PRACTICAL

шसा

Ni:rit

Plens....

For electronic buffs. Fully assembied and tested. Requires +5 V at 3 Amps and a video monitor or TV with RF converter to be up and
running.
fins
Ghit

ABHIN MSE
-5 51

- [JHJHJPIth

STANDARD FEATURES
Uses the ultra powerful 6502 microprocessor 8K Microsoft BASIC-in-ROM
Full feature BASIC runs faster than currently available personal computers and all 8080 -based business computers.
4 K static RAM on board expandable to 8 K
Full 53 -keyboard with upperllower case and user programmability
Kansas City standard audio cassette interface for high reliability
Full machine code monitor and $1 / O$ ullities in ROM
Direct access video display has 1 K of dedicated memory (besldes 4 K user memory), features upper case, lower case, graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TV's with overscan display about 24 rows of 24 characters; without overscan up to 30×30 characters

EX-STOCK - £263

Please phone to check availability or send $£ 10$ to reserve one and pay the balance on delivery

INTERESTED IN HOME COMPUTING?

Start now and don't get left behind THE NASCOM 1 is here Ex-stock with full technical services
Plus the opportunity to join the fastest moving club of personal computer users enabling you to get the most our of your computer. You can OBTAIN and EXCHANGE programs anci other software - many now available.
The Powerful $Z 80$
Microprocessor
Protessional Keyboard
1 Kbyte Monitor in EPROM 2 Kbyte RAM (expandable) Audio Cassette interface
Plugs into your domestic TV Easy construction from
straightforward instructions no drilling or special tools - Just neat soldering required.

Only E197-50 $+8 \%$ VAT (includes $p \& p+$ insurance)

Manuals seperately 2.95 280 programming Manual 280 Technical Manual 280 Technical Manual 2.95 (All prices add 8\% VAT)
6.90
2.95
2.95

Power supply suitable for NASCOM

FREE B BUG v alued at $£ 23.00$ plus $10 \times \mathrm{C} 12$ cassettes valued at $£ 4.00$ plus Standard Modulator valued at $£ 2.25$ WITH EVERY NASCOM

Level-II with 4K RAM improved graphics, print formatting, and a faster cassette transfer rate are features of Level-II BASIC.

Level-II with 16K RAM A combination of 16K RAM and the powerful Level-II BASIC produces a system capable of handling most demands.

VAT

PLUGS INTO YOUR OWN TV

MODULATORS UHF Channel 36
Standard 6 meg band width $£ 2.25$ High Quality 8 meg band width $£ 4.90$

CONSTRUCTIONAL PROJECTS

SOUND TO LIGHT- 2 CONCLUSION By BenJ. Duncan
Contruction and lighting displays 26
CINE SPEED CONTROLLER by M. Yeomans
Projector speed stabilisation 34
MICROPROCESSOR EVALUATION SYSTEM-2 by D.S. Coutts Construction and testing 42^{*}
ULTRASONIC REMOTE CONTROL by M. Plant and G. Hallam Universal 40 kHz system 50
WORKSHOP P.S.U. by S. Hoare
$60 \mathrm{~V}-1 \mathrm{~A}$ ranges-meterless test gear 56
GENERAL FEATURES
OHIO SUPERBOARD II REVIEW by A. A. Berk, B.Sc., Ph.D.
First good look at this long awaited system 18
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices 25
R.F.I. SUPPRESSION IN P.S.U.s by B. E. Taylor
Guidelines to successful design 54
INGENUITY UNLIMITED
Low Cost Thermometer-Guitar Fuzz/Sustain Unit-Lamp Dimmer- Stereo Peak Detecting PPM-Boat Speed Controller 65
MICROBUS by D.J.D.
A bi-monthly focus on micro's for the home constructor 68
NEWS AND COMMENT EDITORIAL 17
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office 31
SPACEWATCH by Frank W. Hyde
Venus 11 and Venus 12. Trouble for Scatha, UK-6 Britain's special stargazer 32
WATCH OFFER 33
NEWS BRIEFS
Countdown 38
British Satellite-Marshall's Bristol Move 39
Frequency by Time-Teachers to Study-Cut Price Watches—David Cohen 55
POINTS ARISING
TRS 80 Review-Metronome-Phaser-Champ-Prog 39
MARKET PLACE
New products 40
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 48
BOOK REVIEWS 55

OUR JULY ISSUE WILL BE ON SALE FRIDAY, 8 JUNE 1979

(for details of contents see page 49)

[^0]

ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED. ORDERS DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/ DESPATCHED BY. RETURN OF POST. TERMS OFRMMENT AND EDUCATIONAL INSTITUTIONS OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORT INQUIRY WELCOME. P\&P ADD 300° TO ALL ORDERS UNDER E10.00. OVERSEAS ORDERS postage at cost. air/surface. SEND 50 p (plus $25 p \mathrm{p} \& \mathrm{p}$) FOR OUR CATALOGUE
W. stock many mors items. It pays to visit us. We are situated be hind Warford Football Ground. Nearest Undarground/8R Sution: Watlord Hioh Stroet. Open Monday to Saturday

2ixinite

边	\%ัvaum
(\%)	
\%atemex	
\%	
\%	\%
\%mbemm	

INSTITUTIONS OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORT INQUIRY
WELCOME. P\&P ADD 30D TO ALL ORDERS UNDER E10.00. OVERSEAS ORDERS

+ BATTERY FLUORESCENT LIGHTING

Type " A "

Type "B" -

Type "C" L

Type "D"

White Enamel cases as shown above, including lampholders. Type "A" or "B" $\mathbf{£ 1 . 5 0}+\mathbf{1 2 p}$ VAT. Case only, $\mathbf{£ 1 . 0 0}+8 p$ VAT. Plastic Lampholders to suit $50 p+4 p$ VAT pair. Ceramic (adaptable) $40 p+4 p$ VAT pair. Tubes to fit 121 in.$) £ 1.00+8 p$ VAT. (These can only be supplied when cases are ordered due to risk of postal damage.) Case type "C" (18 in.) or Case type " D " (12 in .) including lampholders $\mathbf{£ 1 . 2 5 + 1 0 p \text { VAT. }}$
INVERTED TRANSFORMERS, special design for maximum efficiency
Transistor, Heat Sink, Circuit board cut to size, Resistor, Capacitors etc.
21 in . Fittings built and tested
$\mathbf{£ 1 . 0 0}$ each $+8 p$ VAT
$\mathbf{£ 1 . 0 0}$ pack $+8 p$ VAT
$\mathbf{£ 4 . 9 5 + 4 0 p \text { VAT }}$
THIS IS ABOUT HALF THE PRICE THAT A SIMILAR FITTING WOULD COST YOU ELSEWHERE!II!
$. £ 4.95+40$ p VAT
WHY NOT DO AS MANY OTHERS ARE DOING, BUILD THEM AND SELL THEM TO YOUR CAMPING FRIENDS?
PRINTED CIRCUITS. WHY NOT MAKE YOUR OWN WITH FOTOLAK POSITIVE LIGHT SENSITIVE LACQUER
Now you can produce perfect printed circuits in minutesi Method: Spray cleaned board lightly with lacquer. When dry. place positive master of required circuit on now sensitised surface. Expose to daylight,
develop and etch. Any number of develop and etch. Any number of exact copies can of course be made from one master. Widely used in industry for protorype work.

FOTOLAK Aerosol-....... $\mathbf{5 1} .50+12 \mathrm{p}$ VAT	
Developer $30+3 \mathrm{p}$ VAT	
Ferric Chlonde	$204 \mathrm{~mm} \times 228 \mathrm{~mm} \ldots \ldots \ldots \ldots \ldots E 3.00+24 \mathrm{p}$ VAT

Giant packs of unused mixed componentsI Weight 4lbs., these contain an assortment of resistors (carbon and wire-wound); capacitors, (electrolytic, paper, silver-mica, polyester and polystyrene): transistors, diodes, volume and pre-set controls and hosts of other bits and pieces. No two bags are the same, but all contain a jolly good mixture of parts. Ideal for the odds and ends box 111 Per bag............... $£ 3.00+38$ p VAT

SPECIAL OFFER! Few only 3-channel (each 750 watts) Sound-to-light units. Fantastic value for moneyl Plug into any loudspeaker socket and create your own disco-type light show! Any mains lamps may be used
+.......£17.95
+f 1.44 VAT

Brand new printed circuit boards containing I.C's., transistors, diodes, resistors, capacitors etc. etc. It is quite impossible to list these so we are selling by weight at $£ 1.00+8 p$ VAT per lb . This could include upwards of 100 intregated circuits! Send as many $£ 1$'s as you wish, we will weigh as varied a parcel as possible and refund your changel
PLEASE NOTE: Prices + VAT as shown. No VAT on overseas orders. Postage INLAND 65p per order. Overseas include extra to cover. We will refund any excess paid. Any enquiries for further detalls MUST include stamped addressed envelope !

G. F. MILWARD (Electronic components Lto.). 369 Alum Rock Road. B'Ham B8 30R. 021-327 2339

INTRODUCING the Crofton ASCII Encoded Keyboard in kit form $£ 38.40$ in. var

ORDER ALL YOUR ELECTRONIC

REQUIREMENTS FROM ONE SOURCE Whether for your computer or any other project. We stock a wide range of components, P.E. P.C.B's Calscope Oscilloscopes. Television Camera Kits, Lens, Tubes and Monitors.

AS WELL AS THE UNBEATABLE CROFTON 6800 MICRO which is probably the best value for money today. Write or telephone for full details of our products

CROFTON

Electronics timited 35 Grosvenor Road, Twickenham Middlesex - Tel: 01-891 1923

RADIO DRGHANGS LMIHHD

NEW ROAMER TEN R.K.3. Multiband V.H.F. and A.M. Receiver. 13 Transistors and Six Diodes. Quality $6^{\prime \prime} \times 3^{\prime \prime}$
Loudspeaker. Loudspeaker.
With Multiband V.H.F. section covering Mobiles. Aircraft, T.V. Sound, Public Service Band, Local V.H.F. Stations etc. and Multiband A:M. section with Airspaced Tuning Capacitor for easier and accurate tuning, covering M.W.1. M.W.2, L.W. Three Shor Wave Bands S.W.1.S.W.2, S.W. 3 and Trawler Bave. Built-in Ferrite Rod Aerial for Medium Wave, Long Wave and Trawler Band, etc.. Chrome-plated 7 section Telescopic Aerial. angled and rotatable for peak Short Wave angled and rotatable, for peak Short wave 600 mW Wransistors. Galn. Wave-Change and Tone Controls. Plus two Slider Switches. Powered by P.P.9-9 volt Battery.
Complete kit of parts including carrying strap. Building Instructions and operating Manuals.

$\mathbf{f 1 4 . 7 9}+\mathbf{£ 1 . 1 0 P \& P}$ For further details of our other kits please write, enclosing S.A.E., to: Radio Exchange Ltd 61A High Street Bedford MK40 1SA Callers welcome. Reg. No. 788372

Clef Kits -

Designer approved quality kits Ior Electronic Musical

JOANNA $72 \& 88$ PIANOS Six and $7 \div$ Octave Electronic Pianos with unique Touch Sensitive Action, as used in the P.E. JOANNA, which electronically simulates piano key inertia - a feature not avallable in any other design A new physical layout has been adopted to simplifyconstruction.
P.E. STRING ENSEMBLE

The only kit available to the proven A. J. Boothman Design for this versatile String Machine. Send S.A.E. to -

Clef Products (Dept P.E.) 16, Mayfield Road, Bramhall, Cheshire SK71JU'

Measure Resistance to 0.01Ω At a Price that has no resistance at all

New/Elenco USA

ONLY $\mathrm{ef}^{5} 5$ $(+£ 3 p \& p+$ VAT $£ 4.64=£ 62.64)$

*FULLY GUARANTEED FOR 2 YEARS

*METAL CASE

THE ULTIMATE IN PERFORMANCE - MEASURES RESISTANCE TO 0.01 OHMS,VOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE!
features

- $31 / 2$ digits $0.56^{\prime \prime}$ high LED for easy reading
- $100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.01 \Omega$ resolution
- High input impedance 10 Megohm
- High accuracy achieved with precision resistors, not unstable trimpots
- Input overload protected to 1000 V (except 200 mV scale to 600 V)
- Auto zeroing, autopolarity
- Mains (with adaptors not supplied) or battery operation-built-in charging circuitry for NiCads
- Overrange indication
- Hi Low power ohms, Lo for resistors in circuit, Hi for diodes

	SPECIFICATIONS:
DC Volts	Range $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$
	Accuracy $1 \% \pm 1$ digit, Resolution 1 mV
	Overioad protection 1,000 volts max
AC Volts	Range $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$ (Response 45 Hz to 5 KHz) Accuracy $15 \%+2$ digits, Resolution 1 mV
	Overload protection 1000 V max, 200 mV scale 600 V
DC Current	Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{mmp}$.
	Accuracy $1 \% \pm 1$ digit, Resolution 1 Microamp
	Overload protection -- 2 amp fuse and diodes
AC Current	Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{mp}$
	Accuracy $1.5 \% \pm 2$ digits, Resofution 1 Microamp
	Overload protection - $\mathbf{2}$ amp fuse and diodes
Resistance	Range 20, 200, 2K, 200K, 2 Meg . 20 Meg .
	Accuracy $1 \% \pm 1$ digit. Resolution .01 ohms
Environmental	Temp coefficient 0° to $30^{\circ} \mathrm{C} \pm .025 \%^{\circ} \mathrm{C}$
	Operating Temp 0° to $50^{\circ} \mathrm{C}$ Storage -20° to $60^{\circ} \mathrm{C}$
General	Mains adaptor: $6 \cdot 9$ Volts @ 200mA (not supplied)
	4 C size batteries (not supplied)
	Size $8 \% \times 5 \frac{1}{4} \times 2 \%$ Weight $2 \frac{1}{2}$ lbs.

SPECIFICATIONS:
Range $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$ Accuracy $1 \% \pm 1$ digit, Resolution .1 mV Overioad protection 1,000 volts max Range $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$ (Response 45 Hz to 5 KHz)
 scale goov Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{amp}$.硅 Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{amp}$ Accuracy $1.5 \% \pm 2$ digits, Resolution 1 Microamp oad protection - 2 amp fuse and diodes Range $20,200,2 \mathrm{~K}, 200 \mathrm{~K}, 2$ Mey. 20 Meg . Temp coefficient 0° to $30^{\circ} \mathrm{C} \pm .025 \%^{\circ} \mathrm{C}$
 Mains adaptor: 6-9 Volts @ 200mA (not supplied) Size $8 \% \times 5 \frac{1}{4} \times 2 \% \quad$ Weight $2 \frac{1}{2}$ lbs.

At $£ 55, \mathrm{M} 1200 \mathrm{~B}$ is the best buy among DMM's currently available. Its 0.01 ohms resolution allows you to detect shorted windings in coils, transformers or motors. It is also useful in checking low contact resistance in switches, relays or connectors. Poor solder connections can also be spotted. The low power ohms function permits accurate measurements of in circuit resistance without forward biasing semiconductor junctions.

You have been waiting a long time for a digital multimeter with all these features at a price like this. Now its yours.

Also available from retail shops:
Audio Electronics,301 Edgware Rd, London W2 Z \& I Aero Services, 85 Tottenham Court Road London W. 1
*AGENTS WANTED
Sole UK Distributor
Maclin-Zand Electronics Ltd
38 Mount Pleasant, London WC 1XOAP Tel.01-837 1165 or Hemel Hempstead (0442) 832966

Telex. 8953684 MACLIN G
PE for further information

To: Maclin-Zand Electronics Ltd
38 Mount Pleasant, London WC1X OAP
Please send me \qquad DMM M1200B @ £62.64 inc. p\&p+VAT (overseas £60).

I enclose cheque/P.O./Bank Draft for $£$ \qquad
\qquad (BLOCK Address - LETTERS

ALPHA
 OR BETA. BOTH BETTER.

A glance at the front panel of the Gould Advance Alpha IV reveals much of its story. An intelligent use of technology - but at a down-to-earth price of only £105.*
A second look shows a big and beautiful, ' 2000 count', L.C.D. for displaying 25 ranges of $A C / D C$ voltage and current and resistance.

A third, the snug compartment for the throw-away batteries which can give over 400 hours' operation.
But would you, perhaps, rather buy a Beta?
It has 28 ranges of $A C / D C$ current, resistance and AC/DC volts plus optional temperature measurement ($-20^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$).
Within either you notice our very special CMOS chip (with an on-chip oscillator) land a simple lay-out that exudes longlife.
But, apart from the fact that both Alpha IV and Beta carry a 'Made-in-Britain' label, they sport another important parameter.

A two-year, seldom called-upon, guarantee.
Exercise your options and ask for data from Gould on both.
You'd better 1

* Price exclusive of VAT, and effective only at time of writing.

Gould Instruments Division, Roebuck Road, Hainault. Essex IG6 3UE Telex: 263785
TELEPHONE : 01-500 1000

Wilmslow Audio

THE firm for speakers!

SEND 15p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

> AUDAX AUDIOMASTER BAKER BOWERS \& WILKINS - CASTLE CELESTION CHARTWELL - COLES - DALESFORD DECCA EMI EAGLE ELAC - FANE GAUSS - GOODMANS I.M.F. ISOPHON JR - JORDON WATTS - KEF - LEAK - LOWTHER McKENZIE - MONITOR AUDIO - PEERLESS RADFORD - RAM - RICHARD ALLAN © SEAS SHACKMAN © STAG TANGENT TANNOY VIDEOTONE - WHARFEDALE YAMAHA

> WILMSLOW AUDIO (Dept. P.E.) SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

> Discount Hi-Fi, etc. at 5 Swan Street and 10 Swan Street
> Tel.: Wilmslow 529599 for Speakers
> Tel.: Wilmslow 526213 for Hi-FI

RELAYS

RELAVS, WIOE RANGE OF A.C. And O.C. RELAYS
AVAILABLE TIOM stock. phone or write in your Enquiries

FT3 NEON FLASH TUBE

glow. discharg tlash tube Design tope. neon

RODENE UNISET

TYPE 71 TIMER
0-60 sec. 230 V a.c. operation. Incorrepeat facilities. A precision motorlsed timer ideal for process liming. photo-
graphy, welding, mixing, etc. Price $\mathbf{f 6}$. graphy, welding. mixing etc. price $\mathbf{8 6}$.
WHY PAY MORE?
MULTI RANGE METER TYpe MF15A a.c. d.c.
volts $10=50,250,500$. 1000 Ma $0-5$. $0-10$ o-100. Sensitivity 2000 V .24 range. diameter $\mathbf{3 3}$ by 93 by 46 mm including test leads.

METERS (New) - 90 mm DIAMETER A.C. Amp. Type 62T2. 0.1A., 0.5A. O.20A.
O.C. Amp. Trye 65C5. O-2A. O-10A. O-20A.

Ail tipes $E 3.50 \bullet 0 .+$ P. \& P. 50 p ($£ 4.32$ incl. VAT) excep
O-100A. D.C.. price $\mathrm{f} 5.00+50 \mathrm{p}$. P. \& P. ($£ 5.94$ incl. VAT).
NEW HEAVY OUTY SOLENOID. mfg
 ratingl at ths in. Price E4.OO P. \&
60 . 1 \& 46 inc. VAT \& P.) N.M.S. A.C. SOLE NOID pre ether type $176 / 2$

 WESTOOL TTPE MM8 Model 2. 240 VAC A Aporox 11 tb Pull at . i.inch. Rating 1. Price $£ 1.50$ p\&D 20p. (E1.8A inc VAT $+P$)
N.M.S.

MICRO SWITCHES

Sub min Honeywell
10 vor 22.50 post toaid
LEVER OPERATED 20

MERCURY SWITCH

Size $27 \mathrm{~mm} \times 5 \mathrm{~mm}, 10$ for $£ 5.00$
(inc VAT $£ 5.72$ min quant 10
inc VAT 55.72) min quantity 10 .
Heawy duty type size $38 \times 16 \times 10 \mathrm{~mm}$, minimum quantity 10
$£ 7.50$ post paid $\mathbf{i} 8.10$ inc. VAT

All Mail Orders-Callers-Ample Parking
Dept. PE, 57 BRIDGMAN ROAD
CHISWICK, LONDON W4 5BB Phone 01-995 1560

VARIABLE VOLTAGE TRANSFORMERS
 CARRIAGE AND PACKING EXTR

LT TRANSFORMERS

equip) £2.50 P. \& P. 50 p (£3. 24 inc $13-0-13 V$ at $1 \mathrm{amp} £ 2.50 \mathrm{P}$. \& P. 50 O ($£ 3.24$ inc. VAT) $) ~$
$25-0.25 V$
 $0-6 \mathrm{~V} / 12 \mathrm{~V}$ al 20 amp £ 14.70 P. \& P. E1. 50 ($\mathbf{f} 17.50$ inc. VAT) 0.12 V at 20 amp or 0.24 V at 10 amp \& 12.00 P. \& P. $£ 1.50$ [14.58 inc. VAT \& P.) $25 P$ P 1.25 (f10.26 he VAT)
 If22.10 inc. VAT \& P.
$\mathrm{O}-10 \mathrm{~V} / 17 \mathrm{~V} / 1 \mathrm{BV}$ at 10 amp $£ 10.50$ P. \& P. $£ 1.50$ ($£ 12.96$ inc. VAT

HY-LIGHT STROBE KIT MK IV

 Latest type Xenon white light flash tube. Solid statetiming and triggering circuit $230 / 240 \mathrm{~V}$ a.c. operation. Desioned for larger rooms. halls, etc. Speed adiustable 1-20 f.p.s. Light output greater than many (so called \& P.) Specially designed case and reflector for Hy-Ligh £8-80. Post $£ 1$ ($£ 10.58$ inc. VAT \& F

XENON FLASHGUN TUBES
 Range avalabie Strom stock

ULTRA VIOLET BLACK LIGHT

FLUORESCENT TUBES

th. 40 watt $\mathbf{E 8 . 7 0}$ (callers only) 2 ht .20 watt $\mathbf{f 6 . 2 0}$. Post 75p. (f7.51 inc VAT+ P) (For use in stan bi-pin fittings) Mir 12 in.
8 watt $£ 2.80$. Post 35 p. ($£ 3.40$ ind VAT + P). 9 in. 6 watt $£ 2.25$ 8 watt $£ 2.80$. Post 35 p . (£3.40 inc VAT + P). 9 in. 6 watt $£ 2.25$
Post 35 D ($£ 2.81$ inc VAT + P). 6 in. 4 w日tt $£ 2.25$. Post 35 p. Complete ball ast unit, for either $6^{\prime \prime} .9^{\prime \prime}$ or $12^{\prime \prime}$ tube 230 VAC op
 400 watt UV Iamp and ballast complete £31.50. Post $£ 3$ (337.26 ine VAT + PI. 400 watt UV lamp only $\mathbf{E 1 1 . 2 5 \text { . Pos }}$ £1.20(£13.45 inc VAT

\section*{SQUAD LIGHT
 A new Conception in light

control. Four channels each capable of handting 750 watts

 programs all speed controlled plus ilash modulation effectiven giving 14 different displays. Makes sound-to-light obsolete. S. A.E. (Foolscap) for further details.
 Price $\mathbf{f 6 0 . 0 0} \mathrm{p} \& \mathrm{p} 70 \mathrm{p}$ (E65.6)
 WIDE RANGE OF OISCO LIGHTING EQUIPMENT

\section*{Superior Quality Precision Made

Superior Quality Precision Made
 NEW PQWEA AMEOSTATS
 usly rated. 25 WATT $10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{kO}$

50 WATT 250 © $£ 2.90$. Post 25 (f3.40 inc. VAT \& P.).
 Black, Silver, Shirred knob calibrated
dia. brass bush. Idea for above theostats 24p

SPECIAL OFFER

BERCO typel. RHEOSTAT
 85 ohm 300 wath 1.86 amp . $\mathbf{£ 7 . 5 0}$ p. \& p. 50 p . (Total: $£ 8.64$ inclus. V.A. T. N. 5.

RELAYS

230/240V A.C. Relays: Arrow 2 c/o. 15 amp £ 1.50 ($£ 1.84 \mathrm{inc}$
 D.C. Relays: Open type $9 / 12 \mathrm{~V}$ VAT \& P). Sealed 12 V 1 clo 7 amp octal base. $£ 1.00$ ($£ 1.30 \mathrm{inc}$ VAT g_{1} P). Sealed $12 V 2 \mathrm{c} / \mathrm{o} 7 \mathrm{amp}$ ocial base. $£ 1.25$ (£1.56 in $V A T$ \& Pi. Seesled 12 V 3 clo 7 amp 11 -oin $\mathbf{~} 1.35$ ($\mathbf{(1 . 6 7} \mathrm{inc}$ VAT \& P). 24 V . Sealed 3 coo 7 amp 11 -pin $£ 1.35$ ($£ 1.67$
VAT \& P). (amps = contact rating). P\& P on any Relay $20 p$. Diamond H heavy duty A.C. relay $230 / 240 \mathrm{~V}$ a.c., two C/O contacts 25 amps res at 250 d.c. E 2.50 p\&p 50 p. (E 3.24 inc
VAT + p\&p) Special base 50 p.

GEARED MOTORS

 supplied with transformer. N.M.S.
$7 \frac{1}{8}$ rpm. 115 V . a.c. 50 cycle approx. 25 lb .
ml KLAXON. 28 rom .115 V a.c. 20 lb in mi. KLAXON. 28 rom. 115 V . a.c. 20 lb . in.
reversible. 71 rpm . 115 V . a.c. 10 ib. in. re versible. all approximately similar to drawing. Price of above 3 Motors, $£ 475+75 \%$. P. \& P. ($£ 5.95$ inclus. VATI. N.M.S. Any of above 3 , supplied with Transformer for
240 V . operation: $£ 7.25+£ 1.00$. \& P . (88.91 inclus. VAT

19 rpm FHP $220 / 240 \mathrm{~V}$. a.c. reversible,
torque 14.5 kg Gear ratio $144-1$. Brand torque 14.5 kg . Gear ratio $144-1$. Brand new including capacitors. mi. CITENCO.
Price: $£ 14.25+£ 1.25 \mathrm{P} . \&$ P. (E16.20 inclus. VATI. N.M.S
$30 \mathrm{rpm} .230 / 240 \mathrm{~V}$. a.c. 50 lb . in. mf. PARVALUX
Price: $\mathbf{£ 1 5 0 0 + £ 1 . 5 0 \text { P. \& } \mathrm { P } \text { . (} \mathbf { ~ } 1 7 . 8 2 \text { inclus. VAT). N.M.S. }} \mathrm{l}$. 56 rom .240 V . a.c. 50 Olb . in. 50 Hz 0.7 amp . Shaft length 35 mm . Dia.
16 mm . Wt. $6 \mathrm{~kg} .600 \mathrm{~g} . \mathrm{mm}$ FRACMO. 16 mm . Wt. 6 kg .600 g . mf. FAACMO.
Price: f15.00 $£ 1.50$ P. \& P. $£ 17.82$ inclus. VATI. N.M.S.
100 rpm .110 V, a.c. $115 \mathrm{lb} . \mathrm{in} ., 50 \mathrm{~Hz} .2 .8$ amp. single phase split capacitor.
Immense power. Continuously rated. Totally enclosed. Fan-cooled. In-line gearbox. Length 250 mm . Oia. 135 mm . Spindle
 P. \& P. ($\mathbf{1} 14.58$ inclus. VATI. R. \& T. Suitable Transformer for
$230 / 240 \mathrm{~V}$. operation. Price: $£ 8.00+75$ p. P. \& P. ($\mathbf{9} 9.45$ inclus. VATI.
200 rom. 35 lbs in. 115 V . $50 \mathrm{H}_{2}$.
Price: $£ 16.00+£ 1.50$ P. \& P. (f 18.90 inclus. VATI. N.M.S. Suitable Transformer for $230 / 240 \mathrm{~V}$. a.c.
Price: $\mathbf{f 8 . 0 0}+\mathbb{£ 1 . 0 0 \text { P. \& P. (} \mathbf { E 9 } 9 7 2 \text { inclus. VAT). N.M.S. }}$
$500 \mathrm{rpm} .230 / 250 \mathrm{~V}$ a.c. 3 lb in. 2 right-angled spindles. Mf.
PARVALUX. Price $1100+£ 1.00$ F. \& f . (12.96 inclus. VATI. N.M.S.
6/9V. D.C. Miniature Geared Motor, precision built incredibly powerful for size
approx speed (a 6 V .- 60 rpm 40 ma.
approx. speed (G . 9 V . 80 rpm 50 ma .
approx. speed (G $9 V .-80 \mathrm{rpm} 50 \mathrm{ma}$.
27 mm dia.. 38 mm length. 55 gr . weight.
drive spindle $5 \times 3 \mathrm{~mm}$. dia.
$\mathbf{f 2 . 5 0}$ post paid ($\mathbf{~} 2.70$ inclus. VAT).
Price: $\quad \mathbf{2} 250$ post paid ($\mathbf{2} \mathbf{2} 70$ inclus. VAT). N.M.S.
$12 V$. O.C. type SD2. Shunt ${ }^{1}$ gh continuously rated 4000 rpm.
Mf. PARVALUX. Price: $\mathbf{f 1 0}^{3} 80^{+75 p}$. P. \& P. (f11.61 inclus. VATI. N.M.S.
230/240V. a.c. 1 rpm Synchronous geared Motor, mf. HAYDON. $230 / 240 V$. a.c. 2 rpm Synchronous geared Mator, mf.
CROUZET. Price above 2 Motors: $£ 2.90+30 \mathrm{p}$. P. \& P. ($\mathbf{3} 3.46$ inclus. VAT). N.M.S.
1.400 rpm 115 V . ac. Motor, MP $\frac{1}{\text { W continuousily rated. Fitted with }}$ anti-vibration cradle mounting. Mf. FRACMO. Supplied complete with Transformer for $230 / 240 V$, a.c. operation. Price:
$£ 10.00+£ 1.00$ P. \& P. ($£ 11.88$ inclus. VAT). N.M.S.
$1,600 \mathrm{rpm}, 230 \mathrm{~V}$. a.c. reversible Motor, 0.25 a. complete with anti-vibration mounting bracket and capacitor. O/a size.

ROTARYVACUUM
AIR COMPRESSOR \& PUMP
Carbon Vane oil-less. $100 / 115 \mathrm{~V}$.
A.C. $1 / 12$ h.p. motor $50 / 60$ cycle
 $2875 / 3450$ ppm. 20° vacuum 1.25 cfi m. 10 p.s.i. (approx. figures) mft. by Gast Co. Fraction of
makers price. $£ 1400$ p. \& p. 11.00 (Total: $£ 16.20$ inclus. VATI. maker's price. $£ 1400$ p. \& p. I 1.00 (Total: $£ 16.20$ inclus. VATI.
Suitable Transformer. $£ 3.50$ p. 8 p. 50 p. (Total, $£ 432$ inclus.

BLOWER VACUUM PUMP

English Electric 3 phase AC. motor 220/250V. Or 380/440V. 1.425 r.p.m. th.p. connuously rated. Orrect coupled to William Allday \& Co Alcosa carbon vein blower/vacuum pump
8.HG. Price $£ 22$ p\&p $£ 2(£ 2592$ inc VAT + p) N.M..

Time Switch
Venner Type ERD Time switch $200 / 250 \mathrm{~V}$ a.c. 30 amp contact 2 on/2 of every 24 hrs . at any manualy pre-set time, 36 hour Spring Reserve
and dav omitting device. 8uilt to highest Elec-
tricity Board specification. Price $£ 7.75$. tricity Board sp
P. \& P. 750 (89.18).

SANGAMOWESTON TIME SWITCH
 Type $\$ 251200 / 250 \mathrm{~V}$. a.c. 2 on/2 off every 24 hours. 20 $50 p$ inc. VAT $£ 7.56$. Also available with Solar dial.

Yet another outstanding offer

IMFD 600 V Dubilier wire ended capacitors
10 for $£ 1.50$ p\&p 50p. (โ2.16 inc VAT + p\&p) (Min 10) N.M.C

230 V a.c. FAN ASSEMBLY.
Powerful contlnuously rated a.c. motor
comptete with 5 blade 6 tin or 4 ble complete with 5 blade $6 \frac{1}{2}$ in. or 4 blade 3 in .
aluminium fan. Price $£ 300$. aluminium fan. Price
($£ 3.94$ incl. VAT \& P.)

KEY:
New Manufacturers Surplus
Reconditioned and Tested

Personal callers only Open Saturdays

9 LITTLE NEWPORT STREET

 LONDON WC2H 7JJ Phone 01-437 0576
KITS FOR SYNTHESISERS, SOUND EFFECTS
 COMPONENTS SETS include all necessary resistors. capacitors, semiconductors, porentiometers and transformers. Hardware such as cases, sockets, knobs, keyboards, etc. are not included but most of these may be bought separatelv. Fuller details of kits, PCBs and
 PHONOSONICS

P.E. MINISONIC MK. 2 SYNTHESISER

A portable mains-operated Miniature Sound Synihesiser, with keyboard crrcuits. Although having slightly fower facitities than the large P.E. Synthesiser the functions offered by this design give it great scope and versatility Consists of 2 log VCOs. VCF. 2 envelope shapers, 2 vollage onirolled amps. keyboard hold and coniol circuls. mixer power supply.
Set of basic component kits (excl. KBD R's
and turing pots - see list for options available). Irom $£ 61.00$ Set of printed circuit boards
68.99
P.E. SYNTHESISER (P.E. Feb. 73 to Feb. 74)

The well acclaimed and highly versatile large-scale mains-operaled Sound Synthesiser complete with keyboard circuits. Other circuits in our lists may be used with the Synthesiser to good advantage. Details in our lists.

FORMANT SYNTHESISER (Elektor 1977/78)

Very sophisticated music synthesiser for the advanced con, pho puts performance betore price. Dotais in our lists.

128-NOTE TUNE-PROGRAMMABLE SEQUENCER

(P.E. Nov/Dec 77)

Enables a voltage controlled synthesiser to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and rhythmic pattern are externally variable. (Please use order codes quoted in brackets. 1

Main Circuit (Nov) excl sw's (KIT 76-1) 18.03
Power Supply (KIT 76-3)
Trigger Inverter and Alt. Output (KIT 76-2)
LED Counter (KIT 76-4)
PCB (as published) for KITS 76-1 \& 3 (PCB 76A)
$£ 4.72$
£1.15 PCB for KITS 76-2 \& 4 (PCB 76B)

P.E. STRING ENSEMBLE (PE Mar-July 78)

Basic component st
Power Supply (KIT 77-1)
Tone Generator (KIT 77-2)
Diode Gates (KIT 77-3)
Chorus Generator (KIT 77-4)
Voicing System (KIT 77-5)
\qquad
Double-sided PCB ior Power Supply, Tone Generator \& Diode Gates with most of the Matrix wiring as printed tracking (PCB 77L/R)
CB for Chorus Generator IPCB 77C)
PCB for Voicing System (PCB 77D)

P.E. JOARNA PLUS ORGAN VOICING

The basic five octave electronic piano (P.E. May/Sept 75 and Sound Design) has switchable alternative voicings for Honky Tonk, ordinary piano, and Harpsichord or a mixture of any of these three, together with facilities including fast and slow tremolo loud and soft pedal switching. and sustain pedal switching. The oodifation relains all the circuiry associated with the piano ut in addition provides an organ-voice envelope facilliy with 5 witchable pitches, variable attack and sustain, phasing and Sti.

Set of components (excl switches) for PSU, Frequency generator, Pitch and Note Divider. Envelope Shapers, Voicings Set of PCB (Order as PCB SET 71-6)

GUITAR EFFECTS PEDAL (P.E. July 75)
Modulates the attack, decay and titer characteristics of an audio signal not only from a guiter but from any audio source. producing of different switchable effects that can be further modified by manual controls. Possibly the most interesting of all the low-priced sound effects units in our Onge. Circunt

$$
\begin{aligned}
& \text { Component set with special foot operated switches } \\
& \text { Alternative component set with panel switches } \\
& \text { Printed clrcuit board }
\end{aligned}
$$

$£ 7.69$
£5.05
$£ 1.43$
parts are shown in our lists.
CIRCUIT AND LAYOUT DIAGRAMS are supplied frce with all PCBs unless "as published"
PHOTOCOPIES of P.E. texts for most of the kits are avallable-prices in our lisis.

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

elektor electronic piano (Elektor Sept 78)

 A touch-sensitive. multiple-voicing 5 octave piano using thelatest Integrated-circuit techniques for latest integrated-circuit techniques for the keving and
envelope shaping and virtually eliminating bee hive noise envere shaping, and evinus electronic pianos. Details in our
hitherto inherent in previo lists.
digital heverberation unit (Elektor May 78)
A very advanced unit using sophisticated i.c. techniques instead of mechanlcai spring-lines. The basic delay range of
24 to 90 mS can be extended up to 450 mS using the 24 to 90 ms can be extended up to 450 mS using the
extension unir. Further delays can be obtained using more exiensions.

Main component set (KIT 78-1)

$\mathbf{C 4 5} .45$
$£ 43.36$
$\varepsilon 2.86$
$£ 1.06$
analogue reverberation unit (Elektor Oct 78)
Using i.c.s instead of spring-Illes, the main unit has a maximum delay of up to 100 ms , and the additional set extends this
sterea mode.
Main component set (KIT 83-1)
Additional Delay Set (KIT 83-2)
£26.18
$\mathbf{£ 1 8 . 2 5}$
CB (as published) to hold both ahove
£4.31

RESONANCE FILTER (Elektor Oct 78)

This filter module has been designed to allow a synthesiser to produce a more realistic simulation of natural musical instruments.
$\begin{array}{lr}\text { Basic component set (K1T 82-1) } & \text { £15.10 } \\ \text { PCB (as published) (PCB 9951) } & \text { £3.29 }\end{array}$

SYNTHESISER EXTERNAL INPUT INTERFACE

(P.E. Oct 78)

This unit allows externai inputs, such as guhtars. microphones etc. to be processed by the circuits within a
synthesiser. Basic component set (incl PCB) (KIT 81-1) £2.94 GUITAR MULTIPROCESSOR (P.E. Oec/Feb 78)
An extremely versatile sound processing unit capable of producing, for example, Flanging, Vibrato, Reveri, Fuzz and Tremolo as well as other fascinating sounds. May be used with most electronic instruments. Details in our lists. RHYTHM GENERATOR KITS
Several avallable - details in our lists.
GUITAR FAEOUENCY DOUBLER (P.E. Aug. 77)
A modified and extended version of the circuit published
Component set and PCB $£ 4.52$

GUITAR SUSTAIN (P.E. Oct 77)
Maintains the natural attack whilst extending note duration,
Component set, PCB and foot switches
Component set, PCB and panel switches

WIND AND RAIN UNIT

A manually controlled unit for producing the abovernamed
sounds
Component set (licl. PCB)

GUITAR OVERDRIVE UNIT (P.E. Aug. 76)

Sophisticated, versatule Fuzz unit, including variable and switchable controls affecting the fuzz quality whilst petaining Tuplicate the effects from also providing filtering. Does no duplicate he allects from the Guitar Elfects Pedal and can Component and with other electronic instruments.

Component set using dual slider pol
Component set using dual potary pot
Pimped circuit board

FUZZ UNIT

Simple Fuzz unit based upon P.E. "Sound Design" circuit, $\begin{array}{r}\text { E2.05 }\end{array}$

TAEMOLO UNIT
Based upon P.E. Sound Design' circuil Component set (incl. PCB) $£ 2.94$ TRE日LE BOOST UNIT (P.E. Apr. 76)
Gives a much shriller quality to audlo signals fad through it
The depth of boost is manually adjustable.
Component set (inct. PCB)
£2.51

WAVEFORM CONVERTER

Slightly modified from a circult published in "Elektor". Converts a saw-tooth waveform into four different waveforms: sine-wave, mark-space saw-tooth, regular triangle form, and squarewave with an externally variable mark-space ratio.

Component set (incl. PCB but excl. sw/sl

VOLTAGE CONTROLLED FILTER (P.E. Dec. 74)

Part of the P.E Minisonic now refeased as an independen
kit for use with other synihesisers.
Component set (Incl. PCB) (Order as Kit 65-1)
AING MODULATOR (P.E. Jan. 75)
Part of the P.E. Minisonic now released as an independen Component set (incl. PCB) (Ord

NOISE GENERATOR (P.E. Jan. 75)

Part of the P.E. Minisonic now released as an independent
it for use with other synthesisers.
Component set (incl. PCB) (Order as Kit 60.1) £3.84
ENVELOPE SHAPEA WITHOUT VCA (P.E. Oct. 75)
Provides full manual control over attack. decay. sustain and release functions. and is for use with an existing voltage ontrolled amplifier.
Component set (incl. PCB)
ENVELOPE SHAPEA WITH VCA (P.E. Apr. 76)
This unlt has its own voltage controlled amplifier and has full This unit has its own voltage conroled amplifier and release functions.

TRANSIENT GENERATOR (P.E. Apr. 77)

an envelope shaper, wihout VCA, having the usual attack decay, sustain and release functions. and in addition it also provides a "Repeal Effect enabling a synthesiser to be programmed to imitate such instruments as a mandolin of banjo.
Component set
£4.87

SOPHISTICATED PHASING AND VIBRATO UNIT

Elightly modified version of the circuit published in ciektor. December 1976. and includes manual and utomatic control over the rate of phasing and vibrato Component sel

PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlled unit for introducing the "phasing" sound inio live or recorded music.
Component set (incl. PCB)
f3. 20

PHASING CONTROL UNIT (P.E. Oct. 74)
For use with the above Phasing Unit to automatically control Component set (inct. PCB)

WAH-WAH UNIT (P.E. Apr. 76)
The Wah-Wah effect produced by this unit can be controlled
manually or by the integral automatic controller.
£3. 63

AUTOWAH UNIT (P.E. Mar. 77)
Automatically produces Wah-pedal and Swell-pedal sounds
uach time a new note is played.
Component sel. PCB, special foot switches
Component set and PCB. with panel switches
$£ 7.87$
$£ 4.83$

VOICE OPERATED FADER (P.E. Dec. 73)
For automatically reducing music volume during
"talk-over'-particularly useful for Oisco work or for
home-movie shows.
Component set (incl. PCB)
£ 3.97

10\% DISCOUNT VOUCHER (PE 74)

TERMS: Goods in current adverts \& list
over $£ 50$ goods value lexcl P\&P \& VAT).
Correcily costed, C.W.O., U.K. orders only,
This voucher must accompany order. Valid
This voucher must accompany order. Valid
until end of month on cover of P.E.

ADO: POST \& HANDLING
U.K. orders - Keyboards add $£ 2.00$ each plus VAT. Other gonds: under $£ 15$ add $25 p$ plus VAT, over $£ 15$ add 50 p plus VAT. Recommended: optional insurance against postal mishaps, add 50 p for cover up to $£ 50, £ 1.00$ for $£ 100$ cover, etc. pro-rata.
N.B. Eire, C.I., B.F.P.O. and other countries are subject to cover, etc. pro-rata.
N.B. Eire, C.I., B.F.P.O. and
higher export postagerates.

ADD $12 \frac{1}{2} \%$ VAT
(or current rate if changed). Must be added to full total ol
goods, discount post goods, discount. post \& Does not apply to Exoorts.

EXPORT ORDERS ARE WELCOME but to avold delay we advise you to see our list for postage rates. All payments must be cash-with-order, in Sterling by International Money Order or through an English Bank. To
obtain list - Europe send 20 p , other countries send obrain
50 p .

PHONOSONICS • DEPT PE74 - 22 HIGH STREET • SIDCUP • KENT DA14 GEH TERMS: c..... mall ordee or collection BY APPOINTMENT (TEL 01-302 6184)

AND OTHER PROJECTS

PHOTOGRAPHS In this advertisement
show two of our units containing some of the P.E. prolects buitt from our kits and CBs. The cases were buill by ourselves and are not for sale. though a small selection of other cases is avallable.
UISt-Send stamped addressed envelope with ail U.K. requests for free ist giving fuller details of PCBs, kits and

OVEASEAS enqulries for lis!: Europe-

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKimber-Allen Keyboards as required for nany published circuits. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C, the keys are

plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame.	
3 Octave (37 notes)	$\mathbf{C 2 5 . 5 0}$
4 Octave (49 notes)	$\mathbf{C 3 2 . 2 5}$
5 Octave (61 notes)	$\mathbf{~} 39.75$

Contact Assemblies (gold-clad wire) for use with the above KBDS (1 for each note): Type GJ: Single-pole change-over
Type GJ: Single-pole change-over
Type GA: 1 pair of contacts, normally open
Type GB: 2 pairs of contacts, each pair normally open Type GE: 4 pairs of contacts, each pair normally open Type GH: 5 palrs of contacts, each pair normally open each $37 \frac{1}{2}$ p

Type 4PS: 3 pairs of contacts plus single-pole changeover
Printed Circuit Boards for use with most contacts (thus eliminating much interwiring) are available. Details in our lists.
P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 swhith-selected frequency-accurate tones. A LED monitor clearly displays all beat note adjustments. Ideal or tuning acoustic or electronic musical instruments.

Main component set (incl. PCB)
14.93
C6.28

YNTHESISER TUNING INOICATOR (P.E. July T7)
a simple 4octave trequency comparator for use with
synthesisers and other instruments where the full versatitity
of the P.E. Tuning Fork ts not required.
Component and PCB (but excl sw.)
f7. 45

CONSTANT DISPLAY FREQUENCY METER (PE AUG 78)
A-digit frequency counter for 1 Hz to 99999 Hz with a 1 Hz sampling rate. Readout does not count visibly or flicker due to display blanking.
Component set
-This kit \& PCB are at 8\% VAT (all others are $12 \frac{1}{2} \%$)

TAPE NOISE LIMITER

Very effective circuit for reducing the hiss found In mosi tape Standard tolerance set PCBs
Superior tolerance set of components
Regulated power supply (will drive 2 sets)

DYNAMIC RANGE LIMITER (P.E. Apr. 77)
Automatically controls sound output io within a preset
Component set (incl. PCB)

DISCOSTROBE (P.E. Nov. 76)
4-channel light-show controller giving a chalce of sequential, random, or full strobe mode of operation. Basic component set

BIOLOGICAL AMPLIFIER (P.E. Jan/Feb. 73)
Multi-function circuits that, with the use of other external equipment. can serve as lie-detector, alphaphone, cardiophone etc.

Pre-Amp Module Components set lincl. PCB) $£ 3.95$ Basic Output Circuits-combined component set with PCBs, for alphaphone, cardiophone, frequency meter and visual feed-back lampdriver circuits. Audio Amplifier Module Type PC7

SOUND BENDER (P.E. May 74
A multi-purpose sound controlier. the functions of which automatic fader and frequency-doubler.
Details in lists.

SOPHISTICATED POWER SUPPLIES

A wide range of highly slabilised low nolse power supply kits is avaliable-details in our lisis.

NEW PCB SERVICE

PCBS FOR ALL NEW P.E. \& E.E. PROJECTS fOR WHICH PCB LAY OUTS HAVE BEEN PUBLISHED AND FOR WHICH FULL COPY RIGHT CLEARANCE IS AVAILABLE.
LIMITEO QUANTITIES ONLY FOR AN EXPERI MENTAL PERIOD
LET US KNOW YOUR NEEDS AND WE WILL ADVISE YOU OF AVAILABILITY AND PRICES.
 Special purchase of these $0.1^{\prime \prime}$ pitch doublesided gold-plated connectors enables us to original list price
40 way $90 p$

HEAT SINK OFFER

Copper TOS sink 17 mm dla $\times 20 \mathrm{~mm}$. 10 for
40 : 100 for $£ 3: 1000$ for $£ 25$

74 SERIES PACK

Selecrion of boards containing many different 74 series IC's. 20 for $£ 1 ; 50$ for $£ 2.20 ; 100$
for $£ 4$.

THE NEW 1978-9 GREENWELD CATALOGUE

FEATURES INCLUDE:

- 50p Discount Vouchers
- Quantity prices for bulk buyers
- Bargain List Supplement
- Reply Paid Envelope
- Priority Order Form
- VAT inclusive prices

PRICE $30 p+15 p$ POST above amp. Output $2 W$ into 8 ohms. Input matched for crystal cartridge. 4 transistor
circuit. Simple to build on PCB provided. Can circuit. Simple to build on PCS provided. Can
be either battery or mains operated. (For mains powered version add $\mathbf{\$ 2 . 2 0}$ for suitable transformer.) Blue viny! covered
aluminium case to suit (W372) $£ \cdot 30$

STEREO V.U. METER
2 meters $40 \times 40 \mathrm{~mm}$ plus driver board

DIN SOCKET OFFER
2 pin switched speaker socket. PC mounting;
5 pin 180° PC mntg or chassis mnig (clip fix). All the same price, any mix: 10 for 70 p

TMS4030 RAM

4096 bit dynamic RAM with 300 ns access time: 470 ns cycle time; single low
capacitance high level ctock $/ \mathrm{p}$: Fully TL compatible: Low power dissipation. Supplied with data $£ 2.75$

MISCELLANEOUS IC's

Supplied with data if requested. MC3302 Supplied with data if requested. MC3302
quad comp. $120 p$; 710 diff comp. (TO99) 40p; ZN1034E precision timer E2.25:
LM711 Dual diff comp 65p; LM1303 dual stereo preamp 75p; MC1469R voltage reg
$£ 1.50$: UPC1025H audio $£ 3.50$; 575 C 2 £1.50: UPC1025H audio £3.50; 575C2
audio E2.88; TOA2640 audio E2.92; SN 75110 dual line driver 70p: MC8500
CRCC gen POA

eoge connectors

 way 90p
443 M Milbrook Road Southampton

SO1 DHX Tel:(0703) 772501

 Ah prices quoted include VAT. Add from echools, otc. (Minimum invoice despatched on day of recelpt. SAE with welcome. Wholesale list now available onquiries plase. MINIMUM ORDER for bona-fide tradera. Surplus com-ponents always wanted.

OSCILLOSCOPES

We have available from stock the following
SCOPEX models: $4 D 10 \mathrm{~A}-\mathrm{DC}-10 \mathrm{M} . \mathrm{Hz}$; 10 mV sensitivity: Stab Power supplies: Dual beam; 3\% accuracy: Excellent value at C214 $4 \mathrm{S6}$ - DC.6MHz; 10 mV sensitivity. Ideal portable scope. Solid state clrcuitry. All for E150 inc VAT and Carr

RELAYS

W847 Low profile PC mntg $10 \times 33 \times 20 \mathrm{~mm}$ w817 11 works well on 6 V DC. Contacts. 3 pole c / l rated 10A. $95 p$
W839 50 V ac $(24 \mathrm{~V} \mathrm{OC})$ coil. 11 pin plug in
type. 3 pole c/o 10 A contacis O niy 850 type. 3 pole c/o 10A contacts Only $85 p$
10A co contacts $£ 1.20 \quad 3$ sets W877675R $12-27$ V OPCO $23 \times 20 \times 10 \mathrm{~mm}$ sealed can $86 p$
W880 230 V ac DPCO 10 A contacts, enclosed case f1.30
W830
W830 200R 6-12V DPCO $23 \times 20 \times 10 \mathrm{~mm}$ sealed can 88p
and illustrated.

AMPLIFIERKIT £1.75

Mono gen. purpose amp with tone and
Vol/on-off controls. Utilizes sim. circuitry to

KITS! KITS!

Send S.A.E. for list of kits from
Amplifier to a Reaction Tester, etc.

NIXIE TUBES

ITT Type GNP7AH. Supplied with data 60p each
7 -seg display, wire ended tube NEC type $7 . \mathrm{seg}$ display, (as abovel Futaba type DG-
10010.3^{1} char. 70 p with data

N BANKS
lllustrated list of types from 30p in our
Bargain List No 6 -Send SAE.

BC182B OFFER

Special Offer for quantity users 1k . 035 + VAT; $5 k .032+$ VAT. Price negotiable on 10 k . Approx 70 k

DIODE SCOOP Ill

We have been fortunate to obtain a large quantity of untested, mostly unmarked glass silicon diodes. Testing a sample batch
reveated about 70% useable devices - signal diodes, high voltage rects and zeners may all be included. Thase are being offered at the incredibly low price of C $1.25 / 1000$ - or a bag of 2500 for $£ 2 \cdot 25$. Bag of 10.000 £8. Box of Disc Caramic Caps Disc Ceramic Caps $=$ big variety of
values and voltages from a few pl to values and voltages from a few pf
$2.2 \mathrm{uF}: 3 \mathrm{~V}$ to 3 kV . 200 for $\mathrm{E1} ; 1000 \mathrm{E4}$.

PC ETCHING KIT MK III

Now contains 200 sq. ins. Copper clad board. 11b. Ferric Chloride, DALO etch-resist pen,
abrasive cleaner, two ministure drill bits. abrasive cleaner, two ministure drill bits.

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

- SAVE ON T/ME-No delays in waiting for parts to come or shops to openl
- SAVE ON MONEY-Bulk buying means lowest prices-just compare with othersl
* have the right part-No guesswork or substitution necessary/
ALL PACKS CONTAIN FULL SPEC, BRAND NEW, MARKED DEVICES- SENT BY PRICES.
K001 50V ceramic plate capacitors. 5\%. 10
 E 3.60
K 002 Extended range, 22 pF to $0.1 \mu \mathrm{~F} .330$ values Ex.40
6003 Polyester capacitors. 10 each of these values: $0.01,0.015,0.022,0.033,0.047$
$0.068,0.1,0.15,0.22,0.33,0.47 \mu F, 110$ altogether for $£ 4.95$
K004 Mylar capacitors, $\min 100 \mathrm{~V}$ type. 10 each all values from 1000 pF to $10,000 \mathrm{pF}$ otal 130 for 83.75
. 160 V . Total 370 for $£ 12.30$
K 006 Tantalum bead capacitors. 10 each of the following: $0.1,0.15,0.22,0.33,0.47$ $\begin{array}{llllll}0 \cdot 68, & 1 & 2 \cdot 2 & 3 \cdot 3 & 4 \cdot 7,6 \cdot 8, \text { all } 35 \mathrm{~V}: & 10 / 25 \\ 15 / 16 & 22 / 16 & 33 / 10 & 47 / 6100 / 3 \text {. Total } 170\end{array}$ ants for £14-20 small physical size. 10 each of these popular values: $, 2 \cdot 2,4 \cdot 7,10,22,47,100 \mathrm{pF}$. Tota 70 for 83.50
ing 220,470 and 1000 abse also includ ing 220,470 and $1000 \mu \mathrm{~F}$. Torat 100 for
KO21 Miniature carbon film 5\% resistors. CR25 or similar. 10 of each value from 10 A O TM. E12 series. Yotal 610 resistors, E8.00 from in to $10 \mathrm{M} \mathrm{C8.30}$
K041 Zener diades, $400 \mathrm{~mW} 5 \%$ 8ZY8B, e1c 10 of each value from 2.7 V to 36 V . E24 series. Total 280 for £15.30.

TRANSFORMERS

All mains primary: $12-0-12 \mathrm{~V} 50 \mathrm{~mA} 85 \mathrm{p}$ ${ }^{85} \mathrm{p}$; $1 \frac{1}{2} \mathrm{~A}$ ¢2.40. $9-0-9 \mathrm{~V} \quad 75 \mathrm{~mA} 85 \mathrm{p}$; 1 A 30 V , iA Multitapped type 0 O-12-15-20-24

PAICES ARE CORRECT AT TIME OF PRESS
E. O. E. DELIVERY SUBJECT TO AVALLABILITY

SEMICONDUCTORS POTS \& IRONS

ZENER DIODES

400 mw
sulated
(Bay 88)
DO
Glass encap sulated range of voltages avall-
able. $1 \cdot 3 v, 2 \cdot 2 v, 2 \cdot 7 v, 3 \cdot 3 v, 3 \cdot 9 v$, 4.3v, 4.7v, 5.1v, 5. 6v, 6.2v, 6.8v, $1.5 \mathrm{v}, 8 \cdot 2 \mathrm{v}, 9.1 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}$,
$15 \mathrm{v}, 18 \mathrm{v}, 18 \mathrm{v}, 20 \mathrm{v}, 22 \mathrm{v}, 24 \mathrm{v}, 27 \mathrm{v}$, $30 \mathrm{v}, 33 \mathrm{v}$, 39v, No . $\mathbf{2 4} \mathrm{Bp}$ ea.
1w-1. 5 w P/ast/c and metal encap-
sutaled Range of
avaliable $1.3 v$ of
voltages avallable. $1 \cdot 3 v, 2 \cdot 2 v, 2 \cdot 7 v, 3 \cdot 3 v$,
$3 \cdot 9 v, 4.3 v, 4.7 v, 5 \cdot 9 v, 5 \cdot 6 v, 6 \cdot 2 v$,

10w Melal stud type solo case Range of voltages avallable, 1.3

\&iv, 100v. No. Z10 35p ea.

SILICON RECTIFIERS	
200 mA	
15920 50v	c0.06
IS921 100v	c0.07
IS922 150v	E0.08
15923 200v	80.09
15924 300	c0. 10
1 Amp	
IN4001 50v	¢0.04i
IN4002 100v	co. 05
in4003 200\%	c0.06
IN4004 400v	E0.07
in4005 600v	
IN4006 800 v	E0.09
IN4007 1000v	¢0. 10
1.5 Amp	
	${ }_{5}$
15020100 v	co. 10
IS021 200 V	c. 11
15023 400v	E0. 13
IS025 600v	c0. 14
IS027 800\%	c0. 16
iS029 1000v	c0. 20
is031 1200v	c0. 25
3 Amp	
IN5401 100v	c0.15
INS402200v	
IN5404 400\%	
INS406600v	c0. 21
IN5407800v	80.25 80.30
IN5408 1000v	c0. 30
10 Amp	
IS10/50 50 y	c0. 19
1S10/100 100	c0. 21
IS10/200 200	ce. 23
IS10/400 400v	E0. 35
IS10/600 600v	c0. 42
IS101800 8000	co. 51
IS10/1000 1000	c.0.60
IS10/1200 1200w	c0. 69
3 Amp	
IS30/50 50v	E0. 56
IS30100 100V	c0. 69
1530/200 200v	c0.93
IS301400 400v	E1. 25
15301600600v	E1. 76
IS30,800 800v	c1. 94
1530/1000 1000	c2. 31
IS30/1200 1280v	C2.88
60 Amp	
15715050 v	
1S70100 100v	c0. 84
15701200200 v	81.20
IS70/400 400v	E1. 75
IS701600 600v	c.2. 25
IS70/800 800v	c.2. 50
157010001000 v	E.3.00
BYX $38 / 300064300 \mathrm{~V}$	c0. 45
BY X38/600 6A 600V	${ }^{2} 0.60$
BYX38/300 Rev 6A 300v	E0.45
BYX38/600 Rev 6A 600v	¢0.60

POTENTIOMETERS

CAREON POTS (Linear Track)
Single gang with wire end terminations, $6 \mathrm{~mm} \times 50 \mathrm{~mm}$ plastlc shaft 10 mm bushes supplied wilh shake proof washer \& nut. Tolerance $\pm 20 \%$ of resistance.
1831 ik ohms $£ 0.26^{*} 1836$ 47kohms $£ 0.25^{\circ}$ $18322 \mathrm{~h} 2 \mathrm{hms} £ 0.26$ - 1837 100hohms $£ 0.26^{\circ}$ 18334 k 7 ohms $£ 0.20^{\circ}$. 1838220 hohms $50 \cdot 26^{*}$ 1834 10kohms $£ 0.26^{\circ} 1839$ 470kohms $£ 0.26^{*}$ 1835 22kohms $£ 0.26^{*} 18401$ Meg

CARBON POTS (Log Track) 1842 4h7ohms $£ 0.26^{\circ} 1846100 \mathrm{kohms} £ 0 \cdot 26^{\circ}$ 1843 10kohms £0.26* 1817 220kohms £0.26*

DUAL CARBON POTS (LIn Track) These high quallty dual gang pots are fitted whith wire end terminations and $6 \mathrm{~mm} \times$ 50 mm plastic shaft 10 mm , bush ind suptolerance $+20 \%$ but matched to within 2 db of each other. VC3
$18514 \mathrm{k7} \quad\left[0.96^{\circ} \quad 1855100 \mathrm{kohms} \quad \mathrm{c} 0.86^{\circ}\right.$

DUAL CARBON POTS (Log Law)

 18604 Chohms $\mathrm{Eb} .86^{\circ} \quad 1864$ 100kohms $\$ 0.86^{\circ}$ 1861 10kohms 50.86°. $1865220 \mathrm{kchms} 50.85^{\circ}$

SINGLE GANG SWITCHED (LIN Law) These potentiometers are fitted with incorporated within the rotary action of the pot. Specification of pot is as VC1.
Switch rating 1.5 mps at 250 V .
1870467 thms $60.655^{\circ}-1974100$ kahms $50-65^{\circ}$

SWITCHED POT (Log Track)
Specificatlon as VC2 but rack having (lo0) 1879 4k7ohms \quad [0.65. 1833100 kghms [0.65*

DUAL GANG LOG-ANTI-LOG POT
1888 rrack specification as dual gang pots VC3, but tracks mounted to log-anti-log action 100 kohms E0.75*
A miniature 16 mm type replacement volume control incorporating single pole on-off switch. Reslstance value
Tolerance $t 20 \% ~ / 8 w a t t ~ r a t i n g ~$ 1889
1889 E0.27* VC8 MINIATURE ROTARY VOL CONTROL
$5 k$ hms log law with on $/ 0$ fl swlich. 20 mm grooved spindle. Tag connectlons 17 mm for replacement $\begin{array}{ll}\text { for replacement. } \\ 1890 & \text { E0.54 }\end{array}$
WIRE WOUND POTS
A range of wire wound single gang pots with 10 mm bush and supplled with shakeproof washer and nut.
1891 100hms $£ 0.80 \quad 1895$ 2200hms $£ 0.80$

PRE-SET POTS
 HURIZDNTAL MOUNTINO

Miniature type for transistor circults. The wiper or ine driveset is provided with a slot the preset wlll fit printed wiring boards with a pitch of 2.54 mm . All tracks are llnear law. $\begin{array}{lllll}1801 & 100 \text { ohms } & \mathrm{f0.09*} & 1808 & 22 \text { kohms } \\ 1802 & \mathbf{~} 220.09^{*}\end{array}$
 18041 kohms $\quad \mathbf{~} 0.09^{\circ}, 1811220 \mathrm{kohms} \mathrm{f0.09}^{\circ}$

 1807 tokohms 18154 M 7 ohms $£ 0.09^{\circ}$

PRE-SET POTS

VERTICAL MOUNTINC
Minlature type for transistor circults. Wloer adjustment is made by a screw board. All tracks are llnear law. VC7
18161 1000hms \quad C0.09* 182322 kohms $\quad \mathbf{~} 0.09^{\circ}$ $1817220 \mathrm{ohms} 5 \mathrm{f0.09}{ }^{\circ}$. $182447 \mathrm{kohms} 50.09^{\circ}$

ANTEX IRONS

| O/No. 1943. 15 watt high quallty soldering | O/No. 1931. Highly popular $\times 2525$ watt |
| :--- | :--- | :--- |
| Iron totally enclosed element in a ceramic | quality soldering fron ceramic shafts to | Iron tofally enclosed element in a ceramic shaft fitted with $3 / 32^{\prime \prime}$ bit. $£ 3-80$ O/No. 1947. Replacement element for 1943

 iron. 1944. Iron coated bit $3 / 32^{\prime \prime}$ for 1943 O/No. 1945. Iron coated bit $1 / 8^{\prime \prime}$ for 1943

Iron. $80-46$ O/No. 1946. Iron coated blt $3 / 16^{\prime \prime}$ for 1943 O/No. 1948. Generak purpose 18 watt Iron flted with iron coated bit. \quad E3.60 | O/No. 1952. Replacement element for 1948 |
| :--- |
| Iron. |
| 1.90 | O/No. 1949. Iron coated blt $3 / 32^{\prime \prime}$ for 9940 Iron.

$£ 0.46$ O/No. 1950. Iron coated blt $1 / 8^{\prime \prime}$ for 1948 O/No. 1951. Iron coated bit $3 / 46^{\prime \prime}$ for 4948

0800 0800080 80080800
 0080 0008000 00808080
 Ulaw yuul UAh budus will the new Blon the board, rub over with a soft penell The transler will adhere to the board. Then complete the circult with your BI-PAK

 provide near perfect Insulatlon break-down voltage of 1500 volts $A C$ and a leakape current of only $3-5 \mathrm{uA}$ and another shaft ofstainless steel to ensure strength. $£ 3.60$ stainless steel to ensure strength. $\begin{aligned} & \mathbf{8 3 . 6 0} \\ & \text { O/No. 1935. Replacement element for } 1931\end{aligned}$ O/No. 1932. Iron coated blt $1 / 8^{\prime \prime}$ for 1931 iron.
O/No. 1933. Iron coated blt $3 / 16^{\prime \prime}$ for 1931

for 19.50 | O/No. 1933. Iron |
| :--- |
| Iron. |
| $\begin{array}{l}\text { O/NO.50 }\end{array}$ | O/No. 1934. Iron coated bli $3 / 32^{\prime \prime}$ for 1931

$£ 0.50$
O/No. 1953. SK1 soldering kit-this hit conO/No. 1953 . SK1 soldering kit-this hit con$3 / 16^{\prime \prime}$ bit plus two spare blts, a reel of solder, heat-sink and a booklet 'how to
solder'. In presentatlon display box. $£ 5.65$ O/No. 1939. ST3 soldering Iron stand. Siand made from hloh orade bakelite materlal chromium plated strong steel spring, suitable for all models, includes accommodation for slix spare bits and wo
sponges which serve to keep the soldering sponges when
iron bits clean
£1.50

PRINTED CIRCUIT BOARD TRANSFERS

BRIDGE RECTIFIERS	SILICON 1 amp Type $50 V$ RMS 100V RMS 400 V RMS	BR1/50 BR1/100 BR1/200 BR1/400	$\begin{aligned} & \text { Price } \\ & £ 0.20 \\ & £ 0.22 \\ & £ 0.25 \\ & £ 0.35 \end{aligned}$
	SILICON 2 amp SOV RMS 100V RMS 400 V RMS 1000 V RMS	$\begin{aligned} & \text { BR2150 } \\ & \text { BR21100 } \\ & \text { BR21200 } \\ & \text { BR2400 } \\ & \text { BR2/1000 } \end{aligned}$	

OPTOELECTRONICS

NEW INCREASED RANGE - ALL 1 ST QUALITY LED S (diffused)
O/no. Type
1501 AR
1502 ATIL209) 1502 M1L2322TILL2111
1503 MLI 3331 (OPL212A 1503 M1 3331 10PL212A)
1504 ARL4850(FLV117)
150 1505 MIL5251(TIL222)
$1506 \mathrm{ML5351}(\mathrm{MV5} 553)$
supep •HI Brite Type
1521 MI32
1522 MIL52

$.3 \mathrm{~mm}(.125)$ RED

0.10
0.10

LEO CLIPS
$\begin{array}{ll}1508 / 125 & \text { pack of } 5 \\ 1508 / 2 & 125 \text { clips } \\ \text { pack of } 5 & 2 \text { clips } \\ & \text { ALL } 8 \% \text { V.A.T. }\end{array}$
$\begin{array}{ll}1508 / 125 \text { pack of } 5 & 125 \text { clips } \\ 1508 / 2 & \text { pack of } 5 \\ 2 \text { clips } \\ \text { ALL } 08 \% \text { V.A.T. }\end{array}$
60.55
60.35
60.15
60.18

DISPLAYS

$\begin{array}{ll}\text { DL303 } 7 \text { segment O.P. Ieft (} 13^{\circ} \text { height) Common Anode } \\ \text { RED Single Digit } & \text { O/NO:1523 } \\ \text { RO.70 }\end{array}$ RED Single Digit
DL707 7 segment $0 . P$. left ($.0 .3^{\circ}$ helght) RED Single Digit \quad DL527 7 segment D.P. left (.50" height) DL527 7 segment D.P. left ($.50^{\prime \prime}$ height) DL727 7 segment D.P. right ($.510^{* \prime}$ height)
RED Two-Digit Light Pipe
 DL747 7 segment D.P. Lef (.630" height) Common Anode
RED Single-Digit Light Pipe

OPTO-ISOLATORS

Isolation Breakdown - Voltage 1500 - continuous fwd current
CIL74 Single-Channel 6 pin DIP standard type - optically coupled pair with infra-red LEO Emitter and NPN
Silicon Photo Transistor.
O/NO: 1497 EO.5D CILD74 Multi-Channel 8 pin DIP Two Isolated Channels. CILO74 Multi-Channel 16 pin DIP Four Isolated Channels. ALL (a) 8\% V.A.T.

2nd GRADE LED PACK
A pack of 10 standard slzes and colours which fail to perform to their very rlgld speclfication, but whlch are ideal for amateure who do not requlre the full spec.
O/NO $107 £ 1.50$

CABLES
OESCRIPTION
Microphone Cable
Twin Microphone
Twin Stereo Screened Cable
Multicore Standard 4-Core Screened
4-Core Individually screened
Heavy Microphone Cable
Light 3-Core mains
Twin Oval Mains
Speaker Cable
Low Loss Co-axial Cable
15 Way Multi Coloured Ribbon Cable

O/NO	PRICE/
3127	¢0.20
3128	c0.15
3129	¢0.30
3130	c0.22
3131	¢0.18
3132	c0.10
3133	¢0.09
3134	¢0.07
3135	¢0.22
3136	£0.40

Kontite remote control switch
 -Simple to install even simpler to use

The Receiver: contains input and output cables which are connected to the appliance to be controlled

The Transmitter:

is light and cordles and housing the battery. Simply, point the transmitte at the receiver to turn on or off

Now available in the U.K. the 'Kontite' Remote Control unit switches electrical appliances and equipment on or off safely from distances of up to 35 feet.

Televisions, radios, hi-fi equipment, lighting, model trains etc. electric fans, electric fires (up to 2 kw) and many other appliances are within its scope, providing that they have a power supply of $240 / 250 \mathrm{AC}$ single phase. $50 / 60 \mathrm{~Hz}$ and a maximum 10 amp rating and also that the relevant safety regulations are applied

The unit is ideal for use in the home, office, factory and hospital. Particularly useful as an aid to the disabled and invalid - wherever an electrical appliance is difficult to reach in the normal manner.

The Kontite Remote Control Switch available now through Electrical Component Retailers.

If you have difficulty in locating a stockist please contact:

Kay \& Co (Engineers) Ltd.

Acresfield House, 15 Exchange Street, Bolton. Lancashire. Telephone: Bolton 21041 Telex: 63186

A $\mathbb{B C b}$ ©BRING YOU THE NEW CHINAGLIA

The best instrument for the workshop, school, toolbox, T.V. shop and anywhere accurate Information is needed quickly and simply.

T OFFERS:

- Single-knob range selection
* 110° Full-view mirror scale and fine line pointer

Clear unambiguous scales

* A well-damped cylindrical magnet movement with resilient bearings

31 ranges providing coverage from 150 mV to 1.5 kV d.c.; 7.5 V to 1.5 kV a.c $50 \mu \mathrm{~A}$ to 2.5 A d.c.; 25 mA to 12.5 A a.c.; $10 \mathrm{k} \Omega$ and $10 \mathrm{M} \Omega$ resistance and six signal level ranges.

- Accuracy $\pm 2.5 \%$ d.c. $\pm 3 \%$ a.c. and 2% resistance.

For detalls of this and other exciting Alcon instruments please write or phone:-
A 14 (c) (0) $N_{\text {instruments Ltd. }}$
19 MULBERRY WALK. LONDON SW3 6DZ TEL: 01-352 1897

Head office and Mall Order to Dept. P.E.
A. Marshall (London) Lid.

Kingsgato House, Kingsgate Place, London NWB 4TA Tel: 01-624-0805 Telex 21492

Retail Sales: London: 40 Cricklewood Broadway, NW2 3ET. Tel: 01-452 0161/2 ALSO 325 Edgware Road, W2. Tel: 01-723 4242
Glasgow: 85 West Regent Street, G2 2QD. Tel:041-332 4133 AND Bristol: 108A Stokes Croft. Bristol, BS 16 2LX. Tel: 0272654201.

ELF II
 \section*{FEATURING THE AMAZING RCA COSMAC 1802 MICROPROCESSOR}

YOU can own an ELF II personal computer for jus ع99.95.
STOP reading about computers and get your "hands on" an ELF II and Tom Pittman's Short Course. ELF I demonstrates all the 91 commands which an RCA 1802 can execute, and the Short Course speedlly instructs you how to use them.
ELF II's VIDEO OUTPUT makes it unique among computers selling at such a modest price. Attached to your Video/Monitor ELF II allows you to display alphanumeric readout, graphics or video games

ELFII EXPLODES INTO A GIANT
ELF II's 5-Card expansion buses allows you to expand as your need for POWER grows. Plug in the ASC II KONIO ASC I. RAM onboard or more. Build your own circuits with a KLUGE prototype board.
Expanded ELF II is perfect for engineers, business industry, scientific and educational purposes

SPECIFICATIONS

The $\mathbf{f 9 9 . 9 5}$ ELF II computer leatures an RCA COSMAC COS/MOS 18028 -bit microprocessor addressable to 64 K bytes with OMA, interrupt. 16 reglisters, ALU, 256 tyte RAM expandable to 64 K bytes, professional hex keyboard fully decoded so there's no need to waste memory with keyboard scanning circuits, built-in power regulator, 5 slot plug-in expansion bus (less connectars), stable erystal clock for timing purposes and a double-sided, plated through pc board plus RCA 1861 video IC to display any segment of memory on a video monitor or TV screen along with all the logic and support circuitry you need to learn every one of the RCA 1802's capabilities

$凸 R$ RID D

138 KINGSLAND ROAD, LONDON E2 8BY. Tel: 01-739 1582.

PLEASE SEND ME \square TICK. COMPLETE AND POST TO ABOVE ADDRESS

\square RCA COSMAC ELF $\| \mathrm{Kit}$, complete Incl Vat RCA COSMAC ELF II Kit, complete Inci Vat
with instruction and operating manual $£ 107.95$ \square ELF II WIred \& Tested complete with power supply, RCA 1802 Users manual and T. Pitiman's "Short Course"
Power Supoly for ELF II
\square GIANT BOARD KIt for cassette IIO. TTY RS232-C $1 / 0,8$ bit P $/ / 0$, decoders for 14 separate $1 / 0$ instructions and systems monitor
$£ 39.96$ GIANT BOARD Wired \& Tested. 4K RAM BOARD Kit addressable to any page to 64 K
4KPAM BOARD Wired \& Tested KLUGE Prototype board accepts up to 36 IC's..
$\square 86$ pin Gold Plated Connectors (1 required for each add on cards) 128 ASC It upper/Iower case. 96 printable characters. Onboard regulator parity logic selection and choice of 4 handshaking signals to mate with most computers.
\square ASC II Keyboard Wired \& Tested DE-LUXE METAL \& PERSPEX CABINET for ELFII
\square DE-LUXE METAL CABINET for ASC II KEYBOARD
£19.83
\square EXPANDED POWER SUPPLY required when using AK RAM when using 4K RAM..............
TINY BASIC cassette Tape ELF-BUG monitor cassette Tape. ELF-BUG monitor cassette Tape.............. \& Comp" Programme Manual. \qquad
Tom Pittman's '"Short course on Tiny Basic asic
1802 Users manual
£19.78 $£ 14.68$ ع14.68
ع14.68

ALL PRICES QUOTED INCLUDE VAT ADD £2.00畣 \& for orders over $£ 15.00$ lenclose Cheque/PONo:
Barclaycard No:
or phone. Access Card No: .or phone.

Name.

Address.

TINY BASIC cassette tape makes programming the ELF II even easier. Use with your ELF II; Commands include, SAVE: LOAD: + - x_{1} (): LET: IF/THEN: PRINT: GOTO: GOSUB: RETURN: END: REM: CLEAR: LIST: RUN: PLOT: PEECK AND POKE: 26 varlables (A-Z) comes fully documented and includes alphanumeric character generator for direct display on your TV.
ELF-BUG MONITOR cassette lets you debug programmes at lightning speed. It displays contents of all registers on your TV at any point in your programme. Also displays 24 bytes with full addresses, blinking cursor and auto-scrolling. A must for the serious programmer.

\square

DEALERS' INOUIRIES WELCOME

SUPERIOR WATCHES

A well known consumer magazine has published a report on watches which supports our opinion tha with CASIO offering unbeatable value for money
\star THIS YEAR'S STAR BUY
 $46 \mathrm{CS}-27 \mathrm{~B}$
$46 \mathrm{CS}-29 \mathrm{~B}$
(29B slightly different case style
Almost certainly the slimmest and most sophisticated ALARM CHRONOGRAPHS avallable today.

- LC Display of hours, minutes, econds, day; And with day.
Oate, month and year calendar or 24 hour clock display
24 hour alarm seting.
- Optlonai hourly chimes.

Chrono measures from
tos second to 6 hours.
Net, lap 1 st \& 2 nd plac
7.8 mm Stainless Steel case.

Real mineral glass face.
Water resistant to 100 fee
Less than ± 10 seconds per month.
S/S bracelet, removable links. Backilght.

£39.95
 CASIO ALARM WATCHES

LC Display of hours, minutes, seconds (or date), day, am/pm; And with day, month and year, 24 hour alarm setting. Nightlight. 15 months battery life. Resistant to 100 feet. Matching fully adjustable bracelets.
CASIO CHRONOGRAPHS 52OS-14B
Left, 8 mm
£22.95
$45 \mathrm{CS}-22 \mathrm{~B}$
Right
34.95

Net, lap and 1st and 2nd place timing to second Siainless Sieel cases with Mineral Glass faces Water Resistant to 66 and 100 feet. Both have nightlights. 52QS Displays hours, minutes, seconds, am/pm; And with day, date and month. Chrono times to 1 hr , with rollover 45 CS Displays hours, minutes, seconds, day; And with day, date, month \& year. Selectable 12 hour (with am/pm) or 24 hour \& year display. Dual Time facility. Fully adjustable S/S clock display. Dual Time fac
bracelets \& removable links

NE
THE AMAZING MELODY 80
Musical calculating diary watch

ADVANCE SPECIFICATION. Two separate Alarm Tunes. Calculator with keys 1-8 playing individual notes - a mini synthesizert Complete calendar Watch, Stopwatch, - measuring nel and lap times to $\frac{1}{10}$ second - Alarm TImer and Calculator with \%., full memory, date calculations. CASIO RRP E31.95.

£25.95

Other CASIO Calculating Diary Alarm Watches AQ-2000 £24.95, MQ-10 £35.95; MQ-11 £29.95.
CASIO LCD sclentific calculators
FX-48 £14.95; FX-80 £16.95; FX-2500 £19.95; FX 3100 £23.95; FX-58 (alarm clock, stopwatch) £24.95

Most CASIO products avaliable from stock. Send 25p for illustrated brochures of this superb range of watches or calculators (both on request).

Prices include VAT, P \& P. Send cheque, PO or phone your ACCESS or BARCLAYCARD number

[^1]
AITKEN BROS.

35, High Bridge, Newcastle upon Tyne Tel: 063226729

TMK 500 MULTIMETER 30,000 O.p.v. AC volts $2 \cdot 5,10,25,100,250,500,1000$. DC volts. $0.25,1,2.5,10,25,100,250,1000$. DC current $50 \mu \mathrm{a}, \mathrm{MA}, 50 \mathrm{MA}, 12 \mathrm{amp}$. Resistance $0-6 \mathrm{~K}$, $60 \mathrm{~K}, 6 \mathrm{MEG}, 60 \mathrm{MEG}$. Decibels. -20 to +56 db . Buzzer continuity test size, $160 \times 110 \times 55 \mathrm{MM}$ PRICE 52 leads included.

SINCLAIR PDM35

DIGITAL POCKET MULTIMETER
DC volts (4 ranges) 1 MV to 1000 V AC volts 1 V to 500 V DC current (6 ranges) 1 nA to 200MA Resistance (5 ranges) 1Ω to 20 MEGS. PRICE £32.95. AC Adaptor $£ 3.75$ de luxe padded carrying case £3.50 MN 1604 Battery. 99 p.

SINCLAIR DM235
BENCH-PORTABLE DIGITAL MULTIMETER.
DC volts (4 ranges) 1 MV to 1000 V AC volts $(4$ ranges) 1 MV to $750 \mathrm{~V} \mathrm{AC} \& \mathrm{DC}$ current 1μ to 1000 MA Resistance (5 ranges) 1Ω to $20 \mathrm{MEG} \Omega$. PRICE £54.75 Carrying case £9.50. AC adaptor/charger. £3.98 Rechargeable Battery Pack. c9.14.

PANEL METERS
DIMS $60 \mathrm{MM} \times 45 \mathrm{MM} .50 \mu \mathrm{amp}, 100 \mu \mathrm{amp} 1 \mathrm{MA}$ $5 \mathrm{MA} .10 \mathrm{MA}, 50 \mathrm{MA} .100 \mathrm{MA}, 500 \mathrm{MA}, 1 \mathrm{amp} 2$ amp, 25 V dc, 30 V dc. $50 \mathrm{v} \mathrm{AC}, 300 \mathrm{~V}$ ac, "S". "VU $50-0-50 \mu \mathrm{a}, 100-0-100 \mu \mathrm{a}, 500-0-500 \mu \mathrm{a}$. PRICE £4.95

DESOLDERING TOOL £5.95 SUCTION PUMP

PHONE OR SEND YOUR ACCESS OR BARCLAYCARD NUMBER FOR SALES OVER 11 ALL PRICES INCLUDE POSTAGE AND VAT. CATALOGUE 50D DEDDUCTIBLE ON FIRST ORDER OF £5.00 OR MORE.

PNP VERSION OF $2 N 3055$ BDX 94 @ 75p each.

100 MINIATURE DIODES CV 9637 with preformed leads @ 50 p.
POLYSTYRENE CAPACITORS sufflex type $12,15,20,25,30,50,56,100,120$,
hire pl. All a 20 doz
WIRE ENDED CRYSTALS $28 \mathrm{KHz}, 28.5 \mathrm{KHz}, 31.5 \mathrm{KHz}$. All at 50 p each. TRANSISTORS BC 183, BC 548 , BC 549 . All $10 p$. 6 for 50 p .
MCMURDO 8 PIN PLUG G 20p, 8 PIN SOCKET @ 20p, COVER @ $15 p$.
3 GANG VARIABLE CAPACITOR $25+25+25$ pf $975 p$.
10 Amp S.C.R.'s 100 PIV @ 25p, 400 PIV @ $50 \mathrm{p}, 800$ PIV @ 60 p
400 mW ZENERS unmarked Good $3.6 \mathrm{v}, 5.8 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 18 \mathrm{v}, 24 \mathrm{v}, 30 \mathrm{v}$
$33 v, 36$ volt. All at 10 for $40 p$.
GLASS WIRE ENDED MERCURY SWITCHES (G) 25p.
MC 3340 ATTENUATOR I.C. with data @ 50D.
MINIATURE ROTARY SWITCHES 3 Pole 3 way (4) 40p. 2 Pole 4 way © 20p. 1 Pole 10 way 2 Bank @ 40 p .
10 WATT ZENERS $18 \mathrm{v}, 33 \mathrm{v}, 57 \mathrm{v}, 100$ volt. All 30p each
DIE CAST ALLOY BOXES $6^{\prime \prime} \times$ in $^{\prime \prime} \times 2^{\prime \prime} @ \subseteq 1.15$
TUBULAR TANTALUM CAPACITORS 2.2 uf 20 v .w. 68 uf 15 v .w., 100 ut 20 v .w., 150 uf 20v.w. All at 5p each.
10 MULT I-TURN TRIM-POTS Assorted for 60 p .

4500 uf $25 \mathrm{v} . w ., 6400 \mathrm{f} 25 \mathrm{v}$.w. © 25 p .
20 22p. 22N 6028 © 25p. 2N 6029 @25p. MEU 21 @ 22p. MU 4894 @ 22p. 4JDSE29 G 22p. TIS 43 Trpe @22p. 30 ASSORTED 10XAJ CRYSTALS @ £1.10. 20 FT 243 CRYSTALS assorted (B) $£ 1,50.20 \mathrm{FT} 241$ A CRYSTALS assorted @ $£ 1.10$.

MULLARD TAA 320 M.O.S.T. PRE-AMP LIFIERS \&.C. with circuits @ 35p. PLASTIC BC 107, BC 108, BC 177 TRANSISTORS 8p. 10 for 60 p . MULLARD STAIPLINE 800 MHI NPN BF 362 (3, 25p.
200 ASSORTED + . watt RESISTORS for 75 p.
502 WATT ASSORTED ZENERS untested 570.
600 MHz 8 DIGIT FREQUENCY COUNTER @ 115
MAINS TRANSFORMERS 240 volt input. Type 1.24 volt tapped at 14 volt 1 amp (e) $£ 1.30$ (P\&P 25 p). Type $2.22-0-22$ volt 500 mA © $£ 1.60$ ($\mathrm{P} \& \mathrm{P}$ P 25 p). Type 3. 45 volt 6 amp es 4.50 (P\&P 95p). Type 4. 20 volt 1 amp twice 10 volt 1 amp iwice @ $£ 4.50$ (P\&P $95 p$). Type 5.45 volt 2 amp 45 voit 500 mA @ $£ 3.50$ ($\mathrm{P} \&_{1} \mathrm{P} 85 \mathrm{p}$), Type 6.16 volt 2 amp @ $£ 1.60$ ($\mathrm{P} \& \mathrm{P}$ 25p), Type 7.24 volt 1.75 amp @ £1.60 (P\&P 25p), Type 8. 30 volt 1 amp @ £1.60 (P \& P 25p), Type 9, 13-0-13 volt 1 amp © E1.60 (P\& P 25p), Type 10.22 volt 500 mA \& 88p (P\&P 20p), Type 11 12 volt 100 mA @ $88 p$ (P\& P 20p). Type 12.22 volt $1 \mathrm{amp}, 7.5$ volt $500 \mathrm{~mA}, 6 \mathrm{v}$ volt 1 amp © 1.60 (P\&P 25) Trpe $15.32-0-32$ volt 500 mA (a) 60 (P \& 25 p)

Please add 20 p for post and packing, on U.K. orders under $£ 2$, unless stated otherwise. Overseas post at cost.

J. BIRKETT RADIO COMPONENT SUPPLIES

25 The Strait, Lincoln LN2 1JF Tel. 20767

Celestion

Retail \& Trade from:

ADAM HALL

Whatever Your Cabinet Fitting Requirements

ADAM HALL SUPPLIES

Can Pull It Out Of The Bag
Celestions new Power Range Loudspeakers
from 10^{n} up to $18^{\prime \prime}$ Including Powercells \& Horns plus our own full range of cabinet fittings which include cabinet covering cloths, fret cloths, trims, locks \& catches, hinges, handles, corners, castors, feet \& lots of other specialised hardware, most of it impossible to get anywhere else.

Send 30p in stamps for both catalogues to: ADAM HALL PE SUPPLIES LTD. Unit 3, Carlton Cdurt, Granger Rd, Southend on Sea, Essex

RS
 I

VALVE MAIL ORDER CO.
Climax House
Fallsbrook Road, London SW16 6ED
SPECIAL EXPRESS MAIL ORDER SERVICE

	Ep		£p		Cp		ε_{p}		£p
AA1 19	0.11	BCY 70	0.18	MPSU01	0.41	1N914	0.06	7405	017
AAY30	0.29		0.18	MPSU06	0.52	1 N916	0.08	7406	0.43
AAY32	0-45	BCY72	0.14	MPSU56	0.55	1 N 4001	0.07	7407	0.43
AAZ 13	0.19	BCZ11	1.62	NE555	0.49	1 N4002	0.07	7408	0.22
AAZ 15	0.37	BD115	0.49	NKT401	2.16	1 N 4003	0.08	7409	0.22
AAZ17	0.29	BD121	1.30	NKT403	1.87	1 N4004	0.08	7410	0.17
AC107	0.65	BD123	1.30	NKT404	1.87	1 N 4005	0.09	7412	028
AC125	022	BD124	1.40	OA5	1.03	1 N4006	0.09	7413	0.35
AC126	0.22	8D131	0.38	OA7	0.59	1N4007	0.10	7416	0.35
AC127	0.22	BD132	0.41	OA10	0.65	1N4009	0.07	7417	0.35
AC128	0.22	BD135	0.37	0447	0.15	1N4 148	0.07	7420	0.18
AC14	0.27	8D136	0.37	OA70	0.32	1N5400	0.14	7422	0.22
AC141K	0.38	BD137	0.38	OA79	0.32	1N5401	0.14	7423	0.35
AC142	0.22	ED138	0.43	OA81	0.32	1544	0.05	7425	0.32
AC142K	0.32	BD139	0.46	OA85	0.32	15920	0.08	7427	0.32
AC176	0.22	BD140	0.48	OA90	0.09	15921	0.08	7428	0.46
AC187	0.22	BD144	2.16	OA91	009	$2 \mathrm{G301}$	1.08	7430	0.18
AC188	0.22	BD181	1.19	OA95	0.09	2 G 302	1.08	7432	0.32
ACY17	0.92	BD182	1.27	OA200	0.10	2 G 306	1.19	7433	0.39
ACY18	0.86	BD237	0.43	OA202	0.10	2 N 404	1.08	7437	0.35
ACY19	0.81	BD238	0.59	OA2 11	1.08	2N698	0.27	7438	0.35
ACY20	0.78	BDX10	0.98	OAZ200	1.08	2N697	0.27	7440	0.19
ACY21	0.81	BDX32	2.16	OAZ201	1.08	2N698	0.32	7441 AN	092
ACY39	1.62	BDY20	1.35	OAZ206	1.08	2 N705	1.30	7442	0.78
AD149	0.76	BDY60	1.62	OAZ207	1.08	2N706	0.16	7447 AN	0.97
AD161	0.49	BF115	0.27	OC16	2.16	2N708	0.22	7450	0.19
AD162	049	BF152	0.19	OC20	2.70	2N930	0.22	7451	019
AF106	049	'BF153	0.22	OC22	2.70	2N1131	0. 28	7453	0.19
AF114	081	BF154	0.18	0 OC 23	2.97	2N1132	028	7454	0.19
AF 115	0.81	BF159	0.25	OC24	3.24	2 N 1302	0.38	7460	0.19
AF116	0.81	BF160	0.17	OC25	0.97	2N1303	0.38	7470	0.38
AF117	0.81	BF167	0.22	OC26	0.97	2N1304	0.49	7472	0.36
AFI39	0.43	BF173	022	OC28	2.16	2N1305	049	7473	0.39
AF186	1.30	BF177	0.26	OC29	2.16	2 N 1306	0.54	7474	0.43
AF239	$0-49$	BF178	0.26	OC35	1.62	2 N1307	0.54	7475	0.58
AF211	2.97	BF179	0.27	OC36	1.52	2N1308	0.59	7476	0.43

 ADAMIN miniature SOLDERING IRONS $£ 3.90$ by LITESOLD (INC P \& P)

They are ideal for fine electronics work of all kinds and their high performance and range of bits gives them great flexibility

Fully enclosed heating elements - non-seize bits
Unbreakable nylon handle - Detachable hook Fully insulated to withstand 1000 V AC
Specification:
Wattage:
Temperatur

- Weight:

12 W.
360 C. Bit size: $\frac{1}{2}$ oz (14.9 g) less flex.

Full range of 14 bits available - details of these and other soldering products sent with order.
Future Electranics

1 ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N22 4SJ (MAIL ORDER DEPT.)		
FLIP Push Bumton Heads or Tails. Complete kit and fult instructions supplied. A pocket game. Easy to build and great to play. Kit price E5. 25 + 42p VAT. Post free.		3 KILOWATT PSYCHEDELIC LIGHT CONTROL UNIT 1000W lighting per channel, max. A 3 chennel sound to Ilght unit housed in a robust metal case, with a sensitivity control for each channel le. Bass, middle and treble. Full Instructions make this unit easy to connect to your present amplifier. S.A.E. for spec. sheet. Still only $\mathbf{£ 2 0 . 0 0 + 1 . 6 0 ~ V A T}$.
PANEL METERS. Dims:- $60 \times 47 \times 33 \mathrm{~mm}$. Require $\mathbf{3 8} \mathrm{mm}$ die. cut out		STEREO CONDENSER MICROPHONE SPECIAL STEREO 600 ohms Sensitivity deviation within 3DB between right and left microphone. In carrying case. Fitted TWO 3.5 mm JACK PLUGS. £ $13.00+1.62$ VAT. CR. 100 MONO AMPLIFIER MODULE Output power:- 15 watt Circuit:- I.C. with protection Frequency response:- $50-25 \mathrm{~K} \mathrm{HZ}$
BARGAIN LOUDSPEAKER Gooumans $5^{\circ} 8$ ohm long throw heavy duty USPKR. Mounting plate is integral with L/S chassis and has fixing holes with centres spaced at $5 t^{*}$ (diagonally) Only $55.00+60$ p VAT.		
		PIEZO ELECTRIC HORN UNITS High Quality. High Power Tweeter. No Xover
2 WAY 8 OHM HEAVY DUTY XOVER. A 2 way 8 ohm WD Xover suitable for U/S systems up to 100 W . Input via screw terminals. Fitted with a 3 position "HF LEVEL" switch which selects either Flat. - 3d8 or -60B. Buy now while stocks last1 Only £3.00 + 24 p VAT.		reqd. Freq. Response $3 \cdot 8 \mathrm{kHz}-28 \mathrm{kHz}$. Spec. sheet sent on receipt of S.A.E. Our Price: $\mathbf{E 5 . 5 0 + 4 4 p}$ VAT.
		BARGAIN TRANSFORMER 240 V Primary $12-0-12 \mathrm{~V} 500 \mathrm{~mA}$ sec. Approx. size: $60 \times 40 \times 50 \mathrm{~mm}$. Flxing centres: 75 mm . Price: $11.50+12 \mathrm{p}$ VAT.
'P\&P' orders up to £5. Add 30p. Orders £5-£10. Add 50p. All orders over £10 post freel Please add V.A.T. as shown. BARCLAYCARD VISA S.A.E. with all enquiries please.		
Personal callers welcome at: 21 GREEN LANES, PALMERS GREEN, N. 13. also 13 SOUTH MALL, EDMONTON GREEN, EDMONTON		

Features include:

mperature: $\frac{1}{16}$ " supplied.

CRESCENT RADIO LTD. 1 ST. MICHAELS TERRACE,

THE BIG GUNS!

L^{s}
AST month in the leader we looked at - one aspect of the manufacturers and industrial distributors involvement in component supply. Although many companies are not interested in supplying one-off components on a mail order retail basis they are now becoming more interested in encouraging hobbyist use of their products and in making the hobbyist aware of their company name.
The fact that a good percentage of our readers are employed in industry, does, of course, not escape them and they also realise that the spending power of the hobbyists as a collective unit is considerable. We are gradually finding more companies that are willing to spend some time and effort wooing the hobbyist.

This issue carries the second part of our Microprocessor Evaluation System, it will have been noted by many readers that this system is based on a General Instruments device and the article is written by one of their engineers. G.I. actively encourage their employees to develop ideas for publication and it is likely that more projects will come from this stable. We are also in contact with Ferranti, Mul-
lard and Texas and expect these contacts to also bear fruit.

It is true to say that this is not something new and we have had similar tie-ups in the past. What is interesting is that at the present time, more large organisations are becoming aware of the potential in this market, and, because of this, we should all benefit. Obviously the knowledge and industrial backup that such companies provide can lead to the best possible projects, often developed by the very engineers involved in the design of the i.c.s. employed. We can thus offer readers projects developed with the aid of test gear and facilities that are out of reach of a small company, let alone most hobbyists.

This factor is probably not significant when related to a sound to light system or remote control but when a high quality amplifier is to be described, immense benefit in the performance of a project constructed at home can result. We believe that this involvement by such companies can only do good to our hobby, however, we will not overlook the fact that it is often possible to improve on commercial equipment.

COMPUTER

If you read the review of Superboard II in this issue, that long awaited product of Ohio Scientific Industries, you will realise that it is possible to improve on the design and, even for its extremely competitive price, the Superboard, although very versatile, is not the best possible product. It follows that although a great deal of time and company effort has been expended in the design of this product, the final result could still be improved on; fantastic though that may sound when related to such an excellent computer for less than $£ 300$.

As we have noted at the end of the review, improvements are being incorporated in a design based on Superboard and we expect a full series to be published in P.E., starting in the August issue, describing what we honestly believe will be a computer to outstrip all others in the price range - kit or complete.

EAR PLUGS?

It seems that the bit of trumpet blowing we did a couple of months ago has had no effect on any readers as, to date, we have not received a single comment on it!

Mike Kenward

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICALEDITOR
Alan Turpin PRODUCTION EDITOR
David Shortland PROJECTS EDITOR

Jack Pountney ART EDITOR

Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR Judith Kerley SECRETARY

ADVERTISEMENT MANAGER

SECRETARY
REPRESENTATIVE
CLASSIFIED MANAGER

D. W. B. Tilleard

Christine Pocknell $\}$ 01-261 6676
Peter Mew 01-2616819
Colin Brown 01-261 5762

Editorial Offices:
Westover House,
West Quay Road, Poole,
Dorset BH 15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot be answered over the telephone (see below).

Advertising Offices:
King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS
Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-2616601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 75p each including Inland/Overseas p \& p.

Binders

Binders for PE are available from the same address as back numbers at $\mathbf{£ 2} .85$ each to UK addresses, $£ 3.45$ overseas, including postage and packing, and VAT where ap-
propriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RHI 6 3DH.

Cheques and postal orders should be made payable to IPC Magazines Limited.

It is not often, even in the lightning-fast field of Microcomputers, that we have a chance to review a system quite as up-to-the-minute as the one described below. The machine lent to us by COMP Components (14 Station Road. New Barnet, Herts. Tel: 01-441 2922) was perhaps one of the only two in the country at that time. Supply problems have been immense for Ohio Scientific Industries who make the machine. It can only be hoped that, by the time this review appears, the Superboard will be available ex-stock, or on very short delivery, not only from COMP but from the many stockists who started taking orders before Xmas on a full cash basis from the hundreds of hobbyists who have shown interest in this remarkable machine.

The photographs in this article show the compact form the Superboard takes-along with the type of video output which can be expected. Prices range from just over $£ 260$ to around $£ 280$-see current adverts in this issue for the latest information.

THE machine comes as a single p.c.b. which includes the keyboard section, plus a set of manuals and cassette-based demonstration programmes.

P.C.B. LAYOUT

The p.c.b. is extremely well laid-out, as the photograph shows, with the keyboard deciding the total width of the board which is approximately 370 by 305 mm ($14 \frac{1}{2} \mathrm{in} . \times 12 \mathrm{in}$.) in size. The quantity of room and uncramped nature of the assembly would make this a very acceptable kit with few of the usual problems associated with highly dense component layouts. Plenty of high frequency by-passing is also provided as can be seen from the number of disc-ceramic capacitors dotted about the board.

Referring to the p.c.b. photograph: just above, and to the left of the keyboard, is a line of six 24 -pin d.i.l. sockets holding, from left to right, one ACIA (6850) for serial communication devices such as cassette and teletype, the monitor ROM (2 K Bytes) and four BASIC ROMs (2 K Bytes each). These are followed by the 6502 MPU which is at the heart of this machine. Further to the right is a pair of two-way data bus buffers-using 8 T 28 chipsand some logic for running the keyboard. Finally, at extreme right, is a 40 -pin d.i.l. expansion socket labelled J1. The 8 T 28 's are used purely for expansion via J 1 .

The next couple of rows of i.c.s are for various logic functions and include some unoccupied i.c. pads labelled PROTO on the circuit diagram in the manual and not connected to any p.c.b. tracks. The two rows above these form the next two main blocks
of the system-VDU and RAM sections. The RAM is seen implemented by two half-rows of 2114 (1 K by 4 BITs) RAM i.c.s over to the right. Eight of these sockets contain i.c.s in the basic system giving 4 K bytes of memory and eight more are provided for 4 K of expansion simply by plugging in the extra chips.

Only 7 K of memory is shown in the photograph. Further to the left is another pair of 2114 s forming a further 1 K of RAM for the VDU. Next to these is the 24 -pin character-generator chip and switching i.c.s for the VDU which is of the memorymapped type for speed and complete flexibility of use. Over to the extreme left is the crystal-controlled clock generator from which the whole computer, from MPU to cassette interface, derives its timing information.

At the top of the board is the remaining support logic and cassette interface (over to the left), along with various unoccupied holes and pads-the components for which may be added later to complete an asynchronous communications interface including RS232. The top right of the board has provision for power supply unit components, and in the photograph houses an efficient little u.h.f. modulator (ASTEC) which allows direct connection to the aerial socket of a TV (tuning around Channel 36) and gives the excellent results shown in the photographs in this article.

- 8K High Speed BASIC + 2K Monitor
\star Up to 8K RAM On Board
\star Cassette interface at 300 BAUD (CUTS)
\star VDU-With its Own Dedicated RAM
\star Full ASCII Keyboard
* Fully Expandable Via On-Board Sockets
* Less than $£ \mathbf{3 0 0}$

A.A.ilik B.Sc.Ph.D.

SUPPLY

The Superboard is a single supply device requiring a regulated +5 volt source. The current depends heavily on the number and type of 2114 employed on the board. OHIO supplies the lowpower versions, and with the full 8 K the p.s.u. will have to deliver 2.5 to 3 amps . There are also two sockets (with plugs included!) on the top edge of the board. The most important of these is $\mathbf{J} 2$-to the left-as this supplies inputs and outputs to cassette and video monitor (or u.h.f. modulator). The other, J3, is for asynchronous communications.

The various "links" printed on the p.c.b. may be cut and connected differently for a variety of uses, and a further edge connector, J4, next to the keyboard (left) may be used to expand the key-functions for a separate programmable application.

The ambitious user will certainly find the p.c.b. construction and layout more flexible than most single-board computers on the market, not least for the reason of spaciousness of design.

KEYBOARD

The integral keyboard gains its best "touch" when the whole p.c.b. is screwed firmly to a base-board of some rigid material such as chip-board. It is pleasant to operate and apparently instantaneous in use. There are 53 keys which form a familiarly spaced type-writer format with legends properly moulded-in for durability and excellent readability.

One's unconscious emotional reaction to any computer is almost certainly heavily dependent upon three things:
(a) The keyboard.
(b) The display.
(c) The software monitor and programming language employed.

These three areas are described overleaf.

To the computer, the keyboard is an array of 8 rows and 8 columns occupying a single address location (DFOO). One location is enough as the 8 rows are write-only and the columns read-only. The keyboard routine, stored in the monitor ROM, constantly sends "walking-bit" information to the rowslatched by two 4-bit latches (74LS75s)-and reads the columns looking for the result of a key-closure. The keyboard is thus read for information and decoded by the monitor-this obviates the necessity for a hardware keyboard-encoder chip and ensures speed and accuracy with a low (and hence cheap) chip count. Multiple key readings are prevented by carefully written software and, indeed, this keyboard was considerably less prone to "doubling" than that of some other personal computers.

One or two idiosyncrasies of the keyboard are worth mentioning. The BREAK key to the far right of the keyboard, is simply a RESET button and will be described later. RUBOUT and ESC seem to have no effect for normal operation and the REPEAT key appears to do the exact opposite. If any key is pressed for more than about half a second, that character or function starts repeating continuously (a very useful feature) until the key is released-pressing REPEAT stops this process!

The character generator in the VDU section contains upper and lower case letters plus all the necessary special characters in the ASCII set. These are accessable via the keyboard but not all are indicated. For instance, "UP ARROW"-here implemented by \wedge-is an essential part of BASIC programming and is given by SHIFT N, a fact which the experienced programmer will already know, but not so the first time user. There are several other "hidden" special characters, and the complete list, which I discovered, is shown in Table I along with any function they perform.

Normal operation of the keyboard is in upper-case mode and for this, the SHIFT LOCK must be set in its "down" or "locked" position. My first mistake was to miss this point in an initial enthusiasm to see the BASIC working! Here the manual has its own poignant, if ungrammatical, reminder to the user not to be guilty of the adage about-"reading the instructions when all else fails".

As BASIC text is entered into the machine each line may be corrected or deleted before the computer reads the line for execution or filing. When such a line is complete, RETURN is pressed to transfer the line into the machine.

Two control characters are used on the keyboard: CONTROL O and CONTROL C. The first suspends the VDU display during command and program entry, the second suspends program execution. CONTROL O is very useful, for instance, for running from a clear screen-the command RUN, typed after CONTROL O, will not appear.

DISPLAY

As explained above, the VDU section is of the memory mapped type and hence each character on the screen occupies a specific memory location. The Hex address of the "screen" can be found on the memory map diagram (Table 2) and will be seen
to occupy 1024 (1K) locations. These are arranged as 32 characters by 32 lines on the screen, but many of them remain undisplayed by the majority of TV sets. The reason for this is quite simple and rests on the fact that a 4 MHz (approx.) crystal is employed to generate the "dot" frequency for the characters. Each character is formed from an 8×8 dot matrix and the width of a dot on a TV screen is inversely proportional to the dot frequency; 4 MHz is simply too low (and hence the dots are too large) to accommodate much more than 24 characters on a horizontal line.

I could only fit 23 on the Philips set illustrated. It is possible to adjust some sets to accommodate more characters per line, but the machine is meant for the average domestic TV, and the majority of rental companies will show a remarkable lack of enthusiasm for your rearrangement of the internals of their $£ 300$ colour sets.

In setting up the machine for initial use, the SHIFT LOCK is pressed to lock it into the "down" position and then the BREAK key operated. BREAK may be pressed at any time during use causing the display to clear and present the letters D/C/W/M? on the lowest line used by the monitor. These letters, as with all entries to the machine under monitor control, scroll upwards on the display as new entries take their place on the lowest line. BREAK places the machine in its command mode and only one of the above four command letters will be accepted at this point.

The letter D is for disk operation and is not applicable here. C clears the memory of the machine and causes the words MEMORY SIZE? to appear. At this point the user may reserve memory space to hold machine code routines or binary data blocks. Typing just RETURN reserves no memory space, while typing any number greater than 769 (the minimum number of memory bytes needed as workspace for the monitor and BASIC interpreter) will restrict the RAM available for writing in BASIC. This prevents subsequent programming from using the reserved space and destroying its contents.

The next message to appear is TERMINAL WIDTH? Typing RETURN assumes the number 24 , while typing any number from 16 to 23 restricts the use by the BASIC interpreter to that number of characters per line VDU display. Any number greater than 24 is assumed to mean 24 , and any number less than 16 is ignored causing TERMINAL WIDTH? to reappear. When other output devices are used, the width may be specified up to 72 characters.

After terminal width has been specified, the Superboard enters its BASIC function by printing up a quick advert for itself and giving the number of free bytes of RAM available, which it determines using a memory test. Any RAM malfunction may be noted at this point.

Table 2. Memory Map of the Superboard II

Mex Address	Function
0000-02FF	This block of RAM is used by the monitor and BASIC ROMs as scratch-pad-included here is the stack and all necessary vectors and flags
0300-OFFF	Rest of basic 4 K system RAM
2000-1FFF	Optional extra on-board 4K RAM
A000-BFFF	BASIC ROMs (8K)
D000-D3FF	Video RAM
DFOO	Keyboard
F000-F001	ACIA for serial communications
F800-FFFF	Monitor ROM including: floppy disk bootstrap, keyboard routine, 65 V machine code monitor, BASIC support and hardware vectors for NMI, RESET and IRQ

4 CHANNEL SOUND TO LIGHT SEQUENCE CHASER -4LSMI

- Full wave contro
- 1000 W per channel
- Fully supressed and fused
: Fully supprassed and fused operation from $\frac{1}{2} W 10125 W$
- Speed control for fixed rate sequence from 8 per minute
to 50 per to 50 per second
- Full logic integrated circultry with optical isolation for amplifier protection
£21.50
Model 501500 W per channel as above without sound triggering
$£ 14.00$

NEW FROM TUAC

ULTRA QUALITY HIGH POWER New D.C. Coupled Design AMPLIFIERS
Featuring
Electronic Short Open \& Thermal Overload Protection. Brief Spec.
Input Sensitlvity 0.775. .'. R.M.S. (O.D.B.) at 25 K Ohms Frequency Response $20 \mathrm{~Hz}-20 \mathrm{KHz}$
Hum \& Noise - 100 dB Relative full output
T.H.D. at full power 0.1\% T.D. 500300 W into 20 hms 220W into 4 Ohms 140 W into 80 hms Power supply P.S. 300 T.D. 150 150W into 4 Ohrns 100 W into Ohms Power supply P.S. 150 T.D. 150.60 Version 60 W into 80 hms 40 W into 15 Ohms Power supply P.S. 60

PRICES INCLUDE VAT. P \& P FREE
correct at 1.5.79

TO ORDER BY POST

Make cheques/P.O.s payable to TUAC LTD. (PE479) or quote Access/Barclaycard No. and post to TUAC LTD. (PE479) 119 Charimont Road, London SW17 9AB. We accept phone orders from Access/B arclaycard Holders. Phone 01-672 9080.
TL30 $5^{n \prime} \times 5^{n} \times 2^{n}$
output transistors
$£ 14.75$
TL60 $5^{n} \times 5^{\prime \prime} \times 3^{n}$

- 2 R.C.A. 110 watt 15 . TL100 $5^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}$
- 100 watt R.M.S. continuous sine wave output - 2 R.C.A. 150 watt 15 amp output transistors TP125 7" $\times 61^{\prime \prime} \times 3^{\prime \prime}$
125 watt R.M.S. continuous sine wave output
- 4 R.C.A. 150 watt 15 amp output transistors
£21.50
£27.50
All output ratings are R.M.S. continuous sine wave output.

STEREO DISCO MIXER

With touch sensitive switching and auto fade
INPuTS: Four identical stereo nnpurs avalable whit any equalisation Two magneicic and two flat supplied as standara. High qually slider control on each channel. Volume, rebbe and bass conitiols for each pario of siders.
 outpu balance controls Band wdith $15 \mathrm{~Hz}-25 \mathrm{kHz} \pm d \mathrm{~d}$.
P.F.L.: Output 250 mV into 8 ohms. Rotary volume control. Monitoring facilty for all 4 channels. Selection via ouch sensitive illuminated swithes. Switched visual cue indicator-
Miscellaneous Facilities: Two ilturnmated deck on/off switches. Mains illumnated on/off swithes. Auto fade iluminated on/off switch, Marns powered with imegral screen and back cover. Complete with full instructions Mono Disco Mixer with autofade $£ 52.00$
$£ 189.00$

3 CHANNEL LIGHT MODULATOR SILMB

- RCA 8 A Triacs - 1000W per channel - Each channel fully suppressed - Master control to operate from IW to 125 W
- Full wave contro

FRONT PANEL FOR LIGHTING EFFECT MODULES
(complete with switches, neons and knobs) as illustrated

For Silme $£ 8.30$ Size $8^{\prime \prime} \times 41 / 2$

4LSM1 $£ 7.25$ Size $61 / 2^{\prime \prime} \times 41 / 2^{\prime \prime}$

SUPPLIERS TO H.M. GOVT. DEPTS. MANUFACTURED AND ASSEMBLED IN GT. BRITAIN FULLY TESTED AND GUARANTEED SEND NOW FOR OUR FREE 28 PAGE ILLUSTRATED CATALOGUE: SEND STAMP PLEASE

SUPERSOUND 13 HI-FI MONO AMPLIFIER
 2-15 onm speakers. input for ceramic or crystal - cartione Sensirivity approx. 40 mV for full output. Supphed ready bull and tested, with knoos, escutcheon panel. input and output plugs. Overall size $\operatorname{3in}$ high $\times 6 \mathrm{in}$ wide $* 7$ ţin deep. AC $200 \cdot 250 \mathrm{~V}$. PRICE $£ 18.00$ P. \& P. $£ 1 \cdot 20$.

HARVERSONIC MODEL P.A. TWO ZERO
An advanced solid state general purpose mono amplitier suitable Guitar. Gram.. etc. Features Guitar, Glam.. etc. Features ${ }^{\text {individually controlled inputs (each }}$
Input has a separate 2 inputs (each Input $2,15 \mathrm{mV}$ into 47 k (suitable for use with mic. or guitar etc.) input 3, 200 mV into 1 meg . suitable for gram, funer, or tape etc. Full mixing facilites with full range bass 8 treble convols. All inputs plug"into standard jack sockets on front panel. Output socket on rear of chassis for an 8 onm or 16 onm speaker. Output in excess of 20 watts R M.S. Very attractively linished
purpose built cabinet made from black vinyt covered steet. with a purpose builf cabinet made from black vinyt covered steet. With a
brushed anodised aluminum front escutcheon for ac mans operation $200 / 240$ volits. Size approx 12 inn, wide For ac mains $\sin ^{\text {migh }}$ 7 7n deep
Spectal introductory price $£ 28 \cdot 00 \div £ 2.50$ carriage and packing.
"POLY PLANAR" WAFER-TYPE, WIDE RANGE
ELECTRO-DYNAMIC SPEAKER ELECTRO-DYNAMIC SPEAKER
Size $11 \frac{13}{} \times 1411 \mathrm{in} \times 1 \frac{1}{\text { in deep. Weight } 190 z \text {. Power handling }}$ $40 \mathrm{~Hz}-20 \mathrm{KHz}$. Can be mounted on ceiling ohm only. Response tables, etc, and used with or withour boftle. Send S.A.E. for full details. Only $\mathbf{E 8 . 4 0}$ each + P. \& P. (lone 90 p, two £1.10). Now available in 8 in round version. 10 watts R.M.S. $60 \mathrm{~Hz}-20 \mathrm{kHZ}$
$\mathbf{5} 5.25+\mathrm{P} . \& \mathrm{P}$. Ione 65 p , (wo 75 p .).

MAINS'OPERATED SOLID STATE AM/FM STEREO TUNER
 200/240V Mains operated Sind State F.M. A.M. Stereo Tuner. Covering M W A.M. $58-108 \mathrm{MHz}$ Bulthn Ferrite rod aerial tor M.W Full AFC and AGC on A. M and $F M$ Stereo Beacon Lamp Indicator Buill in Preamps with variable outpul voltage adjustable by pre-set control Max op Voltage 600 mV R.M.S. into 20K. Simulated Teak ontrol. Max o p Voltage chimost any amplifier Size 8 itin wide in nign - 9tin deep approx.
Limited number only at $£ 28 \cdot 00+£ 1 \cdot 50 \mathrm{P}$. \& P.
10/14 WATT HI-FI AMPLIFIER KIT
A stylishly finished monaural amplifier with an output of 14 watts from 2 EL84s in push-pull. Super reproduction of both music and speech, with negligible hum. Separate inputs for mike and
gram allow records and announcements to follow each other. gram allow records and announcements to fotlow each ather-3-150 speaker and 2 independent volume controls, and separate bass and treble controls are provided giving good lift and cut. Valve line-up. 2 EL84s, ECC83. EF86 and E280 rectifier. Simple
instruction booklet $25 p+$ S.A.E. (Free with parts). All parts sold separately. ONLY £18.00 P. \& P. £1.40. Also avallable ready built and tested $\mathbf{2 2} \mathbf{2 0 0}$ P. \& P. ©. 1.40 .
STEREO MAGNETIC PRE-AMP Sens. 3 mV in for 100 mV out 15 to 35 V neg. earth. Equ. +1 dB from 20 Hz to 20 KHz . Input
impedance 47 K . Size ifin $\times 2 \mathrm{lin} \times 5$ in $\mathrm{H}, \mathrm{f} 3-00+20 \mathrm{p}$. P. \& P.
 specification and connection details supplied. MHz 10.7 MHz I.F output. 7-8V + earth. Supplied pre-aligned, with full clrcuit diagram with precision-geared F.M. gang and 323PF +323 PF A.M. Tuning gang only $\mathrm{E} 3.15+\mathrm{P} . \mathrm{\&}$ P. 35 p .

SPECIAL OFFER

Slightly shop soiled radios by well-known manufacturer for AC Slightly shop soiled radios wW well-known manufacturer for AC speakers, telescopic aerial and internal territe aerial. Earpiece socket for personal listening. Finished in attractive simulated leatherette.
Size $7^{\prime \prime} \mathrm{H} \times 9 \frac{1}{2} \mathrm{~W} \times 4^{\prime \prime} \mathrm{D}$ approx. Fully guaranteed.
Bargain price of only $£ 10.00+£ 1.30$ D\&D.
Bargain price of only $£ 10 \cdot 00+£ 1 \cdot 30$ p\&p.
SPECIAL OFFER
LIMITED NUMBER ONLY
GOODMANS speakers, $6 \frac{1}{2}$ " 8 ohm, long throw, ceramic magnet, full range rated 10 watts R.M.S. (when fitted in enclosure). $\mathbf{£ 4} \cdot 00$ each +80 p. P. \& P. (P. \& P. on two $£ 1 \cdot 20$)

HARVERSONIC SUPERSOUND

10 + 10 STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amplitier Kit. Uses 14 transistors including Silicon Transistors in the first five stages on each channel resulting in even lower noise level with improved antivity integral pro-amp with Bass, Trebie and two Volum Nolth Ceramic or Crystal cartridges. Very simple to modify to surt magnetre cartridge-insiructions included tiparts supplied including drilled metalwork, high quality read drilled printed circut board with component identification clearly marked, smart brushed anodised aluminium tront panel with matching knobs. wire, solder, hurs. bolits-no extras to buy imple step by step instructions enable any constructor to build an amplifier to be proud of. Briel specitication. Power output: 14 watts H S S per channel into 5 onms. Frequency response $=30 \mathrm{~B}$
$12-30.000 \mathrm{~Hz}$ Sensilivity better than 80 mV into $1 \mathrm{M} \Omega$ Full bandwidth $=30 \mathrm{~B} \quad 12-15,000 \mathrm{~Hz}$. Bass boost approx. to $=12 \mathrm{~dB}$ Treble cul approx. to -16 dB . Negative feedback 18 aB over main amp. Power requirements 35 V at 1 A
Overall size 12 in wide $\times \operatorname{Bin}$ deep $\times 2 \frac{3}{8}$ in high.
Fully detailed 7 page construction manual and parts list tree with Fill or send $25 p$ plus large SA E
AMPLIFIER KIT
nout components 330 extra)
POWER PACK KIT
114.50 P. \& P. 80p

CABINET
£6.00 P. \& P. $95 p$
SPECIAL OFFER-Only $£ 25.00$ if all 3 items
ordered at one time plus $\mathbf{E 1} 25 \mathrm{P}$. \& P.
Full after sales service

HARVERSONIC STEREO 44

A solid state stereo amplitier chassis, with an output of $3-4$ watts per channel into 8 onm speakers. Using the latest high technology ovegrated circuit amplifiers with built in short ferm thermal capacitor, fuse, tone control, volume controls, 2 pin din speake sockels and 5 pin din tape rec play socket are mounted on the printed circuit panel Size approx. 9 in. 2 inn. Tin max depth Supplied brand new and rested, with knobs. brushed anodised aluminium 2 way escutchecn (to allow the amplifier to be mounted horizontally or vertically) at only $£ 10.00+50 \mathrm{p}$ P \& P. Mains iransformer with an output of 17 V a.c. at 500 mA can be upplied at $\mathbf{£ 2 . 0 0}+40$ p P. \& P. If required. Full connection detail supptied.

STEREO DECODER
SIZE $2^{\prime \prime}, 3^{\prime \prime}, 1^{\prime \prime}$ ready built. Pre-aligned and tested for $9-16 \mathrm{~V}$ neg. earth operation. Can be timed to aimost any FM VHF radio or tuner. Stereo beacon light can be litted if required. Full details and
instructions (inclusive of hints and tips) supplied. f.6.00 plus 20 p instructions (inclusive of hints and tips) suppiled. F
P. \& P. Stereo beacon light if required 40 extra.

Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday
Closed Wednesday.
Prices and specifications correc at time of press. Subject

HARVERSON SURPLUS CO.

(Dept. P.E.) 170 MERTON HIGH ST., MERTON, LONDON, S.W. 19 Tel: 01-540 3985
(Please write clearly)
PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO U.K. ONLY
P. A P. ON OVERSEAS ORDERS CHARGED EXTRA.

Heathkit electronic test

equipment course.
Section 1. Analogue and digital meters Section 2. Oscilloscopes. Section 3. Frequency generation and measurement.
Section 4. Special measuring instruments.
Heathkit car electrical systems course.
Section 1. Electrical principles of the car. Section 2. Starting system fundamentals. Section 3. Car charging systems.
Section 4. Accessories and body electrical Two new self-instruction courses from Heathkit. Based on step-by-step programmed instructions, they let you learn at your own pace in your own home.

Each course is complete and contains audio/ visual material, text, and parts for 'hands on experiments with the optional Heathkit experimenter trainer. So all you need is a cassette player and the will to learn.

Full details of Heathkit courses are available in the Heathkit catalogue, together with hundreds of kits you can build for yourself - computers, oscilloscopes, transceivers etc.... Send for you copy now.

There are Heathkit Electronics Centres at 233 Tottenham Court Road, London (01-636 7349) and at Bristol Road, Gloucester (0452 29451).

Registered in England, No. 606177.

New
 Heathkit CI 1265 Digital Tach/Speèdometer.
 Push-button digital readout. Displays engine speed/rpm.

 Accurate to 1 mph or rpm variations of 100 .

The other two command letters are used in the following way. W allows a re-entry after the BREAK without clearing memory. A most thoughtful addition-if only for the reason that the BREAK key is placed far out to the right of the keyboard and very exposed. It is easy, after setting up a BASIC program to brush the BREAK key causing the screen to clear and D/C/W/M? to appear-pressing C at this point would delete the program completely. M is used to enter the machine code monitor and will be described later.

During text entry, the monitor moves a "dash" symbol (the cursor) across the screen to keep the user updated with his current writing position. "SHIFT O" may be used at any time to delete the previous character written-this causes a dash to appear permanently at that point to remind the user that, as far as the machine is concerned, the previous character has been deleted. Several such dashes imply the deletion of that number of previous characters; and SHIFT P deletes the whole line, writing an @ symbol and moving the cursor to a new line.

In this way editing may be performed on a line adequately but slightly awkwardly. A better way would be to actually remove the deleted character from the display and backstep the cursor.

As can be seen from the photographs, the display provides very large characters separated vertically by very little space; this tends to make the text less readable than the majority of VDU pictures. However, it allows a very cheap system of "character slot" graphics to be implemented on the system. 128 of the character-generator ROM's patterns are graphic characters-inaccessable from the keyboard, incidentally. This includes a rich variety of tanks, guns, gaming characters, playing-card suits, lines, blocks and many more, to be displayed during program execution. Due to the lack of space between the character rows, these join up vertically as well as horizontally to produce continuous patterns. Separate dots within the 8×8 matrix of each character slot cannot be lit separately, and hence the term "character slot" graphics as opposed to "point graphics".

In addition, the top few TV lines of the top row of characters are rather indistinct as there is no delay and blanking at the start of each frame.

Most TVs find it easy to synchronise with the Superboard even though it produces 60 Hz frame information for the US market: some adjustment of the vertical hold is often necessary. The 60 Hz frame frequency (non-interlaced) provides one other slight drawback. Most TVs have badly smoothed d.c. rails, and a little 50 Hz hum is always present-this tends to beat with the 60 Hz frame frequency causing a constant jitter of the screen contents-more noticeable as the brightness control is increased.

As the display is memory mapped, the user may access it simply by "POKE"ing information into the RAM block (1K) dedicated to storing the screen's contents. As explained, many of these slots are undisplayed on an average TV screen. The monitor carefully starts each line of BASIC text 5 spaces in from the left on each line and uses only the top 26 lines in order to ensure that no information is lost during program development. The full screen is 32 characters by 32 lines, and most British TVs will show all the lines though not all the characters on each line. However, much of the software supplied for the Superboard uses all 32 lines of the display which actually covers less than the normal 625 lines of UK TVs.

It is clear that some considerable thought has been employed in providing a display capable of use in gaming and "animation" applications. This has been successful up to a point given the extremely low price of this powerful system-the designers have even included a monostable circuit to blank the video display each time the MPU accesses the VDU. This helps to prevent spurious noise from appearing on the screen during continuous use of the VDU.

SOFTWARE MONITOR AND PROGRAMMING

The above section contains a full description of the commands available to the user and below is described use of the two languages employed in programming the SuperboardBASIC and 6502 machine code.

The fact that the system offers the language BASIC to the user will undoubtedly be the prime reason for his buying this machine. It should be emphasised that this is no Tiny BASIC or in any sense a minimal version. It is a full 8 K Microsoft BASIC and even includes the very useful DEF FN.

It was clear from the start that program execution was fast, but I was unprepared for the remarkable speed of calculation which became apparent. When reviewing the TRS80, I ran some standard (Benchmark) programs and carefully timed them for later comparison. Programs not concerned with arithmetic or scientific calculation ran in about 55 per cent of these times on the Superboard-not surprising as the TRS80 is known to have a slightly slow clock. However, the 6502 on the Superboard was clocked at 1 MHz , and the 2 MHz version would halve these times again. This is still interesting but unremarkable.

I then tried my scientific calculation program. A large number of intermediate results are required, and the TRS80 had run this program in 117 seconds. I typed RUN on the Superboard and pressed return. There was no time to notice the reading on my watch-it ran in 7 seconds! I tried re-running the program 20 times and even juggled it about-still 7 seconds. The original program had no print-out so I made it print all 500 intermediate results on the VDU-the time shot up to just on 15 seconds. At this point, I noticed that the actual chip on the board was the "A" version of the 6502 -able to run at 2 MHz .

Swopping a few wires around increased the MPU clock to 2 MHz , and I was fascinated to watch the Benchmark program run in $3 \frac{1}{2}$ seconds-about $1 \frac{1}{2}$ seconds slower than the time quoted for its running on an IBM 370/115 mainframe computer. The speed of the Superboard rests entirely with the version of the BASIC interpreter included in its design, and not to any special feature of the 6502 for example-presumably Microsoft could do just as well on any other system, if they tried.

The BASIC statements may be typed in for immediate execution or, by giving them line numbers, may be written as part of a larger program for running later. In immediate mode, the computer acts like a super calculator-with responses to Sine and Cosine markedly faster than those of my Texas SR 56 calculator. Any level of parenthesis is available along with all the usual BASIC scientific functions to a floating-point accuracy of $6 \frac{1}{2}$ digits and including the random number function.

The only omission I discovered in the repertoire worth noting was the PRINT USING statement. Otherwise, everything is there, including numeric and string arrays plus an excellent set of string-handling functions.

Memory efficiency and speedy programming are aided by omitting "LET" in assignments and using "?" for PRINT. Multiple statements are allowed on a single line by the use of a colon as separator. Variables may be two characters in length (the first must be alphabetic) and, with array variables, there are as many as could be wished for by the most voracious scientist.

The BASIC manual, as implied in the documentation, was not written as a primer. It is a quick-reference list for the knowledgeable user. In parts, it is a little too quick and even now I am unable to fathom out the use of the USR function which has the useful capability of being able to call machine code routines from a BASIC program.

LIST is one of the most important BASIC editing features. On the Superboard it is very versatile. "LIST 50-" and "LIST $50-100$ " will give a listing of a program from line 50 onwards and between 50 and 100 respectively; also, "LIST -50" gives the list up to line 50 , and "LIST 50 " gives line 50 alone. This is all very useful and appears nowhere in the manual!

The BASIC interpreter also supplies 17 stated error codes to assist in the debugging of programs. Each code is composed of a letter plus a graphic symbol for some reason. SYNTAX ERROR for instance, is denoted by S__ as opposed to the more usual SN. I also discovered one unlisted error code-B \boldsymbol{B}. This turned up after typing (in immediate mode) $\mathrm{A}(1000)$, among other things. Perhaps someone should run a competition to discover how many other codes, plus their access statements, exist-could be interesting!

It is certain that the first time user will find the documentation on BASIC, supplied with the kit, inadequate, and he is well advised to seek out one of the excellent primers on this subject best found from a local library or by browsing in the technical section of most sizeable bookshops. The language is easy to learn and will enable programming to quite a sophisticated level in an hour or two.

MACHINE CODE

The fact that the Superboard can also be programmed in machine code, via the machine code monitor, impresses me very strongly. It adds that touch of flexibility which is prevalent throughout the system's design. The machine code is accessed by typing " M " when $D / C / W / M$? appears on the screen after BREAK. This causes six characters to appear at top left of the screen-four hex characters for address, followed by a space, and two characters for the data contained at that location.

The commands available for program writing are rudimentary but adequate. Typing a full stop allows subsequent hex characters to load the address field of the display. The data field is kept updated during this process allowing the user to view the contents of any memory location. To load the data field, a "/" must be typed. "L" allows loading from the cassette and "G" causes execution of a machine code program starting at the current address displayed on the screen. The manual also gives the starting address, in the monitor, of several useful routines, thus allowing a very low level utilisation of the machine.

A user who wishes to write many machine code routines, perhaps for control purposes, would do well to write a sophisticated BASIC program, using PEEK and POKE, to aid the loading and construction of such routines.

CASSETTE INTERFACE

I had a little trouble loading both the standard and my own saved programs, at first-nothing serious, however, and a little experience with the tape-recorder's controls gave acceptable results most of the time. The cassette interface runs at about 300 BAUD and depends upon the constant crystal-controlled clock

of the whole system for both recording and retrieving data. This means that changes in tape speed will diminish performance more severely than would be the case if the retrieval clock were derived from the recorded data itself. Data is stored on the CUTS (Kansas City) standard of recording a low pitch tone for a logic zero and high for a one. Decoding one's and zero's from the tape depends upon the decay time of a monostable to distinguish between high and low tones-its time constant is adjustable, for setting up, by a subminiature pot on the board.

The software supplied with the board, on cassette, formed a strange mixture of games, educational programs, calculations and financial packages. Some of the tapes actually seemed to contain software errors-if the tape interface can be trusted-and one, at least, was complete rubbish. One or two of the games were good-particularly "New York Taxi" where the player has to hail a taxi without being run over; and "Hectic"a game well outside my powers of speed and co-ordination-the display left me staring fascinated by the mayhem-like destruction implied by a spinning bomb which hurtles from random points in the sky and removes bits of the landscape.

There is also a Ratio Analysis program giving an idea of the machine's business capabilities, and one or two educationally useful teaching programs.

As a very rough guide to the speed of loading and size of programs, "New York Taxi" takes up about 2.7 K of memory, occupies 81 lines of program and takes 2 minutes 20 seconds to load.

MANUAL AND EXPANSIONS

The user's manual is not bad but could do with re-writing in a more concise and logical form. Very complete circuit diagrams are included which appear, on the whole. accurate and well drawn; however, a little verbal explanation in this area would help the user to appreciate some of the finer points of design more easily.

The short section on BASIC and two pages describing the whole of microprocessor theory will leave the beginner mystified and the expert bored. Most of the facts appear somewhere in the quite lengthy text but are either laboured or under explained.

The final section is devoted to the 6500 series of MPU chips and their machine code. This is most useful for reference, but is entirely for the experienced.

The Superboard II, to give its full title, is the name given to the OSI 600 board, and may be incorporated into a special metal case with power supply to form the CHALLENGER IP. The 610 board is an expansion p.c.b. containing 24K RAM and a floppy disk controller. Sockets are provided for dual mini floppy drives as well as a d.i.l.-plug terminated ribbon cable to plug into J 1 on the Superboard. The 610 also interfaces to the 620 expansion board designed to run the OSI 48 -line bus for the full range of OSI add-ons.

Expansion capabilities and flexibility of the basic p.c.b. are very varied-for instance, there is a link option on the board to enable the future use of a single 64 K bit ROM for the BASIC interpreter instead of the four 16 K bit ROMs supplied. This would free three 2716 -pin-compatible sockets for other things. This type of detail will remain unused by the majority of users but tends to imply a high degree of thoughtful system design.

CONCLUSION

The machine described here is certainly one of the most exciting on the present market for both the hobbyist and anyone needing an introduction to computers in general and microcomputers in particular.

The video output is probably not fitted for business applications though the power of the machine may well be. The addition of an asynchronous video terminal and printer would, however, solve the problem quite quickly.

In a short time, the home computer man will learn the limitations of cassette storage in general and will begin to hanker after the yet largely unappreciated advantages of disk. Here again the Superboard provides the answer with a cheap plug-in floppy disk system.

The price of the Superboard puts it into a class of its own which is going to be very hard for the current purely machinecode systems to match. Its BASIC is nearly as powerful as, and faster than, that of the Tandy TRS80, for instance. It is, of
course, written by the same firm and takes up the same amount of ROM. The monitor on the other hand (half the size of the, TRS80's) is less powerful in many ways but better in othersallowing machine code, for instance. The graphics and VDU, though more than adequate, are not up to the standard of the more expensive systems, however.

It is perhaps here, while discussing its comparison with a computer three times its price, that the finest compliment is to be found for this excellent innovation into the UK market.

As a consequence of the remarks in this article, COMP Components have designed and are producing a computer-The Compukit UK 101 finkit form for E219 +VAT)-based on the Superboard but with many enhancements. These include up to 48 characters per line-with much clearer type and a superior character font with many useful technical symbols. The VDU will generate 50 Hz frame information with a faster "dot" clock to produce a rock steady picture even through a modulator-which will be included on the board, as well as a regulated p.s.u. just requiring a transformer to make the system fully operational. Keyboard management will be much improved and include all the missing characters mentioned in Table 1.

Our contributor Dr. Berk will be writing a series of articles fully describing the design and construction of Compukit UK 101 and these should be published in P.E. commencing in the August issue, thus providing readers with a better Superboard at even lower cost.

Semiconductor IPDATITE FEATURINF: fred im 7224/5 dm 8678 R.W. Coles

FRED

To me, Fred will always be Fred Bennett, the previous Editor of our favourite electronics mag, and, incidentally, its founder. Well Fred, if you are reading this you'll be pleased to know that at long last your services to electronics have been officially recognised. They have named a series of semiconductor devices after you, so you can join the ranks of Hertz, Ohm, Ampere and all the rest!

Hang on a minute though, leafing through the FRED data sheet I find no unsolicited testimonial, only a bleak paragraph which informs me that FRED stands for Fast Recovery Epitaxial Diode.

Joking aside, the FRED is a device worth a second look. The name has been coined by Thomson-C.S.F., the French semiconductor house, and they have made a whole series of diodes available under the FRED banner. The diodes are intended for use as rectifiers in switching power supplies and the like, and they represent a big improvement on the traditional silicon diode design.

The need for these devices has been emphasised by the new power-supply-wonder-of-the-age, the D.O.L. (Direct-OffLine) switcher. These power supplies get rid of the heavy iron transformer of traditional désigns and make possible small, lightweight, regulated power packs in a fraction of the normal space:

The way they work is simple enough. Take a 230 V a.c. input and half-wave rectify it to give a high d.c. voltage. Now chop up this d.c. supply into a high frequency pulse train using transistors and then pass it through a small, lightweight, high frequency isolating and step down transformer. Finally, rectify in the traditional way, only use FREDs. To achieve voltage regulation, monitor the output voltage and use it to control the width of the pulses produced by the chopper transistors.

Easy isn't it, but as you can imagine the "high frequency" bit causes problems not only for the choppers, but also for the rectifiers. Old fashioned rectifiers are fine at 50 Hz but at 20 kHz ? forget it. FREDs on the other hand have a low forward voltage drop, low conduction losses, high surge current rating, low reverse recovery time, low forward recovery time and are great at 20 kHz . The range includes the BYW80 at 7 Amps, the BYW 81 at 12 Amps, the BYW 77 at 20 Amps, the BYW 92 at 35 Amps, and the BYW 78 at 50 Amps. Better luck next time FredI

COUNT ON IT

You have probably seen the delectable Intersil D.V.M. chips, the ICM 7106 and 7107. Well now Intersil have done it again with a whole family of counters in the same image. Once again you can have a choice of l.e.d. or l.c.d. displays, but in addition you can choose either a 19999 full scale count or the 15959 timer variety. As usual, the chips drive their displays directly, and they"ll run from five volt supplies too. CMOS technology is used, and so the IM7224 l.c.d. version draws only 10 microamps at 1 kHz and a miserly 1 milliamp at a full 10 MHz ! The $\mathbf{7 2 2 5}$ l.e.d. version takes a lot more of course, or rather, the displays do. To get the 15959 versions, just add an " A " suffix. This new chip is going to be a big success, you can count on it!

DOTTY CHIP

Anyone who studied the excellent P.E. VDU SYSTEM series must have been impressed by the capabilities of the SFF 96364 TV controller chip which helped to make that low cost system possible. You may have noticed that in addition to the control chip, the system used NMOS RAMs, several TTL packages and a 24 pin
character generator ROM which contained the character dot matrix information for the raster scan display. If you are thinking of building this sort of system into, say, a home computer, you may be interested to learn that you can save quite a lot of board space and trade three packages for one if you substitute a National DM 8678 for the existing 2513 ROM and two of its TTL support chips.

In the existing system, 6 bit ASCII character data from the screen RAM memory area is latched in a TTL 74174 register before being used to control the character select lines of the 2513 ROM. Output data from the ROM appears in parallel a row at a time, and has to be serialised in another TTL package, a 74165 parallel in/serial out shift register, before being applied to the modulator.

The DM 8678 device replaces the two 16 pin TTL devices and the 24 pin ROM with a single 16 pin package. Not a bad trade! The pin reduction is possible because whereas the 2513 ROM had parallel inputs and outputs, the DM 8678 has parallel inputs but a serial output. The speed requirements of such a fast system can be met by the National device because it is a bipolar (nót MOS) chip which is fully TTL compatible. The DM 8678 chip comes in a variety of optional forms which each contain a different character font. For compatibility with the P.E. system, the DM 8678 CAB is required because it has a 7×5 character dot matrix in upper case. Of course it would be very easy to add a lower case character facility to the system by using two DM 8678 s, with some simple extra gating. In this case a DM 8678 CAH would be requíred.

If you really were cramped for space, another saving might be to substitute a single MK $4118 \mathrm{IK} \times 8$ RAM for the eight 2102 S currently specified.

Fig. 6. Signal processing board

Fig. 8. Circuitry directly mounted to channel triac. Layout is similar for both channels

Fig. 7. Zero voltage switch board
with modifications to the signal processing circuitry. Steep bandpass filters, possibly based on cascaded low and high pass Chebyshev filters are required for an unambiguous display. In both cases, a pro-rata change in the rating of the power supply transformer and rectifiers is the only modification necessary to the remainder of the unit. The unit may be wired into 30A mains feeds with complete confidence. Higher current feeds are suitable provided the prospective short circuit current is under 900A. This value may be derived from the supply impedance. A simple method of measuring the latter parameter is to connect the largest allowable lpad to the feed. The difference between
loaded and open circuit supply voltage will indicate the supply impedance reasonably accurately.

The use of loads in excess of 6.2A in the design version is limited primarily by lamp surge current. On certain mains supplies, where impedance is relatively high, one may well get away with greater loads. Under no circumstances however should the high speed fuses be subjected to currents in excess of 11.5 A . This implies the use of a 7 A fuse (If $1 \frac{1}{4} \mathrm{in}$. glass) to protect the high speed fuse. As such a fuse is not available, and its use would significantly reduce triac protection it is recommended that the point where 5A $1 \frac{1}{4} \mathrm{in}$. fuses start to go 'pop' is taken to be the safe limit.

Fig. 9. Theile network

R.F.I. PROBLEMS

If r.f.i. is troublesome, assuming that the r.f.i. elimination routine has been dutifully followed, then the best course of action is to suppress at the point of pickup. This is usually sensitive audio circuitry. The use of a Theile network in power amplifiers prevents r.f.i. picked up in speaker cables being fed back to the input via feedback networks (Fig. 9). If unbalanced lines are used for interconnection, the use of balanced line cable is helpful. One of the inner cores is used for the return, and the screen is connected at one end only.

Earthing arrangements should be under suspicion, particulary mains earths. The SLM should ideally have its own, low impedance cable to the mains socket. In exceptionally difficult cases, copper screening may be employed. This should hermetically encase the power control circuitry. All mains cables should be screened with copper braid.

Audio circuitry power supplies should incorporate suppression chokes of the bifilar variety.

Normally however, no problems will be experienced provided speaker cables are kept well away from mains cables connected to the SLM.

LAMPS

In order to minimise lamp filament failure rate and thereby avoid unnecessary loss of high speed fuses it is expedient to use single coil lamps, having longer life and more robust filaments. Inherently heavy duty lamps such as PAR 38 types are strongly recommended. Wherever possible, 240 or 250 V lamps should be specified. If, say 230 V lamps were used at a venue with a 250 volt supply, the 9 per cent increase in voltage over the nominal will shorten lamp life by 60 per cent. Using 250 V lamps will of course entail a small loss in potential light output in most cases; 240 V lamps are the best compromise.

Zero voltage switching, applying intermittent power (as in this application) and good ventilation also increase filament life expectancy. 100W lamps are the compromise between a large number of small lamps with low thermal inertia giving a responsive display but with high hardware costs, and a smaller number of high power lamps exhibiting a sluggish response. Thermal lag will significantly affect the character of a display, so experimentation is urged.

Stage lighting gelatines (Cinemoid) are a cheaper colour medium than coloured lamps and provide a wide range of colours of differing densities. No's 11, 18, 34, 41 and 46 are typically of optimum density for efficient projection. It has been stressed that good display technique is the crucial factor in successful discotheque lighting; operators who are seriously concerned with lighting display techniques should study stage lighting and carry out extensive experiments. Whilst the difference between theatrical (stage) and discotheque lighting in the applied sense is wide, the basic principles are similar.

Fig. 10. Power supply board

DISPLAYS

Displays are dichotomised by the two classes of music: those which are viewed and those which are experienced, appertaining to cerebral and physical music respectively. For the former, suitable "viewed" displays consist of lamps faced by coloured and patterned diffusion screens. Unfortunately, this display mode, in the form of "lightboxes" is common in discotheques, yet is totally unsuited to the enhancement of physical music.

A "physical display", in the same manner as physical music must "cry out for physical participation", hence a display which is "experienced". To achieve this, light must be projected. Of course, "lightboxes" project light, but the effect is weak and ineffectual, because they are not usually designed to act as an efficient projector they have a multiplicity of close seated colours project a mixed light which tends towards pale hues or even white and the light source is often in the line of sight and acts as a distraction, hence the rule of physical displays, (a) use efficient light projectors (b) project a minimal number of bold colours from discrete sources.

Strategic placing of bass and treble displays causes violent oscillation which is stimulating. Remove the light source form the audience's line of sight. Ideally it should be overhead, but close to the floor is an acceptable compromise.

An idealised overhead display system based on rock concert techniques would consist of lighting units in steel boxes with hook clamps and parabolic reflector lamps, which in this case should be 100W PAR 38s instead of PAR 56s.

The direct opposition of bass and treble lamps gives rise to an exciting "cross-fire" effect. Equipment of this calibre requires large capital investment, but it is certainly worth

Fig. 11. Some arrangements for overhead displays (OHD). Directly above shows how beams from areas P and R will mutually interact. Lamps are maintained at 45 degrees and colours chosen to minimise this problem

Fig. 12. Low cost projection box

hiring it from PA hire contractors for special occasions.
A compromise arrangement suitable for small venues is shown in Fig. 11; setting up is rapid. Note again the arrangement of bass and treble lamps in order to give a cross-fire effect. The compromise between a large number of discrete sources which are costly and take a long time to set up and a small number which concentrate the light sources unduly is around 500 W per box, made up of $5 \times$ 100W PAR 38s.

PROJECTION BOX

The key details of a simple projection box are shown in Fig. 12 or 50 mm grid $\times 8$ or 12 gauge "Weldmesh" serves to protect the lamps and gelatine sheet which is pinned behind it; PAR 38s are however extremely tough and it may be omitted if desired. The lamps are mounted on a centre batten. Local power connection should be of butyl cable and brass holders should be used in order to ensure a long service life at high temperatures.

A fine zinc or aluminium mesh, matt black painted flush with the aforementioned batten will provide reasonable ventilation with minimal light leakage. When setting up an SLM or judging the aesthetic effect of a display, study the effect of the lighting on people rather than viewing the light source. The use of too many colours will only create an ambiguous, confusing pattern which defeats the object of using a two channel SLM. Stray white light can be troublesome and if elimination is impossible, exchanging the offending light source for a 60W "Fireglow" lamp is a reasonably diplomatic solution. Bear in mind that the location of floor mounted sources often defines the nucleus of the dance area in discotheque applications.

Finally, remember that the discotheque is primarily concerned with music and dancing. A good sound system is the first prerequisite; lighting is a secondary consideration, but lighting which stimulates dancing must be the foremost choice.

PATEMT REMIW

Copies of Patents can be obtained from: the Patent Office Sales, St. Mary Cray, Orpington, Kent Price 95p each

TOUCH CONTROL

Fidelity Radio Ltd. of London NW10 in BP 1513562 propose a simple and cheap touch or tuning control for an amplifier or radio. It is suggested that the device can also be used to control lighting or power The patent was applied for in early 1975 and is granted under the old laws.

A control panel carries two parallel strips, 2,3, of conductive ink, which are printed by silk screen techniques. The strip 2 serves as a resistor and is connected at one end to a low voltage supply, e.g. 5 volts. The strip 3 offers negligible resistance. When a finger is placed as a bridge at any position along the length of the parallel strips, the potential at that position on strip 2 is applied to strip 3, i.e. the finger acts as the movable contact of a potential divider.

Strip 3 is connected to the circuit under control by resistor 4 which is incorporated to protect the circuit components against static discharge. Amplifer 5 connects to signal processing device 6 which removes any residual a.c. and supplies one input of a comparator 8.

The second comparator input is derived from output 9 and the comparator feeds an up-down signal to digital counter 10 so that the count changes as the potential at 6 varies with respect to the potential at 9 .

Clock pulses for counter 10 are sourced from pulse generator 12.

When the potential at strip 3 is very low, i.e. when there is no finger contact, the output of amplifier 5 drops to a value which operates switching device 13 to connect the amplifier input to a fixed potential source (e.g. -10 volts). This drops the output of amplifier 5 further to establish a positive closed position of the switch 13 and de-activate the clock pulse generator 12. This ensures that spurious charges on strip 3 cannot achieve a control function. Counter 10 and an analogue converter 11 at the counter output together act as a store for the last sensed finger position on strip 3.

The output at 9 is used as a control signal, for instance to vary receiver tuning or amplifier volume.

ALARM HORN

General Signal Corporation of New York in BP 1523909 describes a simple but efficient horn design, suitable for generating an alarm tone. The patent was first applied for in late 1974 and thus is granted under the old laws.

The horn has a two part coil, inner or primary coil 107 being wound inside secondary coil 108 on the same core 106.

Primary coil 107 has five or six times the number of turns in coil 108 and the two coils are wound in opposite sense and in series. The magnetic fluxes generated by a common current are thus in opposition and the overall flux is equal to the difference between the two fluxes.

As the circuit shows the lower end of primary coil 107 is coupled to the collector

130 of a control transistor 128 and the upper end of coil 107 is coupled to the transistor base 129 via resistor 132.

The upper end of secondary coil 108 is coupled to the transistor emitter 131 and the lower end of coil 108 is coupled to transistor base 129 via resistor 133. Resistor 132 is approximately 10 times the value of resistor 133, the two resistors thus defining a potentiometer chain connected in parallel with the series connected coils. Capacitor 134 bridges coil 107.

When control switch 141 is closed d.c. flows from battery source 140 through the potentiometer chain to put transistor base 129 slightly positive with respect to the emitter. Transistor 128 turns on initiating conduction from collector 130 to emitter 131. Current now flows and capacitor 134 charges.

As a consequence of the turns ratio and sense of the coils a positive voltage is induced in coil 108 which reverse biases transistor 128. But current continues to circulate in the series RC circuit 107, 134 to dissipate stored energy. As the current and flux from coil 107 reduces, transistor 128 switches on and the whole cycle repeats.

A diaphragm 105 adjacent to the coils and core 106 will move with the flux to produce sound. The pitch of the sound produced will depend on the diaphragm resonance and component values. The patent suggests values suitable for generating a piercing tone of 2.2 kHz .

difficulties. Since its launch on January 30 a power supply has malfunctioned and one of the transmitters gave trouble. A back-up instrument was brought into service but the data signals received back on Earth were not strong enough. The mission engineers felt that they could overcome the problem but this meant waiting for the period March/April when the vehicle was eclipsed. However this cannot help the "Light lon" mass spectrometer which seems to have developed a short-circuit on one of the load resistors.

So far Scatha has had the experience of three charge conditions. One of these built up to -300 V . These charges are thought to be related to geomagnetic storms stirred up by the Sun. The eclipse was not detected by Scatha. This was the total eclipse of February 26. The Field Detector experiment uses an antenna of 100 feet span. It consists of two fine wires attached at one end to the satellite and having a small mass at the other end. The rotation of the satellite, about 1 rpm , deploys the wires by "centrifugal" reaction.

The orbital characteristics are: apogee $43,225 \mathrm{~km}$., perigee $27,780 \mathrm{~km}$, an inclination of 8.3°. There is a drift rate of 6° east daily. The vehicle has a designed lifetime of one year.

VENUS 11 AND VENUS 12

The two Russian Probes released from Venus 11 and Venus 12 landed on the surface of the planet at points some 500 miles apart. Venus 11 was launched from Earth first and then four days later Venus 12 was also launched. However the flight path differed so that although Venus 11 was launched first it was sent along a different and rather longer path. Consequently Venus 12 was the first vehicle to arrive at Venus and release its probe. Four days later the second probe was on its way to the surface of the planet.

Both probes commenced a regular stream of data. The report of the temperature and pressure at the surface was to the effect that the pressure was of the order of 88 times that of the Earth's atmosphere, and the temperature in excess of $450^{\circ} \mathrm{C}$. Each probe, during its descent, relayed information about the state of the Venusian atmosphere. Nine samples were taken and the result has enabled the profile to be modelled. There is close agreement with that of the American probes. The chromatographs have confirmed that the major constituents are carbon dioxide and nitrogen. The chromatographs at the surface have also detected carbon monoxide.

There is a significant point of interest about these chromatographs. Usually they are somewhat bulky pieces of equipment. In this case the "sigma" units were small and weighed only two pounds. With the data from the Russian units and that from the American mission the knowledge of the bright planet should be increased considerably.

TROUBLE FOR SCATHA

The United States Air Force satellite, which was designed for a project of special importance, the investigation of the electrical charges built up on spacecraft, has run into

UK-6 BRITAIN'S SPECIAL STARGAZER

UK - 6 has the launch date of May 24 this year. A Scout vehicle will launch the satellite which will go into a high circular orbit. Originally it was intended that the altitude should be 550 km . In fact the altitude will be 625 km with an inclined orbit of 55°. This situation has been achieved by improvements in the Scout vehicle. In addition to the achieving of the greater height the lifetime of the satellite will be increased. It is expected that its life will be 3 years, but if the same nursing by the team who kept UK-5 in operation is available, the life will be extended.

It is predicted that there will be a period of intense solar activity at the end of this year resulting in the raising of the top limit of the Earth's atmosphere. There will therefore be the possibility of detecting particles which come from the Sun's corona. The inclination of the orbit was chosen in the interest of the cosmic ray detector. At the inclination of 55° the instrument will be able to scan through the Earth's magnetic field. This position however does reduce slightly the best achievable measurements by X-ray apparatus.

ALTITUDE CONTROL

The mass of the UK-6 is 155 kg . The payload is about 40 per cent of the total, which is a high proportion. The satellite is spin stabilised. The altitude control is rather unusual, being based on a magnetic coil which encircles the base of the satellite body. When a current is passed through the coil a force is set up which enables the whole satellite to be precessed to another position. There is provision for passive thermal control and the solar array will be able to deliver 95 W continuously to the end of its life. Batteries are available to provide power when the satellite is eclipsed.

The X-ray sensors are directed away from the Sun so that simultaneous observations may be made from Earth.
It is hoped that UK-6 will provide more data so that an even better assessment may be made of the manner in which stars are formed. There are three principal experiments on board and these will provide information on variable X-ray sources, low energy X-ray sources, such as the possible Black Hole Cygnus X-1 or the Crab nebula. There will also be information on the heavier nuclei of cosmic rays. These are suspected to come from the remnants of super-novae. These data will enable astrophysicists to understand more about how the radiation is produced and perhaps provide a clue as to formation or collapse of stars.

COSMIC-RAY DETECTOR ON UK-6

The cosmic-ray detector was supplied by a team from Bristol University. It is the largest of the experiments. It consists of a pair of concentric spheres 75 cm in diameter. They are filled with a mixture of neon, helium and argon with traces of nitrogen. The mixture is maintained at a pressure of a little over one atmosphere. A battery of photomultiplier tubes surround the chamber and these observe any events taking place within. The outer sphere acts as a supporting structure. The inner which is made of plastic and contains a wavelength "shifter" is the working part of the detector. The designers believe that this will be the first instrument to accurately measure the rays formed from elements over a wide range, specifically from iron to uranium and possibly beyond. The action of the cosmic-ray detector is such that when a cosmic-ray, which is an atom that has lost its electrons, passes through the chamber it produces flashes of visible radiation, one each time it passes through the plastic sphere and one each time it passes through the gas mixture. This is the Cherekov effect which is observed by the photomultipliers. The detector is arranged so that several of the multipliers "see" each flash. The charge on the nuclei is measured as it passes through.

The second experiment which is designed for the investigation of low energy \mathbf{X}-rays is a joint contribution by the University of Birmingham and the University College, London. The experiment has four gazing incidence Xray reflectors which lead to proportional counters. These are intended to be pointed at possible X-ray sources, to allow detailed observations to be made. These studies will work in cooperation with ground based observation to ensure the accurate position fixing of the sources.
Leicester University supplied the third principal experiment and it is designed to observe the variable \mathbf{X}-ray sources. The apparatus is similar to the University College and Bristol University experiment with the ability to observe rapidly varying sources.

Two minor experiments from the Royal Aircraft Establishment are aboard the satellite. One is a collection of new types of solar cells which are to be tested under space conditions and the other investigates how space effects metal oxide semiconductors.

Including V.A.T. Postage and Packing

A quality watch at an unbelievable price.

This Lambda I.c.d. alarm chronograph comes with complete instructions and a worldwide one year guarantee and service network booklet. It is shown full size on the front cover and this page and has the following functions.

Hours; minutes; seconds; date; day of the week; am/pm indication; stopwatch with $1 / 10$ second readout, split time whth automatic reset after six seconds and up to 13 hour capability; flashing stopwatch indication if time is displayed while stopwatch is running; bleeping 24 hour alarm which sounds for one minute unless previously cancelled, the display flashes while the alarm is sounding; alarm set indication; simple, "to the second", time and date setting; second watch including seconds, date, day of week and am/pm indication for displaying time in another zone; nightlight; screw section in back to enable quick, simple di.i.y. battery replacement; staintess case and black/stainless bracelet; fully adjustable bracelet to fit wrists from $130 \mathrm{~mm}\left(5 \frac{1}{\frac{1}{8}} \mathrm{in}\right)$ to $200 \mathrm{~mm}\left(7 \frac{7}{8} \mathrm{in}\right)$ circumference without remova! of links.

The alam is loud enough to wake most people and the dual time zone facility is very useful for foreign "phone calls, whllst travelling or just on hotiday.

We have been careful with the choice of this watch and have tested it for three months, since we anticlpate heavy demand please allow a maximum of 21 days for delivery-more if you live outside the U.K.

To: METAC Electronics and Time Centre (P.E. Offer) Please complete both parts of the coupon in BLOCK CAPITALS 76545 .

Mail order only

Please send me watch/es at $£ 22.95$ each I enclose P.O./Cheque No \qquad Value

Name
Address

The pulses from the Schmitt trigger are fed into the two monostables via the leading edge trigger inputs. The time constants of the two monostables define the lower and upper limits of the passband. With the respective R set high, output pulses appear at Q for input pulses below the crossover frequency. For higher frequencies Q remains high. With R set low, the output at Q remains low.

IC1(a) defines the lower limit of the passband, so that below this band its Q output varies at the input frequency, setting R on the (b) circuit low for the leading edge of each new pulse, and therefore holding "Qb" low. Within the passband Oa remains high and Qb varies at the input frequency. Above the passband $Q b$ remains high.

Components D1, D2, C3, C4, R8, R9 form low pass filters, so that the inputs to the switches can only be set high when Q and $\overline{\mathrm{Q}}$ are in steady states outside the passband.

The electronic switches are provided by one half of a 4016 CMOS quad bilateral switch i.c. The switches cause the capacitor C5 to charge or discharge according to the frequency of the input pulses, and the voltage is applied to the gate of the 2 N3819 FET. The very high gate impedance ensures that the charge remains constant until the next operation of one of the switches. The l.e.d. is driven by TR 5.

The LDR of the opto-isolator varies the current drawn by TR6 and TR7, and hence the current through the bridge rectifier. These components take the place of the variable resistor in the normal triac control circuit.

The control circuit is connected in series with the projector motor and its normal variable speed control resistor.

DESIGN PARAMETERS

For stable speed control and rapid response at switch-on without overshoot, an appropriate value for C5 must be selected. If C5 is too small, the motor speed will hunt about the desired value, since the effective time constant of the
speed controller is smaller than the reaction time of the motor. If C 5 is too large the motor will take too long to reach the correct speed when switched on. The optimum value of C5 will depend upon the characteristics of the motor and the load presented by the projector, and is easily found by experiment.

CONSTRUCTION

The lamp and photo-darlington are mounted on a small piece of veroboard which is supported by a conveniently placed bracket adjacent to the projector shutter blades. The low voltage power supply is derived from the 8 V a.c. projector lamp supply. All the leads, including those for the motor control circuit, are taken out of the base of the projector body to a separate box, mounted behind the projector on a common baseboard. This form of construction was chosen so that no physical modification of the projector would be necessary.

The low voltage circuits are mounted on two pieces of veroboard approximately $45 \times 120 \mathrm{~mm}$. A third plain matrix board of the same size holds the a.c. circuitry and optoisolator, and the three boards are mounted as a sandwich, using 6BA studding and spacing nuts, inside an aluminium box.

A single toggle switch provides switching for 16 and 24 f.p.s. Slower speeds may be obtained using the normal projector speed control. The control circuit is energised by switching on the projector and no other controls are necessary.

The layout and form of construction are not critical, apart from the need to ensure that the high voltage triac circuit is mounted separately from the rest of the components.

Using a variable speed cine projector can be very frustrating. Continuous adjustment may be necessary to keep the speed of the projector constant as the machine warms up, and the load on the take up spool varies.

Fig. 1. Block diagram of Cine Speed Controller. Solid state switches are used to transfer the digltal filter output to the integrating capacitor.

Resistors	
R1	$100 k$
R2	$1 k$
R3	$47 k$
R4	$100 k$
R5	$3 k 3$
R6, R7	$270 k$ (2 off)
R8-R10	$4 M 7$ (3 off)
R11	$2 M$
R12	$3 k 9$
R13	$1 k 2$
R14	$22 k$
R15	390
R16	$100 k$
R17	$200 k$
R18	22
R19	$1 k 5$
R20	82
R21	47
R22	ORP12 LDR

Potentiometers
VR1-VR4 250k presets (4 off)
Capacitors

C1-C4	100 n (4 off)
C5	$4 \mu 7$
C6,C7	$100 \mathrm{n} / 400 \mathrm{~V}$ (2 off)
C8,C9	100μ (2 off)

Transistors and Diodes

TR1	2N5777
TR2, TR3	BC147 (2 off)
TR4	2N3819
TR5	BC148
TR6, TR7	BF259 (2 off)
D1,D2	1N914 (2 off)
D3	TIL209
D4	BR100
D5-D8	full wave rectifier
D9-D12	400V p.i.v.
D13	BZY88C6V8
CSR1	T2800D

Integrated Circuits

IC1 4528
 IC2 4016

Miscellaneous
L1, L2 55 Turns 28 s.w.g. $1 \frac{1}{4} \times \frac{1}{4}$ inch ferrite rod. LP1 miniature 5 V incandescent bulb.
S1 DPDT toggle switch.

Fig. 2. Full circuit diagram.

EGT13

Fig. 3. Supply Board.

Fig. 4. Main Board.

E0 115

Fig. 5. Mains Voltage Board.

SETTING UP PROCEDURE

Apart from the selection of an appropriate value for C5, the only other adjustments required are the tuning of the digital filter. VR1 and VR3 have to be set to define the lower and upper limits of the passband respectively.

Some method must be used to indicate when the projector is running at the correct speed. A strobe disc on a convenient shaft provides a very accurate method of measurement.

With S1 set to 16 f.p.s., the passband of the digital filter is first set to its maximum by adjusting VR1 to its maximum, and VR3 to its minimum value. The normal speed control is set to fast and when the projector is switched on, C5 will be uncharged and the motor speed will rise to the top of the passband. VR3 is now increased, bringing down the motor speed until it reaches a value fractionally above 16 f.p.s. The

News Briaf's

by Mike Abbott

COUNTDOWN

Muirhead '79 -May 15-16. Muirhead is a company which specialises in communications technology and servo control systems, and the exhibition and symposium will take place at the Glaziers Hall in London. Further details: Mrs. P. Boreham on 01-650 4888.
The first All-Electronics Show/Seminex, Scotland, will take place on May 15-17, 1979, at Edinburgh's Assembly Rooms. Some 68 exhibitors were listed at the time of writing. Details: Saffron Walden 22612.
Welsh Amateur Radio, TV, Electronics and Computer ExhibitionSunday, May 20. Barry Memorial Hall. There will be trade, and bring-and-buy stands. Further details: Reg Knowles on 0222-565656.
Midlands Breadboard-May 23-26. Bingley Hall, Birmingham. Details: Trident.
Intel Fair-June 11, 1979. Wembley Conference Centre. Details to be announced.
Tranducer $79+$ Testmex 79-June 19-21. Wembley Conference Centre. Details: Trident.
Great British Electronics Bazaar-June 28-29, 1979. Alexandra Palace, London. Details: 0799-22612.
1979 Microcomputer Show (incorporating the DIY Computer Fair)July 5-7. Bloomsbury Centre Hotel, London. Will include seminars. Further details: Online Conferences Ltd. Tel: Uxbridge (0895) 39262.

top of the passband is now set. If a load is now applied to the projector by grasping the take-up spindle, the speed will drop. VR1 is decreased until the motor speed has risen to a value fractionally below 16 f.p.s. The bottom of the passband is now set. Further fine adjustment of the two resistors may now be made as necessary to achieve the minimum passband. S1 is then set to 24 f.p.s. and the procedure repeated with VR2 and VR4.

CONCLUSIONS

There is no simple electronic solution to the accurate.control of a variable speed motor, but with the right time constants and the band width correctly set up, this solution works extremely well! It provides a stable projector speed which is totally independent of motor temperature or load. No modification of the projector was necessary and no additional power supplies are required. With a common base board, the projector and speed control are completely portable. At last the projectionist can watch the film instead of the projector.

Consumer Electronics Symposium -July 8-11, 1979. University of Essex. Organised by the Society of Electronic and Radio Technicians. Details: The Symposium Office (CE), SERT, Faraday House, 8-10 Charing Cross Road, London, WC2 OHP.
The International Word Processing exhibition and conference will take place July 10-13, 1979, at the Wembley Conference Centre.

Word processing is having a dramatic effect on business procedures, and this event, which is claimed to be the largest in Europe, will display "virtually every available system and piece of equipment".

Details: BETA Exhibitions, Business Equipment Trade Association, 109 Kingsway, London WC2B 6PU.
Harrogate International Festival of Sound-August 18-19 (public), August 20-21 (trade) 1979. The Exhibition Centre + hotels. Details: Exhibition and Conference Services Ltd., Tel. 0423-62677.
Telecom '79-September 20-26. Palais des Expositions, Geneve. Details: Secretariat Telecom '79, Orgexpo, 18 Quai Ernest-Ansermet, Case Postale 65. CH-1211, Geneve 4 (Suisse).
Eltro Hobby '79-October 3-7. Killesberg Exhibition Grounds, Stuttgart. Details: 01-236 0911.
Compec-November 6-8, 1979. Grand Hall Olympia, London. Details: Iliffe Promotions Ltd. Tel: 01-261 8437/8.
Electronics 79-November 20-23. Olympia, London. Details: 021-705 6707.

Breadboard 79-December 4-8. Royal Horticultural Halls, Westminster. Details: Trident International Exhibitions. Tel 08224671. IEA/Electrex-February 25-29, 1980. National Exhibition Centre, Birmingham. Details: Industrial and Trade Fairs Ltd. Tel: 021-705 6707.
All-Electronics Show (1980)-April 29-May 1. Grosvenor House, London. Details: 0799-22612.

News Briefs

BRITISH SATELLITE

by Mike Abbott

THE FIRST all British amateur satellite is to be built at the University of Surrey, co-ordinated by the Telecommunications Research Group within the Department of Electronics and Electrical Engineering. The satellite's purpose and proposed features are a departure from the international OSCAR series, in that it will provide practical experience in developing an inexpensive UK spacecraft programme, and will feature a series of high frequency beacons, enabling radio amateurs worldwide to study the changing effects of the ionosphere on radio signals.

Collaboration will involve the university's Electronics and Amateur Radio Society (EARS), the Amateur Satellite Corporation (AMSAT), AMSAT-UK, and the Radio Society of Great Britain. Many companies such as Racal are to give active support.

Priority will be given to telecommand and other fundamental services, but complex experiments are anticipated, to be undertaken either by the university or amateur groups in this country. With a possible launch opportunity in early 1981 , the sateliite is intended for a polar orbit at an altitude of 900 km .

These satelites house VHF and UHF receiver/transmitters which allow radio amateurs to extend the range of their transmissions in the same way television programmes are relayed around the globe.

With the fault which developed in OSCAR-6 causing it to switch on and off unexpectedly, extra command stations were set up in Canada and Australia to control its use. Lacking in a similar facility, indiscriminate use by European radio enthusiasts threatened the satellite with drained batteries, and to counteract this EARS set up the only command station in the world, run (to this day) by students.

The EARS command station has since 1974 commanded successive OSCAR satellites while in orbit over Europe.

MARSHALL'S BRISTOL MOVE

Due to expansion, Marshall's have now moved from Fishponds Road, Bristol, to 108A Stoke's Croft, which is approximately five minutes' walk from the main shopping centre.

The command station at Surrey University has a steerable aerial complex capable of tracking to an accuracy of 0.5 deg , using an ex-Admiralty 2-metre paraboloid, and a tracking mount which was originally part of a Bofors anti-aircraft gun.

POIIIIS REISIIT

TRS 80 REVIEW (April 1979)

Unfortunately some errors appeared in the programs given in the TRS 80 review. The programs should read:

PRINT($389 * 14.761$) $\uparrow 8.7) * \operatorname{SIN}(0.87)$
10 CLS
20 FOR $X=129$ TO 191
30 PRINT X; " '"; CHR\$ (X);
40 /F INT $((X-128) / 9)=(X-128) / 9$ THEN PRINT: PRINT 50 NEXT

METRONOME (September 1978)

If the unit does not operate correctly, swap the two gates IC3d and IC1d so that IC3c is driven from IC3d. D3 should be 7.5 V .

PHASER (April 1979)

The pin connections for the BF244B were incorrectly given in Fig. 2. The correct connections are shown above.

CHAMP-PROG (April 1978)

Fig. 8.2. D1 should go to pin 15 on IC1, and C2 should go to pin 14, IC1. Also, pin 2 should connect to pin 12 of IC1 and not pin 5 . The timing capacitor of IC3 (C6) should be 47 nF . TR20 configuration should conform to that of TR 19-26. The connections to pins 1 and 3 of the PROM socket should be interchanged.

Fig. 8.5. These waveforms may seem to be upside-down, but are in fact correct. See Readout September 1978.

If the supply over-voltage protection circuit triggers unnecessarily due to the regulator's slow response at switchon, reduce the unregulated input voltage to 72 volts.

The data bus should not be taken from the transistors of CHAMP, since they perform an inversion, but direct from the CHAMP data bus.

The circuit around D22 and S1 should be wired as below.

AUTORANGING

MULTIMETER (May 1979)
A printing error has placed the green wiring overlays in Figs. 2.8 and 2.9 about 5 mm "North West" of their intended positions. Correct registration can be recognised by noting that wires 1 to 5 should go to the wafer poles (below mounting lugs).

STORING AND DISPENSING

If you are not a smoker who stores components in 2 oz . tobacco'tins you may be interested in one of Verospeed's smart multidrawer units. They are available in 24 and 48 drawer sizes. The drawers are easily labelled and dividers are available in packs of ten.

Also shown is a component dispenser for small production runs. It has three rows of picking bins of varying widths.

Multi-drawer units are $£ 16.80$, plus VAT, inc. p\&p. The component dispenser is $£ 5.52$, plus VAT, inc. p\&p. Bins, from 38 p to 92 p.

Verospeed, Barton Park Industrial Estate, Eastleigh, Hampshire, SO5 5RR. (0703 618525).

IRONS AT EXCLUSIVE PRICES

A company offering Litesold irons at reduced prices has just been set up. The company, called Future Electronics, is advertising the irons exclusively to P.E. readers.

The Litesold Model 15, 12 W iron, fitted with a $1 / 16 \mathrm{in}$. bit, operating at $360^{\circ} \mathrm{C}$ and weighing 14.9 gms is available at $£ 3.90$ inc. VAT and p\&p from Dept. MA1, Unit BI, Park Hall Trading Estate, Martell Road, London SEI. (01-761 3919).

MINI CASSETTE DECK

The CM600 miniature cassette system is a completely self contained unit measuring only $76 \times 76 \times 64 \mathrm{~mm}$ and has been designed specifically for digital applications. With the drive motor, read/write amplifiers and control circuitry all included in the unit it only requires a 5 V power supply for operation.
The CM600 has a two track recording head which produces a maximum recording density of 800 bits per in. and a data rate of 2,400 baud. Data capacity on a standard 100 ft miniature cassette is 1.6 M bits. The reel to reel drive system has a forward search speed of 5 i.p.s. with a rewind speed of 15 i.p.s. and a stop/start time of 150 ms .

Operation of the system is controlled entirely by external logic signals. Typically these represent tape direction (forward/release), tape motion (stop/go), tape speed (fast/slow), select read/write and data input. Output lines carry data and indicate which side of the cassette is being used.

The price of the CM600 is $£ 110$ plus VAT and $p \& p$.
BFI Electronics Limited, 516 Walton Road, West Molesey, Surrey KT8 0QF. (01941 4066).

DISPLAY CONSOLES

The new range of easy access display consoles from Boss Industrial Mouldings offers the option of either a satin black aluminium display panel or red, green or neutral grey, translucent filter windows if illuminated displays are to be used.

The contoured sides of the BIM7500 series are 12.7 mm thick, solid oiled walnut, with textured sand finished exterior panels, the top one being 1.2 mm thick steel and the keyboard panels being 1.6 mm thick aluminium.

The consoles are available in nine sizes offering the combination of 4 keyboard panel widths and overall sizes ranging from $250 \times$ $260 \times 112 \mathrm{~mm}$ high to $500 \times 431 \times 200 \mathrm{~mm}$ high with the larger sizes having a fully hinged upper section.

The exterior panels of all models are quickly detachable on removal of two or three concealed screws to enable rapid component accessibility.

The consoles vary in price from $£ 38.44$ to £81.54 excluding VAT and p\&p. For further information contact Boss Industrial Mouldings Ltd., Higgs Industrial Estate, 2 Herne Hill Road, London SE24 0AU.

P.C.B. TERMINAL BLOCKS

A range of p.c.b. mountable terminal blocks from two to 12 ways is available from Carrier Electronics. The pins are on a 5 mm pitch or two pitches of 0 lin matrix board. Wires up to $1.5 \mathrm{~mm}^{2}$ are accepted in a- nickel plated brass bush with screws clamping on to captive phosphor bronze wire protectors. The terminals have a 13 A continuous rating.

Prices range from 18 p for two way to 74 p for 12 way, plus, VAT at eight per cent, and postage.

Carrier Electronics Ltd., 48 Chester Street, Wrexham, Clwyd. (0978 5667I).

ELFII

The Elf II microcomputer kit is based on the RCA 18028 bit microprocessor. The basic system includes a 256 bit RAM expandable up to 64 K , a fully decoded hex keyboard and a 5 slot plug-in expansion bus (less the 86 pin connectors). The system is mounted on a double sided plated through p.c.b. A 1861 video i.c. is also supplied to enable segments of the memory to be displayed on a TV screen.

Also included in the basic kit is an owner's manual and complete instructions for assembly and testing. A power supply is available for $£ 5.00$ together with a complete range of expansion modules, including a fully encoded ASCII keyboard.

The basic Elf II kit is available from $£ 99.95$ with a steel cabinet and plexiglas dust cover for an extra $£ 29.95$. All prices are exc. VAT and p\&ep. P.E. will soon be reviewing this kit.

HL Audio, 138 Kingsland Road, London E2 8BY. (01-739 1582).

KEYBOARD KIT

This keyboard kit has a 9 bit parallel ASCII encoded output with dual polarity strobe edges and it can generate both upper and lower case ASCII codes. The unit has a power requirement of 5 V 120 mA and features long keystroke (3 mm) keys throughout. All the keytops have removable transparent caps suitable for special legends if required.

The overall size of the keyboard is $290 \times$ $140 \times 25 \mathrm{~mm}$ and it is priced at $£ 28.50$ plus VAT and p\&p.

Video Terminals, 197 Hornbeams, Harlow, Essex. (0279 30132).

PSUs

The TPS range of precision bench power supplies consists six high accuracy dual and single output units from $0-30 \mathrm{~V}, 1 \mathrm{~A}$ up to $0-60 \mathrm{~V}, 2 \mathrm{~A}$.

Although they are similar, the six units in the range offer different specific features: Three of the range are dual output units, with the facility to connect in series and parallel to effectively double the voltage or current ratings and all the outputs have a regulation of less than 0.5 mV variation. With a ripple and noise figure of less than 0.5 mV r.m.s.

Four of the units have an additional $5 \mathrm{~V}(1$ or 3 A) output facility, allowing users to power logic circuits without connecting to the principal output terminals. The separate 5 V feeds may be finely adjusted by an internally mounted trimpot.

Output voltage on all types is adjusted by a 10 -turn potentiometer mounted on the front panel, and this allows setting to be carried out to within 5 mV . Similarly, current trip adjustment is made using a single turn potentiometer. The moving-coil meters provide reading accuracy better than 2 per cent f.s.d., and on one model-the TPS 21D-these are replaced by l.e.d. digital readouts.

The prices of the TPS range are from $£ 108.55$ to $£ 254.42$ plus VAT and $\mathrm{p} \& \mathrm{p}$.

Gresham Lion Limited, Gresham House. Twickenham Road, Feltham, Middlesex TW 13 6HA. (01-894 5511).

CASIO CALENDAR

The Calendar 200 from Casio is a liquid crystal quartz digital wristwatch that displays the time, date or calender page for any month of the year. The calendar display is a new idea from Casio whereby the information is presented like a conventional calender page accompanied by a large digit representing the number of the month and an indicator showing the position of the Sundays. Automatic leap year conversion is programmed in.

 cluding VAT. For further information contact Casio Electronics Co. Lid., 28 Scrutton Street, London, EC2A 4TY). (01-377 9087).

CHILTERN IMPACT PRINTER

The new type 150 Numeric Impact Printer has been specifically designed for the digital instrument market. The instrument has eight active columns as standard with facility to expand to 15 columns if required. Each column has 12 characters with 0 to 9 with a dash and dot format and two extra columns have assorted symbols.

The standard interface is parallel TTL CMOS DTL compatible with optional inverted logic by selection and manual or remote control of all functions. An optional bit parallel character serial interface is available as is a line buffer giving up to four lines of storage.
There are optional clock/calendar and serial event counter cards available with the unit and for specialised print functions an IEEE/488 interface.
For further information contact Chiltern Data Systems Lid., Stoke Row, Henley-onThames, Oxon, RG9 5RB. (049-17 549).

PLAY IT AGAIN CASIO

What more could you want a calculator to do than calculate, tell the time and ring alarms? Casio think a tune playing function may fulfil a need. Their Melody Card, M-80, is just slightly larger than their recent creditcard size series.

Digits I to 8 are labelled Do to Dó, digit 9 gives one note above that octave, and the decimal and zero play the two notes below it. Thus you can play the one note samba and more.

A digit "key" will play its note as long as the key is pressed. Tunes of up to eight notes can be stored in memory. Even the timer alarms can be made melodious.

The recommended retail price of this threat to the Stylophone is $£ 29.95$. It can be bought by post at $£ 25.95$, inc. VAT and $p \& p$. from Timetron, The Beaumont Suite, 164-167 East Road, Cambridge CBI IDB. (0223 67503).

Microprocessor Evaluation System
 PART TWO

THE complete development system was mounted into a $380 \times 200 \times 100 \mathrm{~mm}$ case which was drilled as shown in Fig. 2.2 and then covered with fablon. The switches and l.e.d.s were fitted to the front panel taking care to place the anode pin of each l.e.d. at the top. The on/off switch, two DIN sockets, fuse holder and a grommet for the cable entry hole were fitted next with a 6BA earth tag fitted close to the grommet.

The outside positions of switches S4 to S 19 were joined together using two $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. tinned copper wire bus bars with the anodes of D1 to D16 joined to the third bus bar via resistors R34 to R49. (Fig 2.1).

Fig. 2.1. Front panel wiring diagram
The track layouts for the double sided p.c.b. are shown in Figs. 2.3 and 2.4 with the component overlay in Fig. 2.5. After the board has been made it should be placed in the case along with the transformer. Check that the transformer is clear of the p.c.b. and then mark and drill the three p.c.b. mounting holes.

Extra holes should be drilled in the rear and bottom of the case for ventilation.

POWER SUPPLY UNIT

The circuit diagram of the p.s.u. is shown in Fig. 2.6 with the p.c.b. design and component overlay shown in Fig. 2.7 and 2.8. After the p.c.b. has been assembled and checked ensuring that the two regulators (IC25, IC26) are soldered with long leads, the p.c.b. should then be mounted on the rear of the case and the two regulators mounting holes drilled. Both regulators should then be mounted using the insulated mounting kits supplied with the devices.

An ohmmeter should be used to check that the regulators
are not shurted to the case and then the p.s.u. can be wired up to the secondary winding of the transformer. The earth lead from the $O V$ of the p.s.u. should also be connected to 6BA solder tag under one of the mounting screws of SK1.

The mains cable to the primary of the transformer can be wired next via the fuse holder and mains switch. The mains earth lead should also be connected to the case.

Recheck the p.s.u. wiring and then switch on and monitor the output voltages. They should be approximately $-3 \cdot 3 \mathrm{~V}$, +5 V and +11.2 V . If the p.s.u. is functioning correctly switch off and disconnect the unit from the mains.

EA28
Fig. 2.6. Power supply circuit diagram

MAIN PRINTED CIRCUIT BOARD

The main processor board can be soldered next and it is strongly advised that i.c. sockets are used for all the integrated circuits. A suggested soldering sequence is to fit the i.c. sockets first, checking their orientation carefully, then the resistors and capacitors, TR1, TR2, D17, to D20 and 1 MHz . crystal. Vero-pins can be used for the power input wires, S1-S19 and the I.e.d.s D1 to D16. Also fit pins for the five branch external output and input lines and fit pins for IC19 pins 9, 10, 15 and 16 (the 4 bottom Q lines of the output latches). Fit all the through board links, ensuring that they are soldered both sides. Also check that all capacitors and resistors are soldered both sides of the board where necessary. Do not plug any i.c.s in yet.

Clean the flux from the board and examine it very carefully for bad joints and solder bridges between tracks. At this point take an ohmmeter and check the p.c.b. out against the circuit diagram. An hour spent doing this could save many hours later.

PL1 (Output)

Pin	From	Signal
1	IC19 pin 16	O/P latch 2°
2	IC19 pin 15	O/P latch 2^{\prime}
3	CC19 pin 10	$0 / P$ latch 2^{2}
4	IC19 pin 9	O/P latch 2^{3}
5	n.c.	
6	PSU +5 V	$+5 \mathrm{~V}$
7	GND	OV
PL2 (Input)		
Pin	From	Signal
1	IC23 pin 25	EBCA ${ }^{\text {d }}$
2	IC23 pin 24	EBCA1
3	IC23 pin 23	EBCA2
4	IC23 pin 22	EBCA3
5	IC6 pin 1	EBC1
6	PSU + 5 V	+5V
7	GND	OV
	table 1	

Fig. 2.3. Underside view of the main printed circuit board

Fig. 2.2. Case drilling details. Front panel (top), rear panel (bottom)

Fig. 2.5. Component overlay for the main printed circuit board

INSTALLATION OF MAIN P.C.B. AND TESTING

Mount the processor p.c.b. back into the case with the three self-tapping screws and connect the power supply outputs to the board. Connect the unit to the mains, switch on and monitor the voltages on the main p.c.b. If they are correct the switches can be wired to the board. Always remember to switch off at the mains before inserting i.c.s or adding wires to the board.

Wire switches S1, S2 and S3, wire the bus connected to R34 to the +5 V rail. Insert IC1, switch on, and check that the 1 MHz clock appears at IC1 pin 6 . Insert IC 4 and check that when the run load switch is in the loąd position IC4 pin 8 is low and when the switch is in the run position pin 8 goes high. Fit IC2 and 3 and check that when S1 is in the run position pulses appear at IC2 pins 9 and 5 and IC3 pins

Address 377 octal should be loaded into the address latches IC13 and 14 and IC11 pin 2 should go low. Put S4 to 'O' and press S2, IC11 pin 2 should go high. Put S4 to '1' and press S2. IC11 should go low again. Put S5 to 'O' and press S2, IC11 should again go high. Rèpeat the above test for all eight bottom switches, only when they are all at ' 1 ' should IC11 pin 2 go low.

If everything is alright, wire the cathodes of I.e.d.s D1 to D16 to p.c.b. D1 goes to IC19 pin 1. D16 to IC22 pin 8 (Fig. 1.3). Also wire up DIN sockets 1 and 2 as shown in Table 1. Insert IC15, 16, 17, 18 and 23, check that S1 is in the load position and S4 to S19 are In their centre off position and switch the unit on. Check all the p.s.u. voltages again to check that they are alright under full load.

The processor can be tested by the short program shown below.

Fig. 2.7. P.c.b. design for the p.s.u

9 and 5. Fit IC5 and 6 and check that pulses appear at IC5 pins 6 and 8 when S1 is in the run position, at IC6 pins 4 and 6, and also at TR1 and TR2 emitters. When S1 is in the load position IC4 pin 3 should be low and when S1 is in the run position IC4 pin 3 should go high. Leave S1 in the load position.

Insert IC7. Check that IC7 pin 8 is high and goes low when S2 is pressed. Check that IC7 pin 6 is high and goes low when S3 is pressed. Insert IC8, 9, 10, 11, 13 and 14. IC13 pin 9 should go low and then high when S2 is pressed and released. IC11 pin 4 should be high and stiould go low when S3 is pressed. IC10 pin 11 should be high and should go low when S3 is pressed. Insert IC12, 19, 20, 21 and 22. Wire the centre connection of switches S4-S19 to the Veropins at the end of resistors R18 to R33, set all 16 switches to their centre off position and switch on the unit. Monitor IC19 pin 2 and check that it is floating (i.e. an open circuit TTL input). Check that when S4 is switched down (' O ') the pin is switched to ground and when S4 is switched up (' O ') the pin goes to +5 V . Carry out this test on pins 2, 3, 6 and 7 of IC19, 20, 21 and 22 with switches S 4 to S19, each switch control only one pin. Monitor IC1 1 pin 2, set the bottom eight switches S4 to S11 up at '1' and press S2.

50100
Fig. 2.8. Component overlay for the p.s.u

ENTERING A SIMPLE PROGRAM

Consider the following program to increment register 1 in the CPU and output its contents to the l.e.d.s:-

Octal	Binary	Octal	Binary	
Add	Add	Data	Data	
0	0000000000000000	711	0000000111001001	Clear RI
1	0000000000000001	11	0000000000001001	Increment R1
2	0000000000000010	1101	0000001001000001) Output R1 to
3	0000000000000011	371	0000000011111111) Addu 377
4	0000000000000100	4	0000000000000100	Jump io
5	0000000000000101	1400	0000001100000000	Add 1
6	0000000000000110	1	0000000000000001	
376	0000000011111110	0	0000000000000000	Write stant add into location 376

1. Select Load/Run switch $S 1$ to Load.
2. Set switches S 4 to S 19 to octal \emptyset.
3. Push Enter Add S2 to enter Add \emptyset into Add register.
4. Set switches S4 to S19 to octal 711.
5. Push Enter Data switch to enter 711 into \emptyset in RAM.
6. Set switches S4 to S19 to octal 1.
7. Push Enter Add switch to enter Add 1 into Ádd register.
8. Continue until the octal number 1 is entered into location octal 6 in the RAM.
9. Now select octal 376 on switches S4 to S19.
10. Push Enter Add switch, enter 376 into Add register.
11. Write octal ϕ into this location using switches $S 4$ to S19 and the Enter Data switch. This writes the start Add into location octal 376 (any spare location can be used for the start address).
12. Put switches S4 to S19 to centre (off) position.
13. Select Load/Run switch to RUN. The program should now commence and the l.e.d.s should increment.
14. It is important that the last entry into the Add register should be the start Add of the program.
NEXT MONTH: programming.

Training

Catch 'em while they're young seems to be the motto in France. I note with interest a press report that 10,000 microcomputers are being ordered for French schools and universities and that 150 teachers are to get a year's training on their use and another 1,500 teachers a shorter course. In parallel there is a big competition for ideas on how to use MPUs in which up to 1,000 young inventors are expected to submit entries. A simllar scheme is in preparation for the UK with a funding of $£ 12.5$ million over five years, but is still in the paper and committee stage.

In the UK there are encouraging signs that science and engineering are regaining favour in schools and colleges as proper, even exclting, future careers. Salary structures have certainly improved over the past three years and the prospect, as seems certain, of a critical shortage of engineers over the next decade or so will at least give employment security and fine opportunities to all those who take the profession seriously. The latest salary survey shows that IEE members were averaging $£ 7,240$ p.a. in January this year compared with £6,210 p.a. in January 1978, an improvement well in advance of the cost of living. In the public sector electrical and electronic englneers' salaries on average were higher than in private industry so one assumes that public sector employees will keep quiet about comparability while those in the private sector might well start raising hella reverse of the general trend.

Results

The fickle wheel of fortune spares nobody. EMI's high-flyer, the EMI Scanner, so profitable in its early years is now almost a dirty word with losses this year estimated by City sources as $£ 15$ million or more, largely attributed to slumping sales in the USA and increasing competition in the market place. Budget-price brain scanners,
for example, are expected from two Japanese manufacturers this year, Toshiba and Hitachi. But EMI can take comfort in having sold two top-price whole-body scanners to China for $£ 500,000$ and is clearly making further efforts to diversify its market outside the USA.

Plessey, déspite increased business looks like having a standstill year as far as profits are concerned. In Plessey's case the problems are in the loss-making Liverpool plant making telephone exchanges, and Garrard making record players. Industrial disruption has also eaten into Plessey profits, one estimate being $£ 800,000$. So wonderful performance in some areas of Plessey activities are masked in the overall results by difficulties elsewhere, and by no means always the fault of the company.

Plessey, however, remains fundamentally strong with a record order book of over $£ 800$ million and with exports and overseas sales accounting for over half total turnover and a market in 131 countries.

GEC is forecast as pushing up profits this year to over $£ 370$ million and topping easily the $£ 400$ million mark in 1979/80. Profit growth will be led by GEC's electronic divisions, spearheaded by Marconi. The Formation of GEC-Fairchild in the UK has sparked off speculation that GEC has its sights on acquiring the whole of Fairchild Camera and Instruments in the United States.

The Racal Group, fastest growing in both turnover and profit in British electronics, is expected to have another good year. Recent tidying up operations include two name changes. Racal-Thermionic, the professional-quality tape-recording company in the Group has been re-named Racal Recorders Ltd and a base in the USA has been established as Racal Recorders Inc with sales and service initially from Rockville, Maryland, and Corena, near Los Angeles. These will be followed by other sales and service outlets later this year at Chicago and Houston. British Physical Laboratories, acquired by Racal in 1974 becomes Racal-BPL, the change coinclding with the entry of BPL into the digital panel meter field.

Among Racal's recent off-beat support activities are backing for Britain's first amateur scientific satellite being coordinated by the University of Surrey and the supply of radio equipment to the Transglobe Expedition which sets off from Greenwich next September on a three-year circumnavigation of the world by its Polar axis over land, sea and pack-ice. The Racal equipment is said to be worth over £ 130,000.

Hire

Hiring rather than buying instruments often makes good sense, especially if you need them only to meet short-term needs such as a small production run or in fieldcommissioning of a new installation. The UK instrument hire business has hitherto been shared by two companies, Livingston Hire and Labhire. Now there is a third entrant in the field, Leasemetrix. Not much
of a threat, you might imagine, against two experienced and well-established companies. That is, until you look at the Leasemetrix management. At the top is David Rennie who set up Livingston Hire in the 1960s and was top man there until parting company in 1975. Rennie is joined by sales manager R. J. Mundy and laboratory manager Ray Keogan who both held the same positions at Livingston.

An intriguing situation for industry watchers. Will Leasemetrix come up from behind and scoop the pool? Will there be a price war? Rennie says there will be no price cutting. As for coming up from behind, Rennie thinks there will be a big expansion in instrument hire and there is room for a third company. Financial backing for Leasemetrix comes from the Small Business Capital Fund which is a venture capital operation of the Co-operative Insurance Society.

Show-Biz

Telecom 79, the giant telecommunications show to be held at Geneva in September will see Britain's biggest ever promotional exercise. Centre-piece will be a huge BPO/Industry joint stand covering 9,000 sq metres occupied by the Post Office, GEC, Plessey, STC, Marconi and Pye TMC. The commercial companies will also have their own individual stands as will 24 other British companies in the business. The operation is supported by the British Overseas Trade Board and the Electronic Engineering Association. Public Relations for the promotion on a day-to-day basis is headed by Peter Wymer, well-known in the industry for many years as publicity manager at Mullard and later as a publicity chief in the Post Office before becoming a private consultant.

Mini-LP

The shape of things to come in the hi-fi market could be the $4 \frac{1}{2}$ in diameter LP record recently demonstrated in experimental form by Philips. A laser beam is used as a "pick-up" thereby eliminating record wear and giving a ten-year life with normal useage. Philips would clearly like its audio disc to become a world standard, following the path of the Philips tape cassette. The Japanese, however, are all working towards audio systems which will be compatible with videotapes. It could be the start of another damaging war in consumer electronics ending in another muddle of incompatible equipment. Philips say they will adopt a liberal licensing policy towards other manufacturers. If it goes ahead the Philips system should be commercially available by the mid-1980s. A big pluspoint for the $4 \frac{1}{2}$ in hi-fi disc is that it can be readily used in cars.

Automated Oven

In an attempt to capture a larger share of the microwave oven market, Toshiba has introduced an oven controlled by inserting a magnetic card which is encoded with the cooking instructions.

Rapid click-free selection of four switched tones, each of subjectively balanced loudness level. Designed for the practising musician.

SAVE E21. A Chinaglia Dolomiti USI for £32.95 including postage and VAT. Features 39 ranges, $20 \mathrm{k} \Omega / \mathrm{N}$ up to 5 A and 1.5 kV with electromechanical overload protection, signal injector, antiparallax mirror, case and 12 months guarantee.

PAACTICAL

OUR JULY ISSUE WILL BE ON SALE FRIDAY, 8 JUNE, 1979

M.PPAMI 5

EOT11
Fig. 1. Circuit diagram of the Transmitter
and mains power is then available to the appliance plugged into the $13 A$ socket. The wattage of the mains power which can be controlled depends largely on the choice of relay 1750 W is the maximum for the one specified in the components list). Switches are provided for bistable (on/off), monostable (temporary on) and mains/battery operation. The battery supply can easily be dispensed with for it merely provides an on/off action via another pair of the mains relay contacts available at two sockets. The range of the control system for domestic use depends greatly on the type of furnishings in a room, but you should expect from 5 to 8 metres.

TRANSMITTER

The circuit diagram of the transmitter is shown in Fig. 1. A CMOS 4011 i.c. is used as a square wave oscillator to drive the ultrasonic transducer at a frequency of 40 kHz . The oscillator is inactive until S3 is closed taking the voltage at pin 1 high. The 4011 contains four NAND gates, two of which are wired as an oscillator using R12, VR3, R14 and C8. The other two NAND gates are used as buffers to switch power to the transducer. The outputs, pins 10 and 11 , of the second two NAND gates go high and low in a complementary way at a frequency of 40 kHz . The variable resistor VR3 enables the frequency of the oscillator to be adjusted to the resonant frequency of the transducer.

RECEIVER

A combination of bipolar devices and CMOS integrated circuits is used in the ultrasonic sensitive receiver shown in Fig. 2. The function of the circuit may be understood by dividing it into its basic elements. Remember that the overall function of the circuit is to close the relay contacts RLA1
when the ultrasonic transducer receives the 40 kHz sound waves.

Firstly the circuit operates from a nominal 10 V d.c. supply derived from the mains via transformer $T 1$, rectifier diodes D1 and D2, smoothing capacitor C1, and the series stabiliser components, TR1, R1 and Zener diode D4. For portable

Internal view of the Transmitter
operation of the circuit, S1 enables a 9 V battery to be switched into the circuit.

Upon detecting an ultrasonic beam pulsed at around 40 kHz , the ultrasonic receiver transducer generates a small sinusoidal voltage which the preamplifier, based on transistors TR2 and TR3, amplifies. The amplified signals at the collector of TR3 are rectified by D3 and appear as negative going pulses at pin 2 of IC1 which compares these voltage peaks with the voltage on pin 3. The latter voltage is set by R8 and the variable resistor VR1 which acts as a sensitivity control. Thus, when no signals appear at the collector of TR3, pin 2 is held high by R7 and the output voltage from the op amp is zero. When voltage pulses arrive at pin. 2 and drive this voltage below that of pin 3, the output voltage suddenly switches positive, a condition which is made clear when D5 lights. Capacitor C4 provides a certain amount of integration of the pulses and avoids spurious operation of the op amp.

The signal from the op amp passes to pin 4 of IC2, a dual monostable CMOS i.c. The rising voltage on pin 4 triggers the first of these monostables, IC2a, producing a pulse from pin 6 the duration of which is fixed by the product of the R9 and C5 values. This monostable acts as a pulse shaper to provide reliable operation of IC2b and the CMOS flip-flop IC3.

Fig. 2. Circuit diagram of the Receiver

The second monostable is triggered via pin 12 and produces a positive output voltage at pin 10 for a duration determined by the product of the VR2 and C6 values. The same trigger pulse from pin 6 of IC2a switches the flip-flop IC3 via pin 3. Each pulse operates the flip-flop so that its voltage at pin 2 goes alternately high and low. Switch S2 selects in position 'a' the flip-flop output and in position 'b' the monostable output. Either pulse passes to the Darlington pair current buffer transistors TR4 and TR5 to drive the relay RLA. Thus the circuit provides a stable (on/off) or monostable (temporary on) control of the relay. The monostable period is set by VR2. The mains relay contact RLA1 determines the mains current which can be switched and hence the power of the mains appliance which can be controlled.

CONSTRUCTION

The transmitter components are assembled on a small piece of Veroboard as shown in Fig. 3. One mounting hole on the Veroboard firmly fixes the circuit by means of a 6BA

E6i0e
Fig. 3. Veroboard layout for the Transmitter
nut and screw to the inside of the plastic box shown in the photograph, in which the battery, transducer and switch are also fitted. Before screwing down the box lid, the variable resistor VR3 will need to be adjusted as explained under "setting up".

The receiver circuit is similarly assembled on the Veroboard as shown in Fig. 4. Note that this board also carries the rectifiers for the d.c. supply fed from the low voltage transformer windings. Decide if you want the battery facility. If not, S1a and S1b connections are not required. Double check all the spots where the Veroboard track needs to be cut away.

Note that diode D6 is wired directly across the relay contacts. One pair of the relay contacts (normally open) may be taken to a pair of 4 mm sockets for control applications if the unit is to be operated from the internal battery.

SETTING UP

If a battery has been included in the design, switch to the battery mode using S 1 a position. Turn the sensitivity control VR1 fully clockwise and the red l.e.d. should light up. Turn back VR1 until the l.e.d. just goes out. As you do this, the relay may be heard to operate. Jangle some keys in front of the receiver transducer and the l.e.d. should momentarily light and the relay be heard to operate. This shows that the circuit is sensitive to ultrasonic noise from the keys. A similar procedure should be followed to check the circuit's operation from the mains.

Now check the function of the transmitter by pointing it towards the receiver from a distance of about one metre. Keep the button pressed and the l.e.d. on the receiver should light up. If it doesn"t, use a small screwdriver to adjust VR3. The setting of $V R 3$ is critical so take your time. The idea is to tune the transmitter to produce the maximum signal from the receiver transducer. If you have a multimeter, connect it across pin 6 to ground of the op amp and adjust VR3 in the transmitter until the maximum voltage is detected. Or an oscilloscope can be used connected across the receiver transducer to detect the maximum signal voltage swing. Plug in a table lamp to the receiver's 13A socket. Switch the

Fig. 4. Veroboard layout for the Receiver

COMPONENTS

Resistors R1, R10	2 k 2 (2 off)
R2	22 k
R3	10 k
R4	100 k
R5	680
R6	1 k 2
R7	47 k
R8	220 k
R9, R11	$1 \mathrm{M}(2$ off)
R12	470 k
R13	2 M 7
R14	4 k 7

All resistors $\frac{1}{2}$ W 5\% carbon.

C6	$100 \mu 16 \mathrm{~V}$ elect
C7	$470 \mu 25 \mathrm{~V}$ elect
C8	680 p polystyrene

Semiconductors

D1, D2, D3, D6	1N4001 (4 off)
D4	11V BZY88 Zener
D5	TIL 209
TR1	BC182L
TR2, TR3, TR4	BC109 (3 off)
TR5	$2 N 3053$
IC1	741
IC2	4528
IC3	4027
IC4	4011 B

Switches
S1, S2 s.p.d.t. min. toggle (2 off)
S3 push to make p.b. switch

Miscellaneous

$\times 1$ Receiver 40 kHz
X2 Transmitter 40 kHz
B1 PP6 battery
B2 PP3 battery
RLA 12 V 2 pole changeover 3 A contacts
Battery clips
Mains 13A socket
Case type $301(70 \times 50 \times 25 \mathrm{~mm})$ Maplin.
Case type $103(188 \times 110 \times 60 \mathrm{~mm})$ Maplin.
mode switch S2 to the bistable mode and press the transmitter button pointing the transmitter at the receiver from a distance of about 2 metres. Remember that the ultrasonic beam is quite narrow (about 10°). One operation of the push switch (not too brief) will bring on the l.e.d. and the relay will be heard to operate and the lamp will go on or off. Practice the operation until you can reliably control the lamp, one push for on and the next push for off. You should get control over a distance of at least 5 metres.

Now check the operation of the monostable by switching S2 to this mode. The lamp will normally come on and remain on for a period of time determined by the setting of VR2. Wait for the lamp to go off and then use the transmitter to bring it on. Set VR2 to give the delay required-up to about 50 seconds with the values of VR2 and C6 given. The duration can be increased by increasing the value of C6. This

Internal view of the Receiver

monostable facility is provided if you want to turn on appliances such as a porch light for a limited period of time. In all these adjustments take great care when the receiver is being operated from the mains not to inadvertantly touch any bare mains connections within the unit. Note also that the maximum mains power which can be switched by the relay is determined by the current rating of the relay provided it is a 250 V type, so check the wattage of the appliances.

If the receiver sensitivity control is set too high, the receiver might be triggered by noise which has an ultrasonic component. So beware of rustling papers, jangling keys, the click of a central heating thermostat and bats! You may have to turn down the sensitivity control to avoid unwanted triggering of the receiver circuit.

Finally, you might like to know that the ultrasonic beam from the transmitter can be reflected from objects in a room: the ceiling or the wall opposite the receiver, from a chair leg-or you.

R.FI.SUPPRESSION for Power Supply Units B.E.TAYLOR*

SCORES of very comprehensive articles have been written on the subject of suppressing (and filtering) conducted radio-frequency interference generated by switch-mode power supplies. Very few of these articles have been written with the non-specialist engineer in mind, and even fewer have been written that cover r.f.i. generated by linear regulators. This article attempts to show that the design of power supplies with good interference suppression can easily be achieved, provided that a few relatively simple rules are followed.

SOURCES OF RFI

The first, and most important rule, is to design the power supply with r.f.i. suppression as an integral part of the design. It is futile simply to try to filter the noise at the line input and/or output terminals after the noise has been generated. The interference should be reduced at source. To this end, one must first recognise these sources of interference, and all supplieseven linear ones-have one or more of these sources.

How can linear regulators be classed as generators of r.f.i.? It is only when the linear regulator is closely scrutinised that one recognises one of the first sources of r.f.i. for all supplies: that of large, linepulse currents and their rates of change. One of the reasons for these large pulse currents is the line-frequency rectifier and the use of capacitor input filters. The reservoir capacitor forces the rectifier to conduct over very narrow conduction angles, and the sudden start and/or cessation of the resulting large current pulse that flows in line and neutral conductors-containing unwanted inductance (or the primary referred leakage inductance of the line transformer in a linear supply)-generates noise voltages that appear at the line and neutral terminals.
The effect of this rate of change of current is one of the major sources of
interference over the 10 kHz to 100 kHz band, and is also a factor up to a few megahertz. One of the remedies for this source of interference is to connect as large a value of capacitor (as large as the relevant safety specifications will allow) as near as possible to the a.c. terminals of the rectifier bridge.

Another source of r.f.i. (this time appearing at the output terminals) can be attributed directly to sudden changes in current flow, and is generated in the output rectifiers in switch-mode supplieswhether they be Schottky-barrier devices or plain fast-recovery rectifiers. The usual solution for these devices is to connect RC snubbers across the rectifiers or across the transformer secondary.

Yet another source of interference from currents and their rates of change is the emission of magnetic fields around conductors, chokes and transformers.

Not all r.f.i. is due to current. Many sources also arise from the capacitive coupling of rapid changes in voltage. Unfortunately, the 'dabbing' of the odd capacitor or resistor will have little or no effect. To eliminate these generators of interference, one must revert to the principles of good electrical and mechanical design.

IDENTIFICATION AND ELIMINATION

At this point, it is best to identify some of these sources, to tabulate them and to look at some of the available means of elimination that may be employed:
(1) The first source of noise due to sharp edges in voltage waveforms is the capacitance between the cases of switching transistors and their heatsinks. Since the case of the transistor is usually tied to the collector (the isolated-case TO-3 transistor is not yet readily available, so its use cannot be freely advocated), and the heatsink is usually at ground potential, it is easy to see the capacitor so created as forming
a potential divider with the capacitors to ground in the line input filter. Because the capacitors to ground in the input filter are limited to a maximum value (to minimise earth leakage currents) it is just not feasible to keep increasing their capacitances ad infinitum. The capacitance of transistor case to ground should be eliminated or at least drastically reduced. Reducing this capacitance is fairly easy; the, use of aluminium oxide insulating washers in preference to mica or Melinex ones to increase dielectric constant is one method. The elimination of this capacitance, on the other hand, involves the use of one or other of the two most common ploys: the guard screen (the subject of a Gould patent) or the use of a heatsink electrically isolated from ground. The heatsink should be connected to the negative line rectified rail.
(2) One of the most easily recognised sources of noise is due to transformer inter-winding capacitance. The use of electrostatic screens should prove more than adequate in eliminating this source. On no account, though, should the screens be connected to ground, but to d.c. rails-one to each side of the transformer. The exception to this rule is the safety screen. Therefore, between primary and secondary, the screens should be in the following order:
(i) primary; (ii) guard screen connected to the positive line rectified d.c. rail; (iii) safety screen to ground; (iv) guard screen connected to the common output terminal; and (v) secondary.
(3) A third source associated with the transformer in switch-mode supplies, but one that is less easily recognised, is the capacitance between windings and the transformer core. The winding of greatest concern is the primary, which is usually found to be in close prox-
imity to the core (whether it is the innermost or outermost winding is largely immaterial). Once again, a guard screen between the winding and core may be used. On the other hand, it is easier simply to isolate the core electrically from ground. Whichever technique is used, care must be taken to ensure to connect either the guard screen or core electrically to the primary d.c. rail.
(4) A problem very similar to the transformer-winding/core capacitance is the capacitance between the winding and core of the output filter choke, especially if the 'hot' end of the winding happens to be nearest the core. A simple remedy is merely to transpose the connections if the current-carrying conductors are not made of copper strip. If transposition of connections is not possible, the measures described in the preceding paragraph are necessary.

THYRISTOR INTERFERENCE

One of the most insidious of sources of r.f.i. and one which covers both current and voltage generation, is the thyristor or triac used in many soft-start circuits to limit inrush current. Claims are made that zero-crossing triggering of thyristors virtually eliminates them as generators of interference. This most certainly is not the case; thyristors always generate interference. It is only the magnitude of the noise that varies. The lesson to be learned, therefore, is that, if they must be used, the devices must be inserted in one of the rectified lines and triggered by d.c.

ELECTROMAGNETIC FIELDS

Finally, it is worth looking, if only briefly, at r.f.i. generated by the emission of electric and magnetic fields. These fields emanate from devices and conductors handling pulse voltages and currents. The only viable approach to solving the problem is good layout. A few rules, if
applied diligently, will be repaid handsomely; these may be stated as:
(a) Do keep cable lengths as short as possible.
(b) Do lump together all puisecarrying conductors.
(c) Do not allow these conductors to come into close proximity to supply conductors.
(d) Do not route cables carrying supplies or outputs near to transformers, chokes and switch transistors.

CONCLUSION

If, in the final analysis, all the foregoing rules are applied, a clean supply is almost certain to be the outcome. The application of a relatively simple filter should then be all that is necessary to make virtually any supply comply with most existing specifications.

[^2]

heavy current electricity in the united KINGDOM

By Lord Hinton of Bankside, Pergamon Press

$\mathbf{7 9}$ pages, Price $\mathbf{5} \mathbf{5}$ Hard Cover; $\mathbf{£ 2}$ Soft Cover

WHILST many of the readers of this magazine are probably aware of the salient milestones in the history and development of electronics throughout its various ramifications, beyond the power socket however, such knowledge is invariably lacking. This fascinating monograph will rectify any such deficiency as it provides a history of heavy current technology from its earliest development up to the time when the industry was nationalised in 1947.

The utilisation of electric power dates from Faraday's paper on electromagnetic induction in 1831 which precipitated the great change in world life style. Sadly, for this country, we lagged behind other industrial countries, both in the structure of an emerging electrical power industry and in the use of electricity.

We read of the stunting restrictions of central government that prevented a prosperous electrical manufacturing industry to be built up and which, no doubt, contributed to Edison's monopolistic incandescent light patent which funded a fortune for the inventor and spawned the giant General Electric corporation.

It was not until the 1926 Act had been passed that it became possible for Britain to have a forward looking electricity supply industry. That Act set up the Central Electricity Generating Board which had the job of creating and operating the national grid, the construction of which was not completed until 1933. However, although the C.E.B. had control over the grid retailing was still done by municipalities and by private companies. Nationalisation in 1947 established a new framework under the British Electricity Authority with ownership of all generating stations and subsequent rationalisation.

A pithy read that doesn't tax the mind. Highly recommended.
G.G.

April Fool? The 10-4 Newsletter is officially published quarterly but tends to appear every four months. So, the $£ 1.50$ subscription to C.B.A. entitles four issues. Apologies to all. ${ }^{-}$
A.T.

FREQUENCY BY TIME

HIGH resolution, fully autoranging frequency meter, is available from Orbit Controls of Cheltenham, which uses the reciprocal of time period to compute frequency.

Using a central processor, the 75C 501 TIC meter can measure down to 0.0001 Hz , and faster than is possible by the more conventional approach. It can display the digital reading in any engineering units required.

TEACHERS TO STUDY

AONE week course organised by the Department of Electrical Engineering at the University of Salford, is aimed at providing teachers who have some basic knowledge of electronics, with the opportunity to extend that knowledge. Running from July 16-20, 1979, the material covered will be adequate for the electronics option of the JMB "A" level physics syllabus, or other syllabi of comparable standard. It will cover operational amplifiers and integrated logic circuit applications, with approximately half the time being spent on experimental work. Details: The Administrative Assistant (Short Courses), Room 110, Registrar's Dept., University of Salford M5 4WT.

CUT PRICE WATCHES

WE HAVE received from Timetron, a revised price list giving details of some very significant recommended retail price reductions in Casio watches. An example is the 46CS-27B Alarm/Chronograph which in the April/May ' 79 price list has come down in RRP from $£ 89.95$ to $£ 49.95$. Timetron are selling this watch for $£ 39.95$.

OBITUARY

T is with regret that we report the death of David Cohen of RT-vC. A well known character in the electronic retail business. David was the sort of straight talking business man with whom you always knew where you stood-we liked him a lot!

RT-VC will continue under the guidance of his son. We offer our sympathy to his family and friends.

WORKSHOP P.S.U ${ }_{\text {Shoare }}$

0NE of the most useful pieces of test equipment for the workshop is a variable output supply for use in testing and setting up new circuits. The design featured in this article was developed to meet the author's requirements. Firstly the power supply should cover a wide range, 0 to 50 or 60 V , and to avoid the need for a built-in voltmeter it should be possible to dial up any required voltage. Secondly, the output would have switchable current limiting, and a high maximum current-1A. The current limiting should protect the circuit the power supply is feeding-in this case the power supply switches to standby after excess current. Thirdly, it should be as difficult as possible to get an excess voltage on the power supply output. The fourth requirement is that the power supply should be unharmed by misuse and protected against overheating.

PANELINDICATORS

The front panel layout is shown in the photograph. Upon switching on the circuit comes on to standby. After setting output conditions the "Output Connect" switch is turned on, and the reset button pressed. If all is well the output comes on and stays on. If not, the output current limits at the value selected, and the supply.reverts to standby when the button is released. When changing voltage or working on the equipment being tested the "Output Connect" switch is turned off, completely isolating the output and switching the power supply to standby. If the output voltage is increased with the output connected, the supply again reverts to standby. If the power supply should overheat the warning light comes on and the power supply cannot be reset until the temperature has dropped.

The idea is to make the system "fail-safe", as this is the only way to avoid expensive accidents when setting up new equipment. In practice this arrangement has proved very convenient to use for testing and fault finding.

CIRCUIT ACTION

With the increased availability of cheap i.c.s it seemed obvious that the circuit should be built around one, and the 723 voltage regulator was chosen. The normal way of connecting this is shown in simplified form in Fig. 1. A part of the output voltage is compared with the reference voltage. If the ouput tends to be low the error amplifier output goes up so the output is maintained. However the 723 will only stand 40 V input, giving a maximum of about 36 V out.

One way to get higher voltage outputs is shown in Fig. 2. There is a little fiddling to keep the error amplifier working in the correct range, but the only real complication is a separate power supply for the i.c. This, however can be very simple. In each case, the output can be reduced to zero by connecting the frequency compensation terminal to the i.c. negative line-this feature will be used for current limiting and overheating protection. Also, in each case the output voltage is proportional to the "Set Output" resistance, but in Fig. 1 the minimum output is the same as the reference voltage, whereas in Fig. 2 the minimum output is zero.

The V_{2}. output on the i.c. is only provided on the 14 d.i.p. version of the 723, but a metal can 723 could be used with an external 8 V Zener diode.

The complete circuit is shown in Fig. 4. Frequency compensation is provided by C 1 , and the emitter follower transistor (Figs. 1-2) becomes two transistors, TR4 and 5 to provide the required current gain.

As the reference voltage can vary between about 6.8 and 7.5 V , preset potentiometers VR2 and 3 have to be provided.

Current limiting is provided by sensing the voltage drop across R12 and the resistor selected by the current limit switch, S3. To avoid wasting power, and to avoid an unnecessarily large heat sink on the output transistor a range switch, S8 is used to switch the input to the regulator to about 60 or 35 V .

COMPONENTS . . .

Resistors	
R1	1 k
R2	4 k 7
R3	1k
R4	3 k 3
R5	3k
$R 6$	270
R7	5 k 6
R8	5 k 6
R9	1k
R10	1k
R11	100
R12	47
R13	47
R14	15
R15	5.6
R16	4.7
R17	4.7
R18	12 W
R19	220k
R20	47k
R21	2k2 2 W
R22	22k
R23	100k
R24	100k
R25-R33	1k 2\%
R34-R38	10k 2\%
Unless oth high stability	wise specified all resistors $\frac{1}{4}$ or $\frac{1}{3}$ watt
Switches	
S 1	Push-button push to break
S2	2 decade thumbwheel edge switch (see text)
S3	2 pole 6 way rotary
S4	Single pole double throw togyle (EV Type S7101)
S5	Double pole double throw toggle (EVType S7201)
S7	Double pole double throw toggle (EV Type S7201)
S8	Single pole double throw toggle (EV Type S7101)

Potentiometers

VR1 1k horizontal preset (Type PR15)
VR2 1 k horizontal preset (Type PR15)
VR3 1k horizontal preset (Type PR15)
VR4 1 k linear wirewound (see text)

Capacitors
C1 1 n disc ceramic
C2 $1 \mu 63 \mathrm{~V}$ electrolytic
C3 $47 \mu 63 \mathrm{~V}$ electrolytic
C4 $2,200 \mu \mathrm{~F} 100 \mathrm{~V}$ electrolytic
C5 $470 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic
C6 220p ceramic plate
Semiconductors
IC1 723, d.i.I, voltage regulator
TR1 OC81
TR2 BC184L
TR3 BC184L
TR4 2N5192
TR5 2N3055
TR6 BC184L
TR7 BC184L
D1 1N4148
D2 TIL209 Green
D3 TIL209 Red
D4 1N4002
D5 1N4002
D6 1N4002
D7 1 N4148
1N4148
D9 TIL209 Green
REC1 Diode bridge 2A 100 V r.m.s.
REC2 Diode bridge 0.5 A 40 V r.m.s.
D10 33V 400 mW Zener
D11 1N4148
D12 1N4148
D13 1 N4002
R25 VA1100

Transformers

T1 0-25-40-50V 1A (EV Type GP501) \} Mains T2 6-0-6V 100mA (EV Type 606/1)

Heatsinks

(For TR4) $17^{\circ} \mathrm{CN}$ (EV Type TV4)
(For TR5) $\quad 2^{\circ} \mathrm{C} / \mathrm{W}$ (EV Type $10 \mathrm{DN400}$
(For TR1) Clip type (EV Type A1031)
Fuses
FS1 500 mA 20 mm
FS2 1.5 A 20 mm
'EV Type' references refer to components available from Electrovalue Lid., 28 St. Judes Rd., Englefield Green, Egham, Surrey, TW20 OHB.
The cabinet is a 'Norman', Type WB4, size
$280 \times 150 \times 75 \mathrm{~mm}$ approx.

Normally the difference between the input and output is less than about 33 V , so TR7 is not drawing current, and the voltage at the base/emitter junction of TR6 plus D8 has to reach about 1.2 V before TR6 draws any current, and makes the output fall. If the input is much more than 33 V higher than the output, because the supply is set to high range and is current limiting (or incorrectly set to high range when a low voltage is selected) there is a risk of excessive power being dissipated in TR5. To avoid this TR7 switches on and shorts out D8, so that current limiting occurs when FR6 base is +0.6 V , and the maximum current is halved.

CONTACT RESISTANCE

R18 is shown as 1 ohm rather than 1.2 because the wiring and switch resistance of the prototype was about 0.2 ohms. As the contact resistance of the current limit switch could be a problem in time it is a good idea to wire two
switch sections in parallel on the 1 A range as shown. (This is "fail-safe" as higher resistance will reduce the maximum current.)

Reference to the 723 published data will show that there is already a current limit transistor equivalent to TR6 provided to do the same job. However, the rating of this transistor is inadequate in this configuration so an external device is used.

STANDBY

In Figs. 1 and 4 the voltage at point " x " is 0 when the output is stabilised. This point is sensed in the circuit by TR3. If the output voltage drops, for example, due to the onset of current limiting the voltage at the base of TR3 goes positive. When it reaches 0.6 V TR3 conducts and pulls down the output of the stabiliser, and D2 ("Standby") comes on.

Fig. 1. Operation of the 723 voltage regulator. Area within dotted lines indicates i.c.

Once this has happened the output will stay low, and can only be reset by opening S 1, the "Reset" button. In practice, R6 is included to make the normal voltage at " x " about 0.3 V , so that the detection of lack of stabilisation is more sensitive. When S2 is operated it will often go open circuit as it switches. In this situation the voltage at " x " goes positive, and the stabiliser goes to "Standby", whereas in a conventional circuit the output would start to rise to full voltage. If the new setting is to a higher voltage " x " goes positive and the stabiliser goes to "Standby".

OVERHEAT

The "Overheat" circuit has a temperature sensor mounted on the heat sink of TR5. The author is not aware of any cheap universally available thermistor designed for this job, so a germanium output transistor, TR1, is used (OC81 in prototype).

The leakage current of a germanium transistor is enormously temperature sensitive, and in this case a vice can be turned into a virtue! Although transistors are obviously not designed for this job, general purpose germanium types should work in this circuit.

If in a given case the leakage is too low, the base can be

Fig. 2. High voltage operation of the 723 regulator
left open circuit. The output of the overheat circuit is connected to pin 13 of the i.c. after the "Reset" switch, so that in the event of overheating the output cannot be brought on.

NORMALINDICATION

The "Normal" diode D9 is connected to indicate actual output voltage, so D5 and 6 are needed to make sure that it comes on at 1 V . Although the l.e.d. is not very bright below about 5 V this was thought to be a useful indication of correct operation, and the extra complication of constant current circuits does not seem worth while. Incidentally D5 and 6 also protect the power supply against reverse voltages.

With the component values shown the output is 1 V for every kilohm selected by S2. As shown this is a two decade thumb wheel edge switch, plus a 1 kilohm linear wirewound potentiometer for fine control. However, any desired alternative may be used.

Possibilities that come to mind are a 10 turn potentiometer, or a 12 -way switch giving 3 V steps, and $\mathrm{a}+30 \mathrm{~V}$ switch, which could be the same, switch as the range switch. However, a reasonably good quality switch should be used, as should it go permanently open circuit the stabiliser output could be reset to maximum. (An intermittent open circuit, which is much more likely, would merely put the output to standby).

Fig. 3. Graphs showing workshop power supply unit's voltage regulation

The power dissipated by TR5 is the difference between input and output voltage, multiplied by the maximum current, and could be up to about 40 W . To cope with this a heat sink with a thermal dissipation of about $2^{\circ} \mathrm{C} / \mathrm{W}$ is indicated.

The maximum dissipation from the heat sink will only be achieved if the fins are mounted vertically in free air-that is, on the outside of the back panel.

It helps a little if the heat sink is painted matt black, and a smear of silicorıe grease must be used on both sides of the insulating washer for TR5. In practice the back panel of the case will dissipate some heat, and the prototype using the specified heat sink cut down from 4 to 3 inches runs quite cool, but it is not recommended to reduce the heat sink much more. TR4 runs at the power of TR5 divided by the $h_{\text {FE }}$ of TR5-a maximum of about 2 W . This power is comfortably dissipated by a small heat sink mounted on the circuit board.

The whole circuit depends on TR5 dissipating the necessary power with low leakage. The 2N3055 is not expensive, and to use a lesser transistor, or one of dubious origins, is asking for trouble.

Fig. 4. P.s.u. circuit

RECTIFIER CIRCUIT

The stabiliser circuit is fed from the rectifier circuit of Fig. 5. Ironically, the compromises in the circuit have been made here, for the sake of specifying components that are universally available at a reasonable price. As the range switch is before the reservoir capacitor a thermistor is included to reduce the switching surge to reasonable proportions. However, this must increase the amount by which the power supply sags at high current.

The highest voltage rating of large electrolytic capacitors at a reasonable price is 63 V , which is just above the 60 V obtained at low loads using the 40 V tapping of the specified transformer. However, at a continuous load of 100 mA this drops to 56 V , and at 1 A to 45 V . The maximum output voltage is about 3 V less. As equipment to be tested will rarely demand continuous high current as well as high voltage, this compromise seems reasonable. However, for those who refuse to compromise, the alternative is to use a 2 N3442 for TR5. Then the high range can use the 50 V output of T1 which should be rated at 2 A . In this case the full
size heat sink should be used.
As transformers are expensive some constructors may wish to use alternatives, which is quite in order as long as the actual measured voltages prove suitable. T2 can be replaced by any available transformer giving a rectified output between 14 and 18 V .

SAFETY

The cabinet and all exposed metalwork must be connected to mains earth (TR5 should have a cover). The output is earthed by S 4 connecting mains earth to the positive or negative output. It is not really safe to allow the output to float, as it is possible that a transformer could develop a primary/secondary short.

If both transformers are replaced by types having a screen between primary and secondary a floating output becomes permissible,

The fuses are not made accessible from the outside as their failure would indicate a fault within the power supply.

Fig. 5. Bridge supplies for main circuit

STABILITY

The inherent stability of the 723 regulator is very high (a fraction of 1% in most circumstances), so the accuracy achieved depends largely on the components used. The absolute value of R4-R8 is not important as long as they do not vary. Thus 5% high stability resistors are good enough for this application. The resistors R25-R33 for the 1 V steps are critical, but a 5% error represents only 50 mV , which is close enough for most purposes.

When a nine is dialled up, however, nine of these resistors are in series, giving a possible error of 450 mV . Statistically the error in this case should be much less than 5%, but the extra expense of 2% resistors is probably worthwhile. The resistors R34-R38 for 10 volt steps should however normally be 2%.

The preset potentiometers VR2 and 3 are a potential weak link, but they only make up a small part of the total resistance. If preferred they could be replaced by multiturn preset potentiometers.

For the minimum thermal drift in the i.c. the resistances seen by the inverting and non-inverting inputs should be equal. This is achieved at about 15 V , but the unbalance at other voltages is not great enough to cause difficulties, as the i.c. does not dissipate enough heat to run at all hot.

CONSTRUCTION

The general construction of the prototype can be seen from the photographs. The circuitry is mounted mostly on two pieces of Veroboard corresponding to Fig. 6 and Fig. 7. The layout for the rectifier circuit is given in Fig. 7. Layout for the stabiliser, Fig. 4, is given in Fig. 6. This uses rather a large number of links, and could probably be improved upon, but the extra expense of a printed circuit board does not seem warranted. It is recommended that Veropins should be used for external connections, as this makes assembly easier and reduces the likelihood of short circuits between tracks. The construction must be of a high standard if expensive disasters are to be avoided. In particular beware of whiskers of solder or removed copper getting between tracks.

The i.c. should be mounted in a holder.

Fig. 6. Stabiliser circuit

Fig. 7. Supply board T1 and C4 are elsewhere chassis mounted (see photograph)

SETTING UP

If the unit has been built properly there should be no snags, but it is worthwhile testing methodically just in case something is wrong.

It is advisable to build and test the rectifier circuit before connecting the stabiliser circuit. Before connecting TR5 check that there is no short circuit to the heat sink.

Switch to 20V, 25 mA , low range, "Connect" turned on, and connect a voltmeter to the output terminals. Switch on, and the standby light should come on. Press the reset button, and the "Standby" light should go off, "Normal" light on and the voltmeter should read about 20V. Adjust VR2 to correctly set 1 V and VR 3 to set 20 V -repeat the process as
necessary as the two controls interact. Check for overheating (at this point the overheat circuit is not set up, so if necessary adjust VR1 so that the "Overheat" light is off).

To check the current limit select $10 \mathrm{~V}, 25 \mathrm{~mA}$, and connect a meter set to 100 mA in series with a 220 ohm resistor. Press the "Reset" button-the "Standby" light should stay on, and the meter should read 25 mA approx., as long as the "Reset" button is pressed, dropping to zero when the "Reset" button is released. If the range switch is set to $30-60 \mathrm{~V}$ and the test repeated the current should be halved.

To set up the overheat circuit remove the resistor and meter. Remove TR1 from the heat sink and put it in a cup of

VIEWS INSIDE ...

(a)

(b)

Fig. 9 (a) Stabiliser Veroboard (b) Supply Veroboard (c) Showing mounting of OC81 sensor below TR5's heatsink
almost boiling water (just dip the can of the transistor in the water, not the leads). Switch on and press the "Reset"•button. Increase VR1 from minimum resistance until the "Overheat" light and the "Standby" light both come on. Check that the "Reset" button is inoperative. Switch off and reconnect TR1 to the heat sink.

If all is well the unit can be tested at higher current. The hardest test is low output voltage at maximum current. If all is still well set to high range, where the hardest test is about 30 V at maximum current. Also check that TR4 and the i.c. are not overheating.

Now test for leakage in TR5, which is shown by a voltage on the output, and thus a slight glow in the "Normal" light when the circuit should be in "Standby", especially on the high range. If all is well get TR5 hot by running at low output voltage, high current for some time until it is on the verge of overheating. Turn off the "Connect" switch, and check that the "Normal" light is completely off.

Give the power supply a good soak test, and if necessary slightly adjust VR2 to correct the output at 1 V and VR3 to correct the output at 50V. Check that the output is correct at other voltages, and check the current limit on all ranges.

This new style course will enable anyone to have a real understanding by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1. Build an oscilloscope.
 As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.
 2. Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.
3. Carry out over 40 experiments on basic circuits.
We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all ty pes of electronic equipment, radio, t.v. etc.

4. FreeGift.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

Post now, without obligation, to:

BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL

P,O, Box 156, Jersey, Channel Islands.

SAXON ENTERTAINMENTS

STANDARD CENTAUR 100 W

 Deposit $£ 57.12$
12 months @ $£ 21.94$ or 24 months @ $£ 12.54$

SUPER CENTAUR 200W

Deposit $£ 68.12$
12 manths @ £26.19 or 24 months @ £14.90

GXL 200W

Deposii $£ 87.32$
12 months @ £33.64 or 24 months @ £14.90

GXL. WITH PDF BINS

$£ 417{ }_{8}^{+ \text {Corar } £ 15}$
 34.56 Deposis $£ 93.56$ 12 months @ £36.36 or 24 months @ £20.B1
 CUSTOM CENTAUR 400/600W WITH FOUR PDF 100A BINS

 12 months @ $£ 60.54$ or 24 months © $£ 34.66$

STEREO DISCOS
C/W LIGHT SHOW \& DISPLAY TWIN LOUDSPEAKERS \& LEADS 100W-600W

* 2 Year warranty
- Full Mixing + Crossfade + Mic/Tape Inputs
* Headphone \& Cue Light Monitoring
* Full Range Bass/Treble Controls + Mic Tone
* 4 Channel Soundlight + Display

JUST PLUG IN AND GO!!
SEND TODAY FOR YOUR FREE BROCHURE

MINI DISCO 100 WATT

P.A. SYSTEMS

YEAK GUARANTEE

loo WATT \& 159.90

+ VAT \&13.49

AMPLIFIER UNITS ONLY

AP100 AMPLIFIER
£49.50 + Carr $£ 1.50$ \& VAT $£ 3.96$ $\star 4$ Mixed Inputs

- Bass/Treble Controls
* Vynide Case
- 100 Wotrs Output

AP200 AMPLIFIER
£89.50-Carr £1.50 \& VAT $\$ 7.16$ * Six Mixed Inputs \# Three Sets Boss/Treble $\star 200$ Walts Output * Slove Socket

ELECTRECT MIC DI501 £18.50* TOP QUALITY UNIT + VAT $£ 2.31$

ECM105 LOW COST ELECTRECT CONDENSER MIC + VAT 62p £5.00*

MELOS CASSETTE ECHO.
REVERB UNIT - Twin input $£ 65.00$ VARIABLE SPEED \& DEPTH + VAT $£ 5.20$
SOUND-TO-LIGHT UNITS

б, б, б, б

MONO/STEREO
Input Modules
Mono PCB only $£ 6.50$
MONO OR STEREO WITH AUTOFADE
Available complete and ready to plug in or os on easy to connect module with all controls except monitor switch olready fitted - full instructions supplied.

FEATURES INCLUDE:
Twin Deck - Mic \& Tape Inputs - Wide range bass \& treble controls - Full headphone monitoring - Crossfade - Professional stan-
SA 3088 ohms $30 \mathrm{~W} 45 \mathrm{~V} £ 10.75^{* *}+£ 1.34$ SAupply for 2 modules $£ 11.90^{*}+£ 1.4$ Suoply for 1 or 2 modules $£ 14.95+£ 1.20$ SA 6088 ohms 60 W 65 V £ $15.50+$ £1.24 Supply for 1 or 2 modules $£ 14.95+£ 1.20$ SA1204 4 ohms 120 W 75 V £ $17.50+£ 1.40$ Supply for 1 module $£ 14.95+£ 1,20$ SA1208 8 ohms $120 \mathrm{~W} 95 \mathrm{~V} £ 21.00+£ 1.68$ Supply for 2 modules $£ 24.75+£ 1.98$
dord performonce.

COMPLETE

 MIXERS (with case) Mono nouns $£ 45.75+53.68$ £63.75 $+£ 5.10$modules
Mono module $£ 27.50+£ 220$ Stereo matule $£ 37.50+£ 2.20$
Panel $£ 3.95+32 \mathrm{p}$
sockers etc $£ 5.50+44 \mathrm{p}$

MOTOROLA PIEZO HORNS £4.50. YES!!

+ VAT 36p
FUZZ LIGHTS Red, Blue, Yellow, Green $\mathbf{£ 2 2 . 8 0}$
+ VAT $£ 1.82$
HEAVY DUTY SPOT BANKS
MATCHES LOUDSPEAKERS
3 way $600 \mathrm{~W} £ 35.504$ woy $800 \mathrm{~W} £ 39.50$ Carr $£ 2$ + VAT $£ 2.84$
+ VAT £3. 16

100W SPOTS

Red - Blue - Amber - Green £1.50 ea. + VAT 12p

CABINET FITTINGS

ICI Vynide $50^{\prime \prime}$ wide $£ 3.50 \mathrm{~m}+$ VAT 28 p Kick-res grille $50^{\prime \prime}$ wide $£ 3.50 \mathrm{~m}+$ VAT 28 p Netlon kick proof $24^{\prime \prime}$ wide $£ 3.50 \mathrm{~m}+$ VAT 28 p Corners/feet/recess plotes $15 p$ ea. + VAT 10 Recess handle $45 p+$ VAT $3 p$ bar handies $£ 2.50$ +VAT

LOUDSPEAKER CABINETS

 COMPIETE WITHIEADS

 COMPIETE WITHIEADS}- Fitted with 100W 17,000 Gauss drivers
\square Rugged cabinets with aluminium trim - black vynide etc - Lifetime guarantee on main drive unit Standard loow $1 \times 12(48 \times 41 \times 24)$ Large loow $1 \times 12(65 \times 48 \times 24)$
P.A. $1 \times 12(+2$ Piezos) $(80 \times 38 \times 24)$ P.A. $2 \times 12200 \mathrm{~W}(100 \times 38 \times 24)$

Disco $2 \times 12200 \mathrm{~W}(80 \times 63 \times 24)$
POF reflex $\operatorname{bin}(80 \times 40 \times 41)$
Carr $£ 3+$ VAT $£ 7.60$
der Rex Bin - Twin Horns - Integrated Slave
Amplifier - Accepts mono or stereo signals
DUse with all types of mixer
Q Pan and volume controls
\square Send for details

All prices subjet to 8% VAT except where asterisked $\left(12 \frac{1}{2} \%\right)$ Shop premises apen Tues to Sat $9 \mathrm{am}-5 \mathrm{pm}$ Lunch $12.30=1.30$ pm Mail order dept open Mon to Fri $10 \mathrm{am}-4 \mathrm{pm}$ Ring 01.6846385

TO ORDER

By Post Send your requirements with cheque crossed P.O. or 60 p COD charge to address below or iust send your Access or Barclaycord Number NOT THE CARD.
By Phone You may order COD, Access or Barclaycard. Post \& Packing 50p on all orders except where stoted.

SAXON ENTERTAINMENTS

327 Whitehorse Road, Croydon, Surrey.
All Enquiries torge SAE Please Brochures on request

[^3]

A selection of readers' original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to its merits.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

THIS circuit was designed as a cheap thermometer utilising an external $3 \frac{1}{2}$ digit DVM providing readings of 20 $\mathrm{mV} /{ }^{\circ} \mathrm{C}$. Whilst making no total claim for originality, I was impressed by the stability of a 741 used as a d.c. amplifier of fairly high sensitivity. The nearest commercial equivalent would have cost over $£ 120$, and would not have been very suitable (for an enzyme kinetics experiment).

On the basis of the success of this circuit, I might try extending the use of 741 s
in laboratory applications where, commercially, chopper amplifiers are used. It would not be too difficult to make a chopper-stabilised amplifier with 741s and analogue gates. DI (any small silicon diode) was minimally insulated with epoxy resin, for good thermal conductivity. Once the 741 offset had been nulled at the appropriate ambient temperature (R3 and R4 maintain approximate offset current balance), it drifted by $\langle 1 \mathrm{mV}$ over several months.

The temperature was rezeroed in
ice/water every few hours (drift $< \pm 3 \mathrm{mV}$ / 5 hr). Response was very linear and repeatable over the operating range of $0-50^{\circ} \mathrm{C}$, and accuracy was probably limited by the calibration (accurate to 0.1 deg C). DI dissipates $300-400 \mu \mathrm{~W}$, and self-heating may not always be negligible. The +9 V supply is a minimum safe value for the 723 for a stable $V_{\text {ref }}$
B. J. Fowler,

Dept of Biochemistry, Liverpool Polytechnic.

GUITAR FUZZ/SUSTAIN UNIT

COMMERCIAL guitar effects are usually very highly priced and therefore a circuit which offers two useful effects cheaply must be very appealing to most guitarists. The circuit shown is cheap to build and gives the ever-popular fuzz effect as well as sustain.
This design can be built either as a separate unit or is small enough to be inserted directly inside the guitar body.

A standard pre-amp consisting of TR1 enables even very low output guitars to be used successfully. The amplified signal is then fed to an op-amp IC1 via C1. Because of the high gain the waveform will be severely clipped. With S1 in the "fuzz" position the signal will be attenuated by R10 and taken to the output.
With S1 in the "sustain" position the output from IC1 will be attenuated and modified by the two stage RC network R8 C4 and R9 C5. This will remove most of the high order harmonics formed by the clipping to leave a sound more like the original. Sustain will be present because during the time clipping occurs the output level will remain constant independent of the input.

Should any residual fuzz sound at output be a nuisance then adjustment of the amplifier tone controls for maximum bass and minimum treble will eliminate it.

Battery drain is below 1 mA so a PP3 battery would make a compact power source. The high gain of the circuit may cause several problems: the circuit should be laid out in a logical manner to avoid instability and positive feedback.

The input lead should be screened to prevent hum and radio pickup. Owing to the increased sensitivity the guitarist should use his hand to damp the strings not being played. Guitar volume and tone controls should, of course, be left at maximum.
A. Niemiro,

Welwyn Garden City,
Herts.

LAMP

DIMMER

 ANY lamp dimmer circuits suffer from several drawbacks:(1) Power consumption is too high for operation in a sealed box.
(2) High levels of r.f.i.
(3) Failure of a component may have disastrous results.
(4) Lamp flicker at very low light levels and hence the inability to turn the lamp off without a switch.
The circuit shown consumes a maximum of 0.25 W and drives the lamp with a.c. using a thyristor and a bridge rectifier.

The lamp is wired in series with the circuit which enables r.f.i, to be reduced using only one capacitor across the mains input giving an effective RC filter with the lamp. Failure of any one component will at worst only turn the lamp fully on or off.

TR1 and TR2 form a switch which operates when the voltage across Cl exceeds that set by R1 and R2. The energy in C1 fires the thyristor after a delay set by VR1.

The 12 V Zener provides a working voltage to the circuit which falls to zero at
the end of each half cycle reducing the base voltage of TRI towards zero. The timing capacitor is thus discharged each half cycle which avoids lamp flicker due to charge being accumulated on Cl when VR1 is set for a delay longer than a half cycle. Triggering early in the following. cycle is thus avoided enabling trouble free control at near zero light levels.
M. A. McCabe,

Bradford,
W. Yorks.

STEREO PEAK DETECTING PPM

0NE disadvantage of peak program meters (PPMs), apart from their usual cost and complexity, is their ability of hiding serious overloads. This is because the logarithmic response makes a large overload look like an insignificant one. It is for this reason that this simple inexpensive circuit for a PPM was designed to include a peak detection circuit which can detect a $+1 d B$ overload.
The circuit shows for one channel. The figures in brackets indicate the ICI pin connections for the other channel. IC1 is a quad current differencing amplifier (CDA). The incoming signal is half wave rectified by ICla , the gain of which is controlled
as a function of the output voltage to give a logarithmic response. This response is tailored by switching in negative feedback as the output voltage increases. Four discrete linear slopes are combined to approximate the logarithmic response. Diodes D1, D2 and D3 are used as the switches. Diode D5 provides some temperature compensation. The output peaks charge C2 to give an attack time of about 1 ms . The decay time is about 160 ms . IC Ib forms a comparator/monostable which will drive the l.e.d. overload indicator for 40 ms periods if $\mathrm{a}+1 \mathrm{~dB}$ signal persists for 1 ms . A continuous overload will cause the l.e.d. to flash on and off.

The meter scale is linear and calibrated -35 dB to +5 dB . The meter zero is calibrated -35 dB , although it is, of course, infinity, but this makes little difference.

Setting up is very simple, since the overload indicator provides a means of calibration. First, a signal is applied to the input which is just sufficient in amplitude to light the overload l.e.d. VR2 is then adjusted so that the meter reads +1 dB . VR1 can then be adjusted so that a OdB input deflects the meter to 0 dB . This can be any where between 60 mV and 2.8 V r.m.s.
P. R. Williams,

Stevenage,
Herts.

BOAT SPEED CONTROLLER

AFRIEND wanted to control the speed of a model boat without wasting valuable power across a power rheostat. This design evolved.
The on time (o / p high) is when C 1 is be ing charged via R1 and D1.

The off time ($0 / \mathrm{p}$ low) is when C 1 is being discharged through VR1 and R2 to pin 7. This off time can be varied by ranging VR1 but the on time is not altered due to D1 bypassing R2 and VR1 on charge.

When the o/p at pin 3 is high TR1 is switched on. The o/p pulses are smoothed by C 2 which also eliminates damaging back e.m.f.

As the o/p transistor is a TIP 3055 and is saturated, no heatsink should be required.

C3 is to remove spikes from the supply line.

A 100 kilohm potentiometer was used as the servo which moves this had only limited movement. The variation of the resistance required to be about 10 kilohms. A resistor can obviously be put in parallel with VR1 if the movement is too great.
The speed can be varied from full to very slow, smoothly.
S. H. Allsop, South Anston, Sheffield.

PIN 3 OIP

MINIMUM VRI SETTING

[區记

PIN 3 OIP

MICRO-EUS

Compiled by DJD.

Abstract

Appearing every two months, Micro-Bus presents ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data books. The most original ideas often come from readers working on their own systems, and payment will be made for any contribution featured.

THis month's Micro-Bus looks at two ac tivities that are normally considered extremely difficult for computers. The first is speaking, and a board which will provide speech output for a microcomputer is reviewed here; a program for generating random limericks used to evaluate the system is given in full, together with details for using it without a speech system to print limericks. The second activity, on a less serious note, is self-replication, and self-replicating programs in BASIC and M6800 assembler are given here.

MICRO TALKS

The speech channel is, for humans, the most fundamental means of communication, but it is still largely neglected as a means of communicating with computers, and HAL in "2001 A Space Odyssey" remains a creation of science fiction. However electronically synthesised speech was generated as long ago as 1951 by Walter Lawrence's PAT, or Parametric Artificial Talker, and although it is still difficult to produce very high-quality speech there are now simplified systems available for use with microcomputers.

One such system is the USA-produced Computalker board, designed for the S-100 bus and sold here for around $£ 310$ with software. Another product, the Britishdesigned Microspeech board, has recently become available and Micro-Bus obtained one to review.

MICROSPEECH REVIEWED

The Microspeech board, shown opposite, is designed for use with the SS-50 bus as used in the South-West Technical Products MP-68 microcomputer which is based on an M6800 micro. At £295 including software it may seem rather expensive, but the circuitry is fairly complex containing some 38 i.c.s. The hardware and software were designed by Tim Orr and Richard Monkhouse respectively, both of whom formerly worked at Electronic Music Studios.

SYNTHESIS BY RULE

The Microspeech system uses a method of generating speech known as "synthesis by rule". The speech is stored in the most economical form of phonetic text, in which
unique symbols are used to represent the different sounds from which the words are composed. Typically a minute of speech coded in this way can be stored in each IK of memory.
Each speech sound is represented by an unambiguous one- or two-letter code; for example, "O" is the vowel sound in "hot" and "got", and "OO" is the vowel sound in "boot" or "true". The phrase "stupid computers" is rendered as "STYOOPIXD/KOMPYOOTETS. The "/" is used to separate words; a space gives a pause in the flow of speech. It is also possible to exert some control over the pitch of the voice, and this may be used to add intonation to make the speech sound more natural; for example "+" and "-" increase and decrease respectively the pitch of the voice by one unit, and these may be inserted between the phonetic codes at any point.
Two pieces of software provided with the system both convert the phonetic text into a series of parameter values which control the electronics of the synthesiser board. One, a stand-alone program, enables one to enter a piece of phonetic text and play it. The other
program is a patch to SWTP 8 K BASIC which makes it possible for a BASIC program to produce speech output. The phonetic text is printed to port 3 ; the speech software buffers it until an up-arrow is received, whereupon the text is spoken.

BLOCK DIAGRAM

Microspeech's electronic vocal tract is shown in block form in Fig. 1. The nine parameters on the diagram which control the different sections of the model are:

Frequencies:

FI-formant I
F2-formant 2
F3-formant 3
FF-fricative formant
FV-voice oscillator
To specify these parameters, nine 8 -bit numbers are output to the Microspeech board by the controlling software. Each number is converted to an analogue voltage by a D / A converter and then steered to one of nine

The Microspeech board which will provide speech output from a microprocessor system.

Fig．1．Block diagram of the speech synthesiser electronics；the nine control voltages determine the speech sound produced．
sample－and－hold units by a multiplexer．The nine parameters are updated by the software at a rate of 50 times a second．The manipula－ tion of these parameters enables the human speech sounds to be simulated as follows：

Vowels are generated by producing waveforms with maximum energies at certain specific frequencies known as the formants． The first three formant frequencies turn out to be the most important in determining the per－ ceived vowel；for example，the＂ O ＂in＂hot＂ has formants at $730 \mathrm{~Hz}, 1 \mathrm{kHz}$ ，and 2.4 kHz ， whereas the＂OO＂in＂boot＂has formants at $300 \mathrm{~Hz}, 370 \mathrm{~Hz}$ ，and $2 \cdot 2 \mathrm{kHz}$ ．

Dipthongs，such as＂AY＂in＂pay＂and ＂OY＂in＂boy＂，are produced by gliding from one vowel sound to another．The vowel sounds are created electronically by passing the sawtooth waveform output from the VCO （Voltage Controlled Oscillator）through a line of three voltage－controlled bandpass filters， one for each formant（see Fig．I）．

A separate formant filter is used for nasals such as＂M＂in＂man＂and＂NG＂in＂sing＂． Nasals，dipthongs，and vowels are all voiced sounds so that there is a pitch associated with them，and this pitch varies with the intonation of the voice．The unvoiced sounds，such as the fricatives＂F＂in＂fat＂and＂SH＂in＂ship＂，are generated instead by passing the output of a noise generator through a bandpass filter．

The centre－frequency of the filter charac－ teristic determines the speech sound heard；a frequency of about 4 kHz will give an＂F＂ sound whereas one of 2.5 kHz will give an ＂SH＂sound．If the sound includes some voic－ ing these become the＂V＂in＂vow＂and the ＂ZH＂in＂azure＂respectively．

Finally，stop consonants such as＂D＂in ＂dog＂and＂T＂in＂top＂are generated by a period of silence followed by a gliding of the formants to the values determined by the vowel following the consonant．The difference between＂ D ＂and＂ T ＂is produced by the addi－ tion of a short burst of noise at the start of the latter sound．

RANDOM LIMERICKS

In order to try out the Microspeech system with the BASIC software a short BASIC
program was written to make the micro com－ pose its own random limericks，and read them out！The program is given in Fig．2．A typical limerick produced by the program might be：

A vicious bland grocer from Spain
Once demolished some cakes on a train
He demolished so slow
That he demolished some dough
This vicious bland grocer from Spain．

Fig．2．BASIC program which com－ poses random limericks and speaks them or，with modification，prints them．

OOOL．REM SPEAKING LINERICKS OUIN GГITG 1000
ПNP唯 IIATA SAIJRDIHI，GRAISFUHL
ПOP5 DATA WIYLIH，VIXSHFTS
On30 DATA SPAHKLIHNG
0035 DATA GREFN，YUNG
ח1040 DATA VIYL ，RLAAND
OПAS DATA IJWLD
0050 UATA UUCHEHS，GRDWSER
0055 DATA GLUTEN，FLADTIHST
OnG UATA LADNDREHS
חП7n LATA WEHNRLIH，SPAYN
$0 \cap 75$ DATA CHAAD，SPEEK
ПП8n DATA KIXNGS
OH85 UATA KAWNTEHD，FIJLLIOWD
0090 DATA NOWTIXSD，DEHPAJLIXSHU
0095 DATA KITLEHKTEHD
0100 DATA SUM：STAAMPS
0105 DATA ET／ST门WT；ET／NYU：JD
0110 DATA SUN KAYKS，ET／FRUG
0115 0ATA AAND／FEHLT／TREHMBLIH
Пl？0 DATA TN／ET TRAYN
$01 ? 5$ DATA AAND／WE．HNT／MAAD
ПI3n UATA TWIYS F．T W巨巨K
ПI 35 DATA AAND／GRПП／WIXNGZ
ПI 40 DATA SHEE，HEF，SHEE
0145 IIATA HEE，SHEE．
П150［DATA KWIXK，SLITW，F YUII
OI55 DATA HAHRII，LAIT
OIGI DATA ET RRJXK，SUM DOW்
0165 DATA ET SKRJJ
0170 DATA SUM／LAHRD
O175 DATA ET PLAYT

Not up to Edward Lear perhaps，but with a cunning choice of words some of the limericks can turn out to be quite amusing．

The program of Fig． 2 works by choosing from among five alternatives at a particular point in the limerick；for example，the first ad－ jective is chosen from ：sordid，graceful，wily， vicious，and sparkling．These alternatives are specified，in phonetic form，in the DATA statements in lines 20 to 175 in the program． The subroutine at 7005 reads five strings from the DATA statements，chooses the one specified by the value of C（ 1 to 5 ），and prints it to the speech buffer．

If the subroutine is entered at 7000 the value of C is chosen at random，giving a ran－ dom choice of one of the five strings．The sub－ routine at 6000 prints an up－arrow to the speech buffer，causing the strings to be vocalized．Rhyming is ensured by making the choice of the phrase at the end of the second line depend on the choice of word at the end of the first line；the same method ensures a rhyme between lines 3 and 4 ．The program would eventually be expanded with a greater number of alternative words at each point，but even with just five alternatives the results can be unexpected．

The program of Fig． 2 can just as well be made to produce printed limericks；the strings in the DATA statements should be changed to the written equivalents of the phonetic forms shown，and the PRINT statements should be altered to give printing at the terminal．

INOO DEF FNA $(x)=\operatorname{INT}(R N D(0) * x)+1$
1010 RESTJRE
1020 PRINT 3．＂＇A1＂＇；
1030 GOSUB 7000：$x=C$
104 G G＇TSUH 7000：Y＝C
1750 GITSUR $7000: Z=C$
1060 Glosue 800 ก
1100 GIJSUE 7000：0＝C
1110 GITSUB 6000
1120 PRINT 3，＂WUNS＂
1130 GUSUE 7000
$1.131 \quad G \$=C \$$
1140 GПSUR 7900
$1150 \mathrm{C}=\mathrm{Q}$ ：GlISUR 7005
1161 GISUB 6000
$1180 \mathrm{C}=\mathrm{Z}$ ：GOSUR 7005
1190 PRINT \＃3，G\＄；＂S17W＂：
1191 GS＝C5＋G\＄
1200 GOSUR $71000: A=C$
1210 PRINT \＃3，＂DHAAT＂；GS：
$12.30 \mathrm{C}=\mathrm{A}:$ GПSUR $7 \Pi 05$
$124 \cap$ GISUB 6000
1250 RESTIJRE
1270 PRINT 3 ，＂DHIXS＂；
$1280 \mathrm{C}=\mathrm{X}:$ GIJSUB 7005
$1290 \quad C=Y: G O S U B$ 7nns
$1.300 \quad C=Z$ ：GilSUR 7005
1310 GIISUB 8000
132 ก $C=6:$ GUSUB 7005
1339 filj 4 6000
1340 G13TO 1000
6000 PRINT $43, \cdots, \cdots 3:$ RETURN
7000 C＝FNA（5）
7005 FiOR $\quad 1=1$ TJ 5：READ．AS
7020 IF $M=C$ THEN C $\$=A \$$
7030 NEXT N：PRINT＊3，C\＄：
7050 RE．TURN
RONO PRINT＊3，＂FRIM＂：：RETURN

			NAM	COPY	
0000	8D 00	HERE	BSR	* +2	PC ON STACK
0002	30		TSX		
0003	31		INS		
0004	31		INS		
0005	EE 00		LDX	$0, \mathrm{x}$	$\mathrm{X}=\mathrm{HERE}+2$
0007	09		DEX		
0008	09		DEX		
0009	C6 14		LDA	B ELAST-	HERE+1
000B	A6 00	move	LDA	A $0, \mathrm{x}$	
OOOD	BD EOCA		JSR	OUT2HS	
0010	5A		DEC	B	
0011	26 F8		BNE	MOVE	
0013	39	LAST	RTS		
EOCA		OUT2HS	EQU	\$EOCA	IN MIKBUG
			END		

```
1000 FOR N=1000 TO 1040 STEP 10
1005 DATA FOR N=1000 TO 1040 STEP 10
1010 READ A$
1015 DATA READ A$
1020 PRINT N;A$
1025 DATA PRINT N;A$
1030 PRINT N+5; "DATA ";A$
1035 DATA PRINT N+5;"DATA ";A$
1O4O NEXT N
```

Fig. 4. Self-replicating BASIC program which lists itself.

Fig. 3. (left) Self-replicating program for the M6800 micro will print a copy of itself at the terminal.

INTELLIGIBILITY

Just how good is the speech produced by the Microspeech board? To evaluate the system a piece of phonetic text was typed in, and on replaying it we were pleasantly surprised at the result. However we were in for a shock; we played the same speech to an unsuspecting volunteer, and they did not even identify it as speech, let alone understand it.

It seems fair to say that the speech produced is perfectly intelligible provided that you know what it is saying! Perhaps the best way of describing it is to say that it is like listening to someone with a very unfamiliar accent; after about half-an-hour's practice the speech is almost perfectly understood, especially if the sense is fairly predictable. It seems that human speech is a very difficult thing to simulate electronically; using the most sophisticated synthesis-by-rule systems people typically identify only 50 per cent of the words correctly unless very careful attention is paid to producing perfect timing and intonation.

In conclusion, the Microspeech board is great fun for use in non-serious applications where perfect intelligibility is not important; for example, for producing spoken output
from games programs. It also has serious applications where experience with the speech it produces would overcome the problem of intelligibility; for example, dictation of the output from programs over the telephone, production of auditory alarms and warnings, and as a computer interface for the handicapped.

SELF-REPLICATING PROGRAMS

It is a fascinating, and by no means trivial, problem to write programs which will create an identical copy of themselves. Two examples are given here, but readers who find better solutions are urged to communicate these to Micro-Bus immediately. In assembler language for a particular micro the problem is fairly simple, even with the restriction that the program must work wherever it is placed in memory.

An example for the M6800 micro is shown in Fig. 3; when executed it prints a copy of itself to the terminal in hex. It assumes the existence of a subroutine, OUT2HS, which will print the byte pointed to by the \mathbf{X} register as two hex characters, and then increment the X register. Alternatively the program can be
made to put a copy of itself into memory by changing the instruction at $\$ 000 \mathrm{D}$ to $\mathrm{A} 7,14$, 08.

A feature of this program deserving mention is the dummy subroutine call at $\$ 0000$ which puts the program counter onto the stack so that it can be loaded into the X register. It is probably possible to write similar self-replicating programs for other micros; one for SC/MP appears in the Mk 14 programming manual.

Writing self-replicating programs in a highlevel language such as BASIC poses a far trickier problem. One stumbling-block with BASIC is the difficulty of printing a quote character. Fortunately in SWTP BASIC, in which this problem was attempted, character strings in DATA statements may contain quotes provided that they do not contain commas or colons. The program in Fig. 4 when run, prints a copy of itself to the terminal To put it more graphically, the effect of typing RUN is the same as the effect of typing LIST! It is probably not possible to write selfreplicating programs in all dialects of BASIC, and successful attempts or impossibility proofs are welcomed.

News Briels

MORE FOR YOUR PET

To quote Commodore: "The PET family is here!" The 8 K PET (2001-8) computer is now cheaper, at $£ 594$ inclusive. An upgradeable 4 K version ($2001-4$) is also available at $£ 497$.

Two new bigger memory PETs are scheduled for release in May, the 2001-6N and 2001-32N, each with beefier typewriter style keyboards as opposed to PETs earlier calculator type. For 16 K of RAM you pay £729, and for $\mathbf{3 2 K}$ RAM you will pay $£ 858$, but remember, in these versions there is no cassette deck! This is to make room for the larger keyboard.

Two printers expected to be available from April, one of which is the 2023 which supercedes the previously announced 2020 printer. Capable of producing all PET graphics including reverse field and lower case, this 80 columns, 7×6 needle matrix impact printer can hammer along at an average of $93 \mathrm{chars} / \mathrm{sec}$. It will also print double width capitals for document headings etc. For $£ 594$ you will be purchasing a software formattable microprocessor controlled hard-copy peripheral suitable for small business and engineering applications.

The 2022 is a higher quality tractor feed printer which can do everything the cheaper one can do, and naturally, more. How about up to four copies on $8 \frac{1}{2}$ inch plain paper? Mailing labels, customised forms. and even cheques for salaries! $£ 696 \cdot 60$ inclusive.

May 1979 will also see the release of Commodore's 2040 Dual Drive Floppy giving a total of 360 K bytes on two standard $5 \frac{1}{4}$ inch disks. This peripheral uses two microprocessors of its own, plus fifteen memory i.c.s. Commodore claim to have eliminated all problems of double-tracking or double-density. The floppy disk operating system uses none of PETs user memory. Suitable for all models of PET and priced at $£ 799.20$ inclusive. Commodore Systems Division, 360 Euston Road. London NW 1.

From Science of Cambridge: the new MK 14. Simplest,most advanced,most flexible microcomputer-in kit form.

MK 14 including optional RAM L/ O and Extra RAM.

Extra RAM
(optional)

The MK 14 is a complete microcomputer with a keyboard, a display, 8×512-byte preprogrammed PROMs, and a 256 -byte RAM programmable through the keyboard.
As such the MK 14 can handle dozens of user-written programs through the hexadecimal keyboard.
Yet in kit form, the MK 14 costs only $\mathcal{L} 39.95$ (+23.20 VAT , and $p \& p$).

More memory - and peripherals!

Optional extras include:

1. Extra RAM -256 bytes.
2. 16-line RAM I/O device (allowed for on the

PCB) giving further 128 bytes of RAM.
3. Low-cost cassette interface module-which means you can use ordinary tape cassettes/ recorder for storage of data and programs.
4. Revised monitor, to get the most from the cassette interface module. It consists of 2 replacement PROMs, pre-programmed with sub-routines for the interface, offset calculations and single step, and singleoperation data entry.
5. PROM programmer and blank PROMs to set up your own pre-progranmed dedicated applications.
All are available now to owners of MK 14.

A valuable tool-and a training aid

 As a computer, it handles operations of all types-from complex games to digital alarm clock functioning, from basic maths to a pulse delay chain. Programs are in the Manual, together with instructions for creating your own genuinely valuable programs. And, of course, it's a superb education and training aid providing an ideal introduction to computer technology.
SPECIFICATIONS

- Hexadecimal keyboard 8 -digit, 7 -segment LED display -8×512 PROM, containing monitor program and interface instructions -256 bytes of RAM - 4 MHz crystal -5 V regulator \bullet Single 8 V power supply \bullet Space available for extra 256-byte RAM and 16 port I/O Edge connector access to all data lines and I/O ports

Free Manual

Every MK 14 kit includes a Manual which deals with procedures from soldering techniques to interfacing with complex external equipment. It includes 20 sample programs including math routines (square root, etc), digital alarm clock, single-step, music box, mastermind and moon landing games, self-replication, general purpose sequencing, etc.

Designed for fast, easy assembly

The MK 14 can be assembled by anyone with a fine-tip soldering iron and a few hours'spare time, using the illustrated step-by-step instructions provided.

How to get your MK 14

Getting your MK 14 kit is easy. Just fill in the coupon below, and post it to us taday, with a cheque or PO made payable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantee. If for any reason, you're not completely satisfied with your MK 14, return it to us within 14 days for a full cash refund.

Science of Cambridge Lid,

6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Telephone: Cambridge (0223) 311488

To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Please send me the following, plus details of other peripherals:
\square MK 14 Standard Microcomputer Kit " $£ 43.55$ (inc $40 \mathrm{pp} \& \mathrm{p}$.)
Extra RAM " $\mathcal{L} 3.88$ (inc p\&p.)
\square RAMI/Odevice " $\mathbf{L 8 . 4 2 \text { (inc } p \& p \text { .) }) ~}$
I enclose cheque/money order/PO for \mathcal{L} (indicate total amount.)

Name
Address (please print)

Science of Cambridge

- WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

POWER AMPLIFIER KIT
The kit includes all metalwork, heassinks and hardware to house any two of our power amp nodules plus a power supply, It is contemporarily styled and its quality is consistent with that o with confidence in tew hours.

STEREO PRE-AMPLIFIERS

CPR 1 - THE ADVANCED PRE-AMPLIFIER
The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably in the disc stage. The overload hargin is a superb es rack his together with the high slewing rate ensures clean top, even eliminated by an unusual design. R.I.A.A. is accurate to 1 dB ; signal to noise ratio is 70 dB relative to 3.5 mV ; distortion < $.005 \%$ at 30 dB overioad 20 kHz

 $80 \times 20 \mathrm{~mm}$. Supply to be ± 15 volts.

MC 1 - PRE-PRE-AMPLIFIER

Suitable for nearty all moving-coil cartridges. Send for details.
XO2: XO3-ACTIVE CROSSOVERS

REG 1 - POWER SUPPLY

The regulator module, REG I provides 15-0-15v to power the CPR I and MC 1. It can be used with any of or
modate it.

POWER AMPLIFIERS

It would be pointless to list in so small a space the number of recording studios, educational and government establishments. etc. Who have been using CRIMSON amps satisfactorily for quite some time. We have a reputation for the highest quality at the lowest prices. The power amp is
avaltable in five types, they all have the same specification: T.H.D. typically 01% any power 1 kHz 8 ohms: T.I.D. insignifican:; slew rate limit $25 \mathrm{~V} / \mathrm{US}$: signal to noise ratio 110 d : frequency response $10 \mathrm{~Hz}-35 \mathrm{kHz}$ z -3 dB ; stability unconditional: protection drives any load safelv; sensitivity 775 mV (250 mV or 100 mV on request); size $120 \times 80 \times 25 \mathrm{~mm}$.

POWER SUPPLIES

We produce suitable power supplies which use our superb TOROIDAL transformers only 50 mm high with a $120-240$ primary and single boll fixing (includes capacitors/bridge rectifier).

ACTIVE CROSSOVERS
$\times 02$
$\times 03$
\times
POWER AMPLIFIER MODULES
CE $608 \quad 60 \mathrm{~W} / \mathrm{B}$ ohms $35-035 \mathrm{v}$
CE $1008100 \mathrm{~W} / 4$ ohms $35 \cdot 0-35 \mathrm{~V}$
CE $1704170 \mathrm{~W} / 4$ ohms $45-0-45 \mathrm{v}$ CE $1708170 \mathrm{~W} / 8$ ohms $60-0-60 \mathrm{~V}$
TOROIDAL POWER SUPPLIES
CPS 1 for $2 \times$ CE 608 or $1 \times$ CE 1004
CPS 2 for $2 \times \mathrm{CE} 1004$ or $2 / 4 \times$ CE 608
CPS 3 tor $2 \times \mathrm{CE} 1008$ or $1 \times$ CE 1704
CPS4 for $1 \times$ CE 1008
CPS 5 for $1 \times$ CE 1708
CPS5 for $1 \times$ CE 1708
CPS6 for $2 \times$ CE 1704 or $2 \times$ CE 1708
heatsinks
Light duty. $50 \mathrm{~mm}, 2^{\circ} \mathrm{CM}$
Medium nower. $100 \mathrm{~mm}, 1.4^{\circ} \mathrm{C} \mathrm{W}$
Fan, 80 mm , state 120 or 240 V
Fan mounted on two dilled 100 mm
heatsinks. $2 \times 4^{\circ} \mathrm{C} / 5^{\circ} \mathrm{C}$ heatsinks. $2 \times 4^{\circ} \mathrm{CN}, 65^{\circ} \mathrm{C}$ max.

THERMAL CUT-OUT, $70^{\circ} \mathrm{C}$
$\underset{\text { £23.06 }}{\text { £14.83 }}$
f16.30
ع 19.22

ع 19.22
f23.22

$\mathbf{2} 29.22$
$\mathbf{8} 31.90$
$\mathbf{Y} 31.90$
£14.47
$\mathbf{E 1 6 . 8 2}$

\&17.66
E15.31
ع

$\mathbf{2 2 2 . 6 8}$
$\mathbf{E} 23.98$

£1.30
$\mathbf{E 2 . 2 0}$
£2.85
f. 18.50
£29.16
ع1.38

POWER AMP KIT
¢ 32.40
PRE-AMPS:
These are available in wwo versionsone uses standard components, and the
other (the Sl uses MO resistorts where necessary and tanialum capacitors.
 PEGI . EL6.75 TR6 .. E1.75 BRIDGE DRIVER, BDI mps and this module. . $2 \times 170 \mathrm{~W}$ nd this module.
c5. 40

All prices shown are UK only and Include VAT and post. COD 90p extra, F100 limit. Export is no problem, plasese write for specific quote. Send large SAE or 3 international Reph Distributor: Minic Teleprodukter, Box 12035,
Distributor: Minic Teleprodukt
S-750 12 Uppsala 12, Sweden

ASTRA-PAK

92 GODSTONE ROAD
WHYTELEAFE SURREY CR3 OEB

All prices include V.A.T. Add 25p for P\&P (Extra for overseas).
Discounts over $£ 10$ less 5%, over
 over $£ 100$ less 20%. Send SAE for complete list of

DIGITALLY SYNTHESIZED DOOR CHIME

24 tunes including "Rule Britannia", "Col. Bogie" etc.
Adjustable speed and tone.
In sturdy moulded case, taking internal PP3 batteries.
1 year guarantee. Special reduced price for PE readers onty $\mathbf{£ 1 4 . 9 5}$

Don't Lat Your Environmmant Dahydrate Youl
Buy our Honeyemell Humidiry Controlla.
Membrane actuated, very sensitive. है" shath, 250V, 3.75 A
Contacts. Ideal loo preenhouses. centrally hesied homess.

CASSETTE MDTORS
Sell Regulating. will operate 6-12V. Ideal for modelers,
mechanical switching etc. 2000 A.P.M. approx. 90 p as.
ULTRASONIC TRANSDUCERS
Transmitter and recelver. $40 \mathrm{kHz}\{4 \mathrm{~mm}$, dlam. $\mathbf{E 4 . 2 5}$ asir.
6×6 POLE REED RELAYS ON BOARD
12 V ideal for burglar alarms. model railways dec. $£ 2.45$
100 miniature reed switches
We are the cheapest! E 3.30
EARPIECES
Magnetic with plug and lead 25 p an. 5 tor f Cnstal with leat 40 p an. 3 for fl

MAKE CHEAP BATTERY EUMMIMATORS
Fully shrouded mini mains wansiormers 240 V in $6.0-6 \mathrm{~V}$ at equip. 90_{0}
dE LUXE FIGRE GLASS
PRINTED CIRCUIT ETCHING KITS
Includes 150 sq ins. cupper clad \mathbf{F} / G. board. 1 lb ferils
chloride. 1 dalo etch resist pen. Abrasive cleanet. Etch tray
plus instructions. Soecial Prict $\mathbb{E 4 . 9 5}$
I Ib FE. C1. To mil. spec $\mathbf{E 1 . 2 5}$
5 it FE . C1. To mil. spec $\mathbf{E 5 . 0 0}$
150 sq in. Single sided board $\$ 2.00$
150 sq. in. Double uided botitit $£ 3.00$

SMOKE AND GAS DETECTOR
Uses TGS 105 plug in sensor, housed in neat $3 f^{*}$ dio cas box. led indicator. $2 \mathrm{VV}, 112 \mathrm{~V}$ by altering 3 component values). With operate lamp or relay, with dats and ircuit $\mathbf{f} 695$
Relays for above f 1 an state voltage
100. Full spec, now and maiked. Includes BC148. 3Ci84L. ME0412, BF274. 8 Cl 154 etc. etc. f 495 200 as above and hncludes AC120. 2N3055, BFY50. BD131. BF 200 exc. 89.95 double

P/B SWITCH EANKS Includes independent and interdependent laching types multi pole clo erc. Can be modified. Can't be repeated. 3 Bunks for

BULK BARGAINS. STOCK UP FOR WINTER 300 mixed $\frac{1}{5}$ a $\frac{1}{2}$ watt resistors $£ 1.50$ 150 mixed $1 \& 2$ watt resistors $\$ 1.50$ 300 mixad capacitars, modern, mast types $£ 3.30$ 100 mixed ceramic and plete caps $\mathbb{C 1 . 2 0}$ 25 pois and presets 51.50 25 prasets, skaleton etc. $[1,20$ 20 VORs and themistors $£ 1.20$ 100 Mi wattape resistors wirwound ecc. $\mathbf{£ 2 . 2 0}$ 100 electrolylits, nice values $\mathbf{\$ 2 . 2 0}$ 300 primted circuit resistors EI 300 printed circuit components $\mathbf{£ 1 . 5 0}$
100K MINIATURE THUMBWHEEL SLIDER POTS Very neat, can be banked side by side.
tuning. praphic equalisers etc. 10 tor EI 100k STEREO SLIDER POTS Good quality. 25p Ba. 5 for Cl

MINIATURE LEVEL/BATT. METEAS 200μ a F. S.O. as fitted to many cossette iecorders. 90p

MICRO CHIIMES FROM THE INVENTORS OF MICROPROCESSOR MUSICAL CHIMES

New price for the original

CHROMACHIME KIT

24 tune model!
Due to the fantastic success of this product right

across the World we are able to offer it at only $£ 9.95+75 \mathrm{p}$ p\&p
Comes complete with:

* TMS1000 Micro * Fully prepared PCB
* Superb cabinet * All semiconductors
* All R's \& C's * Loudspeaker
* Switches \& pots * Socket \& Hardware
* Fully detailed kit manual

TMS 1000N - MP0027A Microcomputer chip available separately if required. Full 24 tune spec device supplied with data sheet and fully guaranteed.

New low price only £4.95 inc. p\&p (Only present t2 4 tune repertorie currently avaialale.)

A COMPLETE KIT FOR THE

NEW MICRO CHIME

This easy to build kit includes:

* TMS1000 Custom MPU Chip
* Special purpose designed case
* Fully drilled and legended PCB
* All transistors, Resistors and Capacitors
* Full set of mechanical parts
* Smart fascia labels
* IC Socket and Loudspeaker
* Really Low Price!
only $£ 8.95+55 \mathrm{p}$ p\&p
CHROMATRONICS
RIVER WAY
HARLOW
SUPPLIED WITH MONEY BACK GUARANTEE
ESSEX U.K.
P EASE ALLOW 7 21DAYS FOP DELIVEPY
Please send me:
TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX. UK NAME
ADDRESS

I enclose cheque/PO value ε
or debit my ACCESS/BARCLAYCARD account no.

Signature

ATARI VIDEO COMPUTER - $£ 149.95$

+ NEW CARTRIDGES COMING SOON CODE BREAKER
SKYOIVER BOWLING BRAIN GAMES
SKYOIVER GOWLING GRAIN GAMES
MINIGOLF STREETRACER HUNT \& SCORE VAT, P \& P inc. Send Cheque or PO or telephone card

PROGRESSIVE RADIO

31 CHEAPSIOE. LIVERPOOLL2 2 JO
SPECIAL OFFER SEMICONDUCTORS:- 1 . NE555 22p. ZN414 75p. LM380 80 p. 741 S
TBA8 35p. IN4005 recs. 10 for 35p. 723 Regs 35p. LM 340 T (6 v lamp) 40p. AD $161 / 2$ matched pair 70 p.
L.E.D.S. O-2" Red 10p. 0.2"Green 12p. 0.2" Clear 15p.

MINIATURE MAINS TRANSFORMERS, 240v AC Primary, 6-0-6v 100ma, 9-0-9v 75ma, $12-0-12 \mathrm{v} 50 \mathrm{ma}$ all 73 p each. 12 -0-12v 100 ma 92 p . $0-6$, $0-6 \mathrm{v} 280 \mathrm{ma}$, £1.20. 12 v 500 ma 95p. PULLSE TRANSFORMERS. Miniature P.C. board mounting 1:1 Plus 1 55p. Larger type 1:1 30p.
NEW LOW PRICED POCKET MULTIMETERS. KRT100 1,000 ohms per voit, 1,000 volts AC/DC. 100 K resistance, 150 ma DC current, mirror scale range selector switch $£ 4.65$. KRT101 As above but range selection Is via Prod Tip Insertion £3.75. MINIATURE TOGGLE SWITCHES, SPST $8 \times 5 \times 7 \mathrm{~mm} 49$ p. OPDT $8 \times 7 \times 7 \mathrm{~mm} 53 \mathrm{p}$. OPDT centre off $12 \times 11 \times 9 \mathrm{~mm} 78$ p. PUSH SWITCHES, Push to make $16 \times 6 \mathrm{~mm} 14$ p, push to break version 15p.
TOOLS. Good quality side curters $\mathbf{5 N}^{\prime \prime}$ insulated handles $\mathbf{\text { E1.35. Matching snub nosed pliers also }}$ C1.35. Neon mains tester screwdriver 8. long 44p. PAECISION TOOL KIT. Supplied in plastic
hinged case consists of 5 spanners 4 to 6 mm , 5 Hex. nut drivers 3 to $5 \mathrm{~mm}, 3$ small screwdrivers. 2 Phlips screwdrivers, 1 awl, 3 Alan Keys f3.35. TEST LEAD JUMPER SET. 10 leads with various coloured croc clips each end 80p.
CASSETTE HEAD REPLACEMENTS. Mono cassette £1.30. Stereo cassette ع3.00. TAPE HEAD DEMAGNETISERS. 240 vaC E2.00. TERMS CASH WITH ORDER (OR OFFICAL OROERS FROM SCHOOLS ETCI POSTAGE 30p.

ITISTIT RIDEKI

COMPONENTS - Now over 1,000 types in stock!
KITS

- See the new range of low. cost 'ELEKITS'.
SERVICE QUALITY PRICES MAGAZINE PROJECTS
S.A.E. for list of PE projects

I enclose 30p*, please send catalogue.

Adaress
*Refundable with future orders over $£ 5.00$.

STEVENSON

 Electronic Components
REGULATORS

78L05 30p 7805 60p 79L05 70p 78 L 15 30p 7815

HARDWARE MINIATURE TRANSFORMERS
240 Volt Primary
Secondary rated at 100 mA . Available with secondaries of: 6.0.6.9.9.9.9 and 12-0-12. 92p. each.

LOUDSPEAKERS

56 mm dia. 8 ohms 64 mm dia. 8 ohms 64 mm dia. 64 ohms 70 mm dia. 8 ohms 70 mm dia. 80 ohms

TERMINALS

Rated at 10A. Accepts 4 mm plug, black blue, green, brown and red

22p

SWITCHES

Subminiature toggle. Rated at 3A 250 V . SPDT 70p SPDT centre off $75 p$ DPDT 80p DPDT centre off 95p
 Standard toggle
SPST 34p DPDT 48p
Wavechange switches.
1P12W, 2P6W, 3P4W or 4P3W all 43p ea.
Miniature switches (non-locking)
Push to make 15 p Push to break 20p
 Slide switches (DPDT)
Miniature 14p Standard

CONTROL KNOBS

Ideal for use on mixers etc. Push on type with black base and marked position line. Cap
available in red, blue, green, grey, yellow and black. 14p

WHY NOT VISIT OUR
 NEW SHOP

We welcome callers at our new premises at the address below (5 mins, from High St .) We are open Mon . Sat, 9am 6 pm . Special offers available.

Express telephone order service. Orders received before 5 pm . are shipped first class on that day. Contact our Sales Office now
Tel: 01-464 2951/5770.

TRANSISTORS

AC127	$17 p$
AC128	$16 p$
AC176	$18 p$
AD161	$38 p$
AD162	$38 p$
BC107	$8 p$
BC108	$8 p$
BC109	$8 p$
BC147	$7 p$
BC148	$7 p$
BC149	$8 p$
BC148	$9 p$
BC177	$14 p$
BC178	$14 p$
BC179	$14 p$
BC182	$10 p$
BC182L	$10 p$
BC184	$10 p$
BC184L	$10 p$
BC212	$10 p$
BC212L	$10 p$
BC214	$10 p$
BC214L	$10 p$
BC477	$19 p$
BC478	$19 p$
BC479	$19 p$
BC548	$10 p$
BCY70	$14 p$

LWEAR		$\begin{aligned} & \text { CA3140 } \\ & \text { LM301AN } \end{aligned}$	$\begin{array}{r} 38 p \\ N 26 p \end{array}$	NE555 NE556	21p
		LM318N	85p	NE565	85p
THIS IS ONLY A SELECTIONI		LM324	45p	NE567	1700
		LM339	45p	SN76003	200\%
709	28p	LM380	75p	SN76013	140p
741	16p	LM382	120p	SN76023	140p
747	40 p	LM1830	150p	SN76033	200p
748	30p	LM3900	50p	SN76477	220p
CA3046	55p	LM3909	650	TBA800	70p
CA3080	70p	MC1496	60 p	TDA1022	650p
CA3130	900	MC1458	32p	ZN414	75p

CAPACITORS

TANTALUM BEAD
$0.1,0.15,0.22,0.33,0.47,0.68$,
$182.2 \mathrm{uF} @ 35 \mathrm{~V}$
each
4.7.6.8,10uF @ 25 V

22@16V,47@6V,100@3V
MYLAR FILM
0.068, 0.1

POLYESTER
Mullard C280 series
$0.01,0.015,0.022,0.033,0.047,0.068,0.1 .5 p$ 0.15, 0.22
0.33, 0.47
0.68

CERAMIC
Plate type 50 V . A vailable in E12 series from 22 pF to 1000 pF and E 6 series from 1500 pF to
RADIAL LEAD ELECTROLYTIC
$\begin{array}{llllll}63 V & 0.47 & 1.0 & 2.2 & 4.7 & \frac{10}{47}\end{array}$ \qquad

CONNECTORS

JACK PLUGS AND SOCKETS

	screened	unscreened	socket
2.5 mm	9 p	13p	7p
3.5 mm	9p	14p	8p
Standard	16p	$30 p$	15p
Stereo	23p	36p	18p
DIN PLUGS AND SOCKETS			
	plug	chassis	line
		socket	socket
2pin	7p	7p	7 p
3 pin	11p	9p	14p
$5 \mathrm{pin} 180^{\circ}$	11p	10p	14p
$5 \mathrm{pin} 240^{\circ}$	13p	10p	16p

1 mm PLUGS AND SOCKETS
Suitable for low vol tage circuits, Red \& black. Plugs: 6p each Sockets: 7p each.
4 mm PLUGS AND SOCCKETS
Available in blue, black. green, brown, red, white and yellow. Plugs: 11 p each Sockets: 12 p each PHONO PLUGS AND SOCKETS
Insulated plug in red or black
Screened plug
9p
Single socket

741S		LS73	25p	LS156	60p
		LS74	$25 p$	LS157	48p
		LS75	$30 p$	LS164	65p
LS00	13p	LS76	25p	LS174	48p
LS01	13p	LS78	35p	LS175	48p
LSO2	13p	LS83	$35 p$	LS190	62p
LS03	13p	LS85	70p	LS192	60p
LS04	13p	LS86	$30 p$	LS193	60p
LS08	15p	LS90	36p	LS196	60p
LS10	13p	LS93	$38 p$	LS251	50p
LS13	28p	LS95	45p	LS257	50p
LS14	45p	LS123	70p	LS258	50p
LS20	13p	LS 125	$38 p$	LS266	30p
LS30	13p	LS126	38p	LS283	60p
LS32	16p	LS 132	60p	LS290	60p
LS37	24p	LS136	28p	LS365	40p
LS40	17p	LS138	50p	LS366	40p
LS42	40p	LS139	50p	LS367	40p
LS47	90p	LS151	$50 p$	LS368	40p
LS48	70p	LS153	50 p	LS386	35p
LS54	15p	LS155	55p	LS670	40p
TTL		7454	12p	74132	45p
		7473	20p	74141	55p
		7474	22p	74148	90p
		7475	25p	74150	55p
7400	10p	7476	20p	74151	40p
7401	10p	7485	55p	74156	40p
7402	10p	7489	135p	74157	40p
7404	12p	7490	25p	74164	55p
7408	12p	7492	30p	74165	55p
7410	10p	7493	25p	74170	100p
7413	22p	7494	$45 p$	74174	50p
7414	39p	7495	35p	74177	50p
7420	10p	7496	45p	74190	$50 p$
7427	20p	74121	$25 p$	74191	50p
7430	$10 p$	74122	38p	74192	50p
7442	38p	74123	38p	74193	50p
7447	45p	74125	35p	74196	50p
7448	50 p	74126	$35 p$	74197	50p
CHOS		4018	55p	$\begin{aligned} & 4050 \\ & 4066 \end{aligned}$	25p
		4023	12p	4066	35p
		4024	40p	4068	18p
4001	12p	4026	90p	4069	12p
4002	12p	4027	30p	4071	12p
4007	12p	4028	$48 p$	4081	13p
4011	12p	4029	50p	4093	45p
4013	28p	4040	60p	4510	65p
4015	50p	4042	$50 p$	4511	65p
4016	30p	4046	90p	4518	$65 p$
4017	48p	4049	25p	4520	$60 p$
FULL DETAILS IN CATALOGUEI					

SKTS

Low profile
by Texas

8 pin $8 p \quad 16$ pin 11p 28 pin 22p 14 pin 10p 24 pin 18p 40 pin $32 p$ Soldercan pins: 100:50p. 1000:370p

орт

LED's 0.125 in . 0.2 in each $100+$ Red TIL209 TIL220 9p 8p Green TIL211 TIL221 13p 12p Yellow TIL213 TIL223 13p 12p DISPLAYS
DL704 0.3 in CC \quad 130p 120p DL707 0.3 in CA $\quad 130$ p 1200 FNO500 0.5 in CC
$100 p 80 p$

RESISTORS

Carbon flim resist ors. High stabllity, low noise 5\%.
E12 series. 4.7 ahms to 10 M . Any mix

	each	$100+$	$1000+$
$0.25 W$	$1 p$	$0.9 p$	$0.8 p$

Special development packs consisting of 10 of each value from 4.7 ohms to 1 Meg. ohm (650 res) 0.5W £7.50. 0.25W £5.70. METAL FILM RESISTORS
Very high stability, low noise rated at 1/4W 1%. Available from 51 ohms to 330 k in E24 series. Any mix: $\begin{array}{llll} & \text { each } & 100+ & 1000+ \\ 0.25 \mathrm{~W} & 4 \mathrm{p} & 3.5 p & 3.2 p\end{array}$ PLEASE WRITE FOR YOUR FREE COPY OF OUR NEW 64 PAGE CATALOGUE OF COMPONENTS.
CONTAINS
OVER 2500
STOCK ITEMS.
U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

IDEAL FOR DISCOS, GROUPS AND P.A. Two inputs with volume controls. Master treble bass and volume controls. Suitable for all loudspeakers. £59 Post $£ 1$ R.C.S. SOUND TO LIGHT DISPLAY MK II Complete kit of parts with A.C.S. printed clrcuit. Three looow channels Will operate from 200 mV stgnal
source. CABINET extra f 4 . $\mathrm{KIT}=\mathbf{£ 1 7 . 0 0}$
R.C.S. 10 WATT AMPLIFIER KIT
This kif is sutimble for record players rape play back. guitars
electromic instruments or smalip a syitems Two versions are
 uses 22 semiconductors. Boit kils have prinied front panal and
volume. bass and trebie controls Soec $10 W$ output inio 8 onma 7 imio. 15 onms Aesponse $20 \mathrm{C}, \mathrm{a}$ to 30 ke E .
input $100 \mathrm{M} . \mathrm{V}$. high imp. Size $9 \frac{1}{2} \times 3 \times 2 \mathrm{in}$. ANC mains operated

$£ 20{ }^{\text {sisi }}$
LOW VOLTAGE ELECTROLVTICS
$1,2,4.5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p} .500 \mathrm{mF}$ 12 V 15p; $25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ;$
$50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p} .2000 \mathrm{mF} 5 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} .2500 \mathrm{mF}$ $50 \mathrm{~V} 62 \mathrm{p} .3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p}_{\mathrm{j}} 50 \mathrm{~V} 65 \mathrm{p} .3900 \mathrm{mF} 100 \mathrm{~V}$ $\mathrm{c} 1.60,4700 \mathrm{mF} 63 \mathrm{~V} £ 1.20$. $5000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p} ;$
$25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p} .5600 \mathrm{mF} 76 \mathrm{~V} £ 1.60 .1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $5 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p} .5600 \mathrm{mF} 76 \mathrm{~V}$ £1-60. 1200 mF 76 V 80 p .

HIGH VOLTAGE ELECTROLYTICS
8/350V 22p
$16 / 350 \mathrm{~V} 30 \mathrm{p} \quad 8+8 / 450 \mathrm{~V} 500$
$50 / 350 \mathrm{~V} 50 \mathrm{p}$
$8+8 / 450 \vee 500$
$8+16 / 450 V 500$
$16+16 / 450 \vee 50 p$
$32+32 / 350 \vee 50 p$

$50+50 / 300 \vee$
$32+32 / 50 \mathrm{~V}$
15 p
$100 \cdot 100 / 275 \mathrm{~V}$

RADIO COMPONENT SPECIALISTS

337 WHITEHORS Tel. 01-684 1665

QU ARTZ LCD 7 Function

Hours, mins., secs. month, date, auto calendar, back light, seconds STOP WATCH.
£9.65
Guaranteed same day despatch.
Very slim. only 6 mm thick.

QUARTZ LCD

11 Function

QUARTZ LCD
ALARM 7 Function

SOLAR QUARTZ LCD

Chronograph
6 digit, 11 function Hours, mins., secs. $1 / 100,1 / 10$ secs., mins.
Split and lap
modules.
Auto calendar and back light.
Powered from solar panel with battery back-up.
£13.95

SOLAR QUARTZ LCD Chronograph with Alarm Time Zone Facility

SEIKO Chronograph

LCD, hours, mins. secs. day of week, month, day, date. 12 hour chrono. graph, 1/10th secs. and lap time. Back light, stainless steel water resistant. HARDLEX glass.

List Price $£ 85.00$ metac price £68.00

QUARTZ LCD
 Alarm Chrono

SOLAR QUARTZ LCD

 5 Function

Guaranteed same
day despatch.

HANIMEX
 Electronic
 LED Alarm Clock

Features and Soecification: Hour 'minule display. Large LED display with p.m. and alarm on indicator. 24 Hours alarm with indication. Aepeatable 9 -minute snooze. Display bright/dim modes control. Size. $5.15^{\prime \prime} \times 3.93^{\prime \prime} \times$ $2.36^{\prime \prime} 113!\mathrm{mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm}$ Werght $1.43 \mathrm{lbs}(0.65 \mathrm{~kg})$. AC power 220 V . $£ 8.65$ Thousands sold!

Guaranteed same day despatch.

QUARTZ LCD
 Ladies Slim Bracelet
 QUARTZ LCD
 Ladies 5 Function

5 function.
Hours, mins., secs. day, date and back light and auto calendar.
Elegant metal
bracelet in silver or gold.
State preference,
£15.95
Guaranteed same day despatch.

Only $25 \times 20 \mathrm{~mm}$ and 6 mm thick.
5 function. Hours, mins., secs., day, date and back light and auto calendar.
Elegant metal
bracelet in silver or gold.
State preference.
$£ 9.95$
Guaranteed same day despatch.

M15

HOW TO ORDER
Payment can be made by sending cheque, postal order, Barclay, Access or American Express card numbers. Write your name, address and the order details clearly, enclose 30p for post and packing or the amount stated. We do not wait 10 clear your cheque before sending the goods so this will not delay delivery. All products carry 1 year guaranteee and full money back 10 day reassurance, Battery fitting service is available at our shops. All prices include VAT.
Trade enquiries: Send for a complete list of trade prices - minimum order value $£ 100$.
Telephone Orders: Credit card customers can telephone orders direct to Daventry or Edgware Rd. 24 hour phone service at both shops: 01.723475303272 .76545 .

CALLERS WELCOME Shops open $9.30 \cdot 6.00$.

DIGITAL LED CLOCK

Automatic brightness control. Weekend alarm cancel
Features and Specification:
Hour/munute display. Large LEO display with p.m. and alarm on indicator. 24 Hours alarm wis on-olf control. Dispiay hashing for power lass matic brightness control. Weekend alarm cancel.

£10.95

Guaranteed same day despatch.
North \& Midlands
67 High Street, DAVENTRY
Northamptonshire

Telephone: 0327276545
South of England
327 Edgware Road
LONDON W. 2
Telephone: (01) 7234753
Electronics Design Associates, Dept. PE 6
82 Bath Street, Walsall, WS1 3DE. Phone: (9) 614791

Name

Address
Phone your order with Access or Barclaycard
Inc. VAT. and PP.

X\& KIT $\mathbf{~} \mathbf{~} 16.65$	
TACHOPULISE SLAVE UNIT $£ 3.85$	

TACHOPULSE SLAVE UNIT £3.85

f

Cheque No.
Please state polarity pos or neg earth.
Access or Barclavcard No.

15
 The MY5 is a mono hybrid ampllfier ideally sulted for all applications. All common

HY5
Preamplifier input functions (mag Cartridge, iuner, etc.) are catered for internally, the desired function is achieved either by a multi-way switch or direct connection to the appropiate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.
FEATURES: complete pre-amplifier in single pack. multi-function equalisation: low nolse: low distortion: high overload; two simply combined for stereo.
APPLICATIONS: hi-f: mixers: disco: gultar and organ; public address.
SPECIFICATION: Inputs-magnetic plek-up 3 mV : ceramic pick-up 30 mV : tuner 100 mV : microphone 10 mV , auxlliary $3-100 \mathrm{mV}$. input impedance $47 \mathrm{k} \Omega$ at 1 kHz . Outputs-tape 100 mV . maln output 500 mV A.M.S. Active Tone Controls-treble $=12 d \mathrm{~B}$ at 10 kHz : bass $=120 \mathrm{~d}$ at 100 Hz . Distortion 01% at 1 kHz . signal/nolse ratio 68 dB . Overioad- 38 dB on magnetic pick-up. Supply Voltage- $\pm 16-50 \mathrm{~V}$. Price $£ 6.27+78 p$ VAT. P. \& P. free
HY5 mounting board B.1. 48p + 6p VAT. P. \& P. free
\square The HY30 is an exclting New kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of: I.C.. heatsink, P.C. board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up to date technology available. FEATURES: complete kit. low distortion, short. open and thermal protection; easy to build.
APPLICATIONS: updating audio equipment: guitar practice amplifier: test amplifier: audlo oscillator SPECIFICATION: Output Power-15W R.M.S. Into 8Ω. Distortion-0. 1% at 15 W . Input Senslivity500 mV . Frequency Response- $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
Price $£ 6.27+78$ p VAT. P. \& P. free
The HY50 leads I.L.P.s total integration approach to power amplifler design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World. FEATURES: low distortion; integral heatsink, only five connections: 7 amp output transistors: no external components.
APPLICATIONS: medium power hi-fl systems. Iow power disco. guitar amplifler
SPECIFICATION: Input Sensitivity -500 mV . Output Power- 25 W R.M.S. into 8Ω. Load Impedance-$4-16 \Omega$. Distortion- 004% at 25 W at 1 kHz . Signal/Noise Ratı- 75 dB . Frequency Response 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$ Supply voltage- $\pm 25 \mathrm{~V}$. Size- $105 \times 50 \times 25 \mathrm{~mm}$.
Price $£ 8.18+£ 1.02$ VAT. P. \& P. free
The HY120 is the baby of I.L.P. s new high power range, designed to meet the most exacting requirements including toad line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: very low distortion; integral heatsink load line protection: thermal protection. five connections: no external components.
APPLICATIONS: hi-fi high quality disco. public address. monitor amplifier. guitar and organ
SPECIFICATION: Input Sensitivily- 500 mV . Outpul Power.-60W A.M.S. into on Load Impedance-$4-16 \mathrm{n}$. Distortion -0.04% at 60 W at 1 kHz . Signali Nolse Ratio- 90 dB . Frequency Résponse- 10 Hz $45 \mathrm{kHz}-3 \mathrm{aB}$. Supply Voltage $\pm 35 \mathrm{~V}$ Size $-114 \times 50 \times 85 \mathrm{~mm}$.
Price $£ 19.01+£ 1.52$ VAT. P. \& P. free
The HY200 (now improved to give an output of 120 watts) has been designed to stand the most rugged conditions such as disco or group while still retaining true hi-fi performance.
FEATURES: thermal shutdown: very low distortion: load line protection. integral heatsink: no external components
Components
SPECIFICATION: Input Sensitivity- 500 mV . Outpui Power-120W R.M.S. Into in. Load Impedance-$4-16 \Omega$. Oistortion-0 05% at 100 W at 1 kHz . Signal. Noise Ratio- $96 \mathrm{ab}^{2}$. Frequency Response-- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage $=45 \mathrm{~V}$. Size $-114 \times 50 \times 85 \mathrm{~mm}$.
Price $£ 27.99+£ 2.24$ VAT. P. \& P. free
The HY400 is I.L.P.s Big Daddy of the range producing 240 W into 4Ω ! It has been designed for high power disco or public address applications. If the amplifier is to be used at contlnuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: thermal shutdown. very low distortion: load line protection: no external components. APPLICATIONS: public address disco. power slave. Industrial.
SPECIFICATION: Output Powef-240W R.M.S. Into 4Ω. Load Impedance-4-16 Ω. Distortion- 0.1% at 240 W al 1 kHz Signali Noise Ratio-94dB. Frequency Response- $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage $-\approx 45 \mathrm{~V}$. Input Sensitivity- 500 mV . Size- $114 \times 100 \times 85 \mathrm{~mm}$.
Price $£ 38.61+£ 3.09$ VAT. P. \& P. free
 VAT. P. \& P. free. PSU70-sultable for two HY120s $£ 14.58+£ 1.17$ VAT. P. \& P. free. PSU90-sultable for one HY200 £15.19 + £1.21 VAT. P. \& P. free. PSU180-sultable for two HY200s or one HY400 $£ 25.42+£ 2$. 03. VAT. P. \& P. free.
Free post + packing applicable to U.K. only.

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd., Graham Bell House, Roper Close, Canterbury, Kent CT2 7 EP. Tel: (0227) 54778

Please supply
Total Purchase price
I Enclose: Cheque \square Postal Orders $\square \quad$ Money Order \square Please debit my Access account \square Barclaycard account \square Account number
Name and Address

Put a Clamp on those small jobs with NODEX quick-grip vice

Dimensions
Overall length Overall width Overall height Jaw opening Jaw height Jaw width Weight

150 mm 130 mm 50 mm 70 mm 35 mm 70 mm

SPECIAL PRODUCTS DISTRIBUTORS LTD.

81 PICCADILLY, LONDON WIV OHL
Tel: 01-6299556
Cables: Speciprod London W1

SINCLAIR PAODUCTS microvision iv world model $£ 147.95$, UK model $£ 89.95$,
mains adaptor $£ 6.73$. PDM $35 £ 28.95$, mains adaptor £3.19, case £3.19. DM350 £68.95 DM450 £97.95. DM235 £ 49.45 , rechargeable batts e7.50, malns adaptor $\mathbf{~ 8 . 4 5 \text { . enterprise prog calculator with }}$ accessories f22.95. cambridge prog calculator £ 12.13 , prog library $£ 4.45$, mains adapior $£ 3.20$.
CALSCOPE Oscilloscopes send sae for data CALSCOPE osciloscopes send sae for data
or see the Calscope advert in this magazine. Super $6 £ 174$. Super $10 £ 236$.
COMPUTER GAMES Chess challenger 10 £167. chess challenger 7 £79. checker challenger $4 £ 84$. checker challenger $2 £ 50$. Atari videocomputer Li38. cartridges COMPONENTS send sae for full list.
1N4148 1 N4002 $2.9 p$. $741 \quad 15 \mathrm{p}$.
 bc182b, bc183b, bc184b, bc212b, bc2 10 R to $10 \mathrm{M} 1 \mathrm{p}, 0.8 \mathrm{p}$ for $50+$ of one value. 16 V
electrolytics $.5 / 1 / 2 / 5 / 10 / 22$ uf 5 p , 100 uf 6 p . electrolytics $.5 / 1 / 2 / 5 / 10 / 22$ uf $5 p$. 100 uf 6 p .
1000 uf 10 p . $1 \mathrm{lb} \mathrm{FeCl} £ 1.05$. daio pen 79 p . 60 sq ins pcb 55p.
IC AUDIO AMPS with pCb. JC12 6W

E1.60.JC20 10W E2.95. send sae for date.〔1.60. JC20 10W £2.95. send sae for data. | BATHERY ELIMINATORS 3 -way type |
| :--- |
| $6 / 7 \frac{1}{2} / 9 \mathrm{~V} 300 \mathrm{~mA} ~$ |
| 2.95 . 100 mA radio type |

 car convertor 12 V input. output $4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 \mathrm{~V}$
$800 \mathrm{~mA} £ 2.50$.

TV GAMES send sae for data. AY-3-8500 + kit $£ 8.95$. rifle kit $£ 4.95$. AY- $3-8600+$ kit
$£ 1250$. stunt cycle chio + kit $£ 12.10$. tank £12.50. stunt cy

battle kit $£ 4.50$.

TRANSFORMERS $6-0-6 V \quad 100 \mathrm{~mA} 74 \mathrm{p}$,
 90p. IA f2.49.
BATTERY ELIMINATOR KITS send sae for data. 100 mA radio types with press-studs
$41 \mathrm{~V} £ 1.40,6 \mathrm{~V} £ 1.40,9 \mathrm{~V} £ 1.40,4 \frac{1}{2}+4 \frac{1}{2} \mathrm{~V}$ $4 \frac{1}{2} \mathrm{~V}$ £ $1.40,6 \mathrm{~V} £ 1.40,9 \mathrm{~V} £ 1.40,4 \frac{1}{2}+4 \frac{1}{2} \mathrm{~V}$ $£ 1.80,6+6 \mathrm{~V}, £ 1.80,9+9 \mathrm{~V} \mathrm{f} 1.80$ stabilized
8 -way types $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{~V}$ $8-w a y$ types $3 / 4 \frac{1}{2} / 6 / 71 / 9 / 12 / 15 / 18 \mathrm{~V}$
100 mA E 2.80 . 1 mp E6. sta . stilized $100 \mathrm{~mA} £ 2.80$. 1 Amp £6.40. stabilized
power kis $2-18 \mathrm{~V} 100 \mathrm{~mA} £ 3.60$, 2-30V 1 A
$£ 6.95 .2-30 \mathrm{~V} 2 \mathrm{~A} £ 10.95 .12 \mathrm{~V}$ car convertor ¢6.95. $2-30 \mathrm{~V} 2 \mathrm{~A} \in 10.95$. 12 V car convertor 6/71/9V 1 A 61.35.
T-DEC AND CSC
T-DEC AND CSC BREADBOARDS s-dec

 BI-PAK AUDIO MODULES 5450 E23.51. AL60 £4.86. pa $100 £ 16.95$. spm80 £4.47 bmi80 $£ 5.95$. stereo 30 £20.12. AL30
£3.95. PA12 £7.60. PS12 £1.39. MA60

SWANLEY ELECTRONICS

(Dept. PE), 32 Goldsel Road, Swanley, Kent BR8 8EZ
Post 30p extra, prices include Vat Official

STORAGE CABINETS

Metal Cabinets $12^{\prime \prime}$ wide $\times 5 \frac{3}{4}{ }^{\prime \prime}$ deep, finished blue with transparent plastic drawers.
Type H No. of Drawers Price (ins) Sm MedLge

1118	11	15	2	1	$£ 8.65$
1633	16	30	2	1	$£ 10.95$
1838	18	35	2	1	$\mathbf{£ 1 2 . 9 5}$
2236	22	30	4	2	$£ 14.75$
2260	22	60	-	-	$£ 14.95$

Prices include VAT and Post. Cheque/P.O. to: Millhill Supplies (Tools). 35 Preston Crowmarsh, Benson, Oxon OX9 6SL.

Understanding Digital Electronics New teach-yourself courses

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.
The contents of Design of Digitai Systems include:
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and artithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and sychronous counters; ring, Johnson and exclusive•OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it designer, execxutive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

CAMBRIDGE LEARNIMG ENTERPRISES. Unit 29, Rivermill Site, FREEPOST, ST. IVES, HUNTAGGON, CAMBS. PE17 4BR, ENGLAND. TELEPHONE ST. IVES (0480) 67446. PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE: RIVERMILL LOOGE, ST. IVES. REGD. IN EMGL AND NO. 1328762

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

The six volumes of Design of
Digital Systems cost only:
+90 p post \& packing
And the four volumes of Digital Computer Logic and Electronics cost only: $£ 4.60$
+90p post \& packing
But if you buy both courses, the total cost is only:

Price includes surface mail anywhere in the world: Airmail extra.

Flow Charts \& Algorithms

HELP YOU PRESENT:

 safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.THE ALGORITHM WRITER'S GUIDE explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

$$
2255 \quad \text { + 450 post and packing by surface mail anywhere }
$$

GUARANTEE

If you are not entirely satisfied your money will be refunded.
Please allow 21 days for delivery.

Cambridge Learning Enterprises, Unit 29, Rivermill Site,
FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR, England.
Please send me the following books:
sets Digital Computer Logic \& Electronics @ £5.50, p \& p included
............. sets Design of Digital Systems @ £9.00, p \& p included
............. Combined sets @ $£ 13.00$, p \& p included
The Algorithm Writer's guide @ £3.40, p \& p included
Name...
Address \qquad

I enclose a *cheque/PO payable to Cambridge Learning Enterprises for $£$.
Please charge my *Access/Barclaycard/Visa/Eurocard/Mastercharge/ Interbank account number.
Signature. \qquad elephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank, or quote credit card number.

PE29

EHROMASONIT Electronics your soundest connection in the world of components

L.C.D. DIGITAL WATCHES

All products carry full 7 day money back reassurance plus 12 month guarantee.

Please add further $50 p$ for spare battery if required ($\mathbf{E 1}$ for No. 4.)

SAE for more details of large range of digital watches, clock/radios, clocks, car stereos, headphones etc.

ALARM MODEL (illustrated)

\author{

* Constant 6 digit display
} shows Hours, Minutes, Seconds or Date. - 24-hour alarm with on/off indication.
* Night Light.
* Matching adjustable stainless steel strap.
£12.50 inclusive
SLIM 11 FUNCTION CHRONOGRAPH Time, Date, $\frac{1}{100}$ second stopwatch.
$\mathbf{£ 1 2 . 5 0}$ inclusive
ALARM CHRONO WITH DUAL TIME
All functions of alarm model with $\frac{1}{10}$ second stopwatch and dual time.
$\mathbf{£ 2 4 . 9 5}$ inclusive
SOLAR ALARM CHRONO
As above but solar assisted.
£27.50 inclusive
LADIES 5 FUNCTION
Hours, Minutes, Seconds, Month and Date.
£7.95 inclusive

SPARKS DEVELOPMENTS, 53 North Street, Melbourne, Derbyshire DE7 1 FZ.

BIMENCLDSURES

ALL METAL BIMCASES
Red, Grev or Orange 14 swg Aluminium removable top and bottom covers. 18 swg black mild steel chassis with fixing support brackets. BIM 3000
$(250 \times 167.5 \times 68.5 \mathrm{~mm})$ £ 14.58

MINI DESK BIMCONSOLES Orange, Blue, Black or Grey ABS body incorporates 1.8 mm pcb guides, stand-off bosses in base with 4 BIMFEET supplied. 1 mm Grey Aluminium panel sits recessed with fixing screws into integral brass bushes.
BIM $1005(161 \times 96 \times 58 \mathrm{~mm}) € 2.18$ BIM $1006(215 \times 130 \times 75 \mathrm{~mm}) £ 3.05$

ALL METAL BIMCONSOLES

All aluminium, 2 piece desk consoles with Colour Code Top Panel Base either 15° or 30° sloping fronts, sit on 4 self-adhesive non-slip rubber feet. Ventilation slots in base and rear \square Off White

Sand | Satin Black Goen |
| :--- | ---: | panel for excellent cooling. See latest catalogue for new styles and sizes 15° Sloping Panel 30° Sloping Panel BIM 7151 ($102 \times 140 \times 51(28) \mathrm{mm}$) BIM $7301(102 \times 140 \times 76\{28) \mathrm{mm})$ (7152 (105 $140 \times 51(28) \mathrm{mm})$ BM 7302 (165 140×76 (28) m) £10.67 BIM $7152(165 \times 140 \times 51 / 28) \mathrm{mm})$ BIM $7302(165 \times 140 \times 76[28) \mathrm{mm}) \quad £ 11.44$ BIM $7153(165 \times 216 \times 51(28) \mathrm{mm})$ BIM $7303(165 \times 183 \times 102(28) \mathrm{mm})$ £ 12.61 BIM $7154(165 \times 211 \times 76(33) \mathrm{mm})$ BIM $7304(254 \times 140 \times 76[28) \mathrm{mm})$ £ 13.82 BIM $7155(254 \times 211 \times 76 \mid 33) \mathrm{mm})$ BIM $7305(254 \times 183 \times 102(28!\mathrm{mm})$ £ 15.36 BIM $7156(254 \times 287 \times 76(33) \mathrm{mm})$ BIM $7306(254 \times 259 \times 102(28) \mathrm{mm}) £ 16.67$ BIM $7157(356 \times 211 \times 76 \mid 33) \mathrm{mm}$) BIM $7307(356 \times 183 \times 102[28) \mathrm{mm}) £ 17.58$ BIM $7158(356 \times 287 \times 76 \mid 33) \mathrm{mm})$ BIM $7308(356 \times 259 \times 102(28) \mathrm{mm}) \mathbf{~} 18.55$

ABS \& DIECAST BIMBOXES

6 sizes in ABS or Diecast Aluminium. ABS moulded in Orange, Blue, Black or Grey. Diecast Aluminium in Grey Hammertone or Natural. All boxes incorporate 1.8 mm pcb guides, stand-off supports in base and have close fitting flanged lids held by screws in to integral brass bushes (ABS) or tapped holes (Diecast)
$(50 \times 50 \times 31 \mathrm{~mm})$ $(100 \times 50 \times 25 \mathrm{~mm})$ $(112 \times 62 \times 31 \mathrm{~mm})$ $(120 \times 65 \times 40 \mathrm{~mm})$ $(150 \times 80 \times 50 \mathrm{~mm})$ $(150 \times 80 \times 50 \mathrm{~mm})$
$(190 \times 110 \times 60 \mathrm{~mm})$
N/A ABS

N/A

 BIM2002/12 £0.96 BIM2003/13 £1.13 BIM2004/14 £1.35 BIM2005/15 £1.52 BIM2006/16 £2.37Diecast BIM5001/11 BIM5002/12 BIM5003/13 BIM5004/14 BIM5005/15 BIM5005/15
BIM5006/16

Hammertone TBA
£1.46
E1.78
E2. 24
62.24
52.84
$£ 2.84$
£3.94

Natural £1.02 £1.19 £ 1.46 £ 1.46
f 1.82 £ 1.82
$\mathbf{f} 2.28$ £2.28
$\mathbf{E} .3 .33$

BIM 2007/17 (112×61×31mm) £ 1.00

MULTI PURPOSE BIMBOXES
Orange, Blue, Black or Grey ABS with 1 mm Grey Aluminium recessed front cover held by screws into integral brass bushes.
1.8 mm pcb guides incorporated and 4 BIMFEET supplied.

BIM $4003(85 \times 56 \times 28.5 \mathrm{~mm}) \quad$ E 1.18 BIM $4004(111 \times 71 \times 41.5 \mathrm{~mm}) \quad £ 1.62$ BIM $4005(161 \times 96 \times 52.5 \mathrm{~mm})$
£2.19
LOW PROFILE BIMCONSOLES Orange, Blue, Black or Grey ABS body has ventilation slots as well as 1.8 mm pob guides and stand-off bosses in base. Double angle recessed front panel with 4 fixing screws into integral brass bushes. 4 BIMFEET supplied
BIM $6005(143 \times 105 \times 55.5[31.5] \mathrm{mm}) £ 2.37$ BIM $6006(143 \times 170 \times 55.5[31.5] \mathrm{mm}) £ 3.08$ BIM $6007(214 \times 170 \times 82.0[31.5] \mathrm{mm}) £ 4.12$

EUROCARD BIMCONSOLES

 Orange, Blue, Black or Grey ABS body accepts full or V size Eurocards, with bosses in the base for direct fixing. 1.8 mm wide pcb guides incorporated and 4 BIMFEET supplied. 1 mmGrey aluminium lid sits flush with body
top and held by a screws into integral brass bushes.
BIM 8005 ($169 \times 127 \times 70[45$] mm) £4.12
BIM $8007(243 \times 187 \times 103(66) \mathrm{mm}) £ 6.10$

BIMTOOLS + BIMACCESSORIES

MAINS BIMDRILLS
Small, powerful 240 V hand drill complete with 2 metres of cable and 2 pin DIN plug. Accepts all tools with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ or $.125^{\prime \prime}$ dia. shanks Drills brass, steel, aluminium and pcb's. Under $\mathbf{2 5 0} \mathrm{g}$, off load speed 7500 rom . Oranae ABS. high impact, fully insulated body with integral on/off switch $£ 10.53$
Mains Accessory Kit 1 includes $1 \mathrm{~mm}, 2 \mathrm{~mm}$. $125^{\prime \prime}$ iwist drills, 5 burrs and 2.4 mm collet $£ 2.48$
Mains Kit 2 includes Mains BIMDRILL as above, 20 assorted drills, mops, burps, grinding wheels and mounted points, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and $.125^{\circ}$ collets. Complete in transparent case measuring $230 \times 130 \times 58 \mathrm{~mm}$ £22.14

BIMDAPYORS

Allows pcb's to be flat mounted sandwich fashion in BIMBOXES, BIMCONSOLES, and all other enclosures having 1.5 mm wide vertical guide slots. One plastic BIMDAPTOR on each corner of pcb(s) enables assembly to be simply slid into place. 54 mm long, 10 stots on 5 mm spacing and can be simply snipped oft to length. $£ 1.08$ per pack of 25 .

[^4]12 VOLT BIMDRILLS
2 small, powerful drills easily hand held or used with lathe/stand adaptor. Integral on/off switch and 1 metre cable.
Mini BIMDRILL with 3 collets up to 2.4 mm dia. $£ 8.10$
Major BIMDRILL with 4 collets up to 3 mm dia. $£ 13.60$
Accessory Kits 1 have appropriate drills and collets as above plus 20 assorted tools. Mini Kit 1 - $\mathbf{£ 1 5 . 1 2}$, Major Kit 1 - £19.44. Accessory Kits 2 have appro priate drills, collets plus 40 tools and mains-12V dc adaptor. Mini Kit $2-£ 34.02$, Majar Kit 2 - $\mathbf{E} 39.42$. Accessory Kits 3 as appropriate Kits 2 plus stand/lathe unit. Mini Kit 3 - £45.36. Major Kit $3-£ 50.76$.

BIMPUMPS

多 | 2 all metal desolder- | BIMIRONS |
| :--- | :--- | ing tools provide high suction power and have easily replaceable screw in Teflon tips. Primed and released by thumb operation with in-built safey guard and anti-recoil system. BIMPUMP Major (180 mm long) $£ 7.99$ BIMPUMP Minor (150 mm long) $\mathbf{E} .80$

element, styled hand

Type 30 General Purpose 27 watt iron with long life. rapid change element. screw on tip, stainless steel shaft and clip on hook. Styled handle with neon. £4.05
Type M3 Precision 17 watt iron, quick change tip. lona life

BIMBOARDS

DIL COMPATIBLE BIMBOARDS

Accept all sizes (4.50 pin) of DILIC packages as well as resistors, diodes. capacitors and LEDs. Integral Bus Strips up each side for power lines and Component Support Bracket for holding tamps, switches and fuses etc. Available as single or multiple
units, the latter mounted on 1.5 mm thick black aluminium back plate which stand on non slip rubber feet and have 4 screw
terminals for incoming power.
BIMBOARD 1 has 550 sockets, multiple units utilising 2, 3 and 4 BIMBOARDS incorporate 1100,1650 and 2200 sockets, all on 2.5 mm (0.1") matrix.

BIMBOARD 1 £ 8.83

BIMBOARD 2 £21.01
BIMBOARD 3 £29.84 BIMBOARD $4 £ 38.79$

DESIGNER PROTOTYPING SYSTEM

1.2, or 3 BIMBOARDS mounted on BIM 6007 BIMCONSOLE with Integral Power Supply $(\pm 510 \pm 15 \mathrm{Vdc} @ 100 \mathrm{~mA}$ and fixed +5 Vdc @ 1 A) All O/P's fully isolated. Short circuit and fast fold back protection. Power rails brought out to cable ctamps that accept stripped wire or 4 mm plug.

DESIGNER $1 £ 55.62$

DESIGNER 2 E61.02
DESIGNER 3 £66.42

NOTICE TO READERS

When replying io Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

P.C.Bs PAXOLIN $10 \frac{1^{\prime \prime}}{} \times 4 \frac{1^{\prime \prime}}{} 4-$ E1.25. $12^{\prime \prime} \times 9^{\prime \prime} 70$ p. $17 \frac{1}{t^{\prime}}$
$\times 91^{\prime \prime} \mathrm{E1.15}$. D.S. $10^{\prime \prime} \times 8 \frac{1}{2}^{\prime \prime} 80$ p. Fibre Glass $9^{\prime \prime} \times 8^{\prime \prime} £ 1.20$
$18^{\prime \prime} \times \mathrm{g}^{\prime \prime}$ £2.40. D.S. $13^{\prime \prime} \times 6^{\prime \prime} \mathrm{E} 1.30 .11 \frac{1_{2}^{\prime \prime}}{} \times 7 \frac{1}{2}{ }^{\prime \prime} \mathrm{E1.60}$.
Panel with 42 assorted 74 series ICs $£ 1.50 .20$ wire ended
neons $\mathbf{1} .300$ small components, trans. diodos E1.50. 15
Refundable. Posi 20 p under $£ 1$. Insurance add $15 p$.
2 Barnfield Crescent, Sale. Cheshire M33 1NL.

ALL PRICES PER 1005°; carbon film resistors 25p; C280 (a)paritors sup; IC's from \&:s.(H); Zenners \&3.01); W/W
 ("mornls L: (10.14); Micro switches \&\&.50); Many other hargains. Lixts s.a.e. Bardwell, 212 Stubley Lane, Dromlield Wordhusse. Sheffield Sis 5 PY.

RIBBON MICROPHONES with $4 / 8$ Pole Switch 95p; Microswitches, Capacitors, Receivers and Microphone Capsules 10p each; Bakelite Telephones $\mathbf{2 2 . 9 5 ;}$ Handsets
 CONVERSATION

tunbridge wells components, Ballard's, 108 Camden Road, Tunbridge Wells, Phone 31803. No Lists, Enquiries S.A.E.

SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 6.60$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Lid". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager. Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower. Stamford St., London. SE1 9LS. (Telephone 01-261 5B46).

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepled subject to the conditions appearing on our current advertisement rase card and on the express understanding that the Advertiser warrants that the ing that tisement does not contravene thy Act ot Parliament nor is it an intringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or 2. The publishers reserve the
withdraw any advertisement.
3. Although every care is taken, the Publishers shall not be lable for clericel or printers. errors or their consequences.

GUARANTEED ICs $7400 / 10 \mathrm{p} 7447 / 55 \mathrm{p} 7473 / 24 \mathrm{p} 74121 / 24 \mathrm{p}$ 4000/15p 4011/15p 4017/55p $4027 / 32 p 709 / 22 p 741 / 22 p$ $7805 / 60 \mathrm{p}$ NE555/25p. Many more! SAE full list CP ICs 22 Oakfield Road, Croydon, Surrey.

COMPONENTS: 32 l.eds ($12 \mathrm{R}, 10 \mathrm{G}, 10 \mathrm{Y}$) $2.3,10$ packs $\mathbf{1 2 5}$;

 mix: P\&P 12p, CMOs. TTL. Micros free list. Tel 10506
G323:37) R. Machnik. 13 Hopefield Place, Blackburn. West Lothian.

COMPONENTS 365 pF airspaced variable capacitors, $\mathbf{2 2 . 5 0}$ inclusive: 500 pf dilecon variable capacitors. $\& 1.55$ inclu sive: motors, relavs, valves, and more. S.A.E. for details: D. E. Wood. Chestnut Cottage. Bentley. Hampshire, G11105H7.

Resistors $0.5 \mathrm{~W} 5 \%$ Carbon film E12 100-10M 1p
Ceramic Caps 68pF-6800pF E6 range 1 $\ddagger \mathrm{p}$.
Polvestier $0.01-0.22$ 2 $\frac{1}{2 p} .0 .33-0.476 \mathrm{pp}, 0.68,1.09 \mathrm{p}$,
2.220 p.
2.20 p .

Electrolytic $25 \mathrm{~V} 2-160 \mathrm{FF}$ 4 4 tp, $220.5009 \mathrm{p}, 100016 \mathrm{p}$. 680060 p , Red LED $0.125^{\prime \prime} 9 p$, Gr. veli. $0.2^{\prime \prime} 12 \mathrm{p}$
 148. 158. $1828 \mathrm{8p}$. 2 N 30554 Fp . 741 18p, LM3900 42p. 555 22p. Post 15p.

PROTON ELECTRONICS
 DEPTA, 1 A, 2 \& 4 STOPES ROAD. RADCLIFFE, MANCHESTER M26 OTN

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO., 103 South Brink Wishech, Cambs, 0945-4188. Immediate settlement.

SERVICE SHEETS

SERVICE sheets for Radio, Television, Tape Recorders, Steren etc. With free Fault-finding guide, from 50 p and S.A.E. Catalogue 25 p and S.A.E. Hamilton Radio, 47 Brhemia Road, St. Lennards, Sussex
bell's television services for Service Sheets on Radio, TV, etc £1.011 plus S.A.E. Colour TV Service Radio, TV, etc £1.011 plus S.A.E. Colour TV Service
Manuals on request. S.A.E. with enquiries to B.T.S. Manuals on request. S.A.E. with enquiries to B.I.S

190 Kings Road, Harrnate, N. Yorkshire, Tel: (0423) | 190 Kin |
| :--- |
| 5.588. |

BOOKS AND PUBLICATIONS

ALL SERVICE SHEETS and Manuals supplied - enquiries welcome - S.A.E. Please. Repair any T.V. easily, full individual instructions, any set (Circuit $£ 1$ extra) for $£ 5$ Send details of set to: T.I.S. (PE) 76 Church Street, Larkhall, Lanarks ML9 1HE

RECORD ACCESSORIES

STYLI Cartridges for MIISIC CENTRFS. \&c. FREE List Vor 29 for S.A.F. includes Leads, Mikes, Phones \&ic. FEI,STEAI EI,ECTRONICS. (PE), Longley Lane, Gatle:: Cheadle. Ches. SK8 4EF.

SITUATIONS VACANT

TEST TECHNICIAN

We are a small expanding electronics company looking for a self-motivated person who can utilise their initiative in a variety of interesting work. Formal qualifications are desirable, however candidates with a basic knowledge good salary and all the usual benefits of a smali company. Contact M. C. BIGGS on Erith 41933

EDUCATIONAL

COLOUR TV SERVICING

Learn ihe techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alienment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
1hept. H272 Intertext 1 louse, London SW8 4UJJ
Tel. 01-622 991 (all hours)
State if under 18

TECHNICAL TRAINING
Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS por details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics Computers: also self-buld radio kits. Full details from

ICS SCHOOL OF ELECTRONICS
 Dept. H272 Intertext House, London SW8 4UJ

Tel. 01-622991| (all hours)
State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians. Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS

1)ept. H272 Intertext Ifome, London SW8 4UJ

Tel. 01-622 9911 (all hours)
State if under 18

WHETHER SEA-GOING OR SHORE-BASED, an exciting life awaits you as a Marine Radio Officer. Full details from The Principal. Rarking College of Technology, Dagenham Road. Rumford. RM7 0X1'. TTelephone Romford 668411 .

OVERSEAS APPOINTMENTS

PRODUCTION TECHNICIAN

required in South Africa:

Excellent opportunity for skilled wireman with test experience.
The position is permanent and offers good salary. good working conditions, warm climate, subsidised house mortgage.
Write giving details of age, experience etc. to:

Klerkscale (Pty) Ltd,
P.O. Box 944, Klerksdorp 2570,

South Africa.

FOR SALE

PE MAGS May 69 in Mar $75(6$ missing $)$ Lisu. ETI Top projects 1+2, 6. i2.7.i. Tel: Fsher 6.3930 (Evenings)

ELEKTOR SYNTHESISER IV. C.O. bargain 2260. Digital sequencer parts isul. P.F.. Synthesiser Keyboard Circuits, sequencer parts 2nl. P.F.. Synthesiser Keyboard Circuits, various amps. Needs attention
offers. Birmingham. 7074543 .

NEW BACK ISSUES of "PRACTICAL ELECTRONICS" availahle 70p each Post Free. Open P.O./Cheque returned if not in stnck - Bell's Television Services, 190 Kings Road, Harrogate. N. Yorks. Tel: (0423) 55885.

FOR SALE E65. PF, Inanna t-Ivuill all major parts present indluding borly and keybiard. plus original magazine artioles : $3:$ Noman Niead Ruad. Tilehurst. Reading. Tel Reading 2:3016

ELECTRONIC ORGAN CONSTRUCTORS. Organ Cases and con soles. Inits from Table Top Case to Three Manual Console with full Pedal Board. Write for details: Hi-F Fnthusiast. Stackable Hi-Fi. Cabinets to hold AmpTuner. Plaver and Tape, plus storage for records and tapes. Box No. 79.

MK14 - Fulf warking urder. P.S.II, and extras. P.E. P.W. 1968 tu 75 I'nlound. Ring Coventry 468346.

MK14 micricomputer. built with cassette interface. extra RAM. () I. Lit). Riplev (I)erbyshire) 873244

ADVANCE OS25B Oscillnscope 5 MHz . dual trace with manual, and acressuries. little used. s.j) n.n.o. Tel: Hemel Hembmlead 48784 .

LADDERS

LADOERS. Varnished $25+\mathrm{ft}$. extd. $£ 335.70$. Carr. $£ 2.80$ Leaffet. Callers welcome. Open Sat. Ladder Centre (PEE5), Halesfield (1) Telford 586644.

miscellaneous

PRACTICAL ELECTRONICS P.C.B.'s

in glass fibre tinned and drilled

Dec. 77 Car Burglar Alarm $1412-168$ p.
May 78 Moving Light Display $£ 2.76$.
May 78 Moving Light Display $£ 2.76$.
Aug 78 Digital Thermometer, two boards $£ 1.45$
Oct. 78 Analogue Computer:
Overlord £3.31. Relay $£ 2.41$. Main £6.85
Dec. 78 RC Motor Control 67 p. RC Fail Safe 39 p.
Gultar Sound. Main board $£ 2.95$.
Jan. 79 Guitar Sound, clock £1.87.
Feb. 79 Guitar sound PSU £1
Feb. 79 Guitar sound PSU £1 25. Pulse Generator £1.39 April 79 Phaser 980.
For full list and current boards please send S.A.E P.C.B:s also produced from customer's own master please send for quote.
Postage - On orders less than $£ 10.00$ please add $25 p$ PROTO DESIGN
14 Downham Raad, Ramsden He

VIDEO

 MUSIC

Videograph II links to the aerial socket of your tv and provides a full colour GIANT oscilloscope display. A must for hi-fi, home entertainment, discos, organs etc.
New - signal invert control, integral square wave generator. Plus - full details for testing your audio system for transient distortion, crosstalk etc.
Complete $\mathbf{1 9 . 9 5}$ Luxury cabinet and Kit only Elf'it controls. £9-95 ready sult videograph e39.95 + $\mathrm{f1}$. Post \& Packing. WILLIAM Oower House, Bllericay Road. mimi STLAAT Herongate, Brent
Essex CM13 3SD SYSTEMS Led Telephone: Brentwood (0277) 810244

THE SCIENTIFIC WIRE COMPANY

PO Bax 30, Landon E. 4 NAMELLED COPPER WIRE

TRANSISTORISED IGNITION KIT
Complete pock of porrs wimp p.c.b. to build our rronsistorised ignition system based on Oorlington Power Tronsistors speciolly

Send SA.E. Fit
All components with p, Cb. (less cosel EA. SOLEC PRODUCTS,
60 Oole Streel, Monchester, MI 2HS

TIRRO's new mail order price list of electronic components TRONICS, Grenfell Place, Maidenhead, Berks.

I. C. EXPERIMENTAL/EDUCATIONAL KITS

 This popular series of Klts on Digital Logic techniques has now been further improved to include arditional components, resulting in greater constructional flexibility andeducational capacity.
Each Kit contains selected
Kit.c.s. Holders. Veroboard. LE.D:s and Instructions. Available 5.00 each (inc. p. \& p.l.

Kit One - Gates

Registers $\begin{array}{lll}\text { Kit Two-Fllp-Flops } \\ \text { Kit Four }\end{array}$-Counters
 Kisters Kit Five - Displays

S.A.E. for further details to:

AUTOMATED HOMES
69 High Street, Ryton, Coventry CVB 3F
(mail order)

GUITAR/PA/MUSIC AMPLIFIER

100 watt with superb treble/bass overdrive. 12 months guarantee. Unbeatable at $£ 42 ; 60$ watt $£ 37 ; 200$ watt $£ 58$: 100 watt 1 ivin channel sep. treble/bass per channel $£ 55$
60 watt $£ 48: 200$ watt $£ 72 ; 100$ watt four channel sep 60 watt $£ 48 ; 200$ watt $£ 72 ; 100$ watt tour channel sep.
treble/bass per channel $£ 75 ; 200$ watt $£ 92$; slaves 100 wat £32; 200 watt £49; fuzz boxes, great sound, £8.50; bass fuzz $£ 9.50$; overdriver: fuzz with treble and bass boosters £14; 100 watt combo superb sound overdrive, sturdy con struction, castors. unbeatable, E89; twin channei £99 bass combo $£ 99 ;$ speakers 15 in .
100 watt $£ 22.50 ; 60$ watt $£ 14.50$.

WILLIAMSON AMPLIFICATION

62 Thorncliffe Avenue, Dukinfield, Cheshire Tel: 061-344 5007 or 061-308 2064

CLEARING LABORATORY. Scopes, recorders, testmeters, bridges, audin, R.F. generators, turntables, tapeheads stabilised P.S.U.s, sweep generators, test equipment, etc Lower Beeding 236 . BATTERIES
TRADE ENQUIRIES WELCOME E. Write or call: Sandwell Plant Lid., 2 Union Dive. BOiLDMERE.
SUTTON COLDFIELD, WEST MIDLANDS, $021-3549764$ or see them at TLC. 32 Craven Street, Charing Cross,

MICROCOMPUTER HIRE ALSO OTHER EQUIPMENT NESCOM, HORIZON, APPLE II PET, CROMEMCO,
 OTHERS MAY BE AVAILABLE ON REQUEST.

LESS THAN £12 A WEEK FOR SOME DELIVERY
COLLECTION FREE IN
GREATER LONDON, SAME DAY DELIVERY WHEN AVAILABLE ALL EQUIPMENT MAY BE BOUGHT Telephone: 01-368 9002. PROMGLOW LTD. 30 CITY ROAD, E.C. 1

nickel cadmium batteries

Rechargeable and suitable for 'rast charge' HP7 (AA) E1.1.13 2 4.09 , PP3 not suitable for fast charge, PP3 charger f5. 81 All above Nickel Cadmium batteries are guaranteed EVER READY full spec. and are supolied complete with solder
tags (except PP3). Just in stock-New rechargeable sealed tags (except PP3). Just in stock-New rechargeable sealer lead acid maintenance free batteries suitable for burgla
alams etc., 1.2 amphr 6 v . $4402.6 \mathrm{amphr} 6 \mathrm{v} \mathrm{£5.65}$. Quantity prices available on requèst. Date and charging circuits free on request with orders over E. alnerwise 30 p $V A T$. Please add 10\%P \& P on orders under $£ 10.5 \%$ over E10.

SECURITY DEPT \&E 10, Bradshaw SOLID STATE 10, Bradshaw Lane Parbold

SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. faced steel. Hundreds of people and industrial users are chonsing the cases they require from ou vast range. Competitive prices start at a low 90 p, chassis punching facilities at very competitive prices, 400 model punching facilities at very competitive prices, 400 models ated). BAZELLI, Dept: No 23 St Wilfred's Foundry Lane, Halton, Lancaster. LA2 6LT.

NO SIG. GEN.?

$10 \mathrm{~Hz}-200 \mathrm{~Hz}$, logic and variable sine or square wave outputs, linear frequency scale, $\mathbf{£ 1 0 . 8 0 .}$
TIME? MSF 60 KHz Receiver, built-in antenna data output, f13.70. Sequentlal year, month date, day, hours, minutes, seconds display parts (no case or pcb) for receiver, £10.70.
RADIO 4 GONE? 200 KHz to Medlum Wave Converter, inductive and coax outputs, £9.70.
lease write for overseas prices. Each easy-assembly ki rc, money back assurance so SEND off NOW.

CAMBRIDGE KITS

45 (fT) Old School Lane, Milton, Cambridge

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

NAME	Send to: Classified Advertisement Manager PRACTICAL ELECTRONICS
ADDRESS	GMG, Classified Advertisements Dept., Room 2337, King's Reach Tower, Stamford Street,
ADDRESS	London SE1 9LS. Telephone 01-2615846
	20p per word, minimum 12 words. Box No. 60p extra.

Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

CABINET FITTINGS for
 Stage Loudspeakersand Amplifier Cabs

 Fretcloths, Coverings, Strop \& Recess Hondles, Feet, Costors, Jocks \& Sockets, Connons, Bulgin 8 woys, Reverb Troys, Locks \& Hinges, Corners, Trim, Speoker Bolts etc. Send $2 \times 9_{p}$ Stamps for samples and illustrated catalogueADAM HALL (P.E. SUPPLIES)
Unit 3. Carton Court, Grainger Road Southend-on-Sea. Essex.

NO LICENCE EXAMS NEEDED

To operate this miniature. solid-state Trans-mitter-Heceiver Kit. Only \&il0.25 plus 25p P. \& P. 'Brain-Freeze' 'em with a MINI-STROBE Electronics Kit. pocket-sized 'lightning flashes', varispeed, for discos and parties. A mere $\& 4.50$ plus $25 p$ P. \& P. Experiment with a psychedelic DREAM LAB. or jick up faint speech/sounds with the BIG FAR sound-catcher: readv-made multi-function modules. 25 each plus 25 p P. \& P
LOTS MORE! Send 25 p for lists. Prices include VAT.

BOFFIN PROJECTS
 4 Cunliffe Road, Stoneleigh Ewell, Surrey (P.E.)

AERIAL BOOSTERS. Improve weak VHF Radio and Television reception. price 25. S.A.E. for Leaflets. Electronic Mailurder Ltd.. Ramsbottom, Bury, Lancashire.BL0 9AG.

Ex Ministry and Surplus Equipment

 ssaled 0.500 and 0.125 no capion lifeal tor lansisitor tesserl suppied unused $£ 3.30$
24 V OC MoI
24 V OC Molor $1 \frac{1}{\prime \prime}^{\prime \prime}$ dia $\times 2^{\prime \prime}$ long $+f^{\prime \prime}$ long removable worm on a $f^{\prime \prime}$ dia shat. a quadity made motor supplied unused $\mathbb{5} \mathbf{2} 80$.
shaf, supplied unused fitentiometer f" dia, servo mounting with of ${ }^{\prime \prime}$ dia Seven segment nime dign Gas Discharge Display $180 \mathrm{~V} / \mathrm{W}$, character height
Stin 211^{*}, supplied unused 11.20 .
Elliott Tansistor Curve Traci type 8019, requires an oscilloscope with D / C X and Y Amps to opeme $\mathbf{£ 3 0 . 0 0}$ All prices include postage. Lots of other items in slock SAE. for lists. Shop
 30 pm . A. E. SUPPLIES 1 Arnolds Yard Did M. SUP Marker Place, Altrincham, Cheshive.

MAKE YOUR OWN PRINTED CIRCUITS

Etch Resist. Transfers - Starter pack 15 sheets, lines, pads, , i.C. pods) £1.45. Lorge ronge of single sheets in stock of 30p per sheet.
Ferric Chloride - 116 bags 80 p (P8P 50 p)* Master Positive Transparencies from P.C. layouts it. magazines by simple photographic process. Full instructions supplied. 2 sheets ($20 \times 25 \mathrm{~cm}$) negotive poper and 2 sheets $(18 \times 24 \mathrm{~cm})$ positive film $£ 1.25$. 5.A.E. lists and information. P\& ${ }^{2}$ 25P/order except*
p.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

> PCB'S FROM P.E. DESIGNS In high quatity glass ffire, flux varnished and drilled.
Nought 8 Crosses set of Boards $£ 6.20$.
Fob 79: Guitar Sound PSU $£ 1.19$; Puise Generator $\mathbf{£ 1 . 3 5 ,}$
Sequercer P.S.V. Fi 112.

> Trems:- Cash With Order Please
> Postage:- 25 p on orders less than $\mathrm{E10.00}$. Send 10 P.A., W.K., \& I. YATES
> 22 Ambleside Drive, Darwan, Lancs BB3 38G.

RYDER ORGAN SYSTEM (Wireless World)
Cassette $\mathbf{£} \mathbf{2 . 0 0}$ incl. UK
S.A.E. for p.c.b. list

HIYKON LTD. (P)
Woodside Croft, Ladybridge Lane, Bolton BL1 5ED

PLEASE MENTION 'PRACTICAL ELECTRONICS' WHEN REPLYING TOIADVERTISEMENTS

-N-TER L-DCK-I-NG PLASTIC STORAEE DRAWERS

Newest, neatest system ever
devised for storing small parts and components: resistors, capacitors, diodes, transistors, etc. Rigld plastic units interlock together in
vertical and horizontal combinations. vertical and horizonal combinations. ALL INTERLOCK Transparent plastic drawers have label slots, 10 and 20 have space dividers
bench or table top.
As supplied to Post Office, Industry and Government Depts. SINGLE UNITS (1D) $(5 \mathrm{in} \times 2 \mathrm{in} \times 2 \mathrm{i} \mathrm{in}) £ 3.50$ OOZEN. DOUBLE UNITS (20) ($5 \mathrm{in} \times 4 \frac{1}{2}$ in $\times 2 \frac{1}{4} \mathrm{in}$) £5.50 OOZEN. TREBLE (3D) 55.50 for 8 . DOUBLE TREBLE 2 drawers, in one outer case (602). E. 7.90 for 8.

PLUS QUANTITY DISCOUNTS
Orders over £ 20 , less 5%. Orders over £60. less 71%. PACKING/POSTAGE/CARRIAGE: Add $£ 1.00$ to all orders uncer £ 10 . Orders $£ 10$ and over, please add 10% carriage.
OUOTATIONS FOR LARGER OUANTITIES

Please add 8\%V.A.T, to total remittance.

Modem, slim-line power panel 12 O office, factory, showrooms. Perfectly safe, unbeatablic. Can be mounted on wall or trailed annwhere In room. Neat rubber base. Smart PVC outer cover. White $£ 3.30$.
$\mathrm{P} \& \mathrm{P}$. 60 . P\& P 60\%.

FLAIRLINE SUPPLIES(PE 6)
124 Cricklewood Broadway, London N.W. 2 Telephone 01-450 4844

CHORDGATE Ltd. SWINDON

Printed Circuit Boards. Add 27p post \& packing for 1 to 3 boards. Larger quantities post \& packing inclusive

Voltage Tripler P.C.B. contains 40.1 MFD $1000 \mathrm{~V}, 2$ pre-sets, 1 bridge rect., 4 IN4007, 9 resistors. 65 p .
P.C.B. contains 2 TIP3I (or equiv.), MJE 340 and over 70 other resistors, diodes, zeners, transistors, bridge rect., and capacitors. 50 p.
P.C.B. contains $2 \times 741,2 \mathrm{~N} 4921$ and over 40 other components and multiturn 20k pot. 60 p .
P.C.B. contains 2 IP 10W Wafer Switches, 2×7490 I/C, 2×74141 I/C, various Logic I/Cs, IN4 148 and over 50 components. 60 p .
P.C.B. with GEC, G424 Triac control IC, 2 SGS transistors, three 9 watt $W W$ resistors and 12 other components. 70 p .
P.C.B. with $8 \times \mathrm{BCl} 107,8 \times$ BCY70, 4 pre-set pot., and over 70 other components. 75p.
Parcel of I each of above, 6 P.C.B.'s. £3.30.

Post and packing inclusive. Audio Amplifier Boards containing $2 \times$ BFY50, IBFX29 and output pair of 2N5293 output transistors rated at 36 watts when heatsink mounted $£ 1.75$ or 2 for $£ 3.00$. Post and packing inclusive.

(Dept C.) 194 A DROVE ROAD, SWINDON, WILTS.

ALL OUR PRICES INCLUDE V.A.T.

Unless otherwise shown, all prices in advertisements are inclusive of VAT. Where prices are exclusive, readers should ensure that they have added the correct amount of VAT before ordering.
Export orders are not subject to the addition of Value Added Tax.

> WORLD RADIO TV HANDBOOK

1979		Price: $\mathbf{¢ 9 . 1 6}^{\mathbf{1}}$
1979 RADIO by ARRL	AMATEUR'S	HANDBOOK Price: $£ 7.86$
OW TO BUILD A COMPUTER CONTROLLED		
Ot by T. Loo	ourrow	Price: £5.20
HOW TO REPAIR VIDEO GAMES		
ELECTRONICS by A. Simpson Price: $£ 4.50$		
CLOSED CIRCUIT T.V. FOR TECHNICIANS VOL I by K. J. Bohlman Price: $£ 5.00$		
AMATEUR RADIO TECHNIQUES		
by P. Hawker		Price: £ $\mathbf{3 . 7 0}$
SOME COMMON BASIC PROGRAMS		
		Price: $£ 6.00$
80808085 SOFTWARE DESIGN		
by C. A. Titus		Price: $£ 7.50$
MICROCOMPUTER ANALOG CONVERTER		
SOFTWARE \& HARDWARE		INTERFACING
C. A. Titus		Price: $£ 7.50$
	NCLUDE	

"ALL PRICES INCLUDE POSTAGE*
THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET

 LONDON W2 INPPhone OI-723 4185
Closed Sazurday I p.m.

MICROPROCESSOR COURSE ANNOUNCEMENT

A two-day intensive course on the Design of Microprocessor Systems will be given at the Institution of Electrical Engineers, Savoy Place, London, by D. Zissos* on July 5 and 6, 1979. Full details will appear in the next issue of the Practical Electronics.
(*Author of System Design with Microprocessors, Academic Press, 1978).

INDEX TO ADVERTISERS

Computer Components (Teleplay). \qquad cover ii
Crescent Radio 16
Crimson Elektrik...................... 72
Crofton Electronics 4
C.R. Supply Co........................ 84
Davian Electronics 12
E.D.A. 78
Electrovalue 78
Fladar
Flairlines Supplies..................... 86
Furama Electronics 82
Future Electronics.................... 16
Gould Instruments 6
Greenweld Electronics 9
H.L Audio 14
Harversons............................. 22
Heathkit Ltd........................... 22
Hiykon Lid 86
Home Radio

Crescent Radio 16
Crimson Elektrik......................... 72
C.R. Supply Co........................... 84

E.D.A.

78 78

Flairlines Supplies.......................... 86
Future Electronics. 16

Gould Instruments 6
Greenweld Electronics 9
H.L Audio 14

Heathkit Ltd 22
Hiykon Ltd 86
Home Radio........................ 76
I.C.S. Intertext.........................2, 84 I.LP. Electronics 79
Jayen Developments
78
78
J.W.B. Radio. 84
Kay \& Co Ltd 12
Maclin-Zand.. 5
Maplin Electronic Supplies . cover iv
Marshall, A. (London) Lt 13Mill Hill Supplies................................ 80
Milward, G. F 80
Modern Book Co. Ltd 87
Monolith 76
P.A.W.K. \& I. Yates 84
PK G Electronics 86
Phonosonics 8, 9
Progressive Radio. 74
Proto Design 85
Radio Component Specialists. 76
Radio Exchange 4
Ramar Constructor Service... 85
R.S.T. Valve Mail Order. 16
Radio \& T.V. Components 73
Sandwell Plant Ltd. 85
Saxon Entertainments 64
Science of Cambridge. 71
Scientific Wire Co 85
Sentinel Supply 72
Service Trading 7
Solec Products. 85
Solid State Security 85
Sparks Developments 82
Special Products 80
Squire, Roger 2
Stevensons Electronic Components 75
Swanley Electronics. 80
T.K. Electronics 2
T.U.A.C 21
Technomatic. 88
Timetron. 14
Videotime Products 74
Watford Electronics 3
William Stuart Systems Ltd 85
Williamson Amplification 85

	 四															
	© io 骨움N N NNA															
											 No 					

Send no money
But don't send any money until you see the colour of your prints. We're so confident in the reliability of the service and the quality of our prints, every one of which is checked by professionals at our laboratories. Luxury colour prints
You'll be amazed at the crisp, sharp, high-definition sheen finish of the prints we supply ... borderless to give you maximum picture area. And coming with the prints will be your FREE Kodak colour film, worth around $£ 1$, the same size as the one you sent us for processing.

Unbeatable value

What about prices? Ours are certainly much less than those you would pay in most shops - quite apart from the free film you get every time we develop and print for you.
Our Colour Print Service charges you only 15 p for each print, plus 85 p towards developing, postage and packing. The minimum charge is 85 p inc. VAT (that is, if no prints can be made). The offer is limited to the UK, Eire, CI and BFPO.

for every one you send in for processing by the Practical Electronics Colour Print Service!

Speakers from $1 \frac{1}{2}$ inch to 15 inch megaphone. PA horns, crossovers etc They're all in our catalogue. Send the coupon now

Our catalogue describes a wide range of plugs and sockets, all at marvelious prices. See cat. pages 1.4 to 129 for details.

A genuine 150 W per channel stereo disco to build yourself. Full specification in our catalogue.

61-note touch-sensitive piano to build yourself. Full specification in our cataiogue.

Our catalogue even includes some popular car accessories at marvellous prices.

A very high quality 40W per channel stereo amplifier with a superb specification and lots of extras. Full construction details in our catalogue.

A digitally controlled stereo synthesiser the 5600 S with more facilities than almost anything up to £3.00u. Build it yourself for less than £700. Full spec|fication in our catalogue.

กากีคแाก

ELECTRONICSUPPLIES LTD

All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR. Telephone: Southend (0702) 554155.
Shop: 284 London Road,
Westcliff-on-Sea, Essex
(Closed on Monday)
Telephone: Southend (0702) 554155.

Multimeters, analogue and digital, frequency counter, oscilloscopes, and lots, lots more at excellent prices. See cat. pages 106 and 183 to 188 for details.

A 10 -channel stereo graphic equaliser with a quality specification at an unbeatable price when you bulld it yourself. Full specification in our catalogue.

Post this coupon now for your copy of our

 1979-80 catalogue price 75p.Please send me a copy of your 280 page catalogue as soon as it is published (8th Jan. 1979). I enclose 75 p but understand that if 1 am not completely
satisfied I may return the catalogue to you within 14 days and have my 75 p refunded immediately. If you live outside U.K. send £1 or ten International
| Reply Coupons

These are just some of the metal cases we stock. There are dozens of plastic ones to choose from as well. See pages 52 to 57 of our catalogue.

[^0]: (C) IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: TWIATRDN
 Dept PE,, Beaumont Sulte, 164-167 East Road, Cambrldge CB1 10B. Telephone 022367503 Callers welcome by appointment

[^2]: * Gould Electronic Power Supply Division

[^3]: ANCHESTER DISCO CENTRE, 237 DEANSGATE, MANCHESTER CALLERS ONLY - 10611832 B772-COMPLETE UNITS ONLY

[^4]: BIMFEET
 11 mm dia. 3 mm high, grey rubber self-adhesive enclosure feet
 £0.77 per pack of 24

