PRACTICAL

ELECTRONICS

NOVEMEER 1979

55p

Pioridilinl: IDII UFT: IIII

Plus... solin state car instruments --No. 2 Rev. Counter

CONSTRUCTIONAL PROJECTS
SOLID STATE INSTRUMENTS by Michael Tooley B.A. and David Whitfield B.A., M.Sc. No. 2 REV. COUNTER 18
BABYCOM by O.N. Bishop
Shift register remote monitoring 24
COMPUKIT UK101 by A. A. Berk B.Sc., Ph.D. 28
DIAMATIC by J.R. W. Ames
Programmable Audio Visual Unit 32
QUIZMASTER by I. J. Nicolle
Unbiased indicator for rapid answer contests 60
DIGITAL DARKROOM TIMER by R. J. Morris
Two range timer for home colour printing66
GENERAL FEATURES
LEARN BASIC THIS WAY by R. Ferguson. . . and enjoy it42
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices-ULA 2U000 AD7525 NE586/7 51
INGENUITY LIMITED
Touch switches for games chip-Transducer oscillator-Sound to light sequencer-Parity for ASCII- A peak program indicator-Display tube/TTL interface-Simple TTL read only memory 52
NEWS AND COMMENT
EDITORIAL 17
MARKET PLACE
22
New products
NEWS BRIEFS
Intelligence prints backwards-One-chip colour TV system 27
POINTS ARISING 27
COUNTDOWN 31
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 41
SPACEWATCH by Frank W. Hyde
Record for Russia, Man-machine interface, Crystals, Circumterrestrial space, Telescopes 59
PATENTS REVIEW
The Aphex sound-Rear-view radar 69
READOUT
A selection of readers' letters 70
SPECIAL OFFER-PROTO-BOARD KIT 71
OUR DECEMBER ISSUE WILL BE ON SALE FRIDAY, 9 NOVEMBER 1979
(for details of contents see page 65)

[^0]

BLT ${ }^{2}$ ELF II KIT microcomputer ONLY £79.95 for less than sume TU games

ELF 11 BOARD WITH VIDEO OUTPUT FEATURING

THE RCA 1802 COSMAC C.P.U.

ADD-ONS

* POWER SUPPLY (6.3 V aC) for ELF 11 5.00
* ELF 11 DE LUXE STEEL CABINET (IBM Blue)
- GIANT BOARO KIT System/Monitor, Interface to/ cassette-RS232. TTY etc
* 4K STATIC RAM board kits (requires expansion power supply)
- Expansion power supply (required when adding 4K Rams)
- ASC11 Keyboard Kits 96 printable characters etc
- ASC1 1 d/lux steel cab. (IBM Blue)
- KLUGE prototype board (build your own circuits)
- 86 pin Gold plated connectors (each)
- ELF Light pen writes/draws on TV screens
- Video graphics board 32/64 characters by 16
lines on TV/monitor screens
- ELF 11 Tiny basic on cassette
* ELF 11 Bug/monitor powerful systems monitor/editor
- T. PITMANS short course in programming manual(Nil VAT)
- T. PITMAN short course on tiny basic manual (NiI VAT) - RCA 1802 users manual (NILVAT) 23.01
- On cassette Text Editor: Assembler: Dissassembler (each) SAVE 10\% AND BUY ALL THREE TOGETHER All units can be supplied wired and tested Send S.A.E. for comprehensive brochure NEW: GAMES ON TAPE send for list Send s.a.e. for brochure and orders to:

DEALER ENQUIRIES WELCOME

Newtronics 138 Kingsland Road London E2 8BY

Tel: 01-739 1582
DEPT.

LIGHTING \& AMPLIFIER MODULES FROM L\&B

 JUST LOOK AT THESE PRICES!SUPERIOR HIGH QUALITY LIGHTING CONTROL MODULES ALL 1000 WATTS PER CHANNEL. NO POWER SUPPLIES NEEDED. ALL READY TO GO!

PREAMPLIFIERS LBPA1 Stereo dise tape $\quad \mathbf{~} \mathbf{1 4 . 5 0}$ LBPA2. 4 channel gen. purpose mixer $\mathbf{1 3 . 5 0}$ LBPA3. Stereo disc
£22.00

- $1825-$

25W, RMS 4Ω
$10 \mathrm{~Hz}-50 \mathrm{kHz}$
T.H.D. $0.1 \% 90 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$
$\mathbf{f 8 . 2 0}$

- L83 1000sL -

3 channel Sound-Light. Zero switching, high sensitivity \& input impedance. Excellent Separation
$£ 18.90$

- LBA1000L8 -

4 channel sequencer. Suedorandom with two speed con-
trols. trols.
£14.90

- LB3 1000LD -

3 channeil lamp dimmer. Co
trot from full off to full on.
$£ 12.90$
-LB11000LO- lamp dimmer.

f5.70

-LB31000SLC All the advantages of the
31000 SL tactive fiters 8 automal. lactive filters 8 automatic chasing in
absence of a music input.
£23.90

- LB8 1000LC -

8 channel chase. Chase rate a return speed controis. Op
tional foot switch trigger/trig o/p for module cascading.

All prices include VAT. Add 50 p p/packing. Quantity/trade and overseas inquiries welcome.
L\&B
For further information send a SAE to: ELECTRONICS

45 WORTLEY ROAD, W. CROYDON
SURREY CRO 3EB. TEL: $01-6894138$

Measure Resistance to 0.01Ω At a Price that has no resistance at all

New/Elenco persgsisy Digital Multimeter M1200B

ONLY £55

THE ULTIMATE IN PERFORMANCE MEASURES RESISTANCE TO 0.01 OHMS, VOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE!

FEATURES

- $31 / 2$ digits $0.56^{\prime \prime}$ high LED for easy reading
- $100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.01 \Omega$ resolution
- High input impedance 10 Megohm
- High accuracy achieved with precision resistors, not unstable trimpots
- Input overload protected to 1000 V (except 200 mV scale to 600 V)
- Auto zeroing, autopolarity
- Mains (with adaptors not supplied) or battery operation-built-in charging circuitry for NiCads
- Overrange indication
- Hi Low power ohms, Lo for resistors in circuit, Hi for diodes

ME

Maclin-Zand Electronics Ltd 38 Mount Pleasant,London WC1XOAP
(C) N Zand

Tel. 01-837 1165
Telex. 8953084 MACLING

Brmm...Splash..Zoom with ZAN4IOCE precision servolC

Our servo ICgives you a complete servo control system on a chip.

It's specially designed for the pulse-width position servo mechanisms you use in all types of model control.

ZN419CE gives you a low external component count and high output drive capability.

Send for the data sheet today, and a full list of stockists.
Ferranti Electronics Limited, Fields New Road, Chadderton, Oldham OL9 8NP Telephone:061-624 0515

> FERRANTI Semductors

EL02/14/069 [T]

First issue includes:
SARGON meets the Nascom-1 - J. Haigh Pascal and the PET - J. Stout. Programming practices and techniques - Dr. M. Beer. I'm Pilot, fly me D. Straker. Letter from America -D. Smith Apple pips C. Phillips.
 subscribe 1 st 12 issues
of "L iverpool Software Gazette" Software Gazette
enclose cheque/PO for f 600
Access No
Barclaycard No

Name

Address

Mail to: Microdigitai Ltd, FREEPOST (No Stamp Required), Liverpool L2 2AB.]

SOLAR QUARTZ LCD 5 Function

Genuine solar panel with battery back-up Hours, mins., secs., day date. Fully adjustable bracelet. Back-light. Only 7 mm thick.

£8.65

Guaranteed same day despatch.

QUARTZ LCD
Ladies Day Watch

EXECUTIVE ALARM WATCH

Electronic

HANIMEX
LED Alarm Clock

Feasues and Spectication
 pm and alarm on indicator 24 Hours alarm with
on off control Display f iashing for power toss on off control Display 11 ashing for power loss indication Repeatable 9 minute snooze Digplay
bright dim modes control Size $5.15^{\prime \prime} \times 3^{93^{\prime \prime}} \times$ bright 'dim modes control 212 mm$)$
$236^{\prime \prime}(131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm})$ Weight 143 lbs $(065 \mathrm{~kg}$) AC power 220 V
£10.20 Thousands sold
Mains operated.
Guaranteed same
day despatch.

QUARTZ LCD ALARM 7 Function

Hours, mins., secs, month, date, day. 6 digits, 3 flags plus continuous display of day and date or seconds. Back-light Only 9 mm thick.
£12.65

Guaranteed same day dispatch
M4

ALARM CHRONO with 9 world time zones
 - 6 digits, 5 flags. - 6 basic functions. -8 further time zones. - Count-down alarm. - Stop-watch to 12 hours 59.9 secs.
 in $1 / 10$ sec. steps.
 - Split and timing modes. - Alarm.
 - 9 mm thick
 - Back-light.
 £29.65

QUARTZLCD Ladies Cocktail Watch

 Highly functional watch which also suits those special occasions. Beautifully designed with a very thin bracelet which retains strength as well as elegance. Hours mins, secs, day, date. backlight and autocalendar Bracelet fully adjustable to suit slim wrists. State gold or silver finish.
£19.95

Guaranteed same day despatch M18

Metac price breakthrough for an Alarm Metac price breakthrough for Chronograph with Dual Time Chro only
 £18.95
 OUTSTANDING FEATURES

- DUAL TIME. Local time always visible and you can set and recall any other time zone (such as GMT). Also has a light for night viewing.
* CALENDAR FUNCTIONS include
the date and day in each time zone. - CHRONOGRAPH/STOPWATCH displays up to 12 hours, 59 minutes and 59.9 seconds.
* On command, stopwatch display freezes to show intermediate (split/lap) time while stopwatch continues to run. Can also switch to and from timekeeping and stopwatch modes without affecting either's operation.
- AlARM can be set to anytime within a 24 hour period. At the designated time, a pleasant, but effective buzzer sounds to remind or awaken you! Guaranteed same day dispatch. M16

South of England
327 Edgware Road
LONDON W. 2
Telephone: (01) 7234753

Microcomputer Mail Order
 気

All your microcomputer requirements can be bought with confidence by mail order from MICRODIGITAL, one of the largest and longest established computer stores.

Most orders are despatched same day as receipt, if not a note explaining what the supply situation is. If we cannot supply within 30 days we will, on request, make an immediate cash refund.

Access and Barclaycard orders are welcome either in writing or over the phone. Your account will not be charged until the goods are despatched.

Official orders of over f 10 are also welcome. With normal 30 days trade credit extended to bona fide commercial and government organisations.

If you do not have our brochures, write or phone today for free copies by return.

MICRODIGITAL
MICRODIGITAL LIMITED
FREEPOST (No stamp required) LIVERPOOL L. 2 2AB
TEL: 051-236 0707 (MAIL ORDER 24 HOURS A DAY) TEL: 051-227 2535 \square

SWEET MUSIC

INTERESTED IN ACCURATE, STABLE, EASILY-BUILT AND CALIBRATED SYNTHESISER MODULES: POLYPHONIC SYNTHESISERS: COMPUTER MUSIC : OR SOUND PROCESSING? IF SO, FOLLOW THE EXAMPLE OF MANY PROFESSIONAL EQUIPMENT MANUFAC. THE EXAMPLE UF MANY PROFESSIONAL EQ SOMENT MAN MICRC. TURERS AND USE THE CUSTOM I.C.'S FROM SOLID ST
SSM 2020 DUAL VOLTAGE CONTROLLED AMPLIFIER
Dual two quadrant multipliers with independent contral selection. Simultaneous exponential and linear gain with 100 dB control range. Differential control inputs. Fully temperature compensated. 84dB S/N ratio at 0.1% distortion with 6 V . P-P input. Synthesiser V.C.A.'s and a wide variety of audio applications, such as mixers, equalisers, companders, filters and AGC can be realised with the 2020.
SSM 2030 VOLTAGE CONTROLLED OSCILLATOR
Simultaneous exponential and linear inputs for a sweep range of $1,000,000$ to 1 up to 200 kHz . Accuracy better than 0.25% over 1.000 to 1 range. Simuitaneous sawtooth, triangle and puise outputs.
Pulse width modulation on chip with control range of 0 to 100%. Pulse width modulation on chip with control range of 0 to 100%.
Hard and soft synchronisation inputs for a wide variety of modulation and harmonic - locking effects
SSM 2040 VOLTAGE CONTROLLED FILTER CIRCUIT
Four section filter whose cut off frequency can be exponentially controlled over a 10,000 to 1 range. Virtually any active filter can be created and roll off characteristics selected as desired. Low noise and distortion allow use in phase shifters, parametric equalisers, etc.
SSM 2050 VOLTAGE CONTROLLED TRANSIENT GENERATOR
The 2050, 4 pots., 5 resistors, and 2 small capacitors makes an envelope shaper with greater versatility than designs published in the U.K. Min. range of 2 msecs. to 20 secs. : exponential response: ADSR and AD outputs: independent gate and trigger. Voltage control of the A, D, S and R functions offers unlimited scope for creation of realistic or unusual envalope shapes.
ALSO : TEL LABS Q81 1k TEMPCO RESISTOR
This 1% tolerance resistor has a temperature coefficient of 3500 ppm per degree Centigrade and is widely specified for temperature compensation of logarithmic amplifiers.
DEVICES MAY BE PURCHASED SEPARATELY BUT P.C.B.'S OR COMPLETE KITS ARE ALSO AVAILABLE FOR SEVERAL SYNTHESISER MODULES. SEND 35p FOR COMPREHENSIVE APPLICATION NOTES AND SPECS.

DIGISOUND LIMITED,
13 THE BROOKLANDS, WREA GREEN, PRESTON, LANCS.
Tel. : 0772683138 (MAIL ORDER ONLY)

LCD DIGITAL MULTIMETER.
 LOW-COST LCD MULTIMETER COMPONENTS AND PARTS

Send your orders to:-
 DEPT. PE11, PO BOX 6, WARE, HERTS. Tel: 0920-3182 Visit our NEW shop: 3 BALDOCK ST., WARE, HERTS. Telex: 817861

EXPERIMENTOR BREADBOARDS

FROM

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build breadboard of any All EXP Breadboards have two bus-bars as an integra part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP.4B.

EXP.325. The ideal breadboard for 1 chip circuits.
Accepts 8, 14, 16 and up to 22 pin IC's.
ONLY £1.70

EXP. 350.
£3.73
270 contact points with

EXP. 300.

two 20-point bus-bars

550 contacts

More
bars.

E2. 45
ALL EXP. 300 Breadboards mix and match with 600 series.

ANTEX IRONS

1943	15 watt quality soldering iron with bit	$\begin{array}{r} 3 / 32^{\prime \prime} \\ \mathbf{£ 4 . 8 8} \end{array}$
1947	Replacement element for 1943	£2.18
1944	Iron coated bit $3 / 32^{\prime \prime}$ for 1943	£0.53
1945	Iron coated bit $1 / 8^{\prime \prime}$ for 1943	f0.53
1946	Iron coated bit $3 / 16^{\prime \prime}$ for 1943	¢0.53
1948	18 watt iron with iron coated bit	f4.59
1952	Replacement element for 1948	£2.18
949	Iron coated bit $3 / 32^{\prime \prime}$ for 1948	
1950	Iron coated bit $1 / 8^{\prime \prime}$ for 1948	f0
1951	Iron coated bit 3/16" for 1948	¢0
1931	X25 25 watt iron. ceramic shaft and anoth shaft of stainless steel to ensure strength	
1935	Replacement element for 1931	£1.84
1932	Iron coated bit $1 / 8^{\prime \prime}$ for 1931	f0.57
1933	Iron coated bit $2 / 16^{\prime \prime}$ for 1931	¢0.57
1934	Iron coated bit $3 / 32$ " for 1931	¢0.57
1953	SK1 soldering Kit - contains 15 watt sol iron with $3 / 16^{\prime \prime}$ bit plus two spare bits, a solder, heat-sink and a booklet Solder	ring el of ow to f6. 38
1939	ST3 iron stand made from high grade bak chrom plated steel spring, suit all model includes accommodation for six bits and	
1724	Model MLX as X25 iron but 12 volts	f5.

BOOKS BY BABANI

Type AA1 10	$\begin{aligned} & \text { Price } \\ & \text { co. } 09 \end{aligned}$
AA120	c0.09
AA129	E0.09
AAY30	f0.10
AAZ13	E0.17
BA100	¢0.11
BA102	E0.37
8A148	£0.17
BA154	c0.14
BA155	¢0.16
BA173	f0.17
B8104	£0.17
BAX13	f0.08
BAX16	E0.09

DIODES

 Type
OA90
OA91
OA95
OA182
OA200
OA202
SD10
SD19
IN34
IN34A
IN914
IN916
IN4148
IS44
IS920

Engineers \& Machinists Ref. Tables 2nd book Transistor Equivs \& Subs 79 Electronic Novelty Circuits 52 Projects Using IC741 (or Equiv) Radio Antenna Book Long Distance Reception \& Transmission Giant Chart of Radio Electronic Semiconductor \& Logic Symbols Build Metal \& Treasure Locatore Power Amplifier Construction 50 Cicts use Germ/Sit/Zener Diodes 50 Projects Using Relays/SCR/Triacs 50 Field Effect Trans Projects Digital IC Equivs \& Pin Connection Linear IC Equivs \& Pin Connection How Simple LED Circuits iC 555 Timer Projects Projects on Opto-electronics Radio Circuits Using IC's Mobile Discotheque Handbook Electronics Projects for Beginners Popular Electronic Projects IC LM3900 Projects Radio Stations Guide Coil Design \& Construction Manual Handbook of integrated Circuits Equivalents \& Substitutes 1 st Book H -Fi Speaker Enclosures Circuits for Model Railways Shortwave Circuits \& Gear for Experiments $\&$ Radio Hams Electronic Gadgets \& Games Solid State Power Supply Handbook 28 Tested Transistor Projects Short-wave Receivers for Beginners 50 Projects using IC CA3130 50 CMOS IC Projects A Practical intro to Digital IC's Build Advanced Short wave Receivers Beginners Guide to Building

hegulators brioge rectifiers

uf

MINIDRILL $12 v$ hand held battery-operated mini drill. 7.500 r.p.m. Collet chuck. Ideal for drilling printed circuits or model
making. No. 1402 .
$\mathbf{8 7 . 7 9}$ TRANSFORMER 240V Primary $0-20 \mathrm{v}$ 2A Secondary. By
removing 5 turns for each volt from the secondary winding. any removing turns for each volt from the secondary winding. any
voltage up to $20 \mathrm{v}=2 \mathrm{~A}$ is obtainable. Ideal for the experimenter.
No. 2042 .
ANTEX MLX Soldering Iron Sturdy 25 watt iron complete with

These paks contain a range of Carbon Resistors assorted into the following groups.		
16213	60 mixed $1 / 8 \mathrm{w} 100 \mathrm{hms}$-9200hms	c0. 69
16214	60 mixed 1/8w 1 Kohms-	
16216	60 mixed 1/8w 10 Koh 60 mixed $1 / 8 \mathrm{w}$ 100 Ko	
16217	40 mixed $1 / 2 \mathrm{w} 100 \mathrm{ohm}$	
16218	40 mixed $1 / 2 \mathrm{w} 1 \mathrm{Kohms-82K}$	
16	40 mixed $1 / 2 w$	
16220	40 mixe	c0.69
CERAMIC PAKS		
16160	24-3 or each value 22pf 27 pf 33 pf 39 pf 47 pf	
16161	24-3 of each value 100 pf 120 pf 150 pf 180 pf 220 pf 270pf 330pt	
16162		
	$24-3$ of each value 470p 1500 pf 2200 pf 3300 pf 1500 pf 2200 pf 3300 pf $24-3$ of each value 4700 pf 6800 pf 01 uf 015 fo. 69 033uf 047uf	
61		
ELECTROLYTIC PAKS		
$\begin{aligned} & 16201 \\ & 16202 \\ & 16203 \end{aligned}$	values from $47 \mathrm{mfd}-10 \mathrm{mfd}$ values from $10 \mathrm{mfd}-100 \mathrm{mfd}$ values from $100 \mathrm{mfd}-680 \mathrm{~m}$	$\begin{aligned} & \mathbf{8 0 . 6 9} \\ & \mathbf{6 0 . 6 9} \\ & \mathbf{8 0 . 6 9} \end{aligned}$
COMPONENT PAKS		
16164	200 resistors mixed value approx (count by weight) 150 capacitors mixed value approx (count by weight) $801 / 2 \mathrm{w}$ resistors mixed values 5 pieces assorted ferrite rods 2 tuning gangs MW LW VHF strand wire 50 metres asssorted colours single strand 10 reed switches 15 micro switches 30 assorted pats 30 paper condensers - mixed vaiues electrolytics trans. types ${ }_{1}^{1}$ pack assorted hardware - nuts, bolts gromets	0.69
16165		
16168		9
16169 16170		c0.69
16172		
16173		
16175		
+16176		c0.69
		c0.69

VERO plastic case box. Theae boxes conalat of top and
SPECIAL OFFERS Aty
$4 \frac{1}{2}$ metres of 2 -core cable Works off a 12 volt battery Ideal for
Car. Boat Caravan No 1724 . 12.

CARBON RESISTOR PAKS

 abook Transistor Equivs \& Subs 52 Projects Using IC 741 (or Equiv) Radio Antenna Book Long Distanc Giant Chart of Radio Electro emiconductor $\&$ Logic Symbols Build Metal \& Treasure Locatore
Practical Repair/Renovation C/T Handbook of IC Audio Preamplifier \& 50 Cicts use Germ/Sil/Zener D位 Digital IC Equivs \& Pin Conn Linear IC Equivs \& Pin Connection How to make Walki-Talkies Projects on Projects Radio Circuits Using IC's Electronics Projects for Beginners IC LM3900 Projects
Coil Design \& Construction Manual Handbook of integrated Circuit
Equivalents $\&$ Substitutes Shortwave Circuits \& Gear for Experiments \& Radio Hams
Electronic Gadgets $\&$ Games 28 Tested Transistor Projects. 50 Projects using IC CA3 130 50 CMOS IC Projects
Buld Advanced Short-wave mournting PC boards/chassis pletes, the two sections are held togethor by four screve which enter through the baee
and are concealed by plastic feet. Hoight Price
No. Length Width
 UA7815 TO220
47824 TO220

.85
.85
.85
.85

0.92
0.92
0.92
0.92
0.92
0.52
0.52
1.72
SILICON 1 ap
Type
50v RMS
100v RMS
200v RMS
400v RMS
\qquad BR $1 / 50$
BR $1 / 100$

Negative UA 905

UA7905 TO220 UA7912 TO220

UA7915 $4 A 7924$ $4 A 7818$

UA7818 TO222O
7272314
UA723CTO99 DN
$\mathbf{£} \mathbf{8} .52$
$\mathbf{~} 1.72$
CASSETTES

ZENER DIODES

400 mv
avaiiable. (BzyBB) $1.3 \mathrm{v}, 2-2 \mathrm{v}, 27 \mathrm{v} .33 \mathrm{v}, 39 \mathrm{v}, 4-3 \mathrm{v}, 4-7 \mathrm{v}, 51 \mathrm{v}, 5.6 \mathrm{v}$

$1 \mathrm{w}-15 \mathrm{w}$ Plastic and metal encapsulated Range of voltages
available. $1.3 \mathrm{v}, 2.2 \mathrm{v}, 2.7 \mathrm{v} .3 .3 \mathrm{v}, 3.9 \mathrm{v}, 4.3 \mathrm{v}, 4.7 \mathrm{v}, 5 \cdot 1 \mathrm{v}, 5.6 \mathrm{v}$.
 $1.3 \mathrm{v}, 2 \cdot 2 \mathrm{v}, 2 \cdot 7 \mathrm{v}, 3.3 \mathrm{v}, 3.9 \mathrm{v}, 4,3 \mathrm{v}, 47 \mathrm{v}, 5 \mathrm{v}, 5.6 \mathrm{v}, 6 \cdot 2 \mathrm{v}, 6 \cdot 8 \mathrm{v}$,
$7.5 \mathrm{v}, 8 \cdot 2 \mathrm{v}, 9.1 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 15 \mathrm{v}, 16 \mathrm{v}, 18 \mathrm{v}, 20 \mathrm{v}, 22 \mathrm{v}$,
$24 \mathrm{v}, 27 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}, 43 \mathrm{v}, 47 \mathrm{v}, 51 \mathrm{v}, 68 \mathrm{v}, 72 \mathrm{v}, 75 \mathrm{v}, 82 \mathrm{v}, 91 \mathrm{v}$,
100 v

METAL FOIL CAPACITOR PAKS
16204 - Contarning 50 metal foil capacitor like Mullard C280 16204 - Contaning 50 metal foil capacitor like Mullard C280
series - Mixed values ranging from 01 uf -2.2 uf Complete with
identification sheet

LCD ALARM CHRONOGRAPH VT06 All usual features Perpetual calendar. day. date, month and year. 24-hour alarm with on/of indication chronograph measuring set, lap and first and Dual time zone facility Night light. ONLY $\mathbf{£ 1 7 . 9 5}$ (inc VAT P\&P)	BIGGEST RANGE OF VIDEO GAMES - EX STOCK FULL DETAILS ON REQUEST	
		VT04 SOLAR LCD 9mm CHRONOGRAPH

VIDEOTIMEPRODUCTS, 56 QUEENS ROAD

BASINGSTOKE, HANTS RG21 1RER Tel: (0256) 56417 or 26620 Telex 858747
FACTORY AGENTS WANTED. MONEY BACK GUARANTEE. OFFERS SUB.JECT TO AVAILABILITY. TRADE ENQUIRIES WELCOME

	PE PHASER UNIT P.E.APRIL 1979 A superb six stage phaser that really gives your guitar lith off. Equals
	COMPLETE KIT OF ALL PARTS AS SPECIFIED............15.95*
designer APPROVED KITS	Separate parts: TLO62 80p, BF245B 50p, PCB E1.50, 8 pin sockets (not included in kit) 21p each.
PE SUSTAIN UNIT Suero quality low noise, ow distorition sussain untit equat to the ver best commercial models. Suits all guitars. Glassfibre p.c.b.	
	COMPLETE KIT OF ALL PARTS AS SPECIFIED.............67.95*
Separate pants: XC5053R 50p, RPY58A 78p, Printed circuit board $\mathbf{9 5 p}$, Footswitch $\mathbf{E 1 . 5 0}$ each.	
ORION AMPLIFER	Complete set of semiconductors Quality glass fibre p.c.b., printed with component locations 8.50
PE TV SOUND separator	Complete set of semiconductors \qquad E2,30 High quality glass fibre p.c.b. Murata filters: SFE6.OMA 50p, CDA6.OMC 50p. \qquad
STOP PRESS!	PE FUZZ UNIT This is the Fuzz unit you have been waiting for! Smooth, clean tone with low noise and low current drain. Uses glassfibre p.c.b. and latest FET op-amp. COMPLETE KIT OF ALL PARTS AS SPECIFIED $\mathbf{£ 7 . 9 5}$
POSTAGE \& PACKING 15 p per order. Orders over $£ 5.00$ post free. All devices are top grade, brand new and to full manufacturers spec. Send S.A.E. for our data sheet and price list of Ferranti semiconductors.	
PRICES DO NOT INCLUDE VAT. Add 15% to all prices.	
	 IAN ELECTRONICS E AVENUE, ROYTON, OLDHAM OL2 6XD

All above prices include V.A.T. Send $40 p$ for new fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate - Bolton - Lancs. BL2 1BA

We've been making precision instruments since 1935 and our sales are worldwide. We welcome competition, because it lets us show how good we are. So when we make a $31 / 2$ digit hand-held multimeter like the 3020 , we make it better than anyone else.

Who else, for instance, can hold a candle to our 2,000 hours battery life?

Who else offers the time-slaughtering feature of Insta-Ohms, ${ }^{\text {TM }}$ showing continuity in less than 100 milliseconds?

Make the comparison with our nearest competitor. You'll soon see what gives us such a superiority complex.

SPECIFICATIONS		
PARAMETER	BECKMAN 3020	FLUKE 8020A
DC Voltage Ranges Accuracy	$\begin{aligned} & 5,200 \mathrm{mV}-1500 \mathrm{~V} \\ & \pm(0.1 \% \mathrm{rdg}+1 \text { digit }) \end{aligned}$	$\left\lvert\, \begin{aligned} & 5,200 \mathrm{mV}-1000 \mathrm{~V} \\ & \pm(0.25 \% \text { rdg }+1 \text { digit }) \end{aligned}\right.$
AC Voltage Ranges Accuracy $45 \mathrm{~Hz}-2 \mathrm{kHz}$	$5,200 \mathrm{mV}-1000 \mathrm{~V}$ $\pm(0.6 \% \mathrm{rdg}+3$ digits $)$	$\begin{aligned} & 5,200 \mathrm{mV}-750 \mathrm{~V} \\ & \pm(0.75 \% \mathrm{rdg}+2 \text { digits }) \\ & \text { to } \pm(1.5 \% \mathrm{rdg}+3 \text { digits }) \end{aligned}$
DC Current Ranges Accuracy	$\begin{aligned} & 6,2000 \mathrm{~A}-10 \mathrm{~A} \\ & \pm(0.35 \% \text { rdg }+1 \text { digit } \\ & \text { (except } 10 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & 4,2 \mathrm{~mA}-2 \mathrm{~A} \\ & \pm(0.75 \% \mathrm{rdg}+1 \text { digit }) \end{aligned}$
AC Current Ranges Accuracy $45 \mathrm{~Hz}-2 \mathrm{kHz}$	$\begin{aligned} & 6,200 \mathrm{~mA}-10 \mathrm{~A} \\ & \pm(0.9 \% \mathrm{rdg}+3 \text { digits) } \\ & \text { (except } 10 \mathrm{~A}) \end{aligned}$	$\begin{array}{\|l} 4,2 \mathrm{~mA}-2 \mathrm{~A} \\ \pm(1.5 \% \mathrm{rdg}+3 \text { digits }) \\ \text { to } \pm(2.0 \% \mathrm{rgg}+2 \text { digits }) \\ \text { (up to } \mathrm{lkHz}) \end{array}$
Resistance Ranges Accuracy	$\begin{aligned} & 6,200 \Omega-20 \mathrm{M} \Omega \\ & \pm(0.2 \% \mathrm{rdg}+1 \text { digit }) \end{aligned}$	$\begin{aligned} & 6,200 \Omega-20 \mathrm{M} \Omega \\ & \pm\left(0.2^{\%} \mathrm{rdg}+1 \text { digit }\right) \\ & \text { to } \pm(2.0 \% \mathrm{rdg}+1 \text { digit }) \end{aligned}$
Battery Life	2000 hrs	200 hrs
Fast Continuity Check	Yes	No

Specifications obtained from published data.

BECKMAN

Beckman Instruments Ltd Sales and Marketing Organisation Queensway, Glenrothes, Fife, Scotland, KY7 5PU. Telephone: (0592) 753811 Telex: 72135

KITS FOR SYNTHESISERS; SOUND EFFECTS

P.E. 128-NOTE
 PROGRAMMABLE SEQUENCER

Enables a voltage controlled synthesiser to automaticatly play pre-programmed tunes of up to 32 pitches and 128 notes long Programs are keyboard initiated and note length and thythmic
pattern are externally variable. Set of basic component kits $\begin{array}{lrr}\text { Set of basic component kits } & \text { KIT 76-5 } & \text { £28.92 } \\ \text { Set of PCBs \& layour charts } & \text { KIT 76-6 } & \text { E5.88 } \\ \text { Set of text } & & 8.98\end{array}$
Set of text photocopies

P.E. 16-NOTE

PROGRAMMABLE SEQUENCER

Sequences of up to 16 notes may be programmed by the use of external panel controls and fed into most voltage controlled syn-
hesisers.
Set of basic component kits
Set of PCBs
KIT 86-3 222.90
Set text photocopies 22.90
28.09

P.E. STRING ENSEMBLE

A multivoiced string instrument synthesiser $\begin{array}{lll}\text { Set of basic component kits } & \text { KIT 77-6 } & \text { E88.70 }\end{array}$ Set of PCBS \& layout charts KIT 77-7 $\mathbf{~} 24.19$

P.E. JOANNA PLUS ORGAN VOICING

A modified version of the P.E. 5 -octave piano that retains all the original facilities and also includes switchable organ voicing cir critry.

Set of basic component kits \quad KIT 71.5 C89.87 Set of PCBs \& layout charts
$\begin{array}{ll}\text { KII 71.5 } & \text { £89.87 } \\ \text { KIT } 71-6 & \text { £29.81 }\end{array}$
"Sound Design" booklet

ELEKTOR ELECTRONIC PIANO

A touch-sensitive multiple-voicing piano using the latest integrated circuit techniques for the keying and envelope shaping and virtually eliminating "bee-hive" noise hitherto inherent in previous electronic pianos.

5 -octave set of basic components 5-octave set of PCBs (as published) Additional 3-octave extension basic parts
Additional 3
3 -octave set of PCBs
Set of text phorocopies
KIT 80-6 E100.64 $\begin{array}{lr}\text { KIT 80-6 } & \text { £100.04 } \\ \text { KIT 80-7 } & \text { £26.02 }\end{array}$

KIT 80-5 840.98
KIT 80-8 $\mathbf{8 9 . 4 5}$

P.E. MINISONIC MK2 SYNTHESISER

A portable mains operated miniature sound synthesiser with keyboard circuits. Although having slightly fewer facilities than the large Formant and P.E. synthesisers the functions offered by this design give it great scope and versatility Set of basic component kits lexcl. KBD R's \& tuning pots - see list for options available
Set of PCBs (incl. layout charts)
KIT 38-23 KIT 38-24
287.05 "Sound Design" booklet

P.E. SYNTHESISER

The well acclaimed and highly versatile large scale mains Therated synthesiser. Other circuits in our lists may be used win to good advantage.
Main Unit basic component kits Main Unit set of PCBs \& layout charts Keyboard Unit basic component kits Keyboard Unit set of PCBs \& layou
charts
Keyboard Unit set of text photocopie
KIT 23-27 e86.99 KIT 23-28 $\mathbf{~ E 1 4 . 8 2 ~}$ KIT 23-29

KIT 23-30 $\mathbf{2} 2.07$

ELEKTOR FORMANT SYNTHESISER
 A ver

who puts performance before price
Set of basic component kits
Set of PCBs (as published)
Set of text photocopies

KIT 66-12 £183.68 KIT 66-13 $\mathbf{f B 3 . 9 2}$

10\% DISCOUNT VOUCHER (PE 70)
TERMS: Goods in current adverts \& lists over f50 goods value (excl P\&P \& VAT). Correctly costed, C.W.O., U.K. orders only. This voucher must accompany order. Valid
unti! end of month on cover of

COMPONENTS SETS include all necessary resistors. capacitors, semiconductors, potentiometers and transformers. Hardware such as cases, sockets, knobs. keyboards, etc. are not included but most of these may be bought separately. Fuller details of kits, PCBs and parts are shown in our lists.

LAYOUT DIAGRAMS are supplied free with all PCBs unless 'as published'

P.E. GUITAR EFFECTS PEDAL

Modulates the attack, decay and filter characteristics of a signal from most audio sources, producing 8 different switchable effects that can be further modified by manual controts.

Basic parts with foot switches
Basic parts with foot switches
Basic parts with panel switches
PCB \& layout chart
Text photocopy

ELEKTOR DICITAL REVERB UNIT

A very advanced unit using sophisticated i.c. techniques instead of mechanical spring lines. The basic delay range of 24 to 90 mS can be extended up to 450 mS using the extension unit. Further delays can be obtained using more extensions

Main unit basic component kit Main unit PCB (as published) \quad PCB 9913 £3.69 $\begin{array}{llr}\text { Extension unit basic component kit } & \text { KIT 78-2 } & \text { £47.69 } \\ \text { Extension unit PCB (as published) } & \text { PCB 78B } & \mathbf{8 1 . 1 6}\end{array}$ text photocopy

elektor analogue

REVERB UNIT

Using i.c.s instead of spring-lines the main unit has a maxium delay of up to 100 ms , and the additional set extends this up to 00 mS . May be used in either mono or stereo mode.
Main unit basic component set \quad KIT 83-1 \quad E29.49 $\begin{array}{lll}\text { PCB las publ.) to hold both kits } & \text { KIT 83-2 } & \mathbf{E 2 0 . 0 7} \\ & \text { PCB 9973 } & \mathbf{8 4 . 0}\end{array}$ PCB las publ.) ho hold both kits PCB 9973 24.31

P.E. GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing, for example, flanging, vibrato, reverb, fuzz and tremolo as well as other fascinating sounds. May be used with most electronic instruments
$\begin{array}{lll}\text { Set of basic component kits } & \text { KIT 85-3 } & \text { 843.75 } \\ \text { Set of PCBs \& layout charts } & \text { KIT } & \text { 85-4 } \\ \text { 810.62 }\end{array}$ Set of text pḥotocopies $£ 2.62$

P.E. PHASER

oscillator.
Set of basic components, incl.,
PCB \& chart
$\begin{array}{rr}\text { KIT } 88-1 \quad \mathbf{8 1 0 . 1 4} \\ & 68 p\end{array}$

ELEKTOR PHASING \&

VIBRATO UNIT

Includes manual and automatic control over the rate of phasing \& vibrato, and has been slightly modified to also include a 2 -input mixer stage.

Set of basic components	KIT 70-1	£19.11
PCB \& layout chart	PCB 70A	E2.58

Text photocopy
PCB 70A

P.E. PHASING UNIT

A simple but effective manually controlled phasing unit.
Set of basic components incl.,
PCB \& chart
KIT 25-1 $\mathbf{~} \mathbf{3 . 8 2}$

PHASING CONTROL UNIT

For use with Phasing Kit 25 to automatically control rate of phasing.

Set of basic components incl.,
PCB \& chart
KIT 36-1 $\mathbf{~} 8.21$
Text photocopy
10p

P.E. SWITCHED TONE

TREBLE BOOST

Provides switched selection of 4 preset tonal responses.
Set of basic components.
$\begin{array}{lll}\text { CB \& chart } & \text { KIT 89-1 } & \mathbf{8 3 . 8 2}\end{array}$

P.E.TREBLE BOOST UNIT

A simple treble boost unit with manual control of depth Set of basic components.
$\begin{array}{lll}\text { PCB \& chart KIT 53-1 } & \mathbf{2 . 7 6}\end{array}$

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE

MARKET

ELEKTOR RESONANCE FILTER

Allows a synthesiser to produce a more realistic simulation of natural musical instruments.

PCB (as publishponents KIT 82-1 18.61
Cxt photocopy
PCB 9951 \&3.29

P.E. GUITAR OVERDRIVE

Sophisticated versatile fuzz unit including variable controls affecting the fuzz quality whilst retaining the attack and decay, and also providing filtering. Can be used with other electronic instruments.

Set of basic components	KIT 56.1	$\mathbf{8 7 . 5 7}$
PCB \& layout chart	PCB $56 A$	$\mathbf{8 1 . 7 8}$
Text photocopy		880

P.E. FUZZ UNTT

A simple fuzz unit. Slightly modified from the original.
Set of basic components,
PCB \& chart
TREMOLO UNIT
A slightly modified version of the simple P.E. unit.
$\begin{array}{llll}\text { Set of basic components. } \\ \text { PCB \& chart } & \\ \text { KIT 54-1 }\end{array}$
GUITAR FREOUENCY DOUBLER
A slightly modified and extended version of the P.E. unit. $\begin{array}{ll}\text { PCB \& chart } & \text { KIT 74-1 } \\ \text { E4.97 }\end{array}$ Text photocopy 39p

P.E. GUITAR SUSTAIN

Maintains the natural attack whilst extending note duration
Basic components, foot switches, KIT 75-1 e5.e4
PCB \& chart
Basic components, panel switches. KIT 75-2
PCB \& chart
KIT 75-2 E4.08

P.E. WAH-WAH UNIT

Can be controlled manually or by integral automatic control.
Set of basic components, KIT 51-1 $\mathbf{~ E 3 . 9 9}$
PCB \& chart

P.E. AUTO-WAH UNIT

Auromatically Wah or Swell sounds with each note played.
Basic components. foot
switches, PCB \& chart KIT 58-1 EA.43
Basic components, panel
switches, PCB \& chart
Text photocopy
KIT 5B-2 E5. 31

ELEKTOR WAVEFORM CONVERTOR

Converts a saw-tooth waveform into sinewave, mark-space sawtooth. regular triangle, or square-wave with variable mark-space ratio. Basic components, PCB \& chart.
but excl. sw's.
KIT 67-1 $\mathrm{f9.24}$

P.E. VOLTAGE CONTROLLED FILTER

Extracted from P.E. Minisonic project.
Set of basic components.
PCB \& chart
KIT 65-1 $£ 7.88$

P.E. RING MODULATOR

Extracted from P.E. Minisonic project
$\begin{array}{lll}\text { Set of basic components. } \\ \text { PCB \& chart } & & \\ \text { KIT 59-1 } & \text { E6.05 }\end{array}$

ELEKTOR RING MODULATOR

Compatible with the Formant \& most other synthesisers Set of basic components KIT 87-1
PCB (as published)
PCB 79040
84.68
$\mathrm{c1.74}$
38 p

ADO: POST 3 HANDLING

U.K. orders: Keyboards add $£ 2.30$ each. Other goods: Under $£ 5$ add 25 p . under $£ 20$ add 50 p. over $£ 20$ add 75 p . Recommended insurance against postal mishaps: add 50 Recommended insurance against postal mishaps: add 50 p or cover up to $£ 50$. $£ 1$ for $£ 100$ cover, etc., pro-rata higher export postage rates.

ADD 15\% VAT

(or current rate if changed). Must be added to full total of
goods. discount goods, discount, post \&
handling, on all U.K. orders. Does not apply to Exoorts.

EXPORT ORDERS ARE WELCOME but to avoid delay we advise you to see our list for postage rates. All payments must be cash-with-order, in Sterling by Inter-
national Money Order or through an English Bank. To national Money Order or through an English Bank. To obtain list - Europe send 20 p . other countries send

AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units contaning some of the P E. projects buill from our kits and PCBs The cases were built by ourselves and are not for sale. though a small
selection of other cases is available.

LIST-Send stamped addressed list giving fuller details of PCBs. kits and other components.
OVERSEAS enquiries for list Europesend 20 p: other countries-send 50 p .

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKIMEER-ALLEN KEYBOARDS as required for many published projects. The manufacturers claim that these are the finest moulded plastic keyboards available All octaves are C to C , the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame 3 Octave (37 notes) . $\mathbf{£ 2 5 . 5 0}$ 4 Octave (49 notes)

CONTACT ASSEMBLIES (gold-clad wire) - 1 required for each KBD note: Type GJ - SPCO $25 \frac{1}{2} p$ ea. Type GA - 1 pr of contacts, normally open 24p ea. Type G8 - 2 pr N/O 2812 p ea. Type GC - 3 pr N/O $37 \frac{1}{2} p$ ea. Type GE-4 pr N/O 4efp ea. Type GH - 5 pr N/O 581p ea. Type 4PS - 3 pr N/O plus SPCO 57p ea.

P.E. NOISE GENERATOR

Extracted from the P.E. Minisonic.
Set of basic components

WIND \& RAIN EFFECTS UNIT

A slightly modified version of the original P.E. unit Set of basic components.
PCB \& chart
KIT 28-1

P.E. ENVELOPE SHAPER

WITHOUT VCA
Provides full manual control over attack, decay, sustain and release functions, and is for use with an existing VCA Set of basic components. Text photocopy

KIT 44-1
e5.24

P.E. ENVELOPE SHAPER

WITH VCA

Has an integral Voltage Controlled Amplifier, and has full manual control over the A,D,S,R functions. Set of basic components.
PCB \& chart

P.E. GENERATOR

An ADSR envelope shaper without VCA, and additional providing Repeat-triggering enabling a synthesiser to be programmed for mandolin or banjo effects.

Set of basic components
PCB \& layout chart
KIT 63-1
PCB 63A

P.E. EXTERNAL-INPUT

SYNTHESISER-INTERFACE

Allows external inputs such as guitars, microphones etc, to be processed by synthesiser circuits.

Set of basic components,
P.E. TUNING FORK

Produces 84 switch-selected frequency-accurate tones with an LED monitor clearly displaying beat-note adjustments.

Set of basic components,
PCB \& chart
Power Supply components.
Power Supply
PCB \& chart
Text photocop
P.E. TUNING INDICATOR
a simple 4-octave frequency comparitor for use with synthesisers and other instruments where the full versatility of KIT 46 is not equired.
Set of basic components,
PCB \& chart, but excl. sw
Text photocopy

P.E. DYNAMIC RANGE LIMITER

Preset to automatically con PCB \& chart

P.E.CONSTANT DISPLAY

FREQUENCY COUNTER
A 5 -digit counter for 1 Hz to 55 KHz with 1 Hz sampling rate. Meadout does not count visibly or flicker due to blanking. Set of basic components Text phos published)

PRICES ARE COARECT AT TIME OF PRESS.
E. AO. E. DELIVERY SUBUECT TO AVAILABLITY.

INTEGRATED CIRCUITS

BD1 Package KitThe Connoisseur's Budget Choice

Connoisseur now offer their famous BD1 Kit in a package deal.

The package consists of the BD1 Kit, SAU2 pick-up arm, plinth with anti-vibration feet, acrylic cover complete with hinges and friction lid stays, a pick-up mounting board, and all necessary screws, washers, etc. The plinth, cover and pick-up mounting board are all pre-drilled and ready for assembly.
The illustration shows the package with the BD1 Kit partially assembled.

OPPORTUNITIES ABOUND

WE ARE all, nowadays, electronics conscious. Yes, even the layman, while not conversant with the technicalities involved, has a general appreciation of the vital part played by this young but exuberant branch of electrical engineering in the complex world of today . . . and this is but the beginning.
"As we step over the threshold into a new exciting technological age, our dependence upon electronics is all too apparent: terrestrial developments centre around automation, with electronics providing the brain and guiding hand for power-operated machinery; extraterrestrial exploration relies utterly upon electronics for remote control, communications and telemetering services.
"These grand scale developments have an impact on the entire field of electronics, for in their wake come new components, new circuits, new methods and, of course, new applications."

Some might query the terms "young" and "the beginning" when applied to electronics and these are the only clues to the fact that those words were the
opening paragraphs of the PE editorial in Volume 1 No. 2-back in December 1964 ! Whilst looking back to see how far we have come over the past 15 years what is most apparent is that we are still part of a relatively young and most certainly exuberant industry.

NO BOUNDS

The introduction of the transistor-just making a significant impact on the hobbyist market back in '64-has led us into an electronics world which knows no bounds and, while progressing at breakneck speed five years ago is now going twice as fast.

That editorial continued in the following way:
'Without a doubt the amateur enthusiast will be eager to reap his share of these benefits of technological progress, as he has been indeed in the past. For it is true that amateurs have been conducting experiments and building electronic equipment since the earliest days of radio communication; even before the thermionic valve drove the crystal diode into (temporary) oblivion, and long before the very term 'electronics' entered into general use.
'But, in more recent times, the technical revolution triggered off by the invention of the crystal triode or transistor some 16 years ago has quite dramatically transformed the situation to the advantage of the home constructor."

The crystal triode! We wonder haw many readers using microprocessors know how a triode works.

30 YEARS ON

Only about 30 years from the discovery of transistor action we are able to put about 100,000 semiconductor devices in the area originally required for one.

If that first 16 years progress "dramatically transformed the situation to the advantage of the home constructor" just think what the last 15 years have done. Far from putting us "out of business", as some intimated when i.c.s. became readily available, the hobby has grown in both numbers and complexity and now forms a significant market for the component industry.

We fully expect the next 15 years to be even more rewarding.

Mike Kenward

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
Alan Turpin PRODUCTION EDITOR
David Shortland PROJECTS EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR John Pickering SEN. TECH. ILLUSTRATOR Isabelle Greenaway TECH. ILLUSTRATOR Judith Kerley SECRETARY

Editorial Offices:
Practical Electronics,
Westover House, West Quay Road, Poole, Dorset BH15 1JG Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot be answered over the telephone (see below).

Advertising Offices:
Practical Electronics Advertisements, King's Reach Tower, King's Reach, Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G
Make Up/Copy Dept. : 01-261 6601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 75 p each including In land/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 3.75$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10 \cdot 60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath. West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Măgazines Limited.

-14 STHTE GAR INSTRUMENTS llo. 2 REV.COUITER ENTS

 . $+$ Michael Tooley b.А. David Whitfield b.a. м.sc.The second article in a series of car instrument constructionals using the LM3914 (discussed last month), and which produce an l.e.d. bar display

MEASURING the rate at which the engine turns over is something which on first thoughts might not appear to be of much practical interest to the average motorist. In fact it is a very useful facility in both engine tuning and everyday driving situations.

In order to obtain optimum performance, it is necessary to drive at an engine speed which produces the maximum torque for that particular engine (the torque produced by an engine tends to decrease at high and low revs). The average saloon car performs best at approximately 2,000-3,000 r.p.m. and driving at this rate will produce optimum fuel consumption and acceleration for that particular gear. Indeed, one of the reasons for the increasing popularity of the 5speed gearbox is that it allows driving nearer to this optimum rev's while at higher road speeds.

Another point of interest is that the forces exerted on the engine unit vary with the square of the engine rev's, i.e. doubling the r.p.m. increases the forces on, say, the rocker gear by a factor of 4 . Hence, it is important that the maximum r.p.m. rating for a particular engine is not exceeded, irrespective of road speed.

In engine tuning, it is often necessary that certain measurements (e.g. ignition timing advance) are carried out at known engine speeds. Also the "tickover" speed should be adjusted so that the engine does not waste fuel while idling, yet moves off smoothly when required.

MEASUREMENTOF RPM

Measuring the engine r.p.m. would seem to require some type of transducer which is connected to the engine crankshaft. A little thought, however. soon shows that there is usually one already fitted; the distributor! The distributor shaft in a 4 -stroke engine rotates at exactly half of the engine speed, and is responsible for the opening and closing of the contact breaker points. The contact breaker causes a pulsed signal to be produced across the primary (LT) winding of the ignition coil. The number of pulses produced per minute will be:

$$
\frac{1}{2} \times \text { r.p.m. } \times \text { number of cylinders }
$$

All that is now required is a circuit to count these pulses and turn the result into an analogue signal which is suitable for driving the display module input, i.e. 0 to +5 volts for the required full scale.

Pulse counting by digital methods is one obvious way of determining contact breaker rate. This approach, however, requires a minimum of three to four i.c.s and also involves a stage of digital-to-analogue conversion, see Fig. 1a for details. A simple charge pump alternative (Fig. 1b) has the advantage of simplicity, but suffers the disadvantages of additional sensitivity to both pulse width and amplitude. These problems may be overcome by the incorporation of a monostable prior to the charge pump (Fig. 1c). With a monostable pulse width which is less than the periodic time of the input pulse train, the output of this new arrangement will now only depend on the input pulse frequency. The response time and full-scale values may then be set by a suitable choice of R and C, and of the monostable pulse width. A derivative of this approach is used in the integrated frequency-to-voltage converter produced by National Semiconductor and used in the r.p.m. counter to be described below.

FREQUENCY-TO-VOLTAGE CONVERTER

National Semiconductor's LM2917 is a linear monolithic i.c. which contains a frequency-to-voltage converter, together with a high gain op amp/comparator designed to operate a relay, lamp or other external load, up to 50 mA . The tachometer section uses a charge pump technique and offers frequency doubling for low ripple, input protection, and an output which falls to ground level for a zero frequency input.

One of the main aims in the design of the LM2917 was ease of use. A single RC network provides the frequency doubling (see Fig. 2), and the output is simply related to the input frequency by the following formula:

$$
\text { Vout }=\text { Fin } \times \text { Vref } \times \mathrm{Ra} \times \mathrm{Ca}
$$

The integral voltage regulator sets the value of Vref and ensures accurate, stable conversion performance.

The input stage is a differential amplifier driving a positive feedback flip-flop circuit. This arrangement allows the user to define the input switching level, while retaining the hysteresis around that level to ensure good noise rejection. Following the input stage there is a charge pump where the input frequency is converted to a d.c. voltage. This operation requires a timing capacitor (Ca), an output load resistor (Ra), and an integrating filter capacitor (Cb). The capacitor Cb determines the trade-off between output ripple voltage and response time of the circuit.

E0190
Fig. 1 (a) Measurement of r.p.m. (b) Basic diode pump (c) Frequency controlled diode pump

[60189]
Fig. 2. The LM2917 frequency-to-voltage converter

[^1]Fig. 3. Full circuit diagram of the Rev. Counter.

Fig. 4. Printed circuit layout (actual size)

Fig. 5. (above). Component layout of p.c.b. for Rev. Counter

Fig. 6. (left). Alternative stripboard layout. Note that R9 goes to collector TR 1 which will not affect operation

Fig. 7. (below). Method of calibration

This, for example, gives 200 Hz for a 4 -cylinder engine at 6,000 r.p.m. A direct method of calibration is then to use a pulse generator to apply a 200 Hz square wave (greater than three volts amplitude) to the input, and then adjust VR1 to give 5.0 V across R6. Should a pulse generator be unavailable, a suitable mains (filament-type) transformer may be used to generate a 50 Hz signal, and VR 1 is then adjusted to give an appropriate proportion of 5.0 V across R6, e.g. 1.25 V (i.e. fifty 200ths of 5.0 V) in the case of a 6,000 r.p.m. 4-cylinder tachometer. See Fig. 7 for details.

INSTALLATION AND USE

Connecting the tachometer to the engine ignition system is a very simple operation. Fig. 8 shows how the supply (A) and measurement input (B) leads are connected across the ignition coil; the OV connection being made to any convenient point on the vehicle chassis. In cases where the instrument is to be used as a piece of test equipment, switched values of load resistance may be provided for different ranges/numbers of cylinders, and connections brought out on flying leads with crocodile clips.

The tachometer has been successfully tried on a variety of British and foreign vehicles. Constructors should, however, be aware that for vehicles already fitted with a current pulse type of tachometer (e.g. Smiths type RVC), the readings obtained may tend to be rather misleading.

NEXT MONTH: Battery Current Indicator, Temperature Gauge, Dwell Indicator. All three car instruments form a special supplement with details on extending the displays and on providing extra warnings of high level readings

FULL FRONTAL

These BIMDICATORS were designed to satisfy applications requiring indicators with a restricted viewing angle, long operating life, and good aesthetic qualities.

Both devices utilise red, green or amber l.e.d.s which are set back from the front of the indicator and have low current, low voltage characteristics, fast switching times, and are fully i.c. compatible.

The BIM 33 l.e.d. (left) has a nickel plated brass body and is panel mounted in a 6 mm dia. hole. The BIM 34 l.e.d. has a chromium plated brass body and is panel mounted in an 8 mm dia. hole.

Prices inc. VAT and p\&p, for either size are: Red-71p, Green or Yellow-81p.

BOSS Industrial Mouldings Ltd., Higgs Ind. Est., 2 Herne Hill Road, London SE24 0AU (01-737 2383).

FIRST CLASS CATALOGUE

The Toolrange catalogue is excellently designed and printed. Over a hundred pages, most of them in colour, show a comprehensive range of tools which the serious constructor would be interested in knowing about. No need to send an SAE.

Toolrange supply tools and production aids for the electrical and electronic industries and their address is Toolrange Ltd., Upton Road, Reading, Berks., RG3 4JA (0734 22245).

CSC

A new 32 page catalogue from Continental Specialties Corporation features the company's ranges of breadboarding equipment, logic testing devices, and test instrumentation. Products featured include a wide range of solderless breadboards and breadboard assemblies, test clips, instrument cases, pulse and function generators, frequency counters and accessories, logic probes, logic monitors, the CSC digital pulser, test kits and probe kits.

The catalogue is available from Continental Specialties Corporation, Shire Hill Industrial Estate, Saffron Walden, Essex CBII 3AQ

AEROSOLS FOR ELECTRONICS

Switch cleaning aerosols by Servisol are now available from Toolrange. Other aerosols in the range are anti-static cleaners, water proofing sprays, insulating varnish sprays and chemical circuit freezers. Prices average out at 70 p per can.

Toolrange Ltd., Upton Road, Reading, Berks., RG3 4JA (0734 22245).

MICRO-KIT CONSTRUCTION

If you would like a microprocessor system but are daunted by the assembly then Logsign may be of interest.

Logsign will obtain and build a kit: construct a kit supplied by a customer; even undertake to finish a kit which has proved problematical.

Charges start at around 10 per cent of system value for the most popular kits such as Nascom, Compukit, Newbear 77/68 etc., rising to around 25 per cent for large systems like Horizon.

Logsign Microcomputer Engineers, P.O. Box 33, Truro, Cornwall, TR3 6BZ. (0872 76205).

LIGHT BARS

For those of you who are intending to construct the "car devices" currently being published by us, this new range of modular l.e.d.s should be of interest.

The HLMP 2300, 2400 and 2500 series of 9 to 19 mm rectangular devices can be multiplexed and are X-Y stackable. Composed of two or four in-line l.e.d.s with the light from each l.e.d. optically scattered to form an evenly illuminated light emitting surface, these devices may be strobed at high peak currents or driven from d.c. supplies. Available in red, yellow and green the HLMP 2300, 2400, and 2500 are priced from 97p exc. VAT and p\&p.

For further information contact Hewlett Packard Lid., Kings Street Lane, Winnersh, Wokingham, Berkshire RG115AR.

HIGH SPEED DRILL

A new high speed drilling machine which is ideal for use in p.c.b. prototype workshops had just been announced by Linton Laboratories. The Junior Drillmaster which is mains operated has a motor speed of 14000 r.p.m. with a drill capacity of 206 mm dia.

The drill, which is supplied with a guard and four separate collets (0.5 to 3.2 mm), is priced at $£ 65$ inc. p\&p, plus VAT.

Linton Laboratories Limited, 4 Bartlow Road, Linton, Cambridge, CBI 6LY.

JVC STEREO RECEIVER

The photograph shows JVC's R-S7, an AM/FM receiver which delivers 50 W per channel r.m.s. with both channels driven into 8 ohms, from 20 Hz to 20 kHz . The THD is no more than 0.03 per cent and a phono equaliser ensures a signal to noise ratio of 90 dB .

The R-S7 has a protection circuit which prevents power on/off noise from reaching the speakers, disconnects the speakers electronically if an abnormal d.c. voltage appears at the terminals and protects the power transistors from short circuits, low speaker impedances, etc. Retail price is around $£ 203$ (inc. VAT).

AM/FM/CB RECEIVER

A Hong Kong manufactured receiver labelled Bristal has been under appraisal at the office recently. It is said to comply, as of date of manufacture, with FCC rules and regulations part 15 subpart C.

As well as receiving legal transmissions from the British Broadcasting Corporation it is rumoured that if you switch the Bristal to CB you might hear French, Spanish and Italian CBers as clear as next door, probably a combination of skip and spaghetti burners.

The set measures $185 \times 90 \times 50 \mathrm{~mm}$, has a telescopic aerial one metre long, and has been seen for sale at $£ 18.95$ plus VAT.

10MHzScope

The 3106 C oscilloscope is a general purpose single trace instrument which has been designed for college labs, service shop repair and production line testing.

The instrument features a 5 in flat c.r.t., d.c. to 10 MHz bandwidth, vertical amplifier with a sensitivity of 10 mV to $50 \mathrm{~V} / \mathrm{cm}$ in 12 calibrated steps, $0.5 \mu \mathrm{~s}$ to $0.01 \mathrm{sec} / \mathrm{cm}$ sweep range and a times five magnifier. The price of the 3106 C is $£ 159.95$ including VAT, carriage is $£ 2.50$.

Kramer \& Co., 9 October Place, Holders Hill Road, London NW4 IEJ (01-203 2473).

3rd HAND

The 3rd Hand is a rather aptly named p.c.b. holder which can be clamped on the edge of a bench, table or worktop. The p.c.b. is held in position by an open ended clamp which allows any size of board to be held. When in

position the board can be flipped over to allow access for soldering and clipping.

The cost is $£ 8.95$ including VAT and p\&p.
Para Sales, 1 Hook Road, Kingsclere, Newbury, Berks. RG15 8PD.

P.C.B.s ACCEPTED

This diecast aluminium box incorporates slots on all four sides for quick housing and removal of 1.8 mm thick p.c.b.s. Dimensions of the box are $121 \times 95 \times 61 \mathrm{~mm}$. Grey hammertone is a shortly to be introduced optional finish.

BOSS Industrial Mouldings make a range of this type of box called BIMBOXES. This size is $£ 3.45$ inc. p\&p and VAT.

BOSS Industrial Mouldings Ltd., Higgs Ind. Est., 2 Herne Hill Road, London SE24 OAU (01-737 2383).

CRYSTALS MADETO ORDER

Golledge Electronics stock a very good range of crystals for microprocessors, markers, clocks, marine VHF, radio control, etc. They can supply crystals made to order, normal delivery six weeks.

Golledge are also designers of a range of "building block" modules which require only simple external connections and can be made to work well by anyone with little or no experience of radio construction.

Leaflets on the crystals and the modules are available from Golledge Electronics, G3EDW, Merriott, Somerset TA 16 5NS (0460 73718).

This is Ingersoll's latest clock radio waker upper. It has a 12 hour l.e.d. display and will wake you with the three band radio or a nine minute repeating buzzer. For the listener who falls off to sleep it has a 60 minute shut off timer. It is mains operated, has a power failure indicator, and is finished in either teak or satin silver. The price is $£ 30.65$ inc. VAT.

B$A B Y C O M$ is a two unit monitoring system for the nursery. It consists of a control unit with a microphone, which should be placed near the cot and an alarm unit which can be placed anywhere else in the house. The two units are joined together via a 3 core flex.

The alarm is triggered by sound, the microphone picks up the baby's cries and the control unit of the system which contains a 5 -bit shift register records the noise as a " 1 ". After 10 secs the contents of each register (A, B, C, D and E) are shifted along (A to B, B to C etc.) with any new noises being entered into register A whilst the information in register E is erased.

For the alarm to sound the baby must trigger it twice (two registers at 1) within a 50 sec. period. When triggered the alarm will sound for one period and then stop unless the baby makes any further noises in which case it will continue to sound until the baby settles down and one or less of the registers is at " 1 ". When the alarm sounds you can listen in to the baby by pressing the switch S 3 on the alarm unit.

CONTROLUNIT

The circuit diagram of the power supply and the control unit is shown in Fig. 1. The circuit is powered via transformer T1, rectifier diodes D1 and D2, smoothing capacitors C1 and C2 and a regulator circuit formed by TR1, R1 and Zener diode D3.

Any noise picked up by the microphone via JK1 is amplified by IC1 and then fed to the detector circuit of which TR2 and TR3 form a high gain amplifier. If the output of IC1 is above a certain level (when a loud enough sound is detected) the collector of TR3 is switched "high". The output level of IC1 at which this will occur is determined by the setting of VR 1 , the sensitivity control.

The two timers of IC2 are connected as two astable multivibrators. One timer runs at approximately 1 Hz , with 2:1 mark-space ratio and the other runs at approximately 0.1 Hz , its output waveform being "high" with very short clocking "lows" every 10 secs. The frequencies are nominal and the clocks can be set accurately enough by suitable choice of timing capacitors and resistors; there is no need for variable preset timing resistors. The logic circuit comprises the 74965 -bit shift register and the 7425 dual 4 -input NOR gate with a strobe input. The output from the detector circuit (collector TR3) is fed to the preset input of register

A (IC3 pin 2). The common preset input (pin 8) is held high by Vcc so that the output of register A (pin 15) goes "high" immediately register A receives a "high" input. Preset inputs of the other registers (pins 3, 4, 6 and 7) are grounded, so that these registers have a "low" output at switch-on.

If any noise is detected during a 10 sec . period the output of register A goes "high" and remains high until the end of that period. Then the clock pulse steps the data through the registers.

The NOR function of IC4 operates only if the strobe input (pin 3) is "high". If the input is "low" the gate output is "low" whatever the state of its four inputs. The first NOR gate receives its strobe input from register A and its four inputs from registers B to E. If register A is low (no noise during the 10 sec. period), the gate output is low, irrespective of the other registers. But if register A goes "high" what happens next depends on the state of the other registers. If these are all "low" (no noise during previous four periods), the output remains "low" (no alarm). If any one or more of these are "high", the gate output goes "high", switching on TR4. At the end of the period TR4 is switched off as the output of register A goes low, unless of course baby makes further noises.

The second NOR gate of IC4 has its strobe input (pin 11) permanently wired to Vcc and is wired to function as an

The control unit

[66 155]
Fig. 1. Circuit diagram of the power supply and the control unit
ordinary 2 -input NOR gate. This receives inputs from the first NOR gate ("high" = alarm) and from the 1 Hz clock. In the "no alarm" state the output of this gate is continuously "low". In the alarm condition, the output of this gate is the inverse of the clock output. The output is used to turn TR4 on and off regularly.

ALARM UNIT

The alarm unit (Fig. 2) incorporates an oscillator and amplifier to produce the audio alarm tone. The frequency at which the oscillator operates can be varied by changing the value of C14. As TR4 is turned on the red lead of the alarm unit is connected to OV switching on lamp LP2, the oscillator and therefore the alarm. Switching TR4 on and off via the second NOR gate of IC4 causes the lamp to flash and the alarm to bleep.

EO183]
Fig. 2. Circuit diagram of the alarm unit

FAILSAFE

The unit incorporates a number of features to ensure that "no alarm" really does mean "no noise" and is not the result of a failure in the system.

1) There is no volume on the alarm unit, so this cannot be turned down and then forgotten. Similarly, the lamp cannot be switched off.
2) In the "no alarm" condition a small current flows through R16, bypassing TR4. This current is insufficient to activate the AF oscillator but does cause LP2 to glow. If the unit is operating correctly the lamp should be either flashing brightly or glowing dimly.
3) One side of the microphone jack socket (JK1b) is used as switch 1 which is wired in series with R15 to TR3 so as to connect the base of TR3 to ground when the microphone jack is not in its socket. Thus if the microphone has not been plugged in, or its plug partly pulled out of the socket, TR3 is turned off, its collector potential goes "high" and a "high" will appear at register A triggering the alarm.

CONSTRUCTION

In the prototype, the control unit of the Babycom was housed in a $175 \times 95 \times 70 \mathrm{~mm}$ case. The front panel should be drilled and the panel components mounted into position. The Veroboard layout shown in Fig. 3 should be soldered next and then carefully checked to ensure there are no solder bridges or incomplete track breaks to short out the board. After the board has been checked it can be fitted as close to the back and one side of the case as possible using 6BA screws and spacers. Note that only one Veroboard is needed instead of the two used in the prototype

Transformer T1, the smoothing capacitor C1 and the "L" shaped heat-sink for TR1 should be fitted alongside the Veroboard with the transformer at the back of the case. The rest of the power supply circuit should then be mounted on a piece of tagboard (Fig. 4) and fitted to the clip holding

50186
Fig. 4. Tagboard layout of the p.s.u.

Internal view of the control unit
capacitor C1. Care should be taken that the upper end of the tag strip does not touch against the top cover of the case.

After all the components have been fitted into the case the wiring between the components should be carried out. R16 is mounted between the terminals of S2 and a short length of co-ax cable should be used to link JK1 to the

COMPONENTS . . .

Resistors	
R1	2 k 7
R2	100 k
R3	180
R4	$27 \frac{1}{2} \mathrm{~W}$
R5, R6, R7, R9, R20	$1 \mathrm{k}(5$ off $)$
R8	10 k
R10, R11	$2 \mathrm{M} 2(2$ off $)$
R12	470 k
R13	$1 \mathrm{k5}$
R14	560
R15	2 k 2
R16, R19	$82(2$ off)
R17	15 k
R18	330
R21	1 k 8

All resistors $\frac{1}{4}$ W 5\% unless otherwise stated

Potentiometers
 VR1 1 k linear

Capacitors	
C1	$2200 \mu 16 \mathrm{~V}$ elect.
C2, CB	$1000 \mu 10 \mathrm{~V}$ elect. (2 off)
C3, C4, C15	$100 \mu 10 \mathrm{~V}$ elect. (3 off)
C5	220 n polyester
C6	$47 \mu 10 \mathrm{~V}$ elect.
C7	$470 p$ ceramic

C9. C14	100n polvester (2 off)
C10	10 n ceramic disc
C11	470 n polyester
C12	10n ceramic disc
C13	$47 \mu 16 \mathrm{~V}$ tant

Semiconductors

D1, D2	1N4004 (2 off)
D3	BZY 886 V 2
TR1	BD131
TR2, TR3	2N2926 (2 off)
TR4	2XT 300
TR5	2N2646
TR6	2N3704
IC1	TBA 820
IC2	NE 556
IC3	7496
IC4	7425

Miscellaneous

T1	9-0-9V secondary 100mA mains transformer
S1	Push button, push to make push to break
S2	Push button, push to make
S3	S.p.s.t. biased
LP1	240 V neon
LP2	6 V 60 mA MES filament lamp
LS1	Miniature speaker 8Ω
JK1	Min jack socket
JK2	Stereo jack socket
MIC1	High impedance crystal microphone

Fig. 5. Veroboard layout of the alarm unit
amplifier on the Veroboard layout.
The prototype alarm unit of the Babycom was housed in a $130 \times 100 \times 50 \mathrm{~mm}$ case. The Veroboard layout of the alarm circuit is shown in Fig. 5. After the board has been

The complete Babycom system

soldered and checked it should be fitted into the case with the loudspeaker, indicator lamp and switch S3 fitted into the front panel. The alarm unit is joined to the control unit via 3 core cable and PL1.

INTELLIGENCE PRINTS BACKWARDS

SOMETHING of a price breakthrough is the Trendcom 100 Intelligent Printer from Personal Computers Ltd. A high performance serial printer capable of 40 char's $/ \mathrm{sec}$, the Trendcom 100 has a 96 character set and is controlled by its own internal microprocessor.

To speed things up, each line of characters is stored ready to be printed, and when summoned, may be printed from left-to-right or right-to-left, so that in effect the print head is quietly zig-zagging its way down the paper (known as bidirectional look-ahead printing).

Print-out is aesthetically pleasing (10 char's/inch) based on a 5×7 dot matrix onto low cost thermal paper. High reliability is inherent with only two d.c. stepping motors to control the print head and paper roller, and everything is powered from its own mains supply.

Interfacing to most microcomputers should be easy with TTL compatible inputs, and interface cards are available for PET, Apple II, TRS80 and RS232 ports. Signals available from Trendcom 100 are $\overline{\text { STROBE }}$ and BUSY. A Test input activates a self test message.

You may have seen printers with this kind of specification before, but here is the difference: Trendcom 100 costs $£ 241$.

Personal Computers Ltd., 194-200 Bishopsgate, London, EC2M 4NR.

ONE-CHIP COLOUR TV SYSTEM

Motorola Semiconductors announce a European designed, multistandard TV colour system, the TDA 3300 , Chroma III, one-chip colour system.

This third generation system accepts a colour TV signal in the form of composite video and gives an output ready for application to the c.r.t. cathode, via a simple output stage.

Included on-chip are a number of features which, Motorola believes, will make the TDA 3300 one of the most sophisticated integrated TV systems yet available. Key features of the system are:

User Controls-The device includes a full range of user controls, saturation, contrast and brilliance, which have been designed with a high input impedance, in the order of $1 \mathrm{M} \Omega$, and an operating range of 0 to 5 V . This makes them compatible with Motorola and other Remote Control systems via a simple RC network.

Beam Limiting-An on-chip beam limiter automatically adjusts the output drive to prevent blooming of the picture detail highlights.

Reference Generation-For simplicity the system uses the easily obtainable 4.43 MHz crystal for the reference frequency generation. Further, the 90° phase shift is accomplished on-chip by an unique self correcting circuit which will keep phase errors down to a minimum.

Automatic Black Level Setup-By sampling the c.r.t. cathode current the system is able to adjust dynamically the tube black level throughout its life, thus eliminating three complex adjustments during the set manufacture.

Full Multi-standard Capability is available as PAL and NTSC, the latter being aimed at the video recorder user. However, this is extended to SECAM with the soon to be announced TDA 3030 SECAM decoder.

On-Screen-Display-In order to take full advantage of the range of facilities available to the current and coming generation of TV sets, Teletext, games, camera, etc., the TDA 3300 includes on-chip, RGB on-screen-display inputs and the associated fast blanking inputs.

In spite of all these facilities the TDA 3300 requires a single 12 V power supply and has low current drain of 50 mA .

Polints arising

AUTORANGING MULTIMETER
(April-May 1979)
The diodes D2 and D3 (BAV 47) may be replaced by BAV
45 s which are avallable from Ace Mallironix. Lud, Tootal
Street, Wakefied, West Yorkshire.
CONSTANTDISPLAY FREGUENCY METER
(August 1978)
A link should be made between the centre pin of IC17 and
C4-ve.

CONCLUSION OF SERIES

A^{s}S INDICATED in the previous articles, the Compukit is hardware expandable in many ways. Expansions to the machine are in the process of being produced and include a Colour Graphics Board, and a large memory board which will bring the machine nearer to its maximum addressing ability in RAM and EPROM/ROM. By the time this article appears, these boards should be available.

Software expansions include a sophisticated Machine Code Monitor, disassembler and assembler which is included with the machine. Many programs, including games, already exist and it is hoped that others will become available in the near future from those software houses which have shown interest in the machine.

The hobbyist who wishes to expand the hardware of the machine himself may be interested in two useful and important methods of doing so. These are described below. Firstly, it is essential to bear in mind a picture of the machine's memory map:

When expanding the system or adding I/O ports, certain addresses are used for specific functions and must not be overlapped. It is also important to allow for future expansions by keeping clear of memory space which may eventually house extra RAM. In general, later expansion boards will add memory consecutively with the 8 K of on-board RAM, so that the BASIC interpreter will find it during the usual memory test when C is pressed after Reset.

To decide on suitable addresses, the Address Map shown in Table 4.1 should be consulted. The addresses given are in hexadecimal notation and, as can be seen, BASIC workspace can be as large as 40,191 bytes (0300 to 9FFF) before overlapping with the BASIC ROMs. There is plenty of space

Table 4.1. Memory map.

Address
0130
01 CO
0000-02FF
0300
1 FFF
AOOO-BFFF
D000-D3FF
DFOO
F000, F001
F800-FFFF

Function
NMI vector
IRQ vector
Scratchpad RAM for operating system Start of BASIC workspace
End of on-board RAM (8 K) BASIC interpreter
Video RAM
Polled keyboard
ACIA serial port
MONITOR ROM
from C000 to CFFF (4096 bytes), and from D400 up to F7FF, apart from the keyboard and ACIA. It is in this last portion that parallel or serial I/O ports can be neatly added with less danger of interfering with later additions

In order to expand the Compukit, therefore, a certain amount of address decoding is necessary to locate any peripherals at the right place in the machine's memory. There are two main ways in which this may be achieved. The top 1 K of the 8 K of RAM (ICs 38 and 52) may be left unused and its address decoded output (RS7) supplied to the expansion as an ENABLE signal. A more general method is to add an expansion board to the system containing its own address decoding. Both of these are described.

PARALLELI/O PORTS

Suppose we wish to add $16 \mathrm{I} / \mathrm{O}$ ports to the machine in the most straightforward manner possible for some control purpose. A 6820 or 6821 (with greater drive) is most suitable for the job. This chip is the famous PIA or Peripheral Interface Adapter containing a number of $1 / O$ drivers and latches as well as several control lines.

A couple of d.i.l. plugs will allow the circuit in Fig. 4.1 to be connected to the Compukit with minimum effort to control almost anything. The circuit shown includes some lights and switches-just imagine the l.e.d.s to be relays and the switches to be sensors of some kind.
To use Fig. 4.1 and appreciate the circuit's full potential, the data sheet for the device must be obtained and studied. This is a very useful chip and each of its sixteen I/O lines (PBO-PB7 and PAO-PA7) may act as either input or output. There are four external control lines for various purposes (CB1, CB2, CA1, CA2), and interrupts, via IRQ, may be generated by external devices. In order to use the chip, which looks life four memory locations (here decoded as 1 COO, 1, 2, 3) internal registers must be set to a pattern of bits which informs the device of those lines which are to be inputs, and which are outputs. Data to be written to outputs is sent to the appropriate location within the PIA which subsequently clocks it through to the output latches. Similarly, incoming information is stored in a register and may be retrieved by reading the correct memory location in the PIA at the program's convenience. The Interrupt structure may be used to force the MPU to "look" at the PIA when an external device sends its information through.

Fig. 4.1. Switches and lamps interface
An interesting feature of such a device is that the time taken to change an input line to an output is similar to the instruction speed of the MPU system driving it. This allows the possibility of swopping between input and output very fast to make any given line (or lines) appear to the operator as if it is performing both functions simultaneously. Handshaking between microcomputers can be arranged in this way, and parallel processing by a set of machines may be envisaged.

The interface in Fig. 4.1 may, of course, be adapted to run many other devices including UARTs, USARTs or just tristate buffers and TTL latches. In fact, by using the lower ten address lines from IC38 and IC52, any 1 K (or less) memory mapped device may be attached to the Compukit. So far, the author has successfully driven the PE VDU and the coming EPROM Programmer. The advantages of using BASIC to control these devices are enormous. Tasks which appear most daunting when a machine code microcomputer is used, become almost trivial in the high level language.

Several extra terminals may be added to the basic machine in this way, adding considerably to the system's viability in small business applications.

However, the above expansion method, though quick and easy to implement, does tie up 1 K of on-board RAM for each expansion used, and as such may be regarded as

E6 180
Fig. 4.2. Expansion connector
wasteful in the long run. This should lead the user to attach his peripherals to the machine via the 40-pin d.i.l. socket J1. The specifications for this socket are given in Fig. 4.2. All bus lines are brought out to the socket, and they allow external memory mapped devices to communicate with the MPU directly. The BD lines are buffered data lines, with direction controlled by the DD signal which selects Read or Write through ICs 6 and 7 as shown in Fig. 4.2.

All sixteen address lines are present, as is R/W, IRQ, NMI and $\emptyset 2$. For correct memory timing this last signal should be fed to an active high enable line from all external devices. There is also one spare line not connected to anything, but brought out to a pad next to the socket. The rest of the pins are Ground connections.

To use this socket, each external device must generate its own address decoding, the details of which depend upon the amount of memory each expansion takes up. Any such device should occupy a unique address position and hence each address line must be involved in its "fetching".

For devices taking up 8 bytes of memory, for instance, Fig. 4.3 gives a straightforward method of decoding. Here, the 8 bytes are arranged to lie at F400 to F407.

This particular circuit is, of course, purely a functional suggestion to highlight the fact that NAND gates decode 1 's and NOR gates decode O's, and that all address lines play some part in decoding the base address of F400.

Thus, small memory requirements are easily catered for using the simplest logic devices. It is usually a good idea to use CMOS or LS i.c.s to reduce bus loading.

56185
Fig. 4.3. Address decoder for 8 bytes
For large memory requirements, the n to 2^{n} line decoders such as 74LS138,9 and 74154 are extremely useful. A 24 K memory board, for instance, will need its own internal pageselect logic to enable different banks of memory i.c.s, just as the Compukit itself does, via some of the above decoders.

For general hardware control purposes, the Compukit may be operated in either BASIC or machine code. The latter can be considerably faster as it deals fundamentally with electrical steps. From BASIC, an 1/O port can be controlled by the WAIT statement or using PEEK and POKE. This has the advantage of extreme ease of programming. Imagine controlling a home-security system. The program could continually PEEK a number of I/O ports (PIA perhaps) connected to remote sensors. When a change occurs, an IF statement would decide whether to act, and a few subroutines would decide which action to take. Some other sensors could be PEEKed nearby and, in a short time, an alarm could be sounded or a stream of appropriate invective produced via a speech synthesis unit!

Extremely complex programs with feedback and analysis could be constructed using the powerful BASIC involved, which, though not as fast as machine code, would act many orders faster than any human activity involved.

The speed problem becomes important, for example, in controlling high speed machines or processes. Then, a hybrid program using the USR function could swop back and forth between BASIC and machine code for instant response to requirements.

As the IRQ and NMI interrupts are fully available to the user, an even more sophisticated system is possible whereby the external process takes control of the computer, when needed, via an interrupt.

The potential is exciting and to some extent already being exploited. Anyone interested could do worse than construct an "I.e.d. and Switch" I/O expansion as in Fig. 4.1 and learn to use it! The next step would be to add a D / A or A / D converter and learn to control and receive analogue data in real time.

SPECIALKEYBOARD FUNCTIONS

Referring to the keyboard matrix circuit diagram and hardware description, it has already been stated that the keyboard is polled in software for key closures except during program execution (unless waiting for an INPUT).
There are two important routines associated with the polling sequence. One determines which key has been pressed, and the other is a routine for detecting CONTROL C. The latter is not in general disabled during program execution, and may be used to BREAK a program for examining variables, etc. The routine involved may, however, be disabled or enabled by the user via the following statements:

POKE 530,1 disables POKE 530,0 enables

The first of these may be placed before a part of the program whose execution it is important not to be able to interrupt. If the second statement is placed at the end of the protected region, then CONTROL C will never intrude on that region if pressed.

Table 4.2. COLUMN C0		
ROW	RO	CA/RA
C1	R1	254
C2	R2	253
C3	R3	251
C4	R4	247
C5	R5	239
C6	R6	223
C7	R7	191
		127

The keyboard matrix may be used in special applications during the execution of a program, by treating it as an ordinary read/write memory location (57088 decimal or DFOO hexadecimal). To do this, it is often important to disable the CONTROL C routine to prevent it from interfering.

An example of the keyboard's use for special functions could be to allow the keys to be reprogrammed to return graphics characters. A program would be written to allow, say, all the "block" characters to be called from a section of the keyboard when SHIFT LOCK is up.

To perform any special programming of the keyboard, the following statements are used:

```
POKE 57088, RA
IF PEEK(57088) = CA THEN (statement)
```

RA is the address of the row being tested for key-closures according to Table 4.2. This POKE statement may be thought of as "setting" the appropriate row to the "on" condition. CA, column address, is the value which location 57088 takes on when a key in the row RA is pressed. Thus if 57088 is POKEd to have value 254, and 57088 is then read (via PEEK) and found to have value 254 then the program knows that SHIFT LOCK is down (see the keyboard matrix diagram).

Fig. 4.4. (left) Asynchronous I/O and RS232. (right) Serial data buffers

The following program changes the keys 1 to 7 to graphic characters when SHIFT LOCK is up. When down, the words SHIFT LOCK roll up the screen until SHIFT LOCK is pressed. Then the keys 1 to 7 are active and each gives a different character until 7 is pressed when the program terminates.

```
10 POKE 530,1
20 POKE 57088,254
30 IF PEEK(57088) = 254 THEN PRINT ''SHIFT-
LOCK DOWN': GOTO 20
40 POKE 57088,127
50 IF PEEK(57088) = 255 THEN 40
60 PRINT CHR$( PEEK(57088) );
70 IF PEEK(57088) = 253 THEN END
80 GOTO 10
```

The program, though rather simple, is meant to illustrate how information can be gathered from the keyboard and used to control execution. Note that in line 50 the keyboard location is assumed to have value 255 unless a key is pressed, as R1-R8 pull up the inputs to IC4 and IC5 and force them to "see" 1 's until an active key is pressed.

The applications of the above are manifold, not least in the execution of games or simulation exercises; two areas which in many ways are very similar!

In order to use this keyboard polling easily, it is a good idea to label the keyboard matrix diagram, published in Part 1 , with the CA and RA addresses corresponding to the
columns and rows. For instance, CO and RO should be labelled 254, C1 and R1 253, etc.

This concludes the description of the Compukit UK 101. By the time this article appears, many readers will have had the opportunity of operating the basic machine. The applications are enormous and stretch across the full gamut of endeavour. It is hoped that through the pages of Practical Electronics, future developments can be described as they occur and thus keep readers up to date with a machine considered to be ahead of its time.
It only remains for us to wish you all good luck with the project.

MOREI

Next month we will publish Part 1 of an EPROM programmer designed to plug into Compukit-it will also function with other computers. We also expect to be able to publish another exciting computer peripheral in the near future-we do not believe this has previous/y been published as a hobby design-more details in future issues.

Honnidnun

Satellite Communications (conference)-Oct. 30, 31, London Press Centre. Will "tele conferencing" replace business travel? Who will finance this expanding technology, and how should outer space be shared between the nations? Details Online Conferences Lid. b Uxbridge (0895) 39262.
Personal Computer World Show--Nov. 1-3, West Centre Hotel, London.
Compec-Nov. 6-8. Grand Hall, Olympia, London. Details: Iliffe Promotions Ltd. © 01-261 8437/8.
Professional Viewdata Exhibition '79—Nov. 7 \& 8. West Centre Hotel, London.
Technical Innovation In The Service Of The Elderly and Disabled-Markets And Needs (symposium)-Nov. 19-21. Berlin. Details: H. S. Wolff, Clinical Research Centre, Watford Road, Harrow, Middlesex.
Integrated Telecommunications For The 80s--Nov. 20, 21. Carlton Tower, London. Details: Online.
Electronics 79-Nov. 20-23. Olympia, London. $\zeta 0217056707$.
Video Rights 79 (conference)-Nov. 26, 27. Cafe Royal, London. Details: Nord Media 『 01-629 9381.
Breadboard 79-Dec 4-8. Royal Horticultural Halls, Westminster. Details: Trident International Exhibitions. $/ 008224671$.
IBM Hardware Selection-Dec. 5, 6. Skyline Hotel, London Airport. Details: Online.
IEA/Electrex-Feb. $25-29,1980$. National Exhibition Centre, Bir mingham. Details: Industrial and Trade Fairs Ltd. 6 021-7056707.
Viewdata '80-March 26-28. Wembley Conference Centre, London. Conference and exhibition. Details: Online Conferences Ltd. \wp Uxbridge (0895) 39262.

Computer-Aided Design (conference and exhibition)-March 31-April 2, 1980. Metropole, Brighton. Details: Organisers, CAD 80.0483 31261.

Communications '80-April 14-18. National Exhibition Centre, Birmingham. Details: ITF Exhibitions. / 021-7056707.
Electronic Test and Measuring Instrumentation-April 22-24, 1980. Wythenshaw Forum, Manchester. Details: Trident.
International Conference On The Electronic Office-April 22-25, 1980. London Penta Hotel. Organised principally by the Institute of Electronic and Radio Engineers. 99 Gower St., London WC1E 6AZ.
All-Electronics Show (1980)-April 29-May 1, Grosvenor House, London. 6 0799-22612.
The Mersey Micro Show-April 30. May 1, 2, 1980. Adelphi Hotel, Liverpool. Exhibition and seminars, with the co-operation of Liverpool University. Details: Online.
The 1980 Microcomputer Show-July 10-12. Royal Lancaster Hotel, London. Details: Online.
IBC 80-Sept. 20-24. Metropole Centre, Brighton. Details: Secretariat, IEE. Savoy Place, London WC 2R OBL.

WE NEED YOU

A. vácancy lias arisen for a production editor, en Pé If: you have some knowledge of magazline or: newspaper Itho production andfor subbing pius an interest in electronics we may be able to offer you an interesting and rewarding position:

Eased at our editorial offices in Poole tie positiont carries a salary of $\mathrm{F} 5,771$ plus luncheon vouchers and at least 4 weeks paid holiday:

Wiften appilcations wih full ev:to Mike Kenward The Editor, Fractical Electronics. Westover Wouse, West Duay Road, Poole, Dorset:
|NTRODUCTION of the slide dissolve unit has been a most exciting development for the enthusiast in colour slide photography. Two projectors are used with the slides stored alternately in each and smooth dissolves from one picture to the next are made by dimming one bulb whilst brightening the other. Not only does this technique stop that annoying sudden darkness between slides but it also gives a now freedom to the photographer to produce creative sequences of images which suit the changing moods of an accompanying soundtrack. Photographic clubs all over the world have established specialist groups for audio-visual work and some outstanding work has been shown at exhibitions and competitions.

But not all work has to be at this level; even the most ordinary collection of holiday snapshots will benefit from the professional touch given by pictures which automatically dissolve from one to the next in synchronism with a recording of music or commentary. Equipment to operate two projectors and to record the control and soundtrack signals on tape is available commercially but a basic unit will cost over $£ 150$ and advanced systems can cost far more.

This series of articles describes a dissolve control unit which is easy to build and adjust yet costs in the region of £40 to make putting it well within the reach of many amateur photographers. Cross-fading between the two projectors is controlled by a knob which allows the user to fade at any speed to suit the mood of the occasion. To change the slide a single button is pressed which automatically changes the slide in the dark projector-very useful in the heat of the moment when it is all too easy to press the wrong button and upset the whole sequence. Two additional buttons provide "twinkle" (rapid switching between two projectors) and automatic superimposition of two images-features not always found on commercial machines. Operation of the controls produces an audio signal which can be recorded on one track of any domestic cassette or reel-to-reel tape recorder and subsequently replayed to reproduce exactly the sequence of fades and changes that were originally recorded.

The control is designed to handle two remote-control projectors having 24 V 150 W lamps although it is easily modified to handle 250 watt lamps. Each projector needs a simple modification to interrupt the wires carrying current to the bulb and to bring them out at a socket for connection to the control box. Additional connections to each projector operate the slide change mechanism and provide the power to drive the electronics so that no separate connection to the mains is needed.

Fig. 1. Block diagram

Fig. 2. (a) Mains input (b) late trigger pulses (c) small voltage across load (d) early trigger pulses (e) large voltage across load

BRIGHTNESS CONTROL

A triac is used to control the brightness of each projector lamp. When the device is connected in series with a circuit it behaves like a switch which is turned on by the brief application of a pulse to its trigger contact. Provided that the current through the triac stays above a certain sustaining level it will remain conducting, but it will turn off as soon as the current falls below this critical level. These features make the triac a useful device for regulating the power applied to a load which is driven from an alternating current supply.

The block diagram of the unit (Fig. 1) shows that a triac is connected in series with the lamp circuit of each projector and Fig. 2 shows how the circuit works. In (c) the triac is turned on late in every half cycle and turns off automatically as the alternating current reverses in direction producing a small average voltage across the lamp. More light is produced in (e) where the triac conducts for the larger part of each half cycle causing almost the full rated current to flow in the lamp. Trigger pulses are applied to each triac via a pulse transformer which isolates the driving electronics from the alternating voltage applied to the load.

In order to exercise precise control over the current flowing in the lamp we need to be able to vary the position of the trigger pulses within each mains half-cycle smoothly and accurately.

SAWTOOTH

As the block diagram shows a 100 Hz sawtooth signal derived from the full-wave rectified mains frequency is compared in a high gain comparator circuit with a d.c.
control voltage, producing the results shown in Fig. 3. Increasing the control voltage (b) causes the comparator positive-going transition (c) to occur later and later in the mains half-cycle. This transition is differentiated to form the triac trigger pulse so the triac conducts for a shorter period and the average current in the load therefore decreases. Finally the control voltage exceeds the peak of the sawtooth, no trigger pulses are produced, and the light remains off.

As the control voltage is reduced (d) the trigger pulse occurs earlier in each half-cycle so increasing the lamp brightness. Notice the negative-going pulses that are added to the sawtooth at the end of each period. If these pulses are not added to the sawtooth no trigger pulses are produced when the control voltage falls below the lowest point of the waveform and the lamp abruptly changes from full-on to off. With the pulses added the control voltage can fall well below the base of the sawtooth while still producing a narrow trigger pulse at the beginning of each half-cycle to keep the lamp on.

The control voltage is connected directly to one comparator (projector A) and to the second via an inverter (projector B). As the input voltage to comparator A rises the input to comparator B falls and vice-versa producing a smooth cross-fade (dissolve) between the two projectors.

SLIDE CHANGE

The slide in a projector is only changed when its lamp is dark. At this time the control voltage for that projector is very close to the peak of the sawtooth and slide change is

Fig. 3. Comparator waveforms (a) full wave rectified signal (b) sawtooth (c) comparator output (dim) (d) sawtooth (e) comparator output (bright)
initiated by momentarily increasing the voltage to cross a further threshold just above the peak level. This momentary increase is detected by the comparator and relay driver (see the block diagram) and the relay operates, closing a pair of contacts which are connected to the projector slide change solenoid in parallel with the normal remote control contacts.

As the control voltage for the dark projector rises to cross the slide change threshold the control voltage for the bright projector falls below the lowest point of its sawtooth comparison signal. If it were not for the negative-going pulses added to the sawtooth (Fig. 3) the bright projector would turn off momentarily each time a slide is changed.

Fig. 4 summarises the relationship between the control yoltage levels and the actions of the two projectors.

Fig. 4. Control voltage relationship

RECORD AND REPLAY

When recording a sequence of dissolves, switch S4 (Fig. 1) is placed in the "record" position placing the projectors under manual control. The voltage derived from the front panel controls is also used to vary the frequency of a voltage controlled oscillator (VCO) whose output varies in the band 1 kHz to 3 kHz as the projectors are cross-faded and makes a jump to either 500 Hz or 4 kHz when the slide in the dark projector is changed. This varying frequency is sent to the tape recorder after filtering to remove unwanted higher harmonics from the square wave signal.

On replay S 4 is moved to the "play" position to form a phase-locked loop whose input signal is derived, after buffering, from the tape recorder. The output of the phase detector and low pass filter now copies the control voltage that was derived from the front panel controls during recording and the original sequence of events is reproduced exactly.
A special signal loss detector in the input buffer stage ensures that the projectors behave predictably when the replay signal is lost during tape editing. Both projectors illuminate at half brightness until the signal returns when the sequence continues from where it was interrupted.

CONNECTIONS TO THE PROJECTORS

The electrical connections to the projectors are shown in Fig. 1. A triac is connected in series with the bulb circuit and trigger pulses are applied to the gate via a pulse transformer which isolates the projector circuits from the remainder of the electronics. Currents of up to 7A will flow in the lamp circuit so the connections to the triac must be

made with stout wire and the triac itself must be in firm contact with a good heatsink-more about this in the construction information.

Both sides of the low voltage secondary winding of the mains transformer are brought out from the projector to provide power for the unit so that a separate mains connection to the unit is avoided. The slide change button of each projector remote control is duplicated by a relay contact in the unit which closes momentarily to set the slide change mechanism in motion.

Fig. 5. Power supply

POWER SUPPLY

D3-D6 together with C2 (Fig. 5) form a conventional fullwave bridge rectifier which is fed from the mains transformer of one of the projectors and provides a smoothed output of about 36 V . The rectifier output is connected via a dropper resistor to the pair of Zener diodes to generate stabilised supplies of $\pm 6.2 \mathrm{~V}$ and a 0 V rail which power the electronics. The unstabilised output is available to operate the three relays in the unit. A separate unsmoothed full-wave rectified supply to drive the triac trigger control circuits is provided by D1, 2 and R3. R1, 2 and C1 form a low pass filter which prevents transients caused by the switching of the projector triac from disturbing the control circuits.

FRONT PANELCONTROLS

In Fig. 6 a resistive divider chain derives the voltage to control the brightness of the projector lamps during a crossfade. VR2, the fader potentiometer, produces a control voltage which varies between limits of approximately $\pm 2 \mathrm{~V}$, set by presets VR1, 3 when making the initial adjustments. Careful selection of VR2 is important. The component specified was chosen because it behaves in a linear fashion immediately the spindle moves away from either end stop.

Fig. 6. Circuitry associated with front panel controls.

Many potentiometers that were tested (both carbon track and wire-wound) showed little or no change in resistance during the first $20^{\circ}-30^{\circ}$ of rotation giving an unpleasant feel to the control as no change in lamp brightness occurred over this range.

Amplifier A1 serves a dual purpose. S1 is normally closed making A1 a non-inverting high impedance buffer but when S 1 is opened it becomes a comparator with threshold at OV and its output then jumps to the supply rail towards which it is already offset. When VR2 is at either end of its range one of the projectors is dark and operation of S1 causes the control voltage to cross the slide-change threshold (set at about +3 V) for this projector. In this way the dark slide is automatically selected for change and only one change button is needed.

A1 is one of four operational amplifiers with internal compensation that are housed in a single package-the MC3403. The amplifiers in this package have sufficient slewing rate to give full output for signals of up to 4 kHz and they are used in this unit wherever an amplifier or comparator is needed. In all eleven amplifiers are used so three MC3403 packages are required. Because of the relatively low accuracy required of the d.c. amplifiers in this circuit it has not been necessary to use more expensive amplifiers with very high input impedance and low offset currents.

From A1 the output is normally connected via S2 to the lamp control and recording circuit at the record/replay switch. When S2 is operated, however, an inverted version of the control voltage (derived by A2, R6, 7, 8) is produced, inverting the states of the projectors to produce a "twinkle" effect. Operation of S2 allows rapid alternation between two slides and can be used to produce an animation effect.

S3, the superimpose button, breaks the output from S2 allowing R9, 10 to sum the control voltage (from A1) and its inverse (from A2). The opposing voltages add to give OV making both of the projectors light up equally and superimposing their images on the screen. R9, 10 also make sure that the control voltage waits respectably at OV during changeover if S2 is of the break-before-make variety.

INTERFACE TO RECORDER

With S4 in the "record" position (Fig. 7) the control voltage derived from Fig. 6 is connected to the buffer, A5, and then to an inverter formed by A6, R22-24. The resulting pair of voltages, one of which is the inverse of the other, is used to control the two projectors, A and B .

While making a recording the control voltage is also connected to the input of a voltage controlled oscillator (VCO) which is part of IC1, an integrated phase-locked-loop circuit type MC14046. As the voltage changes the frequency

Fig. 7. Record/Replay circuits

Fig. 8. Lamp control circuits
of the oscillator varies between 500 Hz and 4 kHz . This varying frequency is filtered by a second order low pass Sallen and Key filter (A4, R17-19, C6, 7) whose break point is set at 4 kHz to remove undesirable higher harmonics from the square wave output of the VCO. The filtered tone, whose amplitude is approximately 10 V peak-to-peak, is attenuated by R20, 21 before being connected to the input of the tape recorder. The values given for the attenuator resistors result in an output signal of 100 mV peak-to-peak but the constructor can choose any suitable value by varying the resistor ratio.

On replay the output from the tape recorder is buffered and amplified by A3. This ampifier has hysteresis (determined by $\mathrm{R} 12,13$) of $\pm 50 \mathrm{mV}$ to ensure that no residual noise at the input is recognised as a false signal when the input is removed. If a very large input signal is available the hysteresis can be increased to give added protection by increasing R12. Reducing the hysteresis is not recommended and the input sensitivity of the unit is therefore determined by this figure. Input impedance of the amplifier is 47 k fixed by R11.

The buffered tone is fed to one input of the phase comparator (also part of IC1), the other input of which has the VCO output signal applied to it.

With S4 in the "play" position a phase locked loop is formed using R14/C4 as the low pass filter with the result that the VCO locks exactly to the frequency of the input tone. The VCO, however, is the one that was initially used to make the recording so when its frequency corresponds with that of the incoming tone the voltage at its input is
exactly equal to the control voltage that was originally applied. The recovered voltage is connected to A5 and used to control the projectors as described above.

If the received signal is lost, or if the unit is switched to "play" before the tape recorder is started, the output of the phase comparator will drop to -6 V . A control voltage of this value will turn one projector full on and the other off as well as changing its slide. To avoid this problem a loss of signal detector (described later) monitors the output of A3 and operates RLC if the signal is lost during replay. Contact RLC1 adds together the opposing voltages generated by A5, 6 producing an output to both projector brightness controllers of about OV which turns both projectors half on-a useful feature when initially aligning their images on the screen.

LAMP CONTROL CIRCUITS

Apart from common bias components this part of the circuit (Fig. 8) is split into two identical parts, one for each projector. To avoid repetition only the components for one half will be mentioned which are numbered 101 upwards. Components for the other half are numbered 201 upwards with the same second and third digits.

The unsmoothed rectified mains voltage from the power supply circuit is used to saturate TR1, allowing it to turn off only during the short periods when the signal is close to -6.2 V . As a result narrow positive-going spikes occur at the collector coincident with the zero-crossings of the a.c. mains waveform.

COMPONENTS . . .

Transformers

T101, 201	Transformer assembly
Core	FX2238 (Mullard) 2 off per assembly
Bobbin	DT2281 (Mullard) 1 off per assembly
Ring	DT2356 (Mullard) 1 off per assembly
Clip	DT2357 (Mullard) 4 off per assembly
Board	DT2359 (Mullard) 1 off per assembly

28 swg enamelled copper wire
36 swg enamelled copper wire

Miscellaneous

TR1 and all the other transistors in this unit are type BC107 or its complement, the BCY71. Constructors should beware of substituting near equivalents without first checking the maximum collector to emitter voltage that the device will tolerate. In several places in the circuit the transistors have collector voltages of 30 V or more which is sufficient to damage BC108/9 devices and their equivalents.

TR102 together with R102, VR101 and the common bias supply formed by R30/D10 forms a constant current source which charges C101 causing the voltage across it to rise linearly with time. At each mains zero-crossing C101 is discharged by TR101 to $-2 \cdot 2 \mathrm{~V}$ determined by the common bias network R29/D9. The peak voltage which the ramp across C101 reaches before the discharge is determined by the charging current and can be varied between +1.5 V and +2.5 V by VR101. This adjustment, made during initial setting up, determines the value of control voltage which just extinguishes the projector lamp.

The ramp voltage is fed via R103 to the comparator A101. At the comparator input TR103 clamps the ramp signal to -6.3 V during each mains zero-crossing to produce the waveform with negative-going spikes as shown in the figure.

To the other input of the comparator is applied the projector control voltage derived from the manual controls or from the tape recorded signal. When the ramp voltage rises above the control voltage the output of the comparator makes an abrupt positive-going transition of about 10 V which is differentiated by C102/R105 and applied to the base of TR104. D101 prevents breakdown of the baseemitter junction of TR104 during the negative-going edge of the comparator output which occurs at the mains zerocrossing when C101 is discharged. TR 104 collector produces narrow 30 V pulses at the trigger instants which are coupled via the 10:1 step-down transformer T101 to the gate of the triac. R107 limits the triac gate current and prevents damage to TR104 in the event of a short circuit. D102 suppresses overshoot caused by the primary inductance of T101 when the triac is disconnected from the secondary circuit which might otherwise break down the driver transistor.
The emitter of TR104 is returned to OV rather than to -6.2 V for a particular purpose. Differentiation of the comparator output produces a steep rising edge followed by an exponential decay to -6.2 V as sketched on the circuit

Fig. 9. Slide change relay drivers

Fig. 10. Signal loss

Fig. 11. Signal regained
diagram. If the emitter were returned to -6.2 V the point at which the transistor turned off (about 0.6 V above the emitter voltage) would be on the shallow part of the exponential decay producing an ill-defined switching point and output pulse width. Furthermore, the slowly changing voltage may result in the slow turn-off of TR104 which may begin to dissipate excessive power whilst in the linear region of operation. Returning the emitter to OV ensures that both turn-on and turn-off occur at rapidly changing points on the differentiated waveform.

SLIDE CHANGE RELAY DRIVERS

The projector control voltage is compared with a common threshold of +3 V (generated by R31, 32) in A102 as shown in Fig. 9. When the slide change button is depressed the control voltage of the dark projector jumps from approx +2 V to cross the +3 V threshold, turning on TR105 as a result. Relay RLA then operates completing the slide change circuit to the projector. D103 prevents damage to TR105 caused by overshoot across RLA when the transistor turns off.

SIGNAL LOSS DETECTOR

If the signal from the tape recorder is lost during replay (when making an edit, for example) the output of the phase detector falls to -6.2 V at a rate determined by the low pass filter R14/C4. Fig. 10 shows what happens to the control voltage of projector B (after inversion by A6) assuming that it is dark (the worst case) when the input signal is lost. We see that the projector lamp goes out and about 5 ms after the signal is lost the voltage crosses and stays across the slide change threshold. This will cause some projectors to change once, others will change repeatedly, while some will even change backwards-all undesirable effects!

Fig. 12 (above). Signal loss detector circuit. Fig. 13 (right). Showing operational waveforms of signal loss detector

Fig. 11 shows what happens when the input signal returns-it takes about 30 ms for the control voltage to stop changing the slide and to return to its correct level.

To prevent this effect it is necessary to clamp the control voltage to a value within the lamp control range before the output of the phase detector crosses the change threshold and to release the control voltage only after the phase detector output comes within this range again. This is done by means of a fast-operate slow-release signal loss detector formed by two CMOS monostables IC2a, b (Fig. 12) which is connected to the output of the signal buffer A3. CMOS devices will work over a wide range of supply voltages enabling IC1 and IC2 to be operated from the $\pm 6.2 \mathrm{~V}$ rails so that a separate power supply is not needed. Fig. 13 shows the waveforms that result from the operation of the circuit.

Shortly after the signal is lost (the time being determined by $\mathrm{R} 33 / \mathrm{C} 8$) the Q output of the retriggerable monostable IC2a falls making the inverting input of comparator A7 fall below the OV threshold. The comparator output rises, operating RLC via TR2, and contact RLC1 in the tape recorder interface circuit closes turning both projectors on at half power. S4b prevents RLC from clamping the control voltage when making a recording as no signal is then present at the input terminal.

On recovery of the signal the Q output of IC2a rises immediately triggering IC2b whose $\overline{\mathrm{Q}}$ output falls, keeping the comparator input below OV for a period determined by R34/C9. In this way the attack and decay characteristics of the signal loss detector can be individually adjusted to prevent mis-operation of the slide change relay of projector B during tape edits or before the show begins when the tape recorder is not running.

NEXT MONTH: Construction and setting up

A Matter of Degree

There now seems to be general acceptance that both our primary and secondary educational systems have failed in respect of generating large numbers of employable people, whatever other qualities they may possess. Especially so in mathematics, physics and even English. My own contacts in industry are constantly telling me how hard it is to find good keen youngsters who can do simple arithmetic or write a sensible paragraph.

To a lesser extent but still serious is the university graduate who needs further training before being able to do any useful work in inidustry.

Now GEC-Marconi and Bath University have got together with a new $4 \frac{1}{2}$ year degree course for electrical and electronic engineers. British educational standards, savaged over the years by trendy educationists, have been thrown overboard. Instead the new standard is proudly announced as equivalent to the French Grandes Ecoles and the German Technische Hoch Schulen which, judging by results in those countries, is far more effective. I can testify, again from experience, that French and German graduates from their respective educational systems are just as 'rounded' and 'human' and 'socially responsible' as our own product. Frequently more so, as well as being better qualified and selfdisciplined.

The new Bath course, which also enjoys a support grant from the Engineering Industries Training Board, is to be a sandwich course with a difference. The difference is that individual students will be sponsored by individual GEC-Marconi companies to which they will return periodically for their industrial training sections of the course, eventually joining that company.

Emphasis is to be on real-life engineering, especially the systems approach to problem solving and design. Students will not only learn engineering fundamentals but will get
thrown in at the deep end in case studies, seminars and role-playing, reminiscent of Harvard Business School management training.

I can only spot one fault in the scheme. It doesn't start until September 1980. Anyway, this gives plenty of time for prospective Masters of Engineering to apply to the School of Electrical Engineering, Bath University.

End of Term

Company annual reports can be compulsive reading. Often for what they leave out or the neat way that difficulties are glossed over. They are obliged to give the facts and figures of performance but beyond the balance sheet there is plenty of scope for originality in keeping the existing shareholders contented and attracting new ones. They are sometimes like end-of-term reports and none more so than that of Teradyne Inc, the Boston-based ATE manufacturer.

Their latest 'theme' company report features seventeen of their top salesmen round the world. Punchy profiles of their backgrounds, their wives, hobbies and business philosophy. And, of course, how well they are doing for Teradyne and its shareholders.

After allowing for the publicity gloss, all are clearly dedicated to their company and to personal achievement. And all are constantly on the move. Champion traveller is Tim Chan, based in Taiwan and looking after his own country, Korea, Hong Kong, Singapore, Malaysia, Thailand and Indonesia. He needs two dozen visas in his passport to get around his vast territory. Stan Fuller, based in Phoenix, pilots his own Cessna 210. Rene Verhaegen covers Benelux in his Audi, clocking up $65,000 \mathrm{~km}$ a year. And so one could go on.

This is a highly-motivated team with good products, high-priced, and sold worldwide. And the company is growing fast, now turning over $\$ 100$ million a year. Since founded it has never had a strike and has no collective bargaining contracts with its 2,000 workforce. Vice-President, sales, who heads up the global marketing is, for the record, not a high-powered tough American entrepreneur but a tough, high-powered Briton, Dennis P. O'Connell.

Racal Breakthrough

Racal Communications Inc in the USA and Racal (Canada) Ltd were established many years ago in the hope of breaking through the 'Buy American' act which operated so unfairly against non-Americanowned companies in military procurement. Patience has now been rewarded but only with exceptional products which won the day in fierce competition. The US Air Force is initially buying $\$ 11$ million worth of a new Racal receiver, the RA 6790/GM, and the Canadian Armed Forces the RA 6778C to the tune of $\$ 5.5$ million Canadian.

The significance of the US Air Force contract is that it is the start of a replacement programme for the ageing R-390 communications receiver of which there are an estimated 40,000-plus in service round the world. The RA 6790 is a joint Racal

UK/US development. With a different front panel it made its European debut at the Racalex 79 exhibition in London as the RA 1792. It features a new frequency synthesiser based on a special LSI chip designed by Racal Microelectronics Ltd and has a 100-frequency built-in memory for instant tuning to pre-selected channels.

Black Chips

Oil-rich Nigeria might be the first black African country to produce microcircuits. According to reports, the University of Ife has been purchasing production equipment and Nigeria could be in the business by the early or mid-1980s.

Naval Missile

British Aerospace Dynamics Group has received a f 300 million shot-in-the-arm to develop a new sea-skimming anti-ship airlaunched guided weapon. Provisionally known as the P3T, the weapon is of the fire-and-forget type, pre-programmed by fire control computer just before launch with the on-board homing head and computer finding the target and moving in for the kill. It appears to be a further development of the Anglo-French Martel currently in service with the Royal Air Force. The only electronic subcontractor so far named is Marconi Space and Defence Systems for the active radar target seeker and homing head.

BA Dynamic Group is also looking at inhouse costs. At Stevenage a computeraided draughting and design system has been installed which is said to multiply draughtsman productivity by a factor of four. Of the 12,000 drawings a year currently produced, some 2,500 are expected to be handled by the automated system, leading to greater accuracy and consistent standards and cutting out much of the tedium of repetitive manual work. But apart from the benefits, BA Dynamics say, like others, that there is a shortage of suitably qualified design staff.

Micro-min Laser

The latest in sophisticated micro-min is the world's smallest hand-held laser rangefinder, a little larger than a packet of 20 cigarettes and weighing, including battery, $1 \cdot 2 \mathrm{lb}$. An infantryman can easily carry it in his pocket and then has instant personal ranging up to 4,000 metres with an accuracy of ± 3 metres. The pulse output is a third of a megawatt and the manufacturer, International Laser Supplies Inc., expect the cost to be as 'little' as $\$ 2,500$ each in 1,000-off quantities.

Talking Calculator

And the latest in calculators is Sharp's desk-top development that repeats calculations with a synthesised voice as you key them in or demand the answer. This feature seems of doubtful value-but then I haven't seen the full specification. Anyway, it appears that you can choose your own language, English, French, Spanish, German or Japanese.

THIS article is directed towards those electronics enthusiasts who have sufficient hardware experience but possess little or no knowledge of programming. According to a recent survey conducted by The Amateur Computer Club, 70 per cent of computer faithfuls are in this category and they will find that few books suit their particular needs. Having your own computer, or at least access to one, means that you can learn at the keyboard and at your own speed. The choice of BASIC as the language is inevitable. It is the most readily available for the home computerist, which is due in turn to the fact that it is easy to learn, to understand and to apply. It is also surprisingly versatile.

INPUT AND OUTPUT

From here on it will be assumed that you are sitting comfortably at the keyboard, ready to 'converse' with the computer. We will ignore, at least to start with, the usual formal classifications of 'assignments', 'declarations' etc. and jump straight in at the deep end with the first essential in any communication system, INPUT and OUTPUT. This is done with statements which may be used directly, as if we were 'commanding' the computer. At this stage we will regard all such statements as 'instructions' and refer to them in this way. On entering BASIC, the computer will respond with the usual prompt, \# flashing etc. which indicates that you are in command and may proceed with your first (or next) entry.

In order to embark on a new program however, we must erase all traces of previous entries and initialise all variables. This is done by typing NEW at the terminal. Remember to do this every time a fresh program is started. There is one other entry which must be made each time an instruction is completed. This is the typing of the CR (carriage return) key, which indicates to the computer the end of that particular instruction set. Remember then, to press the RETURN key at the end of each instruction statement: and now we are ready to start. Type,
NEW (+ RETURN key)
and on the next line, type the following

$$
\begin{gathered}
\text { PRINT } 25-(19-7) * 2+50 \\
(+ \text { RETURN })
\end{gathered}
$$

The printer will respond with the result of this calculation, which is 51 . This illustrates two features:

1. The instruction 'PRINT' means, in effect, "Evaluate this expression and PRINT the result".
2. The calculation follows the usual arithmetical sequence: brackets; powers; multiplication and division; addition and subtraction: and where two operations are in the same
category, the calculation is effected from left to right. This is more clearly shown in the next example. Try it.

$$
\text { PRINT } 25-2 * 3+(6 / 2) \uparrow 2(+ \text { RETURN })
$$

The order here would be,
(1.) $6 / 2$ ($=3$) (/ signifies DIVIDE)
(2.) $3 \uparrow_{2}^{(=9)}$ (\uparrow signifies TO THE POWER)
(3.) $2 * 3(=6) \quad$ (* signifies MULTIPLY)

This leaves $25-6+9$ to be evaluated, so the last two steps would be,
4. $25-6(=19)$
5. $19+9(=28)$
which will have been printed on the next line. This, of course, is no more than any calculator can do, but it's a start. To move one step beyond the calculator stage, try this:
PRINT "A, B; C:D." (+ RETURN) (note the quotes,"")

SPACING

You will have found that whatever appeared between the quotes, including spaces, was reproduced exactly as entered. Combining these features, we have simple control over our output. For example, try the following:
PRINT "THE SUM OF 5 AND $4=" ; 5+4 \quad(+$ RETURN) which produces,

THE SUM OF 5 AND $4=9$
Note the semicolon after the second quotes. This controls the spacing before the result of $5+4$ is printed. Try the same line again using a comma instead of a semicolon. This time a space of about 7 characters will be left before the 9 is printed. The line is automatically divided into printing zones of 14 positions (this may vary slightly in different versions of BASIC) and the comma is used to effect this separation.
Next, try
PRINT "LENGTH", "BREADTH", "AREA"
which will print these headings, suitably spaced out at 14 unit intervals, ready for the print-out of a table of dimensions as follows:

LENGTH BREADTH AREA

Now experiment with various combinations of text, expressions and spacing, using both the semicolon and the comma.

Since each PRINT instruction produces a carriage return and line feed at the end of the statement, a PRINT used alone in a program will have the effect of skipping a line. You will have
noticed by now that spaces are ignored by BASIC (except when they appear between quotes).
The computer sees no difference between

$$
\text { PRINT } 4+5 / 3 \text { and } \ldots \text {. . . PRINT } 4+5 / 3
$$

If memory space is short, quite a bit can be saved by omitting all spaces, but it will not do your sanity any good when you have to search for errors!
To summarise so far with an example,

$$
\begin{gathered}
\text { PRINT "LENGTH }=" ; 5, \text { BREADTH }=" ; 7, \\
\text { AREA }=" ; 5 * 7
\end{gathered}
$$

which will produce,

$$
\mathrm{LENGTH}=5 \mathrm{BREADTH}=7 \mathrm{AREA}=35
$$

Note that in the print statement a space is left after each equals sign $(=)$, before the quotes are closed, so that the values 5,7 and 35 are suitably spaced away from the equality sign.

TAB FUNCTION

There is one more convenient output control available in BASIC, the TAB function. This gives precise positioning for any part of a print-out, which you will now discover if you type the instructions,

PRINT TAB(10);"BASIC IS BEAUTIFUL"

You will find that the first word is started in the tenth printing position. Note that the value 10 must be in parenthesis and that this in turn must be followed by a semicolon before opening the quotes. The value in brackets may be any expression, with or without variables, so the printing position can be made dependant on an earlier program routine and in the final evaluation, incorporated in the PRINT statement: all of which helps to make graph plotting much simpler.
Finally try,

$$
\begin{aligned}
& \text { PRINT TAB(5);"RESISTANCE }=" ; 25 ; \text { TAB }(25) ; \\
& \text { "VOLTAGE }=" ; 5 ; \text { TAB(40);"CURRENT }=" ; 5 / 25
\end{aligned}
$$

This gives,

$$
\text { RESISTANCE }=25 \quad \text { VOLTAGE }=5 \quad \text { CURRENT }=0.2
$$

. . . which shows that the TAB function may be used more than once in any one PRINT statement, so we have effective control over our print-out. (If the printer encounters a TAB value less than its present position, it will continue from its present position . . . it can hardly go backwards!)

PROGRAM CONSTRUCTION

Having learned to control print-out we can now move on to program construction. The first noticeable difference is that when a program is entered, there will be no response from the computer at the end of each line, as happened previously when in the command mode. Each line should be numbered to indicate that a program is being entered, and this also determines the logical order in which the steps will be executed. The numbered steps or statements may however be entered in any order, since the computer will, under BASIC control, execute them in the correct numerical (i.e. logical) order.

Line numbers are in multiples of five or ten. By leaving gaps between, additional lines can be sandwiched in; and the need to add, delete or in other ways alter a program after apparent completion is the rule rather than the exception.

The first example for you to try follows:
NEW
$\begin{array}{ll}10 \text { LET } \mathrm{A}=5 & \text { (let the value } 5 \text { be entered in store } \mathrm{A} \text {) } \\ 20 \text { LET } \mathrm{B}=12 & \text { (let the value } 12 \text { be entered in store } \mathrm{B} \text {) } \\ 30 \text { LET } \mathrm{C}=\mathrm{A}+\mathrm{B} & \begin{array}{l}\text { (add the contents of } \mathrm{A} \text { and } \mathrm{B} \text { and } \\ \text { place in } \mathrm{C} \text {) }\end{array}\end{array}$

40 LET D $=\mathrm{A}-\mathrm{B} \quad$ (subtract B from A and place the result in store D)
50 PRINT " $\mathrm{A}+\mathrm{B}=" ; \mathrm{C}, " \mathrm{~A}-\mathrm{B}=" ; \mathrm{D}$

60 END

The full program has now been entered and resides in memory, waiting for an instruction to start operating. The command in BASIC for this is RUN, so now type,
RUN (+ RETURN) and the immediate response will be,

$$
A+B=17 \quad A-B=-7
$$

The explanations on each line are hardly necessary, which is the beauty of BASIC; it is almost self-explanatory! Note that in some versions, the word LET is optional when in program mode, so line 30 , for example, would be acceptable as,

$$
30 \mathrm{C}=\mathrm{A}+\mathrm{B}
$$

VARIABLES

This program also demonstrates the use of letters as variables. In fact any letter from A to \mathbf{Z} may be used, either alone or with a digit (0 to 9) as a suffix. For example A, A0, A1, $\mathrm{A} 2, \mathrm{~B} 2, \mathrm{Z} 2$ are all acceptable as variables in the same program. .

You will no doubt have realised that the above program can be simplified, since the PRINT instruction will deal with more than one calculation in the same line. Enter the following,
NEW

```
10 LET A \(=5\)
20 LET B \(=12\)
30 PRINT" \(\mathrm{A}+\mathrm{B}=" ; \mathrm{A}+\mathrm{B}, " \mathrm{~A}-\mathrm{B}=" ; \mathrm{A}-\mathrm{B}\)
40 END
```

which will produce exactly the same output as before.
There is one more output control. Enter the following:
NEW

```
10 PRINT "ALL THIS TEXT ";
20 PRINT "WILL APPEAR ";
30 PRINT "ON THE SAME LINE"
40 END
```

As stated, the entire print-out will be on the one line, due to the effect of the semicolon at the end of lines 10 and 20 , which is to suppress the carriage return and line feed normally following a PRINT statement. Notice the space left before the quotes were closed in lines 10 and 20 , which prevents a 'cramming' of the words from the end of one line to the beginning of the next. One more similar example:

```
10 LET S = 1+2+3+4+5
20 PRINT "MEAN OF THE FIRST FIVE ";
30 PRINT "NATURAL NUMBERS = "; S/5
40 END
RUN
```

This will give,

MEAN OF THE FIRST FIVE NATURAL NUMBERS $=3$

This completes the list of all output instructions and practice should provide proficiency; and now with this repertoire, plus the skeleton of a program to work on, we can proceed to INPUT.

INPUT

Up to now, all data has been written into the program, but where the same program is used for different sets of values, it may be necessary to enter the data separately each time the program asks for a new set.

This can be done using the statement 'INPUT', which causes the program to stop and wait for the appropriate entries at the keyboard, each value separated from the next by a comma.

When the program stops because of an INPUT instruction, a 'question mark (?)' will be printed to indicate to the user that data is requested. Here is a simple example to start with:
NEW

```
10 INPUT A, B, C
20 PRINT A*A;B*B;C*C
30 END
RUN
```

After line 10 , the program stops, prints a question mark '?' and expects three values (separated by a comma) to be entered. When this is done (and followed in the usual way by RETURN), the three values are placed in stores A, B and C in that order and the rest of the program is implemented. In this way, by again entering RUN, a new set of data can be typed in and this can be continued as long as there is data available for evaluation.

Note that the order of entry of data must correspond to the order in which it has to be applied to the variables. If in the above example, we had entered 5, 7, 24 after the question mark '?', the print-out would have been,

$$
\begin{array}{lll}
25 & 49 & 576
\end{array}
$$

Now try this complete program, using your own values for L, B and H.

NEW

```
10 INPUT L,B,H
20 PRINT
30 PRINT "LENGTH", "BREADTH", "HEIGHT",
        "VOLUME"
4 0 ~ P R I N T
50 PRINT L, B, H, L*B*H
60 END
RUN
```

The effect of this will firstly be a question mark '?', after which your values for L, B and H must be entered, followed by RETURN as usual. On receiving this input from the keyboard (remember the comma between), the next output will be, (using $5,4,3$ for the data),

LENGTH BREADTH HEIGHT VOLUME
 $\begin{array}{llll}5 & 4 & 3 & 60\end{array}$

The double spacing is effected by the PRINT statement in line 40 and the horizontal spacing is obtained by the use of commas in lines 30 and 50.

GOTO

One disadvantage of the above program is that if we again type RUN in order to repeat for another set of data, the print-out will still include the headings LENGTH, BREADTH etc. To avoid this and to allow tabulation of further data under the original headings, it is necessary to introduce a new instruction, GOTO, which directs the program to a specific statement number from where it will continue execution in the usual numerical (logical) sequence. To effect these improvements there is no need to reenter the whole program. Any line may be deleted by typing the line number followed by RETURN; and a line may be altered by retyping the whole line (including the line number) correctly, when the new line will replace the old one. Just make the following additional entries:

$$
\begin{aligned}
& 20 \text { GOTO } 50 \\
& 60 \text { GOTO } 10 \\
& 70 \text { END }
\end{aligned}
$$

Now type RUN, when the question mark will appear as usual, but after receiving the next set of values the program will jump
to line 50 , missing the 'print headings' line and so continue to print out these values and result, tabulated as before. At line 60 the instruction is now 'GOTO 10', so the program returns to the start and requests the next set of data. While all this may satisfy our present requirements, it firstly introduces an undesirable element and secondly presents a problem. The unwanted part of the output, you will already have noticed, is the question mark followed by the data, which intrudes on the continuous tabulation of the print-out. A remedy for the latter will be explained later.

LOOP PROBLEMS

Since the program returns to line 10 at the end of each routine, the END statement is never reached and we are 'stuck in a loop', a well known nightmare in programming. Although it does not interfere with the execution of this particular program, it will certainly cause you trouble sooner or later and this is as good a time to deal with it as any.To escape from such a dilema, the 'panic button' is used. This may vary in different versions of BASIC, sometimes a single key labelled 'ESC' (escape), or the combination of two keys, one a control key and the other a suitable character such as ' X ' (exit), ' O ' (out), ' C ' (cancel) etc. For our purpose we will call it the ESC key, but refer to your own version to find the appropriate replacement. It may be necessary to press the ESC key repeatedly, depending on what sequence of operations the computer is engaged in, before you succeed in interupting the loop. The ESC key can also be used to halt the execution of a program at any time, if you want to return to the 'command' status, where the keyboard is again in control. Now try a variety of tabulation programs such as,

1 Volume of a cylinder (V), given the radius (R) and height (H). $(\mathrm{V}=3 \cdot 1416 * \mathrm{R} * \mathrm{R} * \mathrm{H})$

2 Tax (T) payable, given rate of tax ($\mathrm{R} \%$), gross income (I) and total allowances (A). (T = (I-A) * R/100)
3 Value of resistance (R), given three resistances ($\mathrm{R} 1, \mathrm{R} 2$, R 3) in parallel. $(\mathrm{R}=1 /(1 / \mathrm{R} 1+1 / \mathrm{R} 2+1 / \mathrm{R} 3))$

The listing for program one and its execution is shown above. If your machine has π in memory, only the actual symbol need be included. As the sign for raise to the power is \uparrow, statement 70 can be reduced
to $\pi \cdot R \mathbb{N} \mathbf{N} \cdot \mathrm{H}$.

READ AND DATA

The input of data using the INPUT instruction (which is the only method available on minimum versions of BASIC) has obvious limitations, as you have already discovered. A second method which can be used requires two statements, READ and DATA, which must be programmed as a pair. The READ statement inputs data sequentially and finds its data in the corresponding order following the DATA statement. Type out the following,

5 READ A, B, C, D
10 DATA 2,3,4,5
15 PRINT ($\mathrm{A}+\mathrm{B}$)*(C+D)
20 STOP
. . . which produces the output, 45
Several things to note here:

1. The values $2,3,4$ and 5 will be read into stores A, B, C and D in that order. Care must be taken therefore, that the values following DATA are entered in the correct sequence to correspond to that of the variables.
2. The DATA statement (or statements) may appear anywhere in the program, provided that if there is more than one, they are still kept in the proper order.
3. The above example could have been written as,

> 10 DATA 2,3
> 16 DATA 4,5
. . . with exactly the same result, since the READ statement will search for the required data sequentially, wherever it appears in the program.
4. Instead of the usual END as the last entry, STOP has been substituted which, though also halting execution, transfers control to the keyboard to allow investigation of that part of the program before the next part is implemented. Provided that no changes are made to the program at this point, typing CONT will direct the computer to continue from where it received the STOP instruction.
Now enter the following:
5 READ A, B, C, D, E, F
10 DATA $6,8,9,21,3,13 \ldots$ (or any six integers you care to use)
15 LET T $=\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F}$
20 PRINT "MEAN $=$ "; $T / 6$
25 STOP
which will print,
MEAN $=10 \ldots$ then the program will stop and wait for further commands. By retyping line 10 with a fresh set of values, followed by GOTO 5 (no line number, since this is a command after a STOP), the program will return to the start and operate on the new data.

FOR . . . NEXT LOOP

Attempt to find the mean of several hundred numbers by this method and there will obviously be trouble! Fortunately, the problem is easily solved by the use of a FOR . . . NEXT loop. Enter this program and see what happens.
5 FOR I = 1 TO 6
10 READ N
15 PRINT N $* N$;
20 NEXT I
25 DATA $1,2,3,4,5,6$
30 STOP
The print-out will be,
149162536

The FOR . . . NEXT loop operates in this way: the variable I (any letter may be used) takes on successive values from 1 to 6 and for each one, that part of the program which lies between
lines 5 and 20 is executed. As each new value of I is reached, a test is made to see if it has exceeded the 'TO' value (6 in this case), when the loop terminates and the rest of the program is completed. In effect, then, 'NEXT I' means, "Repeat this routine for the next value of I ".

By changing line 5 to have a larger terminating value for I, and by entering the appropriate amount of data, a large number

Typical FOR . . . NEXT loop listings
of values can be accommodated. Try this method now on the earlier program to find the mean of six numbers, but this time make it sixteen-or sixty.

Then try this program, which shows how part of the loop can depend on the value of I itself, and how the incremental step need not be unity. (The latter requires the addition of 'STEP N', where N may be any value, positive or negative, integer or decimal). Can yuu visualise what the print-out will look like?

```
FOR I = 1 TO 9
10 PRINT TAB(4*I); I;
15 NEXT I
20 PRINT
25 FOR H = 18 TO 2 STEP - 2
30 PRINT TAB(2*H); H/2
35 NEXT H
4 0 ~ S T O P
```

It is sometimes helpful, when writing out your program, to offset that part which lies within the FOR . . . NEXT loop; on large programs this serves as a check on the start and finish of each loop. Some versions of BASIC will automatically produce such a print-out. This has been done in the last program at lines 10 and 30.

Before continuing with further examples of the FOR ... NEXT loop, it will be helpful to introduce a few more controls and to be more specific about the use of numbers.

Except in the minimum versions of BASIC, where only integers are acceptable, any real number may be entered, to at least eight significant figures, the range varying for different versions, but usually from $\pm 10^{-99}$ to $\pm\left(10^{100}-1\right)$. Numbers may be entered normally as integers or decimals, or in exponent form; (for example, 176, 49.75, or $314159 \mathrm{E}-5$, the latter representing $314159 * 10^{-5}$. The E stands for exponent).

You will no doubt have typed a few errors by now and will have found retyping the whole line exasperating. This can be avoided by the use of two devices, the BACKSPACE control and the DELETE. The former will cancel the last character to be entered and the latter will erase the whole line. Refer to the manual for your particular version, since these controls vary, the most likely ones for a BACKSPACE being a CONTROL C (for CANCEL), or a CONTROL \leftarrow.

REM AND LIST

Finally, two facilities which will prove invaluable when 'debugging' a program, the REM (remark) statement and the LIST command.

The REM statement allows comments or explanations to be attached at intervals throughout a long program, without interfering with its operation. Anything following REM on the same line will be ignored by the program but will be printed out in any listing. This brings us to the use of LIST which, as a command, will cause the whole program, as then held in memory, to be printed in correct order; which allows an examination and check of the present state of the program. Further, by typing, for example, 'LIST 35', only line 35 will be listed; and by entering 'LIST 20, 70', all lines from 20 to 70 inclusive will be printed.

Combining some of these new facilities and using the FOR . . . NEXT loop, type out this program exactly as shown.

5 REM TO FIND THE MEAN OF ANY NUMBER OF VALUES
10 PRINT "HOW MANN \longleftarrow Y NUMBERS ARE THERE?
15 INPUT N
20 FOR I = 1 TO N
25 READ X
30 LET T $=\mathrm{T}+\mathrm{X}$
35 NEXT I
8 LET T $=0$
40 PRINT "TOTAL $=$ "; T
45 PRINT "MEAN = "; T/N
50 STOP
40 (+ RETURN)
38 DATA $7,12,5 \cdot 8,2 \cdot 9 \mathrm{E} 2,99 \cdot 4 \mathrm{E}-1, \ldots$ (select your own data)
LIST

In line 10, an error was typed, so the backspace (CANCEL) character, control ${ }^{\leftarrow} \leftarrow$, was entered following the extra ' N ', which corrected the word 'MANY'. (Check that your version uses ' \leftarrow '; it may be different). After line 35 was entered it was realised that the totalling store, T, would have to be set to zero for the first and each subsequent set of values. Line 8 was then typed in to accomplish this. It was also decided at this point that a print-out of the actual total was not required, so line 40 was erased by entering 40 followed by RETURN. It was now discovered, as sometimes happens, that the data itself had been forgotten and this was then entered as line 38. Because of these changes, a listing was requested by typing LIST (and RETURN), when the following output was obtained.

5 REM TO FIND THE MEAN OF ANY NUMBER OF VALUES
8 LET T = O
10 PRINT "HOW MANY NUMBERS ARE THERE?"
15 INPUT N
20 FOR I $=1$ TO N
25 READ X
30 LET'T $=$ T + X
35 NEXT I
38 DATA $7,12,5 \cdot 8,2 \cdot 9 \mathrm{E} 2,99 \cdot 4 \mathrm{E}-1, \ldots$
45 PRINT "MEAN = "; T/N
50 STOP
If the program is now run, the value of the mean will be printed; and if a re-run is required for a new set of values, enter line 38 again with the new data, then type
GOTO $8 \ldots$ which will return control to the program at line 8 , repeating the whole process.

This example also demonstrates how the terminating value, N , in the FOR . . . TO statement (line 20) can itself be a variable and therefore alterable for each new set of data.

IF . . . THEN

Most versions of BASIC offer a number of functions such as $\operatorname{ABS}(\mathrm{X}), \operatorname{INT}(\mathrm{X}), \operatorname{RND}(\mathrm{X})$ and $\operatorname{SQR}(\mathrm{X})$, which will find the absolute value of X, the largest integer not greater than X, a random number derived from X and the square root of X respectively. The latter will almost certainly be obtained from a simple sub-routine which uses a process of iteration to obtain the square root; and this will form an ideal example with which to introduce the IF . . THEN statement. This is the decisionmaking facility in BASIC, where an expression of relativity appears between IF and THEN.
For example,
IF A > B THEN $50 \ldots$ will cause the program to branch to line 50 if the relation $\mathrm{A}>\mathrm{B}$ is true. Otherwise it will continue to the next line in the sequence. Here is the program, expanded slightly, in order to make its operation easier to follow.

```
5 REM SQUARE ROOT
10 LETE1=2
15 PRINT "ENTER NUMBER"
20 INPUT N
25 LETQ = N/E1
30 LET E2 = (Q+E1)/2
35 IF ABS(E1-E2)<0.0001 THEN }5
40 LET E1 = E2
4 5 \text { GOTO 25}
50 PRINT "SQUARE ROOT = "; E2
55 STOP
```

In line 10 , the first estimate, E 1 , is given any reasonable value, in this case, 2 . Line 25 divides the number, N, by E 1 and puts the quotient, \mathbf{Q}, in store \mathbf{Q}. Since the root of N will lie between Q and $E 1$, the average of these two values is calculated in line 30 and placed in store E2. Line 35 tests to see if the absolute difference between this new improved estimate and the previous

Acomputer range from $£ 500$

The number one micro-computer in Britain today, selling more than 1,000 per month!

The Commodore Pet computer range is versatile and affordable. Programs can be written in Basic, the easiest computer language to learn. There is also machine language accessibility for professionals.

The Pet is a fully expandable system, peripherals being available for many specialist applications, (peripherals such as dual drive floppy discs and printers). There are already over 300 standard programs,
conniocore
We made small computers big business.
tested and in use in commercial, scientific, educational and many other applications throughout Britain. The Pet is a portable and professional computer that operates by plugging into a normal 13 amp mains. Service and advice is readily available through the nation wide network of dealer outlets.

For a demonstration contact your local dealer-some of whom are shown here. In case of difficulty contact Consumer Information Dept (PE1), Commodore Systems, 360 Euston Road, London NW1.

Associated Commodore dealers:

BIRMINGHAM

Camden Electronies $021-7738240$
CPS (Data Systems) 021-707 3866
Taylor Wilson Systems Knowle 6192
BOLTON
B \& B Consultants 0204-26644
BOURNEMOUTH
Stage One Computers 0202-23570 BRADFORD
Ackroyd Typewriter \& Adding
Machine Co 0274-31835
BRENTWOOD
Direct Data Marketing 0277-229379 BRISTOL
Bristol Computer Centre
0272-23430
Sumlock Tabdown 0272-26685
CAMBRIDGE
Cambridge Computer Store
Cambridge Com
$0223-68155$
CARDHF
Sigma Systems 0222-21515
COLCHESTER
Dataview 0206-78811
DEABY
Davidson Richards 0332-366803 DURHAM
Dyson Instruments 0385-66937 EDINBURGH
Micro Centre 031-225 2022
EXETER
A.C. Systems 0392-71718

GRimsey
Allen Computers 0472-40568
HEMEL HEMPSTEAD
Data Efficiency 0442-57137
HOVE
Amplicon Electronics 0273-720716
LEEDS
Holdene 0532-459459
LIVERPOOL
Aughton Automation
051-548 6060
Cortex Computer 051-263 5783 Dams Office Equip 051-2273301 LONDON E2
Ragnarok Elec Sys 01-981 2748 LONDON EC1
Sumlock Bondain 01-253 2447
LONDON N14
Micro Computation 01-882 5104
LONDON NW4
Da Vinci Computers 01-202 9630 LONDON SW14
Micro Computer Centre 01-8766609 LONDON WS
Adda Computers 01-579 5845 LONDON WC1
Euro Calc 01-405 3113 LONDON WC2 TLC World Trading 01-839 3893 MANCHESTER
Cytek (UK) 061-832 7604
Executive Reprographic
061-228 1637
Sumlock Elec Svs 061-834 4233
MATLOCK
Lowe Electronics 0629-2817
MORLEY W. Yorks
Yorkshire Elec Svs 0532-522181 NORWICH
Sumlock Bondain 0603-26259 NOTTINGHAM
Betos (Systems) 0602-48106 OXFORD
Orchard Electronics 0491-35529 PLYMOUTH
JAD Integrated Svs 0752-62616 PRESTON
Preston Computer Ctre 0772.57684 READING
CSE Computers 0734-61492 SOUTHAMPTON
Business Electronics 0703-738248 Symtec 0703-37731

Britains Best Breadboard Buy at Breadboard 79

ENTRY TICKET WORTH £1.00 WITH EVERY PURCHASE WTHEVET

All over Britain, hobbyists are discovering Britain's Best Breadboard Buys. At the London Breadboard exhibition '79 on Stand Nos. F1, F2 and G1, G2, CSC will be exhibiting their full range of breadboards.

Here is your chance to obtain a special ticket for Breadboard '79 worth $£ 1.00$ absolutely FREE.

Cut out the coupon below and take it along to one of our listed dealers, and make a purchase of any of our breadboards and receive your special FREE ticket - see you at Breadboard '79.
Take the coupon to any of these main dealers
LONDON
Rastra Electronics Lid., 279-281 King Street, Hammersmith. London W6
Cubegate Lid. , Audio Electronics, 301 Edgware Road. London W2 1BN
Technomatic Ltd., 17 Burnley Road. London NW10 1ED
Precision Instrument Labs. Instrument House.
727 Old Kent Road, London SE15

MANCHESTER

Shudehill Supply Co . 53 Shudehill, Manchester M4 4AW BUCKINGHAMSHIRE
West Hyde Development, Unit 9. Park Street Industral Estate. Aylesbury, Bucks HP20 IET
Best Electronics (Slough) Ltd., Unit 4 Farnburn Ave , Slough, Bucks SL1 4XU

KENT

Lawtronics, 13a High Street, Edenbridge, Kent TN8 5AX NEWCASTLE
Aitken Bros., 35 High Bridge, Newcostie upon Tyne SCOTLAND
Marshalls, 85 West Regent Street, Glasgow G2
F. Brown \& Co., 45 George IV Bridge, Edinburgh EH1 1E3 LEEDS
Leeds Amateur Radic Club, Cookridge Street, Leeds 1 HERTFORDSHIRE
BI-PAK, 3 Baldock Street, Ware, Herts.
CONTNENTAL SPECIALIIES CORPORATION

EUROPE, AFRICA, MIDEAST: CSC UK LTD.
Shire Hill Industrial Estate Units 1 and 2
Saffron Walden, Essex CB11 3AO
Telephone: SAFFRON WALDEN (0799) 21682
TLX 817477

EXP 650
EXP 325 Built in bus-bars accepts 8, 14, 16 and up to 22 pin ICS. $\mathbf{£ 1 . 6 0}$ EXP 360270 contact points, ideal for working with up to 3×14 pin DIPS. $\mathbf{£ 3 . 1 5}$ EXP $\mathbf{6 5 0}$ For microprocessor chips. $\mathbf{£ 3 . 6 0}$ EXP 48 An extra 4 bus-bars in one unit. E2.30
EXP 300 The most widely sold breadboard in the UK; for the serious hobbyist. $\mathbf{E 5 . 7 5}$
EXP $6006^{\prime \prime}$ centre channel makes this the Microprocessor Breadboard. $\mathbf{£ 6 . 3 0}$
PB6 Professional breadboard in easily assembled kit form. $\mathbf{£ 9 . 2 0}$
PB100 Kit form breadboard recommended for students and educational uses. $\mathbf{£ 1 1 . 8 0}$
The above prices do not include PEP and 15\% VAT

one is significant (you may choose your own degree of accuracy here): if not, the last calculated estimate, E2, is printed. If the absolute difference is still too great, E1 takes on the value of E2 (line 40) and a return is made to line 25 to repeat the loop. A calculation of this type, which may have to be undertaken frequently in a longer program, can be tucked away in a corner as a sub-routine, to be called into use when required. This is effected in BASIC by the statements GOSUB and (to get back to the main program at the exit point), RETURN. An example of this occurs in the following program, which finds the roots of a quadratic equation, $\mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}=\mathrm{O}$, given the values of the co-efficients, A, B and C .

```
    5 PRINT "ENTER CO-EFFICIENTS"
10 INPUT A,B,C
15 LET D \(=\mathrm{B} * \mathrm{~B}-4 * \mathrm{~A} * \mathrm{C}\)
20 IF D < O THEN 80
GOSUB 50
LET X1 \(=(\mathrm{R}-\mathrm{B}) / 2 / \mathrm{A}\)
LET X2 \(=-(\mathrm{R}+\mathrm{B}) / 2 / \mathrm{A}\)
PRINT "ROOTS ARE "; X1; X2
GOTO 85
LET E \(=2\)
LET R \(=(\mathrm{D} / \mathrm{E}+\mathrm{E}) / 2\)
IF \(\operatorname{ABS}(\mathrm{R}-\mathrm{E})<0.0001\) THEN 75
LET \(E=R\)
GOTO 55
RETURN
PRINT "NO REAL ROOTS"
STOP
```

Line 20 tests to see if D is negative and if so, causes a branch to line 80 , which declares that there is no real solution and the program stops. If D is not negative, it proceeds to line 25 which in turn directs operations to the sub-routine at line 50 . Having obtained the square root of \mathbf{D} (held in store R) to the required accuracy, line 75 returns the sequence to line 30 , where we left the main program. Finally, line 45 directs operations past the sub-routine to the STOP statement. If required, a 'GOTO 10 ' command will return everything to the start for the next equation.

ON . . . GOSUB, ON . . . GOTO

To complete this topic, there are two more useful statements which are used in conjunction with GOSUB and GOTO; they are ON . . GOSUB and ON . . . GOTO. Try to assess the effect of the following program before typing RUN.

```
10 PRINT "TYPE 1, 2 OR 3"
INPUT X
20 ON X GOTO 25, 35, 45,
25 PRINT "YOU ENTERED 1"
30 GOTO 50
35 PRINT "YOU ENTERED 2"
40 GOTO 50
45 PRINT "YOU ENTERED 3"
50 END
RUN
```

You will have discovered that line 20 effects a branch to either lines 25,35 or 45 , depending on the value of X, which may be any value or expression, greater than zero. For $\mathrm{X}=1$ the program is directed to line $25, \mathrm{X}=2$ sends it to line 35 and $X=3$ to line 45 . If $X<1$ or $X \geqslant 4$, an error message will be printed and if X is not an integer, it will first be truncated to an integer value. The statement ON . . . GOTO could be replaced by ON ... GOSUB with a similar effect, the branch going to some sub-routine within the program.

DIM

A set of numbers arranged in a row or column, or an array of numbers held in matrix or table form can be manipulated very easily using the DIM statement in BASIC. This defines the dimension of an array, when named in the program, using any letter of the alphabet. For example, DIM Y(100) allocates memory space sufficient to deal with 100 values and reserves it for the array named Y. For a two-dimension matrix, the statement becomes DIM $Z(A, B)$, where A and B define the number of elements in the row and column respectively of matrix Z . A table of values consisting of 20 rows and 15 columns would therefore be entered as DIM T $(20,15)$. There is a limit set to the size of A and B, which will vary from one version to a nother, but usually at least 255 elements are allowed. Although an array having less than ten elements (or ten by ten in two dimensions) need not be defined by the DIM statement, it is advisable, in order to save memory space, to do this anyway. It is usually necessary to use a FOR . . . NEXT loop to read into or print from an array, the following program illustrating this for a one dimension set.

5 REM PRIME NUMBERS LESS THAN 1000
10 DIM A(1000)
15 FOR $\mathrm{H}=2$ TO 1000
20 IF A(H) < O THEN 50
25 PRINT H;
30 IF H > SQR (1000) THEN 50
35 FOR I $=\mathrm{H}$ to 1000 STEP H
0 LET A(I) $=-1$
45 NEXT I
50 NEXT H
55 END
Line 10 reserves space for the one-dimension array named A. This will usually set all elements to zero, but in some versions it may be necessary to do this in the program first, for example:

```
6 0 ~ F O R ~ K ~ = ~ 1 ~ T O ~ 1 0 0 0 ~
70 LET A(K) =0
80 NEXT K
```


NESTED LOOPS

Above is the first program which has used nested loops (a loop within a loop) and this will also be required when dealing with a two-dimension array. At line 15 , the outer loop is started for the first value of H , which is then printed, line 25 . The second, inner loop starts at line 35 and is repeated for all defined values of I by the statement in line 45 . Line 50 now returns the program to the start of the outer loop for the next round. Note that all the circuits of loop I are undertaken before the next round of loop H begins. For a two-dimension array, a similar arrangement is necessary. To illustrate, the following program reads in the 20 elements of a 5 by 4 table, replacing all odd values by zero, then printing the revised table.

```
5 DIM T(5,4)
FOR I=1 TO 5
FOR H=1 TO 4
READ T(I,H)
IF T(I,H)/2 = INT(T(I,H)/2 ) THEN 35
LET T(I,H)=0
NEXT H
NEXTI
DATA
3,14,12,5,20,18,7,14,19,30,25,25,16,4,7,11,21,30,24,6
REM PRINT REVISED TABLE
FOR J = 1 TO 5
FOR K=1 TO 4
PRINT T(J,K)
NEXT K
```

75 PRINT
80 NEXT J
85 END
The print-out from this will be,

0	14	12	0
20	18	0	14
0	30	0	0
16	4	0	0
0	30	24	6

A few points to note from this last program:

1. Since the outer loop is from 1 to 5 , the values will be read in as 5 rows, the inner loop expecting 4 elements for each row. The data therefore, must be entered similarly in order, row by row. While the table may, if preferred, be read
in columns, it cannot be printed this way and of course it is necessary to have the same arrangement for both the READ and PRINT statements.
2. If an odd number is divided by two the result cannot be an integer, so line 25 uses the INT(X) function to test each element for even status. Note also the use of 'nested' brackets in this line.
3. If line 35 is now changed to . . 35 PRINT T(I,H), . . , line 36 becomes . . 36 NEXT H . . and a PRINT inserted at . . . 38 PRINT . . . , lines 50 to 80 will not be required, as the print-out will be processed while the loops are being cycled.
This by no means exhausts all the commands, functions and statements available in BASIC, but with further practice and experience it should be easy to learn the others from a BASIC manual.

E24 PARASCAN

To assist understanding of how BASIC commands work together, the following program is explained step by step.

Should you have need of an odd value resistance, E24 Parascan will compare every possible combination of twin parallel resistors, and display those which meet your require-
ments.
The computer asks for the resistance you require (assumed to be in Ohms), and then asks for the acceptable tolerance (just enter figure).

20 DATA $1,1.1,1.2,1.3,1.5,1.6,1.8,2,2.2,2.4$, 2.7, 3

30 DATA 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1

40 DIM R(24) : FOR A = 1 TO 24 : READ R(A) : NEXT A
$100 \mathrm{X}=1: \mathrm{Y}=1:$ INPUT"RESISTANCE ";R
105 IF R >4550000 THEN PRINT"OUT OF RANGE": GOTO 100
110 INPUT"\% TOLERANCE ${ }^{\prime} ;$ T
$120 \mathrm{~L}=\mathrm{R}-(\mathrm{T} / 100) * \mathrm{R}: \mathrm{U}=\mathrm{R}+(\mathrm{T} / \mathbf{1 0 0}) * \mathrm{R}$
130 PRINT"FROM ";L; ${ }^{66}$ TO ";U;" OHMS" : PRINT
200 FOR Z $=1$ TO 7
230 FOR M=1 TO 24 : IF R(M)*X<R THEN 275
233 FOR W $=1$ TO 7
235 FOR N = M TO 24 : IF R(N) $\mathbf{2}$ Y $<$ R THEN 270
$240 \mathrm{P}=\mathbf{R}(\mathbf{M}) * \mathbf{X} * \mathbf{R}(\mathbf{N}) * \mathbf{Y} /((\mathbf{R}(\mathbf{M}) * \mathbf{X})+(\mathbf{R}(\mathbf{N}) * \mathbf{Y}))$
250 IF P<L OR P>U THEN 270
$255 \mathrm{~T} 1=((100 * \mathrm{P} / \mathrm{R})-100) * 1000: \mathrm{T} 1=$ INT(T1)/1000
$256 \mathrm{R} 1=\mathrm{R}(\mathrm{M}) \neq \mathrm{X}: \mathrm{K} \$={ }^{66 \%}: \mathrm{K} 1 \mathrm{~S}=69$
257 IF X>100 THEN R1=R1/1000 : K\$="K"
258 IF X>100000 THEN R1=R1/1000:K\$="M"
262 R2 $=$ R(N)*Y: IF Y>100 THEN
R2=R2/1000:K1\$="K"
263 IF Y>100000 THEN R2=R2/1000 : K1\$="M"
265 PRINT R1; K\$; TAB(6)"||"; R2; K1\$;
TAB(14);"="; P; TAB(28);T1; *\%"
270 NEXT $N: Y=Y \neq 10:$ NEXT $W: Y=1$
275 NEXT M : X=X*10

280 NEXT Z

(DATA statements containing the fundamental decade of the E24 range A variabie R is chosen, subscripted (n), to identify the above DATA.
To cope, n must be from 1 to 24 , so $R(n)$ is DIMensioned thus. To cope, n must be from 1 to 24 , so $R(n)$ is DIMensioned thus. A FOR-NEXT loop is used to READ-in the data, where A plays the part of n

Variables to be used later are preset. Then the machine is programmmed to ask for the required resistance, and designates it R. The
computer will not confuse this with $R(n)$ grammmed to ask for the required resist
computer will not confuse this with $R(n)$

The highest resistors this program will compare are: 9M1 $\|$ 9M1, so that nothing greater than 4M55 $\mathbf{4 M}$ can be found. Only when the IF condition is true will the PRINT and GOTO statements be executed

Requests \% tolerance required, designated T

Algorithm calculates upper and lower (U and L) limits allowable
These limits are printed for user reference. The null PRINT statement creates a line space on the screen
Specifies instructions 230 to 275 to be executed 7 times (the number of E24 multiples to be considered for one arm of the parallel pair), eg. $\mathbf{4 . 7 , 4 7 , 4 7 0 , 4 k 7 , 4 7 \mathrm { k } , 4 7 0 \mathrm { k } \text { , and } 4 \mathrm { M } 7}$

Specifies instructions 230 to 270 to be executed 24 times (the number of E24 values to be considered for one arm of the parallel pair)
The IF statement will successively bypass to NEXT M until the sampled resistor is at least as high as the requested one. This avoidance of unnecessary processing considerably speeds up the action

Specifies instructions 235 to 270 to be executed 7 times (same as line 200, but for other arm)

Specifies instructions 235 to 270 to be executed up to 24 times (same as line 230, but for other arm). N is sampled from M to 24 to avoid repeat sampling of that which occurred in the M loop. eg. $4 \mathrm{k} 7 \| 8 \mathrm{k} 2$ and $8 \mathrm{k} 2 \| 4 \mathrm{k} 7$ is avoided

Each time this main algorithm is executed, \mathbf{P} becomes the parallel value of the resistors being tested. The "product-over-sum" equation is used on resistors $\mathbf{R}(M)$ and $\mathbf{R}(\mathbf{N})$, with X and Y as their respective multipliers

Checks that P falls within U and L, IF not, THEN jumps to next value

T1 becomes the percentage error of \mathbf{P} to requested \mathbf{R}. The first statement deliberately over-calculates $T 1$ by a factor of 1000 , so that the INT statement can round-down to a manageable 3 decimal places,
by dividing by 1000 by dividing by 1000

Converts $\mathbf{R}(M)$ and $\mathbf{R}(\mathbf{N})$ to R1 and $\mathbf{R 2}$ ready for PRINT statement. The purpose of this block of instructions is to convert print-out to Ω, $\mathbf{k} \Omega$, and $M \Omega$, to save screen space

The output PRINT instruction (bypassed by out-of-range parallel \mathbf{R} combinations). R1 and R2 are the resistor values; K\$ and K1\$ state
the units. Quotes contain
Without graphic embellishments this program is fairly portable (will work on most machines) but the UK101 requires that READ statements precede DATA statements. The E24 resistors are assumed to be zero tolerance.

These specify that the NEXT value of N, or M, should be tried. These specify that the NEXT value of \mathbf{N}, or \mathbf{M}, should be tried.
Although two NEXTs may share the same line, NEXT \mathbf{W}, for example, will not be selected until all the Ns from M to 24 have been tried (see,
line 235). In this example, the multiplier Y will be raised to the power line 235). In this example, the multiplier Y will be raised to the power
of ten in the process

THE EVERYTHING CHIP

My first offering this month is not something that hobbyists can easily rush out and buy, but I do feel that it will interest most PE readers for two reasons: (a) It is British to the core, and (b) It is a novel device with almost unlimited potential which is sure to crop up in "hobby sockets" before long.
The device in question is the Ferranti ULA 2U000, where the ULA part stands for Uncommitted Logic Array. There isn't anything new about the ULA concept itself, Ferranti have been selling versions based on their unique Collector Diffusion Isolation (CDI) technology for several years, but their latest offering really does look a winner in a truly internationl sense. But first, a word about the ULA philosophy.

In these days of Large Scale Integration (LSI), anyone can get a complex logic system integrated as a single chipproviding they are prepared to order at least 10,000 to make it cost effective! Anyone who can't afford those sort of quantities has to make do with random logic chosen from the TTL or CMOS families for example, or perhaps a microprocessor with its attendant memory and peripheral chips. Those are the main options, and for many applications none of them fit very well. It is in these "awkward" applications where the great British ULA compromise can come to the rescue.

The ULA is an LSI chip which consists of an array of standard logic gates without interconnections. The uncommitted semiconductor chips are mass produced with all the economics of scale which that brings, and then stockpiled (unpackaged) as a standard product. When Joe Bloggs \& Co. want a washing machine controller chip, or John Smith \& Co. need a controller for an electronic camera, they draw up a logic diagram with all the necessary gates, counters, flip-flops and drivers shown, and Ferranti produce a final metallisation mask which interconnects the gates on a ULA to do the job. The fact that only the final mask is "special" means that design time is short and the resulting devices are much cheaper than a discrete logic, or microprocessor, approach.

The 20000 seems to be the ultimate device in a logical progression of ULAs from Ferranti, and in this case it can do more than the custom MOS LSI competition because it has linear circuitry on chip as well as the normal ULA logic gates. With the 20000 it is possible to build complete systems with gates, flip-flops, counters, Schmitt triggers, l.e.d. drivers, comparators, oscillators, and amplifiers, all on one chip
with any number of package pins from 14 to 40 ! The new chip can be battery powered too, sipping only about one milliamp from a one volt supply despite the 256 logic cells (each of which can be connected as two two-input gates) and the forty linear or interface cells which are arranged around the chip periphery.

You still can't get your hands on goodies like this in one-off or even ten-off quantities of course, but you don't have to order ten thousand either! If there is any justice in this world, this chip should be a real winner for Ferranti and for Britain.

DIGI-POT

If you need an accurately set potentiometer with good resolution for an instrumentation application say, the old way to do it is to use a bulky, wire wound, helical pot with a turns counting dial. It would be expensive, the pot would wear out eventually, and reading the dial wouldn't be too easy, but it would work, and with luck you might get 1:1000 usable resolution. Soon you'll be able to do it the digital way-thanks to Analog Devices and their Multiplying Digital to Analogue Converters (MDACs).

Now I suppose everyone knows roughly what a DAC is (parallel binary in-proportional analogue signal out at the other end) but I for one always expected to see a precision d.c. reference supply used with every DAC, and that's where the M comes in, to prove me wrong. A multiplying DAC can be used with any signal on its "reference" pin-even an a.c. waveform which swings above and below ground. So, instead of binary in and analogue out with the scaling set by a precision d.c. reference, we get a.c. signal in and a.c. signal out with the output related to the input by a scaling factor determined by the binary input. In effect the a.c. input is multiplied by the binary input, with the largest multiplier being unity.

Now, I have been talking about an a.c. signal input, just to show the change in emphasis in MDAC applications, but actually it can be any sort of signal, a.c., d.c. or precision reference. A classic application for an MDAC might be the control of gain or "level" in an audio channel by means of a computer or microprocessor, but there are many other occasions when an analogue signal has to be kept under precise, digital control.

So much for MDACs but how about Analog Devices and digital pots? Analog devices have a whole family of MDACs available already, but newly added is the

AD7525 which has the distinction of having b.c.d. (binary coded decimal) rather than straight binary inputs. B.c.d. is of course great for interfacing with people as every calculator knows, because it is easy to convert to and from decimal (or denary for the purists!). Team up the AD7525 with a $3 \frac{1}{2}$ digit thumbwheel switch, which can be set from 0000 to 1999 and you have got yourself the simplest, most reliable, precision potentiometer money can buy. You can use it anywhere you need a precision pot-power supply O / P voltage setting, amplifier gain setting, time delay setting and so on. It will work for a.c. and d.c. signals and you can put it right in the signal path with only the non-critical b.c.d. connections brought to the front panel.

IMPROVED DECODER

When the 7447 seven segment decoder joined the TTL family it was one of the most complex devices then available, and all those goodies like leading zero suppression and intensity modulation capability made it and its attendant filament or l.e.d. displays very attractive compared with the traditional high voltage "Nixie" tubes previously used for number indication. Time marches on however, and the 7447 has now got competition. Most of the competition up to now has had a limited area of application, but a pair of new devices from Signetics/Mullard look ready to oust the 7447 from its industry-standard position.

The devices, coded NE586 and NE587 do all that the 7447 does, including leading zero suppression and intensity modulation, but in addition they both feature an input latch and constant current output drivers which remove the usual need for a collection of current limiting resistors. The input latches make interfacing with microprocessors and other systems, like counters, where data is available only in a dynamic form, very easy. The NE586 has a fixed O/P drive current of 25 mA per segment which is suitable for a range of seven segment l.e.d. digits. The NE587 has an extra pin which allows single resistor programming of the output current up to a 50 mA maximum, making display multiplexing easier and the choice of l.e.d. digit even wider.

Ferranti Ltd., Gem Mill, Chadderton, Oldham, Lancs. OL9 8NP.

Analog Devices Ltd., Central Avenue, East Molesey, Surrey KT8 OSN.

Signetics/Mullard Ltd., Mullard House, Torrington Place, London WC1E7HD.

 original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought. Why not submit your idea? Any idea published will be awarded payment according to its merits.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inseparate sheets.
serted in the text.
serted in the text.
Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and of the undersigned, and
that it has not been accepted for publication elsewhere.

SOUND-TO- LIGHT SEQUENCER

THE circuit shows a four channel soundlight sequencer utilising full wave control.

Clock pulses are drived from half of a 7413. This is connected as an oscillator with a fast edge and a frequency which is variable between about 0.5 to 20 Hz . This clocks one half of the 7474 flip-flop organised as a divide by four counter which in turn is coupled to a decoder which interprets these four states and whose output sequences a low state at the outputs of the NAND gates. These outputs are inverted by IC4 and then are taken directly to the gates of the thyristors.

When any output of IC4 goes high, a logic 5 V is applied to the gate of the corresponding thyristor, thus triggering it into conduction. When, however, this voltage is removed, as it is on triggering by the following clock pulse, so as soon as the full wave rectified mains supply to the thyristor falls to zero, the thyristor is turned off and so the cycle repeats, turning on each thyristor in turn.

The input of the low frequency amplifier, is connected across a speaker and so can be used to sequence the lights in time to the beat of music. One point to note, is that, as the ground connection is not at earth potential, but at 240 V , the 0 V rail on the logic supply must not be earthed.
R. Scott,

Stakeford,
Northumberland.

PARITY FOR ASCII

PParty bits are provided for computers to enable a check for errors to be made. This is done by counting the number of 0 s and 1 s , and if an odd number is counted an error has occurred.
This circuit effectively counts the Is, and adds a parity bit if the total is odd. The circuit is self-explanatory. The output of each EXCLUSIVE-OR gate is high only if one input is low and one high, i.e. a check for odd or even.
This means the gate IC2b is high only if the first seven bits have an odd number of 1 s . This output is used a the eighth bit.
M. Williams,

Hornchurch,
Essex.

A PEAK PROGRAM INDICATOR

THIs circuit uses a single quad op-amp package to provide two stages of peak signal level indication, on a fast-attack. slow-decay basis. Full-wave rectification is used so that both positive and negative peaks are taken into account, and a special output configuration allows the power drawn from the supply to be no greater than that required for one l.e.d. indicator only.

ICla is a high input-impedance amplifier; the sensitivity of the indicator is defined by R2, which sets the gain of this stage. IC 1b acts as a unity gain inverter, and so one of the diode rectifier networks acts on positive peaks, and the other on
negative peaks, phase-inverted by this stage. Both peak rectifiers charge a common storage capacitor C6 through R8, which defines the attack time. R11 allows C6 to discharge between peaks, and sets the decay time.

IClc and ICId act as comparators, their trip points set by the voltages on their inverting inputs, derived from the resistor ladder-network that also generates the midrail voltage for biasing the linear stages. ICld, which receives the lower voltage, switches to indicate the -20 dBm level, its output going high and causing current to flow through D3. Since the output of IC Ic is still low, it sinks this current through

D6, and prevents D4 illuminating; D5 prevents any residual glow. At the -10 dBm level, IClc output also goes high, reversebiasing D6, and D4 is also allowed to illuminate. It is this series connection of l.e.d.s which halves the worst-case current consumption.

With the component values shown, the attack time-constant is 3 ms , and decay constant 470 ms .
D. R. G. Self,

Walthamstow,
London.

DISPLAY TUBE/TTLINTERFACE

THis circuit was used to interface the high voltage indicator tubes of a counter to TTL circuitry to detect when a particular count had been reached. It shows a worthwhile economy over a system using presettable down counters and thumbwheel switches, or BCD equivalence gates.
Each cathode of the display tube is wired to a ten way one pole switch (S1). The cathodes are usually held at about 55 V by Zener diodes in the 74141 decoder/drivers when the numbers are off.

The number is illuminated when the output transistor turns on, taking the cathode to almost zero volts. The required count is selected by connecting that cathode to the op-amp. The resistor ratios are such that the output voltage goes high when the cathode voltage drops below 25 V . The inverting input resistor is high enough to limit the current to a safe value even if the cathode goes up to the supply voltage, due to an internal short, for example. R1 is a bias resistor to maintain a small current through the Zener diode to prevent proximity effects when nearby cathodes pulse.
A. Langton,

Aberdeen.

The Compukit UK 101 has
everything a one board 'superboard' should have.

- Uses ultra-powerful 6502 microprocessor
- 50 Hz Frame retresh for steady clear picture U.SA products with 60 Hz frame refresh always results in jittery displays)
- 48 chars by 16 lines - $1 K$ memory mapped video speed access to screen display nabling animated games and graphs
* Extensive 256 character set which inciudes full upper and lower case alphanumerics. Greek symbots or mathematical constants and numerous graphic characters enabling you to form almost any shape you desire anywhere on the screen
* Video output and UHF Highgrade modulator (8 Mz Bandwidth) which connects direct to the aerial socke your T.V. Channel 36 UHF.
of your Fully stabilised 5 V power supply including trans
former on board.
\star Standard KANSAS city tape interface providing high reliability program storage - use on any 4 K user RAM expandable to 8 K on boan
* 4K user RAM expandable to 8 K on board $\$ 49$
* 40 line expansion intertace socket on board for attachment of extender card containing 24 K RAM and disk controller. (Ohio Scientific compatible).
$\star 6502$ machine code accessible through powerfu
2 K machine code monitor on board
* High quatity thru plated P.C.B. with all IC.'s mounted on sockets
- Professional 52 Key keyboard in 3 colours - soft ware polted meaning that all debouncing and key decooing done in software.
COMMANDS
CONT LIST NEW NULL RUN STATEMENTS CLEAR DATA GOTO GOSUB DEF DIM END FOR NEXT ON GOTO IF GOTO IF. THEN INPUT LET REM RESTORE RETURN STOP
EXPRESSIONS
OPERATORS VARIABLES
A.B.C. Z and two letter variables

The above can all be subscripted when used in an array String variables use above names plus \$e.g.A

- 8 K Microsoft Basic means conversion to and from Pet, Apple and Sorcerer easy Many compatible programs already in print SPECIAL CHARACTERS
© Erases line being ty
carriage return, line feed.
Erases last character typed.
CR Carriage Return - must be at the end of each line.
Separates statements on a line
CONTROLC Execution or printing of a list is interrupted at the end of a line. "BREAK IN LINE XXXX" is printed, indicating line number of next statement to be executed or printed
CONTROLO No outputs occur until return made to command mode. If an Input state. ment is encountered. either another CONTROLO is typed, or an error occurs. ? Equivalent to PRINT

EXTRAS AVAILABLE SOON

COLOUR ADD-ON enables you to choose your foreground and background colour anywhere on the screen. Flash any character on the screen at will. Full documentation and parts in kit form.

AD.A.RAM EXTENDER CARD provides up to 32 K Dynamic RAM Expansion, 8 Eprom sockets for 2708's or 2716 's. Parallel Port (centronics compatible) and an RS232C serial port.

WIN YOURSELF AN ANADEX DP8000 LINE PRINTER

There's never enough good software around. That's why COMPUKIT LTD. are sponsoring a software contest. There are 2 categories: 1) Business and Education 1) Business and Eo
2) Fun and Games

One lineprinter will be awarded to the winner of each category
Send or bring along to the address shown below the following:

1) The program on cassette in the format used by the COMPUKIT UK101
2) Any documentation that you have for the program (source listing not necessary)
3) This coupon signed by you accepting the rules and conditions of the competition.

RULES:

1) Entries, including documentation, must be printed by computer or typed double spaced, with your name on every page.
2) Send or bring your entries to the address shown below.
3) Entries must be received by midnight on $29 / 2 / 80$, any received after this time are void.
Winners will be notified by post before 31/3/80.
4) You warrant by your signature that all programs and documentation material included is entirely your own creation, and that no rights to it have been given or sold to any other party, and you agree to allow COMPUKIT LTD. to use, publish, distribute, modify, and edit it as it sees fit
5) All entries become the property of COMPUKIT LTD. No entries will be returned nor any questions answered regarding individual entries. 6) Judging will be by a selected panel chosen by, and including representatives of COMPUKIT LTD. Judges may assign programs to any of the categories as they see fit. Decision of the judges is final. 7) Employees of COMPUKIT LTD, its dealers, distributors, advertising agencies and media are not eligible to enter.

Name

Address \qquad

I agree to abide by the above mentioned rules

Signature

Please add VAT to all prices - Delivery at cost, will be advised at time of purchase. Please make cheques and postal orders payable to COMP, or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number

OPEN - 10am to 7pm - Monday to Saturday CREDIT FACILITIES ARRANGED

OPEN - 10am to 7pm - Monday to Sat
TELEX: 298755
(Part of the Compshop Ltd. Group)

Ohio Scientifics

Abstract

Full 8K basic and 4K user RAM Power supply and R.F. Converter P.O.A.

The machine can be economically expanded to assist in your business, remotely control your home, communicate with other computers and perform many of the tasks via the broadest lines of expansion accessories in the microcomputer industry. This machine is super easy to use because it communicates naturally in BASIC, an English-like programming language. So you can easily

Built and tested (Delivery within 7 days)

instruct it or program it to do whatever you want, but you don't have to. You don't because it comes with a complete software library on cassette including programmes for each application stated above. Ohio Scientific also offers you hundreds of inexpensive programs on read-to-run cassettes. Program it yourself or just enjoy it, the choice is yours.

Features

- Uses the ultra powerful 6502 microprocessor
- 8K Microsoft BASIC-in-ROM
- Full feature BASIC runs faster than currently available personal computers and all 8080 -based business computers.
- 4K static RAM on board expandable to 8 K
- Full 53-key keyboard with upper-lower case and user programmability
- Kansas City standard audio cassette interface for high reliability
- Full machine code monitor and I/O utilities in ROM
- Direct access video display has 1 K of dedicated memory (besides 4 K user memory), features uppercase, lower case, graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TV's with overscan display about 24 rows of 24 characters, without overscan up to 30×30 characters.

Extras

- Available expander board features 24 K static RAM (additional mini-floppy interface, port adapter for printer and modem and OSI 48 line expansion interface.
- Assembler/editor and extended machine code monitor available.

Commands

CONT	LIST	NEW	NULL	RUN	
Statements					
CLEAR	DATA	DEF	DIM	END	FOR
GOTO	GOSUB	IF...GOTO	IF...THEN	INPUT	LET
NEXT	ON...GOTO	ON...GOSUB POKE	PRINT	READ	
REM	RESTORE	RETURN	STOP		

Expressions
Operators
$-,+, *, l, \uparrow$, NOT, AND, OR, $>, \ll>,>=,<=$, $=$
RANGE 10^{-32} to 10^{+32}

Functions

(X\$,I,J).
VAL(X\$)
RIGHT\$(X\$,I)
STR\$(X)

Plus variables, arrays and editing facilities.
Fully built and tested. Requires only +5 V at 3 amps and a videomonitor or $T V$ and $R F$ converter to be up and running.

Additional 4k Ram $\mathbf{f 3 9 . 0 0}+$ VAT. Attractive custom built case $\mathbf{£ 2 5 . 0 0}$ + VAT.

STOP PRESS:

Limited floppy disc drive and 610 boards now available.
Videotime Products
56, Queens Road,
Basingstoke, Hants RG21 1REA

Lotus Sound

Tel: 025656417
4, Morgan Straet,
London E3 AB
Tel: 01-981 3993

RECORD FOR RUSSIA

This is the eleventh month of the year and it is fitting that what must be one of the most exciting years in space history should be recorded as such. On the threshold of the Shuttle era, where the techniques of the hardware have been undertaken by the United States with co-operation from space agencies round the world, the other side of the interface, mankind, has been developed by the Soviet Union. They turned their attention to the study of the biological problems of survival in space.

The longest stay in space and weightless conditions was concluded in August by Soviet cosmonauts Vladimir Lyakhov and Valeri Ryumin. They had been 175 days in space proving that this is also the province of mankind. The record of this year alone is unique for there were many misgivings, some are still vociferously apparent, yet once again the direct approach to a solution has proved the point.

MAN-MACHINE INTERFACE

In some quarters a great play is made about the so-called difficulties on return to gravity. It is right that these matters should be thoroughly investigated. They have been, and it is clear that provided the exercises prescribed by the medical experts are followed no harm results. Of course in these early stages it is necessary for biological measurements to take place as soon as cosmonauts return. Therefore the maximum information must come from allowing the cosmonauts to land in the "heavy end'. The speed of their recovery is quite amazing when it is remembered that after several weeks in bed some considerable difficulties are experienced by ordinary people on Earth when they try to walk. Other biological problems have had much special attention in those countries interested. In the United States all the data is available. The Soviet Union has been able to supply the men required. So the
space frontiers are making the new world and it is gratifying that all the nations are cooperating in these activities.

The special attention that Russia has given to the testing of facilites and the direct effect of the man-machine interface has resulted in a major contribution to the space age. The other cosmonauts who showed progressive extensions of time in space have all contributed. The immediately past record holders were preceded by two other Russians, Vladimir Kovalenko and Alexander Ivanchenkov. They too carried out tasks with the ferries as well as the special activities with the Kristall furnace and the Splav (alloy) electrical smelting installation.

CRYSTALS

Salyut-6 space station saw the active investigation of crystals synthesized from elements of the third and fifth groups of the periodic table such as gallium arsenide and indium antimonide.

Of special interest was the production of crystals of cadmium and mercury tellurides. This particular crystal is the basis of a thermovisor. This is an infra-red device which can yield valuable information on the internal condition of the human body. It is indispensible for certain medical specialists.

Experiments in melting extremely pure optical glass were very successful. Zero gravity is essential for the production of high quality crystals. The natural vacuum of space will no doubt enable crystals of the second generation to exceed the present 100,000 elements per square centimetre. Indeed it is already being forecast that by the late 1980's a million elements will be possible. This again will reduce the size of equipment.

CIRCUMTERRESTRIALSPACE

There is no doubt that the feeling is growing that space exploration is associated with the application to the use of circumterrestrial space. It is to this end that the Soviet Union has spent so much time with the Salyut-6. The weight of this station is 19 tons. Its length is 15 metres. With two docked cargo ships it grows to 30 metres and 32 tons. The building up of stations by the simple process of joining up successive units, each a vehicle in its own right, seems to the Russians to be an efficient and safe way of dealing with the tasks of the future.

During the two years that the space station has been in orbit much work has been done. One interesting point that emerged from the working conditions in weightlessness was that as time went on the cosmonauts increased their efficiency in performing their allotted tasks. After the return of the last two cosmonauts the station continues orbiting automatically. During the period of its activity seven freight transport ships have made the journey to and from the Salyut-6.

Lyakhov and Ryumin began their record breaking trip in a Soyuz-32 spaceship on February 25 this year. On the 26 of February they commenced work aboard the Salyut-6. Materials and equipment were brought up by Progress-5, Progress-6 and Progress-7 ships. In addition the unmanned Soyuz- 34 brought
materials and equipment to the station. On June 13th the Soyuz-32 which brought the crew to the station returned with records and the two cosmonauts Kovalenko and Ivanchenkov.

TELESCOPES

The freight ship Progress-7 had brought up the radio telescope KRT-10. This was assembled in the intermediate chamber of the space station. Progress- 7 was undocked and moved away. It was planned to use the Progress-7 as an observation point so that flight control could observe and control the telescope. The telescope was then moved out into position and the 10 metre parabola opened out. As it happened the unit did not quite get clear and the last task of Lyakhov and Ryumin before returning to earth was to execute a space walk to correct the fault.

The telescope was used in conjunction with the new 70 metre parabola at the long range radio communication centre in the Crimea. The distance between the two telescopes, one on Earth and the other in orbit, forming an interferometer. The base line was varied by the movement of the space station unit so that it was possible for this to range from 400 km apart to $10,000 \mathrm{~km}$ during the synchronous radio sessions. The effective aperture was the equivalent of a telescope the size of the Earth itself.

This opens up the possibilities for very large telescopes in space. A 10 metre parabola on Earth would weigh several tons but the space situated units would be a small fraction of this. It is therefore being planned by Russia to set up telescopes of up to 200 metres in diameter. A series of these will first be assembled in low earth orbit by a small team and then taken to a solar orbit. The total size of each unit would be from one to ten kilometres across. It would be possible in one combination to have one unit in near Earth orbit and the other at say Saturn. This would be a distance of about $1,500 \mathrm{~km}$.

This would have tremendous resolving power and might well be the means of detecting as yet unknown sources of energy and even perhaps discovering whether there were any planets round stars which might have civilisations. Also it would make it possible to set up a three dimensional picture of the universe directly.

THREE FOR ONE

Comsat are seeking to reduce the number of antennae in use for satellite communications. The new proposal called the torus antenna will enable three satellites to be in use with one antenna station. Normally there has to be a separate antenna for each satellite, each a parabola focussed at a particular point. In the new proposal, provided the satellites are grouped to a band not more than 30 degrees apart from each other it takes the form of a line focus. The reflector appears almost flat but is in fact shaped. It looks very much like three parallel linear parabolic channels. Within the 30 degree requirements three satellites can be interrogated with one station. The economics are sound for the station costs only 1.1 million dollars against 0.8 million dollars each for the single version.

Fair adjudication for quiz contests

THIS article describes a monitor set which can be used by a referee or quizmaster to adjudicate fairly the result of a contest between individuals or teams and as such should prove popular in clubs or fund raising activities such as charity functions

Each team is provided with a button or buttons to press when an answer to a question is to be submitted. The first to reply actuates a lamp and buzzer simultaneously alerting the referee to the station answering and disabling all other contestants' units.

A competition state of readiness is resumed by the referee pressing his button, after adjudication, when all units revert to their stand-by state in readiness for the next question or throwing open the question to the other contestants in the event of a wrong answer,

This system was designed for three competitors or teams; however, there is no reason why it cannot be extended to as many contestants as required.

CIRCUIT

In the off state the anodes of the three thyristors are at a positive potential biasing off D3 to D8. When one of the contestants' buttons is pressed it turns on the respective thyristor dropping its anode voltage to around zero volts; this in turn forward biases the other thyristors. The question master then notes which buzzer is sounding and cancels it by pressing his button removing the voltage from the circuit thus reducing the current through the thyristor below its holding level turning it off.

The type of thyristor used is not critical and any type should function perfectly as any variation in gate current is adjusted by the three presets to suit the manufacturer's data.

To adjust these presets connect an ammeter across the press switch contacts and adjust the wipers to get the right gate current (200 mA on the thyristor specified). Do not adjust for gate voltage as this can be very misleading.

If triggering should become a problem use OA47s as these have a lower forward voltage drop although they are more expensive.

The circuit around TR1 forms a simple voltage regulator with the base held at the Zener voltage thus holding the collector of TR1 at the Zener voltage less the forward voltage drop of the transistor junction, approximately 700 mV .

The quiz-master's button shorts out the Zener diode, grounding the base of TR1, effectively removing all the voltage from the output. The Zener voltage is not critical
and may be any voltage between 7-15V although the lights will be brighter and buzzers will be louder if the Zener voltage is towards the upper limit.

The regulator circuit may be discarded if a press to open push switch is available or even a toggle switch, but if this is done the output to the thyristors will not be stabilised and will rise to something like 22 V causing the bulbs to have a shortened life and making it necessary to have higher working voltage capacitors.

Also the lamps may be dispensed with but if this is done the thyristors will not latch as the buzzers take an intermittent current, so some other load will have to be provided to keep the holding current above the threshold level.

Diodes D3 to D8 are needed to stop interaction between the thyristors. It will be noticed that these are all mounted in the centre enclosure instead of their respective boxes. Wiring up in this way enables the use of four core cable, otherwise six core cable would be necessary (Fig. 1).

COMPONENTS

Resistors
R1 $\quad 470$
R2-R4 $1 \mathrm{k}(3 \mathrm{off})$
All 1 W carbon

Capacitors

C 1

$\mathrm{C} 2-\mathrm{C} 4$$\quad$| 1000μ elect 25 V |
| :--- |
| 220μ elect 16 V (3 off) |

Potentiometers
VR1-VR3 10k (3 off)
Semiconductors

D1	1N4001
D2	B2Y88 10 V 400 mW
D3-08	$1 \mathrm{N914}$ (6 off
CSR1-CSR3	C103YY (6 off (R, S. 261-873) (3 off)
	2N3053 \$

TR1

Buzzers

BZ1-BZ3 12V single tone (R.S. 248-808) (3 off)

Miscellaneous

S1 Mains on/off toggle, S2-S5 push button switches; 4 boxes Astros Grey (AST578)-West Hyde, 40 feet four core cable. Transformer-6-0-6V 0.5A malns IR.S. 196-2961, Lampholder- 22 mm dia, Bulbs-12V 2.2 W . Malns neon, FS $1=50 \mathrm{~mA}$

Fig. 2. Printed circuit board for p.s.u.

Fig. 3. Component layout

Fig. 4. Printed circuit board for individual or team boxes. Two are required

Fig. 5. Component layout. Pins and components for the duplicate box are shown bracketed

Fig. 6. Printed circuit board for individual or team box containing isolating diodes

Fig. 7. Component layout

Fig. 8. Panel cut-outs for lamp and buzzer in contestants' boxes

[60 203

CONSTRUCTION

Construction is perfectly straight forward. The printed circuit boards are fitted upright in the slots moulded into the ends of the boxes. These slots are tapered down to the bottom of the box by approximately 1 mm each side and seeing as the printed circuit board is also used for strain relief on the cable, some care is needed in fitting them to ensure that they are a fairly firm fit. Four core cable passes through the hole in the side of the box and then through two holes in the printed circuit board, supplying strain relief of the soldered joints. DIN plugs and sockets could be used to join up the separate units but as the cost was of prime importance on the prototypes, these were not used.

If when fitting the buzzers the hole through which they protrude is made a tight fit, the only other means needed to support them is double sided sticky tape top and bottom of the large diameter end, this being held fast by the lid when this is screwed down. Failing this a nylon nut and bolt and spacer must be used to bolt the buzzer to the printed circuit board.

To make the holes for the panel light and buzzer the following procedure may be adopted. Mark the centre of the hole to be made with a punch, then using a pair of compasses
or dividers mark the outer diameter of the hole, then drill out the centre as big as you can, filing out the plastic carefully to the outer diameter mark using, if possible, a half round file to finish off with, as this gives a much rounder hole.

A word here about marks and scratches on the boxes. These may be cleaned off (if they are not too deep) using the type of cleaner that is advertised as cleaning without scratching, such as Jiff, but many other brands of the same type may be used.

The wires joining the boxes were brought out of the side and front of the boxes and are thus kept out of the way of the contestants and quizmaster so that their hands can rest comfortably on the tables while they are waiting to push their buttons.

The West Hyde boxes specified can be purchased with plastic or metal lids. The plastic type are needed for this application or the buzzers will not fit in the boxes. These enclosures are used because they have a smooth bottom with no moulding marks visible.

Rubber stick-on feet were also used on the boxes to stop the scratching of the polished table tops; they also hide the fixing screws.

There's a lot going on at Breadboard!

Seventy exhibitors showing and selling everything that the hobby electronics enthusiast could want! Demonstrations of electronic organs - computer kits - audio gear.

Radio Station S22 broadcasting throughout the show. See your voiceprint! Get your own weather details direct from Tiros M! Test your reactions and your strength.
Careers in Electronics - get the advice and information that could start you off on a rewarding and interesting career.
It's worth going to Breadboard!

Royal Horticultural Halls ElvertonStreet Westminster London SW1

December 4-8th 1979

Admission $£ 1$ (students 70p)

CNOS		4020	50p	4050	25p
		4022	50p	4060	80p
		4023	13p	4066	30p
		4024	40p	4068	13p
4001	13p	4025	13p	4069	13p
4002	13p	4026	90p	4070	13p
4007	13p	4027	28p	4071	13p
4009	30p	4028	45p	4072	13p
4011	13p	4029	50p	4081	13p
4012	13p	4040	55p	4093	36p
4013	28p	4041	55p	4510	60p
4015	50p	4042	550	4511	60p
4016	28p	4043	50p	4518	65p
4017	47p	4046	90p	4520	60 p
4018	55p	4049	25p	4528	60p
FULL DETAILS IN CATALOGUE!					
TTL		$\begin{array}{r} 7473 \\ 7474 \end{array}$	$\begin{aligned} & 20 p \\ & 22 p \end{aligned}$	74141	55p
				74145	55p
7400	10p	7475	25p	74148	90p
7401	10p	7476	20p	74150	55p
7402	10 p	7485	55p	74151	40p
7404	120	7486	20p	74154	65p
7406	22p	7489	135p	74157	40p
7408	12 p	7490	25p	74164	55p
7410	10p	7492	30p	74165	55p
7413	22p	7493	25p	74170	100p
7414	39 p	7494	45p	74174	55p
7420	$12 p$	7495	35p	74177	50p
7427	200	7496	$45 p$	74190	50p
7430	120	74121	25p	74191	50p
7432	18 p	74122	35p	74192	50p
7442	$38 p$	74123	38p	74193	50p
7447	$45 p$	74125	35p	74196	50p
7448	50 p	74126	35p	74197	50p
7454	12 p	74132	45p	74199	$90 p$
OPTO					
LEO's	0.1	5in. 0		each	$100+$
Red	Til	209 TI	L220	9 p	$7.5 p$
Green	TIL	211 T	L221	$13 p$	$12 p$
Yellow	T1L	213 TI	L223	13p	12p
Clips	3p	3 p			
DISPLAYS					
DL704	0.3	in CC		130ρ	$120 p$
OL707	03	in CA		130ρ	$120 p$
FND500	05	in CC		1009	$80 p$

Low profile by Texas

8pin $\quad 8 p \quad 18 p i n \quad 14 p \quad 24 p i n \quad 18 p$ $\begin{array}{llllll}14 p i n & 10 p & 20 p i n & 16 p & 28 p i n & 22 p \\ 16 p i n & 11 p & 22 p i n & 17 p & 40 p i n & 32 \mathrm{p}\end{array}$ 3 lead T018 or T05 socket 100 each Soidercon pins $100 \cdot 50 \mathrm{p} \quad 1000: 370 \mathrm{p}$

PCBS

Size im. VEROBOARD
$25 \times 1 \quad 14 p$ 14p Cutter $80 p$
$\begin{array}{lll}2.5 \times 3.75 & 45 p & 45 p \\ 25 \times 5 & 54 p & 5 p\end{array}$
$\begin{array}{lrrr}2.5 \times 5 & 54 p & 54 p & \text { Pin } 155 \mu 1 \\ 3.75 \times 5 & 64 p & 64 p & \text { roo } 108 \\ 375 \times 17 & 2050 & 185 p & \end{array}$
375×17
Single sided
pinsper $100 \quad 400 \quad 400$
Too quality fibre glass copper board Single
ded Size $203 \times 95 \mathrm{~mm} 60 \mathrm{p}$ wach
Dalo pens 750 each
DESISTORS Carbon film resist
Carbon film resist
ors. High stability ow noise 5%
E12 series. 47 ohms to 10 M . Any mix $\begin{array}{llll}0.25 W & \text { each } & 100 \text { * } & 1000+ \\ 0.090 & 080\end{array}$ $\begin{array}{llll}0.5 \mathrm{~W} & 150 & 12 \mathrm{p} & 10\end{array}$ Special development packs consisting of ohm (650 res) $0.5 W £ 7.50 \quad 0.25 \mathrm{~W} £ 5.70$ METAL FILM RESISTORS
Vervhigh stability tow noise rated at $1 / 4 \mathrm{~W}$ Verv high stability. Low noise rated at AW E24 series. Any mix. $\begin{array}{lll}\text { each } & 100+ & 1000\end{array}$

LNEAR		LF356	80p	NE531	ρ
		LM301AN	- $26 p$	NE555	23p
THIS IS ONLY ASELECTIONI		LM308	60p	NE556	600
		LM318N	75p	NE567	100p
		LM324	450	RC4136	100p
709	35p	LM339	$45 p$	SN76477	230p
741	16p	LM378.	230p	TBA800	70p
747	45p	LM379S	$410 p$	TBA810S	100p
748	30p	LM380	75	TDA1022	620p
7106	850p	LM3900	50p	TL081	45p
7107	900p	LM3909	65p	TL084	1250
CA3046	55	LM3911	1000	2N414	80p
CA3080	70p	MC1458	32p	2N425E	390p
CA3130	909	MM57160	590p	2N103	200

TRANSISTORS

$\begin{array}{lllllll} & & \text { BCY } & & 142 & \text { 2N3053 } & 18 p \\ \text { AC127 } & 17 p & \text { BD } 31 & 35 p & \text { 2N3054 } & 50 \mathrm{p}\end{array}$

$\begin{array}{llllll}\text { AC176 } & 180 & \text { BD } 139 & 35 p & \text { 2N3055 } & 50 \rho \\ \text { AN } & \text { AN4 } & 1350\end{array}$
$\begin{array}{llllll}\text { AD161 } & 38 p & \text { BD } 140 & 35 p & \text { 2N3442 } & 135 p \\ \text { AD } & \text { 2N3702 } & 8 p\end{array}$
$\begin{array}{llllll}\text { AD162 } & 38 p & \text { BD140 } & 35 p & \text { 2N3702 } & \text { BFY50 } \\ \text { A } & 15 p & 2 N 3703 & 8\end{array}$
$\begin{array}{llllll}\text { BC107 } & 8 p & \text { BFY51 } & 15 p & 2 N 3704 & 8 p\end{array}$
$\begin{array}{lrllll}\text { BC108 } & 8 p & \text { BFY52 } & 15 p & \text { 2N3705 } & 9 p \\ \text { BC108C } & 10 p & \text { PN }\end{array}$
$\begin{array}{llllll}\text { BC108C } & 10 \mathrm{p} & \text { MJ2955 } & 98 \mathrm{p} & 2 N 3706 & 9 p \\ \text { BC109 } & 8 \mathrm{p} & \mathrm{MPSAOS} & 20 \mathrm{p} & 2 N 3707 & 9 p\end{array}$
$\begin{array}{llllll}\text { BC109C } & 10 \mathrm{p} & \text { MPSA06 } & \text { 20p } & \text { 2N3707 } & 9 \mathrm{p} \\ & 10 & \text { MPSA5 } & 200 & \text { 2N3708 } & 8 \mathrm{p}\end{array}$
$\begin{array}{llllll}\mathrm{BC} 147 & 7 \mathrm{p} & \text { TIP29C } & 60 \mathrm{p} & \text { 2N3B19 } & 15 p\end{array}$
$\begin{array}{lrrrrr}\text { BC148 } & 7 \mathrm{D} & \text { TIP30C } & 70 \mathrm{p} & 2 N 3820 & 44 \mathrm{p} \\ \text { BC177 } & 14 \mathrm{D} & \text { TIP31C } & 65 \mathrm{p} & 2 N 3904 & 8 \mathrm{p}\end{array}$
$\begin{array}{llllll}\text { BC178 } & 14 p & \text { TIP32C } & 80 p & 2 N 3905 & 8 p\end{array}$
$\begin{array}{llllll}\text { BC179 } & 14 p & \text { TIP } 2955 & 65 p & 2 N 3906 & 8 p \\ B C 182 & 10 p & \text { TIP } 3055 & 55 p & 2 N 4058 & 12 p\end{array}$
$\begin{array}{llllll}\text { BC182L } & 10 p & 2 T \times 107 & 14 p & 2 N 5457 & 32 p \\ \text { BC184 } & 10 p & 2 T \times 108 & 14 p & 2 N 5459 & 32 p\end{array}$
$\begin{array}{llllll}\text { BC184 } & 10 p & \text { 2TX108 } & 14 p & \text { 2N5459 } & \text { 32p }\end{array}$
$\begin{array}{lllll}\text { BC212 } & 10 \mathrm{p} & 2 \mathrm{~T} \times 300 \quad 16 \mathrm{p} & 2 \mathrm{~N} 5777 & 50 \mathrm{p}\end{array}$
BC212L 10p
BC2
$\begin{array}{llllll}\text { BC477 } & 19 p & 1 N 914 & 3 p & 1 N 4006 & 6 p\end{array}$
$\begin{array}{llllll}\mathrm{BC} 478 & 19 p & 1 N 4001 & 4 p & 1 N 5401 & 13 p\end{array}$
BC548 10p 1 N4002 $4 \mathrm{n} \quad 82 \mathrm{Y} 88$ ser 8 n
$\begin{array}{lllllllll}\text { BCY71 } & 14 p & \text { 1N4148 } & \mathrm{f} 140 & 00 \mathrm{f} .111000\end{array}$

CAPACITORS

TANTALUM BEAD
0.1. 0.15, 022, 0 33, 0.47, 068

$1822 \mathrm{uF} @ 35 \mathrm{~V}$
4768 O
1

$4.7 .68,10 \mathrm{uF} @ 25 \mathrm{~V}$
$22 @ 16 \mathrm{~V}, 47 @ 6 \mathrm{~V}, 100 @ 3 \mathrm{~V}$
$22 @ 16 \mathrm{~V}, 47 @ 6$
MYLAR FILM
$0.001,0.01,0.022,0.033,0047$
0068.0 .1

POLYESTER
Muliard C2BO series
$0.01,0.015,0.022,0.033,0.047,0.068,01.50$
$0.15,022,0.022,0.033 .0 .047,0.068,01.90$ $0.15,022$
033.047
068
CERAMIC
Plate type 50 V . Available in E12 series from
22 pF to 1000 pF and E6 series from 1500 pF t 0047 FF 20
RADIAL LEAD ELECTROLYTIC

| $63 V$ | $0.47 \quad 10$ | 22 | 4.7 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 22 | 47 | \qquad

			22	33	47	7 p
	100					13p
			220	-...		20p
25 V	10	22	33	47		50
	100					8 p
		220				100
				470		150
	1000					23p

CONNECTORS

JACK PLUGS AND SOCKETS

	screened	unscreened	socket
2.5 mm	$9 p$	$13 p$	$7 p$
35 mm	$9 p$	$14 p$	$8 p$
Standard	$16 p$	$30 p$	$15 p$
Stereo	$23 p$	$36 p$	$18 p$

DIN PLUGS AND SOCKETS

	plug	chassis socket	line sockit
2 pin	$7 p$	$7 p$	$7 p$
3 pin	$11 p$	$9 p$	$14 p$
50 in 180°	$11 p$	$10 p$	$14 p$
50 in 240°	$13 p$	$10 p$	$16 p$

1 mm PLUGS AND SOCKETS
Suitable for low voltage circuits, Red \& black Plugs. 6p each Sockets: 7p each
4 mm PLUGS AND SOCKETS
Available in blue, black, green, brown, red, white and yellow. Ptugs: 11p each Sockets: 12 p each PHONO PLUGS AND SOCKETS Insulated plug in red or black Screened plug Single socket.
$9 p$
$13 p$ $10 p$

STEVENEON

 Electronic Components
SOLDERING IRONS

ANTEX X25 (25W) or ANTEX CX (17W)
390p each
240 p each

LOUDSPEAKERS

56 mm dia. 8 ohms . $70 \mathrm{p} \quad 64 \mathrm{~mm}$ dia. 64 ohms . 75 p 64 mm dia. 8 ohms . $75 \mathrm{p} \quad 70 \mathrm{~mm}$ dia. 80 hms . 100 p Magnetic earpiece including 2.5 or 3.5 mm plug. 15 p each Crystal earpiece including 3.5 mm plug.

30p each

SWITCHES

Subminiature toggle. SPDT 70p. DPDT 80p Standard toggle. SPST 34p. DPDT 48p.

Slide switches (DPDT) miniature or standard 15p
Push to make switch. 15p. Push to break switch. 20p.
Wavechange switches: 1P12W, 2P6W, 3P4W, 4P3W. 43p
CONTROL KNOBS
Ideal for use on mixers etc. Push on type with black base and marked position line. Cap available in red, blue, green, grey, yellow \& black. 14 p
MISCELLANEOUS
Connection cable available in single or stranded packs of eight colours.
8 metre pack 18p
Stranded
40 metre pack 85 p
18p
$80 p$
BATTERY CLIPS
Battery clips for PP3 with lead. 6p each
Battery clips for PP9 with lead. 10p each
Miniature crocodile clips in red or black. $8 p$ each.
Red or black probe clips. 20p each.
HEATSINKS
n留
T018 push to fit heatsink
$10 p$ each.
T0220 twisted vane heatsink
each
T03 twisted vane sink
20p each. 22p each.

Murata Ultrasonic Transducers. 180p each. 350p pair.

BOXES

Quality black ABS boxes by BIM. All dimensions in mm. $100 \times 50 \times 25 \quad 90 p$ each $\quad 150 \times 80 \times 50 \quad 140 \mathrm{p}$ each $120 \times 65 \times 40125$ peach $190 \times 110 \times 60 \quad 220 p$ each

REGULATORS

78L05 30p 7805 60p 7905 80p $\begin{array}{lllll}78 \mathrm{~L} 12 & 30 \mathrm{p} & 7812 & 60 \mathrm{p} & 791280 \mathrm{p} \\ 78 \mathrm{~L} 15 & 30 \mathrm{p} & 7815 & 60 \mathrm{p} & 7915 \\ 80 \mathrm{p}\end{array}$

We now offer one of the widest ranges of components at the most competitive prices in the U.K. See catalogue for full details. We welcome callers at our shop in College Rd Bromley, from Mon-Sat, 9am-6pm (8pm on Weds and Fridays). Special offers always available.
We also provide an express telephone order service. Orders received before 5 pm are shipped same day Contact our sales office now with your requirements. TELEPHONE: 01-464 2951/5770.

Quantity discounts on any mix TTL, CMOS.

 74 LS and Linear crrcuits $100+10^{\circ} \% 1000+$ 15:; Prices VAT inclusive Please add 30 p for curriage All prices valiffOfficial orders welcome.

ORDERS DESPATTHED By RETURN
\square von
BARCLAYCARD * ACCESS WELCOME

 0htis. 010
 BNBEAR AHARM
 Protect your home with our Ultrasonic Burglar Alarm. This mains operated, two unit system, which is controlled by a keyswitch has both battery back up and alarm test facilities.

 Plus: INDEX FOR VOLUME 15

 Plus: INDEX FOR VOLUME 15}
PRACTICAL

WITH the development of simple chemistry processes for colour film printing, more and more amateurs are trying their hand at producing their own colour prints in the home darkroom.

Once you get into colour processing you quickly realise that the good old days where the enlarger button was held down for a count of ten are gone, due to the higher timing accuracy required.

This project describes a simple enlarger timer, the accuracy of which is not affected by fluctuations in the mains voltage, and which fulfils the need for simple operation, as of course the unit is used in total darkness. No indicators or displays have been incorporated as even the red light from such displays is not "safe" for use with colour photography.

RANGE

The range of the unit is from 1 to 99 seconds in one second steps but if required the timer can be modified to give a second range of 0.1 to 9.9 seconds in 0.1 second steps.

CIRCUIT DESCRIPTION

The circuit diagram of the Darkroom Timer is shown in Fig. 1. The power supply uses a standard 7805 regulator
to provide +5 V . It also provides a 9 V a.c. line which is divided by R1 and R2 and clipped by the Zener diode D2 to provide an approximately square 50 Hz input to IC2 (pin 1).

IC2 and IC3 are connected in cascade to divide the 50 Hz input by 50 to produce a 1 Hz standard timing pulse.

This 1 Hz pulse is now fed to the input of the b.c.d. counters IC4 and IC5 which will count up the pulses from 0 to 9 .

As the counters are cascaded the total count available is 99. The b.c.d. outputs from these counters are fed to the 4 to 10 line decoders IC6 and IC7. The outputs of these decoders will remain normally high and an output will go low when the particular code for that output is presented to the i.c.

Thus by using S3 and S4 any number from 0 to 99 can be selected by feeding one of the outputs from the decoders IC6 and IC7 to a NOR gate IC8a, i.e. if the number 56 is selected S3 will look at the 6 output of IC6 and S4 will look at the 5 output of IC7, thus at the number 56 the output from S3 and S4 will be low causing the output of the NOR gate to go high.

The timing sequence is started by closing S2 which resets the counters IC4 and IC5 to zero and also sets the latch formed by the two NOR gates IC8b and IC8c. Once the

Fig. 1. Circuit diagram of the Darkroom Timer

Fig. 2. Printed circuit board design

E6200]
Fig. 3. Component overlay for p.c.b.
COMPONENTS
Resistors
R1,R2
R3
All $5 \% \frac{1}{4} W$ carbon
Capacitors

C 1	$1000 \mu 25 \mathrm{~V}$ elect
C 2	$10 \mu 10 \mathrm{~V}$ elect
C 3	100 n polyester

Somiconductors

Miscellaneous 71
9 V 500 mA min mains transformer
S1, 55
S2
S3.54
SK1
PL1
Case
P.c.b.
Terminal block

Single pole push to make
Thumbwheel switches or two 1 pole 10 way waferswitches Min. 3 way mains socket Min. 3 way mains plug $200 \times 80 \times 130 \mathrm{~mm}$ EG 199 3 way
latch has been set the output turns on TR1 which operates the relay RLA switching on the enlarger lamp.

When the set count is reached the output of IC8a will go high, resetting the latch and switching off the enlarger lamp.

Internal view of the Darkroom Timer

CONSTRUCTION

The prototype was constructed on a printed circuit board the design of which is shown in Fig. 2 with the component layout shown in Fig. 3. After the p.c.b. has been soldered and checked the board should be mounted into the case and the switches and sockets fitted.

Thumbwheel switches were used for the time selector as they give a quick and easy method of selecting the exposure period and provide an indication of the set time. Alternatively, standard rotary wafer switches could be used to reduce the cost of the unit.

The relay used had a 6 V 700 ohm coil but any relay with a coil voltage of about 4 to 6 volts and a coil resistance of over 200 ohms may be used, provided that the contacts are rated for the load.

CASE

The unit was housed in a plastic case with an aluminium front panel measuring about $200 \times 80 \times 130 \mathrm{~mm}$ with all the controls mounted on the front panel and a mains input socket and a three way terminal block for the timer output mounted on the back of the case.

USE

To use the timer once it has been connected up, all that is necessary is to set up the desired time for exposure on the thumbwheel switch and press the "expose" button. The enlarger will then switch on and after the time set has elapsed, switch off.

Resetting is not necessary as the timer is reset when the "expose" button is pressed.

If it is desired to switch on the timer for focusing purposes a "focus" switch (S5) has been provided which by-passes the timer causing the enlarger lamp to stay on indefinitely.

ADDING ARANGE

A second range of 0.1 to 9.9 seconds in 0.1 second steps could be added by making the modifications shown in Fig. 4.

First, a single pole switch (changeover) is added to facilitate range switching. This switch will select either the output of IC2 (pin 11) or the output of IC3 (pin 11) and switch it to the input of IC4 (pin 14), thus feeding the counter with either 1 Hz or 10 Hz timing pulses.

Fig. 4. Modification for adding a second range
Next, a monostable has to be added in the start circuit to give a narrow pulse when the "expose" switch is closed.

The reason for this is that when the "expose" switch is operated the latch sets immediately, switching on the enlarger lamp, but the counters do noi start to count until the button has been released. Thus if the start switch is held down for 0.3 sec , there would be a timing error of 0.3 sec .

It is of course necessary to break the existing connections between pin 11 on IC3 and pin 14 on IC4.

A suitable monostable circuit is shown using a 74121 integrated circuit.

THE APHEX SOUND

British patent application $10848 / 77^{\prime}$ in the name of Curt Koppel was filed in the UK in 1977 under the old patent laws and will thus remain secret until accepted, granted and published by the British Patent Office. This will probably not be for a year or so.

The corresponding USA patent 4150253 was, however, recently published in the joint names of Curt Koppel and Inter Technology Exchange Ltd., both of Los Angeles. This patent will be very interesting to anyone who has puzzled over the circuitry which is contained in the Aphex System as used by pop groups to make instrumental sounds, and the human voice, stand out and seem louder without any actual change in amplitude level.
"The formula by which the Aphex device selectively processes the audio signal has been arrived at after considerable research into the mechanisms of the ear", proclaim the Aphex ads. But so far there has been

Copies of Patents can be obtained from : the Patent Office Sales, St. Mary Cray, Orpington, Kent Price 95p each

little hard fact available on how Aphex actually works. The US patent includes block schematics and circuit diagrams with component values, for both valve and transistor designs.

The block diagram shows the source signal amplified and split into two channels. The split signal passes unaffected through one channel to a mixer 20 and in the other channel is fed to an exciter 19 and attenuator 21. The output signal is thus a controllable combination of excited and unexcited signal.

Despite the advertisement claim quoted above, the patent wording admits that "it cannot be said with absolute certainty which specific elements in the exciter circuit 19 perform which function". But empirical tests and the comparison of input and output
waveforms have shown that the exciter functions as a high pass filter, and generates low order, odd and even, phase shifted and amplitude dependent harmonics of the frequencies passed. A linear frequency dependent phase shift of about 360° is produced over the audio bandwidth with the point of zero phase shift at around 2 kHz . In many respects therefore, the Aphex circult is controllably producing exactly those audio effects which circuit designers normally strive to eradicate.
(Although the British Patent Office does not publish copies of US patent specificalions, the foreign branch of the Patents Library attached to the Chancery Lane Pat ent Office holds a copy of all US specifications and will sell a photocopy at reasonable cost.)

REAR-VIEW RADAR

Recent UK patent application 2004418 (filed under the new laws) discloses ideas from the Nissan Motor Company of Japan for equipping motor cars with radar sensors to warn the driver of an impending collision. The aim is to offer sensing of danger from either behind or the side or both, for instance when a car is changing lane on a motorway.

The optimum position for providing rear and side radar lookout is that already occupied by the rear-view wing mirrors, so Nissan propose that the mirrors should be combine with microwave reflectors operating in the range 10 GHz to 80 GHz .

As shown in Fig. 1 a conventional microwave transmitter unit 22, including an oscillator such as a Gunn diode and modulator, is installed in the wing mirror post 12 and a wave guide connected to a feeder horn 24. This horn sits at the focal point of parabolic reflector 26 . The reflector 26 is positioned in front of an ordinary wing mirror but the mirror is visible to the motorist because the parabolic reflector is lighttransmissive.

Fig. 2 shows constructions for a light transmissive micro-wave reflector 26 . One side of a curved plate of glass can be coated with a thin (few microns thick) film 30 of metal or of transparent and conductive oxide such as tin oxide. Coating is by vacuum evaporation. Alternatively a matrix of fine metal wires 34 are embedded in a curved plate of transparent glass or plastics.

Fig. 3 shows how the resultant radar lobes cover both the rear and side of the car for lane changing. Presumably Nissan intend incorporating an alarm system which will sound or light up if the driver attempts to change lanes when another vehicle is inside the radar lobes.

a selection from our postlbag

Readers requiring a reply to any letter must include a stamped addressed envelope.

G3FYQ

Sir-I would like to take this opportunity of writing to you to give you details of the recently reformed "Pontefract \& District Radio Society".

The club was re-formed in May and the Home Office have re-issued the callsign G3FYQ. The meetings are held fortnightly at Knottingley Town Hall starting at 7.30 pm .
The programme of future meetings is:-
Oct. 18th. Slow Scan Television by G41BN/G4FBA.
Nov. 1st. Film Night.
Nov. 15th. Oscar Satellite Operating by Jack Ward, G4JJ.
Nov. 29th. David Tong, of Datong Electronics on the Up/Down Convertor.

Dec. 13th. Social Evening-venue to be announced

Further details can be obtained from address
below or telephone Pontefract 71071. All new members will be most welcome.

Phil N. Butterfield, G4AAQ, R.S.G.B. Area Representative,

Club Chairman
43, Lynwood Crescent
Pontefract
WF8 3QT,
West Yorkshire

VLF Signals

Sir-I was very interested to read the article 'VLF Signals and the Magnetosphere' by C. R. Francis in your September, 1979 edition. I have been interested in this particular part of the electromagnetic spectrum for some time now, as a project with my sixth formers and we have amassed quite a lot of practical experience, much of the time using simple
receiving equipment
We would be very pleased if, through your columns, we could ask for other schools or individuals interested in VLF work and especially in Whistlers, to write to me at the address below, preferably enclosing a stamped addressed envelope. We could then share our knowledge, and even better, make simultaneous recordings of VLF phenomena. There is considerable scientific value in such co-operative work. Such co-operators need not have any prior experience.
You may be interested to know that we at Mayfield are supported in our work by the Royal Society, who have special arrangements for giving financial grants to schools doing research, and such help would be considered very favourably for any schools willing to join our investigations.
H. James, Head of Physics, Mayfield School, Mayfield Road, North End, Portsmouth, PO2 0RH.

S \rightarrow T THE MOSTADYENTUROUS WRITINGAND

Science Fiction has captured the imagination of an ever growing number of intelligent people, many of whom make sure of reading the most important and significan works in the field -at big savings - by belonging to the Science Fiction Book Club.

Take advantage of this introductory offer and you will also be certain of reading the very best Science Fiction. books carefully selected from the hundreds of titles published every year

Your introduction to the best sf

The big reductions on the publishers' prices are made possible by the combined purchasing power of our members and we herefore ask that on joining you agree to take the first six - at savings of up to 60% or more on the ublishers' price.
SFBC MEMBERS RECEIVE

- A FREE monthly newsletter with information sbout the books (complete with reviews when they are available) and authors, an article by a top writer (Frederik Pohl, Brian Aldiss, Harry Harrison, Anne McCaffrey and Bob Show conventions, and much more.
The Main Selection is superb dition with a distinctive jacket and produced to a uniform size to grow into a fine library of the best SF.
- Additional tithes in the publishers' own edition. Slightly more expensive than the Main Selection, but still ver good value at up to 25% off the published price.
- A range of extras from our backlist, some of which cost as littie as 95pl
THE SCIENCE FICTION BOOK CLUB IS MORE THAN BOOKS - it's your chance to be involved with the mos adventurous writing and thrilling reading aveilable today.

Overseas members welcome.

SEND NO MONEY with this coupon POST TODAY
To: Science Fiction Book Club,
Brunel Housw, Nowton Abbot, Dewon
would like to join the Science Fiction Book Club for a six month membership (one book a month) and will thereafter give one month's notice if I wish to resign. I claim the four introductory books indicated at only 20p each (plus 90p total carriage).

PLEASE SEND| PLEASE SEND |
| :--- | :--- | :--- | :--- |
| BOOKS NOS. |\(\square \quad \begin{aligned} \& Please allow 21

\& days for delivery\end{aligned}\)

Mr/Mrs/Miss.
Address
Signature.
(or if under 18 signature of Parant/Guardian)

The PB-203A kit comprises an assembly of three large CSC breadboards coupled with four long busbars and one shorter one plus built-in power supplies.

The boards can hold the equivalent of 24 fourteen pin i.c.s. and connections are provided for aarth, +5 V at 1 A and $\pm 15 \mathrm{~V}$ at 0.5 A . The supplies are independent and fully regulated-the 15 V supplies can be internally adjusted over the range 7 to 18 V .

The kit includes-all components, a case, the breadboarding, p.c.b., right down to nuts, bolts and connecting wire. Also included is a 32 page instruction manual and warranty, this manual should enable anyone who can solder to construct the kit.
The Special Offer price represents a saving of approximately $£ 14.50$ on the manufacturer's recommended retail price, including postage and VAT.

Saffron Walden, Essex CB11 3AQ. Tel. 079921682 Mail order only
Please send me
PB203A kits at $£ 55$ each
I enclose P.O./Cheque No..........Value
Name

ease allow 28 days for delivery
OFFER CLOSES FRIDAY NOVEMBER 30th
Name
\qquad
\qquad
From: CSC (PE Offer), Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Tel. 079921682

Simply ahead.. ILP'S NEW GENERATION OF HIGH

I.L.P. modular units comprise five power amplifiers, pre-amp which is compatible with the whole range, and the necessary power supply units. The amplifiers are housed and sealed within heatsinks all of which will stand up to

I.P. performance standards and quality already so well established, any advances in I.L.P. design are bound to be of outstanding importance

- and this is exactly what we have achieved in our new generation of modular units. I.L.P. professional design principles remain
- the completely adequate heatsinks, protected sealed circuitry, rugged construction and excellent performance. These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have concentrated on improvements whereby our products will meet even more stringent demands
such, for example, as those revealed by vastly improved pick-ups, tuners, loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system. I.L.P. modules are for laboratory and other specialised applications too.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there

PERFORMANCE MODULAR UNITS

HY5 PRE-AMPLIFIER

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$. and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions
$£ 4.64+74 p$ VAT

THE POWER AMPLIFIERS

THE POWER SUPPLY UNITS
I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer the other using toroidal transformer to halve weight and height

Model	Output Power R.M.S.	Dis- tortion Typical at 1KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price V.A.T.
HY30	15 W into 8 Ω	0.02%	80 dB	$-20-0-+20$	$105 \times 50 \times 25$	155	$£ 6.34$ $+95 p$
HY50	30 W into 8	0.02%	90 dB	$-25-0-+25$	$105 \times 50 \times 25$	155	$£ 7.24$ $+£ 1.09$
HY120	60 W into 8 Ω	0.01%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$£ 15.20$ $+£ 2.28$
HY200	120 W into 8 Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 50 \times 85$	575	$£ 18.44$ $+£ 2.77$
HY400	240 W into 4 Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 100 \times 85$	1.15 Kg	$£ 27.68$ $+£ 4.15$

Load impedance - all models 4-16 Ω
Input sensitivity - all models 500 mV
Input impedance - all models 1.00 K
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

PSU $\mathbf{3 6}$ for 1 or $\mathbf{2 H Y} 30$'s $\mathbf{£ 8 . 1 0 + £ 1 . 2 2 V A T}$ PSU 50 for 1 or 2 HY50's $£ 8.10+£ 1.27$ VAT PSU 70 with toroidal transformer for 1 or 2 HY120's $\quad £ 13.61+£ 2.04$ VAT PSU 90 with toroidal transformer for

1 HY200 £13.61 + £2.04 VAT
PSU180 with toroidal transformer for
1 HY400 or $2 \times$ HY200
£23.02 + f3. 45 VAT
PSU $30 \pm 15 \mathrm{~V}$ at 100 mV to drive up to
five HY5 pre-amps
$£ 4.50+68 p$ VAT

NO QulbBLE

 5 YEAR GUARANTEE 7.DAY DESPATCH ON ALL ORDERSBUILT.IN PROTECTIVE CIRCUITRY
BRIŤISH DESIGN AND MANUFACTURE
FREEPOST SERVICE

HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.
freepost 2 Graham Bell House, Roper Close Canterbury, Kent CT2 7EP.
Telephone (0227) 54778 Telex 905780

I Please supply
I Total purchase price $£$

I enclose Cheque \square Postal Orders \square International Money Order \square Please debit my Account/Barclaycard Account No.

NAME .

Signature.

AUTUMN SALE

Microcomputers are coming - ride the wave! Learn to program
Millions of jobs are threatened, but millions more will be created through the microcomputer revolution. Will YOU sink or swim? Be one of the people who welcomes computers and the end of boring jobs.
Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency - all you need to start with is a knowledge of simple arithmetic and the use of decimals. And you don't need a computer.
This unique course comes as four A4 books, written by three authors well-known in the fields of microcomputing, selfinstruction and writing clear English. In 60 straightforward lessons you learn the five essentials: problem definition, flowcharting, coding the program, debugging, and preparing clear documentation.
Every lesson has thought-provoking questions and we never ask for mindless drudgery. You will know that you are mastering the material and feel a rare satisfaction. Harder problems are provided with a series of graded hints, a unique and really helpful approach. So you never sit glassy-eyed with your mind a blank. First time through, you may need to read most of the hints, but you will soon learn to tackle tough programming tasks - such as writing programs for computer games, preparing graphs on an output printer, calculating compound interest tables and estimating costs.

COMPUTER PROGRAMMING IN BASIC $£ 7.50$

Book 1 Computers and what they do well; READ, DATA, PRINT; powers, brackets variable names; LET; errors; coding simple programs.
Book 2 High and low level languages; flowcharting, functions; REM and
documentation; INPUT, IF... THEN, GO TO; limitations of computers, problem definition.
Book 3 Compilers and interpreters; loops, FOR...NEXT; RESTORE; debugging; arrays, bubble sorting; TAB.
Book 4 Advanced BASIC; subroutines; string variables; files; complex programming examples; glossary

THE BASIC HANDBOOK £11.50

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.
FORTRAN COLORING BOOK $£ 5.40$
"It you have to learn Fortran (and no one actually wants to assimilate it for the good of the soul) buy this book. Forget the others-this one is so good it will even help you understand the standard, dense, boring, unintelligible texts." New Scientist.

A.N.S. COBOL
 £4.40

Covers the most widely used computer language in business today. It teaches how to write a COBOL program and compile it effectively, paying proper attention to spelling, punctuation, and format.

THE ALGORITHM WRITER'S GUIDE $£ 3.40$

FLOW CHARTS \& ALGORITHMS help you present: safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.
The Algorithm Writer's Guide
explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

Cambridge Learning Enterprises

Understand Digital Electronics

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be 'phoning people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

DIGITAL COMPUTER LOGIC AND ELECTRONICS $£ 6.50$

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.
Book 1 Binary, octal and decimal number systems; conversion between number systems.
Book 2 AND, OR, NOR and NAND gates and inverters, Boolean algebra and truth tables.
Book 3 Positive ECL; De Morgans Laws; designing logic circuits using NOR gates Book 4 R-S and J-K flip flops; binary counters, shift registers and half adders

DESIGN OF DIGITAL SYSTEMS £10.50

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include:

Book I Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters: random access memories (RAMsi and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encodirig; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control programme structure.
Book 6 Central processing unit (CPU); memory organization; character
representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers, computers; executive programs; operating systems and time sharing.

O-LEVEL ENGLISH LANGUAGE £6.50

More and more jobs require a C-GRADE PASS, and over 250,000 people fail to get this every year. Will one of them be in your family? This new course, written by experts in a style that's serious yet fun to read, shows you how to mark your own work and compare it with the work of other people in their exam year. Set your own pace and assess your results immediately with no postal delays: watch your speed and standards improve. In Book 1 learn how you will be marked on COMPREHENSION, Book 2 covers SUMMARY,
PUNCTUATION \& SPELLING, and Book 3 coaches you in the principles of COMPOSITION. Size: 3 A4 volumes totalling 250 pages.

SELF-INSTRUCTION COURSES

"WERE JUST CHECKING THE FAULT OUT NOW SIR JOHN"

CAMBRIDGE LEARNING ENTERPRISES, UNIT 24,
RIVERMILL SITE, FREEPOST, ST.IVES, HUNTINGDON,
CAMBS PE17 4BR, ENGLAND
TELEPHONE: ST.IVES (0480) 67446
All prices include worldwide postage (airmail extra)
If order comes to $£ 15$ or more, deduct $£ 2$
Please allow 21 days for delivery
GUARANTEE No risk to you.
If you are not completely satisfied your money will be refunded.

Please send me the following books:
......Computer Programming in BASIC (4 books) at $£ 7.50$The BASIC Handbook at $£ 11.50$
......FORTRAN Coloring Book at $£ 5.40$
......A.N.S. COBOL at $\mathbf{f} 4.40$
......Algorithm Writer's Guide at $\mathbf{E 3} .40$
......Digital Computer Logic \& Electronics (4 books) at f6.50
......Design of Digital Systems (6 books) at $£ 10.50$
...... O-Level English Language (3 books) at $\mathbf{£ 6 . 5 0}$
1 enclose a *cheque/PO payable to Cambridge Learning Enterprises for E
Please charge my
*Access/Barclaycard/Visa/Eurocard/Mastercharge/Trustcard account no.
(*delete where applicable)
Signature.
Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers (inc. Eire) should send a bank draft in sterling drawn on a London Bank, or quote credit card number.

Name \qquad
Address

Cambridge Learning Enterprises, Unit 24, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR, England.

SUPERSOUND 13 HI-FI MONO
AMPLIFIER
AMPLIFIER
 o-15 onm speakers input for ceramic or crystal cartridge Sensitivity approx 40 mv for full output Supplied ready butt and resied with knobs. escutcheon panel. input and output plugs PRICE £18.40 P. \& P. £1-20.

HARVERSONIC MODEL P.A. TWO ZERO

An advanced solid state general purpose mono amplifier suitable Guitar Gram, etc ${ }^{\text {Finsem }}$ Features 3 individually controlled inputs (each
imput has a separate 2 stage pre-amp.), Input $1,15 \mathrm{mV}$ into 47 k . Input 2.15 mV into 47 k (suitable for use with mic. or guitar etc.).
Input 3200 mV into 1 meg . suitable for gram. tuner, or tape etc. Input $3,200 \mathrm{mV}$ into 1 meg . suitable for gram. tuner, or tape etc. inputs pluginto standard jack sockets on front panel Output socket on rear of chassis tor an 8 ohm or 16 ohm speaker Output in excess of 30 watts music power. Very attractively finished purpose built cabinet made from black vinyl covered steel, with a brushed anodised aluminum front escuicheon. For ac mains operation $200 / 240$ volts. Size approx 12 in wide $\times 5$ in
high $\times 7$ in deep. Special introductory price $\mathbf{£ 2 9 \cdot 0 0 + £ 2 - 5 0}$ carriage and packing.
"POLY PLANAR" WAFER-TYPE, WIDE RANGE
LECTRO-DYNAMIC SPEAKER
Size $113 \mathrm{in} \times 14 \mathrm{~d} \mathrm{in} \times 1 \frac{1}{} \mathrm{in}$ deep. Weight 19 oz . Power handling
20 W R.M.S. (40W peak. Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{KHz}$. Can be mounted on ceilings, walls. doors, under tables, etc, and used with or without baffle. Send S.A.E. for fult
details. Only $£ 8.80$ each $+P$. P. (one $\$ 0$, two $E 1.10$) Now available in 8 in round version. 10 watts R.M.S. $60 \mathrm{~Hz}_{2}-20 \mathrm{kHZ}$ availabe in 8 in round version. $\mathbf{1 0}$, wa
$\mathbf{f 6 . 3 0}+\mathrm{P}$. \& . (one $\mathbf{6 5 p}$, two 75 .).

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER
 200/240V Marns operated
Solid State FM A M Stereo Tuner Covering MW AM
$540-1605 \mathrm{KHz}$
VHF $540-160 \mathrm{MHz}$ Butht-in Ferrite rod aerial for $M W$ Full AFC and AGC on $A M$ and $F M$ Stereo Beacon Lamp Indicator Built in Pre-
amps with variable output voltage adjustable by pre-se control Max op Votrage 600 m VRM S into 20 K Simulated Teak finish cabinet Will match almost any ampifier Size 8 in wide 41 h high $-9 \mathbf{t}^{+}$n deep approx
Limited number only at $£ 29.00+£ 1.50$ P. \& P

10/14 WATT HI-FI AMPLIFIER KIT

A stylishly finished monaural amplifier with an output of 14 watts from speech with push-pull. Super reproduction of both music gram allow records and announcements to follow each other fully shrouded section wound output transformer to match $3-15 \Omega$ speaker and 2 independent volume controls, and separate bass and treble controls are provided giving good lift and cut. instruction booklet $50 \mathrm{p}+$ S.A.E. (Free with parts). All parts sold separately. ONLY £18.40 P. \& P. £1 40. Also available ready built and vested $£ 22.50$ P. \& P. $£ 1.40$.
STEREO MAGNETIC PRE-AMP Sens. 3 mV in for 100 mV out
 Mullard LP1159 RF-IF module 470 kHz E2.50 + P. \& P. 20p. Full specification and connection details suppled
Pye VHF FM Tuner Head covering $88-108 \mathrm{MHz} 10.7 \mathrm{MHz}$ I.F. output. $7-8 \mathrm{~V}+$ earth. Supplied pre-aligned, with full circuit diagram with precision-geared F.M. gang a
A.M. funing gang only $\mathbf{E 3 . 4 0}+$ P. . P. 35 p .

SPECIAL OFFER
Slightly shop soiled radios by well-known manufacturer for AC Mains or battery use. MW and FM bands. Dynamic M/coil socket for personal listening. Finished in attractive simulated
leatherette.
Size $7^{\prime \prime} \mathrm{H} \times$
.
Size 7 " $\mathrm{H} \times 9 \frac{1}{2}$ " $\mathrm{W} \times 4^{\prime \prime} \mathrm{D}$ approx. Fully guaranteed
SPECIAL OFFER
LIMITED NUMBER ONLY
GOODMANS speakers, $6 \frac{1}{3}-8$ ohm, long throw, ceramic magnet 4.15 each 80 P. P. (P. P. on f1 20)

HARVERSONIC SUPERSOUND
$\mathbf{1 0}$ + $\mathbf{1 0}$ STEREO AMPLIFIER KIT
A really first $\cdot \mathrm{Cl}$ ass H_{1}.Fi Stereo Amplifier Kit Uses 14 transistors nciuding Silicon Transistors in the first five stages on each channel resulting in even lower noise level with improved sensitivity integrai pre-amp with Bass. Treble and wo volume controls Suitable tor use with Ceramic or Crystal cartridges Very Output stage for any speakers from 8 to 15 ohms Compact design. all parts supplied including drilled metalwork, high quality ready drilied printed circuit board with component identification clearly marked. smart brushed anodised aluminium front panel with
matching knobs. wire. solder. nuts. bolts-no extras to buy simple step by step ingtructions enable any constructor to buld an mplifier to be proud of Brief specification. Power output 14 watts RMS per channel into 5 ohms Frequency response $\pm 3 \mathrm{~dB}$ $12-30000 \mathrm{~Hz}$ Sensitivity better than 80 mV inio $1 \mathrm{M} \Omega$ Full power bandwith $\pm 30 \mathrm{~B} \quad 12-15,000 \mathrm{~Hz}$ Bass boost approx $=120 \mathrm{~B}$ amp. Power requirements 35 V at 1 A
Overall size 12 in wide $\times 8$ in deep $\times 2 \frac{3}{3}$ in high
Fully detalled? page construction manual and parts list tree with kit or send 25 p plus large SAE
AMPLIFIER KIT E14.95P \& P 80p
Magnetic input components 33p extra)
POWER PACK KIT
E6.20 P \& P 95p
f6.20 P \& P 95p
SPECIAL OFFER-only 225.80 if all 3 iteme
ordered at one time plus $£ 1-25$ P. \& P.
Also avalable ready bult and tested $\mathbf{f 3 2} 20 \mathrm{P}$ \& P \& 50
HARVERSONIC STEREO 44
A solid state stereo amplifier chassis. With an output of 3-4 watts per channel into 8 ohm speakers Using the latest high technology hegrated circuit amplifiers with built in short term thermal overload protection All components including rectifier smoothing sockets and 5 pin din tape rec play socket are mounted on the pinted circult panel Size approx 9 an $\times 2$ ain " fin max depth Supplied brand new and tested with knobs brushed anodised atuminium 2 way escutchecn (to allow the amplifier to be mounted horizontally or vertically) at only $\mathbf{£ 1 0 - 4 0}+50 \mathrm{p}$ P. \& P P. Mains transformer with an output. of 17 V a.c. at 500 mA can be
supplied at $\mathrm{E} 2.15+40 \mathrm{P}$. \& P . If required. Full connection details supplied.

STEREO DECODER
SIZE 2" $\cdot 3^{\prime \prime} \cdot \frac{1^{\prime \prime}}{2}$ ready bult. Pre-aligned and tested for $9-16 \mathrm{~V}$ neg earth operation. Can be fitted to almost any FM VHF radio or tuner. Stereo beacon light can be fitted if required. Full details and P. \& P. Stereo beacon light if required 40p extra

Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday Closed Wednesday.
Prices and specifications correct at time of press. Subject to alteration without notice

LTD.
(Dept. P.E.) 170 MERTON HIGH ST., MERTON, LONDON, S.W. 19 Tel: 01-540 3985
(Please write clearly)
please note: pa p charges OUOTED APPLY TO U.K ONLY P. \& P. ON OVERSEAS ORDERS
CHARGED EXTRA.

ELEGTROVALIE

Your leading direct suppliers for

NASCOM MICROCOMPUTERS AND FULL SUPPORTING RANGE OF ITEMS TO ENABLE YOU TO WORK AT PROPER PROFESSIONAL LEVELS
\star Appointed Nascom stockists
\star Widest possible range stocked
\star Information on request

* Enquiries from trade, industrial and educational users invited
We are also appointed distributors for the fine products of:
SIEMENS, ISKRA, RADIOHM, VERO AND MANY OTHER FAMOUS MANUFACTURERS

It's a good deal better from

> ELEGTROVALIE LTD

We pay postage
in U.K. on orders list value f5 or over. If under. add 27p handling charge.

We give

 discountson C.W.O. orders, excep or a few items marked Net or N in our catalogue price list
5% on orders, list value 0% on orders list value 10% £25 or more Not applicable to Access or Barc/aycard orders.
We stabilise prices.
by keeping to our printed price lists which appea but three or four times a year.
We guarantee all products brand new clean and to maker s spec No seconds, no surplus - WE WILL SEND YOU OUR 120-PAGE CATALOGUE No. 9 FREE ON REQUEST. Comprehensive, infor mative. very well pro duced. Write. phone o call for your free copy together with lates price list. (Available separately)

Dept. PE11, 28 St. Judes Road, Englefield Green, Egham, Surrey TW20 OHB. Phone: Egham 3603. Telex 264475.
Northern Branch (Personal shoppers only), 680 Burnage Lane
Burnage, Manchester M19 1NA. Phone (061) 4324945.

AURASOUNDS

14-15 ROYAL OAK CENTRE BRIGHTON ROAD, PURLEY, SURREY 01-668-9733 and
 17 UPPER CHARTER ARCADE BARNSLEY, YORKS 0226-9733

VISIT ONE OF OUR SHOWROOMS TO SEE THE FABULOUS

WERSI SOUND COMPUTER
the latest "state-of-the-art" addition to the WERSI range of kits.
or
Send $£ 1$ for our 104 page Full Colour Catalogue and

Supporting Literature

TRANDAM COMPUTER PRODUCTS

TRITON
 SINGLE PERSONAL COMPUTER

Three new exciting expandable systems designed for ease of construction and flexibility. Kits come complete with case, power supply, full keyboard, PCB. All components available separately. See catalogue Full hardware \& programming manual available. The system is easy to expand and is well supported. Features:- $2,2 \cdot 5$ or $7 k$ basic in Eprom (See catalogue)

Single board	- Basic in eprom
- Holds up to 8k memory	- 64 graphic characters
- UHF or video output	- Plug in expansion boards
- Cassette interface	
- Three firmware options	From
ersonal	$\text { nouter } \begin{aligned} \text { E28 } \\ \text { +VAT } \end{aligned}$

BI DIRECTIONAL

MATRIX PRINTER £595
+VAT
The BD80 is a low cost, 80 column line printer with microprocessor control to provide excellent reliability and performance.

- 5×7 Dot matrix - Full asch char set 84 lines per minute - 10 char per inch 10 lines/sec Self test
- 6 lines/inch paper advance Fully cased
- 400 char buffer $112 \mathrm{char} / \mathrm{sec}$

A
UNIQUE
PRINTER
FAST
AND
RELIABLE

Switch selectable baudrate from 110 to 9600 on a standard V24 and R5232 interface. Send SAE for further details. Ideal printer for Triton or any system requiring high speed reliable hard copy. We can supply consumables

COMPONENTS

SN74LSOON	18	SN74iS40N	26	SN74LS13N	4	SH741S185N	1.70	SN74LS248N	1.95
SN74LSO1N	18	SN74S42N	78	SW74LSL14N	4	SW74IS168N	1.75	SN74LS249N	1.30
SN74LS02N	20	SN74LS47N	96	SM74LS122N	7	SNlflsiben	1.95	Sntals25in	1.45
SN74ISD3M	18	SN74LS48N	95	SN741S123M	99	SH74LS169N	1.95	SN74LS253N	1.25
SN74LSO4M	20	SN74LS49N	1.09	SN74LS124N	1.50	SM74iSIITON	250	SN74LS257N	1.40
SN74LSO5N	25	SN741554N	21	SN74LS125N	. 55	SN74LS173N	220	SN74LS258N	15
SN74LSOSN	20	SN74LS55N	21	SN7415126N	. 05	SW74LS174M	1.15	Sm74LS259N	1.45
SN74SL0日m	. 22	SN741583N	1.50	SN74LS132N	75	SN74LS175N	1.05	SW7415260\%	38
SN74LS10N	18	SN74LS73N	35	SN74LS133W	30	SW74LS181N	275	SN74S261\%	350
SN74LS1TN	28	SN74LS74N	40	SN74LS136N	75	SN74LS190N	1.75	SN74LS2B8M	38
SN74LSI2N	25	SN741S75N	4	SN74LSI38N	40	SN74S191N	1.75	SW14LS273N	1.85
SN74LST3N	. 55	SN74LS76N	. 35	SN74LS145N	1.29	SN74LS192N	1.45	SM74LS279	78
8N74LS14N	. 81	SN74LS78N	35	SN741S148N	1.75	SN74LS193N	1.75	SN74LS280N	1.75
SN741S15N	25	SN74LS83AN	1.15	SN74LS151N	85	SN74LS194AN	1.19	SN74LS283N	1.80
SN74LS20N	20	SN74LS85N	1.10	SN744S153N	. 60	SN741S195AN	15	SN74LS290N	1.80
SN74LS21N	28	SN74LS8EN	40	SN74LS154N	1.80	SN74LSI 96 N	1.20	SN74LS293N	1.80
SW741S22N	26	SN74LS90M	. 5	SN74LS155N	1.25	SN741S197N	1.20	SN74LS295aM	220
SNT41S28N	28	SN74Ls91w	. 95	SW74LS156N	1.25	SN74LS221N	125	\$N74L5298N	220
SN74LS27N	35	SN741S923	. 0	SW741S157N	. 0	SN74LS240N	2.20	SN74LS324N	1.80
SH74LS28N	35	SN74ISS3BN	. 6	SW74LS158N	98	SN7415241N	1.90	SN7415325N	2.55
SN74LS30N	25	SN74LS95AN	1.20	SN74IS180N	1.15	SN74LS242N	1.90	SN74LS326N	265
SN74LS32N	21	SN74LS96N	1.75	SN74LS161M	1.15	SN741S243N	1.95	SN74LS327N	255
SN74.533N	39	SN74IS107N	38	SW74LS162N	1.15	SN74LS244H	2.10	SN74LS352N	1.35
SN74LS37N	29	SN74IS109N	33	SW7415183M	30	SN74LS245N	280	Sm74LS353n	1.50
SN74LS38N	29	SN74tSil2N	39	SW74LS16aN	1.50	SN74LS247N	1.25	SN+ ${ }^{\text {dis365N }}$	0

EXPANSION MOTHERBOARD

TRITON. Expand your Triton simply and easily with our new 8-slot motherboard complete with its own P.S.U. takes 8 plug-in Euro cards. Plugin 8 k RAM card and Eprom cards now available.
Kit complete with PSU \& 1 set connectors.

8K EPROM CARD

Triton 8k Eprom card kit. Designed to take up to
8×2708 Eprom

PCB only $\mathbf{E 1 5}$
Kit less Eproms $\mathbf{E 3}$
Kit less Eproms $\mathbf{E 3 1}$
Eproms (blank) $\mathbf{E 9}$
Eproms
Plus VAT

S100 boards

8k Static RAM board (450 ns) 8k Static RAM board (250 ns) 280 cpu board (2 MHz) 2708/27 16 EPROM board Prototype board (bare board) Video display board (64×16, 128U/L Ascii) Disk controller board K2 disk operating system f123.75 f146.25 f131.25 f183.75
$\mathbf{f 8 3} .75$ $\mathbf{£ 8 3 . 7 5}$
$\mathbf{£ 1 8 . 7 5}$
$\begin{array}{r}\mathbf{£ 1 0 8 . 7 5} \\ \mathbf{£ 1 3 1 . 2 5} \\ \hline\end{array}$ $\begin{array}{ll}\text { Assemble/z Macro Assm } & \mathbf{£ 5 6 . 2 5} \\ & \mathbf{£ 3 7 . 5 0}\end{array}$

PCB CONNECTORS
 Edge connectors, PCB connectors

PCB connectors		-156"	Price	
1"	Price	6/12	£1.25	
22/44	£3.20	12/14	£1.50	
25/50	$\underline{53.60}$	10/20	¢2.00	
28/56	¢3.90	15/30	E2.20	
30/60	¢4.15	18/36	£2.36	
35/70	¢4.60	22/44	$\underline{2.65}$	
36/72	¢4.75	28/56	83.30	
40/80	f5.00	36/72	83.90	
43/86	$\mathbf{5} 5.50$	43/82	¢4.80	
50/100	E5.80 ($\mathbf{\$ 1 0 0}$ BUS) Plus VAT			

ITHACA

Pascal/z
Build your own Pascal Micro Development system. IEEE-SIDO bus system using DPSI mainframe. Supports K2, assemble/z and pascal/2 on $8^{\prime \prime}$ disk.

TRAP!

Triton resident ass language package

Links via the L6.1 monitor and new scientific
basic to make Triton a stand alone develoomen basic to make Triton a stand atone develoomen resides on our EPROM card. Set of 8×2708 only $\mathbf{£ 8 0}$ including document.

- EDITOR

- ASSEMBLER

See catalogue for further details

- BREAKPOINT

TRACE
PROGRAMME LOAD
MONITOR PROGRAMM
MONITOR

MEMORY AND SUPPORT CHIPS (Prices exclude VAT)							
Support		5000 4118	${ }_{10}^{2000}$ LIMEARS	Livere.	${ }_{45}^{45} 7881836$		
${ }_{8816}^{8212}$	${ }_{\substack{220}}^{220} 88.8$	${ }^{180}$				${ }_{\text {lisem }}^{1.50}$	(2200
${ }_{\substack{8224 \\ 8226}}$			${ }^{14.400}$	${ }_{3}^{30}$ Ln141538.8	${ }_{\text {A }}^{40} 5$	1.118	5
${ }_{8228}$	${ }^{1220}$		Lm393)			1.100 cPus	
(${ }_{\substack{8238 \\ 824}}$	${ }_{1}^{12000} 21201$	${ }_{232}{ }^{\text {EPPROMS }}$	${ }^{1.00}$	${ }_{1}^{148}$		${ }^{1.000}$	${ }^{3} 3$
(${ }_{\text {coll }}$	${ }^{123}$	${ }^{\text {anden }}$	${ }_{\text {cosem }}^{225}$		-1.59	${ }^{1000}$
-	${ }_{\text {Hiom }}$	${ }^{208}$	${ }_{20}^{20.00}$	${ }^{100} 9$	${ }_{120}^{120}$	${ }^{3085}$	$\underset{\substack{1600 \\ 1295}}{ }$
${ }^{8255}$	${ }^{5}$	$\stackrel{11}{4}$	${ }^{2200}$ LM3535	${ }_{30}^{50}$	$1.40{ }^{1 / 4045}$	$1{ }^{14}{ }^{85020}$	${ }^{200}$
${ }_{\substack{8259 \\ 829}}$	- $12.500{ }^{120}$	${ }^{1.150}{ }^{\text {Roms }}$	${ }_{\text {cosem }}$	${ }_{3} 75$		it 6882	${ }^{2126}$
	(1)	${ }^{\text {chemen }}$	1200	$3{ }^{3}$	${ }^{1.155}$		
	${ }_{4}^{4600}$	${ }^{11.900}$	${ }_{\text {cose }}^{500}$			${ }_{38}^{23}$	
		${ }_{\text {8, }}^{\text {gion }}$	${ }^{12404}$	${ }_{\text {li. }}^{1.30}$			${ }_{32} 3$
	${ }_{1243}^{12005}$	${ }_{6}^{60.50}$	M1474	${ }_{23}^{33} 7815$	${ }^{9} 90$ crisstals	${ }^{18} 80$	5
${ }^{4} \times 5$	12000 2000		${ }_{1}^{1.50}$	${ }_{\text {chem }}{ }^{25}$			4
	12080	100 14412	12.00 Lexalc	${ }^{1.19}{ }^{\text {Pr }}$	${ }_{1.50}^{1.50}$	1000 40011	5

TRITON DOCUMENTATION

Available separately as follows Prices include P\&P
Triton manuai. Detailed circuit description and constructional details and user documentation on level 4.1 monitor and basic $\mathbf{£ 5 . 7 0}$ 4.1 Listing listing of 1 k monitor 2 k tiny basic E .20
E .20 L5.1 User documentation on level $5 \cdot 1$ firmware $E 4.20$
E 1.20 L5. 1 Listing listing of 1.5 k monitor and 2.5 k basic E 1.20
E 5.50 $\begin{array}{ll}\text { L5.1 Listing listing of } 1.5 \mathrm{k} \text { monitor and } 2.5 \mathrm{k} \text { basic } & \mathbf{E 5 . 5 0} \\ \mathrm{L6} \cdot 1 \text { User documentation on } 7 \mathrm{k} \text { basic interpreter } & \mathbf{E 1 . 8 0}\end{array}$ $\begin{array}{ll}\text { L6. } 1 \text { User documentation on } 7 \mathrm{k} \text { basic interpreter } & \mathbf{8 1 . 8 0} \\ \text { Motherboard, 8k Ram and } 8 \mathrm{k} \text { Eprom constructional details } & \mathbf{8 5 . 0 0}\end{array}$ User group newsletter subscription $\mathbf{£ 4}$ per annum. Triton software send SAE for list of programs available for Triton.

HOME COMPUTING CATALOGUE

If you're in town, visit our showroom in Chapel Street, next to Edgware Road tube station. We have Tritons on display plus a comprehensive range of components and accessories, specifically for personal computer users. Books. mags, tapes, data, cables plus much more. Showroom open 6 days a week. (Half day Thurs., from 1.30).

TRANZAM	NEW
	A4 size catalogue filled with our latest products
	40p + SAE
cotalogue 1978	All prices excłude VAT

TOTAL AMPLIFCCAION FROM CRIMSON ELEKTRIK

_-WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

STEREO PRE-AMPLIFIER POWER AMPLIFIER

CPR 1-THE ADVANCED PRE-AMPLIFIER
The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably in the disc stage. The overload inargin is a superb 40 dB , this together with the high slewing rate ensures ciean top, even with high outout cartridges tracking design. R.I.A.A. is accurate to $10 B$; signal to noise ratio is $70 d B$ relative to 3.5 mV ; distortion $<.005 \%$ at 30 dB overload 20 kHz .

Following this stage is the flat gain/balance stage to bring tape, tuner. etc. up
 There is no provision for tone controls. CPR 1 size is 138 . $80,20 \mathrm{~mm}$. Supply to be ± 15 volts.
MC 1-PRE-PRE-AMPLIFIER
Suitable for nearly all moving-coil cartridges. Send for details
X02 : X03 - ACTIVE CROSSOVERS
X02- two way, XO3 - three way. Slope 24dB/octave. Crossover points set to order
within 10%.
REG 1-POWER SUPPLY
The regulator module, REG 1 provides $15-0-15 v$ to power the CPR 1 and MC 1.
it can be used with any of our power amp supalies or our small transforme TR 6. t can be used with any of our power amp supplies or our small transformer TR 6

POWER AMPIIEIERS
It would be pointless to list in so small a space the number of recording stutios, educational and government establishments, etc, who have been usingCRIMSON quality at the lowest prices. The power amp is available in five types, they all have the same specification: T.H.D. typically 01% any power 1 kHz 8 ohms; T.I.D. insignificant; slew rate limit $25 \mathrm{~V} / \mathrm{uS}$; signal to noise ratio 110 dB ; frequency response $10 \mathrm{~Hz}-35 \mathrm{kHz},-3 \mathrm{~dB}$; stability unconditional; protection-drives any oad safely: sensitivity 775 mV (250 mV or 100 mV on request); size 120 - $\mathbf{8 0}$.

POWER SUPPLIES
We produce suitable power supplies which use our superb TOROIDAL transformers only 50 mm high with a 120-240 primary and single bolt fixing (includes capacitors/bridge rectifier).

PRE-AMPLIFIER KIT
This includes all metalwork, pots, knobs etc. to make a complete pro-amp with the CPR 1 (\mathbf{S}) module and the

ACTIVE CROSSOVERS
X02.........f15.16 X03.........E23.58 POWER AMPLIFIER MODULES
 CE $1004100 \mathrm{~W} / 4$ ohms 35-0.35v E23.0 $\begin{array}{ll}\text { CE } 1008100 \mathrm{~V} / 18 \text { ohms } 45-0-45 \mathrm{v} & \text { E25.96 } \\ \text { CE } 1704170 \mathrm{~W} / 4 \text { ohms } 45-0-45 \mathrm{v} & \mathrm{E} 31.00\end{array}$ CE $1708170 \mathrm{~W} / 8$ ohms $60-0-60 \mathrm{~V}$ E33.9 TOROIDAL POWER SUPPLIES CPSI for 2 . CE 608 or $1 \times$ CE 1004 E16.56 CPS2 for $2 \times$ CE 1004 or $2 / 4 \times$ CES3 for

CE 1704

 CPS5 for $1 \times$ CE $1008 .$. CPS6 for $2 \times$ CE 1704 or $2, \ldots$. CE CE 1708 .Light duty, $50 \mathrm{~mm}, 2^{\circ} \mathrm{C} / \mathrm{W}$..... Medium power, 100 mm , $1{ }^{\circ} \mathrm{C} / \mathrm{W} . ~$
Disco/group, 150 mm,
${ }^{\circ} \mathrm{C} / \mathrm{W}$ Fisco/group, $150 \mathrm{~mm},{ }^{1} 1^{\circ} \mathrm{C} / \mathrm{W}$
Fan, 80 mm , state 120 or $240 \mathrm{v} \ldots$ Fan mounted on two drilied Fan mounted on two drilled
100 mm heatsinks. $2{ }^{\circ} \cdot 4^{\circ} \mathrm{C} / \mathrm{W}$.
$65^{\circ} \mathrm{C}$ max $65^{\circ} \mathrm{C}$ max. with ${ }^{2}$ modules. 170 W THERMAL CUT-OUT, $70^{\circ} \mathrm{C}$.. E 31.05

Pro-amp Kit
POWER E38.07 POWER AMP KIT …... £3
PRE-AMPS: These are avail able in two ver
sions-one use sions-one use nents. and the other (the S) uses
MO resistors MO resistors
whecessary and tantalum capacitors.
CPRI CPRIS $\ldots .$. £440.87
MCl MCI $\ldots .$. £21.28
MCIS POWER SUPPLY D $\begin{array}{lll}\text { REG1 } & \mathbf{f 6} .90 \\ \text { TR6 } & \mathbf{E 1} .97\end{array}$
BRIDGE
DRIVER, BD:
DRIVER, BD:
Obtain up to 340 W using $2 \times 170 \mathrm{~W}$ amps and this
module BDI f8. 75

CRIMSON ELEKTRIK

1A STAMFORD STREET LEICESTER. LE1 6NL Tel: (0533) 553508
U.K. planet for dow up to 21 daye

All prices shown are UK only and include VAT and post. COD 90p extra E100 limit. Export is no problem, please write for specific quote Send large SAE 3 International Reply Coupons for detailed information. 6 WOOD STPEET IYTHAM ST ANME LANCASHIRE FY8 100 MINIC TELEPRODUKTEA BOX 12435: 8-750 12 UPPSALA12, SWEDEN

AITKEN BROS

35, High Bridge, Newcastle upon Tyne
 cuits. $\mathbf{2 0} 20.95$.

TE2OD TECH

 calibrated. Variab$140 \times 215 \times 170 \mathrm{~mm}$. cps to 20 K cps in four bends.

PRICE f25-95.

EXP300
550 contacts with two 50 -point BLIS bars. Size $152 \times 53 \mathrm{~mm}$. $\mathbf{\text { f8.95. }}$. PROTO-BOARD 6 KIT 630 contacts, four 5 way binding posts accepts up to 614 pin DIPs. E10.98.

CSC LOGIC PROBES

LP-2 ECONOMY PROBE

Min. pulse width 300 nanoseconds, 300 Ka input impedance, tests circuits up to 1.5 MHz . Detecting pulse trains or single-shot event in TTL, DTL, HTL, and CMOS cir-
$\begin{array}{lll}\text { LP-1 Memory Probe } & \text { E35.68 } \\ \text { LP-3 } & \text { High Speed Mennory Probe } & \text { E56.75 }\end{array}$ CSC catalogue available. Plecete send S.A.E. CALSCOPE SUPER 6 E186.30
A portable single beam 6 MHz bandwidth oscilloscope with easy to use controls. High gain to $10 \mathrm{mv} / \mathrm{cm}$ and wide time base range from $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$. Full specification to re quest. Please send S.A.E. Professional scopes you can afford. CALSCOPE SUPER 10 E251.85 A dual trace 10 MHz instrument of the very highest performance and quality. It has an accuracy of 3% which is achieved by the use of built-in stabilised power supplios fluctuations. Full specification on request. Please send S.A.E TEZOD TECH R.F. SIGNAL
Accurately covers 120 KCS to 500 MCS in 6 bends. Directly calibrated. Variable RF attenuator 240 VAC. Size

Price 562.50 (550.58 to cinlors)

TE22D TECH AUDIO GENERATOR
Sine \& square wave audio generator. Sine wave range -20
Square wave range 20 cps to 15 K cps in four bands 240 V A.C Price $\mathbf{f 6 3}$.31 ($\mathbf{f 6 1 . 3 1}$ to cellers).
TMK 500 MULTIMETER 30,000 o.p.v. AC volts $2,5,10,25,100,250,500,1000$. DC volts. $0.25,1,2.5,10,25,100,250,1000$. DC current $0.25,1,2.5 .10 .25,100,250.1000$. DC current
$50 \mu \mathrm{a}, 5 \mathrm{MA}, 50 \mathrm{MA}, 12 \mathrm{amp}$. Resistance $0-6 \mathrm{~K}$. 60K, $6 \mathrm{MEG}, 60 \mathrm{MEG}$. Decibels. -20 to +56 db . Buzzer continuity test size, $160 \times 110 \times 55 \mathrm{MM}$. Batteries \& leads included.

CSC EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter/number identified nickel-silver contact holes. Start small and simply snap lock boards together to build breedboards of
any size.

CEABP
179.95

E114.95
Size $255 \times 748 \times 40 \mathrm{~mm}$.
DM350 $3 \frac{1}{2}$ digit display DM450 $4 \frac{1}{2}$ digit display. Both provide six functions in 34 ranges. D.C. voltage $10 \mu \mathrm{~N}$ to 1200 C (100μ on DM350) A.C. voltage $100 \mu \mathrm{~V}$ to 750 V . .C. cu to 10 ma . A.C. current 1nA to 10A resistance OM350 \& 450 as for DM235 DM3 Foll Accessories for DM350 \& 450 as for DM235 below. Full spec. on request. Sinclair
Sinclair PMMM200 frequency meter Size $157 \times 76 \times 32 \mathrm{~mm}$.
Range 20 Hz to 200 MHz . Accessories and illustration as for PDM35 above. $\mathbf{5 6 7}$.95.

SINCLAIR PDM35

DIGITAL POCKET MULTIMETER
DC volts (4 ranges) 1 MV to 1000 V AC volts 1 V to 500 V DC current (6 ranges) 1 nA to 200 MA . Resistance (5 ranges) 1Ω to 20 MEGQ . PRICE £34.95. AC Adaptor $£ 3.95$ de luxe padded carrying case £3.50 MN 1604 Battery £1.14.
Size $157 \times 76 \times 32 \mathrm{~mm}$.
SINCLAIR DM235

BENCH-PORTABLE DIGITAL

MULTIMETER.

DC volts (4 ranges) 1 MV to $1000 \mathrm{~V} A C$ volts (4 1000 MA V to 750 V AC \& DC current $1 \mu \mathrm{~L}$ to PRICE f57.95. or/charger. £4.50. Rechargeable Battery Pack.E9.70
Size $255 \times 148 \times 40 \mathrm{~mm}$.

PANEL METERS

DIMS $60 \mathrm{MM} \times 45 \mathrm{MM} .50 \mu \mathrm{amp}, 100 \mu \mathrm{amp} 1 \mathrm{MA}$, 5MA, $10 \mathrm{MA}, 50 \mathrm{MA}, 100 \mathrm{MA}, 500 \mathrm{MA}, 1$ amp, ${ }^{2}$ 50-0-50 а а, 100-0-100 1 a, 500-0-500 a a. PRICE £5.95.

DESOLDERING TOOL
$\mathbf{E 6 . 4 5}$

SUCTION PUMP

Education Establishment Orders Accepted
PHONE OR SEND YOUR ACCESS OR
BARCLAYCARD NUMBER FOR SALES OVER $£ 10$. ALL PRICES INCLUDE POSTAGE AND VAT.

morthenin Low Power Schotткy TTL EX STOCK

1.C. TEST CLI PS 10% discount for $25+$ clips, 15% for $100+$
8 Pin £4.50, 14 Pin £2.73, 16 Pin $£ 2.88,18$ Pin $£ 6.06,20$
$\mathbf{8}$ Pin £4.50, 14 Pin £2.73, 16 Pin £2.88, 18 Pin £6.06, 20 Pin $\mathbf{£ 7 . 0 0}, 22 \operatorname{Pin} £ 7.43,24$ Pin $\mathbf{£ 8 . 4 1 , 2 8} \mathbf{~ P i n}$ £9.24, 36 Pin £12.09, 40 Pin £12.73.
ALL CIRCUIT EVALUATORS Breadboards plus power supplies.
POWERRACE $1015-15 V D C=600 \mathrm{~mA}$ plus $0-15 \mathrm{~V}$ meter. Price $\mathbf{~ 6 6 8 . 5 5 p}$.
POWERACE $102+5 V D C$ \& 1 A plus 3 logic indicators \& pulse detector, logic switches, data switches, clock generator and one shot. Price $\mathbf{£ 9 2 . 7 5 p}$
15 VDC) 2 lagic indicators, 2 logic 750 mA plus +15 VDC e 250 mA \& -15 VDC e 250 mA . Also meter ($15-0-$
SUPERSTRIP BREADBOARDS 840 solderless, plug-in tie points. Accommodates up to 914 pin DIPs SUPERSTRIP BREADBOARDS 840 solderiess, plug-tin tie points. Acco
Price E10.07p with 10% discount for 10 superstrips or 15% discount for $25+$.
Price £10.07p with 10% discount for 10 superstrips or 15% discount for $25+$. for catalogue and price lists.

LOW PROFILE DIL SOCKETS BY TEXAS

8 PIN	$13 p$	18 PIN	$25 p$	24 PIN	$33 p$
14 PIN	$14 p$	20 PIN	$27 p$	28 PIN	$43 p$
16 PIN	$16 p$	22 PIN	$28 p$	40 PIN	$53 p$

All orders, large and small, will be dealt with IN STRICT ROTATION. Please add 15% V.A.T. to all orders plus 30p for P\&P (P\&P £1 for Poweraces). Export orders no V.A.T. but postage at cost air/surface. Prompt delivery on all orders.

Cheques, POs, Money Orders to be made payable
ROMANE ELECTRONICS,
Sales Dept.,
64 Newlyn Drive,
64 Newlyn Driv
Sale, Cheshire.
M33 3LE
Tel 061-962-2606
Price
$110 p$
250p
260p
150 p
90p
$27 p$ 8 PIN
$43 p$
-
postage at cost air/surtace. Prompt delivery on all orders.

SAVBIT
handy solder dispenser Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times. Size5 78p inc. VAT

For soldering fine joints Two more dispensers to simplify those smaller jobs PC115 provides 6.4 metres approx. of 0.71 mm solder for fine wires, small components and printed circuits.
$92 p$ inc. VAT
Or size 19A for kit wiring or radio and TV repairs.
2.1 metres approx. of 1.22 mm solder.

Size 19A $83 p$ inc. VAT

Handy size reels and dispensers of the world's finest cored solder to do a professional job at home
 Ersin Multicore Solder contains 5 cores of

 -corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.
 handy size reels of
 SAVB/7, 40/60, 60/40 and $A L U-S O L$ solder alloys

These latest Multicore solder reels are ideal for the toolbox. Popular specifications cover all general and electrical applications, plus a major advance in soldering aluminium. Ask for a free copy of 'HintsonSoldering' containing clearinstructionstomakeeveryjobeasy.

Ref.	Alloy	Diam. (mm)	Length metres approx.	Use	$\begin{gathered} \text { Price } \\ \text { inc. VAT } \\ \hline \end{gathered}$
$\begin{gathered} \hline \text { Size } \\ 3 \end{gathered}$	$\begin{gathered} 40 / 60 \\ \text { Tin/Lead } \end{gathered}$	1.6	10.0	For economical general purpose repairs and electrical joints.	£3.22
$\begin{gathered} \text { Size } \\ 4 \end{gathered}$	ALU SOL	1.6	8.5	For aluminium repairs. Also solders aluminium to copper, brass etc.	£3.22
$\begin{gathered} \text { Size } \\ 10 \end{gathered}$	$\begin{gathered} 60 / 40 \\ \text { Tin/Lead } \end{gathered}$	0.7	39.6	For fine wires, small components and printed circuits.	$\underline{23.22}$
$\begin{gathered} \text { Size } \\ 12 \end{gathered}$	SAVbit	1.2	13.7	For radio, TV and similar work. Increases copper-bit life tenfold.	£3.22

Bib Hi-Fi Accessories Limited,

 with coil/distributor ignition up to 8 cylinders.

 multidect

Roger Clark the world famous rally driver says" Sparkrite electronic ignition systems are the best you can buy.

Eloctronics Dasign Associatos, Dept. PE1179, 82 Bath St, Whlenl, WS1 3DE

Electronics Design Associates, Dept. PE1179 82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 614791

Buying Time? Better Make Sure It's Casio

New 3.5 year Lithium batteries outlast most solar watches
From Casio's New Collection comes one of the most sophisticated executive watches available today,

THE 81CS-36B
 ALARM CHRONOGRAPH

LC Display of hours, minutes, seconds, day; And with day, date, month and year perpetual automatic calendar.

4-5 YEAR BATTERY 1/100 second chronograph to 7 hours.
Net, lap and first \& 2nd place times.
User optional 12 or 24 hour display.
24 hour alarm.
User optional hourly
chime.
Backlight.
Mineral glass.
Stainless steel case.
Water resistant to RRP $£ 39.95$
100ft (3 at.)
$£ 35.95$

NEW FROM CASIO

HQ. 21 CALCULATOR AND

CLOCK

LC Display of hours, minutes and seconds. 8 digit calculator with full memory, \%. Very long battery life.
$($ RRP 12.95$) \mathbf{1 0 . 9 5}$

NEW SCIENTIFICS

 CASIO FX 500051 scientific functions. 10 independant nonvolatile memories, auto power off facility. Random number. Integer part. Faction part. Absolute value keys. (RRP)\&29.95 FX-310 $£ 17.95 \quad$ FX-510 $£ 19.95$ FX-2600 $£ 19.95 \quad$ FX- $3200 \quad £ 21.95$

HAND HELD COMPUTER GAMES

We have selected the best available
GRANDSTAND 4-IN-1. Calculator/
Auto Race/Code Breaker
(as Mastermind)/Blackjack
GRANDSTAND Solitaire
GRANDSTAND Destroyer UFO Master Blaster Station (more sophisticated than Destroyer)
$£ 22.95$ £ 14.95
$£ 14.95$
sophisticated than Destroyer
£22.50
Large S.A.E. for details (specify interest).

HONGKONG WATCHES

Most low cost watches come from Hongkong. In our experience these are proving to be extremely unreliable, particularly those with multi-function modules, with failure rates up to 60% or more. Repairs can take as long as three months and replacement parts are not always available.
Compare this with Casio, Citizen and Seiko, whose failure rate is typically under 1% and Casio's service time of $2-3$ weeks and we ask you:
ISN'T IT WORTH PAYING A LITTLE
MORE FOR QUALITY AND RELIABILITY?
Fully guaranteed for 12 months.

CASIO CHRONOGRAPHS

CASIO 95QS-31B
4 YEAR BATTERY $1 / 100 \mathrm{sec}$. chrono to 7 hours. Dual time. 12 or 24 hour. Stainless steel encased. Water resistant to 66 feet (2 at). RRP $£ 29.95$
$£ 23.95$

CASIO 95CS-31B 5 YEAR BATTERY. $1 / 100 \mathrm{sec}$. chrono to 7 hours. Dual time. 12 or 24 hour. Solid stainless steel case. Water resistant to 100 ft (3 at.). RRP $£ 34.95$

£29.95

Both have new Lithium batteries which outlast most SOLAR watches. Constant LCD display of hours, minutes, seconds, am/pm and day, (12 or 24 hour). Dual time (12 or 24 hr). Automatic day, date, month and year calendar. Mineral glass face. Backlight. High quality s / s bracelets with easily removable links.
CASIO F-200 Sports chrono Hours, minutes, seconds, am/pm; and with day, date and month auto calendar. $1 / 100 \mathrm{sec}$ chrono to
1 hour.
Net, lap and 1st \& 2nd place times.
Resin case and matching
strap.
Mineral glass.
Water resistant to
66 ft (2 at.).
Sile faride batery $£ 15.95$
$\frac{\text { RRP } £ 17.95}{8}$ DIGII IIME/DATE

Most CASIO products available from stock. Send 25 p for illustrated brochures and membership of our CHRISTMAS CLUB. EXTRA DISCOUNTS on many items.

4-STATION

£27.95

INTERCOM

+ VAT $£ 4.19$
Solve your communication problems with this 4-Station Transistor Intercom system (1 master and 3 gubs) in robust plaptic cabinets for desk or wall mounting. Call/talk/listen From Master to Subs to Master. Ideally suitable for Business, Surgery, Schools, Hospitals und Office. Operates on one
battery. On/of switch. Volume control. Complete with 3 connecting wires each 6611. I Battery and other accessories. P. \& P. £1-25.

PFNFICE: AMP
TELEPHONE AMPLIFIER
col

£17.95

+VAT £2.69
+P. \& P. 99p.
Litest transisturised Telephone Ampliffer with detached olugin speaker. Placing the receiver on to the cradle activates a switch for immediate two-way conversation witime. Increage
the handset. Many people ean listen at a timen efflciency in office, shop, worksbop. Perfect for "conference" calls: leaves the user's hands free to pake notes, consult fles No long waiting, saves time with long-distance calls. On/off switch, volune control, conversation recoriling model at P. 99p

DOOR ENTRY SYSTEM

No house/business/gurgery should be without a DOOR ENTRY SYSTEM in this day and age. The modern way to answer the door in safety to uxwanted callers. Talk to the caller and admit him only if satisfied by pressing a remote control button which will open the door electronicaly. A boon or the
invalid, the aged and busy housewfic. Supplied complete d.i.y. kit with one internal Telephone, outside Speaker panel, d.i.Y. kit with one internal (for Yale type surface latch look) mains power unit, cable (8-way) 50 ft and wiring diagram Price $£ 49.95+V A T ~ £ 7.50+$ P. \& P. $£ 1.45$. Kit with two Telephones $£ 59.93$ + VAT $£ 9.00+$ P. \& P. $£ 1.65$.

10-day price refund guarantee on all items.
WEST LONDON DIRECT SUPPLIES (P.E.11)
169 KENSINGTON HIGH STREET, LONDON, W8

Prices include VAT, P\&P, cheque/PO or phone your ACCESS or BARCLAYCARD number to:

TEMMPUS
 Dept. PE. Beaumont Centre. 164-167 East Road, Canbridge CB1 IDB. Telephone 022367503

WATCH

(1a:5BSB

SERVICING
1977-78 MODELS
by R. N. Wainwright Price: £11.30
HOW TO BUILD A COMPUTER CONTROLLED ROBOT
by T. Loofbourrow
Price: $\mathbf{5 5} \mathbf{2 0}$
HAM RADIO A PRACTICAL GUIDE \& H/B
by K. Ullyett Price: $\mathbf{E 5 . 0 0}$
INTEGRATED CIRCUIT POCKET BOOK
by R. G. Hibberd
Price: $\mathbf{8 4 . 8 0}$
BEGINNER'S GUIDE TO AUDIO
by I. R. Sinclair
OPERATIONAL AMPLIFAERS Price: $\mathbf{£ 1 0 . 1 0}$
by f. B. Clayton
BEGINNER'S GUIDE TO HOME
COMPUTERS
by M. Grosswirth
Price: $\mathbf{£ 3 . 0 0}$
AMATEUR RADIO TECHNIQUES
by P. Hawker
Price: $\boldsymbol{\xi}^{\mathbf{3}, 70}$
ELECTRONIC DATA PROCESSING
by G. Emery
Price: $\mathbf{8} \mathbf{8 . 5 0}$
ALL PRICES INCLUDE POSTAGE
THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET LONDON W21NP

Phone 01-4029176
Closed Saturday 1 p.m.

The opportunities in electronics, today, and for the future are limitless - throughout the world. Jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, TV and all associated equipment - can make for a varied, interesting and highly renumerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equiptment coming on to the world market.

We give modern training courses in all fields of electronics - practical D.I.Y. courses - courses for City \& Guilds exams, the Radio Amateur licence and also training for the new Computer Technology. We specialise only in electronics and have over 40 years experience in the subject.

All the training can be carried out in the comfort of your own home and at your own pace.

A tutor is available to whom you can write at any time for advice or help during your work.

COURSES AVAILABLE

CITY \& GUILDS CERTIFICATES IN TELECOMMUNICATIONS AND ELECTRONICS.

RADIO AMATEUR LICENCE.
COMPUTER TECHNOLOGY WITH HOME TRAINING COMPUTER.

DIGITAL ELECTRONICS.BEGINNERS PRACTICAL COURSE.RADIO AND TELEVISION SERVICE.AND MANY OTHERS.

WE ARE AN INTERNATIONAL SCHOOL SPECIALISING IN ELECTRONICS TRAINING ONLY AND HAVE OVER 40 YEARS EXPERIENCE IN THIS SUBJECT.

RST

 VALVE MAIL ORDER CO. Climax House Fallsbrook Road, London SW16 6EDSPECIAL EXPRESS MAIL ORDER SERVICE

									P				
$\begin{aligned} & \text { AA119 } \\ & \text { AAY } 30 \end{aligned}$	0.12	BCY70 BCY71	0.17 0.20	MPSU01	${ }_{0}^{0.41}$	1N914	0.08	7405	0.18				
AAY32	0.48	BCY\%	${ }_{0} 0.15$	MPSU56	0.56	iN4O\%	0.08 0.07	7406					
AAZ 13	0.21	BCZ11	1.72	NE555	0.52	1 N 4002	0.07	7408	0.23				
AAZ15	0.39	BD115	0.52	NKT401	2.30	iN4003	0.08	7409	0.23				
AAA17	0.31	BD 121	1.38	NKT403	1.99	1 N 4004	0.08	7410	0.18				
AC 107	0.69	80123	1.38	NKT404	1.99	1 N 4005	0.09	7412	0.30				
AC125	0.23	88124	1.50	OA5	0.09	i N 4006	0.09	7413	0.37				
${ }^{\text {AC }} 126$	0.23	BD131	0.40	OAF^{0}	0.63 0.74	1N4007	0.10	7416	0.37				
AC127	0.23 0.23	BD 132 80135	0.44	OA10	0.74 0.16	1 N 4009	0.17	7417	0.37				
${ }_{\text {AC }}{ }^{\text {A }} 1$	0.29	BD136	0.39	OA470	0.35	1N4 1488	0.07	7420	0.20 0.23				
${ }^{\text {AC }} 141 \mathrm{~K}$	0.40	BD137	0.40	OA79	0.35	1 N 5401	0.15	7423	0.37				
	0.23	8D138	0.46	OA81	0.36	1544	0.05	7425	0.35				
$\begin{aligned} & A C 142 \mathrm{~K} \\ & \text { AC176 } \end{aligned}$	0.35	80139	0.49	OA85	0.35	15920	0.08	7427	0.35				
${ }_{\text {AC }} 187$	0.23	BD144	0.51 2.30	OA90	0.09	15921	0.0	7428	0.49				
AC 188	0.23	${ }_{\text {BD } 181}$	1.26	0 OA95	0.09	2G302	1.15	7430	0.20 0.35				
ACY^{17}	0.98	80182	1.36	OA200	0.10	2G306	1.27	7433	0.41				
ACY18	0.92	8 B 237	0.46	OA202	0.10	2N404	1.15	7437	0.37				
${ }^{\text {ACY }} 19$	0.86	BD238	0.63	OA21	1.15	2 N696	0.29	7438	0.37				
$\mathrm{ACY}^{\text {cho }}$	0.80	80×10	1.05	OAZ200	1.15	2N697	0.29	7440	0.21				
ACY21	0.86 7.72	80×32	2.30	OAZ201	1.15	2N698	0.35	7441 A	0.97				
AD149	0.80	80Y60	1.72	${ }_{\text {OAZ206 }}$	1.15	2N705	1.38	7442	0.83				
AD16	0.52	BF115	0.29	${ }_{0} \mathrm{Cl} 16$	2.30	2N708		7447 7450	1.04				
AD162	0.52	BF152	0.21	0 O 20	2.88	2 N 930	0.23	7451	0.21				
AF 10	0.52	BF153	0.23	$\mathrm{O}^{\mathrm{O}} 22$	2.88	$2{ }^{\text {N1 }} 131$	0.30	7453	0.21				
AF1 14	0.86	$8 F 154$	0.20	$\mathrm{OC}^{\text {c }}$	3.16	2 N 1132	0.30	7454	0.21				
AF115	0.86	BF159	0.26	$\mathrm{OC}^{\mathrm{C}} 4$	3.45	2 N 1302	0.40	7460	0.21				
AF116	0.86	BF160	0.18	0 O 25	1.04	2N1303	$0 \cdot 40$		0.40				
AF117	0.86	BF167 8 F 173	0.23	$\mathrm{OC}^{\circ} 26$	1.04 2.30	2 N 1304	0.52	7472					
AF186	1.38	BF177	${ }_{0}^{0.28}$	0 O 29	2.30 $\mathbf{2} 3$	2N130	0.58	7473	0.41				
AF239	0.52		0.28	$\mathrm{OC}^{\circ} \mathrm{S}$	1.73	2N1307	0.58	7475	0.62				
AFZ11	3.16 3.16	8 F 179	0.29	$\mathrm{OC}^{\text {Of }}$	1.73	2 N 1308	0.63	7476	0.46				
$\begin{aligned} & \text { AFZ12 } \\ & \text { ASY2 } \end{aligned}$	3.16 0.46	BF180	0.35	OC41	0.92	2N13	0.63	7480	. 63				
ASY27	0.46	BF	0.35	${ }_{0} \mathrm{C} 43$. 86	2N16	$0 \cdot 79$	7482	. 86				
ASZ15	1.44	BF183	0.29	0 O 44	0.69	2 N 18	0.29	74	1.15				
ASZ16	1.44	BF184	0.29	0 O 45	0.63	2N2147	2.02	7486	0.40				
ASZ17	1.44	BF185	0.29	0 O 71	0.63	2N2148	1.89	7490	0.60				
ASZ20	1.72	BF194	0.10	OC72	0.63	2N2218	0.29	7491 AN	0.92				
ASZ21	2.30 2.30	8F195	0.10	Oc73	1.15	2 N 2219	0.28	7492	0.69				
AUI 13	1.96	BF 197	0.14	OC75	0.74 0.74	2N2220	0.21	7493	0.69				
AUY10	2.30	BF200	0.31	$0{ }^{\circ} 76$	0.63	2N2222	0.21	7495	0.83				
BA145	0.15	BF224	0.23	0 C 77	1.38	2N2223	3.16	7496	0.92				
BA148	0.15	BF244	0.32	0 O 81	0.74	2 N 236	0.20	7494	3.45				
8A154	0.10 0.12	BF257	0.28 0.30	OCBl^{0}	1.38 0.74	2N2369A	0.24	74100	1.73				
8 A156	0.10	BF259	0.37	${ }^{0} \mathrm{CB3}$	${ }_{0}^{0.74}$	2 N 26	0.23 0.63	741	0.52				
BAW62	0.06	BF336	0.35	$0 \mathrm{CB4}$	0.74	2N29	0.29	74109	0.81				
BAX1	0.07	BF3	0.35	0 C 122	1.73	2 N 2905	0.29	74111	0.81				
8 8AX 1	0.10	BF338	0.36	OC123	2.02	2 N 2906	0.24		2.02				
BC107	0.14	BFS2	4.55	OC139	2.59	2 N 2	0.24	74118	1.15				
BC108	0.14	BFS28	2.56	OC140	3.16	2N2924	0.24	741	1.73				
BC109	0.15	BFS61	0.23	OC141	3.74	2 N 2925	0.25	741	0.95				
$8 \mathrm{BC113}$	0.14	8FS98	0.23	OC170	1.15		0.1	74121	46				
BC114	0.15	陦W10	0.74	OCL^{171}	1.15	2 N 3053	0.29	74122	0.69				
BC115	0.16	BFW11	0.74	OC200	1.73	2 N 3054	0.58	74123	1.15				
${ }_{8}^{8 C 116}$	0.17	BFX84	0.25	OC201	2.02	2 N 3055	0.81	74125	0.63				
BC1 BC1 18	0.20 0.12	BFX85 BFX87 c	0.26 0.24	$\mathrm{OC2O2}$ OC 203	2.02 2.02	2N3440	0.69	74128	0.63				
BC125	0.18	BFX8B	0.24	OC204	2.88 2	2N3441	1.26	741	0.69 0.81				
BC1	0.23	BFY50	0.30	0 O	2.88			74132	0.81				
BC135	0.16	BFY51	0.30	OC206	2.88	2N36	1.73	74141	0.92				
BC136	0.17	8FY52	0.30 0.30	$\mathrm{OC2O}^{0}$	2.02	2 N 3702	0.13	74142	$2 \cdot 65$				
	0.10	${ }_{\text {BFY }}$	1.44	ORP12	1.44	2 N 3703	0.15	74143	2.88				
8 C 148	0.09	BSX 19	0.24	R20088	2.02	2N3704	0.15	74144	2.88				
BC149	0.10	BS×20	0.23	R2009	2.59	2N3706	0.15	74145					
BC157	0.10	BSX21	0.23	R2010日	2.02	2 N 3707	0.15	74148	2.02				
BC158	0.09	BT106	1.4	T1C44	0.35	2N3708	0.12	74150	1.84				
BC167	0.12	BTY79/4	3.67	T1C2260	1.38	2N3709	0.15	74151	0.97				
BC170	0.13	BU206	2.02 2.59	T1P29A	0.47	2N3710	. 1	74154	2.02				
BC17	0.12	BU208	2.30	T1P30A	0.48	2 N 3771	0.12 2.02	7415	0.97				
8 BC 172	0.12	BY100	0.52	T1P31A	0.51	2N3772	$2 \cdot$	74.57	0.86				
BC173	0.14	BY126	0.16	T1P32A	0.55	2 N 3773	3.45	74159	2.42				
	0.17	BY127	0.19	T1P33A	0.79	2 N 3819	0.4	74170	2.65				
${ }^{8 C 178}$	0.16	${ }_{\text {Series }}$	0.21	T1P34A	0.84	2 N 3820	0.52	74172					
$\mathrm{BC1}^{82}$	0.13	BZY88	0.15	T1P42A	0.82	2N3823	0.63	74173	1.61				
BC183	0.12	Series		T1P2955	0.77	2N3904	0.15	74175	1.04				
BC184	0.13			T1P3055	0.64	2N3905	0.15	74176	1.26				
$8 \mathrm{CC212}$	0.15	CRS $1 / 40$	0.69	T1543	0.52	2 N 3906	0.15	74178	1.44				
BC2 13	0.14	CRS3/40	0.86 1.04	zS140	0.29	2N4058	0.16	74179	1.44				
BC237	0.10	GEX66	1.73	ZS178	0.24		0	74180	1.32				
8 C 238	0.14	GEX541	2.02	zS271	0.26	2N4061	0.14	74191	1.73				
BC301	0.29	G3M	0.86	ZS278	0.65	2N4062	0.15	74192	1.55				
BC303	0.28	GJ5M	0.86	2TX107	0.13	2N4 124	0.17	74193	1.55				
$8 \mathrm{BC307}$	0.12	GL7M	0.86	2TX108	0.12	2N4126	0.17	74194	1.44				
BC308	0.12	GMO378A	2.52	27x109	0.14	2N4286	0.23	74195	1.15				
${ }^{8} \mathrm{BC} 327$	0.23 0.21	KS100A	0.52 0.92	2Tx300	0.14	2N428B	0.25	74196	1.38				
BC337	0.21	MJE340	1.35	$\begin{array}{r}\text { ZTX } \\ \text { ZTX } \\ \hline 10201\end{array}$	0.15 0.17	2N4289	0.28 0.40	74197	1.26				
BC338	0.20	MJE371	0.71	21×303	0.20	$2 N 5458$	0.40	74198	2.69				
$\mathrm{BCY}^{\mathrm{BCH}} \mathbf{}$	1.15	MJE520	0.60 0.63	21 $\times 304$	0.22	2N5459 0.40		76013N 2.02					
${ }_{\text {BCY }}$	1.15	MJE521	1.44	$\begin{array}{r}\text { 2T } \times 311 \\ \hline T \times 314\end{array}$	0.14								
BCY33	1.04	MJE3055	0.86	-	0.23	INTEGRATED							
BCY34	1.04	MPF102	0.35	2TX501	0.16								
BCY39	3.45	MPF 103	0.35	21 $\times 502$	0.18	7400	0.18						
${ }_{8 C Y}{ }_{8 C Y}$	1.15 0.29	MPF104	0.35	2TX503	0.20	7401	0.18	Plugs in socket - low profile $\begin{array}{ll}8 \text { pin DIL } & 0.17 \\ 14 \text { pin DIL } & 0.17\end{array}$ 16 pin DIL 0.20					
BCY4 BCY	0.29 0.29	MPF105	0.28	[7×504	0.23 0.23	7402 7403	0.18						
BCY58	0.18	MPSA56	0.30	27×550	0.18	7404 74	0.18 0.20						
Open daily to callers: Mon.-Fri. 9 a.m. -5 p.m. Valves. Tubes and Transistors - Closed Saturday Terms C.W.O. only - Tel. 01-677 2424-7 Prices correct Quotations for any types not listed S.A.E. when going Post and Packing 30p per order All prices include VAT Tclen 946708													

SINCEAR PRODUCT: PFM200 E52.69, case $£ 3.40$, adaptor $£ 3.40$, connector ki
$£ 11.27$. Microvision f 11.27 . Microvision TV UK model $£ 91.44$.
mains adaptor $\mathrm{E6}$.88. PDM35 $£ 29.78$, mains adaptor $£ 6.48$. PDM35 $£ 29.78$
mains adaptor $£ 3.40$, case $£ 3.40,30 \mathrm{kV}$ probe £20.13. DM350 £71.82, DM450 £102.17. DM235 £52.66. Accessories for all 3 models:- rechargeable batteries $£ 7.99$ mains adaptor/charger $£ 3.94$, case $\mathrm{E9}$, enter prise prog calculator $£ 23.27$
COMPUTE BA BARGANS which use your ty as a vdu and read and write on most cassette recorders. Ohio scientific superboard 2 built Bk basic, 4k ram £217+vat. Tandy TRS80 level 2 basic with psu and modulator 4 k rem COMPUTER GAMEO+val.
COMPUTER OAMES Star Chess f62 f91. Chess chalienger 10 f 152.50 . Voice challenger $£ 239$. Checker challenger $2 £ 46$. Checker challenger $4 £ 88$. Atari video com puter £147. cartridges £14.32.
CONTINENTAL EPECIAGITIES PRODUCTE EXP300 £6.61. EXP350 £3.62. EXP325 £1.84. EXP600 £7.24 EXP650 £4.14. EXP4B f2.64. PB6 £10.58
PB100 £13.57. IM1 f32.99. $P 1$ f 35.55. LP2 £20.70. MAX100 £89.18.
TV GAMES Tank battles kit £6.34. AY-3 8500 chip $£ 5 \cdot 27$, kit $£ 4.26$, stunt cycle AY-$3-8760$ chip $£ 12.46$, kit $£ 4.26$. 10 game
paddle 2 AY-3-8610 chip $£ 5 \cdot 95$, kit $£ 7.03$. racing car chip AY-3-8603 £ 13.63. modified shoot kit $£ 5 \cdot 28$. ,ine kit $\mathrm{f5} 27$, colou
MA101
MAIN TAAN
 $12-\mathrm{O}-12 \mathrm{~V} 50 \mathrm{ma} 76 \mathrm{p}, 100 \mathrm{ma} 92 \mathrm{p}$. 1 a
 30-0-30V 1 a £ 3.82
JC12 AND JC20 AMPLFIERE integrated circuit audio amplifier chips supplid with free
date and printed circuits. JC12 6 Watts data and printed circuits. JC12 6 Watts
£2.08. JC20 10 Watts $£ 3.14$. We also stock a range of matching preamp and power kits. Fentranti 2Narts and peb for radio $£ 4.10$ case £1.06.
PRINTED CIRCUIT MATERIALE PC etching kits:- economy $£ 2 \cdot 32$. standard
$£ 4.3640$ sq ins pcb $64 p$, lb Fecl $£ 1-20$. f 4.3640 sq ins pcb 64 p . $1 \mathrm{lb} \mathrm{FeCl} £ 1.20$.
etch resist pens:- economy 48p, dato 84p. etch resist pens:- economy 48 p , dalo 84p.
drill bits $1 / 32$ ins or 1 mm 25 p each. etching dish 83 p . laminate cutter 80 p .

DeC £4.2B. u-DeCA £4.69. u-DeCB £7-16. 16 dil adaptor with sockit E2.31.
watreny Eliminatons 3 -way types With switched output and 4 way multi-jack:-
$3 / 4 \frac{1}{2} / 6 \mathrm{v} \quad 100 \mathrm{ma}$ f2.89, $6 / 7 / 9 \mathrm{v} 300 \mathrm{ma}$ 63.14. 100 ma radio types with press-atud connectors $9 \mathrm{v} £ 3.57 .6 \mathrm{~V} £ 3.57 .41 \mathrm{v} £ 3.57$ $9+9 \mathrm{v} £ 4.79,6+6 \mathrm{v} \mathrm{E} 4.79,4 \frac{1}{2}+4 \frac{1}{2} \mathrm{v} £ 4.79$. cassette recorder mains unit $7 \frac{1}{2} v \quad 100 \mathrm{ma}$ with 5 pin din plug $£ 3.57$. fully stabilised ype $3 / 6 / 7 \frac{1}{2} / 9 \mathrm{v} 400 \mathrm{ma}$ f5.64. car convertors $12 v$ de input. output $9 v 300 \mathrm{ma} \mathrm{f} 1.60$. out$1 / 4$
$1 / 6 / 7+1 / 9 / 12 v 800 m a £ 2.66$. Output

KITS 100 ma radio types with pross-stud connectors $4 \frac{1}{2} \mathrm{v}$
$\mathrm{f} 9.49 .6 \mathrm{v} £ 1.49,9 \mathrm{v} £ 1-49.4 \frac{1}{2}+4 \frac{1}{2} \mathrm{f} 1.92$, $6+6 \mathrm{v} £ 1.92,9+9 \mathrm{v} £ 1.92$. cassette type 71 v
100 ma with din plug $£ 1.49$. hesvy duty 13 100ma with din plug $£ 1.49$. heavy duty 13 way types $4 \frac{1}{2} / 6 / 7 / 8 \frac{1}{2} / 1 / 13 / 14 / 17 / 21 / 25 /$
$28 / 34 / 42 \mathrm{v}$ 1A $£ 4-95,2 \mathrm{~A} £ 7.72$. transistor 28/34/42V $1 A$ £4.95, $2 A$ E 7.72 . transistor
stabilized 8 -way types for low hum stabilized 8 -way types for low hum
$3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{v} 100 \mathrm{ma} \mathrm{f} 2.98$, 1 Amp ci.81. variable voltage stabilized models $2-18 \mathrm{~V} 100 \mathrm{ma}$ £ 2.98 . $1-30 \mathrm{~V} 1 \mathrm{~A}$
$\mathrm{f5} .95$, $2-30 \mathrm{~V} 2 \mathrm{~A} £ 11.68$. car convertor 12 v dc input. output $9 / 7 \frac{1}{2} / 6 \mathrm{v}$ 1A stabilized £1.44.
El-PAK AUDDIO MODULES AL30 E4.04. PA12 £7.77. PS 12 f 1.42 . T538 E 2.70 . SPM80 £4.57, BMT8O £6.08, Stereo 30 f20.57. MA60 f36.23. COMPONENTE IN4
3.1p. 741 B dil 18p. 72314 dil 31 p . NE555 8 dil 250. bc182. bci83. be184. bc212. bc213. bc214. bc547, bc548, bc549 5p tip31c. tip32c 36p. tip4 1c 48p. bd131, bd132 33p. plastic equiv bc107 5p. tuses 5Amm quickblow itride - $15,-25,-5,1,2,3$, resistors 5% IW E12 10 R to $10 \mathrm{M} 1 \mathrm{p}, 0.8 \mathrm{p}$ for $50+$ of one value. polyester capacitor $250 \mathrm{v} \cdot 015 . .068 .1 \mathrm{mf} 1.5 \mathrm{p},-01, .033$,
$.33 \mathrm{mf} 2.8 \mathrm{p}, .022, .047 \mathrm{mf} 3.3 \mathrm{p}, 22, .47 \mathrm{mf}$.33 mf 2.8 p . $-022, .047 \mathrm{mf} 3.3 \mathrm{p}, 22, .47 \mathrm{mf}$
4.9 p . polystyrene capacitors $\mathrm{E} 12 \mathrm{63v} 10$ to 4.9 p . polystyrene capacitors E12 63v 10 to $1000 \mathrm{pf} 3 \mathrm{p}, 1 \mathrm{Tm} 2$
capacitors 50 V E6 10 n 4 p . ceramic
22 pf to 47 n 2 p . eleccapacitors 50V E6 22pf to 47 n 2 p . elec
trolytic capacitors $50 \mathrm{v} \cdot 5,1,2 \mathrm{mf} 5 \mathrm{o}$. 25 v 5. $105 \mathrm{p}, 16 \mathrm{v} 22,33,47,68 \mathrm{mf} 5 \mathrm{p} .100 \mathrm{mf} 6 \mathrm{p}$ 220mf $7.5 \mathrm{p}, 330,470 \mathrm{mf} 9 \mathrm{p}, 1000 \mathrm{mf}$ 10p zeners 400 mW E24 2 v 7 to 33 v 7 p . preset pots subminiature 0.1 W horiz or vert 100 to 4 M 77.2 p . potentiometers $\mathrm{d} W \mathrm{~W} 4 \mathrm{~K} 7$ to 2 M 2
 9.7p. IC sockets 8 die 8.6p, 14 dil 10.1p. 16
dil 12 p .

KONTAKT 60
 europes leadimg contact cleanimg spray

Kontakt products 60-61 and WL provide an unsurpassed cleaning capability for contacts and switchgoer

KONTAKT 80

Safely dissolves oxides and sulphides and disposess of resinated contact greases and dirt, but does not atheck plastics or any sencard production materials.

Is silicone free

Contains a light lubricant to avoid possible corrosion of contact paths - and obviates

Quality Industrial Sprays from Kontakt Chemie

K70 Protective Plastic Spray K72 Insulating Spray K75 Cold Spray K80 Siliconised Polish K90 Video Spray K100 Antistatic Spray K101 Dehydrating Spray and Pos. 20 POSItIVE PHOTO RESIST VARNISH.

Distributed by

SPECIAL PRODUCTS DISTRIBUTORS LTD.

81 Piccadilly, London W1V OHL
Tel 01-6299556
Cables: Speciprod, London W1 Dequest. request.

Designer approved quality kits for Electronic Musical Instrument Construction

JOANNA 72 a 88 PIANOS

 Six and 71 Octave Electronic Pianos with unique Touch Sensitive Action, as used in the P.E. JOANNA, which electronically simulates piano key inertia - a feature not available in any other design A new physical layout has been adopted to simplify construction.P.E. STRING ENSEMBLE The only kit available to the proven A. J Boothman Design for this versatile String Machine. Specialists in all sizes of Square Front Keyboards. Send S.A.E. to

Clef Products (Dept P.E.) 16, Mayfield Road, Bramhall, Cheshire SK7 1JU

STORAGE CABINETS

Metal Cabinets $12^{\prime \prime}$ wide $\times 5 \frac{3}{4}^{\prime \prime}$ deep, finished blue with transparent plastic drawers.

Type	H No. of Drawers				
Price					
(ins)	Sm MedLge				
1118	11	15	2	1	$\mathbf{£ 9 . 8 5}$
1633	16	30	2	1	$\mathbf{£ 1 2 . 7 5}$
1838	18	35	2	1	$\mathbf{£ 1 4 . 9 5}$
2236	22	30	4	2	$\mathbf{£ 1 6 . 8 5}$
2260	22	60	-	-	$\mathbf{£ 1 6 . 9 5}$

Prices include VAT and Post. Cheque/P.O. to Millhill Supplies (Tools), 35 Preston Crowmarsh, Benson, Oxon OX9 6SL

24 TUNE DOOR CHIMES

ODOR TUNES $£ 17.13$ + VAT

Waddington's Videomaster announce a doorbell that doesn't qi Broringgg. Oing Dong or Bazzy Instead it plays 24 different ciassiral and popular tunes. It will play the iune bxpering to rall Door lunes is not onlv prear tun and a expenderful ce breaker but is also very functionaliy and beautully desinged to enhance your home There s sotuthing for Chismas, something for your cununerial sotitething or your selations froms the states. and even srmethum for the Oueen Door tunes is easy on install and mas separate contiols for volume, tone and tempo.

T.V. GAMES

PROGRAMMARRE E79 SO + VAT

COLOUR CARTGIOGE T.Y. GAME

ree iv ganie can be compared io an audin cassette deck and 15 programmed to play a multurude of ditterent games in Colour, using various plug.in cannioges At long last a TV gatre is dvalable which will keep pate with mproving tectinabgy by allowing you to extend your itbrary of games wht the purchase of addinonal cantroges as new games
are developed tach cartudge are developed. tach cartidge contains up to ten duleren games is included free with the consoie Dther cartudges are currently avaiable to enabie youspo play such arages Grand Prix Motur Facing, Super Wipeout and Sunt Riter Fisthe: cantudaes are to be released later this year, indiding Tank Batie, Hunt the Sub and Target. The console comes complete with two removable joysuick player controls to enabie you to move in all four direcmons Tupdowaright leftil and busla into these oystick controts are tall serve and rarget tire butions Giner teatures include several dificulty option swithes, automatic on screen nigiat scany and colour codng on scores and balls Litelike sounds are transnitted through the N 's speaker smulating the actual game betng played. Manutactured by Waddingtor's videonaster and 10 Game colour spartsworlo f22.50 + Var. guaranteed for one year.

CHESS COMPUTERS

STAA CHESS - ESK 09 + VAT.

PLAY CHESS AGAIRST YOUR PARTMER.
using your own TV to display the board and pieces. Siar
[hess is a new absonng game for nwo plavers which wil Lhess is a new absorbing gane for two players, which will
miterest and excute all ages The unt plugs inian the aerial sccket af vour IV set and displays the board and preces in rull rolour lor black and whitel on your TV screen Based on hif roves of chess. It adds even more excitement and inferest to the game. for those whe have never played, Slar Chess is a nevel murnduction to the classic game of thess for the experienced chess player, there are whole now aimensions of unpredictatitity and chance added to the stategy of the game Not only can pieces be taken in acirventionai chess type moves, but each plece can also excharge rocket fire with its oppanents the unit comes cumpinas with a free 18V mains adaptot, full insmuchors
and welve munths guarantee.

GHESS CHALLEMGER $7 \boldsymbol{7}-\mathbf{6 8 5} .65+$ VAT. PLAY CHESS AGAIMST THE COMPUTER.
The styish. compact, ponable console can be set te play al seven ditterent levels of abiuty from, begraner to expen whi ongy make responses whes obey miernational chess wiles Cast ing on passant, and obey mternatione chess rules: casting, on passant, and pormothly a pawn are all
nirfutipd as pan of the computer's programime in is whys:olp to enter any given problemi from magaznes of newspapers of allernativeiy establsh your fiwn board posinger and warct the computer reaci The posmons of at pie: pr an be verified by tsing the computor niemony iecal Dutise

ELECTRDNIC CHESS BOARD TUTOR E17.77 + VAT
A special bulk purchase of these anianay fress rearhing machines enables us to ofter mar. ar only $19 . / 5$ less than hat recorthended retal purp. The elecruw e chess turut is simpone bantery geerated macthne :hat ian actualty reach champunship level his naachne is im only for tutal beguriers but aiso tor established piayers wanting in piay better chess Unut contains the electernic ithessboard wilt 32 chess pieces, a 64 paye explanalof tooklet and a see at
 cands, 76 check mare cosmors. 9 munature garness 5 openness, 3 end games. 28 chess problems and 2 master games

DRAUGHTS COMPUTERS

ChECKER CHALLENGER 2 LEVELS f43.00 + VAI 4 LEVELS E70.00 + VAT Ifer arraghls comibuter eniables you to sharpen your skills. irppreve your gafte, and play whenever you want Th
 th mikue ablity enaties it to respond wh is best cointer muvyts like a skilled human oponont You can seler stferce ur defence and change playng ditticulity leve's a al: , mme Posmons can be vertifed by camputer memury recall Machme does not persur niegal nioves and ren solve set problenis Lutiputer comes coniplete with insinuctions

FLADAR ${ }^{\text {TRANSFORMERS }}$

PRIMARY $0-240 \mathrm{~V} 50 \mathrm{~Hz}$

F YOUR REQUIREMENT IS NOT FEATURED BELOW SEND FOR OUR TRANSFORMER CATALOGUE PRICE 40p

Type	Voltage	Current	E	p / p	Type	Voltage	Current	£	p/p
06FEO6	$\overline{6}+6$	O.5A EACH	1.82	60p	60FE24	$24+24$	1.2A EACH	458	102p
O8FE06	$6+6$	0 GAEACH	219	60 p	80FE24	$24+24$	1.5A EACH	5.66	$120 p$
12 FEO6	${ }_{6}^{6+6}$	1 AEACH	2.43	72 p	50FE28	$28+28$	O. 75A EACH	374	84p
$20 F E 06$	6+6	1 6A EACH	3.06	84 p	$60 \mathrm{FE28}$	$28+28$	1.1A EACH	4.58	102 p
$507 E 06$	6+6	3A EACH	3.74	$84 p$	80FE28	$28+28$	1.4 A EACH	566	120p
60FEO6	$6+6$	A.EACH	458	102p	20FE30	$30+30$	O.35A EACH		840
O6FEO9	$9+9$	0.3A EACH	1.82	$60 p$	$50 \mathrm{EE3O}$	$30+30$	O.75A EACH	3.74	84 p
O8FEO9	$9+9$	$0.5 A$ EACH	219	60 p	60FE30	$30+30$	1A EACH	4.58	102p
$12 \mathrm{FEO9}$	$9+9$	0.75 A EACH	2.43	72 D	$80 \% \mathrm{E} 301$	$30+30$	1.2A EACH	566	120p
20FEO9	$9+9$ $9+9$	1AEACH	3.06	84 p 84					

VOLTAGES AVAILABLE 3, 4. 5. 6, 8, 9, 10 .

 2, 15, 18, 20, 24, 30| 30FE3O | | | |
| :--- | :--- | :--- | :--- |
| 60FE36 | | | |
| 80 FE 36 | 1 A | 4.00 | 84 p |

CENTRE TAP SECONDARY

O6FE30	6-0-64	1.80A	180	$60 p$
08FE4 0	9.0 .9	1 A	$2 \cdot 16$	60 p
12 FE 50	12-0-12	1A	2.40	72p
20 FE O	20-0-20	1A	3.00	84 p
50 FE 80	20-0-20	2 A	3.70	84p
$60 F 5100$	28-0-28	$2 \cdot 2 A$	4.50	102p
80FE70	24-0-24	3 A	5.66	120p
90FE50	15-0-15	6 A	5.80	120p
90FE80	30-0-30	3A	580	120p
100FE26	26-0-26	3.5A	6.05	138p
100FE28	28-0-28	$3.5 A$	6.05	138p
100 FE 30	30-0-30	3A	6.05	138 p
100FE36	36-0-36	3A	6.05	$138 p$
150FE15	15-0-15	7 A	7.47	150 p
150FE26.	26-0-26	5A	7.47	150 p
150 FE 30	30-0-30	4 A	7.47	150 p
150FE36	36-0-36	4A	747	150 p
150FE42	42-0-42	3A	7.47	150 p
250FE28	28-0-28	8A	8.60	175p
250 FE 30	30-0-30	7 A	8.60	$175 p$
250 FE42	42-0-42	5.5A	8.60	$175 p$

FLADAR ELECTRIC
P.O. BOX 19

ESSEX. 0702-6
TRADE ENOUIRIES WELCOME

PAYMENT TERMS
C.W.O. Cheques

Postal Orders
All Prices include 15\% V.A.T.

Please phone for availability before ordering. All our prices include 15% VAT.
Companies invited to send SAE for our up to date Wholesale price list.

WHOLESALE

ELECTRIC COMPONENTS

	Stock	Price
AU113	183	.98
BC183A	2,000	$\mathbf{. 0 3 6}$
BC184L	7,000	$\mathbf{. 0 3 6}$
BC212A	4,000	.036
4v7 Zener	12,000	.02
3K Presets	20,000	$\mathbf{. 0 1 3}$
TBA800	6,000	.44
7448	1,600	.20
.01uF Disc	10,000	.01
16 Pin Dil	10,000	.08

We also buy large packages of Components.

STRUTT

electrical and mechanical engineering ltd.
ELECTRONIC COMPONENT DISTRIBUTORS
3c, Barley Market St., Tavistock, Devon. PL19 O5F
Tel: Tavistock (0822) 5439 Telex: 45263

Electronics Make ajob-or hobby-ofit
 The opportunities in electronics, today, and for the future

 are limitless - throughout the world - jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, T.V. and all associated equipment - can make for a varied, interesting and highly renumerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equipment coming on the world market.We give modern training courses in all fields of electronics practical D.I.Y. courses - courses for City and Guild exams, the Radio Amateur Licence and also training for the new Computer Technology. We specialise only in electronics and
 have over 40 years of experience in the subject. - Details sent without any obligation from

\int Bacure meniman ion
 British National Radio \& Electronic School
 1 P.O. Box 156, Jersey, Channel Islands

NAME
ADDRESS \qquad
Block caps please

30 Wilmslow Audio THE firm for speakers!

SEND 30p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

> AUDAX © AUDIOMASTER © BAKER BOWERS \& WILKINS • CASTLE - CELESTION CHARTWELL - COLES - DALESFORD DECCA © EMI E EAGLE - ELAC © FANE GAUSS - GOODMANS - I.M.F. © ISOPHON JR © JORDON WATTS © KEF © LEAK • LOWTHER McKENZIE - MONITOR AUDIO - PEERLESS RADFORD - RAM - RICHARD ALLAN - SEAS SHACKMAN - STAG - TANGENT TANNOY VIDEOTONE WHARFEDALE YAMAHA

WILMSLOW AUDIO (Dept. P.E.)
swan works, bank square, wilmslow, CHESHIRE SK9 1HF

Discount HI-FI, etc. at 5 Swan Street
Tel.: Wilmslow 529599 for Speakers
Tel.: Wilmslow 526213 for $\mathrm{Hi}-\mathrm{Fi}$

THENVI

EUROSOLDERSUCKER

The 195 mm long, all metal, high suction, desoldering tool with replaceable Teflon tip enables removal of molten solder from all sizes of pcb pads. Primed and released by thumb, it incorporates an anti-recoil system and built in safety guard. Only $£ 7.25$ inc. VAT \& P.P.

Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to .85 mm dia.
500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points, plus 4 Integral Power Bus.Strips around all edges for minimum inter-connection lengths.
All connection rows and columns are now numbered or lettered enabling exact location indexing.
Double-sided nickel silver contacts for long life (10K insertions) and low contact resistance $(<10 \mathrm{~m}$. ohms)
Easily removable, non-slip rubber backing allows damaged contacts to be rapidly replaced.
No other breadboard has as many individual contacts, offers all these features and costs only $£ 6.20$ each or $£ 11.70$ for 2 - inclusive of VAT and P.P.

Snip out and Post
David George Sales, r/o 74 Crayford High St., Crayford, Kent DA1 4EF

Tel No.

Please make cheque/P.O.'s payable to David George Sales

KITS

Kits include com-
ponents, printed circuit boards and instructions
Pools predictor (44
$\mathbf{4 . 3 0}$
Clap switch (40)
Ring modulator (39)
Mini short wave receiver (33) Ioniser (28)
Telephone amplifier(26) Touch dimmer (21)
Equaliser (15)
Perametric equaliser (51)
Audio analyser (52)
Automatic battery charger (53) $£ 17.50$ VHF/UHF T.V. modulator (1) £5.50 100W amplifier using
$2 \times$ LM391 I.C. (3) $\mathbf{~} \mathbf{1 5 . 5 0}$
Magnetiser (41)
Ultrasonic transmitter for headphones (55)
Ultrasonic receiver for
headphones (56)

Assorted Giant Screw Packs

 IncludesSelf tapping, self cutting screws, nuts, bolts, washers, eyelets etc. etc.
Weight - 1 kg (2.2lb).
Approx 1400 items
Only $\mathbf{E 1 . 8 0}$ (U.K. only)

SPECIAL OFFERS

Assorted ceramic capacitors exceptionally good selection (NO RUBBISH) 300 for £1.30

Connecting wire assorted colours. 25 yds for 50p

Reed inserts - 28mm. Normally open gold contacts. 10 for $£ 1.00100$ for $\mathbf{£ 7 . 5 0}$

5" oscilloscope tubes SE5J. $£ 15.00$ (for callers only).

T. POWELL,
 306 St, Pauls Road, Highbury Corner, London N1.

Tel: 01-226 1489

ORDERS -
Add 25p post and packing Add 15\% VAT to total order

Minimum order $£ 1.00$. Barclay/Visa/Access cards accepted.
Minimum Telephone orders $£ 5.00$.

SHOP HOURS

Mon-Fri 9-5.30 pm Sat $\quad \mathbf{9 - 4 . 3 0} \mathrm{pm}$

JONES ELECTRONIC SUPPLIES
 JONES ELECTRONIC SUPPLI
 Tet: 061-652 9879. Telex: 668250. ALL PRICES INCLUDE VAT
 Shop open Mon., Thurs., Frid. 9 am- 7.30 pm Weds. \& Sat. 9 am- 6.00 pm
 Stockists of Lektrokit Breadboard, Vero, CMOS, TTL, Resistors, Capacitors etc. Leech Amplifiers \& Speakers.
 Barrel Kits 99p each.
 $\begin{array}{lrl}\text { BK1 } & 8 \text { Rotary switches (3 position) } \\ \text { BK2 } 20500 K \Omega \text { presets }\end{array}$ BK2 $20500 \mathrm{~K} \Omega$ presets
 BK4 4 to 2206 amp power transistors
 BK5 25 TTL devices
 BK6 5 thyristers 2N5061.8 amp 400V
 BK7 50 assorted diodes, inc. zenners BK8 50 assorted NPN/PNP
 p\&p 20p
 $p \& p 20 p$ $p \& p 20 p$

MAKE YOUR OWN KEYBOARDS
ML3 individual keyboard switch with re-cappable top allowing lettering by individual. Only (1-10) 30p each. (11-20) 27p each. (20-100) 25p each.P\&P 30p per 10.
Ni -cad batteries to military spec., high discharge re-charge capabilities in parallel. AA 1-25 p\&p 20p each
C 2-90 p\&p 20p each
D 3-50 p\&p 20p each

PROGRESSSIVE RADIO 31, CHEAPADE, LVVAPOOL LI 2DV
 52348 PIN REGS. 3ip. ADI61/2 MATCHED PAIRS 70p. 2N3055 3tp. 1 N4005 10 FOR 35p. BD238 28p. MINATUNE MAIME TRAMBFOAMEAS. ALL 24OVAC PRIMARY. $6-0-6100 \mathrm{~mA}$. $9-0-975 \mathrm{~mA}, 12-0-1250 \mathrm{~mA}$ all 7p each. 12-0-12 100mA 9p. 12V 500 mA etp. O-6V-0-6V 280 mA E1.30p.
 available, 6-9-12 or 24 VOC eop each.
 resistance ranges to 1 meg. E8.e5p.
soLDER EUCKER. High suction/tefion nozze, 24.9es. Munh
mortoris. 3V model type 22p. 12 V model 5 pole 34p. Replacement 12 VDC 8 track motors 85 sp . Ex. equip. 5-7 volt

AMPHENOL CONX CONHECTONE. Plugs 47p, Sockets 42p, Elbows 20 . Reducers 13 p .
pliter 1 in 2 out mep :
SPECIAL OFFER STEREO HEADPHONEE. 8 ohms, adjustable, standard sterao plug onty E2.98p.
WTTACOM UMITS (can be used as baby alarm) supplied with approx. 60 cable, call button, 2 way $\mathbf{2 5} .25$ pair. 3

 COMDENEEA MIKE. Stick type. Omni, 600 ohms. orvoff switch, standand jack plug only $\mathbf{2 2 . 0 5 p}$. EME07 CONDEMEER WICROPHONE. Highly polished metal stick mike, Uni dirsctional, $600 \mathrm{ohms} .30-18 \mathrm{KHz}$, on/off
 metal case only

號 SPECIAL OFFER TAPE HEAD DEMACMETIEEG, 240 VAC with curved probe only 2 R.esp. Cash with order please, official orders welcome from schools etc., pleose add 30p post and packing. VAT inclusive.
ALL ORDERS DESPATCHED BY RETURN POST
SAE for intest illustrated stock fist.

SUPER SPOT DISCO SYSTEM 2

\star Fully enclosed drive unit $\star 8$ A trıacs \star Fused $\$$ Suppressed

- Expandable using slave units connected via 9 way socket \star Stand takes 16 Spots \star Regd. Design $\star 450$ watt/channel \downarrow Sequence, auto or audio drive
\star Fully adjustable \star Fully isolated audio input and output sockets *

Price includes: Spot stand, Swivel spot holders, Coloured spot lamps, Sequence drive or slave unit, Fitting kit for ceiling hung \& surface or wall mounting
V.A.T. Post \& Packing and Guarantee

NOBLE ELECTRONICS (PE)
26 Lhoyd Street, Altrincham, Chethire WA14 2DE
Tel:081-9414610

J. BIRKETT

Radio Component Suppliers

25 The Strait, Lincoln LN2 1JF. Tel: 20767

OPTO 18 OLATORS Type $1 \mathrm{~L}-74$ with data © 50 p .
20 ASSORTED PHOTO TAANSISTORS ANDDARLINGTONS untested \&1
ALLOY DIE CAST BOXES $6^{\prime \prime} \times 3.3 / 16^{\prime \prime} \times \mathbf{2}^{\prime \prime}$ e $£ 1.15,3$ for $£ 2.85$.
ELECTROLYTIC CAPACITORS $2000 \mathrm{uf} 450 \mathrm{v} . \mathrm{w} \cdot 5^{\frac{1}{2}}{ }^{n} \times 3^{\prime \prime}$ e $£ 2.25$.

. 1 uf 125v.w. 1\% POLYESTER CAPACITORS 15 p each.
MULLARD 1000 ut $18 \mathrm{Bv} . \mathrm{W}$. 15 p each. 4 for 50 p .
HEXAS BRIDGE RECTIFIERS IB $10 J 40$, 400 PIV 1 AMP a 30p.
MINIATURE CERAMIC 12 WAY TAG STRIPS 15p each
ELECTROLYTIC CAPACITORS $2350+2350 \mathrm{U} . \mathrm{F}$. $63 \mathrm{v.w}$. - 75p, $5000+5000 \mathrm{uf}$
$25 \mathrm{v} . \mathrm{W} .$, e 75 p , $1500 \mathrm{uf} 63 \mathrm{v} . \mathrm{w}$., e 45p.
TOGGLE SWITCHES 10 Amp 250V. 2 Pole Make 50 p each.
MINIATURE 12 WAY CERAMIC TAG STRIPS a $15 p$ each
TANTALUM BEAD CAPACITORS . $1 \mathrm{uf} 35 \mathrm{v} . \mathrm{w} . ., 22 \mathrm{uf} 35 \mathrm{v.w} ., 47 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$., $1 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$., $2.2 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$. ., $3.3 \mathrm{uf} 16 \mathrm{v} . \mathrm{w}^{2}$. $4.7 \mathrm{uf} 10 \mathrm{v} . \mathrm{w}$., $4.7 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$. . $6.8 \mathrm{uf} 35 \mathrm{v} . \mathrm{w} ., 10 \mathrm{uf} 10 \mathrm{v} . \mathrm{w} ., 10 \mathrm{uf}$ $25 \mathrm{v} . \mathrm{w} ., 22 \mathrm{uf} 16 \mathrm{v} . \mathrm{w} ., 33 \mathrm{uf} 10 \mathrm{v} . \mathrm{w} ., 33 \mathrm{uf} 25 \mathrm{v} . \mathrm{w}$., All at 9 p each. $100 \mathrm{uf} 10 \mathrm{v} . \mathrm{w} ., 150 \mathrm{uf}$ 25 gTUD MOUNTIME 10 AMP DIOD
10 STUD MOUNTIMG 20 AMP DIODES untested 60p.
501 AMP S.C.R's tO5 Case untested E1.
255 AMP STUD MOUNTING S.C.R's unt
50 OC 71 TRANSISTORS untested for 75p.
3 PIN EUROPEAN PLUG, SOCKET 2M CABLE at 75 p pair.
10 ASSORTED PUSH BUTTON BANKS less knobs for $£ 1.30$.
10 ASSORTED SLIDER POTENTIOMETERS for £1.
50 ASS ORTED DISCS \& 60 . 50 ASSORTED TUBU
OASS ORTED DISCs a 60 . 50 ASSORTED TUBULAR CERAMICS 60p
NSF BIASED DPDT TOGGLE SWITCHES 25p each.
ELECTRETMICROPHONE INSERT WITH PRE-AMP EET.85.
LEDS THL 209 f for 50p, $2^{\prime \prime}$ LEDS Red e 15p, Green 218 p.
$2800 u f 100 \mathrm{v} . \mathrm{w}$. MULLARD ELECTROLYTICS $£ \mathrm{E} 1.00$ each
 250 mW AUDIO AMPLIFIER MODULE © E2. 50 .
50 BC 107-8-9 TRANSISTORS untested for 60 p .
WIRE ENDED GLASS CRYSTALS $28 \mathrm{KHz}, 28.5 \mathrm{KHz} .29 .75 \mathrm{KHz}, 29.76 \mathrm{KHz} .31 .5$ $\mathrm{KHz}, 83.997 \mathrm{KHz}$. All at 50 p each.
INTEL-1024 BIT DECODED STATIC RAM TYPE 2102 a 1.00 each
35 WAY PLUG AND S OCKET £ 1.15 pair.
400 mW ZENERS unmarked good $3.6,6.8,10,11,12,13,16,18,24,30 \mathrm{v}, 33,36$ volt. All at 10 for 40 p .
CENTRE OFFS LIDE SWITCHES \& $15 \mathrm{p}, 4$ for 50 p
PLASTIC POWER TRANSISTORS BD 175 or BD 187 Both 25p
RON CORED L.F. CHOKE 4 M.H. 4 AMP G 50 p (P\&P 20 p).
NIRE WOUND POTENTIOMETERS 2 K 2 watt, 1OK 2 watt, 5 K 4 watt, 100K 4 watt. All at 25p each

Please add 20p for post and packing, unless otherwise stated, on U.K. orders under $£ 2$. Overseas postage charged at cost.
U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

BAKER 150 WATT ALL PURPOSE TRANSISTOR MIXER AMPLIFIER Idsel for Groups, Disco, P.A. and Musical instruments. 4 inputa	Sizes: $14 \frac{1}{2} \times 12 \frac{1}{2} \times 4 \frac{1}{4}$ in $\mathrm{E3}$. $16 \times 14 \times 3 \frac{1}{\mathrm{in}} \mathbf{\mathrm { f }} 5$. $15 \frac{1}{4} \times 13 \frac{1}{2} \times 4$ in. E4. $17 \frac{1}{4} \times 9 \frac{1}{2} \times 3 \frac{1}{2}$ in. EJ. $14 \frac{1}{2} \times 14 \frac{3}{2} \times 2 \frac{1}{2}$ in. Rosewood sides \mathbf{Z}_{4}. $18 \times 13 \frac{1}{4} \times$ in. $\mathbf{£ 6} .18 \times 12 \frac{1}{2} \times 3$ in. $\mathbf{E 6}$. Ideal tor record decks, tape decks, etc. Post $£ 1.60$	
speach and music 4 way mixing. Output 4/8/16 ohm, a.c. Msins 240V. Separate treble and bass controla. $\mathbf{£ 8 5}{ }^{\text {Post }}$ 100 volt line model 214 extre.	R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS All parts and instructions with Zener diede printed circuit, rectifiers and double wound mains iransformer ingut 200240 V g.c. Output voltager zuailobto 6 or 5.5 or 9 or $12 V$ dic. up to 100 mA or lens Size $3 \times 2 \frac{2}{2} \times$ $1 \frac{1}{2}$ in. Plasse state voltage required.	
	ELECTRO MAGNETIC PENDULUM MECHANISM 15 V d c oderation ovar 300 hours continuous on SP2 batlery fully adjustable swing and speed ldeal displays teaching electro magnetism or for metronome strobe etc	
	MAINS TRANSFORMERS AlLPOST 7Epeach	
TDEAL FOR DISCOS, GROUPS, PUBLIC ADDRESS Two inputs with volume controls. Master treble bass and 'volume controls. Suitable for alil loudspeakers. $£ 65$. Post $£ 1.60$.	250-0-250V 70mA $63{ }^{2 / 8}$	
	HEATER TRANS $63 V 3 A E 2 \frac{1}{2}$ amp	
Complete kit of parts with R.C.S. printed circuit. Three 1000 W channels Will operate from 200 mV signal source CABINET extid f4. $K I T=\mathbf{£ 1 8 . 0 0}$		
R.C.S. 10 WATTAMPLIFERKIT.		
	30	
	$2 \times 18 \mathrm{VV} 6 \mathrm{~A} 811.12-0.12 \mathrm{~V} 2 \mathrm{amp} 23.50 .25-0.25 \mathrm{~V} 2 \mathrm{amp} 84.60$.	
	$20-0-20 \mathrm{~V} 1 \mathrm{~A}$ E3. 50.30 V 11. A E3.30. $20 \mathrm{~V} 1 \mathrm{~A} E 3$. $9 \mathrm{~V} 3 \mathrm{amp} 23.50 .60 \mathrm{~V}, 40 \mathrm{~V}, 20 \mathrm{~V}$ or 20 V . 1 A e 4.	
	ampes	
	RS 115 V to 230 V or 230 V ; 400W Es: 500W E10.	
 Easy to build. Full instructions supplied	GER TRANSFORMERS input $200 / 250 \mathrm{~V}$	
	$1 \frac{1}{2} \mathrm{~A} 95 \mathrm{P}$; 4A £1.00. HALF WAVE $12 \mathrm{~V} 1 \frac{1}{2} \mathrm{~A}$ 35p.	
LOW VOLTAGE ELECTROLYTICS		
	$12,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p} .500 \mathrm{mF}$ E1.85; $12 \times 3 \mathrm{in} £ 1.20 ; 16 \times 10 \mathrm{in} . \mathrm{E}_{2} .20,12 \times 8 \mathrm{in}, \mathrm{f1} .70$.	
50V 47p; 100 V 70 p . 2000 mF 40 V 6p; 25V 42p. $2500 \mathrm{mF} 10 \times 7 \mathrm{~m}$ 54p; $12 \times 5 \mathrm{in} .50 \mathrm{p} ; 12 \times 8 \mathrm{in} .70 \mathrm{p} ; 16 \times 6 \mathrm{in} .70 \mathrm{p} ;$		
4700 mF 63 V £1-20. 5000 mF 6 V 2 Sp ; $12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V}$ 75p; 35V 85p. 5600 mF 76 V £1.75. 1200 mF 76 V 50 p.		
HIGH VOLTAGE ELECTROLYTICS		
$8.350 \mathrm{~V} 22 \mathrm{p} \quad 8.8 / 450 \mathrm{~V}$ 50p $\quad 50.50 / 300 \mathrm{~V}$ 50p	THE "INSTANT" BULK TAPE ERASER	
$16,350 \mathrm{~V} 30 \mathrm{p} \quad 8.16 / 450 \mathrm{~V} 50 \mathrm{p} \quad 32.32 / 450 \mathrm{~V} 75 \mathrm{p}$	Sulable for casselles	
$32 / 500 \mathrm{~V} 75 \mathrm{p} \quad 16.16 / 450 \mathrm{~V}$ 50p $\quad 100.100 / 275 \mathrm{~V}$ 65p		
$50 / 500 \mathrm{~V}$ £1.20 32.32350V 50p $150.200 / 275 \mathrm{~V} 70 \mathrm{p}$		
MANY OTHERS IN STOCK	Head demagnetiser $\mathbf{f 5 . 0 0}$	

RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD, CROYDON, U.K.

Minimum post 30p. Accese and Barciaycard Same day despatch Redio Bookemod Componente Linte 20p Open 9-6 Sat. 9-5 (Closed Wedneaday all day). Tel. 01-884 1B65

MINIATURE MAINS TRANSFORMERS Top quality. Split bobbin construction will give $4.5 \mathrm{~V}-0-4.5 \mathrm{~V}$ at 250 MA . $1 \frac{1}{4}^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ all sorts of uses. ONLY 90p. 3 for $£ 2.20$. 1000 uf, 100V. Radial. $1 \frac{1}{2 \prime}^{\prime \prime} \times 2^{\prime \prime}$. ONLY 70p. 3 for f 1.50 . B0131's $\mathbf{4}$ for $\mathbf{£ 1 . 0 0}$	
 Buy our Honcyamal! Numifity Controliter. Membrane actuated, very sensitive. $t^{\prime \prime}$ shaft. 250V, 3.75A Contacts. Idaai for gromihouses, cantrally heated homes.	3mOKE AND EAS DETECTDR Usat TGS 105 plug in senser, housed in neat $3 \frac{1}{2}^{\prime \prime}$ die cast box. hat indicator. 24V. 112V by altaring 3 compenment values). Will operate lamp or rolay with dats and cirevitff. 85 Rolays for abowe EI me. state woltuan
	TRAMsistor packs 140. Full spec, now snd maked. Inctudes BCT48. BC184L MED4 12. BF274, BC 154 etc, etc. $\mathbf{E 4 . 9 5}$ 269 as abon sud includes AC128. 2H3055, BFY5O. BDI31, BF200 etc. 59.96 Buy bulk and sav money, these packs act worth at least double
CASSEITE MOTORS machonical switching etc. 2000 R.P.M. approx. 80	
ULTRASDNIC TRAMSD Tranemitter and receiver. 40 kth 14 me	P/E SWITCH Raniss Theme ceat a fortmal Ware mada for various music centres. Includes indapeadent and interdeponitent hatching types multi
$8 \times$ P POLE FEEO RELAYS OW BOARO 12 V idenl for burglar alafms, model raikeys atc. $\mathbf{E 2}$ A	
100 mimiature neeo switches Wh are the cheapast! $\mathbf{~} 3.30$	BULK BARGAIMS, STOCK UP FOR SUMMER 300 mixad $\frac{1}{8} \frac{1}{\frac{1}{2} \text { watt resiators } \mathrm{E} .50}$ 150 mixed 1 \& 2 wrt residtors $\mathrm{E1.50}$ 300 mixed capacitors, modern, most types $\mathbf{£ 3 . 3 0}$ 100 maned coramic and olate cras 51.26 400 mixed $71 / \mathrm{m}$ rasistors f 2.95 100 mixed polystyrane caps $\mathbf{£ 2 . 2 0}$ 25 pots and prosinz $£ 1.50$ 25 presurs, skaleton utc. $\mathbf{£ 1 . 2 0}$ 20 VORs and ithermistors f 1.28 100 Hi-wathage resistors wirwound atc. $\mathbf{E 2 . 2 0}$ 100 electrolytics, nica values $\mathbf{E 2 . 2 0}$ 300 printed circuit resirtors $\mathbf{E 1}$ 300 printed circuit components $\mathbf{\$ 1 . 5 0}$
G.E.C. UHF TRAMṠISTOR TV TUNERS Rotary typo widh slow motion erine, thols and merial seckne. £1.50 3 for $\mathbf{5 3 . 5 0}$	
make cheap batieny elimimaturs Fulty shrouded mini mains transformers. 240 V in $8-0-8 \mathrm{~V}$ at 100 ma out. Complate with mains lead and plug. ex now nquip. $9 \mathrm{mp}_{\mathrm{p}}$	
DE LUXE FIBRE GLASS PRINTED CIACUTT ETCMIMG KIFS Includes 150 sp. ins. copper elad F/G. Doard. 1 lb terric choside. 1 delo atch rusist pen. Abrasive cleanor. ftch tray plus instructions. Epeciel Price $\mathbf{5 4 . 9 5}$ 1 He FE. C1. To mil. spec. E1.25 5 mFE C1. To mil. spec. $55 . \mathrm{ed}$ 150 sq . in. simg sided board $\mathbf{£ 2 . 0 0}$ 	
	gaok miniature thumbwheel slider pots Very neat, can be bankod side by side. hieal for v. cap tuning. graphic equalisers atc. 10 tor $\mathbf{£ 1}$ 10ak STERED SLIDER pots Good quslity, 25p se 5 for fl
	MIMIATURE LEVEL/BMIT. METEAS 201HA F.S.D. as fited to many cassette recorders BO_{p}
 SENTINEL SUPPLY, DEPT. P.E. 149A BROOKMILL RO., DEPTFORD, LONDON, SE8	

Mail Order Protection Scheme

The Publishers of 'Practical Electronics' are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owning to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.
In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with 'Practical Electronics' within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence. For the purpose of this scheme, mail order advertising is defined as:-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail order advertising are excluded.

ASTRA-PAK
 92 GODSTONE ROAD

WHYTELEAFE SURREY CR3 OEB

Using Devetron (Reg'd)

Over 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, welltried range of Dewtron synthesiser and other effects modules.
Send 25p for Musical Miracles Catalogue NOW!

D.E.W. LTD.

254 RINGWOOD ROAD, FERNDOWN, DORSET BH22 9AR

VAT must be added at 15% to all
prices shown. P\&P $25 p$. VAT. Send SAE for tull catalogue inluding books, resistors. capacitors. vero. etc

PROFESSIONAL MODULES

(

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.'

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour T.V. Servicing
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE.

Name
Address Age

To ICS, Dept. N273, Intertext House
London SW8 4UJ
or telephone 01-6229911 (all hours)

RECEIVERS AND COMPONENTS

electronic components. Quick delivery, wide range from stock. Catalogue on request. J. R. Hartley, Electronic Components, 78B High Street, Bridgnorth, Salop, WV16 4DY.
mimiature panel meters approx. 1" cube. Left Pointer rest position. Scale calibrated $1-10600 \mathrm{ohm}$ resistance. Sensitivity 400 uA - $\mathbf{1 1 . 2 5 p}$. each inc. P\&P. Wilkinsons Ltd., Industrial Estate, Pocklington, York

200 mixed components $£ 4$. Sole Electronics, 37 Stanley Street, Ormskirk, Lancs L39 2DH.

TURM YOUR SURPLUS Capacitors, transistors, etc., into cash. Contact COLES-HARDING CO., 103 South Brink, Wisbech, Cambs. 0945-4 188. Immediate settlement.

VHF Converter. $45-220 \mathrm{MHz}$ (Varicap) $29-30 \mathrm{MHz}$ IF. Ideal feed HF receiver. Only $\mathbf{~} 6.80$. Ready built (PSU etc) in case. $\mathbf{£ 2 4 . 5 0 .} £ 1.00$ carr. SAE details. H. Cocks, Bre Cottage, Staplecross, Robertsbridge, Sussex. Tel. 058083-317.

$$
\begin{aligned}
& \text { P.C.B. } 5 \text { Paxolin } 10 \frac{1}{2}^{\prime \prime} \times 4 \frac{1^{\prime \prime}}{} \text { 4-f1.30. } 1^{\prime \prime} \times 9 \frac{1}{2} 85 p .16^{\prime \prime} \times \\
& \text { P.C. B. } 51 \frac{1^{\prime \prime}}{} \text { f1.40. O.S. } 10^{\prime \prime} \times \mathbf{x}^{\frac{1}{2}} 8_{1^{\prime \prime}}^{\prime \prime} 85 \mathrm{p} \text {. Fibre Glass } 12^{\prime \prime} \times 7 \frac{1}{2}^{\prime \prime} \\
& \text { E1.60. D.S. } 10 \frac{1}{2}{ }^{\prime \prime} \times \mathbf{7}^{\prime \prime} £ 1.35 .8^{\prime \prime} \times 7^{\prime \prime} £ 1.15 \text {. Unit with } 8 \\
& \text { silicon diodes } 600 \mathrm{~V} 20 \mathrm{amp}, 8 \text { SCRs } 400 \mathrm{~V} 16 \mathrm{amp}, 6 \\
& \text { Vinkors. W.W. resistors etc. } \mathbf{f 6 . 7 5} .300 \text { small components, } \\
& \text { trans. diodes } £ 1.55,7 \text { tbs. assorted components } £ 3.75 \text {. List } \\
& \text { 15p refundable. Post } 20 \mathrm{p} \text {. Insurance add } 15 \text { p. } \\
& \text { J.W.B. RADIO } \\
& 2 \text { Barnfield Crescont, Sale, Cheahire M33 1NL }
\end{aligned}
$$

TUNBRIDGE WELLS COMPONENTS, Ballards, 108 Camden Road, Tunbridge Wells. Phone 31803. No Lists. Enquires S.A.E.

COMPUTER P.C.B's (Assembled, with at least $£ 7$ of com ponents) from \&1. Contains some un-available. expensive I.C.'s INC. T.T.L. Crystals. DIL sockets and many discrete components. Tel: Biggleswade 312103.

SMALL ADS

The prepaid rate for classified advertisements is, 20 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 6.60$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

Publishers Announcement

Due to increases which may have taken effect since this issue went to press, we strongly advise readers to check with advertisers the prices shown, and availability of goods, before purchasing.

RECORD ACCESSORIES

STYLI Cartridges for MUSIC CENTRES, \&c. FREE List No. 29 for S.A.E. includes Leads, Mikes, Phones \& ${ }^{2}$. FELSTEAD ELECTRONICS,(PE), Longley Lane, Gatey, Cheadle, Ches. SK84EE.

TAPE EXCHANGES

RECORDER owners (cassette/reel) can now speak to the world! All ages . . every interest. Send stamp: WORLDWIDE TAPETALK, 35 The Gardens, Harrow.

SERVICE SHEETS

SERVICE SHEETS from 50 p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

BELI'S TELEVISION SERVICES for Service Sheets on Radio, Tv, etc $\mathbf{f 1 . 0 0}$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel: (0423) 55885.

WANTED

ONE SINCLAIR 230 AMPLIFIER MODULE. Working condlition. 56 Arthur Street, Penrith.(0768) 64956.

WANTEO Kit or constructed Sinclair, Worlds smallest radio. Thorogood, 42 Friars Street, Sudbury, Suffolk.

SITUATIONS VACANT

TRAINEE INTERNAL SALES ENGINEER

A challenging opportunity exists helping to sell our range of quality instruments (panel meters and test equipment).
Applicants would be expected to have the appropriate technical background (knowledge of physics, maths or electronics) and a good telephone manner. Previous commercial experience desirable but not essential.

ANDERS ELECTRONICS LIMITED

48-56 BAYHAM PLACE

 LONDON NW1 DEUTELEPHONE: 013879092

Electronics/Software Engineers Leisure Industry

Due to continued expansion in the development of

 systems related to coin operated phonographs. video games and other types of coin operated amusement machines.The Research and Development Department of Associated Leisure Amusement Machines Ltd. is seeking to recruit Electronic Engineers with oftware experience.
The candidates should have experience in the design and operation of Microprocessor systems with a degree of knowledge relative to Software Programming.
3 weeks annual holiday, non-contributory pension scheme. Salary negotiable.
Applications in writing to: Mir. N. Parker, Divisional Research and Development Manager, Associated Leisure
Amusement Machines Ltd. The Old Granary, Wetmore Road, Burton-on-Trent, Staffs

LA00ERS. Varnished $25 \frac{1}{2}^{\prime}$ ext. £46.04. Carr. £3.50. Leaflet.
Callers Welcome. Ladder Centre (PEE5) Halesfield (1). Callers Welcome. Ladder Centre (PEE5) Halesfield (1). Telford 596644

Instrument Mechanics and Instrument Fitter/ Machinists

To work in the following areas of the Instrument Department:-

* Machining and fitting * Assembly * Wiring * Test * Maintenance * Calibration * Engine test preparation.

The Aero Division of Rolls-Royce Limited are seeking to employ experienced and qualified men and women to join the existing teams based at Derby.

The work involves a wide range of equipment from simple voltage and current meters to complex microprocessor and computer based systems.

Applicants should have served a recognised apprenticeship or H.M. Services equivalent in radio/TV, radar, instrumentation, electrics, precision instrument making, fitting, machining or other relevant field. Whilst experience of instrumentation would be an advantage it is not essential.

The posts are on our dayshift (with 3 shift working as and when required) and on our permanent 3 shift system.

The work is interesting and challenging offering scope for promotion.
A high basic wage is offered with generous additional premiums for overtime and shift working. In addition attractive fringe benefits include free safety shoes and overalls, subsidised meals and full factory staff conditions after only 12 months service. In addition the Company provides a comprehenisve pension scheme with life assurance, excellent sport and welfare facilities. Assistance with relocation expenses will be given in appropriate cases.

To apply either fill in the quick response coupon and mail FREEPOST, (no stamp required) to:-
M. Barnard, Employment Office, Aero Division, Rolls-Royce Limited, P.O. Box 31, Derby DE2 8XA.
or telephone Derby (0332) 42424 ext 569 for an application form or call in at the:
Employment Office, Nightingale Road, Derby, 8.30am until 5pm Monday - Thursday and

EDUCATIONAL

TELEVISION \& VIDEO SYSTEMS SERVICING

15 MONTHS full-time Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
- mono \& colour television
- closed circuit television
- VIDEO CASSETTE RECORDING
- digital techniques
- teletext \& TV Games

Shortened courses for applicants with suitable electronics background.

Next session starts January 7 th.
(Also available $2 \frac{1}{2}$ year course in Marine Electronics \& Radar for employment as ships Radio Officer.)
Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept. PEA11, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721.

FOR SALE

MK14 Microcomputer. working, 3 AMP P.S.U., extra manuals £45. o.n.o. Hallsham 840290 (Evenings).
P. E. MAGS Nov. 64 to Dec. 77 complete. Offers to: 66 St . David's Crescent. Coahille. Leics.

SAXON STEREO Disco Mixer Module \& P.S.U. Unused, $\mathbf{£ 4 2}$ Also advance Alpha II D.V.M. £25. A. J. Hampson, 60 Thirlmere Ave., Standish. Wigan, Lancs.

NEW BACK ISSUES of "Practical Electronics" available 70p
each Post Free. Open P.O./Cheque returned if not in stock each Post Free. Open P.O. Cheque returned if not in stock Yorks. Tel: (0423) 55885.

Complete Set of PRACTICAL ELECTRONICS some in binding covers and all in mint condition. The lot $£ 34.00$. E. J. Peek, 17 Orchard Close, Denham. Nr. Uxbridge.

NEAR COMPLETE SET PRACTICAL ELECTRONICS 1964 (first issue)- 1974 inclusive. Offers. 0275802090.

UUARTZ Quality Battery Clock Movement to make your own clock, with straight or serpentine hands, $25.75+30 \mathrm{p}$ P\&P. Mosswood Supplies, 6 St. Helens Crescent, Benson, Oxford.

MK14 - $\frac{1}{2}$ K RAM. S/S circuitry £50. P E. VDU Built, working £50.061-4458770

PRACTICAL ELECTRONICS from start 1964 to present date. First eleven volumes bound Offers 01-788 4970 after 6 p.m.

SCOPEX TWIN Beam oscilloscope 4D 10A with probe set,
like new, immaculate, best offer over $£ 150$. Paul Lobel, 62 like new, immaculate, best offer over $£ 150$. Paul Lobel, 62 Bromley Gardens. Blyth Vorthd

MK14 WORKING with PSL Keybuard, extra R.A.M., R.A.M. I/O Single Cycker tape interface. £65. 0632 810459 (Newcastie)

PRACTICAL ELECTRONICS Vol. I. No. 11965 1978. Offers. Tel: Bedford (0234) 55325 .

OHIO SUPERBOARD COMPUTER with 12 Programs. Shown Working. $\mathbf{£ 2 2 0}$ inc. Aylesbury $\mathbf{6 3 1 2 0 0}$.

MISCELLANEOUS					
THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4 Reg. Office 22 Conlngeby Gardens.					
ENAMELLED COPPER WIRE					
10 to 19	2.83	1.55	80		64
20 to 29	303	1.76	1.00		. 75
30 to 34	3.25	1.86	1.07		. 80
35 to 40	3.60	2.08	1.22		. 89
41 10 43	4.84	2.71	207		1.38
44 to 46	5.37	3.25	2.29		1.80
47	8.37	5.32	3.19		191
48 to 49	15.96	9.58	6.38		3.51
SILVER PLATED COPPER WIRE					
14,16.18	4.30	239	153		1.00
20822	5.32	303	1.85		1.13
24826	6.06	3.57	2.13		1.30
$28 \& 30$	700	410	250		$1.53 *$
$\begin{array}{llll}\text { Fluxcore } 60 / 40 \text { Solder } & 22 \mathrm{swg} & 65 \mathrm{ft} & 90 \mathrm{p} \\ 18 \mathrm{swg} & 22 \mathrm{ft} & 80 \mathrm{p}\end{array}$ Tinned Copper Wire $.6 \mathrm{~mm} 23 \mathrm{swg} 1 \mathrm{lb} £ 4.0010 \mathrm{lbs} £ 20$					
Tinned Copper Wire .6 mm 23 swg $1 \mathrm{lb} £ 4.00$ $10 \mathrm{lbs} £ 20$ Wire Wrapping Wire 30 awg 82 ft $£ 1.10$ Wire Wrapping Tool \& 4 Reels $£ 6.00$					
CABLES 2WAY 13.2 mm		25	Per Mazar		
$\begin{aligned} & 2 \text { WAY } \\ & 2 W A Y \end{aligned}$	$16 / 2 \mathrm{~mm}$	25		16 p	
3 WAY	$24 / .2 \mathrm{~mm}$	6 a		24 p	
3 WAY	32.2 mm	10 a		32 p	
3 WAY	14.2 mm	25 a		16 p	
4 WAY	14.1 mm	75 a		30 p	
4 WAY	$7 / .2 \mathrm{~mm}$	14 a		30 p	
6 WAY	$14 / .2 \mathrm{~mm}$	2.5		45	
10 WAY	$7 / 2 \mathrm{~mm}$	143		60 p	
$\begin{aligned} & 1 \text { CORE } \\ & 2 \mathrm{CORE} \end{aligned}$	$7 / .2 \mathrm{~mm}$	Scree		12 p	
	$7 / 2 \mathrm{~mm}$	Each	reened	16	
2 CORE	7.2 mm	Scre		14	
4 CORELO LOSS	$7 / 2 \mathrm{~mm}$	Scree		30 p	
	Co-Axial			25p	
Prices include P \& P and VAT Dealer enquiries Orders under $£ 2$ please add 20 p .					

PRINTED CIRCUIT BDARDS from your own or published designs, Glass fibre tinned or varnushed, Panel and P.C.B. legend printing. S.A.E. for quotations. R. D. ELECTRONICS, 12 Whiteoaks Road. Oadby, Leicester. 0533716273.

RAMAR CONSTRUCTOR SERVICES,

Masons Rid. Stratiord on Avon
 Warwks. CV37, 9NF 0789-4879

CLEARING LABORATORY. Scopes, recorders, testmeters, bridges, audio, R.F. generators, turn tables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.

MAKE YOUR OWN PRINTED CIRCUITS
Etch Resist Transfers - Starter pack (5 sheets, lines, pads, I.C. pads) £1.55. Large range of single sheets in stock at $32 p$ per sheet.
Ferric Chloride - 1 lb bags 80p (P\&P 50p)*
Master Positive Transparencies from P C. Iayouts in magazines by simple photographic process. Full instructions supplied. 2 sheets $(20 \times 25 \mathrm{~cm})$ negative paper and 2 sheets $(18 \times 24 \mathrm{~cm})$ positive film £1.30.
S.A.E. lists and information. P\&P $25 p /$ order except* P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

solan cells, Batteries, Panels, Thermoelectric Generators, heat pipes, books etc., Details; Edencombe Ltd., 34 Nathans Road, N. Wembley, Middx. HA0 3RX.

PRACTICAL ELECTRONICS P.C.B.'s

Professional quality glass fibre Fry's roller tinned and
drilled.
May 79 Auto ranging multimeter. Set of 5 pcb's $\mathbf{f 6} \mathbf{8 . 2 7}$ Aug. 79 Door Chime EG $140 / 3$ Set of two £1.98
Sept. 79 Waveform Generator EG 161 £1.58 Smooth fuzz EP 134 75p.
Oct. 79 Input Channel Amp EP 158 set of 6 ع5.61
Dig Temp Controller EC9 $£ 1.90$
VLF Receiver EG $174 / 5$ set of 2 £1.75
For full list and current pcb's please send SAE. PCb's also produced from customers own masters. Trade enquiries welcome. Please write for quote. CWO please.
Potage - On orders less than f 10 please add 25 postege. Poutage - On orders less than f 10 please add 25 p postege.

> PROTO DESIGN 14 Downham Road, Ramsden Heath Billericay, Essex CM11 1 PU Telephone $0268-710722$

CABINET FITTINGS

Stage Laudspeakers and Amplifier Cabs Fretcloths, Coverings, Strap \& Recess Handles, Feet, Castors, Jacks \& Sockets, Connons, Bulgin 8 ways, Reverb Trays, Locks $\&$ Hinges, Corners, Trim, Speoker Boits etc.
Send $2 \times 9 p$ Stamps for samples and illustrated
Send 2×9 Stamps for samples and illustrated catalogue

ADAM HALL (P.E. SUPPIIES)

Unit 3. Carlton Court, Grainger Road Southend-an-Sea, Essex.

GUITAR/PA/
 MUSIC AMPLIFIERS

 Unbeatable at £44; 60 watt E37; 200 watt E49; 100 watt
twin channel sep. treble/bass per channel EE8; 60 watt \&4s 200 watt E72; 100 watt four channel sep. treble/bass per channel E75; 200 watt E92; slaves 100 watt E32; 200 watt
 driver fuzz with treble and bass boosters $\mathbf{\Sigma 1 8}$.E0; 100 watt
combo superb sound overdrive, sturdy construction, castors combo superb sound overdrive, sturdy construction, castors;
unbeatable $£ 90$; twin channel $\& 100$; bass combo $\mathbf{E 1 0 0}$; speakers 15 in . 100 watt $£ 35$; 12 in . 100 watt $\mathrm{E23}$; 60 watt
$\mathbf{E 1 5} .00$; microphones Sh E15.00; microphones Shure Unidyne B E2B.

Send cheque or P.O. to

WILLIAMSON AMPLIFICATION

62 Thorncliffe Avenue, Dukinfield, Cheshire. Tel: 061-344 5007 or 061-308 2064

REGULATOR PCB (Ex equip) input $+12-15 \mathrm{~V}$, output +5 V $4 \mathrm{~A},+6 \mathrm{~V} 2 \frac{1}{2} \mathrm{~A},+12 \mathrm{~V}-1 \mathrm{~A}$. All regulated $£ 3+50 \mathrm{p}$ P\&P. Edge conn. $£ 1 .+5 \mathrm{~V}$ overvolts protection PCB $£ 1$. Electronic Development Supplies, 4 Blenheim Avenue, Southampton, Hants.

NICKEL CADMIUM

BATTERIES

Rechargeable and suitable for fast charge HP7 (AA) £1.05
SUB C $£ 1.36$, HPII (C) $\mathbf{E 1 . 9 8}$, HP2 (D) $£ 3.02$, PP3 $\mathbf{E 3 . 7 9}$. PP3 charger $\mathbf{E 5} .40$
All the above nickel cadmium baneries brand are guaranteed full spec. devices. All cells are supplied complete with solder tags (except PP3). Brand new full spec batterie GEABLE SEALED LEAD ACID maintenance free $\mathbf{5 4 . 0 7}$. 2.6 amp hr . 6 V f 5.23 alarms etc. 1.2 amp hr . 6 V f4.07. $2 \cdot 6 \mathrm{amp} \mathrm{hr} .6 \mathrm{~V}$ £5.23.
Quantity prices available on request. Data and charging cirpost and handling (specify battery type). Please add 10% P\&P in orders under $E 10-5 \%$ over fio. VAT at the current rate should be added to total order. Cheques, Postal Orders. Mail order io:- STALID SECURITY DEPT (PE) 10 Bredshaw SOLID STATE SECURITY DEPT (PE) 10 Bradshav
Lane, Parbold, Wigan, Lance. Tel: 025754726.

RYDER ORGAN SYSTEM

 (Wireless World)A classical design with full-size keyboards. Couplers, capture, etc., can be included.
Cassette. p.c. boards, data, from:-
HIKON LTD. (P),
Woodside Croft, Ladybridge Lane, Bolton BL1 5ED.

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only $£ 10.70$ plus 25 p P. \& P.
'Rrain-Freeze' 'em with a MINI-STROBE Elec-'Brain-Freeze' 'em with a MINI-STROBE Elec-
tronics Kit. pocket-sized 'lightning flashes' varispeed. for discos and parties. A mere $\mathbf{\$ 4 . 5 0}$ plus 25 p P. \& P. Experiment with a psvehedelic DREAM LAB, or pick up faint speech/sounds with the BIG FAR sound-catcher; readv-made multi-function modules. \&5 each plus 25 p P. \& P. IOTS MORF! Send 25 p for lists. Prices include
VAT.

BOFFIN PROJECTS
4 Cunliffe Road, Stoneleigh
Ewell, Surrey (P.E.)

P.C.B's from P.E. DESIGNS in high quality glass fibre flux varnished \& drilled Dec. 78 Guitar Multiproc Set $\mathbf{2 9 . 3 5}$; Jan. 7908 X Set f6.22 Feb. 79 Pulse Gen. £1.35; Mar. 79 H/L Warning E1.38 Apr. 79 Phaser E1.36. Sequencer PSU E1.12: Bleeper 75p May 79 Autorange Multimeter set f5.85; Sound switch 90p Aug. 79 Aug. 79 Chimesonic Main board E1.85; Melody Module 65p Sept. 79 Smooth Fuzz 78p; Waveform Gen. f1.39 For latest prices ring (0254) 73755 . Quotations for p.c.b.'s from customers' artworks send S.A.E. to P.M., W.K., 8 I. Yates, 22, Ampleside Drive, Darwen, Lancs. BB33BG Terms CWO 25p P\&P on orders less than 110

ULTRASONIC TRANSDUCERS. $£ 2.85$ per pair + 25p P \& P. Dataplus Developments, 81 Cholmeley Road, Reading, Berks.

DAZZLING COLOUR GRAPHICS FOR NASCOM 1

Genuine bit-addressable "pixel" system for straightforward programming of pictorial or mathematical functions.
8 Colour display plus 8 colour independent background facility. Full documentation with FREE SOFTWARE: powerful sub-routines for vector generation, demonstration program for animated effects. All runs in Nascom 1 without expansion. Complete with UHF Colour Modulator for operation with normal colour TV set. Superior design allows connection to most other microprocessor systems - send us diagrams etc of your b \& w video circuitry for free advice. Don't be fooled by the price: this is a top quality product which will transform your computer.

NOW AVAILABLE FOR $\& \int$ inclusive of VAT LIMITED PERIOD AT 2,4 and postage.

SUPERB INSTRUMENT CASES BY BAZELLI. manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p . Chassis punching facilities at very competitive prices, 400 models to choose from. Suppliers only to Industry \& The Trade. BAZELLI (Dept. No. 23), St. Wilfrids, Foundry Lane, Halton, Lan-
caster, LA 6LT.

NOTICE

 TO READERSWhilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

INDEX TO ADVERTISERS

Acorn Computers
Adam Hall (P.E. Supplies)
Aitken Bros.
A.J.D. Supplies

Anders Electronics Limited
Associates Leisure Amusement Machines $\dddot{\text { L̈td }}$.
Astra Pak
Aura Sounds
Barrie Electronics
Beckman Instruments
Bib Hi-Fi Accessories
Bi-Pak
Birkett J.
Boffin Projects
$\begin{array}{lrrr}\text { British National Radio \& Electronics School } 83, & 87\end{array}$
Cambridge Learning
Clef Products
Codespeed
Commodore Business Machines
Computer Components (Teleplay)
Continental Specialties Corporation U.K. Ltd
Crimson Elektrik
Crofton Electronics
C.R. Supply Co.

Davian Electronics
Delta Tech.
D.E.W.

Digisound
Dziubas
Ecoscope Instruments Ltd.
E.D.A.

Electronic Mail Order Ltd.
Electrovalue
Ferranti Electronics
Fladar
.74,75
Cover II George, David Sales
94
Haversons
Heathkit ..
Hiykon Ltd.
Home Radio
I.C.S. Intertext
I.L.P. Electronics

Jayen Developments
Jones Electronic Supplies
J.W.B. Radio

Kramer \& Co.
L. \& B. Electronics

London Electronics College
Maclin-Zand
Maplin Electronics
57 Metac
48 Mhel Electronics
78 Microdigital
74 Mill Hill Supplies ..
92 Modern Book Co.
12 Newtronics
15 Noble Electronics
91
8 P.H.W.K. \& I. Yates
12 P.K.G. Electronics
Pawbrooks
94 Phonosonics
81 Powell, T.
92 Progressive Radio
Proto Design
4
86 Radio Component Specialists

88 Ramar Constructor Service R.S.T. Valve Mail Order 94

76 Radio \& TV. Components
16 Readers Union Group of Book Clubs 70
95 Rolls-Royce Limited
85 Romane Electronics 93

91 Saxon Entertainments
72,73 Scientific Wire Co. 94
Sentinel Supply 90
81 Service Trading Cover 111
88 Solid State Security 94
92 Sparks Developments 94
89
Special Products Distributors $\quad \ldots \quad 89$
88 Squires, Roger
Stevensons Electronic Components 81
3 Strutt Electrical 64

94 Sugden, A. R.
Swanley Electronics
84
\ldots
Cover IV Tandy
6, 7 TK Electronics
94 Technomatic
4,8 Tempus $\ldots \quad \ldots \quad \cdots \quad \cdots \quad . \quad . .$.
85 Transam Components 77
82 Trident Exhibition Breadboard, ... 63
15
3
89 Vero
Videotime
8
95
... 94 Watford Electronics 2,3,58
92 West London Direct Supplies ... 82
14, 15 William Stuart Systems Ltd. ... 95
88 Williamson Amplification 94
89 Wilmslow Audio

Published approximately on the 15th of each month by 1PC Magazines Lid., Westover House, West Quay Road, Poole, Dorser BHi5 1JG. Printed in England by Chapel River Press, Andover, Hants. Sole Agents for Australia and New Zealand - Gordon ${ }^{\text {\& }}$ Gotch (A/sia) Ltd; South Africa - Central News Agency Lid.
Subscriptions INLAND and OVERSEAS 10.60 payable to IPC Services, Oakficld House, Perrymount Romd, Haywards Heath, Sussex
Practical Electronics is sold subject to the following conditions, namely that it shalil not, without the written consent of the Publishers first given, be lent, resold, hired out or otherwise disposed of by-way of
Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to VAT, and that it shall not be lent, resold or hired out or otherwise disposed of in a
mutilated condition or in any unauthorised cover by way of Trade, or affixed to or as part of any publication or advertising, biterary or pictorial matter whatsosver.
 FT3 NEON FLASH TUBE
High intensity multi turn high voltage, neon glow
discharge flash tube. Design for ignition timing etc.
$\mathbf{£ 1 . 5 0}$. P. \& E .25 p ($\mathbf{£ 2 . 0 1}$ inc. VAT) 3 for $£ \mathbf{3}$. discharge flash tube. Design for ignition timing etc.
$\mathbf{£ 1 . 5 0 \text { . P. \& P } 2 5 p \text { (} £ 2 . 0 1 \text { inc. VAT) } 3 \text { for } £ 3 \text { . P. \& }} \begin{aligned} & \text { P } 50 \text { (} \mathbf{4} 4.03 \text { inc } V A T \& \text {) }\end{aligned}$.

RODENE UNISET TYPE 71 TIMER O-60 sec 230 V a o operation. Incorporating a lapsed time
indicator and repeat facilities. A precision motonsed timer ideal
 WHY PAY MORE?
MULT RANGE METER Type MF15A a.c d.c.
volts $10.50,250.500$. 1000 . Ma 0-5. $0-10$ $0-100$. Sensitivity 2000 V . 24 range. diameter 133 by 93 by 46 mm including test leads Price
$\mathbf{f 7 . 0 0}$ plus 50 p \& \& P. $\mathbf{E 8 - 6 3}$ inc. VAT \& P.)
METERS (New) - 90 mm DIAMETER A.c. Amp., Type $62 \mathrm{~T} 2,0-1 \mathrm{~A}$
A.c. Vott. $0-150 \mathrm{~V}, \mathrm{O}-300 \mathrm{~V}$.
A.c. Vott. $0-150 \mathrm{~V}$. $0-300 \mathrm{~V}$
D.C. Amp., Type 65 C 5.
,
 HEAVY DUTY SOLENOID, mf, by
Magnetic Devices. $240 V$. A.C. Intermittent operation. Approx. 20 ib pull at
1.25 in. Ex-equip. Tested, Price $f 4.75$ 1.25 in . Ex-equip. Tested. Price $£ 4.75$
+750 . P. \& P ($\mathbf{£ 6 . 3 3}$ inc. VAT \& P.) A.C. SOLE NOID pye ether type $176 / 2$
 240 AC. Approx 1 tb at ${ }^{\frac{1}{2}} \mathrm{inch}$,
intermittent rating. Price $\mathbf{f} 1$ p\& 20 p ($\mathbf{f 1} 1.38$ inc VAT + P).
 at $\frac{1}{2}$ inch
N.M S .
18-24V D.C 70 ohm Coil Solenoid Push or Pull. Adjustable
travel to $3 / 16$ in. Fitted with mounting brackets and spark suptrave to $3 / 16$ in. Fitted with mounting brackets and spark sup-
pressor Size: $100 \times 65 \times 25$ mm . Price 3 for $\mathbf{£ 2} .40-30 \mathrm{p}$. P. \&
P (min 3 off) $(\mathbf{£ 3} \mathbf{3} 11 \mathrm{inc}$. VAT \& P.) MINIATURE UNISELECTOR 12 volt 11 -way, 4 bank (3 non-bridging 1 homing) $£ 3.00$.
$P \& P$ P $35 p$ ($\mathbf{E 3} .85$ inc. VAT \& P.). N.M S
240 A.C. SOLENOID OPERATED FLUID VALVE

body, stainless steel core and spring $\frac{1}{2}$
inleto outlet. Precision made. British mig.
PRICE f3.50 Post 50 ($\mathbf{f 4} 4.60$ inc VAT \& MICRO SWITCHES
Sub min Honevwell roller m/s tvoe 3115 m 906 t LEVER $\mathbf{E 2 . 5 0}$ POSt paid. ($\mathbf{~} 2.88 \mathrm{incl}$. VAT.)
 f2.93 (min 10)

MERCURY SWITCH

Size $27 \mathrm{~mm} \times 5 \mathrm{~mm}, 10$ for $\mathbf{£ 5 . 0 0}$
inc VAT£6.12 min quanty 10
(inc VAT £6.12) min quantity 10.30 P P. \& P.
Heavy duty type, size $38 \times 16 \times 10 \mathrm{~mm}$, minimum quantity 10
$\mathbf{£ 7 . 5 0}$ post paid $(\mathbf{E 8 . 6 3} \mathbf{~ m e ~ V A T ~ \& ~ P .) . ~}$
2-CAM PROGRAMMER
Crouzet 1 rpm. 115 V A C. Motor operating 2 Roller Micro
switches $(4 \mathrm{amp})$ Can be used on 240 V . A.C with either 0.25 switches (4 amp) Can be used on $240 V$. A.C with either 0.25
mfd 250 V . Condensor or 5.6 K wirewound Resistor 7 watt.) (not
supplied). Price: $\mathbf{£ 2 . 5 0}+50 \mathrm{p}$ p. \& p. ($\mathbf{£ 3 . 4 5}$ incl. VAT \& P.).
A.E.G. CONTACTOR

Type LS6/L11. Coil 240 V 50 Rs. Contacts -3 make: 600 V :
20 amp 1 break: $600 \mathrm{~V}: 20 \mathrm{amp}$. Price. E5.50 +50 p P. \& P. ($\mathbf{E} 6.90$ inc VAT \& P.

TORIN BLOWER

 Other types available S.A E. for details smooth running. 240 V A.C operation. Output aperture $45 \times 40 \mathrm{~cm}$. Overall size $\$ 35 \times 165 \mathrm{~cm}$.
Flange mounting Price. $\mathbf{2 4 . 2 6}$. P . P P 75 . (Total:
24 volt. D.C. BLOWER UNIT
Precision 24 volt. D. C. 0.8 amp Blower that works well on 12 V
04 amp D. Producing $30 \mathrm{cu} f \mathrm{ft}$. min at normal air pressure £4.50 P \& P. 75 F (inc VATf6.04) NM S .
INSULATION TESTERS NEW!

Test to
suitable for bench or field moital construction

clutch Size LEin W W in

 (664.17 inc. VAT \& P. SAE for leaflet. Yet another outstanding offer
IMFD 600 V Dubilier wire ended capacitors

Powerful continuoussy rated a.c. motor completer

INPUT 230/240V a.c. $\mathbf{5 0 / 6 0}$ OUTPUT VARIABLE 0-260V All Types SHROUDED TYPE	
200 watt (1 amp inc. a.c. voltmeter	¢14.50
$05 \mathrm{KVA}\left(2 \frac{1}{2}\right.$ amp (MAX:	${ }^{\text {f17 }}$
. 1 KVA (5 amp MAX)	¢22.50 f37.00
$3 \mathrm{KVA}(15 \mathrm{amp}$ MAX)	£45.50
$5 \mathrm{KVA}(25 \mathrm{amp} \mathrm{MAX})$	${ }^{¢ 74.00}$
10 KVA 50 amp MAX	¢168.00 ¢260.00

Carriage packing \& vat extra

LT TRANSFORMERS
$0-10-15 \mathrm{~V}$ at 3 amp (ex new equip) $\mathbf{£ 2 . 5 0}$ P \& \& P. 50p ($\mathbf{(5 3 . 4 5} \mathrm{inc}$. VAT) $13-0-13 \mathrm{~V}$ at $1 \mathrm{amp} \mathbf{£ 2 . 5 0} \mathrm{P}$ \& $P \quad 50 \mathrm{p}$ ($\mathbf{£ 3 . 4 5}$ inc. VAT)
 VAT \& P)
$0-6 V / 12 \mathrm{~V}$ at 20 amp $£ 14.70$ P. \& P. £ $1.50 \mid \mathbf{£ 1 8 . 6 3}$ inc. VAT|
 (£15.53inc. VAT \&
$0-6 \mathrm{~V} / 12 \mathrm{~V}$ at 10
 $0-10 \mathrm{~V} / 1 \mathrm{TV} / 18 \mathrm{~V}$ at $10 \mathrm{amp} \mathbf{f 1 0 . 5 0}$ P\&P. $\mathbf{f 1} \mathbf{5 0}$ (£13.80 inc. VAT Other types in stock; phone for enquiries or send sae for leafiet.
 Latest type Xenon white light flash tube. Solid state
timing and triggering circuit $230 / 240 \mathrm{~V}$ ac. operation
Designed for larger rooms, halls, Designed for larger rooms, halls, etc Speed adjustable
$1-20$ if.p.s. Light output greater than manv (so called 4 1-20 f.p.s. Light output greater than manv (so called 4
Joule) strobes. Price $\mathbf{£ 1 9 . 0 0}$. Post $£ 1$ ($\mathbf{~ 2 2 - 0 0}+\mathrm{E}, \mathrm{P} \&$ Joule) strobes Price $\mathbf{£ 1 9 . 0 0}$. Post $£ 1$ ($\mathbf{£ 2 2 . 0 0}+£ 1 P$ \&
P inc. total $\mathbf{£ 2 6 . 4 5) . ~ S p e c i a l l y ~ d e s i g n e d ~ c a s e ~ a n d ~ r e f l e c t o r ~}$
for Hy-Light $\mathbf{£ 8 . 8 0}$. Post $£ 1$ ($\mathbf{~} 11.27$ inc VAT $\& \quad P$). Super Hy-Light Strobe Kit. Price $\mathbf{£ 3 3 . 0 0}+\mathbf{£ 1} \mathbf{P}$ \& F

XENON FLASHGUN

 TUBES
ULTRA VIOLET BLACK LIGHT

 FLUORESCENT TUBES4ft. 40 Watt $£ 8.70$ inc. VAT $£ 10.00$ (callers only) 2 ft 20 watt
$\mathbf{£ 6 . 2 0}$. Post 75 p . ($£ 7.99$ inc. VAT + P.) (For use in stan bi-pin

 92.25. Post 35 p . ($\mathbf{E 2} 299 \mathrm{inc}$ VAT + P!

 £1.20(£14.32 inc VAT + P).
SQUAD LIGHT
A new conception in light
control. Four channels each

of spotights floodlights or dozens of small mains lamps Seven programs all speed controlled plus flash modulation, effectively giving 14 different displays Makes sound-to-light obsolete.
Completely electrically and mechanically noise free. SA.E (Foolscap) for further details.

WIDE RANGE OF DISCO LIGHTING
EQUIPMENT S.A.E. foolscap) for details

Superior Quality Precision Made
 NEW POWER RHEOSTATS

New ceramic construction, embedded
winding heavy duty brush assembly, continu-
ously rated
25 WATI

50 WATT 250Ω £2.90. Post $25 \mathrm{p}\{\mathbf{£ 3 . 6 2}$ inc. VAT \& F.)
100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} \Omega / 1.5 \mathrm{k} \Omega / 2.5 \mathrm{k} \Omega$ 100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} \Omega / 1.5 \mathrm{k} \Omega / 2 \cdot 5 \mathrm{k} \Omega$
$/ 3.5 \mathrm{k} \Omega$ £5.90p. \& 35 p (f7.19 inc. VAT).
Black, Silver, Skirted knob caitbrated in Nos. $1-9 \quad 1 \frac{1}{2} \mathrm{in}$. dia. brass bush. ideal for above Rheostats 24p each
BERCD type L. RHEOSTAT

230/240V A.C. Relays: Arrow $2 \mathrm{c} / \mathrm{e}$: $15 \mathrm{amp} \mathbf{£ 1 . 5 0 (\mathbf { E 1 } 1 . 9 6 \text { in }}$ VAT \& P).
 VAT \& PI Sealed $12 V 2 \mathrm{c} / \mathrm{o} 7 \mathrm{amp}$ octal base. $£ 1.25$ ($\mathrm{E1.67inc}$
VAT \& P S VAT \& P). (amps = contact rating). P\& P on any Relay 20p.
N.M.S
Uther types available - phone for detalls. Very Special Offer: 9-12V D.C., 2 make contacts, new I.T.T., 3 for $£ 1.75+25 p$ P\&P. (inc VAT $\mathbf{£ 2 . 3 0}$).
Diamond \mathbf{H} heavy duty A.C. relay $230 / 240 \mathrm{~V}$ a c. two C/O
contacts 25 amps res at 250 d.c $\mathbf{£ 2} 20 \mathrm{p} \& \mathrm{p} 50 \mathrm{p}$ if 45 inc

GEARED MOTORS

$4 \frac{1}{2} \mathrm{rpm} .115 \mathrm{~V}$. a c 50 cycle , mf. SIGMA Inst. Ltd. U.S.A. Price supplied with transtormer N.M.S
$7 \frac{1}{\text { rpm }} 115 \mathrm{~V}$. a.c. 50 cycle approx 25 lb
m. KLAXON.
28 rpm .115 V . a.c. 20lb. in. reversible.
Price of either 2 Motors $\mathbf{£ 4 . 7 5}$ each +75 p,
P. \& P. ($£ 6.33$ inclus. VAT). N.M.S. Any of

30 rpm. 230.240 V a.c. 50 lb in. Mf. PARVALUX
Price: $\mathbf{f 1 5 . 0 0 + f 1 . 5 0 ~} \&$ \& P (f18.98 inclus VA
56 rpm .240 V a.c. 50 bb in . 50 Hz
0.7 amp Shaft length 35 mm Dia 0.7 amp Shaft length 35 mm Dia
16 mm W. 6 kg .600 g . mf. FRACMO.
Price f15. $\mathrm{f}+\mathrm{f} 1.50 \mathrm{P}$ \& P ($\mathbf{(1 8 . 9 8}$
inclus. VAT. N.M.S.
$\mathbf{1 0 0}$ rom. 110 V a.c. 115 lb in., $50 \mathrm{~Hz}, 2.8$
amp. single phase split capacitor. amp. single phase split capacitor
Immense power Continuously rated
Totaliy enclosed. Fan-cooled. In-line gear box. Length 250 mm . Dia. 135 mm . Spindle dia 15.5 mm , length 145 mm . Tested. Price: $\mathbf{£ 1 2 . 0 0}+£ 1.50$
P. \& P. (£15.53 inclus VAT).R. \& T. Suitable Transformer for $\cdot 230 / 240 \mathrm{~V}$ operation. Price $\mathbf{f 8} .00+75 \mathrm{p}$. P \& P. ($\mathbf{E 1 0 . 0 6}$ inc
$\mathbf{2 0 0} \mathrm{rpm} .35 \mathrm{lbs}$ in. 115 V . 50 Hz
Price £ $\mathbf{1 6 . 0 0}+\mathrm{f}, 50 \mathrm{P}$ ($\mathbf{2 0 . 1 3}$ inclus VAT). N.M S
Suitable Transtormer
Suitable Transformer for $230 / 240 \mathrm{a}$ ac
Price: $\mathbf{£ 8 . 0 0}+£ 100$ P. \& P. $\mathbf{£ 1 0 . 3 5}$ inclus VAT). N.M.S.
 PARVALMX. Price E11.00 LI.00 P. (E13.80 inclus
6/9V. D.C. Miniature Geared Motor, precision built. incredibly powerful for size approx. speed 6 V . 60 rpm 40 ma.
approx. speed $9 \mathrm{~V}-80 \mathrm{rpm} 50 \mathrm{ma}$ approx. speed 9 V .- 80 rpm 50 ma .
Size: $\quad 27 \mathrm{~mm}$ dia., 30 mm length, 55 gr . weight,
Price: $\mathbf{£ 2} \mathbf{5 0}$ post paid ($\mathbf{£ 2} \mathbf{2} 88$ inclus. VAT). N.M.S
 Mf PARVALUX
VATI. NM.S.

1 rpm 230/240V, a.c Synchronous geared Motor, mf. HAYDON 2rpm 230/240V, a.c. Synchronous geared Motor mf
CROUZET. Either type $\mathbf{f 2 . 9 0}+30 \mathrm{p}$. P P. (E3.68 inclus VAT). N.M.S.
1,400 rpm 115 V . a.c Motor. HP $\frac{1}{\text { a continuously rated Fitted with }}$ anti-vibration cradle mounting. Mif. FRACMO. Supplied com plete with ransformer for $230 / 240 \mathrm{~V}$ a.c. operation. Price $\mathbf{5 1 0 . 0 0 + f 1 . 0 0}$
$1,600 \mathrm{rpm}$." 230 V . a.c reversible Motor. 0.25 a. complete with anti-vibration mounting bracket and capacitor. O/a size
110 sing 90 mm Spindle $\frac{5}{16}$ dia. reversing. Mf. GENERAL

REDUCTION DRIVE GEAR BOX.
Ratio 72:1. Input spindle $\frac{1}{4} \times \frac{1}{2}$ in. Output spindle $\frac{3}{8} \times 3$ in. long. Overall size approx: $120 \times 98 \times 68 \mathrm{~mm}$. All metal construction. Ex-equip. tested. Price: $\mathbf{£ 2 . 0 0}$ 50p. (incl VAT £2.88
ROTARY VAC

ROMARY VACUUM AIR COMPRESSOR \& PUMP

Carbon Vane oil-less. $100 / 115 \mathrm{~V}$.
AC $1 / 12 \mathrm{hp}$. motor $50 / 60 \mathrm{cycle}$
$2875 / 3450 \mathrm{rpm} .20^{\circ}$ vacuum

125 c.f.m. 10 p.s.i. (approx. figures) mift. by Gast Co. Fraction of maker's price $\mathrm{f14.00} \mathrm{p}$ \& p. f1.O0 (Total. $\mathbf{£ 1 7 . 2 5}$ inclus. VAT).
Suitable Transformer. $£ 3.50$ p. \& p. 50 p. (Total, $£ \mathbf{4 . 6 0}$ inclus. BLOWER VACUUM PUMP
English Electric 3 phase AC motor 220/250V Or $380 / 440 \mathrm{~V}$,
$1.425 \mathrm{rp.m}$. $\frac{1}{\mathrm{~h}} \mathrm{~h}$. continuously rated Direct coupled to William

Time Switch
Venner Type ERD Time switch $200 / 250 \mathrm{~V}$ a c 30 amp contact 2 on $/ 2$ off every 24 hrs at any
manually pre-set time. 36 hour Spring Reserve.
and day and dav omitting device. Built to highest Elec-
tricity Board specification. Price. . £9-00.
P. \& P. 75p (£11-22). R. \& T.
SANGAMO WESTON TIME SWITCH

Type S251 $200 / 250 \mathrm{~V}$ a.c. 2 on/2 off every 24 hours. 20
amps contacts with override switch dia. 4×3 price $\mathbf{£ 8 . 0 0} \mathrm{P}$ \& P
50 p inc. VAT £9.78. Also available with Solar dial. R. \& T.
MINIATURE 24-HOUR TIMESWITCH

All Mail Orders Callers Ample Parking Space Showroom open Mon-Fri.

57 BRIDGMAN ROAD CHISWICK LONDON W4 58B 019951560
ACCOUNT CUSTOMERS MIN. ORDER $£ 10.00$

Personal callers only Open Saturdays 9 Little Newport Street. London WC2H 7JJ Phone 01-437 0576

This superb organ - build the first working section for just over $£ 100$. Full specification in our catalogue.

Touch operated rhythm generator, the 'Drumsette'. Censtruction details 25p. (Leaflet MES49). Specification in our catalogue.

Multimeters, analogue and digital, frequency counter, oscilloscopes, and lots, lots more at excellent prices. See cat. pages 106 and 183 to 188 for details.

61-note touch-sensitive piano to build yourself. Full specification in our catalogue.

A massive new Ctalogue from bigger and better than betore. If you ever buy electronic
components. this is the one catalogue you must not be
without Over 280 pages - some in full colour-Its a guide to electronic components with hundreds of thhotographs and
illustrations and $\begin{aligned} & \text { illustrations and } \\ & \text { page after page of }\end{aligned}$ invaluable data.

[^2]A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one readymade with this specification.
Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

Speakers from $1 \frac{1}{2}$ inch to 15 inch; megaphone. PA horns, crossovers etc. They're all in our catalogue. Send the coupon now!

ELECTRONICSUPPLIES LTD

[^0]: © IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: EG 181

[^2]: speciaicters and all ne latest news from anteed price:

