or 2 HY120's $\quad £ 13.61+£ 2.04$ VAT
PSU 90 with toroidal transformer for 1 HY200 £13.61 + £2.04 VAT
PSU180 with toroidal transformer for
1 HY400 or $2 \times$ HY200
£23.02 + £3.45 VAT
PSU $30 \pm 15 \mathrm{~V}$ at 100 ma to drive up to: five HY5 pre-amps
$€ 4.50+680$ VAT

> NO QUIBBLE
> 5 YEAR GUARANTEE
> 7.DAY DESPATCH ON

> ALL ORDERS
> BUILT-IN PROTECTIVE CIRCUITRY
> BRITISH DESIGN AND MANUFACTURE FREEPOST SERVICE see below

ALL U.K. ORDERS DESPATCHED POST PAID HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pav postage on all letters sent to us by readers of this journal.

FREEPOST 2 Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP.
Telephone (0227) 54778 Telex 905780

Please supply

Total purchase price $£$
I enclose Cheque \square Postal Orders \square International Money Order \square Please debit my Account/Barclaycard Account No.
\qquad
ADDRESS

Are your meters good enough? If your recordings are spoit by uneven levels and overloads-install Soundex professional PPM's now.

See us on Stand 609 at Electronics '79, Olympia, November 20-23rd where the full Soundex range will be on display.

The Soundex PPM 402 priced at $£ 34.95$ (plus VAT), has a closely specified electrical performance with a meter scale that has been developed from the BBC and VU scales providing high clarity and accuracy of indication. Special Features include: -

- Bipolar rectification
- Closed loop meter drive
- Wide frequency response
- Low current consumption
- Amplitude dependant amplifier
- Attack and decay circuits

Send for technical literature on the new 402

Bulgin Electronics
 One of the Bulgin Group of Companies. SOunviex "trd

Park Lane, Broxbourne, Herts, Tel: Hoddesdon 64455

30
 Wilmslow Audio

THE firm for speakers!

SEND 30p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

> AUDAX AUDIOMASTER • BAKER
> BOWERS \& WILKINS - CASTLE - CELESTION CHARTWELL - COLES - DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS I.M.F. ISOPHON JR JORDON WATTS O KEF LEAK - LOWTHER McKENZIE - MONITOR AUDIO - PEERLESS RADFORD © RAM - RICHARD ALLAN - SEAS SHACKMAN STAG TANGENT TANNOY VIDEOTONE - WHARFEDALE YAMAHA

WILMSLOW AUDIO (Dept. P.E.) SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Tel.: Wilmslow 526213 for $\mathrm{Hi}-\mathrm{Fi}$

RANDAM

TRITON
 SINGLE PERSONAL COMPUTER

Three new exciting expandable systems designed for ease of construction and flexibility. Kits come complete with case, power supply, full keyboard, PCB. All components available separately. See catalogue Full hardware \& programming manual available. The system is easy to expand and is well supported. Features:- 2, 2.5 or 7k basic in Eprom (See catalogue)

- Single board
- Holds up to 8 k memory

UHF or video outpu - Cassette interface - Three firmware options

Personal Computer

- Basic in eprom - 64 graphic characters - Plug in expansion boards From £286 + VAT

EXPANSION MOTHERBOARD
TRITON. Expand your Triton simply and easily with our new 8 -slot motherboard complete with its own P.S.U. takes 8 plug-in Euro cards. Plugin 8 k RAM card and Eprom cards now available.
Kit complete with PSU \& 1 set connectors.

8K RAM	
CARD	
Trion 8 s static	
Static Rams. On borrd	

8K EPROM CARD
Triton 8k Eprom card kit. Oesigned to take up
8×2708 Eprom ($1 \mathrm{k} \times 8$)
PCB only 115 Kit less Eproms 831
Eproms (b
Plus VAT
Complete kit $\mathbf{£ 9 7}+$ vat

BI DIRECTIONAL

MATRIX PRINTER $\mathbf{f} 595$ +VAT
The BD80 is a low cost, 80 column line printer with microprocessor control to provide excellent reliability and performance.

- 5×7 Dot matrix Full asch char set 84 lines per minute
- 10 char per inch 10 lines $/ \mathrm{sec}$ Self test
- 6 lines/inch paper advance Fully cased
- 400 char buffer 112 char/sec

S100 boards

8k Static RAM board (450 ns) 8k Static RAM board (250 ns) 280 cpu board (2 MHz) $Z 80$ cpu board (4 MHz) 2708/27 16 EPROM board Prototype board (bare board)
Video display board (64×16, Video display b
$128 \mathrm{~L} / \mathrm{LAscii)}$ er board K2 disk operating system Assemble/z Macro Assm

$f 123.75$

 $f 146.25$ $f 131.25$ ع153.75 E 83.75 ع18.75 f108.75 f 131.25 $\mathbf{f} 131.25$$\mathbf{f 5 3 . 2 5}$

PCB CONNECTORS

ITHACA DPS1

London

Pascal/z
Build your own Pascal system. IEEE-S100 bus system using Supporis K2, assemble/z and pascal/z on $8^{\prime \prime}$ disk.

London
dealer 1

TRAP!

language package.
Links via the L6. 1 monitor and new scientific basic to make Triton a stand alone development system. Trap is an 8 k package in EPROM and resides on our EPROM card. Set of 8×2708 only $\mathbf{E 8 0}$ including document.
EDITOR

EDITOR	BREAKPOINT
ASSEMBLER	SINGLESTEF
DISASSEMBLER	TRACE
SYMBOLTABLE	PROGRAMM
CREATE	MONITOR

SYMBOLTABLE
CREATE
See catatogue for further details.

Switch selectable baudrate from 110 to 9600 on a standard V24 and R5232 interface. Send SAE for further details. Ideal printer for Triton or any system requiring high speed reliable hard copy. We can supply consumables.

Support		russol1		41		LıE					$1{ }^{\text {s }}$		9200
${ }_{8}^{81212} 8$	220 220			28091	10.90 1000	$\substack{\text { cm30 } \\ \text { im3 }}_{\substack{\text { a }}}$	30				1.150		边1200
${ }_{8224} 8$					1200		30				P:100		
${ }^{8226} 8$							${ }^{\prime \prime}$	(M)			1:10	cpu's	
${ }^{2238}$				EProms		${ }^{\text {(103) }}$	1.45	IM148					
${ }^{23245}$	11.00	2102		${ }^{102}$		(4311)	1,28		05			880	
		2111				(1)	23			${ }^{3224}$,	\%	
${ }^{8233}$					22.00	432	3	mat	12	-11 socrets		${ }_{8085}$	
${ }^{235}$					2200		-						
	1112					Lessis	30	${ }_{\text {nnem }}^{\text {nosa }}$	1.25	1400	1		\%
${ }_{\substack{829 \\ 8292}}^{829}$		21022-3		${ }_{7}$		Lus5	,				17	¢ 6802	${ }_{3000}$
${ }^{88229}$				745		LMTOSN	3	1033					
	${ }^{5} 50$			71578		IM 1	5		1.60				
					120		4	voit regs		28011		${ }^{8014}$	${ }_{35}^{20}$
				7astid	120		${ }_{1}^{1.30}$	${ }^{7805}$					12
						पи410	3	${ }^{815}$		chystals		oil	
					150								
${ }_{\substack{\text { M } \\ \text { M } 517160}}$	12000 1000	41		93364		ImTCH 14		885sk					

TRITON DOCUMENTATION

Available separately as follows
Prices include P\&P
Triton manual. Detalled circuit description and constructional details and user documentation on level 4.1 monitor and basic $\mathbf{~ 5 . 7 0}$ L4. 1 Listing listing of 1 k monitor $2 k$ tiny basic $\mathbf{\$ 4 . 2 0}$ L5.1 User documentation on level 5.1 firmware L5.1 Listing listing of 1.5 k monitor and 2.5 k basic $f 1.20$ L5.1 Listing listing of 1.5 k monitor and 2.5 k basic $£ 5.50$ $\begin{array}{ll}\text { L6.1 User documentation on 7k basic interpreter } & \mathbf{£ 1 . 8 0} \\ \text { Motherboard, 8k Ram and 8k Eprom constructional details } & \mathbf{~} 5.00\end{array}$ User group newsletter subscription $\mathbf{£ 4}$ per annum. Triton software send SAE for list of programs available for Triton.

HOME COMPUTING CATALOGUE

If you're in town, visit our showroom in Chapel Street, next to Edgware Road tube station. We have Tritons on display plus a comprehénsive range of components and accessories, specifically for personal computer users. Books, mags, tapes, data, cables plus much more. Showroom open 6 days a week. (Half day Thurs., from 1.30).

Ouality audio modules and accessories for

S450

FREQUENCY RANGE	88－108 Mhz
SENSITIVITY	$30 \mu \mathrm{~V}$
BANDWIDTH	250 kHz
SPURIOUS REJECTION	50 dB
SELECTIVITY $\pm 400 \mathrm{kHz}$	55 dB
AUDIO OUTPUT（22．5 kHz deviation） 100 mV	
STEREO SEPARATION	30 dB
SUPPLY REQUIREMENTS	20 to 30 V （ 90 mA man ）
AEAIALIMPEDANCE	75 ohms
DIMENSIONS	240 mm ： $110 \mathrm{~mm} \times 32 \mathrm{~mm}$

The 450 Tuner provides instant programme selection at the touch of a button ensuring accurate tuning of 4 pre－selected
MPA30
magmetic cantaloge PRE－AMPLIFIE
Enjor the quality of a
$£ 3.43$
magnetic cartridge with your
stalions，any of which may be altered as often as you choose，simply by changing the setting of the pre－set controts．
Features include FET input slage．Varl－Cap diode tuning．Switched AFC LED Stereo Indleator．位

Stereo 30 compleri andole CHA5SI
 £22．06 $+66 p p \& p$

 ＋Iw R．M．s

OUTPUT POWER	7 Watts RMS
LOAD IMPEDANCE	8 ohms
TOTAL MARMONIC DISTORTION	Less than 5%（Typically $\cdot 3 \%$ ）
FREOUENCY RESPONSE	50 Mz to $20 \mathrm{kHz} \pm 3 \mathrm{dBs}$
TONE CONTROL RANGE	$\pm 12 \mathrm{dBs}$ at 100 Hz and 10 kHz
SENSITIVITY	190 mV for full output
INPUT IMPEDANCE	1 Mohms
TRANSFORMER REQUIREMENTS	23 V．A．C．rated at 1A
DIMENSIONS （Leas controts and oanel）	$200 \mathrm{~mm} \cdot 130 \mathrm{~mm} \cdot 33 \mathrm{~mm}$

SUPPLY
DIMENSIONS 181030 V re earth $110 \cdot 50 \cdot 25 \mathrm{~mm}$（ine DIN
sochet）
sochet）

PA12
 STEREO

PRE．AMPLIFIER

£8．95

The PA12 Siereo Pre
Amplifier chassis is designsd arld recommended for use with the AL $20 / 30$ Audio Amplifer Modules，the PS12 power supply and the Fsas Transformer．Features include onfon volume．Balance，Bass and Treble conirols．Comolete with lape output．
FREOUENCY RESPONSE $20 \mathrm{~Hz}-20 \mathrm{kHz}(-3 \mathrm{BB})$
The Stereo 30 comprises a complete stereo pre－amplifler．Dower amplifiers and power supply．This，with only the addition of a transtormer or overwind will produce a high quality audio unit sultable tor use wlth a wide range of inpuis i．e．high this unle is supplied with full instructions，black front panel，hnobs，main switch，fuse and fuse holder and universal mounting brackets．

	25w П．M．B．	OUTPUT POWER	25 Watts RMS
		SUPPLY	$30-50 \mathrm{~V}$
AUDID AMPLIFIE虫 MODULE 25 Wate MMS		LOAD IMPEDANCE	$8-16$ ohms
		TOTAL HARMONIC DISTORTION	Less than 1%（Typically－0\％\％）
		FREOUENCY RESPONSE	20 Hz to $30 \mathrm{kHz} \times 2 \mathrm{dBs}$
		SENSITIVITY	280 mV for full outpuf
E5．39		MAX．MEAT SINY．TEMPERATURE	$90^{\circ} \mathrm{C}$
＋3sppap		DIMENSIONS	$103 \mathrm{~mm} \times 64 \mathrm{~mm} * 15 \mathrm{~mm}$

This high quality audio amplifier module is for use in audio equipment and stereo amplifiers and provides output powers up to 25 RMS with distortion levels below 01% ．

4.80	$35 w$ ต．M．${ }^{\text {® }}$ ．	OUTPUT POWER	35 Watts RMS
		SUPPLY	40－60 V
AUDID AMPLIFIER mODULE		LOAD IMPEDANCE	8－16 ohms
		TOTAL HAMMONIC DISTORTION	Less than 1\％（Typically 05% ）
		FREOUENCY RESPONSE	20 Hz to $30 \mathrm{AHz} \times 2 \mathrm{dBs}$
¢8．54		SENSITIVITY	280 mV for fult output
		MAX．HEAT SINK TEMPERATURE	$10^{\circ} \mathrm{C}$
＋35posp		DIMENSIONS	$103 \mathrm{~mm} \cdot 64 \mathrm{~mm} \cdot 15 \mathrm{~mm}$

The AL 20 is similar in design to the AL60 above and is of the same high quality but provides output powers up to 35 W with
distortion levels below 0.1% ．

£20．49＋79p pep

OUTPUT POWER	125 Watts RMS continuous
OPERATING VOLTAGE	$50-80 \mathrm{~V}$
LOADS	4－16 ohms
FREOUENCY RESPONSE	25 Hz 20 kHz measured at 100 Watts
SENSITIVITY FOR 100 WATTS O／PAT 1 kHz	450 mV
INPUT IMPEDANCE	33 K ohms
TOTAL HARMONIC DISTORTION 50 WATTS into 4 ohms 50 WATTS into ohm：	$\begin{aligned} & 0.1 \% \\ & 0.06 \% \end{aligned}$

This unit，designated AL250，Is a power amplifier providing an output of up to 125 W RMS，into a 4 ohm toad．

MAXIMUM SUPPLY VOLTAGE
POWER OUTPUT TOF 2% TMD
POWER OUTPUT for 2% THD 10 W atte RMS
TOTAL HARMONIC DISTORTION Less than 25%

LOAD IMPEOANCE	$8-16 \mathrm{ohms}$
INPUT IMPEDANCE	100 Kohms

These low cost 10 watt modules offer the utmost in reliability and performance，whilst being compact in size．

SPM80

STABILISED
POWER SUPPLY
£5．06＋350 0 80

INPUT A．C．VOLTAGE	$33-40 \mathrm{~V}$
OUTPUTD．C．VOLTAGE	33 VmOminal
OUTPUT CURRENT	$10 \mathrm{mA-1.5amps}$
OVERLOAD CURAENT	1.7 amps approz．
OIMENSIONS	$105 \mathrm{~mm} \times 63 \mathrm{~mm} \times 30 \mathrm{~mm}$

protection．

PA100

STEREO
PRE－AMPLIFIER

TOTAL HARMONIC DISTORTION		20 Hz to $20 \mathrm{kHz} \times 1 . \mathrm{dB}$	
		Less than $\cdot 1 \%$（Typically $\cdot 07$	
$\begin{aligned} & \text { SENSITIVITY } \\ & \text { INPUTS } \end{aligned}$	1．TAPE 2．RADIO TUNER 3．MAGNETIC P．U．	$100 \mathrm{mV} / 100 \mathrm{~K}$ ohms $100 \mathrm{mV} / 100 \mathrm{~K}$ ohms $3.5 \mathrm{mv} / 50 \mathrm{~K}$ ohms	For an output 250 mV
EOUALISATION		Within $\pm 1 \mathrm{~dB}$ from 20 Hz to 20 kHz	
BASS CONTROL RANGE		$\pm 15 \mathrm{dBs}$ at 75 Hz	
TREBLE CONTROL RANGE		＋ $10-20 \mathrm{dBs}$ at 15 kHz	
SIGNALINOISE RATIO		Better than 65 dBs （All inpuis）	
INPUT OVERLOAD		Better than 26 dBs（All Inputs）	
SUPPLY		201040 V	
DIMENSIONS		$300 \times 00 \times 33 \mathrm{~mm}$（fess controls）	

A toD quatity stereo pre－amplifier and tone controt unit，the PA 100 provides a comprehensive solution to the tront end requirements of stereo amplifiers or audio
two filters for high and low frequencies．
TREBLE COMTROL $\pm 12 \mathrm{~dB}$ al 60 Hz TREBLE CONTROL
\pm NPUT IMPEDANCE INPUT SENSITIV CROSSTALK
TY
$1 \mathrm{Meg} . \mathrm{ohm}$

NOISE RATIO

TAPLOADFACTOR

300
-60
-65

PS12 POWER SUPPLY MODULE

Power supply for AL20A－30A．
PA12，S450 etc．
Transformer T538
Input A．C．Voltage 15－20V． Output D．C．Voltage 22－30V approx．（Dependent upon input．）
Output Current 800 mA
maximum．
Dimensions $60 \times 43 \times 26 \mathrm{~mm}$ ．

£1．73

+35 p plp．

BP124 SIREN ALARM MODULE

American＇Pollce screamer
powered from any 12 volt supply into 4 or 8 ohm speaker． Ideal for car burglar alarm， rreezer break－down，and other security purposes．

ONLY £4．03

＋35p psp．
 5 WATTs－

STA15 STEREO AMPLIFIER KIT

Build you own top quabity amplifier，save yourself pounds．The

 STA 15 kic comprises ihe following Bi－kits modules， $2 \times$ AL60 amps．
 Details of the above modules are in this ad．

STA15 ACCESSORY KIT

A beautifully designed genuine TEAK WOOD veneered cabinet to pul the professionai touches to your home built amplifle．Full Sockets，Noen，etc．Ideal for the MA 60 ．Size： 425 mm ． 290 mm ． Price f ．
Price $\mathbf{2 1 . 9 4 + 8 6 \text { ppsp．Order No．} 2 2 4 0 .}$

TRANSFORMERS

Order No．2450 \quad Price： $\mathbf{£ 3 . 7 4 + 5 5 p}$ p\＆p．
BMTt0 For use with AL60 SPM80
Order No． 2314
BMT250 For use with AL250
Order No．2．35
2040．For use with AL60 Price： $\mathbf{E 7} \cdot \mathbf{3 0}+\mathbf{£ 1} 10$ p 8 p．
2040．For use with AL60
Order No． 2040

$$
\text { Price: 25.98 }+80 \text { p p\&p. }
$$

2041．Foruse with ALBO，AL1 20 and AL250
Order No． 2041.

$$
\begin{aligned}
& \text { Oand AL250 } \\
& \text { Price: } \mathbf{8 7 . 8 2}+86 p \text { psp. }
\end{aligned}
$$

CASES

TEAK 30， $32 \times 23 \times 8 \mathrm{~cm}$ ，designed mainly for use with out stereo 30 Audio System but has proved very helpful to home constructiors．Fited whith solid uncut front and back．o／n 139．es－27．p\＆p 70p．

TEAK 60， $42 \times 29 \times 9 \mathrm{~cm}$ ，for use with AL60／MK60 Audio Kit．Useful for the home constructor requiring an amplifier sleave－has no front or

Professionals and Enthusiasts from BI-PAK

AL120	50W	OUTPUT POWER	50 Worts PM . S
Avolo		SUPPLY	
${ }^{\text {Amplifita }}$ imin		TOTAL HAAMONIC OISTOATION	${ }^{6} 58$ m
Mwininegal		FREOUENCY RESPONSE\# 1 IB	$25 \mathrm{HH}-20 \mathrm{kHz}$
Shon+ciciuit		Sensitivir	500 mV
£13.74		MAX HEAT SINK TEMP	45 deg. C
		Oimensions	$192 \times 89 \times 49 \mathrm{~mm}$

Introduced to fulfill the demand for a fully protected power amp. capable of driving high quality speaker systems at up to 50 w . with distortion levels below 05%. Ideal for domestic use, Discos, P.A. systems, electronic organs etc. The generously rated com ponents ensure continuous operation at high output levels.

SPM120
SPM120/45
SMP120/55
SMP120/65
£6.67

AC InPuTS

SPM120/45	$40-48 v$
SPM120/55	$50-55 v$
SPM120/65	$60-65 v$
OUTPUT CURRENT	$2.5 A$
RIPPLE	$1 A 100 \mathrm{mV}$
	$2 A 150 \mathrm{mV}$

SPM120 is a fixed voltage stabiliser available with an oi $9064 / \%$ ye of eithe, 45 v . 55 v . or 65 v . Designed primarily for use in audio applications. the stabiliser which provides output currents up to 2.5A., operates direct from a mains transformer requiring only the ddition of 2 Electrolytic capacitors to complete the s/c protection.

GE100 Mk2.

10 CHANME
EQUALISER
£23.00

Controt Range	$\pm 12 \mathrm{~dB}$
Oynamic Range	110 dB
Maximum Output	+15 dB
Frequency Response	$30 \mathrm{~Hz}-20 \mathrm{KHz}(\pm 1 \mathrm{~dB})$
Power Supply	$15-0-15 \mathrm{v}$.
Voltage Handing Input	$3 \vee$ R.M.S.
T.H.D.	$.05 \%$

Only $155 \mathrm{~mm} \times 65 \mathrm{~mm} \times 50 \mathrm{~mm}$ including the $10 \times 10 \mathrm{~K} 1$ in slider potentiometers and knobs which are mounted on a board positioned above the circuitry. In the frequency range of 31 Hz to 20 KHz you can cul and boost $\pm 12 \mathrm{~dB}$ with the 10 sliders, each of which has its frequency marked on the circuit board. The GE100 has numerous uses including mixers. P.A systems and discos. In will alss greatly improve the sound reproduction of your existing audio equipmenI. Power Supply for GE100. o/d SG30 £ 3.80

VPS30
 REGULATED VARIABIE

STABILISED POWER SUPPI

$£ 8.74$

AC Input Maximum
Voltage Regulation
Requlated Current \qquad
\square

2-30

Incorporating short circuit protection
This NEW versatile Regulated Variable Stabilised Powet Supply with shont circuit protection and current limiting, is a must for all electronics enthusiasts. It incorporates adjustable voltage from 2 v 30 v , with a current limiting range of $0 \mathrm{a}-2 \mathrm{~A}$. With this module there is no need to build a separate power supply for each of your projects, with the simple addition of a transformer lo/d 20331 .俗

PA200

STEREO
PRE-AMPLIFIER

£18.61
 P. BP. 40p

FREQUENCY RESPONSE	20Hz to $20 \mathrm{kHz} \times 1 \mathrm{~dB}$
TOTAL HARMONIC OISTORTION	Less than 1\% itypically . 70\%)
SENSITIVITY 1. TAPE INPUTS 2. AADIO TUNER 3. MAGNETIC P.U.	$100 \mathrm{mV} / 100 \mathrm{~K}$ ohms For an $100 \mathrm{mV} / 100 \mathrm{~K}$ ohms oulpu: $3.5 \mathrm{mV} / 50 \mathrm{~K}$ ohms $\quad 500 \mathrm{mV}$
equalisation	Within $\pm 1 \mathrm{~d} 8$ from 20 Hz to 20 kHz
BASS CONTROL RANGE	$\pm 15 \mathrm{dBs}$ at 75 Hz
treble control range	+ 10.20 dBs at 15 kHz
Signaulnoise ratio	Better than 65dBs (All inputs)
INPUT OVERLOAD	Better than 26d8s (All inputs)
SUPPLY	35 to 70 V
DIMENSIONS	$300 \times 90 \times 33 \mathrm{~mm}$ liess controis)

The PA200 is basically our popular PA100. Modifications have been made to make it compatible with the higher output AL120 and AL250 amplifiers.

HEADPHONES

A lop quality headphone with cushioned earpads and heacioand. Separate balance: 8 ohms Frequency: 30 $18,000 \mathrm{~Hz}$. o/n 884 . C10.01. p\& p 70 p .
A brilliant compromise between price and performance Superb stereo reproduction for the newcomer to Hi-Fi. Kmpedance 8 ohms. Frequency $30-15,000 \mathrm{~Hz}$. o/n 885 . 25.06. p\& p 50p

BIB
 HI-FI ACCESSORIES

Parallel Tracking GROOV KLEEN

The very latest in automatic record cleaning. Desig. ned to suit all modern single play decks. Simple to fit, it is exiremey e ficitr conplions win 8101 ryoes o p\&op35p.
Casserte Tape Editing Kit
Enables cassette tapes to be edited and joined easily quickly and accurately Kit comprises: Tape Splicer
$(3.2 \mathrm{~mm}), 2$ Precision Tape Cutters. Tape Piercer 9 Self-arhesive Labels. Reel of Splicing Tape. 3 Winders and removers and instructions. all in a p80 350

GAOOV-STAT
The B18 Groov Stat stutic reducer neutralises the static charge on records and other plastic surlaces o/n 8103 fB-27. pap
Essential for cleaning of tape heads capstans and rollers. Pack contains Jape Head Applicator and tape head polisher cools Plus bottle of special formula cleaning fluid and full instructions. o/n 832. C0.74. p\& p 35 p

METERS

Miniature Balance 8 Tuning Meter
Miniature moving-coll meter for stereo batance indicator, tuning indicator for FM or simitar position. Robust consiruction Sensitivity: $1 \mathrm{mn} \cap 100 \mathrm{MA}$. Dimensions. $23 \times 22 \times 26 \mathrm{~mm}$. o/n 1318. 22-24. p\& ${ }^{2}$ 35p

Balance and Tuning Meter Clear view edgewise meter. Centre zero application. Sensitvity: 1000 100UA. 1319. E2.30. psp 35p.

Mowinure Level Metar
Moving coil, for accurate level indication for tape structers, amplifiers etc. Neat design, rugged con Sensitivily FSD 200 UA Od 13 ith rared value sions: $23 \times 22 \times 26 \mathrm{~mm}$. α / n 1320. ع3.22. p\& ${ }^{2}$ 35p.

107	FM Indoor Ribbon Aerial 3.5 mm Jack plug to 3.5 mm jack plug Length 1.5 m 5 pin OIN plug to 3.5 mm . Jack connected to pins 38.5 . Length 15 m	c0.09
13		20.86
114		. 98
115	5 pin oin plug to 35 mm . Jack connected	
	to pins 18 a Length 1.5 m	C0.98
116	Car aerial extension Screened insulated	
	lead Fitted plug ${ }^{\text {a }}$ skt	21.4
117	AC mains connecung lead for casselte recorders \& radios. 2 melres	c0.78
8	5 pin OIN phono plug to stereo	
	headphone jack socket	\$1.21
119	$2+2$ pin DiN plugs to stereo jack socket with attenuation network for stereo	
120	headphones. Length 0.2 m	E1.04
	Car stereo connector Variable geometry plug to fit most car cassette. 8 track cariridge \& combination units. Supplied with inline fused power lead and instructions.	c0.69
123	6.6 m Coiled Guitar Lead Mono Jack Plug	
	to Mono Jack Plug Black	¢1.73
124	3 pin OIN plug to 3 pin DIN plug. Length 15 m	10.86
125	5 pin DIN plug to 5 pin DIN plug length 1.5 m	80.86
	5 pin DIN plug to Tinned open end. Length 1.5 m	¢0.86
127	5 pin DIN plug to a Phono Plugs. All colour coded Length 15 m	11.50
$\begin{aligned} & 128 \\ & 129 \end{aligned}$	5 pin DIN plug to 5 pin DIN socket. Length 1.5 m	¢0.92
	5 pin DIN plug to 5 pin DIN plug mirror image. Lengin 1.5 m	¢1.21
$\begin{array}{r} 130 \\ 131 \end{array}$	2 pin OiN plug to 2 pin OIN inline socket. Length 5 m	20.78
	5 pin DIN plug to 3 pin DIN plug 184 and 385 Length 15 m	
	and 2 pin DiN plugt to 2 pin DiN socket. Length 10	$\begin{array}{r} 50.95 \\ 1.13 \end{array}$
$\begin{array}{r} 132 \\ 133 \end{array}$	5 pin OIN plug to 2 phono plug	
	Connected pins 385 Length 1.5 m	10.86
134	5 pin Oin plug to 2 phono sockers.	
	Connected pins 38.5 Length 23 cm	20.78
135	5 pin OIN socket to 2 phono plugs.	
	Connected pins 385 Length 23 cm	10.78
136	Coiled stereo headphone extension lead.	
	Black Lengih 6 m	22.01
178	AC mams lead for calculators etc.	C0.64
All pric	are inclusive of VAT. Barclaycard \& Access acc	

107
113
114

AC-DC enabies a large range of battery powered cadios, recorders calculators to be run off the mains. (220-240v AC). Switchable Universal plug incorporated. o/n 137. 84.14. p\& $p 35$ p. DC-OC for use in ail cars, boass etc., with pos. or neg. earth for a recorders etc. o/n 138. ©3.22. p\&p35p.

CROSSOVER NETWORKS

2-WAY channels for high and low frequencies to correct speakers quency: $3,000 \mathrm{~Hz}$. o/n 1904, f1.73. p\&p 35p. 2-WAY for 8 ohm speakers up 1030 wats. 1905. 22.65. p\& p 35p

3-WAY for 8 ohms speakers up to 30 watts. Frequency: 800 Hz and

MICROPHONES

DYNAMIC CASSET

For equipment requiring a high quality microphone. Sturdy. solid moulded body in black with neat chrome surround. Pick-up pattern is and 3.5 mm . On/OH switch. 1 metre of tough lead with floating 2.5 and 3.5 mm plugs. Matching moulded strut. Mmpedance: 200 ohms.
Sensitivity: 90 . Frequency: $90-10,000 \mathrm{~Hz}$. Size- 20 mm dia k k 120 mm . o/n 1326 . 11.84. p8p 35p DYNAMIC MICROPHONE
Superior qualily portable cassette recorder mike with bult-in remote control switch and lead fitted with 5 -pin 240° DiN plug fremote switch) and 3-pin DIN plug (microphone). Provides a direct replacement for those supplied with recorders. With detachable stand.
 p\& ${ }^{2} 3$ p.
RE - 317: DYNAMIC MICAOPHONE
Highly sensitive, hight-grade desk or hand mike suitable for use with many popular cassefte decks. Incorporates On/Oft switch and 1 metre lead with moulded standard jack plug. Complete with desk stand. Omnidirectional. Impedance: 5.000 ohms. Frec. response: 100 at
12.000 Hz . Sensitivity: $(-7 \mathrm{~dB}$ at $1,000 \mathrm{~Hz})$ o/n 1338. E5.29. 12.000 Hz .

OMNIDIRECTIONAL CARDIOIO

Powered by a 1 iv bacery located within the luminium body Satin silver finish with front disk protection to the diaphragm housing. stem and extremely supple cable type windshield. " U " bracket and battery providing approk, $8-10,000$ housumption: 0.2 mA from $1 \frac{1}{2}$ 600 ohms. Sensitivity: 70 dB. Frequency: $30-16.000 \mathrm{Mz}$. Size: 23 mm dia +267 mm . o/n 1329 . 14-72. p\&p 35 p
UNIDIRECTIONAL CARDIOID
Dual imp. 600 and 50.000 ohms. Response 50 to 14.000 Hz . Sensitivity 54 da al approx.. 190 gm . o/n 1328 . \&12-89. p\& 8 35p. STANDS
GOOSENECK CHROME FLEXIBLE HOLDERS
Length 320 mm . o/n 1333. E2.99. p 8 p 35 p .
Length 515 mm o/n 1334 . © 4.03 . 8 p 35 p .
FLOOR STAND Heavy chrome. Stow-away feet with rubuer ends for
£12.31 p 8 p 850
E12.31. pap 85p
glves $30^{\prime \prime}$ reach from with the above stand. Heavy chromed m

WINDSHIELD COVERS

o/n 1331. Medium per pair t1-38. p\&p 35p. o/n 1332. Large

AUDIO LEADS

DEPT. PE12, P.O. Box 6,
13 Baldock Street, Ware, Herts.

Just a little bit more...

Compere his fetures:

- AK Basic: meldent on beard, MHCNOSOFT Baste, the Induntry atandard, with entenaloing for on-acron othtis, graphice, mechin code Interfecing. Optimiaed for speed toe berichintirk below)
 retlabitity professional unlis for lone troubie tres the. Keyboerd ls mountod epparatety to evold etraining matn P.C.B.

 1200 boud, wht full checkewn error detection.
- Nas-sye montior, A powerfut 2X machin code montor providet an ldea! environment for lesming aboul and developthe maehine code proprams. Mas:bye uepsebtinking non deatructlve cureor, with 22 commende. AgCt krminalis
 the sytom I/O wetor table fo support other devices.

Nas +3ys commende are:

A-Hex arthmicte - -at brestypetint C-Copy E- Hecute G-Gonarnte H-Operate ob tritticite termins. In- Intwigent capy d-Execut difin $K-s e t$ keyboard aplions L-toad from tape M-Allemory modily

- Hex arthmalc
-op breshacion
c-copy
G-Genert
+Operate es hatematini
timinal.
- Erecut cr
-set keyboard apllome
-losd from teg
W-return to norme
O-Output to P.I.O.
o-Ourery inpul pori
8-single step
- Tabulate mencry

Writy them
$w-m$ wh
x-sef entotorit taice
2-arecution oro
 llmee with Mendehake.
On boird RS-232-WII Interface directly into any ittenderd teletype - Howing use of EASIC or Niss-uys from the felotype.
F Ful on-tereen sdillng: a comptete terten edtor with eutcor movemont ftip. DOWN, LEFT, AiGHT), ineert and deinth, hackepace dit

 charactern.
Fully butfered NAgeUs compatible: Woll deltned but iructure with orange et
 industry tendard operatime syttim
 PERSONAL COMPUTER WORLD AENCNMARK TESTE

	APPLet		RM, 300\%	PET
801	1.5	1.1	\$. 4	1.7
$8{ }^{8}$	3.2	5.4	0.5	9.0
193	7.3	11.8	13.2	18,4
	7.2	11.6	13.9	20.4
B 5	d	12.8	13.0	21.7
BM8	18.6	18.3	22.3	22.
BM 7	$22^{2} 2$	27.6	118	50.8
日M:		5.2	6.2	\$2.3

25 Brunswick Street, Liverpool L2 OBJ Tel:051-236 0707(Mail Order) 051.227 2535(Ah Other Bepta)

1M 2212-Auto Ranging DMM

IO 4105-Single Beam 5 MHz Oscilloscope

IM 5217 -Portable Multimeter

Plus

* GD 1290-VLF Metal Locator
* HX 1681-CW Transmitter
* IR 5201 - XY Recorder
* Cl 1525-Car Temperature Indicator

These brand new self-assembly kits are designed to the highest specification

The step-by-step instructions make them easy to build at your leisure in your own home.

And first class quality makes them excellent value for money.

Details of the full Heathkit range are available in the Heathkit catalogue. Send for your copy now.

There are Heathkit Electronics Centres at 233 Tottenham Court Road, London (01-636 7349) and at Bristol Road, Gloucester (0452 29451).

To: Heath (Gloucester) Limited, Dept. (PE 12), Bristol Road, Gloucester, GL2 6EE. Please send a copy of the Heathkit catalogue.l enclose 20p in stamps. Name Address \qquad $+$ \rightarrow ?

THE COUNTRY

EVEN in the face of a Government paper, which basically reports that the microprocessor revolution will create more employment in the foreseeable future, and the recent Labour Party commitment to microelectronics at its conference, some bodies are still spreading gloom over the electronics industry and the country. Even if there are sound arguments behind such pessimistic views, we are pleased to report that at last we are beginning to stop procrastinating and get on with the job in hand.

Many component distributors have been reporting an increase of up to 60 per cent in sales, this increase started back in August-normally a quiet month in the industry. The boom is generally attributed to the employment of m.p.u.s in new designs and equipment causing a market expansion, especially in demand for memories. The problem is that we are now years behind the Americans and our industry has been so slow to react to the new technology that a very high percentage of the newly developed equipments are being imported because, as yet, there are no British competitors.

It seems to us that, as a nation, we excel at the investigation and discussion of possible social problems and both management and workersusually for very different reasons-are initially set against the speedy introduction of new techniques and technology. Both the lengthy strikes at The Times and ITV have had much to do with new technology. Unless our basic attitudes to progress change we will suffer a lower standard of living and new technology will cause unemploy-ment-because we refuse to allow it to be used. We must all be prepared to change our views and retrain ourselves if necessary; if we do and if we move quickly we will ultimately all prosper:

THE HOBBYIST

Unfortunately the present buying spree by industry is creating component supply problems and once again we suspect the hobbyist is beginning to suffer. There has been a world shortage of ROMS and this has affected the supply of parts for home computers. Delivery dates are again lengthening and sometimes being broken by manufacturers, so have some sympathy
with your component retailer if he is out of stock and says it could be a month or two before a certain device is again available-very often he can only pass on information from the manufacturer and that information has, in the past, sometimes proved to be unreliable.

These problems also have a bearing on the projects we bring you. Recently we have been investigating the possibility of publishing a constructional design for one of the latest devices, only to discover that no mask-programmed single chip processors, suitable for our purpose, were available in less than six months. Steps are now being taken to circumvent the problem with the use of a PROM-this alternative will cost slightly more but the six months gained will be worth it. However, the supply of PROMS and RAMS is now under some strain so we must also watch that position carefully. The time problem is not because we are small hobbyist buyers-we have been discussing a device costing about $\mathbf{£} 6,000$ to get into production with one of the world's largest suppliers.

Mike Kenward

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Judith Kerley SECRETARY

ADVERTISEMENT MANAGER

SECRETARY

AD. SALES EXEC.
CLASSIFIED MANAGER

D. W. B. Tilleard

 Christine PocknellAlfred Tonge 01-2616819
Colin Brown 01-261 5762

Editorial Offices:
Practical Electronics,
Westover House,
West Quay Road, Poole,
Dorset 8H15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot be answered over the telephone (see below).

Advertising Offices:
Practical Electronics Advertisements,
King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS
Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-261 6601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 75 p each including Inland/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 3.75$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

by
 Alan Turpin

NEW CASES

Three new cases have been added to Vero Electronics range of moulded enclosures.

A desk top case $(228 \times 216 \mathrm{~mm})$ which is ideal for control equipment and keyboards is available in two versions, one with a raised top unit for digital readouts, encoders and other switches. Both have a base section moulded with an integral rear panel to accommodate connectors and plugs. Six mounting bosses are also provided in the base with holes to take self-tapping screws. Top and base sections screw together and the kit comes complete with aluminium front panels and fixing screws.

The other case, $150 \times 85 \times 45 \mathrm{~mm}$ high, has a front panel for identification and controls, which is protected by a raised edge all round. Assembly of components and connections to the front panel is simple as, with the case cover removed, components are accessible from all sides. The front panel is connected to the base by moulded posts and retained by the case cover. P.c.b. mounting pillars are moulded into the base, and a raised end surface is provided for cable grommets or components.

The price of the three cases are $£ 9.50$, $£ 7.60$ and $£ 4.60$ respectively.

Vero Electronics Limited, Industrial Estate, Chandler's Ford, Easteigh, Hants SOS 3ZR (042 15 69911).

DRILLAND DE-BURR

The step configuration of these Unibits allows drilling and simultaneous de-burring of a range of holes with one bit. Five bits cover holes from 4 mm to 34 mm in 1 mm or 2 mm

steps. Unibits are said to cope with sheet steel, brass, aluminium, copper, plastic and wood. Price from $£ 7.38$ inc. VAT, exc. p\&p.

Toolrange Ltd., Upton Road, Reading RG3 4JA (0734 29446).

HP-41C

The latest programmable calculator from Hewlett Packard has a 12-character liquid crystal display, alpha-numeric keyboard and a memory which can retain data and programs after the calculator has been switched off. The type of memory can be selected from 448 bytes or 63 data storage registers or any blend of bytes and registers required.

The HP-41C has a total of 130 mathematical, scientific and statistical functions which are identified on the keyboard or can be used by either spelling the name of the function or assigning it to a particular key replacing a function which is not needed in the calculation. Two overlays are provided to enable users to re-label the keyboard with the functions they use most.

For problems in specialised areas such as engineering, aviation, finance, surveying etc. plug in modules are available together with handbooks. Any created programs should be assigned a name and then keyed in and whenever the program name is entered the program is automatically carried out.

Peripheral devices available for use with the HP-41C include: memory modules, magnetic card readers, plotting printer and an optical reader for bar codes. The card reader can be used to record programs which on replay become part of the calculator's memory. The programs on the card can also be instructed

only to execute the program and not allow alterations. The thermal printer can print numbers, letters (upper and lower case), special characters, graphics and produce high resolution plots from data of programs.

The price of the HP-4 IC is $£ 190$, the card reader $£ 135$ and the printer $£ 260$ plus VAT and $p \& p$.
Hewlett-Packard Ltd, King Street Lane, Wokingham, Berks. (0734 784774)

US CRAZE

As one of the latest crazes in the US at the moment is hand held computer games you won't be surprised to hear that many manufacturers are predicting this Christmas

as the start of the "craze" period for these games over here. Tempus are offering a range of games which includes Digits, a variation of Mastermind or Codebreaker where the player must guess a hidden number in as few attempts as possible.

Amaze-A-Tron which is a maze game for two players who must find their way through a maze using coloured pegs on a 25 key matrix board. There are eight game variations and over one million different mazès available.

The U.F.O. Master Blaser Station is a game in which you shoot down as many U.F.O.s as
possible before they reach your station. The U.F.O.s can change course, disappear or descend in pairs and you can increase the difficulty by increasing the speed of descent.

A hand held version of Solitaire is also available in which you must clear all the lights except one on the display panel by process of elimination. Each game is timed and two speeds are available.

The price of these games vary from $£ 13.95$ to $£ 22.50 \mathrm{ex}$. VAT and $\mathrm{p} \& \mathrm{p}$. Tempus 19-21 Fitzroy Street, Cambridge CB1 1EH.

PLUG-IN TIMERS

A new range of plug-in timers introduced by Adonis Instruments can be used to time intervals between 1 sec and 100 hours.

Both "delay on energise" or "interval delay" types are available and all types have the facility for "external start" from a remote signal. A range of voltage types are stocked, varying between 12 V and 240 V with each timer having 2 -pole changeover contacts rated at $10 \mathrm{~A} / 250 \mathrm{~V}$.

Protection against mains transients and reverse polarity connection are built into the
timers and the time period can be set either with the control on top of the case, or fixed and adjusted with an external control.

Each timer fits into standard octal or 1-pin bases and are compatible with many existing types. The price range of the timers is from $£ 15.50$ to $£ 18.00$ excluding VAT and $p \& p$.
A.I., 70 Broomfield Road, Chelmsford, Essex CM1 ISW (0245 68459).

31 $\frac{1}{2}$ DMM

The latest DMM from Lascar Electronics is claimed to be the first l.c.d. mulimeter with an indefinite "digital hold" facility.

The instrument which is housed in an ABS case with an adjustable carrying handle will give over 2000 hours life from a single battery.

The 0.5 1.c.d. has a built-in battery low indicator.

With a basic accuracy of 0.1 per cent the DMM features 10 voltage, 10 currents and 5 resistance ranges with resolutions of 0.1 mV , $0.1 \mu \mathrm{~A}$ and 0.1 ohms. Inputs are via 4 mm connectors which are protected against overloads and transients.

The multimeter is supplied complete with battery and operating instructions at a cost of $£ 69 \cdot 00$ plus VAT and p\&p.

Lascar Electronics Limited, Unit 1, Thomasin Road, Burnt Mills, Basildon, Essex, SS13 1LH (0268 727383).

CRYSTAL SET

For anyone trying to find a Christmas present suitable for young children that will be both educational and interesting then the answer could be a crystal set. Many of us had our first introduction to electronics through such a set and Home Radio are hoping they will be able to addict youngsters to the hobby with their crystal set which is easy to build and requires no soldering. The price of the set is £2.50 including VAT and p\&p. Home Radio (Components) Ltd., 234-240 London Road, Mitcham, Surrey CR 4 3HD (01-648 8422).

BIMBOARD BUS-STRIP

To augment their existing range of 0.1 in breadboards, Boss Industrial Mouldings have introduced a 2 line Bus-Strip for use where two existing integral rails of a Bimboard are

insufficient for a particular circuit design. The price of the bus is $£ 1.92$ excluding VAT and p\&p. Boss Industrial Mouldings Lid., 2 Herne Hill Road, London SE24 0AU.

OPTOELECTRONIC
 SHORTFORM

Optron, the US specialist manufacturer of optoelectronic devices whose products are handled exclusively in the UK by Norbain Electro-Optics Division has just brought out a new shortform catalogue giving details of its latest optoelectronic emitters and sensors. They range from phototransistors, infrared light emitting diodes, and matched emitting diodes and phototransistors to photodarlingtons and photodiodes.

Norbain, Electro-Optics Division, Norbain House, Arkwright Road, Reading, Berkshire RG2 0LT (0734864411).

NEOSID

Neosid Limited have recently established a new outlet to cater for the amateur constructor.

A broad selection of the parent company's products are included in their new Small Order Catalogue, which covers a full range of ferrite components i.e. beads, screw cores, rods, E, I and U cores, also coil assemblies, plastics formers and trimming tools.

The catalogue is available free of charge from Neosid Small Orders, P.O. Box 86, Welwyn Garden City, Herts, Al7 las. (Please send stamped addressed envelope.)

PANELTIME

Have you ever wanted an l.c.d. clock to mount on the front panel of a project, amateur transceiver, teletext control box?

Ambit International are now stocking a miniature panel clock that can display time,

day and date. The unit is quartz controlled, has a back light, and an alarm function to drive a bleeper or other indicator. Running consumption is $6 \mu \mathrm{~A}$, accuracy is within ± 2.5 minutes per year, and height of the characters is up to 0.5 in . The display shown has a character height of 0.25 in. Price is $£ 10.60$ inc. VAT and p\&p.

Ambit International, 2 Gresham Road, Brentwood, Essex, CM14 4HN.

FREQUENCY SYNTHESISER

The FS-1B is a frequency synthesiser control unit module, comprising input prescalers, swallow counter, programmable divider, switchable filters and clock buffer.

It is programmed from a three line connection (clock/data/enable) with a 15 bit word that determines the reference frequency and output frequency of the VCO connected in the phase locked loop.

Frequencies in the range 20 kHz to 200 MHz may be programmed in conjunction with either discrete switch entry, hardwiring or simple computer control. A simple BASIC program

CSC CASE

The new hand-held case from CSC has been designed to house small, portable electronic systems such as calculators, counters, remote control units, communications devices and portable meters etc.

Measuring $76 \times 152 \times 38 \mathrm{~mm}$ the case comes complete with assembly screws, antenna connector, red plastic front facia panel, subminiature jack connected to a battery snap connector and a battery compartment. There is sufficient room for keyboards, speakers, microphones or controls on the front panel.

The price of the case is $£ 3.00 \mathrm{ex}$. VAT and p\&p. CSC, Shire Hill Industrial Estate, Saffron Walden, Essex CB113AQ.
exists to provide facilities for LF/MF/HF/VHF tuning options, so that owners of NASCOM, PET and similar systems may readily operate the module in conjunction with a voltage tuned radio having a buffered local oscillator output.

Various reference frequencies are available, both in conjunction with an on-board selection in the data control, and the use of different frequency crystals.

Priced at $£ 24.95$ in one-off quantities, the FS-1B is available from Ambit International, 2 Gresham Road, Brentwood, Essex CM14 4HN(0277 227050).

PE AT BREADBOARD '79

DECEMBER 4th-8th AT ROYAL HORTICULTURAL HALLS, ELVERTON ST., WESTMINSTER

We will be exhibiting a range of projects and hope to include: Ultrasonic Alarm; Solid State Car Instruments; EPROM Programmer; Ulitrasonic Cleaner; Teletext; Digital Frequency Meter; Compukit UK 101 with peripherals; Short Range Communication Transmitter and Receiver; Modem; Pushbutton Car Radio: PE Diamatic and perhaps a few more forthcoming attractions. Interested? Then come along and see for yourself.

Acomputer range from $£ 500$

The number one micro-computer in Britain today, selling more than 1,000 per month!

The Commodore Pet computer range is versatile and affordable. Programs can be written in Basic, the easiest computer language to learn. There is also machine language accessibility for professionals.

The Pet is a fully expandable system, peripherals being available for many specialist applications, (peripherals such as dual drive floppy discs and printers). There are already over 300 standard programs,
tested and in use in commercial, scientific, educational and many other applications throughout Britain. The Pet is a portable and professional computer that operates by plugging into a normal 13 amp mains. Service and advice is readily a vailable through the nationwide network of dealer outlets. For a demonstration contact your local dealer-some of whom are shown here. In case of difficulty contact Consumer Information Dept (PE2), Commodore Systems, 360 Euston Road, London NWI.

Associated Commodore dealers:

BIRMINGHAM
Camden Electronics 021.773 8240 CPS (Data Systems) 021-707 3866 Taylor Wilson Systems Knowle 6192 BOLTON
B \& B Consultants 0204-26644
BOURNEMOUTH
Stage One Computers 0202-23570 BRADFORD
Ackroyd Typewriter \& Adding Machine Co 0274-31835
BRENTWOOD
Direct Data Marketing 0277-229379 BRISTOL
Bristol Computer Centre $0272 \cdot 23430$
Sumlock Tabdown 0272-26685 CAMBRIDGE
Cambridge Computer Store 0223-68155

CARDIFF

Sigma Systems 0222-21515
COLCHESTER
Dataview 0206-78811 DERBY
Davidson Richards 0332-366803 DURHAM
Dyson Instruments 0385-66937 EDINBURGH
Micro Centre 031-225 2022
EXETER
A.C. Systems $0392 \cdot \overline{7} 1718$
GRIMSBY GRIMSEY
Allen Computers 0472-40568
HEMEL HEMPSTEAD
Data Efficlency 0442-57137
HOVE
Amplicon Electronics 0273-720716 LEEDS
Holdene 0532-459459
LIVERPOOL
Aughton Automation
051-5486060
Cortex Computer 051-263 5783 Dams Office Equip. 051-227 3301 LONDON E2
Ragnarok Elec Sys 01-981 2748 LONDON ECI
Sumlock Bondain 01-253 2447 LONDON N14
Micro Computation 01-882 5104 LONDON NW4
Da Vinci Computers 01-2029630 LONDON SW14
Micro Computer Centre 01-8766609 LONDON W5
Adda Computers $01-5795845$ LONDON WCI
Euro Calc 01-405 3113
LONDON WC2
TLC World Trading 01-839 3893 MANCHESTEA
Cytek (UK) 061-832 7604
Cytek (UK) O61-832 7604
Executive Reprographic Executive Repro
$061-2281637$ Sumlock Elec Svs 061-834 4233 MATLOCK
Lowe Electronics 0629-2817 MORLEY W. Yorks Yorkshire Elec Svs 0532-522181 NORWICH
Sumlock Bondain 0603-26259 NOTTINGHAM
Betos (Systems) 0602-48106 OXFORD
Orchard Electronics 0491-35529 PLYMOUTH
JAD Integrated Svs 0752.62616 PRESTON
Preston Computer Ctre 0772-57684 READING
CSE Computers 0734-61492
SOUTHAMPTON
Business Electronics 0703-738248
Symtec 0703-37731
Xitan Systems 0703-38740
SUNDERLAND
Tripont Ass Systems 0783-73310 WOKING
P.P.M. Brookwood 80111

Petalect 04862-69032
YEOVIL
Computerbits 0935-26522
NORTH SCOTLAND
Thistle Computers Kirkwall 3140 NORTHERN IRELAND
Medical \& Scientific Lisburn 77533

Beckman 3020 The multimeter that defies competition

This is not just another new multimeter. Backed by over 40 years' experience and worldwide sales, it set out to beat the competition on virtually every count. To whet your appetite, here are just a few of the features that set it apart.

Accuracy-long term high accuracy ensured by a highly stable band gap reference element and thin-film resistors.

Reliability-total number of electronic parts reduced to less than 40 to give real reliability.

Portability-easy to hold, stand or hang, it weighs only 453 g (16 oz).

Continuity check-continuity can be checked in less than 100 milliseconds.

10A current range-up to 10 A ac or dc without special adaptors.

Overload protection-voltage inputs and resistance ranges comprehensively protected.

Long battery life -9 V transistor battery provides up to 2000 hours continuous operation, two years typical use.

Send for the full technical specification and see how the 3020 defies comparison-pound for pound-with any other multimeter on the market.

BECRMAN

Beckman Instruments Ltd Sales and Marketing Organisation Queensway, Glenrothes, Fife, Scotland, KY7 5PU. Telephone: (0592) 753811 Telex: 72135

Semiconductor TPDATITKoo featuring
 28000

CAPTAINZILOG

Zilog would like to draw your attention to their brand new microprocessor, the 16 bit $Z 8000$.

Interesting electronics engineers or hobbyists in yet another new microprocessor will probably be difficult, and the fact that a comparable device from Intel, the 8086 , has been around for several months won't make things any easier.
Technically, the Zilog 28000 is a big leap forward, with the power of a minicomputer and an address range of up to 8 megabytes. It is probably more powerful than the Intel competition, but it seems that it will soon itself be upstaged by an even more powerful device from Motorola, the 68000. All this has put Zilog in the awkward position of not being the first and not being the best either, a situation which called for an expensive publicity campaign to broadcast the news about the 28000 before all those sockets are gobbled up by other 16 bit devices.

Now, one way to tackle the publicity task would be to commission some technical articles and advertisements extolling the virtues of the Z8000 architecture, but Zilog wanted to get all electronics engineers interested and there's only one way to do that, isn't there? Yes of course, they gave the Z 8000 its very own comic book! Enter Captain Zilog, alias systems designer Nick Stacey, who is given the gift of "Zilog power" by an extra terrestrial being who hauls him bodily through his VDU screen.

Moulded in the fine tradition of Superman and Captain America, Captain Zilog hurls himself into adventures such as "The doom of Doctor D" and "Battle beneath the architecture" in a desperate (and of course successful) attempt to foil the dastardly plans of Doctor Diabolicus who intends to conquer Earth with the aid of his super main-frame computer. Liberally laced with comments such as: "Stick it in your Index Register Diabolicus" or "Dancin' data" and "Leapin' logic", the new Zilog comic book is a must, if you can get one!

This is certainly a novel way to publicise a new device, being less distracting than the "sex" alternative, and much less boring than a ten page sheet I I found after reading the comic book that I knew quite a lot about the $\mathrm{z8000}$.

BIG BUBBLE

The future bulk memory requirements of the Zilog 28000 and all the other fourth generation microprocessors will probably not be satisfied by present floppy disc systems because their electro-mechanical
technology is bulky, fragile, and likely to get more expensive rather than less as time goes by. The advantages of solid-state memory are self evident, and the bulk memory requirement will soon be satisfied by magnetic bubble memory chips which are compact and have no moving parts.

Bubble memories rely on the non-volatile storage and propagation of magnetic domains within a synthetic garnet substrate, and are thus quite different in their operation to conventional semiconductor RAM devices. Despite the differences in operation, bubble memories are made using the same basic techniques which have been developed for the other LSI technologies, and this has attracted many of the biggest semiconductor manufacturers including Intel, Texas Instruments, Rockwell, and Plessey in the UK.

Bubble memories are essentially serial in operation (like shift registers) rather than parallel (like RAM devices) and the speed at which the bit domains can be moved is limited to a few tens of kilohertz. Together, these factors make the access time to a particular location very much larger than the few hundred nanoseconds of today's RAM chips, but this is more than made up for by the huge amounts of data which can be stored by a single device. One of the latest bubble memory chips, the 7110 from Intel, stores 1 megabit, or looked at another way, 128 kilobytes, just think how many RAM chips you would need to handle that!
To speed up the access to any particular location, the 7110 is organised internally as 4096 separate shift registers, each of 256 bits. Two registers are used together to form a 512 bit page and on-chip processing treats each page as 648 bit bytes to achieve an average random access time of 40 milliseconds. That may be a lot slower than a conventional RAM but it's faster than a floppy disc and a lot more compact and reliable. A single 7110 could replace a complete mini-floppy drive in many applications.

RING-A-DING-DONG

A new single-chip tunes synthesiser, which can be programmed to generate up to 28 different tunes, has been introduced by General Instrument Microelectronics Limited.

Designated the AY-3-1350, the 28-lead NMOS device operates from a single 5 V power supply, and is suitable for use in toys, musical boxes, doorchimes and other "novelty" products.
The standard circuit is pre-programmed with 25 short tunes plus 3 simple chimes.
but this may be altered to suit the application. It is possible for instance, to program just a single tune consisting of up to 251 notes. The chip does offer great flexibility to designers, as it can also generate tunes from data held in external PROMs.

In addition to its programming options, the AY-3-1350 may operate in a number of different modes, making it suitable for a wide variety of different applications. In a doorchime for instance, it can be connected to play any one of 25 pre-selected tunes from the front door bell push, with one of 5 tunes from the back door. In addition a third bell push can be wired to play a simple chime. All the tunes would be selected by switches or matrix board inside the chime cabinet.

A further possibility is to connect the circuit to a number of different bell pushes on each door. This might be useful for telling which different tradesmen are calling, or which member of the family is required at the door. Mother, father, brothers and sisters could each have their own particular "call" tune. In addition further variations could be made for back door, side door, or even a bell push for alarm purposes in an apartment used by an elderly relation.

Applications exist in low cost paging systems, where key personnel are each allocated one tune. A brief tune played over loudspeakers in a noisy factory would be much easier to recognise than a spoken name.

The circuitry may be connected so that there is virtually no power consumption when in the stand-by condition. When any bell push is activated the circuit plays a tune and then automatically powers down again to conserve batteries-even if the visitor keeps his finger on the bell push. Releasing the button and repressing would cause either the same tune to play again, or the next tune to be selected, depending. on the precise operational mode of the device. Alternatively, the circuit may be wired to replay tunes over again until the button is released.
With the addition of an external ROM or PROM the standard AY-3-1350 will play almost any tune or tunes desired. These could be 28 tunes averaging 8 notes each or one tune of up to 251 notes. This would provide about 1-2 minutes worth of music.

The pitch, tone and speed of tunes played may be independently set by simple external components. These may be either preset or brought out as potentiometers as a user control. Either switch closures may be used to trigger the device or a capacitive touch switch using a few external interface components.

EPROM PROGRAMIMER PART 1 A.A.BERK в.Sc. Ph.D.

THE EPROM programmer is a memory-mapped peripheral for the 2708 family of Erasable Programmable Read Only Memories (EPROM's) and programs at about the maximum possible speed (around 2 minutes). The p.c.b. contains its own power supply giving $+12 \mathrm{~V},-5 \mathrm{~V},+27 \mathrm{~V}$, and only requires +5 V and a 9-0-9 volt transformer. On board, there is 1 K of RAM for storing information to be transferred to the EPROM. The EPROM may be read before or after programming for verification, and used in-situ as a normal 1 K block of Read Only Memory. The programmer thus effectively expands the host system by 2 K of memory (1 K of EPROM and 1 K of RAM), with the added facility of being able to reprogram the EPROM section. Connection of the machine is simple and almost identical to the PE VDU connections.

Eleven Address Bus Lines (AO-A10), eight Data Bus Lines (DO-D7), a Read/Write line and some address decoding logic is all that is required. Interface to the COMPUKIT UK 101 and many other machines requires just a couple of d.i.I. plugs. The COMPUKIT would allow the necessary routines to be written in BASIC. A minimal MPU system containing the machine is shown in Fig. 1.

Use of the programmer is restricted to writing the desired target program or data into the 1 K of on-board RAM, running and checking it, and then switching on the programmer which then takes around two minutes to copy the RAM contents onto EPROM. The machine automatically hands EPROM and RAM back to the MPU system.

EPROM THEORY

Each individual cell within the 2708 contains a "floating gate", which is able to collect a charge from a "pumping" pulse-train produced by a programmer. When sufficient charge has been accumulated within this completely insulated storage element, the cell, initially showing a "one", will return a "zero" along its data line when read.

The 2708 family members have a quartz window in the upper surfaces of their packages. Through this, a strong ultra-violet light may penetrate to knock the electrons in the storage elements out of their shallow energy levels and allow them to leak away via the substrate.

This clears the cell back to a "one". The organisation of the 2708 causes 8 cells (one byte) to be read and programmed at a time, hence requiring normal Address and Data lines.

To program the EPROM, the programmer produces a succession of addresses along AO-A9, and, for each, presents the data to be programmed along DO-D7. The EPROM thus starts, after erasure, with FF (8 "ones") in each location.

The requirements of the 2708 family demand that all locations be presented with data a large number of times during the programming sequence. The number of such complete addressing cycles is determined by the speed of operation.

The Block and Connections diagram shows a typical Read Only Memory device with the addition of a Programming pin. This pin is pulsed up to +27 volts during programming.

The CSME pin is a normal chip select except when programming, when it is held at +12 volts. The timing Diagram (Fig. 3), shows the signals necessary to program the 2708. It should be emphasised that the programming cycle consists of cycling through all 1024 memory locations N times and presenting the data to be stored over and over again. The sequence is as follows. $\overline{C S} / W E$ is switched to +12 V , the first address and data are presented and $>10 \mu \mathrm{~S}$ later, pin 18 is pulsed up to +27 V . These conditions are held for 0.1 to $1 \mathrm{~ms}\{0.5 \mathrm{~ms}$ is chosen for the machine presented here) and then pin 18 drops to zero and the next address and data loaded. The cycle from address 0 to address 1023 thus takes a little more than half a second.

Fig. 1. Minimal system containing EPROM Programmer

This entire sequence is then repeated a number of times. The total number, N, of such loops is between 100 and 1000 (possibly more) depending upon the width (tp) of the program pulse (+27 volts). The formula for determining N is: $N \times$ tp $>100 \mathrm{~ms}$. Thus, for $0.5 \mathrm{~ms}, \mathrm{~N}$ is a minimum of 200. The total programming time for this number is slightly over 100 seconds.

The EPROM starts with its locations containing FF, thus if the programmer presents just FFs to the EPROM, it will retain its "erased" state. Even though each memory location must be accessed during programming (many times in fact), those presented with FF will remain untouched. Thus, a block of the EPROM may be programmed selectively without affecting the rest of the device. In fact, this is true of an EPROM already containing any other block of information. Contents of that block, whatever they may be, remain unaffected by the programming procedure as long as FF is presented to each of its locations during the cycles.

Indeed, a single bit in any given location can be set to zero selectively by presenting 1's everywhere else during programming.

Fig. 2. The 2708 EPROM
Fig. 3. Program timing diagram

It should be noted that the machine described here is not suited to the single supply 2716 , nor types of EPROM other than 2704, 2708 and the multi-supply 2716. The reason for this is that the cycle-timing diagram requirements are quite unique to this family.

Fig. 4 shows the hardware set-up of the programmer. The heart of the device is in the timing control block. It is here that the cycles of sequentially presented addresses are produced, as well as the correct repetition rate and number of complete loops necessary.

The counter-produced addresses are switched over to the RAM and EPROM by the Address Bus switch after a Program Request signal is received. A Ready line, and l.e.d. on the p.c.b., signals when the programming cycle is in progress.

The RAM is held in the READ state, and the Counter addresses RAM and EPROM sequentially. The RAM (which holds the desired program) places the data on the Data Bus and hence onto the input pins of the EPROM. The timing control then waits a few microseconds and switches the 27 volt level on to the Program pin of the EPROM for 0.5 ms .

Fig. 4. Block diagram of EPROM Programmer

COMPONENTS

Resistors

R1	$1 k \frac{1}{2} W$
R2	$1 k$
R3	47
R4	150
R5	100
R6, R9	$2 k 2$ (2 off)
R7	$15 k$
R8	$8 k 2$
R10,R12	$10 k$ (2 off)
R11	$33 k$

All resistors $\frac{1}{4} \mathrm{~W} 5 \%$ unless othewwise stated.

Capacitors

C1, C2,C4	$470 \mu \mathrm{~F} / 25 \mathrm{~V}$ elect (3 off)
C3, C5, C6	$100 \mu \mathrm{~F} / 63 \mathrm{~V}$ elect (3 off)
C7	1 n ceramic
C8	100 n ceramic
C9	10 n ceramic
C10	33μ elect
C11 upwards	100 n Supply decoupling

Transistors and Diodes

D1-D4	1N4004 (4 off)
D5, D6	1N914 (2 off)
D7	$27 \mathrm{~V} / 1 \mathrm{~W}$ Zener
D8	Any l.e.d.
TR1, TR3	BC549 (2 off)
TR2	BC559

Integrated Circuits

IC1	7474
IC2	4024
IC3	4040
IC4	2708 or 2716 EPROM
IC5, IC6	2114 (2 off)
IC7. IC14	74 LS244 (2 off)
IC8, IC13	7400 (2 off)
IC9	74123
IC10-IC12	74 LS 157 (3 off)
IC13	79 LO5
IC14	$78 L 12$

Sockets

14 pin	4 off
16 pin	5 off
18 pin	2 off
20 pin	2 off
24 pin	1 off

Miscellaneous

T1 Mains transformer. Sec. 9-0-9V at 1A
S1 Double pole single throw
Pins for through-board connection
Double sided 0.156 in . pitch 50 -way edge socket Printed circuit board

Constructor's Note

Kit of parts, including double-sided, drilled and tinned p.c.b. (not plated-through), is available from: Modus Systems Ltd., Dept. EP, 29a East Cheap, Letchworth, Herts. SG6 3DA. £37.30 VAT + p.p. inc. P.c.b. £8-45 inc.

The kit excludes T1, S1, IC4 and edge socket, but sockets are included for all i.c.s.

Fig. 5. Memory and switching of the Programmer. S1 is in the "Program" position. Links are shown connected for 2708

The cycles continue until complete and the EPROM and RAM are then handed back to the MPU system for normal use.

It should be clear then, that the role of the MPU system hosting the process is to provide for the RAM, programs or data to be "burned" into EPROM. To this effect, the RAM should be filled with FFs beforehand, so that any unused RAM space does not affect the EPROM.

The RAM and EPROM form a normal part of the MPU's address map, such that programs and data may be stored in either or both for running and use in-situ. The only time the memory is not available to the MPU is during programming. When the tri-state buffers are switched off, the data Bus of the MPU system is disconnected from the machine.

Last month, in the final part of the COMPUKIT UK 101 article, "plug-in" methods of expanding the machine utilising the upper part of the 2114 memory were described. This is the most convenient method of attaching a programmer and is described next month.

POWER SUPPLY

The Power Supply Unit (Fig. 6) gives all necessary power levels except for the +5 V which is usually available from the MPU system. An external transformer with a secondary of $9-0-9$ volts at 1 Amp is necessary for the PSU and may be purchased from Modus Systems Ltd., who can also supply the p.c.b. and full kit.

E6 196
Fig. 6. Power supply
The full 18 volts is halfwave rectified to supply a regulator for the 12 volt level, and a 9 volt winding is used for the -5 volt regulator. Plenty of power supply bypassing is included on the p.c.b. and little rippling was detected on the prototype.

The 27 volt supply is formed by voltage doubling the 18 volts via D3 and C5. The unregulated voltage developed across C6 is held at 27 volts by a Zener diode.

A note of caution is applicable here. For safety, the link $L 9$ should only be connected for programming, since the voltage is quite sufficient to destroy all the i.c.s on the board if accidentally bridged to nearby tracks. In addition, powerup could place the programmer in the program mode, and this would destroy the contents of an EPROM if in place. A reset line is provided to stop the programming cycle at any time, and a power-up reset could be automatically applied by a capacitor and resistor in series if required. +5 V , -5 V and +12 V are all necessary for normal operation of the EPROM and none should be applied to the EPROM for any length of time without the others.

Fig. 7. Program timing and control of the programmer

The 27 volt pulse, in particular, must never be applied unless the others are present exactly as required in the timing diagram, and certainly should never be applied for more than 1 ms continuously.

PROGRAM TIMING AND CONTROL

The circuit diagram of Fig. 7 shows the program timing and address counter elements. The user (or his MPU system) switches the Program. Input (pin 3 of IC1) to a "one". This latches IC1 on, until its Clear (pin 1) is set to Zero.

Q and $\overline{\mathrm{O}}$ of IC1 are set to " 1 " and " O " respectively, removing the reset level from IC2 and 3 and starting IC9a timing. 20 μ s later, Q of IC9a falls and starts IC9b timing via its " A " input, which is sensitive to falling edges. Program pulses are sent out via Q and $\overline{\mathrm{Q}}$ to Q 1 and Q 3 which are part of the 27 volt switch. The 27 volt program pulse then holds for 0.5 ms .

Throughout the process so far, the outputs of IC3 have remained in their reset state of all zeros. This address is presented to the RAM and EPROM to Program Address 0 in the EPROM. When the 0.5 ms ends, a falling edge triggers off IC9a again via its A input and a short time later, via IC8c, R6 and C7, the CLOCK input of IC3 receives its first high-to-low transition. This causes an advance. The delay allows the EPROM to settle fully out of the "program" state. This new address is then allowed to settle before IC9a's 0 output falls and programming of the next address occurs.

IC3 is a 12-bit counter and pin 1 is its twelfth bit. Thus, the addresses are cycled through four times before pin 1 suffers a high-to-low transition which advances IC2 by one count. This chip is a 7-bit counter and pin 3 is its seventh bit. Thus the addresses are cycled through $4 \times 2^{6}=256$ times before pin 3 goes high which sets IC8d pin 13 to a "1". As soon as IC9a has finished timing, pin 12 of IC8d is set to a " 1 ", clearing IC1, and the system returns to its quiescent state. The theoretical time, assuming accurate pulse lengths, is thus $(520 \mu \mathrm{~s}) \times 2^{12} \times 2^{6}=136$ seconds.

A certain amount of leeway in timing has been included to offset variations in programmer components and EPROM manufacture.

USE OF THE MACHINE

The software to run the programmer should be in the machine already. Any MPU system must have routines for accepting information from the user, usually via a keyboard, and placing it in any memory location desired. By this means, the RAM block may be filled with the necessary data by hand. The only software necessary will be a small routine to fill the RAM with FFs if the whole EPROM is not programmed. Verification of EPROM contents is, again, performed via the computer's normal system of reading out data from any selected memory location, by simply reading through the appropriate EPROM addresses, as with any block of memory in your machine.

A short flow-chart to fill the RAM with FFs is presented in Fig. 8. This can be written for any simple machine-code based system and requires either one testable 16-bit register for scratchpad, or two 8-bit locations to store an address.

The flow-chart will code into instructions more easily on some machines than others. For instance, 6800 and $Z 80$ both contain 16 -bit registers and may be used with ease to discover when the last address in RAM has been set. SC/MP and 6502 do not have this facility and checking sixteen bits of information is a more involved job. However, any machine is capable of performing the routine, and provided there is a bus-structure available, interfacing in hardware and software will be quite straightforward.

As a final note on the above, it is possible to perform the setting of RAM to FF by hardware. All the facilities for stepping through memory exist on the programmer, and it is just a question of keeping the EPROM disabled, the RAM in the write-state, the Bus buffers tri-state and all Data lines to a logic "one". This will fill the RAM with 1s as IC3 cycles through once.

Next month, the final part covers the rest of the hardware, p.c.b. layout, construction and hardware interfacing to your system.

Fig. 8. Flow diagram to fill the RAM with FFs

The EPROM Programmer may be run from the UK101

Hountiduna

Organisers: Please send details of exhibitions, club open days and other events to Mike Abbott at least six weeks in advance. Inclusion will be subject to space etc.

Electronics 79-Nov. 20-23. Olympia, London. 『 0217056707. Video Rights 79 (conference)-Nov. 26, 27. Cafe Royal, London. Details: Nord Media © 01-6299381.
Breadboard 79-Dec. 4-8. Royal Horticultural Halls, Westminster. Details: Trident International Exhibitions. $/ 08224671$.
IBM Hardware Selection-Dec. 5, 6. Skyline Hotel, London Airport. Details: Online.
BEX (Business Equipment Exhibition)—Feb. 6-7. Queens Hall, Leeds. Details: Douglas Temple Studios. © 0202-20533.
BEX-Feb. 20-21. The Pavilion, Bournemouth. Details: Douglas Temple Studios.
IEA/Electrex-Feb. 25-29, 1980. National Exhibition Centre, Birmingham. Details: Industrial and Trade Fairs Ltd. 8 021-705 6707.
Viewdata '80 March 26-28. Wembley Conference Centre, London. Conference and exhibition. Details: Online Conferences Ltd. $/$ Uxbridge (0895) 39262.

Computer-Aided Design (conference and exhibition)-March 31-April
2, 1980. Metropole, Brighton. Details: Organisers, CAD 80. § 0483 31261.

Seminex—April 14-18. Dept. Physics, Imperial College, London.

Communications '80-April 14-18. National Exhibition Centre, Birmingham. Details: ITF Exhibitions. 8 021-705 6707.
Electronic Test and Measuring Instrumentation-April 22-24, 1980. Wythenshaw Forum, Manchester. Details: Trident.
International Conference On The Electronic Office-April 22-25, 1980. London Penta Hotel. Organised principally by the Institute of Electronic and Radio Engineers. 99 Gower St., London WC IE 6AZ.
All-Electronics Show (1980)-April 29-May 1, Grosvenor House, Liverpool. Exhibition and seminars, with the co-operation of Liverpool. The Mersey Micro Show-April 30, May 1, 2, 1980. Adelphi Hotel, Liverpool. Exhibition and seminars, with the cooperation of Liverpool University. Details: Online.
The 1980 Microcomputer Show-July 10-12. Royal Lancaster Hotel, London. Details: Online.
IBC 80 -Sept. 20-24. Metropole Centre, Brighton. Details: Secretariat, IEE, Savoy Place, London WC2R OBL.

polint dilisint

SIX CHAN NEL MIXER (September 1979)

Switch S3b, terminal 4, should be connected to terminal 4 of switch S3a and not to $O \mathrm{~V}$.
DIGITAL TEMPERATURE CONTROLLER 1October 1979)
The values for C8 and C9 should be transposed in the circuit and components list.

PRECIPITATION SENSOR

British patent application 2010486 from Surface Systems Inc. of Missouri, USA (applied for under the new laws and dating back to December 1977) describes a module for automatically sensing wet and icy conditions on a road or airport runway surface.

LIAUID MAGNET

British patent application 2009414 from the French company Societe Nationale D'etude et de Construction de Moteurs D'aviation was filed under the new patent laws and dates back to November 1977.

Although the invention is concerned primarily with a magnetic means of measuring the thickness of passageways inside gas turbine blades, it is clear that the principle described has much wider applications. The specific aim of the invention is to check that

Copies of Patents can be obtained from:

the Patent Office Sales, St. Mary Cray, Orpington, Kent Price 95p each

The module can trigger a visible or audible alarm, for instance light up a danger sign, when a surface becomes slippery and dangerous; or a series of sensors can provide air traffic control with a continuous readout of airport runway conditions.

A block 3 of epoxy resin material, with silica glass or sand filler for strength and resistance to wear, is embedded in the surface 6 to be monitored. A square electrode 11 of metallic foil is encapsulated in the block thereby providing both capacitance and conductance paths to surface 6.

In the circuit diagram the capacitance path is represented by phantom capacitors C1 and C3, and the conductance path by phantom resistor G1. A constant-voltage oscillator 15 and capacitor C5 supply electrode 11 with a sine wave signal at a
frequency of around 5 kHz . The signal is applied via resistor R1 and thermistor T1 to compensate for any small change in the value of capacitor C1 caused by temperature. Because a relatively low frequency sine signal is used, oscillator 15 can be placed up to 500 feet from sensor electrode 11 without significant loss.
Whenever there is water or ice precipitation the sensor surface is connected capacitively and conductively to the surface 6. This causes a significant loss of current from electrode 11 to surface 6 . The amplitude of the signal appearing at the input of amplifier 17 is thus a function of the change in the capacitance and conductance between sensor electrode 11 and surface 6 . The output of amplifier 17 therefore decreases as precipitation accumulates on the sensor. Precipitation circuit 23 provides an indicator or alarm trigger signal when the output signal 21 of amplifier 17 falls to a predetermined level.

In one modification of the invention a delay circuit is incorporated to ensure that the temporary removal of ice or water from the sensor block by passing vehicles does not affect the overall reading.
the cooling passages inside a turbine blade are accurately formed, with adequately thick walls. To achieve this the passages are temporarily filled with ferro-magnetic fluid.

This material, which was developed (like so many others) for use in space, is a suspension of magnetic particles in liquid which behaves like a fluid magnet. Because ferro-magnetic fluid is expensive, it is introduced into the passageways and withdrawn after use by a simple piston and cylinder arrangement.

A probe 11 , like a metallic pencil, is wound with a coil 12 on a core 13. This coil forms one branch of an a.c. bridge 14, of which the other branches are formed by potentiometers 15,16 and 17 . The bridge is supplied at a first diagonal by a.c. from generator supply 18,19 and a measuring

apparatus 20 , for instance a meter, is connected across a second diagonal to read any dis-equilibrium of the bridge. Compensation winding 21 is identical to, and in parallel, with the winding 12 , but wound in the opposite direction.

Equilibrium of the bridge is achieved with the probe against the part to be measured. When the probe is subsequently moved over the part, any irregularities in the passages containing the fluid cause a visible change at the meter 20 because the fluid governs the impedance of winding 12.

It is interesting to note in passing that the American firm Teledyne Acoustic Research already has what appears to be a master patent on use of ferro-magnetic fluid to fill the gap between the voice coil and magnet of a loudspeaker. Indeed many Adoustic Research loudspeakers now have fluid filled gaps of this type. The claimed advantage is that the fluid helps conduct heat away from the voice coil to the magnet pole piece in the manner of a heat sink and provides friction-free radial support for the coil former.

The Acoustic Research patent was granted under the old British laws (BP 1542266) and cites US patents 3612630 and 3734578 as describing basic forms of ferro-magnetic fluid per se.
 $0-100$ A. D.C., price E5.00 5 50. P. \& P. (EC. 33 Iicl. VAT MEANY OUTY SOLENOID mf My

 N.M.S.

18-24V. D.C. 70 ohm Coil Solenoid. Push or Pull. Adjustable travel to $3 / 16$ in. Fitted with mounting brackets and spark sup-
pressor. Size: $100 \times 65 \times 25 \mathrm{~mm}$. Price: 3 for $\mathbf{E 2 . 4 0}+30 \mathrm{p} . \mathrm{P}, 8$ P. 1 min 3 off.) 1 (E3. 11 inc. VAT \& P. 1 MINIATURE UNISELECTOR
12 volt. 11 -way. 4 bank (3 non-bridging
1 homingl E3.00. P. \& P. 35 D IE3.85 inc. VAT \& P.). N.M.S.
240 A.C. SOLENOID OPERATED

FLUID VALVE

boted p.s.i. will handle up to 7 p.s.i. Forged brass
body. staliniess steel core and soring $\frac{1}{2}$ in. b.s.p. inlet outlet. Precision made. British m/p.
PRICE E350 Post 50 p
MICRO SWITCHES

Sub min Honevwell roller m/s fooe 3115 m 906 .
 [5.18

 c2.93 (min 10).
MERCURY SWITCH
Size $27 \mathrm{~mm} \times 5 \mathrm{~mm}$. 10 for $\mathbb{C 5} .00$
(inc VATEG.12) min quanity 10.30 P P. \& P.
Heyy duty itye size $38 \times 16 \times 10 \mathrm{~mm}$. minimum quantity 10
E7.50 post paid (E8.63 inc. VAT \& P.).

2-CAM PROGRAMMER

A.E.G. CONTACTOR
 TORIN BLOWER
 Other 75 . linc VAT E5.18

 amooth running. 240 N . AC. operation. Output

24 voit. D.C. BLOWER UNIT

Test to 1 E E Spoc Rugged meatal consmuction suitab fize LEBin W $\sin \mathrm{H}$ Gin weight 61 lib 500 V

 \& P.). 1.000 V 1.000M (884.17 . E55. Post 80 p Yet another outstanding offer.
IMFD 600V Dubilier wir
O for $£ 1.50$ p\&p 50p. ($£ 2.30$ inc VAT + p\&p) MMis
230 V a.c. FAN ASSEMBLY.
Powerful continuously rated a.e. motor complate with 5
6 tin. or 4 olado 3 in. sluminulum tan, price ci-00. of. \&
I 24.20 incl. VAT \& 9 . 1 .

All Mail Orders Callers Ample Parking Space Showroom open Mon-Fri.

ULTRA VIOLET BLACK LIGHT

FLUORESCENT TUBES

4t. 40 Watt £8.70 inc. VAT £10-00 (callers oniy) 2 ft .20 watt 6.20. Post 75 p . ($£ 7.99$ inc. VAT + P.) (For use in stan bi-pin
fittings) Mir i 12 in 8 watt $£ 2.80$. Post 35 p. ($£ 3.82$ inc. VAT $+P$) 9 in . 6 watt $£ 2.25$. Posi 35 p . ($£ 2.99$ inc. VAT + P). 6 in. 4 wstt E2.25. Post 35p. ($\mathbf{E} 2.99$ inc VAT + P).
Complete ballast unit for either $6^{\circ} \cdot 9^{\circ}$ or 12° tube 230 VAC op
£3.50. Post 45 p . ($\Sigma 4.54$ inc VAT + P). Also available for 12 V OC op E3.50. Post 45 p . (24.54 inc VAT + P). 400 watt UV lamp and ballast complete e31.50, Post C3.
$(£ 39.68$ inc $V A T ~+P) .400$ watt UV lamp only $£ 11.25$. Post
SQUAD LIGHT

control. Four channels each

capable of handling 750 watts

of spotlights, floodlights or dozens of small mains lamps. Seven programs all speed controlled plus tiash modulation, effectively
giving 14 different displays. Makes sound-lo-light obsolete. giving
S.A.E. (Foolscap) for further details

Price $\mathbf{E} 60.00$ p\& p 70 p (E69.81inc. VAT + P)
WIDE RANGE OF DISCO LIGHTING

EOUIPMENT S.A.E. (foolscap) for Superior Quality Precision Made
 NEW POWER RMEOSTATS
 construction, embedded

ousty rated.
$25 \mathrm{WATV} 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{kQ} /$
.5 k WATT 250 . 20 . 20 . 99 inc. VAT \& P.
100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} \Omega 11.5 \mathrm{k} \Omega / 2.5 \mathrm{k} \Omega$

dia. brass bush. Ideal for above Rheostats 24 p e

SPECIAL OFFER

BERCO type L. RHEOSTAT
 85

RELAYS wan whan

230/240V A.C. Relays: Arrow $2 \mathrm{c} / \mathrm{o} .15 \mathrm{amp} \mathrm{f} 1.50$ (C 1.96 in
VAT \& PI.
T.E.C. open type 3 c/o. 10 amp E1. 10 ($\mathrm{E1} .80$ inc. VAT \& P).
D.C. Raloys: Open type $9 / 12 \mathrm{~V} 3 \mathrm{do} 7 \mathrm{amp} \mathrm{f1} .00$ (E 1.38 inc.

VAT \& Pl. Sealed 12 V 1 do 7 amp octal base. £1.00 $\mathrm{c1} .38$ inc. VAT \& PI. Sealed 12 V 2 clo 7 amp octal base. £1.25 (E 1.87 inc.
VAT \& PI. Sealed 12 V 3 cjo 7 amp 11 -pin. E 1.35 (I 1.78 inc. VAT \& PI. Sealed 12 V 3 co 7 amp 11 -pin. $\varepsilon 1.35$ ($£ 1.78 \mathrm{inc}$.
VAT \& P). 24 V . Sealed 3 do 7 amp 11 -pin E 1.35 (1.78 inc. VAT \& PI. (amps = contact rating). P\& P on any Relay 20 p.
N.M.S.
Uther types available - phone for details.
Very Special Offer: 9-12V D.C., 2 make contacts, new I.T.T., 3 for $£ 1.75+25$ p P\& P. (inc VAT E2.30).
Diamond H hoavy duty A.C. relay 230/240V a.c. two C/O contacts 25 amps fes at 250 d.c. $£ 2.50$ p $8 p 50 \mathrm{p}$. (E 3.45 inc

GEARED MOTORS

$4 t \mathrm{rpm} .115 \mathrm{~V}$. a.c. 50 cycle mi. SIGMA Inst. Ltd. U.S.A. Price: E7.50 + 75p. P. \& P. If9 49 inclus. VAI). supplied with transformer. N.M.S.
$7 \frac{1}{2}$ rom. 115 V . a.c. 50 cycle approx, 25 lb . mi. KLAXON.

28 rpm, 115 V . a.c. 20 lb . in. reversible.
Price of either 2 Motors EA. 75 each +75 p.
P. \& P. (65.33 Inclus. VAT). N.M.S. Any of above 3, supplied with Transtormer for 240 V .
aparation: $£ 7.25 \times £ 1.00 \mathrm{P} . \& \mathrm{P}$. f 9.49 in operation:
19 rpm FHP $220 / 240 \mathrm{~V}$. a.c. reversible,
torque 14.5 kg Gear ratio $144-1$ - 8 rand
new including capacitors. mf. CITENCO.
Price: Ef4.25 $+£ 1.25$ P. \& P. TE17.83
inclus. VATI.N.M.S. C $30 \mathrm{rDm} .230 / 240 \mathrm{~V}$. a.c. 501 b . in. mf. PARVALUX.
Price: $\mathrm{f} 1500+\mathrm{E1} .50$ P. \& P. (E18.98 inclus. VAT). N.M.S.

 Price: E1500+ C1. 50 P. \& P. (E18.98
inclus VAT) N. M.

100 rpm .110 V . a.c. 115 lb . in., 50 Hz 2.8 amp. single phase split capacitor.
Immense power. Continuously rated. Immense power. Continuously rated.
box Length 250 mm . Dia. 135 mm . Spindle dia. 15.5 mm . length 145 mm . Tested. Price: $£ 12.00+£ 1.50$
P. \& P . ($\mathbf{£ 1 5 . 5 3}$ inclus. VAT)R. \& T. Sutabie Transformer for $\cdot 230 / 240 \mathrm{~V}$. operation. Price $\mathbf{8 8} \cdot \mathbf{0 0}+75 \mathrm{p}$. P. \& P. (210.06 inc.

200 rom .35 lbs in. 115 V .50 Hz
Price: $16.00+£ 1-50$ P. \& P . (E20.13 inclus. VAT). N.M.S Sutable Transiormer for $230 / 240 \mathrm{~V}$. a.c
Price: $\mathbf{E 8 . 0 0}+\mathbb{C} 1.00$ P. I_{1} P. ($\mathbf{1} 10.35$ inclus. VAT). N.M.S.
500 rpm. $230 / 250 \mathrm{~V}$ a.c. $3 \frac{1}{1 \mathrm{lb}, ~ i n . ~} 2$ right-angled spindies. Mf.
PARVALUX. Price f11 $00+£ 1.00$ P. \& P. (13.80 inclus.
VATI. N.M.S.
$6 / 9 V$. D.C. Miniature Geared Motor, precision built D.C. Miniature Geared Motor
incredibly powerful for size -
approx. speed $6 \mathrm{~V} .-60 \mathrm{rpm} 40 \mathrm{ma}$ approx. speed $6 \mathrm{~V} .-60 \mathrm{rpm} 40 \mathrm{ma}$.
approx. speed $9 \mathrm{~V} .-80 \mathrm{rpm} 50 \mathrm{ma}$ approx. speed $9 V$.- 80 rpm 50 ma .
27 mm dia., 30 mm length, 55 gr . weight. 27 mm dia. 30 mm length,
drive spindie $5 \times 3 \mathrm{~mm}$ dia.
Price: $£ 2.50$ post paid ($£ 2.88$ inelus. VAT). N.M.S. 12V. O.C. type SD2. Shunt $\frac{1}{35}$ ph continuously rated 4000 rpm,
Mf. PARVALUX. Price: $\mathrm{E}^{3} 00^{2}+75 p$. P. \& P. I 12.35 inclus. Mf. PARVALUX. Price: $\mathbf{£ 1 0 0 0}+\mathbf{7 5 p}$. P. \& P. (E12.35inclus.
VATI. N.M.S.
$1 \mathrm{Tpm} 230 / 240 \mathrm{~V}$, a.e. Synchronous geared Motor, mf. MAYDON,
$2 \mathrm{rpm} 230 / 240 \mathrm{~V}$.
 VAJ. N.M.S.
1.400 rpm 115 V . a.c. Motor, MP $\frac{1}{\text { 1 }}$ continuously rated. Firred with plete with Transformer for 230/240V, a.c. operation. Price: $\mathbf{\$ 1 0 . 0 0}+\mathbb{£ 1 . 0 0}$ P. \& P. ($\mathbf{1 2} \mathbf{8 5}$ inclus. VAT). N.M.S.
1.600 rpm .230 V . a.c. reversible Motor. 0.25 a. complete with $110 \times 90 \mathrm{~mm}$. Spindle bracket and capacitor. O/a size:
 REDUCTION DRIVE GEAR BOX.
Ratio $72: 1$. Input spindle $\frac{1}{4} \times \frac{1}{2}$ in. Output spindle $\frac{1}{2} \times 3$ in. long. Overall size approx: $120 \times 98 \times 68 \mathrm{~mm}$. All metal construction. Ex-equip. tested. Price: $\mathbf{£ 2 . 0 0}$ 50p. (incI VAT E2.88).
ROTARY VACUUM AIR COMPRESSOR \& PUMP

A.C. $1 / 12 \mathrm{h.p}$. motor $50 / 60$ cycle $2875 / 3450$ rom. 20°

1.25 ct.m. 10 p.s.i. (approx. figures) mfl by Gast Co. Fraction of makers price. \&1400 p. \& p. E1 . 00 (Total: f17. 25 inclus. VAT).
Sulable Transformer. $\mathbf{8 3 . 5 0}$ p. \& p. 50 p. (Total, $£ 4.60$ inclus.

BLOWER VACUUM PUMP
English Elecricic 3 phase AC. motor $220 / 250 \mathrm{~V}$. Or $380 / 440 \mathrm{~V}$ 1.425 r.p.m. i h.p. continuousiy rated. Direct coupled to William
 8.hG. Price $\mathbf{C 2 2}$ p\&

Venne Type ERD Time switch $200 / 250 \mathrm{~V}$ a.c. 30 amp contact 2 on/2 off every 24 hrs . at any
manually pre-set ume. 36 hour Spring Reserve and day ormitting device. 8uitt to highest Elec-
tricity Board specification. Price C9.00.
P. \&P. 750 (E11.22) R \&

SANGAMO WESTON TIME SWITCH
Type S251 $200 / 250 \mathrm{~V}$. a.c. $2 \mathrm{oN} / 2$ of every 24 hours. 20
amps contacts with override switch dia. 4×3 price $\mathbf{c s} .00 \mathrm{P}$ \& P 50 p inc. VAT c9.78. Also available with Solar dial. R. \& T.

MINIATURE 24-HOUR TIMESWITCH

Reserve. 10 amp comtacts, one on-off every Minimum on-off period 6 hours. Day Omiothat trips may be removed at will enabling individual days to be programmed as required. Size only $3^{\prime \prime} \times 4^{\prime \prime}$. Depth 23^{n}. Price: E6.50 + 50p. p. \& p. (E8-05 incl. VAT \& P).

24 TUNE DOOR CHIMES

DOOR TUNES $\{17.1\}+$ VAT.
 Waddington's Videamaster announce a doorbell that doesn't go Brringgg. Ding. Dong of Barm fistead it plavs 24 ariferent classical and popular tunes. It will piby the tune you select for your mood, the season of the vistior you are you seiect for your mood, the season ar the visitor you are expecting to call Dour tunes is not only greas lun and a wonderitul ice breaker, but is also very functionaly and beautituly designed to enhance you home. There is something for Chnsimas, something for you continental nsnofs or your relations from the stares, and even samethng for the ीueen. Door funes s easy to install and same thing for the Queen. Ooor runes is easy to ins has separate controls for volume, tane and iemoo

I.V. ${ }^{\text {I }}$	$\triangle M E 8$
PROGRAMMABLE EX 50 + VAT.	
The TV ganie cant be compared to an audin casserte deck and is programmed to play a muhtrude of ditterent games	
IV game is avalable which will keep pace with improving	
technology by allowng you to extend your library of games	
with the purchase of addionat cantridges as new games are developed. Each cannidge contans up to ten difterent	
action games and the first cantidge containing ten sports	
mes is included free with the console. Other cartridges currently a vailable io enable you io play such games as	EXTRA CARTRIDGES:
Grand Pnx Motor Racing. Super Wpeour and Strint Rider.	ROAD RACE - E2. ${ }^{\text {P }}$
further carnidges are to be released late: this vear, induding Tank Batile, Hinl the Sutb and Targer The	Grand Prix moror racing with gear changes, cr sh noises SUPER WIPEOUT - 59.17 + VAT.
induding Tank Batule, Hunl the Sub and Targer. The console comes complete with two removable hystick	SUPER WIPEOUT - 29.17 + VAT. 10 different games of blasting obstacles off the screen.
player controls to enable you to move in all four drections	STUNT RIOER - £12.16 + VAT.
lupidowninghtlelit and buith into these prystick controls are	Motorcycle speed rrals, fumping abstacles, leaping various
ball serve and target fire buntons. Other fearures mclude	rows of up to 24 buses eic.
several difticuliy opton switches, automatic on screen digital sconing and colour coding on scores and balls.	NON PROGRAMMABLE N GAMES
Lufelike sounds are wansmitted through the TV_{s} speaker. smulaing the actual game being played.	6 Game - COLOURSCORE II - 11350 + VAT.
Manulactured by Waddington's Videomaster and guaranteed for one yeas	10 Game COLOUR SPORTSWORID $22.50+$ VAT.

CHESS COMPUTERS

STAR CHESS - [5K. OS + VAT

play chess against youn pahtner,
using your own TV to display the board and pleces Star Chess is a new absorting game for two players, which will interest and excile all ages. The unit plugs into the aerial socket of your TV set and displays the boand and pieces in full colour lor black and whutel on your IV screen. Based on the moves of chess it adds even more excilement and inferest to the gane. for those who have never played. Star Chess is a novel mineduction to the classic game of chess. for the experienced chess player, there are whole the strategy ol the game. Not only can checes be taken in the slualegy of the game. Not only can preces be taken in exchange rocket fire with is opponenis The unit comes empitere with a tree 18 V mains adapor tull instuctions and iwelve month s quarantee.

CHESS CHALLEMGEA $7-$ โ 5.65 + VAT.
PLAY CHESS AGAINST THE COMPUTER.
The siyish, compact, ponable console can be set to play at seven ditterent levels of abiny from beginner to expen incluting "Mate in two" and "Chess by mal" The compuner will onty make responses which obey miernatronal chess rules. Lasting, un passant, and prontoting a pawi are all
meluded as pan of the computer's programine it ncluded as pant of the compurer's programme. It possible 10 enter any given problem from magazines or
newspapers or atrernalively esablist newspapers of atternalively establist you own doato position and watch the computer feact. The postions of ath pleces can be verified by using the computor memony recall burion.
Pnce includes unil with wood grained housing, and Staunton design chess pieces Compuner plays black or whure and aganst iself and comies complete with a mans adaptut and 12 months quarantee.
OTHER CHESS COMPUTERS IN OUR RANGE INCLUOE CHESS CHAMPION - 6 LEVE LS $547.39+$ VAT. CHESS CHALLENGER - 10 LEVELS - $\mathbf{~} 138.70$

+ VAT. MUITI-LEVEL TALKIMG DISPLAY fi630 BOAIS - MULTI-LEVEL TALKING OISPLAY E 16304

A special bulk puichase of these amazing dhess leaching machines enables us to offer them at only C19.75 less than half recomimented retai price. The electronic chess tutor is a simple batrery operated machine that can actually teach anyone to play chess and wiprove ther game right up to chaniponsthp leved this mactume is not only for total begners chess thit ponians the elecronic waning to play beler chess. Lhir conams the electronic chessboard with 32 chess preces. a bage explonatory booker and a sel ol cards, is prock pare cans in aring o begmers cangings 3 end ganes 28 chess problemis and 2 aiesie openings

DRAUGHTS COMPUTERS

CHECKER CHALLENGER 2 LEVELS 543.00 + VAT.

$$
4 \text { LEVELS G78.00 + VAT. }
$$

The draughts compuler enables you to sharpen your skills. improve your ganue, and play whenevet you want. The coniputer ncorphraies a sophisticated, rehable, decision miaking muctoprocessor as is bram lis high level of thinking abowry enibles in to respond with is best counter moves like a skiled hunian oppenen. You can seleci ofience or defence and change playing officulty levels al ary linte Pustions can be verilied by campurer mieniony recall. Machme does not pernut ilegal moves and can soive sel problenis Cuntanter mames coniplete with
nains adaparor and twelve nionihs quarante.

FOR FREE BROCHURES - SEND S.A.E

For FREE , ilustrated brochures and reviews on $T V$ and chess games please send a slaniped adoressed envelape, and state which paricular games you requre informarion on
Callers welcome at our shop in Welling denmenstralions daily oper fromi Gemts 3 Upri Mun Saı 13 ani 1 pmi Wedi To order by leteuhane please quore your name, address and AccessiBarclaycard numiter Postage and Packing friee
AJD DIRECT SUPPLIES LIMITED, Dept. PE12 102 Bellegrove Road, Welling Kent DA16 30D. Tel: 01.3039145 (Day) $01-8508652$ (Evenings) meters at fantastic low prices

SEW RANGEDC MOVING COIL TYPE
(Accuracy $\pm 2 \%$)

	$10 \times$	120m	$\times 4$	£3.5
\pm DC 50ua	$\pm D C 1 \mathrm{~mA}$	DC 14	${ }^{\text {AC }} 10 \mathrm{~A}$	DC 150V
\pm DC 100uA	DC 5 mA	DC 5A	AC 20A	DC 300 V
DC 200uA	DC 10 mA	DC ${ }^{15} A$	AC 304	AC 15 V
DC 500uA	DC 50ma	DC 30 A	DC 10 V	AC 300 V
\pm DC 500uA	DC 100 mA	AC 1A	DC 20 V	
1 m	DC 500	AC 5A	C 50	

MR 45	$(50 \times 50 \mathrm{~mm}) \times 34 \mathrm{~mm}=1.50$		
\pm DC 100uA	DC 100 mA	DC 500mA	AC 15 V
DC 10 mA	DC 200 mA	DC 1 A	AC 300 V
DC 50mA	DC 300 mA	AC 1A	
MP52P(60 $\times 60 \mathrm{~mm}) \times 40 \mathrm{~mm}$ (2.50			
DC 50uA	DC 500 mA	AC 5A	AC 30A
\pm DC 50uA	DC 1A	AC 10A	DC 300V
\pm DC 100uA			

MR 38P $(42 \times 42 \mathrm{~mm}) \times 32 \mathrm{~mm} \mathbf{£ 1 . 5 0}$

\pm DC 500uA	DC 150 mA	DC 15V	DC 750 V	AC 300 V
$\pm D C 1 \mathrm{~mA}$	DC 200 mA	DC 150 V	AC 15 V	AC 500V
DC 2 mA	DC 500mA	DC 300V	AC 50 V	5 METER
DC 50 mA	DC 3V	DC 500V	AC 150 V	
SNV $100(80 \times 100 \mathrm{~mm}) \times 37 \mathrm{~mm}$ (3.00				
\pm DC 50uA	DC 1A	DC 20 V	DC 300 V	
\pm DC 100uA	DC 5A	DC 50V	AC 150 V	
DC 100uA DC 500UA				
MR65P(78) $86.8 \mathrm{~mm} \times 41 \mathrm{~mm}$ 23.00				
\pm DC 50uA	DC 500 mA	DC 20A	DC 150 V	AC 500V
$\pm D C 1 \mathrm{~mA}$	AC 50 mA	DC 30A	AC 15 V	S METER
DC 5mA	AC 200 mA	AC 50A	AC 50 V	
DC 50mA	AC 500 mA	DC 10V	AC 150 V	

SD $8 \mathbf{8 0}(82.5 \times 110 \mathrm{~mm}) \times \mathbf{3 6 m m} \mathbf{£ 3 . 0 0}$ DC $5 \mathrm{~mA} \quad 5 \mathrm{DC} 500 \mathrm{~mA}$ DC 300V DC 50 mA DC50V AC 15 V
S - $\mathbf{8 0} \mathbf{(8 0 \times 8 0 m m}) \times 39 \mathrm{~mm} \mathbf{£ 3 . 0 0}$

| DC 50uA DC 500 mA | DC 20 V | DC 300 V |
| :--- | :--- | :--- | :--- | SD $460(46 \times 59.5 \mathrm{~mm}) \times 33 \mathrm{~mm} £ 1.50$ DC 5 mA DC 50 mA DC 300 V AC 300 V DC 10 mA DC 500 mA AC15V

SD $\mathbf{6 4 0}(63.5 \times 85 \mathrm{~mm}) \times 33.5 \mathrm{~mm} £ 2.50$ DC 5 mA DC 1 A DC10V AC15V DC 10 mA DC 10A DC 300 V AC 300V

RECHARGE YOUR BATTERIES FROM THE SUN

WITH MINIATURE SOLAR CELLS
A bank of five cefls complete with a diode that pievents the battery discharging in the dark. Overall size of cell bank $15 \mathrm{~mm} \times 13 \mathrm{~mm}$. Output is two volts at 1.8 milli amps. Price $£ 2.00$ plus 10 p for postage and packing.

Barclaycard \& Access Accepted - Order by phone or post. Mail Orders to Proops Bros. Limited, Dept PE8 The Hyde Industrial Estate, Edgware Road, London, NW9 6JS. Tel. 01-205 8006
Personal Shoppers: 52 Tottenham Court Road, London, W1P OBA. 9-6 Mon-Sat.

Reduce the scratch noise from your favourite records, the rumble from a worn turntable or the noise of record warps and pressing imperfections, with this straightforward stereo design.

We do not believe an Ultrasonic Cleaner has ever been published as a constructional design. Why? Because the transducer and tank pose buying problems. A kit supplier has solved these problems for us and next month we will bring you a design for half the cost of a commercial unit.

SIFTV Reviem

Softy is a general development tool for MPUs and next month our contributor, Dr. A. A. Berk, reviews this new line in the micro scene.

$$
\text { PACTIGAL R } \triangle \text { PICE }
$$

picked up by the receiver X2 and amplified by TR2 and TR3 with resistor R14 providing 100 per cent feedback making this stage very stable. The a.c. gain of the stage is determined by C 8 which shunts the high frequency signals in the feedback path therefore increasing the gain of the stage \sim 50 times the input voltage at 40 kHz).

As only the positive going signal is required at the output of this stage the bias is offset from the normal half supply rail to provide a better operating working voltage for the diode detector as well as a greater overload margin for the input stage

Internal view of the Movement Detector. Note that the relay RLA has been included
The output from TR3 collector passes through the envelope detector D7 and the CR network C9, R16 which removes the 40 kHz signal. The signal from TR3 collector varies the d.c. level across C9 and provides both the bias and the signal for the next stage. This stage is basically the same as the first stage with the exclusion of the load resistor for TR4 collector.

SPECIFICATION

0.5 sec alarm function test at switch on.

2 sec delay to suppress invalid movement.
20 sec delay at switch on - to prevent alarm operation on
leaving room.
20 sec delay on entry - to allow the alarm to be cancelled.
2 min alarm before cancelling (alarm is pulsed at 2 Hz).
Quiescent current $25 \mu \mathrm{~A}$ at 12 V d.c.
18 V battery back up in the event of a mains failure.

The capacitor C11 limits the HF response by applying negative feedback'to TR5 so that the ultrasonic component of the signal is not amplified. R17 and C10 were chosen to provide a suitable bandwidth for Doppler shift frequencies.

The output from TR5 is fed to the diode pump network (D8, D9) via C12 which rectifies the signal and charges C13 to convert the beat note to a steady voltage. When the voltage across C 13 reaches 2.6 V . TR6 turns on and the l.e.d. (D10) is illuminated. TR7 is also turned on via R20 and the collector voltage of TR7 falls to zero. This fall in collector
voltage is passed to the control unit via the wire link and the common output of RLA on the Movement Detector Board.

However if the relay RLA is used the falling collector voltage of TR7 is used to energise the relay from the unstabilised 18 V supply, whilst D15 suppresses any spikes generated by the relay coil. The collector of TR7 remains low until C13 discharges through TR6 turning off both TR6 and TR7 and switching the collector voltage of TR7 high.

COMPONENTS

Resistors

R1, R3, R7, R14	22 k (4 off)
R2, R11	220 k (2 off)
R4, R5	2 M 2 (2 off)
R6	10 M
R9, R10, R13	$10 \mathrm{k}(3$ off)
R8	470 k
R12	47 k
R15, R18	4 k 7 (2 off)
R16, R17	100 k (2 off)
R19	470
R20	3 k 3

All resistors $\frac{1}{4}$ W 10\% carbon

Potentiometers

VR1 10k min. hor.
Capacitors
C1, C4
$4 \mu 725 \mathrm{~V}$ (ant (2 off)
$10 \mu 25 \mathrm{~V}$ tant (3 off)
C7
C8, C9
C10, C12

- C13 C11

680 p ceramic $470 \mu 25 \mathrm{~V}$ elect

Semiconductors

D1 to D6, D7 to D9, D15	1N4148 (10 off)
D11 to D14	1N4001 (4 off)
D10	TIL 209
TR1, TR7	2Tx300 (2 off)
TR2, TR4	BC307 (2 off)
TR3, TR5, TR6	BC184 (3 off)
IC1	4093
IC2	78L12
IC3	NE555

Miscellaneous
$\times 1$
$\times 2$
T1

- RLA

RLB
B1. B2
S1
P.c.b.s.

Battery clips
ABS case $115 \times 95 \times$ 45 mm
Grommets
Terminal block
Keyswitch

* Piezoelectric transducer $1 \pi \mathrm{U} 2-\mathrm{-}-50 \mathrm{RHA}$
- See text

Constructor's Note

Printed circuit boards and other components are available from G.J.D. Electronics, 105 Harper Fold Road, Radcliffe, Manchester.

Fig. 2: Circuit diagram of the Control Unit

CONTROL BOARD

The circuit diagram of the control board is shown in Fig. 2. R1 forms the collector load for TR7 (on the detector board) and when the collector voltage is switched low there is a two second delay caused by R2 and C1 before the voltage on pin 1 (IC1a) goes low. This delay prevents invalid movements from triggering the alarm. Gates " a " and " b " of IC1
form a bistable which is reset at switch on by C2 and takes 20 secs to charge, this allows the house to be left without triggering the alarm. If no movement is present the output of gate " a " is low and C3 is discharged.

The output of gate " c " is high which holds the input of gate "d" high and its output, which holds TR1 off and the relay de-energised, is low. At switch on the relay energises

Fig. 3. P.c.b. design for the Movement Detector

$E 608$
Fig. 4. Component layout of the Movement Detector

Fig. 5. P.c.b. design for the Control Unit

Fig. 6. Component layout of the Control Unit
for 0.5 sec to provide an alarm test every time the system is switched on.

When movement is present for more than 2 secs the input of gate " a " goes low setting the bistable with the output of gate "a" going high charging C3 through R3. R4. This allows the input to gate " c " to go high and its output low releasing the input of gate " d ". Gate " d " forms a 2 Hz Schmitt oscillator, the frequency being determined R8, C4. The output from gate " d ". passes through R9 driving TR1 and energising RLB. D6 suppresses the back e.m.f. from the relay coil.

The output of gate " c " also discharges C2 which after 2 mins resets the bistable and cancels the alarm. D1 and D4
discharge C2 and C3 at switch off.
Diode D7 has the battery voltage connected to its anode and the -unstabilised 18 V to its cathode. Because the unstabilised voltage will be higher the diode is turned off. When the main voltage falls the diode will conduct and the battery voltage will be applied to the system. When the main supply is re-established the diode D7 automatically switches off the battery voltage.

CONSTRUCTION

In the prototype system the movement detector and the control unit were mounted into two separate ABS boxes.

EG217

Fig. 7. Wiring interconnections for the two units

The transducers are mounted inside grommets on the front panel with the indicator l.e.d. mounted mid way between them. If the l.e.d. is not required on the front panel it can be placed inside on the p.c.b.

Internal layout of the Control Unit

The p.c.b. design for the Movement Detector is shown in Fig. 3 with the component layout in Fig. 4. After the board has been soldered and checked it can be mounted into the case and connected to the terminal block. The transducers should be soldered to the board using screened leads.

The p.c.b. design and component layout for the Control Unit are shown in Figs. 5 and 6. After soldering and checking, the p.c.b. should be mounted into the case together with the keyswitch. The two PP9 batteries were mounted outside the case on the prototype although if a larger case is used they could be mounted inside. The two units should be wired together as shown in Fig. 7.

ALARM OPTIONS

The system can be fitted with an external piezo electric transducer which can directly replace RLB and D6, driven from the collector of TR1.

If an external alarm is used it can be connected via the contacts of RLB and either a mains or 12 V d.c. buzzer used.

INSTALLATION

The detector is prone to both vibration and air currents therefore the points shown in Table 1 should be observed to avoid false triggering of the alarm.

TABLE 1

a) Do not place the unit on a vibrating surface.
b) Close doors and windows.
c) Do not point the unit at a wall with a radiator or convector heater.
d) Objects should riot be placed within 5 feet of the unit as this will limit its sensitivity.
e) The external alarm should be far enough away from the unit so as not to produce vibration.
f) Cats, dogs and other household pets should be taken into consideration.
g) If more than one unit is used care should be taken to ensure the two ultrasonic "fields" do not interact the alarm to trigger.

SETTING UP

The varible resistor VR1 should be adjusted for the maximum d.c. level at TP1. The sensitivity of the unit can be checked by moving in front of the ultrasonic transmitter and receiver and noticing the l.e.d. movement indicator. Finely adjust VR1 until the maximum sensitivity is obtained \quad t

FRANK W. HYDE

THE LARGESTINFRARED TELESCOPE

A triumph of engineering skill has added a fourth member to a group of telescopes on the summit of Mauna Kea on the big island of Hawaii. The United Kingdom Infra Red Telescope (UKIRT) was inaugurated by His Royal Highness the Duke of Gloucester on the 10th of October.

In recent years there has been a very considerable expansion of activity in the field of Infra Red Astronomy, indeed it could now be said that it has paralleled advances made in other areas of the spectrum. New sources of radiation have been recorded and new mechanisms have been posed to account for physical processes that are taking place in remote regions of the Universe. For example it has been discovered that the nuclei of galaxies radiate an unexpectedly large amount of infra red energy. As yet the extent of the power involved is unknown.

There are massive clouds of interstellar dust and gases which appear to be the site of galaxy and star formation. These cradles of creation may hold the clues relating to the origin of the Universe. Solid matter in these areas provide the surfaces needed for hydrogen and other molecules to form. Of the different types of molecule identified, more than 50 , all have specific emission or absorption at the infra red and radio frequencies. The extent of the complexity involved in the molecular processes was unsuspected a decade ago.

It may be possible now to set up a galactic distance scale using techniques involving magnitudes and measured velocity dispersions. At millimetre wavelengths the infra red telescope is the only means of studying the cosmic background radiation at 2.7 degrees. This is the temperature at which there should be remanent radiation from the processes that were in operation at the formation of the Universe.

Two British firms were involved in the development and construction of the $\mathbf{3 . 8}$ metre UKIRT. They are Grubb Parsons who have had so much experience in the design and development of telescopes over many decades and are now a unit of Northern Engineering Industries, together with Hadfields Lid., famous for their original work on the 250 ft diameter radio telescope at Jodrell Bank, Hadfields are now part of the Lonrho Group.

The UKIRT was commissioned by the Science Research Council in 1975. The contract went to the Special Projects Division of Hadfields Limited. Work commenced in the spring of 1975.

Modern telescopes and other instruments in use for astronomical purposes are now very much concerned with electronics. Control systems abound anć astronomy cannot be seen now as an isolated activity for it is, by reason of the space industry involved, not only in the scientific experiments but in all systems involving navigation and the practical guidance of space vehicles. The infra red telescope by its very nature covers a wide field of technology. The mechanics are concerned with the elements such as control of a surface which is so sensitive that just tilting on its axis can set the mirror in a condition of distortion. Such conditions not only affect the performance of individual tasks but have long term possibilities in ageing and deterioration of the materials used. This is primarily where the control system depends on electronics.

The mirror was to be 3.8 metres in diameter and 29 centimetres in thickness. Now apart from the very critical parameters involved in the manufacture of such a mirror, its performance at all angles is prodigious. The final result must be such that distortion must be held to an almost impossible low level. The contours of the surface of the primary mirror is held by a special support of three rings with a total of eighty pneumatic cylinders. These are electronically controlled. The result has been to achieve subiarc second performance under all normal operating conditions.

The material of the mirror is a glass ceramic called Cer-Vit. Normal glass would not be suitable for a mirror of this size and nor would it be able to resist thermal distortion which is one of the great hazards with large mirrors. Cer-Vit is not subject to this defect and indeed is almost unaffected by thermal changes. It should be noted here that even a minute distortion of the surface can result in a confused image at the focus and thereby nullify measurements.

The rest of the optical system consists of smaller mirrors all made of Cer-Vit. One of them is a plane mirror used in the Coude beam. This has a major axis of 1.5 metres and a thickness of 3 centimetres. The mirror blanks were purchased from Owen's of Illinois and figured by Grubb Parsons.

The principle of operation is in a number of modes. Two of these will be described.

The primary mirror is at the "bottom" of the main structure. This receives the radiation from the sky and directs it on to a secondary mirror at the "top" of the structure. The radiation is then again returned toward the primary mirror. Different secondaries may be
used. In one case the radiation passes from the secondary mirror through a hole in the centre of the primary mirror to a point about one metre behind the primary. This is the Cassagrainian focus. At this point the radiation is recorded by instruments mounted on the frame of the telescope. Thus all instruments in a similar mode have to be mounted on the telescope since it traverses the sky and the instruments must follow. The amount of such instrumentation has a limiting factor. To overcome this, where the equipment for examining the radiation is large, another mode is adopted. By the use of plane mirrors another focus independent of the position of the main axis of the telescope is achieved. This is called the Coude focus. By means of plane mirrors the beam from the system can be diverted so that it remains independent of the motion of the telescope itself. This enables large and bulky apparatus to be accommodated in a basement below the telescope.

The remainder of the telescope apart from the optical systems was designed and constructed by Hadfields of Sheffield. The whole completed telescope was built, tested, dismantled and conveyed to the final site there to be erected and put into operation by that Company under the guidance of the Royal Observatory Edinburgh.

COMPUTER CONTROL

Many of the mechanical and control systems are new concepts in control. A high proportion of this innovative design is found in the unique electronic control systems and computer control. The control computer is physically coupled systems employing the European CAMAC standard interface which provides almost unlimited expansion facilities. The control computer is of unique design due to Hadfields and provides time dependent data for telescope motions without frequency synthesis. This technique has been developed into an advanced form by software engineers from Imperial College, London and the Royal Observatory of Edinburgh.

In operation the telescope has a special device not used on ordinary optical telescopes. To be effective an infra red device must be able to separate the radiation from the body or area under study from the background radiation. This is provided by a special "rocking" secondary mirror. This allows the telescope to "see" the sky and the object alternately. The mirror is rocked at a rate of up to 30 cycles per second. The detector is therefore presented with a varying signal which the electronics record. Any British astronomer may apply for time to use the telescope. Application must be made to the Royal Observatory, Edinburgh who are responsible for the administration of their project.

SHUTTLE SCHEDULE

The first space shuttle schedule shows that between 1981 and 1984 all thirty-eight flights are already fully booked.

The customers are US business enterprises, foreign Governments, many departments of the US Government in which no less than 12 spacelabs are required each having many experiments aboard.

PE
 Programmable Rudia Uisual Unit

PART 2 - J.R.W. Ames b.sc. W.L.Blyth b.sc.

IN this final part board construction together with interwiring and final setting up will be detailed.

CONSTRUCTION

The authors' projectors are made largely of plastic with a metal lamp house which gets very hot so there is no suitable heatsink surface for the triacs. To get round this problem the prototype system, shown in the photographs, was built in two boxes. One houses the majority of the electronics while the other, which also doubles as a heatsink, is for the triacs. Two boxes were used so that the high current connections to the triacs could be kept short whilst leaving the control box free to be positioned in a convenient positon when making a recording. Connection to each projector is via a short length (approx. 400 mm) of heavy duty mains cable while a screened multi-core cable connects the triac drivers to the control box. Other constructors may have projectors with exposed cool metal surfaces in which case the triac housing can be eliminated and the projectors connected directly to the control box.

The price of the multi-way connectors used in this arrangement amounts to nearly $£ 18$-one third of the cost of the whole unit. Many constructors may therefore prefer to mount a heatsink on the side of their plastic bodied projectors thereby eliminating the need for expensive connectors. The connection from each projector to the control unit then comprises 5 light current signal leads plus earth so a DIN audio connector can be used, reducing the cost of connectors to no more than $£ 2$.

TRIAC HOUSING

Fig. 1 shows the circuit that is contained within this housing. Straight-through connections are provided for the slide change and power supply connections to each projector while additional inputs from the main control box trigger each triac. The connections to the control box carry only small currents and are made by a multi-core screened cable (to reduce radiation from the triac trigger pulses) terminated by a 15 -way D-type plug and socket (PL2, SK2). D-type plugs and sockets are also used for the connections to the projectors. Each way of these connectors can carry a maximum of 5 A and in this arrangement four pins are connected in parallel for each of the two load carrying connections.

The circuit is housed in an aluminium die-cast box which should be painted with matt black spray paint after drilling. Before mounting the triacs on the inside of the box make sure that all paint is removed from the area and apply a thin
film of heatsink compound to the mating surfaces. The specified triac has a mounting tab which is electrically isolated from all of its terminals. When using a substitute device without an insulated tab it will be necessary to mount it by means of a nylon nut and bolt and to use a mica insulating washer.

Fig. 14 shows the layout inside the box and the details of the connections to the plugs, shown from the solder side of each plug. It will be necessary to shorten the specified group-boards a little before they will fit in the box. About 400 mm of 3 core 13 A mains cable is used to connect the housing to each projector plug. The third core of the cable can be pulled out leaving a hole large enough to take the four 0.4 mm dia. wires that connect to the slide change mechanism, the power supply and earth. Inside the box the conductors from each composite cable are connected to tags on the group-board. From the group-board stout wires are connected to the T_{1} and T_{2} connections of each triac while the cores of the multi-way connection to the control box are also terminated on the appropriate tags. Make sure that the earth wire from each of the projectors is connected through to the chassis tag and that the screen of the multicore cable is connected to this tag also.

It is not easy to solder the thick conductors of the load carrying cable to the pins of the projector plugs and it may be helpful to make the parallel connections between pins first using a piece of stiff wire (a resistor lead, for example). The heavy duty cable cores are then stripped back for only a short distance (approx. 4 mm) and fanned out a little before

Triac housing

Interior wiring

being butt jointed to the stiff wire link which provides a large enough area to form a good soldered joint.

MAIN CONTROL CIRCUIT

The whole of the electronics is mounted on a single printed wiring board whose layout and component overlay are shown in Figs. 19 and 15. As a result the circuit is very easy to assemble even for the beginner or for someone whose main interest lies in photography! Installing a few components at a time work from one side of the board inserting the components and bending back their leads so that they do not drop out when the board is inverted. When a group of components have been fixed in this way invert the board and solder carefully using a clean miniature iron and miniature resin-cored solder. Apply only the minimum amount of solder to make a sound joint and then cut off the

component leads before repeating the operation. Continue in this way mounting all the wire-ended discrete components before others are inserted. R4, the power supply dropper resistor, gets fairly hot and should be stood away from the board by putting a U-bend in its leads.

Mount the skeleton preset potentiometers and sockets for the integrated circuits making sure that they are held securely home whilst soldering.

The specified cermet preset potentiometers should not be replaced by the cheaper s.r.b.p.-based types which have inferior mechanical and electrical characteristics. Use of sockets for the i.c.s is not a luxury-it is very difficult indeed to unsolder all 14 or 16 leads of a suspect "chip" without damaging the device or the board (or both), and it is very discouraging to undertake the task only to discover that it was not the i.c. that was causing the problem. Sockets allow easy substitution tests as well as ensuring that the devices are not damaged by excessive heat during soldering.

Finally, insert pins from the copper side of the board into the holes provided for off-board connections and push them firmly home using a hot soldering iron before fixing them with a small quantity of solder. In the same way that i.c. sockets are not essential to the project these pins can be omitted, but they make it much easier to make connections to the board without causing damage, and they make it possible to attach and remove external wires once the board is firmly mounted in the box.

TRANSFORMER

The pulse transformers, T101 and T102, are very easy to make and should not deter anyone from undertaking the project. Wind 100 turns of 38 swg wire on to one half of the sectionalised bobbin and twist the free ends of the wire together for a short distance to prevent them from unwinding. Repeat the operation for the secondary winding using 10 turns of 28 swg wire in the other half of the bobbin.

Now put the bobbin into one half of the pot core, line the other half of the core up on top and clip the whole assembly to the mounting board with the ring and clips as shown in Fig. 18. Solder the protruding wire ends to the pins on the base according to the layout in Fig. 15-the sense of the windings is not important as the triac will turn on with either positive or negative pulses applied to its gate. To prevent vibration and noise from the transformer when in use dip the whole assembly into household polyurethane varnish, giving it a good shake to remove surplus fluid on removal, and leave it to dry for 24 hours. Finally give the windings a check for d.c. continuity and insert the transformer into the printed wiring board before carefully soldering it into place.

THE BOX

First mount the two sockets SK1 and SK2 at the back of the box after carefully making the cut-outs.

The DIN socket SK1 is used to interconnect with the

Fig. 15. Board component layout
tape recorder while the multi-way D-type socket, SK2, carries the connections to the triac housing. Fig. 20 shows the numbering of the socket connections from the interior of the box to assist in wiring. Solder leads of suitable lengths to the socket pins before mounting the printed wiring board in the box using four 3 mm holes drilled to align with the mounting holes on the board. Group the wires neatly together and solder them to the appropriate pins on the board making sure that you leave enough wire to allow the board to be removed from the box to assist with later fault finding and debugging.

Fig. 16 shows the drilling details for the front panel. Mount the components where shown being careful not to damage the front surface of the panel and wire up the controls as shown in Fig. 17

Group the wires from the front panel together remembering to leave enough wire to allow the panel to be removed for access.

When all the soldering is complete insert IC1-5 in their sockets noting that they do not all lie the same way round. It is very easy to insert an i.c. the wrong way round or to trap a pin underneath it so check carefully to avoid some tricky fault finding later

AUDIO LEADS

The correct terminations for the DIN plug connection to the tape recorder are shown in Fig. 20 in which the left hand channel of the stereo pair has been chosen to carry the dissolve control tone. The connections to the plugs at both ends of the lead are identical. For right hand channel operation wire up the plug using pins 4 and 5 in place of

Fig. 18. Exploded detail of pulse transformer

1 and 3 respectively. If phono connections to the tape recorder are required wire up one DIN plug as shown and terminate the two free wires at the other end with standard phono plugs.

MODIFYING THE PROJECTORS

There are probably as many variations on the basic electrical circuit of a projector as there are manufacturers of this type of equipment so it is not possible to give modification instructions in great detail. We show in Fig. 21 the circuit diagram of a typical projector together with the modifications needed to enable it to work under control from the slide dissolve unit.

Fig. 19. Printed circuit board for Diamatic

The first and most obvious of the modifications involves interrupting the lamp circuit and bringing it out to a suitably placed D-type socket for connection to the triac housing. Also brought out to the socket is a connection in parallel with the slide change switch and a connection to the transformer secondary which completes the power supply circuit for the control electronics.

Not so obvious are the suppression components shown connected across the two solenoids. The change solenoid (SOL1) operates every time the change relay contacts make in the control unit and the slide direction solenoid (SOL2) will also operate if the direction switch on the projector remote control is set to "reverse". On release of the change relay the back e.m.f. across both of the solenoids causes arcing across the relay contacts which can interfere with the audio channel and disturb the operation of the control circuit. Suppression components are fitted across the coils of both the solenoids to prevent this problem.

First it is necessary to establish whether the solenoids involved (in many projectors there will be only one) are powered from an a.c. or d.c. supply. In the example shown (which is of a real projector) SOL1 is d.c. operated while SOL2 is powered by unrectified a.c. Across the d.c. solenoid we may connect a normally reverse biased rectifier diode that will conduct during the reverse swing of the back e.m.f. thereby preventing an arc from developing. This treatment is not possible for an a.c. solenoid so in this case a series combination of R/C is used to damp the back e.m.f. and reduce the intensity of the arc.

For operation as a normal projector without the dissolve control unit in circuit a dummy plug which shorts together the interrupted lamp connections is inserted in the multiway socket and slide change is controlled in the usual way from the projector remote control.

Fig. 20. Plug and socket connections
Constructors who build the triac into their projectors can revert to normal operation by connecting a resistor in series with a switch between T_{2} and gate of the triac. With the switch open operation of the lamp circuit is controlled by the triac trigger pulses but when the switch is closed the triac is held in its conducting state and the lamp remains at full brightness.

SAFETY

An earth connection is shown in the circuit diagrams which connects the OV rail and all metalwork to mains earth via the projectors. It is important that this connection is

Fig. 21. Circuit diagram of projector with mods
made even if the projectors are double-insulated and do not have a ground connection because the control circuits and hardware are not protected by the double-insulation and could therefore become live in the event of a fault in either projector. If a two-core mains lead is fitted to either or both of the projectors replace it with a three-core 3 A cable and connect the earth lead through to the control equipment via the multi-way connector as shown in the diagrams.

Do not rely on an earth connection made via audio equipment-if a hum loop results when separately earthed audio equipment is used remove the connection between the board (pinH) and the DIN connector (SK1, pin 2) to alleviate the problem but remember to replace it if isolated equipment is used at a later date.

ADJUSTMENTS

Only four adjustments are needed before the unit can be used. The object is to adjust the control circuit of each projector so that the lamp is just extinguished at one extreme of the range of the dissolve control knob and just at maximum brilliance at the other. This ensures that there is no "dead space" at either end of the control and that maximum brightness is achieved with no annoying residual image on the screen at the other extreme. Referring back to Fig. 3 we see that a projector is at maximum brilliance when its control voltage just reaches the bottom of the ramp signal (approximately -2 V). The lower extreme of the ramp is fixed for both projectors by the common bias (set by R29/D9) to which C101 is discharged. Because this level is fixed it is necessary to adjust the control voltage at each end of its range to make certain that the bright projector is just at its brightest point. This adjustment is made with VR1 and VR3 which set the voltage seen by the wiper of VR2 at each end of its travel (Fig. 6).

Having set up the bright end of the range for each projector it is necessary to ensure that thev just turn off at the other extreme of their range. A projector lamp is just extinguished when its maximum control voltage just exceeds the positive tip of the ramp. As we have already fixed the two extreme values of the voltage we must now adjust the peak value of the ramp at the dark end of the range for each projector. The adjustment is made by VR101 (VR102) which
varies the current generated by the source which charges C101 (C201) and therefore affects the slope of the ramp.

SETTING UP

The setting up procedure is as follows. First connect the two projectors to the triac housing via the heavy duty cables. It does not matter which projector is connected to each of the two cables as, although power is drawn from only one of the two projectors, both are wired up to supply power when connected to the appropriate lead. Next plug the multi-core connection from the triac housing into the control box, which should be switched to record with all preset adjustments set to mid range, and switch on the projectors. Check that operation of the dissolve control fades from one projector to the other although the adjustment of the lamps at each end of the range will almost certainly be wrong. With the control to the extreme of its travel at which projector A should be bright adjust the preset VR3 anticlockwise until the projector will go no brighter and then reduce its setting until the lamp dims just perceptibly. Now increase the setting a little to reach maximum brightness. Set the dissolve control to its other extreme (B bright) and repeat the procedure using VR1 for the other projector. The adjustments of VR1 and VR3 interact so it will be necessary to repeat this sequence of events with the control set alternately at each end of its travel three of four times until no perceptible difference is found from one adjustment to the next.

When the bright end of the range is correct set the dissolve control to make A dark and adjust the current source preset VR101 until A is just extinguished. The best way of making this adjustment is to project a slide onto a screen in a darkened room and to adjust the preset until the image can just no longer be seen. When the setting is made in this way the projector lamp will be left with a dull orange glow which keeps it warm and speeds its response to rapid changes. Repeat the adjustment for projector B using VR201; the current source presets do not interact so it is only necessary to make one adjustment for each projector at opposite extremes of the dissolve control.

When the adjustments are complete check that the slide change control works at both ends of the dissolve control range, that the "twinkle" control swaps over the states of the two projectors and that the "superimpose" button forces them both to illuminate at half power. Finally, with the dissolve control set to either end of its range and with no audio input switch to play and check that the signal loss detector operates forcing both the projectors to switch on as if the "superimpose" button had been pressed.

You are now ready to make your first slide dissolve programme.

FREQUENCY SETTING

The adjustments already described are all that are required if the same unit is to be used both to record and to play your audio-visual presentations. Because the same VCO is used both during recording and during playback no adjustment of the VCO output frequency is needed. If, as may happen in a club for instance, different units are used for recording and playing back it is necessary to ensure that all the VCOs have the same brightness/frequency characteristic.

R15 and R16 control the frequency of the VCO at the upper and lower extremes of its control range. In order to make several units compatible with one-another it will be necessary to replace these resistors with pre-set potentiometers, possibly mounted so as to be accessible through the rear of the box.

In order to set up a group of units they should first be adjusted individually in the manner described in the previous section. One of the units is then nominated as "master" and its variable R15 and R16 set to mid-range. The output of this unit is then connected to each of the "slave" units in turn so as to carry out the adjustment of their VCO frequencies. With the "master" set to record and the "slave" set to play the master control potentiometer is set to the end of its range at which projector A is bright. R16 of the "slave" is then adjusted until its A projector is just at full brightness. R15 is next adjusted to set the brightness of "slave" projector B with the "master" control at the other extreme. The whole procedure must be repeated three or four times until no variation between successive adjustments is detected as the frequency setting controls will interact with one-another.

MAKING ARECORDING

The best recording technique to use will depend on the type of tape recorder involved. The output from the dissolve unit occupies one complete track of an audio tape recorder so those readers who, like the authors, do not possess a multi-track machine, will have to use one track of their stereo tape deck and record only mono sound. This is a limitation of course but the impact of a fully synchronised dissolve programme more than makes up for a lack of accompanying stereo sound.

Using a two-head machine (many cassette recorders are of this type) it will be necessary to record both the sound and the slide control tone simultaneously. The sound will first be assembled on an auxilliary tape machine if a number of sources (e.g. disc, tape, microphone) are to be mixed together and then played into the master recorder while the slide sequence controls are operated. With a relatively simple sound programme (e.g. disc only) it is possible to record sound and vision directly without the need for an extra tape recorder.

Three-head machines often allow you to play the contents of one track whilst recording on the other. In this case the sound programme can first be built up on one track, from a number of sources if required, and the visual control signal can later be added to the other track whilst listening to the sound.

Before making a recording it is vital to draw up a script indicating exactly how the intended sequence of dissolves, twinkles, etc. relates to the sound track. It is also helpful to practice by running through the programme several times

to check on timings and to learn to anticipate the operation of the controls.

To make a recording arrange the projectors so that their images are superimposed and load the slides alternately into each magazine with a black slide as the first in each set so that the screen is dark whichever projector is illuminated. With the black slide in each projector gate switch to record and adjust the dissolve control so that the projector that will show the first slide is dark, the other fully illuminated. Now switch on the tape recorder at least 30s before the first slide is due to appear and after about 15 s press the slide change button to remove the black slide from the gate and replace it with the first one to be projected. When the slide is to appear fade it in with the dissolve control and as soon as it is fully illuminated press the change button to bring the second slide into the gate of the dark projector. Continue in this way alternately operating the dissolve control and the change button until the sequence is completed. It will probably be necessary to insert a black slide as the last in each projector so that the screen remains dark at the end of the presentation.

REPLAY

A smooth, efficient and unruffled beginning to a show adds greatly to the overall effect that it has on even the most uncritical of audiences so fumbling with projectors, wires and controls is best done before the viewers arrive.

The signal loss detector helps by allowing you to superimpose the images from the two projectors at half power simply by switching to "play" without an audio input applied. When the images are set correctly load the slides into the two projectors (making very sure that the right magazine
has been loaded into each projector) and bring the first (black) slide into the gate of each. Wind the tape to a position just after the beginning of the slide control tone and connect the output of the recorder to the control unit which is switched to "play"

When the moment arrives switch on the projectors and turn off the room lights. Now start the tape recorder and enjoy the show which will begin by first bringing a slide into the gate of the dark projector and then fading it up on to the screen.

We apologise for the omission of joint authorship and qualifications in Part 1.

Energy Saving

Among all the claims and counterclaims for energy saving systems, sane or crazy, it is refreshing to find a few hard facts and figures based on actual field experience.

The Italian company Telettra has recently published some details of a 2,000 mile national route network of microwave links they have engineered in co-operation with the New Guinea PTT Administration. The first links went in seven years ago and, taking advantage of the newest technology which allowed an extremely low power consumption of only 30 W , the equipment was originally powered from dry cells needing replacement every six months. There was therefore no need for mains supply power lines or expensive diesel generation and, as New Guinea has a benign climate, no air conditloning was required. Despite the low power consumption of the repeater stations the capacity is 960 telephone channels plus TV.

Later expansion of the system also brought an up-date and the repeaters are now powered from solar cells with a secondary cell float. The system still demands a visit from a technician every six months to service the secondary cells and clean the solar panels, but over a five year period the cost of ten replacement sets of dry batteries is saved.

Drawing on this experience together with the falling cost of solar cells Telettra now say that the capital cost of a solar powered system breaks even with a diesel generator installation for local power up to 100 W . In service the savings come from a nil fuel bill and no maintenance costs for diesel equipment. One of the great advantages of independent local power is that the equipment cabins can be sited anywhere. No approach roads are needed as would be the case for regular delivery to the site of diesel fuel, or the provision of overhead power lines or both.

Fine! But how about locations where temperature variations are such that the equipment needs an air conditioned environment? Conventional air-conditioning burns up more power than the equipment itself. Telettra says the answer lies in a new form of shelter' exploiting the thermal characteristics of the materials from which it is constructed and the few watts of heat dissipation in the equipment itself. There are no moving parts and by changing the materials a passively conditioned shelter can be made to iron out temperature fluctuations in either tropical or arctic environments. For large installations the conditioning can be enhanced by natural circulation of fluids in a closed circuit.

Note the three-pronged systems approach. First, getting the power needs lower for a given function, second the development of a non-energy consuming conditioned shelter, third the timely application of solar cells as soon as the cost became economical. Telettra see a huge market for this type of equipment all over the world but especially in the vast undeveloped areas.

Augustine's Law

Norman R. Augustine, vice president technical operations, Martin Marietta Aerospace Corporation, following the example of Professor Parkinson, has established his own set of Laws. Augustine's are based on observation of trends in his own industry and projecting them into the future. The US defence budget increases yearly but so does the cost of tactical aircraft, the latter at a much greater rate. Extrapolating the figures Augustine suggests that by the year 2054 the total defence budget of the United States will buy only one tactical aircraft. Similarly, that before the tricentennial the US Government will employ more government workers than there are workers. Nonsense, of course, but with just that little grain of truth which makes you sit up and think.

Augustine ruefully reflects that in World War 2 all the technology was developed, -built and applied and the war was won in just half the time it takes to develop a new military system today.

How Big?

GEC may be Britain's largest private employer (about 184,000 employees) as well as one of the best managed and consistently profitable. And annual turnover is now a healthy $£ 2,500$ million. But, as GEC management point out to their staff, there are much bigger fish in the sea. US General Electric (no connection) has nearly four times the turnover and Siemens of West Germany over three times. Matsushita and Toshiba of Japan are both much larger in turnover than GEC while French Thom-son-Brandt and Brown Boveri of Switzerland and Germany are nudging from behind only barely short of GEC's sales performance.

Direct comparisons'are, however, difficult because such conglomerates (including

GEC) have different interests. GEC, for example, unlike US GE, does not make aero engines or own coal mines. A more valid comparison is to try to separate out the various activities. Yet when we do this there is another shock. The whole of GEC's activities in electronics, automation and telecommunications accounts for only one fifth of group turnover. Take out the business in traffic lights, telephone exchanges and industrial automation and you might guess that in 'pure' electronics GEC is about level on turnover with Racal whose business is almost totally in professional electronics.

This is not to disparage GEC, clearly a powerful force in electronics world-wide, but it does impress on us the problem of comparability and that, after all, from this perspective some of the smaller British firms are relatively larger than we imagined.

It is now ten years since GEC swallowed up English Electric and AEI. Turnover was then less than $£ 900$ million. Today's $£ 2,500$ million turnover is achieved with 50,000 fewer employees, reflecting a mix of factory productivity gains and price inflation. Annual salary per employee is now averaging nearly $£ 4,000$, not far short of four times the 1970 figure which worked out, by present standards, at a lowly $£ 21.80$ per week-but you got more for your money in those days.

BPO Split

Apart from predictable adverse comment from union spokesmen on the postal side of the business, the Government's decision to split the present BPO into two corporations was generally welcomed. PO telecommunications can now romp ahead doing their own thing, and doing it well. Most people, users only of the domestic network, are unaware of the international aspects of the business, or of the immense capital sums involved.

Two recently announced projects are examples. TAT 7, due in service by 1983 , will provide another 4,200 submarine cable channels between the UK and the USA. Britain has a 22 per cent share of the $£ 100$ million cost and ST\&C will manufacture in the UK 2,700 miles of the cable at a cost of $£ 30$ million. Another $£ 100$ million project is INMARSAT providing by the mid-80s marine satellite communications for shipping. The BPO has an 11 per cent share in the project which will have its HQ in London. Yet another dish aerial is to be constructed at the Goonhilly complex to accommodate the new service. The BPO of course also has a major share in INTELSAT and is pressing ahead with international sales of the Prestel viewdata service.

Under the new arrangement, home and business subscribers will be able to use terminal equipment of their own choice provided it has no adverse technical effect on the public network. With the BPO monopoly of supply broken, there will be intense competition for the business providing a real challenge for home producers to exercise initiative. They have about two years in which to prepare. Failure means handing the bulk of the business to the Far East.
 Durell Meter
b.д. David Whitfield b.a.м.sc.

CONVENTIONAL moving iron ammeters usually offer poor calibration, whilst transient response is severely impaired due to the damping needed to prevent overshoot. These ammeters are often difficult to install since they require heavy duty leads (30A or more) from the battery.

The instrument described overcomes these limitations and provides linear response over a range of typically $\pm 25 \mathrm{~A}$. Furthermore, the displayed current range is adjustable, thus permitting the user to preselect the actual range of indication to suit his particular needs. The module is basically a voltage measuring device with a high input impedance.

PRINCIPLE OF OPERATION
The usual arrangement of connections to a vehicle battery is shown in Fig.1 (a). A heavy duty copper braid links the negative terminal of the battery to the vehicle chassis. This earth strap has a very. low resistance, typically 0.002Ω or less. The equivalent circuit of the battery connection, showing the earth strap resistance, is given in Fig. 1 (b). The voltage drop developed across the earth strap resistance, R, is directly proportional to the current flowing in it. Furthermore, the polarity of this voltage will change according to whether the battery is being charged or discharged. The obvious disadvantages are that the resistance of the earth strap will vary from car to car, and the voltage developed is very small, typically 20 mV for a current of 10A. Hence, in order to interface with the standard LM3914 display circuit, additional amplification is required, and the gain must be made variable to allow for variation in earth strap resistance from one vehicle to the next.

The obvious solution is to use a simple operational amplifier arrangement. There is, however, a problem associated with the fact that the input voltage (developed across the earth strap) varies in polarity about OV (chassis potential). This is overcome by using a FET as a common source amplifier. See Fig. 2. The output voltage developed

No. 1 Battery Voltage Indicator, including a description of the LM3914, and No. 2 Rev' Counter appeared in October and November. This supplement incorporates the remaining three, plus details of warning and cascading.
across the drain load resistor, R_{D}, depends upon the drain current, I_{D}, and Fig. 3 shows how the drain current varies with the gate-source voltage, V_{GS}. By suitable choice of source resistor, R_{S}, the drain current will increase and decrease about a steady value according to whether the battery is being charged or discharged. Again, by appropriate choice of values, the drain voltage is made to be approximately half the supply voltage, and thus it will interface correctly with the operational amplifier stage which follows. The effects of supply voltage and temperature variations are reduced by using a balanced differential arrangement as shown in Fig. 4. An input protection circuit is necessary in the event of the earth strap ever becoming disconnected, since the excessive gate-source voltage would damage TR1. VR1 allows the circuit to be balanced and compensates for any difference in FET characteristics.

The complete circuit of the Ammeter is shown in Fig. 5. Input protection is provided by R3 and D1-D2. This ensures that the maximum input voltage excursion at the gate of TR1 is 600 mV in either polarity. R5 and D13 provide a regulated supply for the differential stage and VR2 sets the voltage gain of the operational amplifier stage. D14 is used to remove the d.c. level from the output of the operational amplifier and allows correct interfacing with the display driver, which requires a 0 to 5 V input signal. By suitable adjustment of VR1 and VR2 it is possible to produce a compatible signal at the input of IC2 over the desired current range.

NO HEAVY GAUGE WIRES FAST RESPONSE CLOSER CALIBRATION

Fig. 1. (a) Conventional car battery connections; (b) Equivalent circuit of the battery earth strap

Fig. 2. Simple common source amplifier using an n. channel FET

Fig. 4. Practical realisation of Fig. 2

Fig. 3. Mutual characteristics $I_{D} /\left(V_{G S}\right)$ of an n. channel depletion mode FET

Fig. 5. Circuit diagram of the Ammeter

CONSTRUCTION

Two constructional examples are described. Individual constructors will most likely exercise their own preference as to the mechanical assembly of the instrument. The p.c.b. pattern is shown in Fig. 6 with the corresponding component layout given in Fig. 7. The printed circuit board is recommended for use when the instrument is for dashboard mounting in a rectangular "instrument pod". An alternative layout which uses 0.1 inch matrix stripboard is shown in Fig. 8. This method of construction is more appropriate when the instrument is to be of the hand-held type.

The pod mounted version uses standard 0.2 inch l.e.d.s whereas the hand-held instrument uses smaller TIL209 type devices. The MODE link in both layouts has been shown in the recommended DOT display position. The I.e.d.s may be colour coded to suit the constructor's preference and suggested colours are red for the five left-hand diodes (indicating discharge) and green for the five right-hand diodes (indicating charge).

TESTING AND CALIBRATION

Before installation it is recommended that the instrument is "bench checked" using the circuit in Fig. 9. This provides a variable input voltage of up to 100 mV of either polarity. It thus simulates the approximate range of voltages that will appear across the earth strap, and constructors can check

Fig. 6. Printed circuit layout (actual size)

Fig. 7. Component layout

Fig. 8. Alternative stripboard layout

that the circuit functions correctly before wiring to the vehicle. With the 1 k variable resistor set to mid-position, VR1 should be adjusted so that D7 just extinguishes and D8 just becomes illuminated. Moving the variable in one direction should cause the green l.e.d.s (D8 to D12) to illuminate successively and in the other direction the red l.e.d.s (D3 to D7) should illuminate successively. VR2 should be adjusted so that the whole range is covered.

The instrument can now be fitted to the vehicle. Care should be taken to connect the input leads correctly (otherwise a reverse indication will result) using a length of two core cable which terminates at either end of the earth strap. Calibration in the vehicle can then follow, but it will first be necessary to know the power or current requirements of one or more items connected to the vehicle's electrical system.

With no electrical accessories operating and the ignition off, VR1 should be adjusted for centre zero indication as before. Now assume, for example, that two headlamps, each rated at 60 W , are illuminated together with side lights and rear lights accounting for a further 60W. The total power from the battery lassuming that the engine is not running and no other accessories are connected) will be 180 W which corresponds to a current of 180/12 or 15A. (In the example we have assumed that the battery is man enough to stand up to this load-in practice the terminal voltage of the battery would probably fall a little from the nominal 12 V .) It is now merely a question of adjusting VR2 so that the third

Fig. 9. Circuit for bench-checking the Ammeter

Mo. 4 EncIne temperiture

THE instrument described overcomes the accuracy limitations of conventional temperature gauges, and provides a linear response over a range of typically $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. In addition, the resporise time is faster than with conventional gauges, and the displayed temperature range is adjustable, thus permitting the user to select a range of indication to suit his particular needs.

PRINCIPLE OF OPERATION

The transducer used is a general purpose silicon transistor. The base-emitter junction voltage, $V_{B E}$, which although normally quoted as approximately 600 mV , varies with the junction temperature. Although the voltage change produced is rather small, it is a linear function of temperature and lies in the range from -2.0 to $-2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ (ie, $V_{B E}$ falls as the temperature increases). Over the desired $100^{\circ} \mathrm{C}$ temperature range the total change in $\mathrm{V}_{B E}$ will be approximately 225 mV and, since the display module requires an input voltage of 0 to 5 V . some additional amplification is necessary.

The basic temperature sensing arrangement is shown in Fig. 1. The base-collector voltage is fixed; a resistor is included in the emitter lead and, provided that the supply and bias voltages remain constant, $V_{B E}$ gives an indication of the temperature of the transistor junction. An improved arrangement is shown in Fig. 2 where two transistors are connected
in a differential configuration. This is important in reducing the effects of supply voltage variation which in a vehicle can be as much as 25%. If the circuit is exactly balanced, with R1 equal to R2 and identical transistors, the output voltage will be zero, provided that the two transistors are at the same temperature. Any difference in temperature will cause an imbalance in the circuit and a corresponding output voltage. Ideally TR2 should be closely maintained at a constant temperature, however in practice the interior temperature of a vehicle is usually regulated to a comfortable and fairly constant level (between 20 and $25^{\circ} \mathrm{C}$) by the driver. The temperature sensor, TR 1 , is mounted at some convenient point on the engine block and thus is kept at the working temperature of the engine.

Fig. 3 shows the practical realisation of Fig. 2. A Zener diode is used to stabilise the base-collector voltages of TR1 and TR2. The emitters of TR1 and TR2 are connected to the differential inputs of an operational amplifier. This responds to the difference in the two base-emitter voltages. The operational amplifier also provides the additional voltage gain necessary for interfacing with the display module. VR1 provides a means of balancing the circuit and compensating for any mismatch in transistor characteristics.

The complete circuit of the engine temperature indicator is shown in Fig. 4. The gain of the operational amplifier stage is made adjustable by means of VR2 and, since the output of the stage is at about half-supply potential (approximately 5 V), a Zener diode, D2, is used to remove the d.c. level before the signal is applied to the display driver, IC2. By suitable adjustment of VR1 and VR2 it is possible to produce a compatible 0 to 5 V signal at the input of IC2 over the desired temperature range.

CONSTRUCTION

As with the other instruments in this series, two constructional examples are described. Fig. 5 shows the printed circuit track pattern and Fig. 6 the corresponding component layout recommended for use in a dashboard instrument for mounting in a rectangular instrument pod. The alternative layout using 0.1 inch matrix stripboard which is suitable for a hand-held instrument is shown in Fig. 7. The pod mounted version uses standard 0.2 inch l.e.d.s whereas the hand-held instrument uses smaller TIL209 type devices. The wire MODE link in both layouts has been shown in the recommended Dot display mode. The I.e.d.s. may be colour coded,

Fig. 4. Circuit diagram of Engine Temperature Gauge. Note: D2 should be BZY88 C4V7

Fig. 1. Base-emitter voltage varies with temperature of transistor

Fig. 2. Differential configuration to reduce the

EG220]

56213

Fig. 5. Printed circuit layout (actual size)

sensor, TR1, should be placed in the ice taking care not to immerse the leads. VR1 is then adjusted until the extreme left hand I.e.d., D3, just extinguishes (leaving the rest of the display blank). TR 1 should then be placed in a cupful of water that has just been boiling, again taking care not to immerse the leads. This will produce a temperature of around 90 to $95^{\circ} \mathrm{C}$. (Do not use a kettle since the steam produced can cause condensation around the transistor leads.) VR2 is then adjusted so that the extreme right hand l.e.d., D12, is illuminated. The procedure should be repeated, again adjusting VR1 at one end of the range and VR2 at the other. The calibration can, of course, be checked using an accurate thermometer if available. Having completed the calibration, the instrument is ready for fitting to the vehicle.

Fig. 7. Stripboard layout

COMPONENTS . . .

Resistors

R1, R2	$10 \mathrm{k}(2$ off $)$
R3, R7	3 k 3 (2 off)
R4, R6	$1 \mathrm{k}(2$ off)
R5	470
R8	$27 \frac{1}{2} \mathrm{~W}$
R9	2 k 2

All resistors $\frac{1}{4} \mathrm{~W} 5 \%$ except where stated

Potentiometers

VR1 $10 \mathrm{k} \quad \mathrm{min}$. skel. pre-set
VR2 $100 \mathrm{k} \quad \mathrm{min}$. skel. pre-set
(Use hor. pre-sets for p.c.b. mounting, vert. for stripboard
mounting.)

Capacitors

C1, C2 $2 \mu 225 \mathrm{~V}$ tantalum

Transistors and Diodes
TR1, TR2 BCY70
TR3 2N3053
D1 BZY88 C6V2
D2 BZY88 C4V7

D3-D12 I.e.d.s to suit (10 off)
D13 BZY88 C5V6
D14 1N4001

Integrated Circuits

IC1	741
IC2	LM3914

Miscellaneous
Printed circuit board or $63 \times 40 \mathrm{~mm}$ of 0.1 inch stripboard
Moulded case as appropriate
and suggested colours are red for the two l.e.d.s on either extreme and yellow for the others. Hence a red "warning indication" will be given when the engine temperature is outside the range $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$.

CALIBRATION

Calibration is quite simple and, if necessary, can be carried out without the aid of a thermometer. VR1 should be used to set the low temperature indication of the display and VR2 to adjust the range of display. An approximate calibration temperature of $0^{\circ} \mathrm{C}$ can be obtained using a cupful of crushed ice which is just on the point of melting. The temperature

CONNECTION TO THE VEHICLE

The temperature sensor, TR1, should be either bonded to the engine block using epoxy adhesive or held in place by a small metal clamp. The metal case of the transistor is connected to the collector and may thus safely be earthed to the chassis of the vehicle. Care should be taken to insulate the transistor leads and ensure a sound mechanical termination. A short length of three-core cable should be used to connect the temperature sensor to the instrument pod. Alternatively a length of two-core screened cable may be used in which case the earth/collector connection is the screen itself.

THE dwell angle of the contact breaker cam is of great importance to engine performance, particularly at higher rev's. The dwell angle is the angle through which the cam turns while the contact breaker points remain closed and depends upon the angular separation of the cam lobes on the distributor shaft, and the maximum gap between the points. It must be sufficiently large to enable the soft iron core of the ignition coil to become magnetically saturated to provide a good spark, yet not so large as to cause over-dissipation. Too small a dwell angle will result in a low spark voltage, and poor combustion. This may be caused by:
(a) The contact breaker gap being too large.
(b) The cam being excessively worn.
(c) The cam and shaft bearings being excessively worn.

Large dwell angles will result in overloading of the capacitor and burning of the contact breaker points at low speeds. Too large a dwell angle is usually due to the gap of the contact breaker being set too small.

The correct dwell angle for a particular vehicle will be found in the workshop manual. Generally, the dwell angle is usually slightly less than two-thirds of the angle between the cam lobes. In a 6-cylinder distributor, for example, the cam lobe separation is 60 deg and the dwell angle is about 36 deg (comparable figures for a 4-cylinder unit are 90 deg and 52 deg, respectively).

MEASUREMENT OF DWELL ANGLE

Measurement of the contact breaker dwell angle is most easily accomplished by observation of the voltage waveform across the contact breaker points. An idealised representation of this waveform is shown in Fig. 1 (a).

A straightforward method of measuring dwell angle requires only a moving coil d.c. voltmeter and a calculator. The mean value of the waveform in Fig. $1(a)$ is given by:
$V_{\text {mean }}=V_{s} \times \frac{\text { Angle between cam lobes }- \text { Dwell angle }}{\text { Angle between cam lobes }}$

Fig. 1. (a) Breaker points voltage waveform.
(b) Points condition; (c) Timing angles; (d) Duty cycle

Fig. 2. Circuit diagram

The values of $V_{\text {mean }}$ and V_{s} may be measured at the two ends of the ignition coil primary winding. The moving coil movement will average the waveform and the dwell angle may then be found from:
Dwell angle $=$ Angle between cam lobes $\times \frac{V_{s}-V_{\text {mean }}}{V_{s}}$
This technique is tedious when repeated measurements are required.

Ideally, dependance upon the variable value of V_{s} should be eliminated, allowing a simple scaled meter to be used, whereby the duty cycle of the waveform, rather than the voltage is measured. The dwell angle is then:
Dwell angle $=$ Angle between cam lobes $\times \frac{100 \%-\text { Duty cycle }}{100 \%}$
The calibration now depends only upon the angle between the cam lobes. This meter works on duty cycle and displays dwell on a scale which may be calibrated to 90 deg, 60 deg or 45 deg for distributors with 4,6 or 8 cam lobes, respectively.

CIRCUIT DESCRIPTION

The circuit diagram is shown in Fig. 2. The contact breaker voltage waveform is sampled at point " B ", and then filtered by R1, C1 and R2. The filtered signal is applied to the noninverting input of op. amp. IC1a, which is arranged as a voltage comparator. The combination of R3 and D1 sets the switching threshold such that the voltage at point " B " must exceed approximately 1 volt to cause the output of the comparator to go "high"

COMPONENTS ...

Resistors	
R1. R3, R5	
R2	$10 \mathrm{k}(3 \mathrm{off})$
R4, R7	22 k
R6, R10	$1 \mathrm{k} \mathrm{(2} \mathrm{off)}$
R8	$2 \mathrm{k} 2(2$ off $)$
R9	$3 \mathrm{k3}$
All $\frac{1}{4} W 5 \%$ unless otherwise stated	

Capacitors

C1, C3
 C2, C4, C6
 C5

10n ceramic (2 off) $10 \mu / 16 \mathrm{~V}$ elect (3 off) $4 \mu 7 / 10 \mathrm{~V}$ elect

Transistors and Diodes

D1
 1N914 or similar

D2, D4
1N4001 (2 off)
D3, D15
D5-D14
BZY88 C5V6 Zener (2 off)
L.e.d.s to suit physical requirements (10 off)

2N3053, BFY50 or similar

Integrated Circuits

IC1	LM324
IC2	LM3914

Miscellaneous
Stripboard or p.c.b. Moulded case

Fig. 3. Printed circuit layout (actual size)

Fig. 4. Component overlay

Fig. 5. Alternative stripboard layout

The comparator output is a rectangular waveform limited to the output saturation levels of the op. amp., which in this application are approximately 600 mV and $\left(V_{\text {supply }}-1.2\right)$ volts for the "low" and "high" states respectively. The dependence of the "high" level on the supply voltage is eliminated by the clipper circuit, R4 and D3, and the result is a signal between the levels of 600 mV and 5.6 volts.

The average value of the signal at point "D" varies linearly between 600 mV and 5.6 volts as the duty cycle varies between 0 and 100%. This average value is developed at point " E " by the integrator formed by R5 and C4, and is subsequently buffered by IC1d to minimise loading effects. The 600 mV d.c. offset is removed by D4, and the voltage across $R 6$ varies from 0 to 5 V as the duty cycle at the input varies from 0 to 100 per cent to correspond to dwell angles from maximum (angle between the cam lobes) to zero, respectively.

The time constant of the display response is determined
by the integrator circuit of R5 and C4. The remainder of the circuit comprises the standard display module.

PRACTICAL DETAILS

The constructional details for the dwell meter closely follow those outlined for the earlier instruments in the series. A p.c.b. design is shown in Fig. 3, with a corresponding component layout in Fig. 4. A stripboard layout for a hand-held test instrument is shown in Fig. 5.

Both instrument variants are shown wired for dot mode display. The display scale should be calibrated $90^{\circ}-0^{\circ}$, $60^{\circ}-0^{\circ}, 45^{\circ}-0^{\circ}$ for $4,6,8$-cylinder distribution units respectively. The connections for use are the same as those for the tachometer (November), and are summarised again in Fig. 2. A higher resolution display of the dwell angle may be obtained by the use of additional display driver devices, described later.

HAZARD WARIIIIE \& CRSCRDIIG...

THERE are many occasions when it is imperative that the driver receives an immediate warning that all is not well under the bonnet. The two techniques described below illustrate methods of producing hazard warnings in sharp contrast to the normal indication given by the instrument concerned. The examples provided should enable constructors to modify any of the instruments previously described in the series for added hazard warning indications. The enthusiastic constructor will doubtless wish to further exploit the many features of the LM3914 and, in this case, the suggestions given will merely provide a starting point.

MODE SWITCHING

An obvious method of attracting the driver's attention to an instrument operating in Dot mode is to change the display to Bar mode whenever a pre-determined level is exceeded. In practical terms this involes switching the display mode input (pin 9 of the LM3914) electronically. and since the particular l.e.d. illuminated relates to the input level, it is possible to sense the voltage across the l.e.d. concerned and use this to activate an electronic changeover switch. If the voltage at the input of the standard display module (pin 5 of the LM3914) were to be increased slowly from 0 to 5 V , and the last l.e.d. used for setting the display into Bar mode, then the display would operate in the normal Dot mode until the last l.e.d. became illuminated, at which level the display would change to Bar mode. In practice any one of the l.e.d.s could be used for determining the changeover point. For most applications it is suggested that either l.e.d. No. 8 or l.e.d. No. 9 is used to provide the changeover (corresponding respectively to 80% and 90% of full range).

Fig. 1 shows a simple practical arrangement which may be used in conjunction with the standard display module. The display mode is changed from Dot to 'bar' whenever D8 is illuminated. A reference voltage is provided by means of R3 and D9. This sets the potential at the emitter of TR1. When D8 is extinguished the voltage at pin 12 of the LM3914 is "high" and base current flows through R1, effectively saturating TR1 and thereby reducing the collector voltage and the mode input voltage at pin 9 of the i.c. to a low value. The display then operates in Dot mode. When D8 is illuminated the voltage at pin 12 of the LM3914 is
low (approximately 3 V), and thus the base-emitter junction of TR1 is no longer forward biased. TR1 is therefore held off and the voltage at its collector rises to be almost equal to the supply $(12 \mathrm{~V})$. Hence the mode input is made approximately equal to the supply voltage and the display operates in Bar mode. It is important to note that, if the display indication falls back below the hazard threshold determined by the particular l.e.d. selected, the display then reverts to the normal Dot mode of operation.

TR1 can be almost any n.p.n. silicon transistor having a current gain of 100 or more. A 3.3 V Zener diode of at least 250 mW rating should be used for D9. The additional components can readily be mounted on a small piece of stripboard and wired to the existing circuitry.

FLASHING BAR DISPLAY

Where a Bar mode display is used (as would normally be the case with a rev. counter, for example) an alternative technique for gaining the driver's attention must be used. In this case, probably the most dramatic method is to make the entire display flash on and off whenever a safe level is exceeded. Since the current drawn from the reference output (pin 7 of the LM3914) determines the brightness of the l.e.d.s in the display it is possible to turn off the display by reducing this current to zero. The circuit of Fig. 2 shows a simple arrangement for flashing the display whenever D8 is illuminated. The falling potential at the cathode of D8 when it first becomes illuminated is applied, by means of C1 and R2, to the reference output of the display driver. R3 is included to ensure that D8 becomes extinguished along with the other l.e.d.s in the display when the display is momentarily turned off. The LM3914 is programmed to produce a constant current in each of its l.e.d. loads and hence the additional resistor in series with D8 does not affect its brilliance. With the component values given the circuit operates at a rate of approximately 90 flashes per minute with a duty cycle of around 30%. It is important to note that, because the reference output is used to modulate the display, the top end of the resistive divider chain which feeds the non-inverting inputs of the ten comparators within the LM3914, must be supplied from a separate regulated supply. This can conveniently be derived from the supply rail which feeds the l.e.d.s (nominally 5 V) however, since Bar

Fig. 1. Circuit to provide Dot-to-Bar mode changeover triggered by l.e.d. 8
mode is employed and a relatively high current is drawn from this rail, it is recommended that the simple discrete component series transistor regulator used with the standard display module be replaced with a conventional 5 V integrated circuit regulator.

Where the flashing circuit is to be fitted to an existing circuit board it is recommended that the extra components are assembled using a small piece of stripboard. The regulator should be fitted with a suitable heatsink $\left(19^{\circ} \mathrm{C} / \mathrm{W}\right.$ should be adequate) and capacitors C2 and C3 should be fitted as close as possible to the pins of the regulator. The existing transistor series regulator arrangement should be disabled by removing the transistor and associated components from the board. It will also be necessary to modify the board

Fig. 2. Circuit to provide flashing bar display triggered by l.e.d. 8
wiring around pins 6 and 7 of the LM3914. R1 and R4 can conveniently be incorporated on the existing board and five connecting wires will be necessary

DISPLAY RESOLUTION ENHANCEMENT

The basic display module described in this series makes use of a display consisting of 10 l.e.d.s. It is often desirable, however, to know the value of the measured parameter to finer limits than can be read from the basic display module. This means that a greater number of l.e.d.s must be used, for example, to display 0-6000 r.p.m. in steps of 200 r.p.m. requires 30 I.e.d.s.

The design of the LM3914 integrated circuit means that the display is conveniently increased in multiples of 10

Fig. 4. Extended Bar mode display
I.e.d.s; with the precise circuit details varying slightly depending upon the choice of Dot or Bar mode for the display format. In this way the display may be extended up to 100 l.e.d.s.

EXTENDED DOT MODE DISPLAYS

The "chaining" of display devices to provide an extended Dot mode display employs some as yet unused characteristics of the Mode Select Amplifier in the LM3914. The Mode Select Amplifier looks at three inputs to decide whether to show a Dot display, a Bar display, or a Dot display using multiple LM3914 devices. The three inputs to the Mode Select Amplifier are from pin 9 (mode), pin 3 $(\mathrm{V}+$), and from pin 11 (D9); the last two being connected internally.

Holding the mode pin to within 20 mV of the voltage at pin 3 will cause a bar graph to be displayed. A dot mode display will appear if pin 9 is 200 mV or more below the voltage at pin 3 . If the mode pin is 900 mV below the voltage at the anodes of the l.e.d.s, D10 will be turned off. This last feature is exploited in the extended dot mode displays to be discussed and is used to turn the last l.e.d. of one LM3914 off when the first l.e.d. of the next device up the chain is turned on.

The circuit diagram for a 30-I.e.d. dot mode display module is shown in Fig. 3. The l.e.d. current is set by the value of the resistors R, to a value given by:

$$
I \simeq \frac{12 \cdot 5}{R}(R \text { is typically } 1 \mathrm{k} \Omega)
$$

The full-scale calibration of the display module shown depends on the exact value of the 5 volt rail, i.e. the fullscale value is set by the voltage at pin 6 of the LM3914 in
module 3. A $22 k$ resistor is also required in parallel with D9 in modules 1 and 2 to ensure correct operation of the Mode Select Amplifiers.

A 20-I.e.d. display may be constructed by omitting module 2 from the circuit of Fig. 3, and making direct connections A-a, B-b, C-c, D-d, E-e, and F-f. Alternatively, the display may be extended beyond 30 l.e.d.s by breaking the links at A, B, C, D, E, and F, and inserting additional modules of type 2 as required.

EXTENDED BAR MODE DISPLAYS

Bar graph displays of 20 or more l.e.d.s are relatively simple to build. All that is required is that the mode pin of each LM3914 is connected to pin 3 of the same LM3914. The circuit diagram for a 30-I.e.d. bar graph display module is shown in Fig. 4.

As with the extended dot mode display, the full-scale input voltage for the module is set by the voltage at pin 6 of the LM3914 in module 6. The power dissipation of the regulator for the anode supply to the l.e.d.s requires careful consideration. A stable $5 \cdot 0$ volt output is required, with the regulator capable of dissipating the surplus power associated with a full-scale display. For example, a 100-1.e.d. display with $R=1 \mathrm{k}$ would involve a regulator dissipation of 8.75 watts when operated from 12 V supply, (the individual l.e.d. current would be 12.5 mA). It is recommended, therefore, that an integrated circuit regulator be used as shown in Fig. 4, and that adequate heat-sinking arrangements be made.

Displays of 20 l.e.d.s should omit module 5 from the circuit given in Fig. 4, and links should be inserted at G-g, $\mathrm{H}-\mathrm{h}, \mathrm{I}-\mathrm{i}, \mathrm{J}-\mathrm{j}$ and K-k. For displays of more than 30 I.e.d.s, the links should be broken at G, H, I, J, and K, and additional modules of type 5 inserted as required.

FROM CASIO - THE NEXT STEP FORWARD IN TIME

Casio's new Lithium battery, lasting up to 5 years or more, totally eclipses most SOLAR watches

Hand held
 COMPUTER GAMES

We have selected the best available It's you against the computer . .

GRANDSTAND
4-in-1
Calculator/Auto Race/ Code Breaker (as
Mastermind)/Blackjack.
Convenience - skill -
brainpower - luck.

£22.50

UFO MASTER BLASTER STATION
More sophisticated than Destroyer. Guide missiles to destroy UFO's which may change course or disappear!

AMAZE-A-TRON

Over 1 million mazes to defeat! 1 or 2 players. Electronic sound effects.
$£ 17.25$
GRANDSTAND DESTROYER
Protect your convoy from torpedoes. $£ 14.95$
GRANDSTAND SOLITAIRE
Absorbing and challenging. $\mathcal{L} 14.95$
DIGITS (As Mastermind)
Deduce four random numbers. $\mathbb{2} 13.95$
MICROPROCESSOR
FAIRCHILD GRANDSTAND
Video Entertainment Computer
£74.95

19 plug-in
pre-programmed
memory cartridges
now available.
Each $£ 12.50$
NEW SCIENTIFICS
With non-volatile memory

Price includes VAT, P\&P. Send your cheque, P.O. or phone your ACCESS or BARCLAYCARD number to:-

HAVE A FABULOUS TIME THIS CHRISTMAS - FROM TEMPUS

From CASIO's New Collection we present some of the most sophisticated executive watches available today.

ALARM CHRONOGRAPH

Displaying hours, minutes, seconds, date, am/pm; or Hours, minutes, alpha day, date, am/pm. With automatic 28, 30, 31 day calendar.

83SQ-27B

4 YEAR BATTERY. 1/10 second chrono to 12 hrs , measuring net, lap and Ist and 2nd place times. 24 hour alarm. Hourly chimes. Backlight. Mineral glass, Stainless Steel encased, Water resistant to 66 feet. (£31.95) 227.95

Displaying hours, minutes, seconds, day; and with day, date, month and year perpetual automatic calendar. Available soon:

810S-33B
5 YEAR BATTERY Chrome plated case WR to 66 feet (£31.95)
£27.95
1/100 second chrono to 7 hours. Net, lap and Ist and 2nd place.
Selectable 12 or 24 hour display.

24 hour alarm Selectable hourly chime facility. Backlight. Mineral glass face.
81CS-36B
As above but:
Stainless steel case.
WR to 100 feet. (£39.95)

£35.95

HONG-KONG WATCHES

Most low cost digital watches come from Hong Kong. In our experience these are proving unreliable, particularly those with multi-function modules, with very high failure rates. Repairs can the as long as three months and replacement parts are not always available even replacement plastic glasses!
Compare this with Casio, Citizen and Seiko, whose failure rate is typically under 1%, Casio's service time of $2-3$ weeks and comprehensive spares and we ask you:-
ISNT IT WORTH PAYING A LITTLE MORE FOR QUALITY AND RELIABILITY? Fully guaranteed for 12 months.

> Most CASIO products available from stock. Send 25p for illustrated brochures and membership of our CHRISTMAS CLUB. EXTRA DISCOUNTS on many items.

CASIO CHRONOGRAPHS

Constant LC display of hours, minutes, seconds, am/pm and day (12 or 24 hour). Dual time (12 or 24 hours). Automatic day, date, month and year calendar. Chronograph measures net, lap and 1st and 2nd place times from $1 / 100$ second to 7 hours. Backlight. Mineral glass face.
Guaranteed water resistant to 66 or 100 feet.
NEW MODEL
950S-32B
4 YEAR BATTERY. Superbly styled brass case heavily chrome plated. Water Resistant to 66 feet.
(RRP £27.95)
£23.95
95QS-31B
(left)
4 YR BATTERY
S/Steel jacket
WR to 66 feet
(£27.95)
$£ 23.95$
95CS-31B
(Right)
5 YR BATTERY
Solid S/S case.
WR to 100 feet
(£34.95)
$£ 29.95$

F-200 SPORTS CHRONO

Hours, minutes, seconds, am/pm. Day, date, month 1/100 sec chrono to 1 hr . Net, lap and 1st and 2nd place times. Backlight. Resin case/strap.
Mineral glass.
WR to 66 feet.
Silver oxide battery (£17.95)
$£ 15.95$

F-8C Time/date

 3 YEAR BATTERY Hours, minutes, seconds, date, day, am/pm. Auto 28, 30, 31 day calendar. Backlight. Resin case/ strap. Mineral glass. WR to 66 feet (£12.95) $\{10.95$LADIES MODELS (others available)
Hours, minutes, 10 seconds, am/pm. Autornatic calendar. Stainless steel, mineral glass. WR to 100 feet.

Dept. PE. Beaumont Centre. 164-167 East Rd. Cambridge CBIIDB.

Tel. 0223312866

FRONT PANEL FOR LIGHTING EFFECTMODULES
(complete with switches, neons and knobs) as illustrated

For Silms $£ 9.00$ Size $8^{\prime \prime} \times 4^{1 / 2}$

FUZZ LIGHTS Red, Green, Blue Amber. $£ 25.00$

S1Lme $£ 10.00$
Combined with 3SDM1 Size $9^{\prime \prime} \times 4 \frac{1}{2}{ }^{\prime \prime}$

3 CHANNEL LIGHT MODULATOR SILMB

- RCA 8A Triacs

1000W per channel

- Each channel fully suppressed and fused
- Master control to operate from IW to 125W
Full wave control

PRICES INCLUDE VAT. P \& P FREE correct at 1.10 .79 TO ORDER BY POST
Make cheques/P.O.s payable to TUAC LTO. or quote Aecess/Barclaycard No. and post to TUAC LTO. 121 Charlmont Road, London SW179AB. We accept phone numbers from Access'Barclaycard Holders, Phone 01-6729080.

2
 HERE ARE JUST A FEW OF THE 1000 REASONS

which makes the Starchaser 4000 the finest 4 channel lighting unit available anywhere. *4 channels 750W each *over 1000 different sequence patterns and effects *3 alternative sound triggers *A.G.C. *simulated strobing *zero reference triac firing *superb TUAC quality and reliability £99.00 inc. VAT. Move into the 80's today by sending for further details to: TUAC Ltd., 119 Charlmont Road, S.W.17. Tel: 01-672 3137/9080.

TUAC Main Distributors (Callers Only)

 A1 Music, 88 Oxtord Street, Manchester (Tel: 236 0340). Cookies Disco Centre, 126/128 West Street, Crewe (Tel: 4739). Electra Centre, 58 Lancaster Road, Preston (Tel: 58488). Electrosure, Fore Street, Exeter (Tel: 56687). Garland Bros., Deptford Broadway, London (Tel: 01-692 4412). George Matthews, $85 / 87$ Hurst Street, Birmingham (Tel: 622 1941). Luton Disco Centre, 88 Wellington Street, Luton (Tel: 411733). Memhouse, 82 St. Mary Street, Southampton (Tel; 28028). Salcoglen, 43 Borough Road, Middlesborough (Tel; 242851). Socodi, 9 The Friars, Canterbury (Tel: 60948). Session Music, 163 Mitcham Road, Tooting, London (01-672 3413) Mon-Sat 10 am to 5.30 pm . Closed Wed.

Seiko have done it again! This incredible new watch, which you will probably not find in the shops until next year, has both analogue and digital readout and-as has become their trademark-Seiko have presented it in a beautifully designed and finished stainless steel case, with matching bracelet.

The recommended retail price from Seiko is expected to be $£ 125$ and, believe us, this watch is worth every penny in looks alone. However, by arranging this exclusive offer we can save you $£ 45$ on that recommended price making the watch $£ 79.75$ including VAT and postage. To help spread the load we have also arranged for Access and Barclaycard payment.

The watch, shown full size on the front cover, is only 8 mm thick and has a battery life of about 3 years. The following facilities are provided:
Analogue watch -completely independent of other functions but quartz controlled.
Digitaļ watch -l.c.d. reading hours, minutes and seconds.
Date -showing day, date and month; requires setting on leap years or after renewal of battery.
Stopwatch -reading minutes, seconds and hundreths up to 20 minutes then hours, minutes and seconds - (automatic changeover), includes lap and accumulated time functions and flags for lap, 1/100ths and stop.
Counter -Single counter up to 9,999 or dual counter up to 99 on each button.
Flags -Showing setting mode e.g. Stopwatch, Counter or Time, plus those for the stopwatch.
Battery indication -When batteries run low the display flashes.
The watch is splash resistant, anti-magnetic and shock protected, it comes in a handsome black presentation case complete with a fully illustrated marual showing in a clear, concise manner how to set and use all the functions. The accuracy is better than 10 seconds per month at normal temperature range $1-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$). The watch is covered by a one year guarantee.
Don't miss this exclusive offer-it closes on 29th Feb.

a selection from our postbag

Readers requiring a reply to any letter must include a stamped addressed envelope.
Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

Compukit

Sir-Some time ago I think you asked for reader comments and I would like to say that in my view $P E$ has improved very considerably over the years and particularly in recent times.

But I have a moan! The Compukit articles, who are they aimed at, the expert or the amateur? Right at the start the writer lists the amateur as a potential user, but the articles are written using computer jargon (the writer says as much in one place) which is pretty well unintelligible to the beginner in the computer world, however expert he may be in general electronics. In saying, this I am not referring to the BASIC dialect but to words such as "string function" (on page 43 of the pull-out, it is stated that a string can be 0 characters long which seems to have no meaning, and whence 255?), "the memory defaults", "arrays", "truncated integers", etc., and does the average amateur know his Boolean algebra?

With reference to the pull-out itself, does this refer particularly to the Compukit or to BASIC in general?

May I refer to the "Microprocessor Evaluation System" article in the May issue of $P E$ in which the writer states several times that 377 octal is 255 binary, but 377 octal is equivalent to 255 decimal, there are no 2 s and 5 s in the binary system. As the writer makes the statement several times he presumably means something by it, but what? Lastly, to the beginner in the computing world (and that includes me) the charts on pages 20,21 of the same article, are unintelligible in the form given.

The small booklet that you issued in May 1978 is not much use with reference to the above points, what about a reissue?
I was initially filled with enthusiasm for the Compukit but this is rapidly turning to frustration. Is there any chance of a short glossary being published as an addendum to the last article of the series?
A. Bray,

Potters Bar.
Thank you for your comments. This is a difficult area for PE because we have to optimise between encumbering every computer based article with the same mass of fundamental explanations, or keeping to the point but losing the beginner. This is why, in the Compukit article, we refer the reader to our Learn BASIC article which, we hope, will put the newcomer in the picture.

However, to briefly answer your questions: A string (\$) is a string of alphabetic characters. i.e. You may state $A=123$ but not $A=C A T$, for this must be a string $A \$=$ "CAT". A
string of no characters is a null string, i.e. A $=$ " ". The maximum of 255 char's is governed by the highest number 8 binary bits may record.

When the machine is said to default to something, it is assuming a preset value in the absence of information to the contrary.

An array is a subscripted variable i.e. A(1) to $A(10)$ is a dimensioned array with ten possible values.

Truncated integer. This is to round-down, i.e. 2.76 becomes 2 etc.

To revise Boolean algebra is a prerequisite for any amateur embarking on computer work, and the pull-out describes the BASIC which Compukit is capable of only.

With reference to the binary and octal numbers in the Microprocessor Evaluation System article, the statement is technically incorrect. The number 255 represents the individual digits of the b.c.d. equivalent, not the strict binary equivalent $-E d$.

Schottky

Sir, -In "Semiconductor Update" in September's issue of Practical Electronics, R. W. Coles states "There will be other new TTL families from manufacturers such as Fairchild . . ."

A few months ago Texas Instruments announced their AS and ALS range of advance TTL families. To date, only one part is obtainable, the 74ALS74.

One year ago, Fairchild announced fast: "Fairchild Advanced Schottky TTL". This range was not only announced several months before competing products: it is also considerably easier to obtain. Already the simple SSI building blocks are available, and MSI multiplexers, registers, counters and bus drivers are either available or will shortly be announced.

Fast is fast: 3 ns per gate at one fifth the power of high speed standard Schottky.

A technical description of fast technology has already been published in Electronics, March 1979, pp. 111.
J. Summers, Fairchild.

Recompense!

Sir-Re. your correspondence page in October issue and the article on CB. There is no doubt in my mind that most, if not all of this, is triggered off by people who wish to flog 27 MHz imports. I have had a life-long interest in radio and have made no concerted effort to study, and yet recently I saw a paper used at the May RAE exam and could have passed it. This would give me access to equipment
designed for 144 MHz costing less than the $£ 260$ quoted in Mark Sawicki's article. Study Morse for a few weeks and I can transmit world-wide! Much more interesting and just as useful in emergencies as CB probably is. In the States, I am told, it (CB) is abused more than used.

I suppose that the Government will eventually give in, they usually do, but if they take the soft option, 27 MHz , then they are morally bound to recompense modellers financially, who have to change their equipment. I am not, by the way, an RC modeller.

> T. D. Ray,

Derby.

Champ

Sir, -In the conclusion of the CHAMP series you mentioned possible further articles on programming or hardware designs, but nothing has been printed yet.

There must be many PE readers who have constructed CHAMP and have information to exchange.

I would be glad to exchange with any CHAMP enthusiasts hardware ideas, problems and even the occasional program.
J. Coyne,

BFPO 17.
CHAMP has been rather overtaken by new technology but it is not our intention to neglect those who have built it and we would welcome small programmes and hardware ideas for publication and for exchange to other CHAMPusers-Ed.

P.E. COMPONENT STANDARD

Typical examples:		
	Now	Before
Resistance	3k9	$3.9 \mathrm{k} \Omega$
	1 M 5	$1.5 \mathrm{M} \Omega$
	470	470Ω
	$2 \Omega 2$	$2 \cdot 2 \Omega$
Capacitance	680μ.	$680 \mu \mathrm{~F}$
	$4 \mu 7$	$4.7 \mu \mathrm{~F}$
	470 n	$0.47 \mu \mathrm{~F}$
	47n	$0.47 \mu \mathrm{~F}$
	4 p 7	4.7 pF
Inductance	3 H 4	3.4H
	800 m	800 mH
	2 m 6	2.6 mH
	1 m	1 mH

MORE BIG VALUE FROM YOURTANDYSTORE

$\frac{\text { Ret prcicistic }}{} \mathrm{E} 9.95$
General coverage receiver. Quartz-synthesised tuning, digital frequency readout. 3-step RF Attenuator. 6. range preselector with LED indicators. SSb and CW demodulation. Speaker, Code oscillator. Batteries (not included) or 12V DC. 20-204.
momá $£ 229.95$

6-DIGIT FREQUENCY COUNTER

Counts frequencies from 100 Hz to over 45 MHz with 100 mS gate time. Accuracy is 3 ppm at $25^{\circ} \mathrm{C}$ or less thien $\pm 30 \mathrm{Mkz}$ on 10 MHz! Overioadprotected 1-meg input. Sensitivity, 30 mV up to 30 MHz . Req. 9 V battery. 22-351. REG. PRICE $£ 79.95$

OIGITALIC LOGIC PROBE

Unique circuitry makes it a combined level detector, pulse detector and pulse stretcher. Hi-LED indicates logic " 1 ". LO-LED is logic " 0 ". Pulse LED displays pulse transitions to 300 nanoseconds, blinks at 3 Hz for high frequency signals (up to 1.5 MHz). Input impedence: 300 K ohms. With $36^{\prime \prime}$ power cables. 22-300.

$£ 19.95$

DYNAMIC

 TRANSISTOR CHECKERShows current gain and electrode open and short circuit. Tests low, medium or high power PNP or NPN types. Go/no-Go lest from 5.50mA on power types. 22.024.

REG. PRICE $£ 9.95$

You save because we design, manufacture, sell and service Tandy have over 7,000 stores and dealerships worldwide. Over 2.500 products are made
specitically for or by Tandy at 16 factories around the world. The quality of our
products has been achieved by over 60 years of continuous technological advancement.

MULTITESTER

Dual FET imput for accuracy and minimum loading. 11.5 cm mirrored scale. DC volts, 0-1-3-10-30-100-300-1000. DC current 0-100 a. 0-3-30. 300 milliamp. Resistance 0-30-300-3k-301C-1 megaohm. 0-100-1k 10 IC-100K-3
megaohms. Req. 9 V battery. 22-209.

\section*{REG. PRICE}
 £29.95

SIGNAL INJECTOR

For RF, IF, AF circuits.
Maximum accuracy. Easy pushbutton operation. Needs two "AA" hatteries. 22-4033.
ReG. PRIEE $£ 2.79$

AC/DC CIRCUIT

 TESTERAccuracy in 1-300 volts ranges. Safe in live/dead circuits. Needs two "AA" batteries. 22-4034.
mámá\&1.99

VARIABLE POWER SUPPLY

Power project boards. IC's, other low-voltage DC equipment. Load regulation: less than 450 mV at 1 amp at 24 V DC. Ripple: less then 25 mV . Maximum output current: 1.25 amps. Switchable colour-coded meter reads $0-25 \mathrm{~V}$. DC and $0-1.25 \mathrm{amps}$. Three-way binding posts take wires, banana plugs or dual banana plugs with $0.75^{\prime \prime}$ centres. For $220 / 240 \mathrm{~V}$ AC 22-9123
reg. price $£ 35.95$

nulver

EUROSOLDERSUCKER
The 195 mm long, all metal, high suction, desoldering iool with replaceable Teflon tip enables removal of molten solder from all sizes of pcb pads. Primed and released by thumb, it incorporates an anti-recoil system and built in safety guard. Only £7.25 inc. VAT \& P.P.

Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL packages as well as Capacitors, Resistors, LED's. Transistors and components with leads up to .85 mm dia.
500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points, plus 4 Integral Power Bus Strips around all edges for minimum inter-connection lengths.
All connection rows and columns are now numbered or lettered enabling exact location indexing.
Double-sided nickel silver contacts for long life (10K insertions) and low contact resistance ($<10 \mathrm{~m}$. ohms).
Easily removable, non-slip rubber backing allows damaged contacts to be rapinly replaced.
No other breadboard has as many individual contacts, offers all these features and costs only $£ 6.20$ each or $£ 11.70$ for 2 - inclusive of VAT and P.P.

Snip out and Post
David George Sales, r/o 74 Crayford High St., Crayford, Kent DA1 4EF

> David George Sales r/0 74 Crayford High Street, Crayford, Kent, DA1 4EF.

Please send me
1 EuroSolderSucker £ $£ 7.25$
or 1 EuroBreadBoard © © 6.20 or 2 EuroBreadBoards $\mathbb{E 1 1 . 7 0}$
(All prices are applicable from July 1 st 1979 and include VAT \& P.P, but add 15% for overseas order.)

Name
Company
Address.

Tel. No.
Please make cheque/P.O. 's payable to David George Sales

ELELTADII:KTT

DENSHI KITSSPECIAL OFFER

-雨

fun and entertainment

as. well as education"-

(EVERYDAY ELECTRONICS mag.)

The SR-3A kit (over 100 circuits) and the SR-3A de luxe kit (over 105 circuits) are available again, at little more than their 1977 prices
Circuits are constructed by plugging the encapsulated components into the boards provided, following the in. struction manual. Technical details are also given concerning each project. The 'components are used over and over again and you can design-your own circuits too, or use the kit as a useful testing board.
No previous experience of electronics is required but you learn as you bulld-and have a lot of fun too. The kits are safe for anyone.

SR-3A KIT

£29.95
(illustrated $16 \frac{1}{2} \times 10 \times 2 \frac{1}{2}{ }^{\prime \prime}$)
Build any of 100 projects including 3-t reflex radio receiver. 3-TR radio recetver with RF anmbifier. 2-TR reflex radio receiver. 3-TR amplifier tor crystal mike. 3-TR amplifier for speaker mike, 3-TR signal tracer, Morse Code trainer, 2-TR electronic organ, electronic metronome, electronic bird, electronic cat, electronic siren, electronic gun. 2-TR sleeping aid. high voltage generator, discontinuity warning device, water supply warning device, photoelectic alarming device, 3-TR burqlar alarm, 3-TR water supply warning device. 3-TR water level warning device. 3-TR photoelectric alarming device. Morse Code tramer with sound \& light, discontinuity warninn device with sound \& light, water level warning device with sound \& light. electronic metronome with sound \& light, buzzer with sound \& light, wireless mike, wireless telegraph set. wiretess discontinuty warning device, wireless watet level warning device, wireless water supply warning device, and wireless photoelectric warning device

SR-3A de luxe KIT

$£ 39.95$

$\left(16 \times 14 \times 3 \frac{1}{2}{ }^{\prime \prime}\right)$

Simitar to SR-3A, more components including solar cell and additional Speaker unit plus sophisticated control panel.
All kits are guaranteed and supplied complete with extensive construction manuals PLUS Hamlyn's "All colour" 160 page book "Electronics" (free of charge whilst stocks last).
Prices include batteries, educational manuals. Pree book, VAT, p\&p (in the UK). free introduction to the British Amateur Electronics Club

Cheque P.O. Access Barclaycard (or $16 p$. for illustrated literature) to DEPT. PE

ELECTRONI-KIT LTD.
 RECTORY COURT, CHALVINGTON, E.SUSSEX, BN27 3TD (032 183 579)

Can be used to cost several calls

THE unit to be described will display directly the cost of a telephone call, taking into account the time of day, distance called, and length of time of a call. The unit can also be used to total the cost of several calls.

At the time of writing, the Post Office charges three pence for each unit of time of the duration of a telephone call. For a long distance call (over 56 km) at peak rate, each ten seconds will cost three pence. A local call at peak rate costs three pence for two minutes. Table 1 gives the current rates (cost codes) presently charged by the Post Office.

For example with the instrument set to cost code (a) it will add three pence to the display every ten seconds.

CIRCUIT

Fig. 1 gives a block diagram of the system used. The period timer is a monostable with a timing period set for the appropriate cost code- $10 \mathrm{~s}, 15 \mathrm{~s}$, etc. The negative edge of the output pulse is fed to both the unit timer, which is also a monostable, and, in turn, the cost oscillator. The timing pulse of this is used to gate the cost oscillator.

The duration of this pulse and the frequency of the oscillator are chosen such that only thirty oscillations occur before the gating pulse stops the oscillator. These thirty pulses are fed to the counter/display system, and cause a 3 to be displayed. The unit timer pulse is also fed back to retrigger the period timer, and start again the sequence of events.

IC1 contains two monstable oscillators (Fig. 2). IC1a is used to provide the period timing pulse. The length of this depends on which resistor R3-R11 is switched into the circuit and on the value of C3. VR1 is used to provide a control voltage to pin 3 which is used to make a fine adjustment to the timing pulse period. The length of this pulse is altered by VR2.

The output pulse is then fed to pin 12 of IC2. This is a four NAND gate CMOS chip. Three of these gates are connected as an oscillator. The oscillations are fed to pin 9, and only emerge at pin 11 of the gate if pin 12 is at logical 1 , which is for the duration of the unit timer pulse.

Table 1: Cost Codes

 Time in secs. for 3p. Costcode is in brackets| | Peak Rate | Standard | Cheap |
| :--- | :---: | :---: | :---: |
| Local | $120(\mathrm{f})$ | $180(\mathrm{~g})$ | $480(\mathrm{~h})$ |
| Up to 56 km | $30(\mathrm{c})$ | $45(\mathrm{~d})$ | $180(\mathrm{~g})$ |
| Over 56 km | $10(\mathrm{a})$ | $15(\mathrm{~b})$ | $60(\mathrm{e})$ |

The negative edge of the pulse is fed back via C5 to retrigger IC1a. C4, R13 and C5, R12 are used to provide short input triggering pulses, since these must be of shorter duration than the output pulse, which would not be the case if the pulses were fed directly to the inputs.

S 2 is a double pole switch arranged such that S 2 a is on when $S 2 b$ is off. In this mode pin 4, the reset of IC1 is grounded and the output pin 5 is low. Switching S2b on immediately gives a negative pulse to pin 8 IC1b which triggers the monostable so that the instrument immediately displays the first unit of cost, and then proceeds to cost the rest of the call.

TIMING PERIODS

The values of C3 and R3-R11 are chosen to give a timing period of 10 seconds per 100 k (using VR 1 for a final calibration). Therefore to obtain the timing periods $10,15,30,45$, 60,120 and 180 seconds, resistors of $100 \mathrm{k}, 150 \mathrm{k}, 300 \mathrm{k}$, $450 \mathrm{k}, 600 \mathrm{k}, 1.2 \mathrm{M}$ and 1.8 M , respectively are required.

Fig.1. Block diagram

Fig. 2. Circuit diagram

300 k resistor is obtained by two 150 k in series and a 470 k resistor is used instead of a 450 k resistor, leading to a 5 per cent error in this timing interval. However, for domestic use this is not significant. Also R8 will need to be 620k. Varying $V R 1$ changes all timing periods by the same percentage.

In the event of changes in telephone charges VR2 will recalibrate the unit cost of a call. Any changes in this period costing may be done with VR1, or else resistor changes may be required. This however is a simple job.

IC3 is a National CMOS MM 74C925 four digit counter/latch/driver, internally multiplexed. IC5 is a CA3046 chip containing five identical transistors, four of which are used to drive the display digits. The display is a TIXL306 calculator display with either four or six digits. Only four are used in this project.

The pulses from the oscillator are clocked into pin 11 of IC3 where they are then counted and displayed on IC4. S4 is depressed to zero the reading on the display.

COMPONENTS . . .

Semiconductors		Resistors	
D1	RZY88-5.6 Zener 400 mW	R1	3.9k
TR1	BC108	R2	47k
IC1	556	R3	100k
IC2	4011	R4	150k
1 C 3	$74 \mathrm{C925}$	R5	150k
IC4	TIXL360	R6	150k
IC5	CA3046	R7	470k
Capacitors		R8	620k
C1	100μ elect 25 V	R9	1 M 2 1 M 8
C2	47μ tantalum	R11	4M7
C3	47μ tantalum	R12	47k
C4	$22 n$	R13	47 k
C5	$22 n$	R14	10k
C6	2.2μ tantalum	R15	15 k
C7	100n	R16-22	270
Switches		R23	470
	On-off toggle	R24	22k
	Double pole double throw	All $\frac{1}{4}$ W 10\% carbon	
	Single pole eight way rotary		
S4 Press switch			
Variable resistors Miscellane		ous	
VR1	10k linear Verobox	$153 \times 84 \times$	39.5 mm
VR2	50 k multiturn trimpot		

The power supply regulation circuit is fairly simple and straightforward giving a line voltage of about five volts.

COMPONENTS

IC5 may be substituted by an LM3086, which is a pin for pin equivalent. IC4 may be substituted by any display if the appropriate adjustments are made to the printed circuit board. All that is required is that the segments a-g and digits be connected to IC3 as shown. Individual 0.3 in . displays may be used also. Again the constructor will need to make his own modifcations.

The specified display fits into a 16 pin DIL socket making the mounting simple. It is recommended that DIL sockets be used for all the i.c.s, especially for the 74C925. Being CMOS it can be easily damaged by static electricity.

CONSTRUCTION

Figs. 3 and 4 give the printed circuit board and component layout. The display is mounted in a DIL 16 pin socket arranged on its edge, such that the display is perpendicular to the board. Bend the socket pins round 90° and solder them into the holes drilled in the board. Stiff wire is used to connect the remaining pins of the display to the board.

Drill the front panel of the case to take the switches. Cut a window in this panel suitable for viewing the display. Red clear plastic can be used as a filter. This can be glued to the inside of the panel.

S3 is mounted on the lid of the box. R3-R11 are soldered directly onto the terminals of this switch. The battery, if used, is stuck on the underside of the lid using a double sided sticky mounting tab. The printed circuit is held to the base using two screws into the mounting studs. The lettering on the box can be done using Letraset. To avoid extra circuitry for controlling the decimal points, the unwanted decimals are blanked off using a felt tipped pen.

Figs. 3 and 4. P.c.b. and component layout. Arrows refer to display pin connections. For these see circuit

CALIBRATION

VR2 must first be adjusted so that the display increments by thirty each time. Switching S2 from stop to start will increment the display and speed up the calibration process.

Switch to cost code a, and adjust VR2 until the counter increments every 10 seconds. This roughly calibrates the period timer. Then switch to position g, and readjust VR2 so that the counter increments every three minutes. The unit is now calibrated.

trouble shooting

If the unit doesn't work on switching on, check power supply voltage and wiring. Also check the i.c.s are inserted the right way round.

If the four digits of the display light and S4 will zero any random number displayed when the instrument is turned on, then IC3, IC4, IC5 will be functioning. Attention can then be
turned to the remaining circuitry. Remove IC1 and the display should count continuously. Switching on/off may be necessary to start the oscillations. If the oscillator is working, attention can then be turned on IC1. Make sure that VR1 is not set to either end of its travel, and check the voltages on the various pins of the i.c.

USING THE INSTRUMENT

Switch on, set cost code. Put S1 to stop, press S4, then put S1 to start when the call starts. At the end of the call put S2 to stop.

The cost will then be displayed. If another call is to be made do not turn off the instrument. Press to start and the cost of this call will be added to the last call. The instrument could be permanently left on if required to total the cost of all calls (up to a limit of $£ 9.99$). However, a mains adaptor would be imperative in this case.

MICRO——以 ER

 Compiled by DJD.

 Compiled by DJD.}

Appearing every two months, Micro-Bus will present ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data books. The most original ideas will probably come from readers working on their own microcomputer systems, and payment will be made for any contribution featured here. This is also the place to air your views, in general, on this new techrology, so let's be hearing from you!

Many of the letters sent to Micro-Bus are from owners of a Science of Cambridge Mk14, the low-cost microcomputer system based on the SC/MP micro, and six of this month's seven topics were submitted by readers who own such a system.

OSCILLOSCOPE DISPLAY

The following ingenious video display makes it possible to display text or graphics on an ordinary oscilloscope. It was designed for use with a SC/MP micro, but is equally suitable for use with other micros. The circuit and program were submitted by Adrian Dickens of Leicester, and what follows is based on his description:
"The idea for the display is not revolutionary, but because the hardware costs under $£ 1$, it will enable anyone with a suitable microcomputer and an oscilloscope to experiment with a video display. In the prototype, 2048 bits of data stored in RAM are displayed as a matrix of 64×32 dots. Although the quality of the display leaves something to be desired, it is possible to display four lines of eight or nine legible characters each.

DISPLAY OPERATION

"The complete circuit of the cheap video display uses only two CMOS integrated circuits and a few resistors; see Fig. 1. The program of Fig. 2 drives the oscilloscope display, outputting data from the extra RAM space in the Mk14 microcomputer, locations $0 \mathrm{BOO}-0 \mathrm{BFF}$, as a stream of bits to the display circuit. Data from each memory location is output from the extension register using the serial input/output instruction 'SIO'. If the extra RAM is not present, the 1024 bits stored in 0F80-0FFF can be displayed instead. In this case the oscilloscope should be triggered by the Q9 output from IC1, and the program will have to be modified slightly.

When the program has been loaded into the Mk14, and the user is about to press ' GO ', flag I will be low so the reset on the counter sets all the Q oupputs low. If the program is now set in motiow the counter is incremented for each bit output, and whenever a ' 1 ' appears at the serial output from the Mk 14 the resistor chain is pulled low via IC2a. This in turn
causes a dot to appear in the relevant position on the oscilloscope display. When all of the 2048 bits have been displayed the necessary trigger pulse appears at the Q10 output.

One improvement available to readers who own an oscilloscope with an X input would be to build another resistor chain using Q5 to Q10 and use this to deflect the beam from left to right, instead of relying on the internal timebase of the oscilloscope to do this."

IC13 (DM7445) to the second of the two spare holes under the left-hand side of the display when viewed from the component side. The other wire links the same point on the board to terminal number 2 on the display (numbered left to right); this connection may already be present on later Mk14s.

The pattern of segments displayed by the monitor on the ninth digit will be determined by the contents of location 0 F 08 , and since

Fig. 2. SC/MP program outputs data from memory to the oscilloscope display circuit

BDISPLAY A 9-LETTER MESSAGE
DISP

Fig. 3. Program displays a message on the Mk14

EXTRA DISPLAY DIGIT FOR Mk 14

The Science of Cambridge Mk 14 microprocessor kit is supplied with a nine-digit display, but only eight of them are connected. The following simple modification, discovered by Mr R. G. Aucote, makes it possible to use the ninth digit:
"Only two wires are needed; one on the back of the printed-circuit board from pin 10,
the monitor does not use this location a random pattern will be displayed at switchon; to blank the digit, enter ' 00 ' into this location. When using the extra digit in a program it is simply addressed as 0 D 08 , so when setting up a loop counter to multiplex the display use ' 08 ' instead of ' 07 '."

DISPLAY ROUTINE

The program shown in Fig. 3 illustrates
how the Mk14s display can be multiplexed from a user program. It displays a nine-letter message, making use of the ninth digit wired up as described above. The routine works by repeatedly copying the nine segment codes for the message to the addresses for the nine display digits; P1 points to the display and P2 to the message bytes, and the extension register is used as an offset. The routine formed part of a cassette interface system, submitted by Colin C. Tredwell of London, which displayed a file name after a program was loaded from tape; unfortunately there is not space to publish the whole program here.

AUTOMATIC OFFSET CALCULATOR

As anyone who has programmed a SC/MP micro will know, the hardest part of "hand

In the example of a program which loops around, decrementing a counter the address of the program to be processed (0F20 in this example) is put in 0FF9, 0FFA so that the monitor will set up PI for us. Then the offset calculator program is run from 'ENTER', and will stop when it encounters 'A0'. It will have altered the program to:

OF20 B8FE
0F22 90FC
and the program is now ready to run."

PROGRAM OPERATION

"The SC/MP instruction seṭ can be divided into three basic types:

1) Single byte instructions
2) Double-byte immediate or indexed instructions
3) Double-byte instructions with displacement.
gates provide control of the selected output.
"A small subroutine, Fig. 6, is run to address any particular output. Once addressed, the output can then be controlled on and off by the operation of flag 1 . The contents of 0F27 determine which output will be enabled. If the addressed output is changed the original output will be disabled, but if necessary latches could be added to store the states of the outputs. The circuit was originally developed to connect a small robot to an Mk 14."

SC/MP SUBROUTINE STACKER

"One of the problems of programming with SC/MP is how best to use the three 16 -bit pointer registers. These can be used as stacks, subroutine addresses, or to address data, etc. but when you need to switch from one use to another it is easy to get into a mess."

Fig. 4. SC/MP program automatically calculates offsets for program-counter relative instructions

[50210
Fig. 5. Circuit uses a decade counter to add ten outputs to a SC/MP micro

Fig. 6. Routine which selects an out-put-in this case 6-with Fig. 5

Fig. 7. Program implements a stack to simplify the use of subroutines
assembling" programs is calculating the offsets for program-counter relative jumps and addressing operations. The "offset calculator" program of Fig. 4, submitted by Mr D. Love of Swansea, eliminates the need to make these calculations by hand.
"The 'offset calculator' makes all the calculations automatically in one pass, thus speeding up writing programs and making them more likely to be free of errors. To use the offset calculator, programs are written as usual except that where instructions require a displacement, the low byte of the destination address is inserted as the second byte of the instruction instead of the displacement. The offset calculator makes the calculation when it passes over the program.

OF1F		COUNTER
OF20	B81F	LOOP: DLD COUNTER
0F22	9020	JMP LOOP
0F24	A0	STOPCHARACTER
		FOR OFFSET
		CALCULATOR

The offset calculator is only concerned with the third category, so it must differentiate between them. All single-byte instructions are positive and so are easily identified, and double-byte displacement instructions end in either ' 0 ' or ' 8 ', the only exceptions being ' $J P$ ' (94) and ' $J Z$ ' (9 C). Note that jumps and memory-reference instructions require differ--ent offsets, as illustrated by the example given above, and this is dealt with at 'INC' by incrementing the displacement for memoryreference instructions. Displacements must be in the range -128 to 127 since the program does not check for this."

EXTRA OUTPUTS FOR SC/MP

The basic SC/MP micro has three "flag" outputs which can be controlled from programs. The circuit of Fig. 5, sent in by Steve Stamps of Avon, shows a simple way of extending the number of outputs by using a CMOS decade counter, clocked by one of the flags, to select one of ten outputs. The AND

So writes Mr N. E. H. Feilden of Suffolk, and to remedy the situation he has written a routine for SC/MP to simulate the JSR and RTS instructions of other micros such as the 6502; see Fig. 7.
"A list of the subroutine addresses is stored in memory pointed to by P 2. The appropriate one is selected by the value received in the accumulator by the stacker routine. Thus the calling program contains: 'LDI n, XPPC 3' ($\mathrm{C} 4 \mathrm{nn} \mathrm{3F}$) as the equivalent of 'jump to subroutine'. The subroutine address is taken from locations $\mathbf{P} 2+\mathrm{n}$ (high byte) and $\mathbf{P} 2+\mathrm{n}+1$ (low byte). The calling address is saved in a stack using P1, which should initially point to the top of a free area of RAM. Return is achieved using 'JMP 17(3)' (93 17) which causes a jump to the stacker routine at 'ENTR Y 2'.

Pointer P3 should be set to the address 'EXIT' (0B00 in this case) before use. The routine is fully relocatable, so it can be put anywhere convenient in memory without modification. This version is fairly simple; it does

Fig. 8. Graphics generated by the fall-ing-man program

Fig. 9. Animation program for use with a Science of Cambridge VDU module
preserve the E register, but not the S. It could be adapted to handle interrupts since an 'XPPC 3' will always go to the stacker from anywhere outside the stacker. More complex schemes with two levels of indirection may be used to perform multiple tasks, for instance, in controllers."

FALLING MAN DISPLAY

The last in this month's series of applications for the Mk 14 is a program donated by Nick Toop, designer of the Science of Cambridge VDU Module, to demonstrate some of the graphics possible with this VDU. The program generates a display of a man falling through space with his arms raised, and then landing with his arms lowered; see Fig. 8. He is then joined by three similar men, and the cycle repeats indefinitely. The animation is generated in half of the screen, 32 of the 64 possible rows, and uses the MkI4's extra RAM at OBOO for the display area. This memory is mapped to the display in rows of 64 dots, 8 bytes per row.

PROGRAM OPERATION

The falling-man program, Fig. 9, makes clever use of auto-indexing to keep it as short as possible. The bit patterns for the two positions of the man are stored after the program at "MAN". Each row of the man consists of 16 dots, specified by two bytes. and the whole man comprises 15 rows. The program writes the man to the display a total of 19 times, each time shifting the man down by one row to give the appearance of falling. For the first 15 sweeps of the man the picture of the falling man is used, and for the last 4 sweeps the standing man is used.

The resulting animation is pleasingly realistic, and should inspire owners of suitable systems to attempt more ambitious displays, such as a man walking across the screen.

EIGHT EIGHTS WINNERS

The winners of the Eight Eights competition, presented in the August Micro-Bus, were:

Mr D. Caballero of Ramsgate, Mr J. M. Brinton of Cheltenham and Mr E. Vyncke of Alleur, Belgium.

PRESTEL TESTING THE INTERNATIONAL MARKET

> BUSINESSMEN in seven countries will soon be able to take part in an international trial of Prestel, the British Post Office's world-leading viewdata system which gives users access to computer information banks by means of a simple TV type display terminal.
> Invented at the Post Office Research Centre this system has already put Britain ahead of any other country in the mass marketing of electronic information. Now following the start of the world's first public viewdata service in London on March 27 Britain will score another world first when it begins experiments with an international viewdata service later this year.

The trial is designed to identify the kind of information today's
globe-trotting businessman, or government official, needs to know but which is often difficult to get quickly. With a Prestel international service it will be instantly available, literally at the user's fingertips.

The trial will be open to selected users in the UK and up to six countries-Australia, German Federal Republic. the Netherlands, Sweden, Switzerland, and the United States. It will offer a wide variety of up-to-the-minute business information drawn from many parts of the world-prices in the world's premier stock markets, currency exchange rates, schedules for the world's major airlines, the latest shipping news, as well as a variety of specialist information such as commodity prices, economic analyses and company management information.

The decision to go ahead with the trial follows a six-month evaluation of the potential market for such a service carried out for the Post Office by Logica Limited. This firm has now been commissioned to assist in implementing the trial which is expected to last one year. During the trial, a decision will be taken regarding a full scale service.

Already discussions are under way with firms who might provide information needed for an international databank, part of which could be multi-lingual. Parallel talks are due to start soon with TV set manufacturers about supplying the few hundred terminals needed for the trial. The telecommunications authorities of the other countries involved are being invited to discuss the Post Office's plans.

The trial service will be using a dedicated Prestel computer in London which will become available after the fuli public service goes live in London.

A selection of readers original circult ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
Why not submit your idea? Any idea published will be awarded payment according to its merits.

Articles submitted for publication should conform to the usual prac-
tices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

1 aving constructed the audio-millivoltmeter featured in the June ' 76 edition of PE, I discovered that circuit noise and main's hum caused a permanent deflection on the meter that was unacceptably large on the lowest range. To cure this I devised this circuit.

ICI has unity gain and acts as a buffer amp:.fier for the input signal across RI. The signal is then fed through one of the voltage-dividers to 1 C 2 , which amplifies it and provides frequency compensation. The signal then passes to IC3 which duplicates
it across R4 and so produces a lowdistortion half-wave rectified signal across R5 (it is important that $\mathbf{R 2 0}=\mathbf{R} 21$ and that D1, D2 and D3 are identical). The rectified signal is d.c. and is amplified by IC4 to drive the meter. The gain of this stage is varied by VR2, allowing calibration, and the meter is zeroed by VRI. D4 protects it from damage.

The input impedance of the circuit is governed by R1, one megohm was found to be satisfactory. The frequency response is virtually flat up to and beyond 100 kHz ,
depending on the value of C 2 which affects the frequency compensation of IC2. The circuit measures a.c. signals from 1 mV to IV in seven ranges using a $100 \mu \mathrm{~A}$ f.s.d. meter with $0-3$ and $0-10$ scales.

The circuit is very sensitive and care should be taken in its construction and housing; all signal carrying leads, the selector switch, the input socket, and any sources of main's hum should be properly screened.

Kevin Cameron, Melrose,
Roxburghshire.

TELE-GAMES MOD

THE introduction of the General Instruments, AY-3-8500 i.c. has produced a large number of almost identical tele-games circuits. It was while seeking some degree of variation from these circuits, while still maintaining the use of the AY-3-8500, that the following circuit was evolved, to introduce a certain amount of randomness to the game. In this way differences in ground texture (ball speed variation) and slight mis-hitting (angle at which the ball leaves the bat is uncertain) can be represented.

The circuit operation is very simple; consider the top section used for ball speed variation. Two slow oscillators are built around two NAND Schmitt triggers operated in the inverting mode. The speed of the oscillators is 0.3 Hz and 1 Hz using the quoted values. The resistor in series with the gate is to help protect the gate from
switch on surges. The two oscillators are then gated via IC2a to produce random pulses.

A SPDT centre off switch (S2) replaces the $\mathbf{S} 2$ in the original game. It can be seen that with S2 in position A the output of IC2c will be high, thus IC2bd will be low, giving a high ball speed. Similarly, with S2 in position C, IC2bd will be high, and so the ball speed will be low. However, with S2 in position B, both IC2c and IC2bd are enabled thus giving the random transitions at the output of IC2bd. The AY-3-8500 uses 100 kilohm pull up resistors, and although one gate drive will cope with the current drain, two may be used in parallel to ensure adequate speed.

An identical circuit is used to change the rebound options between 2 and 4 angles.

The circuit may be much simplified, by using only one oscillator and one drive gate, the circuit could then be built around one quad NAND Schmitt, but the full random nature is not available. It should also be possible to obtain speed changes every time a rebound occurs by using a monostable and latch on the sound output to alter the speed.

The connection to pins 5 and 7 of the AY-3-3500 may be made at the original switch points.

The oscillator gates must be Schmitt to ensure oscillation and the capacitors should be Tantalumtypes.
I. C. Lare, Northwich, Cheshire.

DC/DC VOLTAGE MULTIPLIER

SHown is an astable, symmetrical multivibrator working at about $1,000 \mathrm{~Hz}$. It has the special feature, that the ordinary collector resistors are replaced by p.n.p. silicon transistors. Even using small transistors, the output has a low impedance. When using supply voltages lower than 5-6 volts the base protection diodes may be omitted. It is advisable to use transistors with a nominal I_{c} maximum two or three times the input current; they need not match exactly.

The multivibrator has been tested with small power transistors BC328 as TR1-TR2; and BC338 as TR3-TR4. The base diodes are ordinary small signal silicon types.

The circuit works well with power transistors too: p.n.p. 2 N 2955 , n.p.n. 2 N 3055
and base diodes 1 N 4001 . With these it is necessary to decrease the base resistors and to keep the frequency, increase the capacitors proportionally.

It might seem unusual to use this type of converter instead of the popular transformer coupled type, which has somewhat higher efficiency, but this needs less space and is light weight. Thanks to the present cheap, high quality semiconductors, the total result is better than one might expect.

The circuits are interesting to the experimenter, and could certainly be improved.

The examples in the tables tell the rest of the story.
P. Poulsen, Odense, Denmark.

Circuit ! + 2

Input:	1.5 V	14 mA	Output:	2.25 V	
	3.0 V	50 mA	2 mA		
6.0 V	80 mA	$3-0-3 \mathrm{~V}$	10 mA		
	12.0 V	250 mA	$9-0-9 \mathrm{~V}$	20 mA	
	Circuit $1+3$				
		$16-0-16 \mathrm{~V}$	50 mA		
Input:	3 V	130 mA	Output:	$6-0-6 \mathrm{~V}$	
	6 V	100 mA	15 mA		
	6 V	160 mA	$23-0-23 \mathrm{~V}$	10 mA	
	6 V	280 mA	$16-0-16 \mathrm{~V}$	15 mA	
6 V	340 mA	$15-0-15 \mathrm{~V}$	30 mA		
	12 V	680 mA	$12-0-12 \mathrm{~V}$	50 mA	
12 V	750 mA	$28-0-28 \mathrm{~V}$	60 mA		
		$25-0-25 \mathrm{~V}$	80 mA		

3

2

A Range of Performance from... ...HAMEG

HM307 Single Trace DC- 10 MHz Plus Built•in Component Tester
HM312 Duol Trace DC-20MHz. $5 \mathrm{mV} / \mathrm{cm}$, Full $X-Y, 30 \mathrm{MHz}$ Trigger, Plus TV Trigger
HM412 Dual Trace DC-20 MHz, $2 \mathrm{mV} / \mathrm{cm}, X-Y, 40 \mathrm{MHz}$
Trigger, Plus Sweep Delay 350
HM512 Dual Trace DC -50 MHz . $5 \mathrm{mV} / \mathrm{cm}, X-Y, 70 \mathrm{MHz}$ Trigger Sweep Delay, Plus Single Shot. Sweep Delay and After Delay Trigger
HM812 Dual Troce as per HM512.
Plus Storage, Automatic Storage and Variable Persistence

Hameg Ltd., Contact

74-78 Collingdon St. Luton, Beds.

LU1 1RX.

PERFORMANCE AND RELIABILITY ARE THE SEALS FIRMLY STAMPED ON THE COMPLETE HAMEG RANGE AND IT IS A COMPLETE RANGE

Tel: \{0582) 413174

Build any Project-Fast and Easy

It's the new deal for project builders from Lektrokit! A complete new range of breadboarding and testing devices. At prices anyone can afford. For any project anyone could want to build- from one-chip simplicity to 1,000 -chip complexity.
It's fast and easy project building, too. You simply push components in and pull them out. No soldering, no de-soldering, no chance of heat damage. You can make design changes instantly, keeping full leads on components.
In fact, with Lektrokit, you can build a project as fast as you used to sketch a layout. And a lot more easily.

LEKTROKIT

 completes the circuitSend for the name of your nearest dealer/mail order supplier plus FREE catalogue.
To Lektrokit Limited, London Road, Reading, Berks, RG61AZ. Tel: Reading (0734) 6691 16/7.
Please send me the name of my nearest Lektrokit dealer - plus FREE catalogue.

Name
Address

KEYBOARD FOR

SC/MP

THIS circuit is for an experimental hexadecimal keyboard for use with National Semiconductor's SC/MP microprocessor. Using four popular TTL i.c.s it represents an interesting example of the hardware/software trade-off in MPU systems. If built with one of the surplus calculator-style keyboards advertised regularly in P.E., total cost should be under $£ 5$. Use of 74LS series TTL is recommended.

It comprises a 7493 4-bit counter clocked by Flag-O of SC/MP, feeding a 74154 4-16 line decoder. Outputs from this decoder go to the 16 keys of the keyboard, whose common line is debounced via a 74121 monostable.

SC/MP increments the counter by putting Flag-O high. One of the 16 decoded lines corresponding to the resultant 7493 binary output now goes low. Suppose the key on that line is now depressed, causing the output of the 74121 to go high and an interrupt on the SC/MP. The MPU responds by halting the counting sequence, and by putting Flag- 1 low to latch the 4 bit (hexadecimal) code using a 7475. Outputs of the 7475 are connected to the four least significant bits of SC/MP's data bus, which it now reads and stores after rotating right four times. The sequence is now repeated to get another hexadecimal character, which is added to the first to produce a singel 8 -bit byte. This can now be stored in a merviory location pointed to by a Pointer Register; the Pointer Register is now incremented and the whole process is repeated to obtain the next byte.

A greater understanding of the above process may be obtained by studying the flowchart 2 shown left.
N. Rushton,

Northwood,
Kirkby.

INDEX

JANUARY 1979 TO DECEMBER 1979

VOLUME 15

CONSTRUCTIONAL PROJECTS

A.D.S.R. Envelope Shaper by D. J. Stephenson Jan. 32
March 20
AF/RF Signal Generator by J. Gerrard Aug. 21Alarm, Babycom
18
Alarm, Home Freezer Alarm, Home Freezer Aug. 18
Ammeter by M. Tooley B.A. and D. Whitfield Dec. 34
B.A. Dec. 48
B.A. Amplifier, Class A Headphone Aug. 62
Auranging Multimeter by Dr. M. Sawicki and A. Kowalewski Aprił 56, May 56, June 39, Aug.70,Nov. 27
Babycom by O. N. Bishop Nov. 24
Battery Voltage Indicator by M. Tooley B.A. and D. Whitfield B.A. Oct. 24 Dec. 34
Burglar Alarm, Ultrasonic
Burglar Alarm, Ultrasonic
Car, Ammeter Dec. 48
Car Instruments, Solid State 8, Dec. 54
Chimesonic by P. Copeland Aug. 66
Cine Speed Controller by M. Yeomans June 34
Class A Headphone Amplifier by Stephen Price Aug. 62
Compukit UK101 by A. A. Berk B.Sc., Ph.D. Aug. 24,
Control, Quizmaster
Sept. 40, Oct. 56, Nov. 28
Control, Ultrasonic Remote Nov. 60
Controller, Digital Temperature June 50, Aug. 70
Cost-A-Call by A. P. Donleavy Dec. 65
Counter, Rev Nov. 18
Diamatic by J. R. W. Ames B.Sc and W. L. Blyth B.Sc. Nov. 32, Dec. 40
Digital Darkroom Timer by R. J. Morris Nov. 66
Digital Enlarging Exposure Meter byMarch 34
Digital Temperature Controller by D. Coutts and P. McAllister Oct. 32, Dec. 29
Doorbell, Chimesonic Aug. 66
Doorbell, Novelty Bleeper April 38
DwellDec. 54
Engine Temperature Meter by M. Tooley B.A. andD. Whitfield B.A.Dec. 51
Envelope Shaper, A.D.S.R 20
Environmental Thermometer by M. Plant Feb. 22
EPROM, Programmer Dec. 24
Evaluation System, Microprocessor May 18
Exposure Meter, Digital Enlarging March 34
Flash, Sound Triggered by R. A. Penfold July 18
fuzz, Smooth Sept. 62

CrossesFeb. 18
Generator, WaveformApril 50, June 39
Guitar Processor by Dr. M. Sawicki and
Headphone Amplifier, Class A
July 58, Aug. 70 ,Sept. 32Aug. 18Light, Sound toJan. 63
Logiscope by R. A. PenfoldMay 54
Meter, DwellDec. 51Microprinter, PE Jan 38, Feb. 34, March 44, May 45June 42, July 43
Mixer, 6 Chanel.........Feb. 62, April 64May 56, June 39Aug. 70, Nov. 27March 20PE Microprinter by Mark SimonJan. 38, Feb. 34March 44, May 45
Eng.,M.I.E.E
Pre-Amp, Low Noise May 54
Processor, GuitarDec. 24
P.S.U. Workshop
Feb. 18
B.A.Nov. 60
Rev Counter by M. Tooley B.A. and D. Whitfield B.A.March 22, April 31, May 45Sept. 32Signal Generator, AF/RFAug. 21

UK 101 Compukit...... Aug. 24, Sept. 40, Oct. 56, Nov. 28 Ultrasonic Burglar Alarm by G. Davies.
Ultrasonic Remote Control by M. Plant and
G. HallamJune 50, Aug. 70
V.L.F. Receiver by C. R. Francis B.Sc.

Oct. 42
Voltage Indicator, Battery
Oct. 24
Warning Device, Headlight March 62
Waveform Generator by M. Tooley B.A. and
D. Whitfield B.A., M.Sc.

Sept. 28
Workshop P.S.U. by S. Hoare .. 28
6 Channel Mixer by S. R. W. Grainger and
C. R. Harding

Sept. 18, Oct. 50, Dec. 29
16 Note Sequencer by Lyndsay Robinson March 22,
April 31, May 45, Sept. 32

GENERAL FEATURES

Acorn Computer Review by Mike Abbott........... Sept. 34
Binaural Stereo Patents by Adrian Hope March 28
Bubble Memories by Dr. P. V. Cooper April 40
Constant Current Sources by D. F. Bowers B.Sc. March 54
Electric Vehicles by Mike Abbott
Jan. 52
Elf II Review by A. A. Berk B.Sc., Ph.D................July 34
Home Computers by R. W. Coles Feb. 28, March 46
INGENUITY UNLIMITED Jan. 29, Feb. 44, March 66, April 22, May 68, June 65, July 40, Aug. 46, Sept. 24, Oct. 37, Nov. 52, Dec. 72
A.D.S.R. Envelope Shaper by P. V. Saduikis

Sept. 24
A Peak Program Indicator by D. R. G. Self
Nov. 55
A Simple Thermometer by J. D. BerrvmanJan. 29
Audio.Millivoltmeter by K. Cameron Dec. 72
Auto Tape Switch by A. Glover 30
Battery Monitor by D. P. Akerman Oct. 36
Boat Speed Controller by S. H. AllsopJune 67
Car Intruder Alarm by N. J. Bailev March 69
Car Intruder Alarm by C. J. Nother
April 22
Car Theft Alarm by M. A. Robertson Sept. 25
Cheap Thermometer bv P. R. Williams May 68
CMOS Logic Probe by D.P. Akerman..................... May 69
DC/DC Voltage Multiplier by P. Poulsen.............. Dec. 74
DC Ringing for Intercoms by R. A. Sudron Aug. 47
Digital Servo Amplifier by G. Pike Oct. 38
Diode Tester by N. Sunderland Sept. 25
Display Tube/TTL Interface by A. Langton............. Nov. 55
Electronic Doorbell by P. R. Williams April 24
Envelope Shaper by A. N. Oliver Feb. 45
Freezer Temperature Alarm by A. M. Smithers Oct. 37
Fridge/Freezer Thermostat by B. C. JamesOct. 38
Guitar Fuzz/Sustain Unit by A. Niemiro June 66
Hazard Flasher Monitor by J. B. Farmer March 67
Heads or Tails by D. J. Taylor Feb. 46
Hex Keyboard for SC/MP by N. Rushton Dec. 77
Kettle Whistle by R. Wilds Jan. 31

Lamp Dimmer by M. A. McCabeJune 66
Lightning Chess Timer by Y. H. Diamant Aug. 46
Livewire by S. Kelly March 68

SEMICONDUCTOR UPDATE by R. W. Coles Jan. 60 ,
Feb. 47, March 59, April 21, May 38, June 25 , July 42, Aug. 45, Sept. 69, Oct. 23, Nov. 51, Dec. 23
Texas TMS 4164, AM 9511, Analog Devices AD509 Jan. 60
Motorola MC68488 MC3448, Intersil ICL 8211-2 Feb. 47
Texas TL 496C, Intel 8202, International Rectifier IRF100 IRF305 March 59
A.M.I. S2600-1, Intel 2758 April 21
Mullard TDA 1028 TDA 1029, Texas MC3423 May 38
Thomson-C.S.F. FRED, Intersil IM7224-5, National DM8678 June 25
Intersil ICL 8063, Harris HA 5195, Mullard BB212 July 42
National INS 8295, Mostek MK4816, Fairchild $\mu \mathrm{A} 78 \mathrm{MGUIC}$ Aug. 45
Shottky 74AS 74ALS, Signetics 82S 106-7,Intersil ICL7600-5Sept. 69
National MM 74C912, 74C917, 74C911, Intersil ICL 7611 Oct. 23
Ferranti ULA 2U000, Analog Devices AD7525, Signetics NE586 NE587 Nov. 51
Zilog Z8000, Intel 7110, General Instruments Microelectronics AY-3-1350 Dec. 23
Solders and Soldering by P. Dinsdale Aug. 50
STRICTLY INSTRUMENTAL by K. Lenton Smith..Jan. 36
Tandy TRS 80 Level II Review by A. A. Berk B.SC.,Ph.D.April 26, June 39
Vehicle Instrument Displays by B. ShepherdC.Eng., F.I.E.E.Nov. 24
V.L.F. Signals and the Magnetosphere by C. R. Francis B.Sc. Sept. 52

NEWS AND COMMENT

Newbear 77-68 by P. Birnie Aug. 38 NEWS BRIEFS......... Jan. 44, 45, Feb. 61, March 31, 41 43, 53, 64, 70, April 39, May 45, 53, 55, June 38, 39, 55, July 33, 39, 48, 53, Aug. 53, 65, Sept. 37. 68, Oct. 30, Nov. 27, Dec. 70

PATENTS REVIEW.....Jan. 68, Feb. 56, April 68, May 37, June 31, July 51, Aug. 54, Sept. 70, Oct. 54, Nov. 69, Dec. 30

POINTS ARISING ...Jan. 50, Feb. 68, March 20, April 64, May 45, June 39, July 48, Aug. 70, Sept. 32, Nov. 27, Dec. 29

READOÚT . Jan. 59, Feb. 68, March 60, April 69, July 54, Aug. 58, Oct. 70, Nov. 70, Dec. 62

SPACEWATCH by Frank W. Hyde Jan. 37, Feb. 43 March 21, April 54, May 44, June 32, July 52, Aug. 33, Sept. 38, Oct. 48, Nov. 59, Dec. 39

SPECIALSUPPLEMENTS

Special Offer-Dolomiti MultimeterJuly 57Free Entry Competition Sept. 67
I.C. Insertion Tool May 65
Solid Štate Car Instruments Dec. 48
Special Offer-Proto Board Nov. 71
Using the I.C. removal tool Oct. 30
Watch Offer (Digital) June 33
Watch Offer (Seiko) Dec. 61

If you can't visit us at the exhibition, or visit one of our showrooms, then send for the Wersi 104-page full-colour catalogue.

AURA SOUNDS

14/15 Royal Oak Centre, Brighton Road, Purley, Surrey. Tel: 01-668 9733.

17 Charter Arcade, Barnsley. Tel: 02265248. (Next to W. H. Smith).

SEIKO MEMORY BANK

CASIO CHRONO

 950S-3LBStainless steel case. water resistant to 66 feet. Hours, mins, secs, am/pm, year, month, date, day. Auto-calendar pre-programmed until the year 2029. 12/24 hour. Stopwatch function.
Range 7 hours. $1 / 100 \mathrm{sec}$. (Mode) Net time/lap-time/ Ist-2nd place times. Dual time function. Accuracy 15 secs per month. Battery life approx 4 years.

£22.95

MELODY

Multi Alarm
Chronograph

Hours, mins, secs, Day, Date, Countdown alarm, Dual time zone, 1/100th sec stopwatch. Lap/split time, 1 st and 2 nd place times, Melody test function.

SEIKO Alarm Chronograph

With WEEKLY Alarm.
Hours, mins, secs, month, date, day, am/pm. Weekly alarm - can be set rime er day at designated time e.g. 6.30 am on Mon Wed and Friday. Alarm set time displayed above time of day. Full stopwatch functions, laptime, split ete
£89.95

CASIO LADIES 86CL-23B-1

Elegant slim line.
Stainless steel bracelet, fully adjustable. Hour, mins, 10 sec symbol second by flash, am/pm Month, date, day. Auto-calendar preprogrammed for 28th day in Feb. Accuracy per month 15 secs.
Battery life approx 15 month Battery life approx 15 months.
£29.95
M23

SEIKO Melody
Alarm Chronograph

Chiming Alarm,
 plus chrono.

Hours, mins, secs, date, day, 24 hour alarm, 12 hour chronograph, 1/10th secs, Laptime, Back light, Stainless steel, mineral glass.
metac price
£92.95

M19

CASIO F-200
 Sports Chrono

Attractive Mans warch
in black resin wi
mineral glass.
mineral glass.
Hours, mins, secs, a m / pm,
Mours, mins,
Month, date,
alpha-numeric day.
Auto-calendar set
Auto-calen
2Bth Feb.
Stopwatch working range 1 hour.
units $1 / 100 \mathrm{sec}$. Mode,
ist-2 ime/plap/time/
Accuracy approx 15 sec
Accuracy approx 15 secs
per month.
Battery 12 months.
£14.95
M24

DUAL

TIME-ALARM

CHRONOGRAPH

Chronograph

Multilanguage-day of
the week can be set the week can be se
to Engllish, French. German, Italian or Spanish.
Chime - every full hour combined with response signal,
beeplng at every pressing of the functions. Can be switched off. 12-24 hour format. Backlight.
Chrono - 1 , full scal
chrono with lap.
counting hours upto
24 hrs. Mins, secs,
$1 / 100$ ih secs.
Two Alarm systems.
Two time zones.

CASIO ALARM CHRONO
 81CS-36B

100 Th sec chronograph to
7 hours.
Net time/lap/time/1 st
and 2nd place times. User
Optional $12 / 24 \mathrm{hr}$ display. 24
Alarm. User optional,
hourly chime.
Backlight, mineral glass,
Wainiess steel.
Water resistant to
100ft.
$£ 34.95$
M25

CASIO CALENDAR 200

47CS-23B-1 Black.
Stainless steel.
Hours, mins, 10 second
symbol, second (by flash).
am/pm. Month, day, date.
Auto-calendar set from
1901102009.

Full month calendar display.
Dual time function.
Accuracy 10 secs per
month. Battery life
month. Battrar lite
approx 15 months.
m

PICOQUARTZ
 Microprocessor Alarm
 SEIKO
 CHRONOGRAPH

North 8 Midlands
Street, DAVENTRY Northamptonshire

Telephone: 0327276545

SOLAR QUARTZ LCD Chronograph Powered from solar 6 digit, 11 functions. Hours, mins., secs., day date. day of week. $1 / 100 \mathrm{th}, 1 / 10 \mathrm{th}$, Split and lap mo Back-light, auto calendar. Oniy 8 mm thick.
Stainless steel bracelet and back.
Adjustable bracelet.
Metac Price
£13.65
Guaranteed same day despatch.

HANIMEX

Electronic
LED Alarm Clock

Features and Specification:
Mour'minute display. Large LEO display with on/off control. Display flashing for power loss indicarion Repeatable 9 -minute snoore. Oisplay
brightim modes control. Sire: $5.15^{\prime \prime}$ is $3.93^{\prime \prime}$ a $2.36^{\prime \prime} 1131 \mathrm{~mm} \times 13 \mathrm{~mm} \times 60 \mathrm{~mm}$ Weight: $1.43 \mathrm{lbs}(0.65 \mathrm{~kg})$. AC power 220 V
$£ 10.20$ Thousands sold!
Mains operated.
Guaranteed same
day despatch.

Guaranteed sameday despactch. M15
QUARTZ LCD Ladies Day Watch

Only $25 \times 20 \mathrm{~mm}$ and 6 mm thick. Hours, minutes, seconds. day. date, backlight and auto calendar.
Elegant metal
bracelet in silver or
gold fully adjustable
to suit very stim
wrists.
£9.95

EXECUTIVE ALARM WATCH

HOWTO ORDER

Metac Wholesale: Trade enquiries - send for a complet
shown also minimum order de tails. or Edgware Rd. 01-723 475324 hours a day.

SOLAR QUARTZ LCD 5 Function

QUARTZ LCD
 sum
 11 Function chrono

6 digit. 11 functions. Hours, mins., secs., day date, day of week. 1/100th, $1 / 10$ th, secs., 10X secs., mins., Split and lap modes. Back-light, auto calendar Only 8 mm thick. Stainless steel bracelet and back.
Adjustable bracelet. Metac Price

M2

£10.65 Thousands soldl Guaranteed same day despatch. M3

SOLAR QUARTZ LCD Chronograph with Alarm

Dual Time Zone
Facility
6 digits, 5 flags. 22 functions. Solar panel with
battery back-up. battery back-up.
6 basic functions.
6 basic functions.
Siop-watch to 12 hours
59.9 secs., in $1 / 10$ sec.,
steps.
Split and lap timing modes.
Dual time zones.
Alarm. 9 mm thick
Fully adjustable bracelet.
£27.95

QUARTZLCD

Ladies Fashion Watch
Elegant bracelet in
bronze/gold finish or
silver colour.
Hours, mins, secs day. date, backlight and auto calendar. Adjustable for the silmmest of wrists. State colour preference.

£14.95

Guaranteed seme day dospatch M17

MACY QUARTZ ANALOGUE

Automatic Calendar Oay and Date infinite bracelet. This mans watch has elegance as well as the robust appearance provided by a watch with traditiona features. Accuracy is provided by a quartz crystal powered by a long life miniature battery.
$£ 24.95$

Payment can be made by sending cheque, postal order, Barclay, Access or American Express card numbers. Write your name, address and order details clearly, enclose 40 pence per single item for post and packing or the amount stated in the advert. All products carry 1 yeer written guarantee -and full money-back 10 day reassurance. Battery fitting and electronic calibration service is available to customers at any Metac shop. Alt prices include VAT currently at 15%.

Trade enquiries - send for a complete list of prices for all the goods advertised plus many more not
shown also minimum order de tails.

Service Enquiries 03272-77659
CALLERS WELCOME Shops open 9-30am-6.00

QUARTZ LCD
ALARM 7 Function

Hours, mins., secs, month, date, day. 6 digits, 3 flags plus continuous display of day and date or seconds. Back-light Only 9 mm thick.
£12.65

Guaranteed same day dispatch
M4
ALARM CHRONO with 9 world time zones

- 6 digits. 5 flags.
-6 basic functions.
- 8 further time zones
- 8 further time zones,
- Count-down alarm.
- Count-down alarm.
- Siop-watch to 12 hours
59.9 secs.
59.9 secs.
in $1 / 10$ sec. steps.
- Split and ilming modes.
- Alarm.
- Alarm.
- 9 mm thick.
- Back-light.
- Back-light.
- fully adjustable braceler
£29.65

QUARTZ LCD
Ladies Cocktail Watch
Highly functional watch
which also suits those
spectal occasions.
Beautifully designed
with a very thin bracelet which retalns strength as well as elegance.
Hours, mins, secs, day, date,
backlight and autocalendar.
Bracelet fully adjustable to
suit slim wrists.
State gold or silver finish.
£19.95
Guaranteed same dey despatch M18
Metac price breakthrough for an Alarm Chronograph with Dual Time only
£18.95

OUTSTANDING FEATURES

- DUAL TIME. Local time always visible and you can set and recall any other time zone (such as GMT). Also has a light for night viewing.
CALENDAR FUNCTIONS include the date and day in each time zone. - CHRONOGRAPH/STOPWATCH displays up to 12 hours, 59 minutes, and 59.9 seconds.
- On command, stopwatch display freezes to show intermediate (split/lap) time while stopwatch continues to run. Can also switch to and from timekeeping and stopwatch modes without affecting either's operation.
- ALARM can be set to anytime within a 24 hour period. At the designated time, a pleasant, but effective buzzer sounds to remind or a waken youl
Guaranteed same day dispatch. M16

North \& Midlands
67 High Street, DAVENTRY Northamptonshire

Telephone: 0327276545

South of England
327 Edgware Road
LONDON W. 2
Telephone: (01) 7234753
hOME COMPUTING BARGAINS
All of this months offers have full hey boards, use your
IN as a VOU and will read and write onto most cassene recorders:- Ohio Sclentific Superboard I
fully assembled. BK basic, $4 K$ ram Et88. VAT Tandy TAS80 level ll besic, converied to UK TV atandara, in cludes modulator and PSU:- with 4 K rem £399.

SINCLAIA PRODUCTS
PFM200 ©52.69, case ©3.40. adsplor $\mathbb{\text { E3.40, con- }}$ neciator $£ 6.88$. PDM35 $129-76$, mains adapto £3.40. cese $£ 3.40$. DM350 ¢71.82. OM460
£102.17. DM 235 ¢52.66. Accessories for all 3 C102.17. DM235 552.68 . Accessories for all 3
models:- rechargeable batteries $\mathbf{C 7} .99$, mains adap10u/charger £3.94, case £9.
Enterorise prog caiculator $£ 23.27$. New 10 MHz scope Enteror
€ 149 .

COMPUTER GAME
Chess challenger 7 t 84 Chess challanger 10
£139.70. Voice chatienger C229. Checker challenger 2 t46 Checker challenger ${ }^{4}$. 884 . Arart video com.
puter E147. Cartiigess E 14.32 . Stst Chess CE2.

CONTINENTAL SPECIALITIES PRODUCT

TVGAMES
Tank battes thit 〔6.34, AY-3-9500 chup ©5-27. Wi £4.26. Stunt crcle AY-3-8760 chio 112.46 , thit
[4.26. 10 game padde 2AY-3-8600 chip © 10 , hit
 shoot kit $\mathrm{C5}$-28. Riffe kit fB .05 . Joystick $220 \mathrm{~K} \mathbf{~} 1.80$.

MAINS TAANSFORMERS
 C2.75. 15.0.15V 10 C3.09

JC12 AND JC20 A MPLIFIERS

Integrated circeif audio amplifier chips with data and
perinted dircuits. JC12 8 Watts $\mathbf{C 2} .08 . J C 2010$ Watts
C3.14.

FERRANTIZN414
IC radio chip 85 p. Extra parts and pob lor radio £4-10
Case $\mathbb{1} 1.06$.
PRINTEDCIRCUIT MATERIALS

S-DECSANOT-DECS
S-Dec E3.79. T-Dec 54.59. u-DacA E4-69. uDecB
battery eliminators
 10ck:- 14.100 ma radio types with press stud connectors

 1/V 10mo with 5 pin din plug C3. 57. Fully stabilized
type $3 / 87+/ 9 \mathrm{~V} 400 \mathrm{ma}$ E5.76. Cer convertors 12 V dc

BATTERYELIMINATOR KITS
100 ma radio types with press slud conneciors 4 IV
$\mathrm{E} 1.49 .6 \mathrm{~V} \mathbf{\mathrm { V }} .49,9 \mathrm{~V} £ 1.49,4 \frac{1}{2}+4, \mathrm{~V} £ 1.92 .6+6 \mathrm{~V}$ $\mathrm{E1.92} \mathrm{~g} 9 \mathrm{9V} \mathrm{E} 1.92$. Cassette type JV 100 ma with

STA AILIZED POWER KITS
bracketed price is in kit withour transformer, the $3 / 41 / 6 / 7+/ 9 / 12 / 15 / 18 \mathrm{BV} 100 \mathrm{ma}$ [$£ 1.74$ ($\mathbf{2} 2$-50). 1 A

BI-PAK AUDIO MODULES

 £4.57. BMT80 $\mathbf{C 6 . 0 8}$. Stereo 30 [20.57. MA60

COMPONENTS

1N4148 O.9p. 1 NAOO 23.1 p .741 B dil 16 p .72314

 tip31c. tiosic equiv. bc 10750 . Fuses $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ carridg ge $15.25 .5,1.2 .3 .5$ Amp quick blow 1 p , anti-surge
3.6 p . Resistors 5% WW E12 10 R to 10 M io. D. 8 p (or 3.6p. Resistors 5% WW E12 1OR to 10 M 1 p . D. 8 p for
504 of one value. Poivester capacitors 250 V .015 .

 capacitors $50 \mathrm{~V} .5,1,2 \mathrm{mf} 50.25 \mathrm{~V} 5$. 10 mf 50.16 V
 330.470 mf
2 V 7 p . 1033 V 7 p . Preset pots subm iniature 0.1 WW horiz

[^1]
PROGRESSIVE RADIO 31, CMEAPBIDE, LIVENPOOL LT20V

 $2117 p$ each. $12-0-12100 \mathrm{~mA} 98 p$. 12 V 500 mA Bep $0-6 \mathrm{~V}-0-6 \mathrm{~V} 280 \mathrm{~mA}$ \& 1.30 p .
MINIATUAE SOLID ETATE BUZZENS. $33 \times 17 \times 16 \mathrm{MM}$, output at 3 foet 70 db , only 15 mA drain, 4 voltages avaliablo. 8-9-12 or 24 VOC sop each.
OCKET MULTIMETER. MOOEL NHES 2.000 ohms per volt, 1,000 volts ACJOC. 100 mA DC CUTREnt. esistance ranges to 1 meg er 9 .

cossette motors 70 . Low 22 p . 12 V model 6 pole 36 p . Roplacement 12 VOC 8 track
AMPHENOL COAX CONHECTORA. Plugs 47 p . Socketa 42p. Elbows 200 . Reducors 13p.
TELEVISION OUTLET BOXES, Wall mounting: single 40p, double 76p, switched doubie 96p, low loss in line

WTE RCOM UMIT (can be used as baby alarm) supplied with approx. 60 cable, call bution, 2 way E 5.2 E pair, 3 180 KHz , eze. 4 .
CONOENSEN MIKE MICROPHONE, Omni, 1 K imp, uses deaf ald battery (supplied) E4.98p. LOW COS

 metal case only 27.78

SPECIAL OFFER TAPE MEAD DEMAONETISER, 2 LOVAC with CUIved probe only EE.eEp

The opportunities in electronics, today, and for the future are limitless - throughout the world. Jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, TV and all associated equipment - can make for a varied, interesting and highly renumerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equipment coming on to the world market.

We give modern training courses in all fields of electronics - practical D.I.Y. courses - courses for City \& Guilds exams, the Radio Amateur licence and also training for the new Computer Technology. We specialise only in electronics and have over 40 years experience in the subject.

All the training can be carried out in the comfort of your own home and at your own pace.

A tutor is available to whom you can write at any time for advice or help during your work.

and a career:

COURSES AVAILABLE

CITY \& GUILDS CERTIFICATES IN TELECOMMUNICATIONS AND ELECTRONICS.

- radio amateur licence.

COMPUTER TECHNOLOGY WITH HOME TRAINING COMPUTER.
digital electronics.

- beginners practical course.RADIo AND TELEVISION SERVICE.AND MANY OTHERS.

WE ARE AN INTERNATIONAL SCHOOL SPECIALISING IN ELECTRONICS TRAINING ONLY AND HAVE OVER 40 YEARS EXPERIENCE IN THIS SUBJECT.

KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. 128-NOTE
 PROGRAMMABLE SEQUENCER

Enables a voltage controlled synthesiser to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long Programs are keyboard initiated and note length and mythmic pattern are externally variable.

KIT 76-5 Set of PCBs \& layout charts KIT 76-5 \quad E28.92 Set of text photocout chart

P.E. 16-NOTE

PROGRAMMABLE SEQUENCER
Sequences of up to 16 notes may be programmed by the use of external panel controls and fed into most voltage controlled synthesisers.

Set of basic component kits	KIT 86-3	$\mathbf{£ 2 2 . 9 0}$
Set of PCBs	KIT 86-4	$\mathbf{~} 5.09$
Set		$\mathbf{8 1 . 8 4}$

Ser text photocopies
KIT 86-4 \quad E5.09

P.E. STRING ENSEMBLE

A multivoiced string instrument synthesiser.
Set of basic component kits 77-6
$\begin{array}{ll}\text { Se8.70 }\end{array}$ Set of PCBs \& layout charts $\begin{array}{ll}\text { KIT 77-7 } & £ 24.19\end{array}$

P.E. JOANNA PLUS ORGAN VOICING

A modified version of the P.E. 5-octave piano that retains all the original facilities and also includes switchable organ voicing cir-
cuitry.

Set of basic component kits
Set of PCBs \& layout charts
"Sound Design" booklet
KIT 71-5 $\quad 889.87$
KIT 71-6 £29.51

ELEKTOR ELECTRONIC PIANO

A touch-sensitive multiple-voicing piano using the lates integrated circuit techniques for the keying and envelope shaping and virtualiy eliminating

5 -octave set of basic components
5 -octave set of PCBs (as published)
Additional 3 -octave extension
basic parts
Additional 3 -octave set of PCBs
(as published)
Set of text photocopies
$\begin{array}{lr}\text { KIT 80-6 } & £ 100.64 \\ \text { KIT 80-7 } & £ 26.02\end{array}$
KIT 80-5 £ £0.98
KIT 80-B \quad E9.45
P.E. MINISONIC MK2 SYNTHESISER

A portable mains operated miniature sound synthesiser with keyboard circuits. Although having slightly fewer facilities than the large Formont and P.E. synthesisers the functions offered by this design give it great scope and versatility.

Set of basic component kits (excl. KBD
R's \& tuning pots - see list for options
available
Set of PCBs (incl. 'layout charts)
"Sound Design" booklet
KIT 38-23 \quad £67.05
KIT 38-24 $£ 9.87$
P.E. SYNTHESISER

The well acclaimed and highly versatile large scale mains operated synthesiser. Other circuits in our lists may be used with it to good advamage.

Main Unit bastc component kits Main Unit set of FicBs \& tavout charts Keyboard Unit basic component kits Keyborrd Unit set of PCBs \& layout charts
Main Unit sel of text photocopies
Keyboard Unit set of text photucopies
ELEKTOR FORMANT SYNTHESISER
A very sophisticated symthostser for the advanced constructor who puts performance before prtce.

Set of basic component kits
Set of PCBs (as published)
Set of text photocopies

KIT 23-27 \quad £86.99 KIT 23-28 \quad E14.52 KIT 23-29 852.07

KIT 23-30
KIT 23-30

f8.42

10% DISCOUNT VOUCMER (PE 70)
TERMS: Goods in current adverts \& lists over $£ 50$ goods value fexcl P\&P \& VAT). Correctly costed, C.W.O., U.K. orders only. This voucher must accomifany onder. Valid
unt'l end of month on cover of E .

COMPONENTS SETS include all necessary resistors, capacitors, semiconductors, potentiometers and transformers. Hardware such as cases, sockets, knobs keyboards, etc. are not included but most of these may be bought separately. Fuller details of kits, PCBs and parts are shown in our lists.

LAYOUT DIAORAMS are supplied free with all PCEs unless as published

P.E. GUITAR EFFECTS PEDAL

Modulates the attack, decay and filter characteristics of a signal from most audio sources, producing 8 different switchable effects that can be further modified by manual controls.

| | Basic parts with foot switches | KIT 42-2 | $\mathbf{8 5} 5$ |
| :--- | :--- | :--- | :--- | PCB \& layout chart PCB 43A $£ 5.55$

Text photocopy

ELEKTOR DIGITAL REVERB UNIT

A very advanced unit using sophisticated i.c. techniques instead of mechanical spring lines. The baslc delay range of 24 to 90 mS can be extended up to 450 mS using the extension unit. Further delays can be obtained using more extensions.

$$
\begin{array}{llr}
\text { Main unit basic component kit } & \text { KIT 78-1 } & \mathbf{8 9 . 9 9} \\
\text { Main unit PCB (as published) } & \text { PCB 9913 } & \mathbf{£ 3 . 6 9} \\
\text { Extension unit basic component kit } & \text { KIT 78-2 } & \mathbf{£ 4 7 . 6 9}
\end{array}
$$

$\begin{array}{llrr}\text { Extension unit basic component kit } & \text { KIT } & \text { P8-2 } & \mathbf{8 3 . 6 9} \\ \text { Extension unit } \mathrm{PCB} \text { las published) } & \text { PCB 788 } & \mathbf{£ 1 . 1 6}\end{array}$ Text photocopy

ELEKTOR ANALOGUE

REVERB UNIT

Using i.c.s instead of spring-lines the main unit has a maxium delay of up to 100 ms , and the additional set extends this up to 200 mS . May be used in either mono or stereo mode.
$\begin{array}{llll}\text { Main unit basic component set } & \text { KIT 83-1 } & \text { E29.49 }\end{array}$ Additional Delay basic components
PCB (as publ.)
PCE 9973 E4.31

P.E. GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing, for example, flanging, vibrato, reverb, fuzz and tremolo as well as other fascinating sounds. May be used with most electronic instruments.

Set of baslc component kits KIT 85-3 §43.75 Set of PCBs \& layout charts KIT 85-4 £10.62 Set of text photocopies

KIT 85-4 $\quad \mathbf{£ 1 0 . 8 2}$

P.E. PHASER

An automatically controlled 6-stage phasing unit with integra oscillator.
Set of basic components, incl.
PCB \& chart
Text photocop
KIT 88-1 $\quad \mathbf{1 0 . 1 4}$

ELEKTOR PHASING \&

VIBRATO UNIT

Includes manual and automatic control over the rate of phasing \& vibrato. and has been slightly modified to also include a 2 -inpu mixer stage.

Set of basic components	KIT 70-1	£19.11
PCB \& layout chart	PCB 7OA	$£ 2.56$
Teext photocopy		$67 p$

P.E. PHASING UNIT

A simple but effective manually controlled phasing unht.
Set of basic components incl.
PCB \& chart KIT 25-1 \&.52 Text photocopy KIT 25-1

PHASING CONTROLUNIT

For use with Phasing Kit 25 to automatically control rate of phasing.

Set of basic components incl.
CB \& chant
KIT 36-1 55.21
Text photocopy
55.21

P.E. SWITCHEDTONE

TREBLE BOOST
Provides switched selection of 4 preset tonal responses.
Set of basic components,
PCB \& chant KIT B9-1
Text photocopy
KIT 89-I
$£ 3.82$

P.E.TREBLE BOOST UNIT

A simple treble boost unit with manual control of depth. Set of basic components.
PCB \& chart
KIT 53-1

PHONOSONICS

MAIL ORDEA SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

ELEKTOR RESONANCE FILTER

Allows a synthesiser to prod
natural musical instruments.
Set of basic components
PCB (as published)
KIT 82-1 $\quad £ 16.61$

P.E. GUITAR OVERDRIVE

Sophisticated versatile fuzz unit including variable controls affecting the fuzz quallty whilst retaining the attack and decay. and also providing filtering. Can be used with other electronic instruments.
Set of basic components
KIT 56-1
47.57
$\begin{array}{lrr}\text { PCB \& layout chart } & \text { PCE 56A } & \text { E1.78 } \\ \text { Text photocopy } & & \text { 68p }\end{array}$

P.E. FUZZ UNIT

A simple fuzz unlt. Slightly modified from the original. Set of basic components, PCB \& chart

KIT 55-1 $\mathbf{E 2 . 2 5}$

TREMOLO UNIT

A slightly modified version of the simple P.E. unit.
Set of basic components.
PCB \& chart
KIT 54-1

GUITAR FREQUENCY DOUBLER

A slightly modified and extended version of the P.E. unit.
PCB basic components.
PCB \& chart
KTT 74-9

P.E. GUITAR SUSTAIN

Maintains the netural attack whilst extending note duration Basic components, foot switches.
Basic components, panel switches,
PCB \& chart
KIT 75-1 $£ 5.64$
KIT 75-2
P.E. WAM-WAHUNIT

Can be controlled manually or by integral automatic control.
Set of basic components,
PC8 \& chart
KIT 51-1 $\mathbf{\varepsilon 3 . 9 9}$
P.E. AUTO-WAH UNIT

Automatically Wah or Swell sounds with each note played.
8asic components, foot
KIT 58-1 ¢8.43
Basic components, panal
switches, PCB \& chart
KIT 58-2 55.31

ELEKTOR WAVEFORM CONVERTOR
Converts a saw-tooth waveform into sinewave, mark-space sawtooth, regular triangle, or square-wave with variable mark-space ratio. Basic components, PCB \& char
KIT 67-1 $\mathbf{~} 9.24$

P.E. VOLTAGE CONTROLLED

 FILTERExtracted from P.E. Minisonic project
Pet of basic components.
PCB \& chant
KIT 65-1 $\quad 7.88$

P.E. RING MODULATOR

Extracted from P.E. Minisonic project.
Ser

ELEKTOR RING MODULATOR

Compatible with the Formant \& mosi other synthesisers.		
Set of basic components	KIT 87-1	
PCB (as published)	PCB 79040	$\mathbf{8 1 . 7 4}$

PCB (as published)
PCB 79040
$£ 4.66$
$£ 1.74$
Text photocopy 38p

EXPORT ORDERS ARE WELCOME but to avoid delay we advise you to see our list for postage rates. All payments must be cash-with-order, in Sterling by Inter-
national Money Order or through an English Bank. To national Money Order or through an English Bank. To
obtain list - Europe send 20 p . other countries send obtain
50 p .
50p.

ADD: POST A HANOLINO

U.K. orders: Keyboards add $£ 2.30$ each. Other goods: Under £5 add 25 p , under $£ 20$ add 50 p , over $£ 20$ add 75 p . Recommended insurance against postal mishaps: add 50 p N.B. Eire, C.I., B.F.P.O. and other countries are subject to higher export postage rates.

ADD 15\% VAT
(or current rate if changed). Must be added to full total of goods, discount, post \&
handing. on all U.K. orders. Does not apply to Exoorts.

AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of the P.E. projects built from our kits and PCBs. The cases were buill by ourselves and are not for saif. though a small selection of other cases is available.

LIST-Send stamped
LisT-Send stamped addressed list giving fuller detalls of PCBs, kits and other components.
OVERSEAS enquires for list Eurode
send 20p: other countries-send 50p.

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKIMBER-ALLEN KEVBOARDS as required for many published projects. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C . the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame. 3 Octave (37 notes)

E25.80
E32.25 4 Octave (49 notes)
5 Octave (61 notes)
$£ 39.75$
CONTACT ASSEMBLIES (gold-clad wire) - 1 required for each KBO note:
Type GJ - SPCO $25 \frac{1}{2} p$ ea. Type GA - 1 pr of contacts, normally open $24 p$ ea. Type GB - 2 pr N/O $28 \frac{1}{2} p$ ea. Type GC -3 pr N/O $37 \frac{1}{2} p$ ea. Type GE -4 pr N/O $46 \frac{1}{2} p$ ea. Type GH - 5 pr N/O $58 \frac{1}{2}$ p ea. Type 4PS - 3 pr N/O plus SPCO 57p ea.

P.E. NOISE GENERATOR

Extracted from the P.E. Minisonic.
Set of basic components
Set of basic co
PCB \& chart

WIND \& RAIN EFFECTS UNIT

A slightly modified version of the original P.E. unit Set of baslc components.
PCB \& chart
KIT 28-1
Text photocopy

P.E. ENVELOPE SHAPER
 \section*{WITHOUT VCA}

Provides full manual control over attack, decay, sustain and release functions, and is for use with an existing VCA. Set of basic components. PCB \& chart

KIT 44-1

P.E. ENVELOPE SHAPER

WITH VCA

Mas an integral Voltage Controlled Amplifier, and has full manual control over the A,D.S.R functions.

Set of basic components.
PCB \& chart
KIT 50-1
EE. 24

Text photocopy
£7.34

P.E. GENERATOR

An ADSR envelope shaper without VCA, and additional providing Repeat-triggering enabling a synthesiser to be programmed for mandolin or banjo effects. Set of basic components PCB \& layout chart Text photocopy

P.E.EXTERNAL-INPUT

SYNTHESISER-INTERFACE

Allows external inputs such as guitars. microphones etc., to be processed by synthesiser circuits. Set of basic components. PCB \& chart

KIT 81-1

P.E.TUNING FORK

Produces 84 switch-selected frequency-accurate tones with an LED monitor clearly displaying beat-note adjustments. Set of basic components. PCB \& chant

KIT 46-1 $\mathbb{1 6 . 4 2}$
ower Supply components,
PC8 \& chart
Text photocopy
KIT 46-2

P.E.TUNINGINDICATOR

A simple 4 octave frequency comparitor for use with synthesisers and other instruments where the full versatility of KIT 46 is not required.

Set of basic components.
PCB \& chart, but excl. sw.
Text photocopy
KIT 69-1
f8.19
$58 p$

P.E. DYNAMIC RANGE LIMITER

Preset to automatically control sound output levels. Set of basic components, PCB \& chart

KIT 62-1

P.E. CONSTANT DISPLAY

FREQUENCY COUNTER

A 5 -digit counter for 1 Hz to 55 KHz with 1 Hz sampling rate. Readout does not count visibly or flicker due to blanking.

Set of basic components	KIT 79-1	$\mathbf{£ 2 6 . 4 5}$
PCB (as published)	PCB 79A	$\mathbf{~} 3.33$
Text photocopy		$78 p$

Text photocopy
PCB 79A
E3.33

PAICES ARE CORAECT AT TIME OF PRESS
E. O. E. DELIVERY SUBUECT TO AVAILABILITY

INTEGRATED CIRCUITS

301为

318
28p
195p
582p
87p
87p
$48 p$
$51 p$
$005 p$
$24 p$
$57 p$
154p

34 p
33 p
44.p

464p
96p
$37 \frac{1}{1 p}$
$40 \frac{1}{2} \mathrm{p}$
$18 \frac{1}{2} \mathrm{p}$
126 p
136
AM2833
AY-1-0212
AY-1-1320
AY-1-6721/6
CA3046
CA3080
CA3084
CA3084
FX209
M252
MC3340
MCM6810
RC4195
SAD 1024
SG3402
TDA 1022
TLO74
$\times R 2207$
ZN425
7400
7402
7404
7404
7413
7413
7420
7447
7472
7473
7474
7489
7490
7493
74121
74123
78123
7805
7808
7812
7812
7815
7818

Chitrantel

TOTAL AMPLIFICAIION FROM CRIMSON ELEKTRIK

———WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

STEREO PRE-AMPLIFIER POWER AMPLIFIER

CPR 1-THE ADVANCED PRE-AMPLIFIER

The best pre-ampliffer in the U.K. The superiority of the CPR 1 is probably In the disc stage. The overload inargin is a superb 40 dB , this together with the high slewing rate ensures clean lop, even with high outoul cartridges tracking
heavily modulated records. Common-mode distortion is eliminated by an unusual design. R.I.A.A. Is accurate 10 1dB; signal to noise ratio is 70 dB relative lo 3.5 mV ; distortion $<.005 \%$ at 30 dR overload 20 kHz .
rollowing this stage is the flat gain/balance stage to bring tape. funer, efc. upp
to power amp. signal levels. Signal to nolse ration 85db; slew-rale $3 \mathrm{~V} / \mathrm{u}$. T.M.D. $20 \mathrm{~Hz}-20 \mathrm{kHz}<.008 \%$ at any level. F.E.T. muting. No controls are fitted. There is no provision for tone controls. CPR 1 size is $138 \times 80 \times 20 \mathrm{~mm}$. Sunplv to be ± 15 volts.
MC 1-PRE-PRE-AMPLIFIER
Sullable for nearly all moving-coll carlridges. Send for details
X02 : X03-ACTIVE CROSSOVERS
XO2 - two way. XO3 - three way. Slope 24dB/octave. Crossover points set to order
REG 1-POWER SUPPLY
The regulator module, REG 1 provides $15 \cdot 0-15 v$ to power the CPR 1 and MC 1 . it can be used with any of our power amp supplles or our small transtormer TR 6 . The power amp klt will accommodate it.

POWER AMPLIFIERS

It would be pointless tollist in so small a space the number of recording stujlos, educational and government establishments, etc. 'who have been usingCRIMSON amps satisfactorily for quite some time. We have a reputation for the highest
quality at the lowest prices. The power amp is available in five types, they all quality at the lowest prices. The power amp is availabe in five types, they all
have the same specification: T.H.D. typically -01% any power 1 kHz 8 ohms; T.I.D. Insignificant; slew rate limiti25V/uS; signal to noise ratlo 110dB; frequency response $10 \mathrm{~Hz}-35 \mathrm{kHz},-3 \mathrm{~dB}$; stability unconditional; protection-drives thy
ioad safely; sensillvity 775 mV (250 mV or 100 mV on request); slze $120 \approx 80$. load s
25 mm .

POWER SUPPLIES

We produce sultable power supplles which use our superb TOROIDAL transformers only $50 \mathrm{~mm} \mathrm{~h} / \mathrm{gh}$ paciors/bridge rectifier).

PRE-AMPLIFIER KIT

This Includes all metalwork, pots. knobs etc. to make e complete pre-amp with the CPR 1 (S) module and the

ACTIVE CROS\$OVERS
XO2.......E1E.16 XO3........E23.58 Pro-amp Kit POWER AMPLIFIER MODULES POWER AMP
CE 608 G0W/8 ohms $35-0-35 \mathrm{~V}$ P19.52 KIT CE ${ }^{608}$ 60W/8 ohms $35-0-35 v$ E19.52 KIT E35.03 CE $1008100 \mathrm{~W} / 4 \mathrm{ohms}$ 35-0-35v E23.02 PRE-AMPS:
 CE $1708170 \mathrm{~W} / 8$ ohms $60-0-60 \mathrm{v}$ E33.97 able in two verTOROIDAL POWER SUPPLIES standard compo CPS1 for 2 CE 608 or $1 \times$ CE $1004 \mathrm{E16.56}$ nents, and the
CPS2 for $2 \times$ CE 1004 or $2 / 4 \times$ CPS2 or $2 \times$ CE 1004 or $2 / 4 \times \mathrm{E} 8.80$ CPS3 for CE 1704 for $2 \times$ CE 1008 or 1 CPSA Ior $1 \times$ CE 1008. CPS5 for $1 \times$ CE $1708 \ldots$. E $_{\text {E }}$ E 24.12
CPS 6 for $2 \times$ CE 1704 or $2 \times$ CE CE 1708 …….............. E25.53 HEATSINKS Light duty, $50 \mathrm{~mm}, 2{ }^{\circ} \mathrm{C} / \mathrm{W}$...... MCIS $£ 31.28$ Medium, power. 100 mm , 1.44 POWER SUPPLY
 Disco/group, $150 \mathrm{~mm}, 1.1^{\circ} \mathrm{C} / \mathrm{W}$ E3.04
Fan, 80 min , state 120 or 240 v ... E 19.70 Fan mounted on two drilied 100 mm heatsinks, $2 \mathrm{~K} \cdot 4^{\circ} \mathrm{C} / \mathrm{W}$. $65^{\circ} \mathrm{C}$ max. with two 170 W
THERURS. WIM CUT.OUT, $70^{\circ} \mathrm{C}$. $£ 9.54$

CRIMSON ELEKTRIK IA STAMFORD STREET. LEICESTER. LE1 GNL Tel: (0533) 553508
U.K. pleese allow up to 21 diny: All prices shown are UK only and include VAT and post. COD gop extra, £100 limit. Export is no problem, please write for specific quote. Send large SAE or 3 International Reply Coupons for detailed information.

BADGER SOUND SERVICES ITD 6 WOOD STREET IYTHAM ST, ANNES LANCASHIREFY8 100 MINIC TELEPRODUKTER BOX 12035: S.750 12 UPPSALA12, SWEDEN

Codespeed Electronics

PO BOX 23,34 SEAFIELD ROAD. COPNOR. PORTSMOUTH. PO3 5BJ ELECTRONIC MAIL ORDER SPECIALISTS Now, Full Spec. Devices
LED WRISTWATCH I.C. Super value I.C. in 24 pin legless flatpack' style package for maximum space saving. With data. A snip at only 99p Cat. no. 208.
0.1" LED WRISTWATCH DISPLAY. Also in a legless flatpack' style package, this display matches the wristwatch I.C. shown above. With data. Only 99p Cat. No. 209. - CASH SAVE + Purchase one each of catalogue numbers 208 AND 209 for only € 1.50 .
POLARIZING FILTER MATERIAL $0.006^{\prime \prime}$ thick plastic film. Any size cut - even 1 sq. inch. Max. width $19^{\prime \prime}$, any length. Only $2 p$ per sq . Inch. Cat. No. 701.
BRIGHT ORANGE DISPLAY 9 digit. 7 segment gas discharge display. $0.25^{\prime \prime}$ high digits. With data 75p. Cat. No. 310 .
DMM CHIP MM5330 dvm chip. Builds into high accuracy dvm or panel meter. Requires additional circuitry. Supplied with data and circuit. Only E3.95. Cat. No. 404.
MINI 5 DIGIT LED DISPLAY 6 dight 7 segment display from Texas. Common athode, multiplexed. with $0.1^{\prime \prime}$ digits. f1.00. Cat. No. 306.
MM5314 CLOCK CHIP. A super value digital clock chlp for only $\mathbf{1 1 . 9 9 \text { . With data. }}$ Cat. No. 207.
4 DIGIT LCD. A high contrast, easy to solder display with four $0.5^{\prime \prime}$ high nonmultiplexed digits. E6.95 each with data. Cat. No. 206.
DIGITAL ALARM CLOCK MODULE. Complete with glant 0.84" LED display. Add transformer and switches for complete clock. With data only E6-50. Cat. No. 205.
CIANT LED DISPLAY. Common cathode, non-multiplexed super 4 digit LED cl display. Lots of other uises too. Only E3.95 each. Cat. No. 204. WRISTWATCH LCD'S. A high contrast $3 \frac{1}{2}$ digit wristwatch LCD with centre colon. Supplied with polarizers and data. Only E1.00. Cat. No. 202.
REMORIES. MM2102 static 1024 bit memories. A snip
WEMORIES. MM2 102 static 1024 bit memories. A snip at $99 p$ each. With data sheet. Car No. 102.
20 KEY KEYBOARDS. Calculator keyboards, excellent key action. 20 keys per board. 2 keyboards for E1.00. Cat. No. 101
PROQ AAMMABLE UNLUUNCTIONS. Four MEU21 PUTS (similar to 2N6027) Makes iong delay timers. oscillators etc. With data and applications sheet. 4 for 50p. 10 HYBRID CIRCUITS. 8 resistors and 8 capacitors bullt into each hybrid circuit. Ideal values for semiconductor circuits. Excelient for minimizing PCB component space. 10 Hybrids for 50 p. Cat. No. 801
25 germanium diodes 50p. 10 switching diodes 35p. Mini slider switches (2 pote change-over) 16p each. Momentary switches (spring loaded) with 1 n.o. contact 15p each. Mono jack sockets 23 p each. Stereo jack sockets 25 p each. Slide control knobs (state colour) 12p each. Rotary control knobs (push-on). Black with coloured cap (state colour) 20p each.
REEJCT CALCULATORS, Untested Items
REEJCT CALCULATORS. Production line rejects. Yields lots of goodies when stripped down (not much wrong with some we tested). Only E2.50 each. Cat. No. LED DISPLAYS. (Untested - no guarantees) 10 seven segment LED displays. $0.127^{\prime \prime}$ digits common cathode. 10 for $\mathbf{8 1 . 0 0}$. Cat. No. 311

Poastage and Packing ploase add 35p. (Overseas ordere add 90p) satismetion guaranteed or return for replacememt or refund. Send medium sized S.A.E. for your free capy of our now Autumn Catalogue (Issue No. 6).
Codespeed'a Design, Development and Production teams are also ef your service for quantity/bstch production.

BUT an ELF II KIT microcomputer for less than sume TU games
 VAT.

ELF 11 BOARD WITH VIDEO OUTPUT FEATURING

 THE RCA 1802 COSMAC C.P.U.ADD-ONS

\author{

- POWER SUPPLY (6.3 V AC) for ELF 11 5.00
}
- ELF 11 DE LUXE STEEL CABINET (IBM 8iue) 23.01
- GIANT BOARD KIT System/Monitor, Interface to/ cassette - RS232, TTY etc 35.00
- 4K STATIC RAM board kits (requires expansion power supply) 69.44
- Expansion power supply (required when adding 4 K Rams)
- ASC11 Keyboard Kits 96 printable characters etc
- ASC11 d/lux steel cab. (IBM Blue)
- KLUGE prototype board (build your own circuits)
- 86 pin Gold plated connectors (each) 19.00 50.58
- ELF Light pen writes/draws on TV screens
- Video graphics board 32/64 characters by 16 lines on TV/monitor screens
- ELF 11 Tiny basic on cassette
- ELF 11 Bug/monitor powerful systems monitor/editor
- T. PITMANS shprt course in programming manual (Nil VAT)
- T. PITMAN short course on tiny basic manual (Nil VAT)
- RCA 1802 users manual (NIL VAT)
†- On cassette Text Editor: Assembler: Dissassembler (each) 15.02

SAVE 10% AND BUY ALL THREE TOGETHER All units can be supplied wired and tested Send S.A.E. for comprehensive brochure

P \& PE2.00 NEW: GAMES ON TAPE send for list
Send s.a.e. for brochure and orders to:

DEALER ENQUIRIES WELCOME

Newtronics 138 Kingsland Road London E2 8BY Tel: 01-739 1582
DEPT: P.E.

SOLE U.K.
AGENTS

CHROMASOMNE electronics your soundest comnection in the world of components

Dept PE 1, 56 FORTIS GREEN ROAD, MUSWELL HILL, LONDON, N10 3HN

kontite remote control switch
 -Simple to install even simpler to use

The Transmitter:

is light and cordles and housing the battery. Simply, point the transmitte at the receiver to turn on or off

Now available in the U.K. the 'Kontite' Remote Control unit switches electrical appliances and equipment on or off safely from distances of up to 35 feet.

Televisions, radios, hi-fi equipment, lighting, model trains etc. electric fans, electric fires (up 102 kw) and many other appliances are within its scope, providing that they have a power supply of $240 / 250$ AC single phase. $50 / 60 \mathrm{~Hz}$ and a maximum 10 amp rating and also that the relevant safety regulations are applied.

The unit is ideal for use in the home, office, factory and hospital. Particularly useful as an aid to the disabled and invalid - wherever an electrical appliance is difficult to reach in the normal manner.

The Kontite Remote Control Switch available now through Electrical Component Retailers.

If you have difficulty in locating a stockist please contact:

Kay \& Co (Engineers) Ltd.

Acresfield House, 15 Exchange Street, Bolton. Lancashire. Telephone: Bolton 21041 Telex: 63186

$\left.\begin{aligned} & \text { ZENER DIOOES } \\ & (400 \mathrm{~mW}) \\ & 2.7 \mathrm{~V} \text { ta } 33 \mathrm{~V} \mathrm{Bp}_{\mathrm{p}} \end{aligned} \right\rvert\,$	OPTO/DISPLA		$25 p$	74122		4041		80132		27×501	$16 p$
	ORP12 70p		60 p		40p	4042	58 p	8D135		TX5	21p
	0L704 110p	NE566	140 p	74125/6	34.	4043	88	80140	$35 p$	21×503	17
	$0 L 707$ 110p	TBA641	200 p	74132	48p	4044	90 p	85180	24 p	2TX504	8p
VEro boahds (0.1" Capper)	.125 \% - ${ }^{\text {* }}$	TBA800	100	74141	45p	4048	$55 p$	BF194	10p	2N696	330
		${ }_{\text {2N4 }}$	100 p	74142	200p	4049	30p	BF195	0 p	2N897	3p
$2.5^{\prime \prime} \times 5^{\prime \prime}{ }^{\text {P }}$ 52p	hed 10p	1034	200p	14	550	4050	30 p	8 FF 196	10 p	2N698	Op
$3.75^{\prime \prime} \times 5^{\prime \prime} 82 \mathrm{p}$	G-eenYellow			74151	48 p	4066	38p	BF197	10p	2N914	4p
		IL		74153	520	4069	$15 p$	BF244	19p	2N918	3p
RESISTOAS		140	11	15	89p	4070	15 p		32p	2N1302	38p
(t) wati) E12 10 ohms 1.5 p to 10 Mohms	8R106E	740	11p	74155	$54 p$	4072	15	BFR79	32p	2N1303	60p
	hectifiers	7404/5	${ }^{13} 15$	74156	30 p	4081	5	BFX29	$25 p$	2N2222	21p
	1A/50V 22p	14	15p	74157	62p	4086	669	BFX84	25	2N2369	17p
	1N/400V 34p	7407	20 p	74160	640	4510		BFX87	22	2N2484	30p
PRESETS	2A/50V 40 p	7408	13p	74161	50 p	4511	99	BFX88	27p	2N2648	0p
(horizontal)	2N/400V	74	13 p	74162/3	66p	4516	$95 p$	BFY50	22p	2N2904	3p
100 ohms	DIODES	7411	17p	74164	66p	4518	12p	BFY51	22p	2N2905	23p
to 1 Mohm Bp		7412	$15 p$	74165	45 p	4520	69,	BFY52	$18 p$	2N2907	23p
	0447 Bp	13	270	14166	5p	4528	99 p	8RY3	35p	2 N 292	11p
POTENT: OMETERS	OA9:	74	$4{ }^{4}$	74173	Op			BU208	200	2N305	20
	OA202	741	25p	74174	50 p	tha	AS	MJ295	110	2N3054	50p
(carban)	1N4148	7420	13p	7417	60p	ACl 2	20 p	MUE340	40	2N3055	50p
1 Kohm lo	INSt6	74	21p	7417	53p	AC128	20 p	MJE295		2N3442	150p
2	1 14002	7422	16 p	74180	50p	AC176	20p	MJE3055	85p	2N3702	
dinear or $\log 28 \mathrm{p}$	1 N 4004 sp	427	25p	74181	99p	${ }^{\text {AC18 }}$	21 p	MPF102	32	2N3711	I1p
CERAMIIC Cap	$\begin{array}{ll}\text { IN5400 } \\ \text { 1N5404 } & 13 p \\ 15 p\end{array}$	428	28p	74182	30p	${ }^{\text {A C1 }} 88$	21 p	P103	40	2N3772	180p
(50V) 22pf to 50 nF 2 p		7432	18 p	74190	75p	AD149	${ }^{60} \mathrm{p}_{\mathrm{p}}$	PF10	40	2N3773	330p
	1 15404 15p		30p	74191	70p	40181	40 p	MPF105	40	2N3819	21.
22pF to 50nF2p POLYSTMAENE	VOLTAG	$7437 /$	15p	74192	50p	AD162	${ }^{40}$	MPF106	460	2 N3820	$35 p$
CAP	REgULATORS	1440	${ }^{10} \mathrm{p}$	74193	649	AF1	21p	MPSAO	2 p	2N3823	70p
	$7805 \quad 70 \mathrm{p}$	7441	55 p	74195	65	AF1	24p	MPSAS	26	2N3886	60 p
	$\begin{array}{ll}7812 / 15 & 70 \mathrm{p} \\ 7818 / 24 & 70 \mathrm{p}\end{array}$		43 p	74197	40 p	AF124	34 p	MPSUE	61	2 N3903	200
10pF to inf 5p POLVESTER	7818/24 70p	7443	5 p	74199	${ }^{80}{ }^{p}$	BC107/	10 p	OC35	86	2N3904	0
CAP \{E1 2160 V)	$\begin{aligned} & 7905 \\ & 7912 / 15 \end{aligned}$		8 p			BC147	${ }^{8 p}$	TP29	40	2N3905	Op
	$\begin{array}{ll} 7912 / 15 & 90 \\ 791 / 24 & 90 \end{array}$		60 p			BC148	10 p	TIP308	40	2N3906	p_{p}
Inf to. luF 4 m .15. 22. $.335 p$			65p	c		BC1	10p	TIP31	35p	2N4037	0 p
	IImears	7448	62p	4001	14ρ	8 C158	10 p	TP33	80p	2N4058	33p
47. 68 9p	709	7450	${ }^{62 p}$	4001	14p	8 8167	13 p	T1P3	65p	2N4059	14.
1. OuF 12p	710 33p	7451/3	12p	400	S0p	BC169C	$13 p$	T1P3055	55p	2 N 4060	120
2.2uF 20p	747-14 48p	7454	12 p	4008	$15 p$ 840	${ }^{8 C 177}$	$16 p$ $16 p$	21×107	13p	2N5457	14p
3.3uF 25p	748-8 $\quad 44 p$	7460	12 p	4009	320	BCi78	16p	27×109	13p	2 N 5458	35p
4.7uF 30p	CA3018 86p	7470	17 p	4010	32p	8C179	18 p	2TX300	16 p	2N5459	$35 p$
ELECTROLYTIC	$\begin{aligned} & \text { CA3028A } \\ & \text { CA3048 } \end{aligned}$	7472	$21 p$	4011/2	$15 p$	BC18	10p	218301	18 p	2N6027	45p
	CA3080 75p	7473/4	$24 p$	4013	32 p		10 p	2x30		mains	
MIN (25V)	CA3130 100p	7475	30p	4014	35	${ }_{\text {BC209 }}$	11 p	21x303	240	Thans	ME
TuF to 50uF. 5 p	CA3140 45p	7476	25 p	4015	3 p	8C209	110	210304	270	9.0.9V.	
68uF. 1uUuF $6 p$	LF35in 65p	7480	$25 p$	4016	37.	BC214	140	218311	19p	200ma	0p
150wF 9p	LF356N 85p	7486	22p	4017		BC461	34 p	21×341	22 p	15-0-15V	
220 F 10 p	LM301an 32p	7490	32 p	4018	57	BC471	4,			00ma 1	100p
330 of 12p	$308 \mathrm{~N} \quad 50 \mathrm{p}$	7491	28 p	4019	45p	8CCT8		E for complete list.			
500 uF 13p	$\begin{array}{cc}318 & \text { 201p } \\ 324 & 740\end{array}$	7492	170	4020	92 D	8cal9					
1.000 uF 24p	LM339 60	7493	32p	4021	90 p	$8 \mathrm{BC5} 47$				ip \& p.	
DIL SOCKETS	LM348 90p	7494	30p	4022	85p	BC548	,	PRICES VAT INCLUSIVE			
8 pin 11p	LM377 185 LM380N $15 p$	7495	30 p	4023	189	$8 \mathrm{CL54} 9$	P	DETA TECH			
$14 \mathrm{pin} \quad 13 \mathrm{p}$		7496	420	4024	47p	BC557	13 p				
$16 \mathrm{pin} \quad 14 \mathrm{p}$	LM382N 140p	74100	${ }^{509}$	4025	18 p	BC558	13p				
18 pin 18 p	LM1310N150p LM3900N 55p	74105	43 p	4027	32 p	8C559	$15 p$	UNIT 4			
$22 \mathrm{pin} \quad 22 \mathrm{p}$			20 p	4028	54 p	8crio	$16 p$	62 NAYLOR ROAD			
$24 \mathrm{pin} \quad 24 \mathrm{p}$	LM3909N 70p		$25 p$	402	63p	BCr71	$19 p$				
280	MC1496P ${ }^{8} 5$		40p	403	48p	BCY72	18p				
pin 40 p	NE531 105p	74121	28 p	4035	107p	B0131	38p				

How to Build a Working Digital Computer $£ 4.60$ How to Build a Computer Controlled Robot 55.95 Illustrating Basic, Donald Alcock $£ 2.25$ Basic Basic, J. Coan $\mathbf{£} 6.50$
Advanced Basic, J. Coan
Intro. to Micros, Vol.0, Osborne
Intro. to Micros, Vol.1, Osborne
Microprocessors, Chips to Systems, Zaks
Microprocessors, Interfacing Tech., Zaks TTL Cookbook, Lancaster
CMOS Cookbook, Lancaster
TV Typewriter Cookbook, Lancaster
Cheap Video Cookbook, Lancaster
6800 Assembly Language Programming, Osborne 8080A/8085 Ass. Language Prog., Osborne 6502 Applications Book, Zaks
280 Assembly Language Programming, Osborne Microprocessor Data Manual, Bursky Programming the 6502, Zaks
How to Program Micros, W. Barden Jr.
£6.95

-Phone in your Access, Barclaycard No 0742.585490 0742.585490 or complete this
 Please supply

Send s.a.e. for full list. Prices correct at going to press. Add $12 p$ insurance on books it required.
[C.Cromenco IT 2020 oppla II] DET TEXAS INSTRUMENTS narcom-I

| enclose:- £

Cheque/Postal Order No.
Barclaycard/Access No.
Narne:
Address

AITKEN BROS
35, High Bridge, Newcastle upon Tyne

Tel: 063226729

EXP300

PB6Kit

EXP300
550 contacts with two 50 -point BUS bars. Size $152 \times 53 \mathrm{~mm}$. $\mathbf{E 6 . 9 5}$. PROTO-BOARD 6 KIT 630 contacts, four 5 way binding post accepts up to 614 pin DIPs. £10-96.

CSC LOGIC PROBES

LP-2 ECONOMY PROBE

Min. pulse width 300 nanoseconds, 300 Kด input impedance, tests circuits up to 1.5 MHz . Detecting pulse
iralns or single-shot event in TTL. DTL. HYL. and CMOS circuits. $\mathbf{E 2 0} \mathbf{- 9 5}$.
LP-1 Memory Probe £35.65 LP-3 Migh Speed Memory Probe £56.75 CSC catalogua available. Please send S.A.E. CALSCOPE SUPER 6 £186.30 A portable single beam 6 MHz bandwidth oscilloscope with easy to use controls. High galn to $10 \mathrm{mv} / \mathrm{cm}$ and wide time base range from 1 . s to $100 \mathrm{~ms} / \mathrm{cm}$. Full specitication to rebase range from $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$. Full specification to re-
quest. Please send S.A. E. Professional scopes you can afford. CALSCOPE SUPER $10 \quad £ 251.85$
A dual trace 10 MHz instrument of the very highest performance and quality. It has an accuracy of 3% which 15 achieved by the use of built-in stabilised power supplies which keep the trace rock steady over a wide range of mains fluctuations. Full specification on request. Please send S A.E.

TE20D TECH R.F. SIGNAL

GENERATOR

俍 calibrated. Variable RF attenuator 240 VAC. Size $140 \times 215 \times 170 \mathrm{~mm}$.
Price $£ 52.50$ ($\mathbf{£ 5 0 . 5 8}$ to callers).
TE22D TECH AUDIO GENERATOR
Sine \& square wave audio generator. Sline wave ranye - 20 cps 1020 K cps in four bands
Square wave range 20 cps to 15 K cps in four bands 240 V A.C. Size $140 \times 215 \times 170 \mathrm{~mm}$. Price E 63.31 (E 51.31 to collora).
TMK 500 MULTIMETER 30.000 o.p.v. AC volts 2.5, 10. 25, 100, 250, 500, 1000. DC volts. $0.25,1,2 \cdot 5.10 .25$. 100. 250, 1000. OC current 50 ya , $5 \mathrm{MA} .50 \mathrm{MA}, 12$ amp. Resistance $0-6 \mathrm{~K}$. 60K. 6 MEG. 60 MEG . Decibels. -20 to +56 db . Buzzer continuily test size, $160 \times 110 \times 55 \mathrm{MM}$. PRICE £25.95.

CSC EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter/number identified nickel-silver contact holes. Start smalf and simply snap lock boards together to build breadboards of any size.

SINCLAIR DM350
 CLAIR DM4

£79.95

Sine 255×1
DM350 $3 \ddagger$ digit display OM450 4$\}$ dlgit display. Both provide six functions in 34 ranges. D.C. voltage 10 N to $1200 \mathrm{~V}(100 \mu \mathrm{~V}$ on DM 35 O) A.C. voltage $100 \mu \mathrm{~V}$ to 750 V . D.C. current inA to 10A. A.C. current inA to toA resistance $10 \mathrm{~m} \Omega$ to $20 \mathrm{M} \Omega$ (100 mg opn DM350). Accessorles for DM350 \& 450 as for DM235 betow. Full spec. on request. Please send S.A.E.
Sinclair PMM200 frequency meter

Stze $157 \times 76 \times 32 \mathrm{~mm}$.

Range 20 Hz to 200 MHz . Accessories and illustration as for POM 35 below. $\mathbf{5} 57.95$.

SINCLAIR PDM35

DIGITAL POCKET MULTIMETER
OC volts (4 ranges) 1 mV to 1000 V AC volts iv to 500 V DC current (6 ranges) 1 nA to 200 MA . Resistance (5 ranges) in to 20 MEGS. PRICE £34.95. AC Adaptor £3.95 de luxe padded carrying case £3.50 MN 1604 Battery $£ 1.28$.
Size $157 \times 76 \times 32 \mathrm{~mm}$.
SINCLAIR DM 235
BENCH-PORTABLE DIGITAL MULTIMETER.
OC volts (4 ranges) 1 mV to 1000 V AC volts $(4$ ranges) 1 MV to 750 V AC \& DC current $1 \mu \mathrm{a}$ to 1000 MA Resistance $(5$ ranges) in to $20 \mathrm{MEG} \Omega$. PRICE $£ 57.95$. Carrying case $£ 9.95$. AC adaptor/charger. $£ 4.50$. Rechargeable Battery tor/charger
Pack. $\mathbf{E 9 . 7 0}$
Size $255 \times 148 \times 40 \mathrm{~mm}$.

PANEL METERS

DIMS $60 \mathrm{MM} \times 45 \mathrm{MM} .50 \mu \mathrm{amp} .100 \mu \mathrm{amp} 1$ MA. $5 \mathrm{MA} .10 \mathrm{MA} .50 \mathrm{MA} .100 \mathrm{MA} .500 \mathrm{MA} .1 \mathrm{amp}, 2$ amp. $25 \mathrm{~V} \mathrm{dc}, 30 \mathrm{~V} \mathrm{dc}, 50 \mathrm{v} \mathrm{AC} .300 \mathrm{Vac} . " S " \because V \mathrm{~V}^{\prime \prime}$ $50-0-50 \mu \mathrm{a}, 100-0-100 \mu \mathrm{a}$, $500-0-500 \mu \mathrm{a}$. PRICE £5.95.

DESOLDERING TOOL

£6.45
SUCTION PUMP.
Education Establishment Orders Accepted.
PHONE OR SENO YOUR ACCESS OR
BARCLAYCARD NUMBER FOR SALES OVER $£ 10$.
ALL PRICES INCLUDE POSTAGE AND VAT.

J. BIRKETT

(Partners: J. H: Birkett. J. L. Birkett) Radio Component Suppliers

25 The Strait, Lincoln. LN2 1JF

10 WATT STUD MOUNTING ZENERS $18 \mathrm{v}, 22 \mathrm{v}, 33 \mathrm{v}, 68 \mathrm{v}, 100 \mathrm{volt}$. All at 35 p each. 10 AMP 2 POLE MAKE TOGGLE SWITCHES \& 50p.
CMOS CO 4518 - 7 Ep each. 4 for $\mathbf{~ C 1 . 6 0 . ~}$
MINIATURE NON POLABISED CAPACITORS lut 63v.w. - 5p, 4.7ut 63v.w.. © 10p,

ELECTROLYTIC CAPACITORS $5000+5000$ Uf $25 \mathrm{v} . \mathrm{w}_{\mathrm{H}}$. 75 p .
MINIATURE BRIDGES 100 PIV 1 AMP - $20 \mathrm{p}, 200$ PIV 4 AMP - 60 p , 50 PIV 20 AMP E1. 30.
2N 657100 VOLT 800 mA NPN TO 5 TRANSISTORS * 25p each.
THYRISTORS 10 AMP TYPE 100 PIV - $28 \mathrm{p}, 400$ PIV - $55 \mathrm{p}, 800$ PIV 65 p .
UNIJUNCTION TRANSISTORS $2 N 4871$ - 22p, 2 N 6028 \& 25 p, 2 N 6029 •25p, MEU 21 22p, MU $4894 * 22 \mathrm{p}$, GE4JOSE29 © 22 p , TIS 43 TYpe : 22 p .
12 WAY PLASTIC BARRIER STRIPS 5 Amp e $30 \mathrm{p}, 4$ for El .
PRECISION METAL FILM RESISTORS O.5\% 68R, 1OOR, 121R, 150R. 24OR, 274R, 332R, 360R, 365R, 562R, 619R, $750 \mathrm{R}, 820 \mathrm{R}, 909 \mathrm{R}, 910 \mathrm{R}, 1 \mathrm{~K}, 2.15 \mathrm{~K}, 2.2 \mathrm{~K}, 2.21 \mathrm{~K}, 3.01 \mathrm{~K}$, $3.9 \mathrm{~K}, 5.1 \mathrm{~K}, 6.2 \mathrm{~K}, 10 \mathrm{~K}, 18 \mathrm{~K}, 75 \mathrm{~K}, 150 \mathrm{~K}, 200 \mathrm{~K}, 392 \mathrm{~K}, 597 \mathrm{~K}, 600 \mathrm{~K}, 1.21 \mathrm{M}$. All at 6 p each. 50. BC 107-8-9 TRANSISTORS Assorted Untestod 60p.
50. PLASTIC PNP TRANSISTORS Untested - 80 p .
50. PLASTIC BC 107-8-9 TRANSISTORS Assorted Untested *60p 50. OC 71 TRANSISTORS Uniested for 75p.
25. STUD MOUNTING 10 AMP DIODES Untested 60p.
10. STUD MOUNTING 20 AMP DIODES Untested 60 p.
50. 2 WATT ZENERS Untested Assorted • BOp.
50. 1 AMP TO5 S.C.R's Untested for CI .
25. 5 AMP STUD MOUNTING S.C. R's Untested 75p
10. ASSORTED PUSH BUTTON BANKS less Knobs for $£ 1.30$,
10. ASSORTED SLIDER POTENTIOMETERS for E1.

ELECTROLYTIC CAPACITORS SCrew Terminals. 680uf 160v.w. - 20p, $2400 \mathrm{uf} 150 \mathrm{v} . \mathrm{w}$. £1, $2800 \mathrm{uf} 100 \mathrm{v} . \mathrm{w} ., ~ £ 1,4700 \mathrm{uf} 40 \mathrm{v} . \mathrm{w}$. . 80 p . 4700 uf 63v.w., £1, Tag Ended.
 ${ }^{50} \mathrm{p}$.
SPECIAL PAPER CAPACITOR 10 uf 370 VAC e 21.50 each, 135 uf 290 VACW . E6 each. SOPIV $1 \frac{1}{2}$ AMP WIRE ENDED DIODES \& 7p, 6 for 25p. P2102 1024 BIT FULLY DECODED STATIC RAM \& E1.
10 ASSORTED MULTI-TURN TRIM POTENTIOMETERS \& 65p. 12 WAY CERAMIC TAG STRIPS $015 p$ each.
MINIATURE R.F. CHOKES 3 U.H., 5 U.H., 22 U.H., 27 U.H. All at $7 p$ each
400 mW ZENERS unmarked good. $3.6 \mathrm{v}, 6.8 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 18 \mathrm{v}, 24 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}$. 36 volt. All at 10 for 40 p.
MAINS TRANSFORMERS 240 volt Input. Type 1.24 volt Tapped at 14 volt 1 amp e 81.30 (P\&P 25p), Type $2.30-0-30$ volt 500 mA \& $£ 1.30$ (P\&P 25p). Type 3.45 volt 6 amp - $\mathbf{E 4 . 5 0}$ (P\&P 95p). Type 4.20 volt 1 amp Twice, 10 volt 1 Amp Twice o $£ 4.50$ (P\&P 95p)
MULLARD . Iuf $160 \mathrm{w} . \mathrm{w}$. POLYESTER CAPACITORS $~ 22 \mathrm{p}$ doz
OP-AMPS MC 1439G at 40p each. 3for f1.
Please add 20p for post and packing, unless otherwise stated, on U.K. orders under $\mathbf{f 2}$. Overseas postage charged at cost.

ELECTROVALIE

LEADING DIRECT SUPPLIERS FOR

NASCOM MICROCOMPUTERS AND FULL SUPPORTING RANGE OF ITEMS TO ENABLE YOU TO WORK AT PROPER PROFESSIONAL LEVELS

- Appointed Nascom stockists
- Widest possible range stocked
- Information on request
* Enquiries from trade, industrial and educational users invited

We are also appointed distributors for the fine products of:
SIEMENS, ISKRA, RADIOHM, VERO AND MANY OTHER FAMOUS MANUFACTURERS

It's a good deal better from

Be among the very first to ${ }^{\text {raceive your }}$ FREE
catalogue 10 (Ready shortly) by sending your name and address Now. - packed with ftems, illustrations etc).

- We pay
postage
in U.K. on orders list vatue f5 or over. If under, add 27p handting charge.
We give
discounts
on C.W.O. orders, except for a fow items marked for a few items marked
Net or N in our catalogue Net or N
price list.
5% on orders, list value
$5 \% £ 10$ or more
on orders list value $10 \% £ 25$ or more. Not applicable to Access or Barclaycard orders.

We stabilise prices.
by keeping to our printed price lists which appear but three or four times a year.
Wè guarantee all products brand new. clean and to maker's spec. No seconds, no surplus.

Dapt. PE12, 28 St. Judes Road, Englefieid Graen, Egham, Surrey TW2O OHE
Phone: Egham 33603. (London, dial 87 first. STO 0784). Telex 264475.
Northern Branch (Personal shopders only), 680 Burnage Lane.
8urnage. Manchester M19 1NA. Phone (061) 43244945.

The NEW Marshall's 79/80 caralogue is just full of components

and that's not all. . .

. . . our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall's
These include Audio Amps, Connectors, Boxes, Cases. Bridge Rectifiers, Cables, Capacitors, Crystats, Diács, Diodes, Displays. Heatsinks, I.Cs, Knobs, LEDs. Multimeters. Plugs, Sockets, Pots, Publications, Relays, Resistors, Soldering Equipment, Thyristors, Transistors, Transformers, Voltage Regulators, etc., etc
Plus details of the NEW Marshall's 'budget Credit Card. We are the first UK component retailer to offer our customers our own credit card facility
Plus - Twin postage paid order forms to facilitate speedy ordering.
Plus - Many new products and data.
Plus 100 s of prices cut on our popular lines including I.Cs. Transistors, Resistors and many more.
If you need components you need the new Marshall's Catalogue.
Available by post 65 p post paid from Marshall's, Kingsgate House, Kingsgate Place, London NW6 4TA. Also available from any branch to callers 50p

Retail Sales: London: 40 Cricklewood Broadway, NW2 3ET. Tel: $01-4520161 / 2$. Also 325 Edgware Road, W2. Tel: 01-723 4242. Glasgow: 85 West Regent Street, G2 200. Tel: 041-332 4133. And Bristol: 108A Siokes Croft, Bristol. Tel: $0272426801 / 2$.

Electronics Make ajob-or hobby-ofit

The opportunities in electronics, today, and for the future are limitless - thruughout the world - jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, T.V. and all associated equipment - can make for a varied, interesting and highly renumerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equipment coming on the world market.
We give modern training courses in all fields of electronics. practical D.I.Y. courses - courses for City and Guild exams, the Radio Amateur Licence and also training for the new Computer Technology. We specialise only in electronics and
 have over 40 years of experience in the subject. - Details sent without any obligation from

RST

VALVE MAIL ORDER CO.
Cumax House
Fallsbrook Road, London SW16 6ED
SPECIAL EXPRESS MAIL ORDER SERVICE

[^2]U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

MInimum post 30p. Access and Barclaycard Same day deapatch Redio Booke and Componente Lista 20p Opan 9-8 Sat. 9-5 (Closed Wedneadey all day). Tel. 01-684 1885

AT BREADBOARD '79 ALCON PRESENT THE BIGGEST RANGE OF MULTIMETERS

and the new AMAZING MINI 20

a complete pocket multimeter at only $£ 27.37$ incl VAT.

PLUS MANY OTHER INCREDIBLE BARGAINS!! SEE YOU AT STAND C8

For details of this an other exciting Alcon instruments please write or phone:

A 4 ETON Instruments Ltd.

[^3]
LIGHTING \& AMPLIFIER MODULES FROM L\&B JUST LOOK AT THESE PRICESI

SUPERIOR HIGH OUALITY LIGHTING CONTROL MODULES. ALL 1000 WATTS PER CHANNEL NO POWER SUPPLIES NEEDED. ALL REAOY TO GOI

PREAMPLIFIERS
 tape $\quad \mathbf{~} 14.50$
LBPA2. 4 channel gen. purpose mixer $\times 13.50$ LBPA3. Stereo disco with mic.

- LB25 -
$25 \mathrm{~W}, \mathrm{RMS} 4 \Omega$
$10 \mathrm{~Hz}-50 \mathrm{kHz}$
T.H.D. $0.1 \% 90 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$
$£ 8.20$
- LB31000SL -

3 channel Sound-Light. Zero switching, high sensitvity \&
input impedance. Excellent input impedance. Excellent
Separation.

Excellont or | disco's. | |
| :--- | :--- |
| | |
| | |
| | |
| 18.90 | |

- LB41000LS - 4 channel sequencer. Suedorandom with two speed con-
trols. rols.
Disco/band lighting $\mathbf{~ 1 4 . 9 0}$ affects.

-LB31000LD -

3 channel lamp dimmer. Control from full off to full on. ideal for $\quad 12.90$

POWER SUPPLIES LB25PS $£ 10.00$ LB100PS................ 12.20

NEW.

- LB11000LD -

Super tiny single channel lamp dimmer.
For stage
lighting.
£5.70

- LB31000sLC All the advantages of the 31000 SL , active filters \& automatic chasing in the absence of a music inpur.

E28.90
-LBB1000LC-
8 channel chase. Chase rate 8 retum speed controls. Optional foot switch trigger/trig o/p for module cascading. A breakthrough in $\mathbf{E 2 5 . 5 0}$ modular technolog.

- LB250 -

250W R.M.S. 4Ω $10 \mathrm{~Hz}-20 \mathrm{kHz}$ T.M.D. 0.3\% 110 dB S/N

$£ 29.50$

- LB100 -

100W R.M.S. 4Ω $10 \mathrm{~Hz}-25 \mathrm{kHz}$
T.H.D. $0.4 \% 80 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ $£ 15.70$

All prices include VAT. Add 50p p/packing. Quantity/trade and overseas inquirles welcome. For further information send a SAE to:
L\&B ELECTRONICS

45 WORTLEY ROAD, W. CROYDON SURREY CRO 3EB. TEL: 01-6894138

Please phone for availability before ordering. All our prices include 15\% VAT.
Companies invited to send SAE for our up to date Wholesale price list.

WHOLESALE

ELECTRIC COMPONENTS

	Stock	Price
AU113	183	.98
BC183A	2,000	.036
BC184L	7,000	.036
BC212A	4,000	.036
4v7 Zener	12,000	.02
3K Presets	20,000	.013
TBA800	6,000	.44
7448	1,600	.20
.01 uF Disc	10,000	.01
16 Pin Dil	10,000	.08

We also buy large packages of Components.

STRUTT

ELECTRICAL AND MECHANICAL ENGINEERING LTD.
ELECTRONIC COMPONENT DISTRIBUTORS
3c, Barley Market St., Tavistock, Devon. PL19 O5F
Tel: Tavistock (0822) 5439 Telex: 45263

radio data

 SUPPLEMENT A mine of reference information on building and using radio equipment for both amateur and broadcast bands enthusiasts.
New series

RADIO CONTROL

(liquid crystal display) with alarm, time and stopwatch
capabilities.

More and more people are building radio-controlled

SPECIAL XMAS

 model aircraft, boats and cars. You can obtain superb control withthis easy-to-build proportional proportional system
featuring the latest developments in f.m. capabilities
techniques.

FLADAR
 TRANSFORMERS

PRIMARY $0-240 \mathrm{~V} 50 \mathrm{~Hz}$
IF YOUR REQUIREMENT IS NOT FEATURED BELOW SEND FOR OUR TRANSFORMER CATALOGUE PRICE 4Op

Type	Voltage	Current	E	o/p	Type	Voltage	Current	ε	p/p
06FE06	6+6	0.54 EACH	1.82	60p	60FE24	$24+24$	1.2A EACH	4.58	102p
O8FE	6+6	0.6A EACH	2.19	${ }^{60}{ }^{\text {p }}$	80FE24	$24+24$	1.5A EACH	5.66	120p
12FEO6	${ }^{6+6}$	1.6AEACH	2.43	72p	S0FE28	$28+28$ 28 8	0.75A EACH	3.74 4.58	84p
50FEO6	${ }_{6+6}^{+6}$	3A EACH	3.74	884 p	805		1.4 AEACH		
60FE06	$6+6$	4 E EACH	4.58	102p					
					20 FE 30	$30+$	0. 35 A EACH		84p
O6FEO9	$9+9$ $9+9$	O. 34 0.54	1.82 2.19	60p	50FE30 60FE30	$30+30$ $30+30$	O.75A EACH	3.74 4.58	-84p
12 FEO 9	$9+9$	0.75A EACH	2.43	72 p	80 FE30	+ 30	1.2AEAC	5.66	120
20 FEO9	9+9	1A EACH	3.06	84 p		MUIT	TAP RANGE		
60FEO9	$9+9$ $9+9$	2. 3 A EACH	4.58	102 p			Ap RaN		
		0.25		60p	GE	$\begin{aligned} & \text { GES AVAIL } \\ & 12.15, \end{aligned}$	ABLE 3.4, 5 $18,20,24,3$		
O8FE	$12+12$	O. 3 A E	2.19	$6{ }^{60 p}$	30FE30		${ }^{\text {A }}$		84 p
12 FE	$12+12$	O. 5A EACH O. 8 EACH	2.43	72p	OF		2 A	4.80	1220
50 FE 1	$12+12$	$1.8 A$ EACH	3.74	84p	80F E36		3A	5.88	120p
60FE12	$12+12$	2.5A EACH	4.58	102 p		ENTRE TAP	AP SECOND	AFY	
80FE12	$12+12$	3A EACH	$5 \cdot 66$	120p		ENTRETAP	Ap secon	保	
06FE		0.2	1.82		O6FE30	6-0-6	-80A		${ }^{60 p}$
O8FE	$15+1$	O.25A EACH	2.19	60 p	12 FE 50	12-0-12	1 1A	2.40	72 p
12 FEE	15+15	O.4A EACH	2.43	72 p 840	20FE80	20-0.20	1 A		84 P
50 FE,	15+15	$1.5 A$ EACH	3.74	84p	60FE80	$20-0-20$ $28-0.28$	2. 2 A A		P
60FE1	$15+15$	2 A EACH	4.58	102p		28-0.28			102p
8OFE15	15	EACH	5.6	120p					
	20	0.			硅	15-0-15	6 6A		
	20	O. 05 LSA EACH	2.82	${ }^{6} 20$	OFE				
20FE20	20+20	-5 0.5 EACH		84 p	100FE26	${ }^{26-0-26}$	3.5A		1380
, 50FE2O	20+20	1.2A EACH	3.74	$8{ }_{8}$	100 FE 100 F	28-0.28	$3.5 A$ $3 A$		1380
60FE20	$20+20$	$1.5 A$ EACH	58	1020	100FE36	36	3 A	6.05	1380
8OFE20	$20+20$	2A EACH		120 p	100F236		3A		1380
					150	15-0	7 A	7.47	
	Niger	RANSFO	RS		150 F	26			
48FE12	0-6-1				FE	36-0-3	$4{ }_{4}$		
66FE	0-6-1	SA		102p	150FE42	42-0-42	3 3A	7.47	Op
70FE 1	0.6-12	${ }^{6 A}$		120 p					
90FEE 2	-6-6-12	8A	6.75	138 p	250 FE 30	$\begin{aligned} & 28-0-28 \\ & 30-0-30 \end{aligned}$	${ }_{7 A}$	8.60	175
12FE24	$24+24$	O.2A EAC	2.43	72p	250FE42	42-0-42	5.5A	8.60	175p
FLADAR ELECTRIC P.O. BOX 19 WESTCLIFF-ON-SEA ESSEX. 0702-613314			TRADE ENQUIRIES WELCOME			PAYMENT TERMS: C.W.O. Cheques, Postal Orders All Prices include 15% V.A.T.			

Random Electronic EASY DICE
Build your own 'EASY DICE' from the 5 intergrated circuits and full components supplied, including box and descriptive instructions.

All you need is a soldering iron
TWO OICE FACES TOUCH CONTROL
a *Self Assemble Dice
£3.95
b *Ready built Dice
£4.75 (INCL. P+P.)

Order now frum: Fringewood Electronics Ltd 1 Hatton Court Ipswich Suffolk 0473-2101b1
Amount enclosed $£$
Name
Address

please state amount required in appropriate box | | b | b |
| :--- | :--- | :--- |

Microcomputers are coming - ride the wave! Learn to program
Millions of jobs are threatened, but millions more will be created through the microcomputer revolution. Will YOU sink or swim? Be one of the people who welcomes computers and the end of boring jobs.
Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency - all you need to start with is a knowledge of simple arithmetic and the use of decimals. And you don't need a computer.
This unique course comes as four A4 books, written by three authors well-known in the fields of microcomputing, selfinstruction and writing clear English. In 60 straightforward lessons you learn the tive essentials: problem definition, flowcharting, coding the program, debugging, and preparing clear documentation.
Every lesson has thought-provoking questions and we never ask for mindless drudgery. You will know that you are mastering the material and feel a rare satisfaction. Harder problems are provided with a series of graded hints, a unique and really helpful approach. So you never sit glassy-eyed with your mind a blank. First time through, you may need to read most of the hints, but you will soon learn to tackle tough programming tasks - such as writing programs for computer games, preparing graphs on an output printer, calculating compound interest tables and estimating costs.

COMPUTER PROGRAMMING IN BASIC $£ 7.50$

Book 1 Computers and what they do well; READ, DATA, PRINT; powers, brackets, variable names; LET; errors; coding simple programs.
Book 2 High and low level languages; flowcharting; functions; REM and documentation; INPUT, IF...THEN, GO TO; limitations of computers, problem definition.
Book 3 Compilers and interpreters; loops, FOR...NEXT; RESTORE; debugging: arrays; bubble sorting; TAB.
Book 4 Advanced BASIC; subroutines; string variables; files; complex programming; examples; glossary.

THE BASIC HANDBOOK $£ 11.50$

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

FORTRAN COLURING BOOK $£ 5.40$

"It you have to learn Fortran (and no one actually wants to assimilate it for the good of the soull buy this book. Forget the others-this one is so good it will even help you understand the standard, dense, boring, unintelligible texts." New Scientist.
A.N.S. COBOL $£ 4.40$

Covers the most widely used computer language in business today. It teaches how to write a COBOL program and compile it effectively, paying proper attention to spelling, punctuation, and format.

THE ALGORITHM WRITER'S GUIDE $£ 3.40$

FLOW CHARTS \& ALGORITHMS help you present: safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.
The Algorithm Writer's Guide
explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to

Cambridge Learning Enterprises

Understand Digital Electronics

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be 'phoning people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.
After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

DIGITAL COMPUTER LOGIC AND ELECTRONICS $£ 6.50$

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.
Book 1 Binary, octal and decimal number systems; conversion between number systems.
Book 2 AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables.
Book 3 Positive ECL; De Morgans Laws; designing logic circuits using NOR gates, Book 4 R-S and J-K flip flops; binary counters, shift registers and half adders.

DESIGN OF DIGITAL SYSTEMS £10.50

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; 1hree-state and wired logic. Book 3 Half adders and full adders; subtractors; serial and paraliel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring. Johnson and exclusive-OR feedback counters: random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; insiruction sets; instruction decoding; control programme structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

O-LEVEL ENGLISH LANGUAGE £6.50

More and more jobs require a C-GRADE PASS, and over 250,000 people fail to get this every year. Will one of them be in your family? This new course, written by experts in a style that's serious yet fun to read, shows you how to mark your own work and compare it with the work of other people in their exam year. Set your own pace and assess your results immediately with no postal delays: watch your speed and standards improve. In Book 1 learn how you will be marked on COMPREHENSION, Book 2 covers SUMMARY.
PUNCTUATION \& SPELLING, and Book 3 coaches you in the principles of COMPOSITION. Size: 3 A4 volumes totalling 250 pages.

SELF-INSTRUCTION COURSES

CAMBRIDGE LEARNING ENTERPRISES, UNIT 25. RIVERMILL SITE, FREEPOST, ST.IVES, HUNTINGDON, CAMBS PE17 4BR, ENGLAND.
TELEPHONE: ST.IVES (0480) 67446
All prices include worldwide postage (airmail extra) If order comes to $£ 15$ or more, deduct $£ 2$
Please' allow 21 days for detivery
GUARANTEE No risk to you.
If you are not completely satisfied your money will be refunded.

Please send me the following books:
Computer Programming in BASIC (4 books) at $\mathbf{C 7 . 5 0}$The BASIC Handbook at $£ 11.50$
.....FORTRAN Coloring Book at $£ 5.40$
.....A.N.S. COBOL at $\mathbf{E} 4.40$
.....Algorithm Writer's Guide at $£ 3.40$
.....Digital Computer Logic \& Electronics (4 books) at £6.50
......Design of Digital Systems (6 books) at $\mathbf{£ 1 0 . 5 0}$
.....O-Level English Language (3 books) at £6.50
I enclose a *cheque/PO payable to Cambridge Learning Enterprises for \mathbf{E}..
Please charge my
*Access/Barclaycard/Visa/Eurocard/Mastercharge/Trustcard
account no.
(*delete where applicabla)
Signature...
Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers (inc. Eire) should send a bank draft in sterling drawn on a London Bank, or quote credit card number.

Name
Address

Cambridge Learning Enterprises, Unit 25, Rivermill Site,
FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR, England.

MICROPROCESSOR MULTI-ALARM/CHRONO WATCH.

£39.95 inc.
This 'BELTIME PICOQUARTZ' has more functions than any other watch we ve seen.

ANALOGUE QUARTZ

Exceptionally good looking watch with conventional display but digital accuracy.

ONLY
£23
inc.

SPARKS DEVELOPMENTS, 53 North Street, Melbourne, Derbyshire DE17 1 FZ.

BELTIME ALARM/CHRONO

Advanced and accurate, this watch has a total of 29 functions. 18 time functions, 4 alarm functions and 17 chronograph functions.) World timer version illustrated but other styles available.
£19.95
All products carry full 7 day money back reassurance plus 12 month guarantee. Please add 50 p for each spare battery required. SAE for illustrated details of other bargains. 2008 to cater for $28,29,30$ or 31 day months. Choice of 12 or 24 hour mode. Back light.
D. 2nd time zone with all above functions. Dally alarm facility for either time zone. 2 nd alarm to remind you of appointments. Chronograph $1-(1 / 100 \mathrm{sec})$ accumulative, split or lap modes. Records up to 24 hours. Optional alarm beep every 30 seconds.
H. Chronograph 2 - Counts down from preset time to zero when it sounds alarm and starts chrono 1.
J. Chime - Optional programming of hourly chime.

5 function - Hours, mins, secs, day, date, back light, auto calendar. Only 6 mm thick. Elegant matching metal bracelet. State preference for gold or silver colour.
A. Normal display - hours, mins, secs, date, weekday in English, French, German, Italian or Spanish.
B. Month and year - programmed up to year
 £11.95 £8.95

PLEASE MENTION PRACTICAL ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS

Amplifiers from HiAmp. All fully short circuit and open circuit protected with thermal limiting. Making these amplifiers indestructable from stress other than incorrect supply voltage.

1) $£ 5.19 \quad 10$ watts into $4 \mathrm{ohm} .1 \%$ distortion max. $30 \mathrm{~Hz}-80 \mathrm{KHz}$, supply voltage $\pm 18 \mathrm{v}$.
 $30 \mathrm{~Hz}-80 \mathrm{KHz}$, supply voltage $\pm 22 \mathrm{v}$.
2) $£ 15.7950$ watts into $4 \mathrm{ohm} .1 \%$ distortion max. $30 \mathrm{~Hz}-80 \mathrm{KHz}$, supply voltage $\pm 22 \mathrm{v}$.
3) $£ 23.32100$ watts into 4 ohm 1% distortion max. $30 \mathrm{~Hz}-80 \mathrm{KHz}$. supply voltage $\pm 32 \mathrm{v}$.
All prices include P. P
Make your own keyboards - ML-3 the reccapable switch. ML-3 individual keyboard switch with reccapable top allowing lettering by individual.
$\begin{array}{lll}\text { Only: } & 1-10 & 30 p \text { each } \\ & 11-50 & \text { 27p each }\end{array} \quad$ P. $\&$ P. 30 p..
JONES ELECTRONIC SUPPLIES
588 ASHTON ROAD, HATHERSHAW. OLDHAM, OL8 3HW Tel: 061-652 9879'Telex: 668250

FIRST

and STILL BEST!
We've been producing our Electronics Components Catalogue for over 20 years. During that time we've learned a lot, not only in the art of catalogue production but in building a business that serves the needs of constructors. Little wonder that we have a reputation second to none for our catalogue - and for the service that backs it up. Experience both for yourself. Just send £1.30 with the coupon and a catalogue will come by retum of post.

- About 2,500 items clearly listed and Indexed.
- Profusely illustrated throughout.
- 128 A-4 size pages, bound in full-colour cover.
- Bargain list of unrepeatable offers included free.
- Catalogue contalns details of simple Credit Scheme.

HOME RADIO (Components) LTD., Dept. PE., 234-240 London Road, Mitcham, Surrey CR4 3HD

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your require. ments.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

Nicad rechargeable cells, replacement sizes (Sub-C) 1.2AH £1.99, U11 (C) $1.8 \mathrm{AH} £ 2.75, \mathrm{U} 2$ 4AH $£ 3.00$, Penlite $£ 1.50$. P\&P $16 \mathrm{p} / \mathrm{Cell} 12 \mathrm{~V}-5 \mathrm{~A}$ accumulators, Component packs 10 p stamp for list. CWO. HARNETT SUPPLIES, 1 Harnett Cottage, Bogle, Lynsted, Sittingbourne, Kent. (Postal Only).

 Vertical Mounting Ceramic Plate Caps. 50 V . E12 22 pf. to 1000 pf. E6 1500 pf. to 47000 pf. -2 p . Miniature Polyeator 250 V Vort. Mtg. $\mathbf{E 6}$ Sories: Mylar (Polyaster) Film 100 V Vortical Mounting. $.001, .002$, $.005-34 \mathrm{p} . .01, .02-4+\mathrm{p} .04, .05-54 \mathrm{p}$. LED's. 3 \& 5 mm . Red- 10 p . Green \& Yellow- 14 p . Grommets for $3 \mathrm{~mm} .-11 \mathrm{P} .2$ pCe. holders $5 \mathrm{~mm}-21 \mathrm{p}$. 20 mm. Q.e. Fuses. $15.25,-5,1,2,3$ 20 mm . Anti Surge 100 mA . 400 mW Zener diodes E24 series 2 V) to 33 V - 8 p . Prices VAT Inclusive Post 10p. (free over [4). THE C. R. SUPPLY CO. 127, Chesterfield Rd., Shetfield S8 ORN.

1007400 SERIES IC +100 Diodes 4148 type. Marked and Unmarked. Untested. $100+100$ £1.50. STE Lid., UniCom Building, Edenbridge, Kent. TN8 6EW.
P.C.B.s Paxolin $10 \frac{1}{2}^{\prime \prime} \times 4 \frac{1^{\prime \prime}}{2} 4-$ E1.30. $12^{\prime \prime} \times 9 \frac{1}{2}$ 85p. $1^{\prime \prime} 6^{\prime \prime} \times$
$11 \frac{1}{2}^{\circ} £ 1.40$. O.S. $10^{\prime \prime} \times 8 \frac{1}{2}^{\prime \prime} 85 p$. Fibre Glass $12^{\prime \prime} \times 8^{\prime \prime}$
£1.70. O.S. $10 \frac{1}{2} \times \mathbf{7}^{\prime \prime} £ 1.35 .8^{\prime \prime} \times 7^{\prime \prime} £ 1.15$. Unit with 8
silicon diodes $600 \mathrm{~V} 20 \mathrm{amp}, 8$ SCRs 400 V 16 amp .6
$\begin{aligned} & \text { Vinkors, W.W. resistors etc. } \mathbf{f 6} \mathbf{7 5} .300 \text { small components, } \\ & \text { trans. diodes } £ 1.65 .7 \text { lbs. assorted components } £ 3.75 \text {. Ust }\end{aligned}$
$\begin{aligned} & \text { trans. diodes } \mathrm{E1.65.} 7 \text { los. assorted componen } \\ & 15 \mathrm{p} \text { refundable. Post } 20 \mathrm{p} \text {. Insurance add } 15 \mathrm{p} \text {. }\end{aligned}$

J.W.B. RADIO
 2 Barnfiold Cresc.ont, Sale, Choshiro M33 1 NL

tunbridge wells components, Ballards, 108 Camden Road, Tunbridge Wells. Phone 31803. No Lists. Enquires S.A.E.

SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 6.60$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

Publishers Announcement

Due to increases which may have taken effect since this issue went to press, we strongly advise readers to check with advertisers the prices shown, and availability of goods, before purchasing.

SITUATIONS VACANT

electronic technicians Grades 3 and 4 required to assist in the construction, modification and maintenance of carried out equipment for use in teaching and research varied and interesting and cogy Dept. of U.C.L. The work is and digital techniques. ONC, C. \& G. or equivalent required. The Grade 3 technician could have an electrical/ mechanical background. Salary in range Grade 4: $53432-$ 3950. Grade 3: $£ 3122-2553$ plus $£ 524$ London Weighting (under review). Application form from Personnel Officer (Technical Staff CK3) University College London, Gower St. London WCIE 6BT.

EDUCATIONAL

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Fuli details from:

ICS SCHOOL OF ELECTRONICS

Dept. P272 Intertext House, London SW8 4UJ
Tel. 01-6229911 (all hours)
State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICSSCHOOL OF ELECTRONICS
Dept. P272 Intertext House, London SW8 4UJ
Tel. 01-622991| (all hours)
State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. P272 Intertext House, London SW8 4UJ
Tel. 01-6229911 (all hours)
State if under 18

AERIALS

AERIALBOOSTERS

Improves weak VHF Radio and Television reception.
B45-UHF TV, B11-VHF Radio. B11A-2 metre radio. For next to the set fitting.
Price E6. S.A.E. for leaflets.

ELECTRONIC MAILORDER LTD 62 Bridge Street,
 Ramsbotton, Bury, Lancs, BL0 9AG.

WANTED

SERVICE SHEETS from 50 p and S.A.E. Catalogue $25 p$ and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.
bell's television services for Service Sheets on Radio, Tv, etc $£ 1.00$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel:(0423) 55885 .

FOR SALE

NEW BACK ISSUES of "Practical Electronics" available 70p each Post Free. Open P.O./Cheque returned if not in stock - Bell's Television Services, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

PRACTICAL ELECTRONICS June 1966 to February 1972. Offers. Leeds 691655
aCORn microcomputer Factory Built and Tested, including acorn power supply, manuals, circuit diagrams etc. $\mathbf{8 8 0 . 0 0}$ o.v.n.o. Phone Kettering 711644.
practical electronics. wireless, television, 146 copies: 1964-1968. Offers over $£ 30$. Phone Bedford 851010 .

FOR SALE f100 PE Joanna completely built with cabinet, can be seen working, small problems on one board. Tel: Fareham 231538.
25000 RESISTDRS Unused \& Boxed all types \& Values, some Wirewound. Offers. Phone 01-764 0264.
MK14 Working, improved Keyboard and revised monitor, extra RAM and spare RAM Chip, Kemitron programming manual and data sheets. PSU cooling Fan $\mathbf{5 6 0 . 0 0}$. Phone Rainham, Essex. 51164. Dave.
COMPUTER ERUIPMENT. Westrex Teletype ASR 33 vgc £150.00. Paper-Tape Reader $250 \mathrm{CH} / \mathrm{SEC} \mathrm{£100.00}$. Paper-Tape Punch $£ 100.00$. More Available: Bedford 57135.

BOOKS AND PUBLICATIONS

FREE. World-famous manufacturer's convenient, pocketsized electronic construction guide (Nearly 200 full-colour illustrations). Limited period offer. Send S.A.E. now to TECHNOCENTRE, 54 Adcott Road, Middlesbrough.

ROMANIAN ELECTRONOGRAPHY, tobiscopes, electrokinesis. biogravity, hallucinophotography, dermoptics, psy chotronic generators, Kirlianography. SAE $4^{\prime \prime} \times 9^{\prime \prime}$ PARALAB, Downton, Wilts.

TTL DESIGN CONSIDERATIONS

A booklet packed with information on TTL circult building. Debouncing, decoupling, fan out, floating, buffers, open collector gates, regulators, race hazards, clocking, sinking, ground planes, cascading, simple interfacing, and much more. If you use TTL this has got to be helpful - well illustrated. 75p inclusive of P.\&P. etc.

PAWBOOKS,

117 Blenheim Road, Deal, Kent.
any requesteo service sheet $\boldsymbol{\kappa 1}+$ Large S.A.E. Full repair data any named TV $£ 5.30$ (with circuits, layouts etc. £7). SAE brings newsletter, bargain offers, etc. AUSPEL, 76 Church St, Lark hall, Lanarks ML9 1HE,

LADDERS

LaOOERS. Varnished $25 \frac{1}{3}^{\prime}$ ext. £46.04. Carr. £3.50. Leaflets. Callers Welcome. Ladder Centre (PEE5) Halesfield (1) Telford 596644 .

miscellaneous

P.C. BOARDS

FOR INDUSTRY 'and' THE AMATEUR

- One off or production runs
- Assembly of P.C.Bs or kits
- Expert hand soldering
- Design service if required
- Artwork \& Photography

SEAHORSE ELECTRONICS LTD. Unit 2 Picow Farm Road Service Industry Estate, Runcorn, Cheshire. (09285) 7595

PRINTEO CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer - now greatly improved and very much faster. Aerosol cans with Full instructions £2.25. Developer 35p. Ferric Chloride 55 p . Clear Acetate sheet for master 14 p . Copper clad Fibreglass Board approx. 1 mm thick 11.70 sq . f . Post/packing 60 p . WHITE HOUSE ELECTRONICS, P.O. Box 19, Caste Drive, Penzance, Cornwall.

GUITAR/PA/

MUSIC AMPLIFIERS

100 watt supert treble/bass overdive. 12 months guarantee.
Unbeatable at $£ 44 ; 60$ watt $£ 37 ; 200$ watt E59; 100 watt
 200 watt $₹ 72$; 100 watt four charnel sep. treble/bass per channel $£ 75 ; 200$ watt $£ 92$; slaves 100 watr $£ 32 ; 200$ watt
 driver fuzz with treble and bass boosters $£ 18.50 ; 100$ watt
combo superb sound overdrive sturdy construction castors, combeatable $\mathrm{f90}$; twin channei 10100 ; bass combo $£ 100$; speakers 15 in . $100 \mathrm{watt} \mathrm{E35} ; 12 \mathrm{in}$. 100 watt $£ 23$; 60 watt 215.00; microphones Shure Unidyne 8 \&26.

WILLIAMSON AMPLIFICATION

62 Thorncliffe Avenue, Dukinfield, Cheshire
Tel: 061-344 5007 or 061-308 2064
CLEARING laboratory. Scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. stablised P.S.U.S,
Lower Beeding 236.

COLOUR rour NASCOM!

"Stop Press UK 101 Compatiblel

DAZZUING COLOUR GRAPHICS FOR NASCOM 1

Genuine bit-addressable "pixel" system for straightforward programming of pictorial or mathematical functions.
8 Colour display plus 8 colour independent background facility. Full documentation with FREE SOFTWARE: powerful sub-routines for vector generation, demonstration program for animated effects. All runs in Nascom 1 without expansion. Complete with UHF Colour Modulator for operation with normal colour TV set. Superior design allows connection to most other micro processor systems - send us diagrams etc of your b \& w video circuitry for free advice. Don't be fooled by the price: this is a top quality product which will transform your computer.
NOW AVAILABLE FOR $\& 45$
LIMITED PERIOD AT and postage.

WILLIAM
Dower House, Billericay Road, vas Herongate, Breniw
Essex CM13 Essex CM 13 3SD
od 1027718102

MAKE YOUR OWN PRINTED CIRCUITS
Etch Resist Transfers - Starter pack (5 sheets, lines. pads, I.C. pads) $£ 1.55$. Large range of single sheets in stock at 32 p per sheet.
Ferric Chloride - 1 lb bags 80p (P\&, P 50p) Master Positive Transparencies from P.C. Iayouts in magszines by simple photographlc process. Full
instructlons supplied. 2 sheets $(20 \times 25 \mathrm{~cm})$ instructions supplied. negative paper and 2 sheets $(18 \times 24 \mathrm{~cm})$ positive
film E1.30. S.A.E. lists
P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

SOLID STATE CAR INSTRUMENTS

AS FEATURED IN P.E. OCTOBER, NOVEMBER, AND DECEMBER 1979.
Send S.A.E. for component price lists to:HOWARD ASSOCIATES
59, Oatlands Avenue, Weybridge, Surrey KT13 9SU
PRINTED CIRCUIT BDARDS from your own or published designs, Glass fibre tinned or varnished, Panel and P.C.B. legend printing. S.A.E. for quotations. R. D. ELECTRONICS, 12 Whiteoaks Road, Oadby, Leicester. 0533716273.

RYDER ORGAN SYSTEM

 (Wireless World)A classical design with full-size keyboards. Couplers, capture, etc. can be included.
Cassette. p.c, boards, data, from:HIKON LTD. (P),
Woodside Croft, Ladybridge Lane, Bolton BL1 5ED.

MSF CLOCK

NEWI Shows Date, Hours, Minutes, Seconds, B digit LED, also parallel BCD ourput, only $5 \times B \times 15 \mathrm{~cm}$, Time Signal accuracy always, £48.80.
60 KHz MSF Receiver, serial data outout, £13.70.
Still NO RADIO 47 Get all the NEWS with a 200 KHz to Medium Wave Converter, $£ 11.40$.
SIG. QEN., $10 \mathrm{~Hz}-200 \mathrm{KHz}$. logic and variable sine and square wave outputs, $£ 10.80$.
Each fun-to-bulld kit includes all parts, printed circuit, case, postage, money back assurance so SEND off NOW.

CAMBRIDGE KITS
45 (FZ) Old School Lane, Mitton, Cambridge.

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME

FULL RANGE AVAILABLE. SAE FOR LISTS. E1.25 for Boaklet "Nickel Cadmium Power" plus Catalogue. Write or call: Sandwell Plant LId. 2 Union Drive, BOLDMERE,
SUTTON COLDFIELD. WEST MIDLANDS, $021-354$ 9764, or see them at TLC, 32 Craven Street. Charing Cross,
London WC2.

KITS, constructed by competent engineer, assembled and soldered professionally, any make of kit including the well known names of Heathkit. Jostykit, Sinclair, Hart, Ambit, etc, etc. High standard work throughout and a progress report on work after two weeks. Testing facilities also available. D. G. Harrington, 25 Poynter Road, Bush Hill Park, Enfield, Middx. EN I IDN.

> MORSE CODE TUITION AIDS
> Cassette A: $1-12$ w.p.m. for amateur radio examination.
Cassette B: $12-24$ w.p.m. for professional examina Cassette B: 12-24 w.p.m. for professional examination preparation. Each cassette are type C90. for sending practice.
> Prices each cassette (including booklets) £4.75. Mise and 8 uzzer £4.75.
> ces include postage etc., Overseas Airmail ©1.50 extra
> MHEL ELECTRONICS (Dept. PE)
> 12 Longshore Way, Milton, Portamouth PO4 BLS.

SOLAR CELLS, Batteries, Panels, Thermoelectric Generators, heat pipes, books etc., Details; Edencombe Ltd., 34 Nathans Road, N. Wembley, Middx. HA0 3RX.

NICKEL CADMIUM BATTERIES

Rechargeable and suitable for fast charge HP7 (AA) $£ 1.05$
SUB C $£ 1.38$ HP1 (C) $£ 1.98$, HP2 (D) $£ 3.02$ PP3 $£ 3.79$ SUB C E1.36, HP1I
PP3 charger £5.40.
All the above nickel cadmlum batteries are brand new and are guaranteed full spec. devices. All cells are supplied complete with soider tags (except PP3). Brand now full spec. RECHARGEABLE SEALED LEAD ACID maintenance free batteries suitable for burglar
$£ 4.07 .2 .6 \mathrm{amp} \mathrm{hr}, 6 \mathrm{~V} £ 5.23$.
Quantity prices avaliable on request. Data and charging cir-
cuits free on request with orders over $£ 10$ otherwise 30 p post and handing (specify battery type). Please add 10% PaP in orders under $\mathrm{f} 10-5 \%$ over E 10 . VAT at the current
rate should be added to rotal order. Cheques, Postal Orders, Mail order to:-
SOLID STATE SECURITY DEPT (PE), 10 Bradahaw Lane, Parbold, Wigan, Lancs. Tel: 025754726.

PE ULTRASONIC ALARM KITS
 Designer Approved

All Kits inc. all components, F/G PCB ready drilled ABS box and hardware ULTRASONIC DETECTOR KIT
(less relay)
CONTROL KIT (less relay, $\&$ keyswitch) f 12.75
$\mathbf{5} .95$
 All prices inc. VATP \& P. SAE with enquiries. UK Mail order only (CWO)
GJD ELECTRONICS 105 Marper Fold Road, Radcliffe, Manchester M26 ORO.
I.C. EXPERIMENTER'S KITS

Learn about modern electronics with our new series of Kits selected I.C.s. Holders, Veroboard, L.E.O.S, and Instructions Avalable at $£ 5.00$ each (including P. \& P. P.)

Kit One-Gates Kit Two-Flip-Flops
Kit Four-Counters
Kir Fou kich further derallo-Displays
AUTOMATED HOMES
69 High Street, Ryton, Coventry, CV8 3FJ. Mrill Order.

SIGHT FOR SORE EYES

STICKIES are printed self-adhesive labels that stick to the top of ICs. They turn a board-full of ICs into a working circuit diagraml See at a glance where to place your soldering iron or test probe. Use STICKIES for building and de-bugging prototypes, fault-finding, experimenting, teaching - even designing PC8 layouts.

STICKIES come in handy-size packs for 7400- or 4000 -series ICs. Each pack contains a sensible mix of more than 60 different IC types.
120-label packs 80p.
480-label packs $\mathbf{£ 2 . 8 0}, \mathbf{2 - 1 0}$ packs £2.50 epach. 11 + c2.20 each.

Prices include 15\% VAT and first-class postage. Please state whether TL or CMOS required

Official orders welcome.
Let others suffer the sore eyes - try a pack of STICKIES and see the difference.

For your STICKIES by return of post contact CONCEPT ELECTRONICS, 8 Bayham Road, Sevenoaks, Kent, TN13 3XA 10293 5141101.

ULTRASONIC TRANSDUCERS. $£ 2.85$ per pair $+25 p$ P\&P. Dataplus Developments, 81 Cholmeley Road, Reading Berks.

PRACTICALELECTRONICSP.C.B. 8 quality glass fibre Fris roller finned and

 drilled.Sept. 79 Waveform Generator EG161 £1.58
Oct. 79 inpur Channel Amp EP 158 set of $6 \mathbf{E 5 . 6 1}$ Oig Temp Comtroller ECS E1.90
Nov, 79 Olamatlc $£ 2.04$. Olgital darkroom timer $£ 1.8 \mathrm{~B}$. For full list and current pcb's please send SAE. Pcb's also produced from customers own masters. Trade enquiries Postage - On orders less than $£ 10$ please add 25 p postaga.

14 Dow PROTO DESIGN
sillerim hosda Rawion Hoath Talephonessex CM11 1PU

SUPERA INSTRUMENT CASES BY BAIELLI, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p . Chassis punching from. Suppliers only to Industry \& The Trade. BAZELLI (Dept. No. 23), St. Wilfrids, Foundry Lane, Hatton, Lan. caster. LA 6LT

CABINET FITTINGS
 Stage Loudspeakers and Amplifier Cabs

 freptloths, Coverings, Strop \& Recess Hondles, Feer, Castors, Jacks 8 Sockets, Connons, Bulgin 8 ways, Reverb Trays, locks \& Hinges, Corners, Trim, Speoker Bolts etc.Send $2 \times 9 p$ Stamps for samples and illustrated catalogue
ADAM MALL (P.E.SUPPLIES)
Unit 3. Cartron Court, Grainger Roud Southend-on-Sea. Essex.

NO LICENCE EXAMS NEEDED

To onerate this miniature. solid-state Trans-mitter-Receiver Kit. Only $£ 10.70$ plus 25p P. \& P 'Rrain. Freeze' em with a MINI.STROBE Elec tronics Kit. porket-sized 'lightning flashes', vari speed, for discos and parties. A mere 24.50 plus $25 p$ P. \& 1?. Experiment with a psychedelic DREAM I.AR. or jick up faint speech sounds with the BIG F.AR venund-catcher: ready-made multi-function modules. \&'5 each plus 25 P P. \& P
ISTS MORF! dend 25y) for lists. Prices include VAT

BOFFIN PROJECTS

4 Cunlife Road, Stonelcigh Ewell, Surrey (P.E.)

\section*{THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4 Reg Office 22 Coningeby Gerdens
 ENAMELLED COPPER WIRE

SILVER PLATED COPPER WIRE

PROFESSIONAL AND DIY BURGLAR ALARM EQUIPMENT

Send SAE for Pricelist and full detalls of our top quallty items at competitive prices
SONIC INTRUDER ALARM SYSTEWS
19, Hope Street ${ }_{3}$ Old Glossop, Derbyshire, SK13 9SB. Tel; (04574)2858

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

PLASTIC STORAGE DRAWERS

Newest, neatest system ever
devised for storing small parts and components: resistors, capacitors, diodes, transistors, etc. Rigid plastic units interlock together in vertical and horizontal combinations. MLINTERLOM Transparent piastic drawers have label slots. 10 and 20
have space dividers. Build up any size bench or table top.

As supplied to Post Office. Industry and Government Depts, | SINGLE UNITS (10) $(5 \mathrm{in} \times 2 \mathrm{in} \times 2 \mathrm{fin})$ 〔3.70 DOZEN |
| :--- |
| DOUBLE UNITS $(20)\left(5 \mathrm{in} \times 4 \frac{1}{2} \times 2 \mathrm{in}\right) ~$ |
| 5.90 DOZEN | DOUBLE UNITS (2D) TREBLE (30) C5.90 for 8. DOUBLE TREBLE 2 drawers. in one outer case (602) EXTAA LARGE SIZE (601) $\mathbf{E 7} .90$ for 8

PLUS QUANTITY DISCOUNTS Orders over $£ 20$, less 5%. Orders over C60, less $7 \frac{1}{3} \%$. PACK ing/POSTAGE/CARRIAGE. Add 1.00 to all orders under € 10. Orders £ 10 and over, please add 10% carriage. QUOTATIONS FOR LARGER QUANTITHES.
Plase add 15% V.A.T. to total remittonce.

Modern slim-line power panel, countless uses in home, office, tactory, showrooms. Perfectly safe, unbeatable. Can be base. Smart PVC outer cover. Black £3.70. White £3.90. P\& P 60 p . Cable 30 p per yard.

FLAIRLINE SUPPLIES (P.E.12)
124 Cricklewood Broadway, London N.W. 2 Telephone 01-450 4844

92 GODSTONE ROAD
WHYTELEAFE SURREY CR3 OEB

7400	0.10	7483	0.58	74186	0.78	4021	0.80	4180	1.05	LINEAR		16 pin	0.12
74 HOO	0.23	7484	0.88	74167	2.00	4022	0.80	4181	1.05	CA3045-14	0.40	18 pin	0.16
7401	0.11	7485	0.68	74170	1.50	4023	0.15	4162	185	CA3046-14	0.50	20 pin	0.18
7402	0.11	7486	0.22	74172	6.30	4024	0.50	4183	1.05	LM380N-14	0.85	22 pin	0.22
7403	0.11	74586	0.42	74173	1.15	4025	0.15	4164	1.05	LM381N 14	140	24 pim	0.24
7404	0.11	7489	1.65	74174	0.65	4026	1.15	4174	1.05	(M710-14	0.30	28 pin	0.26
74104	0.23	7490	0.32	74175	0.60	4027	0.42	4175	0.98	IM $711 \mathrm{~N}-14$	030	40 pin	0.37
7405	0.12	7491	0.64	745175	1.00	4028	0.65	4194	1.05	MC1310P-14	0.88	81LS95	1.25
$74 \mathrm{HO5}$	0.23	7492	0.36	74176	0.5	4029	0.76	4404	0.48	NE555-8	0.20	811596	1.25
7406	022	7493A	0.30	74177	0.58	4030	0.46	4412	0.19	NE556-14	0.50	811597	1.25
7407	0.22	7494	0.72	74178	1.50	4031	1.95	4428	0.38	NE25018-14	080	811598	125
7408	013	7495	0.50	74179	1.50	4032	0.88	4445	0.90	SN75110N	0.40	MICROP	SSOR
7409	0.13	7496	0.48	74180	085	4033	1.25	4449	0.19	SN76003N	1.50	CRYSTA	
7410	0.11	7497	1.90	74181	0.58	4034	1.15	4501	0.18	SN76013N	1.25	freou	
74410	0.23	74100	0.85	74182	0.70	4035	1.00	4502	0.80	SN76023N	125	Mh2	
7411	017	74104	0.39	745182	1.50	4036	2.70	4503	0.18	SN76033N	1.50	0.100	3.50
74411	0.23	74105	0.38	744183	0.75	4037	0.85	4508	0.50	SN76477N	2.50	0.282	3.50
7412	0.15	74107	0.24	74184	1.30	4038	0.95	4507	0.52	TAA550B	0.32	0300	3.50
7413	0.24	74109	0.32	74185A	1.30	4039	2.75	4508	2.50	TAA661B	0.88	1.000	3.25
7414	0.50	74110	0.36	74186	5.00	4040	0.58	4510	0.92	TBA120S	0.65	1.008	3.25
74415	0.23	74111	058	74188	2.70	4041	0.72	4511	0.92	tBagala	1.50	1.8432	3.50
7416	0.23	74113	0.30	74190	0.68	4042	0.87	4512	0.92	trab00	0.78	2.000	1.25
7417	023	7416	1.50	74191	0.68	4043	0.80	4513	1.85	T8A810S	0.75	2.097	325
7420	0.11	74118	0.80	74192	0.62	4044	0.80	4514	2.30	TBA820S	0.68	2.457	3.25
7421	0.20	74119	1.50	74193	0.62	4045	1.25	4515	2.80	tca270s0	1.60	3.278	2.60
7422	0.18	74120	0.95	74194	0.62	4046	1.05	4516	0.99	70A2020	3.00	3.579	2.60
7423	0.21	74121	0.25	74195	0.60	4047	0.85	4517	3.75	ZN4 14	0.80	3.932	2.60
7425	0.23	74122	0.39	74198	0.72	4048	0.48	4518	0.90	voltage		4.000	2.60
7426	0.23	71123	038	74197	0.58	4049	0.33	4519	0.50	REGULATORS		4.433	2.60
7427	0.24	74125	0.32	74198	1.00	4050	0.40	4520	0.95	LM300H-T099	0.75	4.915	2.60
7428	0.26	74126	0.35	74199	1.20	4051	0.72	4521	220	CM309k-T03	1.30	5.000	2.60
7430	0.11	74128	0.75	74221	1.30	4052	0.72	4522	1.25	UA723-14	0.37	5.068	2.50
74530	0.23	74130	0.50	74213	2.05	4053	0.72	4526	1.25	7805.10220	0.70	5.185	260
7432	0.22	74132	0.55	74278	1.65	4054	1.00	4527	1.40	7812.70220	0.70	5.875	2.60
7433	0. 30	74134	0.38	74279	1.10	4055	1.05	4528	092	7815-70220	0.70	6.000	2.60
7437	0.21	74135	0.70	74283	1.65	4060	1.00	4529	1.30	7824.10220	0.70	6.144	2.60
7438	0.21	74136	0.52	74284	3.40	4066	0.48	4530	0.78	7905-10220	0.78	6.553	2.50
7440	0.12	74137	0.80	74293	1.30	4067	3.25	4531	0.99	7912.T0220	0.78	8.000	2.50
7441	0.50	74141	0.55	74298	180	4068	0.20	4532	120	7915-70220	0.78	8.867	2.60
7442	0.40	74142	1.5	74390	1.75	4069	0.17	4534	5.20	LOW PROFILE		10.000	2.60
7443	0.70	74143	2.50	74393	125	4070	0.17	4536	360	DIL SOCKETS		12.000	2.60
7444	0.70	74144	2.50	CMDS		4071	0.17	4538	1.25	8 pin	009	13.516	2.60
7445	0.52	74145	0.55	4000	0.13	4072	0.17	4539	099	14 oin	0.11	18.000	3.20
7446	080	74147	1.40	4001	0.15	4073	0.17	4541	1.05				
7447	0.48	74148	125	4002	0.15	4075	0.17	4543	150	LE			
7448	0.56	74150	0.68	4006	0.85	4076	084	4549	3.92			25"	
7450	0.11	74151	0.48	4007	0.15	4077	0.21	4553	3.60				0.09
7451	0.11	74153	0.48	4008	0.78	4078	0.18	4554	1.25	YELIOW	0.1		0.14
74H52	0.23	74154	0.82	4009	0.40	4081	0.17	4555	0.75	GRFEN	0.1		0.14
74.53	0.11	74155	0.50	4010	0.40	4082	018	4556	0.75	Led clip	0.2	25	0.35
7454	0.11	74156	0.50	4011	0.15	4085	0.63	4557	325	TMS 40304056	096 817	dYnam	RANDOM
7460	0.11	74157	0.50	4012	0.15	4086	0.63	4558	1.25	ACCESS $(210$	07A) M	atmohy	PIN DIL
7470	0.25	74158	0.68	4013	0.40	4089	1.35	4559	3.95			2.76	
7472	0.22	74159	1.90	4014	0.78	4093	0.60	4560	198	$300 \mathrm{~ms} \mathrm{max}$. a	access	time 470	ns max read
7473	0.25	74160	0.60	1015	0.70	4094	1.68	4561	0.72	or write cycle	time 1	TL compat	tiblity on all
7474	0.25	74161	0.58	4018	0.40	4095	090	4582	5.50	inputs. No pu:	ull up	resisiors	needed. Low
74874	0.42	74162	0.62	4017	0.12	4096	0.90	4566	1.42	power diss	tion. 350	0 mW apera	ating 0.3 nW
7475	0.30	74163	0.62	4018	0.75	4097	3.30	4568	2.50	standby. Single	low ca	acacitance	clock
7476	025	74164	0.68	4019	0.42	4098	0.95	4569	1.60	Oata shee! mail	ailable		
74	0.4	74185	0.68	40	0.88	4099	1.40	45	4.98	2.40 each 4	-10\%	8-20\%	

BUILD A SYNTHESISER!

Using Dewtroll (Reg'd) PROFESSIONAL MODULES

Over 20 different electronic moduies to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, welltried range of Dewtron synthesiser and other effects modules.

Send 25p for Musical Miracles Catalogue NOW!
D.E.W. LTD.

254 RINGWOOD ROAD, FERNDOWN, DORSET BH229AR

MICROELECTRONICS

Digital \& Analog Circuits \& Systom by J. Millman
 Price: $\mathbf{£ 7 . 8 0}$
 SILICON CHIPS \& YOU

by C. D. Renmore
Price: $\mathbf{£ 2 . 9 0}$

INTEGRATED CIRCUITS HOW TO

MAKE THEM WORK
by R. H. Warring
Price: $£ 4.45$

DIGITAL INTEGRATED CIRCUITS \&
 COMPUTERS
 by B. Woollard
 Price: $\mathbf{£ 3 . 7 5}$

BEGINNER'S GUIDE TO HOME

 COMPUTERSby M. Grosswirth Price: $£ 3.00$
CB BIBLE. THE COMPLETE GUIDE TO CITIZENS BAND 2-WAY RADIO by P. Blbb

ELECTRONIC FAULT DIAGNOSIS

by G. C. Loveday
Price: $\mathbf{£ 3 . 6 0}$

PROJECTS IN RADIO \& ELECTRONICS

 by I. R. SinclairPrice: $£ 2.60$
Closed circuit t.v. for technicians VOL. I
by K. J. Bohlman
Price: $\mathbf{5} 5.10$

- AlL PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCIIST
of British and American Technical Books
19-21 PRAED STREET LONDON W21NP
Phone 01-4029176
Closed Saturday 1 p.m.

INDEXTO ADVERTISERS

Acorn Computers	Cover III	E.D.A.	4	Phonosonics	86, 87
Adam Hall (P.E. Supplies)	102	Electroni-Kit	64	Porter J.	100
Aitken Bros.	91	Electronic Mail Order Ltd. 100	Powell T .	98
A.J.D. Supplies	32	Electrovalue	91	Progressive Radio	84
Alcon Instruments.	94			Proops Bros.	32
Astra Pak...	103	Flairline	96	Proto Design	102
Aura Sounds	81		… 102	Radio Component Specialists 94	
Automated House.	102	George, David Sales G.J.D. Electronics	64	Ramar Constructor Service R.S.T. Valve Mail Order	102
Barrie Electronlcs	99		101		93
Beckman Instruments	22	Hameg		Radio \& T.V. Components Romane Electronics	9
B1-Pak	14, 15	Heathkit	16		6
Birkett J.	91	Hiykon Lid.	101	Sandwell Plant Limited	101
Boffin Projects	102	Home Radio	99	Saxon Entertainments	75
British National Radio \&		Howard Associates	101	Scientific Wire Co.	102
Electronics School	85. 92			Seahorse Electronics	101
Brewster S.R.	4	I.C.S. Intertext	87.100	Sentinel Supply	4
Bulgin	12	I.LP. Electronics	10, 11	Service Trading	31
Butterworths	8			Solid State	101
		Jayen Developments Jones Electronic Supplies	... 8	Sonic Intruder Alarm Systems	102
Cambridge Kits	101		s ... 99	Sparks Developments	98
Cambridge Learning	96,97			Squires, Roger	6
Chromasonic Electronics	89	Kay \& Co....	90	Stevensons Electronic	
Chromatronics	93			Components	71
Clef Products	94	L \& B ElectronicsLektrokit	95	Strutt Electrical	. 95
Codespeed	88		76	Swanley Electronics	84
Commodore Business Machines 21				Tandy	63
Computer Components	Cover II	Maplin Electronics ... 7, Cover IV		T.K. Electronics	98
(Teleplay) ...		Marshall A.	92	Technomatic	104
Concept Electronics	. 102	Memory MantMenocrest	102	Tempus	59
Continental Specialties Co	rporation		96	Transam Components	13
U.K. Ltd. ...	5	Metac	82,83	T.U.A.C.	60
Crescent Radio Crofton Electronics	12	Mhel Electronics	101	T.U.A.C.	
Crofton Electronics	8	Microdigital	16	Unilab	
C.R. Supply Co.	-.. 100	Modern Book Co.	103		
Crimson	88	Monolith	84	Videotime.	22
Datron	90	Newtronics	88	Watford Electronics	2, 3
Delta Tech	90			William Stuart Systems Ltd.	101
Design Engineering	103	P.K.G. Electronics	101	Williamson Amplification	101
J. Dudley \& Co. Ltd.	... 101	Pawbrooks	101	Wilmslow Audio	12

Foum of a hind!

Acorn Computers
 announce with pride the fourth module in the series - a VDU

interface on a Eurocard. This unit uses two very powerful devices, the MC 6845 and the
SAA5050. The 6845 programmable controller provides all the signals to drive a 625 line 50 frames per second VDU together with read addresses for the character RAM, the SAA5050 character generator then produces the necessary dot patterns to refresh the VDU. The SAA5050 produces standard teletext characters and graphics and has Red, Green and Blue outputs. This means that the Acorn system will be compatible with CEEFAX, ORACLE and PRESTEL transmissions

The Acorn VDU module in kit form is complete with sockets and is supplied with listings for programs which set up the 6845, a miniature dissassembler which displays 25 hex instructions (double or treble byte) and graphics programs. All these may be loaded and run using the Acorn system 1 monitor.

Options include:- VHF modulator for B.W. domestic T.V. and PAL colour encoder for domestic colour T.V.

Acorn CPU

Acorn System 1

Order form

Send to: Acorn Computers Lid., 4a Market Hill, Cambridge, Cambs.

\square Acorn controller	@	§35.00 plus VAT	5.25	Name
\square Microcomputer	@	£65.00 plus VAT	9.75	
\square Assembled				
Microcomputer	@	£79.00 plus VAT	11.85	Address
\square Memory	@	£95.00 plus VAT	14.25	
\square Memory assembled	@	£100.00 plus VAT	15.00	
$\square \mathrm{V}$ D.U.	@	£88.00 plus VAT	13.20	
\square V.D.U. assembled	@	£98.00 plus VAT	14.70	
V.H.F. Modulator to Colour Encoder to	be	announced announced		

- 40 characters per lige
- 25 lines per page
- 7.colour graphics and characters
- Upper and lower ASC11
- Teletext graphics font
- Programmable cursor
- Hardware scroll
- Light pen facility
- Memory mapped
- Transparent access
- Single 5V supply

Acorn 8K Memory

ICORN COMPUITR
Acorn Computers Lid., 4a Market Hill, Camberridge. Telephone O223 312772
 $£ 3,000$. Build it yourself for less than $£ 700$. Full specification in our
Our catalogue even includes some popular car accessories at marvellous prices.

A 10-channel stereo.graphic equaliser with a quality specification at an unbeatable price when you build it yourself. Full specification in our catalogue.
 's miss' the one show no one sho

These are just some of the metal cases we stock. There are dozens of plastic ones to choose from as well.
See pages 52 to 57 of our catalogue.

A massive new cataiogue from Maplin that's even bigger and better than before. If you ever buy electronic components, this is the one catalogue you must not be without. Over 280 pages - some in full colour-it's a comprehensive guide to electronic components with hundreds of photographs and illustrations and page after page of invaluable data.
Our bi-monthly newsietter contains guaranteed prices. special offers and ah the latest news from Maplin.

accessories at really low prices. Take a look in our catalogue - send the coupon now!

An attractive mains alarm clock with radio switching function and battery back up! Complete kit with case only £15.92 (incl. VAT \& p \& p) MA1023 modu!e only $£ 8.42$ (incl. VAT).

A hi-fi stereo tuner with medium and long wave, FM stereo and UHF TV sound! Full construction details in our catalogue.
catalogue.

A superb technical bookshop in your home!'All you need is our catalogue. Post the coupon now!

Add-on bass pedal unit for organs. Has excellent bass guitar stop for guitarists accompaniment. Specification in our catalogue.

All mail to:-
P.O. Box 3, Rayleigh, Esséx SS6 8LR.

Telephone: Southend (0702) 554155.
Shop: 284 London Road, Westdiff-on-Sea, Essex. (Closed on Mionday).
Telephone: Southend (0702) 554000.

[^0]: - IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Mail order onty. Please add 30 p to the tratal cost of vour order for postage. Prict

[^2]: Open daily to callers: Mon.-Fri. 9 a.m. -5 p.m.
 Valves, Tubes and Transistors . Closed Saturday Prices correct Terms C.W.O. only - Tel. 01-677 2424-7
 Quotations for any types not listed S.A.E.
 when goling
 Poet and Packing 30p par order
 All prices include VAT Tolex 946708
 to press

[^3]: 19 MULBERRY WALK . LONDON SW3 6DZ • TEL: 01.352 1897 - TELEX: 918867

