PRACTICAL


## Introducing the personal computer you've waited for. THE EXIDY SORCERER.

## SORCERER

COMPUTER SYSTEM
Complete with Monitor
assembled and tested computer system Standard configuration includes 63 -key typewriterstyle keyboard and 16 -key numeric pad, 280 processor, dual cassette $1 / 0$ with remore computer control ar 300 and 1200 baud data rates, RS232 serial 1/O or communications. parallel port for
direct Centronics printer attachment. $4 k$ ROM operating system. 8 K ROM
Microsoft BASIC in Rom PacTM composite video of 64 char/line 30 linel screen, 128 upper/lower case ASCII set and 128 user defined graphic symbols, operation manual, BASIC prograrnming manual and cassette/video cables, connecton for $\mathrm{S}-100$ bus expansion,
only $£ 950$ Credit facilities available.


## LOOK!

32K RAM on board RS232 interface " 8 K BASIC ROM CUTS interface - 4 K MONITOR KANSAS CITY interface 'S100 BUS User defined graphic symbots *Z80 cpu

## KEY BOARD

756 GEORGE RISK Brand new professional ASCII keyboards (USA)
Full technical details included. RRP £60.00
Only $£ 49.90$

+ 8\% VAT
Ready built, tested
and guaranteed.



## COMPUTER JOYSTICK

Plugs into your Nascom P.I.O. No extras. Software and full documentation supplied. Plus free game cassette. $£ 14.90$ each $£ 28.90$ per pair

## COMP PRO Mixer

## Professional audio

mixer that you can build yourself and save over $£ 100$.


6 into 2 with full equalization and echo, cve and pan controls.
All you need for your own recording studio is a stereo tape or cassette recorder.

This superb mixer kit has slider faders, level meters and additional auxilliary inputs.
Only $£ 99.90$ plus $8 \%$ VAT for complete kit Plus FREE power supply valued at $£ 25.00$

## Ideal for

## DISCOS STAGE MIXING HOME STUDIOS AND MANY OTHER APPLICATIONS

## COMPUTER COMPONENTS

Send for our Spring 1979 catalogue. 0.60p Full of Computer Components, Peripherals and systems.


## INTERESTED IN HOME COMPUTING?

FREE B BUG valued at $£ 23.00$ plus $10 \times \mathrm{C} 12$ cassettes valued at $£ 4.00$ WITH EVERY NASCOM

Start now and don't get left behind THE NASCOM 1 is here Ex-stock with full technical services
Plus the opportunity to join the fastest moving club of personal computer users enabling you to get the most our of your computer. You can OBTAIN and EXCHANGE programs and other software - many now available.
The Powerful $\mathrm{Z80}$
Microprocessor
Professional Keyboard
1 Kbyte Monitor in EPROM
2 Kbyte RAM (expandable) Audio Cassette interface
Plugs into your domestic TV Easy construction from straightforward instructions no drilling or special tools Just neat soldering required.


Only $£ 197.50+8 \%$ VAT (includes $p$ \& $p+$ insurance)
Manuals seperately $\quad 2.95$ Monitor quality improved $Z 80$ programming Manual 6.90 TV Modulator
Z80 Technical Manual 2.95
PIO Technical Manual 2.95 (All prices add 8\% VAT)

Power supply suitable for
NASCOM AD ONS - Nascom improved monitor B Bug (2K) featuring - *Four times tape speed *Direct text entry without ASCII *Extended keyboard facility *Additional useful subroutines $£ 23.00$
Nascom Software library. Send SAE for lists and prices.
BLANK C12 Racal Quality CASSETTES $£ 4.00$ for 10

COMP

## CONSTRUCTIONAL PROJECTS

LOGISCOPE by R. A. Penfold
Gives logic levels and mark space ratio/frequency data ..... 18
SEQUENCER-1 by Lindsay Robinson
Enables sixteen bits to be programmed into a synthesiser ..... 22
DIGITAL ENLARGING EXPOSURE METER by A. A. Luha B.Sc.
For black and white prints without waste ..... 34
P.E. MICROPRINTER-3 by Mark Simon
Final part covers testing and routine maintenance ..... 44
HEADLIGHT WARNING DEVICE by P. G. Wagstaff
Dual purpose, for lights on, lights off ..... 62
GENERAL FEATURES
BINAURAL STEREO PATENTS by Adrian Hope
A new look at- not so new stereo system ..... 28
HOME COMPUTERS—2 by R. W. Coles
Peripherals and software ..... 46
CONSTANT CURRENT SOURCES by D. F. Bòwers B.Sc.
Transistor, op.amp. and transconductance amp. methods ..... 54
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices ..... 59
INGENUITY UNLIMITED
Variable Pulse Delay-Ultrasonic Proximity Detector-
Hazard Flasher Monitor-Simple Phaser-Livewire-Car Intruder Alarm ..... 66
NEWS AND COMMENT
EDITORIAL ..... 17
POINTS ARISING
Noughts and Crosses Game-ADSR Envelope Shaper ..... 20
SPACEWATCH by Frank W. Hyde Death of Skylab, Tiros-N, Vela Pulsar, Holography, Venus ..... 21
NEWS BRIEFS
Away with Contactors-Model Aircraft Radar ..... 31
More Bubbles!-Five-Step A to D ..... 41
TV or Scope-Fir Filters-Countdown ..... 43
Walky Talky Terminal-Floppy Saddle for your PET-Printer-John Miller-Kirkpatrick ..... 53
Cherry-Picker Boom Boon ..... 64
Micro Courses-Take Over-Bubble Take Over-Power Supply Breaker-Video Library ..... 70
MARKET PLACE
New products ..... 32
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry ..... 42
BOOK REVIEWS ..... 56
READOUT
A selection of readers' letters ..... 60
OUR APRILISSUE WILL BE ON SALE FRIDAY, 9 MARCH 1979(for details of contents see page 65)

[^0]
## Kontite remote control switch <br> -Simple to install even simpler to use



The Receiver:
contains input and output cables which are connected to the appliance to be controlled.

## The Transmitter:

is light and cordle and housing the battery. Simply, point the transmitte at the receiver to turn on or off

Now available in the U.K. The 'Kontite' Remote Control unit switches electrical appliances and equipment on or off safely from distances of up to 35 feet.

Televisions, radios, hi-fi equipment, lighting, model trains etc. electric fans, electric fires (up to 2 kw ) and many other appliances are within its scope, providing that they have a power supply of $240 / 250$ AC single phase, $50 / 60 \mathrm{~Hz}$ and a maximum 10 amp rating and also that the relevant safety regulations are applied

The unit is ideal for use in the home, office, factory and hospital. Particularly useful as an aid to the disabled and invalid-wherever an electrical appliance is difficult to reach in the normal manner.


## Kay \& Co (Engineers) Ltd.

Acresfield House, 15 Exchange Street, Bolton. Lancashire. Telephone: Bolton 21041 Telex: 63186

## NO DISCO SYSTEM IS COMPLETE WITHOUT... <br>  <br> CITRONIC MM 313 MIXER <br> Ideal for the DIY enthusiast building up a complete disso system. $4 / 6$ ch. monos, inc. LED indicators. connections £80.46 (P \& P £ 1.50 ) <br> PIEZOHORNS <br> FANTASTIC SPECLAL OFFE to readens lication <br> tication <br> Tweeters for your disco. PA <br> system or Mi-Fi. Frequency range 5 K -20k No x over required. They can be used in ny P PICE OLY 54.99 why pay more? <br>  PROJECTORS SQUIRE MULTIFECT 150 - including rotator and effects wheel. A truly ver satila projec Tungsten bulb, all effects tachments simply slot in ready for us A BARGAIN AT $£ 40.50$ (PSP $£ 1.00$ ) <br> PLUS MANY DISCO ACCESSORIES <br> BULGIN OCTAL PLUGS <br> AND SOCKETS <br> There's always hundreds of Bulgin Octal multiway plugs and sockets in stock at Roger Squire's. Each pin rated 6A Perfect for C0.65 [P\&P 35pl P551 PLUG \& 1.84 |P\&P 35 pl arriage on 10 or more nominal \&1 00 Also available Carfiage on 10 or more nominal $£ 1.00$ Also available 065 per metre Please phone for carriage quote <br>  STARLITE 250 An exclusive new line to Roger Squire's Oisco Contres. Supertb bigh powere oletef accepis wide ange of mivilen atractenens Unive conection stit tor orbit trism revolvers. Only <br> £70.20(P\& \& £2.00) <br>  stocks depart ment which carries large Fork or DISCO SPARES \& ACCESSORIES. $12^{\prime \prime}$ and $15^{\prime \prime}$ BSR and Garrisco Speaker at discount prices <br>  Plus sockets, Fuses. Plugs. etc etc. <br> hoger Squirch disco gear

Personal callers: ROGER SQUIRE'S OISCO CENTAES

LONDON: 175 Junction Road. Tufnell Park N19 500 01-272 7474 BRISTOL: 125 Church Road, Redfield. Bristol BS5 9JA 0272 -550550 MANCHESTER: 251 Deansgate M3 4EN 061.8317676

Open from 10.5 Tues-Sat 10.8 Weds. Closed Mondays.
asgow. G20 6UP
041.9463303

## TOUCH CONTROLLED

 LIGHTING KITS (300W)A Lightdimmer with NO knob. Dimming and ondoff functions are controlled by touch. Features include:

* No mains rewiring.
* Easy to build - uses one MOS IC *Switches on to preset brightness. * Can be switched and dimmed from many locations using TDE/K kit making 2 -way switching easy. ** PRICE TO300K $£ 9.67$
$n$

TSD3OOK TOUCH-SWITCH \& DIMMER combined. One touchplate for on/off. Small knob controls brightness. $£ 5.62$ TS300K TOUCHSWITCH. Two touchplates ON/OFF EA. 64 TSA 300 K AUTOMATIC. One touchplate. Preset time delay off variable 2 secs to $3 \frac{1}{2}$ mins. LD 300 K LIGHTOIMMER. $£ 3.24$
DIGITAL VOLTMETER/THERMOMETER KIT


Based on the 7106 single
IC $3 \frac{1}{2}$ diglt D.V.M. the KIt contains a PCB, reslstors, capacitors. presets, I.C. and 0.5" liquid crystal display. Comto enable the basic $\mathrm{D} . \mathrm{V} . \mathrm{M}$. kit to be modified to
Digital Thormometer
using a single transistor
using a single rransistor as the sensor. Requires a 2 mA 9 V supply (PP3 ttery).
ONLY e23.75

| TRIAC BARGAINS |  |
| :---: | :---: |
| 400 V Plastic Case |  |
|  | 64p |
| 6.5A with trigger | $86 p$ |
| 8 8 | $88^{p}$ |
| 12A | 90p |
| 16A | 113p |
| 20A | 178p |
| 25A | 205p |
| SCR (C10601.5A400V | 400V 54p |
| Diac | 23p |
| COMPONENTS |  |
| $\begin{aligned} & \text { O.2" LE.D.s } \\ & \text { Red } \\ & \text { 13p } \\ & \text { 220 } \\ & \text { (E1.08/ } \end{aligned}$ |  |
|  |  |
| DL727.5" display |  |
| LCD. $5^{-4} 4$ digit | ¢8.75 |
|  |  |
| NE55574127p |  |
|  |  |
| LM3911 temperature control |  |
| tharmometer IC |  |
| AY-5-1224 | ¢3.51 |
| AY-5.1230 E5.23 |  |
| ICL7106 OVMIC $\begin{aligned} & \text { E11.05 }\end{aligned}$ |  |
| iN4001IN4148 |  |
|  |  |
| BC182L 11p |  |
| 2N3819 | $25 p$ |


| MINI MAINS |
| :---: |
| TRANSFORMERS |
| Standard 240V mains primary |
| 100 mA secondary |
| $6-0-6 \mathrm{~V}$ |
| $9-0-9 \mathrm{~V}$ |
| $12-0-12 \mathrm{~V}$ |

## TRANSFORMERS

Standard 240 V mains primary
$6-0-6 \mathrm{~V}$
$12-0-12 \mathrm{~V}$

24HR CLOCK/APPLIANCE TIMER KIT


Switches any appliance of up to 1 KW on and off at preseț times once a day KIT contains: AY-5-1230 Clock/Appliance Timer IC, 0.5" LED display, mains supply, display drivers, switches, LEOs, triac, complete with PCBs and full instructions. $£ 16.09$ White bo $(56 \times 131 \times 71 \mathrm{~mm})$-drilled $£ 2.70$
Ready bullt
undrilled $\begin{array}{r}\text { E2.38 } \\ \\ \hline 24.30\end{array}$
ABOVE PRICES INCLUDE V.A.T
Quantity discounts on request. Add $25 p$ postage and packing. Mail order only to:
T.K. ELECTRONICS (PE) 106 Studley Grange Road, London, W7 $2 L X$.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{FTLebytexas}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 74177 \\
\& 74178
\end{aligned}
\]} \& \multirow[t]{2}{*}{\({ }_{4000}^{4000}\) SERIES} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }^{93}\) SERIES \({ }^{\text {9301 }}\)}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { VEROBOARD } \\
\& 0.1{ }^{0.15}
\end{aligned}
\]} \& \multirow[t]{3}{*}{TRANSISTOAS
AC
A 126
250 \(\mathrm{ACl127/8} 2 \mathrm{R}^{\circ}\)} \& \multirow[b]{3}{*}{\[
\begin{array}{ll}
\text { BFX86/7 } \& 30 \mathrm{p} \\
\text { BFX88 } \& 30 \mathrm{p}
\end{array}
\]} \& \multirow[b]{3}{*}{TIP35A 225 p} \& \multirow[b]{2}{*}{- 2 N 3820} \& \multirow[t]{3}{*}{\begin{tabular}{ll} 
DIODES \& \\
\hline \(.8 Y 127\) \& \(12 p\) \\
.0447 \& \(9 p\)
\end{tabular}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{-ZENEERS 2.7 V 33 V}} \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 74 \& \(1{ }^{14} \mathrm{p}\) \& 74180 \& \& 9302
9308 \& \& 41 p 3 p \& \& \& \& \({ }^{2 N} 3823\) 70p \& \& \& \\
\hline \& 14 \& \& \(\begin{array}{ll}4002 \& 17 p \\ 4006 \& 95 p\end{array}\) \& 9310 \& \&  \& \& \& TIP \& \& \& \& \\
\hline 740 \& 17 \& 74184 A 150 \& 4007 18p \& 8311 \& 275 \&  \& AF \& BFY51/2 22 P \& TIP41A 65p \& - 2 N3905/6 200 \& -0490 \& \& \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 7404 \\
\& 74504 \\
\& 7405
\end{aligned}
\]} \& \& \(74185 \quad 150\) \& 400880 \& 9312 \& 160 p \& \(3 \times 5 \quad 56 \mathrm{p}\) 6p \& AD161/2 45 p \& \& TIP42A 70p \& 2N4037 655 \& -OA91 9p \& PLA \& \\
\hline \& \& 74186700 \& 4009 \& 93 \& \& 2 \({ }^{2} \times 17152 \mathrm{l} 121 \mathrm{p}\) \& AD107/8 \({ }^{\text {ap }}\) \& BLY83 700 \& \(11 \mathrm{P} 22 \mathrm{C}{ }^{82 \mathrm{D}}\) \& \& -OA200 9p \& \& \\
\hline 7407 \& 32 p \& 7191 \& 40 \& 9321 \& 225p \& 4. \(\times 17\) 252p \& 8 Cl 109 11p \& BRY39 \({ }^{45}\) \& T1P2955 \& -2N4061/2 18p \& -OA202 10p \& \& \\
\hline \& \& 92 \& 12 \& \({ }_{9} 9322\) \& \({ }^{1500}\) \& Pht of 35 pins 30 p \& -8C147/8 9 9p \& BSX19/2020 \& - TIS \(43{ }^{\text {a }}\) \& - \(2 \mathrm{~N} 4123 / 4\) 22P \& - \& 64 50 \& \\
\hline 74 \& \& \& 4013 50p \& 9334 \& 22 \& Spot face cutter8 \& -8C149 \({ }^{\text {80p }}\) \& \& - T1593 \({ }^{340}\) \& -2Na125/6 22 p \& -1N916 \({ }^{\text {- }}\) - 4 148 \& \& \\
\hline 7411 \& 15 \& 741 \& 4015 84p \& 93688
9370 \& \({ }_{200}\) \& lool \({ }^{\text {Pininsertion 99p }}\) \& -BC157/8 10p \& - 105250 \& -2Tx108 \({ }^{12 \mathrm{p}}\) \& - 2 N4401/3 270 \& IN4001/2 5 P \& \& \\
\hline 7412
7413 \& 20 \& 741 \& 4016 \& \& 200p \& \&  \& -8U109 \& 21×500 15p \& \({ }^{2} \mathbf{N 4 4 2 7} 900\) \& IN4003/4 \({ }^{\text {Pr }}\) \& 12 A \& \\
\hline \& 80 \& 74198 150 p \& \& \& \& VER \& - \(\mathrm{BC172} 12 \mathrm{l}\) \& -BU208 20 \& :271502 180 \& -2N4871 \({ }^{\text {- }}\) 205087 \({ }^{\text {270 }}\) \& iN4006/7 7 \& \& \\
\hline \multicolumn{2}{|l|}{74 C 14} \& \& \& BUCKET \& \& Plus spool 325p \& \(\begin{array}{lll}8 \mathrm{BC} 177 / 8 \\ \mathrm{BC179} \& 17 \mathrm{pa} \\ 180\end{array}\) \& \begin{tabular}{ll} 
- BU 406 \\
\(8 J 481\) \\
\hline 175 \\
\hline 185
\end{tabular} \& - \& - 2 N5089 270 \& (N5401/3 \({ }^{\text {P/p }}\) \& \& \\
\hline \[
\begin{aligned}
\& 7416 \\
\& 7417
\end{aligned}
\] \& 27 \& 74221160 \&  \& BRIGADE. \& \& \%ot 80 p \& - \(\mathrm{BC} 182 / 310 \mathrm{p}\) \& \& \&  \& -15920 9p \& \& \\
\hline \[
7420
\] \& \(17 p\) \& \& 4022 100p \& SAD1024 \& 1800p \& Combes 7 peach \& -8C184 \({ }^{\text {BC187 }}\) \& M 3501225 \& 2N697 \({ }^{\text {2N698 }}\) \& 2N5199 83p \& \& \& \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
7422 \\
7423 \\
\hline
\end{tabular}} \& \& \& \& \& \& - mecteoor 120 \& \& \& N \& \& \& \& \\
\hline \& 34 \& 74265 \& 13 \& \& \& \& - \& \& 2NT08A \& - 2 N5296 550 \& \& \& \\
\hline \[
\begin{array}{r}
.7425 \\
7426
\end{array}
\] \& 3 \& 7427829 \& 13 \& - -A \& \& - NE540L 200p \& -8471/830 \& p \& \({ }^{2}\) 2N940 \({ }^{\text {N18 }}\) \& -2N5401/50p \& Vo \& \& \\
\hline \[
\begin{aligned}
\& 7426 \\
\& 7427
\end{aligned}
\] \& 34 \& 74283 \& 40 \& -AY1 \& 211p \& NE543K 225 \& -8C516/7 \({ }^{\text {P0p }}\) \&  \& 2N1131/2 200 \& -2N5459 400 \& Transistors 22p \& , 1a 6 \& \\
\hline 7428 \& \& 74284 \& 100 \& -AY5 \& 600 \% \&  \& - BC549C 18p \& -MPF103/4 \& N1711 250 \& -2N5460 \({ }^{\text {a }}\) \& For 105 12p \& 3A 4 \& \\
\hline \[
\begin{aligned}
\& 7430 \\
\& 7432
\end{aligned}
\] \& 12 \& \({ }_{742908}{ }_{7} 42850\) \& 4031200 \& \& \({ }_{80} 8\) \& NE5618 \({ }^{\text {a }}\) - 25 \& *BC5578 \({ }_{\text {BC559 }}{ }^{\text {18p }}\) \& - \& \(2 N 2102\)
\(2 N 2160\)
200p \& \(2 N 6027\) 48p \& \& \& \\
\hline \[
\begin{array}{r}
7432 \\
7433
\end{array}
\] \& \& \& 403318 \& \& \& 1300 \& BCY70 180 \& p \& 2N2219A 22 \& 2N6247 1900 \& BRIDGE \& \& \\
\hline 74378
7440 \& \& \(\begin{array}{ll}74294 \& 200 \\ 74298 \& 200\end{array}\) \& 4035 \& ca \& 725 \& \& \& MPSAO6 300 \& \(2 \mathrm{2N}\) \& 2N6254 130 \& -1A 50V 21p \& \& \\
\hline \[
\begin{aligned}
\& 7440 \\
\& 7441
\end{aligned}
\] \& \& \(74365 \quad 15\) \& 40 \& \& \& 1759 \& \& -MPSA56 32p \& \(2 \mathrm{~N} 2484{ }^{3}\) \& 2N6292
3N128

1200 \& -1A $4000{ }^{\text {a }} 30 \mathrm{p}$ \& \& <br>

\hline $$
7442 \mathrm{~A}
$$ \& \& $\begin{array}{ll}74366 & 150 p \\ 74367 & 120 p\end{array}$ \& 4042 \& cas \& 100p \& 40 \& 560 \& -MPSU06. ${ }^{\text {M }}$ M ${ }^{\text {ap }}$ \& 2N2646 ${ }^{\text {2 }}$ \&  \& -1A 600V 35p \& 16a \& <br>

\hline \multirow[t]{2}{*}{7443
7444} \& 11 \& \& \& \& 0p \& SF \& \& OC28 ${ }^{130}$ \& 2N2906A 2 \& 1100 \& -2A 100035 \& \& <br>
\hline \& \& \& 4046 \& \& \& \& \& $\mathrm{OC}^{\text {O }}{ }^{130}$ \& ${ }^{2} 2 \mathrm{~N} 2907 \mathrm{~A} 30$ \& \& -2A 400V $45 p$ \& \& <br>

\hline | 7445 |
| :--- |
| $7446 A$ | \& 100p \& $\begin{array}{ll}74393 & 200 p \\ 74490 & 225 p\end{array}$ \& ${ }_{4047}^{404} 100$ \& ${ }_{1} \mathrm{CL} 71$ \& 850 p \& - SN76013ND 120 \& 200 \& -R20088 200p \& $2{ }^{2}$ \& 402902500 \& -34200V 60p \& - MC \& <br>

\hline $7446 A$
$7447 A$ \& \& \& 4048 55p \& ICL80 \& 340 p \& -SN7 \& 35 \& \& 2 N \& ${ }_{40360}{ }^{40 p}$ \& - $4 \mathrm{4a} 100 \mathrm{~V}$ giop \& \& <br>
\hline 7448

7450 \& \& ${ }^{\text {74LLSOO }} 14 \mathrm{p}$ \& 4050 49p \& LM311 \& 120p \& -SN76023ND ${ }^{\text {SN76033N }} 175$ \& 8 \& -TIP29A ${ }^{\text {-TIP }}$ \& | $2 N 3055$ |
| :--- |
| $2 N 3442$ |
| 180 | \& ${ }_{40364}^{40361 / 2}{ }^{40} 120 \mathrm{p}$ \& - 4a lod gap \& -2N4 \& <br>

\hline 7451
7453 \& \&  \& 4051800 \& LM318 \& 2000 \& SN76477 250 p \& BF259 36p \& -TTP30A ${ }^{\text {-TP30C }}$ 48p \& 2N3553 240 \& $\begin{array}{ll}40408 & 700 \\ 40409\end{array}$ \& $50 V^{900 p}$ \& -2N5064 \& <br>
\hline \multirow[t]{2}{*}{7453
7454
7460} \& \& ${ }^{741508} 250$ \& 4052 ${ }_{4}^{4053} 8$ \& LM324 \& $7{ }^{70 p}$ \& -TAA621 275p \& \& -TIP31A 58p \& \& \& \& \& <br>
\hline \& \& \& ${ }_{4054}^{4050}$ \& LM348 \& \& -TBA641811 225 p \& \& TIP31C 62p \& \& \& \& \& <br>
\hline 7460
7470
7472 \& \& 74LS13 ${ }^{\text {740p }}$ \& s40 \& -LM37 \& 175p \& - TBA651 200p \& \& TIP32A 68p \& \& 405 \& \& \& <br>

\hline \multirow[t]{2}{*}{| 7472 |
| :--- |
| 7473 |
| 7474 |} \& \& $\begin{array}{ll}\text { 74LS13 } & 45 p \\ 741514 & 72 \mathrm{p}\end{array}$ \& 4056135 \& -LM3 \& \& -tba800 90p \& \& TIP32C 82p \& \& 40595 105p \& \& \& <br>

\hline \& \& 74LS \& 115 \& -LM38 \& ${ }_{140 \mathrm{p}}^{160 \mathrm{p}}$ \& -T8A82 \& \& TIP33A 90 \& $\square_{-2}$ \& 40841 \& \& \& Op <br>
\hline 74 \& \& 74 \& 4063120 \& LM709 \& 36p \& -TCA994 \& 30 34 \& TIP34A 115 p \& - \& 40871/2 90p \& ${ }_{400}$ \& \& 75p <br>
\hline \multicolumn{2}{|l|}{7480} \& 744S27 38p \& 4067450 \& LM \& Op \& -TOA \& Bf $\times 84 / 5$ 30p \& TIP34C 160 \& -2N3819 25p \& \& \& \& <br>
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{7481
7782
7888}} \& $\begin{array}{ll}741530 & 20 \mathrm{p} \\ 741532\end{array}$ \& 4068 22p \& LM \& 100 p \& -T \& MEMO \& \& \& \& \& \& <br>
\hline \& \& \& \& LM \& \& \& \& \& \& \& \& \& <br>

\hline \multicolumn{2}{|l|}{$$
7483 \mathrm{~A}
$$} \& 74LS47 90 \& 4071 22 \& LM74 \& 35 \& \& 102 \& \& S601 \& 400 p \& \& \& <br>

\hline \multicolumn{2}{|l|}{748511} \& \& \& \& \& \& \& \& \& \& \& \& <br>

\hline \multicolumn{2}{|l|}{7486} \& 742 \& | 4073 | $22 p$ |
| :--- | :--- |
| 4075 | $22 p$ | \& LM3 \& ${ }_{1}^{130}$ \& XR2 \& \& ${ }^{2250}{ }^{\text {a }}$ \& \& \& OPDT ICent \& \& <br>

\hline \multicolumn{2}{|l|}{74990 A} \& \& 107 \& -MC1310P \& 15 \& XR2240 400p \& \& 1000 p \& \& \& \& \& <br>
\hline \multicolumn{2}{|l|}{7491} \& 74LS85 100p \& \& \& \& \& 68 \& p \& \& \& \& \& <br>
\hline $79493 A$
7494 \& 33 \& 7415 \& \& \& \& \& \& \& \& \& sti \& \& <br>
\hline 77995 \& 78 \& ${ }^{74 \text { LS93 }}$ 600 \& \& \multicolumn{10}{|l|}{\multirow[t]{38}{*}{}} <br>

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{$$
\begin{aligned}
& 7496 \\
& 7497
\end{aligned}
$$}} \& 7415107450 \& \& \& \& \& \& \& \& \& \& \& <br>

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline \multicolumn{2}{|l|}{74100 74104} \& 7415124 \& \& \& \& \& \& \& \& \& \& \& <br>
\hline 74105 \& 65 \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline 74107
74109 \& \& 74 \& \& \& \& \& \& \& \& \& \& \& <br>
\hline \multirow[t]{2}{*}{74110
74111} \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline \& \& 74 \& \& \& \& \& \& \& \& \& \& \& <br>
\hline 74116
74118 \& 130p \& 74 \& \& \& \& \& \& \& \& \& \& \& <br>
\hline 74119
74120 \& 21 \& ${ }^{7445158} 120$ \& ${ }_{4543}^{4548}$ \& \& \& \& \& \& \& \& \& \& <br>
\hline 74121
74122 \& \& 74516110 \& 4560250 p \& \& \& \& \& \& \& \& \& \& <br>
\hline \multirow[t]{2}{*}{74122
74125
74128} \& \& 74LS \& 45 \& \& \& \& \& \& \& \& \& \& <br>
\hline \& \& 74516412 \& 40014 \& \& \& \& \& \& \& \& \& \& <br>
\hline 74
74
74 \& \& 744 \& $\begin{array}{ll}40085 \\ 40097 & 2000 \\ 900\end{array}$ \& \& \& \& \& \& \& \& \& \& <br>
\hline \multicolumn{2}{|l|}{74132
74136} \& $74 \leq 15173$ \& $14411{ }^{110}$ \& \& \& \& \& \& \& \& \& \& <br>
\hline 74136 \& \& 74LS174 90 \& 14412 1700 \& \& \& \& \& \& \& \& \& \& <br>
\hline 74141
74142 \& 200p \& 74LS181 320 \& 14433 1100p \& \& \& \& \& \& \& \& \& \& <br>
\hline \multirow[t]{2}{*}{74145
74145
74148

74148} \&  \& | 7415190 100p |
| :--- |
| $74 \mathrm{LS191}$ |
| 100 p | \& \& \& \& \& \& \& \& \& \& \& <br>

\hline \& 50 \& 742 \& \& \& \& \& \& \& \& \& \& \& <br>
\hline 74150 \& 1000 \& 7445 \& \& \& \& \& \& \& \& \& \& \& <br>
\hline 74153 \& - \& $7445196{ }^{120}$ \& \& \& \& \& \& \& \& \& \& \& <br>
\hline 74154
7445 \& ${ }^{100}$ \& 744S221 1400 \& MC1488 100p \& \& \& \& \& \& \& \& \& \& <br>
\hline 74156
74157 \& \& 74LS241 \& 7510716 \& \& \& \& \& \& \& \& \& \& <br>
\hline 74157
74159 \& 78 \& 744S242 170 \&  \& \& \& \& \& \& \& \& \& \& <br>
\hline ${ }_{7416} 7415$ \& 100 \& 7415244 17 \& 74325 75 \& \& \& \& \& \& \& \& \& \& <br>
\hline 74161
74162 \& 100 \& 7445251 140 \& $75491 / 296 \mathrm{p}$ \& \& \& \& \& \& \& \& \& \& <br>
\hline 74163
74164

74 \& 120 \& | 7415253 |
| :--- |
| 7415257 |
| 7100 |
| 1800 | \& $\begin{array}{ll}\text { 8T26 } & 250 p \\ 8728 & 300 p\end{array}$ \& \& \& \& \& \& \& \& \& \& <br>

\hline 74165
74165 \& 120 \& 744S259 1800 \& 8195 1600 \& \& \& \& \& \& \& \& \& \& <br>
\hline 74165
74167 \& 140p \&  \& 8797 ${ }_{81 L 595}^{160 p}$ \& \& \& \& \& \& \& \& \& \& <br>
\hline 74167
74170
74172 \& \multirow[t]{2}{*}{720 p} \& \& \multirow[t]{2}{*}{811596 120 p} \& \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Please send S.A.E. for
details.}} \& \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Designer Approved Suppliers}} <br>
\hline 74
74
74
74 \& \& 74LS298 2 249p \& \& \multicolumn{2}{|l|}{FNO357 ${ }^{1200}$} \& 1330 \& \& \& \& \& \& \& <br>
\hline \& ${ }^{935}$ \& ${ }^{74}$ \& 9601. 110 p \& \& \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{"'PE" MICROPRINTER SEND S.A.E. FOR DETAILS}} \& \multicolumn{5}{|l|}{Complete Kit} <br>

\hline | 74175 |
| :--- |
| 74176 | \& 9 \& 74LS378 20 \& ${ }_{9603}^{9602}{ }^{2200}$ \& \& \& \& \& \& \& \& \& \& <br>


\hline \multicolumn{6}{|l|}{| - RESISTORS High Stab Carbon Film 5\% Tol E12 Serles |
| :--- |
| iW 10R-1M 1p 90p/100 each valve |
| $\frac{1}{2}$ W 10R-10M 1.5p 120p/ 100 each valve $\qquad$ |} \& \multicolumn{3}{|l|}{| VEROBOARDS IC BREADBOARD |
| :--- |
| ANTEX |
| SOLDERING IRONS |} \& \multicolumn{5}{|l|}{(Above prices include VAT and P\&P and a free Power Supply circuit design)} <br>

\hline \multicolumn{4}{|l|}{- MINIATURE PR 100R-1M 10} \& \multicolumn{2}{|r|}{APACITORS w Voltage} \& \& 270p \& \multirow[t]{2}{*}{$$
\times 25
$$} \& \& \multicolumn{4}{|l|}{} <br>

\hline \multicolumn{4}{|l|}{-CARBON TRACK POTENTIOMETERS} \& \multicolumn{2}{|r|}{ytic} \& \& \& \& \& \& \& \& <br>
\hline ${ }^{\text {L W }} \mathrm{W}$ \& LOG or \& LIN \& \& \& \& \& \& \& \& \& \& \& <br>

\hline Singl \& $$
\text { le } 5 \mathrm{~K}-2
$$ \& \[

-2 \mathrm{M}
\] \& \& \& \& \& \& \& \& \& \& \& <br>

\hline 1 \& le with \& DP Switch 5K-2 \& 2M \& \& \& \& \& \& \& \& \& \& <br>
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{VAT RATE: All items at 8\% except where marked where}} \& \& \& \& \& \& \& \& \& \& <br>
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline \multicolumn{4}{|l|}{} \& ernment, \& \& S: etc. Orders ac \& 5 \& Burn \& as, Lon \& on \& \& \& <br>

\hline \multicolumn{4}{|l|}{PLEASE SEND SAE FOR LIST.} \& \multicolumn{2}{|l|}{CALLERS WELCOME} \& \multicolumn{2}{|l|}{| Mon.-Fri. 9.30530 |
| :--- |
| Saturday 10.30-4.30 |} \& \multicolumn{6}{|l|}{| (2 minutes Dollis Hill tube station) (ample street parking) |
| :--- |
| Tel: 01-452 1500 Telex: 922800 |} <br>

\hline
\end{tabular}

# BD1-The Connoisseur'sBudget Choice 



The Connoisseur BD1 transcription turntable is a precision engineered product designed to provide top grade performance at a moderate cost. Simplicity is the main feature of this unit giving excellent performance and reliability. A slow speed synchronous motor is used and because of its construction the hum field is very low, so that even the most sensitive of pickups can be used, including the Connoisseur SAU2 or the SME 3009 Series II.
Speed change is achieved by a press button unit at the rear of the platform which automatically moves the drive belt from one pulley groove to the other whilst the turntable is turning. The BD1 turntable kit can be assembled by the home constructor within the hour and when completed will give top quality performance. No soldering is required. Complete the unit with

BD1 with Plinth, a modern BD1 plinth and cover. The plinth is finished in walnut veneer and fitted with spherical

Cover \& SME Arm anti-vibration feet. Add to this a strong Acrylic, bronze cover, hinged with 2-position lid stay and you have a first class turntable at a budget price!

Write for further details to:
A. R. Sugden \& Co. (Engineers) Ltd.

Manufacturers of Connoisseur Sound Equipment, Connoisseur Works, Atlas Mill Road, Brighouse, West Yorkshire HD6 1ES
Telephone: Brighouse (0484) 712 142, Telex: 517144 Sugden Crighouse,

$4 \frac{1}{4} \mathrm{in} \times 3 \frac{1}{4} \mathrm{in}$ METER. $30 \mu \mathrm{~A}, 50 \mu \mathrm{~A}$ or $100 \mu \mathrm{~A}, ~ ¢ 6.40$. 19 p P. \& $P$

## MICROPHONES FOR TAPE RECORDERS DM228R 200 ohm with 3.5

 and 2.5 mm Jack Plugs DM229R 50K with 3.5 and2. 5 mm Jack Plugs DM18D 200 ohm with
and 3 pin Din Plugs c2.20 and 3 pin Din Plugs $£ 1.95$ Postage on above microphones 11p.


> CARDIOID DYNAMIC MICROPHONE

Model UD-130 Frequency response $50-15.000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50 K and 600 ohms, $£ 8.02$. 26p P. \& P.

2 in $\times 2$ in meters $500 \mu \mathrm{~A}, \quad \mathbf{} 3.65$. 16p P. \& P.
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, 500 $\mu \mathrm{A}$ and 1 mA VU meter, $\mathbf{~ x . 1 6 . ~}$ 11p P. \& P

6 V BUZZERS. 50 mm diameter 30 mm high, 52p. 15 p. P. \& P.
MULTI-
METER
Model IT1-2
M1200 ohm/volt.
K12.32.
33 pP. \& P.

| TRANSFORMERS Primary 240 V |  |  |
| :---: | :---: | :---: |
| 6-0-6V | 100 mA | ¢0.75 |
| 9-0-9V | 75 mA | £0.75 |
| 12-0-12V | 50 mA | £0. 85 |
| 12-0-12V | 100 mA | £1.05 |
| Post on above | transformers 30 p . |  |
| 9-0-9V | 1A | £1. 80 |
| 12-0-12V | 1A | ع2.15 |
| 15-0-15V | 1A | 22.36 |
| 30-0-30V | 1A | £3.10 |
| 6.3 V | $1 \frac{1}{1} \mathrm{~A}$ | ¢1.80 |
| 6-0-6V | $1 \frac{1}{2} A$ | £2. 20 |
| Post on above | transfo | s 45p. |

All above prices include V.A.T. Send 40 p for new fully illustrated catalogue. S.A.E. with all enquiries. Special prices for quantity quoted on request.

## M. DZIUBAS

158 Bradshawgate - Bolton • Lancs. BL2 1BA

## CRESCENT RADIO LTD. 1 ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N 22 4SJ (MAIL ORDER DEPT.)



Personal callers welcome at: 21 GREEN LANES, PALMERS GREEN, N. 13. also 13 SOUTH MALL. EDMONTON GREEN, EDMONTON

## DIGITAL MULTIMETER

Announcing DM900 - The Digital Multimeter (as published in E.T.I. August 1978)
Throw away your analogue meters, here's dightal accuracy at only half the price of an equivalent commercial Multimeter.
0.5 OM90 is a $3 \frac{1}{2}$ digit multimeter with an 0.5 in LC.D. display incorporating

5 AC \& DC Voltage ranges: 6 Resistrance ranges.
The prototype accuracy is better than $1 \%$
This is a unique design using the latest MOS ICs and due to the minimal current drain, is powered check facility.
DM900
device, build into atu high hact cese withweigh
handle and has been ingeniously designed to
simplify assembly.
Never before have all these features been offered
Price: $\mathbf{5 5 4 . 5 0 ^ { \circ }}$ only ( $\mathbf{p} \& \mathrm{p}$ p insured add 80 p) Send SAE for leaflet.
Ready Built and tested units $\mathbf{£ 7 8 . 5 0}{ }^{\circ}$
including probes and carryin
(P\&P insured 80p)
(P\&P insured 80p)
(Demonstration on at our shoo)

## PE VDU SYSTEMS

| (send SAE for listi) |  |
| :---: | :---: |
| Convert your TV into a VOU by using the new Thomson-CSF. |  |
| TV-CRT controller chip SF.F |  |
| 96364. 16 lines by 64 characters, |  |
| text refreshment, cursor management on TV screen, line erasing, |  |
| line end erasing. Compatible with any computing system. |  |
| SFF 96364E | 211. |
| AY-5-1013UART |  |
| 71301 ROM SFC | ¢8.20* |
| SFS80102 RAM 1 K | £2.05 |
| 74LS163 | £0.95 |
| MC1488 |  |
| MC1489 | ¢0.90 |
| SN75450 | ¢1.20* |
| SN75451 | £0.70 |
| SN75452 | ¢0.70 |
| SN75454 | £12.40 |
| 2102 LF |  |
| 2513 |  |
| 7415132 | ¢0.95* |
| 81 LS97 | £1.09* |
| 1 MHz crystal | £3.23* |
|  |  |
| UHF Modulator | ¢2.50 | helped thousande of ambitioue people to move up into higher paio more secure jobs in the field of electronice - now it can be your turn. Whether you are newcomer to the field or already working in the induatry. ICS can provide you with the seecialised training so essentiel

to success.

Parsonal Tuition and Guarameed Success

The expert and personel guidance by fully qualified tufors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace tbat suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

## City and Guilds Certificates

Exceitent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio. T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Cerificare

## Diploma Courses

## Colour T.V. Servicing

Electronic Engineering 8i Maintenance
Computer Engineering and Programming
Radio T.V. and Audio, Engineering \& Servicing Electrical Engineering, Installations \& Contracting

## Other Career Courses

A wide range of other technical and professional courses are available including GCE.

Post this coupon or 'phone today for free ICS careers guide.

IES
To ICS, Dept. E273, Intertext House, London SW8 4UJ
or telephone 01-622 9911 (all hours)

이프N=IOrgans 니플=IPianos
IIIIFㅌI String Ensembles ㅇIIIEREI MATICRhythm ㅇIINNI MATIC Accompaniment (1)IIEFE=IVOICERotorSound:StringChoir 네퍄=ㅡN Professional Series ©피륻II Audio Mixer 2004 이플ㅋITTONERotating Baffles


Send for our 104 page full-colour catalogue and 12 -page price list, for $£ 1.00$ only.

AURA SOUNDS (P2), Copthorne Bank, Crawley, W. Sussex.

## AITKEN BROS.

35, High Bridge, Newcastle upon Tyne Tel: 063226729


TMK 500 MULTIMETER 30,000 O.p.v. AC
volts $2 \cdot 5,10,25,100,250,500,1000$. DC volts.
$0.25,1,2.5,10,25,100,250,1000$. DC current
$50 \mu \mathrm{a}, 5 \mathrm{MA}, 50 \mathrm{MA}, 12 \mathrm{amp}$. Resistance $0-6 \mathrm{~K}$. $60 \mathrm{~K}, 6 \mathrm{MEG}, 60 \mathrm{MEG}$. Decibels. -20 to +56 db Buzzer continuity test size, $160 \times 110 \times 55 \mathrm{MM}$ Buzzer continuity test size,
Batteries $\&$ feads included.
PRICE E24.95.

## SINCLAIR PDM35

DIGITAL POCKET MULTIMETER
DC volts ( 4 ranges) 1 MV to $1000 \mathrm{~V} A C$ volts iV to 500 V DC current ( 6 ranges) 1 nA to 200MA Resistance ( 15 ranges) 10 to 20 MEGR. PRICE E32.95. AC Adaptor/Charger £3.75 de luxe padded carving case £3.50 MN1604 Battery. 99p.

## SINCLAIR DM235

BENCH-PORTABLE DIGITAL
MULTIMETER.
DC volts ( 4 ranges) 1 MV to 1000 V AC volts ( 4 ranges) 1 MV to 750 V AC \& DC current $1 \mu$ to 1000MA Resistance (5 ranges) 10 to 20 MEG $\Omega$. PRICE E54.75 Carrying case £9.50. AC adaptor/charger. $£ 3.98$ Rechargeable Battery Pack. £9.14.

## PANEL METERS

DIMS $60 \mathrm{MM} \times 45 \mathrm{MM} .50 \mu \mathrm{amp}, 100 \mu \mathrm{amp} 1 \mathrm{MA}$.
$5 \mathrm{MA}, 10 \mathrm{MA}, 50 \mathrm{MA}, 100 \mathrm{MA}, 500 \mathrm{MA}, 1 \mathrm{amp}, 2$
 50-Q-50 ua, 100-0-100 на, 500-0-500 на. PRICE 54.95.

DESOLDERING TOOL
SUCTION PUMP.

TURNTABLE BARGAINS FOR PERSONAL SHOPPERS gatrard 86Se De

$$
£ 26.95
$$

GARARARSP25 MKIV Deck Plinth and cover for BSR decks $£ 6.00$

BARGAINS FOR PERSONAL SHOPPERS
PORTABLE
STERED
RADIS
CASSETTE
CASSEROER

## UNREPEATABLE



MW. LW. SW and Stereo VHF. $\mathbf{f} 69.95$
6 watts outpur Battery/Mains operation.
$\mathbf{£ 2 . 5 0}$
Garrard Recard auto deck on plinth with stereo cartridge ready wired
LEO 5 function men's digitial watch stanless sleel linish
CO 5 tunction men's sigital watch
LCO 8 Function ChRONOGRAPH men's digital watch. stainless steel finish
with built in mic.
AM/FM OIGITAL CLOCK RADID Accurate 4 Oigit Electronic Clock with
display. Buner and display. Bune
£11.95
125 Wam Power Amp Madule


Mains power supply for above unit.
MUSIC CENTAE CABIMET with hinged smoke
acrylic top, finished in nalural teak v
size $30 \%{ }^{\prime \prime} \times 14 \%^{\prime \prime} \times 7 \%^{\prime \prime}$ approk.
MULLARD Bull power supply
DECCADC 1000 Stereo Cassette P.C.B amplete with swich oscillator coils and tape-he ads
OECCA 20 w Stereo speaker kit comprising
$28^{\prime \prime}$ approx. bass units $+23 \mathrm{~h}^{\prime \prime}$ approx
weler inc. crossovers
VIDEOMASTER Super Score TV Game
PORTABLE RADID/CASS
PORTABLE RADID/CASSETTE RECDRDER, AM/FM with clo LW, MW, SW, VHF mains/battery operation
" TAPE TRANSP ORT Mechanism-a selection
of model s from
£8.95

## SANYO Nic/cad batrem wit mains chargeer equivivelent in  type batss $\times 2 \mathrm{z}$ apporox. <br>  <br>  <br>  <br>  <br> AM/FM STERED <br> TUNER AMPLIFIE

## WITH OECOOER

Ready built. Designed in a slimi form for compact. modern installation Rotary Comtrols Voi On/OH. Bass. Treble, Balance.
Rolary Conirols Vo On ain. Bass, Treble, Bo
Power Output 5 watts per channel Sine at $2 \%$ THO into 150 hm watts speech and music.
Tape Sensitivity Playback $400 \mathrm{mV} / 30 \mathrm{~K}$ OHM for max output Record $200 \mathrm{mV} / 50 \mathrm{~K}$ output available from 25 KHz . ( $150 \mathrm{mV} / 100 \mathrm{~K}$ ) deviatio FM signal Frequency Range (Audio) 50 Hz to 17 KHz within $\pm 1 \mathrm{~dB}$ Aadio FM sensitivivy for 3 dB below limiting better than 10 uV AM sensitivity for 20 dB S/N MW $350 \mathrm{uV} /$ Metre $\mathrm{LW} 1 \mathrm{mV} /$ Metre Size approx length $18^{\prime \prime} \times$ height $2 \frac{1}{4} \mathbf{a}^{\prime \prime} \times$ depth $44^{\prime \prime}$
240 Volts AC Complete with Circuit diagram.
£19.95 ${ }^{\text {p } 2.5 .5}$

Mullard
ACCESSORIES ARE ONLY AVAILABLE TO THOSE CUSTOMERS WHEN BUYING OUR BARGAIN PACKS. AUDIOMODULESIN BARGAIN PACKS CURRENT CATALOGUE PRICE $\& 5$
ATOVER PER PACK SEE OUR PRICES

PACK $1.2 \times$ LP 1173 10w. RMS ourput power audio amp modules. +1 LP $1182 / 2$ Stereo pre amp for
ceramic and auxiliary input.
OUR PRICE
magnetic, ceramic and auxiliary inputs.
$p+p f 1.00-10$ PACK $2.2 \times$ LP 117310 w , AMS output power audio
amp modules +1 LP1184/2. Stereo pre amp for
illus.
ACCESSORIES
Suitable power supply parts including mains transformer, rectifier, smoothing and output capacitors.
11.00 ptp $\mathbb{1 . 9 5}$

## GARRARD BARGAIN

 LIST PRICE C9SOROOup pact $£ 39.95$

Recommended set of rotary stereo controls mprising BASS, TREBLE, VOLUME and BALANCE. рор 50 p $95 p$


$20 \times 20$ WATT STEREO AMPLIFIER
Viscount IV unit in teak simulatec cabinet. Silver fascia with aluminium rotary controis/pushbuvtlons, red mains indicator and stereo jack socket Functions switch for mic. magnellc and crystal pick kups.
 $40 \times 40$ watts peak.. For use with 8 to 15 ohm $\quad \mathbf{~} 29.90$ speakers. FFER f 2.50
SPECIAL FOR PERSONAL SHOPPERS ONLY FREE 4 dimensional stereo sound adaptor, when purchasing the $20 \times 20$ Viscount amplifier.
30x30 WATT AMPLIFIER IN KIT FORM For the experienced constructor complete in every detail, same
facilities as Viscount IV, but with $30 \times 30$ output. $60 \times 60$ watts facilities as Viscount IV, but with $30 \times 30$ output. $60 \times 60$ watts peak. For use with 4.15 ohms speakers. $\mathbf{f 2 3 . 0 0}$ without cabinet $\mathbf{\$ 2 9 . 0 0}$ complete with cabinet. p\&p $\mathbf{£ 2 . 5 0}$ in each case.
 without cabinet ${ }^{\text {peep }}$ available separately.) complete with cabinet SPECIAL OFFER
Complete wiill 30×30 WATT AMPLIFIER IN KIT
2 Goodman compact 12" bass woofers with cropped size 14,000 Gauss magnet. 30 watt RMS handling $+31 / 4^{\prime \prime}$ approx. $\mathbf{£ 4 9 . 0 0}$ twe aters and crossovers
$\pm 99.00$
BUILT AND READY TO PLAY
39.00
$30 \times 30$ Viscount. Available fully huilt and tested.
p\&o £2.50

86 SB MKII. Belt drive. 2 speed turntable module with plinth and cover

50 WATT MOND

## $£ 29.95$

P8P 12.50
Sire approx.


50 watts ims. 100 watts peak outpuit. Big features include mo dist inputs. both for ceramic cartridges, tape input and microphone imput Level mixing controls litted with integral push-pull switches independent bass and treble controls and master volume
SPECIAL DFFER. The above 50 watt amp plus 4 Goodmans Type 8P. 8 soeakers. Package price $\mathbf{5} 45.00+54.00 \mathrm{PaP}$.

70 \& 100 WATT
MONO DISCO AMP
Size approx.
$14^{\prime \prime} \times 4^{*} \times 10{ }^{\prime \prime}$
Brushed aluminium
lascia and cotary controls
Five vertical slide cool
tape level, mictevel, deck master volume. for perfect graduated change from record deck No. 1 to No. 2. or vice versa. Pre ladelevelcontrol 70 watt f 57
(PFL) leis YOU hearnext disc betore fading 140 watl $p$ gah (PFL) leis You hearnext disc before fading p \& f 4.00 Output 100 watts RMS 200 watts peak. 100 watt $£ 65$

## STEREO CASSETTE TAPE DECK ASSEMBLY

Consisting of ready buill tape transport system/mechan Unit is ready buill for in slalling into cabinet of
pause contol sole noid assisi
auto-stop. 3 digit tape counter. beh
driven balanced fly wheel by $D C$ moter
with electronic speed control, Iwin VU meters. Specitication Powe Output, more than 0.5 v , mic. $-65 \mathrm{AB} 10 \mathrm{~K} \Omega$, DIN $-47 \mathrm{~dB} 100 \mathrm{~K} \Omega$ Track-2 chamnel stereo record play back. Tape speed $4.8 \mathrm{~cm} / \mathrm{sec}$ Freq. Erasing sysiz AC chasing sysiem AC erase bas included a moulded top-plate as illustrated $13 \%$ " $\times 9 \%$ " approx, with circuln diagram. $\mathbf{~} 25.00$ P\&P $\mathbf{f 2 . 5 0}$ Opt. extras: Mains translormer to suite $\mathbf{f 2 . 5 0}+\mathrm{f1}$ p\& p .

## ASTRA-PAK

92 GODSTONE ROAD GRAND SALE WHYTELEAFE, SURREY CR3 OEB

All prices INCLUDE VAT. Add . 25 p for $P$ \& $P$ lextra for overseas). Send SAE for complete Special Offers list. Where
more than one price appears, overall quantity prices apply to groups of devices OF THE SAME TYPE 174 and 741 S cannot be mixedl.


| MOTOROLA - 1 WATT AUDIO AMPLIFIER I.C. <br> 9-16V, 8-16 $\Omega$, 10-400 MV. Sensitivity. S.C. Proof. <br> No Heat sink required. <br> Suppliad with Data and Circuits, 90 p each. |  |
| :---: | :---: |
|  | 解 |
|  | TRANSISTOR PACKS 100. Full spec, now and maked Includes BC148, BC184L. MED412. BF274. 8C154 etc. etc. 1495 200 is above and inctudes AC126. 2N3055. BFY50. |
| Urasounc mansovetes |  |
|  |  |
| Dommmaryu neo swiches |  |
|  |  |
| $\begin{aligned} & \text { MAKE CMEAP BATTEAY ELIMIMATORS } \\ & \text { Fully shouded mint mains uanstormers } 240 \mathrm{~V} \text { in } 8-0-6 \mathrm{~V} \text { at } \\ & 100 \mathrm{MA} \text { out. Compiete with moins lead and plug. ox new } \\ & \text { tquip } \$ 0_{\text {p }} \end{aligned}$ |  |
|  |  |
|  | Very neat. can be banked side by side. Ideal for v. cap <br> IOOK STEAEO SUDER PDTS |
| , |  |
| SENTINEL SUPPLY, DEPT. P.E. <br> 149A BROOKMILL RD., DEPTFORD, LONDON, SEB |  |

## IC AUDIO AMPS with prb JCI2 6 W E1.60. JC20 £2.95. JC40 $20 W £ 2.95$ $6 / 7 \pm / 9 \mathrm{~V} ~ 300 \mathrm{~mA}$ E $2.95 .100 \mathrm{~mA}^{3-w a y}$ type with press-studs 9 g E 3.35 , $9+9 \mathrm{~V}$ f4.50  E2.50. data. 100 mA radio types with press-studs  | Siabilized $8-w a y$ |  |
| :--- | :--- |
| $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{~V}$ |  |
| 100 mA | E 2.80 s | $100 \mathrm{~mA} £ 3.60,2-30 \mathrm{~V}$ 1A 66.95 . 2-30V 2 A £ 10.95 . 12 V car converior $6 / 7 \frac{1}{2} / 9 \mathrm{~V} \quad 1 \mathrm{~A}$ E 1.35. T-DEC <br> T-DEC AND CSC BREADBOARDS s-dec £3.17. t -dec 4.02 , $u$-doca 4.40 u-dec $£ 3.17$. $t$-dec $£ 4.02$. u-deca £4.40, $u$-decb $£ 6.73$. 16 dil adaptor $£ 2.14$. exp 300 £ 5.21 exp 350 £3.40. exp 650 £3.89. exp 4b BI-PAK AUDIO MODULES $\$ 450 £ 23.51$. AL60 £4.86. pa 100 £ 15.58 . spm80 £4.47. <br> SWANLEY ELECTRONICS <br> (Dept. PE) 32 Goldsel Road. <br> Swanley, Kent BR8 BEZ <br> Post 30 p extra. Prices include VAT.

## STORAGE CABINETS



Type 1838

Metal Cabinets $12^{\prime \prime}$ wide $\times 5 \frac{3{ }^{\prime \prime}}{4}$ deep, finished blue with transparent plastic drawers.

Type H No. of Drawers Price (ins) Sm MedLge

| 1118 | 11 | 15 | 2 | 1 | $£ 8.65$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllll}1633 & 16 & 30 & 2 & 1 & £ 10.95\end{array}$ $\begin{array}{llllll}1838 & 18 & 35 & 2 & 1 & £ 12.95\end{array}$ $\begin{array}{llllll}2236 & 22 & 30 & 4 & 2 & £ 14.75\end{array}$ 22602260 - $£ 14.95$

Prices include VAT and Post. Cheque/P.O. to: Millhill Supplies (Tools).
35 Preston Crowmarsh, Bensoń, Oxon OX9 6SL.

# Understanding Digital Electronics New teach-yourself courses 



Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.
The contents of Design of Digital Systems include:
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and artithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and sychronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.


Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It iconsists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it designer, execxutive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.
CAMBRIDGE LEARMNG ENTERPRISES. Unit 26, Rivermill Site, FREEPOST, ST. IVES, HUNTINGDON, CAMBS. PE17 4BR, ENGLAND. TELEPHOKE ST. IVES (0480) 67446. PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE: RIVERMILL LODGE, ST. IVES. REGD. IN ENGLAND NO. 1328762

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show vour vehicle speed and fuel consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

The six volumes of Design of Digital Systems cost only:
$£ 8.10$
+90p post \& packing
And the four volumes of Digital Computer Logic and Electronics cost only:

But if you buy both courses, the total cost is only:

## Flow Charts \& Algorithms

HELP YOU PRESENT:
safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.
THE ALGORITHM WRITER'S GUIDE explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say
2295 + 45o post and packing by surface mail anywhere

GUARANTEE
If you are not entirely satisfied your money will be refunded.
Please allow 21 days for delivery.
Cambridge Leaming Enterprises, Unit 26, Rivermill Site,
FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR, England.
Please send me the following books:
sets Digital Computer Logic \& Electronics @ £5.50, p \& p included
sets Design of Digital Systems @ £9.00, p \& p incluced
..............Combined sets @ $£ 13.00$, p \& p included
The Algorithm Writer's guide @ $£ 3.40$, p \& p included
Name......
Address

I enclose a *cheque/PO payable to Cambridge Learning Enterprises for $£ . .$.
Please charge my *Access/Barclaycard/Visa/Eurocard/Mastercharge/ Interbank account number
Signature........................................................................................................................................
Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank, or quote credit card number.

PE26

# SAXON ENTERTANMENTS THE PIONEERS OF MODULAR DISCO/P.A. EQUIPMENT NOW OFFER PACKAGE DEALS AT INCOMPARABLE PRICES 

## CENTAUR STEREO DISCOS c/w LIGH SHow o oispar, TWIN SPEAKERS \& LEADS <br> Standard 100W f249 £249 oriberosit 55.12 12 Months @ $£ 22.23$ or 24 Manths @ $£ 12.73$

## Super 200W

 12 Months @ £26.41 or 24 Months @ £15.11

## GXL 200W (:-mem)

X 389 £389 or Deosit 887.32
12 Manths @ $£ 34.02$ or 24 Months @ $£ 19.47$

## COMPLETE STEREO <br> ROADSHOWS - BUILT IN SOUND TO LIGHT/SEQUENCER \& DISPLAY

TWO YEAR GUARANTEE

illustratian shows GXL Centaur System These systems feature full mixing for fwo decks lape \& mic with monitoring facilities - override and are supplied complete with sound to light + sequencer, display, speaker leads etc.

## JUST PLUG IN AND GOI

BSR Decks - 17,000 Line Loudspeakers - Rugged Aluminium Trimmed Cabinets - Cue Light And Phones Output - Slave Output - Deck Lights/Motor Starts (GXL) ALSO CENTAUR 'CUSTOM' 400-600W £699 - ASK FOR DETALLS

## - $30 \mathrm{~Hz}-20 \mathrm{kHz}$ <br> $\square$ Short/open circuit proof $\square$ Top grode components $\square$ Suit most mixers

AMPLIFIER MODULES

240 WATT 4 OHM
INDUSTRIAL MODULES EIGHT OUTPUT DEVICES

£35

## SA308 8 ohms 30 W 45 V

 SA 604 4 ohms 50 V SA6088 ohms 60 W 65 V
SA1204
SA ${ }^{\text {ohms }} 120 \mathrm{~W} 75 \mathrm{~V}$
SA1208
SAl 208
8 ohms 120 W 95 V
£10.75* $\begin{gathered}\text { Supply for } \\ 2 \text { modules } \\ \text { £ } \\ \text { 11.90* }\end{gathered}$
$£ 14.50$ Supply for
$£ 15.50$-2 modules
$£ 14.95$
$£ 17.50 \begin{gathered}\text { Supply for } \\ 1 \text { module }\end{gathered}$
£14.95
£24.75


DISCO MIXERS - COMPLETE OR MODULAR

## $\theta$

Available complete and ready to plug in or os on easy to connect module with all controls except monitor switch alreody fitted - full instructions supplied
features include:
Twin Deck - Mie $\&$ Tape Inputs - Wide range COMPLETE MIXERS
bass $\&$ treble contrals - Full heodphone (with cosel


## SOUND-TO-LIGHT UNITS

3 CHANNEL - 3kW
$\square$ Operates from IW upward
$\square$ Bass/middle/treble/master contrals
$£ 29.50+$ § 1 carr


Madule only $£ 19.75$ Panel $£ 2.95$
4 CHANNEL - 4 kW SOUNDLITE SEQUENCER (illus)
$\square$ Dimmer on each channel
$\square$ Automatic sound light level
Module only £26.75 Ponel £2.95

## 100W SPOTS

Red - Blue - Amber - Green $£ 1.50$ ea. Free on $10+$
HEAVY DUTY SPOT BANKS - MATCHES LOUDSPEAKERS
3 woy $600 \mathrm{~W} £ 35.504$ way $800 \mathrm{~W} £ 39.50{ }_{£}^{\mathrm{Carr}}$

# MINI DISCO 100 WATT MONO SYSTEM f17950 torer 15 Deposit $£ 42.06$ <br> 12 Months @ £ 16.43 or 24 Months @ £ 9.43 

Similar in appearance ta the Centaur and camplete with laudspeakers and leads.

Headphanes to suit any system
EM507 Electret Mic

## 20\% Deposit Terms <br> 12 to 24 Months <br> - Low Interest

## CABINET FITTINGS

ICI Vynide $50^{\prime \prime}$ wide $£ 3.50 \mathrm{~m}$ Kick-res grille $50^{\prime \prime}$ wide $£ 3.50 \mathrm{~m}$ Netlon kick proof $24^{\prime \prime}$ wide $£ 3.50 \mathrm{~m}$ Corners/feet/recess plates 15 pea . Recess handle 45 p Bor hondles £2.50 Jack plugs/sockets $\mathbf{2 5 p}$
LOUDSPEAKER CABINETS -
COMPLETE WITH LEADS
$\square$ Fitted with 100W 17,000 Gouss drivers
$\square$ Rugged cabinets with aluminium trim - block vynide etc
$\square$ Lifetime guarantee on main drive unit

Standard $100 \mathrm{~W} 1 \times 12\{48 \times 41 \times 24\} £ 39.00$ Carr $£ 3$| Deposit $£ 9.36$ |
| :--- | Large $100 \mathrm{~W} 1 \times 12(65 \times 48 \times 24) \quad £ 49.50$ Corr $£ 3$ Deposit $£ 12.70$ P.A. $1 \times 12(+2$ Piezos) $(80 \times 38 \times 24) \quad \mathbf{£ 6 6 . 5 0}$ Corr $£ 3$ Deposit $\Sigma 15.82$ P.A. $2 \times 12200 \mathrm{~W}(100 \times 38 \times 24) \quad £ 99.00$ Corr $£ 3$ Deposit $£ 20.92$ Disco $2 \times 12200 \mathrm{~W}(80 \times 63 \times 24) \quad £ 85.00$ Carr $£ 3$ Deposit $£ 19.80$ PDF reflex bin $(80 \times 40 \times 41)$ £95.00 Carr £3

PDF 100 Reflex Bin - Twin Horns - Integrated Slove Amplifier - Accepts mono or stereo signals
$\square$ Use with all types of mixer
$\square$ Pon ond volume controls
Send far details \&130

## PLUTO PROJECTORS \& WHEELS

P140 $\begin{gathered}150 \text { Watt fungsten } \\ \text { remarkable value }\end{gathered}$

P5000 250 Won Q $1 .+$ fon
£87.50 Corr $£ 1.00$
Picture wheels from $£ 4.75$ - o wide range of wheels $\&$ effects ovailable - send for leaflet

## Naw MANCHESTER PACKAGE DEAL

## P.A. SYSTEMS

2 YEAR GUARANTEE

100 WATT £159.90

+ Corr DEPOSIT $12 \mathrm{mth} @ \mathrm{£} \mathbf{1} 4.77$ or $\mathbf{2 4} \mathrm{mth} @ \mathbf{£ 8 . 4 8} \mathrm{£} 13.99$ - AP100 4 INPUT AMPLIFIER (see below) * TWIN PIEZO HORN IOOW COLUMNS \& LEADS


## 200 WATT £249.00 + Carr DEPOSIT

$12 \mathrm{mth} @$ £22.23 or $24 \mathrm{mth} @ £ 12.73$ £ 21.12

* USES NEW AP200 SIX INPUT AMPLIFIER (below) - PAIR OF TWIN 200W PIEZO HORN COLUMNS


AP 100 AMPLIFIER $£ 49.50^{\text {+VAT } £ 4.08}$

* 4 mixing units
- Bass, treble, moster controls
*win outputs vynide case

AP200 NEW

* 6 mixing inputs * 3 set of boss/treble controls
Master \& Prescence contrals
$+£ 1.50$ Carr
Deposit
£10.22

$£ 89.50$ +VAT $£ 7.28$



Moke your own mixer Mono/ Stereo up to 20 Input Mono PCB $\mathbf{~ o n l y ~} \mathbf{8 . 5 0}$ Front ponel $\mathbf{~ M o n o ~} 9.50$ chonnels Modules Siereo
only
occept oll $\mathbb{£ 1 0 . 5 0} \begin{aligned} & \text { Stereo C/W } \\ & \text { Front panel } \\ & \text { M } 13.75\end{aligned}$ inputs avoilable cs PCB as PCB Mixer/ Mono PC8
only
only Monitor Ster Monitor Stereo PCB complee
on front ponels

Power supply to suir $\mathbf{£ 9 . 5 0}$ - send for full details of uses

| PA SYSTEM ACCESSORIES | D1501 Dual Imp <br> High O/P condenser mic EM507 High output single impedance mic ECM105 Low cost condenser mic <br> £18.50* <br> £15.00* <br> £5.00* | TWIN PIEZO HORN BOXES 10 match other cabinets $\mathbf{£ 2 7 . 5 0 \text { Deposit } £ 7 . 3 2}$ |
| :---: | :---: | :---: |
| Heovy chrome mic stand - collapsible $£ 9.90$ 800 m version $£ 16.95$ | MELOS CASSETTE ECHO/REVERB <br>  <br> instruments <br> Deposit $£ 14.80$ | ADD ANY ACCESSORIES TO YOUR TOTAL CREDIT ORDER |

All prices subject to $8 \%$ VAT except where osterisked $\left(12 \frac{1}{2} \%\right)$ Shop premises open Tues to Sot 9 om - 5 pm Lunch $12.30 \cdot 1.30 \mathrm{pm}$ Mail order dept apen Mon to Fri 10 om $=4 \mathrm{pm}$ Ring 01.6846385

## TO ORDER

By Post Send your requirements with cheque crossed P.O. or 60 p COD charge to address below or just send your Access or Barday Card Number NOT THE CARD.
By Phone You may order COD, Access or Borclay Card. Post \& Packing 50p on all orders except where stated.

## SAXON ENTERTAINMENTS <br> 327 Whitehorse Road, Croydon, Surrey. <br> All Enquiries Large SAE Please Brochures on request.

MANCHESTER DISCO CENTRE, 237 DEANSGATE, MANCHESTER CALLERS ONLY - (061) 8328772 - COMPLETE UNITS ONLY


# Wilmslow Audio 

## THE firm for speakers!

SEND 15p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

AUDAX © AUDIOMASTER - BAKER BOWERS \& WILKINS - CASTLE © CELESTION CHARTWELL - COLES - DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS I.M.F. ISOPHON JR - JORDON WATTS - KEF LEAK - LOWTHER McKENZIE - MONITOR AUDIO - PEERLESS RADFORD - RAM - RICHARD ALLAN SEAS SHACKMAN - STAG TANGENT TANNOY VIDEOTONE WHARFEDALE YAMAHA

## WILMSLOW AUDIO (Dept. P.E.)

SWAN WORKS, BANK SQuARE, WILMSLOW, CHESHIRE SK9 1HF
Discount HI-FI, etc. at 5 Swan Street and 10 Swan Streel Tel.: Wilmslow 529599 for Speakers

Tel.: Wilmslow 526213 for Hi -Fi

## Beco a radio amateur.

Learn how to become a radioamateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.


## OTTS WOM.WONTER

## 74 SERIES TTL IC'S

|  <br>  <br>  N N ONN N O NO OOOO <br>  |  |
| :---: | :---: |
|  | ASAAAAAANAAANANANNANNAN <br>  <br>  <br>  |
|  |  <br>  <br>  |
|  |  <br>  <br>  <br>  |
|  | A <br>  <br>  <br>  |

CMOS I.C.'s

| Type | Price | Type | Price | Typa | Price | Tуpe | Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CD4000 | C0.12 | CD4017 | ¢0.65 | CO4O31 | ¢1.60 | CD4055 | £1.00 |
| CD4001. | c0.13 | CD4018 | £0.70 | CD4035 | ¢0.90 | CD4056 | £1.15 |
| CO4002 | ¢0.13 | CD4019 | ¢0.35 | CD4037 | 80.78 | CD4069 | ¢0.15 |
| CD4006 | C0.80 | CD4020 | ¢0.80 | CD4040 | c0.78 | CD4070 | ¢0.15 |
| CD4007 | 20.14 | CD4021 | ¢0.75 | C04041 | c0.68 | C04071 | ¢0.15 |
| CD4008 | C0.80 | CD4022 | ¢0.75 | CD4042 | ¢0.68 | CD4072 | ¢0.15 |
| CD4009 | c0.40 | CO4023 | ¢0:13 | CD4043 | c0. 78 | CD4081 | ¢0.15 |
| C0.4010 | C0.42 | CD4024 | £0.55 | C04044 | ¢0.78 | CO4082 | £0.16 |
| CD4011 | c0.13 | CO4025 | £0.13 | CO4045 | ¢1.15 | C04510 | ¢0.80 |
| C04012 | c0. 14 | C04026 | £1.00 | CO4046 | ¢0.95 | CO4511 | ¢0.80 |
| CD4013 | ¢0.35 | CD4027 | ¢0.45 | CD4047 | C0.75 | CO4516 | ¢0.85 |
| CC4014 | c0.70 | CD4028 | £0.60 | CO4049 | $\mathbf{2 0 . 3 5}$ | CD4518 | ¢0.85 |
| CD4015 | c0.70 | CO4029 | 80.75 | CO4050 | 20.35 | CD4520 | ¢0.85 |
| C04016 | 80.35 | CD4030 | c0.40 | C04054 | ¢0.95 |  |  |

## SPECIAL OFFER!

## UNTESTED

## SEMICONDUCTOR PAKS

Code No's shown below are given as a guide to the ype of device. The devices themselves are normally nmarked
No. $16130 \quad 100$ Germ. Gold bonded diodes like OA47
50 Germ. Polnt contact diodes
No. 16131 Gorm. Por
No. $16132 \quad 100200 \mathrm{~mA}$ Sil. diodes like
No. $16133 \quad 15075 \mathrm{~mA}$ Sil. Fast switching No. 1613450750 mA SI 108 har Rects. No. $16135 \quad 203 \mathrm{amp}$ Sill. stud Fect
No. $16136 \quad 50400 \mathrm{mw}$ Zeners D. 0.7 No. 1613730 NPN Plastic trans like
No. 1613830 PNP Plastic trans. like
No. $16139 \quad 25$ NPN trans. like 2N697/
2N1711 TO39

## TRIAC <br> S84 8 Amp 400 volt TO220 80p

| DIACS |  |  |
| :---: | :---: | :---: |
| ITT. BR100 | V413 equt D32 each | 12p |

No. 1614025 PNP trans. like 2N2905 TO39 40p No. 1614130 NPN trans. like 2 N706 TO18 40p No. 1614330 NPN Plastic trans. like $2 N 390640$ p No. 1614430 PNP Plastic trans like 2N3905 40p No. 1614530 PNP Germ. trans. like OC71 40p No. 1614710 NPN to 3 Power trans. like 2N3055

## I.C. SOCKET PAKS

| No. 566 | $11 \times 8$ pin ol Sockets | £1.00 |
| :---: | :---: | :---: |
| No. 567 | $10 \times 14$ pin DIL Sockets | ¢1.00 |
| No. 568 | $9 \times 16$ pin DIL Sockets | £1.00 |
| No. 569 | $4 \times 24$ pin DIL Sockets | £1.00 |
| No. 570 | $3 \times 28$ pin OIL Sockets | f1.00 |

BOOKS BY BABANI
The following books are offered at $10 \%$ off their normal price.


Engineers \& Machinists Reference Tables Second Book of Transistor Equivalents \& 79 Electronic Novelty Circults R2 Projects Using IC74 1 or equivalents Radio Antenna Handbook for Long Distance Reception a ransmission Giant Chart of Radio Electronic Semi-conductor
How to Build Your Own Metal \& Treasure
Locators
Practical Repair \& Renovation of Colour TVs amplifier construction Preamplifier \& Power
50 Circuits Using Germanium, Silicon \& Zener
50 Projects Using Relays SCR's and Triacs
50 (FET) Field Effect Transistor Projects
Pigital IC Equivalents \& Pin Connections
50 Simple LED Circuits
How to make Walkie-Talkie
IC 555 Timer Projects
Projects on Opto-Electronics
Radio Circuits using IC's
Mobile Discoteque Handbook
Popular Electronic Projects
IC LM3900 Projects
Radio Stations Guide
Coil Design \& Construction Manual
Equivalents \& Substitutes
First Book of Hi-Fi Loudspeaker Enclosure
Electronic Circults for Model Railways
Shortwave Circuits \& Gear for Experimẹnters
nd Aadio Hams
Solid State Power Su 28 Tested Transistor Projects
Solid State Short Wave Receivers for
50 Projecrs Using IC CA3 130
50 CMOS IC Projects
A Practical Introduction to Digital ICs
How to Build Advanced Short Wave
Beginners Guide to Building Electronic
Projects
BP228 Essential Theory for the Electronics Hobbyist

## VPS30 Variable Regulated Stabilised Power Supply Module

## Incorpor ating a short circuit protection and current limiting: Voltage Regulation Regulated Current <br> AC input Maximum <br> Eliminates the use of ONLY 27.60 + V.A.T <br> 2.30 V $0-2 \mathrm{~A}$ 25 V noid

 BRAND NEWITT 923 Sllicon Diodes 200 mA 200 v
P.C. BOARD
Single-Sided Fibre Glass Board

Sale Price Price $0.40 \quad \mathbf{1 0 . 3 6}$ $£ 1.10$ £0.99 $\begin{array}{ll}1.10 & £ 0.99 \\ 0.75 & £ 0.68\end{array}$ $\begin{array}{ll}0.75 & \text { ع0.68 } \\ 0.75 & \mathbf{1} .68\end{array}$ $0.85 \quad<0.77$ f0.60 $\mathbf{~} 0.54$ $\begin{array}{ll}\mathbf{6 0 . 8 5} & \mathbf{8 0 . 7 7} \\ \mathbf{E 0 . 9 5} & \mathbf{8 0 . 8 6}\end{array}$ c0.95 $\quad 0.86$ £0.75 $\begin{array}{ll}£ 0.75 & \mathbf{£ 0 . 6 8} \\ £ 1.10 & \mathbf{6 0 . 9 9} \\ £ 1.25 & \mathbf{£ 1 . 1 3}\end{array}$


## AUDIO PLUG AND SOCKET PAKS

| S1 | $5 \times 3.5 \mathrm{~mm}$ Plastic Jack Plugs | $40{ }^{\circ}$ |
| :---: | :---: | :---: |
| S2 | $5 \times 2.5 \mathrm{~mm}$ Plastic Jack Plugs | 40 p * |
| S3 | $4 \times$ Std. Plastic Jack Plugs | $50{ }^{\text {c }}$ |
| S 4 | $2 \times$ Stereo Jack Plugs | 30p |
| S5 | $5 \times 5$ Pin $180^{\circ}$ DIN Plugs | 50p |
| 56 | $8 \times 2$ Pin Loudspeaker Plugs | $50{ }^{*}$ |
| S7 | $6 \times$ Phono Plugs Plastic | $50{ }^{\circ}$ |
| 58 | $5 \times 3.5 \mathrm{~mm}$ Chassis Sockets (Switched) | 25p* |
| S9 | $5 \times 2.5 \mathrm{~mm}$ Chassis Sockets (Switched) | $25 p^{*}$ |
| 511 | $2 \times$ Stereo Jack Sockets with instruction leaflet for H/Phone connection. | 50p* |
| 512 | $5 \times 5$ Pin $180^{\circ} \mathrm{OLN}$ Chassis Sockets | 40 p * |
| 513 | $8 \times 2$ Pin DIN Chassis Sockets | $50{ }^{\circ}$ |
| S14 | $6 \times$ Single Phono Sockets | 40p* |

## From U.S.A. by DINDY <br> SCREW CASED <br> LOW NOISE CASSETTES

MATCHED PAIRS O

PNP GERMANIUM

MED. POWERTRANS

Order No. S53 10 for $£ 3.50$
HEAD-CLEANING
CASSETTE 45p each
AUDIO AMPLIFIER RETURN OF THE AL20A
By popular demand - this useful 5 watt RMS Power
Amplifier is offered at the re-introductory price of By popular demand - this useful 5 watt RMS Power
Amplifier is offered at the re-introductory price of


## 

## SPECIAL OFFER!

## COMPONENT PAKS

| 5 pieces Assorted Ferrite rods 2 pieces Tuning gangs MW/LW | 40p |
| :---: | :---: |
| 2 pieces Tuning gangs MW/LW <br> 50 metres Single strand wire |  |
|  |  |
| 10 Reed switches |  |
|  |  |
| Trans types |  |
| 1 pack Assorted Hardware |  |
|  |  |
| 15 Assorted control knobs |  |
|  |  |
| 15 Assorted Fuses 100ma-5 an | 40p |
| $60 \frac{1}{3} \mathrm{~W}$ resistors mixed values |  |
| 30 metres stranded wire |  |
|  |  |
| 120 twatt resistors. Pre-forme |  |
| 1978 Prod. Our mi |  |
| $10 \frac{1}{2}$ watt resistors. Pre-formed |  |
| 250 lwan resistors. |  |
| Range 100 ohms $220 \frac{1}{2}$ watt resistors. |  |
|  |  |
| Range 100 ohms - 10 meg |  |
|  |  |
| 10-100 ofims |  |
| 40 Low ohms $\frac{1}{2}$ watt re |  |
|  |  |
| 25 Mixed wirewound resistors |  |
| 20 Tantalum bead caps |  |
| 0.22 - 100mF Our mix |  |
| High quality electrolitics 10 mF |  |
| 500 mf voltage range $15-50 \mathrm{v}$. <br> Our mix. 40 for |  |
|  |  |
|  |  |
|  | Pak. Contains 50 metal |

## POTENTIOMETERS

## Slider 40 mm TRAVEL



DUAL POTS P.C. MOUNTING ${ }_{592}^{6 m m}$ Shat $\qquad$

| Crystal Ear Pieces |
| :--- |
| S 126 Less plug |

$\qquad$

| N |
| :--- |
| N |
| M |
| S |

c0.20* ¢0.09*

| Mono Crystal Cartridge S127 GP91/1SC Special Offer | ¢1.00* |
| :---: | :---: |
| Nickel Cadnium Rechargeable Batteries 1.25 V <br> S1283500D Cell size=U2 <br> S129 900C Cell size $=\frac{1}{2}$ U11 | $\mathbf{6 2} 2.50$ $\mathbf{0 0 . 9 0}$ |
| S130 Complete kit of pars to build nickel cadnium charger | ¢ 3.50 |
| Super Save Pak  <br> S124  <br> S 125 $5 \times 741 \mathrm{P}$ <br>  $5 \times 555$ | ${ }_{\text {c1.00 }} 1.00$ |


| Type | Price | Typo | Price | Type | Price | Type | Price | Type | Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AC10 | 25 p | BC177 | 12 p | BF194 | 9p | T1P32A | 34 p | 2 N 1613 | 15 p |
| ${ }^{\text {ACl126 }}$ | 14 p | ${ }^{81} 178$ | 12p | BF195 | -9p | TIP328 | 35p | 2N1711 | 15p |
| AC127 | 16 p | 8C179 | 12 p | BF196 | $\bullet 12 p$ | TIP32C | 36p | 2N1893 | 28p |
| AC128 | 16 p | BC182 | ${ }^{9} 9$ | BF197 | -12p | TIP41A | 34 p | 2N2218 | 15p |
| AC128 | 24p | $\mathrm{BC}^{\text {C }} 82 \mathrm{~L}$ | -9p | BF200 | 25p | TIP418 | $35 p$ | 2N2218A | 18 p |
| AC176 | 16p | ${ }^{8 C 183}$ | $9{ }^{9}$ | 8F×29 | 22 p | TIP41C | 36p | 2 N 2219 | 15p |
| AC176 | 24 p | BC183L | 9 p | BFX84 | 18p | TIP42A | 36p | 2N2219A | 18p |
| AC187 | ${ }^{16 p}$ | ${ }^{8 C 184}$ | ${ }^{9} \mathrm{p}$ | 8FY50 | 12 p | TIP428 | 37p | 2 N 2221 | 15p |
| AC187K | $26 p$ | ${ }^{8 C 184 L}$ | -9p | BFY51 | 12p | T1P42C | 38p | 2 N 2221 A | 16p |
| AC188 | ${ }^{168}$ | ${ }^{8 C 212}$ | -10p | BFY52 | 12p | TPP2955 | $65 p$ | 2 N 2222 | 15 p |
| ${ }_{\text {A A } 18181}$ | 28p | ${ }^{8 C 2} 12 \mathrm{~L}$ | :10p | MPSA05 |  | TIP3055 | 42 p | 2 N 2222 A | ${ }_{10}^{6 p}$ |
| ${ }^{\text {A }}$ A2MP | 80 p | - ${ }^{\mathrm{BC} 213} \mathrm{BC} 213 \mathrm{~L}$ | -10p | MPSAO6 | -22p | $2 T \times 107$ 2T108 |  | - 2 2N2369 | ${ }_{10} 10$ |
| ${ }_{\text {AF }} 139^{\circ}$ | $3{ }^{80}$ | ${ }^{8} \mathrm{BC} 214 \mathrm{~L}$ | -10p | MPSA55 | -22p | (1) | -6p | ${ }^{2} \mathrm{2N2904}$ | 14p |
| AF239 | 30 p | BC214L | -10p | MPSA56 | -22p | 2Tx300 | $\cdots$ | 2 N 2905. | $14 p$ |
| BC107 | ${ }^{6 p}$ | BC251 | ${ }^{10} \mathrm{p}^{\text {p }}$ |  |  | ZTX301 | -7p | 2N2905A | 15 p |
| BC108 | ${ }^{6 p}$ | BCY70 | 12 p | OC45 | 12 p | 2Tx302 | 9 P | ${ }^{2} \mathrm{~N} 2906$ | 12p |
| $8 \mathrm{BC109}$ | ${ }^{6 p}$ | 8CY7 | 12 p |  | ${ }_{9 p}$ | 2Tx500 | -8p | 2N2906A | 14 p |
| ${ }^{\text {BCL1 }} 18$ | ${ }^{10}$ | BCY72 | 12 p | OC72 | 12 p | 2Tx501 | 10p | 2 N 2907 | 12 p |
| 8C147 | ${ }^{8} \mathrm{8p}$ | 80115 | -40p | OC75 | 10 p | 2Tx502 | -12p | 2 N 2907 A | 130 |
| BC148 | 8 p | 80131 | -35p | 0 C 81 | 14p | 2 N 696 |  | ${ }^{2} \mathrm{~N} 2926 \mathrm{G}$ | ${ }^{8 p}$ |
| BC149 | 8 P | 80132 | 37p |  |  | 2N697 | 10 p | ${ }_{2} \mathrm{~N} 2928 \mathrm{Y}$ | ${ }^{7} 7$ |
| BC154 | ${ }^{-16 p}$ | BF115 | 17p | TIP29a | 35p | 2 N 706 | 7p | 2 N 3053 | 12 p |
| BC157 | ${ }^{99}$ | 8F167 | 19p | TIP298 | 369 | 2N706A | ${ }_{8 p}$ | 2N3055 | 35p |
| BC158 | $9^{9}$ | BF173 | 20 p | TIP29C | 38p | 2 N 708 | 8 p | 2N3702 | $\cdot 7 \mathrm{p}$ |
| BC159 | 4 p | BF180 | 25p | TIP30A | 36p | 2 N 1302 | 12p | 2 N 3703 | $\cdot 7 \mathrm{p}$ |
| ${ }_{8}^{8 C 169}$ 8C169 | ${ }^{10} 6$ | BF181 | 25p | TIP308 | 37p | 2N1303 | 15p | 2N3704 | $\bigcirc 8$ |
| ${ }_{8 C 171}^{8 C 169 C}$ | ${ }_{-6 \mathrm{p}}$ | BF182 $8 / 183$ | $25 p$ $25 p$ | TiP30C | 38p 32p | 2 N 1304 2 N 1307 | ${ }_{18 p}^{15 p}$ | 2N3903 | -11p |
| BC172 | -6p | BF184 | 25p | TIP31B |  | 2N1308 | 22p | 2N3905 | -11p |
| 8C173 | -7p | BF185 | 25p | TIP31C | 34p | 2N1309 | 22p | 2N3906 | -11p |

BRAND NEW - FULLY GUARANTEED

## TRANSISTORS



## s

 <br> \section*{s} <br> \section*{s}
## 

## TOOLS

| No. $20115^{\prime \prime}$ wire cutters |  |
| :--- | ---: |
| No. $20125^{\prime \prime}$ long wire plyer | $\mathbf{£ 1 . 5 5}$ |
| SUPER DUP | $\mathbf{5 1 . 4 5}$ |

## SUPER DUPER COMPON ENT BOX Min. $31 b s$ in weight consisting of a fantastic

Min. 3lbs in weight consisting of a fantastic
assortment of Electronic Components - Pots.
Resistors. Condensers, Switches. Relays,
assortment of Electronic Components - Pots.
Resistors, Condensers, Swithes, Relays, Board

- Semlconductors, wire, hardware, Etc., etc..
-This is a large box and is sent separate to your
ordere $\pm 2.50$ including $p \& p$.
$\mathbf{S} 140$

S 1420349240 v primary, $0-20 \mathrm{v}$ at 2 Amp
secondary. $\mathrm{f} 3.50^{\circ}+\mathrm{f} 0.86$ p 8 p .
COMPLETE AUDIO
COMPLETE AUDIO
AMPLIFIER KITS:
STA15 15 watts per channel
amplifier kit
Consists

| RESISTORS |
| :---: |
| 40 mixed yalues 1 watt \& 2 watt Resistors <br> no S143 <br> EO.60 |

PROGRAMMABLE UNIJUNCTIONS 2N6027 with Data $\quad$ E0.24
DIODES

|  |  |  | D10D |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Price 50 5p 15p |  |
|  |  |  | ${ }^{\cdot 10}$ |  |
|  |  |  | ${ }_{320}^{320}$ | OA70 |
|  |  |  | 30 p |  |

LINEAR I.C.'s

| TBA800 | c0.75* | UA711 | 50.25* | UA748 | £0.28* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T8A810 | c0.85* | UA703 | 80.20 | 72558 | E0.45 |
| T8A820 | E0.65 | 741P | E0.18 ${ }^{\circ}$ | MC1310P | ¢1.25* |
| LM3880 | c0.80 | 72741 | E0.20 | 76115 | ¢1.25* |
| LM381 72709 | ${ }_{\text {c1. }}^{61.25}$ | $\mathrm{UAF412}^{\text {7274 }}$ | ${ }^{80} 0.20$ | NE555 |  |
| UA709 | 60.20 | 7488 |  |  | ¢1.80* |

No. S55 20 mixed values 4KS
No. S57 $\begin{aligned} & \text { dor } \\ & \text { diodes } 11-33 \mathrm{~V} \\ & \text { mixed values }\end{aligned} 1 \mathrm{~W}$ Zener
No. 558 10

| SILICON POWER TRANS. N.P.N. |  |  |
| :---: | :---: | :---: |
| 597 | B0371 2 Amp 1.2w. 60 Vc ceo Hfe 40-400, Case T092 |  |
|  |  | $60{ }^{\circ}$ |
| S98 | 2 N5293 R.C.A. 36 w 4 Amps <br> ${ }_{75 \mathrm{~V} \text { ceo } \mathrm{Hife} 30-120.5 \text { for }}$ | 61 |


$\qquad$
Consists: $2 \times$ AL60-
$1 \times$ PA $100-1 \times$ SPM 80


mplifier kit. Consists:
$2 \times A \leq 60-1 \times P A 100$
$1 \times$ SPM $120 / 45$
$1 \times 2040$ Transformer
$-1 \times$ xreservoir cap
$\mathbf{2 x}$ couplinic capacitors. $£ 41.45 \mathrm{inc}$ VAT 35 watts per channels
amplitier kit. consists: XALBO- $1 \times$ PA100
transformer- 1 res-
ervoir capacitor
2xcoupling capacitors' $+£ 1.16 p$
\&
STA50 50 watis per chaminel
$2 \times A L 120-1 \times P A 200$
xSPM120/65
$-1 \times$ reservoir capacitor $£ 58.20 \mathrm{incVAT}$
STA1 25125 watts ser channel
$2 \times A L 250-1 \times P A 200$.
$-2 \times$ SPM $120 / 65$
$1 \times 1$ reservoircapacitor $£ 7285 \mathrm{incVAT}$ $2 \times$ coupling capacitors $+£ 1.25 p p \& p$
$\begin{array}{ll} & 4 \times 100 \mathrm{~K} \text { Log } \\ 1693 & 4 \times 103 \\ 15 \text { Rotary Pot Assorted }\end{array}$
$\begin{array}{ll}16173 & 15 \text { Rotary Pot Assorted } \\ 16186 & 25 \text { Pre-sets A-sorted Values }\end{array}$

## ORDERING

Minimum postage and packing for Sale Orders £0.50 PLUS any further postage as stated as per this Sale Adverisement
Overseas Orders - ADD extra for Air-mail

## V.A.T.

Please ADO V.A.T. as follows:
$12 \frac{1}{2}^{2}$ to items marked ${ }^{\text {• }} 8 \%$ to unmarked items NO V.A.T. on Books
SEND FOR YOUR BI-PAK CATALOGUE 65p post free.

## KITS FOR SYNTHESISERS, SOUND EFFECTS



## P.E. MINISONIC MK. 2 SYNTHESISER

A portable mains-operated Miniature Sound Synthesiser. with keyboard circuits. Although having slightly fewer facilities than the large P.E. Synthesiser the functions offered by this design give it great scope and versatility. Consists of 2 log VCOs. VGF. 2 envelope shapers. 2 voliage conified amps. Kaybir holse penerator oscixiter and detecior. ring modulator. holse supply.
mixer, power
E61.00 mixer, power supply.
from $\begin{array}{r}\text { £61.00 } \\ £ 8.99\end{array}$
Set of printed circuit boards
£8.99
P.E. SYNTHESISER (P.E. Feb. 73 to Feb. 74)

The well acclaimed and highly versatile large-scale mains-operated Sound Synthesiser complete with keyboard circuits. Other circuits in our lists may be used with the

## FORMANT SYNTHESISER (Elektor 1977/78)

Very sophisticated music synthesisar for the advanced constructor who puts performance before price. Details in our lists.

## 128-NOTE TUNE-PROGRAMMABLE SEQUENCER

(P.E. Nov/Dec 77)

Enables a voltage controlled synthesiser to automatically play pre-programmed tunes of up to 32 pitches and 12 B notes long. Programs are keyboard initiated and note length and rhythmic pattern are externally variable. (Please use order codes quoted in brackets.)

Main Circuit (Nov) excl. sw's (KIT 76-1)
Power Supply (KIT 76-3)
f 18.03
Trigger Inverter and Alt: Output (KIT 76-2)
LED Counter (KIT 76-4)
PCB (as published) for KITS 76-1 \& 3 (PCB 76A)
$\mathbf{8} .72$
$\mathbf{5} 1.15$

PCB for KITS 76-2 \& 4 (PCB 768)
21.15
$\mathbf{2} 2.10$
$\mathbf{2} .61$
P.E. STRING ENSEMBLE (PE MarJuly 78)

The new keyboand string-instrument synthesiser. Basic component sels:
Power Supply (KIT 77-1)
Tone Generator (KIT 77-2)
Tone Generator (KIT 77-2)
Diode Gates $\{\mathrm{KIT} 77-3\rangle$
Chorus Generator (KIT 77-4)
Voicing System (KIT 77-5)
18.77

Printed Circuit Boards
Double-sided PCB for Power Supply, Tone Generator \& Diode Gates with most of the Matrix wiring as printed tracking (PCB 77L/R)
18.40

PCB for Chorus Generator (PCB 77C)
Fuller details of kits \& PCBs are in our lists.

## P.E. JOANNA PLUS ORGAN VOICING

The bassic five octave electronic piano (P.E. May/Sept 75 and Sound Design) has switchable alternative voicings for HonkyTonk, ordinary piano. and Harpsichord or a mixture of any of these three, together with facilities including fast and stow tremolo, modification reains switching, and sustaln pedal swith the piano but in addltion provides an organ-voice envelope facility with 5 switchable pitches, variable attack and sustain, phasing and vibrato.

Set of components (excl switches) for PSU. Frequency generator. Pitch and Note Divider, Envelope Shapers. Voicings. and Control circultries. (Order as KIT 71-5) £99.26 Set of PCBs (Order as PCB SET $71-6$ )
699.25
$\mathbf{c} 29.18$

GUITAR EFFECTS PEDAL (P.E. July 75)
Modulates the attack. decay and filter characteristics of an audio signal not only from a guitar but from any audio further modified by manual controls. Possibly the most interesting of all the low-priced sound effects units in our range. Circuit does not duplicate effects from the Guitar Overdrive Unit.

Component set with special foot operated switches Alternative component set with panel switches Printed circuit board

COMPONENTS SETS include all necessary resistors, capacitors, semiconductors, potentiometers and transformers. Haroware such as coses, sockels, knobs, keyboards, etc. are not included but most of these may be bought separately. Fuller details of kits, PCBs and parts are shown in our lists.
CIRCUIT AND LAYOUT DIAGRAMS are supplied tree with all PCBs unless "as published".
PHOTOCOPIES of P.E. texts for most of the kits are available-prices in our lists.

## PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

## ELEKTOR ELECTRONIC PIANO (Elektor Sept 78)

A touch-sensitive. multiplo-voicing 5 octave piano using the
latest integrated-circuit techniques for Aatest integrated-circuit techniques for the keying and onvelope shaping and virtually yliminating boe-hive noise
hitherto inherent in previous electronic pianos. Details in our lists.
OIGITAL REVERBERATION UNIT (Elektor May 78)
A very advanced unit using sophisticated i.c. techniques 24 to 90 mS can be extended up to 450 mS using the extension unit. Further delays can be obtalned using more extensions.

ANALOGUE REVERBERATION UNIT (Elektor Oct 78)
Using i.c.s instead of spring-lines. The main unit has a
maximum delay of up 10.100 mS , and the additional set maxinds this up to 200 ms . May be used in elther mono or stereo mode.

Main component set (KIT B3-1)
Additional Delay Set (KIT B3-2)
$£ 26.18$
$£ 18.25$
Additional Delay Set (KIT 83-2)
PCB (as published) to hold both above
kits (PCB 9973)
£4.31
RESONANCE FILTER (Elektor Oct 78)
This filter module has been designed to allow a synthesiser
to produce a more realistic simulation of natural musical instruments.
Basic component set (KIT 82-1)
PCB (as published) (PCB 9951)
$\mathbf{Y} 5.10$
$\mathbf{~} 3.29$

## SYNTHESISER EXTERNAL INPUT INTERFACE

(P.E. Oct 78)

This unit allows external inputs, such as guitars, microphones etc. to be processed by the circuits within a
synthesiser.
Basic component se: (incl PCB) (KIT 81-1)
E2.94
GUITAR MULTIPROCESSOR (P.E. Dec/Feb 78)
An extremely versatile sound processing unit capable of producing, for example, Flanging. Vibrato, Reverb, Fuzz and
Tremoto as well as other fascinating sounds. May be used remoto as well as other fascinating sounds. May be used

## RHYTHM GENERATOR KITS

Several available - details in our lists
GUITAR FREQUENCY DOUBLER (P.E. Aug. 77)
A modified and extended version of the circult published.
Component set and PCB

GUITAR SUSTAIN (P.E. Oct 771
Maintains the natural attack whilst extending note duration
Component set. PCB and foot switches E5-13 Component set, PCB and panel switches £3.71

## WIND AND RAIN UNIT

A manually controlled unit for producing the above-named sounds.
£4.26

## GUITAR OVERDRIVE UNIT (P.E. Aug. 76)

Sophisticared. versatile Fuzz unit, including variable and switchable controts affecting the fuzz quality whilst retaining the attack and decay. and also providing filtering. Does no quplicate the effects from the Gultar Effects Pedal and can be used with It and with other electronic instruments. Component set using dual rotary pot Printed circuit board dual rotary pot E6.89

FUZZ UNIT
Simple Fuzz unit based upon P.E. "Sound Design" circurr. Component set (incl. PCB)

## TREMOLO UNIT

Baseo upon P.E. Sound Design" circult
Component set (Incl. PCB)
TREBLE BOOST UNIT (P.E. Apr. 76)
Gives a much shriller quality to audio signais fed through it
Component set (inct. PCB)

## WAVEFORM CONVERTER

Slightly modified from a circuit published in "Elektor". Converts saw-tooth waveform into four different waveforms: sine-wave mark-space saw-looth, regular triangle form, and squarewave with an externally variable mark-space ratio.
Component set (incl. PCB but excl. sw/s)
VOLTAGE CONTROLLED FILTER (P.E. Dec. 74)
Part of the P.E. Minisonic now released as an independent
kit for use with other synthesisers.
Component set (incl. PCB) (Order as Kit 65.1)

## RING MOOULATOR (P.E. Jan. 75)

Part of the P.E. Minisonic now released as an Independent Component set (incl. PCB) (Order as Kit 59-1)

## NOISE GENERATOR (P.E. Jan. 75)

Part of the P.E. Minisonic now released as an independent kit for use with other synthesisers.
Component set (incl. PCB ) (Order as Kit 60-1) £3.64
ENVELOPE SHAPER WITHOUT VCA (P.E. OCt. 75)
Provides full manual control over attack, decay, sustain and release functions. and is for use with an existing voltage controlled amplifier

ENVELOPE SHAPER WITH VCA (P.E. Apr. 76)
This unlt has its own voltage controlled amplifier and has full This unit has its own voltage controlled amplifier and has full manual co
Component set (incl. PCB)

TRANSIENT GENERATOR (P.E. Apr. 77)
An envelope shaper, without VCA, having the usual attack. decay, sustain and release functions, and in addition it also provides a "Repeat Effect" enabling a synthesiser to be programmed to imitate such instruments as a mandolin or banio,
Component ser
$£ 4.87$
$£ 1.82$

## SOPHISTICATED PHASING AND VIBRATO UNIT

A slighty modified version of the circult published in automatic control over the rate of phasing and vibrato.
Component set Printed circult board

PHASING UNIT (P.E. Sept. 73)
A simple but ffective manually controlled unit for introducing the "phasing" sound into live or recorded music.
£3.20

PHASING CONTROL UNIT (P.E. OCT. 74)
For use with the above Phasing Unit to automatically control the rate of phasing.
Component set (inel. PCB)
$£ 4.74$

WAH-WAH UNIT (P.E. Apr. 76)
The Wah-Wah effect produced by this unit can be controlled nanually or by the integral automatic controller.
Component set (fincl. PCB)
£3. 63

AUTOW AH UNIT (P.E. Mar. 77)
Automatically produces Wah-pedal and Swell-pedal sounds tach time a new note is played
$\begin{array}{ll}\text { Component set. PC8. special toot switches } & £ 7.67 \\ \text { Component set and PCB. with panel switches } & £ 4.83\end{array}$

VOICE OPERATED FADER (P.E. Dec. 73)
For automatically reducing music volume during talk-over-particularly useful for Disco work
Component set (incl. PCB)
83.97

10\% OISCOUNT VOUCHER (PE 72)
TERMS: Goods in current adverts \& lists over £50 goods value (excl P\&P \&i VAT).
Correctly costed, C.W.O., U.K. orders onl This voucher must accompany order. Valid until end of month on cover of P.E.

ADD: POST \& HANDLING
U.K. orders - Keyboards add $£ 2.00$ each plus VAT. Other goods: under $£ 15$ add 25 plus VAT, over $£ 15$ add 50 p plus mis. Recommended: optional insurance against postal
mishaps, add. 50 p for cover up to $£ 50, ~ £ 1.00$ for $£ 100$
cover, eic. pro-rata.
N.B. Elre. CI, B.F.
N.B. Elre, C.I., B.F.P.O. and other countries are subject to
higher export postage rates.

ADD 12\$\% VAT
(or current rate if changed). Must be added to full total of handing, on all U.K. post \& Does not apply to Exports.

EXPORT ORDERS ARE WELCOME but to avoid delay we advise you to see our list for postage rates. All payments must be cash-with-order, in Sterliigh by International Money Order or through an English Bank. To obtain list - Europe send 20p, other countries send 50p.

## AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of The P.E. projecis bult trom our kits and
PCBs. The cases were built by ourselves and are not for sale. though a small selection of other cases is available.

LIST-Send stamped addressed envelope with all U.K. requests for free list giving fuller details of PCEs, kus and other components.
OVERSEAS enquifies for list Europesend 20 p : other countries-send 50 p .


## KIMBER-ALLEN KEYBOARDS AND CONTACTS

Kimber-Allen Keyboards as required for mamy published circuits. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C . the keys are plastic. spring-loaded, fitted with actuators, and mounted on a robust aluminium frame. 3 Octave ( 37 notes) f25.50
$\mathbf{~} \mathbf{5 2} 2.25$ 5 Octave (6) notes) £39.75
$\mathbf{~}$
Contact Assemblies (gold-clad wire) for use with the above KBOS (1 for each note): Type GJ: Single-pole change-over
Type GA: 1 pair of contacts, normally open

Printed Circult Boards for use with mosi contacts (thus eliminating much interwiring) are available. Details in our lists.
P.E. TUNING FORK (P.E. NOV. 75)

Produces 84 switch-selected frequency-accurate tones. A LED montor clearly displays all beat note adjustments. Ideal for tuning acoustic or electronic musical instruments. Mair, component set (incl. PCB) Mair, component set (incl. PCB
Power supply set (incl. PCB)
$£ 14.93$
$£ 6.28$
SYNTHESISER TUNING INDICATOR (P.E. July 77) A simple toctave frequency comparator for use with synthesisers and other instruments where the full versatility

Component and PCP (but ercl swl

CONSTANT OISPLAY FREQUENCY METER (PE AUG 78)
A 5 -digit frequency counter for 1 Hz to 99999 Hz with a 1 Hz sampling rate. Readout does not count visibly or flicker due to display blanking.
Component set
Printed circuit board
-This kit \& PCB are at $8 \%$ VAT (all others are $12 \frac{1}{2} \%$ )

TAPE NOISE LIMITER
Very effective circuit for reducing the hiss lound in most tape recordings. All kits include PCBs

DYNAMIC RANGE LIMITER (P.E. Apr. 77)
Automatically controls sound output to wlthin a preset
level.
Component set (Incl. PCB)

DISCOSTROBE (P.E. Nov. 76)
4-channel light-show controller giving a choice of sequential,
random, or full strobe mode of operation.
Basic component set
Printed circuit board

BIOLOGICAL AMPLIFIER (P.E. Jan/Feb. 73)
Multi-function circuits that, with the use of other external equipment, can serve as lie-detector, alphaphone, cardiophone etc.
Pro-Amp Module Components set lincl. PC8) E3.95 Basic Output Circults-combined component set with PCAs, for alphsphone, cardiophone, frequency meter and visual feed-back lampdriver circuits. Audio Amplifier Module Type PC7

SOUND BENDER (P.E. May 74)
A mult-purpose sound controlter. the functions of which include envelope shaper. Iremolo. voice-operated tader.
automatic fader and trequency-doubler.

SOPHISTICATED POWER SUPPLIES
is avallable-detalls in our lists.
Phices are comrect at time of press.
PRICES ARE COARECT AT TIME OF PRESS.
E. $\boldsymbol{O}$. E. DELIVERY SUBJECT TO AVAILABILITY

## NEW <br> PCB SERVICE

PCBS FOR ALL NEW PE. \& E.E. PROJECTS FOR WHICH PCB LAYDUTS HAVE BEEN PUBLISHED ANO FDR WHICH FULL COPYRIGHT CLEARANCE IS AVAILABLE. umire ouantitis ONLY FDR AN EXPERIMENTAL PERIOO.
IEt us know roun NEEOS AND WE WILL AOVISE YOU OF AVAILABILITY ANO PRICES.

INTEGRATED CIRCUITS


AM 28338 -pin OIL 360 126p AY10212 16 -pin DIL617p
AY $16721 / 6$ AY16721/6
CA3046
CA $\begin{array}{ll}\text { CA3046 } & \text { 14-pin OIL } 71 \text { p } \\ \text { CA3080 } & 8 \text {-pin OIL } 63 \text { p }\end{array}$ $\begin{array}{ll}\text { CA3080 } & \text { 8-pin OIL } 63 \text { p } \\ \text { CA3084 } & \text { 14-pin OIL209p } \\ \text { FX209 } & 16 \text {-pin OIL729p }\end{array}$
 $\begin{array}{ll}\text { M252 } & \text { 16-pin DIL680p } \\ \text { MC3340 } & \text { 8-pin DIL } 150 \text {. }\end{array}$ MC3340
MCM6810
24 Din DIL
150 SG3402N 14-pin DIL 262 p $\begin{array}{ll}\text { STKO25 } & \text { - } \\ \text { TOA1022 } & 16 \text {-pIn DIL582p }\end{array}$ TOA1022 16 -pin DIL582p $\begin{array}{ll}\text { XA2207 } & \text { 14-pin OIL420p } \\ \text { ZN425E } & 16 \text {-pin OIL375p }\end{array}$

TRANSISTORS


PHONOSONICS

## STEREO PRE-AMPLIFIER B OARO, Tone Control Board, Filter Board from $60+60$

Watt Hi-Fi Amplifier with suggested assembly and circuits (6) £3.50.
PNP VERSION OF 2N 3055 BOX 94 @ 75p each.
100 MINIATURE DIOOES CV 9637 with preformed leads (5) 50p.
OLYSTYRENE CAPACITORS sufflex type $12,15,20,25,30,50,56,100,120$, 1000pf. All at 20 p doz.
VIRE ENOED CRYSTALS $28 \mathrm{KHz}, 28.5 \mathrm{KHz}, 31.5 \mathrm{KHz}$. All at 50 p each.
TRANSISTORS BC 183. BC 548, BC 549. All 10p, 6 for 50 p.
MCMURDO \& PINPLUG @ 20p, 8 PIN SOCKET @ 20p. COVER © $15 p$.
3 GANG VARIABLE CAPACITOR $25+25+25$ pt (a. 75 p
10 Amp S.C.R.'s 100 PIV @ 25p, 400 PIV © $50 \mathrm{p}, 800$ PIV 60 p .
400 mW ZENERS unmarked Good $3.6 \mathrm{v}, 6.8 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 18 \mathrm{v}, 24 \mathrm{v}, 30 \mathrm{v}$,
$33 \mathrm{v}, 36$ volt. All at 10 for 40 p .
GLASS WIRE ENDED MERCURY SWITCHES @ 25p.
MC 3340 ATTENUATOR I.C. with data 650 p ,
X BAND GUNN DIDOES with data (G) $£ 1.65$ each.
MINIATUREROTARY SWITCHES 3 Pole 3 way @ $40 p$. 2 Pole 4 way \& 20 p . 1 Pole 10 way 2 Bank (3) 40p.
10 WATT ZENERS $18 \mathrm{v}, 33 \mathrm{v}, 57 \mathrm{v}, 100$ volt. All 30 p each.
OIE CAST ALLOY BOXES $6^{\prime \prime} \times$ t" $^{\times} \times 2^{*}$ 여 $£ 1.15$.
$20 \mathrm{v} . \mathrm{w} ., 68$ uf $15 \mathrm{v} . \mathrm{w} ., 100 \mathrm{u} 20$ v.w., 150 uf
OMULTI-TURN TRIM-POTS Assorted for 60p.
50 BC 107-8-9 TRANSISTORS assorted umested © 57p.
ELECTROLYTIC'CAPACITORS $2240 \mathrm{uf} 40 \mathrm{v} . \mathrm{w}$. ©40p, 3.300uf 63v.w. @ 50p.
4500 uf $25 \mathrm{v.w}$. $6400 \mathrm{uf} 25 \mathrm{v} . \mathrm{w}$. © 25 p .
UNIJUNCTION TRANSISTORS 2N 4871 (a) 22p, 22N 6028 (6) 25p, 2N 6029
(a) 25p. MEU 21 @ 22p. MU 4894 (a) 22p. 4 JOSE29 (영 22p. TIS 43 Type © 22p.

30 ASSORTED $10 \times$ AA CRYSTALS © E1.10. 20 FT 243 CRYSTALS assorted
@ 11.50 .20 F1 241 A.
MULLARO TAA 320 M.O.S.T. PRE-AMPLIFIERSI.C. with circuits \& 35p.
LASTIC BC 107, BC 108, BC 177 TRANSISTORS 8 p. 10 for 60 p.
ULLARO STRIPLINE 800 MHz NPN BF 362 © 25p.
200 ASSORTEO $\frac{1}{\text { E. }}$ 立 Watt RESISTORS for 75 .
502 WATT ASSOR
600 MHz 8 DIGIT FREQUENCY COUNTER © $£ 115$
MAINS TRANSFORMERS 240 volt input. Type 1.24 volt tapped at 14 volt 1 amp @ $£ 1.30$ (P\&P 25p). Type $2.22-0-22$ volt 500 mA @ $£ 1.60$ (P\& P 25p), Type 3. 45 volt 6 amp @ E4.50 (PB, P 95p). Type 4. 20 volt 1 amp twice 10 volt 1 amp twice @ £4.50 (P\& P 95p), Type 5.45 volt 2 amp 45 volt 500 mA © $£ 3.50$ (P\&P85p), Type 6.16 voit 2 amp ( 181.60 (P\&P 25p). Type 7.24 voit 1.75 amp (3) £1.60 (P\& P 25 pl . Type 8. 30 volt 1 amp (a) $£ 1.60$ (P\& P 25p). Type 9, 13-0.13 volt 1 amp @ $£ 1.60$ (P\&P 25p). Type 10. 22 volt $500 \mathrm{~mA} @ 8 \mathrm{p}$ p (P\&P 20p). Type 11 12 volt 16160 PRP 25 ) Thpe 13.16 .5 volt 1 amp © 1.60 (P\&P 25p) Type 1 12

Please add $\mathbf{2 0}$ p for post and packing, on U.K. orders under $\mathbf{C} 2$, unless stated otherwise. Overseas post at cost.

## J. BIRKETT

## RADIO COMPONENT SUPPLIES

25 The Strait, Lincoln LN2 1JF Tel. 20767

## 000 <br> NOTE THE NEW ADDRESS

PHOENIX ELECTRONICS
(SOLENT) LTO
139/141 Havant Road, Drayton, Portsmouth, Hants. PO6 2AA

We have moved to larger premises to give you a wider range and a better service.

## RESISTORS

tW carbon fllm
iw metal film

SEMICONDUCTORS

## INTEGRATED CIRCUITS

DTL 930 series.
TTL 74 series.
Linear series.
Consumer circuits.
CMOS Circults.

## CAPACITORS

Disc ceramic. Aluminium electrolytic. Tantalum bead.

## PANEL HAROWARE

Connectors, lampholders, switches, fuses, knobs.

## MISCELLANEOUS

Hand tools, Instrument cases, Veroboard, relays, transformers.

## Buy More for Less Outlay with Our Bargain Packs

Dease send your new catalogue-free!
Name
Address

The I.C.E. range of multimeters provide an unrivalled combination of maximum performance within minimum dimensions, at a truly low cost. Plus, a complete range of add-on accessories for more ranges, more functions.


## Supertester 680R (illustrated)

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 1 \%$ fsd on d.c. $4 k \Omega / V, \pm 2 \%$ fsd on a.c.
* 80 Ranges - 10 Functions
* $140 \times 105 \times 55 \mathrm{~mm}$


## $\mathbf{£ 3 2 . 0 0}+$ VAT

(For Mail Order add 80 p P\&P)

## Supertester 680G

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 48 Ranges - 10 Functions
* $109 \times 113 \times 37 \mathrm{~mm}$
(For Mail Order add 80p P\&P)


## Microtest 80

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
- 40 Ranges - 8 Functions
* Complete with case only $93 \times 95 \times 23 \mathrm{~mm}$
$\mathbf{£ 1 6 . 6 0 + V A T}$
(For Mail Order add 80p P\&P)

All I.C.E. multimeters are supplied complete with unbreakable plastic carrying case, test leads, etc. and a 50 -plus page, fully detailed and illustrated Operating and Maintenance Manual Now available from selected stockists. Write or phone for list, or for details of direct mail-order serwice.
Electronic Brokers Ltd.
$49-53$ Pancras Road, London NW1 2QB
Tel: 01-837 7781

sabtronics

Model $20003^{1 / 2}$ Digit DMM Kit $£ 49.95$
assembled: $£ 69.95$
(pius p.p. £ 3.00 and VAT at $8 \%$ )
Model 8100 Frequency counter Kit $£ 69.95$
assembled tested: $£ 84.95$
(plus p.p. £ 3.50 and VAT at $8 \%$ )

## The Winners

## These two products are our best sellers!



The two products shown above from Sabtronics are our best selling products. Both these products compare with similar equipment selling for atleast $£ 150.00$. Is there more to these products than value? Let's take a closer look.

The Frequency Counter Model 8100 It employs LSI Technology, has the performance and characteristics you demand, guaranteed frequency range of 20 Hz to 100 MHz ; selectable hi/lo impedance; superior sensitivity; selectable resolution and selectable attenuation. Plus an accurate time base with excellent stability. An 8 digit LED Display features floating decimal point, leading zero suppression and overflow indicator.

Brief specifications:
Frequency Range: 20 Hz to 100 MHz guaranteed, ( 10 Hz to 130 MHz typical) - Sensitivity: 10 mV RMS.

20 Hz to 50 MHz (5 mV typical); 15 mV RMS, 50 MHz to 100 MHz ( 10 mV typical) - Selectable impedance: $1 \mathrm{M} \Omega / 25 \mathrm{pF}$ or $50 \Omega$-Attenuation: $\mathrm{X} 1, \mathrm{X} 10$ or $\mathrm{X} 100-$ Accuracy: $\pm 1 \mathrm{~Hz}$ plus tíme base accuracy - Aging Rate: $\pm 5 \mathrm{ppm} / \mathrm{yr}-$ Temperature Stability: $\pm 10 \mathrm{ppm}$, $0^{\circ}$ to $50^{\circ} \mathrm{C}$-Resolution: $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ selectable -Display: 8 -digit LED, floating DP, overflow indicator - Overload Protection - Power Requirement: 9-15 VDC. Optional prescaler will be available from around March 1979.

The DMM Model 2000
The model 2000 is all solld-state, incorporating a single LSI circuit and high quality components. It has five functions and a total of 28 ranges. Input averload protection, auto polarity and auto zero are provided on all ranges and a basic DCV accuracy of $0.1 \% \pm 1$ digit.

Brief specificatlons:
DC volts in 5 ranges: $100 \mu \mathrm{~V}$ to $1 \mathrm{kV}-\mathrm{AC}$ volts in 5 ranges: $100 \mu \mathrm{~V}$ to 1 kV - DC current in 6 ranges: 100 nA to $2 A$ - AC current in 6 ranges: 100 nA to 2AResistance: $0.1 \Omega$ to $20 \mathrm{M} \Omega$ in 6 ranges -
AC frequency response: 40 Hz to 50 kHz - Display: $0.36^{\prime \prime}(9,1 \mathrm{~mm}) 7$-segment LED - Input impedance: $10 \mathrm{M} \Omega$-Size: $8^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}(203 \times 165 \times 76 \mathrm{~mm})$ - Power requirement: 4 " $C$ " cells (not included).

[^1]
## PROSPECTS

$\mathrm{A}^{\top}$THE time of writing we are at the start of a new year-a year which is an exciting prospect for the whole of the electronics industry. Every man in the street has now heard of the "chip" and we have all seen or at least read about the many products now available because of it. The next year should see hundreds more products and the microprocessor boom take off in a big way in the U.K.

Digital watches and calculators are now cheap, efficient and available in vast varieties to suit every requirement. Video recorders-promised for so long-are now a reality, as is the videodisc in the States, but may not be here until 1980. Perhaps we will see the introduction of electronics to our everyday transport during 1979. Solid state instruments are at present undergoing evaluation tests and it will not be too long before the microprocessor helps present every driver with better information and perhaps provide in-car entertainment for the kids.

## TV

The P.O. Prestel system will become widely available and we should start to see cheaper Oracle, Ceefax and Prestel
equipped sets, though we doubt if many homes will be in touch with these systems by the end of '79. By then we may know for sure what and when our fourth TV channel will bethough having been subjected to North American TV we see no argument for continuing to add to the number of channels. TV games continue to become more sophisticated but with tape programmed computerised versions already around we doubt if ' 79 will see any further significant steps.

## CB

We may also see some moves by the Government on citizens band radio, even if they are only attempts to stamp out the numerous illegal networks operating in our large cities at the present time. Maybe this illegal use will force the powers that be to assign a frequency for CB. We would not however expect this to provide a great advantage to the man in the street as it is highly probable that the alloted frequency will not be in the 27 MHz band, but much higher and that the technical spec. for each set will be high and closely controlled, making equipment expensive.

This would however overcome the
interference problems of 27 MHz and would probably provide a much more usable network for those that could justify the expense. If CB does come to Britain we hope the communications companies will be quick off the mark with British designed-if not madeequipment |

## REVOLUTION

Of course all this new technology will require new test equipment and this, together with "the next industrial revolution", of which many are talking. will probably be a far greater growth area than all those mentioned previously.

One "new product" which is now being used in the home and small business has not been mentioned above-the microcomputer. The Tandy catalogue, given free with our UK mainland issues this month, features their TRS 80 compiter-probably the best selling micro in the world-and next month we hope to bring you a review of a Level II machine.

## Mike Kenward

## EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICALEDITOR
Alan Turpin PRODUCTION EDITOR
David Shortland TECH. SUB EDITOR

Jack Pountney ART EDITOR<br>Keith Woodruff ASSISTANT ART EDITOR John Pickering SEN. TECH. ILLUSTRATOR<br>Isabelle Greenaway tech. ILLUSTRATOR Judith Kerley SECRETARY

Editorial Offices:
Westover House,
West Quay Road, Poole,
Dorset BH 15 1JG
Phorie: Editorial Poole 71191
Weregret that lengthy echnical onquiries cannot be anawered over the telephone (see below).

Advertising Offices:
King's Reach Tower,
King's Reach, Stamford Street, SE 1 9LS
Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-261 6601

## Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate supply difficulties a source will be suggested.

## Back Numbers

Copies of most of our recent issues are available from: Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE 1 OPF, at 75 p each including Inland/Overseas p\& p.

## Binders

Binders for PE are available from the same address as back numbers at $£ 2.85$ each to UK addresses, $£ 3.45$ overseas, including postage and packing, and VAT where ap-
propriate. Orders should state the year and volume required.

## Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH.

Cheques and postal orders should be made payable to IPC Magazines Limited.


## R.A.PENFOLD

WHILE a dual or multi-trace oscilloscope is in many ways ideal for checking logic circuits, the high cost of such an instrument is the main reason for the large number of logic tester designs that appear in electronic magazines.

Most logic testers are designed to show whether a test point is a logic 0 , logic 1 , floating, or pulsing. Such units can be extremely useful, but the fact that they merely indicate the presence of a pulsed input and do not usually provide any information about mark space ratio or frequency can be a drawback.

A few logic tester designs attempt to overcome this problem to some degree, and the unit described in this article can be used to give some idea of the mark space ratio and frequency of the input signal in most cases.

## DISPLAY

This unit relies upon the fact that for the majority of logic testing the high definition of a cathode ray tube is considerably in excess of the minimum requirement, and a much simpler form of display can therefore be used. The reason for this is that in logic circuits the waveforms are produced by rapid switching between the two logic levels. This tends to produce oscilloscope traces of the type illustrated in Fig. 1a. There are really only two levels on the $Y$ axis, which corres-
(a) $\square$
(b)

## 00000000000000000

(c)


Fig. 1a. Typical logic circuit waveform
Fig. 1b and 1c. The same waveform displayed first using two rows of l.e.d.s then one
pond to logic 0 and logic 1. Obviously there are parts of the trace at intermediate levels, but as the switching action takes place extremely rapidly the intermediate parts of the trace are extremely faint, and may well not be visible at all.

A simple waveform of this type could be displayed on two rows of I.e.d.s as shown in Fig. 1b, and with further simplification a single row of l.e.d.s could be used in the manner illustrated in Fig. 1c. In the case of the latter, a l.e.d. is either switched on to indicate a logic 1 level, or switched off to indicate a logic 0 level.

Ideally a l.e.d. display of this type would have a large number of very small l.e.d.s in order to achieve the most accurate and meaningful results. However, in practice this would be difficult to achieve, and the unit described here uses a row of ten ordinary 3 mm diameter l.e.d.s. This seems to provide acceptable results in most cases, and enables a circuit to be used which is no more complicated than many conventional logic testers.

## BLOCK DIAGRAM

Although in operation this device is analogous to an ordinary oscilloscope, it employs digital rather than analogue techniques, and is of course very much simpler than an oscilloscope. Fig. 2 shows in block diagram form the general arrangement of the unit.

The timebase section of the circuit consists of a clock oscillator feeding a one of ten decoder, the ten outputs of this device being used to drive the display of ten lie.d.s. As the name implies, one output of the one of ten decoder will be in the logic 1 state and the others will be at the logic 0


Fig. 2. Block diagram of the Logiscope


EGLO
Fig. 3. Complete circuit diagram of the Logiscope
level. Initially output " 0 " will be at logic 1 , but on successive clock cycles outputs " 1 " to " 9 " will go to logic 1 in sequence. After output " 9 " has been in the high state for one cycle, the next cycle causes output " $O$ " to go high, and then the sequence commences once again

If the common connection to the I.e.d. display is taken to logic 0 , each l.e.d. will be strobed on in turn, and this sequence will be repeated continuously. The effect is much the same as the electron beam being continuously scanned across a CRT, and there will appear to be a continuous line of illuminated l.e.d.s as this action will occur too fast for the eye to perceive what is happening.

If the common connection to the display is taken to logic 1, there will either be zero bias or a reverse bias across the diodes in the display, depending upon the state of the output driving each particular diode. In either case the diodes will not light up.

The common connection of the display is actually driven from the output of an operational amplifier which is used as a comparator. The non-inverting input is taken to a reference voltage and the inverting input is coupled to the input signal. If the input is at logic 0 the inverting input will be at a lower voltage than the non-inverting input, the output will go high, and the I.e.d.s will not come on. Taking the input to the logic 1 state will reverse the comparative input levels, the output will go low, and the l.e.d.s will light up. The circuit is

arranged so that with a floating input the output of the comparator is at approximately half the supply voltage. Thus, display off, display on, and display dimmed correspond to input states of logic 0 , logic 1 , and floating, respectively.

A simple indicator circuit driven from the output of the comparator will indicate the presence of a pulsed input. The timebase frequency would then be adjusted to a factor of the input frequency in order to show the mark space ratio of the input signal. For example, if the input signal is a 100 kHz squarewave, adjusting the timebase frequency to 20 kHz would result in every other l.e.d. being switched on, and the correct one to one mark space ratio being displayed. Of course, the timebase frequency must be synchronised to the input signal in the correct way otherwise the result might simply be that each l.e.d. would be switched on for part of the time. A suitable sync. circuit is incorporated in the device.

## THE CIRCUIT

This is shown in Fig. 3, and IC1 is the comparator op. amp. The CA3130 is used here as it is capable of quite fast operation ( $30 \mathrm{~V} / \mu \mathrm{S}$ slew rate) and has good compatibility with the CMOS display decoder/driver (the CA3130 has a CMOS output stage). R4 and R5 provide a suitable reference voltage for the non-inverting input and R3 plus R6 bias the output to about half the supply potential with input left floating. Due to the high values of R3 and R6 the unit has a high input impedance, and these two components will have no effect on the circuit when the input is connected to a normal functioning digital output.

Some of the output signal from IC1 is coupled to TR1 base via R2 and C3, but because C3 is included the coupling is only effective on a.c. signals. This causes TR1 to become conductive on positive output half cycles, and l.e.d. indicator D1 to come on in consequence.

The display decoder and driver is a CMOS 4017 device and the clock signal is generated by an NE555 timer i.c. used in the astable mode. These are IC2 and IC3 respectively. The 4017 can directly drive the I.e.d. display and no current limiting resistors are needed. The clock enable input of this device must be connected to the negative supply rail for the device to function. The reset terminal is not needed in this application and so this too is taken to the OV rail.

IC3 has four switched timing capacitors with S1 being used to select the desired capacitor. This provides the unit with four timebase ranges. VR1 is the timebase fine frequency control. The timebase ranges are approximately as follows: Range $1=5 \mathrm{~Hz}$ to 50 Hz , Range $2=50 \mathrm{~Hz}$ to 500 Hz , Range $3=500 \mathrm{~Hz}$ to 5 kHz , and Range $4=5 \mathrm{kHz}$ to 50 kHz . IC3 has to operate at ten times these frequencies.

COMPONENTS . . .

| Resistors |  |
| :---: | :--- |
| R1 | 1 k |
| R2 | 47 k |
| R3 | 2 M 7 |
| R4 | 68 k |
| R5 | 8 k 2 |
| R6 | 10 M |
| R7 | 1 k 8 |
| R8 | 4 k 7 |
| R9 | 15 k |

All resistors $\frac{1}{4}$ W 5\% carbon.

## Potentiometers

VR1 47k Lin. carbon

| Capacitors |  |
| :---: | :--- |
| C1 | $100 \mu 10 \mathrm{~V}$ elect. |
| C2 | 100 n type C280 |
| C3 | 100 n type C280 |
| C4 | $220 \mathrm{n} \mathrm{5} \mathrm{\%}$ or better |
| C5 | $22 \mathrm{n} \mathrm{5} \mathrm{\%}$ or better |
| C6 | $2 n 25 \%$ or better |
| C7 | $220 \mathrm{p} 5 \%$ or better |

Semiconductors

| D1 | TIL211 (green) or similar with panel holder |
| :--- | :--- |
| D2 | 1N4148 |
| D3 to D12 | TIL209 or similar with panel holders (10 off) |
| IC1 | CA3130T |
| IC2 | 4017 |
| IC3 | NE555 or equivalent |
| TR1 | BC109 |

Switches
S1 $\quad 4$ way 3 pole rotary type (only 1 pole used)
S2 S.p.s.t. toggle type

## Miscellaneous

Verocase type 91-2672A or similar (about $134 \times 123 \times$ 44 mm ).
3.5 mm jack socket (SK 1), 3.5 mm jack plug, test lead and prods
Two control knobs
PP3 battery and connector to suit
0.1 in. matrix stripboard

Sockets for i.c.s, wire, solder, etc.


E667.
Fig. 4. Veroboard layout of the Logiscope

The input is coupled to the unit via an ordinary test lead and a 3.5 mm jack mounted on the front panel, but the unit could easily be constructed in conventional logic probe form if preferred.

Except for the controls and I.e.d.s, most of the components are mounted on a 0.1 in . matrix stripboard which has 32 holes by 15 copper strips. C4 to C7 are not mounted on this panel, but are soldered direct to the tags of S1. All the wiring of the unit is shown in Fig. 4.

## USING THE UNIT

The maximum input frequency for which the unit can display the mark space ratio depends upon what the mark space ratio actually is. It is over 200 kHz for a 1 to 1 mark space ratio, but decreases with higher ratios. As a pulse detector it will operate at higher frequencies and will detect pulses of less than 1 microsecond in duration.

When the mark space ratio is fairly long it may be found that the display will indicate a mark space ratio of, say, 10 to 1 and 5 to 1 , and perhaps lower ratios as well. The correct result is always the highest ratio. The lower ratios are produced by higher timebase speeds and are the result of the pulse occurring on every second, third, or fourth sweep. This makes the pulse seem two, three or four times its actual length, but this is quite easy to detect since it results in the display being noticeably dimmer than normal.

The display is not exceptionally bright because even though the l.e.d.s are pulsed with a reasonably high current, they can only be on for a maximum of 10 per cent of the time. However, the display brightness has been found to be perfectly adequate under normal lighting conditions.

## NOUGHTS AND CROSSES GAME JJanuary 1979)

In Fig. 3 IC2, 3, 4 and 5 should have pins 2 and 4 linked. IC2, 3 and 4 should have pin 5 linked to the , 4 k 7 resistor and in Fig. 8 the emitters of TR2O and TR21 should be linked.

ADSR ENVELOPE SHAPER (January 1979)
The Veroboard track layout was incorrectly reversed left-toright in this article. Constructors can obtain a correct copy of the layout diagram from the editorial office at Poole.

## POIITS RRISIIT

## CONSTRUCTION

The prototype is housed in a Verocase and the general arrangement of the unit can be seen from the photograph.

The timebase frequency can be altered slightly by applying a control voltage to pin 5 of IC3, and this enables a simple synchronisation circuit to be used. This merely consists of coupling one output of the display driver to pin 5 of IC3 via R9. The output voltages of IC2 are dependent to a large extent on the output state of IC1, and not just the logic state each particular output happens to be in, because none of the outputs have anything like zero output impedance. This seems to provide better sync. than is obtained by taking the signal from the output of IC1.

S2 is just an ordinary on/off control. Power is obtained from a 9 V battery (PP3, etc.) and the current consumption varies between about 12 and 35 mA , depending upon the timebase frequency and the state of the display.


FRANK W. HYDE

## THE DEATH OF SKYLAB

The decision by the United States to jettison Skylab is on the face of things a great disappointment. However, there does seem to be a rather emotional reaction in some quarters as to the possible damage to life. Only one publicised case is on record of possible danger from an uncontrolled satellite, which in the event proved to be a safe fall on land.

The size and weight of skylab seems to be the main cause of concern. The precision that can be applied to the tracking of the dying vehicle seems to be overlooked. Perhaps it is because of the rarity of space disaster that the media tends to become a little on the "doom" and "destruction" side of reporting.

It is perhaps worth while to consider the matter a little more closely for it is a responsibility of those engaged in these matters to be honest and factual particularly when informing the public of the exact situation. There is so much tendency with the "doom" mongers to deal in conjecture and dire consequences without the least degree of reasonable accuracy.

The condition of Skylab and its relative position has been closely observed, and with the facilities available it is possible to state almost a minute to minute re-disposition. There are certain important points that should be remembered.
The first is that the vehicle does not have protective heat shielding. Some parts of it, the panels, the telescope mounting and various external attachments will almost certainly vaporise very early in the final fall. That it will be a spectacular sight there is no doubt and even this will yield data of some significance. It is a pity that some sources have already made exact statements as to the magnitude of casualties. Though it is possible during a continuing observation to determine very accurately the likely course of events, the last moments may pose difficulties. Nevertheless it
will be possible to form a workable programme of action during the event. Unless large pieces are scattered in the atmosphere as a result of explosion, possible damage may well bu considerably less than may be feared.

If the fall is over an ocean area then the chances of material damage becomes more and more remote. Having said that there remains one important possibility and that is the deliberate destructive action by explosive controlled (killer) satellite. If it is found that a real danger could exist, what better justification for its agreed destruction by those with the means, is needed for the common cause of mankind.

## TIROS-N SATELLITE

On the 13th of October 1978 the third generation polar-orbiting TIROS-N was launched. It has already justified its planning and is giving a better insight into the workings of the stratosphere, as well as improving the meteorological forecasts. The instrument which is supplied by the Meteorological Office was the stratospheric sounding unit (SSU). It is an infrared radiometer and provides world wide data relating to the temperatures existing between the heights of 25 km and 50 km above the Earth. Such temperature soundings enable weather forecasting models to be made and also provide facilities for the monitoring of pollution conditions in the atmosphere.

The SSU is an interesting and efficient instrument based on techniques already demonstrated by the Oxford University Department of Atmospheric Physics which flew aboard the Nimbus-6 satellite.

The original system was developed by the Oxford group and based also on work done by Professor Smith's group at Heriot-Watt University and Professor Houghton's team at Oxford. The three channel sounder measures outgoing radiation from the atmosphere $15 \mu \mathrm{~m}$ band of carbon dioxide. The radiation enters the SSU through a set of absorption cells containing $\mathrm{CO}_{2}$ the pressure of which is varied at about 40 Hz using a piston vibrating in a cylinder. The strength and the width of the absorption lines vary with pressure, thereby modulating the radiation which is emitted by the carbon dioxide.

The modulated component is received by the detectors (pyroelectric triglycine sulphate) designed and built by the Allen Clerk Research Centre. The SSU has a $10^{\circ}$ field of view. This can be varied in $10^{\circ}$ steps at right angles to the satellites' line of flight. Each step is viewed for four seconds which means that an area of about 150 km is then covered by the $10^{\circ}$ field of view. The distance between the adjacent scan lines is about 210 km . The instrument calibrates itself at regular intervals of 256 seconds. Two reference bodies are used in the calibration mode, an internal black body and the background of space.

Marconi Space and Defence Systems is building altogether eight of the SSU's and the remaining seven will be flown aboard a series of NOAA satellites to follow the TIROS-N. Two spacecraft will be in orbit at any one time. The remaining craft will be held in store until required. Data will thus be available at least to 1985. Initially the data will be used in research into the dynamics of the stratosphere
and the way in which it interacts with the troposphere. Man-made effects and natural effects will be studied in the variations of the ozone and carbon dioxide content.

Global maps will be available to other countries who ask for them. It will be possible to supply data on stratospheric behaviour within hours.

## THE VELA PULSAR

A new technique to detect pulsars has been developed by a team of British and Australian astronomers at Sliding Spring Mountain in New South Wales. The pulsar which was first discovered as a radio pulsar flashing at 16 times a second in 1968 is now found also to be an optical pulsar. This neutron star is at a distance of 1,600 light years.

This new development was made possible by the installation of the 3.9 m telescope. The pulsar is estimated to be about 10,000 years old. It is the second fastest pulsar known. It never completely turns off but settles to a steady state. It has a pattern of double flashes every 89 ms . By using a time interval succession of pictures of 33 ms interval the flashes can be caught in the on and off state.

The previous telescopes were not of sufficient light gathering power to detect the pulsar. The operation of this pulsar is similar to a lighthouse, there being one main pulse followed by the secondary pulse.

## HOLOGRAPHYIN ASTRONOMY

New techniques of mathematical analysis have been developed by Dr Gerd Weigelt of the University of Erlangen-Nurnberg in Germany. They enable speckle interferograms of stellar objects to be made. The speckle interferogram is a very short exposure of a stellar object, which freezes the star image dancing because of the turbulence of the atmosphere. Already 240 speckle interferograms have been made. The telescope used is 1.8 m in diameter.

## VENUS

The unexpected result of the Venus multiprobe experiment was an indication of large quantities of Argon-36. By comparison with the Earth this is so high as to give cause for a very special look at the present theories of the origins of Venus. That the planets Venus and Earth evolved at about the same point in time seems to be in doubt with some planetologists.
Till now it has been thought that the primodial argon was blown away at a very early date in the lifetime of the two planets. The discrepancy that exists between Mars and the Earth was explained by saying that as Mars was a smaller planet less gas was released. Whether these sudden changes in the situation are thought to exist is to some extent in doubt because the results of the mass spectrometer differ by a factor of 10 from the results of the gas chromatograph on the probes. This alone should warn against hasty judgements. It may well be that still another mission will be required before any radical ideas can be allowed to prevail.

N recent months the use of digital sequencers with music synthesisers has become very popular with contemporary music and completely new sound patterns have been created with these devices.

A sequencer enables the user of a synthesiser to program in voltage patterns that in turn produce a musical melody which can be further manipulated in terms of speed, rapid key changes, etc. all of which would be very difficult, if not impossible, for the human operator to do with such speed and precision. For example, a drum sequence can be programmed into the sequencer and replayed white the musician plays the synthesiser or other instrument.

## SEQUENTIAL CONTROL

The sequencer to be described in this article enables up to sixteen different bits to be programmed and repeated at any speed required. The sixteen bits to be programmed and repeated at any speed required. The sixteen bits can refer to pitches, as is most common, or the timbre, loudness or length of the musical note. The notes are programmed into the sequencer by the use of potentiometers, one for each note. This is the method of sequential control most commonly adopted by all the main synthesiser/sequencer manufacturers, Moog, ARP and Roland for example.

While it may appear a rather simple and crude method of achieving a sixteen note memory compared with all the digital memories available, it is the cheapest and most reliable method as the tuning potentiometers used will remember indefinitely the selected voltage level.

Bearing in mind that the previously mentioned commercial sequencers cost several hundred pounds, the sequencer to be described has features as found on these designs and will cost around $£ 35$ in components and hardware.

The method used to generate the sequential function is simply an oscillator driving a digital counter with the output voltages going through a potential divider to obtain the processed voltage. This voltage then controls the frequency of a voltage controlled oscillator, or the cut-off frequency of a voltage controlled filter or the attenuation of a voltage controlled amplifier in the synthesiser.

A prototype sequencer has been used very sucessfully with a Mini-Moog synthesiser and the advanced features available on commercial versions are possible at a much reduced cost.

The basic layout of the sequencer is as shown in the block diagram (Fig. 1) and each block will now be considered in detail, referring to the appropriate circuit diagram.


Fig. 1. Block diagram

## CLOCK GENERATOR

IC1 is the control voltage adder for the voltage controlled clock (Fig. 2). R4, D1 and D2 protect the CMOS device from voltages more negative than OV .

By applying a voltage to the gate of the $n$-channel MOSFET the resistance between the source and the drain will decrease with an increasing gate potential. This resistance is used as the timing resistor in the oscillator consisting of the two NOR gates in IC2.

The frequency of oscillation can be varied from about 0.2 Hz to 100 Hz by adjustment of VR2. The two preset resistors are adjusted so that VR2 will produce this variation.

The clock can be gated on or off by S1 or by a control

## SPECIFICATION . . .

## Sequence Channels

(a)
(i) one channel of up to a maximum of sixteen programmable voltage levels
(ii) two channels of up to a maximum of eight programmable voltage levels
(iii) a 64 note sequence can be programmed (eight groups of eight notes)
(b) two, eight-way switches select the number of notes in each sequence channel
(c) the two counters (sequence channels) can be advanced by:
(i) integral clock oscillator
(ii) push button
(iii) external input pulses
(d) reset push button
(e) pulse output available from jack sockets at end of sequence
(f) channel one, position one pulse output
$(\mathrm{g})$ single or repeating sequences possible

## Clock

(a) frequency range of approximately $0 \cdot 2 \mathrm{~Hz}-100 \mathrm{~Hz}$
(b) voltage controllable frequency
(c) clock can be switched off/on by manual switch or be gated off/on via jack socket
(c) output from clock is directed to:
(i) counters
(ii) output trigger circuit

## Envelope Shaper Trigger

(a) variable pulse width to trigger either AD or ADSR envelope shapers, pulse time approximately $50 \mathrm{~ms}-4 \mathrm{~S}$
(b) positive trigger level $0-9 \mathrm{~V}$
(c) L.e.d. shows on period of monostable

## Sequential Analogue Outputs

(a) voltage levels programmed by 16 potentiometers, typically $0-6 \mathrm{~V}$ output ( 12 V max)
(b) master output controls for each channel
(c) low output impedance
(d) variable portamento (slew) on channel one output and 16 bit sequence

## Lamp Indicators

(a) L.e.d. for each note of each channel to show progress of sequence (total 16)
(b) Le.d. showing on period of envelope trigger

## Power Supply

$\pm 12 \mathrm{~V}$ for sequencer; can also be used to power additional synthesiser functions
voltage applied at JK 1. The squarewave output is then inverted by part of a 4007 so that when the clock is gated off, the output is low. The remainder of the NOR gate is used to construct a latch for bounce-free operation of S2 which is a single step control and will advance the sequencer counters by one position each time.

## MONOSTABLE TRIGGER

A monostable is seen after the inverter. A pulse of constant period is produced by C3 and R14 and this is used to switch an $n$-channel MOSFET which in turn is used to discharge the capacitor $C 2$. Pins $5 / 6$ of the AND gate will normally be at logic " 1 " and after a time period set by R10NR4 and C 2 the potential will fall to OV .


Fig. 2. Sequencer front end

## COMPONENTS

| Resistors |  |
| :--- | :--- |
| R1-R3 |  |
| R4 | 100 k |
| R5 | 15 k |
| R6-R9 | 100 k |
| R10 | 1 M |
| R11 | 15 k |
| R12 | 1 M |
| R13 | 470 |
| R14 | 15 k |
| R15-R17 | 47 k |
| R18-R33 | 10 k |
| R34-R40 | 680 |
| R41-R44 | 470 k |
| R45 | 240 k |
| R46 | 1 k |

All 1 W carbon-film

## Capacitors <br> C1 $\quad 1 \mu$ non polarised <br> C2 $2 \mu 216 \mathrm{~V}$ elect. <br> C3 100 n <br> C4-C7 <br> C8 $2 \mu 216 \mathrm{~V}$ elect. <br> C9-C10 $\quad 1,000 \mu 25 \mathrm{~V}$ elect. <br> C11-C12 $1 \mu 16 \mathrm{~V}$ tantalum

## Bridge Rectifiers

REC1-REC2 1A 50V (2 off)
(W005)

## Integrated Circuits

| IC1 | 741 |
| :--- | :--- |
| IC2 | 4001 A |
| IC3 | 4007 |
| IC4 | 4081 B |
| IC5 | $4049 B$ |
| IC6-IC7 | 4017 A |
| IC8-IC9 | 40498 |
| IC10 | 4001 |
| IC11 | 4016 |
| IC12-IC14 | 741 |

IC15-IC16 LM341P-12
(12V 500mA positive regulators)

## Potentiometers

| VR1 | 4 k 7 preset |
| :--- | :--- |
| VR2 | 2 k 2 linear |
| VR3 | 47 k preset |
| VR4 | 1 M linear |
| VR5-VR20 | 100 k linear |
| VR21 | 1 M linear |
| VR22 | 1 k linear |
| VR23 | 1 k linear |

## Diodes

D1-D25
-D26-D42

1N914
Large red l.e.d.s plus clips

## Switches

| S1 | s.p.s.t. |
| :--- | :--- |
| S2 | s.p.d.t. spring biased |
| S3 | Push to make |
| S4-S5 | Single pole, eight-way |
| S6 | rotary with end stop |
| S7 | d.p.d.t. |
|  | d.p. mains switch |

## Transformer

T1
$0-12 \mathrm{~V} 0-12 \mathrm{~V} 6 \mathrm{VA}$
(Maplin)

Miscellaneous

| JK 1-JK3 | 3. 5 mm jack sockets <br> JK4-JK7 |
| :--- | :--- |
|  | 3.5mm jack sockets <br> with closed contacts |
| JK8-JK10 | 3.5 mm jack socket |

14 pin i.c. sockets ( 5 off)
Thin eight-way ribbon cable
Graduated knobs (16 off)
Plain knobs (7 off)
Letraset, p.c.b., FS 1100 mA 20 mm fuse. LP1
neon indicator


Fig. 3. Counters, channel switching and output stages

## 16 note sequence

Arun, B stop
B reset, B run
B run, A stop
A reset, A run
Repeat
etc.

$$
\text { Logic } 0=0 \mathrm{~V} \quad \text { Logic } 1=12 \mathrm{~V}
$$

Counters enabled-0
Counters stopped- 1
Counters reset-1
Counters run-0


Fig. 4. Showing logic for 16 note sequence. For $2 \times 8$ sequence the latch is bypassed (IC10a/b). Each counter resets via IC4c/d

## TAPPED VOLTAGES

Each sequential output (only eight are used per channel in this sequencer) is terminated by a 100 kilohm potentiometer which is used to tap off a precise voltage to control a VCO in the synthesiser. The outputs from the counter are also used to control the 4049 hex inverter buffers which are used to drive the l.e.d.s. For this purpose the new CMOS series of " $B$ " devices is used. The RCA 4049B can sink up to 42 mA at 12 V per package and this is adequate for the sixteen l.e.d.s, one for each note, since there is a maximum of only three l.e.d.s being driven at once (including the envelope trigger l.e.d.).

This voltage is inverted by an inverter in IC5 and a positive pulse will be formed each time the MOSFET is turned on.

The pulse, of period from 50 mS to 4 S , is used to trigger the envelope shaper in the synthesiser, and for an AD type this trigger will correspond to the sustain time, and for an ADSR type of envelope shaper, this represents the time the keyboard note is depressed. An l.e.d. lights to show the "on" time.

## CHANNEL COUNTERS

The output from either the clock, the "single step" or external pulses via JK4-5 is used to advance the CMOS counters (Fig. 3).

The 4017 is a decade counter which will decode a series of clock pulses into a sequential output. A "counter enable" terminal, pin 13, is used to inhibit the counter by application of logic " 1 ". A "reset" terminal, pin 15 will cause the counter to be reset when " 1 " is applied.


Fig. 5. Sequencer power unit



Fig. 6. I.c. pin-out details


Control panel

The channel outputs from each of the programming potentiometers, passes through IC11, which is an analogue switch, and depending on the channel switching as controlled by IC 10, the signal passes through to the 741 opamp voltage adder.

Previously, each of the pot outputs is taken to the analogue switch via isolation diodes to prevent a programmed pot that is low, from lowering the potential of all the others.

Normally counter A only uses IC14 when the sequencer is in the parallel channel mode ( $2 \times 8$ channels operating simultaneously). But channel B is switched in for a 16 note sequence and the analogue switch and IC10 are used for this function.

IC13 is used to add a variable portamento to the sequence in the 16 note position and channel $A$ only when the sequencer is used in the parallel channel position.

The voltage outputs from the channels are reduced to 6 V maximum for convenience when used with a synthesiser, but by adjustment of R45 and R46 this can be altered.

## CHANNELSWITCHING LOGIC

The channel selection logic is shown in greater detail in Fig. 4. Such complexity is necessary for easy switching between series and parallel counter function, and also to ensure that the full number of counts is produced by each channel as originally selected by the "Sequence Length" rotary switch. It is also necessary that when a counter is at that instant not in use the l.e.d.s for that channel have stopped.

In the parallel mode, the sequential counters are reset via the AND gate and function completely independently, e.g. one channel can be used to produce a four note sequence, and the other an eight note sequence. None of the gates of IC10 are used and this is bypassed by the NOR gates in the remaining part of the i.c. and the counters are continually enabled.

In the series position, when one counter, say $A$, has come to its last count the latch is changed over and counter $B$ is simultaneously reset and enabled. Counter B will then run to the last count as selected by $\mathrm{S5}$ and the latch will be changed over again; counter B disabled, counter A enabled and reset. This continues for as long as necessary.

## POWER SUPPLY

The power supply for the sequencer is shown in Fig. 5 and is based on positive voltage regulator i.c.s. The circuit will provide $\pm 12 \mathrm{~V}$ at 500 mA and can be used to power other sythesiser modules.

The circuit is designed around two positive regulators rather than a positive and negative regulator, since these are more readily available and cheaper, and this system requires the use of a transformer with separate secondary winding, available from Maplin or R.S. Components.

If the power supply is only to power the sequencer-no other synthesiser modules-then heatsinks will not be necessary, otherwise for the full power output adequate heatsinking must be used, and the transformer must be as specified.

Tantalum capacitors are used on the output of the regulators so as to provide adequate ripple rejection. The sequencer circuit itself will not malfunction, but the ripple could be superimposed on the sequential voltage outputs and hence the VCOs, etc. and be reproduced audibly.

Next Month: Constructional details and using the sequencer.


ADRIAN HOPE
The BBC has recently transmitted several plays in binaural, or so called "dummy head", stereo and several commercial recordings have been issued to demonstrate the technique. Although binaural stereo is in fact an extremely old idea (just how old will subsequently emerge) there is still widespread confusion over what it is, how it works and what it offers.

The situation has not been helped by the rather inadequate press releases issued by the Broadcasting House Publicity Departments prior to the BBC binaural transmissions. These releases have been garbled by innocents in the national press with the result that many people who are in fact fully equipped to listen to binaural stereo radio transmissions may well not have realised the fact and thus missed opportunities.

CURRENT INTEREST
The current wave of interest in binaural stereo dates back to a demonstration given by the German firm Sennheiser at the Berlin radio exhibition in 1973. Soon afterwards, the test disc recording which was made for Berlin was used by the British magazine Wireless World for a small, almost casual, demonstration at the Olympia audio fair. First word of mouth, and then press enthusiasm, spread the news that binaural stereo reproduction can create far more effective surround-sound reproduction
than any quadraphonic or surround-sound loudspeaker system yet available.

The theory behind binaural stereo recording and reproduction is simple. Humans hear with two ears and are able to pinpoint the origin of a sound with remarkable accuracy, even with eyes closed. This is achieved thanks to the effect which the human head has on any sound arriving at both ears from a single sound source. Essentially the head serves as a baffle. When the arriving sound is of low frequency (a few hundred Hz ) the head baffle has no discernible effect on the amplitude or volume of sound arriving at each ear. But it does have a discernible effect on the relative phasing of the long wavelength of the low frequency sound. When the pitch of the arriving sound rises, the head baffle has less discernible effect on the relative phase of the sounds. This is because the shorter the wavelength, the more anomalous the phasing becomes and the extra distance which the sound must travel between the two ears becomes less significant. But at these higher frequencies the head can attenuate the volume of the sound arriving at the furthest ear.

In other words the head acts as a potential obstruction to the sound arriving at each ear and this obstruction creates anomolies in either phasing or amplitude, depending on the soundwave frequencies and their direction of arrival. The human brain is remarkably adept at decoding these anomolies to pinpoint the sound source.

If a pair of omni-directional microphones are arranged one in each ear of the human head, or an imitation or dummy head which closely resembles the human head in shape, size and texture, then what the microphones capture is a reasonably accurate replica of the sound field at each ear. If the left and right ear replicas are recorded on the two tracks of a stereo tape recorder and replayed through an amplifier and stereo headphones, then the headphone listener will hear a reasonably accurate replica of what the ear microphones heard.

Although the system is not perfect (there may be difficulties in distinguishing front from back sounds) the headphone reproduction of a binaural (i.e. two eared) recording made using either a dummy or live head to hold the microphones, can produce a remarkable spread of sound all around and over the head of the listener. There is no real way of describing the effect, one can only recommend that anyone with a stereo hi fi system and a good pair of stereo headphones should listen either to a binaural stereo recording or a BBC binaural stereo transmission.

PATENTS
As so often happens, the history of binaural stereo and likely future developments are well documented by patent literature.

In 1881 Frenchman Clément Ader, who was fascinated by both aeronautics and telephony, arranged a demonstration at the Paris Electrical Exhibition to put the Bell telephone through its paces. He arranged eighty Bell telephone mouthpieces or "transmitters" across the front of the Grand Opera stage in Paris and connected them by hard wiring to eighty earpieces or "receivers" in the Exhibition Hall. The object was of course to demonstrate what was then regarded as high fidelity reproduction of sound by telephone wire communication. But listeners found that by using two earpieces instead of one they achieved a remarkably realistic image spread of the opera sound. They were, without realising it, discovering binaural stereo reproduction.

Until evidence to the contrary is produced it seems safe to take the next and most positive emergence of binaural stereo, as the patent application filed on April 13, 1927 by W. Bartlett Jones of Chicago. The patent was not granted until 1932 and carries the American number USP 1855 149. It is still available for the public to read in the library of foreign patents attached to the British Patent Office in London.

Bartlett Jones was aiming to improve the reproduction of sound from recordings, for instance in a cinema. His experiments with a dummy head equipped with a microphone in each ear and connected to a pair of small speakers arranged as headphones one each side of a listener's head, convinced him that "a richer and more sonorous reproduction" than was obtainable from an ordinary phonograph was a practical possibility. Jones envisaged the idea of reproduction not only through headphones but also by a pair of loudspeakers "embodied into or secured to a seat so as to direct a right ear effect and a left ear effect to the seat occupant".

Last year at the Harrogate Hi Fi Festival one firm was demonstrating the modern equivalent of just such a seat, a lounging-all-enveloping chair with loudspeakers built into the side walls. Incidentally Jones in 1927 also proposed a technique of binaural stereo recording by cutting two grooves in a single disc or modulating a single groove both vertically and horizontally. He was certainly one of the forgotten audio pioneers.
It seems likely, from a reading of Bartlett Jones's patent, that the results he was obtaining from hard wire connections (it is doubtful whether he succeeded with recording) were comparable to those obtainable today from a lo fi system. Certainly a binaural system was installed in the Chicago Science Museum in the thirties and offered continual demonstrations to enthusiastic audiences.
One visitor recalls how the audience would be equipped with headphones through which they heard an announcer in a transparent soundproof booth talking into a dummy head microphone system. Half way through the demonstration each visitor heard an unfamiliar voice whispering in their left ear. "Could you please move a little to the right, you're blocking my view," said the voice. Like a field of corn every visitor, imagining that they were blocking the view of the listener behind, moved to the right.

## LOUDSPEAKER STEREO

Why then did dummy head, or binaural, stereo not catch on permanently? Why was it forgotten again until the seventies? To answer the second question first, binaural stereo has never been entirely forgotten. Over the years, especially in the USA, there have been various test or demonstration recordings issued for minority interests. The answer to the first question lies again in the patent literature. In the early thirties Alan Dower Blumlein, working at EMI Hayes on improved sound reproduction, patented a system for reproducing stereo with a pair of loudspeakers in a room rather than a pair of headphones or a pair of loudspeakers in a chair.

The British patent number BP 394325 (also still readily available) is perhaps the most famous audio patent of all time. It discloses in detail schemes for recording and reproducing sound in stereo using a coincident pair of microphones and spaced loudspeakers, with the sound recorded either in a double modulated disc groove (in the manner of every LP stereo disc now on the market) or on an optical film soundtrack (as now finding favour in Hollywood with films like Star Wars, Close Encounters and Grease). What Blumlein was aiming for, and achieved, was what we now call "stereo" reproduction without the anti-social limitations of headphone listening. In this respect he was too far ahead of his time.

The war years hampered progress and diverted public interest. But when the idea of stereo reproduction started to interest the trade and public again after the war, it was hardly surprising that the promise of reproduction with a pair of spaced loudspeakers in Blumlein fashion should capture the public imagination, rather than lonely reproduction by means of headphones or a loudspeaker chair. So loudspeaker stereo, not binaural headphone stereo, became the commercial norm-and still is.

## SURROUND-SOUND

It was the upsurge of interest in surround-sound reproduction, and the various quadraphonic systems devised in an attempt to reproduce sound around the listener in a room, that set the scene for a major re-emergence of binaural stereo. Quite simply none of the quadraphonic systems foisted on the public in the early seventies could achieve what they set out to achieve, namely a true surround of sound around the listener. When Sennheiser demonstrated their first dummy head test disc (still obtainable from Hayden Labs, the British agents for Sennheiser at around 75p) the time was absolutely right for a rediscovery of binaural stereo. An ordinary stereo disc played on an ordinary steren turntable through an ordinary stereo amplifier and through ordinary stereo headphones delivered far more than even the most sophisticated quadraphonic system. There are now several hi fi firms offering do-it-yourself binaural stereo recording kits, usually a dummy head with a pair of small capacitor microphones fitted to fit the ears. Sometimes the microphones are built into headphones, sometimes they can be worn in the ears of a human.

The over-riding disadvantage of binaural stereo is that a recording made in this fashion will produce the required result only when reproduced over headphones (or in a loudspeaker chair). The reason is obvious although repeatedly overlooked and misunderstood. In loudspeaker stereo reproduction the sound from the left speaker reaches both the left and right ears of the listener, and the sound from the right speaker reaches both the right and left ears of the listener. Also the sound is transferred to the listener via the room acoustics. Most normal recordings are made in a manner which presupposes that reproduction will be in this way and the entire chain of recording and room reproduction produces an illusion of a sound spread between the loudspeakers. When heard over headphones a recording made for loudspeaker reproduction will usually sound flat, as if coming from inside the listener's head. This is because there is direct interface between the headphones and ears.

A recording made with a dummy head and intended for headphone reproduction will produce a quite unsatisfactory stereo image when reproduced from loudspeakers. True binaural reproduction effect is only obtained when the sound picked up by the left ear microphone is channelled or interfaced only to the listener's left ear, and so on. When a binaural stereo recording is reproduced from loudspeakers, the sound picked up by the dummy head left ear will be reproduced by the left loudspeaker but will reach both the left and right ears of the listener, and so on. It will also be coloured by the room acoustics through which it travels. The result is a diffuse and confused stereo image. Loudspeaker and binaural stereo recordings are thus not compatible.

## MODIFIED SYSTEMS

This incompatibility has prompted research all round the world to develop modified systems. In 1974 Herr Stahl of the German radio station RIAS, lectured broadcasters in London on how dummy head recordings can be doctored to make them compatible for loudspeaker reproduction. Essentially the undesirable acoustic crosstalk between left loudspeaker and right ear, and right loudspeaker and left ear, is cancelled. This is achieved by introducing phase shifts and delays into both sound channels.

A degree of frequency equalization is also used to compensate for, i.e. subtract, the effect of the acoustic transfer of the sound to the ears of the listener via the room rather than by direct interface between the headphones and the ears.

Shahl at the time stated that "the amount of electronic equipment required . . . is considerable . . . but with integrated circuits . . manufacture would not be too expensive". Such manufacture is now under way in Japan. One of the firms
especially active in the field of binaural stereo reproduction is Matsushita. There are already on sale from JVC and National (so far in Japan only) add-on "black boxes" which doctor stereo signals so that they can be reproduced by loudspeakers with impressive binaural results. But listener position is very critical.

A Dutch inventor by the name of Johannes Van Den Berg recently patented in the UK (BP 1503 400) an alternative approach to the problem which relies far less heavily on sophisticated electronics. Whether the Dutch idea works in practice is open to question but the theory is interesting.

Van Den Berg suggests that the original dummy head recording should be made with two dummy heads, rather than one. The two heads, each with a microphone in each ear, are set in front of the sound stage to be recorded a few metres apart, rather like two members of an audience on opposite sides of the stalls. The sound signals from the four microphones are channelled into stereo. The left ear signals from one head are mixed with the left ear signals from the other head to produce the left channel and the right ear signals from one head are mixed with the right ear signals from the other head to produce the right channel.

In this way the left channel output of the total system contains sound from both the extreme left of the sound stage and the centre of the sound stage, while the right channel output contains sound from the extreme right of the sound stage plus sound from the centre of the sound stage. According to the inventor the stereo output provides good results both with headphones and through a stereo pair of loudspeakers. Whether the inventor is right in claiming that "sound thus reproduced via loudspeakers gives the listener a considerably better spatial impression than sound reproduced by conventional techniques" must remain a moot point.

## RECENT PATENTS

Patents recently granted to Matsushita in the UK show that the company is addressing itself not only to the enhanced reproduction of binaural recording with loudspeakers, but also to a closely related problem. This is how to improve headphone listening, especially with recordings intended for loudspeaker reproduction.

In BP 1520612 three Matsushita inventors suggest that the characteristic "in the head" sound obtained from playing conventional stereo recordings over headphones is due to the lack of indirect or ambient sound heard by the listener. This point is also emphasised in a Matsushita paper in the Audio Engineering Society Journal for November 1976. The contention is that stereo recordings will sound dead and "inside the head" when replayed over headphones if they lack ambience or indirect sound. According to Matsushita, loudspeaker reproduction adds ambience from the listening room to such recordings, but normal headphone reproduction cannot of course add any such ambience. Thus, they say, the cure for "in the head" sound from headphones is to add artificial ambience or indirect sound to the signals to be reproduced.

It is certainly a fact that most modern recordings are made with close microphone techniques and added artificial reverberation and that these sound dead and "in the head" through headphones. It is also true that a good dummy head recording and a good recording made with a simple coincident microphone pair (suggested by Blumlein in the thirties and still thankfully finding favour with some recording engineers) do contain a considerable amount of natural ambient information and do sound "out-of-the-head" on headphones. Although Matsushita do not follow the train of thought, it may well be that our ears and brain are able to distinguish between natural ambience and un-natural added reverberation in a recording, rejecting the latter for the artifact that it is.

The Matsushita patent proposes that the sound of a conventional, dead stereo recording may be improved over headphones by introducing extra reverberation in mechanical manner. Essentially a mechanical spring is incorporated in the acoustic transmission path to the listener's ear. This introduces an artificial reverberant delay. The system sounds primitive and self-defeating in that the ambience added must surely be as unnatural as that already present in the recording. Certainly, and perhaps not surprisingly, there is no sign yet of such an acoustic ambience-adding system in the shops.

The approach suggested in the 1976 AES paper is much more encouraging, and indeed is now on demonstration in Japan. Instead of using a mechanical or acoustic circuit to add ambience or indirect sound artificially, an electronic circuit of bucket brigade devices is used to achieve the same object.

## DIFFERENT SOLUTIONS

The same problems, but rather different solutions, are described in another recent Matsushita patent BP 1517938 . Indeed this patent reads almost as if the issue of indirect sound and ambience has been forgotten by the Matsushita research department! "In the head" imaging is blamed partly on an abnormal sound pressure-versus-frequency characteristic which is created when recorded sound signals are delivered to the listener's ears with the intended acoustic link (loudspeaker-to-ear) "short circuited" by the use of headphones.


The patent includes graphs which show how sound pressure-$v$-frequency characteristic measurements taken at the ears of a listener, first facing a pair of loudspeakers in a room, and then hard against a pair of hi fi headphones, do not match. The curves suggest that there is an un-natural peak introduced by headphone listening at around 3 kHz and the Matsushita patent proposes the incorporation of notch filters in the headphone circuitry to iron out this peak. The patent also lays blame for inhead imaging on the lack of acoustic crosstalk between left and

right channels when reproduction is through headphones rather than loudspeakers. To compensate for this Matsushita introduce electronic crosstalk (at low frequencies) between left and right channels. Additionally a slight delay is provided to simulate the slight delay which is introduced by the spacing of a pair of loudspeakers in front of a listener in a room.

## SONY

Although there is of course some common ground between the theories proposed by Matsushita in the two patents and the AES paper, there is equally clearly no concerted agreement, even between workers in the same research lab, on how to tackle the single most important problem of headphone listening-how to ensure that the image is formed outside the listener's head, regardless of programme material. Moreover two patents recently granted to Sony, another Japanese electronics giant interested in the same field (BPs 1520318 and 1520319 ) confirm that there is still plenty of room for dispute over the right approach to the problem.

Both Sony patents are concerned mainly with fairly trivial advances, for instance the incorporation of a miniature microphone in a headphone-like windshield for a dummy or human head to wear, and the incorporation of even more miniature microphones into windshield-like ear plugs for similar use. But both patents refer also to the loudspeaker reproduction of binaural stereo recordings. According to Sony when microphones at the ears of a human or dummy head receive sound from the front, the ear's physical structure produces peaks in the frequency response at 3 kHz and 8 kHz . These anomalies, according to Sony, help the listener to identify the source of sound and must be preserved in a binaural recording used for headphone listening. But when the binaural recording is

reproduced by loudspeakers in a room, the peaks will be artificially boosted because they are in effect created twice, once by the dummy head recording process and once by the real head listening process. Thus, say Sony, the frequency characteristic of a binaural recording intended for loudspeaker reproduction must be flattened with filters notching at 3 kHz and 8 kHz . But wait a minute? Doesn't Matsushita patent the apparently contradictory idea of flattening a 3 kHz peak for headphone reproduction of a recording? You pays your money and you takes your choice of interpretation!

One thing is certain. There is a considerable amount of research and development work yet to be done before the public is offered what has so far proved a chimera, namely a "black box" capable of making all kinds of loudspeaker stereo and binaural dummy head stereo recordings mutually compatible for either loudspeaker or headphone listening.

## News Briefs

## AWAY WITH CONTACTORS

${ }^{\mathrm{F}}$you've ever tried to service an electromechanical timer unit, perhaps on a cooker or automatic washing machine, you've probably cursed. If you've had a vacuum cleaner switch jam up, or watched your freezer motor (relay operated) shake because it was switched off at the peak of the mains cycle, or dim the lights because it switched on at a peak, you've probably mumbled something about . . . "the sooner springs and contacts are banished from domestic appliances the better".

It's even more baffling to anyone with the slightest involvement in electronics, that solid state devices are not widely used, since there's nothing new, or expensive about triacs.

Fortunately solid state technology is advancing into this domain, and one arrival is the MOS-LSI mićrocircuit appliance timer by G.I.M., comprising central processor with on-chip memory.
The circuit (basically a 4-bit microprocessor) is essentially a versatile, low cost timer, providing designers with the type of facilities necessary for controlling cookers, driers, central heating, etc. The 28 lead version designated AY-3-1250, accepts instructions from "hours up", "hours down", "minutes up", or "minutes down" keys, where momentary depression of keys cause single increments or decrements, and continuous depression causes the displayed digits to cycle. In use, the circuit is linked to a 4 -digit l.e.d. display indicating any function selected. It has three separate outputs for which on and off times may be programmed in.

The 40-lead version-designated AY-3-1251-is designed for more sophisticated systems where $10 \times 4$ keyboard or touchpad entry and 14 -digit permanent display are required. It has four controlled outputs, each with a variable mark-space ratio for control of hotplate duty cycles, etc. The 14 -digit display facility could be used for a minute minder ( 3 digits), oven temperatures ( 3 digits), time on/off ( 4 digits), and hotplate temperature ( 4 digits).

When used for fully automatic cooker control, the time programme would be entered and cooking temperature selected using a key pad. When the start time is reached the appropriate output would be activated and an "ON" indicator lamp energised. When the stop time is reached the output is deactivated and the minute minder audible alarm activated for 10 seconds. All three programmable outputs may be
separately controlled in this way, but the device can also be used in a semi-automatic or manual mode. A further facility allows a set programme to be repeated at 24 hour intervals by the simple depression of a "repeat" key.

Both 28 -lead and 40 -lead versions include a built-in standby frequency source, which allows the devices to function normally during mains failure. In this event the circuit detects the absence of $50 / 60 \mathrm{~Hz}$ input, and a 200 kHz oscillator takes over timing under external battery power and lights a "mains failure" warning lamp.

## MODEL AIRCRAFT RADAR

EMISSION of sulphur dioxide is a subject of current interest in Europe, since industrial emissions in one country have been found to affect air quality and the acidity of rainfall in neighbouring countries. Pollution from the U.K. has been said to harm the ecology of Scandinavian countries.
The latest sale of the Plessey WF3 Windfinding Radar to the Central Electricity Generating Board has extended its application to that of tracking model aircraft.
Following successful trials at the Plessey Cowes plant on the Isle of Wight, a WF3 MK2 version was purchased by the Central Electricity Research Laboratories (CERL) for tracking and measuring plumes of gases and particles emitted from power station stacks, using radio controlled model aircraft carrying various sensors. The radar system will be used in a mobile mode so that equipment can be located in the optimum position for returning accurate aircraft flight tracking data.


Research staff of the CEGB are seen at the I.O.W. during trials with their radio controlled aeroplane. The Plessey radar system is in the background


## by <br> Alan Turpin

## Interchangeáble scale

A new range of IMO J Series analogue panel meters comprises ammeters, voltmeters (both moving coil and moving iron), varmeters and frequency meters. They feature interchangeable scale plates which are unplugged and reinserted without recourse to opening or tampering with the rest of the instrument.

They are available in three standard DIN sizes- 72,96 and 144 mm square with quadratic scales for easy reading.


There is a wide range of scales from mA to MV. The meters have a full $90^{\circ}$ sweep, compressed scales for overload, and employ silicon-damped, jewelled movements. The scales have "click" positive location for accurate reinsertion.

Transducers supplied with wattmeters or varmeters can be set for full or reduced power simply by switching an internal commutator, thus covering the majority of applications with a constant full scale output current of 5 mA .

IMO Precision Controls, 439 Edgware Road, London W2 1BS. (01-723 2231/4)

## EASY ACCESS BATTERY HOLDER

For projects needing a 9 V battery this holder does away with having to take the project box apart when the battery gets flat.
A rectangular hole in a panel or enclosure with a thickness of 1.5 to 3 mm is all that is required. The holder is simply pressed home.


Injection moulding has enabled the design to incorporate moulded retaining clips (holder to case and battery in holder) and also a flipover hinged cover which snaps shut.

Complete with battery connector and lead for less than $£ 1$.

Bätery Holder-Vero Electronics Lid., Industrial Estate, Chandler's Ford, Easteigh, Hants. SO5 3ZR. (042 1569911 ).

## ALTERNATIVE TO DAISIES

For frequent and fast setting these encoded numerical switches are worth consideration. They can be called up for decimal, hexadecimal, BCD, binary octal, and several other output codes, with options such as odd bit parity.

Each lever has a full travel of $90^{\circ}$ and dial positions ( 8,10 or 12) are selected by a positive click action. A bank of switches can be reset up or down with a single sweep of the hand. Number windows can be in the upper or lower part of the housing.


The housing is rear mounted into panels. A two bank switch is approximately 40 mm wide and 30 mm deep and takes about 40 mm of space behind a panel.

Loading limits are 28 V a.c. or d.c. at 50 mA . Non-switching current is 1 A . Life is over one million detent operations.

Full specification sheet, 1-0039, for series 28000 Minilever from sole suppliers (off the shelf), Digitran UK, Melbourn, Royston, Herts SG8 6AQ (0763 61600).

## NEW TANDBERG CASSETTE DECK

The TCD 320 retains the three motor "Dual Capstan Closed Loop" tape transport system introduced by Tandberg. Seventy per cent of the cost of the machine is said to be devoted to the recording circuitry to ensure the most accurate recordings.


It can be operated in a variety of playing positions, mounted on a table-top, vertically or horizontally, or as a shelf model. It can be operated as either a front-loader or a toploader.

Signal to noise ratio is 65 dB minimum, according to DIN 45500 , while the frequency range is from 30 to $18,000 \mathrm{~Hz}$ (DIN). The offtape distortion is measured at 0.9 per cent.

A disengageable MPX filter cuts out the pilot signal when recording from FM stereo broadcasts, and the Dolby $B$ noise reducing system cuts down tape-hiss by approximately 10 dB at high frequencies.

## MARSHALLS

The latest Marshalls catalogue which is now available features many new components and products including both the KIM and PET microcomputer systems which are available with a wide range of expansion units, peripherals and software.

The price of the catalogue is 50 p post paid or 40 p to callers. A Marshall (London) Ltd., 42 Cricklewood Broadway NW2 3ET.

## ALPHANUMERIC PRINTER

The Printina CSC is a 24 -column alphanumeric printer which can be adjusted by an internal trimmer to compress the characters until 32 columns can be printed on a single line.

Its fastest print rate is 1.2 lines/second with a $5 \cdot 2 \mathrm{~V}$ power supply (the unit will operate from $5 \mathrm{~V} \pm 5$ per cent). Write time is approximately 400 ms and its working life is estimated at $10^{6}$ lines without service.


The printer uses standard rolls of metallised electro-sensitive paper with a 25 metres roll allowing 5,000 lines to be printed. The paper roll is stored internally and a new roll can be fitted easily in a matters of seconds.

The price of the Printina CSC is $£ 240$ plus VAT.

For further information contact Seltek Instruments Limited, Hoddesdon Road, Stanstead Abbotts, Herts SG 12 8EJ.

## ENCAPSULATED CONVERTER

A new range of miniature encapsulated d.c./d.c. converter power " supplies for providing stabilised 5 V or 12 V outputs from unstabilised 5 V inputs is available from Gould Electronics. Both the MC (single-output) and MCD (dual-output) series have built-in metal casings for radio interference shielding, and are designed to be mounted on standard printed circuit boards.

Ten models are available in the range, with output current ratings of 1 A or 2 A for the 5 V models, $400,470,800$ or 940 mA for the single-output 12 V versions and $\pm 190, \pm 230$, $\pm 412$ or $\pm 525 \mathrm{~mA}$ for the dual-output 12 V types.

Ripple is within 50 mV peak-to-peak for single-output versions and 35 mV peak-to-peak for dual-output versions and r.m.s. noise is within 1 mV ( 20 MHz bandwidth). The units measure $50 \times 50 \times 10 \mathrm{~mm}$ for the 5 W versions and $63.5 \times 89 \times 23 \mathrm{~mm}$ for the 10 W models.

For further information contact Gould Electronic Components Division, Raynham Road, Bishop's Stortford, Hertfordshire CM23 5PF.


## ASCII KEYBOARD KIT

A 63 key ASCII standard keyboard capable of producing all upper and lower case alphanumeric symbols and control functions is now available from Newbear Computing Store. The keyboard requires only the addition of a 5 V power supply, and the absence of MOS devices eliminates the need for either a negative power supply or any special handling precautions.

A simple optional switch allows the selection of upper case only or upper and lower case, and a red l.e.d. is provided as standard to indicate when the keyboard is in upper case mode.

All inputs and outputs are TTL compatible and follow normal 7400 series loading and level requirements. Positive logic is used, the eighth bit is an optional parity bit, and parallel output is standard. However, serial output can be provided by addition of a serial clock.

The price of the complete kit is $£ 56$ and full details are available from Jon Day, Newbear Computing Store, 7 Bone Lane, Newbury, Berks RG 14 5SH. Newbury (0635 49223).

## STRIPPERS . . .

The Milbar 15E which is covered by the Levermore "Belt and Braces" guarantee retails for a rec. price of $£ 3.50$ exc. VAT.


## . . AND CRIMPERS

AB Engineering have introduced a new range of light-weight crimping tools for 10-18 s.w.g. terminals.

## BEEPIBEEP?

The new "Roadrunner" prototype wiring system is said to offer considerable economies on electronic and microprocessor development work and a fast, accurate means of producing pre-production circuit boards of any size, type or i.c. packing density.

Keys to the efficiency of the new system are the exclusive wiring instrument and the lowprofile press-fix or glue-fix distribution strips employed. Together, they are said to allow fast, accurate working.


The wiring instrument, or "pencil", feeds the quick soldering enamelled wire from interchangeable bobbins. The instrument is balanced for easy handling and has a fine, long-life steel tip which aids accurate working, even in the most confined areas. Special features are the simple threading system which allows fast bobbin change and the facility provided for adjusting wire tension.

The castellated distribution strips have the capacity for retaining a large number of wires securely in position, without affecting the extremely low profile of finished boards. They have no posts to impede access when wiring.
"Roadrunner" systems are normally supplied in kits which include a circuit board, a wiring instrument, distribution strips and spare bobbins of wire in four different colours. However, individual components are available separately. A typical "Roadrunner" introductory kit retails at $£ 8 \cdot 50$.

Agency enquiries are invited.
Further information from TJB Associates, Unit 116 b , Blackdown Rural Industries, Haste Hill, Haslemere, Surrey, GU27 3AY.

# FOR THE PHOTOGRAPHER WHO DOES HIS OWN DEVELOPING 

This device uses a photodiode to . . .
(a) indicate the required black and white developing time
(b) assess contrast on the negative, enabling suitable paper grade selection

For the amateur photographer who processes his own films and prints, the rapidly rising cost of photographic paper is a matter of serious concern, as is the pressure on one's time in our increasingly hectic life style. This article describes an exposure meter which enables the rapid and accurate assessment of printing times for black and white negatives and which will soon pay for itself in terms of saved time and bromide paper. The instrument was designed for the maximum possible convenience in use, together with a level of accuracy more than adequate for all black and white printing.

The meter consists of a light sensor, which is a small area high speed photodiode, an adjuster for paper speed, which may be a potentiometer or switch, a digital display, and an on/off switch. In use, the light sensor is used to find the area of maximum brightness on the enlarger baseboard, which of course corresponds to the darkest part of the print itself. This area gives a reading on the display, of the exposure time required for the print, directly in seconds. The meter itself is linear from one to more than five hundred seconds, which is way beyond the linearity of any photographic emulsion due to reciprocity failure. The inclusion of the third digit in the display, however, enables a second valuable measurement to be made very rapidly indeed, and that is the direct assessment of contrast range of the negative and hence the correct choice of paper grade for the enlargement.

Before describing the circuit and its method of operation, it will be useful to review what we require the instrument to do in a photo-physical sense. The exposure time required for a piece of bromide paper depends only on the intensity and wavelength of light falling on it. The distribution of wavelengths is dependent on the light source and, for the usual tungsten enlarger lamp, is both biased towards the red end of the spectrum and strongly dependent on filament temperature. The latter varies significantly with applied voltage and can be a considerable problem in colour printing. Fortunately, as far as black and white printing is concerned, mains voltage variation does not cause a real problem, even with completely unstabilised lamp supplies. Thus, as far as assessing exposure times is concerned, the only variable of interest is light intensity at the enlarger baseboard, and the
fundamental relationship is that exposure time is inversely proportional to light intensity. In mathematical terms we can write:
(a) $t=\frac{K}{L}$

Where $t$ is exposure time, $L$ is light intensity, and $K$ is a constant which takes account of the paper sensitivity and the spectral distribution of light from the enlarger lamp. We see then that an enlarger photometer is required to accept light intensity as an input variable, and output exposure time as the indicated parameter.

## CIRCUIT DESCRIPTION

The basic operation of the instrument can most easily be understood by reference to the block diagram, Fig. 1(a). The light intensity at the enlarger baseboard is converted to a proportional photo-current by a reverse biased high speed silicon photodiode. This device offers a high degree of linearity of current with light intensity. The minute photocurrent is converted to a proportional voltage by an op-amp connected as a current to voltage converter. The output of this stage is fed into an active low pass filter to remove the considerable 100 Hz signal (due to alternate heating and cooling of the lamp filament twice during each mains cycle). The d.c. signal at the output of the low pass filter is passed to a voltage to frequency converter whose output frequency is proportional to the light intensity.

It is required to derive a signal which is inversely proportional to light intensity, and this is the period of the voltage to frequency output oscillation. This stage is therefore used to gate the output of a master clock generator (running at constant frequency) into the input of a digital counter/display module. Thus, as light intensity increases the time for which the gate is open is decreased, and the resulting number of clock pulses getting through to the counter is proportional to the exposure time required. Variable control of the master clock frequency establishes the constant of proportionality in equation (a), and this is brought out to the front panel of the instrument as the paper speed setting. Apart from the on/off switch, this is the only control requiring adjustment after initial setting up.


Fig. 1(a). Block diagram of Exposure Meter

Detailed operation of the circuit, shown by Fig 2, is best understood with reference to the timing diagrams of Fig. 3. IC1 is connected as an inverting amplifier and acts as a current to voltage converter in this application. because the effective source resistance of the photodiode is many orders of magnitude greater than the input resistor R1. This resistor, which could be left out completely, serves to limit the input currents to IC1 in case of catastrophic failure of the photodiode. IC1 is one of the recently introduced BIMOS operational amplifiers and is used here because of the need for extremely low input bias current.

## FILTER

The negative going signal at the output of IC1 consists of a d.c. level and a superimposed 100 Hz sinewave. Although both the a.c. and d.c. components are proportional to light intensity, the d.c. signal is substantially larger than the a.c., and therefore using this reduces errors. The a.c. component is filtered out by the two-pole active filter formed by IC2, and R3, R4, R5, R6, C2 and C3. The CA3140 op-amp is used again in this stage because the very low input bias current permits the use of high value input resistors and hence relatively small capacitors, without the disadvantage of a large d.c. offset.

The negative d.c. level at the output of IC2 is applied to the inverting integrator IC3, R7, C4. Discharge of the integrator capacitor is accomplished by the transmission gate IC5(b), while IC5(a) shorts the input of IC3 to ground. The CA3140 is extremely valuable in this integrator because it permits a small integrator capacitor and large integrator resistor, which allows simple resetting of the integrator..

The output waveform of the integrator is shown in Fig. 3(a). It consists of a positive going linear ramp and an exponential discharge. The integrator output is applied to a fourth CA3140 operating open loop as a comparator. The reference voltage for the comparator is obtained from a simple Zener stabiliser, but the exact arrangement of earth return and positive supply is of crucial importance, and will be referred to in the constructional information. The use of the CA3140 in the comparator position is mainly due to its rapid slew rate, being approximately an order of magnitude faster than the standard 741.

The output of the comparator is a series of positive going pulses shown in Fig. 3(b). The pulses are applied to the input of the monostable multivibrator IC6(b) and IC6(c), via the NAND gate IC6(a). The NAND gate IC6(a) serves two purposes. Firstly it inverts and sharpens up the comparator pulses to the correct waveform for firing the monostable, and secondly it provides the vital power up reset pulse from R10, C5. The output of the monostable is inverted by IC6(d) thus giving two complementary pulses in response to the comparator pulse.

The positive going pulse at the output of IC6(d) is applied directly to the control inputs of IC5(a) and (b) where the high logic level opens the transmission gates and thus resets the integrator. The output of IC6(d) is further applied to the input of IC7(a) which is half of a CD4098 dual monostable multivibrator. The monostable is triggered by the rising edge of the reset pulse and complementary outputs are available at its Q and $\overline{\mathrm{Q}}$ output pins. The positive going pulse at pin 7 ( $\overline{\mathrm{Q}}$ ) is used to trigger the other monostable IC7(b) and also directly as the "transfer" pulse for the count display i.c. The output from IC7(b) is this time taken from the Q output since the counter display requires a negative going pulse to clear it.

The negative going pulse at the output of IC6(c) is used to inhibit the counter by closing the transmission gate IC5(c) during the reset period. The sequence of operation can be readily understood with the help of Fig. 3. Whilst the integrator is running up, clock pulses from the NE555V master clock generator are allowed through the transmission gate IC5(c) to the count input of the ZN1040E. When the comparator fires at the end of the integration period the count is disabled by the negative going pulse from IC6(c). One propagation delay later the main reset pulse at IC6(d) resets the integrator. During the reset period the transfer and clear pulses are generated sequentially. The transfer pulse causes the total count during the integration period to be latched by the display, and the clear pulse resets the counter to zero. It is important therefore that both transfer and reset are over before the next count is enabled. Fortunately the ZN1040E can respond to very short duration pulses which can easily be made to fit within the reset period without the need for precision components in the dual monostable circuit. The length of the reset period is not critical in any case, since the master clock is gated into the counter input.


Fig. 1 (b). Power supply arrangement


Fig. 2. Circuit diagram. IC1-3 powered by + and -9 V , IC4 by +9V and DIGITAL GND B
Fig. 3. Correct waveforms for the various signals generated
(a) INTOPT
(D) DOPT
(c) RST INT
(d) ENCNT
(e) TRANSFER
(f) CLEAR
(g) CNT


## POWER-UP RESET

The only remaining parts of the circuit calling for some comment are the requirement for the power-up reset pulse and the use of the ZN1040E counter display i.c. The powerup reset pulse is essential because the integrator reset pulse is generated from a monostable. Thus, at start up, when power is first applied, if the comparator went to its high state before the reset monostable was enabled there would be no means of resetting the integrator. The simple RC network R10, C5 supplies a once only reset pulse approximately 50 ms after switch-on, thus ensuring the integrator is reset.

The ZN1040E is a recent addition to the designer's armoury and a most valuable one. Its single package counts, latches, display-decodes and drives 7 segment displays together with full leading zero suppression and many other valuable features. The chip is capable of driving common anode or common cathode displays, and the circuit of Fig. 2 is shown wired for a common anode display. This configuration uses fewer resistors and transistors for interfacing, but the internal multiplex clock must be slowed down by external capacitor C11 in order to eliminate ghosting in the display segments (caused by the finite turn off time of the p.n.p. anode access transistors). Constructors wishing to use common cathode displays should refer to Fig. 4 which gives the necessary connection information. The use of the three most significant digits of the four digit counter is a simple but effective way of reducing jitter in the final display.

## CONSTRUCTION

The prototype exposure meter was conceived as a hand held spot-measurement instrument which could be moved about over the enlarger baseboard, and display its information continuously at the baseboard itself, rather than a static metering unit with a probe at the end of a connecting cable. Thus there is the necessity that the meter should be both battery powered and small. The author experimented with the recently introduced "Verowire" wire wrapping system in an attempt to obtain the advantages of double-sided wiring, rather than designing a double-sided p.c.b.

The Verowire system proved $a^{\circ}$ reasonable solution although a number of disadvantages became apparent. In particular, debugging the complete circuit proved to be much more difficult than with a conventional wiring method. The author would suggest that the use of standard 0.1 in . Veroboard would be a wiser solution for the less experienced.

From the point of view of electronic construction and wiring, perhaps the most important single point is the need to use separate earth returns and positive supply lines for various parts of the circuit. This practice is an essential part of many professional instrument designs.

## DECOUPLING

In a hybrid analogue and digital circuit, two major practical problems concerned with power supplies and their interactions are apparent. Digital integrated circuits change state so rapidly that the rising and falling edges of the transitions generate considerable switching spikes. In an undecoupled circuit the transients can cause sufficient amplitude supply line interference to cause unwanted or false switching of other circuits, but simple capacitative decoupling by the use of 10 to 100 nF ceramic or polyester capacitors disposes of this problem. This measure may be insufficient, however, to eliminate problems in an analogue circuit using the same power supply, because by definition an analogue signal processing circuit should be capable of handling all signal levels with minimum distortion.

A second difficulty arises if the analogue circuit is used to process signals down to d.c., because now the possibility exists of the digital circuitry introducing d.c. offsets caused by the voltage drop of current flowing through the copper
interconnecting wire. This problem is especially serious if TTL logic is used because of the high current switching "gulps" associated with it, and for the same reason, whenever l.e.d. displays are used. These two reasons dictate that separate analogue and digital power rails should be used. There still remains the problem of referring one power supply to another. The simple guideline here is that no digital current should be permitted to flow in the analogue circuitry, and this is most simply achieved by connecting the two power supplies together at a single point and running separate analogue and digital ground wires to this point. In the present design two separate digital ground wires were used. One was used for the ZN104E and the second for all other logic circuitry. This is because by far the greatest current drain is taken by this i.c. and I.e.d. displays whose current flows through it.

In. the present design the most critical part of the entire circuit is the comparator of the analogue to digital converter, because it is required to compare the output of the integrator with a stable reference potential. The method adopted here illustrates the problem of obtaining a stable potential from the analogue power supply. The use of a battery supply means that a simple potential divider is unsatisfactory because the internal resistance of the battery causes potential shifts on the supply rail as the current demand of the circuit alters. A simple Zener stabiliser removes both of these problems providing a stable ground reference potential is available. Here the only problem is in the voltage drop caused by the analogue current flowing in the copper conductor wire or strip of the analogue circuit return line. This too will be changing at each instant of time. The solution is to run a separate earth return wire from the ground end of the Zener diode (anode in this circuit) to the battery connection at the board. With these precautions the simple Zener stabiliser has adequate performance without the need for temperature compensation or a constant current source. Refer to Fig. 1(b) for details of the power line arrangement.

## DEBUGGING AND SETTING UP

An oscilloscope is most useful but is not essential. Start by making the display circuitry operate in conjunction with the master clock. It will be helpful to slow down the clock

Fig. 4. Alternative wiring for common cathode displays



Table 1. CONTROL FUNCTIONS OF THE ZN 1040E

|  |  | LOGIC LEV |  |
| :---: | :---: | :---: | :---: |
| FUNCTION | PIN NO | OPERATE | EFFECT |
| Lamp Test | 2 | 0 | Displays 888 |
| Digit Select Sense | 13 | 0 | For common anode displays. |
|  |  | 1 | For common cathode displays. |
| Clear | 20 | 0 | Clears counter |
| Up/down Select | 21 | 1 | Count up |
| Count Input | 22 | $0 \rightarrow 1$ | Increments counter |
| Count Inhibit | 23 | 0 | Inhibits counter |
| Transfer | 24 | 0 | Latches display. |
|  |  | 1 | Transfers current |

COMPONENTS LIST . . .

generator to about 20 or 100 Hz (by wiring a large capacitor across C9) and applying it directly to the count input of the ZN1040E. Refer to Table 1 to ensure that the count display operates correctly in response to the transfer and clear functions. Remember to establish a logic 1 condition by using a $1 \mathrm{k} \Omega$ resistor between $V c c$ and the i.c. input. Remember also that the counter will divide the master clock frequency by 10 because only the three most significant digits are used. Next, ensure that the chain of inverters and monostables operates in the correct sequence. If an input pulse generator is ávailable, together with an oscilloscope, things are easy, but the simple trick of slowing pulses down by wiring large value capacitors temporarily in parallel with the normal circuit values makes it possible to trace through the circuit with nothing more than a multimeter. Establish that a positive going pulse at pin 1 of IC6(a) fires the monostable IC6(b), (c) and that complementary outputs are available at pins 10 and 11 of this i.c. Check that the positive going pulse at pin 11 of IC6(d) is responsible for initiating the output of IC7(a) and that the negative going edge of IC7(a) output fires IC7(b). In normal operations it is essential that the transfer and clear pulses occur within the reset width. This is impossible to verify without an oscilloscope, but the circuit constants given allow a substantial margin for component tolerances.

Next establish that the analogue to digital converter is operating. Again it is possible to slow things down to multimeter speeds by temporarily increasing the value of the integrator capacitor C4. Short the input end of R7 to analogue ground and apply a signal to IC3 via a resistor of between $1 \mathrm{M} \Omega$ and $10 \mathrm{M} \Omega$ temporarily connected to pin 2 of IC3. Disconnect the output of IC4 from the input to IC6(a). Confirm that the integrator will ramp positively for a negative input signal and negatively for a positive input. With a negative input signal and positive ramp, check that the comparator output at IC4 pin 6 changes state at about 3.3 volts. If all seems well, reconnect IC4 to IC6(a) when the comparator transition should initiate resetting of the integrator. The output spike of the comparator will be too fast to observe with a multimeter but it is possible to ascertain that the integrator resets and ramps at pin 6 of IC3. When all is well remove the temporary input resistor and large value integrator capacitor. With the input end of R7 still grounded, adjust the d.c. offset potentiometer associated with IC3 for the minimum rate of positive going ramp. It should be possible to obtain a period of about 10 seconds between resetting of the integrator. Finally, remove the short from the output of IC2.

The next stage to set up is the active low pass filter IC2. It is not so easy to establish this stage is operating correctly without an oscilloscope. The stage acts as a non-inverting d.c. amplifier with a gain of about 1.5 , for voltage inputs applied directly to pin 3. If this can be established it is probably safe to assume no wiring errors exist and that the circuit is also operating as a filter. The offset potentiometer is adjusted by grounding the input at pin 3 and adjusting for the minimum rate of positive going ramp at the output of IC3. If an oscilloscope is available the filter action is best established in conjunction with IC1.

IC1 operates as a straightforward current to voltage converter. The output of IC1 will contain a significant a.c. component of 100 Hz if the photodiode has light from a normal household tungsten bulb incident on it. This should be absent at the output of IC2 if the latter stage is operating correctly. The d.c. offset adjustment of IC1 should be set up in an analogous manner to IC2 and IC3 (i.e. by adjusting for minimum rate of ramp at IC3 output). For this stage it is important to compensate for the dark current of the

photodiode which must therefore be in circuit, but in total darkness. This offset adjustment constitutes the final electronic setting up with the possible exception of some adjustment to R2 depending on the light source used in the enlarger.

## CALIBRATION AND PHOTOGRAPHIC USE

The method of calibration of the photometer is to adjust the display readout to give the exposure required to obtain a black level on the final print. Electronically this is accomplished by adjusting the clock frequency using the paper speed control, VR4, after ensuring that the photometer is operating in a linear region of its first stage amplifier for normal working light levels. It is necessary that the calibration is carried out in conjunction with a carefully prepared photographic test strip. The photometer is
sufficiently accurate and reproducible to make it feasible, and worthwhile for the advanced worker, to make separate test strips for each make, grade, and surface of paper normally used.

Start the calibration by making a test strip with the enlarger at an extension of about 800 mm from the baseboard, with the lens fully stopped down, and with nothing in the negative carrier. Make a note of the settings so that they can be exactly reproduced at a later date. This will help if any modifications to the enlarger optical system or radical changes in photographic methodology are contemplated later on. Start using grade 2 (normal) paper.

Place a sheet or strip of paper on the baseboard and have ready a piece of cardboard sufficiently large to cover the entire piece of photographic paper. Switch on the enlarger and begin exposing the paper. Cover up strips of the paper at the following times (seconds): $2,3,4,5,6,8,10,13,16$, $20,25,32,40,51,64,81,102,128,161,203,256$. This sequence gives increases in exposure approximately equivalent to one third of a stop. See Fig. 5.

Alternatively the sequence: $2,3,4,6,8,11,16,23,32$, $45,64,91,128,181,256$, which gives increases equivalent to half a stop may be used. Switch off the enlarger and develop the test strips in the manner which will be used for developing actual prints. Pay particular attention to developing for a fixed time at a fixed, certainly known, temperature, and for these test strips, which will be reference items in the future, use freshly prepared develoder.

## FINISHED TEST STRIP

The resulting print should contain strips of grey each distinguishable from the other with one or more strips corresponding to pure white (i.e. indistinguishable from each other and from the paper base), and one or more strips corresponding to pure black and again indistinguishable from one another. If this result is not obtained, repeat the test strip until it is, by increasing or decreasing the light level at the base board. Thus, even if with a two second exposure some darkening of the paper is discernable, decrease the light level by increasing the extension of the enlarger or by inserting a neutral density filter in the light path. A piece of wiremesh such as a tea or coffee strainer would be ideal for this. Alternatively, if a difference between the two longest exposures is seen, increase the light level at the baseboard by opening the enlarger lens one or two stops. In any event aim for a test strip which encompasses full white and full black. Note that even for grade 1 glossy paper the range of densities which can be seen is unlikely to be more than 40:1. For non-glossy and harder papers this contrast range will be significantly less, reducing to about $5: 1$ for grade 5 paper. Mark on each distinguishable strip of density the actual exposure time as this will be valuable later on for more advanced work.

Consider the test strip made on grade 2 (normal) glossy paper (see Fig. 6). In the examples shown the first discernable strip occurs at 6 seconds whilst no further increase in blackening occurs after 128 seconds. This effect has taken place at a known enlarger extension (normally 800 mm ) and at a known aperture (say f 22 ), which together define the intensity of light falling on the baseboard. We now require to adjust the photometer so that it indicates the correct exposure time in seconds to get a black level on the final print, and most importantly to ensure that it is working within its linear region of operation.

Switch on the photometer and place it on the enlarger baseboard. Monitor the output of the low pass filter at IC2 pin 6 with a multimeter or DVM if available. The aim is to
adjust the resistor $R 2$ so that with the maximum light which will fall on the photodiode sensor in practice, the output of IC2 is well below saturation, i.e. about 4 volts. A suitable light level to aim for is that which would give complete blackening of the paper in about 1 second. This light level is unlikely to be exceeded under normal working conditions because of the difficulty of timing the exposure manually or of obtaining reproducible results from an electronic timer due to thermal lag of the filament at such short exposures.

## BLACK TIME

In the example of Fig. 6 complete blackening has occurred at 128 seconds. In order to increase the light level so that complete blackening would occur at 1 second, an increase of light of seven stops is needed. Thus, if the test strip was made at f 22 we need to open the enlarging lens to f 2 . On many enlarging lenses this is not possible because the maximum aperture may be only $\mathrm{f4}$. If this is the case either change the enlarger-to-baseboard distance to 400 mm which will give four times ( 2 stops) more light intensity at the baseboard, or more simply set up the photometer so that the output at pin 6 of IC2 will be about 1 volt (i.e. about $\frac{1}{4}$ of 4 V ). It should be found that the starting value of R2 given, $10 \mathrm{M} \Omega$, is not too far out. See Fig. 7.

It is absolutely essential that during the selection of R2 only light from the enlarging lamp reaches the photodiode.

A normal darkroom safelight is completely useless for this procedure because the photodiode specified has extended red sensitivity and light from even a tiny safelight yards away will be many times more than that coming from the enlarger. If a DVM with l.e.d. display is used there will be no difficulty, but if an analogue multimeter is used it means that the scale must be read either by the light of the enlarger itself or by a small torch which must be well screened from the photodiode. Select R2 so that when the light intensity would cause full blackening in 1 second, the output of IC2 pin 6 is about 4 volts. This adjustment is in no way critical, but is important to ensure that the amplifier is not saturating. A value for R2 giving 50 per cent less output than suggested will give perfectly good results.

When the value of R2 has been established the photometer has been calibrated photometrically. The value on the digital display should now be in the range of the paper speed control. Return the enlarger to 800 mm extension and minimum aperture, and check that with all other lights extinguished the photometer can be adjusted to read 128 seconds. This reading is of course that value of exposure which will give a black level on the final print. Check the, linearity of the photometer by opening up the enlarging lens. The indicated exposure should halve for each stop increase. Do not be too worried if there is not an exact twofold change in reading because the photometer is likely to be more accurate than the mechanical stop of the lens.

## SIMPLE TO USE

Having calibrated the photometer, using it is simplicity itself. Put a negative in the carrier and using the photometer, select the area of maximum brightness. The indicated reading will be the exposure required to give a true black level for that area of the negative. This criterion is usually met in practice, but false readings will occur if no black level is present on the negative. An alternative means of using the photometer is to set the paper speed control so that the photometer indicates a correct flesh tone. To do this refer to the calibration test strip for the correct exposure needed to give the required flesh tone and set up the enlarger to the
standard conditions used for making the test strip. Adjust the paper speed control to give the required number and the photometer is now calibrated in terms of standard flesh tone.

## PAPER GRADE

As stated at the beginning of the article the photometer can be used to assess the correct grade of paper needed for an enlargement. A brief indication only of this use will be given since the interested photographer will find the necessary information for himself. Suppose a negative has areas corresponding to pure black and pure white. When this is projected in the enlarger the photometer can be used (without alteration of the paper speed control) to compare
directly the intensities corresponding to pure black and pure white. For example, suppose the brightest part indicates an exposure time (for maximum blackness) of 10 seconds, and without altering the setting, the darkest part indicates an exposure time of 80 seconds, then the contrast range is $8: 1$. This contrast range of the negative must be fitted onto a printing paper with the same contrast range in order for a full black and a pure white to be apparent. In our example of Fig. 6 the paper had a contrast range of $128: 6=21: 1$. Thus it would be unsuitable for a negative whose range was only $8: 1$, because an exposure necessary to cause full blackening of the paper would cause the whites to come up very grey. It should now be apparent how the combination of test strips and photometer can be used to select both the correct exposure and the correct paper grade in conjunction.


## MORE BUBBLES!

NATURE is full of bubbles! Just when magnetic bubbles are beginning to make their mark on memory technology, another type of bubble is discovered, made of light.

Last year, scientists at IBM's San Jose Research Laboratory discovered that microscopically small sources of light in a particular class of electroluminescent thin films can become mobile under certain conditions.


When a voltage oscillating at a high enough frequency is applied across one of these thin films, tiny light-emitting filaments, each about one micron ( $1 / 25,000$ inch) in diameter, appear to pour out from isolated points in the material and to swarm randomly about in it.

Discovery of the mobile filaments occurred during experiments aimed at understanding the light-emitting properties of manganesedoped zinc sulphide films. Non-mobile light properties of these films are being investigated by a number of laboratories that are interested in information display technology.

Images can be formed in devices based on this material either by stimulating areas of the film with a light beam or an electron beam, or by applying an "addressing" voltage across the film to induce light emission from selected areas of the material. An important feature of these so-called ACTEL (alternating current thin-film electroluminescence) devices is a "storage" effect that enables them to retain an image for an extended length of time without the necessity of periodically refreshing the screen, as is needed in cathode-ray-tube storage displays.

In the IBM experiments, an AC voltage is applied to the film via sets
of crossed metallic lines about one millimeter wide, the horizontal lines being deposited on one surface of the material and the vertical lines on the opposite. When voltage is applied to a pair of intersecting electrodes, the intersected area of film will emit light. Each such area encompasses some tens of thousands of individual light-emitting filaments. It is these individual filaments that can become mobile.

As the frequency of the applied voltage reaches the neighbourhood of 10,000 hertz, the threshold of filament mobility is achieved. Looking at the light-emitting filaments through a microscope, one can see the tiny spots of light moving in small, discrete steps from one location in the material to another. On close examination, it appears that the illumination is being transferred from one site to another through a process in which the emission from a filament is extinguished at approximately the same time as emission from another begins.

Raising the frequency of the applied voltage still further (to about $50,000 \mathrm{~Hz})$ causes the mobility of the light bubbles to increase as they wander over relatively broad areas of the film. When one bubble approaches another, they repel each other. Isolated regions in which the mobile bubbles are generated can be clearly seen in microscopic views of the material, and at high frequencies, hundreds of the moving points of light appear to pour out of these sources like water from a bubbling spring.

The locations of the sources of mobile filaments are thought by the researchers to be associated with microscopic defects in the polycrystalline structure of the zinc sulphide films.

## FIVE-STEP A TO D

ANEw five-step analogue level detector with a high impedance input has been announced by Texas Instruments. The TL489 consists of five comparators to digitise analogue input signals.

The five comparators and a reference voltage source detect the level of an input signal. Output 1 is switched to a low logic level at a typical input voltage of 200 millivolts. After each additional 200 millivolt step, the subsequent outputs are switched to low logic levels. All outputs are switched to low logic levels at a typical input voltage of 1000 millivolts (full scale). The open-collector outputs are capable of sinking currents up to 80 milliamperes and may be operated at voltages up to 18 volts. The analogue input has a high impedance of 100 kilohms.

Since all five trigger points have a switching hysteresis of typically 10 millivolts, the circuit may be operated with slow input signals without danger of oscillation at the outputs. To prevent pick-up of noise, a capacitor should be connected between the high-impedance input and ground, especially when the input is driven from a high-impedance source.

The TL489 is especially designed to detect and indicate analogue signal levels. The device may be used in various industrial, consumer, and automotive applications. Power outputs are suitable for driving a variety of display elements such as LEDs or filament lamps. The output may also drive digital integrated logic such as TTL, CMOS, or other high-level logic.

The TL489 in an 8 pin plastic DIP is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Price in 100 -piece quantities is $£ 0.45$. The new analogue level detector is available from TI authorised distributors and from TI Bedford.

## The Real World

Let us now turn away from speculation and look at the real world and what real people are doing in it.

First, Racal Electronics Group who celebrated another successful half-year report (profits up 25 per cent on 11 per cent increase in turnover) with the announcement of a $£ 20$ million export order, the largest ever received in the Group's 28-year history. It is for a communications package for an unspecified country in the Middle East and takes in products from a number of Racal companies.

I have often referred to Racal as "unstoppable". They continue so with unparalleled vigour and determination to do even better. Racal exports average out at $£ 16,000$ in value per worker, a figure unmatched in the UK by any other manufacturing company. It does your heart good to talk to the directors, enthusiasts all, never harking back to the "good old days": instead looking forward to every new challenge ahead.

One such challenge is electronic warfare. Expect to hear later this year about Jaguar. Not an automobile but Racal's answer to battlefield jamming. In Racal's book Jaguar is the acronym for JAmming GUArded Radio on which one of Racal's top design teams has been engaged for the past two years. It is a frequency-hopping field radio which, because it is continuously changing its frequency, is difficult to intercept, or jam or get a bearing on.

Expect, too, to hear of more Racal acquisitions both at home and overseas. Parts of Decca and Plessey are still tipped as possibles, indeed probable, acquisitions for Racal in any industry rationalisation programme.

Meantime data communications is one of Racal's big growth areas in cash terms with a projected $£ 75$ million turnover this year. The business is world-wide and still expanding fast. Racal's main manufacturing bases and biggest single market are in the USA where the Racal pay-roll has now soared to 2,300 people.

## Expansive Giant

The other front-runner is giant GEC, also busy expanding in the UK and overseas. The recent acquisition of the US company A. B. Dick has opened the door for GEC's entry into the profitable office equipment market, the negotiations with Avery provide an electronic weighing market if the deal goes through, and the joint venture with Fairchild will bring GEC into the major league in VLSI with both technology and marketing outlets.

The logic of all this activity is that apart from GEC's considerable existing in-house demands for microcircuits, both Avery and A. B. Dick are potential big users. So although office equipment and weighing machines look odd areas to get into, there is a direct connection with electronics and particularly the "chip". The forecast that GEC-Fairchild will be in production by 1980 was still firm at the time of writing and the initial phase of 100 people is planned to expand to 1,000 at a rate which will presumably be geared by market demand.

Both GEC and Racal are already in the microcircuit business, Racal at present only in thick-film hybrids and designing their own custom silicon-i.c.s with processing by outside contractors. It is probable that Racal will set up diffusion facilities in the near future. GEC has the Hirst Research Centre for fabrication of exotic devices (such as c.c.d.s) and has a first-class thickfilm hybrid plant at Marconi Space and Defence Systems at Portsmouth. I can say this with certainty, having recently visited it.

## Wall-to-Wall

You don't expect to find wall-to-wall carpeting in a machine shop. Yet this is precisely what I found in the tool room of the Berg Electronics plant in Holland. Not only wall-to-wall carpeting but also a profusion of house-plants, many of them exotic varieties. A settee, armchairs and a TV set, though not present, would not have looked out of place.

Berg make connectors and the piece parts are of high precision demanding great skill in tooling for the high speed presses turning out millions of parts a day. The restful atmosphere no doubt pays off in quality of work. But wherever I went in the plant there was light and air and, above all, cleanliness. Even the plating shop was completely free of noxious fumes and the duckboards were dry. British firms please copy.

## A vionics

Avionics companies get a new boost with plans for the Westland WG34 helicopter replacement for the current Sea King. Project definition contracts are already out for communications, radar, antl-submarine systems, data handling and flight control systems. Among the British companies involved are Marconi, Decca, Ferranti, Smiths and Louis Newmark. The WG34 is essentially a Royal Navy project but is expected to be also produced collaboratively in Europe, the Italians in particular having expressed an interest.

EMI's new Searchwater radar has had its first production delivery to the Royal Air Force for the Nimrod Mk 2 maritime reconnaissance aircraft.

Among avionics production units now using MPUs is the fuel flowmeter system designed by Marconi Avionics for use in the Hawk jet trainer and light attack aircraft, ordered for the RAF and for the Finnish and Indonesian air forces.

## TRSB

Finally, remember the row over the proposed international microwave landing system, that finally chosen being the US Time-Reference Scanning Beam System (TRSB) in preference to the British Doppler System? Now, it looks as if TRSB is running into trouble on costs, apart from the fact that a full-scale working system has not yet been demonstrated. There could still be a chance of the British system re-emerging as a world standard.

News Briefs

by Mike Abbott

## TV OR SCOPE

Excellent for the engineer who likes to watch Magic Roundabout while appearing to work, is the oscilloscope designed for video monitoring applications, supplied by Gould Instruments Division to meet an order from the BBC.

The oscilloscope is a modified brighter version of the Gould Advance OS3300B with a BBC designed timebase module incorporating comprehensive video triggering facilities, which is being made by Gould under a manufacturing licence agreement from the BBC.

The new timebase generator allows the oscilloscope to be used for detailed line-by-line examination of 625 -line television waveforms or to display a television picture. It accepts a standard level video signal, which may contain "Sound-in-Sync" signals and provides six different triggering modes: field 1 , field 2 , field 1 and 2 alternating, line repetitive, single line selectable by front panel switches (with the line number indicated on a 3 digit l.e.d. display) and line pairs in the range 16/329 to $22 / 335$.

The triggering can be delayed continuously by up to $90 \mu \mathrm{~s}$ via a multiturn potentiometer, which allows the signal to be examined in detail.


The displayed video signal may be clamped or not, as required. When the unit is used to display a television picture, the triggering point selected may be observed as a "bright up line" on the picture, enabling the waveforms to be rapidly related to the picture. The changeover from waveform to picture is effected by a single front panel switch. The modified timebase retains its normal triggering facilities, so that the instrument may also be used as a general purpose single timebase oscilloscope.

## FIR FILTERS

The CTD (Charge Transfer Device) is now a commonplace device, which is at present, more frequently found performing the function of delay line-the most obvious application. However, it is probably in the field of application where the more interesting developments will take place with "bucket brigade devices". Suggestions include electronic "de-wow" and "de-flutter" circuits for tape replay systems, and speech compression machines for the recording of books for the blind.
The CTD has turned out to be very powerful in filter design, around which has evolved a completely new technique giving more filter power per square centimetre than any other.
An example of this is the Reticon R5602 CTD filter i.c. (claimed to have been the first commercially available i.c. of its kind). Previously
the only monolithic transversal filters for analogue signal processors were custom made large-scale integrated CCD's.
This transversal filter can do in one monolithic device the job of several boards full of components. The first four products in the R 5602 family include low-pass and bandpass filters, each in a narrow and broadband version. The devices (also called Finite Impulse Response filters), are made using a 64 stage split electrode type bucket-brigade device architecture, utilising the fundamental metal-oxidesemiconductor structure as a capacitor. They use a new differential output sensing technique which offers such advantages as reduced insertion loss in the passband, simpler external circuitry and cancellation of common mode clock signals.


Reticon R5602: A family of 64 point Charge Transfer Device (CTD) Transversal Filters using the split electrode architecture. Pictured above is the narrow band low pass filter.

There are several unique features. First, they can be programmed (i.e. tuned), by simply varying the input clock frequency. Secondly, they have linear phase with no added device complexity which is essential when filtering waveforms where the information is contained in the shape of the signal (e.g. in geophysical, biomedical and transducer applications). Finally, the R5602 has a high transition, or roll-off, rate from passband to stopband that is typically greater than 200 dB /octave. These are extremely high values when compared with those of conventional multi-pole filters, and the sharp cut-off is particularly useful in rejecting close-in signals near a desired signal.

Typical applications are in generating single-sideband signals, where one sideband is rejected and the other passed, within very tight tolerances, or in data-acquisition systems, between the transducer and the analogue-to-digital converter, to band-limit the input signal without distortion.

The R5602 family comes in a 16 pin dual-in-line package with a usable sampling frequency range of 250 Hz to 1 MHz . Customised filters are easily and inexpensively achieved with a simple mask change.

Further information from Andy Longford, Herbert Sigma Limited, Spring Road, Letchworth, Herts.

## COUNTDOWN

THE FOURTH Intel Fair is scheduled to take place on June 11, 1979, and will again be held at the Wembley Conference Centre.
There will be a series of seminars at elementary, intermediate and advanced levels, and an exhibition in which Intel, their distributors and customers will give demonstrations expected to reflect the state of the microcomputer art.

Rotterdam is the venue of the Third International Symposium and Technical Exhibition of Electromagnetic Compatibility, and the date is May 1-3, 1979. Organised by the Netherlands National Electrotechnical Committee of the IEC in co-operation with the Federal Institute of Technology, Zurich, the symposium will deal with the problems of interaction of electromagnetic energy with electronic and biological systems, and the immunity and compatibility of electronic systems regarding the electromagnetic environment. A total of 120 interesting papers will be presented, covering such subjects as ignition and gas discharge noise, and even the curious business of artificially triggered lightning.

Fee reductions for members of co-operating organisations, early registrants and students are envisaged. Contact: (Symposium) Dr T. Dvorak on (01) 326-211. Ext. 2790. (Exhibition) Mr R. E. Gerritsen on (070) 906-800.

Labex International '79 is an exhibition of laboratory diagnostic and medical instrumentation, and will be taking place at the National Exhibition Centre, Birmingham, during March 12-16. Details: 021-705 6707.

The same telephone number for details of Electronics '79; electronic components industry fair. This will take place November 20-23 at Olympia, London.

## 40 COLUMN, $5 \times 7$ DOT MATRIX, ELECTROSENSITIVE FOIL PRINTER.

put to zero should fire Monostable 2 which resets the motor flip flop. Monostable 1 should be triggered on the leading edge of each clock pulse. Sèt the variable resistor connected to Monostable 1 at mid-setting at this stage. The character generator circuit can now. be tested. Switch the power supply switch to the fully on position. If REED is shorted to OV, and pick-up pulses of some kind are being supplied, the character generator chip should be outputting the pulses required to print a question mark. This is because its data inputs should be held high by the pull up resistors on the I/P CMOS buffers. See Fig. 3.1. Check the output pulses carefully, for if transients are to cause any trouble, it is here that their effect will become apparent. If any disturbance is observed it may mean looking at wiring runs and, if not too painful, circuit layout. Different character outputs can be obtained at this stage by pulling different Data buffer inputs low.

The- electrode drivers can be checked at this time, for although they are not yet connected, the output voltage will be developed across the 10 k collector resistors on the BD189s.

To check the printer separately simply insert some metallized paper and supply 24 V to the motor contacts. The print head should move back and forth and paper should advance.

## THE PRINTER AND INTERFACE

With the printer and interface connected together proceed as follows:

With all data inputs at logic 1 , briefly short $\overline{P C}$ to $O V$. The printer should start operation printing successive lines of question marks. The variable resistor connected to Monostable 1 can now be adjusted to give the required Print intensity.

If the printing is poor then investigate the current paths for the electrode currents-is there any resistance there? If the printing is erratic then there may be trouble caused by noise. If a scope is available look at the character generator outputs.

[6039
Fig. 3.1. Character generator chip O/P for all 1s I/Ps

## THE COMPUTER TIE UP

Now we are ready to connect up to the Microcomputer system. Firstly it is worth loading PRINT into the microcomputer system and stepping through it to see if the output signals are being generated. It will be necessary to simulate DATA REQUEST with a switch at this stage.

If PRINT is being used alone its exit instruction (RET) should be changed to a HALT. Otherwise, on finishing, the PRINT routine the processor will RETurn to some unknown location and run amok.


Connect the printer system and switch on. As long as the $\overline{P C}$ is at logic 1 nothing should run.

Fill an area of RAM, say 10 locations with a character code, followed by an end of text character (FFH). Set HL to the address of the first character and "GO" from the beginning of PRINT.

The correct number of these characters should be printed, then the system should stop, ready for the next line. Now try inserting a carriage return (ODH) into the character string and repeating the procedure. This time when the printer hits carriage return it should stop printing until the next line, where the rest of the characters should be printed. If these tests work you should be able to write little test routines to fill areas of memory with ASCII characters then print them out.

Now the DUMP software can be loaded and run with PRINT (remember to change PRINT's exit instruction back to RET). It may be of interest to some constructors to step through parts of DUMP to see the number conversions taking place.

To save repeatedly loading the software it may be more convenient to have it "blown" into programmable read only memory. Although the software may have to be "reorigined", and the RAM addresses changed to suit your own microcomputer system.

## MAINTENANCE

The prototype printer performed some fairly heavy test runs without any trouble. The manufacturer states that its useful life should be around 30 million lines. Below are listed a few maintenance pointers.
(1) Don't operate the printer without paper or with paper that cannot be advanced.
(2) After some time printing dust can accumulate in the bottom of the printer. This should be brushed out (gently).
(3) If the printer scanning speed slows down, the scanning shaft should be lubricated with light machine oil.

That concludes this series of articles. I hope those of you who build this system will find its many diverse aspects of engineering as interesting as I did. Good luck.

# liome Bomputers <br> Mracle! 

## PART TWO - R.W.COLES

WITHOUT any shadow of a doubt, the ultimate home computer peripheral is a floppy disc system. "Floppy discs" are thin flexible plastic discs coated with a magnetic material and permanently sealed inside a square protective envelope. The envelope has a central hole so that the disc can engage the drive, and further holes and slots for the read-write head and the sector marker holes. The disc in its envelope is inserted edgewise into the drive, and the gate closed. Now the fun begins! Loading a BASIC interpreter


A typical floppy disc
from cassette takes many minutes, from disc it takes seconds. Finding a program or data file on tape is a tedious one-way search-and-rewind business; with a disc system you type the name and hey presto! it's in RAM already. Is your program too big for your RAM? With a disc system you can use overlays, so that only the currently active section of your program is in RAM at any time. When the next section is needed, it's loaded automatically in next to no time! Add to the above attributes, all the traditional advantages of magnetic storage media such as low cost, large capacity, reliability and transportable software, and you can see why the floppy disc reigns supreme in the home-computerperipheral heirarchy. To add a disc drive or two to your


The Extel 950 floppy disc system
system, you will need a disc controller board, and these are widely available for S100 systems. The drives themselves are electro-mechanical devices, and they come in two basic sizes:
(1) Standard-Floppies, and (2) Mini-Floppies.
A Standard Floppy disc drive takes 8 in diameter discs which can each store over 200K bytes of data. A Mini-Floppy disc drive takes $5 \frac{1}{4}$ in diameter discs which can each store about


The FD-8 floppy disc system. Available software includes a MINI-DOS routine
80K bytes of data. Variations on the theme allow doubledensity or double-sided recording, which increase the capacity still further so that it is unlikely that you will ever feel cramped for space.

Cost, of course, is the big problem. Even though floppy disc systems are known as low cost storage devices in comparison with their "hard-disc" cousins from the bigcomputer world, they still cost several hundred pounds per drive with the controller extra. With an S 100 system you can upgrade gradually, starting with a single Mini-Floppy and controller. Even this basic facility opens the door to powerful software and a really effective home-computer system which can be used as a practical, problem solving tool.


A complete floppy disc system for an $\mathbf{S 1 0 0}$ computer


The Micros $\mathbf{Z 8 0}$ system

## SOFTWARE

A microprocessor, even when connected up to external memory, a keyboard, a VDU and all the other necessary hardware bits and pieces, is really very dumb indeed until that extra "magic" ingredient, Software, is added. Without the software, you can hit any key you like and all you'll get is a sore finger. Press the reset button if you like, but alas, no friendly message will be flashed upon the VDU inviting you to communicate. Inside the microprocessor chip, the program counter will be running, looking in vain for a set of valid instructions which are not there.

Let's assume for a moment that we really do have a machine in this condition. What is the minimum software package that we need to help the system out of its misery? Well, first we need a keyboard input routine which checks for any keys pressed and loads the appropriate ASCII character into an area of RAM we can designate as an input buffer. Next we need a VDU driver routine which will take the contents of an area of RAM designated as an output buffer and send it in ASCII to the VDU hardware. So far so good. We can now type on the keyboard and see the result on the screen, but we still have a long way to go. To permit the microprocessor to do different things, in response to typed in commands, we need a command interpreter which will examine ASCII strings for a match with one of a set of commands it has been programmed to recognise. Useful commands might be:

1) ENTER ADDRESS
2) ENTER DATA (and increment address)
3) DISPLAY DATA (and increment address)
4) SET PROGRAM COUNTER
5) RUN PROGRAM
6) LOAD PROGRAM FROM TAPE
7) SAVE PROGRAM ON TAPE

This command interpreter could be designed to recognise a number, a single letter, or a complete string of characters for each command, depending on how sophisticated we wanted to make it. An important consideration is that we should be able to add extra commands at a later date should we so wish. Of course, commands like ENTER ADDPESS would be preceded or followed by a number, and these numbers will have to conform to a convention. A common format would be a four digit hexadecimal number for an address, but we
could use 16 bit binary, six digit octal or even five digit decimal numbers. It's up to us, but whatever number system we choose, we have to provide a routine to convert the ASCH characters from the keyboard (which occupy one byte per digit) into the packed binary which the microprocessor chip itself can deal with.

We could add all sorts of other bits and pieces, but let's stop there. The software package we have created is called a Monitor, and regardless of what other fancy software can be added, every system needs a monitor of some sort to get it started. Monitors are usually kept in ROM or PROM form, for obvious reasons, and it is this sort of software package that you have to rely on exclusively when you buy an "evaluation card" system. Using the Monitor on either an evaluation card or a home-computer, you can enter machine code programs in hexadecimal and then examine, alter, and run them. Unfortunately, writing machine code programs is a tedious business. The process of looking up the hexadecimal equivalents of MPU instructions such as ADD, LD A,B, OUT, and then keying these into the system with not a word of explanation for you to read when you come to examine the program next week or next year, is enough to put off even the keenest user!

We can escape from this tedium in one of three ways, made possible by yet more system software in the form of:
(a) An Assembler package
(b) A high level language Interpreter package
(c) A high level language Compiler package

## ASSEMBLERS

Machine code programming may be tedious, but it does have the advantage of a hardware intimacy which high level languages such as BASIC, lack. This intimacy makes


The MP-68 computer system is based upon the Motorola 6800 microprocessor
machine code programming particularly valuable where the objective is to write a program to interface with some quirky piece of hardware, a printer say, or where it is vital that a program be made as fast and as memory efficient as possible. To retain the advantages of machine code programming while removing much of the drudgery, you can add an Assembler to your system. An Assembler is a sizable software package which allows programs to be entered, not in hexadecimal, but as assembly language mnemonics, just as they are printed in the microprocessor manual. This means that the $\mathbf{Z 8 0}$ program sequence:

$$
\begin{aligned}
& \text { POP HL } \\
& \text { LD A, H } \\
& \text { RLCA }
\end{aligned}
$$

can be typed in just as you would write it down on your program sheet and not in the hexadecimal equivalent form:

E1
$7 C$
07
which is more compact, but meaningless when you try to decipher it later. But this is only the start. Another problem of machine code programs is the specification of jump ad-


The AlM65 from Rockwell uses a 6500 microprocessor and includes both a 20 column printer and keyboard
dresses, for loops and subroutines for example, which has to be done in the form of an absolute value. This is not too bad until you need to insert one extra line into your program, whereupon all the addresses after the new instruction are changed, and redefining all the JSR and JMP destinations can become a task of nightmarish proportions! To cure this problem, assemblers allow the programmer to use named addresses (called symbolic addresses) which are assigned absolute values only when the input code is processed by the assembler software. When typing in your input code (called source code) in mnemonic form, you give each destination a name, and when you want to go to the destination you simply type the jump instruction followed by the name, like this:

FRED: LD A, C
LD C, A
JP FRED
When the assembler is entered (via the monitor) it makes a first pass through your source code to build up a symbol table which assigns each name an absolute address. On the second pass (Most assemblers make two passes through the
source code) it substitutes the absolute address value from its symbol table wherever a reference is made to it. To add extra instructions you can now type them into your source code using a software package called an Editor, and then the assembler can be run again to process the new instructions and sort out the address changes.

## INTERPRETERS

Even assembly language programming can be a drag for some applications. Suppose you want to calculate your chequebook balance, or plot a graph on the V.DU, the last thing you are going to want to worry about is the precise way in which the system carries out the arithmetic and controls the peripherals at its disposal. After all you don't have to worry about the way the machine operates when you use a scientific calculator-enter a number and press the $\sqrt{X}$ key, and the answer is immediately displayed. Within the confines of the calculator chip a lengthy machine code program did the hard work, but we can be blissfully unaware of its presence. A similar technique can be used with home computers. With our Monitor program, discussed earlier, we were allowed to type in commands such as ENTER DATA which invoked lengthy machine code routines.


The SGS-ATES Euro card system is based upon the $\mathbf{Z 8 0}$ microprocessor

It is a fairly short step from this to the ability to enter whole programs using English language statements which have the effect of selecting machine code routines and stringing them together in a way transparent to the user, via a sort of super Command Interpreter. Home computer BASIC operates in this way and allows programs to be written in a high level form using selected English statements and a set of ASCII punctuation characters with defined significance. The BASIC language interpreter must reside in the system while programs are entered or run, and this means that a sizable memory is required to hold both the interpreter and the user program. The amount of memory required varies depending on the microprocessor used and the details of the particular version of BASIC to be loaded. At one end of the scale is a TINY BASIC for the 8080 which fits into only 2 K bytes of memory. At the other end is Zilog disc extended BASIC which requires nearly 45 K bytes! Between these extremes lie other variations and permutations, and this means that any intending home computer purchaser cannot simply say "Well, it runs BASIC so it must be a powerful system." BASICs differ in their available statements (Such as INPUT, GOTO, PRINT,) in their available functions (Such as SIN, EXP, SQR) and in their arithmetic precision. TINY BASIC is
restricted to the use of integer numbers in the range -32768 to +32767 , while most BASICs of 8 K bytes or more can give at least an eight digit decimal arithmetic precision and have a wide dynamic range due to the use of scientific number rotation. The words to look for in the specification are:
"Integer only" (Like TINY BASIC)
"Floating Point" (Full arithmetic capability)

## BASIC DETAILS

BASIC is a problem orientated language rather than a machine orientated language, and in theory BASIC programs written for one machine should run just as well on any other. In fact this is not strictly true because there are so many versions of BASIC around and these are not always compatible. Nevertheless, you only need to learn BASIC once, any differences between individual versions can be assimilated very quickly when the need arises.

A program in BASIC consists of a list of numbered lines or statements. For example:

```
5 REM *** CHEQUE BALANCE ***
10 PRINT "ENTER OLD BALANCE"
20 INPUT B
30 PRINT "ENTER CHEQUE AMOUNT"
4 0 ~ I N P U T ~ A ~
50 LET B=B-A
60 PRINT "NEW BALANCE IS" B
70 PRINT "ANY MORE CHEQUES?"
80 INPUTC$
90 IF C $="YES" THEN 30
100 END
```

Once a program has been typed in, it can be run by typing RUN. Changes to the program can be made by retyping a line or by inserting new lines between old lines, a process made easier by the numbering of lines in increments of ten to start with! A line can be erased by typing in its line number followed by RETURN.

If a statement is typed in without a line number, it is executed as soon as RETURN is pressed. This makes a BASIC machine work like a calculator for simple arithmetic calculations, e.g. typing in

## PRINT SQR 14.7 (RETURN)

results in the square root of 14.7 being displayed on the VDU immediately. Another use of the immediate mode is in programme debugging. If a line in your program is giving trouble, entering the line without a line number will allow immediate execution so that you can locate the problem easily. Before a line of code is interpreted it is checked for correct syntax. If you have made any mistakes, such as having unbalanced pairs of brackets in an expression, an error message will normally be displayed.

BASIC, then, is an ideal language for beginners (After all, BASIC does stand for Beginners All Purpose Symbolic Instruction Code!) but its capabilities should not be underestimated. Many professional programs have been written in BASIC, and you may progress a long way in the field of computer science before feeling the need for something better!

## BASIC PROBLEMS

The problems of BASIC stem mainly from the fact that it is an interpreted language. One problem is that the Interpreter program and the user program both have to be in memory at the same time so that a lot of memory space is needed. This problem is perhaps not so valid in these days of
cheap and plentiful semiconductor memory, as it used to be in the days of expensive core stores. Perhaps the most serious problem with BASIC, and with any other interpretive language come to that, is its speed. The program is not represented by a long list of ready to run machine code instructions in memory, but as a series of ASCII strings as they were typed in. To carry out the operations intended by the programmer, the Interpreter (A machine code program) has to analyse each line and then call other machine code routines to do the necessary donkey work. As you can imagine therefore, the BASIC language is several times slower in operation than some alternative techniques, particularly assembly language for example, where the mnemonic strings typed by the programmer are converted into a machine language program before the program is run. Fortunately, the speed of BASIC is not a limiting factor for most home computer applications, and its ease of use more than makes up for its shortcomings in the, speed department

## COMPILERS

A Compiler is a high level language software package which is used in a similar way to the Assembler package mentioned earlier. Unlike an Interpreter, the Compiler software does not have to be available in the system at run


The SOL terminal computer from Processor Technology is an $\mathbf{S 1 0 0}$ compatible system using the $\mathbf{8 0 8 0}$ microprocessor
time, rather it is used to process the high level language statements in the source program to produce a new machine code version of the program which can then be run by itself. A typical compiled high level language is FORTRAN (FORmula TRANslator) which is widely used for scientific applications. Programming in FORTRAN goes like this:

First, the high level program statements are typed into the system. These statements look somewhat similar to their BASIC counterparts.
Next, the Compiler software analyses the user program and produces an equivalent machine code program called the object program.
Finally, the object code can be loaded into memory and executed, whenever it is required.
This is the same sort of sequence as is used with an Assembler, except that in the assembly language case the source program starts out in mnemonic code and the machine code object program has a one for one relationship in terms of numbers of instructions. Compilers are a lot more sophisticated than Assemblers because they are able to convert compact high level language statements into much longer object code routines which do not of course have a one to one relationship with the source program.

## DEBUG

Debugging compiled programs is more difficult than is the case with an interpretive language like BASIC. Every time a bug is found, the source program has to be modified and the Compiler re-run before the effect of the change can be tried out. For this reason it is better to cut your programming teeth on BASIC rather than FORTRAN!
The advantages of a compiled language are not hard to find:

1) Because the Compiler need not be resident in the system at run time, memory space is used more efficiently.
2) Because no analysis is done at run time, compiled languages usually operate several times faster than interpreted languages.
3) The object code is all that has to be supplied to a second user of the program. This makes valuable programs more secure.

## OTHER LANGUAGES

Of course, FORTRAN is not the only language that is compiled, and although it is in widespread use elsewhere, it is probably not going to become very popular on home computer systems, where BASIC still reigns supreme. You can even get hold of a BASIC compiler, but this is aimed more at


The Horizon microcomputer has dual mini floppy drives and is available with a Disc Operating system
the industrial software market than the home-computer scene. A more recent and useful language for homecomputer systems is PASCAL which actually uses interpreter and compiler techniques to produce the final object code. With PASCAL the Compiler turns source statements into a special low level code called P-code, the P-code is then run interpretively on the host machine. The Interpreter required in this case is quite small, but it does have to be resident at run time, unlike the PASCAL compiler. The advantage of this technique is that the Compiler itself does not have to be rewritten for every new microprocessor chip or main-frame, only the small interpreter need be different in each case. This means that programs written in PASCAL can be run on any other machine with a P-code interpreter without the need for re-compilation. Apart from its operational advantages, PASCAL is also hailed by some computer scientists as a great step forward because it encourages better, "Structured", programming in the users. Some home computer systems are already using PASCAL, and we may see more of it in the future.

## DISC SOFTWARE

Once a floppy disc, system has been added to a home computer system many enhanced software features are possible. Assemblers, Interpreters and Compilers can certainly be disc based, but perhaps the most powerful feature available to the lucky disc user is a software package known
as a Disc Operating System or DOS for short. A DOS is a sort of super disc based monitor with a menu of powerful commands such as COPY (disc)MOVE (file) DUMP (file to an output device) SET (baud rate etc.) and many others which can be invoked by name from the keyboard. Each of these powerful commands is stored on the disc as a ready-to-run program. Typing in the command name is sufficient to load the command program from disc and set it running. A ROM resident monitor or operating. system which featured all these commands would be much too large and therefore impractical.

The best example of a home computer DOS is probably CP/M from Digital Research which runs on 8080 or 280 systems and features an Assembler, Editor, and hexadecimal Debug package as standard, with lots of other bolt-ongoodies also available from the same source.

The aim of this whistle-stop tour around home computer hardware and software has been to provide all P.E. readers with a basic grounding in home computer terminology and practice. Home computers are not a passing fad, they are here to stay, so why not go along to your local computer store and try one out? One word of warning though, if you get bitten by the programming bug, you may never be the same again.


An internal view of the Horizon

## CHECK-LIST

Before rushing out to buy a home-computer system, remember that it is a big investment. The following check-list may help in the evaluation of any particular system on offer.
(1) Does it feature a high level language?
(2) Is the language a "tiny" language (suitable for games but not maths) or is it a "standard" or "extended" language (suitable for most purposes; but examine available statements and arithmetic precision).
(3) Does the system come complete with ACSII keyboard and VDU display or TV modulator?
(4) How many characters can the VDU display at once, and can it handle graphics or colour?
(5) How much RAM has it, and is this easily expandable?
(6) Has it got software in ROM or must it be loaded into RAM? (In which case, more RAM is needed.)
(7) is it well supported by commercial software? (Interpreters, assemblers, maths packages, business programs, games, etc.).
(8) Can you expand it by adding: A printer, extra cassette unit, floppy discs, homebrew hardware, etc?
(9) Is it well made and built to last?
(10) Is a service network available?

# From Science of Cambridge: the new MK 14. Simplest,most advanced,most flexible microcomputer-in kit form. 

8-digit, 7 -segment LED display

MK 14 including optional RAM I/O and Extra RAM.


Edge connector for external keyboard with up to 32 keys

The MK 14 is a complete microcomputer with a keyboard, a display, $8 \times 512$-byte preprogrammed PROMs, and a 256 -byte RAM programmable through the keyboard.
As such the MK 14 can handle dozens of user-written programs through the hexadecimal keyboard.

Yet in kit form, the MK 14 costs only $\{39.95$
$(+\mathcal{L} 3.20$ VAT, and $p \& p)$.

## More memory - and peripherals!

Optional extras include:

1. Extra RAM-256 bytes.
2. 16-line RAM I/O device (allowed for on the $\mathrm{PCB}^{\mathrm{P}}$ ) giving further 128 bytes of RAM.
3. Low-cost cassette interface module - which means you can use ordinary tape cassettes/ recorder for storage of data and programs.
4. Revised monitor, to get the most from the cassette interface module. It consists of 2 replacement PROMs, pre-programmed with sub-routines for the interface, offset calculations and single step, and singleoperation data entry.
5. PROM programmer and blank PROMs to set up your ou'n pre-programmed dedicated - applications.

All are available now to owners of MK 14.

## A valuable tool-and a training aid

 As a computer, it handles operations of all types-from complex games to digital alarm clock functioning, from basic maths to a pulse delay chain. Programs are in the Manual, together with instructions for creating your own genuinely valuable programs. And, of course, it's a superb education and training aidproviding an ideal introduction to computer technology.
## SPECIFICATIONS

-Hexadecimal keyboard $\bullet 8$-digit, 7 -segment LED display $\bullet 8 \times 512$ PROM, containing monitor program and interface instructions $\bullet 256$ bytes of RAM $\bullet 4 \mathrm{MHz}$ crystal -5 V regulator $\bullet$ Single 8 V power supply $\bullet$ Space available for extra 256 -byte RAM and 16 port I/O Edge connector access to all data lines and I/O ports

## Free Manual

Every MK 14 kit includes a Manual which deals with procedures from soldering tẻchniques to interfacing with complex external equipment. It includes 20 sample programs including math routines (square root, etc), digital alarm clock, single-step, music box, mastermind and moon landing games, self-replication, general purpose sequencing, etc.

## Designed for fast, easy assembly

The MK 14 can be assembled by anyone with a fine-tip soldering iron and a few hours' spare time, using the illustrated step-by-step instructions provided.

## How to get your MK 14

Getting your MK 14 kit is easy. Just fill in the coupon below, and post it to us today, with a cheque or PO made payable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantec. If for any reason, you're not completely satisfied with your MK 14, return it to us within 14 days for a full cash refund.

Science of Cambridge Ltd,
6 Kings Parade, Cambridge, Cambs., CB2 1SN. Telephone: Cambridge (0223) 311488
$\square$ Extra RAM " $\{3.88$ (inc p\&p.)
$\square$ RAM I/Odevice " $£ 8.42$ (inc p\&p.)
I enclose cheque/money order/PO for $\mathcal{L}$ (indicate total amount.)

Name
Address (please print)

## Science of Cambridge

## SUPERSOUND 13 HI-FI MONO

AMPLIFIER


A supero solid stare audio ampthioughout. 5 slicon trant Houghout. 5 silicon tran
sistors oplus
 push-pull. Full wave push-pull,
rectuication.
Outpu approx. 13 watts rm .m into 8 onms. Frequency response 12 Hz 30 KHz
$\pm 30 \mathrm{~B}$. Fully integrated ate-amplifiter slage with sep. arate Volume. Base with sep
Treble cut controls sutast and a-15 onm speakers. Input for ceramic of crystal carticge sested. with appox. 40 m v for
 PRICE $£ 16.00$ P. \& P. f1-20.

HARVERSONIC MODEL P.A
TWO ZERO
An advanced solid state general
purpose mono amplifier guitabie purpose mono amplitier suitable Gulfar. Gram...etc. Features ${ }^{3}$
individually controlled inputs (each
input has a separate 2 stage prea-amp.). Input $1,15 \mathrm{mV}$ into 47 k . Input 2.15 mV into 47 k (suitable for use with mic. or gultar etc.). Input ${ }^{\text {Fuli }}$ mixing facintes with lull range Oass 8 \& treble controls. Ail inputs plug into standard lack sockets on fromt panel. Output socker on rear of chassis tor an 8 onm or 16 ohm speaker. Output in excess of 20 watts R.M.S. Very atractively finished purpose budt cabinet made from black vinyt covered steet. With a
brushed anodised aluminium front escuicneon. For ac mains $\begin{array}{ll}\text { operation } 200 \\ 240 \\ \text { volts } \\ \text { Size approx } \\ 12 \text { tin } \\ \text { wide }\end{array}=\sin$ nigh $x$ $7_{\text {In }}$ in deep.
Special introductory price $£ 28 \cdot 00-£ 2 \cdot 50$ carriage and packing
"POLY PLANAR* WAFER-TYPE. WIDE RANGE
ELECTRO-DYNAMIC SPEAKER
Size 11 in $\times 14$ Jin $\times 1$ in deep. Weight 19oz. Power handling
20 W RM.S. (40W peak). Impedance 8 ohm only. Response ${ }_{40 \mathrm{~Hz}-20 \mathrm{KHz} \text {. Can be mounted on ceilings. walls. doors. under }}$ tables. elc, ond used with or without batile. Send $S A$ A. . for full



MAINS OPERATED SOLID STATE AM/FM STEREO TUNER
$200 / 240 \mathrm{~V}$ Mains operated Solid Stale F.M. A.M.W Stere
Tuner
Covering
M. $540-1605 \mathrm{KMz}$ 88. 108 MHz Bult-in Ferrite rod aeria to M.W. Full AFC and $A G C$ on A.M. and FM. Stereo Beacon Lamp indicator Built in Pre.
amps with variable output voltage adjustable by pre-se control. Max op Voliage 500 mV R.M.S. into rok Simulated Teak inish cabinet. Wall maich almost any amplitier. Size $\mathrm{B}_{\mathrm{z}}$ in wide an thigh . وtin deep approx. Limited number onlv at $£ 28 \cdot 00+£ 1 \cdot 50$ P. \& P.
10/14 WATT HI-FI AMPLIFIER KIT A stylishly finished monaural amplifier with an output of 14 watis from 2 EL84s in push-pull. Super reproduction of both music and speech, with negligible hum. Separate inputs for mike and gram allow records and announcements to follow each other 3-15 $\Omega$ speaker and 2 independent volume controls, and separate bass and treble controls are provided giving good lift and cut. Vaive line-up. 2 EL84s, ECC83. EF86 and EZBO rectifier, Simple instruction booklet $25 p+$ S.A.E. (Free with parts). All parts sold separately. ONLY $£ 15.50$ P. \& P. £1.40. Also available ready built and tested E20.00 P. 81 P. £1.40.
STEREO MAGNETIC PRE-AMP Sens. 3 mV in for 100 mV out. 15 to 35 V neg. earth. Equ. $\pm 1 \mathrm{~dB}$ from 20 Hz to 20 KHz . Inpu
 Mullard LP1159 RF-IF module 470 kHz £2.25 + P. \& P. 20p. Full specirication and connection details supplied.
Pye VHF FM Tuner Head covering $88-108$
Pye VHF FM Tuner Head covering $88-108 \mathrm{MHz} 10.7 \mathrm{MHz}$ I.F. oulput. $7-8 V$ + earth. Supplied pre-aligned. With full circuit
diagram with precision-geared F.M. diagram with precision-geared F.M. gang and 323 PF +323 PF
A.M. Tuning gang only $\mathrm{E} .15+$ P. \& P. 35 p .

Slighty shop solled radios by well-known manufacturer for AC Slightly shop solled radios by well-known manufacturer for $A C$
Mains or bartery use. MW and $F M$ bands.' Oynamic $M /$ coil speakers, telescopic aerial and internal ferrite aerial. Earpiece socket for personal listening. Finished In attractive simulated leatherette.
Size 7"H $\times 91^{1 / 2} \mathrm{~W} \times 4^{\prime \prime} \mathrm{O}$ approx. Futly guaranteed.
Bargain price
MODEL
Few only similar to above, but battery operation only. Twin speakers, Four wave bands. MW, FM and two VHF bands for
reception of aircraft and some public services. ONLY reception of
$E 1.30$ p 8 .
E1.30 p\&idilti 5
Specification as Model FL4 but with additional SW band

## HARVERSONIC SUPERSOUND

## 10 + 10 STEREO AMPLIFIER KIT

A really first-class HI-Fi Siereo Amplifier K11 Uses 14 transistors channel Silicon Transistors in the tirst live stages on each channel resuling in even lower noise level with improved
sensitivity integrat preamp with Bass. Treble and two volume controls Suriable for use with Ceramic or Crystal cartridges. Ver simple to modity to sutf magnetic cartroge-insifuctions included Oulput stage for any speakers hrom io thonms. Compact destgn dilled printed curcuit board with component identitication clearly marked, smart brushed anodised aluminium front panel with matching knobs, wire, solder. nuts, bolts-no extras to buy Simple step by step instructions enable any constructor to build an amplitier to be proud or. Brief spechicalion. Power output watis $12-30,000 \mathrm{~Hz}$. Senstivity better than somv into 1 MO Full bandwidh $\pm 3 \mathrm{AB} \quad 12-15.000 \mathrm{~Hz}$. Bass boost approx, to $=12 \mathrm{aB}$, Treble cut approx, to -160 B . Negative leerback 180 B over main amp. Power requirements 35 V a 1 A .
Overall slze 12 in wide $\times$ Bin deep $\times 2 \frac{3}{4}$ in high.
Fully delailed 7 page construction manual and parts list free with kil or send 25p plus large SA
AMPLIFIEA KIT
Magneic Kit compenents 33 p extra)
POWEA PACK KIT
§14.50 P. \& P. 80 p

CABINET
f6.00 P. \& P. 95p

SPECIAL OFFER-only 25.00 if all 3 items
ordered at ons time plus $£ 1.25$ P. \& P
Full after sales service

## HARVERSONIC STEREO 44

A solid state stereo amplifier chassis, with an output of 3-4 watts per channer into 8 ohm speakers. Using the latest high technology overload protection. All components including rectifier smoothing capacitor, fuse, tone control, volume controls. 2 pin din speaker sockets and 5 pin din tape rec./play socket are mounted on in printed circuit panel. Size approx. 9 in $\times 24+n \times$ inn max. depih. atuminium 2 way escuichecn tod. with knobs, brushed anodised horizontally or vertically) at only $£ 10.00+50 p P \& P$. Mains transformer with an output of 17 V a.c. at 500 mA can be supplied.

STEREO DECODEA
 earth operation. Can be fitted to atmost any FM VMF radio or tuner Stereo beacon light can be fitted if required. Full details and instructions (inclusive of hints and tips) supplied. $£ 6.00$ plus 20 p

Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday Closed Wednesday.
Prices and specifications correct at time of press. Subject to

## HARVERSON SURPLUS CO. LTD.

(Dept. P.E.) 170 MERTON HIGH ST., MERTON, LONDON, S.W. 19 Tel: 01-540 3985
(Please write clearly)
please note: P. \& P. Charges QUOTED APPLY TO U.K. ONLY CHARGED EXTRA.



Guaranteed same day despatch

All products carry full 12 months guarantee. Please add $30 p$ p\&p with all orders. All prices include VAT

Shops open 9.30 to 6.00 daily.

Trade enquiries welcome. Dellvery: One week. Except where same day delivery is stated.

## 5 FUNCTION LCD Hours, mins, secs, month, date, auto calendar, back. light, quality metal bracelet. £7.65 Guaranteed same day <br> despatch

Very slim, only 6 mm thick.

## ALARM CHRONOGRAPH WITH DUAL TIME ZONE FACILITY



THOUSANOS SOLD 11 FUNCTION SLIM CHRONO 6 digit 11 functions Mours, mins, secs. Day, date, day o week. $1 / 100,1 / 10$,
$\times$ secs, mins. $x$ secs, mins.
Solit and lap Split and lap modes. Back light. auto calendar
Only 8 mm thick
This same watch Is being sold for $£ 22.00$ in newspaper and
 offer ads.

Metac Price $£ 12.65$
Guaranteed same day despatch

## PLEASE NOTE

All our products carry full money back 10-day reassurance. Watches are despatched by FIRST-CLASS POST. They are fitted with new batteries, and Include guarantee and Instructions.
Battery fitting service Is available at our shops for no extra charge. We stock most watch batteries and this service is available to all. Metac have been selling electronic watches probably longer than anyone eise in the UK. We take care of your watch not just this year but next year and the years after that.

## $M$ ㄷ E Electronics \& Time Centre

Tel. (01) 7234753
Phone or Send Card Number with order

## News Briafs

by Mike Abbott

## WALKY TALKY TERMINAL

NSTANTANEOUS access to computer information from a pocketsized portable radio is provided by the new RDX. 100 portable Data Terminal developed by Motorola. The RDX is a lightweight highpowered FM transmitter/receiver, fully self-contained, currently designed to be compatible with the IBM 360/370 Information Display System for data entry, retrieval and update applications. The radio has been developed for both indoor and outdoor use, requiring no telephone lines, interconnecting cables or external power source.

The RDX Data Terminal System comprises the RDX 100 Portable Terminal, a duplex FM radio base station and an RDX 1100 Control Unit, which can handle up to 32 portable terminals. Two-way, real time communications between the portable terminal and the computer is accomplished by an FM radio link between the terminal and the base station, and a synchronised landline link between the RDX 1100 Control Unit and the computer.

The radio operates in the UHF band, sending and receiving information from the base station at 80 characters a second, while the RDX 1100 Control Unit communicates with the IBM computer system at standard transfer rates from 1200 to 9600 bits per second. Because of its versatility, Motorola expects its RDX system to find a wide spread of applications, such as Freight Traffic Management, Stock Control, Materials Handling and Load Distribution Management.


One reason for its versatility is the optional detachable, solid state light pen powered from the portable terminal. Ideal for data entry applications, the RDX Light Pen permits very rapid and accurate bidirectional entry of bar-coded data. Utilising Code 39 (alphanumeric bar code), product information such as item, location, price, data and other descriptive information can be read by the RDX. Because this light pen is fully alphanumeric, existing product nomenclature can remain unchanged, eliminating the need to modify existing (or to develop new) product coding systems.

The system is expected to become available in the UK soon.

## FLOPPY SADDLE FOR YOUR PET

A
TWIN mini floppy disk system designed to preserve the integrated package approach adopted by Commodore for their Pet personal computer, has been released by Midland Micronics Ltd. of Solihull.

Pictured below, the M.M. 3 floppy disk system is seen mounted saddle style over Pet's VDU to give data access nearly 1,000 times faster than by the internal cassette system.


Connection is via the Memory Expansion Socket, but still allows RAM expansion, and the additional instruction set for addressing the disk from software or keyboard is held in a PROM supplied with the system.

The disk controller itself uses a microprocessor, permitting self test operations, and the mini diskette media can be flipped for recording on both sides.

## PRINTER

ANOTHER peripheral for Pet is a low cost business-quality printer which interfaces directly and is now available from GR Electronics Ltd. of Newport, Gwent. Based on the IBM 3982 "Golfball" unit, it gives full ASCII facilities with the ability to change typefaces and founts to suit specific applications.

The Petprint 3982 printer will copy letters, invoices, program listings, etc. in caps and lower case either as set up on the computer's VDU screen or input through the cassette unit. Printing speed is 15 char/sec and line length 130 characters, with a 10 char/in pitch which may be modified to 12 pitch if required. The printer is driven from the Pet's user port (not the IEEE interface) and its operation is controlled by a machine code program supplied on cassette. This gives the user flexibility in code conversion and timing as well as carriage return, line feed, tab and backspace functions.

When loaded into the Pet, the printer program occupies less than $\frac{1}{4} \mathrm{~K}$ of store and will not normally be affected by loading of further information through the cassette unit. Routines included in BASIC are for listing of Peek/Poke characters, solenoid codes and characters actually printed. A further facility is a step/print function which allows "mapping" of other printing elements.

The printers themselves are "second-user" heavy-duty units, regularly maintained during their initial service life as satellite printers in a large distributed system. They have been reconditioned by an IBM specialist, from whom service and repair facilities will also be available The price with fitted interface and software cassette is $£ 475$.

## OBITUARY

T Is with regret that we announce the death of John Miller-Kirkpatrick at the age of 31 . A man with great ability, he successfully designed and marketed the Scrumpi Microcomputer system until his recent illness. We offer our sympathy to his family and friends.

#  <br> D.F.BOWERS в.s. 

iN THE field of analogue circuit design, it is often necessary to generate constant electrical currents. One example of this is capacitors being charged with constant currents to produce linear ramp waveforms. Constant current (dynamic) loading improves the voltage gain of common emitter transistor stages and the linearity of common collector ones. Constant currents can compensate for the internal resistance of Zener diodes, and in conjunction with resistor "ladders" can produce accurate programmed voltage drops.

Modern d.c. amplifiers make extensive use of constantcurrent biasing, particularly in the input stages where this form of biasing improves the common-mode and supply line rejection ratio. Constant current sources also find more mundane applications such as nickel-cadmium battery charging.

Before looking into methods of achieving constant currents, it is informative to examine the necessary design criteria.

## WHAT IS A CONSTANT CURRENT SOURCE?

Fig. 1a shows the block diagram of a current source. The current I is fixed and is shown flowing in the conventional (positive to negative) direction. Fig. Ib shows two commonly used symbols for constant current sources, in both cases the arrow indicates the direction of conventional current flow.


Fig. 1a. Block diagram of a current source
Fig. 1b. Constant current generator symbols
As with all black-box devices, we can specify the output of Fig. la with two parameters, voltage and current. The current, of course, is fixed and for this to be true the voltage must therefore be dependent on the load resistance,
i:e. $V=I R_{L}$ where $V$ is output voltage $I$ is the constant current $\mathrm{R}_{\mathrm{L}}$ is the effective resistance
To ensure that is the case, the output impedance must in theory be infinite and with no load the output voltage should also be infinite. In practice, of course, neither of these parameters can be perfect, and figures for internal impedance and maximum output voltage are quite often used to specify the performance of a particular circuit. Another method is to specify a so-called output compliance, where the current is guaranteed to stay within a certain tolerance over a given range of output voltages. For example, a current generator of $10 \mathrm{~mA} \pm 1$ per cent working over a 10 V range would require an output impedance of greater than 50 k .

## DESIGNING CONSTANT CURRENT SOURCES

Unfortunately, constant currents are not quite as easy to generate as constant voltages, since devices such as constant current batteries do not exist. One way of getting round this is to use a large resistor in series with a voltage source (Fig. 2).
[E51]


Fig. 2. Simple current generator
To satisfy our $10 \mathrm{~mA} \pm 1$ per cent over a 10 V range, $R$ would need to be 50 k , but V would have to be 500 volts. The circuit would also waste a minimum of 5 watts of power, only 100 mW of which would ever be used in the load. Clearly this is a rather impractical solution.

## TRANSISTOR SOURCES

The bipolar transistor when connected in a common emitter configuration acts as a type of current generator. In theory, for a given base current the collector current will be constant, the relationship between the two currents being $\beta$, the current gain. The value of $\beta$ (like all transistor parameters) has the unfortunate habit of changing with temperature variations, so a little complication is necessary in a practical current source. Fig. 3 shows a current source of the type often used for biasing Zener


Fig. 3. Transistor current source
diodes (for example). Diodes D1 and D2 apply a voltage fixed at about -1.3 volts to the base of TR1. After the Vbe of the transistor has been subtracted, around 0.65 volts will be developed across R2 causing a current of $0.65 / \mathrm{Ramps}$ to flow through the load, because of the transistor gain, and hence we have a constant current source, easily adjustable by changing R2. The lower voltage limit is the negative supply voltage, and the upper limit is set by the voltage drop across R 2 plus the saturation voltage of TR1. Note that this circuit can also provide negative current flow (current sinking) by using a n.p.n. transistor and revers-
ing all polarities. The forward diode voltage drop has a temperature coefficient of $-2 \mathrm{mV} /$ degree centigrade which causes some drift of current with temperature change; applying a more accurate reference to the base of TR1 does not really help because a similar drift also applies to the emitter voltage of TR 1 . One method of alleviating this problem is to replace D1 and D2 by a forward biased gallium arsenide-phosphide l.e.d. The l.e.d. has an almost equal ( -2 mV /degree centigrade) temperature drift to the Vbe of TR 1, but around a volt extra forward voltage drop, producing a nearly constant 1 volt drop across R2.
For more accurate work, certain other factors must be taken into account. In particular, the collector impedance of a bipolar transistor is not all that high, usually around 100k for large signals, and also the emitter resistance of the transistor cannot be ignored. Additionally, a parameter known as the reverse transfer voltage ratio causes modulation of the effective base width (emitter resistance); all of these effects combine to reduce the output voltage compliance, and are extremely difficult to compensate for. To produce accurate current sources, it is necessary to make the circuitry independent of these parameters.

## USING OPERATIONAL AMPLIFIERS

The precision current sink shown in Fig. 4 uses an operational amplifier to "design out" the awkward transistor parameters. As with all operational amplifier feedback circuits, stabilisation is achieved when the operational amplifier inputs are at equal potential. Thus the voltage V ref must be impressed upon R . This


Fig. 4. Precision current sink using an op amp
causes an emitter current of $\mathrm{Vref} / \mathrm{R}$ to flow, and neglecting TR1 base current all this must flow through the load, producing a constant current (provided Vref is constant). Vref which should be kept quite low ( $\sim \mathrm{IV}$ ) to keep the voltage compliance range as high as possible, could be derived from a Zener diode or other reference source. Circuits of this type are often called transconductance amplifiers, since they act as voltage/current amplifiers with a gain of $1 / \mathrm{R} \mathrm{amps} / \mathrm{volt}$.
Two problems can arise with the circuit of Fig. 4. Firstly, a little of the current through R will actually flow into the op amp inverting input. If the current $I$ is high, this will usually be of no consequence, but for low currents the operational amplifier should be an FET input or superbeta type. A certain portion of the emitter current also comes via TR 1 base, and this constitutes an error ( 1 per cent with à transistor gain of 100) since the base current does not flow through the load. Replacing TR1 with a Darlington greatly reduces the error, and if the Darlington pair has an FET for its first transistor, the error will be almost zero.
Note that despite the extra transistor, operational amplifiers compensated for unity gain (such as the 741) will usually be stable in this configuration, since no extra loop gain is introduced.

## BIPOLAR TRANSCONDUCTANCE AMPLIFIERS

Although the circuit of Fig. 4 can be adapted to source current as well as sink it (using a p.n.p. transistor for TR 1 and a negative Vref) it is sometimes necessary to accommodate both polarities of Vref (and hence output current) with a single circuit. Rather complex versions of Fig. 4 can satisfy this requirement, but for low currents easier solutions are available. Of course, if the load is fully floating, the fact that the current through the feedback path of an operational amplifier can be kept essentially constant can be used (Fig. 5). This is often made use of in


Fig. 5. Simple feedback current generator
integrator circuits (where the load is just a capacitor) but if the load is not fully floating, an alternative solution must be found.

The basic bipolar current generator (transconductance amplifier) shown in Fig. 6 is formed from a single operational amplifier. If the Ierror current is very small (i.e. $\mathbf{R} 3+\mathbf{R} 4$ very


Fig. 6. A bipolar transconductance amplifier
large) then a constant current will flow through the load provided a constant voltage drop can be maintained across Rset. If $\mathrm{R} 1=\mathrm{R} 3$ and $\mathrm{R} 2=\mathrm{R} 4$, then any voltage at the output will be fed back to the non-inverting input in the correct proportion to ensure this condition, and the output current will be Vin/Rset x R2/R1, which can be easily adjusted with Rset. This holds true for output voltages less than $\pm$ (Vsat - Iout Rset) where V sat is the maximum output swing of the operational amplifier. The highest value of lout is naturally limited to the maximum


Fig. 7. An improved transconductance amplifier
operational amplifier output current. If the Ierror current is large enough to cause problems, the circuit of Fig. 7 can be used. In this circuit, the gain is adjusted to compensate for the Ierror current and for the highest accuracy very close tolerance resistors should be used. Adjustment of this circuit is not easy, since all resistor values are interrelated. The values shown are for a gain of $1 \mathrm{~mA} /$ volt. Note that the load need not necessarily be earthed, but can be connected to any potential that maintains Vs within the operational amplifier voltage swing limit.

## OPERATIONAL TRANSCONDUCTANCE AMPLIFIERS

Another way of obtaining a bipolar constant current source is to use an operational transconductance amplifier such as the CA3080 (Fig. 8). This device is designed to give a current output (up to $500 \mu \mathrm{~A}$ ) from a voltage input. The gain is given by $\triangle$ Vin $\times \mathrm{gm} \mathrm{amps} /$ volt where $\triangle$ Vin is the voltage between the input terminals and $\mathrm{gm} \bumpeq 19.2 \times$ Iabc for the CA3080.


Fig. 8. An operational transconductance amplifier
Other types of current amplifier such as voltage current transactors. (VCTs) have been designed, but their application is not usually appropriate to the design of simple current generators, and in any case the latter are not yet commercially available.

## FETS AS CURRENT SOURCES

If after all this you are puzzled as to why some enterprising manufacturer has not brought out some simple current generator devices (akin to Zener diodes) then you will be pleased to hear that Siliconix market a range of two terminal devices, often referred to as "constant current diodes".

Although ultra high precision cannot be achieved with these devices, they make very useful bias sources or dynamic loads. These devices use FET technology, and can in fact be made using ordinary junction FETs (such as the 2 N 3819 ). Fig. 9a shows the principle.


Fig. 9. Constant current "diode" principle
When sufficient reverse bias exists on the gate of an FET, the current through the channel starts to reduce. If the gate and
source are connected together, then current will increase until the voltage dropped across the internal section of the source channel (section a) exceeds the required gate voltage. At this point, the current will be held almost constant. The actual value will depend on the channel resistance and pinch-off voltage of the particular FET, and is known as Idss. This value varies greatly from device to device with normal FETs, and for a 2 N 3819 can be anywhere from 2 to 20 mA . The current can be reduced by inserting a resistor in the source of the FET (Fig. $9 b)$.

## voltage regulators as current sources

Occasionally, current sources are required to deliver quite heavy currents (such as with battery chargers). Fig. 10 shows how a standard voltage regulator i.c. can be used to provide this function.


Fig. 10. A voltage regulator as a current source
The regulator ensures a constant voltage across from Vout to ground, and this causes a current of Vout/R to flow through $\mathbf{R}$ (and hence through the load). Added to this we have the regulator quiescent current (Iq) which is typically several milliamps and usually constant enough to cause no problems. Low voltage regulators should be used to increase the output voltage range and to keep the power dissipation in R to a minimum. Currents of several amps, depending on the regulator, can be provided in this manner.


UNDERSTANDING ELECTRONICS
By R. H. Warring
Published by Lutterworth Press
175 pages. Price $£ 3.95$

THIS book attempts to explain in everyday language basic electronic principles and behaviour of simple circuits. It is an interesting book, both to the layman for the simplicity and clarity of the explanations, and to the qualified reader for the ingenuity in avoiding recourse to mathematics. The reader is asked to accept on face value only the few circuit properties which defy this form of treatment.

The book contains much useful information regarding component types, their construction, marking, mounting, etc. One glaring omission is any mention of the principles of negative feedback, the basis of every modern amplifier circuit.
J.F.G. Retail Sales，London：40－42 Cricklewood Broadway，NW2 3ET．Tel：01－452 0161，2．Telex：21492．London： 325 Edgware Road，W2．Tel：01－723 4242． Glasgow： 85 West Regent Street，G2 2QD．Tel：041－332 4133．Bristol： 1 Straits Parade，Fishponds Road，B516 2LX．Tel： 0272654201.


LINEAR See catalogue for full range

| LINEAR |  | ogue for | 年ran |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ca3018 | 0.75 | LM377N | 180 | NE558N | 1.98 |
| CA30184 | 1.10 | LM378N | 240 | NE580N | 4.50 |
| с 13020 | 220 | LM3795 | 4.25 | NE561N | 50 |
| CA3020A | 220 | LM380N－B | 096 | NE562N | 4.50 |
| 3028 A | 0.90 | L3380\％－14 | 108 | NE565CN | 1.00 |
| CA30288 | 125 | LM3314N | 2.70 | Ne586N | 1.75 |
| са3030 | 150 | LM381N | 1.69 | NE567N | 1.00 |
| CA3030A | 220 | LM382N | 1.32 | NE571N | 495 |
| CA3038 | 290 | IM384N | 1.55 | SAl |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| ${ }^{\text {a }} 3045$ | 1.55 | LM381N | 1.10 | Sas5 | 270 |
| CA3046 | 0.77 | ［M388\％ | 1.00 | SN76601N | 130 |
| Ca3048 | 245 | LM389N | 1.00 | SN76003N | 3.08 |
| CA3052 | 1.78 | ［M702C | 0.81 | SN7600日KE | 1.95 |
| CA3080 | 0.85 | ［m709CH | 0.70 | SN78013N | 2.04 |
| CA3080A | 2.10 | ［M709－8 | 0.50 | SN76013ND | 1.72 |
| C43086 | 0.50 | Lm709－14 | 0.49 | SN76018KE | 90 |
| CA3088E | 187 | LM710CH | 0.67 | SN78023N | 205 |
| Ca3089E | 290 | LM710－14 | 048 | SN76023N0 | 1.72 |
| CA30900 | 440 | Lm71icn | 0.48 | SN78033 | ． 08 |
| CA3130 | 1.06 | LM7230 | 0.62 | SOA | 35 |
| CA3140 | 10 | LM723C14 | 0.45 | S0429 | 35 |
| ［355N | 0.80 | ［M741CH | 0.50 | TAP100 | 00 |
| LF356N | 0.80 | LM7415－6 | 0.30 | TAA263 | 1.35 |
| ［5357N | 0.80 | LM741C－14 | 0.60 | TAA300 | 3.70 |
| LF13201N | 3.00 | LM747CN | 0.78 | TAA521 | 1.10 |
| Li3331N | 3.00 | LM748－8 | 0.50 | TAA522 | 65 |
| L513741H | 049 | LM1303N | 1.15 | TAAS | 0.48 |
| LF13741N | 0.38 | ［M1304N | 1.52 | tasblie | 2.30 |
| LM3018 | 030 | ［M1305N | 1.52 | TAA621 | 50 |
| LM307N | 0.50 | ［M1307N | 122 | tasbia | 1.65 |
| M308N | 0.55 | LMI3ION | 2.10 | TAA6618 | 1.45 |
| LM309KC | 1.95 | LM1351N | 130 | tap70 | 3.50 |
| LM317K | 3.35 | LM1458N | 0.45 | TAA930A | 45 |
| ［M317MP | 1.35 | LM1496N | 0.97 | TAA930B | A5 |
| M M 317 | 220 | Lmidion | 1.94 | －7BA120 | 0.80 |
| LM318N | 2.45 | LM1801N | 225 | tBa510 | 1.76 |
| LM320才－5 | 1.86 | LM1808N | 2.10 | tBas20 | 2.60 |
| LM320－12 | ．86 | LM1812N | 620 | TBA5200 | 70 |
| LM320T－15 | 1.86 | LM1820N | 1.16 | tras3 | 235 |

## SIEMENS

LEDS＋OPTO


## SWITCHCRAFT

|  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| all prices | $1-9$ | $10-49$ | $50-99$ | $100+$ |
| are each | 1.80 | 1.61 | 1.44 |  |
| A3F | 1.88 | 3.32 | 2.95 |  |
| A5F | 3.68 | 1.39 | 1.23 |  |
| A3M | 1.53 | 1.39 | prices |  |
| A5M | 2.97 | 2.66 | 2.35 | on |
| AR3F | 4.77 | 4.30 | 3.82 | on |
| AR3M | 4.41 | 3.96 | 3.52 | request |
| D3F | 2.45 | 2.17 | 1.92 |  |
| D5F | 3.92 | 3.55 | 3.13 |  |
| D3M | 1.48 | 1.32 | 1.17 |  |
| D5M | 2.69 | 2.43 | 2.16 |  |
| F＝female $M=$ male | R＝right angle | $\mathrm{D}=$ chassis $\mathrm{A}=$ cord |  |  |
| 3＝No of pins |  |  |  |  |

##  GROW WITH KIM（ision in

 AMEAICA＇S FASTEST SELLING MOST POPULAR 6502 BASED SYSTEM－EASILY EXPANDED INTO A PERSONAL HOME COMPUTER
## The basic KIM 2 includes Hex keyboard and display，

 audio cassette interface．VDU interface．Superb docu－mentation． 2 K monitor software in ROM．Powerful instruction set．The beauty of this system is the ease of
extenslon and versatility with all the possible future requlrements catered
or．Up and running in minutes．Any future benefits from Commodores PET computer will be soitware compatible with their KIM system and in fact your KIM system has the design flexibility to sult any requirements．
KIM IS EXPANDABLE－Expand as you learn up to 65 K
KIM 1 －Basic board with above features assembled KIM 3－8K static RAM card plugs into motherboard KIM 4 －Motherboard（takes $6 \times$ KIM 3）＋power supply


The Commodore PET and KIM are both based on the 6502 micro VDU INTERFACE－VDU card－takes control computer terminal via aerlal socke1．Also standard RS232 connector for micro computer or modem－ 16 lines $\times 64$ characters

## PET 2001 COMPUTER

Suitable for educational，commercial，scientific and domestic applications
Memory－ 8 k ram（expandable to 32 k externally） Display－ 1000 characters $40 \mathrm{col} \times 25$ rows Keyboard－full ASCII character set＋ graphics separate numeric keyboard Other features include－reliable cassette unit，comprehensive $1 / 0$ facilities， 8 k resident basic Interpreter
Send S．A．E． $9^{\prime \prime} \times 6^{\prime \prime}$ for data and
Send S．A．E．
software list


HARDWARE PRICES
PET 2001－8 £695．00 PET SECOND CASSETTE
$£ 59.40$ PET 2020
PRINTER

NEW 1979 CATALOGUE
48 page catalogue－new enlarged micro section－largest range of quality com－ ponents from franchised suppliers available in the UK．All VAT inclusive more． 50 p post paid or 40 p to callers at any of our four branches．


Quick service on all orders－please add 40p
for P\＆P．Telephone for P\＆P．Telephon
orders E 10 minimum．
Credie cards welcome
TTL See catatogue for full range
$\begin{array}{llllllll} & \text { SN7400N } & 0.17 & \text { SN74123N } 0.55 & 74 C 107 N & 122 & 741 S 38 N & 0.32 \\ \text { SN7401N } & 0.17 & \text { SN74124N } 120 & 74 C 150 \mathrm{~N} & 4.14 & 74 \mathrm{SS40N} & 0.26\end{array}$

 | SN7403N | 0.17 | SN74141N 0.56 | $74 C 154 N$ | 368 | $74 L S 47 N$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

 $\begin{array}{lllllll}\text { SNT407N } & 0.39 & \text { SN74151N } 0.76 & 74 C 162 N & 1.11 & 74 L S 54 N & 025 \\ \text { SN7408N } & 0.22 & \text { SN74153N } 0.65 & 74 C 163 N & 1.11 & 74 L S 55 N & 0.26 \\ \text { SN7409N } & 0.22 & \text { SN74154N } 1.20 & 74 C 154 N & 104 & 74 L \text { Sb3N } & 126\end{array}$ | SN7409N | 0.22 | SN7 154 N | 1.20 | 746154 N | 104 | $74 L$ S63N |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllll}\text { SN7412N } & 0.20 & \text { SN74160AN } & 74 C 174 N & 0.90 & 74 L S 75 N & 0.58 \\ \text { SN7413N } & 0.36 & 0.90 & 74 C 175 N & 0.90 & 741 S 76 N & 0.42\end{array}$

 $\begin{array}{lllllll}\text { SN7418N } & 0.25 & & 090 & 74 C 193 N & 1.11 & 74 L S 83 A N \\ 0.90 \\ \text { SN7417N } & 0.25 & \text { SN74162AN } & 74 C 195 N & 104 & 74 L S 85 N & 0.95\end{array}$ $\begin{array}{llllll} & 0.90 & 74 C 200 N & 6.70 & 74 L S 86 N & 0.44 \\ \text { SNT420N } & 0.22 & & & \\ \text { SN7423N } & 0.22 & \text { SN74163AN } & 74 C 221 N & 1.36 & 74 L S 90 N\end{array}$ $\begin{array}{llllll}\text { SN7425 } & 0.22 \\ \text { SN7 } & \text { SN74164N } 0.98 & \text { SN74H0ON0．55 } & 74 L S 92 \mathrm{~N} & 0.70\end{array}$
 $\begin{array}{llllll}\text { SN7430N } & 0.22 & \text { SN74167N } 2.50 & \text { SN74H04N } 0.60 & 74 L \text { SS95AN } 0.90 \\ \text { SN7432N } & 0.22 & \text { SN74174N } 1.01 & \text { SNT4H05N O．BO } & 74 / \text { S98N } & 1.35\end{array}$ SN7437N 024 SN74175N 1．00 SNT4H10N 0.55 74LS107N 0.42
 SN7441AN 0.59 SN7418ON 100 SN74H21NO．55 74LSII3N 0.42 SN7442N 0.45 SN7418IN 2.00 SN7 4H30N 0.5574 IS S1 14 N 0.42 $\begin{array}{lllllllll}\text { SN7445N } & 0.75 & \text { SN74182N } 0.80 & \text { SN74H40N0．55 74LS122N } 0.62 \\ \text { SN7446N } & 0.60 & \text { SN74184N } 1.50 & \text { SN74H51N0．55 } & 74 L S 123 N & 0.83\end{array}$


 SN7454N 0.20 2n 2.10 SN74LOON 0.55 74LSI38N 0.65

 $\begin{array}{lllll}\text { SNT7473N } & 0.36 & \text { SN74192N } 0.90 & \text { SN74L74N } 0.90 & 74 \text { LS148N } 1.35 \\ \text { SN7474N } & 0.26 & \text { SN74193N } 0.90 & \text { SN74L85N } 2.62 & 74 \text { SS15IN } \\ 0.58\end{array}$










TR\｜ACS see catalogue for full range

| are each | amps | volts | 1＋ | 100＋ | $300+$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2060 |  | 400 | 0.60 | 0.34 |  |
| 2250 | 6 | 400 | 0.70 | 0.40 |  |
| 2260 | 8 | 400 | 0.70 | 0.40 |  |
| 2360 | 12 | 400 | 1.00 | 0.60 |  |
| 2460 | 16 | 400 | 1.21 | 0.65 | prices |
| 2530 | 20 | 400 | 1.87 | 1.15 | on |
| 2630 | 25 | 400 | 2.20 | 1.32 | request |
| 40576 | 15 | 400 | 2.20 | 1.65 |  |
| 40669 | 8 | 400 | 1.30 | 0.93 |  |
| 40842 |  | 450 | 1.25 | 0.94 |  |
| 2N4444 | 5 | 600 | 1.95 | 1.47 |  |

## are e 106 A 106 B 106

 106116
4066
4084 amps
4
4

## STEREO PRE-AMPLIFIERS



CPR 1 - THE ADVANCED PRE-AMPLIFIER
The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably in the disc stage. The overload margin is a superb $40 d 8$, this logether with the high slewing rate ensures clean top, even
with high outout cartridges tracking heavily modulated records Common-mode distontion is eliminated by an unusuat design. R.I.A.A. is accurate to 1 dB : signal to nolse ratio is 70 dB relative 103.5 mV d distortion < . $005 \%$ at 30 d 8 overload 20 kHz .

Following this stage is the flat gain/bolance stage to bring tape, suner. etc. up to power amp. signal
 $80 \times 20 \mathrm{~mm}$. Supply to be $\pm 15$ volts.

## MC 1 - PRE-PRE-AMPLIFIER

Suitable for nearly all moving-coil cartridges. Sensitivity $70 / 170 \mathrm{OV}$ switchable on the p.c.b. This module brings signals from the now popular tow output moving-coil cartridges up to 3.5 mV trypical signal required by most pre-amp disc inputs). Can be powered from a 9 V battery or from our REG 1 regulator board

## REG 1 - POWER SUPPLY

The regulator module, REG 1 provides $15-0-15 \mathrm{v}$ to power the CPR I and MC 1 . It can be used with any of our power amp supplies or our small rransformer TR 6 . The power amp kit will accom-

POWER AMPLIFIERS
It would be pointless to ist in so small a space the number of recording studios, educational and government establishments, etc. who have been using CRIMSON amps satisfactorily for quite some thme. We have a reputation tor the highest quality at the lowest prices. The power amp is
 response $10 \mathrm{~Hz}-35 \mathrm{kHz}$. 3 dB ; stability unconditional; protection drives any load safely; sensitivity $775 \mathrm{mV}(250 \mathrm{mV}$ or 100 mV on request); size $120 \times 80 \times 25 \mathrm{~mm}$.

## POWER SUPPLIES

We produce suitable power supplies which use our superb TOROIDAL transformers only 50 mm high with a $120-240$ primary and single boll fixing fincludes capacitors/bridge rectifier).

## POWER AMPLIFIER KIT

The kit includes all metalwork, heatsinks and hardware to house any two of our power amp modules plus a power supply. It is contemporarily styled and its quality is consistent with that of it with confidence in a few hours. instructions and full back-up service enables a novice to buil


## SOLDE your component buying problems with this

 fumous
## Cutalogue

- The finest components catalcgue yet published.
- 128 A-4-size pages.
- About 2,500 items clearly listed and indexed.
- Profusely illustrated.
- Bargain List sent free
- At $£ 1 \cdot 25$, incl. p. \& p., the catalogue is a bargain.

Send the coupon below now.


## PROGRESSIVE RADIO

31 CHEAPSIDE.
LIVERPOOL 12 2JD
FULL SPEC. SEMICONDUCTORS SPECIAL OFFER:-
TBAB00 10 for $£ 5 \cdot 00$. ORP61 Mullard boxed 30p. 7418 Pin 6 for $£ 1$
 Clear Infra Red $19 p$ each. TLG 107 Green $0 \cdot 2^{-}$Flat Top 17p each. NE555 Timers 27 p each.
TRANSFORMERS, 6-0-6v 100ma, 9-09 75ma. 12-012 50 ma 75 p each, 12-012 100ma 95p, 12 v 500 ma 95 p . $1: 1$ triac/xenon pulse transformers 30 p , CHOKES 6 MH 3 amp 20p. U.H.F. TV Tuners, push button (not varicap) new and boxed $£ 2.50 \mathrm{p}$. Miniature toggle switches, SPST $8 \times$ break $16 \times 16 \mathrm{~mm} 15 \mathrm{p}$ each type. Texas By205 800v 6a Sil: Rects 18 p each. Not Sem. LM34OT 6 V ta voltage regs 40 p . AD $161 / 162$ matched pair 70 p pair.
rools Small side cutters $5^{\prime \prime}$ insulated handles $£ 1.35$ p. Snub nosed pliers $5^{\prime \prime}$ insulated handles £1.35p. Board whith 1412 volt reed relays $£ 1.98 \mathrm{p}$. Large mains lester screwdrivers. fully insulated 8 . 4 . Test laad jumper sets, 10 leads win insusied croc clips each end, difterent coiours 80p. Telephone pick up coil, suction rype with 3.5 mm jack plug 50 p .9 vok
 20KH2 Trans 4witch, straight probe $£ 2 \cdot 00$, curved probe (cassette) $£ 2.35 \mathrm{p}$.
s.
TERMS: cash with order, lof official orders from colleges etcl. Postage 30p unless otherwise shown, overseas post at cost VAT inclusive prices S. A.E. for new illustrated lists.

Progressive Radio, 31 Chespside, Liverpool L2 2DV.


# Semiconductor UPDATIT FEATURING: tl496C 8202 IRF 100 IRF 305 

## PORTABLE POWER

Ever had the problem of providing power for a small portable unit that needs the regulation 9 volts? Easy you may say, bung in a PP3 or a PP6 battery and the problem is solved. These days though, batteries of that sort are expensive items and there may be a better way to solve the problem.

Rechargeable Nickel Cadmium cells, for example, are now freely available, and although they are initially more expensive than primary batteries, their long life can more than make up for that. Trouble is while these rechargeable cells are great for one or two cell operation, stick to the requirement for the full 9 volts and at 1.2 volts per cell you've got an expensive battery.

To get the best out of rechargeable cells for calculators, radios, metal detectors and so on, what we need is a simple circuit which will step up the low voltage from a couple of A.A. size cells to a respectable 9 volts. OhI, and we need a built-in recharging circuit too, so that with the aid of only a small step down transformer, we can give our cells an overnight boost, or even let them trickle charge while we are using the unit indoors.

I don't suppose you will be too surprised when I tell you that somebody has put all of the necessary goodies into an itsy-bitsy 8 pin mini-dip package, to make the job easy for us.
"Somebody" is no less than Texas Instruments, and the device in question is
the TL496C, termed a 9 volt Power-Supply Controller. All you need in addition to the TL496C is an IN4001 diode, a $330 \mu$ capacitor, a $50 \mu$ inductor and of course a couple of Ni Cad cells.

To recharge the cells you will also need a mains transformer with about a 6 volt r.m.s. secondary, but there is no need to build this into the portable equipment if you don't want to.

When running off the batteries, the TL496C acts as a switching regulator to generate the required 9 volts with the aid of the inductor.

When connected to the mains, an internal diode rectifies the positive half cycle and feeds it to a 9 volt series regulator to maintain the output. At the same time, the negative half cycle is rectified by an external iN4001 and used to recharge the batteries-clever, eh?

With two cells connected, you can get up to 80 mA at 9 volts at 66 per cent efficiency. With a single cell, this drops to 40 mA but the efficiency remains the same. At last a small, cheap i.c. which is down to earth and practical!

## REFRESHES THE BITS OTHER PARTS CANNOT REACH!

Dynamic RAMs, such as the 4 K 2104 , the 16 K 2117 and even the new Texas 64 K device, have a problem. They keep forgetting. Not such a healthy characteristic in devices which are, after all, purchased for their memory capability!


## TWO-CELL OPERATION

[^2]To make matters worse they forget everything in just a few milliseconds, and have to be reminded every 2 milliseconds about just what it was they were supposed to remember!

This apparently devious behaviour is due to the fact that in dynamic (as opposed to static) RAMs data is stored as a charge on the gate capacitor of a MOSFET. This charge leaks away, but 2 milliseconds is a long time to a microprocessor, and the reduction in size and power dissipation possible with dynamic RAM techniques makes them cost effective for large memories.
To prevent the loss of data, the memories are "refreshed" every 2 milliseconds or so with the aid of external circuitry which can get very complicated, especially in systems using 16 pin RAM chips where the address lines have to be multiplexed too.
If you are contemplating the construction of a big memory for use with your home computer, hold everything I Using dynamic RAMs is now not only cheap but simple too, thanks to the 8202 from Intel. This new 40 pin chip puts the whole of the refresh circuit, and the address multiplexer into one easy to use package.
No need to wire up arrays of TTL gates and refresh counters, no need to worry about what happens to memory refresh while DMA (Direct Memory Access) transfers take place, the 8202 takes care of it all. It'll handle a full 64 K of memory too, enough for a very capable "Star-Wars" program!

## KILO-WHAT?

Some time ago I extolled the obvious virtues of the new Siliconix VMOS power FETs which eliminate many of the disadvantages of bipolar power transistor technology while providing CMOS compatibility and the wherewithal to switch 2 amps in just 10 nanoseconds.

International Rectifier have now joined the power MOSFET brigade with a couple of devices with a very impressive specification.

The IRF 100 is rated for 16 amps at 80 volts and has an "on" resistance of just 0.2 ohms maximum

The IRF 305 is rated for "only" 5 amps but (hold on to your rubber matl) at no less than 400 volts!
Both devices can, in consequence, switch over a kilowatt. Just the job for that transistorised arc welder you always wanted to build!

# ค <br> <br> ... a selection from our postbag 

 <br> <br> ... a selection from our postbag}

Readers requiring a reply to any letter must include a stamped addressed envelope.
Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

## Extravagate

Sir-The article in the January issue's Ingenutty Unlimited section of P.E., describing a method of adding upper and lower bars on digits 6 and 9 of 7447 display drivers, is somewhat extravagent on gates. For the benefit of those readers who have not seen the method generally employed, these are the details:
Since the 7447 is an "open-collector" device, other similar devices may be connected across the outputs, using the "wired-or" mode.


Fig. 1 shows how just two inverters from a 7405 (5V) or 7406 (30V) hex. open-collector may be used. This arrangement does not allow the "blanking" facility to be used; if it is required, the circuit of Fig. 2 should be used. This method uses two gates from a 7403 (5V) or 7426 (15V) quad. two-input open-collector NAND gate. Both methods allow more displays to be driven from fewer packages.

Unfortunately, I cannot claim any originality for these circuits, as they are too well-known in the industry.
M. A. Priestley, B.Sc.,

Edinburgh.

## Symbolism

Sir-A few comments on P.E. and circuit diagram symbols:

1. The new component value labelling system is a good step. However, be warned that for inductors, 100 m could be ambiguous-Rank Service Spares use the suffix " $m$ " in place of " $\mu$ " for capacitors. It's unlikely, of course, that an inductor and a capacitor would be confused-but it is worth while remembering that 100 m could be interpreted as $100 \mu$ by some!
2. Keep your present symbols for components. The habit of naming transistors "Q" etc. instead of "T" or "TR" is terrible, after all, it's not a "Quansistor" now is it? Unusual symbols make reading very difficult, as do non-standard layouts of circuit diagrams. There is no quibble at all with your present circuit diagrams or symbols. Change for change's sake is all too prevalent today-and I don't need it.
3. The current craze for superfluous verbiage worries me, e.g.
This moment in time $=$ this moment Visible gallium arsenide red indicator device $=$ l.e. .
Advanced Technology $=$ standard electronic circuitry
Total solution $\}=$ an elegant Total systems capability solution?
Please let it stay on the other side of the Atlantic!

So to end, broadly speaking, keep P.E. as it is. Please try to avoid that which is insubstantial, trendy and "commercial" in character; and we speak British English here-and expect to read British English-not mid Atlantic slang.

## B. J. Duncan,

Tattershall, Lincoln.
The above is an extract from a very lengthy letter on P.E. and other magazines from Mr. Duncan.

## A Pointless Exercise?

Sir-Full marks! for using the "pointless" method of recording component values ( 6 k 8 , $4 \mu 7$, etc.) and for using "nano" for capacitor values where appropriate.

1 find no more difficulty visualising that $4 \mathrm{n} 7=4700 \mathrm{p}=\cdot .0047 \mu$ than visualising that
$6 \mathrm{k} 8=6800 \Omega=.0068 \mathrm{M}$.
Full marks! also for not using those silly boxes to represent resistors. Symbols, to me, should be functionally descriptive, and I am sure that the zig-zag is better for a resistor than any little boxes.

More power to your elbows, gentlemen.
Chris Finn, C.Eng.
Southwood Park
Beverley
Sir-A pointless exercise, you can say that again!!!! At the moment all the capacitors in my service kit are clearly marked. . $01 \mu \mathrm{f}$, $.002 \mu \mathrm{f}$ etc., etc. I can, thank heavens, still order them like this. I have just received from the USA some circuit modifications to cinema equipment we service-the components (nice squiggles for resistors!) are clearly marked - Iuf, - $01 \mathrm{uf}, 1.5 \mathrm{k}$ etc.

I have just looked at a Japanese circuit diagram-again the components are clearly labelled as above. You really think that it is easier to write 470 n than $47 \mu \mathrm{f}$ ? ? And 3 K 9 than 3.9 K . I know which I prefer and which is easier to read. Who on earth wants to deal in nanofarads-I suspect that most service engineers like me will find the rigmarole of working these out an unnecessary chore.

You state that pointless values are less prone to printing or drawing errors-I would think you have no proof of this. Printing or drawing errors are only avoided by care in preparation and copy reading-making something easier to write does not necessarily make mistakes less easy to make.

How about an editorial rethink in the nice fresh air of Poole and a return to common sense?

> P. Taylor,
> St. Agnes,
> Cornwall.

Maybe it is not easier to write 470n than $.47 \mu F$ but remember we have to put $0.47 \mu F$ to help avoid confusion, and how about $0.002 \mu F$ or $2,000 \mathrm{pF}$ rather than $2 n$; such long designations can also be a problem on a crowded circult diagram.

Unfortunately, a point is easily lost in printing or a dot may appear in just the wrong place. No amount of checking or proof reading will overcome this.
We are sure you will find $3 k 9$ just as easy to read once you are used to it and $n F$ is a perfectly valid denomination of $F$-writing $470 n$ as opposed to $0.47 u F$ is the same as writing 1 mV instead of 0.001 V -it is only a question of familiarity.

Any more views?-Editor.

## All Change!

Sir-In your January editorial you justify your "pointless" component values as "it is widely accepted", while although you have no immediate plans to use boxes to represent resistors and capacitors, Toby Bailey expresses the view in his "letters" reply that such a move would be change for change sake, while you believe such a change would make circuits less easy to read.

In principle I agree but then must ask, why. you have departed from using the widely accepted symbols for logic gates that almost everybody (Mullard, SGS, Harris, Texas etc.) use.

Please practice what you preach and use easy to read symbols that are in common use and let's not have change for change sake! I don't care if your new symbols are in accordance with the "BS". BS will have to follow American practice in the end, it's happened before.

While I am writing may I ask your "Patents Reviewer" how Indesit of Turin got a patent (BP 1497418), January issue, on a technique that is common knowledge. I have read a number of articles on this topic over the years including one in the February 12th 1976 issue of "Electron" (pages 52-4) and I have known of the technique for at least 15 years.

## B.H. Beeston Enfield

We must point out that we have not "departed from using widely accepted symbols" or made "change for change sake". In fact our logic symbols have been used in P.E. since January 1972. There may now be a case for change and we have noted your feelings. By
the way, we are not using BS gate symbols, some new $B S$ symbols are:


Your point on the Indesit patent is taken up below.

## Standard Patented

Sir- I am both dismayed and worried by the report, on page 68 of your January 1979 issue, that Indesit have been granted a British Patent on what has been the standard method of producing a $\log$ law potentiometer for several decades. I can remember being taught this method over twenty years ago as an apprentice and whenever I have needed a $\log$ law pot have used this method.

How then can a foreign washing machine maker claim to have invented such a technique? Does this mean that the British Patent Office is about to grant patents to foreign tea cup makers for the "new" method of obtaining a lower value resistor of non-preferred value, by putting another suitable resistor in parallel with the first one?

Perhaps some enterprising British company
should apply for foreign patents on all the standard methods used in our industry to produce components of different values or characteristics from those readily available.
D. Lands, Dorset.

May we assure readers that a patent has been granted to Indesit as described in the January issue. Our contributor, Adrian Hope, bases the reviews on copies of patents obtained from the Patent Office. Sometimes he deliberately selects patents on apparently old ideas to draw attention to such anomolies. So how do these anomolies arise and what can be done about them? The Department of Trade Press Office inform us that a search of existing literature is made before new patents are granted. But no search can ever be conclusive and it is for this very reason that patents can be challenged. Under the laws previously existing in the UK this has been a rather tortuous procedure. However a new law came into force in June 1978 which streamlines procedures (see next month's Patents Review). But due to the inherent slowness of patenting, patents will continue to be granted under the old laws for a period of several years yet. Although these are still open to "revocation" under transitional legal provisions, readers will in most cases be well advised to let sleeping dogs lie and simply ignore obviously invalid patents granted under the old laws. In any case readers should bear in mind that it is only public knowledge prior to the original filing date of a patent that invalidates it. The published reference given by Mr. Beeston was after the original filing date of the Indesit patent-January 1975.

Editor


## DUAL PURPOSE LIGHTS REMINDER FOR CARS REMINDS YOU TO TURN YOUR LIGHTS ON REMINDS YOU TO TURN YOUR LIGHTS OFF

EOR all those motorists who like me, have a wife with a predilection for leaving the car lights on whenever possible, this unit should prove useful, for it will also give a warning of failing daylight thus performing a dual function, that is, it will give a warning when it is time to switch on thecar lights, and also when the lights have been left on after the ignition has been switched off. This is particularly useful when the lights have been used during the day in times of poor visibility.

## CIRCUIT DESCRIPTION

Perhaps the easiest way to explain the circuit operation is to split the circuit in two, that part before D3 performs the monitoring whilst all the circuitry after D3 gives the warning. As this is the simplest part of the circuit we shall deal with this first. Nand gates IC2a and b together with C2, C3, R8 and R9 are designed to oscillate at about 1 Hz and can be enabled by applying a "high" input to pin 1 . The output of this low frequency oscillator switches on and off transistor TR3 and so flashes a l.e.d. mounted on the dashboard of the car. R 13 serves to limit current through the l.e.d. in the usual manner. At the same time the output of IC2b also enables a second oscillator comprising IC2c and d, C4 and C5 which operates at audio frequency. This output is amplified by TR4 and the warning is given by LS1, which can be a surplus

## COMPONENTS

## Resistors

| R1 | $4 k 7$ |
| :--- | :--- |
| R2, R3 | 100 k (2 off) |
| R4-R6, R12, R13 | 10 k (5 off) |
| R7 | 270 k |
| R8-R11 | $1 \mathrm{M}(4$ off) |
| R14 | 270 |
| R15 | ORP 12 (l.d.r.) |

## Potentiometers

VR1

Capacitors

| C1 | $100 \mu$ |
| :--- | :--- |
| C2, C3 | 470 (2 off) |
| C4, C5 | 1000 p ceramic (2 off) |

Transistors and Diodes

| TR1-TR3 | BC109 (3 off) |
| :--- | :--- |
| TR4 | BFY51 |
| D1-D3 | 1N4148 (3 off) |
| D4 | TIL209 |
|  |  |
|  |  |
| ntegrated Circuits | 741 |
| IC1 | 4011 |
| IC2 |  |

## Miscellaneous

| S1 | d.p.s.t. switch <br> Telephone earpiece <br> (or loudspeaker) |
| :--- | :--- |
| Printed circuit board |  |

Printed circuit board

Fig. 1. Full circuit diagram


Fig. 2. Component overlay


Fig. 3. Printed circuit
telephone earpiece. This part of the circuit is connected permanently to the car supply as it is necessary to give a warning when the ignition is switched off. This will not affect the car battery as the quiescent current consumption of the CMOS device is virtually zero. The only point of care here is that the outputs are taken from pins 4 and 11 , as of course the outputs on pins 3 and 10 are high in the quiescent condition, and the alarm would operate.

## MONITOR CIRCUIT

Now coming to the monitoring section of the circuit, the level of daylight is monitored by the light dependent resistor R15. As the level of daylight falls, so the resistance of the l.d.r. increases until it exceeds the level set by VR1. This potential is applied to the non-inverting input of IC1 pin 3. The potential at the inverting input of IC1 is held at half supply voltage by the potential divider R2-R3, when the noninverting input exceeds this level by a few millivolts, the output at pin 6 will swing high due to the large open loop gain of IC1. This output is applied via D2 to pin 1 of IC2a to trigger the warning device. If the lights are now switched on, this would apply full battery voltage via D1 to the inverting input of IC1 and thus bring the output at pin 6 low again, turning off the warning. It will be noticed that this part of the circuit is fed via the ignition switch, and so will only give a warning of low light level when the ignition is switched on. However, if the ignition is switched off when the lights are switched on, this would turn transistor TR1 hard on, and because the ignition is switched off transistor TR2 would be turned hard off, thus the potential at the emitter of TR1 would be applied via D3 to the gate IC2a and so trigger the alarm circuit again. When the lights are now turned off TR 1 would then be turned off and so pin 1 of IC2a would be returned to a low condition by R7 and the alarm would be disabled. The resistor R1 is included in parallel with the I.d.r. to prevent its resistance rising significantly above the maximum setting of VR1, C1 prevents spurious light changes affecting the circuit by providing a time constant of one or two seconds.


## CHERRY-PICKER BOOM BOON

$\triangle$ COUSTIC emission techniques have afforded the Georgia Power Company an early warning of failure in the booms of their overhead maintenance trucks (nicknamed cherry-pickers).

The sophisticated acoustic emission system supplied by Dunegan Endevco Ltd. listens to the high frequency "cries for help" of the material under stress, and by using this technique to determine the useful life of the booms, Georgia Power estimates that it has saved thousands of dollars in unnecessary "play it safe" scheduled replacements.


## CONSTRUCTION

All the components are easily obtained and are fairly cheap; the usual precautions should of course be taken when handling the CMOS device, and for those readers who, like myself, actually enjoy etching their own circuit boards, a p.c.b: layout is provided. Incidentally if it is desired to use a small loudspeaker instead of a telephone earpiece, then the link shown on the p.c.b. layout may be removed and a suitable resistor inserted in place of this. The value would depend on the impedance of the loudspeaker, but 470 ohms should be about right for an 8 ohm speaker.

## INSTALLATION

The switch S 1a-b may be omitted, but would prove useful for disabling the alarm system in certain circumstances, such as when the lights are required to be left on for night parking. As mentioned previously the l.e.d. may be mounted in a prominent position on the dashboard, and LS1 concealed behind it. However, the I.d.r. is best mounted as near to the windscreen as possible.

The prototype unit was not mounted in any form of box, but was fastened to the rear of a convenient insulated panel with double sided servo tape, which can be obtained from most model shops. The best size is about 13 mm wide ( $\frac{1}{2} \mathrm{in}$.) and $3 \mathrm{~mm}\left(\frac{1}{8}\right.$ in.) thick, and is ideal for mounting small p.c.b.s. However, if this method is used, precaution should be taken to ensure that none of the tracks on the p.c.b. can make contact with any metal surface.

The trigger level may best be set by waiting until daylight has fallen to a level where it is necessary to switch on the lights, VR1 can then be adjusted until the unit just begins to operate.

can be made using these new-look self binders for PRACTICAL ELECTRONICS to become your most valuable source of reference. With the Easi-Binder current copies can be inserted as they are received, without waiting for the completion of twelve issues.
They are attractively made with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers, please advise year and volume and-a separate set of gold transfer figures will be supplied.
At $£ \mathbf{2} .85 \mathrm{inc}$. VAT and postage ( $£ 3.45$ overseas) they are obtainable from:

## Post Sales Department, IPC Magazines Lid. Lavington House, 25 Lavington Street London SE1 OPF

I enclose P.O./cheque value
for
binders at
$£ 2.85$ each (£3.45 overseas) for Practical Electronics Vol. No's . . . . . .

Name
Address

Date
 instrument that measures accurately a.c. and d.c. voltages, current and resistance.


With non-volatile bubble memories no longer a lab' curiosity, it's time to learn just how they work. Next month's article by Dr. P. V. Cooper of Plessey Microsystems is your chance!

## Also... PHASER

With six phase shift networks this offers improvements in this most popular of guitarist's sound effects.


A selection of readers' original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to its merits.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

## VARIABLE PULSE DELAY

THIS circuit delays a TTL pulse by a variable time, without altering the length of the pulse. It was originally developed to delay trigger pulses between keyboard and ADSR in a synthesiser, to produce "repeat" and "double-tracking" effects, etc.; although other uses are possible.

Monostable ICI is triggered by the positive-going edge of the input waveform, and IC2 is triggered by the negative edge. The pulse lengths are identical, and controlled by the ganged potentiometer VR1a/b. The outputs are differentiated and the short pulses applied to an RS flipflop IC3a/d. This is alternately set and reset, so the output appears as a delayed version of the input. Note that further input pulses will be ignored until the first pulse is output; also that an inverted output is available. Network R1/C1 ensures that IC2 is triggered when the power is applied, so that the flip-flop is reset on switch-on.

The circuit can provide delays from $5 \mu \mathrm{~S}$ to 30S, depending on the value of C 2 and C3; the accuracy of the output pulse depends mainly on the matching of C2/C3. In the prototype, C2 and C3 were $1 \mu, 10 \mu$ and $100 \mu$ (tantalum), switch selected, allowing delays from 1 mS to 2 S .
T. P. Hopkins,

Haywards Heath,
West Sussex.


## ULTRASONIC PROXIMITY DETECTOR

THIS circuit consists of an ultrasonic transmitter and receiver in the same unit and relies on the reflection of the signal to detect the presence of a nearby object. As such, it may be used for burglar alarms, industrial batch counters or to prevent collisions in an electronic robot.
The transmitter consists of a 40 kHz oscillator modulated by a second oscillator to provide a series of ultrasonic bleeps from the transducer. The oscillator does not self-stabilise to 40 kHz , so VR3 is provided to adjust this frequency.
The received signal is amplified by IC4, and fed to IC2, an NE567 tone decoder. This responds only to signals of 40 kHz adjusted by VR2-having a small bandwidth. The output of this and the output of IC1 are combined, and fed to TR1.
Thus, if an echo is heard by the receiver during a signal bleep from the transmitter, TR1 is turned off momentarily. This transistor has been left open collector in the circuit diagram, and users should connect this to suit their own requirements.

VR1 controls the duty cycle of IC1, and should be adjusted to set the maximum distance at which the circuit will respond. The supply voltage range is 5 V to 9 V , and current eonsumption is around 40 mA Although not shown on the diagram, supply decoupling capacitors should be included, particularly around the NE567

which is rather sensitive to supply noise. For this reason, attention should be paid to avoiding earth loops.
40 kHz transducers are used since the higher ultrasonic frequencies are more directional. However, it is important to
ensure that there is no direct sound path between the transmitter and receivercotton wool or fibre glass wadding are useful here.
D. F. Akerman,

Coventry.

## TRAILER HAZARD FLASHER MONITOR

N Y car was fitted as standard with a $42 / 84 \mathrm{~W}$ flasher unit in order to operate the hazard warning system but had no provision for the extra warning light required by law when towing a trailer and, in miy case, owing to a preformed cable loom, fitting another type would have been tricky.

The circuit shown can be made in a couple of hours from common components and simply mounted in the boot of the car. The 1.2 W lamp monitor indicates the operation of the trailer indicators and should be mounted at the dashboard.

The 0.6 ohm resistors (R1, R2) are small lengths of electric fire spiral filament. R3 prevents excessive current through TR3 at switch on due to low lamp filament resistance.

Note that this design is for negative earth vehicles only
J. B. Farmer, Melton Mowbray, Leics.



CIRCUITS for phasers are occasionally described in various magazines, but they inevitably have disadvantages; either they use difficult to obtain or expensive components, or they are so complex that they cannot be easily miniaturised. This circuit uses inexpensive, readily available components, can be simply constructed on Veroboard, and will fit in a die-cast box approximately $4 \frac{1}{2} \times 2 \frac{1}{2}$ $\times 1 \frac{1}{4}$ inches.

The input signal is applied to an emitter follower buffer, and then to four phaseshifting stages controlled by $n$-channel
f.e.t.s (2N3189s or similar). This gives two notches in the frequency response; more (or less) stages could be used if desired.

The phase-shifted signal is mixed with the original to obtain the phasing effect, and amplified to the output. A switch is provided to disconnect the phaser when not required.
A variable speed triangle wave generator produces the sweep.
Power is provided by a small 9 volt battery (PP3). In use, VR 1 is adjusted to give the best sound (a continuous "whooshing") with a white noise or music

## source.

The components used are not critical, although tantalum bead capacitors are preferred to save space, and other n.p.n. silicon transistors and $n$-channel FETs may be used.

The i.c.s are all 741 discrete types but they may be replaced by dual or quad types (e.g. SN72747N, MC3403P) to aid miniaturisation.
T.P. Hopkins, Haywards Heath,

West Sussex.

## LIVE-WIRE

THE 'Live-Wire' is a test of manual dexterity in which a player tries to move a wire ring along a thick metal wire, bent into awkward shapes, without touching the ring onto the wire. The wire and loop are normally simply connected to a battery and bell, but this circuit adds two refinements. The player has a time limit set by VR2 (between 16 and 94 seconds in the prototype), after which the alarm goes off and there is a sensitivity control.

With the sensitivity at maximum (VRI at minimum resistance) a brief touch of the loop onto the wire will trigger the alarm, at minimum about 4 seconds touching is needed to trigger it.

When the apparatus is switched on the timing capacitor C1 begins charging and when it reaches about $2 / 3 \mathrm{~V}_{\mathrm{cc}}$ it triggers the NE555, connecting the supply voltage to the load and discharging. VR2 controls the normal charging rate of the capacitor and VR1 controls the rate at which it charges while the loop is in contact with the wire.


The alarm is reset by switching the apparatus off and then on again, applying a negative pulse to pin 2.

R3 in the oscillator is a rather high value so as to give the alarm a low, loud sound with low current consumption.
The oscillator could be replaced with a conventional bell or buzzer but the drain on the Uattery would be higher.

The only critical component is $\mathbf{C l}$, which should have a low leakage. A tantalum capacitor would probably be best, but a miniature electrolytic works well in the prototype.
S. Kelly,
Chilwell,

Nottingham.


THIS circuit was devised as a simple car alarm which did not require an external de-sense switch. The circuit consists of two parts, the sensor and timer and the relay drivers.

The circuit operates as follows. When S 1 is put into the armed position, Cl begins to charge via R1. This produces a slowly rising potential at the emitter of TR1 until after about 5 seconds the Schmitt's output goes low, and hence the reset input of the latch formed by part of IC2 also goes low, so that the output of the latch will go high as soon as the set input in made positive.

When the would-be intruder opens the door, he has set the latch by making the non earthy end of the interior light go positive. The latch will not reset until the hidden arm switch is restored to the safe
position. When the output of the latch has gone positive, C3 is charged via R3 until the output of the second Schmitt avalanches from high to low. If, however, the hidden switch is put into the safe position, which will reset the latch, C3 will discharge. D1 is lit when the output of the first Schmitt is low, and the latch is not being continuously reset. C2 prevents spontaneous triggering by noise on the line, and R3 holds the set input of the latch to low if the bulb is blown or if the interior light is switched off (D1 is green, D2 red).

When the second Schmitt goes low, the alarm l.e.d. (D2) lights and the oscillator using the remaining part of the 7402 starts oscillating at about 1.4 Hz . The frequency could be much lower than this due to the tolerance of the electrolytic capacitors (C4 and C5). Should the mute switch be closed,
the coil of RLA1 will energise and de-energise at this frequency, sounding the horn. When point A goes low, apart from enabling the oscillator, it turns off TR4 pushing the base of TR 5 positive through R11 and R13. This switches on TR5 and energises the coil of RLA2, the contacts of which short out the points so immobilising the car. D3 and D4 are to protect the transistors from the transients caused by the relay coils.

Included is a simple series regulator circuit which could be used to obtain 5 volts for the TTL i.c.s. Note the inclusion of D5; this is to prevent reverse polarity voltage causing damage to the circuit.
N. J. Bailey,

Yatton,
Bristol.

# Wews Briels 

by Mike Abbott

## MICRO' COURSES

TWO TRAINING courses, approved by the Department of Industry under the Microprocessor Application project scheme, are being run by Bleasdale Computer Systems Lid. Course attendees will receive a contribution of $£ 50.00$ from the Department of Industry towards the cost of the course fee.

The Bleasdale courses Introduction to Microprocessors and Designing Systems with Microprocessors are intended to give the course attendees a good understanding of the aspects of designing and building microprocessor based systems. To achieve this, Bleasdale has designed and developed a range of microprocessor Input/Output units for use on the course.
The schedule for the 1 week Introduction to the 6800 and the advanced 2 week course Designing Systems with the 6800 for 1979 is:

## Introduction to the $\mathbf{6 8 0 0}$

5th Mar 79-9th Mar 79
7th May 79-11th May 79
3rd Sept 79-7th Sept 79
12th Nov 79-16th Nov 79

Designing Systems with the 6800
12th Mar 79-23rd Mar 79
14th May 79-25th May 79
10th Sept 79-21st Sept 79
19th Nov 79-30th Nov 79

For further details contact: June Dove, Course Registrar, Bleasdale Computer Systems Ltd., 7 Church Path, Merton Park, London SW 19. Tel: 01-540 8611.

## TAKE OVER

ATAKE OVER of Hacker; manufacturers of portable radios and music centres, has brought about the move of Hacker production from Maidenhead to Motoradio's modern plant at Bournemouth, where a fully equipped after sales and service department is also being established.

## BUBBLE TAKE OVER

$\mathrm{N}^{2}$OW available on an. off-the-shelf basis from Texas Instruments, is the Model 765 portable bubble-memory terminal which offers a unique method of data entry, editing and storage for commercial applications such as remote sales-order entry, computer time-sharing systems and newspaper reporting. Because the terminal's bubble memory retains data even when the power is switched off, information from a variety of sources can be stored in the terminal for as long as required, and then transmitted in a single batch over a normal telephone line using the built-in acoustic coupler.
Unlike other methods of data storage the Model 765's bubble memory has no moving parts, and requires no external storage media. In addition, it has specifically been designed for ease of use in the normal business environment, with a standard typewriter-like keyboard and simple English-language commands.

Using TI's Silent 700 thermal-printer technique, the Model 765 is a full-capability 30 -characters-per-second terminal with a full ASCII keyboard, a powerful command mode, and a file management system.
Prompting and operator lead-through routines can easily be developed to allow fast and efficient data entry, and the built-in editing facility allows on-the-spot correction of data. The terminal transmits data at 300 baud using the acoustic coupler, or at up to 9600 baud using an RS- 232 serial EIA interface.

Further information from Texas Instruments Ltd., Digital Systems Division, Manton Lane, Bedford, MK41 7PA.

## POWER SUPPLY BREAKER

WITH essential data being held and processed these days, by electronic equipment working around the clock, it is vital to know the degree of immunity a machine has to mains power interruption.

Any engineer who has had the task of ensuring that a system meets the specification laid down in this respect, will know the problems when it comes to generating a programme of known interruptions in the mains power, without purpose-built equipment to do this.

What is described as invaluable in the study and solving of interference problems, is the NS251 unit from Seltek Instruments Lid. of Stanstead Abbotts, Herts. Measuring $430 \times 88 \times 360 \mathrm{~mm}$, the NS251 will simulate breakdowns on a.c. and d.c. power lines. Pre-selection of the breakdown period is completely independent of the phase of the power line voltage. Breakdown time is fully adjustable from 1 ms to $1,000 \mathrm{~ms}$. Both positive and negative trigger can be selected. Triggering is effected by a manual front panel knob, or may be activated automatically by an external signal. Two monitor outputs are available for measurement purposes when using an oscilloscope.

The effective voltage range of the NS 251 is 0 to 250 V a.c./d.c. with current to 4 A (peak current 40 A at 10 ms max.). The unit is switched in series with the power line and the test object or system. Phase range covers the full $180^{\circ}$ and extreme values $\left(90^{\circ}, 180^{\circ}\right)$ can be adjusted. Breakdowns for both the positive and negative half cycles are separate and selectable.

## VIDEO LIBRARY

GOING to the pictures today seems synonymous with the long drive to find a cinema that hasn't been converted to a bingo hall, battling through the traffic to a rip-off car park, the long open air queue outside a multi-studio cinema that's been showing the same films for months on end, and the "full up" sign. It is with relief that most of us will witness the first signs of an alternative to this expensive agony. The chance to watch a feature film with one's feet up in the comfort of one's own home (perhaps with a few friends), starting when you like, with an interval when you like, and whatever inexpensive refreshments you may fancy.

For the first time in the UK, the growing number of video cassette recorder owners (now estimated to number 25,000 ), are being offered a comprehensive software library. Intervision Video now offer over 200 full length feature films, including such titles as Blow out, Suiday In The Country, and The Happy Hooker as well as films of Chess Masterclass, Angling, Music and other light entertainment.

The service Intervision has launched offers the home video consumer the opportunity to obtain tapes from either the Intervision Video Club (basically a mail-order or personal collection service operating from the company's new headquarters), or through selected dealers throughout the country who hold copies of Intervision programme cassettes.

Copies are available on all of the popular home video cassette formats, and Intervision have their own in-house videocassette duplicating facilities, which are claimed the most sophisticated in the country.
Despite the very high investment cost embracing both the equipment and the acquisition of the legal copyrights, the joint Managing Directors, Richard Cooper and Michael Tenner, are very confident that the service is going to be successful. Response so far has been described as "phenomenal."
Hiring a programme on a one-cassette format such as VCR-LP, BETAMAX, or VHS costs only $£ 5.95$ including VAT for a two day hire period. Intervision have not lost sight of the hotel, disco and club market, where a hire charge of $£ 15.95$ enables a programme to be shown to a large nonpaying audience. The company's range of music programmes featuring such top names as Roberta Flack, Neil Sedaka, and Donna Summer are much in demand from 'discoland'.

Video cassette recorders are not cheap, although significant price avalanches are forecast, but already it would be feasible to club together with a group of friends for film evenings. Perhaps the day will come when new films are like new books and go straight into shops and libraries, making drunk-dodging on the way home from the cinema a thing of the past!
More details from Intervision Video Ltd, 102 Holland Park Ave, London, W11 4UA.

# This Is The Famous <br> <br> £99.95 <br> <br> £99.95 <br> PLUS 8\% V.A.T. <br> <br> Computer 

 <br> <br> Computer}

Stop readling about computers and get vour hands on onel With
ELF It and our new Short Course by Tom Pitman you can master ELF II and our new Shori Course by Tom Pittman, you can master computers in no time at all ELF 11 demonswates all 91 com-
mands an RCA 1802 can execute and the Short Course quickiy leaches you how to use each of the 1802 's capabilities.
Elf It's video output lets you dlsplay an alphamumeric readour
or graphics on any TV screen or video monitor and enjoy the or graphics on any
latest video games.
But that's not all. Once you ve mastered computer fundamentals. ELF II can give You POWER with add-ons that are
among the most advanced found anywhere. American IEEE chapters plus hundreds of universities and major corporations have chosen the ELF II to introduce their students and personnel to microprocessor computing!

Learn The Skill That May Soon Be Far
The ability to use a computer may soon be more important to your earning power than a college degree. Without a knowledge of computers, you are always at the mercy of others when it
comes to solving highly complex business, engineering. Industrial comes
and scientitic problems. People who understand computers can command MONEY and to get in on the action. you must learn computers. Otherwise you'll be left behind.

## ELF II Is The F-A-S-T Way to Lear Computer Fundamentals!

Regardless of how minimal your computer background is now.
you can learn to programme a computer in almost no time at all. That s because Netronics has developed a spectal Short Course on Microprocessor And Computer Programming in non-technical
language that leads you through every one of the RCA COS MAC 1802 s capabilities so you'tl understand evervthing ELF II can do.
and how to get ELF II to do if' All 91 commands that an 1802 can execute are explained to you, step-by-step. The text, written for Netronics by Tom Pitman, is a tremendous advance over every other programming book in
print.

Keyed specifically to the ELF II, it's loaded with "hands on longer hold any mysterles for you.
In fact not only will you be ab
creatively, you'll also be able to understand computing articles in the technical press.
the technical press.
If you work with large computers, ELF II and our short Course
will help you to understand what makes them tick.
A Oynamite Package For Just $\mathbf{£ 9 9 . 9 5}$ Plus $\mathbf{8 \%}$ V.A.T.I Whit ELF II. vou learn to use machine language - the fundamental fanguage of all computers. Higher level languages such as before a computer can understand them. With ELF II you build a solid foundation in computers so you'll really know what you're doing, no matter how complicated things get
Video outout also makes ELF II unique among computers
selling such a low price. Attached to your TV set, ELF II becomes selling such a low price. Attached to your TV set, ELF II becomes a ralless hours of tun for both adults and children of all ages I ELF II can create graphics, alphanumeric displays and fantastic video games.
Only a
Only a low cost RF modulator is required to connect ELF II to your TV s aerial socke: (To order see below.)
ELF II:s 5-card expansion bus (connectors not included) allows you to expand ELF If as your needs for power grows. If you're an engineer or hobbyist, you can also use ELF II as a counter, alarm ock. thermostat, timer, or for countless other applications.

ELF II Explodes Into A Glant|
Thanks to ongoing work by RCA and Netronics, ELF 11 add-ons are among the most advanced anywhere. Plug in the GIANT and debug programmes. communicate with remote devices and make things happen in the outside wortd. Add Kluge Board to get ELF II to solve special problems such as operating a more RAM board and RAM bnard and you can write longer programmes

Expanded, ELF II is pertect for engineering, business, industrial scientific and personal finance and tax applications. No other such an extensive research and development programme. The ELF-BUG Monitor is an extremely recent breakthrough that lets you debug programmes with lightening speed because the key to debugging is to know what's inside the registers of the microprocessor and, instead of single stepping
through your programme, the ELF-BUG break points, lets you display the entire contents of the registers on your TV screen at any point in your programme. You find out immediately what's going on and can make any necessary changes. Programming is further simplified by displaying 24 bytes of RAM with full address, blinking cursor and auto scroling Netronics will soon be introdu
\& Music System - more breakihroughs that ELF II owners will be the first to enjoy!

Now BASIC Makes Programming ELF 11 Even Easier $\mid$ Like all computers, ELF II understands only "machine language" the language computers use to talk to each other. But, to make talks to ELF II in machine language for you so that you can programme ELF II with simple words that can be typed out on a keyboard such as PRINT, RUN and LOAD

## But What Can It Do For Youí"

Oon't be trapped into buying a dinosaur simply because you can
atford it and it's big. ELF II Is more useful and more fun than "big name computers that cost a lot more money.
With ELF II, you learn to write and run your own programmes. You're never reduced to being a mere keypunch
operator, working blindly with someone else's predeveloped software.
No matter what your speciality is, owning a computer which You reatly know know how to use is sure to make you a leader. ELF II is the fastest way there is to get into computers. Order
from the coupon below

## H.L. AUDIO LTD., Dept. P.E., 138, KINGSLAND ROAD, LONDON E2 8BY. TEL: 01-739 1582

## NOW AVAILABLE FOR ELFII-

- Tom Pittmar's Short Course On Microprocessor \& Compurer Programming teaches you just about everything there is to know language, it's a learning breakthrough for engineers and laymen alike. $£ 5.00^{*}$ post paid!
$\square$ Deluxe metal cabinet with plexiglas dust cover for ELF 11 . £29.95
plus $£ 1.50$ 日 $\&$ p $p$. RF Modulator for use with TV set. $\mathbf{£ 3 . 0 0 ^ { \circ }}$ post paid.
GIANT BOARD - GIANT BOARD kit with cassette $1 / \mathrm{O}$, RS 232-C/TTY VO,
I/O. decoders for 14 separate $1 / 0$ instructions and a system monitor/editor. $£ 39.95^{\circ}$ plus $£ 1.00 \mathrm{p} \& \mathrm{p}$. ㅁ Kluge (Prototype) Board accepts up to 36 IC's. $£ 17.00$ plus $\square 4 k$ Static RAM kit. Addressable to any $4 k$ page to $64 k$. E87.95" plus 50p. p\&
Gold prated 86 -pin connectors (one required for each plug-in board. E5 $70^{\circ}$ post paid.
C Professional ASCII Keyboard kit with 128 ASCII upper//lower case set, 96 printable characters, onboard regulator, parity. logic
selection and choice of 4 handshaking signals to mate with almost any computer.f64.95* post paid.
$\square$ Deluxe metal cabinet for ASCII Keyboard. £19.95* plus $£ 1.50$ Q ELF II Tiny BASIC on cassette tape. Commands include
SAVE. LOAD. $\pm . x,+.1), 26$ variables A-Z, LET. IF/THEN, INPUT.

PRINT, GO TO, GO SUB, RETURN, END, REM, CLEAR, LIST, RUN, PLOT, PEEK. POKE. Comes fully documented and includes aphanumeric generator required to display alphanumeric hardware. Also plays tick-tack-toe plus a drawing game that uses ELF II's hex keyboard as a joystick, 4 k memory required. $£ 14.95^{\circ}$ post paid.
Tom Pittman's Short Course on Tiny BASIC for ELF II. $5.00^{\circ}$ post paid.
Expansion Power Supply (required when adding 4k RAM) ELF-BUG Deluxe
Allows displaying the contents of Monitor on casselte tape. point in vour programme. Also displays 24 bytes of memory with hull addresses, blinking cursor and auto scrolling. A must for the serious programmer! $14.95^{*}$ post paid.
Coming Soon: A-D, D-A Converter, Light Pen. Controller Board

## Call or write for wired prices

H. L. AUDIO LTD., Dept. P.E.

138, Kingsland Road, London E2 8 BY.
Tel: O1-739 1582.
Sole European Distributors for Netronics A \& D Lid., U.S.A.
Yes I I want to run programmes at home and have enclosed ELF if kit. C € 5.94 including postage and V.A.T. for power
supply (required), $£ 5.95$ for RCA 1802 User's Manual
$\square £ 5.95$ including postage and V.A.T. for Short Course on I wrocessor Compuler Programming. want mine wired and tested with power supply, RCA 164-10 including postage and Course included for jus I am also enclosing payment (including postage and V.A.T.) for the items checked at the left.

Total Enclosed $\mathbf{f}$
USE YOUR D ACCESS B BARCLAYCARD
Account No.

## Signature Exp. Date

CREDIT CARD PHONE ORDERS ACCEPTED 01-739 1582
Print Name
Address


## SAVBIT

handy solder dispenser Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times. Size 5 58pinc.VAT For soldering fine joints

## Two mone dispensers to

 simplify those smaller jobs PC115 provides 6.4 metres approx. of 0.71 mm solder for fine wires, small components and printed circuits.69p inc. VAT
Or size 19A for kit wiring or radio and TV repairs. 2.1 metres approx. of 1.22 mm solder.

Size 19A 63p inc. VAT

Handy size reels and dispensers
of the world's finest cored solder to do a professional job at home

Ersin Multicore Solder contains 5 cores of
 non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.
handy size reels of
SAVBIT, 40/60, 60/40 and $A L U-S O L$ solder alloys
These latest Multicore solder reels are ideal for the toolbox.
Popular specifications cover all general and electrical applications, plus a major advance in soldering aluminium. Ask for a free copy of 'Hintson Soldering' containing clearinstructions tomakeeveryjobeasy

| Ref. | Alloy | Diam (mm) | $\begin{aligned} & \hline \text { Length } \\ & \text { metres } \\ & \text { approx. } \end{aligned}$ | Use | $\begin{gathered} \text { Price } \\ \text { inc. VAT } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Size } \\ 3 \end{gathered}$ | $\begin{gathered} \hline 40 / 60 \\ \text { Tin/Lead } \end{gathered}$ | 1.6 | 10.0 | For economical general purpose repairs and electrical joints. | £2.16 |
| $\begin{gathered} \text { Size } \\ 4 \end{gathered}$ | ALU-SOL | 1.6 | 8.5 | For aluminium repairs. Also solders aluminium to copper, brass etc. | £2.46 |
| $\begin{gathered} \text { Size } \\ 10 \end{gathered}$ | $\begin{aligned} & 60 / 40 \\ & \text { Tin/Lead } \end{aligned}$ | 0.7 | 39.6 | For fine wires, small components and printed circuits. | f2.38 |
| $\begin{gathered} \text { Size } \\ 12 \end{gathered}$ | SAVBIT | 1.2 | 13.7 | For radio, TV and similar work. Increases copper-bit life tenfold. | £2.29 | flux for general and electrical soldering in conjunction with 'Ersin' Multicore solders. Ref AF14 48p inc. VAT 'ARAX' For general metal joining in conjunction with 'Arax' Multicore solders.

Ref RF10 48 p inc. VAT

## BIB WIRE STRIPPER and CUTTER

Fitted with unique 8 -gauge selector and handle locking device. Sprung for automatic opening. Strips flex and cable in seconds. Model 8B 97p inc. VAT
Pat. No. 144913


## EMERGENCY SOLDER

Self-fluxing, tin/lead solder tape that melts with a match. For electrical and non-electrical applications.

Size ES36
$39 p$ inc. VAT

## MULTICORE

 DESOLDERING WICKAbsorbs solder instantly from tags, printed circuits, etc. Only needs 40-50 watt soldering iron. Quick and easy to use. Non-corrosive. Size AB10 97p inc. VAT

## ECONOPAK

A reel of 1.2 mm 'Ersin' Multicore solder for general electrical use. Size 13A E2.59 inc. VAT

A reel of 3mm 'Arax'
Multicore solder for general non electrical use.
Size 16A
C2.59 inc. VAT
 in conjunction with 'Arax



## Following the success of Breadhoard '78, Trident Exhibitions announce <br> 



## The second hobby electronics show

## Information on exhibiting from:

 Trident International Exhibitions Limited, Abbey Mead House, 23a Plymouth Road, Tavistock, Devon. PL19 8AU.Telephone (0822) 4671 Telex 45412 TRITAV
December 4th - 8th Royal Horticultural Hall, Westminster, LondonSW1

## LISTEN TO THE SECRET WORLD OF PLANTS

Now in Modular Kit Form, a Biological Amplifier \& Sound Synthesiser In one instrument, the Amazing


## Bio Activity

 Translator ${ }^{\text {rw }}$.* Experience the unique Musical Form of Plants
- Hear beautiful patterns of sound created by thelr natural response Compare house plants' reactions to people-wlth the distinct tunes of those outside
Easy to operate, internal speaker \& batteries
P.C.B. available as a separate kit, or assembled and tested

Natural Bio Electric signals, generated within the plant, are monitored by an electrode attached to the leaf. When amplifled and firtered, a VCO, VCA and other exclusive synthesiser circuits are pro the plant to produce tracking sequences of notes. These follow in pitch, rhythm and volume the ever changing signal from the plant. A plant reacts as a total living system to many stimuli, with a response above that of the natural biological evel. to day and plant to plant, producing a fasclnating insight into the plant kingdom.

Complete Printed Circuil Kit $£ 13.95$
Assembled \& Tested Printed Circuil $£ 17.35$
Case, Speaker \& Hardware Kit £12.30
Complete Assembled \& Tested Unit 233.10
fiequires $35 \Omega$ speaker, $\mathbb{1} .50$ erira whensordered with kit. D.P. swilch and twoi $4 \frac{1}{2}$ volt batteries. inciudes all serews, wire, punched case \& wood end checks.
Requires two $4\{$ volt oatteries.

[^3]

# EIEGTROMLUE 

## FOR A GOOD DEAL BETTER THAN MOST

WE PAY POSTAGE on U.K. C.W.O. orders over £ 5.00 list value. Under £5.00 add 25 p handling charge.
WE GIVE DISCOUNTS on C.W.O. in U.K. orders $-5 \%$ on list value over $£ 10.00 ; 10 \%$ on list value over $£ 25.00$
WE GUARANTEE all goods are brand new, clean and to Specification - no seconds, no surplus.
WE GIVE SERVICE to all orders large or small - we use microfilm order storage, computer processing and double-check personal supervision.

## This month's

Specialist
Mail order
supplies
1964
ELECTROVALUABLES

- Electrovaluables' are our own over prices. Orders should as - Electrovaluables at greatly reduce description and PIDDED from time to trovaluables' and st \& V.A.T. MUST 筑 prior sale quote Elised. PRICES ARE $\%$ where prices show subje log $\log$ short(a) $8 \%$ or $12 \%$ Resistors
R

 2R7, 5R6, $330,3 \mathrm{Kg}, 5 \mathrm{KI}, 5 \mathrm{~K} 6$,
1K5. $2 \mathrm{KA}, 2 \mathrm{K7}, 16 \mathrm{~K}, 18 \mathrm{~K}, 24 \mathrm{~K}$, $1 \mathrm{~K} 5.2 \mathrm{~K}, 2 \mathrm{~K}, 12 \mathrm{~K}, 16 \mathrm{~K}, 18 \mathrm{~K}, 24 \mathrm{~K}$.
$6 \mathrm{~K} 8.10 \mathrm{~K}, ~$ $6 \mathrm{~K} 8.8 \mathrm{~K}, 120 \mathrm{~K}, 150 \mathrm{~K}, 2 \mathrm{M}$, all at
$56 \mathrm{~K}, 82 \mathrm{~K}, 560 \mathrm{~K}, 3 \mathrm{~K}$ $270 \mathrm{~K}, 330 \mathrm{~K}, 5600$.
$60 p^{\circ}$ per pk of 100 .
Integrated Circuits $\quad 90 \quad 16 p$
 709 (metal) 30p
TAA2761A45
Transistors
$2 N 4906$ \&1,
ACY4030p

 Colvern $9 \mathrm{~K}, 15 \mathrm{~K}, 25 \mathrm{~K}, \mathrm{an}^{2}$ for $\mathrm{E}^{\circ}$
PR15 presets $2 \mathrm{~K} 2.47 \mathrm{~K}, 470 \mathrm{~K}$. Horiz
4 M 7 PR140 Presets
10M horiz. 100 K vent 10 for $600^{\circ}$ ${ }^{8 C 1} 488$, any 10 for $60^{\circ} p$ BC 2380 any 10 for 10 for $80 p^{\circ}$
$8 C 328.8 C 338$ ans $\mathrm{E}^{\circ}$ $8 C 1301=2 N 30651910$ for $£ 1^{\circ}$
80130 BF194.858 Potentiometers Carbon track
P20: $2 K 2$
 P2O: + switch $470 \mathrm{~K}_{3} 1 \mathrm{M}$ tor $\mathrm{E} 1^{\circ}$

$$
\mathrm{JP2O}
$$

Plessey MPWT moulded track Plessey MPWT moulded $220 \mathrm{~K}, \mathrm{M}$
$47 \Omega, 220,47 \mathrm{~K}, 2 \mathrm{any} 3$ for 11

Oiodes
$A A 113$. AA116. AA 1717. AA 113 , BA133F, any 10 Rectifier diodes any 10 for $80 p$ B06B0, 20 Bridge rectifiers
B1906. B1912 any 5 for $\mathbb{E 1 . 2 0}$


Thyristors
$\mathrm{BO} 126, \mathrm{BO} 140 . \mathrm{BO} 226$ any 5 for $\mathrm{£}, 25$ 100 K log. 2 M 2 for E 1

## WE ARE NATIONALDIST

NASCOM MICROCOMPUTER KITS NASCOM from stock. Brocthure and prices on application. Aiso full supporting programme of Nascom items. traders. Enquiries invited. Quantity
MOTOROLA D. 2 MICROPROC (for the M. 6800 N

Two depots to serve you - one
SOUTH, one NORTH

Written communications and orders by post to head office Englefield Green address Dept P.E.3.

## CATALOGUE 9

 Yours for the asking - and it's FREE Completely revised and up-dated. 120 pages. Semiconductors, I.Cs, Opto-electronics, Rs, Cs, materials, etc, etc. And you'll be delighted with our comprehensive three-monprice list.

28. ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM SURREY TW20 OHB
Telephone Egham 3603 Telex 264475
Northern Branch - 680, BURNAGE LANE, BURNAGE,
MANCHESTER M19 1NA(061) 4324945

© TUAC
TRANSISTOR UNIVERSAL AMPLIFICATION CO. LTD. PHONE $01-6723137 / 6729060$ MANUFACTURERS OF QUALITY AMPLIFICATION AND LIQITING
CONTROL SYSTEMS CONTROL SYSTEMS

$7^{\prime \prime} \times 9^{\prime \prime} \times 1 \frac{3}{4}$ " ULTRA QUALITY HIGH POWER $5^{\prime \prime} \times 5^{\prime \prime} \times 2^{\prime \prime}$ New D.C. Coupled Design AMPLIFIERS
Featuring-Electronic Shor Open and Thermal Overload Protection.
Brief Spec.- Input Sensitivity 0.775 v. R.M.S. $10 . \mathrm{D}$. B. 1 at 25 K Ohms. Frequency Response $20 \mathrm{~Hz}-20 \mathrm{KHz}$. T.H.D. at full power 0.1\%.
Hum and Noise- 100 d8 Relative full output.
T.D. 500300 W into 2 Ohms . 220 W into 4 Ohms . 140 W into Power supply P.S. 300
T.D. 150 150W into 4 Ohms. 100W into 8 Ohms.

Power supply P.S. 150
T.D. 15060 version 60 W into 8 Ohms. 40 W into 150 hms . E26. 25

Power supply P.S. 60 Onms $£ 18.50$ Power supply P.S. 60 17.75 Noto-P.S. 300 will drive 2 T.O. 150 amplifiers All output ratings are R.M.S. continuous sine wave output.

## TO ORDER BY POST

Make cheques/P.O.s payable to TUAC LTD.. or quote Access/Barclay Card No. (We accept holders phone orders 01-672 9080.)
POSI $10-$
Send stamp., 119 CHARLMONT ROAD, LONDON SW17 9AB.
Stamp for our free 28 page catalogue of LIGHTING \& AMPLIFIER MODULES, etc.

## Codespeed

## ELECTRONIC MAIL ORDER <br> \section*{All Full Spec. Devices}

TO3 HEAT SINKS III Two types of heat sink. Ex-equipment, but conditions as new. $66 \times 35 \mathrm{~mm} 20 \mathrm{peach}$. Rectangular type $130 \times 63 \times 32 \mathrm{~mm} 30 \mathrm{p}$ each. Pype, $92 \times$ 25 p per heat sink post and packing.
PACK M1 Contains two brand new multifunction calculator keyboards. Excellent key PACK T2 A high
miss out - only $£ 1.00$. $3 \frac{1}{2}$ digit Liquld Crystal wristwatch display with data. Oon't PACK T3 Back in stock againl MM5316 digital alarm clock chip. Still only £2.75 including data.
hour clock display. Now offered what a bargain. A $0.8^{\prime \prime}$ common cathode. $3 \frac{1}{2}$ diglt, 12 PACK S1 25 miniature glass in only $£ 3470$. 95 .
new (Mur just 2 p each how can you go wrong?) 25 diodes for 500 mA . 35v). All brand PACK $\$ 24 \times$ MEU2 1 programmable unijunction transistors (P.U.T.I. Lots of uses. long delay timers, osciitators and many more. All brand new. With data and usage PACK $\$ 310 \times 1 \mathrm{~N} 4151 \mathrm{high}$ speed switching diodes. Same as 1 N4148, but has PACK P1 With this MM5330 dighal voltmeter I.C. we include the data sheet and circuit diagram to build a high accuracy dightal multimeter. Only $£ 3.95$.
PACK E2 Calculator style L.C.D. 8 digit with right hand decimal points. Digit height $0.33^{\prime \prime}$. With data only $£ 2.95$. PACK E3 The same as Pack E2, but has $0.5^{-\prime}$ high digits. £4.25.
EVER THOUGHT of using 7 segment gas discharge displays as a n alternative to LED's
or LCD's? Gives a nice bright orange display and are comparatively very low in price Requires 180 v d.c. supply feasily achieved in mains operated projects). All have right hand decimal points and are supplied with data.

PACK E5 a $0.3^{\prime \prime}$ high dual digit display. Now only 50 p.
PACK E7 a $0.25^{\prime \prime}$ high 12 digit display with free socket. £1.50.
PACK DMI Want 23 matrixed diod quality switching diodes for 50 p? These 14 pin chips

## All Untested Packs

PACK M4 CALCULATORS III This pack contains a production line reject calculator. Either repair them (not much wrong with some of them) or strip them for spares. Lots of accessible goodies inside, approximately 25 transistors, 2 chips, display, case and detachable keyboard. Such a bargain, you can't go wrong. Only $£ 2.50$. with integral keyboard. Ex-equipment, but believed to be O.K. A git at only 50 case Pair. PACK DL1 (Untested - so no guarantees) A bumper pack of 30 mixed $C$ 's You test them and save 1 es s . Could include anything tinear or digital. A snip at only $£ 1.00$ height $0.127^{\prime \prime}$ with right hand decimal. Common cathode still onty fl displays. Digit height 0.127 with right hand decimal. Common cathode. Still only f. .00 . Your satisfaction is guaranteed or return the complete pack for replacement or a
refund. refund

For free catalogue send stamped addressed envelone
Postage and packing please add 25 p. (Overseas orders add 60p)
CODESPEED, P.O. Box 23, 34 Seafield Road,
Copnor, Portsmouth, Hants., PO3 5BJ

# A breadboard as big as yourideas. 

The ideal Breadboard for 1 chip circuits. Accepts 8, 14, 16 and up to 22 pin IC's. Has 130 contact points including two 10-point bus-bars.

## EXPERIMENTOR 600 £7. 88

The Breadboard for quick construction of Microprocessors and other circuits. EXP 600 has 550 contacts including two 40 -point bus-bars with $0.6^{\prime \prime}$ centres.

Perfect for checking out Microprocessors. EXP 650 has 270 contacts including two 20 -point bus-bars with $0.6^{\prime \prime}$ centres.

## EXPERIMENTOR QUAD BUS

STRIP £3.29 Need more bus-bars, clip on an EXP 4B and you have four 40-point bus-strips with 8 -, 12- and 16 -line address, create data-buses by combining EXP 4B, Bus Strips.

No soldering simply plug ail standard components in and out, nickelsilver contacts allow Breadboard and components to be used over and over again without damage.

## Adaptable accepts any

 component without adaptors or jumper leads, use 22-30 gauge solid wire for jumper leads.Mix and Match large and small chips in the same circuit. Use 300 series for smaller and $0.3^{\prime \prime}$ pitch DIP's. 600 series for Microprocessors with $0.6^{\prime \prime}$ centre channel for full fan-out with larger chips.

Smallest to Biggest, remember CSC's Breadboards "snap-lock" together so you can start with a small idea and expand your ideas to as Big a
Breadboarding area as you like.

## Easy Permanent Mounting,

 using four screws from front or six selftappers from rear. Vinyl-insulated backing lets you fasten to any surface.Pick any project that you want to build, or any part of a project that you want to test or modify. Count up the number of IC's you need for the project.
Then simply look up in the box opposite the Breadboard you require.
If you need more than two bus-bars simply add the correct number of Quad-Bus Strips. GET STARTED NOW FOR AS LITTLE AS £2.54.

## EXPERIMENTOR 350 £4.21

 EXP 350, specifically designed for the hobbyist working with up to $3 \times 14$ DIP IC's. With 270 contact points including two 20-point bus-bars the EXP 350 accepts any size DIP with $0.3^{\prime \prime}$ spacing. Marked Contact Points transfer component by component from letter/number position on Breadboard to finished P.C. Board or Wiring Table:Ruggedly bullt of abrasion-
resistant materials that withstand $100^{\circ} \mathrm{C}$.

EXPERIMENTOR $300 £ 7.29$
The hobbyists ideal Breadboard, accepts $6 \times 14$ DIP or $5 \times 16$ DIP, has 550 contact points including two 40 -point bus-bars, accepts any size DIP with $0.3^{\prime \prime}$ spacing.

Tailor-Made Breadboards e.g. a project requires up to $5 \times 14$ DIP chips and needs up to six bus-bars. Which to buy? Easy from the table below select an EXP 300 plus an EXP 4B, total cost £10.58.

| MODEL NO. | NUMBER OF <br> CONTACT HOLES | IC CAPACITY <br> (14-pin DIP's) | UNIT PRICE <br> (includes POSt \& VAT) |
| :---: | :---: | :---: | :---: |
| EXP 300 | 550 | 6 | $£ 7.29$ |
| EXP 600 | 550 | use with 0.6" PITCH DIP's | $£ 7.88$ |
| EXP 350 | 270 | 3 | $£ 4.21$ |
| EXP 650 | 270 | use with 0.6" PITCH DIP's | $£ 4.70$ |
| EXP 325 | 130 | 1 | $£ 2.54$ |
| EXP 4B | FOUR 40-point Bus-Bars | - | $£ 3.29$ |

## The latest kit innovation

 rom Sporkhrite whee Featured by dy an wu y

RSI

Open daily to callers: Mon.-Fri. 9 atm. -5 pom Valves, Tubes and Transistors - Closed Saturday Terms C.W.O. only - Tel. 01-677 2424-7 Quotations for any types not listed S.A.E. Post and Packing 25p per order $+8 \%$ V.A.T. Items marked * $12 \frac{1}{2} \%$

## Climax House

Fallsbrook Road, London SW16 6ED
SPECIAL EXPRESS MAIL ORDER SERVICE
the quickest fitting CLIP ON capacitive discharge electronic ignition in KIT FORM

## Smoother running <br> Instant all-weather starting Continual peak performance Longer coil/battery/plug life Improved acceleration/top speeds Optimum fuel consumption.

Sparkrite $\mathrm{X}_{4}$ is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliably
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It w perform equally well with new, old, or even badly pitted points and is not
dependent upon the dwell time of the contact breakers for recharging the Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possiblity of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). The circuit incor porates a voltage regulated output systems function light, and security changeover switch. All kits fit vehicles with coil/ distributor ignition up to 8 cylinders
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 year guar anteed transformer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions
installation instructions.
installation instructions.
NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV1) will
Electronics Design Associates, Dept. PE 10, 82 Bath Street, Walsall WS1 3DE. Phone: Walsall 614791

Electronics Design Associates, Dept. PE3 82 Bath Street, Walsall, WS1 3DE. Phone: (9) 614791 Name
Address
Phone your order with Access or Barclaycard
Inc. VAT. and PP.

| QUANTITY REO'D. |  |
| :---: | :--- |
| KIT $\mathbf{f 1 6 . 6 5}$ |  |
| TACHOPULSE SLAVE UNIT $\mathbf{£ 3 . 8 5}$ |  |

## E

Cheque No.
Please state polarity pos or neg earth
Access or Barclaycard No.

# GLOUCESTER INDUSTRIAL SALES AND AUCTIONS LIMITED 

Eastington Trading Estate, Nr. Stonehouse, Glos.
Tel: Stonehouse 4118
(M. 5 Motorway - Exit No. 13)

We hold regular monthly auction sales of mostly new electronic and electrical goods consisting of transistors, triacs, integrated circuits, diodes, capacitors and resistors, together with fractional motors, transformers, power packs, etc., etc.
Next auction 27th March 1979.
Phone or write to be put on our auction mailing list.
Why not get in touch with our Mr. Jack Bailey and enquire about our terms for the disposal of your surplus stocks, etc., through our auctions.

## fladar <br> DVAL VOLTAES TRANSFOMMEES

RIMARY $220-24050 \mathrm{HZ}$
ALTERNATIVE SECONDARY VOLTAGE AND CURRENT


GREENWELD
443 Milbrook Road Southampton
SO1 DHX
Tel:
070317250

All prices quoted include VAT. Add from schools, etc. (Minimum invoic 25p UK/BFPO Postage. Most orders charge ©5). Export/ Whole sale anquiries
detpatched on day of receipt. SAE with welcome. Wholesale list now available despatched on day of receipt. SAE with welcome. Wholesale list now available
entuiries piease. MINIMUM ORDER for bons-fide traders. Surplus comenquiries please. MINIMUM ORDER for pona-fide traders.
VALUE fl. Official orders accepted ponents always wanted.

## OSCILLOSCOPES

We have avaitable from stock the following SCOPEX models: 4D10A - DC-10MHz 10 mV sensitivity: Stab Power supplies; Dual inc VAT and Carr.
$4 \mathrm{~S} 6-\mathrm{OC}-6 \mathrm{MHz} ; 10 \mathrm{mV}$ sensitivity. Ideal portable scope. Solid state circuitry. All for 150 inc VAT and Car

## RELAYS

W847 Low profile PC mntg $10 \times 33 \times 20 \mathrm{~mm}$ 6 V coil, SPCO 3 A contacts. 93 p W817 11 pin plug in relay, rated 24 V oc, but rated 10A. 95p
w839 50 V ac (24V DC) coil. 11 pin plug in type. 3 pole c/o 10A contacts Only $85 p$ p 10A c/o contacts, £1. 20
W877675R $12-27 \mathrm{~V}$ OPCO $23 \times 20 \times 10 \mathrm{~mm}$ sealed can $86 p$
W880 230 V ac OPCO 10 A contacts, en-
closed case f 1.30 W830 200 R 6-12V DPCO $23 \times 20 \times 10 \mathrm{~mm}$ sealed can 88p
Send SAE for our relay list -84 types listed and illu strated.

## AMPLIFIER KIT' £1.75

Mono gen. purpose amp with tone and vol/on-off controls. Utilizes sim. circuitry to
above amp. Output 2 W into 8 ohms. Input matched for crystal cartridge. 4 transistor circuit. Simple to build on PCB provided. Can be either battery or mains operated. (For able transformer. 1 Blue vinyl covered aluminium case to sult (W372) £1-30

## RESISTOR PACK

Carbon Film 5\% mostly $\mathfrak{f W}$, fow $\frac{1}{2} W$ resistors. Brand new. but have preformed
leads, ideal for PC mmig. Wide range of mixed popular values at the unrepeatable price of £2.50 per 1000: E11 per 5000

DIN SOCKET OFFER
2 pin switched speaker socket, PC mounting: 5 pin $180^{\circ}$ PC mntg or chassis mntg (clip
fix). All the same price, any mix: 10 for 70 p 25 for $£ 1.60100$ for $£ 5.50$.

## TMS4030 RAM

4096 bit dynamic RAM with 300 ns access time; 470 ns cycle time; single low compatible; Low power dissipation. Supplied with data £2.75

## MISCELLANEOUS IC's

Supplied with data if requested. MC3302 quad comp. 120p: 710 diff comp. (TO99) quap; 2 N 1034 E precision timer $\mathrm{f2.25}$;
LM 711 Dual diff comp 65 L ; LM 1303 dual LM 711 Dual diff comp 65 ; LM 1303 dual
stereo pre-amp $75 p$ MC1469A voltage reg stereo pre-amp 75p: MC1469R voltage req
£1.50; UPC1025H audio $£ 3.50$ : 575 C . audio E2.88; TDA2640 audio E2.92;
SN75110 dual line driver 70p: MC8500 SN75110 dual
CRCC gen POA

## EDGE CONNECTORS

Special purchase of these $0.1^{n}$ pitch doublesided gold-plated connectors enables us to
offer them at less than one-third of their
original list pricet 32 way 72 p; 40 way 90 p

## HEAT SINK OFFER

Copper TO5 sink 17 mm dia $\times 20 \mathrm{~mm}, 10$ for
$40 \mathrm{p}: 100$ for $£ 3: 1000$ for $\mathbf{~} \mathbf{2 5}$
74 SERIES PACK
Selection of boards containing many different 74 series IC's. 20 for $£ 1 ; 50$ for $£ 2.20 ; 100$ for E 4.

## THE NEW 1978-9 GREENWELD <br> CATALOGUE

FEATURES INCLUDE:

- 50p Discount Vouchers
- Quantity prices for bulk buyers
- Bargain List Supplement
- Reply Paid Envelope
- Priority Order Form
- VAT inclusive prices

PRICE 30p +15 p POST

## NIXIE TUBES

ITT TYpe GNP7AH. Supplied with data 60p
each 7 -seg display, wire ended tube NEC type LD80 12 l$^{\prime \prime}$ high, with data 65 p -seg display. (as abova) Fura
$10010.3^{n}$ char. 70 p with data

## PUSH BUTTON BANKS

 lllustrated list of types from 30p in ourBargain List No 6 - Send SAE. BC182B OFFER
Special Offer for quantity users 1 k . 035 VAT Approx 70 k available.

## DIODE SCOOPIII

We have been fortunate to obtain a large quantity of untested, mosily unmarked glass silicon diodes. $70 \%$ use a sample baich diodes high voltage rects and zeners may all be included. These are beling offered at the incredibly low price of $£ 1.25,1000$ - or a bag of 2500 for $£ 2.25$. Bag of 10,000 £8. Box 0
25,000 £ 17.50 . Box of 100,000 £60.

Oisc Ceramic caps - big variety of values and
voltages from a few pf to $2.2 \mathrm{uF} ; 3 \mathrm{~V}$ to 3 kV . voltages from a few pF to 2.2 uF ; 3 V to 3 kV
200 for $£ 1$; $1000 \mathrm{£4}$.

## PC ETCHING KIT MK III

Now contains 200 sq. ins. copper clad board 1lb. Ferric Chloride, OALO etch-resist pen, etching dish and instructions. $\mathbf{~ 4} \cdot 25$

## BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

* SAVE ON TIME-No delavs in waiting for parts to come or shops to openl
- SAVE ON MONEY-Bulk buying means lowest prices-just compare with others!
- HAVE THE RIGHT PART-No guesswork or substitution necessary!

ALL PACKS CONTAIN FULL SPEC, BRAND NEW, MARKED DEVICES- SENT BY
RETURN OF POST. VAT INCLUSIVE PRICES.
K001 50V ceramic plate capacitors 5\% 10 of each value 22 pF to 1000 pF . Total 210 . K002 Extended range. 22pF to $0.1 \mu F .330$ values f 490
$K 003$ Polyester capacitors, 10 each of these values: $0.01 .0 .015,0.022,0.033,0.047$.
$0.068,0.1$. $0.15,0.22,0.33,0.47 \mu F .110$ altogether for $\mathbb{C 4} 75$
K004 Mylar capacitors. min 100 V type. 10 each all values from 1000 pF to $10,000 \mathrm{pF}$. K 005 por
from 10 pF to 10.000 pF . E12 series $5 \%$ 160V. Total 370 for $£ 12.30$
K006 Tantahum bead capacitors. 10 each of the following: $0.1,0.15,0.22,0.33,0.47$, $15 / 16$ 22/16 33/10 47/6 100/3. Total 170 tants for E14.20
$K 007$ Electrolytic capacitors 25 V working, small physical size. 10 each of these popular
values: $12.2,4.7,10,22,47,100 \mu \mathrm{~F}$. Total values: $1 \cdot 2 \cdot 2,4 \cdot 7,10,22,47,100 \mu \mathrm{~F}$. Total
70 for f 3.50 $K 008$ Extended range, as above, also including 220,470 and $1000 \mu \mathrm{~F}$. Total 100 for K5.90 Miniature carbon film 5\% resistors, CR25 or similar. 10 of each value from 10R to 1 M, E12 series. Total 610 resistors, E6.00 from 1 R to $10 \mathrm{M} \mathrm{f8.30}$
KO49 Zener diodes, $400 \mathrm{~mW} 5 \%$ BZY88, etc. 10 of each value from $2 \cdot 7 \mathrm{~V}$ to 36 V . E24 series. Total 280 for $£ 15 \cdot 30$.

## TRANSFORMERS

All mains primary: $12-0-12 \mathrm{~V} 50 \mathrm{~mA} 85 \mathrm{p}$;
 £2.10. Multitapped type 0-12-15-20-24.
$30 \mathrm{~V}, 1 \mathrm{~A} £ 3.95 ; 2 \mathrm{~A}$ f5.35; 3 A f6 90 . 20 V
 20 V © 300 mA iwice £ 2.50 ;

## WNIDJNTLI EUROBREADBOARD



Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to .85 mm dia.

500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL parkage without running out of connection points.
4 Integral Power Bus Strips around all edges for minimum interconnection lengths.
Double-sided, nickel silver contacts for long life (10K insertions) and low contact resistance $(<10 \mathrm{~m}$.ohms)
Easily removable, non-slip rubber backing allows damaged contacts to be rapidly replaced.
What other breadboarding system has as many individual contacts, offers all these features and only costs $£ 5.80$ inclusive of VAT and P.P. - NONE

At $£ 5.80$ each The EuroBreadBoard is unique value for money. At $£ 11$ for 2 The EuroBreadBoard is an indispensable design aid. Snip out and Post
David Georpe Sales. Flo 74 Crayford High Se., Craytord, Kent. DAI 4EF

## David George Sales

r/o 74 Crayford High Street.
Crayford, Kent, DA1 4EF.
-Please send me 1 EuroBreadBoard @ £5.80 $\square$ Please or 2 EuroBreadBoards @ $£ 11.00 \square$ Tick
(All prices include VAT and P.P., but add $15 \%$ for overseas orders)

Name
Company.
Address.

Tel. No.
PE/3/79
Please make cheque/P.O.'s payable to David George Sales

CHINAGLIA DINO-ELECTRICAL AND ELECTRONIC TEST EQUIPMENT MANUFACTURERS

THE

## DOLOMITI

$20 \mathrm{k} \Omega / \mathrm{V}$ a.c. and d.c

A NEW HIGH SENSITIVITY MULTIMETER WITH ALL THE FEATURES YOU WILL EVER NEED


Accuracy: D.C. ranges. $\pm 2.0 \%$. A.C. \& $\Omega$ ranges $\pm 2.5 \%$
39 ranges: d.c. $V .0 .150 \mathrm{mV}, 500 \mathrm{mV}, 1.5 \mathrm{~V}, 5 \mathrm{~V} .15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}$. 1.5 KV : d.c.I, $0.50 \mu \mathrm{~A} .500 \mu \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 0.5 \mathrm{~A}, 5 \mathrm{~A} ;$ a.c. $\mathrm{V} .5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}$. $150 \mathrm{~V}, 500 \mathrm{~V}$, 1.5 kV : a.c. $1,5 \mathrm{~mA}, 50 \mathrm{~mA}, 0.5 \mathrm{~A}$. 5 A , dB -10 to +65 in 6 ranges; $\cap 0.05 \mathrm{k} \Omega$, $5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega$. $5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$. pF 50 kpF . 500 kpF .
Automatic ovarload protection and high current range fuaing.
Scale mirror and fine pointer for accuracy of reading. Single knob main range switching and all panel controls. C.E.I. Class 1 movement with sprung jewel bearings. Extended 92 mm scale length for extra clarity. Compact ABS case $125 \times 131 \times 37 \mathrm{~mm}$. Weight 750 g with batteries. Supplied complete with carrying case, fused leads, handbook and full 12 -month guarantee. Optional 30 kV d.c. probe available.

Meter £50.00 incl. VAT (£1 P. \& P.)
30 kV Probe £12. 85 Incl . VAT
For details of this and the many other exciting instruments in the Chinaglia range, including multi-meters, component measuring, automotive and electronic instruments please write or telephone

## A 5 chov

 Instruments Ltd. 19 MULBERRY WALK. LONDON SW3 6DZ TEL: 01-352 1897
## $100 K 4$ New 12" Monitor for your Micro <br> Available cased or uncased for OEM's The above prices are for 1 off orders (plus VAT)

Power Supply $£ 20$ extra ( + VAT)
INCLUDING
Tiny Basic and
on board Prom
Programmer now available - KIT £220 (plus VAT)
CROFTONELECTRONICS LIMITED35 GROSVENOR ROAD. TWICKENHAMMIDDLESEX - Telephone:01-891 1923
TRANSITTORS

## ENGINEERS

## LiP起

## YOURSELF FORA

 BEIEB ID ітиDo you want promotion, a better job, higher pay? "New opportunities" shows you how to get them through a lowcost, Home Study Course. There are no books to buy and you can pay as you learn.


## MORE PAY!

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 44-page free book NOW! No obligation, nobody will call on you. It could be the best thing you ever did.

## CHOOSE A BRAND NEW FUTURE HERE





Designer approved quality kits for Electronic Musical Instrument Construction.

## JOANNA 72 a 88 PIANOS

 Six and $7 \pm$ Octave Electronic Pianos with unlque Touch Sensitive Action, as used in the P.E. JOANNA, which electronically simulates piano key inertia - a feature not available in any other design A new physical layout has been adopted to simplify construction.
## P.E. STRING ENSEMBLE

The only kit available to the proven A. J. Boothman Design for this ver satile String Machine. Send S.A.E. to -

Clef Products (Dept P.E.) 16, Mayfield Road, Bramhall, Cheshire SK71JU

## L\&B

A RANGE OF HIGH QUALITY AUDIO POWER AMPLIFIERS MODULES AT VERY COMPETITIVE PRICES. FAST DESPATCH SERVICE, BULK PURCHASE DISCOUNTS.

LB25 25W. RMS. into $4 \Omega .25 \mathrm{HZ}-50 \mathrm{KHZ}$.
LB 100 100W. RMS. into $4 \Omega .10 \mathrm{HZ}-30 \mathrm{KHZ}$.
LB250 250 W. RMS. into $4 \Omega .10 \mathrm{HZ}-25 \mathrm{KHZ}$.
20.3\% THD (TYP), 110 dB SN................................. $£ 26.44$ Please include VAT $(8 \%)$, except $\geqslant\left(12 \frac{1}{\%}\right)$ \& 50 p post and packing. Also available. Power Supplies. Preamps and Light Effect Modules. For further information, SAE TO:
$T$ Qr ELECTRONICS SURREY.CRO 3EB. WORTLE CROYDON SURREY. CRO 3EB.
TELEPHONE: O1-689 4138
U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

| BAKER LOUDSPEAKER, 12 INCH, 60 WATT. GROUP 50/12, 4 OR 8 OR 16 OHM HIGH POWER. FUIL RANGE PROFESSIONAL QUALITV. RESPONSE $30-16,000$ CPS massive ceramic magnet WITH ALUMINIUM PRESENCE CENTRE DOME. | BAKER 150 WATT ALL PURPOSE TRANSISTOR MIXER AMPLIFIER |  |  | TINTED PLASTIC COVERS ONLY <br>  <br>  <br>  Ideal for record decks, tape decks etc. Post $\mathrm{E1}$. |
| :---: | :---: | :---: | :---: | :---: |
| BAKER "BIG-SOUND" SPEAKERS Post $£ 1$ each |  |  |  | R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS <br> All patte and instructions with zener diode printed circuit rechithers and double wound mains transtormer 6 or 75 or 9 or 12 V d C up io 100 Fost 45 p voltages avalatie 6 or 75 or 9 or 12 V de up to 100 mA or less Size 3, 2; 1;in Please atate vollage required |
| 'Group 25' 'Group 35' 'Group 50/15' |  |  |  |  |
|  | BAKER 50 WATT AMPLIFIER <br> IDEAL FOR DISCOS. GROUPS AND P.A. <br> Two inputs with volume controls. Master treble bass and volume controls. Suitable for all loudspeakers. $£ 59$ Post $£ 1$. |  |  |  |
| 4 or8or 16 omm 4 or 8 or 16 ohm 8or 16 ohm |  |  |  | ELECTRO MAGNETIC 950 Post 30, |
| 10 WATT PER CHANNEL STEREO AMPLIFIER Ready made in chassis form. Mains operated. Volume balance, treble and bass slider controls Pick up and tape inputs. Recording output. |  |  |  |  |
|  | R.C.S. SOUND TO LIGHT DISPLAY MK II Complete klt of parts with R.C.S. printed circuit. Three 1000W channels. Will operate from 200 mV signal source. CABINET extra £4. KIT =£17.00 |  |  | metronome. stro |
|  |  |  |  | MAINS TRANSFORMERS |
| Front panel size: $16 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{in}$. Chassis siza: $13 \times 15 \mathrm{in}$. <br> Bargain |  |  |  | 250V 70 m |
| HEATING ELEMENTS WAFER THIN <br> Size $101 \times 8 \downarrow \times$ Jin. Operating voitage $200 / 250 \mathrm{~V}$ ac. 250 W approx. Suitable for Heating Pads. Food Warmers Convector Heaters, etc. Must be clamped between two sheets of metal or similar. ALL POST PAID - Discounts for quantity. ONLY 40P EACH (FOUR FOR £1.50) | R.C.S. 10 WATT AMPLIFIER KIT |  |  | $\mathrm{Van}^{24}$ |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| MINI MODULE BAFFLE KIT Post 75p |  |  |  | A E1. 12 V 300 mat ¢. |
| $15 \times 8$ din. 3 -way Loudspeaker System EMI 5 in. Bass 5 in, Middle 3 in Tweeter with 3 -way Crossover | This kit is surtable tor record playere. rape piay back, guitars electronic instruments or smail $A$ sysiem, avaluble. The mono kit uses 13 semiconductiors. The siereo and uses 22 semiconductors. Both kets nave prinied froni panet and volume. bass and treble controls. Spec. 10 W outpur intio onms. Tw into 15 ohme . Aesponse 20 e it 1030 kc s. <br> input 100 M . V. high imp. Size $9 \frac{1}{4} \times 3 \times 2 \mathrm{in}$. ACC mains operated. |  |  |  <br>  <br>  <br>  <br>  <br> $1 \nmid A 55 \mathrm{p}: 4 A \mathrm{E} 1.25$. HALF WAVE $12 \mathrm{~V} \mid \$ 425 \mathrm{p}$. |
|  |  |  |  |  |
| \& Ready Cut Baffle. Full assembly instructions supplied. Response $=601020000$ C.P.S. 12 watt RMS. 8 ohms. $£ 10.95$ per kit. Two kits $£ 20$. |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  | $20$ |  |
|  |  | Ild full instrua |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| 3 speeds prays alls size erecoras Two lor 115 . Post 750. |  |  |  |  |
|  |  |  |  | ¢1.50; $9 \times 4 \times 4$ in. $\times 1.70 ; 6 \times 4 \times 4$ in. $\times 1.3$. |
| NEW BSR SINGLE PLAYER |  |  |  |  |
| Model P182 3-speeds flared aluminium tumta | $8 / 350 \mathrm{~V}$ 162350 p 30 p | - $\begin{array}{r}8+8 / 450 V \\ 8+16 / 450 \mathrm{~V} \\ 50 \mathrm{p}\end{array}$ | $50+50 / 300 \mathrm{~V}$ $32+32 / 450 \mathrm{~V}$ 75 p |  |
|  | 32/500V 75p | $16+16 / 450 \mathrm{~V} 50 \mathrm{p}$ | $100+100 / 275 \mathrm{~V} 65 \mathrm{p}$ |  |
| cartridge, plays all size records. <br> £14.95 | $50 / 350 \mathrm{~V} 50 \mathrm{O}$ | $32+32 / 350 \mathrm{~V} 50 \mathrm{p}$ | $15 \mathrm{P}+200 / 275 \mathrm{~V}$ | Head demagnetiser $£ 4.75$ |

## RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD, CROYDON, U.K. Tel. $01-684$ 1665

## You knowit's easy with Heathkit.

## Electrönics Courses

New series of courses on car electrical systems.
New series of courses on electronic equipment.
DC electronics.
AC electronics.
Semi-conductors.
Electronic circuits.
Digital techniques.
Microprocessors.

## NewKits

Line printer.
Dual floppy disc
Dual trace 5 MHz and 35 MHz
oscilloscopes.
Memory expansion for digital trainer. 2M hand-held transceiver.

Heathkit self-instruction electronics courses are complete, low-cost leaming systems. All you need is the will to learn and the Heathkit courses will teach you at your own pace.

It's easy because the courses are based on step.by. step programmed instructions, with audio records (or optional cassettes), self evaluation quizzes to test your understanding, and interesting experiments that encourage you to learn the easy "hands on" way with the optional Heathkit experimenter trainers.

Thousands of people just like you have already learnt electronics the easy Heathkit way - at home, in educational establishments and inaveresp in industry throughout the world. You'll find it easy too. Full details are in the Heathkit catalogue, together with hundreds of kits you can build yourself; for the home, car and workshop. Send for your copy now.


## To Heath (Gloucester) Limited, Dept PE/3/79

Bristol Road, Gloucester GL2 6EE. Please send the items I have ticked.
$\square$ Heathkit catalogue (enclose 20 p in stamps). $\square$ computer
brochure (enclose 20 p in stamps).


Name
Address

NB. If you are already on the Heathkit mailing list then you will automatically receive a copy of the latest Heathkit catalogue without having to use this coupon. Registered in England, number 606177.

# EHRIOWASONID Electronics your soundest conmection in the world of componants 

Dept PE1, 56 FORTIS GREEN ROAD, MUSWELL HILL, LONDON, N1O 3HN
fram Resistors to the latest in Microprocessers. Don't delay order your copy soday. The price is only 40 p (inc. $45 p$ vouchers).

TELEPHONE: 01-883 3705


# The professional scopes you've always needed. 



When it comes to oscilloscopes, you'll have to go a long way to equal the reliability and performance of Calscope

Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition The Calscope Super 10, dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations.

The price $£ 219$ plus VAT.
The Super 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of $1 \mu \mathrm{~s} t 0100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity. Price $£ 162$ plus VAT.

## CALSCOPE DISTRIBUTED BY

Marshalls Electronic Components.
Kingsgate House,
Kingsgate Place,
London, N.W.6.

Audio Electronics,
301 Edgware Road, London W. 2.
Tel: 01.724 3564
Access and Barclay card facilities
(Personal Shoppers)

Maplin Electronics Supplies Ltd. P.O. Box 3 Rayleigh, Essex. Tel: 0702715155 Mail Order

LOOK!Here's how you master electronics. ... the practical way.

This new style course will enable anyone to have a real understanding by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer. All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

## 1. Build an oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

## 2. Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

## 3. Carry out over 40 experiments

 on basic circuits.We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

## 4. Free Gift.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

Post now, without obligation, to:-

# BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL <br> P.O. Box 156 , Jersey, Channel Islands. 

$\qquad$
$\qquad$



## RECEIVERS AND COMPONENTS

POWER PARTS. VMOSFET VN84GA 12.5Amps £21.34,VN66AF 2Amps £1.25. TRIACS: T6411D 400V $25 \mathrm{Amps} £ 10.53, \mathrm{~T} 6420 \mathrm{M} 600 \mathrm{~V} 40 \mathrm{Amps}$ £12.96. Inverter SCR 2 N 3658400 V 35 Amps £22.97. Bulgin 8way disco lighting Plug $£ 1.64$ socket $£ 0.56$. CWO to ANENT POWER, 2 Kelvin Sq., Livingston, West Lothian.
TUNBRIDGE WELLS COMPONENTS, Ballard's, 108 Camden Road, Tunbridge Wells, Phone 31803. No Lists. Enquiries S.A.E.
P.C.Bs PAXOLIN $10 \frac{1^{\prime \prime}}{} \times 4 \frac{1^{\prime \prime}}{2} 4-£ 1.25 .12^{\prime \prime} \times 9^{\prime \prime} 70$ p. $17 \frac{1}{2}$
 $\times 9 \frac{1^{\prime \prime}}{\prime \prime} £ 1.15$. D.S. $18^{\prime \prime} \times 8^{\prime \prime} £ 2.40$. D.S. $13^{\prime \prime} \times 6^{\prime \prime} £ 1.30$. $11 \frac{1}{2}^{\prime \prime} \times 7 \frac{1}{\frac{1}{2}} £ 1.60$. $18^{\prime \prime} \times 8^{\prime \prime} £ 2.40$. D.S. $13^{\prime \prime} \times 6^{\prime \prime} £ 1.30 .11 \frac{1}{2} \times 7 \frac{1}{2} £ 1.60$.
Panel with 42 assorted 74 series ICs $£ 1.50$. 20 wire ended Panel with 42 assorted 74 series iCs $£ 1.50 .20$ wire ended
neons $£ 1.300$ small components, trans, diodes $£ 1.50 .7 \mathrm{lbs}$ assorted components $£ 3.60$. $3 \frac{1}{2}$ lbs $£ 1.95$. List 15 p. Refundable. Post 20 p under $£ 1$, Insurance add 15 p.

## J.W.B. RADIO

2 Barnfield Crescent, Sale, Cheshire M33 1NL

TRIACS 500V 3A Tested 60p each. M. Manning, 114 Dumbreck Road, Eltham, SE9

GLASS FIBRE PRINTEO CIRCUIT BOARDS from your film or tape masters 14 p per square inch $+P \& P 30$ p. C.W.O please. P. A. YATES, 22 Ambleside Drive, Darwen, Lancs.


GRADE 1 SEMICONDUCTORS, PASSIVES, HARDWARE, SECURITY. Immediate service:- Texas 1 N4148 £1.50 per 100.- RCA. CD4001/11 18p.- RCA. 7418 pin dil. $£ 1.00$ per 5.- 555 £1.00 per $4-\mathrm{CEH}$. PC. housings 60 p . Capacitors, resistors, keyswitches, Texas IC. sockets, control-panels. S.A.E. brings complete catalogue:- CEH Audio-Visual (A), 48 Whistler Rd. Tonbridge, Kent.

## IP EACH plus S.A.E. Diodes 20V 10uA. Rush, 23 Campus Road, London E17.

GUARANTEED ICs 7400/10p 7447/55p 7473/24p74121/24p 4000/15p 4011/15p 4017/55p 4027/32p 709/22p 741/22p $7805 / 60$ p NE555/25p. Many more! SAE full list CP ICs 22 Oakfield Road, Croydon, Surrey.

## SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 6.60$ per single column centimetre (minimum 2.5 cms ). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO., 103 South Brink Wisbech, Cambs, 0945-4188. I mmediate settlement.

## SERVICE SHEETS

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, ete £1.00 plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel: (0423) 55885.

SERVICE SHEETS for Radio, Television, Tape Recorders Steren etc. With free Fault-finding guide, from $50 p$ and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

## LADOERS

LADDERS. Varnished $25 \frac{1}{} \mathrm{ft}$. extd. £35.70. Carr. £2.80 Leaflet. Callers welcome. Open Sat. Ladder Centre (PEE5), Halesfield (1) Telford 586644.

## RECORD ACCESSORIES

STVLI for Hi-Fi, Music Centres. I11. List for s.a.e. Also cartridges, leads, accessories. Details-Felstead Electronics (PE) Longley Lane, Gatley, Cheadle, Ches. SK8 4EE

## EDUCATIONAL

## TELEVISION TRAINING

18 MONTHS full-time course for beginners to include all the undermentioned subjects. Short courses, combining one or more subjects, for applicants with suitable education and electronics background such as C \& G. HND, BSc etc.

- 13 WEEKS TECHNICAL MATHEMATICS \& ENGLISH
- 13 WEEKS ELECTRONICS \& RADIO
- 13 WEEKS MONOCHROME TELEVISION
- 13 WEEKS COLOUR TELEVISION
- 13 WEEKS VIDEO SYSTEMS (CCTV, VCR, TELETEXT etc)

The training incorporates a high percentage of practical work.
Next session starts on April 23rd
(A)so available $2 \frac{1}{3}$ year course in Marine Electronics \& Radar for employment as ships Radio Officer)
Prospectus from:
LONDON ELECTRONICS COLLEGE
Dept. PEA3, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertiseconditions appearing on our current advertise-
ment rate card and on the express understandment rate card and on the express understand ing that the Advertiser warrants that the advertisement does not contravene any Act of
Parliament nor is it an infringement of the Pariament nor is it an iniringeme
British Code of Advertising Practice. British Code of Advertising Practice.
2. The publishers reserve the right to refuse or 2. The publishers reserve the
withdraw any advert sement.
withdraw any advertisement. 3. Although every care is taken, the Publishers
shall not be liable for clerical or printers shall not be liable for clen
errors or their consequences.

## CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. E272 Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

## COLOUR TV SERVICING

Learn ihe techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from

ICS SCHOOL OF ELECTRONICS
Dept. E272 Intertext House, London SW8 4UJ Tel. $01-6229911$ (ail hours)

State if under 18

## TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-buld radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
1hept. E272 Intertext House, London SW8 4UJ
Tel. 01 - 6229911 (all hours)
State if under 18

WHETHER SEA-GOING OR SHORE-BASED, an exciting life awaits you as a Marine Radio Officer. Full details from The Principal, Barking College of Technology, Dagenham Road, Romford, RM7 0 XU ('phone Romford 68841 ).

## FOR SALE

NEW BACK ISSUES of "PRACTICAL ELECTRONICS" available 70 p each Post Free. Open P.O./ Cheque returned if not in stock - Bell's Television Services, 190 Kings Road
Harrogate. N. Yorks. Tel: ( 0423 ) 55885 . Harrogate, N. Yorks. Tel: (0423) 55885

SEEN MY CAT? 5000 Odds and ends. Mechanical Electrical. Cat free. Whiston, Dept. PRE, New Mills, Stockport.

MINISONIC 2. Many additions, working, needs some attention, £250. Details, Ottershaw 2522.

## WANTED

WANTED. Personal computor pet similar. Exchange Hi Fi. Cash. 50 Queen Anne Street, S-O-T, ST4 2EQ.

## BOOKS AND PUBLICATIONS

INTRODUCTION TO MICROPROCESSORS ANI COMPUTING. 50 pages of explanation and diagrams to get you started. Contents include: binary arithmetic, codes, microprocessor operation, machine language programming, summary of higher level languages and systems, glossary of terms. Price $£ 2.30$ plus 45 p P\&P. (Crossed cheques and P.O.'s.) Educational Data and Technical Services, 59 Station Road, Cogenhoe, Northampton NN7 1 LU.

COMPREHENSIVE TV REPAIR INSTRUCTIONS for your set £5.00 with circuit (if requested). Free catalogue unique T.V./other publications AUSE (PE) 76, Church Street, Larkhall, Lanarkshire ML9 1HE.

WHY NOT START YOUR OWN BUSINESS REWINOING ELECTRIC MDTORS. A genuine opportunity to success. LARGE PROFITS. You can't help but make money if you follow the easy, step by step, instructions in our fully illustrated Manual showing how to rewind Electric Motors, Armatures and Field coils as used in Vacuum Cleaners, Electric Drills and Power Tools. NO PREVIOUS KNOWLEDGE IS REQUIRED, as the Manual covers in 13 Chapters, where to obtain all the work you need, materials required, ail.instructions rewind charts and how to take data etc. A gold mine of information. How to set up your home workshop and how to cost each job to your customer. $£ 4.00$ plus $30 \mathrm{p} P \& P$.
UK. CWO. to INDUSTRIAL SUPPLIES, 102 Parrswood Rd. Withington, Manchester 20, Dept. PE.

SITUATIONS VACANT


## POWER SUPPLIES

POWER SUPPLY CARDS. +12 volts and +5 volts. Fully regulated with S/C protection. $£ 19.99+£ 1$ P\&P. C.W.O. To ANENT POWER, 2 Kelvin Square, Livingstone, West Lothian

## MISCELLANEOUS

## CABINET FITTINGS

Stage Loudspeakers and Amplifier Cabs Fretcioths, Coverings, Strap \& Recess Handles, Feet, Castors, Jacks \& Sockets. Connons, Bulgin 8 ways, Reverb Trays, ocks \& Hinges. Corners, Trim, Speaker Bolts etc.

ADAM HALL (P.E. SUPPLIES)
Unit 3. Cariton Court. Grainger Road
Southend-or-Sea. Essex.
SUPERB INSTRUMENT CASES BY bAZELII, manufactured from P.V.C. faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p , chassis punching facilities at very competitive prices, 400 models to chose from, free literature (stamp would be appreci Lane, Halton, Lancaster. LA2 6LT.

PRACTICAL ELECTRONICS P.C.B.'s
in glass fibre tinned and drilled
Dec. 77 Car Burglar Alarm $1412-168 \mathrm{p}$

July 78 Dimwit $£ 1.78$. Aug 78 Touch Switch
Aug 78 Oigital Thermometer, wo boards $£ 1.45$.
Aug 78 Oigital thermometer, wo boards $£ 1.45$.
Oct. 78 Analogue Computer:
Overlord $£ 3,31$. Reley $\mathbf{E 2 . 4 1}$. Main $£ 6.85$.
Nov. 78 Auto Light $£ 1.00$.
Oec. 78 RC Motor Control 67 p. RC Fail Safe 39p.
Guitar Sound, Main board £2.95.
Jan. 79 Guitar Sound, clock $£ 1$.
Low pass filter $£ 1.95$.
Noughts and Crosses, set on boards $£ 6.38$
For full list and current boards please send S.A.E. P.C.8.'s also produced
please send for quote.
please send for quote.
Postage - On orders less than $£ 10.00$ please add 25 p. postage. C.W.O. please
PROTO DESIGN
14 Oownham Rood, Ramsden Heath, Billericay

BLOWN UP ANY GOOD CIRCUITS LATELY? ELIMINATE THE GUESSWORK WITH AN A.C. MILLIVOLTMETER
This valuable plece of test equipment enables the amateur or professional to measure A.C. voltages accurately and easily. The unit is mains operated and comes complete with test lead.
Specifications: Range 1 mV f.s.d. to 100 V f.s.d. in 6 ranges Frequency response: 10 Hz to $100 \mathrm{kHz} \pm 1 \mathrm{~dB}$. Accuracy within 1\% typ. Input impedance: 1 megohm.
Price £48.50 inclusive. Send your cheque or postal order for $£ 48.50$ to Magna Electronics, 18 De Le Warr Road, East Grinstead, West Sussex, RH19 3BP

ALARM EQUIPMENT ANO ELECTRONIC COMPONENTS. Car alarm control units: Type ' $A$ ', immediate operation, automatic reeet, kit - $\mathbf{E 5} .50$, assembled - $\mathbf{5 6 . 8 0}$. Tvoe ' $\mathbf{B}$ ', timed exit/entry, automatic reset, kit - £8.25, assembled $£ 10.90$ ( $10 \%$ discount $10+$ ). Lockswitches $£ 3.50$. 12 v sirens £5.90. Bell boxes $£ 5.75 .12 v$ Belle $£ 8.25$. BC $10810 \mathrm{p}(10+)$. 555 's 32p $(10+) .741$ 's 24p (10+). P\&P $10 \%$ extra. WEBB ELECTRONICS, 41 Winwick Street, Warrington. (Tel. 54174).


PRINTED CIRCUIT BDARDS in glass fibre, drilled tinned or varnished, from your own or published designs. S.A.E., for quotations. R. F. DARLISON, 12 Whiteoaks Road, Oadby, Leicester.

## GUITAR/PA/MUSIC AMPLIFIERS

100 watt with superb treble bass overdrive. 12 months guarantee. Unbeatable at $£ 40 ; 60$ watt $£ 35 ; 200$ watt $£ 56$ Twin channel sep treble/bass per channel $£ 52 ; 60$ watt £46; 200 watt $£ 69 ; 100$ watt four channel sep treblel bass per channel £65; 200 watt $£ 79$; Slaves 100 watt £32; 200 watt $£ 48$; Fuzz boxes great sound £7.90; Bass fuzz $£ 8.50 ; 100$ watt combo superb sound overdrive, sturdy construction, castors, unbeatable $£ 85$; Twin channel E 95 ; Bass Combo E95; Speakers 12 in . 100 watt $£ 22.50 ; 60$ watt $£ 14.50$; Shure mic unidyne B $£ 26$.
Send Cheque or P.O. to:

## WILLIAMSON AMPLIFICATION

62 Thorncliffe Ave, Dukinfield, Cheshire
Tel. 061-344 5007

TOUCH SENSITIVE Lightdimmer P.C.B. + circuit 75p. Electronic Siren 12 v 4 watts, kit £2.99. P.C.B. + circuit 90 p . Electronic siren attractively cased with internal loudspeaker. Kit 15.99 . Details on request from H.T.E. 50 Milnefield Avenue, Elgin, Morayshire.

## NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only $\mathbf{£ 9 . 7 5}$ plus 25p P. \& P
'Brain-Freeze' 'em with a MINI-STROBE Kit, pocket-sized 'lightning flashes', vari-speed, for discos and parties. A mere $£ 4.30$ plus 20 p P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multi-function modules. $£ 5$ each plus 20 p P. \& P.

LOTS MORE! Send 20 p for lists. Prices include VAT.

## BOFFIN PROJECTS

4 Cunliffe Road, Stoneleigh
Ewell, Surrey (P.E.)

 , TYPE...OR REMOTE CONTROL
to use with any type plug
Safety fast! Shows at once; 1, If all wires correct. 2, Llve wire fault. 3, If neutral fault. 4, Live and neutral reversed. 5, Earth fault. 6, Live and earth reversed.

British made. 13-amp plug type or remote readout type to use with any plug. Both same price $£ 4.20$ post free from the manufacturers. ( 2 for $£ 7.95,3$ or more £3.90 each).

## GALATREK ENGINEERING <br> Dept. PE3, Scotland Street,

LLANRWST, Gwynedd, N. Wales.

## NICKEL CADMIUM BATTERIES

Rechargeable and suitable for fast charge HP7 (AA) £1.13, SUB C £147, HP 11 (C) £2.15, HP 2 (D) E3.27, PP3 All above Nickel Cadmium batteries are guaranteed 'EVER AEAOY full spec, and are supplied complete with solder tags (except PP3). Just in slock-New rechargeable sealed read acid maintenance free batteries suitable for burglar alarms etc., 1.2 amp hr 6 v . £ 4.402 .6 amp hr . $6 \mathrm{v} £ 5.65$. Quantity prices available on request. Date and charging circuits free on request with orders over f 10 otherwise 30 p post and handling (specity battery type), all prices include VAT. Please add $10 \%$ P \& $P$ on orders under $£ 10.5 \%$ over
£ 10 .
Cheques, postal orders, man order fo: SOLID STATE SECURITY DEPT PE, 10, Bradshaw Lane, Parbold, Wigan, Lancs. 02575-4726

|  |  | NTI | WIRE |  |
| :---: | :---: | :---: | :---: | :---: |
| swg | 1 lb | 8 ot |  |  |
| 10 to 19 | 2.65 | 1.45 | . 75 | . 60 |
| 20 to 29 | 2.85 | 1.65 | . 90 | . 75 |
| 35 to 40 | 3.40 | 1.95 | 1.00 | 84 |
| 41 to 43 | 4.55 | 2.55 | ¢ 95 | 1.30 |
| 44 to 46 | 5.05 | 3.05 | 2.15 | 1.70 |
| 47 | 8.00 | 5.00 | 3.00 | 1.80 |
| 48 | 15.00 | 9.00 | 6.00 | 3.30 |
| SILVER PLATED COPPER WIRE |  |  |  |  |
| 14816 2082 | 4.50 500 | 2.25 <br> 2.85 | 1.44 <br> 1.74 <br> 1 | . 90 |
| 24 2426 |  |  | 1.74 | 1.06 |
| 28 \& 30 | 6.67 |  | ${ }_{2}^{2.35}$ | 1.44 |
| Prices include $P$ \& $P$ and VAT <br> SAE brings list of copper \& resistance Wires Dealer Enquiries Invited. |  |  |  |  |
|  |  |  |  |  |



MAKE YOUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack (5 sheets, lines, pads, I.C. pods) $£ 1.45$. Large range of single sheets in stock at 30p per sheet.
Ferric Chloride - 116 bags 80 p (P\& $\left.\mathrm{P}^{1} 50 \mathrm{p}\right)^{*}$
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. Full instructions supplied. 2 sheets $\{20 \times 25 \mathrm{~cm}\}$ negative paper ond 2 sheets $(18 \times 24 \mathrm{~cm})$ positive film $£ 1.20$. S.A.E. lists and information. P\&P 25p/order except* P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

AERIAL BOOSTERS. Improve weak VHF Radio and Television reception, price £5. S.A.E. for Leaflets. Electronic Mailorder Ltd., Ramsbottom, Bury, Lancashire.BL09AG.

## W.K.F. ELECTRONICS

(R.P.C.B.S. Ltd.)

THE CIRCUIT BOARD SPECIALISTS UNIVERSAL SUPPLIERS

Contractors for: P.C.B. Production, Contract Drilling, Electroplating, Laminate Cutting.
Services for: Master Artwork Preparation, Process Photography, Circuit Diagrams, Layouts \& Legends. Consultants far: Instrument Engineering. Automatic Control \& Applications.
Do-lt-Yourself Won't Do: Today's assemblies demand close tolerances
Goodbye to the Long Wait: 3 to 7 Day Prototype P.C.B. Production Service.

Quotations: By Return. Guaranteed Quality on every process.
Short or Long Term Production now acceptable from 1 to 10,000 units.
We Universally Distribute: Laminate. Carbide, Drill Bits \& Routers, Process Chemicats (anyl. Presensitised Laminate, Drilling Machines (Manual, Multi-spindle, N.C./C.N.C. Control), Graphic Art Draughting materials \& aids.
We Manufacture to Specification: Quality Circuit Boards (Single or Double Sided with any finish). Due to expansion we now have space available for prototype or long term production.
For quotations: Submit Copy Masters, Roughs, Circuit or Sample units for costing.
To:
W.K.F. ELECTRONICS

FLEET HOUSE, WELBECK STREET
WHITWELL, WORKSOP, NOTTS.
TEL: WORKSOP (0909) 720695
TELEX: 547616
Telephone Quotations: Ask for pricing
NOTICE TO OTHER MANUFACTURERS
IS YOUR DRILLING/ROUTING DEPARTMENT A
BOTTLENECK
IF SO TRY OUR SERVICE FOR DRILLING AND ROUTING.

THE RATES ARE VERY REASONABLE AND THE
FAST SERVICE WILL ENSURE THAT YOUR
CUSTOMERS' DELIVERIES ARE MET.

CLEARING LABORATORY. Scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, bridges, audio, R.F. generators, turntables, tapeheads,
stabilised P.S.U.s, sweep generators, test equipment, etc.
Lower Beeding 236 . stabilised P.S.U.s,
Lower Beeding 2.3.
I. C. EXPERIMENTALEDUCATIONAL KITS This popular series of Kits on Digital Logic techniques has now been further improved to include additional components, resulting in greater constructional flexibility and educational capacity Each Kit contains selected I.C.'s.
Holders, Veroboard. LE.D.'s and Instructions. Available at Holders, Veroboard, LE.D.'s and Instructions. Available a £5.00 each (inc. p. \& p.).
Kit One - Gates
Kit Two - Flip-Flops Kit One-Gates
Kit Three-Shift Registers Kit Four - Counters
Kit Five- Displays
S.A.E. for further detalls to:

69 High Street Ryton HOMES
69 High Street. Ryton, Coventry CVB 3FJ (mail order only)

## VIDEO MUSIC



Videograph II links to the aerial socket of your iv and provides a full colour GIANT oscilloscope display. A riust for hi-fi, home entertainment, discos, organs etc.
New - signal invert control, integral square wave generator. Plus - full details for testing your audio system for transient distortion, crosstalk etc.
Complete P19.95 Luxury cabinet and Kit only $\qquad$ controls. ©9-95
READY BUILT VIDEOGRAPH $£ 39.95+\mathbf{c} 1$. Post \&acking. WILLIAM Dower House. Billericay Road. Mranco STUART $\begin{gathered}\text { Herongate, Brentw } \\ \text { Essex CM13 }\end{gathered}$
SVGTEMS Essex CM13 350.

3,000,000 Resistors To Clear
Pre-bent Resistors in packs of mixed values. $100 \times 0.33 \mathrm{~W} \times 5 \% 10 \%$ over $1 \mathrm{M} \Omega \mathbf{£ 0 . 6 5 p}$. $100 \times 0.5 \mathrm{~W} \times 5 \% 10 \%$ over $1 \mathrm{M} \cap £ 0.95 \mathrm{p}$.
Cheques and Postal Orders should be made payable ro. Pentagon Electronics and include 10 P P. P .
PENTAGON ELECTRONICS
1st Floor. The Parade, Frimley, Surrey.

## ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

|  |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

NAME.
Send to: Classified Advertisement Manager
PRACTICAL ELECTRONICS
ADDRESS
, Classified Advartisements Dept., Room 2337, King's Reach Towar, Stamford Streer,
London SE1 9LS.
Telephone 01-261 5846
Rate:
20p per word, minimum 12 words. Box No. 60p extra.
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street. London SE1 9LS.

## SYSTEM DESIGN WITH MICROPROCESSORS

Price: $£ 7.00$

BASIC FOR HOME COMPUTERS A SELF TEACHING GUIDE
by B. Albrecht
Price: $£ 4.55$
BEGINNER'S GUIDE TO HOME COMPUTERS by M. Grosswirth

Price: $£ 3.20$
MASTER OP-AMP APPLICATIONS HANDBOOK
by H. W. Fox
Price: $£ 7.75$
UNDERSTANDING DIGITAL ELECTRONICS
by Texas Inst.
Price: $£ 3.90$
PRACTICAL ELECTRONICS
by B. Woollard
Price: $₹ 3.65$
DIGITAL ELECTRONIC CIRCUITS \& SYSTEMS
by N. M. Morris
Price: $£ 4.30$
ELECTRONIC FAULT DIAGNOSIS
by G. C. Loveday
Price: $£ 3.20$
SOLID STATE BASICS FOR THE RADIO AMATEUR
MICROELECTRONICS
Price: $\mathbf{£ 3 . 6 0}$
*all prices include postage*

## THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books 19-21 PRAED STREET LONDON W2 INP

Phone 01.723 4185
Closed Saturday 1 p,m.


## BATYERIES

 NO WIRES onct £32•99 PER PAIR$+\quad$ VAT $44 \cdot 12$
The modern way of instant 2 -way communleations. Supplied with 3 -core wire. Just plug into power socket. Ready for use. Crystal clear communications from room to room. Range $f$-mile on the same mains phase. On/oft switch. Volume control. Useful as inter-office intercom. between

£22.95
solve your communics + Sion problems with this t-Stativu Trahisistur Intercumbsetem (1 master and 3 subs). in robust plastic cabinets for desk or wall mounting. Callf talk/lieten from Master to Subs nad subs to Master. Ideally нuitzble for Business, Surgery, Schools, Hogpitals and Office.
Operates on one 9 V battery, On/oll switch. Volume control. Operates on one 9 batiery On/ing swich. and ather accessincies. P. \& P. O9p.
NEWI AMERICAN TYPE CRADLE TELEPHONE AMPLIFIER

£16.95
+VAT \&1.36 Latent tranmaturised Telephone Amplifer with detached
plug-In sieaker. Plucing the receiver on to the eradle activates a switch for Immediate two-way conversatlon Without holding the handset. Many people can listen at a
tine. Increase efficiency in office, shop, worknhop. Perfect time. Increase efficiency in office, shop, worknhop. Perfect fot conference" calls: lesves the users bands free to make
notes, consult fles. No long waithg, saves time with long. distance calls. On/off switch, volume control, conversation recording model at $819 \cdot 95+$ VAT $£ 1 \cdot 60$. P. \& P. 89p. 10 -day price refund guarantee on all items.
WEST LONDON DIRECT SOPPLIES (PW2) 169 KENSINGTON HIGH STREET, LONDON. W8
169 KENSINGTON HIGH STRE


DISCOUNTS: $25+10 \%$ (OF ANY ONE TYPE)
MIN OROER 52.00 PRP 3Op VAT--PLEASE ADO 8\% EXCEPT THOSE MAR K \& A DISTRIBUTORS 52 BARKBY ROAD, SYSTON, LEICESTER LE7 BAF. TEL: 0533609391.

## IT'S EASY WHEN YOU KNOW!

To avoid missing your copy of PRACTICAL ELECTRONICS - simply complete this order form and hand it to your newsagent. ORDER FORM
то
(name of newsagent)
Address.

Please reserve/deliver every month one copy of PRACTICAL ELECTRONICS until further notice.
My Name
Address.

## TWISTLDN Recomm TIMIPUS

Until TEMPUS have re-established their business we will be pleased to supply you from the superb range of QUALITY CASIO PRODUCTS
A well known consumer magazine has published a report on digital watches which supports our opinion that CASIO and SEIKO are probably the best watches in the world
with CASIO offering unbeatable value for money

## CASIO 46CS-27B

Almost certalnly the sllmmest and most
sophlsticated alarm/chronograph watch avallable today.
Liquid crystal display of hours, minutes, seconds,
day; And with day, date, month and year perpetual
calendar.

- Optional 12 hour clock (with am/pm indicators) or 24 hour display.
- 24 hour alarm setting
- Optional hourly chimes.
- Chronograph measures in units of tos second to six hours.
- Net, lap and 1st 8 2nd place times.
- All stainless steel case only 7.8 mm thick
- Mineral glass face

Water res. to 100 ft .


## CASIO CHRONOGRAPH

45CS-22B Simllar functions to the above watch
but without the alarm and chime.
(RRP E69.95)
£54.95
CASIO SPORTS WATCHES. LCD, 6 digits,
tob second stopwatch; net, lap and 1st \& 2nd place socond stopwatch; net, lap and 1st \& 2nd place
times. Time and calendar display. F-100 $\quad \mathbf{1 9 . 9 5}$
Resin case, strap ( 224.95 )
£34.95
$520 \mathrm{~S}-14 \mathrm{~B} / \mathrm{s}$ encased, bracelet
( $£ 44.95$ )
NEW CASIO CARD WATCH
THE INCREDIBLE MQ-11


Microcomputer Quartz LC Display of hours, minutes, seconds, am/pm full calendar display of day, date \& every Sunday Also digital date, month. year; And day, Sundays. Three date memories. Two independant alarms
with hold \& display fac. with hold \& display fac. or Time Memory ( 24 hr ), or Time Memory ( 24 hr or $\frac{1}{10} \mathrm{sec}$ stopwatch.
WII display any monthly calendar from 1901 to 2099. Memories and displays three optional Important dates. Calculator with Sensor Touch keys, fuil dates. Calculator with Sensor
1 year. $\frac{7}{18} \times 2 \frac{1}{1} \times 3 \frac{1}{2} \operatorname{lns}$. Leatherette walle
1 year. $\frac{3}{0} \times 2 \frac{1}{6} \times 3 \frac{1}{2}$ Ins. Leatherette wallet
with window ( $£ 34.95$ ) An Incredlble

## NEW

## CASIO CQ-82

LCD calculating alarm clock with snooze faclilty


6 digit LC Display of time, with nightlight. Four alarms, one with snooze facility. Calculator with \%, V. K.Long battery life, compact size (£24.95)
£19.95
CQ-81 Calculating alarm clock now only
£14.95
PQ-7 Alarm clock, alarm/timer,
£17.95

## NEW CASIO AO-2000

Calculating alarm clock with stopwatch
and calendar
ST-24 Card Time. Calculator, stopwatch
£24.95
2 alarm/timers.
Most CASIO products in stock. Send 15 p for
brochures.
Prices include VAT, P \& P. Send cheque, P.O. or
phone your Access or B'card number to:-

| TRANSFORMERS <br> ALL EX-STOCK - SAME DAY DESPATCH. VAT 8\% |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  <br>  |  |  |  |
|  |  |  |  |  |
|  |  |  steel Iobusic case Eit 85 |  |  |
|  |  |  |  |  |
|  <br>  |  |  Ful range of AVO's. Meggeris and Cases. |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | (e) |  | BE5 1 15w maxching |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  | Cased auto transformens <br>  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

## INDEX TO ADVERTISERS

## CANON COMPONENTS

|  |
| :---: |
| Adam Hall (P.E. Supplies) ......... 85 |
| Aitken Bros. |
| Alcon Instruments Ltd ............. 78 |
| Astra-Pak ................................ 8 |
| Aura Sounds. |
| Automated Homes.................. 86 |
| B.I.E.T. (Collier Macmilian) ........ 80 |
| 8 arrie Electronics................... 88 |
| Bib Hi-Fi Accessories .............. 72 |
| Bi-Pak ............................12, 13 |
| 8irkett, J. ............................. 15 |
| Boffin Projects ...................... 85 |
|  |
| Electronics School......... 11.83 |
| Cambridge Learning |
| Caiscope (Scopex) .................. 82 |
| Cannon Components ............... 88 |
| Chromasonic......................... 82 |
| Clef Products ......................... 80 |
| Codespeed............................ 74 |
| Continental Specialties ........... 75 |
| Crescent Radio Ltd |
| Crimson Elektrik..................... 58 |
| Crofton Electronics ................. 78 |
| C.R. Supply Co....................... 84 |
| Delta Tech............................ 80 |
| Dzuibas, M. |
| 76 |
| Electronic Brokers................... 16 |
| Electrovalue .......................... 74 |
|  |

Adam Hall (P.E. Supplies) Aitken Bros Astra-Pak
Aura Sounds..
B.I.E.T. (Collier Macmillian)

8 arrie Electronics.
Bi-Pak
12. 13

Boffin Projects
British National Radio \&

Cambridge Learning.
Cannon Component
Chromasonic
Codespeed
G.I.S.A.L. (Gloucester Industrial Sales \& Auctions Ltd)..... Galatrex Engineering George, David Sales Greenweld Electronics

H L Audio.
Harversons...
Heathkit Ltd Home Radio..
I.C.S. Intertext... I.LP. Electronics. Inskip. Norman
J.W.B. Radio
$K \& A$ Distributors
Kay \& Co Ltd
\& 8 Electronics
London Electronic College
Lord, Jeremy.
Magna Electronics
Maplin Electronic
Supplies ....................... cover iv
Marshall A. (London) Ltd........... 57
Metac
Micron R/C.
Mill Hill Supplies.
Minikits Electronics
Modern Book Co..
P.K.G. Electronics

Pentagon Electronics

Phoenix Electronics $\ldots 15$

Phonosonics ...... 14, 15
Progressive Radio
Proto Design........ 4, 15

Radio Component Specialists... 81 Ramar Constructor Service ....... 85 R.S.T. Valve Mail Order .............. 76 Radio \& T.V. Components

## Sabtronics.

Saxon Entertainments Science of Cambridge.
.... .16
.10 .11 Scientific Wirmbridge ................ 51 Sentinel Supply ...... Sentinel Supply. Service Trading cover ili Solec Products............................ 85 Solid State Security .........
South Scotland Electricity 8 oard.... ..... 85 Squire, Roger Sugden, A. R
Swanley Electronics........................ 8
Technomatic Ltd Teieplay (Logic Leisure)...... cover ii Timetron 87 TK. Electronics Trident Exhibitions T.U.A.C.
W.K.F. Electronics Watford Electronics
West London Direct Supplies ... 87 Williamson Amplification........... 85 William Stuart Systems Ltd ...... 86 Wilmslow Audio.

Low imp Dynamic Mic's Brand new in packs $£ 1.62$ Triacs 10 amp .400 v brand new AEI full spec. all with firred heavy duty heat sink $\mathbf{£ 2 . 5 5}$
22 way edge connectors Ex equipment but clean 0.15 matrix gold plated complete with locating pin Only 58 p 17 way edge connectore Brand new. 15 pitch comple with locating pin and fixing brackets. Tinned. Only $35 p$ Connecting wire $15 p$ per 10 metres or mixed as $\mathfrak{£} 3.00$ per kilo approx.
Tegstrips 30 way new. 15p
Group Board 17 or 34 way brand new $12 p$ and $24 \rho$

## DIAL-A-BOX

As featured in "P.E. MARKET PLACE" a comprehensive stendard range of boxes for the constructor, or custom bulft
to your specification. Send your requirements with SA.E. or phone for quote.

Lamp panels whith over thirty lampholders fitted ideal for Mains
Mains selector panats from 200v-250v. Brand new. 20p
Cable Ties long re-usuable $6^{\prime \prime}$ plus. $3 p$ each.
Transformers 20-0-20v $400 \mathrm{~mA} \mathbf{\mathrm { f }} 2.50$ each.
4 mm Screw Terminals assonted colours of our choice

## STOP PRESS!

Send SAE lor quotation for a purpose built case for this project.

All prices include VAT - Please add 65p Post \& Packing per item to total cost of order Open daily 9.30am-6pm - Access or Barclaycard accepted - S.A.E. for lists.

## 322-334 WHITEHORSE ROAD.

 CROYDON, SURREY CRO 2LF TEL: 01-6849872|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
| F3 NEON FLASH TUB |  | GEARED MOTORS <br> 100 r.p.m. 11516. In. $110 \mathrm{~V}, 50 \mathrm{~Hz}, 28 \mathrm{~A}$ single phase split capactrop motor Immense power Continuously rated Totally enclosed. Fan cooled in-line <br>  Post 75p ( 59.45 inc. VAT \& P.) |
|  |  |  |
| $\begin{aligned} & \text { rep } \\ & \text { tim } \\ & \text { ora } \end{aligned}$ | LT TRANSFORMERS <br> 0.10-15V at 3 amp lex new equip) E2.50 P. \& P. 50 p ( $\{3.24$ inc. vat | GEARED MOTORS <br> 28 r.p.m. 20 lbs inch <br> $115 \mathrm{va.c}$. Reversible motor. <br> $115 \mathrm{v} . \mathrm{a} . \mathrm{c}$. Reversible motor. <br> Both types similar to above drawing. Price either type $\mathbf{5 4}-75$ p8p 75 p . (C5.94 inc VAT +p 8 p ) <br> Supplied complete with transformer for 240 v a.c. operation $£ 7.25 \mathrm{p} \& \mathrm{D}=00$ ( $\subset 8.9 .1 \mathrm{inc} \mathrm{VAT} \rightarrow p \& \mathrm{p}$ ) |
| WHY PAY MORE? <br> MULT RANGE METER TYge MF15A a.c. d.c. volts 10 - $50.250,500.100$. Ma $0-5,0-10$, $0-100$. Senshivivy $2000 \mathrm{~V}: 24$ range, diameter 133 by 93 Sy 46 mm inctuding test lieads. Pricf ( 77.00 plus 50 p P. \& P. ( $(8.10$ inc.VAT \& P.) $\qquad$ |  VAT \&PI |  |
|  |  | ROUZET 230/240V AC 2RPM synchronous geared motor. .90 p\&p 30 p . (E3.45 incl VAT) (quantity discount available). YMON 230/240V AC. 1 RPM synchron |
|  |  |  |
| $\begin{aligned} & \text { D.C. A } \\ & \text { oit } \\ & \text { Ailved } \\ & 0.1000 \end{aligned}$ |  | RACMO GEARED MOTOR <br>  eight 6 kilos 600 grammes. Price $£ 1500$ SP. \& 150 (517 82). |
| NEW HEAVY DUTY SOLENOID. mfg oy Magnetic Devices. 240 V a.c. opera- tion approx. 1015 s pull (intermittent <br>  A.C. SOLENOID pye ether type $176 / 2$ 240 AC . Approx 1 lb at $\frac{1}{2}$ inch, intermittent rating. Price $£ 1$ p $\& \mathrm{p} 20 \mathrm{p}(\mathbf{£} 1.30$ inc VAT $+P$ ). WESTPOOL TVPE MM8 Model 2, 240V AC. Approx 1 1/b pull at inch. Rating 1. Price $£ 1.50$ psip 20p. ( $\mathbf{( 1 . 8 4}$ inc VAT + P) <br>  | HY-LIGHT STROBE KIT MK IV Latest type Xenon white light flash tube. Solid state <br>  $1-28$ f.p. Light output greaier than many iso called 4 <br>  | PARVALUX GEARED MOTOR 230/240V A.C. 30 rpm 501 lbs inch. Price 155.00 P. \& P. P. 1.00 (E17.82 inc. VAT). N.M.S. |
|  |  | PARVALUX GEARED MOTOR <br>  <br> E11.00 P\&P E 1.00 ( $£ 12.96$ inc. VAT \& P P). <br> N.M.S. |
|  | XENON FLASHGUN TUBES <br> Range avalable from slock | CITENCO 19 RPM <br> FHP mutor type C 7333/15 2201240V a.c 19 r.p.m reversible motor. torque 145 kg . gear ratio tid-1. Brand new inct capactiors, our price $114 \cdot 25$. P. \& P. £ 125 (I16.20 inc. VAT \& P.) N.M.S. |
| MII |  |  |
|  | ULTRA VIOLET BLACK LIGHT FLUORESCENT TUBES <br> 4h 40 watr <br>  Post 35 . (EXA. 81 Inc VAT + P1. 6 in. 4 watt $£ 2.25$. Post 35 . ( E 2.81 inc VAT + P). <br>  <br>  <br>  © 1.20 ( $(13.45 \mathrm{inc}$ VAT + P). | FRACMO MOTOR <br> 1400 rpm H.P. fr continuously rated 115 V a.c. fitited with anti- <br>  |
|  |  | ROTARY VACUUM AIR COMPRESSOR \& PUMP <br> Carbon vana oil free vacuum pump and compressor. Approx 20 inch vacuum 10 PSI at 79 CFM vacuum 10 PSI at .79 Powered by 110 V a.c. 1.8 amp Parvalux motor fitted with additional shaft at rear. suitable light loads. Inc. capacitor $£ 14.00$ p\& $£ 1.50$ ( 16.74 inc VAT Pight loads. Snc. capacitor $£ 14.00$ p\&p $£ 1.50$ ( $£ 16.74$ inc $+\quad p \&$ pl Suitable transformer for $230 / 240 \mathrm{~V}$ a.c. operation £5.00 p\& $\mathrm{p} £ 1$-00 (£6-48 inc VAT $+p \& p t$ N.M.S. |
| ${ }_{5} 021 \operatorname{lmin} 101$ <br> Post Paid 270 Red |  |  |
| MERCURY SWITCH <br> Size $27 \mathrm{~mm} \times 5 \mathrm{~mm}, 10$ for $\mathbf{£ 5 . 0 0}$ <br> (inc VAT £5.72) min quantity 10. | Post 750. S.A.E. If Foolscapl for further details. |  |
|  | WIOE RANGE OF OISCO LIGHTING EQUIPMENT <br> SAE (foolscap) for details | blower vacuum pump <br> English Electrie 3 phase AC moror 270/250V. Or $38 n^{\prime} 440 \mathrm{~V}$. <br>  |
| VORTEX BLOWER AND VACUUM UNIT <br>  <br>  ${ }_{W}$ Win Max suction or biow trom 2 side. oy. siog 37 mm 10 circular apor. Tus continuously rateo ilsV ac molor mounted on alloy base will lising lacilies Dimensions lising lacllies Dimension length widih 25 cm <br>  $\qquad$ |  |  |
|  | Superior Quality Precision Made NEW POWER RHEOSTATS <br> New ceramic construction, vireous enamel embedded winding heavy duty brush assembly, continuously rated. 25 WATT $10 / 25 / 50 / 100 / 150 / 250 / 500 / 1 \mathrm{k} \mathrm{\Omega}$ 1.5kQ, £2.40. Post 20 p ( 22.81 inc. VAT \& P.). $50 \mathrm{WATT} 100 / 250 \cap$ E2.90. Post 25 p ( $\mathbf{~} 3.40$ 50 WATT $100 / 250$ ก $£ 2.90$. Post $25 p$ ( $£ 3.40$ inc. VAT \& P. <br>  Black, Silver, Skirted knob calibrated in Nos. 1-9 $1 \frac{1}{2}$ in. dia. brass bush. Ideal for above Rheostats 24p each | PROGRAMME TIMERS 12 cam model $\mathbf{~} 7.50$. Post 60 p If8.75 inc. VAT 8 P. P. Also available for 50 N.M.S. |
|  |  |  |
|  |  | Time Switch Venner Type ERD Time switch 200/250V a.c. 30 amp contact 2 or $/ 2$ off every 24 hrs. at any <br>  |
|  | RELAYS <br> $\mathbf{2 3 0 / 2 4 0 V}$ A.C. Relays: Arrow $2 \mathrm{a} / \mathrm{o} .15 \mathrm{amp} \mathrm{E1.50}$ (£1.84 inc. VAT \& PI. T.E.C. open type $3 \mathrm{c} / \mathrm{ol} .10 \mathrm{amp} £ 1.10$ ( $£ 1.40 \mathrm{inc}$. VAT \& P). Omoron or Keyswitch 1 e/o. 7 amp $£ 1.00$ ( $£ 1.30$ inc. VAT \& $P$ ). D.C. Relays: Open type $9 / 12 \mathrm{~V} 3 \mathrm{c} / \mathrm{o} 7 \mathrm{amp} £ 1.00$ ( $£ 1.30 \mathrm{inc}$. VAT \& P). Sealed $12 \mathrm{~V} 1 \mathrm{c} / \mathrm{o} 7 \mathrm{amp}$ octal base. $£ 1.00$ ( $£ 1.30 \mathrm{inc}$. VAT \& PI. Sealed 12 V 2 do 7 amp octal base. £1.25 ( $£ 1.56$ inc. VAT $\&$ PI. Sealed $12 \mathrm{~V} 3 \mathrm{~g} / \mathrm{o} 7 \mathrm{amp} 11$-pin. $\mathbf{£ 1 . 3 5}$ (E1.67 inc. <br>  Other types available - phone for de tails $0 / 240 \mathrm{~V}$ a.c two $\mathrm{C} / \mathrm{O}$ contacts 25 amps res at 250 a.c. $\mathbf{f} 2.50$ p \&p 50 p . (E3. 24 inc VAT + p\&pl Special base 50 p. |  |
| CENTRIFUGAL BLOWER Smith type FFB 1606. $0222220 / 240 \mathrm{~V}$ A. . . Aperrure <br>  Other types available. S.A.E. for details |  | SANGAMO WESTON TIME SẄITCH <br>  50 p inc. VAT $\mathrm{E7} .56$. Also availabte with Solar dial. R. 8 T. |
| 24 volt. D.C. BLOWER UNIT <br> Precision 24 volt. D.C. 8 amp 8 lower that works well on 12 V <br>  |  | Yet another outstanding offer. <br> IMFD 600 V Dubilier wire ended capacitors 10 for $£ 1.50$ p\&p 50 p. ( $£ 2.16 \mathrm{inc}$ VAT $+\mathrm{p} \&$ p) ( Min 10 ) N.M.S. |
| INSULATION TESTERS NEW! <br> Tast tole E Spec Rugged metal consiruc fron su tabie for bench or tield wurk H 6 in weight $6 \mathrm{H}, 500 \mathrm{~V}$. 500 megohms, $£ 49$ Post 80 p ( 553.78 inc. VAT \& P.) 1.000 V <br>  SAE Ior teallat |  | 230 V a.c. FAN ASSEMBLY. <br> Powerful continuously rated a.c. miotor <br>  |
|  | AT CURRENT RATE MUST BE ADDED TO ALL ORDERS FOR THE TOTAL VALUE OF GOODS INCLUDING POSTAGE UNLESS OTHERWISE STATED. | $\begin{array}{cc}\text { KEY: } \\ \substack{\text { N.M.S. } \\ \text { R.\& T. }} & \begin{array}{c}\text { New Mantucturars Surpus } \\ \text { Reconditionec and Tested }\end{array}\end{array}$ |
| All Mail Orders-Callers-Ample Parking <br> Dept. PE, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560 |  | Personal callers only Open Saturdays <br> 9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone 01-437 0576 |
|  |  |  |
|  |  |  |

[^4]
## 

How to range of British made electrical accessonies plus a
complete confidenco. See cat. pages 129 to 134 .
 stop for guitarists accompaniment. Specification in our catalogue.


This superb organ - build the first working section for just over ¢.100. Full specification in our catalogue


##  <br> |III|||||||||||||||||

The 3800 synthesiser build it yourself at a fraction of the cost catalogue.

# กำ씨네N 

ELECTRONIC SUPPLIES LTD
All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR. Telephone: Southend (0702) 554155.
Shop: 284 London Road,
Westcliff-on-Sea, Essex
(Closed on Monday).
Telephone: Southend (0702) 554155.

## กリศPLI



A massive new catalogue trom Maplin that's even before If you ever buy electronic components this is the one
catalogue you catalogue you mus not be without some in full colour - it's a comprehensive gude to electronic componenis with hundreds of photographs and illustrations and page atter page
of invaluabie data

Our bi-monthly newsletter contains guaranteed prices. spectal offers and all the latest news from Maphn

## $-\Delta \Delta \Delta \Delta \Delta \Delta \Delta$ $\triangle \Delta \Delta \Delta \Delta \Delta \Delta \Delta$

Touch operated rhythm generator, the 'Drumsette' Construc tion details 25 p . (Leaflet M5S49). Specification in our catalogue.

catalogue has all the details.



[^0]:    © IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]:    Order yours nowl Write to:
    Tirmwood Ltd.
    Prospect Road, Cowes,
    Isle of Wight, England Telex 86892.
    Send payment with your order.

[^2]:    T1: $\mathrm{V}_{\text {sec }}=6.8 \mathrm{~V}$ r.m.s. typ., $\mathrm{R}_{\text {sec }}=11 \Omega$ typ.
    $L$ : 40 to $50 \mu, 0 \approx 3, R<0.15 \Omega$
    D1: 1 N4001

[^3]:    All prices include $P$ \& P and VAT. Please allow 21 days for delivery. JEREMY LORD SYNTHESISERS, (Dept PE4) 52 Becmead Avenue, London SW16 1ua

[^4]:    Published approximately on the 15 th of each month by IPC Magazines Lid., Westover House, West Quay Road, Po
    Subscriptions INLAND and OVERSEAS $£ 10.60$ payable to IPC Services. Oakfield House, Perrymount Road, Haywards Heath, Sussex
    Practical Electronics is sold subject to the following conditions, namely, that it shall not, without the written consent of the Publishers first given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to V.A.T., and that it shall not be lent, resold or hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade, or affixed to or as part of any publication or adverising, iterary or pictorial matter whatsoever.

