PRACTICAL

SAPTEMEER 197e

The Compukit UK101 Character Set
The Compukit UK 101 has
everything a one board 'superboard' should have.

* Uses ultra-powerful 6502 microprocessor.
\# 50 Hz Frame refresh for steady clear picture (U.S.A products with 60 Hz frame refresh always results in iittery displays)
$* \quad 48$ chars by 16 lines
* 48 chars by 16 lines - 1 K memory mapped video system providing high speed access to screen display enabling animated games and graphs.
* Extensive 256 character set which includes full upper and lower case alphanumerics, Greek symbols for mathematical constants and numersus graphic characters enabling you to form almost any shape you desire anywhere on the screen
$\star 8$ full Microsoft Basic in ROM compatible with PET, APPLE SORCERER hence taking the headache out of programming by using simple English statements. Much faster than currently available personal computers.
ware Professional 52 Key keyboard in 3 colours - software polled meaning that all debouncing and key decoding done in sottware
* Video output and UHF Highgrade modulator (8 Mz Bandwidth) which connects direct to the aerial socket of your T.V. Channel 36 UHF
Fully stabilised 5 V power supply including transSt on board
hign reliability program storage interface providing high reliability program storage - use on any tlandard domesic exp
extra 4 user RAM expandable to 8 K on board $\mathrm{\Sigma} 49$ - 40
ttachme expansion interface socket on board for disk cont of extender card containing 24K RAM and disk controller. (Ohio Scientific compatible)
2 K machine code monitor anssible through powerful
- High quality thru plated P.C.B.
plated P.C.B. with all I.C.'s

FULL CONSTRUCTION DETAILS
IN P.E. AUG 1979 EDITION

Delivery date June 1979
at the 1979 MicroComputer Show Customer orders in strict rotation only.

> A tape of 10 programs on cassette educational games, etc. will be supplied free of charge with each kit.

Simple Soldering due to clear and consise instructions compiled by Dr. A.A. Berk, BSc. PhD

NO EXTRAS NEEDED JUST HIT

'RETURN' AND GO.

Build, understand, and program your own computer for only a small outlay.

ONLY $\mathbf{E 2 1 9}+$ VAT
including RF Modulator \& Power supply Absolutely no extras.

Due to the new prices of TTL this price will be increased shortly. So order now to beat the price increases and the rush.

SPECIAL CHARACTERS

$@$ Erases line being typed. then provides carriage - Erases last

CR Erases last character typed
Cine Carriage Return - must be at the end of each line.
Separates statements on a line
CONTROL/C Execution or printing of a list is interrupted at the end of a line.
number IN LINE $X X \times X^{\prime \prime}$ is printed, indicating line number of next statement to be executed or printed. command mode. If an Input statement is encountered either another CONTROL/O is typed, or an error occurs.

Equivalent to PRINT

\section*{COMMANDS}
 CONT LIST NEW NULL RUN

 SIATEMENTS CLEAR DATA DEF DIM ENO FORLET GOTO GOSUB IF.GOTO IF..THEN INPUT LET
NEXT ON.GOTO ON..GOSUE POKE PRINT READ NEXT ON.GOTO ON.GOSUB POKE
REM RESTORE RETURN STOP

EXPRESSIONS

OPERATORS

FUNCTIONS	ABS(X) LOG(X) SPC(I)	$\begin{aligned} & \text { ATN(X) } \\ & \text { PEEK }(1) \\ & \text { SQR(X) } \end{aligned}$	$\begin{aligned} & \operatorname{COS}(X) \\ & \text { POS(I) } \\ & \text { TAB(I) } \end{aligned}$	EXP(X) RND(X) TAN(X)	FRE(X) SGN(X) USR(I)	$\begin{aligned} & \operatorname{INT}(X) \\ & \operatorname{SIN}(X) \end{aligned}$	OPERATORS $\because+\cdots, \uparrow$ NOT.AND,OR, $>, \ll>,>=<=$ RANGE 10^{-32} to 10^{+32}
				TAN(X)			VARIABLES A, B, C, \ldots, Z and two letter variables
STRING FUNCTIONS	$\begin{aligned} & \text { ASC(} \times \$) \\ & \text { RIGHT } \$(\times \$.1) \end{aligned}$	CHR\$S(I)	$\begin{aligned} & \text { FRE }(X \$) \\ & \text { STR } \$(X) \end{aligned}$	LEFT \$ (XS.I)	$\begin{aligned} & \operatorname{LEN}(X \$) \\ & \operatorname{VAL}(X \$) \end{aligned}$	MIO\$(\times \$, l, J)	The above can all be subscripted when used in an array. String variables use above names plus \$,e.g.A\$.

A,B,C, ..., Z and two letter variables
array. String variables use above names plus $\$$.e.g.AS

Please make cheques and postal orders payable to COMP. or phone your order quoting BARCLAYCARD, ACCESS. phone your order quoting BARCLAYCARD, ACCE
DINERS CLUB or AMERICAN EXPRESS number.
\qquad Vasing -
14 STATION ROAD, NEW BARNET, HERTS. TEL: 01.4412922 (Sales) 01.4496596 OPEN - 10 am to 7 pm - Monday to Saturday

CONSTRUCTIONAL PROJECTS

6 CHANNEL MIXER-1 by S. R. W. Grainger and C. R. Harding
Combines unbalanced signal sources for a well balanced output 18
WAVEFORM GENERATOR by Michael Tooley B.A. and David Whitfield B.A., M.Sc. Sine, Square and Triangular Waves from 1 Hz to 100 kHz 28
COMPUKIT UK101—Part 2 by A. A. Berk B.Sc., Ph.D.
Construction and BASIC definitions 40
SMOOTH FUZZ by D.S. Gibbs and I. M. Shaw C.Eng.
Refined distortion for the discerning musician 62
GENERAL FEATURES
INGENUITY UNLIMITED
Adsr Envelope Shaper-Car Theft Alarm—Diode Tester 24
ACORN COMPUTER by Mike Abbott
Review of 6502 based micro housed on Eurocards 34
STRICTLY INSTRUMENTAL by K. Lenton-Smith
Synth Drums, Vocoder, P.E. Rhythm Unit, Chips 51
V.L.F. SIGNALS AND THE MAGNETOSPHERE by C. R. Francis B.Sc.
Learn about the magnetosphere in readiness for next month's v.l.f. receiver project 52
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices-74AS/74ALS 82S106/7 ICL7600/5 6769
NEWS AND COMMENT
EDITORIAL 17
MARKET PLACE
New products 26
POINTS ARISING 32
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 33
NEWS BRIEFS
Countdown-Move-Colour without mask 37
Joint memories-Two new micro's-Carrot grows bigger-Babes in headphones-In depth defence 68
SPACEWATCH by Frank W. Hyde
Finding a clear window, Radio and optical studies, Red shift key to quasars, Solar power satellites 38
MOTOROLA MICROCOMPUTER FORUM byD.J.D.
Technological progress since the 6800 39
FREE ENTRY COMPETITION
Win some breadboarding from Lektrokit 67
PATENTS REVIEW
Auto-Focus-Stereo via Cable TV 70
OUR OCTOBER ISSUE WILL BE ON SALE FRIDAY, 14 SEPTEMBER 1979
(for details of contents see page 61)

[^0]

All above prices include V.A.T. Send $40 p$ for new fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.

158 Bradshawgate - Bolton - Lancs. BL2 1BA

Logically laid out to accept both 0:3" and 0.6" pitch DIL packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to .85 mm dia.
500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points, plus 4 Integral Power Bus Strips around all edges for minimum inter-connection lengths.
All connection rows and columns are now numbered or lettered enabling exact location indexing.
Double-sided nickel silver contacts for long life (10K insertions) and low contact resistance ($<10 \mathrm{~m}$. ohms)
Easily removable, non-slip rubber backing allows damaged contacts to be rapidly replaced.
No other breadboard has as many individual contacts, offers all these features and costs only $£ 6.20$ each or $£ 11.70$ for 2 - inclusive of VAT and P.P.

Snip out and Post

David George Sales, r/o 74 Cray ford High St., Crayford, Kent DA1 4EF

Another Crofton First Brand Mew Full Specification

10"Metal Cased Industrial Video Monitor

 Video Bandwidth 8MZ (3db down). Ideal for Computer Terminal or General Video Monitor.Complete With Own Power Supply. Input Sensitivity IV Composite.

PRIME TTL \& CMOS AT LOWEST PRICES OF-THE-ART

The professionalscopes you'vealways needed.

When it comes to oscilloscopes, you'll have to go a long way to equal the reliability and performance of Calscope.
Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition.
The Calscope Super 10 , dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations.
The price £ 219 plus VAT
The Super 6 is a portable 6 MHz single beam model with easy to use controis and has a time base range of $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity. Price $£ 162$ plus VAT. Prices correct ot time of going to press

CALSCOPE DISTRIBUTED BY

Watford Electronics,

33-35 Cardiff Road,
Watford, Herts.
Tel: 092340588

Audio Electronics. 301 Edgware Road, London W. 2. Tel: 01-724 3564 Access and Barclay card facilities (Personal Shoppers)

Maplin Electronics Supplies Ltd. P.O. Box 3

Rayleigh, Essex.
Tel: 0702715155
Mail Order

Ilautimius

The Newtronics Keyboard Terminal is a low cost stand alone Video Terminal that operates quietly and maintenance free. It will allow you to display on a monitor 16 lines of 64 characters or 16 lines of 32 characters on a modified TV (RF Modulator required).

The characters can be any of the 96 ASC1 1 alphanumerics and any of the 32 special characters. In addition to upper-lower case capability it has scroll up features and full $\mathrm{X}-\mathrm{Y}$ cursor control. All that is required from your microcomputer is 300 baud, RS232-C or 20 ma loop, serial data, plus a power source of 8 v DC \& 6.3 v AC. The steel cabinet is finished in IBM Blue-Black. And if that is not enough the price is only f 135.55 + VAT as a kit, or $\mathbf{£ 1 7 5 . 0 0 + \text { VAT assembled and tested. Plus }}$ £2.00 P \& P. (Monitor not included)

Dealer and O.E.M. enquiries invited.
To order phone or write:-
138 Kingsland Road, London E28BY
Telephone:017391582.
Access/Barclaycards accepted

KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. MINISONIC Mk. 2 SYNTHESISER

A portable mains-operated Miniature Sound Synthesiser with keyboard circuits. Although having stightly fower racilites than the large P.E. Synthesiser the function offered by this design give it great scope and versatility
Consists of 2 log VCOs. VCF. 2 envelope shapers. 2 voltage controlled amps. Keyboard hold and control circuits. H oacillator and detector. ring modulator, noise generator mixer, power supply
Set of basic component kits (excl. KBD R's
and tuning pots - see list for options available). from $\mathbf{E 6 1 . 0 0}$ Set of printed circuit boards $\quad \mathbf{E 8}$-99
P.E. SYNTHESISER (P.E. Feb. 73 to Feb. 74)

The well acciaimed and highly versatile large-scale mains-operacd sound Syninesieer complete with keyboard ircuits. Other circuits in our lists may be used with the

FORMANT SYNTHESISER (Elektor 1977/78)
Very sophisticated music synthesiser for the advanced constructor who puts performance before price. Details in our lists.

128-NDTE TUNE-PROGRAMMABLE SEQUENCER

(P.E. Nov/Dec 77)

Enables a voltage controlled synthesiser to automatically play pre-progremmed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and rhythmic pattern are externally variable. (Please use order codes quoted in brackets.)

Main Circuit (Nov) excl. sw's (KIT 76-1)
ع18.03
Power Supply (KIT 76-3)
84.72

Trigger Inverter and Alt. Output (KIT 76-2)
LED Counter (KIT 76-4)
PCB (as pubtished) for KITS 76-1 \& 3 (PCB 76A)
f 1.15
PCB for KITS 76-2 \& 4 (PCB 76B)
COMPONENTS SETS include all necessary resistors. capacitors, semiconductors, potentiometers and transformers. Hardware such as cases, sockets, knobs, keyboards, etc. are not included but most of these may be bought separately. Fuller details of kits, PCBs and parts are shown in our lists.
CIRCUIT AND LAYOUT DIAGRAMS are supplied free with all PCBs unless "as published"
PHOTOCOPIES of P.E. texts for most of the kits are available-prices in our lists.

ELEKTOR ELECTRONIC PIANO (Elektor Sept 78)

A touch-sensitive, multiple-voicing 5 octave piano using the latest integrated-circuit techniquess for the keying and hitherto inherent in previous electronic planos. Detalls in our lists.
DIGITAL REVERBERATION UNIT (Elektor May 78)
A very advanced unit using sophisticated i.c. techniques instead of mechanical spring-lines. The basic delay range of
24 to 90 mS can be extended up to 450 mS using the extension unit. Further delays can be obtained using more

extensions.

Main component set (KIT 78-1)

$\mathbf{8 2 . 8 6}$
$\mathbf{f 1 . 0 8}$

ANALOGUE REVERBERATION UNIT (Elektor Oct 78) Using i.c.s instead of spring-lines, the main unit has a maximum delay o up to extends this up to 200 mS . May be used in either mono or sterco mode.
Main component set (KIT 83-1)
Additional Delay Set (KIT

$\mathbf{£ 2 8 . 1 8}$
$£ 18.25$

Additional Delay Set (KIT B3-2)
PCB (as published) to hold both above
kits (PCB 9973)
ع4.31

RESONANCE FILTER (Elektor Oct 78)

This filter module has been designed to allow a synthesiser to produce a more realistic simulation of natural musical instruments.
$\begin{array}{ll}\text { Basic component set (KIT 82-1) } & \mathbf{£ 1 6 . 1 0} \\ \text { PCB (} \mathrm{Es} \text { published) (} \mathrm{PCB} \text { 9951) }\end{array}$

SYNTHESISER EXTERNAL INPUT INTERFAGE

(P.E. Oct 78)

This unit allows external inputs, such as guitars, microphones etc. to be processed by the clrcuits within a Basic component set (incl PCB) (KIT 81-1) $£ 2.94$
GUITAR MULTIPROCESSOR (P.E. Dec/Fob 78)
An extremely versatile sound processing unit capable of producing, for example, Flanging, Vibrato, Reverb, Fuzz and with mast electronic instruments. Details in our Hists. RHYTHM GENERATOR KITS
Several available - details in our lists.
GUITAR FREQUENCY DOUBLER (P.E. Aug. 77)
A modified and extended version of the circuit published.
Component set and PCB
guitar sustann (P.E. Oct 77)
Maintains the natural attack whilst extending note duration $\begin{array}{ll}\text { Component set, PCB and fotet switches } & \text { es.13 } \\ \text { Component set. PCB and panel switches } & \text { £3.71 }\end{array}$

WIND AND RAIN UNIT
A manually controlled unit for producing the above-named sounds.
Component set (iricl. PCB)

GUITAR OVERDRIVE UNIT (P.E. Aug. 76)

Sophisticated. versatile Fuzz unit, including variable and switchable controls affecting the fu 22 quality whilst retaining the attack and decay, and also providing filtering. Does no be used with it and with other electronic instruments. $\begin{array}{ll}\text { Component set using dual slider pot } & \text { E7.68 } \\ \text { Component set using dual rotary poi } & \text { E. }\end{array}$ Component set using dual rotary pot

FUZZ UNIT

Simple Fuzz unit besed upon P.E. "Sound Design" circuit. Component set (incl. PCB)

TREMOLO UNIT

Based upon PE. Sound Design circuit
Component set (incl. PCB)
£2.94
TREBLE BOOST UNIT (P.E. Apr. 76)
Gives a much shriller quality to audio signals fed through it
The depth of boost is manually adjustable.
Component set (incl. PCB)

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

P.E. STRING ENSEMBLE (PE Mar-July 78)

The new keyboard string-instrument synthesiser.
asic component sets:
Power Supply (KIT 77-1)
Tone Generator (KIT 77-2)
Diode Gates (KIT 77-3)
Chorus Generator (KIT 77-4)
f8.77

Voicing System (KIT 77-5)
£19.08
Dou Circur Boands:
位e-sided PCB for Power Supply, Tone Generator \& Diode Gates with most of the Matrix wiving as printed tracking

PCB for Chorus Generator (PCB 77C)
PCB for Voicing System (PCB 77D)
18.40
$£ 2.65$

PCB for Voicing System (PCB 77D)
P.E. JOAMIHA PLUS DRGAM VOICING

The basic five octave electronic piano (P.E. May/Sept 75 and Sound Design) has switchable alternative voicings for HonkyTonk, ordinary piano, and harpsichord or a mixture of any of these loud and soft pedal switching and sustain pedal switching The loud and soft pedal switching, and sustain pedal switching. The modication in the circultry associated with the piano switchad pitches vargan-voice envelope facility with 5 switchable pitches, variable attack and sustain, phasing and vibrato.

Set of components (excl switches) for PSU, Frequency generator, Pitch and Note Divider, Envelope Shapers, Voicings, $\begin{array}{ll}\text { and Control circuitries. (Onder as KIT 71-5) } \\ \text { Set of PCBs (Order as PCB SET 71-6) } & \mathbf{£ 9 9 \cdot 2 5}\end{array}$

GUITAR EFFECTS PEDAL (P.E. July 75)
Modulates the attack, decay and filter characteristics of an audio stgnal not only from a guitar but from any audio source. producing 8 different switchable effects that can be interestung of ell the low priced range. Circuit does not duplicate effects trom the Guitar Overdrive Unit.
Component set with special foot operated switches
Alternative component set with panel switches Printed circuit board
£143

10\% OISCOUMT VOUCHER (PE 74)

TERMS: Goods in current adverts \& lists over EB0 goods value (excl P\&P \& VAT) Correctly costed, C.W.O., U.K. orders only. This voucher must accompany ord
untel end of month on cover of P.E.

ADD: POST \& HANDLING
U.K. orders - Keyboards add £2.00 each plus VAT. Other goods: under $£ 15$ add 25 p plus VAT, over $\mathbf{E} 15$ add 50 p pius VAT. Recommended: optional insurance against postal mishaps, add 50p for cover up to $£ 50, \mathbf{£ 1} .00$ for $\mathbf{E 1 0 0}$ cover, etc. pro-rata.
N.B. Eire. C.I., B.F.P.
higher ather countries are subject to higher export postage rates.

ADD $12 \frac{1}{2} \%$ VAT
(or current rate if changed). Must be added to full rotal o goods, discount, post \& Does not apply to Exoorts.

WAVEFORN CONVERTER

Slightly modified from a circuit published in "Elektor". Converts a saw-tooth waveform into four different waveforms: sine-wave mark-space saw-tooth, regular triangle form, and squarewave with an externally variable mark-space ratio.
Component set (incl. PCB but excl. sw/s) E8.40

VOLTAGE CONTROLLED FILTER (P.E. Dec. 74)

Part of the P.E Minisonic now released as an independent
Compe with other synthesisers.
Component set (incl. PCB) (Order as Kit 65-1)
RING MODULATOR (P.E. Jan. 75)
Part of the P.E. Minisonic now released as an independent Component set (incl. PCB) (Order

NOISE GENERATOR (P.E. Jan. 75)
Part of the P.E. Minisonic now released as an independent
kit for use with other synthesisers.
Component set (incl. PCB) (Order as Kıt 60-1) $\mathbf{~} 3.64$
ENVELOPE SHAPER WITHOUT VCA (P.E. Oct. 75)
Provides full manual control over attack. decay, sustann and release functions. and is for use with an existing voltage Component set fin
$\mathbf{4 . 7 7}$
ENVELOPE SHAPER WITH VCA (P.E. Apr. 76)
This unit has its own voltage controlled amplifier and has full manual control over attack. decay. sustain and release Component set (incl. PCB)

TRANSIENT GENERATOR (P.E. Apr. 77)
An envelope shaper. without VCA. having the usual attack. decay, sustain and release functions. and in addition it also programmed to imitate such instruments as a mandolin or banjo

Component set
£4.87
Printed circuit board
f182

SOPHISTICATED PHASING AND VIBRATO UNIT

A slightly modified version of the circuit published in automatic control over the rate of phasing and vibrato Component set
Printed circuit board
$£ 17.38$
$£ 2.33$

PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlled unit for introducing the "phasing" sound into live or recorded Component set (incl. PCB)
£3.20

PHASING CONTROL UNIT (P.E. Oct. 74)
For use with the above Phasing Unit to automatically control
the rate of phasing.
Component set (incl. PCB)
ع4.74

WAH-WAH UNIT (P.E. Apr. 76)
The Wah-Wah effect produced by this unit can be controlled manually or by the integral automatic controller.
Component set (incl. PCB)
53.63

AUTOWAH UNIT (P.E. Mar. 77)
Automatically produces Wah-pedal and Swell-pedal sounds tach time a new note is played

Component set. PCB, special foot switches
57.67

VOICE OPERATED FADER (P.E. Dec. 73)
for automatically reducing music volume during talk-over"-particularly useful for Disco work
home-movie shows.
Component set (incl. PCB) £̌3.97

EXPORT ORDERS ARE WELCOME but to avoid delay we advise you to see our list for postage rates. All payments must be cash-with-order, in Sterling by Inter-
national Money Order or through an English Bank. To national Monay Order or through an English Bank. To obtain list - Europe send 20p, other countries send
50 p .

AND OTHER PROJECTS

motocnalme in this advertisament thow two of our units containing some of PCEs. The cese were built yy pursent and ere not for sele. though asmell solection of outher cases is available.
stamped addrease onvelope with all U.K. requesta for free list giving fulter details of PCB6, kits and
other components.

OVERSEAS enquiries for list: Europe-

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKimber-Alien Kerboards as required for many publlahed circuits. The manufacturers cisim that these are the finest moulded plastic keyboards available. All octaves are C to C , the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame. 3 Octave (37 notes) £25.50 Octave (49 notes)

Contact Avepmblies (gold-clad wire) for use with the above KBDS (1 for esch note): Type GJ: Single-pole change-over
Type GA: 1 pali of contacts, normally open

$$
\text { Ipe GA: } \text { I pair or contacte, normally oper }
$$

Type GB: 2 pairs of contacts, each pair normaly open
Type GC: 3 pains of contacts, sach pair normally open
Type GE: 4 pairs of contacts, each pair normally open
Type GH: 5 pairs of contacts, each pair normaliy open
Type 4PS: 3 pairs of contacts plus single-pole changeo each $24 p$ each 37 ? each 46:p each 58p each 57%
Primed Civent Boards for use with most contacts (thus eliminating much interwiring) are available. Detalis in our lista.

P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones. A LED monitor clearty displays all beat note sdjustments. Ideal for tuning acoustic or electronic musical instruments. Main component set (incl. PCB) Power, supply set (incl. PCB)

SYNTMESISER TUNING INDICATOR (P.E. July 77)

A simple foctave frequency comparator for use with ynithesiegrs and other instruments where the full versatility Com.
Component and PCE (but excl sw.)

CONSTANT OISPLAY FREOLENCY METER (PE AUG 78)
A 5 -digit frequency counter for 1 Hz to 99999 Hz with a 1 Hz samping rate. Readout does not count visibly or flicker due to display blanking.
Component set
Printed circuit bosrd
${ }^{-T h i s}$ kit \& PCB are at 8% VAT (all others are $12 \frac{1}{2} \%$

TAPE NOHSE LIMITER
Very effective circuit for reducing the hiss found in most tape recordings. All kite include PCBs
Standard tolerance set of component
uperior toferance set of componentis
Regulated power supply (will drive 2 sets)

DYNAMIC RANGE LIMITEA (P.E. Apr. 77)
Automatically controls sound output to within preset evol.
Component set (incl. PCB)

OASCOSTROAE (P.E. Now. 76)
4-channal light-show controlfer giving echoice of sequential, random, or full strobe mode of operation.

Basic component set
Printed circuit board

BIOLOGICAL AmPLIFIER (P.E. Jan/Feb. 73)
Multi-function circuits that. with the use of other extomal equipment, can serve as lie-detector, alphaphone, cardiophone otc.
Pre-Amp Module Components set (incl. PCB) E3.9 Beatic Output Circults-combined component set with PCBs, for alphaphone, cardiophone, frequency meter and visual feed-back lampdriver circuits. Audio Amplifier Module Type PC7

SOUND BENDER (P.E. May 74)
A multi-purpose sound controlier, the functions of which include envelope shaper. tremolo. voice-operated fader. wutomatic fader and frequency-doubler
Deteits in lists.
SOPHISTICATED POWEA SUPPLIES
A wide range of highty stubilised low noise power supply kits
is avalable-details in our lists.

57-48

E2405
E3.03
2.96
£18.19

NEW
 PCB SERVICE

PCBS FOR ALL NEW P.E. \& E.E. PROJECTS FOR WHICH PCS LAYOUTS HAVE BEEN OUTS HAVE BEEN
PUBLISHED ANO FOR PUBLLSHED AND FOR
WHICH FULL COPYbight clearance is AVAILABLE.
LIMITED QUANTITIES ONLY FOR AN DXPERIMENTAL PERIOD.
LET US KNOW YOUR MEEDS ANO WE WILL NEEDS ANO WE WIL
AOYISE YOU OF AVAILABILITY AND Prices.

Integrated circuit 3018 -pin DIL 318 8-pin Di
324
341.15 -pin
709 -pin

$\begin{array}{ll}723 \\ 728 & 14-5 \\ 741 & 80\end{array}$
48 8-pin
4
4
AY102
Ar
C 16

$\begin{array}{ll}\text { CA3080 } & 14 \text {-pin DIL } 71 p \\ \text { CA3084 } & 14 \text {-pin } 81 \\ \text { C3p }\end{array}$ FX209 14-pin DIL2099p 76 -pin DIL 660 p
129 $\begin{array}{ll}\text { M252 } & 16 \text {-pin DIL800p } \\ \text { MC3340 } & 8 \text {-pin DIL } \\ 1600\end{array}$ MCMB810 24in DIL 150p SG3402N 14-oin DIL2920 ce.59 67.75

TRAN̄sistors

PHONOSONICS

INTRODUCTORY OFFER

To launch the high quality TELPRO IRON (fitted with Long-Life Iron-Clad Tip) into the discerning Amateur \& Enthusiast Market, we are giving away FREE:-

1 REEL SPIRIG DE-SOLDER WICK (VALUE 75p)
1 PAIR NICKEL PLATED FORCEP CLAMPS (VALUE £2.00)
1 PAIR PLASTIC TWEEZERS FOR MOS/FET'S ETC. (VALUE 60p) (TOTAL VALUE E3.85 INC. V.A.T.)

WITH EVERY SOLDERING IRON ORDER
(For fimited period only)
SEND $£ 5.50$ per iron plus $83 p$ V.A.T.
TelemProduction Tools Lted
Stiron House, Electric Avenue, Westcliff-on-Sea,
Essex SSO 9NW Tel: (0702) 352719

MULTIMETER

- DC Volts

1 mV to 1000 V AC Volts iV to 500 V DC Current 0.1 imA to 0.2 A Resistance. 1R to 20Mn

- $31 / 2$ digit LCD
- Auto Low Battery indication
- Auto Polarity \& Zero
- 1% accuracy (DC volts)
- Designed around intersil 7106 IC
- 30 mV to 10 V pk-pk
- 1 Hz to $100 \mathrm{k} \mathrm{Hz}_{2}$
- DC coupled
- Sine, Square \& Triangle
- Separate TTL output
- Designed around Intersil 8038 IC
- Total cost around $\mathbf{£ 2 5}$ (incl. case)
- Total cost around $\mathbf{£ 3 0}$ (incl. case)

Provided in a JAYkit is a Printed Circuit Board, a punched and lettered Front Panel, a Circuit Diagram and Instruction Sheet and a comprehensive and up to date Component List thowing suppliers and current prices. Difficult pieces of hardware such as screws, washers etc. are supplied with the kit.

Jayen Davelopments, 21 Gladeside, Bar Hill, Cambridge CB3 BDY

TOTAL AMPLIFICAIION FROM CRIMSON ELEKTRIK

_WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

STEREO PAE-AMPLIFIER POWER AMPLIFIER

CPR 1-THE ADVANCED PRE-AMPLIFIER
The bett pe e-emplifier in the U.K. The superiority of the CPR 1 is probably In the dise siage. The owerioad mergin is a superb 4ods, this together with th high alewing rate enzurez clean top, even with high outbut cartridges tracking design. R.J. A. A. Is accurate to 1 dB , Elgnal to nolse ratio is 70 d B relative to 3 BmV; distortion < 005% at 30 dB overload 20 kHz .
Following this stage 13 the flat gain/balance stage to bring tape, tuner. etc. up Following this stage is the flat gain/balance stape to bring tape, uner. etciu
 Thert $\%$ no provision for tone controls. CPR 1 size is 138×80 ^ 20 mm Sunptr to

MC I-PRE-PRE-AMPLIFIER
X02: X03-ACTIYE CROSSOYERS
$\mathrm{xO2}$ - 1 wo way, XO 3 - throe way. Slope $24 \mathrm{~dB} /$ octave. Crossover points set to order

REG 1-POWER SUPPLY
The regulator modute, REG 1 provide $15-0-55 v$ 10 power the CPR 1 and MC 1 It can be used with thy of our power amp supplies or our smail transiomer TR 6 The power arsp kit will tecommodate it.

POWER AMPLIFIERS

it would be pointlete to list in so small a apace the number of recording studios, omps sanistand governmant esiabilshmens, etc. who have been usingchimish quality at the lowest prices. The Dower amp ls evailable in five typss, they all hava the same speciflcation: T,H.O. typically $\mathbf{T 1 \%}$ any power ikhz o onenc
 losd safely; sennitivity, 775 mV (250 mV or 100 mV on requast); $\$ 12 \pm 120 \times 80$ 28mm.

POWER SUPPLIES
We produce suitable power supplies which use our gupert TOROIDAL trantormera only 50 mm high with a 120 - 240 primary and single boft fixing (included capacitors/bridge rectiffer).

PRE-AMPLIFIER KIT
Thls includes all metaiwork, pots, knobsetc. to meke scomplete pre-amp with the CPA 1 \{8I module and the MC 1 (S) if required.

ACTIVE CHOBSOVERB
$\times 02 \ldots$. POWER AMPLIFIER MODULEE CE 508 80W/a ohms $35-0-35 v$ E18.52 CE 1004 100W/4 ohms 35-0-35v 5183.02
 1/0s 170W/s ohme 50-0-60v TOROIOAL POWER BUPPLIE CPS1 for 2:- CE 60 or $1 \times$ CE 1004 E18.BE CPS2 for
CE EOB 10 . $2 \times$ CE 1008 or CEST 170
CE 1704
CPSS tor \times CE 1008
CPS6 for $2 \times$ CE 1704 or $2 \times$ C.... CE TROB THKS
Hight duty, $50 \mathrm{~mm}, 2^{\circ} \mathrm{Ciw}$.... e25-83
 $1 \cdot 4^{\circ} \mathrm{C} / \mathrm{W}$. Disco/group, $150 \mathrm{~mm}, 1 \cdot 1^{\circ} \mathrm{C} / \mathrm{W}$
Fan. 80 mm , state 120 or 240 v Fan mounted on 1 wo drlited 100 mm heatsinks, 2×1 dro diled $65^{\circ} \mathrm{C}$ max. with two 170 W modules.

Pro-amp Kit POMER $\begin{gathered}\text { E3A. } \\ \text { AMP } \\ \text { AMP }\end{gathered}$ KIT 336.03 PRE-AMPS Thete tre avaif-sions-one use standard compo nents. and the Other (the S) uses
MO where necespary citary.
 MCl $\mathrm{MCl} \cdot 2 . .21 .28$ POWER SUPPLY REGI
TRE
R1.90
R1.97 BRIDGE FDI Obtain up to 340 W using $2 \times 170 \mathrm{~W}$

CRIMSON ELEKTRIK IA STAMFORD STREET: LEICESTER. LEI GNL Tel: (0533) 553508
> U.K.-pleaes flliow top to 21 dave All prices shown are UK only and Include VAT and poni. COD 90p erira, c100 limit. Export is no problom, please write for specific quote. Send large SAE of 3 International Reply Coupona for datailed intormation.

> Distributprat
> "WIMIC TELEPRODUKTER BOX 12N 7512

LOOK!
This new style course will enable anyone to have a real understanding by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute Here's how minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to further your you master electronics. career in electronics or as a self employed electronics engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1. Build an oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but al so later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2. Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.
3. Carry out over 40 experiments on basic circuits.
We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

4. FreeGift.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an exceilent example of current electronic practice.

Post now, without obligation, to:-

BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL

P.O. Box 156, Jersey, Channel Islands.
NAME \qquad
ADDRESS

Become an
ELECTRONICS ENGINEER or a TECHNICIAN ENGINEER

At PNL we offer two interesting full-time courses.

* B.Sc. in Electronic and Communications Engineering.

2 ' A ' levels, usually Maths and Physics could qualify you for this 3 year full time degree. Specialise in Acoustics, Digital Electronics and/or Radar and Microwaves in the final year.

* Technician Engineer Certificate.

3 ' O ' levels, usually Maths, Physics and English, are the entry requirements for this two year full time certificate, specialising in Computer Engineering, Sound Studio Engineering and Radar and Microwaves.

Details from:
 Secretary, DECE, PNL, Holloway Road, London N7 8DB.

The Polytechnic of North London

THE firm for speakers!

SEND 15p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRNE UNITS, KITS, CROSSOYERS, ETC. AND dISCOUNT PRICE LIST

> AUDAX \bullet AUDIOMASTER © BAKER BOWERS \& WILKINS © CASTLE CELESTION CHARTWELL COLES © DALESFORD DECCA EMI EAGLE ELAC F FANE GAUSS GOODMANS I.M.F. ISOPHON JR - JORDON WATTS © KEF LEAK © LOWTHER McKENZIE © MONITOR AUDIO © PEERLESS RADFORD © RAM • RICHARD ALLAN © SEAS SHACKMAN STAG TANGENT TANNOY VIDEOTONE WHARFEDALE YAMAHA

WILMSLOW AUDIO (Dept. P.E.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Discount MI-FI, ate. at 5 Swan Strent and 10 Swen Street

KONTAKT 60 EUROPE'S LEADIMG COMTACT CLEANING SPRAY

Kontalt products 60-6; and WL provide sn unsurpassad cleaning capobility for contiactis and switthgear.

KONTAKT 80

Satoly dissolves oxidetes and sulphides and dispopes of remingtid contact greases and dirf, bul does nol attack platics or any standard production materials
is sulucone trese

Contains a lyght lubmcant to ayoud possible corrosion of contact paths - and obviates further oxydisation and 'creap' curpents

Quality Industrial Sprays from Kontakt Chemie

K70 Protective Plastıc Spray K72 Insulating Spray K75 Cold Spray K80 Suliconised Polish K90 Video Spray K100 Antistatic Spray

K101 Dehydrating Spray and Pos. 20 POSITIVE PHOTO RESIST VARNISH

Distributed by

SPECIAL PRODUCTS DISTRIBUTORS LTD.

81 Piccadilly. London W1V OHL
Tel 01-6299556
Cables Speciprod, London W1
Descriptive leaflets of the above products are fresly available on request.

Largest range of quality components in the U.K. - over 8,000 types stocked

Marshall's
 Head Office and Mail Order to Dept. P.E. A. Marshall (London) Ltd. Kingsgate House, Kingsgate Place, London NWE 4TA. TBl: 01-624 0805. Telex: 21492.

Retail Sales: London: 40-42 Cricklewood Broadway, NW2 3ET. Tel: 01-452 0161/2 ALSO 325 Edgware Road, W2. Tel: 01-723 4242.
Glasgow: 85 West Regent Street, G2 20D. Tel: 041-332 4133 AND Bristol: 108A Stoke's Croft, Bristol. Tel: 0272426801

BRIDGE RECTIFIERS

Type Wiole	Refting	Prios	Tpe	Ratimy	Prics			
T1005	IA 50V	0.28	PW011				2 A 100\%	
W01	1A 100 V	8.30	PW02	6A 200 V	0.97	502	2A 200 N	04
W02	IA 200 N	0.7	PWD4	6a 400 V	1 吻	§54	2A 400 y	0 O
W04	1A 4 LION	040	PWha	6 A 600V	118	\$06	2A 600	070
W06	1s 600 V	Q, ${ }^{1}$	PWDa	ga gonv	28	S08	2 A 800	
W09	1A 800\%	050	9×10	6A 1000 N	1.60	\$10	241000	
VM18	1a 100V	044	K005	254 501	2.20	B40C	1.54100 N	15
VM28	1a 200 V	日48	k01	254100%	237	B40CJ200	3.2A100	12
VM48	1a 400 V	068	K 02	254200%	275	B80c 1500	15 A 200 V	0.8
gY164	14A:20Y	0.75	1004	254 400\%	140	BSDCI200	$324200 V$	12
8Y17	1A 200	0.70	K06	25A 6000	3.9	PW005	BA 50 N	

SINGLE IN INE PLUGS AND SOCKETS
 Now-SIEMENS TURN-SLIDE SWITCHES

fixed contacts gold-plated. $\mathbf{£ 2 . 6 5}$
TTL (see catalogue for full range)

SN74H05N	060	74LS75N	0.58	14LS154N	0.70	74LS490N	0.90
SN/4HION	0.55	$14 \mathrm{LS} / 6 \mathrm{~N}$	042	74.18195 N	0.70	74LS670N	1.90
SNT 4 HILIN	0.55	741578N	042	74.5196 N	0.80	Sn74som	077
SN14H20N	0.55	74LSB3AN	090	74LS197N	$0{ }^{1} 0$	SN/4S03N	0.77
SN/ 4 H 21 N	0.55	94LSESN	095	74LS221N	0.80	Sn ${ }^{\text {a }}$ S 504 N	0.94
SN14H30N	0.55	74LS86N	${ }^{6} 44$	T4LS240N	150	3N74SION	077
SN7 ${ }^{\text {SH4ON }}$	0.55	741590 N	064	341S24iN	1.50	Sn74S20N	077
SN/4H51N	0.55	74/591N	120	${ }^{7} 415242 \mathrm{~N}$	125	SN3 3 S400	07
SN74H53N	0.55	741592 N	9.76	14LS243N	125	5N74S64N	0.77
SN74H54M	0.55	74LS93N	054	74LS244N	150	5N74S65N	077
SN74H55N	45	74LS95AN	0.90	74LS245N	1.65	SN74S112N	1.70
SN74HEON	055	741596N	1.35	74LS24]N	1.18	SN74S114N	T
SN74H62N	0.55	74LS107N	042	74.5248 N	109	SN74S140N	077
SN74 0 ON	055	14LS109N	042	74LS249N	1.09	SN74S157N	295
SN7402N	055	74L\$112N	042	74.5251 N	100	SN74SIB8N	270
SN7414N	050	74 LS113N	042	$74452533 N$	1.00	SN74S189N	1.81
SN74<2\%	310	74 LS1 14N	042	$74.8257 N$	100	SN 4 4S200N	3.50
SN7474Y	0.80	7415122 N	0.62	74.5258 N	1.00	SN14S201N	71
SN74255N	2.62	74LS123N	083	74LS259N	155	SN74S262N	12.50
SN/4.93N	230	74iS124N	130	7415281 N	3.25	SN14S2878	2.95
$741500 N$	025	7415125 N	050	7415766 N	044	SN14573	70
341501N	026	7415126 N	D 50	7415273 N	130	SN74S79SN	81
741502 N	028	7415132 N	0.85	$7415275 N$	320	SN743300N	506
741503 N	028	7415136 N	0.42	7415279N	058	SN748301N	3.71
741504N	029	7415138N	0.65	1415280N	1.65	SN74S397N	3.05
741505 N	029	7415139 N	0.65	$7415283 N$	120	SN74S470N	5.85
74LSOAN	0.26	1415145 N	135	74LS289N	314	SN74S4/1N	5, 26
1415CSN	026	7415147 N	165	7415290N	100	SN74S472N	1348
74151 CN	026	74ISI48N	1.35	7415293	100	SN74S473N	1348
74151 iN	026	74LS151N	D.58	7415295 N	135	SN74547	1348
741512 N	0.26	$74 L S 153 N$	D.5B	74LS29aN	1.35	SN74S475	13AB
741513 N	058	741S154N	145	74LS299N	2.95	SN749DAN	D.35
741514 N	075	7418155 N	0.80	$74 L 5323 \mathrm{~N}$	3.50	SN1491aN	D.50
$741515 N$	026	$74 \mathrm{LS156N}$	0.80	$74 L S 324 N$	1.55	3N7492N	D. 35
741520 N	0.26	74.5157 N	0.60	$74 L 5325 \mathrm{~N}$	240	SN/493N	D. 35
741521 N	025	7415158N	0.55	$74 L 5326 \mathrm{~N}$	2.70	SN/ 494 N	0.90
741S22N	0.25	$7415160 N$	D. 80	74L5327N	2.55	SN/495N	0.75
741526 N	0.32	74LSSGIN	0.85	$74 L 5348 \mathrm{~N}$	1.10	SN/496N	0.54
74LS27N	0.25	/4LSIETAN	080	$74 L S 352 N$	107	SN/49iN	195
74528 N	0.29	7445163 N	0.85	74LS353N	107	SN74100N	140
74LSJDN	026	$74 L S 164 N$	1.10	$74 L 5365 \mathrm{~N}$	055	SN74107N	0.24
74.532 N	0.3	$7415185 N$	115	7415366 N	0.55	SN74118N	0.85
741533 N	029	741 S160N	1.65	7415367 N	0.55	SN74119N	140
741537 N	0.32	$7415168 N$	145	7415358N	055	SN74121N	02B
$741538 N$	032	7415169 N	1.45	74L5]73N	015	5174122N	0.55
$74154 D N$	0.25	$7455170 N$	1.90	1415774	0.5	\$474123N	0.55
74LS42iN	0.90	741SI73N	110	[4153] ${ }^{\text {d }}$	0.65	Sch74124N	120
741S4)N	109	$7415174 N$	0.75	dSLS317N	130	SNi4125N	0.45
$74.545 N$	100	7415175N	0.75	${ }^{74 L 5378 N}$	1.80	SN74141N	0.55
74LS49N	109	7415181 N	2.75	7415379 N	125	SN74145N	0.85
741551 N	0.5	741S183N	2.70	$7415386 N$	0.44	SN74148N	135
741S54N	425	7415189 N	3.74	7415390N	0.90	SN74150N	6.90
741555 N	0.5	74LSIgON	100	$7415393 N$	0.9D	SN74151N	0.76
142563 N	126	-4LS191N	100	7415395N	1.50	SN/4153N	085
741513 N	042	7415192 N	0.95	74LS39	190	SN14154N	120
74LS74N	D42	71LS193N	0.95	74LS399N	1.45	SN74155N	0.70

TRANSISTORS (see catalogue for full range)

MULTI-MAY EDGE CONNECTDRS

Intersil's 7106 is the first single-chip CMOS ADD for driving LCD displays - including backplane - directly. The 7107 is the first single-chip CMOS A/D for driving instrument-size LED displays directly without buffering. Each provides parallel seven segment outputs, ideal for DVMs, DPMs and anywhere modern digital displays are needed. Both have internal reference and clock, and both are CMOS so you get low noise (12 to $15 \mu \mathrm{~V}$) comparable with the finest bipolar devices, and low power (10 mW max a 10V). Kits provide all materials
Including PC board, for a functioning panel meter. Assembly time is only $\frac{1}{2}$ hour.
ICL 7106EV (LCDI £26.99 SPECIAL OFFER £19.90 ICL 7107EV (LED) E21.99 SPECIAL OFFER $£ 16.90$ CHIP ALONE ICL 7106CP SPECIAL OFFER $\mathbf{£ 8 . 9 0}$
New Prices
Due to increases in prices and the recent VAT increase, please add 6\% to ALL prices

Universal Voltage Tester

The 2 pore combitester is universal valtage and continuity rester with incorponated battery. This cam 3BOV. Continuity tests of electrical connectons between 0 to $20 \mathrm{k} \Omega$ can be performed by prossing the red bution, built into the hande of the teater Display is by maene of LEDs. The Siemens combltester has been tagted to VOE standard 0425/1 73 and hes the VOE symbol:

Application
Testirg of dc and ac voltagm between 45 V and 380 V Polarity check for de voltage Continuity tost in electrioal connections hofwasn 0 and 20 kD . Oetermining forward tests with capacitors.
4.5 t o 380V Price E10.50

Priee 84.75
U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

baxen loudspeaker, 12 inch, 80 Watt.
GHOUP 50/12, 4 OR B OR 16 OHM HIGH POWER. FULL RANGE PROFESSIONAL OUALITY.
RESPONSE $30-16.000$ CPS MASSIVE CERAMC MAGNET
WITH ALUMINIUM PRESENCE CENTRE DOME:
4 CHANNEL TRANSIITOR MONOMIXER Add musical highilghts and sound effecte 10 recordings. Wift mix Microphone, recorca, tape and battery operated. $\mathrm{E7} 50$
Two channel stereo veraion c9.
HEATING ELEMENTS WAFER THIN
 tor Heaters, etc. Must be clamped between two sheets of counts for quantity. ONLY 40p EACH (FOUR FOR E1.50)
MINI MODULE BAFFLE KIT Post 75p Bass 5 in. Middle 3in Tweeter with 3-way Crossover 8 Ready Cut Baffle. Full assembly instructions supplied. Response $=60$ to 20000 C.P.S. 12 watt RMS 8 ohrns. f 10.95 per kit. Two kits $\mathbf{£ 2 0}$ Suitable Bookshelf Cabinet $\mathbf{8 8 . 5 0}$ each.

SINGLE RECORD PLAYER

$\mathrm{C} 7.95^{\mathrm{P} \text { Potp }}$
NEW BSR 8INGLE PLAYER E22.50 " S " shaped arm, cueing device, stereo ceramic cartrioge. B.S.R. De-Luxe Autochanger with steron

BAKER 160 WATT ALL PURPOSE TRANSISTOR MIXER AMPLIFIER

DEALFORDISCOS, GROUFS, PUBLICADDRESS Two inputs with volume controls. Master trable bass and
R.C.S. SOUND TO LIGHT DISPLAY MK II Complete xit of parts with R.C.S. printed circuit. Three 1000W channels Will operate from 200 mV signal source. CABINET exira f4
$K I T=\mathbf{E 1 8 . 0 0}$
R.C.S. 10 WATT AMPLIFER KIT

This kit it suiteble for record players. tape play beck, gulters veco-

 Eagy to bulld. Full lnatructions supplied
LOW VOLTAGE ELECTROLYTICS

HIGH VOLTAGE ELECTROLYTICS			
$8 / 350 V$	$22 p$	$8+8 / 450 \mathrm{~V}$	
160 p	$50+50 / 300 \mathrm{~V}$	50 p	
$32 / 50 V$	30 p	$8+16 / 450 \mathrm{~V}$	
10 p	$32+32 / 450 \mathrm{~V}$	75 p	

$14 \frac{1}{2} \times 14 \frac{1}{4} \times 2 \frac{1}{2}$ in. Rosewood sides 24 .
$18 \times 13 \frac{1}{t} \times 3$ in. $\mathbf{2 6 . 1 8} \times 12 \frac{1}{2} \times 3 \mathrm{in}$. $\mathrm{E6}$.
Ideal for record decks, tape decks, etc. Post $\mathbf{£ 1 . e 0}$ R.C.S. LOW VOLTAGE STABILISED
POWER PACK KITS

POWER PACK KITS
All perte and intruetions whin zener diode printed
citcuit, rectifiers and double wound maline

ELECTRO MAGNETIC
PENDULUM MECHANISM
15 O o operation over 300 hours continuous on SP2 batery fully
adjustable swing and speed ideal displays teaching eiectro adjustable swing and speed idgal displ
magnotiam or tor metronome strobe dic

MAINS TRANSFORMERS ALI POST 75p eacti

 THE "INSTANT" GULK TAPE ERASER Sullable for cusseties and all sizes of
tape reess a C mans 200240 V e8.00 Leaflet SAE. Post 50 p . Head demagnetiser $\mathbf{~} 5.00$

FLADAR
 TRANSFORMERS
 PRIMARY $0-240 \mathrm{~V} 50 \mathrm{~Hz}$

IF YOUR REQUIREMENT IS NOT FEATURED BELOW SEND FOR OUR TRANSFORMER CATALOGUE PRICE 40p

PE PHASER UNIT
P.E. APRIL 1979
A superb six stage pheser thet really gives your guiter lift off. Equals the
best commercial models. Uses latest FET op-amps Glassfibre p.cb. best commercial models. Uses latest FET op-amps. Glasefibre p.c.b. COMPLETE KIT OF ALL PARTS AS SPECIFIED.............£15.95* Pack 1. All semiconductor devices..000 Pack 2. Resistors, capacitors \& preset pot E3.78 Pack 4. Diecast box and feet ..2.00 $2.00^{\text {e }}$ Separate parts: TLO62 80p, BF245B E0p, PCB E1.60, 8 pin sockets (not included in kit) 21p each.
PE SUSTAIN UNIT P.E.ECT.
Superb quality, low noise, low distortion sustain unit equal to the ver best commercial models. Suits all guitars. Glassfibre p.c.b. COMPLETE KIT OF ALL PARTS AS SPECIFIED...............27.95*
Pack 1. Resistors, capacitors \& p.c.b. .. 1.75° Pack 2. All semiconductor devices..1.75 Pack 3. Footswitch, jacks, pot, knob, and battery clip.........................e2.75* Separate parts: XC5053R 80p, RPY58A 7Ep, Printed circult board 95p, Footswitch $£ 1.50$ each.

Complete set of semiconductors ...30
Murata fihers: SFE6.OMA EOp, CDAB.OMC EOp.

PE FUZZ UNIT

STOP

 PRESS!This is the Fuzz unit you have been waiting forl Smooth. clean tone with low noise and low current drain. Uses glassfibre p.c.b. and latest FET op-amp. COMPLETE KIT OF ALL PARTS AS SPECIFIED E7.95
POSTAGE \& PACKING 15p per order. Orders over $£ 5.00$ post free. All devices are top grade, brand new and to full manufacturers spec. Send S.A.E. for our data sheet and price list of Ferranti semiconductors.
PRICES DO NOT INCLUDE VAT. Add 15% to all prices.

Of alk the purpose-bult power amplifier modules by ILP the HY50 is understandably the most popular with those wanting to build or up-grade a hi-fi system, run a smail high quality P.A. system, amplify s musical inatrument (say for practise or small range ysel or use it or the amply its meful 30 watts PMS or pracise ohms, its rugged construction and freedom from heatsink warries make HY50 the ideal all-purpose quality power amp-and it is unconditionally guaranteed for fie vearg Tans of thousinds are in use throughout ihe world

Encapsulated power amp with integral full-rated heatsink. Input -500 mv
Output 30 watts RMS/8 0
Load impedance - 4 to 160
Dlatortion - 0.04% from 100 mW to 25 wates at $1 \mathrm{KHz} / 8 \mathrm{O}$
Supply Voftage -+25 V . Size $105 \times 50 \times 25 \mathrm{~mm}$
Inc. V.A.T. and postage in U.K.
$£ 8.33$

Nothing has been overlocked in the design and manufacture of I.L.P. Modular Units. Heaw duty heatsinks, encapsulated circuitry. nocompromise production standards and true protessional finish ensure world leadership tor I.LP. Now we have up-graded output ratings and down-graded prices to bring I.LP. within easier reach of all who want the best.

Now production techniqures anabite us to reduce prices apart from VAT by on avernge of 20\%, maling I.L.P. better bury then aver:

Guaranteed 7 dayt deapptch on all producta
USE DUR FREE POST SERVICE for sending your orders. requests for information sheets etc. Simply address envelope.
NO STAMPS REQUIRED.

ELECTAONICE LTD.

FREEPOST 2

Graham Bell Houser, Roper Close, Canterbury. Kent CT2 7 EP
Phone (0227)54778

AC/DC 8 MHzOSCILLOSCOPE
A new approved 8 MHz version of last Specifications:
years' winner! The advance design features of this oscilloscope make it an absolute essential for industrial uses on production lines, in Horizontal axis: Deflection sensitivity better than $250 \mathrm{mV} / \mathrm{DIV}$ Vertical axis: : eflection sensitivity better than 10 mV VIVIV (1DIV- 6 mm). Bandwidth: 0.8 MHz . Input impedance: 1 MOhm parallel capacitance 35 pF . Time base: Sweep range:
laboratories and schools. Ideal for radio $10 \mathrm{~Hz}-100 \mathrm{kHz}$ (4 ranges). Synhronization.
and TV sewicing, audio testing, etc.

You save because we design, manufacture, sell and service. Tandy have over 7,000 stores and dealerships worldwide. Over 2,500 products are made
specifically for or by Tandy at 16 factories around the world. The quality of our products has been achieved by over 60 years of continuous technological advancement.

The largest electronics retailer in the world.

Offers subject to availability. Instant credit available in most cases.
OVER 170 STORES AND DEALERSHIPS NATIONWIDE.

LOW-COSTLCD MULTIMETER COMPONENTS AND PARTS

CAT. No.	DESCRIPTION	PRICE
276-032	LED	$\begin{aligned} & 4 \text { for } \\ & 69 p \end{aligned}$
276-033	LED	2 for 48p
276-034	LED	2 for 59p
276-142	Infra-Red Emitter Detector Pair	£1.37
277-1003	12VDCAutomotive Digital Clock Module	£17.52
276-9110	6 pin edge connector for 277-1003	40p
276-1373	Power Transistor Mounting Hardware	50p
276-1363	T0-220 Heat Sink	60p
276-1364	TO-3 Heat Sink	81p

DEALER

Mostitems also avalable
T Tandy Dealers, Loot for th
shatm vour area

NEWS?

OFTEN those who are involved in electronics development do not have any interest in publicity and sometimes even the impact of their developments is totally overlooked. We, of course, as a magazine try to put this to rights but sometimes it appears we totally fail in this quest.

Having recently watched a couple of television news pieces, one acclaiming the inventors of a digital m.p.g. meter and the other depicting a transmitter and receiver for blind runners, we are beginning to wonder where the news people have been burying their heads? This magazine published details of a Digital Fuel Consumption Meter by J. McCarthy, in the October '78 issue and way back in June 1974-yes FIVE years ago-we published an M.P.G. Meter by S. Jones. For the news people to claim this is a new invention is totally incorrect, not only have these designs been published but commercial units have been available for some time.

We cannot claim either of our designs give highly accurate figures but then they were cheap to construct (particularly in the case of the first design) and used an electric fuel pump to give fuel flow rate information. However, everyone appears to be jumping on the band wagon with equipment
and, especially if it is expensive, the accuracy of the information must be good in order to make the equipment pay for itself; at the present time this does not necessarily appear to be the case.

To go back to the second news item we mentioned, the use of electronics as an aid for the blind is very commendable and deserves all possible publicity but this equipment appears to be a hand operated transmitter and a simple miniature receiver-nothing to shout about technically and hardly a new "invention". In this very area we published full constructional details of an Audio Compass back in May 1976. This was developed in conjunction with Yachting Monthly to enable the blind to helm a boat with no human assistance. The unit could also be used as an off-course alarm for single-handed sailors. At the time Tomorrow's World expressed an interest but decided that the subject would not fit into their programme. Possibly it will be resurrected in a few years as a commercial unit and get news coverage then!

Maybe in the future people will be able to make or buy a complete computer on a single board for about £200 and the T.V. will bring you the news first! Or perhaps solid state car instruments will be available and the first
systems will receive much acclaim. We must wait and see!

INTEREST

Our own computer has created a fantastic interest and we are pleased to report that it is also now available as a ready built unit. This demand means that issues are selling fast and, as always, some people are failing to get a copy. Unfortunately, it is very difficult for us to judge such demand, and these days also expensive to print extra copies if they are not sold, so may we urge you to order a copy from your newsagent well in advance to ensure supply.

These supply problems may be further compounded by the free I.C. Removal Tool which will be presented with every copy next month. The Insertion Tool we presented last spring was in great demand and we anticipate a similar situation next month. The inclusion of the first of a series of five projects describing solid state analogue car instruments will also make next month's issue a popular one, so don't miss out.

We hope we can continue to keep you abreast of development and ahead of the mass media by as much as five years!

Mike Kenward

EDITOR

Mike Kenward
Gordon Godboid ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
Alan Turpin PRODUCTION EDITOR
David Shortland PROJECTS EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Judith Kerley SECRETARY

ADVERTISEMENT MANAGER

 SECRETARYCLASSIFIED MANAGER
D. W. B. Tilleard

01-261 6676 Christine Pocknell

Colin Brown 01-2615762

Editorial Offices:
Westover House,
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot be answered over the telephone (see below).

Advertising Offices:
King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS
Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-261 6601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 75p each including Inland/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 2.85$ each to UK addresses, $£ 3.45$ overseas, including postage and packing, and VAT where ap-
propriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

Cheques and postal orders should be made payable to IPC Magazines Limited.

6 CHANNEL
 $1 v p \rightarrow+\frac{\square}{4}-18$

S.R.W. Grainger \& C.R.Harding Part1

WITH the increase in popularity of home-recording studios and electronic musical instruments there is a demand for a mixer to combine several signal sources and provide a well-balanced sound for recording. Most users do not require mixers which have many input channels (as with some commercial units) but do require high enough specifications to suit semi-professional tape recorders and other sound processing equipment.

The design illustrated has been used successfully with various organs, synthesisers, microphones and electric guitars. Although built as a six-channel unit it can be extended with additional input modules and a little modification to the output stages.

BLOCK DIAGRAM

The diagram (see Fig. 1) shows the unit in the basic sixchannel configuration. The input channels are completely separate until linked on the pan buses via the pan pots. These buses are also fed by an additional stereo input (if required). This enables a separate stereo input or more input channels to be coupled in at a later date, into the output stages.

From the pan buses the signals are routed to the output stages. These recover the signal level, from the output of the input stages, which has been attenuated by the channel fader and pan pot network. They also provide a low impedance output to drive various other devices, and are terminated in master faders.

Fig. 1 Block diagram

VU meter drive is obtained from the mixed signals and a separate meter is provided for each output channel. Visual indication of signal level is also provided by an l.e.d. overload indicator which is driven either by a summed signal from the input channels or by switching each of the channels into its input separately the latter being an optional feature.

From each of the input channels a pre-fade listen signal is taken to a selector switch so that the user may listen to incoming signals before they are routed to the output stages. The output from the p.f.l. amps drives standard 8 ohm stereo headphones. A signal is also taken from each input channel via a level control to a summing amp which acts as an echo send signal driver. Echo send is only a mono signal since echo and reverberation and other effects give little or no
patial information to a signal. Signals from this output can be routed to echo chambers, reverb units and other sound processors such as the Guitar Sound Multiprocessor, etc. and routed back via the echo socket and control.

A 1 kHz sine wave oscillator is provided in the design, and the output from this at a known level $(10 \mathrm{mV})$, can be injected into each of the input channels in turn for calibration purposes.

The mixer contains an internal mains powered supply which provides the $\pm 12 \mathrm{~V}$ and +12 V rails.

The mixer in its published form can be built from readily available parts and the total construction cost should be approximately $£ 55$ including cabinet. The price quoted is for new components.

SPECIFICATION

Input Channols
Inputimpadence 47 k 9 or 600Ω Iswitchable)
Input sensitivity 1 OrmV or 100 mV for 1 V output (switchable)
Overlaad margin 20 dB
Frequency response $20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 1 \mathrm{~dB}$
S/N ratio 70dB
Gain variable from 1 - 100 (orswitchable $1,10,100$)
Pan Control input can be moved over entire stereo image width
Bass Control +18 dB at 50 Hz
Treble Control $\pm 18 \mathrm{~dB}$ at 15 kHz
Echo Send difects some of channel output to main echo send output (up to IV)
Channel Fader 0 to oo attenuation of signal

Output Channel:

Output Voltage Level up to 1 V
Echo Send Master Control up to $1 V$ available
Master Faders 0 to 00 attenuation of signal
Echo Return Control
Sterso Auxilary Input Control loptional)

VU Meters
Separate drive amps with calibration presets
Overload Indicator
Preset indication of clipping level on all channels via an l.e.d

Headphone Monitor Amps

Headphone Volume Control up to 200 mW available into 8Ω

PFL

Switchable to each channel or summation of all channels

Power Supply

$\pm 12 \mathrm{Vat} 40 \mathrm{~mA}$
+12 V at 500 mA
1 kHz Test Oscillator
Provides a sine wave at 10 mV at 1 kHz for injection into each channel (separately) for calibration and test purposes

Fig. 2 Preamplifier and tone controls (6 required)

INPUT CHANNEL AMPLIFIERS

The design of the input channel amplifiers was given some careful consideration. It was originally intended to use operational amplifiers as the active elements, however these proved to be too noisy and lacking in bandwidth for serious work, and the low noise types proved to be too expensive.

The circuit diagram (Fig. 2) shows TR1 and TR2 in a high gain configuration with two a.c. feedback loops; one from the emitter of TR2 to the base of TR1 and the other from the collector of TR2 to the emitter of TR1. It is this second feedback loop which provides variation in gain in the circuit. With pin (4) connected to pin (7) there is total negative a.c. feedback via C2 therefore the gain is 1 . With pin (4) connected to pins (5) or (6) there are gains of 10 or 100 produced respectively. R3, the source resistor for TR2 should be low noise metal oxide type for optimum low noise performance. R6 and C3 provide decoupling for the first three transistors. TR3 connected as an emitter follower buffers the output from TR2 to feed into the tone control network. This is of the standard Baxendall type with VR1 providing bass boost and cut and VR2 providing similar functions for treble.

TR4 provides a high impedance buffer for the tone control network and a low output impedance connected to the channel fader (VR4) via C9 and pin (14).

Input impedance variation on each channel is provided by switching pin (1) to pin (2) with S3 this gives an input impedance of approximately 600 ohms (or 47 kilohms with this connection not made). S3 also switches R9 and R10 in the gain feedback loop. If the gain is desired to be continuously variable, then a 100 kilohm linear potentiometer should be connected between points (7) and (4) and this will vary the gain between 1 and $100\left(\mathrm{VR}_{\mathrm{x}}\right)$.

Looking Inside

Fig 3 Pan pot and mixing network

PAN POTS

In the interests of economy and availability the pan pots used were single gang linear type. The configuration is shown in Fig. 3.

The signals from the pan pots are routed to the output channel buses via the two $22 \mathrm{k} \Omega$ resistors for channel separation.

OUTPUT AMPLIFIERS

The output amplifiers (Fig. 4) consist of a standard common emitter configuration (TR5) which is coupled to an emitter follower (TR6). TR5 provides a voltage gain of about 30 which compensates for the signal attenuation in the mixing and pan resistor networks. The final output stage, TR6, provides a low output impedance drive for the master fader. These amplifiers are decoupled from the power supply rails by R22 and C12.

Fig. 4 Output and echo send amplifiers (3 required)

HEADPHONE AMPLIFIERS

The headphone amplifiers are of fairly standard design with TR7 providing drive for the bases of the complementary pair TR8/TR9. The output will drive an 8 ohm load (headphones) and is decoupled by C 15 (Fig. 5).

The p.f.l. facility is switched to the output of the input channels via 2 pole 7 way interlocked push button switches or by a 2 pole 7 way rotary switch.

ECHO SEND AMPLIFIER

The design for this is the same as the output amplifier circuit. The inputs to this circuit are taken from the echo send pots on each channel through six 22 kilohm resistors to the input pin (16). The output is taken from the master echo capacitor-connected to pin (17)- to the echo send socket. The echo return signal is routed directly to the output channels via the Echo Return control and mixing network (see Fig. 1). As with the output channel amplifiers C12 and R22 provide power supply decoupling.

Fig. 5 Headphone amplifier (2 required)

Fig. 6 VU meter amplifier (2 required)

VUMETER DRIVE

Although the mixer uses exclusively transistors as the active elements for signal processing, monitoring of signal levels can be carried out quite satisfactorily using standard 741 op amps. The meter drive amps consist of a single op amp in an inverting mode with a gain of about 6. This is driven from the output of an output channel amp via C17 and VR11 which acts as a calibration control.

D1 and D2 provide rectification of the amplifier signal and C18 smooths the rectified signal. Standard VU meters are used, a double VU meter (if available), saves space on the front panel.

LED OVERLOAD INDICATOR

An overload circuit (Fig. 7) utilises an op amp as the active element. This is connected as a comparator with a d.c. bias set on the inverting input. While an a.c. coupled signal is applied to the non-inverting input. Signals from the six input channels are routed via mixing resistors to pin (28) and these are compared to the d.c. level on pin (3). Pin (2) also has a d.c. bias provided by R33 and R34, if the combined d.c. and a.c. levels on pin 2 are greater than the level on pin (3) the op amp switches into saturation. The op amp will switch at the input signal frequency but the l.e.d. will appear to be on continuously because of this high switching rate.

Fig. 7 Overload indicator
A reference voltage is provided in the circuit by R37 and D4 and decoupled by C21. C20 provides positive feedback at high frequencies causing the op amp to switch more rapidly. The preset pot VR10 adjusts the switching level and hence the level of input signal which illuminates D3.

TEST OSCILLATOR

The test oscillator (Fig. 8) provides a useful means of circuit calibration and signal routing testing. It consists of a one transistor phase shift oscillator with C22, C23, C24, R38 and R39 forming the phase shift and frequency

Fig. 9 Power supply

determining network. The circuit is decoupled from the supply via R44 and D5 provides a stable reference supply.

The output is taken via C26 from the attenuating network R45/VR12, and VR12 is used for calibration of the output which should be of 10 mV level and a fairly pure sinusoid in shape.

Fig. 8 Test oscillator

POWER SUPPLY

For serious purposes the mixer is made mains powered, and this is the function of the power supply in Fig. 9. It provides three voltage rails to drive the various circuits in the mixer.

The transformer used on the prototype has secondaries of $15-0-15 \mathrm{~V}$ at 50 mA and 8 V at 500 mA . The $15-0-15 \mathrm{~V}$ windings are fed via a diode bridge and smoothing capacitors to series pass transistors TR12 and TR11 which are biased by Zener diodes to give approximately $\pm 12 \mathrm{~V}$ stabilised output.

PHONE RAIL

The other secondary winding of the transformer is connected in a similar manner but the series regulating transistor is of a higher current rating. Although this power rail also provides +12 V it only feeds the headphone amplifiers since they require a larger amount of power than the other circuits and would affect the operation of them if they were connected to the same power rails.

None of the power supply rails of the mixer have to be at an exact voltage, but regulation and adequate smoothing are essential for low ripple content of the processed signals. Most of the circuits in the mixer have decoupling resistors and capacitors to prevent unwanted signal leakage onto the power rails.
NEXT MONTH: Construction and setting up.

A selection of readers' original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
Why not submit your idea? Any idea published will be awarded payment according to its merits.
Articles submitted for publication should conform to the usual practices of this journal, e-g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.
Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere

The circuit functions as follows. On pressing the key $\$ 1$, since the bilateral switch IC2b is on, the capacitor C1 can charge up via VR1. This gives the 'attack' part of the envelope. ICla acting as an inverter, holds the switch IC2a off. IC2c is also held off by the RS latch consisting of IC1e and IC1d.

When Cl has charged up to 1.8 volts the inverter IC1b triggers and its output goes high. The outputs of the RS latch now change, switching IC2b off and IC2c on. C1 now discharges via IC2c at a rate set by VR3. This gives the 'decay' part of the envelope. The envelope settles down to the level set by VR4. This gives the 'sustain' part until the key is released. On releasing the key, IC2c switches off and IC2b switches on. Dl prevents any current flowing via IC2b and interfering with the inverter IC1a. The output of IC1a goes high switching IC2a on. The capacitor now finishes discharging via IC2a and VR2. This gives the 'release' part of the envelope.

By replacing the inverter by a Schmitt trigger with a hysteresis level of say 4 volts, a higher voltage output can be produced. VR4 should also be changed to give a comparable sustain level.

The output is buffered by a 741 acting also as a non-inverting amplifier of gain 2. This gives a voltage envelope of 3.6 volts at the output. Thus this unit could possibly be used with the Minisonic's VCA.
P. V. Saduikis, East Park Grove, Leeds.

ADSR ENVELOPE SHAPER

CAR THEFT ALARM

T
HE circuit will give both visual and audible warning of unlawful entry into your motor car, which should deter the car thief. If your car is fitted with an electric fuel pump, then this may be immobilised when the alarm unit is switched on. The alarm is essentially an electronic version of the more common mechanical alarms, based on a relay latch, in conjunction with a thermal delay switch, and costing over double the outlay for this unit.

When the circuit is triggered by any of the door, boot, or bonnet switches, the 555 latches for approximately $15 S$, determined by R4 and C3, during which TR2 conducts, closing RLA which sounds the
horns and lights the headlamps. If any of the switches are still closed after that period, IC1 is triggered by RLA1, and latches for a further 15 S , this cycle repeating untill all switches are open.

TR1, R1 and C2 hold pin 4 on IC1 (reset) at ground potential during switch on, thus preventing the timer from latching. R2 reduced the standing current to a minintium. R6 and C4 suppress interference spikes that would trigger IC1 even when all switches are open, due to strong pickup. This trigger input is very sensitive and a lot of false triggering occurred before fitting these components. Diodes D1, D2 and D3 prevent the bonnet and
boot switches operating the interior lights and also block the path of current to ICI pin 2. TR2 is used to switch the 12 V relay, but if the coil resistance is higher than 60 ohms, it may be replaced by the rectifier shown as dotted lines.

The main on/off switch is positioned on the car exterior.
M. A. Robertson,

Chelmsford,

 Essex.
DIODE TESTER

THE tester shown was designed to test silicon or germanium diodes and indicates whether the diode is open circuit, short circuit or if working, its polarity.

The Schmitt trigger, IC la, forms an oscillator and IC 1 b an inverter, thus producing an alternating voltage across the test terminals A,B. When a diode is placed across these, provided it is not dud, it will conduct every other half cycle and either D 1 , or D 2 will light. If the diode is short circuited both l.e.d.s will light, and if open circuited neither will. The circuit has been used for testing ex-computer diodes and ones from "unmarked/untested" packs and is simple to use and reliabie.

D1	D2	Dr
OFF	ON	OPEN CIRCUIT
OFF	ON	OK.
ON	OFF	REVERSED ON
ON		

N. Sunderland, Reading,

METRAVO MULTIMETER

Consisting of just four basic parts, front and back cover, movement and printed circuit board, this instrument has no screws, with parts just clicking together and only two wires to solder between the movement and the printed circuit board.

Despite the simplicity of it's design the meter offers no less than 36 ranges with a $20 \mathrm{k} \Omega / \mathrm{V}$ sensitivity, at just $£ 22.00$ plus VAT \& Carr.

$$
\begin{array}{ll}
\text { DC Voltage } & 0.15 \text { to } 1000 \mathrm{~V} \\
\text { AC Voltage } & 1.5 \text { to } 500 \mathrm{~V} \\
\text { DC Current } & 50 \mu \mathrm{~A} \text { to } 5 \mathrm{~A} \\
\text { AC Current } & 0.5 \mathrm{~mA} \text { to } 5 \mathrm{~A} \\
\text { Resistance } & 1 \Omega \text { to } 1 \mathrm{M} \Omega
\end{array}
$$

Precision Instrument Laboratories, Instrument House, 212 llderton Road, London, SE15 1NT. (01-639 4461). Available UK only.

NEW PROJECT CASES

News of an interesting new range of project cases was announced to Market Place at Bazaar.

The PACK-FLAT range of instrument cases has been designed to provide electronic equipment engineers with an attractively styled packaging medium, versatile enough to meet individual requirements, yet still be available from stock. The cases are made from "Colorcoat" (a textured PVC coated steel) and can be stored flat until required.

The separate chassis allows for easy component mounting. The case slots together in seconds. Eight screws retain the complete assembly; the top four allow removal of the lid, the other four hold the assembly together. Alternatively, the front or rear panel may be removed still leaving the assembly intact.

Supplied in a black grained finish with white front and rear panels, sizes range from 180 $\times 152 \times 80 \mathrm{~mm}$ to $307 \times 152 \times 156 \mathrm{~mm}$, with the 152 mm dimension a constant throughout the range.

Full details from Perancea Ltd., 131 First Avenue, Bush Hill Park, Enfield, Middlesex, EN1 1BP (01-366 3625).

STEVENSON CATALOGUE

Exhibiting their wares at Bazaar were Stevenson. Over 250 types of items are mentioned in their 80 page catalogue. In stock items are normally dispatched by return of post, first class. A brief resume of the index brings to light:-

A/D Converters
Battery Holders
CMOS devices (a good list)
Decoders
EPROMs
Ferric Chloride
Grommets
Hand held control boxes
Insulating kits
J-Fet op amps
Keyboard cases
Low power Shottky TTL
Microprocessors (nine types)
Ni -Cad cells
Opto isolators
Potting boxes
Q-Max cutters
Random noise generator
SCR's
Timers
Ultrasonic transducers
Voltage regulators
Zeners
Send S.A.E. (min. $9 \times 6 \frac{1}{2} \mathrm{in}$.) to Stevenson Electronic Components, 76 College Road, Bromley, Kent, BR1 3BR (01-464 2951).

COMEIN RADIO FOUR!

Radio Four is a networked broadcast on long wave. It is also available on VHF but during the day there are many breaks for schools and minority interest programmes.
Long wave reception is susceptible to interference from electric storms, unserviced electric motors, TVs and some designs of light dimmer. Also some imported sets are without long wave.

Ambit International provide an answer to these problems in the form of their Ambitune RF Transponder. It converts the 200 kHz long wave signal to a frequency of around 850 kHz in the medium wave.

The unit needs no direct coupling to a set, it just sits 6 -10in from the receiver and gives of its best when directionally tuned to the transmitter (Droitwich). The unit is powered by two pen cells, life $1,000 \mathrm{hrs}$.

Although the device itself transmits, or reradiates, over a very short distance, Ambit say no licence is required. The official view of the Radio Regulatory Branch of the Home Office is that the usage of these devices is "under consideration".

Available at $£ 6$, inc. VAT and $\mathrm{p} \& \mathrm{p}$, only from Ambit International, 2 Gresham Road, Brentwood, Essex, CM 14 4HN.

6500 BASED KEYBOARD

Like Elton John it's always worth knowing about another keyboard.

Rastra Electronics Ltd. of Hammersmith present the Synertek Systems KTM-2; a full ASCII keyboard and all the logic to display 24 lines of 40 characters each with full graphics.

The keyboard has 54 keys and generates 128 ASCII characters (upper and lower case alpha, numeric, special and control), graphic and alphanumeric characters being capable of simultaneous display.

With relative and absolute cursor addressing, graphs, game pieces, etc. can be placed and moved about the screen with a minimal amount of software.

In addition Rastra offer the full range of Synertek Systems with special kit prices for integral systems based on SYM-1.

For further details and full price list contact Rastra Electronics Limited, 275-281, King Street, Hammersmith, London, W6 9NF (017483143). Callers welcome by appointment.

USERTRANSPARENT?

Away with the tobacco tins and egg boxes. You can keep your stock of components tidy and visible in these new storage cases. Each case has a compartment base moulded in high impact styrene, and a clear styrene lid. The case on the left is ideal for a range of small components and the case on the right will also hold tools.

The 18 compartment case (model 18M) measures $274 \times 157 \times 40 \mathrm{~mm}$. The 16 compartment case (model 16M) is 315×245 $\times 45 \mathrm{~mm}$. Prices are - (18 M) $£ 1.99$ plus $\mathrm{p} \& \mathrm{p}$ - (16M) £2.99 plus p\&p.

Both models are available direct from Sumico Ltd., 7 Clarence Road, Clare, Sudbury, Suffolk CO108QN. (078727 7855).

SECOND AERIAL

A second TV set may be required in a room such a distance from the first set that the cost of a splitter, plus co-axial cable and the routing of it may make a second aerial economic.

A six element UHF aerial, approved and tested by the British Aerial Standards Council, is one of several designed and made by Maxview. It is suitable for all present and future channels, can be used horizontally or vertically, and is of a modern anti-ghost design in aluminium.

Although called a set-top aerial, it can be mounted outside with perhaps a little weatherproofing around the junction box where the co-ax joins the array.

The recommended retail price is $£ 4.69$ inc. VAT but they can be found at $£ 3.75$.

For your nearest outlet, or literature on their range of aerials contact Maxview Aerials Ltd., Setch, King's Lynn, Norfolk. (0553 810 376).

HYBRID KIT

Have you ever shelved a project for want of a component, or finished the circuitry but not made a very neat job of the housing? Jayen seem to have hit upon a good balance between a complete kit from a sole supplier and doing it all yourself. They supply a p.c.b., front panel (punched and lettered), circuit diagram, instruction sheet, and difficult pieces of hardware such as screws, washers, etc. They also supply an up to date components shopping list with several suppliers' prices, leaving the constructor the chance to shop around and buy his components at the best possible prices.

At present Jayen offer kits in this way for a digital multimeter and a function generator, and other Jaykits are to be introduced. See their ad. in previous issues.
Jayen Developments, 21 Gladeside, Bar Hill, Cambridge, CD3 8DY (0954 80285).

NASCOM UPGRADE

A new Nascom has recently been announced; this computer, to be called Nascom 2, will not replace Nascom 1 but is an upgraded version. It still employs the Z80 but with selectable speed of 1,2 or 4 MHz and retains the Nasbus bus lines. The 8 K BASIC is based upon the Microsoft BASIC and a 2 K Monitor which is called Nas-Sys 1 is also used. The Monitor was written by a hobbyist to improve Nascom 1.

The board also contains 8 K static RAM, Kansas City cassette interface at 300 or 1200 baud (link option), a 2 K ROM character generator providing 128 characters plus a second 2 K ROM socket for a graphics package which is software selectable. The unit will be available either as kit or ready built. We do not, however, expect to see many, if any, becoming available to the hobbyist before the late autumn. Kit price will be $£ 295$ plus VAT and that does not include the p.s.u. which will cost another $£ 30$ plus VAT.

The monitor is a vast improvement over the original and although primarily designed for use with the new keyboard, all features can be used with the current Nascom 1 keyboard by using combinations of keys. Nascom 1 owners would do well to investigate this further as Nas-Sys 1 is one of the best monitors we have seen.

waterm
 Michael Tooley ba. David Whitfield ba, msc

THIS versatile instrument provides sine, square, and triangular wave outputs of up to 10 V peak-peak over a frequency range of 1 Hz to 100 kHz and is capable of driving resistive loads as low as 10Ω at full output. A separate 5 V peak-peak square wave ΠL compatible output is available for testing logic circuits and for timing and synchronisation of the variable output where required. The instrument also incorporates a sweep facility which allows the output to be frequency modulated by an external signal. Thus permitting swept frequency response analysis and the generation of some interesting modulated tone effects.
The instrument uses four integrated circuits, three transistors and a handful of other components. Calibration is greatly simplified by the use of linear law frequency and output level controls. The specification more than adequately meets the electronic enthusiasts' requirements for a general purpose audio frequency signal generator. Furthermore, the added facilities make this an ideal project for constructors who wish to up-date their existing test equipment.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Waveform Generator is shown in Figs. 1 and 2. The circuit is based on the versatile 8038 waveform generator integrated circuit which provides sine, square and triangular outputs derived from an internal voltage controlled oscillator. The frequency range is selected by S1 and decade capacitors C9 to C12. The duty cycle is set to 50 per cent by making R1 and R2 equal

and fine frequency control is achieved by varying the d.c. potential at pin 8 of the 8038 . Two pre-set resistors, VR2 and VR3, are used to set the maximum and minimum frequencies respectively at each end of VR1. Adjustment of the purity of the sine wave output is provided by VR4 and VR5. The desired output waveform is selected by S2 and fixed resistors, R4, R5 and R6, are included to provide equal peak-peak outputs with all three waveforms.

Control of the output amplitude is provided by VR6 with C13 included to remove the d.c. level from IC3 hence eliminating any d.c. off-set at the output of the direct coupled amplifier which follows. The TTL output is buffered by means of the emitter follower, TR3. Diode D2 provides protection from the reverse base-emitter voltage which occurs on negative half-cycles of the square wave output from IC3 The square wave output from TR3 emitter alternates between levels of $O \mathrm{~V}$ and +5 V and is thus $T \mathrm{~L}$ compatible.

Operational amplifier, IC4, is used in non-inverting mode with pre-set gain adjusted by VR7 and frequency compensation provided by C16. Complementary symmetrical emitter followers, TR1 and TR2, provide current gain and reduce loading effects of the output on IC4. Fixed base bias for TR 1

Fig. 1. Circuit diagram of the power supply

and TR2 is provided by forward biased silicon diodes, D4 and D5.

Two integrated circuit regulators, IC1 and IC2, are used to provide positive and negative 12 V regulated supply rails. A conventional centre-tapped bridge rectifier arrangement provides a source of d.c. for the regulators.

CONSTRUCTION

With the exception of the front panel controls, sockets, mains transformer and capacitors, C1, C2, C7 and C9 to C13, all components are mounted on a single printed circuit board. The p.c.b. is shown in Fig. 3 and the component overlay in Fig. 4. When mounting components on the p.c.b.,

SPECIFICATION

Frequency Range

Continuously variable from 1 Hz to 100 kHz in four linear decade ranges:

1 Hz to 100 Hz
10 Hz to 1 kHz
100 Hz to 10 kHz
1 kHz to 100 kHz
Waveforms
Sine, square and triangle.
Separate TTL compatible square wave output.

Output voltage level

Variable up to 10 V peak-peak in one linear range for pure resistive loads of greater than 100Ω. Maximum r.m.s. voltage developed into a 10Ω resistive load (sine wave at $1 \mathrm{kHz}=2.5 \mathrm{~V}$.

TTL output fixed at 5 V peak-peak.
Output impedance (variable output)
Less than 0.25Ω measured at 1 kHz sine wave.

Output impedance (TTLoutput).
100Ω measured at 9 kHz .
Minimum recommended load impedance (variable output).
4Ω.
Optimum load impedance (variable out-
put).
8Ω to 15Ω.

DC off-set at output (variable output).
Less than 10 mV .

THD (sinewave).
Typically better than 3 per cent at 1 kHz with full output developed into a 100Ω resistive load.

Ramp linearity (triangle wave).
Better than 3 per cent at 1 kHz with full output developed into a 100Ω resistive load.

Rise time (variable output square wave) typically better than $0.5 \mu \mathrm{~s}$ at 1 kHz measured using full output into a 100Ω resistive load.

Rise timé (TTL output).
Typically better than $0.3 \mu \mathrm{~s}$ at 1 kHz measured using full output into a 100Ω Pesistive load.

FM sweep.
FM sweep input facility (a.c. coupled) provides frequency modulation of the output signal. The input impedance depends on the setting of the frequency control but is typically around $10 \mathrm{k} \Omega$. An input of 420 mV peak-peak is sufficient to sweep the oscillator through approximately 10 per cent of the range selected. The FM sweep sensitivity on each range is as follows: $26.7 \mathrm{~Hz} / \mathrm{N}$, $267 \mathrm{~Hz} / \mathrm{V}, 2.67 \mathrm{kHz} / \mathrm{N}, 26.7 \mathrm{kHz} / \mathrm{V}$.

θ

Internal view of the Waveform Generator

it is important to check the orientation of the transistors and integrated circuits. Four small heat sinks, consisting of around $900 \mathrm{~mm}^{2} 18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. aluminium bent into a " U " shape (or proprietary types of between $15^{\circ} \mathrm{C} / \mathrm{W}$ and $20^{\circ} \mathrm{C} / \mathrm{W}$), should be fitted to IC1, IC2, TR1 and TR2. The use of 14pin and 8-pin dual in-line sockets in conjunction with IC3 and IC4 respectively is recommended. The p.c.b. is mounted using four short stand-off pillars located in the base of the instrument case. The reservoir capacitors, C1 and C2, are retained by two horizontal mounting clips.

Switch one has four capacitors (C9 to C12) soldered onto it with their ends soldered to a bus bar which can be formed out of 16 s.w.g. tinned copper wire as shown in the photograph.
All the wiring leads should then be soldered including the links shown in Table 1.

Rear view of front panel

Capacitor mounting on switch one

Square wave output at $\mathbf{1 0 0 k H z}$. Vertical scale: 2V/cm; Horizontal scale: $\mathbf{2 \mu 8} / \mathrm{cm}$

INITIAL CHECKS AND CALIBRATION

After a careful visual examination of the p.c.b. and associated wiring, connect the mains supply and check that D6 is illuminated. The positive and negative supply tails should be checked using a d.c. meter. These should be within 0.5 V of the nominal $\pm 12 \mathrm{~V}$. Presets VR4, VR5 and VR7 should be set to mid-position. S1 should be set to position $2(10 \mathrm{~Hz}$ to 1 kHz$)$, S2 to "square", and VR6 set fully clockwise. VR3 and VR1 should be set fully anticlockwise and VR2 adjusted to produce a square wave output at 8 Hz as observed using either an oscilloscope or preferably a digital frequency meter. VR 1 should then be set fully clockwise and VR3 adjusted for an output at 1.2 kHz . The frequencies at the extreme ends of VR1 should then be checked on ranges 1,3 and 4. If desired, calibration of the front panel control can be carried out at this stage. The 10 Hz and 1 kHz positions should be marked (these occurring

TEST VOLTAGES ITABLE 2)

All of the voltages are measured relative to the common rail with the instrument adjusted to provide a sine wave at 1 kHz and the variable output set to zero.

Sine, triangular and square wave outputs at 1 kHz . Vertical scale: 2V/cm; Horizontal scale: $500 \mu \mathrm{~s} / \mathrm{cm}$
almost at the extreme settings of VR1) as should intervals of 100 Hz from 100 Hz to 900 Hz . The scale should be linear between these values.

Return S1 to position 2 and set VR1 to 1 kHz . Check the sine and triangular wave outputs. VR4 and VR5 should, if necessary, be adjusted for a distortion free sine wave output. VR7 should be adjusted for a peak-peak output, at the maximum setting of VR6, of 10 V . This is best accomplished by selecting square wave output and using an oscilloscope. VR6 can then be calibrated in 1 V steps from OV to 10 V peak-peak output. Again, the scale should be linear. Finally, the 5V TTL output should be checked. A list of voltages is provided in Table 2 to assist in trouble-shooting the instrument. This completes the initial checks and calibration and the instrument is now ready for use.

pomis nitising

METERMATE (July 1979)

Fig. 6. Positions 1 and 2 of 53 a should be linked together. Also the numbered switch positions of S3c should be reversed.

Micro-bus (August 1979)

In the motor control circuit, if both inputs PAO and PA2 are high, all the transistors are turned on and there is a risk of overheating. This state should be prevented using gates as shown:

[0973]

16 NOTE SEQUENCER (March 1979)

IC2-IC3 are reluctant to oscillate in certain circumstances. Experiment has shown that a $10 \mathrm{k} \Omega$ resistor connected between pins 4/IC3a and 2/IC2a solves this. For full trigger furiction over VR4 track, C2 should be changed to 1 $\mu \mathrm{F}$. Two 1N914 diodes should be added at pin 3/1C10a and D24c and $4 / 1 \mathrm{C} 10 \mathrm{~b}$ and D25c each diode being connected anode to pin and cathode to cathode. In Fig. 3 13/IC11b should be connected to IC10c.

The radical budget of the newly elected government was largely as anticipated in respect of handouts but depressing in its penalties. As I pointed out last month, a change of government can do nothing overnight. The two per cent rise in minimum lending rate announced on budget day was the main factor which tumbled share prices. And this on top of an increasingly grave oil shortage and consequent rise in price was enough to change high expectations into industrial gloom.

The central strategy, essentially longterm, of moving to indirect rather than direct taxation did little to fire the popular imagination although this principle, giving everyone more discretion on how they spend their money, is common on mainland Europe in countries whose performance and economic success are often quoted as an example we in Britain should emulate.

For the electronics industry the budget was both good and bad. No defence cuts, in fact the reverse with another $£ 100$ million for essential equipment programmes, clearly delighted those engaged in the high-technology end of the business. But it was a far from happy day for the already hard-pressed consumer sector with the added burden of the new 15 per cent VAT rate designed not only to counter-balance the reductions in income tax but also to discourage consumer spending, not least on imported products.

At the time of writing there was still no announcement on the future of the National Enterprise Board although it was confirmed in the budget that some of the assets held by NEB, and specifically BP shares, would be offered to investors. It is difficult to imagine much commercial excitement in, for example, the Microvision activity of Sinclair Radionics although it has been reported that at least one buyer is in negotiation. But blue-chip operations like Ferranti and ICL should find many bidders.

Under Secretary of State for Industry, David Mitchell, attending the Intel Fair held at Wembley, mused publicly why we have no Intels in Britain. Paying tribute to Intel's 10 -year success story he pointed out that it was not due to government assistance or initiative but to a combination of technological and entrepreneurial genius in an environment which made it worthwhile for people to start and expand profitable businesses. It was central to Conservative philosophy that such a climate was created in Britain, he said.

This leaves us all still in a state of suspense on the future of inmos, the best publicised of NEB's new ventures. If Inmos survives the axe will it, too, be offered to the private sector? Possibly. But it can be argued quite plausibly that ultimate ownership is irrelevant. None of the great electronics companies are owned by their bosses although most bosses have a shareholding in their enterprises which encourages them to do well. The Inmos bosses, too, have been given a personal stake.. The only difference, it would appear, is that with a government as major shareholder and controlling investment policy, then political pressure can be exerted on a company to operate, say, in an area of high unemployment rather than close to the market it serves or in an area where skilled labour is readily available. But even private industry can no longer site itself exactly where it would like. Our mixed economy is indeed strange.

Astronomical

The arrival of the megabit bubble memory and the prospect, not too far distant, of a million devices on a single chip, not to mention picosecond switching speeds now quite common, makes it quite difficult to visualise what it really means when we glibly talk of such figures. Or to realise how far we have come in the past 30 years.

Years ago I remember Sir James Jeans writing in a plain man's guide to astronomy that the total number of stars in the universe is probably something like the total number of grains of sand on all the seashores of the earth. Just as starting is a comparison by Professor H. W. Barker talking recently on MPUs. He remarked that a valve-type computer equivalent roughly to the human brain would have been about the size of London. But that it may soon be possible to produce a package of silicon chips of equivalent performance to the brain, yet smaller.

Breakthrough?

It has been acclaimed as a breakthrough. It concerns the so-called 'electronic office', the introduction of word-processing, VDUs and all the other electronic paraphernalia designed to increase efficiency. The equipment has been installed since last year. Management/Union negotiations have taken a full year. Agreement has now been reached and the 600 office workers concerned can breathe again. There will be no redundancies, and present status and earn-
ings are guaranteed. In other words, no change except that VDU operators, in the interests of health and safety, are to get 20 minutes break after every 60 minutes work. So the equipment may now, at long last, be used.

If the claims for the electronic office are anywhere near honest it would seem that with the present workload most, if not all, the 600 staff will now be grossly underemployed. Presumably the benefits, if any, are in the future because it should be possible for the workload to expand without further staff recruitment. Perhaps a landmark of sorts, but hardly a breakthrough for productivity which is supposed to be what automation is all about. The story is true but the names have been omitted to avoid embarrassing the company and union involved.

Plessey

A new company, Plessey Defence Systems Ltd., has been formed as a subsidiary of Plessey Electronics Systems Ltd. It is to take on all the Plessey work for the Ptarmigan trunk communications network for the British Army and will now be offering Ptarmigan-like systems to other defence forces with a system for Australia as the first major prospect for overseas sales. As with the British Army project, Plessey is prime contractor heading a consortium for the Australian bid. Some elements now in Plessey Radar are also being transferred to the new company so it appears reasonable to suppose that activities will extend well beyond the pure communications sphere.
A turn-up-for the book in Plessey is the acquisition of Dr. Melvyn Larkin who has headed up Motorola's semiconductor operations in the UK ever since that company established itself in East Kilbride. Larkin has had vast experience in the USA and the UK on semiconductor research and latterly in top management. He has served with Mullard, Texas Instruments and Westinghouse as well as Motorola.
At Plessey he will be director of technology and strategic planning for all Plessey's components activities, not just the semi-conductor division which still awaits the appointment of a new MD following the departure of Derek Roberts to GEC.

Lecture Circuit

I would have imagined that saturation point had long since been reached on the number of lectures, symposia, colloquia and conferences devoted to the microprocessor and its business and social impact. Hardly a day goes by without one and by now every aspect should have been exhausted. But I had forgotten the ladies. The impact of the MPU on women's employment was said to be the key issue for debate at the recent National Conference of Labour Women. Will they throw out their MPUs as once they used to throw out their brassiéres? If they reject their use at work will they also have them taken out of their washing machines at home?

Acorn omputer Reviewed by Mike Abbott

USING the increasingly popular 6502 micro' the basic Acorn microcomputer comprises two Eurocards each measuring $160 \times 100 \mathrm{~mm}$ mounted sandwich fashion, and requiring just one supply line of $7-35 \mathrm{~V}$. It costs $\mathfrak{£ 6 5 + \text { VAT. }}$

The MPU card (lower) houses the 6502 chip, 512 byte Acorn monitor, 1 K byte RAM, 16 -way RAM I/O (with 128 bytes), 1 MHz crystal, 5 V regulator, and sockets for 2 K EPROM and second RAM I/O chip.

The Keyboard card (upper) holds a superbly clear keypad with 25 buttons which have a nice "clicky" action, arranged as 16 hex and 9 control keys. Mounted on this keypad is a pocket calculator type 7 -segment display strip, specified as eight digits but in our case nine, with the extreme left-hand digit unconnected. The upper p.c.b. also contains a CUTS (Computer User's Tape Standard) crystal controlled tape interface circuit.

CONSTRUCTION

Although the Acorn is available in kit form, we received for review a ready built and tested unit, and so cannot comment on the ease of assembly, but I would say that anyone who can solder components to a p.c.b. could put it together without difficulty, the procedure being largely self-evident.

The glass-fibre plated-through p.c.b.s are clearly marked with component positions and numbers, and are immediately recognisable as being of excellent professional standard. First class d.i.l. sockets are used. The two boards are linked by a 20 -way ribbon cable soldered at each end, which carries the keyboard and display signals down to the 8154 RAM I/O device on the MPU board. The MPU bus is available on a set of tinned contacts which can either be soldered to, or can accommodate a 64 -way right-angled card edge connector (indirect type).

The only criticism I could muster concerning construction, albeit a minor one, is that the display unit is supported solely by its own ribbon cable-although this arrangement is probably adequate in the absence of maltreatment. After some debate I decided to "come clean" and confess to having given the Acorn a substantial jolt when its lead became entangled with another. The machine continued to work perfectly, and this admission is the best comment I can make on its robustness-but be warned, open systems evolved around interwired modules are at risk in this respect!

MANUALS

Documentation is a most important aspect, since even a perfect computer may end up collecting dust if there is nothing to tell the owner how to get the best from it. In my view the scales do not tip decisively either way when judging the Acorn User's Manual. Certainly, the way in which the manual leads from one 6502 instruction to the next as the need for it becomes apparent, is nice; building on, and modifying the same program as an introduction to the methodology of machine code programming.

Sufficient description of the resident monitor program is given to show how subroutines contained therein can be jumped to, and from, to save effort and RAM space when writing your own programs. And it is pointed out that user programs should not start at the lowest memory address because the low addresses are used as a scratchpad for temporary data storage by the monitor. The monitor firmware is listed, complete with labels and comments, but what is lacking is a single overall picture of the memory map.

Although the User's Manual begins by briefly explaining binary, octal, decimal and hexadecimal, I feel that the contents may still become a little abstract for some; a situation possibly avoided by the addition of further diagrams showing where data is coming from and going to.

A major criticism of the manual from the beginner's point of view however, is that the text is in capital letters throughout. If this was an attempt to make the reading clearer, then in my view it failed. Sentences become lost, and confusion results WHEN EXPLAINING AND AND OR FUNCTIONS ETC. .
See what I mean! The absence of page numbers was an irritation too.

These points aside, the User's Manual has all the information and help one would expect, plus a number of mathematic program routines, and games.

The twenty page Acorn Technical Manual contains not only constructional details, but a suggested p.s.u. design and full circuit diagrams on separate sheets giving all the information you could wish for. Among other things a thoughtful feature is described whereby a 16 -pin di.i. socket is used as a patch-panel to allow alternative memory address mapping. Links inserted in the socket can be altered to re-configure the chip select lines to suit your requirements, and various options are illustrated, such as the example shown in Fig. 1. Before one can appreciate the value of this facility it is necessary to understand the nature of the memory structure, and for this purpose there is a preceeding description explaining how the memory is divided into 16 blocks and 256 pages, each page consisting of 256 bytes.

For the benefit of those, who like myself prefer to see the memory addressing graphically mapped out, I have included the diagram in Fig. 2. This is how the Acorn is supplied, and of course can be changed.

It is here in the Technical Manual that you will discover snips of information, such as, that it is the bottom 32 bytes of page 00 that are used as the monitor scratchpad, and that page 01 is used by the 6502 for the stack, starting at address 01 FF extending downwards. Incidental information such as this is far handier compiled into a "finger-tip" reference or memory map diagram, especially when program writing or interfacing.

FIRMWARE

The monitor program occupies addresses FFFF down to FE00, and its purpose in life is to scan the keyboard for instructions and data, and strobe the seven segment displays with specified information. Because of its function, the monitor naturally contains useful routines, or more specifically subrou-tines-terminated by the RTS (return from subroutine) instruction, and as mentioned before, it is explained in the User's Manual how to access these.

There is no 7 -segment decoding as such, since the RAM I/O device simply couples the segment lines a through \mathbf{g} to the data bus lines D0 to D6; thus allowing simple binary data statements of zeros and ones to be remembered in ROM and called up by straightforward memory addressing. These are located at FFEAFFF9 (FONT), an example being the contents of location FFF3 which is 6 F hex. This gives 01101111 binary, and if segment "a" relates to the least significant bit then it follows that a 9 will be produced on the display. Freedom to produce any combinations of segment display results from this technique, and the User's Manual gives a complete 64 character ASCII format attainable on the seven segment display-if somewhat abstract!

A feature of the monitor which might affect anyone susceptible to hypnosis, is the low display strobe rate, which produces a constant flicker, and the direction of which is just perceivable to the corner of the eye. To be honest though, this is something I became accustomed to, and unaware of very quickly.

KEYPAD

Apart from hex Keys $0-9$ and $\mathbf{a - f}$, a number of control keys exist, and the layout of these can be seen in the photograph:
rst Reset.
m Memory inspect. Allows you to inspect and modify the contents of any memory location. Can be used with the \wedge and \vee keys.
1 Load from tape, explained later.
g Go. Execute program.
r Restore from break. See Debug Firmware.
p Set or clear break point. See Debug Firmware.
$\wedge \quad$ Step up (through memory).
s Save on tape, explained later.
$\checkmark \quad$ Step down (through memory).

CASSETTEINTERFACE

It is possible to save a program on cassette with the Acorn by use of the s key, which simply allows you to "dump" the contents of an occupied section of memory serially on to tape using a domestic cassette recorder. The firmware requires that you press key s, after which it prompts you (F. XXXX on the display) to enter the start address of the program you wish to save. The Xs signify that those display digits will probably be meaningless garbage; keying in the start address will override these, and any command key will enter this new data. Having
done so Acorn will now prompt you for the end address-you should in fact enter the end address +1 . The second prompt may also be garbage, which will again be overwritten, but this time you do not press any command key until you have all your connections made to the recorder, and the cassette running.

The display goes blank while Acorn busies itself with recording, and then when the finish address reappears, recording is complete and you are back at the monitor "entry" point FF04.

The name of the program etc. can be recorded verbally before commencing with the digital signals.

To load a program from tape-to-Acorn, the tape is replayed until the continuous pilot tone ($2403 \cdot 8 \mathrm{~Hz}=$ all 1s) is heard, and then the rst and 1 keys are pressed. The display blanks out until data is encountered, whereupon the left-most digit displays a symbol for each byte as it enters (recording/replay speed is 30 bytes per second). As an example, the manual shows how to save and reload a program called Duck Shoot, which, with 68 bytes plus the necessary 4 bytes of address information takes two seconds to load. When the program has completed loading the previous display reappears. Programs can be self-priming after being loaded, and immediately seize control, a feature found on high level machines running in BASIC for example.

Under normal conditions a program once restored to Acorn will occupy the addresses at which it was stored on tape. The Acorn tape interface falls within 0.2 per cent of the CUTS standard ($2400 / 1200 \mathrm{~Hz}$).

An important aspect of saving hex code programs on tape, when you have expended much concentration keying in all those dazzling statements, is the reliability and ease with which the operation can be carried out. I found Acorn more communicative and less critically dependent on recorder level setting than a multi-level BASIC home computer recently reviewed in P.E. I soldered a twin screened lead to Acorn's tape in/out connections (no connector supplied), and hooked it up first of all to a BASF cassette recorder. Then I recorded Duck Shoot on auto-level and on a wide range of record sensitivities with no problem, and successfully recovered it again with output signals ranging from 15 mV to 300 mV (max. from recorder). At around 20 mV and below the occasional statement would go astray, but even then it never took more than two attempts to load it accurately.

I transferred the recorded cassette to a SONY TC-207 recorder and happily recovered the program again. On this cassette recorder, and no doubt others, the only available output is the earphone socket, which unfortunately mutes the speaker. It was thus necessary to keep removing the plug in order to hear the pilot tone; however, this criticism is not confined to the Acorn.

> The two-board computer can be powered from a "calculator style" p.s.u. available from Acorn at $\mathbf{£ 5 . 0 0}+$ VAT

DEBUG FIRMWARE

A large chunk of the Acorn Monitor, starting at FFB3, is devoted to providing a debug facility. Using the \mathbf{p} key in much the same way as the m key it is possible to display an address, but instead of showing the contents of that location, the 6502 BREAK instruction is inserted (00) which when executed, puts a " 1 " on the microprocessor's IRQ (Interrupt Request) line. This is known as a software interrupt, and the MPU jumps to a location vectored at FFFE and FFFF in the monitor. This then jumps the PC to a scratchpad location where you will have entered the start address of your new task (interrupt routine) for the microprocessor.

All this is standard 6502 interrupt technique, but if the debug firmware start address FFB3 is inserted into these scratchpad locations ($001 \mathrm{E} \& 001 \mathrm{~F}$), then the machine will jump into the diagnostic mode. I stated that key p could be used to insert or over-write a 00 instruction at a particular location; in fact, the original instruction is saved at address 0018 , and by pressing p again it is returned. With this BREAK instruction inserted at a point in your program where you suspect something is going awry, the machine will run to that point, stop and display the contents of the Accumulator, X and Y registers, and P register (Process status). Press pagain and the Program Counter and Stack Pointer will be displayed. Escape from this condition is by the \mathbf{r} (Restore) key.

$$
\begin{aligned}
& \text { FIRST DISPLAY } \\
& \text { SECOND DISPLAY }
\end{aligned} \begin{array}{|c|c|c|c|}
\hline A & X & Y & P \\
\hline P C & S P \\
\hline
\end{array}
$$

During debugging the \wedge and \vee keys can be used to operate on the \mathbf{p} address, but only a single location's back-up copy is retained. However, this provides a most useful debugging facility.

There is no single step facility but a way in which it can be achieved is described, requiring only a 74LS74, BC 107 and two resistors forming a circuit to "stretch" the SYNC signal. A NMI (Non Maskable Interrupt) is generated every opcode not fetched in the monitor, and using the recommended method the monitor routine at FFB3 will display the processor status after each instruction. The next instruction is executed by pressing r.

RAM I/O

There are two 40-pin I/O device sockets on the Acorn MPU board. One of these has an occupant which interfaces to the keyboard and display p.c.b., and the other can be filled for around $£ 8$ with a second 8154 RAM I/O device for external interfacing to, for example, a VDU.

The 8154 is TTL compatible, with 128 bytes of RAM, and two 8 -bit peripheral ports, of which one can be programmed to operate in various strobed modes with handshaking. The device is covered in a cursory manner only in the Acorn manual, and so it would be advisable to obtain a data sheet to fully realise its potential.

REGULATOR

The supply requirement is stated as being $7-35 \mathrm{~V}$ unregulated, but minimal emphasis is placed on the need to put a "surplus power" dissipating resistor in the line if the supply source is greater than 9 V . Even running the Acorn at 10 V produced excessive heat at the regulator chip, which has no heatsink. Alternatively a heatsink could be added.

Although this point is made in the technical manual, it might easily be overlooked in a hasty attempt to "get things going", resulting in heat damage.

FOR THOSE WITH "'L" PLATES

The User's manual contains an assortment of printing errors ranging from the immediately obvious to those which, for the owner struggling along with minimal background knowledge, might cause confusion. An outbreak of mistakes occur in Chapter 6.2 where an unspecified program example is said to produce the answer 03, but should produce 30. Just above this program a set of brackets indicate the way to enter the diagnostic routine start address FFB3; here the second 001 E should read 001 F . However, anyone fooled by these simple errors should revert to reading a basic primer on the subject-therein lies the yard-stick!

If a lasting relationship with the 6502 is anticipated, then a
worthwhile investment would be the MOS Technology manual set, namely 6502 Hardware, and 6502 Programming manuals, available from Commodore of Euston Road, London.

CONCLUSION

The Acorn is designed to be an attractive proposition in all fields of the microprocessor technology. It could form the heart of a sophisticated home or small business computer, with all the trappings, such as extra memory and BASIC interpreter, VDU, printer, and floppy disk. In fact, at the time of writing this article, a fast 4 K BASIC was already at an advanced state of development by Acorn Computers, and a TV interface plus slightly modified ROMS. Both of these may be available by now. Naturally, to put the Acorn computer into the high level language class of machine, it would need to be coupled to a full ASCII keyboard, also coming soon. Alternatively, the Acorn could be employed as a machine code computer and used, for example, to develop software for dedicated 6502 based automated systems. BASIC might even be considered for control applications if easily changed routines are desirable.

As the name Acorn implies, upwards expandability is genetically built in, but while you're waiting for it to grow, the minimum configuration serves as an ideal training tool for hex code programming.

IEA/Electrex-February 25-29, 1980. National Exhibition Centre, Birmingham. Details: Industrial and Trade Fairs Ltd. Tel: 021-705 6707.

Viewdata '80-March 26-28. Wembley Conference Centre, London. Conference and exhibition. Details: Online Conferences Ltd. Uxbridge (0895) 39262.

Communications '80-April 14-18. National Exhibition Centre, Birmingham. Details: ITF Exhibitions. Tel: 021-705 6707.
All-electronics Show (1980)—April 29-May 1, Grosvenor House, London. Details: 0799-22612.
International Conference On The Electronic Office-April 22-25, 1980. London Penta Hotel. Organised principally by the Institute of Electronic and Radio Engineers, 99 Gower St., London WC1E 6AZ.
The Mersey Micro Show-April 30, May 1, 2, 1980. Adelphi Hotel, Liverpool. Exhibition and seminars, with the cooperation of Liverpool University. Details: Online Conferences Ltd. Uxbridge (0895) 39262.
IBC 80-September 20-24. Metropole Centre, Brighton, UK. Details: Secretariat, IEE, Savoy Place, London WC2R 0BL.

MOVE

ILOG (UK) Ltd. have moved to a new address: Babbage House, King Street, Maidenhead, Berkshire SL6 1DU.
COLOUR WITHOUT MASK

AHIGH-resolution, three-colour, electrostatic display has been developed by Hewlett-Packard to help solve the problem of presenting complex, real-time data.

Conventional colour displays use some form of shadow mask to present colour information. Red, green and yellow colour hues are generated in the new seven-inch display (HP1338A) by varying the c.r.t. post accelerator voltage, which changes the energy with which the electron beam strikes the phosphor. This allows the coloured data forming the image to be placed anywhere on the screen and greatly enhances resolution: spot size is 0.012 in .

Colour switching is also much faster with the beam penetration phosphor technique. As an indication of speed, some 600 colour blocks of data can be colour switched in 100μ. Bandwidth of the X and Y amplifiers is in excess of 3 MHz , and the rise time of the Z amplifier is better than 30 ns .

As well as being able to handle conventional analogue inputs, an associated graphics translator (HP1350A) provides interfacing to the international IEEE-488 standard digital interface bus. TTL level colour switching, colour busy and colour valid signals allow control of the colour of each vector of character.

FINDING A CLEAR WINDOW

The frontiers of space are continually expanding but not to the same extent on all fronts at the same time. Thus, a situation had arisen with regard to optical facilities in the Northern Hemisphere, which restricted the useful hours of operation and observation, a dirty window. Now after several years of slow progress in finding and obtaining a satisfactory site, free to the heavens, free from vagaries of politics; having the prospect of a collective and democratic site is now resolved. An agreement between the Spanish Govemment and a group of astronomers from Britain, Denmark and Sweden-has now been signed so that at last, work to catch up with necessary research, will be possible, in the Canary Islands on La Palma.

Radio Astronomy is not affected (except at certain narrow bands) by weather or clouds. In consequence a great deal of recorded data relevant to optical astronomy awaits the attention of the optical astronomers. So much of the northern sky has been mapped by radio that the time needed for direct observation in the electromagnetic spectrum is at a premium. The new facilities will have two and a half times as many hours of excellent "seeing" as is available at the present time.

Many sites were investigated over several years and some of these were also very suitable. One in Hawaii had all the conditions required except the extremely costly transport of persnnnel to and from the site and Britain. It was at this point of decision that the political situation in Spain changed. Also Spain would benefit in her scientific programme by the collaboration, to the extent of 20 per cent of the observing time at her disposal.

Three national research councils were involved in the new proposition. These were the Science Research Council for the United Kingdom, the Royal Academy of Sciences for Sweden, and the Research Administration of Denmark, who negotiated through the Higher Council for Scientific Research for Spain. The
direct contribution from Spain will be the site facilities; the access road to the site at the Roque do los Machachos (what a beautiful choice of name), power supplies, water supply, houses, a hostel and workshop. Though these services are not at the moment available, work will begin in earnest. The project team at Herstmonceux expect that the 2.5 m Isaac Newton telescope and the one metre telescope will be ready for operation in late 1981 or early 1982 .

The special advantages of La Palma are that the population has a total of only 50,000 . There are only roads near the coast except that which crosses the Island from Los Llanos to Santa Cruz de ia Palma. There is very little pollution of the atmosphere and the prevailing wind at the site level flows smoothly round the island. The major attraction of the choice of La Palma is common to the Canary Islands. That is that it is a region of high atmospheric pressure. For 75 per cent of the year there is a sort of cover (or perhaps better, a lid) which results from a temperature inversion layer. The dust and moisture is kept below this layer at a level around 1500 m . The observing site is at a level of 2400 m giving clear blue sky. Even the island lower levels were beneath a cloud so that the site for much of the time during testing over several months was between a cloud a kilometre below and a clear blue sky above. In fact an astronomer's dream.

RADIO AND OPTICALSTUDIES

It may be thought that the facilities of space orbiting telescopes, which have so rewarded science in the past few years, would render the need for Earth based instruments somewhat less than in the past. The facts are quite the opposite. While it is true that Radio Astronomy, X-ray Astronomy and Gamma-ray Astronomy opened up an unknown universe there is an even greater need for the Earth based observatories. The reason is an important one. Firstly much of the work done, and the data accumulated by the non-optical systems, raise questions of vital importance and the answers lie with the direct observations using special techniques. In some respects the Radio observations are "finders" for the other disciplines. It might also be said, where is the link with electronics? The answer to that is, that probably the modern optical telescope has more sophisticated electronics than most people realise. The 4.2 m telescope which is in the process of getting its final specification for manufacture is a case in point. It is to be mounted as an altazimuth instrument since this offers certain advantages from the point of control thanks to electronics. There are advantages in altazimuth over the equatorial system. One of these is that the base is parallel to the Earth so that both axes have to be compensated, the equatorial mounting avoids having to compensate for the Earth's rotation. However, the computer takes care of both axes and therefore allows the engineering to be more solid at less cost. The fact that compensation is required on both axes provides a difference component which could be recorded. That is the difference in not only the second to second rotation of the Earth but short period changes in both axes. This may not be regarded at this time as being important
though it could further the knowledge on this matter which has to be dealt with in satellites and probes.
The distance of the objects to be studied will require a standard of pointing perfection not required before. This telescope then will be the most sophisticated, though not the largest in the world. The title for the largest telescope goes to the Soviet 6 m telescope in the Caucasus at Zelenchukskaya. This has great potential but there have been difficulties partly due to its siting and partly due to some technical difficulties that have arisen.

Time available for observations has always been at a premium in all parts of the world and many hopeful projects have been put up by astronomers from time to time. Time is, however, of the essence and it is not possible to accommodate all that individual astronomers would like to do. Doubtless some discoveries will be late in having publication. That is a sad thought but is the result of fiscal parameters under which scientific discovery labours at the present time. The capital cost of the present United Kingdom programme over the period of five years to bring the project to full working, the Science Research Council has estimated at between 15 and $£ 20 \mathrm{M}$. The cost of running and operation is not known at present but this will also come from the funds allocated by the Government to the Council. There is never enough for the projects the Council would like to undertake.

RED SHIFT KEY TO QUASARS

Some of the particular problems that will be tackled will be the problem of the quasars, whether they are near with great energy but of small size. According to the red shift techniques they should be far away. The key would appear to be the red shift. The 4.2 m telescope will examine the spectra of these faint objects. Galaxies which are recorded by radio as having enormous energies are not easily given accurate distance figures. If there is an optical counterpart then the large telescope will be able to measure it. There will also be the opportunity to add to data as to whether the Universe is continually expanding or whether it will slow up eventually and repeat a cycle.
It is believed that the $4 \cdot 2 \mathrm{~m}$ telescope will prove to be the most effective one in the Northern Hemisphere.
This is an exciting prospect but though it may be the most glamorous part of the undertaking there are other important areas of study. The galaxy in which the solar system has its place has many clues waiting for the space detective. These will show how galaxies are formed and grow by the ratio of the chemical elements in the stars of different ages and types. The very accurate spectrographs that the Isaac Newton telescope can produce may provide the answers. The problem of the size of the organic molecules in the interstellar gas may also be solved by such spectra.
The 1 m telescope will enable astronomers to assess the brightness and position of stars with their relative movements. Particular targets for observation will be the globular clusters, immense groups apparently nearly spherical conglomerations of elderly stars containing up to 500,000 stars.

The other countries participating will have their own speciadities. The Danish astronomers will be installing a transit circle. This is a telescope set on a north south meridian which can check the exact time of the passing of a star as the Earth rotates. The Swedish astronomers will be setting up a solar station on the site. Their site at Capri has not been as successful as hoped. Their equipment has already arrived in the Canaries. Germany and France are also invited to set up a solar station.

The Director of Herstmonceux, Professor Graham-Smith has said that there will not be a permanent Royal Greenwich Observatory staff at La Palma. He prefers that each project should have an individual budget. In planning this way he hopes to avoid the unfortunate position of that of the United Kingdom physics unit at CERN.

SOLAR POWER SATELLITES

There is a rising concern about solar power satellites. The conversion by large arrays of
solar collectors to microwaves with orders between 5 and 10GW would cause serious interference to radio communication. A spokesman of the Electrical Research Association says that the harmonic radiation would be difficult to predict in direction or magnitude and that the scheme should be abandoned. A Home Office spokesman from the Directorate of Radio Technology said that there would be interference problems from the scattering of the microwave beam by plasma in the upper atmosphere and by raindrops.

Motorola Microcomputer Forum 6800..... 6801..... 6805..... $6809 . . .$. 68000

Delegates attending the Forum in London on 4th June heard about Motorola's latest products from their top men in Texas and England.

A lot has happened since their 6800 was released in 1974; its price has dropped by about two orders of magnitude, and the technology has advanced to the stage where about eight times as many transistors can be put onto one mass-produced chip.

One of the problems facing Motorola, and indeed the other microprocessor manufacturers, is how best to make use of this technological progress.

6801

The first answer, illustrated by the 6801 microcomputer chip, is to keep the processing power about the same, but to put more of the support devices on the same chip alongside the CPU.

In this lunchtime address Colin Crook, the chairman of the seminar, referred to this as the 'Silicon VLSI Black Hole'. In his words, "Every year significant portions of the subsystem, and ultimately system, pass over the silicon Black Hole 'event horizon' and fall irreversibly onto the silicon'.

The 6801 puts the functions of seven parts from a typical system onto one chip: CPU, clock, RAM, ROM, serial I/O, parallel I/O, and timer. The CPU is a slightly enhanced version of the old 6800 , perked up by a few instructions such as PUSH X and PULL X, an 8-bit multiply, and operations using the A and B accumulators as one 16 bit D register.

The first 6801s will be made with mask-programmed ROMs, and a version with a MIKBUG-type monitor on board is planned. One of the modes of operation allows the 6801 to address external memory, so it could replace a 6800 in a system. Planned for next year is an EPROM version, the 68701, incorporating 2K of UV-erasable memory.

6805

The second use of advancing technology is to bring down the cost of microprocessors to encourage their incorporation into low-end applications such as toys and home appliances. This is achieved by designing the instruction set to produce compact code, incorporating as much as possible on the same chip, and keeping the pin count down by not bringing out the address and data buses.

The most popular 1-chip controller on the market at the moment is the Texas TMS 1000 , but Motorola are hoping to get a share of the market with their new 6805 family. These 8-bit computers, in NMOS or low-power CMOS, have pared-down 6800-type instruction sets with some extra instructions added with a view to saving program bytes. The 6800's B accumulator has been scrapped, and the index register has been reduced to 8 bits. Like the 6801 there is a clock, RAM, ROM, parallel I/O, and a timer on the chip with the CPU. However, because the address and data lines are not brought out to pins, the 6805 is limited to addressing what is on the chip.

One problem arises: how do you access the CPU to test it? The answer is to provide a self-test input. A voltage at this input initiates a program in part of the ROM which checks the chip functions. As micros get more and more complex this may become a general feature.

6809

The advance of silicon technology has been called the 'irresistible force' by the microprocessor manufacturers, and software is the 'immovable object' which stands in its way. The major cost in developing an application using micros is invariably the software, which tends to cost about $£ 2$ per line of debugged code, and the manufacturers see this as limiting exploitation of their latest products.

One way of reducing this software cost is to write in a high-level language so that each line of the program solves a greater proportion of the problem.

The third alternative as to what to do with more silicon power is to make a more powerful processor which is designed with compilation by high-level languages in mind. The 6809 is Motorola's next-generation member of the 6800 family. It carries on the tradition for a simple architecture started with the 6800 , but the performance is said to be about 2.5 to 5 times that of its predecessor. By increasing the generality of the instructions the number of mnemonics has been reduced from the 6800's 72 to only 59 while increasing the number of operations and addressing modes.

There are four 16-bit index registers, two of which double as stack pointers, and all of which can be used for indexed and indexed-indirect addressing with optional auto-increment or decrement. The saving due to the more versatile addressing modes is illustrated by the high-level language statement $a(i)=b(j)$. This compiles into 20 bytes of 6809 code; the 6800 would require 52 bytes.

There are also program-counter relative addressing modes which make it possible to write position-independent code. The importance of this is that it enables manufacturers to supply firmware routines in ROM which the user can link in anywhere in memory.

First samples of the 6809 are around now so we should see 6809 based microcomputers available by the end of the year.
. . 68000
Looking further into the future, the 68000 is a 16 -bit microprocessor currently being developed by Motorola which looks more like a minicomputer than a micro. It has 1632 -bit registers, two operating modes (supervisor and user), 7 prioritized interrupts, a 16 megabyte address space, and a claimed throughput of 10 to 25 times that of the 6800. All this will come in a 64 -pin package, and despite its power it will be possible to build a minimum system around the 68000 with only 7 LSI packages.

Tom Gunter, head of the Advanced Computer Systems group in Austin, Texas, revealed that he had just received the first wafers from processing, and that they had been 95 per cent operational when tested. Even so, it seems doubtful whether the 68000 will appear before 1981. Can enough products be thought of that could use the computing power of the 68000 to make it worth manufacturing it? Motorola's hope is that the very promise of such computing power at a low cost will make applications appear that are not even imagined today. One thing is certain, whoever dreams up the applications will be making his fortune if this power does become available.

сомрийі Uu' 101 SINEIE BDARD COMPUTER PART 2 A.A.BERK b.sc.Ph.d.

ACERTAIN amount of the following will be considered unnecessary by the experienced, although some points are very important. The constructor is advised to read through this section at least once!

You will need a good pair or wire cutters, a small screwdriver and a soldering iron of around 15-20 Watts with a narrow bit. The bit should ideally be new-make sure you coat the end with solder as it first warms up or a patina of corrosion will immediately form making soldering impossible. Also, iron-clad bits must not be filed for cleaning them or the anti-corrosion property is lost. The thinnest resin-cored solder should be used.
Never try to drill any of the p.c.b. holes out, as this will destroy the plating-through. All solder connections are made to the bottom of the board and no i.c. pins must remain unsoldered even if they appear to go nowhere. The board should be protected at all times from excessive abrasion, flexion, and contamination.

ASSEMBLY

Following the component legend very carefully, the best sequence of construction is to start with the i.c. sockets. Locate and push their pins carefully through the holes, taking extreme care to prevent pins from being bent under the socket. The socket must be pressed very firmly against the p.c.b. while two pins are soldered down to keep it in place.

Sockets may not be supplied for the following positions: IC67, IC68.

All i.c.s are fitted with pin 1 towards the keyboard except for IC41 (Character Generator) whose pin 1 is towards the RAM block. Socket polarity is normally identified and even though i.c.s will fit either way around, put the sockets in correctly as a reminder for the future. Do not insert the i.c.s yet.

Insert the discrete components, except for the voltage regulator, UHF modulator and large capacitor. The 100n bypass capacitors should be soldered in last, to prevent a mix up. Most of the resistors stand on end. None of the components will tolerate overheating, especially the crystal. Remember, once a device is soldered in place its removal is very difficult because of the plating-through. A solder sucker is very useful for this eventuality, but sockets are particularly troublesome and are usually destroyed by the operation.

KEYSWITCHES

Next insert and solder the keypad switches from top right to bottom left. Each switch is labelled on the p.c.b. and the switch, and with correct key-top, may be inserted carefully
in place. Do not use undue force or heat, as the switch is quite delicate until held in place. Operation will be impaired if the switch pins are pushed into the thermo-plastic body.

The pins must be soldered with the switch pressed firm/y against the p.c.b. All switches except SHIFT LOCK are return sprung, so do not make the mistake of fitting this switch elsewhere, which will stay down when pressed once and return on the second press. The SPACE bar and switch is fitted last. The bar should be placed over the switch and the white plastic locators into their holes. Carefully heat-form the projections beneath the board to hold the bar in place. Use the back of your soldering bit.

Before continuing, check for shorts across the key-switch terminals and between Data and Address Bus lines at IC8.

The regulator (with heat-sink), UHF modulator and large electrolytic, may now be soldered in place. Solder flux should be removed with methylated spirit, using an old tooth-brush. Fully inspect the board for solder bridges or broken tracks (a watch-maker's glass is invaluable for this task).

The power supply can be checked at this point to ensure it delivers five volts to each of the i.c. sockets.

Insertion of the i.c.s is a delicate process and pins are very easily bent between the chip and the socket loften undetectable), causing hours of fruitless searching for a bug. Pins should be bent straight from their normal splayed out condition and pushed bit by bit, inspecting continually, into their sockets.

A final check of i.c. orientation should be made. If you are not using the full complement of memory, the right-most RAM sockets (IC31 and IC45) must be populated first in "vertical" pairs.

If all seems correct, connect up and switch on. Tune the TV to the computer somewhere around channel 36, and press both RESET keys simultaneous/y. D/C/W/M? should appear. Check that SHIFT LOCK is in the down position and press C .

If this causes MEMORY SIZE? to appear, and pressing RETURN a couple of times gives the start up message on the screen, then you have a working model of what is probably one of the most advanced computers for its price.

TROUBLESHOOTING

The troubleshooting process is best assimilated while the reader's mind is fresh from the hardware description. There are several categories of malfunction which may arise, and only one or two of a very definite nature can be mentioned here. The tools necessary for troubleshooting are an oscilloscope and a continuity tester. The latter may be all that is necessary but a 'scope considerably speeds the process.

UK 101 COMPUTER

Fig. 2.1. Component layout of Compukit single board computer. The p.c.b. supplied by Comp Components has all component positions clearly printed on it. Most resistors are mounted on and. The kit includes TR1, R72, R63-65 serial interface components for a printer, but the remaining shaded components are not supplied. The small signal p.n.p. transistors can be of any type, and are not shown in last month's component list. Copyright of this p.c.b. belongs to Comp Componets, and is too complex to show here. Please note: R83 should read as R62, and R82 as R83

The following assumes that you have checked the five volt supply and all the external connections and that the SHIFT LOCK key is in the down (locked) position.

If the following procedures are ineffective, the unit should be returned to Comp Components, who have a standard charge of $£ 25$ (inc. postage) for repair.

(a) UHF Modulator Failure

This is detected by switching on and tuning the TV through the complete range, particularly near to channel 36 , and finding no change throughout the band. (A short band of blank screen should be detected near to channel 36.) Check supply at modulator and connections, including ground-to-metal case. "Scope" the video input to the modulator-the waveform should be negative-going pulses
$64 \mu \mathrm{~s}$ apart, with some fast spikes (positive-going) in between. If this is not present, then either the UHF modulator or its connections are faulty.

(b) No Video Information At Modulator

Scoping through starts at the output of IC58 (pin 3) to detect the 8 MHz clock. Work through the counter chain including IC29 to check on oscillation of counters. If this is absent, the sequential nature of the chain will allow you to narrow down the point of failure quite closely. The most common fault is a solder bridge or bent i.c. pin. If this cannot be visually detected, the continuity tester must be used to check that all pins go to the right place and nowhere else! A chip must be suspected of failure only as the very last resort. Even then, try a chip from elsewhere on the board in its place if possible.

Fig. 2.2. Memory mapped VDU interface. All $\mathbf{7 4 0 0}$ series devices are LS types

BASIC REFERENCE AND DEFINITIONS

NUMERIC VARIABLES

Numeric variables may be one or two alphanumeric characters in length, but the first must be alphabetic. Longer variable names are identified by the first two characters only, e.g. HELLO. HE, HE123XY are all indistinguishable to the machine. Basic words (such as NEW, SIN etc.) may not be used as variable names, nor may nonalphanumeric characters.

LEGAL	ILLEGAL (Think about these . . . embedded BASIC words etc.)
A	1 B
B1	B*
B 175	TOP
Ta	cosar3
EGG	182
MONDAY TUESDAY	AND 2

Spaces are irrelevant, so that the second and third members of the "LEGAL" column are indistinguishable. If you are worried about the validity of a variable, try giving it a value in immediate mode. For instance, type the "assignment":
$\mathbf{B 1}=\mathbf{3}$
This will be accepted whereas:
$\mathrm{B1}^{\prime \prime}=\mathbf{3}$
will not. If a variable is accepted, try printing it out. For instance:
$1 \mathrm{~B}^{4}=7$
appears to be accepted, but follow it with PRINT 1 B and the answer is far from 7.

The above applies to STRING variables too, except that each such variable must end with a $\$$ sign. A1 is a numeric variable with a floating-point value. A1\$ is a STRING variable and its "value" is a string of characters of any type including graphic characters, and these are described later.

> Any computer language is used to formalise a logical set of steps into a form suitable for execution on a machine, whose understanding is limited to a grammar composed of a few statements and variables.

> The function must be broken down into input steps calculation steps and output steps.

RANGEAND ACCURACY

Numeric variables are allowed values between 10^{-38} and 10^{+38} (approximately) and have $6 \frac{1}{2}$ figures of accuracy (i.e. 6 figures displayed, and one extra "guarding"). Strings may be from 0 to 255 characters in length.

ARRAYS

Arrays are available for both types of variable to any dimension which does not cause an overflow. This depends upon the range of each dimension's subscript, and a little experimentation is worthwhile if arrays are to be used extensively.

STATEMENTS

The language BASIC may have several statements on the same program line (maximum of 71 characters). Statements on the same line are seperated by : (colon), and spaces may be omitted.

$10 \quad X=13^{*} 14.6$

20PRINT X

maybe written as:
10X $=13^{* 14.6: ~ P R I N T X ~}$
This format has the advantage of saving memory, space and time but produces program code which is harder to modify and edit.

BASIC OPERATORS

(a) - This is the usual minus sign and may be used for subtraction or negation, e.g. $\mathbf{A}=\mathbf{B}-\mathbf{C}$ or $\mathbf{D}=-\mathbf{E}$
(b) + Addition
(c) * Multiplication
(d) $/$ Division
(e) \uparrow Raise to a power (exponentiation), e.g. X^{3} is written as $\mathbf{X} \uparrow 3$ or $\sqrt[3]{X}$ is written as $X \uparrow(1 / 3)$
(f) May be used in assignments, $\mathbf{A}=\mathbf{3}, \quad \mathbf{B}=\mathbf{K}+\mathbf{l}, \quad$ etc, (or optionally, LET $\mathbf{A}=3$). It can also be used in Boolean relationships and as follows: IF $\mathbf{A}=3$ THEN GOTO 30. This last use of $=$ can apply to the next five relations:
(g) $>$ Greater than
(h) $<$ lessthan
(i) $<>$ or $><$ not equal to
(j) $<=$ or $=<$ less than or equal
(k) $>$ - or $\Rightarrow>$ greater than or equal
(I) AND This Boolean operator combines logical statements, and with the next two may be used to form complex logic expressions with the value true or false.
(m) OR
(n) NDT

DEFINITIONS OF BASIC STATEMENTS

BOOLEAN EXPRESSIONS

Boolean (or logical) expressions using the above are given a numerical value by the BASIC. as follows: A true statement is given the value -1 ; a false statement has value \mathbf{O}. Thus:
$K=(A=3$ AND $A=4)$
gives K a zero value since the expression (in brackets), set equal to \mathbf{K}, is false. Similarly:
$K=(A=(A+A) / 2)$
will give the value -1 or "TRUE". This is a numerical value and may be used as such.

For instance:
PRINT (A = $(\mathbf{A}+\mathbf{A}) / 2)^{\bullet} 6$
will print the number -6 on the VDU.
In addition :AND,OR, NOT may be used in BIT manipulation mode for Boolean operations of 16-bit two's- complement numbers from -32768 to +32767 .

e.g.	63AND 16	$=16$
	-1AND8	$=8$
	4OR2	$=6$
	10OR10	$=10$
	NOTO	$=-1$
	NOT1	$=-2$ etc.

OPERATOR EVALUATION ORDER

Expressions are evaluated in this order: Brackets first, then:
(1) \uparrow
(2) negation
(3) $\varnothing /$ from left to right
(4) + - from left to right
(5) $<>=$ from left to right
(6) NOT
(7) AND
(8) $O R$

Two separate numbers or variables may not stand next to each other, similarly two operators, unless the second is + or -
e.g. (i) $A+-6$ is equivalent to $A-6$ likewise $\mathbf{A}-+6$
(ii) $\mathbf{A}^{\bullet}-5=-5^{\bullet} \mathbf{A}$ but $\mathbf{A}-5$ is illegal (iii) $3 \uparrow 2{ }^{\circ} 7+5 / 10^{\circ} 2$ will be calculated as follows: $3 \uparrow 2=9$ first, then $9^{\circ} 7=$ $63,5 / 10=0.5,0.5^{\bullet} 2=1$ in that order; and, finally $63+1$, giving 64 as a result. To change this order, brackets must be used.

In the following:
V and W are numeric variables,
X, Y and Z are numeric expressions which may contain numeric and Boolean operators or functions.
B is a Boolean expression.
I and J are truncated integers,
\$ denotes a string variable.

READ DATA DATA statements contain lists of data for READ instructions in strict order of use.
100 READ V,W\$
200 DATA 1,"HELLO', 2,'BYE"
Each time the READ statement is executed, a pair of data is read into the variables \mathbf{V} and $\mathbf{W} \$$, in order, until the data is exhausted. The data types must match up with the READ variables.

RESTORE Restores the data pointer to the start of the data list for re-use by a READ statement.

DEF FN This is a user-defined function of one argument used as follows:
DEFFNA $(\mathbf{V})=3^{\bullet} \mathbf{V} \uparrow \mathbf{2}$ defines a function FNA (V)
e.g. $\mathbf{W}=$ FNA (3) gives \mathbf{W} the value 27. The argument may also be a numeric-valued expression.

DIM is used to allocate space for arrays and set all array variables to zero.
e.g. DIM $V(12,12,2)$ allocates a 3dimensional numeric array with first two subscripts from 0 to 12 , and third from 0 to 2 similarly, DIM V $\$(12,12,2)$ allocates a string array of the same size. Not dimensioning, causes a default to 10 for one and two dimensional arrays. The same array name may not be used for arrays of different dimensions.

END Terminates program (optional). Useful in statements such as
IFA = 3 THEN END

FOR . . . NEXT, STEP Example: FOR $\mathbf{V}=\mathbf{X}$ TO Y STEP Z NEXT V This "FOR-loop" executes all program statements contained between STEP \mathbf{Z} and NEXT \mathbf{V}, for all values of \mathbf{V} from \mathbf{X} to \mathbf{Y} incrementing \mathbf{V} 's value by \mathbf{Z} each time. The program statements may include further "nested" FOR-loops. NEXT V may be abbreviated to NEXT. If two FOR-loops are nested and each terminates at the same NEXT, this may be written NEXT V,W. Example:
10 FORI $=1$ TO 10 STEP 2
20 FOR J $=2$ TO - 3 STEP-0.1
30 PRINTI•J
40 NEXT J, I
Note that NEXT recalls the variables on a "last-in-first-out" basis. Line 40 may be

Note also that omitting STEP defaults the step value to 1 .

The FOR statement uses those values of the expressions \mathbf{X}, \mathbf{Y}, and \mathbf{Z} which are encountered on first entering the FOR loop. Thus \mathbf{X}, \mathbf{Y}, and \mathbf{Z} may be used and changed within the FOR loop without affecting its operation.

GOTO I Forces execution to jump to line I, which may only be a positive number. Non integers are truncated towards zero.

GOSUB I RETURN This causes execution of a subroutine starting at line I, terminating in a RETURN statement which forces execution back to the line following GOSUB I. Subroutines may be nested.

IF THEN Example: IF B THEN P. \mathbf{P} is a statement or set of program statements separated by colons which will be executed if the expression \mathbf{B} has a TRUE value. Strictly speaking B is a Boolean expression such as

$\mathrm{A}=3 \mathrm{ANDC}=5.8$ ORT $>=\mathbf{0} \uparrow 2$.

This \mathbf{B} may be any numeric expression. If its value is 0 it will be taken as FALSE. Although -1 is normally taken to be TRUE, here any non zero value for \mathbf{B} will have this affect.

IF A 2 THEN PRINT"NON ZERO'

will print NON ZERO whenever A个2 is non zero.

Smilarly for:
 IF B GOTO (line number)

ON I GOTO L, M, \mathbf{N} etc. The technical term for this statement is the "Computed GOTO". The line No. L, M, or N etc., chosen by the GOTO statement, depends upon the value of the expression I. If I= 1 (after truncation) GOTO L is executed, if $I=\mathbf{2}$ then M is chosen etc.
Negative values of I give an error message, and larger unaccommodated values of I cause the next line after the computed GOTO statement to be executed.

REM All characters after REM are disregarded by BASIC and this space is available for comments (REMARKS).

STOP Causes execution to cease at that line and print out the line-number. The program may be restarted by CONT.

PRINT Example: PRINT 3 causes 3 to appear, as with any other number. PRINT \mathbf{X} will cause X 's value or contents to be printed, where \mathbf{X} is any numeric, Boolean or string variable expression.
PRINT A $=(\mathbf{A}+\mathbf{A}) / \mathbf{2}$
will cause -1 to appear
PRINT $3 \nmid 2+2$
will cause 11 to appear.

PRINTX\$

will cause the contents of the string variable $\mathbf{X} \$$ to be printed.
PRINT X $\$ Y \$$ will cause the combined (concatenated) contents of $\mathbf{X} \$$ and $\mathbf{Y} \$$ to be printed.
Try:
$\mathbf{X} \$=$ '"WE'": Y\$ = '"L'': PRINT X\$Y
(in immediate mode.)
Messages (literals) may be printed verbatim.
PRINT"'HELLO'
will cause HELLO to appear. Any combination of these print command types may be included in a PRINT list.

Commas cause the members to be printed in columns beginning fourteen spaces apart. Semi-colons cause printing in adjacent positions.

PRINT 3, 4; 7

will give:
347
If a PRINT list is terminated with a comma or semi-colon, the next print statement will continue where the last terminated. The cursor (\quad) always indicates the next print position.
10 PRINT 4, 6,
20 GOTO 30
30 GOTO 20
Causes
46
to be output before the infinite loop is entered.

PRINT with an empty (null) list causes the Cursor to move to a new line.

PRINT: PRINT:PRINT

Causes three new lines.
The cursor position is called the "Print Head", and it is that screen position at which the next PRINT statement will begin.

SPC (I) and TAB (I) may aiso be included in a print list where I is a positive truncated integer expression.
SPC (I) prints I spaces, placing the print head I places ahead of its former position.
TAB (I) merely moves the print head I places without overwriting existing material.

POS (I) gives the current line position of the Print Head.

INPUT Allows the user to input data to a program during its execution, and may be started with a prompt message followed by a semi-colon, then the variables awaiting values.

An example of the use of the INPUT statement:
Program listing
10 INPUT "HELLO, TELL ME YOUR NAME AND AGE ''; N\$,A
20 PRINT "PLEASED TO MEET YOU"; N\$, "'SO YOU ARE"; '"A YEARS OLD EH?'"

Program running

hello, TELL ME YOUR NAME AND AGE?
User types in:
NICK, 24 (return)
Computer:
PLEASED TO MEET YOU NICK, SO YOU ARE 24 YEARS OLD EH?

The user could type in:
NICK (return)
24 (return)
since the computer will keep prompting (with ?7) until it has all the required information. Care should be taken to ensure that the data presented is of the correct type for each of the input list members.

If too much data is presented, a message saying EXTRA IGNORED will appear.

If RETURN is pressed on an empty piece of data, the program returns to the command mode (a useful way of leaving a program).
If the wrong type of data is presented, the machine will ask the user to

REDO

the INPUT from the start.

NUMERIC FUNCTIONS

(\mathbf{X} is any numeric or Boolean expression)

ABS(X)

$$
\begin{aligned}
& \text { For } X>=0 \text { ABS }(X)=X \\
& \text { For } X<0 \text { ABS }(X)=-X
\end{aligned}
$$

INT (X) Rounds X down to the nearest integer
INT (8.1) $=8$
INT (-3.3) $=-4$
RND (X) gives a random number between 0 and 1. Each time RND is executed with a non-zero argument, the random number generator advances to the next number.

RND (0) will give the same number each time unless interspersed with a RND execution with non-zero argument.

The expression (B-A)* RND (1)+A gives a random number between \mathbf{A} and \mathbf{B}.

SGN (X) If $X>0$ SGN $(X)=1$ if $X<=0$ $\operatorname{SGN}(X)=0$

SIN (X), COS (X), TAN (X), ATN (X) are the usual trig. functions with all angles in radians.
$\operatorname{SQR}(X)=$ square root of X
$\operatorname{EXP}(X) \quad e \uparrow X$ where $e=2.71828$
LOG (X) $\quad=\log$ of X to base e
FRE (X) For any X gives the number of unused RAM bytes. Can use PRINT FRE (X).

TAB (I), SPC (I) and POS (I) described in section on PRINT.

PEEK (I) Returns contents of the memory location I (decimal).

POKE I, J loads memory location I with J (both decimal).

Limits:
I<=65535
J $<=255$

STRING FUNCTIONS:

$\mathbf{X} \$$ is any STRING EXPRESSION or VARIABLE.

ASC ($X \$$) This returns the ASCII value (decimal) of the first character in the string. ASC (''AB'") $=65$.

CHR\$ (I) Equals the string character having ASCII value I.

PRINTCHR \$(65) gives A

LEFT $\$(X \$, I)$ and RIGHT $\$(X \$ I)$ Gives a string composed of the left-most andright most I characters of $\mathbf{X} \$$ respectiveiy.

MID $\$(X \$, I, J)$ Gives J characters of $\mathbf{X} \$$, starting at the Ith character. If \mathbf{J} is omitted, all characters from lth to end of string are given.

LEN (X\$) Gives length of string in characters.

STR $\$(X)$ Converts a numeric expression into the string of characters representing its value.
STR $\$(-6 \cdot 8)="-6 \cdot 8^{\prime \prime}$
and
STR\$(1.3E + 29) =' $1 \cdot 3 E+29^{\prime \prime}$.

VAL (X\$) Gives numeric value corresponding to string of digits (inverse of STR\$).
e.g. If $X \$={ }^{\prime \prime} 4$ '' and $Y=4$, you cannot say that $X \$+Y=8$; but can say VAL $(X \$)$ $+Y=\mathbf{8}$ in BASIC.

STRING
 EXPRESSIONS
 AND
 OPERATIONS

Any of the previous functions may act on an $\mathbf{X} \$$ composed of those functions and the operator +
$\mathbf{X} \$=\cdot \mathbf{H E}{ }^{\prime}+$ +'LLO'
gives $\mathbf{X} \$$ the value "HELLO'.

+ performs CONCATENATION
Thus LEFT\$ ("HE' + 'LLO'', 3) = "HEL' etc.
Strings may be compared to produce Boolean functions-the ASCII values of their characters are used from left to right for the comparison.
'HELLO'' is greater than ' $\mathbf{A B C '}$ ' because ASC ('" $\left.\mathbf{H}^{\prime \prime}\right)>$ ASC(' \mathbf{A}^{\prime} '). In this way, a file of string records can be sorted alphabetically.

Using the VAL (X\$) and STR $\mathbf{\$ (X)}$ functions, numeric strings can be converted into numbers, acted upon by the normal rules of algebra and converted back into strings.

INPUT OUTPUT

WAIT I, J, K Sends computer into a waitstate until memory location I (decimal) takes on a certain value dependent upon \mathbf{J} and K. WAIT takes the contents of location I, exclusive OR's it with K AND's with J and waits until the result is non-zero (omitting \mathbf{K} defaults it to zero). Thus any bit of location I can be considered as providing a flag. This could be used, for instance, with a medium speed printer and allows fast servicing from BASIC of I/O devices connected into the system at specific memory locations. Other examples would be for the control of industrial equipment directly via BASIC.

CALLING
 MACHINE CODE
 ROUTINES

USR (I) Calls machine code routines which may be useful due to their greater speed, or ability to service I/O devices directly, occupying specific memory locations.
The USR function is called in BASIC by a statement such as: $\mathbf{X}=\mathbf{U S R}(\mathbf{X})$ which causes a jump to a machine code routine either in ROM or RAM. To access USR, the start of the routine must be poked into the addresses 11 and 12. Executing $\mathbf{X}=\mathbf{U S R}(\mathbf{X})$ will automatically cause the machine code routine, which must be terminated with an RTS, to be executed. If the machine code program is to be started in RAM, a block must be protected against overwriting by BASIC. This is done by pressing the BREAK keys and answering MEMORY SIZE? with a number less than the total RAM available. This restricts BASIC to that number of bytes and leaves the remainder (top) of memory, protected.

Note that 770 is the minimum number allowed for memory size, and does not allow space for any BASIC programs. Even though only one USR function is provided, use of POKE on address 11 and 12, before each USR call, enables any number of routines to be executed, one at a time, during the running of a BASIC program. In addition, values stored in RAM locations may be passed back and forth between BASIC and the machine code programs by using PEEK and POKE.

The following provides an example of the application of USR to clear the screen and print up a message. Reference must be made to the Machine Code Monitor section (later). The example will work on the 4 K machine.

Break should be pressed and the answer 1024 given to the question MEMORY SIZE? This restricts the RAM space as follows (see memory map of machine). All addreses below are in HEX.

0000	
to	BASIC workspace
03FF	etc.
(1023 in decimal)	
0400	
(1024 in decimal)	Protected for to
END of RAM	

This quantity of protected RAM is not necessary for the following example, but it illustrates the point that the user is able to control this aspect.

The Machine Code Monitor may now be used to load the following three blocks of hexadecimal number pairs starting at the address shown.

START ADDRESS	DATA	COMMENTS
Hex: 0500	A2 00 BD	This program
$(1280 \mathrm{dec})$	0006 C 95 F	stores a mes-
	FO 07 9D E5	sage in the
	D1 E8 1890	VDU RAM
	F2 60	(resident at
		D000-D3FF)
		The message
		is stored from
		0600
		wards and
		terminated
		by 5 F

Hex: 060043 4F 4D 50 Any set of
 graphic character codes

Hex: 0700	A9 00 85 E1	This routine
$(1792 \mathrm{dec})$	A8 A9 D0 85 clears the	
	E2 A9 20 91	
	ED C8 C0 00	
	D0 F9 A6 E2	
	E0 D3 F0 06	
	E8 86 E2 18	
	90 ED 60	

To return to BASIC, BREAK must be pressed. The message $\mathbf{D} / \mathbf{C} / \mathbf{W} / \mathbf{M}$? should be answered with W to conserve the above program. The following program gives an example using the above.

10 PRINT '*TO CLEAR SCREEN TYPE $C^{\prime \prime}$
 20 PRINT
 30 PRINT " TO DISPLAY MESSAGE TYPE M"
 40 INPUTA\$
 50 IF A\$=' ${ }^{\prime}$ '' THEN 100
 60 IF A\$=''M' THEN 200
 70 GOTO 40
 100 POKE 11,0: POKE 12,7: $X=$ USR(X) 110 GOTO 40
 200 POKE 11,0: POKE 12,5: $X=$ USR(X) 210 GOTO 40

To leave the program press RETURN without \mathbf{C} or \mathbf{M}.

Note that in POKEing the address of the machine code routine into 11 and 12 the Hex address is split into low and high bytes and then separately converted into decimal and loaded into 11 and 12 respectively. If the routine were to start at EA32 (Hex) for example, the following holds:
low part: 32 (Hex) $=50$ (decimal)
high part: $E A($ Hex $)=234$ (decimal)
thus POKE 11,50 and POKE 12,234 are used.

To write messages other than that shown above, stored at 0600, the user may either use the machine code monitor to write in the Hex codes of the symbols to be displayed, ending in 5 F; or a BASIC program may be written to POKE the ASCII values of any characters typed on the keyboard into that area of memory using the ASC function. Data blocks or machine code programs may also be written directly into the protected RAM space using the POKE, READ and DATA statements. Remember that to POKE a machine code routine into RAM from BASIC, the 6502 operation codes must be converted to decimal notation, unless you include a routine in your program to perform the conversion automatically.

Once the chain is oscillating, failure may then be due to the area of the 74123 monostables IC65, IC71, IC69-again check through from the counting chains. $\overline{\mathrm{HS}}$ should be negative-going pulses at $64 \mu \mathrm{~s}$ separation (Horizontal sync), and $\overline{V S}$ at 20 mS (Vertical sync). Pin 9 of IC42 should be pure video information in short closely packed spikes.

(c) VDU OK—No Reset

If the two break keys, pressed simultaneously, do not produce $\mathbf{D} / \mathbf{C} / \mathbf{W} / \mathbf{M}$? on the screen it is possible that the 6502 (1C8), is not receiving its clock (pin 37 at 1 MHz) or its RESET (pin 40). Check both with scope.

The most likely cause, however, is almost always a simple bridge connecting a couple of Data Bus lines or Address Bus lines together. Check for any shorts between the pins of IC8.

All the Data and Address lines should be oscillating and should all be affected by pressing the two break keys. If not, check the relevant lines through from start to finish for shorts and lack of continuity.

If $\mathbf{D} / \mathbf{C} / \mathbf{W} / \mathbf{M}$? appears but pressing C has no effect, you have almost certainly failed to lock the SHIFT LOCK in the "down" position; this must be checked every time a fault condition arises. If this is not the answer, check that none of the keyboard switches are permanently shorted and check that the C key is working electrically. RO-R7 on the keyboard should be receiving a square-wave signal.

(d) Cassette Interface Not Receiving

The scope may be used to ensure that a sine-wave is present at the capacitor C10 and a square wave at pin 10 of IC69. The waveforms described for the cassette interface may then be checked through. The ACIA should be checked for clock information.

(e) Transmitting

Checking this side is confined to looking for a signal at the MIC and AUX outputs and then working back through the system.

(f) Adjustments To The VDU

A certain amount of adjustment of picture density is possible on R58 if required for contrast. Adjustment of the time-constant of IC71 by capacitor C48 and resistor R67 will move the picture up or down.

INITIAL USE OF THE MACHINE

Check that the SHIFT LOCK key is in the "down" position. This should always form the first check if the computer seems inoperative at any time.

The two RESET keys should be pressed simultaneously so that the following will appear in the lower left hand corner of the screen:

D/C/W/M ?

This is a question requiring the user to reply via the keyboard with one of the four letters requested.
D is for disc operation and is not covered here. Now press M. This is for the machine code monitor, and six characters will appear near the middle of the screen-four for address and two for data (both in HEX).

This is explained in a later section and the user should now press the two RESET keys again to restore D/C/W/M?

Keys C and W are for COLD START and WARM START respectively and have the following meanings. If a program has been written and stored and is, say, in the operation of being executed, the user may RESET at any time. D/C/W/M? appears and pressing W (warm start) will revert the machine to its BASIC function without clearing its memory. Key C

Fig. 2.3. Cassette Interface. 7400 series devices are LS types. Printed circuit 'patch-panels" have W numbers. The ACIA signals $\varphi 2$ and $\mathbf{R} / \overline{\mathbf{W}}$ go to expansion socket pins 31 and 32 respectively

Fig. 2.4. The 6502 microprocessor and expansion socket J1. When pressed simultaneously, the BREAK keys reset the processor
restarts the computer "from the top" and should now be pressed-by the reader following this text. The words:

MEMORYSIZE?

should have appeared. If not, check shift lock. If there is no success, switch off and check the p.c.b. very thoroughly, especially around the ROMS. Typing any number after MEMORY SIZE? defines the number of bytes which may be used by BASIC from the start of RAM. The rest of the RAM is thus protected from being overwritten, and may be used to store data and machine-code blocks-accessible by PEEK, POKE, and the USR function defined later. Pressing RETURN, "defaults" to the full memory for BASIC-this is jargon for saying that the computer automatically assumes you would have typed a number of bytes equal to the total memory available. From now on, the computer will not look at any information until you press RETURN. This gives you time to change your mind about things and delete unwanted entries before the computer acts on them. The words:

TERMINAL WIDTH?

should have appeared now, and you are being asked to supply the number of characters across the screen to be printed before each new line starts.

Pressing RETURN defaults to 48 , but not all of these characters would appear on a normal T.V. screen. Try typing 46 followed by return, this will fit comfortably on most T.V.s. At this point, the COMPUKIT does a complete scan of its RANDOM ACCESS MEMORY to determine how many bytes are free for writing in BASIC. This inbuilt memory test can be used to determine whether the memory chips are working correctly, i.e. 3324 bytes should be free in the 4 K system and 7423 in the 8 K system. The latter is given by the message:

7423 BYTES FREE

followed by:

COMPUKIT UK101 Personal Computer 8K BASIC Copyright 1979
 OK

Fig. 2.5. System Clocks

Well done!-you are now ready to start programming a powerful and versatile personal computer. With a little study of BASIC you will be able to persuade it to perform almost any activity for which you are able to write down a logical set of steps.

The "' ${ }^{-1}$ character is a CURSOR which tells you where on the screen your next keyboard entry will appear-try it! The program:

```
10 PRINT ''HELLO'
20 X=3.6*4.8
30 PRINT ''X='';X
```

contains three program lines and three program statements. The first (labelled 10) commands the VDU to display the word HELLO. The second to calculate a value for X, and the third to print it.

The program may be run by pressing RUN (followed by RETURN as always). Try it!

The central point about File Mode is that the program is retained after execution, plus all the variable values-try typing:

PRINTX(RETURN)

in immediate mode, and then RUN again.
NEXT MONTH: Error codes, program recording/playback, and using the machine in BASIC, plus remaining circuit diagrams.

M2

FRONT-BUTTON

Alarm Chrono Dual Time 6 digits, 5 flags. 22 functions. Constant display of hours and mins., plus optional seconds or date display. AM/PM indication, month, date. Continuous display of day. Stop-watch to 12 hours 59.9 secs., in $1 / 10$ second steps. Split and lap timing modes. Dual time zones.
Only 8 mm thick.
Back-light. Fully adjustable
apen bracelet. $\mathbf{E 2} 65$
Guarantelet.

HANIMEX
Electronic
LED Alarm Clock

Features and Specification
Hour/minute display Large LED display with $\mathrm{p} m$ and alarm on indicator 24 Hours alarm w in
onioff control. Display flashing for power loss on/off control. Display flashing for power loss indication. Repeatable 9 -minute snooze Display
bright/dim modes control Size $5+5^{\prime \prime} \times 39^{\prime \prime} \times$ brigh"/dim modes contron $236^{\prime \prime}(131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm})$ Weight $143 \mathrm{lbs}(065 \mathrm{~kg}) \quad \mathrm{AC}$ power 220 V

£9.65 Thousands sold!

Mains operated.
Guaranteed same
day despatch.

HANIMEX portable LCD clock radio

[$\times 23$

* Time set \& alarm controls.
- Snooze \& sleep controls.
- Wake to music or alarm.
- AM/PM indicator.
* Battery operated. No plug required.
- Receives all standard AM radio broadcasts.
- Drawstring carrying case included.
- Back-light.
- Batteries supplied free. 17.95
- Quartz crystal controlled. M14

SOLAR QUARTZ LCD 5 Function

M1 despatch.

QUARTZ LCD sum
 11 Function chrono

6 digit, 11 functions. Hours, mins., secs., day, date, day of week. 1/100th, $1 / 10$ th, secs., 10X secs., mins., Split and lap modes. Back-light, auto calendar Only 8mm thick
Stainless steel bracelet and back. Adjustable bracelet. Metac Price

E10.65 Thousands sold। Guaranteed same day despatch. M3

SOLAR QUARTZ LCD Chronograph with
Alarm
Dual Time Zone
Facility
6 digits, 5 flags.
22 functions.
Solar panel with
battery back-up.
6 basic functions.
Stop-watch to 12 hours
Stop-watch to 12 hours
59.9 secs., in $1 / 10 \mathrm{sec}$. 59.9 s
steps.

Split and lap timing modes. Dual time zones. Alarm. 9 mm thick. Back-ligh Fully adjustable bracelet.

SEIKO MEMORY BANK

QUARTZ LCD

 Ladies 5 FunctionOnly $25 \times 20 \mathrm{~mm}$ and 6 mm thick.
5 function. Hours, mins., secs., day, date and back light and auto calendar.
Elegant metal bracelet in silver or gold. State preference
$£ 9.95$
Guaranteed same day
despatch.

M15

HOW TO ORDER

Payment can be made by sending cheque, postal order, Barclay, Access or American Express card numbers. Write your name, address and the order details clearly, enclose 30 p for post and packing or the amount stated. We do not wast to clear your cheque before sending the goods so this will Battery fitting service is avalable at our shops. All prices andude VAT.

Trade enquiries: Send for a complete tist of trade prices -- minimum order value $£ 100$ Telephone Orders: Credit card customers can telephone orders direct to Daventry or Edgware Rd 24 hour phone service at both shops: $01.7234753 \quad 03272.76545$.

CALLERS WELCOME Shops open 9.30-6.00

QUARTZ LCD ALARM 7 Function

Guaranteed same day dispatch.

ALARM CHRONO with 9 world

 time zones- 6 digits, 5 flags.
- 6 basic functions. - 8 further time zones. - Count-down alarm. 59.9 secs.
in $1 / 10$ sec. steps
- Split and timing modes.
- Alarm.

Alarm.

- 9 mm thick
- Back-light.
- Fuck-light.
£29.65

SEIKO-STYLE
 Dual time-alarm Chronograph
 Mineral glass
 face.
 Battery hatch for DIY battery replacement. Top quality finish with fully
 adjustable bracelet.
 £35.00

 M12

Price breakthrough only £18.95

OUTSTANDING FEATURES

* DUAL TIME, Local time always visible and you can set and recall any other time zone (such as GMT). Also has a light for night viewing.
* CALENDAR FUNCTIONS include the date and day in each time zone.
* CHRONOGRAPH/STOPWATCH displays up to 12 hours, 59 minutes, and 59.9 seconds.
* On command, stopwatch display freezes to show intermediate (split/lap) time while stopwatch continues to run. Can also switch to and from timekeeping and stopwatch modes without affecting either's operation.
- ALARM can be set to anytime within a 24 hour period. At the designated time, a pleasant, but effective buzzer sounds to remind or awaken you!
Guaranteed same day dispatch. M16

Mクetuac
 ELECTRONICS \& TIME CENTRES

South of England 327 Edgware Road LONDON W. 2
Telephone: (01) 7234753

Now, the complete MK 14 micro-computer system from Science of Cambridge

VDU MODULE. £33.75
($£ 26.85$ without character generator) inc. $p \& p$.
Display up to $1 / 2 \mathrm{~K}$ memory (16 lines $\times 32$ chars. with character generator; or 4096 spot positions in graphics mode) on UHF domestic TV. Eurocard-sized module includes UHF modulator, runs on single 5 V supply. Complete ascii upper-case character set can be mixed with graphics.

POWER SUPPLY. $£ 6.10 \mathrm{inc} . \mathrm{p} \& \mathrm{p}$.
Delivers 8 V at 600 mA from $220 / 240 \mathrm{~V}$ mains sufficient to drive all modules shown here simultaneously. Sealed plastic case, BS-approved.

MK 14 MICROCOMPUTER KIT

£46.55 inc. p \& p .

Widely-reviewed microcomputer kit with hexadecimal keyboard, display, 8×512-byte PROM, 256-byte RAM, and optional
16-lines I/O plus further 128 bytes of RAM.
Supplied with free manual to cover operations of all types - from games to basic maths to electronics design. Manual contains programs plus instructions for creating valuable personal programs. Also a superb education and training aid - an ideal introduction to computer technology.

Designed for fast, easy assembly; supplied with step-by-step instructions.

Science of Cambridge Ltd

6 Kings Parade, Cambridge, CAMBS., CB2 ISN. Tel: 0223311488.

To order, complete coupon and post to Science of Cambridge for DELIVERY WITHIN 14 DAYS. Return as received within 14 days for full money refund if not completely satisfied.

$$
\text { To: Science of Cambridge Ltd, } 6 \text { Kings Parade, Cambridge, Cambs., CB2 1SN. }
$$

Please send me:
\square MK 14 standard kit © © $£ 46.55$
\square ExtraRAM © 4.14 per pair.
\square RAM I/O device @ $£ 8.97$.
\square VDU module including character generator a ${ }^{\text {a }}$,33.75.
\square VDU module without character generator $Z 26.85$.
I enclose cheque $/ \mathrm{MO} / \mathrm{PO}$ for \mathcal{L} \qquad (total).
Name
Address (please print)
Delivery within 14 days.

The external input module has been a synthesiser feature for some time, its original purpose being to process electric guitar signals. The external input is converted into two output signals-amplified voltage and a pulse to trigger voltage controlled filters and amplifiers. Indeed, synthesiser techniques are now used in electronic musical instruments to the extent that it is becoming difficult to know whether the instrument is piano, organ or synthesiser; practically any audio signal can be processed.

SYNTH DRUMS

Pick-ups have long been used to amplify acoustic instruments, including the sideman's kit. By today's standards, a 'bug' could be used to feed drum signals into a synthesiser it would seem, but synthesised drums do not operate on this principle totally.

Drummers have used practice pads for years, allowing them to perfect their flam paradiddles relatively quietly! The pad consists of a disc of rubber mounted on a wooden base: using sticks, the bounce obtained is similar to that from a plastic or skin drum head. Synthesised drums (Synare 3, for example) use a sponge rubber head, while others use plastic heads. The actual sound produced by beating the head is immaterial as a trigger pulse is the sole end product. Underneath the head is some form of pick-up which provides the pulse, after which the drum sound is produced entirely by electronic means. Most of these drums are of fairly small diameter, perhaps 8 in or so, and the drummer finds them similar in feel to his old practice pad.

The synth controls have the usual familiar functions-Oscillator Tune, White Noise, Filter, etc. The latter may have facilities for resonance, decay and sweep. Some synth drums are touch sensitive with pitch rising the harder the head is struck. Sweep is an effect that allows a pitch alteration for the duration of the drum sound.

Synare 3 (shown) is a self contained drum shaped rather like a flying saucer with control knobs round its periphery. The Syndrum is a considerably more expensive kit (priced at over $£ 1,000$, though few are available in the U.K. as yet). The kit comprises four drums, synthesiser control panel and dual function foot pedal, and the stands are not included in the basic price. The pedal allows pitch-bending in both directions and also control over sustain. The synthesiser has four channels and so can
be used for stereo panning. The drummer can select volume, sustain, noise, vibrato and choose his waveform.

Certain units cater for microphone triggering, so that a tape recording of the unit can be used to double up sound effects. Headphone facilities are usual and are of coürse vital as this new synthesiser field demands even greater attention to levels. No doubt these drum units will be used in recording studios for the most part and only by those groups wealthy enough to afford them as yet.

One wonders if the drummer will become so immersed in setting the faders that good rhythmic drumming will suffer? There could be a serious application for synthesised drums as anyone who has tried to retune a set of timpani during a concert ready for a key change will appreciate.

VOCODER

Another synthesiser has appeared, based on the external input module: the Vocoder is designed to process the most variable sound of all-the human voice. Years ago we had 'Sparkie' and ring modulators but the Korg Vocoder allows the voice to be altered in pitch, tone, vibrato and even choral effects are obtainable.

Herbie Hancock has been one of the first musicians to complete albums with the Vocoder in use. He is a keyboard musician and, by his own admission, not really a vocalist. It appears that Stevie Wonder managed to interest him in the choral facility, so he started to work with a Sennheiser Vocoder. After a great deal of effort on the ancillary equipment to get exactly what he wanted, 'Sunlight' and 'Feets Dont Fail Me Now' were recorded.

Now that the synthesiser seems to have taken over drums and voice, what next? I expect there are plenty of other ideas in the pipeline and yet to emerge.

RHYTHM UNIT

A reader with a Practical Electronics. Rhythm Unit (Jan./Feb.'78) recently asked for help because his Leslie 145 controls seemed to be upsetting the rhythm patterns. Switching from 'Fast' to 'Chorale' was inserting a spike in the a.c. supply which reset the downbeat.

In this design, the system earth is isolated from mains earth and casework. The fault was cured by connecting a $0 \cdot 22 \mu$ polyradial between casework and system earth. He had also found that certain of the sinusoidal oscillators (which produce Bass Drum, Bongos and Claves) produced sounds nearer to clicks than tuned pitches. Although this could depend on the condition of the CD4011 used, correct operation can be achieved by an extra capacitor; an 0.033μ should be connected between the input of each inverter and system earth, the 470k preset being trimmed as described in the text.

Some rhythm units feature touch switches, but they do not appear to me to be very useful anyway as you need both hands for the keyboards. Similarly, an autostart system can only be used when the melody starts on the downbeat. So, reverting to the P.E. design, it is best to use the 'Remote Start' connected to a switch on the side of the swell pedal. I would also suggest calibration of the speed control as an essential towards professional-sounding results. This saves unnecessary trials between pieces being played-the height of musical bad manners in company!

CHIPS

The microprocessor is being found new applications every day and I believe it will be used increasingly in the electronic music field in future. It can already be used to play tunes, or as a sequencer, but I hope it will never replace the live musician. Its probable future role is to control the systems of the instruments, we know today. Even though we have reached the point where a small i.c. can achieve what a dozen $12 A U 7$ valves-backed up by a hefty power supply-were doing some three decades ago, there is still the possibility of compacting circuitry further.

The combination, coupler and stop controls of a large organ is a field open to the microprocessor. Stored waveform systems are in use already (in the Allen Computer Organs) and can be read at any speed. Tone generators could veer away from the conventional bistable or free phase oscillator to use the chip's facilities in this respect.

Polyphonic synthesisers are complex and costly instruments at present. Each keyboard note either has its own chain of oscillator, filter and VCA, or groups of notes are provided with this chain of modules and the keyboard is scanned to select the appropriate connections. The synthesiser's popularity is ever-increasing and, because every player aspires to a polyphonic instrument, this role for the microprocessor looks most likely to capture the imagination of the development engineer. Indeed, a fortune awaits the company that can come up with a reasonably priced polyphonic synthesiser.

V.L.F. Signals and the MAGNETOSPHERE
 C.R.FRANCIS b.sc.

Abstract

An insight into the structure of the magnetosphere, including magnetic storms, and the various types of naturally occurring v.l.f. signals originating from it which can be received. Next month we will publish a project describing a receiver for the reception of v.lf. signals.

The earth behaves as if it has a bar magnet at its core. Many of us were taught this at school, and probably had visions of magnetic field lines disappearing off to infinity. In the last few decades, however, our understanding of the geometery of the geomagnetic field has undergone a profound change. It will probably be more illuminating to present the current view as the outcome of the historical progression of ideas on the subject.

EARLY WORK

The earliest reliable reference to the Earth's magnetic field is by the eleventh century Chinese encyclopaedist Shon-Kua, who described the directional properties of a magnet. Chinese mythology, however, puts the discovery 4,500 years ago, in about 2600 BC . It was not until the late sixteenth century though that the properties of magnets were compared to the magnetism of the Earth. In 1600 William Gilbert, who was a physician at the court of Elizabeth I, published a book called De magnete, magneticisque corporibus, et de magno magnete tellure physiologia nova, in which he described experiments he had performed, modelling the Earth and its magnetic field by the use of a sphere of lodestone.

There the matter rested until 1722, when the instrumentmaker George Graham discovered that the angle between true north and magnetic north (the declination), which was known to change in a uniform way, showed irregular, non-uniform varia-
tions. Then in 1741 Celsius and Hiorter noticed that these variations coincided with the appearance of the aurora borealis, or Northern Lights. By the second half of the nineteenth century it was widely accepted that these fluctuations, which have become known as magnetic storms, were related to the solar cycle which had been discovered by Schwabe and reported in 1843. This solar cycle was an 11-year periodicity in the number of sunspots visible on the face of the sun; there is also a progression during the cycle of the mean latitude of the spots on the sun's globe.

With a link established between magnetic storms and solar activity it was not long before Balfour Stewart, in 1882, suggested that the magnetic variations were due to currents flowing externally to the Earth, in an electrified layer of the atmosphere. He proposed that the air could be rendered conducting by solar action. This suggestion seems to have been forgotten until 1901, when Marconi made his famous transatlantic transmission.

In order to explain the reception of the signals around the curve of the Earth, an electrified layer of the atmosphere was again proposed, independently, by Kennelly writing in Electrical World and Engineer, and Heaviside in an article on Telegraphy in Encyclopaedia Britannica, both in 1902. Doubts were still expressed about the existence of such a layer however; it was thought that diffraction might work differently at radio frequencies.

IONOSPHERE

In 1925 however, Appleton and Barnett demonstrated conclusively that signals could be bounced from a layer in the atmosphere, by sending and receiving signals in a vertical direction. Appleton went on to introduce the present nomenclature for the several layers that go together to make up the ionosphere: the D-, E- and F-layers. The term ionosphere itself, however, was introduced later by Watson-Watt as a collective name for all the layers.

Another of the founders of the modern school of thought on the ionosphere was Sydney Chapman, who was able, in 1931, to show how the ionised layers came to be formed by the action of solar radiation on the atmosphere. In the same year Chapman published a paper with his research student, Vincent Ferraro, which made the first move away from the traditional view of the dipole nature of the Earth's magnetic field. They proposed that during periods of high solar activity streams of ions would leave the sun and impinge on the geomagnetic field, causing distortions in the field, to the extent of confining it to a cavity in the ion stream. These distortions would be perceived on the ground as the magnetic storm.

more recently

The modern view of the configuration of the geomagnetic field really began to emerge, however, with E. N. Parker's realisation, in 1957, that a stream of matter was constantly flowing out from the sun in all directions, in the form of a "wind" of plasma. Now a plasma is a homogeneous mixture of neutral gas molecules, free electrons and ions, and is sometimes regarded as a fourth state of matter since it has properties quite different from the other three. In the case of the solar wind the plasma is virtually all ionised, and this is also true for the plasma trapped around the Earth which we shall come to later, with the exception of the ionosphere which has a large proportion of neutral gas molecules.

The difference between a plasma and a gas is particularly marked in its interaction with a magnetic field. Hannés Alfvén had shown, in 1950, that magnetic field lines will behave as if they are "frozen-into" the plasma, when the kinetic energy density of the plasma is much greater than the magnetic energy density of the field. Where the plasma moves, the magnetic field is dragged along too. The condition is satisfied in the solar wind, and it thus carries the sun's magnetic field with it.

A plasma is a good conductor of electrical currents along the direction of the magnetic field; electrons move freely along field lines by spiralling around them, but they have difficulty in moving across the lines. When the highly conducting solar wind encounters the geomagnetic field, currents are induced in the plasma, modifying the geomagnetic field, which then interacts with these currents to cause a change of direction of the wind.

The result of this rather complex set of interactions is that the solar wind is made to flow around a region surrounding the Earth which has become known as the magnetosphere. The distorted geomagnetic field is confined to this region, within a sharp boundary called the magnetopause (where the kinetic pressure of the solar wind is equal to the magnetic pressure of the modified geomagnetic field inside).

This sounds fairly complicated, but the process can be visualised as a fluid flowing against a flexible bag into which it cannot penetrate. The bag will take up much the same shape as the magnetopause; this shape can be seen in Fig. 1, which shows a cross-section of the magnetosphere as a whole. The region near the Earth is shown in more detail in Fig. 2.

The presence, in Fig. 1, of the feature labelled as the bowshock can be explained using our bag anology; when the relative speed between the fluid and the bag is supersonic just such a detached shock-wave is set up. The solar wind is supersonic in rather a special sense; its density is too low to support normal sound waves and the waves concerned here are called magnetosonic, or Alfvén waves. They may be conveniently pictured as a vibration of the magnetic field lines, as if they had been plucked.

RADIATION BELTS

The space within the magnetopause may be divided into a number of regions according to the properties of the magnetic field, energetic particles and plasma within them; they are shown in Figs. 1 and 2. Among the first discoveries of the satellite era was a belt of trapped energetic particles extending from just above the ionosphere to a distance of about ten Earth-radii in the equatorial plane; the radiation belts discovered by van Allen and his colleagues in 1958.

To understand how charged particles can be trapped we must look at the way they move in a magnetic field. They spiral around the field lines, but where the magnetic field gets stronger so that the field lines move closer together, the pitch of the spiral

Fig. 1. A section through the magnetosphere in the moonmidnight plene, showing its structure. The tilt of the Earth's axis is slightly oxaggerated, and the scale is numbered in Earth-radil

Fig. 2. The region around the Earth, showing the etructure in the radiation belts. Also notice the auroral oval; thla is the zone around the poles where the aurorae are saen
decreases. This is shown in Fig. 3. When the particle reaches the point where the pitch has decreased to zero, it begins to spiral out again to weaker parts of the field. This may be extended to the case of the Earth's magnetic field, as shown in Fig. 4.

Electrons bounce from one hemisphere to the other in about a second or so. The energetic protons and electrons constitute a hazard to space flight in the regions they occupy, though not such a serious one as it was at first imagined. The electrons are more of a problem than the protons, since although they have lower energies (extending to a few MeV , while the proton energies extend to hundreds of MeV) the flux intensities are far higher.

Manned orbital flights tend to be at altitudes less than about 500 km ; within the upper ionosphere really, and well below the radiation belts. The danger is more severe for unmanned spacecraft which are often in higher orbits and are normally in space for much longer periods. The effects of radiation are cumulative and for long endurance spacecraft consideration has to be given to protecting sensitive electronic components (particularly CMOS devices).

PLASMA REGIMES

The radiation belts lie partially within a region of plasma, known as the plasmasphere, which is really an extension of the outer atmosphere. Whilst the trapped radiation of the van Allen belts may be considered "hot", in the sense that the particle energies are high, the plasma within the plasmasphere is "cold"; typical energies are fractions of an eV . The plasma density in the plasmasphere is considerably higher than elsewhere in the magnetosphere, being of the order of $100-1,000$ particles $/ \mathrm{cm}^{3}$ at the outer edge.

The edge, known as the plasmapause, is quite well defined; the density drops off by a factor of $10-100$ within a few hundred km . This plasma co-rotates with the Earth, and this is the reason for the discontinuity in density, since beyond the plasmapause the plasma tries to co-rotate, but when it approaches the dusk sector high above the sunset terminator on the Earth, it is convected away by electric fields. It cannot therefore attain the density of the plasma in the co-rotation region. The plasmapause was first detected by means of ion-traps aboard the Russian Lunik probes, and later confirmed by Carpenter, in 1963, by means of observations carried out from the surface of the Earth. He did this by analysing natural electromagnetic signals in the v.l.f. band, known as whistlers, which we will come to later.

Fig. 3. The apiral path of a chargad particle in a non-uniform magnetic field, showing how it may be reflected by a strong field

Fig. 4. The motion of charged particles trapped in the radiation belts

The third plasma regime is the "warm" plasma located in the plasmasheet; this does not co-rotate but remains fixed with respect to the sun in the magnetotail. It is, at present, unknown what happens at the far end of the magnetotail: we do not know whether the magnetosphere is open or closed. The closed case can be visualised easily as a tapering-off of the magnetotail, so that all the field lines leaving the Earth eventually return. Such a closed end to the magnetosphere would have to be at a great distance; it is known to extend beyond the orbit of the moon, at about 60 Earth-radii, and may stretch out to a distance of up to 1,000 Earth-radii. If the magnetosphere is open, then the geomagnetic field will be linked to the interplanetary magnetic field, carried by the solar wind.

MAGNETIC STORMS AND SUBSTORMS

We have already seen how magnetic storms were discovered by George Graham in 1722. Since that time, particularly in recent years with the availability of observations made by satellite, our understanding of these events has increased enormously. A magnetic storm is noticed on the ground as a change in the Earth's magnetic field, which can be recorded by means of an instrument called a magnetometer. This measures three quantities of the geomagnetic field; the field strength in both vertical and horizontal directions, and the declination. The magnitude of the changes depend on the location of the magnetometer; in the auroral regions the variations may be as much as one part in 100 , while nearer the equator the fluctuations become smaller.

There are many geophysical observatories equipped with magnetometers situated all over the Earth, often arranged into chains of stations, say along a north-south meridian. An example of the variation in the horizontal component during a typical magnetic disturbance is shown in Fig. 5.
around the nightside of the Earth, particularly the evening side rather than the morning side.

It should be emphasised that our knowledge of some aspects of the magnetic storm is rather speculative at present. This is a consequence of the difficulties involved in making systematic obscrvations in the vast volume of the magnetosphere simultaneously; one can never tell whether measurements made from a satellite moving along its orbit represent spatial or temporal variations.

Large magnetic storms can have a significant effect on everyday life. The changing magnetic field leads to voltages being developed in conductors. During construction of the transAlaskan oil pipeline attention had to be paid to this point, since it runs approximately north-south through the auroral zone, and large electrical currents could have been induced in it. The major magnetic storm of recent years, in August 1972, led to many electrical power failutes in the United States, due to overloading of the distribution system.

V.L.F. EMISSIONS

The interaction between the plasma surrounding the Earth and radio signals in the e.l.f. and v.l.f. bands ($300 \mathrm{~Hz}-3 \mathrm{kHz}$ and $3 \mathrm{kHz}-30 \mathrm{kHz}$ respectively) leads to a very interesting set of phenomena.

The v.l.f. band is used for navigational and communication purposes: its low frequencies are able to penetrate sea-water to considerable depths, so the band has mainly been exploited for submarine applications, though aircraft are now starting to use v.l.f. navigation systems. The advantage here is that v.l.f. signals have a very long range, so that relatively few transmitters are required. At the frequencies and wavelengths involved propagation is really in a waveguide mode in the cavity between the Earth and the conosphere, rather than as conventional radiowaves.

Much more interesting than the man-made transmitters however are naturally-occurring signals. A major source of these is lightning; the electrical discharge during a lightning stroke gives rise to a broadband emission which we see as a flash of light, may hear as a crackle on the radio and which is also strong in the v.l.f. band. A particularly intense lightning discharge may propagate enormous distances in the Earthionosphere waveguide, easily travelling halfway around the world.

Now this waveguide is a dispersive medium (so that higher frequency components travel faster than the lower frequency ones) and what started out as a sharp puise will eventually be transformed into a rapidly falling tone. The duration of one of these tones is typically about a tenth of a second, most of this being a fairly low frequency "tail" at about $2-3 \mathrm{kHz}$, just above the Earth-ionosp here waveguide cutoff frequency. Such a signal is known as a tweek; a name by which they are easily recognised when they are amplified and fed to a loudspeaker.

WHISTLERS

Lightning is also responsible for a longer duration and much better known type of signal called the whistler, and again dispersion of the pulse is important. A whistler occurs when energy from a lightning stroke leaks through the ionosphere into the magnetosphere. In this frequency band, interactions with the plasma cause electromagnetic waves to be weakly guided along the magnetic field lines. Under certain conditions, however, concentrations (or depletions) of electrons may exist along a field line; this is known as a duct, and electromagnetic waves in the v.l.f. band may propagate along a duct in much the same way as light along an optical fibre. The pulse due to the lightning is thus strongly guided along the field line to the opposite hemisphere, where some of the energy leaks back through the ionosphere, some is absorbed and some is reflected to repeat the journey.

The plasma in the magnetosphere is more strongly dispersive than the Earth-ionosphere waveguide, and the whistler's path is long, so that the pulse becomes transformed to a falling tone lasting about a second. The phenomenon is illustrated in Fig. 6, which also shows the frequency-time profile which would be observed at each end of the field line. Note that on each journey the whistler suffers more dispersion.

Often energy travels in more than one duct simultaneously, so that a family of whistlers is received. Such a group is illustrated in Fig. 7, about which a few words of explanation may be required. This diagram is in the same form as the frequency-time profiles in Fig. 6 and is called a dynamic spectrum. The intensity of shading represents signal intensity in the frequency-as-a-function-of-time presentation. Plots of this kind can be produced by a spectrum analyser; the particular machine on which the illustrations in this article were made was originally designed for making voice-prints.

SFERICS

The vertical lines in Fig. 7 are lightning strokes, received from an enormous area, and known collectively as sferics (a contraction of "atmospherics"). The whistlers do not quite conform to the shape shown in Fig. 6; they curl over at the top displaying what is known as a nose. This is due to peculiarities in the dispersion equation, and the frequency of the nose is related to the latitude of the whistler's path. The variation in nose frequency in the whistler group of Fig. 7 reflects the variation in latitude of the multiple paths.

Noses are only really noticeable in high latitude whistlers; this particular whistler group was recorded at Halley Bay in

Fig. 6. The path of a whistler in travelling from one hemisphere to the other. The signals received at each end of the field line are shown as frequency-time diagrams. The lightning pulse is shown at A, the one-hop whistler at B, and the whistler after subsequent hops at C, D, E and F

Antarctica, where the British Antarctic Survey have for many years operated v.l.f. receivers as part of their programme of geophysical observations. Halley Bay is ideally suited to receive whistlers, and probably has one of the highest whistler-rates in the world, reaching about one per second during active times in the winter. This is due partially to the long Antarctic night, when the ionosphere becomes relatively transparent, and partially to the conjugacy, at the opposite end of the field lines, of the eastern seaboard of the United States, a region of high thunderstorm activity at this time of year.

There are also naturally-occurring signals in the v.l.f. band which are not due to lightning, but are generated within the magnetosphere. Probably the most common of these is chorus, which, when replayed through a loudspeaker, sounds remarkably like the dawn chorus of birds, and which is actually

Fig. 8, Chorue at Halley Bay

Fig. 9. Risere recorded at Halley Bay
mainly observed around dawn. Fig. 8 shows the dynamic spectrum of chorus; it can be seen to consist of many overlapping rising tones. These are due to electrons radiating v.l.f. waves as they spiral around the field line; there is a mutual interaction so that many electrons spiral in unison, reinforcing the wave. The rising tones may also occur separately, when they are called risers; an example is shown in Fig. 9.

V.L.F. HISS

Another common signal, though mainly confined to high latitudes, is v.l.f. hiss. This hiss is often quite intense, and sometimes band-limited with fairly sharp boundaries. It has been observed from a few hundred hertz up to 500 kHz , though this upper limit is of course well out of the v.l.f. band. V.L.F. hiss is often observed in conjunction with the aurorae, and in recent years satellite observations have shown a definite link between hiss and precipitating electrons, which spiral down the field lines at high latitudes and enter the atmosphere causing the aurorae.

One such satellite is Ariel 4, one of the very successful British series of scientific satellites. An illustration of Ariel 4 is shown and the aerial loop of an e.l.f./v.l.f. receiver can be seen at the ends of the "paddles" carrying solar cells. This receiver was part of an experiment designed at Sheffield University, and has been

The Ariel 4 satelite being tosted prior to launch. The recelving aeriels of some of the experiments are visible. (By courtesy of British Aerospace)
used to observe v.l.f. hiss (amongst other emissions) simultaneously with the detection of low-energy precipitating electrons by an experiment from the University of Iowa, which formed a contribution from the United States.

There are many other types of emission known, though these are often variations on those described already, and with the added ingredient of echoing. This is due to the reflection of v.l.f. waves at the ionosphere, causing them to echo backwards and forwards along the field line. These emissions generally have descriptive names; examples are hooks, hisslers, surf and quasiconstant tones. These names were given by early workers, who had to rely on their hearing for the classification of signals.

Natural v.l.f. signals were in fact detected at the end of the nineteenth century by workers at the British Post Office, who reported hearing strange noises in telephone circuits; the long telephone lines were acting as aerials. Natural signals were also detected during the first World War as a result of attempts to eavesdrop on enemy telephone conversations by the use of sensitive amplifiers connected to sensors in the ground. The cause of the signals was not really understood however until the 1950's.

CURRENT RESEARCH

There is much interest in the propagation of e.l.f./v.l.f. waves at present due to the increasing use of these bands for communication and navigation systems, while on the scentific side the activity has changed from the exploration phase to a consolidation of our new observations and knowledge. There are of course still many questions to be answered, such as how the

Geos undergoing spin tests. The booms are supported from a pillar which is not part of the satellite. (By courtesy of European Space Agency)

ISEE-B, with its booms folded. (By courtesy of European Space Agency)
sun's magnetic field links to that of the Earth, i.e. is the magnetosphere open or closed; this was mentioned earlier.

One question which receives a great deal of attention is that of electric fields along magnetic field lines; being conductors magnetic field lines should be at the same potential along their length, yet there seem to be many observations of parallel electric fields. Many workers are therefore trying to explain what has become known as anomalous resistivity along field lines.

It is hoped that the answers to many of these questions will be gained during the International Magnetospheric Study of 1976-1979. This is an international effort to gather observations in a co-ordinated worldwide fashion, including observations from satellites. Important components of the IMS are the European satellite Geos, shown left, and another major satellite programme, the dual spacecraft International Sun Earth Explorer mission, ISEE-A and ISEE-B, of which ISEE-B is also European (see above).

There will be a further satellite in this series, ISEE-C launched in 1978, whilst a second Geos satellite (in fact one of the engineering prototypes brought up to flight standard) was launched in mid-1978 because the original satellite was placed in the wrong orbit as the result of a launch vehicle failure. Many other satellites will also be involved, including those primarily designed for other uses and those already in orbit, some of which are being kept active specially. In all, measurements from nearly fifty satellites will be available, some of these being in heliocentric orbits, from where they can study the solar wind.

The IMS involves a very large degree of international collaboration, and we may hope that the results which will be obtained will be able to shed light on many current problems. \star

Ersin Multicore Solder contains 5 cores of oxidised surfaces and makes fast, reliable akes fast, reliable
handy size reels of
SAVBIT, 40/60, 60/40 and $A L U-S O L$ solder alloys
These latest Multicore solder reels are ideal for the toolbox.
Popular specifications cover all general and electrical applications, plus a major advance in soldering aluminium. Ask for a free copy of 'Hintson Soldering' containing clear instructions tomakeeveryjobeasy.

Ref.	Alloy	Diam. (mm)	Length metres approx.	Use	Price inc. VAT
$\begin{gathered} \hline \hline \text { Size } \\ 3 \end{gathered}$	$\begin{gathered} 40 / 60 \\ \text { Tin/Lead } \end{gathered}$	1.6	10.0	For economical general purpose repairs and electrical joints.	£3.22
$\begin{gathered} \text { Size } \\ 4 \end{gathered}$	ALU-SOL	1.6	8.5	For aluminium repairs. Also solders aluminium to copper, brass etc.	¢3.22
$\begin{gathered} \text { Size } \\ 10 \end{gathered}$	$\begin{gathered} 60 / 40 \\ \text { Tin/Lead } \end{gathered}$	0.7	39.6	for fine wires, small components and printed circuits	£3.22
$\begin{gathered} \text { Size } \\ 12 \end{gathered}$	SAVBIT	1.2	13.7	For radio, TV and similar work. Increases copper-bit life tenfold.	¢3.22

[^1]SOLDERING
FLUX PASTES
'ERSIN' A non-corrosive, rosin based flux for general and electrical soldering in conjunction with 'Ersin' Multicore solders. Ref RF10 60pinc. VAT 'ARAX' For general metal joining in conjunction with 'Arax Multicore solders. Ref AF14 60pinc. VAT

BIB WIRE STRIPPER and CUTTER

Fitted with unique 8 -gauge selector and handle locking device. Sprung for automatic opening. Strips flex and cable in seconds Model 8B £1.36inc. VAT Pat. No. 144913

```
£1.36 inc. VAT
```


EMERGENCY SOLDER

Self-fluxing, tin/lead solder tape that melts with a match For electrical and non-electrical applications. Size ES36 55p inc. VAT MULTICORE desolerang wick

Absorbs solder instantly from tags, printed circuits, etc. Only needs $40-50$ watt soldering iron. Quick and easy to use. Non-corrosive. Size AB10 $\quad \mathbf{1} 1.29$ inc. VAT

ECONOPAK

A reel of 1.2 mm 'Ersin' Multicore solder for general electrical use. Size $13 \mathrm{~A} \quad £ 2.99$ inc. VAT

A reel of 3mm 'Arax'
Multicore solder for general non electrical use.
Size 16A £2.99 inc. VAT

MULTIMETERSTOTHE FORE

Gould Advance proudly present our new Alpha IV.
The fourth generation of an outstanding multimeter, its price of $£ 105^{*}$ is so reasonable when compared to those of its competitors - in these inflationary times.

While the improved spec. and high reliability are a result of the experience we gained from the first three models.

The Alpha IV measures a.c. and d.c. voltage and current, plus resistance - with a choice of 25 accurate measurement ranges. A " 2000 Count" large, clear I.c.d. display.

And true ease of use with its long life battery power
 facility.

Plus a two-year guarantee (in common with all our instruments). Buy one now. (Or four!) * Valid until 30th Sept. 1979 V.A.T. extra@ 15\%+£3.00 carriage per instrument and its accessories.
\Rightarrow GOULD
An Electrical/Electronics Company Gould Instruments Division.
Roebuck Road. Hainault, Essex 166 3UE Telex : 263785 .
TELEPHONE : 01-500 1000

To: Gould Advance Limited,
Roebuck Road, Hainault, Essex 1 G6 3UE Telephone:01-5001000.

Payment Choice:- Cheque or money order (payable to Gould Advance Ltd.) Purchase Order - terms 30 days net. Credit card: \square a
\square
Signature Name
Address Access/Barclaycard number

Product required and Accessories

Item Oty	Price*	Total
Alpha IV	£105	
Option 01B		
Battery Eliminator	£8.50	
Option O4B		
High Voltage Probe	£47.00	
Option O5B		
Carry Case	£20.00	
Option O6B		
R.F. Detector	£27.00	

Alpha IV
£105
£8.50

Option 05B
06B
R.F. Detecto
£27.00
V.A.T.@ 15\%..

Carriage @ $£ 3.00$ per instrument

Ohio Scientifics

[^2]instruct it or program it to do whatever you want, but you don't have to. You don't because it comes with a complete software library on cassette including programmes for each application stated above. Ohio Scientific also offers you hundreds of inexpensive programs on read-to-run cassettes. Program it yourself or just enjoy it, the choice is yours.

Features

- Uses the ultra powerful 6502 microprocessor
- 8K Microsoft BASIC-in-ROM
- Full feature BASIC runs faster than currently available personal computers and all 8080-based business computers.
4K static RAM on board expandable to 8 K
- Full 53-key keyboard with upper-lower case and user programmability
- Kansas City standard audio cassette interface for high reliability
- Full machine code monitor and $1 / \mathrm{O}$ utilities in ROM
- Direct access video display has 1 K of dedicated memory (besides $4 K$ user memory), features uppercase, lower case, graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TV's with overscan display about 24 rows of 24 characters, without overscan up to 30×30 characters.

Extras

Available expander board features 24 K static RAM (additional mini-floppy interface, port adapter for printer and modern and OSI 48 line expansion interface.

- Assembler/editor and extended machine code monitor available.

Commands					
Statements					
CLEAR	DATA	DEF	DIM	END	FOR
GOTO	GOSUB	IF...GOTO	IF...THEN	INPUT	LET
NEXT	ON...GOTO	ON...GOSUB	POKE	PRINT	READ
REM	RESTORE	RETURN	STOP		
Expressions					
Operators					
$-,+{ }^{*}, l . \uparrow$, NOT, AND, OR, $>, \ll \ggg=,<={ }_{\text {RANGE }}=10^{-32}$ to 10^{+32}					
Functions					
ABS(X)	ATN(X)	$\cos (\mathrm{X})$	EXP(X)	FRE (X)	INT(X)
LOG(X)	PEEK(I)	POS(1)	RND (X)	SGN(X)	$\operatorname{SIN}(X)$
SPC(I)	SQR(X)	TAB(1)	TAN(X)	USR (I)	
String Functions					
ASC(X\$)	CHR\$(1)	FRE(X\$)	LEFT\$(X\$, 1)	LEN(X\$)	MID\$
					(X \$, I, J).
RIGHT\$(X\$,I)			STR\$(X)		VAL(X\$)

Fully built and tested. Requires only +5 V at 3 amps and a videomonitor or TV and RF converter to be up and running.

"Certainly one of the most exciting (computers) on the present market" Practical Electronics June '79

"A useful machine........................represents value for money" Computing Today June ' 79
"The Superboard represents good value with plenty of potential" Practical Computing June ' 79

Dealer Enquiries welcome at Morgan St. address

Watford Electronics	Videotime Products	Lotus Sound
33/35, Cardiff Road,	56, Queens Road,	4, Morgan Strpet,
Watford, Herts.	Lasingstoke, Hants RG21 1REA	London E3 ;AB
Tel: Watford 40588/9	Tel: 025656417	Tel: 01-981 3993

NIBXXTH:..

 TOOL
Our May cover mounted gift-an I.C. Insertion Tool-created a fantastic response from readers. In addition to their praise many of them said, ' Now it's easy to get them in but how do we get them out?'

In reply to this request we have designed and produced another exclusive tool-yes it's an I.C. Removal Tool. constructionals

Sollo Stait CAR INSTRUMENTS

Put i.c. technology in your car with our series of automobile projects using the LM3914. Engine RPM, Battery Charging, Battery Condition, Engine Temperature, each using bar displays. Start with the Battery Condition Indicator. Find out how it works, and how to build it.

DIGITAL TEMPERATURE CONTROLIER

Fine temperature control over the range $0-99^{\circ} \mathrm{C}$ with digital readout. Ideal for photography, home brewing, aquarium or just simple room heating.

PRACTICAL

The refined effect for the discerning musician

OF all the effects units for electric guitars, fuzz is undoubtedly the most popular and numerous designs have appeared in Practical Electronics and other magazines over the years. So why yet another fuzz unit?

In principle fuzz is easy to produce; all one has to do is distort the signal. But in practice it is very difficult to obtain just the right amount and the right character of distortion, and most designs end up producing a sound which is unpleasantly harsh and rasping. We know because we have tried many of them. Some designs use a Schmitt trigger circuit to 'square up' the input waveform and these tend to give very poor results as the output remains absolutely constant up to a certain point and then suddenly stops. Also a guitar produces a large transient at the start of a note and in some designs this causes momentary blocking due to coupling capacitors charging up. This produces a disconcerting 'hiccup' in the output.

What the professional musician usually wants is a more refined sound-a fuzz unit which gives the guitar tone which is 'different' rather than obviously distorted and gives a limited sustain without completely destroying the dynamics of the input signal. The unit described here will do just this and that is why we have called it 'smooth fuzz'.

CIRCUIT

The circuit uses a dual low noise f.e.t. operational amplifier as these devices now offer excellent performance for a very reasonable price.

The first part of the circuit, around IC1a performs two functions-it provides a voltage gain of about 60 to raise the input signal to a suitable level to operate IC1b, and it acts as a low pass filter with a cut-off at about 1 kHz and a slope of 18 dB per octave. This removes the higher harmonics of the strings and so reduces the number of intermodulation products produced by the following stage.

IC1b is the distortion generator. Very small signals are passed without distortion, but as the output voltage rises above about ± 0.5 volts diodes D1 and D2 conduct, providing gradual limiting of the signal. The output waveform produced by this stage varies as shown in Fig. 3 as the input signal is increased.

Fig. 1. Block diagram

Although the waveform distortion produced by this stage is not excessive the direct output would still be a little too harsh for most peoples tastes, so two stages of additional filtering are provided by R9 and C8 and VR1 and C9. VR1 is the tone control and as it is varied from the C9 end to the C 8 end the tone becomes progressively sharper.

Fig. 2 Circuit diagram

COMPONENTS

| Resistors: | |
| :--- | :--- | :--- | :--- |

Semiconductors

```
IC1 TL072CP Texas instruments
D1 1N4148 or 1N914
D2 \(\quad 1 \mathrm{~N} 4148\) or 1 N914
```


Miscellaneous

S1 d.p.d.t. footswitch (latching type)
JK1 Switched jack socket with front contact normally open and rear contact normally closed (Davian Electronics)
JK2 Normal, non-switched jack socket
Box IT.T. diecast box type 46R CSOO 043 AOO
PP3 type battery and battery clip
Two control knobs
Two rubber self adhesive feet
Screened lead and connecting wire

Fig. 3. Waveforms

CONSTRUCTION

Most of the components are mounted on a small printed circuit board which fits into the slots in the side of the box. This is a convenient method of assembly as no screws are required. The component layout and copper pattern for the printed circuit board are shown in Fig. 4.

A low profile type of 8 lead di.i. socket can be used for the i.c. if desired.

Fig. 5. External assembly to board

The battery should be held in place with a piece of foam rubber glued inside the lid, and the unit is finished off with two self adhesive rubber feet fixed to the rear end of the lid. These stop the box from sliding around and tilt it forward at a convenient angle for foot operation.

A wiring diagram for the unit is given in Fig. 5. Note that miniature screened lead should be used between the input jack and the footswitch, the printed circuit input and the footswitch, and between the printed circuit and the tone control. Note that earth connections are made to the box by soldering to the case of the potentiometers, although a screw and solder tag can be used if preferred.

The input jack socket is a special type which has a front contact (nearest the nut) which is normally open and a rear contact which is normally closed. The battery negative is connected to the normally open contact so that when the input jack plug is inserted this contact 'makes' and automatically switches the unit on. At the same time the rear contact opens and allows the input signal to reach the circuit.

USING IT

Connect the battery, screw on the lid of the box and insert the input and output jack plugs. Then play a note through the unit, adjusting VR1 for a pleasing tone and VR2 for an output signal of similar loudness to the input. The output level from the guitar should be set high to give the best sustain.

If for some reason the unit does not work, check the output voltages at pins 1 and 7 and IC1. Pin 1 should be at exactly half the battery voltage and pin 7 should be within ± 0.7 volts of this.

The current taken by the unit is only about 4 milliamps giving a long life from the PP3 battery used, but don't forget to remove the input jack plug when you have finished playing.

Cambridge Learning Enterprises

SELF-INSTRUCTION COURSES

UNDERSTANDING DIGITAL ELECTRONICS

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be 'phoning people by entering their name into a telephone which would automatically look up their number and dial it for you.
These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.
After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. it consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion betweem number systems, AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

FLOW CHARTS \& ALGORITHMS help you present: safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO anwsers to questions.

The Algorithm Writer's Guide

explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

NEW from Cambridge Learning Enterprises
 O- LEVEL ENGLISH LANGUAGE

More and more jobs require a C-GRADE PASS, and over 250,000 people fail to get this every year. Will one of them be in your family? This new course, written by experts in a style that's serious yet fun to read, shows you how to mark your own work and compare it with the work of other people in their exam year. Set your own pace and assess your results immediately with no postal delays: watch your speed and standards improve. In Book 1 learn how you will be marked on COMPREHENSION, Book 2 covers SUMMARY,
PUNCTUATION \& SPELLING, and Book 3 coaches you in the principles of COMPOSITION. Size: 3 A4 volumes totalling 250 pages.

CAMBRIDGE LEARNING ENTERPRISES, UNIT 22 RIVERMILL SITE, FREEPOST, ST. IVES, HUNTINGDON, CAMBS. PE17 4BR, ENGLAND
 TELEPHONE: ST. IVES (0480) 67446.
 PROPRIETORS: DAYRIDGE LTD. REG. OFFICE: RIVERMILL LODGE, ST. IVES REGD. IN ENGLAND No. 132876

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include:
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping: three-state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters: random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control programe structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Four volumes Digital Computer Logic \& Electronics at $£ 6.50$ inc Six volumes Design of Digital Systems at $£ 10.50$ inc $p \& p$ Three volumes 0 -Level English Language at $£ 6.50$ inc $p \& p$ The Algorithm Writer's Guide at $£ 3.40$ inc $p \mathbb{\&} p$ If your order exceeds $£ 14$ deduct $£ 2$ from your payment Price includes surface mail anywhere in the world, airmail extra GUARANTEE If you are not entirely satisfied your money will be refunded

Please allow 21 days for delivery

[^3]
FRRE RDTRY COWPETITHONS owere 30 owemmot Lektrokit BREADBDARDING TO BE MON

THIS competition is open to nearly everyone（see rules overleaf）and carries the following 31 PRIZES．
1st LEKTROKIT POWERACE 102 or 103 （winner＇s choice）， a Jumper Wire Kit and 16 Pin Test Clip value approx． £ 120 ．
2nd LEKTROKIT ACE 236，a Jumper Wire Kit and 16 Pin Test Clip value approx．$£ 65$ ．
3rd ACE 218，a Jumper Wire Kit and 16 Pin Test Clip value approx．£43． 4 th／6th Three ACE 201－K＇s（in kit form）value each approx．$£ 16.7$ th／11th Five SUPER－STRIPS value each approx．£11．12th／31st Twenty 217L BREADBOARDS value each approx．$£ 3$ ．

Results will be announced in the February 1980 issue of P．E．and， providing the first prize winner lives in the U．K．he／she will be presented with the prize at Breadboard＇79（Dec．4－8th 1979）．

To enter，simply design a useful circuit that will fit on the Super－Strip layout shown below．You should then draw out the circuit neatly and append a brief description of its operation and capabilities．This should be sent，together with a properly completed entry coupon and component layout drawn on the Super－Strip diagram below，to：

PRACTICAL ELECTRONICS／LEKTROKIT COMPETITION，
55 Ewer St．，London SE99 6YP．

Model SS－2 Super－Strip comprising 8 buses of 25 connected terminals and 128 groups of 5 connected terminals．

	工TIEARE	E鳥退突	ESEES易					式式気		Ficerex
	$50080{ }^{5}$								20\％	
		350906						－		0
	－	Cry	？${ }^{\text {a }}$	ITK	1050	$\underline{0}$	12acd	成或近	－ 0^{1}	
		TEETL	1002 2	TM00	－10002	C50000	－100		Wachate	
	風國國國	CTETE	國	95060	3010，		速咸过			
		國间國	OMED	回䢕	0680	T	120000	40， $0^{40} 50$		
	THETEEC	＋	H0］	1609	風成可		12006	aramide	720］	－Dremer
		－	或國边			國國品	OLCOM	W20012		
		C000065							O2000	
	－00000	5	81	－${ }^{\text {ander }}$	圆或石	－290	M10	58.		
	Crandmb		－	Figher	D日岛边	I	OTOM	H20	OH	drachatine
	TCEEECE	Examm		［2005				Scinctice		
							Hinecer			

JOINT MEMORIES

A^{N}N AGREEMENT, in principle, has been reached between Zilog and National Semiconductor Corp., on the standardisation and alternate-source manufacturing of a family of quasi-static, eight-bit wide memories. Three functionally and electrically compatible RAMs configured $2 \mathrm{k} \times 8,4 \mathrm{k} \times 8$, and $8 \mathrm{k} \times 8$, have specifications jointly agreed on, and which conform to the proposed JEDEC 28 -pin configuration.

The memories involved are: Z 61324 k , and the 2 k version which will be a "subset" of the former. The $8 k$ design (National NMC 4864 and Zilog 6164) will be compatible with Zilog's micro' family, and National's 16000 processor, and will go into full production in the second quarter of 1980.

TWO NEW MICRO'S

NEW to the S6800 family of microprocessors are the 6802 and 6808, both of which incorporate clock circuitry. The 6802 houses 128 bytes of RAM of which 32 bytes are retainable on stand-by power after power down.

Both of these depletion load n-channel devices only require the addition of a 4 MHz crystal, being 1 MHz operated from a divider circuit. This allows them to be used with a low cost 3.58 MHz colour burst crystal.

CARROT GROWS BIGGER

THE 1979 TDC Innovator Award has the highest yet prize money; a record $£ 35,000$, of which $£ 20,000$ will go to the winner, and $£ 5,000$ each to the three runners-up.

The competition is run by Technical Development Capital (TDC), a subsidiary of Finance for Industry, and the award is presented annually for the best business plan based on technological innovation. Information about the award can be obtained from Technical Development Capital Ltd., 91 Waterloo Road, London SE1 8XP.

BABES IN HEADPHONES

SINCE a child with an unidentified hearing impairment might be labelled ESN (educationally subnormal) due to lack of progress at school, more emphasis is now being placed on first establishing the hearing capability of children at an early age.

But the quest of providing readily available hearing tests for infants has two inherent problems. The first is a technical one, in that a baby cannot be instructed to respond to a programme of audible stimulation. The solution to this limitation has in the past been the BER test (Brainstem Evoked Response), requiring bulky and expensive equipment to produce an electroencéphalogram type output, using electrodes taped to the baby's head, and headphones producing the sound.

From this stems the second problem, that such equipment is never likely to become sufficiently widespread to enable screening of all infants. Now the microprocessor has come to the rescue with a new portable system which can test the hearing of a day-old baby. It's called SYNAP I, and is a highly sophisticated, and yet relatively inexpensive miniaturised unit, named after the synapse-the point at which a nerve impulse passes between neurons.
This breakthrough came from the voluntary efforts of the "Telephone Pioneers of America", a community service organisation of long-time Bell System employees. The scientific consultant to the programme, whose concept the portable system was, is Dr. Philip Peltzman, Research Associate at the University of California's San Francisco Medical Centre.
It is fitting that a device made by the inventors of the "Computer-on-a-chip", Intel, is used. The 8085A-2 microprocessor based system evaluates the changes in the brain's electrical activity in response to audible clicks, by accumulating the analogue signals, converting them into digital information and averaging them into a single wave for recording on magnetic tape. This data is then transcribed to paper tape, from which a trained person can determine the degree to which the infant heard the clicks.

IN DEPTH DEFENCE

USTRALIA and the UK are being equipped with "the
most advanced airborne anti-submarine defence system".
As part of the RAF Nimrod maritime reconnaissance fleet's avionics update programme, aircraft will be fitted with the Marconi Avionics Ltd. AQS901 acoustic processing and display system to complement Australia's contribution, the BARRA passive directional sonobuoy. BARRA gives a better capability for the detection and location of submarines than any buoys in current service, and with AQS901 the system will be capable of locatiing even the quietest, fastest types of nuclear submarine operating at great depth.

FREEENTRY COUPON
PRACTICAL ELECTRONICS LEKTROKIT COMPETITION
(Block letters please)

NAME (Mr/Mrs/Miss)

ADDRESS

\qquad

TELEPHONE NUMBER if any

I certify that

(a) This entry is my own original idea and has not been copied from any other source;
(b) This idea has not been published or offered for publication elsewhere.
(c) I agree to abide by the rules and conditions.

SIGNED

Write a slogan using no more than 15 words on the merits of solderless breadboarding:
\qquad

RULES AND CONDITIONS

There is no entry fee nor limit to the number of entries a reader may submit but each entry must be made on a proper entry coupon, cut submit but each entry must b
from PRACTICAL ELECTRONICS.
All accepted entries will be examined by a panel of expert judges including the Editor of Practical Electronics, and assessed on (a) originality of the idea, (b) technical merit, (c) usefulness (not necessarily in that order). The prizes will be awarded for the best entries in order of merit. In the event of the same idea being submitted by two or more entrants, the slogan submitted will decide such winner(s) or winning order.

In the event that the judges consider there are not enough entries of a sufficiently high standard, the Editor reserves the right not to award any prize(s) at his discretion.
Entries arriving after closing date will not be considered, nor will any received that are illegible, not wholly understandable, are not on a properly completed entry coupon or in any other way do not comply exactly with the instructions and rules. No responsibility can be accepted for entries lost or delayed in the post or otherwise; proof of posting will not be accepted as proof of receipt. No entries can be returned.

The competition sponsors reserve the right to adapt or amend any entry-after judging has been completed-for purposes of publication. Practical Electronics will pay the usual reproduction fee for any entries published. Decisions of the judges, and of the Editor in all other matters affecting the competition, will be final and legally binding. No correspondence will be entered into nor interviews granted.
Winners will be notified by post and brief details of winning entries published later in Practical Electronics.

The contest is open to all readers, but those outside the U.K. may be requested to provide a British address to which any prize may be sent. Employees and the families of employees of IPC Magazines Ltd., the printers of Practical Electronics and Lektrokit Ltd., and anyone directly connected with the competition are not eligible to enter.
Closing date September 28th 1979.

Semigundurior DPDATE:

TTL-ALIVE AND KICKING

In the beginning there was TT:; 74 series Transistor Transistor Logic that is, the first really successful integrated circuit logic family, which has been with us since the mid sixties. For such an "antiquated" technology, TL seems to be remarkably durable and is still the most popular logic family for general use and for state-of-the-art applications in microprocessor systems. This longevity is not due solely to the foresight of the original chip designers, it is also due to an intensive program of development which has turned today's TL into a very different animal to the 74 series of yesteryear.

The first major improvement was Shottky TL (74S series). Using the low voltage drop of Shottky diodes to prevent the gate transistors from entering saturation, the speed of the standard gate was increased from 10 ns to 3 ns . Low power TTL was around more or less from the start, but low current versions of TTL were slow-30ns for a standard gate. By combining low power circuitry with the new Shottky technology another improved TTL family, 74LS, was introduced, with the speed of standard TTL but at only 2 mW per gate dissipation. Today, 74LS is the "standard" family, replacing the old 74 devices in nearly all new applications.

Even those technology enhancements do not tell the full story. Throughout the long life of TL there has been a continuous stream of new logic function and sub-system introductions which have provided the potential TTL user with a very wide choice indeed. Add to this the wide range of TRISTATE devices now in the family, and you can get a clearer idea of why there aren't going to be any overnight challengers for the "standard logic" crown.

But TTL isn't resting on its laurels. Already manufacturers are unveiling their 1980 models, with still higher speeds and yet lower fuel consumption. Take Texas Instruments for example. They will be introducing two new families called "Advanced Shottky" 74AS, and "Advanced Low Power Shottky" 74ALS, in the near future.

The 74AS family will be twice as fast as 'ordinary" Shottky TTL, but will have the same 20 mW dissipation. The 74ALS devices will be almost as fast as "ordinary" Shottky at 4 ns per gate, with a power dissipation as low as the old low power
family at an incredible 1 mW per gate! To go with the new families there will be some interesting new logic functions and even a new 0.3 in wide 24 pin package for even greater packing density.

There will be other new TTL families from manufacturers such as Fairchild, so if your data book is more than a few years old, I would say that 1980 will be a very good year to replace it !

ROM PUNCTURE OUTFIT

If your bike tyre is flat, you can fix it with a puncture patch. If you have some wrong data in your ROM you can fix it with a ROM patch-but you won't need any sticky cement or French chalk!

The problem the ROM patch has been designed to solve is that of the expensive masked ROM which turns out to contain some bugs. If a manufacturer doesn't want to throw away perhaps a thousand ROMs costing say $£ 10$ apiece, because of a few erroneous program instructions, the ROM patch is the only way he can make the best of a bad job.

The principle is simple. The addresses of the bad locations are detected and the main ROM outputs inhibited. A small ROM containing the appropriate corrections has its output gated on to the bus instead. To the system everything is now O.K. Unfortunately, a problem the ROM patch faces is the fact that corrections may be needed anywhere in the address range of the main ROM, and so all address bits need to be decoded. On the other hand a ROM patch can be economical only if a small number of corrections need to be stored in the new ROM.

Signetics have solved this problem with their 825106 and 825107 ROM patch chips by making not only the ROM patch data itself programmable, but also the address decoding. Each patch has 48 programmable 8 bit locations for the substitute data, and these are addressed by means of a 16 bit programmable address comparator, which means that the 48 individual words can be distributed anywhere in a full 65,536 word range. The appropriate comparator and ROM data can be entered by means of standard PROM programming equipment or it may even be possible to get the system to program its own patch since only low programming voltages are required.

For most microprocessor systems only one ROM patch would be needed to cover the full address range so that "fixes" could be implemented for several ROMs. The 28 pin $82 \mathrm{~S} 106 / 7$ package could be designed into a micro' board from the start-if it turns out to be unnecessary, all that has been wasted is a socket!

These interesting devices can be used for other jobs too, applications listed on the data sheet include digital filters, interrupt vector generators and code generators. Every saddle bag should have one!

THE CAZ AMPS COMETH

Those CMOS whizz kids at Intersil have come up with yet another innovation which looks like a winner-the CAZ AMP. CAZ AMP stands for Commutating Auto Zero Amplifier, a cunning device which manages to overcome the traditional problems of MOS operational amplifiers-large input offset voltages and poor temperature drift performance-retaining the very low power attributes for which CMOS is famous.

The way Intersil have tackled the messy MOS input problem is simple, they have just let it happen and then cancelled it by letting the amplifier continuously re-zero itself. Inside the CAZ AMP package there are actually two amplifiers together with some analogue switch logic. Each amplifier spends half of its time connected as the "on-line" amplifier, with the rest of its time devoted to an auto-zero function while its twin takes over!

The auto zero operation is breathtakingly simple. A capacitor is switched between the inputs of the amplifier so that it gets charged up to the offset voltage. When the amplifier is put back "on-line" the capacitor is switched in series with the inputs to cancel the offset it has just measured. Meanwhile the other amplifier is charging its own capacitor, and so on. Simple eh? Using this technique Intersil have produced an amplifier with a 2 micro volt initial offset voltage (A 741 would be about 2 milli volts) and with a 0.005 microvolt per degree C drift termperature coefficient. These specs. rival those of the far more expensive precision modular and chopper amplifiers and could bring about a revolution in low cost, high accuracy, instrumentation systems.

The devices to watch for are the ICL 7600 and the ICL 7605-don't miss them!

AUTO-FOCUS

One of the first pending British patent applications of electronic interest to be published under the new laws is GB 2001 501 A in the name of Bell and Howell, Japan Ltd. The patent concerns automatic focus devices of optical type as used for still cameras (e.g. the Konica Autofocus) and home movie cameras (e.g. from Sanyo).

Whereas Polaroid has developed an ultrasonic autofocus system, which senses distance by evaluating the return echo time of an ultrasound signal beamed out from the camera, the Bell and Howell system relies on an opto-electromechanical equivalent of human eye vision.

As shown in Fig. 1, two mirrors 5,2 are spaced apart on the camera front and thereby "see" slightly different images of the scene to be photographed.

The images L, R seen by the two mirrors 5,2 are beamed onto a central prism 3 which, together with lenses 7,4 , forms separate images of the scene alongside each other on photoconductive arrays $8^{\prime \prime}$, 8^{\prime} of an optical sensor 8 . The mirror 2 is fixed but the mirror 5 can be pivoted about an axis 6.

A servo system controls scan pivoting of the mirror 5 and the sensor 8 generates a focus signal when the separate images formed on the arrays move into exact coin-

Copies of Patents can be obtained from : the Patent Office Sales, St. Mary Cray, Orpington, Kent Price 95p each

cidence. The angular movement of the mirror 5 is thus representative of the image distance from the camera and the focus signal can thus be used to servo control the lens focus setting.

The patent document admits in honest terms what will already be well known by anyone who has used a camera incorporating such an auto-focus system. This is that the servo control works well when the scene to be photographed, and thus the images on the sensor 8 , are of high contrast. In such a case a small change in the angle of the mirror 5 will produce a substantial change in the output of the sensor 8. But when the scene to be photographed has a low contrast, the sensor 8 is unable to differentiate small changes in the mirror angle. Large distance measuring errors and substantial misfocusing of the camera lens can therefore result. The latest Bell and Howell development is a simple embellishment of the basic system intended to minimise focusing errors under conditions of low contrast.

Fig. 2

As shown in Fig. 1 a pair of light filters $9^{\prime}, 9$ are provided in the optical paths L,R of the mirrors 5,2 . These filters are partially optically screened as shown in Fig. 2, and produce artificial contrast differences.

When the camera optics are pointed at a low contrast scene such as the sky, and no useful image coincident output can be obtained from the sensor 8, the artificial contrast created by the filter screens enables the servo system to latch at a pre-set compromise focus. This pre-set compromise will generally be a medium distance similar to the pre-set of a fixed focus lens.

Whenever the scene to be photographed is of sufficient inherent contrast to produce a significant coincident signal from the sensor 8, the artificial contrast effect introduced by the filter screens is over-ridden.

Test results have shown that a light reduction of between 5 and 10 per cent in the screening parts of the filters is ideal for providing compromise focusing when the photographed scene has inadequate contrast for auto-focus control, while enabling the auto-focus control to function unhampered when natural scene contrast is adequate.

STEREO VIA CABLE TV

In BP 1529985 Communications Patents Ltd. of London SW1 claim novelty in a system for broadcasting stereo sound programmes over a cable TV system. The patent was applied for in 1976 and is granted under the old laws.

As the patent points out, it is clearly impractical to transmit stereo sound on a cable system by providing two separate audio channels. Apart from all other considerations such a system is not mono compatible. An alternative idea is to use FM transmission in a band above that adopted for TV transmission, the stereo sound signal having a format corresponding to that used for stereo radio transmission. But, according to the inventors, the repeaters available on existing cable networks are not suitable for handling such high band FM signals and unacceptable interference between the TV and audio programmes results.

The patent claims that the answer lies in multiplexing a number of stereo sound programmes in a single network channel. Each sound programme is on a frequency modulated HF carrier and the frequency of each carrier is an integral multiple of the stereo sub carrier frequency. In practice, the sub carrier will be at 38 kHz and the HF carrier frequencies will be in the band, 4 to 10 MHz or 16 to 22 MHz .

The carrier frequencies are selected so that the sum of any two carriers is different from any one of the carrier frequencies and so that no carrier frequency is twice any other carrier. This can be achieved by arranging for the frequency difference between any two adjacent carriers to differ from the frequency difference between any other two adjacent carriers. In one practical application of the idea, one of six available TV channels is dedicated to stereo sound. Tables are given which show the arrangement of carriers to be used in the case of 3,5 and 12 different stereo programmes on the single channel.

ADD-ONS

* POWER SUPPLY (6.3V AC) for ELF 11
* ELF 11 DE LUXE STEEL CABINET (IBM Blue)
* GIANT BOARD KIT System/Monitor, Interface to/ cassette - RS232. TTY etc
* 4K STATIC RAM board kits (requires expansion power supply)
* Expansion power supply (required when adding 4K Rams)
- ASC 11 Keyboard Kits 96 printable characters etc
- ASC11 d/lux steel cab. (1BM Blue)
* KLUGE prototype board (build your own circuits)
- 86 pin Gold plated connectors (EA)
- ELF Light pen writes/draws on TV screens
- Video graphics board $32 / 64$ characters by 16 lines on TV/monitor screens
- ELF 11 Tiny basic on cassette
- ELF 11 Bug/monitor powerful systems monitor/editor
*T. PITMANS short course in programming manual(Nil VAT)
- T. PITMAN short course on tiny basic manual (Nil VAT)
- RCA 1802 users manual (Nil VAT)
${ }^{\dagger *}$ On cassette test editor: assembler, disassembler (EA) SAVE 10\% AND BUY ALL THREE TOGETHER All units can be supplied wired and tested Send S.A.E. for comprehensive brochure

BUT A microcumputer for leas than f79.95 some TU gamer + var sume TU games

ELF 11 BOARD WITH VIDEO OUTPUT
STOP reading about computers and get your "hands on" an ELF 11 and Tom Pitman's 5.00 short course. ELF 11 demonstrates all the 91 commands which an RCA 1802 can 23.01 execute, and the short course speedily instructs you how to use them.

```
I
                                    Name
                                    Address
```

\qquad
\qquad

```
                                    Barclaycard/Access
                                    To Newtronics }138\mathrm{ Kingsland Road
                                    London E2 8BY
                                Tel: 01-739 1582
```


LIGHTING \& AMPLIFIER MODULES FROM L\&B

 JUST LOOK AT THESE PRICES!Superior high quality lighting control modules. No additional power supply. just ready to go!

- LB31000SL -

Sound-light, 3 channel $\times 1000 \mathrm{~W}$. Zero mains voltage switching, high sensitivity, high input impedance, excellent separation. $\mathbf{~} 18.90$

- LB41000LS -

Light sequencer, 4 chan. $\times 1000 \mathrm{~W}$. Suedorandom, zero switching.
£14.90
Two-speed controls, excellent for stage lighting.

- LB31000LD -

Light dimmer, 3 chan. $\times 1000 \mathrm{~W}$. Stage lighting
from full off to full on
Massive audio power at your fingertips! For use in many applications.
2 LB2 $25-$ RMS 4Ω
$10 \mathrm{~Hz}-50 \mathrm{kHz}$

$$
\text { T.H.D. } 0.1 \% 90 \mathrm{~dB} \text { S/N }
$$

$\mathbf{£ 8 . 2 0}$
PREAMPLIFIERS LBPA1 Stereo disc/
tape
\$14.50
LBPA2. 4 channel gen. purpose mixer $\mathbf{\$ 1 3 . 5 0}$ LBPA3. Stereo disco with mic. $£ 22.00$
 $£ 12.90$ - LB250 -

250W R.M.S. 4Ω $10 \mathrm{~Hz}-20 \mathrm{kHz}$ T.H.D. 0.3\% 110 dB S/N $\mathbf{£ 2 9 . 5 0}$ - LB100 -

100W R.M.S. 4Ω $10 \mathrm{~Hz}-25 \mathrm{kHz}$ LB25PS............. 110.00 LB100PS $\mathbf{E 1 2 . 2 0}$

COMPONENT......21.20 215.70 SEMPONENTS
REAPS
TRANSFORMERS Send for list
All above prices include VAT. Please add 50 p p/packing. Quantity/trade discounts, up to 33% available. Export enquiries welcome. SAE for further info. H818 electronics

AURA SOUNDS

THE WERSI SPECIALISTS

Announce the opening of their NEW SHOWROOM at Purley Oaks Centre 01-6689733 for Do-lt-Yourself Kits and Ready-Assembled Organs, Accessories and Pianos

SEE the 이표표I KITS

TALK to the ©III $=$ 자에 SPECIALISTS HEAR the ©IIIERㅋI SOUNDS

SEND £1 FOR OUR 104 PAGE FULL COLOUR CATALOGUE AND PRICE LIST TO:-
AURA SOUNDS
14/15 Royal Oak Centre, Brighton Rd., Purley, Surrey.
Also at 17 Upper Charter Arcade, Barnsley

THREE FOR FR FROM CSC

 ELECTRONICS BY NUMBERS

 ELECTRONICS BY NUMBERS
 EXPERIMENTOR BREADBOARDS.
 PROTO-BOARDS.
 THE ULTIMATE IN BREADBOARDS

LED BAR GRAPH UNIVERSAL

 INDICATORNow using EXPERIMENTOR BREAD. BOARDS and following the instructions in "Electronics by numbers" ANYBODY can build electronic projects.
Look at the diagram and select R1, this is a resistor with a value between 120 to 270 ohm. Plug it into holes $\times 20$ and D20, now take LED 1 and plug it into holes E20 and F20. Do the same with the Diodes e.g. plug D7 into holes G7 and G10.

YOU WILL NEED

EXP. ANY EXPERIMENTOR BREÁD-

BOARD

D1 to D15 - Silicon Diodes (such as 1N914) R1 to R6 - From 120-270 ohm resistors $1 / 4$ watt.
LED1 to LED6 - Light emitting diodes.
LED BAR GRAPHS are replacing analogue moters as voltage-level indicators in many instances.
This circuit uses the forward voltage drop of diodes to determine how many LEDs light up. Any type of diode can be used but you must use all the same type. For full working details of this circuit fill in the coupon. If you have already built the Two-transistor Radio and the Fish'n'cliks projects you will find that you can reuse the components from these projects to build other projects in the series.

FILL IN THE COUPON AND WE WILL SEND YOU FREE OF CHARGE FULL COPIES OF "ELECTRONICS BY NUMBERS" PROJECTS No 1, No 2 and No 3.

PROTO-CLIP TEST CLIPS.

Brings IC leads up from crowded PC boards. Available plain or with cable with clips at one or both ends.

PC- $\mathbf{1 6}$ pin. £2.75
PC - 16 pin with cable

PC 16.00.
PC - 16 with cable and 16 pin clips at both ends. $£ 10.25$

Europe, Africa, Mid-East, Australasia: CSC UK LTD. DEPT. 5T
Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.
Telephone: SAF FRON WALDEN 21682 Telex: 817477.

No soldering modular breadboards, simply plug components in' and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP.4B.

EXP.325. The ideal breadboard for 1 chip circuits.
Accepts 8,14,16 and up to 22 pin IC's. ONLY £1.60.

EXP. 350.
£3.15.
270 contact points with two 20 -point bus-bars.

EXP. 300.
550 contacts with two 40-point bus-bars. £5.75.

EXP. 650 for Microprocessors. $£ \mathbf{3 . 6 0}$.

EXP 4B.
More bus-
bars.
£2.30.

ALL EXP. 300 Breadboards mix and match with 600 series.

FOR THE MINIMUM COST.
TWO EASILY ASSEMBLED KITS.

뎌표
PB. 6 Kit, 630 contacts, four 5 -way binding posts accepts up to six 14-pin Dips. PROTO-BOARD 6 KIT. £9.20.

PB. 100 Kit complete with 760 contacts accepts up to ten 14-pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.
PROTO-BOARD 100 KIT £11.80.

HOW TO ORDER AND RECEIVE FREE COPY OF TWO-TRANSISTOR RADIO PROJECT, FISH'N'CLIKS AND LED BAR GRAPH.
CBC UK LTD. DEPT. 5T Unit 1, Shire Hill industrial Estate, Saffron Walden, Essex CB 11 3AQ
It's easy. Give us your name and full postal address, in block capitals. Enclose cheque, postal order or credit card number and expiry date. OR telephone 079921682 and give us your Access, American Exprass or Barclavcard number and your order will be in the post that night.
EXPERIMENTOR. CONTACT HOLES. IC CAPACITY UNIT PRICE
BREADBOARDS CONTACT HOLES.
EXP. 325
EXP. 350
EXP. 300
EXP. 650
EXP, 4B.
TEST CLIPS
PC. 16.
PC. 16-18 Dual Clip.

PROTO-BOARDS. \begin{tabular}{l}
PB. 6 .

PB.

\hline

PB. 6.

\hline 100.
\end{tabular}

630
760
130
270
550
270
Four 40 Point Bus-Bars
f 2.70
£ 2.48
f
£ 7.76
f 4.99
f 3.51
£ 4.03
£ 8.05
£12.94
f11.73
E 14.72

NAME
ADDRESS

FILL IN COUPON \& RECEIVE FREE COPY OF ELECTRONICS BY NUMBERS PROJECTS Nos 1, 2 AND 3

SUPERSOUND 13 HL－F MONO
AMPLIPIER

What．Brand new componenis
throughout is alicon tran－ oughout is alieph tran．
intiore plus 2 powar
 recilitiction

lor cereme con coniroty．\＄pyitimble lor en mivity epprox omvior lull oulpul Supplled remay built and
 PRICE E18－40 P．\＆P．E1－20．

HAPVERBONIC MODEL P．A．

TWO Z\＃\＃

An whanced molda salate genara

 Gultar，Grampatc Falufte 3

 Output in mineat of 30 watia muale powor，Very atractivoly finithyd puipoya butil cabirot made from blech winyh cowared maine opertion $200 / 240$ voltis．\＄ise approx $12 t+n$ wide x Ein maine openvor $\times 7 y$ lin deep
Special introducton price $\mathbf{z 2 3 - 0 0}+\mathbf{8 2} 50$ carriage and packing．
FPGLYPGHAR＂WAEE－TYPE，WIOE RANGE
 40H2－20KHz，Gan be mounted on cillinga，wilk doors．whider

MAINS OPERATED SOLIO STATE AM／FM STEREO TUNER

 of tomat
Built－wh Ferrite rod warral ror M W Full AFC and AGC on AM．and FM Sterdi Eoazon Lamp indicalor Buit in Pot
 coniral．Max ayp Vodnge soomV A MS inio 20K Simulatod Teak tinish cipisitht will miteh aitmo $41 n \mathrm{nrgh}$ ath der spron

10／14 MAT Hi－F APMPHFIER KIT
A stylighly finished monhural emplifior with an outpul of 14 watis from 2 Elsis in puah－pull．Supar reproduction of boith music gram allowe retonds and announcements to follow etch outhe． Futt shmpuded sectom wound output transformer to match
 basp and tubble cortrols are prouldad giving gaod ift and cut

STEPEO NAGMETLC PNE－AHP Soms． 3 mHV in for 100 mV out．

 sodeification and cormection datals suppliad．
aurque 7－dy＋aath Supoted autput $7-8 V+$ enerth．Suppled gre－gligned，whth full circuit

SPECIALOFFER

Shothly ahop soited radios by wati－known manufacturar tor AC Matns or batcery uth．Why and FM bands．yynemic Micol socket for parmonal hatering Finished in attrective flatulated

specinl Ofrer
SFECRALOFFER
GOODMANS speakers，st ${ }^{-1}$－B ohm．Iong throw，ceramic magnet．

HARVERSONIC SUPERSOUND

 to＋ 10 STEREO AMPLIFER KIT

 comple to modily to outy mapnitit caritudge－implructions inciuded Outpul stage for any potatert from of to is ohmis．Compuet andign all parts supplised imeluding drilled motabwork，hugh quality ready
 malthing krobs wire，tolder，nulf，bodits－mo axtron to buy simplo utop by step imair uchions enatit thy consifucior io buld an

 bimdwidih $\pm 3 d$ 12－15，000Hz，Base bornd epprox to ± 1206

Ouarall size 12 in wide \times gin derp $\times \mathbf{2}$ 年n high．
 kill or mand epp pularge sate AMPLIFIER MIT
 POWER PACK KIT
ct．20 P．\＆P．95p CABINET

HARVERSONIC STEAEO 44

A molid tate prereo whplititr ehassis with in output of 3－4 waits per charinel into ohm speakars Using the lateat high technology intigrated qircult anplifiuri with buith in shert darmitharmed capifitor．fups．tons eontroi voiume dontrols， 2 pin win spaske socikfin and 5 pin din lape ret．plidy sotket art mountid on thit

 traniforner with in octout ol 17 V ac．of 50 Omg can be
 tupplied．

8Tine a dreqpen

Open 9．30－5．30 Mondey to Fridey，+30 － 5 boturd y
Cloped Wedtodery．
Priess and specrificationis correc Rt pime of prass．Subject
（Please write clearly）
 OUOFLD APFLY TO U．K，ONLY entmote Exthat．

wth Diodecs		17.		74132	$4{ }^{4}$	4027	22 p	BC213	14 p	$0 \mathrm{C25}$
（4）	杵12 10	74041	119	74141	${ }^{515}$	4028	45	Ecri4	149	OC29
	alja 14\％	74023	1郆	74142	192	4029	549	－ceat	18	toty
	0L707 110	74045	13	7414	5	4030	32．	$8 \mathrm{BC301}$	18	DE71
Yendol loned	－125＊${ }^{\text {a }}$ ， 2^{*}	340， 7	269	7451	40	4035	107．	${ }^{\text {ceajas }}$	18	$0 \cdot 72$
	1炜：－	74．01／a	13	74133	$4{ }^{4}$	4041	78	${ }_{\text {BCa }}$	19\％	OCB4 30\％
2－5x 0^{2}	Had 18	7416	13	74154	15	4042	54	日C여tat	12\％	71F3d 35
	Eram 14\％	7411	14	74155	44	4043	44	8C54	12p	7P2g ${ }^{\text {d }}$
	Yallow 14p	7412	19	74159	$4{ }^{2}$	4044	72	BC544	120	T1P30 35\％
		7413	27	14151	40 p	4047	85	BCF_{49}	${ }^{13}{ }^{\circ}$	TTP308
		7414	48	7416	6sp	404	$4{ }^{4}$	2065	13p	Trim
10．tme 1－的		7416	268	74181	56	4049	$2{ }^{2}$	8CCI59	219	TP32
to 1 Wohns		7417	25	74182	5 F	40tio	27	80Crid	18	TIP3＊
		1429	13	74108	50	4088	$3{ }^{4}$	8crifi	1%	7P335 80
	1N／40DY 329	7421	219	74184	3_{4}	4089	13 p	80115	E0\％	7P34A 759
	tay	7422	19	74165	${ }^{59}$	4070	140	80121	ser	TRP36
100	2M400	7427	228	74188		4071	14 p	80123		11p388 2200
to 1 Minto	2N40．	3423	26	74173	$4{ }^{4}$	4072	149	${ }^{80124}$	1000	T＊＊1A 70p
		7432	20°	14174	4	4573	17	日D131	$38 p$	T1P424 70\％
P0TETH		7433	30p	741才5	65	4081	14p	8D132	35	TIP2955 24p
OMEIEAS	bidors	7437	1%	74176	53.	4082	14	20195	38	Tpp3055 515 p
	0×17	7438	15	7417	53	4048	55	的136	$3{ }^{4}$	27xiot 13p
（1）${ }^{\text {¢ }}$	0491 ¢	7440	12）	74160	5	$4{ }^{411}$	8	ED137	429	27109 13p
2 Mrhat	04202	7441	49	P4181	136	4511	75	80138	41	2Tx300 180
limath ther 24	1m4148	1442	43p	71182	75	${ }_{5}^{5418}$		80．139	43	271500
	Jmicter	1443	${ }^{50}$	14180	75	4518		6014	429	21704
	1／14002	7445	$\mathrm{cmp}^{\text {cos }}$	74191	75	4620	4	${ }^{\text {日f }} 187$ \％	3\％	2 21132
22pf ta minf 3	194004	7447	51	74193	${ }_{80}$			日F180	27.	241394
	4	744	5\％	14104	49			bF181	＋	201365 32p
Etat	－	74510	3	7419	53p			BFind	21p	2N1308 40p
		7451	13p	74198	53．	TMALSIST	mus	$8 \mathrm{8F185}$	25	2N13018 53p
12 Fl		7453	13p	7414	8	AC128	24p	${ }^{81} 194$	10	$711711{ }^{23 p}$
91．015，022		1454	13.	741158	107p	${ }^{\text {ACI }} 127$	280		19	241893 349
－00， 0 ， 4 \％	Ftetutata	7400	130	74198	107	${ }^{\text {AC128 }}$	200	BF197	18	2N2219 230
－068， 15	780510	1470	25			AC15t	279	8F200	329	
－15． 22.35,	271215	7412	218			ACIE3	37	既124	27	212409 300
－ 36	701／24	1473	20.			AC176	20		27p	${ }^{21 / 2305}$ 2\％
－15．72．33mF	7905	7474	220			${ }_{\text {AC18］}}{ }^{\text {ACles }}$	210	${ }_{\text {Bfata }}^{\text {Bra7a }}$	${ }^{378}$	${ }^{2 W 2807}{ }^{238}$
	7612／15	7475	289	crios		$\underset{\text { ACl }}{\text { And }}$	${ }^{15}$	Bra79	27	
2．2．7	71784	＋	$2{ }^{2}$	4001／2	tip	A0151	44	${ }^{85 \times 29}$	－27．	24305585
ELECTALITIT		7488	2	400］	74	Allith	40 p	BFX85	34	${ }^{2 N 3702 ~ 115 ~}$
dip		7490	25	4097	15	Afzad	46p	Erx ${ }^{\text {a }} 7$	250	2H3704 1t
日in	turnis	7491	36	4008	37．	－c107／	100	$8 \mathrm{Cr\mid 50}$	27	${ }^{2}$
	710 34	$7{ }^{\text {P }}$ 82	34	4009	$3{ }^{31}$	${ }_{\text {BC1 }}$	17	8F551	29	243707
E84F，1954FF	$747-14$	J4998	25	4011	149	${ }^{\text {che }} 144$	32	Elerse	140	2Hase
159 ${ }^{\text {d }}$	7480	7484	45	$4{ }^{4} 12$	14 p	9C147	＊	陮碞	2	2n304
2290\％	Ca3018	7495	\％	4013	329	BC149				
33005 It	casarda	7498	45	4014	35	8C157	12		：	10゙ッ
47015 149	CAJD46	711昒		4015	64					
1 Diotr 29	Cast	741	43	4918	329	BC159	1			ps：
	0×3144.	14107	20	4017	53	${ }^{8} 151$	129		：\quad \％	Mi．${ }^{\text {Sili }}$
8 pin 11\％	W901at	74109	274	4018	51p	8 C 172	12			
14 in 13	Ledus	74110	48	4018	43%	${ }^{\text {BCI }} 173$	4			IECH
41 min 14	La3sent 75	7418	18	4029	539	${ }^{80} 182$	－			
18 min 189	LM3E1N T409	7421	26	4021	53	${ }_{80} 8185$	10			4
22 pin 229		74122	35 p	4023	14 p	${ }^{\text {8CIPJ }}$	\％		AYL	R ROA
	Thathi	74123	37	4024	43 p	8çid	13			
4 pin 4p	Tatico 7	14120	375	4025	14．p	8c212	11	LON	10N	N2D OHN

 prog calcurlitor with accessorles $\mathrm{E} 21,95$ ．
 E81．cham challanger to f162．80．voice chailenger poo．checker chailenger 2 f44． E＋35．cartridque f 13.45 ．
COHPONENTB 1 NA 14 C 1．4p． 1 N 4002 $2.9 \mathrm{p} .741 \mathrm{17p}$ ．be 182b，be $783 \mathrm{~b}, \mathrm{bc} 184 \mathrm{~b}$ ，

 ceramic capacitorg $50 Y \mathrm{EA} 22 \mathrm{pf}$ to 47 n ip． zondry 400 mW E24 $2 v 7$ to 23 su 7 p ．presat pots
 TV GAMEE AY－3－8500 + kir E8． 95 ．riff hit Ch 96．AY－3．8610 + it $£ 45$ 70．tunt ©

32 abiliol hown，Imenter，Keoth．

11 CHEAPSIOE，LIVEFPOOL LZ2JD

 LE．D．s．0．2＂Red 10p．0．2＂Green 12p．0．2＂Cher T1p．

 cantre on 122

 Wheh ond gop，

TEAMS CASH WITH ORDEA \｛OR OFFICH OROERS FROM SCHOOLS ETCI POSTAGE 30p－
（OVERSEAS POSTAT COST）VAT INCLUSIVE SAEFOR ILLUSTRATEDLISTS．

STEVZNSON Electronic Components

REGULATORS

78L05 30p 7805 60p 78 L 12 30p 7812 60p 78L15 30p 7815 60p

79L05 70p 7912 80p
HARDWARE MINITUURE TRANSFORMERS
240 Volt Primary
Secondary rated at 100 mA . Available with secondaries of: 6-0-6, 9-0-9 and
12-0-12.
92p. each.

LOUDSPEAKERS

56 mm dia. 8 ohms
64 mm dia. 8 ohms
64 mm dia. 64 ohms
70 mm dia. 8 ohms
70 mm dia. 80 ohms

TERMINALS

Rated at 10A. Accepts 4 mm plug, black,
blue, green, brown and red
22p

SWITCHES

Subminiature toggle. Rated at 3 A 250 V . SPDT 70p SPDT centre off 75p DPDT 80p DPDT centre off 95p
Standard toggle
SPST 34p DPDT 48p
Wavechange switches.
1P12W, 2P6W, 3P4W or 4P3W all 43p ea. Miniature switches (non-locking)
Push to make 15 p Push to break 20p
Slide switches (DPDT)
Miniature 14 p Standard 15 p

CONTROL KNOBS

Ideal for use on mixers etc. Push on type
with black base and marked position line. Cap
available in red, blue, green, grey, yellow and black. 14p

ORDERS
 DESPAICHRN
BV RETURN
Official All orderices walico to April 1980
BARCLAYCARD POST

Quantity discounts on alay mix TTL. CMOS BARCLAYCARD
ACCESS WELCOME

THERE WILL BE
 RISES

WE HAVE DECIDED NOT TO PASS ON THE INCREASES DUE TO NEW VAT RATES

TTL		745	12p	74132	45p
		7473	20p	74141	55p
		7474	22p	74148	90p
		7475	25p	74150	550
7400	10p	7476	20p	74151	40p
7401	10p	7485	55p	74156	40
7402	10p	7489	135p	74157	40p
7404	12p	7490	25p	74164	55p
7408	12p	7492	300	74165	55p
7410	10p	7493	25p	74170	100p
7413	22p	7494	450	74174	50
7414	39p	7495	350	74177	50p
7420	10p	7496	45p	74190	50
7427	20p	74121	25p	74191	50p
7430	10p	74122	38p	74192	50p
7442	38p	74123	380	74193	50p
7447	45p	74125	35p	74196	50
7448	50p	74126	35p	74197	50
CMOS		4018	55p	4050	25p
		4023	120	4066	35p
		4024	40p	4068	$18 p$
40014002	12p	4026	90p	4069	12p
	12p	4027	30p	4071	12p
4007	12p	4028	48p	4081	13p
4007	12p	4029	50p	4093	45p
4017	$28 p$	4040	60 p	4510	65 p
	50p	4042	50,	4511	$65 p$
4016	30p	4046	900	4518	65p
4017	48p	4049	250	52	60p
FULL DETAILS IN CATALOGUE					

SKTS

Low profile by Texas

$\begin{array}{lrllll}8 \text { pin } & 8 p & 16 & \text { pin } & 11 p & 28 \text { pin } \\ 14 & 22 p \\ 14 & \text { pin } & 10 p & 24 & \text { pin } & 18 p\end{array} 40$ pin $\quad 32 p$ Soldercon pins: 100:50p. 1000:370p

OPTO
LED' 0.125 in .0 .2 in each $100+$ $\begin{array}{lrrrr}\text { Red } & \text { T1L209 } & \text { TiL220 } & \text { 9p } & \text { 8p } \\ \text { Green } & \text { TIL211 } & \text { TIL221 } & \text { 13p } & 12 p\end{array}$ Yellow TIL213 TiL223 13p 12p Clips 3p
$\begin{array}{ll}\text { DL 704 } & 0.3 \text { in CC } \\ \text { DL707 } & 0.3 \text { in CA }\end{array}$
$130 p$ 120p $\begin{array}{ll}130 p & 120 \mathrm{p} \\ 100 \mathrm{p} & 80 \mathrm{p}\end{array}$

RESISTORS

Carbon film resist
ors. High stability, ors. High stability
low noise 5%. $E 12$ series. 4.7 ohms to 10 M . Any mix. $\begin{array}{llll} & \text { each } & 100+ & 1000+ \\ 0.25 W & 1 p & 0.9 p & 0.8 p\end{array}$ $\begin{array}{llll}0.5 W & 1.5 p & 1.2 p & 1 p\end{array}$
Special development packs consisting of to of each value from 4.7 ohms to 1 Meg
ohm (650 res) $0.5 W ~ £ 7.50$. $0.25 W f 5.70$. METAL FILM RESISTORS
Very high stability, low noise rated at $1 / \mathrm{W}$ 1\%. Avaliable from 510 mms to 330 k in E24 series. Any mix: $\begin{array}{llll} & \text { each } & 100+ & 1000+ \\ 0.25 \mathrm{~W} & 4 \mathrm{p} & 3.5 p & 32 \mathrm{p}\end{array}$

PLEASE WRITE
FOR YOUR FREE
COPY OF OUR
NEW 80 PAGE
CATALOGUE OF
COMPONENTS.
CONTAINS OVER
OVER 2500
STOCK ITEMS.

CSC EXPERIMENTOA BREADBOARDS

No soldering madular breatbosidg, aimply plog componenta in and out of lettirfinumber identitiod

SINCLAIR DM350

f79.95
t114.95
Size $255 \times 148 \times 40 \mathrm{~mm}$
OM350 $3 \frac{1}{2}$ dhait diapley DM460 $4 \frac{1}{2}$ digit diaplory. 8oth provides shx tunctions in 34 mangas. D.C. woltagt $10, \mathrm{~N}$ to 1200 V ($100 \mathrm{\mu} N$ on $\mathrm{D} M 3 \mathrm{MEO}$) A.C. voluge 100 dV to 750 V . D.C. current 1 nA to 10 A , A.C. cultrent 1 nh to to A reaistance
 OM350 \& 450 as for OW235 below. Full spec. on rewpust. Fleabe aend S.A.E
Slnclair PMP200 frequancy meter
$157 \times 76 \times 32 \mathrm{~mm}$.
Range $\mathbf{2 0 H z}$ to 200 MHz . Accascorias and illustration as far FDM35 above, E87.ed.

SIPCLAIR PDNT35

DIGITAL POCKET MULTIMETER
DC yolts (4 ranges) $T \mathrm{MV}$ to 1000 V AC volts 1 V to $500 V$ DC current (6 rangest inA to 200 MA Resistance (5 ranges) to 20 MEGO. PRICE E34-25. AC Adapror Esug de luxa padded corry ing case f3.50 MN 1804 Bettory R1-14
Size $157 \times 76 \times 32 \mathrm{~mm}$.

SIMCLAM DTV235

BEREM-PORTABLE DIGITAL MULTIMETER.
DC volts 14 ranges) 1 MV to 1000 V AC volts (4 rangest 1MV to 750 V AC \& DC current 1 pa to 1000 MA Resistance (5 ranges) 10 to 20 MEG 0. PRICE EF7.gs. Carrying case es abs. AC adaptor/charger. E4-B0. fechargasble Battery Pack. 89.70 Size $258 \times 14 \mathrm{~B} \times 40 \mathrm{~mm}$.

PAREL METERS

DIMS GOMM x $45 \mathrm{MM} 50 \mu$ gmp, 100μ amp 1 MA $5 \mathrm{MA} 10 \mathrm{MA}, 50 \mathrm{MA}, 100 \mathrm{MA}, 500 \mathrm{MA}$. gmp^{2} 50-0-50на, 100-0-100~a, 500-0-500\%a. PRICE ET.95.

DESOLDERING TOOL
f8-48 SUCTION PUMP

Education Establishmert Orders Accepted PHONE OR SEND YDUR ACCESS OR
BARCLAYCARD NUMBER FOR SALES OVER 10 . ALL PRICES INCLUDE POSTAGE AND VAT

Wave been producing our Electronics Componenta Catalogue for aver 20 vears. During that time we've leamed a lot, not only in the art of catalogue production but in building a business that serves the neads of constructors. Littie wonder that we have a reputation second to none for our cataloprae - and for the service that backs it up. Experifnce toth for yourself. Just send $£ 1.25$ with the coupon and a catalogue will come by return of post.

- About 2,500 items clearty listed and indexed.
- Protusely illustrated thraughout.
- 128 A-4 slze pages, bound in full-colour cover.
- Bargain lisp of unrepeatable offers includad fres.
- Catelogue contains details of simple Credit Scheme.

HOME RADIO (Cmmpenanta) LTD.,
Dept, PE., 234-240 London Road, Mitcharn, Surrey CR4 3HD
 ADORESS \qquad 1 234-240 Londan Road. Mitcham, Surrey, CR4 3HD London 912968 $\rightarrow-\infty]$

BUILD A SYNTHESISER!

NO special skuls

Using Dewtron (Reg'd)
PROFESSIONAL MODULES
Over 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can aflord, New attractive prices for the long-popular, welltried range of Dewtron synthesiser and other effects modules.

Send 25 p for Musical Miracles Catalogue NOW!

D.E.W. LTD.

254 RINGWOOD ROAD. FERNDOWN, DORSET BH229AR

J. BIRKETT

Radio Component Suppliers

25 The Strait, Lincoln LN2 1JF

Telephone 20767
TO5 MPN 100 VOLT 800mA TRANSISTORS TYPE 2N 657 e 25p, 5 for $\mathbf{E 1}$. MOTOROLAOP-AMP MC 1439G at 355, 3 for $£ 1$.

 ${ }^{25}$?
WIAR WOUND POTEMTIOMETERS $2 K$ K, 10K, 100 K . All at 30p each

1 AMP TRIACS 400 PiV at 3 for E1.

100 MULLARD C 2so

0. METAL BC 107-8-9 TRANSISTORS assorted untestod ${ }^{57}$ p.

E0. PLASTIC BC 107-8-9TRANSISTOAB assorted intested e 57 p.

50. NARA-CAP DIODES LIKE BA 102 untested for 57 p .
 24.00 (P\&P Typg 95pl. Type 5.45 volt 2 amp 45 volt 500 mA © E3. 60 (P\&P 85p), fype 6.16 volt 2 amp 50.1 emp 8.c. F : $\mathrm{TO5}$ can untested for f 1.
 20.10 arp stup plopes untastod os 8 P .

ELECTET MICROPHONE NSERT8 With FET Pre-AMP E1.85.
PLASTC SILLCON BRIDEES 100 PV 1 ampe $20 \mathrm{P}, 200$ PIV 4 amps 080 p .
10 AMP S.C. ${ }^{\prime}=100$ PIV $-25 \mathrm{p}, 400$ PIV $-50 \mathrm{p}, 800$ PIV. 60 p .
1 mmp 8 LILICON DIODES 1 N 4001 at 6 for 25 p .
PLATIC BC 108 TRANsisTORS with Housin Numbers at 10 for 80 p .
MINATUPE12 YOLT 2POLE CHANGE OVER RELAYS EOp aach.

HICHVOLTAGEAECTHIERASSEMBLY KVat 1 amp eiti. 20 .
Ua 742 ZERO CROSSINGAC TAIGGETMIGAC 25 P .
X BAND GUNN DIODES with data © 81.68 each.
MINIATURE DISC CERANICs 01 uf $50 \mathrm{v} . \mathrm{w}$. at 20 p dor
Please add 20p for post and packing on U.K. orders under $£ 2$, unless otherwise stated. Oversess orders postage at cost.

IC CONVERTER COOKBOOK

by W. G. Jung

Price: $\mathbf{£ 8 . 9 0}$

HOW TO BUILD YOUR OWN SOLID
 STATE OSCILLOSCOPE
 by F. G. Rayer

Price: $£ 1.70$
A SIMPLE GUIDE TO HOME COMPUTERS
by S. Ditlea
Price: $\mathbf{£ 4 . 0 0}$
OPERATIONAL AMPLIFIERS 2nd ed.
by G. B. Clayton Price: $\mathbf{£ 1 0 . 0 0}$
RADIO \& ELECTRONICS FOR
TECHNICIAN ENGINEERS
by D. A. Jacobs Price: $\mathbf{£ 4 . 5 0}$
MICROCOMPUTER-BASED DESIGN
by J. B. Peatman Price: $\mathbf{f 5} 50$
UNDERSTANDING DIGITAL ELECTRONICS
by G. McWhorter Price: e3.90
MICROPROCESSOR INTERFACING
TECHNIQUES
by A. Lesea
Price: $\mathbf{£ 8 . 0 0}$
MICROPROCESSOMS FROM
CHIPS TO SYSTEMS
by R. Zaks
Price: $\mathbf{£ 8 . 0 0}$
PROGRAMMING THE 6502
by R. Zaks
Price: $\mathbf{£ 9 . 0 0}$
all Prices include postage

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET LONDON W21NP

Phone 01-7234185
Closed Saturday 1 p.m.

THE NEW CASIO CHRONOGRAPHS

Put most solar watches in the shade!

CASIO 95QS-31B
4 YEAR BATTERY $1 / 100$ sec. chrono to six hours. Dual time. 12 or 24 hour. Stainless steel encased. Water resistant to 66 feet (2 at .)
RRP £29.95
$\mathbf{£ 2 5 . 9 5}$

CASIO 95CS-31B
5 YEAR BATTERY. 1/100 sec. chrono to six hours. Dual time. 12 or 24 hour. Solid stainiess steel case. Water resistant to 100 ft (3 at .). RRP $£ 44.95$
$£ 34.95$

Both have new Lithium batteries which outiast most SOLAR watches. Constant LCD display of hours, minutes, seconds, am/pm and day, (12 or 24 hour) Dual time (12 or 24 hr). Automatic day, date, month and year calendar. Mineral glass face. Backlight. High quality s / s bracelets with easily removable links.

LATEST SCIENTIFICS

CASIO FX-68
LC Display. 37 scientific functions. Trigs. logs, Exponentiations etc. Standard deviations. Polar to rectangular R-P \& sexagesimal to decimal conversions. Pi, cube root, six levels of brackets. Full memory. 500 hrs battery.
RRP $£ 22.95$
$£ 19.95$

A very convenient $3 / 16 \times 21 / 8 \times 35 / 8^{\prime \prime}$. Wallet.
COLLEGE FX-80 POWER SAVER!
Specification as above plus ENG key. 4000 hour battery life from two AA size batteries.
$\mathfrak{3}^{3 \prime \prime} \times 3^{\prime \prime} \times 5 \mathbf{1}^{\prime \prime}$. RRP $£ 17.95$
$£ 15.95$
PROGRAMMABLES. FX-501P ($£ 64.95$) $£ 54.95$
FX-502P (£84.95) £74.95. FA-1 (£24.95) £19.95 MELODY 80 Now only $£ 23.95$ ($£ 25.95$)
UNBEATABLE QUALITY AND VALUE FOR MONEY FROM JAPAN - WHY SETTLE FOR LESS? Fully guaranteed for 12 months.
Most CASIO products in stock. Send 25p for our iliustratec mail order catalogue. Prices include V.A.T., P.\& P. Send cheque or phone your Access or Barclaycard Number to:

Enjoy your favourite Radio and T.V. The trouble with holidays is that you're

 likely to miss your favourite listening and viewing.Thanks to our pull-out "Holiday Radio and TV Guide" all that is now a thing of the past. Get the September issue, out now, and take this handy guide with you on holiday. See how to pick up the programmes you would get at home as well as the local stations. Including local traffic bulletins and weather forecasts. Detailed maps show you the location of local transmitters so you can align your aerial for the best reception.
For better listening and viewing on holiday, tune in to

WRISTWATCH LCD'S A high contrast $3 \frac{1}{2}$ digit wristwatch LCD with centra calon. Suppliad with polarizers and data. Only $\mathrm{f1.00}$ Cat No. 202
MM5314 CLOCK CHIP A super value digital clock thip for only f1.99. With data. Cat No. 207
4 DIGIT LCD A high contrast, masy to solder display with four $0.5 \times$ high nan-multiplexed digits. f6.95 each with data. Cat. No 206
DIGITAL ALARM CLDCK MODULE Complote with giant $0.84^{\prime \prime}$ LED display, Add transformer and switches for complate clack With data only fe. 50 Cat. Ho. 205
SLIDE SWITCHES A miniature slide switch with two pola change-over contacts. All brand new. 16p вach. Cat. No. 702
MOMENTARY SWITCHES Miniature spring loaded push button switches with one narmally open contact. Super value $15 p$ each. Cst No. 703
POLARIZING FILTER MATERIAL 0-006" thick plastic film. Any size cut - oven 1 sq. inch. Max. width 19", any length. Only 2 p per sq . inch. Cat No. 701
PROGRAMMABLE UNIJUNCTIONS Four MEU21 PUTS (similar to 2N6027). Makes long delay timers. oscilators etc. With date and applications sheet. 4 for 5 Dp . Cst no. 402
MINI 6 DIGIT LED DISPLAY 6 digit 7 segment display from Texas. Common cathode, multiplexed. with $0 \cdot 1^{\prime \prime}$ digits. f1.00. Cat. No. 306
DMM CHIP MM5330 dvm chip. Builds into high accuracy dvm or panal meter. Requiras additional circuitry. Supplied with data and circuit. Only f3.95. Cat. No. 404
GIANT LEO DISPLAY Common cathode, non-multiplexed super 4 digit LED clock dispiay Lots of other uses too. Only $£ 3 \mathrm{~g} 5$ gach. Cat Ho 204
MINIATURE DIDDES 25 mini 1 N3470 germanium diodes ($35 \mathrm{v}, 600 \mathrm{~mA}$). Excolient valus. 25 for 50p. Cat. No. 40
20 KEY KEYBOAROS Calculator keyboards, exceilent key action. 20 keys per board. 2 keyboards for f 1.00 . Cat. No. 101
$1 \frac{1}{2}$ DIGIT DISPLAY Bright orange gas discharge display. $1 \frac{1}{2}$ digits $\mathbf{0} \cdot \mathbf{2 5}{ }^{\prime \prime}$ high. With deta only 50p. Cat No. 304
MATRIXEO SWITCHING DIODES 23 diodes on sach 14 pin chip. Suppliad with date sheet. 5 chips for 50p. Cat No. 504
HIGH SPEEO DIODES 1 N4151 high spead awitching diodas. Similat to $1 N 4148$. 10 diodes lor 35p. Cat. No. 403
10 HYBRID CIRCUITS 8 resistors and 8 capacitors tuith inta aach hybrid circuit. Weal values for semiconductor circuits. Excellent for minimizing PCB component space. 10 Hybrids for 50p. Cat. No. 801

Untestod Itams

LED OISPLAYS (Untested - no guarantegs) 10 seven segment LED displays. 0.127^{*} digita common cathode. 10 for f1.BD. Cat No. 311
30 MIXED IC'S (Untested - no guaranteas) Could include anything Linear or Digital. You test. Good value for $£ 1.00$. Cat. Ho. 503
REJEET CALCULATORS Production line rejects. Yields lots of goodios when stripped down (not much wrong with some we tested) Only $\mathbf{5 2 . 5 0}$ each. CeL No. 104
A full refund guarantee on all itams. Post and Pecking plasee add 350 (Overseas orders add 90p). Lots more geedias in our catalogue. Send mediven sized SAE for your tree copy.

RSI

VALVE MAIL ORDER CO.
Climax House
Fallsbrook Road, London SW16 6ED
SPECIAL EXPRESS MAIL ORDER SERVICE

AA119	$\begin{aligned} & E p \\ & 0.12 \end{aligned}$		$\begin{aligned} & \text { Ep } \\ & 0.17 \end{aligned}$	MPSU01	$\begin{aligned} & \varepsilon_{0} \\ & 0.41 \end{aligned}$		${ }_{0}^{E} b_{6}$		${ }_{0.18}^{e_{0}}$
AAY30	0.31		0.20	MPSUO6	0.53	iN916	0.08	$\begin{aligned} & 7405 \\ & 7406 \end{aligned}$	0.46
AAY32	0.48	BCY72	0.15			1 N 4001		7407	
AAZ13	0.21	BCZ11	1.72		0.52		0.07	7408	0.23
AAZ15	0.39	BD115	0.52	NKT401	2.30	1 N 400	0.08	740	0.23
AAZ17	0.31	BD121	1.38	NKT403		1 N 4004			0.18
AC107	0.69	8D123	1.38	NKT404	1.99	1 N40	0.09	7412	0.3
AC12	0.23	BD1	1.50	OA5	1.09	1 N 4 O			0.37
AC126	0.2	BD131		OA		iN4O		74	
AC127	0.23	BD132	0.44	OA10	0.74	1 N 400	0.17	7417	0.37
${ }_{\text {AC }} 128$	0.23	BD135	0.39	OA47	0.16	1N414	0.07	7420	20
${ }^{\text {ACl }} 141$	0.29	BD136	0.39	OA70	0.35	1N54	0.15	7422	0.23
AC141	$0 \cdot 40$	8D137	0.40	OA79	0.35	1 N 54	0.15	7423	0.37
AC142	0.23	BD138	0.46	OA81	0.36	1544	0.05	7425	0.35
AC142	0.35	BD139	0.49	OA85	0.35	15920	0.08	7427	
AC176	0.23	BD140	0.51	OA90	0 -00	15921	0.08	7428	0.49
AC187	0.23	BD144	2.30	OA91	0.09	2 G 301	1.15	7430	0.20
AC 188	0.23	BD181	1.26	0 OA95	0.09	2 G 302	1.15	7432	0.35
ACY17	0.98	BD182	1.36 0.46	OA200	0.10 0.10	2G306	1.27	7433	0.41 0.37
${ }^{A} \mathrm{ACY} 18$	86	$\mathrm{BD} 237$	0.46	OA202	0.10 1.15	2N404	1.15 0.29	7437	0.37 0.37
ACY ACY20	. 80	$\begin{aligned} & \text { BD23B } \\ & \text { BDX10 } \end{aligned}$	0.65 1.05	OA212	1.15	2N696	0.29 0.29	7438 7440	0.31 0.21
${ }_{\text {ACY2 }} 1$	0.86	${ }^{\text {BD }}$ - 32	2.30	OAZ201	1.15	2N698	0.35	7441	0.97
ACY39	1.72	BDY20	1.42	OAZ20	1.15	2N705	1.38	7442	. 83
AD149	0.80	BDY60	1.72	OAZ207	1.15	2N706	0.17	7447 A	1
AD161	0.52	BF 11	0.29	OC16	2.30	2 N 708	0.23	7450	. 21
AD162	0.52	BF15	0.21	OC20	2.88	2N930	0.23	7451	0.21
AF106	0.52	BF15	0.23	$\bigcirc{ }^{\circ} \mathrm{C} 22$	2.88	2N1131	0.30	7453	0.21
AF114	0.86	BF154	0.20	0 O 23	3.16	2N1132	0.30	7454	0.21
AF1 15	0.86	BF159	0.26	OC24	3.45	2N1302	0.40	7460	0.21
AF116	0.86	BF160	0.18	OC25	1.04	2 N 1303	0.40	7470	0.4
AF 117	0.86	BF167	0.23	OC26	1.04	2 N 130	0.52	7472	. 38
AF 139	0.46	BF173	0.23	OC28	2.30	2N1305	0.52	7473	0.41
AF186	1.38	BF177	0.28	OC29	2.30	2 N 130	0.58	7474	0.46
AF239	0.52	BF178	0.28		1.73 1.73	2 N 130	0.58 0.63	7475	. 62
AFZ11	3.1	BF179	0.29 0.35	OC36	1.73 0.92	${ }_{2}^{2 N 13}$		7476	
$\begin{aligned} & \text { AFZ } 12 \\ & \text { ASY26 } \end{aligned}$	3.16 0.46	BF180 BF181	0.35 0.35	$\mathrm{OC4}$ $\mathrm{OC42}$	0.92 0.86	2N130	0.63 0.29	7480 7482	. 63
ASY2	0.46	BF18	0.35	OC43	2.59	2 N 16	1.73	7483	. 04
ASZ15	1.44	BF18	0.29	0 C 44	0.69	2N1B9	.29	7484	5
AS216	1.44	BF184	0.29	0 O 45	0.63	2N214	2.02	7486	0.40
AS217	1.44	BF185	0.29	0 O 71	0.63	2N214	1.89.	7490	0.60
ASZ20	1.72 2.30	BF194	0.10 0.10	${ }^{0} \mathrm{C} 72$	0.63 1.15	2N221		74914	
ASZ2	2.30 1.96	BF195 BF 196	0.10 0.12		1.15 0.74	2N2219 2N220	0.28 0.21	7492	0.69 0.69
AU11	1.9	BF197	0.14	0 O	0.74	2N22	0.21		
AUY10	1.96	BF200	0.31	0 C 76	0.63	2N2222	0.21	7495	0.83
BA14	0.15	BF224	0.23	OC77	1.38	2N2223	3.16	7496	0.92
BA148	0.15	BF 244	0.32	OC8	0.74	2N236	0.20	7494	3.45
BA154	0.10	BF257	0.28	OC812	1.38	2N2369A	0.24	74100	1.73
BA155	0.12	BF258	0.30	OC82	0.74	2N2484	0.23	74107	0.52
BA15	0.10	BF259	0.37	0 C 83	0.74	2N2646	0.63	7410	0.81
BAWE	0.06	BF336	0.35 0.35 0.	OC84	0.74 1.73	2N2904	0.29 0.29	74110	0.58
BAX1	0.07	BF 337 BF 338	0.35 0.36	${ }^{0} \mathrm{OC122}$	1.73 2.02	2N290	0.29 0.24	74111	0.81 2.02
BAX1	0.10	BF338		OC	2.59	2N290		74	
$\begin{aligned} & \mathrm{BC107} \\ & \text { BC108 } \end{aligned}$	0.14 0.14	BFS2	2.55	OC	2.16 3.14	2N29	4	741	
108	0.15	BFS	0.23	OC14	3.74	2N2925	0.25	71	. 95
BC113	0.14	BFS98	0.23	OC170	1.15	2N2		4	
BC11	0.15	BFW	0.74	OC17	1.15	2N305	. 5	7412	0.69
BC1	0.16	BFW	0.74	OC200	1.73	2N30	0.58	74123	1.15
BC116	0.17	BFXB	0.25	OC201	2.02	2N305	. 81	74125	0.63
BC117	0.20	BFX85	0.26	OC202	2.02	2N3440		74126	0.63
BC118	0.12	BFX87	0.24	$\mathrm{OCL}^{\circ} \mathrm{O} 3$	2.02	2N3441	0.92	74128	0.69
BC125	0.18	BFX88	0.24	OC204	2.88	2N3442	1.26	74132	0.81
C126	0.23	BFY50	0.30	OC205	2.88	2N3525	0.92	74136	0.63
BC135	0.16	BFY 51	0.30	${ }^{\circ} \mathrm{CL2O6}$	2.88	2N36.14	1.73	7414	0.92
BC136	0.17	BFY52	0.30	$0{ }^{0} 2$	2.02	2N3702	0.13	74142	.65
BC137	0.17	BFY64	0.30	$0 \mathrm{OP7}$	1.44	2N3703	0.15	7414	2.88
14	0.10	BFY9	1.44	ORP	0.86	2N3704	0.15	741	2.88
BC14	0.09	BSX 19	0.24	R2008	2.02	2 N 3705	0.15	7414	
${ }^{8 C 149}$	0.10		0.23		2.59	2N3706	0.15	74147	
BC157	0.10	${ }_{\text {BTX }}{ }^{\text {B }} 1061$	0.23 1.44	${ }_{\text {R120 }}$	2.02 0.35	2N370 2N3708	0.15 0.12	74148	2.02 1.84
C158	0.09	BTY79/4	1.44 3.67	T1C226	1.38	2 N 37		7415	
C167	0.14	BU205	2.02	T1L209	0.23	2N371	0.12	7415	2.02
BC170	0.13	BU206	2.59	T1P29A	0.47	2N3711	0.12	74155	0.97
BC171	0.12	BU208	2.30	T1P30A	0.48	2N3771		7415	. 97
BC172	0.12	BY100	0.52	T1P31A	0.51	2 N 3772	2.30	7415	0.86
BC173	0.14	BY126	0.16	T1P32A	0.55	2N3773	3.45	7415	2.42
BC177	0.17	BY127	0.19	T1P33A	0.79	2N3819	0.41	74170	. 65
C178	0.16	BZX61	0.21	T1P34A	0.84	2N3820	0.52	74172	5.06
BC179	0.18	Series		T1P41A	0.72	2 N 382	0.63	74173	1.61
BC182	0.13	BZY88	0.15	T1P42A	0.81	2N386	0.83	74174	1.73
BC183	0.12	Series		T1P29	0.77	2N3904	0.15	7417	1.04
BC184	0.13	CRS 1/05	0.52	T1P305	0.64	2N3905	0.15	74176	1.26
BC2 12	0.15		0.69					74178	
- ${ }^{\mathrm{BC} C 213}$	0.14 0.17	CRS3/40	0.86 7.04	zS140	0.29 0.24	2N4058 2N4059	0.16 0.12	74179 74180	1.44
BC237	0.10	GEX66	1.73	ZS178	0.62	2 N 4060	0.14	74190	1.73
BC238	0.14	GEX5	2.02	ZS271	0.26	2 N 406	0.14	74191	1.73
BC301	0.29	G.J3M	0.86	ZS278	0.65	2 N 4062	0.15	74192	1.55
BC3	0.28	G. 5 SM	0.86	21×107	0.13	2 N 4124	0.17	741	1.55
$8 \mathrm{BC3O7}$	0.12	G17M	0.86 2.02	ZTX1	O.12	2N41	0.17	74	1.44
BC308	O.12	GM0378A	2.52	Z1	0.14 0.14	${ }_{\text {2N4288 }}$	0.23 0.25	74195	1.15 1.38
BC328	0.21	MJE340	0.92	Z1×301	0.15	2N4289	0.28	74197	1.26
BC337	0.21	M.EE370	1.35	2Tx302	0.17	2N5457	0.40	74198	2.59
BC338	0.20		0.71	Z1 $\times 303$	0.20 0.22	2N5458	0.40	7419	2.59
$\mathrm{BCY}^{\mathrm{BCY}} 3$	1.15	MJE520	${ }_{0}^{0.60}$	[0.22	2N5459	0.40	76013 N	2.0
${ }_{\text {BCY }}$	1.15	MJE2955	1.44	21×314	0.14 0.23				
BCY33	1.04	MJE3055	0.86	Z1X500	0.15	INTEGR			
BCY34	1.04	MPF102	0.35	KTX501	0.16	circuit			
BCY39	3.45	MPF103	0.35	2Tx502	0.18	7400	0.18	Plugs in	
$\mathrm{BCY}^{\mathrm{BCY} 42}$	1.15 0.29	MPF104	0.35 0.35	ZTX503	0.20 0.23	7401	0.18 0.18		
${ }_{\text {BCY }}$	0.29	MPSA06	0.28	K1 $\times 531$	0.23 0.23	77402	0.18 0.18	8 pin DIL	
BCY58	0.18	MPSA56	0.30	ZTX550	0.18	7404	0.20	16 pin DiL	
Open daily to callers: Mon.-Fri. 9 a.m.-5 p.m. Valves, Tubes and Transistors - Closed Saturday Prices coprect Terms C.W.O. only - Tel. 01-677 2424-7 Quotations for any types not listed S.A.E. when going Post and Packing 30p per order All pricese include VAT Tolex 948708									

RECEIVERS AND COMPONENTS

TURM YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDINĞ CO., 103 South Brink, Wisbech, Cambs;0945-4188. Immediate settlement.

ANY AVAILABLE COMPONENT

 YOU WANTHaving Trouble?
Ask us to quote you
System 696 Ltd.
01-609 3402

Campbnents at stlly pricesi Mixed Resistors: 250 fi.20, 1000 £3.80. Capacitors: 100 £1.00, 500 £3.20. Transistors: BC108, BC214:10 70p, 100 E5.8t. Mixed Components, Hardware, Boards 101 bs £3.50. S.A.E. Lists. W.V.E.3, Craigo Farm, Tintern, Gwent.

TUNBPRIGE WELLS COMPONENTS, Ballards, 108 Camden Road, Tunbridge Wells. Phone 31803. No Lists. Enquires S.A.E.

[^4]sunpuis stocks of Electronic Components at less than wholesale prices. SAE brings free lists. Bardwell Lid. 212 Stubley Lane, Dronficld-Woodhouse, Sheffield, $\$ 185 \mathrm{Y}$ P.

SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $\mathbf{f 6 . 6 0}$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed 'Lioyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertiesments are secespled subject to the conditions appearing on our current advertisemant rate card and on the expreme undervend: ing that the Movertiter warrants that the advertisement dow not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice. 2. The publishers rewerve the right to refuse or withdraw any advertisement.
2. Athough overy care is teken, the Publithers shatl not be liable for clericel or printers' errors or their consequences.

100 MIXED CGMPONENTS $\mathbf{5 2 . 7 5}, 10$ LEDS $90 p$ Lists $15 p$. Sole, 37 Stanley Street, Ormskirk, Lancs. L39 2DH.
WIMLITURE PANEL METERS approx. $1^{\prime \prime}$ cube. Left pointer rest position. Scale calibrated 1-10. 600 ohm resistance. Industrial Estate, Pocklington, York
-_—

ELECTRONIC COMPONENTS. Send S.A.E. for List. Special Offers monthly. Radnor Supplies, 23 Arbury Road, Nuneaton, Warwicks.

AEbiALS

AERIALBOOSTERS

Improves weak VHF Radio and Television reception.
B45-UHFTV;B11-VHF Radio. B11A-2 metre radio. For next to the set fitting.
Price E5. S.A.E. for leafiets.

ELECTRONICMAILORDER LTD.
 62 Bridge Street,
 Ramsbotton, Bury, Lancs, BLO 9AG.

EDUCATIONAL

TELEVISION \& VIDEO SYSTEMS SERVICING

15 MONTHS full-time Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
 - mono \& colour television
 - closed circuit television
 - VIDEO CASSETTE RECORDING
 - DIGITAL TECHNIQUES
 - TELETEXT \& TV GAMES
 Shortened courses for applicents with suitabile electronics beckeround.

Next session starts September 17 th.

(Also available $2 \frac{1}{2}$ year course in Marine Electronics \& Radar for employment as ships Radio Officer.)
Prospectus. from:

LONDON ELECTRONICS COLLEGE

Dept. PEA9, 20 Penywern Roed, London SW5 9SU. Tel. 01-373 8721.

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers; also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. L272 Intertent House, Landon SW8 4UJ
Tel. 01-622 9911 (all hours) State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Specia! courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICSSCHOOL OF ELECTRONICS

Dept. L272 litertent House, London SW8 4UI Tel. 01-6229911 (all hours) State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept L272 Intertext House, Loadon SW8 4UJ Tel. 01-622991I (all hours) State if under 18

RECORD ACCESSORIES

STYL Cartridges for MUSIC CENTRES, te. FREE List No. 29 for S.A.E. includes Leads, Mikes, Phones \& C . FELSTEAD ELECTRONICS, (PE), Longley Lane, Gatley, Cheadle, Ches. SK 8 4EE

SITUATIONS VACANT

UNIVERSITY OF LONDON BOLDSMITHE COLLIEE Naw Croes, London, SE14 BNW Psychology Depertrinam

The Psychology Department has two senior vacancies for technical staff to start as soon as possible.

1) TECHNICIAN (Grade 6)

to work on the Department's extensive range of electronic and video equ
be $H N C / H N D$.
Salary on the following scale:
£3.984-£4.104-£4,236-£4,365-£4,497-£4,626-£4,758 plus f 525 London Weighting Allowance.
2) TECHNICIAN (Grade 5) to work in the field of computer and microprocessor applicstions in psychological research. Normaliy teehnical qualitications/experience would be required for this post but applications for graduates in relevant fields will be welcome. Salary on the following scale:
£3.474-£3.582-£3.699-£3.816-£3.933-£4.056 plus £525 London Weighting Allowance.
Write for further detains to the Personnel Officer to whom applications should be sent by 31tat Aupunt, 1878.

We are looking for school leavers aged 17-19 who have obtained O or F grades in Mathematics and Physics, at G.C.E. 'A' Level, and wish to take up a career in Telecommunications.

The Company

GEC Telecommunications Limited, Coventry, design develop' and manufacture a wide range of telecommunications equipment.

The Job

Together with the Coventry Technical College we are offering a

Three year sandwich course forTechnicianEngineers

specialising in telecommunications and electronic engineering. This course of sponsored full-time education and industrial training leads to a final qualification as a TECHNICIAN ENGINEER.

Applicants

School leavers aged 17-19 who have recently taken G.C.E. 'A' Levels in Physics and Maths but are unable or do not wish to study at Degree level. A weekly salary is paid so no L.E.A. grant is necessary.
Apply
With full personal details, including academic qualifications and address of school to: Mr. C.J. Peterson, Student Training Officer, GEC Telecommunications Limited, Spon Street, Coventry CV1 3AZ.
Tel: Coventry 452152 ext. 7361. Quoting Ref. No. CP/79/PE

GEC
 Telecommunications

ASSISTANT FILM RECORDISTS \&TRAINEES

WOULD YOU LIKE TO SPECIALISE IN SOUND WITH THE BBC TV'S FILM DEPARTMENT? THERE ARE VACANCIES IN WEST LONDON.

ASSISTANT FILM RECORDISTS work initially in sound transfer and dubbing areas operating sound recording and reproduction equipment for a wide range of programmes. There are prospects of progressing to mobile Film Recording work in due course.If you have professional experience in this field, the starting salary would be $£ 4185$ p.a. perhaps higher if exceptionally qualified, rising to $£ 5605$ p.a. An additional allowance is paid forshift work (not nights). Normal hearing is essential.
EXCELLENT TRAINING is given if you have ambitions to do this type of work but lack experience. You will need 'O' level standard of education or equivalent, preferably including Physics and/or Maths and a basic knowledge of electronics. You should be able to demonstrate a practical interest in sound and recording. Trainees will start at a salary of $£ 3800$ p.a early in 1980 and should qualify for promotion to Assistant Film Recordists about a year later. Conditions of Service are good. Telephone or write immediately for an application form and further particulars, enclosing addressed envelope and quoting reference 2383/PW, to Appointments Department, BBC, London W1A 1AA Telephone 01-580 4468. Ext. 4619.
BGBtv

SERVICE SHEETS

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo etc. With free Fault-finding guide, from 50 p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

BELL'S TELEVISION SERVICES for Service Sheets on Radio, Tv, etc $\mathbf{f 1 . 0 0}$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel: (0423) 55885.

FOR SALE

NEW BACK ISSUES of "PRACTICAL ELECTRONICS" available 70p each Post Free. Open P.O./Cheque returned if not in stock -Bell's Television Services, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.
P.E. JAN: '66 to DEC: '77. P.W. JAN: '77 to JAN: '79. (Some
missing) +36 add PE/PW total 131 Mags Offers? Sandy missing) +36 add PE/PW total 131 Mags. Offers? Sandy

MK14 - Many extras and improvements $\mathbf{f 6 0}$. PE VDU Built f50. 0204694265 (Manchester)

SUPERBDARD II CASE, also suitable compukit UK $101 £ 20$. Tel: Farnborough (Kent) 51591.

MK14. Working, spare sockets, power unit, improved keyboard, extra manual. f50. Lowestoft 85379.
ITT 3099x Dual JK Flip Flops Brand New 10 for $\mathbf{f 1} .50$ for f4.50. Add 20 p Post. Simpson, 2 Neville Street, Norwich, Norfolk.

MK14 MICROCOMPUTER, working with P.S.U., cassette interface, RAM, I/O, 263. Phone 01-560 1015. (Isleworth) evenings.

PRACTICAL ELECTRONICS 1973-1978 inclusive. Sensible Offer. AVO8 Mk II—\&45. Ely 2371 Ext. 372.

SUPERBOARD 11 complete with manuals unused, obtained from USA f225. Enquiries Box No. 81.

BOOKS AND PUBLICATIONS

[^5]Why not start your own busimess rewinding electric MOTORS. A genuine opportunity to success. LARGE PROFITS. You can't help but make money if you follow the easy, step by step, instructions in our fully illustrated Manual showing how to rewind Electric Motors, Armatures and Field coils as used in Vacuum Cleaners, Electric Drills and Power Tools. NO PREVIOUS K NOWLEDGE IS REQUIRED, as the Manual covers in 13 Chapters, where to obtain all the work you need, materials required, all instructions rewind charts and how to take data etc. A gold mine of information. How to set up your home workshop and how to cost each job to your customer, $\mathbf{8 4 . 0 0}$ plus 30 p P. \& P. UK CWO. to INDUSTRIAL SUPPLIES, 102 Parrswood Rd., Withington, Manchester 20, Dept. PE.

COMPLETE REPAIR information any requested T.V. $\mathbf{f 5}$ With diagrams $\mathbf{f 5 . 5 0}$). Any requested service sheet for f1. plus SAE. SAE brings newsletter , + special offers - service sheets from 50p, bargain vouchers, unique publications.
AUS (PE) 76 Church Street, Larkhali, Lanarkenhire

LADDERS

LADDERS. Varnished $25 \frac{1}{2}^{\prime}$ ext. £40.34. Carr. £3. Leaflet. Callers Welcome. Ladder Centre (PEE5) Halesfield (1). Telford 596644.

MISCELLANEDUS

CABINET FITTINGS Stage Loudspeakera and Amplifier Cab ADAM HALL (P.E. SUPPLIES) Unit 3 . Cartion Court. Grainger Road	

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4 Reg. Office 22 Coningsby Gardens.				
ENAMELLED COPPER WIRE				
10 to 19	283	802 1.55	402 .80	. 202
20 to 29	303	176	1.00	75
30 to 34	325	186	1.07	. 80
35 to 40	360	208	1.22	89
41 to 43	484	271	2.07	1.38
44 to 46	537	3.25	2.29	1.80
47	8.37	5.32	3.19	1.91
48 to 49	1596	9.58	6.38	3.51

MAKE YOUR OWN PRINTED CIRCUITS
Etch Resist Transfers - Starter pack (5 sheets, lines, pads, I.C. pads) $£ 1.55$. Large range of single sheets in stock at 32 p per sheet.
Ferric Chloride - 1 lb bags 80p (P\&P 50p)*
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. Full instructions supplied. 2 sheets ($20 \times 25 \mathrm{~cm}$) negative paper and 2 sheets ($18 \times 24 \mathrm{~cm}$) positive film £1.30.
S.A.E. lists and information, P\&P 25p/order except*
P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE
NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only $i l 0.25$ plus 25 p P. \& P. -Brain-Freeze' 'em with a MINI-STROBE Electronics Kit, pocket-sized 'lightning flashes', varispeed. for discos and parties. A mere $\mathbf{x} 4.50$ plus $25 p$ LAB or pick up taint speech/sounds with the BIG LAB, or pick up taint speech sounds with the BIG AR sound-catcher: readv-made mult-function mocules. \&.) each plus 25 P P. \& P.
IOTS MORF! Send 25 p for lists. Prices include VAT.

BOFFIN PROJECTS

4 Cunliffe Road, Stoneleigh Ewell, Surrey (P.E.)

SOLAR CELLS, Batteries, Panels, Thermoelectric Generators, heat pipes, books etc., Details; Edencombe Ltd., 34 Nathans Road, N. Wembley, Middx. HA0 3RX.

PRACTICAL ELECTRONICS P.C.B.'s Professional quality glass fibre Fry's roller tinned and drille. 78 RC Motor control 67p. RC Fail safe 39p. Apr. 79 Phaser (EG60) 98p.
May 79 Sound operated switch (ES9) 88p.
Aug. 79 Auto ranaina multimeter. Set of 5 pcb's $\mathbf{E 5} .70$ For full list Chime EG140/3 Set of two £1-80 For full list and current pcb's please send SAE. Pcb's also produced from customers own masters. Trade enquiries welcome. Please write for quote.
Postage - On orders less than $£ 10$ please add 25 p postage.
CWO please.
PROTO DESIGN
14 Downham Road, Ramsden Heath,
Billericay, Essex CM11 1PU

P.C. BOARDS

FOR INDUSTRY 'and' THE AMATEUR

* One off or production runs
- Assembly of P.C.Bs or kits
* Expert hand soldering
- Design service if required
- Artwork \& Photography

SEAHORSE ELECTRONICS LTD. Unit 2 Picow Farm Road Service Industry Estate, Runcorn, Cheshire. (09285) 75950

Cleabing laboratory. Scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.

SUPERB IMSTRUMENT CASES BY BAZELL, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90p. Chassis punching facilities at very competitive prices, 400 modds to choose from. Suppliers only to Industry \& The Trade. BAZELLI (Dept. No. 23), St. Wilfrids, Foundry Lane, Halton, Lancaster, LA 6LT.

PROFESSIONAL AND DIY BURGLAR ALARM EQUIPMENT
 Sert SAE for Pricelist and full

details of our top quality items at competitive prices
SONIC INTRUDER ALARM SYSTEMS
19, Hope Street, Old Glossop, Derbyshire, SK13 9SB. Tel: (04574) 2858

ULTRASONIC TRAMSDUCERS. $\mathbf{£ 2 . 8 5}$ per pair $+\mathbf{2 5 p} \mathrm{P}$ \& P . Dataplus Developments, 81 Cholmesley Road, Reading, Berks.

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

ORDER FORM please Write in block capitals

Please insert the advertisement below in the next available issue of Practical Electronics for \qquad insertions. I enclose Cheque/P.O. for $£$ \qquad
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

NAME. \qquad Send to: Classified Advertisement Manager PRACTICAL ELECTRONICS
GMG, Classified Advertisements Dept., Room 2337, King's Reach Tower, Stamford Street,
London SE1 9LS. Telephone 01-261 5846
Rate:
20p per word, minimum 12 words. Box No. 60p extra.
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

Electronics Design Associates, Dept. PE9 82 Bath Strent, Waisall, WS1 3DE. Phone: (9) 614791
Name
Address
Phone your order with Access or Barclaycard

	OUAMTITY RECOO
$\mathbf{x 4} \mathrm{KiT}$ £17.96	
C' TACHOPULSE SLAVE UNIT E4.25,	

Please state polarity pos or neg earth.
Access or Barclavcard No.

Send SAE it broctuse onfy required.
1 anclose chaquepors for
E
Cheque No.

MINIATURE MAINS TRANSFORMERS Top quality. Split bobbin construction will give $4.5 \mathrm{~V}-0-4.5 \mathrm{~V}$ at 250 MA . $1 \frac{1}{1 "}^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{} \times 1 \frac{\frac{1}{2}^{\prime \prime}, \text { all sorts of uses. }}{}$ ONLY 90p. 3 for $\mathbf{E 2 2 0}$. 1000 uf, 100V, Radial, $11^{\prime \prime} \times 2^{\prime \prime}$. ONLY 70p. 3 for $\mathbf{f 1 . 5 0}$.	
Dowt Lat Mer Emirangen Darimeto Youl Buy wer Honwownit Monimey Centrulur. Cembicts. What far gromhouses, centriliy marted homess. 	samoze and bas derecton Uses TGS 105 plug in senser, houstod in mat $3 \frac{1}{2}^{\prime \prime}$ dia cesst mox, bed indicator. 24V, (12V by altaring 3 componemt valueal. Will epmats lamp or relcy, with deta and circuit.EASS Budeys for show EI ma. state voltape
	TMANSHTOR PACKS 18. Full spac. new mad martad. lncluctes BC148, BC184L. MED412, BF274, BC154 ntc, we. 44.85 290 ane and includet AC128, 2N3055, BFY50. 80131, BF200 ©tc. 81.85 Bey molk and sawe money, thes packs ane worth at hast doubte.
CASEETTE MOTONS mochanicd mitelinf wc. 2000 R.P. M. epproxtep an.	
	P/B Emich ranks There ever a fermel Were made for various music centres. Includes indopmondent and interdepondent latching types multi
fro Pule meed melay on mando 	
	BULK BARGAME, stock UP FOR suminen 300 mixad capacitors, motwh, most types $\mathbf{5 3 . 3 4}$ 100 miowl corramic and plate cape fi20 400 mixad $71 / \mathrm{m}$ ratistors f 2.05 100 mixed polystyone caps $\mathbf{E 2 . 2 0}$ 25 pote and primes f1.ta 25 provers, stolition met. $\mathbf{f 1} 20$ 20 VDAts ment themistors 51.20 100 ohectroptics, nite valves $\mathbf{E 2} 20$ 300 printod dircuit mesisters If 300 printad circuit campenentr $\mathbf{5 1 . 5 0}$
EAWMECES Mogmatic with phag and lood 25p ne. 5 for C Cryatil with loud 40p cen. 3 fur $\mathrm{E1}$	
MMKE CNEAP RATTENY ELIMIMATORS fully struwed mini mains trandermers. 240V in $8-0-2 \mathrm{~V}$ at 100 MA wit. Completo with mains had mad plus. ex muw mupher	
de luxe fine glase PNINTED CABCEIT ETCHINB KITE Inctudes 150 ay inas. cander clad $7 / 6$. board. 1 It farric chlwitt. I dele otch maist man. Abrasive theaier. Etch tray phen instructions. Epecial Prise f4.05 150 \& in. Downe ched loerd 53.80	
	100x MIMIATUAE TMUMGWHEEL SLIDER POTS Very neat. can be banked side by side. fowal for y. cap tuning, praphic equalisers me. 10 for f1 I GOK STEREO SLIDER POTS Good quality. 2tp en. 5 for fl
	MINLATURE LEYEL/DATT. METERS 200 1 A F.S.D. as fitted to many casentio recorders ebp

SENTINEIC" SUPPIUY', DEPT. P.E.
149A BROOKMILL RD, DEPTFORD, LONDON, SE8

[^6]
Mail Order Protection Scheme

The Publishers of 'Practical Electronics' are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owning to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.
In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with 'Practical Electronics' within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence. For the purpose of this scheme, mail order, advertising is defined as:-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail order advertising are excluded.

Become
 a radio amateur.

Learn how to become a radioamateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure, without obligation to
BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

INDEX TO ADVERTISERS

Acorn Computers			\ldots	\ldots	71
Adam Hall (P.E. Supplies)			\ldots	\ldots	84
Aitken Bros.					76
Amplus Electronics				\ldots	86
Astra-Pak	...				78
Aura Sounds					72
A.U.S. ...				\cdots	84
Barrie Electronics					10
B.B.C. T.V.			\ldots		84
Bib Hi-fi Accessories Ltd.					59
Bi-Pak					77
Birkett J.					79
Boffin Projects					85
British National Radio \& Electronics School					87
Calscope			\ldots	\ldots	6
Cambridge Learning					66
Chromasonic					81
Clef Products					86
Codespeed					80
Computer Components (Teleplay)					
Continental Specialties Corp			on		73
Crimson Elektrik		...			10
Crofton Electronics			\ldots	\ldots	4
C.R. Supply Co.		82
Davian Electronics					14
Delta Tech		\cdots			74
D.E.W. ..					76
Dziubas...	\ldots	\cdots	.		3
Ecoscope	\ldots	\ldots			84
E.D.A. ...		\cdots	\ldots		86

RELAYS SIEMENS, PLESSEY, EI
RELAYS. WIDE RANGE OF A.C. And D.C. RELAYS RODENE UNISET
TYPE 71 TIMER
o-60 sec. 230 V a.c. operation. Incor-
porating a lapsed time indicator and
repeat facilities. A precision motorised repeat facilities. A precision motorised
timer ideal for process timing. timer ideal for process timing. photo-
graphy. welding, mixing, etc. Price $\mathbf{f 6 .}$

WHY PAY MORE?

MULTI RANGE METER Type MF15A a.c d.c
volts $10-50.250,500$. 1000 Ma O-5. 0- 10. $0-100$. Sensitivity 2000 V . 24 range, diamete 133 by 93 by 46 mm including test eads
$\mathbf{£ 7 . 0 0}$ plus $50 \mathrm{P} P$ \& P (8.63 mic. VAT \& P .)
METERS (New) - 90 mm DIAMETER
 D.C. Amp
O-100A
D.C. Volt
A.C. Volt. $0-15 \mathrm{~V} .0-30 \mathrm{~V}$

O-100A. D. HEAVY DUTY $5.00+50$ p. P. \& P. ($£ 6.33$ incl. VAT)
HEAVY DUTY SOLENOID mf. $b v$
Magnetic Devices. 240 V . A.C. Intermit-
 A.C. SOLENOID pye ether type $176 / 2$
240 AC. Approx $1 / \mathrm{b}$ at $\frac{1}{2}$ inch,

VARIABLE VOLTAGE TRANSFORMERS
INPUT 230/240V a.c. 50/60 OUTPUT VARIABLE 0-260V All Types SHROUDED TYPE

0.5 KVA ($2 \frac{1}{2}$ amp inc ac. MAX .
 $.1 \mathrm{KVA}(5 \mathrm{amp} \mathrm{MAX})$

.2 KVA $(10 \mathrm{amp}$ MAX)
.3 KVA $(15 \mathrm{amp}$ MAX $)$ 10 KVA 50 amp MAX) CARRIAGE PACKING \& VAT EXTRA

LT TRANSFORMERS

- AT)

VAT)
$13-\mathrm{O}-13 V$ at $1 \mathrm{amp} \mathbf{£ 2 . 5} \mathbf{j} P$ \& $\& P .50 p$ ($\mathbf{£ 3} \mathbf{- 4 5}$ inc. VAT) $25-0-25 \mathrm{~V}$ a: 2 位 $0-4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}$ ot 12 amp f 18.50 P . \& P f 1.90 ($\mathbf{2} 23.46$ inc
 $0-12 \mathrm{~V}$ at 20 amp or $0-24 \mathrm{~V}$ at $10 \mathrm{amp} £ 12.00 \mathrm{P}$ \& P . E 150 (f15.53 inc. VAT \& P.
$0.6 \mathrm{~V} / 12 \mathrm{~V}$ at 10 .

(£23-58 inc. VAT \& P.)

VAT)

WESTOOL TYPE MM\& Model $2,240 \mathrm{VAC}$. Approx 13 lb pull at $\frac{1}{1}$ inch. Rating 1 . Price $\mathbf{£ 1 . 5 0}$ p\&p 20 p . ($\mathbf{£} 1.84$ inc VAT +P)
N.S.
18-24V. D.C. 70 ohm Coil Solenoid. Push or Pull. Adjustable travel to $3 / 16$ in. Fitted with mounting brackets and spark sup-
pressor. Size: $100 \times 65 \times 25 \mathrm{~mm}$. Price: 3 for $\mathbf{£ 2 . 4 0}+30 \mathrm{p}$. P. 8 pressor. Size: $100 \times 65 \times 25 \mathrm{~mm}$. Pric
P. (min. $\mathbf{3}$ off.) $(\mathbf{E 3 . 1 1} \mathbf{~ i n c . ~ V A T ~ \& ~ P .) ~}$

MINIATURE UNISELECTOR
12 volt. 11-way, 4 bank (3 non-bridging
1 homingi, £2.50.
P. \& P. 35p ($\mathbf{~} 3.28$ inc. VAT \& P.) N.M.S

240 A.C. SOLENOID OPERATED FLUID VALVE
Rated 1 p.s.s. will handle up to 7 p.s.i. Forged brass
body. stainless steel core and spring 1 in bsp body. stainless steel core and spring $\frac{1}{2}$
inlet outlet. Precision made. British mfg. inlet outlet. Precision made. British mfg
PRICE $\mathbf{£ 3} \mathbf{5 0}$ Post 50 p ($\mathbf{~} \mathbf{4}$-60 inc. VAT \&

MICRO SWITCHES

Sub min Honevwell roller m / s type $\mathbf{3 1 1 5 m} 906$ t
10 for $\mathbf{£ 2 . 6 8 p o s t ~ p a r d ~}$

 f302
MERCURY SWITCH
Size $27 \mathrm{~mm} \times 5 \mathrm{~mm}, 10$ for $\mathbf{£ 5 . 0 0}$
(inc VAT E6.12) min quantity 10
(inc VAT £6.12) min quantity
Heavy duty type, size $\mathbf{3 8} \times 16 \times 10 \mathrm{~mm}$, minimum quantity 10 .
$\mathbf{£ 7 . 5 0}$ post paid ($\mathbf{f 8 . 6 3}$ inc. VAT $\&$ P.).

A.E.G. CONTACTOR

Type LS6/L11. Coil 240V 50 Rs. Contacts -3 make. $600 \mathrm{~V} \cdot 20$ amp. Price $\mathbf{£ 6 . 5 0}+50 \mathrm{p}$ P. \& P.
($\mathbf{£ 8} 8.05$ inc. VAT \& P.)
Vet another outstanding offer.
IMFD 600 V Dubilier wre ended capactors 10 for $\mathbf{~} 1.50$ p\&p 50p ($£ 230$ inc VAT + p\&pl (Min 101 NM Reduction Drive Gear Box.
Ratio 72:1. Input spindle $\frac{1}{4} \times \frac{1}{2}$ in. Output spindle $\frac{3}{8} \times 3$ in. long. Overall size approx: $120 \times 98 \times 68 \mathrm{~mm}$. All metal construction. Ex-equip. tested. Price: $\mathbf{£ 2 . 0 0}+$ 50p.
TORIN BLOWER
Smith type FFB
 C3.75 P \& $P .75 \mathrm{p}$. (inc. VAT E5.18)

24 volt. D.C.BLOWER UNIT
Precision 24 volt DC 0.8 amp Blower that works well on 12 V Precision 24 volt. $0 . C .0 .8$ amp Blower that works well on 12 V
0.4 amp D.C. Producing 30 cu.tt. min at normal air pressure.
$\mathbf{£ 4 . 5 0}$ P. \& P. 75 p (inc. VATf6 04). N.M.S. INSULATION TESTERS NEW/ Test to 1 E E Spec Rugged metal construction
suitable for bench or field work constant speed suitable for bench or field work constant speed
clutch Size L 8in W 4 in H Gin weight 61 l 500V 500 megohms f49 Post 80 p weight 6ib, 500V. \& P.). $1,000 \mathrm{~V} \quad 1,000 \mathrm{M} \Omega$ E55. Post 80 p ($\mathbf{E} 64.17$ inc. VAT \& P. SAE for leaflet.

GEARED MOTORS

$4 \frac{1}{2}$ rpm. 115 V . a.c. 50 cycle, mf. SIGMA Inst. Ltd. U.S.A. Price:
$\mathbf{f 7 . 5 0}+75$ p. P. \& P. ($\mathbf{8 8} 81$ inclus. VAT) supplied with transformer N.M.S.
$7 \frac{1}{2}$ rpm. 115 V . a.c. 50 cycle approx. 25 b b mi KLAXON.
$\mathbf{~ r p m . ~} 115 \mathrm{~V}$ a.c. 20 Ib . in. reversible. Price of either 2 Motors $\mathbf{£ 4 . 7 5}$ each +75 p.
P. \& P. ($\mathbf{£ 6 . 3 3}$ inclus. VAT). N.M.S. Any of above 3, supplied with Transtormer for 240 V . operation.
dus. VAT).
$19 \mathrm{rpm} \mathrm{FHP} 220 / 240 \mathrm{~V}$ a.c reversible,
torque 14.5 kg . Gear rato $144-1$ Brand torque 14.5 kg . Gear ratio 144 - 1 . Brand

 56 rom .240 V a.c. 501 lb in .50 Hz 07 amp. Shat length 35 mm . Diá
16 mm . 6 kg . 600 g . mf. FRACMO.
 nclus Vat. N.M S
$100 \mathrm{rpm}, 110 \mathrm{~V}$ a.c 115 fb in, 50 Hz .2 .8 amp single phase split capacitor.
Immense power. Continuously rated Totally enclosed. Fan-cooled. In-line gear box. Length 250 mm . Dia. 135 mm . Spindle dox. 15.5 mm . length 145 mm . Tested. Price: $\mathbf{£ 1 2 . 0 0}+£ 1.50$
dia. \& P. ($\mathbf{1 5} 5 \mathbf{5}$ inclus. VAT).R. \& T. Suitable Transformer for P. \& P. ($\mathbf{£ 1 5 . 5 3}$ inclus. VAT).R. \& T. Suitable Transformer for
$\mathbf{2 3 0 / 2 4 0 V}$. operation. Price $\mathbf{£ 8 . 0 0}$, 75p. P. \& P. ($\mathbf{f 1 0 . 0 6}$ inclus. 230
VAT)
 Surtable Transtorme for $230 / 240 \mathrm{~V}$ ac
Price. $\mathbf{£ 8 . 0 0}+£ 1.00 \mathrm{P}$ \& P. (£10.35 inclus VAT). N.M.S.
$\mathbf{5 0 0}$ rpm. $230 / 250 \mathrm{~V}$ a c. $3 \frac{1}{3} \mathrm{lb}$ in. 2 right-angled spindles. Mf.
PARVALUX. Price $\mathbf{E 1 1 . 0 0}+£ 1.00$ P P . ($\mathbf{~} 13.80$ inclus. PARV. N.M S
G/gV. D. Miniature Geared Motor, precision built, ncredibly powerful for size -
approx. speed $\Theta 6 \mathrm{~V} .-60 \mathrm{rpm} 40 \mathrm{ma}$.
approx. speed $@$ 9V. 80 rpm 50 ma .
Size: $\quad 27 \mathrm{~mm}$ dia., 30 mm length, 55 gr . weight,
Price: $\mathbf{£ 2 . 5 4}$ post paid ($\mathbf{£ 2 . 8 8}$ inclus. VAT). N.M.S. 12V. D.C. type SO2. Shunt $\frac{1}{3}$ ph continuously rated 4000 rpm
Mf PARVALUX. Price: $\mathbf{E 1 0} \mathbf{8 0}+75 \mathrm{p}$. P. \& P. ($\mathbf{£ 1 2 . 3 5}$ inclus. Mf PARVALU
VAT: NMS
1 rpm 230/240V, a.c. Synchronous geared Motor, mf. HAYDON. $2 \mathrm{rpm} 230 / 240 \mathrm{~V}$. a.c. Synchronous geared Motor, mf. CROUZET.
VAT). N.M.S.
 anti-vibration cradle mounting. M1. FRACMO. Supplied com-
plete with Transformer for $230 / 240 \mathrm{O}$. a.c. operation. Price plete with Transformer for $230 / 240$ V. a.c. operation
$\mathbf{£ 1 0 . 0 0}+£ 1.00$ P. \& P. ($\mathbf{E 1 2 . 6 5}$ inclus. VATV. N.M.S.
1,600 rpm. 230 V . a.c. reversible Motor. 0.25 a. complete with
 ELECTRIC. R. \& T. Price: $\mathbf{E} \mathbf{3} \mathbf{3} \mathbf{0 0}+50$ p. P. \& P. (£4.03inclusive).
ROTARY VACUUM AIR COMPRESSOR

\& PUMP

Carbon Vane oil-less. $100 / 115$

A.C. $1 / 12$ h.p motor $50 / 60 \mathrm{cycr}^{-}$
$2875 / 3450$ rpm. 20° vacuum
$1.25 \mathrm{c.f.m} .10 \mathrm{p} . \mathrm{si}$ (approx. figures) mft. by Gast Co. Fraction uf
 VAT) N.M.S.

BLOWER VACUUM PUMP

English Electric 3 phase AC. motor 220/259V. Or 380/440V, 1.425 r.p.m. ${ }^{1}$ h.p. continuously rated. Direct coupled to Willam
Allday \& Co Alcosa carbon vein blower/vacuum pump 0.9 cfm 8. HG. Price $£ 22$ p\&p $£ 2$ ($\mathbf{£ 2 7 \cdot 6 0}$ inc VAT + p) N.M 5.

Time Switch

Venner Type ERD Time switch 200/250V a.c 30 amp contact 2 on/2 off every 24 hrs at any and tay-armitting device Buil to highest Elec-
 P. \& P. 75p (E11.22).

SANGAMO WESTON TIME SWITCH

Type $5251200 / 250 \mathrm{~V}$ ac 2 on/2 off every 24 hours 20
amps contacts with override switch dia 4×3 price f 6.50 F \& P amps contacts with override switch dia 4×3 price
$50 p$ inc. VAT $\mathbf{£ 8} \mathbf{- 0 5}$ Also avarlable with Solar dial

REVERSIBLE SPLIT PHASE MOTOR

250 r.p.m.. $100-115210-240$ V. A.C. $2^{\prime \prime} \times 1^{\prime \prime}$ extremely
230V a.c. FAN ASSEMBLY.
Powerful continuously rated a.c. motor
complete with 5 blade $6 \frac{1}{2}$ in. or 4 blade 3 in. complete with 5 blade $6 \frac{1}{2}$ in. or 4 blade 3 in .
aluminium fan. Price $\mathbf{£ 3 . 0 0 . ~ P . ~ \& ~ P . ~} 65 p$

($\mathbf{(4 - 2 0 i n c l}$ VAT \& P.)
KEY
$\begin{array}{ll}\text { K.M.S } & \text { New Manufacturers Surplus } \\ \text { R\&T } & \text { Reconditioned and Tested }\end{array}$

All Mail Orders Callers
Ample Parking Space Showroom open Mon-Fri.

working se organ-build the first Full specification in our catalogue.

Touch operated rhythm generator the 'Drumsette'. Construction details 25p. (Leaflet MES49). Specification in our catalogue.

Multimeters, analogue and digital, frequency counter, oscilioscopes, and lots, lots more at excellent prices. See cat. pages 106 and 183 to 188 for detâils.

61-note touch-sensitive piano to build yourself. Full specification in our catalogue.

A massive new cata:ogue from Maplin that's even bigger and better than before. If you ever buy electronic components, this is the one catalogue you must not be without. Over 280 pages - some in full colour-it's a comprehensive guide to electronic components with hundreds of thotographs and illustrations and page after page of invaluable data. speclat otters and all the latest news from Maplin.

A range of highly attractiye knobs is described in our catalogse. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fractron of the cost of one readymade with this specification. Full details in our catalogue.

A puise width train controller for shooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

Speakers from $1 \frac{1}{2}$ inch to 15 inch; megaphone. PA horns, cross overs etc. They're all in our catalogue. Send the coupon now!

ELECTRONIC SUPPLIES LTD

[^0]: - IPC Magazines Limited 1979. Copyright in ali drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasoneble precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are rellable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Sole U.K. Sales Concessionaires
 Bib Hi:Fi Accessories Limited,
 Kelsey House, Wood Lane End
 Hernel Hempstead. Herts. HP2 4RO

[^2]: Full 8K basic and 4K user RAM
 Power supply and R.F. Converter P.O.A.

 The machine can be economically expanded to assist in your business, remotely control your home, communicate with other computers and perform many of the tasks via the broadest lines of expansion accessories in the microcomputer industry.
 This machine is super easy to use because it communicates naturally in BASIC, an English-like programming language. So you can easily

[^3]: I Cambridge Learning Enterprises, Unit 22 Rivermill Site, 一 一 I
 I FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR, I England.
 Please send me the following books:
 sets Digital Computer Logic \& Electronics at $£ 6.50$, p \& p sets Design of Digital Systems at $£ 10.50$, p $\&$ p included

 O-Level English Language at $£ 6.50$ p \& p included The Algorithm Writer's guide at $£ 3.40$, p \& p included
 Name
 Address

 I enclose a *cheque/PO payable to Cambridge Learning Enter-
 prises for $£$.
 Please charge my *Access/Barclaycard/Visa/Eurocard/
 Mastercharge/Interbank account number

 Signature.
 *delete as appropriate
 Telephone orders from credit card holders accepted on
 0480-67446 (Ansafone). Overseas customers should send a
 I bank draft in sterling drawn on a London Bank, or quote credit I card number.

[^4]: P.C.E.s Paxolin $10 \frac{1}{2}^{\prime \prime} \times 4 \frac{1^{\prime \prime}}{2^{\prime \prime}} 4-$ E1.30. $12^{\prime \prime} \times 9 \frac{1}{2} 85^{\prime \prime} p .6^{\prime \prime} \times$
 E1.e0. D.S. $10 \frac{1}{2} \times 7^{\prime \prime}$ E1.35. $8^{n} \times 7^{\prime \prime}$ £1.15. Unit with 8
 silicon diodes 600 V 20 amp, 8 SCRs 400 V 16 amp. 8 sijucon diodes 600 V 20 amp, 8 SCRs $400 \mathrm{~V} 16 \mathrm{amp}, 8$
 Vinkors, W.W. resigtors etc. E6.75. 300 small components Vinkors, W.W. resistors etc. £6.75. 300 small components,
 trans. diodes $\mathrm{E1.55.7} \mathbf{~ l b s . ~ a s s o r t e d ~ c o m p o n e n t s ~ e 3 . 7 8 . ~ L i s t ~}$ 15p refundable. Post 20p. Insurance add 15p.
 J.W.B. RADIO

 2 Barnfield Crescent, Sals, Cheshire m33 1NL

[^5]: ROMANIAN ELECTRONOGRAPHY, tobioscopes, electrokinesis, biogravity, hallucinophotography. dermoptics, psy chotronic generators, Kirlianography. SAE $4^{\prime \prime} \times 9^{\prime \prime}$ PARALAB, Downton, Wilts.

[^6]: Clef Products (Dept P.E.) 16, Mayfield Road, Bramhall, Cheshire SK7 1JU

