PRACTICAL

Aucyet $1979+64\}, 314$ है?

The Compukit UK101 Character Set

$$
\begin{aligned}
& \text { RUN }
\end{aligned}
$$

$$
\begin{aligned}
& \text { obqistuxyz }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ok }
\end{aligned}
$$

The Compukit UK101 has
everything a one board 'superboard' should have.

- Uses ulira-powerful 6502 microprocessor.
- 50 Hz Frame refresh for steady clear picture (U.S.A. products with 60 Hz frame refresh always results in jittery displays)
* 48 chars by 16 lines - 1 K memory mapped video system providing high speed access to screen display enabling animated games and graphs.
- Extensive 256 character set which includes full upper and lower case alphanumerics, Greek symbols for mathematical constants and numerous graphic characters enabling you to form aimost any shape you desire anywhere on the screen.
- 8K full Microsoft Basic in ROM compatible with PET. APPLE SORCERER hence taking the headache out of programming by using simple English statements. Much faster than currently available personal computers
- Protessional 52 Key keyboard in 3 colours - soft. ware polled meaning that all debouncing and key decoding done in software
. Video output and UHF Highgrade modulator. $(8 \mathrm{Mz}$ Bandwidth) which connects direct to the aerial socket of your T.V. Channel 36 UHF
* Fully stabilised 5 V power supply including trans. former on board.
* Standard KANSAS city tape interface providing high reliability program storage - use on any standard domestic tape or cassette recorder.
* 4 K user RAM expandable to 8 K on board $£ 49$ extra.
* 40 line expansion interface socket on board for attachment of extender card containing 24 K RAM and disk controller. (Ohio Scientific compatible). * 6502 machine code accessible through powerful 2 K machine code monitor on board.
High quality thru plated P.C.B. with all I.C.'s mounted on sockets.

FULL CONSTRUCTION DETAILS IN P.E. AUG 1979 EDITION

Dellivery date June 1979
at the 1979 MicroComputer Show
Customer orders in strict rotation only

> | A tape of 10 programs on cassette - |
| :--- |
| educational games, etc. will be supplied free of |
| charge with each kit. |

Simple Soldering due to clear and consise instructions compiled by Dr. A.A. Berk, BSc. PhD

NO EXTRAS NEEDED JUST HIT 'RETURN' AND GO.

Build, understand, and program your own computer for only a small outlay.

ONLY £219 + VAT
Including RF Modulator \& Power supply Absolutely no extras.

Due to the new prices of TTL this price will be increased shortly. So order now to beat the

 price increases and the rush.
SPECIAL CHARACTERS

(©) Erases line being typed, then provides carriage return. line feed
CR Erases last character typed.
CR Carriage Return - must be at the end of each line.
Separates statements on a line.
CONTROLIC Execution or printing of a list is interrupted at the end of a line.
"BREAK IN LINE $X \times \times \times$ " is printed, indicating line number of next statement to be executed or printed. CONTROLIO No outputs occur until return made to command mode. If an Input statement is encountered, either another CONTROL/O is typed, or an error occurs.

Equivalent to PRINT

COYD computen COMPONENTS

VOLUME 15 No. 8 AUGUST 1979
CONSTRUCTIONAL PROJECTS
HOME FREEZER ALARM by P. E. Chaplin
Early warning of an expensive thaw 18
AF/RF SIGNAL GENERATOR by J. Gerrard
Simple test gear for field servicing 21
COMPUKIT UK 101—PART 1 by A. A. Berk, B.Sc.Ph.D.
Single board computer with resident BASIC 24
CLASS A HEADPHONE AMPLIFIER by Stephen Price
Quality headphone listening 62
CHIMESONIC by P.E. Copeland
Door chime with retunable melody modules 66
GENERAL FEATURES
MICROBUS by D.J.D.
A bi-monthly focus on micro's for the home constructor 42
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices-INS 8295, MK 4816, μ A78MGU1C 45
INGENUITY UNLIMITED
Lightning Chess Timer-TL Oscillator-D.C. Ringing for Intercoms-Shorted Turns Detector-Sound Operated Flash-Meter for Electrolytics 46
SOLDERS AND SOLDERING by P. Dinsdale
Industrial theory and practice plus advice for the amateur 50
NEWS AND COMMENT
EDITORIAL 17
SPACEWATCH by Frank W. Hyde
Astronomy Satellite, UV Explorer, Shuttle, Second Fleetsatcom, Venus, Fall of Skylab 33
MARKET PLACE
New products 34
Spring Trade Shows 36
NEWBEAR 77-78 by P. Birnie
Review of a ready to use microkit 38
NEWS BRIEFS
Flicker to Fluorescent-No Cause for Alarm-Countdown-Return of Steam-B.A.E.C. Hon. Sec. Move 53
Japanese Production in USA-Yorkshire Computer Club-A Fluke Occurrence-Fast Delivery-
Fight-It-Yourself 65
PATENTS REVIEW
Torsional Metering-Doughnut Damping 54
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 57
READOUT
A selection of readers' letters 58
BOOK REVIEWS 70
POINTS ARISINGMetermate-Autoranging Multimeter-Guitar Sound Multiprocessor-Constant Display Frequency Meter-Ultrasonic Remote Control-Sound Operated Switch70
OUR SEPTEMBER ISSUE WILL BE ON SALE FRIDAY, 10 AUGUST 1979
(for details of contents see page 61)

[^0]
PROOPS

BROTHERS LIMITED

Special purchase of Shinohara's SEW Panel meters at fantastic low prices

MR RANGE DC MOVING COIL TYPE
 (Accuracy $\pm 2 \%$)

DIMENSIONS

$110 \times 120 \times 47 \mathrm{~mm}$	Ref 85P	$\mathbf{£ 3 . 0 0}$
$78 \times 86 \times 41 \mathrm{~mm}$	Ref 65P	$\mathbf{£ 2 . 5 0}$
$60 \times 60 \times 40 \mathrm{~mm}$	Ref 52P	$\mathbf{£ 2 . 5 0}$
$50 \times 50 \times 34 \mathrm{~mm}$	Ref 45P	$\mathbf{£ 1 . 5 0}$
$42 \times 42 \times 32 \mathrm{~mm}$	Ref 38P	$\mathbf{£ 1 . 5 0}$

Prices inclusive of VAT. Add 25 p per item carriage and packing.

References:

$\pm 50 \mu \mathrm{~A}$	50 mA - DC	$5 \mathrm{~V}-\mathrm{DC}$
$\pm 100 \mu \mathrm{~A}$	100 mA - DC	10V-DC
$\pm 500 \mu \mathrm{~A}$	200 mA - AC	15 V - AC
$\pm 1 \mathrm{~mA}$	500 mA - AC	15 V - DC
$50 \mu \mathrm{~A}$	500 mA - DC	50V-AC
200 μ A	1A-AC	50V-DC
1 mA 'S'	$1 \mathrm{~A}-\mathrm{DC}$	150 V - AC
5 mA	10A - DC	150 V - DC
10 mA	30A - DC	300V-AC
50 mA - AC	50A - AC	300 V - DC
	50A - DC	500V-AC

Most values avallable in most sizes.
Please state second preference when ordering.
ED 107 EDUCATIONAL RANGE

Dimensions: $78(\mathrm{H}) \times 90(\mathrm{D}) \times 100(\mathrm{~W}) \mathrm{mm}$ £3.50 each including VAT. Add 50p per item carriage and packing.

$50 \mu \mathrm{~A}$	$\pm 1 \mathrm{MA}$	$5 / 50 \mathrm{VDC}$	50 VDC
$100 \mu \mathrm{~A}$	10 V	20 VDC	300 VDC

Barclaycard \& Access Accepted - Order by phone or post Mail Orders to Proops Bros. Limited, Dept PE8 The Hyde Industrial Estate, Edgware Road, London, NW9 6JS. Tel. 01-205 8006
Personal Shoppers: 52 Tottenham Court Road, London, W1P OBA. 9-6 Mon-Sat.

J. BIRKETT
 Radio Component Suppliers

25 The Strait, Lincoln LN2 1JF. Tel: 20767

[^1]
MAIL ORDER. CALLERS WELCOME. Tel. Watford 40588/9

ALL DEVICES GRAND NEW, FULL SPEC. AND FULLY GUARANTEED. ORDEAS
DESPATCHED BY RETUAN OF POST. TERMS OF BUSINESS: CASM/CHEQUE/ DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/
P.O. OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL WELCOME. P\&P ADD 30, TO ALL ORDERS UNDER E10.00. OVERSEAS ORDERS POSTAGE AT COST. AIR/SUAFACE.

VAT

 Ground. Noarost Under ground/BR Station: Watiord High sitroet Open Monday to Foturday

ELECTROLYTIC CAPACITORS: Axial lead type (Values are In μ f) $500 \mathrm{~V} ; 10{ }^{40} \mathrm{p} ; 47 \mathrm{68p}$;
$\mathbf{2 5 0 V}: 100650 ; 63 \mathrm{~V}: 0.47,1.0,1.5,2.2,3,4,6.8,8,1015,228 \mathrm{p} ; 47,32,5012 \mathrm{p} ; 63,100$

\square

ACITORS: 250 V 		
POTENTIOMETE量 (AB or EGEN) Carbon Track. IW Log \& IW Lhear volues $500 \mathrm{O}, 1 \mathrm{~K} \mathrm{\&} \mathrm{2K} \mathrm{liln} \mathrm{only)}$$5 \mathrm{KO}-2 \mathrm{MO}$ eingle gang SKO-2MO aingle gang D/P witch 5KD-2 MO dusi gang stereo		
mindeture High Subility. Low noits		
Sound Operated Switch. Parts available. Send SAE for list.		
SOCkETS		
$\begin{gathered} \text { open } \\ \text { oel } \\ \text { op } \\ \text { 80 } \\ 130 \\ \hline 5 p \\ \hline \end{gathered}$	$\begin{gathered} \text { moulded } \\ \text { bureat } \\ \text { coracak } \\ \text { conap } \\ \text { opop } \\ 24 p \end{gathered}$	$\begin{aligned} & \text { in ine } \\ & \text { couple } \\ & \text { copp } \\ & 12 p \\ & 18 p \\ & 18 p \\ & 22 p \end{aligned}$

figitumax

- WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS -

POWER AMPLIFIER

CPR 1 - THE ADVANCED PRE-AMPLIFIER
The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably in the disc stage. The overlogd margin is a superb 40d8, this together with the high slewing rate ensures clean top, even with high output cartridges tracking heavily modulated records. Common-mode distortion is
elliminated by an unusual design. R.1.A.A. is accurate to 1 dB ; signal to noise ratio is 70 dB relative ellminated by an unusual design. R.I. A.A. is accurate to 1 dB ; signal to noise ratio is 70 dB relative
to 3.5 mV ; distorion < 005% at 30 dB overioad 20 kHz to 3.5 mV ; distortion $<.005 \%$ at 30 dB overioad 20 KHz,
Following this stage is the flat ginkalance stage to
Following this stage is the flat gain/balance stape to bring tape, tuner, etc. Up to power amp. signal
levels. Signal to noise ratio 86 dB ; slew-rate $3 \mathrm{M} / \mathrm{uS}$: T.H. $\mathrm{O} .20 \mathrm{~Hz}-20 \mathrm{kHz}$ - 008% at any leval F.E.T. muting. No controls are fitted. There is no provision for tone controls. CPA 1 size is $130 \times$ $80 \times 20 \mathrm{~mm}$. Supply to be ± 15 volits.

MC 1 - PRE-PRE-AMPLIFIER

Suitable for nearly all moving-coil cartridges. Send for details.
X02: X03-ACTIVE CROSSOVERS
XO2 - two way, X03 - three way. Slope 24d8/Octave. Crossover points set to order within 10%. REG 1 - POWER SUPPLY
The regulator module, REG 1 provides $15-0-15 \mathrm{v}$ to power the CPA 1 and MC 1 . It can be used with any of our power amp supplies or our small transformer TR 6 . The power amp kih will accom-
modate it. nodate it.

POWER AMPLIFIERS

It would be pointless to list in so small a space the number of recording studios, educational and government establishments. etc. who heve been using CAIMSON amps satisfactorily for quite available in five hypes, they all have the same specification: T.H.O. wepically. 01% any power 1 kHz 8 ohms: T.1.O. insignificant: slew rate limit $25 \mathrm{~V} / \mathrm{LS}$; signal to noise ratlo 110 dB ; frequency response $10 \mathrm{~Hz}-35 \mathrm{kHz} \mathrm{zz}^{2} .3 \mathrm{di}$; stability unconditional: protection drives any load safely; sensitivity PR

POWER SUPPLIES

We produce suitable power supplies which use our superb TOROIOAL transformers only 50 mm high with a 120-240 primary and single boll fixing (includes capacitors/bridge rectifier).

POWER AMPLIFIER KIT
The kit mcludes sll metalwork, heatsinks and hardware to house any two of our power amp modules plus a power supply. It is contemporarily styled and its quality is consistent with that o it with confidence Il win comidence in a lew hours.

PRE-AMPLIFIER KIT
This includes all metalwork, pots, knobs, etc. to make a complete pre-amp with the CPA 1(S)
module and the MC I(S) if required.

ACTIVE CROSSOVERS $\times 02$
$\times 03$
POWER AMPLIFIER MODULES CE 608 60W/8 ohms $35-035 \mathrm{v}$ v CE $1008100 \mathrm{~W} / 8$ ohms $45-0-45 \mathrm{v}$ CE $1704170 \mathrm{~W} / 4$ ohms $45-0-45 \mathrm{v}$ TOROIDAL POWER SUPPLIES CPS 1 for $2 \times$ CE 608 or $1 \times$ CE 1004 CPS 2 for $2 \times$ CE 1004 or $2 / 4 \times$ CE 608 CPS3 for $2 \times$ CE 1008 or $1 \times$ CE 1704 CPS4 for $1 \times$ CE 1008
CPS5 for $1 \times$ CE 1708 CPS5 for $1 \times$ CE 1708 or $2 \times$ CE 1708 HEATSINKS
HEATSINKS
Light duty, $50 \mathrm{~mm}, 2^{\circ} \mathrm{CM}$ Medium power, $100 \mathrm{~mm}, 1.4^{\circ} \mathrm{Ci}$ W Oisco/group. $150 \mathrm{~mm}, 1.1^{\circ} \mathrm{CW}$
Fan, 80 mm, state 120 or 240 V Fan mounted on two drilled 100 mm heatsinks, $2 \times 4^{\circ} \mathrm{CN}, 65^{\circ} \mathrm{C}$ max. THERMAL CUT-OUT, $70^{\circ} \mathrm{C}$

POWER AMP KIT
$£ 32.90$
PRE-AMPS:
These are available in two versions ther (the S) uses MO resistorts where ecessary and tantalum capacito CPAI 530.96 CPAIS . 539.98 MC1 E20.81 MCIS : 83.44 POWER SUPPLY:
AEGI
PREAMPKIT
E35TR6
 Obtain up to 340 W using $2 \times 170 \mathrm{~W}$ 801 and this module. . . . es 40 £17.55
£ 17.66 f18.54
f 16.08 $£ 16.08$
$£ 22.68$ £22.68
$£ 23.98$
$£ 1.35$
$£ 2.20$
$\begin{array}{r}£ 2.20 \\ £ 2.85 \\ \hline 18.50\end{array}$
82.85
f 18.50
$\varepsilon 29.16$
f1.45

CRIMSON ELEKTRHK

1A STAMFORD STREET, LEICESTER LE1 6NLL Tel. (0533) 553508

All prices shown are UK only and include VAT and post. COD 90p extra, CyOo limit. Export is no problem, please write for specific quote. Send large SAE or 3 internetional Reohy
Coupons for detailedinformation. UK-please allow up to 21 dsys for defiver. Coupons for detailed information. UK - please allow up to 21 davs for deliver.
Distributors: Badger Sound Services Ltd, Minic Teleprodukter, Box 12035 S-750 12 Uppsala 12, Sweden. 46 Wood St. Lytham St, Annes, Lancashire. FYH10C.

DIGITALLY SYNTHESIZED DOOR CHIME .24 tunes including "Rule Britannia", "Col. Bogie" etc. Adjustable speed and tone. In sturdy moulded case, taking internal PP3 batteries. 1 year guarantee. Special reduced price for PE readers only $\mathbf{£ 1 4 . 9 5}$.	
Don't Lan Your Emvironment Oehydretu Youl Buy our Honayewell Humdity Controllio. Membrane actuated, very sensitive t" shofh, 250V, 3.75A Contacts. Ideal for greenhouses, constally hastod homas. oftices ste. Build your own humidifiers or alame. Fraction of	SMOKE AND GAS OETECTOR Uses TGS 105 plug in sensoi, housid in neat $3 \frac{1}{2}$ " die cast box. led indieator. 24V. (12V by altaring 3 componemt veluesl. Will operate lamp or reloy, with date and circuitff 95 Relays for above f 1 so. state voliage
original cost 50 p ea 5 for $£$?	TRANSISTOR PACMS 100. Full spec. new and marked Includes BC148. BC184L. ME0412, 8F274. BC154 act, etc. $\mathbf{1 . 9 5}$ 200 as above and includes AC128, 2N3055, 8FY 50. BD131, 8F200 rcc. 99.95 Buy bulk and save monoy, thase packs are worth at leas1 double.
CASSETTE MOTORS Sell Regulating, will operate B-12V idenl for modeless. mechanical switching etc. 2000 R.P.M. approx 90p we.	
trasomic trams	
	P/B SWITCH BANKS These cost a fortumal Were made for varigus music centres. tncludes independent and interdependent latching types multi pole do ste. Con te modified Cen't be repested 3 Benks for. El
6×5 POLE REED 12 V ideal for burglat alarms.	
$\begin{aligned} & 100 \text { MINIATURE REED SWITCMES } \\ & \text { We are the cheapesil f } 3.30 \end{aligned}$	
	GULK BARGAINS, STOCK UP FOR WINTER 300 mixed $\frac{1}{}$ \& 1 watt resistors $\mathrm{E1.50}$ 150 mixod 1 \& 2 wott resistors $[1.50$ 300 mixed capacitons, modern, most theos $\mathbf{5 3 . 3 0}$ 100 mixed ceramic and plate caps $\mathbb{E 1} 20$ 25 pors and presers $\mathbf{E 1 . 5 0}$ 25 presets, skelfion atc. $\mathbf{f 1} 20$ 20 VQR and thermistors f 1.20 100 Hi-wattage resisters wrewound etc. $\mathbf{E 2 . 2 0}$ 100 electrolytics, nice vałues $\mathbf{C 2 . 2 0}$ 300 annted circuir resistors $\$ 1$ 300 printed circuit componemre $£ 1.50$
EARPIECES Magnetle with plug and tuad 25 p an 5 for [1 Crstal with lead 40p te. 3 for II	
MAKE CMEAP BATTERY ELMMINATORS Fuly shrouded mini maias tanstomers 240 V in $8-0-8 \mathrm{~V}$ at	
100 MA out. Complete with mains load and plug. ex new *quip. 90 p	
de luxe fibre glass painted chacuit etcming kits Includes 150 sq inz coppec clad F/G board. 1 lb ternic chlorides. 1 dalo etch resist pern, Abrasive cleaner. Etch tray plus instructions. Speciel Price $\mathbf{8 4 . 9 5}$ 1 ib FE. C1. To mil. spec $\mathbf{\$ 1 . 2 5}$ 616 FE. Ct. To mil. spec $\mathbf{5} 5.00$ 150 sq in. Singlo simed toard $\mathbf{E 2 . 0 0}$ 150 sq. in. Double mided bourd $[3.00$	
	100K mintatuat thumawheel slioer pots Very neat. can be banked side by side. Ideal for v. cap tuning, graphic equalisers etc. 10 for $\mathbf{C 1}$
	100K STEREO SLJEER POTS
	MINIATURE LEVEL/BATT. METEAS $\mathbf{2 0 0 \mu}$ F.S.D. as fitted to many cassette rocorders. $90 p$

40 p \& P on all shave inma Cheque or P .0 . with arder to
SENTINEL SUPPIY, DEPT. P.E. 149A BROOKMILL RD., DEPTFORD, LONDON, SE8

 $\frac{1}{4}$
 TCXO lume lase $008 \mathrm{PPM} \mathrm{H}^{\circ} \mathrm{C}$ 525 -
\qquad

1465 ur A50MH2 Wit2 euch

TELEPHONE ANSWERING BREAK THROUGH Let a new remote control answering computer free you from vour next telephone callthanks to microprocessor technology Code-a-phone 1400 Wiremot command ONLY £225

FAIRCHILD RED LED LAMPS

 FLV5057 Medium Size Clear Case RED EMITTING These are not relested off-spec unis as sold by somefactory prime. first quality. new units

$9 p$ each 1 off
$6 p$ each 100 off

"THE COLOSSUS"

FAIRCHILD SUPER JUMBO LED READOUT A full .80 inch character. The biggest readout we have ever sold Super etficien
FND 847 Common Anode YOUR CHOICE
FND 850 Common Cathode $£ 1.50$ each 100 off

$\star \star \star \star \star \star \star \star$ Ordering Information = equipment
prices are Inc. of P\&f.for componenss prices are inc. of P\&p.ior components
add 250 P\&P. Add 8% VAT on all orders. MICRO CIRCUITS Your single source for tectory
prime components of protesslonal prime components \& protessional
quality test gear at solld savings. Unit 10
Ist Floor, East Block
38 Mount Pleasont
LONDON WC1X OAP
01.8371165
Tolax 8953084

AITKEN BROS!

35, High Bridge, Newcastle upon Tyne
Tel: 063226729

EXP300

550 contacts with two 50 -point blisbars. Size $152 \times 53 \mathrm{~mm}$. $£ 6.95$.
PROTO-BOARD 6 KIT
630 contacts, four 5 way binding posts. accepts up to 614 pin DIPs. E10.98.

CSC LOGIC PROBES

PP-2 ECONOMY PROBE

Min. pulse width 300 nenoseconds, 300 KO input impedance, tests circults up to 1.6 MHz Detecting puise trains or single-shot event in TTL. DTL, HTL, end CHOS circuits. $\mathbf{£ 2 0 . 9 5}$.
LP-1 Mernory Probe E35.65 LP-3 High Speed Memory Probe £35.85 CSC catalogue available. Pleare send S.A.E. CALSCOPE SUPER $6 \quad £ 186.30$
A portable single beam 6 MHz bandwidth oscilloscope with easy to use controls. High gain to $10 \mathrm{mv} / \mathrm{cm}$ and wide time base range from ins to $100 \mathrm{~ms} / \mathrm{cm}$. Full specification to re-
quest. Please send $S A E$ quest. Please send S.A.E.
CALSCOPE SUPER $10 \quad$ £251.85
A dual trace 10 MHz instrument of the very highest performance and quality. It has an accuracy of 3% which is achleved by the use of builh-in stebilised power supplies which keep the trace rock steady over a wide renge of mains fluctuations. Full specification on request. Please send S.A.E. TE20D TECH R.F. SIGNAL

GENERATOR

Accurately covers 120 XCS to 500 MCS in 6 bands. Oirectly calibrated. Varieble RF attenuator 240 VAC. Size $140 \times 215 \times 170 \mathrm{~mm}$.
Price 552.50 (E 50.58 to callere).
TE22D TECH AUDIO GENERATOR
Sine \& square wave audio generator. Sine wave range - 20 cps to 20 K cps in four bands.
Square wave range 20 cps to 16 K cps in four bands 240 V A.C. Size $140 \times 216 \times 170 \mathrm{~mm}$.

Price E63.31 (E81. $\mathbf{3 1}$ to callers)
TMK 500 MULTIMETER 30,000 o.o.v. AC volts $2.5,10,25,100,250,500,1000$. DC volts. $0.25,1,2.5,10,25,100,250,1000$. DC current $50 \mathrm{\mu a}, 5 \mathrm{MA}, 50 \mathrm{MA}, 12 \mathrm{amp}$. Resistance $0-6 \mathrm{~K}$, $60 \mathrm{~K}, 6 \mathrm{MEG}, 60 \mathrm{MEG}$. Decibels. -20 to +56 db . Buzzer continuity test size, $160 \times 110 \times 55 \mathrm{MM}$. Batteries \& leads included. PRICE E25.95.

CSC EXPERIMENTOR BREADBOARDS
No soldering modular breadboards, simply plug components in and out of letterinumber identified nickel-silver contact holes. Start small and simply snap lock boards together to build breadboards of any size.

SINCLAIR DM350
 $\mathbf{£ 7 9 . 9 5}$ $£ 114.95$
 AIR DM45
 Size $255 \times 148 \times 40 \mathrm{~mm}$

DM350 $3 \ddagger$ digit display OM450 $4 \downarrow$ digit display. Both provide six functions in 34 ranges. D.C. voluage $10, N$ to 1200 V IIOON V on DM350 A.C. voltage 100 N to 750 V . D.C. current InA to 10A. A.C. current ina to 10A rasistance $10 \mathrm{~m} \mathrm{\Omega}$ to 20 MD (100 mo opn DM360). Accessories for DM350 \& 450 as for DM236 above. Full sdec on request. Pease send S.A.E.
Sinclair PMM200 frequency meter
Size $157 \times 76 \times 32 \mathrm{~mm}$.
Range 20 Hz to 200 MHz . Accessories and illustration as for PDM35 above. £57.95.

SINCLAIR PDM35

DIGITAL POCKET MULTIMETER
DC volts (4 ranges) 1 MV to 1000 VAC volts 1 V to 500 V DC current (6 ranges) 1 nA to 200 MA . Resistance (5 ranges) 10 to 20 MEGS. PRICE £34.95. AC Adaptor $\mathbf{£ 3 . 9 5}$ de luxe padded carrying case £3.50 MN 1604 Battery £1.14.
Size $157 \times 76 \times 32 \mathrm{~mm}$.

SINCLAIR DM235

BENCH-PORTABLE DIGITAL
MULTIMETER.
$D C$ volts (4 ranges) 1 MV to 1000 V AC volts $(4$ ranges) 1 MV to 750 V AC \& OC current 1 上a to 1000MA Resistance (5 ranges) 10 to $20 \mathrm{MEG} \Omega$. PRICE £57.95. Carrying case £9.95. AC adaptor/charger. £4.50. Rechargeable Battery Pack. $\mathbf{E 9} 70$ Size $255 \times 148 \times 40 \mathrm{~mm}$.

PANEL METERS

DIMS $60 \mathrm{MM} \times 45 \mathrm{MM}: 50 \mu \mathrm{amp} .100 \mu \mathrm{amp} 1 \mathrm{MA}$, $5 \mathrm{MA}, 10 \mathrm{MA}, 50 \mathrm{MA}, 100 \mathrm{MA}, 500 \mathrm{MA}, 1 \mathrm{amp}, 2$ 00-0-50 100 dc, 50 V AC, 300 Vac , S' PICE . 5 .95.

DESOLDERING TOOL
SUCTION PUMP.
66.45

Education Establishment Orders Accepted. PHONE OR SEND YOUR ACCESS OR BARCLAYCARD NUMBER FOR SALES OVER $£ 10$ ALL PRICES INCLUDE POSTAGE AND VAT.

Protolyping Micro's

 for Industry
NDU-Monitors

Micro Evaluation
$\xrightarrow{\text { Mic. }}$ (Molorola D2) Also available in Kit
 Manual, avaitabre separately at 55.00

CROFTON

 Electronics Limited 35 Grosvenor Road, Twickenham Middesex - Tel: O1-8911923
Clef Kits -

Designer approved quality kits lor Electronic Musical Instrument Construction.

JOANNA 72 : 88 PIANOS
Six and $7 \pm$ Octave Electronic Planos with unique Touch Sensitive Actlon as used in the P.E. JOANNA, which electronically simulates piano key inertla - a feature not avallable in any other design A new physical layout has deen adopted to simplifyconstruction.
P.E. STRING ENSEMBLE

Thi only kit available to the proven A. J. Boothman Design for this versatile String Machine. Specialists in all sizes of Square Front Kerboards. Send S.A.E. to -

Clef Products (Dept P.E.) 16, Mayfield Road, Bramhall, Cheshi̊re SK71JU
ALE

Adoress
*Refundable with future orders over $\mathbf{£ 5 . 0 0}$.

HOBBYISTS! ENGINEERS! TECHNICIANS! STUDENTS!

SPECIFICATION

\star RCA 18028 bit microprocessor with 256 byte RAM expandable to 64 K bytes
\star RCA 1861 video IC to display program on TV screen via the RF Modulator
Single Board with professional hex keyboard fully decoded to eliminate the waste of memory for keyboard decoding circuits
Load, run and memory project switches
16 registers
Interrup. DMA and ALU Stable crystal clock Buik in power regulator 5 slot plug in expansion bus (less connectors)

> Write and run machine language programs at home, display video graphics on your TV set and design microprocessor circuits - the very first night - even if you've never used a computer before !

ONLY ELF II featuring RCA COSMAC $£ 79.95$ microprocessor/ mini- COMPUTER
THE FASTEST WAY TO LEARN COMPUTER FUNDAMENTALSI Owning an ELF $\|$ is probably the fastest, easiest, most foolproof way to gain a working knowledge of computers the world has ever known. First of all, you get your hands on your own computer, so you can spend all the time you want with it and use it for anything that turns you on.
Secondly, our Short Course in Microprocessor and Computer Programming makes it impossible for you to fail. We take you inside the RCA 1802 and teach you every instruction it can be given. Everything is explained in plain English. When you're finished, you'll know everything there is to know about using an ELF II. You'll be able to make ELF II do whatever you want it to do. You won't be limited to predeveloped software. Third, once you understand ELF II inside and out, you'll be ready to use its highly sophisticated add-ons intelligently. And, as you expand your ELF II, you'll begin to appreciate just how advanced its technology really is.

Now Available! Text Editor, Assembler, Disassemblar and a now Video Display BoardI
The IEXT EDITOR gives you word processing ability and the ability to edit assembly language programs while they are displayed on your video moniter. Lines and characters may be quickly inserted, deleted of changed. Add a printer and ELF Il can type letters for you - error free - plus insert names and addresses fram your mailing list|
ELF II's ASSEMBLER translates assembly language programs into hexidecimal machine code for ELF II use The Assembler features mnemonic abbreviations rather then numerics so that the instructions on your programs are easier to read - this is a big halp in catching errors.
ELF II's DISASSEMBLER takes machine cade programs and produces assembly language source listings This helps you understand the programs you are working with and improve them when required
The new ELF 1 VIDEO OISPLAY BOARO lets you generate sharp. protessional 32 ar 64 character by 18 line upper and Iower casa display on your TV scteen or video monitor - dramatically improving your expanded f79.95 ELF II.

In addition to $1 / \mathrm{O}$, monitor, memory, ASCII keyboard and BASIC, ELF II offers you exotic add-on features such as the ELF II Light Pen and the ELF II Colour Graphics and Music System.
It's no wonder ELF II's are being used by schools and universities, factory training programmes, trade schools and R\&D Labs.
ELF II and all ELF II add-ons are also available wirad and testad. And, as if all that weren't enough, the help that's always available from our Service Department further guarantees your success!

DACA COSMACELFII kit - $£ 79.95+$ VAT and
handling (racuiras 8.3 to 8 volts $A C$ power supply) AISO AVAILABIE FOA EUF II
DGIANT BOAROTM kit with cassette 1/0. AS 232 -C/TTY VO. B bit P $1 / 0$. decoders for 14 saparate t/o Instructions and a system monitor/editor $£ 39.00+$ VAT
D Kluge (Prototype) Board accepts up to 36 ICs $[12.33$ + VAT
$4 K$ Static RAM kit. Addrassable to any 4 K page to $64 \mathrm{~K} \mathbf{2} 69.44$ +VAT
\square Gald plated 86 pin connectors (one equired for each plug in board) $\mathbf{5 4}+$ VAT each
Expansion Power Supply (required when adding 4K RAMLEIS + VAT
\square Protessional ASCII Koythard kit with 128 ASCII upper/lower case sa1. 96 printable characters, onboard regul ator, parity, logic selection and choice of 4 handshaking signals to mate with almost any computer $\mathbf{£ 5 0} \mathbf{5 8}+$ VAT
\square Delex metal cabinst or ASCII Keyboard E 5.02 + VAT
\square Video Dizplay Board kit lets you generate a sharp professional 32 or 64 character by 16 line apper and lower case display on yrur TV screen or video monitor - dramatically improving your unakpanded $\mathbf{£ 7 9} \mathbf{- 9 5}$ ELF II. Fits inside ASCII Kayboard cabinet f 69.95 + VAT
C ELF II Tany BASIC on casserte tape Commands include SAVE. LOAD, $\pm x+0) 26$ variables A-Z.

To: NEWTRONICS, HLAUDIO LTD Please send me the items below

Q Power Supply (requirad) ES + VAT
口RCA 1802 User's Manual E4
Tam Pittman's Short Course on eaches veu just about evemputar Programming about ELFII or iny RCA 1802 computar. Wrmtan In non-technical ls nquage it s slearning breakthrougl lor angineers and laymen alike. i4
for ELF II $£ 23.01$ + VAT
LT, IF/THEN, INPUT, PRINT, GO TO. GO SUE return, eno. rem. clear. list, aun, plot PEEX. POKE. Comes tully documented and includes alphanumeric generator required to display alphanumeric characters directiy on yaur TV scteen without additional hardware Also plays the-tac-toe plus a drowing game that uses EXF II's hex keyboard as a joystick. 4 K mamory requiroc $\mathrm{f13} \cdot 50+$ VAT
Tom Pittman's Short Course on Tiny Basic for ELF 11 e4
ELF-BUGTM Delux System Monitor on cassatie tape Allows displaying the contents of all registors on your TV at any point in your program. Also dis plays 24 bytes of memory with full addresses. blinking cursor and auto scralling. A must lar the serious programmerl \& $\mathbf{1 3 . 5 0}+$ VAT
Text Editor on casserte mpe gives you the ability to insert, dalete or adit lines and words hrom you programs while they are displayed on your video manitar. (Add printer and you can use ELF II to type error-free letters plus insert names and aderesses from your mailing list) E 16.95 + VAT
\square Assembler on cassetie tape translates assembly anguage pragrams into hexidecimal machine code for ELF II use Mnemanic abtreviations for instruc rions (rathar than numericst make programs easier

PHONE ORDERS ACCEPTED
Call 01-739 1582
QI am also unclosing paymant lincluding oostege ZI am aiso unclosing parment lincluding postege and I want my ELF II wired and tastod f 99.95 VAT 2 nop for order our

Add 12 plop for

Total enclosed f
Charge if to:
-Access DBarcleycard
Account No.
to read and halp prevem eriors f 16.95 + VAT \square Disestambler on cassette tapa takes machine code programs and produces assembly language source listimgs to help you understand and Improve yout programs on cassente tape $\mathbf{£ 1 6 . 9 5}+$ VAT \square Save 10\% Text Editor. Assembler and Disassembler putchased together only f45 -76 + vat (requires Video Display Board plus $4 \times$ memoryl

- EEF $\|$ Light P m. assembled and tested $\mathbf{E} 6.50$
+ ELF II Colour Graphics \& Music System Boarc kit $£ 55 \cdot 95+$ VAT
पEEF II connects directly to the video ingut of yout TV set without additional hardware To connect ELF II to your antemne terminals instead, order RF Modulator $\mathbf{E 2 . 7 1 + \text { VAT }}$
Coming soen: A-D. D-A Convertar, Comraller Board and more!

Primt

Name.

NEW FROM U.S.A. the 3rd Hand
 MAKES CIRCUIT ASSEMBLY A BREEZEI

Lets you work with both hands!
Sturdy aluminium construction I

STEP 1. Clamp '3rd' hand on edge of bench, table or workboard. insert circuit board, position components. Note: convenlent working angle.

STEP 2. Flip circuit board to flat position for soldering and clipping. Reverse procedure for double-sided boards.
Dealer enquiries invited

INTRODUCTORY OFFER £7.85 inc.

Sole importers
PARA SALES, 1 Hook Road, Kingsclere, Nowbury, Berks.

SYSTEM DESIGN WITH MICROPROCESSORS

by D. Zissos
Price: $£ 7.00$

BASIC FOR HOME COMPUTERS A SELF TEACHING GUIDE
by B. Albrecht
Price: ©4.5!
BEGINNER'S GUIDE TO HOME COMPUTERS
by M. Grosswirth Price: $\mathbf{E 3 . 2 0}$
MASTER OP-AMP APPLICATIONS HANDBOOK
by H. W. Fox
Price: $£ 7.75$
UNDERSTANDING DIGITAL ELECTRONICS
by Texas Inst.
Price: $£ 3.90$
PRACTICAL ELECTRONICS
by B. Woollard
Price: $£ \mathbf{£ 3 . 6 ! 5}$
DIGITAL ELECTRONIC CIRCUITS \& SYSTEMS
by N. M. Morris Price: $£ 4.30$
ELECTRONIC FAULT DIAGNOSIS
by G. C. Loveday
Price: £3.20
SOLID STATE BASICS FOR THE RADIO
AMATEUR
Price: $£ 4.00$
MICROELECTRONICS
Price: $£ 3.60$
-all prices include postage*

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

|9-2| PRAED STREET LONDON W2 INP

Phone 01-723 4185
Closed Saturday I p.m.

77-68 KITS

BEAR BAG No. 1 77-68 CPU Kit BEAR BAG No. 2 77-68 LEDS \& SWITCHES BEAR BAG No. 3 77-68 POWER SUPPLY BEAR BAG No. 4 RACK \& BACKPLANE BEAR BAG No. $5 \quad 77-684 \mathrm{~K}$ RAM Kit BEAR BAG No. 6 77-68 MON 1 Kit BEAR BAG No. 12 77-68 VDU Kit BEAR BAG No. 13 77-68 MON 2 Kit BEAR BAG No. 16 77-68 ROMA Kit BEAR BAG No. 17 77-68 PIO Kit BEAR BAG No. 23 77-68 32K DYNARAM Kit 77-68 MANUAL P\& P50p.

ACORN

The Acorn consists of two single Eurocards:

1. MPU card: 6502 microprocessor: 512×8 ACORN monitor; $1 \mathrm{~K} \times 8$ RAM: 16 way I/O with 128 bytes of RAM: 1 MHz Crystal, 5 V regulator, sockets for 2 K Eprom and second RAM I/O chip.
2. Keyboard card: 25 click-keys (16 hex, 9 control): 8 digit, 7 segment display CUTS standard crystal controlled tape interface circuitry.

Kit $\quad \mathbf{£ 6 5 . 0 0}$
 Ready built $\quad \mathbf{£ 7 5 . 0 0}$

HEAD OFFICE: 40 Bartholomew St., Newbury, Berks. 063530505 NORTHERN BRANCH: 2A Gatley Road, Cheadle, Cheshire.

77-68 P.C.B.'s
77-68 CPU P.C.B.
77-68 4K RAM P.C.B
77-68 MON 1 P.C.B.
77-68 MON 2 P.C.B.
77-68 VOU P.C.B.
77-68 PIO P.C.B.
77-68 ROM-A P.C.B.
77-68 32K RAM P.C.B.
77-68 Proto Board (low density)
77-68 Proto Board (high density)
$77-68$
$77-68$
77-68 0614912290

SEND FOR OUR CATALOGUE

	Memories		CRYSTALS	
£10.00	4116	¢8.50	100.0 KHz	¢3.25
810.00	2708	¢6.99	200.0 KHz	£4.20
£10.00	2716 (T.I. Type)	£29.50	204.8 KHz	£3.35
£10.00	2102-1-1	£0.89	1.0 MHz	£3.50
£10.00	2112	£2.25	1.008 MHz	£2.80
£10.00	2114	¢6.99	1.8432 MHz	£2.80
£10.00	SWATBUG	£16.00	2.0 MHz	£2.60
¢10.00	MIKBUG	£13.65	4.0M Mz	£2.60
$£ 9.95$	MIKBUG	213.65	5.0 MHz	£2.60
£12.00	Character	tors	10.0 MHz	£2.60
$£ 4.80$	2513(U)	£6.50	13.478 MHz	£3.25
\& P 75p)	2513(L)	£6.50	37.0 MHz	£3.25

AURA SOUNDS

THE WERSI SPECIALISTS

Announce the opening of their NEW SHOWROOM at Purley Oaks Centre 01-6689733

for Do-lt-Yourself Kits and Ready-Assembled Organs, Accessories and Pianos

SEE the (1IIEREI KITS

HEAR the OIIIENFI sOUNDS
SEND \&1 FOR OUR 104 PAGE FULL COLOUR CATALOGUE AND PRICE LIST TO:-

AURA SOUNDS 14/15 Royal Oak Centre, Brighton Rd., Purley, Surrey.

Also at 17 Upper Charter Arcade, Barnsley

ASTRA-PAK
92 GODSTONE ROAD
WHYTELEAFE SURREY CR3 OEB
All prices include V.A.T. Add 25D for P\&P (Extra for overseasl.
Discounts over E 10 less 5%, over © 20 fess 10%, over $£ 50$ less 15%, over \mathbf{t}) less 20%.

300	7 TM 71sm		7486	$\begin{aligned} & \text { 74 } \\ & 0.26 \end{aligned}$				${ }^{\text {LINEARS }}$	$\begin{array}{lll} -14 & 0.45 \\ -14 & 0.70 \end{array}$	${ }_{28}^{24 \mathrm{pin}}$		$\begin{aligned} & 030 \\ & 0.4 \end{aligned}$			
		0.71													
40	0.12	0.21		150						2.10					
	${ }_{0} 012$	0.21 0.21			0.95		194								
	0.13	0.21				74		LM3							
	0.13	0.21	1492	0M	0.12	717748	1.12	IMTINN	. 32	4000	0.14	4088	${ }^{3.50}$		
	0.28		1493	040	095	741750.68	1.12	MC1310P	-14 1.50	4002	0.16	4069	0.17		
	02	021		0.40		${ }^{745175325}$		NE555N	-80.30	4006	0.92		77		
745	0.40			050	1.30	176080		ve55	-140.65		0.16				
7409	0.14	021	1497	200		741770.82		NE25018	-142.00	4008	0.92	40	17		
7410	0.13	022	14100	94		741791.10		SN72702	N 0.50			4073	17		
11	0.11	0.21	710	040		741800.90		SN75	N 0.50	4010	048				
		021		O40		718181.75	3.30	SN18013	N $\begin{array}{r}195 \\ \hline\end{array}$	4011	${ }_{0}^{0.15}$	4077	1.05 046 0.1		
	- 025			${ }_{0} 0^{48}$	0.40	${ }_{7} 7441822230$		SN7602	N 1.35		0.12	4078	0.22		
		0.21	141	A		744183099		SN76033	195			4081	17		
7416	027		141	0.70		741841.20		TA455	${ }^{0} .35$	40	071	4082	0.20		
7417	0.27		74			74185		TAA6B18	1.40	4016	0.42	4085	0.72		
	0.13	0.21	741			741		A12	0.64	4017	07	4086	0.76		
			361					TBA641A	1.88		0.7		55		
${ }_{7423}^{7422}$	0.17 0.25	0.21	7			${ }_{7} 74189810$	3.60	T8a800	-0.75 1.04	4019 4020	0.42	${ }_{4094}$	${ }_{80}^{65}$		
7425	020		14119	25		7419	0.96	TCA270	- 2.00	40	${ }_{0} .82$	409	. 10		
7428	025	0.28	2412	. 2		74192	1.50	toazo			82		10		
427	02	030	71	025		1719	50	2N414	1.00	4023	0.15	4097	. 50		
7428 740	- 0.13	8.31 0.21		O20		741940.90	200						12		
74530			14124		1.25		1.15	opa		4028	128	4404	. 90		
7432	024	0.31	74125	040	046	74197090	1.15	IM301a	-80.30	4027	0.50	4412			
	- 024	026 088 088		As	0.46	741981.48		LM301A	-T099 0.46	4028	0.67	4428	00		
7440	0.13	022		0. 18	0.02	742211.50		LM348	14	4029	0.66		. 50		
	-			${ }^{4}$		74247	0.90	LM709	. 40	4030	0.48		30		
		0.70	14	0.8		74248	095	LM7	-14.42						
4	-990		741	${ }^{0.55}$	0.40	74249	095	(M741	-1099 0.52	4034	200	4507			
	- 0.70					74251 1.00	O95	LM741	-140.20	4035	1.00	4508	25		
7446	0.70		74139		0.62	\$525	1.12		-T09			45			
74	060	094		58		74258	1.15	LM747	-140.70	4037	099	4511	98		
74	o.so	094		. 00		1426	0.28	LM3900N		, 3	-				
49		094		. 00		14261	3.25	MC1458	-80.42	4039	280		. 05		
	0.1			00			4	volitate	AEG	4040	0.08	4515	. 0		
	0.13		74	. 4	1.20	742	1.80	LM300	-T09	4041	0.77	4518	1.02		
	0.13			1. 15		7427 7428	105	${ }^{\text {LMA309K }}$	-ro3 1.30						
		0.26		1.99		74284685		7805	F0220 0.85	4044	0.18	4520	1.05		
	0.13 0.28			. 10	090 0.51	${ }_{7}^{742}$	${ }^{392}$	7812	T0220 085	4045	1.40		${ }_{1}^{2} 200$		
	022			109	1.32	142931.35	1.00	782	r0220		${ }_{0}^{1.32}$	4527	1.60		
	O28	0.36	${ }^{3} 7155$. ${ }^{3}$	${ }^{88}$	${ }_{7}^{42989} 192$	10	7905	102	4048	0.60	4528	0.02		
23574						74	1.00	79	r220 1.10	4049	0.42	4529	1.10		
74	030	0.42	${ }^{24158}$	1.58	0.62	1138	0.52			4050	${ }_{0}^{0.84}$		3.50		
1476	026	0.35	241	. 70		14386					${ }_{0}^{0.84}$				
		039	74180	.80	130				0.12	4053	0.14	4556	0.15		
1461			24161	. 10		${ }^{1} 4$	${ }_{0}^{0.52}$		0.13	4054	1.10	4558	25		
3	0.35		74163	0_{0}	0.12				0.23	40	1.00	45			
	0.72	0.97		. 19	120	74393200			0.27				75		
	010	09				73670	230		0.29						

KITS FOR SYNTHESISERS，SOUND EFFECTS

COMPONENTS SETS include all necessary resistors， capacitors，semiconductors，potentiometers and transtormers．Hardware such as cases，sockets，knobs， keyboards，etc．are not included but most of these may parts are shown in our lists．
CIRCUIT AND LAYOUT DIAGRAMS are supplied Iree with all PCBs unless＂as published＂．

PHOTOCOPIES of P．E．texts for most of the kits are available－prices in our lists．

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS，KITS AND COMPONENTS TO A WORLD－WIDE MARKET

P．E．MINISONIC MK， 2 SYNTHESISER

A portable mains－operated Miniature Sound Synthesiser． with keyboard circuits．Although having slightly fewer facilities than the large P．E．Synthesiser the functions offered by this design give it great scope and versatlity． Consists of 2 log VCOs．VCF． 2 envelope shapers． 2 voltage conirolled amps．keyboard hold and control circuits．HF oscillator and detector，ring modulator，noise generator mixer，power supply．

Set of basic component kits lexcl．KBO R＇s
and tuning pots－see list for options availablel．from $£ 81.00$ Set of printed circuit boards
c8．99

P．E．SYNTHESISE月（P．E．Feb． 73 to Feb．74）
The well acclaimed and highly versatile large－scale mains－operated Sound Synthesiser complete with keyboard Synthesiser to good advantage．Details \ln our lists．

FORMANT SYNTHESISER（Etektor 1977／78）
Very sophtsticated music synthesiser for the advanced con－ structor who puts performance before price．Details in our lists．

128－NOTE TUNE－PROGRAMMABLE SEQUENCER

（P．E．Nov／Dec 77）
Enables a voltage controlled synthesiser to automatically play pre－programmed tunes of up to 32 pitches and 12 B notes long． Programs are keyboard initiated and note lengit and rtiythmic pattern are extemally variable．（Flease use order codes quoted in brackers．！
Main Circuir（Nov）excl．sw＇s（KIT 76－1） $£ 18.03$
Power Supply（KIT 76－3）
4． 72
Trigger Inverter and Alt．Output（KIT 76－2） LED Counter（KIT 76－4）
PCB（as published）for KITS 76－1 \＆ 3 （PCB 76A）
PCB for KITS $76-2$ \＆ 4 （PCB 768 （
PCB for KITS 76－2 \＆ 4 （PCB 76日）

ELEKTOR ELECTRONIC PIANO（Elektor Sept 78）

A touch－sensitive，multiple－voicing 5 octave piano using the latest integrated－circuit techniques for the keying and envelope shaping and virtuatly sliminating＂bee－hive＂noise hitherto inhe
lists．
DIGITAL REVERBERATION UNIT（Elektor May 78）
A very advanced unit using sophisticated i．c．techniques instead of mechanical spring－lines．The basic delay range of 24 to 90 mS can be extended up to 450 mS using the extensions．

Main component set（KIT 78－11
Extension component set（KIT 78－2）
PCB for Kit 78－1（PCB 78A）
Extension component set（K）
PCB for Kit 78－1（PCB 78A）
PCB for Kit $78-2$（PCB 78B）

$\mathbf{6} 45-45$ $\mathbf{C 4 3 . 3 6}$

ANALOGUE REVERBERATION UNIT（Elektor Oct 78） Using i．c．s instead of spring－lines．the maln unit has a extends this up to 200 ms ．Meys，and the adder mal set stereo mode．

Main component set（KIT 83－1）
Additional Delay Set（KIT 83－2）
C28．18
f 18.25
PCB（as published
kits（PCB 9973）
£4．31

RESONANCE FILTER（Elektor Oct 78）

This filter module has been designed to allow a synthesiser to produce a more realistic simulation of natural musical truments．
Basic component set（KIT 日2－1）
PCE（as published）（PCB 9951）
$£ 15.10$
$£ 3.29$

SYNTHESISER EXTERNAL INPUT INTERFACE

（P．E．Oct 78）
This unit allows external inputs，such as guitars，micro－
phones etc．to be processed by the circuits within a
synthesiser．
Basic component set（incl PCE）（KIT B1－1）
$£ 2.94$
GUITAR MULTIPROCESSOR（P．E．Dec／Feb 78）
An extremely versatile sound processing unit capable of producing．for example．Flanging，Vibrato，Reverb．Fuzz and
Tremolo as well as other fascinating sounds．May be used with most electronic instruments．Derails in our lists． RHYTHM GENERATOR KITS
Several available－details in our lists
GUITAR FAEOUENCY OOUBLEA（P．E．Aug．77）
A modified and extended version of the circuir publisted．
Component set and PCB

GUITAR SUSTAIN（P．E．Oct 77）
Maintains the natural attack whilst extending note duration． $\begin{array}{ll}\text { Component set．PCB and foot switches } & \text { £5．13 } \\ \text { Component set．PCB and panel swliches } & \text { £3．71 }\end{array}$

WIND AND RAIN UNIT
A manually controlled unit for producing the above－mamed sounos

Component set（incl．PCB）
E4．26

GUITAR OVERDRIVE UNIT（P．E．Aug．76）
Sophisticared versatile Fuzz unit，including variable and switchable controls affecting the fuzz quality whilst retaining the attack and decay，and also providing filtering．Does not duplicate the effects from the Gultar Effects Pedal and can
be used with it and with other electronic instruments． be used with it and with other electronic instruments Component sel using dual slider pol Printed circuit board \quad f6．89

FUZZ UNIT
Simple Fuzz unlt based upon P．E．＂Sound Design＂circuit． Component set（incl．PCB）

TREMOLO UNIT

Based upon P．E．＂Sound Oesign＂circuit．
Component set（incl．PCB）
¢7．69
$£ 7.69$
$£ 5.05$
£ 5.05

TAEBLE BOOST UNIT（P．E．Apr．76）
Gives a much shriller quallity to audio sig
the depth of boost is manually adjustable．
Component set（incl．PCB）

WAVEFORM CONVERTER

Slightly modified from a circuit published in＂Elektor＂．Converts a saw－tooth waveform into four different waveforms：sine－wave mark－space saw－tooth，regular triangle form，and squarewave with an externally variable mark－space ratio．
Component set（inct．PCB but excl sw／s）
VOLTAGE CONTROLLED FILTEA（P．E．Dec．74）
art of the P．E．Minisonic now released as an Independen Component set（incl．PCB）IOrd

AING MODULATOA（P．E．Jan．75）
Part of the P．E．Minisonle now released as an independent bit for use with other synthesisers
Component set（incl．PCB）（Order as Kit 59－1）E5．80
NOISE GENEAATOR（P．E．Jan．75）
Part of the P．E．Minisonic now released as an independent
Component set（incl．PCB）CO
ENVELOPE SHAPER WITHOUT VCA（P．E．Oct．75）
Provides full manual control over attack．decay．sustatn and release functions，and is for use with an exlsiling voltage controlled amplifier．

ENVELOPE SHAPER WITH VCA（P．E．APR．76）
This unit has its own voltage controlled amplifier and has full manual control over attack，decay．sustain and release tunctions．
Component set（incl．PCB）

TRANSIENT GENERATOR（P．E．Apr．77）
An envelope shaper，without VCA．having the usual attack． decay．sustain and release functions．and in addltion th also provera to imltate such inguruments as mandolin or rogram Comio．

Component set

SOPNISTICATED PHASING AND VIRRATO UNIT
asightly modifed version of the circuit published in Eloktor．Oecember 1976．and includes manual and Component set over the rale of phasing and vibrato Printed circuit board
617.38
62.33

PHASING UNIT（P．E．Sept．73）
A simple but effective manually controlled unit for introducing the＂phasing＂sound Into live of recorded Com
c3． 20

PHASING CONTROL UNIT（P．E．Oct．74）
For use with the above Phasing Unit to automatically，control he rate of phasing．
Component set（incl．PCB）
© 4.7 .4

WA H－WAH UNIT（P．E．Apr．76）
The Wah－Wah effect produced by this unit can be controlled
manually or by the integral automatic controller
Component set（incl．PCB）

AUTOWAH UNIT（P．E．Mar．77）
Automatically produces Wah－pedal and Swell－pedal sounds Hach time a new note is played．

Component set．PCB，special foot switches
c7． 67
Component set and PCB．with panel switches
C4．83

VOICE OPERATED FAOER（P．E．Dec．73）

For automatically reducing music volume during
talk－over＂－particularly useful for Disco work of for
Component set（incl．PCB）

10\％DISCOUNT VOUCHER（PE 74）

TERMS：Goods in current adverts is lists over $£ 50$ goads value（excl P\＆，P \＆VAT）． Correctly costed，C．W．O．U．K．orders only． until end of month on cover of P，E．

U．K．orders－Keyboards add $\mathbf{£ 2 . 0 0}$ each plus VAT．Other goods：under $£ 15$ add 25 p plus VAT，over $£ 15$ add 50 p plus
VAT．Recommended：optional insurance against postal mishaps，add 50 p for cover up to $£ 50, £ 1.00$ for $£ 100$ cover，etc．pro－rata． higher export postage rates．

ADD 12 1 \％VAT
（or current rate if changed）． goods．discount，post of handling，on all U．K．orders． Does not apply to Exports．

EXPORT ORDERS ARE WELCOME but to avoid delay we advise you to see our list for postage rates．All payments must be cash－wrih－order，in Sterling by inter－ obtain list－Europe send 20 p ，other coumtries send 50p．

AND OTHER PROJECTS

PHOTOGRAPMS in this advertisement show two of our units containing some of PCBs. The cases were built by ourselves and are not for sale, though a small selection of other cases is available.
List-Send stamped addressed onvelope with all U.K. requests for free list giving fuller details of PCBs, kits and other components.

OVERSEAS enquiries for list: Eurode

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKimber-Allen Keyboards as required for many published circuits. The manufacturers clalm that these are the finest noulded plastic keyboards available. All octaves are C to C, the keys are plastic. spring-loaded, fitted with actuators, and mounted on a robust aluminium frame. 3 Octave (37 notes)
4 Octave (49 notes) £25.50 £32.25 5 Octave (61 notes) £39.76
Contact Assemblies (gold-clad wire) for use with the above KBOS (1 for each note): Type GJ: Single-pole change-over

Produces 84 switch-selected frequency-accurate tones. A LED monitor clearly displays all beat note adjustments. Ideal for tuning acoustic or electronic musical instruments. Main component set (incl. PCB) $\quad £ 14.93$

SYNTHESISER TUNING INDICATOR (P.E. July 77)
A simple 4-octave frequency comparator for use with synthesisers and other instruments where the full versatility Component and PCB (but excl sw.)

CONSTANT DISPLAY FREQUENCY METER (PE AUG 78)
$\dot{A} 5$-digit frequency counter for 1 Hz to 99999 Hz with a 1 Hz sampling rate. Readout does not coumt visibly or flicker due to display blanking.
Component set
Printed circuit board
-This kit \& PCB are at 8% VAT (all others are $12 \frac{1}{2} \%$)
£24.05*

TAPE NOISE LIMITER
Very effective circult for reducing the hiss found in most tape recordings. All kits include PCBs
Standard tolerance set of components
Superior tolerance set of components Regulated power supply (will drive 2 sets)

DYNAMIC RANGE LIMITER (P.E. Apr. 77)
Automaticaliy controls sound output to within a presel
level.
Component set (incl. PCB)

DISCDSTRDBE (P.E. Nov. 76)
4 -channel light-show controller giving a choice of sequential. andom, of full strobe mode of operation
Printed circuit boart
$£ 18.19$

BIOLOGICAL AMPLIFIER (P.E. Jan/Feb. 73)
Multi-function circuits that, with the use of other external equipment, can serve as lie-detector. alphaphone, cardiophone etc.

Pre-Amp Module Components set (incl. PCB) $\quad \mathbf{3 . 9 6}$ Basic Output Circuits-combined component set with PCBs, for alphaphone, cardiophone, frequency meter and visual feed-back lampdriver circuits. Audio Amplifier Module Type PC7

SOUND BENDER (P.E. May 74)
A multi-purpose sound controller. the functlons of which include envelope shaper, tremolo. volce-operated fader. automatic fader and frequency-doubler
Details in lists.

SOPHISTICATED POWER SUPPLIES
A wide range of highly stabilised low noise power supply kits is available-detalis in our lists.

NEW PCB SERVICE

PCBS FOR ALL NEW P.E. \& E.E. PROJECTS FDR WHICH PCB LAYOUTS HAVE BEEN PUBLISHED AND FOR WHICH FULL COPY. RIGHT CLEARANCE IS AVAILABLE
LIMITED QUANTITIES ONLY FOR AN EXPERIMENTAL PERIOD.
LET US KNOW YOUR neEdS AND WE WILL ADVISE YOU OF AVAILABILITY AND PRICES.

Ouality audio modules and accessories for

$\$ 450$ STEREO FM TUMER FM TUNER ohase lock-loo
 £26.14 $+40 p$ plop

MPA3O

MAGNETIC CARTRIDGE PRE-AMPLIFIER

nagnetic cartridge with you

the MPA 30 which is a high quality pre-
amplifer thabing
SENSITIVITY
SENSITIVITY
ION
3.5 mV for 100 mV outpus

EQUALISATION $\underset{20 \mathrm{kHz}}{\text { Within }} \pm 1 \mathrm{~dB}$ from 20 Hz to
INPUT IMPEDANCE
SUPPLY
DIMENSIONS 50 K ohms
fations, any of which may be altered as often as you choose, simply by changing the settings of the pre-set controls Features include FET input stage. Varl-Cap diode funing. Switched AFC LED Stereo Indicator.

OUTPUT POWER	7 Watts RMS
LOADIMPEDANCE	8 ohms
TOTAL HARMONIC DISTORTION	Less than -5\% (Typlically - 3%)
FREQUENCY RESPONSE	$50 \mathrm{~Hz} 1020 \mathrm{hHz} \pm 3 \mathrm{dBs}$
TONE CONTROL RANGE	$\pm 12 \mathrm{dBs}$ at 100 Hz and 10 kHz
SENSITIVITY	100 mV for lull output
INPUT MPPEDANCE	1 Mohms
TRANSFORMER REOUIREMENTS	22 V.A.C. rated al IA
DIMENSIONS (Less controls and panel)	200 mm - 130 mm - 33 mm

PA12

STERED

The PAI SIFIER
 The PA12 Stereo Pre.

Amplifier chassis is designed and recommended for ute with the AL 20130 Audio Ampliner Modules, the PS 12 Dower supply and the 533s Transtormer. Features include on/of volume. Balance, Bass FREOUENCY RESPONSE \qquad
thanslormer or oyermin complete stereo prg-amplifer, power amplifiers and power supply. This. with only the addilon quality ceramic pick-up, stereo tunet, stereo tape deck etc. Simple to install. capable of producing really fist cias results. this unit is supplied with full instructions, black front panel, knobs, main ewhch, fuse and fuse holder and universal mounting brackefs.

OUTPUT POWER	25 Watt RMS
SUPPLY	$30-50 \mathrm{~V}$
LOAD IMPEDANCE	$8-16 \mathrm{ohms}$
TOTAL HARMONIC DISTORTION	Less than $\cdot 1 \%$ (Typically 06%
FREOUENCY RESPONSE	20 Hz to $30 \mathrm{kHz} \times 2 \mathrm{dBs}$
SENSITIVITY	280 mV for full output
MAX: MEAT SINF TEMPERATURE $90^{\circ} \mathrm{C}$	
DIMENSIONS	$103 \mathrm{~mm} \times 64 \mathrm{~mm} \times 15 \mathrm{~mm}$

This high quallity audio amplifer modute is for
to 25 RMS with distortion levels below 0.1%.

141	35w R.M.s.	OUTPUT POWER	35 Watta RMS
		SUPPLY	10-60 V
AUDIO <2 v>cut U		LOAD IMPEDANCE	$8-16$ ohms
		TOTAL HARMONIC DIST ORTION	Less than 1 \% (Typically -06\%
MODULE		FREQUENCY RESPONSE	20 Hz to $30 \mathrm{kHz} \times 2 \mathrm{dBz}$
P\%.02		SENSITIVITY	280 mV for full ouiput
2.92		MAX. HEAT SINK TEMPERATURE	$90^{\circ} \mathrm{C}$
+ 35p p\&p		DIMENSIONS	$103 \mathrm{~mm} \cdot 64 \mathrm{~mm} * 15 \mathrm{~mm}$

The AL80 is similar in design
distortion levela below 0.1%

E19.24 + 66pp\&p
This unit. designated AL250, is a power amplifier providing an output of up to 125 W RMS. Into a 4 ohm load.

These low cost 10 watt modules offer the utmost in reliability and performance, whilst being compact in size.

SPM80
STABILISED
$£ 4.95$ PLY

INPUT A.C. VOLTAGE $33-40 \mathrm{Y}$

INPUT A.C. VOLTAGE	$33-40 \mathrm{~V}$
OUTPUT D.C. VOLTAGE	33 V nominal
OUTPUT CURAENT	$10 \mathrm{~mA}-1.5 \mathrm{amps}$
OVERLOAD CURRENT	$\frac{1.7 \mathrm{mps} \text { approm }}{105 \mathrm{~mm} \times 63 \mathrm{~mm}}$
DIMENSIONS	

Desioned to

PA100 STEREO PRE.AMPLIFIER

FREOUENCY RESPONSE		20 Hz to $20 \mathrm{kHz} \times 1 \mathrm{~dB}$	
TOTAL HARMONIC DISTORTION		Less than $\cdot 1 \%$ (Typlcally $\cdot 07 \%$)	
SENSITIVITY INPUTS	1. TAPE 2. RADIO TUNER 3. MAGNETIC P.U.	$100 \mathrm{mV} / 100 \mathrm{~K}$ ohms $100 \mathrm{mV} / 100 \mathrm{~K}$ ohms $3.5 \mathrm{mV} / 50 \mathrm{Kohms}$	For an oufbut 250 mv
EOUALISATION		Within $\pm 1 \mathrm{~dB}$ from 20 Hz to 20 kHz	
BASS CONTROL RANGE		$\pm 15 \mathrm{dess}$ at 75 Hz	
TREBLE CONTROL RANGE		$+10-20 \mathrm{dBs}$ at 15 kHz	
SIGNAL/NOISE RATIO		Better than 65 dBs (All inputs)	
INPUT OVERLOAD		Better than 26 dBs (All inputs)	
SUPPLY		20 to 40 V	
DIMENSIONS		$300 \times 90 \times 33 \mathrm{~mm}$ (less controis)	

A to\% quality stereo preamplifier and tone control unlt, the PA 100 provides a comprehensive solution to the front end requirements of stereo amplifiers or audio
$\begin{array}{ll}\text { FREOUENCY RESPONSE } & 20 \mathrm{~Hz}-20 \mathrm{hHz}(-3 \mathrm{~d} \\ \text { BASS CONTROL } & \pm 12 \mathrm{~dB} \text { at } \mathrm{BO} \mathrm{Hz}\end{array}$ $\pm 140 \mathrm{Cl} \mathrm{Hz}^{2}$ TREBLE CONTROL + 14 dB at 10 kHz INPUT IMPEDANCE NPUT SENSITIVITY
\pm
300
-60
SIGNAL/NOISE RATIO -65 dB
APE OUTPUT IMPEDANCE $\quad \pm 20 \mathrm{~dB}$
IPE OUTPUTIMPEDANCE 25 Kohms

PS12 POWER SUPPLY MODULE

Power supply for AL20A-30A A12. S450 etc.
Transiormer T538.
Input A.C. Voltage 15-20V. Output D.C. Voltage 22-30V pprox. (Dependent upon nput.)
Output Current 800 mA
maximum.
Dimensions $60 \times 43 \times 26 \mathrm{~mm}$.

£2.13

$+35 p$ p $8 p$.

BP124 SIREN ALARM
 MODULE

American Police screamed trom any 12 voll supply
into 4 or 8 ohm speaker.
into 4 or 8 ohm speaker.
deal for car burgiar alarm.
other security purposes.

ONLY £3.78
 +35p p\&p.

$$
5 \text { WATTs }
$$

MA60 HI-FI AMPLIFIER KIT

Bultd you own top quality amplifier, save yoursell pounds. The MAGO hit comprises the following Bl-kits modutes, 2 . AL 60 amps I ※ PA 100 pre-amp, i ASMBO stab. Dower supply, 1 E BMTBO transt. giving thwatts RMS per channel STEREO. All module Detalls of the sbove modules are in thls ad.
Price $£ 38.00+62$ p pip.

TC60 KIT

A beautlully designed penuine TEAK WOOD veneered cabinet to out the protessional touches to your home buili ampllifer. Full Sochets, Noen, etc. Ideal for the MABO. Size: 425 mm * 290 mm , 95 mm . $22 \cdot 44+86$ price $^{2} \mathrm{p}$.

TRANSFORMERS

TS38 for use with S.450 AL30A MPA30
Order No. 2034 Price: $\mathbf{E 3 \cdot 6 0}+55 p p \& p$.
 BMTB0 For use with AL60 SPM80 6 +55ppap.
Order No. 2034 Price: $\mathbf{C 8} \cdot \mathbf{0 8}+86 p p \& p$.
BMT250 For use with AL250
Order No. 2035
Order No. 2035
2040. For use with AL6O
2040. For use with AL60

Order No. 2040
Price: $£ 5.85+80 p p \& p$
2041. For use with AL8O, AL120 and AL250

Order No. 2041

CASES

TEAK 30, $32 \times 23 \times 8 \mathrm{~cm}$, designed mainly for use with our aterec 30 Audio System but has proved very helptul to home constructors. Fitied with solid uncut front and back of 139, E6-69. p\&o 70 O

TEAK $60,42 \times 29 \times 9 \mathrm{~cm}$, for use with AL60/MK60 Audlo Kit. Useful or the home constructor requiring an ampliffer sleeve - has no front or

Professionals and Enthusiasts from BI-PAK

4191	50W	OUTPUT POWER	50 Watis P.M.S.
AL-2	R.M.S.	SUPPLY	70 Watts
AMPLIFIER		LOAD IMPEDANCE	8.16 ohms
With integral		TOTAL HARMONIC DISTORTION	05\% Max. (Typically 02\%)
heat sink and		FREOUENCY RESPONSE聿1d8	25 Hz -20kHz
short-circuit	14	SENSITIVITY	500 mV
f12.91		MAX HEAT SINK TEMP.	45 deg. C
		DIMENSIONS	$192 \times 89 \times 49 \mathrm{~mm}$

Introduced to fultill the demand for a fully protected power amp.. capable of driving high quality speaker systems at up to 50 w .. with distortion levels below 05\%. Ideal for domestic use. Discos. PA. systems. electronic organs etc. The generously rated com ponents ensure continuous operalion at high output levels.

STABILISEO POWER SUPPLIES	AC INPUTS	
	SPM 120/45	40-48v
SPM120/45	SPM 120/55	50.15 v
SMP120/55	SPM 120/65	60-65v
SMP120/65	OUTPUT CURRENT	2.5 A
£6.52	RIPPLE	14.100 mV
+P.8P.35p il		2 A 150 mv

 applications, the stabiliser which provides output currents up to 2.5A., operates direct from a malns transformer requiring only the addition of 2 Electrolytic capacitors to complete the s/c protection.

GE100 Mk2.

10 CHANNEL MONOGRAPMIC
EquALISER
£22.50

Only $155 \mathrm{~mm} \times 65 \mathrm{~mm} \times 50 \mathrm{~mm}$ including the $10 \times 10 \mathrm{~K}$ lin slider potentiometers and knubs which are mounted on a board positioned above the circuitry. In the trequency range of 31 Hz to 20 KHz you can cut and boost $\pm 12 \mathrm{~dB}$ with the 10 sliders, each of which has its frequency marked on the circuit board. The GE 100 has numerous uses including mixers, P.A. systems and discos. It will also greatly improve the sound reproduction of your existing audio equipment. Power Supply for GE100. o/d SG30 © 3.80 .

VPS30

REGULATEO VARIABLE
STABILISED POWER SUPPLY

£8.20

AC Input Maximum

Voltage Regulation
2.30v
ncorporating shon circuit protection
This NEW versatile Regulated Variable Stabilised Power Supply with short circuit protection and current Ilmiting. is a must for all electronics enthusiasts. It incorporates adjustable voltage from $2 v-30 \mathrm{v}$, with a current limiting range of $0-2 \mathrm{~A}$. With this module there is no need to build a separate power supply for each of your projects. with the simple addition of a transformer lo/d 20331. O-1ma lo/d 1310 or 1305). plus a suitable shunt. a voltmeter (o/d 1311 or 13061 . a 470 hm pot lo/d 18961 . a 4 K 7 pot (o/d
1899), it can be used again and again as a self-contained bench. power supply, eliminating the use of batteries and thus saving 1899).
ff's!

PA200

STEREO
PRE-AMPLIFIER

The PA200 is ba
AL250 a molifiers

HEADPHONES

A top quality headphone with cushione dearpads and headband. Separate balance/volume controls. Stereo $18,000 \mathrm{~Hz} .0 / \mathrm{n} 884$. 99.78 . p p p 70 p .
A brilliant compromise between price and perlormance. Superb stereo reproduction for the
newcomer to Hi-Fi. Impedance 8 ohms. Frequency: newconer
$30-15,00 \mathrm{~Hz}$. $0 / \mathrm{n} 885$. C4.95. p\& p 50 p .

818
 HI-FI ACCESSORIES

Parallel Tracking GROOV KLEEN
ned to suit all modern single play decks. Simple to tit. it is extremely efficient. Complete with iwo types of base and three height extensions o/n 8101 . E3.97.
p\&p 35 p . psp35p.
Casserte Tape Editing Kit
Enables cassette tapes to be edited and joined easily; quickly and accurately. Kit comprises: Tape Splicef 9 Self-adhesive Labels. Reel of Splicing Tape. 3 Winders and removers and instructions, all in a handy wallet. o/n 811 . E2.59. p\&p 35p.
GROOV-STAT
The BIB Groov-Stat slatic reducer neutralises the static charge on records and other plastic surfaces. o/n8103. £5-89.o8p35p
Cassette Head Cleaner
Essential for cleaning of tape heads. capstans and Essential for cleaning of tape heads. capstans and
rollers. Pack contains Tape Head Applicator and tape
head polisher tools. Plus botle of special formula head polisher tools. Plus bottle of special formula
cleaning fluid and full insiructions. o/n 832. C0.72. p\& ${ }^{\text {chaning }} \mathbf{p}$.

FREQUENCY RESPONSE	20 Hz to 20kHz $\times 1 \mathrm{~dB}$
TOTAL HARMONIC DISTORTION	Less than 1\% (Typically . 70%)
SENSITIVITY 1. TAPE INPUTS 2. RADIO TUNER 3. MAGNETICPU.	$100 \mathrm{mV} / 100 \mathrm{~K}$ ohms For an $100 \mathrm{mV} / 100 \mathrm{Kohms}$ oulput $3.5 \mathrm{mV} / 50 \mathrm{~K}$ ohms 500 mv
EQUALISATION	$\begin{aligned} & \text { Within } \pm 1 \mathrm{~dB} \text { from } \\ & 20 \mathrm{H} 2 \text { to } 20 \mathrm{kHz} \end{aligned}$
BASS CONTROL RANGE	$\pm 15 \mathrm{dBs}$ at 75 Hz
TREBLE CONTROL RANGE	+10-20dBs at 15 kMz
SIGNALNOISE RATIO	Better than 65 dBs (All inputs)
INPUT OVERLOAD	Better than 2d8s (All inputs)
SUPPLY	35 to 706v
DIMENSIONS	$300 \times 90 \times 33 \mathrm{~mm}$ (less controls)

DIMENSIONS

METERS

Miniature Balance \& Tuning Meter Miniature moving-coil meter for stereo balance indicator. Puning indicator for FM or similar
application. Poinler at centre indicates zero or null position. Robust construction. Sensitivity: inn 0-100MA Dimension

Balance and Tuning Meter Clear view edgewise meter. Centre zero application. Sensitivily: 1000 100UA.
Dimensions. $45 \times 22 \times 34 \mathrm{~mm}$. 1319. £2-16.psip 35 p.

Miniature Leval Meter
Miniature Level Mater
Moving coll, for accurate level indication for lape recorders, amplifiers etc. Neal design. rugged construction will withstand five times rated value.
Sensitivity: $F S D$. 200 UA. OdB. 130UA. Dimensions: $23 \times 22 \times 26 \mathrm{~mm}$. $/ \mathrm{m}$ 1320. E3.02. p\&o35p.

Vuviezar

Calibraled 20 to 3 and $0-100 \%$, making it surtpower output indicator Sensitivity 130 uA
Dimensions: $40 \times 29 \mathrm{~mm}$. o/n 1321. E2.16. p\& ${ }^{\circ}$ 35p.

ADAPTORS

AC-DC enables a large range of battery powered radios, recordars. calculators to be run off the mains. (220-240v AC). Switchable for 3-6-9-12 volts. Current rating 300 mA . Polarity re
Universal plugincorporated $o / \mathrm{n} \mathbf{3 7}$. $\mathbf{4} 4.05$. $\mathrm{\rho}$ \& p 35 p .
DC-DC for use in all cars, boats atc. with pos or neg. earth for a regulated output of $6,7.5$ or 9 volts DC at 300 mA . For radios. recorders etc. o/n 138.53 .15. p\& p 35 p .

CROSSOVER NETWORKS

high to tweaters, low to woofers. Complete with insiructions. Fie high to tweaters, low to woofers. Complete
quency: $3,000 \mathrm{~Hz} .0 / \mathrm{n} 1904 . \mathrm{E} 1.24$. plp 3 bp.
2-WAY for 8 ohm speakers up to 30 watts. Frequency: 3 KHz o/n 1905. ©1.81. p\&ip35p.

3-WAY for 8 ohms speakers up to 30 wat's. Frequancy: 800 Hz and
$4.5 \mathrm{KHz} .0 / \mathrm{n} 1906 . £ 3.32$. p 80 p 35 p.

MICROPHONES

DYNAMIC CASSETTE
For equipment requiring a high quality microphone. Sturdy. solid moulded body in black with neat chrome surround. Pick-up pattern is omnidirectional. On/OH switch. I metre of lough lead with floating 2.5 and 3.5 mm plugs. Matching moulded strut. impedance: 200 ohms. 120 mm . o/n 1326 . £1.80.p\&p35p.
DYNAMIC MICROPHONE
Superior quality portable cassette recorder mike with bult-in remote control swich and lead fitted with 5 -pin 240° DIN plug iremote
switch) and 3-pin DIN plug (microphonel. Provides a direct replace. ment for those supplied with recorders. With detachable stand. Omnidireclional. impedance: 200 ohms. Freq. response: 100 to 10.000 Hz . Sensitivity: 79 dB at $1.000 \mathrm{~Hz} .0 / \mathrm{n} 1327$. £2.98.
p\&p 35p.
RE-317: DYNAMIC MICROPHONE
Highly sensitive, high grade desk or hand mike suitable for use with many popular cassette decks. Incorporates On/OHf switch and 1 metre lead with moulded standard jack plug. Complete with desk stand.
Omnidirectional. Impedance: 5.000 ohms. Freo. response: 100 , at $12,000 \mathrm{~Hz}$ Sensitivity: $(-7 \mathrm{~dB}$ at 1.000 Hz). o/n 1336. E4.48. 0\& 0 35p.
OMNIDIRECTIONAL CARDIOID
Powered by a ifv battery located within the aluminium body. Satin silver finish with front disk protection to the diaphragm housing. OnOH switch. Also with 'Busby' type windshield. "U" bracket and stem and exiremely supple cable. Consumption: 0.2 ma irom $\frac{1}{2}$ battery providing approx., 8-10.000 hours continuous life. Impedance: 600 ohms. Sensitivity: 70 dB . Frequencr: $30 \cdot 16.000 \mathrm{~Hz}$. Size: 23 mm dia +267 mm . o/n 1329 . £14.40. p\&p35p.
UNIDIRECTIONAL CARDIOID
Dual imp. 600 and 50.000 ohms. Response 50 to 14.000 Hz .
Sensitivity 54 dB at $50 \mathrm{~K} / 0 \mathrm{hms}$. Size: $11^{\text {n }}$ dia $k \frac{1}{m}^{\prime \prime}$ long. Weight approx. 190 gm . o/n 1328. £12.32. p\& p 35 p .

STANDS

GOOSENECK CHROME FLEXIBLE HOLDERS
length $320 \mathrm{~mm} . \mathrm{o} / \mathrm{n} 1333$. E2.70.p\& p 35 p .
Length 515 mm , o/n 1334 . E3.83. p\& p 35p.
FLOOR STAND Heavy chrome. Stow-away feet with ruover ends for maximum stability
BOOM ARM tor
BOOM ARM for use with the above stand. Heavy chromed metal gives 30 " reach from the stand. o/n 1337. £10.35, p\&p 70p.

WINDSHIELD COVERS

AUDIO LEADS

FM Indoor Ribbon Aerial 3.5

 5 pin DiN plug to 3.5 mmm . Jack plug. Length 10 pins 38.5 . Lengith 1.5 m 5 pin DiN plug to 3.5 mm . Jack connected Car aerial extension. Screened insulated lead. Fitted plug \& skt? AC mains connecting lead 1.24 recorders \& radios. 2 melres ssulated Spin DiN phono plug to \qquad with attenuation network for stereo headphones. Length 02 m\qquad co. 78
stereo connector. Variable geometry carridge \& combination units. Supplied with infine fused power lead and instructions. 6.6m Coiled Guitar Lead Mono Jack Plug
to Mono Jack Plug BLACK 3 pin DIN plug to 3 pin DIN plug. Length 15 m 5 pin DIN plug to 5 pin DIN plug. Length 1.5 m 5 pin DIN plug to 4 Phono Plugs. All colour coded. Length 1.5 m
5 pin plug to 5 pin DIN plug mirror -教 image. Length 1.5 m
2 pin DIN plug to 2 pin DIN inline socket. Length $5 \mathrm{~m} \quad 10.78$ 5 pin DIN plug to 3 pin DIN plug 184 2 pin DIN plug to 2 pin DIN socket. Length 10 m $\mathbf{8} 0.93$
$\mathbf{f} 1.10$ 5 pin DIN plug to 2 phono plugs.
Connected pins 38.5 . Length 1.5 m Connected pins 38,5 . Length 1.5 m
5 pin DIN plug to 2 phono sockets.
Connected pins 385 Length 23 cm 5 pin DIN socket to 2 phono plugs. Connected pins 38,5 . Length 23 cm Coiled siereo headphone extension lead. \quad e0.76 Black. Length 6 m
AC mains lead for calculators etc. 11.97
¢ 0.54

From Science of Cambridge: the new MK 14. Simplest,most advanced,most flexible microcomputer-in kit form.

 optional RAM Ex
and Exa RAM.

WARMING UP

THE QUESTION of C.B. in Britain has been a debating point for many years, recently however the debates have been warming up-not at government level but down here among the people and technical press. Not only has the argument warmed but so have the air waves, with an estimated 18,000 illegal users in the U.K. We hope to be looking in more depth at this use and at what the equipment is, where it's coming from etc. in the near future.

It would appear that whether the government likes it or not C.B. is here and it is highly unlikely that it will ever go away or that the Home Office will ever be able to totally stamp out it's use. It is also a fact that because people are prepared to break the law and use such equipment, they are not particularly bothered about power output and possible interference etc. Obviously it is better from a detection viewpoint not to use an easily spotted C.B. aerial on a vehicle and therefore many sets are being used with ordinary car aerials which cause increased interference problems.
"In for a penny, in for a pound", as the saying goes and since it is just as
easy to buy high power linear amplifiers as C.B. gear, these are now being used to boost outputs up to 50 or even 100 watts which, of course, compounds all the problems caused to other, legal systems. Clearly we are fast approaching a situation which is far worse than we might have if C.B. were legalised and legislation drawn up and enforced to control the problems now being caused.

From recent raids on C.B.'ers and the confiscation of the equipment, the Home Office are obviously trying to track down and deal with offenders but can they realistically expect to achieve a C.B. free community? The Home Office recently commented to us that they are endeavouring to control illegal use especially where interference is being caused. They also made the point that the whole area of C.B. use is under review. Presumably our "new" Government will be looking at all the facts.

Of course, C.B. is legal in many continental countries and with the ever increasing flow of commercial and holiday traffic across the channel, not only is it impossible to keep out equipment but it also poses problems for Customs and Excise when a vehicle which has been fitted-quite legally-with C.B.
equipment in say, Germany or Spain comes across the channel. To comply with the law the equipment should be torn out and confiscated before the vehicle is allowed in.

One other interesting fact is that if you look in the "for sale" pages of one well known weekly "classified magazine", you will regularly discover secondhand and sometimes new C.B. equipment being openly advertised for sale. Of course, there is nothing illegal in this. You can own it, even sell it, but you must not use it and, of courșe, you must not import it.

What does this really mean? Since you must not import C.B. equipment, any that is in the country has been smuggled in and can therefore be confiscated. If it can be proven that any individual has smuggled it in, a fine or worse could be the result and, of course, even if you purchased the gear secondhand it can still be confiscated even if you never use it. If you built it yourself you can keep it, but you must not use it.

What a ridiculous situation I Any further comments anyone-Home Office, Minister of Posts and Telecommunications, readers?

Mike Kenward

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
Alan Turpin PRODUCTION EDITOR
David Shortland PROJECTS EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITÓR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Judith Kerley SECRETARY

Editarial Offices:
Westover House.
West Quay Road, Poole,
Dorset BH 15 1JG
Phone: Editorlal Poole 71191
We regrat that lengthy technical enquiries cannot be answered over the telephone (see below).

ADVERTISEMENT MANAGER
SECRETARY
CLASSIFIED MANAGER
D. W. B. Tilleard Christine Pocknell)

01-261 6676

Colin Brown 01-2615762

Advertising Offices:
King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS
Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-261 6601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project.only.

Components are usually available from advertisers; where we anticipate supply difficulties a sourc̣e will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department, IPC Magazines Ltọ., Lavington House, 25^{3} Lavington Sireet, London SE1 OPF, at 75p each including Inland/Overseas $p \& p$.

Binders

Binders for PE are available from the same address as back numbers at $£ 2.85$ each to UK addresses, $£ 3.45$ overseas, including postage and packing, and VAT where ap-
propriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 30H.

Cheques and postal orders should be made payable tó IPC Magazines Limited.

MANY people now own a deep freezer or fridge-freezer unit and anyone who has suffered a "thaw-out" will never want a repeat of that experience.

If the contents are insured, it is true that the insurance company will pay compensation for the loss, but if the freezer is full of home and local farm produce this cannot be replaced out of season, and considerable inconvenience is felt.

This is where the freezer alarm can help. Although it cannot prevent the possibility of such a catastrophe, it can give some warning of impending disaster!

Thaw-out of the freezer can be caused either by failure of the power supply, or by mechanical failure of the freezer itself. This unit is designed to cope with each of these events.

ELECTRICAL/MECHANICAL FAILURE

An essential feature of any freezer alarm should be the ability to detect mains failure and still continue to function.

Mains failure could be due to a power cut (in which case it is usually known) or a blown fuse at either the distribution board or in the freezer's own plug. The power can even be accidentally switched off before going on holiday by an overenthusiastic desire to have everything turned off!

Similarly, it must have the ability to detect a rise in temperature because of a fault in the freezer's own mechanism.

When all is well, the alarm is silent and each l.e.d. remains illuminated, red for mains and green for temperature.

Failure of the mains supply causes the audible alarm to sound intermittently and the red l.e.d. to flash at a set rate. In the same way, increase in temperature will trigger the alarm and cause the green l.e.d. to flash at a different rate from the red (just to make things extra clear in an emergency!)

In addition, a test circuit was added for checking that the temperature sensor and connecting wires have not become open circuit. This was felt necessary owing to the negative temperature characteristics of the temperature sensor.

CIRCUIT DESCRIPTION

The complete circuit diagram of the alarm is shown in Fig. 1. When the unit is operated from the mains, the voltage at pin 4 of IC1 will be zero; the NE555 will sink current in this condition and l.e.d. D8 will be illuminated.

If the mains fails, the voltage at pin 4 will rise above the threshold value of 0.4 V to about 2 V via $R 2$, as pin 4 is
isolated from the OV rail by D6 and the rectifier diodes. When this happens IC1 will be triggered and run in the astable mode, the mark to space ratio being governed by the values of R3, R4 and C2. The duration of high output t_{1} is given by:

$$
\begin{gathered}
t_{1}=0.693(R 3+R 4) C 2 \text { seconds. } \\
\text { and the low output } t_{2} \text { by: } \\
t_{2}=0.693(R 4) C 2 \text { seconds. }
\end{gathered}
$$

The frequency of operation is given by:

$$
f=\frac{1}{\left(t_{1}+t_{2}\right)} \mathrm{Hz} .
$$

In the prototype, the frequency of oscillation was chosen to be about 1 Hz .

TEMPERATURE DETECTION

The temperature detection circuit is a Wheatstone Bridge, one arm formed by R6, VR1 and R7, and the other by R8 and the thermistor TH 1 (via JK 1).

The operational amplifier (IC3) acts as a comparator across the bridge circuit. A polarity change of a few millivolts across the input of the 741 is sufficient to swing the output from a low to high state or vice versa.

As TH 1 cools down, its resistance increases, thus swinging the voltage at pin 2 slightly positive relative to pin 3 for a particular setting of VR1. Further cooling down of TH 1 maintains pin 2 positive with respect to pin 3. The output of IC3 will be low in this condition, allowing the NE555 timer (IC4) to sink current, thus l.e.d. D10 will be illuminated.

If the temperature rises above the pre-set level, the voltage at pin 2 will be negative with respect to pin 3 and

60165
Fig 1. Circuit diagram of the Freezer Alarm.
the output of IC3 will be high, thus energising IC4, causing I.e.d. D10 to flash. In the prototype, the values of R12, R13 and C3 were chosen so that the frequency of operation was twice that of the mains failure circuit.

TEST CIRCUIT

The test circuit consists of another bridge circuit, one arm common with the temperature sensing circuit comprising R8 and TH 1 and the other by R9 and R10. The values of R9 and R10 were chosen to allow for a thermistor at $-22^{\circ} \mathrm{C}$ at its extreme tolerance limit of +20 per cent of its nominal value. When the test button (S1) is pressed, IC2 is energised and under normal conditions pin 2 will be positive with respect to pin 3. The output of the operational amplifier will be low and sink current, thereby illuminating l.e.d. D9. If, on the other hand, open circuit conditions have occurred, then pin 3 will be positive with respect to pin 2 and the output will be high and the l.e.d. will not be illuminated.

REMAINDER OF CIRCUIT

Diodes D7 and D11 isolate the outputs of IC1 and IC4 from each other. The voltage at the common ends of the

Internal view of the Freezer Alarm
diodes was found to be about 2 V under normal conditions and this was sufficient to make the audible alarm hum. So TR1 was introduced to act as a switch, and R15 and R16 prevent the transistor from switching on until the outputs of IC1 and/or IC4 goes high. D12 in effect isolates the battery from the rail, and prevents current drain into the battery.

The output voltage of the power supply unit is not too critical provided it is greater than the no load potential of the battery plus the voltage drop across D6. Therefore the unit was designed for 11 V output. The value of C 1 should be kept to about $220 \mu \mathrm{~F}$ —otherwise a time delay in excess of 10 seconds will occur between mains failure and the flashing of the l.e.d. D8. This is important if the power supply is inadvertently turned off, and the unit is near the switch board.

COMPONENTS . . .

Resistors	
R1	39
R2	$62 k$
R3, R4	$48 k$ (2 off)
R5, R11, R14	470 (3 off)
R6	$30 k$
R7, R8, R10,	$24 k(5$ off)
R12, R13	
R9	$12 k$
R15	$22 k$
R16	$4 k 7$

All resistors $\frac{1}{2} \mathrm{~W} 0.5 \%$ except where stated
Capacitors

C1	$220 \mu 16 \mathrm{~V}$
$\mathrm{C} 2, \mathrm{C} 3$	$10 \mu 16 \mathrm{~V}$ (2 off)

Semiconductors

[EG160]a]
Fig 2. Veroboard layout

A battery switch was added so that the unit could be turned off during de-frosting.

CONSTRUCTION

The circuit was assembled on a piece of 0.1 in matrix Veroboard and a suggested layout is shown in Fig. 2. The board and mains transformer were mounted in a pressed aluminium box measuring $150 \times 100 \times 50 \mathrm{~mm}$ deep. The circuit board was spaced off the floor of the box on plastic collars. They were made by cutting the barrel of a ball point pen into 6 mm lengths.

The internal layout of the aluminlum box and front panel were arranged to be suitable for sitting on top of an upright freezer. Constructors with chest freezers may wish to devise their own internal layouts, for example to make the unit suitable for wall-mounting. The layout was detailed so that no wires were attached to the lid of the box, thus making battery replacement simple.

Two wire links are required which are not shown on the Veroboard layout: BZ1 to S2 and S3 to +9 V .

THERMISTOR PROBE ASSEMBLY

The thermistor was mounted on a small piece of Veroboard and thin wires were anchored and soldered to the board. The board and thermistor were then covered with Araldite.

Providing the wires are thin enough, they can pass between the freezer cabinet and door or lid without causing any problems. Connection to the unit was by a $\mathbf{3 . 5 \mathrm { mm }}$ jack plug and socket.

When finished, it is advisable to measure the resistance of the probe to ensure that there are no short circuits, and to see that the resistance changes with temperature.

SETTING UP

The freezer should be maintained at a temperature of $-18^{\circ} \mathrm{C}$ or less. The unit was designed to trigger at about $-10^{\circ} \mathrm{C}$, thus giving some margin before setting off the alarm. The higher the trigger temperature, the less warning time is available.

The ice box of the refrigerator was used for setting up the unit. The probe and a freezer thermometer were positioned in the ice box, and the thermostat of the refrigerator was gradually lowered until the thermometer read the desired temperature. VR1 is adjusted so that the unit is just triggered.

Finally, it is advisable to plug the alarm unit into the same socket as the freezer!

A Compendium of Electronic Erudition

. . . can be made using these new-look self binders for PRACTICAL ELECTRONICS to become your most valuable source of reference. With the Easi-Binder current copies can be inserted as they are received, without waiting for the completion of twelve issues.
They are attractively made with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers, please advise year and volume and a separate set of gold transfer figures will be supplied.
At $£ 2.85$ inc. VAT and postage ($£ 3.45$ overseas) they are obtainable from:

Post Sales Department, IPC Magazines Ltd. Lavington House, 25 Lavington Street London SE1 OPF

TROUBLE shooting radios or audio gear can be a time consuming task, particularly without the aid of proper test gear. The same can be said of design work.

One of the most valuable instruments must be the signal generator. The unit described here is a versatile little thing with a square wave output over the a.f. frequencies which should prove useful for those jobs where portability and a wide frequency range are advantageous.

Whereas a.f. signal generators are two a penny, r.f. generators are generally not so common-and they are expensive to buy or make. This unit tries to bridge the gap in that it provides 1 kHz to 25 kHz on one control, and 25 kHz to 3 MHz on the other; all done with one chip and a few discrete components.

THE ZN459

The ZN459 is a wide band low noise amplifier. What's a nice chip like that doing in a circuit like this, I hear you say. Well, with its high gain and wide frequency band, it oscillates at around 500 kHz with no input. This natural ability to oscillate is the basis on which the signal generator is built. Varying degrees of both positive and negative feedback are applied to the input to produce controlled oscillations.

CIRCUIT DESCRIPTION

The complete circuit diagram for the signal generator is shown in Fig. 1. The ZN459 is cperated at about 4 V supplied by R1 and decoupled by C1. The output from IC1 drives TR1 via R2 and C2, and provides base bias. TR1 has a dual function; it provides buffering for the output, and introduces a phase shift in the output signal, which is taken from its collector.

The output is taken from across R3. L 1 prevents any r.f. coupling through the battery.

SPECIFICATION

Frequency coverage	$T \mathrm{kHz}$ to 3 MHz
Range 1	1 kHz to 25 kHz
Range 2	25 kHz to 3 MHz
Output voltage	2.5 V peak-to-peak
Current consumption	3 mA

Fig. 2 shows the feedback paths in simplified form. With the wiper of VR1 turned fully to C3, the high frequency output from IC1 is fed back into the input. Because of the internal phase shift in the i.c. at high frequencies, this signal is in phase with the input. Oscillation increases until a maximum

Fig. 1. Circuit of Generator
frequency is reached governed by the value of C3 and associated circuitry. Turning the wiper of VR1 to C4 decreases the feedback applied by C3, and increases the feedback via TR1 and C4. Because the output of the i.c. is out of phase with the input at low frequencies, taking the signal from the collector of TR1 and applying that to the input provides positive feedback at low frequencies. C4 determines the low frequency limit. Referring back to Fig. 1, R5 is in series with C 4 to keep the mark/space ratio of the oscillations fairly even at low frequencies. C5 and R6 apply more feedback from TR1 through VR2, thus reducing the frequency of oscillations still further.

The components are mounted on a piece of Veroboard $75 \mathrm{~mm} \times 30 \mathrm{~mm}$ (Fig. 3). The potentiometers should be put on last of all. The type used on the prototype were Radiohm, and it was found necessary to enlarge the holes for the pots with a 1.2 mm drill. Care should be taken when soldering to prevent accidental shorts, and excessive flux between tracks should be cleaned off. The author finds an old toothbrush and white spirit very effective.

Keep the component leads as short as possible to avoid stray r.f.
Fig. 2. Showing simplified feedback paths

If the Veroboard layout is changed, and the pots mounted off the board, there may be trouble with stray capacitance. The board, BNC output socket and switch should be mounted in an all metal box for screening. For the prototype a $40 \times 100 \times 70 \mathrm{~mm}$ aluminium box was used, with the pots mounted on the lid. These were considered sufficient support for the board.

There is plenty of room for the 9 V battery. In fact, if the unit were to be used for long periods, two batteries could be utilised, with a double pole on/off switch.

The board should be checked over for errors. Then, if all is in order, the signal generator should be connected up to an oscilloscope and frequency meter if available. Check that there is about 4 V across pin 2 and 0 V ; the total current consumption should be about 3 mA . The frequency controls are adjusted so that they work in series. For example, for a frequency of 25 kHz or less, VR1 is turned to 25 kHz , and VR2 to the required frequency. For over 25 kHz , VR2 is turned to 25 kHz and VR1 to the required frequency. The output voltage should be 2.5 V peak-to-peak, measured at 1 kHz . The unit should produce a good square wave up to 25 kHz .

Calibration should ideally be done with a frequency meter, ,but if one is not available compare the signal generator frequency to that of a known one. Alternatively, for r.f. calibration a wire from the output thrown over a radio can be used.

Fig. 3. Board layout
The radio is tuned into the signal generator's frequency, and the reading taken off the radio tuner.

When using the unit, loading should be kept to a minimum of $10 \mathrm{k} \Omega$, as the frequency does vary with load. It also varies with supply voltage, and this could be largely overcome by using a Zener regulated supply, at the cost of greater current consumption.

Resistors

R1	2 k 2
R2, R5, R6	100 k (3 off)
R3	1 k
R4	3 k 3
All $\frac{1}{4} \mathrm{~W} 5 \%$ carbon	

Capacitors

C1	$100 \mu 16 \mathrm{~V}$ elect
C2,C4	$100 p$
C3	$47 p$
C5	2 n 2

Semiconductors

IC1	ZN459
TR1	BC108

Potentiometers

$$
\text { VR1, VR2 } 1 \mathrm{M}(2 \text { off })
$$

Inductors

```
L1 150\muH
```


Miscellaneous

BNC output socket, on/off switch, metal case, 9 V battery, battery connector, holder for 8 pin i.c. (if required), Veroboard 0.1 in matrix, knobs (2)

Should an output voltage control be required, R3 could be replaced by a $1 \mathrm{k} \Omega$ pot with the wiper going to the output socket.

Although the prototype oscillated up to 7.5 MHz , it was only calibrated up to 3 MHz , because of the cramping of frequency above this. With a little thought, a fine tuning contol could be connected around VR1 to make these frequencies available.

The harmonics generated by the unit go well past 100 MHz , making it suitable for f.m. radio and TV work.

When using the unit at r.f. frequencies, it should be earthed, and for direct coupling into a radio, for example, a small capacitor should be connected in the output.

Although this unit is by no means a precision generator, for its size and cost to build, it should prove to be a useful tool in the field or at the workbench.

Heathkit electronic test equipment course.
Section 1. Analogue and digital meters. Section 2. Oscilloscopes.
Section 3. Frequency generation and measurement.
Section 4 . Special measuring instruments
Heathkit car electrical systems course.
Section 1. Electrical principles of the car. Section 2. Starting system fundamentals. Section 3. Car charging systems. Section 4. Accessories and body electrical Two new self-instruction courses from Heathkit. Based on step-by-step programmed instructions, they let you learn at your own pace in your own home.

Each course is complete and contains audio/ visual material, text, and parts for 'hands on' experiments with the optional Heathkit experimenter trainer. So all you need is a cassette player and the will to learn.

Full details of Heathkit courses are available in the Heathkit catalogue, together with hundreds of kits you can build for yourself - computers, oscilloscopes, transceivers etc.... Send for your copy now.

There are Heathkit Electronics Centres at | $\begin{array}{l}\text { There are Heathkit Electronics Centres at } \\ 233 \text { Tottenham Court Road, London (01-636 7349) }\end{array}$ | $\begin{array}{l}\text { Soldering } \\ \text { Iron offer }\end{array}$ |
| :--- | :--- | and at Bristol Road, Gloucester (0452 29451).

Registered in England, No. 606177.

COMPUKIT UK 101 SINGE ROARI COMPUIER A.A.BERK g.s. Sc. ph.D.

 * Fully expandade via on barari sidedels

* Cissosite interiace [CUISI
* WOU-vilhilt awn delicieded RAM IIIJ
* Fill ASCll keythard
* WHIH madultopon buard

THE COMPUKIT UK-101 has been prepared to provide all sectors, from the amateur constructor/hobbyist to the engineer, programmer, teacher, business man and scientist, with the cheapest computer on the market which is programmable using an 8K BASIC package. In addition, it is fully expandable, capable of being programmed in machine code, and absolutely complete from mains input to TV Aerial feed output. It includes full typewriter-style keyboard, printer, and cassette-storage interface. The BASIC package employed is the industry standard Microsoft interpreter, and will run much of the available software for many other more expensive machines on the market with little modification. Floating-point calculations in this BASIC are extremely fast and versatile, making scientific calculation projects of the most complex kind perfectly feasible in one's own home. The areas of suitable use for the COMPUKIT stretch fully across the board.

The business man will find that the string handling facilities and excellent video display of the COMPUKIT make the machine perfectly fitted for everything from general accounts and planning calculations, to formatting of invoices and stationery to be prịinted out on hard copy when complete.

The Statistician will find that the high speed of calculation with facilities such as random number generation and userdefined functions, enable analyses of data and simulation of models to be performed particularly easily. The results may then be displayed with the graphics available in almost any form from bar-charts to tree-diagrams!

The Engineer wishing to control equipment with a computer, will benefit from being able to write the necessary routines in BASIC (making the software easy to design) while being able to jump to fast and efficient machine-code routines for servicing external hardware.

Perhaps most importantly; for the first time, anyone, technical or otherwise, can have an affordable easily programmable home-computer for domestic use-a much neglected area at the moment, but one which is about to take off.

Imagine being able to run a program to help your child (or yourself) revise for exams. Animated diagrams are possible, such as an internal combustion engine shown reciprocating, with mathematical equations to match. Picture an automobile program designed to accept daily input from you on petrol and oil use, along with mileage, etc. The machine could accumulate information, and at any time give you the average m.p.g., plot performance versus time or some other parameter, and remind you when to check the tyres and drive to the Garage for a service.
D/C/H/M?
HEMORY SIZE?
TERHINAL MIDTH?
3327 BYTES FREE COMPUK! TVK101 Personal Conputer 8 Basic Copyright1979 ${ }^{8 k}$

The UK-101 introduces itsalf at switch-on.
\star Based on the popular 6502 micro

* Supports all Ohio Scientific expansions including floppy disc
* Fast resident BASIC
* Total of 19K addressable memory on p.c.b.
* Memory mapped VDU. Line width selectable from 16 to 49 characters by 16 lines

IMPROVEMENT

This computer is based on the Ohio Scientific Superboard (reviewed PE June 79), which only displayed 23 characters per line on a normal TV, and produced the USA standard 60 Hz frame frequency unsuited to UK TVs. These and other disadvantages have been rectified in the COMPUKIT UK101. For example, the keyboard has been altered to show certain missing characters on the Superboard, and the BREAK key is less prone to accidental operation.

This month, the COMPUKIT hardware is briefly described in block diagrammatic form, along with some technical details of the 6502 Microprocessor. A section on the specifications of the BASIC package is included, for which the reader will require some previous knowledge of BASIC-a library book would be useful at this point for those just beginning in the world of programming.

A BASIC primer article is to be published in this magazine very soon and will help with an understanding of this very popular microcomputer language.

HARDWARE

Based around the 6502 MPU and a set of binary counters as clocks, the COMPUKIT has been designed and set out to be as flexible and easily modified as possible while making no compromises for those who will only use the machine as it stands.

The 6502 is a reasonably typical 8-bit microprocessor with a 16 -bit address bus and 8 -bit data bus (see Fig. 1) and the control lines are similar to the 6800. There are two interrupt lines: IRQ and NMI. When forced low, the latter will interrupt execution at the end of the current instruction cycle and branch to a routine whose address (vector) is stored in two bytes at the top of memory. IRQ is similar but may be rendered inoperative by setting (to " 1 ") the MASK flag of the P-register. RES is a reset line whose vector is also stored at the top of memory.

There are five more control lines which have the following effects. R \bar{W} informs the system as to whether a READ or WRITE operation is being performed. SYNC is used to identify an Op-Code fetch cycle. RDY is used to halt the processor for DMA or slow memory, etc. S.O. is a line which. may be used to set the Overflow bit in the P-Register. D1out and $\emptyset 2$ out are system clock lines.

Other pins on the MPU's 40-pin package are used for Data, Address and Power Supply (+5 V).

The register set of the 6502 is smaller than that of the 6800 and $Z 80$ as only one primary accumulator is inclüded and there are no 16 -bit data or index registers available to the user. This is partly made up for by an enhanced set of addressing modes which use pairs of memory locations to hold addresses. However, there are no 16 -bit Load, Store or Compare instructions to manipulate these pairs directly and all such operations must be constructed from 8-bit arithmetic operations.

WARNING: Computing is highly addictive.

Fig. 1. 6502 internal architecture
The Stack is implemented in Page One (the second 256 bytes of memory), as the Stack pointer is only of 8 -bit length-a ninth bit exists but is permanently set to " 1 ".

Page Zero (the first 256 bytes of memory) is very heavily used by the 6502 instruction set as its two Index registers. are both 8 -bits in length. However, as referred to above, indirect addressing exists whereby an instruction may take its effective address for execution from a pair of bytes, stored anywhere in memory. Various Offset modes exist using the index registers. In this way, pairs of memory locations act as 16 -bit registers; but, again, they are not able to be manipulated with 16 -bit instructions. Try writing a program to clear a block of memory greater than 256 bytes in length and you'll see what I mean I

If you have worked on the 280 or 6800 you will find certain aspects of the 6502 code most frustrating while others you will discover to be something of a breakthrough. Readers who are used to the SC/MP or 1802 instruction set will probably be most surprised at the difference when working on such an advanced machine.

The speed of processing is similar to the $\mathbf{Z 8 0}$ and 6800 and all three exist in various speed options. One interesting point is the 6502's "rise to power" as probably the most widely used Micro on the market. APPLE, PET and KIM all use the 6502 and there are several other 6502-based systems in the pipeline, all of which implies that the software backup for the 6502 is very wide and increasing in size.

SYSTEM DESCRIPTION

The Block Diagram, Fig. 2, shows the main parts of the COMPUKIT in a condensed form. The heart of the system is a set of binary clocks fed from an 8 MHz crystal controlled clock generator. The clocks are not only used for the MPU but form the main control for the VDU, which is continually polling the VDU RAM for information to be displayed at exactly the right time on the screen. Those familiar with the PE VDU (P.E. Oct.-Dec., 1978) will note that the clocks perform most of the functions associated with the Thompson CSF Cathode Ray Tube Controller chip.

The most dominant block on the diagram, is in fact the VDU-a fairly typical memory mapped system run from the binary counters. The screen of information to be presented is stored in the VDU RAM in a binary-coded form (ASCII) for the 128 ASCII characters, and extended to include codes for the various graphic characters (128 in all) available on the COMPUKIT.

Address bits are sent to the VDU RAM from the binary counters in sequence starting at the location to be displayed at top left of the screen. As the counters ripple through all the addresses, the full screen of (theoretically) 1024 characters is accessed and the data at each location passed on to the character generator which interprets it as video dots to be displayed on the TV. Each character occupies 16 TV lines (in pairs to form eight vertically arranged dots) and the binary counters supply the necessary counting information along the character generator row-address lines.

When the MPU wishes to interrupt this process and access the VDU RAM, it switches the Address Switches and tri-state buffers over to the MPU Buses.

In order to display the information from the character generator on a TV, it must be serialised by the Parallel In Serial Out (PISO) device, mixed with Frame and Line synchronisation pulses, converted from TTL levels and fed to the UHF modulator. The output may then be plugged directly into a TV aerial socket and the TV tuned to around Channel 36.

The Sync. pulses for the TV are generated by a set of monostables from the main binary counter chain and the design includes a display-blanking stage to prevent MPU access to the VDU from causing excessive "noise" on the screen. This allows fast real-time updating of the video information without upsetting the display.

The VDU Dot clock on the COMPUKIT oscillates at 8 MHz , which is fast enough to display about 48 characters per line on a normal TV. 768 characters are thus displayed on the 16 lines. The rest of the 1024 remain "hidden" off the screen but are perfectly valid Read/Write memory locations. This number of characters keeps the bandwidth down to a value acceptable by the I.F. stages of all domestic sets, and straight video need never be used due to the resulting excellence of definition in the characters displayed by the COMPUKIT.

The "hidden" characters of the VDU are never used by the BASIC interpreter, of course, as the software is carefully modified to use just the 49 characters per line which appear. The number of characters thus used per line is also selectable by the user for those TVs which will only comfortably display 48 or less characters across their screens.

The other sections of the COMPUKIT are shown connected to the Address and Data buses as well as to Address Decoding logic which selects each block as its address comes up on the Address Bus. The various control lines are omitted for simplicity.

The full character set. Note that alpha-numeric characters are vertically spaced to give uncluttered lines of text, but graphics characters join together to allow pictures to be formed.

The COM PUKIT UK-101 board. A transformer is supplied but does not mount on the p.c.b.
(Note that this is the prototype board)

The Bus lines are controlled and operated by the 6502 MPU which derives its instructions from the ROM and RAM blocks which take up between them 18 K of memory. 2 K of this is a Monitor (operating system) with BASIC support, keyboard handling; machine-code monitor, floppy-disc bootstrap, etc. 8 K is the BASIC interpreter and 8 K is for the RAM block, of which around $\frac{3}{4} K$ bytes are used as a scratchpad by the various ROM-based programs.

Another important block is the Asynchronous Serial Communications section-including the cassette interface. This is driven by an ACIA (Asynchronous Communications Interface Adapter-the 6850 chip). The clocking comes, of course, from the binary counter chain and may be fed from higher up the chain to effect faster transfer speeds than the 300 BAUD for which the system is set up. In addition, there is provision, on board, for a RS232 interface run by the
same software as the Cassette. This allows connection of the system to any standard serial device from teletypes to modems and extra VDUs.

The keyboard section is also shown connected to the Data Bus and Address decoding, and this is run by software scanning for speed and efficiency. The software scans the keyboard for a key-closure and identifies the character being accessed from ROM.

Finally, and of great importance, is an expansion socket (40-pin d.i.l.) for the Address, Data and Control lines to allow expansion to a separate Motherboard. This could easily be extended to the S100 Bus, but is plug-compatable with the Ohio Scientific OSI-48 Bus and Floppy-Disc interface. Anyone wishing to use the COMPUKIT for control purposes will find the expandability via this socket of great assistance.

The 5V Power Supply Unit (PSU) gives 3 amps.

COMPONENTS

Resistors
R1-R12, R68, R80, R81 R33

- 4 k 7 (15 off)

6 k 8
R34, 250
15 k (2 off)
R37, R55, R63, R64
R35
R36, R60, R61, R65
R51, R74
R52, R54, R59, R72, R82
R53
R56 100k

R58 $\quad 560$
R62 100
R67 27k
All $+\mathrm{W} 5 \%$ carbon film

Capacitors

C6 $\mathrm{C}, \mathrm{C} 12$, C55
C8
150 p ceramic
1n mylar (3 off)
100 n mylar
68 p ceramic
10 n mylar (2 off)
C10,C13
1μ mylar
220 n ceramic
27p ceramic
47 μ electrolytic
3,300 electrolytic
100 p ceramic
100n disc ceramic (31 off) (These are all supply decoupling capacitors)

Diodes
D1-D10
D15
1N914 (10 off)
1N4001
D17, D18

Any 3A rectifier diode (2 off) (1N5401 will do)

Integrated Circuits

IC1
IC2, IC3
IC4, IC5
1C6, IC7

Any 5V, 3A TO3 type regulator
74LS75 (2 off)
74LS125 (2 off)
8 T28 (used only for expansion)

IC8

IC9-IC12
IC13

IC14

IC15
IC16, IC18, IC21, IC62

IC17

IC19
IC20, IC22, IC23
IC24, IC25
IC28, IC65, IC69
IC29
IC30, IC59-IC6 1
IC31-IC40, IC45-IC52
IC41
IC42
IC53-IC55
IC56
IC57
IC58
IC63
IC66
IC70

Miscellaneous

di.l. sockets

40-pin	2 off
24 -pin	7 off
18 -pin	18 off
$16-$-pin	21 off
14 -pin	13 off
8 -pin	1 off

FS1 - 10
3 Amp fuse plus hoider
XI BMHz crystal
UHF modulator
Double-sided platedthrough p.c.b.
Set of keyboard switches and Key tops
Regulator heatsink plus fixing screws
Transformer-240V/
50 HZ : $9-0-9 \mathrm{~V} 3 \mathrm{~A}$

CONSTRUCTORS' NOTE

The Compukit UK-101 is being produced by Comp Components (see advertisers' index), for £219 + VAT. This will include a full power supply on-board (including power transformer), and a UHF modulator. The graphic character set also includes such symbols as $£$ and π.

The p.c.b. is of a professional standard with platedthrough holes and silk-screened component legends, and a full set of i.c. sockets is included in the kit price as is-with 4 K of user RAM (a further 4 K may be purchased to upgrade the board to its full capacity).

The Compukit comes with full manual (written by the author), but the beginner would be advised io obtain a book on BASIC, and perhaps even on 6502 machine code programming, as the Compukit manual is not intended to be a primer on either subject.

The computer is available for demonstration at Comp Components.

SOFTWARE

The machine accepts its instructions in the programming language called BASIC as well as 6502 machine-code. It is the use of BASIC which will be paramount and its specifications are given below.

There are many versions of BASIC (Beginner's All Purpose Instruction Code) for many different machines. There are Tiny BASICS, Integer BASICS, Double Precision BASICS, etc., etc. Minis and Main Frames usually offer a version of BASIC in Compiler form which includes all the Scientific and other functions plus the ability to manipulate matrices and Disc files. Few if any of these versions, however, allow direct manipulation of memory locations within the computer when programming or debugging. Access to machine-code routines is also a rather complex operation and use of the machine to control even such simple things as a bank of lights is usually impossible. It was not until the advent of the MPU-based computer with its feet firmly embedded in memory address decoding, machine-code programming and control applications that such interplay became common. BASIC has become the high-level language of the microcomputer, and interpreters rather than compilers are the normal implementation method. The interpreter's ease of use made it the order of the day and Microsoft's BASIC interpreter was born. This is a very powerful package and exists in many versions of which the COMPUKIT's is one of the very fastest.

It is quite different from the 1 K and 2 K BASICS with their incredibly restricted instruction sets. The COMPUKIT's version, as its name implies, occupies 8 K (8192) bytes of the machine's memory and is stored in Read Only Memory (ROM). This type of memory has two advantages:
(1) The BASIC interpreter is not lost when the machine is switched off-indeed it is almost impossible to lose it short of crushing the chips in a vice.
(2) The language is available instantly upon switch-on and does not need to be loaded from some external medium into the machine's memory.
Other methods of offering BASIC include storage on disc. The COMPUKIT can be expanded (by a direct plug-in option) to run the Ohio Scientific's Disc System which comes complete with a powerful disc BASIC, as well as 24 K of extra memory to run it in.

Despite the fact that the resident BASIC (in ROM) is at the top end of the scale for speed and sophistication, this does not mean that it is difficult to program. On the contrary, BASIC's use has blossomed for one paramount reason-it is sophisticated enough to satisfy the most technical user in industry, business and research while being remarkably easy even for total beginners to learn and use. The reader will recognise that most of the language is written in a kind of formalised logical English.

SUMMARY OF BASIC SPECIFICATIONS

There are three modes of use of BASIC on the COMPUKIT:
(a) Command mode
(b) Immediate-mode execution
(c) File-mode execution

The computer is said to be in the Command Mode whenever the message:

OK

appears. This is usually after a system Reset following initial power-up, or at the end of a program. The "-" is a cursor which moves around the VDU screen and keeps the user updated as to his/her position. In this mode, the following commands are allowed:

Software has unexplored dimensions awaiting the adventurous, and sophisticated games are possible which can be as much fun to devise as to play.

CONT (short for CONTINUE), LIST, NEW, NULL, RUN, SAVE, LOAD. These include editing, running programs, continuing after a Breakpoint and Cassette handling. Most of these commands may also form statements within a program.

Immediate mode of execution is similar to Command mode but involves normal BASIC statements which may be ganged together to form complete programs executed when the RETURN key is pressed. In this mode, for instance, the machine is available as a super calculator with Scientific calculations of great complexity able to be executed immediately.

To file program statements for later execution, and to build up complete programs, statements are given line numbers to distinguish them uniquely and place them in instruction sequence in the computer's memory. The finished program may be started by using the command RUN and this is termed File-mode execution.

STATEMENTS AVAILABLE

CLEAR	LET
DATA	ON... GOTO
DEFFN	ON...GOSUB
DIM	GOSUB ... RETURN
END	PRINT
FOR.... NEXT	READ
GOTO	REM
IF...THEN	RESTORE
IF...GOTO	STOP
INPUT	WAIT

RELATIONS, OPERATION AND FUNCTIONS

ABS (X)	$\operatorname{SGN}(X)$
$\operatorname{EXP}(X)$	$\operatorname{SIN}(X)$
FRE (X)	$\operatorname{COS}(X)$
$\operatorname{INT}(X)$	$\operatorname{TAN}(X)$
$\operatorname{LOG}(X)$	$\operatorname{ATN}(X)$
$\operatorname{PEEK}(1)$	$\operatorname{SPC}(I)$
$\operatorname{POKE}(I, J)$	$\operatorname{SOR}(X)$
$\operatorname{POS}(1)$	$\operatorname{TAB}(1)$
RND (X)	$\operatorname{USR}(X)$

The variables I and J denote integers and X denotes any number. This is a collection of scientific and other functions which includes calculation of the number of bytes left free for program storage, manipulations of address locations directly, and calls to machine code subroutines.

STRING FUNCTIONS

ASC (X\$)	MID $\$(X \$, I, J)$
CHR $\$(I)$	RIGHT $\$(X \$, I)$
FRE $\$ \$)$	STR $\$(X)$
LEFT $(X \$, I)$	VAL $(X \$)$
LEN $(X \$)$	

These functions allow a string of alphanumeric and graphic characters to be stored, manipulated, sorted, etc. to a very sophisticated degree. A numeric string may, for example, be converted to its numeric equivalent and back again. The use of all these BASIC statements will be clearly explained in subsequent issues of PE, for the benefit of the beginner.

VARIABLES, TYPES, ACCURACY

Numeric variable names may be any alphanumeric string starting with a letter and containing no special BASIC words. Only the first two characters define the variable. The number of variable names thus available is of the order of 900. String variables are similar but their names must end with a $\$$. For example $A 1$ is numeric and $A 1 \$$ is a string. Numeric and string arrays are also allowed, and increase the already large number of variables available by a considerable factor.

An accuracy of $6 \frac{1}{2}$ digits is used for Scientific calculations, and numbers from 10^{-38} to 10^{+38} are allowed. The computer automatically shifts into exponent form (Scientific representation) as necessary. String variables are from 0 to 255 characters in length. Both string and numeric arrays of several dimensions are allowed.

ABBREVIATIONS AND SPECIAL CHARACTERS

The character ? may be used instead of the word PRINT, and LET and END are optional, as is the variable in a NEXT statement under certain conditions. Spaces are irrelevant to the BASIC and colons may be used to separate statements on the same program line.

The above features allow fast programming with improved use of memory space, in addition, errors in typing may be deleted by use of the DEL key.

This completes the general overview of the system, and next month the details are given in full. Some details of programming in BASIC will be given and will be selected to "tie in" with the introduction to BASIC to be published in P.E. in the near future. 6502 machine-code is of a more specialised nature and the reader is well advised to buy a good primer on this subject along with a technical description of the 6502 if it is intended to use the machine at this level. Those with any expertise in machine-code programming on another machine will find that learning the 6502 code is quite simple however, and a 6502 data sheet will probably suffice.

HARDWARE AND SOFTWARE INGENUITY
In this series of articles, applications for the UK 101 will be suggested, and it is hoped that software houses will be interested in providing cassette packages for as many uses as can be dreamed up.

The hardware will also be described in such detall as to allow maximum freedom to modify or add to the basic design, and readers are welcomed to let us know of any software/hardware accomplishments or suggestions they may have.

KEYBOARD HARDWARE

The photograph shows the positioning of the keys on the keyboard; while Fig. 3 shows the arrangement of the keyboard switches and interface logic.

The keyboard looks like a matrix of 8 rows and 8 columns to the computer; the Rows being one Write-Only memory location, and Columns being Read-Only. These two occupy the same memory location (DFOO in HEX) and the computer distinguishes between Rows and Columns by writing to or reading from DFOO.

The MPUs R / \bar{W} line is used to control WKB and $\overline{\operatorname{RKB}}$ accordingly by some logic to be described next month.

Essentially, the software is designed to send a "walking bit" to RO-R7. Thus, the RO line is set to a " 1 ", then back to " 0 ", followed by the same on the R1 line, and so on, up to R7 and back to R0 again. The " 1 " scans along the Rows waiting for a key closure to transmit it to a Column (one of the CO to C7 lines). If character A on the keyboard is pressed, the contact time must be long enough for the " 1 " to reach R1 (a very short time at worst). The A key then transmits it to C6, and the Computer receives and processes an A character. The fact that the walking 1 was being sent to R1 and immediately received along C6 makes the A key unique. RO is used to decode the control keys at the same time; thus, if RO and C1 followed immediately by R1 and C6 is decoded, the computer receives a SHIFT A character. The encoding for the keyboard is thus stored in the Monitor ROM.

When the computer has written to a Row, the Data Bus switches to Reading from the Columns. Normally, therefore, the Row information would thus be lost and the 1 would never reach any of the Columns. Hence the reason for the latches IC2 and IC3 which store the walking bit long enough to be read from the Columns as necessary. The diodes on IC2 and IC3's O/Ps protect against multiple key closures shorting two or more O/Ps together. IC4 and IC5 are tristate buffers which ensure that the keyboard information is presented to the Data Bus only when the computer is reading the Columns, otherwise the keyboard would present its information at a time when the Bus was being used elsewhere, thus causing an electrical conflict. Pull-up resistors are included on the inputs of IC4 and IC5, as CO-C7 are open circuit most of the time.

The, keyboard decoding is thus dependent upon a particular program in the Operating System, and whenever that routine is inoperative, for instance while certain parts of a user's program are under way, the keyboard is unusable. However, the INPUT statement in BASIC allows the operator to input data via the keyboard during a program. In addition, the address of the keyboard routine itself is available for use via the USR function within a BASIC program.

The only two keys not mentioned in the diagram are the two BREAK (or RESET) keys. These connect directly to the RESET line of the MPU and must both be pressed to reset. This prevents accidental breaking in most circumstances.

Fig. 3. Above: Keyboard switching matrix Below: Keyboard interface circuit

POWER SUPPLY UNIT

The power supply is very straightforward since the Cortpukit is a single supply device with distributed capacitive decoupling on the board. All but the transformer are mounted on the p.c.b. and a heat sink is provided for the 5 V regulator. The photograph shows the extent to which supply noise decoupling is allowed for on the p.c.b. 100n capacitors appear at the most important places to prevent spikes and crosstalk being transmitted along the power lines.

The PSU also has a 3A fuse and a polarity compliance diode to give some protection against accidentally reversing the +5 V and OV lines by those using an external PSU for any reason.

The UHF Modulator used on the board is the 8 MHz Astec device which gives an excellent output when supplied with five volts. This device was chosen to ensure that the p.c.b. remained a single-supply system.

Fig. 4. Power supply circuit diagram

The UK-101 working happily with a floppy disk.

NEXT MONTH: Constructional detáils of this powerful computer are given, so learn computing the comprehensive way, using a high level language and working down to hex code programming. The UK-101 is capable of both!

FRANK W. HYDE

END OF TASK

The third small astronomy satellite launched by NASA ended its task and life by burning up over the Pacific Ocean in April. During its lifetime it made important discoveries which are being studied at the Massachusetts Institute of Technology and the Smithsonian Astrophysical Observatory.

The satellite was launched in 1975 and placed in a 500 km circular orbit. It was designed for a life of one year but in fact lasted three times that period. Data was continuously returned up to the time when atmospheric drag (accentuated by the rise in sun-spot activity) ended in the decay of the orbit to burn-up destruction of the satellite.

Several X-ray sources were discovered and also two quasars. The most interesting objects discovered were the X-ray 'bursters'. These objects have the characteristic of giving short intense bursts of X-rays. Such is the intensity that in some cases bursts appear, at intervals of a few hours, at a level of 100,000 times the intensity of the Sun in a fraction of a second, and then fade away over a period very much greater. A theory offered in explanation of these events, and this is supported by other satellite observations, is that the bursts of energy derive from thermo-nuclear reactions. About 35 such 'bursters' are now known; more than half of them were discovered by the satellite.

The astronomy satellite also discovered an X-ray burster which emitted bursts several times a minute. The nearest of this type of object is about 15 light years distant.

INTERNATIONAL
 ULTRA-VIOLET EXPLORER

This spacecraft is an astronomical telescope in a geostationary orbit which has been used recently by the European Space Agency to look at a new supernova. The supernova was observed by an American amateur astronomer

Gus E. Johnson of Swanton, Maryland. He has the distinction of being only the third person in history to have made a direct observational discovery of a nova in another galaxy. Gus Johnson was observing NGC 4321, number M100 in the Messier catalogue. Using his eight inch telescope he saw a 12th magnitude star southeast of the nucleus of the galaxy. It is not possible to see the nova with the naked eye. Its distance is about 100 million light years; what is being seen now happened 100 million years ago.
The European Space Agency, ESA, have observed rapid changes in the ejected material of the nova and modified spectral features similar to those found in earlier examples. Also there was shown the absorption of ultraviolet emission lines. These lines are similar also to that found in the interstellar gas in our own galaxy.

The satellite is controlled through the tracking station at Villafranca near Madrid. The US contribute the major share of the cost, other funding coming from the ESA and British Science Research Council. Access to the International Ultra-Violet Explorer is divided between NASA at the Goddard Spaceflight Centre in Maryland and the ESA's station at Villafranca. This spacecraft was launched last year.

THE SHUTTLE—TOWARDS THE LAUNCH

The Orbiter named Enterprise was moved from the assembly pad to launch pad 39A at Cape Canaveral at the beginning of May. It consisted of the Enterprise assembled on the external tank and a pair of Solid Rocket Boosters, SRBs. It is proposed to use the Enterprise to prepare the way for Orbiter Columbia which will make the first flight. The gross lift-off weight of the shuttle is a little over 2,000 tonnes. The shuttle is fixed to the launch platform at four hard points at the base of each SRB.

The purpose of the launch pad trials with the Enterprise are to check procedures and mechanical clearances. One important part of the tests will be that of opening and closing the payload bay doors while the shuttle is in the vertical launch position. This appears to be a vital stage because in the procedure of the first launch the payload will be loaded at a late stage. It is expected that a number of launches will take place in this position. Though some launches may be requested in this manner it is thought that it may be a procedure to save time between successive launches. It is probable that after the tests have been carried out Enterprise will be refurbished for a mission later.

The last date for the first launch was scheduled for September 1979 and the success of the tests will determine the exact date for the first mission, which is now thought to be for November. The completion for the work on Columbia will naturally be the determining factor. Columbia left the Rockwell plant in March but there remained a number of things to be done and some of the temporary work has led to certain difficulties. A very considerable number of man hours are required to bring matters to the right timetable, something of the order of 70,000 .

The attitude control system used in orbit is erected below the cockpit windows and had to be removed in order that the propellant could be loaded. Columbia is fuelled by hypergolic propellants. These are mono-methyl, hydrazine and nitrogen tetroxide. These are subject to ignition on contact.

Other work involved in preparation was the powering of the electrical system and connecting up the automatic test systems. There were no problems. The data processing and warning systems were also tested. The test instrumentation has a very extensive task, for this is to give vital information as to stresses, acoustic levels of vibration and temperatures. Installation of the fuel cells for electrical power has yet to be accomplished. An auxiliary power unit is an important item for installation since this is to be used for the operation of the control surfaces during ascent and descent. All this could mean that the final date for the first launch will be delayed until 1980 .

Meanwhile the two astronauts John Young and Robert Crippen, the first pilots of the Space Shuttle Age, continue to prepare. Many programmes have already occupied their time in the simulator and the remaining programmes are now being studied and practised.

THE SECOND FLEET SATCOM

The United States Navy's new fleet Satcom was launched from Cape Canaveral on May 4th 1979. This was one day later than set because of certain last minute confirmation checks. Two days after launch the apogee 'kick' motor boosted the satellite from its transfer position to the geostationary orbit.

The satellite will provide radio links between ground stations, ships, submarines and aircraft. It will be controlled by the USAF at its own centre at Sunnyvale, California. The USAF will use the facility for ground to air communications but the Navy has independent access.

The coverage is the eastern United States, the Atlantic Ocean, Europe and a part of Africa. The position of the satellite is at the geostationary longitude $23^{\circ} \mathrm{West}$. Three more such satellites will be added at the rate of one a year. The average life of each one is of the order of five years.

VENUS

The first full disc view of Venus has been provided by the Pioneer Venus Orbiter. The direction of the clouds clearly indicate to eastwest rotation of the planet, that is retrograde. It was taken from a distance of $65,000 \mathrm{~km}$ from the planet.

THE FALL OF SKYLAB

By the time this is in print Skylab might be down. British and American satellite experts forecast Skylab's re-entry at 1st, 2nd, 10th or 20th July. Of the 20 tonnes of fragments falling at $320 \mathrm{~km} / \mathrm{h}$ the largest pieces likely to pass through our atmosphere are: a lead film vault weighing $1,800 \mathrm{~kg}$, an aluminium airlock shroud of $2,250 \mathrm{~kg}$ and six oxygen tanks at $1,215 \mathrm{~kg}$ each. A total of about 500 pieces are expected to fall over an area $6,400 \mathrm{~km}$ long by 160 km wide, between latitudes 50° north and 50° south. Most of the pieces will vaporise.

IC TEST CLIPS

This new Lektrokit i.c. test clip offers a simple and inexpensive means of assessing any i.c. pin or lead. Test probe attachment is made simple and the chance of damaging i.c. pins is avoided. The test clip simply clips over the i.c. bringing its individual lead connections out to a set of easily accessible contacts at the top of the clip.

8,14 and 16 pin sizes are available. The 14 pin version costs $£ 2.95$ p, (pre-budget).

A contact "comb" separating individual contacts gives positive positioning and prevents accidental shorting of adjacent leads.

Lektrokit Limited, Sutton Industrial Park, London Road, Earley, Reading, Berks RG6 IAZ (0734 669116/7).

D.I.L. SWITCH BROCHURE

A new, six page, four colour brochure is available free from Erg Components. It contains full technical specifications and switching configuration diagrams for all ty pes of Erg di.i.l. switches. Prices are given and there is no minimum order charge for items held in a maintained stock.

Erg Industrial Corporation Ltd., Luton Road, Dunstable, Bedfordshire, LU5 4LJ. (0582 62241).

LOW PROFILE KEYBOARD CONSOLES

A new range of keyboard enclosures has recently been introduced by BOSS Industrial Mouldings. They are available in three sizes, are all aluminium and have a textured black base which contrasts with either the semi-gloss sand or charcoal grey top panels. The top panels slope at approximately 20°.

Prices from $£ 16.05$ to $£ 21.83$, plus VAT and carriage.
BOSS Industrial Mouldings, Higgs Industrial Estate, 2 Herne Hill Road, London, SE24 0AU (01-737 2383).

CHEAP CHIPS

A special price is being offered by Chromasonic Electronics this month on ZN414 i.c.s. Two chips will cost $£ 1-25$ including VAT, p.\&p. If you check the normal price and include VAT, etc. we think you will find this is a saving of almost 50 per cent!

BECKMAN DMM

A new $3 \frac{1}{2}$ digit l.c.d. multimeter has been introduced by Beckman Instruments. Measurements can be made on five d.c. voltage ranges from 200 mV to $1,500 \mathrm{~V}$; five a.c. voltage ranges from 200 mV to $1,000 \mathrm{~V}$ and five a.c. and d.c. current ranges of $200 \mu \mathrm{~A}$ to 2A which can be extended to 10A through a separate input. The six resistance ranges have f.s.d. values from 200Ω to $2 \mathrm{M} \Omega$.

The low power resistance ranges permit incircuit resistance measurements to be made without turning on semiconductors, which would affect the measurements. For applications that require diodes and semiconductors to be tested, a separate semiconductor test function provides a 5 mA test current, enough to check the operation of most semiconductor junctions, even circuits with as low as 200 ohms of equivalent parallel resistance.

An Insta-Ohms continuity test indicator allows continuity to be checked. When an inrange resistance is measured an ohms symbol is displayed in less than a millisecond.

The meter has an input impedance of $22 \mathrm{M} \Omega$. Accuracy is to within 0.1 per cent +1 digit on all d.c. voltage ranges. Both a.c. voltage and current are average r.m.s. measurements.

The inputs are protected against overload conditions that may arise from measuring unknown signals or from operator error. Voltage ranges are protected from inputs in excess of $1,500 \mathrm{~V}$ r.m.s. a.c. Resistance ranges are protected to 300 V d.c. or r.m.s. a.c. The current inputs are protected with a 2 A fuse, a replacement fuse being included inside the instrument's case. The 10A range is rated for 20A for 30 sec .

A 9 V battery provides up to 2,000 hours of continuous instrument operation, giving up to two years typical use. During the final 200 hours of battery life a decimal point blinks on the display to warn the user to change the battery. Calibration, guaranteed for one year, requires only the simple adjustment of an internal trimming potentiometer.

Accessories include two carrying cases, a radio-frequency probe for voltage measurements up to frequencies of 200 MHz , a current clamp for measurements up to 200A, and a de-luxe test-lead kit with test leads and ten screw-in probe tips.

The price of the 3020 is $£ 115$, plus VAT and p.\&p. For further details contact Beckman Instruments Lid., Queensway, Glenrothes, Fife KY7 5PU(0592 753811).

MULTIRANGE CAPACITANCE METER

This simple-to-use instrument is now available on the UK market from Alcon Instruments. K nown as the Varicaptester, it is a pocket-sized multirange capacitance meter with abilities extending from pF to thousands of $\mu \mathrm{F}$.

It is constructed in tough ABS plastic with simple range selection, full-view cover, and can cope with all types of capacitor. Component values up to 3μ are read in conjunction with a green illuminated indicator (overflow) which clearly shows when the value of the component under test is too high and it requires a higher range.

For values above 3μ a system of timing the interval between flashes of an l.e.d. provides direct indication of capacitance value. On two selected ranges, capacitance can be indicated as 1μ per second or 100μ per second, thus extending the range to several thousand $\mu \mathrm{F}$.

Maximum sensitivity is $1 \mathrm{pF} \times$ division, accuracy is 2.5 per cent. Power for all normal uses is supplied using internal batteries. The user may apply an external voltage.

The Varicaptester comes complete with instructions, leads, case and batteries. Price is $£ 82.50$ (pre-budget) and delivery is at this time 'off the shelf'.

Alcon Instruments, 19 Mulberry Walk, London, SW3 6DZ. (01-352 1897).

100W MOSFET

The PA 100 from Ambit is a power amplifier module which uses Hitachi power MOSFETs and is suitable for audio applications at power levels up to 100 W r.m.s.

The drive circuitry is greatly simplified with MOSFETs while bandwidth is up to 300 kHz and the harmonic distortion less than 0.01 per cent in the audio range.

The use of MOSFETs increases the reliability of the amplifier because of their inherent freedom from thermal runaway and secondary breakdown as well as loads that are potentially hazardous for bipolar amplifiers (i.e. reactive loads).

The price of the PA100 is to be announced in the near future.

Ambit International, 2 Gresham Road, Brentwood, Essex (0277 216029).

NANOTRAINER

The Nanocomputer training system has been specifically designed by SGS-ATES for the educational environment. The system which is based on the Z 80 microprocessor includes a solderless experiment section, specially written user software, many optional peripherals and a three volume series of training books.

The modular construction of the system allows the student to enter the course at a level to suit his ability.

The three main levels in the course cater for: students with no knowledge of computers or digital electronics-book one with the basic micro-computer; students with a knowledge of digital electronics-book two and the experiment station; students with a more advanced knowledge-book three plus the microcomputer, the experiment station, and additional software. At the very highest level of education it is possible to upgrade the Nanocomputer to a full industrial microcomputer, thus allowing individual research programs to be carried out.

The price of the Nano trainer is between $£ 250$ and $£ 450$ depending on the model.

SGS-ATES (UK) Ltd, Planer House, Walton Street, Aylesbury, Bucks. (0296 5977)

ACE 200

Lektrokit have introduced an evaluation breadboard kit called the ACE 200. The unit has a universal matrix of 728 plug in tie points which include 136 separate tie points in lines of 5 , and has two distribution buses each consisting of 24 tie points.

Measuring $11.5 \times 14 \mathrm{~mm}$ the unit is mounted on a baseboard which enables two power terminal connections to be fitted.

The cost of the ACE 200 is $£ 11.48$ plus VAT and p\&p.
Lektrokit Ltd,, Sutton Industrial Park, London Road, Earley, Reading RG6 IAZ. (0734 669116).

MICRO TRAINER

The Signetics Instructor 50 has been designed as a microprocessor training aid suitable for teaching CPU operation, programming and applications. The self contained unit can be interfaced with a conventional audio cassette recorder for program storage.

The Instructor 50 incorporates a single-line l.e.d. prompting display together with a $16-\mathrm{key}$ hexadecimal keyboard for entering data values and a 12-key command keyboard for issuing instructions and selecting operating modes. The system uses a monitor known as USE (User System Executive) which eliminates the need for complicated start-up routines and allows a variety of operations to be carried out on programs and stored data.

The unit, which is based on the Signetics 2650 microprocessor, is equipped with an S-100 expansion interface which allows it to be used as a small computer limited only by the peripheral boards used. In addition, the program/data-entry and debug facilities of the basic Instructor 50 can be extended to any device connected to the interface.

The Instructor 50, which is supplied complete with a user's guide, introductory manual and leads for audio-cassette interfacing, is priced at $£ 300$ plus VAT.

SASCO, PO Box 2000, Crawley, Sussex RH10 2RO.

ONE MEGABIT BUBBLE FROM ROCKWELL

The latest addition to the AIM65 microcomputer system from Rockwell is a fully addressable add-on one megabit bubble memory system.

This external memory is interfaced to the AIM65 via a buffered expansion motherboard which has five connector slots that can accommodate any of the other types of Rockwell or Motorola Exorcisor modules as well as those from other manufacturers.

The motherboard extends the 6502 bus. The bus lines (address, data and control) are buffered to provide drive capability. Address decode logic for mapping internal and external addresses in 4 K byte increments is also provided. Sixteen switches enable the user to define whether each 4 K byte portion of the 6502 address space of 65 K bytes is internal or external to the AIM65. Thus under software control the megabit bubble memory module can provide 128 K bytes of memory expansion.

The price of the motherboard is $£ 136.50$ plus VAT and p\&p. Pricing of the various options allowed by the motherboard can also be obtained from Pelco (Electronics) Ltd., Enterprize House, 83-85 Western Road, Hove, Sussex, BN3 IJB: (0273 722155).

SPRING TRADE SHOWS

Every year the TV, Radio and Hi-fi manufacturers gather in London for the Spring Trade Shows. However instead of gathering under one roof, they spread themselves out over 26 hotels with anything from one to nine exhibitors at each. For those with the stamina it was a chance to see the very latest products before they reach the high street retailers, or blister in the attempt.

On the TV scene, Ferguson and Ultra were showing their new television ranges, featuring the latest TX9 single board chassis from Thorn featured in a News Brief last month. Philips were also launching a range of TVs with their new chassis the KT3 which is also used in the latest Pye range of colour sets. The KT3 chassis was especially developed for use with the smaller (14 in to 20 in) picture tubes.
Many of the larger manufacturers had sets suitable for both teletext and Prestel on view, and Hitachi had their "Instaview" TV on display which provides sound and picture one second after switch on by eliminating the need for preheating the tube.

One area of the market which seems to have really expanded is the small screen TVs

The Plustron CTV55D from Plustronics, a $5 \frac{1}{2} \mathrm{in}$. colour model priced at $£ 299$.
with Plustronics, JVC, Hitachi and Toshiba all showing $4 \frac{1}{2}$ to 6 in colour sets. Many more were showing 4 to 5 in monochrome sets with JVC and Sinclair taking screen size to what

The P100 TV from JVC with a 2 in . screen which retails for around $£ 165$.
must be its realistic limit with their 2 in sets. These miniature TVs vary considerably with many having radios and/or cassette recorders, some of which are stereo.

Crown's 5TV priced at $£ 125$ and supplied complete with rechargeable battery pack.

Crown launched their 5TV, a 5 in set wit a 3 band radio and a totally flat screen whic is said to give a larger viewing area than conventional tube. Crown hope the 5TV wi increase their share of the small screen marke (currently claimed to be 48 per cent) but the competition will be intense.

The K50 and K62 TVs from Hitachi retail for £220 and £249 respectively.

Hitachi had two 5 in monochrome sets on display, the K 50 and K 62 , both of which have cassettes and radios with the radio in the K62 being stereo. The small screen offerings from Sony were two very different models. The TV

The TV511UK from Sony is priced at $£ 127$.
511UK is a robust looking set with a screen angle adjustment ring to enable the picture to be moved through 90° for horizontal or vertical viewing, whilst the FX412UK is a

The FX412UK also from Sony, priced at $£ 209$.
smart lightweight unit with a 4 in screen, 3 band radio and a cassette recorder.
The latest innovation in the hi-fi field is a continuation of the micro TV trend with micro hi-fi separates being exhibited by Aiwa and

The complete Amstrad system includes the pre amp, power amp and tuner, priced at $£ 185$.

Amstrad. The Amstrad system includes a P101 preamplifier, A 101 power amplifier and T101 tuner which has a digital frequency display, l.e.d. signal strength indicator and centre zero tuning.

The Aiwa system is priced at around $\mathbf{£ 5 0 0}$ excluding speakers (SCEII) and record deck.

The Aiwa micro system on show consisted of a pre amp (SAC22), power amp (SAP22), tuner (STR22) and cassette deck (STL22).
Toshiba's latest music centre, the SM4750 has microprocessor memory tuning which can store preset information of eight stations on each of the four wavebands. Long, medium, shortwave and VHF are available with auto tuning on VHF and medium. The 4750 has a direct drive turntable with a strobe, Dolby stereo cassette deck and built in clock timer.

The SM4750 has a retail price of $£ 664.50$ excluding speakers. British made SS45GB speakers are recommended for the 4750, priced at $£ 109.50$ a pair.

TV, Radio and Hi-fi were the main categories of the shows but other small and interesting products were on view. Here are
a few examples of the way developments in technology and changing consumer interest are being responded to by manufacturers and marketeers.

DESTROY-DESTROY

You control the destroyer to protect yout convoy against enemy torpedo attack. Direct your destroyer to intercept and destroy the enemy torpedoes. Play against the clock.

Approx. size $-6 \frac{1}{2} \times 3 \frac{1}{2} \times \operatorname{lin}$.
Priced at around $£ 16$.

Other hand held games from Adam Imports: SOCCER. The computer defends the goal with its six defenders. You attack using the keys provided. Shoot for goal and score as many goals as you can in the time allotted.

Full timing for first and second halves, scoring for Team A and Team B. Change side indicators. You change sides when you have scored and when you have played for a set period of time without scoring.

The game can be played in amateur or professional status and operates off a heavy duty PP3 battery or equivalent (supplied), or an alternative Grandstand mains adaptor (extra). Game priced at around $£ 20$.
4-IN-1. Speedway: Red l.e.d.s travel along the display being controlled by the gas and brake pedals. Steering is done by the two steering keys. Play against the clock.

Blackjack/Pontoon: Play this card game to Las Vegas rules. The bank will automatically take your losses or add your winnings.

Brain Drain: The computer generates four hidden numbers. Guess the numbers in the least number of tries.

Calculator: A full 4-key memory calculator is incorporated with all major functions: dividing, multiplying, adding and subtracting.

Power source- $5 \times$ HP7 batteries or equivalent (not included). Grandstand mains adaptor (extra). Game priced at around $£ 20$.

The complete range of products in the Adam Collection comprises: Video Sports Centres, Video Entertainment Centres, Video Entertainment Computer, Hand-Held Electronic Games, Electronic Calculators, Quartz

Watches, Clock and Portable Radios, Digital Clock, Clock Radio Cassette Recorder, Stereo Clock Radio, Mains Adaptors, Audio Whistle Switch.

See the range at an Adam stockist or write for leaflets to Adam Imports Lid., Unit 2a, Ripon Way, Ripon Rd. Ind. Est., Harrogate, Yorks. (0423 501151).

HYPERSPACEWARPWIPEOUT

Star Chess is a TV game for two players which combines sophisticated technology with skill and luck.

Both players are Admirals of a fleet of spaceships. Using all your resources, your mission is to annihilate your opponent's flagship, the Commander, and at all times protect your own Commander from destruction.

To help you in your task, you have Starfighters, Supercruisers, Superfighters, Starcruisers and an extremely powerful Destroyer. Each of these spaceships has an armoury of missiles to blast your enemy's forces off the screen.

When one of your spacecraft is in danger and has no apparent means of escape-all is not lost, it can be warped into hyperspace and out of immediate danger. But beware, for that ship will re-materialise in almost any square on screen, wiping out any spaceship occupying that square-even your own Commander. When one of the Commanders has been destroyed-cosmic pandemonium breaks out on your TV screen. R.R.P. is $£ 64.95$.

Literature on other games from Waddingtons Videomaster Ltd., 36-44 Tabernacle Street, London EC2A 4DT.

BE YOUR OWN VIDEO

CAMERAMAN/DIRECTOR

Do your own video thing with a portable video cassette recorder and zoom camera.

Video cameras from Ferguson can be powered from their Videostar portable cassette recorder as well as mains. The monochrome camera has a 2 to 1 zoom lens, automatic iris,
and a built-in directional microphone in case you don't have a sound assistant. The colour camera has a 6 to 1 zoom. Likely prices, monochrome camera- $£ 214$; colour camera-£856; portable recorder- $£ 856$; mains adaptor- $£ 20$; tuner/timer- $£ 214$.

MULTI-INTERFACE SCENARIO

What to do with a Cassette/Clock/Radio. Listen to the radio. Listen to cassettes. Note the time. Record speech onto cassette. Record from radio onto cassette.

Auto-record at a preset time.
Be lulled to sleep with auto-stop.
Sleep-learn from cassette.
Have the radio wake you up.
Have cassette music wake you up.
All this seems to be possible with the Nova 309 which has a R.R.P. of $£ 57 \cdot 50$.

If a microwave oven and a home computer were incorporated what couldn't you do?

Novaline Ltd., 14-20 Headfort Place, London SW 1X 7HN (01-235 5444).

UHF VROOM

If a second TV set is a portable it is likely that its integral aerial will not provide as good reception as an outdoor array. There may be sufficient signal strength from the outdoor aerial to feed both sets but parallel fed sets are almost certain to cause each other interference. So a properly designed splitter must be used. Then there is still the possibility that there is insufficient signal strength to feed both sets.

A solution to both problems is offered by a Second Set Amplifier by Labgear. It is expressly designed to operate two UHF TV sets from one aerial. The device is mains powered and provides a modest boost to the signal on each outlet. R.R.P. $£ 7$-30.

A leaflet on Labgear's-Signal Amps., Splitter/Combiner, and Log-periodic room aerial, is available from Labgear Lid., Abbey Walk, Cambridge CB1 2RQ, England (0223 66521).

77.
 |r®CU||(CUU р. ввин

Would-be microprocessor system constructors are today faced with a bewildering variety of systems to choose from. These range from cheap systems which are relatively easy to build, but may be difficult or impossible to extend beyond the 'keys and lamps' stage, to the expensive systems aimed more at the professional market which require the purchase of many hundreds of pounds worth of equipment before any results can be seen. When Tim Moore of Newbear Computing Store designed his 77-68, he was clearly aiming at a minimum cost system capable of expansion to a 'full house' system without the necessity for spending a large amount of money before results were seen. His claim in 1977 that $77-68$ only cost $£ 50$ to get going was proven by many members of the Amateur Computer Club and even today the kit of parts for the basic system costs less than $£ 50$.

This review looks at the 77-68 CPU board, which utilises the Motorola 6800 processor, and goes on to examine in detail the VDU and monitor boards presently available. Brief mention will also be made of the boards currently under devel-opment-these include a dynamic RAM
board and floppy disc controller. It is worth noting at this point that in common with all systems employing complex logic devices of the TTL and MOS families, 77-68 should be regarded as a project for the constructor with at least limited experience of assembling projects utilising
these devices. The complete beginner would be well advised to make several of the simpler projects offered in Practical Electronics before tackling an ambitious project such as this-when later on the construction is referred to as 'simple', this should be taken strictly as a relative term.

THE SYSTEM

76-68 uses the Motorola 68008 bit microprocessor. This device is a firm favourite with both the amateur constructor and the professional user and although the device has in its basic form some software 'nasties', these can be overcome by a bit of thoughtful programming (new software compatible versions of the 6800 such as the 6809 overcome these problems, but will not be considered here).

The basic CPU board is designed to operate as a 'stand-alone' unit interfacing with keys and lamps to allow simple programs to be written and executed without the necessity for a VDU or teletype. This same board, when plugged into the 77-68 bus, will operate as the CPU card for a system with RAM, ROM, I/O etc., in other words the constructor can start at the simplest and cheapest end of home computing and grow his system as time and money allows into a powerful computer capable, for instance, of running BASIC or performing complex computing tasks.

A block diagram of the CPU card is shown in Fig. 1 and those with knowledge of microprocesors will recognise the familiar blocks of circuitry needed around the 6800 to turn it into the heart of a computer system. For those who may be new to the subject-the blocks shown are essential to allow the microprocessor to communicate with the address and data busses and the keys and lamps are used to allow the user to input programs and read data bus contents.

CPU board

Fig. 2. VDU block diagram

The data input switches are buffered from the data bus by a tri-state buffer allowing the processor bus to be freed from the keys except when data is actually being entered from them.

The data display register latches the data bus information at the appropriate instant and displays this information on an array of l.e.d.s. As the 6800 is a dynamic device, this latch is necessary since data bus information only 'appears' for part of the microprocessor clock cycle and must be 'caught' by appropriately gated signals in an 8 -bit latch. The 77-68 CPU board allows bus buffers to be fitted to the data bus and this should be considered essential if a system with other $77-68$ cards is being constructed. The address bus from the microprocessor has its lower order eight bits passed through a $2: 1$ data selector to allow either a microprocessor generated or switch generated address to be output from the card.

These address switches, data switches and lamps are the users input/output path, allowing memory to be written with programs or data (256 bytes of RAM are provided as shown in Fig. 1), and when programs are being run or debugged, data from memory or the processor to be output onto the l.e.d. display.

The 77-68 CPU card also contains a TTL clock generator which is crystal controlled, allowing accurate software timing should this be required by the user-and finally control logic which interlocks the keys and lamps described above with three switches, halt, load and reset, which will be described later.

CARD CONSTRUCTION

Construction of the CPU is facilitated by the use of an 8 in square printed circuit card with a 78 way, 0.1 in gold plated edge connector etched along one edge. The instruction manual 'The construction
of a simple microcomputer', which can be obtained separately from Newbear, contains full and detailed descriptions of the 77-68 system and the construction of the CPU.

The card assembled as part of this review was completed in a couple of evenings and worked first time when connected to a 'keys and lamps' interface.

The card being single sided for reasons of economy, requires a large number of insulated links and two pieces of ribbon cable to complete the interwiring pattern of the integrated circuits. This part of the assembly takes more than half of the total assembly time and requires care since any errors in linking holes, or faulty insulation, solder bridges, etc., can prove difficult to track down later. The considerable economy affected by using a single sided board is probably worth while since a double sided plated through hole board of this size would almost certainly add $£ 15-£ 20$ to the overall cost of the system; to an amateur constructor with 'free' time at his disposal this additional cost will in most cases be undesirable. The remainder of the construction simply involves 'plugging in' the i.c.s and the discrete components and carefully soldering them in place with the usual earthed soldering iron.

RUNNINGA PROGRAM

Having completed the CPU card and made up á simple keys and lamps interface as described in the manual, a 5 volt 1 amp power supply must be used to power it, this being supplied by the constructor.

Having followed the Newbear instructions for testing what can be achieved with this basic CPU system? The manual briefly describes the 6800 instruction set in terms of its addressing modes and then gives a number of small programs which allow the user to immediately see and hear the processor at work. Several lamp
flasher programs can be run which cause varying lamp patterns to flash on the data l.e.d.s. In addition, if a simple add-on amplifier interface is built then a tone generator program and even a program to play tunes can be run.

These programs, whilst showing in no uncertain terms that the CPU is operational also allow the user an opportunity to study the mode of operation of the 6800 software since clear notes are included in the manual of the changes which can be made to the software, for instance the lamp flasher programs, and the user can see for himself just what effect such changes have on program operation.

A couple of evenings spent loading programs from keys in pure binary form and reading back program and data in binary will convince most constructors of the transitory nature of any 'keys and lamps' system-in simple terms the possibility of error is so great in entering and retrieving data in binary form, that such a simple system can only be considered as suitable for educational purposes. This is not to say that relatively sophisticated programs cannot and have not been run using only keys and lamps, but that operation of such a system in conjunction with lengthy software is a painfully slow process.

VDU AND MONITOR BOARDS

Confronted with the above dilemma, one can either purchase a teletype or consider the construction of a VDU, and it is the latter approach which is greatly favoured by the reviewer. The inconvenience of a VDU in terms of the lack of hard copy, is countered by its silent operation and the convenience of a 'screen' when it comes to playing most computer games and displaying data as program output in many cases. In addition
a VDU, if constructed round a domestic TV set, will almost without exception cost less to construct than a teletype would cost to buy.

Newbear have a 77-68 VDU board which offers a bus compatible interface between a keyboard and a video monitor or with the addition of one of the cheap readily available video modulators-a domestic TV set. The resulting VDU has a 24 line display with 40 characters per line, upper and lower characters being displayed in a 7×10 dot matrix. As is becoming virtually standard in 6800 base systems, the video memory (constructed from eight 2102 devices) is memory mapped as far as the CPU is concerned, giving a vector driven display. This means in simple terms that if a single character on the screen is to be modified then by generating the address of the character to be modified, and sending that to the VDU, that character can be modified on its own, rather than in a serial VDU system where to modify a single character, then the whole screen must be re-written.

The VDU board is the Newbear standard 8 in square unit with a 78 way $0 \cdot 1$ in pitch edge connector etched along one side. Rather than use one of the many CRT Controller (CRTC) chips now available, Newbear implement their VDU using LS-TTL and this allows the use of a good character generator with upper and lower case alpha characters and a variety of semi-graphics characters.

The use of this device, the Texas Instruments 74S262, turns any home-built VDU from the familiar upper case only device into a truly professional unit which is easy to read and offers scope for limited graphics. In addition to the devices necessary to generate the line and frame waveforms, and form characters, this board also contains $1 \mathrm{~K} \times 8$ of static RAM-seven bits in each type being used to store a ASCII code for that character,

Fig. 3. Block diagram of MON 1

the eighth bit being used to over video invert/normal on a character by character basis.

This facility allows highlighting of text and considerably extends the scope for graphics production. As with the $77-68$ CPU board, and others in the 77-68 family, the VDU board is a high quality single sided fibre glass printed circuit board and as with the CPU board, more than half the construction time is taken up in linking points on the circuit using single cored insulating wire. The remainder of the time is taken up in soldering in place the thirty-four integrated circuits used in the system, and an experienced constructor should have no problems in completing the assembly in two or three evenings.

The VDU card has a video output which will direct drive any standard video monitor, or by means of one of the cheap modulators now available feed into the aerial socket of any TV receiver. The card provides an 8 -bit port for a keyboard which of course must be provided by the constructor.

Any ASCII keyboard will be suitable provided that it has a positive going strobe in addition to the eight data lines-this strobe being used to cause a 'Non Maskable Interrupt' to the processor when a key is depressed. Newbear have thoughtfully provided a breadboard area on the VDU board which could be used to interface a non-standard keyboard to the VDU card if required.

It was during testing on this board that the only design fault was found in 77-68; one of the fixed resistors used to determine the range over which the line and frame pulse generator may be adjusted, was too large a value and only by changing this resistor could a stable locked display be obtained. This minor fault, whilst being easy to trace with an oscilloscope, could prove tricky for the constructor with only a multimeter to hand.

EXCELLENTDISPLAY

The compiete VDU offers a really excellent professional quality display and the keyboard quality is obviously determined by whatever is connected to the

(Left) VDU board

(Right) ROM A-the 16K byte EPROM card

interface provided by Newbear. As has been said before, there are significant advantages in using a good (if expensive) character generator and these advantages clearly show up when even simple video graphics are displayed, let alone when text is being viewed. The video is absolutely rock steady (which is more than can be said of some commercial units) even although the 'timebase' of the VDU is centred round a 556 dual timer chip. This is undoubtedly due to the digital circuitry used to generate all timing waveforms, rather than the inaccurate monostable approach adopted by some designers.

BUG 2 MONITOR

Completion of the CPU and VDU boards results in a processor capable of operating (via the keyboard and VDU) only when a monitor program is loaded into the system and set running. The best known 6800 monitor is of course the Motorola MIKBUG software familiar to most 6800 users. This software allows the user to communicate at machine-code level with the processor via a teletype or serial port VDU. Since 77-68 uses a parallel port VDU and keyboard, MIKBUG would not be a suitable piece of software and thus Newbear supply their BUG 2 monitor listing along with the VDU hardware. This monitor must be toggled in using the keys and lamps of the basic control panel and when set running, allows VDU access to the sys-tem-fine while power is applied to the system, but the software is of course lost on power-down, resulting in a lengthy 'toggling in' procedure before each session. This could be overcome by Newbear providing BUG 2 in a ROM and the reviewer feels that this expense would be justified (perhaps as a plug-in option). The Newbear view is that due to the simplicity of BUG 2, most users will go on to develop their own monitor software and though this may well be true, for many this omission will be a great nuisance.

THE SYSTEMIN USE

With BUG 2 installed in the system, what can be achieved? The VDU will produce a 16 line by 32 character display and on depression of the reset button will display an '*' on the screen. Five 'commands' allow memory locations to be examined and altered, MPU registers to be displayed, user programs to be run and also allow the running of a program to be continued following software interrupt. The software should prove adequate for most experimenters in their early work. and will of course allow the user to develop a more advanced monitor should this be felt necessary.

4K RAM board

Newbear users will almost certainly want to extend their system by adding RAM and an interface port of some sort and this is conveniently provided by the 77-68, MON1 board. Constructed as before on an 8 in square single sided printed circuit board, this unit gives access to bulk storage media such as paper tape and cassette units and also provides 1 K $\times 8$ of RAM. The board also allows a 'bootstrap' ROM to be used to load a monitor from, for example, cassette tape, into the system. In practice this allows the user to develop his own monitor or monitors which he can save on tape for subsequent easy reloading into the system. Serial communication is by means of the Motorola ACIA, the 6850, and provision is made for two such devices on this one board, in addition to a variable baud-rate generator (crystal controlled). Both V24 and current loop interfaces are provided, offering interfaces to most serial driven peripherals such as cassette recorder interfaces, teletypes etc.

In practice the 77-68 MON1 board might be used in the following fashion. With the Newbear 'BOOT' ROM installed in its socket on the board, a previously. punched monitor is boot-strapped into RAM from a paper tape reader. The monitor could contain 'CUTS' input-output software allowing access to recorded software via an ACIA port and a 'CUTS' interface, and with this software loaded into the system, it may be modified, run etc., using the VDU as a man/machine interface. Newbear provides a listing of 'DUMP', allowing the user to off-load software to, say, a paper tape punch for subsequent re-use. Clearly this board turns the 77-68 system into a very versatile and powerful processor capable of supporting a variety of hardware peripherals and of running relatively large programs.

Most constructors will aim for a basic system comprising the CPU, VDU and MON boards and when they have gained
experience of machine code programming, look for a way of operating in BASIC or some other high level language. This will require the use of more memory than is offered by the basic system and Newbear offer a 4 K byte static RAM card (which many would consider as part of the basic system in any case), a 32 K byte dynamic RAM card and a 16 K byte EPROM card using 2708s. This range of memory cards is bus-compatible with the other 77-68 of course and will shortly be joined by a floppy disc interface board, offering a good range of memory types to suit all tastes.

IMPRESSIONS

The 77-68 system has been thought out to allow low price 'start-up' costs while at the same time offering a wide range of bus-compatible boards which build into a comprehensive processor system. The quality of the hardware supplied is excellent. The only constructional problems encountered were very minor in nature-under-size p.c.b. drillings for instance were encountered on a number of occasions. The documentation supplied is clearly written although it would be helpful if a description of the overall system existed which could be studied before boards were bought to allow each user to determine exactly which way his system was going to grow.

Purchasers of 77-68 VDU systems automatically become members of the '77-68 User Group' which circulates a quarterly Newsletter which allows users to share software and hardware information. In addition lists of members are circulated and the formation of local groups is encouraged-activities designed to assist newcomers, in particular to microprocessors, to get their first system 'up and running'.

To summarise the above points, Newbear have put together a thoroughly practical system suitable for amateur or professional for a first system.

MTCFO-EUS

Compiled by DJD.

Abstract

Appearing every two months, Micro-Bus presents ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data books. The most original ideas often come from readers working on their own systems, and payment will be made for any contribution featured.

EIGHT EIGHTS PROBLEM

This month's Micro-Bus begins with a challenge for all owners of the Science of Cambridge MK 14 microprocessor system, and a chance to win a kit. A program for the MK14 is given in Fig. 1 and with this program running it is possible, by pressing the keys on the keyboard in a certain order, to get eight ' 8 's lit up on the display. Only the correct sequence of key presses will give this result. Alternatively you may like to try to solve the problem from the program listing (Fig. 1). Either way, the problem is extremely tantalising until you discover the rule governing the operation of the keys.

The Eight Eights program occupies locations OF18 to OF47 in the MK14's memory, Enter it as usual, either from the listing or from the hexadecimal dump in Fig. 2, and then execute it at OF18. The display should then go blank except for one ' 8 ' in the rightmost digit position; you can then use any of the number keys $\mathrm{O}-\mathrm{F}$ to try to solve the problem. Do not press ABORT or you will have to reenter the last eight bytes before running the program again.
; EIGHT EIGHTS PROBLEM

OF18	C484	BEGIN:	LDI	X'84
OFPA	33		XPAL	3
OFIB	C40F		LDI	X'OF
OFlD	36		XPAH	2
OFlE	C401	BACK :	LDI	1
OF20	37		XPAH	3
OF21	01		XAE	
OF22	C440	RIGHT:	LDI	$\mathrm{X}^{\prime} 40$
OF24	32		XPAL	2
OF 25	C47F		LDI	X'7F
OF27	E280		XOR	-128(2)
OF29	CA80		ST	-128(2)
OF2B	$3 F$	SHOW:	XPPC	3
OF2C	90FD		JMP	SHOW
OF2E	03		SCL	
OF 2 F	C402		LDI	2
OF31	78		CAE	
OF 32	94EE		JP	RIGHT
OF 34	C601	LOOP :	LD	Cl(2)
OF 36	98FC		J2	LOOP
OF 38	32		XPAL	2
OF39	60		XRE	
OF3A	D40F		ANI	$\mathrm{X}^{\prime} \mathrm{OF}$
OF3C	98 E 4		JZ	RIGHT
OF3E	90DE		JMP	BACK
OF40	0000		. BYTE	$0,0,0,0$
	0000		. END	

Fig. 1. Program for the SC/MP micro which sets up the Eight Eights problem described in the text

HEX DUMP

OF18	C4	84	33	C4	OF	36	C4	Ol
OF20	37	O1	C4	40	32	C4	7 F	E2
OF28	80	CA	80	$3 F$	90	FD	O3	C4
OF30	O2	78	94	EE	C6	Ol	98	FC
OF38	32	60	D4	OF	98	E4	90	DE
OF4O	OO	OO	OO	OO OO	OO	OO	OO	

Fig. 2. Listing of the bytes to be entered to run the Eight Eights program

WIN A KIT

Readers sending in the shortest sequence of key presses that will light up eight ' 8 's on the display can win one of the MK 14 VDU interfaces that have been kindly donated as prizes by Science of Cambridge. The first three correct entries opened on the 31st August will each receive a kit, and entries should be posted to: Micro-Bus Problem, Practical Electronics, Westover House, West Quay Road, Poole, Dorset BH15 1JG. The next Micro-Bus will reveal the solution to this problem, and give a full explanation of how the program works.

MICRO DRIVES A TRAIN

The speed and direction of an electric motor can be controlled by a microprocessor, and by way of illustration a simple program is presented here which can vary the speed and direction of movement of an electric model train. As it stands, the train can be set to one of eight forward or reverse speeds, but the program could form the heart of a more complex system which incorporated the switching of signals and points, and the use of sensors to detect the train's position on the track.
The program was developed and run on an Acorn microprocessor system which makes an ideal controller for such applications. Control of the train is from the Acorn's keyboard; the keys $0-7$ give forward motion, and $8-\mathrm{F}$ give reverse. The number pressed determines the speed: 7 and F give maximum speed in forward and reverse respectively, and 0 or 8 stops the train.

OPERATION

The polarity of the power applied to the motor is controlled by a bridge circuit of power transistors; see Fig. 3. The transistors are not critical, and the ones shown, chosen for economy, will drive several amps. Two

E5152]
Fig. 3. Circuit which provides control of an electric motor from two logic-level lines
gates in a 7405 package (a hex inverter with open-collector outputs) act as buffers between the bridge circuit and two lines from the Acorn's RAM I/O device, PAO and PA2. With both lines high, or both lines low, the voltage across the motor is zero. If one line is taken high the motor is connected between the power rails, and the polarity depends on which line is high.

Control of the motor's speed is achieved by pulsing the power to the motor rapidly on and off, and varying the ratio of on-time to offtime. This control is performed by software timing.

MOTOR CONTROL PROGRAM

The motor controller program, shown in Fig. 4, requires some understanding of how the Acorn's keyboard is connected. The keyboard uses six bits of port A in the RAM I/O chip addressed at \$OEOO. The lower three bits, PAO-PA2, are decoded to enable one of the eight keyboard columns. The next three bits, PA3-PA5, are inputs from the keyboard rows. Each key, when pressed, makes a connection between a row and a column; keys 0-7 correspond to PA5 low, and keys 8-F correspond to PA3 low. When no key is pressed all three rows are high.

Fig. 4. Program for the 6502 micro which, with the circuit of Fig. 3, varies the speed and direction of rotation of an electric motor

Bits PAO and PA2 of the spare RAM I/O chip, which is addressed at $\$ 0900$, are used to control the motor. When run, the program first configures bits PAO-PA2 of both RAM I/O chips as outputs. It then performs the SCAN routine eight times, for values in the X register of from 7 down to 0 . The SCAN routine selects a keyboard column and checks for keypress in that column. If a key has been pressed it shifts down the row bits PA5 and PA3, one of which will be low, to coincide with the lines PA2 and PAO, and saves them at DIRN. It also updates SPEED with the current value of X .

The value of SPEED determines for how many of the seven time slots the motor is turned on, see Fig. 5. A delay, provided by the WAIT routine in the Acorn monitor, is inserted at the end of the SCAN loop. The program works without this, but the train motor acts as a loudspeaker coil and, due to the high frequency of the pulses applied to it, emits an audible whistle which is rather disturbing!

Fig. 5. Timing diagrams showing how the speed of the motor is varied by altering the point in each cycle at which power is applied

60153

AN INSIGHT INTO
 MICROPROCESSORS

Many people seek to gain an introduction to microprocessors by building one of the excellent kits currently available; but running programs on a kit still leaves one fairly mystified about the internal operation of the micro. The problem is that the microprocessor executes many thousands of instructions every second, and a whole program can be executed in an instant.

The circuit to be described provides one solution. Designed for use with SC/MP microprocessors (the INS8060), it makes it possible to execute programs one cycle at a time, suspending execution between cycles so that the status of the micro can be examined. In addition to giving an insight into the operation of a micro that is not gained by simply running programs on it, the single-cycler also make it a simple matter to fault-find microprocessor kits.

SINGLE-CYCLER DESIGN

The single-cycler was designed by Nick Toop, whose cassette interface appeared in the October 1978 Micro-Bus, and though intended for use with a Science of Cambridge MK 14, it should work with any SC/MP-based system. The circuit, shown in Fig. 6, uses two TTL integrated circuits and its operation is controlled by two push buttons, of which one should have changeover contacts and can be a biased toggle-switch. The single-cycler is connected to the MK 14 by five wires, and there is no need to make any changes to the MK14 itself. The connection points are as follows:

Fig. 6. Circuit of the Single-Cycler which clarifies the operation of a SC/MP-based microprocessor system

Wire	SC/MP pin no.
+5V	40
NWDS	1
NRDS	2
NHOLD	6
OV	20

There are more convenient points on the upper side of the MK 14 where connection can be made, and the photograph of the prototype shows these.

Fig. 7. The Single-Cycler circuit described in the text attached to an MK14 microprocessor kit

OPERATION

Instructions executed by a microprocessor consist of a number of read and write cycles, during each of which the micro accesses the memory (or I/O devices). Every instruction must have at least one cycle-the instruction fetch-during which the micro reads the instruction op-code from memory. During this cycle the address of the instruction appears on the address bus, and the instruction itself a ppears on the data bus. Some SC/MP instructions have as many as four read/write cycles; for example, increment-and-load (ILD) has three read cycles (instruction fetch, operand fetch, and read data) and one write cycle (write incremented data). The number of read and write cycles for any particular instruction is fairly obvious from what it does, and a full list can be found on pages $30-31$ of the MK 14 manual (page 42 in the new manual).

The SC/MP micro signals a read cycle by taking NRDS low, and a write cycle by taking NWDS low. The single-cycler circuit of Fig. 6 works by taking NHOLD low whenever either of these lines goes-low; this halts the micro in the middle of the cycle, leaving the address and data for that cycle on the buses so their state can be interrogated. Pressing the CYCLE switch releases NHOLD, and the micro runs until the next read/write cycle is reached. For continuous operation the CONT switch is held down, and the CYCLE switch pressed once to start execution; releasing the CONT switch at any time will halt the micro in the next read/write cycle.

Note that the operation of this single-cycler circuit is quite different from the operation of the single-step facility described in the MK 14 manual. Whereas the single-step circuit just generates an interrupt so that control is transferred to the monitor program after each instruction is executed, the single-cycler actually stops the micro between cycles.

Old montior (scmpxal				
Aacress isman	data 1 hnes	nmos	mubs	commente
cos	c	20x	nigh	Inatruction faten st el3)
002	7	low	mign	Disp. for tastruction
IFr	∞	migh	Low	Store data to Rum
003	90	low	high	Inatrwetion fatelh jup
004	18	100	mign	Disp. Bor gup
031	c	Lou	high	addraes jumped to.
Rewteed monteor (sctos)				
Addreas 11 nos	Datel 1 nmos	neos	mmps	Comants
$\infty 01$	9	10w	nish	Inveruction tutch Jmp
002	. 10	100	high	D1sp. tor Jump
020	ct	Low	nıqh	Instruet ton toeeh 5 \%
021	x	Low	high	Diap. for magtruction
pro	∞	hign	100	store data to ray
032	40	100	nipa	Instruetion fetct weg.

Table 1. The results expected when single-cycling through the first few instructions of the old and revised MK14 monitors

FAULT-FINDING WITH THE SINGLE-CYCLER

The Single-Cycler should be used in conjunction with some means of reading the state of the address, data, and NRDS/NWDS lines, such as logic probe, oscilloscope, or voltmeter. The following steps illustrate how to fault-find a non-functional MK 14:
(a) Attach the Single-Cycler circuit as described above, and press the RESET button on the MK14. This should cause pin 7 of the SC/MP, NRST, to go low.
(b) Release RESET and check that the clock, pin 38 , is working. Verify that all the address lines are tri-stated (neither high or low). Data lines D4-D7 should also be tri-stated, but D0-D3 will be pulled high by the resistors R12-R15. NWDS and NRDS should also be tri-stated. Any departure from this indicates a fault, probably a short between two adjacent tracks on the printed-circuit board.
(c) Now press the CYCLE switch once. The SC/MP should then be outputting the address X'001; in other words A11 to Al should be low and A0 high. The cycle is a read cycle so NRDS should be low, and the data lines should be reading the first instruction in the monitor, which is X'90 for the old monitor $\mathrm{X}^{3} \mathrm{CF}$ for the revised monitor.
(d) By repeatedly pressing CYCLE one can single-cycle through the monitor program, at each stage comparing the observed states of the address, data, and NWDS/NRDS lines with the results expected from the monitor listing. Table 1 shows the first five cycles for the old and revised MK 14 monitors. Departures from this table will point to shorts, faulty components, or incorrect PROMs.
(e) To get into the keyboard and display routine, KYBD, continuous run for a while by holding down CONT, pressing CYCLE, and releasing CONT. One can then single-cycle through the K YBD routine to check the display circuitry. One display digit should be enabled at a time, and every 26 operations of the CYCLE switch should move to the next display digit.

IMPROVEMENTS

It is possible to incorporate this circuit into a more sophisticated device that will give a continuous display of the state of the address, data, and NWDS/NRDS lines, thus making it unnecessary to test each line in turn. It is. also possible to make the circuit single-cycle within limited address ranges, such as only in the user RAM so that it is possible to cycle through one's own programs. But even the simpler circuit just described, whether it is used to examine the operation of a working microprocessor system or to repair a faulty one, should prove a valuable addition to a micro.

Semicondurtar UPDATITEm FEATHRING INS 8295 MK 4816μ A78MGU1C R.W. Coles

NIBL ROM

Devotees of the SC/MP microprocessor (used in the MK 14 and Scrumpl micro kits) may already have heard of NIBL.

NIBL stands for National Industrial BASIC Language, and it started life as an adaptation of the original Tiny BASIC as described in the first issue of the now famous "Dr. Dobb's Journal of Computer Calisthenics \& Orthodontia." This version of BASIC, like most other Tiny BASICs, has integer only arithmetic with an effective 16-bit precislon, but it also sports a few features not found on the others, including a DO-UNTIL statement in addition to the usual FOR-NEXT.

The "Industrial" part of NIBL refers to the SC/MP manufacturer's conviction that many control programs used in industrial situations could be written in a high level language such as BASIC, rather than in the more usual machine code or assembly language form.

The advantages of this sort of approach are obvious. Programs to control a central heating system or a machine tool become lists of easy to write English-like statements which can be readily understood by almost anyone, and programs also become more portable, since one BASIC is very much like any other.
The disadvantages stem mainly from the fact that NIBL is an interpretive language which requires a large "Interpreter" program to be resident in the system as well as the user program itself.

Each of the concise NIBL statements has the effect of calling a large machine language subroutine in the Interpreter at run time, leading to inefficiencies and a drastic reduction in speed compared with an assembly language equivalent.

The resulting choice is simple. Either you stick to assembly language and get compact code which runs fast but takes a great deal of time to write and debug, or you use a language like NIBL which means your programs run slower but are much easier and quicker to write.

So much for using NIBL for control applications, but what about hobby use? Well, you can use NIBL anywhere you would use a standard Tiny BASIC, for games and other purposes, and it would certainly add a great deal to any existing machine code system.

The best news of all is that National have now put the NIBL interpreter into a single, cheap, 4 K by 8 masked ROM which will go into a 24 -pin socket. The new ROM is coded INS 8295 and is intended for use in an $8060 \mathrm{SC} / \mathrm{MP}$ system with at least 2 K of RAM available.

Being a high level language, NIBL requires an alphanumeric communication channel, and the interpreter in the 8295 contains a software driver for a 110 baud ASCII terminal connected to the SC/MP SENSE B and FLAG O lines.

I should think that an SC/MP system equipped with NIBL is one of the cheapest ways possible into the world of the Home Computer, so why don't you try it, all you SC/MP fans?

BYTE RAM

One nifty way to get the 2 K bytes of RAM you need for an SC/MP based system using NIBL could be to buy a single MK 4816.

The MK 4816 from Mostek is a wonderous new RAM chlp which eats and spits out data, not in mere bits but in whole bytes.

MK 4816 has on-chip refresh I (Cheers). Yes folks, someone has finally done away with all that horrible address multiplexing circuitry and those nasty RAS and CAS strobes and refresh clocks by organising a 16 K bit dynamic RAM into a sensible byte-wide format, and putting all the necessary support circuits right there on the chip.
To the outside world, the MK 4816 can appear just like a static RAM, but inside it's dynamic, so you get all the advantages of dynamic chips with none of the disadvantages.

One of the most striking advantages is the low power consumption of only 150 mW when active, but that's not all, because there is also a low power standby mode when the chip is de-selected which reduces consumption to just 25 mW (that's only 5 mA from a 5 V supply so you could power your RAM from batteries during a power loss if you needed to preserve valuable data.)

The MK 4816 comes in a 28 pin package where the lower 24 pins (3-26) conform to the standard 24 pin ROM/PROM format so that sockets can be used for either RAM or ROM as required by a particular system.
The MK 4816 is just becoming available, but in the future we can expect to see more chips following the lead it has set, including a 4 K by 8 monster from Zilog I

QUADRUPED

Voltage regulator circuits are old hat these days, and not the stuff of which headlines are made. Development continues however, and there is now such a range of regulator chips to choose from that it is important to keep up to date so that you can make the right choice for any new application that needs a stable d.c. supply voltage.

Most of the glamour seems to lie with the fixed voltage types, and their ever increasing current capability, but coming along strongly are the three terminal adjustable types which are good for the hobbyist's spares box because they can be used for any power supply application which takes one's fancy.
They can be a bit pricey though, and Fairchild have tackled this problem with a whole new family of four-terminal adjustable regulators which come in low cost plastic TO2O2 packages.

There are 0.5 A and 1.0A, positive and negative versions, and typical advice codes are $\mu A 78$ MGU1C for a 0.5 A positive regulator and μ A79GU1C for a 1.0 A negative regulator.

A selection of readers original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
Why not submit your idea? Any idea published will be awarded payment according to its merits.
Articles submitted for publication should conform to the usual practices of this journal, e.g with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not in serted in the text.
Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere

LIGHTNING CHESS TIMER

N interesting and lively variation of the A ancient game of chess is lightning chess. The rules for this game are very similar to those of ordinary chess, the main difference being the short time allowed each player to make his move (usually five seconds).
A lightning chess timer should give a distinct buzz (or bleep if a speaker is used in place of a buzzer) at regular intervals. The duration of each bleep should be about a quarter of a second while the interval between bleeps must be variable, and range up to fifteen seconds.
The circuit employs two 555 timers, both operating in a free-running mode. IC1 acts as an audio oscillator, delivering a frequency of about three kilohertz to the speaker. IC2 switches ICI on and off at predetermined intervals.

A reset facility is included whereby the timer may at any time be reset at the push of a button. This allows a slightly different version of lightning chess to be played. Every player presses the reset button after he has played his move, so that when the
timer does bleep it means that the player whose turn it was to move has overstepped his time limit and he loses the game.
Y. H. Diamant,

Zaria,
Nigeria.

THE 7400 quad NAND gate is often used as an astable multivibrator but has poor starting characteristics, usually requiring a "spike" on the supply line at switch on to initiate oscillation. This simple circuit uses the two spare gates in the package plus one extra resistor to ensure the circuit has positive self start characteristics.

R. D. Homerstone, Daventry, Northants.

D.C. RINGING FOR INTERCOMS

THE circuit shown is suitable for operating a polarised telephone bell from an 18 V d.c. power supply (on no account should P.O. systems be interfered with).

A low impedance output of approximately 35 V peak to peak is obtained without the use of transformers. The circuit is basically an astable multivibrator formed by R1, R2, C1, C2, TR3 and TR4. However, the normal collector load resistors have been replaced by an active load, namely TR1 and TR2. TR1 base is fed via

R3 to the collector of TR4. Consequently TR1 is always on when TR3 is off and vice versa. At each side of the circuit there now arises a push-pull output. By utilising both of these outputs and feeding them to the telephone bell, the output voltage is approximately double that of the supply voltage. R5 simply limits any excessive current surges from the power supply during transition of switching states when all transistors are partially on.

This circuit may be built on to a small
piece of tag strip. placed inside a telephone, and inserted into the two existing bell wires. The telephone may now be treated as having a d.c. operated bell and the basis for a home intercom using d.c. ringing. The relatively low voltage required for operating the telephone bell may be derived from the power supply feeding the speech circuits.
R. A. Sudron,

Leeds.

SHORTED TURNS DETECTOR

THE accompanying circuit shows a shorted turns detector of high sensitivity which may be built at low cost. The detector is based on a standard Colpitts oscillator.

Initially TR1 is biased into conduction by R1, R2 and VR2. As the oscillations build up rectification occurs at the base/emitter junction resulting in increased emitter current and therefore increased voltage across R4 if oscillations are damped by a shorted turn placed around

L1, it follows that the voltage across R3 will now fall towards its quiescent value. This change of voltage is indicated by a $50 \mu \mathrm{~A}$ meter, zero adjustment being performed by VR2.
VRI is adjusted for full scale deflection with a shorted turn placed around L1. L1
is not critical, consisting of 175 turns of 30 s.w.g. enamelled copper wire close wound on a piece of $\frac{\mathrm{l}}{\mathrm{in}}$. diameter ferrite rod.
R. D. Homerstone,
R.D. Homerstone,
Daventry,
Northants.
R.D. Homerstone,
Daventry,
Northants.

[^2]

When a sound is made near the microphone, the output of ICI swings between the supply rails at the frequency of the input. On the first negative going excursion, the triac switches on firing the flashgun.

The triac will remain on until the flash is complete, at which time the circuit is ready to supply another flash trigger.
P.R Williams, Stevenage, Herts.

METER FOR ELECTROLYTICS

CAPACITORS of values up to $10,000 \mu \mathrm{~F}$ can be measured with this instrument, and 6 ranges are available as follows:

$$
\begin{array}{rll}
\text { Range } \left.\begin{array}{ll}
1 & 0-30 \mu \mathrm{~F} \\
2 & 0-100 \mu \mathrm{~F} \\
3 & 0-300 \mu \mathrm{~F} \\
4 & 0-1,000 \mu \mathrm{~F} \\
& 5
\end{array}\right)-3,000 \mu \mathrm{~F} \\
& 6 & 0-10,000 \mu \mathrm{~F}
\end{array}
$$

The smallest value that can be measured accurately depends on the resolution of the meter used. No new meter scale need be made since the scale is linear and forwardreading, this simplifies construction.
There is one slight disadvantage with this instrument, this being that the capacitor under test may have over 10 V across its terminals, and so low voltage capacitors may be damaged.
Before the capacitor under test is connected into circuit, the non-inverting input of ICl is connected to the positive rail via a resistor. IC1 acts as a comparator, its inverting input being connected to a 9.1 V Zener reference. The output of ICl is high in value, about +13 V . TR1 and TR2 are thus turned fully on, TR1 lighting the l.e.d. D1 protects the base-emitter junctions of the transistors from reverse breakdown. IC2, which is connected as an integrator,
is fed with the output of TR2. When TR2 is turned off, IC2 produces a negativegoing ramp output, this is buffered by IC3 and fed to ME1. When a capacitor is connected, the voltage of the non-inverting input of IC1 is lowered to zero, IC1 thus switches and TR1 and TR2 turn off. The l.e.d. extinguishes, and 9 V is fed to the integrator. The negative-going ramp produced moves the needle of ME1, linearly with time, hence time is recorded on the meter.
Meanwhile the capacitor under test is charging up. When it reaches 9 V , the comparator is switched and the integrator is stopped. The time for all this to happen is measured on ME1, and is approximately equal to the time constant of Cx and its series resistor, R12, R13 or R14.
Tolerances in the circuit, especially Cl , are large, so the meter is calibrated using a capacitor of known value by varying VRI and VR2. When the timing process has finished, D3 lights, showing that the capacitance can be read.
Cl is a low-leakage tantalum capacitor. In practice, however, its leakage is apparent since the meter needle does not remain at a steady value after the timing period. To counter this, current is fed into the capacitor when TR2 is turned off. This
current is about $1 \mu \mathrm{~A}$. Since R3 is $200 \mathrm{k} \Omega$, then to counter the leakage the saturation voltage of TR 2 needs to be 0.2 V .
If needed, R7 can be adjusted to cancel the leakage exactly. The prototype needed a value of 10 kilohm for R7.
R4 limits the current from IC2 when S2, a reset button, is depressed. The internal resistance of $\mathbf{C 1}$ is such that $\mathbf{S} 2$ needs to be closed for a few seconds to discharge it completely.
The power supply should be at least $\pm 12 \mathrm{~V}$, and no more than $\pm 15 \mathrm{~V}$. The prototype employed a power supply with two regulator i.c.s. S1, which shorts the meter to prevent damage when not in use, is ganged to switch the power supply.
D. P. Akerman,

Coventry. HIGH PERFORMANCE MODULAR UNITS
BACKED BY NO-QUIBBLE 5 YEAR GUARANTEE

Soldering is probably one of the aspects of this hobby to which the amateur radio or home electronics enthusiast gives least consideration. Applying a hot iron to a soft silvery coloured metal, which then melts and flows to form a joint is such a straightforward process that beyond taking a few simple precautions, for example, avoiding dry joints, not too much concern needs to be expended. It is this reliability in the formation of mechanically and electrically sound joints that has assured that soldering is still an accepted joining technique used by the enthusiast and by the electronics industry. The efforts of soldering equipment manufacturers have made sure that for the user, soldering remains a straightforward technique, despite more obvious advances in other areas of electronics and the increasingly stringent demands being placed on the production of electronic assemblies.

DEFINITION

Before discussing solders and soldering methods in detail it might be helpful to outline some of the basics. Soldering (sometimes known as soft-soldering) has been defined as the joining together of two metals using a low melting temperature tin-containing alloy as the filler metal. The melting temperature of this filler metal (the solder alloy) is usually considerably lower than that of its constituent elements, or than the melting points of the metals being joined. In fact the term "soldering" generally refers to processes taking place below $450^{\circ} \mathrm{C}$.

Solders act in the following three ways:
(a) Wetting the basis metal surfaces forming the joint.
(b) Flowing between these surfaces by capillary action so as to fill the space between them completely.
(c) Metallurgically bonding to the surfaces when solidified.

The surfaces to be joined should be perfectly clean in order to ensure that wetting, and subsequent metallurgical bonding can take place. Part of the job of the flux is to dissolve any oxide coating adhering to the basis metal. Wetting of the basis metal surfaces is of prime importance. The nature of the wetting action itself is quite complex and results from the mutual solubility of tin (the active constituent) in the liquid solder and in the substrate.

The primary requirement of soldered joints in electronics is to provide an electrically conductive path, but considerations of mechanical strength may also be relevant on occasions. Although the electrical conductivity of solder is only about 8 to 13% that of copper, the short conducting path through the solder in a joint does not normally have to be considered as adding significant electrical resistance to the circuit.

SOLDER ALLOYS AND FLUXES

One of the most obvious characteristics of solders is that they are low melting point alloys; most of the commercially important solder alloys being fully molten below $250^{\circ} \mathrm{C}$. It is also accepted that in general the higher the tin content of the alloy the better are its wetting properties.

A great many of the solder alloys in common usage are binary mixtures of tin and lead. The tin-lead mixture is known as a simple eutectic system. The eutectic is the composition of the binary mixture at which the two component metals solidify as a whole when the liquid is cooled, forming a solid solution. This point occurs at the lowest attainable temperature. In the tin-lead system the eutectic point occurs at the composition 62% tin 38% lead, at a temperature of $183^{\circ} \mathrm{C}$. At other compositions, particularly in alloys containing around 80% lead, the mixture has a wide temperature range over which it is neither completely molten nor completely solid; this is known as the "pasty" range. All tin-lead alloys will be partially molten at $183^{\circ} \mathrm{C}$ but only the 62% tin -38% lead alloy, the eutectic alloy is fully molten at this temperature. For example, the commercially available 30% tin -70% lead alloy is only fully molten above $255^{\circ} \mathrm{C}$. The most commonly used tin-lead solders employed in electronic applications are 60% tin -40% lead and 63% tin - 37% lead, of which both alloys are close to the eutectic composition and melt over temperature spans of 5 and $2^{\circ} \mathrm{C}$ respectively.

Sometimes up to 5% of antimony or silver may be added to tin or tin-lead mixtures to produce solders with slightly different properties. Such alloys may be useful in certain applications but may also introduce a number of undesirable factors, such as higher cost or deterioration in mechanical or wetting properties. Because of this they are only used when absolutely necessary. Tin-zinc solders are used for soldering aluminium, and alloys containing cadmium or indium may be employed when low melting point solder is required.

As already stated, for normal service in electrical and electronic applications, binary tin-lead alloys containing between 60 and 65% tin are chiefly used since they solidify at low temperatures over a short temperature range and, since they contain a high proportion of tin, have excellent wetting power, permitting short soldering times. This last factor is particularly important in industry where high production rates are necessary for economic operations. Sometimes such solder alloys are saturated with copper additions (around 1.5% copper) to reduce the corrosive attack by the solder on unclad copper solderingiron bits. Tin-lead solders containing 50\% or more lead are used for such applications as sheet metal assembly, copper plumbing,
automobile radiator manufacture, and repairing and shaping car bodywork.

It may be necessary in some instances for joints to retain their strength at temperatures above $100^{\circ} \mathrm{C}$, and here alloys of tin with 5% antimony or 3.5% silver can be used. In contrast, at very low temperatures a 90% lead - 10% tin alloy should be used where strength and toughness is important.

In the increasingly important commercial thick film hybrid circuits employing palladium-silver conductive tracks, a 62% tin -38% lead -2% silver alloy is frequently used to prevent the silver-containing layer on the circuit from dissolving in the solder alloy. A tin-lead-indium-zinc solder has been formulated to reduce the risk of embrittlement when soldering onto thick gold coatings, and a 70\% cadmium - 30\% tin alloy has been employed for systems where stray e.m.f.s due to thermo-electric effects must be kept to a minimum.

PHYSICAL TYPES OF SOLDER

Solder is manufactured in many different forms to meet the needs of particular applications. Perhaps the most familiar form for soldering with an electrically heated iron is that of solder wire, normally supplied in reels, in a range of diameters from about 0.7 mm to over 5 mm . These wires are manufactured by extrusion of the alloy followed by conventional cold drawing. Often there are one or more strands of rosin-based flux contained within the wire, introduced during the extrusion process. Normally the proportion of flux in the wire is around 3% by weight, and a number of flux cores are usually employed so that in event of a void in one of the cores there is sufficient flux available in other cores. The advantages of flux-cored solder wire include rapid flow of flux onto the joint when the wire is melted and quick melting of the wire on contact with the heated surface.

Solder paints, pastes and creams are made of finely divided solder particles suspended in a viscous flux together with a neutral carrying agent. Solder paints can be applied by brush or roller for tinning purposes. Pastes and creams, containing around 85% by weight of metallic solder, are applied by brush, syringe or spatula (in industry screen printers and automatic dispensers are also used) to the joint area to ensure exactly the right quantity of solder is employed. The viscous, tacky pastes readily stay in position and can act as temporary adhesives to hold components in place until the solder is melted.

In recent years the use of solder preforms has grown in the electrical and electronics industry and they are now available in a wide range of shapes and sizes, with or without flux cores. The types of preforms manufactured include washers, rings, discs, pellets and spheres as well as more elaborate shapes for more complex soldering jobs. Solder preforms are ideally suited to ap-

plications where a precisely controlled amount of solder needs to be applied to every joint, either by hand or automatic soldering.

Other forms of solder available include ingots, bars, sticks, sheet and foil strips, all of which are intended for different types of soldering jobs.

FLUXES

Soldering fluxes are liquid or solid materials which when heated are capable of promoting or accelerating the wetting of metals by solder. Any flux used in a given application should provide a liquid cover to exclude air from the joint up to the soldering temperature and dissolve away any oxide on the metal surface or on the solder. It should also be readily displaced from the basis metal by molten solder, and any residues should be easily removable following the soldering operation.

In electrical and electronics applications so-called "noncorrosive" fluxes are mainly used. It is possible to use pure, natural rosin dissolved in proportions of 20 to $50 \% \mathrm{w} / \mathrm{v}$ in a suitable organic solvent such as isopropanol. The active constituents in such a flux are abietic acid and its isomers, which become mildly active at soldering temperatures. However, it is usually necessary to improve the fluxing power by adding small quantities of organic halide activators. These activated rosin fluxes are formulated so as not to give rise to corrosive products after soldering.

In the case of more difficult to solder non-ferrous alloys, organic acid and organic halide fluxes are used, and for soldering steels and other alloys in general engineering, highly reactive and corrosive zinc chloride fluxes are necessary.

SOLDERING METHODS

Before undertaking soldering operations it is essential to assure that the surfaces to be soldered are perfectly clean. Some metals are more readily solderable than others; for example gold-, silver- and tin-coated parts normally display excellent solderability, copper and its alloys have quite good solderability, whilst aluminium can at best be regarded as difficult to solder. Whatever the substrate, it is necessary that the surfaces should be in a suitable condition for soldering. If soldering difficulties are encountered it may be that some sort of cleaning operation should be carried out before satisfactory joints can be obtained.

The surfaces should be free from all oil and grease. This consideration is of more importance for soldering in industry where quite elaborate degreasing procedures may be employed. Oxide films which form over a long period of time can be removed by using abrasive papers, although these should not be used for soft metals such as tin, as particles of abrasive may become embedded in the metal. Immersion in dilute acid may remove certain oxide and tarnish films.

MANUAL SOLDERING

Before applying solder to a joint it should be considered whether it is necessary to prevent heat flowing into areas that have already been soldered, or to heat-sensitive components. Heat shunts can take the form of specially designed tweezers, although the judicious use of a pair of pliers during hand soldering can also form an effective heat shunt.

In all irons the key component is the bit; it is essential that the bit surface is wetted or "tinned" by the solder in order to encourage the flow of solder onto the joint. The bit stores heat

Solder preforms for various applications, which can be positioned prior to heating.
and conveys it to the work, stores and delivers a minimal amount of molten solder to encourage heat transfer (the bulk of solder should be applied simultaneously with the soldering iron), and the bit should also be capable of removing surplus solder from the joint. The size of the bit and the power rating of the iron are related to the amount of heat to be supplied during each soldering operation and to the intended rate of working. Copper is the material used most frequently for bit construction as it combines good melting properties with optimum heat capacity and thermal conductivity. To prevent erosion of copper bits by solder, copper saturated solders, or iron or nickel plated bits may be employed.

During the soldering operation the pre-heated iron is held against the proposed joint, and the solder, usually in the form of flux-cored wire, is applied to the work close to the bit, where it should melt immediately. If sufficient solder has been applied it should completely penetrate and fill the joint gap. The time required to keep the bit on the work will depend on the nature of the joint and the characteristics of the iron. Gentle movements of the bit during soldering can assist rapid penetration of solder into the joint spaces. It is important to keep the bit properly tinned.

There are other, more specialised forms of manual soldering, used in industry in certain applications. These include such methods as radio frequency induction soldering, ultrasonic soldering and hot gas soldering.

HIGH QUANTITY SOLDERING

In the industrial production of printed circuit boards it would be far too costly and time-consuming to make each individual joint manually using a soldering iron. It is necessary therefore to

Here, thick film hybrid circuits are being soldered, using a technique more recognisable by the home constructor-the soldering iron!
employ mass soldering methods in which large numbers of joints are made simultaneously by using the molten solder itself as the source of heat. The most common forms of mass soldering involve immersion in, or contact with, a molten solder bath. Another important advantage of mass soldering techniques is that they allow better control over all individual stages.

The simplest method of mass soldering is known as dip soldering. In this process the prefluxed assembly on which all the components have been mounted is lowered vertically into the solder bath sufficiently for the solder to spread and form all the joints, but not enough for the solder to flow over the top of the board. The temperature of the bath is maintained in the range 220 to $260^{\circ} \mathrm{C}$ for a 60% tin- 40% lead alloy. The solder surface is kept free of dross by a scraping mechanism which skims aside oxides and flux residues immediately before soldering takes place.

Perhaps the most widely used technique of mass soldering is that of wave soldering which solves the problem of maintaining a clean, bright solder surface by having the solder in continuous motion. In this process the circuit board, mounted on a conveyor, moves horizontally across the crest of a continuously circulating, standing wave of molten solder. The wave is formed by pumping solder up through a narrow slot, where it overflows back into a sump. Various wave configurations are available. The path of travel towards the solder wave may be inclined upwards at an angle of about 15° to facilitate drainage of solder from the board after it has passed over the wave.

A wave soldering machine in use for large quantity production.

QUALITY CONTROL

The application of quality control techniques to the production of soldered joints in industry is extremely important since the failure of a joint may not only result in the job having to be reworked, but also a fault occurring during service may be potentially dangerous. Therefore, high reliability is demanded, particularly in applications such as aerospace, military equipment, telecommunications and computers.

For the amateur, if the few relatively simple precautions outlined in this article are taken, soldering defects should not occur. One of the most common defects, known as dewetting, happens when the surfaces to be soldered have not been properly prepared. In dewetting there is a pronounced retraction of the solder into globules, after initial wetting has taken place, leaving an extremely thin, matt film of solder on the surface which the globules rest. A common cause of dewetting is the presence of a thin, discontinuous layer of surface oxide, or embedded particles of abrasive. If this phenomenon occurs it is necessary to further clean the surface before good wetting can be achieved.

It is also important during soldering to use the right amount of flux (this is controlled if flux-cored wire is used), not to apply too much solder, or to overheat the joint.

CONCLUSION

To sum up, the advantages of soldering (where soldering is applicable) may be stated as follows:
(a) Relative ease and speed with which it can be carried out.
(b) Versatility and range of heating techniques.
(c) Low cost when compared to other joining methods.
(d) Low temperatures involved do not normally affect the properties of the basis metals.
(e) Soldered joints may usually be taken apart by reheating, thus facilitating easy repair of circuits.
 wetting, (b) dewetting, and (c) good wetting, on p.c.b.s. Non-wetting may result from insufficiently active flux.

News Briefs

by Mike Abbott

FLICKER TO FLUORESCENT
ONDON'S South Kensington Science Museum now has a new _lighting gallery showing artificial lighting from primitive oil lamps to the latest electric discharge-lamps.

Scenes show visitors how people managed after dark throughout most history, and a variety of modern electric lights can be seen through filters for comparison of light source.

We are told that oil lamps have been mass produced for two thousand years, but until the 1780 s they gave no more light than a candle. Argand's circular burner, patented in 1784, gave a much brighter light but suitable fuel was expensive until paraffin became readily available in the 1860 s . The light of a gas flame was first used generally in the early 19th century, but the much brighter gas mantle dates only from the 1880 s.
The exhibition includes a room lit by gas, and a pair of shop windows illustrate problems with the colour rendering properties of fluorescent lighting. (Too true! Have you ever discovered that those chocolate brown socks you bought are actually maroon when you get them outside the shop).

The museum is open from $10.00-18.00$, Mon.-Sat., and 14.30-18.00, Sundays. Visit Gallery 41 on the second floor

NO CAUSE FOR ALARM

N PURSUIT of its ubiquity the microprocessor is creeping into the twilight world of crime prevention. The Silent Security System now available from Asmap Environmental Products of Newport, Isle of Wight, is Z80 based, and can be hooked up to an intruder alarm to watch out for that thief about! If it detects one, it doesn't reduce the burglar to jelly with a breathtaking siren, or ring a bell for the neighbours to ignore, it panics and phones the police. Well, it doesn't panic, but it does phone the police.

Up to nine digits can be preset (in PROM) for direct dialling to send an alarm message or tone to either a security officer, or via the normal police/public alarm system by means of a 999 call and a pre-recorded message.

Up to sixty hours of stand-alone operation is possible in the event of a power failure, and should the telephone lines be engaged a second number may be dialled, or if faulty, alternative actuations may take place such as that siren, or perhaps cameras or loudspeakers.

Of course, the system can operate from fire or smoke detectors, and make the appropriate alert.

COUNTDOWN

B.A.E.C. Amateur Electronics Exhibition -July 21-28. Held at the shelter at the centre of the Esplanade, Penarth, South Glamorgan. The exhibition is to display a large number of projects and electronic games made by members, and will be open every evening from 7 p.m. (except Sunday, July 22), and also on the afternoons of July 21, 22 and 28. Proceeds go to the Cancer Research Campaign.
Harrogate International Festival of Sound-August 18-19 (public), August 20-21 (trade) 1979. The Exhibition Centre + hotels. Details: Exhibition and Conference Services Ltd. Tel: 042362677.
Telecom '79-September 20-26. Palais des Expositions, Geneve. Details: Secretariat Telecom '79, Orgexpo, 18 Quai Ernest Ansermet, Case Postale 65, CH-1211, Geneve 4 (Suisse).
Eltro Hobby '79-October 3-7, Killesberg Exhibition Grounds, Stuttgart. Details: 01-236 0911.
Personal Computer World Show-November 1-3. West Centre Hotel, London. The computer versus computer Chess Championship will again take place, and this year the prize money has been increased to $£ 1,500$ (a considerable sum to give a computer we are told). Further details to be announced.
Compec-November 6-8, 1979. Grand Hall, Olympia, London. Details: Iliffe Promotions Ltd. Tel: 01-261 8437/8.
Proféssional Viewdata Exhibition '79-November 7-8. West Centre Hotel, London. Business orientated exhibition sponsored by Viewdata \& TV User Magazine. An expose of who's doing what on the Teletext and Prestel scene.
Electrónics 79—November 20-23. Olympia, London. Details: 021-705 6707.

Breadboard 79-December 4-8. Royal Horticultural Halls, Westminster. Details: Trident International Exhibitions. Tel: 0822 4671.

IEA/Electrex-February 25-29, 1980. National Exhibition Centre, Birmingham. Details: Industrial and Trade Fairs Ltd. Tel: 021-705 6707.

Communications '80-April 14-18. National Exhibition Centre, Birmingham. Details: ITF Exhibitions. Tel: 021-705 6707.
All-Electronics Show (1980)-April 29-May 1, Grosvenor House, London. Details: 0799-22612.

RETURN OF STEAM

HE M-O Valve Company, in response to a demand for high quality audio valves, has reintroduced its Gold Lion range of output tetrodes. The valves are packed in a distinctive Gold Lion carton, each containing a test report, and the back-up literature includes full amplifier and pre-amp circuit information covering 30 to 200 watts.

B.A.E.C. HON. SEC. MOVE

FHE B.A.E.C. Hon. Sec. has moved from Bristol to Cheltenham, the full address being: J. G. Margetts, Hon. Sec., B.A.E.C., 3 Bishopstone Close, Golden Valley, Cheltenham, Glos.

TORSIONAL METERING

An interesting opto-mechanical approach to metering is being patented by Ferranti Ltd. of Lancashire in GB 2001431 A. The application is under the new laws and dates back to June 1977. The object is to provide an instant digital readout of the torsion in a shaft, but the idea could well be applicable to other mechanical situations where digital readout is required.

As shown shaft 1 carries a series of discs, variously perforated with slits, holes and bars. At one end of the shaft a source 2 inputs light to the ends of a batch of optical fibre light guides 3. The light from the output ends of these guides can reach the input ends of further guides 4 only when the perforations of a first series of discs 5, 6, 7 are correctly aligned. This alignment gives the system a datum position. The light guides 4 output through perforations in disc 8 and the output light passes through perforations in disc 9 to disc 10 with

DOUGHNUT DAMPING

A good example of how the new patents law can benefit the public and inventors alike is to be had from comparison of BP 538 847, in the name of the Rank Organisation, and GB 2002 200A, in the name of the Nissan Motor Company of Yokohama City, Japan.

The Rank patent was applied for in 1975 and is thus granted under the old law; the Nissan patent Is still in the pending stage and has been published under the new law. There is interesting common ground between the two patents and this common ground could be damaging to Nissan's chances of securing a granted patent.

Both patents concern methods of damping the rearward, antiphase radiation of sound from a loudspeaker. As the Rank patent. explains, it is customary to mount a loudspeaker in a cabinet containing wool or plastic to damp the rear radiation. But the damping material results in high stiffness of the air cushion inside the cabinet and the cabinet walls tend to vibrate. Moreover there is a risk of overheating in the cabinet space due to heat dissipation by the loudspeaker voice coils.

Nissan make much the same point with particular reference to the problems encountered when mounting a loudspeaker in a motor car. Both teams of inventors propose a similar solution; an annulus of sound damping material clamped to the rear of the loudspeaker.
Nissan (see Fig. 1) show an acoustic absorber 1 of bitumen-containing urethane foam which takes the form of a ring like a large doughnut. This ring sits on the loudspeaker magnet 2 and overlies virtually the whole rear area of the conical diaphragm 3. Thus all sound radiating to the rear of the diaphragm 3 meets acoustic resistance. Nissan claim that in this way undesirable resonant peaks in the range 50 to 500 Hz are suppressed to an acceptable level.

FIG. 1

The earlier idea from Rank goes a stage further. As shown (in Fig. 2) there is again a doughnut shaped ring 1 which sits on the loudspeaker magnet 2 and backs onto the rear of the loudspeaker diaphragm. But additionally Rank provide a second damping element 3 which takes the form of an open cylinder of foam surrounding the loudspeaker unit. Together the damping elements 1 and 3 absorb and deflect the rearwardly directed sound from the diaphragm.

FIG. 2

SOLAR QUARTZ
LCD 5 Function

Genuine solar pane| with battery back-up. Hours, mins., secs., day. date. Fully adjustable bracelet. Back-light. Only 7 mm thick.
£8.65
Guaranteed same day despatch.

SOLAR QUARTZ LCD Chronograph

£12.65
Guaranteed same day despatch.
M9

HANIMEX

Electronic
LED Alarm Clock

Features and Soecification:
Hour/minute dieplay. Large LED display with p.m. and alarm on indicator. 24 Hours alurm with
on/oft control. Display flashing for power loss onfoft control. Display flashing for power loss
indication. hepeatable 9 minute snooze. Display indication. Repeatable 9 .minute snooze. Display
bright/dim modes control. Size: $5.15^{\prime \prime} \times 3.93^{\prime \prime} \times$ bright/dim modes control. Size: $5.1 \mathbf{n}^{2}$
$2.36^{\prime \prime}(131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm})$. Weight: $1.43 \mathrm{lbs}(0.65 \mathrm{kgl}$. AC power 220 V .
$£ 9.65$ Thousands sold!
Mains operated.
Guaranteed same
day despatch.

SEIKO Alarm Chrono
LCD, hours, mins.
secs., day of week, month, day and date 24 hour Alarm, 12 hour chronograph,
$1 / 10$ th secs., and lap time. Back light stainless steel, HARDLEX glass. List Price $£ 130.00$ METAC PRICE
£105.00

Meviac
 ELECTRONICS \& TIME CENTRES

QUARTZ LCD ALARM 7 Function

Hours, mins., secs,. month, date, day. 6 digits, 3 flags plus continuous display of day and date or seconds. Back-light Only 9 mm thick.
£12.65

Guaranteed same day dispatch. M4

ALARM CHRONO

 with 9 world time zones$: 8$ digis. 5 flags. -6 assic hunctions.
-8 turner time zones. - 8 further time zones. - Stop-watch to 12 hours 59.9 secs .

In $1 / 10 \mathrm{sec}$ steps.

- Spllt and timing modas.
- Alarm.
- 9 mm thick.
- Fully adjustable bracelet.
£29.65
M8

SEIKO-STYLE
 Dual time-alarm Chronograph

Miner

Battery hatch
for DIY battery
replacement.

Top quality finish

with fully
adjustable bracelet.
£35.00

Price breakthrough only
 £18.95

OUTSTANDING FEATURES

- DUAL TIME. Local time always visible and you can set and recall any other time zone (such as GMT). Also has a light for night viewing.
- CALENDAR FUNCTIONS include the date and day in each time zone. - CHRONOGRAPH/STOPWATCH displays up to $\mathbf{1 2}$ hours, 59 minutes, and 59.9 seconds.
- On command, stopwatch display freezes to show intermediate (split/lap) time while stopwatch continues to run. Can also switch to and from timekeeping and stopwatch modes without affecting either's operation.
- ALARM can be set to anytime within a 24 hour period. At the designated time, a pleasant, but effective buzzer sounds to remind or awaken youl Guaranteed same day dispatch. M16

HOW TO ORDER

Payment can be made by sending cheque, postal order, Barclay, Access or American Express card numbers. Write your name, address and the order details clearly, enclose 30p for post and packing or the amount stated. We do not wait to clear your cheque before sending the goods so this will not delay delivery. All products carry 1 vear guaranteee and full money back 10 day reassurance,
Battery fitting service is available at our shops. All prices include VAT. Battery fitting service is available at our shops. All prices include VAT
Trade enquirles: Send for a complete list of trade prices - minimum order value $£ 100$.
Telephone Orders: Credit card customers can telephone orders direct to Daventry or Edgware Rd., 24 hour phone service at both shops: 01.7234753 03272-76545.

CALLERS WELCOME Shops open 9.30-6.00.

FROM THE INVENTORS OF MICROPROCESSOR MUSICAL CHIMES

New price for the original

CHROMACHIME KIT

24 tune model!
Due to the fantastic success of this product right
 across the World we are able to offer it at

$$
\text { only } £ 9.95+75 \mathrm{p} \text { p\&p }
$$

Comes complete with:

* TMS1000 Micro * Fully prepared PCB
* Superb cabinet * All semiconductors
* All R's \& C's * Loudspeaker
* Switches \& pots * Socket \& Hardware

Fully detailed kit manual
TMS 1000N - MP0027A Microcomputer chip available separately if required. Full 24 tune spec device supplied with data sheet and fully guaranteed.

New low price only $£ 4.95$ inc. p\&p (Only present 24 tune repertoire currently available.)

A COMPLETE KIT FOR THE

NEW MICRO CHIME

This easy to build kit includes:

* TMS1000 Custom MPU Chip
* Special purpose designed case
* Fully drilled and legended PCB
* All transistors, Resistors and Capacitors
* Full set of mechanical parts
* Smart fascia labels
* IC Socket and Loudspeaker
* Really Low Price!
only $£ 8.95+55 \mathrm{p}$ p\&p
ChROMATRONICS
RIVER WAY
HARLOW
ALL CHROMATRONICS PRODUCTS
SUPPLIED WITH MONEY BACK GUARANTEE
PLEASE ALLOW 7-21DAYS FOR DELIVERY
Please sendme:
TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX. UK. NAME
ADDRESS \qquad

I enclose cheque/PO value $\&$
or debit my ACCESS/BARCLAYCARD account no.

Signature
GHROMATRONICS

0

 Wilmslow

 Wilmslow Audio

THE firm for speakers!

SEND 15p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND dISCOUNT PRICE LIST

AUDAX © AUDIOMASTER © BAKER
BOWERS \& WILKINS - CASTLE - CELESTION CHARTWELL © COLES • DALESFORD DECCA © EMI EAGLE © ELAC © FANE GAUSS GOODMANS I.M.F. OISOPHON JR • JORDON WATTS © KEF © LEAK © LOWTHER MCKENZIE © MONITOR AUDIO • PEERLESS RADFORD © RAM - RICHARD ALLAN © SEAS SHACKMAN © STAG - TANGENT © TANNOY VIDEOTONE © WHARFEDALE •YAMAHA

WILMSLOW AUDIO (Dept. P.E.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Dlacount H1-Fi, atc. at 5 Swan Street and 10 Swan Street Tel.: Wilmslow 529599 for Speakers Tel.: Wilmsiow 526213 for Hi-Fi

ELEGTROVALIE

from manufacturers direct of approved auppliers. No surplus, no seconds

ICS - TTL 7400 series				7451	14p	7483	58p	74107 27p
7400	13p	7413	22p	7454	14p	7486	27p	74123 51p
7401	13p	7414	60p	7460	14p	7490	$40 p$	74141 54p
7402	13p	7420	14p	7470	24p	7491	71p	74151 60p
7403	13p	7430	14p	7472	$24 p$	7492	46p	741541.60
7404	18p	7440	14p	7473	23p	7493	40p	74190 94p
7405	14p	7442	54p	7474	23p	7494	66p	74191 94p
7407	22p	7443	60p	7475	45p	7495	57p	74192.94p
7408	18p	7444	60p	7476	32p	7496	63p	74193 94p
7409	18p	7447	70p	7480	41 p	74100	73p	
7410	14p	7450	14p	7482	61p	74104	40p	

OUR COMPUTER TAKES GOOD CARE OF YOUR ORDERS SIEMENS CAPACITORS* Wortd famous for quality and dependability Wordd famous for quality and dependability -
PCB TYPES -7.5 mm PCM 0.001 to 0.015 6p each: 0.015 to 0.0477 p each. 5 mm PCM 0.068 8p, $0.19 p, 0.2212 p$. 5 mm PCM $0.0688 \mathrm{~g}, 0.19 p, 0.2212 p$.
CERAMIC 2.5 mm PCM $0.015 p, 0.022$ CERAMIC 2.5 mm PCM $0.015 p, 0.022$ ELECTROLYTICS $=1 / 100,10 / 25,10 / 63$ ELECTROLYTICS $=1 / 100,10 / 25,10 / 63$.
$100 / 25$. etc. For full range see our current lists. RESISTORS $\frac{1}{3}$. $\frac{1}{2}$, 妾 watts ${ }^{\circ}-2 p$ each": metal film, metal oxide and 1 watt carbon $5 p$ ea": good quantity discounts. Magnetic field dependent from £1.50. Hall Effect from £1.23. SIEMENS TRANSISTORS Silicon npn and pno from 8p ea: LEDs, red Photo transistors from 46p.

DISCOUNTS
5% if list value of order over f10
10% if list value of order over f25. Discounts available where cash ($P . O$. or cheque) is sent with order. Not applicable

Latest 120 page catalogue on request.

Cash with arder (P.O. or chequa payable io Electrovalue Ledl or Your Access or Barclaycard number
THADE AND INDUSTRIAL ENQUIRIES INVITED
For all round satisfaction - be safe - buy it from ELECTROVALUE

ELECTROVALIE LTD

Dept. PE8 28 St Judes Rd, Englefield Green, Egham, Surrey TW20 OHB. Phone Egham 3603: Telex 264475.
Northern Branch (Personal shoppers only) 680 Bumage Lane, Burnage, Manchester M19 1NA. Phone (061) 4324945.

Right Turn

It is far too early to assess with any assurance the effect of the change of government on the industrial climate. The private sector almost universally welcomed the return of the Conservatives with a working majority which guarantees four or five years in which policies thought favourable to private industry can be implemented. Less central direction, less bureaucracy, less taxation, are all welcome. But, of course, nothing can change overnight in any material way.

The instant change was in morale. A fresh start became possible. Or so it seemed. In fact top performers like GEC and Racal historically have prospered as much under socialist governments as any other. The general feellng, however, was that the shackles are now off, or soon will be, and there is a real chance of winning. At least a company that does well financially will, one hopes, escape the old charge of "profiteering", while those who do less well are told they are "failing the nation". All will now get encouragement to do better.

To find out what will happen in the public sector we shall need to wait and see. Similarly, the future of the National Enterprise Board with its mixed bag of investments, not least the controversial Inmos venture.

Specifically helpful to the electronics industry is the new government's attitude to defence spending. Defence electronics has always been the spearhead of technological innovation and countries with a powerful defence industry traditionally maintain their lead.

Of perhaps less significance but worth recording is that Mrs Thatcher, as well as being Britain's first woman Prime Minister, is also the first with scientific training and laboratory experience.

For the past four years the most used political slogan has been "the regeneration
of British industry". The electronics sector has done better than most during a difficult period. In some areas it has been outstandIng and in the next decade it will be central to advance in all industries. No change of government in itself can regenerate anything, but a whiff of optimism and a return of confidence is not a bad start.

Manpower

However well intentioned a new Government, it inevitably inherits a number of constraints, both internal and external. It finds, on taking office, that it cannot move, except cautiously, if severe disruption is to be avoided. This is why the prospect of stable administration is welcome. There is a long haul ahead but over a period of five years much can be achieved, not least in attitudes.

A particular constraint in the electronics industry is the shortage of skilled manpower, particularly design engineers. The shortage was highlighted by Mr D. W. Morrell, President of the Electronic Engineering Association, in his recent address to members, as "one of our greatest problems of the moment". You can see how right he is just by reading the job ads in the papers.

Why the shortage? Relatively low pay for high qualifications (often mentioned in this column) is one, though not the primary, reason. Prospects are dazzling compared with most industries. The work is challenging, often exciting. It is a clean industry in which to work and has one of the best industrial relations records. It seems a "natural" for any youngster with talent. And yet not nearly enough come forward to take advantage of the opportunities offered.

An important factor is that engineering as a profession has been tarnished in recent years by adverse publicity eagerly taken up and propagated by socially conscious teachers in schools. Engineering is often represented as being somehow morally reprehensible-even obscene when topics like atomic power are mentioned. And quite unjustifiably so because engineers as a body are also socially conscious and responsible and ordered to be so by their professional institutions.

Much damage has been done. One thing the new government might do is to attempt to change the attitude in the scbools and colleges to one of encouragement to budding engineers. A little more stress on the benefits of science and technology and a little less knocking might do a lot of good.

Cable \& Wireless

Cable \& Wireless, perhaps the most consistently successful of all our nationalised industries this year celebrated its 50 th anniversary. It came into public ownership following the merger of the competing submarine cable and beam wireless businesses. From 1929 to the present day these two primary methods of long distance communications, one very old, the other then quite new, have been regarded as complementary.

Today the company has diversified into many new communications fields, all electronic based, and implemented throughout the world. In fact it is far better known overseas than in the UK and some 80 per cent of the employees work outside the British Isles.

British Aerospace

The newest of our natlonalised industries, British Aerospace, has just completed its first full year and with good results. Trading profit was $£ 79$ million on a turnover of E894 million and the company went into its second full year with a record order book of close on $£ 3,000$ million, with nearly 70 per cent ticketed for export.

British Aerospace is the channel through which many of our most important electronics exports flow, especially in avionics and missile guidance and control systems. The possible termination of substantial contracts from Iran are not expected to seriously affect the overall buoyant outlook.

Convergence

The recent announcement by Racal Microelectronics Systems Ltd that their private in-house service to the Racal Group is now open to all comers is another interesting example of an equipment company expanding into the supply of sophisticated components. It is the opposite of the semiconductor manufacturers moving into the equipment field, of which there have been a number of recent examples. Perhaps in a decade or so the demarcation line between component and equipment people will have entirely disappeared.

Although only one year old, Racal Microelectronics Systems already claims to have developed over 20 complex LSI circuits for inclusion in Racal advanced products. The new service offered to industry includes designing with Uncommitted Logic Arrays (ULA) as well as LSI and thick-film hybrids. Using a standard Racal ULA wafer, working samples of new circuits, can be designed and manufactured in less than three months, in some cases as little as seven weeks.

Keith Thrower, managing director, is an old Racal hand. He joined the company as an engineer in 1960 and was responsible for much of the design of early Racal digital instruments and frequency synthesisers before becoming head of Racal's Advanced Development Division some five years ago.

Musical Bargain

Semiconductor prices are keener than ever. Typical is the MPU chip used in the Chromatronics 24-tune electronic door chime which is based on the TI TMS 1000. Now I note that you can buy this 28-pin package with all its built-in complexity for £4.95 (VAT included); even cheaper in quantity. Chromatronics believe that it will have many other applications, apart from door chimes, in the electronics toy and hobbyist markets.

ค
 ... a selection from our postbag
 Readers requiring a reply to any letter must include a stamped addressed envelope.

Opinions expressed in Peadout are not necessarily endorsed by the publishers of Practical Electronics.

Gertcha!

Sirs-On seeing the cover of the May edition of "Practical Electronics", and on reading subsequent disclosures inside, we noted several anomalies on the instrument panel of the car illustrated.

The car was apparently travelling at sixty miles an hour (engine speed 4,000 r.p.m.) with the handbrake on. This we feel was a rather pointless gesture, as the engine was in imminent danger of seizure, due to the fact that there was no oil pressure. The battery also seemed to be under a heavy discharge for such a high engine speed. This was presumably due to the current being drawn by the instrumentation, or the heated rear window and headlamps.

Anyway, function of the car apart, we consider that the driver was running a great risk as he was wearing no seat belt. The risk was compounded by the fact that he was driving with no hands on the wheel while initiating a right turn with the hazard warning lights on AND THE BONNET UP!

Assuming the car survived the almighty crash which followed, we would like to suggest a few repairs which should be undertaken:

1. New fan belt or alternator.
2. Top up with brake fluid (or release the hand brake!)

3. Top up with oil.

4. Replace clutch.

Alternatively, the car should be taken to the nearest scrap yard (after only 36.9 miles). Not one of Leyland's better attempts (We hope!)
A. Lorimer \& A. Birse,

Clydebank.
Scotland.

Bouquet and Brickbat

Sir-Please accept this as a constructively critical letter-which is what it is intended to be.

First of all the bouquet. I have had subscriptions to several electronic magazines over the years, and still buy others on an occasional basis when they happen to have an ifem which interests me, but for some years now 1 have had a regular order for PE. My interests must be the very common ones-general "educational" items about new developments and, mainly, general constructional features. As it happens my particular interests are radio control and audio.

Overall a fairly typical reader and quite satisfied enough with $P E$ to go on buying.
Now the brickbat. An increasing percentage of your magazine seems to be devoted to computer and microprocessor projects and programming. This was fair enough when it was a new field for the amateur, and I
appreciate that it is still a growth area for the "home builder". However, there are now several magazines devoted entirely to home computers and, while I would not suggest that you exclude the field entirely, I would be grateful to see some of the space that you now devote to it returned to a wider range of constructional projects.

J. A. Purvis,
 Sholing,
 Southampton.

Thank you for your interesting letter-the points made have been noted and will obviously add to any others in a similar vein.

In reply we would like to make two points. Firstly, due to the increase, last year, in the relative number of editorial pages in PE we do not believe that we have reduced the number of projects in which you might be, interestedl We have published only four m.p.u. projects since the end of the Champ seriesthe fifth is Compukit.

Secondly, a recent survey showed more regular readers are interested in m.p.u.s and related areas than in any other subject covered in our pages.

These points do not necessarily mean we have the mix right and we would like to thank you for passing on your views. The following letter may give you and others food for thought.

Any more bouquets or brickbats?-Ed.

Logical software?

Sir-I would like to comment on the "symbols" used in diagrams basically I'm in agreement with you regarding the decimal point. However, the use of 0V2 in the text describing an amplifier input of 200 mV destroys the flow. Personally I've used boxes for resistors for 10 years when drawing (also transformer windings) as they are neater and quicker to draw.

Please let's have more Microbus. There seem to be many mags devoted to those who have £XXX to spend upon a self-contained toy computer, monthly offerings of games and the like. However, your recent venture into the low-cost peripherals is most welcome, even though I'm not likely to extend my micro just yet.

Could I suggest another subject for a long series?-"Logical Software".

I have two projects which are nearing completion in that their requirements are known and the TTL/CMOS logic needed is reasonably understood. This normally leads to the next stage: buying the logic and making it work. The last stage is frequently omitted: pulling it apart and doing the job properly using the knowledge gained from the prototype.

Project 1-House alarm, giving various levels of entry/warning so the unit can be "on guard" most of the time.

Project 2-Heating control, giving various switching-on times and heat levels to optimise the fuel.

Both of these can be realised using "hard" logic-what I bought a micro for was to (eventually) design a universal micro-board which would cater for such projects by altering the software. Both require many inputs (door switches/temperature) and a few outputs (enter key code/hot water solenoid).

Your boffins could develop such a unit which would be of great use to engineers that want to use micros (rather than play with systems). There are countless projects which could be software-implemented so the interest could be renewed from time-to-time. However, may I give you a warning? Be careful not to have the whole thing written by a boffin. Your title is "Practical . . ." and you will realise there is a large gulf between building a "KOJAK" horn using multivibrators or 555 type timers and realising the same end (together with "Col. Bogey") by writing software.
There is yet another project for a "PE Micro project p.c.b." receiving hex data from micro and contact closures and displaying it on 7 -segment readouts.
H. S. Lynes, Carshalton Beeches, Surrey.

Springs and Buckets

Sir-I was very interested to read your article on binaural stereo patents in March's PE. Of particular interest was mention of the Matsushita mechanical spring and the capacitance bucket brigade methods of introducing artificial reverberation, in headphone listening.
There is, as far as I am aware, no spring device on sale in the UK for hi-fi use, although systems for use with P.A. (disco's, etc.) are quite cheap (about $£ 50$). This compares with some bucket brigade equipment (for use with hi-fi) selling for $£ 500$ to $£ 1,000$.
Considering what is required of a reverberation system, I do not see why spring devices fall outside the scope of hi-fi as their ranges $(100-10,000 \mathrm{~Hz}$) and distortion (1 per cent) compare with electronic systems.
I think Matsushita's spring transducer could be very successful and it may pay a British manufacturer to think of the mechanical system for other uses, say loudspeaker stereo, or surround sound experiments (dare I mention those words?).
J. W. Jones,

Widnes,
Cheshire

Provides sine, square and triangular wave outputs of up to 10 V pl/pk over a 1 Hz to 100 kHz frequency range.

Frie ENTRY COMPETITION OVER G̉OD WORTH OF BREABBaRDIMG from LEKTROKII TO BE WON

PRACTICAL

OUR SEPTEME'ER ISSUE WILL BE ON SALE FRIDAY 10 AUGUST 1979

THE stereo headphone amplifier described makes use of a straightforward design specifically intended to drive dynamic headphones with impedances as low as 50 ohms per channel. It includes its own mains power supply and will accept a low level stereo input direct from a radio tuner or tape deck. However, as the basic amplifier does not provide facilities such as source switching, disc equalisation, tone control and filtering it is best suited for use in conjunction with a separate preamplifier.

Numerous designs for solid state preamps have been published in recent years, but as an alternative, any ready built preamplifier unit or circuit module of commercial origin may be employed.

A trend in recent years has been the increasing popularity of stereo headphones as an alternative to loudspeakers. This is hardly surprising as headphones offer a number of important advantages: Firstly, they are very economical-a pair of headphones costing $£ 30$ might reasonably be expected to give the same quality of reproduction as a loudspeaker system which retails at over $£ 100$. Secondly, the nulsance factor of headphones is practically nil.

It is common practice for hi-fi manufacturers to provide a headphone output socket on the front panel of their amplifiers and stereo receivers. This headphone feed is derived from the final transistors of the two class B ouput stages and will normally be routed via a simple resistive attenuator.

There are numerous advantages to be gained, however, in the formulation of an amplifier design specifically intended for headphone operation. Dynamic stereo headphones have impedances far higher than moving coil loudspeaker systems. A typical high quality loudspeaker will present an impedance of between 6 and 8 ohms to the amplifier. In contrast, dynamic headphones have impedances in the range 50 to 2,000 ohms depending on their exact design. It will be apparent, therefore, that far less power is required to drive these transducers satisfactorily. High output power not being a requirement, a return to true class A operation with solid state transformer-less circuitry becomes practicable.

CIRCUIT

Fig. 1 shows the amplifier circuit diagram. For the sake of simplicity, only one channel is given. Two such amplifiers are, of course, required for stereo operation.
The input signal is taken via R1 and C1 to VR1, which functions as a volume control. Separate potentiometers are employed allowing gain adjustment of the left and right channels independently. This configuration eliminates the need for a balance control lif satisfactory volume control is already provided on the preamplifier to be used in conjunction with this design, then VR \uparrow can be made an internal, preset component).

The signal from VR1s wiper is coupled to the base of TR1 through C2. TR1 forms a common emitter voltage amplifier which is shunt biased by R2. A small amount of negative feedback and stapilisation is provided by the emitter resistor, R5. C4 has no effect at audio frequencies but serves to suppress radio frequency interference. The first stage is decoupled from the supply lines by R6 and C3. The series combination of R3 and R4 provides a collector load for TR1.

The main function of the output stage is to obtain impedance transformation. TR2 and TR3 are therefore employed in the familiar Darlington pair configuration with R7 forming an emitter load for the final transistor. The output signal developed across R7 is taken via C5 to the headphone jack socket.

TR1 must be biased so that its collector voltage equals

Fig. 1 Single channel of amplifier
half the supply value within 0.5 volts li.e. between 5.5 and 6.5 volts for a nominal 12 volt rail). If when the circuit is first powered-up this is found not to be so, then the value of R2 should be altered accordingly (reducing R2 will drop the collector voltage and vice-versa).

R3 has the purpose of raising the potential at TR2 base so as to overcome the combined base/emitter voltage drops of this transistor and TR3 (approximately 1.2 volts). In consequence, the potential at TR3 emitter will equal roughly half the supply value also.

POWER SUPPLY

Fig. 2 shows the power supply circuit for both channels. The mains input is taken via a double pole on/off switch and fuse to the primary windings of transformer T1. The secondary voltage is full wave rectified by D1 and D2. C6 serves to suppress switching transients, thus eliminating interference and the possibility of damage to other components.

C7 is the main reservoir, or smoothing, capacitor which removes most of the 100 hertz ripple. Transistors TR4 and TR5 form another Darlington palr. The base of TR4 is held at a constant voltage by the potential divider consisting of

Fig. 2 Power supply circuit for both channels

R8 and R9. It is this resistive divider that determines the final output voltage of the supply. As all ripple is removed from this reference voltage by C8, the 12 volt output appearing at TR5's collector is absolutely hum-free.

A light emitting diode, D3, gives visual indication that the equipment is switched on. C9 decouples the power supply output.

The total current consumption of the stereo amplifier when operating from a 12 volt supply is approximately 260 milliamps (130 milliamps per channel) and the output transistors will dissipate 770 milliwatts each which necessitates the use of a small heat sink. The emitter resistor of TR3 also dissipates roughly 770 milliwatts and a 2 watt power rating has been specified for R7. The series regulator transistor TR5 operates with a potential difference of approximately 8.5 volts between its collector and emitter junctions. Therefore, assuming a supply current of 260 milliamps, this component will dissipate around 2 watts so it will also require a small heat sink.

Fig. 3 Layout of stereo amplifier board

CONSTRUCTION

Most small components which comprise the amplifier and power supply are mounted on two separate pieces of 0.1 inch matrix Veroboard.

The amplifier circuitry can be assembled on a section of approximately $2 \frac{1}{2}$ by $4 \frac{1}{4}$ inches, as shown in Fig. 3. The BD137 power transistors are small plastic encapsulated devices which are easily mounted to a suitable heat sink. A piece of 18 s.w.g. aluminium measuring $4 \frac{1}{4}$ by 2 inches is drilled with two 6BA clearance holes and bolted directly to the output transistors.

The BD137s act as physical supports to this heat sink and it should be noted that the metal face of each transistor, which will come in direct contact with the aluminium, is live at collector potential. As the collectors of both devices are connected to the positive supply rail, this mutual shorting will not affect the amplifiers' operation.

Short lengths of screened cable are soldered to the amplifier board where shown. These provide "flying lead" connections for input, output and volume controls. All resistors, except R2, are mounted horizontally. The leads of R7 should be cut to approximately 1 inch and then bent at right angles to the component body. Using long leads enables this resistor (which runs rather hot) to be mounted well above the Veroboard surface, thus ensuring adequate ventilation. The output coupling capacitors are mounted vertically.

COMPONENTS . . .

Resistors

R1, R101	10k
R2, R102	1 M 5
R3, R103	330
R4,R104	2k2
R5, R105	47
R6, R106	47
R7. R107	47 2W
R8, R108	3 k 3
R9, R109	6 k 8
R10, R110	680
All $\frac{1}{2}$ W carbo	

Potentiometers VR1, VR101 47klog

Capacitors

C1,C101	10μ
C2,C102	10μ
C3, C103	220μ
C4, C104	100 p ceramic
C5, C105	470μ elect. 12 V
C6.	100 n
C7	$2,200 \mu$ elect. 25 V
C8	470μ elect. 25 V
C9	$1,000 \mu$ elect. 25 V

Semiconductors

TR1, TR101	BC108C (2 off)
TR2, TR102	BC108C (2 off)
TR3, TR103	BD137 (2 off)
TR4	BC108C
TR5	2N3055
D1	1N5401
D2	1N5401
D3	TIL209

Transformer

T1 Pri. 240V; Sec. 15-0-15V 1 A

Miscellaneous

FS1 (2A) fuse plus chassis mounting holder, tag strip, Veroboard, miniature audio coax cable, phono sockets (chassis mounting), stereo jack socket (chassis mounting), clip-on heat sink, four rubber feet, knobs, aluminium box $10 \times 4 \frac{1}{2} \times 3 \mathrm{in}$.

The power supply circuit board (Fig. 4) measures approximately $3 \frac{3}{4}$ by $2 \frac{5}{8}$ inches and carries all components shown in Fig. 2 except D3, S1, T1 and FS1. TR5, the series regulator transistor, is mounted on its own aluminium heat sink. This heat sink, which measures $3 \frac{3}{4}$ by $2 \frac{5}{8}$ inches,
cannot be made self supporting and so the bottom $\frac{3}{8}$ inch is bent at right angles to form a bracket. Two fixing holes then enable it to be bolted to the edge of the Veroboard. Mounting holes are also drilled for TR5. The case of this transistor forms its collector connection and a solder tag affixed to one of the mounting bolts provides a collector terminal. This heat sink, therefore, is also live.

The amplifier was enclosed in a standard aluminium box measuring 10 by $4 \frac{1}{2}$ by 3 inches. The two circuit boards can be affixed to the bottom of the case using 4BA nuts and bolts. Spacers are employed here to ensure separation of the Veroboard underside from the metal base. An aluminium screen is provided where shown in order to isolate the amplifier and power supply sections.

Chassis mounting phono sockets provide input connections and automatically give an earthing contact to the amplifier case. A stereo jack socket forms the standard headphone outlet.

A 3 core mains lead enters the power supply section through a sleeved rubber grommet and is terminated at a

Fig. 4 Layout of p.s.u. board
tag strip. An earthing point is available on one of the end tags which will be bolted directly to the metal casing.

A small light emitting diode, is pushed through a $\frac{1}{8}$ inch hole drilled into the casing. It can be held in place with a blob of Araldite.

Finally, four rubber feet are affixed to the base of the aluminium box with large self tapping screws. Ventilation holes were not drilled into the casing of the prototype as they reduce screening. But the underside of the casing lid has been painted matt black to assist transfer of heat from within the amplifier.

JAPANESE PRODUCTION IN USA

A$\$ 4 \mathrm{~m}$ investment by Hitachi to establish a facility for the production of colour television sets and home appliances at Compton, California, has resulted in the birth of "Hitachi Consumer Products of America Inc." Initially with 120 employees, operations are expected to commence in January 1980, with partial operation starting this August.

YORKSHIRE COMPUTER CLUB

THE South Yorkshire Personal Computing Group (SYPCG) has been formed for the d.i.y. microprocessor and computing enthusiast. Initially the group will meet on the second Wednesday of each month at Sheffield University, and membership for 1979 has been set at $£ 3$ (nominal charge only for those still at school).

Details: Tony Rycrof, SYPCG Secretary, 88 Spinneyfield, Moorgate, Rotherham, S. Yorks.

A FLUKE OCCURRENCE

ANEW service centre has been opened by Fluke, based near Manchester. The full address is: Fluke International Corp, Middle Floor, Mersey House, 220 Stockport Road, Stockport, Cheshire

FAST DELIVERY

A^{N}NEW service called "Datapost" now replaces the Securicor service previously in operation at RS Components. Orders received at London, Birmingham or Manchester before 3.30 p.m. will normally be delivered the next day (Mon-Fri), with Saturday delivery if requested. Datapost should be specified when ordering, whereupon a nominal charge of $£ 1$ plus standard rate VAT will be made irrespective of the number of parcels to be despatched.

FIGHT-IT-YOURSELF

THE mechanical and electrical appliances which fill our homes, we all know can do anything. Freeze, fry, wash, dry, suck, blow, entertain, sew. What we don't know is that these contrivances talk to each other after we go to bed. The subject of discussion at their meetings each month is, naturally, the most inconvenient time to break down. A decision to fail might depend upon the holiday plans of your regular plumber, or the approach of a Bank Holiday. Two or three contraptions might simply agree to break down simultaneously. And the mower having chugged past your window while you sleep, to attend the kitchen summit, might suggest burning out at the height of the growing season.

After the blows have been dealt you contact a service engineer, for whom you may await the non arrival of repeatedly. When he turns up, one of two things will happen. He shakes his head and tells you it would cost more to repar than buy a new one, or the machine offers up a fault for him to find, to which he responds, "Ah,I can see what's wrong." He fives it..Unfortunately this fault had nothing to do with the original trouble, and the machine ceases to operate again once the serviceman has left.

A new idea which may be the answer to the expense and uncertainty of picking telephone numbers from the Yellow Pages is MAC (Mutual Aid Centre), where $£ 1$ will buy you three hours in a kind of public workshop in which you can do-it-yourself! You might shudder, but skilled supervision and the right tools are part of the deal. The only additional expense is the prerequisite of being a member, costing $£ 2$ per annum ($£ 1$ for pensioners). The first MAC is in Longden Coleham, Shrewsbury, but it is hoped that they will eventually become as commonplace as public libraries. Open six days a week and nine hours a day, the first centre is expected to run training courses on the premises, in conjunction with Shrewsbury Technical College. The workshop has been launched by the Mutual Aid Centre, the London-based charity founded by Michael Young, originator of "Consumers' Association" and "Which?" magazine.

THE Chimesonic is a nine note electronic door chime which can be powered by either battery or transformer and its design enables it to be easily installed or substituted for most existing door chimes or bells without rewiring. The Chimesonic unit enables a variety of melody modules to be plugged in so that the tunes can be varied to suit taste, occasion or season. These modules consist of a number of diodes and pre-sets which are simply adjusted to the particular note required. The same module can thus be "retuned" when a different melody is required or a selection of modules can be built-up and pre-tuned ready for use.

Installing the chime is quite straightforward since it will work from either a battery or transformer and can be operated from the simple type of push switch or the illuminated kind. The connections to the unit are marked on the p.c.b. and made using a standard 2A 6 -way strip connector.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Chimesonic is shown in Fig. 1 and circuit diagram of the melody module in Fig. 2.

If the unit is being used with a simple push switch, the power supply can either be a 9 V battery (PP6) or alternatively a transformer supplying between 6 and 8 V at $\frac{1}{2} \mathrm{~A}$. If an illuminated bell push is being used a transformer supplying 8 V at 1 A is required. It is important to remove the fuse (FS1) for battery operation in order to conserve battery life.

The tempo generator produces a clock pulse, which determines the "beat" of the melody. If required this can be varied by altering the value of C3 and/or C4. The clock pulse drives IC3 which is a CMOS decade counter decoder. Each of the counter outputs go high in turn and drive their respective presets (VR1 to VR9) on the melody module to produce a series of notes.

The note generator is the familiar 555 timer with VR1 to VR9 each forming the variable element of the CR network when each counter output becomes active. The overall pitch of the melody is determined by C6 and although this could be varied, it will be found that a 100 nF capacitor enables a good range of notes to be obtained simply by adjusting each of the presets on the melody module.

An output of sufficient drive for a number of speakers is provided by TR5 and TR6. With an 8 ohm load the output is approximately 2 W square-wave and this is more than adequate for most applications. Should additional speakers be required these should be connected in series. The output loading is not critical (4 ohms min.) and a speaker or combination of speakers up to 80 ohms total impedance may be connected to still produce an adequate volume level. Remember to connect a link wire between terminals D and Ext Spk on TB1 if an extension speaker is not being used.

A staccato effect is made possible by joining the connections 3 and 17 on the melody module. This separates each note from the next and may be useful during tuning even if it is not used in the final melody.

If a 470 nF capacitor is connected between pin 3 and 17 on the melody module an "echo" effect can be obtained.

The supply voltage is applied to the regulating circuit formed around TR3 and TR4. Diode D10 prevents possible damage due to the battery being incorrectly connected.

When TR4 is conducting the Zener diode D15 will maintain the voltage at the emitter of TR3 at 5 V .

For TR4 to conduct, the voltage at its base must be low (ie OV). This is achieved initially by the action of the push switch which when pressed connects the base of TR4 via R13 to the OV rail. This action enables TR3 to supply a regulated voltage of 5 V to the circuit which is maintained by the operation of IC1, IC2 and TR2.

IC2 is a monostable which is arranged to trigger whenever the regulated voltage is applied. This is achieved by the capacitor C5 charging via R3. A rising voltage thus appears at the Schmitt input of monostable IC2 (pin 5). At a certain threshold voltage the input triggers the monostable and a pulse (Q pin $6, \overline{\mathrm{Q}}$ pin 1) of duration determined by C 7 and R 8 is produced.

The negative going pulse ($\overline{0}$ pin 1) is applied to the "set" input of IC1 (pin 9) and the bistable is latched to give a "high" output $(+5 \mathrm{~V})$ on pin 8.

This "high" output drives the base of TR2 which is turned on maintaining the regulated supply to the circuit.

Fig. 1. Main circuit diagram of the Chimesonic
connected via diodes to resistors which determine the frequency of the notes generated by IC4.

The "count" output 9 (pin 11) is inverted by TR1. The arrival of "count" 9 thus causes the voltage at the collector of TR1 to go "low". Since this voltage is applied to the "reset" input (pin 13 IC1) of the bistable ($\frac{1}{2}$ IC1) the bistable changes state causing the \mathbf{Q} (high) output to go "low". This action inhibits the astable multivibrator ($\frac{1}{2}$ IC1) and switches TR2 off. The voltage at the emitter of TR3 falls to zero unless the illuminated push switch is used. In which case the circuit remains on but the output remains silent since the tempo generator is inhibited and the count remains at 9 .

NOTE GENERATOR

The notes played by the Chimesonic are generated by IC4 and their frequency is determined by the value of the particular resistor being driven by the IC3 counter/decoder.

The overall pitch of the notes is determined by the values of VR1 to VR9 which are adjusted according to the melody required.

For melodies containing "rests" the particular preset and diode is not present at the "count" output (IC3) at which the "rest" occurs.

For melodies of less than nine notes certain resistors and their associated diodes are not included in the melody module circuit.

If it is necessary at some stage to retune notes then increasing the value of the presets concerned (VR1 to VR9) will lower the respective notes, and decreasing the resistor value will make the note higher.

For tuning purposes two small pins (Tune) are provided next to IC2 on the p.c.b. When these are linked together this

\section*{COMPONENTS . . .
 Resistors
 | R1, R2, R10 | 2 k 7 (3 off) |
| :--- | :--- |
| R3, R4, R5, R6, R7 | 10k (9 off) |
| R8, R12, R15, R16 | |
| R9, R11 | 220 (2 off) |
| R13 | 6 k 8. |
| R14 | 470 |
| R17 | 107 W |}

All resistors $\frac{1}{4}$ W except where otherwise stated.
Potentiometers VR1-VR9

47 k min. hor. preset (9 off)

Capacitors

C 1
$\mathrm{C} 2, \mathrm{C}$
, C9,
C1
$1000 \mu 10 \mathrm{~V}$ elect
C2, C6, C9, C1 1
C3, C7
C4
C5
C8
C10
100 n 250 V polyester (4 off)
$47 \mu 10 \mathrm{~V}$ elect (2 off)
$100 \mu 10 \mathrm{~V}$ elect
$10 \mu 10 \mathrm{~V}$ elect
10 n 250 V polyester
$1000 \mu 16 \mathrm{~V}$ elect

Semiconductor

D1-D9	1N4148 (9 off)
D10-D14	1N4001 (5 off)
D15	BZY 885V6 Zener
TR1, TR2, TR5	BC107 (3 off)
TR3, TR6	BFY 52 (2 off)
TR4	2 N3703
IC1	7400
IC2	74121
IC3	CD4017A
IC4	555

Miscellaneous
20 mm fuse
Fuse holder
LS1 8Ω loudspeaker and case
Battery connector
Battery PP6
Veropins
Terminal block (6 way) 2 A
Plug and socket 0.1 in 20 way (RS 488-365)
i.c. holders (if req)

Transformer*

* See text
inhibits the astable multivibrator and enables each note to be held whilst being tuned. To facilitate tuning solder a short wire to the pin marked with an asterisk on the p.c.b. layout.

OUTPUT STAGE

The output from the note generator IC4 (pin 3) is taken via R12 to the base of TR5. This transistor is used to provide enough voltage and current drive for the output transistor TR6. Both TR5 and TR6 are operated in the switching mode and thus the final output is square-wave.

Loudspeakers for Chimesonic should present an emitter load of approximately 8 ohms to TR6. Additional loudspeakers may be connected in series by replacing the wire link joining the terminals ' D ' and 'ext spkr' with the leads from the extension loudspeaker(s). The impedance of the extension speaker is not critical and acceptable volume levels can be obtained with up to 80 ohm loading.

Alternatively the extension speaker output can be used to drive additional amplifiers for PA applications etc. For this application connect the unit into the high level input of the amplifier and take the screen of the connecting cable to the terminal labelled D, and the signal core to the 'ext spkr' terminal. A load resistor of 22 ohms may be substituted for the internal speaker if this sound source is not required.

CONSTRUCTION

The main p.c.b. of the Chimesonic is shown in Fig. 3 with the component overlay shown in Fig. 4. It is recommended that i.c. holders are used especially for IC3 since this is a CMOS device which should be placed in the circuit after the rest of the construction work is completed.

The melody module p.c.b. and overlay are shown in Fig. 5 and Fig. 6.

The use of Veropins or similar is recommended for the battery leads termination points, speaker connections and Tune contacts.

The p.c.b. has been designed to enable the constructor to have a choice in the melody module connection method. In the prototype a 20 way plug and socket was used. The socket should be mounted on the p.c.b. and the plug soldered onto the module board.

Alternatively the p.c.b. itself may be the 0.1 edge plug mating with an edge connector mounted on the module board. The first method is preferred since mating connection is positive via gold contacts.

If an illuminated bell push is to be used the 8 V 1 A transformer should be connected to terminals A and B with the bell push connected to terminals A and C. Terminals D and E should be linked together and the fuse (FS1) inserted in the p.c.b. fuse holder.

The lamp in the bell push together with R17 form a circuit driven by the a.c. voltage applied to terminals A and B.

tUNING

An appropriate tuning procedure for the Chimesonic is shown in Table 1

1. Temporarily link together the two Tune pins next to IC2 on the p.c.b.
2. Press the push-button and keep it pressed.
3. The first note will be heard constantly and it can be varied in frequency by altering the value of the resistor connected to the ' O ' "count" output.
4. Remove the wire and the next note should be heard. If it is not bring the wire briefly in contact with the end of the resistor R8.
5. As soon as the note is heard link the two Tune pins again. The note for "count" output ' 1 ' (IC3) will now be held and the value of the resistor connected to "count" output ' 1 ' can be altered as necessary.
6. This procedure is continued and the link is removed and replaced for each count.
7. If any note is missed then the link must be removed and the sequence begun again.

TABLE 1

The "tempo" of the melody is determined by C4. A higher value capacitor will slow the tempo-a lower value will quicken it.

Fig. 3. P.c.b. layout for the Chimesonic

[E016]
Fig. 4. Component overlay

Fig. 5. P.c.b. layout of melody module

4x घロай

RADIO AMATEURS' EXAMINATION MANUAL By G. L. Benbow, G3HB
R.S.G.B., 35 Doughty St., London WC1 N 2AE

120 pages; paperback; 248 by 184 mm ; 8th edn; 1979
£1.85 (£2.16 from RSGB inc. p\&p)

THE standard work for all would-be licensed radio amateurs studying for the UK Radio Amateurs' Examination, which has also proved popular in other countries which have similar licensing examinations.

This edition has been completely revised in order to take account of the current changes in RAE format and syllabus. A valuable feature is the provision of two sample examination papers, each containing 95 multiple-choice questions, answers being given separately.

Chapter titles are: Becoming a radio amateur: Electrical theory and calculations; Semiconductors; Radio receivers; Transmitters; Power supplies; Propagation and antennas; Transmitter interference; Measurements; Licence conditions; Operating practices and procedures; Tackling the Radio Amateurs' Examination; plus four appendices.

THE BASIC COOKBOOK

By Ken Tracton Published by Tab Books 138 pages. Price $\mathbf{£ 3} \mathbf{6 0}$

0riginally developed in the 1960s at Dartmouth College, by John Kemeny and Thomas Kurtz, the programming language BASIC has grown to become the primary home computer language today, and although rivals are appearing, anyone contemplating involvement in small business and home computing can ill afford to ignore it.

The book does not take you through the list of commands beginning with the simplest, but curiously goes through them alphabetically. This does however, allow quick reference to a particular command should you forget what it does, and examples with flow charts accompany each one. Basic is an easy language to learn, requiring no specialised knowledge, and the complexity of programs possible, built on simple instructions, is limited only by the logic and clarity of thought of the programmer. If you digest the contents of this book there should be nothing but "hands on" time between you and fairly complex programs.

There is one instruction not covered in the Basic Cookbook which you will find on a personal computer such as the Commodore PET, and that is GET, which enables the user to input single characters without hitting the Carriage Return key. This facility speeds up graphical games considerably, but unlike the INPUT instruction, requires a loop in the listing to operate successfully. The TRS-80 equivalent is INKEYS.

This is a good clearly laid out book, which of course, is what the beginner needs!
M.A.

ILLUSTRATED DICTIONARY OF MICROCOMPUTEF TERMINOLOGY

By Michael Hordeski
Published by Tab Books \{available W. Foulsham, Slough)
322 pages. Price $\mathbf{5} 5.75$

JUST when you think you've caught up on all the buzzwords and abbreviations used in microcomputer terminology, you read something like this:

Fully edified $8 K$ system with Line Queue Multiplexing for the low end ZIF users, complete with turbulation shift and dummy-zero interpreter.

In fact, the above might be nonsense, but a newcomer to the technology could be forgiven for reading it and going away convinced if a little confused. The only answer to this state of affairs is to get yourself a comprehensive microcomputer dictionary, and with 4,000 terms listed, this one is as good as I've seen yet, although I was surprised to find CUTS missing!

Armed with this illustrated reference you can blast your way through OEMs (original equipment manufacturer), KSR teletypewriters (keyboard send/receive), PLAs (programmed logic arrays), and PIA: (peripheral interface adapters). In an instant, you would discover that not only magazines have editors, how machines shake hands with each other, and that the above, in italics-is a leg pull. Recommended.
M.A.

Polliis dilisinc

METERMATE (July 1979)

The printer has reversed (left-to-right) the stripboard part of Fig. 8, so that the track cuts as shown are meaningless.

Any constructor requiring a correct copy of this can obtain one from the editorial offices at Poole.
AUTORANGING MULTIMETER (April 1979)
The Precision Monolithics Inc. REF-02 is not available from Bournes Lid. (PMI agent) of Hounslow, to the amateur in one-off quantities, but may be obtained from Ace Mailtronix Ltd., Tootal Street, Wakefield, West Yorkshire, WF1 5JR.
GUITAR SOUND MULTIPROCESSOR (Dec. 78)
In Fig. 3 R 1 should be $10 \mathrm{k} \Omega$. In Fig. 14 R53 is 100Ω not $100 \mathrm{k} \Omega$ as in the components list.

CONSTANT DISPLAY FREQUENCY METER

(August 1978)
In Fig. 4, a wire should be shown connecting the mains earth tag at IC17 to the negative terminal of C4.

ULTRASONIC REMOTE CONTROL (June 1979)

Transistor TR1 which is adjacent to TR2 in Fig. 4 is incorrectly annotated, it should be TR3. In the same diagram C1 should be C7. C1 which can be mounted off the board should have its positive terminal connected to the cathode of diode D1 and its negative terminal to the anode of diode D4.

SOUND OPERATED SWITCH (May 1979)

Operation of the Sound Operated Switch is improved by wiring an OA47 diode with its anode to IC2 pins 6 and 7 , and its cathode to the junction of IC1 pin 7 and IC2 pin 2. This is easily carried out on the top side (component side) of the board using the lead to R12 (10k $\Omega)$ and the wire link between IC1 and IC2. Alternatively, the diode may be wired to the under side (copper track) of the p.c.b. This modification ensures that C 6 does not start to charge until the audio input falls below the threshold level. The diode holds down the voltage across C6 until the output voltage from the comparator, IC1 (b), goes high.

The sensitivity of the device can be increased when using low impedance inputs by reducing the value of R1 to $1 \mathrm{k} \Omega$, or less.

 c
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
 Although a standard strip of memory cards and dual floppy disc

0 d

Acorn Controller

 Designed as an industrial controller /O lines. In eurocard format it is 2×74 S571) giving comprehensive facilities. Also available in minimum configuration for low cost OEM applications.

[^3]
8022A Checklisł

Whether you are buying your first multimeter or moving up to digital from analogue, check these features against your existing meter.

FULL 2 YEAR WARRANTY.

1 YEAR GUARANTEED ACCURACY FROM $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$.

DROP PROOF! Meets tough Mil-Spec tests for shock \& vibration.

10 times better Accuracy than most analogue meters.

Single handed operation.

USER PROTECTION!
Recessed input jacks and new Fluke designed safe test leads.

PROTECTED THREE WAYS
against accidental overvoltage, over-current and transient to 6 kV .

Easily accessible battery and current fuse.

200 Hours continuous operation plus "BT" low battery volt indication.

Handy size. Fits easily into pocket, brief-case or toolbox.

Large, readily available range of accessories.

Worldwide parts and servicing facilities.

Price $£ 89.00$ complete with test probes.

> Ano compromise Digital Mullimeter al an analogue price.

Hello everybody - we're back again!

SEIKO 20\% off!

LATEST MODELS LOWER PRICES

Japanese versions - similar to UK models listed. GG003 Chronograph (RRP $£ 69.50$) $£ 55.50$ GD007 Chronograph ($£ 92.50) \quad £ 74.00$ FW007 Alarm/Chronograph ($£ 115$) $\quad £ 92.00$ GC003 Programmable Alarm/Chrono (£135)
$£ 108.00$ FX003 Memory Bank (£130) $£ 104.00$

LCD PROGRAMMABLES

with non-volatile Stores and Memories and almost infinite programmability (Using FA-1)

FX-501P

128 steps
11 memories
5 levels ()
RRP $£ 59.95$
$£ 49.95$
FX-502P
256 steps
22 memories
10 levels ()
RRP $£ 79.95$
£69.95

FA-1 Adaptor
RRP $£ 24.95$

$£ 19.95$

LATEST LCD SCIENTIFICS

Casio's new FX-68 Mini Card

37 Scientific functions including trigs, logs, exponentiations. Statistical - standard deviations. Polar to Rectangular, R-P and sexagesimal conversions. Pi cube, root, 6 levels of parenthesis, full memory. 500 hours continuous use battery life. A very convenient $3 / 16^{\prime \prime} \times$ $21 / 8^{\prime \prime} \times 35 / 8^{\prime \prime}$. Complete with wallet. RRP £24.95£ 19.95
FX-80 Specification as above plus Engineering key, 4000 hour battery life from $2 \times$ AA size batteries. $\frac{3^{\prime \prime}}{} \times 3^{\prime \prime} \times 57$.
RRP $£ 21.95$
£16.95
FX-48 (£18.95) £14.95. FX-58 (£29.95) £24.95.
FX-2500 (£24.95) £19.95. FX-3100 (£28.95) £23.95.
FX-8000 (£35.95) £29.95.
CASIO calculating Alarm Clocks
CQ-81 (£18.95) £14.95. CQ-82 (£24.95) £19.95
AQ-2000 (£29.95) £24.95. MELODY 80 ($£ 29.95$) $£ 25.95$
MQ-1£1 (£34.95) (£29.95. MQ-10 (£39.95) £35.95

NEW CASIO CHRONOGRAPH

Puts most solar watches in the shade!
CASIO
95QS-3.1B Lithium battery 1 P100 sec chrono
Dual
time
RRP
£29.95
Our
price
£24.95

4 year Lithium battery outlasts most solar watches. Chronograph measures net, lap and 1st \& 2nd place times from $1 / 100$ second to 6 hours. Constant LC Display of hours, minutes, seconds, $\mathrm{am} / \mathrm{pm}$ and day. (12 or 24 hour system). Automatic day, date, month \& year calendar. Dual time facility (12 or 24 hour system). Stainless steel encased. Mineral glass face. Water resistant to a depth of 66 feet (2 at). Quality s/s bracelet with easily removable links.

EXCEPTIONAL VALUE

In our opinion this watch represents the finest value for money available today. At Christmas the 46CS-27B had a RRP of $£ 89.95$ and you would reasonably expect to pay at least this amount for a watch of this quality and specification.

CASIO

46CS-27B
46CS-29B
(Slight case
variation)
Alarm
Chimer
$1 / 100 \mathrm{sec}$
chrono
RRP
£49.95
$£ 39.95$

Constant LC Display of hours, minutes, seconds, am/pm and day (12 or 24 hour system). Automatic day,date, month and year calendar. 24 hour alarm. Optional hourly chime facility. Chronograph measures net, lap and 1 st and 2 nd place times from $1 / 100$ second to 6 hours. Genuine stainless steel case (not "stainless" or "finish") only 7.8 mm thick. Mineral glass face. Water resistant to 100 feet (3 at). Backlight. ± 10 seconds/month accuracy. Easily removable links in high quality stainless steel bracelet.

UNBEATABLE QUALITY AND VALUE FOR MONEY FROM JAPAN - WHY SETTLE FOR LESS?

Most CASIO products in stock.
Send 25 p for our illustrated mail order catalogue.

Prices include VAT, P. \& P. Send cheque or phone your Access or Barclaycard Number to:
Telephone 022367503

TIIE Naw $\quad-2$
 EUROSOLDERSUCKER

This 195 mm long, all metal, high suction, desoldering tool with replaceable Teflon tip enables removal of molten solder from all sizes of pcb pads. Primed and released by thumb, it incorporates an anti recoil system and built in safety guard. Only $£ 6.80$ inc. VAT \& P.P

Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL packages as well as Capacitors, Resistors, LED's. Transistors and components with leads up to .85 mm dia
500 individual connections in the central breadboarding area spaced to accept all sizes of DIL package without running out of connection points, plus 4 Integral Power Bus Strips around all edges for minimum inter-connection lengths

All connection rows and columns are now numbered or lettered enabling exact location indexing.
Double-sided nickel silver contacts for long life (10K insertions) and low contact resistance ($<10 \mathrm{~m}$. ohms)
Easily removable, non-slip rubber backing allows damaged contacts to be rapidly replaced.
No other breadboard has as many individual contacts, offers all these features and costs only $£ 5.80$ each or $£ 11.00$ for 2 - inclusive of VAT and P.P.

Snip out and Post
David George Sales, r/o 74 Crayford. High St., Crayford, Kent DA1 4EF

David George Sales r/o 74 Crayford High Street, Crayford, Kent, DA1 4EF.

Please send me 1 EuroSolderSucker @ $£ 6.80 \square$
Please or 1 EuroBreadBoard @ $£ 5.80 \square$ or 2 EuroBread Boards @ $£ 11.00 \square$ Tick include VAT and P.P., but add 15\% for (All prices inclu
overseas orders)

Name
Company
Address.

HARDWARE MINIATURE TRANSFORMERS
 240 Volt Primary
 Secondary rated at 100 mA . Available with secondaries of: 6.0.6, 9-0.9 and 12-0.12. 92p. each
 LOUDSPEAKERS
 56 mm dia. 8 ohms 64 mm dia. 8 ohms 64 mm dia. 64 ohms 70 mm dia. 8 ohms 70 mm dia. 80 ohms
 TERMINALS
 Rated at 10A. Accepts 4 mm plug, black,

 blue, green, brown and red22p

SWITCHES

Subminiature toggle. Rated at 3A 250 V . SPDT 70p SPDT centre off 75p DPDT 80p DPDT centre off 95p Standard toggle
SPST 34p DPDT 48p
Wavechange switches.
1P12W, 2P6W, 3P4W or 4P3W all 43p ea.
Miniature switches (non-locking)
Push to make 15p Push to break 20p Slide switches (DPDT)
Miniature
14p Standard

CONTROL KNOBS

Ideal for use on mixers etc. Push on type with black base and marked position line. Cap available in red, blue, green, grey, yellow and black. 14p

MEMSMOD

We welcome callers at our new premises at the address below (5 mins. from High St.) We are open Mon - Sat, 9am 6 pm. Special offers available.
Express telephone order service. Orders received before 5 pm. are shipped first class on that day. Contact our Sales Office now! Tel: 01-464 2951/5770.

ORDERS DESPATCHED BY RETURN POST

Quantity discounts on any mix TTL, CMOS 74 LS and Linear circuits: $100+10 \%, 1000+$ 15%. Prices VAT inclusive. Please add 30 p for carriage. All prices valid to April 1980. Official orders welcome.

BARCLAVCARD
\& ACCESS WELCOME

Mail orders to: STEVENSON (Dept PE)

741S		LS73	25p	LS156	60p
		LS74	250	LS157	48p
		LS75	30p	LS164	65p
LS00	13p	LS76	25p	LS174	48p
LS01	$13 p$	LS78	$35 p$	LS175	48p
LSO2	13p	LS83	35p	LS190	62p
LS03	13p	LS85	70p	LS192	60p
LS04	13p	LS86	30p	LS193	60p
LS08	15p	LS90	$36 p$	LS196	60p
LS10	13p	LS93	38p	LS251	50p
LS13	28p	LS95	45p	LS257	50p
LS14	450	LS123	70p	LS258	50p
LS20	13p	LS125	38p	LS266	30p
LS30	13p	LS126	38p	LS283	60p
LS32	16p	LS132	60p	LS290	60p
LS37	24p	LS136	28p	LS365	40p
LS40	17p	LS138	50p	LS366	40p
LS42	40p	LS139	50p	LS367	40p
LS47	900	LS151	50p	LS368	40p
L. 548	70 p	LS153	50p	LS386	35p
LS54	15p	LS155	55p	LS670	140p
11		7454	12p	74132	45p
		7473	20 p	74141	55p
		7474	22p	74148	90p
		7475	$25 p$	74150	55p
7400	10p	7476	20p	74151	40p
7401	10p	7485	55p	74156	40p
7402	10p	7489	$135 p$	74157	40p
7404	12p	7490	25p	74164	55p
7408	12p	7492	300	74165	55p
7410	10p	7493	250	74170	100p
7413	22p	7494	45p	74174	50p
7414	39p	7495	35p	74177	50p
7420	10p	7496	45p	74190	50p
7427	20p	74121	25p	74191	50p
7430	10 p	74122	$38 p$	74192	50p
7442	38p	74123	38p	74193	50p
7447	45p	74125	$35 p$	74196	500
7448	50p	74126	35p	74197	50p
CNOS		4018	550	4050	25p
		4023	12p	4066	350
		4024	40p	4068	18p
4001	12p	4026	90p	4069	12p
4002	12p	4027	30p	4071	12p
4007	12p	4028	48p	4081	13p
4011	120	4029	50p	4093	45p
4013	280	4040	60p	4510	65p
4015	50p	4042	50 p	4511	650
4016	30p	4046	90p	4518	65p
4017	48p	4049	25p	4520	$60 p$
FULL DETAILS IN CATALOGUE!					

SKTS

Low profile by Texas

8 pin $\quad 8 p \quad 16$ pin $11 p \quad 28$ pin $22 p$ 14 pin 10p 24 pin 18p 40 pin 32p Soldercon pins: 100:50p. 1000:370p

OPTO

LED's 0.125 in . 0.2 in each $100+$ $\begin{array}{lrrrr}\text { Red TIL209 TIL220 } & 9 p & 8 p \\ \text { Green } & \text { TIL211 TIL221 } & 10 & 12 p\end{array}$ Vellow TIL213 TIL223 13p 120 Clips 3p 3p
DISPLAYS

DL704 0.3 in CC $\quad 1300 \quad 1200$ | DL707 | 0.3 in CA | 1300 | 120 |
| :--- | :--- | :--- | :--- |

RESISTORS
 Carbon film resist-

 awn noise 5%.E12 series. 4.7 ohms to 10 M . Any mix.

	each	$100+$	1000
0.25 W	1 p	0.9 p	$0.8 p$
0.5 W	$1.5 p$	1.2 p	$1 p$

	each	$100+$	$1000+$
$0.25 W$	$4 p$	$3.5 p$	$3.2 p$

PLEASE WRITE
FOR YOUR FREE
COPY OF OUR
NEW 80 PAGE CATALOGUE OF COMPONENTS. CONTAINS OVER OVER 2500 STOCK ITEMS. Componlic
U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

RADIO COMPONENT SPECIALISTS 337 Whitehorse road, croydon, u.k.

Minimumpost 30p. Acceseand Barclaycard Samedaydespatch Radio Bookeand Components Lista 20p Open 9-6 Sat. 9-5 (Clozed Wedresday all dey). Tel. 01-684 1665

Largest range of quality components in the U.K. - over 8,000 types stocked

Retail Sales: London: 40-42 Cricklewood Broadway, NW2 3ET. Tel: 01-452 0161/2 ALSO 325 Edgware Road, W2. Tel: 01-723 4242.

Head Office and Mail Order to Dept. P.E A. Marshall (London) Lid., Kingsgate House, Kingsgate Place, London NW6 4TA. Tel: 01-624 0805. Telex: 21492.

Glasgow: 85 West Regent Street, G2 20D. Tel: 041-332 4133 AND Bristol: 108A Stoke's Croft, Bristol. Tel: 0272854201

SINGLE IN LINE PLUGS AND SOCKETS Providing economica
 EGip 1 Peseritins New-SIEMENS TURN-SLIDE SWITCHES This new version of the rotary switch is especially suitabie tor seting programs. The rotary switch is of a 1, element no stops Vortage rating $\leq 60 \mathrm{~V}$

 TTL (see catalogue for full range)Tr

$\begin{array}{lllllllll} \\ 74 \mathrm{COON} & 0.24 & 74 \mathrm{C} 78 \mathrm{~N} & 0.54 & 74 \mathrm{C} 150 \mathrm{~N} & 1.11 & 74 \mathrm{C} 221 \mathrm{~N} & 1.36 & 74 \mathrm{C} 911 \mathrm{~N} \\ 7.70 \\ 74 \mathrm{CO} 2 \mathrm{~N} & 0.24 & 74 \mathrm{C} 83 \mathrm{~N} & 1.30 & 74 \mathrm{C} 181 \mathrm{~N} & 1.11 & 74 \mathrm{C373N} & 1.87 & 74 \mathrm{C} 112 \mathrm{~N} \\ 7.70 \\ 74 \mathrm{C} 04 \mathrm{~N} & 0.24 & 74 \mathrm{C} 85 \mathrm{~N} & 1.30 & 74 \mathrm{C} 162 \mathrm{~N} & 1.11 & 74 \mathrm{C} 374 \mathrm{~N} & 1.87 & 74 \mathrm{C} 914 \mathrm{~N} \\ 1.41\end{array}$ | 74 CO 2 N | 0.24 | 74 C 3 N | 1.30 | 74 C 181 N | 1.11 | $74 \mathrm{C3} 33 \mathrm{~N}$ | 1.87 | 74 C 112 N |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7.70 | | | | | | | | |
| 74 CO 04 N | 0.24 | 74 C 85 N | 1.30 | 74 C 162 N | 1.11 | 74 C 374 N | 1.87 | 74 C 914 N | 74 C

74 C $\begin{array}{llll}74 C 08 N & 0.24 & 74 C 85 N & 0.64 \\ 74 C 0 N & 0.24 & 74 C 89 N & 4.39 \\ 74 C 14 N & 0.95 & 74 C 90 N & 0.85 \\ 74 C 20 N & 024 & 74 C 93 N & 0.85 \\ 74 C 30 \mathrm{~N} & 0.24 & 74 \mathrm{C} 95 \mathrm{~N} & 1.04\end{array}$

TRANSISTORS (see catalogue for full range)

LINEAR (see catalogue for full range)							
Lмз3	0.6						
LM3	0.88	LM130	1.52	MC8	0.70	ca3	
LM34	0.88	[M1307N	1.22		0.70		
LM34	088		210		1.10		
LM	088	LM1			0.70		
LM	0.56	LM1	0.4		0.85		
LM34	0.56	LM1496	0.97		085		
[M341P	0.56	LM1800N	1.94	MCI	1.90	CA3	
LM341P	056	IM1801N	225		330		
IM 345 K	6.97	LM1808N	210		425		
LM	0.95	LM1812	620		330		
	650	LM1820	11	ca3	4.60		
LM358)	. 0.60	LM1828	190	ca300	4.15	Ca3	
LM360N	300	LMIP30N	190		255		
LM	330	LM1845N			185		
LM	235	[M1848N	198		185		
					22	100	
	3.35	LM188	250		0.75	153	
LM	1.80		p.oA			153	
LM	2.40	(M2907N-8	${ }^{3}$		220	$1{ }^{1} 35$	
LM3	425	LM2917N-8	90				
LM380N	0.96	LM3301N	0so	ca3	240	L13	
	1.08	LM3302			220		
LM38	2.70	LM34	0.5		220		
LM38	1.69	LM3900N	${ }^{6} 68$				
	132	[M3905N	1.15		0.90	IM3	
		Im3909N	0.78		125	1 m 3	
	0.8	LM3911N	1.10		0.75	LM30	
		LM3913n	Poa				
LM3		LM3914N	2.79		1.50		
	100	IM4250CN	130		220		
	0.87	LM788LO5CH	085		3.7	(M30	
	299	1M78L12CH	085		275	tM3	
	299	LM78	0.95		1.95	LM31	
	081	LM78	0.85		121		
LM703L	1.1	1978					
Im709-14	-	[M7824	1.56		3.75	LM32	
	0.67	Lm780.05	030		1.65	LM3	
LM710-14	048	[M78	0.30	ca3	1.55	Lm32	
	048	LM781	0.30		220		
	10	1	0.30		155		
	0.62	MC66	275		0.77		
1 L	04	MC	1.75		220	LM323	
LN	0.30	MC724P	2.10				
Im	0.50	MC789P	180	ca30	198	LM3	
	0.78	MC790	3.10		2.66	LM337MP	
	0.50	MC79	22		113		
	0.50				1.78		
	0.50	MC83	0.70				
	050	мся33Р	0.70			MC1	
	0.50	MC836P	082	ca30	210	MCI	
	050	Mc837P	0.82			-MC14336	
	1.15	MC338	23	CA306		14	

 0.5 watt $\pm 5 \%$ Tol. Available $\ln E 12$ range 10Ω to 10 meg 1.0 watt $\pm 10 \%$ Tol. Available in E 12 range 10Ω to 10 meg
2.0 wart $\pm 10 \%$ Tol. Available $\ln \mathrm{E} 12$ range 10Ω to 10 meg WIRE WOUND
2.5 watt $+5 \%$ Tol. .22 to 330 ohms 5 watt $+5 \%$ Tol. .5 to 12 K
$10 \mathrm{watt}+5 \%$ Tol. 1 to 25 K METAL OXIDE
0.5 watt $\pm 2 \%$ Tol. E24 range 100 to 1 meg

- See catalogue for tull list of avallable values.

NEW 1979

CATALOGUE

Quick service on all orders - please add 40p

5

$\frac{1}{2}$ DIGIT LCD AND LED PANEL METER KITS Intersil 7106/7 A/D converters
ND for driving instrument-size LED displays directly without buffering,nywhere modern digltal displays are needed. Both have Internal
eference and clock, and both are CMOS so you get low noise (12 tonW max. 10 VKite provide all materiaia . . . Including PC board, for a functioning pan-CL 7107EV (LED) £26.9 SPECIAL OFFER
\qquad programmabie regulation

- ADJUSTABLE OUTPUT VOLTAGE DOWN TO 2.85 V
REDUCED PRICE NOW ONLY E1.95

M1303

"KIM"
The Ready to Use Microprocessor System

Not a kit but supplied fully tested, wired and guaranteed. Expandable Memory that grows with Your system not just an evaulation kit. Starting with capability system capable of addressing up to 65 K BYTES of Memory.
KIM IS EXPANDABLE. Expand as you learn up to 65 K .
KM 1 -
Basic board with above features
assembled.
KIM 3
BK static RAM card plugs into mother Board.
KIM 4 -
supply.. $\mathbf{£ 9 . 0 0}$

SINCLAIR PRODUCTS PFM200 E49 case $£ 3.24$. adaptor, $£ 3.24$, connector kit
E10.58. Micravision TV UK, £10.58. Microvision TV UK model
malns adaptor $£ 6.73$. PDM 35 E28.95,
E28.95,

 OM235 44.45 . rechargeable batts $£ 7$-50, mains sdaptor © palculator with accessories $£ 2295$. | prog calculator wit accessories |
| :--- |
| cambridge prog calculator E 12.13 , prog | librarv $£ 4.45$, mains adatotor $£ 320$.

CSC MAX1
I
CSCMAX10 freq meter $£ 83.75$.
CALSCOPE Oscilloscopess send sao for date or see the Calscope advert in thls magazine.
Super $6 £ 174$. Super $10 £ 236$. COMPUTER GAMES Star chess $\mathbf{E 5 9}$. chess challenger 7 £ 95 . checker challengar i
£84. checker challenger 2 £44. Atari Video £84. checker challenger 2 £ 44 . Atari Video
computer $£ 138$. cartridges $£ 13.45$.
 2.9 p .74115 p bc 182 b , bc $183 \mathrm{~b}, \mathrm{Dc} 184 \mathrm{~b}$,
 value. 18 V electrolytics. $5 / 1 / 2 / 5 / 10 / 22 u^{4}$
 E4.95. AY-3-8610+ kit 1515.70 . stunt cycle Chip + kit $£ 15.70$. AY-3-8603 chip $£ 8.90$. TRANSFORMERS $6-0-6 \mathrm{~V}$ 100ma 74 p ,

Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, coll mounting clios, and accessories. Top quality 5 year guaranteed transformer and components, cables, connectors, P.C.B., nuts, bolts and silico grease. Full instructions to assemble kit neg. or pos. earth and fully illustrated instaliation instructions.
NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV1) will
Electronics Design Associates, Dept. PE 10, B2 Bath Street. Walsall. WS1 3DE. Phone: Walsall 614791

Electronics Design Associates, Dept. PE 8
82 Bath Street. Walsall, WS1 3DE. Phone: (9) 614791
Address
Phone your order with Access or Barclaycard

Inc. VAT. and P P.	QUANITTY RECOO.
XA KIT $£ 16.65$	
TACHOPULSE SLAVE UNIT $£ 3.35$	

Please state polarity pos or neg earth. Access or Barclavcard No.

IC AUDIO AMPS with pCb. JC12 6W BATIERY ELIMINATORS 3 -way Type
 car converior 12 v input, output $4 / 6 / 7 \frac{1}{1} / 9 \mathrm{v}$ 300 ma £2. BATTERY ELIMINATOR KITS, 100 rna
 11.80, $9+9.11 .80$ stabilizod 8 -way troes $3 / 4 \frac{1}{2} / 6 / 7 / 7 / 9 / 12 / 15 / 18 \mathrm{v} 100 \mathrm{ma} £ 2.60$. 1 Amp E6. 40. stablized power kirs 2-18v 100 ma £2.80, $2-30 \mathrm{v} 1 \mathrm{~A}$ £6. $95,2-30 \mathrm{~V} 2 \mathrm{~A}$
$\varepsilon 10.95$. 12 v car convertor $6 / 7 \ddagger / 9 \mathrm{v} 1 \mathrm{~A}$ T1.35. AND CSC BREADBOARDS s -dac
 2.48^{\prime} exp300 6.21 exp 350 exp 40 ${ }^{\exp } 325$ £ 1.73 . B1-PAK AUDIO MODULES $5450 £ 23.51$ AL60 £4.86. PA $100 £ 16.95$. spm80 £4.47. bmi80 £5.95. stereo 30 £20.12. AL30
£3.95. PA12 £7.60, PS12 £1.39. MABO SWANLEY ELECTRONICS
Dept PE, 32 Goldsel Rd., Sweniey, Kont Pobt 30p entra, prices include VAT. Official and overseas orders wolcome. Liets 20p post fres.

Cambridge Learning Enterprises

SELF-INSTRUCTION COURSES

UNDERSTANDING DIGITAL ELECTRONICS

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be 'phoning pecple by entering their name into a telephone which would automatically look up their number and dial it for you

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. it consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion betweem number systems, AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; desigṇ of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

FLOW CHARTS \& ALGORITHMS help you present: safety procedures, government legislation, office procedures, teaching materials and computer programs. by means of YES and NO anwsers to questions.

The Algorithm Writer's Guide

explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

NEW from Cambridge Learning Enterprises

O-LEVEL ENGLISH LANGUAGE

More and more jobs require a C-GRADE PASS, and over 250,000 people fail to get this every year. Will one of them be in your family? This new course, written by experts in a style that's serious yet fun to read, shows you how to mark your own work and compare it with the work of other people in their exam year. Set your own pace and assess your results immediately with no postal delays: watch your speed and standards improve. In Book 1 learn how you will be marked on COMPREHENSION, Book 2 covers SUMMARY, PUNCTUATION \& SPELLING, and Book 3 coaches you in the principles of COMPOSITION. Size: 3 A4 volumes totalling 250 pages

[^4]

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic clrcuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include:
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters: random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control programe structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; Input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

[^5]RSTVALVE MAIL ORDER CO.

Climax House Fallsbrook Road, London SW16 6ED

SPECIAL EXPRESS MAIL ORDER SERVICE

AAY32 AR13 AR15 AC Ac 107 25 ${ }^{\text {AC }} 126$ ${ }^{A C 1}{ }^{\text {Cl }} 141$ AC141K ${ }_{A}$ ACl $^{2}{ }^{42} \mathrm{~K}$ AC187 AC188 $A C Y 18$ $A C Y 19$ ACY21 AD149 AD162 AFI14 AF116 AF139 AF186 AF239 AF2 12 ASY2 ASY27 ASZ17 AU110 AU 113 AUY 10 BA145 BA148 BA1 154 8A155 BA156 BAW62 BAX13 $8 \mathrm{BAX1}$ BC108 BC113 $8 C 115$ $8 C 116$									
Open daily to callers: Mon.-Fri. 9 a.m. -5 p.m. Valves, Tubes and Transistors . Closed Saturday Terms C.W.O. only - Tel. 01-677 2424-7 Quotations for any types not listed S.A.E. Post and Packing 30 p per order All prices include V.A.T.								Prices correct when going to press	

Codespeed
MM5314 Clock Chlp
Bonanza
Offered at the unbelievable price of only $£ 1.99$ each. All brand new and fully guaranteed. Supplied with
data sheet. Can be Interfaced with either ted or gas discharge displays. Order catalogue number

Polarising Filter Mat erial
A lightly tinted $0.006^{\prime \prime}$ thick

A lightly tinted $0.006^{\prime \prime}$ thick
plastic polarising film made
plastic polarising film made
by Polaroid. Any izize cui
by Polarold. Any size cut
from 1 sq . Inch to a
from 1 sq . Inch 80 a
maximum size of $19^{\prime \prime}$ by 250
feet.
Only 2p per square inch.
(State dimens
(State dimensions required)
Order catalogu

These liquid crystal displays
are dynamic scattering type
LCD's and glve white digits
LCD's and glve white digits
on a clear background. Digit
on a clear background. Digit
height is $0.33^{\prime \prime}$ with right
height is $0.33^{\prime \prime}$ with
hand decimal points.
Only $£ 2.95$ with data.
Order catalogus number
Order catalogue
302
Faciory Re
Calculators
Production line reject LED
calculators with lots of
accessible goodies inside
(calc chip, display, keyboard
etc). Ideal for breaking for
etc). Ideal for breaking for
spares (some could be
repairable and we include a
repairing calculators).
22.50 each

Cat. No. 104

DIGITAL CLOCKS A ready buitt and tested 12 hour alarm clock module $10.8^{\text { }}$ digits) Only requires a $10.8^{\text {" digits). Only requirea a }}$
mini malns transformer and time setting switches to make a fully functlonal clock. Supplied with full date Order catalogue number MME725 Calculator Originally made for desk calculators, these 28 pin IC's. can be used to bulld a useful 8 digit calculator. Not compatible with our calc, keyboards (cat. 101).
With data - only $£ 1.00$ Order catalogue number

103

9 Digle Gas Di

A super bright 9 digit display with $0.25^{\prime \prime}$ high digits. Requires 180 v dc anode volts but this is easliy achieved in mains operated sheet and edge connector sheet and
socket.
75p each
Order catalogue number

4 Digit L.E.D. Display A ed display with centre colon. Ideal for digital clock (and other) projects. Digits are $0.8^{\prime \prime}$ high and the display
is common cathode.
With data 83.95 each.
Order catalogue number
2 KALCULATOA for E1.0s
Lots of uses for these near multi-function keyboards. Each keyboard has 20 keys and size is approx. $3 \frac{1}{2}^{\prime \prime} \times 3^{\prime \prime}$.

Order catalogue no. 101

Super 4 Digit L.C.D. A 4 digit, non-multiplexed Uquid Crystal display with on gray back ground). Supplied with data E6.95 206

E3.95 each (with data) Order catalogue no. 404

SUPERBOARD II (8K BASIC)
 4K RAM - £229 8K RAM - £269
 (modulator included)
 FIBRE GLASS CASE $\mathbf{£ 2 4 . 9 5}$

TRS 80 KEYBOARD 4K LEVEL II - £390* 16K - £490*
(modulator included)
POWER SUPPLY £9.90*
PHILIPS VIDEO COMPUTER
G7000 - £139* VIDEOPACS MOSTLY - £10.25*
COMPLETE RANGE OF GAMES INCLUDING A BEGINNERS COMPUTING COURSE

SOFTY EPROM DEVELOPMENTBURNER SYSTEM
(kit) - £79.50*
-PRICES EXCLUDE VAT - FULL details on request

VIDEOTIME PRODUCTS

banclarcano
56 Queens Road, Basingstoke,
Hants. RG21 1REC
Tel. (0256) 56417 . Tix. 858747
Buy it with Access

TRANSFORMERS

STORAGE CABINETS

Metal Cabinets $12^{\prime \prime}$ wide $\times 5 \frac{3{ }^{\prime \prime}}{}$ deep, finished blue with transparent plastic drawers.

Type	H (ins)				
No. of Drawers				Price	
1118	11	15	2	1	$\mathbf{£ 9 . 8 5}$
1633	16	30	2	1	$\mathbf{£ 1 2 . 7 5}$
1838	18	35	2	1	$\mathbf{£ 1 4 . 9 5}$
2236	22	30	4	2	$\mathbf{£ 1 6 . 8 5}$
2260	22	60	-	-	$\mathbf{£ 1 6 . 9 5}$

Prices include VAT and Post. Cheque/P.0. to: Millhill Supplies (Tools), 35 Preston Crowmarsh. Benson. Oxon OX9 6SL.

LOW VOLTAGE POWER SUPPLIES

Low cost, compact, attrạctively styled, protected and fully guaranteed, the

EDU-ELEQUIP P. 25 and P. 30 SERIES

are the first choice for stabilized power supply units for industrial, educational and general purpose applications.
Quality and reliability with a fast service at prices which solve your low budget problems.

Details and prices from:

> EDU-ELEQUIP
> 28 BUCKWOOD AVENUE, DUNSTABLE, BEDFORDSHIRE.

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

TIRRO's new mail order price list of electronic components now available on receipt of SAE. TIRRO ELECTRONICS, Grenfell Place, Maidenhead, Berks.

TURN YOUR SUAPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING CO., 103 South Brink, Wisbech, Cambs, 0945-4188. Immediatesettement.
P.C.B.s Paxolin 101" $\times 44^{\prime \prime} 4-$ E1.25. $12^{\prime \prime} \times 9 t^{\prime \prime} 80 p .16^{\circ \prime} \times$
 £1.50. D.S. $10 t^{\prime \prime} \times 7^{7}$ f1.30. $8^{\prime \prime} \times 7^{\prime \prime}$ £1.10. Unit with'B silicon diodes $600 \mathrm{~V} 20 \mathrm{amp}, 8$ SCRs 400 V 16 amp . 6 Vinkors, W.W. resistors atc. E6.75. 300 small components, trans. diodes $£ 1.50 .7$ lbs. assorted components $£ 3.60$. List 15p refundable. Post 20p under $\mathrm{E1}$. Insurance add 15 p.

> J.W.B. RADIO

2Barnfield Crescent, Salo, Cheshire M33 1 NL

SUAPLUS stocks of Electronic Components at less than wholesale prices. SAE brings free lists. Bardwell Ltd, 212 Stubley Lane, Dronfield-Woodhouse, Sheffield, S185YP.

SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 6.60$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Jower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

CONOITIONS OF ACCEPTANCE

 OF CLASSIFIED ADVERTISEMENTS1. Advertisements are accepted subjec: to the conditions appearing on ouf current advertisement rate card and on the express understinding that the Adveriser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuss: or withdraw any advertisement.
3. Although every care is taken, the Publichers shall not be liable for clerical or printigs. errors or their consequences

MINIATURE PANEL METERS approx. $1^{1 "}$ cube. Left pointer rest position. Scale calibrated 1-10. 600 ohm resistance. Sensitivity 400μ A $£ 1.25$ each inc. P\&P. Wilkinsons Ltd., Industrial Estate, Pocklington, York.

741 TO5 can DIL 16p. Plastlc 19p. MC1458 (Dual 741) 36p. LM 3900 42p. 2 N 3055 40p. Insulbtors 3p. BC107/8/9,

clips 3p.
Resistors, $0.5 \mathrm{w} 5 \%$ E12 100-10MR ip ea. $10+$ on value Cera
Coramic cape 68 pf -6800 pf $E 6$ range 1 t p.
Polyester 0.01-0.22 2tp. $0.33-0.47{ }^{2}$ tp. $0.88-1.09 \mathrm{p}$. Electrolytic 25v 2-160 FF 41 p . 220, $5009 \mathrm{9p} .1000$ 16p.
Post 20p.

PROTON ELECTRONICS

$$
\text { Dept. A, } 1 \text { A, } 2 \text { \& } 4 \text { STOPES ROAD }
$$

RADCLIFFE, MANCHESTEE M2B OTN
tunbrioge wells componewts. Ballards, 108 Camden Road, Tunbridge Wells. Phone 31803. No Lists. Enquires S.A.E.

100 MIXEO COMPONENTS $\mathbf{2 2 . 7 5}$, 10 LEDS 90 p Lists 15 p . Sole, 37 Stanley Street, Ormskirk, Lancs. L39 2DH.

AERIALS

AERIALBOOSTERS

Improves weak VHF Radio and Television reception.
B45-UHF TV, B11-VHF Radio.
For next to the set fitting.
Price E5.S.A.E. for leaflets.

ELECTRONICMAILORDER LTD, Ramsbotton, Bury, Lancs, BLO 9AG.

SERVICE SHEETS

bell'S TELEVISION SERVICES for Service Sheets on Radio, Tv, etc $£ 1.00$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel: (0423) 55885.

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo etc. With free Fault-finding guide, from 50 p and S.A.E Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

BOOKS AND PUBLICATIONS

COMPLETE REPAIR information any requested T.V.

 £5 With diagrams $\mathbf{£ 5 . 5 0}$). Any requested service sheet for £1: plus SAE. SAE brings newsletter + special offers - service sheets from 50p, bargain vouchers, unique publications.AUS (PE) 76 Church Street, Larkhall, Lenwrkehire

RECORD ACCESSORIES

sTYLI Cartridges for MUSIC CENTRES, \&c. FREE List No. 29 for S.A.E. includes Leads, Mikes, Phones \&c. FELSTEAD ELECTRONICS, (PE), Longley Lane, Gatley, Cheadle, Ches. SK8 4EE.

LADDERS

LaODERS. Varnished $25 t^{\prime}$ ext. $\mathbf{E 4 0 . 3 4}$. Cart. ©3. Leaflet. Callers welcome. Ladder Centre (PEES) Halesfield (1). Telford 586644.

FOR SALE

MK14 COMPUTER, extra ram, ramio, revised monitor, fully assembled, working. £70. 01-749 2799.

ELECTRONIC ORGAM. Two manuals, RCO pedals, solid oak console. 150 free phase oscillators. Church voicing. £325. Read, 180 Hillmorton Road, Rugby. Tel: 3107

PRACTICAL ELECTRONIC8 SINCE 1987.017372511
NEW BACK ISSUES of "PRACTICAL ELECTRONICS" available 70p each Post Free. Open P.O./Cheque returned if not in stock - Bell's Television Services, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

PRACTICAL ELECTRONICS September 1968 to June 1973. 1969, 1970, 1971, 1972 complete in binders. Offers Greenock (0475) 32548.

UMFINISHED PROJECT. Minisonic 2, all parts including Keyboard, P.C.B.'s, case, switches. Offers. Ring Park Street 72809.
mk14: Fully Working, with extra: Ram, Ram I/O, Keyboard, interface, decoding, PSU. $£ 60.01-6531810$.

EDUCATIONAL

Whether seagoing or shore-baseo, an exciting life awaits you as a Marine Radio officer. Full details from The Principal, Barking College of Technology, Dagenham Road, Romford EM7 OXU. (Tel: Romford 66841).

TECHNICAL TRAINING

Get the training you need to move up into a-higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Fuli details from:

ICS SCHOOL OF ELECTRONICS

Dept. K272 Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

CITY GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Specia! courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. K272 Intertext House, London SW8 4U
Tel. 01-622 9911 (all hours)
State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS Dept. K272 Intertert House, London SW8 4U
 Tel. 01-6229911 (all hours)

State if under 18

What's an electronics enthusiast like you doing in an advertisement like this?

We reckon that if you'rea regular reader of this magazine, you might very well be the sort of man or woman who'd be interested in joining Marconi Avionics as an

Electrical Inspector.

We say this with some confidence because if you're used to building up your own equipment, you're probably well used to finding your way round electronic circuits and wiring and that's just the sort of background we're looking for.
As an Electrical Inspector with us you'll be involved in the inspection of printed circuit boards and assemblies against drawings on a wide range of equipment. Mind you, this equipment will be considerably more complex than any you're likely to have worked on previously, for at Borehamwood we're engaged on a variety of
exciting and challenging projects relating to advanced electronic systems and hardware for such technically sophisticated aircraft as Nimrod and Tornado. But, provided you have a good basic background knowledge of electronic circuitry, we can soon train you to take your place in one of our inspection teams.
We offer a good salary, an attractive range of benefits and the opportunity to make your hobby pay off both financially and in terms of job satisfaction.

Write with details of your experience to Chris Hill at Marconi Avionics Limited, FREEPOST, Elstree Way, Borehamwood, Herts WD61BR. Telephone 01-953 2030 ext 3449 during office hours or 01-207 3455 anytime.

MINISTRY OF DEFENCE
 TELECOMMUNICATIONS MECHANIC

at

26 COMMAND WORKSHOP REME FORTHSIDE, STIRLING

Wage $£ 56.25$ plus $£ 20.35$ Incentive Scheme per week (Non-Contributory Pension and Good Sick Pay Scheme)

PROMOTION PROSPECTS
Experienced craftsmen are invited to apply for this post. Applications to:

Personnel Officer

26 Command Workshop REME
Forthside, STIRLING
Tel: Stirling 2881 Ext. 6

RESEARCH ASSISTANT

Microprocessors

FISONS have a vacancy in the Statistics Section at Levington Research Station near Ipswich for a Research Assistant to work on the application of mini computer (microprocessor) technology to scientific and industrial research projects. This work bridges the gap between electronics and computerised mathematical methods used in the control of chemical processes, automated laboratories and various agricultural systems.
Ideally, applicants should have at least ' A ' level Maths plus a keen practical interest in elec-tronics and computing. Training in programming and other more advanced methods will be given. The section has PDP11, PET, ROCKWELL, INTEL and ZILOG equipment. This is a rapidly developing field in which there are opportunities for advancement.

If this job appeals to you please write for an application form to:
Mike Sharp, Divisional Personnel Officer,
Fisons Limited, Fertilizer Division
Levington Research Station,
lpswich.

FISONS

FERTILIZER DIVISION

MISCELLANEOUS

NICKEL CADMIUM BATTERIES

Rechargeable and suitable for 'fast charge' MP7 (AA) $£ 1.13$,
SUB $£ 1.47$ HP 11 (C) $£ 2.15, \mathrm{HP} 2$ (O) $£ 3.27$, $\begin{array}{ll}\text { SU8 } \\ \text { PP3 } & \text { £1.09, PP3 } \\ \text { not suitable for fast charge, PP3 } \\ \text { n. }\end{array}$ E5. E1. All above Nickel Cadmium batteries are quaranteed 'EVER READY' full spec, and are supplied complete with
solder tags (except PP3). Just in stock-New rechargeble solder tags (except PP3). Just in stock-New rechargeable
sealed lead acid maintenance free batteries suitable for sealed lead acid maintenance free batteries suitable for
burglar alarms etc., 1.2 amp hr 6 v .2402 .6 amp hr .6 v E5.65.
Quantity prices available on request. Date and charging cir-
cuits free on request with orders over 110 otherwise 30 p post and handling (spacify battery type), alf prices include
VAT. Please add $10 \% \mathrm{P}$ \& P on orders under $\mathrm{E} 10.5 \%$ over VAT. Please add 10% P \& P on orders under $£ 10.5 \%$ over
£10.

Cheques, postal orders, mall order to SOLID STATE
SECURITY OEPT PE 10, Bradshow Lane, Parbold, Wigan, Lance. 02575-4726. SUPERB INSTRUMENT CASES BY BAZELLI, manufactured
from P.V.C. Faced steel. Hundreds of people and industrial from P.V.C. Faced steel. Hundreds of people and industrial
users are choosing the cases they require from our vast users are choosing the cases they require from . Competitive prices start at a low 90 . Chassis range. Competitive prices start ating facilities at very competitive prices, 400 models to choose from. Suppliers only to Industry \& The Trade BAZELLI (Dept. No. 23), St. Wilfrids, Foundry Lane,
Hatton, Lancaster, LA 6LT. Halton, Lancaster, LA 6LT.

CABINET FITTINGS FOR

Stage Loudspeakere and Amplifier Cabs Fretcloths, Coverings, Strap \& Recess Mandles, Feet, Castors, Jacks \& Sockets, Cannons, Bulgin 8 ways, Reverb Trays, Locks 8 Hinges, Corners, Trim, Speaker Bolts etc. Ṣend $2 \times 9 p$ Stamps for samples and illustrated catalogue

ADAM HALL (P.E.SUPPLIES) Unit 3, Carlton Court, Grainger Road Sauthend-on-Sea, Essex.

P.C. BOARDS

FOR INDUSTRY'and' THE AMATEUR

- One off or production runs
- Assembly of P.C.Bs or kits
- Expert hand soldering
- Design service if required
- Artwork \& Photography

SEAHORSE ELECTRONICS LTD.

Unit 2 Picow Farm Road
Service Industry Estate,
Runcorn, Cheshire.
(09285) 75950

YOUR PE PROJECT that never worked, free estimate for diagnosis or repair. By Electronic Engineer, S.A.E. Miller, 53 Falstaff Ave., Reading, Berks.

MAKE YOUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack (5 sheets, lines, pads, I.C. pads) £1.45. Large range of single sheet in stock at 30p per sheet.
Ferric Chloride - 1 lb bags 80p (P\&P 50p)
Master Positive Transparencies from P.C. Iayouts in magazines by simple photographic process. Full instructions supplled. 2 she日ts ($20 \times 25 \mathrm{~cm}$) negative paper and 2 sheets ($18 \times 24 \mathrm{~cm}$) positive film $£ 1.25$
S.A.E. lists and information. P\&P 25p/order except ${ }^{*}$

P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Heceiver Kit. Only \&i10. 25 plus 25p P. \& P. 'Brain-Freeze' 'em with a MINI-STROBE Elec. tronics Kit. pocket-sized 'lightning flashes', varispeed. for discos and parties. A mere $\mathbf{s} 4.50$ plus 25 p P. \& P. Fxperiment with a psychedelic DREAM L.AR. or pick up faint speech/sounds with the BIC FAR sound-catcher: ready-made multi-function modules. \&.jeach plus 25 p P. \& P.
LOTS MORE! Send 25p for lista. Prices include VAT.

BOFFIN PROJECTS
 4 Cunliffe Road, Stoneleigh
 Ewell, Surrey (P.E.)

BURGLAR ALARM CONTROL PANELS Direct from the manufacturer (Trade enquiries welcome) Type "A" Mains/battery with adjustable timed exit/entry (sounded) push-button test $£ 33.00$ Type ' B^{\prime} Mains/battery, manual exit, push-button test 220 , SAE for list. WEBB ELECTRONICS, 41 Winwick Street, Warrington. Tel: 54174.

TIME WRONG?

MSF 60 KHz Time Receiver, data output, £13.70. Sequenial year, month, date, day, hours, minutes, seconds se or pcbl.
RADIO 47200 KHz to Med. Wave Converter $£ 11.40$. OFF FREQUENCY7 Crystal Calibrator $£ 15.80$. V.L.F. 7 EXPLORE, $10-150 \mathrm{KHz}$ Receiver $£ 10.70$. V.L.F. 7 EXPLORE, $10-150 \mathrm{KHz}$ Receiver £10.70.
SIG. GEN., $10 \mathrm{~Hz}-200 \mathrm{KHz}, \operatorname{sine} /$ square, £23.50. PROGRAM YOUR DOCrbell, E19.50. needs speaker.

Each easy-assemb/r kit includes all parts, printed circuit.
case, postage etc, moner beck assurance so SEND off NOW.

CAMBRIDGE KITS

45 (FV) Old School Lane, Milton, Cambridge.

CLEARING LABORATORY. Scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCONIE

 FULL RANGE AVAILABLE, SAE FOR LISTS. E1. 25 for Booklet NAckel Cadmium Power" plus Catalogue. Write or call: Sandwell Plant Ltd., 2 Union Drive, BOLDMERE,SUTTON COLDFIELD, WEST MIOLANDS, O2 1-354 9764, SUTTON COLDFIELD, WEST MIOLANDS, $021-3549764$,
or see them at TLC, 32 Craven Street, Charing Cross, or see them
London WC2.

STOCK of downgraded capacity cells, type AA, Sub C, C, D and F. Cells are of the rechargeable Sealed Nickel Cadmium type. Please write to Box No. 80.

GUITAR/PA/MUSICAMPLIFIER

100 watt superb treble/bass overdrive. 12 months guarantee.
Unbeatable at $£ 42 ; 60$ watt $£ 37: 200$ watt $£ 58 ; 100$ watt Unbeatable ot $£ 42 ; 60$ watt $£ 37: 200$ watt $£ 58 ; 100$ watt twin channel sep treble/bass per channel $£ 55 ; 80$ watt $£ 48$;
200 watt $£ 72.100$ watt four channel sep treble/has per 200 watt $£ 72 ; 100$ watt four channel sep. treble/bass per
channel $£ 75 ; 200$ watt $£ 92 ;$ slaves 100 watt $£ 32: 200$ watt £49; fuzz boxes, great sound, \&8.50; bass fuzz $\mathbf{E 9} .50$; overdriver: fuzz with treble and bass boosters £14: 100 watt combo superb sound overdrive, sturdy consiruction, ca:tors,
 speakers
watt $£ 14.50 ; 10$ watt 10 in . £3.50;8 in. £3.00.

Send cheque or P.O. po:

WILLIAMSON AMPLIFICATION
62 Thorncliffe Avenue, Dukinfield, Cheshire Tel: 061-3445007 or 061-3082064

PRACTICALELECTRONICS P.C.B.AB

in glass fibre, Fry's solder tinned and drilled Dec. 78 RC Motor control 67p. RC Fall sate 39p. Apr. 79 Phaser (EG60) 98p.
May 79 Sound operated switch (ES9) 88p. Auto ranging multimeter. Set of 5 pcb's $£ 5.70$ For full list and current pcb's please send SAE. Pcb's also produced from customers own masters, please send for quote.
Postage - On orders less than f 10 please add 25 p postage. CWO please.
PROTO DESIGN
14 Downham Road, Ramsden Hoath
-Billaricay, Essex CM11 1PU

CONSTRUCT A VHF TRANSMITTER (not licensable in UK) hand held, range 500 yds . Complete kit only $£ 5.25$. WEBB ELECTRONICS, 41 Winwick Street, Warrington.

[^6]MICRD SWITCHES. 21 p Stamps for fully illustrated technical literature. IMCO Lsd. 22 Cheapside, Wakefield, Yorkshire.

THE SCIENTIFIC WIRE COMPANY PO Box 30. London E. 4 Aeg. Office 22 Coningsby Gdins				
SWG	1 lb	8 oz	4 oz	2 or
10 to 19	2.65	1.45	. 75	. 60
201029	2.85	1.65	. 90	. 70
30 to 34	3.05	1.75	1.00	. 75
35 to 40	3.40	1.95	1.15	. 84
41 to 43	4.55	2.55	1.95	1.30
44 10 46	5.05	3.05	2.15	1.70
47	8.00	5.00	3.00	1.80
48	15,00	9.00	6.00	3.30

SILVER PLATED COPPER WIRE $\begin{array}{clllr}14.16,18 & 4.50 & 2.25 & 1.44 & .90 \\ 20 \& 22 & 5.00 & 2.85 & 1.74 & 1.06 \\ 24 \& 26 & 5.70 & 3.31 & 2.00 & 1.22 \\ 28 \& 30 & 6.67 & 3.86 & 2.35 & 1.44\end{array}$
Prices include P \& P and VAT
SAE brings list of copper \& resistance Wires

SDLAR CELIS, Batteries, Panels, Thermoelectric Generators, heat pipes, books etc., Details; Edencombe Ltd., 34 heat pipes, books etc., Details; Henc3RX

LOGIC PROBE

A logic probe for detecting
logic levels, LED indication for
high and low levels TLL over high and low levels TTL over voltage protected. A must for all builders of Microprocessor and Logic Cireuitry, simply conit for indication. Continuous circuit board with probe point frightness glow. Send Cheque or P.O. to C.B.S., Clevaland House, Rauth Nr. Beveriey, North Humberside.

> PLEASE MENTION PRACTICAL ELECTRONICS

> When replying to advertisements

NOTICE TO
 READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

FOR YOURGUIDANCE

VALUE ADDED TAX

In view of changes affecting V.A.T. at the time of going to press, readers should ensure that they have added the correct amount of V.A.T. before ordering.

Export orders are not subject to the addition of Value Added Tax.

BUILD A SYNTHESISER!

NO SPECIAL SKILLS $\begin{aligned} & \text { SPECIAL EQUIPMENT REOUIRED }\end{aligned}$

Using Devell (Reg'd) PROFESSIONAL MODULES

Over 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, welltried range of Dewtron synthesiser and other effects modules.

Send $\mathbf{2 5 p}$ for Musical Miracles Catalogue NOWI

D.E.W. LTD.

254 RINGWOOD ROAD, FERNDOWN, DORSET BH22 9AR

Kontite remote control switch
 -Simple to install even simpler to use

The Transmitter:

is light and cordless and housing the battery. Simply, point the transmitte, at the receiver to turn on or off

Now available in the U.K. the 'Kontite' Remote Control unit switches electrical appliances and equipment on or off safely from distances of up to 35 feet.

Televisions, radios, hi-fi equipment, lighting, model trains etc. electric fans, electric fires (up to 2 kw) and many other appliances are within its scope, providing that they have a power supply of $240 / 250$ AC single phase. $50 / 60 \mathrm{~Hz}$ and a maximum 10 amp rating and also that the relevant safety regulations are applied.

The unit is ideal for use in the home, office, factory and hospital. Particularly useful as an aid to the disabled and invalid-wherever an electrical appliance is difficult to reach in the normal manner.

The Kontite Remote Control Switch avallable now through Electrical Component Retailers.

If you have difficulty in locating a stockist please contact

Kay \& Co (Engineers) Ltd.

Acresfield House, 15 Exchange Street, Bolton. Lancashire. Telephone: Bolton 21041 Telex: 63186

L.C.D. DIGITAL WATCHES

All products carry full 7 day money back reassurance plus 12 month guarantee.
Please add further 50p for spare battery if required (£1 for No. 4.)
SAE for more details of large range of digital watches, clock/radios, clocks, car stereos, headphones etc.

ALARM MODEL

(illustrated)

- Constant 6 digit display shows Hours, Minutes, Seconds or Date.
- 24-hour alarm with on/off indication.
* Night Light.
- Matching adjustable stainless steel strap.

$$
\mathrm{E} 12.50 \text { inclusive }
$$

SLIM 11 FUNCTION CHRONOGRAPH Time, Date, $\frac{1}{100}$ second stopwatch.
£12.50 inclusive

ALARM CHRONO WITH

 DUAL TIMEAll functions of alarm model with $\frac{1}{10}$ second stopwatch and dual time.
£24.95 inclusive
SOLAR ALARM CHRONO
As above but solar assisted.
£27.50 inclusive
LADIES 5 FUNCTION
Hours, Minutes, Seconds, Month and Date.
$\mathbf{£ 7 . 9 5}$ inclusive

SPARKS DEVELOPMENTS, 53 North Street, Melbourne, Derbyshire DE7 1 FZ.

-N-TER L-D CK-I-NG

 PLASTIC STURAGE ORAWERS Newest, neatest system ever
devised for storling small parts and components: resistors,
capacitors, diodes, transistors, capacitors, diodes, transistors. etc. Rigid plastic units interlock together in

Transparent plastic drawers have label slots. 1D and 2D have space divider

As supplied to Post Office. Industry and Government Depts
SINGLE UNITS (1D) ($5 \mathrm{in} \times 2 \mathrm{Lin} \times 2 \mathrm{fin}) £ 3.50$ DOZEN. DOUBLE UNITS (2D) ($\left.5 \mathrm{in} \times 4 \frac{1}{2} \mathrm{in} \times 2 \mathrm{i} \mathrm{in}\right)$ E5.50 DOZEN. TREBLE (3D) $£ 5.50$ for 8 .
DOUBLE TREBLE 2 .
DOUBLE TREBLE 2 drawers, in one outer case (602). EX.90 for 8 .

PLUS QUANTITY DISCOUNTS
Orders over £20. less 5%. Orders over £60, less 71\%. PACK. ING/POSTAGE/CARRIAGE: Add $£ 1.00$ to all orders under £ 10 . Orders f10 and over, please add 10% carriage
QUOTATIONS FÓR LARGER QUANTITIES

QUOTATIONS FOR LARGER QUANTITIES.
Please add 8% V.A.T. to total remittance.
Please add 8% V.A.T, to total remittence.

Modern. silm-line power panel coumtless uses in home. office, factory, showrooms. Perfectly safe, unbeatabl;e. Can
be mounted on wall or trailed enywhere in room. Neat rubber base. Smart PVC outer cover. White E3.30. rubber P 60 p .

FLAIRLINE SUPPLIES (PE B)
124 Cricklewood Broadway, London N.W. 2

INDEX TO ADVERTISERS

A B. M Electronics
Ace Malltronix.
Acorn Computer
Adam Hall (P.E. Supplies)
Aitken Bros.
Amplus Electronics
Astra-Pak
Aura Sounds
A.U.S

Barrie Electronics
Bi-Pak
Blrkett J.
Boffin Projects
British Nation al Radio \& Electronics School
Cambridge Kits
Cambridge Learning
C.B.S.

Chromasonic
Chromatronics
Codespeed
Colour Print Express
Computer Components (Teleplay)
Crescent Radio
Crofton Electronics
Crofton Electron
Davian Electronics
Delta Tech
D.E.W.
E.D.A.

Edu-Elequip
Electronic Mail Örder
Electrovalue
Fisons LImlted
Fladar
Flalrline Supplies
Fluke International
George Sales, David
H.L. Audlo

Heathkit Limited
Home Radio
f.C.S. Intertext
I.LP. Electronics

Jayen Developments
JWB Radio

```
Kay 8 Co.
Lutterworth Press
Maclin-Zand
Machin-Zand Maplin Electronic Marconi Avionics M.E.C.A.
M.E.C.A
Microdigital
Mill Hill Supplies
MInistry of Defence Modern Book Co. Monollth
```


New Bear

```
84 New Bear 79 North London Polytechnic
Para Sales
P.A.W.K. \& I. Yates
P.K.G. Electronics
Phonosonic
Progressive Radio
Cover III Proops Bros.
Proton Electronics
Radio Component Speclatists
Ramar Constructor Service
R.S.T. Valve Mail Order
Radio \& T.V. Components
Sandwell Plant Ltd
Saxon Entertainments
Science of Cambridge
Scientific Wire Co
Seahorse Electronics
Sentinel Supply
Solid State Security
Sparks Developments.
Squires, Roger.
Stevensons Electronic Components
Swanley Electronics
T.K. Electronics
Technomatic
Timetron
Videotime
Watford Electronics
Willamson Amplification
82 Wilmslow Audio
76
76

\section*{11
80 \\ 80
3}
\(\begin{array}{r}83 \\ 56 \\ 56 \\ \hline\end{array}\)

Cover Il Proto Design

60, 82

```


[^0]: - IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: 50. OC 71 TRANSISTORS untested for $75 p$.

 4 Watt 100K LINEAR WIRE WOUND POTENTIOMETERS = 30p each
 VARIABLE CAPACITORS $25+25+25$ pf $=75 p$.
 MINIATURE ELECROLYTICS 8 uf 300 v .w. or $10 \mathrm{uf} 250 \mathrm{v} . \mathrm{w}$. 8oth 10 for 60 p .
 LED's TLL 209 " 6 for 50 p, $2^{\prime \prime}$ Red a 6 for 70p, 2 Green - 15 p.
 255 AMP STUD MOUNTING THYRISTORS Untested * 75 p
 1020 AMP STUD MOUNTING DIODE S umtested 57 p.
 501 AMP THYRISTORS TO5 case untested - £1.
 50 VARI-CAP DIODES like BA 102 untested for 57 p
 100 C280 CAPACITORS assorted for 57p.
 ERIE REDCAP .01uf 100v.W. CAPACITORS miniature 5 p each
 10 ASSORTED PUSH BUTTON BANKS less knobs for $£ 1.30$.
 TANTALUM BEAD CAPACITORS 4.7 uf $16 \mathrm{v.w.,}. \mathrm{9p}, \mathrm{10uf} \mathrm{10v.w.}, \mathrm{9p}, \mathrm{33uf} 10 \mathrm{v.w}$. . $9 p_{1} 100 u$ f 10v.w., ": 25p.
 MUILARDTAA 320 M OST. TRIGGER TRIGAC with dats 』 25 p .
 UNIJUNCTION TRANSISTORS $2 \mathrm{~N} 4871=22 \mathrm{p}, 2 \mathrm{~N} 602 \mathrm{~B}-25 \mathrm{p}, 2 \mathrm{~N} 6029-25 \mathrm{p}$, MEU
 $21-22 p$, MU 4894 - 22p, 4JDEE29 - 22p, TIS 43T - 20p, D13T1 - 25p.
 200 RESISTORS $1, \frac{1}{1}$ watt assorted for $75 p$.
 20 PHOTO TRANSISTORS AND DARLINGTONS assorted untested ef1.
 50.2 watt ZENERS assorted untested for 57p.

 CRYSTALS. - Glass 87G Base. $3600 \mathrm{C} / \mathrm{S}, 3660 \mathrm{C} / \mathrm{S}$ ai $\mathrm{£1} 1.30$ each. Wire Ended. 28 KHz $28.5 \mathrm{KHz}, 29.75 \mathrm{KHz}, 29.76 \mathrm{KHz}, 31.5 \mathrm{KHz}, 83.997 \mathrm{KHz}_{2}$ all at 50 p each.
 MINIATURE LOUDSPEAKERS $1 \frac{3}{4}$ " Dia. 8 ohm "75p.
 MULLARD BC 548 or BC 549 at $10 p$ each. 8 for 50 .
 400 mW ZENERS unmarked Good. $3.6 \mathrm{v}, 6.8 \mathrm{v}, 10 \mathrm{v} .11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 18 \mathrm{v}, 24 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}$, 36 volt. All at 10 for 40 p .
 MULLARD C281 CAPACITORS luf 250v.w., 20 p doz
 50 PIV 21 AMP WIRE ENDED DIODES . 7p, 6 for 25p
 RCA FM I.C. CA 3089E - $\mathbf{1 1 - 2 0}$ each.
 SUB-MINIATURE 470pf TUBULAR CERAMICS at 20 p doz
 PLASTIC BC 108 TRANSISTOR S with house numbers at 10 for 60 p .
 10 AMP S.C.R's 100 PIV *25p, 400 PIV $=50 \mathrm{p}, 800$ PIV -60p.
 100 MULLARD C 280 CAPACITORS assorted -57p.
 50. AC 128 TRANSISTORS. 8 randed but untested 57 p.

 COO MHI FREOUENCY METER E115 SAE FO
 50 PLASTIC PNP-NPN MIXED TRANSISTORS untested 0 57p.
 50 PLASTIC NPN TRANSISTORS untested for 57 p.
 MOTOROLA CMOS CD 401110 for $£ 1$
 10 ASSORTED SLIDER POTENTIOMETERS for $£ 1$.
 ELECTROLYTICS $100: 200 \mathrm{u}$ 275v.w. 15p, +10 p P.P. 10 for $£ 1.45$,
 150 . $150.75 u f 350 \mathrm{w}$.w., - 25p, 10 for E .
 2 watt WIRE WOUND POTENTIOMETERS 10K or 2 K :30p, 4 watl 100K = 30p
 MINIATURE NON POLARISED CAPACITORS 1uf $63 \mathrm{v.w..}. \mathrm{5p} ,4.7 \mathrm{uf} 63 \mathrm{v.w}$. .
 10p, 1 Out 63v.W., "15p.
 5 WATT NPN TO5 DARLINGTON TRANSISTORS at 3 for 50p
 MULLARD POLYESTER capeacitors . luf $160 \mathrm{v.W}$, at 20 p doz.
 Please add 20p for post and packing. unless otherwise stated on U.K. orders under $£ 2$. Overseas postage at cost.

[^2]: ## SOUND OPERATED FLASH

 THIS very simple circuit will fire a photographic flashgun of any polarity, because of the use of a triac rather than a thyristor.

 The output from the crystal microphone is coupled by Cl to the comparator, IC1. Positive input bias is supplied by R1 which, due to the input bias voltage drop, determines the input sensitivity. With the values shown this is about 30 mV peak, although it can vary considerably depending on the characteristics of the op-amp.

[^3]: Fluke International Corporation, Colonial Way, Watford, Herts. WD2 4TT. Telephone: (0923) 40511. Telex: 934583
 Also available from ITT instruments Services, Harlow, Essex.
 Northern Ireland and Eire contact Euro Electronic Instruments, 32 Brews Hill, Mavan, County Meith, Eire.

[^4]: CAMBRIDGE LEARNING ENTERPRISES, UNIT 21, RIVERMILL SITE, FREEPOST, ST. IVES, HUNTINGDON, CAMBS. PE17 4BR, ENGLAND
 TELEPHONE: ST. IVES (0480) 67446.
 PROPRIETORS: DAYRIDGE LTD. REG. OFFICE: RIVERMILL LODGE, ST. IVES REGD. IN ENGLAND No. 1328762

[^5]: Four volumes Digital Computer Logic \& Electronics at $\mathbf{£ 6 . 5 0}$ inc Six volumes Design of Digital Systems at $£ 10.50$ inc p \& p Three volumes O-Level English Language at $£ 6.50$ inc p \& p The Algorithm Writer's Guide at $£ 3.40$ inc p \& p If your order exceeds $£ 14$ deduct $£ 2$ from your payment Price includes surface mail anywhere in the world, airmail extra GUARANTEE If you are not entirely satisfied your money will bé refunded

 Please allow 21 days for delivery
 I Cambridge Learning Enterprises, Unit 21, Rivermill Site,
 I FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR, I England.
 Please send me the following books:
 sets Digital Computer Logic \& Electronics at $£ 6.50, \mathrm{p} \& \mathrm{p}$ sets Design of Digital Systems at $£ 10.50$, p \& p included

 O-Level English Language at $£ 6.50$ p \& p included
 The Algorithm Writer's guide at $£ 3.40, \mathrm{p} 8 \mathrm{p}$ included
 Name
 Address
 1

 I I enclose a *cheque/PO payable to Cambridge Learning Enterprises for $£$.
 Please charge my *Access/Barclaycard/Visa/Eurocard/ Mastercharge/Interbank account number
 Signature. *delete as appropriate.
 Telephone orders from credit card holders accepted on
 I 0480-67446 (Ansafone). Overseas customers should send a
 I bank draft in sterling drawn on a London Bank, or quote credit I card number.

[^6]: P.C.B'a from P. E. DESIONS
 in high quality gless fibre, flux vernished and drilled. DEC. 78: Gultar Sound Multiprocessor Main Board $£ 2.49$.
 JAN. 79: Guitar Sound Clock $£ 1.67$: L P. Fller $£ 1.99$ HAN. 79: Guitar Sound Clock f1.67, L P. Filter £1.99 FEB. 79: Guitar Sound PSUE1.19;Pulse Generator £1.35. MAR. 79: Headlight Warning p.c.b. £1.36.
 APR. 79: Phaser $£ 1.36$: Sequencer PSU
 APR. 79: Phaser E1.36; Sequencer PSU £1.12; Bleeper 75 p MAY 79: Multimeter Set f5.85; Sound Switch E0. 90.
 For June, July a August pricas 7el: (0254) 73755.
 uotations for P.C.B. August prices Tel: 10254) 73755. Allorders P.A.W.K. \& I. YATES 25p. P. A P. Under 10.00 C.W.O. to 22, Ambleside Dr., DARWEN LANCS.BB33BG.

