PRACTICAL

वCTOBER TEFB

$R P M \times 100$

$50 \quad 60$ $60 \quad 70$ TEMP

EXTRAS AVAILABLE SOON

COLOUR ADD-ON enables you to choose your foreground and background colour anywhere on the screen. Flash any character on the screen at will. Full documentation and parts in klt form.

AD-A-RAM EXTENDER CARD provides up to 32 K Dynamic RAM Expansion, 8 Eprom sockets for 2708's or 2716's. Parallel Port (centronics compatlble) and an RS232C serlal port.

WIN YOURSELF AN ANADEX DP8000 LINE PRINTER

There's never enough good software around. That's why COMPUKIT LTD. are sponsoring a software contest. There are 2 categories: 1) Business and Education
2) Fun and Games

One lineprinter will be awarded to the winner of each category Send or bring along to the address shown below the following 1) The program on cassette in the format used by the COMPUKIT UK101
2) Any documentation that you have for the program (source listing not necessary)
3) This coupon signed by you accepting the rules and conditions of the competition.

RULES:

1) Entries, including documentation, must be printed by computer or typed double spaced, with your name on every page.
2) Send or bring your entries to the address shown below.
3) Entries must be received by midnight on 29/2/80, any received after this time are void.
Winners will be notified by post before 31/3/80.
4) You warrant by your slgnature that all programs and documentation material included is entirely your own creation, and that no rights to it have been given or sold to any other party, and you agree to allow COMPUKIT LTD. to use, publish, distribute, modify, and edit it as it sees fit.
5) All entries become the property of COMPUKIT LTD. No entries will be returned nor any questions answered regarding individual entries. 6) Judging will be by a selected panel chosen by, and including representatives of COMPUKIT LTD. Judges may assign programs to any of the categories as they see fit. Decision of the judges is final. 7) Employees of COMPUKIT LTD, its dealers, distributors, advertising agencies and media are not eligible to enter.

Name
Address
-

I agree to abide by the above mentioned rules.

Signature

Please add VAT to all prices - Delivery at cost, wlll be advised at time of purchase. Please make cheques and postal orders payable to COMP, or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number OPEN - 10am to 7pm - Monday to Saturday CREDIT FACILITIES ARRANGED

[^0]CONSTRUCTIONAL PROJECTS
SOLID STATE INSTRUMENTS by Michael Tooley B.A. and David Whitfield B.A., M.Sc. Battery Voltage Indicator-1. First of a series 24
DIGITAL TEMPERATURE CONTROLLER by D. Coutts and P. McAllister 32
V.L.F. RECEIVER by C. R. Francis B.Sc.
Listen to Sferics, Tweeks and Whistlers 42
6 CHANNEL MIXER-2 by S. R. W. Grainger and C. R. Harding Wiring and final setting up 50
COMPUKIT UK101—Part 3 by A. A. Berk B.Sc., Ph. D.
Error codes, program recording and playback, running BASIC 56
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices-MM74C911/7, ICL 7611 23
INGENUITY UNLIMITED
Freezer Temperature Alarm-Digital Servo Amplifier-Fridge/Freezer
Thermostat-Sequential Light Chaser-Motion Detector 37
MICROBUS by D.J.D.
A bi-monthly focus on micro's for the home constructor 67
SCHMITT TRIGGER CIRCUITS by D. F. Bowers B.Sc. 72
NEWS AND COMMENT
EDITORIAL 17
MARKET PLACE
New products 18
Chicago Consumer Electronics Show 20
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 22
Using the I.C. Removal Tool 30
NEWS BRIEFS
Electronic Club at Margate-On Course-Automatic Fare Collection 30
SPACEWATCH by Frank W. Hyde
More about Jupiter, Interesting lo, Galilean Satellites 48
PATENTS REVIEW
Class A Transistor Amplifier 54
COUNTDOWN 62
CBIN THE UK by Dr. Mark Sawicki 66
READOUT
A selection of readers' letters 70
OUR NOVEMBER ISSUE WILL BE ON SALE FRIDAY, 12 OCTOBER, 1979(for details of contents see page 65)

[^1]WATFORD ELEGTRONIES
33/35, CARDIFF ROAD, WATFORD, HERTS, ENGLAND

ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED. ORDERS DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/P.O.: OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL INSTITUTIONS OFFICIAL ORDERS ACCEPTEO. TELEPHONE ORDERS BY ACCESS NOW ACCEPTED MMIMIMU Order ALO ORDERS UNDER E10.00. OVERSEAS ORDERS POSTAGE AT COST.									
VAT Export orders no VAT. Applicable to U.K. Customers only. Unless stated othervise, all price are excluaive of VAT. Please add 15% to the total cost.									
We stock many more items. It pays to visit us. We are situated behind Watford Football Ground. Nearest Underground/Br. Rail Station: Watford High Street. Open Monday to Saturday 9 a.m. -6 p.m. Ample Free Car Parking space available.									
```POLYESTER CAPACITORS: {Axial Lead Type\ 400V: 1nF,1n5, 2n2,3n3,4n7,6n8, 10n, 15n,9p;18n 10p; 22n,33n 11p;47n,68n 14p;100n 17p; 150n. 220n 24p;330n. 470n 41p;6B0n 48p; 1 \muF64p;2.2\mu 82p. 160V: 10nF, 12n, 39n, 100n, 150n, 220n 11p; 330n, 470n 19p; 680n, 1 / 22p; 2.2\muF 32p; 4-7 / F 36p. 1000V: 10n,15n 20p;22n 22p;47n 26p;100n 38p;470n 53p;1\muF 175p.```									
POLYESTER RADIAL LEAD CAPACITORS: 250V;   $10 \mathrm{n}, 15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n} 5 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}, 100 \mathrm{n} 7 \mathrm{p} ; 150 \mathrm{n} 10 \mathrm{p} ; 220 \mathrm{n}$,   330́n 13p; 470 ก 17p; 680 n 19p; $1 \mu 22 \mathrm{p} ; 1 \mu 530 \mathrm{p} ; 2 \mu 234 \mathrm{p}$.									
ELECYROLYTIC GAPACITORS: Axial lead type IValues are in $\mu$ F).$500 \mathrm{~V}: 1040 \mathrm{p} ; 4768 \mathrm{p} ; 250 \mathrm{~V}: 10065 \mathrm{p} ; 63 \mathrm{~V}: 0.47,1.0,1.5,2.2,2.5,3-3,4-7,6-8,8$, $10.15,228 p ; 32,47,5012 p ; 63,100,27 p ; 50 v ; 1.07 p ; 50,100,22025 p ; 47032 p ;$ $100050 \mathrm{p} ; 40 \mathrm{~V}: 22.33 \mu \mathrm{~F} 8 \mathrm{p} ; 10012 \mathrm{p} ; 2200,330085 \mathrm{p} ; 470098 \mathrm{p} ; 35 \mathrm{~V}: 10,337 \mathrm{P} ;$$330.47032 \mathrm{p} ; 100050 \mathrm{p} ; 25 \mathrm{~V}: 10.22,476 \mathrm{p} ; 80,100,180 \mathrm{Bp} ; 220,25013 \mathrm{p} ; 470,640$ $25 \mathrm{p} ; 100027 \mathrm{p}$; $150030 \mathrm{p} ; 220045$; ; 3300 $62 \mathrm{p} ; 470074 \mathrm{p} ;{ }^{2} 16 \mathrm{~V}: 10$. 40 , 47 , 687 P ; 100, 125 8p; 220, 330 14p; 470 , 16p; 1000. 1500 20p; 2200 34p; 10V: 100 6p; 640 12. 1000 14. TAGGEND TYPE: 450 V : $100 \mu \mathrm{~F}$ 180p; 70V: 4700 165p; 64V: 3300 130p; 2500 98p; 50V: 3300 105p; 2200 99p; $40 \mathrm{~V}: 15,000$ 299p; 4700 120; 4000 92p; 3300 93p; 2500 85p; 22008 85p; $2000+2000$ 120p; 30V:4700 90p; 25V: $6400105 p ; 4700$ 85p; 330080 p ; 220060 p .									
TANTALUM BEAD CAPACITORS $35 \mathrm{~V}=0.1 \mu \mathrm{~F}, 0.22,0.33,0.47,0.68,1.0$, ${ }_{1.5 \nu}^{2.2 F .3 .3 .4 .7 .6 .8 .25 V: 1.5,10.20 V:}$ $16 \mathrm{~V}: 15 \mu, 2225 \mathrm{p}$; 47, 100, 220 40p. 10V: $15 \mu, 22.3320 \mathrm{p} ; 10035 \mathrm{p}$; 6 V : 47 $\mathrm{L} .68 .10030 \mathrm{p} ; 3 \mathrm{~V}: 10020 \mathrm{p}$.			POTENTIOMETERS (AB or EGEN) Carbon Track. $0.25 \mathrm{~W} \log \& 0.5 \mathrm{~W}$ Linear values.   $500 \mathrm{O}, 1 \mathrm{~K}$ \& 2 K (LIN ONLY) Single $5 K \Omega-2 M \Omega$ single gang $D / P$ switch $5 K \Omega-2 M \Omega$ single gang 5 $5 K \Omega-2 M Q$ singla gang D/P s $5 \mathrm{~K} \Omega-2 M Q$ dual gang stereo						
MYLAR FILM CAPACITORS $100 \mathrm{~V}: 0.001 .0 .002 \cdot 0.005,0.01 \mu \mathrm{~F}$ 6p $0.1 \mu \mathrm{~F}, 0.2$ iop. $50 \mathrm{~V}: 0.47 \mu \mathrm{~F} \quad 12 \mathrm{p}$,									
			0.25 W log and linear values 60 mm track $5 \mathrm{~K} 0500 \mathrm{~K} \Omega$ Single gang 10K $\Omega 500 \mathrm{~K} \Omega$ Dual gang   Self-Stick graduated Alum. Bezels						
CERAMIC CAPACITORS 50V Range: 0.5pf to 10 nF   $15 \mathrm{nF}, 22 \mathrm{nF}$, 33 nF . $47 \mathrm{nF} 5 \mathrm{p} \quad 100 \mathrm{nF} 6 \mathrm{p}$									
			O. $1 \mathrm{~W} 50 \Omega-2.2 \mathrm{M}$ Minl. Vert. \& Horiz.   0.25 W 100贝-3.3MQ Horiz.   0.25W 250 -4.7Mn Vert.						
POLYSTYRENE CAPACITORS:   10 pF to $\mathbf{1 n F}, 6 \mathrm{p}$. 1.5 nF to 47 nF 10 p									
SILVER MICA (PF)   3.3,   4.7   6.8 .8 .2 12. 18, 22. 27.33 .39. $47,50,68,75,82,85$.$100,120,150,180$. 200. 220 . 90. $250,270,300,330$.$360,390,470,600$ \& 820 pF 16 peach .1000.2000 pF 20 p .	TRIMMERS miniature   2.5pF; 3-10pF;   3-30pF: 3-50pf   5-25pF; 65pF 8BpF 30p			RESHTORE - Erit make 5\% Co miniature Migh Stabilitr. Low noise					
	COMPRESSION   3-40pF: $10-80 \mathrm{pF}$ 25-200pF			1\% Meal Fim $5101 \mathrm{M} \quad 8 \mathrm{p} \quad 6 \mathrm{p}$ 100 - price applies to Reskstors of each type not mixed valuas.					

TRANSISTORS


 ONN NNNNNO







ANTEX Soldering Irons $\begin{array}{ll}\text { C15W } & 360 \\ \text { CXITW } & 370 \\ \text { CCN15W } & 380\end{array}$ CCN15W 380
$\times 25 \mathrm{~W}$ Iron stand 46

## HEAT

sink
$\begin{array}{ll}\text { TO3 } & 24 \\ \text { TO220 } & 24 \\ \text { TO5 } & 12 \\ \text { TO18 } & 12 \\ T 092 & 9\end{array}$ 1092
Mica \& Bushes
cMOS
(CONT.)


## 

LINEAR IC's ${ }_{7}^{702} 78$ g pin   70914 pin   72314 pin		998   450   31   110   120   205   68   70   90			
	LM339	125 375	SN76013NO 1300	27168 ${ }^{27400}$	
	LM380		SN76023N 140	$\begin{array}{lll}4116 \\ 4047 \\ 406 & 1025 \\ 750\end{array}$	S)
810 AY-1.0212 580 580	LM381	145	SN7	44500 680	740011
AY-1-1313A 660	LM382	125	SN76115N 215	$\begin{array}{ll}74504 \\ 745132 & 350\end{array}$	7402
AY-1-1320 315	LM389		SN76131 110	$745138 \quad 250$	7403
AY-1-5050 190	LM 1458	5	SN76227N 1225	745158    745188 524   210	${ }_{7405}{ }^{18}$
- $6721 / 6195$	LM39900	${ }_{70} 6$	900	745189	7406    7407    88
390	LM	125	TAAC2 1 AXI 250	745195 795	7408 77
${ }_{1224} 12480$	LM	125	TAAAG60 ${ }^{\text {T }}$	$\begin{array}{ll}745241 \\ 745262 & 195 \\ 895\end{array}$	$7{ }^{7410} 111$
1230   1315   150   560		795 795	TADİ0 ${ }_{\text {TBA120S }} 159$		7412 77
1317A 630				$7{ }^{745472} 1150$	7413 30   7414    15
350	MC	88	TBA99900 230	$\begin{array}{ll}745475 & 825 \\ 81595 & 125\end{array}$	7416
AY-5.40070 ${ }^{\text {ar }}$-8100 738			TBA	81	7417    7420 30   16
CA3011	MC		T8A651 180	(1)	29
		350 92		CP1610    MC1488 920   85	7
		79	TBA820 ${ }^{\text {THA }}$	MC	27
CA3028A 80				MCC144412 9 9880	7427 27   7488    185
			T0A1004	MK4027 ${ }^{\text {a }}$ 3 325	7428    7430 35   17
CA3043 190		+52	TDA1022 575	MK4027-2 ${ }^{\text {M } 4027 \text { - }}$	25
	MF	${ }^{135}$	TDAO220 320	MK4027-4 350	30
	MK5	655		MK4118-4 2099	$\begin{array}{ll}7438 \\ 7440 & 33 \\ & 15\end{array}$
CA3080 ${ }^{\text {c }} 70$	MK5	635	T1064CN $19{ }^{\text {che }}$		7441
${ }_{\text {CA30889 }}{ }^{\text {che }}$	MM	1275	TL074CN 199	TMS	7443115
	M M ${ }_{\text {M }}$	${ }_{850}^{620}$	TLO	TMS 4039250	7445   7442   112
	NE5	210		$280 \mathrm{CPU2} 5.5990$	74464   744   57
$1 \mathrm{Cl7106} 795$		185	U4A170 198	880010 680	7448
	NE5560b	60	ZN414 90	CTC 595	451
CMM215 1025		395	2N425E	VDUIC'S	
CM ${ }^{\text {CM7216C }} 19595$	NE564	425	ZN1040E 685	-	$7470{ }^{28}$
		120   160   10		364	${ }_{747}$
L0130 452	NE567v	170		SFS80102 205	7474


న్ల్లు  	



## S.\& R. BREWSTER LIMITED

## WHY PAY MORE?

for Miniature Soldering Irons \& Accessories S. A- -1.18 watt Soldering Iron avalable in 12, 110 \& 240 Volts. fitted with SPARE BITS

SAFETY STAND SOLDER

No. 19 size 1.5 mm or No. 20 size 3 mm or No. 21 size 4.5 mm or No 22 size 6 mm No. 78. I.C. Desolderrig Bit No. 1920 L Long Life Bit

Savbit 20 Savbit 10 Lowmelt 10

$$
£ 4.43+24 p
$$

## NDUSTRIAL/RETAIL ENQUIRIES WELCOME FOR THE ABOVE



We also Offer \& Recommend for Mail Order \& Personal Callers Only

Oryx 50 Temperatur
Spare tips for above
1sotip quick charge r
Prices each

1sozip quick charge
Spare tips for above
Spare tips
Cable $7 / 0.211$ Colours....................
Cable 7/0.2 11 Colours 100 meter real

Copper Clad board single side
Watchmakers Side Cutters
Watchmakers Pliers
Transformer $100 \mathrm{VA} 2 \times 12 \mathrm{~V} 41 \mathrm{~A}$

OTHER ITEMS ALSO AVAILABLE ASK FOR LIST S.A.E MAIL ORDER DEPT.
86-88 Union Street, Plymouth PL. 1 3HG Tel:(0752) 65011



Send your orders to:DEPT. PE10, PO BOX 6, WARE, HERTS. Tel: 0920-3182 Visit our NEW shop: 3 BALDOCK ST., WARE, HERTS. Telex: 81786

EXPERIMENTOR BREADBOARDS
FROM $\because$

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build breadboard of any size.
All EXP Breadboards have two bus-bars as an integra part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP.4B

EXP. 325. The ideal breadboard for 1 Accepts 8, 14, 16 and up to 22 pin IC's.

## ONLY £1.70

EXP.350. £3.73
270 contact points with two 20-point bus-bars.

EXP. 300.


550 contacts

## with two 40 -point

 bus-barsf6.13


EXP. 650 for Microprocessors. $\mathbf{£ 3} \mathbf{8 3}$

EXP.4B.


More
bars. £2.45
ALL EXP. 300 Breadboards mix and match with 600 series.

## ANTEX IRONS

194315 watt quality soldering iron with $3 / 32^{\prime \prime}$
1947 Replacement element for 1943
1944 Iron coated bit $3 / 32^{\prime \prime}$ for 1943
1945 Iron coated bit $1 / 8^{\prime \prime}$ for 1943
1946 Iron coated bit $3 / 16^{n}$ for 1943
194818 watt iron with iron coated bit 1952 Replacement element for 1948
1949 Iron coated bit $3 / 32^{\prime \prime}$ for 1948
1950 Iron coated bit $1 / 8^{\prime \prime}$ for 1948
1951 Iron coated bit $3 / 16^{\prime \prime}$ for 1948
$1931 \times 2525$ watt iron, ceramic shaft and another shaft of stainless steel to ensure strength .
1935 Replacement element for 1931
1932 Iron coated bit $1 / 8^{\prime \prime}$ for 1931
1933 Iron coated bit $2 / 16^{\prime \prime}$ for 1931
1934 Iron coated bit $3 / 32^{\prime \prime}$ for 1931 $\qquad$ £ 4.88
$£ 2.18$ £2.18
£0.53 10.53
$£ 0.53$ C0.53 £4.59 £2.18 0.53 £0.53 e4.88 C1.84 £0.57 £0.57 £0.57
1953 SK 1 soldering Kit - contains 15 watt soldering iron with $3 / 16^{\prime \prime}$ bit plus two spare bits, a reel of solder. heat-sink and a booklet 'How to Solder
6.38

1939 ST3 iron stand made from high grade bakelite chrom plated steel spring, suit all models includes accommodation for six bits and two sponges to keep the iron bits clean $£ 1.86$ 1724 Model MLX as $\times 25$ iron but 12 volts $£ 5.29$

DIODES

## 



Price $25{ }^{\text {rice }}{ }^{\text {Type }}$ Price | 25 | 8 |
| :--- | :--- |
| .25 | 8 |
| .25 | 8 |
|  |  |

## CASES AND BOXES

## and sid es, duminium botrom, fromt and beck.



 red tap

## ano. 155 156 156 157 158 ALUM1 constru ecrews. No. 159 160 161 162 162 163 164 165 166 167

## BOOKS BY BABANI

$8 \mathrm{P6}$	Engineers \& Machinists Ref. Tables	P
$8{ }^{8 P 14}$	2 2nd book Transistor Equivs \& Subs	$\begin{aligned} & 1.161 \\ & 75 \mathrm{~m} \end{aligned}$
${ }_{8 P 24}$	52 Proiects Using ICY 41 (or Equiv)	75 pf
8 P 26	Radio Antenna Book Long Distance	
BP27	Reception \& Transmission	869
	Semiconductor \& Logic Symbols	
BP32	Build Metal \& Treasure Locatore	85 p 1
BP34	Practical Repair/Renovation CTV	95 pt
BP35	Handbook of IC Audio Preamplifier \& Power Amplifier Construction	
8 836	50 Cicis use Germ/Sil/zener Diodes	
8 B 37	50 Projects Using Relays/SCR/Triacs	
8P39	50 Field Effect Trans Projects	E1.25
BP40	Oigital IC Equivs \& Pin Connection	f2.50t
BP41	Linear IC Equivs \& PIn Connection	E2.75t
8P42	50 Simple LED Circuits	75 P
BP43	How 10 make Walki-Takles	¢1.25t
8P44	IC 555 Timer Projects.	f1.45t
8P45	Projects on Opto-electronics	¢1.25\%
BP46	Radio Circuits Using IC	E1.354
BP47	Mobile Discotheque Handbook	E1.35t
BP48	Electronics Projects for Beginners	ع1.35t
BP49	Popular Electronic Projects	ع1.45t
BP50	IC LM3900 Projects	ع1.35t
BP55	Radio Stations Guide	¢1.45t
BP160	Coil Design 8 Construction Manu	85 pt
BP202	Handosook of Integrated Circuits	
	Equivalents 8 Substitutes	
$\begin{aligned} & \mathrm{BP} 205 \\ & \mathrm{BP} 213 \end{aligned}$	1 st Book Mi-Fi Speaker Enclosures Circuits for Model Railways	
BP215	Shorwave Clircuits \& Gear for	
	Experiments \& Radio Hams	
$8{ }_{8 P 216}^{817}$	Electronic Gadgets \& Games	$85 p{ }^{+}$
$8{ }^{81}$	Solid Stare Power Supply Hanabook	
8P22	28 Tested Transistor Prolects,	${ }^{5}{ }^{\text {p }}$
${ }_{8 P 222}$	Shor-wave Receivers for Beginne	$5 p^{+}$
$8{ }^{82} 23$	50 Projects using IC CA3 130	$95 p{ }^{\text {P }}$
$8 P 24$ $8 P 225$	${ }_{\text {a }} 50$ CMOS IC Projecical intro to Digital IC	${ }^{95 p}{ }^{\text {95p }}$
${ }_{8 P 226}$	Build Advanced Shor-wave Receivers	926
8P227	Beginners Guide to Bullding	
	Electronic Projects	$\underline{11.251}$

RECULATORS BRIDGE RECTIFIERS

Positive	Price	SILICON 1 amp		
UA7805 70220	80.85	Type	No.	
UA7815 ${ }^{\text {U }}$ - 4220	ع0.85	100v RMS	BR1/100	${ }_{\text {E0.25 }}$
-	20.85	200	BR1/200	20.29
TO22		400 v R	BR1/40	


UA7912 TO220
UA7915 TO220

Price
80.52
80.55
80UA7924 TO220
UA7818 TO220
4000 V RAS
1000 V RMS BR2/200
BR2/10080.55
80.60
60.67
60.78L
r

CASSETTES									
			${ }^{\text {Typa }}$	NRIO/50	Price E1.50				
			200 V RMS	BR10/200	E1.70				
			SILICON						
			Typu		Price				
			50v RMS 200v RMS	BR25/50 BR25/200	E9.90 $\mathbf{E 2 . 2 0}$				
TRIACS									
			10 amp    volts    100 TR110A100   200 TR110AN200   400 TR110A/400						
			${ }^{20.88}$						
			¢1.06						
			E1.29						
${ }_{\substack{\text { c amp } \\ \text { volts }}}$									
400	TR16A/400	¢0.88	BR100	¢0.23 D32	c0. 23				


These paks contain a range of Carbon Resistors assorted into the following groups.		
16213	60 mixed 1/8w 1000hms-9200hms	c0.69
16214	60 mixed 1/8w 1 Kohms-82 Kohm	
16215	60 mixed 1/8w 10 Kohms -83	C0.69
+16217	60 mixed $1 / 8 w 100 \mathrm{Kohms-820kohm}$ 40 mixed $1 / 2 w ~ 100 o h m s-820 o h m s ~$	c0.69 ¢0.69
16218	40 mixed $1 / 2 \mathrm{w}$ (00ohms-820. ${ }^{\text {a }}$	f0.69
16219	40 mixed $1 / 2 \mathrm{w}$ 10Kohms 8 -82 Kohm	¢0.69
16220	40 mixed 1/2w $100 \mathrm{Kohms}-820 \mathrm{Koh}$	
CERAMIC PAKS		
16160	24-3 or each value 22 pf 27 pf 33 pf 39 pf 47 pf 68 pf   $24-3$ of each value 100 pf 120 pf 150 pf 180 pt 220 pi   270 pf 330 pf   $24-3$ of each value 470 pf 560 pl 680 pf 1000 pf   1500pt 2200pt 3300pt   $24-3$ of each value 470 pt 6800 pl 01 ut 015 ©0.69   033uf 047uf	
161		
16162		
16163		


ELECTROLVTIC PAKS		
$\begin{aligned} & 16201 \\ & 16202 \\ & 16203 \end{aligned}$	values from $47 \mathrm{mid}-10 \mathrm{mid}$ values from $10 \mathrm{mfd}-100 \mathrm{mfd}$   values from $100 \mathrm{mfd}-680 \mathrm{mfd}$	$\mathbf{8 0 . 6 9}$ $\mathbf{8 0 . 6 9}$ $\mathbf{8 0 . 6 9}$
COMPONENT PAKS		
16164	200 resistors mixed value approx \{count by weight)   150 capacitors mixed value approx (count by weight   $801 / 2 \mathrm{w}$   resistors mixed values   5 pleces assoried ferrite rads   2 tuning gangs MW LW VHF   1 pack wire 50 metres asssorted colours single   strand   10 reed switches   3 micro switches   15 assoned pots   30 paper condensers - mixed values   20 electrotytics trans. types   1 pack assorted hardware - nuts. bolts gromets etc	c0.69
616		
16167		C0.69
		c0. 69
16169 16170		c0. 69
		c0. 69
16172		80.69
16173		c0. 69
16175		${ }_{50.69}$
		c0.6s

## Kontite remote control switch <br> -Simple to install even simpler to use



## The Transmitter:

is light and cordle
and housing the battery. Simply, point the transmittel at the receiver to turn on or off

Now available in the U.K. the 'Kontite' Remote Control unit switches electrical appliances and equipment on or off safely from distances of up to 35 feet.

Televisions, radios, hi-fi equipment, lighting, model trains etc. electric fans, electric fires (up to 2 kw ) and many other appliances are within its scope, providing that they have a power supply of $240 / 250$ AC single phase. $50 / 60 \mathrm{~Hz}$ and a maximum 10 amp rating and also that the relevant safety regulations are applied.

The unit is ideal for use in the home, office, factory and hospital. Particularly useful as an aid to the disabled and invalid-wherever an electrical appliance is difficult to reach in the normal manner.

The Kontite Remote Control Switch available now through Electrical Component Retailers.

If you have difficulty in locating a stockist please contact:
Kay \& Co (Engineers) Ltd.
Acresfield House, 15 Exchange Street. Bolton. Lancashire. Telephone: Bolton 21041 Telex: 63186

## SWEET MUSIC

INTERESTED IN ACCURATE, STABLE, EASILY-BUILT AND CALIBRATED SYNTHESISER MODULES: POLYPHONIC SYNTHESISERS . BRATED SYNTHESISER MODULES : POLYPHONIC SYNTHESISERS:
COMPUTER MUSIC: OR SOUND PROCESSING? IF SO, FOLLOW COMPUTER MUSIC : OR SOUND PROCESSING? IF SO, FOLLOW
THE EXAMPLE OF MANY PROFESSIONAL EQUIPMENT MANUFAC. TURERS AND USE THE CUSTOM I.C.' F FROM SOLID STATE MICRO TECHNOLOGY, U.S.A. STANDARD D.I.L. PACKAGES.
SSM 2020 DUAL VOLTAGE CONTROLLED AMPLIFIER
Dual iwo quadrant multipliers with independent control stelection. Simultaneous exponential and linear gain with 100 dB control range. Differential control inputs. Fully temperature compensated. B4dB $\mathrm{S} / \mathrm{N}$ ratio at $0.1 \%$ distortion with 6 V P-P input. Synthesiser V.C.A. s and a wide variety of audio applications, such as mixers, equalisers, companders, filters and AGC can be realised with the 2020.
SSM 2030 VOLTAGE CONTROLLED OSCILLATOR
Simultaneous exponential and linear inputs for a sweep range of $1,000,000$ to 1 up to 200 kHz . Accuracy better than $0.25 \%$ over 1,000 to 1 range. Simultaneous sawtooth, triangle and pulse outputs. Pulse width modulation on chip with control range of 0 to $100 \%$. Hard and soft synchronisation inputs for a wide variety of modulaHard and soft synchronisation input
tion and harmonic locking effects.
SSM 2040 VOLTAGE CONTROLLED FILTER CIRCUIT
Four section filter whose cut off frequency can be exponentially controlled over a 10,000 to 1 range. Virtually any active filter can be created and roll off characteristics selected as desired. Low noise and distortion allow use in phase shifters, parametric equalisers, etc.
SSM 2050 VOLTAGE CONTROLLED TRANSIENT GENERATOR
The 2050, 4 pots.. 5 resistors, and 2 small capacitors makes an envelope shaper with greater versatility than designs published in the U.K. Min. range of 2 msecs. to 20 secs.: exponential response: ADSR and AD outputs: independent gate and trigger. Voltage control of the $A, D, S$ and $R$ functlons offers unlimited scope for creation of realistic or unusual envelope shapes.
ALSO: TEL LABS Q81 1k TEMPCO RESISTOR
This $1 \%$ tolerance resistor has temperature coefficient of 3500 ppm per degree Centigrade and is widely specified for temperature compensation of logarithmic amplifiers.
DEVICES MAY BE PURCHASED SEPARATELY BUT P.C.B.'S OR COMPLETE KITS ARE ALSO AVAILABLE FOR SEVERAL SYNTHESISER MODULES SEND 35p FOR COMPREHENSIVE APPLICATION NOTES AND SPECS.

DIGISOUND LIMITED,
13 THE BROOKLANDS, WREA GREEN. PRESTON, LANCS. PR4 2NQ
Tel. : 0772683138 (MAIL ORDER ONLY)


DM-2

DIGITAL
MULTIMETER


- DC Volis.

1 mV to 1000 V
AC Volts. 1 V to 500 V DC Current Resistance. in to $20 \mathrm{M} \Omega$

- 31/2 digit LCD
- Auto Low Battery indication
- Auto Polarity \& Zero
- 1\% accuracy (DC volts)
- Designed around Intersil 7106 IC

FG-1a


FUNCTION GENERATOR

- 30 mV to $10 \mathrm{~V} \mathrm{pk} \cdot \mathrm{pk}$
- 1 Hz to 100 kHz
- DC coupled
- Sine, Square \& Triangle
- Separate TTL output
* Designed around Intersil 8038 iC
- Total cost around $\boldsymbol{\varepsilon 2 5}$ (incl. case)
- Total cost around $£ 30$ (incl. case)

Provided in a JAYkit is a Printed Clrcuit Board, a punched and lettered Front Panel, a Circuit Diagram and Instruction Sheet and a comprehensive and up to date Component List shovsing suppliers and current prices. Difficult pieces of hardware such as screws, washers etc. are suppiled with the kit.

Jayen Developments, 21 Gladeside, Bar Mill, Cambridge CB3 80Y

To: JAYEN Developments
21 Gladeside, Bar Hill Cambridge C83 8DY
Tel: (0954) 80285
Please send:


Address
$\square$ DM-2 @ $£ 5.45$
$\square$ FG-1a @ $£ 4.95$ (Incl. VAT and P\&P)

Money to be refunded if the kit is returned within 10 days.
P.E. 10
E. 10 --



The opportunities in electronics, today, and for the future are limitless - throughout the world. Jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, TV and all associated equipment - can make for a varied, interesting and highly renumerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equipment coming on to the world market.

We give modern training courses in all fields of electronics - practical D.I.Y. courses - courses for City \& Guilds exams, the Radio Amateur licence and also training for the new Computer Technology. We specialise only in electronics and have over 40 years experience in the subject.

All the training can be carried out in the comfort of your own home and at your own pace.

A tutor is available to whom you can write at any time for advice or help during your work.

# and a career. 

 <br> COURSES AVAILABLE}
## CITY \& GUILDS CERTIFICATES IN TELECOMMUNICATIONS AND ELECTRONICS.

RADIO AMATEUR LICENCE.COMPUTER TECHNOLOGY WITH HOME TRAINING COMPUTER.

DIGITAL ELECTRONICS.BEGINNERS PRACTICAL COURSE.RADIO AND TELEVISION SERVICE.AND MANY OTHERS.

WE ARE AN INTERNATIONAL SCHOOL SPECIALISING IN ELECTRONICS TRAINING ONLY AND HAVE OVER 40 YEARS EXPERIENCE IN THIS SUBJECT.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.


PEA 10

NAME
ADDRESS

Post now, without obligation, to:
BRITISH NATIONAL RADIO and


## The professional scopes you've always needed.



When it comes to oscilloscopes, you'll have to go a long way to equal the reliability and performance of Calscope.

Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition

The Calscope Super 10 , dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations.

The price £ 219 plus VAT.
The Super 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity. Price $£ 162$ plus VAT. Prices correct at ume of gong to press

## CALSCOPE DISTRIBUTED BY

Watford Electronics,
33-35 Cardiff Road,
Watford, Herts.
Tel: 092340588

Audio Electronics, 301 Edgware Road, London W. 2. Tel: 01-724 3564 Access and Barclay card facilities (Personal Shoppers)

Maplin Electronics Supplies Ltd. P.O. Box 3

Rayleigh, Essex.
Tel: 0702715155
Mail Order

## CALSCOPE

## Another Crofton First

 Brand New Full Specification
## 10"Metal Cased Industrial Video Monitor

 Video Bandwidth 8MZ(3db down). Ideal for Computer Terminal or General Video Monitor.Complete With Own Power Supply. Input Sensitivity IV Composite.

2102 RAM	£1.05	6402 UART	¢ 3
2114 RAM	$5 \cdot 50$	2111 RAM	
6800 CPU	$5 \cdot 20$	1.008 Mhz XTAL	2.50
68A10 RAM	$2 \cdot 25$	8 T 26 Bus Driver	1.05
2513 Char Gen	4-50	81LS95	$1 \cdot 30$
96364 Crt Gen	$12 \cdot 10$	$2516+5 v R O M$	30.00
96364 ROM	4-50	74LS374	0
CMOS at can be	Compet greed	Prices - Qty D us VAT $15 \%+P_{\&}$	scounts

## SUPER VALUE STORAGE CASES

$$
\begin{aligned}
& \text { Excellent quality high impact } \\
& \text { styrene } 18 \text { compartment case, } \\
& \text { See thru lid. Suitable for all } \\
& \text { small, high value parts. } 10 \frac{3}{4}{ }^{\prime \prime} x \\
& 6 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \\
& \text { £1.99 + P \& P 30p. } \\
& \text { Rugged construction } 15 \\
& \text { drawer plastic cabinet. Carrying } \\
& \text { handle, easily wall mounted. } \\
& \text { Two or more cabinets can be } \\
& \text { interlocked. Free dividers in } \\
& \text { each pack. } 10^{\prime \prime} \times 8^{\prime \prime} \times 6 \frac{1}{2}{ }^{\prime \prime} \\
& \mathbf{£ 5 . 9 5}+\mathrm{P} \text { \& P 50p. } \\
& \text { Send cheque/PO to: SUMICO LTD. } \\
& \text { Clare, Sudbury, Suffolk CO108CLN }
\end{aligned}
$$


 pre-amp module complete - 500 mv output - bass;treb,vbl.controls. $58 \cdot 25$ - high sensetivity POST 55p H.S.B.C. 27, HOPE STREET,HANLEY, STOKE ON TRENT. tet0782-273815


## KITS FOR SYNTHESISERS, SOUND EFFECTS



## P.E. 128-NOTE <br> PROGRAMMABLE SEQUENCER

Enables a voltage controlled synthesiser to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long Programs are keyboard initiated and note length and thythmic pattern are externally variable.

Set of basic component kits KIT 76-5 $\quad$ E28.92 Set of PCBs \& layout charts KIT 76.6 $\quad$ E5.68

## P.E. 16-NOTE <br> PROGRAMMABLE SEQUENCER

Sequences of up to 16 notes may be programmed by the use of external panel controls and fed into most voltage controlled synthesisers.
Set of basic component kits
Set of PCBs
Set text photocopies

KIT 86-3
KIT 86-4
$〔 22.90$
$£ 5.09$
$£ 5.08$
$£ 1.84$

## P.E. STRING ENSEMBLE

Set of basic component kits synthesiser. KIT 77-6 $\begin{array}{lll}\text { Set of PCBs \& layout charts } & \text { KIT 77-7 } & \text { £24.19 }\end{array}$

## P.E.JOANNA PLUS ORGAN VOICING

A modified version of the P.E. 5-octave piano that retalins all the original facilities and also includes switchable organ voicing circuitry.
$\begin{array}{lll}\text { Set of basic component kits } & \text { KIT 71-5 } & £ 89.87 \\ \text { Set of PCBs \& layout charts } & \text { KIT 71-6 } & £ 29.51\end{array}$
Sound Des a layout chart
KIT 71-6 $\quad$ £29.51

## ELEKTOR ELECTRONIC PIANO

A touch-sensitive multiple-voicing piano using the latest integrated eircuit techniques for the keying and envelope shaping. and virtually eliminating "bee-hive" noise hitherto inherent in previous electronic pianos.

5-octave set of basic components	KIT 80-6	1100.84
5 -octave set of PCBs \{as published)	KIT 80-7	£26.02
Additional 3-octave extension basic parts	KIT 80-5	¢40.98
Additional 3-ocrave set of PCB s (as published)	KIT 80-8	$£ 9.45$
Set of text photocopies		¢1.81

## P.E. MINISONIC MK2 SYNTHESISER

A portable mains operated miniature sound synthesiser with keyboard circuits. Although having slightly fewer facilities than the large formant and P.E. synthesisers the functions offered by this design give it great scope and versatility.
et of basic component kits (excl. KBD
R's \& tuning pots - see list for options
$\begin{array}{llll}\text { available } & \text { KIT 38-23 } & \text { £67.05 }\end{array}$
Set of PCBs (incl. layout charts) KIT 38-24 £9.87
Sound Design"' bookl

## P.E. SYNTHESISER

The well acclalmed and highly versatile large scale mains perated synthesiser. Other circuits in our lists may be used with it to good advantage.
basic component kits Main Unit set of PCBs \& layout charts Keyboard Unit basic component kits Keyboard Unit set of PCBs \& layout
charts
Main Unit set of text photocopies Keyboard Unit set of text photocopie

KIT 23-27 $\mathbf{~} 88.99$ KIT 23-28 E14.52 KIT 23-29 852.07

KIT 23-30
C 8.42
f 5.91

## ELEKTOR FORMANT SYNTHESISER

A very sophisticated synthesiser for the advanced constructor who puts performance before price.

## Set of basic component kits

Set of text photocopies

KIT 66-12 $£ 193.68$ KIT 66-13 $\mathbf{~} 53.92$

COMPONENTS SETS include all necessary resistors capacitors, semiconductors, potentiometers and transformers. Hardware such as cases, sockets, knobs. keyboards, etc. are not included but most of these may be bought separately, Fuller details of kits. PCOs and parts are shown in our lists.

LAYOUT DIACRAM8 are supplied free with all PCBs unless "as published"

## PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WVIDE MARKET

## P.E. GUITAR EFFECTS PEDAL

Modulates the attack. decay and filter characteristics of a signa from most audio sources. producling 8 different switchable effects
hat can be further modified by manual controls.
Basic parts with foot switches
KIT 42-1
C8.45
Basic parts with panel switches KIT 42-2 PCB \& layout chart PCB 43A $\quad \mathbf{~} 1.57$

## ext photocopy

## ELEKTOR DIGITAL REVERB UNIT

A very advanced unit using sophisticated i.c. techniques instead of mechanical spring lines. The basic delay range of 24 to 90 mS an be extended up to 450 ms using the extension unt. Furthe delays can be obtained using more extensions.
Main unit basic component kit
Maln unit PCB (as published) KIT 78.1 $\mathbf{2 4 9 . 9 9}$ Extension unit basic component kit Exension unit PCB (as published) KIT 78-2 PCB 78B $\mathbb{1 . 1 6}$ Text photocopy

## ELEKTOR ANALOGUE

## REVERB UNIT

Using lic.s instead of spring-lines the main unit has a maxium delay of up to 100 ms , and the additional set extends this up to 200 ms . May be used in either mono or stereo mode.
$\begin{array}{llr}\text { Maln unit basic component set } & \text { KIT 83-1 } & \text { £29.49 } \\ \text { Additional Delay basic components } & \text { KIT 83-2 } & \mathbf{£ 2 0 . 0 7} \\ \text { PCB \{as publ.) to hold both kits } & \text { PCB } 9973 & \mathbf{E 4 . 3 1}\end{array}$

## Texi photocopy

## P.E. GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing. for example, flanging, vibrato, reverb, fuzz and tremolo as well as other fascinating sounds. May be used with most electronic instruments.

$$
\begin{array}{lll}
\text { Set of basic component kits } & \text { KIT 85-3 } & \mathbf{£ 3 . 7 5} \\
\text { Set of PCBs \& layout charts } & \text { KIT 85-4. } & \mathbf{8 1 0 . 6 2}
\end{array}
$$

P.E. PHASER

An automatically controlled 6 -stage phasing unit with integral scillator.
Set of basic components, incl
PCB \& chart
ELEKTOR PHASING \&

## VIBRATO UNIT

Includes manual and automatic control over the rate of phasing \& vibrato. and has been slightly modified to also include a 2 -input mixer stage.

Sel of basic components	KIT 70.1	£19.11
PCB \& layout chart	PCB 70A	22.58
Text photocopy		$67 p$

## P.E. PHASING UNIT

simple but effective manually controlled phasing unit
Set of basic components incl.

PCB \& chart	KIT 25-1	£3.52
Text photocopy		28 p

## PHASING CONTROL UNIT

For use with Phasing Kit 25 to automatically control rate of phasing.

Sel of basic components incl.
PCB \& chart
KIT 36-1
Text photocopy
$10 p$
P.E. SWITCHED TONE

TREBLE BOOST
Provides switched selection of 4 preset tonal responses.
Set of basic components.
PCB \& chart
KIT 89-1
P.E. TREBLE BOOST UNIT
simple treble boost unit with manual control of depth. Set of basic components.
PCB \& chart
KIT 53-1
C2.76

## ELEKTOR RESONANCE FILTER

produce a mealistic simulation of
natural musical Instruments.
Set of basic components
PC8 las published)
PC8 (as published)
KIT B2-1 $\mathbf{E : 1 8 . 6 1}$
Text photocopy

## P.E. GUITAR OVERDRIVE

Sophisticated versatile fuzz unit including variable controls affecting the fuzz quality whilst retalning the attack and decay. and also providing filtering. Can be used with other electronic in-
Set of basic components
ACB \& layout chart
$\begin{array}{lr}\text { KIT } 56.1 & \mathbf{~} 7.57 \\ \text { PCB } 56 A & \mathbf{~} 1.78\end{array}$
Text photocopy
1.78
680

## P.E. FUZZ UNIT

A simple fuzz unit. Slighty modified from the original. Set of basic components.
PCB \& chart
KIT 55-1 $\mathbf{£ 2 . 2 5}$

## TREMOLO UNIT

A slightly modified version of the simple P.E. unit.
Set of basic components.

## GUITAR FREQUENCY DOUBLER

A slightly modified and extended version of the P.E. unit. Set of basic components.
PCB \& chart
KIT 74-1 $£ 4.97$

## P.E. GUITAR SUSTAIN

Maintains the natural attack whilst extending note duration Basic components, foot switches,
Basic chart
Basic compon
KIT 75-1 f5.64

Text photocop
KIT 75-2 $\mathbb{C 4 . 0 8}$

## P.E. WAH-WAH UNIT

Can be controlled manually or by integral automatic control. | Set of basic components. |
| :--- |
| PC8 \& chart 51T 51-1 |

## P.E.AUTO-WAH UNIT

Automaticaliy Wah or Swell sounds with each note played. $\begin{array}{lll}\begin{array}{l}\text { Basic components, foot } \\ \text { switches. PCB \& chart }\end{array} & \text { KIT 58-1 } & \text { £8.43 } \\ \begin{array}{l}\text { Basic components, panel } \\ \text { switches, PCB \& chant }\end{array} & \text { KIT 58-2 } & \text { f5.31 }\end{array}$ $\begin{array}{lrr}\text { Basic components, panel } & & \\ \text { 5witches, PCB \& chart } & \text { KIT 58-2 } & \text { f5.31 } \\ \text { Text photocopy } & 58 \rho\end{array}$

## ELEKTOR WAVEFORM CONVERTOR

Converts a saw-tooth waveform into sinewave, mark-space sawtooth, regular triangle, or square-wave with varlable mark-space ratio.

Basic components, PCB \& chart.
but exel. sw's.
KIT 67-1 $\mathbf{C 9 . 2 4}$

## P.E. VOLTAGE CONTROLLED <br> FILTER

Extracted from P.E. MInisonic project.
Set of basic components.
PCB \& chart KIT 65-1 \&7.88

## P.E. RING MODULATOR

Extracted from P.E. Minisonic project
Set of basic components.
PCB \& chart
KIT 59-1 £6.05

## ELEKTOR RING MODULATOR

Compatible with the Formant \& most other synthesisers		
Set of basic components	KIT $87-1$	$\mathbf{£ 4 . 6 6}$
PCB fas published)	PCB 79040	$\mathbf{£ 1 . 7 4}$
Text photocopy		$38 p$

## 10\% DISCOUNT VOUCHER

 (PE 70)TERMS: Goods in current adverts \& lists over $£ 50$ goods value (excl P\& P \& VAT). Correctly costed, C.W.O.. U.K. orders only.
This voucher must accompany order, Valid This voucher must accompany order. Valid

## ADD: POST \& HANDLIN

U.K. orders: Keyboards add $\mathbf{E 2} 30$ each. Other goods: Under C5 add 25 p , under E 20 add 50 p . over E 20 add 75 p . Recommended insurance against postal mishaps: add 50p for cover up to $\mathbf{C 5 0}$. $\mathbf{1} 1$ for $\mathbf{E} 100$ cover, etc., pro-rata. N.8. Eire, C.I., 8.F.P.O. and other countries are subject to higher export postagerates.

ADD 15\% VAT
(or current rate if changed). Must be added to full total of
goods, discount, post \& handling, on all U.K. orders. Does not apply to Exports.

EXPORT ORDERS ARE WELCOME but to avoid delay we advise you to see our list for postage rates. All natlonal Money Order or through an English Bank, To obtain list = Europe send 20 p. other countries send 50p.

## AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement Sne P. E. proiects oulil trom our kite and PCBs. The cases were buill oy ourselves and are not for sate. though a small selection of other cases is avallable.

LIST-Sena stamped addressed invelope with all U.K. requesis for tree list giving fuller details of PCBs. kits and ther components.
OVERSEAS enquirnes for list. Eurodesend 20p: other countries send 50p.


## KIMBER-ALLEN

## KEYBOARDS AND CONTACTS

KIMBER-ALLEN KEYBOARDS as required for many published projects. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are $\mathbf{C}$ to C , the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame, 3 Octave ( 37 notes)
4 Octave (49 notes)
£25.50
£32.25
5 Octave ( 61 notes)
£39.78
CONTACT ASSEMBLIES (gold-clad wire) - 1 required for each KBD note
Type GJ - SPCO 251p ea. Type GA - 1 pr of contacts. normally open 24pea. Type GB - 2 pr NO $28 \frac{1}{\frac{1}{p} p e a . ~ T y p e ~ G C ~}-3$ pr N/O $37 \frac{1}{\text { p }}$ ea. Type GE -4 pr N/O $46 \frac{1}{2} p$ ea. Type GH - 5 pr N/O $58 \frac{1}{2} \mathrm{p}$ ea. Type 4PS - 3 pr N/O plus SPCO 87 p ea

## P.E. NOISE GENERATOR

Extracted from the P.E. Minisonic. Sel of basic components.
PCB \& chart
WIND \& RAIN EFFECTSUNTT
A slightiy modified version of the original P.E. unit Sel of basic components. PCB \& chant

KIT 28-1 Text photocopy

## P.E.ENVELOPE SMAPER WITHOUT VCA

Provides full manual controt over attack, decay. sustain and release functions, and is for use with an existing VCA. Set of basic components.
PCB \& chart
KIT 44-1 £5.24
Text photocopy
P.E. ENVELOPE SHAPER

## WITH VCA

has an integral Voltage Controlled Amplifier, and has full manual Control over the A.O.S,R functions.

Ser of basic components.
PCS \& chart

## P.E. GENERATOR

An ADSR envelope shaper without VCA, and additional providing Repeat-triggering enabling a synthesiser to be programmed for mandolin or banjo effects. Set of basic components PCB \& layout chan Text photocopy
P.E. EXTERNAL-JNPUT

## SYNTHESISER-INTERFACE

Allows external inpuls such as
processed by synthesiser circuits.
Set of basic components.
PCB \& chart
KIT 81-1 E3.23

## P.E. TUNING FORK

Produces 84 swith-selected frequency-accurate tones with an LED monitor clearly displaying beat-note adjustments. Set of basic components. PCB \& chart
Power Supply components. PCB \& chant

KIT 46-1
KIT 46-2
Text photocopy

## P.E.TUNING INDICATOR

A simple 4 -octeve frequency comparitor for use with synthesisers and other instruments where the full versatility of KIT 46 is not required
Set of basic components,
PCB \& chart. but excl. sw. Teat photocopy

## P.E. DYNAMIC RANGE LIMITER

Preset to automatically control sound output levels. Set of basic components.

## P.E.CONSTANT-DISPLAY

 FREQUENCY COUNTER
## A 5 -digit counter for 1 Hz to 55 KHz with 1 Hz sampling rate.

 Aeadout does not count visibly or flicker due to blanking. $\begin{array}{lll}\text { Sel of basic components } & \text { KIT 79-1 } & \text { £26.45 } \\ \text { PCB (as published) } & \text { PCB 79A } & £ 3.33\end{array}$ Text photish 3.33$78 p$

### 4.68 <br> 280

INTEGRATED CIRCUITS

301 318
320.15
323
324
$341-15$
356
709
723
726
741
748
4001
4007
4011
4013
4016
4017
4024
4046
4049
4066
4069
4081
4136

48p 220p 195p 562p $862 p$
$87 p$ $101 p$
3
8

Hatton Court Ipswich Suffolk 0473-2101b1
Amount enclosed $£$
Name
Address

please state amount required in appropriate box | $a$ | $b$ |
| :--- | :--- |



# BUY anELF II micracamputer for less than sume TU games 

## ELF 11 BOARD WITH VIDEO OUTPUT

## ADD-ONS

- POWER SUPPLY $(6.3 \mathrm{~V}$ AC) for ELF 11
- ELF 11 DE LUXE STEEL CABINET (IBM Blue)
- GIANT BOARD KIT System/Monitor, Interface to/ cassette - RS232, TTY etc
- 4K STATIC RAM board kits (requires expansion power supply)
- Expansion power supply (required when adding 4K Rams)
- ASC11 Keyboard Kits 96 printable characters etc
- ASC11 d/lux steel cab. (IBM Blue)
- KLUGE prototype board (build your own circuits)
- 86 pin Gold plated connectors (each)
- ELF Light pen wrltes/draws on TV screens
- Video graphics board 32/64 characters by 16 lines on TV/monitor screens
- ELF 11 Tiny basic on cassette
- ELF 11 Bug/monitor powerful systems monitor/editor
- T. PITMANS short course in programming manual (NII VAT)
- T. PITMAN short course on tiny basic manual (Nil VAT)
- RCA 1802 users manual (NIL VAT)
†- Text Editor: Assembler, Disassembler (each) SAVE 10\% AND BUY ALL THREE TOGETHER All units can be supplied wired and tested New Games on tape. Send for list.

EX-VAT STOP reading about computers and get your "hands on" an ELF 11 and Tom Pitman's 5.00 short course. EL.F 11 demonstrates all the 91 commands which an RCA 1802 can 23.01 execute, and the short course speedily instructs you how to use them. ELF 11 's VIDEO OUTPUT makes it unique among computers selling at such a modest price: The expanded ELF 11 is perfect for engineers, business, industry, scientific and 69.44 educational purposes. specification
19.00 RCA 1802 8 bit microprocessor with
50.58256 byte RAM expentable to 64 K bres
15.02 RCA 1861 video IC to display program
4.00 on TV screen via the RF Modulator 6.50 Single Board with professional hex keyboard fully decoded to eliminate the
69.95 waste of memory for keyboard decoding
13.50 circuits
13.50
Load, run and mamory project switches
4.00
4.00
4.00 Interrup. DMA and ALU
16.95 Stable crystal clock

Built in power regulator
5 slot plug in expansion bus (lass connac-
P\&P£2.00 tors)

Send S.A.E. for comprehensive brochure
I
Name
| Address ...
I

ITo Newtronics 138 Kingsland Road London E2 8BY Tel: 01-739 1582

## SUPER SPOT DISCO SYSTEM 2

$\star$ Fully enclosed drive unit $\star 8$ A triacs $\star$ Fused $\star$ Suppressed

- Expandable using slave units connected via 9 way socket
* Stand takes 16 Spots \# Regd. Design
* 450 watt/channel \$ Sequence, auto or audio drive
* Fully adjustable * Fully isolated audio input and output sockets *


	Bult \&			Slave
	tested	Kit	Slave	
3 Ch .3 Spots	cas.98	¢48.96	239.95	237.115
3 Ch .6 Spots	278.98	203.98	289.98	[88.318
4 Ch .4 Spots	275.98	c89.05	284.98	241-3818
4 Ch .8 Spots	ctis. 98	278.85	267.88	202.4is
4 Ch .16 Spots	¢117.98	1102.96	298.98	c90.118

Price Includes: Spot stand, Swivel spot holders, Coloured spot lamps, Sequence drive or slave unit, Fitting kit for ceiling hung \& surface or wall mounting V.A.T. Post \& Packing and Guarantee.

NOBLE ELECTRONICS (PE)
26 Lloyd Street, Altrincham, Cheshire WA14 2DE.
Tel: 061-9414510

## TRAN <br> SINGLE PERSONAL COMPUTER <br> Three new exciting expandable systems designed for ease of construction and flexibility. Kits come complete with case, power supply, full keyboard, PCB. All components <br> available separately. See catalogue. Full hardware \& programming manual available. The system is easy to expand and is well supported. Features:- 2, 2.5 or 7k <br>  basic in Eprom (See catalogue) <br> - Single board <br> - Holds up to 8 k memory <br> Basic in eprom 64 graphic characters - Plug in expansion boards Cassette interface Three firmware options <br> Personal Computer <br> £286

## BI DIRECTIONAL MATRIX PRINTER £595 + VAT

The BD80 is a low cost, 80 column line printer with microprocessor control to provide excellent reliability and performance.

- $5 \times 7$ Dot matrix $\quad$ Full asch char set 84 lines per minute - 10 char per inch 10 lines/sec paper advance eif test - 400 char buffer 112 char/sec

Fully cased


Switch selectable baudrate from 110 to 9600 on a standard V24 and R5232 interface. Send SAE for further details. Ideal printer for Triton or any system requiring high speed reliable hard copy. We can supply consumables.

## EXPANSION MOTHERBOARD

TRITON. Expand your Triton
simply and easily with our new 8 -slot motherboard complete with its own P.S.U. takes 8 plug-in Euro cards. Plugin 8 k RAM card and Eprom cards now available.
Kit complete with PSU \& 1 set connectors.


## VIDEO MONITOR <br> NEW <br> A brand new fully cased (metal) high resolution 10" video monitor with PSV for only $£ 69$ +VAT <br> Ideal for Triton or any home computer system. Carriage by Securicor can be arranged. <br> Send SAE for details or see our new catalogue.



## PCB CONNECTORS

 Edge connectorsPCB connectors

PC8 connectors				
-17	Price	. 156 "	Price	
22/44	¢ 3.20	6/12	$£ 1.62$	
25/50	13.60	10/20	¢1.40	
28/56	c3.90	15/30	¢3.00	
30/60	E4.15	18/36	¢3.00	
35/70	¢4.60	22/44	83.00	
36/72	84.75	28/56	¢3.40	
40/80	¢5.00	36/72	£3.90	
43/86	f5.50	43/82	¢4.60	
50/100	C5.80 (S 100 BUS) Plus VAT			

## Video Display

Interface Module

Con PoNENTO									
Sm74isoon	11	SN74LS40N	25	Sn74sil3	4	SM74LS185N	1.70	SN74.5248N	195
SN74SOIN	. 11	SN74LS42N	11	SN74S11an	4	SN74LS186M	1.75	SN74LS249N	130
SM74LS02N	20	Sm74LS47\%	35	SN74LS122M	11	SNftLS168\%	195	SM74S251M	1.45
SN74LSO3N	. 11	SN74LSABN	15	SNTAIS123N	99	SN74LS169M	145	SN74LS253N	1.25
SW74L504N	20	SN74.549N	109	SN74S124m	1.50	Sn74LSITON	280	SW7415257N	1.40
SN74.S05M	31	SN74LS54N	21	SN74iS125N	. 6	SN74S173N	228	SN74t5258M	85
SN74LSO8N	20	SN74LS55N	11	Shidisizan	36	SN74SIT4M	1.15	SNT4IS259N	1.45
SM74SL09\%	22	SN74LS83M	150	Sm74LS132N	. 3	\$N74.S175N	1.05	SW74LS260M	13
SM74ISION	18	SATLIST3N	36	SN7USI33N	3	SN74LS181N	275	SN74S201m	150
SN74SIIN	21	SN74LS74N	40	SN74LS136M	75	SN74LST30N	1.75	Sm74is286n	31
SH74LS12M	25	SN74LS75N	45	SN74LSI38N	40	SM74S191N	1.75	SN74LS273*	1.85
SN74LS13N	. 6	SN74LS76N	35	SN74S145N	129	SN74S192N	1.46	SN74LS279H	79
SNTLISIAN	8	SN74LS78M	35	SN74S146N	1.76	SN74LST93\%	1.76	SH74LS280N	1.75
SNTALSISN	35	Sm74isb3an	1.15	SM74S151N	3	SN7/4S194AN	189	SN74IS283N	160
SN74S20N	20	SW74LS85N	1.10	SM74tS153N	60	Sm74iS195AN	15	\$N74LS290N	1.t0
SN74LS21N	21	SN76LS86M	40	SN74LS154N	1.60	SN7415198N	120	Sm74LS293N	1.80
SN74LS22W	28	SN74LS90N	65	SW74tS155N	125	5N74LS197M	1.20	SN74LS295aN	220
SM74LS26M	2)	SN74LS91N	83	SN74LS156m	125	Sh74Ls221N	1.25	SN74LS2983	220
Sm74LS27n	35	SN74LS92N	98	SM74S157N	. 0	SH74L5240N	220	SW74LS324N	1.60
SN74LS28M	36	SN74LS938m	15	SN74ISISEN	1	S*74LS241N	1.98	SN74LS325N	2.55
SN74LS30M	15	Sm74LS95al	1.20	SN74S180N	f.11	SW74LS242N	1.90	SN74L5326*	255
SN74LS32N	21	sn74issge	1.76	SM7MSI61N	1.16	5M74LS243N	195	Sn74LS327N	265
Sw74533M	. 38	Sn74S107N	13	Sm74lS162N	1.15	SW74LS24M	2.10	Sn74LS352N	1.35
5N74L33\%	21	SN74S109N	38	Sm74LS1b3N	90	SN74L5245K	280	SN74LS353N	1.50
5N741538N	28	SW74S112N	39	SW74LSIB4N	1.50	SN74LS247	125	SNHLS365N	3

## TRITON DOCUMENTATION

Available separately as follows
Prices include P\& P
Triton manual. Detailed circuit description and constructional details and user documentation on level 4.1 monitor and basic $\mathbf{~ 5 . 7 0}$ L4.1 Listing listing of $1 \mathbf{k}$ monitor $2 k$ tiny basic E 4.20 L5.1 User documentation on level 5.1 firmware $£ 1.20$ L5.1 Listing listing of 1.5 k monitor and 2.5 k basic $£ 5.50$ L6.1 User documentation on 7k basic interpreter $\quad \mathbf{£ 1 . 5 0}$ Motherboard, 8 k Ram and 8 k Eprom constructional details ESAE User group newsietter subscription £4 per annum. Triton software send SAE for list of programs avallable for Triton.


## MEM suppont

SUPPORT		TMS6011	5.00	4118	20.00	LINEARS		(M74SCN-8	45	7815K	1.50	1 M56011	. 200
8212	220	81 LS95	190	280910	10.00	LM301aH	30	[M768CN	45	7824K	150	MC1441	1200
8216	221	811596	180	280 CTC	10.00	Im301an a		LM1458H	12	7905	1.10	MC14412	1290
8224	280	814597	150	$2804 \mathrm{Pl0}$	1400	(Mini Dipl	30	LM1458m 8	48	7912	1.10	96384	10.5
8228	220	81ts98	10	2804 CTC	1400	Імзввк	98	(1414980	05	7915	1.10		
8228	4.10	RAMS				IM309k		(M1430	05	7924	1.10	CPU'S	
8238	4.20	2101	212	EPROMS		(T03)	1.45	LMI48990	1.25	7905k	1.00	8080	1.33
8245	11.00	21024	1.20	${ }_{5}^{1702}$	8.00	1m311/	129	LM1495N-14	05	7912K 7915 K	60	8890	1000
8246	11.00	2111	232	${ }_{2706}^{520 \mathrm{~K}}$	800 800	LM318N	225	LM3302N	05	${ }_{7924 \mathrm{~K}}^{7915 \mathrm{~K}}$	1.80	280	200
8251 8253	11.00	2112	2.46	2706 2516	21.00	19323K	100	Lm3402	1.20			2804 8035	1600
8255	400	5810 8154	1.11	2716	2280	[M339N	H	Lm3900\%	. 5	Oll socket	14	6502	12.00
8257	11.00	${ }_{2114}^{8154}$	6.50			IM555N	30	tobacp	140	14011	15	SCMPII	1000
8259	1250	${ }_{21021-3}$	150	ROMS		LM556\%	76	T1081C	05	18 onll	11	8802	1295
${ }^{8292}$	18.00	74 C920	1160	745267	400	[M709CN	37	T1082CP	1.20 1.6	18 oll	34	9900	3008
6820 P	450	74.321	11.00	745472	1200	LM709CN	. 38	TLeb3CN	1.15	20 oll	37		
${ }^{6821 P}$	450	74C929	1100	74570	5.00	(M723CH	68	T1084CN	1.10	24 DIL	31	WMRAP	
${ }^{68509}$	4.50	4027	0.00	745473	124	LM723CN	45	VOLT REGS		28 oli	36	8 DIL	30
6852\%	5.60	4044	0.00	745474	124	(M733CN	1.30			48 DH	50	14 Olf	36
AY.5. 1376	11.60	4045	1.15			LM73SCK	1.30	7812	80	caystals		16 Dil	42
MC14411	1208	4050	880	I/0		LM74ICH. 14	33	7815	10	CRYStals		18 OLH	6
W57109	1243	4060	780	2513	750	(M74ICN. 5	26	7824	10	100k	100		14
M57180	10.00	2107	700	${ }^{96364}$	10.95	(M74) ${ }^{\text {chem }} 14$	118	1805K	1.50	200x	170 100	28011	74
M57161	10.00	4118	1.00	14112	12.00	(M74)CH	1.18	7812k	1.50	1 mhz	100	40 Cl	15

## HOME COMPUTING CATALOGUE

If you're in town, visit our showroom in Chapel Street, next to Edgware Road tube station. We have Tritons on display plus a comprehenslve range of components and accessories, specifically for personal computer users. Books, mags, tapes, data, cables plus much more. Showroom open 6 days a week. (Half day Thurs., from 1.30).


The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

## City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

## Diploma Courses

Colour T.V. Servicing
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical engineering, Installations \& Contracting

## Other Career Courses

A wide range of other technical and professional courses are


## AUTUMN SALE

## 24 HOUR CLOCK/APPLIANCE LIGHTING CONTROL KITS

$\square$ TIMER KIT
Switches any appliance up to 1 KW on and off at prese times once per day. Kit con-
tains: AY-5-1230 IC 0.5 LED display, mains supply display drivers, switches LEDs, \&riac, PCBs \& full in: LEDs, piac.
structions.

Directly replace conventional light swieches and control up to 300W of lighting. No mains rewiring. Insulated touchplates. Ebsy to foliow instructions.
TD 300 K TOUCHDIMMER. Single touchplate with alternate action. Brief touch switches lamp on and off, longer touch dims or switch in the dark TDE/K Extension kit for TO300K for 2 way switching etc. switching etc.
TOUCHSWITCH \& DIMMER.
Single touchplate, small knob controls
¢12.00
CT 1000 KB with white box $(56 \times 131 \times 71 \mathrm{~mm})$
Ready Built
814.00
519.00

0 PTO		
$\begin{aligned} & \text { LED } \\ & 0.1^{\prime \prime} \text { Red } \end{aligned}$	DL727 0.5*   9p 2 digit Display	Square LED Red. Slza:

$\begin{array}{lll}0.1^{\prime \prime} \text { Red } & \text { 9p } 2 \text { digit Display Red. Slze } \\ 0.2^{\prime \prime} \text { Red } & 9 p \mathrm{CA}\end{array}$


 $0.2^{\prime \prime}$ Red LEDS Special offor seigit.c.
$\begin{array}{rrr}25 \text { at } & £ 1.25 & \text { Special offer segment } \\ 0.2^{n} \text { Red LEDS } \\ 25 \text { for } £ 1.25\end{array}$ BOXES
Moulded in high impact ABS. Suppliad with lids and screws. Black or white. Single touchplate, small knob controls TS 300 K - ON/OFF TOUCHSWITCH. Two touchplates.
TSA300K - AUTOMATIC. Single touch late Time delay va riable 2 secs. to $3 \frac{1}{2}$ mins. $\mathbf{2} .50$. LD300K - LIGHTDIMMER KIT ${ }^{\frac{1}{2}}$ mins. 2.30

## dIGITAL VOLTMETER/ THERMOMETER KIT



Based on the ICL 7106.
This Kit contains a PCB This Kit contains a PCB, resistors, presets, capacitors. diodes, IC and Components are also in. cluded to enable the basic DVM kit to be modified to a Digital Thermometer using a single diode as the sensor. Requires a 3 mA
9 V supply. (PP3 battery)
ع17.50

INTEGRATED CIRCUITS

 All components are brand new and to mapulacturers specification. Arld VAT at current rate to T.K. ELECTRONICS (PE) ras Suritey Grange Roas. London W7 21x Tol: 01 579 979c


HOME RADIO (Components) LTD.,
Dept. PE., 234-240 London Road, Mitcham, Surrey CR4 3HD


## LCD DIGITAL MULTIMETER.

Low-cost hand held digital multimeter with a full $31 / 2$ digit LCD display. $0.5 \%$ basic accuracy, auto polarity operation. 10 Mohm DC input impedance.

Scales:
Reading to $\pm 1999$
A portable, compact sized multimeter with a full $31 / 2$ digit LCD display. Auto polarity operation, low battery indicator. 10 MOhm Input impedance.


Scales:
OC volts:
$2-200-1000 \mathrm{~V}$. AC volts: $200-500 V$. © current:
$2-20-200 \mathrm{MA}$ 2-sistance: Resistance:
$2-20-200-$ 2000 конМ. Power source: 9 V battery or AC adapto Size:
$37 \times 85 \times 130 \mathrm{~mm}$.
22 22-197


cat no.	OESCRIPTION	PRICE
276-032	LED	$\begin{aligned} & 4 \text { for } \\ & 69 p \end{aligned}$
276-033	LED	$\begin{aligned} & 2 \text { for } \\ & 48 p \end{aligned}$
276-034	LED	$\begin{aligned} & 2 \text { for } \\ & 59 p \end{aligned}$
276-142	Infra-Red Emitter Detector Pair	£1.37
277-1003	- 12 DigDC Automotive	£17.52
276-9110	6 pin edgeconnector (or 2)7-1003	40p
276-1373	Power Transistor Mounting Hardware	50p
276-1363	TO-220 Heat Sink	60p
276-1364	10-3 Hear Sink	81p

AC/DC 8 MHzOSCILLOSCOPE

A new a pproved 8 MHz version of last years' winner! The advance design features of this oscilloscope make it an absolute essential for industrial uses on production lines, in
laboratories and schools. Ideal for rad and TV servicing, audio testing, etc.

Specifications:
Horizontal axis: Deflection sensitivity better than $250 \mathrm{mV} / \mathrm{DiV}$ Vertical axis: Deflection sensitivity better than 10 mVVIVIV (IDIV-6mm). Bandwidth: 0.8 MHz . In put impedance: 1 MOhm parallel capacitance 35pp. Time base: Sweep range $10 \mathrm{~Hz}-100 \mathrm{HHz} 4$ r ranges. Syyhronization: Internal(-) Size: $200 \times 155 \times 300 \mathrm{~mm}$. Supply:
$220 / 240 / 150 \mathrm{~Hz} .22-9501$.

You save because we design, manufacture, sell and service. Tandy have over 7,000 stores and dealerships worldwide. Over 2,500 products are made
specifically for or by Tandy at 16 factories around the world. The quality of our products has been achieved by over 60 years of continuous technological advancement.


DEALER

Most tiems also avallable at Tandy Dealers. Look for this sign in your area.

# Why waill for a hill compulter when yow con buy afully buill <br>  

Ohio Scientifics

#  

Full 8 K basic and 4 K user RAM Built and te
Power supply and R.F. Converter P.O.A.
The machine can be economically expanded to assist in your
business, remotely control your home, communicate with other
computers and perform many of the tasks via the broadest lines
of expansion accessories in the microcomputer industry.
This machine is super easy to use because it communicates naturally
in BASIC, an English-like programming language. So you can easily

( Delivery within 7 days)

instruct it or program it to do whatever you want, but you don't have to. You don't because it comes with a complete software library on cassette including programmes for each application stated above. Ohio Scientific also offers you hundreds of inexpensive programs on read-to-run cassettes. Program it yourself or just enjoy it, the choice is yours.

## Features

Uses the ultra powerful 6502 microprocessor

- 8K Microsoft BASIC-in-ROM
- Full feature BASIC runs faster than currently available personal computers and all 8080 -based business computers.
- 4 K static RAM on board expandable to 8 K
- Full 53-key keyboard with upper-lower case and user programmability
- Kansas City standard audio cassette interface for high reliability
- Full machine code monitor and I/O utilities in ROM
- Direct access video display has 1 K of dedicated memory (besides 4 K user memory), features uppercase, lower case, graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TV's with overscan display about 24 rows of 24 characters, without overscan up to $30 \times 30$ characters.


## Extras

- Available expander board features 24 K static RAM (additional mini-floppy interface, port adapter for printer and modem and OSI 48 line expansion interface.
Assembler/editor and extended machine code monitor available.

Commands					
Statements					
CLEAR	DATA	DEF	DIM	END	FOR
GOTO	GOSUB	IF...GOTO	IF...THEN	INPUT	LET
NEXT	ON...GOTO	ON...GOSUB	POKE	PRINT	READ
REM	RESTORE	RETURN	STOP		
Expressions					
Operators					
Functions					
ABS (X)	ATN(X)	$\cos (\mathrm{X})$	EXP(X)	FRE(X)	INT(X)
LOG(X)	PEEK(1)	POS(I)	RND(X)	SGN(X)	$\operatorname{SIN}(X)$
SPC(I)	SQR(X)	TAB(I)	TAN(X)	USR(1)	
String Functions					
ASC(X\$)	CHRS (1)	FRE(X\$)	LEFT\$(X\$.I)	LEN(X\$)	MIDS
					( $\mathrm{X} \$$
RIGHT\$(X	\$,1)		STR\$(X)		VAL(X\$)

Plus variables, arrays and editing facilities.

Fully built and tested. Requires only +5 V at 3 amps and a videomonitor or TV and RF converter to be up and running.

"Certainly one of the most exciting (computers) on the present market" Practical Electronics June '79
"'A useful machine $\qquad$ .represents value for money"
Computing Today June '79
"The Superboard represents good value with plenty of potential"
Practical Computing June '79

Dealer Enquiries welcome at Morgan St. address

Videotime Products
56, Queens Road,
Tel: 025656417

## MORE-MORE-MORE

EXACTLY a year ago we published an editorial similar to this one. The ways of the world are dictating the position and it is sad to realise that these editorials are probably going to be recurring at even shorter intervals in the future.

What is it all about? We are asking you to spend another 5 p on P.E. next month-doesn't sound much does it and perhaps it won't worry you, but our view is that in these inflationary days every extra $5 p$ must be fully considered. We have not put the price up just for the hell of it, we need you and we want you to keep buying P.E.-that's why we take a lot of care to try to bring you the best mag. on the market-and that we believe, is why we have a total sales figure that is higher than any other British hobby electronics magazine and that is an unqualified fact.

We have been under pressure on the price front for some time as the cost of paper in particular has risen dramatiçally yet again. Our costs have now risen by just under 20 per cent and we must reluctantly pass some of this on.

At this stage we have increased the price by 10 per cent but just how long we can hold it remains to be seen. If we use the standard argument 10 per cent in a year is less than the rate of inflation, but of course it is another $5 p$ and adds to all the others, as we know.

Since our paper is shipped from Scandinavia and our issues are distributed by road, the cost of oil plays an important part and, with a forecast of £2 a gallon for petrol next year, we do not see P.E. staying at 55 p. All we can say is that we will do our best.

## VALUE

We hope we can give you good value for money-this issue is fatter than usual and carries a free gift. By designing and making these tools ourselves in very large quantities 1108,000 in fact) we can get the price right down and give you a useful tool that is worth about 60p-that's what an equivalent would cost you.

Next month we will also be presenting a Marshall's catalogue free with each issue sold in Britain and that again is worth 50 p. The catalogue is larger than previous ones from Marshall's,
carries a full colour cover, shows reductions in price on almost all their top 500 lines and contains some prepaid order forms-at least the price of some things continues to go down!

Marshall's are also the first British component suppliers to be offering a budget account available through their four retail shops and making use of a Marshall's credit card. This card can also be used in any other store that is a member of RETRA. Quite an innovation in our market and it will certainly help spread the cost of one of our larger projects or of test gear etc.

What else are we planning? Well we have some excellent projects in the pipeline but you will have to wait and see just what they are, we are also working on special offers which should save you some of that cash we have been discussing. One exclusive offer on an incredible new Seiko watch should produce a saving of about $£ 45$ and, with luck, we will bring you the offer in time for Christmas! That sort of saving should buy P.E. for a good few years on its own.

Mike Kenward

## EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
Alan Turpin PRODUCTION EDITOR
David Shortland PROJECTS EDITOR

## Jack Pountney ART EDITOR <br> Keith Woodruff ASSISTANT ART EDITOR John Pickering SEN. TECH. ILLUSTRATOR Isabelle Greenaway TECH. ILLUSTRATOR Judith Kerley SECRETARY

Editorial Offices:
Westover House,
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 71191
Weregret that lengthy technical enquirles cannot be answered over the telephone (see below).

## ADVERTISEMENT MANAGER

SECRETARY
CLASSIFIED MANAGER


Advertising Offices:
King's Reach Tower,
King's Reach, Stamford Street,SE1 9LS
Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-261 6601

## Technical Queries

vve are unable to ofter any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate supply difficulties a source will be suggested.

## Back Numbers

Copies of most of our recent issues are available from: Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 75p each including Inland/Overseas p\&p.

## Binders

Binders for PE are available from the same address as back numbers at $£ 3.75$ each to UK or overseas addresses, including postage and packing, and VAT where ap-
propriate. Orders should state the year and volume required.

## Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

Cheques and postal orders should be made payable to IPC Magazines Limited.


Well worth an S.A.E. is the catalogue of Barrie Electronics Ltd. (B.E.L.), particularly for reference to their range of transformers, the nine pages of which cover the following categories:-Auto, Battery Charger, Cased Auto, Equipment, Filament, Ignition and Invertor, Miniature, New Range, Output, Safety Isolating, Valve, $12 \mathrm{~V}, 24 \mathrm{~V}, 30 \mathrm{~V}, 50 \mathrm{~V}$, 60 V , Specials.

Barrie Electronics Ltd., 3 The Minories, London EC3N IBJ (01-488 3316).

## STOCKO' SCHOTTKY

A new company holding substantial stocks of those increasingly hard to find LS devices has just launched itself on the hobbyist market. Romane Electronics are based in Sale, Cheshire and are advertising a good range of LS devices at very competitive prices.
They say that customer orders will be dealt with in strict rotation so get in quick or the bigger buyers may be topping up supplies from this source.

Romane Electronics, 64 Newlyn Drive, Sale, Cheshire M33 3LE (061-962 2606).

## CODESPEED CATALOGUE

Most of their components are full specification devices but Codespeed also offer untested packs in varying degrees of guarantee of satisfaction. So if you are a bit of a gambler you could chance your shirt in the following way; " $4 / 5$ digit displays in manufacturer's support frames, header and tie bars to be cut, four for a $£ 1$ "; "n.p.n. transistors, designated F107, spec. unknown, 10 for 70 p "; "Op. amps., 20 assorted, $\mathcal{£} 1$ "; "Factory reject calculators, $£ 2.50$ each"; "Two min. relays, 25 p "; " 15 logic i.c.s $£ 1$ "; " 30 mixed i.c.s $£ 1$ ".
S.A.E. to Codespeed Electronics, Box 2334 Seafield Road, Copnor, Portsmouth PO3 5BJ.

## WHEN QUADS ARE WELCOME

Siliconix has given birth to a quad VMOS power FET device in a standard 14 lead d.i.l. package.

The VQ1000 contains four independently accessible high speed VMOS FETs each with a maximum switching capability of 60 V and 0.5 A continuous or 1 A pulsed. For higher power applications the FETs can be externally paralleled to load share.


Switching times are typically as low as 5 ns and uses suggested are TTL/CMOS logic to high power interfacing, l.e.d. digit strobe drivers, high speed line drivers, stepping motors, peripheral controls, solenoids, etc. Switching capabilities comparable with bipolar transistors can be achieved without the many disadvantages such as secondary breakdown, thermal runaway, low gain, low speed due to minority carriers, and current hogging when used in parallel.

Each FET is Zener protected and overall power dissipation for the plastic or ceramic package is limited to 1.75 W at $25^{\circ} \mathrm{C}$.

Siliconix Ltd., Morriston, Swansea SA6 6NE (0792 74681).

## BIOCLOCK

Much has been said and published on the usefulness and results of biorhythms; we are told that Japanese insurance companies even advise clients not to drive on certain days because they are critical "switching" days in the biorhythm curves. Whether you take notice of biorhythms or not, it is quite interesting to check results against the predictions for each day-a bit like reading your horoscopel We will refrain from passing any opinions on how much reliance anyone should place on biorhythms, what interests us is a biorhythm clock that is now available.


The clock provides three readouts which are colour coded to correspond to a graph showing the rhythm curves for physical, emotional and intellectual capacities. It is thus easy to check where on each curve an individual lies each day-the clock can only be set to one birth date so is normally only usable by one person. Initial setting of the clock involves a calculation of the days one has lived for and divisions of this total to set each readout. This is however a once only operation, provided the unit is not unplugged-or until the next power cut!

In use we found the displays were a little dim but since it is only normal to read the clock once a day this is hardly a problem.

The clock is available in kit form from Maclin-Zand, Unit 10, 1st Floor, East Block, 38 Mount Pleasant, London WCIX OAP (01837 1165).

## 30 METRE AUTO-SWITCH

This photoelectric switch has an operating range of 30 metres. The infra red l.e.d. light source ensures long operating life and high immunity to ambient light. Transmitter and receiver are compact units measuring only $90.5 \times 40 \times 40 \mathrm{~mm}$.


Available in operating voltages from 12 V d.c. with a voltage output, or 24 V d.c. with a power output capable of switching up to 200 mA . $110 / 240 \mathrm{~V}$ a.c. operation is also available.

IMO Precision Controls Ltd., 349 Edgware Road, London W2 IBS (01-723 2231).

## 4 $\frac{1}{2}$ DIGIT L.E.D. METERS

Lascar Electronics have introduced two new $4 \frac{1}{2}$ digit panel meters priced from under $£ 40$. They are fitted with high efficiency 0.43 in red l.e.d. displays and are available with f.s.d.s of 2 V or 200 mV .


Accuracy is guaranteed to $\pm 1$ count over the entire range, giving a resolution of up to $10 \mu \mathrm{~V}$. Auto-polarity, auto-zero, b.c.d. outputs, digital hold and programmable decimal points are standard features.
Six auxiliary inputs/outputs are available for interfacing to UARTS, microprocessors or other complex circuitry.
Also available is a panel mounting bezel with a red circularly polarised filter. A mains power supply option is also offered.

Lascar Electronics Ltd., Unit 1, Thomasin Road, Burnt Mills, Basildon, Essex SS13 1LH (0268 727383).

## SOLAR CELL

Ferranti have developed a silicon solar cell specifically for educational use, but maybe hobbyists will find a use for it too.

The cell, designated the ESC 3 series, is 3 in in diameter and is capable of producing 0.9 A at 0.5 V under good sunlight conditions. Physical protection is provided by a tough moulded case and by a Fresnel lens which also acts as a light collector.


Power take off is from metal pins on the rear of the case. Accidental short circuiting of the output will not damage the cell, and any number of cells can be arranged in series/parallel combinations to provide increased output values.

How many of these would you need to bolt on your bonnet to power all the car instruments in our new series?

Ferranti Electronics Limited, Fields New Road, Chadderton, Oldham, Lancs OL9 8NP (061-624 0515).

## RCASINGLES

Not to be left out of the single board race RCA Solid State has introduced a family of single board microcomputer systems based on the CDP 1802 COSMAC microprocessor. The family consists of two single board microcomputers with differing memory capacities, a range of addon memory boards and expansion modules, 5 -card and 25 -card chassis/backplane units, a milliwatt power supply, and two prototyping systems. All Microboard modules are compatible with existing RCA COSMAC Development Systems. Each module measures $4.5 \times 7.5 \mathrm{in}$. ( 114 $\times 191 \mathrm{~mm}$ ), and any module works in any location on the backplane. Software development can commence as soon as the modules are plugged in.

The use of CMOS means that power consumption is measured in milliwatts, and a complete system can be powered from nickel-cadmium batteries. Alternatively, the ability of the CMOS circuitry to operate over a wide voltage range allows low-cost power supplies with extended regulation limits to be used. Also there is excellent immunity to electrical noise.


Each of the computers contains a CDP 1802 microprocessor, cry stal-controlled clock, read/write memory, parallel input/output ports, serial communications interface, 'power-on' reset, expansion interface, and sockets for user-selected ROMs. The two computers are designated CDP18S601 ( 4 K byte RAM; sockets for $4 / 8 \mathrm{~K}$ byte ROM/PROM) and CDP 18 S 603 ( 1 Kbyte RAM; sockets for $4 / 8 \mathrm{~K}$ byte ROM/PROM).
Memory modules include 4 K byte, 8 K byte and 16 K byte RAM boards, 4 K byte and 8 K byte RAM boards with battery backup, and an $8 / 16 \mathrm{~K}$ byte ROM/PROM board. Other expansion modules available on Microboards are a UART interface, a combination memory-input/output module, digital/analogue and analogue/digital convertors, and a control and display module.
The two Microboard prototyping systems available from RCA each contain a Microboard computer together with a control/display module, a 5 -card chassis in a protective case, a power convertor, a breadboard for prototyping, cables and connectors, utility software, and technical literature.

RCA Solid State-Europe, Sunbury-on-Thames, Middlesex TW 16 7HW (093-27 85511).


## MAINS STABILISERS

Of particular interest to our overseas readers are these mains voltage stabilisers. Regulation of two per cent is achieved on the ferro resonant range; VA ratings, $175,250,500,1000$ or 2000. The other models which make up the full range of 21 are thyristor controlled buck and boost transformers. Also available are three models of cutout, one of which is an OEM version. Trade enquiries are welcomed world wide.

Galatrek, Scotland Street, Llanrwst, Gwynedd LL26 0A 1, North Wales, Great Britain. Telephone ( 0492640311 ). Telex 617114.

## FUNCTION GENERATOR

This function generator can produce square, triangular or sine waves over a frequency range of $1 \mathrm{~Hz}-100 \mathrm{kHz}$, and incorporates an electronic sweep facility which gives a sweep range of up to $100: 1$ from an a.c. signal.

The instrument has five overlapping frequency ranges with pushbutton selection and a vernier tuning dial to give an accuracy within $\pm 5$ per cent dial setting.

In addition to the normal high and low-level outputs for sine, triangular and square waveforms, a separate TTL square-wave output is provided which will drive ten TTL loads with rise and fall times of less than 25 ns .

Sine, square and triangular waveform outputs are variable over a range of more than 40 dB . The high-level output is rated at $0.1-10 \mathrm{~V}$ (peak-to-peak) into an open circuit, and $0.005-5 \mathrm{~V}$ (peak-to-peak) into a $600 \Omega$ load. A separate low-level output, 40 dB down from the high-level output, is rated at $1-100 \mathrm{mV}$ into an open circuit and $0.5-50 \mathrm{mV}$ into a $600 \Omega$ load.


The variable d.c. offset amplitude control, once set, holds the output signal to within $\pm 0.5 \mathrm{~dB}$ over the entire frequency range.

Distortion on the sinusoidal waveform is less than two per cent, and linearity error of the triangular waveform is within one per cent. The standard square wave has rise and fall times of less than 100 ns and a time symmetry error within $\pm 2$ per cent.

The voltage-controlled sweep oscillator can be zero-referenced from any frequency setting, and the sweep input can be within the range $\pm 10 \mathrm{~V}$.

Price of the Model 2001 is $£ 75$ plus VAT.
Continental Specialties Corporation, Shire Hill Ind. Est., Saffron Walden, Essex CBII 3AQ (0799 23101).

## HAND HELD DMM

A new $3 \frac{1}{2}$ digit multimeter has been introduced by Lascar Electronics. It is claimed to combine the accuracy of a digital instrument with the low cost of an analogue type.

The LMM-200 has a basic accuracy of 0.5 per cent, a 200 hour battery life and 0.5 in . l.c.d. read-out. The display also indicates when the battery has only 20 hours life left.


The instrument has 15 different ranges and can resolve voltage to 0.1 mV , current to $0 \cdot 1 \mu \mathrm{~A}$ and resistance to $0.1 \Omega$. Auto-polarity and auto-zero are standard. Inputs are via 4 mm terminals and are protected against wverloads and transients.

Housed in a black ABS case, the instrument is $£ 34.95$ and is supplied with a battery, instructions for use and a 2 -year warranty. Suitable test leads are also available.

Lascar Electronics Ltd., Unit 1, Thomasin Road, Burnt Mills, Basildon, Essex SS13 1LH (0268 727383).

# Market <br> CHICAGO CONSUMER ELECTRONICS SHOW 

## VERALIVES

Do you remember VERA, the BBC's Video Electronic Recording Apparatus? VERA's passion was the rapid consumption of yards of magnetic tape to record her signals. Tape pass speeds for video and audio dropped dramatically after VERA's debut and she went into early retirement.

It appears now that VERA's style of working may be the new vogue, for Toshiba were showing a cartridge recorder with a tape speed


This Harmonizer, for recording studios, can change the pitch of a signal by three octaves (one up, two down); has two outputs, each with 400 ms of delay; a frequency response of 15 kHz and a signal to noise ratio of 96 dB . It is also capable of flanging, repeat, random delay, and reverse effect. Price is $\$ 2,400$
Eventide Clockworks Inc., 265 West 54th Street, Now York, N.Y. 10019. Telephone (212-581 9290).
of six metres per second. The tape is in a loop of 100 metres, and 220 longitudinal tracks store the recording. It takes only 17 seconds to make one circuit of the loop but $17 \times 220$ gives just over one hour of recording time. Seventeen seconds is also the access time to any part of the loop.

The half-inch wide tape, on a non-revolving fixed reel cartridge, is pulled from the centre of the reel, and driven by a direct drive capstan
motor near the centre of the reel. The head, near the capstan, moves vertically across the 220 tracking positions, powered by a stepping motor.

Apart from domestic TV recording Toshiba are expecting this system to be valuable where rapid random access to digital information is required ( 20 ms to access track in use, 4.4 s to range all tracks). Just the device to bolt on to a home computer. The simplified mechanism

eliminates about two thirds of the mech anical parts used in other video recording systems. The prototype LVR (Longitudinal Video Recorder) shown at Chicago was NTSC compatible, to EIA standard. Weight of the unit is a readily portable 17.6 lbs .

Consumer Electronics Division, Toshiba America Inc., 280 Park Avenue, New York, N.Y. 10017.

## HAND HELD PRINTER

Toshiba have brought out a 10 digit cordless printing calculator with: memory, per cent, constant, and item counter. The model shown has a Digitron display and there is also an l.c.d. version with floating decimal.


The machines print at two lines per second. The model shown has a suggested price of $\$ 90$ which includes a Ni Cad battery and an a.c. adapter. The l.c.d. version $(\$ 100)$ has a Ni Cad pack as an optional extra.

Business Equipment Division, Toshiba America Inc., 280 Park Avenue, New York, N.Y. 10017.

## WHISTLE STOP

The Whistle Switch is a sonic receiver which plugs into a mains outlet and can switch on or off any mains device up to 300 W . It is activated at up to 50 ft by a hand held remote control which emits a barely audible whistle.

If you can't get in to Bloomingdale's or Macy's with your $\$ 25$ there was a project in the June issue of PE which had a similar capability although not the same range.


Universal Controls Corporation, Suite 868, Kirkeby Center, 10889 Wilshire Boulevard, Los Angeles, California 90024. Telephone (213477 4509).

## MORE HEADROOM

Dolby have developed and are making available their HX (Headroom Extension) system for incorporation in their present Btype systems.

The HX module (prototype shown) "automatically and continuously varies the record bias level and record equalisation to optimise both, in response to changes in the recorded level and high-frequency content". It permits recording at 10 kHz and above at a level 10 or more dB higher than is currently possible, while at low and middle frequencies perfor-

mance is optimised for minimal distortion, modulation noise and drop-out effects. The HX system works with any tape formulation (for which a recorder is nominally set up).

The technology is available to all Dolby licencees for inclusion in cassette recorders with Dolby B-type noise reduction, without further royalty or licensing charges. The parts required for the new system add about a third to the manufacturing cost of the Dolby circuits within a recorder.

Dolby Laboratories, 731 Sansome Street, San Francisco, CA 94111. Telephone (4153920300 ); Telex 34409.

Dolby Laboratories, 346 Clapham Road, London SW9 9AP. Telephone (01-720) 1111. Telex 919109.

## MAGIC MIKE

No not our editor, although he does seem to have been on the button as far as CB goes (see August editorial and recent reports of Home Office announcements in the daily press). Magic Mike is, according to the manufacturers, the first cordless CB mike. The mike can be installed without any modification to the existing CB rig, and is powered by a nine volt battery. Effective range is three metres, allowing back-seat CB-ing.

The system operates on VHF and receiver and transmitter are certified in compliance with FCC rules and regulations.

Autoalert Inc., 4488 Spring Valley Road, Suite\#102, Dallas, Texas, 75240. Telephone (214-2330187).

## PETANALYSER

If you have a PET computer and a spare $\$ 600$ you can have yourself a Real Time Third Octave Spectrum Analyser. The analyser divides the audio spectrum from 20 Hz to 20 kHz into 31 third-octave bands and displays them on the PET screen.


The manufacturers suggest that the plug in board can be used for measuring sound and noise levels, for optimising the equalisation of a hi-fi or public address system, for checking the frequency response of audio components, and for speech and sound pattern recognition.

Of course the PET can be used to store, recall and compare data. Programs to access the analyser are written in BASIC and three are provided with the unit.

Eventide Clockworks Inc., 265 West 54th Street, New York, N.Y. 10019. Telephone (212-5819290).


## Energy

Recently the popular rave topic has been chips. Every aspect has been talked out-technical, industrial, economic and social consequences. It went on for months and seemed like years. But at least the prices of chips were expected to fall and fall.

Now the rave topic is something which keeps going up in price---energy. And as with doom-laden prophecies on the chip, so they say, we are doomed by the energy crisis.

You might imagine there was a world shortage. Not so. Our earth came from the sun. And so does all its energy, whether ripening the corn today or stored up as a fossil fuel from way back. And the sun is still out there shining away and our earth is still collecting energy in the same old way and, very slowly, a few new ones too.

The crisis, if there is one, is not a shortage of total energy available but, with oil particularly, its price structure and geographical distribution. It's amazing that the Middle East, with its distinguished history in the mathematical sciences, took so long to work out the simple economic equation of supply and demand. Equally amazing that an area closely associated with hashish (an Arabic word) and its consequences, should so tardily recognise that the industrial West was so completely hooked on oil-guzzling that withdrawal from the drug would be unthinkable. So, with the customers hooked and the aid of a revolution in Iran, not to mention a price-fixing ring (OPEC), the going rate is what the market will stand.

## Good and Bad News

Although bad news for us all in general, the crisis is good news for the electronics Industry. British companies have prospered well over the North .Sea exploration and production phases of development and in other oil-producing areas as well. Marconi, for example, has just picked up yet another troposcatter contract, this time worth
£750,000, for communications with Shell's Fulmar platform, a link 280 km from the Post Office base station at Fraserburgh. But as well as big business in communications, companies have been supplying electronic survey and navigational equipment, instrumentation and industrial control gear.

Now even more business is in prospect because many of the less promising oil fields not worth touching at $\$ 10$ a barrel are beginning to look attractive at a going rate of over $\$ 20$ a barrel. More platforms, more drilling, more pipelines, more and more electronics.

But the industry will also score from conservation and alternative energy. In conservation, microprocessor control will 'finetune' temperature and other systems far better than old fashioned thermostats. Gains in efficiency measured in single percentage points, even one per cent, are significant for big energy-intensive enterprises. Selfadaptive energy saving systems, mini or microcomputer based will be big business in the 80s.

For alternative energy sources there is a choice of solar, wind, falling water, wave and tidal power, biomass (organic matter of biological origin) and the way-out prospect of tapping the enormous heat concentrations in tropical oceans. The trouble with most of these is that they are intermittent and the collecting mechanism is seldom conveniently situated near the point of use, at least for large generation.

Nonetheless, all the techniques are being vigorously pursued, with thermal technologies, particularly direct and indirect solar energy, as favourites. In the direct form, in which solar heat collectors are attached to rooftops, electronics will be there for system management.

## Solar Cells

In the indirect form, using photovoltaics typified by the silicon solar cell, electricity is generated by sunlight falling on a panel of cells. The mass market here is for the cells themselves and there is much development work going on to get production costs down to a level where systems are competitive in price with conventional power from a national grid.

In looking at systems, costs have to be measured which include the cost of delivering power to the point of use. Thus, although initially expensive, a solar cell array on the top of a mountain and used to power a navigational beacon can already score over a conventional supply involving miles of cable and supports to get the power there. In fact there are hundreds, if not thousands, of such installations already in use. Intermittency of output is not a problem when the solar energy is used to charge a battery. A panel four feet square will, with present technology, deliver 8.5 A at 28 V .

The attack on costs of solar cells is on two fronts. One is to reduce manufacturing costs of high efficiency devices using expensive materials, the other to make present low efficiency devices using cheap materials more efficient.

In the first case, according to a recent report from RCA, attempts are being made
to cut costs on crystal growth, slicing and encapsulation for high performance devices. In the second, completely new materials are being studied, notably amorphous silicon, which has electrical and optical properties quite different from crystalline silicon. It has better sunlight collecting properties and can be deposited readily with only a little material as thin film on cheap substrates. The only snag is that conversion efficiency is, at present only 6 per cent compared with a minimum target of 10 per cent, preferably 15 per cent, to make amorphous silicon competitive. The twin attack could result in the two technologies drawing together in cost per watt output which is the decisive factor.

The immediate attraction of the solar cell is that photovoltaics is a technology already established, in contrast, for example, to harnessing wave or tide power which is still experimental. And semiconductor manufacturers are already conversant with the manufacturing processes. For low power local use, the solar cell will become big business in the next decade.

## Wind Po wer

The other local energy technology about which we know quite a lot is wind power, and since cheap rural electricity finished off the windmill we have learnt a lot more about aerodynamic design. Before cheap electrical power was piped nation-wide, the United States had some six million windmills, nearly all used for pumping water. The new name is wind energy convertors and it is a fair guess that we shall see a lot more installed in the year ahead. Conversion efficiency is high, 35 per cent has been achieved, and examples delivering 200 kW of power are already operating. Although still an intermittent source, depending on wind force, the wind energy convertor has the advantage that it will keep turning during the hours of darkness. A belt-andbraces solution would be a hybrid wind and solar cell structure when one or other, sometimes both, would be working.

Large wind energy convertors capable of delivering two megawatts are being built in the United States. These will be used for feeding into the big supply networks. At local level, small on-site units which could be mass produced will deliver a kilowatt or so.

It only needs another couple of hikes in world oil prices to make these cranky ideas look completely realistic and the obvious thing to do. The big electricity suppliers don't like the prospect of having their customers switching to home-brew power, but the anti-pollution brigade will love it because sun power and wind power produce no effluent. Nonetheless it seems quite certain that although the pattern might change we shall still need and have huge generating stations, oil fired, coal fired and nuclear, for many years to come.

Moreover, we shall still use petrol in cars. Petrol is stored energy in portable form and there is no comparable storage medium- 83 gm of petrol contains a kilowatt hour of energy compared with 55 kg weight of lead-acid batteries to store the same amount.

# Semiconductor IPRATITEm FEATURINF mM 74C911/2/7 ICL 7611 

## DISPLAY COMBO

The cheapest way to display numeric data is to use seven segment l.e.d.s in a multiplexed drive scheme. Static l.e.d. drive circuits require a decoder for each digit, and that gets expensive when more than three or four digits are required. In a multiplexed scheme only one display digit is turned on at any given instant, but the scanning, or multiplexing, rate is made sufficiently high that to the human eye, all display digits appear to be "on" simultaneously

In a multiplexed display scheme only one decoder is required for the whole system, because it too is multiplexed with its input, and therefore output, data changing in synchronism with the digit strobes which are used to enable each l.e.d. in turn.

Most familiar systems such as watches, clocks, calculators and digital multimeters, employ display multiplexing because it is more economic and because it uses fewer pins on an LSI chip (seven segment lines and N digit strobes as compared with 7 N lines for a static scheme), but for homebrew systems a multiplexed display may seem a bit of a problem at first.

You'll need a decoder of course, something like the 7447 would do nicely, and you can use TTL for most of the other bits and pieces too. These include a multiplex clock oscillator, a digit counter and decoder or a shift register, and a method for multiplexing the data into the seven segment decoder, such as a recirculating shift register or some tri-state gates if that data is already latched in parallel.

To drive the digit lines you may need some discrete transistors, because in a multiplexed system the display currents are $N$ times greater for the same effective brightness as can be obtained with an $N$ digit static system.

## THINK TWICE

Hmmm! enough to make you think twice about the "economies". of multiplexing, isn't it? Well, not to worry, because National have spotted the problem and built up some very nifty multiplexed display subsystems and put the whole mess on to a single CMOS chip.

The new devices are called display controllers, and there's one to suit every system. Typical of the family is the MM 74C912, which is intended for use in eight segment (that's seven plus a decimal point), six digit decimal displays. You give it your data in parallel four bit b.c.d. form, by addressing one of the six latch registers in turn via the three address lines and the chip enable. It does all the rest.

The on chip oscillator drives the digit multiplexer which generates one of six digit strobes while gating the correct latch contents to the decoder (actually at $16 \times 7$ ROM). The ROM outputs are buffered to drive the segment lines directly, at least for the smaller l.e.d.s.

Another family member, the 74C917, does all that the 74 C 912 does, but its decoder ROM is programmed to do the full hexadecimal character set of $0-9$ and A-F, instead of just 0-9. The 74 C911 does away with the decoder altogether but allows you to store data a byte at a time. This could


Internal circuitry of National MM 74C917
be data that's already been decoded, by a microprocessor say, or it could be followed by an external decoder for a full alphanumeric dot matrix or "Union-Jack" type display.

The 74C911 drives four digits, but devices can be used together for more digits or a wider word. These devices are especially useful when used to relieve a microprocessor of the display driving chore, but no doubt they will find many applications in non-micro systems, where their single five volt supply and compact 28 pin packages will make them excellent replacements for steam TTL!

## MICRO-AMPS

Last month I dealt with the amazing CAZAMPS from Intersil, but those CMOS wizards have tricks up their sleeves, like the incredible ICL 7611 family for example.

If you have ever baulked at the prospect of having to provide plus and minus 15 volt supplies for a solitary 741 op-amp, then the ICL 7611 devices could be for you, because they will run from plus and minus half a volt! You don't have to go that far though. This super-low-power operational amplifier family will run at up to plus and minus eight volts, or you can use a single supply like a $1 \frac{1}{2}$ volt pen cell or a five volt logic supply.

Don't worry about running the pen-cell flat either. Many of the family have a current programming pin which allows you to set quiescent bias current to between 10 microamps and one milliamp. Even at one milliamp that pen cell will last a long time, and at that current you get almost 1.5 MHz of bandwidth! Regardless of bias current, you can expect 100 dBs of open loop gain, 90 dBs of CMRR, an input offset voltage of three millivolts and a one pico amp input bias current.

You can have these devices in all sorts of shapes and sizes-singles, duals, quads-internally or externally compensated, and some with unique features like plus and minus 200 volt input protection. And all at very low prices (less than $£ 1.00$ for a single device).

You can now gain the benefits of operational amplifier circuitry in just about any kind of battery powered gadget you care to think of; no more messing with discrete transistors or converted CMOS logic gates!

National Semiconductor, 19 Goldington Road, Bedford MK40 3LF. 10234 211262)

Intersil Inc., 8 Tessa Road, Richfield Trad. Est., Reading RG1 8NS. 10734 595011)

## solin state

## na.1• Buttery Uoltage Indicator

THE shape of vehicle instrument displays will undergo radical change in the next decade, or so we are constantly assured. A recent $P E$ article gave an insight into some of the changes we can expect to see on the dashboard. At present, however, most of these predictions belong to the realms of publicity for such dreams as the Aston Martin Lagonda; the province of the lucky few! The real question for the amateur constructor is how to take advantage of the technological revolution in vehicle instrumentation without indulging in the seemingly obligatory multi-million pound development programme.

This is the first in a series of articles which will describe a range of solid state instruments for motor vehicle applications which involve no moving parts, make use of readily available inexpensive components, and which are easily added to any vehicle with a 12 volt electrical system. The instruments may alternatively be constructed as self-contained test units.

## VEHICLEINSTRUMENTATION DESIGN

The purpose of vehicle instrumentation is to provide the driver with an indication of the current state of the vehicle in a form which is easily and quickly understood. In practice, this usually means some form of visual indication.

To make use of the solid state display requires that the information to be displayed is available as an electrical signal. In many cases, therefore, the quantity to be displayed must first be converted to an electrical signal, and often further processed, before it is suitable for display. Fig. 1 shows the overall block schematic of such an instrument. In some cases, blocks 1 and/or 2 may not be required owing to the nature of the variable being measured. The requirements of a solid state vehicle instrument are given below.
(1) Transducer to convert from the physical variable (e.g. temperature) to an electrical signal (e.g. voltage).
(2) Signal processing unit to convert the output of the transducer (which could be a lowlevel pulsating voltage) into a suitable level.
(3) Driver and reference level to translate the processed level into appropriate commands to the display.
(4) Display unit to provide a physical display of the measured physical variable.
The design should give good rejection to supply fluctuations, which are of a considerable level in motor vehicles.

## INSTRUMENT DISPLAYS

Over the last decade, the seven-segment display device in its various forms has become almost synonymous with the advances in measurement technology. Such numeric displays are well suited to the many applications where a precise indication of the measured parameter is required.

But there are many situations where such precision is unnecessary, even confusing. This is especially true in the situation where a number attached to a particular measurement has no immediate significance to the user. For example, the number " 35 " in the FUEL window of the dashboard requires an appreciation that the units are litres, and the user must perform some mental arithmetic in order to learn that the tank is, in fact, about one-quarter full. Rather better assimilation would result from a display which presents information to the user on a related proportionial scale. Such a trend is currently apparent in the move towards electronic watches with analogue (dial and pointers) display, and away from the original digital display, despite the unquestioned 'precision' of the 6 digits.

One approach to the problem of a low-cost analogue type solid state display is to make use of a linear array of light emitting diodes. The diodes may be arranged in a straight line or in a circular arc, to suit the particular application. A single l.e.d. may be lit at one time to give the effect of a moving pointer, or the l.e.d.s may be accumulatively illuminated to give a bar graph display. In the "Dot" mode, the individual l.e.d.s may be coloured appropriately to represent safe and unsafe regions of operation according to the variable being measured.
Fig. 1. Flow diagram of a vehicle instrument display


## INSTRI UENTS

Michael Tooley в.д.

## David Whitfield ва.м.sc.



A series of articles on vehicle projects using the LM3914

## DISPLAY MODULE

There is now a wide range of integrated circuits designed specifically for use in automotive applications. One device in particular is the National Semiconductor LM3914 Dot/Bar Display Driver. The LM3914 is a monolithic i.c. that senses analogue voltage levels and drives 10 l.e.d.s, providing a linear analogue display. A single pin changes the display from moving dot to a bar graph. Current drive to the l.e.d.s is regulated and programmable, eliminating the need for current-determining resistors. The circuit, shown in outline in Fig. 2, contains its own adjustable reference, and accurate 10 -step voltage divider. The low-bias-current input buffer accepts signals down to ground, or $\mathrm{V}^{-}$, yet requires no protection against inputs of 35 V above or below ground. The buffer drives 10 individual comparators referenced to the precision divider, allowing the indication non-linearity to be held typically between one and two per cent. The flexible design of the LM3914 allows many devices to be "chained" to form displays of 20 to over 100 segments. Both ends of the divider chain are externally accessible so that two drivers may be used in a centre-zero meter. When in Dot mode, there is a small amount of "fade" (about 1 mV ) between adjacent segments to ensure that at no time will all l.e.d.s be off.

The use of the LM3914 allows a basic circuit building block to be designed which represents units 3 and 4 in Fig. 1 , and which may be used in the whole range of instruments to be described in this series of articles. The block diagram in Fig. 3 shows the features of the basic 10-bar display module. Full-scale indication is achieved with an input of +5 volts, and the display may be set to either Dot or Bar graph mode. In the design of this basic module, consideration must be given to the range of possible supply voltages, and the attendant problem of power dissipation. In Bar graph mode, with +15 volt supply and an input of +5 volts, the power dissipation involved in the i.c. and l.e.d. supply regulator will be 120 mW for each milliampere of individual l.e.d. current. Also to be considered are the decoupling requirements to prevent oscillations in applications where long leads are used. The circuit diagram of the $0-5$ volt Dot or Bar graph display module suitable for use with supplies of $7-15$ volts is shown in Fig. 4 .

## BATTERY CONDITION INDICATOR

A measure of the general condition of a motor vehicle battery may be obtained by measuring the terminal voltage under operational conditions. The nominal open-circuit terminal voltage of the conventional 6-cell lead/acid accumulator is 13.2 volts. This value falls under load, especially as the internal resistances of the cells rise due to physical deterioration; and the voltage rises when the cells are on charge. At no time, however, will the terminal voltage fall much below 10 volts, and the voltage regulator should ensure that the terminal voltage does not rise much above 15 volts when charging. For these reasons, a battery condition indicator need only have a display range of approximately 10 to 15 volts.

The transducer requirement is therefore to convert a voltage in the range $10-15$ volts into a signal of range $0-5$ volts, to be compatible with the display module described earlier. A Zener diode has characteristics ideally suited to this problem. The reverse characteristics of these diodes of Zener voltage above 6 volts are illustrated in Fig. 5 (three graphs). The nominal Zener voltage is usually given at a reverse current of 10 mA . The Zener voltage may be increased by the use of a forward-biased conventional diode placed in series with the reverse-biased Zener. This also has the effect of reducing the overall temperature coefficient of the diode combination. The method of generating a zeroreferred signal for driving the display unit (i.e. the signal processing unit number 2 ) in this application is shown in Fig. 6.

The overall circuit of the battery condition indicator is shown in Fig. 7 and it closely follows the block diagram of Fig. 1. The battery voltage is actually measured from the supply to the instrument, which is fully protected against reverse polarity. Using the circuit values given, the first I.e.d. will light at a supply voltage of 9.8 volts, and the tenth l.e.d. will light at a supply voltage of 15.2 volts.

## CONSTRUCTION

The detailed construction of the battery condition indicator is a matter which is very much influenced by the preferences of the individual constructor. Two particular constructional examples will be described in some detail, but these are intended only as illustrations of the wide range of practical implementations which are possible. Individual constructors may wish to make different use of the range of displays currently available. There is, for example, a linear array of 12 matched l.e.d.s available in a 24 -pin d.i.l. package for those wishing to produce a miniaturised display; such units may be cascaded using additional drivers.


Fig. 3. Block diagram of basic 10-1.e.d. display
Fig. 4. Circuit of basic 0-5V display module



Fig. 5 (above and opposite). Graphs showing reverse characteristics of Zener diodes. (a) Voltage vs. bias current for BZY88 C5V6. (b) Temperature coefficient vs. voltage at I const. (c) Voltage vs. bias current and temp.


Fig. 6. Zero-referred signal circuit


Fig. 7. Full circuit diagram of the Voltage Indicator


Fig. 8 (left). Printed circuit layout (actual size)
One area of decision at the construction stage is in the mode of display. For a Bar graph display, it seems reasonable to make use of 10 lie.d.s of the same colour. In Dot mode, however, it is possible to colour-code the individual l.e.d.s to give an indication of satisfactory and unsatisfactory conditions e.g. red for the first three and last two I.e.d.s, and green for the remainder.

Fig. 8 shows the printed circuit track pattern for use in a dashboard instrument mounted in a rectangular moulded "instrument pod". The component layout, shown in Fig. 9, is designed to accommodate 10 standard 5 mm diameter l.e.d.s in a straight line. The wire link is shown set up for Dot mode display, and the l.e.d.s are colour-coded as described above. The power supply connections are brought out to two small sockets on the back of the unit; the measurement of battery condition also uses this supply. The p.c.b. should be mounted on spacers to bring the l.e.d.s up level with the back of the front panel window. This front panel cut-out is approximately 56 mm long $\times 5 \mathrm{~mm}$ high.

The power supply for the instrument should be taken from a low impedance line via the vehicle ignition switch. In use, the instrument has been found to display in the green zone (except when starting!! for batteries and charging systems in good condition.

An alternative arrangement is to build the battery condition indicator as an item of test equipment. For this application a Bar graph display seems more appropriate, though it remains a matter of individual choice. The circuit is the same as before, but in this case the prototype used a piece of 0.1 inch veroboard $60 \times 40 \mathrm{~mm}$ mounted in an all-plastic case measuring $100 \times 50 \times 25 \mathrm{~mm}$. This case is a comfortable size for hand-held operation. The l.e.d.s this time are TIL209 red subminiature types, and are mounted across the short side of the case on a 0.1 inch pitch. A convenient component layout is given in Fig. 10. The l.e.d.s are mounted using the full length of the leads, and the circuit board is secured to the base of the case -an arrangement which brings the active elements up level with the lid of the case. The cutout should be approximately $26 \times 3 \mathrm{~mm}$. The power supply connections are brought out to flying leads and teminated in crocodile clips; these may then be attached directly across the battery terminals or any other point of interest. The individual illumination voltages for the l.e.d.s may be measured and marked on the case. Typical calibration is given in Table 1. The calibration is determined by the characteristics of D3 and D4, and the accuracy of R4 and R5.


Fig. 9 (above). Component layout of p.c.b. version of Battery Voltage Indicator


## VARIATION OF DISPLAY BRIGHTNESS

The basic display module (Fig. 7) is designed to run the l.e.d.s at a nominal current of 12.5 mA each when illuminated. The authors have found this to be a useful compromise value, appropriate to a wide variety of l.e.d. sizes and colours in a range of varied applications. There will, however, be many instances where the requirement of the individual constructor is not satisfied by this compromise value. This section is intended to describe how the basic circuit in Fig. 7 may be modified to suit the application.

The internal reference source develops a nominal 1.25 V between the REF OUT (pin 7) and REF ADJ (pin 8) terminals. The current drawn out of the REF OUT terminal determines the l.e.d. current and approximately 10 times this current will be drawn through each illuminated l.e.d. The l.e.d. current will be relatively constant despite supply voltage and temperature fluctuations.

Table 1: L.e.d. illumination voltages in two circult arrangements.

Illumination Suppty Volfage
L.e.d. number
$D 3=$ short circuit $\quad D 3=1$ in914 $\mathrm{D}=\mathrm{BZY} 88 \mathrm{C} 9 \mathrm{~V} 1 \quad \mathrm{D} 4=\mathrm{BZY88C9V} 1$
9.3
9.9
10.5
11.1
11.7
12.25
12.85 .
13.35
+3.85
14.55
9.8
10.45
11.1
11.7
12.25
12.85
13.45
14.05
14.6
15.2

## COMPONENTS

## Resistors

R1	278
R2	2k2
R3	1 k
84	1k
RS	3k3

All resistors ${ }_{4}^{1} \mathrm{~W} 5 \%$ unless otherwise stated.
Capacitors

C 1	$2 \mu 2$	10 V
C 2	$2 \mu 2$	25 V

Semiconductors

O1	BZY88C5V6
O2	1N4001 or similar
D3	2N914 or similar
D4	BZY88C9V1
D5-14	10 off I.e.d, s so constructor's fequirements
TR1	2N3053/BFY50 or similar
IC1	LM3914

## Miscellaneous

Case
Printed Circuit Board,(or Veroboard)

## CONSTRUCTOR'S NOTE

Printed circuit boards, etc., are available from Howard Associates, 59, Oatlands Avenue, Weybridge, Surrey KT13 9SU. S.a.e. for details.


In the circuit of Fig. 7 the l.e.d. current is:

$$
\text { LED - } 12 \cdot 5 / \text { R } 4
$$

The full-scale indication value is:

$$
V_{F S I}=1 \cdot 25(1+R 5 / R 4)
$$

The adjustment of the I.e.d. current programming resistor R 4 will thus affect the full-scale indication voltage, and must be compensated by a corresponding change to R5. A table of suitable values for R4 and R5 for different l.e.d. currents is given in Table 2. Values of R4 and R5 are nearest preferred values, and R5 may need to be trimmed to give the required full-scale indication (see later). An alternative arrangement using variable resistors is shown in Fig. 11. The adjustment procedure is as follows. Connect the instrument to a variable d.c. supply and adjust VR1 to give the required l.e.d. brightness. Now adjust the supply to give 5.0 V at pin 5 , and vary VR2 such that D14 is just illuminated. Adjustment is

Table 2: Values of R4 and R5 for differing l.e.d. currents.

L.e.d.current	R $4(\Omega)$	$R 5(\Omega)$
12	10 k	33 k
2.7	4 k 7	15 k
5.7	2 k 2	6 k 8
12	1 k	3 k 3
17	750	2 k 2
22	560	1 k 8
27	470	1 k 5
32	390	1 k 2



Fig. 11. Variation of l.e.d. brightness
now complete. In applications where an l.e.d. current in excess of 12 mA is required, the maximum allowable regulator power dissipation will be exceeded for a fully-illuminated bar display. In such cases it is recommended that the discrete regulator (TR1, R1, R2, D1 and C1) is replaced with an i.c. 5 V regulator mounted on a small heatsink. In dot mode the power consumption should not be a problem, as the maximum dissipation will be only 10 per cent of the bar mode display. The LM3914 has a maximum dissipation of 660 mW .

NEXT MONTH: engine r.p.m. counter



## News Briefs

## ELECTRONICS CLUB AT MARGATE

ANEW electronics club has been started, called Thanet Electronics Club. Meetings are held every Thursday at the Quarter Deck, Margate, from 7,30 p.m. Other activities include camps, shows and visits. For youth (especially girls!!), it says in their literature. Further details: Ken Smith, The Electronics Laboratories, University of Kent, Canterbury CT2 7NT.

## ON COURSE

South London College. A short course (ten lectures) will run on microprocessors, their hardware/software and applications, commencing October 2,1979 , and every following Tuesday at $6.30-8.30$ p.m. A knowledge of digital principles is assumed. Course fee is $£ 7$.

Applications for Microprocessors and their applications, to Mr. A. A. Rowlands (course organiser), South London College, Knights Hill, London SE270TX.

## AUTOMATIC FARE COLLECTION

Westinghouse are to design new ticket machines, gates and the communications network for the London Underground. Implementation is planned for the mid 1980's.

Fraud estimated at $£ 8 \mathrm{~m}$ a year should be virtually eliminated.

## A Compendium of Electronic Erudition

can be made using these new-look self binders for PRACTICAL ELECTRONICS to become your most valuable source of reference. With the Easi-Binder current copies can be inserted as they are received. without waiting for the completion of twelve issues.
They are attractively made with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers, please advise year and volume and a separate set of gold transfer figures will be supplied. At $\mathbf{£ 2} \mathbf{8 5}$ inc. VAT and postage (£3.45 overseas) they are obtainable from:

Post Sales Department, IPC Magazines Lid.

I enclose P.O./cheque value
for
binders at 22.85 each (E3.45 overseas) for Practical Eloctronics Vol. No's.
Name
Address

Date

## Lavington House, 25 Lavington Street London SE1 OPF

# TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK 

## _- WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

STEREO PRE-AMPLIFIER POWER AMPLIFIER


CPR 1-THE ADVANCED PRE-AMPLIFIER
The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably In the disc siage. The overload inargin in a supert 40 dB, this together with the high slewing rate ensures clean top, even with high outout cartridges tracking
heavily modulated records. Common-mode distortion Is ellminated by an unusual design. R.I.A.A. Is accurate to 1 dB ; signal to noise ratio is 70 dB relatlve to 3.5 mv ; distortion $<\cdot 005 \%$ at 30 d B overload 20 kHz .

Following this stage is the flat gain/balance stage to bring tape, tuner, etc. up to power amp. signal levels. Silonal to noise ration 85db; slew-rate $3 V \mathrm{~V}$ IUS: T.H.D. $20 \mathrm{~Hz}-20 \mathrm{kHz}<\cdot 008 \%$ at any level. F.E.T. muting. No controls are fitted. There is no provision for tone controls. CPR $1 \mathrm{size} / \mathrm{s} 138 \approx 80 \approx 20 \mathrm{~mm}$. Sunplu to
be $\pm 15$ volts.

MC 1-PRE-PRE-AMPLIFIER
Sultable for nearly all moving-coil cartridges. Send for detalls.
X02: X03 - ACTIVE CROSSOVERS
X02 - two way, XO3 - three way. Slope 24dBloctave. Crossover points set to order
within $10 \%$.
REG 1-POWER SUPPLY
The regulator module, REG 1 provides $15-0-15 v$ to power the CPR 1 and MC 1 . It can be used with any of our power amp supplies or our small transformer TR 6.

POWER AMPLIFIERS
It would be pointless to list in so small a space the number of recnrding studios, amps satisfactorlly for quite stablishments, etc. 'who have been usingCRIMSON quallty at the lowest prices. The time. We have a reputation for the highesi have the same specificatlon: T.H.D. tyolcally $01 \%$ any power 1 kHz 8 ohms ; T.I.D. insignlficant; slew rate ilmit 25 V/uS: signal to noise ratio 110 dB ; frequeney response $10 \mathrm{~Hz}-35 \mathrm{mHz}$. -3 dB ; stability unconditional; protection-drives any 25 mm .

## POWER SUPPLIES

We produce suitable power supplles which use our superb TOROIDAL transformers only 50 mm high with a $120-240$ primary and single bolt fixing (includes capactors/bridge rectifier).

## PRE-AMPLIFIER KIT

This includes all motalwork, pots. knobs otc. to make a complete pre-amp with the CPR I (S) module and the


ACTIVECROSSOVERS

POWER AMPLIFIER MOOULES $£ 38.07$ CE CRB AWWCIFIER MOOULES POWER AMP CE 1004 60W/8 ohms 35-0.35v $£ 19.52$ KIT …... E35.03 CE $1004100 \mathrm{~W} / 4$ ohms 35-0-35v $£ 19.52$ $\begin{array}{lll}\text { CE } 1008 & 100 \mathrm{~W} / 18 \text { ohms } 45-0-45 \mathrm{v} \\ \text { CE } 1704 & \text { £25.96 } \\ \text { CE }\end{array}$ $\begin{array}{ll}\text { CE } 1708170 \mathrm{~W} / 4 \text { ohms } 45-0-45 \mathrm{v} & \mathrm{E} 31.00 \\ \text { CE } 1708 \mathrm{hms} 60-0.60 \mathrm{v} & \mathrm{E} 33.97\end{array}$ TOROIDAL POWER SUPPLIES CPS1 for $2 \%$ CE 608 or $1 \times$ CE 1004 E 16.56 CPS2 for $2 \times$ CE 1004 or $2 / 4$ CPS 608 for 2 © CE 1008 or 1 CPS3 fo CES $1704 \ldots$ CE 100 or CP 49.75 CPS4 lor 1 ^ CE $1008 . . . . . .$. ..... $\mathbf{£ 1 7 . 1 2}$ CPS 6 or $1 \times$ CE $1708 \ldots . . . .$. £24.15 CE 1708 ( $2 \times$ CE 1704 or $2 \times$ CE HEATSINKS LEATSINKS
Lipht duly, $50 \mathrm{~mm}, 2^{\circ} \mathrm{C} / \mathrm{W} . \ldots .$. .
Medium $1.4^{\circ} \mathrm{C} / \mathrm{W}$ Oisco/group. $150 \mathrm{~mm}, 1 \cdot 1^{\circ} \mathrm{C} / \mathrm{W}$ Fan, 80 mm , state 120 or 240 V ... $£ 19.70$ Fan mounted on two drilied 100 mm heatsinks. ${ }^{2} \approx \cdot 4^{\circ} \mathrm{C} / \mathrm{W}$. $65^{\circ} \mathrm{C}$ ma THERMAL CUT-OUT, $70^{\circ} \mathrm{C}$.. £1.54

PRE-AMPS: These are avail. able in two ver-
stons one uses tons-one uses nents, and the other (the S) uses MO resistors and tantalum capa cltors. citors.
CPRI CPRI
CPRIS MCRIS
MCI MCI
MCIS
 POWER SUPPLY TR6... BRIDGE $\mathbf{8 1 . 9 7}$ DRIVER, BDI Oblain up to 340 W using $2 \times$ lyow
amps and this amps and this
module $\mathrm{BDI} \mathrm{f5.75}$

CRIMSON ELEKTRIK 1 A STAMFORD STREET, LEICESTER. LE1 GNL Tel: (0533) 553508
U.K-please shlow up to 21 days for delivery.
All prices shown are UK only and include VAT and post. COD 90p extra. E100 limil. Export is no problem, please write for specific quote. Send large SAE or 3 International Reply Coupons for detailed information.

BADGER SOUND SERVICES LTO WOOD STREET, IYTHAM ST. ANNES LANCASHIRE FYA 100 'MINIC TELEPRODUKTER BOX 12035 : S-750 12 UPPSALA 12, SWEDEN"

Guess who builds this great


# Logic Probe...YOU! 

With this easy-to-build Logic Probe Kit from CSC and just a few hours of easy assembly-thanks to our very descriptive step-by-step manual-you have a full performance logic probe.
With it, the logic level in a digital circuit is indicated by light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from either leading edge. You'll be able to probe deeper into logic with the LPK-1, one of the better tools from CSC.


Complete, easy- to-follow instructions help make this a one-night project.


# DIGITAL TEMPERATURE CONTROLLER D.COUTTS \& P. MCALLISTER 

ToO date there have been many circuits produced to measure temperature and display it, either in analog form, or, more recently, in digital form using seven segment displays. Temperature control on the other hand has been left largely to the mechanical bimetalic strip. This suffers from restricted control range on one hand and coarse setting on the other. Even electronic systems using pots to set the temperature suffer from similar problems. However, a new chip from G.I. Microelectronics has been designed to combine the functions of digital temperature display and measurement with accurate control over wide range using digital switches (BCD encoded) to set up the desired temperature.

This project describes a system, using this chip, suitable for use in photography, home brewing, aquariums or even just simple room heating.

## CONTROLLER DESCRIPTION

Externally the controller has the following format. All controls and the display are mounted on the front panel. The desired temperature is set up on the two digit BCD switch. The four seven segment leds are used as follows:

1. The left hand digit displays a C when the cooler is switched on and a minus sign (segment g) when the temperature is negative.
2. Two centre digits show the actual temperature from 0 to $90^{\circ} \mathrm{C}$. The right hand digit displays an H when the heater is on.
Mounted on the back panel are two mains outlets, one to which a heater may be connected, and the other a cooler; an outlet for the temperature sensor, which consists of four diodes, and the mains inlet and three fuse holders.

## DRIVE CIRCUIT

The relay drive circuit is necessary only because the chip cannot sink enough current to operate the relay. In the heater circuit, TR3 sinks the relay current while TR4 inverts the signal from the chip to drive TR3. Diodes D1 and D2 are necessary to protect TR1 and TR3 from the back e.m.f. generated by the relay coils when they turn off. Switches S1 and S2 are to enable either the heater or cooler to be manually turned on. Diodes D3, D4, D5, and D6 allow the on position of either S 1 or S 2 to over-ride the control signals from the chip. Thus if the cooler is on and then the heater is switched on using the manual switch (S2) the cooler will go off, and stay off (unless S1 is also turned on) until S2 is switched off again (Fig. 2).

## CONTROLLER CIRCUIT

The controller circuit is best described by giving a brief description of the function of the circuitry to each pin out (Fig. 1).

Pins 21-27 drive the units digit, while pins 29-35 drive the tens digit. Pin 40 drives the sign indicator. Pin 17 drives the cooler relay circuit, and pin 18 the heater relay circuit.

Pins 14, 15 and 16 form the bridge network which does the temperature measurement and sensing. Before describing this further a few words about the use of a diode as a temperature sensor.

The voltage drop across a diode when current flows through it in the forward direction depends on the magnitude of the current and its temperature, so that to achieve a voltage across the diode varying only with temperature a constant current is put through it. Note that the value of this


Fig. 1. Circuit of controller
current is chosen so that the diode is well passed the knee of its turn on characteristic, but not so high that a significant amount of self heating occurs. Under the above conditions the voltage across the diode varies approximately linearly by about $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. To operate correctly the chip requires a change at its input of at least $5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ hence it was decided to use four diodes in series to ensure sufficient voltage change.

R25, R26, R27, D8 and TR6 form the constant current source driving the diode sensor network, D9 to D12; the junction of TR6 and D9 providing the temperature dependant voltage to the input pin 14 of IC1. Pin 15 is connected to
a reference voltage, provided by VR1 and R22. This is adjusted to give the same voltage out as the sensor network at $0^{\circ} \mathrm{C}$. Pin 16 is connected to a linear ramp, generated by the constant current source VR2, R23, R24, D7 and TR5 charging capacitor C8. IC1 measures the time that the ramp takes to travel between the voltage at pin 14 and the voltage at pin 15. Since these voltages are the same at $0^{\circ} \mathrm{C}$, and the voltage on pin 15 varies linearly with temperature; time is also proportional to temperature. Suitable adjustment of VR2 enables the display reading to represent ${ }^{\circ} \mathrm{C}$. If the voltage on pin 15 is less than that on pin 14, the minus sign comes on.
COMPONENTS
Semiconductors

TR1-TR4	BC337 (4 off)
TR5-TR6	2N3906 (2 off)
IC1	AY-3-1270 (Marshall's)
IC2	7805 (with heatsink)
D1-D2	1N4004
D3-D22	1N914
D23	BZY88-3.9V Zener
REC1	1Abridge rectifier

## Capacitors

C1	$1,000 \mu$	25 V
C2-C3	100 n	30 V disc ceramic
C4-C5	100 p	30 V disc ceramic
C6	$47 \mu$	16 V tantalum
C7	100 n	30 V disc tantalum
C8	$47 \mu$	16 V tantalum
C9	$1 \mu$	16 V tantalum
C10	$100 \mu$	16 V tantalum

Switches
S1-S2
S3
Relays
RLA, RLB
Displays
X1-X4

Resistors	
R1	
R2-R5	560
R6-R20	$668(5$ off $)$
R21	220
R22 off)	470
R23	18 k
R24	6 k 8
R25-R26	4 k 7
R27	3 k 9
R28	220
All $\frac{1}{4} W \mathbf{W} 10 \%$ carbon	

## Potentiometers

VR1	5 k 20 turn trimmer
VR2	100 k 20 turn trimmer

## Miscellaneous

560 kHz ceramic resonator $205 \times 140 \times 75 \mathrm{~mm}$ case (Marshall's) 3 way sockets ( 2 off)

## OSCILLATOR

XL1, C4 and C5 form the oscillator circuit. (XL1 is a ceramic resonator). The diode matrix connected to pins 4-9 determine the actual temperature to which the temperature is controlled. Diode D22 selects I.e.d. drive mode (if this diode is left out, the chip produces a.c. output signals for driving l.c.d.s). Diode D21 sets the controller output hysteresis to $2^{\circ} \mathrm{C}$. In other words, when the desired temperature equals the displayed (actual) temperature, the heater (or cooler) will go off. The heater will not come on again until the temperature has dropped by $2^{\circ} \mathrm{C}$. Likewise the cooler will not come on unless the temperature rises by two degrees. This prevents excessive switching on and off of the relays.

## CONSTRUCTION

Mount and secure the panel components to the box. Note that to simplify wiring to the front panel, diodes D13-D20 are mounted on the back of their respective BCD switches, on the terminals marked $1,2,4$, and 8 . Now make and drill the p.c.b. and base of the box so that it may be easily mounted after the components are inserted. It is a good idea to hold the p.c.b. in position on the box while drilling to ensure perfect alignment of the holes. Now mount the remaining components on the p.c.b. as illustrated in Fig. 3.

The wiring to the front panel should now be carried out. The connections to be made are shown in Fig. 4. Note, that in order to accommodate the heatsink, which must be flattened in order to fit in, the terminals on S1 and S2 require shortening.

When wiring the back panel it is essential to keep in mind the electrical rating of the components being used to ensure they can safely handle the current and voltage of the appliance being controlled. First make sure the mains flex is rated to carry the current the heater/cooler requires. The live should go straight to the three fuses. FS 1 then supplies the transformer; FS2 and FS3 each go to one set of relay contacts. The relay contacts are rated at 5A, 250 V each. Since there are two contacts in each relay, used in parallel

in this circuit, each relay may switch 10A. Inductive loads, such as motors, cause faster contact wear hence these should be limited to appliances with a rating of about 1A. With resistive loads, such as heaters, the full 10A rating may be used.

It is also unlikely that the p.c.b. track will carry such large current, hence it should be reinforced by soldering thick copper or tinned mains wire along the length of the current carrying tracks to and from the relay contacts. The outlet sockets take their neutral and earth straight from the mains input and their live from the relay switch. The sockets sùggested are rated at 250 V 1.5 A . If this is insufficient use higher rated sockets, or alternatively wire the appliance permanently to the appropriate relay.


Fig. 2. Relay drive circuit and p.s.u.



Finally the diodes D9-D12 which form the sensor should have their leads cut short and be soldered together then insulated so that there is no danger of a short circuit by encapsulating in epoxy for example. The sensor diodes should then be connected to the controller via a length of wire, sufficient to place them. far enough away from the
controller so as not to be affected by the heat coming from it. Don't forget to check the diodes polarity before connecting up. The circuit should now be ready for bolting into the box and fixing on the lid.

## MODIFICATIONS AND ADJUSTMENTS

Hysteresis can be set to $2^{\circ} \mathrm{C}$ or $4^{\circ} \mathrm{C}$ by connecting diode D21 either between pins 2 and 6 or between pins 2 and 7 on IC1.

Before applying power to the circuit set VR1 and VR2 to mid positions, and do not short out VR2 when calibrating. To calibrate put the sensor in melting ice. After about 30 seconds adjust VR1 until the display reads zero. Now put the sensor in boiling water-when the display reading has settled adjust VR2 until the display reads 99 then zero-this represents $100^{\circ} \mathrm{C}$, the "one" display being on the unused pins 36-38 of IC1. The calibration procedure should be repeated.



## BATTERY MONITOR

MOST published designs for battery condition indicators light an l.e.d. when the battery nears exhaustion. However, a light may easily be overlooked if continuous and a significant improvement may be made by running the l.e.d. from an oscillator at 1 or 2 Hz .

This circuit accomplishes this by employing an inexpensive dual op-amp as both a comparator and an oscillator. Half
of the supply voltage is derived from R2 and R3, and this is compared with a Zener reference; so when the battery voltage lowers, the output of ICla becomes positive. R4 and R5 apply hysteresis.

IClb forms an oscillator with a frequency of 1 Hz . With the output of ICla high, DI flashes with a peak current of about 5 mA . When ICIa output is low, the l.e.d. cannot light. DI protects the l.e.d.
from reverse voltage breakdown in this condition.
Because of the low current consumption of $I C 1$, only 2 mA are drawn from the battery. With a 9 V battery, the values are as shown, but for a larger battery voltage, D3 and R8 should be increased in proportion. Maximum supply voltage is 32 V .
D. P. Akerman,

Coventry.


A selection of readers. original circult ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to its merits.
Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication olsewhere.

## FREEZER

## TEMPERATURE

## ALARM

THis circuit was designed to give an audible alarm if, for any reason, the cabinet temperature of a deep freeze should rise above $-10^{\circ} \mathrm{C}$, thus giving time to take action to save the contents of the deep freeze from defrosting. Due to the high cost and low reliability of batteries, a mains powered unit was required. In order to eliminate the possibility of a power cut going unnoticed and ruining the contents of the freezer, the circuit was arranged such that loss of mains power would also trigger the alarm, the power being obtained from a standby battery.

The heart of the unit is the 748 op amp which acts as a comparator of a set voltage obtained from VRI and VR2 against a voltage dependent on the resistance of R3. As the temperature rises the resistance of the thermistor falls and the voltage at the inverting input falls thus turning on TR2 and the alarim formed around IC2.

IC2a, IC2b, C1 and R6 form a high frequency oscillator. IC2c, IC2d, C2 and R7 form a low frequency oscillator. The two oscillators are linked by the diode, D3. The tone obtained from the speaker is thus a modulated high frequency tone or bleep, this sound being very noticeable with a very modest current consumption.


While mains power is available, the battery is isolated by the reverse biased D4, and no power is drawn from it. The two $1 \mathrm{k} \Omega$ resistors, R1 and R2, are effectively connected in parallel thus giving a total resistance of $500 \Omega$ to the inverting input from the +ve supply. When mains power is lost diode D4 will be forward biased and the battery will power the circuit. However, DI will be reverse biased and so R2 will be out of circuit, and the effective resistance to the inverting input will rise to 1 k . Thus the voltage at this input will fall and the alarm will sound.

The only adjustment necessary is to calibrate VR1 and VR2 so that the alarm is just triggered at $-10^{\circ} \mathrm{C}$. A freezing mixture of ice and salt may be used for this. The state of the internal battery may be periodically tested by depriving the unit of mains power and listening for the alarm. The normal defrosting of the freezer is adequate for the testing of the rest of the circuit.
A. M. Smithers,
Tangmere,
Sussex.


## DIGITAL SERVO AMPLIFIER

THIS servo amplifier was developed for one reason-minimum component count. This has been achieved by the use of a 555 timer used as a one shot or monostable. This has the advantage of saving transistors and diodes for the normal monostable arrangement. Also, although many op-amps can perform this function the 555 has the advantage of being able to work down to -4 V , and has the ability to have it's pulse-widths modified by applying a control voltage to pin 5. Fortunately, the normal position for deriving this voltage is of the correct sense (-ve feedback). The selection of R12 to $82 \mathrm{k} \Omega$ depends on control pulse neutral;
servo mechanics and the degree of under/over shoot which is acceptable for a loss in amplifier gain and hence speed of the servo and its torque. R6, VR1 and R7 and C3 control the pulse width range of the monostable. R6 should be fixed, but if the feedback potentiometer value is not $5 \mathrm{k} \Omega$ then R7 and C3 can be adjusted to give the desired centre (mechanical) and range of monostable widths.

The values of VRI, R7 and C3 have been adjusted here for 1.5 ms neutral and a range of 1 ms (i.e. 1 ms minimum and 2 ms maximum).
The value of R7 and C3 are interlinked and some trial and error is needed to ob-
tain the correct centre (mechanical) and pulse width range (servo travel). No problems with the ultra stable pulse widths produced by the NE555 have been encountered and hence servo drift, when clocked by a battery driven encoder (subject to pulse width charges with battery voltage falling). For -ve pulse systems remove TR1 and associated R1, R2 and R13 and apply -ve pulses to $\mathrm{Cl}+\mathrm{R} 4$ junction.

If room is available fit R13 ( $10 \mathrm{k} \Omega$ ) in. + ve going systems.
G. Pike,

Co. Antrim,
N . Ireland


THE circuit is built around the LM3911 temperature control i.c. and is designed as a cheap electronic replacement for the mechanical thermostats fitted to fridges and freezers.

Resistor R1 provides a positive voltage to the i.c. internal stabiliser, pin 4. R2, VRI and R3 provide a present reference voltage to the i.c., pin 3. The output, pin 2, is taken to TR1 base and controls the relay via TR2.

The i.c. is mounted on a piece of Veroboard in a suitable probe box in the freezer. As the probe temperature rises above the level set by VR1, the i.c. output drops below 0.7 volt. Transistor TRI switches off and switches TR2 off. The relay releases and the break contacts close, starting the freezer motor. When the temperature has dropped sufficiently the i.c. output volts rise above 0.7 volt and the relay operates, stopping the motor.

Resistor R5 provides positive feedback to ensure a rapid switching of the relay and to provide a temperature difference between switch on and switch off.

The motor is controlled via the relay break contact so that in the event of a circuit failure, the relay will release and the motor will run continuously.

> B. C. James,
> Wilford,
> Nottingham.


T1.T2 \& T3: 1:1 ISOLATING TRANSFORMERS IC1 8 IC3 $=$ CD4001 ( PIN7TO OV. PIN 14 TO +12 V )
EP106

## SEQUENTIAL LIGHT CHASER

THE design requirement for this light chaser was to have three channels but be capable of accepting up to ten. The circuit shown satisfies these conditions.

IC1 can be either a CD4001 or a CD4011 as can IC2 as the gates in these are used with their inputs joined. IC I a and ICb form a slow running oscillator which can be varied by use of VR1. This potentiometer controls the speed at which the outputs switch. IC1c shapes the pulses from the oscillator before they are fed into a decade counter (CD4017). The outputs from the CD4017 are low until pulsed at which point the appropriate output goes high.

In the circuit only the outputs ' 0 ', ' 1 ' and ' 2 ' are shown, with output ' 3 ' being used to trigger the counter reset. A switch is included so that the count may be frozen at a desired point e.g. to check bulbs. For use with more outputs the reset would be connected to the 'Carry Out' pin, which
pulses only after each tenth input pulse.
IC3a and IC3b form a second oscillator running considerably faster than the first. This is buffered by a single BC107 transistor stage to provide enough current if more output stages are required. The output from the buffer is taken to the inputs of bilaterial switches contained in the CD4016. The trigger voltage for these switches is provided by the outputs of the CD4017 which allows bursts of high frequency from IC1 oscillator to be passed to the triac firing circuits. VR2 in the second oscillator allows an interesting strobing effect to be produced in the output lamps.

The high frequency bursts are amplified by BC107 transistors which have 1:1 ratio insulation transformers in series with resistors in their collector lines. The transformers used had a breakdown voltage of 1.5 kV and can be obtained cheaply, although they can be made by winding two layers of 26 s .w.g. enamelled
copper wire on a one inch piece of ferrite rod with a layer of p.v.c. tape between each winding. Each winding to have 30 turns.

One side of the secondary is connected to neutral and the other to the gate of the output triacs. The triacs specified handle at least 5A, but others may be chosen to suit individual applications.

A set of mimic lights are included, but these could be omitted to reduce cost. A simple regulated p.s.u. is shown which supplies 12 V . It should be noted that the control side of the unit is not connected to the mains. This makes it very much easier to work on the electronics whilst switched on. The outputs of the triacs ( $\mathrm{A}, \mathrm{B}, \mathrm{C}$ ) go to the load which in turn is connected to mains live. The inputs of all unused gates must be connected to 0 V or +12 V .
N. R. Negus, Upton-on-Severn, Worcs.

## MOTION DETECTOR



This circuit was designed as a motion detector, but it can be used as a level, proximity, air and gas flow switch; and in some cases as a gas leakage detector. Heart of the circuit is a 40 kHz ultrasonic transducer.

One of the standard ways of detecting motion is by taking doppler shift measurements, but then one needs to use two transducers, one as a transmitter and the other as a receiver. But the circuit overcomes this disadvantage and is fairly simple to construct.

The transducer is used in series resonance as part of the oscillator, so that it determines the frequency of oscillation.

It is used in a bridge circuit. Here the voltage ratio between R10, and the impedance of the transducer at series resonance, determines the feedback voltage for oscillation. In this case, the frequency is about 40 kHz .

This feedback ratio will vary depending on amplitude and phase of the transmitted signal reflected back to transducer, thereby modulating the amplitude of the oscillator. The output from the oscillator is rectified by diodes D1 and D2, to give a low frequency signal. Amplitude of this signal will depend on the distance between transducer and reflector.

If a reflector is placed quite close to the transducer, so that the reflected signal is large and $180^{\circ}$ out of phase. The feedback voltage will decrease to a value below that required to keep the circuit oscillating. This characteristic of the circuit makes it possible for it to be used as a level switch by sampling the output at D1 and D2.

The low frequency a.c. signal at D1 and D2 is further amplified by transistors TR2 and TR 3 .

The output from transistor TR3 is rectified and filtered to give a d.c. voltage.

A CA3140 operational amplifier is used as a comparator, with a small amount of hystereses, and an adjustable reference, so that one can adjust the sensitivity at a given distance from the transducer. It was possible to detect a person crossing at a distance of 3 metres from the transducer using the prototype.

All one needs to align it is a high impedance d.c. voltmeter. The voltage at point A is adjusted to one volt by potentiometer VR1. Have somebody move at the maximum distance you are interested in, and adjust the comparator reference VR2 accordingly.

If one is interested in using it as a burglar alarm, one can feed from point B to an R-S flip flop.
S. Choudhari, Trondheim, Norway

# Now, the complete MK 14 micro-computer system from Science of Cambridge 

## VDU MODULE. £33.75

( $£ 26.85$ without character generator) inc. p \& p.
Display up to $1 / 2 \mathrm{~K}$ memory ( 32 lines $\times 16$ chars, with character generator; or 4096 spot positions in graphics mode) on UHF domestic TV. Eurocard-sized module includes UHF modulator, runs on single 5 V supply. Complete ascii upper-case character set can be mixed with graphics.

POWER SUPPLY. $£ 6.10$ inc. p \& p .
Delivers 8 V at 600 mA from $220 / 240 \mathrm{~V}$ mains sufficient to drive all modules shown here simultaneously. Sealed plastic case, BS-approved.


PROM PROGRAMMER.

## £ 11.85 inc. $p$ \& $p$.

Use to transfer your own program developed and debugged on the MK 14 RAM to PROM (74S571) to replace SCl0S monitor for special applications, e.g. model railway
MK 14 MICROCOMPUTER KIT
£ 46.55 Inc. p \& p .
Widely-reviewed microcomputer kit with hexadecimal keyboard, display, $8 \times 512$-byte PROM, 256-byte RAM, and optional
16-lines I/O plus further 128 bytes of RAM.
Supplied with free manual to cover operations of all types - from games to basic maths to electronics design. Manual contains programs plus instructions for creating valuable personal programs. Also a superb education and training aid - an ideal introduction to computer technology.

Designed for fast, easy assembly; supplied with step-by-step instructions.

## Science of Cambridge Ltd

6 Kings Parade, Cambridge, CAMBS, CB2 1SN. Tel: 0223311488.

To order, complete coupon and post to Science of Cambridge for DELIVERY WITHIN 14 DAYS. Return as received within 14 days for full money refund if not completely satisfied.

To: Science of Cambridge Lid, 6 Kings Parade, Ca mbridge, Cambs., CB2 1SN.
Please send me:
$\square$ MK 14 standard kit (4) $£ 46.55$. $\square$ Extra RAM (1) $£ 4.14$ per pair.
-RAM I/O device © C8.97.
$\square$ VDU module including character generator (6) $\{33.75$.
$\square$ VDU module without character generator (a) $£ 26.85$
I enclose cheque/MO/PO for $£$ $\qquad$
$\square$ Cassette interface module (a) $£ 7.25$.
$\square$ PROM programmer © 111.85 .
$\square$ Power supply (a) 6.10 .
$\square$ Full technical details of the MK 14
System, with order form.
All prices include $p$ and $p$.
(total).

Name
Address (please print)
Delivery within 14 days.


THE ELF and VLF (extremely low and very low frequency) bands of the radio spectrum, which lie in the frequency range 300 Hz to 30 kHz , contain a number of interesting signals which are both man-made and naturally occurring. These were described in some detail in the September issue of PE, and are summarised in Fig. 1.

A portable receiving system which will enable these signals to be picked up will be described here. In designing such a system, careful attention has to be paid to interference problems. The signals of interest are on the whole rather weak, while the field strength due to mains electricity in a typical house is, by contrast, at a fairly high level. In the UK moreover, there is a very powerful VLF transmitter at Rugby, called GBR, which transmits at 16 kHz and whose signal saturates the entire country. This signal is modulated by frequency shift keying, and non-linearities in the receiver may cause demodulation of this, producing interference. Signals from broadcast transmitters may also cause interference in the same way.

In this receiver these problems have largely been alleviated, but one or two sources of interference still remain, and they put constraints on the operating conditions. The first of these is interference from TV sets; this may be partially overcome by careful orientation of the aerial, but the best solution is to wait until transmissions have ceased in the evening. Many natural signals may only be received at night anyway, since they must penetrate the ionosphere. Another source is motor vehicles, and again this problem will often disappear after midnight. Next, proximity to broadcast transmitters gives rise to very high field strengths, so that the attenuation at RF built into the receiver may be insufficient. This also applies to the signal from Rugby and in some cases RF interference may prove to be a serious obstacle, though usually the problem will again disappear when the transmissions cease in the evening. Finally, nearby electricity substations will generate continuous interference. The only solution here is to take the receiver elsewhere.

## THE RECEIVING SYSTEM

A block diagram of the receiving system is shown in Fig. 2. The aerial is a multi-turn loop, screened at RF. At VLF such an aerial appears as an inductance to the receiver, and we may therefore use a transformer to match the impedance of this to the high value presented by the front-end of the receiver. This has a further advantage in that the voltage of the signal is increased.


Fig. 1. Approximate frequency ranges of ELF/VLF signals. S: Sferics; T: Tweeks; H: Hiss; C: Chorus; D: Discrete emissions; $W$ : Whistlers


Fig. 3. Circuit diagram of the input stage
The input FET, TR1, gives the input stage a reasonably good noise performance since it is a fairly low noise device and provides useful gain. High gain in the input stage is essential in a low-noise receiver, so that the noise of following stages is negligible. Feedback is not used to limit the gain of this stage, so that the maximum gain is available.


Fig. 2. Block dlagram of the receiving system

The gain of the front-end is not defined by the use of negative feedback, and so will depend on the individual transistors used. It is, however, of the order of 40 dB . The frequency response of this stage has been limited to 10 kHz , to reduce the effect of the GBR signal. This filtering must be carried out as early as possible to minimise the chance of demodulating the GBR signal.

The signal then passes via a buffer stage to a passive high-pass filter, to remove the effect of mains and other low-frequency interference. This filter (and its buffer) may be switched out of the circuit, since the receiver may be used in remote areas where there is little interference. The next stage is a variable gain amplifier; the gain may be varied from 0 dB to 60 dB . The signal level is now high enough to drive a tape-recorder or other external equipment, and an internal output stage is also provided. This is completely separate; it is on a separate board and has its own powersupply to try to minimise the effects of unintentional positive feedback. There is, after all, a large amount of gain in the receiver. The output stage may be switched off if necessary, and it may of course be omitted entirely.

## INPUT STAGE

The circuit diagram of the input stage is shown in Fig. 3. The input transformer, T 1 , has a turns-ratio of 100, and C1 is included to shunt RF signals. Part of the load for TR1, R3, is bootstrapped by C 4 , while C 2 shunts this at frequencies above 10 kHz .

## PASSIVE FILTER

Fig. 4 shows the passive high-pass filter and its input buffer. This stage can be bypassed by the switch S1. The filter, comprising C9, C10, C11, L1 and L2 is a five element Tchebycheff high-pass, designed to have 0.28 dB ripple in the passband. The cut-off frequency is about 1500 Hz and the roll-off about 40 dB per octave. For ideal operation the source and load impedance of this filter should be 220 ohms. IC1 is acting as a voltage follower, and has a very low output impedance; R7 therefore sets the source impedance. The load impedance is set by the parallel combination of R8 with the impedance between C11 and the virtual


Fig. 4. Circuit diagram of the passive filter stage
earth at the inverting input of IC2. For a characteristic impedance of exactly 220 ohms, the values of the capacitive and inductive elements should be C9 and C11 $\doteq 323 \mathrm{nF}$, L1 and $\mathrm{L} 2=17.4 \mathrm{mH}$ and $\mathrm{C} 10=206 \mathrm{nF}$. However the error introduced by using the preferred values for capacitance is acceptable.

## OUTPUTSTAGES

The next stage is shown in Fig. 5; it is a stage with variable gain. Negative feedback is varied by VR 1 , from OdB to 60 dB and since the bandwidth here is 10 kHz , a 741 has adequate performance. The tape output is taken from this stage, via C13.
[50190


Fig. 5. Circuit diagram of the output stage


Fig. 6. Circuit diagram of the amplifier stage
The internal output amplifier is shown in Fig. 6. This is based on the Motorola MC3360P $\frac{1}{4}$ watt audio amplifier i.c. The power to this stage comes from a separate 9 V battery and may be switched off independently from the receiver, by S3. The ground line of this stage is of course a common ground with the other circuitry.

## THEAERIAL

A multi-turn loop aerial is used, made from a length of 15 -core screened cable. A 5 m length of this is adequate, though of course a longer piece or a larger number of cores will make a more sensitive aerial. It is unwise, however, to make an aerial of vastly different dimensions from those suggested without giving thought to matching the input transformer primary winding, and to possible resonances due to the combination of the loop inductance with its stray capacitance. Fig. 7 shows the main constructional features; the cores are connected by means of a piece of tagboard,


Fig. 7. Construction of the multi-turn aerial
within a metal box. Take care to produce one continuous wire with 15 turns, rather than, say, 15 separate single turns. This may be achieved by selecting a colour, say black, and soldering this to the first tag. Then solder the other end of the black to the brown at the next tag, the other brown end to the red, etc. The screen, and the screen of the output cables should be connected to the box.

In theory the screen should be cut at some point and linked by a capacitor, as indicated in Fig. 7, so that the screen is complete at RF, but broken at VLF. While trying to reduce RF interference, however, the author has found that the gap may in fact be absent. Individual experiment may be needed here, and it is suggested that the aerial be first constructed with the screen intact.

Co-axial cable should be used for the output leads, and any good quality co-ax connectors may be used (BNC types were used in the prototype), since the low impedance of the aerial at VLF will not match any particular type of cable or connector.

The aerial should be fitted onto a frame consisting of two, five to six foot lengths of wood fitted together to form a cross. The diecast case can be fitted to the base of the frame and the aerial loop spread out around the frame to form a diamond shape.

## CONSTRUCTION

The receiver circuitry is carried by two printed circuit boards; the main receiver is shown in Figs. 8 and 9, while Figs. 10 and 11 show the output stage. Three coil assemblies are required, T1, L1 and L2. Pads have been provided on


Fig. 9. Component layout for the receiver circuit
the receiver to suit the Mullard p.c.b. mountings for these cores; in the prototype receiver, however, steel cans (also manufactured by Mullard) were used, and the assemblies bolted to the case. Details of both of these alternatives are shown in the layout diagram, Fig. 12. Note that the use of a metal case is strongly advised; a diecast box was used for the prototype.

The input transformer core is the FX2240, a 25 mm core.

The primary, 5 turns of 34 s.w.g. enamelled copper wire, is wound on the bobbin first. The secondary windings, 500 turns of 35 s.w.g. are then wound on top of the primary. Although this is well below the manufacturers' quoted minimum number of turns to fill the bobbin, care should be taken in winding to keep the turns tight, otherwise there may not be room.

Inductors L1 and L2 are identical. They consist of 230

## COMPONENTS . . .

Resistors	
R1*	1 M
R2*, R9, R12,R13, R14	1 k (5 off)
R3*	2 k 7
R4*, R6*	680 (2 off)
R5*	330
R7	220
R8	240
R10,R11, R16	10 k (3 off)
R15	4 k 7
*These resistors should film.	ably be metal film or
Capacitors	
C1	150p
C2	10 n
C3	$1 \mu$
C4	104 elect
C5, C7, C8, C12	100 n (4 off)
C6, C17	$100 \mu$ elect ( 2 ff)
C9, C11	330 n (2 off)
C10	220 n
C13, C14	$470 n$ tant (2 off)
C15	4 n 7
C16	3 n 3


\section*{Semiconductors <br> | TR1 | 2 N3821 |
| :--- | :--- |
| TR2 | BCY71 |
| IC1 | CA3140T |
| IC2 | 741 |
| IC3 | MC3360P | <br> Inductors <br> L1, L2 <br> 17.4 mH (see text) <br> Miscellaneous <br> VR1, 1 M log. <br> T1, transformer (see text) <br> S1, double pole changeover switch <br> S2, S3, s.p.s.t. switch ( 2 off) <br> JK1, $\frac{1}{4}$ in. jack socket (see text) <br> Output socket to tape recorder <br> Battery clips for PP7 battery <br> Battery clips for PP3 battery (2 off) <br> Tagboard <br> 2 diecast boxes <br> 5 m 15-core screened cable <br> 4 m co-axial cable <br> Co-ax plugs and sockets (2 off of each) Grommets}

turns of 36 s.w.g. enamelled copper wire in an LA1226 18 mm pot core. Again, be sure to keep the turns tight.

The use of metal film resistors for the input stage ( R 1 'to R6) is recommended, since these have better noise characteristics than other types. This is particularly important for the input resistor, R1. All the components in fact should be of high quality, in the interests of low noise.

If stereo headphones are to be used with the receiver, then a stereo headphohe jack socket may be used. It should be made of plastic so that all the contacts are isolated from the case and wired up as shown in Fig. 6. This will put the two drive elements in series, since the output stage should not drive a load of less than 15 ohms.

## TESTING AND USE

There is no setting up to be done. As an initial test, plug in a pair of headphones, and connect a short length of cable between the input sockets (or short out the primary winding of the transformer internally) and switch on. Noise from the input stage should be clearly audible. Without the short across the transformer oscillation may occur, but it is
(6e]


Fig. 12. Assembly of the receiver
unnecessary to try it! If oscillation occurs with the transformer shorted out, then positive feedback is to blame. Try reducing the gain control, switching off the internal amplifier and monitoring through an external amplifier, changing the layout or searching for an electrical fault.

If all is well, try the aerial. The best orientation for this is in the vertical plane; a light framework which will enable it to rotate about a vertical axis is advised, as this will enable interference sources to be nulled out. Plug the two coax cables from the aerial into the input sockets, switch the filter out of the circuit, set the gain to the lowest setting, and again switch on. It is more than likely, unless the hour

is late, that all that will be heard is a loud hum from mains or TV pickup. Check that the filter reduces this. You would be well advised now to wait until fairly late in the evening, or of course to drive out to a remote site in the countryside.

In the meantime, the frequency response of the input stage of the receiver and the passive filter are shown in Fig. 13. Notice that the response is peaked near 1 kHz , falling off by about 10 dB at 10 kHz . The relevance of this will become clear when the receiver is finally switched on once
the interference has reached acceptable levels, for one of the most distinctive signals which may be heard are the Omega transmissions near 10 kHz . These are a series of tones, of length one second each, which repeat at 10 second intervals.

The aerial should be rotated so that the best interference compromise is reached. This operation can be quite tricky, since it will rapidly become apparent that the receiving system is quite capable of picking up signals radiated from the drive coils in the headphones, giving rise to unpleasant howls of positive feedback. Perhaps the best idea is to push the aerial around with a long stick! It is, incidentally, possible to pick up signals radiated from loudspeaker coils at some distance, even though their design should minimise such radiation. Furthermore, the receiver is microphonic; slight taps on the case will be readily audible, since they cause the transformer to vibrate.


Fig. 13. Frequency response of the input stage and the passive high-pass filter

The signals which may be received have been described, before, but a few words on their rate of occurrence in the UK would be in order. Sferics will almost always be heard, since lightning discharges from such an enormous area are being detected; and the virtually continuous nature of the crackling gives a vivid impression of the size of this area. They are, however, more frequent in the summer, and at this time will often limit the lowest intensity of whistler which may be detected.

Tweeks may be expected once or twice a minute, when there are many sferics, though this figure is variable and they are often not present at all.

Whistler rates depend on a number of factors. The geomagnetic latitude of the UK is favourable for whistler occurrence, but there are temporal factors. Whistlers tend to occur in groups lasting $\frac{1}{2}$ hour to about $2 \frac{1}{2}$ hours; they tend to occur between the hours of midnight and dawn, and they are more common in winter than summer. The blanketing effect of sferics partially accounts for this seasonal effect, though seasonal variations in thunderstorm occur-


Front panel annotation
rence are also important. An average rate in the UK, over a year, is about one or two whistlers per minute.

Chorus, hiss and discrete emissions are rather more rare, since they tend to be higher latitude phenomena. They can be received in our latitudes, however, and they contribute much to the interest of listening to the strange sounds of natural VLF signals.

## SIGNAL LEVELS

The signal strengths of whistlers vary greatly, and extend down to the background noise level. This is determined, in the absence of man-made interference, and at our latitudes, by sferics. In the winter the steady background of distant sferics has a field strength of about $20 \mu \mathrm{~V} / \mathrm{m}$, while in the summer numerous sferics from relatively nearby thunderstorms raise this to 200 to $700 \mu \mathrm{~V} / \mathrm{m}$. The upper limit of whistler signal strengths is a few $\mathrm{mV} / \mathrm{m}$.

The voltages these signals produce in the prototype aerial are approximately:
> winter background noise: $0.01 \mu \mathrm{~V}$ summer background noise: whistlers:
> up to $0 \cdot 5 \mu \mathrm{~V}$
> anything up to about $2 \mu \mathrm{~V}$

TABLE 1

Now the random motions of the electrons in conductors give rise to noise, called Johnson noise, or thermal noise. The Johnson noise generated in the aerial is, for our 10 kHz bandwidth, about $0.06 \mu \mathrm{~V}$. Clearly, therefore, this defines the lowest signal we may detect (given a perfect receiver), and is higher than the background noise in the winter. Increasing the size of the aerial and/or reducing its d.c. resistance would improve this performance limitation, but the prototype aerial was considered to be a satisfactory compromise.

The input transformer, with its turns ratio of 100 brings these signals up to the following levels at the input to the receiver:


The noise generated in the receiver is equivalent to an input noise voltage of about $3 \mu \mathrm{~V}$; this is not the best that can be achieved, but it ensures that the sensitivity of the receiving system is defined solely by the sensitivity of the aerial.
Incidentally, if you are wondering about the Johnson noise generated in R1; the noise generated by an open circuit 1 M resistor is about $12 \mu \mathrm{~V}$ under our conditions. However, R1 is effectively in parallel with the d.c. resistance of the secondary winding of T1, and the Johnson noise of this combination is negligible.

## FURTHER READING

The definitive book on natural VLF signals is Whistlers and Related lonospheric-Phenomena, by R. A. Helliwell, published by Stanford University Press in 1965. Though this book has some fairly technical sections, it contains a fascinating atlas of natural VLF signals. Since it is the standard work in the field, most libraries should be able to obtain it.

## MORE ABOUT JUPITER

The exploration of space is proceeding at such a pace that it seems to produce almost daily updating of information. The data on Jupiter is in such quantity that it is rather like zooming in on the planet with the result that detail is ever increasing. Pioneer 10 and Pioneer 11 added a new vista to the horizon and changed some of the old ideas yet also confirming that at least the thinking was in the right direction. Now Voyager I and Voyager 2 have added their astounding contribution. At the passage of the Pioneer 10 and 11 spacecraft much was learned about the magnetic field and other parameters. Voyager 1 and Voyager 2 have already transformed ideas of the atmosphere of the planet. For example Voyager I resolved the question of the coloured bands and the various changing spots particularly the Great Red Spot. Voyager 1 showed that the bands were caused by the effect of the high axial rotation speed of the planet. The action appears to be, that as the tops of clouds appear above the bulk of the atmosphere, they are immediately elongated along the main atmospheric surface. The reason, so simple that it should have been recognised before, for rapid rotation of the planet on its axis offered a clue. This rotation period is a few minutes less than 10 hours. The diameter of Jupiter is 142.700 km at the equator $(88,700 \mathrm{~m})$ this gives a figure of some 27,000 m.p.h. for the peripheral boundary of the atmosphere and the emerging clouds.

It is easy to accept that the spots are the constantly changing energy dissipation of the variable density clouds. During the period of four months that elapsed between the flypast of Voyager 1 and that of Voyager 2 considerable permanent changes appeared in the appearance of the area around the Red Spot (incidentally the so called Red Spot is a pale pink) also some of the first conclusions were the subject of some re-thinking. In the past, before the probes, there were a number of theories about the Red Spot.

One in particular was that of the 'Taylor' column. It was suggested that the Red Spot was the top of a supporting column of gas formed by dynamic wave conditions within the atmosphere of the planet. The first pass by Voyager I disposed of this and of all the previous thoughts because it appeared that in fact the Red Spot was an enormous cyclone type of activity some 21 km in length east to west. This area between the pass of Voyager 1 and Voyager 2 four months later showed many changes including a reversal of movement of the peripheral activities. In the light of some of these findings there is a leaning again toward the idea of a more extensive connection with the lower atmosphere of the planet. The 'Taylor' column becomes again a possible. From the many thousands of drawings made by amateurs, particularly those of Jupiter Section of the British Astronomical Association, for the last 80 years or more, some useful correlation could be obtained. The requirement is for noticeable changes of the features over periods which could be correlated with photographs and their extensive detail.
While the drawings will give general shapes and outlines, those shapes will be easily interpreted in terms of the photographs. Cyclic changes whether from the immediate area of the planet or whether from solar effects would be visible. Observationally in spite of difficulties an enormous amount of data is available and even if the drawings are but 50 per cent accurate there is much to be gained. Indeed it could well be that this is a time when the efforts of amateurs throughout the world could be enlisted. There is no reason why sets of coded photographs should not be available for this purpose. Reference to the book The Planet Jupiter by Bertram M. Peak published in 1958, an outstanding classic in the literature by a former Director of the Jupiter Section of the BAA who personally observed directly over a period of 25 years, is very rewarding.

## interesting io

The complication of the innermost satellites are of great interest especially lo. When the decametre radiations were first noted by Burke and Franklyn in America during 1955 a new wave of interest in the world of radio astronomy arose. Though only a small number of people took part in these activities (the writer included) the first ideas were that these radiations came from certain spots of the surface of the planet. A period of rotation was assigned which was slightly different from the axial rotation. Three areas were designated as being the origin. Beyond recognising these radiations no conclusions were really possible. As a participant in a National Aeronautics Space Agency contract the writer did not subscribe to the view that the radiations came from the planet but postulated a mechanism involving some sort of link with an ionised condition. This subsequently proved to be the case. It was put forward by Bigg an Australian meteorologist in 1964 that lo was responsible for a mechanism. This proved to be partly true as was found during a study in 1965 and 1966. In the meantime a link by current sheet or ionised bridge was put forward (by several of us) in relation to $l o$ as an explanation. Pioneer 10 and 11 gave rather negative results
in this respect. However it has been now established by the Voyager missions that there is a torus of ionised material out at the orbit of Io. One other possibility is that Amalthea has some effect and more so now that it is known to be an elongated body whose axial rotation if any has not been established. It could be a possible trigger for the aurorae that has been observed.

The finding of a ring of small particles is of special interest. Like that of Uranus the ring is much more tenuous and does not extend as far out as those of Saturn. Its appearance to probes is not perhaps surprising because Jupiter is itself so bright that the possibility of actually seeing it from Earth is very remote even if an eclipsing disk was used in the telescope. The particles are so small that they may well be primordial dust or this is another activity of Jupiter in cleaning up the debris of the solar system.

## GALILEAN SATELLITES

The satellites, that is the Galilean satellites. seem to have a special individuality. Io is volcanic and in continuous activity and is unique in the solar system. Many years were spent in the observation of lo by optical astronomers from Earth based instruments but no clue about any activity was ever seen. Not until the probes came did knowledge of the satellites become possible. It is being suggested that the volcanic activity is perhaps less than a million years old. The reason for this being the case is not clear. A suggestion that the pull of the planet Jupiter as opposed to the two Galilean satellites Europa and Ganymede may account for the heating of Io. However it is not 'hot' in the sense of that of the Earth's interior. The 'hot spot' on lo is a mere 20 degrees compared with the -140 degrees of its surface. There are therefore no signs of molten material around its craters. Europa was a puzzle until the probes went by. It was found that Europa is also unique for it is 'bald'. It is probably composed mainly of ice, very thick, perhaps as much as 100 km . Voyager 1 has shown that the surface is probably slushy ice so the surface changes are obliterated from the viewpoint of the probe. Ganymede the third of the Galilean satellites is different again from the others. It appears to be mostly water. It has a low density. There are abrupt divisions between the types of surface. Some areas are very dark and heavily cratered while others appear to be lighter and perhaps made up of ice in ridges. The state of the cratering suggests that this satellite is about the age of the Earth. Finally the fourth of the Galiean group and the outermost is Callisto.

This body is the most cratered body so far observed in the Solar System. The surface is so cratered that it will take 20 years to count them up. It would seem that this moon also is made up largely of water and belongs to the early period of 4000 million years. The observations of Jupiter have gone on for some 11 months and the amount of data to be analysed is formidable and while the probes go on their way to Saturn the first real work on the Jupiter results will begin. The exciting beginning can only result in the re-shaping of many current ideas.

## The hobby electronics show

 ?
# 6 CHANNEL MIXER S.R.W. Grainger \& C.R.Harding Part 2 

IN this final part board construction together with interwiring and final setting up will be detailed.

## CONSTRUCTION

For the prototype printed circuit boards were used on the input channel amplifiers, this method was adopted because of the need to reproduce six identical circuits. However there is no reason why Veroboard (or similar) could not be used for construction providing dimensions are similar.

This involves the use of a two pole change-over interlocking push button switch system, however this can be replaced by a rotary selector switch as shown in Fig. 1.

All wiring in the mixer should be kept as neat as possible and all low level signal connections should be made with screened cable with the screen connected at one end only (this applies to the wiring of the 1 kHz oscillator also). Connections to the bass and treble controls can be made with ordinary unscreened wire, providing the leads are kept


Fig. 10. Input channel amplifiers-six are required


Fig. 11. Component layout for input amplifiers

The p.c.b. and component layout for the input channels is shown actual size in Fig. 10 and Fig. 11.

All the other circuits were constructed on Veroboard of 0.1 in . matrix. The headphone amplifiers, output amplifiers, overload indicator, VU meter drive amplifiers and echo send amplifier and test oscillator were all built on one piece of Veroboard. The layout and track cutting diagram for this is given in Fig. 12. The power supply is built on a separate Veroboard as shown in Fig. 13.

The connections for the p.c.b. controls and gain switches on the input channels are shown in Fig. 16. The switching arrangement for pfl function switches is shown in Fig. 15.
short. The transformer and power supply should be mounted as far away from the input channel boards as possible.

The input channel boards are mounted on their long edge, which leaves the connection pins accessible. They are held in position by use of a piece of slotted plastic which is sprung, the springs being attached to two pots by solder tags (or brackets).

The output boards can be mounted on the base panel of the mixer and wires run from the miniature looms bound with "Spirowrap" or similar.

A control panel cut-out guide is shown in Fig. 14. The control panel was made from 14 s.w.g aluminium which

Fig. 12. Main board that includes headphone amplifiers, output amplifiers, overload indicator, VU meter amplifier and test oscillator. This should be attached to the bottom panel as shown in the prototype layout in Part 1


[19760/4
Fig. 13. P.s.u. board
provides adequate support and is easy to drill and file. Some hole sizes are omitted as these are to suit parts which are available to the constructor. These panel cut dimensions will need to be larger if slider pots are used on the input channel faders. The front was sprayed black (matt) and lettered with Letraset or similar and then given several coats of protective lacquer.

No details are given of the front and back panel drilling details, as these are to suit the input and output sockets used by the constructor. The front and back panels were made from 12 s.w.g. aluminium and attached to the side panels ( $\frac{1}{2} \mathrm{in}$. solid teak) by $\frac{1}{2} \mathrm{in}$. angled aluminium.

A colour coding was adopted for the control knobs as follows:

Impedance and gain selector	- white
Pan control	- yellow
Bass control	-blue
Treble control	- red
Input channel echo send control	- green
Echo send master control	-black
Echo return master control	-black
Headphone volume control	-black

These knobs were black with coloured inserts and for a contrast the channel faders used a different style of knobs. and the slider pots used the most readily available knobs.


Fig. 14. Panel cut-out guide


Fig. 15. Circuit for p.f.l. interlocking push switches


Fig. 16. Single channel control wiring to input amplifier

(Above) Prototype control panel layout. In the modified design the limiter switch is excluded. (Below) Headphone outlet is on the front panel with inputs to the rear

## SETTING UP

## 1 Khz oscillator

The only adjustment required on this is that the output level on pin 32 should be set to 10 mV . This should be done using an a.c. millivoltmeter or an oscilloscope, by adjustment of VR12. If an oscilloscope is available the shape of the sine wave can be seen, and should be observed to be fairly pure (distortion less than 10 per cent).

## L.e.d. overload indicator

To set this circuit up an a.c. signal of 12 mV peak-to-peak should be applied to one of the input amplifiers. The gain of this amplifier should then be set to 100 (using S3) and the output should measure 1.2 V peak-to-peak, if this is not the case adjust the input signal level until it does. The preset pot on the overload indicator (VR10) should then be adjusted so that the I.e.d. just lights. This calibration will then suffice for all input channels.

## VU meters

To calibrate these a signal from the 1 kHz oscillator should be applied to one of the input channels via test selector switch and the gain adjusted to 100 and impedance 50 kilohms. The pan control on that channel should then be moved fully over to the left and the left master fader should be adjusted until the left output. reads 1 V r.m.s. on an a.c. millivoltmeter or oscilloscope. The calibration pot (VR11) on the VU meter amp should then be adjusted so that the meter reads OdB . The procedure is then carried out for the right hand channel but with the pan pot fully over to the right.

All circuits should function first time in the mixer, with wide component tolerances, unless there has been a component failure or a mistake in the wiring. Care should be taken to select the correct input impedance and sensitivity (600 ohm input impedance is useful when using long microphone cables) but any overload of signal should be indicated by the overload indicator. The headphone monitoring facility provides useful quiet listening but can be routed to an external amplifier and speakers via an attenuator.

## PNTENTE <br> RIEMETM

Fig. 1


Fig. 3

Fig. 2


## CLASS A

Keith Garwell of Stoke-on-Trent was recently granted (under the old laws) British Patent 1527 293. This covers a new type of Class A transistor amplifier. In a letter published in the hi-fi press Garwell claimed that the circuit has "most of the advantages of Class $A$ without the attendant poor efficiency" and that although "the configuration is still being developed ... present models are giving good results". Fig. 1 of Garwell's patent shows a simplified conventional Class A circuit. With no input signal applied, the collector voltage on TR1 is stable and there is no current in load Z.L. This is the quiescent state. When an input causes the current in TR1 to decrease, the collector becomes more positive and current flows in the load via capacitor $C$. When the input causes the current in TR1 to increase, the collector becomes less positive, and current flows out of the load via capacitor C. During the positive-going state the current supply to the load is limited by the

Copies of Patents can be obtained from : the Patent Office Sales, St. Mary Cray, Orpington, Kent Price 95p each


20
OA1 and OA2

value of resistor $R$ and the quiescent current in resistor $R$ is of the same order of magnitude as the maximum load current required. But the quiescent current represents wasted power. A similar situation obtains for the negative-going state. The inventor aims to raise the conversion efficiency by replacing the passive load $R$ with an active composite network. As shown in Fig. 2 transistor TR2 and diode $D$ are added to resistor R. A positive-going collector potential on TR1 causes diode D to reverse bias so that it will not conduct. TR2 then turns on the supply of current to the load.

During the negative-going state TR 1 draws current from the load via diode $D$ in its conducting state. The diode cathode is thus negative with respect to the anode and transistor TR2 turns off. Thus the only current handled by TR1 in addition to the load current is that flowing through resistor $R$, and this is reduced with respect to the conventional situation. A circuit is shown in Fig. 3 which is suitable for an audio amplifier which will deliver approximately 50 watts into an eight ohm load from a 250 milivolt input and a power supply of 70 volts d.c.


## Acomputer range from $£ 500$

The number one micro-computer in Britain today, selling more than 1,000 per month!

The Commodore Pet computer range is versatile and affordable. Programs can be written in Basic, the easiest computer language to learn. There is also machine language accessibility for professionals.

The Pet is a fully expandable system, peripherals being available for many specialist applications, (peripherals such as dual drive floppy discs and printers).
There are already over 300 standard programs,
commodore
We made small computers big business.
tested and in use in commercial, scientific, educational and many other applications throughout Britain. The Pet is a portable and professional computer that operates by plugging into a normal 13 amp mains. Service and advice is readily available through the nation wide network of dealer outlets.

For a demonstration contact your local dealer-some of whom are shown here. In case of difficulty contact Consumer Information Dept ( PE ), Commodore Systems, 360 Euston Road, London NW1.

## Associated Commodore dealers:

BIRMINGHAM
Camden Electronics 021-773 8240 CPS (Data Systems) 021-707 3866 Taylor Wilson Systems Knowle 6192 BOLTON
B \& B Consultants 0204-2664 BOURNEMOUTH
Stage One Computers 0202-23570 BRADFORD
Ackroyd Typewriter \& Adding Machine Co 0274-31835 BRENTWOOD
Direct Data Marketing 0277-229379 BRISTOL
Bristol Computer Centre
0272-23430
Sumlock Tabdown 0272-26685 CAMBRIDGE
Cambridge Computer Store 0223-68155
CARDIFF
Sigma Systems 0222-21515 COLCHESTER
Dataview 0206-78811
DERBY
Davidson Richards 0332-366803 DURHAM
Dyson instruments 0385-66937 EDINBURGH
Micro Centre 031-225 2022
EXE TER
A.C. Systems 0392-71718

GRIMSBY
Allen Computers 0472-40568 HEMEL HEMPSTEAD Data Efficiency 0442-57137 HOVE
Amplicon Electronics 0273-720716 LEEDS
Holdene 0532-459459
LIVERPOOL
Aughton Automation 051-5486060
Cortex Computer 051-263 5783 Dams Office Equip. 051-2273301
LONDONE2
Ragnarok Elec Sys 01-981 2748
LONDON EC1
Sumlock Bondain 01-253 2447
LONDON N14
Micro Computation 01-882 5104 LONDON NW4
Da Vinci Computers 01-202 9630 LONDON SW14
Micro Computer Centre 01-8766609 LONDON W5
Adda Computers 01-5795845
LONDON WCI
Euro Calc 01-405 3113
LONDON WC2
TLC World Trading 01:839 3893 MANCHESTER
Cytek (UK) 061-832 7604
Executive Reprographic 061-228 1637
Sumlock Elec Svs 061-834 4233 MATLOCK
Lowe Electronics 0629-2817
MORLEY W. Yorks
Yorkshire Elec Svs 0532-522181 NORWICH
Sumlock Bondain 0603-26259 NOTTINGHAM
Betos (Systems) 0602-48106 OXFORD
Orchard Electronics 0491-35529 PLYMOUTH
JAD Integrated Svs 0752-62616 PRESTON
Preston Computer Ctre 0772-57684
READING
CSE Computers 0734-61492 SOUTHAMPTON
Business Electronics 0703-738248 Symtec 0703-37731
Xitan Systems 0703-38740
SUNDERLAND
Tripont Ass Systems 0783-73310

## WOKING

P.P.M. Brookwood 80111

Petalect 04862-69032
YEOVIL
Computerbits 0935-26522
NORTH SCOTLAND
Thistle Computers Kirkwall 3140 NORTHERN IRELAND
Medical \& Scientific Lisburn 77533

## ERROR CODES

IF DURING the execution of a program, the computer encounters a word it does not understand, or is asked to perform an impossible calculation, it may detect an error of a recognisable type and so inform the user. Some errors are undetectable and simply produce wrong answers or bizarre behaviour. If it does recognise a standard error, it will print up one of the standard error codes listed in the table.

This self-checking activity makes computer programs easier to debug, but there are pitfalls, because sometimes, though an error of a particular type has been flagged, it may be the consequence of a more subtle error elsewhere in the program. Experience is the only answer!

Table 3.1. ERROR CODES
\(\left.$$
\begin{array}{ll}\text { Code } \\
0 / 1\end{array}
$$ \begin{array}{l}Definition <br>
Double dimension: variable dimen- <br>
sioned twice. Remember subscripted <br>

variables default to Dim. 10.\end{array}\right]\)| Function call error: parameter passed |
| :--- |
| to function out of range. |
| Illegal direct: INPUT cannot be used in |
| immediate mode. |

Code
01

F 1
11
N I
01
07

S 」
R1
u
14
C」
$1 \quad r$
$0 r$
s $\delta$
17

41

## Definition

dimension. variable dimenvariables default to Dim. 10 .
Function call error: parameter passed to function out of range. immediate mode.
NEXT without FOR.
Out of data. more AEADs than DATA. many nested GOSUBs, FOR NEXT loops or variables. for BASIC.

Undefined statement: attempt to jump to non-existant line-number.

CONTINUE errors: inappropriate attempt to CONT after BREAK or STOP characters.
Out of string space: same as 07 . too complex. matched to numeric variable. Undefined function.

## EDITING

The program may be edited by writing further lines or rewriting existing ones.

Try typing the following (to be added to last program):

## 15 PRINT '"BYE"'

Typing LIST will insert this new statement between lines 10 and 20 . Similarly, typing:

## 10 PRINT "'THIS"

will overwrite line 10. Typing 10 followed only by RETURN will simply wipe out line 10 altogether. If a mistake is made in typing a character, it may be deleted by pressing the RUB OUT key, which if pressed several times will delete that number of previous characters. Try the following correction:

PRINT "HELLL (press RUB OUT) 0"
The third L. will be deleted and the VDU will show:

## HELLO

The entire current line being typed may be deleted before RETURN is pressed, by pressing (SHIFT) P, which displays an @ sign and places the cursor on the next line to await further instructions.

## USE OF CASSETTE

Check that pin 10 of J 2 is connected to the earphone output, and pin 9 (or 7) to the auxiliary or microphone input, and pin 8 and/or 11 to the Earth of the cassette machine. Any ordinary cassette recorder should be suitable, but the very cheapest cassette tapes are prone to giving continual errors. The best volume setting is found by trial and error for playback. Recording may be on automatic level or manual. A machine having a tape counter is preferable.

## PLAYING BACK A PROGRAM

(a) Rewind tape to "leader" or blank area before program starts.
(b) Place computer in command mode and type NEW (and RETURN).
(c) Type LOAD but do not press RETURN, to avoid spurious "noise" being interpreted as data and loaded to the computer.
(d) Switch recorder to PLAY.
(e) Wait for a second or two-or for the "leader" to pass through, then press RETURN.
Some random noise characters may still be printed on the screen, and if one of these is a number, it could be interpreted as a program line. However, without this unlikely event the program is printed on the screen line by line. When playback is complete, pressing SPACE and then RETURN returns the machine to BASIC and the new program is resident for listing or running.

## RECORDING APROGRAM

This assumes a BASIC program is stored in the Computer ready for saving on cassette.
(a) Rewind tape to blank noise-free portion of tape.
(b) Type SAVE (RETURN).
(c) Type LIST but do not RETURN.
(d) Switch cassette to RECORD and allow "leader" to pass, plus a further 5 seconds to allow settling to constant speed, then press RETURN. The program will list on the screen as it is being recorded.
(e) When recording is complete, wait a few seconds, turn off tape recorder and type LOAD (press RETURN), then press SPACE and RETURN.

## USING THE MACHINEIN BASIC <br> After <br> OK

appears, the machine is said to be in the Command Mode. At this point, two types of data may be entered, always terminated by pressing RETURN.
(i) COMMANDS
(ii) BASIC Statements

These are described below:
N.B.

Spaces are always ignored in Commands and BASIC Statements (except in literals and string arguments).
If you make a typing error, press RUB OUT.

## (1) COMMANDS

CLEAR This causes all variables (numeric or string) to be set to zero (or null)
LIST This can be used in several forms as detailed below:
LIST Causes the whole stored BASIC program to be listed line by line until either the listing is complete or CONTROL $C$ is pressed.
LIST $n$ Will list that line only
LIST $n$ - Will list all lines from $n$ to the end of the program LIST $-n$ Will list all lines up to $n$
LIST $n$-m Will list from line $n$ to line $m$. This allows any part of a program to be viewed at will
NULL n inserts n null before sending data to serial $1 / \mathrm{O}$ devices
RUN Starts program execution from the first line with all variables cleared
RUN n As above but starts program at line $n$
NEW Wipes out current program
CONT Continues execution of program after Control C , or after a STOP statement encountered within the program
LOAD
SAVE $\}$

## CONTROLC

This is effected by pressing the "CTRL" key, and (with CTRL pressed) typing a " C ". It suspends Computer activity and prints a message to give the line number at which the break occurred. The Computer then returns to COMMAND MODE. Many BASIC Statements may also be used as commands if unaccompanied by a line number-for instance:

## GOTO $n$

would cause the Computer to begin executing from line number $n$ without clearing all the variables. Similarly, many of the above may be used in programs--thereby causing a program to command the machine.

## (ii) BASIC Statements

There are two modes of use of the BASIC language when using an interpreter such as this. These will be called:
(a) Immediate Mode
(b) File Mode.

## IMMEDIATE MODE

If a BASIC statement is typed while in the Command mode, it is executed immediately a RETURN is encountered, and lost after execution. In this mode the Compukit, with its fast powerful floating-point calculation ability is able to act as a super calculator. For instance, answers to such calculations as:

$$
x=\frac{15.7 \times 13^{\sin (0.781)}}{87 \times 10^{4}}
$$

are found immediately. In this case, the user would type:
PRINT 15.7* 13 个SIN (0.781)/87E4
to get the answer:

$$
1.09796 E-04
$$

The immediate-mode use of the machine allows instant indication of remaining program space, by typing:

## PRINT FRE (N)

The answer (after RESET) on an 8 K machine should be 7420.

An important use of this mode is for program debugging. The last values of the variables are retained when a program stops. Type:

PRINTA, B; C, etc.
where $A, B, C$ are the variables whose values are required. Quite complex immediate-mode programming may be written by employing colons to separate the various statements. In order to write and retain a program, the File Mode must be employed.

## FILE MODE

To retain a program line for later execution, a line number must precede the instructions.

This numbered program line must not be confused with a display line. The computer accepts a maximum of 71 characters on a program line, and depending upon the Terminal Width set up after a system reset, the program line may occupy up to around four and a half lines of VDU display (if terminal width is 16 ).

## Table 3.2. COMPUKIT MEMORY MAP

0000-OOFF	Page Zero
0100-01FF	Stack
0130	NMI Vector
0100	IRO Vector
0200-0221	BASIC Flags \& Vectors
0203	LOAD Flag
0205	SAVE Flag
0218	Input. Vector
021A	Output Vector
021C	Control C Check Vector
021E	Load Vector
0220	Save Vector
0222-02FA	Unused
0300 end of RAM	BASIC Workspace
A000-BFFF	BASIC-in-ROM
D000 - D3FF	Video RAM
DFOO	Polled Keyboard
F000-F001	ACIA Serial Cassette Port
F800-FBFF	ROM
FCOO - FCFF	ROM - Floppy Bootstrap
FD00-FDFF	ROM - Polled Keyboard Input Routine
FEOO - FEFF	R.OM - 65V Monitor
FFOO - FFFF	ROM - BASIC Support
FFFA	NMI Vector
FFFC	Reset Vector
FFFE	IRQ Vector

## MACHINE CODE MONITOR

The machine code monitor program provides a simple but adequate method of loading and running machine code routines, including loading from cassette. To prevent these routines being overwritten by BASIC, MEMORY SIZE? (After RESET) must be answered with a number restricting the BASIC's use of RAM. The number $n$, thus typed, restricts BASIC according to the following map.

Address in Decimal	Use
0	Page Zero
255	Scratch-pad RAM used by   BASIC and system monitor
256	BASIC workspace
769	$n-1$
$n$	BASIC   End of RAM

It is clear from the above that n must be at least greater than 769. In a 4 K machine, the end of RAM occurs at memory location 4095, and 8 K finishes at 8191.

After RESET, the machine code monitor is entered by pressing M . The display:

## 0000 4C

then appears.
The first four characters form the address field, and the second two represent data (all in hexadecimal notation). Typing any hex characters at this point will load the address field; the data field is kept constantly updated as the address changes. Mistakes may be corrected by typing further characters, as these will continue to be loaded into the right hand position and then rotated left as further entries are made.

The following commands are available:
$/$ Changes to data mode to allow data to be loaded. RETURN then opens the next location.

- Changes back to address mode.

G (Used after setting up an address with. ). This jumps to the address showing on the screen and begins execution.
L Transfers control to cassette-loading 00FB with 00 transfers control back to the keyboard.
After $L$, the monitor is in data mode and simply accepts all its commands from cassette instead of the keyboard. Thus the cassette tape must have a series of commands, stored as ASCII codes from BASIC, to control the Monitor. To load a program from cassette, it must be stored byte by byte, separated by RETURNs and ending with:

## .00FB/00

This loads 00FB with 00 which is the flag to switch the monitor back to accepting commands from the keyboard. The program can be run from cassette, if desired, by ending with $G$ after setting up the start of the routine in the address field.

The following gives a list of important address locations in the machine code monitor.

Starting   address	Effect of jumping to address shown
FEOO	Restart location. Ending machine-code programs   with a jump to this location has the same effect   as pressing M after D/C/W/M?
FEOC	Bypasses UART and Stack Pointer initialisation   as well as clearing decimal mode, but still clears   screen.   FE43
FE77	Enters directly into address mode. Bypasses ini-   tialisation and screen clearing.
As last, but for data mode.	

The following are subroutines which may be of use in user programs.

Starting   address	Effect of jumping to subroutine
FE80	Inputs an ASCII character from the cassette UART.
FE93	Returns stripped ASCII number if $0-9$ or A-F   otherwise returns FF.
FEED	Inputs an ASCII character from the keyboard.

To test the machine-code monitor, the message program used to illustrate USR (last month) may be adapted as follows.

Place the monitor in address mode either by pressing RESET followed by $M$, or by pressing full stop if already in the monitor. Enter the characters 0500 followed by $/$ to access data. Type in the following pairs of digits-each pair separated by pressing RETURN.

A2	00	BD	00	06	C9	$5 F$	F0
07	$9 D$	E5	D1	E8	18	90	F2
4C	43	FE					

This ends with a jump to location FE43 which places the monitor in address mode after the message has been displayed, thus preventing the clear screen routine in the monitor from erasing the message immediately after its appearance.

The following pairs of hex digits, are ASCII codes for the characters of the message. The list may be of any length but must start at 0600 and end with the pair 5 F .

Press full stop and the $n$ type 0600 followed by / and the following pairs separated by RETURNs:

## $\begin{array}{lllllllll}43 & 4 F & 4 D & 50 & 55 & 4 B & 49 & 54 & 5 F\end{array}$ <br> To run the program, type <br> .0500G

This will display the message for which the ASCII codes are given above, and leave the machine code monitor in address mode for further use. Memory size need not be specified unless BASIC is to be entered and the above protected against being overwritten.

## GRAPHICS

Character resolution graphics are used by the Compukit whereby 255 different graphic characters are available to fill any given character slot. To view the available characters, the BASIC function CHR\$ may be used by typing, for example:

## PRINT CHR\$(24)

followed by pressing RETURN. This causes a $£$ sign to be
printed. Each number between 1 and 255 inclusive, corresponds to a character, as 24 does to £ . 10 corresponds to a null character).

Two of these numbers correspond to non-printing commands for the print head (whose position is continuously shown by the cursor).

PRINTCHR\$(10)
causes a line-feed, i.e. the cursor jumps to the next line and the screen scrolls upwards.

## PRINTCHR\$(13)

causes a carriage return.
The rest of the numbers correspond to ASCII characters, special characters and graphic characters.

The ASCII characters start at 32 (SPACE) and finish at 127. These are all accessible from the keyboard. The uppercase is set with SHIFT-LOCK down, and lower case with SHIFT-LOCK up.

The other characters are inaccessible from the keyboard directly, and they must be printed using CHR\$(I). These general graphic characters are best seen by writing a program to print them on the screen. This will be given later.

The following is a list of special (as distinct from graphic) characters, with their corresponding numbers:

number	character	number	character
0	null	244	$\delta$
10	line-feed	245	$\psi$
13	carriage-	246	$\Omega$
	return		
24	$£$	247	$\mu$
32	Space	248	$\pi$
179	$\Rightarrow$	249	$\varepsilon$
180	$\leftarrow$	250	$\lambda$
211	$\sigma$	251	$\phi$
212	$\delta$	252	$\beta$
241	$\alpha$	253	$\varepsilon$
242	$\beta$	254	$\gamma$
243	$\omega$	255	$\gamma$



In order to select a particular graphic character, a list of those available may be displayed on the screen with corresponding number next to each one. The following program achieves this by allowing the user to specify which block of characters are to be displayed; there are too many to appear at once! The instructions for the program are as follows.

The program is loaded and run. The words:

## WHICH BLOCK?

appear. Answer with a number between 1 and 4 inclusive followed by a RETURN. The numbers 1 and 2 display the graphic characters available, 3 shows the special characters already shown, and 4 displays the ASCII set.

To exit the program, just press RETURN instead of a number.

The line numbers chosen for the program put it well above any other program you may be working on. If the program under development ends with an END, then the following program will never be entered by the command RUN, and so RUN 10000 will be necessary. This allows the graphic program to remain in memory as a reference for use as necessary. It will be lost if NEW is typed or if RESET is pressed followed by C.

## The Program Listing

(Spaces may be omitted, and PRINT may be typed as ?)
10000 INPUT "WHICH BLOCK"; B : FL $=0$
10010 IF $B=1$ THEN $S=1: F=31$ : GOTO 10060
10020 IF $B=2$ THEN $S=128: F=219:$ GOTO 10070
10030 IF $B=3$ THEN $S=220: F=255:$ GOTO 10060
10040 IF $B=4$ THEN $S=32: F=127:$ GOTO 10070
10050 GOTO 10000
$10060 \mathrm{FL}=-1$
10070 FORI = STOF
$10080|\mathrm{~F}|=10$ OR $\mid=13$ THEN 10110
10090 PRINT I; CHR $\$(1):: H=1+3$
10100 IF $\operatorname{INT}(H / 7)=.H / 7$ THEN PRINT : IF FL THEN PRINT
10110 NEXT
10120 PRINT
10130 GOTO 10000

Fig. 3.1 (left). BASIC ROMs
Fig. 3.2 (below). Monitor ROM


When Block 2 is requested, some of the vertically adjacent symbols run into each other. Use CHR $\$$ in the immediate mode to inspect individual characters, e.g. :

## PRINT CHR\$(161)

reveals that this character fills the entire character slot.
The fact that characters run into each other in this manner allows the user to build, up quite complex graphic patterns as well as graphs and bar-charts, etc. The user may find it useful to store the above program on cassette tape for future reference.

## HARDWARE-BINARY COUNTING CHAINS

The clocking requirements for the system are supplied by the crystal oscillator and binary counting chains (see Fig. 2.5). Two gates of IC58, plus $\mathrm{X1}$, form an 8 MHz oscillator buffered by a further gate in IC58, and divided by 8 (IC29, which has a spare $\div 2$ ). Before IC29's $\div 8$ function, the CLK line feeds the Dot clock of the VDU with 8 MHz . This governs the length of time available for displaying one of the dots of a character on the TV screen. Given the speed with which the electron beam strobes across the screen and the Dot time, the width of a dot may be calculated. A frequency of 8 MHz gives a dot size sufficiently small to fit about 48 characters across the screen (each 8 dots wide), while of low enough frequency to pass easily through the UHF modulator and IF stages of a TV set.

The D output of IC29 (at 1 MHz ) then feeds the $\phi$ Oin line of the MPU, the CO line of the VDU, and the counting chain of 74163's ior 74161's) IC59-61 and IC30. The constraints on the counting chain are that it must produce ripple-count outputs for C1-C6 in between line-sync pulses separated by $64 \mu \mathrm{~s}$. Note: $2^{6}=$ maximum of 64 characters per line. There must be three outputs (C8-C10) for the row inputs to the character generator, and a further four outputs (C11-C1.4) for the 16 horizontal lines of characters. The entire picture must then be repeated at 50 times a second with a suitable frame-sync pulse. The final count output from the bottom of the chain is then inverted, and fed to load the chain elements.

Capacitor C3 is used to set the BAUD rate for the Cassette and serial interface via a further counter, IC57, and some decoding logic IC63 and IC58.

## THEVDU

The block diagram of Fig. 1.2 shows the basic parts of the VDU and the circuit diagram (Fig. 2.2) gives the details referred to below.

The VDU RAM holds a screen full of characters (1024 in all). Through IC53-IC55 the RAM address lines (VAO-VA9) are either fed from the counter chain, or the MPU Address Bus, depending upon the state of $\overline{V A}$ (VDU Access). When $\overline{V A}$ is at " 1 ", C1-C6 and C11-C14 are connected through to VAO-VA9, and when VA is at " 0 ", the MPU busses have direct Read/Write access to the VDU RAM. Reading or writing of data is controlled by the bi-directional buffers IC24 and IC25, which also disconnect the VDU RAM from the MPU Data Bus when the counter chain is supplying addresses to VAO-VA9. Thus when VA is in the zero state, the VDU RAM acts just like any other block of Read/Write memory, here based at location address DOOO hex. This allows the screen to be read or written to during a program. With $\overline{V A}$ at " 1 ", the ten VDU RAM addresses are derived from the counters sequentially. The RAM is in the READ condition when not selected by the MPU, and the contents of the RAM locations are sent to the character generator for interpretation into bit patterns forming characters on the screen

Each character in the Character Generator (IC41) is stored as an $8 \times 8$ matrix of white and black dots. White is stored as a "1". The characters appear on the outputs of IC41 (DO-D7) one row at a time, see Fig. 3.3. Here an " $E$ " is being displayed on one of the 16 lines of text on the TV screen. C8, C9 and C10 from the counter chain determine which row (RO-R7) is being output at any time. The sequence of events is as follows: C1-C6, C11-C14 contain an address of a location in VDU RAM and hence of a character on the screen. The contents of this location ( 8 bits in parallel) are fed to IC41 which then parallel outputs the 1 's and 0's (white and black dots) of one row of the character along D7-D0. Here, five 1 's and three O's are output to form the top row of the " $E$ ". IC42 serialises this parallel information at 8 MHz , and sends it out in a stream to IC70 to be mixed with TV sync. information, etc. displayed along a TV line as the electron beam strobes across the screen. This takes $1 \mu \mathrm{~s}$, and each successive $1 \mu \mathrm{~s}$ sees IC42 loaded with another character-row for the same treatment. Note: LD is fed from CO to 1 MHz via a monostable (haff of IC71) to give a short negative going pulse, and CLK is at 8 MHz . This is the Dot clock, so named because each cycle displays one of the 8 dots of a character on the screen. After the top row of the " $E$ " has been displayed, the top row of the next character on that line must be fetched. Again, C8, C9, C10 will not change, but C1-C6 will, hence selecting the next VDU RAM location, and so on until C1-C6 have displayed one row of 64 characters. Some of these are lost at the end of the line, as the Dot clock is only at 8 MHz . When $\mathrm{C} 1-\mathrm{C} 6$ have finished rippling through, C7 changes and the whole is repeated. C6 synchronises the TV line (at $64 \mu$ s intervals) and thus starts a new line via IC65 on its downward edge. C 7 is not used in the process and thus C1-C6 must count through twice before C8, 9, 10 increment to a new row of the character; this causes each row of dots to occupy two TV lines as shown in Fig. 3.3.

As C8, 9, 10 increment, the complete set of 16 TV lines builds up a row of text. The next step is to increment C11-C14 to address the next row of characters stored in the VDU RAM. The complete frame of 256 TV lines is built up as C1-C14 count through. Normally, in TV transmissions, another frame slightly different from this, is interlaced in the

Fig. 3.3 Dot structure of an ASCII Character on the VDU screen

spaces between the lines of the first frame. Also, each half frame is composed of more lines. Here, C15, via IC71, provides a frame-sync. pulse to the TV, and the above process repeats exactly-each line occupying its previous position. The resolution thus obtained is not as high as a normal TV picture, but is more than adequate for 16 lines of VDU information.

The frame-sync. is delayed by half of IC65 to allow the TV picture to be moved up the screen, and hence prevent the bottom left character from being lost. This is the most important character slot on the screen and must be displayed clearly. The value of R33 and C8 may be adjusted to ensure its readability on any TV.

About 48 characters are able to be displayed on a normal TV, and hence about 16 characters are lost from the edges of the screen. At least 5 are missing from the start of the line and the rest from the end. The software of the COMPUKIT thus uses just those slots from the 6 th to the 54th to prevent loss of information. The others are available to the user, however, and may be forced into display by adjusting a TV or monitor to "underscan". The RAM locations are still perfectly valid and may be used as normal.

A note about graphics should be made at this point. Since an $8 \times 8$ matrix of dots is used for characters in general and only a $7 \times 5$ matrix is used for the ASCII characters, spaces of varying sizes are left between text characters, both horizontally and vertically. However, the COMPUKIT's character generator is very rich in blocks, lines and special patterns which use the full $8 \times 8$ array of dots. By this means, adjacent graphic characters may be chosen to run into each other, and graphs, large patterns, block diagrams, etc. may all be constructed from basic components. Also, some extra characters are included such as $\mathrm{E}, \pi$, etc. for a very full variety of uses.

## ADDRESS DECODING AND MEMORY

Address decoding is performed via 74138's and 74139's with some extra gating. The address map defines the operation of this block and it is described here in full electrical detail. A TTL data book will provide all the information necessary to understand how this block works. $\overline{\mathrm{RSO}}-\overline{\mathrm{RS}}$ are selects for the RAM $(8$ blocks of 1 K , each
comprising two 2114 's). BSO-BS3 select the BASIC ROMs, and $\overline{M C S}$ selects the monitor ROM. $\overline{A C S}$ selects the ACIA for the cassette. RKB and WKB are Read and Write selects for the keyboard and WVE and RVE for the VDU.

The RAMs are addressed so that IC31 and IC45 are at the lowest addresses and hence form the first 1 K block of RAM (based at 0000). Addresses increase from right to left in pairs (the 2114 being arranged as 1 K by four bits), IC32 and IC42 are next and so on. The ROMs are arranged to allow other options. When the 64 K bit ROM is available, the four BASIC ROMs may occupy one package. A11 and


Fig. 3.5 (above). Address decoding

Fig. 3.4 (left). RAM configuration for 8 K bytes

A12 will be needed and an address decoded line to select it. This already exists on the COMPUKIT; BS supplying the necessary address decoding. W1, W2 and W4 are pads next to the ROMs bringing these lines in. When this option is available, there will be three spaces free for ROMs or EPROMs of the user's choice. The COMPUKIT even allows for an active high or low BS line via IC18.

The Monitor ROM also has some flexibility in packaging and this is catered for as shown.

## PROCESSOR AND EXPANSION SOCKET J1

The processor is shown (Fig. 2.4) feeding all the Busses and control lines internally as well as externally, via J 1 , whose data lines are fully buffered by IC6 and IC7. External devices decide the direction of data flow through these buffers by DD. This socket allows any external logic to overtake the MPU system via interrupts and can easily be extended to control anything. External memory may be added via the socket; disc storage, S100 Bus expansions, etc. may all be plugged in directly.

## SERIAL AND CASSETTE INTERFACE

The serial interface is controlled by IC14 (ACIA). This is primarily to drive a cassette interface. However, sockets and pads are provided for extra components to allow the ACIA to drive an RS232 interface if required. This will not be described here but is shown in the diagram.
The ACIA receives its clock from C3 of the counting chain via IC57. IC63 and IC58. Options exist, as shown, to separate the Tx and Rx clocks. In addition, driving the clock from C2, C1 or CO will increase and BAUD rate from 300 by a factor of 2,4 or 8 respectively.

The ACIA's Tx and Rx data lines are fed to the cassette interface as shown. The transmitter uses a 7476 (IC64) to present a high or low tone to the recorder as a " 1 " or " 0 " to be recorded. This follows the usual Kansas City recording format.


E0 170 -

## Fig. 3.6 Timing diagram

Receiving depends upon the time-constant of a monostable. IC66 and IC62 are used to convert the sine-wave input, from cassette, to a square-wave suitable for the monostable IC69, and the clock input of a D-type flip-flop (IC63). While the tone is high, the 74123's time-constant is set such that the Q-output has no time to reset to zero before the next positive edge at $B$ forces it high again. $D$ and CLR of IC63 thus remain high, as $Q$ does, and Rx DATA presents a constant " 1 ". When a low tone arrives, the cycles arriving at $B$ are long enough to allow $Q$ to reset, after its positive-going timing pulse, before $B$ encounters a further positive-going edge forcing $Q$ high again. This gives the timing diagram shown in Fig. 3.6 for IC63.

The leading edge of $D$ is slowed by R62 and C55. The zero on CLR now sets $Q$ to zero and, because D's rising edge is slowed down, IC63 sees a zero on D when the clock goes high, thus preserving the zero on Q , and hence the circuit decodes a constant zero for as long as the low tone continues.

This sort of circuit is quite reliable at 300 BAUD and any instability will be due either to a large variation in tape speed, or to the value of R53 and C11 having been incorrectly chosen, thus allowing the negative-going edge on $D$ to arrive too soon.

# Hounidnun 


#### Abstract

Organisers: Please send details of exhibitions and other events to Mike Abbott at least six weeks in advance. Inclusion will be subject to space etc.


Racalex 79-October 2-4. Royal Lancaster Hotel, London. Details: Racal Electronics Ltd., Western Road, Bracknell, Berks. RG12 IRG. Eltro Hobby '79-October 3-7, Killesberg Exhibition Grounds, Stuttgart. Details:01-236 0911.
Internepcon UK 79-October 16-18. Metropole, Brighton.
Retailing in the 80's-Automation for Profit-October 23, 24, 1979. International Press Centre, London. Conference taking a broad view of the relationship between the retail manager and computer. Details: Online Conferences Ltd. Tel: Uxbridge (0895) 39262.
Satellite Communications (conference)-October 30, 31. London Press Centre. Will "tele-conferencing" replace business travel? Who will finance this expanding technology, and how should outer space be shared between the nations? Details: Online Conferences Ltd. Tel: Uxbridge (0895) 39262.
Personal Computer World Show-November 1-3. West Centre Hotel, London.
Compec-November 6-8, 1979. Grand Hall, Olympia, London. Details: Iliffe Promotions Ltd. Tel: 01-261 8437/8.
Professional Viewdata Exhibition '79-November 7 \& 8. West Centre Hotel, London.

Technical Innovation In The Service Of The Elderly and Disabled-Markets And Needs (symposium)-November 19-21. Berlin. Details: H. S. Wolff, Clinical Research Centre, Watford Road, Harrow, Middlesex.
Electronics 79-November 20-23. Olympia, London. Details: 021-705 6707.

Breadboard 79-December 4-8. Royal Horticultural Halls, Westminster. Details: Trident International Exhibitions. Tel: 08224671.
IEA/Electrex-February 25-29, 1980. National Exhibition Centre, Birmingham. Details: Industrial and Trade Fairs Ltd. Tel: 021-705 6707.

Viewdata '80-March 26-28. Wembley Conference Centre, London. Conference and exhibition. Details: Online Conferences Ltd. Tel: Uxbridge (0895) 39262.
Computer-Aided Design (conference and exhibition)-March 31-April 2, 1980. Metropole, Brighton. Details: Organisers, CAD 80. Tel: 048331261.

Communications '80-April 14-18. National Exhibition Centre, Birmingham. Details: ITF Exhibitions. Tel:021-705 6707.
Electronic Test and Measuring Instrumentation-April 22-24, 1980. Wythenshaw Forum, Manchester. Details: Trident.
International Conference On The Electronic Office-April 22-25, 1980. London Penta Hotel. Organised principally by the Institute of Electronic and Radio Engineers, 99 Gower St., London WCIE 6AZ.
All-Electronics Show (1980)-April 29-May 1, Grosvenor House, London. Details: 0799-22612.
The Mersey Micro Show-April 30, May 1, 2, 1980. Adelphi Hotel, Liverpool. Exhibition and seminars, with the cooperation of Liverpool University. Details: Online Conferences Ltd. Tel: Uxbridge (0895) 39262.

IBC 80 - September 20-24. Metropole Centre, Brighton, UK. Details: Secretariat, IEE, Savoy Place, London WC2R 0BL.
PRICES INCLUDE VAT. P \& P FREE
correct at 17.8.79 TO ORDER BY POST
TRANSISTOR UNIVERSAL AMPLIFICATION CO. LTO. PHONE 01.672 3137/8729080 MANUFACTURERS OF QUALITY AMPLIFICATION AND LIGHTNG CONTROL SYSTEMS

## NEW FROM TUAC

## ULTRA QUALITY HIGH POWER <br> New D.C. Coupled Design AMPLIFIERS

Featuring
Electronic Short Open \& Thermal Overload Protection
Brief Spec.
Input Sensitivity $0.775 . v$ R.M.S. $10 . D . B . I$ at $25 \times$ Ohms
requency Response $20 \mathrm{~Hz}-20 \mathrm{KHz}$ Hum \& Noise 100 dB Relative full oulput
Y.M.D. al full fower 0.14,
T.D. 500300 W into 2 Onms

All output ratings are R.M.S. continuous sine wave output.

Make cheques/P.O.s payable to TUAC LTD. or quote
Access/Barclaycard No. and post to TUAC LTD. 121
Charlmont Road, London SWir9AB. We accept ohone number from Access/Barclaycard Holders, Phone 01 -672 9080.

AMPLIFIER MODULES

SPEC. INPUT SENSITIVITY 60 mV for tull output
Frequency respunse $20 \mathrm{H}_{z}-20 \mathrm{KHz}$ HUM\& NOISE 70 AB

TL30 $5^{\prime \prime} \times 5^{\prime \prime} \times 2$

- 35 walt 10 amp output transistors

TL $605^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}$

- 60 wall R.M.S. continuous sine wave output

TL100 $5^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}$

- 100 watt R.M.S. continuous sine wave output - 2 R.C.A. 150 watth15 amp oulput transistors TP125 $7^{n} \times 6^{1 / n} \times 3^{\prime \prime}$ 125 walt R.M.S. continuous sine wave cutpu
4 R.C.A. 150 watl 15 amp output eransistors
£29.95

4 CHANNEL SOUND TO LIGHT
SEQUENCE CHASER - 4LSMI

- Full wave control
- RCA 8 A Triacs
- 1000 W per channel
- Fully supressed and fused
- Switched master conirol for sound
operation from: W to 125W
- Speed control for fixed rate sequence from 8 per minute
1050 per second
- Full logic integrated circuitry with optical isolation for amplifier prntection
£22.95
Model 501500 W per channel as above without sound triggering



## STEREO DISCO MIXER

With touch sensitive switching and auto fade
INPUTS: Fsum idiיntical virrect inpuls asalatile with any hqualisation Twi megnotic and iwo llat supplied as slancturs High quality slidiot eontrol on rach channol Volume ireble aud hass conteols for pach patu of shiders
 15 kH /
OUTPUT
OUTPUT Up to 3 volts i 12 dB , avanlable Attenuated output for TUAC Puwel Modules Rotary master and balance conirols Band witth $15 \mathrm{~Hz}_{2} 25 \mathrm{kHz}$. $\mathrm{d}_{8}$
P.F. L: Output 250 mV into 8 ohms Rotary volume control Monitoring tacility for all 4 channels Selection via Mouch sensitive ,litiminated switches Switched vis ual cue indicator Misceltaneous Facinies: Tho ikuminated dect on off swiches Mains illuminatred on ofl swiches Auto lade Hhuminatd on off swich Mans power?d with iniegral screen and back conor Complete with full instruchons
Sirm 25 in long. 6 in high. 3 in deepo
Mano Disco Mixeer will aurotade $£ 55.50$
£189.00

## 3 CHANNEL LIGHT MODULATOR SILMB

- RCA 8A Triacs 1000W per channel
- Each channel fully suppressed and fused
- Master control to operate from IW to 125W
- Full wave control

FRONT PANEL FOR LIGHTING EFFECTMODULES
(complete with switches, neons and knobs) as illustrated


For SIMB 59.75 Size $8^{\prime \prime} \times 4^{1 / 2}$
 Silmb $\quad £ 10.00$
Combined with 3SDM1 Size $9^{\prime \prime}$, $4 \frac{1}{2}{ }^{\frac{1}{2}}$
fuzz lights
Red. Green. Blue
Amber $£ 25.95$

## POWER

SUPPLIES


Vacuum varnish impregnated. Transformers with supply board incorporating pre-amp supply
PS250 for supolying 2 TP125s PS200 for supplying to TL100s $\quad £ 31.95$ PS60/60 for supplying 2 TL60s PS $125 \pm 45$ volts for TP125 PS100 $\pm 43$ volts for TL100 PS $60 \pm 38$ volts for TL60 PS $30 ~ £ 25$ volts for TL30 PSU 2 for supplying disco mixer

STOCKISTS-CALLERS ONLY
A1 Music, 85, Oxford Street, Manchester (Tel 061-235 0340)
Geo, Mathowe, 85/97, Hurse SE., Blrmingham (Tol 021.622 1941) Soccodi, 9. The Friare (Tol. Centerbury cosis) Gaolud Bres Cid. Diptord Broad Surert (Tei Crewo 4739) Luton Diseo Centre, 85 W, Willioton Streot, Luton (Tel Iuton Lution Disco Centre, 85, Wellingion Sireot, Luton (Tel Luton Sertion
Seaston Music, 163, Mitcham Road, Tooting (Tel 01-672 313),
Mon-Sat loam to fom. Closed Wed.
Electronure Ltd., Four St., Exeter. Tal. seety.
Salcaglen Ledd, 13 Barough Rd., Cleveland, Mlddleabrough.
Menhouse Lid., s2, St. Mary St., Southampton. (Tet 2c020)
Electra Centro, Sa Lancaster Roac, Preston (Tel. Preston Ssases) TRADE \& EXPORT ENQUIRIES 01.672 3137

# Present A Special Introductory Offer: Low Power Schottky TTL <br> Device 74LSOO 74LSOO 13p 74LSO1 14p 

74 LSO2 13p 74 LSO 3 $\begin{array}{ll}74 \text { LSO3 } & 14 p \\ 74 L S O 4 & 15 p\end{array}$

74 LSO4	$15 p$	$74 L S 49$	$95 p$
74 LSO5	25p	$74 L S 73$	$29 p$


$74 L S O 4$	15p	$74 L S 73$	29p	$74 L S 153$	$55 p$	$74 L S 248$	$92 p$
$74 L S O 5$	25p	$74 L S 74$	$32 p$	$74 L S 155$	$80 p$	$74 L S 249$	$90 p$
$74 L S 08$	$16 p$	$74 L S 75$	$38 p$	$74 L S 156$	$94 p$	$74 L S 251$	$85 p$


74 LSO8	$16 p$	$74 L S 75$	$38 p$	$74 L S 156$	$94 p$	$74 L S 251$
74	85					

74 LSO9 20p 74 LS76 36p 74 LS 157 55p 74 LS273 200p
74LS 10 16p
74LS11 21p

74 LS 12	$23 p$
74 LS 13	$34 p$


$74 L S 13$	$34 p$	$74 L S 85$	$75 p$	$74 L S 161$	$74 p$	$74 L S 290$	$68 p$
$74 L S 14$	$70 p$	$74 L S 86$	$31 p$	$74 L S 162$	$118 p$	$74 L S 293$	$88 p$


$74 L S 14$	$70 p$	$74 L S 86$	$31 p$	$74 L S 162$	$118 p$	$74 L S 293$	$88 p$
$74 L S 90$	$42 p$	$74 L S 163$	$70 p$	$74 L S 298$	$90 p$		


74 LS353

74 LS20 15p
74LS21 22p
74LS22 22p

$74 L S 26$	$24 p$	$74 L S 109$
74 36p		
74112	$38 p$	


$74 L S 27$	$24 p$	$74 L S 112$	$38 p$
74 LS	25p	$74 L S 113$	$38 p$

74LS28 30 ll
4LS28 30p

74 LS30 19p
74 LS32 24p
74LS37 22p

LOW PROFILE DIL SOCKETS BY TEXAS

8PIN	$13 p$	18 PIN	$25 p$	24 PIN	$33 p$
14 PIN	$14 p$	20 PIN	$27 p$	28 PIN	$43 p$
16 PIN	$16 p$	22 PIN	$28 p$	40 PIN	$53 p$

We are holding substantial stocks of the devices listed. All orders, large and small, will be dealt with in strict rotation. Add $15 \%$ to all.
orders plus 30p P\&P. Export orders no V.A.T., but postage at cost. Air/surface. Prompt delivery on all orders.

Full range of Breadboards, I.C. Test Clips,
Ribbon Cable Assemblies (mostly ex-stock).
Send large SAE for Catalogue and price lists.

Cheques, $P O$ s, Money Orders to be made payable
to:-
ROMANE ELECTRONICS,
Sales Dept.,
64 Newlyn Drive,
Sale, Cheshire.
M33 3LE
Tel 061-962-2606


Plus
*GD 1290-VLF Metal Locator
*HX 1681 - CW Transmitter
*IR 5201 -XY Recorder
*CI 1525-Car Temperature Indicator
These brand new self-assembly kits are designed to the highest specification.

The step-by-step instructions make them easy to build at your leisure in your own home.

And first class quality makes them excellent value for money.

Details of the full Heathkit range are available in the Heathkit catalogue. Send for your copy now.


There are Heathikit Electronics Centres at 233 Tottenham Court Road, London (01-636 7349) and at Bristol Road, Gloucester (0452 29451).

## Next Month...



## Whitinill

ani



An up-to-the-minute development for the enthusiast in colour slide photography which allows controllable dissolve of images between two projectors.

Features include rapid slide alternation or superimposition of two images and cue-in commentary or musical sound track for creative sequences.

## Solid State Car Instruments...

No. 2 Rev. Counter

PRACTICAL


SPECIAL OFFER—CSC PROTO BOARD KIT OUR NOVEMBER ISSUE WILL BE ON SALE FRIDAY 12 OCTOBER 1979


## Dr. MARK SAWICKI

## ONE MAN'S VIEWS ON THE PRESENT SITUATION

N Hotland, despite stiong local opposition to Citizens Band Radio, the Dutch Government recently succumbed to public pressure and announced new legislation for the legal introduction of CEPT-22 charnel standard in the 27 MHz band. The new legislation was announced on January 22 by the media. In the eyes of the users this is a victory of the individual, in the form of public pressure, over the system.Als one can see, this type of problem often arises in the early underground stages of mass illegal usc of CB, and has foreed governments (Australia and Holland) to aceept the fact that the thousands of users just cannot be ignored. The barometer swings from simple observation and monitoring of CB througli enforeed restriction on usc, to eventual capitulation that it is just not feasible to track down or squash all opposition and CB users. So common sense prevailed in Holland, with the introduction of a 27 MHz . legal band, allowing thousands of users to crawl out of their burrows into the open air and talk, talh, talk.

Until January, the Dutch government had imposed heavy legislation against CB'ers--to the extent that it was possible to be prosecuted for possession. Naturally legalisation has brought out into the open all those under ground users, and does pose a dilemmst of whether they should be prosecuted for possession (if proved) before the Act was introduced.

The Dutch analogy is very similar to the CB situation in the UK, and I doubt whether anyone is so naive as to think otherwise. One only has to note the numerous reports that appear from the "authorities", quite apart from the many articles that have been appearing in a variety of magazines, and even the public debates over the radio.

## ILLEGALUSERS

To ignore the existence of the ever increasing number of illegal CB users in the UK would be plain stupidity-it is a fact of life and as such should be recognised. The public, the press and others are becoming bolder-witness the articles that are appearing on subjects of pirate radio stations and $C B$ rigs.

On a general basis, CB users in the UK could be divided into two groups; either professional, and these are mainly lorry drivers, or non professional-the CB hobbyists. The first group-the drivers-can use CB completely legally when travelling in many parts of Europe (on the 27 MHz band) and not only does it alleviate the boredom of a long haul, it can in many instances be beneficial to road users.

CB is not a new thing, it has been particularly well tried and tested in the USA, and is an extremely important factor in improving communications from base or mobile stations in large towns, in the countryside or indeed, anywhere. The arguments for the other side, i.e. those opposed to the idea of legalisation look weak in the light of the fact that 19 countries have already welcomed CB users into their fold.

Sooner or later CB should become legal here, if the percentage of users keeps growing at the present rate, no government will be in a position to track them down or even control the 27 MHz band. So basically all the rhetoric and academic discussion will serve no purpose except to delay the inevitable introduction of legislation and prolong interference caused by poor equipment being used illegally.

Once again it seems that the UK will be the last one to have her foot in the door. In the meantime, people will get caught for illegal use and suffer the consequences.

The CB Association's President, Mr. James Bryant sent an open letter to the then Prime Minister-Mr. Callaghan (January 12th) pointing out the rapid growth in the illegal use of $C B$ radio in this country and urged him to legalize CB radio in Britain. Perhaps the most significant point made in this letter was the estimation by The Citizen Band Association that there were then about 15,000 illegal users in the country and that their number is increasing by roughly 2,000 per month. One does not need to be a mathematician to work out, that if this premise is true, then by the end of the summer holiday period there will be around 30,000 CB'ers in Britain, and that is no small number!

## RADIO CONTROL

What about the actual legislation-it is worth considering one point-that recently the Society of Model Aeronautical Engineers have made a request to the Home Office for the use of a Radio Control band at 35 MHz .

When one considers that 21 years have passed since CB was introduced by the US government-in 1958-to fill a need for a low-cost communication system available to everyone and requiring no technical skill, the attitude of the UK government seems old fashioned and wary. CB radio in the States was operated on 23 channels initially but in 1977. positive practice culminated in the addition of new channels making up a total number of 40 , used by private citizens for personal or business communication on frequencies between 26.965 MHz to 27.28 MHz with the 27.065 MHz channel used solely for emergency communications involving road safety, personal safety and property safety, and communications necessary to render assistance to motorists.

Lack of any legislation in the UK means that the type and quality of equipment will vary enormously-power output and number of channels etc.-and as such may interfere with legal emergency services, which obviously is to be avoided. An associated problem for CB'ers is that underground conditions force camouflage on mobile units, so one will find people driving around with completely unsuitable types of aerials, often generating signal harmonics and thus theoretically interfering with legal radio equipment users.

Radiomodellers on the other hand also face problems with the possibility of interference whilst working on 27.12 MHz band. A conversation with an experienced radiomodeller who "flys" every Sunday in the Richmond area, shows that many modellers are not opposed to $C B$, however, there have been recent cases where expensive models crashed or were sent out of control. Naturally it is not possible to prove that these accidents were a result of CB rigs working in the area. The fact is that illegally operated $C B$ rigs could theoretically affect radio-controlled equipment such as flying models. The consequences of this fact are serious, bearing in mind possible speeds of 120 miles per hour and model weight of up to a few kilos, especially when many radio modellers operate in public parks at weekends.

## EQUIPMENT

There is a variety of different equipment in the potential reach of people determined enough to operate illegally on the 27 MHz band. It seems to be exceptionally easy to buy $C B$ equipment and associated CB accessories in London, both as second hand gear or brand new. Price ranges vary from about $£ 40 / £ 50$ for a portable unit up to $£ 260$ for a high quality ( 69 channel s.s.b.) unit.

In 1976, the FCC estimated in excess of 10 million CB users in the USA and naturally American made equipment dominates both the legal and illegal CB market in Europe. There are also many European manufacturers on the scene from Switzerland, Belgium, Denmark, West Germany, Italy and Spain. Both European and American equipment is designed to operate on 27 MHz , with variations in the number of channels, power output etc. As a result it is easy to see that the number of designs on the world market is large and many companies are rushing into CB production.

As no licence is required in the States to listen to the 27 MHz band, a whole range of

CB convertors has been recently introduced as they have proved extremely useful for listening to CB traffic reports, weather and road conditions. In some cities Channel 9 (emergency) and Channel 14 (communication) are monitored by volunteer CB patrols who provide concerned citizens with a communication line to local police for reporting suspicious or criminal activity. Indeed the idea is widely accepted all around the world and called "React International"-emergency monitoring services (Channel 9$27 \cdot 165 \mathrm{MHz}$ ). "React" teams are active on a 24 hour basis in over 12 countries and their work has already saved the lives of victims of traffic accidents and freak weather conditions such as snow storms or typhoons.

## CODE

Citizens band Radio operators have largely adopted the APCO 10 Code-developed originally by the police for their standard questions and answers, the code is easy to learn and useful in bad radio conditions. The CB subculture in the USA has taken things further, producing a bulk of speciality CB magazines and technical CB services. They have even developed a CB slang-which seems to be "double-dutch" to any outsiders.

Whatever ones feelings are about CB any technical or social discussion will produce good and bad aspects of the phenomena but my personal feelings are that the positive points outweigh the negative.ones.

## APCO 10 CODE

$10-1$	Signal weak
$10-2$	Signal good
$10-3$	Stop transmitting
$10-4$	Affirmative (OK)
$10-5$ Relay (to) ...	
$10-6$ Busy	
$10-7$ Out of service	
$10-8$ In service	
$10-9$ Say again	
$10-10$ Negative	
$10-11$ On duty	
$10-12$ Stand by (stop)	
$10-13$	Existing conditions
$10-14$	Message/Information
$10-15$	Message delivered
$10-16$	Reply to message
$10-17$	Enroute

10-18 Urgent
10-19 (In) Contact
10-20 Location
10-21 Call . . . by phone
10-22 Disregard
10-23 Arrived at scene
10-24 Assignment completed
10-25 Report to (meet)
10-26 Estimated time of arrival
10-27 License/Permit information
10-28 Ownership information
10-29 Records check
10-30 Danger/Caution
10-31 Pick Up
10-32 Units needed: Specify
10-33 Help me quick
10-34 Time

## EDITORIAL NOTE

We believe the Home Office is revising its attitude on CB and understand that at a recent meeting between a Minister of state at the Home Office and an all party delegation of M.P.s, agreement was reached on the availability of frequency space and that the introduction of CB would not require new legislation.

Apparently the M.P.s expect the Home Office to come up with a programme for the introduction of CB for discussion at their next meeting in November. The all party group is advocating a service basically similar to the proposals of the Citizens Band Association-a VHF FM system with built in station identification.

Unfortunately, it is apparent that the Home Ofice still does not recognise the urgency of the situation if the illegal use is to be kept down, we believe this to now be crucial. Might. we suggest that those who are in favour of $C B$ in the UK, and particularly anyone who may suffer from the illegal use of 27 MHz , write to the Home Secretary Mr. William Whitelaw M.P., House of Commons, London SWI OAA. in support of the adoption of a VHF service as a matter of urgency. This we believe is now the only way to protect the 27 MHz band from illegal use, and probably a way of achieving the best possible CB system for the UK.

It is known that the Prime Minister is in favour of CB and it would now seem to be a few belligerent civil servants in the Home Office that have to be overcome.

# Compiled by DJD. 

Appearing every two months, Micro-8us presents ideas, applications, and programs for the most popular
microprocessors; ones that you are unlikely to find in the manufacturers' date books. The most originst ideas
often come rrom reedere working on their own systems, and payment will be made for any contribution featured.

THis month's Micro-Bus compares the speed of four micros on a simple programming task: the conversion of a number from binary to decimal. The techniques involved in optimising the execution time of a machine code program are illustrated for the four micros, and the differences between them are discussed for the benefit of readers unfamiliar with their instruction sets. One of the micros is the new 6809, and another reason for performing this comparison is to see if the 6809 lives up to Motorola's claim that it is the "fastest 8 -bit microprocessor".

Obviously one benchmark cannot give a representative idea of the performance of a
micro. The binary-to-decimal routine was chosen for the comparison because, while being interesting due to the need for indexed addressing in two different areas of memory, it does not favour the quirks of any particular instruction set.

## BINARYTO DECIMAL

The binary-to-decimal routine converts a 16 -bit unsigned binary number into its decimal equivalent. The routine is supplied with the number to be converted in a suitable register (or registers), and with the address of where the result should be stored. The result can be anywhere in memory, and occupies five suc-
cessive locations, one decimal digit per location. The routine, as given in many programming handbooks, is represented by the flowchart in Fig. 1, The variable N is the original binary number, and the five digits of the result are DIGIT(4) to DIGIT(0); D is a temporary counter for the digits.

The program works as follows: the first digit. DIGIT(4), is the number of tens of thousands, and so is obtained by counting how many 10,000 s can be subtracted from N before it goes negative. Then the number of thousands is found by repeatedly subtracting 1,000 , and so on, finally subtracting 1 to find the units.

## SPEED OPTIMISATION

It is said that in most programs 90 per cent of the time is spend executing 10 per cent of the instructions, and the first step in optimising the speed of a program is to identify the timeconsuming 10 per cent. which is nornally the innermost loop of the program. The next step is to make this section of the program execute as fast as possible. The innermost loop in the flowchart of Fig. 1 begins at LOOP 2, and consists of a double-byte subtraction, a test. and in increment. This loop is executed once for each power of ten subtracted: in other words. the number of iterations is the sum of the decimal digits of the number being converted. The slowest number will be 59.999 . needing $5+9+9+9+9$ or 41 iterations.

An immediate improvement can be made by realising that the last digit is just the remainder after calculating the first four digits. so there is no nced to repeatedly subtract 1 irom it. This futile calculation can be removed lrom the program. reducing the number of iterations to 32. A second. less obvious. saving is gained by noticing that to implement the inner loop of Fig. 1. two branch (or jump)


Fig. 1. Flowchart for a routine to convert a binary number $\mathbf{N}$ into decimal.


Fig. 2. Flowchart for an improved version of the binary-to-decimal routine.
instructions will be needed: one to test if N is negative. and one to jump back to the start of the loop after incrementing D. The second of these can be dispensed with by incrementing D at the start of the loop, and then either jumping over the increment instruction the first time round the loop. or counting from -1 .

All the programs presented here incoporate these two improvements. and the optimised flowelyart is shown in Fig. 2. Other methods used for trimming off cycles from the four programs depend on the idiosyncracies of each micro's instruction set. and are described for the four conversion routines.

## 6800

The binary-to-decimal conversion routine for the 6800 is shown in Fig. 3. In the 6800. direct (zero-page) addressing is the fastest mode. so rather than using indexed addressing each time round the inner loop. the power of

		- binary to decimal for 6boo   - number in a,b   - result stored at x			
0000	0005	Resula	RMB		
0005	0002	DIGITS	fMB	2	POINTS TO RESULT
0007	0002	xTENS	RMB	2	POINTS to powers
0609	0002	power	RM8	2	holds latest power
о008	2710	klotab	FDb	10000	
0000	0]E8		FDB	1000	
0005	0064		FDB	100	
0011	cooa		PDB	10	
0013	86 EA	bindec	lda $A$	¢fEA	$A, \mathrm{~B}=59999$
0015	C6 5F		LDA 9	E 555	For test
0017	CE 0000		LDX	eresulit	
0014	DF OS		STX	digits	Save x
cole	CE 0008		1.DX	ekiotab	
0015	DF 07	LOOP 1	STX	Xtens	
0021	EE $\infty$		L LDX	$0, x$	GET PONER Of TEN
0023	DF 09		STX	POWER	FOR USE LATER
0025	DE OS		LDX	digits	
0027	6F 00		CLR	0, x	Clear digit
0029	2002		BRA	NOINC	AVOID INCREMENT
$0^{028}$	6c 0	LOOP 2	INC	$0, \mathrm{x}$	INCREMENT DIGIT
002 D	DO OA	NOINC	SU8 8	POWER+1	
0025	9209		SbC A	POWER	
0031	24.88		BCC	LOOP2	
0033	DB OA		ADD	POWER+1	RESTORE
0035	9909		ADC ${ }^{\text {a }}$	POWER	
0037	${ }^{\circ} 8$		2NX		next digit
0038	DF 05		57 X	digits	
003 c	DE 07		LDX	xtens	
003 c	${ }^{08}$		${ }_{\text {fnx }}$		POINT TO NEXT
003 D	08		InX		table Entay
0035	8 Cc 0013		CPX	EKIOTAB +	
0041	26 DC		BNE	LDOPL	
COi3	DE OS		LDK	digits	LAST DIGIT
0045	E7 0		STA B	0, x	STORE REMAINDER
0047	39		RTS		RETURN.

Fig. 3. Binary-to-decimal routine for the Motorola 6800.


Fig. 4. Binary-to decimal routine for the MOS Technology 6502.
ten i., first stored at POWER so that direct addressing can be used for the subtract operations with a saving of 4 cycles.

The 6800 routine differs from the flowehart of Fig. 2 in that the digit locations are incremented directly, eliminating the need for a temporary counter: although the indexed increment instruction costs an extra cycle in the inner loop. there turns out to be a net
saving. This is not a very flattering program for the 6800 as it very clearly shows up the disadvantages of having only one index register.

## 6502

In the 6502 all arithmetic operations use the accumulator. so for double-byte arithmetic the accumulator must be repeatedly loaded from memory and stored to memory, making the program of Fig. 4 relatively long. Since the 6502 does not have any 16 -bit registers, the address of the result must be held in memory. and the digits are stored using postindexed indirect addressing. An extra saving is gained by splitting the table of powers of ten into two halves so that the Y index register can be used for indexing both the powers of ten and the digits of the result; the X register is then free for use as the digit counter.

BINRRY TO DECIMAL FOR 580
B Number in hl - result at ix


Fig. 5. Binary-to decimal routine for the Zilog 280.

## Z80

The program for the Z80. Fig. 5. closely follows the flowchart of Fig. 2. The OR A instruction, which at first sight achieves nothing, is used to clear the carry bit. Because it is rather awkward to test the value of the index register to determine when four digits have been completed. as in the other routines, this program checks to see if the lower byte of the power of ten. E. is equal to 10 . It is a pity that the $\mathbf{Z 8 0}$ 's indexed addressing instructions need an extra byte prefix. because this reduces the speed advantage of using them.

## 6809

The Motorola 6809 is the newest of the four processors discussed here. and the chips are only just becoming available. It is an upgraded version of the 6800. and is compatible with the 6800 at the level of source code. which means that the routine for the 6800 in Fig. 3 could be re-assembled straight into 6809 instructions. However. the 6809 contains so many new addressing modes. registers. and additions to the 6800 instruction set that it is worth writing the routine from scratch.

The "ADDD . $\mathrm{X}++$ " instruction illustrates the power of the instruction set: this instruction performs a double-byte addition of the bytes pointed to by $X$ into the 16 -bit $D$ register, and then increments X twice. It therefore replaces four of the instructions in the 6800 version. The provision of a Y index register in the 6809 makes it possible to eliminate from the 6800 version a further seven instructions that were needed to load and store the X register between uses.

- binary to dectmal por 6bo9:

0000	0005		Result	RMB	5	
0005	2710		klotas	FDg	10000	
0007	03E8			FDb	1000	
-009	0064			FDB	100	
0008	O00A			FDB	10	
OOOD CC	Easp	3	bindec	LDD	E59999	FOR TEST
0010 8E	0005	3		LDX	ekiotab	
0013108 E	0000	4		LDY	eresult	
0027 6F	A 4	6	LOOP1	CLir	0, Y	
001920	02	3		BRA	noinc	
0018 6C	A	6	LOOP?	INC	0, $\mathbf{Y}$	
Cold A3	84	6	noinc	subd	$0, x$	
OOIF 24	FA	3		acc	LOOP2	
002131	21	5	PRNS	leay	1,y	I.E. Iny
0023 E3	91	9		ADDD	, $\mathrm{x}+{ }^{\text {+ }}$	
$\bigcirc 0258 \mathrm{BC}$	OOOD	4		CMPX	EK10TAB +8	
0028	ED	3		BNE	LOOP1	
OD2A E7	A 4	4		STB	0, Y	remainder
002 C 39		5		RTS		RETURN

Fig. 6. Binary-to decimal routine for the Motorola 6809.

The resulting program for the 6809. Fig. 6. is half the length of the 6800 version. and is the neatest of the programs presented here. It is a direct translation of the flowchart of Fig. 2 into instructions. without the need for any tricks. temporary locations. or extra operations.

## PROGRAM EXECUTION TIMES

Each program can be divided into three parts. First there is the inner loop beginning at the label LOOP 2 which, as explained above, is executed 32 times for a worst-case number of 59,999 . Then there is the outer loop beginning at LOOP 1 which is executed once for each digit. or a total of four times. Finally there are the remaining instructions, at the start and end of the programs, which are executed only once. The number of cycles for each of these sections of each program is shown in Table 1. together with the total number of cycles for the whole routine.

		6800	6502	280	6809
		Fig.3	Fig. 4	Fig. 5	Fig. 6
INNER LOOP (x	17	25	29	15	
32)					
OUTER LOOP $\{\times 4)$	75	62	159	39	
REST $(\times$ 1)	30	28	67	19	
TOTAL CYCLES	874	1076	1631	655	
TOTAL TIME (secs)	57	71	53	43	
	TABLE 1				

The bottom row of Table I gives the time. in seconds. for each routine to convert the numver 59.999 a total of 65.536 times (a convenient loop count). These times are for a Z80 running with a 2 MHz clock. and for the other three processors running at 1 MHz . to allow for the different way the Z 80 handles instruction timing. This seems fairer than comparing the processors running with the same clock rate, because the clock rate used by a system will normally be determined by the speed at which the memory will run, this tending to be a more expensive part of the system than the processor itself.

The 6800.6502 and 6809 all access memory for one machine cycle, whereas in the $\mathbf{Z 8 0}$ the shortest memory access. the op-code fetch. lasts for two machine cycles: the Z 80 can therefore run with twice the clock rate on the same memory as the other micros.
The result of the comparison is that the 6809 wins the race. followed by the Z80 and 6800 , and the 6502 follows closely behind. Anyone writing a faster version of any of these routines should set up a loop to execute the routine 65.536 times, and check that the time taken agrees with the prediction from counting the number of cycles. If any substantially better routines are received. they will be presented in a future Micro-Bus.

## EIGHT EIGHTS SOLUTION

August's Micro-Bus gave a program for the MkI4 microprocessor kit and posed the following problem: with the program running on an Mk14. What is the shortest sequence of key-presses that will cause eight eights to light up on the displays? Despite the apparent simplicity of the program. shown in Fig. 7. the problem is extremely tantalising and can only be solved by the following sequence of 45 keys:

0	2	3	2	4	2	3	2	5
2	3	2	4	2	3	2	6	2
3	2	4	2	3	2	5	2	3
2	4	2	3	2	7	2	3	2
4	2	3	2	5	2	3	1	0

This solution is unique, except that the order of the 0 and 1 at the end can be reversed. and other keys can be exchanged for the I key.

Although this solution looks complicated. there is an underlying pattern that yields to a little scientific investigation. Some experimentation with the program soon reveals the following rules about its behaviour:
(1) Only the keys 0 to 7 need be considered. (All the other number keys just do the same as key 1.)
(2) Every time a key is pressed one display is alternately illuminated with an "-8". and blanked.
(3) Numbering the displays 0 to 7 from right to left, keys 0.1 . and 2 always operate the corresponding display.
(4) Keys 3 to 7 only operate the corresponding display if the display immediately to the right is on and all the other displays to the right are off: otherwise they operate display 1 .
With these rules established it is then fairly simple to produce the desired result. First observe that since $0 ., 1$ and 2 can be switched on at any time (rule 3) they are better left off for the moment. so press 0 as a first move to get all the displays blank. Now. to get 3 on we must first get 2 on by itself (rule 4) by pressing 2. Having operated 3 there are two options: operate 3 again, getting back to the previous state. or operate 2. getting to a new state. We choose the latter and continue in this way, always pressing the key that gets to a new state of the displays. The results of the first few steps are shown:

Key:	Display:	7	6	5	4	3	2
Start	0	0	0	0	0	0	
2		0	0	0	0	0	1
3		0	0	0	0	1	1
2		0	0	0	0	1	0
4		0	0	0	1	1	0
2		0	0	0	1	1	1
3	0	0	0	1	0	1	
2	0	0	0	1	0	0	
5		0	0	1	1	0	0

The state " 1111111 " (displays 2 to 7 on) is reached after 42 key-presses. In addition there is the key-press at the start to get 0 off, and two at the end to get 0 and 1 on. making the 45 -key sequence given above.

## GRAY CODE

The sequence of states of the displays 2 to 7 may be familiar as a binary Gray code for the numbers 0 to 41 . The Gray code was invented in the 1940's by Frank Gray. a
research physicist at the Bell Telephone Labs. to prevent errors in pulse-code modulated signals. In binary Gray codes each number differs from its neighbours by the alteration of only one bit, and they are now widely used in encoding applications where a normal binary code might give a false reading when changing between two adjacent states.

## PROGRAM OPERATION

A fully commented version of the Eight Fights program is given in Fig. 7. The program


Fig. 7. SC/MP program for the Eight Eights problem posed in the last MicroBus.
makes use of the display routine KYBD in the Mk 14 monitor: this routine displays the segment codes stored in the eight bytes pointed to by P2. and returns after a key-press with the value of the number key in the E register. In the Eight Eights program the eight bytes OF40 to OF48 are displayed. since P2 is set up to contain OF40. The segment codes $\mathrm{X} \cdot 00$ and X 7 F are stored in those locations to display either a blank or an " 8 " respectively.

A juinp to the label RIGHT changes the state of display number $\mathbf{E}$. where $\mathbf{E}$ represents the contents of the extension register. Alternatively, a jump to BACK sets $E$ to the top byte of P3. Initially this will be zero. so when the program is first run display 0 is illuminated: on subsequent times round the loop the top byte of P3 will contain X 01 and so a jump to BACK will change display 1. Each time a key is pressed the program decides whether to jump to RIGHT and change the display corresponding to the key number, or to jump to BACK and change display 1. A jump to RIGHT is only allowed if the key number. E. is less than 2. or if display $E$ is on and all those to the right of $E$ are off(i.e. zero).

From this information, and the program listing, it should be clear how the program works. The names of the winners of the three VDU kits will be announced in the next MicroBus.

## SELF-REPLICATION AGAIN

In the June 1979 Micro-Bus a nine-statement BASIC program was presented that would list a copy of itself at the terminal. Mr. Langdon Proctor. of Denmark, has pointed out that any BASIC program can be made self-replicating by including a LIST command as one of the statements. The program ' 10 LIST' is thus a one-line solution to the original problem!


## . . . from our postbag

Readers requiring a reply to any letter must include a stamped addressed envelope.
Opinions expressed in Readout are not necessarlly endorsed by the publishers of Practical Electronics.

## Faster than light?

Sir-In your May issue of "Practical Electronics" referring to Industry Notehook there was mention of the Tektronix 7104 oscilloscope. The trace writing speed is described as ". . . an almost incredible $20 \mathrm{~cm} / \mathrm{ns}$." This is a remarkably apt description since the speed of light. $300 \times 10^{6}$ metres $/ \mathrm{s}$., is $30 \mathrm{~cm} / \mathrm{ns}$.by my maths. The combination of forward speed and deflection must put the beam velocity after deflection very close to the velocity of light indeed.

Assuming the stated bandwidth of 1 GHz is the 6 dB point, the deflection amplifiers should still have some response at 2 GHz , requiring a writing velocity above the speed of light. I had always believed that it was, theoretically, impossible to exceed the speed of light but I am now beginning to wonder.

> B. Page,

Southend-on-Sea,
Essex.
The extraordinary 7104 is in fact capable of spot velocities exceeding the speed of light even though at this setting the bandwidth specification would have to be exceeded by 500 MHz at 3 dB .

But Einstein can rest easy as his law has not been violated since the cathode is a continuous source of electrons reaching the swept spot at different points in time, not one electron moving across the scope screen at $30 \mathrm{~cm} / \mathrm{ns}$.-Ed.

## CB suggestions

Sir-I refer to your Editorial in the August issue on the subject of CB radio.

While I believe that those people wishing to use CB are as entitled to a part of the spectrum as anyone else, including the commercial interests. I doubt very much whether any allocation of frequencies, or licence conditions will be found to apply to those so lacking in social conscience as to put at hazard many thousands of pounds' worth of radiocontrolled models, and cause interference to other users of the spectrum who have as much right as they to its use.

Having said that, I believe that there are two model control bands. one of which is at UHF. around the 450 MHz area. While it will not be compatible with other CB equipment on 27 MHz , it will satisfy the object of CB, which I understood in the USA to be "short range person to person communication". I have not seen any equipment for the higher band commercially available, so I could be wrong about this allocation.

The other possibility is to set a final date
for the phasing , out of TV transmissions in the 41 MHz band ( 405 line system), and put in a CB allocation, effective on the final date. Secondly, in view of the interference possibility, it could be made a condition of the licence that successful completion of the licence regulations and transmitter interference section of the Radio Amateur's Exam (suitably modified on licence regulations) be proved. Further, that the name and address of purchasers of CB equipment be noted by the seller, as is the case with much Amateur equipment. Of course, the people who are lacking in the consideration for other users mentioned above, will then set up a protest about too many regulations, but having listened to CB USA style, it would surely be preferable to the usual idiocy and sometimes obscenities one hears.

Finally, I would suggest that the address of the Post Office interference investigation department be made widely a vailable, and that a requirement of the complaint be a tape recording of the interference; which should ensure that the offender is known about and found.

## Peter J. Brent, <br> Fareham, <br> Hampshire.

Sir-In my opinion the reason that CB has not been legalised here is because of the mess left by previous administrations ignoring the ${ }^{\circ} \mathrm{CB}$ issue from its inception.

What can Mr Whitelaw do? Conform with the rest of the world and legalise CB on 27 MHz , to the wrath of aero modellers who have a great deal of capital tied up in 27 MHz equipment. This frequency also has DX problems. Or he could decide to put CB on 230232 MHz , an unused band which would give an excellent service but would create anomolies between the UK and the rest of the world, plus inherent customs difficulties. Which ever way he turns, this is his dilemma; not CB, but where CB.

A few ignorant cranks are still opposed to CB, the sacred cow brigade, who want to hear only their own voices.

I do not believe that a man like Mr Whitelaw feels that the UK citizen is less fit than an Italian, German, Frenchman or Dutchman, to name a few, to operate profitably a CB network in terms of lives saved, property protected and fuel saved.

One thing is certain, CB will flourish within the law or outside it. With proper control CB can start to serve the community like nothing since sliced bread.

> Nigel Longbotham,
> Cramlington,
> Northumberland.

## Logical software

Sir-In the August issue of PE a letter-Logical software-by Mr H. S. Lynes expressed the views of many of my friends and myself. This being the use of software to 'replace' lots of hard wired logic for projects like Intelligent House Alarm, Heating Controller, etc.

Microprocessors together with plug-in PROMs (with necessary programs) could "look after" various systems, via interfaces. Appropriate PROMs could be selectable by switches on a PROM card connected to say UK 101 via an expansion socket. A cheap PROM programmer could also be interfaced. Using PROMs obviates the need to load programs from cassettes.

I think logical software for UK 101 plus hardware would generate interest among your readers who could contribute as well.

That would be making a practical use of a microprocessor rather than using it as an expensive toy for "Star Wars" and "Noughts and Crosses" (after all UK101 costs £219+VAT).

> B. Jani,

Tufnell Park,
London.
We hope io be able to publish a good PROM programmer soon after the Compukit UK 101 series. This will, be useful with almost any computer and will plug into COMPUKIT,-Ed.

## Newbear 77-68

Sir -I was pleased to see P. Birnie's excellent review of the 77-68 system.

In his review he is critical of the fact that Newbear do not provide BUG 2 in ROM. In fact Newbear provide an alternative monitor board MON 2 which was not mentioned. This board supports MIKBUG or similar monitors in ROM or EPROM.

An alternative to MIKBUG has been developed by Terry Cassell called T-BUG. This monitor, while maintaining MIKBUG compatability, contains code to drive the VDU board as a scrolling display as well as various useful additions to the MIKBUG range of commands.

The advantage of MON 2 with T-BUG, or even MIKBUG, is that a vast amount of readily available M6800 software may be run, in most cases, unaltered.

My post bag often contains comments from users concerning the difficulty of getting available code to run under a MON 1 board as it has a completely different memory map to MIKBUG.

In my opinion the principal advantage of 77-68 over products such as NASCOM, TRITON and COMPUKIT is that it is very extendable having a backplane/board construction with the bus being well buffered. It turns out to be an eminently modifiable system and most systems are tailored by the constructor in one way or another.

Dr. P. Bryant,
Hon. Editor 77-68 Newsletter,
The Bumbles,
Well Meadow,
Shaw, Newbury.



Including VAT Postage and Packing

## A quality watch at an unbelievable price.

This Lambda l.c.d. alarm chronograph comes with complete instructions, and a worldwide one year guarantee and service network booklet it is shown full size on this page and has the following functions.

Mours, minutes ands; date; day of the week: am/pm indication stopwatch with i $\mid$ iscond readout, split time with automatic reset after six seconds and ut it 13 hour capability; flashing stopwatch indication if fime is displayed wit whe, is sunning; bleeping 24 hour alarm which sounds for one minu- ously cancelled, the display flashes white the atarm is soundinw, plarm iet indication; simple, "to the second", the and date setting; second watch including seconds date, day of week inrid am/pon indication for displaying time in anothers zone; nightlight; screw section in back to enable quick, simple di.i. battery replačement; stainless case and-blaclystainless bracelet. fully adjustable bracelet to fit wrists from $130 \mathrm{~mm}\left(5 \frac{1}{1} \mathrm{in}\right)$ to $200 \mathrm{~mm}\left(7 \frac{1}{1} \mathrm{in}^{\prime}\right.$ circumference withoutremoval of links

The alarm is loud enough to vake most people and the dual time zone facilfy is very uspfai for foreign phone calls, whilst travelling or just on holiday.
We have been cithla 3 -3 the choice of this waich and have tesectit it for three months shas we anticipate heavy demand please allow maximum of 21 days fis delivery -- more if you live outside the U K .



# SCHNIVN THECABR CIRCUIIS D. F.BOWERS в.sc. 

T is often required, especially in the field of digital control, that a circuit should provide information as to whether an analogue signal is above or below a certain threstold. Where the threshold is fixed, the circuit used is known as a comparator and where the threshold alters in opposition to the circuit output, the circuit is said to have hysteresis. Because such circuits normally switch rapidly (in comparison to the rate of change of input voltage) they have also been classed under the general heading of trigger circuits.

## HYSTERESIS

Hysteresis is often required in trigger circuits for one of two main reasons:
(i) Because available comparator circuits have finite gain, inputs close to the threshold voltage can produce indeterminate outputs or even oscillation. Hysteresis ensures that as signals begin to cross the threshold, the latter itself moves to make the output more decisive.
(ii) If a relatively slowly changing input is noisy or has ripple superimposed upon it, multiple triggering at the threshold may occur. Adding hysteresis can remove this.
The amount of hysteresis required is dependent on the comparator gain in case (i) and on the ripple magnitude in case (ii).

## IDEALTRIGGER

The ideal trigger can be visualised as a 'black box' as shown in Fig. 1, together with its transfer characteristics.

The output has two distinct states, controlled by the voltage on input. When the input voltage rises above a certain threshold value ( $\mathrm{V}_{\mathrm{ON}}$ ) the output assumes the 'on' state and when the input falls below a certain value ( $\mathrm{V}_{\mathrm{OFF}}$ ) the output assumes the 'off state. The value $\mathrm{V}_{\mathrm{ON}}$ - $\mathrm{V}_{\text {OFF }}$ is called the hysteresis of the trigger. The input characteristic can thus be specified either by quoting $\mathrm{V}_{\mathrm{ON}}$ and $\mathrm{V}_{\text {OFF }}$ or by quoting the mean of these values together with the hesteresis value.


Fig. 1. Ideal trigger with associated transfer characteristic

The latter is sometimes specified as a percentage of the mean threshold.

The output states should correspond to levels compatible with following circuitry, and the input should draw as little current as possible. The threshold values should be both predictable and easily adjustable, and also exhibit high stability. The trigger should switch in as short a time as practicable.

## PRACTICALTRIGGERS

One of the first papers on this subject was presented by Otto H. Schmitt. His trigger circuit had a fixed lower threshold and an adjustable upper threshold, and was basically a long-tailed triode pair with positive feedback. The circuit switched comparatively slowly by present day standards ( $\Omega 10 \mu \mathrm{~s}$ ) but was of course much faster than electromagnetic relays which were commonly used instead. Replacing Schmitt's triodes with bipolar switching transistors can speed up the operation ( $<200 \mathrm{~ns}$ ) and a typical circuit is shown in Fig. 2.

## TRANSISTORISEDTRIGGER

Assuming TR1 is turned off ( $\mathrm{V}_{\mathrm{PN}}$ low), the base of TR 2 is biased at approximately +6.8 volts by the voltage divider R1, R3 and R4. The emitters of both transistors are then at 6.2 volts due to the $\mathrm{V}_{\mathrm{be}}$ of TR2. If $\mathrm{V}_{\text {IN }}$ approaches 6.8 volts, a critical voltage is reached where TR1 begins to conduct and regeneratively turns off TR2. If the input voltage is now lowered below another critical value ( $<5 \cdot 2 \mathrm{~V}$ ) TR2 will again switch on.

The present tendancy is to refer to all trigger circuits with this type of characteristic as Schmitt Triggers, even if different principles of operation are
employed. Other configurations have f.e.t.s instead of bipolar transistors, or sometimes use complementary devices. Often, a speed up capacitor is included across R3.

## DISADVANTAGES

The circuit described has the advantage that the hysteresis level is substantially independent of temperature, but unfortunately is dependent on $\mathrm{V}_{\mathrm{CC}}$. The actual thresholds also include a $\mathrm{V}_{\mathrm{be}}$ term which is dependent on temperature, and another problem is that the output low voltage is always greater than VR5.


The input characteristics are also far from ideal, since the input transistor draws considerably more base current when turned on than when turned off. A resistor is sometimes included in series with $\mathrm{V}_{\text {IN }}$ to limit this current if $\mathrm{V}_{\text {IN }}$ rises much above the 'on' threshold.

Added to the fact that the precise thresholds are quite difficult to ascertain, these disadvantages make this configuration somewhat awk ward to implement, except in non-critical applications.

All these problems, except perhaps the hysteresis dependence on $\mathrm{V}_{\mathrm{CC}}$, can be


Fig. 3. Op amp Schmitt
alleviated by using operational amplifiers as the active switching element, but switching will generally be slower, since many operational amplifiers can only slew at around $70 \mathrm{~V} / \mu \mathrm{s}$, even if uncompensated, and have relatively long propagation delays.

## OP AMP TRIGGERS

The use of operational amplifiers greatly simplifies trigger design, especially if the maximum output voltages can be accurately determined. Uncompensated operational amplifiers can generally be used directly and switch much faster than compensated types.

The basic configuration is shown in Fig. 3, and can be used to provide triggers of the inverting, non-inverting or differential type. The voltage at the non-inverting input will be:

$$
\frac{R 1}{R 1+R 2} V_{\text {OUT }}+V_{2}
$$

and since the feedback is positive, the output will switch high if:

$$
\mathrm{V}_{2}>\mathrm{V}_{1}-\frac{\mathrm{R} 1}{\mathrm{R} 1+\mathrm{R} 2} \mathrm{~V}_{\text {OUT }} \text { (low) }
$$

and will switch low if:

$$
\mathrm{V}_{2}<\mathrm{V}_{1}-\frac{\mathrm{R} 1}{R 1+\mathrm{R}_{2}} \mathrm{~V}_{\text {OUT }} \text { (high) }
$$

So clearly the hysteresis level is given by:

$$
\mathrm{V}_{\mathrm{H}}=\frac{\mathrm{R} 1}{\mathrm{R} 1+\mathrm{R} 2}\left[\mathrm{~V}_{\mathrm{OUT}}(\text { high })-\mathrm{V}_{\text {OUT }}(\text { low })\right]
$$

and is symmetric of about the threshold if $V_{\text {OUT }}$ (high) $=-V_{\text {OUT }}$ (low) and one of $V_{1}, V_{2}$ is zero. Since most operational amplifiers run off symmetrical supply rails, and can swing very close to them, the formula for a ground referenced trigger becomes:

$$
\mathrm{V}_{\text {threshoid }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}} \bumpeq \frac{2 \mathrm{R} I}{\mathrm{RI}+\mathrm{R} 2} \mathrm{~V}_{\mathrm{CC}}
$$

where $\mathrm{V}_{\mathbf{C C}}= \pm$ supply voltage.
In the inverting mode, $\mathrm{V}_{2}$ will be grounded and in the non-inverting mode $V_{1}$ will be grounded, but note that in the latter case the drive impedance of $\mathrm{V}_{2}$ should be low compared to (R1 + R2) to prevent loading by the output. A Zener clamped output may be used where $\mathrm{V}_{\mathrm{H}}$ must be accurately defined (see Fig. 4) and the Zener voltage


Fig. 4. Trigger with clamped output
plus the Zener forward voltage drop $\left(\bumpeq 0.7 \mathrm{~V}\right.$ ) should replace $\mathrm{V}_{\mathrm{Cc}}$ in the hysteresis calculation. In the case of asymmetric output voltages, graphical techniques can greatly ease calculations.

## COMPARATORS AS TRIGGERS

It is often desirable to use voltage comparators as triggers, since generally they switch faster than operational amplifiers. Indeed, with some comparators a small amount of hysteresis ( $1-5 \mathrm{mV}$ ) is advised because of the finite gain problem mentioned previously.

The same treatment can broadly be given to comparators as for operational a mplifiers bearing in mind that many have asymmetric (logic compatible) outputs and occasionally open collector (or emitter) outputs, where the pull-up (or down) resistor comes into the R2 term in the threshold calculation, in the high (or low) state respectively. Problems also sometimes arise with the propagation delay, which effectively disconnects the positive feedback for the delay period, giving rise to possible instability.


Fig. 5. I.c. programmable trigger
A neat trigger design using a dual comparator is shown in Fig. 5. This circuit enables the upper and lower thresholds to be accurately fixed by external reference voltages, making the trigger very versatile. The two gated ouputs of the NE521 are arranged to form an R-S latch, set by comparator 1 and reset by comparator 2. The resulting output thus goes high when the input rises above the upper threshold, and goes low when the input falls below the lower threshold. (This configuration actually forms part of the internal circuitry for the popular 555 timer i.c. which can be used without modification to provide a Schmitt trigger with upper and lower thresholds of $\frac{2}{3} \mathrm{~V}_{\mathrm{CC}}$ and $\frac{1}{3} \mathrm{~V}_{\mathrm{cc}}$ respectively.) Replacing the $\mathrm{R}-\mathrm{S}$ latch by an external J-K flip-flop ensures that the output only changes in synchronism with a clock pulse, which is often a useful feature. With an external flip-flop, naturally other comparators can be used instead of the 521.

## TRIGGERS WITHIN LOGIC DESIGNS

An important application of trigger circuits is in logic interfacing where the signals presented to the logic must conform to specifications regarding level and risetime. Analogue signals from photocells, thermistors, etc., are clearly unusable directly, for both reasons. Quite often any trigger used will be required to operate from the logic supply voltage and preferably use as few discrete components as possible, especially where many triggers are used for mundane applications (such as R-C switch debouncing). The two most common logic systems (CMOS and TTL) will be considered here.


Fig. 6. Trigger formed from CMOS inverters

## CMOS LOGIC TRIGGERS

Since CMOS gates have a very high input impedance and reasonable gain, it is possible to use them as switching elements in Schmitt triggers, in .much the same manner as operational amplifiers are used. A common (non-inverting) configuration is shown in Fig. 6, using two CMOS inverters. Positive feedback is applied via R1, and the typical hysteresis obtained is tabulated in Fig. 7. The actual threshold is dependent on the switching point of the first inverter $\left(\frac{V_{D D}}{2} \pm 40 \%\right)$ and is thus somewhat indeterminate, although reasonably stable with changes in temperature. The hysteresis tends to act symmetrically about the threshold provided this is fairly close to $\mathrm{V}_{\mathrm{DD}}$. The threshold can be shifted by means of a resistor connected between the input to the first inverter and $V_{D D}$ or ground.


Fig. 7. Graph of hysteresis
Another method of using gates as triggers (Fig. 8) utilises the interdependence of switching characteristics between inputs of a multiple input gate. Varying


Fig. 8. Trigger utilising interdependence of CMOS gate inputs
$\mathrm{V}_{\text {Control }}$ alters the input characteristics of gate I, which determines the upper switching point is determined by the input characteristics of IC Ic, and is independent of $\mathrm{V}_{\text {Control }}$. Thus varying $\mathrm{V}_{\text {Control }}$ alters the hysteresis, typical values being shown in Fig. 9. Similar remarks about the threshold apply as for the previous example, but in this case the hysteresis acts asymmetrically, tending to raise the threshold. Replacing the NAND gates with NOR gates causes the hysteresis to lower the threshold. Note the similarity of this configuration to the circuit of Fig. 5.

## INTEGRATED CMOS TRIGGERS

The CMOS logic families include several Schmitt triggers all intended for interface of noisy or slowly changing input signals. In general, these triggers feature very high noise immunity, unconditional input stability, and very high input impedance. On the black side, all have relatively long propagation delays (up to 600 ns for the CD4093B) and poor threshold stability with respect to supply voltage.


Fig. 9. Varying hysteresis with control voltage

Typical fixed-threshold triggers are the CD40106 and CD4093B. The CD40106 is a hex-inverting trigger (Fig. 10) featuring good threshold and hysteresis stability with changes in temperature. Fig. 11 shows typical threshold values for three different supply voltages for each individual trigger. The CD4093 is a quad trigger each of which has two inputs, functionally equivalent to a NAND gate. The threshold
leveis are the same as for the CD40106 provided one input is tied to $\mathrm{V}_{\mathrm{DD}}$, but are raised slightly if both inputs are used. Typical hysteresis remains unchanged.

Another interesting trigger is the MC 14583, which obtains its trigger effect using three resistors to control the transfer characteristics of an inverter. By varying these three resistors the threshold can be externally controlled. The 14583 comes in a dual package and also features noninverting, inverting tri-state and EXCLUSIVE OR-ed outputs, making it especially useful as a transmission line receiver.


Fig. 10. CD40106 hex inverting Schmitt trigger

$V_{\text {DO }}(V)$	5	10	15
$V_{\text {ONMAX }}$	3.6	7.1	10.8
$V_{\text {ONMIN }}$	2.2	6.6	8.8
VOFF MAX M	2.8	5.2	7.6
$V_{\text {OFFMIN }}$	0.9	2.5	6.0
$V_{\text {HMAX. }}$	1.6	3.6	5.0
$V_{\text {HMIN. }}$	0.3	1.2	1.8

Fig. 11. Switching characteristics for the CD40106

## TTL SCHMITTTRIGGERS

The TTL 7400 series features three Schmitt triggers, all three available in standard and low power Schottky versions, and one ( 74 S 132 ) ava ilable in standard Schottky. Additionally, several other TTL i.c.s feature Schmitt characteristic inputs for reasons mentioned below. All these triggers feature temperature compensated hysteresis (typically less than $2 \%$ variation over the military temperature range). Propagation delay is around 15 ns for the standard and low-power Schottky versions, and around 8 ns for


Fig. 12. Switching characteristics for the $\mathbf{7 4 0 0}$ Schmitt trigger family
the Schottky versions, making them fairly fast devices. The 7414 (74LS14) is a hex inverting trigger, the 7413 ( 74 LS 13) is a dual 4 -input NAND trigger and the 74132 (74LSI32), is a quadruple 2 -input NAND trigger.

All have the typical switching characteristic shown in Fig. 12, and have the usual TTL input current source characteristics, making them low input impedance circuits.

## OTHERTTLDEVICES

A fairly common use of Schmitt triggers is as digital line receivers, where line capacitance and interference produces poor signal edges and noisy information. As a result, many line receivers have intrinsic hysteresis to sharpen up signal edges and to eliminate spurious noise signals. Some examples are the 74LS242 tranceiver from the 7400 series, 75152 dual receiver (with adjustable hysteresis) from the 7500 series, and also the AMD 1489 (quad) and N8T37 (hex) line receivers.

Other functions occasionally incorporate Schmitt triggers, an example being the 74221 dual monostable multivibrator which will thus trigger reliably from inputs with Iransition rates as slow as 1 volt/second.


Fig. 13. Doorbell circuit employing dual Schmitt triggers


 uiol Of Ajddns jomod pas!!!qeısun
 applications. facilities. Also available in minimum
configuration for low cost OEM
 ( $2 \times 74$ S5 71) giving comprehensive

 กdગ ZOG9 әцय uo paseq S! म! 'ənpow Acorn Controller


 U! asn 1of saulunoi-qns jo las
 aul:'6ulumeibord xat ol uolionponju!
102

 expandability the Acorn
Microcomputer is a com Although designed for
expandability the Acorn Microcomputer $\quad$ Although designed for usoov 241.

## $\sum_{\mathrm{k}}^{\mathrm{s}} \mathrm{m}$


$\qquad$
 e!^ uoliכauuo loaj!p sof paubisap





## Just a little bit more... NASCOM-2 <br>  <br> Compare tis feeturet

2-0A 4MHZ. CPU: The most powertul s-blt proceseor on the market. 8K Butic: resident on board, MICROSOFT Basic. the industry atendard, with extenstons for on-screen edifing, graphics

Full 57 Key Licon sotld otate keyboard: swich mechunisms are contactess, hat cilabitily protenton units for fonp treuble tre tite. Kerboerd te mounted

Totel of 20K on-bourd memory: 2K montior (Nab-8y: i), tK Video RaM, IK Work space AAM, BK Mlcrosoft Basic, BK user RAM.
Kanais. Clty casmette In lertece: for rellable storage ofprogramis and deta at 300 or 1200 beud, with full chacksum errof deteckion.
Nas-sye monitor ( powertul 2K machine code monitor provides an Ideat onvironment for barming about and dovetoping machin code progrms. Mise yo utes blinking non destructive cursor, with 22 commanda, ASClt terminats tre fully eupportod via the sertelinfertece; users can ood thetr own IIO drtveravio the system I/O vector table to support other devteet.
Nas-sye commande are:

```
A-Hex arthmelte
B-tat bremkpoini
C-Copy
E-Execure
G-Generete
 H-Oporate as hall dupten,
 ferminal.
 I-inietigent copy
 J-myecute If FFA
 x-selkeyboard options
M-Memory modity
```

                    N-return to nommal
                    O-Output to P.f.O.
                    a-auery input port
                    R-hond tape
                    S-single step
                    T-Tabulate mimory
                    U -actlvatio user \(1 / 0\) orlvere
                    W-Werly tape
                    \(X\)-wot extemal device
    

On board P.I.O. - An uncommited P.I.O. (MK 3881) giving 16 programmable 1/O ine with hend ehake.
On based RS-232-WHI Infertace directly into any stendard tolelype - allowing use of ansic or Nas- ye from the telofype.
Full on-acreen editing: complate sereen editor with cursor movement (UP, DOWN, LEFT, RIGHT), Insent and detele, backepace ete.
Screen. dtaplay of 16 Hine $x$ the chmracters; Stable, clear diepley to Betilsh totevision standardt. Full 120 ASCI character deti optlon for further 128 graphice cheractara.
*Fuly buflered NASEUS compattbie: Well defined bus structure with a range of expanalon cerds; Includthg (shority) a floppy dise mystem with CP/m -ith Industry standird operating eystem.


25 Brunswick Street, Liverpool L2 OBJ
Tel:051-236 0707(Mail Order) 051-227 2535(AllotherDepts)

VAT must be added at $15 \%$ to all prices shown. P\&P $25 p$ + VAT. cluding books, resistors, capacitors,

## WHYTELEAFE SURREYCR3 OEB

## chuding vero. etc.

7400	0.10	7483	0.5	74166	0.78	4021	0.80	4160	1.05	1		16 pin	
74 HOO	0.23	7484	0.88	74187	2.00	4022	0.80	4161	1.05	CA3045-14	0.40	18 pin	0.16
7401	0.11	7485	0.68	74170	1.50	4023	0.15	4162	1.05	CA3046-14	0.50	20 min	0.18
7402	0.11	7486	0.22	74172	6.30	4024	0.50	4163	1.05	LM380N-14	0.85	22 pin	0.22
. 7403	0.11	74586	0.42	14173	1.15	4025	0.15	4164	1.05	LM381N 14	140	24 pin	0.24
1404	0.11	7489	1.65	74174	0.85	4026	1.15	4174	1.05	(M710-14	0.30	28 pin	0.26
74H04	0.23	7490	0.32	74175	0.60	4027	0.42	4175	0.98	LM719N-14	0.30	40 pin	0.37
1405	0.12	7491	0.64	745175	1.00	4028	0.65	4194	1.05	MC1310P. 14	0.88	811595	1,25
74405	0.23	7492	0.36	74176	0.58	4029	0.76	4404	0.48	NE555.8	0.20	811596	- 1.25
7406	022	7493A	0.30	74177	0.58	4030	0.46	4412	0.19	NE558-14	0.50	811597	1.25
7407	0.22	7494	0.72	74178	1.50	4031	1.95	4428	0.38	NE25018-14	080	81 LS98	1.25
7408	0.13	7495	0.50	74179	1.50	4032	0.88	4445	0.90	SN75110N	0.40	MICRO	CESSO
7409	0.13	7496	0.48	74180	0.85	4033	1.25	4449	0.19	SN76003N	1.60	CRYST	ALS
7410	0.11	7497	1.90	74181	0.58	4034	1.15	4501	0.18	SN76013N	1.25	FREQU	CY
74410	0.23	74100	0.85	74182	0.70	4035	100	4502	0.80	SN76023N	125	Mhz	
7411	0.17	74104	0.39	745182	1.50	4036	2.70	4503	0.68	SN76033N	1.60	0.100	3.50
74411	0.23	74105	0.38	744183	0.75	4037	0.85	4506	0.50	SN76477N	2.50	0.262	3.50
7412	015	74107	0.24	74184	1.30	4038	0.95	4507	0.52	TAA550日	032	0.300	3.50
7413	0.24	74109	0.32	74185 A	1.30	4039	2.75	4508	2.50	TA46618	088	1.000	3.25
7414	0.50	74110	0.36	74186	5.00	4040	0.58	4510	0.92	TBAI 20S	088	1.008	3.25
74415	0.23	7411	0.58	76188	2.70	4041	0.12	4511	0.92	TBA641a	1.50	1.8432	3.50
7418	0.23	74113	0.30	74190	0.68	4042	0.67	4512	0.92	T8A800	0.78	2.000	3.25
7417	0.23	74116	1.50	74191	0.88	4043	0.80	4513	1.85	TBA810S	0.75	2.097	3.25
7420	0.11	74118	0.80	74192	0.82	4044	0.80	4514	2.30	TBA820S	0.68	2.457	3.25
7421	0.20	74119	1.50	74193	0.62	4045	1.25	4515	2.60	tcaz 70 Sa	1.60	3.278	2.60
7422	0.16	74120	0.95	74194	0.62	4046	1.05	4516	0.99	TOA2020	3.00	3.579	2.60
7423	0.21	74121	0.25	74195	0.60	4047	0.85	4517	3.75	ZN414	0.80	3.932	2.60
7425	0.23	74122	0.39	74196	0.72	4048	0.48	4518	0.90	VOLTAGE		4.000	2.6
7426	0.23	74123	0.38	74197	0.58	4049	0.33	4519	0.50	Regulators		4.433	2.60
7427	024	74125	0.32	74198	1.00	4050	0.40	4520	0.95	LM300H-T099	0.75	4.915	2.60
7428	0.25	74128	0.35	74199	1.20	4051	0.72	4521	2.20	LM309K. 033	1.30	5.000	2.60
7430	0.19	74128	0.75	74221	1.30	4052	0.72	4522	1.25	4A723-14	0.32	5.068	2.60
74530	0.23	74130	0.50	74273	2.05	4053	0.72	4528	125	7805. T0220	0.70	5.185	2.60
7432	0.22	74132	0.55	74278	1.65	4054	1.00	4527	1.40	7812-T0220	0.70	5.875	${ }^{60}$
7433	0.30	74134	0.38	74279	1.10	4055	1.05	4528	0.92	7815-70220	0.70	6.000	2.60
7437	021	74135	0.70	74283	1.65	4060	1.00	4529	1.30	7824-70220	0.70	6.144	2.60
7438	0.21	74136	0.52	74284	340	4066	0.48	4530	0.78	7905-T0220	0.78	6.553	2.60
7440	0.12	74137	0.80	74293	1.30	4067	325	4531	0.99	7912-T0220	0.78	8.000	2.60
7441	0.50	74141	0.55	74298	1.80	4068	0.20	4532	1.20	7915-T0220	0.78	8.867	2.66
7442	0.40	74142	1.95	74390	1.75	4069	0.17	4534	5.20	LOW PROFILE		10.000	260
7443	0.70	74143	2.50	74393	1.25	4070	0.17	4538	3.80	OIL SOCKETS		12.000	
7444	0.70	74144	2.50	CMOS		4071	0.17	4538	1.25	8 pin	0.09	13.516	2.60
7445	0.52	74145	0.55	4000	0.13	4072	0.17 .	4539	0.99	14 pin		18.000	. 3.20
7446	0.60	74147	1.40	4001	0.15	4073	0.17	4541	1.05				
7447	0.48	74148	1.25	4002	0.15	4075	0.17	4543	150	LED's			
7448	0.56	74150	0.68	4006	0.85	4076	0.84	4549	3.92				
7450	0.11	74151	0.48	4007	0.16	4077	0.21	4553	3.60				0.09
7451	0.11	74153	0.48	4008	0.78	4078	0.18	4554	1.25	YELIOW			0.14
74452	0.23	74154	0.82	4009	0.40	4081	0.17	4555	0.75	GREEN		25	0.14
7453	0.11	74155	0.50	4010	0.40	4082	0.18	4556	0.75	Led clip	0.2	25	0.35
7454	0.11	74156	0.50	4011	0.15	4085	0.63	4557	3.25	TMS 4030409	9681	DYMAMIC	C Random
7460	0.11	74157	0.50	4012	0.15	4086	0.63	4558	125	ACCESS ${ }^{\text {2107 }}$	17N M	MEMORY 2	22 P1N O1\%
7470	0.25	74158	0.68	4013	0.40	4089	1.35	4559	395			2.76	
7472	0.22	74159	1.90	4014	0.78	4093	0.60	4560	198	$300 \mathrm{~ms} \mathrm{max}$.	access	tume. 47	max. read
7473	0.25	74160	0.60	1015	0.70	4094	168	4561	0.72	or weite cycle it	time 7	Th compat	tibility on ail
7474	0.25	74181	0.58	4016	0.40	4095	0.90	4582	5.50	inputs. No pull	ll up	lesislors	needed. Low
74574	0.42	74162	0.62	4017	0.72	4086	0.80	4586	1.42	power dis sipatio	ion. 350	OmW opera	raing 0.3 mW
7475	0.30	74163	0.62	4018	0.75	4097	3.30	4568	2.50	standby Single	low ca	ce	lock.
7476	0.26	74164	0.68	4019	042	4098	0.95	4569	1.60	Data sheer avall	Ilable		
7480	0.43	74165	0.68	4020	0	4099	140	4580	498	2.40 each 4.	-10\%	8-20\%	

## J. BIRKETT

## Radio Component Suppliers

## 25 The Strait, Lincoln. LN2 1JF. TEL: 20767

## TUBULAR TANTALUM CAPACITOR\$ 4.7 uf $10 \mathrm{v.w.}$. e 6 for 25p.

UNIJUNCTION TRANSISTORS $2 N 4871$ or 22 L Lin at 20 p each. $\mathrm{Ep}, 2 \mathrm{~N} 6029$ - 28 p , MEU 21 - 22p, MU 4894 - 22p, TIS 43 Type - 22p, 4JD5E29 - 22p. SILICON BRIDGES 100 PIV 1 amp e 20 p, 200 PIV 4 amp - $60 \mathrm{p}, 50$ PIV 20 amp - 11.30. IRON CORE LF CHOKE 2 M.H. 4 amp - SOp. (P\& P 20p).


THYRISTORS (S.C.R's) 10 Amp Type 100 PIV 25p, 400 PIV \& BOp, 800 PIV e 60p MYLAR CAPACITORS . O1 uf or 1 uf $50 \mathrm{v} . \mathrm{w}$. Both 22p doz. 50. OC 71 TRANSISTORS untested for 75p.

10 ASBORTED SLIDER POTENTIOMETEA knobs for $\mathbf{1 1 . 3 0 .}$
10 ASSORTED SLIDER POTENTIONETERS for 21.
26 gTUD MOUNTING 10 AMP DIODES
502 WATT ZENERS assorted untested esop.
1020 AMP STUD MOUNTINQ DIODES untested 60p.
25 THYRISTORS (S.C. ${ }^{2}$ s) 5 amp type untested for 75 p .
3 PIN PLUG-8OCKET European type with 2 mirs. of cable -78 p
SUB-MINIATURE 24 VOLT 2 POLE CHANGE OVER RELAY, 60 p. . 01 uf $2 \%$. 11 uf $1 \%$ Both 8 .
MULLARO TYPE 424-81103 . 011 of $63 \mathrm{vw} 5 \%$ at 20 o doz
MULLARD TYPE 424-1 103 . 011 of $63 \mathrm{v.W},. 5 \%$ at 20 p
HIGH SPEED SILICON DIODES BAW 62 . 12 for 36 p .
METAL FILM RESISTORS all $0.5 \%$ tolerance, 100R, 150R, $910 \mathrm{R}, 1 \mathrm{~K}, 3 \mathrm{~K}, 10 \mathrm{~K}, 150 \mathrm{~K}$. 200K, 600K. All Bp each.
TRANSIST ORS ARRAY CA 3048 at 40 p each. 25 p
WIRE ENDED OIODE 50 PIV $2 \frac{1}{2}$ amp
TV S.A.W. FILTERS Untested. 3 for 36p.
MOS PRE-AMPLIFIERI.C. with data TAA 320 - $35 p$.
POLYESTER CAPACITORS. 1 ut $400 \mathrm{v.W.}$. . at 25 p doz
60 BC 107-8-9 TRANSI8TOR\$ assorted untested e 60 p .
50 PLASTIC NPN-PNP TRAN8ISTORS untested
5O PLASTIC ZTX NPN SERIES untested for 80 p .
5OPLASTIC ZTX NPN SERIES untested for
SILICON SOLAR CELLS .5 volt 5 mA - 40 p .
TANTALUM CAPACITORS $1 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$. . $22 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$., $33 \mathrm{uf} 35 \mathrm{v} . \mathrm{w} .$, - $47 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$., 1 uf
 $22 \mathrm{uf} 16 \mathrm{v} . \mathrm{w} .33 \mathrm{uf} 10 \mathrm{v} . \mathrm{w}$., $33 \mathrm{uf} 25 \mathrm{v} . \mathrm{w}$., all at 9 p each. $100 \mathrm{uf} 10 \mathrm{v} . \mathrm{w}$., 28 p .
STUD MOUNTING DIODES 100 PIV 10 amp $15 \mathrm{p}, 100$ PIV 20 amp e $25 p$
TO5 NPN 100 VOLT 800 mA TAANSISTORS type 2 N 657 - 26 p . WIRE WOUND POTENTIOMETERS 2 watt. 2 K of $10 \mathrm{~K}, 4$ watt 900 K all 2 Ep .
ELECTRET MIKE INSERTS with FET pre-amp e 1.85 .
CRYSTALS 87 G base. $3600 \mathrm{C} / \mathrm{S}, 3660 \mathrm{C} / \mathrm{S}$. © 1.30 each
WIRE ENDED TYPE $28 \mathrm{KHz}, 28.5 \mathrm{KHz}, 29.75 \mathrm{KHz}, 31.5 \mathrm{KHz}, 83.997 \mathrm{KHz}$, all at 50 p each MULLARD POLYESTER CAPACITORS - 1 ff $160 \mathrm{w.W}$. . 20 p doz
5 WATT TOE DARLINGTON NP N TRANSISTOAS e 3 for $80 p$.
MAINS TRANSFORMERS 240 volt
MAINS TAANSFORMERS 240 volt input. Type 1.24 volt rapped at 14 volt 1 amp e $\mathbb{C 1} 30$ (P\&P 25p). Type 2. 30-0-30 volt 500mA E1. 30 (P\&P 25p). Type 3.45 volt 6 amp • ©4.E0 Please add 20 p for post and packing, unless otherwise stated, on U.K. orders under $\mathbf{C 2}$. Overseas postage at cost.

# Cambridge Learning Enterprises 

## SELF-INSTRUCTION COURSES

## UNDERSTANDING DIGITAL ELECTRONICS

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be 'phoning people by entering their name into a telephone which would automatically look up their number and dial it for you.
These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.


Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. it consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can leam from it - designer, executive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion betweem number systems, AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOP gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

FLOW CHARTS \& ALGORITHMS help you present: safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO anwsers to questions.

## The Algorithm Writer's Guide

explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

## 

## NEW from Cambridge Learning Enterprises <br> O - LÉVEL ENGLISH LANGUAGE

More and more jobs require a C-GRADE PASS, and over 250,000 people fail to get this every year. Will one of them be in your family? This new course, written by experts in a style that's serious yet fun to read, shows you how to mark your own work and compare it with the work of other people in their exam year. Set your own pace and assess your results immediately with no postal delays: watch your speed and standards improve. In Book 1 learn how you will be marked on COMPREHENSION, Book 2 covers SUMMARY, PUNCTUATION \& SPELLING, and Book 3 coaches you in the principles of COMPOSITION. Size: 3 A4 volumes totalling 250 pages.

CAMBRIDGE LEARNING ENTERPRISES, UNIT 23 RIVERMILL SITE, FREEPOST, ST. IVES, HUNTINGDON; CAMBS. PE17 4BR, ENGLAND
TELEPHONE: ST. IVES (0480) 67446
PROPRIETORS: DAYAIDGE LTD. REG. OFFICE: RIVERMILL LODGE. ST. IVES REGD. IN ENGLAND No. 1328762


Design of Digital Systems is written for the engineer seeking to leam more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include:
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions: logic gates; NOT, exclusive-OR, NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping: three-state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR. feedback counters: random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control programe structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Four volumes Digital Computer Logic \& Electronics at $\mathbb{£ 6 . 5 0 \text { inc }}$ Six volumes Design of Digital Systems at $£ 10.50$ inc $p$ \& $p$
Three volumes O-Level English Language at $£ 6.50$ inc $p$ \& $p$
The Algorithm Writer's Guide at $£ 3.40$ inc $p \& p$
If your order exceeds $£ 14$ deduct $£ 2$ from your payment
Price includes surface mail anywhere in the world, airmail extra GUARANTEE If you are not entirely satisfied your money will be refunded

Please allow 21 days for delivery
Cambridge Learning Enterprises, Unit 23 Rivermill Site, -
I FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR, I
England.
Please send me the following books:
sets Digital Computer Logic \& Electronics at $66.50, \mathrm{p} 8 \mathrm{p}$
sets Design of Digital Systems at $£ 10.50, p$ \& p included
O-Level English Language at $£ 6.50 \mathrm{p} \& \mathrm{p}$ included
The Algorithm Writer's guide at $£ 3.40$, p $\& p$ included
Name
Address


I enclose a "cheque/PO payable to Cambridge Learning Enterprises for $£$.
Please charge my Access/Barclaycard/Visa/Eurocard/ Mastercharge/Interbank account number .
Signature.
delete as appropriate.
Telephone orders from credit card holders accepted on
0480-67446 (Ansafone). Overseas customers should send a
I. bank draft in sterling drawn on a London Bank, or quote credit
card number.
PE23

AITKEN BROS
35, High Bridge, Newcastle upon Tyne

## Tel: 063226729

XP300


PB6 Kit

EXP300
550 contacts with two 50 -point BLIS bars. Size $152 \times 53 \mathrm{~mm}$, $\mathbf{E 6} .95$, PROTO-BOARD 6 KIT 630 contacts, four 5 way binding posts, accepts up to 614 pin DIPs. $\mathbf{\$ 1 0 . 9 8}$.

## CSC LOGIC PROBES

## LP-2 ECONOMY PROBE

Min. pulse width 300 nanoseconds, $300 \mathrm{~K} \Omega$ input impedance, tests circuits up to 1.5 MHz . Detecting pulse trains or single-shot event in TTL. DTL. HTL, and CMOS circuits. $\mathbf{E 2 0 . 9 5}$.

## LP-1 Memory Probe <br> £36.65

LP-3 High Speed Memory Probe 556.75 CSC catalogue available. Pleaso sond S.A.E. CALSCOPE SUPER $6 \quad £ 186.30$
A portable single beam 6 MHz bandwidth oscilloscope with easy to use controls. High gain to $10 \mathrm{mv} / \mathrm{cm}$ and wide time base range from $1 \mu \mathrm{~s}$ to $100 \mathrm{ma} / \mathrm{cm}$. Full specification to request. Ploase send S.A.E. Professionai scopes you can afford.
CALSCOPE SUPER $10 \quad \mathbf{2 5 1 . 8 5}$
A dual trace 10 MHz Instrument of the very highest performance and quality, It has an sccuracy of $3 \%$ which is achieved by the use of built-In stabillsed power supplles
which keep the trace rock steady over a wide range of mains which keep the rrace rock steady over a wide range of msins
fluctuations. Full spacification on request. Please send S.A.E. fluctuations. Full spacification on request. Please send S.A.E. TE20D TECH R.F. SIGNAL

## GENERATOR

Accurately covers 120 KCS to 500 MCS in 6 bands. Directly calibrated. Varlable RF attenuator 240 VAC. Siza $140 \times 215 \times 170 \mathrm{~mm}$.
Price $£ 52.50$ ( $£ 50.58$ to collors).
TE22D TECH AUDIO GENERATOR'
Sine $\&$ square wave audio generator. Sine wave range - 20 cps to 20 K cps in four bands.
Square wave range 20 cps to 15 K cps in four bends 240 V A.C. Size $140 \times 215 \times 170 \mathrm{~mm}$.

Price $£ 63.31$ ( $£ 61.31$ to collors).
TMK 500 MULTIMETER 30,000 o.p.v. AC volts $2 \cdot 5,10,25,100,250,500,1000$. DC volts. $0.25,1,2.5,10,25,100,250,1000$. DC current 50 a, $5 \mathrm{MA}, 50 \mathrm{MA}$, 12 amp . Resistance $0-6 \mathrm{~K}$. $60 \mathrm{~K}, 6 \mathrm{MEG}, 60 \mathrm{MEG}$. Decibels. -20 to +56 db . Buzzer continuity test size, $160 \times 110 \times 55 \mathrm{MM}$. Batteries \& leads included. PRICE £25.95. any size.


## SINCLAIR DM350 SINCLAIR DM450

$\mathbf{2 7 9 . 9 5}$ $£ 114.95$

## ELECTROVALIE

Your leading direct suppliers for


NASCOM MICROCOMPUTERS AND FULL SUPPORTING RANGE OF ITEMS TO ENABLE YOU TO WORK AT PROPER PROFESSIONAL LEVELS
$\star$ Appointed Nascom stockists

* Widest possible range stocked
$\star$ Information on request
* Enquiries from trade, industrial and educational users invited

We are also appointed distributors for the fine products of:
SIEMENS, ISKRA, RADIOHM, VERO AND MANY OTHER FAMOUS MANUFACTURERS

## It's a good deal better from

## ELEGTROALUE LTD

## We pay

in U.K. on orders list value £5 or over. If under, add $27 p$ handling charge.

## We give

 discountson C.W.O. orders, except for a few items marked Net or $N$ in our catalogue price list.
$5 \%$ on orders, list value $5 \%$ £ 10 or more
on orders list value $10 \%$ £25 or more. Not applicable to Acces or B arclaycard orders.

We stabilise prices.
by keeping to our printed price lists which appear but three or four times a year.
We guarantee
all products brand new. clean and to maker's spec. No seconds, no surplus.

- WE WILL SEND YOU

OUR 120 -PAGE
CATALOGUE No. 9
FREE ON REQUEST. Comprehensive ${ }_{\text {, }}$ informative, very well produced. Write, phone or call for your free copy, logether with latest price list: (Available separately).


MINIATURE MAINS TRANSFORMERS
$x$.
$\times \frac{1}{2} \times 1 \frac{1}{2}$, all sorts of uses. ONLY

BD131's 4 for $\mathbf{f 1 . 0 0}$

On' Lat Your Emvionmant Ochrydrtite Yowi Buy our honeyweil humudity Controive Mamurane actuated. very sensitiv. I shatt, 250V, 3.75A Contects. Ifesi for greshhousus. Contraly heorod homes, original cost $90_{p}$ es. 3 tar $\mathbf{E 2}$.

CASSETTE MDTORS
Salf Regulating will aperate 6-12V Idaal for modeiers.
mechanteal switching etc. 2000 R.P.M. approx. 80 pae.

We 100 MINIATUAE REEO SWITCHES
G.E.C. UMF TRANSISTOR TV TUNERS ¢1.50 3 for $£ 3.50$
make cheap battery eliminators
Fully shrouded mini mains transtormars. 240 V in $8-0-8 \mathrm{~V}$ at
100 MA out Complote with mains load and plug. ax new nquip 80p

DE LUXE FIBRE GLASS PRIMTEO CIACUIT ETCHING KITS ancludes 150 sqe ins. copper cled F/G. board. I Ib furic chioride 1 dalo atch resist pan. Abrosive cleanor. Etch tray 14 ingructioni Soccial Prica 54.95 BFE C1 To mil 5500 50 3q. in. Singlo aided bount E2.00 150 sq. in. Doubte sided boutd $\mathbf{\$ 3 . 0 0}$

Uses TGS 105 plug in sensor, housed in neat $3 \xi^{\prime \prime}$ die cosit wal circuites. 8 s Relay for above f 1 ee atote voltage
100. Full spec, now and marked Includes BC148. BC1841. 200412, BF274, BC154 atc. etc. $\mathbf{t 4 . 0 5}$ 131, 8200 and Boisl, br200 rec. ki.as double.
P/B SWITCH BANKS cluder ing poin elo erc. Can be modifiod. Can't be ropentod. 3 Banks for EI

300 mixed $\& \& \frac{1}{2}$ watt rasistors $\mathrm{f1} .50$
300 muxced capacitors. modern, most typos [ 3.30
100 mixed caramic and plate caps $\$ 1.20$
100 mixed polystyrana cass E2 20
35 pots and presers E1 50
25 prosers, skalmon ac. $£ 1.20$

- 100 Mi-wattipe resistors wirowound etc. $\mathbf{E 2 . 2 0}$

100 electrolytics, nice values $\mathbf{5 2 . 2 0}$
300 printed circuit resiators e
300 prmiod circuit componants $\$ 1.50$

Very neat. can be banked side by side. Ideal for v. cap
(uning gotaphic equalisers erc 10 tor $\mathbf{f 1}$
g Iook stereo slioen pots
Miniature level/batt. meters 200
S.O. as finted to many cassette racordera 60 p


## SOLAR QUARTZ LCD 5 Function

Genuine solar panel with battery back-up. Hours, mins., secs., day, date. Fully adjustable bracelet. Back-light. Only 7 mm thick.
£8.65

Guaranteed same day despatch.

M2

## FRONT-BUTTON Alarm Chrono

## Dual Time

6 digits, 5 flags, 22 functions. hours and mins.. plus
optional seconds of date dlsplay. AM/PM indication, month, date Continuous display of day. Stop-watch to 12 hours
59.9 secs, Split a nid lap timing modes. Dual time zones. Only 8 mm thlck. Back-light. Fully adjustable open bracelet.
Guaranteed same day dlspatch
£22.65
M6

## SEIKO Alarm Chrono

LCD, hours, mins.
secs., day of week, month, day and date. 24 hour Alarm, 12 hour chronograph, 1/10:th secs, and lap time. Back light, stainess steel. harolex glass. List Price E 130.00 metac price
£105.00


M10

## QUARTZ LCD

11 Function Chrono
6 digit, 11 functions. Hours, mins., secs., day. date, day of week. 1/100th, $1 / 10$ th, secs., 10X secs., mins., Split and lap modes. Back-llght, auto calendar Only 8 mm thick. Stainless stesl bracelet and back.
Adjustable bracelet. Metac Price

E10.65 Thousands sold I
Guaranteed same day despatch.
M3

## SOLAR QUARTZ LCD

Chronograph with

## Alarm

Dual Time Zone
Facility
6 digits, 5 flags.
22 functions.
Soler panel with
battery back-up.
6 besic functions.
Stop-wateh to 12 hours
59.9 secs., In $1 / 10 \mathrm{sec}$.
steps.
Split and lap timing modes.
Dual time zones.
Alaim. 9mm thick. Back-light: $£ 27.95$
Fully adjustable bracelet.

## SEIKO MEMORY BANK

Calendar watch M354 Hours, mins., secs. 12 or 24 hour format all indicated continuously. Monthly calendar display month, year and all dates for any selected month over 80 year period.
Memory bank function.
Any destred dates up to 11
can be stored in advanced. 2 year battery life. Water resistant. List Price $£ 130$

Metac Price
$€ 79.50$


## QUARTZ LCD Ladies 5 Function

## SEIKO-STYLE <br> Dual time-alarm Chronograph <br> Mineral glass <br> face. <br> Battery hatch for DIY battery replacement. <br> Top quallity finish whin fully <br> adjustable bracelet. <br> £35.00

## QUARTZ LCD ALARM 7 Function

Hours, mins., secs,. month, date, day. 6 digits, 3 flags plus continuous display of day and date or seconds. Back-light Only 9 mm thick.
£12.65

Guaranteed same day dispatch.

## ALARM CHRONO with 9 world

 time zones- 6 digits, 5 flags. 6 basic functions. - 8 further tlme zones.
- Count-down alarm. - Count-down alarm. Stop-watch
59.9 secs.
in $1 / 10$ sec. steps.
- Split and timing modes. Alarm.
- 9 mm thick.
- Back-light.
- Fully adjustabla bracelet

£29.65

Hour/minute display. Large LEO display with p.m. and alarm on indicator. 24 Hours alarm with onfoff control. Display flashing for power loss indication. Repeatable 9 -minute snooze. Oisplay $2.36^{\prime \prime}(131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm})$. wegr: 1.43118 x \{0.65 kg ). AC power 220 V .
$£ 9.65$ Thousands sold!
Mains operated.
Guaranteed same
day despatch.

Only $25 \times 20 \mathrm{~mm}$ and 6 mm thick.
5 function. Hours, mins., secs., day, date and back light and auto calendar. Elegant metal bracelet in silver or gold.
State preference.

## £9.95

Guaranteed same day
despatch.
M15

## HANIMEX portable LCD clock radio

## [1:230

- TTme sat 8 alarm controls.
- Snooze \& sleep controls.
- Wake to music or alarm.
- AM/PM indicator.
- Battery operated. No plug required.
- Receives all standard AM radio broadcasts.
- Drawstring carrying case included.
- Back-light.
- Batteries supplied free. 17.95
- Quartz crystal controlled.

M14


## HOW TO ORDER

Payment can be made by sending cheque, postal order, Barclay. Access or American Express card numbers. Write your name, address and the order details clearly, enclose 30p for post and packing or the amount stated. We do not wait to clear your cheque before sending the goods so this will not delay delivery. All products carry 1 year quaranteee and full money back 10 day reassurance Battery fitting service is available at our shops. All prices include VAT

Trade enquiries: Send for a complete list of trade prices - minimum order value $£ 100$ Telephone Orders: Credit card customers can telephone orders direct to Daventry or Edgware Rd 24 hour phone service at both shops: 01.723475303272 .76545 .


CALLERS WELCOME Shops open 9.30-6.00.

# Metuac 

North \& Midlands
67 High Street, DAVENTRY Northamptonshire
Telephone: 0327276545

Price breakthrough only £18.95

## OUTSTANDING FEATURES

- DUAL TIME. Local time always visible and you can set and recall any other time zone (such as GMT). Also has a light for night viewing.
CALENDAR FUNCTIONS include
the date and day in each time zone.
- CHRONOGRAPH/STOPWATCH displays up to 12 hours, 59 minutes, and 59.9 seconds.
On command, stopwatch display freezes to show intermediate (splitlap) time while stopwatch continues to run. Can also switch to and from timekeeping and stopwatch modes without affecting either's operation
- ALARM can be set to anytime within a 24 hour period. At the designated time, a pleasant, but effective buzzer sounds to remind or awaken you Guaranteed same day dispatch. M16


## MICROCHIITES FROM THE INVENTORS OF MICROPROCESSOR MUSICAL CHIMES

New price for the original

## CHROMACHIME KIT

24 tune model! Due to the fantastic success of this product right
across the World we are able to offer it at
only £9.95 + 75p p\&p

Comes complete with:

* TMS1000 Micro * Fully prepared PCB
* Superb cabinet $\quad$ : All semiconductors
* AllR's \& C's * Loudspeaker
* Switches \& pots * Socket \& Hardware
* Fully detailed kit manual

TMS 1000N - MP0027A Microcomputer chip available separately if required. Full 24 tune spec device supplied with data sheet and fully guaranteed.

New low price only $\{4,95$ inc. $p \& p$
(Only present 24 tune repertoire currently available.)

## A COMPLETE KIT FOR THE

NEW MICRO CHIME

This easy to
build kit includes:


## * TMS1000 Custom MPU Chip

* Special purpose designed case
* Fully drilled and legended PCB
* All transistors, Resistors and Capacitors
* Full set of mechanical parts
* Smart fascia labels
* IC Socket and Loudspeaker
* Really Low Price!
only £8.95 +55 p p p p
ChROMATRONICS
RIVERWAY
ALL CHROMATRONICS PRODUCTS
HARLOW
SUPPLIED WITH MONEY BACK GUARANTEE
Please send me:
PE1
TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX. UK. NAME
ADDRESS

I enclose cheque/PO value $\mathcal{E}$
or debit my ACCESS/BARCLAYCARO account no.

## Signature

GHIOMATRONIES


## The latost kft innoration: from Sparlhiite Sporkrity CLIP ON capacitive discharge electronic ignition in KIT FORM - Smoother running <br>  <br> Instant all-weather starting Continual peak performance Longer coil/battery/plug life Improved acceleration/top speeds Optimum fuel consumption <br> Sparkrite $\mathbf{X 4} 4$ is a high performance, high quality capacitive discharge, electronic

 ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $1 / 3 \mathrm{mins}$.Because of the superb design of the $S$ Sarkrite circuit
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker
bounce which is eliminated electronically by a pulse suppression circuit which bounce which is eliminated electronically by a pulse suppression circuit which
prevents the unit firing if the points bounce open at high R.P.M. Contact breake prevents the unit firing if the points bounce open at high R.P.M. Contact breake burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted points and is not
dependent upon the dwell time of the contact breakers for recharging the dependent upon the dwell time of the contact breakers for recharging the system Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). The circuit incorporates a voltage regulated output for greatly improved cold starting. The circuit includes buitt in static timing light, systems function light, and security changeover switch. All kits fit vehicles with coil/ distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 year guaranteed transtormer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions to assemble kit neg. or pos. earth and fully illustrated installation instructions.
NOTE - Vehicles with current Impulse tachometers (Smiths code on dial RV1) will tequire a tachometer pulse slave unit. Price $£ 4.25$ inc. VAT, post \& packlng UK only.
Electronics Design Associates, Dept. PE 10, 82 Bath Street, Walsall, WS1 3DE. Phone: Walsall 814791

Electronics Design Associates, Dept. PE10 82 Bath Street, Walsall, WS 1 3DE. Phone: (9) 614791

Name
Address

Phone your order with Access or Barclaycard


Send SAE it brochure onty requixed
$I$ enclose cheque PP 's tor
£
Cheque No.
Please state polarity pos or neg earth.
Access or Barclaycard No.


What you see above is a kit of parts that builds into a fully working oscilloscope.

No toy, this vital piece of functional equipment can be found in any professional electronics workshop. It is a valuable instrument of true professional quality.

By building the oscilloscope you will be taking the first steps to a rewarding hobby that knows no bounds.
Each constructional stage is a complete lesson
in the basics of electronics practice and carefully designed to be understood by those with no previous knowledge. Once built, this instrument can be used to complete a course of practical study and experimentation that will reveal the secrets of printed circuitry, testing and servicing of T.V. and radio and the vast majority of electronic equipment.

Invaluable knowledge that pays big dividends. Send today for the free colour brochure and start

# growing a new hobby. <br> and grows. <br> 4. Free Gift. 

## 1. Build an oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope I This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

## 2. Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

## 3. Carry out over 40 experiments on basic circuits.

We show you how to conduct expe, i., ents on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.


All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

PEH 10

NAME
ADDRESS

Post now, without obligation, to:-
BRITISH NATIONAL RADIO and ELECTRONICS SCHOOL
P.O. Box 156 , Jersey, Channel Islands.
TRANSFORMERS

Pri $220 / 240$ sect 0.12 2-15 $20-24-30 \mathrm{~V}$
管家



8INCLAIA PRODUCTS
 UK model $£ 91.44$, mains adaptor $£ 6.88$. PDM 35 £29-76, mains adaptor £3-40 case

 batterles $£ 7.99$, mains adaptor/charger £3.94, case $£ 9.30 \mathrm{kV}$ probe $£ 20-13$. Enterprise prog calculator with accesories E 23.37 . CALECOPE OSCILLOBCOPE
Send sae for detaila or see the Calscope adver in this magazine. Super $8=6 \mathrm{MHzz}$
single beam 60 ns rise time f 185 . Super 10:10 MHz dual trace 35 ns rise time E251.
COMPUTE MAME
COMPUTER GAMEE
Star Chess $£ 62$. Chess champion 6 ¢94.
Chess challenger 7 £91. Chess challane 10 Chess challenger 7 £ 91 . Chess challenger 10
$£ 152.50$. Voice chailenger p.o.a. Checter
 Atari video computer c147, cartridges E14.32.

## CONTINEMTAL BPECIALITIE

EXP300 E6.61. EXP350 €3.62. EXP325 E1.84. EXP600 E7.24. EXP650 ${ }^{\text {E4.14. }}$


TV GAMES
Tank batrles kh £6.34. AY-3-8500 chl chip f12.46, kit £4.26. 10 game paddle 2 AY-3-8610 chip $\mathrm{C9} .48$ kit E 9.03 . racing car
 £9.05. jopstick 220 K E1. 80 .

## MAIME THANBFORMEAE


 £2.97.30-0-30V fa ¢3.82.

## JC12 AND JC20 A MPLIFIE DS

integrated clrcult audio amplifier chips
supplied with free data and printed circuirs JC12 6 Watts E2.08: JC20 10 Watts $£ 3.14$. We also stock a range of matching preamp

## FE RRANTI ZNA14

ic radio chip $\mathrm{f} 1-12$. extra parns and pcb for £1.06.
PAINTED CIRCUIT MATERIAL
PC etching kits:- economy $£ 2.32$. stendard
 drill bits $1 / 32$ ins or 1 mm 250 each, etching

S-DECS AND T-DECS
S-DeC E4.O5. T-DeC E4.28. U-DeCA E4.69 E2.31.ERY ELIMINATORS
3-way types with switched output' and 4 way multi-jack: $3 / 4 \frac{1}{2} / 6 v 100 \mathrm{ma} £ 2.89,6 / 7 \pm / 9 \mathrm{v}$ 300 ma E3. 14. 100 ma radio types with


 stabilised type $3 / 6 / 7 / 4 / 9 \mathrm{v} 400 \mathrm{ma}$ E5. $84 . \mathrm{ca}$
converrors 12 v dc input. output 9 va 300 ma £1.60, output 71 vv 300 ma E 1.60 . outpu1 3/41/6/71/9/12v800ma 12.66 .
BATHENVELIMINATOR KITS
100 ma radio tyyes with press-stud connec tors 4 tuv 51.49 . $6 v 11.49,9 v ~ 11.49$,




 models $2-18 \mathrm{v}$ variaba 22.98 .2 2-30v 1 A E.7.40. 2 -30v 2 A E 11.66 car convertor 12 V

dc input. Output $9 / 7 \frac{1}{2} / 6 \mathrm{~V}$ IA stabilized | dc |
| :---: |
| E1. |
| inp |

## E1.44.

AL30 E4.04. PA12 E7.77. PS 12 Cl .42 T538 E2.70. S450 E24.03. AL60 $£ 4.97$ PA100 E17.33. SPM80 £4.57. 8 MT80 C6.08. Stereo 30

$$
1 N 41481.4 \mathrm{p} .
$$


 bc547. bc548. bc 5495 p . tip31c, tip 32
 plastic equiv bc 1075 p . fuses $20 \mathrm{~mm} \times 5 \mathrm{~mm}$


 $.022, .047 \mathrm{mf} 3.3 \mathrm{p}, 22,47 \mathrm{mf} 4.9 \mathrm{p}$

 trolytic capacitors $50 \mathrm{v} \cdot 5,1,2 \mathrm{mf} 5 \mathrm{p}, 25 \mathrm{v}$
$5,105 \mathrm{p}, 16 \mathrm{v} 22,33,47,68 \mathrm{mf} 5 \mathrm{p}$. 100 mf $6 \mathrm{p}, 220 \mathrm{mf} 7.5 \mathrm{p}, 330,470 \mathrm{mf} 9 \mathrm{p}, 1000 \mathrm{~mm}$
 100 to 4 M 77.2 D . potentlometers 7 W 4K7 to 2 M 2 log or $\operatorname{lin}$ single 27 p . dual 78 p . t" red REDS 9.7 . 16 Sockets 8 dil 8.6 p . 44 dll
$10.10,16$ dil 12 p.

Mail order only. Pleass add 30 p to the total cost of the order for postage. Prices include VAT. Lists 20p post FREE. Overseas customers deduct 13\%.

## L.C.D. DIGITAL WATCHES



All products carry full 7 day money back reassurance plus 12 month guarantee.

Please add further 50p for spare battery if required (E1 for No. 4.1

SAE for more details of large range of digital watches, clock/radios, clocks, car stereos, headphones etc.

ALARM MODEL (illustrated) "Constant 6 digit display shows Hours, Minutes Seconds or Date. 24-hour alarm with on/off indication.
*Night Light.

- Matching adjustable stainless steel strap. £12.50 inclusive

SLIM 11 FUNCTION CHRONOGRAPH
Time, Date, $\frac{1}{100}$ second stopwatch.
£11.50 inclusive

## ALARM CHRONO WITH

 DUAL TIMEAll functions of alarm model with $\frac{1}{10}$ second stopwatch and dual time.
£18.00 inclusive
SOLAR ALARM CHRONO As above but solar assisted.
£24.00 inclusive
LADIES 5 FUNCTION
Hours, Minutes, Seconds, Month and Date.
$\varepsilon 7.95$ inclusive

> SPARKS DEVELOPMENTS, 53 North Street, Melbourne, Derbyshire DE7 1FZ.

11		7473	20p	74141	55p
		7474	22p	74145	55p
7400	10p	7475	25p	74148	90p
7401	10p	7476	20p	74150	55p
7402	10p	7485	55p	74151	40p
7404	12p	7486	20p	74154	65p
7406	22p	7489	135p	74157	40p
7408	12p	7490	25p	74164	55p
7410	10p	7492	30p	74165	55p
7413	220	7493	25p	74170	100 p
7414	39p	7494	$45 p$	74174	55p
7420	12p	7495	35p	74177	500
7427	20p	7496	45p	74190	50p
7430	12p	74121	25p	74191	50p
7432	18p	74122	35p	74192	50p
7442	38p	74123	38p	74193	50p
7447	45p	74125	35p	74196	50p
7448	50p	74126	35p	74197	50p
7454	12p	74132	45p	74199	90p
CMOS		4020	50p	4050	25p
		4022	50p	4060	$80 p$
		4023	13p	4066	30p
		4024	40p	4068	13p
4001	13p	4025	13p	4069	13p
4002	13p	4026	90p	4070	13p
4007	13p	4027	28p	4071	13p
4009	300	4028	45p	4072	13p
4011	13p	4029	50 p	4081	13p
4012	13p	4040	55p	4093	36p
4013	28p	4041	55p	4510	60p
4015	50p	4042	55p	4511	60p
4016	28p	4043	50p	4518	65p
4017	47 p	4046	90p	4520	60p
4018	55p	4049	25p	4528	600
FULL DETAILS IN CATALOGUE!					


SKTS	
Low	4

## PCBS <br> VEROBOARD <br> Size in. $\quad 0.1 \mathrm{in}, 0.15 \mathrm{in}$. $25 \times 1 \quad 14 p \quad 14 p$ $\begin{array}{lll}2.5 \times 3.75 & 45 p & 45 p \\ 2.5 \times 5 & 540 & 54 p\end{array}$ $\begin{array}{lll}2.5 \times 5 & 54 p & 54 p\end{array}$ Cutter 80p. Pin insertion $3.75 \times 17 \quad 205 p \quad 185 p$ Single sided pins per $100 \quad 40 p \quad 40 p$ <br> Top quality fibre glass copper board. Single sided. Size $203 \times 95 \mathrm{~mm}$. 60p each <br> 'Dalo' pens. 75p each.

OPTO				
LED's	$0.125 i n$	$0.21 n$	each	$100+$
Red	TIL209	TiL220	$9 p$	$7.5 p$
Green	TIL211	TIL221	$13 p$	$12 p$
Yellow	TIL213	TIL223	$13 p$	$12 p$
Clips	$3 p$	$3 p$		
DISPLAYS				
DL704	0.3 in CC	$130 p$	$120 p$	
DL707	0.3 in CA	$130 p$	$120 p$	
FND500	0.5 in CC	$100 p$	$80 p$	

## RESISTORS <br> Carbon film resistors. High stability, low noise 6\%. E12 series. 4.7 ohms to 10 M . Any mix: each $100+\quad 1000^{+}$ $\begin{array}{llll} & \text { each } & 100+ & 1000 \\ 0.25 \mathrm{~W} & 10 & 0.9 \mathrm{p} & 0.8 \mathrm{p}\end{array}$ $0.5 \mathrm{~W} \quad 1.5 p \quad 1.2 p \quad 1 p$

 Special development packs consisting of 10 of each value from 4.7 ohms to 1 Meg. ohm ( 650 res) 0.5 W £7.50. $0.25 \mathrm{~W} £ 5.70$. METAL FILM RESISTORSVery high stabillty, low nolse rated at $1 / 6 \mathrm{~W}$ $1 \%$. Available from 51 ohms to 330 k in E24 series. Any mix:
$\begin{array}{llll} & \text { each } & 100+ & 1000+ \\ 0.25 \mathrm{~W} & 4 \mathrm{p} & 3.50 & 3.2 \mathrm{p}\end{array}$

## STEVENSON

PLEASE WRITE FOR YOUR FREE COPY OF OUR NEW 80 PAGE CATALOGUE OF COMPONENTS. CONTAINS OVER OVER 2500 Electronic STOCK ITEMS.

TRANSISTORS				$\begin{aligned} & \text { 2TX500 } \\ & \text { 2N697 } \end{aligned}$	$\begin{aligned} & 16 p \\ & 12 p \end{aligned}$
		BCY72	14p	2N3053	18p
AC127	17p	8D131	350	2N3054	50p
AC128	$16 p$	8D132	35p	2N3055	50p
AC176	18p	8D139	35p	2 N 3442	135p
AD161	38p	8D140	350	2N3702	8 D
AD162	38p	BFY50	15p	2N3703	8 D
BC107	8 p	BFY51	150	2N3704	8 p
BC108	8 D	BFY52	15p	2N3705	9 p
BC108C	100	MJ2955	980	2N3706	9 p
BC109	8 D	MPSA06	20p	2N3707	9 p
BC109C	10p	MPSA56	200	2N3708	8 p
BC147	7 p	TIP 29 C	60 p	2N3819	15p
BC148	70	TIP30C	70p	2N3820	44p
BC177	14p	TIP31C	65p	2N3904	80
BC178	14 p	TIP32C	800	2N3905	8 p
BC179.	14p	TIP2955	65p	2N3906	8 p
BC182	10p	TIP3055	550	2N4058	120
BC182L	10p	2TX107	140	2N5457	32p
BC184	10p	ZTX108	14p	2N5459	32p
BC184L	10 p	ZTX300	16p	2N5777	50p
BC212	10 p				
BC212L	10p				
BC214	10p		DIOD	ES	
BC214L	10 p				
BC477	190	1N914	3p	1 1 40006	${ }^{6 p}$
BC478	19p	1 N 4001	4 p	1 N5401	13p
BC548	10 p	1N4002	$4 p$	BZY88	
ВС¢70	14p	\TT Full sp	spec. pr	oduct.	
BCY71	140	1N4148	- £1.4	/100. £11	/1000
-LWEAR					
		LM301 AN	$\begin{gathered} 80 \mathrm{p} \\ \mathrm{~N} \end{gathered}$	NE5S5	23p
THIS IS ONLY		LM308	60p	NE556	60p
		LM318N	75p	NE567	100p
709	TION!	LM324	45p	RC4136	100p
	35p	LM339	45p	SN76477	7 230p
	16p	LM378	230p	tBab00	70p
747	45p	LM379S	410 D	TBA810S	S 100p
748	30p	LM380	75p	TDA1022	2 620p
7106	850 p	LM3900	50p	TL081	45p
7107	900 p	LM3909	65p	TL084	125p
CA3046	55p	LM3911	100 o	ZN414	80p
CA3080	70p	MC1458	320	ZN425E	390p
CA3130	90p	MM57160	590p	ZN1034E	2000

## CAPACITORS

TANTALUM BEAD
$0.1,0.15,0.22,0.33,0.47,0.68$,
182.2 uF @ 35 V

22@16V, 47@6V,100@3V
MYLAR FILM
0.001, 0.01, 0.022, 0.032, 0.047
0.068, 0.1

POLYESTER
Mullard C280 series
$0.01,0.015,0.022,0.033,0.047,0.068,0.1 .5 p$ $0.15,0.22$
0.33, 0.47
0.68 '

## CERAMIC

Plate type 50 V . Available in E. 12 series from 22 pF to 1000 pF and E6 series from 1500 pF to RADIAL LEAD ELECTROLYTIC
$\qquad$


## CONNECTORS

JACK PLUGS AND SOCKETS

	screened	unscreened	socket
2.5 mm	90	13p	$7 p$
3.5 mm	9 p	14p	8 p
Standard	16p	30p.	15p
Stereo	23p	36p	18p
DIN PLUGS AND SOCKETS			
	plug	chassis	line
		socket	socket
2 pin	$7 p$	70	70
3 pin	11p	9 p	14p
$5 \sin 180^{\circ}$	11p	10p	14p
$5 \operatorname{pin} 240^{\circ}$	13p	100	16p
1 mm PLUGS AND SOCKETS			
Suitable for low vol tage circuits, Red \& black. Plugs: $6 p$ each Sockets: $7 p$ each.			
4 mm PLUGS AND SOCKETS			
Available in blue, black, green, brown, red, white and yellow. Plugs: 11p each Sockets: 12p each			
PHONO PLUGS AND SOCKETS			
Insulated	gin red or		$\begin{array}{r} 9 p \\ \quad 130 \end{array}$
Single sock	. $7 p$	ouble socket	

# STEVENEON 

 Electronic Components
## LOUDSPEAKERS

56 mm dia. 80 hms . $70 \mathrm{p} \quad 64 \mathrm{~mm}$ dia. 640 hms . 75 p 64 mm dia. 8 ohms. $75 \mathrm{p} \quad 70 \mathrm{~mm}$ dia. 80 hms . 100 p Magnetic earpiece including 2.5 or 3.5 mm plug. 15 p each Crystal earpiece including 3.5 mm plug

30p each
TRANSFORMERS
All 240 V Primary.
$0-6,0-6 @ 0.5 A$ or $0-9,0-9 @ 0.4 A$. 175p
$0-12,0-12 @ 0.5 A$ or $0-15,0-15 @ 0.4 A$ 235p
$0-9,0-9 @ 1.2 A$ or $0-12,0-12 @ 1 A$. 345p
$0-12-15-20-24-30 \mathrm{~V} @ 1.5 \mathrm{~A}$. 455p
$0-20-25-33-40-50 \mathrm{~V} @ 1 \mathrm{~A}$. 455p
$0-20-25-33-40-50 \mathrm{~V}$ @ 2A. 585p
$0-20-25-33-40-50 \mathrm{~V}$ @ 3A. 715p
Miniature type
$6-0-6,9-0-9,12-0-12 @ 100 \mathrm{~mA}$.
95p

## SOLDERING IRONS

ANTEX X25 (25W) or ANTEX CX (17W) 390p each Reel of solder (39.6M)

240p each

## POTENTIOMETERS

Single gang Log or Lin $5 K-2 M 2$
Dual gang Log or Lin 5K - 2M2
Presets, sub min type hor orvert 100 - 2 M2

## CONTROL KNOBS

Ideal for use on mixers etc. Push on type with black base and marked position line. C
available in red, blue, green, grey, yellow and black. 14p

## SWITCHES

Subminiature toggle. SPDT 70p. DPDT 80p. Standard toggle. SPST 34p. DPDT 48p.

Slide switches (DPDT) miniature or standard 15p
Push to make switch. 15p. Push to break switch. 20p.
Wavechange switches: 1P12W, 2P6W, 3P4W, 4P3W. 43p

## BOXES

Folded construction complete with screws
$3 \times 2 \times 1 \quad 52 p \quad 4 \times 3 \times 2 \quad 70 p \quad 6 \times 4 \times 3 \quad 95 p$
$4 \times 3 \times 2 \quad 64 p 16 \times 4 \times 2 \quad 77 p \quad 8 \times 6 \times 2 \quad 125 p$
We now offer one of the widest ranges of components at the most competitive prices in the UK. See catalogue for full details. We welcome callers at our shop in College Road, Bromley, from Mon - Sat, 9am - 6pm (8pm on Weds. and Fridays). Special offers always available.

We also provide an express telephone order service. Orders received before 5 pm are shipped same day.
Contact our sales office now with your requirements.

## TEL:01-464 2951/5770

Quantity discounts on any mix TTL. CMOS, 74LS and Linear circuits: $100+10 \%, 1000+$ $15 \%$. Prices VAT inclusive, Please add 30 p for carriage. All prices valid to April 1980.
Otficial orders welcome.


BARCLAYCARD


Mail orders to: STEVENSON (Dept PE)

## Measure Resistance to $0.01 \Omega$

At a Price that has no resistance at all
New/elenco precision Digital Multimeter M1200B

## ONLY £55 <br> $(\mathbf{E 3} p \& p+$ VAT $88.70=\mathbf{8 6 6 . 7 0})$

-FULLY GUARANTEED FOR 2 VEARS
"metal case

## -EX STOCK DELIVERY

THE ULTIMATE IN PERFORMANCE MEASURES RESISTANCE TO 0.01 OHMS, VOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE!

## FEATURES

- $31 / 2$ digits $0.56^{\prime \prime}$ high LED for easy reading
- $\quad 100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.01 \Omega$ resolution
- High input impedance 10 Megohm
- High accuracy achieved with precision resistors, not unstable trimpots
- Input overload protected to 1000 V (except 200 mV scale to 600 V )
- Auto zeroing, autopolarity
- Mains (with adaptors not supplied) or battery operation-built-in charging circuitry for NiCads
- Overrange indication
- Hi Low power ohms, Lo for resistors in circuit, Hi for diodes


ME Maclin-Zand Electronics Lid 38 Mount Pleasant,London WC1XOAP

## OUR 1979 CATALOGUE <br> including the first edition of

## STOP PRESS

(Send S.A.E. for copy)

- Latest low prices
* Fascinating new items
* Special offers a bargain on their own
* Lowest prices ever for TTL
* Free 45 p worth of vouchers

E. Prom
2708
ع8.38



## DEPT. 16,56 FORTRIS GREEN ROAD <br> MUSWELL HILL, LONDON N10 3HN <br> TELEPHONE: 01-883 3705/2289

иисамксно USE OUR "ORDER RING" LINES
VAT INCLUSIVE PRICES P\&P 25p

## EHROMASOMNE Electronics

## Man

Bytman


Codespeed Elecenanics olectronic mail PO BOX 23, 34 SEAFIELD ROAD, COPNOR, PORTSMOUTH,
New, Full Spec. Devices P03 5BJ

WRISTWATCH LCD'S A high contrast $3 \$$ digit wristwatch LCD with centre colon. Supplied with polarizers and data. Only £1.00 Cat No. 202
 207
4 DIGIT LCD A high contrast, easy to solder display with four 0.5. high non-multiplexed digits. £6.95 each with data. Cat. No. 206
DIGITAL ALARM CLOCK MODULE Complete with giant $0.8^{\prime \prime}$ LED display. Add transformer and switches for completa clock. With data only $£ 6.50 \mathrm{Cat}$ No. 205
SLIDE SWITCHES A miniature slide switch with two pole change-over contacts. All brand now. 16p each. Cat. No. 702
MDMENTARY SWITCHES Miniature spring loaded push button switches with one normally open contact. Super value 15 pp each. Cat. No. 703
POLARIZING FILTER MATERIAL 0.006" thick plastic film. Any size cut - even 1 sq. inch. Max, width 19", any length. Only 2 p per sq. inch. Cot. No. 701
PROGRAMMABLE UNIJUNGTIONS Four MEU21.PUT'S (similar to 2N6027). Makes long delay timers, oscillators etc. With data and applications sheet. 4 for 50 p . Cat no. 402
MINI 6 DIGIT LED DISPLAY 6 digit 7 segment display from Texas. Common cathode, multiplexed. with $0.1^{\prime \prime}$ digits £1.00. Cat. No. 306
OMM CHIP MM5330 dvm chip. Builds into high accuracy dvm or panel meter. Requires additional circuitry. Supplied with data and circuit. Only £3.95. Cat. No. 404
GIANT LED DISPLAY Common cathode. non-multiplened super 4 digit LED clock display. Lots of other uses too. Only E.3.95 each. Cat. No. 204
MINIATURE DIODES 25 mini IN3470 germanium diodes (35v. 600 mA ). Excellent value. 25 for 50p. Cat. No. 401
20 KEY KEYBOARDS Calculator keyboards, excellent key action. 20 keys per board. 2 keybeards for £1.00. Cat Na 101
 only $\mathbf{5 0 p}$. Cat. No. 304
MATRIXED SWITCHING DIDDES 23 diodes on each 14 pin chip. Supplied with data sheet. 5 chips for 50 p. Cat No. 504
HIGH SPEED DIDDES 1 N4151 high speed switching diodes. Similar to 1 N4148. 10 diodes for 35 p . Cat. No. 403
10 HYBRID CIRCUITS 8 resistors and 8 capacitors built into each hybrid circuit. Ideal values for semiconductor circuits. Excelient for minimizing PCB component space. 10 Hybrids for 50 p . CAL No. 801

## Untested Items

LED DISPLAYS (Untested - no guarantees) 10 seven segment LED displays. $0.127^{\text {n }}$ digits common cathode. 10 for $£ 1.00$. Cot No. 311
30 MIXED IC'S (Untested - no guarantees) Could include anything Linear or Digital. You test. Good value for f1.00. Cat No. 503
REJECT CALCULATORS Production line rejects. Yields lots of goodies when stripped down (not much wrong with some we tested) Only $\mathbf{2 . 5 0}$ each. Cat No. 104
A full refund guarantee on all items. Post and Packing plaase add 35 p (Overseas orders add 90 p). Lots more goodies in our catalogue. Send medium sized SAE for your free copy


Retail Sales: London: 40-42 Cricklewood Broadway, NW2 3ET. Tel: 01-452 0161/2 ALSO 325 Edgware Road, W2. Tel: 01-723 4242. Glasgow: 85 West Regent Street, G2 2QD. Tel: 041-332 4133 AND Bristol: 108A Stoke's Croft, 8 ristol. Tel: 0272426801

U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE


## RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD, CROYDON, U.K.



# Electronics Make ajob-or hobby-ofit..... 

 The opportunities in electronics, today, and for the future are limitless - thruughout the world - jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, T.V. and all associated equipment - can make for a varied, interesting and highly renumerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equipment coming on the world market.We give modern training courses in all fields of electronics practical D.I.Y. courses - courses for City.and Guild exams, the Radio Amateur Licence and also training for the new Computer Technology. We specialise only in electronics and
 have over 40 years of experience in the subject. . Details sent without any obligation from

NAME
ADDRESS

## Bimenclosures

ALL METAL BIMCASES Red, Grey or Orange 14 swg Aluminium removable top and bottom covers. 18 swg black mild steel chassis with fixing support brackets. BIM 3000
$(250 \times 167.5 \times 68.5 \mathrm{~mm})$ £15.52

MINH DESK BIMCONSOLES Orange, Blue, Black or Grey ABS body incorporates 1.8 mm pcb guides, stand off bosses in base with 4 BIMFEET supplied. 1 mm Grey Aluminium panel sits recessed with fixing screws
into integral brass bushes.
BIM $1005(161 \times 96 \times 58 \mathrm{~mm}) \quad £ 2.48$
BIM $1006(215 \times 130 \times 75 \mathrm{~mm}) £ 3.48$

# ALL METAL BIMCONSOLES 

All aluminium, 2 piece desk consoles with
Colour Code ither $15^{\circ}$ or $30^{\circ}$ sloping fronts, sit on 4 self-adhesive non-slip rubber feet Ventilation slots in base and rear

Top Panel Off White Sand. panel for excellent cooling. See latest catalogue for new styles and sizes $15^{\circ}$ Sloping Panel $30^{\circ}$ Sloping Panel
$(50 \times 50 \times 25 \mathrm{~mm})$ $(100 \times 50 \times 25 \mathrm{~mm})$ $(112 \times 62 \times 31 \mathrm{~mm})$ $(120 \times 65 \times 40 \mathrm{~mm})$ $(150 \times 80 \times 50 \mathrm{~mm})$ $(190 \times 110 \times 60 \mathrm{~mm})$

BIM7151 ( $102 \times 140 \times 51[28] \mathrm{mm}$ BIM 7301 ( $102 \times 140 \times 76[28) \mathrm{mm})$ BIM $7152(165 \times 140 \times 51(28) \mathrm{mm})$ BIM $7302(165 \times 140 \times 76[28) \mathrm{mm})$ BIM $7153(165 \times 216 \times 51 / 281 \mathrm{~mm})$ BIM $7303(165 \times 183 \times 102(28) \mathrm{mm})$ BIM7154 ( $165 \times 211 \times 76[33) \mathrm{mm})$ BiM $7304(254 \times 140 \times 76[28) \mathrm{mm})$ BIM $7155(254 \times 211 \times 76[33) \mathrm{mm})$ BIM $7305(254 \times 183 \times 102[28) \mathrm{mm})$ BIM $7156(254 \times 287 \times 76[33) \mathrm{mm})$ BIM $7306(254 \times 259 \times 102[28) \mathrm{mm})$ BIM $7157(356 \times 211 \times 76 \mid 33) \mathrm{mm}$ ) BIM $7307(356 \times 183 \times 102(28) \mathrm{mm}) ~ £ 1883$ BIM7158 ( $356 \times 287 \times 76[33] \mathrm{mm})$ BIM $7308(356 \times 259 \times 102[28) \mathrm{mm}) € 19.92$

## ABS \& DIECAST BIMBOXES

6 sizes in ABS or Diecast Aluminium. ABS moulded in Orange, Blue, Black or Grey. Diecast Aluminium in Grey Hammertone or Natural. All boxes incorporate 1.8 mm pcb guides, stand-off supports in base and have close fitting flanged lids held by screws into integral brass bushes (ABS) or tapped holes (Diecast).

N/A ABS BIM2002/12 £1.09 BIM2003/13 £1.27 BIM2004/14 £1.51 BIM2005/15 £1.72 Вім2006/16 £2.69

Diecast BIM5001/11 BIM5002/12 BIM5003/13 BIM5004/14 BIM5005/15 BIM5006/16

Hammertone Natural
£11.36 £11.36
£12.28 £12.28
£ 13.43 $£ 13.43$ $\mathbf{£} 14.83$

$\mathbf{E} 16.36$ | f 16.36 |
| :--- |
| $\mathbf{f} 17.71$ | £18.83

Also availatle in Grey Polystyrene with no slots and self-tapping screws BIM 2007/17 (112×61×31mm) £1.06

MULTI PURPOE E BIMBOXES
Orange. Blue, Black or Grey ABS with 1 mm Grey Aluminium recessed front cover held by screws into integral brass bushes.
1.8 mm pcb guides incorporated and 4 BIMEEET supplied.

BIM $4003(85 \times 56 \times 28.5 \mathrm{~mm}) \quad £ 1.34$ BIM $4004(111 \times 71 \times 41.5 \mathrm{~mm}) \quad £ 1.84$ BIM $4005(161 \times 96 \times 52.5 \mathrm{~mm})$ £2.48


Orange, Blue, Black or Grey ABS body has ventilation slots as well as 1.8 mm oob guides and stand-off bosses in base. Double angle recessed front panel with 4 fixing screws into integral brass bushes. 4 BIMFEET supplied.
BIM $6005(143 \times 105 \times 55.5(31.5) \mathrm{mm}) \quad £ 2.76$ BIM $6006(143 \times 170 \times 55.5(31.5) \mathrm{mm}) £ 3.58$ BIM $6007(214 \times 170 \times 82.0(31.5) \mathrm{mm}) £ 4.83$

## - EUROCARD BIMCONSOLES

Orange, Blue, Black or Grey ABS body accepts full or $1 / 2$ size Eurocards, with bosses in the base for direct fixing. 1.8 mm wide pcb guides incorporated and 4 BIMFEET supplied. 1 mm
Grey aluminium lid sits flush with body top and held by 4 screws into integral brass bushes.

BIM $8005(169 \times 127 \times 70[45] \mathrm{mm}) \quad £ 4.71$
ВІМ 8007 ( $243 \times 187 \times 103[66] \mathrm{mm}) £ 6.70$

## BIMTODLS + BIMACCESSORIES



MAINS BIMORILLS
Small, powerful 240 V hand drill complete with 2 metres of cable and 2 pin DIN plug. Accepts all tools with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ or $.125^{\prime \prime}$ dia. shanks Drills brass, steel, aluminium and pcb's. Under 250 g , off load speed 7500 rpm . Orange ABS. high impact, fully insulated body with integral on/off switch £11.21
Mains Accessory Kit 1 includes $1 \mathrm{~mm}, 2 \mathrm{~mm}$, . $125^{\circ}$ " wist drills, 5 burrs and 2.4 mm collet $£ 2.64$
Mains Kit 2 includes Mains BIMDRILL as above, 20 assorted drills, mops, burrs, grinding wheels and mounted points, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and $.125^{\prime \prime}$ collets. Complete in transparent case measuring $230 \times 130 \times 58 \mathrm{~mm}$ € 23.57

## BIMOAPTORS

Allows pcb's to be flat mounted sandwich fashion in BIMBOXES, BIMCONSOLES, and all other enclosures having 1.5 mm wide vertical guide slots. One plastic BIMDAPTOR on each corner of pcb(s) enables assembly to be simply slid into place. 54 mm long, 10 slots on 5 mm spacing and can be simply snipped off to length. $£ 1.15$ per pack of 25 .

## BIMFEET

11 mm dia. 3 mm high, grey rubber self-adhésive enclosure feet
£0.81 per pack of 24 .


## 12 VOLT BIMDRILLS

2 small, powerful drills easily hand held or used with lathe/stand adaptor. Integral on/off switch and 1 metre cable.
Mini BIMDRILL with 3 collets up to 2.4 mm dia. £ 8.62 Major 8IMDRILL with 4 collets up to 3 mm dia. $£ 14.49$
Accessory Kits 1 have appropriate drills and collets as above plus 20 assorted tools. Mini Kit 1 - £16.10, Major Kit 1 - £20.70. Accessory Kits 2 have appropriate drills, collets plus 40 tools and mains-12V dc adaptor. Mini Kit $2-£ 36.22$. Major Kit 2 - $\mathbf{E} 41.97$. Accessory Kits 3 as appropriate Kits 2 plus stand/lathe unit. Mini Kit 3 - £48.30, Major Kit 3 - £54.05.

## BIMPUMPS

4
2 all metal desolder. ing tools provide high suction power and have easily replaceable screw in Tefion tips. Primed and released by thumb operation with in-built safe. ty guard and anti-recoil system. BIMPUMP Major ( 180 mm long) : $£ 8.51$ BIMPUMP Minor ( 150 mm long) $£ 7.24$

BIMIRONS


Type 30 General Purpose 27 watt iron with long life, rapid change element. screw on tip, stainiess steel shaft and clip on hook. Sivled handle with neon. £4.37 Type M3 Precision 17 watt iron. quick change tip. Iona life element, styled handle with clip on hook. £4.71

## BIMBOAROS



## DIL

COMPATIBLE BIMBOARDS


## Accept all sizes

 14.50 pin) of DIL IC packages as well as resistors, diodes. capacitors and LEDs. Integral Bus Strips up each side for power lines and Component Support Bracket for holding lamps, switches and fuses etc. Available as single or multiple Units, the tatter mounted on 1.5 mm thick black aluminium back plate which stand on non slip rubber feet and have 4 screw terminals for incoming power.BIMBOARD 1 has 550 sockets, multiple units utilising 2.3 and 4 BIMBOARDS incorporate 1100,1650 and 2200 sockets, all on 2.5 mm (0.1") matrix.

BIMBOARD 1 f 8.23
BIMBOARD 2 f19.99
BIMBOARD 3 £29.07
BIMBOARD 4 £38.14
DESIGNER PROTOTVPING SYSTEM 1. 2. or 3 BIMBOARDS mounted on BIM 6007 BIMCONSOLE with Integral Power Supply $1 \pm 5$ to $\pm 15 \mathrm{Voc} @ 100 \mathrm{~mA}$ and fixed $+5 \mathrm{Vdc} @ 1 \mathrm{~A}$ All O/P's fully isolated. Short circuit and fast fold back protection. Power rails brought out to cable clamps that accept stripped wire or 4 mm plug.

DESIGNER 1 £58.65
DESIGNER 2 £64.97
DESIGNER 3 £71.30

RST
Valve mail order co.
Climax House
Fallsbrook Road, London SW16 6ED
SPECIAL EXPRESS MAIL ORDER SERVICE


Open daily to callers: Mon.-Fri. 9 a.m.-5 p.m Valves, Tubes and Transistors . Closed Saturday Prices correct Terms C.W.O. only - Tel. 01-677 2424-7
Quotations for any types not listed S.A.E.

AURA SOUNDS
FOR WERSI KITS
14/15 ROYAL OAK CENTRE BRIGHTON ROAD, PURLEY, SURREY.

01-668 9733

SEE THE

## 'SOUND COMPUTER'

THE LATEST "STATE-OF-THE-ART" ADDITION TO WERSI ORGANS

Send $£ 1$ for our 104 page full colour Catalogue and Price List.

## AURA SOUNDS 17 UPPER CHARTER ARCADE BARNSLEY, YORKSHIRE 02265248

## STORAGE CABINETS



Metal Cabinets $12^{\prime \prime}$ wide $\times 5 \frac{3^{\prime \prime}}{4}$ deep, finished blue with transparent plastic drawers.

Type $\quad \mathrm{H}$ No. of Drawers Price (ins) Sm MedLge

1118	11	15	2	1	$\mathbf{£ 9 . 8 5}$
1633	16	30	2	1	$\mathbf{£ 1 2 . 7 5}$
1838	18	35	2	1	$\mathbf{£ 1 4 . 9 5}$
2236	22	30	4	2	$\mathbf{£ 1 6 . 8 5}$
2260	22	60	-	-	$\mathbf{£ 1 6 . 9 5}$

Prices include VAT and Post. Cheque/P.O. to: Millhill Supplies (Tools),
35 Preston Crowmarsh, Benson, Oxon OX9 6SL.

## PROGRESSIVE RADIO 31, CHEAPSIDE, LNE RPOOL LZ 2 DY

SEMICONDUCTONS. CLOBD 400 V 2.5A SCR 20p. TBABOO 20p. 7418 PIN 22p. NE555 24p. 1 M 340040 D有

MAIMIATURE MAINE TRANEFORME ERE. ALL 24OVAC PRIMARY. 6-0-6 100 mA . 9 -0-9 75mA. 12-0-12 50 mA all 7ep each. 12-0.12 100 mA 86p. 12 V 500 mA sep. 0-6V-0.8V 280 mA ह1. 30 p .
PWLaE TMAE
anly 15 mA drain 4 voltagas
LOUD BUZZ En. $6-12$ volts $83 p$. GPO trpe adiuntable buzzer $6-12$ valts 27 p .
POCKET MULTIMETER. MODEL WHEE 2.000 ohms per volt, 1.000 wolt AC/DC, 100 mA DC Currom. 2 resistance rangos to 1 mog EE.O4p.
MURATATRAMSDUCERE. 40KH2. REC/SENDER CJ. 60 pair.
MOTONA. 3V model type 22p. 12 V model 5 pote 3ip. Replacement 12 VDC 8 track motors 8 Bp . Ex equip $5-7$ nolt

 aplitrer 1 in 2 out the
SPECIAL OFFER ETEREO MEADPHONES. 8 otrms, adjustable, standard stereo plug onty $\mathbf{C 2} .86 \mathrm{p}$

180 KHz , R29.91p.
MINIATUAE THE PIN MICROPHOWE. Omnd, 1 K imp , Uses deat aid battory (suppliad) C4.88p. LOW COETT

 metal case only $\mathbf{2 7 , 7 5 p}$.

BPECIAL OFFER TAPE MEAD DEMAONETIEEM, 240 VAC with curvec probe only EZ.esp.


# Simply ahead! 

## HIGH PERFORMANCE MODULAR UNITS BACKED BY NO-OUIBBLE 5 YEAR GUARANTEE




## RECEIVERS AND COMPONENTS

TURN YOUR SURPLUS Capacitors, transistors, etc., into cash. Contact COLES-HARDING Co., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settlement.
electronic components. Send S.A.E. for List. Special Offers monthly. Radnor Supplies, 23 Arbury Road, Nuneaton, Warwicks.

tunbridge wells components, Ballards, 108 Camden Road, Tunbridge Wells. Phone 31803. No Lists. Enquires S.A.E.

SURPLUS stocks of Electronic Components at less than wholesale prices. SAE brings free lists. Bardwell Ltd. 212 Stubley Lane, Dronfield-Woodhouse, Sheffield, S18 5YP.
COMPONENTS AT SILLY PRICESI Mixed Resistors: 250 f1.20, $1000 £ 3.60$. Capacitors: $100 £ 1.00,500 £ 3.20$. Transistors: BC108, BC214 10 70p. 100 f5.80. Mixed Components, Hardware, Boards 101bs £3.50. S.A.E. Lists. W.V.E.3, Craigo Farm, Tintern, Gwent.
P.C.B.s Paxolin $10 \frac{1}{2 "}^{\prime \prime} \times 4 \frac{2^{\prime \prime}}{} 4-\varepsilon 1.30,12^{\prime \prime} \times 9 \frac{1}{2} 85 p .16^{\prime \prime} \times$ $11 \frac{1}{1 "}$ 21.40. D.S. $10^{*} \times 8 t^{\prime \prime} 85$ p. Fibre Glass $12^{\prime \prime} \times 7 \frac{1}{2}^{\prime \prime}$ E1.60. D.S. $101^{\prime \prime} \times \mathbf{7 " ~}^{\prime 2} £ 1.35 .8^{\prime \prime} \times \mathbf{7 " ~}^{\prime \prime} \mathrm{E1.15}$. Unit with 8 silicon diodes $600 \mathrm{~V} 20 \mathrm{amp}, 8$ SCRs $400 \mathrm{~V} 16 \mathrm{amp}, 6$ Vinkors. W.W. resistors etc. E6.75. 300 small components, rans. diodes $£ 1.55$. 7 lbs . assorted components $£ 3.75$. Ust 15p refundable. Post 20 p . Insurance add 15 p .

> J.W.B. RADIO

2 Barnfield Crescent, Sole, Cheshiro M33 1 NL

ELECTRONIC COMPONENT. Quick delivery, wide range from stock. Catalogue on request. J. R. Hartley Electronic Components, 78B High Street, Bridgnorth, Salop, WV 16 4DY.

100 MIXED COMPDNENTS $£ 2.75,10$ LEDS 90 p Lists 15 p . Sole, 37 Stanley Street, Ormskirk, Lancs. L39 2DH.

## SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $\mathbf{f 6 . 6 0}$ per single column centimetre (minimum 2.5 cms ). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

## Publishers Announcement

Due to increases which may have taken effect since this issue went to press, we strongly advise readers to check with advertisers the prices shown, and availability of goods, before purchasing.

## EDUCATIONAL

## TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Full details from:

## ICS SCHOOL OF ELECTRONICS

Dept. M272 Intertext House, London SW8 4UJ Tel. $01-6229911$ (all hours) State if under 18

CITY \& GUILDS EXAMS
Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

## ICS SCHOOL OF ELECTRONICS

DepL M272 Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

## COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
DepL M272 Intertext House, London SW8 4U Tel. 01-6229911 (all hours) State if under 18

## CAPACITY AVAILABLE

PRINTED CIRCUIT BOARDS. Quick deliveries, comperitive prices, quotations on request, speciality small batches, larger quantities available. Contact: Mr. J. K. Harrison, Jamieson Automatics Lid., $1 / 5$ Westgate, Bridlington, North Humberside. Tel: (0262) 74738/77877

## AERIALS

## AERIALBOOSTERS

Improves weak VHF Radio and Television reception.
B45-UHF TV, B11-VHF Radio. B11A-2 metre radio. For next to the set fitting
Price £5. S.A.E. for leaflets.

## ELECTRONIC MAILORDER LTD, 62 Bridge Street.

Ramsbotton, Bury, Lancs, BLO 9AG.

## TAPE EXCHANGES

RECORDER owners (cassette/reel) can now speak to the world! All ages . every interest. Send stamp WOR LDWIDE TAPETALK, 35 The Gardens, Harrow.

## LADDERS

LADDERS. Varnished $25 \frac{1^{\prime}}{2}$ ext. $\mathbf{4 0 . 3 4 .}$ Carr. £3. Leaflet Callers Welcome. Ladder Centre (PEE5) Halesfield (1) Telford 596644.

## FOR SALE

MK 14 Working, improved keyboard and revised monitor, extra PROM'S \& Programmer kit, extra KEMITRON programming manual $\mathbf{£ 6 0 . 0 0}$. Baguley, St. Leonards House, Ashtree Close, Worlingham, Nr. Beccles, Suffolk
ITT 9099X Dual JK Flip Flops Brand New I0 for f1. 50 for. £4.50. Add 20p Post. Simpson, 2 Neville Street, Norwich, Norfolk.

NEW BACK ISSUES of "PRACTICAL ELECTRONICS" available $70 p$ each Post Free. Open P.O./Cheque returned available 70p each Post Free. Open P.O./Cheque returned
if not in stock - Bell's Television Services, 190 Kings Road, if not in stock - Bell's Television Service
Harrogate, N. Yorks. Tel: (0423) 55885.

QUARTZ Quality Battery Clock Movement to make your own clock, with straight or serpentine hands, $\mathbf{8 5 . 7 5}+30 \mathrm{p}$ P\&P. Mosswood Supplies, 6 St. Helens Crescent, Benson, Oxford.
CHART RECORDER "Matushita" Twelve Range - Six Spued £135 ono. 10 Weston Court, Eaton Socon, Cambs. $0480-215824$.

## RECORD ACCESSORIES

\$TYLI Cartridges for MUSIC CENTRES, \&c. FREE List No. 29 for S.A.E. includes Leads, Mikes, Phones \&c. FELSTEAD ELECTRONICS, (PE), Longley Lane, Gatley, Cheadle, Ches. SK8 4EE.

## SERVICE SHEETS

bell's television senvices for Service Sheets on Radio, Tv, etc $£ 1.00$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel:(0423) 55885.

SERVICE SHEETS from 50 p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leona'ds, Sussex.

## WANTEO

WANTED - C. R. Tube - For D43 Telequipment Scope. Type GEC-1074H. Phone weekends. 0254885672.

## BOOKS AND PUBLICATIONS

COMPLETE REPAIR information any requested T.V. $\mathrm{f5}$ With diagrams $\mathbf{£ 5 . 5 0}$ ). Any requested service sheet for E1. plus SAE. SAE brings newsletter + special offers - service sheets from 50 p, bargain vouchers, unique publications.
AUS (PE) 76 Church Street, Larkhall, Lenerkshire
ROMANIAN ELECTRONDGRAPHY, tobioscopes, electrokinesis, biogravity, hallucinophotography, dermoptics, psychotronic generators, Kirlianography. SAE $4^{\prime \prime} \times 9^{\prime \prime}$ PARALAB, Downton, Wilts.

## TTL DESIGN CONSIDERATIONS

A booklet packed with infomation on TTL circuit building. Debouncing, decoupling, fan out, floating, buffers, open collector gates, regulators, race huzards, clocking, sinking, ground planes, cascading, simple interfacing, and much more. If you use TTL this has got to be helpful - well illustrated. $75 p$ inclusive of $P$ \& $P$, etc.

## PAWBROOKS

117 Blenheim Road, Deal, Kent

## P.C. BOARDS

FOR INDUSTRY 'and' THE AMATEUR

- One off or production runs
- Assembly of P.C.Bs or kits
- Expert hand soldering
- Design service if required
- Artwork \& Photography

SEAHORSE ELECTRONICS LTD. Unit 2 Picow Farm Road Service Industry Estate, Runcorn, Cheshire. (09285) 75950

ULTAASONIC TRANSOUCERS. $£ 2.85$ per pair $+25 \mathrm{p} \mathbf{P}$ \& $\mathbf{P}$. Dataplus Developments, 81 Cholmeley Road, Reading, Berks.

```
[HIGH OUALITY .
 From your own artwork master negative or positive
 Manufoctured in 0
 Manufacturad in giass fibre tinned and drilled
 smervice for prototypes and &mall production runs
 Gold plating for reliability where edge connecto
 ANODISED SELF ar% usad
 WITHLLEGENDSSCIA PANELS
 Manufactured from your own artwork mastor
 us colours availabia brushed and satin finish
 Expreseservice and competitive price:
 Send artwork or phone for prices
 .125W 5%C.F.Resiotors E12 Suries 1p aach
 IN4148 Diodes 2p each
 Ecoscope Instruments Lid.
 Clyde Workshops,Fullarton Road, Giasgow G32
 01-641 7863
```

            P.C.B's from P.E. DESIGNS
            in high qualfy glass fibre flux varnished \& drilled
    Dec. 78 Guitar Multiproc. Set f9.35; Jan. 79 o \& $\&$ X'Ser E 8.22
Feb. 79 Pulse Gen E1.35; Mar. 79 H/L Warning E1.38
Apr. 79 Phaser $\mathrm{E1.36}$. Sequencer PSU £1.12; Bleeper 78p
May 79
Autorange Multimeter set $\mathbf{~ E 5 . 8 5 ; ~ S o u n d ~ s w i t c h ~} 90$
Jui. 79 Micro Eval $1 / 0$ unit 74p
Aug. 79 Chimesonic Main board $\mathbf{\text { E1.85; Melody Module 65p }}$
Chimesonic Main board £1.85; Melody
For latest prices ring (0254) 73755 .
Quotations for p.c.b's from customers' artworks. 7375 .
P.H., W.K., \& I. Yotes, 22, Ambtoside Drive.
Terms CWO 25p P\&P on orders fess than f10

## GUITAR/PA

## MUSIC AMPLIFIERS

100 watt superb treble/bass overdrive. 12 months guarantee. Unbeatable at 民44; 60 watt $\mathrm{E37} ; 200$ watt $\mathbb{5} 59 ; 100$ watt
twin channel sep. treble/bass per channel $\mathrm{EB8} ; 60$ watt \&48; 200 watt E72; 100 watt tour channel sep. trable/bass per channel E75; 200 watt E92; slaves 100 watt $£ 32 ; 200$ watt f50; tuzz boxes, great sound es-50; bass fuzz E9-80; overdriver fuzz with treble and bass boosters E15.50; 100 watt combo superb sound overdrive, sturdy construction, castors,
unbeatable $£ 90$; win channel $\mathrm{E100}$; bass combo $\mathrm{E100}$; speakers 15 in . 100 watt $£ 35 ; 12 \mathrm{in}$. 100 watt $£ 23 ; 60$ watt E15.00; microphones Shure Unidyne B E26. Send cheque or P.O. to:

## WILLIAMSON AMPLIFICATION

62 Thorncliffe Avenue, Dukinfield, Cheshire.
Tel: 061-344 5007 or 061-308 2064

SOLAR CELLS, Batteries, Panels, Thermoelectric Generators, heat pipes, books etc., Details; Edencombe Ltd., 34 Nathans Road, N. Wembley, Middx. HA0 3RX.


# CABINET FITTINGS <br> Stage Loudspeakers and Ampllifier Cabs Frotcoths, Coverings, Strap \& Recess, Hondes, Feet, Castors, Jocks \& Sockers, Connons, Bulgin 8 wors, Reverb Troys, Locks \& Hingos, Corners, Trim, Speaker Bolss etc. <br> Send $2 \times 9_{p}$ Stamps for samples and illustrated catalogue <br> ADAM HALL (P.E. SUPPLIES) <br> Unit 3. Cartion Court. Grainger Road <br> Southend-on-Sea, Essex. 

CLEARING LABORATOAY. Scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.

## NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Heceiver Kit. Only $\boldsymbol{z} 10.25$ plus 25p P. \& P. Brain-Freeze' 'em with a MINI-STROBE Elec* tronics Kit, pocket-sized 'lightning flashes', varispeed. for discos and parties. A mere $\mathbf{E} 4.50$ plus 25 p P. \& P. Fxperiment with a psychedelic DREAM AR. or prick up faint speech/sounds with the BIG FAR sound-catcher: ready-made multi-function modules. 25: each plus 25 p P. \& P.
LOTS MORF! Send 25p for lists. Prices include VAT.

## BOFFIN PROJECTS

4 Cunliffe Road, Stoneleigh
Ewell, Surrey (P.E.)

## RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME
FULL RANGE AVAILABLE. SAE FOR LSTSS. E1.25 for
 call Sandwell Piant Lid. 2 Union Drive, BOiLMERE. SUTTON COLDFIELD. WEST MIDLANDS. 0211.3549764 . or see them at TLC. 32 Craven Street. Charing Cross.
ondon WC2.

## ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for $£$ $\qquad$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)



NAME	Send to: Classified Advertisement Manager PRACTICAL ELECTRONICS
ADDRESS.	GMG, Classified Advertisements Dept., Room 2337, King's Reach Tower, Stamford Street,
	London SE1 9LS. Telephone 01-2615846 Rate:
	20p per word, minimum 12 words. Box No. 60p extra.
Company	Street. London SE1 9LS.

"Stop Press UK 101 Compatible!
GOLOUR

## rour

NASCOM!

## 

## DAZZUING COLOUR GRAPHICS FDR NASCOM 1

Genuine bit-addressable "pixel" system for straightforward programming of pictorial or mathematical functions.
8 Colour display plus 8 colour independent background facility. Full documentation with FREE SOFTWARE: powerful sub-routines for vector generation, demonstration program for animated effects. All runs in Nascom 1 without exparsion. Complete with UHF Colour Modulator for operation with normal colour TV set. Superior design allows connection to most other microprocessor systems - send us diagrams etc of your b \& w video circuitry for free advice. Don't be fooled by the price: this is a top quality product which will rransform your computer.

NOW AVAILABLE FOR $\& 5 \begin{aligned} & \text { Inclusive of VAT } \\ & \text { and posiage. }\end{aligned}$ LIMITED PERIOD AT

WTLLAAM Oower Howse, sillericay Road. whas

STLAAI Herongate. 8 rent
Essex CM
CM

PRACTICALELECTRONICS P.C.B.'s Professional quality glass fibre Fry's rolier timned and drilled.
${ }_{\text {Apr. }} \mathbf{7 9}$ Phaser (EG60) 98p.
May 79 Sound operated switch (ES9) 88p.
Auto ranging multimeter. Sot of 5 pct's 85.70
Aug. 79 Door Chime EG140/3 Set of two 11.80
Sept. 79 Wavelorm Generator EG181 £1.30
For full list and current pobt's pl.
for full list and current pct's please send SAE. Pcb's also produced from customers own masters. Trade enquiries welcome. Please write for quote.


CWO please.

## PROTO DESIGN

14 Downham Road, Ramsden Heath Bilericay, Essex CM11 1Pu

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4 Reg. Office 22 Coningsby Gardon.

ENAMELLED COPPER WIRE				
swG	1 lb	8 oz	40 oz	$20 x$
10 to 19	2.83	1.55	. 80	64
20 to 29	3.03	1.76	1.00	75
30 to 34	3.25	1.86	1.07	. 80
35 to 40	3.60	2.08	1.22	89
41 to 43	4.84	2.71	2.07	1.38
44 to 46	5.37	3.25	2.29	1.80
47	8.37	5.32	3.19	1.91
48 to 49	15.96	9.58	6.38	3.5

## SILVER PLATED COPPER WIRE

$14,16,18$	4.30	2.39	1.53	1.00
$20 \& 22$	5.32	3.03	1.85	1.13
24826	6.06	3.57	2.13	1.30
$28 \& 30$	7.00	4.10	2.50	1.53
Fluxcore $60 / 40$	Solder	22 swg	65 ft	90 p

Tinned Copper Wire. $6 \mathrm{~mm} 23 \mathrm{swg} 1 \mathrm{lb} £ 4.00 \quad 10 \mathrm{lbs} £ 20$ Wire Wrapping Wire 30 awg 82 ft 51.10 Wire Wrapping Tool \& 4 Reels
c6.00

## CABLES

BbLE			Me
	$13 / 2 \mathrm{~mm}$	2.5 amp	
2 WAY	161.2 mm	2.5 amp	${ }^{16}$
3 WAY	$24 / 2 \mathrm{~mm}$	6 amp	24p
3 WAY	$32 / .2 \mathrm{~mm}$	10 mmp	32p
3 WAY	$14 / .2 \mathrm{~mm}$	2.5 amp	16p
4 WAY	14.1 mm	. 75 amp	30p
4 WAY	71.2 mm	1.4 amp	30p
6 WAY	$14 / 2 \mathrm{~mm}$	2.5 amp	45p
10 Way	71.2 mm	1.4 amp	60p
1 CORE	71.2 mm	Screened	12p
2 CORE	$7 / .2 \mathrm{~mm}$	Each Screened	16p
2 CORE	$7 / 2 \mathrm{~mm}$	Screened	14p
4 CORE	$7 / .2 \mathrm{~mm}$	Screened	30p
LO LOSS	Co-Axial		25p
Prices include P \& P and VAT. Orders under £2 please add 20p.			

MAKE YOUR OWN PRINTED CIRCUITS
Etch Resist Transfers - Starter pack (5 sheets, lines, pads, I.C. pads) $£ 1.55$. Large range of single sheets in stock at 32 p per sheet.
Ferric Chloride - 1 ib bags 80p (P\&P 50p)
Master Positive Transparencies from P.C. layouts In magazines by simple photographlc process. Full instructions supplied. 2 sheets ( $20 \times 25 \mathrm{~cm}$ ) negative paper and 2 sheets ( $18 \times 24 \mathrm{~cm}$ ) positive film E1.30.
S.A.E. lists and information. P\&P 25p/order except* P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

## MORSE CODE TUITION AIDS

Cassette A: 1-12 w.p.m. for amateur radio examination, Cassette 8: 12-24 w.p.m. for professional examination
preparation. Each cassette are type C90. Morse by light system avaliable. Morse Key and 8 uzzer unit tor sending practice. Prices each cassette (including booklets) $£ 4.75$. Morse Key and 8 uzzer £6.50. MHEL ELECTRONICS (Dept. PE) Longshore Way, Milton
Portsmouth P04 8LS.


SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low $90 p$. Chassis punching facilities at very competitive prices, 400 models to choose from. Suppliers only to Industry \& The Trade. BAZELLI (Dept. No. 23), St. Wilfrids, Foundry Lane, Halton, Lancaster, LA 6LT.

## RYDER ORGAN SYSTEM (Wireless World)

A classical design with full-size keyboards. Couplers, capture, etc., can be included.
Cassette. p.c. boards, data, from:-
HIKON LTD. (P),
Woodside Croft, Ladybridge Lane, Bolton BL1 5ED.

## BUILD A SYNTHESISER!

## NO Special skils



## Using Dewtron (Reg'd) PROFESSIONAL MODULES

Over 20 different electronic modules to select what 'YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, welltried range of Dewtron synthesiser and other effects modules.

Send $\mathbf{2 5 p}$ for Musical Miracles Catalogue NOWI

## D.E W. LTD.

254 RINGWOOD ROAD, FERNDOWN, DORSET BH229AR

## FOR YOUR GUIDANCE

## VALUE ADDED TAX

In view of changes affecting V.A.T. at the time of going to press, readers should ensure that they have added the correct amount of V.A.T. before ordering.
Export orders are not subject to the addition of Valuet Added Tax.


## -N-TER L-O C.K.I-N.G PLASTIC STORAGE DRAWERS



Newest, neatest system ever
devised for storing small
parts and components: resistors. 5 SILES Rigid plastic units interlock together in

AL INTERLOCK vertica and horizonta combinations.
Transparent plastic drawers have label slots. 10 and 20 have space dividers. Build up any size cabinet for wall. bench or table top.
As supplied to Post Office, Industry and Government Depts.
SINGLE UNITS (10) ( $5 \mathrm{in} \times 2$ in $\times 2 \mathrm{tin})$ ©3.50 DOZEN. DOUBLE UNITS (2D) ( $5 \mathrm{in} \times 4 \frac{1}{2} \mathrm{in} \times 2$ in) $£ 5.50$ DOZEN. TREBLE ( 30 ) $£ 5.50$ for 8 .
DOUBL.E TREBLE 2 drawers, in one outer case (602). EXTRA LAR

PLUS QUANTITY DISCOUNTS Orders over C 20 , less $5 \%$. Orders over f 60 , less $71 \%$, PACK-
ING/POSTAGEARRRIAGE: Add f 1.00 to all orders under f 10 . Orders f10 and over, please add $10 \%$ carriage. Plesse add $15 \%$ V.A.T. to total remittance.


Modern, slim-line power panel, countless uses in home, be mounted on wall or trailed anywhere in room. Neat rubber bese. Sman PVC outer cover, Elack 83.50 . White EX.70. P\&P 60p

FLAIRLINE SUPPLIES(P.E.10)
124 Cricklewood Broadway, London N.W. 2 Telephone 01-4504844

## MICROPROCESSORS AND

## MICROCOMPUTERS

Their Use and Programming by E. Huggins

Price: $\mathbf{£ 5 . 6 0}$

## IC CONVERTER COOKBOOK

by W. G. Jung
Price: $\mathbf{£ 8 . 9 0}$

## A SIMPLE GUIDE TO HOME COMPUTERS

## by 5 . Ditlea

Price: $£ 4.00$

## OPERATIONAL AMPLIFIERS 2nd ed

by G. B. Clayton Price: $\mathbf{£ 1 0 . 0 0}$
RADIO \& ELECTRONICS FOR
TECHNICIAN ENGINEERS
by D. A. Jacobs
Price: $\mathbf{£ 4 . 5 0}$
MICROCOMPUTER-BASED DESIGN
by J. B. Peatman Price: $\mathbf{£ 5 . 5 0}$

## UNDERSTANDING DIGITAL ELECTRONICS

 by G. McWhorter Price: $\mathbf{£ 3 . 9 0}$
## MICROPROCESSOR INTERFACING

TECHNIQUES
by A. Lesea
Price: $£ 8.00$
MICROPROCESSORS FROM
CHIPS TO SYSTEMS
by R. Zaks
Price: $\mathbf{£ 8 . 0 0}$
PROGRAMMING THE 6502
by R. Zaks
Price: $\mathbf{£ 9 . 0 0}$
*ALL PRICES INCLUDE POSTAGE*
THE MODERN BOOK CO.
BRITAINS LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET LON DON W2 1NP

Phone 01-7234185
Closed Saturday 1 p.m.

## INDEX TO ADVERTISERS

Acorn Computors
Adam Hall (P.E. Supplies)
Aitken Bros
Astra Pak
Aura Sounds
AU.S.
Barrie Electronics
Bi-Pak
Bi-Pre-Pak
Birkett J.
Boffin Projects
Boss Industrial
Breadboard
British National Radio \& Electronics
School
Calscope
Cambridge Learning
Chromasonic...
Chromatronics
ClefProducts
Codespeed
Commodore Business Machines
Computor Components (Teleplay
Continental Specialties Corporation U.K. Ltd
Crescent Radio
Crimson Elektrik
Crofton Electronics
C.R. Supply Co.

Delta Tech
Digisound
Dudley \& Co. Lid., John
Ecoscope Instruments Ltd
E.D.A.

Electronic Mail Order Ltd.
Electrovalue
Fladar
Flairline Supplies
Fringewood Electronics
Heathkit
Hiykon Lid.
Home Radio
H.S.B.C.
I.C.S. Intertext
L.P. Electronics

Javen Developments
J.W.B. Radio

## Kay \& Co.

L\& Electronics
Maclin-Zand
Maplin Electronics
Marshall A. (London) Ltd.
Metac
Mhel Electronics
Microdigital
Mill Hill Supplies
Modern Book Co.
Monolith
Newtronics
Noble Electronics
P.H.W.K. \& I. Yates
P.K.G. Electronics

Pawbrooks
Phonosonics
Progressive Radio
Proto Design
Radio Component Specialists
Ramar Constructor Service
R.S.T. Valve Mail Order

Radio \& T.V. Components
Romane Electronics
Sandwell Plant Ltd.
Saxon Entertainments Science of Cambridge Scientific Wire Co.
Seahorse Electronics Lid.
Sentinel Supply
Service Trading
Sparks Developments
Squires, Roger
Stevens Electronic Components
Sumico Ltd.
Swanley Electronics
Tandy
T.K. Electronics

Technomatic
Tempus
Transam Components
T.U.A.C.

Watford Electronics
William Stuart Systems Ltd
Williamson Amplfication
Wilmslow Audio

BUYING TIME?
Make sure it's CASIO

New Lithium batteries outlast most solar watches. From Casio's New Collection comes one of the most sophisticated executive watches availmble today,

THE 8ICS-36B
ALARM CHRONOGRAPH
LC Display of hours, minutes, seconds, day; And with day, date, month and year perpetual automatic calendar.

4-5 YEAR BATTERY 1/100 second chronograph to 7 hours.
Net, lap and first \& 2nd place times.
User optional 12 or
24 hour display.
24 hour alarm.
User optional hourly chime.
Backlight.
Mineral glass.
Stainjess steel case.
Water resistant to
$100 \mathrm{ft}(3 \mathrm{at})$
£35.95


CASIO F-8C 3 YEAR BATTERY 8 digit display of hours, minutes, seconds and date with day \& am/pm. Auto calendar. Backlight. Resin case and matching strap. Mineral glass. Water resistant to 66 ft (2 at.) RRP $£ 12.95$
$£ 10.95$ for money

## CASIO F-200

Sports chrono
Hours, minutes, seconds, $\mathrm{am} / \mathrm{pm}$; and with day, date and month auto calendar. $1 / 100 \mathrm{sec}$ chrono to
1 hour.
Net, lap and 1st \& 2nd
place times.
Resin case and matching
strap
Mineral glass.
Water resistant to
66 ft (2 at.)
Silver oxide battery.
RRP £ 17.95


## $£ 15.95$

NEW LOWER PRICES
Casio 95QS-31B chronograph
£23.95
Casio 95CS-31B chronograph
$£ 29.95$
MELODY $80 \quad$ Now only $£ 23.95$
ISNT IT WORTH PAYING A LITTLE MORE FOR QUALITY AND RELIABILITY?

Fully guaranteed for 12 months.
Most CASIO products availabie from stock.
Send 25p for illustrated brochures of this superb range of quality watches and calculators.

Price includes VAT and P \& P. Send your Company order, cheque, P.O. or phone your ACCESS or BARCLAYCARD number to:-


RELAYS SIEmens, plessey, etc. VARIABLE VOLTAGE TRANSFORMERS

RELAYS. WIOE RANGE OF A.C. An DOLC. RELAYS FT3 NEON FLASH TUBE
High intensity multr turn high voltage, neon glow
discharge flast
 $\stackrel{\square}{\square}$ inc. VAT \& PI RODENE UNISET TYPE 71 TIMER 0.60 sec. 230 V a.c. operation. Incor
porating a lapsed time indicator and porating a lapsed time indicator and graphy. welding mixing, etc. Price E6.
 WHY PAY MORE? MULTI RANGE METER TYpe MF15A a.c. d.c.
volts 10.50 .250 .500 . 1000 . Ma 0-5. 0 .
 METERS (New) - 90 mm DIAMETER A.C. Amp. Type 62T2. 0 1A 0-5A 0-20A. D.C. D.C. Volt. $0.15 \mathrm{~V}, 0.30 \mathrm{~V}$.
 HEAVY DUTY SOLENOID mi. by
Magnetic Devices. 240 V . A. IntermitMagnetic Devices. 240 V . A.C. Intermit1.25 in. Ex equip. Tested. Price: $£ 4.75$ 1. 75 p . P. \& P. (E6.33 inc. VAT \& P.)
P.
P. A.C. SOLENOID pYe ether lype $176 / 2$
 240 AC. Approx 1 lb at $\frac{1}{\frac{1}{2}}$ inch.
intermittent rating. Price $£ 1$ pspo 20 ( 1.38 inc VAT $+P$ ) WESTOOL TYPE MM8 Model 2. 240 V AC. Approx 1 \& lb pull N.M.S.

18-24V. O.C. 70 ohm Coil Solenoid. Push op Pull. Adjustable travel to $\mathbf{3 / 1 6}$ in. Fitted with mounting brackets and spark sup-
pressor. Size: $100 \times 65 \times 25 \mathrm{~mm}$. Price: 3 for $\mathbf{£ 2} \mathbf{- 4 0}+30 \mathrm{p}$. P. \&
P. (min. 3 off.) ( $\mathbf{£ 3 . 1 1 \text { inc. VAT \& P) }}$ MINIATURE UNISELECTOR 12 volt. 11 -way. 4 bank ( 3 non-bridging P. \& P. 35 P

## zana solemooo oremario

 FLUID VALVERated 1 p.s.i. wit hande up to 7 p.s.i. Forged brass body. stainiess steel core and spring $\frac{1}{2}$
inleto outlet. Precision made. British mig.
PRICE $£ 3.50$ Prost 50 ite PRICE $£ 3.50$ Post 50 p ( $\mathbf{~} 4.60$ int VAT 8 P).


## MICRO SWITCHES

Suti rmin Honevwell roller $\mathrm{m} / \mathrm{s}$ ivpe $3115 \mathrm{~m} 906 \%$.
10 for $£ 2.50$ post paid. ( $£ 2.88$ incl. VAT.) LEVER (IPERATED 20 amp C/O. Mig. by Unimax
USA 10 for E4, P. \& 50 p Imin. order iul
 low insustance co
£2.93(min 10).

## MERCURY SWITCH

## Size $27 \mathrm{~mm} \times 5 \mathrm{~mm}$. 10 for $£ 5.00$

line VAT $£ 6.12$ ) min quantity 10 . 30p P. \& P


## 2-CAM PROGRAMMER

Crouzet 1 rpm. 115 V . A.C. Motor operating 2 Roller Micro
switches ( 4 amp ). Can be used on 240 V a C switches (4 amp). Can be used on 240 V . A.C. with either 0.25
mfd 250 V . Condensor or 5.8 K wirewound Resistor 7 wait. (not
supplied). Price: $\mathbf{£ 2 . 5 0}+50$. P . \& p. ( $\mathbf{~} 3.45$ incl VAT \& P). Suppied.) Price: $\mathbf{f 2} \cdot 50+50$. $p$. 8 p.
A.E.G. CONTACTOR Type iS $6 / \mathrm{L}!1$. Coil 240 V 50 Rs. Contacts -3 make; 600 V :
20 amp . I break: $600 \mathrm{~V}: 20$ amp. Price: $\mathbf{f 5 . 5 0 + 5 0 \mathrm { p } \text { . \& } P \text { . }}$ (E6.90 inc. VAT \& P.).
TORIN BLOWER
 Precision 24 volt. D.C. 0.8 amp Blower that works well on 12 V
0.4 amp D.C. Producing $30 \mathrm{cu} f \mathrm{~min}$ at normal air pressure. C4.50 P. \& P. 75 p (inc. VATE6.04I. N.M.S.

## INSULATION TESTERS NEW!

Test to I E E Spec Rugged metal construction
suitable for bench or field work constant speed suliabie for bench or field work constant speed
clutch Size L 8 in $W 4 \ln \mathrm{H} 6 \ln$ weight $61 \mathrm{l}, 500 \mathrm{~V}$, 500 megohms, f49.Post 80 p ( 557.27 inc. VAT \& P.). 1.000 V 1.000MO. E55. Post 80 p
 Ye64.17inc. VAT \& P. SAE for leafle
Yot another outstanding offor.
IMFD 600 V Dubilier wire ended capacitors 10 for $£ 1.50 \rho 8 p 50 p$. I 2.30 inc VAT * p 8 pl
230 V a.c. FAN ASSEMBLY. Powerful continuously rated a.c. motor
complete with 5 blade 6 tin. or 4 blade 3 in complete with 5 blade $6 t i n$. or 4 blade 3 in.
aluminium fan. Price $£ 3.00$. P. \& P. 65 p aluminium fan. Price $£$
$(£ 4-20$ incl. VAT \& P.).

All Mail Orders Callers Ample Parking Space Showroom open Mon-Fri.

## Very Special Offer: $9-12 \mathrm{~V}$ D.C., 2 make contacts, new I.T.T., 3 for $£ 1.75+25$ p P\&P. (inc VAT $\mathbf{£ 2 . 3 0}$ ). Diamond H heavy duty A.C. relay $230 / 240 \mathrm{~V}$ a.c.., two C/O <br> Diamond H heavy duty A.C. relay $230 / 240 \mathrm{~V}$ a.c. iwo C/O contacts 25 amps res at 250 a.c. $£ 2.50$ p 8 p 50 p . ( $£ 3.45 \mathrm{inc}$

## GEARED MOTORS

4 1 ipm. 115 V ace 50 cycle, mf. SIGMA Inst. Lid. U.S.A. Price: $\mathbf{8} .50+75$ p. P. \& P. (£9.49 inclus. VAT)
supplied with transformer muppled P . 115 V . a.c. 50 cycle approx. 25 b .
mín m. KLAXON.
28 rpm .115 V.
p.c. 201b in. reversible.

Price of either 2 Motors $\mathbf{E 4 . 7 5}$ each $+75 p$.
P. \& P. ( $\mathbf{E 6 . 3 3}$ inclus. VAT). N.M.S. Any of above 3, supplied with Transtormer for 240 V . operation: $£ 7.25 \times £ 1.00$ P. \& P. (£9.49 in19 rom FHP $220 / 240 \mathrm{~V}$. a.c. reversible.
torque 14.5 kg Gear ratio 144 - Brand
new including capacitors. m. CITENCO.
Price: 11425
inclus. VATI. N.M.S. E .25 LT TRANSFORMERS
.10. 5 at 3 amp (ex new equip) $\mathbf{£ 2 . 5 0 ~ P , ~ \& ~ P . ~} 50 \mathrm{p}$ ( $\mathbf{£ 3 . 4 5}$ inc

 $6 \mathrm{~V} / 12 \mathrm{~V}$ at $20 \mathrm{amp} £ 14.70$ P. \& P. £ $1.50 \mid £ 18.63$ inc. VAT 0.12 V at 20 amp or $0-24 \mathrm{~V}$ at $10 \mathrm{amp} £ 12.00 \mathrm{P}$. \& P . C 1.50 (E15.53inc. VAT \& P.)

(E23.58inc.VAT \& P.
$0.10 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V}$ at $10 \mathrm{amp} £ 10.50$ P. \& P. £1.50 (£13.80 in
VAT)
Other



## ULTRA VIOLET BLACK LIGHT

## FLUORESCENT TUBES

4 ft .40 wate $£ 10.00$ ( callers only) $\mathbf{2 f t} 20$ wett $\mathbf{e 8 . 2 0}$. Post 75 p . (£7.99 inc VAT + P) (For use in stan bi-pin fittings) Mir i 12 in.
8 watt £2.80. Post 35 p. \{ $£ 3.62$ inc VAT + P). 9 in. 6 watt $\mathbf{2} .25$ Post 35p. ( 2.99 inc VAT + P). 6 in. 4 watt $£ 2.25$. Post $35 p$.
Complete ballast unit for either $6^{\prime \prime}$. $9^{\prime \prime}$ or $12^{\prime \prime}$ tube $230 \mathrm{~V} A C$ op £3.50. Post 45 p ( $\mathbf{( 4 . 5 4} \mathrm{inc}$ VAT + P). Also available for 12 V 400 wat1 UV lamp and ballast complete f31.50. Post f3.


## SQUAD LIGHT

A new conception in light

 of spotlights. floodlights or dozens of small mains lamps. Seven programs all speed controlled plus flash moclulation, effectlvely
giving 14 different displays. Makes sound-to-light obsolete. giving 14 different displays. Makes sound-to-light obsolete.
Completely electrically and mechanically noise free. S.A.E. (Foolscap) for further details.

Price $\mathbf{£ 6 0 . 0 0}$ p\& p 70 p ( $\mathbf{f 6 9 . 8 1} \mathrm{inc}$. VAT + P).
WIDE RANGE OF DISCO LIGHTING


## Superior Quality Precision Made NEW POWER RHEOSTATS <br> New ceramic construction, embedded

ousiy rated.
25 WATr $10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} \Omega /$


50 WATT $250 \Omega$ £ 2.90 . Post 25 p (f $\mathbf{3 . 6 2}$ inc. VAT \& P.).
100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{kR} / 1.5 \mathrm{k} \Omega / 2.5 \mathrm{k} \Omega$ $13.5 k \Omega$ £ 5.90 p. \& p. 35 p ( $£ 7.19$ inc. VAT).
Black, Silver, Skirted knob calibrated Black, Silver, Skirted knob calibrated in Nos $1.9 \quad 1 \frac{1}{2}$ in.
dia brass bush, Ideal for above Rheostats 24 p each.

## SPECIAL OFFER



## RELAYS

230/240V A.C. Relays: Arrow 2 c/o. $15 \mathrm{amp} \mathbf{£ 1 . 5 0}$ (£1.96 inc
VAT \& P). Omoron or Keyswitch $1 \mathrm{c} / \mathrm{o} .7 \mathrm{amp} \mathbf{~} 1.001+20 \mathrm{p}$ P\&P. Inc VAT £1.38)
D.C. Rel
D.C. Relays: Open type $9 / 12 \mathrm{~V} 3 \mathrm{co} 7 \mathrm{amp} \mathrm{Ef} .00$ ( $£ 1.38$ inc. VAT \& P). Sealed $12 \mathrm{~V} 1 \mathrm{c} / 07 \mathrm{amp}$ octal base. $\mathrm{f1.00}$ ( $\mathrm{f1} 1.38$ inc.
VAT 8 P). Sealed 12 V 2 clo 7 amp octal base. $£ 1.25$ ( $\mathbf{~} 1.67$ inc $V A T \& P$ ). Sealed 12 V 3 elo 7 amp 11 -pin. $£ 1.35$ ( fl 1.78 inc
VAT \& PI. 24 V . Sealed 3 c/o 7 amp il-pin $\mathrm{f} \uparrow .35$ ( f 1.78 inc. VAT \& P) (amps $=$ contact rating). P\&P on any Relay 20 p . VAT \& P). lamps = contact rating). P\&P on any Relay 20 p . N.M.S.
Uther types available - phone for details.

ACCOUNT CUSTOMERS MIN. ORDER $£ 10 \cdot 00$

9 Little Newport Street London WC2H 7JJ
Phone 01-437 0576


A 63-key ASCII keyboard with 625-line TV interface, 4 -page memory and microprocessor interface. Details in our catalogue.


Our catalogue even includes srin' popular car accessories at mar:ellous prices.


A 10-channel stereo graphic equaliser with a quality specification at an unbeatable price when you build it yourself. Full specification in our catalogue.


These are just some of the metal cases we stock. There are dozens of plastic ones to choose from as well. See pages 52 to 57 of our catalogue.


A massive new catalogue from Maplin that's even bigger and better than before. If you ever buy electronic components, this is the one catalogué you must not be mithout. Over 280 pages - some in full colour-it's a comprehensive guide to electronic components with hundreds of photographs and illustrations and page atter page of invaluable data.


Mobile amateur radio, TV and FM aerials plus lots of accessories are described in our catalogue.


A digitally controlled stereo synthesiser the 5600S with more facilities than almost anything up to $£ 3,000$. Build it yourself for less than £700. Full specification in our catalogue.


A superb range of microphones and accessories at really low prices.
Take a look in our catalogue - send the coupon now!


An attractive mains alarm clock with radio switching function and battery back up! Complete kit with case only f. 18.38 (incl. VAT \& p \& p) MA1023 module only $£ 8.42$ (incl. VAT).


[^0]:    14 STATION ROAD, NEW BARNET, HERTFORDSHIRE TEL: 01-441 2922 (Sales) CLOSE TO NEW BARNET BR STATION - MOORGATE LINE $01-4496596$ OPEN - 10am to 7pm - Monday to Saturday

[^1]:    e IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

