PRACTICAL

FEBRUARY T979

PDRYGATMLID:

Also iuside... - HOME FDMPUIERE

Introducing the personal computer you've waited for. THE EXIDY SORCERER.

SORCERER

COMPUTER SYSTEM
The Sorcerer Computer is a completely assembled and tested computer system.
Standard configuration includes $63-\mathrm{key}$ typewriter-style keyboard and 16 -key numeric pad, $\mathbf{Z 8 0}$ processor, dual cassette I/O with remote computer control at 300 and 1200 baud data rates, RS232 serial I/O for communications, parallel port for direct Centronics printer attachment. $4 K$ ROM operating system, 8 K ROM Microsoft BASIC in Rom PacTM, cartridge composite video of 64 char/line 30 line/ screen, 128 upperflower case ASCI set peration manual BASIC programmin operation manual, BASIC programming on for S. 100 bus expansion . Cone only $\mathbf{£ 9 5 0}$ credit facilities available $+8 \%$ VAT

Complete with Monitor

LOOK!

32K RAM on board RSa²2 interface "8K BASIC ROM CUTS interface $4 K$ MONITOA KANSAS CITY interface •S100 BUS
User defined graphic symbols $\quad 280 \mathrm{cDu}$

KEY BOARD

756 GEORGE RISK
Brand new professional ASCII keyboards (USA) Full technical details included. RRP $£ 60.00$ Only £49.90 $+8 \%$ VAT
Ready built, tested and guaranteed.

COMPUTER JOYSTICK

Plugs into your Nascom P.I.O. No extras. Software and full documentation supplied. Plus free game cassette. $£ 14.90$ euch $£ 28.90$ per pair

COMP PRO Mixer

 mixer that you can build yourself and save over $£ 100$.

6 into 2 with full equalization and echo, cve and pan controls.
All you need for your own recording studio is a stereo tape or cassette recorder.
This superb mixer kit has slider faders, level meters and additional auxilliary inputs.
Only $£ 99.90$ plus 8% VAT for complete kit Plus FREE power
supply valued at $£ 25.00$

Ideal for
 DISCOS STAGE MIXING HOME STUDIOS AND MANY OTHER APPLICATIONS

COMPUTER COMPONENTS

Send for our Spring 1979 catalogue. 0.60p Full of Computer Components, Peripherals and systems.

Teleplay presents the $=$. PROGRAMA

INTERESTED FREE b bus valued at $£ 23.00$ plus $10 \times \mathrm{C} 12$ cassettes valued at $£ 4.00$ WITH EVERY NASCOM

IN HOME COMPUTING?

Start now and don't get left behind THE NASCOM 1 is here Ex-stock with full technical. services Plus the opportunity to join the fastest moving club of personal computer users enabling you to get the most our of your computer. You can OBTAIN and EXCHANGE programs and other software - many now available. The Powerful Z80
Microprocessor
Professional Keyboard 1 Kbyte Monitor in EPROM 2 Kbyte RAM (expandable) Audio Cassette interface Plugs into your domestic TV Easy construction from straightforward instructions no drilling or special tools - Just neat soldering required.

Only $£ 197.50+8 \%$ VAT (includes p \& p + insurance)
Manuals seperately $\quad 2.95$ Monitor quality improved Z80 programming Manual 6.90 TV Modulator
2.50
$Z 80$ Technical Manual
2.95

PIO Technical Manual 2.95 Power supply suitable for
(All prices add 8% VAT) NASCOM
19.90

NASCOM AD ONS - Nascom improved monitor B Bug (2K) featuring - *Four times tape speed *Direct text entry without ASCII *Extended keyboard facility *Additional useful subroutines $£ 23.00$
Nascom Software library. Send SAE for tists and prices.
BLANK C12 Racal Quality CASSETTES $£ 4.00$ for 10

CONSTRUCTIONAL PROJECTS

PULSE GENERATOR by M. Tooley B.A. and D. Whitfield B.A.
A versatile piece of test equipment for trouble-shooting digital circuits 18
ENVIRONMENTAL THERMOMETER by M. Plant
A three range instrument capable of measuring temperatures from $-15^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ 22
P.E. MICROPRINTER-2 by Mark SimonDriver circuits, power supplies, construction and software34
GUITAR SOUND MULTIPROCESSOR-3 by M. A. Sawicki M.Sc(Eng) and A. Kowalewski.
VU driver, p.s.u. and switch control module 48
STEREO MIXER byJ.P. Macaulay62
GENERAL FEATURES
HOME COMPUTERS by R. W. Coles
The Microprocessor miracle 28
INGENUITY UNLIMITED
Versatile Timer-Heads or Tails-Novelty Doorbell- 6-12V Convertor-Envelope Shaper 44
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices 47
MICROBUS by D.J.D.A bi-monthly focus on micro's for the home constructor59
NEWS AND COMMENT EDITORIAL 17
MARKET PLACE
New products 25
SPACEWATCH by Frank W. Hyde High Energy Astronomical Observatory-2, Another Goonhilly, Ice Sheets 43
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 55
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office 56
NEWS BRIEFS
1978 Audio Writer is P.E. Contributor-New Olde Magazine 61
BOOK REVIEWS 68
BREADBOARD COMPETITION RESULTS 68
POINTS ARISING
R.C. Motor Control 68
READOUT
A selection of readers' letters 68
OUR MARCH ISSUE WILL BE ON SALE FRIDAY, 9 FEBRUARY 1979
(for details of contents see page 67)

[^0]U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD, CROYDON, U.K. Tel. 01-684 1665

ELECTROVILUE Buying IMPORTANT ANNOUNCEMENT
 With completion of our present series of itemised advertisements, we announce release of our new catalogie, CATALOGUE No. 9 - completely revised, enlarged and best yet. SEND FOR YOUR FREE COPY NOW TO DEPT. PE279.

 Sertion

 Sertion}

TRANSISTORS/ZENERS

IN914	5p	2N5192	85p	BA102	28p	BCY58	15p
IN9142	7p	2N5195	99p	BA1270	4 p	BCY59	16p
IN9 16	6 p	2N5457*	39p	BA133F	9p	BCY70	18p
IN4007	8 p	2N5458*	39p	BA138	20p	BCY71	18p
IN4 148	5p	2N5459*	39p	BA145	19p	BCY72	18p
IN5402	16p	6 F 40	£1.46	BA156	$14 p$	BCY78	25p
IN5407	20p	16F40	£1.65	BA379	25p	BD130	45p
IS920	10p	40 HF 10	£1.64	BAX13	4p	BD131	62p
IS940	5p	40HF40	£2.28	B 1 103B	37p	BD132	77p
$2 N 697$	36p	40250	95p	BB103G	37p	BD135*	38p
2N706	22p	40361	38p	BB104G*	53p	BD136*	42p
2N930	21p	40362	35p	BB105B	28p	BD139**	41p
2N1132	24p	40406	40p	BB109G*	39p	BD140*	$46 p$
2N1302	48p	40408	40p	BC107A	14 p	BDX18N	£1.10
2N1303	48p	40412	56p	BC107B	14p	BDY 12	90p
2N1304	52p	40594	£1.18	BC108A	14 p	BDY20	50p
2N1305	52p	40595	£1.50	BC108B	14 p	BF1 15	38p
2N1306	56p	40602	75p	BC108C	14p	BF167	30p
2N1307	56p	40636	£1.80	BC109B	14p	BF173	34p
2N1308	60p	40673	86p	BC109C	14p	BF177	24p
2N1309	$60 p$	A9903	44p	BC121W	20p	BF178	24p
2N1599-SCR	$88 p$	AA113	9p	BC122Y	61p	BF194*	18p
2N1613	23p	AA116.	9p	BC125*	20p	BF195*	17p
2N1711	22p	AA117	9 p	BC126*	20p	BF244B	30p
2N1893	35p	AA118	10p	BC140	43p	BF254*	14p
2N2218	24p	AA119	9p	BC147A*	21p	BF255*	14p
2N2218A	24p	AC 126	$30 p$	BC1478 ${ }^{\circ}$	21p	BF457*	36p
2N2219	24p	AC127	48p	BC148A	21p	BF458*	37p
2N2219A	24p	AC128	28p	BC1488*	21p	8F459**	40p
2N2270	75p	AC151R	56p	BC148C*	21p	BFR39*	24p
2N2369A	22p	AC153	40p	BC148C*	21p	BFR40*	24p
2N2484	26p	AC ${ }^{\text {a }} 53 \mathrm{~K}$	40p	BC149C*	21p	BFR41*	24p
2N2646	69p	AC176	58p	BC154*	16p	BFR79*	24p
2N2904	24p	AC 176 K	40p	BC157A*	21p	BFR80*	24p
2N2904A	24p	AC187K	70p	BC1578*	21p	BFR81*	24p
2N2905	24p	AC188K	70p	BC158 ${ }^{\circ}$	21p	BFT66	¢1.83
2N2905A	24p	ACY17	92p	BC1598*	21p	BFX29	24p
2N2924*	25p	ACY1B	91p	BC160	49p	BFX84	24p
2N2925*	25p	ACY 19	99p	BC167A ${ }^{\circ}$	8p	BFX85	24p
2N2926*	25p	ACY20	70p	BC167 ${ }^{*}$	12p	BFXB7	24p
2N3053	26p	ACY2 1	85p	BC168A*	8p	BFX88	24p
2N3054	73p	ACY22	50p	BC1688*	12p	BFY50	24p
2N3055	70p	ACY39	£1.70	BC168 ${ }^{\circ}$	8p	BFY51	24p
2N3391A ${ }^{\circ}$	41p	ACY40	45p	BC169 ${ }^{\circ}$	8 p	BFY52	24p
2N3405*	64p	ACY41	54p	BC169 ${ }^{\circ}$	12p	BFY90	£1.05
2N3663*	52p	ADY 136	¢2.09	BC177A	18p	BR8IWA	80p
2N3702*	11p	AD 142	90p	BC177B	20p	BR920A	E1.36
2N3703*	10p	AD149	$80 p$	BC178A	16p	BRY39	60 p
2N3704*	11p	AD 161	$96 p$	BC1788	17p	BSX20	22p
2N3705**	10p	AD 162	$96 p$	BC179B	20p	8S $\times 46$	45p
2N3706*	9p	AF114	27p	BC182 ${ }^{*}$	12p	BSX63	£3.89
2N3707*	12p	AF115	$30 p$	BC182*	12p	BT106	f 1.47
2N3708*	8p	AF116	30p	BC183L*	12p	BT107	¢1.60
2N3709**	12p	AF117	34p	BC183*	12p	BU105	£2.50
2N3710*	12p	AF 124	25p	BC184 ${ }^{*}$	12p	BU208	£3.90
2N3711*	12p	AF125	32p	BC184*	12p	BUX28	¢4.20
2N3794*	21p	AF126	25p	BC202Y	75p	BY164	90p
2N3819*	22p	AF127	36p	BC212 ${ }^{*}$	12p	BY238	8p
2N3820	$56 p$	AF139	32p	BC212**	12p	BYX38-300	$65 p$
2N3823E*	24p	AF200U	10p	BC2134*	12p	BYX38-300R	65p
2N3904**	24p	AF239	$89 p$	BC213*	12p	C106D1	45p
2N3906*	28p	AF279	$30 p$	BC214.*	12p	CO326-SCR	8.40N
2N4036	68p	AFY 12	£2.04	BC214*	12p	CO340-SCR	5.14 N
2N4058*	12p	AFY16	¢2.69	BC2388*	8 p	C407*	17p
2N4059*	12p	AFY180	£5.74	BC23BC	8p	C1406	90p
2N4060*	12p	AFY 18E	£6.15	8C239 ${ }^{\circ}$	12p	C1412	90p
2N4061*	12p	AFY42	£3.07	BC257 ${ }^{\circ}$	8 p	CS2925	20p
2N4062*	12p	AL102	¢ 1.60	BC2578*	8p	E99440-Tria	
2N4124*	22p	ASY26	f1.39	BC258A ${ }^{\text {a }}$	8 p		27.87N
2N4126*	27p	ASY27	f1.39	BC258 ${ }^{\text {* }}$	8 p	E2506	£1.48
2N4286*	18p	ASY28	81.39	BC2598*	8 p	E2512	E1.74
2N4289**	23p	ASY29	81.39	BC267	16 p	MJ481	£1.48
2N4291*	24p	AU111	£2.25	BC268C	17p	MJ491	£1.63
2N4292*	21p	AUY21	87.31	8C269C	18p	MJ2955	$78 p$
2N4303*	30p	AUY22	¢10.95	8C300	26p	MJE340	78p
2N4410*	39p	BO126-SCR	$30 p$	BC301	24p	MJE2955	72p
2N4443	£1.14	B0140-SCR	35p	BC303	30p	MJE3055	68p
2N4444	£1.50	B0226-SCR	35p	BC327*	16p	MKY7C38E	70p
2N4906	£1.00	80240-SCR	40p	BC328*	12 p	MPF102*	44 p
2N4915	E1.00	B0246-SCR	96p	BC337*	14p	MPS6531*	24p
2N4991	80p	B0680	10p	BC338*	12p	MPS6534*	25p
2N5062*-SCR	45p	B1906	38p	BC447	29p	NAS206.S.5	SCR
2N5163*	24p	B1912	38p	BCY31A	96p		81 p

Catalogue No. 9 now ready

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{NASO164W3-Triac 58p} \& $$
\begin{aligned}
& 27 \times 500^{*} \\
& 2 T \times 502^{\circ}
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { 15p } \\
& 17 p
\end{aligned}
$$

\hline \multicolumn{2}{|l|}{NAS0654×5-Triac} \& 27x503* \& 19p

\hline \& 80p \& 27x504* \& 22p

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{NASO654W4-Triac}} \& $27 \times 530^{*}$ \& 12p

\hline \& \& 2TX530* \& 8p

\hline \multicolumn{4}{|l|}{NAS $1001 \times 5-$ Triac}

\hline NAS 1004 \& 60p \& \&

\hline \multicolumn{2}{|l|}{NAS 1004W5-Triac} \& \multicolumn{2}{|l|}{HEAT SINKS}

\hline \multicolumn{2}{|l|}{NAS 1004×5-Triac} \& \multicolumn{2}{|l|}{2P1 - ${ }_{\text {Pl }}$}

\hline \multicolumn{2}{|l|}{¢ $£ 1.04$} \& \multirow[t]{2}{*}{$2 \mathrm{YT03} 1 \times$ T03} \& 54 p

\hline \multicolumn{2}{|l|}{NKT211 20p} \& \& 57p

\hline NKT212 \& 20p \& 2 YT0661×T066
$$
2.75 \mathrm{R}-
$$ \& ¢2.80

\hline \multicolumn{2}{|l|}{NKT213 20p} \& 5.5R - \& ¢3.95

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{NKT274
NKT275}} \& 5 F T05 clip \& 10 p

\hline \& \& \multirow[t]{2}{*}{${ }_{6 W 1}^{5 F 2}$ To5 clip} \& 10 p

\hline \multicolumn{2}{|l|}{NKT275 20p} \& \& c2.05

\hline \multicolumn{2}{|l|}{OA47 12p} \& \multirow[t]{2}{*}{} \& £225

\hline \multicolumn{2}{|l|}{0 O90 6} \& \& $88 p$

\hline \multicolumn{2}{|l|}{OA91 6p} \& $100 \mathrm{NC} 2 \times \mathrm{T03}$ \& ¢1.14

\hline \multicolumn{2}{|l|}{0495 8p} \& $17 \mathrm{C2} 2 \times 40161$ \& 20p

\hline \multicolumn{2}{|l|}{OA202 10p} \& 18F T018 clip \& 10

\hline \multicolumn{2}{|l|}{OC28 \quad ¢1.02} \& 1852 T018 clip \& 10

\hline \multicolumn{2}{|l|}{OC29 £1.07} \& 224 F T01 dip \& 10 p

\hline \multicolumn{2}{|l|}{OC35 £1.07} \& 244F 001 clip \& 10 p

\hline OC36 \& ¢1.02 \& 266F 003 clip \& 10p

\hline \multirow[t]{2}{*}{0 C 45
$0 \mathrm{OC71}$

O} \& ¢1.15 \& A1032 101 dip \& $6 p$

\hline \& 70p \& A1053 $2 \times$ T01 clip \& $8{ }^{8}$

\hline OC72 \& 70p \& A1058 1×103 \& 227

\hline OC75 \& DIS \& T0921 T092 clip \& 7p

\hline OC81 \& 80 p \& T0922 $2 \times$ T092 clip \& P ${ }^{\text {Pp }}$

\hline 0 C 83 \& 70p \& N2 T 066 \& 24p

\hline \multirow[t]{3}{*}{$0 \mathrm{OC84}$} \& \multirow[t]{3}{*}{70p} \& TV3 703 \& 25

\hline \& \& TV4 80131 \& 21p

\hline \& \& N5 T 2220 \& 219

\hline \multicolumn{2}{|l|}{PM7A2 £2.68} \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{ZENER DIODES}}

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{PN70************}} \& \&

\hline \& \& $400 \mathrm{~mW} 2.7-33 \mathrm{~V}$ \& 9p

\hline PN109** \& 5p \& 1.3W 3.3-200V 1 \&

\hline \multirow[t]{2}{*}{| PN1613* |
| :--- |
| PN2904* |} \& 5p \& $1.5 \mathrm{~W} 3.3-75 \mathrm{~V} 5$ \&

\hline \& 5p \& (1.5W are metal cas \& cased)

\hline SIIOM1 \& 10p \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{£1.25 each}}

\hline \multicolumn{2}{|l|}{T27000 ¢1.55} \& \&

\hline \multicolumn{4}{|l|}{T28000-Triac $\mathbf{1} 1.04$}

\hline \multicolumn{2}{|l|}{TAG3-400-SCR} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MOTOROLA}}

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TAG302-400-Triac}} \& \&

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TAG 302-600-Triac}} \& \multicolumn{2}{|l|}{Micro processor Eval}

\hline \& \& ation Kit (for M \& M. 680

\hline \multicolumn{2}{|l|}{£1.05} \& Microcomputer \&

\hline \multirow[t]{2}{*}{TIP32A} \& 45p \& \multicolumn{2}{|l|}{f 175.87 + VAT (net)}

\hline \& 60 p \& \&

\hline TIP41C \& 64 p \& \&

\hline \multirow[t]{2}{*}{TIP42A
TIP42C} \& 60 p \& To remind you \&

\hline \& $64 p$ \& Section 2 - \&

\hline TIS43* \& 35p \& Section 2 - Capa \& acirors

\hline $2 \times 107^{*}$ \& 12p \& Section 31-Opto \&

\hline 2TX108* \& 11 p \& E/ec \& ctronics

\hline \& $12 p$
$12 p$ \& Section 4 - Resi \& istor

\hline 21×301* \& 16 p \& \&

\hline ZTX302* \& 14 p \& \&

\hline 27x303** \& 18p \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Section 5 - Hardware}}

\hline Z7x304. \& 21p \& \&

\hline \& 19p \& \&

\hline $21 \times 500^{\circ}$ \& 12p \& \&

\hline \multicolumn{4}{|c|}{WE ARE NOW NATIONAL DISTRIBUTORS FOR}

\hline \multicolumn{4}{|c|}{| NASCOMI |
| :--- |
| MICROCOMPUTER KITS |}

\hline
\end{tabular}

for delivery from

£197.50 + V.A.T.
Quantity discounts Trade Enquiries Invited
All communications, orders, etc., to Dept. PE279

- GOODS SENT POST FREE U.K. WITH C.W.O.
orders over $£ 5$ list value. If under, add $27 p$
handling charge.
- ATTRACTIVE DISCOUNTS on C.W.O. mail orders-5\% where list value is over £ $10,10 \%$ where list value is over £25.
- TOP QUALITY MERCHANDISE - ALL

GUARANTEED.

- V.A.T.- Add 8% to value of order. For items marked ${ }^{\text {© }}$, add $12 \frac{1}{8} \%$.
- For ACCESS or BARCLAYCARD orders, just phone or write your number. No discounts allowable.
No discounts allowable on prices marked NET or N .
- OUR COMPUTER-AIDED SERVICE TAKES GOOD CARE OF YOUR ORDER NO MATTER
HOW LARGE OR SMALL
- Comprehensive price list free on request.

ELECTROVAIUE LTD

You must try our fabulous new range of 'ELEKITS' for an easy build introduction to electronics. All kits, and there are many to choose from, come complete with case, easy to follow instructions and ALL COMPONENTS. Battery powered fnot supplied)|for, safety and economy ELEKITS will give hours of enjovment learning as you build. A small selection from the 'ELEKIT' range is shown below.
ACE MAILTRONIX LTD

Wakefied W WYorssirie WIFISR Watch this space for future kits!

$\Gamma_{*}^{1} 1_{4}$
 thaucis. tilkits

MORSE TRAINER GRE4. as

ALL KIT PRICES INCLUDE V.A.T

COMPONENTS

The ACE 2nd edition lllustrated catalogue shows a considerably enlarged range of components, modules, 'Elekits'. Many PRICE REDUCTIONS from edition one. Component range includes CAPACITORS, HAROWARE, CASES, LED'S, VEROPRODUCTS, RESISTORS, RS COMPONENTS, TRANSISTORS, DIODES, SCR's, IC's (Linear, TTL, CMOS, Audio), SWITCHES, PLUG; SOCKETS, BOOKS', TRANSFORMERS, TOOLS, SPEAKERS AND TEST EQUIPMENT. Typlcal VAT inclusive prices:

LED's RED
LED's GREEN
8-pin IC SKT
AC126
AC128
BC107/8/9
BC177/8/9
BC182/3/4L
BC212/3/4L
BC547/8/9
BC557/8/9
BCY70/71
BFY50/1/2
OC71.
TIS43.
ZTX107/8/9
2N2926G.
2N3055
MODULES
Ready built.
Power supplies 1, 2 and 3 rail,
Fixed and variable.
DPM's $31 / 2$ digit. LED and LCD
Count/display 4 and 6 digit.

2N3702/3/4/5 11p
2N3819 24p
OA90/91 7p
IN4!48......... 4p
IN4001 5p
WO4 $25 p$
Zener BZY88 12p
7418 -pin.
555.

4001
7400
7490
Push sw.
Slide toggle W/C switches 54p 0.25 CF Res. . . . 6 p per 3

SEND 30D FOR THE ACE ILLUSTRATED CATALOGUE WHICH INCLUDES FULL LIST OF COMPONENTS, KITS AND READY-MADE MODULES. 30P REFUNDED WITH FIRST ORDER OF £5 OR MORE.
NAME
ADDRESS

WATFORD ELECTRONICS
 35 CARDIFF RCAD, WATFORD. HERTS., ENGLAND

MAIL OR DER, CALLERS WELCOME. Tel. Watford 40588/9
ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED. ORDERS
DESPATCMED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/ DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/
P, O. OR BANKERS DRAFT WITM ORDER GOVERNMENT AND EDUCATIONAL INSTITUTIONS OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORT INQUIRY POSTAGE AT COST. AIR/SURFACE

END SOp (plus $25 p p \& p$) FOR OUR CATALOGUE
VAT Expor ordirss no VAT. Applicablo to U.K. Customers, only. Uniess statod 12
We stock many more items. It pays to visit us, Wo are situated behind Watford Football $9.00 \mathrm{am}-6.00 \mathrm{pm}$. Ample Free Car Parking space available.

| POLVESTER RADIAL LEAD (Values are in μ FI 250V: | |
| :--- | :--- | :--- |
| O-01, 0-015, 0-022, 0-0275p;0-033, 0-047,0-068 0-1 7p; 0-15 11p; | FEED THROUGM |
| $0-22.0-3313 p ; 0-4715 p ; 0-6818 p ; 1-024 p ; 1-527 p ; 2-231 p$. | CAPACITORS |

ELECTROLYTIC CAPACITORS: Axial lead type (Values are in $\mu \mathrm{FF}$) $500 \mathrm{~V}: 1040 \mathrm{p} ; 47 \mathrm{68p}$
250V: $10065 \mathrm{p} ; 63 \mathrm{~V}: 0.47,1.0,1.5,2.2,2.5,3.3,4.7,6.8,8,10,15.228 \mathrm{p} ; 47 \mathrm{32}, 5011 \mathrm{p}$

 34p; 10V: 4. 100 6p; 640 10p; 1000 14p.

-

TANTALUM BEAD CAPACITORS

DIGITAL MULTIMETER

Announcing DM900 - The Digital Multimeter
with a difference - It measures Capacitance too.
(as published in E.T.I. August 1978)
(as published in E.T.I. August 1978)
Throw away your analogue meters, here's digital
accuracy at only half the price of an equivalent accuracy at only half th
commercial Multimeter.
The DM900 is a $3 \frac{1}{2}$ digit multimeter with an 0.5in L.C.D. display incorporating

5 AC \& DC Voltage ranges; 6 Resistance ranges.
The prototype accuracy is better than 1%
This is a unique design using the latest MOS ICs and due to the minimal current drain, is powered by only one PP3 battery. There is also a battery
check facility.
DM900 is an attractive hand-held lightweight
device, built into a high impact case with carrying
handle and has been ingeniously designed to handle and has
Never before have all these features been offered to the electronics enthusiast in a single unit.

Price: $£ 54.50^{\circ}$ only ($\mathrm{p} \& \mathrm{p}$ insured add 80 p)

Ready Built and tested units $£ 78.50^{\circ}$

PE VDU SYSTEMS

(send SAE for list)	
Convert your TV into a VDU by using the new Thomson-CSF.	
TV-CRT controller chip SF.F	
96364. 16 lines by 64 characters, text refreshment, cursor manage-	
line end erasing. Compatible withany computing system.	
SFF 96364 E	¢11.75*
AY-5-1013UART	
SFS80102 RAM 1 K	
$74 \mathrm{LS163}$ (1)	${ }_{\text {cose }}$
MC1488	E0.85*
MC1489	
SN75450	¢1.20
SN75451	c0.70*
SN75452	ع0.70*
SN75454	E2.25*
2102 LF	¢1.80*
2513	¢5.95*
7415132	E0.95*
811597	£1.09*
1 MHz crystal	${ }^{\text {¢3. }} 2{ }^{\text {a }}$
14.31818 MHz	${ }^{\text {¢2.750, }}$
UHF Modulator	£2.50*

KITS FOR SYNTHESISERS, SOUND EFFECTS

COMPONENTS SETS include all necessary resistors, capacitors, semiconductors. potentiometers and ransformers. Hardware such as cases. sockets. knobs. keyboards. etc. are not included but most of these may be bought separately. Fuller detalls of kits. PCBs and parts are shown in our lists.
CIRCUIT AND LAYOUT DIAGRAMS are supplied free with all PCBs unless "as published
PHOTOCOPIES of P.E. texts for most of the kits are available-prices in our lists.

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS. KITS AND COMPONENTS TO A WORLD-WIDE MARKET

ELEKTOR ELECTRONIC PIANO (Elektor Sept 78)

A touch-sensitive, multipie-voicing 5 octave piano using the latest integrated-clrcuit techniques for the keving and envelope shaping and virualiy eliminating beenive noise lists.
OIGITAL REVERBERATION UNIT (Elektor May 78) A very advanced unit using sophisticated i.c. techniques 24 to 90 mS can be extended uo to 450 mS using th extension unit. Further delays can be obtained using more extensions.
Main con

Main component set (KIT 78-1)
Extension component sel (KIT 78-2)
$£ 45.45$
$£ 43.36$
PCB for Kit 78-1 (PCB 78A)
PCB for Kit 78-2 (PCB 788)
£43.36
$\mathbf{f 2 . 8 6}$
ANAIOGUE REVERPERATION Using i.c.s instead of spring-lines. the main unit has a maximum delay of up to 100 ms , and the additional set
extends this up to 200 ms . May be used in either mono or stereo mode.

Main component set (KIT 83-1)
Additional Delay Set (KIT 83-2)
E 26.18
f 18.25
Additional Delay Set (KIT 83-2)
f4

RESONANCE FILTER (Elektor Oct 78)

This filter module has been designed to aliow a synthesiser to produce a more realistic simulation of natural musica instruments.
$\begin{array}{lr}\text { Basic component set (K1T 82-1) } & \text { f15.10 } \\ \text { PC8 las published) (PCB 9951) } & \text { €3.29 }\end{array}$
SYNTHESISER EXTERNAL INPUT INTERFACE
SYNTHESISE
(P.E. Oct 78)
(P.E. Oct 78)
This unit allo

This unit allows extemal inputs, such as guitars, micro-
phones etc. to be processed by the circuits within a phones etc. to be processed by the circuits within a synthesiser.
Basic comp
GUITAR MULTIPROCESSOR (P.E. Dec/Feb 78)
An extremely versatile sound processing unit capable of producing, for example. Flanging, Vibrato. Reverb. Fuzz and Tremolo as well as other fascinating sounds. May be used RHYTHM GENERATOR KITS
Several available - details in our lists
GUITAR FREOUENCY DOUBLER (P.E. Aug. 77)
moditied and extended

GUITAR SUSTAIN (P.E. Dct 77)
Maintains the natural attack whilst extending note duration.
Component set, PCB and foot switches
Component set, PCB and panel switches
$\mathbf{E 5 . 1 3}$

WIND AND RAIN UNIT

A manually controlled unit for prodocing the above-named sounds

Component se: (incl. PCB) £4.26

GUITAR OVERDRIVE UNIT (P.E. Aug. 76)
Sophisticated, versatile Fuzz unit. including variable and switchabte controls affectung the fuzz quality whilst retaining the attack and decay. and also providing filtering. Does not duplicate the effects from the Guitar Elfects Pedal and can be used with it and with other electronic instruments Component set using dual slider pot
$£ 7.58$ Component sel using dual rotary pot Printed circuit board
FUZZ UNIT
Simple Fuzz unit based upon P.E. "Sound Design" circuit. Component set (incl. PCB) $£ 2.05$

TREMOLO UNIT

Based upon P.E. Sound Design" circuit
Component set (incl. PCB)
TREBLE BOOST UNIT (P.E. Apr. 76)
Gives a much shriller quality to audio signals fed through it
The depth of boost is manually adjustable.
Component set (incl. PCB)

NAVEFORM CONVERTER

Slightly modified from a circuit nublished in "Elektor". Converts a saw-tooth waveform into four different waveforms: sine-wave mark-space saw-tooth, reguar triangle form, and squarewave with an externally variable niark-space ratio.
Component set (incl. PCB but excl. sw/s)
VOLTAGE CONTROLLED FILTER (P.E. Dec. 74)
Part of the PE Minisonic now released as an independent
Component set (incl. PCB) (Order as Kı! 65.11
RING MODULATOR (P.E Jan 75)
Part of the P E. Minisonic now reteased as an independent Compe with other synthesisers \qquad

NOISE GENERATOR (P.E. Jan. 75)

Part of the PE. Minisonic now released as an independen:
kit lor use with other synthesisers.
Component set (incl. PCB) (Order as Kit 60-1) E3.64
ENVELOPE SHAPER WITHOUT VCA (P.E. Oct. 75)
Provides full manual control over attack. decay. sustain and release functions. and is for use with an existing voltage
controlled amplifier
Component set (incl. PCB)
ENVELOPE SHAPER WITH VCA (P.E. Apr. 76)
This untl has ils own vollage controlled amplifier and has full manual control over attack. decay. sustatn and release functions.

Component set (incl. PC8)
£6.68

TRANSIENT GENERATOR (P.E. Apr. 77)
隹 decay. sustath and release functions. and in addition it also provides a Repeat Ellect enabling a synthesiser to be programmed to imitate such insiruments as a mandalin or banio

Component set
¢4.87

SOPHISTICATED PHASING AND VIBRATO UNIT

A slightly modified version of the circuit published in Elektor:. December 1976, and includes manual and automatic control over the rate of phasing and vibrato Printed circuit
17.38

PHASING UNIT (P.E. SepI. 73)
A simple but effective manually controlled unit for
introducing the phasting sound into bive or recorded Music.
£ 3 -20

PHASING CONTROL UNIT (P.E. Oct. 74)

For use with the above Phasing Unit to automatically control the rate of phasing

Component se! (incl. PCB)
¢4.74

WAH.WAH UNIT \{D.E. Apr. 76 \}
The Wah-Wah elfect produced by this unit can be controlled manually or by the integral automatic controller. Component set (incl. PCB)

AUTOWAH UNIT (P.E: Mar. 77)
Automatically produces Wah-pedal and Swell-pedal sounds each time a new note is played.
$\begin{array}{ll}\text { Component set. PCB, special foot switches } & £ 7.67 \\ \text { Component set and PCB. with.panel switches } & £ 4.83\end{array}$
¢4.83

VOICE OPERATED FADER (P.E. Dec. 73)
For automatically reducing music volume during talk-over"-particulariy useful for Disco work or for home-movie shows
Component set (incl. PCB)
€ 3.97

10\% OISCOUNT VOUCHER (PE 72)
TERMS: Goods in current adverts \& lists
over $£ 50$ goods value (excl P\& P \& VAT). over $£ 50$ goods value (excl P\&P \& VATI. Correctly costed, C.W.O., U.K. orders only,
This voucher must accompany order. Valid This voucher must accompany or
until end of month on cover of P.E.

ADD: POST \& HANDLING
U.K. orders - Keyboards add $£ 2.00$ each plus VAT. Other
goods: under $£ 15$ add 25 p plus VAT, over $£ 15$ add 50 plus goods: under $£ 15$ add 25 p plus VAT. over $£ 15$ add 50 p plus VAT. Recommended: optional insurance against postal
mishaps, add 50 p for cover up to $£ 50$. $£ 1.00$ for $£ 100$ cover, etc. pro-rata.
N.B. Eire, C.1. B.F.P.O. and other countries are subject to higher expor postage rates.

ADD 121\% VAT (or current rate if changed). Must be added to full total of
goods, discount goods, discount, posi \&
handling, on all U.K. orders. Does not apply to Exports.

EXPORT ORDERS ARE WELCOME but to avoid delay we advise you to see our Ilst for postage rates. Al payments must be cash-with-order, in Sterling by International Money Order or through an English Bank. To 50p.

PHONOSONICS • DEPT. PE72 - 22 HIGH STREET • SIDCUP . KENT DA14 6EH TERMS: C.w.o. MAIL onoef or collection BY APPOINTMENT (TEL 09-302 6184)

AND OTHER PROJECTS

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKimber-Allen Keyboards as required for many published circuits. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C. the keys are phastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame. 3 Octave $\{37$ notes
£25.50
4 Octave (49 notes)
£ 32.25
5 Octave (61 notes)
Contact Assemblies (gold-clad wire) for use with the above KBDS (1 for each notel Type GJ: Single-pole change-over
Type GA: 1 pair of contacts, normally open
Type GB: 2 pairs of contacts, each pair normally open Type GC: 3 pairs of contacts, each pair normally open Type GH: 5 pairs of contacts, each pair normatly open
Type 4PS: 3 pairs of contacts plus single-pole changeover
Printed Circuit Boards for use with most contacts (thus ellminating much interwiring) are Printed Circuit 8 oards for
a a allable. Details in our itsts.

SYNTHESISER TUNING INDICATOR (P.E. July 77)
A simple 4 -octave frequency comparator for usf with synthesisers and other instruments where the full versatlity f the P.E. Tuning Fork is not required.
Component and PCE (but excl sw.)

CONSTANT OISPLAY FREQUENCY METER (PE AUG 78) A 5 -digit frequency counter for 1 Hz to 99999 Hz with a 1 Hz sampling rate. Readout does not count visibly or flicker due to display blanking.
 Printed circuit board £24-05 ${ }^{\text {² }}$
 -This kit \& PC8 are at 8\% VAT (all others are $12 \frac{1}{2} \%$)

TAPE NOISE LIMITER
Very effective circuit for reducing the hiss found in most tape ecordings. Alt kits include PCBs Superior tolerance set of components Regulated power supply (will drive 2 sets)

DYNAMIC RANGE LIMITER (P.E. Apr. 77)
Automatically controls sound output to within a preset Co

Component set (Incl. PCB)
£4.58

DISCDSTRDBE (P.E. Nov. 76\}
4-channel light-show controlier giving a choice of sequential, random, or full strobe mode of operation.

Basic component set
Printed circuit board

BIOLOGICAL AMPLIFIER (P.E. Jan/Feb. 73)
Multi-function circuits that, with the use of other extemal equipment, can serve as lie-detector, elphaphone, cardiophone Pre.Amp Module Components set (incl. PC8)
Basic Output Circuits-combined component set with PC8s, for alphaphone, cardiophone, frequenc meter and visual feed-back lampdriver circuits. £6.5 Audio Amplifier Module Type PC7

SOUND BENDER (P.E. May 74)

A mump-purpose sound controller. the functions of which automatic tader and Prequency-coubler

SOPHISTICATED POWER SUPPLIES

A wide range of highly stabilised low noise power supply kits is available-details in our lists

NEW PCB SERVICE

PCBS FOR ALL NEW P.E. \& E.E. PROJECTS FOR WHICH PCB LAYOUTS HAVE BEEN PUBLISHED AND FOR WHICH FULL COPYRIGHT CLEARANCE IS AVAILABLE.
LIMITED QUANTITIES ONLY FOR AN EXPERIMENTAL PERIOD.
LET US KNOW YOUR NEEDS AND WE WILL ADVISE YOU.OF AVAILABILITY ANO PRICES.

INTEGRATED CIRCUITS $\begin{array}{lll}301 & 8 \text {-pin DIL } & 48 p \\ 318 & 8 \text {-pin DII } & 220\end{array}$ $\begin{array}{ll}328 & \text { 220p } \\ 320-15 \text { pin DIL } & 195 p\end{array}$ $\begin{array}{ll}32414 \text {-pin DIL } & 87 p \\ 341-15 \cdots & 87 p\end{array}$ 341-15 8 - pin DIL
709 8-pin DIL
$\begin{array}{ll}723 & \text { TO5 } \\ 723 & \text { 14-pin DIL }\end{array}$
726 TOS 7
741 8-pin DH
$7488_{8-p i n ~ D H}^{8}$ $\begin{array}{ll} & 24 \\ 400714 \text {-pin DIL } & 571 p \\ 401114 \text {-pin DIL } & 179\end{array}$ $\begin{array}{ll}4024 & \text { 14-pin DIL } \\ 4069 & \text { 14-pin DIL } \\ 4136 & 18 p\end{array}$ 413614 -pin DIL $\quad 126 p$
AM2833 8 -pin DIL $360 p$ $\begin{array}{ll}\text { AM2833 } & \text { 8-pin DIL } 360 \text { p } \\ \text { AY10212 } & 16 \text {-pin DIL6 }\end{array}$ AY 10212 AY $16721 / 6$-pin DIL617p $\begin{array}{ll}\text { CA3046 } & \text { 14-pin DIL 71p } \\ \text { CA } & 8 \text {-pin DIL } \\ 630\end{array}$ CA3084 8 -pin DIL 63p $\times 209 \quad 16$-pin D1L729p $\begin{array}{ll}\text { M2523 } \\ \text { M252 } & \text { 16-pin DIL680p }\end{array}$ MC3340 8-pin DIL 150p MCM6810 24 -pin DIL670p SG3402N 14 -pin DIL262p TDA1022 16 -pin DIL582p XR2207 14-pin DIL420p ZN425E 16-pin DIL375p

PHONOSONICS

Become a radio amateur.

Learn how to become a radioamateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Ots mowamont sin

74 SERIES TTL IC'S

Type	Price	Type	Price	Type	Price	Type	Price	po	Price
7440	f0.07	7427	f0. 21	7472	¢0.19	74.107	c0. 22	74165	C0.65
7401	¢0.09	7428	¢0.25	7473	¢0.22	74110	¢0.35	74166	¢0.75
7402	f0.09	7430	c0.08	7474	¢0.22	74111	f0.55	74167	c2.00
7403	¢0.09	7432	c0. 20	7475	¢0.27	74118	c0.75	74174	c0.60
7404	60.09	7433	E0. 28	7476	60.22	74119	¢1.10	74175	c0.60
7405	£0.09	7437	¢0. 20	7480	60.40	74121	c0. 22	74176	c0. 55
7406	c0. 22	7438	f0. 20	7481	¢0.80	74122	f0. 35	74177	c0.55
7407	¢0.22	7440	¢0.10	7482	¢0.65	74123	c0. 38	74180	¢0.80
7408	f0.12	7441	f0.45	7483	¢0.55	74136	¢0.50	74181	ع1.25
7409	¢0.12	7442	¢0.38	7484	¢0.82	74141	¢0.50	74182	¢0.55
7410	f0.09	7443	c0.68	7485	C0.65	74145	f0.54	74184	E1.00
7411	¢0.15	7444	¢0.68	7486	f0. 22	74150	¢0.65	74190	¢0.68
7412	E0.14	7445	f0.64	7489	£1.60	74151	c0.45	74191	c0.68
7413	¢0. 22	7446	c0.60	7490	f0.30	74153	c0.45	74192	¢0.65
7414	¢0.45	7447	f0. 45	7491	¢0.60	74154	60.80	74193	c0.60
7416	f0. 22	7448	f0.52	7492	c0. 32	74155	C0.48	74194	¢0.55
7417	c0.22	7450	f0.09	7493	¢0.28	74156	f0.48	74195	C0.55
7420	C0.09	7451	¢0.09	7494	60.70	74157	c0.48	74196	¢0.60
7421	c0.19	7452	f0.09	7495	¢0.45	74160	C0. 55	74197	f0.58
7422	¢0.15	7453	¢0.09	7496	c0.48	74161	£0.60	74198	¢1.00
7423	c0. 20	7454	f0. 09	74100	¢0.80	74162	f0.60	74199	£1.00
7425	f0.18	7460	¢0.09	74104	c0.35	74163	¢0.60	74279	\&1.00
7426	f0.21	7470	f0.24	74105	f0.35	74164	C0.65		

CMOS I.C.'s

Type	P12		Price	Type	Price	Type	Price
CO4000	${ }^{1} 0.12$	CD4017	${ }^{1} 0.65$	C04031	1.60	C04055	${ }^{\text {f1 }} 1.00$
CD400	${ }^{\text {co. }} 13$	CD4018	c0.70	CO4035	c0.90	CD4056	¢1.15
CD4002	¢0.13	CO4019	co. 35	CD4037	¢0.78	CD4069	c0.15
CD400	f0.80	CD4020	c0. 80	CO4040	¢0.78	CD4070	co. 15
C04007	¢0.14	CO4021	${ }_{60} \mathbf{C} 75$	C04041	${ }^{\text {c0. }}$ (68	C04071	${ }_{60} \mathbf{6} 0.15$
C04008 CD4009	c0.80	CD4022	c0. 75 ¢0. 13	CO 4042 $\mathrm{CO4O43}$	c0.68	$\mathrm{CD4072}$ CO 4081	${ }_{60.15}^{60.15}$
CD4010	¢0.42	CD4024	¢0.55	CD4044	¢0.78	CD4082	¢0.16
CD4011	¢0.13	CO4025	c0.13	CD4045	f1.15	C04510	c0.80
CD4012	c0.14	CD4026	c1.00	CD4046	c0.95	CD4511	20.80
CDHOL^{2}	${ }_{\text {co }}$	CO4027	c0.45	CD4047	$\mathrm{c}^{6} 0.75$	C04516	${ }^{60} 8.85$
${ }^{\mathrm{CC4O14}}$	c0.70	CD4028 CD 4029	${ }_{60} \mathbf{c} 0.60$	CO4049	${ }_{6}$	C04518	${ }_{\text {coib }}$
CD4016	E0.35	CD4030	E0.40	CD4054	${ }_{60.95}$	CD4520	

BOOKS BY BABANI

The following books are offered at 10% off their normal price.

8 P2	Handbook of Radio, TV \& Industrial Transmitting Tube \& Valve Equivalents
$\begin{aligned} & \text { BP6 } \\ & { }_{8 P} \end{aligned}$ $\begin{aligned} & 8 B_{8} 8 \\ & 8 P 10 \end{aligned}$ BP10	Engineers \& Machinists Reference Tables Radio \& Electronic Colour Codes \& Data Modern Crystal \& Transistor Sel Circuits for
BP14	Beginners
	Substitues
BP15	Contructors Manual of Electronic Circuits for the Home
$\begin{aligned} & \mathrm{BP} 22 \\ & 8 P 23 \\ & 8 P 24 \\ & 8 P 24 \end{aligned}$	79 Electronic Novelty Circuits First Book of Practical Electroni 52 Projects Using IC741 lor eq
	Radio Antenna Handbook for Reception and Transmission
8 P 27	Giant Chart of Radio Electronic Semi-conduct
BP29	Major Solid State Audio Hi-Fi Construction
8P32	How 10 Build Your Own Metal \% Treasure
$\begin{aligned} & 8 P 34 \\ & 8 P 35 \end{aligned}$	Locators Practical Repair \& Renovation of Colour TVs Handbookof IC Audio Preamplitier \& Power
8P36	Amplitier Construction
$\begin{aligned} & \text { BP37 } \\ & \text { BP } 39 \end{aligned}$	50 Projects Using Relays SCR's and Triacs 50 (FET) Field Effect Transistor Projects
${ }_{8 P 44}$	Mow 10 make Walkie-Talkie IC555 Timer Proiects
$8 \mathrm{B47}$	Mobile Discoteque Handtrok
8 P 49	Popular Elec
BP160	Coil Design and Construction Manual
BP196	AF-RF Reactance Frequency Chan for
8 P202	Han
	Equivalents and
	First Book of Hi-Fi Loudspeaker Enclos
BP2 13	Electronic Circuirs for
BP2 14	Audio Enthusiasts Handbook
BP2 15	Shornwave Circuits \& Gear for Experimenters
BP216	Elec
BP217	Solid State Power Supply Handbook
	Solid State Novely Projects
8P220	Build Your Own Solid State Hi-Fi and Audi
	Solid State Short Wave Receivers for Beginners
	50 Projects Using IC Ca3130
$\begin{aligned} & 8 P 225 \\ & 8 P 226 \end{aligned}$	A Practical Introduction to Digital How to Bulld Advanced Short Wormen

THYRISTORS

CAPACJT		
16201	18 Electrolytics	$4.7 \mu F-10 \mu F$
16202	18 Electrolytics	$10 \mu \mathrm{~F}-100 \mu \mathrm{~F}$
16203	18 Electrolytics	100 $\mu \mathrm{F}-680 \mu \mathrm{~F}$
All 3 a SPECIAL PRICE of E1.20*		
16160	24 Ceramic Caps	22pF-82pF
16161	24 Ceramic Caps	100pF - 390pF
16162	24 Ceramic Caps	470pF-3300
16163	21 Ceramic Caps	$4700 \mathrm{pF}-0.047 \mu \mathrm{~F}$
All 4 at SPECIALPRICE of $£ 1.60^{*}$		

RESISTOR PAKS

Order No.
16213
16214
16215
16216

SPECIAL OFFER!
 UNTESTED

SEMICONDUCTOR PAKS
Code No's shown below are given as a guide to the type of device. The devices themselves are normally unmarked.
$\begin{array}{cc}\text { No. } 16130 \quad \begin{array}{c}100 \text { Germ. Gold bonded diodes } \\ \text { like OA47 }\end{array} & \text { 40p }\end{array}$
$\begin{array}{ll}\text { No. } 16131 & 150 \text { Germ. Point contact diodes }\end{array}$
No. 16132100200 mA Sil. diodes like $\quad 40$
$\begin{array}{ll}\text { No. } 16133 & 15075 \mathrm{~mA} \text { Sil. Fast switching }\end{array}$
$\begin{array}{cc} & \text { diode like IN4148 } \\ \text { No. } 16134 & 50750 \mathrm{~mA} \text { Sil. top hat Rects. }\end{array}$
No. $16135 \quad 203 \mathrm{amp}$ Sil. stud Rect.
No. $16136 \quad 50400 \mathrm{mw}$ Zeners D.0.7 case 40 p
No. 1613730 NPN Plastic trans. like $40 p$
$\begin{array}{lll}\text { No. } 16138 & 80 \text { PNP Plastic trans. like } & \text { 40p* }\end{array}$
$\begin{array}{ll}\text { No. } 16139 & 25 \text { NPN trans. like } 2 \text { N697/ } 40 p *\end{array}$
 No. 16141 NPN trans. like 2N2905 TO39 40p No. 16143 NO NTans. like 2N706 TO18 40p No. 16144 NPN Plastic trans. like 2 N3 306 40p No. 16144 30 PNP Plastic rans like 2 N3 3905 40p No. 1614710 NPN to 3 Power trans. like 2N3055.

I.C. SOCKET PAKS

No. S66	11×8 pin DIL Sockets
No. 667	10×14 pin DILSockets
No. S68	9×16 pin DIL Sockers
No. S69	4×24 pin DIL Sockets
No. S70	3×28 pinDILSockets

MAMMOTH I.C. PAK

Approx. 200 pieces Assorted fall-out integrated circults, including Logic 74 series. Linear, Audio and
D.T.L. Many coded devices, but some unmarked-you
Order No. 16223
€1.00

MATCHED PAIRS OF PNP GERMANIUM MED. POWERTRANS 2 amp 750 mW				
	VCE	vci	HFE	
NKT301	40		30-100	35p per pa
NKT302	40	60	50-150	35p per pa
NKT303	20	30	30-100	25p per pa
NKT304	20	30	50-150	25p per pa
From U.S.A. by DINDY SCREW CASED LOW NOISE CASSETTES C90				

Order No. 55310 for $£ \mathbf{3 . 5 0}{ }^{\circ}$
HEAD-CLEANING
CASSETTE 45p each

AUDIO AMPLIFIER
RETURN OF THE AL20A
By popular demand - this useful 5 watt RMS Power
Amplifier is offered at the re-introductory price of
E2.75
ETCH RESIST PENS

AUDIO PLUG AND SOCKET PAKS

Order No.
S 15 mm Plastic Jack Plugs
$\times 2.5 \mathrm{~mm}$ Plastic Jack Plugs
$2 \times$ Stereo Jack Plugs 5×5 Pin 180° DIN PI 8×2 Pin Loudspeaker Plugs $6 \times$ Phono Plugs Plastlc
$\begin{array}{ll} & 50 p \\ 5 \times 3.5 \mathrm{~mm} \text { Chassis Sockets (Switct } & 50 p \\ 50 p \\ 50 p \\ 502\end{array}$ $5 \times 2.5 \mathrm{~mm}$ Chassis Sockets (Switched) ${ }^{25 p}$
S11 $2 \times$ Stereo Jack Sockets with instruction
5125×5 Pin 180° OIN Chassis Socke
$\begin{array}{ll}\text { S13 } & 8 \times 2 \text { Pin DIN Chassis Socket } \\ \text { S14 } & 6 \times \text { Single Phono Sockets }\end{array}$

Order No. 1609
50p esch

VPS30 Variable Regulated Stabilised

Power Supply Module
Incorporating a short circuit protection and current limiting:
Voltage Regulation
Regulated Current.
Regulated Current
AC Input Maximum
Eliminstes the use of
ONLY $£ 7.60+$ V.A.T.

100 off 500 off	-	¢		,
1000 off	-	E		5.0
10,000 off	-			

P.C. BOARD	
Single-Sided Fibre Glass Board	
$12 \times 3 \frac{1}{2}$ approx. 2 pcs	
$\mathbf{S 1 4 3}$	

S110 P.C.BOARD $\begin{gathered}\text { Mixed Bundle. P.C.B., Fibre- } \\ \text { glass/paper, single and }\end{gathered}$
glass/paper, single and
double-sided. Fantastic

SPECIAL OFFER!

COMPONENT PAKS
Order No.
16168
16169 2 pieces Tuning gangs MW/LW

3 Micro switches
1617
16179
16180
15 Assorted control knobs $\begin{array}{ll}16188 & 60 \frac{1}{2} \mathrm{~W} \text { resistors mixed values } \\ 16187 & 30\end{array}$ 30 metres stranded w
assorted colours
120 t watt resistors
1978 Prod. Our mix
$120 \frac{1}{1}$ watt resistors. Pre-formed.
1978 Prod. Mixed values
1978 Prod. Mixed values $250 \frac{1}{4}$ watt resistors.
Range 100 ohms $220 \frac{1}{2}$ watt resistors. 1.8 meg .
Range 100 ohms -10 meg
60 Low ohms iwat resistors.
$10-100$ ofms
0 Low ohms $\frac{1}{2}$ watt reslstors. 25 Mixed wirewoun 20 Tantaium bead caps 0.22-100 mF Our mix 500 mF voltage range $15-50$ Our mix. 40 for $£ 1.00^{\circ}$ foil caps Contains 50 metal $£ 1,00^{*}$

POTENTIOMETERS

Slider 40 mm TRAVEL

Order No
16191
1824
S 25
16
16
16
S 27
S 28
S 29
S

LIN Single
$61936 \times 22 \mathrm{~K}$ LIN Single
16195
16194
$\begin{array}{lll}6194 & 6 \times 47 \mathrm{~K} & \text { LOG Single } \\ 27 & 6 \times 100 \mathrm{~K} & \text { LiN Single } \\ \text { LIN Single }\end{array}$
$\begin{array}{lll}28 & 6 \times 100 \mathrm{~K} & \text { LOG Single } \\ 39 & 6 \times 500 \mathrm{~K} & \text { LOG Single }\end{array}$
Slider 60 mm TRAVEL
$3306 \times 25 \mathrm{~K}$ LOG
LOG Single
LOG Dusi $4 \times 100 \mathrm{~K}$ LOG Dual $\times 1,3 \mathrm{MEG}$ LOG Dual $\times 220 \mathrm{~K}$ LIN Single $6 \times 100 \mathrm{~K}$ LOG Single $6 \times 500 \mathrm{~K}$ LIN Single
Mixed slider pots-various
Mixed slider pots-various values
and sizes-our mix and sizes-our mix

WIREWOUND

90 rating. Mixed useful values. 5 for $£ 1.00$

CARBON TYPES
591 Car Radio type. Dual Switched Pot 100 KL Lin switched 2.5 K Lin

DUAL POTS P.C. MOUNTING

$4 \times 100 \mathrm{KLin}$
15 Rotary Pot Assorted

> ZENER PAKS 20 mixed values 400 mW Zener diodes $3-10 \mathrm{~V}$ 20 mixed values 400 mW Zener diodes $11-33 \mathrm{~V}$ 10 mixed values 1 W Zener diodes 310 V 10 mixed values 1 W Zener dlodes $11-33 \mathrm{~V}$

S55

SILICON POWER TRANS. N.P.N.
$597 \quad 8 \mathrm{D} 3712 \mathrm{Amp} 1.2 \mathrm{w} .60 \mathrm{Vceo}$
Hfe 40-40, Case T092
2 N 5293 R.C.A. 36 w 4 Amps

Crystal Ear Pieces
Si26 Less plug

Plugs for above	
No. 161062.5 plastic	£0.09
No. 16973.5 plastic	f0.11

| Mono Crystal Cartridge
 S $127 \mathrm{GP9} 1 / 1 \mathrm{SC}$ Special Offer |
| :--- | :--- |

.

each 60p

SUPER DUPER COMPONENT BOX

 Min. 3lbs in weight consisting of a fantasticassortment of Electronic Components - Pots Resistors, Conden sers. Switches, Relays, 8oard

- Semiconductors, wire, hardware. Etc., etc., - Semiconductors, wire, hardware. Etc., etc.,

This is a large box and is sen
ordere $£ 2.50$ including p \& p.
S140

TRANSFORMERS SALE OFFER
 S141 0235240 v primary, $0-55 \mathrm{v}$ at 2 amps secondary. $84.50^{\circ}+\varepsilon 1.00 \mathrm{ps} p$. S 1420349240 v primary, $0-2$ secondary. $83.50^{\circ}+\mathrm{E}^{2} 0.86$ p8p.
 COMPLETE AUDIO
 STA15

amplifier kit channe
 1×PA100- $1 \times$ SPM 80
 1×2034 transformer- £37.70inc VAT

STA25
51.00°
$\mathrm{F} 1.000^{\circ}$
4

STA35 25 wattsper channel
amplifier kit. Consists
$2 \times A L 60$ - $1 \times P A 100-$
$1 \times S P M 120 / 45$
1×2040 Transformer
$-1 \times 1 \times$ reservoir cap $\mathbf{4 5} \mathbf{i n c}$ VAT

amplifier kit. consists:
2×4 180-1 $1 \times$ PA $100-$
$1 \times$ SPM 120.1×2041
transformar-- 1 re
ervoir capacitor
$2 \times$ coupling capacitors $\begin{gathered}\text { e48.45inc VAT } \\ +£ \uparrow .16 p p \& p\end{gathered}$
50 watts per channel
amplifier kit. Consists:
$2 \times A L 120-1 \times P A 200$ -
$1 \times$ SPM 120/65
-1 xreservoir capacitor $\mathbf{5} 58.20$ inc VAT $2 \times$ coupling capacitors $+£ 1.10 \mathrm{pp}$ \& p
STA125125 watts per channel
amplifier kit. Consists.
$2 \times A L 250-1 \times P A 200$
$\overline{2 \times S P M 120 / 65}$
$1 \times$ reservoircapacitor e72.85incVAT $2 \times$ coupling capacitors $+£ 1.25 p p$ \& p

(1)

ORDERING

Minimum postage and packing for Sale Orders c0.50 PLUS any further postage as stated as per this Sale Advertisement
Overseas Orders - ADD extra for Air-mai
V.A.T.

Please AOD V.A.T. as follows
$12 \frac{1}{2} \%$ to items marked * 8% to unmarked items NO V.A.T, on 8 ooks
SEND FOR YOUR BI-PAK CATALOGUE 65p post free.

TRANSISTORS

BRAND NEW - FULLY GUARANTEED

Ty									ce
AC107 AC126	${ }_{14 \mathrm{p}}^{25}$		${ }_{12 \mathrm{p}}^{12 \mathrm{p}}$	BF194	9 p	TIP328	34p	${ }^{2} \mathrm{~N} 161311$	${ }^{15 p}$
AC127	16 p	BC179	12 p	BF196	-12p	Tip32C	36p	2 N 1893	$28 p$
AC128	16 p	BC182	9	BF197	$\cdot 12$	Tip41A	34p	2N2218	15p
AC128K	24 p	BC182L	9 p	BF200	25 p	TTP418	35p	2N2218A	18p
AC176	16p	BC183	\bigcirc	BFX29	22 p	TIP41C	36p	${ }^{2} \mathrm{~N} 2229$	${ }^{15 p}$
AC176K	24 p	${ }^{\text {BC1 }} 183 \mathrm{~L}$	-9p	8 8×84	18 p	TIP42A	36p	2N2219A	$18 p$
AC187	${ }^{16 p}$	${ }^{\mathrm{BC} 184}$	$\bigcirc 9$	BF50	12 p	TIP4	37 p	2 N 2221	$15 p$
${ }_{\text {A }}{ }^{\text {AC1 }}$ C188	${ }_{16 p}^{26 p}$	${ }^{8} \mathrm{BC} 212{ }^{\text {P }}$	$\cdot 100$	8FY5 ${ }_{\text {BF }}$	12p	TIP429	38p	${ }^{2} \mathrm{~N} 2222224$	16p
AC188K	26p	BC21	-10p			TIP3055	42p	2 N 2222 A	16p
AD161			-10p		-22p	2T107	${ }^{6} 6$	${ }_{2} \mathrm{~N}_{2}$	10p
${ }_{\text {AF }}^{\text {AF139 }}$	${ }^{80 p}$	${ }^{\text {BC2 }}$ 81314	-10p	MPSA55	-22p	2T108	-7p		14p
AF239	30 p	${ }_{8 C 214 L}$	-10p	MPSA5B	-22p	2TX300	${ }^{7}$	2N2905	$14 p$
8 C 10	6	${ }^{8 C 251}$	${ }^{10} 10$	OC44	12p	2T3301	7p	2 N 29054	$15 p$
C108	${ }_{6 p}^{6 p}$	${ }^{8 \mathrm{Cry}} 1$	12 p	OC45	12p	$\frac{2 T \times 302}{21 \times 500}$	-9p	2 N 2	${ }^{12 p}$
$8 \mathrm{Cl118}$	-10p	$8{ }_{8}$	12 p	0 C 71	9 p	$\underline{1 \times 500}$	-100	2 N 2	${ }_{12 \mathrm{p}}^{14}$
$8 \mathrm{8C147}$	${ }^{8} \mathrm{p}$	80115	-40p	OC75	12 p	2T×502	-12p	2N2907A	13p
8C148	-8p	B0131	-35p	OC81	14p	${ }_{2} \mathbf{N} \mathbf{N} 696$	100	${ }_{2} \mathrm{~N} 29296 \mathrm{G}$	号
${ }_{8 C 154}$	-16p	${ }_{8 F 115}^{8 F}$	17 p	TIP29A	35p	2N706	7 p	2 N 3053	12 p
8 C 1	-9p	$8 F 167$	19p	TIP298	36p	2N706A	8 p	2N3055	35p
$8 \mathrm{8C158}$	9 Pp	$8 F 173$	20 p	TiP2	38p	2N70	80	2N3702	
${ }_{8 C 16}$	-10p	BF180				$\mathrm{2N}^{\mathrm{N} 13}$	12 p		
	-6p	85182	25 p	TiP30C	38p	2 N 1304	15p	2 N 3903	-11p
$8 \mathrm{8C171}$	$\bullet_{6 p}$	8F183	250	T1P31A	${ }_{33} 32$	2N1307	18p	${ }_{2}^{2 N 3904}$	p
8 C 173	-7p	8F185	$25 p$	TIP31C	34p	2N1309	22 p	2N3906	-11p

DIODES

Price	Type	Price	Trpe	Price	Tyoe
	$8 Y 216$	30p	0485	7p	IS44
5p	8 Y 217	28p	OA90	6 p	
	8 8218	28p	OA91	7p	IN5400
15p	8YZ19	28p	0A95	7 p	IN5401
-10p					IN5402
32p	0447	5p	IN34	5p	IN5404
32p	OA70	5p	1N60	6 p	IN5406
32p	OA79	7p	IN914	4 p	IN5407
30p	OA81	7p	'N4148	$4 p$	IN5408

LINEAR I.C.'s

LINEARI.C.'s					
TBAB00	¢0.75*	UA711	¢0.25*	UA748	¢0.28*
TBAB10	${ }_{\text {co. }} \mathbf{c} 0.85^{\circ}$	V4703		72558	¢0.45*
LM380	c0.80 ${ }^{\circ}$	72741	c0.20	76115	E7.25
LM381	¢1.25*	UA741C	c0. 20	NE555	80.22
72709 4709	c0.20	${ }^{72747}{ }^{7489}$	c0.55	SL414A	£1.80
UA709	co. 20	748 P	c0.28*		

ZN 414 RADIO CHIP 75*			
OPTOELECTRONICS			
Displays		${ }^{\text {2nd }}$ Quality Led Paks	
No. 1510707 LED DisplayNo. 1511747 LEDDisplay No. 1511747 LED DisgiayNo. 1512727 DualLEG Display		No. 1507 10 Assorted Colours \&	
		NoD Clios $\begin{array}{lll}\text { No. } 1508.125 & .125 & 5 \text { for } \\ \text { No. } 1508 / .2 & .25 & 5 \text { for }\end{array}$	¢0.75 c0.60 ¢0.60
			¢0.15
		No. 5139 Infra Read Emitior	
			0.50

P.O. RELAYS
S85-2 Otf Post Office relays 400°

No. 1514 NORP 12

(including Data)
 State Colour (Red, Amber and
Green.)

POWER SUPPLY

 STABILIZER BOARDUnused ex-equipment stabilizer board, Inpul circuit diagram. Order No. S81 £1.25
S65-50 2.5 mm round single pin fixing $\quad 30 \mathrm{p}$

DEPT. PE2, P.O. Box 6, Ware, Herts COMPONENTS SHOP: 18 BALDOCK STREET, WARE HERTS.

YOUR COMPLETE RANCE OF ELFCTRONIC HAROM/ARE...

BIMENCLOSURES

ALL METAL BIMCASES Red, Grey or Orange 14 swg Aluminium removable top and bottom covers. 18 swg black mild steel chassis with fixing support brackets.

BIM 3000
$(250 \times 167.5 \times 68.5 \mathrm{~mm})$ £14.58

MINI DESK BIMCONSOLES
Orange, Blue, Black or Grey ABS body incorporates 1.8 mm pcb guides, stand of f bosses in base with 4 BIMFEET supplied. 1 mm Grey A luminium panel sits recessed with fixing screws into integral brass bushes.
BIM $1005(161 \times 96 \times 58 \mathrm{~mm}) \quad £ 2.18$
BIM $1006(215 \times 130 \times 75 \mathrm{~mm}) £ 3.05$

ALL METAL BIMCONSOLES

| All aluminium, 2 piece desk consoles with | Colour Code | Top Panel | Base |
| ---: | :---: | :---: | :---: | :---: |
| either 15° or 30° sloping fronts, sit on | A | Off White | Bhe |
| 4 self-adhesive non-slip rubber feet. | B | Sand | Green |
| Ventilation slots in base and rear | C | Satin Black | Gold |
| panel for excellent cooling. | | | |

15° Sloping Panel
30° Sloping Panel BIM 7151 ($102 \times 140 \times 51[28] \mathrm{mm}$) BIM 7301 ($102 \times 140 \times 76[28) \mathrm{mm})$ BIM 7152 ($165 \times 140 \times 51[28) \mathrm{mm}$) BIM 7302 ($165 \times 140 \times 76[28) \mathrm{mm})$ BIM $7153(165 \times 216 \times 51[28] \mathrm{mm})$ B 1 M $7303(165 \times 183 \times 102(28) \mathrm{mm})$ BIM 7154 ($165 \times 211 \times 76[33] \mathrm{mm}$) BIM $7304(254 \times 140 \times 76[28] \mathrm{mm})$ BIM $7155(254 \times 211 \times 76[33) \mathrm{mm})$ BIM $7305(254 \times 183 \times 102(28) \mathrm{mm})$ BIM $7156(254 \times 287 \times 76[33) \mathrm{mm})$ B B M $7306(254 \times 259 \times 102[28] \mathrm{mm})$ BIM7157 ($356 \times 211 \times 76\{33$) mm) BIM7307 $(356 \times 183 \times 102[28) \mathrm{mm})$ (1 BIM $7158(356 \times 287 \times 76(33) \mathrm{mm})$ BIM $7308(356 \times 259 \times 102[28] \mathrm{mm}) \mathrm{f} 18.55$

ABS \& DIECAST BIMBOXES

6 sizes in ABS or Diecast Aluminium. ABS moulded in Orange, Blue, Black or Grey. Diecast Aluminium in Grey Hammertone or Natural. All boxes incorporate 1.8 mm pcb guides, stand off supports in base and have close fitting flanged lids held by screws into integral brass bushes (ABS) or tapped holes (Diecast).

ABS		Diecast	Hammertone	Natural
N/A		BIM5001/11	TBA	TBA
BIM2002/12	$£ 0.96$	BIM5002/12	$£ 1.46$	$£ 1.19$
BIM2003/13	$£ 1.13$	BIM5003/13	$£ 1.78$	$£ 1.46$
BIM2004/14	$£ 1.35$	BIM5004/14	$£ 2.24$	$£ 1.82$
BIM2005/15	$£ 1.52$	BIM5005/15	$£ 2.84$	$£ 2.28$
BIM2006/16	$£ 2.37$	BIM5006/16	$£ 3.94$	$£ 3.33$

$(50 \times 60 \times 31 \mathrm{~mm})$
$(100 \times 50 \times 25 \mathrm{~mm})$ $(112 \times 62 \times 31 \mathrm{~mm})$ $(120 \times 65 \times 40 \mathrm{~mm})$ $(150 \times 80 \times 50 \mathrm{~mm})$ (190×110×60mm)
N/A BIM2002/12 E0.96 BIM2003/14 E .13 BIM2005/15 E1.52 BIM2006/16 E2.37

Diecast BIM5002/12 BIM5003/13 BIM5005/15 BIM5006/16

TBA
$£ 1.46$
$£ 1.78$
$£ 2.24$
$£ 2.84$
$£ 3.94$

Natural
E1.19
£ 1.46
£1.82
$£ 3.33$

Also available in Grev Polystyrene with no slots and self-tapping screws BIM 2007/17 (112×61×31mm) £ 1.00

MULTI PURPOSE BIMBOXES
Orange, Blue, Black or Grey ABS with 1 mm Grey Aluminium recessed front cover held by screws into integral brass bushes. 1.8 mm pcb guides incorparated and 4 BIMFEET supplied.

BIM $4003(85 \times 56 \times 28.5 \mathrm{~mm}) \quad$ £ r .18 BIM $4004(111 \times 71 \times 41.5 \mathrm{~mm}) \quad £ 1.62$ BIM $4005(161 \times 96 \times 52.5 \mathrm{~mm}) \quad £ 2.19$

LOW PROFILE BIMCONSOLES
Orange, Blue, Black or Grev ABS body has ventilation slots as well as 1.8 mm pcb guides and stand-off bosses in base. Double angle recessed front panel with 4 fixing screws into integral brass bushes. 4 BIMFEET supplied.

BIM $6005(143 \times 105 \times 55.5(31.5) \mathrm{mm}) £ 2.37$ BIM $6006(143 \times 170 \times 55.5(31.5) \mathrm{mm}) £ 3.08$ BIM $6007(214 \times 170 \times 82.0(31.5) \mathrm{mm}) £ 4.12$

2. EUROCARD BIMCONSOLES

Orange, Blue, Black or Grey ABS body accepts full or $1 / 2$ size Eurocards, with bosses in the base for direct fixing. 1.8 mm wide pcb guides incorporated and 4 BIMFEET supplied. 1 mm Grev aluminium lid sits flush with body top and held by 4 screws into integral brass bushes.

BIM 8005 ($169 \times 127 \times 70$ [45] mm) £4.12 BIM 8007 (to be announced shortly)

BIMTOOLS

MAINS BIMDRILLS

Small, powerful 240 V hand drill complete with 2 metres of cable and 2 pin DIN plug. Accepts all tools with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ or $.125^{\prime \prime}$ dia. shanks. Drills brass, steel, aluminium and pcb's. Under 250 g , off load speed 7500 rpm . Orange ABS, high impact, fully insulated body with spring return on/off switch $£ 10.53$
Mains Accessory Kit 1 includes $1 \mathrm{~mm}, 2 \mathrm{~mm}, .125^{\prime \prime}$ twist drills, 5 burrs and 2.4 mm collet $£ 2.48$
Mains Kit 2 includes Mains BIMDRILL as above, 20 assorted drills, mops, burrs, grinding wheels and mounted points, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and . 125^{\prime} collets. Complete in transparent case measuring $230 \times 130 \times 58 \mathrm{~mm} £ 22.14$

Min Major

12 VOLT BIMDRILLS

2 small, powerful drills easily hand held or used with lathe/stand adaptor. Integral on/off switch and 1 metre cable.
Mini BIMDRILL with 3 collets up to 2.4 mm dia $£ 8.10$ Major BIMDRILL with 4 collets up to 3 mm dia $£ 13.60$

A ccessory Kits 1 have appropriate drills and collets as above plus 20 assorted tools. Mini Kit 1 - $£ 15.12$, Major Kit 1 - $£ 19.44$. Accessory Kits 2 have appropriate drills, collets plus 40 tools and mains 12 V de adaptor. Mini Kit $2-£ 34.02$, Major Kit 2 - $£ 39.42$.

Accessory Kits 3 as appropriate Kits 2 plus stand/lathe unit. Mini Kit 3 - £ 45.36, Major Kit 3 - £50.76.

BIMDIPS

Rapidly inserts and withdraws any 4-18 pin, . 3" pitch DIL package without beding the legs. Adjustable metal jaws for MOS type devices grip the bottom of the leg for minimum strain. Will pick up IC's from a bench, a carrier or a pcb. £13.77.

Precision made side cutters, spring action, ground steel fine pointed blades for intricate work.

5 $1 / /^{\prime \prime}$ tong £ 3.34

BIMIRONS

Type 30 General Purpose 27 watt iron with long life, rapid change element screw on tip, stainless steel shaft and clip on hook. Styled handle with neon. $£ 4.05$
Type M3 Precision 17 watt iron, quick change tip, long life element, styled handle with clip $£ 4.43$

BIMPUMPS

2 all metal desoldering tools provide high suction power and have easily replaceable screw, in Teflon tips. Primed and released by thumboperation with in-built safety guard and anti-recoil system.

BIMPUMP Major (180 mm long)
BIMPUMP Minor (150 mm long $) £ 6.80$

BIMSTATION

Type PSU6 Soldering Iron Station complete with 6V, 6 Watt miniature iron having stainless steel shaft, quick change slide on tip and long life element.

Station contains $240 \mathrm{~V} / 6 \mathrm{~V}$ transformer, neon, coiled iron support and sponge iron tip cleaning pad.

BIMDICATORS

ECONOMY QUALITY LED's

Mixed bags of .125" and .2" dia. Iens in various colours 50 for $£ 5.67,100$ for $£ 10.00$

FULL SPECIFICATION LED's

$.125^{\prime \prime}$ or.$^{\prime \prime}$ with mounting clips and data
Red - £ 1.67/pack of 5, Green - £2.48/pack of 5, Yellow/Amber - £3.18/pack of 5

33 and 34 SERIES

Front viewing (30° angle) LED indicators
BIM 33 is nickel plated, uses 3.2 mm dia LED and needs 6.5 mm dia. fixing hole.
BIM 34 is chromium plated, uses 5 mm dia. LED and needs 8 mm dia. fixing hole.
Red - $£ 2.80$ /pack of 5 , Green/Yellow - $£ 3.24 /$ pack of 5
ASERIES
240 V Neon with integral resistor.
held in 8 mm hole by plastic bezel.

Red, Amber, Clear or Opal lens $£ 2 /$ pack of 5 , Green lens $£ 3 /$ pack of 5
Low Voltage equivatent of above with Red, Amber, Clear, Opal or Green Lens. $6 \mathrm{~V} £ 0.54$ each, $14 \mathrm{~V} £ 0.58$ each, $28 \mathrm{~V} £ 0.65$ each
State Voltage, lens style, colour and whether tags or flying leads.

D SERIES

B LES and Midget Flanged lampholder with 13 mm dia. (A) and 18 mm dia (B) lens. Solder tags. $1 / 2^{\prime \prime}$ dia. hole fixing llamps not supplied) plus chrome bezel with A lens. Aed, Amber, Clear, Green, Opal $£ 0.66$ each

G SERIES

TI Midget F langed lampholder. Lamps are available on request 8 mm fixing hole, solder tags. Front replaceable, 7.25 mm dia.
lens. Red, Amber, Clear, Green, Opal £0.43

05 SERIES

240 V Neon with integral resistor. Self retaining in 13 mm hole, Solder/.25" push on blades. 13 mm dia. lens with 19 mm dia. chrome bezel. Red and Amber $£ 0.61$ each, Green $£ 0.78$ each

M \& MP SERIES
Low voltage nickel plated brass
(M) and Polycarbonate (MP) indicators, 150 mm leads, 6.4 mm fixing hole Red, Amber
6.9 mm dia. lens (M) $6 \mathrm{~V} £ 0.65$ each, $14 \mathrm{~V} £ 0.68$ each, $28 \mathrm{~V} £ 0.79$ each
7.5 mm dia. lens (MP) $6 \mathrm{~V} £ 0.55$ each, $14 \mathrm{~V} £ 0.59$ each, $28 \mathrm{~V} £ 0.68$ each

BIM M LED SERIES

Nickel plated brass bodied LES indicator, 21 mm wire wrappable leads, 6.5 mm fixing hole, 2 styles, $6,8 \mathrm{~mm}$ dia lens.
Red $£ 0.67$ each, Green $£ 0.83$ each, Amber $£ 1.00$ each

BIM LM \& MM LED SERIES
Subminiature nylon bodied LED indicators with 12 mm wire wrappable leads
LM \& MM push fit into 4.75 mm \& 4 mm holes respectively. Each series has 4 lens styles in Red £0.67, Green £0.83, Yellow $£ 1,00$ each.
Both lenses 'D' are square

BIM 23, 26 \& 56 LED SERIES

Black nylon Jodied LED indicators. BIM 23 has 7 mm flat face, BIM 26 \& 56 utilise 4 \& 5 mm dia LED's. Push fit in 8 mm hole. Red $£ 0.46$ each, Green $£ 0.62$ each, Yellow $£ 0.77$ each

BIMACCESSORIES

BIMDAPTORS
Allows pcb's to be flat mounted sandwich fashion in BIMBOXES.
BIMCONSOLES, and all
other enclosures having
1.5 mm wide vertical guide slots. One plastic BIMDAPTOR on each corner of pcb(s) enables assembly to be simply slid into place. 54 mm long, 10 slots on 5 mm spacing and can be simply snipped off to length.

Packs of 25 £ 1.08 per pack
BIMFEET
11 mm dia, 3 mm high, grey rubber self adhesive enclosure feet.
Packs of $24 £ 0.77$ per pack

BIMBOARDS

DIL

COMPATIBLE BIMBOARDS

Accept all sizes (4-50 pin) of DIL IC packages as well as resistors, diodes, capacitors and LEDs. Integral Bus Strips up each side for power lines and Component Support Bracket for holding lamps, switches and fuses etc. Available as single or multiple units, the latter mounted on 1.5 mm thick black aluminium back plate which stand on non slip rubber feet and have 4 screw terminals for incoming power.

BIMBOARD 1 has 550 sockets, multiple units utilising 2,3 and 4 BIMBOAROS incorporate 1100, 1650 and 2200 sockets, all on 2.5 mm (0.1") matrix.

BIMBOARD 1 £ 8.83
BIMBOARD 2 E21.01
BIMBOARD 3 £29.84
BIMBOARD 4 £ 38.79
DESIGNER PROTOTYPING SYSTEM

1. 2, or 3 BIMBOARDS mounted on BIM 6007 BIMCONSOLE with Integral Power Supply $(\pm 5$ to $\pm 15 \mathrm{Vdc} @ 100 \mathrm{~mA}$ and fixed $+5 \mathrm{Vdc} @ 1 \mathrm{~A})$ All O/P's fully isolated. Short circuit and fast fold back protection. Power rails brought out to cable clamps that accept stripped wire or 4 mm plug.

DESIGNER 1 £55.62 DESIGNER 2 E61.02 DESIGNER $\mathcal{S} 66.42$

FROM

 on all BOSS products send stamped, self addressed envelope.2 Herne Hill Road, London SE24 0AU Telephone: 01-737 2383 Telex: 919693 Answer Back 'LITZEN G' Cables \& Telegrams: 'LITZEN LONDON SE24'

SUPERSOUND 13 HI-FI MONO

AMPLIFIER

 Alifier. Qran state avdio amp. throughout. 5 silicon tran roughout. 5 silicon tran
sistors pius 2 powe oulput transistors in pusn-pul push-pu
reclitica recirication. Output
approx. 13 watts r.m.s. into 8 onms. Frequency
response 12 Hz 30 K Hz esponse 12 Hz 30 KHz
$=300$. Fully integrated
$=3$ arate Volume. Bass boost ano Treble cut controls. Suitable for
put for ceramic or crystal cantidge. Sensinvy approx. 40 mv for full output. Supplied ready builf and tested, with knobs, escutcheon panel, input and output plugs PRICE £16.00 P. \& P. £1.20.

HARVERSONIC MODEL P.A

 TWO ZEROAn advanced solld stare general ourpose mono smolifier suitable Guitar, Gram.. etc. Fealures

input has a separate 2 stage pre-amp.). Input $1,15 \mathrm{mV}$ into 47 input 2 . 15 mV into 47 k (suitable for use with mic. or guitar etc.) input $3,200 \mathrm{mV}$ into 1 meg. suitable for gram. tuner, or tape etc
Full mixing lacilites with full range bass \& treble controls. Al Full mixing tacilites with tull range bass a treble controls. Ail socket on rear of chassis for an ohm or 16 ohm speaker. Output in excess of 20 walts R.M.S Very attractively finished purpose bult cabinet made from black vinyl covered steel. with a
brushed anodised aluminium front esculcheon For ac mains brushed anodised aluminium front escutcheon For ac main
operation 200.240 volts. Size aporox. 12 in wide $\equiv 5 \mathrm{ln} \mathrm{high}$ operation
Special introductory price $£ 28 \cdot 00-£ 2 \cdot 50$ carriage and packing.
"POLYPLANAR" WAFER-TYPE, WIDE RANGE
RLTRO-DYNAMIC SPEAKE
Slze 11 it $\times 141 \mathrm{in} \times 17$ in deep. Welght 19 oz . Power handling $40 \mathrm{~Hz}-20 \mathrm{KHz}$ Can be mounted on ceilinos, walls. doors, unde tables, etc. and used with or without baffle. Send S.A.E. for full details. Only $£ 8.40$ each + P. $\&$ P. lone 90 p, iwo $£ 1.101$. Now available in either 8 in round version or $4 \frac{1}{2} \times 8 \frac{1}{2}$ in rectangular. 10

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER

HARVERSONIC SUPERSOUND
$10+10$ STEREQ AMPLIFIER KIT
A cluding silicon Transistors in the firs! tive stages on tar ancluding Silicon Transistors in the firsi five stages on each channel resitivity Integral pre-amp with Bass. Treble and fwo Volume controls. Sultable for use with Ceramic or Crystal cartridges Very simple to modity to suit magnetic cartudge-unstructions included Outpul stage for any speakers from 8 to 15 onms. Compact design all parts supplied including drilled metalwork. high quality read driled printed circult matching knobs. wire. solder. nuts, bolts-no extras to buy Simple step by step instructions enable any constructor to build an amplifier to be proud of Erief specification. Power output th wath A.M.S. per channel mo 5 ohms Fequency response -3 d
 Treble cut aoprox to -16 d 日 Negative leedback 18 dB over main amp. Power requirements 35 V at 1 A .
Overall size 12 in wide $\times 8$ in deep $\times 2$ in high.
Fully detalled 7 page construction manuat and parts list tree with kit or send 25p plus large S AE
AMPLIFIER KIT
(Magnetic input components 33 extra) POWER PACK KIT
€14.50 P. \& P. 80p
£6.00 P. \& P. 95p
£6.00 P. \& P. 95p
SPECIAL OFFER-only $£ 25.00 \mathrm{H}$ all 3 items
ordered at one time plus £1.25 P. \& P P.
Also avallable ready bull and rested $\$ 31.25$ P. \& P. $£ 1.50$

HARVERSONIC STEREO 44

a solid state stereo amplifier chassis. with an output of $3-4$ watt per channel into 8 ohm speakers. Using the latesi high rechnology overload protection. All components including rectifier smoothing capactior. Iuse, tone control, volume controls. 2 pin din speaket sockets and sin din printed circuit panel. Size approx. 9 in $\times 2$ inn. lin max. depith
Supplied brand new and tested. with knobs, brushed anodised aluminium 2 way escutcheen (10 allow the amplifier to be mounted horizontally or vertically) at only $£ 10-00+50 \mathrm{p}$ P \& P. Mains horizontaly or vertically) at oniv $£ 10.00+50 \mathrm{p}$ P F . Mains supplied at $£ 2.00+40$ p P. \& P. If required. Full connection details supplied.

STEREO DECODER

SIZE $2^{-} .3^{\circ}$ ready built. Pre-aligned and tested tor $9-16 \mathrm{~V}$ neg earth operation. Can fitted to almost any FM VHF radio or tune instructions (inclusive of hints and tips) supplied. F6.00 plus 20 D P. \& P. Stereo beacon light if required 40 oxtra.

Open 9.30-5.30 Monday 10 Friday. 9.30-5 Saturday Closed Wednesday.
Prices and specifications correct at time of press. Subject to
(Please write clearly)
PLEASE NOTE: P. \& P. Charges QUOTED APPLY YO U.K. ONLY CHARGED EXTAA P.
CHARGED EXTRA.

START THENEW YEARWELL by treating yourself to this famous

 Components Catalogue

- The finest components catalogue yet published. - 128 A-4-size pages - About 2,500 items clearly listed and indexed. - Profusely illustrated. - Bargain List sent free - At $£ 1 \cdot 25$, incl. p. \& p., the catalogue is a bargain. Send the coupon below now. POST THIS COUPON Please write vour Name and A dotess in block capirals
NAME -
ADDRESS
HOME RADIO CComponents) LTD Dept PE Regd No.
$234-240$ London Road. Mitcham. Surrev CR4 3HD
912966 London

NO DISCO SYSTEM IS COMPLETE WIHHOUT...
 CITRONIC MM 313 MIXER Ideal for the DIY enthusiast building up a complete disco via phono sockets al rear. Bargain price, including PSU

PIEZO HORNS

 FANTASTIC SPECIAL OFFER TO READELICATION ICAIION
Tweeters tor your disco. PA system or Hi.Fi. Frequency range 5 K -20 K nox over fequired. They can be used in OUA PRICE ONLY £ 4.99 each PRP 350 ea
 PROJECTORS SQUIRE MULTIFECT 150 - inclucing rotator and effects wheel. A truly versatile projector which uses a powertu! 150 W Tungsten bulb, all effects achments simply slot in ready for use A BARGAIN AT $£ 40.50$ (P\&P $£ 1.00$)

BULGIN OCTAL PLUGS

AND SOCKETS

There's always hundreds of Bulgin Rogal multiway plugs and sockets in stock at hoger Squires. Each pin rated bA. Perfect for E0.65 (P\&P 35pl P551 PLUC £1.84 IP\&P 35p) Carriage on 10 or more nominal $\& 1.00$ Also availabie Carriage on 10 or more nominal $£ 1.00$ Also availabie 0.65 per metre. Please phone for carriage quote.
 STARLITE 250 An exclusive new line to Röger Squire's Orsco Centres. Supert high powered cooled, accepts wite range of multifert tachments. Unique conge of multifect attachments. Unique connec
orbit prism revolvers. Only

Personal callers: ROGER SQUIRE'S DISCO CENTRES LONDON: 175 Junction Road, Tufnell Park N19 $50001-2727474$ BRISTOL: 125 Church Road. Redfield, Bristol BS5 9JR 0272-550550 MANCHESTER: 251 Deansgate M3 4EN 061-831 7676 GLASGOW: 1 Queen Margaret Road off Queen Margaret Drive, Kelvinside, Glasgow, G20 6DP

Lektrokit Super Strip SS2

Only £11.05 inc. p \& p and VAT
Super Strip accepts all DIP's-as many as nine 14 -pin at a time-and/or TO-5's and discrete components. With interconnections of any solid wire up to 20 AWG. And no soldering. Super Strip has 840 contact points, combining a power/signal distribution system with a matrix of 640 contacts in groups of 5 . Distribution system has 8 bus-bars, each with 25 contact points.

Lektrokit Breadboards and Bus Strips

From £3.25 Inc p \& p and VAT
The modular, solderless system! Breadboards that link together for any size, any configuration. With pitch of $0.1^{\prime \prime}$ to accept all IC's. Just take each component, choose its hole and push it in.

BREADBOARDS		
Model	Contacts	
Mrice, each		
264L	640	$£ 8.32$
248 L	480	$£ 6.65$
234 L	340	$£ 5.75$
217L	170	$£ 3.25$
lall prices includep \& p and VAT)		

BUS STRIPS	
Model	Price
212R	$£ 1.78$
209R	$£ 1.62$
206R	$£ 1.45$

(All prices include p \& p and VAT)

All-Circuit Evaluators

Seven ACE models from £ 12.53 -all prices inc p \& p and VAT
Just plug in components and make connections with ordinary 22-gauge solid wire. No soldering. Build any working project complete as fast as you could lay out a circuit diagram before.
ACE 200-K (728 contacts: $£ 12.53$) and ACE 201 K (1,032 contacts: $£ 16.75$) come in kit form.
Lektrokit's policy is the right product, whatever the project, at the right price. And it's backed by a nationwide network of retailers.
Send for the name of the dealer nearest you-plus a FREE full-colour catalogue.
Write to:- LEKTROKIT LTD., London Road, Reading, Berks. RG6 1AZ. Or send coupon.
To Lektrokit Limited, London Road, Reading, Berks, RG6 IAZ.
Tel. Reading (0734) 669116/7.
Please send me the name of my nearest Lektrokit dealer-plus FREE catalogue.
Please supply the following (list items required)

SAXON ENTERTANMENTS THE PIONEERS OF MODULAR DISCO/P.A. EQUIPMENT NOW OFFER PACKAGE DEALS AT INCOMPARABLE PRICES

CENTAUR STEREO DISCOS

 TWIN SPEAKERS \& LEADS
Standard 100W $£ 249$ or 12 Months @ £21.94 or 24 Months @£12.54

Super 200W

 £299 ${ }_{\text {or }}^{+ \text {corr. } £ 15+\text { Vat }}$ 12 Months @ $£ 26.19$ or 24 Months @ £14.90
GXL 200W ("memiz)

 C389 2389 or Deposit $£ 87.32$12 Months @ £33.64 or 24 Months @ $£ 19.19$ BSR Decks - 17,000 Line Loudspeokers - Rugged Aluminium Trimmed Cabinets - Cue Light And Phones Output - Slove Output - Deck Lights/Motor Starts (GXL) ALSO CENTAUR 'CUSTOM' 400-600W £699-ASK FOR DETALLS

COMPLETE STEREO
 ROADSHOWS - BUILT IN SOUND TO LIGHT/SEQUENCER \& DISPLAY

sTWO YEAR GUARANTEE

illustrotion shows GXL Centour System
These systems feafure full mixing for pwo decks tope \& mic with monitoring focilifies - override and ore supplied complete with sound to light + sequencer, disploy, speaker leads efc.

JUST PLUG IN AND GO!

SAXON KLAXON

AMPLIFIER MODULES $\square 30 \mathrm{~Hz} \cdot 20 \mathrm{kHz}$
\square Short/open circuit proof \square Top grade camponents

\square Suil most mixers

NEW

£35

SA308
8 ohms 30 W 45 V
SA 604
4 ohms 50 V
SA 608
8 ohms 60 W 65 V
SA1204
4 ohms 120W 75 V
SA 1208
8 ohms 120W 95 V

SOUND-TO-LIGHT UNITS

3 CHANNEL - 3 kW
\square Operates from IW upwards \square Bass/middle/treble/master controls
$\mathbf{£ 2 9 . 5 0} \begin{gathered}\text { + £ } 1 \text { car } \\ \text { complete }\end{gathered}$

SAXON KLAXON
four

Module only $£ 19.75$ Panel $£ 2.95$
\square Dimmer on each channel
\square Automatic sound light level'
\square Logic circuitry throughout

UK Palice - Destroyer - US Police - Howaii Five-O All the effects you need in ane package

Individual sirens with any of the above effects
$£ 17.50$
Corr free
f7 50

SAXON 'SM ALIEN VOICE SIM Add a new dim with this press just insert between
SAXON 'SC Rope light control
SAXON Rope Lit
Easy ta change lo

4 CHANNEL - 4 kW SOUNDLITE SEQUENCER (fllus)

Module only $£ 26.75$ Ponel $£ 2.95$

100W SPOTS

Red - Blue - Amber - Green
£ 1.50 ea.
Carr 50p max Free on $10+$

HEAVY DUTY SPOT BANKS - MATCHES LOUDSPEAKERS
3 way $600 \mathrm{~W} £ 35.504$ way $800 \mathrm{~W} £ 39.50{ }_{\text {£ } 2}^{\text {Corr }}$

240 WATT 4 OHM MODUUSIREL OUTPUT DEVICES
SUPPLY £24.75

£10.75* Supply for

£14.50 Supply for
£15.50 $\quad \begin{aligned} & \text { one or } \\ & 2 \text { modules }\end{aligned}$
$£ 14.95$
Supply for
1 module
Supply for
2 modules
£24.75

SAX
ALI
Ad
with
iust

SMASH'
SIMULATOR
dimension to your disco
ess buton effect unit
ween mic and amplifier
£7.50 Corr íree

SAXON 'SCINTILLITE' SAXON Rope Lights multicalour

Eosy ta change lamps $£ 35.50$\begin{tabular}{c}
Corr

£1

Spare bulbs

10p eo.
\end{tabular}

FUZZ LIGHTS	Red, Blue Yellow, Green	$\mathbf{£ 2 2 . 8 0}$

DISCO MIXERS -COMPLETE OR MODULAR

 dord performance. \quad Stereo moins $\$ 63.75$

MINI DISCO 100 WATT MONO SYSTEM

 £179.50+ corr. $£ 15+$ VAT Deposit $£ 42.06$
12 Months @ $£ 16.22$ or 24 Months © © $£ 9.24$

Similor in oppearance to the Centaur ond complete with loudspeakers ond leads.

Heodphones to suit any system
EM507 Electret Mic
£ 15.00
DI501 Electret Mic
£18.50
Boom Siond
£15.50
Carriage on oll disco and PA systems
£ 10.00 (Included in H.P. Prices)

20\% Deposit Terms 12 to 24 Months

- Low Interest

CABINET FITTINGS

ICI Vynide $50^{\prime \prime}$ wide $£ 3.50 \mathrm{~m}$ Kick-res grille $50^{\prime \prime}$ wide $£ 3.50 \mathrm{~m}$ Netlon kick proof $24^{\prime \prime}$ wide $£ 3.50 \mathrm{~m}$ Corners/feet/recess plates 15 p ea. Recess handle 45p
Bor handles $\mathbf{E} 2.50$ Jack plugs/sockets $\mathbf{2 5 p}$
LOUDSPEAKER CABINETS COMPLETE WITH LEADS
\square Fitted with 100W 17,000 Gauss drivers \square Rugged cobinets with aluminium trim - black vynide etc \square Lifetime guarantee on main drive unit Standard $100 \mathrm{~W} 1 \times 12(48 \times 41 \times 24) \quad £ 39.00$ Carr E3 Lorge $100 \mathrm{~W} 1 \times 12(65 \times 48 \times 24) \quad £ 49.50$ Carr $£ 3$ Deposit $£ 12.70$ P.A. $1 \times 12(+2$ Piezos $)(80 \times 38 \times 24) \quad £ 66.50$ Carr $£ 3$ P.A. $2 \times 12200 \mathrm{~W}(100 \times 38 \times 24) \quad £ 99.00$ Carr $£ 3$ Deposit $£ 20.92$ Disco $2 \times 12200 \mathrm{~W}(80 \times 63 \times 24)$ PDF reflex $\operatorname{bin}(80 \times 40 \times 41)$ $£ 85.00$ Corr $£ 3$ Deposir $£ 19.80$ £95.00 Deposit $£ 20.60$
PDF100 Reflex Bin - Twin Horns - Integrated Slave Amplifier - Accepts mono or stereo signals
\square Use with all rypes af mixer
\square Pan and volume cantrols
\square Send far details
£130 Corr£3
PLUTO PROJECTORS \& WHEELS P140 $\begin{aligned} & 150 \text { Woth lungsten } \\ & \text { remarkoble value }\end{aligned}$
£38.50 Corr 51.00 P5000 250 Watt Q.I. + fan £89.50 Corr $\varepsilon 1.00$

Picture wheels from $£ 4.95$ - a wide range of wheels \& effects available - send for leaflet

MOTOROLA PIEZO HORNS £4.50. YES!!

MANCHESTER PACKAGE DEAL
 P.A. SYSTEMS
 2 YEAR GUARANTEE
 100 WATT £159.90
 + Corr DEPOSIT
 12 mth @ $£ 14.58$ or 24 mth @ $£ 8.30$
 AP100 4 INPUT AMPLIFIER (see below) - TWIN PIEZO HORIV IOOW COLUMNS \& LEADS
 200 WATT £249.00
 + CoII DEPOSIT
 12 mth @ $£ 21.94$ or 24 mhh @ $£ 12.54$
 \star USES NEW AP2OO SIX INPUT AMPLIFIER (below) - PAIR OF TWIN $200 W$ PIEZO HORN COLUMNS

 AP100 AMPLIFIER
 4 mixing units controls
 - Twin outputs vynide case
 £45
 Deposit
 £10.22

 AP200 NEW
 $£ 89.50$
 $\star 6$ mixing inputs $\quad 3$ set controls
 - Master 8 . Prescence Deposit
 £20.36

Moke
your own
mixer
Mono/
Stereo Mono PCB Mono C/W up to 20 Input only $\begin{gathered}\text { Inter } \\ \text { channels Modules StereoPC8 }\end{gathered} \mathbf{5 0}$ Front panel $\mathbf{8 9 . 5 0}$ channels Modules Stereo PC8
only
occept oll $\mathbb{£ 1 0 . 5 0} \begin{gathered}\text { Stereo C/W } \\ \text { Front panel } \\ \text { \& } 13.75\end{gathered}$ inputs avoiloble os PCB Mixer/ Mono PCB only $\quad \mathbf{~} 6.50 \begin{aligned} & \text { Mono C/W } \\ & \text { Front ponel } \\ & \text { O } 9.50\end{aligned}$
 on front
panels

Power supply to suit $\mathbf{£ 9 . 5 0 ~ - ~ s e n d ~ f o r ~ f u l l ~ d e t a i l s ~ o f ~ u s e s ~}$

PA SYSTEM ACCESSORIES	D1501 Du:al Imp High O!'F condenser mic EM507 High ourput single impedance mie ECMIOS Low cost condenser mic	$\begin{array}{r} £ 18.50^{*} \\ £ 15.00^{*} \\ £ 5.00^{*} \end{array}$	TWIN PIEZO HORN BOXES to match other cabinets $\mathbf{£ 2 7 . 5 0}$Deporit $\varepsilon 7.32$ 1.50
Heavy chrome mic stand collapsible $£ 9.90$ Boom version $£ 16.95$	MELOS CASSETTE ECH Twin input unit - infinitely variable speed, depth \& deloy - ployba Suits all mics \& instruments	reverb $£ 5 \oint_{£ 1}^{\text {orr }}$ sit £14.80	ADD ANY ACCESSORIES TO YOUR TOTAL CREDIT ORDER

All prices subiect to 8% VAT except where osterisked $\left(12 \frac{1}{2} \%\right)$ Shop premises open Tues to Sat $9 \mathrm{om}-5 \mathrm{pm}$ Lunch $12.30 \cdot 1.30 \mathrm{pm}$ Moil order dept open Mon to Fri $10 \mathrm{am} \cdot 4 \mathrm{pm}$ Ring 01.6846385

TO ORDER

By Post Send your requirements with cheque crossed P.O. or 60 p COD charge to address below or just send your Access or Barclay Card Number NOT THE CARD. By Phone You may order COD, Access or Barclay Card. Post \& Packing 50p on all orders except where stated.

SAXON ENTERTAINMENTS 327 Whitehorse Road, Croydon, Surrey. All Enquiries Large SAE Please Brochures on request.

MANCHESTER DISCO CENTRE, 237 DEANSGATE, MANCHESTER CALLERS ONLY - (061) 8328772 - COMPLETE UNITS ONLY

MOTOROLA - 1 WATT AUDIO AMPLIFIER I.C.

9-16V, 8-16 $2,10-400$ MV. Sensitivity, S.C. Proof.
No Heat sink required.
Supplied with Data and Circuits, 90p each.

Don't Let Your Environment Dohydrate You! Buy our Honeyewell Humidity Controlloer. Membrane sctusted, very sensifive. f" shat, 250V, 3.75A Contacts, Ideal tor greenhouses. centrally heated homes	SMOKE AND GAS DETECTDR Uses TGS 105 plug in sensor, housed in neat 3$\}^{\prime \prime}$ die crst bor. led indicator. 24 V . 112 V by altering 3 comporans values). Will operate tamp of retay, with data and circuit.f6.95 Reloys lor above $\mathbb{I} \mathrm{me}$. state vollage
	taAnsistor packs 100. Full spec. new and marked. Includes $\mathrm{BC} 148, \mathrm{BC} 184 \mathrm{~L}$. MED412. BF274. AC154 etc. ttc. 4.95 200 as above and includes AC128, 2N3055. BFY50. 80131, BF200 etc. 99.95 Buy bulk and save money. these packs afe worth at least double.
CASSETIE MOTORS Self Regulating, will operate 6.12V. Ideal lor modelers. mechantcal switching ete. 2000 A P. M. approx. 90 p ee.	
ultrasonic transducers Tiansminter and receiver, 40 kHz 14 mm diam. $\mathbf{8 4 . 2 5}$ pair.	
	P/LS SWITCH BANKS These cost a fortunal Were made for various music centres. Inciutes independent and interdapendent latching types muiti pate efo etc. Can be modilied. Can't be repeated, 3 Banks for $f 1$
6×6 POLE REED RELAYS DN BOARD 12 V ideal for burglar alorms, model railways etc. $\mathbf{£ 2 . 4 5}$	
$\begin{aligned} & 100 \text { MINLATURE REEOSWITCHES } \\ & \text { We are the cheapesti f } 1.30 \end{aligned}$	
	bulk bahgains. stock up for wimten 300 mixed \& \& \& watt cesistors 51.50 150 mixed 182 watt resistors 51.50 300 mixed capacitors, modern, most types $£ 3.30$ 100 miked ceramic and plate caps $\mathbf{C 1 2 0}$ 25 pots and presels f 1.50 25 presers, stelefon etc. f120 20 vors and theristors $E 1.20$ 100 Hi -wattage resistors wirewound etc. $\mathbf{E 2 . 2 0}$ 100 electrotyics, nice volues E 2.20 300 prined dircuit resistors E 1 300 primet circuit components $£ 1.50$
EAAPIECES Magnetic with plug and lead $25 p$ en. 5 tor If_{y} Crystal with lead $40 \mathrm{pes}, 3$ for fl	
make cheap battery fliminators Fully shrouded mini mains transtormers. 240 V in $8-0-6 \mathrm{~V}$ at 100 MA out Complete with mains lead and plug. ex new equip 90p	
oe LUXE FIbre glass PRIMTED CIRCUIT ETCHING Kits Includes 150 sq ins copper clad F/G, board 1 Ib terric chloride. 1 dalo etch resist pen. Abrasive cledner. Etch tray plus instructions. Special Prica $\mathbf{4} \mathbf{4 . 9 5}$ IIb FE. E1. To mil spec $\mathbf{8 1 . 2 5}$ 5 to FE. C1. To mil spec $\mathbf{5 5 . 0 0}$ $150 \mathrm{se} . \mathrm{in}$. Single sided board $\mathbf{£ 2 . 0 0}$ 150 sq. in. Double sided board $\mathbf{\$ 3 . 0 0}$,
	Equarsers elc. ${ }^{\text {a }}$ Stor
	aed Slider po
	Gooo quality. 25pee 5 for El
	MINIATURE LEVEL/BATT. METE RS $200 \mu \mathrm{~A}$ D. as fitited to many cassette erecorders. 90 p

SENTINEL SUPPLY, DEPT. P.E.
149A BROOKMILL RD., DEPTFORD, LONDON, SE8

THE BRIDGE BETWEEN

 exhibition aimed at alerting industrialists and businessmen to the meoning of the microelectronic revolution.

The Exhibition is free. The Conference cosis $\mathrm{C} 55+$ VAT for each of the first two, professional days (E 95 + VAT for a two-day ticket), and £7+VAT for the final, personal computing, day.
Microsystems is sponsored by 'Computer Weekly
'Microprocessors', 'Data Processing'. 'Electronics Weekly', Systems International', 'Electron', 'Electrical Times', 'Electrical Review and 'Wireless World' and is organised for them by liffe Promotions Lid, Dorset House Starnford Sireet, London, SE1 9LU

USE THIS COUPON TO BOOK FOR MICROSYSTEMS

To: Microsystems, Room 821, Dorset House, Stamford Street, Londan. SE1 9LU
Please send me: \square Conterence details and registration forms
A free exhibition tickét (Tick as required)
Name
Address

The professional scopes you've always needed.
 When it comes to oscilloscopes, you'll have to go a long way to

Super 6
E162.00 plus VAT
 equal the reliability and performance of Calscope

Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition

The Calscope Super 10 , dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations

The price £ 219 plus VAT
The Super 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity. Price $£ 162$ plus VAT.

CALSCOPE DISTRIBUTED BY

Marshalls Electronic Components,

Kingsgate House.
Kingsgate Place,
London, N.W.6.

Audio Electronics,
301 Edgware Road, London W. 2.
Tel: 01-724 3564
Access and Barclay card facilities
(Personal Shoppers)

Maplin Electronics Supplies Ltd. P.O. Box 3

Rayleigh, Essex.
Tel: 0702715155
Mail Order

CALSCOPE

Connoisseur's New and Exceptional SAU4 Pick Up Arm

Especially designed for modern high compliance cartridges and featuring

1. Light weight metal headshell
2. Calibrated downforce pressure weight
3. Ball spirit level for visual indication of central balance.
4. De-coupled counter balance weight
5. Viscous damped unipivot
6. Lateral balance weights
7. Viscous damped raise/lower device
8. Light weight aluminium tube

Connoisseur
 Vrite for further details to:

A. R. Su den \& Co. (Engineers) Lid

Manulacturers of Connoisseur Sound Equipment,
Connoisseur Works, Atlas Mill Road, Brighouse, West Yorkshire HD6 1ES
Telephone: Brighouse (0484) 712142, Telex: 517144 Sugden G
Telegrams \& Cables: Connoiseur Brighouse.

AITKEN BROS.
 35, High Bridge, Newcastle upon Tyne Tel: 063226729

TMK 500 MULTIMETER 30,000 O.p.V. AC volts $2 \cdot 5,10,25,100,250,500,1000$. DC volts. $0.25,1,2-5,10.25,100.250,1000$. DC curren 50ua, 5MA. 50MA. 12 amp . Resistance 0-6K 60K, 6 MEG. 60MEG. Decibels. -20 to +56 db Buzzer continuity test size, $160 \times 110 \times 55 \mathrm{MM}$ Batteries \& leads included.
PRICE £24.95.

SINCLAIR PDM35

DIGITAL POCKET MULTIMETER
DC volts 14 ranges) 1 MV to 1000 V AC volts 1 V to 500V DC current (o ranges) 1nA to 200 MA Resistance (5 ranges) 1Ω to 20 MEGR . PRICE〔32.95. AC Adapior/Charger £3.75 de luxe padded carrying case £3.50 MN1604 Battery. 99p.

SINCLAIR DM235

BENCH-PORTABLE DIGITAL MULTIMETER.
DC volts (4 ranges) 1 MV to 1000 V AC volts (4 ranges) 1 MV to 750 V AC \& DC current 1μ a to rangest 1 vV to 750 V AC \& DC current ina to
 PRICE £54.75 Carrying case £9.50. AC adaptor

PANEL METERS

DIMS $60 \mathrm{MM} \times 45 \mathrm{MM} .50 \mu \mathrm{amp}$. $100 \mu \mathrm{amp} 1 \mathrm{MA}$. $5 \mathrm{MA}, 10 \mathrm{MA} .50 \mathrm{MA} .100 \mathrm{MA} .500 \mathrm{MA}, 1 \mathrm{amp} .2$ amp. $25 \mathrm{~V} \mathrm{dc}, 30 \mathrm{~V} \mathrm{dc} .50 \mathrm{~V} \mathrm{AC}, 300 \mathrm{~V} \mathrm{ac}, ~ " \mathrm{~S} ", ~ " V U$ $50-0-50 \mu \mathrm{a}, 100-0-100 \mu \mathrm{a}, 500-0-500 \mu \mathrm{a}$. PRICE ¢4.95.

DESOLDERING TOOL
£5.95
SUCTION PUMP
PHONE OR SEND YOUR ACCESS OR
BARCLAYCARD NUMBER FOR SALES OVER $£ 10$.
ALL PRICES INCLUDE POSTAGE AND VAT,
CAIALOGUE 50D.
OEDUCTIBLE ON FIRST ORDER OF $£ 5.00$ OR MORE.

MICRO MONEY

AS WE go to press the Government has announced a further $£ 100$ million investment in microelectronics. This makes the total investment something in the order of $£ 400$ million which exceeds the involvement of both the French and German governments. The extra money will be split with $£ 60$ million going to education and $£ 40$ million to encourage industry to employ microelectronics in products, in the automation of manufacturing equipment and in updating office equipment and practices.

The Prime Minister stated that the use of microelectronics would bring "some crucial job losses" but it was also pointed out that in the past the introduction of new technology had eventually given rise to an increase in jobs in particular industries. The Government Think Tank has also commented on "the contrast between the vehemence of those who claim that microelectronics will have a catastrophic effect on unemployment and the inadequacy of the analysis underlying the certainty of that prediction."

It is indeed heartening to hear such phrases as "dominant technology of the next decade" and to find ministers urging Britain to compete-fast and, what's
more, putting our money where their mouth is!

The point that saddens us is that $£ 15$ million has to be spent in making direct presentations to industry to encourage the use of microelectronics. Perhaps we are too conservative to have believed any of the predictions made a few years ago, but surely more of them should have been investigated without companies having to be pushed.

It is often said that the car mechanic is the man slowing down the introduction of electronics to our every day transport, but he will have to accept the computer controlled engine eventually so let's get on with it. Training is what is needed-or retraining as the case may be-and the injection of money has been welcomed by both the CBI and TUC.

HOME COMPUTERS

One area where the microprocessor has found a ready market is in the home computer and now that a significant number of systems and peripherals are available we are taking another in-depth look at the subject. The interest being shown in the P.E. VDU System (published recently) and the P.E. Microprinter shows a demand for
peripherals at the right price and both these projects meet that need admirably. We hope to bring you more projects like these in future. We are now finding a number of hobbyists and engineers that did not follow the microprocessor teachins the first time around and it is our intention to publish a simple microprocessor system and describe the first steps in programming in the near future. So all those that want to learn the subject, and it appears to be of growing importance in many areas, watch out for further announcements.

DON'T MISS OUT

Whilst looking at forthcoming subjects, we would urge you not to miss any issues and one way of ensuring your copy is to place a regular order with your newsagent. Often we find readers unable to get copies because of heavy demand and since our next issue will carry a 108 page Tandy catalogue (U.K. mainland sales only) and subsequent issues another catalogue and a free gift worth at least $£ 1$, demand is likely to be extra heavy-you have been warned.

Mike Kenward

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
Alan Turpin PRODUCTION EDITOR
David Shortland TECH. SUB EDITOR

Jack Pountney ART EDITOR
 Keith Woodruff ASSISTANT ART EDITOR
 John Pickering SEN. TECH. ILLUSTRATOR
 Isabelle Greenaway TECH. ILLUSTRATOR
 Judith Kerley SECRETARY

Editorial Offices:
Westover House,
West Quay Road, Poole,
Dorset BH 15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot be answered over the telephone (see below).

Advertising Offices:
King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS
Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-261 6601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from. advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 75p each including Inland/Overseas $p \& p$.

Binders

Binders for PE are available from the same address as back numbers at $£ 2.85$ each to UK addresses, £3.45 overseas, including postage and packing, and VAT where ap-
propriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

Cheques and postal orders should be made payable to IPC Magazines Limited.

By MICHAEL TOOLEY в.a. and DAVID WHITFIELD в.я.

EECTRONICS is a subject which is largely concerned with the generation and processing of a wide variety of electrical signals. While sine waves are still the most commonly generated waveforms, pulse waveforms are continuing to find ever-widening applications in communications and digital systems. The advent of cheap, readily available digital integrated circuits has brought with it the need for suitable test equipment which will allow the constructor to troubleshoot such digital systems under known conditions. This logic pulse generator is capable of providing waveforms of known characteristics over a wide range of frequencies and pulse widths and has the ability to slow down the operation of circuits to sub-Hertz frequencies to allow tests to be done at speeds low enough to enable functions to be verified with a conventional multimeter.

This instrument also features independent control over both pulse width and pulse frequency.

CIRCUIT DESCRIPTION

The wave generation system used in the pulse generator features an astable multivibrator to control the pulse repetition frequency and a monostable to determine the output pulse width. The complete circuit diagram of the pulse generator is shown in Fig. 1.

The control circuit uses a 555 timer (IC1), to produce a wavetrain of the required pulse repetition frequency. The actual frequency is determined by the values of the fixed resistors, R $1 /$ R2, the setting of the potentiometer, VR1, and the value of capacitor selected, C3 to C8. The resistors set the ratio of the maximum-to-minimum frequency coverage in the ranges, while the capacitor selected determines the actual frequency coverage. The circuit allows modest values of timing components to be used in generating very low frequency signals, without requiring values for the higher ranges which are so low as to make stray capacitances unduly significant. The performance of the astable is independent of supply voltage fluctuations and the output is a stable wavetrain with a well-defined repetition rate and an arbitrary pulse width.

The monostable circuit (IC2) uses a 74121 to set the output pulse width. The astable output drives the monostable active-high input, the active-low inputs being disabled. This configuration causes an output pulse to be produced each time. a low-to-high transistion occurs at the input. The width of the pulse produced is determined by the timing components, VR2, R5 and C11 to C17. The circuit thus produces two complementary outputs whose repetition frequency is set by the astable and whose pulse width is set by the timing components of IC2. A single-shot facility is provided by using S3, to disable the output of the astable. The momentary switch action may then be used to generate a trigger pulse for the monostable whenever an output pulse is required.

The two monostable outputs are used directly to provide the normal and inverted TTL output signals. Each output will drive up to 10 normalised TTL loads. In addition, the inverted TTL output is used to produce the $0-10$ volt variable output. The level translator, TR1, produces 180 degrees of phase shift and drives the emitter follower, TR2. The output signal is taken from a variable tapping on the emitter load resistance, VR3. The Zener diode, D1, serves to set the maximum output level and stabilise the collector potential of TR2.

Some typical operational waveforms are illustrated in the oscillograms in (Fig. 2, 3 and 4).

Fig. 2 Upper trace-Non inverted TTL output (IC2 pin 6) Lower trace-Output from the astable (IC1 pin 3) Oscilloscope setting $1 \mu \mathrm{~s} / \mathrm{cm}$ and $2 \mathrm{~V} / \mathrm{cm}$

Fig. 3 Upper trace-Non inverted TTL output (IC2 pin 6) Lower trace-Inverted TTL output (IC2 pin 1) Oscilloscope setting $10 \mu \mathrm{~s} / \mathrm{cm}$ and $2 \mathrm{~V} / \mathrm{cm}$. Pulse Generator set to $\mathbf{1 0 k H z}$

Fig. 4 Upper trace-Non inverted TTL output (IC2 pin 6) Lower trace-Inverted TTL output (IC2 pin 1) Oscilloscope setting $10 \mu \mathrm{~s} / \mathrm{cm}$ and $2 \mathrm{~V} / \mathrm{cm}(10: 1$ pulse at 10 kHz)

WAVEFORM MONITORING CIRCUIT

When using any form of pulse generator featuring independent control over both pulse width and repetition frequency, it is usually possible to select combinations which, between them, represent an unrealistic waveform. In practical terms this means that, whatever the front panel controls may say, it is impossible to repeat a 1 ms pulse at a frequency greater than 1 kHz . İndeed, in order to produce a square wave at 1 kHz , a pulse width of $500 \mu \mathrm{~s}$ is required. In practical situations it was therefore felt that some form of advance warning of this condition would be a useful reminder to the user of the instrument, especially if it could be incorporated with little additional circuitry.

The circuit of Fig. 5 illuminates the l.e.d. when the duty cycle (the proportion of the cycle during which the normal output is "high") exceeds 50 per cent, a mark space ratio of $1: 1$. Thus, for a pulse repetition frequency of 1 kHz , the l.e.d. will be illuminated when the pulse width exceeds $500 \mu \mathrm{~s}$.

SPECIFICATION

OUTPUTS

Non-inverted TTL
Inverted TL

High level output

Output impedance ("high" level) $=70$ ohms
Output impedance, ("low" level) $=12 \mathrm{ohms}$
Each output will drive up to 10 normalised TTL loads, i.e. sink up to 16 mA ("low") or source up to $400 \mu \mathrm{~A}$ ("high"). Rise and fall times better than 10 ns unloaded. Output impedance $\$ 1$ kilohms Output continuously variable from 0 to 10 V peak.

RANGES

Pulse frequency	Pulse width
$0 \cdot 1 \mathrm{~Hz}-1 \mathrm{~Hz}$	$100 \mathrm{~ns}-2 \mu \mathrm{~s}$
$1 \mathrm{~Hz}-10 \mathrm{~Hz}$	$1 \mu \mathrm{~s}-20 \mu \mathrm{~s}$
$10 \mathrm{~Hz}-100 \mathrm{~Hz}$	$10 \mu \mathrm{~s}-200 \mu \mathrm{~s}$
$100 \mathrm{~Hz}-1 \mathrm{kHz}$	$100 \mu \mathrm{~s}-2 \mathrm{~ms}$
$1 \mathrm{kHz}-10 \mathrm{kHz}$	$1 \mathrm{~ms}-20 \mathrm{~ms}$
$10 \mathrm{kHz}-100 \mathrm{kHz}$	$10 \mathrm{~ms}-200 \mathrm{~ms}$
	$100 \mathrm{~ms}-2 \mathrm{~s}$

All ranges overlap by approximately 15 per cent of the maximum nominal range value at either end of the range in order to ensure both total coverage and simplicity of use.

The operational amplifier, IC3, acts as a low pass filter and comparator. The integrating components, R10 and C18, set the time constant of the filter and the mean level of the output from IC2 is compared with the potential at the junction

Fig. 5 Circuit diagram to illuminate the duty cycle l.e.d. when an unrealistic waveform has been selected
of R11 and R12. When the mean signal level exceeds this potential, the l.e.d. is illuminated. Making the values of R11 and R12 equal causes the l.e.d. to be illuminated at a duty cycle of 50 per cent. At very low frequencies the l.e.d. provides a direct visual indication of the waveform duty cycle.

POWER SUPPLY

The circuit of Fig. 6 provides the necessary supply voltages for operating the pulse generator from the mains
supply. A centre-tapped transformer (T1), is used with a fullwave rectifier, D2 and D3, to build up a d.c. voltage across the reservoir capacitor, C19. This voltage is used directly to

provide the supply for the operational amplifier, IC3, and the variable-output buffer amplifier stages.

An integrated circuit regulator (IC4), is used to provide the 5 V supply for the logic circuits. The output voltage of the regulator is set by the values of R14 and R15, with R16 selected to minimise temperature drift. The circuit has a line regulation of 0.5 mV for a change of input voltage of 3 V , and a load regulation of 1.5 mV for a change in load current of 50 mA . Frequency compensation is provided by C2 1 .

For portable operation, the transformer and rectifier components may be omitted, and the d.c. supply (in the range 12 to 18 volts) connected across the reservoir capacitor, C19.

CONSTRUCTION

The unit was constructed on a p.c.b. the layout of which is shown in Fig. 7 with the component overlay shown in Fig. 8. A careful check should be made that the semiconductors and integrated circuits are correctly orientated. The use of

Fig. 7 P.c.b. layout for the Pulse Generator

COMPONENTS . . .

Resistors	
R1	680
R2,R16	1 k 5 (2 off)
R3	1 k
R4	22k
R5	1 k 2
R6, R8	10k (2 off)
R7, R15	4 k 7 (2 off)
R9	100
R10	220k
R11,R12, R14	2 k 2 (3 off)
R13	220
All resistors $\frac{1}{\text { W W }}$ W\% carbon	
Capacitors	
C1	47μ elect
C2, C10, C14, C18	100 n (4 off)
C3	3 n polystyrene
C4	33 n polystyrene
C5	330 n
C6	$3 \mu 3$ elect
C7	33μ elect
C8	330μ elect
C9, C15	10 n (2 off)
C11	$100 \mu 10 \mathrm{~V}$ elect
C12	10μ elect
C13	1μ elect
C16	1 n polystyrene
C17, C21	100p polystyrene
C19	$470 \mu 25 \mathrm{~V}$ elect
C20	$10 \mu 16 \mathrm{~V}$ elect

Potentiometers

VR1	$47 k \log$
VR2	$22 k \operatorname{lin}$.
VR3	$1 k \operatorname{lin}$ with d.p.s.t. switch

Switches

S1
S2
S3

Semiconductors

D1	BZY88 C10V 400 mW Zener
D2, D3	1N4001 (2 off)
D4	TIL209 I.e.d.
TR1, TR2	2N3904 (2 off)
IC1	NE555
IC2	SN74121P
IC3	$741 P$
IC4	HA723C

Miscellaneous

```
T1 12-0-12V 50mA transformer
FS1 250mA
SK1 B.N.C. round socket
SK2,3,4 RS type 444-703
Control knobs
Case
```


Fig. 8 Component overlay for p.c.b.
integrated circuit holders is also recommended.
The pulse generator is housed in a small aluminium case fitted with a detachable cover. The mains transformer is secured to the printed circuit board using two 4BA nuts and bolts and the board itself is supported by means of two pillars attached to the base of the case. Interconnecting

Fig. 9 Wiring diagram for front panel
wires, from the printed circuit board to the front panel, should be kept as short and as neat as possible. The use of colour coded wires is recommended as this further simplifies construction. The layout of the front panel is shown in the photograph with the corresponding internal wiring shown in Fig. 9. Capacitors C3 to C8 and C11 to C17 are mounted directly on S1 and S2 respectively. The common connection in each case consisting of a short length of $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. tinned copper wire formed into a circle of approximate diameter 22 mm . The resulting capacitor assembly being selfsupporting.
The front panel should be labelled using dry transfers and then given a light coating of clear protective lacquer.

THIS environmental thermometer which is capable of measuring temperatures from $-15^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ uses a moving coil meter that can be switched over three ranges $\left(-15^{\circ} \mathrm{C}\right.$ to $10^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ to $\left.50^{\circ} \mathrm{C}\right)$ to display the temperature reading.

The thermometer is easy to calibrate since the zero setting and range controls are independent of each other. This means that once the range is set for one scale, only one calibration point is required for each of the other ranges.

DESIGN CONSIDERATIONS

One of the problems to overcome when designing stable electronic circuits is the unwanted effect that changes in temperature have on the characteristics of the semiconductors being used. This effect is exploited in the thermistor although this is an unsuitable device for an electronic thermometer since the marked non-linearity of its resistance/ temperature characteristics needs to be compensated for before a linear display on a meter can be obtained.

Since an ordinary silicon transistor is temperature sensitive, with the forward voltage drop of the pn junction varying linearly with the temperature (provided the current flowing through this semiconductor junction is maintained constant) it is ideal for use in a thermometer probe.

All three elements of the thermometer have linear characteristics, the pn junction temperature sensor produces a voltage which is directly proportional to temperature, the voltage amplifier has a linear transfer characteristic and the display element produces a visual reading which is proportional to the voltage fed to it from the amplifier.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Environmental Thermometer is shown in Fig. 1. There are two main aspects of
this circuit. One is the constant current generator provided by IC2a and the other is the highly stabilised power supply provided by IC1. Once the latter is achieved, the former is automatically obtained. An integrated circuit regulator, IC1, is used for obtaining a split voltage stabilised supply for the operational amplifiers, IC2a and IC2b. The regulator i.c. is wired up to give a $\pm 7 \mathrm{~V}$ dual supply from a single ended input voltage in the range 18 V to 27 V . The current drawn by the circuit is only a few milliamps which the regulator can supply without the need for current buffer transistors. Thus two or three small PP3 batteries connected in series can operate the circuit for long periods. The advantage of relying on the internal reference diodes in the regulator i.c. is that they are internally temperature compensated.

The transducer pn junction (D3) may either be a silicon diode or the base-emitter junction of a silicon transistor. In the prototype probe a plastic packaged ZTX300 transistor was used to good effect since it is both small and resistant to the corrosive effects of any liquids into which it might be immersed.

In order to keep circuit interconnections as simple as possible, a dual op amp integrated circuit was used for IC2. Op amp IC2a is wired as a constant current generator with its non-inverting input placed at ground potential through R6. Due to the high gain of the op amp, the output voltage always moves sufficiently positive to maintain the inverting input at ground voltage as well. Thus the current through R5 is set at about $7 \mathrm{~V} / 120 \mathrm{k}$ or $60 \mu \mathrm{~A}$ by the ground to -ve rail stabilised voltage. Since the current into pin 1 of the op amp is very small and can be neglected, all the constant current which flows through the pn junction is small enough not to cause self-heating of the junction.

The second op amp IC2b offsets the diode voltage to whatever range is selected and the second provides

Fig. 1. Complete circuit diagram of the Environmental Thermometer
amplification of this voltage so that a deflection on the moving coil meter can be obtained. The offset is provided by the setting of the variable resistors VR1, VR2 and VR3 to give the three ranges as previously specified, and variable resistor VR4 sets the gain of the circuit to give the span of $25^{\circ} \mathrm{C}$ chosen for each range. The voltage gain is the ratio of VR4 to R7. Since the change of input voltage produced by the required range of $25^{\circ} \mathrm{C}$ is $25 \times 2.2 \mathrm{mV}$ or 55 mV , to produce an output voltage change of 2 V requires a gain of $2 \mathrm{~V} / 55 \mathrm{mV}$ or about 37. This value of gain is within the ratio of 500 k (max value of VR4) to R7, (i.e. 50.) Note that since the forward voltage across D3 falls with rising temperature, IC2b is connected as an inverting amplifier. The value of the series resistor R10 is chosen so that, with a maximum output at pin 10 of the op amp (i.e. 2 V), only enough voltage is applied across the meter to produce full scale deflection. As the resistance and the full scale deflection current of the meter is known it is possible to work out the value of R10 using the equation

$$
R 10=(2 / 1)-R m(k \Omega)
$$

where I is the f.s.d. current for the meter in milliamps and $R \mathrm{~m}$ is its resistance in ohms. The value of Rm can usually be

Internal layout of the Environmental Thermometer
neglected since it is small and the approximation $\mathrm{R} 10=(2 / 1)$ $k \Omega$ can be used. Note that the gain of the amplifier IC2b can be adjusted, so that the value of R10 is by no means critical. However, to avoid the possibility of saturating the amplifier, the maximum output voltage should be measured with a voltmeter so that it is in the range 2 to 4 V .

Switch S1 is a three-pole four-way rotary switch wired so that one position is off and the other three positions select one of the three range resistors VR1, VR2 or VR3. Should more ranges be required this switch can be changed to a two-pole six-way version to accommodate two extra ranges (e.g. $45^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and $65^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$).

Incidentally, if the current driving the meter is different from the setting of the range switch the movement of the meter could be damaged. Therefore, diodes D1 and D2 are connected back to back across the meter to provide protection (since the diodes only conduct when the full scale deflection voltage across the meter rises above 0.6 V). Most meters will tolerate two or three times their f.s.d current.

CONSTRUCTION

As Fig. 2 shows, all the components can be mounted on a piece of 0.1 in . matrix Veroboard. Check that solder does not bridge between the tracks unintentionally and that the tracks are drilled cleanly at the points indicated. Use holders for the i.c.s since this will make replacement of faulty devices easier, and then check the layout carefully against the circuit diagram.

External connections are required to the switch S 1, the meter, the sensor and the batteries. Note that in order to keep the wiring neat, the two common leads to the batteries are connected together via a spare track on the board. A miniature jack socket was used in the prototype for connecting the pn junction sensor to the circuit.

An aluminium battery clamp is used to hold the PP3 batteries firmly in the case. Once the Veroboard has been fitted to the base of the case and the leads taken to the switch and the meter, four small holes should be drilled carefully through the side of the box so that a screwdriver can reach the variable resistors VR1, VR2, VR3 and VR4 to set the gain and the zero offset of the ranges.

THE SENSOR

Carefully remove the collector lead from the ZTX300 transistor. Flexible insulated wire should be soldered to the base and emitter leads using sleeving to ensure that they cannot be shorted together. The wires should be passed down the body of a felt pen so that the transistor sits firmly in place at one end. The transistor should be sealed in place using Araldite to ensure that no water or other liquids can penetrate the probe.

COMPONENTS .	
Resistors	
R1	2k2
R2	33
R3, R4	5 k 6 (2 off)
R5, R6	120 k (2 off)
R7	10k
R8, R9	47 k (2 off)
R10	1k2

Potentiometers

VR1, VR2, VR3
 VR4
 100k 20 turn preset (3 off) 500 k 20 turn preset

Capacitors

C1	47μ
C2	$100 p$

Semiconductors

D1, D2	1N4148 (2 off)
D3	ZTX300
IC1	MA 723
IC2	747

Miscellaneous

S1	3 pole 4 way rotary switch
SK1	Min jack socket
PL1	Min jack plug
ME1	1 mA meter
B1	PP3 battery (2 off)
Battery clips	(2 off)
Case	$100 \times 120 \times 40 \mathrm{~mm}$
Veroboard	

CALIBRATION

This is fairly straightforward since the range and offset adjustments are independent of each other. The top range $\left(25^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$ is best set first using two cups of water at these two temperatures. A helper is needed here to ensure that these two quantities of water are well stirred and with occasional topping up, are maintained at these temperatures. An accurate ($\pm 0.5^{\circ} \mathrm{C}$) thermometer should be used. With the sensor at $25^{\circ} \mathrm{C}$ adjust VR1 to bring the meter to the $\left(25^{\circ} \mathrm{C}\right)$ mark on the scale.

With the sensor at $50^{\circ} \mathrm{C}$ adjust VR4 to bring the reading to the upper end of the scale. Repeat these two adjustments until the needle swings between the upper and lower scale markings. The range is now set at $25^{\circ} \mathrm{C}$ and the lower point of one scale determined. Now switch the thermometer to the next lower scale $\left(5^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$ and put the probe in the $25^{\circ} \mathrm{C}$ water. Adjust VR4 until the scale reading is $25^{\circ} \mathrm{C}$ which is four fifths of f.s.d. on the meter. This range is now set up, since the gain of the amplifier has already been determined in the first calibration, so that the lower end of this second scale corresponds to $5^{\circ} \mathrm{C}$. Finally, for the lowest scale, stir some crushed ice in water and wait for the temperature to fall to $0^{\circ} \mathrm{C}$. Adjust VR3 so that the needle reaches two fifths of f.s.d. The lower point of $-15^{\circ} \mathrm{C}$ could be reached during a very cold spell in this country but check your deep freeze on this scale for starters.

SCALE READINGS

It should be obvious from the foregoing that the range chosen for the meter is entirely your own choice, subject to the gain of the op amp being sufficiently high. For example a range of $5^{\circ} \mathrm{C}$ not $25^{\circ} \mathrm{C}$ would require a gain of 5×37 or about 200 . Since the maximum gain with the components shown in the circuit is about 50, four times this gain requires VR4 to have a value of about 2 megohms. To a large extent the range chosen is determined by the graduations on the meter (25 divisions in steps of 5 for the meter was used in the prototype.)

IMPROVED STABILITY

If greater stability against ambient temperature changes is required 748 op amps can be used in place of the 741's specified. However, these op amps require external frequency compensation by the connection of a 100 p capacitor between pins 1 and 8 . Otherwise the component values remain the same as in the circuit described.

LOGIC ANALYSIS TEST KITS

The 20 page professional products catalogue of Continental Specialties Corporation (CSC) has specifications on their following products: 550 MHz Counter, 100 MHz Counter, 50 MHz Counter, 500 MHz Prescaler; Function Generator, Pulse Generator; Digital Pulser, Logic Monitors, Logic Probes, Logical Analysis Test Kits; Breadboarding Equipment-Quick Test Sockets and Bus Strips, "Experimentor" Sockets and Bus Strips, Proto-Boards, Powered Proto-Boards, and i.c. Test Clips.

The Logical Analysis Test Kits comprise a Logic Probe, Digital Pulser, Logic Monitor, Probe Tips, Leads and Adapters, Manuals and Application Guides, all in rugged custom moulded cases. The kits are $£ 127$ and $£ 143$ plus VAT.
Catalogue, price list, order form from CSC UK Ltd, Shire Hill Ind. Est., Saffron Walden, Essex CB11 3AQ (0799 21682).

LOGIC INTERPRETER

Introduced by the United States manufacturer Kurz-Kasch Inc. the L1-1000 Logic Interpreter automatically displays static and dynamic states of digital i.c.s in circuit. Logic high, low and transitions are accurate to plus or minus five per cent. All logic levels are current is drawn from the board under test as a fully isolated, regulated power supply accompanies the interpreter.

Singer Products are the exclusive export representatives of Kurz-Kasch and further information can be obtained from-Gil Williams, Electronic Division, Singer Products Company Inc., One World Trade Center, Suite 2365, New York, N.Y. 10048.

OIGITAL PHOTO TACHOMETER

From Power Instruments of the USA is a touchless, digital photo tachometer, for measuring the r.p.m. of rotating objects from distances of between $\frac{1}{4}$ in and 30 in .

A piece of reflective tape is fixed on the surface of an object, and when the object is rotated a beam of light from the probe is focused on the tape path. A "target eye" lights up on the tachometer, showing when contact is made, and an r.p.m. readout is given on five $\frac{3}{8}$ in l.e.d.s. A memory holds the reading indefinitely.

Being touchless, the tachometer can be used in places awkward to reach, and there is a 24 in cord attached to the probe. The readout is quartz crystal controlled, with an accuracy of ± 1 digit up to 0.03 per cent. There is direct reading up to 30,000 r.p.m.

Powered by ordinary batteries, the model 1891 is provided with an aluminium carrying case, reflective tape and other accessories. It measures $8 \frac{1}{2} \mathrm{in} \times 4 \frac{1}{2} \mathrm{in} \times 2 \mathrm{in}$ and weighs $1 \frac{1}{2} \mathrm{lbs}$.

Optional extra accessories include measuring wheels, hand-held or permanent surface mounted to measure linear speed.

Price is $£ 155$, plus VAT and carriage, and it is available from the sole UK importers, Electronic Brokers Lid, 49/53 Pancras Road, London NW1 2QB (01-8377781).

Price of the KIM 1 single board microcomputer was reduced to $£ \mathbf{£ 9} 95$ +VAT in December. Full details from GR Electronics Ltd., Fairoak House, Church Road, Newport, Gwent.

PRINTOUT CALCULATOR

A new hand-held calculator incorporating its own thermal printer has been introduced by Texas Instruments.

The TI- 5025 operates from a rechargeable battery and has a large vacuum fluorescent display which can be used without the printer to conserve paper.

Functions provided are addition, subtraction, multiplication and division-plus percentage key and a 4-key memory.

It operates with the simple number-entry system used with other hand-held calculators in the Texas Instruments range.

The thermal printer is quiet in operation, has few moving parts and requires no ribbons; thermal-paper rolls are available in packs of three.

The TI-5025 measures $6.7 \times 3.4 \times 1.8$ in $(170 \times 86 \times 46 \mathrm{~mm})$, and is supplied complete with a charger/adaptor, thermal paper and carrying case. VAT inclusive price is $£ 64.95$.

Details from Texas Instruments Limited, European Consumer Division, Manton Lane, Bedford, MK417PA.

CAR CLOCK

This car clock from Speedograph is connected through the ignition system and when the ignition is off the l.e.d. display is also off, thus preventing undue battery drain. The time keeping circuit remains on. The readout which automatically dims at night reads hours and minutes with a flashing second indicator.

The unit can be mounted using either an adjustable bracket or a self adhesive pad both of which are supplied.

The clock is priced at $£ 27.55$ plus VAT and is available from many accessory shops.

A-TO-D CONVERTORS

National Semiconductor has added two microprocessor-oriented analogue-to-digital convertor devices to its product range.

Available in both a $3 \frac{1}{2}$ digit version designated ADC 3511, and in a $3 \frac{3}{4}$ digit version designated ADC 3711, the new devices are complementary CMOS circuits that provide addressed binary coded decimal output for digital systems.

Operating from a single isolated 5 V supply, the devices are designed to convert input voltages from -2.00 to +2.00 V . The sign of the input voltage is automatically determined and indicated on the sign output pin, and overflow is indicated by a Hex EEEE output reading as well as by an overflow output pin. Unipolar input voltages do not require the use of isolated supplies.

The ADC 3511 and 3711 have their conversion rates set by an internal oscillator whose frequency may be determined by an external RC network, or can be driven from an external frequency source. The timing of conversions may be controlled and monitored via the Start Conversion input and Conversion Complete output which have been included on both devices.

STEREO MIXER

This portable four channel mic/line mixer by Soundex Limited was designed for stereo recording and features true PPM or VU metering, stereo gain control for a crossed pair of microphones and two "pan" controls for two spot microphones.

Frequency' response is 20 Hz to 20 kHz , signal to noise ratio is 11 db with $180 \mu \mathrm{~V}$ from 150-600 ohms.

Optional variations are internal rechargeable cells, and XLR or jack connectors.

For further information contact Tony Barnes, Bulgin Electronics Soundex Limited, Park Lane, Broxbourne, Hertfordshire EN 10 7NQ (099 24 64455).

ALL THE PROJECTS IN EPI

The Libraries and Arts Department of North Tyneside Metropolitan Borough Council have published an Electronics Projects Index (EPI). This descriptive guide covers over 2,500 projects published by (in alphabetical order) Electronics Today International, Elektor, Everyday Electronics, Practical Electronics, Practical Wireless, Radio and Electronics Constructor, Television, and Wireless World.

Most of the coverage is from January 72 to December 77, and all amendments to October 78 are included. Price is $£ 1.50$ inc. p\&p. Postal Orders and cheques should be made payable to North Tyneside M.B.C.

Copies of the index are available from: \mathbf{M}. L. Scaife, Central Library, Northumberland Square, North Shields, Tyne \& Wear NE30 1QU. Enquiries (08945 82811).

FREQUENCY COUNTERS

Davis Electronics announce the introduction of their frequency counters. The basis of the design is an LSI chip which is a seven decade counter. This is extended to a full 8 digits by feeding the processed signal to a single decade counter, that is then decoded and fed to the least significant digit for display. The LSI then counts, decodes and feeds the digit drivers for the other seven digits. A further chip performs the functions of Xtal oscillator, gating dividers and driver, multiplexing signal generator, etc. Other discrete circuitry provides for signal conditioning, shaping, amplification and protection.

A pre-scaler and amplifier provide facilities for extending the 8 digit counter block to 600 Mhz . This is switched in from the front panel. Also provided is switching for gate time and power. A "gate open" l.e.d. indicates when the count is active. A special Xtal in a proportionally controlled Xtal oven is also available.

Full specification and prices from distributors Crael UK Ltd. 7 Hughendon Road, Hastings, Sussex TN34 3TG. (0424 428131).

ARE YOU BEING CHARGED?

Coinciding with the change of name from Ever Ready (Special Batteries) Limited, Berec (Special Batteries) Limited introduce a range of rechargeable batteries and chargers for the consumer market.

equivalents of HP2, HP11, HP7 and PP3, and three chargers, two for specific batteries and one to take the three cylindrical batteries so that it is possible to charge different sizes at the same time. The chargers will recharge a fully discharged battery in 14-16 hours.

We are sorry $t o$ have to report a devastating fire at the Talk of The Town, Cambridge, 16 businesses were affected including that of Tempus. They are doing all they can to continue their normal service but apologise to anyone experiencing delay.

VERO ON VIEW

In the interests of their products being in first class condition when they reach the home constructor, Vero are skin packaging Veroboards, Veropins and other accessories.

The full range of newly designed packs can be seen on floor standing displays which will also contain a range of boxes. Component

shops with little floor space are offered a simple wall stand with a limited range of Vero products.

All this, at no extra cost, say Vero.

MEMORIES THAT LAST

The latest scientific calculator from Casio has seven non-volatile memories which are powered by separate batteries that can hold stored figures when power is switched offovernight, or for days or weeks at a time, even while exhausted main cells are being changed.

A powerful machine with 59 built-in functions, the FX-360 also offers a choice of power supplies: normal penlight batteries, rechargeable NiCad power pack, or a.c. mains via an adaptor.

Calculation capacity is 10 digits, plus two in the exponent. Trig functions and their inverses are handled in three types of measure, in degrees, radians or gradient. Statistical scope includes standard deviations, linear regression, or fitting logarithmic curves, exponential curves or power curves.

All the usual log, trig and hyberbolic functions are provided, plus permutations/combinations, rectangular/polar conversion, and factorials. The unit also handles fractions and many types of problems involving percentages. It copes with parentheses up to eight levels, and features a random number generator.

There is one independent accumulating memory plus six constant memories. Their contents are fully protected by two silver oxide batteries when main power is switched off.

The recommended retail price of the FX360 is $£ 59.95$ including VAT. For further information contact Casio Electronics Co Ltd, 28 Scrutton Street, London EC2A 4TY.

Micrapracessor Miracle!

The Micros $\mathbf{Z 8 0}$ based system

enthusiasts, but to anyone who is prepared to spend a few days learning the rudiments of BASIC language. The homecomputer has arrived!

Already small-business men, doctors, dentists, and hotel owners, computer programmers and of course, electronics enthusiasts, are rushing to buy one of the few systems already on the market, even though a home-computer system worth the name will cost $£ 500$ or more!

Five hundred pounds may seem like a great deal of money, but thanks to the microprocessor, you will get a computer which would have cost $£ 10,000$ and filled a fair sized room, ten years ago.

Not surprisingly, the home-computer concept originated in the United States, and its proliferation there has been extremely rapid, catching even the manufacturers off guard to begin with. In the United Kingdom, economic constraints will probably result in a slower build up, but already that build up has begun!

WHAT IS A HOME-COMPUTER?

A home-computer (also called micro-computer or personal-computer) has no universally accepted definition. Some manufacturers may wish you to believe that their small machine-code micro with a hexadecimal keyboard is a home computer, when in my view it certainly is not. I have also heard of avant garde computer hobbyists with old IBM systems installed in their garage, and this too falls outside my definition, which is as follows:

A home-computer is a small, low cost, general purpose digital computing system which uses an LSI microprocessor chip as its CPU (Central Processor Unit) and which is capable of storing and executing programs written in a high level language such as BASIC or PASCAL.

To get a clearer idea of what I mean, let's take as an example one of the more popular home-computers currently available, the Commodore PET (left). As you can see, the

The Tandy TRS 80 which is supplied complete with a video monitor, mains transformer and cassette recorder
PET is a fully integrated system which requires only a mains socket for instant use. Inputs are entered via a typewriter style keyboard, and outputs are displayed on a built-in 9 in CRT screen which is arranged as 25 lines of 40 characters each. To the left of the keyboard is a built-in cassette recorder.

Using standard audio cassettes, programs or data entered via the keyboard may be recorded for later use, and commercial software such as business programs or games can be entered in cassette form without recourse to any tedious typing. Inside PET there lives a 65008 bit microprocessor surrounded by 8 K bytes of RAM, 14 K bytes of ROM, cassette, keyboard, and screen interface logic, and a bidirectional input/output port which can be used for a variety of external peripherals. The 8 K of RAM forms a read/ write memory area into which programs or data may be entered from the keyboard or cassette. Data is retained by this memory only while the power is "ON" of course, so it is normal for PET users to save any useful RAM data as a cassette tape data-file before the end of a programming session. The 14 K of ROM appears to the microprocessor very much like the RAM, but in this case programs are stored in the mask programmed ROM chips during manufacture, programs which cannot be lost or modified and which form the all important firmware operating system and BASIC language interpreter. Putting all the system software in ROM is a technique pioneered by the PET and it confers several advantages over other machines which

The Research Machines $\mathbf{3 8 0 Z}$ system

The Apple II system

require these facilities to be loaded into RAM from a cassette or paper tape:
(1) ROM is cheaper than RAM. This means the economics are better because RAM is traded for ROM.
(2) No load-delay is incurred while cassettes or paper tape are read.
(3) The software is more reliable because ROMs, unlike cassette tapes, do not wear out. The main disadvantage is, of course, that you are stuck with the BASIC language which PET is born with, and if your fancy should later turn to PASCAL or Assembly language, there is not much you can do!

WHAT DO THEY DO?

The PET then, is a typical home-computer, but there are many variations on the theme. Some home computers require a separate VDU and keyboard but display their outputs on an ordinary television via a UHF modulator; some provide a graphics, or picture-forming facility; still others have full-colour graphics, and so on. If there is one thing that they all have in common, it is their ability to run programs written in a high level language, usually BASIC.

BASIC

BASIC (Beginners All Purpose Symbolic Instruction Code) has been around for a long time and was originally conceived as an aid to teaching computer science and

The Nascom I is supplied in kit form and requires a power supply and VDU for operation
programming subjects. BASIC is an interpretive language, unlike for example FORTRAN which is compiled. Next month we will be examining home computer software in more detail and the distinction between interpreters and compilers will be discussed. For the moment all you need to remember is that interpretive languages are very easy to use, but quite slow in operation. In computer science terms this makes BASIC a less "powerful" language than say FORTRAN, but this is perhaps misleading because BASIC contains all the math, trig, and data handling functions you are likely to need, and most versions provide an arithmetic precision which is as good as, or better than, your trusty pocket calculator. For most home computer applications, the

S100 Bus board

slowness of BASIC programs is no real disadvantage, and anyway entering and debugging programs is actually much faster with BASIC because there is no wait while a compiler is used to process the newly entered program.

If you know anything at all about microprocessors and their instruction sets, just spend a few seconds considering the problem of producing a machine code program which will accept keyboard inputs, carry out decimal division, and print an answer. The keyboard input routine alone might take as many as 100 program lines, depending on the hardware, and a similar number might be needed to control a VDU or printer. The decimal arithmetic routine could be very tricky indeed and may need as many as 500 lines of code!

S100 Bus board

Now see how easy it is in BASIC. All you need to type in order to load the program is:

10 INPUT A, B
20 PRINT A/B
30 END
and to set it running you type: RUN
followed by a pair of decimal numbers in response to the ? prompts printed by BASIC. Improving this simple program is easy. Adding another line:

5 PRINT "ENTER TWO DECIMAL NUMBERS A, B"
provides a better prompt, and changing line 20 to:
20 PRINT " $A / B=" ; A / B$
gives an answer which is self explanatory. Changing line 30 to:

30 GOTO 5
removes the need to type RUN for each new pair of numbers, and of course, other enhancements can be added just as easily!

TRANSPARENT

In home-computers then, the microprocessor chip together with its registers and instruction set is more or less transparent to the programmer. I say "more or less" because most home computers will allow you to dabble in machine language programming if you really must, and in fact this facility is very useful for anyone who wishes to hook their computer up to gadgets in the outside world, as many electronics hobbyists undoubtedly will.

Using a high level language, doing useful or entertaining things with a microprocessor is easy. Within a few hours of picking up a BASIC manual, you will be able to write small programs which sort lists of numbers into ascending or descending order, write amusing messages on the VDU, or calculate the surface area of a sphere given its diameter. After a few weeks of practice you will be writing programs which plot graphs or balance the household accounts or play games such as NIM with you. If your home computer has an interface port or ports, you will be able to attach all sorts of

A Universal S100 prototyping board designed by Vero Electronics for breadboarding microprocessor systems
external hardware to your system and control it via a program. In most cases you can still use BASIC to talk to your hardware. Home computer BASIC interpreters often have facilities to link you with peripherals, either by direct reference to memory locations using instructions such as PEEK and POKE, or by the ability to call complete machine code subroutines which you can write yourself.

S100 BUS SYSTEM

Home-computers of the sort typified by PET are certainly the cheapest way into computing. You can learn and enjoy BASIC programming, make your system work for a living, and perhaps even connect it up to some of your own hardware. Unfortunately, there is a snag! After a few months or years, many users will want to squeeze more from their system than it can easily provide. At this point many people will wish that their system was a little more flexible and expandable, and this is where an extra investment at the start could pay dividends.

For a few hundred pounds more, it is possible to buy a home computer based on the S 100 bus which will allow the later addition of all sorts of extra hardware and software so that one need never feel cramped. The S100 bus was actually introduced by the very first home-computer, the MITS Altair 8800 which appeared way back in 1975 . Since then, many other home-computer designs have been
introduced which use the S100 bus, and many firms (well over 100, world-wide) manufacture circuit boards using the S100 format. The S100 bus was designed around the 8080 microprocessor chip, but since its introduction several other microprocessors, including the $Z 80$, the 6800 and the 6500 have been built into S100 systems. In addition to microprocessor CPU cards, it is also possible to buy a bewildering variety of static and dynamic read/write memory cards, serial and parallel interface cards, floppy disc controller cards, cassette interface cards, logic analyser cards, PROM programmer cards, floating point arithmetic cards, and even speech recogniser and synthesiser cards!

I am sure from the foregoing, you will agree that the S 100 bus makes for a versatile home-computer, but what is the bus and why is it so versatile?

BUS ORGANISED

Many large computers are "bus organised". which means that all circuit cards connect to a comprehensive back-plane where all signal paths are common to each card. This means,

Fig. 1.1. The $\mathbf{S 1 0 0}$ Bus connections

pin 1	+8 Volts	pin 51	+8 Volts
pin 2	+16 Volts	pin 52	-16 Volts
pin 3	XRDY	pin 53	SSW DSB
pin 4	V10	pin 54	EXT CLR
pin 5	V11	pin 55	
pin 6	V12	pin 56	
pin 7	V13	pin 57	
pin 8	V14	pin 58	
pin 9	V15	pin 59	
pin 10	V16	pin 60	
pin 11	V17	pin 61	
pin 12		pin 62	
pin 13		pin 63	
pin 14		pin 64	
pin 15		pin 65	
pin 16		pin 66	
pin 17		pin 67	
pin 18	STATUS DSBL	pin 68	MWRITE
pin 19	C/CDSBL	pin 69	PS
pin 20	UNPROTECT	pin 70	PROTECT
pin 21	SS	pin 71	RUN
pin 22	ADDR DSBL	pin 72	PRDY
pin 23	DO DSBL	pin 73	PINT
pin 24	\bigcirc_{2}	pin 74	PHOLD
pin 25	θ_{1}	pin 75	PRESET
pin 26	PHLDA	pin 76	PSYNC
pin 27	PWAIT	pin 77	PWR
pin 28	PINTE	pin 78	PDBIN
pin 29	A5	pin 79	A0
pin 30	A4	pin 80	A1
pin 31	A3	pin 81	A2
pin 32	A15	pin 82	A6
pin 33	A12	pin 83	A7
pin 34	A9	pin 84	A8
pin 35	D01	pin 85	A13
pin 36	DO0	pin 86	A14
pin 37	A10	pin 87	A11
pin 38	D04	pin 88	DO2
pin 39	D05	pin 89	DO3
pin 40	D06	pin 90	D07
pin 41	D12	pin 91	D14
pin 42	D13	pin 92	D15
pin 43	D17	pin 93	D16
pin 44	SMI	pin 94	D11
pin 45	SOUT	pin 95	D10
pin 46	SINP	pin 96	SINTA
pin 47	SMEMR	pin 97	SWO
pin 48	SHLTA	pin 98	SSTACK
pin 49	CLOCK	pin 99	POC
pin 50	GND	pin 100	GND

for example, that pin 1 or pin N on one edge connector is connected to pin 1 or pin N on every other edge connector on the back-plane. The bus contains address, data, control and power lines and, in general, boards may be plugged into the bus in any slot, regardless of their function. In some ways this method of interconnection is very wasteful. Not all boards need all the facilities available on the bus; some need very few, and yet every board must connect to the bus via a multi-contact (and therefore expensive) edge connector. This inefficiency is more than made up for by the resulting versatility though, and bus organised systems are the norm for large computers.

The S100 bus (Fig. 1.1) is a very successful attempt to bring the large computer bus concept into the homecomputer arena, and although there are one or two minor problems with it, its very popularity shows the vision and skill of the original'MITS designers. Configured around a one hundred pin edge connector, the S100 bus has a 16 bit address bus, two unidirectional 8 bit data buses, 8 status lines, 5 control lines and a host of miscellaneous functions. Power is supplied to the bus in unregulated form so that individual board regulators can be used to reduce power line noise and distribute heat throughout the case.

BUILDING A HOME-COMPUTER

Using the S100 bus concept, you can literally design and build your own home-computer system.

To get started you need (at least) an S100 back-plane, a CPU board, a memory board, and a terminal interface board. The CPU board usually has a ROM or PROM included which contains simple monitor software to allow you to enter, modify, and run machine code programs in hexadecimal, so this minimum system is on a par with the (much cheaper)

A suitable rack system for use with an S100 backplane. (Vero Electronics)
evaluation cards. System expansion can begin with a cassette interface board. This provides the ability to save programs and also the ability to load commercial software such as BASIC. This four board system is at about the same level as a PET, but of course it is much more flexible. Unfortunately, when you add in the price of a power supply, a VDU, a cassette recorder and the necessary commercial software, it is also likely to be more expensive. It really depends on how much you make up yourself from kits. S100 memory board kits are particularly common, allowing electronics hobbyists to save some money and enjoy themselves at the same timel Power supplies can also be made up inexpensively by those who know how, unregulated supplies of plus 8 , plus 16 and minus 16 volts are required, but beware-the current requirements of a large system can be a surprise!

WINNER

The basic S100 system then, is only competitive with non-bus home computers under special circumstances, but from this point on, the S100 wins all the way. Want more RAM? Just plug in extra S100 boards up to the 64 K maximum. Want to program PROMs? Plug in a Bytesaver board which provides sockets for, and programs, your 2708 PROMs. With a large RAM memory, you can use any software you like, BASIC, PASCAL, ASSEMBLER, all are possible. The cassette interface board probably handles more than one recorder anyway, so you can add the ability to copy tapes and sort files for only the cost of an extra cassette recorder. When it comes to serial or parallel interfaces for your "homemade" peripherals, there is a huge choice of S100 boards to help, and there are even S100 matrix boards so that you can wire up your own "special" interfaces and plug them into your system.

Finally, when you even outgrow all of these facilities, you can take the giant step and add a floppy disc controller and a drive or two to your system, and thus gain the ability to keep hundreds of kilobytes of data available for instant access. With floppy discs in your system you can swop from BASIC to ASSEMBLER in a few seconds, and keep all your programs and data in the form of easily edited, named files. We shall be returning to the subject of floppy discs later, but a final word on "buses" is now appropriate.

While the S 100 bus is by far the most popular home computer bus, it is not the only one, and by being a "no compromise" design it is expensive. Another useful bus is championed by SWTPC (South West Technical Products Corporation) in their 6800 based system. The SWTPC bus has become known as the SS50, and it is inherently less expensive to use than the S100. Several firms in the U.S.A. now produce SS50 compatible boards. Other bus systems may be encountered occasionally. Intel have a very popular series of professional computer boards known as the SBC series for example, and these do turn up in the hobby market under the name of SBC-bus boards. No doubt there will be

A typical SBC board designed by Intel
many other contenders, for the rewards of becoming a "standard" are high. A European bus standard will be particularly useful, when it finally becomes established.

HOME-COMPUTER PERIPHERALS

A comprehensive list of possible home computer peripherals would be a very long one, but fortunately there is a short list of useful peripherals which have universal appeal, and a treatment of home-computers would not be complete without a look at these. In order of priority, these are as follows:
(1) ASCll keyboard
(2) VDU
(3) Cassette system
(4) Printer
(5) Floppy disc system.

A practical home computer system will normally have at least the first two items on this list.

KEYBOARDS

An ASCII keyboard is the minimum input device needed for a home computer because high level languages depend on the use of the full ASCII alphabet with punctuation and control characters (Fig. 1.2). ASCII keyboards, in the form of a full set of keys mounted on a printed circuit card, along with an encoder chip and debounce circuitry, are widely available at low cost. These keyboards usually produce a parallel 8 bit code (7 bit ASCII +1 parity bit), and this data format can be interfaced directly with a parallel

LSD MSD		$\begin{gathered} 0 \\ 000 \end{gathered}$	$\begin{gathered} 1 \\ 001 \end{gathered}$	$\begin{gathered} 2 \\ 010 \end{gathered}$	$\begin{gathered} 3 \\ 011 \end{gathered}$	$\begin{gathered} 4 \\ 100 \end{gathered}$	$\begin{gathered} 5 \\ 101 \end{gathered}$	$\begin{gathered} 6 \\ 110 \end{gathered}$	$\begin{gathered} 7 \\ 111 \end{gathered}$
0	0000	NUL	DLE	SP	0	@	P	1	p
1	0001	SOH	DC1	!	1	A	0	a	q
2	0010	STX	DC2	"	2	B	R	b	1
3	0011	ETX	DC3	\#	3	C	S	c	s
4	0100	EOT	OC4	\$	4	D	T	d	t
5	0101	ENG	NAK	\%	5	E	U	-	U
6	0110	ACK	SYN	\&	6	F	V	1	v
7	0111	BEL	ETB	,	7	G	W	9	w
8	1000	BS	CAN	1	8	H	X	h	x
9	1001	HT	EM	,	9	1	Y	i	Y
A	1010	LF	SUB	-		J	z	,	2
B	1011	$V T$	ESC	+	;	K	[k	t
C	1100	FF	FS		$<$	L	1	1	1
D	1101	CR	GS	-	=	M	1	m	F
E	1110	SO	RS	-	$>$	N	\uparrow	π	\sim
F	1111	SI	VS	1	?	\square	\leftarrow	0	DEL

Fig. 1.2. Full ASCII alphabet with punctuation and control characters
microprocessor port if you write your own (simple) driver software. Most home computer operating systems already have driver software for a serial interface, and to make the cheap keyboards interface to this, it will be necessary to add a UART (Universal, Asynchronous, Receiver, Transmitter)

Keyboard layout

chip to the basic keyboard encoder. Home computer serial interface ports are typically of the RS232N24 type, an international standard based on a 25 way D type connector which represents a logic one as -12 volts, and a logic zero as +12 volts. S 100 serial interface cards can be programmed to operate at a range of speeds from about 10 characters per second, up to about 960 characters per second, to suit the peripheral to which they are to be connected. Fig. 1.3 shows the range of standard serial
interface speeds, along with their associated "baud rates". For a keyboard alone, there is no point in using anything faster than 110 baud, because you can't type any faster, but

BAUD SPEED

110	10
300	30
600	60
1,200	120
2,400	240
4,800	480
9,600	960
19,200	1,920

Fig. 1.3. Standard serial interface speeds and their associated "baud rates"
keyboards are nearly always used with a printer or a VDU, and in the case of the VDU anyway, the higher baud rates can be useful.

VDU SYSTEMS

VDU systems are the cheapest way to display home computer generated outputs, and it is possible to buy, for around $£ 500$ or less, a complete "glass-teletype" which has a keyboard and a display screen. "Glass teletypes" such as the Lyme 4000 series, are ideal for use with home computers of the S100 type. They can operate over a wide range of baud speeds, and are easily hooked up to any RS232/V24 serial port to provide full two-way communication facilities. An even cheaper alternative is to

A Lyme 4000 VDU system

use a simple ASCII keyboard for input, and use a standard TV set or monitor for output. In this case the home computer itself has to provide the screen refresh memory and character generator functions and, of course, there are S100 boards which can do just that. Using a TV as a VDU is alṣo a popular ploy for the cheaper home-computer designs because it saves the cost of a special display monitor and does away with the need for UARTS and serial interface cards. Some designs have been published which describe the production of television based VDUs for less than $£ 100$, such as the PE VDU, but in general these have been parallelload, non-keyboard designs which are only to be recommended to those who can produce their own driver software and interface arrangements.

CASSETTE SYSTEMS

While you run your home computer programs you keep them in RAM, but when you hit the OFF switch, they're gone for good unless you can save them on some permanent storage medium. By changing your RAM data into serial form, and sending out one audio tone for a logic "zero" and another for a logic "one", you can store all those precious data and programs on an audio cassette recorder, and load them back into RAM whenever you choose. There is no need to modify the cassette recorder, and the interface circuitry is fairly simple, so simple in fact that many cassette recording standards have appeared which are unfortunately not compatible. The closest thing yet to a universal cassette recording protocol is the 300 baud "Kansas City" or C.U.T.S. standard which uses 2.4 kHz for a logic "one" and 1.2 kHz for a logic "zero". This has proved to be usable with a wide range of cassette recorders and has shown itself to be very reliable. By no means everyone uses this standard, however, and it is unwise to buy software in cassette form without making sure it is in a format compatible with one's own system!

The use of two cassette recorders is a great improvement to any system because it allows cassette copying and file sorting. It is, for example, possible to add a second (external) cassette unit to the PET, and most S100 cassette interface cards can control more than one as supplied. If you build up your own S100 home-computer, a cassette interface will allow you to buy and use BASIC interpreters, assemblers, and other software from the wide range now advertised in cassette form.

PRINTERS

Although I would recommend the use of a VDU rather than a bulky, noisy and unreliable teletypewriter for use with a home computer, there are always occasions when the ability to print-out a program or graph is very desirable. You can of course use a teletypewriter to provide this function, but a neater solution is to use a small stand-alone printer of the type which is now becoming available at low cost, and to only turn it on when you really need a printed copy. These

The Tandy TRS 80 printer uses 4 in wide electrostatic paper small new printers can be purchased with either a parallel interface (which is cheaper), or with a standard RS232/V24 serial interface (which will plug straight in to most systems). The printers use a variety of print-head designs, but to me the type which use electro-sensitive aluminiumised paper shows the most promise. Often containing a microprocessor of their own, these useful peripherals can operate much faster than a traditional teletype and some can also be used as a plotter for graphics output. The PET also has its own special add-on printer, known as the 2020, which plugs straight in to the parallel port provided.
Next month: Software.

PART 1 covered the principle of electrosensitive printing, character formation, and gave the circuit diagram with a description of how the interface works.

In this part the driver circuits and power supply are described, along with the software necessary to run the printer with a microcomputer system.

ELECTRODE DRIVER

To melt the aluminium coating and produce a dot on the paper will, as you can imagine, take a fair amount of current, albeit for a short space of time. The driver circuit shown in Fig. 2.1 amplifies the output from the character generator chip sufficiently to achieve this. It operates in the following way.

When an output from the character generator chip pulses active low the BC2 12 level changing transistor is turned on, supplying base drive current to the BD189.

When the BD189 turns on it throws 24 V across the electrode which burns the dot on the paper. Obviously not a circuit to leave with its input stuck low!

THE MOTOR DRIVER

The motor driver has a similar "front end" (Fig. 2.2). The motor flip-flop $\overline{\mathrm{Q}}$ going active low, turns on the BC2 12. This causes a positive voltage to be switched tolthe bases of the complementary power transistors. The 2N3053 turns on, supplying power to the motor, which will hopefully run.

When the motor flip-flop $\overline{\mathrm{Q}}$ output returns high and the BC2 12 is turned off, the power transistor bases will revert to a large negative voltage. The 2N3053 will turn off and the motor will develop a large back e.m.f. This will turn on the 2 N 4037 which dissipates the stored energy.

POWER SUPPLIES

The voltages required for the system are, $+5 \mathrm{~V},-12 \mathrm{~V}$ and -24 V . The +5 volts is required for the interface logic. As this is all MOS, the current requirement is low (typically 70 mA) and so the host microcomputer system should have the capacity to supply this. The printer motor and electrodes work off a -24 V rail and require quite high values of current for short durations of time. This seems to average out at around 130 mA during printing. A good transformer preferably screened, of 5VA minimum and an output of 25 V or greater will be required (see Fig. 2.3). The -12 V supply is required solely to produce a bias voltage (Vgg) to the character generator chip. The tolerance here is not particularly tight, so a Zener diode is used to pick the requisite voltage from the -24 V rail. The actual circuit was built up on Veroboard and mounted on the transformer (Fig. 2.4).

To avoid component damage the supplies must be switched in the following sequence:
on-First +5 V , and -12 V , then -24 V
off-First -24 V , and then -12 V and +5 V
This action can be realised by a 4-pole 3-way lever switch (PO 1000 type), or rotary wafer switch, the wiring of which is shown in Fig. 2.5.

CIRCUIT LAYOUT

With relatively large current pulses and motor starter currents so prevalent in this circuit, protecting noise prone logic circuitry is very important. Circuit layout is obviously crucial (see Figs. 2.5 and 2.6).

The first requirement is that the larger current carrying elements of the circuit, be grouped together and kept away from the more noise prone logic devices. Inputs and outputs must be kept separate. On the layout diagram the pickup coil, reed, and other inputs enter on one side of the circuit board. Whilst the motor driver output and electrode driver outputs leave at the other end of the board. The separation of these parts of the circuit even extends to supplies. The 5 V line is brought in, via capacitors, to the logic at one end of the board. The 5 V supply for the drivers, comes via another wire and enters the circuit at the driver end of the board. The OV line is also separated; in fact a low value resistor, R (10 Ohms), is inserted between the logic and driver OV lines to enhance noise immunity.

The final anti-noise measure is to place 100 n capacitors across the $O V$ and 5 V lines about the circuit. These are shown on Fig. 2.6, which gives pin-out information for all the integrated circuits and transistors used.

EG25
Fig. 2.1. Print electrode/head drivers

E627
Fig. 2.5. System wiring. The supply line to which the OV relates is shown in brackets. The two OV systems are linked by a low value resistor

BOXING

The main box used to house the prototype was chosen primarily because it happened to be lying about at the time of building! The circuit board was fixed to one side leaving the majority of the space free for the power supply and the cable runs. (Fig. 2.7 shows dimensions and internal layout.) The printer, its connector and its paper holder were mounted on top of the box (see Fig. 2.8).

During development lengthy printing runs were achieved
using no paper holder at all. Long lengths of printing paper were simply pulled off the roll and allowed to run through the printer. Although this worked well, it was thought that a more business-like approach was needed. Therefore the paper roll was placed on a mandrel with grooves notched at each end (Fig. 2.9). This assembly then sits in the roll holder which is screwed to the top of the box behind the printer. The paper roll holder was made from 16 gauge brass strip.

$V_{D O}=$ PIN $1 / 4$
VSS $^{2}=$ PIN 7
MC 16011 CP
圆

बффф申ф $V_{D D}=$ PIN 14
$V_{S S}=$ PIN 7

MM 74C14
 $V_{D O}=P I N 1$
$V_{S S}=P I N 8$
IN 13816 N. MC14050 CP

CONSTRUCTORS NOTE

The Matsushita electrosensitive printer is available from Datac Ltd., Tudor Road, Broadheath, Altrincham, Cheshire, WA14 5TN. (Telephone 061-941 2361). Although type $245 / \mathrm{L} / 40$ is specified, type $245 / \mathrm{L} / 20$ may be supplied, preset for 40 colurnns.

An alternative supplier for this and most other components is Technomatic Ltd.

It was not mentioned in Part 1 that construction requires the use of a 15 -way edge connector to link the Matsushita printer to the main control unit. This is Amphenol type 143-015-01, available from Celdis for $£ 2.74$ inclusive of handling charge. Celdis Ltd, 37/39 Loverock Road, Reading, Berks, RG3 1 ED.

Fig. 2.7. Internal layout

Fig. 2.8. Printer mounting. Fig. 1.1. last month showed the paper at -24 V and the electrode energised at 0 V . The reverse is of course true, otherwise the printer casing would need to be insulated from the control box cabinet. However, some mechanical insulation from vibration is still advisable, and this can be done by sleeving the printer mounting lugs with rubber grommets

SOFTWARE

The purpose of the software is to present data to the interface for conversion to printing pulses, whilst monitoring the status of the printer. The DUMP routine will also allow the printing of memory contents along with address information.

Although the system only uses six of the seven bits used in the Standard ASCII code, it will print all capital letters, numbers and symbols from the character set.

The only control characters required are Carriage Return, and End of Text, both of which are recognised by the software. For Carriage Return the ASCII code ODH is retained. For the End of Text character a non-standard code is used, FFH. In fact the software will terminate printing if it endounters any character byte with bit 7 set. Therefore it is important to remember that if.printing text, the byte after the

PRINTER TO MAIN UNIT CONNECTIONS

Pin No.	Signal
A	Reed
B	Pick-up coil
C	OV for P/U coil \& Reed
D	Motor +
E	Motor -
F	Head \& Pinch Roller Common
H	N.C.
J	1st Dot
K	2nd Dot
L	3rd Dot
M	4th Dot
N	5th Dot
P	6th Dot
R	7th Dot
S	N.C.

EXTERNAL CONNECTOR TO μ COMPUTER

Pin No.	Signal
A	DO
B	D1
C	D2
D	D3
E	D4
F	D5
H	Print command $(\overline{P C})$
J $\& X$	Data Request
W \&	$+5 V$ supply
M	OV

[E624]
ALL DIMS IN mm
Fig. 2.9. Paper roll holder. The holder can be made of alloy sheeting. In the prototype the bobbin was made from brass rod, but a simpler solution would be to use wooden dowel, and insert screws in each end to key into the roller slots
last character should contain FFH.
The software for the prototype is written in $\mathrm{Z80}$ assembler code and the peripheral chip used is the $Z 80 \mathrm{PIO}$. Conversion to other microprocessor instruction sets and peripheral chips should not present too much difficulty, especially as fairly detailed flow charts are included in the article.

INPUT OUTPUT REQUIREMENTS

The I/O requirements of the system are as follows:
5 outputs, latched, for DO-D5
1 output, latched, for PRINT COMMAND ($\overline{\mathrm{PC}}$)
1 input, unlatched, for DATA REQUEST (DATA REQ)

In the prototype system the PIO was programmed to operate in Mode 3, the bit mode. Bit 0 to bit 6 were programmed as outputs and Bit 7 was programmed as an input (see Fig. 2.10). It may be cheaper in some cases to use two separate ports, one for input and one for output. A latched I/O device such as the Intel 8212 could be used for the outputs, and a separate simple tristate buffer part could be used for the DATA REQ input. This would require only slight alteration to the software.

SYSTEM SOFTWARE

The majority of the software is involved with the DUMP routine. The actual PRINT routine itself is relatively small. We shall look at this routine firstand then see how it fits into the DUMP programme.

PRINT

The PRINT routine's function is to set the printer in motion and to sequentially present data to the interface at the required time. It also detects the carriage return and end of text codes and actually performs these control functions.
There are only 2 rules for its use:
(a) The Start address of the text buffer must be in the HL register pair on entry.
(b) That the end of text code (FFH) must be in the first memory location, after the text to be printed.
For example, say we want to print the word "HELLO", the ASCII code of which starts at memory location 2000 H . B, efore entry to the print routine HL must be set to 2000 H , and the text buffer should appear as in Fig. 2.12.

The flowchart for the PRINT routine is as Fig. 2.11 and its operation is as follows:

The peripheral chip (if used) is programmed. A downcounter (the character per line counter) is preset. This enables the processor to determine when it has filled the line.

The system activates the printer by generating a "low" to $\overline{P C}$. It waits for DATA REQ to go active then moves the first character byte to the accumulator. Before outputting the character, bit 7 is tested. If set it is interpreted as an end of text character. If not set, it is then compared with ODH to check if it is a carriage return. If not, then the routine decides it is a valid character and outputs it for printing. The character per line counter is decremented and checked for 0 at this time to see if a line has been filled. After printing, the text buffer pointer (HL), is incremented to point to the next character and the process is repeated.

If a carriage return code is detected the routine calls the subroutine SPACES, which repeatedly outputs the SPACE code to the interface until the end of the current line. (When the character per line counter $=0$.) A delay routine is then called to give the print-head time to return to the beginning of the next line, the routine then proceeds as before.

When the end of text character is detected the subroutine SPACES is again called, but after its completion a return code is loaded into the accumulator and PRINT is exited.

The subroutines used by PRINT are detailed in Figs. 2.13 and 2.14.

The printer system will run with the PRINT routine alone, for printing text and program listings. All the rest of the system software is used for the memory DUMP function, PRINT is called by the DUMP program as a subroutine. PRINT and its subroutines appear towards the end of the system software listing. It actually starts on line 143.

Fig. 2.10. PIO allocation

7	6	5	6	3	2	1	0
1/P	D/P	0/P	$0 / \mathrm{P}$	$0 / \mathrm{P}$	018	$0 / \mathrm{P}$	$0 / \mathrm{P}$
OATA	$\overline{P C}$	D5	06	03	02	01	00

DUMP

As previously mentioned the DUMP routine enables the user to print out the contents of areas of memory.

Firstly the hexadecimal memory address is printed, then the contents of that location and the following seven locations are printed, also in hexadecimal. The next line begins with the start address +8 , followed by the contents of the next eight locations, and so on until the specified finish address is reached. Carriage return and end of text control characters are inserted automatically by the software.

The organisation of the software is as Fig. 2.15. DUMP is the controlling routine, which calls the conversion routine, the compare routine and the print line routine. This in turn calls PRINT and its associated routines, which have already been described.

location	2000	2001	2002	2003	2004	2005
HEX contents	08	05	OA	OA	OF	FF
	H	E	ᄂ	L	0	EOT

Fig. 2.12. Text buffer example
Fig. 2.13. PRNT flowchart (PRINT subroutine)
Fig. 2.14. SPACES flowehart (PRINT subroutine)

Fig. 2.15. Software organisation
DELAY
DELAY
$E 630$

Fig. 2.16. Line buffer organisation

OPERATION

DUMP operates by creating a line buffer in RAM, where it inserts the address, the spaces and the contents of the eight locations (see Fig. 2.16).

It then calls the PRINT routine to print that line. Each location and its spaces are referred to as a "frame" of four bytes. The line buffer consists of four address bytes and eight frames. It is filled in the following way:

The Start address is loaded into HL to serve as an indirect pointer (see Fig. 2.17). It is also loaded into DE where the subroutine CON16B converts it to hexadecimal and then to ASCII. The resulting four ASCII characters are placed at the beginning of the line buffer by CON 16B. The line buffer pointer (IX) and the frame counter (B) are initialised. IX and C are used to place the first two spaces into the line buffer (see Fig. 2.16).

SOFTWARE LISTING FOR Z80 WORKING

The first DUMP byte is then "fetched" from the start address by use of HL . It is then converted to ASCII characters using BTOHEX and placed in the line buffer using DE and IX. The first frame is now complete.

HL is now incremented to point at the next DUMP byte, but before being used it is compared with the DUMP finish address using the COMP routine. On returning from COMP the Accumulator is tested for the equality code OOH , if $\mathrm{A}=$ FFH there is no equality and the routine loops back to fill the next frame.

When all eight frames have been filled and the frame counter is at zero, the routine PRLN is called. PRLN inserts the end of text code at the end of the line buffer and causes the Processor to exchange register banks. It then calls the previously described PRINT routine to print the line buffer contents.

On returning from PRLN the next DUMP address is copied from HL to DE. The routine then loops back and starts converting the new address in DE and creating a new line of data.

DUMP is exited only when the current DUMP address held in HL and the DUMP finish address are found to be equal by the COMP routine. On return from COMP the accumulator contains OOH (equality code), when this is detected PRLN is called to print out the last line after which the program is exited (or halted).

The flowchart of subroutines PRLN, BTOHEX, CON16B and COMP are described in Figs. 2.18, 2.19, 2.20, 2.21, respectivaly. The full system software is listed.

This software section completes the description of the system. All that is now required are a few pointers along the stoney path of testing, and a few do's and don'ts about the printer itself. These will appear in Part 3 next month.

FRANK W. HYDE

HEAO-2

The second High Energy Astronomical Observatory was successfully launched on November 13 1978. Its primary task is to investigate X -ray sources. This is a wide area for it includes stellar objects such as Pulsars, Quasars, Super Novae and Radio galaxies. The large glancing incidence X-ray telescope is the largest telescope that has so far orbited the Earth.

HEAO-1 which was launched in August 1977 was designed to be operational for six months. This period has been exceeded by many months and it is still active. During the time up to the launch of HEAO-2 it had added upwards of a thousand more X-ray sources to the 200 or so known at that date.

It must be remembered that the pioneer work on X-ray sources have been done by Ariel-1 and Ariel-5 and the teams working in the British Isles were responsible for this important branch of astronomy getting into the "big time".

The progress that follows such pioneer work does appear sometimes to overshadow what has gone before. The benefits however are the best tribute to the right thinking of the pioneers. HEAO- 2 is to add to the extensive search; the sensitivity of the experiments means that it will be possible to look still deeper into space for data to help solve some of the problems facing astrophysicists.

One of the problems of HEAO-2 is that it is necessary to lock on to an object for a long period in order to obtain positive results, consequently the attitude control has had to be improved. The gas jet system has been supplemented with reaction wheels. This will give a pointing accuracy of about one arc-second.
The mirrors employed vary in diameter from 30 mm to 560 mm . There are three star dissectors used as star trackers which update the gyros during the pointing action. The total length of the telescope is $\mathbf{4 . 7}$ metres. A high resolution imager digitally records the central
field of the telescope which is about 25 arcminutes at the central portion. This operates on the photo-multiplier principle. An incident X-ray photon triggers the emission of an electron and after successive impinging on other plates, its charge is detected. The detected result provides information as to position and features of the object. It is arranged that the imager can work in conjunction with two types of spectrometer.

PROPORTIONAL COUNTER

Another experiment is a proportional counter. This is co-aligned with the telescope but independent of it. The counter covers a wider range of energies received from \mathbf{X}-ray sources. In this case the range is 0.2 to 20 keV and the instrument will scan much the same area as the main telescope.

There are three other focal plane experiments. One of these, the crystal spectrometer, will be used to provide spacial as well as spectral information about extended X-ray sources. In this category would come supernovae remnants. The mode of operation can be controlled to variable resolution. Four different apertures can be used and this instrument has its own proportional counters. It is possible with this instrument to obtain information on the chemical composition of the source.

WIDE FIELD IMAGER

Another instrument is the wide field imager using a pair of counters. Each counter is divided into small regions which observe a portion of the source. The final image resolution is about one arc-minute. There is a further instrument which is a solid state spectrometer. This is capable of observing the whole spectrum over a range of 0.4 to 4 KeV . The important part of this instrument is the silicongermanium crystal. This is cooled by solid methane and ammonia.

The Telescope is orbiting at 537 km with an inclination of 23.5 degrees. The vehicle is 6.7 m long and 2.4 m in diameter with a weight of $3,175 \mathrm{~kg}$. The designed life is for 12 months, though no doubt it will follow previous histories and be operational for much longer. To keep up the continuity of observations another vehicle HEAO-3 is planned.

ANOTHER GOONHILLY

Goonhilly 4 is the first part of the United Kingdom's contribution to Eutelsat. In 1977 the U.K. became a participant in the 17 country Eutelsat. The system is based on the $11 / 14 \mathrm{GHz}$ communication satellite which is called ECS. At present there is a test satellite in orbit which is called OTS 2 . Since May 1978 it has been in a geo-stationary orbit at 10 degrees above Gabon. The degree is a line of longitude passing near Oslo through middle Europe by Hamburg, Lake Constance, Milan, Sardinia and Tunis.

The terminal is a joint venture of the Post Office, The Department of Industry and Marconi Communication Systems Ltd. The station was designed and built by Marconi's at a cost of some 3.5 m and has already been in operation sending 14 GHz signals to the satellite and receiving them back at 11 GHz .

The aerial is a 19 metre dish with a Cassegrain feed a gain of 66 dB at $14 \cdot 14 \mathrm{GHz}$ and a gain of 65 dB at a frequency of 10.95 to 11.8 GHz . A special feature of the aerial system is that it allows identical frequencies to be transmitted at the same time one polarised horizontally and the other polarised vertically. There is therefore a saving of spectrum space. Part of the preliminary tests are to discover if meteorological conditions will adversely affect performance of those two modes.

The 14 GHz transmitter is installed in a building below the dish and feeds the aerial through a waveguide system and horn. The r.f. amplifier consists of a five cavity klystron and gives a power of 1.6 kW with a gain of 32 dB at a bandwidth of 90 MHz . This is fed from 14 GHz signals. The convertor can operate on two modes 140 MHz which can carry 120 Mb bits of digital information or 70 MHz carrying 60 M bits of digital or f.m. video information.

In addition to dual polarisation further economies are to be obtained by means of digital speech interpolation. This equipment has been designed by Cambridge Consultants. It is a distributed microprocessor system which employs seven Texas Instruments TMS9900S devices. This was such an advanced design that a special simulator had to be built to test it. Simulation of activity in speech is equivalent to 240 terrestrial channels.

The EUTELSAT system is developing to handle European telephony and television programmes during the decade of 1980/90.

GENERAL DESIGN

The general design of the satellite will be similar to the OTS2. The main differences are that ECS will have twelve 80 MHz transponders instead of six different band widths. It will not have attitude control. It will therefore be seen from Earth moving daily in a figure of eight path between 3.5 degrees north and 3.5 degrees south. It will have three spot beam aerials instead of the five on OTS2 and is designed for a 7 year life. The satellite will carry sufficient batteries to power five transponders during an eclipse and is now expected to be launched by the ARIANE launcher instead of the U.S. Thor Delta.

The twelve transponders are accommodated within the frequency band of 500 MHz . Six of these are vertically polarised and six are horizontally polarised. The output of the solar panels is capable of powering 9 of the transponders. Each of these transponders terminates in a travelling-wave-tube amplifier output of 20 watts. By the mid 80 's it is expected that 15 earth stations will be operational.

ICE SHEETS SLOW UP MOON

Christopher Doake of the British Antarctic Survey suggests that the ice sheets floating in the Arctic are resposible for slowing down the Moon and thus cause it to recede. The bending of the ice sheets by about one metre must dissipate something like 2×10^{12} watts over the $26,000 \mathrm{~km}$ "hinge line" where the ice is 500 metres thick. Doake says that extensive glaciation occurs in the periods that precede turning points, that is, when the Earth increases its spin velocity.

A selection of readers original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought. Why not submit your idea? Any idea published will'be awarded payment according to its merits.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaratlon to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

VERSATILE TIMER

THIS timer was designed for a full scale range of 60 minutes but by using an output of a lower order than 2^{14}, of the divider, a shorter time can be more accurately achieved. Alternately Cl could be changed for a different range altogether.

ICIC and ICld form a timing oscillator feeding a fourteen stage binary divider IC2. The output of the divider gates a 1 kHz oscillator, ICla and IC 1 b , which in turn powers a crystal mike insert as a bleeper. With the VRI potentiometer of
the timing oscillator on maximum and output Q14 of the IC2 feeding the 1 kHz oscillator, the bleeper comes on 60 minutes after closing the switch (R3 and C4 form an initialising circuit resetting the divider at the instant of turn on).

The current consumption is in the order of $500 \mu \mathrm{~A}$ when timing and 1 mA when bleeping.

VR1 should be calibrated to suit the timing range chosen. Comparing the inset with the full scale time, it can be seen that
if Q14 is chosen the maximum time is 60 minutes, if Q13 is chosen the maximum time is 30 minutes and if Q12 is chosen the maximum time is 15 minutes etc. By changing C2/C3 to suit the application, the timer has many uses. Examples are as a parking meter, egg timer etc.
D. P. Burton,

Warrington,
Cheshire.

MANY imported cars used to have a 6 volt electrical system. Unfortunately, most British car accessories, notably, radio/cassette recorders, require a 12 volt power supply, which makes it impossible to use them in one of the older imported vehicles.

The unit described overcomes this problem by producing a 12 volt supply from a 6 volt battery, at an output current rating of about 0.5 amps , which should be adequate for most car accessories.

The complete circuit diagram. It consists of two main parts-an oscillator which drives a step-up transformer, then a rectifier and regulator circuit.

Transistor TR1 and its associated components form and audio frequency oscillator which operates at about 15 kHz , although the exact frequency depends upon the load current. Resistor R1 provides d.c. bias to the transistor base and oscillation is achieved by positive feedback derived from winding L2 on the transformer. The output waveform is almost a square wave, which is stepped up to about 32 volts peak-to-peak in the transformer secondary before being rectified by diodes DI-D4. This produces a voltage of about 15 volts d.c. before the regulator circuit, with less than 0.1 volt peak-to-peak ripple. The transformer inductors should be pile wound on an FX2243 bobbin and enclosed in the pot core.

A simple series regulator circuit is all

ENVELOPE SHAPER

Asimple modification to the Autowah circuit (PE March '77) will add an envelope shaping facility and a more interesting Wah-Wah sound. This requires the replacement of the ramp generator (C7, VR2, VR3, R9 and R10) with a trapezoid waveform generator.

A pulse at the base of TR2, due to a signal at the input, causes TR 3 to conduct and the voltage at pins 4 and 2 of the 555 to fall to the -ve rail. This resets and retriggers the 555 monostable. The output of the 555-pin 3-goes high-toward 0 V -and Cl 102 charges through D102 and VR103 at a rate dependent on the setting of VR 103.

After a period of time, dependent on VR101, pin 3 goes low-and C102 discharges through D101 and VR102 at a rate dependent on VR 102.

Thus at the beginning of each note a trapezoid waveform will appear at point "A" with attack, delay and decay lines fully controllable. This voltage controls the VCA/VCF built around IC11 via VR104 and TRI.

that is required to produce a constant 12 volt output. The base voltage of the series transistor TR 3 is controlled by the 12 volt Zener diode D7. Transistor TR3 base current and the Zener current are supplied from transistor TR2, which together with D5, D6, R4 and R5 form a constant current source. This was used in place of the conventional resistor in this position since it prevents the Zener current from rising excessively in the "no load" condition. It also allows a smaller rating Zener diode to be used. The inclusion of R3 limits the rectifier output to about 35 volts when the regulator is not supplying any current.

Inductors L1 and LS eliminate r.f. interference from the 6 and 12 volt supplies and should be wound on ferrite rod.

The connections shown are for a car with a 6 volt, negative earth system. The diecast box can be bolted directly onto the chassis and the internal connection made between the box and the 6 volt negative supply. If a +12 volt supply is required, the negative output lead may also be connected directly to chassis.

For a 6 volt positive earth system, the only change is that the internal chassis connection must be connected to the 6 volt positive supply.

Because the output is electrically isolated from the input, either one of the output leads may be connected to chassis so providing either a positive or negative 12 volt supply.
D. Turner,

Plymouth,
Devon.

VR104 should be adjusted for flat compromise between no signal at the output when the control voltage is low (-ve rail) and maximum signal when the control voltage is high-with the circuit in the VCA mode. D101 and D102 can be any g.p. silicon diodes.

The timing components (C101, VR101, VR102, VR103, C102) can be altered for those used in the prototype if desired. If
the control pulse breaks through onto the output this can be cured with $0.22 \mu \mathrm{~F}$ capacitor across the output. Finally, a piece of advice about usage; the delay period must be long enough to allow the attack phase to occur, otherwise no control voltage will be generated.
A. N. Oliver, Brentwood,

Essex.

HEADS ORTAILS?

HIS is a variation on "heads or tails". By using I.e.d.s instead of small bulbs, the whole circuit can be constructed from a single integrated circuit, without the need for a separate transistor clock.

The circuit is shown where IC la and IClb form an astable or free-running multivibrator, which clocks the bistable or memory made up of IC1c and ICld. When $\mathbf{S} 1$ is closed, the coin is in the "spinning" mode, in which the square wave output from the multivibrator switches the bistable, and hence the two l.e.d.s, alternately. When S1 is opened, the coin has "landed" and the bistable remains in the state it was last in, and the corresponding l.e.d. will light up indicating the visible side of the coin (heads or tails).

The whole can be constructed inside a tin, provided that a small enough battery is used (PP3 or similar), the "Spin" switch being a miniature push-to-make switch.
D. J. Taylor, Maidenhead, Berks.

NOVELTY DOOR-BELL

THis simple novelty doorbell produces an adjustable range of sounds which will surprise even the most travelled doorbell ringer.

The circuit shown below comprises a number of distinct sections: TR2 forms the on/off controller; TR3 and TR4 form a ramp generator; TR5 to TR8 form a voltage controlled oscillator (VCO) and TR9 and TR 10 form an audio amplifier.
When the pushbutton S 1 is pressed, Cl charges via R1. The voltage across C1 is
followed by the emitter of TR1. As this voltage rises, TR2 turns on which energises the remainder of the circuit. The ramp generator, running at about 20 Hz modulates the VCO on one input, while the voltage on TR1 emitter controls the other input. The VCO output is amplified and passed to the loudspeaker.

When S 1 is released, the circuit remains active for a few seconds while C1 discharges through R2. VR2 adjusts the ramp modulation, while VR1 adjusts the
rise and fall of frequency as the button is pressed and released. The range of frequencies produced is quite wide, hence the sound of the bell is difficult to mask (or ignore).

The standby current is infinitely small, and with normal use a PP9 battery will last several years.

P. R. Williams,
Stevenage, Herts.

Semicondurtor UPDATIT FEATNRNR :MC68488, mC3448, ICL8211, ICL8212

ON THE BUSES

Wouldn't it be nice to gather together an ad hoc collection of test equipment such as voltmeters, counters and signal generators, to connect them all together, daisy-chain fashion, and then be able to control the whole collection with the aid of, say, a microcomputer so that the result is a tightly controlled measuring system.

Imagine it, to test a radio receiver, the microcomputer sends out commands to set the frequency and output level of the signal generator, the voltage range of the voltmeter, and the timebase of the counter. While moving automatically through a measuring sequence, the microcomputer accepts output data from the measuring instruments and prints it out in the form of a fully formatted test report. Pipe dream? No, if you like you can do all of this right now, provided that your test instruments are fitted with IEEE488 bus interfaces.

The IEEE488 bus started life at Hewlett Packard as the HP-IB, and it turned out to be such a sound, well engineered design that it has now become accepted as an international standard, adopted by many instrument makers.

In essence the IEEE488 bus consists of an 8 bit wide bi-directional data bus and a further 8 bits of control and handshake data. Instruments connected to the bus are allocated individual addresses, and they may act as "talkers" or "listeners" as determined by the bus controller which could be a programmable calculator or a microcomputer.
Data transfer on the bus can be from any device activated as a talker to any (reasonable) number of devices activated as listeners, and data can be moved at up to two megabytes per second!

Individual instruments can act as talkers and listeners (to receive range commands and transmit measured data for example) and the bus controller can carry out "polling" operations to determine which devices need service.

Not that the bus is restricted only to sophisticated measuring systems, you can connect together a voltmeter talker and a printer listener to form a simple and controllerless system, and if further proof of the usefulness of the IEEE488 is necessary, the Commodore PET microcomputer comes equipped with an interface as a standard feature.

BUS CHIP

Now, to get to the point of my story, Motorola have introduced an IEEE488 bus interface in a single 40 pin package, coded MC68488.

The new chip is a version of the GPIA (General Purpose Interface Adapter), and is a member of the MC6800 microprocessor family.

One side of the interface hooks up to the microprocessor data bus and control lines such as RNW and RESET, and the other side drives the IEEE488 bus via bi-directional Tri-state drivers such as the MC3448 (which is designed for the job).

The MC68488 handles many of the complex bus protocol functions automatically, but some others do require extra effort from the microprocessor, under software control.

With a little imagination, you can use the MC68488 with other microprocessors, so come on, if you want to transfer data at a rapid rate, send it by bus!

POSITIVE REGULATOR -

THYRISTOR BOOST

MICRO-POWER

No, not another microprocessor news item (sighs of reliefl), but a pair of new low consumption voltage regulator building blocks which are optimised for use at very low voltages and/or currents where their fixed voltage (e.g. LM309) cousins fear to tread.

The new devices are made by Intersil and are coded ICL8211 and ICL8212. Both are bipolar monolithic integrated circuits in 8 pin mini-d.i.p. packages, and both can be used in.some interesting and diverse applications such as positive and negative voltage regulators, constant current sources, overvoltage crowbar circuits and power failure detectors.

The ICL8211 contains a low voltage (1.15 Volt) reference circuit, a differential error amplifier with a feedback reference input, a current limited common emitter output amplifier, and p.n.p. hysteresis transistor.

The ICL8212 is similar except that the common emitter stage is not current limited.

The new devices are really intended for the unusual, rather than the run-of-the mill, applications, particularly those where low consumption is essential.

APPLICATIONS

One application which caught my eye was the use of the ICL8212 as a programmable "Zener". This circuit uses two resistors and a capacitor in addition to the i.c., but by varying the ratio of the resistors, any "Zener" voltage from 2 to 30 V can be selected. and a particular advantage is the extremely low "knee" current of less than 300 micro-amps.

Another application using an 8211 , and shown here, is interesting for its use of an external thyristor as an n.p.n.-p.n.p. transistor structure, operating in a linear mode and providing increased output current in a positive voltage regulator círcuit.

A unique feature of this circuit is that the cathode of the thyristor is acting as the control terminal, and the gate as the output terminal!

The only problem with this circuit is that manufacturers' data sheets for thyristors do not cover this strange mode of operation, and no gain figures will be given for the p.n.p. portion of the structure which is utilised here. This of course, need not hinder the experimenter!

 MULTIPROC

Mark A.Sawicki m.sc.(Eng) Alex. Kowalewski

|N part two we dealt with the clock system and the input and output filters. In this the VU driver, power supply board and the pushbutton switch control module will be described together with chassis design details and enclosure.

PUSHBUTTON CONTROL MODULE

In the stacked pushbutton control module there are three boards, the top being the input filter, the second is the clock board, and the third is the output filter (see photos Part 2). The boards are separated from each other by means of eight 2.5 cm p.v.c. spacers and from the bottom plate by four 1 cm p.v.c. spacers. The whole module is fastened to the bottom plate by means of four 85 mm steel wires threaded for 6BA self-locking nuts. The front panel is fastened to the bottom plate by the necks of the five jack sockets.

The centres of the pushbuttons are about 30 mm apart in both horizontal and vertical directions.

OPTIONAL VU DRIVER

Fig. 14 shows the complete VU driver circuit. The 748 is an op-amp packaged into a TO99 round metal can, with leads bent into an 8 pin d.i.l. configuration. C75 is provided to damp the movement of the meter.

The 748 is a similar device to the 741 op-amp except it has external frequency compensation for improved high frequency gain.

The power for this circuit is taken from the 0 and +.15 V d.c. rails only. Input is taken directly from the output of the first low pass filter.

Calibration is achieved by means of VR11.
Due to the simplicity of this optional unit it was constructed on a piece of 0.1 in matrix Veroboard ($45 \mathrm{~mm} \times 25 \mathrm{~mm}$) and fastened to the main board as can be seen in the photograph (page 1251 -Part One).

LED STATUS INDICATOR SYSTEM

Fig. 15 shows the complete circuit diagram of the l.e.d. status indicator system. The spare connections on the main front panel slider switches are used for this purpose. Note that the l.e.d. status indicators are independent of the remote control.

Fig. 14. VU driver circuit

Fig. 15. L.e.d. status indicator

Fig. 16. Wiring for optional remote control jacks
The l.e.d.s are very useful if the processor is used in a live performance situation where the ambient light is often very low. Here the upper switch positions are denoted by green and the bottom by red l.e.d.s. The fuzz effect however has a yellow l.e.d. for the on position.

REMOTE CONTROL

Fig. 16 shows a complete circuit diagram of the remote control system. It employs three, two and three pole chassis mounting $\frac{1}{4}$ in jack sockets. Consequently when a jack plug is inserted into the socket it automatically bypasses the slider switch on the front panel, thus preparing the unit for optional footswitch operation.

Fig. 17. Circuit of power supply unit

Fig. 18. P.s.u. printed circuit board

Fig. 19. P.s.u. board layout

Prototype board based entirely on RS components

This feature will prove to be essential for guitar work. These footswitches are available from:

$$
\begin{aligned}
& \text { Re-An Products Ltd., } \\
& \text { Burnham Road, } \\
& \text { Dartford, } \\
& \text { Kent, DA1 5BN. }
\end{aligned}
$$

POWER SUPPLY

The complete circuit diagram of the power supply board is shown in Fig. 17. This employs a RS transformer, and monolithic voltage regulator. The prototype multiprocessor included an RS board; however an alternative p.c. layout is given in Fig. 18 with component and wiring details in Fig. 19.

The power supply is stabilised and regulated providing $+15 \mathrm{~V}, 0 \mathrm{~V},-15 \mathrm{~V}$ d.c. The whole p.c.b. is mounted on four 1 cm p.v.c. spacers on the right-hand side of the base plate as can be seen. The mains is switched on and off by means of an illuminated rocker switch.

Power is fed to the unit via a Euroconnector and then a 200 mA fuse, both auxiliary devices are mounted on the rear panel.

CHASSIS AND CASE CONSTRUCTION

Fig. 20 shows the dimensions of the individual metal plates required to construct the chassis unit for the guitar sound multiprocessor. All the aluminium used was 1.5 mm thick. Basically all that is required is the main base plate (C), rear panel (B) and front panel (A) which has been bent to cater for the sloping front panel design. All the metal surfaces were sprayed with gloss paint and the artwork was carried out in Letraset which was later sprayed with lacquer in order to protect it.

Fig. 20. Exploded diagram of chassis and case

Fig. 21. Cutting details of front panel

Switch positions and o'clock settings of potentiometers for sounds indicated

Control	Rotary	Fuzz	Flanging	Phaser/Vibrato	Reverb	Computer Voice	Repeat Echo	Vibrato/Reverb
1	9	Min	9	Min	Min		10	
2	5	Min	1	Min	6	Min	Min	Min
3	Down	Down	Up	Up	Down	Up	Up	Min
4	12	Min	Min	Min	11.30	12	Min	12
5	12 (delay 4 mS)	Min (delay 4 mS)	12 (delay 4 mS)	12 (delay 4 mS)	Min (delay 43 mS)	12 (delay 9mS)	9 (delay 43 mS)	4 (delay 4mS)
6	9	Min	10	6	Min	5.30	9	9
7	Down	Down	Down	Up	Down	Up	Up	Up
8	Min	5.30	Min	Min	Min	12	Min	Min
9	Up	Down	Up	Up	Up	Up	Up	Up

Table 2 and numbered related controls

Drilling details for the front panel are given in Fig. 21 but these should be modified as component sizes dictate.

Fig. 20 shows the dimensions of the case components which were comprised of $\frac{1}{2}$ in plywood covered in plastic Vinyl Rexine. When gluing on the plastic use "Evostick" because it allows you to move the plastic into position before it sets.

It's a good idea to attach a carrying handle to the case for safety and ease in transportation.

SETTING UP

This instrument is experimental in nature so when using it let your imagination be your guide. However, Table 2 gives you a rough idea of what can be achieved with the processor.

Some component changes have been made and are correct as shown in the circuit diagrams.

The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the rechnical training field. You study at the time and pace that suits you best and in your own home. In the words of one of oup many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour T.V. Servicing
Electronic Engineering \&i Maintenance
Computer Engineering and Programming
Radio, T. V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Corceer Courses

A wide range of other technical and professional courses are available including GCE.

3

Wilmslow Audio

THE firm for speakers!

SEND 15p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

> AUDAX AUDIOMASTER BAKER BOWERS \& WILKINS - CASTLE - CELESTION CHARTWELL - COLES - DALESFORD DECCA EMI EAGLE © ELAC •FANE GAUSS GOODMANS I.M.F. ISOPHON JR - JORDON WATTS O KEF - LEAK - LOWTHER McKENZIE - MONITOR AUDIO - PEERLESS RADFORD RAM RICHARD ALLAN SEAS SHACKMAN © STAG - TANGENT TANNOY VIDEOTONE WHARFEDALE YAMAHA

WILMSLOW AUDIO (Dept. P.E.) SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Discount HI-FI, etc. at 5 Swan Street and 10 Swan Street
Tel.: Wilmslow 526213 for Hi -Fi

Clef Kits -

Designer approved quality kits for Electronic Musical Instrument Constructlon.

JOANNA $72 \& 88$ PIANOS Six and $7 \frac{1}{4}$ Octave Electronic Pianos with unique Touch Sensitive Action, as used in the P.E. JOANNA, which electronically simulates plano key inertla - a feature not available In any other design A new physical layout has been a dopted to simplify construction.
P.E. STRING ENSEMBLE

The only kit available to the proven A.J. Boothman Design for this versattle String Machine. Send S.A.E. $10-$
Clef Products (Dept P.E.) 16, Mayfield Road, Bramhall, Cheshire SK71JU

[^1]GATTERY ELIMINATORS 3-way type 6ATLER 300 mA . 2 -way type with press-studs 9 V . $\mathbf{3} .35,9+9 \mathrm{~V} £ 4.50$. Stabilized type $3 / 6 / 7 \frac{1}{\frac{1}{3}} / 9 \mathrm{~V}$, 400 mA £ 6.40 . 12 V car convertors $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 \mathrm{~V} \quad 800 \mathrm{~mA}$ £2.50.
BATTERY ELIMINATOR KITS send sae for data. 100 mA radio types with press-studs
 8 -wav types $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{~V}$ 8 -way types $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{~V}$
100 mA f 2.80 , 1 Amp £ 6.40 . Stabilized power kits $2-18 \mathrm{~V} 100 \mathrm{~mA} £ 3.60,2-30 \mathrm{~V} 1 \mathrm{~A}$ $€ 6.95$. $2-30 \mathrm{~V} 2 \mathrm{~A} £ 10.95$. 12 V car convertor
$6 / 7 \frac{1}{2} / 9 \mathrm{~V} 1 \mathrm{~A} 1.35$. $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ 1A £ 1.35 .
T-DEC AND CSC BREADBOARDS S-dec £3.17. t-dec £4.02, u-deca $£ 4.40$, u-decb £6.73. 16 dil adaptor f2.14. exp 300 E 6.21 ,
exp 350 £3.40, exp 650 e3.89, 4 , $\exp _{£ 2.48} 350$ £3.40, $\exp 650$ £3.89, $\exp 4 b$

BI-PAK
ALGO $£ 4.86$ DIO MODULES S $450 £ 23.51$. AL60 £4.86. pa 100 £ 16.71 . spm80 $£ 4.47$

SWANLEY ELECTRONICS

(Dept. PE), 32 Goldsel Rd.
Post 30 p extra. Prices include VAT.

International

Electronics has always been an international industry. But never on such a vast scale as we are witnessing today or over such a variety of electronic products. Countries who had little or no capability in electronics are now becoming substantial producers.

At first, these "backward" countries were being used as low-cost labour areas. for assembly work. They are now climbing the learning curve. Soon they, too, will. be designing.
The process is being accelerated by technology transfer, especially in defence electronics. Few countries today, when procuring defence equipment, are content to let an overseas supplier provide everything. They want a share of the work themselves.

If they need, say, 1,000 military radios they will take the first 100 from the supplying country and set up a local assembly plant to build the balance of 900 radios, largely from kits but embodying as much as possible that can be built or acquired locally. This is very true of the Middle East.

But for commercial or other reasons it is also happening in the advanced electronics countries. Who could have imagined only a few years ago that one day the chairman of a substantial UK operation would be a Mr. Kenichero Hiyama, overseeing the production of radio and TV equipment carrying famous brand names such as Bush and Murphy. Mr. Hiyama is the Japanese chairman of Rank-Toshiba, the first joint AngloJapanese company of which 70 per cent is owned by the Rank Organisation, 30 per cent by Toshiba.

The company will plough in an extra $£ 3$ million investment to strengthen the existing Rank plants at Plymouth and Redruth with the target of a production rate of 350,000 colour sets and 100,000 monochromes a year.

We can expect further Japanese penetration in the years ahead. The advantage of a joint company is clear. At least, from the British viewpoint, production is maintained, even increased, in the UK and products will be exported under the Toshiba brand name to other European countries.

Thorn Consumer Electronics is expressing a willingness to learn from others. Half a dozen union men and four senior managers have been to Japan to see for themselves the conditions and work methods of their main competitors.

Technology Transfer

Technology transfer has also been in the news. The biggest single new outlet for UK expertise looks like being China. At the time of writing no substantial new orders had been announced as definite but there were high hopes of substantial contracts for defence and other equipment. It is almost certain that China will want to build, for example, Harrier jump-jets and aero engines under a technology transfer agreement. Defence electronics will follow.

Nearer home, Racal has done a deal with. Spain in which the Spaniards will build Racal-designed VHF military manpack radios in a factory near Madrid. A condition of tender was that bulk manufacture would take place in Spain. Refusal means no business. Acceptance of the condition still brings in Racal some $£ 6$ million, well worth having and, as there was plenty of competition for the contract, if Racal didn't win someone else would.

Discussing this type of deal with industry leaders I was told that high technology companies are confident they have the inventive muscle to stay ahead of the game. That by the time a technologically retarded country had mastered the present generation of equipment the advanced companies would already be in production of the next generation. As for example, in the giant Togliattigrad car assembly plant in the Soviet Union, designed by Italian Fiat but behind in technolgoy compared with Fiat's present developments at Turin, or the production of ITT connectors in Poland which are technologically a generation behind those produced by ITT in Western Europe or the United States.

Nonetheless, the gap is bound to narrow and there are plenty of examples of intelligent pupils who have outclassed their masters, prime example being the Japanese who were non-starters in many fields a short 30 years ago but are now fearsome competitors, not least in electronics.

Single Chip

The single-chip revolution is now well under way. I have quoted several examples in recent months and almost daily some complicated function or other is revealed as not only technically feasible on a single -piece of silicon but with production samples available.

I remember the mixed feelings I had
when I looked into the guts of the first Racal 99 Series frequency counters, based on a Ferranti chip, when they appeared some three years ago. There was the box with practically nothing in it. Of course they worked beautifully but when you are laying out a few hundred pounds you expect to see something substantial inside for your hard-earned cash.

I was reminded of this early experience, almost shocked disbelief, when HewlettPackard announced their new 100 MHz 5315A countertimer which includes computing facilities from a microprocessor.

Only nine years ago the equivalent H-P product of that era had a dozen p.c.b.s packed with TLL circuits to perform the logic functions alone. The same work is now done by a couple of chips. In all, the new instrument contains just nine i.c.s. The 5315 A, selling at about $£ 500$ and a low-cost sister instrument at about $£ 230$ have been introduced to meet fierce competition in the counter market.

Look to Philips, too, for intensification of competition in the instrument market. Philips was anything but a leader even five years ago.

Since catching the instrument bug Philips has made considerable inroads, especially with oscilloscopes. The 1978 sales of instrument products in the UK were 50 per cent higher than in 1977 and in the instrument business this is indeed fast growth.

Prestel

The Post Office Prestel viewdata service is proving an exciting prospect for overseas administrations as well as at home. It could be a big export hit. West Germany, the Netherlands, Hong Kong and the USA (in agreement with a US company) have already signed, or are in process of doing so. The seventeenth country in which live demonstrations have been given is the Soviet Union with a presentation in Moscow.

Post Office researchers are now busy devising new ways of getting viewdata on the screen in different alphabets such as Arabic, Greek, Hebrew and the phonetic Japanese script known as Katakana.

There are great hopes that the British system will be adopted as the world standard, thus enharicing further export prospects.

GEC/Fairchild

The GEC/Fairchild joint venture in the UK for the production of VLSI circuits appears to be on schedule with production still forecast for 1980. INMOS, a possible competitor backed by the National Enterprise Board, will pose no threat according to Fairchild chairman Wilf Corrigan who has gone so far as to forecast INMOS as "doomed" and "too late".

Well, time will tell, but as regular readers will remember I tend to agree that INMOS chances are slim if only because it has no established marketing outlets and no previous track record of its own.

BP 1520625 , from Harold Barkan of New York, describes a simple idea in lengthy prose which is characteristic of patents originating from the USA. The interest value of the simple idea does however justify the effort of cutting through the verbiage. The object is to modify a touch control switch so that it is actuated by touching a living plant!

Barkan has made the simple, but apparently novel, observation that if the touch sensitive element of an electrical touch switch (e.g. of the type used to control domestic lighting) is electrically connected

ORGANIC TOUCH SWITCH

to the roots of a pot plant, then the plant itself will serve as the touch sensitive element.

Bearing in mind the high fluid content of a living plant, this is readily understandable. Barkan maintains that even cut flowers or fruit and vegetables in a bowl are sufficiently electrically conductive to function in the same manner.

The simplest approach recommended is merely to extend the touch sensitive element of an off-the-shelf touch sensitive switch. A length of wire connects with an electrode buried under the earth in which the plant grows. According to the inventor, a light or other load connected to the switch terminals can then be switched on and off merely by gently stroking the plant leaves or flowers.

PIEZOELECTRIC TRANSDUCER

Audio designers are turning towards piezo-electric powered loudspeakers and several modern high fidelity speakers now incorporate piezo horns as their HF units or "tweeters". In BP1 489 351, Philips patent a loudspeaker which is based on a diaphragm formed entirely from piezoelectric material and, in principle, appears adaptable to larger and wider bandwidth units than previously.

The Philips transducer has a circular diaphragm formed from a foil of polyvinylidene fluoride, a material which has piezo-electric properties. The diaphragm foil has metal electrodes vacuum deposited on each major surface and is circularly corrugated, so that its surface is covered with concentric rings of V shaped cross-section. The opposite walls or flanks of each ring are oppositely polarised. Thus in Fig. 1 the flanks 2, 4 and 6 are
polarised in one direction (arrows A) and the flanks 3 and 5 are polarised in the opposite direction (arrows B). In Fig. 2 the flanks 20,22 and 24 are polarised in the direction of the arrows P and flanks 21 and 23 in the direction of arrows Q. The diaphragm is polarised by electrodes 30 and 31 of the polarising device (Fig. 3).

When an alternating voltage audio signal is applied to the surface electrodes (not shown in the diagrams), all the flanks of the diaphragm behave in characteristic piezo-

electric manner and change in length. But as the flank pairs are oppositely polarised the action of all the flanks is concerted, and the diaphragm as a whole moves in an axial direction. It thus behaves in the manner of a conventional loudspeaker cone driven electromagnetically by a moving coil. So, the applied audio signal is converted directly into mechanical energy. This suggests that the unit will have high efficiency in terms of sound level transduced from audio signal input.

Fig. 2

Fig. 3

The Sinclair PDM35. A personal digital multimeter for only $£ 29.95$

 Technical specification

 Technical specification}

Now everyone can afford to

 own a digital multimeterA digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedence. Yet at $£ 29.95$ ($+8 \%$ VAT), it costs less than you'd expect to pay for an analogue meter!

The Sinclair PDM35 is tailormade for anyone who needs to make rapid measurements. Development engineers, field service engineers, lab techniciars, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the PDM35 is perfectly suited for hand work in the field, while its angled display and optional AC power facility make it just as useful on the bench.
What you get with a PDM35
$31 / 2$ digit resolution.
Sharp, bright, easily read LED) display, reading to ± 1.999. Automatic polarity selection. Resolution of 1 mV and 0.1 nA (0.00014 A).
Direct reading of semiconductor forward voltages at 5 different currents. Resistance measured up to 20 M n. 1% of reading accuracy.

Operation from replaceable battery or AC adaptor.
Industry standard 10 Mr input impedance.

Compare it with an analogue meter!

The PDM 35's 1% of reading compares with 3% of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average.

The PDM35 will resolve 1 mV against around 10 mV for a comparable analogue meter - and resolution on current is over 1000 times greater.

The PDM35's DC input impedance of 10 M s is 50 times higher than a $20 \mathrm{ks} /$ volt analogue meter on the 10 V range.

The PDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movement to damage. And you can resolve current as low as 0.1 nA and measure transistor and diode junctions over 5 decades of current.

DC Volts (4 ranges)
Range: 1 mV to 1000 V .
Accuracy of reading $1.0 \% \pm 1$ count.
Note: 10 M 几input impedance.
AC Volts ($40 \mathrm{~Hz}-5 \mathrm{kHz}$)
Range: I V to 500 V .
Accuracy of reading: $1.0 \% \pm 2$ courits.
DC Current (6 ranges)
Range: 1 nA to 200 mA .
Accuracy of reading: $1.0 \% \pm 1$ count. Note: Max. resolution 0.1 nA .
Resistance (5 ranges)
Range: Is to 20 Mrs.
Accuracy of reading: $1.5 \% \pm 1$ count.
Also provides 5 junction-test ranges.
Dimensions: 6 in x 3 in x $1 / 2 \mathrm{in}$.
Weight: $61 / 20$ oz.
Power supply: 9 V battery or
Sinclair AC adaptor.
Sockets: Standard 4 mm for resilient plugs.
Options: AC adaptor for 240 V 50 Hz power. De-luxe padded carrying wallet. 30 kV probe.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts - from programmable pocket calculators to miniature TVs. The PDM35 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.
Tried, tested, ready to go!
The Sinclair PDM35 comes to you fully built, tested, calibrated and guaranteed. It comes complete with leads and test prods, operating instructions and a carrying wallet. And getting one couldn't be easier. Just fill in the coupon, enclose a cheque/ PO for the correct amount (usual 10-day money-back undertaking, of course), and send it to us.

Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE174HJ, England. Regd No: 699483.

[^2]
- WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS -

STEREO PRE-AMPLIFIERS

CPR 1 - THE ADVANCED PRE-AMPLIFIER
The best pre-amplifier in the U.K. The superiority of the CPR t is probably in the disc stage. The overioad margin is a superto 40 dB , this together with the high slawing rate ensufes clean top. even with high output cartridges rracking heavily modulated records. Common-mode distorion is eliminated by an unusual design. R.1.A.A. is accurate to dB ; signal to noise ratio is 70 dB relativ Following this stage is the flat gain/balance stage to brin
evels. Signal to noise ratio $86 d B$; slew-rate $3 \mathrm{~V} / \mathrm{US}$: T.H.D. $20 \mathrm{~Hz}-20 \mathrm{kHz}<008 \%$ at any level F.E.T. muting. No controls are fitted. There is no provision for tone controls. CPR 1 size is $130 \times$ $80 \times 20 \mathrm{~mm}$. Supply to be ± 15 volts.

MC 1 - PRE-PRE-AMPLIFIER

Sultable for nearly all moving-coil cartridges. Sensitiviry $70 / 170 \mathrm{uV}$ switchable on the p.c.b. This module brings signals from the now popular low output moving-cow carridges up to 3.5 mV our REG I regulator board.

REG 1 - POWER SUPPLY

The regulator module, REG 1 provides $15-0-15 \mathrm{v}$ to power the CPR 1 and MC 1 . It can be used with any of our power amp supplies or our small transformer TR 6 . The power amp kit will accom-
modate it.

POWER AMPLIFIERS

It would be pointless to list in so small a space the number of recording studios, educational and government establishments, etc. who have been using CRIMSON amps satisfactorily for quite available in five types, they all have the same specification: T.H.D. typically. 01% any power 1 kHz 8 ohms: T.I.D. insignificant; slew rate limit $25 \mathrm{~V} / \mathrm{JS}$; signal to noise ratio 110 dB ; frequency response $10 \mathrm{~Hz}-35 \mathrm{kHz}$, -3 dB ; stability unconditional; protection drives any load safely; sensitivity
$775 \mathrm{mV}(250 \mathrm{mV}$ of 100 mV on request); size $120 \times 80 \times 25 \mathrm{~mm}$.

POWER SUPPLIES

We produce suitable power supplies which use our superb TOROIDAL transformers only 50 mm high with a 120-240 primary and single bolt fixing lincludes capacitors/bridge rectifier).

POWER AMPLIFIER KIT

The kit includes all metalwork, heatsinks and hardware to house any two of our power amp our other products. Comprehensive instructions and full back-up quality is consistent with that of it with confidence in a few hours.

POWER AMPLIFIER MODULE CE 608 60W/8 ohms 35-035v CE 608 G0W/8 ohms $35-035 \mathrm{~V}$ CE 1008 yoow $/ 8$ ohms $45-0-45 \mathrm{v}$ CE $1704170 \mathrm{~W} / 4$ ohms $45-0-45 \mathrm{~V}$ CE $1708170 \mathrm{~W} / 8$ ohms $60-0-60 \mathrm{v}$

TOROIDAL POWER SUPPLIES

CPS 1 for $2 \times$ CE 608 or $1 \times$ CE 1004 CPS 3 for $2 \times$ CE 1004 or $2 / 4 \times$ CE 608 CPS3 for $2 \times$ CE 1008 or $1 \times$ CE 1704
CPS4 for $1 \times$ CE 1008 CPS5 for $1 \times$ CE 1708 CPS 6 for $2 \times$ CE 1704 or $2 \times$ CE 1708
HEATSINKS
Light duty, $50 \mathrm{~mm}, 2^{\circ} \mathrm{CW}$
Medium power, $100 \mathrm{~mm}, 1.4^{\circ} \mathrm{Ci}{ }^{\circ}$ Disco/group, $150 \mathrm{~mm}, 1.1^{\circ} \mathrm{CW}$ Fan, 80 mm , state 120 or 240 v Fan mounted on two drilled 100 mm
heatsinks, $2 \times 4^{\circ} \mathrm{CW}, 65^{\circ} \mathrm{C}$ max. with two 170 W modules. THERMAL CUT-OUT, $70^{\circ} \mathrm{C}$

POWER AMP KIT
$£ 32.40$ PRE-AMPS:
These are available in two versions one uses slandard components, and the

other (the S) uses MO resistorts where necessary and tantalum capacitors. | $\mathrm{CPRI}: £ 2949 \mathrm{CPRIS}$ | |
| :--- | :--- |
| MCI | E 39.98 |
| 29.50 MCIS | |
| 2949 | | POWER SUPPLY: REGI E6.75 TR6 £1.75 BRIDGE DRIVER, BDI Obtain up to 340 W using $2 \times 170 \mathrm{~W}$ ${ }_{8 D} \mathrm{mpl}^{\mathrm{m}}$ and this module. $£ 540$

CRIMSON ELEKTRIK
 1A STAMFORD STREET. LEICESTER LE1 6NLL

Tel. (0533) 537722

All prices shown are UK onty and include VAT and post. COD 90p extra. C100 himit. Export is no problem, please write for specific quote. Send large SAE or 3 international Reply Coupons for detailed information.
Distributor: Miric Teleproduckter, Box 12035 ,
S-750 12 Uppsala 12, Sweden.

LISTEN TO THE SECRET WORLD OF PLANTS

As featured on Horizon, Nationwide, Radlo \& Worldwide Press First time in the U.K. in Kit Form, the revolutionary concept of a Biological Amplifier \& Sound Synthesiser in one unit, the Amazing

Bio Activity Translator ${ }^{\text {™ }}$.

* Experlence the unique Musical Form of Plants
- Hear the beautiful patterns of sound - created by thelr natural response - Compare house plants' reactlons to people - with the distinct tunes of those outslde
- Easy to operate, internal speaker 8 batteries

The naturally generated Blo Electric potential across a plant leaf is plcked up by 2 carbon foam electrodes. When ampitied and filtered, a VCO, VCA and other exclusive synthesiser circuits are programmed by the control voltage from the plant to produce tracking sequences of notes. These follow in plich, rhythm and volume the ever changing signal from the plant.
The kit Includes 6 I.C's, 3 transistors, all high quality components, tinned and drilled ibre glass P.C.B., loudspeaker and comprehensive assembly instructions. Also included is a free case, ready punched, with wooden end cheeks and stick on sllkscreened front panel for a really professional finlsh.
Funs on $2 \times 4 \frac{1}{2}$ volt batteries (not supplied).
SPECIAL INTRODUCTORY OFFER INCLUDES FREE CASE

Allow 21 days for delivery. Offer extended to January 31 st 1979.
JEREMY LORD SYNTHESISERS, (Dept PE2)
52 Becmead Avenue, London SW16 1 UQ

MICFO-EUS
 Compiled by DJD

Abstract

Appearing every two months, Micro-Bus will present ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data books. The most original ideas will probably come from readers working on their own microcomputer systems, and payment will be made for any contribution featured here. This is also the place to air your views, in general, on this new technology, so let's be hearing from you!

ADDING TO SC/MP INSTRUCTION SET

THE CIRCUIT to be described takes advantage of unassigned op-codes in the SC/MP instruction set and uses them to provide 16 one-byte subroutine calls so that effectively 16 one-byte user-defined instructions are added to the instruction set. This feat ure is especially useful for SC/MP systems since normally seven bytes are needed to set up a subroutine call and this overhead tends to discourage their liberal use.

The existing SC/MP instruction set is shown in Table 1; the first hex digit of each instruction appears down the left-hand edge of the table, and the second hex digit along the top. The circuit, shown in Fig. 1, takes advantage of the fact that the whole of row 2 is blank. When one of these codes is encountered as an instruction the circuit generates an interrupt; an interrupt service routine then determines which of the codes caused the interrupt and jumps to a different section of program for each one.

CIRCUIT DESCRIPTION

Operation of the circuit is as follows: the SC/MP micro signals when an instruction will be on the data bus by preceding it with a high level on DB5 during the NADS signal. This status signal, called IFLAG, is latched into the D-type latch whose Q output consequently goes high. If during the following instructionfetch an instruction $X^{\prime} 20-X^{\prime} 2 F$ appears on the data bus, the upper four data lines DB7-DB4 will be at '0010' and the output of the 8 -input NAND gate will go low.

This output will thus go low when an instruction $X^{\prime} 20-X^{\prime} 2 F$ occurs, and not if one of these bytes occurs as an operand to another instruction. This low signal is clocked into a second D-type latch by the NRDS pulse, thus taking SC/MP's SENSE-A input high. Provided that interrupts are enabled in the micro this will generate an interrupt before the next instruction. The net effect of this circuit is that all the op-codes $X^{\prime} 20-X^{\prime} 2 F$ behave as if they were the XPPC 3 instruction (X'3F). With more complicated decoding circuitry other gaps in the instruction-set table could be utilized for user-defined instructions.

The circuit was used with a Science of Cambridge MK 14; the earlier MK 14 kits do

Table 1. Assignment of the 256 possible codes to instructions in the SC/MP instruction set
not disable the ROMs during NADS so there is a conflict between the contents of the ROMs and status signals such as IFLAG. Fortunately the remedy is simple, and can be implemented using two spare gates in the circuit. It involves breaking a track on the underside of the MK 14 circuit board, as shown in Fig. 2(a), and inserting the circuit shown in Fig. 2(b) between the points labelled A and B. MK 14 boards which are issue III or later incorporate this modification. In the prototype the circuit, which comprises four packages, was built on a small square of veroboard con-
nected to the underside of the MK 14 circuit board by a length of ribbon cable.

NEW INSTRUCTION PROGRAM

Obviously the assignment of operations to the new op-codes depends on the user's particular application. The program of Fig. 3 shows how the codes can be assigned to different functions: $\mathrm{X}^{\prime} 20$ changes the state of the three flag outputs and $X^{\prime} 21$ writes a segment pattern to the display, where $P 1$ is assumed to point to the display; the segment pattern to be

Fig. 1. Circuit which generates an interrupt when one of the codes $X^{\prime} 20$ $X^{\prime} \mathrm{F}$ occurs as an instruction
displayed is taken from the subsequent byte. The remaining codes, $X^{\prime} 22-X^{\prime} 2 F$, are undefined in this example and they behave as NOPs.

The program operates as follows: the address of the user's program minus one is stored at OF1E (high byte) and OF1F (low byte). Instead of starting execution at the beginning of the user's program, one enters at SETUP. This then points P3 to the user's program, enables interrupts, and jumps to the user's program with an XPPC 3. When one of the codes $X^{\prime} 20-X^{\prime} 2 F$ is encountered in the user's program an interrupt is generated and this causes a jump to the interrupt service routine, ISR, with the address of the code saved in P3. Thus the value of the code that caused the interrupt can be discovered by loading it using P3-relative addressing. In this example X'20 causes a jump to SRO which inverts the three flag outputs. The code X'21 picks up the second byte and stores it using PI-relative auto-indexed addressing. The user's program at OF80 demonstrates the use of the two new op-codes. It loops around loading P1 with the display address, displaying 'HO' in the rightmost two display positions with two $X^{\prime} 21$ instructions, and toggling the flags with an $\mathbf{X}^{\prime} 20$ instruction.

		; ADD USER-DEFTNED INSTRUCTIONS TO sc/mp instruction set.			
0000		;	- -orid		
orid OFIE		asave:	- $0 .+1$		YPOR A-REGISTER
	OP7	P3,	. DBYTE	upros-1	,FOR JEMP
	copd	SETUP:	LD	P3	, gEt ADDRESE OF
OF20	37		хРА只		; USER'S PROCRAM.
OP23	cofa		Lo	P3+1	
	33		XPAL		
OP26 0 O28	cop 6	RETURN:	LD	ASAV	; RESTORE A-REG.
	05		IEN		IENGBLE ITTERRUPTS
OF28	3P		xpPC	3	fuymp to user's Prog.
-0729	C8F2	ISR,	st	Asave	; SAVE A-REG
OF2C	C300		L^{D}	(3)	,GET 'OP-CODE'
	E420		XRI	$\mathrm{X}^{\prime 20}$	IIS IT 207
Or2E	9806		J2	SRO	
$\begin{aligned} & \text { or } 30 \\ & \text { of } 32 \end{aligned}$	E401		XRI	$\mathrm{x}^{\text {'01 }}$	H5 17 217
OF 34 OP36	${ }^{3808}$		J8	SR1	
	90EE		JMP	return	\% IGMORE OTHERS
OF38		3 $\times 20$	Changes	Fut	
	06	SRO:	CSA		
$\begin{aligned} & \text { of } 39 \\ & \text { or } 38 \end{aligned}$	2407		XRI	7	InNERT FLAG bits
	07		CAS		
$\stackrel{9}{\text { or } 3 \mathrm{C}}$	90e女		smp	RETURN	
OF $3 E$ OF40 or 42		; X'21	displays	segment code	In next ayte
	c701	SR1:	LD	91(3)	1BUMP P3
	c300		${ }_{2}$	(3)	; SEt segment code
	cDol		ST	91(1)	jDISPLAY It
	9004		JMP	RETURN	
		fest	Program	TO ILlustr	use
	ODOO	bisp		ODOO	dilsplay address
OF46			-OFP80		
Or80	$\begin{aligned} & \text { C400 } \\ & 35 \end{aligned}$	UPROG:	LDPA		INT P1 TO DISPLAY ADDRESS.
Or83	C400		LDI	L(DISP)	
OF85	31		xpaL		
	${ }_{213 F}$		- BYTE	$\mathrm{X}^{1} 21, \mathrm{X}^{\mathbf{4}} \mathrm{s}$	'DISPLAY 'O'
$\begin{aligned} & \text { OFBB } \\ & \text { OFR } \end{aligned}$	2176		.byTE	$\mathrm{X}^{\prime} 21, \mathrm{x}$, 76	;DISPLAY 'H'
	20		. BYTE	X'20	jTOGGLE flacs
OFB ${ }^{\text {P }}$	9053		JMP	UProg	ILOOP AROUND
	0000		. END		

Fig. 3. Program for SC/MP which with the circuit of Fig. 1 extends the instruction set

(a) The track lying between IC8 and IC3 on the underside of the board should be cut as shown

SC/MP XPAL O INSTRUCTION

A program in the Micro-Bus August 1978 demonstrated how a computed goto could be achieved with the M6800 by making use of the great variety of branch-on-condition instructions provided. The following letter, received from N. Feilden of Suffolk, shows how to take advantage of an undocumented SC/MP instruction to achieve a similar effect.
"Hands up all those SC/MP users who have used the instruction XPAL O (X'30). For those who have not, it exchanges the accumulator value with the lower half of the program counter. It thus effects a jump to the location $\mathrm{AC}+1$ with the address from which it came in the accumulator. A subroutine call is thus available anywhere within a 256 -byte page without having to set up one of the other pointers. XPAL O can also be used to achieve a computed goto, which makes up for not being able to use the extension register as a displacement in jump instructions. Of course all sorts of wonderful things can be done by writing programs which rewrite themselves, but not in ROM."
The program segment in Fig. 4 shows how a computed goto can be implemented; it jumps to one of four possible addresses for values in the accumulator of 0 to 3 .
The corresponding higher-byte instruction XPAH O ($\mathrm{X}^{\prime} 34$) also works but is less useful for obvious reasons. In a larger system it might be useful as a page selector.

		: COMPUTED co to 1. Index in accumulator			
OF3	01	,	XAE		
	02		cer		
OF36	40		LDE		
OF33			ADE		doutale jwiex
OF38	${ }^{84} 3$ A		${ }_{\text {API }}$	$\underline{\text { furfe })}$	PRDE TO PC
OP38	30	beras:	XPAL		dput in pe
$\bigcirc \mathrm{OF} 38$	900 C		JMP	50	
OF3D	9014		JMP	L1	
Or3F	9028		JMP	L2	
OF41		L4:			, ROUTINES

Fig. 4. Program segment for SC/MP jumps to one of four different labels depending on the value in the accumulator

ANALOGUE INFORMATION

If the properties of our environment such as temperature, pressure, light intensity, sound level, frequency, and position, are to be made accessible to a microprocessor system, they must first be converted into the digital form it understands. A new multi-input Analogue-toDigital (or A/D) conversion chip known as the Data Acquisition System has recently become available, and its incorporation into a microprocessor system would make possible such applications as temperature sensing for household and industrial heating control, interfacing to joysticks for micro-based games and simulations, digitisation of speech waveforms for computer speech recognition and reproduction, and, in general, many machine control and interface applications.

(b) Two gates should be wired between the points shown

Fig. 2 (above). Modification needed to MK14 kits

ADCO817 DATA ACQUISITION SYSTEM

National Semiconductor's ADCO817 Data Acquisition System or DAS is a single 40 -pin chip incorporating an 8 -bit successive approximation A/D converter and a 16 -channel analogue multiplexer. It is thus ideal for applications where information must be coordinated from a number of different analogue sources. It was originally designed for the automotive market and is currently being used in the instrument panel circuitry of General Motors' latest Cadillac. The ADCO817 has an accuracy of ± 1 bit; the ADCO816 is a prime version of the same part with an accuracy of $\pm \frac{1}{2}$ bit. The multiplexer section is separate from the A/D conversion stage so that it is possible to insert circuitry, such as sample-and-hold, between the two. The ADCO817 is available from Marshall's for $£ 15.63$ (inc. VAT).

INTERFACE CIRCUIT

The DAS can be interfaced directly to an M6800 microprocessor system bus as shown in Fig. 5; it is addressed as a single memory location ($\$ 4000$ in this case) and selected by the SELECT input. The required input channel is chosen by writing the channel number to the DAS; the lower four data lines are latched into the multiplexer on the rising edge of the WRITE pulse at the ALE (Address Latch Enable) input. The conversion is begun when the rising edge of the WRITE pulse occurs at the START input. When the conversion is complete EOC is taken high by the DAS and this generates an interrupt on the M6800's IRQ line. Note that EOC is also high for 1-8 clock periods after the rising edge of the START pulse, but this will be ignored. If there are other peripherals generating interrupts in the microprocessor system the EOC flag will have to be taken to the data bus via a tri-state buffer, enabled by a separate address from the DAS, so that it can be interrogated by the micro to determine the source of the interrupt.

The data outputs from the DAS are normally in a high-impedance state, but reading from the DAS takes TSC (Tri-State Control) high and puts the result of the A/D conversion on to the micro's data bus. The DAS is clocked by the M6800's \emptyset_{2} signal; the maximum clock rate permitted is 1.2 MHz , giving a conversion time of about 60 microseconds. The circuit should work equally well with micros such as SC/MP and the 8080 which provide NRDS and NWDS signals; these should be inverted to give the READ and WRITE signals in the circuit of Fig. 5.

Fig. 5. Interface between a Data Acquisition System chip and an M6800 system

DAS PROGRAMS

A complete program for the M6800 to drive the DAS circuit just described is given in Fig. 6. The program was developed on a Motorola D2 kit, and gives continuouslyupdated hexadecimal display of the conversion value, reading from 00 to FF for input voltages of from 0 V to +5 V . The program
makes use of two display routines in the D2 kit's JBUG monitor and these will have to be provided if the program is to be used with other systems. The first part of the program from $\$ 0000$ to $\$ 000 \mathrm{E}$ puts the address of the interrupt service routine ISR at $\$ \mathrm{~A} 000$; on interrupts the monitor uses this as a jump address. The first conversion is started by

- data agouisition system chip inteaface

ORG	O
LDX	CISA
STZ	IROVEC
LDA	IRNPT
STA	IINYT
CLI	DAS
JMP	DISPLA

select input hait por interrupt Lat INPUT IN HEX (00-FP)
' 10010
DAS

```
CE 0010 MAIN
CE 0010 MAIN
F% 2000
F% 2000
EOFE
EOFE


Fig. 6. Program using interrupts to give a continuous display determined by the voltage at one input of the Data Acquisition System chip
writing the required channel number, O in this case, to the DAS; the program then jumps to the display loop in the monitor. This continuously displays the contents of the display buffer \(\$ A 00 \mathrm{C}\) - \(\$ A 011\). On interrupts the ISR changes the contents of this buffer so that the latest \(\mathrm{A} / \mathrm{D}\) conversion result is displayed.

The interrupt service routine in Fig. 6 picks up the result of the conversion in accumulator A and the jumps to the subroutine REGST5 in the monitor which separates this into two 4-bit nibbles and puts them into the display buffer for display.

\section*{News Briefs}

\section*{'78 AUDIO WRITER IS PE CONTRIBUTOR}

THE 1978 Audio Writer Award, sponsored by BASF United Kingdom, has been made to Barry Fox who writes under the pen name of Adrian Hope. Barry's pen name may be known to regular readers but if we tell you that since March 1974 Barry has regularly contributed to P.E. with his column Patents Review, he will then be known to all. We have also published a number of special features by him and our next issue carries his article Binaural Stereo Patents.

The presentation of a silver tuning fork on mahogany base and a cheque for \(£ 300\) was made by Charles Mackerras the international conductor. We are sure readers will join us in thanking Barry for his valuable contributions; he is shown below with the award, flanked by Henry Pattinson of BASF (left) and Charles Mackerras.


NEW OLDE MAGAZINE
|F THE days when you could buy little "lozenge" tins containing cat's whiskers and crystals does more for your imagination than today's conductive foam packs containing l.s.i. chips, then this is the journal for you.

For the first time a magazine is to be launched exclusively for the vintage enthusiast. Sounds Vintage will be published bi-monthly, to cater for those interested in a wide field of subjects relating to the sounds of yesterday.

Among the areas covered will be vintage wireless equipment, gramophones and cylinder machines, records and cylinders, vintage amplifiers, pre-war literature. There will also be stories of the pioneers and of companies involved in the manufacture of the hardware and software since the early days.

Other reader attractions will include practical hints on the care, maintenance and restoration of vintage equipment, news from the major auction rooms, news of clubs and societies, reviews of books associated with vintage sound, readers letters and wants, reproduction of vintage advertisements, and anything which will be of value or interest to the collector, dealer or casual enthusiasts of the various aspects of sound reproduction in the days before it became too "electronic".

Sounds Vintage will start off as a 32 -page A4 presentation, and will be available on subscription only. Top names are lined up for many leading articles and features.

No. 1 was scheduled for publication in mid-January 1979. The annual subscription will be \(£ 5.80\) inland, \(£ 6.80\) overseas, postage paid. A special offer is being made for No. 1 only, a sample copy at 65 p post paid. An illustrated subscription form is available from: Sounds Vintage, 28 Chestwood Close, Billericay, Essex.

\title{

}

\section*{Will mix line and dynamic microphone inputs for a stereo image}

MANY readers must possess a hi-fi cassette or reel to reel tape recorder which is not used to it's full creative capacity for want of a good mixer. With a mixer one can produce one's own jingles or mix the output from several microphones to better capture the sound of a live performance. Alternatively announcements can be recorded onto a music tape without the tell tale clicks and pops that result from the microphone being plugged in and out.

\section*{CIRCUIT}

The circuit of a simple but effective mixer is shown in Fig. 1. Here the input signals are fed into a virtual earth amplifier which will accept both line and dynamic microphone inputs.

Line inputs enter the circuit via the resistors R1, R2 and R3. These form an attenuator with the input pots, VR1, VR2 and VR3.

Microphone inputs are fed directly to the "live" ends of the input pots and the sensitivity here for full output is some 3.5 mV . The signals at the slider of the pots is fed to the virtual earth via the resistors R4, R5 and R6.

C1 both isolates the virtual earth amplifier from any d.c. present at the input and defines the -3 dB point in the bass region at 10 Hz . The virtual earth amplifier employs two transistors in what might be, to some readers, a novel circuit.
TR1 operates in the common emitter mode with a low collector current of about \(100 \mu \mathrm{~A}\) to minimise noise. The collector of load resistor R9 however is bootstrapped to the emitter of TR2, a p.n.p. device. Due to this bootstrapping the voltage gain open loop is around 1,000 times and independent of line variations.

Minimum noise is produced when the base of TR1 sees an input impedance of 600 ohms. This can be conveniently arranged by judicious selection of feedback resistor, R7, so that the virtual earth impedance between the base of TR 1 and earth approaches that figure.

R7 and R8 provide overall feedback at both a.c. and d.c. and of course the bias current required by TR1. The gain of this stage has purposely been kept down to 20 dB to provide the low noise conditions already described and a reasonable input impedance. In consequence further amplification is required to bring the signal up to a usable level, 350 mV .

\section*{SECOND STAGE}

This is done by the next stage built around TR3. Again the virtual earth mode is used to define the gain of the stage.

Feedback is applied, and base bias, by the potential
divider R12, R13. The gain is defined by the ratio of R12 to R11. C4 blocks the d.c. from the emitter of TR2.

To maintain stability hefty decoupling is applied to both stages by R15, R16, C3 and C5.
The signal from the collector of TR3 is fed to the master volume control VR4 and from thence to the record input of the tape recorder, via R20. Headphone monitoring is provided on a large number of tape recorders although one can only listen to the actual recording as it is being made on three head machines.

Those that do provide a headphone monitoring facility are usually of inadequate volume to properly hear all the nuances of the recording. This is the reason for the inclusion of such a facility in this mixer. A separate board is used for this part of the circuit and those who would rather rely on the built-in monitoring provided by their recorders can omit this altogether without detriment to the performance of the mixer.

\section*{POWER OUTPUT STAGE}

A dual audio amplifier i.c. is used, National Semiconductor's LM377. In this application a heatsink is not required, a relief to anybody that has struggled to solder small pieces of tinplate to the pins of the i.c. whilst praying that the device is not overheating!

Reference to Fig. 1 will show that this stage is again operated in the virtual earth mode. The signal being applied to the inverting input via the d.c. blocking capacitor C8 and R17. Overall feedback is provided by R18.

The bias pin of the i.c. is connected to the non inverting inputs and tied to a.c. earth by C7. (The numbers in brackets refer to the corresponding pins on the other channel.)

\section*{Specification}

S/N Ratio -76 dB unweighted. 350 mV output at master volume control.

Max. output bofore clipping, 3.6 V r.m.s.
Harmonic distortion-none audible up to max. output \(\}\)
Frequency response \(-3 \mathrm{~dB} 10 \mathrm{~Hz}-30 \mathrm{kHz}\).
Line sensitivity \(\mathbf{1 0 0} \mathbf{m V}\).


Fig. 1. Circuit of one channel of mixer

The output signal is fed to the headphones by both C9 and R19. One of the design considerations was portability. To enable the unit to be used in difficult locations, that is when only one mains socket is available, the unit is battery operated. This is no hardship however since the current consumption is quite low, the prototype takes only 12 mA under quiescent conditions and around 30 mA when the headphones are being driven hard. Two PP9s provide many hours of continuous use. Larger capacity batteries can be easily accommodated in the chassis space available.

\section*{CONSTRUCTION}

Construction begins with the wiring of the boards. The layout of both is shown (Figs. 2-3). Little comment is required on this although care must be exercised to ensure that the semiconductors and electrolytics are correctly orientated.
The boards are lifted clear of the case by means of 6BA screws and nuts and the constructor must ensure that the breaks in the Veroboard tracks near these are properly made or the circuit will not function.

\section*{COMPONENTS}

Resistors (2 required except where asterisked)
\begin{tabular}{|c|c|}
\hline R1, R101 & \(2 \mathrm{M7}\) \\
\hline R2, R102 & 2M7 \\
\hline R3, R103 & 2 M 7 \\
\hline R4, R104 & 68k \\
\hline R5, R 105 & 68k \\
\hline R6, R 106 & 68k \\
\hline R7, R107 & 680k \\
\hline R8, R108 & 75k \\
\hline R9, R109 & 7 k 5 \\
\hline R10,R110 & 2 k 7 \\
\hline R11,R111 & 33k \\
\hline R12,R112 & 330k \\
\hline R13, R113 & 47k \\
\hline R14, R114 & 6k2 \\
\hline *R15 & 1 k 5 \\
\hline *R16 & 2 k 7 \\
\hline R17,R117 & 22k \\
\hline R18, R118 & 1 M \\
\hline R19, R119 & 22 \\
\hline R20, R120 & 47k \\
\hline \multicolumn{2}{|l|}{All \(\frac{1}{2} \mathrm{~W}\) carbon \(10 \%\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Potentiometers & \\
\hline VR1, VR101 & 100k lin. dual gang \\
\hline VR2, VR102 & 100k lin. dual gang \\
\hline VR3, VR103 & 100k lin. dual gang \\
\hline VR4, VR104 & 47k log. + d.p. switch \\
\hline Samiconductors & \\
\hline TR1, TR 101 & BC149 \\
\hline TR2, TR 102 & BC251 \\
\hline TR3, TR103 & BC149 \\
\hline *IC1 & LM377 \\
\hline * D1 & TIL209 \\
\hline Capacitors & \\
\hline C1, C101 & \(100 \mu\) elect. 10 V \\
\hline C2, C102 & 8 p 2 silver mica \\
\hline C3, C103 & \(1,000 \mu\) elect. 25 V \\
\hline C4, C104 & \(10 \mu\) elect. 25 V \\
\hline C5, C105 & \(100 \mu\) elect. 16 V \\
\hline C6, C106 & \(10 \mu\) elect. 16 V \\
\hline C7, C107 & \(220 \mu\) elect. 16 V \\
\hline C8, C108 & \(10 \mu\) elect. 16 V \\
\hline C9, C109 & \(1,000 \mu 25 \mathrm{~V}\) \\
\hline
\end{tabular}

Miscellaneous
Stereo headphone jack socket, 14 phone sockets Aluminium case \(11 \times 7 \frac{1}{2} \times 3 \frac{1}{2}\) in 4 knobs, \(5 \times 2 \frac{1}{2}\) in Veroboard, \(1 \frac{3}{4} \times 2\) in Veroboard


Fig. 2. Main board showing two channel transistor assembly



Fig. 3. I.c. power stage

(Left). Chassis interior showing board placement (Below). Wiring to control panel components. All lettered flying leads refer to the main board and the headphone amplifier board



\begin{abstract}
Showing phono socket assembly at rear panel for line and microphone inputs and mixer output. Note that the attenuator resistors are wired directly at the input sockets for all channels
\end{abstract}

\section*{CASE}

No case drilling details are shown as photographs make this quite straight forward. Readers will notice that rotary pots are used instead of the more usual slide types. The reason for this is that the latter tend to be more prone to the ingress of dirt and in consequence become sticky and noisy in use.

Needless to say, dual slide pots could be used but the layout of the case must be altered to suit. In practise, rotary controls are as simple and accurate as the linear slide type.

Linear pots are used at the input because they are better matched than logarithmic types, usually to within 1 dB . Due to the inherently close tolerance between tracks of the input pots, overall balance is obtained by the manipulation of the master volume controls.

\section*{LEGENDS}

Legends are applied to the case with Letraset "magic lettering". These are clearly indicated for the front and rear panels in the photographs.

This should be fixed with either a proprietary varnish spray or alternatively clear nail varnish. The choice of control knob is, of course, a matter of personal choice although experience shows that a knob with a large diameter, say 1 in , with a pointer is best. Push on types are less bothersome than the grub screw fitting types, and tend to be les expensive.

Once the case has been drilled the boards should have the necessary flying leads soldered in place and then mounted in

their respective positions. The pots, l.e.d. and sockets are then mounted. Finally the flying leads are connected to their destinations. At this point the wiring should be thoroughly checked. When satisfied that all is well connect the batteries, headphones and signal sources. Switch on and check the action of the controls. A final check that the voltages shown in Fig. 1 are present \(\pm 1 \mathrm{~V}\) and the mixer is ready for use.

\section*{[妇 \\ A Volume of Practical Knowhow}
. . . can be made using these new-look self binders for PRACTICAL ELECTRONICS to become your most valuable source of reference. With the Easi-Binder current copies can be inserted as they are received, without waiting for the completion of twelve issues.
They are attractively made with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers, please advise year and volume and a separate set of gold transfer figures will be supplied.
At \(£ 2.85\) inc. VAT and postage ( \(£ 3.45\) overseas) they are obtainable from:

Post Sales Department, IPC Magazines Ltd. Lavington House, 25 Lavington Street London SE1 OPF

I enclose P.O./cheque value . . . . . . . . .for. . . . . . binders at E2.85 each ( \(£ 3.45\) overseas) for Practical Eloctronics Vol. No's. . . . . .
Name
Address

Date


\title{
16 NOTE (®)
}

Enables the user of a synthesiser to program in voltage patterns to provide repeated melodies, rhythm accompaniments etc., which can be manipulated for speed and key change.

\title{
LOGISCOPE
}

In addition to indicating whether a test point is at logic 1, logic 0 , floating or pulsing this tester will provide information about the mark space ratio and the frequency of the input signal.


\section*{Plus regular features!}

\section*{PRACTICAL}

\title{
= =-
}

OUR MARCH ISSUE WILL BE ON SALE FRIDAY 9 FEBRUARY 1979

Hy

THE problem with books about microprocessors is that the author either concentrates on one specific device and loses readers not interested in it, or else, as in many books on the subject currently available, devotes part of the book to a discussion of different devices being manufactured; this usually turns out to be a very expensive way of buying the manufacturers' data.

In this book Mr Graham overcomes this problem by giving programming examples in a high-level language, namely PL/M, and one section is devoted to describing its features. The routines given to illustrate the techniques presented in the remainder of the book can thus be converted from PL/M to any specific assembly language.

\section*{MICROPROCESSOR PROGRAMMING FOR COMPUTER HOBBYISTS}

\author{
By Neill Graham \\ Published by Tab Books \\ Available from W. Foulsham, 837 Yeovil Rd., Slough, Bucks. \\ 378 pages. Price \(£ 6.50\)
}

The subjects covered include: floating-point arithmetic, input, and output; pseudo-random number generators; manipulation and use of data structures including arrays, strings, stacks, queues, deques, chains, and trees; and finally, searching, hashing, indexing, and sorting methods. Within these sections the book covers the topics clearly, if a little briefly, and the use of data structures is illustrated with a number of clear diagrams.

Though prior familiarity with a high-level language like PL/1, on which PL/M is based, might be an advantage in understanding the examples, the book should be a valuable source for the microprocessor programmer.
D.J.D.

\section*{COMPETITION}

THE free entry competition we ran at Breadboard attracted a large entry and guesses at the number of projects published in P.E. from the December 1976 isşue to December 1978 inclusive ranged from 2 to 2,000 . The correct answer was 94 . No one guessed this figure correctly but we had many with 93 and 95 .

The winner eventually selected was Mr B Wallington of Chatham. He receives a P.E. VDU System (presented by Technomatic), and a year's supply of P.E.

The ten runners up were: A. C. Walkland (Liverpool), J. Green (London W. 14), J. D. Parker (Buckhurst Hill), M. Davis (Nuneaton), P. D. Bond (South Godstone), J. Jones (Birmingham), Yan Lee (Tipton), M. Browne (Fleet), M. W. Keen (Bridgend), J. N. Jones (Basingstoke), each will receive a year's supply of P.E.

Two extra runners up prizes have been awarded to Mr. C Wysocki (London W9) and Dr. R. D. Bailey for their original "slogans". These were: "I think P.E. is to electronics magazines what St Michael is to underwear", and "I think P.E. is worth your trouble and my money". Well Dr. Bailey you can save your money for the next year, your copies will be sent by us. Our thanks to all those who participated, especially the staff of other magazines for their constructive comments!

\section*{BREADBOARD EXHIBITION}

TO all our readers who visited our stand at Breadboard, we are sorry that our technical staff were prevented from being there to demonstrate equipment and answer queries. This was due to an N.U.J. dispute within the I.P.C. Magazines Group. Thankfully the dispute has not affected P.E.s publication dates and is now over.

\section*{Polints nilisinc}
R.C. MOTOR CONTROL (DECEMBER 1978)

The left hand side of Link-2 shown on the component overlay should connect to the junction of R13 and D5. This requires an extra p.c.b. pad at R13, and a longer link to clear the track running underneath.


Readers requiring a reply to any letter must Include a stamped addressed envelope.
Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

\section*{Of Bees And Keys}

Sir-Congratulations to you and the authors on the CHAMP project. This ranks as perhaps the most exciting project to have been published in "Practical Electronics" for years. I have just had a very absorbing time in programming CHAMP to play the "Flight Of The Bumble Bee" (over 800 notes) using less than 512 program instructions, and look forward to other equally challenging problems.

The only criticism I have is that the authors use a keyboard which is apparently not readily obtainable. Readers may be interested to know that a good, robust, cheap hex keyboard can be obtained from Chiltmead Ltd, Arthur Rd, Reading. It is, however, somewhat too large to fit into the space allocated, but can nevertheless be accommodated by repositioning a few of the switches. The keyboard encoder and digit drivers can be mounted on a piece of Veroboard under the sloping panel at its top. The ground and 5 V leads can then run to the terminals at the
front, and the ribbon cable to the main board need only be 16 wires, which is more convenient than 18 . This cable can run through a rectangular hole in the chassis symmetrically placed with respect to the other cable hole. This arrangement seems to me to be neater than that described in the original article.
W. Gough
Cardiff.
 Glasgow: 85 West Regent Street, G2 20D. Tel: 041-332 4133. Bristol: 1 Straits Parade, Fishponds Road, B516 2LX. Tel: 0272654201.


\section*{This Is The Famous \\ £99.95 \\ PLUS 8\% V.A.T. \\ Computer}

Stop reading about computers and get your hands on onel With ELF II and our new Short Course by Tom Pirtman, vou can master computers in no time at all ELF 11 demonstrates all 91 com-
mands an RCA 1802 can execute and the Short Course quickly teaches you how to use each of the 1802 's capabilities.
Elf li's video output lets you display an alphanumeric readout or graphics on any TV screen or video monitor and enjov the
latest video latest video games.
But thats not all. Once vou've mastered computer fundamenials, ELF II can give You POWER with add-ons that are
among the most advanced found anywhere. American IEEE chapters plus hundreds of universities and major corporations have chosen the \(\varepsilon\) LF It to introduce their students and personnel to microprocessor computing \({ }^{1}\)

\section*{Learn The Skill That May Soon Be Far}

The ablity to use a computer may soon be more important to your earning power than a college degree. Without a knowledge of computers, Vou are always at the mercy of others when it comes to solving highly complex business. engineering. industrial
and scientific problems. People who understand computers can command MONEY and to get in on the action. you must learn computers. Otherwise you ll be lett behind.

\section*{ELF If Is The F-A-S-T Way to Learn} Computer Fundamentals 1
Regardless of how minimal your computer background is now, You can learn to programme a computer in almost no time at all on Mircopococssor And Compueve Prograniming in non-technical
language that seads you through every one of the RCA COSMAC language that leads you through every one of the RCA COSMAC
1882 s capabilities so vou'll
and how to gel ELF 11 to do it
All 91 I you, step-lby-step. The text, written for detronics by Tom Pittman. is a tremendous advance over every ciher programming book in
print.

Keyed specifically to the ELF II, it's loaded with "hands on illustrations. When you te finished. ELF II and the 1802 will no
longer hold any mysteries for vou. In fact. not only will you be able to use a personal compurer creatively, you'll also be able to understand computing articles in the technical press.
If you work with large computers. ELF II and our short Course will help you to understand whal makes them tick.

A Dynamlte Package For Just E99.95 Plus 8\% V.A.T.! With ELF II. you learn to use machine language - the fundamental language of all connputers. Higher level languages such as
FORTRAN and BASIC must be translated into machine language before a computer can understand them. With ELF II you buitd a solid foundation in computers so youill really know what youire doing no matter how complicated things get.
Video output also makes ELF II unique among computers
seling such a low price. Altached to your TV sel. ELF II becomes selling such a low price. Atrached to your TV set. ELF II becomes
a tabulous home entertainment centre II's capable of providing a fabulous home entertainment centre. I's capable of providing
endless hours of fun lor both adults and children of all agest \(E L\) Lf Il can create graphics, alphanumeric displays and fantastic video games.
Only a
Only a low cost RF modulator is required to connect ELF II to vour ELFIIs 5 -card expansion bus (connectors not included) allows you to expand ELFII as your neds for power grows. If you're an lock, thermostat, timer, or for countless other applications.

\section*{ELF II Explodes Into A GiantI}

Thanks to ongoing work by RCA and Netronics, ELF II add-ons are among the most advanced anywhere. Plug in the GIANT
BOARD and you can record and play back programmes, edit 80ARD and you can record and play back programmes, edit and debug programmes, communicate with remote devices and
make things happen in the outside world. Add Kluge Board to get ELF if to solve special problems such as operating a more Complex alarm systiem or controlling a printing press. Add 4 k RAM board and you can write longer programme

Expanded. ELF II is perfect for engineering: business. Industrial. scientific and personal finance and tax applicatons. No other such an extensive research and development programme. The ELF-BUG Monitor is an extremely recent breakthrough that lets you debug programmes with lightening speed because the key to debugging is 10 know what's inside the registers of the microprocessor and instead of single stepping
through your programme. The ELF-BUG Monior, utilising break points lets you display the entire contents of the recisters on your TV screen at any point in vour programme. You find out immediately what's going on and can make any necessary changes, Programming is further simplified by displaying 24 bytes of RAM with full address, blinking cursor and auto scrolling Netronics will soog be introd
\& Music System - more breakthrovighs that ELF II owners will be the first to enior!

Now BASIC Makes Programming ELF II Even Easier I Like ali computers, ELF II understands only "machine language"The language computers use to lalk to each other. BuI 10 make talks to ELF II in machine language for you so that you can programme ELF II with simple words that can be typed out on a keyboard such as PRINT, RUN and LOAD.

> Not What Your Computer Can Do But What Gan le Do For You!

Oan the trapped into buying a dinosaur simply because you can aftord it and it's big. ELF II is more useful and
With ELF III, you learn to write and run your own programmes. You'ra never reduced to baing a mere keypunch operator, working blindly with someone else's predeveloped
sotware. No matter what your speciality is owning a computer which you really know know how to use is sure to make you a leader.
EIF II is the fastest way there is to get into computers. Order

\author{
H.L. AUDIO LTD., Dept. P.E., 138, KINGSLAND ROAD, LONDON E2 8BY. TEL: 01-739 1582
}

\section*{now available for elf II-}
- Tom Pittman's Short Course On Microprocessor \& Computer Programming teaches you just about evervthing there is to know language, it's a learning breakthrough for engineers and laymen alike. \(\mathbf{E 5} .00^{\bullet}\) post paid!
D Deluxe metal cabinet with plexiglas dust cover for ELF II. E29.950 plus \(£ 1.50 \mathrm{p} \& \mathrm{p}\).
 8 -bit P \(1 / 0\), decoders for 14 separate 110 instructions and a Kluge (Prototype) Board accepts un to 36
Kiuge (Prototype) Board accepts up to 36 IC's. © 17.00 plus £89.95: plus 50p.p\&
\(\square\) Gold plated 86 -pin board). \(E 5.70^{\circ}\) post paid.
- Prolessional ASCII Keyboard klt with 128 ASCII upper/lower case set, 96 prinable charactiers, onboard regulator, parity, logic
selection and choice of 4 handshaking signals to mate with

ㅁ Deluxe metal cabinet for ASCII Keyboard. \(£ 19.95^{\circ}\) plus \(£ 1.50\) GDLF II Tiny BASIC on cassette tape Commands include

\footnotetext{
SAVE, LOAD. \(\pm, ~ K, \div\),, 26 variables A-L, LET, IF/THEN, INPUT.
}

PRINT, GO TO, GO SUB, RETURN, END, REM, CLEAR, LIST RUN, PLOT, PEEK, POKE. Comes fully doccumented and includes alphanumeric generator required to display alphanumeric
characters directly on your TV screen without additional characters directly on your screen without additiona hardware. Also plays tick-tack-toe plus a drawing game that uses
ELF it shex kevboard as a joystick, 4 k memory required. \(\mathbf{E} 14.95^{\circ}\) post paid.
Tom Pitman's Short Course on Tiny BASIC for ELF II C5.00* post paid.
Expansion Power Supply (required when adding 4k RAM) 19.95* plus E2.00 p\&.p.
ELF-BUG Deluxe

Allows displaving Deluxe System Monitor on cassette tape. point in your programme. Also displays 24 bytes of memory with ull addresses, binking cursor and auto scrolling. A must for the serious programmer \({ }^{8} 14.95^{*}\) post paid.
Coiming Soon: A-D. D-A Converter, Light Pen, Controller Board
Call or write for wired prices!
H. L. AUDIO LTD., Dept. P.E.

138, Kingsland Road, London E2 8BY.
Tel:01-739 1582.
Sole European Distributors for Netronics R \& O Ltd., U.S.A.
Yes I I want to run programmes at home and have enclosed: ELF 11 kit. a including postage and V.A.T. for ACA \(\operatorname{Cos} .94\) including postage and V.A.T. for power
supply (requiredl, 1 E5.95 for RCA 1802 User's Manual, Microprocessor Comp postage and V.A.T. for Short Course on 1802 Want mine wired ond tested with power supply, RCA E164.10 including postage and V.A.T. Course included for just I am also enclosing payment (ind
for the items checked at the left.

Total Enclosed E
USE YOUR \(\square\) ACCESS \(\square\) bARCLAYCARD
Account No.
Signature Exp. Date
CREDIT CARD PHONE ORDERS ACCEPTED 01-808 6127.
Print Name
Address

\section*{GREENWELD}

\section*{443 Millbrook Road Southampton SO1 OHX \\ \section*{Tel:C}}

Vat All prices quoted include VAT. Add from schools, etc. (Minimum invoice despatched on day of receipt. SAE with wolcome. Wholesale list now available snquilries please. MINIMUM ORDER for bona-fide traders. Surplus comVALUE ff. Official orders accepted

\section*{OSCILLOSCOPES}

We have avallable from stock the following SCOPEX models: 4D10A - DC-10MHz;
10 mV sensitivity: Stab Power supplies; Dual beam; \(\mathbf{3 \%}\) accuracy; Excellent value at E 214 inc VAT and Carr.
4S6 - DC-6MHz
4S6- DC-6MHz: 10 mV sensitivity. Ideal £150 inc VAT and Carr.

\section*{RELAYS}

W847 Low protile PC mntg \(10 \times 33 \times 20 \mathrm{~mm}\) 6 V coil, SPCO 3A contacts. \(93 \rho^{\circ} \times 10 \mathrm{~mm} 12 \mathrm{~V}\)
W832 Sub. min type, \(10 \times 19 \times 10 \mathrm{~m}\) W832 Sub. min type, \(10 \times 19 \times 1\)
W817 11 pin plug in relay, rated 24 V ac, but works well on 6 V DC. Contacts 3 pole d/o rated 10 A .95 F . W 819 12V 1250 DPCO 1 A contacts. Size \(29 \times 22 \times 18 \mathrm{~mm}\). min pluggin type 72 p W839 50 V ac 124 V DC coil. 11 pin plug in
type. 3 pole c/o 10 A contacts Only 85 p type. 3 pole c/o 10A contacts Only \(85 p\)
W846 Open construction mains relay. 3 sets 10A c/o contacts. f1-20
Send SAE for our relay list - 84 types listed and illustrated

\section*{AMPLIFIER KIT E1.75}

Mono gen. purpose amp with tone and
Vol/on-off controls. Utilizes sim. circultry to volon-of controls. Uilizes sim. circuliry to matched for crystal cartridge. 4 transistor circuit. Simple to build on PCB provided. Can be either battery or mains operated. FFor mains powered version add c2.20 for suit able transformer.) Blue vinyl
aluminium case to suit ( \(\mathbf{W} 372\) ) \(\mathbf{f} \cdot 30\)

\section*{RESISTOR PACK}

Carbon Film \(5 \%\) mostly \(\frac{i}{} W\). few \(\frac{1}{2} W\) resistors. Brand new. Wut have preforme popular values at the unrepeatable price o E2. 50 per 1000; £11 per 5000

\section*{DIN SOCKET OFFER}

2 pin switched speaker socket. PC mounting: 5 pin \(180^{\circ}\) PC mnig or chassis mntg (clip
fix) All the same price, any mix: 10 for 70 p \(\mathbf{f x}\). All the same price, any
\(\mathbf{2 5}\) for \(\mathbf{£ 1 . 6 0 ~} 100\) for \(\mathbf{£} \mathbf{5} .50\).

\section*{TMS4030 RAM}

4096 bit dynamic RAM with 300 ns access time; 470 ns cycle time: single low compatible: Low power dissipatlón. Suppliad with data E2.75

MISCELLANEOUS IC's Supplied with data if requested, MC3302 quad comp. \(120 \mathrm{p}: 710\) diff comp. (TO99 LM711 Dual diff comp 65p; LM1303 dua stereo preamp 750: MC1469R voltage reg
E1.50; UPC1025H audio \(£ 3.50: 575 \mathrm{C} 2\) E1.50; UPC1025H audio \(£ 3.50: 575 \mathrm{CL}\)
audio \(\mathrm{E2.88}\); TDA2640 audio \(£ 2.92\); SRCC

\section*{EDGE CONNECTORS}

Special purchase of these \(0.1^{n}\) pitch doublesided gold-plated connectors enables us to
original list pricel
18 way \(41 p\); 32 way \(72 p ; 40\) way \(90 p\)

\section*{HEAT SINK OFFER}

Copper TO5 sink 17 mm dia \(\times 20 \mathrm{~mm} .10\) for

\section*{74 SERIES PACK} Selection of boards containing many different
74 series IC s. 20 for \(£ 1 ; 50\) for \(£ 2.20 ; 100\)

\section*{THE NEW 1978-9 GREENWELD CATALOGUE}

FEATURES INCLUDE:
- 50p Discount Vouchers
- Quantity prices for bulk buyers
- Bargain List Supplement
- Reply Paid Envelope
- Priority Order Form
- VAT inclusive prices PRICE 30 p +15 p POST

\section*{AIR FRESHENER KIT}
\begin{tabular}{l} 
As featured in Nov EE. Completer \\
Case and instinc. \\
\hline
\end{tabular} Case and instuctions. Only \(\mathbf{E 7 . 9 5}+55 \mathrm{p}\)

\section*{PUSH BUTTON BANKS} lllustrated list of types from 30p In our
Bargain List No 6-Send SAE.

\section*{BC182B OFFER} Special Offer for quantity users 1 k .035 VAT:
5 k .032 VAT. Price negotiable on 1Ok. pprox 70 k availabl

\section*{DIODE SCOOPIII}

We have been fortunate to obtain a large quantity of untested, mostly unmarked glas sillcon diodes. Testing a sample batch revealed about \(70 \%\) useable devices - signa be included. These are being offered at the incredibly low price of \(£ 1.251000\) - or a bag
of 2500 for \(£ 2.25\). Bag of \(10,000 £ 8\). Box of 25,000 £ 17.50. Box of \(100,000 £ 60\)

\section*{POLYTHENE SHEET}

Size \(36 \times 18^{\prime \prime} 200 \mathrm{~g}\). Hundreds of uses around the home,

\section*{PC ETCHING KIT MK II} Now contains 200 sq. ins. copper clad board,
1 lb . Ferric Chloride, DALO etch-resist pen hb. Ferric Chloride, DALO etch-resist pen,


\section*{BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU}
* SAVE ON TIME-No delays in waiting for parts to come or shops to open?
- SAVE ON MONEY-Bulk buying means lowest prices-just compare with others!
- HAVE THE RIGHT PART--No guesswork or substitution necessary/

ALL PACKS CONTAIN FULL SPEC, BRAND NEW, MARKED DEVICES- SENT BY
RETURN OF POST. VAT INCLUSIVE PAICES.
K001 50 V ceramic plate capachors, 5\%. 10 of each value 22 pF to 1000 pF . Total 210 . 83.35
\(K 002\)

K002 Extended range, 22 pF to 0.1 LF .330 values f 4.90
Ko03 Polyester capacitors. 10 each of these
values: \(0.01,0.015,0.022 \quad 0.033\) values: \(0.01,0.015,0.022,0.033,0.047\),
\(0.06 \mathrm{~B}, 0.1,0.15,0.22 .0-33,0.47 \mu \mathrm{~F}, 110\) altogether for £4.75 K004 Mylar capacitors, min 100 V ivpe 10 each all values from 1000 pF to \(10,000 \mathrm{pF}\).
Total 130 for \(£ 3.75\) K005 Polystyrene capacitors, 10 each value from 10 pF to \(10,000 \mathrm{pF}\). E 12 series \(5 \%\) 160V. Total 370 for E12.30 K006 Tantalum bead capacitors. 10 each of
the following: \(0.1,0.15,0.22,0.33,0.47\) the following: \(0.1,0.15,0.22,0.33,0.4\) \(0.68,1,2.2,3.3,4.7,6 \cdot 8\) all 35V: \(10 / 25\)
\(15 / 1622 / 1633 / 1047 / 6100 / 3\). Toial 170 tants for E 14.20
K007 Electrolytic capacitors 25 V working, small physical size. 10 each of these popular values: \(1.2 .2,4.7,10,22,47,100 \mu \mathrm{fF}\). Total
70 for \(£ 3.50\) \(K 008\) Extended range. as above. also including 220, 470 and \(1000 \mu \mathrm{~F}\). Total 100 for K0.90
K021 Miniature carbon film \(5 \%\) resistors,
CR25 or similar. 10 of each value CR25 or similar. 10 of each value from 10R
to 1 M , E12 series. Total 610 resistors. f 600 to K 022 Extended range. total 850 resistors from 1 R to 10 M £8.30
K 041 Zener diodes. \(400 \mathrm{~mW} 5 \%\) BZY88, etc. 10 of each value from 2.7 V to 36 V , E24 series. Total 280 for \(\mathbb{K} 15.30\).

\section*{TRANSFORMERS}

All mains primary: \(12-0-12 \mathrm{~V} 50 \mathrm{~mA} 85 p\);
 E2.io. Multitapped type 0.12-15-20-2 4 -
 20V © 300 mA iwice E2.50;

\title{
1 ST. MICHAELS TERRACE, WOOD GREEN, LONDON, \\ 888-3206
}

N22 4SJ (MAIL ORDER DEPT.)

\section*{FLIP \\  \\ and full \\ and full
instruction \\ A pocket garme. Easy to build and great to
play. Kit price \(£ 5-25+8 \%\) VAT, Post free.}

\section*{SIRENS}

CR 11 Siren. Rotating fan in metal unit. Adjustable mounting bracken. Gives high pitched wail. 12 volts DC
\(\mathrm{BO} \times 75 \mathrm{~mm} . \mathrm{E} 8 \cdot 50+8 \%\).
CA 12 Siren. 125 mm diameter gold coloured horn with fixing plate. Emits high-pitcher wailing note of varving frequency
per minute. 12 volis \(D C\). \(£ 9-00+8 \%\).
CA 13. As above but rapid noise frequency change - 160 cyc. per minute.
CA 14 Siren. 90 mm (dia) \(\times 60 \mathrm{~mm}\). Red plastic case with fixing plate, emits high-
pliched wailing note of varying frequency 100 cyc. per minute. 12 volts D.C. E5. \(50+\)

BARGAIN LOUDSPEAKER
Goodmans \(5^{\circ} 8\) ohm long throw heavy duty Mounting plate is integral with L/S chassis \(5 t^{\prime \prime}\) (diagonally)

2 WAY 8 OHM
HEAVY DUTY XOVER
A 2 way 8 ohm H/D Xover sultable for LS
systems up to 100 W . Inpur via screm ter
sysiems Up to 1 HOW. Input via screw terswitch which selects either Flat, -3dB or
\(-6 d B\). \(-6 d 8\).
8uy now while stocke lastl
Only \(£ 3.00+8 \%\) VAT
3 KILOWATT PSYCHEDELIC LIGHT CONTROL UNIT A 3 channel sound to light unit housed in a robust metal case. with a sensitivity contro full instructions make this unit easy to onnect to your present amplifir.
S.A.E. for spec. sheet.
Still only \(£ 20.00+8 \%\) VAT.

POWER SUPPLY UNIT PP1 switched 3.4!.6.7!. 9 and 12 volts Size: \(130 \times 55 \times 75 \mathrm{~mm}\) approx. Our Price: E8. 25 (\% B\% VAT.

\section*{SIX-PIECE} MINIATURE SCREWDRIVER SET
Six precision screwdrivers in a hinged plastic hox. Blade sizes: 0.8 mm .1 .4 mm .2 mm 2.4 mm .2 .9 mm .3 .8 mm.

\section*{PIEZO ELECTRICHORN} UNITS
High Quality, High Power Tweeter. No Xover
reqd. Freq. Re sponse: \(3 \cdot 8 \mathrm{kHz}-28 \mathrm{kHz}\). Spec. sheet sent on receipt of S.A.E.
Our Price: \(£ 6.50+8 \%\) VAT.

BARGAIN TRANSFORMER 240V Primary \(12-0-12 \mathrm{~V} 500 \mathrm{~mA}\) sec.
Approx. size: \(60 \times 40 \times 50 \mathrm{~mm}\). Approx. size: Price: \(\mathbf{£ 1} .50+8 \%\) VAT.


P\&P' orders up to \(£ 5\). Add 30p Orders £5-£ 10 . Add 50p. All orders over \(\mathbf{f} 10\) post freel Please add V.A.T. as shown. S.A.E. with all enquiries please

BARCLAYCARD

Personal callers welcome at: 21 GREEN LANES, PALMERS GREEN, N. 13. also 13 SOUTH MALL, EDMONTON GREEN, EDMONTON

CHINAGLIA DINO-ELECTRICAL AND ELECTRONIC TEST EQUIPMENT MANUFACTURERS

\section*{DOLOMITI}
\(20 \mathrm{k} \Omega / \mathrm{V}\) a.c. and d.c

A NEW HIGH SENSITIVITY MULTIMETER WITH ALL THE FEATURES YOU WILL EVER NEED


Accuracy: D.C. ranges, \(=2.0 \%\). A.C. \& \(\Omega\) ranges \(=2.5 \%\)
39 ranges: d.c. \(\mathrm{V}, 0.150 \mathrm{mV}, 500 \mathrm{mV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1.5 \mathrm{kV}\), d.c.i. \(0.50 \mu \mathrm{~A} .500 \mu \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 0.5 \mathrm{~A} .5 \mathrm{~A}\), a c. C V, \(5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}\), \(150 \mathrm{~V}, 500 \mathrm{~V}, 1: 5 \mathrm{kV}\), a.c.1. \(5 \mathrm{~mA}, 50 \mathrm{~mA}, 0.5 \mathrm{~A} .5 \mathrm{~A} ; \mathrm{dB}-1010+65\) in
6 ranges, \(\Omega 0.05 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega\). pF 50 kpF . 500 kpF .
Automatic overload protection and high current range fueling.
Scale mirfor and fine pointer for accuracy of reading. Single knob main range switching and all panel controls. C.E.i. Class 1 movement with sprung jewel bearings. Extended 92 mm scale length for extra clarity. Compact ABS case \(125 \times 131 \times 37 \mathrm{~mm}\). Weight 750 g with batteries. Supplied complete with carrying case, fused leads, handbook and full 12 -month guarantee. Optional 30 kV d.c. probe avallable

Meter \(£ 50.00\) incl. VAT ( \(£ 1\) P. \& P.)
30kV Probe £12.85 incl. VAT
For details of this and the many other exciting instruments in the Chinaglia range, including multi-meters. component measuring, automotive and electronic instruments please write or telephone.


Instruments Ltd 19 MULBERRY WALK. LONDON SW3 \(60 Z\) TEL: 01-352 1897

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\

\end{tabular} & & \multicolumn{6}{|l|}{\begin{tabular}{l}
Callers Welcome MON-SAT: 9.30-5.30 \\
THURS: Closed all day \\
Lunch: MON-FRI: 1.30-2.30, SAT: 1.00-2.00 \\
all prices include vat
\end{tabular}} \\
\hline \begin{tabular}{l}
CASSETTE RECORDER DECK AND PRE AMPLIFIERS \\
with + solenoid auto-stop \\
+ CrO2 switch \\
+ piano key operation \\
+ twin level meters \\
+ mic. sockets \\
Tech. Spec.: \\
Bias and erase freq. 88 kHz \\
4 ICs 8 Transistors \\
1 SCR 10 Diodes \\
Power supply extra Circuits. Diagrams and top
\end{tabular} & \multicolumn{7}{|l|}{\begin{tabular}{l}
\begin{tabular}{c|c|c|c|c} 
Box No. & \begin{tabular}{c} 
Breadth \\
mm
\end{tabular} & \begin{tabular}{c} 
Length \\
mm
\end{tabular} & \begin{tabular}{c} 
Herghi \\
mm
\end{tabular} & \begin{tabular}{c} 
Weight \\
gm
\end{tabular} \\
\hline 1001 & 60 & 90 & 50 & 100 \\
\hline 1002 & 75 & 130 & 61 & 175 \\
\hline 1003 & 90 & 160 & 71 & 285 \\
\hline 1004 & 93 & 193 & 95 & 340 \\
\hline 1005 & 125 & 220 & 110 & 575 \\
\hline
\end{tabular}
\[
\begin{array}{ll}
1001-90 p & 1004-£ 2.00 \\
1002-£ 1.60 & 1005-£ 3.00
\end{array}
\] \\
TRADE ENQUIRIES WELCOMEI \\
1003-£1.80 50p each p\&p. £1.00 for \(3 p \& p\)
\end{tabular}} \\
\hline \begin{tabular}{l}
DIGITAL CLO \\
BATTERY DROP LEAF CLOCK MOVEMENT \\
Hrs. Mins. Date \\
Easy-to-set regulator screw \\
Size: \(140 \mathrm{~mm} \times 85 \mathrm{~mm} \times 60 \mathrm{~mm}\) VVindow size: \(63 \mathrm{~mm} \times 28 \mathrm{~mm}\) \\
No. height: 19 mm \\
Date height: 10 mm \\
Weight: 270 gm
\[
£ 4.95+50 p p \& p
\]
\end{tabular} & \multicolumn{7}{|l|}{\begin{tabular}{l}
LCD WATCHES TOUCH GENTS \\
LADIES S/S AND CTG GILT C652
UNISEX C551 \\
Coloured Straps Black Red £8.95 Blue \\
ALL WATCHES 5 FUNCTION... 1 YEAR GUARANTEE \\
P \& P 70p per watch, Inc. Insurance
\end{tabular}} \\
\hline
\end{tabular}

\section*{You knowit's easy with Heathkit.}

\section*{Electronics Courses}

New series of courses on car electrical systerns.
New series of courses on electronic equipment.
DC electronics.
AC electronics.
Semi-conductors.
Electronic circuits.
Digital techniques.
Microprocessors.

\section*{New Kits}

Line printer.
Dual floppy disc
Dual trace 5 MHz and 35 MHz
oscilloscopes.
Memory expansion for digital trainer. 2 M hand-held transceiver.

Heathkit self instruction electronics courses are complete, low cost learning systems. All you need is the will to learn and the Heathikit courses will teach you at your own pace.

It's easy because the courses are based on step-by. step programmed instructions, with audio records (or optional cassettes), self evaluation quizzes to test your understanding, and interesting experiments that encourage you to learn the easy "hands-on" way with the optional Heathkit experimenter-tranners.

Thousands of people just like you have already learnt electronics the easy Heathkit way - at home, in educational establishments and BARCLAYCARD in industry throughout the world.

You'll find it easy too. Full details are in the Heathkit catalogue, together with hundreds of kits you can build yourself; for the home, car and work shop.

\section*{Send for your copy now.}


LOOK! Here's how you master electronics. ....the practical woy.

This new style course will enable anyone to have a real understanding by a modern, practical and visual method. No previous knowledge is required, no maths; and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

\section*{1. Build an oscilloscope.}
As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but al so later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

\section*{2. Read, draw and understand circuit diagrams.}
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

\section*{3. Carry out over 40 experiments on basic circuits.}
We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all ty pes of electronic equipment, radio, t.v.etc.

\section*{4. Free Gift.}
All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.
Post now, without obligation, to: -

\section*{BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL}
P.O. Box 156, Jersey, Channel Islands.
NAME
ADDRESS


\title{
RST
} VALVE MAIL ORDER CO.

\author{
Climax House
} Fallsbrook Road, London SW16 6ED

SPECIAL EXPRESS MAIL ORDER SERVICE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{28}{|l|}{} \\
\hline \multicolumn{28}{|l|}{} \\
\hline \multicolumn{28}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline \multicolumn{28}{|l|}{\begin{tabular}{l}
Mivivivivivivivivivivivivivis \\
 인ํo
\end{tabular}} \\
\hline \multicolumn{28}{|l|}{} \\
\hline \multicolumn{28}{|l|}{} \\
\hline
\end{tabular}

\footnotetext{
Open daily to callers: Mon.-Fri. 9 a.m.-5 p.m
Valves, Tubes and Transistors . Closed Saturday Prices correct Terms C.W.O. only . Tel. 01-677 2424-7 Quotations for any types not listed S.A.E.
Post and Packing 25p per order \(+8 \%\) V.A.T Items marked * \(12 \frac{1}{2} \%\)
when going to press
}


SUPPLIERS TO H.M. GOVT. DEPTS. MANUFACTURED AND ASSEMBLED IN GT. BRITAIN FULLY TESTED AND GUARANTEED SEND NOW FOR OUR FREE 28 PAGE ILLUSTRATED CATALOGUE. SEND STAMP PLEASE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 92 GODSTO YTELEAFE，SU &  & \multicolumn{2}{|l|}{GRAND SALE} & \multicolumn{3}{|l|}{} \\
\hline & 1400 sems 174.500 Smim & & & & & & －30 \\
\hline & & \({ }^{2966}\) & & & \({ }_{\text {a }}^{\text {4099 }}\) & 538 & \\
\hline & \({ }^{11} 11.1055^{105}\) & jing & 72183 & a 4002 &  & & \\
\hline &  & & & & & & \\
\hline & & & & coill &  & 455 & \\
\hline & ：155 14.14 & & cinit &  &  &  & \\
\hline & ， 13 & \({ }^{2} 8100\) & & &  & & \\
\hline &  &  & （14174 & &  & & \\
\hline  & & & &  &  & & －1000 \\
\hline & & & cist &  &  & & \({ }^{2} 80\) \\
\hline & & & lat &  &  & & U38 \\
\hline & & & & & （1） & &  \\
\hline &  & 込 & （1） & coll &  & &  \\
\hline & \({ }^{11} 2^{11}\) & \({ }_{\text {a }}^{\substack{44122 \\ 442 \\ 4}}\) &  &  & \({ }^{\text {che }}\) & & \\
\hline & & &  & & & & cosk \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & creser & & & &  \\
\hline & &  & （1040 & （0ase & （ex & &  \\
\hline &  &  &  &  &  & & 隹 \\
\hline & & &  & cose &  &  &  \\
\hline & & & & & & & op \\
\hline &  & \[
5 \begin{aligned}
& 501098 \\
& 7011050 \\
& 70150
\end{aligned}
\] &  &  &  & coick & 为 \\
\hline &  & & & cose &  & & cispo \\
\hline & \({ }_{3}^{21}\) &  &  &  & & ditil & （1） \\
\hline & ［15 & （1） & \({ }^{\text {a }}\) & （10） & & & cille \\
\hline & 23 &  & MIXE & coill & & & Mmat \\
\hline
\end{tabular}


Guaranteed same day
despatch
All products carry full 12 months guarantee．Please add 30 p p\＆p with all orders．All prices include VAT．

Shops open 9.30 to 6.00 daily．

Trade enquiries welcome． Delivery：One week． Except where same day delivery is stated．

despatch
Very slim，only 6 mm thick．
ALARM CHRONOGRAPH WITH DUAL TIME ZONE FACILITY
－Constant LCD display of hours and minutes， plus optional seconds or date display，plus am／pm indication． am／pmindication． day，date，month and year．
－ 24 hour alarm with on／off indication．
－1／10 second chrono－
graph measuring net， second place times
second piace times． facllity．Night light．

£29．95

THOUSANDS SOLD 11 FUNCTION SLIM CHRONO 6 digit 11 tunclions ＊Hours，mins，secs． Day，date，day of week． \(1 / 100,1 / 10\), secs 10 \(x\) secs，mins
Split and lap modes． Back light，auto －Oalendar．
＊Only 8 mm thick．
This same watch is being sold for \(£ 22.00\) in newspaper and offer ads．

\section*{Metac Price \(£ 12.65\) Guaranteed same day despaten}

\section*{PLEASE NOTE}

All our products carry full money back 10－day reassurance． Watches are despatched by FIRST－CLASS POST．They are fitted with new batteries，and include guarantee and instruc tions．
Battery fitting service is avallable at our shops for no extra charge． We stock most watch batteries and this service is available to all． Metac have been selling electronic watches probably longer than anyone else in the UK．We take care of your watch not just this year but next year and the years after that．

\footnotetext{
Telephone Special 24－hour phone service
Credit－card customers are welcome to buy by phone－simply phone \(01-723\)
4753 with your credit－card number to 4753 with your credit－card number to
}

\section*{METAC Electronics \＆Time Centre}

67 HIGH STREET
327 EDGWARE ROAD
Barclay \＆Access


Tel．（032 72） 76545
LONDON W2
welcome
Tel．（01） 7234753

\title{
Understanding Digital Electronics New teach-yourself courses
}


Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

\section*{The contents of Design of Digital Systems include:}

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and artithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and sychronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs). Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.


Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it designer, execxutive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

CAMBRIDCE LEARNING ENTERPRISES. Unit 25, Rivermill Site, FREEPOST, ST. IVES, HUNTINGDON, CAMBS. PE22 4BR, ENGLAND. TELEPHONE ST. IVES (0480) 67446. PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE: RIVERMILL LODGE, ST. IVES. REGD. IN ENGLAND NO. 1328762

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show vour vehicle speed and fuel consumption; you could be calling people by entering their name into a telephone which would automatıcally look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at youi own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

The six volumes of Design of Digital Systems cost only:
+90p post \& packing
And the four volumes of Digital Computer Logic and Electronics cost only:
+90p post \& packìng
But if you buy both courses, the total cost is only:


Price includes surface mail anywhere in the world: Airmail extra.

\section*{Flow Charts \& Algorithms}

HELP YOU PRESENT:
safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.
THE ALGORITHM WRITER'S GUIDE explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.
+45 post and packing by surface mail anywhere in the world. Airmail extra.

\section*{GUARANTEE}

If you are not entirely satisfied your money will be refunded.
Please allow 21 days for delivery.

Cambridge Learning Enterprises, Unit 25, Rivermill Site,
FREEPOST, St. Ives, Huntingdon, Cambs. PE22 4BR, England.
Please send me the following books:
sets Digital Computer Logic \& Electronics @ £5.50,.p \& p included
sets Design of Digital Systems@ £9.00, p \& p included
Combined sets @ £13.00, p \& p included
The Algorithm Writer's guide @ £3.40, p \& p included
Name
Address

I enclose a *cheque/PO payable to Cambridge Learning Enterprises for \(£\).
Please charge my *Access/Barclaycard/Visa/Eurocard/Mastercharge/ Interbank account number.
Signature..
*delete as appropriate. Telephone orders from credit card holders accepted on 0480.67446 (Ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank, or quote credit card number.

PE25


\title{
\(15-240\) WAT
}


HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functlons (mag Cartridge, tuner. etc.) are catered for Internally, the desired function is achieved either by multi-way swlich or direct connection to the appropiate pins. The Internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.
FEATURES: complete pre-amplifier in single pack: multi-function equalisatlon; low noise: low distortion: high overioad: two simply comblned for stereo
APPLICATIONS: ni -fi: mixers: disco: guitar and organ: public address
SPECIFICATION: Inputs-magnetic pick-up 3 mV : ceramic pick-up 30 mV ; tuner 100 mV : microphone 10 mV : auxiliary \(3-100 \mathrm{mV}\). Input impedance 47 kn at 1 kHz . Outputs-tape 100 mV . main output 500 mV R.M.S. Active Tone Controls-treble \(\pm 12 \mathrm{~dB}\) at 10 kHz : bass \(\pm 12 \mathrm{~dB}\) at 100 Hz . Distorion \(-0.1 \%\) at 1 kHz : signal/noise ratio 68 dB . Overload- 38 dB on magnetic pick-up. Supply Voltage \(=16-50 \mathrm{~V}\). Price \(\mathbf{£ 6} .27+78 p\) VAT. P. \& P. free
HY5 mounting board B.1. \(48 p+6 p\) VAT. P. \& P. free
The HY30 is an exciting New kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of: I.C., heatsink, P.C. board, 4 resistors. 6 capacitors, mounting kit. logether with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audlo who wishes to use the most up to date technology available. FEATURES: complete kit: low distortion: short, open and thermal protection; easy to build. APPLICATIONS: updating audio equipment: guitar practice amplifier: test amplifier: audic oscillatop. SPECIFICATION: Dutput Power-15W R.M.S. into 8n. Distortion-0. \(1 \%\) at 15 W . Input Sensitivity500 mV . Frequency Response- \(10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{cB}\).
Price £6.27 + 78p VAT. P. \& P. free
The HY50 leads I.L.P.s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World. fEATURES: low distortion: integral heatsink: only five connections: 7 amp output transistors: no external components.
APPLICATIONS: medlum power hi-fi systems: low power disco: guitar amplifier.
SPECIFICATION: Input Sensitivlty -500 mV . Output Power- 25 W R.M.S. into 80 . Load Impedance-\(4-16 \mathrm{n}\). Distortion \(-0.04 \%\) at 25 W at 1 kHz . SignalNoise Ratio-75dB. Frequency Response- 10 Hz \(45 \mathrm{kHz}-3 \mathrm{aB}\). Supply Voltage \(=25 \mathrm{~V}\). Size \(-105 \times 50 \times 25 \mathrm{~mm}\).
Price \(£ 8.18+£ 1.02\) VAT. P. \& P. free
The HY120 is the baby of I.L.P.s new high power range, designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular, design.
60 W into \(8 \Omega\)
FEATURES: very low distortion: integral heatsink. load line protection: thermal protection: five connections: no external components.
APPLICATIONS: hi-ff. migh quality disco, public address, monitor amplifier: guitar and organ. SPECIFICATION: Input Sensitlvity- 500 mV . Outpul Power- 60 W A.M.S. into 8 n . Load Impedance-\(4-16\). Distortion- \(0.04 \%\) at 60 W at 1 kHz . Signal/Noise Ratio- 90 dB . Frequency Response- 10 Hz \(45 \mathrm{kHz}-3 \mathrm{~dB}\). Supply voltage- \(\pm 35 \mathrm{~V}\). Size- \(114 \times 50 \times 85 \mathrm{~mm}\).
Price \(£ 19.01\) + \(£ 1.52\) VAT. P. \& P. free
The HY200 (now improved to give an ouiput of 120 watts) has been designed to stand the most rugged conditions such as disco or group while still retaining true hi-fi performance.
FEATUAES: thermal shutdown: very low distortion: load line protection, integral heatsink: no external components.
APPLICATIONS: hi-fi: disco: monitor, power slave: industrial: public address.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power-120W R.M.S. Into 8 ก. Load Impedance -
416 n . Distortion- \(0.05 \%\) at 100 W at 1 kHz . Signal/Noise Ratio 96 dB . Frequency Response 10 Hz \(45 \mathrm{kHz}-3 \mathrm{~dB}\). Supply Voltage \(=45 \mathrm{~V}\). Size- \(114 \times 50 \times 85 \mathrm{~mm}\).
Price £27.99 + £2.24 VAT. P. \& P. free

HY400
The HY400 is I.L.P.s "Big Daddy of the range producing 240 W into \(4 \Omega\) ! it has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: thermal shutdown: very low distortion: load line protection: no external components. APPLICATIONS: public address: disco: power slave: Industrial.
SPECIFICATION: Output Power-240W R.M.S. Into \(4 \Omega\). Load Impedance- \(416 \Omega\). Distortion- \(0.1 \%\) at 240 W at 1 kHz . Signal/ Noise Ratio- 94 dB . Frequency Response- \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\). Supply Voltage \(- \pm 45 \mathrm{~V}\). Input Sensitiviry- 500 mV . Size \(114 \times 100 \times 85 \mathrm{~mm}\).
Price \(£ 38.61+£ 3.09\) VAT. P. \& P. free
POWER SUPPLIES: PSU36 suitable for two HY30s \(£ 644+81 p\) VAT. P. \& P. free. PSU50-suitable for two HY50s \(£ 8.18+£ 1.02\) VAT. P. \& P. free. PSU70-suitable for two HY120s \(£ 14-58+£ 1.17\) VAT. P. \& P. free. PSU90 suitable for one HY200 £15.19 + £1.21 VAT. P. \& P. free. PSU180-sultable for two HY200s or one HY400 \(£ 25.42+£ 2.03\). VAT. P. \& P. free.
Free post + packing appllcable to U.K. only.

\section*{TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS}
I.L.P. Electronics Ltd. Crossland House, Nackington, Canterbury Kent CT4 7AD Tel (0227) 64723

Please supply
Total Purchase price I Enclose: Cheque Postal Orders \(\square\) Money Order \(\square\) Please debit my Access account \(\square\) Barclaycard account \(\square\)

\section*{Account number}

Name and Address


\section*{THIS IS A POWERFUL RADIO RECEIVER!}

The same kit is also 150 other different actual working projects e.g.:

Computer \& Logic Crrcuits. Electronic Orqan. Timer Light Control. Agility Tester, Lie Bled. Metronome.
Cds cell light \& sound contro Photogun, Light Oscillator, Light Switch, Light and Sound
Morse Code. Morse Code. Hygrometer, Sphygometer, Elc.
Eic.

Radio Receiver, Transmilter. Amplifier, Audio Generalor. Signal Tracer \& Injector, Continuity Tester, Telegraph Pnotoradio Recelver, Radio Receiver/Microphone Mixe Amminometer, Sound Level Meter Ohmmeter, Diode \& Transistor Tester, Transparency Indicator. Etc.. Eic.

The above is just a selection of the circuits availableyou can also design your own circuits with these superb new Denshi-Gakken "EX" construction kits.
No previous experience of electronics is required but you learn as you construct and have a great deal of fun too. The kits are completely safe for anyone to use

Kits are complete with very extensive construction manuals PLUS Hamlyn's "All-Colour" 160 page book "Electronics" (free of charge whilst stocks last).
ALL KITS ARE FULLY GUARANTEED. Addon sets (to increase the scope of each kit) are available, plus spares and accessories as required. 150 PROJECT KIT £39.75 60 PROJECT KIT £25.75 120 PROJECT KIT £33.75 30 PROJECT KIT £18.95 100 PROJECT KIT £29.25 15 PROJECT KIT £16.75 Prices include educational manuals, free book, VAT, \(p\) \& \(p\) (in the U.K.), free introduction to the British Amateur Electronics Club. Also free list of low priced electronics books.
Callers at 20 Bride Lane will be very welcome. Trade and Educational enquiries invited.
Cheque/P.O./Barclaycard/Access No. (or \(14 p\) for illustrated literature) to DEPT. PE

\section*{ELECTRONIC MAIL ORDER}

\section*{All Full Spec. Devices}

TO3 HEAT SINKS 1 ! T Two types of heat sink. Ex-equipment, but conditions as new. Most still comtain a power transistor (condition unknown). Christmas tree type. \(92 \times\) \(66 \times 35 \mathrm{~mm} 20 \mathrm{p}\) each. Rectangular type \(130 \times 63 \times 32 \mathrm{~mm} 30 \mathrm{p}\) each. Please add 25 p per heat sink post and packing.
multifunction calculator keyboards. Excellent key

 including data.
PACK 14 At a new low price, what a bargain. A \(0.8^{-1}\) coinmon cathode, \(3 \frac{1}{2}\) digit. 12 PACK S 125 miniature glass 1 N 3470 germanium diodes ( 600 mA . 35v). All brand new (at just 2 peach how can you go wrong?) 25 diodes for 50 p .
PACK \(\$ 24 \times\) MEU2 1 programmable unijunction transistors (P.U.T.). Lots of uses, long delay timers. oscillators and many more. All brand new. With data and usage sheat. P3 10 \(\times 1\) 1N4151 high speed switching diodes. Same as 1 N 4148 , but has higher P.I.V. 10 for 35p.
PACK P1 With this MM 5330 digital voltmeter I.C. we include the data sheet and clrcuit diagram to build a high accuracy digital multimeter. Only \(£ 3.95\).
PACK E2 Calculator stylo I.C. 0.8 dight with right hand decimal points. Digit height PACK E3 The same as Pack E2, but has \(0.5^{\prime \prime}\) high digits. \(£ 4.25\).
EVER THOUGHT of using 7 segment gas discharge displays as an alternative to LED's or LCD's? Gives a nice bright orange display and are comparatively very low in price. Requires 1800 d.c. supply (easily achieved in mains operated projects). All have right hand decimal points and are supplied with data.

PACK E5 a \(03^{\prime \prime}\) hith
PACK E5 a 0.3 nigh dual digit display. Now only 50 p .
PACK DM1 Want to buy 115 quality switching diodes for 50 p? These 14 pin chips each contain 23 matrixed diodes. 5 chips for 50 p.

\section*{All Untested Packs}

PACK M4 CALCULATORS ItI This pack contains a production line reject calculator Either repalr them (not much wrong with some of them) or strip them for spares. Lots of accessible goodies inside. approximately 2.5 transistors. 2 chips. display, case and detachable keyboard. Such a bargain. You can t go wrong, ACK PaCck DL1 (Untested - so no guarantees) A bumper pack of 30 mixed I.C. s. You test them and save EEE's. Could inciude anything linear or digital. A snip at only \(£ 1.00\). PACK E1 (80\% guaranteed good) Contains 5 seven segment LED displays. Digi height \(0.127^{\prime \prime}\) with right hand decimal. Common cathode. Still only \(£ 1.00\).
Your satisfaction is guaranteed or return the complete pack for replacement or a refund.

For free catalogue send stamped addressed envelope.
Postage nd packing piease add 25p. (Overseas orders
CODESPEED, P.O. Box 23, 34 Seafield Road, Copnor, Portsmouth, Hants., PO3 5BJ

\section*{MORE SGOPE FOR YOUR MONEY}


SPECIFICA TIONS ELECTRICAL DATA VERTICAL AXIS (Y. Deflection Sensi-tivity- 100 m V/division. Bandwldth tbe-
tween 3 dB points)-DC -5 MHz . , vut
 Attenuator-(catibrated)- Input Impedance--
\(0.5,1,2,5,10,20,50 / d i v\). 1 Meg/40 of in shunt. Input Voltage-Max600 V P.P.
HORIZONTAL AXIS (X). Deflection Sensitivity \(-0.400 \mathrm{mV} /\) /divislon. Bandwidth between 3 dB points \(-1 \mathrm{~Hz}-350 \mathrm{kHz}\). Gain
Control-Continuous when time bases in EXT position. inpui Impedance- 1 Meg. Input Voltage-Max-600V P.P. TIME BASE. Sweep Range (casibrated)-
\(100 \mathrm{msec} / \mathrm{div}\) to \(1 \mu \mathrm{sec} / \mathrm{div}\) in 5 steps. FINE

Controt-Variable between steps-in-
cludes time-base callibration cludes fime-base calibration position SYNCHRONISATION. Selection-Intern al, external Synchronisation Level-Con Innues from positive to negative. OOWER SUPPLY. Input voltage- \(115 / 220 \mathrm{~V}\) AC. \(10 \%\) at \(50 / 60 \mathrm{~Hz}\) Power Dissipation-
CRT DATA-4 In -flat face, single beam -Maximum high voltage- \(1 \cdot 5 \mathrm{kV}\)-Fitted with \(8 \times 10\) division blue filter graticule. PHYSICAL DATA. Dimensions -15 cm (h) \(\times 20.5 \mathrm{~cm}(\mathrm{w}) \times 28 \mathrm{~cm}\) (d). Weight-
4.3 Kg (approx.). Stand-2 position flat and inclined. Case-Steel, epox, enameled. Front panel-Aiuminium enamelled epoxy printing. Test leads available \(£ 2-00\) CASH WITH ORDERE99. ( 1 £7.92 VAT) Telex 888941 . Barclav\& Access by arrange ment. Dept PE
SAE for 6 and 10 meg. scopes.
KRAMER \& CO.
9 October Place, Holders Hill Road, London NW4 1EJ. Telex: 888941
altn. Kramer k7. Tel; 01.2032473 aftn, Kramer \(\mathrm{k7}\). Tel; \(01-2032473\)
Mail order only. Callers by appolntment.

\section*{hAVE YOU DONE IT LATELY!}

\section*{Fita}
new tape head and transform the performance of your tape recorder

QUALITY REEL TO REEL

Full Catalog ue 25p

\section*{Put a Clamp on those small jobs with NODEX quick-grip vice}


Dimensions Overall length Overall width Overall height Jaw opening Jaw height Jaw width Weight gh grammes
Descriptive leaflet and general catalogue available from:
SPECIAL PRODUCTS DISTRIBUTORS LTD. 81 PICCADILLY, LONDON W1V OHL
Tel: 01-629 9556 Cables: Speciprod London W1

\section*{LOON
New \(12^{-5}\)
Monitor
for your Micro \\ or CCTV application Uncased \(£ 60\) Cased £85 \\ The above prices are for 1off orders (plus VAT) \\ Available cased or uncased for OEM's}

Power Supply \(£ 20\) extra (+VAT)
6800 Tased NCluong Tiny Basic and on board Prom Programmer now available - KIT £220
(plus VAT)

\section*{CROFTON ELECTRONICS LIMITED 35 GROSVENOR ROAD, TWICKENHAM MIDDLESEX - Telephone: 01-8911923}


Sparkrite \(X_{4}\) is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, prover, reliable and complete. It can be assembled in two or three hours and fitted in \(1 / 3\) mins
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about \(1 / 50\) th of the norm. It will perform equally well with new, old, or even badly pitted points and is not
dependent upon the dwell time of the contact breakers for recharging the system Sparkrite Incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). The circult incorporates a voltage regulated output for greatly improved cold starting. The circuit includes buit in static timing light, systems function light. and security changeover switch. All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING.NEEDED
Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 year guaranteed transformer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions to assemble kit neg. or pos. earth and fully illustrated installation instructions.
NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachometer pulse slave unit. Price \(£ 3.85\) inc. VAT. post \& packing UK only.
Electronics Design Associates, Dept. PE 10. 82 Bath Street, Walsall, WS1 3DE. Phone: Walsall 614791

Electronics Design Associates, Dept. PE2
92 Bath Street, Walsall, WS1 3DE. Phone: 9 (9r 61479
Name
Address

Phone your order with Access or Barclaycard
Inc. VAT. and P.P.
\begin{tabular}{|c|l|}
\hline XAKIT E16.65 & OUATITY REOD. \\
\hline TACHOPULSE SLAVE UNIT £3.85 & \\
\hline
\end{tabular}

Send SAE if brochure only requred
I enclose cheque/P0's tor
E
Cheque No.
Plase state polarity pos or neg earth.
Access or Barclaycard No.


\section*{NOTICE TO READERS}

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your require mencs.
(B) That you have enclosed the right remittance.
(C) That your name and address is writcen in block capitals, and
(D) That your letter is correctly addressed to the advertiser
This will assist advertisers in processing and despatching orders with the minimum of delay.

\section*{RECEIVERS ANO COMPONENTS}

\begin{abstract}
BARGAIN PACKS
TTL \(7400,01,02.03,04,08,10,20,30,51\) ANY MIX \(10 / \mathrm{El} .00 .100 / E 9.00 .7433 .48,104,105109,122\) ANY MIX \(10 / £ 1,90,100 / \subset 18.00 .7445,46,92,95,151\) ANY
MIX \(4 / £ 1,00.7443,83,96,156,160,162,163.74165\).
 \(2 \mathrm{~N} 1711-2 \mathrm{E} 1.00\). OCP70 \(5 / \mathrm{Ei} .00\). Similar to 2 N 192


 2/E1.00
-RESISTORS 10/C0.09, 100/60.80 ANY MIXE12-10
\({ }^{-}\)CAPACITORS Ceramic 27P to 8200 P E12 Series 10/E0.30. Polyester 0.01 to \(110 / \varepsilon 0.50\) ANY MIX 1 MF \(10 / \mathrm{E} 1.00\). Electrolytic 63 V 1 MF to \(10 \mathrm{MF} 10 / \mathrm{E} 0.70 .16 \mathrm{~V}\)
10 MF to 100 MF (O/EO.70.

\section*{TELEPHONE ORDERS}

COV. (0203) 611597 Using Access Card No. V.A.T. Add \(12 \frac{1}{\frac{1}{2}} \%^{\prime}\) to items marked* To all others add

IBEK SYSTEMS Dept. PE.,
32 DUNSVILLE DRIVE, COVENTRY CV2 2 HS
\end{abstract}

TURN YOUR SURPLUS capacitors, transistors, etc., into cash Contact COLES-HARDING \& CO., 103 South Brink Wishech, Cambs, 0945~4188. Immediate settlement.


\section*{SMALL ADS}

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60p extra. Semi-display setting f 6.60 per single column centimetre (minimum 2.5 cms ). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

\section*{CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS}
. Advertisements are accepted subject to the conditions appearing on our current advertise ment rate card and on the express understand ing that the Adventiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is taken, the Publishers shall not be liable for clerical or printers errors or their consequences.
 \(9 \frac{1}{* \prime \prime}^{\prime \prime}\) C1.15. D.S. \(10^{\prime \prime} \times 8 \frac{1}{\prime \prime}^{\prime \prime} 80\) p. Fibre Glass \(9^{\prime \prime} \times 8^{\prime \prime}\) ́ 1.20 \(18^{\prime \prime} \times 8^{\prime \prime} £ 2.40\). D.S. \(13^{\prime \prime} \times 6^{\prime \prime}\) £1.30. \(11 \frac{1}{2}^{\prime \prime} \times 7 \frac{1}{2}^{\prime \prime}\) £1.60 Panel with 42 assorted 74 series ICs \(£ 1.50 .20\) wire ended eoons \(£ 1.300\) small components. trans, diodes £1.50. 7 lbs assorted components \(\mathbf{£ 3 . 6 0}\). \(\mathbf{3}\) 1 lbs \(\mathbf{£ 1 . 9 5}\). Li
Refundable. Post 20 p under \(\mathbf{£ 1}\). Insurance add 15 p.

\section*{J.W.B. RADIO}

2 Barnfiefd Crascent, Sale, Cheshire M33 1NL

TUNBRIDGE WELLS COMPONENTS, Ballard's, 108 Camden Road, Tunhridge Wells, Phone 31803. No Lista. Enquiries S.A.E.

\section*{SERVICE SHEETS}

SERVICE SHEETS for Radio, Television, Tape Recorders Stere, etc. With free Fault-finding guide, from 501 p and Sterer, etc. With free Fault-finding guide, from 50p and S.A.E. Catalugue 25p and S.A.E.
Buhemia Ruad, St. Leonards, Sussex.

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc \&I.O0 plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harmgate, N. Yorkshire, Tel: (0423) 55885.

\section*{VALVES FOR SALE}

\section*{VALVES FOR SALE}

CV 445 STC TYPE 5J/180E. Quantity 60 new at list price less \(50 \%\)

CONTACT: STARAVIA LIMITED
King's Ride, Ascot, Berks.
Telephone: Ascot 23422

\section*{SITUATIONS VACANT}

MONEY, KNOCKERS. GOTCMA! Wanna Earn a Few Bucks Moonlightin"? We need a Part-Time Design/Layou Personage. Phone Paul 579-2535 Day, 567-9705 Evns.

\section*{ELECTRONIC ENGINEERS}

We are:
A young energetic electronics company manufacturing patient monitoring equipment, utilising memory displays for E.C.G. blood pressure, temperature, etc.
We want:
Electronic Design Engineers - Graduate standard, with knowledge of C-Mos Digital and Logic Circuitry, Operational Amplifiers and CRT Drive Amplifiers. Engineers will use their own initiative and previous experience to design circuits around technical requirements.
Test/Service Engineers - with good experience of fault finding associated with Digital and Analogue Circuitry, and for checking and repairing equipment as described above.

\section*{You receive}

Good salaries - participation in bonus schemes - good working conditions and promotional prospects.
Apply:
In writing to the Personnel Manager.
Albury Instruments Limited,
165 Dukes Road, London W3 OSL.

\section*{EDUCATIONAL}

WHETHER SEA-GOING OR SHORE-BASED, an exciting life awaits you as a Marine Radio Officer. Full details from The Principal, Barking College of Technology, Dagenham Road, Romford, RM7 0XU ('phone Romford 66841)

\section*{COLOUR TV SERVICING}

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principies, practice and atignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from

ICS SCHOOL OF ELECTRONICS
Dept. D272 Intertext House, I andon SW8 4UJ
Tel. 01-6229911 (all hours) State if under 18

\section*{TECHNICAL TRAINING}

Get the training you need to move up into a higher paid job. Take ihe first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electrorics, Compuers; also self-build radio kits. Fuli details from:

ICSSCHOOL OF ELECTRONICS
1xept. D272 Interrext Howse, Londin SW8 4U.J
Tel. 01-6229911 (all hours)
State if under 18

\section*{CITY \& GUILDS EXAMS}

Study for success with ICS. An ICS homestudy course will ensure thal you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Techaicians, Radio Amateurs. Full details from

ICSSCHOOL OF ELECTRONICS
Tel. \(01-6229911\) (all hours)
State if under 18

\section*{TAPE EXCHANGES}

RECORDER OWNERS (cassette/reel) can now speak to the world! All ages ... every interest. Send stamp: WORLD. WIDE TAPETALK, 35 The Gardens, Harrow

\section*{BOOKS ANO PUBLICATIONS}

COMPREHENSIVE TV REPAIR INSTRUCTIONS for your set 5.00 with circuit (if requested). Free catalogue unique T.V./other publications AUSE (PE) 76, Church Street. Larkhall, Lanarkshire ML9 1HE.

\section*{RECORD ACCESSORIES}

STYLI for Hi-Fi, Music Centres. I11. List for s.a.e. Also cartridges, leads, accessories. Details-Felstead Electronic (PE) Longley Lane, Gatley, Cheadle, Ches. SK8 4EE

\section*{FOR SALE}

SEEN MY CATT 5000 Odds and ends. Mechanical Electrical Cat free. Whiston, Dept. PRE, New Mills, Stockport.

NEW BACK ISSUES of "PRACTICAL ELECTRONICS" available 70 p each Post Free. Open P.O./Cheque returned if not in stock - Bell's Television Services, 190 Kings Road Harrogate, N. Yorks. Tel: (0423) 55885.
rainbow ribson Cable at silly prices SAE for details Trading Post, 4 Castle Street, Hastings, Sussex.

4600 SYNTHESIZER, almost complete, Walnut Cabinet, Chrome Legs £450 o.n.o. 53 Nelson Way, Rugby.


SYNTHESISER. 2YCD'S. SEQUENCER, many other modules. Compact, versatile, immaculate. \(\mathbf{\& 3 9 5}\). Stevenage 50471.

PRACTICAL ELECTRONICS June 1967 to November 1978 \(25 p\) each, complete volumes only. Tel: Northampton 404 157.

TRANSCENDANT 2000 Synthesiser, built and playable but not quite right \(£ 150.00\) o.n.0. Telephone Penzance 2677 .

\section*{WANTED}

WANTED 'Microprocessors Explained' series. il per copy P. Callow, 8 Grafton St., Douglas, Isle of Man.

\section*{LADDERS}

LadDERS. Varnished \(25 \downarrow \mathrm{ft}\). extd. E:35.70. Carr. \(£ 2.80\) Leaflet. Callers welernme. Open Sat. Ladder Centre (PEE5), Halesfield (1) Telford 586644.

\section*{MISCELLANEOUS}

SUPERB INSTRUMENT CASES BY bAZELLI, manufactured frum P.V.C. faced steel. Hundreds of people and indusfrum P.N.C. faced steel. Huncreds of perple are chousing the cases they require from our rias users are chumsing the cases they require
vant range. punchink facilities at very competitive prices, 400 models punching facilities at very competitive prices, \({ }^{\prime}\) tı chunse Irim. free literature (stamp would be apprecr
ated). BAZFLLI. Dept: No. 23, St. Wilfred's, Foundry ated). BAZELLI. Dept: No. \({ }^{233,} \mathrm{~S}\)
Lane. Haltın. Lancaster. LA2 6 LT .

\section*{CABINET FITTINGS}

Stake Laudseakers
Stage Laudspeakers and Amplifier Cabs Fretcloths, Coverings, Strap \& Recess' Handles, Feet, Costors, Jocks \& Sockels, Cannons, Bulgin 8 ways, Revert Trays, Locks \& Hinges. Corners, Trim, Spegker Bolts etc.
Send \(2 \times 9 p\) Stamps for samples and illustrated catalogue
ADAM HALL (P.E. SUPPLIES)
Unit 3, Cariton Court, Gralnger Road
Southend-on-Sea, Essex.


MINI ACCUMULATORS \({ }^{2}\) volit MULTI-USE chargeable Cells. Size GA2 - \(1.7^{\prime \prime} X 1.3^{\circ}\)
 \(\{2.50\) with every order over £10.00 Sults Fi-Cord Add \(25 p\) P. \& P. Any qty.

\section*{MAKE YOUR OWN PRINTED CIRCUITS}

Etch Resist Tronsfers - Starter pack (5 sheets, lines, pads, I.C pads) \(£ 1.40\). Large range of single sheets in stock at 29 p per sheet.
Ferric Chloride - 11 b bags 80p (P\&P 50p)*
Moster Positive Tronsparencies from P.C. layouts in magozines by simple photagraphic pracess. Full instructions supplied. 2 sheets ( \(20 \times 25 \mathrm{~cm}\) ) negative pnper and 2 sheets \((18 \times 24 \mathrm{~cm})\) positive film \(£ 1.20\). S.A.E. lists and information. P\&P 25p/order except*
P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE


RADIO CONTROL SPECIALISTS
Kits for multi channel systems. Special parts systems. Special
and accessories. S.A.E. FOR LEAFLETS Tel: 0602395418 MAICRON R/C, Hayworth Road, Sandiacre, Nottingham.

THE SCIENTIFIC WIRE COMPANY

PO Box 30, London E. 4
Reg. Office 22 Coningsby Gans
ENAMELLED COPPER WIRE
SWG
101019
201029
301034
301034
351040
41043
441046
47
48
48
SILVER PLATED COPPER WIRE


Prices include P\& Pand VAT
SAE brings list of copper \& resistance Wires
Deater Enquiries Invfied.

\section*{RECHARGEABLE BATTERIES}

TRADE ENQUIRIES WELCOME
FULL RANGE AVAILABLE. SAE FOR LISTS. £ 1.00 for Booklet "Nickel Cadmium Power". Write or call: 2 Union MIDLANDS. 0213549764 . or see them at TLC. 32 Craven Street, Charing Cross, London WC2.

\section*{LOST THE TIME?}

MSF RECEIVER, built-in 60 KHz antenna, \(\mathbf{1 3} \mathbf{1 3} 70\) or with sequential YEAR, MONTH, DATE, DAY, HOURS, MINUTES, SECONDS display parts (no case or pcb) \(\mathbf{E} 24.40\).
STILL NO RADIO 47200 KHz to Medium Wave Converter \(\mathbf{£} 9.70\)
PROGRAM YOUR OWN tunes on a MUSICAL DOORBELL, new tune each day. just needs bell transformer and speaker, £19.50.
Giro 21-923-4000. Each easy-assembly kit includes all ports, printed circuit, case, postage etc, money back assurance so SEND off NOW.

CAMBRIDGEKITS
45 (FP) Old School Lane, Milton, Cambridge.

\section*{ORDER FORM PLEASE WRITE IN BLOCK CAPITALS}

Please insert the advertisement below in the next available issue of Practical Electronics for .................................... insertions. I enclose Cheque/P.O. for \(£\)
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)
\begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline
\end{tabular}

\section*{NAME}

Send to: Classified Advertisement Manager
PRACTICALELECTRONICS
GMG, Classified Advertisements Dept., Room 2337,
ADDRESS
King's Reach Tower, Stamford Street,
London SE1 9LS.
Telephone 01-2615846
Rate:
20p per word, minimum 12 words. Box No. 60p extra.
Company registered in England. Registered No. 53626. Registered Office: KIng's Reach Tower, Stamford Street. London SE1 9LS.


CLEARING LabDRATOAY. Scopes, recorders, testmeters, hridges, audin, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Latwer Beeding 2.36.
BUILD THE TREASURE TRACER \$ мк III

Metal Locator



BAIRD STYLE TELEVISIDN. Inexpensive, recordable, amateur television, through NBTVA, membership \(£ 1.50\). Write:1. Burnwond Drive, Wollaton, Nottingham.

\section*{NICKEL CADMIUM BATTERIES}

Rechargeable and suitable for last charge HP7 (AA) E1.13, SUB C E1.47, HP 11 (C) \(£ 2.15, \mathrm{HP} 2\) (D) \(£ 3.27, \mathrm{PP} 3\) E4.09, PP3 not suitable for fast charge. PP3 charger \(\mathrm{E5} .81\). All above Nickel Cadmium batteries are guaranteed EVER
READY full spec. and are supplied complete with solder READY full spec. and are supplied complete with solder
tags (except PP31. Just in stock-New rechargeable sealed lead acid maintenance tree batterles sultable fos burglar
rlarms etc.. \(1.2 \mathrm{amphr} ~\)
\(\mathrm{vv} . £ 4402.6 \mathrm{amp} \mathrm{hr} .6 \mathrm{v} £ 5.65\). Ouantity prices available on request. Oate and charging
circuits free circuits frree on request with orders over \(f 10\) othenwise 30 p
post sind handling (specity battery tyo), all prices include post and handing speecity battery type), all prices include
VAT. Please add \(10 \% \mathrm{P} \& \mathrm{P}\) on orders under f 10 . \(5 \%\) over C10.
Cheques, postal orders, mall order to SOLID STATE
SECURITY DEPT PE, 10, Bradshaw Lane, Parbold, Wigan, Lancs. 02575-4726.

\section*{FOR YOUR GUIDANCE} VALUE ADDED TAX
Unless otherwise shown, all prices in advertisements are inclusive of VAT. Where prices are exclusive, readers should ensure that they have added the correct amount of VAT before ordering.
Export orders are not subject to the addition of Value Added Tax.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|r|}{Rearily available Hardware and Accessories for Home Constructors Dev. Engineers. Modelnakers.} \\
\hline & Selem \\
\hline (6) &  \\
\hline & Printed circuil boart personal tesigns, pr \\
\hline \multirow[t]{2}{*}{} & Phote \\
\hline & Solid \\
\hline & \\
\hline \multicolumn{2}{|l|}{RAMAR CONSTRUC} \\
\hline \multicolumn{2}{|r|}{SERVICES} \\
\hline \multicolumn{2}{|l|}{Masons Rd. Stra} \\
\hline \multicolumn{2}{|l|}{Warwks. CV37, 9NF 0789-48} \\
\hline
\end{tabular}

\section*{NO LICENCE EXAMS NEEDED}

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only 89.75 plus 25p P. \& P
'Brain-Freeze' 'em with a MINI-STROBE Kit, pocket-sized 'lightning flashes', vari-speed, for discos and parties. A mere \(£ 4 \cdot 30\) plus 20 p P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multi-function modules. \&5 each plus 20 p P. \& P.

LOTS MORE! Send 20 p for lists. Prices include VAT.

\section*{BOFFIN PROJECTS}

4 Cunliffe Road, Stoneleigh
Ewell, Surrey (P.E.)

aERIAL bOOSTEAS. Improve weak VHF Radio and Television reception. price \&.5. S.A.E. for Leaflets. Electronic Mailorder l.td.. Rambhotom. Bury, Lancashire.BL0 9AG.

\section*{TRANSISTORISED IGNITION KIT}

Complete pock of parts with p.c.b. 10 build our tronsistorised ignition system bosed on Dorlington Power Transistors specially deviloped for outo ignition.
Send S.A.E. for FREE CIRCUIT diagram.
All components with p.c.b. (less cose) \(\mathbf{£ 4 . 8 6}\).
SOLEC PRODUCTS,
68 Dole Street, Manchester, M1 2 HS

parts and components: resistors. 5 SIZES
capacitors, diodes, transistors, etc capacitors, diodes, transistors, etc.
Rigid plastic units interlock together in ALL INTERLOCK vertical and horizontal combinations. Transparent plastic drawers have label stots. 10 and 20 have bench or table top.

As supplied to Post Office. Industry and Government Depts.
SINGLE UNITS (10) \(\left(5 \mathrm{in} \times 2 \mathrm{tin} \times 2 \frac{1}{\mathrm{in})} £ 3.50\right.\) DOZEN.
 TREBLE (30)
(6D2)
EXTRA LARGE SIZE (6D1) \(\mathbf{E 6 . 9 0}\) for 8
PLUS QUANTITY DISCOUNTS
Orders over \(£ 20\), less \(5 \%\). Orders over \(£ 60\), less \(7 \frac{1}{2} \%\). PACK
ING/POSTAGE/CARRIAGE: Add \(£ t .00\) to all orders under NG/POSTAGE/CARRIAGE: Add \(£ 1.00\) to all orders under QUOTATIONS FOR LAR GER QUANTITIES. Please add \(8 \%\) V.A.T. to total remittance.
All prices correct at time of going to pres

Modern, slim-line power panel, countless uses in home, be mounted on wall or trailed anywherre in room. Neat rubber base. Smart' PVC outer cover. White f3. 30 \& 4 60p
FLAIRLINE SUPPLIES(PE 2)
124 Cricklewood Broadway, London N.W. 2 Telephone 01-450 4844

\section*{NOTICE TO READERS}

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine


\section*{IT'S EASY WHEN YOU KNOW!}

To avoid missing your copy of PRACTICAL ELECTRONICS - simply complete this order form and hand it to your newsagent.

\section*{ORDER FORM}

To
(name of newsagenti) Address.

Please reserve/deliver every month one copy of PRACTICALELECTRONICS until further notice. My Name..
\(\qquad\)

\section*{THE BASIC COOKBOOK}

Price: \(£ 3.95\)

110 WAVEFORM GENERATOR PROJECTS FOR THE HOME CONSTRUCTOR
by R. M. Marston
Price: \(\mathbf{E 3 . 1 5}\)
YOUR OWN COMPUTER
by M. Waite
Price: \(£ 1.70\)
UNDERSTANDING DIGITAL ELECTRONICS
by G. McWhorter
Price: \(£ 3.95\)
BEGINNER'S GUIDE TO TAPE RECORDING
by I. R. Sinclair
Price: \(£ 3.15\)
BEGINNING BASIC
by P. E. Gosling
Price: \(£ 3.15\)
THE CATHODE-RAY OSCILLOSCOPE \& ITS
USE
by G. N. Patchett
Price: \(£ 4.00\)
RAPID SERVICING OF TRANSISTOR
EQUIPMENT
by G. J. King
Price: £2.75
COLOUR T.V. WITH PART. REF. TO THE PAL
SYSTEM by G. N. Patchett Price: \(£ 6.00\)
- electronics \& radio an intro.
by M. Nelkon Price: \(£ 3.20\)
THE CHEAP VIDEO COOKBOOK
by D. Lancaster
Price: \(£ 6.95\)
- all prices include postage *

THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

\section*{19-21 PRAED STREET}

LONDON W2 INP
Phone 01.723 4185
Closed Saturday 1 p.m.

\section*{CANON COMPONENTS}

Low imp Dynamic Mic*s Brand new in packs \(\mathbb{£ 1 . 6 2}\) Triacs 10 amp. 400 v brand new AEI full spec. all with fitted
heavy duty heat sink \(\mathbf{E 2 . 5 5}\) heavy duty hear sink \(\mathbf{2} .55\)
22 way edge connectors Ex equipment but clean 0.15 matrix gold plated complete with locating pln Only 58p 17 way edge connectors Brand new. 15 pitch complete
with locating pin and fixing brackets. Tinned. Only 35 p Connecting wire 15 p per 10 metres or mixed at \(£ 3.00\) per kito approx.
Tagstrips 30 way new. 1 5p
Group Board 17 or 34 way brand new 12 p and 24p
DIAL-A-BOX
As festured in "P.E. MARKET PLACE" a comprehensive Sl indard range of boxes for the constructor, or custom buin
to your specification. Send your requirements with S.A.E. or to your specification
phone for quote.

Lamp panals with over thinty lampholders fitted ideal for light displays or moving light shows. Only 85p Mains selector panels from 200v-250v. Brand new. 20p each
Cable Ties long re-usuable \(6^{n}\) plus. 3 p each.
Transformers 20-0-20v 400 mA E2.50 each.
4 mm Screw Terminals assorted colours of our choice f1.00 for six.

> STOP PRESS!
> P. E. Guitar Sound Multiprocessor

> Send SAE for quotation for a purpose
buift case for this project.

> All prices include VAT - Please add 65p Post \& Packing per item to total cost of order. Open daily 9.30am-6pm - Access or Barclaycard accepted - S.A.E. for lists.

> 322-334 WHITEHORSE ROAD, CROYDON, SURREY CRO 2LF TEL: 01-6849872


\section*{INDEX TO ADVERTISERS}

Ace Mailtronix Ltd.......................................... 4
Adam Hall (P.E. Supplies) ............................. 85
Altken Bros . .t.............................................. 16
Alben Engineering.......................................... 7
Albury Instruments Ltd .................................. 84
Alcon Instruments Ltd .................................. 72
Astra-Pak....................................................... 78
Automated Homes.......................................................................................
Barrie Electronics.......................................... 88
Bi-Pak ......................................................... 8 , 9
Birkett, J. ......................................................... 4
Boffin Projects .............................................. 86
Boss industrial Mouldings Ltd.................10, 11
British National Radio \&
Electronics School.............................. 17, 75
Cambridge Kits ............................................. 85
Cambridge Learning...................................... 79
Calscope (Scopex) .......................................... 16
Cannon Components .................................... 87
Chromasonic................................................. 87
Clef Products ................................................. 54
Codespeed.................................................... 82
Continental Specialties .................................. 53
Crescent Radio Ltd ....................................... 72
Crimson Elektrik............................................. 58
Crofton Electronics ........................................ 83
C.R. Supply Co .............................................. 84

Davian Electronics .......................................... 2
Dudley, John \& Co. Ltd.................................. 86
E.D.A............................................................ 83

Electroni-Kit Ltd............................................. 82
Electrovalue3
Fladar ..... 76
Flairline Supplies ..... 86
Fotherby, Willis Electronics Ltd.. ..... 4
Garfields ..... 85
Goddards Components ..... 74
72
Greenweld Electronics
Greenweld Electronics ..... 72 ..... 72
H L Audio.. ..... 71
Harversons. ..... 12
Heathkit Ltd ..... 74
Home Radio. ..... 12
I.C.S. Intertext ..... 84
I:L.P. Electronics. ..... 81
Ibek Systems. ..... 84
J.W.B. Radio ..... 84
Kramer \& Co ..... 82
Lektrokit Ltd. ..... 13
Lord, Jeremy ..... 58
Maplin Electronic Supplies ................ ..... iv
Marshall A. (London) Ltd. ..... 70
Metac ..... 78
Micro Systems ..... 15
Micron R/C........ ..... 85
Mill Hill Supolies ..... 76
Minikits Electronics. ..... 86
Modern Book Co. ..... 87
Monolith ..... 82
Norman inskip ..... 73
P.K.G. Electronics ..... 85
Phonosonics ..... 6,7
Progressive Radio ..... 76
Proto Design ..... 86
Radio Component Specialists. ..... 2
Ramar Constructor Service ..... 86
R.S.T. Valve Mail Order ..... 76
Radio \& T.V. Components ..... 69
Saxon Entertainments ..... 4. 15
Scientific Wire Co ..... 85
Sentinel Supply ..... 15
Service Trading ..... cover iii
Sinclair Radionics Ltd. ..... 57
Solec Products ..... 86
Solid State Security ..... 86
Special Products. ..... 83
Squire, Roger ..... 12
Staravia Ltd ..... 84
Sugden, A. R. ..... 16
Swanley Electronics. ..... 54
Technomatic Ltd. ..... 80
Teleplay (Logic Leisure) cover jiT.K. Electronics 2
T.L.C....77
Vero Electronics. ..... 58
Watford Electronics ..... 5
Wilmslow Audio ..... 54


All types \(£ 3.50\) ea. + P. \& P. 50 p ( \(£ 4.32\) Incl VAT). excep
NEW HEAVY DUTY SOLENOID. mfg. oy Magnetic Devices. 240 V a.c. opera-
ion approx. 1016 s pull limiermitent rating at \({ }^{\text {fith }}\) in. Price \(£ 4.00\) P.
60 p . 4.96 inc. VAT \& P.I. N.M.S. A.C. SOLE NOID pve ether type 176/2
 intermittent rating. Price E1 p\&p 20p (É1.30 inc VAT + P). WESTPOOL TVPE MM8 Model \(2,240 \mathrm{~V}\) AC. Approx 13 lb pul
 MINIATURE UNISELECTOR

12 volt. 11 -way. 4 bank ( 3 non-bridging.
1 homing), \(\mathbf{\text { f2.50. }}\)
P. \& P. 35 ( ( \(\mathbf{~ 3 . 0 8}\) inc. VAT \& P.). N.M.S. 240 A.C. SOLE Rated 1 p.s.i. will handle up to 7 p.s.i. Forged brass inlet oullet. Precision made. British mig.

\section*{MICRO SWITCHES}

10 for \(£ 2.50\) post paid.
LEVER OPERATEO 20 amp . C/O. Mig. by Unimax
USA 10 .
O.P. CIO lever \(\mathrm{m} / \mathrm{switch}\) mfg. by Cherry Co. USA. Precious metal £ 302 (min. 10 )
Post Paid \(£ 2.70\) witch ly
MERCURY SWITCH
linc VAT \(£ 5.721 \mathrm{~min}\) quam \(\mathbf{5} .00\)

\section*{VORTEX BLOWER AND VACUUM UNIT \\  ang tacilitios \\ Dimension
dih 25 cm \\ neight 25 cm These units are ex equipment but have had
minimum use Fully tested prior io despatch Price 512 \\ Suitable transto \\ CENTRIFUGAL BLOWER Smith type FFB \\  \\ }

24 volt. D.C. BLOWER UNIT
Prece ision 24 volit DC. C . 8 amp Blower that works well on 12 V


INSULATION TESTERS NEW


All Mail Orders-Callers-Ample Parking
Dept. PE, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560

\section*{VARIABLE VOLTAGE TRANSFORMERS}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{INPUT \(230 / 240 \mathrm{~V}\) a.c. \(50 / 60\) OUTPUT
VARIABLE \(0-260 \mathrm{~V}\) All Types}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{VARIABLE 0-260V All Types SHROUDED TYPE} \\
\hline 200 watt & (1 amp inc, a.c. voltmeter & C14.50 \\
\hline 0.5 KVA & (22 amp (MAX) & 617.00 \\
\hline & 5 mp MAX) & E 22.50 \\
\hline 2 KVA & 10 amp MAX) & c37.00 \\
\hline 3 KVA & 15 amp MAXI & ¢ 674.50 \\
\hline \({ }^{5} 5 \mathrm{KVA}\) & ( 55 amp MAX) & \\
\hline 15 KVA & ( 75 amp MAX) & E260 \\
\hline
\end{tabular}

CARRIAGE ANO PACKING EXTRA

\section*{LT TRANSFORMERS}
(ex \(130-13 \mathrm{~V}\) at \(1 \mathrm{amp} \mathbf{5 2 . 5 0} \mathrm{P}\) \& \(\&\) P. 50 ( \(\mathbf{E} 3.24\) inc. VAT)

 (E14.58 inc. VAT \& P.)
\(0-6 \mathrm{~V} / 12 \mathrm{~V}\) at 10 amp fa.25 P. \& P. \(\mathcal{E 1} .25\) (E10.26 inc. VATI

 Other types in stock; phone for enquiries or send sae for leaflet.

\section*{HY-LIGHT STROBE KIT MK IV} Latest type Xenon white light flash tube. Solld state Designed for larger rooms, halls, etc. Speed adiustable \(1-20\) f.p.s. Light outpul greater than many (so celiled 4
Joule) strobes. Price \(£ 19.00\). Post \(£ 1\) ( \(£ 21.60\) incl. VAT \& P.) Speeially designed case and reflector for Hy-Light
¢80. Post \(f 1\) ( 10.58 inc. VAT \& P.).

\section*{XENON FLASHGUN TUBES \\ Range avalable from stock}

ULTRA VIOLET BLACK LIGHT

\section*{FLUORESCENT TUBES}

4f. 40 watt \(\mathbf{f 8 . 7 0}\) (callers onlv) 2 th .20 watt \(\mathbf{~} 6.20\). Post 75 p . 8 watt \(£ 2.80\). Post 35 p. ( \(£ 3.40\) inc VAT + P). 9 in. 6 watt \(£ 2.25\) Post 35p. ( \(£ 2.81\) inc VAT + P). 6 in. 4 watt \(£ 2.25\). Post 35 p
c2. 81 inc VAT +
Complete ballast unit for either \(6^{\prime \prime} .9^{\prime \prime}\) or \(12^{\prime \prime}\) tube 230V AC op OC op \(\mathbf{5 3 . 5 0}\). Post 45 p. ( \(£ 4.27\) inc VAT + P)
400 watt UV lamp and ballast complete £31.50. Post ©3
\((\mathbf{£ 3 7 . 2 6}\) inc VAT + P). 400 watt UV lamp only \(\mathbf{£ 1 1 . 2 5 \text { . Pos }}\)

\section*{SQUAD LIGHT}
control. Four channels each
cadable of handling 750 watts

programs all speed controlled of small mains lamps. Seven giving 14 different displays. Makes sound-to-light ebsolete Completely electrically and mechanically noise free.
WIDE RANGE OF DISCO LIGHTING EQUIPMENT

\section*{Superior Ouality Precision Made \\ NEW POWER RHEOSTATS \\ namel embedded winding heavy duty brush assembly, continuously rated.
25 WATT \(10 / 25 / 50 / 100 / 150 / 250 / 500 / 1 \mathrm{kR}\) \\ } 1.5 kR . £2-40. Post 20g IE2. B1 inc. VAT \& \(P\)
\(50 \mathrm{WATT} 100 / 2502\) \& 2.90 . Post 25 p I 3
 Biack Sllver, skirted knob calibrat
Biack, Siver, Skirted knob calibrated in Nos.
dia. brass bush. Ideal for above Rheostats 24 p each.

\section*{RELAYS}

230/240V A.C. Relays: Afrow 2 c/o. 15 amp £ 1.50 (£1. 84 inc
T.E.C. open type \(3 \mathrm{clo} 10 \mathrm{amp} £\).1.10 ( \(£ 1.40 \mathrm{inc}\). VAT \& P).
Omoron or Keyswitch 1 c/o \(7 \mathrm{amp} £ 1.00\) ( \(\mathbf{~} 1.30\) inc. VAT \& P).
D.C. Relays: Open type \(9 / 12 \mathrm{~V} 3 \mathrm{c} / 07 \mathrm{amp} £ 1.00\) ( \(£ 1.30 \mathrm{inc}\)

VAT 81 P). Sealed 12 V i c/o 7 amp octal base. f 1.00 ( \(£ 1.30 \mathrm{inc}\)
VAT \& P) Sealed 12 V 2 clo 7 amp octal base. f 1.25 ( \(\mathbf{1} 1.56 \mathrm{inc}\)
VAT \& P). Sealed \(12 \mathrm{~V} 3 \mathrm{c} / \mathrm{o} 7 \mathrm{amp} 11\)-pin. f1. 35 ( f 1.67 inc
VAT \& P). (amps = contact rating). \(P \& P\) on any Relay 20 p
Other types available - phone for detalis.
Diamond \(H\) heavy duty A.C. relay \(230 / 240 \mathrm{~V}\) a.c. 1 wo \(\mathrm{C} / \mathrm{O}\)
contacts 25 amps res at 250 a.c. \(£ 2.50\) p\&p 50 p. (c3. 24 inc

\section*{\(\longrightarrow\) \\ VAT \\ at CURRENT RATE MUST BE ADDED TO ALL ORDERS FOR THE TOTAL VALUE OF GOODS INCLUDING POSTAGE UNLESS OTHERWISE STATED. \\ SERVICE TRADING CO. \\ ACCOUNT CUSTOMERS MIN. ORDER \(£ 10.00\)}

PARVALUX MOTOR TYPE SD2
12 volt. D.C. shunt \(\frac{1}{10}\) H.P. Motor. Continuously rated 4.000

\section*{GEARED MOTORS}
single phase split capacitor motor immense power. Continuously rated. Totally enclosed. Fan cooled in-line gearbox. Length 250 mm . Dia 135 mm Spindie dia 155 mm Lenc. VAT \& P.) Suitable transtormer 230/240V operation se

\section*{GEARED MOTORS}

\section*{15 va.c. Reversible motor.
71 r.p.m. 10 lbs inch}

Both lypes similar to above drawing. Price either type \(\mathbf{£ 4 . 7 5}\) p\&p 75 p . ( \(\mathbf{C 5} .94\) inc VAT + p\& \(p\) ) Supplied complete with transformer for
\(£ 7.25 p 8 p £ 1.00(£ 8.9 .1\) inc VAT \(+p 8 p\) )
CROUZET 230/240V AC 2RPM synchronous geared moto E2.90 p\&ip 30 p . (E3. 45 incr VAT) (quantity discount available.) E2.90 p\&p 30p. ( \(\mathbf{E} 3.45\) incl VAT 4 P) N.M.S.

FRACMO GEARED MOTOR amp sharplength 35 mm , dia 16 mm werght 6 kilos 600 grammes. Price 51500

PARVALUX GEARED MOTOR
\(\mathbf{2 3 0 / 2 4 0 V}\) A.C. \(\mathbf{3 0}\) rpm 501 lbs inch. Price \(£ 15-00\) P. \& P. £. \(£ 1 . O \mathrm{C}\)
( \(£ 17.82\) inc. VAT). N.M.
PARVALUX GEARED MOTOR
\(\mathbf{2 3 0 / 2 5 0 V}\) a.c. 500 rpm, 3ilbs inch. 2 right angled spindles
f 11.00 P \& P © 1.00 ( \(£ 12.96\) inc. VAT \& \(P\).).
N.M.S

CITENCO 19 RPM


\section*{N.M.S}

\section*{FRACMO MOTOR}

1400 rpm H.P. \(\frac{1}{30}\) continuously rated \(115 V\) a.c.. fitted with ant vibration cradle mounting. Supplied complete with transformer
or \(230 / 240 \mathrm{~V}\) a.c. op. \(\mathbf{£ 1 0 . 0 0 ~ P . \& ~ P . ~} \mathrm{f} 1.00\) ( \(\mathbf{1 1 . 8 8} \mathrm{inc}\). VAT \& P.)

ROTARY VACUUM
AIR COMPRESSOR \& PUMP
Carbon vana oil free vacuum pump
and compressor. Approx 20 inc


Powered by 110 V a.c. 1.8 amp
Parvalux motor fitted with additional shaft at rear, suitable
light loads.
eapacitor \(£ 14.00\) p\&p \(£ 1.50\) (f 16.74 inc VAT
 \(\qquad\)

BLOWER VACUUM PUMP
English Electric 3 phase AC motor 220/250V. Or \(380 / 440 \mathrm{~V}\). Aliday \& Co Alcosa carbon vein blower/vacuum pump 0.9 cfm

PROGRAMME TIMERS
12 cam model \(\mathbf{f 7 . 5 0}\). Post 60 p (f8.75
inc. VAT \& P.). Also available for 50 V
inc. VAT \& P.l. Also av
operation. Price as above.
M.M.S


SANGAMO W̄ESTON TIME SẄItch
Type S251 200 , 250 V . a.c. 2 on 2 off every 24 hours. 20
amps contacts with override switch dia. \(4 \times 3\) price
50 p inc. VAT \(£ 7.56\). Also avaliable with Solar dial.

Yet another outstanding offer
IMFD 600V Dubilier
Z230V a.c. FAN ASSEMBLY
complete with 5 blade 61 in . Aluminium
fan. Price \(\mathbf{£ 3 . 0 0}\). P. \& P. 65 p \((\mathbf{3} 34)\). N.M.S
\(\begin{array}{ll}\text { N.M.S. } & \text { New Manufacturers Surplus } \\ \text { R. \& T. } & \text { Reconditioned and Tested }\end{array}\)

Personal callers only Open Saturdays
9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone 01-437 0576

Published approximately on the 15th of each month by IPC Magazines Lid., Westover House, West Quay Road. Poole, Dorset BHIS IJG. Printed in England by Chapel River Press, Andover, Hants. Sole Agents for Australia and New Zealand - Gordon \& Gotch (A/sia) Lid.: South Africa-Central Ne ws Agency Lid.
Subscriptions INLAND and OVERSEAS \(£ 10.60\) payable 10 IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex
Practical Electronics is sold subject to the following conditions, namely, that it shall not, without the written consent of the Publishers first given, be lent, resold, hired out or otherwise disposed of by way of rrade at more than the recommended selling price shown on the cover. excluding Eire where the selling price is subject to V.A.T., and that it shall not be lent, resold or hired out or otherwise disposed of in a
```


[^0]: (c) IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: SINCLAIR PRODUCTS microvision tv $£ 90$ DM35 £27.25. Mains adaptor £3.24. Case〔3.25. DM235 £48.30. Rechargeable battery units $£ 8$. Adaptor/charger $£ 3.70$. Case $£ 8.50$. Cambridge prog. calculator 13.13. Prog. library £3.45. Mains adapto £3.20. Enterprise prog. calculator $£ 21.95$
 COMPONENTS send sae for full list. 1 lb $\mathrm{FeCl} \mathrm{C1.05}$. Dalo pen 73 p . 60 sq ins pcb 55p. Laminate cutter 75 p . Small drill 20 p zn
 $£ 3.85$. Case $£ 1$. $1 \mathrm{~N} 4148 \quad 1.4 \mathrm{p}$. 1 N 4002 2.9p. 723 29p. 741 15p. NE555 23 p. bc 182 b , bc $183 \mathrm{~b}, \mathrm{bc} 184 \mathrm{~b}, \mathrm{bc} 212 \mathrm{~b}, \mathrm{bc} 213 \mathrm{~b}$, bc 214 c 4.5 p . Plastic equivs bc 107 bc 109 4.8 p . $\frac{1}{4} \mathrm{~W} 5 \%$ E12 resistors 10 R to 10 N 1p
 0.8 p for $50+$ of one value. 16 V electrolytics $.5 / 1 / 2 / 5 / 10 / 22 \mathrm{mf} 5 \mathrm{p}$. $100 \mathrm{mf} 6 \mathrm{p}, 1000 \mathrm{mf}$ 10p. Polyesters $250 \mathrm{~V} .015,068, .1 \mathrm{mf} 1 \frac{1}{2} \mathrm{p}$. Ceramics $50 V$ E6 22 pf to 47 n 2 p . Polystyrenes 63 V E12 10 pf to 1 on 3 p . Zeners 400 mW E24 2V7 to 33 V 7 p .
 TV GAMES send sae for data. AY-3-8500 +
 kit $£ 8.95$. AY-3-8600 + kit $£ 1250$. kit $£ 8.95$. AY-3-8600 + kit $£ 12.50$. Tank battles chip + kit $£ 13.95$. Stunt cycle chip
 $£ 6.90$, kit $£ 4.00$. Rifle kit $£ 4.95$.
 C AUDIO AMPS with pcb JC12 $6 \mathrm{~W} £ 1.60$. C20 10W E2.95. JC40 20W E2.95.

[^2]: To: Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE1 7 4HJ.
 Please send me (qty) PDM 35(s)
 (11) $£ 32.35$ (incl. VAT) each.................. $£=$ Name.
 (qty) De-Luxe carrying cases (17) $£ 3.24$ (incl. VAT) each.. (qty) AC adaptor(s) for 240 V power (11) $£ 3.24$ (incl. VAT) each
 Post and packing (please add).
 I enclose cheque/l?O made payable to Sinclair Radionics Ltd for (indicate total amount).

 I inderstand that ifI am not completely satisfied with my PDM 35, I may return it within ten days for full cash refund.

