

Telleplay

 COLOURCAR OFFERS - will save you pounds in

Electrical knowledge is not a necessity to assemble this project - just simple soldering.
Cheques and Postal Orders to be made payable to TELEPLAY: send your order (No Stamp Needed) to
Teleplay, Freepost, Barnet, EN5 2BR or telephone your order quoting your Barclaycard or Access number. Queries and Technical Advice offered either by phone or by calling at our shop.

CONSTRUCTIONAL PROJECTS

ANALOGUE COMPUTER-1 by P.J. Kronis BSc
Mathematical operations and circuits 970
COMBINATION LOCK by E. A. Parr
Double combination for added security 990
THERMOSTAT CONTROL by M. Edmunds
For the photographer who does his own developing 1002
SOUND TRACK MONITOR byJ. Schmid
Alerts the operator when the end of a recording is reached 1006
METRONOME by M. Butt
Simple emphasised beat unit 1010
KEYBOARD by L. G. Parkin BA
Provide an eight bit binary word by pressing two keys 1014
GENERAL FEATURES
WAVE ENERGY by M. Abbott
Can the sea provide the UK with electricity? 976
STRICTLY INSTRUMENTAL by K. Lenton-Smith
Signetics TDA 1008 electronic music i.c. 988
INGENUITY UNLIMITED
Simple Clock-Beethoven's Doorbell-Electronic Combination Lock—Distortion Assessment--Protection for a Model Train Speed Controller-Simple Alarm 993
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices 998
NEWS AND COMMENT
EDITORIAL 969
READOUT
A selection of readers letters 974
BOOK REVIEWS
Selected new books we have received 980, 1013
MARKET PLACE
Interesting new products 985
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 1001
SPACEWATCH by Frank W. Hyde
Soyus-29 and Salyut-6, USSR Launchings, India and the USSR, GOES-3, Place in Space 1005
PATENTS REVIEWThought provoking ideas on file at the British Patents Office1020

Our October issue will be on sale Friday, 8 September 1978
(for details of contents see page 975)

[^0]
TIMPE I.C.E. MULTIMETERS

Supertester 680R

 (illustrated)* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 1 \%$ fsd on d.c.
$4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 80 Ranges - 10 Functions
* $140 \times 105 \times 55 \mathrm{~mm}$
$\mathbf{£} \mathbf{3 2 . 0 0}+$ VAT
(For Mail Order add 80p P\&P) All I.C.E. multimeters are supplied complete with unbreakable plastic carrying case, test leads, etc. and a 50-plus page, fully detailed and illustrated Operating and Maintenance Manual.
Now available from selected stockists. Write or phone for list, or for details of direct mail-order service
(For Mail Order add 80p P\&P)

Supertester 680G

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 k \Omega / V, \pm 2 \%$ fsd on a.c.
* 48 Ranges - 10 Functions
* $109 \times 113 \times 37 \mathrm{~mm}$

$\mathbf{£ 2 4 . 5 0 ~ + ~ V A T ~}$

Microtest 80

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 40 Ranges - 8 Functions
* Complete with case -
only $93 \times 95 \times 23 \mathrm{~mm}$

$£ 16.60$ + VAT

(For Mail Order add 80p P\&P)

TRANSISTORS Medium Power MP 8112 @ $15 p$, MP $8512 @ 15 p$.
CMOSMOPDOD 1011 . 57
MOS LEVEL SENSOR TAA 320A with data @ 35 p .
SUB-MIN TANTALUMS 4.7 uf 10v.w. @ 6 for 25 p .
ITT. 1 uf 100v.w. POLYESTER CAPACITORS @ 20 p doz
100 ASSORTED C 280 CAPACITORS @ $57 p$.
MAINS TRANSFORMERS 240 volt Input Type 1,55 volt 10 Amp @ $\mathbf{~} 5.50$ (P\& P 25 p); Type 2, 24 volt Tapped at 1
500 mA @ $£ 1.80$ (P\&P 25 pl .
MC 1350 WIDE BAND AMPLIFIER 400 kHz to 45 MHz (G) 45p.
咅" COIL FORMERS with core. 6 for 25 p .
Assorted Untested @ 57p.
$1000 u f 40 \mathrm{v}$.w. ELECTROLY'ICS at 3 for 35 p .
60 ASSORTED WIRE WOUNDRESISTORS 1 to 10 watt @ 57p.
2200uf 100v.W. ELECTROLYTICS for 80 p .
DISC CERAMICS .22uf 6v.w., .1uf $18 \mathrm{v} . \mathrm{w}$., . 02 uf $50 \mathrm{v} . \mathrm{w} ., .01 \mathrm{uf} 50 \mathrm{v} . \mathrm{w} ., 1000 \mathrm{pf} 100 \mathrm{v} . \mathrm{w}$.
All 20p doz. 1 Amp TRANSISTORS PNP BCX 36 (4) 12p, BCX 37 @10p.
1":8 ohm LOUDSPEAKERS at 75p. 20 . 7 .
200 ASSORTED , 1 Watt RESISTORS for 75 p
FERRANTI ZTX 8 TRANSISTORS 7 for 50 p .
ERIE REDCAP SUB-MINIATURE . 01 uf 100\%,w, CAPACITORS 5p each.
30 ASSORTED $10 \times A 1$ CRYSTALS 5100 to 7900 kHz for $£ 1.10$.
MULLARD PRE-AMPLIFIER I.C. TAA 435 with data @ 40p.
1 MHz PLUS 100 kHz CAYSTAL with Calibrator circuit @ $£ 2$.
$33 \mathrm{v}, 36$ volt. All at 10 for 40 p . 2 C ,
1.2K 6 WATT VARIABLE WIRE WOUND RESISTORS 4 " Spindle @ 22p.
STUD MOUNTING DIODES 100 PIV 10 Amp $916 \mathrm{p}, 4$ for $50 \mathrm{p}, 100$ PIV 30 Amp
© A A.W. TV FILTERS Untested 3 for 35 p .
ELECTROLYTIC CAPACITORS $20+20 \mathrm{uf} 450 \mathrm{v} . \mathrm{w}$. (G) 20p. $32+32 \mathrm{uf} 275 \mathrm{v} . \mathrm{w}$. ©. 10 p . $63 v . w$. © 60e.
100 ASSORTED MULLARD C280 CAPACITORS for $57 p$.
ELECTRET MICROPHONE INSERTS with FET PRE-AMP @ $£ 1.85$
ELECTRET MICROPHONE INSERTS with FET PRE-
TEXAS S.C.R's TIC 47. 200 PIV 300 mA @ 18 p each
SPECIAL F.M. FRONT END with Manufacturer's circuit @ $£ 4$.
3 PIN MAINS PLUG AND SOCKET like R.S. European type with 2 metres of Cable 75 pair.
$1 u f 25 \mathrm{~V}$
1uf 25y.w. ELECTROLYTIC CAPACITORS 6 for 25p.
100 ASSORTED DISC CERAMICS for $57 p$.
5 WATT NPN DARLINGTON TRANSISTORS @ 20p, 3 for 50p.
AUDIO I.C. LM380 with circuits @ 80 p .
MINIATURE 2 POLE 4 WAY SWITCHES @ 20p.
WIRE ENDED SPARK GAPS at 10 p each.
$0.2^{\prime \prime}$ LEDS with Holders. Red @ 150 Green
30 mA 0.5 Volt SILICON SOLAR CELLS (3) 50 p .
Please add 20p for post and pecking, unless otherwise stated. on U.K. orders under E 2.
J. BIRKETT

RADIO COMPONENT SUPPLIERS
25 The Strait, Lincoln LN2 1JF Tel. 20767

[^1]

WATFORD ELETTRONILS 35 CARDIFF RCAD. WATFORD, HERTS., ENGLAND
IL ORDER, CALLERS WELCOME. Tel. Watford $40588 / 9$ ALL DEVICES GAAND NEW, FULL SPEC. AND FULLY GUARANTEED. ORDERS ALL DEVICES GAAND NEW, FULL SPEC. AND FULLY GUARANTEED. ORDERS
DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/ PO. OR BANKERS DRAFT WITH OADER. GOVERNMENT AND EDUCATIONAL
INSTITUTIONS OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORT INQUIRY WELCOME. P\&P ADD $30 P^{\circ}$ TO ALL ORDERS UNDER £10.00. OVERSEAS ORDERS POSTAGE AT COST. AIR/SURFACE.

MINIMUM ORDER £2.00 PLEASE

VAT

\qquad on To the rest sdd 12 or
We stock many more items. It pays to visit us. We are situated behind Watford Football
Ground. Nearest Underground/Bh Station: Watford High Street. Open Monday to Saturday $9.00 \mathrm{am}-6.00 \mathrm{pm}$. Ample Fros Car Parking space available

POLYESTER RADIAL LEAD (Values in μ F) 250V:
O-01, $0-015 ; 0-022,0-0275 p ; 0-033,0-047,0-068,0-17 p ; 0-1512 p ;$
FEED THROUGH
CAPACITORS
$100 \mu F 350 \mathrm{~V}$

DIGITAL MULTIMETER

Announcing DM900 - The Digital Muitimeter with a difference - It measures Cap
(as published in E.T.I. August 1978)
Throw away your analogue meters, here's digital accuracy at only half the price of an equivalent commercial Multimeter
The DM900 is a $3 \frac{1}{2}$ digit multimeter with a 0.5 in L.C.D. display incorporating
$5 \mathrm{AC} \& \mathrm{DC}$ Voltage ranges: 6 Resistance ranges. The prototype accuracy is better than 1%.
This is a unique design using the latest MOS ICs by only one PP3 battery. There is also a battery check facility
DM900 is an attractive hand-held lightweight device, built into a high impact case with carrying handee and has simplify assembly.
Never before have all these features been offered
to the electronics enthusiast in a single un
SPECIALINTRODUCTORY OFFER
: $\mathbf{£ 4 9 . 9 5 ^ { * }}$ only (p \& p insured add 75) Ready Built units available on order

Send SAE for leaflet.

VDU CHIP and MODULE

 Convert your $T V$ into a VDU by using the new Thomson-CSF 96364 . 16 lines by 64 characters text refreshment, cursor manage-ment on \mathbb{N} screen, line erasing ine end erasing. Compatible with any computing system. (Send 20p plus SAE for full technical data.)
SFF 96364 E AY-5-1013 UAR
71301 ROM
SFS80102 RA
7415163 RAM
\qquad
ASC 11 Keyboards*

Full 56 Key ASC 11 coded keyboards now available $\mathbf{£ 4 9 . 5 0 ^ { \circ }}$ (P

 N TVNANOUNN

4526
4527
4528
4529
4530

152
99
165
85 740
740

SAXON ENIERTANMENTS LTD THE PIONEERS OF MODULAR DISCO/P.A. EQUIPMENT NOW OFFER PACKAGE DEALS AT INCOMPARABLE PRICES

CENTAUR STEREO DISCOS
 C/W LIGHT SHOW \& DISPLAY, TWIN SPEAKERS \& LEADS

Standard 100W

$\mathcal{E} \mathbf{4} 9$ or Deposit $£ 57.12$
12 Months © $£ 21.75$ or 24 Months © $£ 12.26$

Super 200W £299 or Deposit $£ 68.12$ 12 Months e $£ 25.86$ or 24 Months © $£ 14.56$

GXL 200W $\mathcal{E} 389$ or Deposit $£ 87.32$
 12 Months £ $\mathbf{3 3} .31$ or 24 Months e $£ 18.76$

COMPLETE STEREO
ROADSHOWS - BUILT IN SOUND TO LIGHT/SEQUENCER \& DISPLAY

TWO YEAR GUARANTEE

illustration shows GXL Centaur System
These systems feature full mixing for two decks tape \& mic with monitoring facilities - override and are supplied complete with sound to light + sequencer, display, speaker leads etc.

JUST PLUG IN AND GO!

BSR Decks - 17,000 Line Loudspeakers - Rugged Aluminium Trimmed Cabinets - Cue Light And Phones Output - Slave Output - Deck Lights/Motor Starts (GXL)

MINI DISCO 100 WATT MONO SYSTEM $£ 179.50_{\text {Depositit } £ 41.66}$
 12 Months $\propto £ 15.56$

Similar in appearance to the Centaur and complete with loudspeakers and leads.

Headphones to suit any system
£7.50
EM507 Electret Mic £ 15.00 ECM 81 Electret Mic £ 19.95 Boom Stand f 15.50 Carrioge on all disco and PA systems $£ 10.00$ (Included in H.P. Prices)

20\% Deposif Terms On All Orders Over £ 150-12 or 24 Months - Low Interest

D.I.Y. MODULES FOR ALL DISCO/P.A. AMPLIFIERS

TOP QUALITY COMPONENTS THROUGHOUT
COMPLETE LIGHTING CONTROL AT YOUR FINGERTIPS!

Lighting Control Unit Mk II 4 kW Sequencer + Sound Light + Dimmers		£44.50
+ Automatic Level Integrated Logic	Module	£32.50
Circuitry	Panel	£2.95
Three Channel Sound to Light		£26.75
3kW 1-240W input - master	Module	f19.75
Plus channel controls	Panel	£2.95

SPARES \& ACCESSORIES - LOUDSPEAKERS \& CABINETS

Rope Lights - Red or Multicolour	$£ 39.50$ $\text { per } 30 \mathrm{ft} \text {. }$	Melos Echo Chamber Headphones	£59.00
Rope Light Controller for up to	30.00	Sirens: English Police, USA Police,	
Fuzz Lights-Red/Blue/Yellow/G	22.80	Destroyer, Alien Voice Simulator	$£ 7.50$
Magnetic Cartridge Equalisers	£3.50*	Bulgin 8 way lighting plug/socket	f 1.90

100 Watt Chassis Loudspeakers $12^{\prime \prime} £ 23.50 \quad 18^{\prime \prime} £ 47.50 \quad$ (Add fl 50 corr.)
Empty Loudspeaker Cabinets: Small $12^{\prime \prime}$ Large $12^{\prime \prime} £ 21.50$ Simall $2 \times 12^{\prime \prime} £ 22.50$ $£ 15.50$, Large $2 \times 12^{\prime \prime} £ 28 \quad 1 \times 18^{\prime \prime} £ 29.50$

Projector lamps: A1167 £2.90. M6 £5.65 100W Spot lamps Red/Blue/Vellow/Green £ 1.50 ea $£ 13.50$ for 10
MD Spot Banks: 3-way 300W £19.50, 4-way 400W £22.50.
Bubble machines (optikinetics) £41.50

Strobe fubes $80 \mathrm{~W} £ 8.50$ ICI Vynide 50" wide $£ 3.50$ Metre Kickproof Grille $24^{\prime \prime}$ wide $£ 3.25$ Metre Kick Resistant Grill $50^{\prime \prime}$ wide $£ 3.25$ Metre. FULL RANGE OF RE-AN PRODUCTS IN STOCK SEND FOR OUR BROCHURE NOW!!

DISCO MIXERS - COMPLETE OR MODULAR

MONO OR STEREO WITH AUTOFADE

Avoilable complete and reody to plug in or as and easy to connect module with all controls except monitor switch alreody fitted - full instructions supplied.

FEATURES INCIUDE:
Win Deck - Mic 8 lope inpuls - Wide ronge bass Grobsle controls - Full headphone monitaring

STROBE UNITS

Pro-Strobe 4-6 Joules $£ 37.50$ Super Strobe 2-3 Joules $£ 22.50$ (Pro-Strobe has external trigger facility).

PROJECTORS - PLUTO - NEW LOW PRICES!!! CHOICE OF WHEEL/CASSETTE

P150 150W Tungsten	$£ 37.50$	Liquid wheels	$£ 7.50$
P500 100W Q.I.	$£ 74.95$	Cassettes	$£ 8.00$
P500 250W Q.l.	$£ 84.95$	Picture wheels from	$£ 4.75$
		(Wide choice available)	

PIEZO HORNS only $£ 7.50$ YES! - only $£ 7.50$
(As fitted to our package PA system) Direct from Motorota Inc., USA at an UNBEATABLE PRICE

MODULES	
Mono module	$\mathbf{£ 2 2 . 5 0}$
Stereo module	$\mathbf{£ 3 3 . 5 0}$
Panel	$\mathbf{£ 3 . 9 5}$
Kit of knobs/sockets etc	$\mathbf{E 5 . 5 0}$
COMPLETE MIXERS	(with case)
Mono 18V	$\mathbf{£ 3 9 . 5 0}$
Stereo IBV	$\mathbf{6 5 7 . 5 0}$
Mono moins	$\mathbf{£ 4 5 . 7 5}$
Spereo mains	$\mathbf{E 6 3 . 7 5}$

 amplifier - Full instructians supplied.

AND
 PACKAGE P.A. SYSTEMS (Guarantee)

Complete with PIEZO horn columns fitted with 100 watt units (100 watt system illustrated)

100 Watt $£ 159.90$

Deposit £38.46

12 Months @ £14.28
Includes 4 Channel 100 Watt Amplifier with Treble, Bass and Master Controls plus Leads and Twin Piezo Horn Columns (shown on right).

200 Watt £249.00

Deposit $£ 57.12$
12 Months @ £ 19.11 or 24 Months @ £ 10.66 zsix Mixed Inputs plus Three Sets of Bass and Treble Controls plus Slave Output and Master Control.

ACCESSORIES

Melos Echo Unit £59.00
A high quality Cassette Tape Echo Unit giving long tape life, infinitely variable echo depth and speed control. Suitable for all mics. and instruments.
High quality Boom Stand $£ 15.50$. Floor Stand $£ 9.90$. ECM81 Condenser Mic. Removable Lead - Good Anti-Feedbark £19.95.* EM507 Condenser Mic. - Good Value $£ 15.00$. Chasers $£ 19.80$
D.I.Y. MODULES FOR P.A. SYSTEMS Mono or, Stereo

Make your own mixer - Mono/Stereo - up to 20 channels with these, easy to wire modules - Available as PCB's or assembled on panels.

Mono (/W pone etc. £8.95

> Stereo / / mene ere.
> £12.50
Mixer/Monitor
(One only
${ }_{\text {Mo fer }}^{\text {Mon }} £ 5.95$
Mono (/W
panel etc.
£8.95
per system)
${\underset{c}{\text { Sleeve }}}_{\text {pe }} £ 9.50$

Send for free brochure for complete specification

Saxon AP 100 Amplifier $£ 45$

Four mixing inputs - 100W into 4 ohms Wide range bass \& treble controls + master - Twin outputs
Saxon 150 Amplifier $£ 59$
Four mixing inputs - 100 W into 8 ohms
 l50W into 4 ohms - wide range bass
\& treble controls + master

All prices subject to 8\% VAT except where asterisked ($12 \frac{1}{2} \%$) Shop premises open Tues to Sat $9 \mathrm{am} \cdot 5 \mathrm{pm}$ Lunch 12.30-1.30 pm Mail order dept open Mon to Fri 10 am - 4 pm Ring 01.6846385

TO ORDER

By Pots. Send your requirements with cheque crossed P.O. or 60p COD charge to address below or just send your Access or Barclay Card Number NOT THE CARD.
By Phone You may order COD. Access or Barclay Card.
Post \& Packing 50p on all orders except where stated.

SAXON ENTERTAINMENTS LTD.
 327 Whitehorse Road, Croydon, Surrey.
 All Enquiries Large SAE Please Brochures on request

The latest kit manraton: from Sparlhiite
 \sum uss featured
 the quickest fitting CLIP ON
 capacitive discharge electronic ignition in KIT FORM
 - Smoother running

 Continual peak performance
 Improved acceleration/top speeds
 Optimum fuel consumption
 Sparkrite X 4 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $1 / 3 \mathrm{mins}$
 Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm it will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). The circuit incorporates a voltage regulated output for greatly improved cold starting. The circuit includes built in static timing light, systems function light, and security changeover switch. All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
 THE KIT COMPRISES EVERYTHING NEEDED
 Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 year guaranteed
 transporter and components, cables, connectors. P. C.B., nuts, bolts and silicon installation instructions.
 NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV1 will require a tachometer pulse slave unit. Price $£ 3.35$ inc. VAT, post \& packing
 Electronics Design Associates, Dept. PE 日, 82 Bath Street, Walsall. US 1 3DE. Phone: (9) 614791

Electronics Design Associates, Dept. PE9 82 Bath Street, Walsall, WS1 3DE. Phone: (9) 614791

Name
Address

Phone your order with Access or Barclaycard
Inc. V.A.I. and P.P.

XU KIT $\quad £ 14.95$	
TACHE PELITE SLAVE UNIT $£ 3.35$	

send SAE if brochure only required.
I endorse cheque iPO's to:
£
Cheque No.

Please state polarity pos or neg earth.
Access or Barclaycard No.

GREENWELD
 443 Milbrook Road Southampton

 SO1 OHX Tel:(ロ703) 772501 All prices quoted include VAT. Add from schools, etc. (Minimum invoice 25p deapatched on day of receipt. SAE with walcome. Wholesale list now aveifeble enquiries please. MINIMUM ORDER for bona-fide traders. Surplus com-VALUE fi. Official orders accepted ponents alweys wanted.

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL

 HELP YOU* SAVE ON TIME-No delays in waiting for parts to come or shops to open!
- SAVE ON MONEY-Bu/k buying mesns lowest prices-just compare with others!
- have the right part-No guesswork or substitution necessary!

ALL PACKS CONTAIN FULL SPEC, BRAND NEW MARKED DEVICES- SENT BY
RETURN OF POST. VAT INCLUSIVE PRICES

 ${ }_{K}$
range, 22 pF to $0.1 \mu \mathrm{~F} .330$ K002 Extend
values E 4.90
K003 Polyes
K003 Polyester capacitors. 10 each of these
values: $0.01,0.015,0.022,0.033,0.047$ values: $0.01,0.015,0.022,0.033,0.047$
$0.068,0.1,0.15,0.22,0.33 .0 .47 \mu F .110$ altogether for $\mathrm{E4.75}$
K004 Mylar capacitors. min 100 V type. 10 each all values from
Total 130 for $\mathbf{E 3 . 7 5}$
$\mathbf{0 0 0 5}$ Por $\mathbf{6} 3.75$ 1000 pF to 10.000 pF . $K 005$ Polystyrene capacitors, 10 each value from 10 pF to 10.000 pF . E12 series 5%
160 V . Total 370 for $\mathbf{£ 1 2 . 3 0}$ K006 Tantalum bead capacitors. 10 each of the following: $0.1,0.15,0.22,0.33,0.47$,
$0.68,1,2.2,3.3,4.7,6.8$. ali $35 \mathrm{~V}: 10 / 25$ $15 / 1622 / 1633$
tants for $£ 14.20$

tants for E14.20 $K 007$ Electroly

small physiclytic capacitors 25 V working small physical size. 10 each of these popula 70 for $£ 3.50$
K008 Extended range, as above, also including 220
K021 Miniature carbon film 5\% resistors, CR25 or similar. 10 of each value from 10 A K022 Extended range, total 850 resistors Kom 1 R to 10 M £8.30
K041 Zener diodes. $400 \mathrm{~mW} 5 \%$ BZY88, etc. K041 Zener diodes, $400 \mathrm{~mW} 5 \%$ BZY88, etc-
10 of each value from 2.7 V to 36 V . E24 series. Total 280 for $£ 15$. 30 .
K042 As above but 5 of each value $£ 8.70$
DIODE SCOOPIII We have been fortunate to obtain a large quantity of untested, mostly unmarked glass silicon diodes. Testing a sample batch diodes, high voltage rects and zeners may all be included. These are being offered at the incredibly low price of $£ 1 \cdot 25 / 1000$ - or a bag
of 2500 for $£ 2.25$. Baq of $10.000 £ 8$. Box of $25,000 £ 17.50$. Box of $100,000 £ 60$.

SPECIAL SUMMER OFFERS Audio IC's
$\begin{array}{llll}76003 N^{8} & £ 1.40 & 76013 N & £ 1.00\end{array}$ $\begin{array}{cccc}76023 \mathrm{~N} & £ 1.00 & 76033 \mathrm{~N} & £ 1.40 \\ \text { LM380 } & 80 \mathrm{p} & \text { TBA8105 } & 70 \mathrm{p}\end{array}$ $\begin{array}{lll}\text { Linear IC's etc. } \\ 741 \text { (8DIL) } & 18 \mathrm{p} & \text { BD131 }\end{array}$ 24p $\begin{array}{llll} & 18 p & \text { BD131 } & 24 p \\ 555 & 25 p & \text { BD132 } & 28 p \\ 1 N 414 B & 2 p & 2 N 3 B 19 & 18 p\end{array}$

74 SERIES PACK Selection of boards containing many different 74 series IC's. 20 for $£ 1$; 50 for $£ 2.20$; 100

TTL PANEL
52 logic IC's including 32×7416144 bit binary counter) +16 tant bead caps, A's, C's. etc. Ov
$£ 3.00$

DISC CERAMIC PACK
Amazing variety of values and voltages from
a few pt to 2.2 uF 3 V to $3 \mathrm{kV} \mid 200 \mathrm{f1.500}$ a few of to 2.2 uF

EXPERIMENTERS CALCULATOR

Based on the C500 chip, this pack of parts enables the more experienced constructor to make an 8 digit 4 function calculator. The omprehensive data supplied includes full display and keyboard that can be used etc Components included in the pack are C500 calculator chip. driver IC, all components for verter/clock circuits, A 's C's etc. All for only £3.50.

TRANSFORMERS

All mains primary: $12-0-12 \mathrm{~V} 50 \mathrm{~mA} 85 \mathrm{p}$; $00 \mathrm{~mA} 95 \mathrm{p}: 1 \mathrm{~A} \quad £ 2.50$. $6-0-6 \mathrm{~V} \quad 100 \mathrm{~mA}$ 2.10. Multitapped type 0-12-15-20-24
 (1) 300 mA twice $£ 2.50$; 12 V (a) 250 mA (a) 300mA

RELAYS

W847 Low profile PC mntg $10 \times 33 \times 20 \mathrm{~mm}$ V coil. SPCO 3A contacts. 930 W832 Sub. min type, $10 \times 19 \times 10 \mathrm{~mm} 12 \mathrm{~V}$ woil DPCO 2A contacts $£ 1.15$ W701 6V SPCO
$20 \times 30 \times 25 \mathrm{~mm}$ Only 56 p
W817 11 Shill W817 11 pin plug in relay, rated 24 V ac, but
works well on 6 V DC. Contacts 3 pole c/o rated 10A. 95 p W819 12 V 1250 R DPCO 1 A contacts. Size $29 \times 22 \times 18 \mathrm{~mm}$. min plug-in type 72 p V83950V ac (24V DCI coil. 11 pin plug in W846 Open construction mains relay. 3 sets 10A c/o contacts. $£ 1.20$ and illustrated.

STEREO AMPLIFIER

CHASSIS £5.50
Complete and ready built. Controls: bass. circuit gives 2 watts per channel output. Just needs transformer and speakers for low cost stereo amp. Suitable metal cabinet (W374) $£ 2.00$ - or buy the amp, case and trans-
former for f10.00 and get DIN speaker sockets and knobs freell

AMPLIFIER KIT $\mathbf{f 1 . 7 5}$

Mono gen. purpose amp with tone and Vol/on-off controls. Utilizes sim. circuitry to
above amp. Output 2 W into 8 ohms. Input matched for crystal cartridge. 4 transistor circuit. Simple to build on PCB provided. Can be either battery or mains operated. (For
mains powered version add $£ 2.20$ for suitmains powered version add $£ 2.20$ for suit-
able transformer.) Blue vinyl covered able transformer.)
aluminium case to suit (W372) $£ 1.30^{\text {Bo }}$

TMS4030 RAM

4096 bit dynamic RAM with 300 ns access time: 470 ns cycle time; single low
capacitance high level clock V / p : Fully T L compatible: Low power dissipation. Supplied with data e2.75

MISCELLANEOUS IC's Supplied with deta if requested. MC3302 guad comp. 120 p ; 710 diff comp. (T099) 40p: ZN 1034 E precision timer $£ 2.25$;
LM 711 Dual diff comp 65 p ; LM 1303 dual stereo pre-amp 75p: MC 1469R voltage reg £1.50: UPC1025H audio $£ 3.50$: 575 C audio £2.88: TDA2640 audio $\mathbf{£ 2 . 9 2}$ CRCC gen POA

HEAT SINK OFFER Copper TO5 sink 17 mm dia $\times 20$
$40 \mathrm{p}: 100$ for $£ 3: 1000$ for $£ 25$

PC ETCHING KIT MK II Now contains 200 sq. ins. copper clad baard 11b. Ferric Chloride, DALO etch-resist pen abrasive clish and instructions. $£ 4.25$

VERO OFFCUTS
Pack A, All 0.1 Pack B, Allo. 15 Pack C, Mixed Pack D. all 0.1" Plain Each pack contains 7 or 8 pieces with a tota

 0.1° Plain $£ 1.83$

EDGE CONNECTORS Special purchase of these 0.1"pitch double sided gold-plated connectors enables us to offer them at less than one-third of thei original list price
18 way $410: 32$

TD500

TDI50
$7^{\prime \prime} \times 9^{\prime \prime} \times 1 \frac{3}{4}^{\prime \prime}$ ULTRA QUALITY HIGH POWER $5^{\prime \prime} \times 5^{\prime \prime} \times 2^{\prime \prime}$ New D.C. Coupled Design AMPLIFIERS

Featuring-Electronic Short Open and Thermal Overload Protection.
Brief Spec.-Inpul Sensitivity 0.775 v. R.M.S. (O.D.B.) at 25 K Ohms requency Response $20 \mathrm{~Hz}-20 \mathrm{KHz}$. T.H.D. at full power 0.1%
Hum and Noise- 100 dB Relative full output.
T.D. 500 300W into 2 Ohms. 220 W into 4 Ohms. 140 W into 8 Ohms.........................
T.D. 150150 W into 4 Ohms. 100 W into 8 Ohms. $£ 30.00$

Power supply P.S. 150 £26.25
T.D. 15060 Version 60 W into 8 Ohms. 40 W into 15 Ohms. $£ 17.75$ Power supply P.S. 60 \qquad £15.50 Note-P.S. 300 will drive 2 T.D. 150 amplifiers
All output ratings are R.M.S. continuous sine wave output.
TO ORDER EY POST
Make cheques/P O s payable to TUAC LTD. (PE98), or quote Access/8arclay Card No (We accept holders phone orders 01-672 9080
Post to-
TUAC LTD., (PE98), 119 CHARLMONT ROAD, LONDON SW17 9AB
Send stamp for our tree 28 page catalogue of LIGHTING \& AMPLIFIER MODULES, etc

ELEGTROVIUTE

All the many types of components we supply are BRAND NEW and guaranteed and only

ICS - TTL 7400 series				7451	14p	7483	58p	74107	27p
7400	14p	7413	22p	7454	14p	7486	74p	74123	51p
7401	14 p	7414	60p	7460	14p	7490	40p	74141	54p
7402	14p	7420	14p	7470	24p	7491	71p	74151	60p
7403	14p	7430	14p	7472	24p	7492	46p	74154	1.60
7404	18p	7440	14p	7473	23p	7493	40p	74190	94p
7405	14p	7442	54p	7474	23p	7494	66p	74191	94p
7407	22p	7443	60p	7475	45p	7495	57p	74192	94p
7408	18p	7444	60 p	7476	32p	7496	63p	74193	94p
7409	18p	7447	70p	7480	41p	74100	73p		
7410	14p	7450	14p	7482	61p	74104	40p		

OUR COMPUTER TAKES GOOD CARE OF YOUR ORDERS

SIEMENS CAPACITORS* ${ }^{*}$ RESISTORS
World famous for quality and dependabilityPCB TYPES -7.5 mm PCM 0.001 to 0.015 6p each: 0.15 to $0.0477 p$ өa.
5 mm PCM 0.068 8p. 0.1 9p, 0.22 12p. CERAMIC 2.5 mm PCM 0.01 4p. 0.022 $0.033,0.0475 p, 0.0686 p .0 .017 p$. ELECTROLYTICS - $1 / 100,10 / 25,10 / 63$. $100 / 25$, etc. For full range see our current li
$\frac{1}{2} \frac{1}{2}$. 1 watts* $-2 p$ each*: metal film, metal oxide and I watt carbon $5 p$ ea": good quantity discounts. Magnetic field dependent from $£ 1.50$. Hall Effact from $£ 1.23$. SIEMENS TRANSISTORS 19 p: vellow or green from 23 p (3 or 5 mm):

KEEN PRICES * GOOD SERVICE \star WIDE RANGES

DISCOUNTS
5% if list value of order over £10
10% if list value of order over $£ 25$. Discounts available where cash (P.O. or cheque) is sent with order.
V.A.T. - Add B\% to value of order or $12 \frac{1}{2} \%$ with items marked ${ }^{*}$ (No V.A.T. on overseas orders)
Goods sent post free on C.W.O. orders in U.K. over $£ 5$ list value. If under, add 27 p per order
MONTHLY BARGAIN LISTS
S.A.E. brings monthly list of bargains. S.A.E. brings monthly list of bargains.
Also current quick reference price list of all Also curr
ranges.

Cosh with roder (P.O. or cheque payble to Electrova
ThADE AND INDUSTHIAL ENQUIAIES INVITED
For all round satisfaction - be safe - buy it from ELECTROVALUE

ELECTROVALUE LTD

Dept PE9, 28 St Judes Rd, Englefield Green, Egham, Surrey TW20 OHB.
Phone Egham 3603: Telex 264475.
Northern Branch (Personal shoppers only) 680 Burnage Lane, Burnage,
Manchester M19 1NA. Phone (061) 4324945.

LOOK! Here's how you master electronics

... the practical way

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course

1 Build an oscilloscope

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar

2 Read, draw and understand circuit diagrams
In a short time you will be able to read and draw circuit diagrams, under. stand the very fundamentals of television. radio, computers and countless other electronic devices and their servicing procedures.

3 Carry out over

 40 experiments on basic circuits We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing servicing and maintaining all types of electronic equipment. radio. t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment
British National Radio \& Electronic School
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

SUPERSOUND 13 HI-FI MONO
AMPLIFIER
 PRICE $£ 15 \cdot 00$ P. \& P. §1 20.

HARVERSONIC MODEL PA.
TWO ZERO
An advanced solid slate general purpose mono amplifier suitable
for Public Address system, Disco. Guitar, Gram, etc Features 3 individually controlled inputs (each
input has a separate 2 stage input has a separate 2 stage preamp.). Input $1,15 \mathrm{mV}$ into 47 k .
Input $2,15 \mathrm{mV}$ into 47 k (suitable for use with mic. or guitar etc.). Input 3, 200 mV into 1 meg. suitable for gram. tuner, or tape etc. Full mixing facilities with tull range bass of treble controls Ail inputs plug into standard jack sockets on front panel. Output socket on rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 20 watts RM S Very attractively finished
purpose built cabinet made from black vinyl covered steel, with a purpose built cabinet made from black vinyl covered fret, with operation 200/240 volts Size approx 12 tin wide $\times \sin$ high x $7 \begin{gathered}\text { in } \\ \text { deep }\end{gathered}$
Special introductory price $£ 28 \cdot 00-£ 2 \cdot 50$ carriage and packing.
Mallard LP 1159 RF-IF module $470 \mathrm{kHz} £ 2.25+P$ \& $P 20 \mathrm{p}$. Full specification and connection details supplied.
Pye VHF FM Tuner Head covering $88-108 \mathrm{MHz}$ 10.7 MHZ I.F. output. $7-8 V+$ earth. Supplied pre-aligned, with full circuit
diagram with precision-geared F.M. gang and 323 PF +323 PF diagram with precision-geared F.M. gang and
STILL AVAILABLE
HAB 3 Valve Audio Amp. $4 \ddagger$ w off. Ready built and tested 88.50

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER
$200 / 240 \mathrm{~V}$ Mains operated Solid State F.M. A.M Stereo
Tuner. Covering M.W. A.M. $540-1605 \mathrm{KHz}$ Hz V.H.F. A.M. $88-108 \mathrm{MHz}$.
Bullt-1n Ferrite rod aerial for MW Full AFC and AGC on Lamp Indicator Built in Pres. amps with variable output voltage adjustable by preset control. Max of Voltage 600 mV R.M.S. into 20K. Simulated Teak finish cabinet Will match almost any amplifier Size 8_{i} in wide 4 in high $\times 9$ gin deep approx.
Limited number only al $£ 28 \cdot 00+£ 1 \cdot 50$ P. \& P.
MAINS TRANSFORMER. MRI. 0.110 and 240. SEC. 28V at

10/14 WATT HI-FI AMPLIFIER KIT

A stylishly finished monaural amplifier with an output of 14 watts from 2 EL84s in push-pull Super reproduction of both music and speech. with negligible hum. Separate inputs for mike and gram allow records and announcements to follow each other Fully shrouded section wound output transformer to match $3-15 \Omega$ speaker and 2 independent volume controls. and separate bass line-up 2 ELIAs. ECC83. EF86 and EZ80 rectifier. Simple instruction booklet 25p + S A.E. (Free with parts). All parts sold separately. ONLY $£ 13.50$ P. \&P. $£ 1.40$. Also available ready
built and tested 18.00 P. \& P. 1.40 .
'POLY PLANAR'' WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER Size $11 \frac{1}{2} \mathrm{in}^{2}$ x $14 \frac{1}{4}$ in. 1 it in deep Weight 190 z Power handing RoW R M M (40 W peak) Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{KHz}$ Can be mounted on ceilings. walls, doors. Under full details. Only 88.40 each + P. \& P. (one 90p, two £1.10). Now available in either 8 in round version or $4 \frac{1}{2} \times 8$ in rectangular. 10 watts R.M.S. $60 \mathrm{~Hz}-20 \mathrm{KHz} £ 5.25+$ P. AP. (one 85 p, two 75 p .).
SPECIAL OFFER. $6 \frac{1}{2}$ in long throw, roll surround, ceramic magnet 8 orin 10 watt speaker chassis. Specially suitable for HiFi £ 3.9575 p P. \& P .
in PLASTIC CONE HF TWEETER 4 ohm.
HIGH POWER HI-FI 8 ohm Dome Tweeter. 1 in voice coil Magnet size 3 in cia. Suitable for use in up to 50 watt systems. Magnet size 3 in cia. Sui.
$£ 4.50$ each 60 p P. P.

HARVERSONIC SUPERSOUND

10 + 10 STEREO AMPLIFIER KIT

A really first-class Hi-FI Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the first five stages on each channel resulting in even lower noise level with improved sensitivity. integral preamp with Bass. Treble and two Volume controls. Suitable for use with Ceramic or Crystal cartridges. Very simple to modify to suit magnetic cartinge-instructions included Output stage for any speakers from 8 to 15 ohms. Compact design. all parts supplied including drilled metalwork, high quality ready
drilled printed circuit board with component identification clearly marked. smart brushed anodised aluminium front panel with matching knobs, wire. solder. nuts, bolts-no extras to buy Simple step by step instructions enable any constructor to build an amplifier to be proud of. Brief specification: Power output. 14 watts $12-30,000 \mathrm{~Hz}$. Sensitivity better than 80 mV into $1 \mathrm{M} \Omega$ Full power bandwidth $\pm 3 \mathrm{~dB} \quad 12-15.000 \mathrm{~Hz}$ Bass boost approx to $\pm 12 \mathrm{~dB}$ Treble cut approx. to - 16 dB Negative feedback 18 dB over main amp. Power requirements 35 V at 1 A .
Overall size 12 in wide $\times 8$ in deep $\times 2 \frac{z}{z}$ in high.
Fully detailed 7 page construction manual and parts list free with ki or send 25 p plus large S.A.E
(Magnetic input components 33p extra)
POWER PACK KIT
13.50 P. \& P. BOp
£5-50 P. \& P. 95p CABINET $\quad \mathbf{5 . 5 0}$ P. \& P.95p
SPECIAL OFFER -only E23. 75 If all 3 Items
ordered at one time plus 1.25 P. AP.
Full after sales service

HARVERSONIC STEREO 44

A solid state stereo amplifier chassis. with an output of 3-4 watts per channel into 8 ohm speakers. Using the latest high technology
integrated circuit amplifiers with built in short term thermal integrated circuit amplifiers with built in short term thermal
overload protection. All components including rectifier smoothing capacitor, fuse, tone control, volume controls. 2 pin din speaker sockets and 5 pin din tape rec/play socket are mounted on the printed circuit panel. Size approx 9 i ln $\times 2 j$ in . I th max depth Supplied brand new and tested. with knobs. brushed anodised
aluminum 2 way escutcheon (to allow the amplifier to be mounted aluminum 2 way escutcheon (to allow the amplifier to pe mounters
horizontally or vertically) at only $69.00-50 \mathrm{p}$ \& P . Mains horizontally or vertically) at only $99.00 * 50 \mathrm{p}$ P \& P. Mains
transformer with an output of 17 N ac. at $500 \mathrm{~m} / \mathrm{A}$ can be supplied at $\$ 1.50$ - 40ρ P. $\&$ P. if required Full connection details supplied
STEREO DECODER
SIZE 2", $3^{-} 1^{*}$ ready built. Pre-allgned and tested for $9-16 \mathrm{~V}$ neg earth operation. Can be fitted to almost any FM VHF radio or tuner instructions (inclusive of hints and tips) supplied. E6.00 plus 20 p P. 8 P. Stereo beacon light it required 40 p extra.

HARVERSON SURPLUS CO.

(Dept. P.E.) 170 MERTON HIGH ST., MERTON, LONDON, SW. 19 Tel: 01-540 3985
(Please write clearly)
PLEASE NOTE: P. \& P. CHARGES
 P. \& P. ON OVERSEAS ORDERS charged extra.

56 FORTIS GREEN ROAD, MUSWELL HILL, N10 3HN TELEPHONE: 01-883 3705

OUR LATEST CATALOGUE

 CONTAINS FREE45 pence WORTH OF VOUCHERS

CONTAINS MICROPROCESSORS + BOARDS MEMORIES, TTL, CMOS, ISs, PASSIVES, ETC., ETC.

SUPERSAVERS

ALL FULL SPEC DEVICES
TEXAS
TIMER
RED LED

5 for
555
4 for
£1.00
VAT INCLUSIVE PRICE $+25 p$ P. \& P.

AU IC BOOKLET

SUPPLIED FREE WITH ORDERS OF ANYICs WORTH $£ 5.00$ OR MORE, CONTAINS CIRCUITS, PIN CONNECTIONS AND DATA (35p + SAE IF SOLD ALONE). 10 for
£1.00
1.00
 ,

$4 \frac{1}{i n} \times 3 \mathrm{t}$ in METER. $30 \mu \mathrm{~A}, 50 \mu \mathrm{~A}$ or $100 \mu A$, , 5.43 . 19p P. \& P.

MICROPHONES FOR TAPE RECORDERS DM 228R 200 ohm with $3 \cdot 5$. and 2.5 mm Jack Plugs \quad \&1. 30 DM229R 50K with 3.5 and 2.5 mm Jack Plugs DM18D 200 ohm with 5 and 3 pin Din Plugs $£ 1.75$ Postage on above microphones 11p
 above prices include V.A.T. Send 40 p for new fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate - Bolton • Lands. BL2 1BA

KITS FOR SYNTHESISERS, SOUND EFFECTS

COMPONENTS SETS include all necessary resistors, capacitors, semiconductors. potentiometers and ansformers Hardware such as cas , bought ece. are not included bul mosh. PCBs and parts are shown in our lists.
CIRCUIT AND LAYOUT DIAGRAMS are supplied free with all PCBs unless "as published" PHOTOCOPIES of atl P.E. texts for most of the kits are available-prices in our lists.

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

P.E. MINISONIC MK. 2 SYNTHESISER

A portable mains-operated Miniature Sound Synthesiser with keyboard circuits Although having slightly fewer faclities than the large PE Synthesiser the functions olfered by this design give it great scope and versatility Consists of 2 log VCOs. VCF. 2 envelope shapers, 2 voltage oscillator and detector ring modulator, noise generator oscillator and detector ring modulator, nolse generator
et of basic component kits
from $\begin{array}{r}62.23 \\ £ 9.94\end{array}$
P.E. SYNTHESISER (P.E. Feb. 73 to Feb. 74)

The well acciaimed and highly versatile large-scale mains-operated Sound Synthesiser complete with keyboard circuits. Other circuits in our lists may be used with the
Synthesiser to good advantage.

The Main Synthesiser: PSU, 2 linear VCOs. 2 ramp generators. 2 input amps. sample hold, noise generator. reverb amp. ring modulator, peak level circuit. envelope haper, voltage controlled amp.
Set of basic component kits
£ 83.03
The Symthesiser Keyboard Circuits (can be used without the Main Synthesiser Keyboard Cind Main Synthesiser to make an independen mosicalinstument: mixer, 2 envelope shapers and PSU. Set onasic component kits $£ 7.65$

GUITAR EFFECTS PEDAL (P E July 75)
Modulates the attack. decay and filter characteristics of an audio signal not only from a guitar but from any audio source producing 8 different switchable effects that can be further modified by manual controls Possibly the most nteresting of all the low-priced sound effects units in our range Circuit does not duplicate effects from the Guitar overdrive Uni

Component set with special foot operatad switches Alternative component set with panel switches
Printed circuit board

$£ 7.59$

£4.96
$\begin{array}{r}\text { £ } 1.43 \\ \\ \hline\end{array}$

SOUND BENDER (P E. May 74)
A multi-purpose sound controller. the functions of which include envelope shaper. tremolo. voice-operated fader automatic fader and trequency-doubler
Component set for above functions (excl SWs) $£ 7.84$
Printed circuit board El .81 which in conjunction with the above component set. can produce jungle-drum thythms
£2.88
PHASING UNIT (PE Sept 73)
A simple but effective manually controlled unit for introducing the phasing sound into live or recorded music

PHASING CONTROL UNIT (P E Oct 74)
For use with the above Phasing Unit to automatically control he rate of phasing
£4.48
SOPHISTICATEO PHASING AND VIBRATO UNIT
A slightly modified version of the circult published in utomatic control over the rate of phasing and vibrato Component set
617.69
$£ 2.33$

WAH-WAH UNIT (P.E ADr 76)
The wah-Wah effect produced by this unit can be controlled manually or by the integral automatic controller
Component set (incl PCB)
AUTOWAH UNIT (P E Mar 77)
Automatically produces Wah-pedal and Swell-pedal sounds each time a new note is played
$\begin{array}{ll}\text { Component set. PCB. special foot switches } & £ 7.27 \\ \text { Component set and PCB. with panel switches } & £ 4.83\end{array}$

P.E. JOANNA PLUS ORGAN VOICING

The basic five octave electronic piano (P.E. May/Sept 75 and Sound Designt has switchable alternative voicings for Honky Tonk, ordinary piano, and Harpsichord or a mixture of any of thes three, together with facilities including fast and slow tremolo, loud and soft pedal switching, and sustain pedal switching. The modification retains all the circuitry associated with the piano but in addition provides an organ-voice envelope facility with 5 switchable pitches, variable attack and sustair. phasing and vibrato.

Set of components (excl switches) for PSU, Frequency generator, Pitch and Note Divider, Envelope Shapers, Voicings, and Control circuitries. (Order as KIT 71-5) £109.75 Set of PCBs (Order as PCB SET 71-6)
$£ 29.18$

SYNTHESISER TUNING INDICATOR (P.E. July 77)
A simple 4-octave frequency comparator for use with synthesisers and other instruments where the full versatility the PE. Tuning Fork is not required
Component and PCB (but excl sw.)
£7.45

GUITAR FREQUENCY DOUBLER (P.E. Aug. 77)
A modified and extended version of the circuit published Component set and PCB

GUITAR SUSTAIN (P.E. Oct 77)
Maintains the natural attack whilst extending note duration Component set. PCB and foot switches £4.90 Component set. PCB and panel switches

WINO AND RAIN UNIT

A manually controlled unit for producing the above-named sounds
Component set (lrict PCB) £3.72
GUITAR OVERDRIVE UNIT (P.E. Aug. 76)
Sophisticated. versatile Fuzz unit. Including variable and switchable controls affecting the fuzz quality whilst retaining the attack and decay, and also providing fitering. Does no duplicate the effects from the Guitar Effects Pedal and can be used with th and with other electronic instruments.

Component set using dual slider pot
Component set using dual rotary po

FUZZ UNIT
Simple Fuzz unit based upon P.E. "Sound Design'" circuit
Component set (incl. PCB) $£ 2.05$
TREMOLO UNIT
Based upon P E Sound Design circuit
Component set (incl. PCB)

TREBLE BOOST UNIT (P.E. Apr, 76)
Gives a much shriller quality to audio signals fed through it
The depth of boost is manually adjustable
Component set (Incl. PCB)
P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones. A LED monitor clearly displays all beat note adjustments. Idea for tuning acoustic or electronic musical instruments.

Main component set (incl. PCB)
Power supply set (inct. PCB)
£7.03

CONSTANT DISPLAY FREQUENCY COUNTER (P.E. AUG. 78) FULL DETAILS IN OUR LIST.

POST AND HANDLING

.K. orders-under £ 15 add 25p plus VAT. over £ 15 add 50p plus VAT. Keyboards $£ 2.00$ plus VAT.
Optional insurance for compensation against loss or damage in post, add extra 50 p for cover up to $£ 50, \mathrm{£} 1.00$ for $£ 100$ cover. 2.00 for $£ 200$ cover.

Eire. C.I., B.F.P.O., and other countries are subject to Export postage rates
P.E. SYNCHRONOME (P.E. Mar. 76)

An accented-beal electronic metronome. providing duple riple and quadruple times with full control over the beat rate. Can also be used as a simple drum-beat phythm generator includes power supply
Printed circuit board \quad £11.82

TAPE NOISE LIMITER

Very effective circuit for reducing the hiss found in most tape ecordings. All kits include PCBs
Standard tolerance set of components
$\begin{array}{ll}\text { Superiop tolerance set of components } & £ 3.76 \\ \text { Regulated power supply (will drive } 2 \text { sets) } & \text { ' } 4.69\end{array}$
c2.96

ENVELOPE SHAPER WITHOUT VCA (P.E. OAt. 75)
Provides full manuat control over attack. decay. sustain and release functions. and is for use with an existing voltage controlled amplitier
Component set (incl PCB)
$\mathbf{£ 4 . 6 6}$

ENVELOPE SHAPER WITH VCA (P.E. Apr. 76)
This unit has its own voltage controlled amplifier and has full manual control over attack. decay. sustain and release Component set (incl. PCB)

TRANSIENT GENERATOR (P.E. Apr. 77)

An envelope shaper, without VCA. having the usual attack, decay. sustain and release functions. and in addition it also programmed to mion in buch a banjo Com Printed circuit board

WAVEFORM CONVERTER

Slightly modified from a circuit published in "Elektor". Converts saw-tooth waveform into four different waveforms: sine-wave. mark-space saw-tooth, regular triangle form, and squarewave with an externally variable mark-space ratio.
Component set (incl. PCB but excl. sw/s)

VOLTAGE CONTROLLED FILTER (P.E Dec 74)
Part of the PE. Minisonic now released as an independent
kit for use with other synthesisers.
Component set (incl. PCB) (Order as Kıt 65-1)

RING MODULATOR (P.E. Jan. 75)
Part of the P.E. Minisonic now released as an independent
kit for use with other synthesisers.
Component set (incl. PCB) (Order
set (incl. PCB) (Order as Kı5 59-1)

NOISE GENERATOR (P.E. Jan. 75)
Part of the P.E. Minisonic now reteased as an independent Component set (incl. PCB) (Ord

SOPHISTICATED POWER SUPPLIES

A wide range of highly stabilised low noise power supply kits is available-details in our lists.

MICROPHONE PRE-AMP (P.E. Apr. 77)
Component set (incl PCB)
£3.78

VOICE OPERATED FADER (P.E. Dec. 73)
For automatically reducing music volume during talk-over' -particularly useful for Disco work or for home-movie shows. PCB)

DYNAMIC RANGE LIMITER (P.E. Apr. 77)
Automatically controls sound output to within a preset
Component set (incl. PCB)

AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of the PE. projects built from our kits and PCBs. The cases were built by ourselves and are not for sale. though a small
selection of other cases is avallable selection of other cases is available
LIST-Send stamped addressed envelope with all U.K requests for free other components

OVERSEAS enquiries for lisl Europe-
send 20p: other countries-send 50p.

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKimber-Allen Keyboards as required for many published circuits. The inufacturers claim that these are the finest moulded plastic keyboards available. All octaves a. C to C. the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust alum, num frame. 3 Octave (37 notes)
4 Octave (49 notes)
5 Octave (61 notes)
Contact Assemblies (gold-clad wire) for use with the above kevboards (1 required for each note

Type GJ: Single-pote change-over
Type GB: 2 pairs of contacts. each pair normally open
Type GE: 3 pairs of contacs, each pair normally open
Type GH: 5 pairs of contacts, ach palr normally open
Type 4PS. 3 pairs of contacts plus single-pole changeover
Printed Circuit Boards for use with
ing) are available. Details in our lists.

RHYTHM GENERATOR

15-Rhythm Tempo, Timing and Logic control unit (excl. sw's but incl. PCB)
10-Instrument Effects circuits
Pes for Effects circuits
128-NOTE TUNE-PROGRAMMABLE SEQUENCER (P.E. Nov/Dec 77)

Enables a voltage controlled synthesiser to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long Programs are keyboard initiated and note length and rhythmic pattern are
brackets.)

Main Circuit (Nov) excl. sw's (KIT 76-1) Power Supply (KIT 76-3) Trigger Inverter and Alt. Output (KIT 76-2) LED Counter (KIT 76-4)
PCB (as published) for KITS 76-1 \& 3 (PCB 76A) PCB for KITS 76-2 \& 4 (PCB 76B)
P.E. STRING ENSEMBLE (PE Mar-July 78)

The new keyboard strin
Basic component sets:
Power Supply (KIT 77-1)
Tone Generator (KIT 77-2)
Diode Gates (KIT 77.3)
Chorus Generator (KIT 77-4

Printed Circuit 8 oards

Gion Supply. Tone Generator \& Díod (Pates with 77 L)
PCB for Chorus Generator (PCB 77C
PCB for Voicing System (PCB 77D)
FORMANT SYNTHESISER (Elektor 1977/78)
Very sophisticated music synthesiser for the advanced constructor who puts performance before price. Details in our lists.
DISCOSTROBE (P.E. Nov. 76)
4-channel light-show controller giving a choice of sequential random, or full strobe mode of operation.
Basic component set
Printed circuit board
£18.19
f. 3.45

8IOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)
Multi-function circuits that, with the use of other external equi

Pre-Amp Modula Components set (incl. PC8) Basic Output Circuits-combined component set with PC8s, for alphaphone. cardiophone. frequency meter and visual feed-back lampdriver circuits. $£ 6.59$
$£ 7.75$

10\% DISCOUNT VOUCHER (PE68)

TERMS: Correctly costed. C.W.O., U.K. orders over $£ 50$ goods value. Valid until end of month on cover of P.E. This voucher must accompany order.

PHONOSONICS

nsi
VALVE MAIL ORDER CO.
Climax House Fallisbrook Road, London SW16 6ED

SPECIAL EXPRESS MAIL ORDER SERVICE

Become a radio amateur.

Learn how to become a radioamateur in contact with the whole world. We give skilled preparation

Understanding Digital Electronics

 New teach-yourself courses

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

The contenls of Design of Digilal Syslems include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and artithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and sychronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it designer, execxutive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

CIMBRIDEE LEARNNG ETTERPRISES. Unit 20, Rivermill Site, FREEPOST, ST. IVES, HDNTWGDON, CANBS. PE17 4BR, ENELAND. TELEPHONE ST. IVES (0480) 67446. PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE: RIVERMILL LODGE, ST. WES. Giro Ac. No. 2789159.

RECD. IN EMGLAW NO. 1328762

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.
The six volumes of Design of Digital Systems cost only:
$£ 8.10$
+90 p post \& packing
And the four volumes of
Digital Computer Logic and Electronics cost only:
+90p post \& packing
But if you buy both courses, the total cost is only:

Price includes surface mail anywhere in the world: Airmail extra.

Flow Charts \& Algorithms

HELP YOU PRESENT:
safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.

THE ALGORITHM WRITER'S GUIDE explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

+45 p post and packing by surface mail anywhere in the world. Airmail extra.

GUARANTEE
If you are not entirely satisfied your money will be refunded.

Cambridge Learning Enterprises, Unit 20, Rivermill Site,

FREEPOST, St. Ives, Huntingdon, Cambs. PE1 7 4BR, England.
Please send me the following books:
.............sets Digital Computer Logic \& Electronics' @ $£ 5.50, \mathrm{p}$ \& p included
sets Design of Digital Systems @ £9.00, p \& p included
............ Combined sets @ £13.00, p \& p included
.......... The Algorithm Writer's guide @ $£ 3.40, \mathrm{p} \& \mathrm{p}$ included
Name.
Address :..
\qquad

I enclose a *cheque/PO payable to Cambridge Learning Enterprises for $£$
Please charge my *Access/Barclaycard/Visa/Eurocard/Mastercharge/ Interbank account number
Signature.
*delete as appropriate
Telephone orders from credit card holders accepted on 04.. 04446 (Ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank.

PE 20

		GEARED MOTORS
	LT TRANSFORMERS $0-10-15 \mathrm{~V}$ at 3 amp (ex new equip) $\mathbf{£ 2} \mathbf{5 0}$ P. \& P. 50p (£3.24	above praision madd US.
	 	Both tyes similiar or obovo drawing: Price either type $£ 475$
	-6V/12V at 20 amp f 13.50 P. \& P. E1. 50 (inc VAT \&16.20) $0-12 \mathrm{~V}$ at 20 amp or $0-24 \mathrm{~V}$ at 10 amp f 12.00 P. \& P. E1. 50 $0-6 V 812 V$ at 10 amp E8.25 P. \& P. E1. 25 (inc VAT E10.26\| $0-6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 2 \mathrm{VV}$ at 20 amp E 16.50 P. \& P. E1. 50 (E19.44 inc VAT \& P.). anm 10.00 P. \& P. E1.40 linc VAT $0-10 V 11$ E 12.311 	
		FRACMO GEARED MOTOR \qquad
NEW HEAYY DUTY SOLENOID. mig and EXLT.	thobe! StRobe!	PARVALUX GEARED MOTOR $230 / 240 \mathrm{~V}$ A.C. 30 rpm 501 bs inch. Price$\mathbf{£ 1 5 0 0}$ P. \& P. $\mathbf{£ 1 . 0 0 (\mathbf { E } 1 7 . 8 2 \text { inc. VAT). }}$ New Manufacturers Surplus
	Latest type Xenon white light llash tube. Solid state operation fer larger rooms halis etc Speed adjusiable 1-20 t.p.s. Light output greater than many inc. VAT \& P.). Specially designed case and reflector (9.99 inc VAT \&	
		COMPRESSOR Pracision buits by Emerson USA phragm type producing \qquad put virtually pulse free. Powered by 110 V A.C. motor size $30 \times 23 \times \$ 5 \mathrm{~cm}$, weight 7 kilos. Price $\mathbf{£ 2 0} \mathrm{p} \& \mathrm{p} £ 2.00$ \qquad 8.00 pap 11.00 finc
		A.E.G. WATER PUMP $200 / 240 \mathrm{~V}$ a.c. motor. 2,850 r.p.m480 W approx. $\frac{1}{3}$ h.p. Driving a centri-\qquad at 10 ft head. Ideal for pumping or circulating any non-corrosive lighviscosity liquid. Dozens of uses in industrial labs., etc. Note this purPost 75 p ($\mathbf{~} 17.01$ inc. VAT \& P).
	WIDE RANGE OF DISCO LIGHTING EQUIPMENT S. A.E (toolscap) tor details	
	Superior Quality Precision Made NEW POWER RHEOSTATS\qquad	PROGRAMME TIMERS anay operation. Price as above.New Manufacturers Surplus \square
24 VOLT DC SOLENOIDS 		
	\qquad	SANGAMO WESTON TIME SWITCH Sel
		RACMO MOTOR
	230 V a.c. FAN ASSEMBLY. New Manutacturers Surplus	
		IR COMPRESSOR PUMP ared by 110 V a.c. 1.8 CFM cuum loads. Inc. capacitor $£ 14.00 p \& p \mathrm{fi.50}$ ($£ 16.74$ inc VAT p $\&$ p) Suitable transformer for $230 / 240 \mathrm{~V}$ a.c. operation $00 p \& p E 1.00(£ 6.48$ inc VAT $+p \& p)$ ow manufacturers surplus)
CENTRIFUGAL BLOWER Smith type FFB 		
	AT CURRENT RATE MUST BE TOTAL VALUE OF GOODS INCLUDING POSTAGE UNLESS OTHERWISE STATED SERVICE TRADINGCO. ACCOUNT CUSTOMERS MIN. ORDER E10.00	
\%		
All Mail Orders-Callers-Ample Parking Dept. PE, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560 Showroom oen Mon.-Fi.		Personal callers only. Open Sat 9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone 01-437 0576

ANALOGUE?

|N THIS fast moving world of digital technology where even the Government discusses 64 K RAM (though one wonders just how many in such circles really understand what it is they are considering pouring our money into), it is all too easy to overlook and even dispense with other modes of operation. It is not infrequent that we see highly complex logic designs for equipment that could more easily be realised with simple analogue techniques.
Wonderful as digital technology is, it must never become such an overwhelming part of our lives that we overlook other more suitable circuitry. It is all too easy for any designeramateur or professional-to become so deeply immersed in one small discipline that others are not even considered.

Most of us have seen and tried such digital games as "moon landing". All that technology, hardware and software to provide a game with a few simple variables. It really is an unnecessary use of a digital system and can be easily achieved with analogue techniques. Surely a case of technology for its own sake.

HISTORY!

It may be something of an eye opener to many readers to see an analogue computer on the front cover of P.E. "Surely these ancient devices have all but disappeared in the face of microprocessors? So what is a leading highly technical magazine doing with this-showing us some history?"

Well, if your feelings are such, then perhaps you are one of those designers who is getting out of touch with the real world and too deeply involved in digital technology! Our analogue computer is a serious instrument for the student and engineer.

It is now more than ten years since PEAC (P.E. Analogue Computer) appeared in our pages. Part of the introduction to that series stated: " A useful tool which is capable of solving complicated problems at high speed. Can be used as a model to simulate mechanical systems." Those statements are equally true of our latest design and such a system has many advantages over digital circuitry when used for certain problems. So don't overlook or dismiss the design, it could be very useful to you.

DIGITAL

What goes before does not mean we will be turning away from the microprocessor-far from it-we have some very exciting projects planned that will interest those at all levels of knowledge and interest in micros. You will find mention of what some might term a "one chip VDU" on our carryover page (p. 975). This, for those that want it, is digital technology that's bang up to date.

Over the coming months we will also be catering for those that want to build a basic microprocessor system and learn how to start programming it.

GENERAL

We know many readers will not be interested in these "computer" areas but a look at the contents page of this issue will assure them that they are not being overlooked. The variety of areas covered within our pages is vast and we hope you will find something of interest in each issue.

We give a glimpse into the future with our wave power feature and wonder just how long it will be before some of our projects are supplied from such systems!

Mike Kenward

EDITOR

Mike Kenward

Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
Alan Turpin PRODUCTION EDITOR
David Shortland TECH. SUB EDITOR

Jack Pountney ART EDITOR
Keith Woodruff SENIOR ARTIST
Isabelle Greenaway TECH. ILLUSTRATOR
Judith Kerley SECRETARY

ADVERTISEMENT
 MANAGER
 D. W. B. Tilleard

P. J. Mew representative
C. R. Brown CLASSIFIED MANAGER

Editorial Offices:

Westover House,
West Quay Road, Poole,
Dorset BH 15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot be answered over the telephone.

Advertising Offices:
King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS
Phone: Advertisements 01-2615000
Telex: 915748 MAGDIV-G
Make Up and Copy Dept.
Phone: 01-261 6601

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH.

Back Numbers and Binders

Copies of most of our recent issues are available from: Post Sales Department, IPC

Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 65p each including Inland/Overseas p \& p.

Binders for PE are available from the same address at $£ 2.85$ each to UK addresses, £3.45 overseas, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Cheques and postal orders should be
made payable to IPC Magazines Limited.

Letters

Queries regarding articles published in PE should be addressed to the Editor, at the Editorial Offices, and a stamped, addressed envelope enclosed. We cannot undertake to answer questions regarding other items, nor to answer technical queries over the telephone.

THE analogue computer is a piece of equipment designed to satisfy mathematical equations, usually differential. Mathematics in general and differential equations in particular are the subjects of an exact science which describes the behaviour of physical systems.

Because computers cannot tell us how to solve a physical problem a mathematical model of the problem has first to be formed by the programmer. This is where computers are useful because the formation of the mathematical model is usually easier than the solution of the equations especially as differential equations can be particularly difficult to solve manually and some virtually impossible.

The analogue computer works by handling continuously changing variables using electrical potential or voltage as the analogue, in contrast to the digital computer which manipulates discrete pulses to obtain the solution to a problem.

Fig. 1.1 was produced by the analogue computer to be described here and it will be explained in this article how to program the computer to produce these interesting and artistic designs.

The analogue computer can be used in engineering to simulate the behaviour of complex systems before they are constructed, the behaviour of these complex systems can be thoroughly studied and various parameters changed simply by turning a potentiometer until the system functions in a satisfactory manner. This procedure allows considerable savings both in the cost and time of development.

Analogue circuits similar to those used in analogue computers are employed in a variety of applications, i.e. automatic control in industry, aircraft and spacecraft.

One of the examples to be given in this article will be a simple program to simulate the vertical take-off of an aircraft like the Harrier jump jet, and also a spacecraft moonlanding.

MATHEMATICAL OPERATIONS AND CIRCUITS
The advances in miniaturisation have enabled more computing power to be packed into a smaller space and it is these advances that have helped the digital computer on its way towards becoming a household object. In the analogue

Fig. 1.1. A typical lissajous figure produced using the Analogue Computer and an $\mathrm{X}-\mathrm{Y}$ plotter
field the high gain d.c. amplifier or operational amplifier which is the main element of the analogue computer, has also come a long way since its inception. It was originally designed for use in computers but has since found many applications in other fields. This large market for other applications has reduced the cost of such devices to very low levels. Of the numerous op-amp i.c.s available on the market the 741 was chosen for the prototype because it is both cheap and easy to handle. More advanced op-amps are available albeit at a higher price and constructors can experiment with these if they wish.

By connecting an op-amp to input and feedback components certain mathematical operations can be performed; addition (and subtraction) integration, and multiplication by a constant. Differentiation can also be performed but is generally avoided due to problems associated with noise generated by components. Multiplication by constant coefficients between zero and one is also performed using potentiometers with some special circuits being employed to enable the multiplication of two variable voltages.

THE ADDITION CIRCUIT

It is possible to add various voltages by means of a resistance network with the output voltage being proportional to the sum of the input voltages. The serious drawback of this method is that this is only true if the load resistance remains constant.

This would be an unacceptable constraint since the output voltage may be applied to other points in the circuit which have different values of load resistance.

To overcome this difficulty a high gain d.c. amplifier is employed in the feedback circuit as shown in Fig. 1.2.

Fig. 1.2. '"Addition'' circuit
If a voltage V_{1} is applied via R_{1} to the summing junction the output voltage V_{0} is equal to

$$
-V_{1} \frac{R f}{R_{1}}
$$

The polarity of the input voltage is also changed by the operational amplifier.

With the output voltage now independent of the load resistance each input voltage is factored by the same ratio of feedback resistance to input resistance.

$$
V_{0}=-\left(V_{1} \frac{R f}{R_{1}}+V_{2} \frac{R f}{R_{2}}+V_{3} \frac{R f}{R_{3}}+V_{4} \frac{R f}{R_{4}}\right)
$$

THE INTEGRATOR CIRCUIT

As with the addition circuit integration can be achieved by using an R.C. network but this method also suffers from a number of serious drawbacks.

The circuit in Fig. 1.3 shows how an operational amplifier can be used to perform integration.

Fig. 1.3. "Integrator" circuit
With a capacitor connected in the feedback loop, and if the open loop gain of the amplifier is very large, the output voltage is given by
$V_{0}=-\left(\frac{1}{R_{1} C f} \int V_{1} d t+\frac{1}{R_{2} C f} \int V_{2} d t+\frac{1}{R_{3} C f} \int V_{3} d t+\frac{1}{R_{4} C f} \int V_{4} d t\right)$

The output voltage is the sum of the integrals, with respect to the time the voltage is applied to the inputs, factored by $-\frac{1}{\text { Rin }} \mathrm{Cf}$.

By choosing suitable values of Rin and Cf the factors can be given the required values.

THE COEFFICIENT MULTIPLIER

The coefficient multiplier is used to multiply a voltage by a constant between zero and one. This is the only mathematical operation that is usually performed without the use of an op-amp. A potentiometer is connected as shown in Fig. 1.4.

At one extreme of the slider's travel Vo=Vin, i.e. Vin is multipled by 1 , whereas at the other extreme $\mathrm{Vo}=0$ i.e. Vin is multiplied by zero.

Any intermediate value can be set up by moving the slider. The dial of the potentiometer can be calibrated to facilitate this. However, it is not normal practice to set up a value on

Fig. 1.4. Coefficient Multiplier
the dial of the potentiometer because this circuit also suffers from the effects of load resistance.

An op-amp employed as a voltage follower could be connected as a buffer to isolate the effects of the load resistance, but this is an unnecessary addition because the problem can be overcome by measuring the output of the potentiometer using a voltmeter, after the circuit has been connected, i.e. in the presence of the real load to be applied in the particular problem being examined. The value desired is then set by adjusting the potentiometer and ignoring the graduations on the dial.

The circuits described so far form the fundamental building blocks of the analogue computer. Various special circuits have been developed over the years for other operations. The most important of which is the formation of the product of two variables. One of the early methods developed was the cumbersome servo multiplier. This involved the control of potentiometers using servos. Nowadays this operation can be achieved electronically using four-quadrant multiplier integrated circuits.

INTEGRATION

Addition, subtraction and multiplication are concepts that are easily understood; integration, however, is not so easily grasped by the non-mathematically minded and so a simple explanation may be useful at this point.

If for example a motor car is cruising on a motorway at 50 miles per hour this can be represented by a graph of speed against time (Fig. 1.5). Since the speed is constant the distance travelled will increase by equal amounts in equal

Fig. 1.6. Graph of distance against time
time intervals. These distances are shown plotted on a graph of distance against time for intervals of one hour (Fig. 1.6).

It can be seen from Fig. 1.5 that the distance travelled during a period of time is represented by the area shown shaded on the velocity-time graph. (Velocity x time representing the height \times base of the shaded rectangle.) Now if the results of all these intervals were added up, the result would be the total distance travelied in a period of time.

The mathematical way of saying this is that the distance travelled is the integral of velocity with respect to time between two time limits. In the above example since the speed was constant one could have arrived at the required result by multiplying the total period of 5 hours say, by the velocity of $50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. to obtain 250 miles travelled, without going into the trivial process of integrating, by considering small time intervals.

In reality the velocity may vary as shown in Fig. 1.7, i.e. in a random manner. To obtain the required result then, the velocity would have to be integrated over the required period of time by considering small time intervals. This is how a digital computer would be programmed to solve the problem. The accuracy in that case would depend on how small the time intervals were made. This is left to the discretion of the programmer. If the intervals were made too big, then the result would be inaccurate. On the other hand too small a time interval would mean that the computer would take longer to solve the problem and involve the programmer in unnecessary expense. The analogue computer programmer need not worry about this since the computer integrates continuously, i.e. it deals with

Fig. 1.5. Graph of speed against time

Fig. 1.7. Graph showing variations in velocity
infinitesimally small time intervals and does this at high speed.

Each of the circuits that have been described so far constitutes a computing element. When the computer is programmed to solve a problem, systems of equations can be set up by connecting together combinations of computing elements, and the results can be obtained by measurements taken at various points in the system.

The computer will of course be required to solve many different problems and the computing elements will have to be rewired every time. To facilitate this a patch panel is used, with sockets connected to each computing element in the computer. By using wire leads the computing elements can be connected in any order.

INTEGRATOR

"Compute"

"Hold"

"Reset"

At the beginning of a computation the variables of the problem will have certain values, not all of which need be zero. The requirement here is that is should be possible, if desired, to give the output of integrators a value, before the computation commences. This facility is called "Initial Conditions".

Fig. 1.7 shows how the "Initial Conditions" for the "Compute", "Hold" and "Reset" facilities are achieved for summers and integrators. In the case of the summers no change in the circuit is necessary. For the integrators, the "Hold" mode requires that the input resistors are disconnected from the op-amp and grounded. In this way the charging or discharging of the capacitor stops and the op-amp maintains the charge at a constant level.

SUMMER

"Compute"

"Hold"

Fig. 1.8. "Initial Condition'" circuits for Integrators and Summers

MODE CONTROL AND INITIAL CONDITIONS

The main modes of operation are compute, hold and reset. When in the compute mode the computer proceeds to solve the problem. As it is sometimes desirable to stop the computation after a certain period of time this is achieved by putting the computer into the "'Hold" mode. The "Reset" mode is used to make the output of all computing elements take their initial value. Sometimes this mode is called "problem check".

The calculation is therefore frozen and the results can then be observed at leisure. This, however, should not be practised literally, since electronic components, like everything else, are not perfect and some drift will always affect the results. These should therefore be noted as soon as the "Hold" mode has been selected.

The "Reset" mode for the integrators has two resistors $\mathbf{R}_{\text {id }}$ in the circuit. These are the "Initial Conditions" resistors and when an initial condition voltage, $V_{i c}$ is applied as shown, the

Fig. 1.9. Block diagram of the Analogue Computer
feedback capacitor charges up to this value. When "Compute" is selected these resistors are disconnected and the output of the amplifier, i.e. the voltage across the feedback capacitor, may vary above or below the initial condition value. When "Reset" is reselected the feedback capacitor discharges or charges, through $R_{i c}$ to $V_{i c}$ and the computer is again ready for a repeat of the calculation.

THE OVERLOAD WARNING FACILITY

This facility, usually employed in analogue computers, is necessary because the voltage range over which operational amplifiers operate linearly, is limited to approximately $\pm 13 \mathrm{~V}$ for readily available i.c.s. In the course of the solution of a problem, all computing elements must operate within this range, otherwise the wrong results will be obtained. The overload warning circuit warns the programmer of any amplifiers that have saturated. Measures can then be taken to scale down the values of the variables.

It is now possible to imagine the general arrangement of an analogue computer and this is depicted by Fig. 1.9 in a block diagram form.

To summarise, input signals are fed to the computing elements via the patch panel and are processed. The results are fed back through the patch panel to the output, which may be an ordinary voltmeter, a CRO or an X-Y recorder. The operation of the computing elements is controlled by the Mode Control and the overload warning circuit monitors the output of the computing amplifiers and warns the programmer of any saturating amplifiers.

NEXT MONTH: CONSTRUCTION DETAILS

Readers requiring a reply to any letter must include a stamped addressed envelope.
Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

Champ Waves

Sir-I hope you can clear up the confusion that has arisen about your EPROM programmer in the CHAMP series.

When purchasing INTEL 1702A EPROMS I was sent a data sheet, which detailed the programming voltages as completely different from those produced by CHAMP-PROG. Since you said that INTEL had supplied the basic circuit for your project, and use it in their "Intellec" development systems, it has resulted in much head scratching on my part.

The waveforms given on the data sheet are as shown.

Any. clarification you can give will be greatly appreciated.

> T. G. Keslake Romford Essex

I can understand your confusion over the difference between the 1702A data sheet and the operation of the CHAMP-PROG board, but really it is quite simple. You will notice in the data sheet that all voltages are related to GND or 0 Volts, and this means that all chip voltages are related to the Vcc pins. In CHAMP-PROG the voltages appear to be positive going, but if you look at the Vcc reference pins you will find that they rise to +47V during programming, and this means

that the program pulse is a $3 \mathrm{~ms}-47 \mathrm{~V}$ pulse as required. As with many things in electronics, the secret lies in viewing the circuit. operation with one's feet firmly on the ground (or in this case, the ceiling!). If you check the other supplies with this new perspective, you will find that they are substantially as dictated in the data sheet.

Once again, I quite understand your initial confusion!
R. W. COLES

Too Powerful

Sir,-Working as Product Marketing Engineer for the UK's largest distributor of National Semiconductor products I was highly amused by the letter which appeared in the July issue of P.E. from reader R. G. Silson.

I can only assume from reading his lette1 that he must be extremely well versed in the world of microprocessors-indeed he must know far more than the vast majority of industry's electronics engineers.

Dealing with engineers every day from all fields of the electronics world I quite naturally get a very good indication of their thoughts and feelings towards various projects.

The number of times I have spoken to customers about the Pace microprocessor, only to be told "Not interested-it's too powerful for what we need", is more than ample evidence for myself that Mr Silson is completely out of touch with the amount of knowledge possessed by the average amateur actively engaged in microprocessors. Further proof of this is the vast amount of 8 bit SC/MP chips sold related to the relatively slow moving Pace.
P. V. Hodson, Melton Mowbray, Leicestershire.
 Siratifes one sheet of 120 stickes identify pinThese self-adhesive labels id. Useful for
outs for a range of i.c. Usen outs for a raing debugging prototypes. builaing and and designing p.c.b.
fault finding layouts.

Do your bit to make North Sea oil last longer, and save yourself some money. This two digit display shows a consumption factor, derived, via six low priced TTL chips, from an electric fuel pump and the car's speedometer. An alternative analogue display circuit is also given.

HIGH

PERFORMANCE POWER SUPPLY UNIT

Sooner of later you will need to treat yourself to a high performance power supply unit. This design has voltage control down to zero, yes zero volts, and current limitation from a few milliamps to several amps. It uses readily available components and has a regulation system which does not employ foldback and thus can give true constant current operation.

U.D.U. SYSTEM

A complete output peripheral for almost any computer, this memory mapped system is inexpensive, easy to construct, has one chip to control all basic functions.

PRACTICAL

O
UR modern world is a power assisted machine; an energyhungry life support system for concentrated populations. The threat of that energy expiring with nothing to replace it is depressing, yet much publicity is given to such gloom.

Many natural sources of energy are being explored, and too often, propositions are regarded by those who seal our fate, as "pipe dreams", but put two gloomy facts together; Britain's increasing need of energy, and the pounding of winter seas against our shores, and they begin to cancel out! Wave energy is turning that power into electricity. It is possible! It is even considered practical!

Oceanographic data indicates that a wave-power installation 500 km (310 miles) long, with 50 per cent efficiency, could in principle provide a very substantial proportion of the UK's electrical power requirement, with peak outputs meeting total demand. This calculation is doubtless intended only to allow a grasp of the kind of energy levels existing in the waves off our shores, and is not meant to be a serious suggestion; for a few generations at least!

The Government has recently increased its wave-power research budget from $£ 2.5$ million to $£ 5.4$ million, and to the critics who complain that it's not enough, it has been pointed out that at this early stage technical problems are not going to vanish simply by having large sums of government money thrown at them. Four inventions are being studied, and it is hoped that one of these will emerge to become the blueprint for full-blooded wave-power stations. Money spent on the three "runners-up" will presumably be deemed as having gone towards proving that the fourth was best, or perhaps different designs will prove appropriate for different working locations. In any case, the real money will be spent when a design stands ready for full scale construction.

COCKERELL CONTOURING RAFT
When the watts come rolling in, the CCR could well be at the source, and is currently under development by Wavepower Ltd., a company comprising Sir Christopher Cockerell (inventor of the hovercraft), and a partnership of consulting engineers. Early small scale tests conducted in simulating tanks gave such good results that one-tenth scale trials are now taking place in the Solent, where the waves are obligingly also about one-tenth full scale. The photographs show a scaled down raft, and it can be seen to consist of adjacent pontoons whereby the energy may be extracted at their hinges, either via gearing, or by hydraulic rams, to drive alternators.

The probable location of such a wave-power station, it seems, would be five to ten miles off the coast of Scotland, or the western approaches to the Engish Channel. A string of rafts about 24 km (15 miles) long would generate perhaps 500 megawatts. Fifteen miles sounds alarming, but remember that a conventional power station can occupy a mile of coastline and 200 acres of land. A wave-power station would not require the continual comings and goings of ugly tankers or coal trains, nor has it any nuclear risk.

The Solent trials are being monitored by a complex computer controlled digital tape recorder system, housed in a 25 m sea-going barge anchored nearby, and linked by a sea-bed cable. A considerable list of parameters has to be recorded in connection with the CCR's performance and survival characteristics before construction of a full scale station can be undertaken. Not only power outputs related to wave heights, directions and tidal forces have to be logged, but mooring and hinge loadings, wind, and barometric pressures have to be recorded too, and much more data still. On the equipment barge an EMI p.c.m. recorder is used, which is particularly sophisticated, enabling 21 data channels to be recorded on each track of a 14 track tape.

It may not be until the late 1980 s that we see a full scale prototype wave-power station, but an artist's impression illustrates the magnitude of such a system.

SALTER DUCKS
Another device for extracting power from the waves is the Salter Duck, the brainchild of Stephen Salter of the Department of Engineering, Edinburgh University.

Tank tests showed that the more obvious bobbing up and down action of a "ball-cock" connected to a dynamometer would only extract about 15 per cent of the available energy in a wave; but re-orientating it to obtain a to and fro movement increased energy extraction to about 60 per cent.

So, a vertical flap was tried; however, this was found to displace water behind it, the extra impedance causing about 20 per cent of the wave energy to bounce back at the source. What was called for was a "flap with no back". The end product of this quest is shown (opposite page), and makes the oncoming wave think it's driving another wave-the optimum and natural loading situation!

The strange cam shaped segments are the ducks, and these revolve with respect to the shaft, or backbone as it is called. The combination is referred to as a string. A 500 m (approx $\frac{1}{3}$ mile) backbone is clearly going to come in for some enormous

COCKERELL CONTOURING RAFT

Above: One-tenth scale Wavepower Raft under test in the Solent

Below: Dimensions of a full-scale raft śuitable for Hebridean location

elevation

PLAN
SCHEMATIC RAFT LAYOUT Nown ourwr WAVEPOWER LIMITED
An artiat's Impression of a full-scele instaliation. All illustrations courtasy of Wavepower Ltd

SALTER DUCK

Artist's impreasion of full-scale equipment

Duck anatomy

At Edinburgh University where the Salter Duck was originally developed, study is now concentrated on the theoretical and behavioural nature of the machine. On a more practical level at Lanchester Polytechnic (Coventry), Sea Energy Associates build scale models for testing. Shown above are one-fifteenth scale machines (50 m string with 30 tonnes displacement) undergoing trials on Loch Ness. Illustrations courtesy of Lanchester Polytechnic
bending moments, and of the "flexible" or "rigid" alternatives for construction, the "long and strong" approach is favoured, since the backbone will experience a variety of phases of wave along its length at any one time, causing a certain amount of averaging. A design has been put forward for a kind of. "bistable" backbone which will become flexible when hit by any freakishly powerful waves.

Power take-off is an inherent problem with any wave-power device, and here the ducks will have an angular amplitude of less than half a radian. In addition, duck velocities are far too low for conventional electricity generation, but such things as radial pistons (perhaps around 100 per duck) might produce a flow of hydraulic fluid at pressures of up to $3,000 \mathrm{lb} / \mathrm{in}^{2}$. Electricity can then be generated via hydraulic "swash plate" motors, whereby swash plate angle control will allow constant speed, irrespective of duck "nod" periodicity. Economic considerations leave their
fingerprint on everything in life, and so it is fortunate that a wealth of hydrostatic rotary transmission components exist already in the commercial world.

Interesting problems are legion; such as how do you permanently moor a floating structure of some 500 m in length, at over 100 tons displacement per metre, in 40 fathoms of fully exposed ocean? And how do you connect this vertically mobile object to high capacity seabed cables? Answers to these and other questions are crystallising, however, and optimism is high. Above photograph shows working model.

Electricity transmission itself poses a dilemma. Cheaper terminal equipment results with a.c. but heavier conductor is necessary to carry the capacitive currents, whereas d.c. requires rectification etc., but evades synchronisation difficulties. For long distances d.c. cables are cheaper, but the crossover distance is roughly that expected with Salter Duck positioning.

The Russell Rectifier is shown above in both states of flux. (left) The upper chamber fills as the wave rises. (right) The lower chamber empties during the trough of a wave. Courtesy of HRS

RUSSELL RECTIFIER

Using a rather more straightforward approach to the extraction of, wave energy, the RR has a simple one-way system, (hence the name rectifier) which stores a head of water, to release it again when the wave level has dropped. Of course, on finding its way back to the sea, the water has to drive a turbine. This system, which is being developed at the Hydraulics Research Station, Wallingford, is shown on the opposite page in both states of flux.

The upper chamber allows water to enter only, via one-way flaps, and this fills up at the peak of a wave. The lower chamber allows water to leave only, using outlet ports with one-way flaps working in the other direction. These flaps are self-operating due to the pressure differentials generated by the wave motion.

Because the rise and fall of pressure from top to bottom outside the reservoir does not occur simultaneously at all points, the vertical flaps must be capable of twisting, so that they can be open at the top whilst being closed at the bottom. Large numbers of these chambers would be used in this wave-power system, and if used in shallow waters might sit on the sea-bed, but to utilise the more powerful Atlantic swell would probably form some kind of stable floating installation a few miles offshore.

An investigation into suitable low-head turbines is currently taking place, and no efficiency figures were supplied. A model at

OSCILLATING WATER COLUMN

The National Engineering Laboratory found its inspiration in the Air Pressure Ring Buoy used in Japan (developed by Masuda), and which contains an air turbine-driven generator with storage batteries to provide self-energising navigational lights. The air pressure to drive the buoy's turbine comes from a cylinder in which a column of water moves up and down like a piston, the "push" being provided from underneath by oncoming waves.

This principle has been evolved to a greater level of sophistication by the NEL, who have been examining the cost/efficiency trade-off involved in intensifying the primary conversion force (that produced by the oscillating column of water), from low pressure high volume energy to a more optimum ratio.

Another aspect is that of rectification, since with the simplest form of oscillating water column, which is nothing more than an inverted "can" with an air-hole at the top, as air is forced out by rising water within, the air turbine would revolve in one direction. However, as the water level dropped, air would be sucked in, which would then revolve the turbine in the opposite direction. This rapid reversal of the rotor, overcoming its momentum and inertia at every cycle, is clearly not an efficient mode of operation.

Rectification is achieved by the system shown above, which illustrates the simple OWC principle in ite entirety. It employs a kind of pneumatic version of the familiar bridge rectifier circuit. A four-way valve is used to re-route the flow of air in each half cycle so that it always passes through the turbine blades in the same direction. (a) shows the airflow whilst the wave is rising, and (b) shows the situetion as a wave trough develops.

Ideally the OWC should remain motionless when in action, as it wouldn't be very effective if it bobbed up and down on the waves it was supposed to convert. But it is no simple matter to build a structure rising from the seabed, out where the swell is strong, that will not bend during its first storm, particularly at a reasonable cost! It became necessary to confine investigation to the stability of floating structures. There are two simple guides to efficiency, one is to consider the amount of surviving wave to appear leeward of the wave-power machine, and the other is the amount of wave bounced back on impact. The OWC's cylinder has a good damping action so that the latter inefficiency is minimal.

Computer models and actual scale models have been used to arrive at the shape of structure shown, which uses the phenomenon of wave cancellation to achieve a stability which gives high efficiency of primary conversion (up to 80 per cent). Of course, the machine could be made so large that it hardly moves at all, but the OWC shown experiences relatively low stress, requiring only a soft mooring arrangement, and in a survival situation will limit the maximum stress by being able to ride out the "punch".

ENERGYENOUGH?

Power from the waves should not be confused with tidalpower, although they both fall into the category known as "renewable" or natural energy sources.

The world's waves, it is estimated, have a potential energy of several times the present global demand for all forms of energy, and it seems Britain has some of the best waves in the world! Couple this with the fact that being a small island, we have a fairly favourable coastline-to-land-area ratio, and it begins to look as though the U.K. should capitalise on its pounding waves for electricity in much the same way that mountainous countries, employ hydro-electric power.

Waves cannot approach solar radiation in total amounts of energy, but do exceed wind power. The waves do, however, have a unique advantage over solar energy in that they are most powerful during those winter months when electricity demands are highest, thus corresponding more usefully with our needs.

Measurements made by British Oceanographic Services lead Stephen Salter to conclude that the average power density in the North Atlantic is 80 or 90 kilowatts per metre of wave front. Other observations show that the open oceans are seldom less than $10 \mathrm{~kW} / \mathrm{m}$.

Another peep into the crystal ball. Huge volumes of air rushing beneath those cowls would aurely sound like a giant in deep slumber. Illustrations courtesy of NEL

In British waters, wave-power is worth having for 80 per cent of the time, and this figure moves to 90 per cent during the winter. It is possible for "no power" periods to occur (although rare), and for this reason ạ secondary source of electricity would be necessary. This could come from a regenerative storage system which had been accumulating energy when power exceeded demand.

CONSEQUENCES

On looking into the wave-power programme, the "contestants" in this technological race, with their ingenious contraptions, are reminiscent of the film Those Magnificent Men And Their Flying Machines, and if any natural energy source ever does "take off" it could well be wave-power. But like the aeroplane, which grew from a few struts to the jumbo jet with vast airport complexes and deafening noise, could great stretches of coastline, becalmed by strings of wave-power machinery, be ecologically altered? It has been estimated that inshore water temperatures could drop, and even harbours silt up. There would inevitably be shipping accidents too.

The nation has to ask: Is the price worth paying? One view is: The more wave-power, the less nuclear power.

MOBILE DISCOTHEQUE HANDBOOK By Colin Carson
Published by Bernard Babani Ltd
127 pages, $180 \times 108 \mathrm{~mm}$. Price $£ 1.35$

SETTING up as a mobile D.J. can be done in a bits and pieces way but any serious disco entertainer should know a fair amount about all the elements involved.

This paperback starts with a run down of electricity basics and goes on to explain audio systems.

Quite a lot of money can be saved by studying the great range of record decks available and buying sensibly sturdy gear without being swayed by glossy exteriors. Similarly, cartridges and styli can cost a fortune but for a possibly roughly handled disco outfit the selection of a not too expensively replaced delicacy will be the best bet.

Mixers, decibels, tone controls, input impedance, attenuation, distortion, dynamic range, and wiring up a mixer are explained in some detail.

Designing and building a console is covered and advice is given on ancillary equipment-microphones, stands, headphones, cassette players, jingles.

The many types and sizes of plugs and sockets are rationalised in the section on cables and plugs.

Loudspeakers and their enclosures are very important. The retative advantages of cabinets, columns and bass bins are discussed, as is frequency splitting.

No disco is complete without lighting of some kind. Sound to light units and sequence controlled units are described, but no detailed circuitry is given.

This book may well prevent unnecessarily expensive gear being bought.
A.T.

The most economical,compact and

 convenient breadboards on the market!They are the PROTO-BOARD* PB-6 and PB-100 solderless breadboard kits.
Buy them, and you are only minutes away from the first circuit.
Contacts are made from non-corrosive nickel-silver alloy, and are reliable for more than 10,000 insertions.
Contact resistance is a mere $0.4 \mathrm{~m} \Omega$, insertion force is typically 3 ozs per lead, and interterminal capacitance is typically less than 5 pF .
The kits are a must for experimental and development work in digital, audio, RF, video and beyond.
Resistors, capacitors, transistors, DIP's, LED's, tre:nsformers, pots, jumpers and any other component with leads between $0.015^{\prime \prime}$ and $0.032^{\prime \prime}$ will fit the contacts.
You can run circuits well beyond the recommended ambient operating temperature $\left(100^{\circ} \mathrm{C}\right)$ if you wish, because the plastic used in the PROTO-BOARD is rated to over $200^{\circ} \mathrm{C}$.
The kits come complete with instruction manual, assembly hardware, binding posts non-scratch feet and the appropriate number of preassembled sockets and bus strips.
The sooner you order, the sooner you'll have that first circuit operating.

-rg- contmane spemtres oonponarion
THE PB-6.63O SOLDERLESS CONTACTS. TAKES UP TO SIX 14-PIN DIP'S.OR EQUIVALENT IN LARGER AND SMALLERIC'S FOULY COSTS $£ 11.01$

THE PZ 100 . 760 SOLOERLESS CONTACTS. TAKES UP TO TEN 14-PIN DIP'S
OR ERUIVALENT IN LARGERAND SMALLERIC'S TWO 5-WAY BINDING POSTS $6 " \times 4$
ONLY COSTS $£ 13.82$

specialties

Ring us (01-8900782) with your Access, Barclaycard or American Express number and your order will be in the post that night. Alternatively, send a cheque, or postal order (don't send credit cards!) and it still only takes a few days. Otherwise ask for our complete catalogue. Our prices include VAT (8\%) and postage. All prices and specifications correct at the time of going to press.

Gould Advance InstrumentsProfessional quality at a realistic price.

Alpha III Digital Multimeter
 Only $£ 89$

(excluding VAT)

OS245A Oscilloscope

Fault-finding, circuit testing or servicing - an oscilloscope is indispensable. It saves time, prevents costly mistakes, and enables you to tackle bigger, better projects.

Now, Gould Advance offer you this professional-quality, dualtrace instrument, at a price which brings it within reach of the amateur enthusiast.

Just look at these great Gould Advance features - then compare the OS245A for value! *DC-10M Hz bandwidth *Dual trace

* Clear controls, simple operation
* Fully guaranteed for 2 years
*5mV/div. sensitivity
*Time-base speeds to
$100 \mathrm{~ns} /$ div.
*4" CRT with 8×10 div.
Gould Instruments Division,
Roebuck Road, Hainault, Essexig6 3UE.
Telephone: 01 -500 1000 Telex: 263785
Registered Number 263834 England.

Alpha III Digital Multimeter

With a choice of 25 ranges and basic accuracy of $\pm 0.2 \%$, the Alpha III is a professional's multimeter, yet it is versatile enough to cover every amateur application.

And although it is offered at such a modest price, it shares the advanced design features of the more expensive Gould Advance instruments - in particular, the purpose-built chip, incorporating all analogue and digital circuitry. * 2,000 scale length (100 mV resolution)
*Tough, attractive moulded case
*Bright red LED display * 25 ranges
*Fully guaranteed for 2 years

GOULD

[^2]
You'll learn a lot from the Heathkit catalogue.

The Heathkit catalogue is packed with scores of top quality electronic kits. Educational, practical and fascinating items which you can build yourself.

Please tick the literature you want and enclose the appropriate amount in postage stamps
Heathkit catalogue only \square (enclose 20p). 16 page computer brochure only \square (enclose 20p). N.B. If you are already on the Heathkit maling list you will automatically receive a copy of the latest catalogue without having to use this coupon.

Send for the catalogue now.
To Heath (Gloucester) Limited,
Department pe 98 Bristol Road,
Gloucester, GL2 6EE. (Regstered rumber 606177) Name

Address

The world's biggest producers of electronic kits.

London (01-636 7349) and at Bristol Road, Gloucester (Gloucester 29451).

ITCAN SAVE MOU POUNDS!

Dept. PE 9, 37 VANGUARD WAY,
SHOEBURYN ESS, ESSEX. Phor' (03708) 5543 Shop \& Showroom (personal callers on/y)
222-224 West Road, Westcliff-on-Sea.
Phone: Southend (0702) 35-1048.

$\begin{aligned} & A S \text { A } \\ & \text { A2 GODSTONE ROAD } \\ & \text { WHYTELEAFE SURREY CR3 OEB } \end{aligned}$						All prices include V.A.T. Add $25 p$ for P\&P (Extra for overseas). Discounts over $£ 10$ less 5%, over $£ 20$ less 10%, over $£ 50$ less 15%, over £100 less 20%. Send SAE for complete list of components.				
7400	0.12	7492	0.44	$74181^{\circ} 1.92$	74LS75	0.45	74LS293	0.90	4052	0.84
7401	0.12	7493	0.40	741820.75	74LS76	0.32	74LS298	1.60	4053	0.84
7402	0.12	7494	0.80	741841.20	74LS78	0.32	74LS352	0.92	4054	1.10
7403	0.12	7495	0.54	74185A 1.20	74LS83	0.78	74LS353	1.05	4055	1.00
7404	0.13	7496	0.60	741867	74LS85	0.90	74LS365	0.50	4060	0.98
7405	0.13	7497	2.38	741882.70	74LS86	0.35	74LS366	0.50	4066	0.48
7406	0.28	74100	0.94	741901.05	74LS93	0.95	74LS367	0.50	4067	3.50
7407	0.28	74104	0.40	741910.99	74LS95	1.10	74LS368	0.50	4068	0.24
7408	0.14	74105	0.40	741920.99	74LS 107	0.36	74LS386	0.37	4069	0.17
7409	0.14	74107	0.28	741931.05	74LS109	0.36	74LS670	2.00	4070	0.17
7410	0.13	74109	0.45	741940.90	74LS112	0.38			4071	0.17
7411	0.18	74110	0.46	741950.84	74LS113	0.36			4072	0.17
7412	0.21	74111	0.70	741960.90	74LS 114	0.38	4000	0.14	4073	0.17
7413	0.25	74116	1.60	741970.90	74LS123	0.82	4001	0.15	4075	0.17
7414	0.54	74118	0.82	741981.48	74LS124	2.45	4002	0.16	4076	1.05
7416	0.27	74119	1.30	741991.48	74LS125	0.44	4006	0.92	4077	0.46
7417	0.27	74120	0.82	742211.50	74LS 126	0.44	4007	0.16	4078	0.22
7420	0.13	74121	0.25	742732.15	74LS132	0.69	4008	0.92	4081	0.17
7421	0.28	74122	0.40	742791.25	74LS 136	0.40	4009	0.45	4082	0.20
7422	0.17	74123	0.53	742831.70	74LS138	0.53	4010	0.48	4085	0.72
7423	0.25	74125	0.44	742846.85	74LS139	0.53	4011	0.15	4086	0.76
7425	0.20	74126	0.45	742931.35	74LS151	1.05	4012	0.16	4089	1.55
7426	0.25	74128	0.62	742981.92	74LS153	0.50	4013	0.42	4093	0.65
7427	0.25	74132	0.68	743901.92	74LS 154	1.20	4014	0.80	4094	1.80
7428	0.34	74135	0.68	$74393 \quad 2.12$	74LS155	0.88	4015	0.77	4095	1.10
7430	0.13	74136	0.75		74LS156	0.86	4016	0.42	4096	1.10
7432	0.24	74137	0.94		74LS157	0.47	4017	0.77	4097	3.50
7433	0.32	74141	0.58	74LSOO 0.19	74LS158	0.53	4018	0.87	4098	1.12
7437	0.24	74142	2.00	74LSO1 0.19	74LS160	1.22	4019	0.42	4099	1.90
7438	0.24	74143	2.00	74LSO2 0.19	74LS161	0.09	4020	0.92	4404	1.00
7440	0.13	74144	2.00	74LSO3 0.19	74LS162	1.22	4021	0.82	4412	0.30
7441	0.52	74145	0.64	74LSO4 0.20	74LS163	0.69	4022	0.82	4428	0.80
7442	0.55	74147	1.30	74LSO5 0.20	74LS164	1.20	4023	0.15	4445	1.50
7443	0.90	74148	1.18	74LS08 0.19	74LS168	2.00	4024	0.66	4449	0.30
7444	0.90	74150	0.99	74LS09 0.19	74LS169	2.00	4025	0.15	4501	0.17
7445	0.70	74151	0.60	74LS10 0.19	74LS170	1.76	4026	1.28	4502	0.88
7446	0.70	74153	0.60	74LS11 0.19	74LS173	1.05	4027	0.50	4507	0.50
7447 A	0.64	74154	1.05	74LS 120.19	74LS174	1.12	4028	0.67	4508	2.25
7448	0.60	74155	0.63	74LS 130.46	74LS175	1.05	4029	0.86	4510	1.05
7450	0.13	74156	0.63	74LS14 1.10	74LS 189	2.85	4030	0.48	4511	0.98
7451	0.13	74157	0.63	74LS15 0.19	74LS190	0.81	4031	2.34	4512	0.92
7453	0.13	74159	1.70	74LS20 0.19	74LS191	0.81	4033	1.25	4514	2.85
7454	0.13	74160	0.80	74LS21 0.19	74LS192	1.80	4034	2.00	4515	2.80
7460	0.13	74161	0.80	74LS22 0.19	74LS193	1.80	4035	1.00	4516	1.02
7470	0.28	74162	0.80	74LS26 0.24	74LS195	1.12	4036	2.40	4518	0.99
7472	0.22	74163	0.80	74LS27 0.40	74LS196	1.20	4037	0.99	4519	0.50
7473	0.26	74164	0.89	74LS30 0.19	74LS197	1.20	4038	1.00	4520	1.05
7474	0.26	74165	0.89	74LS32 0.25	74LS221	1.12	4039	2.80	4521	2.00
7475	0.30	75166	0.99	74LS37 0.27	74LS247	0.97	4040	0.88	4522	1.35
7476	0.26	74167	2.70	74 LS38 0.27	7415248	0.97	4041	0.77	4527	. 1.60
7480	0.45	74170	1.68	74LS40 0.19	74LS249	0.97	4042	0.72	4528	0.92
7481	0.90	74172	4.00	74LS42 0.53	74LS251	1.00	4043	0.82	4529	1.10
7482	0.80	74173	1.18	74LS47 0.97	74LS253	1.05	4044	0.82	4536	3.56
7483	0.72	74174	0.89	74LS48 0.97	74LS257	1.05	4045	1.40	4553	4.20
7484	0.90	74175	0.68	74LS49 0.97	74LS258	1.05	4046	1.32	4555	0.85
7485	0.88	74176	0.88	74LS51 0.19	74LS266	0.39	4047	0.96	4556	0.85
7486	0.26	74.177	0.88	74LS54 0.19	74LS273	2.50	4048	0.60	4558	1.25
7489	200	74178	1.20	$\begin{array}{ll}74 L S 55 & 0.20\end{array}$	74LS279	0.50	4049	0.42	4566	1.40
7490	0.35	74179	1.10	74LS73 0.30	74LS283	1.00	4050	0.42	4583	0.75
74.91	0.65	74180	0.90	74LS74 0.34	74LS289	2.85	4051	0.84	4585	1.03

VERO ELECTRONICS AND VEROSPEED

Vero Electronics make a range of housings and passive components for the construction of electronic equipment, much of it allied to computer assembly. The range includes: circuit and breadboards, microprocessor boards, card frames, module racks and cases, wirewrapping tools and wire, connectors-direct/indirect/coaxial, Scotchflex cable/connector system, busbars, pin bars, backplane boards, fan units.

Verospeed is a service which specialises in the rapid supply of regularly required components: boxes, cases, Veroboard (up to $454 \mathrm{~mm} \times 179 \mathrm{~mm}$), 2 mm plugs and sockets, terminal pins, d.i.l. sockets, standoffs, switches, precision resistors/trimmer pots, miniature capacitors, p.c.b. etching packs, standard and sub. min. toggle switches. Orders received up to 3 pm are despatched the same day.

Catalogues are available from both divisions.
Vero Electronics Ltd., Industrial Estate, Chandlers Ford, Hants SO5 3ZR. (042 15) 69911.
Verospeed, Barton Park Industrial Estate, Eastleigh, Hants. (0703) 618525.

Tilt leg assembly enabling type A and type C Veroboxes to be canted at a comfortable viewing angle for displays, at $62 p$ and $82 p$ per kit. From Verospeed.

Top access version of Vero D series instrument case; two screws gain access; multiple front panel fixing and four optional colour finishes. By Vero Electronics.

DIALABOX

If you want to house a project in an aluminium case but are not too neat with the Gilbows (tin shears) then this service may appeal to you.

Custom made, pin seal vinyl coated project. boxes are available with next to immediate delivery from Cannon Components.

Starting at the minimum size of a one inch cube, any size of box can be made up to a maxima of $13 \times 8 \times 3$ inches. Price guide from small boxes to large is 65 p to $£ 3 \cdot 50$, including postage.

The boxes may be painted with vinyl or cellulose paints which bond well to the vinyl pin seal coating.

Cannon Components, 322 Whitehorse Rd, Croydon, Surrey CR0 2LF (01-684 9872).

A NEW PROM

What is believed to be the world's first 16 K PROM to go into production was recently announced by Signetics. This new addition to their range of industry standard PROMs is available only in sample quantities at present, to allow designers to evaluate the new PROM and demonstrate its cost effectiveness. Production, capable of meeting full-scale demand, is planned for 1979.

Designated the $82 \mathrm{~S} 190 / 191$ the chip itself measures only $4.7 \times 5.8 \mathrm{~mm}$, which is only 40 per cent larger than the 8 K PROM! Manufacturing process is the standard diffused isolation, nichrome fuse system utilising dual-layer aluminium interconnect. Its access time is guaranteed at 80 ns (60 ns being typical), which is almost as fast as its 8 K counterpart.

Using a bit of ingenious technology, Mullard have kept the power dissipation the same as the 4 K and 8 K PROMs, which is 925 mW maximum (650 mW being typical). The major problem overcome here was that array power would increase proportionately to the total number of rows and columns in the array. To allow size to be kept down without temperature going up, due to current consumption in the internal decoder circuitry, a technique called "power predecoding" has been used. The 128 rows of the array are predecoded into 16 blocks of 8 rows each, and only one block is powered up at any given time. A similar approach is used in the 128 columns, where a 1:16 decode is required for each of the eight outputs. The circuit is split into two $1: 4$ predecoding sections resulting in a further substantial reduction in power consumption.

With the addition of one TTL inverter, four 82 S 191 s can be wired together to make up an $8 \mathrm{~K} \times 8$ PROM, or provide two additional bits of addressing capability. Since the device outputs are tri-state, giving high \mathbf{Z} when not selected, all four PROMs can be simply wire ORed together.

Details from Mullard Ltd., Mullard House, Torrington Place, London WCIE 7HD.

BYTE FROM THE APPLE

There is no longer doubt that minicomputers will eventually become an accepted part of everyday life at work and at home.

For teaching, such subjects as mathematics, physics, and even history (why not?), perhaps these machines will become the interactive text book of the future.

For entertainment, games are unlimited and can be as much fun to invent as to play.

However, not every potential user likes to dab around with a soldering iron; hence the trend towards the complete package personal computer. Another one of these has marched onto the scene: Apple II. The size of a portable typewriter, this personal computer built around the 6502 micro has a machine monitor with dis-assembler and mini-assembler, with optional 6 K Basic available from plug-in PROMs.

The full ASC11 typewriter style keyboard is "beefy" enough for real fingers, and direct colour TV interface means you can plug it into yours, or anyone else's television set, via the aerial socket. It also interfaces to your cassette recorder for dumping programs into permanent storage.

Video games are no fun unless you get plenty of noise (engines roaring and bombs going off etc), and for this purpose a built-in loudspeaker is provided. You can also use Apple II as a music synthesiser. There are eight connectors for most peripherals such as a hard copy printer, or jacking into the Post Office Viewdata service (one computer talking to another!!!).

Where there are input and output ports, and some imagination, there is always need of a soldering iron. So, if you are an amateur of practical leaning, there is still plenty of scope for experiment.

The computer is powered by a switching type power supply (screened they hasten to add) for less weight to hump around-after

all it is supposed to be portable.
Incidentally, to aid ball type video games, paddles are included. With four analogue inputs, and a memory that can be displayed as either text, colour graphics (15 colours), or high resolution graphics, all modes being software selectable, the machine lends itself to interesting video game possibilities.

The high level language is a fast translated BASIC allowing multiple statements on one line, syntax and range errors being indicated immediately when entered. Integers from -32767 to +32767 . String arrays up to 255 characters. Memory boundary adjust (does not destroy current program). Break and continue program execution. Debug commands are line number trace and variable trace

DMA facilities are PEEK, POKE and CALL commands.

The technical details go on too long for Market Place, but for a case measuring $387 \times$ $457 \times 113 \mathrm{~mm}$, the contents are pretty powerful with BASIC plugged in (and a TV of course!). The display format gives 24 lines of 40 characters.

Some prices. Apple II with 4 K bytes of RAM will set you back £995, and is available with memory increments up to 48 K bytes of RAM at $£ 1,900$. The printer costs $£ 100$, and the Applesoft BASIC cassette tape will cost you $£ 20$.

Further details from Topmark Computers, 77 Wilkinson Close, Eaton Socon, Huntingdon, Cambs PE19 3HJ.

D.I.Y. D.I.L.

Make up your own dedicated devices on these skeletal d.i.l. packages. Ideal for plugging in a series of timing constants; personal code keys; program addressing.

The low profile snap-on covers are a tigh fit enabling the pack to be encapsulated. Two covers are available at 5.7 mm or 8.9 mm height.

On each row, all seven terminals are manufactured linked and individual disconnections are made using only wire cutters.

The Dilpack 14 is available in quantities of ten for $£ 3.50$ from Erg Industrial Corp. Ltd., Luton Road, Dunstable, Beds LU5 4LJ.

BREADBLOC

A compact breadboard system ideal for design and testing is now available from Lascar Electronics.

The unit has both a $+5 \mathrm{~V} 1,000 \mathrm{~mA}$ power supply and dual tracking outputs adjustable between $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ at 100 mA per rail. Both supplies are isolated from earth and each other.

The system enables most digital, linear, bipolar and CMOS circuitry to be accommodated on its 0 -lin matrix board which contains 47 rows of 5 interconnected

contacts and two continuous contact rows for the power supply rails.

The system is available with one or two boards at $£ 39.96$ and $£ 47.95$ respectively or one breadboard alone can be obtained for £7.99. To enable designers to construct a unit to suit their own power supply requirements the case itself can also be purchased for $£ 4.48$.

For further information contact Lascar Electronics, P.O. Box 12, Second Avenue, Billericay, Essex.

DIGITALS

Details of the watches above are, from left to right, as follows:

1) LLED/45, ladies l.e.d., date, stainless steel case and strap, £9.50.2) LLCD/3S, ladies 1.c.d., cocktail bracelet, stainless steel, fully adjustable, date, £26.50.3) LCCRO1, l.c.d., chronograph, American electronics, six digit, net/lap/place times, back light, stainless steel, water resistant, £20.56. 4) and 6) GLCDB4, l.c.d. quartz, date, back light, American electronics, stainless steel, water resistant, $£ 11-88.5$) Solar 1, operates without batteries even in subdued or artificial light, batteries fitted provide power at night for watch and back light, batteries charged by solar panel during the day; am.pm., date, polished stainless steel, £28.98. 7) LLCD8, ladies I.c.d., date, back light, stainless steel, water resistant, approx. size 18 mm face $\times 8 \mathrm{~mm}$ thick, $£ 15 \cdot 99.8$) LLED/43, as 1) but in gold or silver cocktail bracelet, $£ 13.99$.

All watches are available by post (add 50 p for $\mathrm{p} \& \mathrm{p}$) from Readers P.C.B, Services Ltd,, P.O. Box 11, Worksop, Notts.

SINCLAIR MULTIMETER

The latest digital multimeter available from Sinclair Radionics is the DM 235. The design is a direct development of their DM 2 and is a five function 21 range $3 \frac{1}{2}$ digit unit which has an additional five test ranges for diodes.

The DM 235 is designed for both bench and field work and has a basic accuracy of 0.5 per cent on its d.c. voltage range of 1 mV to $1,000 \mathrm{~V}, 1.5$ per cent on its a.c. voltage range of 1 mV to $750 \mathrm{~V}, 1.0$ per cent on its d.c. current and 1.5 per cent on its a.c. current ranges of $1 \mu \mathrm{~A}$ to 1 A and a basic accuracy of 1.0 per cent on its resistance range of 1Ω to $20 \mathrm{M} \Omega$.

The unit is very light-less than $1 \frac{1}{2}$ lbsand measures $255 \times 148 \times 40 \mathrm{~mm}$. It is powered by four dry cell batteries and optional extras include a rechargeable battery pack, carrying case and a 30 kV probe.

The price of the DM 235 is $£ 49.80$ plus VAT. For further details contact Instrument Division, Sinclair Radionics Ltd., London Road, St. Ives, Huntingdon.

SOMBRE SCOPE

Black will be the season's fashion colour for oscilloscopes. This is the pronouncement of Scopex who carried out a European marketing survey earlier this year. They were surprised to find that, while turquoise casings with white front panels were the popular twin-set colours in 1976, continental engineers are all for black gear now.

The black 4D10A dual trace scope, at £180, still retains the characteristics of the 4D10; stabilised power supplies in both the low voltage areas and e.h.t. allowing mains variation of as much as ten per cent. Accuracy on both time and voltage measurements is three per cent.

Scopex Sales, Pixmore Avenue, Letchworth, Hertfordshire SG6 1JJ.

LIGHT TOUCH

The new touch dimmer control from Superswitch can be operated by a quick firm touch anywhere on its front panel whilst a long touch will vary the light output at a preset rate. To complete a full cycle from bright to dim and back to full brilliance again takes approximately six seconds.

A subsequent long touch will alter the light level in the reverse direction and removing the hand from the control during the cycle will establish the light level.

Further switching on and off will not alter the selected brilliance and thus the control acts as a pre-set dimmer.

Any number of slave units can be used with a master to enable two way and multi switching to be obtained.

The price of a Master unit is $£ 11.60$ and a Slave unit is $£ 4 \cdot 50$. For further details contact Superswitch, 7 Station Trading Estate, Blackwater, Camberley, Surrey.

FOURTH BATCH

Scrumpy is a crude cider, but John MillerKirkpatrick's Scrumpi seems to become more refined with each brew. Scrumpi 4 offers the following features: 1 K RAM +7 K expansion sockets (2114), 8 K expansion PROM sockets (2708/16), an additional socket for $2 \mathrm{~K} / 4 \mathrm{~K}$ ROM, a socket for 8 K ROM, an 8 -bit bidirectional I/O port, a cassette interface option, a 2708 programmer option, and on-board voltage regulators. But new is the 4 K ROM containing BASIC!

Up to personal computer standard, this SC/MP-2 based MPU is supplied with the ROM ready to speak NIBL (National Industrial BASIC Language) which requires the 1 K of RAM capacity to operate. The price of the Scrumpi 4 basic system p.c.b. is $£ 150$.

As part of the deal you get the circuit for a PROM programmer, and components for this are available as an add-on pack. An interface is provided to any 20 mA loop TTY device (which could be Scrumpi 3!), whereby all main I/O commands are processed by the NIBL ROM.

A fully extended Scrumpi 4 could have 16 K RAM plus 16 K ROM/PROM, or 8 K RAM plus 24 K ROM/PROM. Bywood Electronics can support their MPU kits with education facilities and a good range of i.c.s for interfac ing with the outside world. A set of books for beginners, called Microsense (complete with cartoons), is available from Bywood, and are given away free with all Scrumpi kits.

More from Bywood Electronics, 68 Ebberns Road, Hemel Hempstead, Herts HP3 9QR.

by K. Lenton-Smith

Organ "nuts" are often mentioned on The Organist Entertains, a good example being the case of Stephen Capaldi. According to a recent newspaper report, he said he had been let down by women so often that his third marriage would be to his $£ 8,000$ organ. The vicar of St. Paul's, Gloucester, had agreed to perform a service blessing this organ and, at the climax of the service, Mr Capaldi had planned to play his favourite piece "Don't Cry For Me Argentina". However, the vicar, cancelled the service when he heard that it was to be regarded as a wedding ceremony. So another sorry chapter was added to his love life!

At least he tried to be different-but a far better approach would be to consider the latest electronic music i.c. to be announced by Signetics. A frequent complaint in this column is that basic circuit principles have remained unchanged for several decades, counting aside miniaturisation. The TDA 1008 is no exception, but its design is such that it is destined to become an extremely popular device. This extended article will be devoted to looking at some of the many features it offers.

INPUT PINS

OUTPUT PINS	8	9	10	11	12
$\mathbf{2}$	$f *$	$f / 2$	$f / 4$	$f / 8$	$f / 16$
$\mathbf{3}$	$f / 2$	$f / 4$	$f / 8$	$f / 16$	$f / 32$
$\mathbf{4}$	$f / 4$	$f / 8$	$f / 16$	$f / 32$	$f / 64$
$\mathbf{5}$	$f / 8$	$f / 16$	$f / 32$	$f / 64$	$f / 128$
$\mathbf{6}$	$f / 16$	$f / 32$	$f / 64$	$f / 128$	$f / 256$
		$f=$ master frequency from TOS			

* $f=$ master frequency from TOS
keying is achieved by supplying +6 V through a keyswitch. Signal output voltage is proportional to keyed input voltage, whilst multiple inputs produce sum signals. Unused outputs should be connected to +6 V to avoid intermodulation, though all five will normally be in use.

SUSTAIN The simple keying of Fig. 1 is not pleasing musically, as attack is immediate and decay non-existent. Adding a Sustain capacitor Cs and Sustain resistor Rs will cause the output to die away gradually, as shown in Fig. 2.

Fig. 2. Sustain mode

TDA 1008 Based on integrated injection logic, this monolithic bipolar device produces square wave output voltages that are symmetrical about a given d.c. voltage, thus overcoming key click problems. It can be driven directly by a Top Octave Synthesiser (TOS) and applies this signal to an internal chain of eight bistable dividers. The nine resulting frequencies are matrixed with nine gates so that each of five keying inputs can select a different combination of five successive octaves.

Bistable divider i.c.s have been in existence for a good many years, and gating i.c.s, but the TDA 1008 combines both functions in a 16 pin package, with the added advantages of TOS drive and ability to control the envelope widely. Assuming a single manual instrument was required, this could now consist of 13 i.c.s (TOS and 12 \times TDA 1008), tone forming and amplification; a single keyswitch would control its five pitches.
Three positive supply voltages are required (6,9 and 12 V), the supply current being some 13 mA with all keys activated. Keying input impedance is greater than $8 \mathrm{M} \Omega$ and the input frequency can be up to 100 kHz if required. Fig. 1 gives pin connections for the device, which will be seen to have five keying inputs (pins 8 to 12), five outputs (pins 2 to 6), and a Decay pin (pin 7). Fig. 1 shows the truth table.

Master frequencies from the TOS are applied to pin 15, the truth table indicating the effect of keying various inputs. Using a 5 octave keyboard, pin 8 of the twelve TDA 1008s would be used to key the top octave, pin 9 for the next, etc. In its simplest form,

Because Cs is charged when the playing key is depressed, a resistor could be inserted between the 6 V supply and keyswitch if there is any tendency for the key contacts to spark. This situation would probably be abnormal, but such a resistor could be chosen to imitate the slower attack of a pipe organ. The desired time constant RC could be calculated (where $\mathrm{C}=\mathrm{Cs}$).
DECAY Overall control of Decay is by means of pin 7, where all twelve pins are commoned and provided with a small variable voltage. Fig. 3 suggests a method of obtaining the Decay voltage from the 6 V line (variable between 0.7 V and 2.5 V) which will control Sustain period across the manual. See Fig. 3.

PERCUSSION If a changeover keyswitch is employed so that +6 V keeps a Percussion capacitor Cp charged in "key up" mode, depressing the playing key will allow Cp to discharge through the input gate. Rs provides sustain as before, the principle being shown in Fig. 4.

Fig. 4. Percussion

Fig. 5. Percussion and sustain

A combination of Percussion and Sustain is shown in Fig. 5. One capacitor now loads the other, so that staccato playing will produce a larger output than legato. Because the TDA 1008 gives an output voltage that is proportional to the input, we now have touch-sensitivity. The effect is similar to an acoustic piano with "loud" pedal in operation.
There are a number of possible variations on this theme. Joining the earthy ends of several Cs together, though not actually earthing them, will cause other gates to open momentarily. This effect may be switched out by earthing the common Cs point. If the seventeenth interval (or 29th note higher) is coupled in this fashion, chiff can be produced.

DAMPER ACTION Unless the "loud" pedal of an acoustic piano is pressed, the string is damped as the key is released. To imitate this effect, three more components may be added to the input circuitry, as shown in Fig. 6. Here we require percussion with decay that falls to zero. On releasing the key, the 6 V supply is pulsed through Ck, making the transistor conduct briefly and so discharge Cs. The time constant RkCk is sufficient to prevent the transistor conducting if the playing key is struck repeatedly.

QUINT The gate of one TDA 1008 may be controlled by a different chromatic playing key if mutations are required. Fig. 7 shows the method for obtaining a Quint. If F is keyed, C will sound when 6 V is supplied to the isolating transistor. The Quint, or other mutation, will still be subject to Sustain and Percussion as before.

Although the proportional nature of input to output voltages has been mentioned, 6 V should be regarded as the maximum for the

Percussion busbar. Failing this precaution, gates other than those actually keyed could open. Aside from this warning, the possibilities for envelope control are legion. These brief circuit details may serve to give some idea of the flexibility of the TDA 1008.

OUTPUTS The square wave signals could be rounded off individually by low pass filters, and applied to drawbars for an additive harmonic synthesis system. With this in view, it is essential to filter individual frequencies rather than trying to filter the mixture from the drawbar busbars.

With subtractive tone forming, the best starting point is a sawtooth waveform, containing both even and odd harmonics. A staircase waveform is a close approximation to sawtooth and is obtained by mixing octave related square waves in given proportions. The resistive network of Fig. 8 shows how to apply this principle for feeding subtractive filters. Compared with Fig. 1, alteration has been made in the value of load resistors, and the output pins are now resistively coupled together.

Fig. 6. Damper action

APPLICATIONS The many features of TDA 1008 would appear to make it ideal for the rhythmic player. Organ tones would be available on an electric piano and vice versa.

Before serious musicians dismiss this device as just another gadget for popular music, it should be noted that the only commercial organs made using the TDA 1008 to date are strictly classical. Details of this i.c. have been released to the press only within recent weeks but Electrophonic Organs of 56 Bedford Place, Southampton, have been building instruments to customers' specification using this device for some time. First in this field, their price list quotes a typical three manual organ, classically voiced and with mutations, at $£ 2,865$; eight sets of twelve TDA 1008s are used. This firm will be pleased to quote for a given specification, their telephone number is 070321265.

Fig. 8. A method for staircasing the output pitches as an alternative to square waves produced by the simple arrangement in Fig. 1

COST This article will have made it clear that a set of twelve TDA 1008s will have 60 gates in all, to cover one five octave manual (with top C breaking back). The second manual will require a further set and, for the small additional cost of another TOS for these, chorus effect is possible.

A single unit costs $£ 2 \cdot 90$, whereas 25 off is at $£ 2.32$ per device. Although this may seem rather expensive compared with other i.c. systems, its versatility makes it an excellent proposition for anyone embarking on construction of a fully comprehensive instrument. Commercial firms will certainly opt for it increasingly because of the reduction in both interwiring and keyswitching it allows.

Ideally, the Pedal section requires a set of TDA 1008s to itself, though a monophonic system might be used here for the sake of economy. But if cost was not important, three sets per manual would allow a full range of pitches, including mutation stops, and form the basis of an excellent instrument. All in all, the TDA 1008 is bound to become an important part of the current generation of commercial and home-constructed electronic instruments.

Eectrone COMAB
 E.A.PARR ${ }_{\text {e.sc. }}$

THIS article describes an electronic code lock suitable for door or cupboard. To gain entry a person has to dial up a four digit code on the key panel and press a push button. The four decade switches then have to be all returned to zero and the button pressed again. The lock will then open for a preset time.

This double entry on the switches ensures that the important first code is not left set on the switches after entry.

CIRCUIT DESCRIPTION

The circuit is shown in Fig. 1 and the key panel is identified by the shaded area at the top of the diagram. The principle of the circuit is to detect current flowing from S4 to S 1 on the first code, and from S1 to S4 on the second code. Diodes D1 to D6 on the coding board pass current when the correct code is set up.

As drawn, the first code is 4057, and D2, D4, D6 allow current to flow from the first code cable to S5. Similarly the second code is 0000; D1, D3, D5 allowing current to flow from S 5 to the second code cable.

The code is set up on the red and black flying leads from the coding circuit board. Black leads set up the first code and red leads the second code. There are no restrictions on either code (except the least significant digits cannot be the same), and the codes can be easily changed.

The supply for the currents through the switches is derived from a $\pm 15 \mathrm{~V}$ supply and S 5 applies the centre common. The current flows through opto-isolators IC1 and IC2 which pass the signals to the remainder of the electronic circuit. Opto isolation was considered advisable in view of the likely distance between the key panel and the electronics box. Thus IC1 is energised for a successful first code and IC2
for a successful second code. D9 and D10 are in the current paths for each code, and are useful for checking the operation of the key panel. IC3 is a dual timer, with circuit (a) connected as a monostable with a period of 30 secs and circuit (b) as a monostable with a period 10 secs.

The correct first code fires IC3(a) via the filter R1, C2 and R4. The output of IC3(a) is connected to the reset of IC3(b) (pins 5 and 10 linked). IC3(b) is thus normally inhibited but can now be triggered. The correct second code now fires IC3(b), operating the lock solenoid via RLA contacts. Note D7 in series with RL1 coil as well as the usual diode (D8) across it. This is necessary with 555 timers, because the -0.8 V at the coil as D 8 clips the back e.m.f. can cause retriggering problems.

After 30 seconds IC3(a) times out and the reset signal is applied again to IC3(b). It is therefore necessary to reset the code and open the door within 30 seconds of setting up the first code or you have to start again.

The power supply is straightforward. The 12 V supply for the 556 is obtained from an i.c. regulator (IC4), but note that for maximum noise immunity the $\pm 15 \mathrm{~V}$ supply for the switches is floating, and is not connected electrically to the rest of the circuit. The two secondaries of 15 V and $12-0-$ 12 V could, of course, be obtained from two independent transformers.
Any 10-way switches will suffice for setting up the unlock code. Although the author has used the type shown below, a cheaper alternative is to use wafer switches with the switch positions marked on the front panel. The push button switch $\mathbf{S 5}$ is shown adjacent to the code switches. S5 can be a miniature type

Fig. 1. Full circuit diagram including suggested power supply arrangement

Fig. 2. Stripboard layout of the Combination Lock. The diodes D1 to D6 are mounted separately on a tag board which can be placed next to the code switches. The diode tag board is shown above right

Diodes
D1-D8
D9
D10

D11-14,D15-18

IN914 (8 off)
0.1 in l.e.d. (red)
0.1 in l.e.d. (green)

Rectifier stack 1A(2 off)

Integrated circuits

IC1, IC2	Opto-isolator (Maplin)
IC3	556 Dual timer
IC4	12 V 1A Regularor. $\mu \mathrm{A} 7812 \mathrm{UC}$

Solenoid

240 V operation (R.S: $349-478$ is suitable)

Miscellaneous

S1-S4	Any type of numbered decade switch (4 off)
S5	Push button switch
RLA 1	12 V relay with n.o. mains contacts.
T1	Mains transformer with $0-15 \mathrm{~V}(1 \mathrm{~A})$ and
	$12-0-12 \mathrm{~V}(100 \mathrm{~mA})$ outputs.
	(This can be two transformers)

CONSTRUCTION AND INSTALLATION

The circuit was constructed on Veroboard, the layouts being shown in Fig. 2. The code is set up using the red and black leads along the switch bank.

Fig. 3. Wiring diagram of solenoid circuit. Care should be taken when wiring up this mains portion of the system

The unit consists of two boxes, the control box and the key panel. The control box can be any normal electronic case, but the key panel should be constructed with care if tampering is likely. For example, this box should be made so that its innards are accessible only from inside the building, or the lid fitted with Allen keys, then the Allen key holes drilled out to the lid can only be removed with a drill. If necessary the key panel box should be weatherproofed.

The door lock can be any 240 V solenoid. Connection of the various units is shown in Fig. 3. Normal care should be taken with the solenoid connections to prevent danger of shock from the 240 V mains.

Because of the simplicity of the circuit, testing is straightforward. The two l.e.d.s in series with the optoisolators allow the correct operation of the key panel to be monitored. D9 should illuminate for a correct first code, and D10 for a correct second code.

One final word of warning: In case of component failure, always have a concealed standby means of opening the door. Even if this standby method is pretty inconvenient, you will have the peace of mind of knowing that should there be a power cut when you wish to gain access, you can get in one way or another.

A selection of readers' original circuit ideas. it should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
Why not submit your idea? Any idea published will be awarded payment according to its merits.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication olsewhere.

SIMPLE CLOCK

A^{8}Bout 12 to 18 months ago I obtained a small quantity of gas-discharge and l.e.d. displays and purchased a clock chip type AY-5-1224A as it was the cheapest type. I designed a method of driving the gas type displays (normally chips suitable for this cost about $£ 7$).

I originally experimented with the midget low current l.e.d. displays as I have a digital watch and thought that if I had a midget desk clock with constant display I wouldn't keep using my watch battery power. The first thing I found was that clock chip circuits are usually for 0.3 in displays which require more power than 4 mA . However, as I found the little l.e.d.s glow quite brightly at under 4 mA , I experimented without the driver transistors. This worked excellently using the resistor
values quoted. I tried a different AY-51224A and different set of l.e.d.s to ensure it would always work.

The four "multiplex" inverter transistors are necessary as the chip output waveform to the "enables" and the segments are the same levels and directions.

The AY-5-1224A segment output pins can be used as inputs for pre-loading the chip. For example, when setting the minutes and hours the waveform at pin 6 is fed into the chip to advance the time. If clock was to be used for " 24 hours" mode or for a 60 Hz supply, then diodes would again be connected to pin 6 and the appropriate "input" pin. Setting the time gives no problems whatsoever.

This circuit is not suitable for the " 24 hour" mode as due to the lack of segment
driver transistors, which give some form of buffering, if the " 24 hour" mode diode is added one of the display segments will glow dimly when it shouldn't. If used with the normal " 12 hour" mode using circuit as submitted there is no problems. The original clock has been running without problems for several months now.
Note that in the circuit shown I assume that a ready multiplex display array is used. It would probably be better to either use an ex-calculator display array, or that if individual displays are used, join the segments of the four displays in parallel.
G. A. Bobker,

Unsworth,
Bury,
Lancs.

BEETHOVEN'S DOORBELL

This circuit was developed from the doorbell published in Practical Electronics April 1975, using CMOS which were to hand, and plays the first eight notes of the Beethoven "Ode to Joy" theme. Clock pulses from IC5 are fed to the 4017 decimal counter IC1, which is reset by CI/RI at switch on. The " 0 " output is not used as the first clock pulse is
longer than those following, and the " 9 " output (pin 11) is used to switch off at the end of the tune through IC4ab and TR 1.
This leaves eight output pulses of equal length, which are used to gate the astables formed by the gates of IC2 and IC3 and associated components, producing the tones in the correct sequence.

VR1-VR4 are adjusted to give the four pitches required. Output from the tone generators is gated with the clock pulses to separate the notes and fed to the audio amplifier via volume control R18.
K. Penton,

Caversham Park, Reading.

ELECTRONIC COMBINATION LOCK

Fig. 1

Fig. 2

THe circuit diagram of a 4 character electronic combination lock is shown in Fig. 1.

The character selector may take the form of a calculator type keyboard (Fig. 2), in which case the combination is entered simply by depressing the buttons in their correct order or, alternatively, the arrangement shown in Fig. 3 may be used, in which case the combination is entered by dialling and registering (by depressing S2) each character in its turn.

Basically the circuit operates by switching on a thyristor each time a character is registered. The triggering pulse is provided by C2 which is normally charged (via R4) to +9 V . Initially the gate capacitors C4, C5, C6 are also charged to +9 V , so any attempt to trigger CSR3,

CSR4, CSR5 (at points B, C, D) will be unsuccessful. By registering (at A) the first character of the combination, TR2 is switched on and its anode potential falls to about 0.7 V . C4 rapidly discharges. A triggering pulse may now be applied to B , to turn on CSR 3 which discharges C5 etc.
The circuitry to the left of C2, R4 hinders attempts to break the combination. If a wrong character is chosen, TR1 is turned on and this, after a short delay provided by R3, C1, to permit the thyristor to trigger properly, turns on TR 1 which saturates; thus preventing further attempts to register characters until S3 is reset. D1 prevents a form of bistable action occurring between CSR1 and TR1.

The 2N5060 thyristor has a tabulated maximum holding current of 5 mA . In
practice, a realistic typical figure is about 0.1 mA ; thus the $10 \mathrm{k} \Omega$ anode resistors should be adequate.

These thyristors have particularly sensitive gates and gate-cathode resistors ($100 \mathrm{k} \Omega$) are included to dampen the sensitivity. Diodes D2-D5 isolate the gates of those thyristors with a common character. All the diodes are included for convenience.
R17 is a trickle resistor to keep C4, C5, C6 topped up; thus preventing either CSR3, CSR4, CSR 5 from being triggered when S3 is closed. R16 ensures that CSR5 switches on even if its load is highly inductive.
P. Hutchinson, Brockenhurst, Hants.

DISTORTION ASSESSMENT

Fig. 1

Fig. 2

Fig. 3

Fig. 4

THe circuit (Fig. 1) might be of interest to those readers who wish to test audio amplifiers for distortion without sophisticated test gear such as low distortion oscillators and tuned filters.
The principle is to match the amplitudes of signals derived from the input and output of the amplifier A under test and compare them in a long tailed pair. (An op amp is an obvious alternative.)

With about 1V r.m.s. fed to both inputs and VR1 and VR2 (Fig. 2) at near maximum settings, the residual output can be reduced below the noise level. VR3 is set to
balance the TR1 and TR2 collector currents approximately. D1 and D2 protect TR1 and TR2 against surges, reverse voltages, etc.

The circuit is easily set up. Limiting problems are hum in the amplifier under test and phase shift. Passive phase correction components (e.g. VR4) might be needed.

Unless the oscillator is fairly free from harmonics, differential phase shift versus frequency might give misleading results if attempts are made to assess harmonic distortion at high or very low frequencies.

Displaying the output in $\mathrm{X}-\mathrm{Y}$ form has the advantage of expanding the crossover region in X . The traces show some results from an experimental amplifier, feeding 9 V $\mathrm{p}-\mathrm{p}$ into 3Ω. Scale in all traces is about $4 \mathrm{mV} / \mathrm{cm}$ in Y .

Fig. 3 shows crossover distortion, only just detectable on a conventional scope display of the output. That in Fig. 3 could not be seen at all. Fig. 4 shows remaining second harmonic, after increasing the amplifier bias current in the output stage. Frequency in all cases was about 700 Hz .
C. J. Collins,

Letchworth, Herts.

PROTECTION FOR A MODEL TRAIN SPEED CONTROLLER

THE circuit shown in the diagram is based on the "Model Train Speed Controller" that appeared in PE December, 1976. The additional circuitry is shown within the dotted lines. This addition, which is suitable for one engine only, can be included to perform three functions:

1. To protect the controller against temporary overload by automatically reducing the available output current when such a condition occurs. This could happen due to a train becoming derailed, or due to incorrect track wiring, etc. This is an important consideration when the system may be operated by young children.
2. To provide a visual indication that an overload has occurred.
3. To eliminate the necessity of providing extra hardware to cope with a manual reset of the controller once the appropriate corrective action has been taken.
Under normal conditions both TR1 and

TR2 are switched on, TR1 providing sufficient collector current to drive the base of TR2. The l.e.d. is reverse biased and therefore has no effect.
Should the impedance of the load reduce to a point whereby the potential at the collector of TR2 falls approximately 1.9 V below that at the base of TR1, then the l.e.d. becomes forward biased and will illuminate indicating that an overload condition exists.

Once the l.e.d. attains this state it clamps the potential at the base of TR1 to that at the collector of TR2, thereby tending to switch off TR1. This situation results in a reduction in the base current available to TR2, which is reflected as a current limitation into the load. Once the load impedance is restored, the state of the l.e.d. and the two transistors reverts to normal.

In operation the limiter has been found to reduce the current through a short circuited load to approximately 20 per cent of that available to a normal condition with the engine running at full speed. This is
particularly useful in the situation whereby a heavy duty transformer can supply power to a number of controllers and trains, since the s.c.r. would burn out very quickly if the limiter were not present.

Should an electro-mechanical cut-out system be required, offering a complete shut-down on overload, then this circuit (with the illuminating l.e.d. positioned in close proximity to a photo-transistor or l.d.r., etc.) will interface directly with the Multichannel Overload Protector in PE October, 1977.

No component values are critical, the values of R1, R2 and VR1 being given for the 2 N 4443 , as opposed to the CRS1/05 specified in the original article.

TR 1 should be a silicon n-p-n transistor capable of maintaining approximately 40 mA of base current into TR2, which itself is pnp output transistor supplying approximately 1 A to the engine.
R. Chapman,

Walton-on-Thames, Surrey.

SIMPLE ALARM

The enclosed circuit utilises the timing capability of the 555, together with its capacity to directly drive a small audio transducer. It provides an economical arrangement to provide an audible alarm.

C1, charging via R1, R2 and D1, provides the initial timing delay. When the discharge is initiated, D1 virtually isolates C1 from the circuit and C2 effectively governs the charge/discharge cycle, resulting in audio frequency oscillation.
In practice, C 1 isolation is not complete, resulting in a slightly rough tone initially, by no means a drawback as regards audibility. Resistive shunting of D1 increases the roughness, if required (it also alters the frequency).

With the values shown, the circuit gives a three minute delay and an audio frequency of about $1,500 \mathrm{~Hz}$, using a 12 V supply. Performance as an oscillator can be affected by supply impedance; with some dry battery supplies a shunt capacitor might be desirable across the battery.

Cl is discharged at switch-off via R3, included as a (perhaps unnecessary) precaution to reduce reverse base-emitter potentials in the threshold comparator Darlington long tailed pair. It should certainly not be necessary with supply potentials below 7.5 V .

> C. J. Collins, Letchworth, Herts.

Semiconductor UPDATITE
 FEATURING: PBL 3708 TS 04700/10000 SC 100 R.W. Coles

FIT TO BURST

As many readers will no doubt be aware, there are two quite different ways to drive a triac in a.c. power control circuits.

The most familiar of these is probably "phase control", where the triac, off at the start of a half cycle, is turned on part way through by a trigger pulse which can occur at any phase angle selected by external circuitry.

An example of this type of control is the well known lamp-dimmer circuit, quite common these days in the more "switchedon' households! The control for this application comes from a simple variable CR circuit and a diac trigger device, the diac generating a trigger pulse for the triac when the voltage across the CR circuit (which lags the mains input) reaches a sufficiently high value, usually about 40 volts. Adjusting the CR time controls the phase lag and hence the conduction angle of the triac.

Unfortunately, the fact that the triac can be switched on when a considerable voltage exists across it means that the voltage waveform delivered to the load will often contain square edges of large amplitude. Square edges contain harmonics of course, and here we have the makings of an excellent radio and TV jamming system! The only way out is to use an r.f. filter at the device inputs, and to
restrict this sort of system to low power applications, say, 200 W . If greater power must be controlled, use "plan B," called "burst-firing."

Burst-firing eliminates the RFI (Radio Frequency Interference) problem by delivering only integral numbers of mains half cycles or cycles to the load. The trick here is to always trigger the triac as the mains voltage crosses zero at the start or end of a half cycle, and this does away with all those nasty square edges. Using this technique, loads of several kW can be controlled, at the expense of control circuit complexity, and it is ideal for the proportional control of heating in electric cookers and other domestic appliances.

Despite the availability of this burst-fire technique, and the cheapness of triacs, white-goods manufacturers have been slow to abandon their mechanical gadgets and ingenious bi-metal strips, which are in the stone age by comparison with the smooth, accurate, control now available from the triac.

The problem, as always, is price. The burst fire control circuitry can be expensive, but not 4or long if the Swedish firm of RIFA have their way. They have introduced a complete trigger control circuit for temperature control applications which fits into a single 8 -pin mini-d.i.p. The device is coded PBL 3708, is available from Jermyn,

A typical deaign for control of room temperature with a heating elemant
of $1,000 \mathrm{~W}, 220 \mathrm{~V}$ a.c. and a proportional band of $1^{\circ} \mathrm{C}$.
and contains almost everything you need apart from a few discretes and a triac. The bits inside include a zero crossing detector, a ramp generator and a comparator, and the whole thing can be powered straight from the mains, thanks to an internal regulator.

KNEES-UP

Ordinary Zeners are a bit of a disaster at low currents. Drop much below 5 mA operating current, and that breakdown "knee", which looked fine on the 50 mA scale, begins to look more like a matronly "bosom"! If your applications are happy passing 5 mA or more through the Zener, don't worry about it. But if, like me, you have ever needed a voltage reference in a micropower circuit, you will be interested in a new series of diodes from Teledyne. The TS 04700 to TS 10000 range, covering 4.7 to 10 V in 12 voltage increments, will operate at $1 \mu \mathrm{~A}$ or less and yet have knees like set-squares!

To get the best from the range, choose a diode of 6 V or greater because the performance here is at its zenith. As an example, a 10 V diode (TS 10000) suffers a maximum voltage change of only 0.1 V for a current range of 1 milliamp to 10 nanoamps! Team one of these up with an emitter follower using a high gain transistor such as the ZTX109 and you can drop your op-amp supply down to 5 V for CMOS without the regulator taking more current than the logic

HUNDRED AMP WHOPPER

A new candidate for the electronic "Guinness Book of Records" has just been introduced by the aptly names Germanium Power Devices Corporation. The new arrival is a power transistor with a 100A rating, coded SC 100, made with good old p.n.p. germanium technology. At 100A the SC 100 still has an $h_{\text {fe }}$ of 15 , so you only need to supply about $7 \AA^{\theta}$ of base current.

The SC 100 has a TO 68 package, which looks a bit like two dustbin-lids clamped together, and is of course designed to be securely bolted to a heatsink. I should think that if you used output transistors like these in a domestic system, you could use the waste heat to drive your central heating boiler I Try as I might I cannot dream up much in the way of applications for this monster, "though you could probably make a nifty controller for your electric-car or fork-lift truck. I can't help thinking that the "SC" in SC 100 stands for short-circuit!

OUAMYY II-FI AI BUIDEMT DRICRS

Fight inflation with these super Hi-Fi offers. Compare these prices with the recommended retail prices and you will see that you can save $£ £ £ £ £$ - and what is more, you will be purchasing quality equipment-that is why we are happy to give these amazing guarantees.

TREMENDOUS SAVINGS FOR THE HOME ENTHUSIAST

GOLDRING CK2 BELT-DRIVE TURNTABLE CONSTRUCTION KIT

The MATSI TFS60 Tuner/Amplifier

Complete with arm, template and easy-to follow instructions. Ready for operation in a short time
Wow/Fiutter 0.15\% peak.
Rumble 60 dB weighted.
Removable headshell.
Viscous damped cueing device.
Easily adjusted tracking force and bias setting.
Two-speed, 16 -pole synchronous motor. Dimensions: $37.8 \times 28.3 \mathrm{cms}$.
(Plinth, cover and cartridge available.
prices on application.)
R.R.P. £31. 50

LION HOUSE PRICE £1595

MANY MORE EXCITING BARGAINS ARE AVAILABLE AT LION HOUSE - BRITAIN'S HI-FI SUPERSTORE WITH THE SUPERB DEMONSTRATION FACILITIES.

SANKYO STD-1610 STEREO CASSETTE DECK

Features include Dolby noise reduction system, Autochrome, Input/ Output Level Control, Peak Indicator, Auto. stop, Ferrox Heads. Taperun Indicator, Hinged Dust CoverMORE FEATURES FOR LESS MONEY 12 MONTHS GUARANTEE-

A beautifuly compact machine of highest quality. Another successful bulk purchase from Lion House at ONLY
(Recommended Retail Price $£ 114$)

RAMKO CULLIVERSPEAKERS GIANT PERFORMERS of

Two-way mini hi-ti studio quality loud speakers. Despite their minu size, their clean, solid bass range is equal to that of much brgget systems, and the use of a high density, high temperature metal voice coil system greatly enhances durability In a roon filled with excitingly realistic sound, they seem almost undetectable.
4 -inch woofers have high power handling capability and are as efficient as $6 \cdot$ nnch wooters
Extra-light 1 -mich soft dome tweeters weigh only 0.2 grams. A powerful

10-ounce precision ceramic magnet, coupled to the dome, creates immense flux providing excellent transient responses. Acoustically suspended and impregnated with finest damping fluid, protecting dome against distortion break-up or coloration even after prolonged heavy loading. Dome shape and construction produces extra-wide dispersion, smooth frequency response and high resolution of musicaldetail.

Due to a successtul buik purchase, we are happy to offer this really top quality receiver'from one of Japan's leading manufacturers at less than half price 15 watts per channel. FM/MW/LW 12 MONTHS GUARANTEE. Recommended Retail Price £144. OUR PRICE
(Securicor delivery $£ 3.50$) 55

Highly precise crossover network, matched to component speakers. gives accurate separation of audio spectrum and stable requence response.
Specially designed cabinets made of high density chipboard with wood welded pints and individually tested. Finished in the inest laminated rosewood veneer and crafted and oilfinished by hand to a distinctive lustre
We are the sole agents and offer them direct to you at only $\mathbf{£} \mathbf{7 9 . 9 5}$ per pair (Securicor delivery £3.50)

SPECIFCATIONS

Nominalimpedance 8 ohms System components $4^{\prime \prime}$ wooter 1" dome tweeter Sensitivity Nominal input 35 watt Music power $\quad 50$ watt Dirmensions $\quad 18 \times 115 \times 12.5 \mathrm{~cm}$

GOLDRING TURNTABLE
 shoppers coly, the Goidring telt-drive turntable zomes complete with high

Televisions, Radios, Tape Recorders;; Music Centres, Cassette Recorders, Earphomes, Quality Audio and Viceo Equipment, HiFi Accessories, Export - Televisions, In Car Equipment, Watches, Binoculars, Cameras, Calculators, etc and an entire floor devoted to Musical Instruments -

LONDON'S HI-FI SUPERSTORE 227 IOTTENHAM COURT ROAD LONDCN WI Tet 0 t 5807383 and $0 t 6371601$ Telex 28334 LION G
Open 9 am 106 pr Moriday to Saturday
IThursday until 7 pm I

WARRANTY

Every RAMKO loudspeaher model as guaranteed for a perrod of five years

Stockists for: A.D C. Amstrad, Aiwa, B.S R., Celestion. Empire, Fidelity. Goldring. Goodmans. Grundig. Harmon Kardon, Hitachi, J.B.L., Kef, KLH, Koss, Monitor Audio. Micro. Marantz, Natıonal Pa

BEFORE YOU BUY AN AMPLIFIER MODULE-CHECK:

DOES IT HAVE

* 30A power transistors * 3A drivers (100W unit)
* 2-year guarantee

Integral output capacitor

TAM 1000 100W 4 ohms 65V	19.80
TAM500 50W 4 ohms 45V	[7. 50
TAM250 25W 8 ohms 45V	¢5.75
POWER SUPPLIES	
For 1 or 2 TAM250/500	[7. 50
For 1 or 2 TAM1000	¢9.80
(Carriage 50p on supplies)	

- Suits loads 4-16 ohms
- $20-20.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
- Silicon circuitry throughout

Glass fibre P.C.B
High sensitivity (100 mV 10 k)

High grade components used throughout: Texas, Mullard, R.C.A., Plessey, etc.

ALL PURPOSE MIXER/PRE-AMP.
(with 60 mm slider volume)

\author{

- Suitable for multiple input systems - High and low impedance inputs
 - High sensitivity
 - Built-in supply smoothing - $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
 - -80 dB noise level
 - Accepts a wide variety of inputs
 Wide range bass and treble controls
}

Use up to 10 PRE-AMPS with 1 power supply
Printed circuit board assembly with treble and bass controls plus slider volume control
£6.50

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc)-C.O.D. (60p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at 8% to orders for 50 and 100 W systems and at $12 \frac{1}{2} \%$ for 25 W systems (including preamp if ordered at same time).

Hours, 9.30 a.m. -5 p.m Monday - Saturday Callers welcome. Tel. (01) 6840098

TAMBA ELECTRONICS
 Bensham Manor Road Passage, Bensham Manor Road, Thornton Heath, Surrey

Abstract

\section*{PROGRESSIVE RADIO}

93 DALE STREET, LIVERPOOL L2 2JD. Tel: 051-236-0982 SEMICONDUCTORS ALL FULL SPEC. BC212, BC182, BC237, BF197, BC159 all 8p each. LM380 80p. LM381 95p. NE555 33p. 7418 PIN 23 p, 741 S (wide bandwidth) 8 pin 35p. cell, 4 lead 25 p. BFY50 plastic 14p. STC 3 volt 1 watt zener diodes 7 p each, BD533 33 p . MRD 3051 photo transistors 35p. FETS similar to $2 N 381918 \mathrm{p}$. MOSFET similar 40673 35p. Intel C1 1031024 bit mos rams 95p, CD4051 45p, 72314 pin l.C.'s. 35p. DIODES. BY 12790 . IN4002 4p. IN4005 DIODES. BY1279p, IN4002 4p. IN $40057 \mathrm{p}, 600 \mathrm{v} 3 \mathrm{amp} 17 \mathrm{p}$. Lucas bridge recs, 400 V 1.5 amp 30p. SPECIAL OFFER. TBA800 10 for E5.00. MAN3A 3 mm led displays 50p. Min. Nixie 587 OST 75p Pot core unit, has six pot cores including one FX2243 $(45 \mathrm{~mm})$ and two $\mathrm{FX} 2242(35 \mathrm{~mm}) 3$ TO3 sit power transistors on heat sink, 3 -20mm panel fussholders and panel with various transistor diodes and a 5 amp plastic SCR, $£ 1.75$ p plus 75 p postage MOTORS. Model type $1.5-6$ voits 20p. 'BIG INCH' sub min motor 115 vac, 3 r.p.m. 25p. 24 OVAC SYNCH. MOTORS WITH GEAR8OX, 1/5 r.p.m. 75p. 1/24th r.p.m. 75p. 15 r.p.m. f1-20p. Crouzet 115 VAC 4 r.p.m. 95p. $12 v$ dc 5 pole 35p HI-SPEED MORSE KEY. ALL METAL £2.25p. PLESSEY WINKLER SWITCHES, 1 pole 30 way, 2 bank adj. stop 75p. Crystal microphone inserts 37 mm 45p. Grundig electret condenser inserts with built in FET preamp $£ 1.50$ p, ELECTRET PENCIL HAND MICROPHONES 1 K IMP WITH STANDARD JACK PLUG £2.85p, TIE CLIP CONDENSER MIKES OMNI, 1 K IMP, (uses deaf aid battery, supplied) f4.95p. SOLDER SUCKER, high suction, eye protection shield f4.95p PROJECT BOXES. 8 LACK ABS PLASTIC WITH BRASS INSERTS AND LID. $75 \times 56 \times 3544 \mathrm{p}$ $95 \times 71 \times 3552 \mathrm{p}, 115 \times 95 \times 3660 \mathrm{p}$. BUZZERS. GPO open type 3-6v 30p. Large plastic domed type loud note 6 or 12 volts 50p. Solid State buzzers, miniature, 6-9-12-24 volt 15 ma 75 p each. ped. heads $£ 1.75$ p. TD 10 Dual head assemblies 2 heads mounted on bracket, £1.20p. Relays, Min. sealed 12 v dc type 4 pole changeover 55 p , Min. 24 v dc 2 pole c/o 3 amp contacts 55 p . Min sealed 220 v ac 2 pole c/o 40 p . Open type 12 vdc 4 pole c/o $50 \mathrm{p}, 4$ pole reed relays N / O 20p. CRYSTALS, 300 khz 40 p .4 .43 mhz CTV 45p. Aerosol Touch up' paint one colour yellow/grey, 6 oz can $35 p$. 50 v ac cam units, motor switching ten c/o micro switches, supplied with capacitor for 240 ac ase f 1.95 p plus 35 p postage. Belling Lee L4305 masthead amplifiers and mains power unit, new but only for group A UHF f7.50p. TRANSFORMERS, 6-0-6v 100ma, 9-09 75ma, 12-012 50ma 75p each, 12-012 100 ma 95 p, 12v 500 ma 95p, $1: 1$ triac/xenon pulse transformers 30p. CHOKES 6 MC 3 Amp 20p. U.H.F.TV Tuners, push button (not varicap) new and boxed $\mathbf{£ 2 - 5 0}$ p. Miniature toggle switches, SPST 8×5 $\times 745 \mathrm{p}$, DPDT $8 \times 7 \times 750 \mathrm{p}$, DPDT c/o $12 \times 11 \times 975 \mathrm{p}$, Min. push to make or push to break $16 \times 16 \mathrm{~mm} 15$ p each type. Slider switches, DPDT standard 15 p . Min. 12 p . Std. c/o 20p. Roller $76 \times 16 \mathrm{~mm} 15 p$ each type. action micro switches $15 p$. action micro switches $15 p$. TOOLS Smatl side cutters $5^{n \prime}$ insulated handles $£ 1-35 \mathrm{p}$. Snub nosed pliers $5^{n \prime}$ insulated handles £1.35p. Watchmakers screwdriver sets, 5 drivers in wallet $£ 1.00$ p. Large mains tester screw£1.35p. Watchmakers screwdriver sets, 5 drivers in wallet $£ 1.00 \mathrm{p}$. Large mains tester screw- drivers, fully insulated $8^{\prime \prime} 44 \mathrm{p}$. Test lead jumper sets, 10 leads with insulated croc clips each end, drivers, fuly insulated 8 44p. Test lead jumper sets, 10 leads with insulated croc clips each end, different colours $80 p$. Telephone pick up. coil, suction type with 3.5 mm jack plug 50 p . 9 volt battery eliminators, 240 v ac input 9 v dc out at 12 cma stabilised replaced PP3, PP6, PP7, PP9 £2.45p. Edge connectors, 0.164 way 65 p. 34 way $4 \mathrm{op}, 0.218$ way 15 p . Amplifier modules, OTL4 1010 watt mono into 8 ohms $28 v$ dc max $£ 4$-65p. 555S Stereo module, 3 watts output into 8 ohms, 12 v dc $£ 3.35 \mathrm{p}$. Tape head demagnetisers, 240 v ac with or/off switch, straight probe $\mathbf{f 2 . 0 0}$. curved probe (cassette) $\mathbf{f 2} \mathbf{3 5}$ p. TERMS: cash with order, (of official orders from colleges etc). Postage 30 p unless otherwise shown, overseas post at cost. VAT inclusive prices S.A.E. for lists.

Progressive Radio, 31 Cheapside, Liverpool L2 2DY. Tel: 051-236-0982

WEST LONDON DIRECT SUPPLIES (PE9)
169 KENSINGTON HIGH STREET, LONDON W8 GSN
Tel: 01-9375548

The Great Debate

It is all to the good that in the last few months both the promise and the threat of Very Large Scale Integration (VLSI) have received a great deal of public exposure through radio, TV and the printed word.

The promise is in electronic goodies which will make a lot of money for the electronics industry and save a lot of money and give greater convenience, sometimes both, for the VLSI user. The threat is that though the electronics industry may prosper and perhaps employ marginally more people, the end result will cause a great deal of unemployment elsewhere.

Even in the electronics industry itself the advent of comparatively simple (compared with what is yet to come) devices has had a dramatic effect on labour content in assembly of equipment. I recently saw one female assembler and two male technician testers handling the whole assembly and testing procedures of a product, the end value of which totalled some $£ 3$ million per year. These three people were not even working at full capacity. Nor were they highly skilled.

To produce an equivalent product with the discrete components and methods of, say, 20 years ago, would have demanded an assembly line of many more people, perhaps ten assemblers and five testers, all working flat out. And the product would have been larger, heavier, used more raw materials, consumed more power, been more expensive and less reliable.

The computing power of a $£ 5$ chip today is said to equal that of a first-class computer costing $£ 250,000$ in 1950 . That's the way it's gone and very nice, too.

Now spare a thought for all those people, skilled mechanics, who have spent years patiently assembling the complicated mechanisms of the common cash register. The mechanical model, even the electromechanical, is on its way out. Market researchers Frost \& Sullivan are predicting
a $£ 2.5$ billion market in the next ten years for the all-electronic model in 16 West European countries alone. There are many such examples where traditional skills will no longer be needed in the all-electronic age.

The media, ever-anxious to dramatise and popularise the issues of the day, and limited in time for any particular topic, naturally tend to over-simplify. It is a pity that historical perspective has been largely overlooked for if we face up to it the new "threat" is only another phase of a continuing process which has been with us since the beginning of the industrial revolution.

The old-time craftsmen and labourers were horrified by machines. Later, having become accustomed to machines they were horrified by automation which introduced a limited "intelligence" to machine operation. Today people are petrified at the prospect of microelectronics which promise a further level of "intelligence" to the machine and the transfer. if not the total abolition, of many formerly needed skills.

And yet all the evidence is that the natural inventive progression from manual labour and craftsmanship to automation and to microelectronics in all its aspects has enriched us all, at least in material goods.

The paradox remains that while, for example, a steel worker resists the introduction of a new and more efficient process in his mill, he would be the first to complain if his family car were to cost him $£ 40,000$ because it was made entirely by hand or his washing machine $£ 1,000$ or so, and the shirt on his back f 50 .

One sympathises naturally with legitimate fears but nobody can have it both ways. Self-interest is such that we all like to enjoy the fruits of modern invention as long as it is somewhere else, just as most people agree that more airports are needed provided they are located well away from their own area.

In Sweden, which has a small labour force, the trade unions discourage any worker to be employed on dirty or dangerous tasks which could more profitably and easily be undertaken by an industrial robot. Will the recently formed British Robot Association help to change attitudes and dispel fears in Britian?

It seems odd that while the world stock of nuclear weapons is sufficient to vaporise the whole of mankind we are all dead scared of a tiny chip of silicon.

The debate continues . . .

Getting Together

GEC looks like teaming up with the Japanese in colour TV manufacture. There are moves, too, on the computer front with ICL concluding a know-how exchange with Hitachi, and technical co-operation and cross-marketing in an agreement between Siemens in Germany and Fujitsu in Japan. The computer deals are said to be preparatory moves in the forthcoming sales battle expected to start in 1980 when IBM will introduce a new range.

European companies are anxious to get access to new technology being developed in Japan through huge government funding in VLSI, including exotic devices like a megabit memory. For their part, the Japanese are anxious to widen their market beyond Japan. ICL, for example, sells in 80 countries, Hitachi mainly in Japan.

The GEC attitude on colour TV appears to be that if you can't beat 'em then join em. Better to have half the cake than no cake at all.

Now it can be TOLD

The Post Office TOLD (Telecommunications On-Line Data) nationwide computer project is now in service. Costing $£ 12$ million, the Post Office expects to save $£ 22$ million through improved efficiency during the life of the equipment. Pilot trials started in 1975. Now the system is complete it uses 1.300 Cossor CD3005 VDU terminals all linked to ICL 4-72 computers with advantages in speed, control, accuracy and simplicity of use. Direct access to the computer now replaces form-filling and transferring the data from forms to punched cards or magnetic tape.

Qualifications

Starting reading now for an honours degree if you want to join the Institution of Electrical Engineers. As from 1982 second class honours will be the minimum qualification for membership plus relevant industrial experience plus a written professional test demonstrating competence and future potential.

IBC Sell-Out

The biennial International Broadcasting Convention is moving this year from the popular Park Lane venue of Grosvenor House to the new Wembley Conference Centre. Exhibitors are up to 85 as compared with 72 at IBC'76 and the exhibitors have 20 per cent more space. Some 180 technical papers have been submitted for the Conference, another record, but these will be trimmed down into 12 main topics for discussion. The dates this year are September 25-29.

The technical sessions will reflect all the latest techniques including MPU and minicomputers in broadcasting, teletext, quad sound, satellites, video processing, etc.

Car Radar

Anti-collision radar for motor cars was being considered by US General Motors 20 years ago. They will become a reality for the American motorist in the 80 s . A simple system would have an audio warning for the driver. A more complex system has radar-activated braking. A combination of Gunn oscillators for the radar section and powerful MPUs for signal processing will help overcome the knotty problem of discriminating real targets (i.e. car "signatures") from roadside objects such as lamp posts, bollards or oil drums.

WHILE developing colour transparencies, particular attention must be paid to the control of the developing solution temperature. Most home developing kits require the temperature of the first and colour developers to be within $\pm 0.25 \mathrm{deg} \mathrm{C}$ of a stated temperature, usually in the range $20-40 \mathrm{deg} C$.

The device described in this article not only acts as a very accurate and stable thermostat, but also provides an analogue readout of the temperature in the bath.

To realise the full potential of the circuit it should be used in conjunction with a stirring device in the tank. This need only take the form of a small paddle driven fairly slowly by a geared down electric motor.

CIRCUIT DESIGN CONSIDERATIONS

The complete circuit is shown in Fig. 1. In order that the overall unit was simple and cheap, operational amplifiers were used throughout.

Although a thermistor has a non-linear resistance relationship with temperature (see Fig. 3a), by making it one of the elements in a potential divider network, the voltage output is almost linear against temperature in the range of $10-15$ deg C (see Fig. 3b), assuming the potential divider is fed from a stable voltage.

Components R1, R2, D2, D3, form a sufficiently stable voltage source for this purpose and also serves to supply a switching reference voltage to comparator IC2.

Switch S1 selects either the thermistor TH1 or preset VR1 to be the lower element of the potential divider. VR1 is used to supply a calibration resistance so that the correct operation of the unit can be checked periodically.

The difference between the output voltage from the divider and reference chain R4, VR2 and R5 is amplified approximately 5 times by IC1, the output voltage being read on meter M1. Resistor R9 is a meter shunt and may be adjusted to suit a different meter movement.

As the temperature in the bath falls it is sensed by TH1 and causes an increase in its resistance, the voltage at the inverting input of IC1 increases and the output voltage decreases.

This voltage is fed via R10 to IC2 to be compared with the reference set by VR3 on the non-inverting input. As the temperature falls the output voltage of IC1 falls, and a point is reached when this crosses the reference voltage. The output of IC2 then rapidly swings high, to almost full supply volts. This action brings TR1 into conduction to energise RLA thus switching on a small immersion heater in the bath.

The components R12, R13, R14 form a positive feedback loop to put a hysteresis effect into the switching action.

Without this, at the switching temperature the output from IC2 would oscillate fairly rapidly due to the low level noise signals on the output of IC1. The operation of this network is as follows, as the output of IC2 goes high, the voltage at the junction of R13 and R14 increases slightly. This small voltage is effectively added to the reference voltage via R12, it is thus necessary for the voltage at the inverting input to rise slightly further before the output of IC2 drops to the low value, switching off TR1 and the relay.

When this occurs the feedback voltage becomes zero and the reference voltage returns to its pre-set value.

CONSTRUCTION

The prototype device was built on 0.1 in . matrix veroboard which after being checked for track shorts etc, was bolted directly onto the input terminals of the meter. Integrated circuit holders are used for the operational amplifiers to avoid soldering damage. Veroboard pins were used where connections were necessary to components not on the board.

Fig. 1. Full circuit diagram, including suggested power supply circuit (shown outside shaded area)

COMPONENTS ..

Resistors	
R1	
R2	270Ω
R3	680Ω
R4-R6, R8, R10, R13, R15	5.6Ω
R7	$10 \mathrm{~K} \Omega$
R9	$47 \mathrm{~K} \Omega$
R11, R12	150Ω
R14	$100 \mathrm{~K} \Omega$
All $\frac{1}{2} W 5 \%$ unless otherwise stated	

Potentiometers

VR1	$10 \mathrm{~K} \Omega$ multiturn preset
VR2	$10 \mathrm{~K} \Omega$
linear carbon	
VR3	$50 \mathrm{~K} \Omega$ linear carbon

Capacitors

C1	$0.1 \mu \mathrm{~F} / 25 \mathrm{~V}$
C2	$10,000 \mu \mathrm{~F} / 25 \mathrm{~V}$

Transistors and diodes
D1, D4-D7 1N4001
$\begin{array}{ll}\text { D2 } & 6.8 \mathrm{~V} 400 \mathrm{~mW} \text { Zener } \\ \text { D3 } & 18 \mathrm{~V} 400 \mathrm{~mW} \text { Zener }\end{array}$
TR1 2N3705

Integrated circuits

IC1. IC2 741 op . amp.

Miscellaneous

M1	10 mA f.s.d. meter
RLA	15 V operating relay with
	n.o. 240 V 5 A contacts

S1 S.p.d.t. toggle s'witch
S2
T1
FS1 2 amp fuse and holder
Diecast box $203 \times 127 \times 89 \mathrm{~mm}$ (used for prototype)
Veroboard 0.1 in
8 pin d.i.l. holders (2 off)
Coaxial plug and socket for temperature probe

Fig. 2. Stripboerd layout shown at full size. Note that C1 is not shown on this diagram

A temperature probe can be fabricated from a small test tube

The meter M1, switch S1 and controls VR2 and VR3 are panel mounted together with a coaxial socket for the connection of TH1. If the completed thermostat is to be run from a separate 20 V supply then two extra sockets will be needed for this.

Sufficient room is available inside the specified diecast box to house a small mains transformer, rectifier and smoothing capacitor. Using the double Zener arrangement as shown in Fig. 1 the device is immune to $\pm 2 \mathrm{~V}$ changes in supply voltage, and thus the stability of the supply is not too critical. The Veroboard layout is shown in Fig. 2, and the front panel layout can be seen above.

SETTING UP AND CALIBRATION

All that is needed for this procedure is an accurate thermometer and a vessel of water. After a 5 minute warm up period switch S1 to bring TH1 into circuit. Submerge the thermistor enclosure into water at exactly 20 deg C and adjust VR2 until the meter shows half-scale deflection. Now switch S1 to bring VR1 into circuit and adjust the potentiometer VR1 to return the deflection to half-scale.

Now return S1 to its original position bringing TH1 into circuit. Suspend the thermistor enclosure in water at several different temperatures marking the meter scale is each case with the temperature indicated by the glass thermometer. Using the value of R9 quoted with the specified thermistor, the device will have a full-scale range of 10 deg C (from 15 to 25 deg C).

To set the switching temperature, bring VR1 back into circuit by operating S1, the meter should read half-scale. Rotate VR2 to bring the meter to read the desired temperature. Now rotate VR3 slowly until the relay is heard to operate. This completes the setting up procedure. Slight adjustments may have to be made when the thermostat is in use, as changes in water-bath geometry may affect the required setting of VR3.

USE OF THE COMPLETED SYSTEM

Switch S1 to connect VR1 in circuit, check that the meter reads half-scale deflection. If not then adjust VR2 to obtain this condition. This checks (and compensates for) the input offset level of IC1, which may tend to drift with ambient temperature changes and age. Switch back to TH1 and the meter will then read the temperature of the water surrounding the thermistor enclosure.

Used in this way, the unit will prove reliable and the complete unit should give trouble free operation for a considerable number of operational hours.

FRANK W. HYDE

SOYUS-29 and SALYUT-6

On 17th June, 1978 the Soyus-29 space vehicle docked with Salyut-6 space station. The two cosmonauts, Vladimir Kovalynok and Alexander Ivanchenkov, will continue the programme of experiments on the same lines as those of the record breaking team, Yuri Romanenko and Georgi Grechko.

The programme consists of a wide range of experiments, among them studies of-The Earth's surface and atmosphere to obtain data of both scientific and commercial interestAstrophysical experiments and investigations-Experiments directed toward new materials-Technical experiments and tests on structural parts of the space station itself and Medico-biological studies.

The biological experiments will be partly concerned with the problem of weightlessness. Both Romanenko and Grechko after their return to earth suffered some days of difficulty in returning to normal. The length of time they spent in the weightless condition was 96 days. During the time spent in this condition no deficiency showed up in their ability to carry out their tasks, indeed, there were signs that their efficiency did in fact improve.
After the flight the cosmonauts were very sensitive to the sensations of weight, not only of their bodies but also of other objects.
During the first few days back on Earth they had to make considerable effort to remain upright and their movements showed some indication of dis-orientation. For several days the cosmonauts wore specially designed suits to assist them to walk.

The studies of the adaptation of the biological machine to gravity was as interesting as that of adaptation to weightlessness, according to Academician Gazenko who controls the Medical and Biological Institute.
On the second day of the new mission of the space station and the supply vehicle, the
cosmonauts were engaged in re-activating the Salyut-6 and de-activating Soyus-29. The micro-climate in Salyut-6 is maintained at $20^{\circ} \mathrm{C}$ with a pressure of 750 mm of mercury.

The space parameters of the combined unit Soyus/Salyut are at present apogee 368 km , perigee 338 km , orbital period 90.4 minutes, and the orbital inclination 51.6°.

The re-activating of the systems is done in stages. The water producing system had been dormant for three months. The system regenerates water from condensate. The cosmonauts enjoyed a cup of tea after the successful re-activation operation. The propulsion system has also been checked and found satisfactory.
Some details of the cosmonauts in the Soyus/Salyut latest mission may be of interest. Colonel Vladimir Kovalynok was the flight commander of Soyus-29, he made his first space flight in October 1977 as commander of Soyus-25 in the first unsuccessful attempt to dock with Salyut-6.

He was born in 1942 on March 3 in the village of Beloye in the Krupsky district of the Minsk region. In 1963 he graduated from the Basahov Higher Military Flying School. He served in military transport aviation, training with several aircraft and clockin? up 1,600 hours of flying time, then he became an airforce paratroop instructor.
In 1967 he joined the cosmonauts detachment and went through the complete course of space flight training. He took part in flight testing new spacecraft and in the flight control of piloted space vehicles and orbital stations. In 1976 he graduated from the Yuri Gagarin Military Air Force Academy.
His partner in the Soyus/Salyut mission is Alexander Ivanchenkov who is the flight engineer. Ivanchenkov was born on 29th September, 1940 in the town of Ivanteyevka in the Moscow region. He graduated in 1964 from the Moscow Aviation Institute, then worked in the design office, dealing with the design of new space vehicles in which he proved to be a gifted and ingenious engineer.

His space flight experience began with training for Soyus space ships and Salyut stations. On several missions he was standby flight engineer. He also trained as flight engineer for the joint Soyus/A pollo flight.

USSR LAUNCHINGS

A number of Soviet launchings took place in May and June this year. Cosmos 1011 was launched on 23rd May, with an orbital period of 104.9 minutes at an angle of 82.9°. Apogee is $1,026 \mathrm{~km}$ and perigee 978 km . Cosmos 1012 was launched on 26th May with orbital period 89.2 minutes and an orbital inclination of 62.8°. The apogee is 280 km and the perigee 214 km .

On 8th June a booster rocket put eight Cosmos satellites in orbit at one launch. The initial orbits ranged from $1,456 \mathrm{~km}$ to $1,539 \mathrm{~km}$. The angle of inclination was 74° and the initial orbital period of revolution was $115 \cdot 5$ minutes.
Cosmos 1021 was launched on 10th June with an apogee of 336 km and a perigee of 180 km . The period of revolution was 89.4 minutes and the angle of inclination was 65°.

Cosmos 1022 was launched on 12th June with an apogee of 374 km and a perigee of

182 km . The period of revolution was 89.7 minutes and the inclination 72.9°.

A Molyniya satellite was launched on 2nd June. The parameters were apogee $40,837 \mathrm{~km}$, perigee 457 km . Apogee is in the northern hemisphere and perigee is in the southern hemisphere. The orbital period is 12 hours 16 minutes and the angle of inclination is 62.5°.

The satellite carries apparatus for the transmission of television programmes and long distance multi-channel radio communication.

INDIA AND THE USSR

Preparations have been completed by the Soviet Union for the launching of India's second artificial satellite. The press were given the details by Nikolai Novikov who is ViceChairman of Intercosmos. The interview took place in Delhi.

Novikov heads the delegation of Soviet experts who have been testing a model of the new space laboratory at the Indian Space Centre. Discussions have been taking place between the Indian space experts and their Soviet counterparts.

It was remarked by Novikov that despite the short history of the joint activities, SovietIndian space research had brought practical results. The joint preparation of the first satellite, Aryabhata, helped to train India's experts who now handle a very wide range of complex scientific apparatus for space research.

Launching of the new satellite is expected to assist the development of India's economy and enable extensive study of her mineral, water and timber resources.

GOES-3

The geostationary Earth monitoring satellite has been launched. The launch was made from the Kennedy Space Centre in Florida. NASA were responsible for the launching on behalf of the National Oceanic Atmospheric Administration. GOES-3 is destined to play a key part in the Global Weather Experiment.

This is a worldwide project which will last a year. There will be an accumulation of data both oceanographic and meterological in this period. GOES, or to give it its full title Geostationary Operational Environmental Satellite, will gather information from an area centred on the Indian Ocean.

PLACE IN SPACE

Dr. George Ellis of the University of Cape Town has resurrected an old theory of the preCopernican days. He is suggesting that the Earth is in fact the centre of the Universe.

He is able to put what will certainly be considered to be an outrageous suggestion, because the present day thinking and observation allows for curved space with a Universe with no edge but two centres in relation to each other. According to Dr. Ellis our galaxy is near to one of these centres. He does not accept an expanding universe but rather believes that the red shift is the result of gravity.

Though there will be many opponents to this idea it must, in fairness to Dr. Ellis, be noted that he does not say that it is so, but that it could be.

WHEN two-track tapes carry a single recording extending to both tracks, the end-of-recording point on track 1 is usually some minutes away from the physical end of the tape, and for convenience both during recording and during playback the start-of-recording point on track 2 is at the same physical location. Thus, both during recording and during playback the tape has simply to be turned over to make it ready for the second track.

Now if copies of such tapes are to be made unattended, and the first side is allowed to run to the physical end of the tape, and since tape lengths are not normally exactly the same, it is not possible to simply turn over the tapes and start copying the second track. The second track of the copies would be out of synchronism with the first track by the difference in tape length. A rather tedious search for the physical location of the end-of-recording point would ensue, particularly if several copies are being made simultaneously.

The track monitor has been designed to avoid this by alerting the operator when the end of the recording (rather than the end of the reel) has been reached. It contains electronic circuitry which starts an oscillator 15 seconds after the last recorded sound has been received from the track. The 15 -second delay ensures that the alarm is not raised because of intended pauses in the recording.

The oscillator is heard via a built-in loudspeaker when the selector switch is in the "Alarm" position. In the "Monitor" position the loudspeaker is connected across the programme line. There is one programme input and three programme outputs. This permits three simultaneous dubbings to be made. The instrument provides a constant 10 -ohm load for the line, whether or not the speaker is used. The programme
circuit, though routed through the instrument, is not electronically processed in any way and the box can therefore serve as programme distributor, and the speaker as monitor, without being connected to mains power.

The circuit of course can be used in any situation where the cessation of speed or music on a line (whether radio, records, tape etc.) needs to be indicated by some kind of alarm signal.

CIRCUIT DESCRIPTION

The instrument is mains operated and contains a regulated +24 V supply. The full-wave a.c. rectifier and filter is followed by a Zener referenced series regulator. Diode D9 temperature compensates D5. The values of C1 and C2 were chosen on grounds of adequacy and availability.

The rest of the circuit divides into sensing section and alarm section, with the relay linking the two. The programme signal is amplified by TR2, operating at OV gate-to-source bias. Load resistor R4 is chosen to obtain a quiescent drain voltage of about 8 V , so that a signal swing of up to 6 V can be obtained without clipping the negative excursions. If the input of TR2 is overdriven, R2 will serve both to limit the f.e.t. gate current and to prevent any loading of the programme line. TR2 will in fact frequently be overdriven in normal operating practice.

The amplified signal is coupled through C3. R5 establishes a OV quiescent level, from which excursions can go to +0.6 and -5.1 V before being clipped by D6. The negative excursions are detected by D7 and serve to charge C4 to the negative peak level. This cuts off TR3, and the relay in its drain circuit opens.

Fig. 1. Showing how copy tracke go out of sync

When no further programme signals arrive, the voltage on the gate of TR3 drifts back towards OV as C4 discharged through R6. When the current through the f.e.t. reaches the relay switching point RLA1 pulls in and activates the alarm circuit.

The purpose of D6 is to standardise the negative excursions caused by signals of varying amplitudes, so that the return from cutoff to conduction of TR3 will take about 15 seconds regardless of whether the last recorded passage on the tape was loud or soft. TR2 must therefore provide at least a 5 V signal swing to reach D6 limiting even on quiet passages, and will habitually be overdriven of loud passages. The minimum signal level on the programme line to reach limiting is 1 V peak-to-peak.

The 15 second delay depends not only on the circuit time constant C4-R6, but also on the gate bias level at which TR3 provides enough drain current. When changing TR3, this level is almost bound to be different, and the easiest way to re-establish the 15 -second delay is to change the circuit time constant.

ALARM SECTION

Turning now to the alarm section, this consists of
oscillator TR4 and speaker driver TR5. The unijunction transistor fires with about 6 V at its emitter and then conducts heavily, pulling down the voltage on C5 rapidly to 1 V , when the circuit relaxes and C5 charges up again through R7. The frequency of oscillation is about 700 Hz .

The current produced when TR4 switches produces a 5 V spike at R9, which is used to drive the speaker via TR5. The quiescent interbase current flow in TR4 is so small that the voltage across R9 is less than 0.6 V , and TR5 is consequently non-conducting between spikes.

The advantage of using this spike (rather than the sawtooth at C5) can now be seen: because of its very short duration it requires exceptionally small dissipation in TR5, avoiding the use of large transistors (both TR1 and TR5 are 1W types). Another advantage is that this waveform provides a distinctive, harsh sound which should attract attention.

Because of the extremely short and heavy current demand by TR5, with which the regulated supply could not cope, decoupling has been introduced at TR5 collector, and D8 holds the decoupled voltage at 5 V to protect both C6 and TR5.

Fig. 2. Circuit of Sound Monitor

Fig. 3. P.c.b. layout for component side

Fig. 4. Reverse of board showing p.c.b. layout

Fig. 5. Component assembly in double sided p.c.b.

At normal programme levels the speaker volume was thought to be adequate with a 2Ω series resistor R 12 .

No volume control is provided so that the user can gradually build up a mental picture of what constitutes the sound of correct playback volume. R13 provides an equivalent load to the line when the switch is in the "Alarm" position.

CONSTRUCTION

All components except those indicated on the front panel
are mounted on a double-sided printed circuit board. Connections to this board are made via square-pin push-on connectors. The board is held in place by six machine screws and can be withdrawn for servicing after removing these.

For the dubbing job the output was fed via a single cable looped to three DIN connectors. A similar cable with appropriate connectors was made for distributing the power from a single supply to the three recording machines, so that by turning on or off that power supply all three machines could be started or stopped simultaneously.

COMPONENTS

Resistors		Diodes	
R1	3.6kת	D1-D4	1N4004 (4 off)
R2	$12 \mathrm{k} \Omega$	D5	BZY88-24 24V Zener
R3	$220 \mathrm{k} \Omega$	D6	BZY88-5.15.1V Zener
R4	$5 \cdot 6 \mathrm{k} \Omega$	D7	1 N4004
R5	$10 \mathrm{k} \Omega$	D8	BZY-5.15.1VZener
R6	$10 \mathrm{M} \Omega$	D9	1 N914
R7	$47 \mathrm{k} \Omega$		
R8	$10 \mathrm{k} \Omega$	Transistors	
R9	200Ω		
R10	$2.2 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$		
R11	$1 \mathrm{k} \Omega$	TR1	BFY50
R12	$2 \Omega 3 \mathrm{~W}$	TR2	2 N 4303
R13	$10 \Omega 2 \mathrm{~W}$	TR3	2N4392 2N4851
R14	390Ω	TR5	BFY50
All $\frac{1}{4}$ W carbon except where otherwise stated			
		Miscellaneous	
Capacitors		T1-240V pci- $15 \mathrm{~V}, 0.2 \mathrm{~A}, 15 \mathrm{~V}, 0.2 \mathrm{~A}$ (Stock No. 207-598 R.S. Components)	
C1	$80 \mu \mathrm{~F}$ elect. 50 V		
C2	$68 \mu \mathrm{Felect} .40 \mathrm{~V}$	LSI-1W 8Ω loudspeaker	
C3	47μ F elect. 30 V	S1-Mains d.p.c.o	
C4	$1 \mu \mathrm{~F}$	S2-S.p.c.o	
C5	$0.1 \mu \mathrm{~F}$	RLA-Reed relay 18-30V $3 \mathrm{k} \Omega$	
C6	$150 \mu \mathrm{~F} 50 \mathrm{~V}$	(Stock No. 349-002 R.S. components)	

THE electronic metronome described in this article, in addition to providing the normal variable tempo beat, can also give emphasised beat at the beginning of each bar for the common musical time signatures. The tempo of the metronome can be adjusted from approximately 33 to 220 beats per minute.

CIRCUIT DESCRIPTION

The circuit diagram of the metronome is shown in Fig. 1. The circuit uses CMOS logic i.c.s in order to minimise current consumption.

Referring to the circuit diagram, IC1a and b with the associated circuitry, form the master oscillator which runs at twice the beat frequency. The frequency of this oscillator is varied by potentiometer VR1.

IC2 is a resettable 7 stage binary divider. The master oscillator output is fed to the input of IC2 and the signal corresponding to the beat speed is taken from the divide by two output. This is inverted by IC3d and differentiated by R5 and C5, the short positive pulses so formed, enabling the

beat oscilldtor (comprising IC3a and b with C 4 and R7). The negative pulses are clipped by the internal protection circuitry of IC3

The output of this oscillator when enabled, is a short burst of pulses, the duration of this pulse train and its frequency being chosen to give a realistic sounding beat. This beat is fed via R4 to the output stage, which consists of a double emitter follower (TR1 and TR2), driving the loudspeaker.

When the beat oscillator is disabled, the output is high which biases TR4 and TR2 off, thus minimising current drain.

EMPHASISED BEAT

For the unemphasised beat the output from IC3c is high. D2 therefore conducts, and so VR2 with D2 forms a potential divider with R4for the negative going portions of the beat waveforms fed to TR1. The strength of the unemphasised beat cart tyus be adjusted by VR2.

The divide by four, eight, sixteen and thirty-two outputs of IC2 are selected by switiches S1a and b, and then fed to the two inputs of the nand gate IC1c. The output of this is inverted by IC1d and fed to the reset input of the divider. This is reset when the number of beats selected by S1 have occurred. R2 and C2 delay the resetting long enough for C3 to be charged via D1, by the reset pulse. C3 and R3 form a hold circuit which keep the input of IC3a high for a short time after the divider has been reset. IC3c output is inverted and so is low for this time, therefore D2 does not conduct.

The amplitude of the burst of oscillation fed to TR1 corresponding to the resetbeat is greater than the other beats because VR2 has been switched out of circuit. This is the emphasised beat. The diyider is reset on this beat, and begins to count again to tho hext emphasised beat where it is again reset.

The prototype Metronome wes housed in a sloping metal case and powered by a 9 volt battery. The Time Signature control ranges freblone to twelve beats to the bar.

Fig. 1. Full circult diagram of the Metronome

COMPONENTS . . .

Resistors

R1	$150 \mathrm{k} \Omega 2 \% \mathrm{~m} .0$.
R2	$3.9 \mathrm{k} \Omega$
R3	$120 \mathrm{k} \Omega$
R4	$10 \mathrm{k} \Omega$
R5	$120 \mathrm{k} \Omega$
R6	560Ω
R7	$39 \mathrm{k} \Omega$

All resistors $\frac{1}{4}$ W 5\% unless otherwise stated

Potentiometers

VR1	$1 \mathrm{M} \Omega$ lin carbon
VR2	$22 \mathrm{k} \Omega$ vert preset

Capacitors

C1	$0.47 \mu \mathrm{~F} 63 \mathrm{~V} 2 \%$ polycarbonate
C2	$0.1 \mu \mathrm{~F}$ polyester
C3	$0.22 \mu \mathrm{~F}$ polyester
C4	$0.01 \mu \mathrm{~F}$ ceramic
C5	$0.15 \mu \mathrm{~F}$ polyester
C6	$10 \mu \mathrm{~F} 25 \mathrm{~V}$ tant
C7	$470 \mu \mathrm{~F} 16 \mathrm{~V}$ elect

Semiconductors

IC1, IC3	CD4011 (2 off)
IC2	CD4024
TR1	2N4058
TR2	2N1132
D1, D2	1N916 (2 off)
D3	$5 \cdot 1 V$ Zener BZY88 400 mW

Switches
S1 2-pole 8-way rotary wafer switch
S2 d.p.s.t. min toggle

Miscellaneous

LS1
$8 \Omega 57 \mathrm{~mm}\left(2 \frac{1}{4} \mathrm{in}\right)$ dia loudspeaker, PP6 battery and clip, 0.1 in matrix Veroboard $(95 \times 63.5 \mathrm{~mm})$, nuts, screws and wire. Case measuring $153 \times 100 \times 100 \mathrm{~mm}$.

Constructor's Note

The $0.47 \mu \mathrm{~F} 2 \%$ polycarbonate capacitor specified for C1 may be obtained from Minicost Trading Ltd. Tel Whixall (094 872) 464/465

A method of mounting miniature loudspeakers which have no fastening lugs, is to fix four 6BA screw and nut assemblies around its perimeter so that they each clamp a 6BA solder tag. The soldering portion of these tage can then be pointed inwards and bent so as to captivate the loudspeaker

A simple battery clip can be made to hold the PP6, using a strip of aluminium about 25 mm wide, drilled to give a 4BA fixing hole, and then formed around the battery by hand

Virtually any type of case will suffice to house the Metronome, but a sloping front panel will be found to have more appeal

Fig. 2. Stripboard layout shown actual size

Fig. 3. Switch wiring diagram. The tag numbers refer to the beats per bar positions in order to relate to Figs. 1 and 2

VIEWED FROM FRONT OF SWITCH

SUPPLY ARRANGEMENT

The supply to IC1 and IC2 are stabilised by D3 to keep the master oscillator stable. IC3 is supplied direct from the battery as its outputs have to swing over a larger range than the outputs of the other i.c.s. The circuit is powered from a 9 V PP6 battery. The current drawn from it depends on the tempo at which the metronome is running, but is normally below 5 mA .

Position 1 of the multiway switch gives a beat of one strength only, the inputs of IC1c being grounded to obtain this.

CONSTRUCTION

The circuit was assembled on 0.1 inch matrix stripboard and the layout is shown in Fig. 2. The inputs of the i.c.s used are protected by diodes, but the normal precautions taken with MOS devices should be observed to be on the safe side.

The metronome was housed in a small sloping fronted instrument case and the front panel labelled with dry transfer labels. A number of small holes were drilled in the case in front of the speaker.

The wiring of the multi way switch wafers is shown in Fig. 3 , and if wired as shown, give minimum tempo in the fully anti-clockwise position. The metronome can be calibrated using a stopwatch or the second hand of a watch.

MASTERIN-CAR ENTERTAINMENT By Vivian Capel Published by Newnes Technical Books. 122 pages, $135 \times \mathbf{2 1 5 m m}$. Price $\mathbf{£ 2} \mathbf{2 0}$.

SHOULD anyone consider installing an in-car music system, who is not a hi-fi or electronics "whizz-kid" as such, they would find this book most useful. The explanations throughout are very understandable to the non-technical mind. Coverage of the various options for entertainment source is comprehensive, and would assist a quick decision on which type of radio or tape machine to use if you were in doubt.
With hints and tips on both installation and fault finding, and methods of identifying and curing interference, the d.i.y. car improver could be saved considerable "aggro" by consulting this book. It is all easy to follow, and the use of spot-colour has enhanced the simplicity of electronic and mechanical diagrams.

Chapters are: The Car Equipment Scene, Mono Stereo Or Quad?, Mobile Tape Players, The Cartridge Player, The Cassette Player, Cassette Or Cartridge?, Car Radios, Car Antennas, Interference Suppression, Installing The System, and Trouble Shooting.

In Chapter 9 the author suggests that interference due to static in the bodywork can be identified by coasting down a hill with the engine switched off. I would imagine that this practice, along with the driver's concentration on interference coming from his new hi-fi installation, could well result in some sound effects far more realistic and convincing than any stereo or quad system might produce!
M.A.

. . . can be made using these new-look self binders for PRACTICAL ELECTRONICS to become your most valuable source of reference. With the Easi-Binder current copies can be inserted as they are received, without waiting for the completion of twelve issues.
They are attractively made with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers, please advise year and volume and a separate set of gold transfer figures will be supplied.
At $£ \mathbf{2} \mathbf{8 5} \mathbf{i n c}$. VAT and postage ($£ 3.45$ overseas) they are obtainable from:

Post Sales Department, IPC Magazines Ltd. Lavington House, 25 Lavington Street London SE1 OPF

1 enclose P.O./cheque value
.for binders at E2.85 each (f3.45 overseas) for Practical Electronics Vol. No's.

Name
Address

Date
 \title{

A Volume of
 \title{ \section*{A Volume of Practical Know Practical Knowhow}

how}}

M°OST microprocessors that are suitable for amateur use need data input in the form of an eight bit binary word and hexadecimal characters form a convenient way of handling such data.

The keyboard described here provides an eight bit binary word by pressing two keys in succession. Pressing the first key lights up one of the "byte" l.e.d.s (this is a reminder that another key has yet to be pressed for the full code). At the same time, the binary code corresponding to that character appears in the four left-hand I.e.d.s (H, G, F, E). Each lit I.e.d. represents a " 1 ". Pressing another key puts the binary code for that character into the four right-hand l.e.d.s (D, C, B, A). The second byte l.e.d. now lights, indicating that the full eight bit word is assembled, and a signal is sent to the microprocessor that the data is ready. At any time, the data word can be set to all noughts by pressing the "Clear" key, or by a signal from the microprocessor itself.

This type of keyboard is much simpler to build than a full ASCII keyboard, and it is just as effective if programs are written in machine code.

There are i.c.s available specially developed to do this job, but they are expensive, and they certainly don't crop up in the amateur's stock of i.c.s, or in scrap computer boards.

This project was designed to use common i.c.s and the matrix diodes can be any silicon type. The ones used in the prototype came from an untested lot of 100 for 60 p. advertised as "similar to 1 N914". About 90 per cent of these were found to be good.

Power supply for the keyboard is standard TTL 5V at about 150 mA (all l.e.d.s lit).

SETTING THE CODE

The full circuit is shown in Fig. 1. To help in identification, each pin of an i.c. is labelled with two numbers separated by a hyphen. Thus IC7-10 means pin 10 of IC7.

We can follow the operation of the keyboard by taking an example. Suppose we have a SC/MP microprocessor, and we wish to enter the code for "Load the accumulator". This is 11000100 in binary, or C4 in hexadecimal. Before any key is pressed, both data bistables (IC8) are in the reset state, so IC8-8 is at logic " 1 ". This prepares the four gates of IC1 for a key being pressed. Suppose key "C"' is now pressed. Lines c, d, and K go to logic " 1 ", so NAND gate outputs IC1-3 and IC1-6 becomes logic " 0 ".

The " 0 " on IC1-3 sets IC3-3 bistable output to logic " 1 ", and the " 0 " on IC1-6 sets IC3-6 to logic "1". L.e.d.s G and H light, so setting up the left hand byte (1100).

Line K (now at logic " 1 " remember) charges C1 through R1, so the Schmitt trigger input IC7-5 arrives at logic "1" level, and IC7-6 goes to logic " 0 ". This has no effect on the clock inputs of IC8 data bistables-they need a positive going edge.

However, when the key is released after setting up the first byte, there is a short delay while C1 discharges (about 10 milliseconds), then IC7-5 returns to logic " 0 ". IC7-6 therefore goes to logic " 1 ", and clocks IC8 bistables. IC8-9 changes to logic " 1 ", but IC8-5 stays at " 0 " because its data input IC8-2 is at logic " 0 " when the clock pulse occurs. The " 1 " on IC8-9 prepares the gates of IC2 for the next key being pressed. The first "byte" l.e.d. is now lit.

Now, key " 4 " is pressed. This raises lines c and K to logic " 1 ", IC2-3 becomes logic " 0 ", so changing bistable output IC5-3 to logic " 1 ", and I.e.d. C lights. The right hand byte is now set up (0100), and the full eight bit binary code is displayed in the l.e.d.s.

When the key is released, IC7-5 drops to logic " 0 " level, so IC7-6 rises to logic " 1 ". This clocks the upper data bistable of IC8, so that IC8-5 now rises to logic " 1 " (its data input is at " 1 " level). The second "byte" l.e.d. now lights, and the output of IC8-5 also provides a signal to the microprocessor that the keyboard data is "ready".

Fig. 1. Keyboard electronics

The eight data bits, and their complements if required, are available to the microprocessor from the outputs of IC3, IC4, IC5, and IC6.

RESET

The "Reset" line shown in Fig. 1 is connected to the reset inputs of all bistables. If this line is pulled down to near OV, all bistables will be reset. This must be done before another word is set up. There are three ways in which this can happen:
(1) Keyboard reset.-This is simple-the "Clear" key is pressed, which earths the reset line.
(2) Microprocessor controlled-A logic "O" from the microprocessor to the "External reset" line does the same job as pressing "Clear". The diode D2 (a germanium diode for low volts drop) prevents the
"External reset" line being pulled down when "Clear" is pressed. Note that the external reset line is resetting 10 i.c.s, so the reset signal from the microprocessor must come from a device capable of doing this. A normal TTL gate has a fan-out of 10 , so this is no problem.
(3) Automatic reset-If nothing deliberate is done to clear the keyboard before another data word is entered, the previous data will be cleared automatically at the instant another key is pressed. Any key being pressed will raise line K to logic " 1 ". IC7-8 falls to logic " 0 ", and takes the reset line down to logic " O ". All bistables reset, and IC8-5 goes to logic "0". IC7-9 also goes to logic " 0 ", so closing that gate. Keeping the key down has no further effect on the reset circuit.
All this takes only a few milliseconds, so, while the key is still pressed, the left hand four bits of the new code are set into IC3 and IC4. Pressing another key sets up the remainder of the new data word. Using this facility, and some cunning program writing, data can be put into memory simply by pressing two consecutive keys.

COMPONENTS

Resistors

R1	100Ω
R2	470Ω
R3	270Ω
R4-R7	$470 \Omega(4$ off $)$
R8-R9	$1 \mathrm{k} \Omega(2$ off $)$
R10-R19	$330 \Omega(10$ off $)$

Capacitors

$\mathrm{C} 1-\mathrm{C} 2$	$10 \mu \mathrm{~F}$ elect. 10 V (2 off)
C 3	$0.1 \mu \mathrm{~F}$

Diodes
D1-D48 1 N9 14 (any general purpose silicon) (48 off) D49-D50 AA120 (2 off)

Integrated Circuits

IC1-IC6	7400 (6 off)
IC7	7413
IC8	7478

Keyboard

S1-S17 S.p.s.t. push-to-make keyboard switches (17 off) A double blank cap can be obtained for the "Clear" key (R.S. Components)

Lifting a copper strip with iron and pliers

CONSTRUCTION

Veroboard is a convenient way of making the diode matrix, so the same board is used for the remainder of the circuit.

Cut a piece of 0.1 matrix Veroboard, 40 holes by 34 , with the copper strips running across the long dimension. Remove four of the strips, as illustrated. This is done by heating the strip with a soldering iron, lifting the strip gently with pliers, and running the iron ahead of the point where the strip is lifting (see photo). Cut the copper tracks, as shown in the illustration, with a $\frac{1}{8}$ in drill.

Wiring Schedule-Circuit Board					
Component	From	To	Component	From	To
Wire	IC1-1	Row c	Wire	1C7-12	1C7-13
Wire	IC1-2	1C1-5	Wire	IC5-7	Earth
Wire	IC1-3	IC3-2	Wire	IC5-10	Reset row
Wire	IC1-4	Row d	Wire	IC5-13	IC5-10
Wire	IC1-5	IC8-8	Wire	IC5-14	5 V row
Wire	IC1-6	IC3-5	Wire	IC6-1	IC6-11
Wire	IC1-7	Earth	Wire	IC6-4	IC6-8
Wire	IC1-8	IC4-2	Wire	IC6-7	Earth
Wire	IC1-9	Row a	Wire	IC6-10	Reset row
Wire	IC1-11	IC4-5	Wire	IC6-13	IC6-10
Wire	IC1-12	Row b	Wire	IC6-14	5 V row
Wire	IC1-14	5 V row	Wire	1 C 7 -1	IC7-2
Wire	IC2-1	IC1-1	Wire	IC7-2	1C7-4
Wire	IC2-2	1C2-5	Wire	1C7-6	1C8-3
Wire	IC2-3	IC5-2	Wire	1C7-7	Earth
Wire	IC2-4	IC1-4	Wire	1C7-9	J row
Wire	IC2-5	1C8-9	Wire	1C7-14	5 V row
Wire	IC2-6	1C5-5	Wire	1C8-1	1C8-13
Wire	$1 \mathrm{C} 2-7$	Earth	Wire	IC8-2	IC8-9
Wire	IC2-8	IC6-2	Wire	IC8-3	1C8-11
Wire	1C2-9	IC1-9	Wire	IC8-7	Earth
Wire	\|C2-11	IC6-5	Wire	IC8-13	Reset row
Wire	IC2-12	IC 1-12	Wire	1C8-14	5 V row
Wire	IC2-14	5 V row	R1 (100 ${ }^{\text {) }}$	K row	IC7-5
Wire	1C3-1	IC3-11	R2 (4708)	IC7-5	Earth
Wire	IC3-4	IC3-8	R3 (2708)	IC8-5	J row
Wire	IC3-7	Earth	R4 (470)	d row	Earth
Wire	IC3-10	IC3-13	R5 (470)	crow	Earth
Wire	IC3-13	Reset row	R6 (4708)	b row	Earth
Wire	IC3-14	5 V row	R7 (470)	a row	Earth
Wire	IC4-1	IC4-11	R8 ($1 \mathrm{k} \Omega$)	IC8-12	5 V row
Wire	IC4-4	IC4-8	$R 9(1 \mathrm{k} \Omega)$	$1 C 7-1$	5 V row
Wire	IC4-7	Earth	C1 $(10 \mu \mathrm{~F})$	1C7-5 (pos)	Earth (neg)
Wire	IC4-10	IC4-13	$\mathrm{C} 2(10 \mu \mathrm{~F})$	J rows (pos)	Earth (neg)
Wire	IC4-13	Reset row	C3 ($0.1 \mu \mathrm{~F}$)	5 V row	Earth
Wire	IC4-14	5 V row	D1 (germanium)	IC7-8	Reset row
Wire	IC5-1	IC5-11	D2 (germanium)	Reset row	Ext. reset row
Wire	IC5-4	IC4-8	Wire	Earth (upper)	Earth (lower)
Wire	1C7-4	$1 \mathrm{C} 7-12$	Wire	Reset (upper)	Reset (lower)

Fig. 2. Identification of rows on the circuit board for the wiring schedule. Copper cuts for the i.c.s are also shown

Wiring Schedule-Keys and I.e.d.s

Component	From	To	Component	From	To
Wire	Key 0	"0." column	R10 [3300)	Pad H	I.e.d. H (pos)
Wire	Key 1	"1" column	R11 (330) ${ }^{\text {a }}$	Pad G	l.e.d. G (pos)
Wire	Key 2	" 2 " column	R12 (330)	Pad F	l.e.d. F (pos)
Wire	Key ${ }^{\text {S }}$	"3" column	R13 (3300)	PadE	l.e.d. E (pos)
Wire	Key 4	"4" column	R14 (3.30) ${ }^{\text {) }}$	Pad D	l.e.d. D (pos)
Wire	Key 5	"5" column	R15 (330)	Pad C	l.e.d. C (pos)
Wire	Key 6	"6" column	R16 (330) ${ }^{\text {) }}$	Pad B	l.e.d. B (pos)
Wire	Key 7	"7" column	R17 (330)	Pad A	I.e.d. A (pos)
Wire	Key 8	"8" column	R18 (330S:)	Pad 81	l.e.d. B1 (pos)
Wire	Key 9	" 9 " column	R19 (330):	Pad 82	l.e.d. B 2 (pos)
Wire	Key A	" A " column	Wire	Case earth	Cct. board earth
Wire	Key ${ }^{\text {B }}$	"B" column			
Wire	Key C	"C' column	Connections of a 16 pin plug (mesting to microprocessor)		
Wire	Key ${ }^{\text {C }}$	"D" column			
Wire	Key E	"E" column			
Wire	Key F	"F" column	pin 1-bit 4 (least significant)		
Wire	Key "Clsar"	Reset row	pin 2-bit B -		
Wire	5 V row	Keys " 0 " to " F " (one side of each)	$\begin{array}{ll} \text { pin } & 3 — \text { bit } \\ \text { pin } & 4 — \text { bit } D \end{array}$		
Wire	Earth	"Clear" key (other side)	$\begin{array}{ll} \text { pin } & 4-\text { bit } D \\ \text { pin } & 5 — — b i t ~ E ~ \end{array}$		
Wire	Pad A	IC6-3	pin 7-bit G		
Wire	Pad \mathbf{B}	1C6-6	pin 8-bit H (mosi significant)		
Wire	Pad C	1C5-3	pin 9-conmon earth		
Wire	Pad C	IC5-6	pin 10--interrupt key		
Wire	$\operatorname{Pad} \mathrm{E}$	IC4-3	pin 11 - go key		
Wire	Pad F	IC4-6	pin 12-reset key		
Wire	Pad G	IC3-3	pin 13-run'program key		
Wire	Pad H	1C3-6	pin 14-reset line from microprocessor		
Wire	Pad B1	IC2-13	pin 15_keyboard f ag to microprocessor		
Wire	Pad E 2	IC8-5	pin $16-5 \mathrm{~V}$ supply		

Fig. 3. Showing the connection of the matrix diodes and i.c.s

Main board prototype showing component layout and surface wiring. Note that the copper tracke of the two boards for the diode matrix are at right angles and the diodes are mounted diagonally $s 0$ that each diode wire passes through the copper strip of only ons board

Mount the ten l.e.d.s by gluing them with Araldite into the holes in the top panel, so that they just project above the surface. When the glue has set, connect each l.e.d. negative wire to the earth strip on the inside of the back panel. Connect the positive wires to the appropriate pad on the same panel.

Now follow the wiring schedule again, connecting the ten l.e.d. resistors, and the keyswitches, to the circuit board. Connect power and output wires. Mount the circuit board to the base panel, using 8 BA screws and insulating spacers. Take the power and output wires, plus eight wires from the unallocated keys, through the hole in the back panel.

TESTING

When power is first applied to the keyboard, a random display will probably appear. Press "Clear", and then a single key. One "byte" lamp should light, and the l.e.d.s H to E should display the chosen code. Press a second key, and l.e.d.s D to A should respond to that code. Check that both "byte" l.e.d.s are now lit.

A quick check on all l.e.d.s can be made by keying in "FF", which lights them all. Now test each key methodically, including the "Clear" key, which should always extinguish all l.e.d.s. One can assume that if the correct code appears in the display, it will also be presented to the microprocessor.

The design has been checked for repeatability, by building a second unit, which worked first time power was applied. Compatibility with the requirements of a microprocessor was checked by using the keyboard to input data to a Motorola 6800 evaluation kit.

KEYSWITCHES

The keyswitches used came from a desk calculator keyboard, sold for 50p, but supplies of these in the surplus shops is very spasmodic, so it is a case of scanning current advertising. The front panel dimensions given suit a keyswitch no larger than $\frac{3}{4}$ in square. Radiospares list a keyboard switch which measures less than $\frac{5}{8}$ in square, and this would be suitable in this design, though more expensive.

A useful. feature of the design of this project is that it needs only a simple "make" contact for each key. Sophisticated low contact bounce double throw switches are not needed, so there is scope for personal ingenuity, even if the resulting keyswitch is electrically rather crude.

Prepare another board, 34 holes by 10, with the copper strips running across the short dimension. Remove alternate
strips, giving the pattern shown. Glue this board face to face with the larger board, with the copper strips at right angles. Use pins passing thıough both boards in two places to keep the holes in alignment until the glue sets. The relative positions of the two boards can be seen in the photo.

Next, mount the matrix diodes on the copper side of the smaller board, in the pattern shown. Each diode has its anode connected to a hole in a copper strip of the smaller board, and its cathode is taken through holes in both boards, to row a, b, c, d, or K of the larger board. When wiring the diodes of row K, leave the anode wires projecting about $\frac{1}{4}$ in beyond the board. These will serve as pins to which the wires to the keybcard are attached.

Solder the i.c.s in position, with the locator of each towards the matrix. Now follow the Wiring Schedule to complete the assembly of the board.

BP 1509212

The Federal Communications Commission in the USA is currently considering which of five rival systems should be adopted to provide the option for stereo transmissions on the AM (amplitude modulation) medium and long wave bands.
The five systems originate from Belar, Harris, Magnavox, Motorola and Leonard Kahn, a pioneering inventor in this field.

Kahn's system is favoured in some quarters because he claims that it enables anyone owning two existing AM mono sets to receive stereo without the need to purchase any additional equipment.

Doubtless with an eye to the likely adoption by the UK of whatever AM system is chosen by the FCC, Kahn has over recent years been busily patenting his ideas in the UK (BPs 970 051, 1119333 and most

Copies of Patents can be obtained from : the Patent Office Sales, St. Mary Cray, Orpington, Kent
Price 95p each

Optionally an infrasonic frequency leg. 15 Hz) is also impressed on the carrier to provide a switching signal for receivers equipped to decode stereo. Kahn suggests that for mono compatibility with existing radio receivers the transmitted signals should have the carrier wave envelope modulated by the stereo sum signal ($L+R$) and phase modulated by the difference signal ($L-R$). Existing sets receive only $L+$ R and reproduce a mono sum signal; sets equipped with a stereo decoder matrix $L+$ R and $L-R$ to reproduce L and R as a stereo pair.

In Kahn's most recent patent he proposes a modified means of phase modulating the carrier with the difference signal. The claim is that, by phase modulating the carrier with a stereo difference signal formed from L-R fundamental, together with added second harmonic content varying in amplitude as a square law function of the fundamental,
stage. To develop the phase modulation components for the carrier the L and R signals are also fed to a difference circuit 28 and a $+45^{\circ}$ phase shift imparted to one fraction of the output. This signal now serves as the fundamental phase modulation component and is fed to sum circuit 36.

Further output fractions of the difference circuit 28 are fed to frequency doublers 46 and 48 and the harmonic outputs of these doublers routed to difference circuit 54. The frequency doubled difference output passes through a level squarer formed by a variable gain amplifier 58, controlled by a fraction of the fundamental component tapped off ahead of sum circuit 36 .

The VGA feeds sum circuit 36 of which the output is supplied via a time delay to the transmitter for phase modulation of the carrier.

When the L and R signals are equal and in phase (i.e. the audio signal input is mono) the $L-R$ signal is zero and the gain of VGA 58 is zero. However when maximum stereo information is present, eg. when L is high and R is zero, the VGA is at maximum.

When L and R are present and in phase but L is at full amplitude and R at half amplitude the gain of VGA is reduced to limit the second harmonic component.

It follows that when stereo information is present the phase modulating component is composed not only of the fundamental of the stereo difference signal but also a controlled amount of frequency doubled difference signal, the level of the latter being a square law function of the fundamental.
U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

R.C.S. 10 WATT AMPLIFIER KIT

This kit is suitable for record players, tape play back. guitars, electronic instruments or small P A. systems. Two versions are avaitable. The mono kit uses 13 semiconductors. The stereo kit
uses 22 semiconductors. Botrk kits have printed front panel and uses 22 semiconductors. Botr kits have printed front panel and
volume, bass and treble controls. Spec. 10W output into 8 ohms. volume, bass and rebse controls. Spec.
$7 W$ into 15 ohms . Response $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$. input $100 \mathrm{M} . \mathrm{V}$. high imp. Size $9 \frac{1}{2} \times 3 \times 2 \mathrm{in}$. A/C mains operated.

Easy to bulld Full instructions supplied

ELAC SPEAKER 10 inch $£ 4.50$

Twin cone. Large ceramic magnet $50-16,000 \mathrm{c} / \mathrm{s}$. Bass resonance $55 \mathrm{c} / \mathrm{s}$. 10 W . 8 ohm impedance.
RCS STEREO PRE-AMP KIT. All parts to build this pre-amp. Inputs tor high. medium or low imp. per channel, with volume
control and P.C. Board. Can be ganged to make multi-way mixers. £2.95 Post 35 p MAINS TRANSFORMERS ALLPOST 75p each $250-0-250 \mathrm{~V} 70 \mathrm{~mA} .63 .2 \mathrm{~A}$
$250-0-25080 \mathrm{~mA} .6 \cdot 3 \mathrm{~V} 3 \mathrm{~A} .63 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2 A $350-0-350$ 60mA. $6 \cdot 3 V 35 A .63 V 1 A$ or $5 V 2 A$ $300-0-300120 \mathrm{~mA} 2 \times$
220 V 45 mA .6 .3 V 2 A
HEATER TRANS, $63 V$
GENERAL PURPOSE LOW VOLTAGE. Tapped outputs 2A 3.4.5.6. B. 9. $10.12,15$ VOLTAGE. Tapp $\$ 3.45$
$\$ 4.60$ A. 6. ©. 10. 12. 16. 18. 20. $24,30,36.40,40,60$

$2 \times 18 \mathrm{~V} 6 \mathrm{~A} £ 9.12-0-12 \mathrm{~V} 2 \mathrm{amp} £ 2.95$.
20-0-20V $1 A$ E2.95. 30V $1 \frac{1}{3} A \notin 2.75$. 2OV TA £2.20.

AUTO TRANSFORMERS. 115 V to 230 V or 230 V to 115 V
$150 \mathrm{WE5}$; 250 W E6; 400W E7:500W £s.

FULL WAVE BRIDGE CHARGER RECTIFIERS 6 or 12 V outputs $11 / 440 p ; 2 A 55 p ; 4 A 95 p$. HALF WAVE 12V 1: 1 25p.

GOODMAN'S COMPACT 12in BASS WOOFER
tratin square diameter fixing with cut sides r.m.s. 4 ohm impedance. Bass resonance wath $\mathrm{c} p \mathrm{~s}$. Frequency response $30-8.000 \mathrm{c}$ c.p s
$\mathrm{\varepsilon} 10.95$ each. Post $£ 1.00 .20$ Watt model $£ 9.95$.

10 WATT PER CHANNEL STEREO AMPLIFIER In chassis form. A.C. mains operated. Volume. balance, treble and bass slider controls. Pick up and tape inputs. Recording output. Socket. Front panel size: $16 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{in}$. Chassis size: $13 \times 15 \mathrm{in}$. ${ }^{2}$ Bargain £18.50 Post 50p
HEATING ELEMENTS wafer thin Size $10 i \times 8 \frac{1}{4} \times \frac{1}{\operatorname{tin}}$ in Operating vottage 200250 V a c 250 W approx Suitable for Heating Pads. Food Warmers. Convector Heaters etc Must be clampeo between two sheets ot metal or asbestos ONLY 40p EACH (FOUA FOR £1.50) ALL POST PAID-Discounts for quantiy

E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$

SPEAKER SALE!

10W Model	£7.95
State 4 or 8 ohm.	Post 45p
15W model	£10:50
8 ohms	Post 65p
20 W model	£11.50
State 8 or 15 ohms.	Post 75p

TEAK VENEER HI-FI SPEAKER CABINETS
MODEL "A" $20 \times 13 \times 12 \mathrm{in}$.
For 12 in . dia. or 10 in . speaker. lilustrated $£ 14.50$ Post $£ 1.60$ MODEL "B" BOOKSHELF
For $13 \times 8 \mathrm{in}$. EMI $\quad \mathbf{~} 8.50$ Post $£ 1$
Loudspeakers. R.C.S. BOOKSHELF complete with speakers. Size $14 \times 9 \times 6 \mathrm{in}$. approx. Response 50 to $14,000 \mathrm{cps}$ 12 watt rms 8 ohms $£ 19$ pair Post $£ 1.50$
ACOUSTIC WADDING 18 in . wide, 20 p ft.

10 WATT PER CHANNEL STEREO AMPLIFIER in chassis form. A.C. mains operated. Volume. balance, treble and bass slider controls. Pick up and tape inputs. Recording output. Socket. Front panel size: $16 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{in}$.
Chassis size: $13 \times 15 \mathrm{Fin}$. $\mathbf{B a r g a i n} \mathbf{1 8 . 5 0}$ pos 50p

$$
\begin{aligned}
& \text { ize 10i } \times 8 \div \times \text { in Operating voltage } 200 / 250 \mathrm{~V} \text { a c } 250 \mathrm{~W} \\
& \text { pprox Suitable for Heating Pads. Food Warmers. Convector } \\
& \text { eaters elf } \\
& \text { asbestos ONLY 40p EACH (FOUR FOR £1.50) }
\end{aligned}
$$

WIRE WRAPPING CENTRE

	WIRE.WRAPPING TOOL For $025^{\prime \prime}(0,63 \mathrm{~mm})$ so. Doss "MODCEED" Wrap overwrapping device.	
	A For AWg 30	BW-630
${ }_{\text {Wres }}^{\text {Wre- }}$ Wraping	B For AWG 26-28	BW-2628
Tool Comolete	Bit for AWG 30	8T. 30
with Bit	Brifor AWG	BT-2628
Line A¢24.77 BE29,58	2.61 D\&6.89	

	WIRE.WRAPPING KIT Contalns: Hoboy wrad Toil WSU-30 M. Wire Disponser WD-30-B. Hobsy board H-PCB- 1 Dip/IC Insertion Too Extractor Tool EX-1.	
	Wire-Wrapping	$\begin{aligned} & \text { WK-4B } \\ & \text { (Blue) } \end{aligned}$
	£17.82	

FROM 75p
TERMINAL AND OISTRIBUTION STRIPS bread, boarding bullding matrices of solderless
plug-in tiepoints - Facilitate quick solderless cliccuif bulid-up and check-out on oulld-up

Are offered in ten Actept all components
with leads up to $032^{\prime \prime}$ with leads.
diameter. Requir cords. Includes integral non-
shorting instant mounting

DISTRIBUTORS WANTED*米*

OK Machine\&ToolU.K. Limited
 48 a The Avenue.Southampton SO12SV

OK PLIERS AND CUTTERS universal cutter Cuts everyting. Leathe ware, plastic tin-plate,
Cardbord. Stainless steel biades. of the range of high quality pliers, cut ters,
tweezers and screwdrivers Dual-In-line package, 3
level wire-wrapole level wire-wrapping.
phosphor bronze contac phosphor bronze cont
001 D Dated pins. 025

0.3 mm s. 100 $(2.53 \mathrm{~mm})^{5 \mathrm{~s} . .1} 100$ \begin{tabular}{l}
(2.54 mm) centre spacing.

| 14 Pin Dip |
| :--- | :---: |
| Socket |

\hline 14 Dip

\hline $\begin{array}{l}16 \text { Pin Dip } \\
\text { Socket }\end{array}$

\hline
\end{tabular}

IC TEST CLIPS $£ 2.77$ for dual in Line packages - Provide full access to
integrated clicuit DIP - Remove DIP's damage - Avallable in stzes to accommodate all DiP's;
TC-14 fits 14 -pin DIP's
Simplify prototype did
production testing, field
service work, and quallty

DIP SOCKE T $14 p$

RIBBON CABLE ASSEMBLY	
With 14 Pin Dis Pturg 2"Long	DE 14.2
With 14 Pin Dip Plug - $\mathbf{4}^{-14}$	OE 14
With 14 Pin Dip Plug -8* Long	DE
With 16 Pin Dip Plur ${ }^{-2}{ }^{\text {a }}$ Long	DE
With 16 Pin Dip Plua -4" Lone	
With 16 Pin Oip Plug -8" Lon	

24HR CLOCK/APPLIANCE TIMER KIT

Switches any appliance of up to 1 KW on and off a preset times once a day. KIT contains: AY-5-1230
Clock/Appliance Timer IC $0.5^{\prime \prime}$ LED display, Clock/Appliance Timer IC, $0.5^{\prime \prime}$ LED display, mains supply, display drivers, switches, LEDs, triac, complete with PCBs and full instructions. $£ 14.85$

TOUCH CONTROLLED LIGHTING KITS

जीصQी TRAMPUS ELECTRONICS LTD. 58-60 GROVE ROAD, WINDSOR. BERKS. SL4 1HS. TELEPHONE WINDSOR (07535) 54525.				
Cash \& cheque orders over $\mathbf{£ 5}$ post free. Credit cards by post or phone $\mathbf{£ 5} \mathrm{min}$. Post \& packing 20p. CWO add VAT to prices marked * 8%, others $12 \frac{1}{2} \%$. Free price list of our full range send addressed envelope. Quote this ad as prices				
LEDS $\mathbf{1 7}^{\prime \prime}$ or $0.22^{\prime \prime}$ FULI SPEC Paks		DEVELDPMENT PARCEL	REDUCEO LINES	
Red noclip	PAK A: 12 red LEDS f1*		A small selectio	rom our lists
PAK of 100 LeOS	日: $5 \times 7418 \mathrm{pin} \mathrm{f} 1^{\circ}$	SET 1:250 $\times 50 \mathrm{~V}$	78151415 V	
Til 209 \& clip 11 p	C: $4 \times 2 \mathrm{~N} 3055 \mathrm{~T} 03 \mathrm{f} 1^{*}$	ceramics 5\% 10 each	7805/M309K	
$0-2^{\prime \prime}$ LEO Red \& clip 12p	PaK 0: $12 \times 8 \mathrm{Cl} 109 \mathrm{f} 1{ }^{\text {- }}$	22pf to 0.1uf ¢5	BC107 or BC108	${ }^{\text {p* }}$
	PAK G: $7 \times$ BFY51 £1*	SET 2: TANTULUMS	BC109 10p* BC109	09C
Color LEDS Ail 16p	H: $7 \times 2 \mathrm{~N} 3819 \mathrm{FFET}$ f1	luf to 200ut 20V	AC176 only	
	K: $40 \times 1 \mathrm{~N} 148 \mathrm{fl} \mathrm{I}^{*}$	35 V of 50 of	BC182. 3. 4 A or L	- 10p
ISPLAYS $6^{\prime \prime} 01747 / 20^{\circ}$	M: $4 \times$ pair 2A NPN/PNP f 1	SET 3: Electrolytits	8C212.3. 4 A or L	11p
$0.3^{\prime \prime} 01704 \&^{4} 707 / 259{ }^{\text {P }}$	PAK N: $50 \times 0481 / 91$ ¢1	25V 10ea 1/2/7/10	2N3055 90W	${ }^{\text {P* }}$
DALO PCB Pen $65 \mathrm{p}^{*}$	PAK P: $20 \times$ P/BC109 f 1	47/100/220/500/1000u	2N3055 115W T03	
JaCKSON TUNER	PAKR: $14 \times$ EC $107 \mathrm{f1}$	SET 4: 3 Want 5\% CF	2 N 3819 FeT	¢
0.370 pl only	PAK S: $14 \times 8 \mathrm{Cl} 108 \mathrm{f1}{ }^{\text {c }}$	Hesistors 10 each 10Ω	ORP12	
TUNER MODUS	T: $10 \times 8 \mathrm{Cl} 131$ type		7418 pin 555 times	${ }^{*}$
AM/FMVHF with	- 4×555 timer f ¢ ${ }^{\circ}$	5 each 20 valyes 3 V	2 N 414 RX	75
Toko Fet head \quad ¢	2: $20 \times$ PNP 3702 type $£ 1$	1033 volts (100 oft) f5	LM380 am	75p
VERD StDCKED less 10\%	V: $4 \times$ LM301/14P $\mathrm{fl}^{\text {c }}$	SET 6: Presets PR	LM3900	69p
DIL SDCKETS	$\mathrm{U}: 4 \times 1 \mathrm{~A} 50 \mathrm{~V}$ SCR £1	VERT 100 mixed	CMOS 4011	5p
$\begin{aligned} & 8 \text { pin } 12 \mathrm{p} \text { 14 or } 1615 \mathrm{p} \\ & \text { PP } 3 \text { bantery clips } \\ & 10 \end{aligned}$	NEW PAK D: $50 \times 220 \mathrm{mfd}$			
	. 3 V eleciroiptes	TV4, smali $03{ }^{\text {¢ }}$		

EVERYBODY'S DOING IT!

Doing what? Sending for the latest Home Radio Catalogue. It's the most comprehensive components catalogue you can get. 128 pages, about 2.500 items listed, and profusely illustrated. Now only $£ 1.00$, with a free bargain list. Send your cheque or postal order now.

Home Radio Components
Dept. PE, 234 London
Road,
Mitcham, Surrey CR4 3HD

HY5

Preamplifier

The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner, etc.) are catered for internally. the desired function is achieved either by a multi-way switch or direct connection to the appropiate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.
FEATURES: complete pre-amplifier in single pack: multi-function equalisation. low noise. Iow distortion: high overload. two simply combined for stereo.
APPLICATIONS: hi-fi, mixers. disco: guitar and organ public address.
SPECIFICATION: Inputs-magnetic pick-up 3 mV . ceramic pick-up 30 mV : tuner 100 mV . microphone 10 mV . auxifiary $3-100 \mathrm{mV}$. input impedance $47 \mathrm{k} \Omega$ at 1 kHz . Outputs-tape 100 mV . main output 500 mV R.M.S. Active Tone Controls-treble $\pm 12 \mathrm{~dB}$ at 10 kHz . bass $\pm 12 \mathrm{~dB}$ at 100 Hz . Distortion -01% at 1 kHz . signal/noise ratio 68 dB . Overload- 38 dB on magnetic pick-up Supply Voltage- $\pm 16-50 \mathrm{~V}$ Price $£ 6.27+78 p$ VAT. P. \& P. free HY5 mounting board B.1. $48 p+6 p$ VAT. P. \& P. free
The HY30 is an exciting New kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of: I.C.. heatsink, P.C. board, 4 resistors. 6 capacitors, mounting kit. together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up to date technology available.
FEATURES: complete kit. low distortion. short. open and thermal protection. easy to build
FEATURES: complete kit. Iow distortion. short. open and thermal protection, easy a o buid APPLICATIONS: upating audio equipment. guitar practice ampiner. test amplifier; audic oscitator 500 mV . Frequency Response $-10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
Price $\mathbf{5 6 . 2 7 + 7 8 p \text { VAT. P. \& P. free }}$
The HY50 leads I.L.P.s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World. FEATURES: low distortion, integral heatsink, only five connections. 7 amp output transistors. no external components.
APPLICATIONS: medium power hi-fi systems. low power disco. guitar amplifier
SPECIFICATION: Input Sensitivity- 500 mV Output Power-25W R.M S into 8 L Load Impedance-$4-16 \Omega$. Distortion- 0.04% at 25 W at 1 kHz . Signali Noise Ratio- 75 dB . Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage $- \pm 25 \mathrm{~V}$ Size- $105 \times 50 \times 25 \mathrm{~mm}$
Price £8.18 + £1.02 VAT. P. \& P. free
The HY120 is the baby of I.L.P. s new high power range, designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: very low distortion. integral heatsink. laad line protection thermal protection five connections, no external components
APPLICATIONS: hi-fi, high quality disco. public address. monitor amplifier. guitar and organ
SPECIFICATION: Input Sensitivity- 500 mV . Output Power- 60 W R.M.S. into 8Ω Load Impedance-4-16ת. Distortion- 0.04% at 60 W at 1 kHz Signal/Noise Ratio-90dB Frequency Response- $10 \mathrm{~Hz}-$ $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage -35 V . Size $-114 \times 50 \times 85 \mathrm{~mm}$
Price £19.01 + £1.52 VAT. P. \& P. free
The HY200 (now improved to give an output of 120 watts) has been designed to stand the most rugged conditions such as disco or group while still retaining true hi-fi performance.
FEATURES: thermal shutdown very low distortion. load line protection, integral heatsink. no external components
APPLICATIONS: hi-fi, disco, monitor, power slave, industrial. public address.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power-120W R.M.S. into 8 R Load Impedance416Ω. Distortion-0 05% at 100 W at 1 kHz . Signal/Noise Ratio- 96 dB Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage- $\pm 45 \mathrm{~V}$. Size $-114 \times 50 \times 85 \mathrm{~mm}$.
Price £27.99 + £2.24 VAT. P. \& P. free
The HY400 is I.L.P.s Big Daddy of the range producing 240 W into 4Ω ' it has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: thermal shutdown, very low distortion. load line protection no external components FEATURES: thermal shutdown, very low distortion. load line pr
APPLICATIONS: public address, disco. power slave. Industrial
APPLICATIONS: public address. disco. power slave. Industrial
SPECIFICATION: Output Power-240W R.M.S. Into 4Ω. Load Impedance-4-16 Distortion-0 1% SPECIFICATION: Output Power-240W R.M.S. Into 4Ω. Load impedance-4-16 Ω Distortion-0 1%
at 240 W at t kHz Signal/Noise Ratio- 94 aB . Frequency Response- $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{aB}$ Supply Voltage at 240 W at 1 kHz Signal/Noise Ratio- 94 dB . Frequency Respo Price £38.61 + £3.09 VAT. P. \& P. free
POWER SUPPLIES: PSU36-suitable for two HY30s $£ 6.44$ + $81 p$ VAT. P. \& P. free. PSU50-suitable for two HY50s $£ 8.18+£ 1.02$ VAT. P. \& P. free. PSU70-suitable for two HY120s $£ 14.58+£ 1.17$ VAT. P. \& P. free. PSU90-suitable for one HY200 £15.19 + £1-21 VAT. P. \& P. free. PSU180-suitable for two HY200s or one HY400 £25.42 + £2.03. VAT. P. \& P. free.
Free post + packing applicable to U.K. only.

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

> I.L.P. Electronics Ltd. Crossland House, Nackington, Canterbury Kent CT4 7AD
> Tel (0227) 63218

Total Purchase price
I Enclose: Cheque \square Postal Orders \square Money Order \square Please debit my Access account \square Barclaycard account \square
Account number
Name and Address

GODDARD'S COMPONENTS	Callers Welcome MON-SAT: 9.30-5.30 THURS: Closed all day Lunch: MON-FRI: 1.30-2.30, SAT: $1.00-2.00$	
	HIT-BOX ${ }_{\text {gamasmas man }}$	
\pm		
$5.75+$ ¢1.25 prp	\%omo emo	
DIGITAL CLOCK	LCD WA	TCHES
	£14.95	£16.95
2ava	214.95	AReE EENTS
Stamm	£11.95	¢9.9
£4.95 5 50p p\&p		

SINCLAIR PRODUCTS*
Microvision TV now in stock $£ 200$. PDM35 digital multimeter £25-95. mains adaptor £3-24. deluxe padded case £3-25. new programmable calculator $\ddagger \mathbf{i} 3-15$. prog. hibrary £2-95. mains adaptor E3-20.
S-DECS AND T-DECS*
S-Dec f3-39. T-Dec E4-44. u-DeCA E4-52. u-DeCB f6-73. 16 dil or 10 TO5 adaptors with sockets $\mathrm{E} 2-14$
CONTINENTAL SPECIALITIES
EXP300 E6-21. EXP 350 £3-40. EXP600 €6-80. EXP650 £3-89. EXP48 £2-48. P86 f9-94. P8100 E12-74. LM1 E30-99. LP1 f33-48. LP2 E 19-44.
TV GAMES
Send sae for free data. new racing car tv games chip AY-3-8603 plus economy kit 20-60. tank battle chip AY-3-8710 plus economy kit $£ 13-95$. stunt motor cycle chip
AY-3-8760-1 plus economy kit $£ 12-50$. 10 game paddle 2 chip AY-3-8600 plus economy kit $£ 14-70$. AY-3-8500 chip plus economy kit £8-95. modified shoot kit £450. attractively cased assembled tv games: 4 game models |tennis, football, squash and pelotal:- black and white f11-95. colour ¢14-50. deluxe 6 game black and white model with pista t.3-10

MAINS TRANSFORMERS
 60. 12-0-12V 50 ma 79 p . 100 ma . 2 a f. ¢2-49. 13 V 交a 95 p . 15-0-15V 1a E2-79. 30-0-30V 1 a
JC12, JC20 AND JC40 AMPLIFIERS A range of integrated circuit audio amplifiers supplied with free data and printed circuits. JC12 6 watts £1-60. JC20 10 watts £2-95 JC40 20 watts $£ 4-20$. Send sae for free dat on our range of matching power and preamp
kits.

FERRANTI ZN414
C radio chip $\mathrm{C} 1-05$. extra parts and pcb for Send sae for free data. PRINTED CIRCUIT MATERIALS PC etching kits:- economy f $1-70$, standard etch resist pens:- economy 45 Fecl f $1-05$ etch resist pens:-
small drill bits $1 / 32$ ins or 1 mm
20 p each etching dish 68p. laminate cutter 75 p .

BATTERY ELIMINATOR BARGAINS fv games power unit stabilized 7.7 V 100 ma £3-10. 3-way models with switched output and 4 -way multi-jack:- $3 / 4 \frac{1}{1 / 6 V} 100 \mathrm{ma} \mathrm{E} 2$ 92. $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ 300ma $\mathrm{f} 3-30$. 100 ma radio moses stud connectors. 9 V £2-85. 6 V £2-85. $41 V \in 2-85.9 V+9 V E 4-50.6 V+6 V E 4-50$. $4 \frac{2}{2} V+4 \frac{1}{V} \mathrm{f} 4-50$. cassette recorder mains unit $7 \frac{1}{2} V 100 \mathrm{ma}$ with 5 pin din plug $\mathrm{E} 2-85$ car convertors 12 V dc input. output 9 V
300 ma £ $1-50$. output $7 \frac{1}{2} \mathrm{~V} 300 \mathrm{ma}$ £ $1-50$ BATTERY ELIMINATOR KITS
Send sae for free leaflet on range. 100 ma radio types with press stud connectors. $4 \frac{1}{2} \mathrm{~V}$
 $\begin{array}{lll}50 . & 6+6 \mathrm{~V} & £ 2.50 . \\ \text { type } 7+9 \mathrm{~V} & \mathrm{E} 2-5 \mathrm{O} \text {. casserte }\end{array}$ type 7iv 100 ma with din plug $\mathrm{f} 1-80$. $13 / 14 / 17 / 21 / 25 / 28 / 34 / 42 \mathrm{~V}$. 1 Amp E 4 -65. 6 . 2 Amp f7-25. transistor stabilized 8 -way types for low hum $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{\frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{~V}}$ 100 ma £3-20. 1 Amp $£ 6-40$. variable voltage stabilized models. $2-18 \mathrm{~V}$ 100ma
f.3-60. $2-30 \mathrm{~V}$ 1A $£ 6-95.2-30 \mathrm{~V} 2 \mathrm{~A}$ € $10-95$ car convertors 12 V di input. output 9 V $300 \mathrm{ma} \mathrm{E} 1-50$. output $7 \frac{1}{2} \mathrm{~V} 300 \mathrm{~ms}$ £ $1-50$. BI-PAK AUDIO MODULES
Send sae for data. S450 tuner £23-51. AL60
 £20-12 5-95. MK60 £38-74. stereo 30 BULK B
BULK BUY OFFERS
Minimum purchase $£ 3$ any mix from this
section. IN 4148 1.3p. 1 N4002 3.6 p . 8 CC 12
8 p .7418 dil 15 p . NE 5558 dil 29 p .72314 dil 43p. dil 5p. NE555 8 dil 29p. 72314 equiv of SN76023N 59 p . AC76023N exact 79 p . plastic equivs of popular transistors:8 CY 7 3.8p, BC109 4.4p, 8CY71 4.7p. ${ }_{25} \mathrm{CY}^{2} 724.4$ p. fuses $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ cartridge $.25, .5,1,2,3.5$ Amp. quickblow type 0.7 p . antisurge type 3.4 . resistors 5% E12 10
ohm to 10 M . $\mathrm{WW} 0.8 \mathrm{p} .1 \mathrm{~W} 1.9 \%$ polyett ohm to 10 M . 1 W .0 .8 p . 1 W 1.9 p polyester
capacitors 250 V . $01, .022, .033, .047 \mathrm{mf}$ $2.7 \mathrm{p} .015 \mathrm{mf} 1.1 \mathrm{p}, .068 \mathrm{mf} 1.4 \mathrm{p}, 0.1 \mathrm{mf} 1.5 \mathrm{p}$. $0.22 \mathrm{mf} 3 \mathrm{p}, \quad 0.33 \mathrm{mf} 2.5 \mathrm{p}, 4 \mathrm{p} .47 \mathrm{mf} 4.8 \mathrm{p}$. polystyreno capacitors E12 63 V 15 to 6800 pf 2 lp. ceramic capacitors 50 V E12
 $47,1,2 \mathrm{mf} 5 \mathrm{p}$. 25 V 5 mf 5 p . 10 mf 4 p .16 V $22 \mathrm{mff} 5 \mathrm{p} .33 .47,100 \mathrm{mf} 6 \mathrm{p} .220,330 \mathrm{mf} 9 \mathrm{p}$. 470 mf 1 $1 \mathrm{p} .1000 \mathrm{mf} 8 \frac{1}{2} \mathrm{p}$. zeners 400 mW E24 2 V 7 to 33 V 5.5 p . preset pots sub
miniature 0.1 W horiz or vert 100 to 4 M 7 6.8 p . potentiometers 1 W W 4 K 7 to 2 M 2 log or lin. single 26 p . dual 7 Fp .

SWANLEY ELECTRONICS
 \section*{DEPT, PE, 32 Goldsel Rd., Swanley, Kent BR8 8 TQ.}

Mail order only. Please add 30 p to tine total cost of order for postage. Prices include VAT. Overseas customers deduct 7% on items marked "and 11% on others. Official credit orders welcome.

HAVE YOU DONE IT LATELY!

Full Catalog ue 25p
20p P\&P with order
B24-RP stereo cassette glass/ferrite record/playback f9.84
B12-01 mono cass. playbk. $£ 1.60$ B24-01 stereo cass, playbk. $£ 2.80$ A28-06 stereo 8tk cartridge £1.80 E12-09 stereo/mono cass. erase £1.80

5/7 Church St, Crewkerne, Som. Tel. (0460) 74321

Clef Products

P.E.JOANNA \&
'STRING ENSEMBLE'

Send S.A.E. for details of Kits \& P.C.B.s Please indicate which instrument required.

16 Mayfield Road, Bramhall, Cheshire SK7 1JU

2N696	0.39	2N2219	0.38	2N3397	0.19	2N4062	020	2N5247	0.44	40410	0.02					8 C 2148	0.17	8 C 5	14	80244A		BF1	0.3	BFX8	37	M	0.50
2N697	0.31	2N2219A	0.39	2N3438	0.85	2N4084	1.35	2N5248	0.44	40411	3.10					8 C 214 C	0.17	BC549C	0.15	80244C	0.87	BF183	0.44	${ }_{\text {BFY }}$	0.27	MUE521	0.70
2N698	0.49	2N2220	0.39	2N3440	0.75	2N4074	2.65	2N5294	0.44	40594	0.87	BC1	0.13	BC1828	0.1	BC2141	0.18	BC557	0.14	BC245A	0.69	8F184	0.41	BFY51	0.27	MJE2955	1.85
2N699	0.58	2N2221	0.25	2N3441	0.92	2N4121	0.27	2N5295	0.44	40595	0.98	BC147B	0.13	BC182L	0.15	BC214L8	0.18	8C558	0.13	B0245C	0.85	BF185	0.37	BFY52	0.27	MPF3055	1.05
2N706	0.30	2N2221A	0.25	2N3442	1.45	2N4122	0.27	2N5296	0.44	40673	0.80	BC148	0.13	BC182LA	0.15	BC214LC	0.18	BC559	0.15	BD246A	0.72	BF194	0.16	BFY90	1.35	MPF102	0.33
2N706A	0.30	2N2222	0.25	2N3638	0.17	2N4123	0.19	2N5298	0.44	40869	1.30	8C1488	0.13	BC182LB	0.15	BC2378	0.15	8 BCY 70	0.21	B0248C	0.93	BF195	0.16	BR101	0.55	MPF 103	0.44
2N708	0.30	2N2222A	0.25	2N3638A	0.17	2N4124	0.19	2N5447	0.16	AC126	0.48	BC148C	0.13	${ }^{\text {BCI }} 183$	0.12	BC238A	0.13	BCY71	0.26	B0433	0.44	BFF96	0.16	8RY39	0.55	MPF 104	0.44
2N718	0.30	2N2369	0.27	2N3702	0.14	2N4125	0.19	2N5448	0.16	AC127	0.48	8C149	0.15	BC183A	0.12	BC238日	0.13	BCY 12	0.18	B0434	0.46	8F197	0.18	BSx 19	0.35	MPS105	0.44
2N718A	0.54	2N2369A	0.27	2N3703	0.14	2N4128	0.19	2N5449	0.20	AC128	0.48	BC149C	0.15	BC1838	0.13	BC238C	0.13	B0115	0.88	80435	046	BF198	0.19	BS $\times 20$	0.35	MPSA05	0.27
2N720A	0.85	2N2646	0.80	2N3704	0.14	2N4284	0.38	2N5457	0.38	AC151	0.43	BC157A	0.15	BC183C	0.13	8C2398	0.15	BD131	0.55	80436	0.46	8 FF 99	0.19	BSX21	0.35	MPSA06	0.27
2N722	0.45	2N2647	1.55	2N3705	0.14	2N4288	0.22	2N5458	0.35	AC152	0.54	BC158A	0.15	BC183L	0.15	BC239C	0.17	B0132	0.75	B0437	0.55	8 F 224 J	0.22	BU104	1.80	MPSA12	0.4
2N727	0.50	2N2903	1.60	2N3706	0.14	2N4287	0.22	2N5459	0.32	AC153	0.59	BC1588	0.15	BC1831A	0.15	BC257A	0.18	BD135	0.40	B0438	0.55	8F225J	0.27	BU105	1.55	MPSA14	0.33
2NS14	0.38	2N2904	0.31	2N3707	0.14	2N4288	0.22	2N5480	0.65	AC153K	0.59	BC159A	0.17	BC183L8	0.15	BC258B	0.19	BD138	0.40	B0529	0.49	8F244A	0.38	8U126	1.08	MPSA55	0.27
2 N916	0.33	2N2904A	0.31	2N3708	0.12	2N4289	0.22	2N5484	0.37	AC178K	0.70	BC1598	0.17	8C183LC	0.15	BC2598	0.19	BD137	0.41	80530	0.55	BF2448	0.33	BU204	2.20	MPSA58	0.27
$2 \mathrm{NS17}$	0.38	2N2905	0.31	2N3709	0.12	2 N 4347	2.20	$2 N 5485$	0.40	AC176	0.54	8C160	0.38	$8 \mathrm{BC1} 184$	0.12	BC300	0.43	80138	0.41	B0535	0.70	8F245A	0.44	8U205	2.40	f2008B	2.45
2 N 918	0.45	2N2905A	0.31	2N3771	2.16	2 N 4348	2.65	2N5486	0.40	AC187	0.59	BC161	0.38	BC184B	0.13	BC301	0.43	80139	0.43	80538	0.70	BF245	0.44	BU206	2.70	R20108	2.15
2 N 929	0.37	2N2906	0.25	2N3772	2.20	2N4918	0.65	2N5490	0.64	AC187K	0.65	BC167	0.13	8C184ᄃ	0.13	BC302	0.37	BD140	043	80537	0.74	8 F 257	0.35	BU208	2.70	TiP29A	0.49
2N929A	0.37	2N2906A	0.25	2N3773	3.15	2N4919	0.70	$2 N 5492$	0.64	AC188	0.54	BC187B	0.13	BC184L	0.15	8C303	0.54	B0181	1.90	${ }^{80538}$	0.77	8F258	0.35	ME0401	0.22	TIP29C	0.65
2 N 930	0.37	2N2907	0.25	2N3819	0.36	2 N 4920	0.83	2 25494	0.65	AC188K	0.65	BC168A	0.13	BC184LB	0.15	BC307	0.16	${ }^{\text {B01 }} 82$	2.20	BD539	0.60	8F259	0.35	ME0402	0.22	TIP30A	0.54
2 N 930 A	0.95	2N2907A	0.25	2N3820	0.39	2 N 4921	0.54	2N5496	0.67	AD161	1.00	BC168B	0.13	BC184LC	0.15	8С307A	0.16	80183	2.35	B0540	0.60	8F336	0.42	ME0404	0.17	TIP39C	0.70
2 N 1711	0.30	2N2923	0.17	2N3821	0.98	2N4922	0.60	2N6027	0.64	AD162	1.00	BC168C	0.13	8C212	0.15	8C30.78	0.16	80187	0.95	BDx14	1.32	BF337	0.49	ME0412	0.22	TIP31A	0.54
2N1889	0.30	2N2924	0.17	2N3900	0.28	2 N 4923	0.75	2 N 6107	0.45	AF106	0.60	8C1598	0.13	BC212A	0.15	BC308	0.16	80235	0.46	B0x18	1.90	BF338	0.52	ME0414	0.22	TIP3iC	0.72
2N1890	0.30	2N2925	0.19	2N3901	0.30	2N4924	1.15	2N6108	0.55	AF109	0.52	BC169C	0.13	BC2128	0.15	8С308B	0.16	80236	0.44	BDY20	1.10	8FR39	0.30	ME4001	0.16	TIP32A	0.59
2N1893	0.30	2N2926	0.17	2N3903	0.20	2N5086	0.36	2N6109	0.55	BC107	0.16	8 BC 177	0.22	BC212L	0.18	8C309a	0.16	80237	0.44	BDY55	1.90	BFP40	0.29	ME4002	0.16	TIP32C	0.82
2N2102	0.50	2N3053	0.25	2N3904	0.18	2N5087	0.30	2N8111	0.49	8C107A	0.16	8C177A	0.22	BC212LA	0.18	BC3098	0.16	80238	0.44	B0Y56	2.10	BFP41	0.30	ME4003	0.16	TIP41A	0.76
2 N 2192	0.58	2N3054	0.72	2N3905	0.18	2N5088	0.30	2 2N6121	0.41	${ }^{\text {BC1 }} 1078$	0.16	BC1778	0.25	BC212LB	0.18	8C3090	0.16	80239A	0.44	8F115	0.39	BFA79	0.30	ME4101	0.11	TIP416	0.97
2N2193	0.50	2 2N3055	5	2N3906	0.18	2N5089	0.30	2N6122	- 4	BC108	0.16	BC178	0.22	BC213	0.15	BC327	0.22	802396	0.59	BFi60	0.33	BFRBO	0.30	ME4102	0.11	TIP42A	0.86
2N2193A	0.52	2N3390	0.50	2 N 4031	0.55	2N5190	0.65	2N6123	0.48	BCidba	0.16	BC178A	'0.25	BC213A	0.15	BC328	0.20	B0240A	0.49	BF161	0.65	BFP8	0.30	ME4103	0.11	TIP42C	1.08
2N2194	0.42	2N3391	0.40	2 N 4032	0.65	2N5191	0.75	2N6124	0.45	8C1088	0.16	BC178B	0.35	BC213B	0.15	BC337	0.20	B0240C	0.59	BF167	0.37	BFX29	0.34	ME4104	0.11	TPP2955	0.70
2 N2194A	0.45	2N3391A	0.45	2 N 4036	0.72	2N5192	0.80	2N6125	0.47	日C108C	0.17	BC179	0.25	8C213C	0.15	${ }_{8 C 338}$	0.23	802414	0.49	8 F 173	0.37	BF×30	0.34	ME6101	0.22	T1P305	0.59
2N2195	0.40	2N3392	0.17	2N4037	0.60	2N5193	0.75	40361	0.55	BC109	0.16	BC179A	025	BC213L	0.17	BC547	0.13	B0241C	0.65	BF177	0.27	BEXB4	0.30	ME6102	0.22	TIS34	1.05
2N2195A	0.40	2N3393	0.17	2N4058	0.22	2N5194	0.80	40362	0.55	в 81098	0.17	BC1798	0.25	BC213LA	0.17	BC547A	0.13	B0242A	0.55	BF178	0.27	BFX85	0.38	MJ2955	1.35	TIS42	0.50
2N2217	0.55	2N3394	0.17	2N4059	0.17	2N5195	0.97	40363	1.45	BC109C	0.18	BC178C	0.26	8C213L8	0.17	BC5478	0.13	B0242C	0.62	BF179	0.33	BFX86	0.30	MJE340	0.62	TIS43	0.47
2N2218	0.35	2N3395	0.19	2N4060	0.22	2N5245	0.37	40408	0.82	BC140	0.30	BC182	0.12	BC213LC	0.17	BC548	0.13	80243A	0.65	BF180	0.37	BFX87	0.35	MJE370	0.62	TIS90	0.22
2N2218A	0.3	2N3	0.19	2N	0.19	2N	0.38	40	0.82	BC	0.32	BC182A	0.12	BC214	0.17	-	0.14	BD24	0.87	8F181	0.37	BFXB8	0.30	MJE371	0.8	TISS	0.27

LINEARCIRCUITS							
[A3018	0.75	LM379S	4.25	LM324	0.75	ta4930B	145
CA3018A	1.10	LM380N8	0.96	LM7815K	1.75	tad100	2.00
CA3020	220	LM380N14		LM7824K	1.75	teal20	0.80
CA3020A	2.50		1.08	LM78L05C		t8A500	224
CA3028A	0.90	LM381AN	2.70		0.30	T8A5000	234
CA30288	1.25	LM381N	1.69	LM78L12C		t8A510	235
CA3930	1.50	LM382N	1.32		0.30	TBA5100	2.48
CA30304	220	LM384N	1.55	LM78L15		TBA520	2.60
CA3038	2.90	LM386N	0.88		0.30	TBA5200	2.70
CA3038A	4.10	LM387N	1.10	MM5314	4.68	tBa530	2.35
CA3045	1.55	LM388N	1.00	MM5316	4.60	T8A5300	2.45
CA3046	0.71	LM389N	1.00	NE555	0.33	TBA540	2.60
CA3048	2.45	LM702C	0.81	NE556	0.85	TBA5400	2.70
CA3052	1.78	[M709	0.70	NE558N	198	tBA550	3.60
CA3080	0.85	[M7098	0.50	NE560	4.50	TBA5500	380
CA3080A	2.10	LM70914	0. 49	NE561	4.50	tBa56000	300
CA3086	0.50	LM710	0.67	NE562	4.50	tBA570	2.10
CA3088B	1.87	LM71014	0.64	NE565	1.39	T845700	220
CA30898	2.90	LM711CN	0.72	NE586	1.75	TBA7000	2.20
CA30900	4.40	IM723C	0.75	NE567	1.90	TBA720A0	2.06
CA3130	1.06	LM723C14	0.45	NE571N	4.95	T84750	2.36
CA3140	1.04	LM728	5.80	SAS560	2.70	TBA7500	2.45
LM301	0.30	LM741C	0.70	SAS570	2.70	tBa800	1.30
LM307N	0.50	LM741C8	0.30	SAJIto	2.10	tBa810S	130
LM308N	0.95	LM741C14	1.30	S041P	135	tra820	080
LM309kC	1.95	LM747CN	0.99	S042P	1.35	TBA920	299
LM317k	3.35	[M7488	0.50	SNT6001N		TCA160C	2.36
LM318N	2.45	LM74814	0.90		1.30	TCA1808	2.55
im320TS	2.15	LM1303N	1.15	SN76003N		tca270	299
LM320T12	2.15	LM1304N	¢. 52		2.38	TCA730	4.50
LM320T15	2.15	LM1305N	1.52	SN76013N		TCA740	4.50
LM320T24	2.15	LM1307N	1.22		1.50	tca750	3.00
(M320P5	1.15	LM1310N	2.10	SN76023N		TCA760	2.00
LM320P12	1.15	LM1351N	1.30		1.50	TCA105	1.49
(M320P15	1.15	LM1458N	0.45	SN76033N		Tca440	1.65
LM320P24	1.15	LMI496N	0.97		2.35	T0A1022	750
LM323K	6.95	LM1808N	2.10	TAA263	1.35	DA1024	124
LM339N	0.60	[M1812N	6.20	tal300	3.70	TDA1034	4.75
LM340T5	0.88	LM1820N	1.16	ta43204	1.15	toazo20ad	
LM340T15	0.88	LM1828N	1.90	taA350A	3.00		4.50
LM340T24	0.88	LMIP30N	1.90	TAA521	1.10	UA4170	2.15
LM341P5	0.80	LM1841N	1.90	IAA522	2.10	UAA1B0	2.15
LM341P12	0.80	LM1845N	150	tas550	0.48	TL080CP	125
LM341P15	0.80	LM1848N	1.98	ta4560	2.10	T.081CP	0.90
LM341P24	0.80	LM1850N	1.90	TAA570	2.20	TLOB2CP	1.10
LM348N	0.95	LM1889N	4.90	ta4370A	5.45	T083CN	1.40
LM358N	0.60	(M3301N	0.60	tAA630	2.40	TLOB4CN	1.45
LM360N	3.00	LM3302N	0.55	TAA960	3.90	L-355N	0.80
[M370N	3.30	LM3401N	0.55	TA4970	4.20	$1 F 356 \mathrm{~N}$	0.80
LM371H	235	LM3300N	0.68	TA46118	2.50	LF357N	. 80
LM350K	6.45	LM3905N	1.15	TAA621	2.50	LF13201N	3.00
LM373N	3.35	LM3909N	0.78	TAA661A	165	F13331N	
LM374N	3.36	LM3911N	1.10	TA4661B	1.45	tF1374ith	
[M37)N	180	LM7805k	1.75	tasjon	4.50	LF13741N	0.55
LM378N	2.40	LM7812K	1.7	TAA930A	1.45		

NEW 1978

 CATALOGUE - 40 PAGE CATALOGUE New enlarged micro section -largest range of quality components
from franchised suppliers avaliable in UK. All VAT inclusive prices.
Over 8,000 line items plus Over 8,000 line items plus lots
more. 45 p post paid, 35 p to callers

DIL SKTS

FULLRANGEOF
$\begin{array}{ll}\text { Capacitors } & \text { Diodes } \\ \text { Resistors } & \text { Cables } \\ \text { Plugs/skts } & \text { Cases }\end{array}$ $\begin{array}{ll}\text { Plugsiskis } & \text { Cables } \\ \text { Moters } & \text { in our new } \\ \text { Clocks } & \end{array}$ at any of our four branches. ORDER The new CRT control chip trom Thomson CSF SFF96364. Convert your TV set into an electronic tele-
type -16 lines $\times 64$ characters - requires RAM, type -16 lines $\times 64$ characters
character generator and littie else for control, 5 volts TTL compatible, line control, 5 volts TTL compatible, line
erase, full card includes UART,
Modem, char, gen etc., comp video

NEWW
fult cart 1551.00 full card \&151.00
$3 \frac{1}{2}$ DIGIT PANEL METER KIT Tige. LCD display.
Contains all components
reqd for constration reqd for construction
plus PCB. Auto vero plus PCB. Auto vero
extremely versatile and accurate
assembly kit. £26.99

TTL \& CMOS

NEW LOW PRICES

WE STOCK MORE

NATIONAL	VERO
TEXAS	ANTEX
MULLARD	ELECTROLUBE
SIEMENS	SIFAM
SESCOSEM	ARROW HART
MAKES COM	TS BUYING EASY

NEW FROM CASIO

NEW

CLOCK PLUS ALARM/TIMERS Two AA batteries last for $10,000 \mathrm{hrs}$ (1 year) LCD 6 digit clock large angled display. 24 hr Alarm, also two 24 hr Alarm/timers with countdown lone selfclearing, one repeats Full Memory Constants,
$\%, \sqrt{ } .15 \times 2 \frac{3}{9} \times 5 \mathrm{in}$.
RRP £22.95 £17.95

FX-48 SCIENTIFIC MINICARD
Full scientific with 2 level parenthesis. Grad Sexagesima! Standard Deviations. 600 hrs battery life. RRP $£ 24.95$
f19.95
NEW
CALCULATING ALARM CLOCK MINI CARD

Available Aug./Sept. Similar size to FX-48. Similar specification to CQ-81 RRP $£ 24.95$. Our Price $£ 19.95$

CASIO QUALITY AND VALUE 31QR-17B Left. 8.4mm
£29.95
31QS-12B
Right. 7.7 mm
£39.95
Stopwatch,
Dual Time,
Water
All $5 / S$

310R-16B (Round face - not illustrated) Luxury version of 31 QR-17B. Only 7.45 mm thick. $£ 34.95$

SPORTS WATCHES
F-100 (left) 9.45 mm thick
£24.95
52QS-14B
f. 34.95

Net, Lap and ist \& 2nd Place times to $\frac{1}{100}$. Water Res. 66 f

38CS14B Chronograph $£ 49.95$

ALARM WATCHES. 25CR-16B (round) £ 49.95 $25 \mathrm{CS}-14 \mathrm{~B}$ (square) 559.95
WORLD TIME WATCH. 29CS-11B £59.95
SEIKO CalculatorNatch ($£ 165$) £135
CITIZEN Multi-Alarm (£ 135) £108
MAINS DIGITAL ALARM CLOCKS
Fairchild Timeband C500, Black or white $£ 9.95$ CASIO CALCULATORS
ST-1 Stopwatch (four way) $£ 24.95$
LCD LC822 $£ 10.95$. LC78 $£ 16.95$
AQ-1000 Clock, alarm, stopwatch $£ 21.95$
CASIO SCIENTIFICS
DIGITRON: FX- 31 £ 11.95 . FX- $39 £ 15.95$ FX-140 £17.95. FX-120 £19.95. FX-360 £49.95 Send 25p for our illustrated catalogue. Prices include VAT and P \& P P.
Send cheque, P.O. or phone your credit card no. to:-
•

FOR YOUR GUIDANCE VALUE ADDED TAX

Unless otherwise shown, all prices in advertisements are inclusive of VAT. Where prices are exclusive, readers should ensure that they have added the correct amount of VAT before ordering.

Export orders are not subject to the addition of Value Added Tax.

Communications of the first kind.

Every copy of Electronics Weekly is a
close encounter with two worlds - the telecommunications and the electronics industry.
A quality subscription newspaper, Electronics Weekly is specifically designed to provide you with a full briefing on every factor important to senior management decisions.
Competitor activities . . . prices . . . new products . . takeovers . . government plans, legal and financial . . . export
opportunities . . . stock exchange developments . . . future trends . Electronics Weekly reports in depth on all these areas, giving you a regular insight into where both industries are heading and what your competitors are doing. 52% of its readers are in financial or general management - which makes Electronics Weekly not only essential reading for you, but the natural medium for launching new products and selling overseas through our European edition.

For a specimen copy, and advertisement rates contact: Brian Moloney on 01-261 8000 or write to him at the address below.

Electronics Weakly
 communicates the facts

Published by IPC Electrical/Electronic Press Lid. Dorset House, Stamford Street, London SE1 9LU A member of IPC Butsiness Press Lid.

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatchi,g orders with the minimum of delay.

RECEIVERS AND COMPONENTS

SPECIAL OFFERS.	
Buy NOW while siocks last. PRICES INCLUDE V.A.T.	
$\begin{aligned} & \text { 2N3055 } \\ & \text { TIP31 or TIP32 } \\ & \text { TIP41 or TIP42 } \end{aligned}$	$\begin{aligned} & \text { 33p each } \\ & \text { 39p each } \\ & \text { 39p each } \end{aligned}$
0.022uF Polyester 0.033 uF Polyester	3p eoch 6p each
22uF 450 V Electrolytic 47UF 25 V Electrolytic 150 uF 16 V Electrolytic 680uF 16V Electrolytic	19p each $5 p$ each 5p each 12peoch
Red LED's (5 mm)	10 for £1.00
ALL COMPONENTS ARE 8 RAND NEW AND GUARANTEED ONLY AVAILABLE AT THESE PRICES WHILE STOCKS LAST	
Please add $15 p$ for BARCLAYC FRA 26 HERVEY	Catalogue. ble. $12 \mathrm{ES} .$

ASSORTED SMALL JAPANESE IF. Transformers 20 for $£ 1.25$, Assorted Nuts, Bolts, Washers, Eyelets Self Tappping Self cutting screws a real bargain 1 lb weight $£ 1.75$. Assorted Ceramic Capacitors 100 for $£ 1.00$, Assorted Polystyrene Capacitors 100 for $£ 1.50$, Assorted Polyeste Capacitors 100 for $\mathbf{2 . 0 0}$, Assorted Carbon and Carbon Film Resistors 100 tor $£ 1.00$, Assorted Wire-Wound Resistors 100 for $\mathbf{\$ 2 . 0 0}$, Assorted Transistors/Zeners Diodes all marked 100 for $£ 2.00$. Mullard Modules LP 1152 £ $1.00 ;$ LP 1153 £4.00; LP 1165 £4.00; LP 1166 £4.00; LP 1169 £4.00; LP1173 £4.00; LP 1181 £4.00. All above prices include VAT \& Postage. T. Powell, 306 St. Paul's Road, London N. 1. Telephone 01-226 1489.
PCBs Paxolin $10 \frac{1}{1 \prime \prime} \times 4 \frac{3^{n}}{4^{n}} 4-\mathrm{f1}$.25. $12^{\prime \prime} \times 9^{\prime \prime} 70 \mathrm{p}$.
$17 \frac{1^{\prime \prime}}{} \times 9 \frac{1^{n}}{}{ }^{\prime \prime} £ 1.15$. Fibre Glass Double Sided $13^{\prime \prime} \times 6^{\prime \prime}$
£1.30. $12^{\prime \prime} \times 10 \frac{1}{2}^{\prime \prime}$ £2.10. Unit with 8 Silicon Diodes
600 V 20 amp. 8 SCRs 400 V 16 amp. 6 Vinkors w.w.
resistors etc. £8.75. 300 Small Components Trans.
Diodes £1.30. 7lbs. Assorted Components £2.95.
List 15p Refundable. Post 2Op under f 1 . Insurance add 15 p.
J.W.B. RADIO
2 Barnfield Crescent. Sale, Cheshire M33 1NL

Valves. Radio - T.V. - Industrial - Transmitting and Projector Lamps. We dispatch Valves to all parts of the world by return of post, Air or Sea mail, 4000 Types in stock, 1930 to 1976. Ohsolete types a speciality. List 20 p . to 5.00 closed Wednesday 1.00 . We wish to purchase all types of new and boxed Valves, Projector Lamps and Semiconductors. COX RADIO (SUSSEX) LTD., Dept. P.W. The Parade, East Wittering, Sussex, PO20 8BN, West Wittering 2023 (STD Code) 024366.

SMALL ADS

The prepaid rate for classified advertisements is 18 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 6.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertismement Manager, Practical Electronics, Room 2337: IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertise ment rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it on intringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is taken. the Publishers shall not be liable for clerical or printers errors or their consequences.

RECEIVERS AND COMPONENTS

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO., 103 South Brink, Wisbech, Cambs, 0945-4188. Immediate settlement.

BRAND NEW COMPONENTS BY RETURN $1000 / 15 \mathrm{~V}-15 \mathrm{p} .1000 / 25 \mathrm{~V}-18 \mathrm{p}$. $1000 / 50 \mathrm{~V}-22 \mathrm{p}$.
Mullard Miniature Ceramic E12 Series 63V 2\%. 10 pf . to 47 pf .-3p. 56 pf . to 330 pf . 4 p .
Vertical Mounting Ceramic Plate Caps. 50 V . E12 22 pf.- 1000 pf. E6 1500 pf.- 47000 pf.-2p.
Polyatyrene E12 Series 63V. Hor. Mounting. 10 pf. to 1000 pf. -3 p .1200 pf . to 10000 pf -4 p .
Mullard Polyaster 250 V Vert. Mig. E6 Series.
1N4 148-3p. 1N4002-5p, 1N4006-7p. 1N4007-8p.
BC107/8/9, BC147/8/9. BC157/8/9, BF194 \& 7-9p.
20 mm . fuses $-15,-25,-5,1.0,2.0,3.0$ \& $5 \mathrm{FA}-3 \mathrm{p}$. $\begin{aligned} & \text { Printed } \\ & \text { Circuit }\end{aligned}$ Holders for 20 mm .
Post 10 p (free over £4). Prices VAT inclusive. THE C. R. SUPPLY CO. 127, Chesterfield Road, Sheffield S8 ORN

LED'S. Mixed hags of 4 different sizes and 4 different colours. 50 - $55.25,100$. $£ 9.25$ including VAT and post and packing. CWO. Michael Williams Electronics, 47 Vicarage Avenue, Cheadle Hulme, Cheshire. SK8 7JP.

LADDERS

Ladders, Varnished 25 fft . Extd. $\mathbf{\$ 3 4 . 5 6 .}$ Carr. $£ 2.70$. Leaflet. Callers welcome. Open Sat. Ladder Centre, (PEE4) Halesfield (1) Telford, Salop. Tel: 586644.

SERVICE SHEETS

bell's television services for Service Sheets on Radio, TV, etc. 75p plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel: (0423) 55885.

SERVICE SHEETS for Radio, Television, Tape Recorders, Steren etc. With free Fault-finding guide, from 50 p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

PROJECT SUPERSAVE WITH CODESPEED

Full Spec. Devices
 andom access memories in professional end amateur rectrarics. With full dita $E\{125$
PaCK M3 $1 \times$ MM5725 4 tunction Calculator Chip fot designed Tor use with Pack Mil. With data books. $£ 1.00$ style dispolay. With data. $£ 2$. 95 .
 style dieqlay, With datati. $\mathrm{E4} 425$

 drive LEO. LCD or thogrescent displays. With full instructions. F2.is PACK T4 1×0.8^{-8} gient red LED Clock Display. $3+$ digit with ampm indicator. An excollent display for your digitita clocit praject at
only
 matrixed signal diodes. Winh datal. 50 p .

Untested Packs

PACK D1 180\% Guarmonted Good $15 \times$ DTL Logic I.C. 8 . Mainly dual JK Milip flops. Repalaces those costly ML tlip flops in most proiectiz PACK D2 $25 \times$ SN7400 trop $1 . C: 100$ two Yp nand gates. We guarantes at leasy 50 good. A oinawawy at ont $£ 1.00$

LEO displays. Excellent valua. E1.00 Upper hall of a calculator cass with built in Kegroosrd. A Angip at onhy BOp the pair

Satisfaction guaranted or return complete pack for replacement or refund
mail order oniy - ho callers please Portupe men Pucting pheme odid 25

CODESPEED
P.O. Box 23, 34 Seafield Road Copnor, Portsmouth, Hants., PO3 5BJ

BOOKS AND PUBLICATIONS

SIMPLIFIED TV REPAIRS. Full repair instructions individual British sets £4.50, request free circuit diagram. 76 Ctamp brings details unique. T Publications, (AUSEPE) 76 Church Street, Larkhall, Lanarkshire.

THE END OF COMPUTER CONFUSION: what point have we reached - where are we going? Read Computer Lib/ Dream Machine by Ted Nelson. $£ 5.95$ from your Local Computer Store, or send $£ 6.45$ to Computer Bookshop Temple House (1), 43-48 New Street, Birmingham.

FOR SALE

NATIONAL SEMICONDUCTOR SC/MP development kit plus 4K RAM and 4K PROM. J. Harbour, Holdway House, Child Okeford, Blandford, Dorset. Tel: 025886701.

FOR SALE - Back issues of Practical Wireless, Television, Electronics, and Radio Constructor. Some complete years copies, 1959-1969. SAE with offers and enquiries to: Engineering, 261 Crofton Road, Orpington BR6 8JF

CHIPS 555 Timers 25p, 7418 pin 18p, P\&P 20p. Web Optonics Ltd., 3 Alhany Street, Edinburgh

SEEN MY CAT? 5000 Odds and ends. Mechanical Electrical. Cat free. Whiston, Dept. PRE, New Mills, Stockport.

200 electronic Magazines P.E. P.W. W.W. E.T.I. Back to 1964. Old advance signal generator. Video Game. R / C Car. Total $£ 70$. Telephone: 0909-78-3918.
"RUN YOUR OWN BUSINESS AS AN EXTRA HOME ACTIVITY. LARGE PROFITS. A GENUINE OPPORTUNITY TO SUCCESS." Full details on receipt of ton, Manchester 20

NEW BACK ISSUES of "PRACTICAL ELECTRONICS" available 65p each Post Free, Open P.O./Cheque returned if not in stock - Bell's Television Services, 190 Kings Road Harrogate, N. Yorks. Tel: (0423) 55885.

ELECTRICAL

STYLI - illustrated equivalents (List 28) also cartridges leads, etc. Superb quality and service at lowest prices: ELECTRONICS (PE), Longley Lane, Gatley, Cheadle Cheshire SK8 4EE.

EDUCATIONAL

TELEVISION TRAINING

15 MONTHS full-time course for beginners to include all the undermentioned subjects. Short courses, combining one or more subjects, for applicants with previous electronics knowledge.
13 WEEKS ELECTRONICS AND RADIO 13 WEEKS MONOCHROME TELEVISION 13 WEEKS COLOUR TELEVISION 13 WEEKS CLOSED CIRCUIT TV AND VCR
The training incorporates a high percentage of practical work.
NEXT SESSION starts on September 11 th Prospectus from:
LONDON ELECTRONICS COLLEGE,
DEPT A9 20 Penywern Road, London SW5 9SU.
Tel: 01-373 8721.

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 272 Intertext House, London SW8 4UJ Tel. 01-6229911 (all hours)

State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Fuli details from:

ICSSCHOOL, OF ELECTRONICS

1) 1 ppt. 272 Y Intertext House, Iondon SW8 41 ।J Tel.01-6229911 (all hours)

State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF EIIECTRONICS
Dept. 272 Y Intertext House, Iondon SW8 4UJ Tel. 01-6229911 (all hours)

State if under 18

MISCELLANEOUS

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only
P. \& P. 75 plus 25 p P. \& P.
'Brain-Freeze' 'em with a MINI-STROBE Kit, pocket-sized "lightning flashes', vari-speed, for discos and parties. A mere $£ 4.30$ plus 20 p
P . \& P . Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multi-function modules. $£ 5$ each plus 20 p
P. P. \& P.

LOTS MORE! Send 20p for lists. Prices include VAT. (Mail order U.K. only).

BOFFIN PROJECTS

Cunliffe Road, Stoneleigh
Ewell, Surrey (P.E.)

NEED THE TIME?

MSF 60 KHZ RECEIVER, internal ferrite rod, 1000 Km range, $£ 13.70$, or with parts (no case pcb) for sequential YEAR, MONTH, DATE, DAY HOURS, MINUTES, SECONDS display only £24.40.
PROGRAM YOUR OWN tunes with this MUSICAL DOORBELL, new jingle every day, just needs bell transformer and speaker, £19.50. NO LONG WAVE? $100-600 \mathrm{KHz}$ Converter, feeds your $4.1-4.6 \mathrm{MHz}$ receiver, only $£ 9.90$.
Each easy-assembly kit includes all parts, printed circuit, case, postage etc, instructions, money back assurance, so SEND off NOW. Giro 21-923-4000, foreign prices IRC.

CAMBRIDGE KITS
45 (FJ) Old School Lane, Milton, Cambridge.

PRINTED CIRCUITS
 and HARDWARE

Readily available supplies of Constructors' hardware. Printed circuit boards, top quality for individual designs. Prompt service. Send 25 p for cotalogue. From:

RAMAR CONSTRUCTOR SERVICES,
Mosons Road, Stratford Upon Avon, Warwicks. Tel. 4879.

SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. faced steel. Hundreds of people and indus trial users are choosing the cases they require from ou vast range. Competitive prices start at a low 90 p , chassis punching facilities at very competitive prices, 400 models to choose from, free literature (stamp would be appreciated). BAZELLI, Dept: No. 23, St. Wilfred's, Foundry Lane, Halton, Lancaster. LA2 6LT.

RADIO CONTROL SPECIALISTS Kits for multi channel systerns. Special parts and accessories S.A.E. FOR LEAFLETS Tel: 060239541
MICRON R/C, Hayworth Road, Sandiacre, Nottingham.

SITUATIONS VACANT

$$
\mid
$$

都

Radio Technicians

Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over
STANDARDS required call for a sound knowledge of the principles of electricity and radio, together with appropriate experience of using and maintaining radio and electronic test gear.
DUTIES cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.
QUALIFICATIONS: Candidates must hold either the City and Guilds Telecommunications Part 1 (Intermediate) Certificate or equivalent HM Forces qualification.

SALARY (inc. supps.) from $£ 2,673$ at 19 to $£ 3,379$ at 25 (highest pay on entry) rising to $£ 3,883$ with opportunity for advancement to higher grades up to $£ 4,297$ with a few posts carrying still higher salaries.
Opportunities for service overseas.
Further particulars and application forms available from:

GCHQ

Recruitment Officer, (Ref PE/9) GCHQ, Oakley,
Priors Road, Cheltenham, GL525AJ.
Cheltenham (0242)21491 Ext 2270

WANTED TRAINEE COMPUTER ENGINEERS

0/A Levels ONC or City and Guilds or TV Engineering?

The UK Training Division of Control Data who manufacture the world's most powerful computer wishes to meet suitable young people between the ages of $21-35$ to train as computer engineers with a view to subsequent employment at various locations. This is an opportunity to be trained in computer skills by a leading computer manufacturer for an occupation and industry which offers progressive salaries, really interesting work and excellent career prospects.
Spend an evening with us and investigate our training entry scheme in detail. Find out whether you would qualify for support under TOPS*
FOR LONDON INTERVIEWS CALL 01-6372171 AND ASK OUR RECEPTIONIST TO CONNECT YOU TO PROGRAM 2E.
For outer London interviews please call either:

BIRMINGHAM OFFICE 0216227383
 MANCHESTER OFFICE 0618323114 LEEDS OFFICE 0532450145
 SOUTHAMPTON OFFICE 070338644

*TOPS - The NATIONAL TRAINING OPPORTUNITIES SCHEME under which training costs and personal subsistence are paid to suitable candidates whilst undergoing training which is designed to lead to employment.

PLEASE MENTION 'PRACTICAL ELECTRONICS' WHEN REPLYING TO
ADVERTISEMENTS

MISCELLANEOUS - Continued

BEST OFFER EVER £99-99 Total filigat TV CAMERA

Complete TV Camera Kit for under $£ 100.00$ (excluding P/P and VAT). Offer includes Lens. Tube and FREE Modulator. Plugs directly into AE socket of TV or VCR. Reliable high performance design. Suitable for Security. Education. Industry, etc. Fully compatible with other CCTV Equipment, Fully Guaranteed Parts. Buy it with your Credit Card.

CROFTON ELECTRONICS LIMITED

35 Grosvenor Road, Twickenham, Middlesex TW1 4AD Tel: 01.8911923

CABINET FITTINGS

Stage Laudspakers and Amplifier Cabs Frecklaths, Coverings, Strap \& Recess Handles, Feet, Costors, Jacks \& Sockets, Cannons. Bulgin 8 ways, Reverb Trays, ocks \& Hinges, Corners, Trim, Speaker Bolts etc. Send 2×9 S Stamps for samples and illustrated catalogue.

ADAM HALL (P.E. SUPPLIES)
Unit 3. Carlton Court, Grainger Roed Southend-on-Sea, Essex

CLEARING LABORATORY. Scopes, recorders, testmeters, hridges, audio, R.F. generators, turntables, tapeheads, hridges, audio, R.F, generators, tors, test equipment, etc. Lower Beeding 236.

MORSE CODE TUITION AIDS

 Cassette A: 1-12 w.p.m. for amateur radio examination. Cassetion.paration. li h som
for sending practice.
Prices each cassette (including booklets) £4.50. Morse Key and Buzzer E 4.50
Prices include postage etc., Overseas Airmail $£ 1.50$ extra. MHEL ELECTRONICS (Dept. PE)

12 Longshore Way, Milton. Portsmouth P04 8LS.

PRACTICAL ELECTRONICS P.C.B.'s in glass fibre tinned and drilled
Dec. 77 Car Burglar Alarm $1412-1$ 88p.
May 78 Moving Light Display $\mathbf{E 2 . 9 6}$.
May 78 Workshop Power Supply $£ 1.97$
July 78 Dimwir £1.48. C.W.O. Pleas
For full list and current boards please send S.A.E P.C.B.'s also produced from customer's own master please send for quote.

PROTO DESIGN
14 Downham Road, Ramsidan Heasth, Billericay, Essex
PRINTED CIRCUIT BOAROS made to your requirements. Write for details and price list. Western Circuit Designs, 31 Great Hinton, Trowbridge, Wilts. BA14 6BY.

SINTEL FOR BOOKS, CMOS AND COMPONENTS
6800 Booklet 1.80. MOT CMOS Dotobk 3.50, 6800 Appl Man 12.95, 6800 Prog Man 5.35, SC/MP Introkit Man 0.75 NS ITL Dotobk 2.10, RCA CMOS Dotobk 5.45, 8085 User's Mon 5.15, Z80 Ass Lang Prog Man 7.50, 280 CPU Man
$5.60, ~ Z 80 ~ C T C ~ S p e ~$
$0.80, ~$
280 5.60. Z80 CTC Spec 0.80, 280 PIO Man 3.30. Also a full range of CMOS - send for free colologue MPUs:
MEK 680002205.20 MC6820 7.50 280 18.14, Z80A $\begin{array}{lllllll}\text { MEK6800D } 2 & 205.20, & \text { MC6820 } & 7.50 \text {, } 280 & 18.14, & \text { Z80A }\end{array}$ 24.19, 280CTC 10.96, 280 P10 10.96. Memories: 2102-A 2.00, 2112 A .4 3.13. Displays: Type FND500 C.C. 1.40 Type TIL 321 C.A. 1.40, StIOI 5.29. Crystals: 32.788 KHz 5.19. Clock ICs: AYS. 100 0.54, 1000 4.32, 30001134 5.83. Solderton Pins: 100 O.54, $10004.32,300011.34$ VAT Add 35p P\& SINTEL PO Box 75B, 209 Cowley Road, Oxford. Tel. 10865149791

THE FABULOUS D2 MICROPROCESSOR EVALUATION KIT FROM MOTOROLA.

Featuring *24 key keyboard *Seven segment display *Cassette interface *Erom \& Ram Expandable *Interface Capability *Full Documentation *5 Volt power supply Required *One years FREE membership of The Amateur Computer Club with every purchase*. $£ 176+$ $£ 1.50$ P \& P + 8\% VAT.

ENAMELLED	COPPER WIRE			
SWG	1 lH	$\mathbf{8 ~ o z}$	$\mathbf{4 0 z}$	$\mathbf{2 ~ o z}$
$10-19$	2.60	1.40	.66	.55
$20-29$	2.80	1.60	.85	.65
$30-34$	3.00	1.70	.95	.70
$35-40$	3.35	1.90	1.10	.79
$40-43$	4.50	2.50	1.90	1.25
$44-46$	5.00	3.00	2.10	1.65
47	8.00	5.00	3.00	1.76
48	15.00	9.00	6.00	3.30

Tinned Copper, Even Gauges $14-30 £ 3$ per lb. Multicore 60/40 Solder 18SWG $£ 3.24$ per lb. Prices include P \& P and VAT.
SAE brings list of copper and resistance Wires.

THE SCIENTIFIC WIRE COMPANY

PO Box 30 London E.4.
Reg. Office, 22 Coningsby Gdns.

100 WATT GUITAR/PANMSIC

 AMPLIFIERWith superb treble, bass. Overdrive, slimline, 12 months guarantee. Unbeatable offer at $£ 39$. Also twin channel with separate treble/bass per channel £48. Money returned if not
ibsolutely delighted within 7 days. Also fuzz boxes great absolutely delighted within 7 days. Also fuzz boxes great
sound robust construction ce.60. Also 100 watt 12 in. sound
speakers $£ 22.50$.
All inclusive of P.P. Send cheque or P.O. to:
WILLIAM8ON AMPLIFICATION
62, THORNCLIFFE AVENUE, DUKINFIELD.
CHESHIRE. TEL: 061-3445007

NOTICE
 TO
 READERS

Whilst prices of goods shown in classifled advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

BARGAIN PARCELS SAVE POUNDS

Huge quantities af electronic companents must be cleared as space required. 1000's of capacitors sell by weight $7 \mathrm{lbs}-£ 4.95 ; 14 \mathrm{lbs}-£ 7.95 ; 28 \mathrm{lbs}-£ 12.00 ; 56 \mathrm{lbs}-£ 20.00 ; 112 \mathrm{lbs}-£ 30.00$ BARGAIN PACKS

Buy a Honeywell Mumidity Controller mem Buy Oneywell Humidity Controller mem houses, centrally heated shot, ideal for green own humidity alarm 3.75A. Conte. Bulld your $£ 1.50$ each. 3 for $£ 4.00$
4 aluminium boxes $128 \times 44 \times 38 \mathrm{~mm}$ ideal for
Onmiare reed switches ideal for burgla 6×1. High quality computer panels mother $\mathbf{E 2 . 4 5}$ grade components: 5 lbs $£ 4.75$; 10 lbs $£ 8.95$. Miniature edgewise panel mounting level inlegral tuning gang 88.108 MHz £2.50
New U.H.F. transistor TV tuners 4 pushbutton ype £3.50.
Rotory type with slow drive and $A E$. socket Alumini
Hordware Packs each containing 100's of items including: BA nuts ond bolts, Nylon, SelfFuse holders, Spire nuts etc, etc. £1.00 pes pound. Heavily insulated E.H.T. Discharging Probe with lead and earth connector 60 p each. Ultrosonic tronsducers, tronsmitter and re ceiver 14 mm diam. $40 \mathrm{kcs} £ 4.25$ per pair. Magnetic earpieces with plug and lead 25 each 5 tor $£ 1.00$
£1.00.
12 quil, low profile I.C. sockets, 14 pìn $£ 1$ DE LUXE FIBRE GLASS PRINTED CIRCUIT EICHING KITS Includes 150 sq. ins. copper clad $\$ / \mathrm{g}$ board, abrosive cleoner 2 minidrill bits, etch ta instructions - only $\mathbf{£ 5} \mathbf{3 0}$.
150 sq . in. fibre glass board.
1 lb ferric chloride to mil spec 5 lbs ferric chloride to mil spec

40p P \& P ON ALL ABOVE ITEMS. SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPLY, DEPT PE, $149 A$ BROOKMILL RD., DEPTFORD SE8

STORAGE CABINETS

Metal cabinets with transparent plastic drawers. Ideal for components, small parts, nuts, bolts etc. Many other uses in the home, workshop, laboratory etc.

Type 1118
Choose from the following range to suit your own needs:

| Type | Height
 (ins.) | No. of Drawers | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | ---: | Price

All cabinets are finished Blue, $12^{\prime \prime}$ wide $\times 5 \frac{3{ }^{\prime \prime}}{}$ deep. Prices include VAT and Post. Satisfaction or money refunded. Cheque/P.O. to:

MILLHILL SUPPLIES (TOOLS)

35 PRESTON CROWMARSH, BENSON, OXON. OX9 6SL

New from Mantec

A comprehensive Home Study Course in Electronics

Suitable for Beginners and Students
The Course which gives you "Right from the Start" the practical experience as well as the all important back-up theory.
Suitable preparation for C and G examinations Ensure your future in tomorrow's technology
The home study course that tells not only how but why The Course includes:- 1 The Manual. Easy to read and understand, set out in a clear and
 concise way, includes numerous 2 The Kit. All components necessary for the experiments and projects covered. Mantec also provides
a tutorial support service for students requiring further :advice. Send today for your "Right from the start" Home Study Course. Price $£ 35.00$ including VAT.

Fill in the coupon Now!
Mantec the leaders in Manufacturing Technology Mantec, 7 Dellsome Lane, Welham Green, Hatfield, Herts

To: Mantec, 7 Dellsome Lane, Welham Green, Hatfield, Herts.
Please send me.
"Right from the Start" home study course(s).
l enclose Cheque/ Postal Order for $£$.
Name:
Address:

Wilmslow Audio

THE firm for speakers!

SEND 15p Stamp for the world's best catalogue of SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

```
            ACT AUDAX - BAKER
BOWERS & WILKINS CASTLE - CELESTION
    CHARTWELL COLES DALESFORD
        DECCA - EMI - EAGLE ELAC &ANE
    GAUSS - GOODMANS - HELME - I.M.F.
            ISOPHON - JR - JORDON WATTS
    KEF - LEAK - LOWTHER * McKENZIE
MONITOR AUDIO - PEERLESS - RADFORD
            RAM - RICHARD ALLAN - SEAS
    TANNOY VIDEOTONE WHARFEDALE
```

> WILMSLOW AUDIO (Dept. P.E. 8) swan works, bank square, wilmslow, CHESHIRE SK9 1HF

> Diecount HI-FI, etc. at 5 Swan Street and 10 Swan Street
> Tel: : Wilmslow 29599 for Speakers
> Tel : Wilmslow 26213 for $\mathrm{Hi}-\mathrm{Fi}$

\# DEEAEDED		
Ace Mailtronix Ltd......... 1026	G.C.H.Q 1029	Phonosonics 964, 965
Adam Hall	Goddards Components.. 1024	Powell T. 982
(P.E. Supplies) 1030	Gould Advance 983	Progressive Radio 1000
Alben Engineering........... 956	Greenweld Electronics 960	Proto Design 1030
Astra-Pak 984		
	Haversons..................... 962	Radio Component
Barrie Electronics............ 982	Heathkit Ltd 984	Speci
Bi-Pak 963	Home Radio................. 1022	Ramar Constructor
Birkett J. 954		Service 1029
Boffin Projects 1029	I.C.S. Intertext.......956, 1029	R.S.T. Valve Mail Order.... 965
British National Radio \& Electronics School 961, 966	I.P.C. Business Press (Electronics Weekly). 1027	 T.V. Components 955
Bywood Electronics 1029	I.L.P. Electronics 1023	Salop Electronics 1029
Cambridge Kits 1029	1028	Saxon
Cambridge Learning........ 967		Entertainments... 958,959
Canon Components 1026	K. \& A. Distributors...... 1000	Scientific Wire Co 1030
Chromasonic.................. 962	K. \& A. Distributors........ 1000	Sentinel Supply............. 1031
Clef Products 1024		Service Trading 968
Codespeed................... 1028	London Electronics College 1029	Sintel Ltd 1030
Component Centre, The ... 966	Lion House.............................. 999	Stirling Sound 984
Continental Specialities ... 981 Copper Supplies............. 1029		
Crescent Radio Ltd 956	Maplin Electronic	Technomatic Ltd 1032
Crimson Electrik............ 954 Crofton Electronics 1030	Supplies cover iv	Teleplay
C.R. Supply Co............. 1028	Marshall A. (London)	(Logic Leisure) cover ii
CWAS Alarm 1030	Ltd......................... 1025	Tempus....................... 1026
	MHEL Electronics 1030	T.K. Electronics 1022
Doram	Micron R/C.................. 1029	Trampus Electronics 1022
Electronics.....982, cover iii	Mill Hill Supplies 1031	T.U.A.C......................... 960
Dziubas M..................... 962	Minikits Electronics........ 1030 Modern Book Co.......... 1032	Vero Electronics............. 966
E.D.A............................ 959	Monolith Electronics	Watford Electronics 957
Electronic Brokers........... 954	Co. Ltd..................... 1024	West London Direct
Electrovalue Ltd 960		Supplies 1000
	O.K. Machine Tool (UK)	Williamson Amplifiers.... 1030
Fraser-Manning Ltd 1028	Ltd.......................... 1022	Wilmslow Audio 1031

WORLD RADIO TV HANDBOOK 1978

by J. M. Frost
Price: $\mathbf{8 8 . 0 0}$

A PRACTICAL INTRO. TO ELECTRONIC CIRCUITS by M. H. Jones Price: £4.60 THE TTL DATA BOOK FOR DESIGN ENGINEERS by Texas Price: $£ 5.65$
THE OSCILLOSCOPE IN USE
by I. R. Sinclair
Price: $£ 2.75$
AUDIO AMPLIFIERS FOR THE HOME CONSTRUCTOR bY I.R. Sinclair Price: $\mathbf{E 2 . 5 5}$ VIDEOTAPE RECORDING
by J. F. Robinson
Price: $\mathbf{£ 7 . 6 0}$
IC OP-AMP COOKBOOK
by W. G. Jung
Price: $\mathbf{£ 1 0 . 0 0}$
LINEAR INTEGRATED CIRCUIT APPLICA-
TIONS by G. B. Clayton Price: $\mathbf{E 5 . 3 0}$
FOUNDATIONS OF WIRELESS \& ELEC-
TRONICS by M. G. Scroggie Price: $\mathbf{f 4 . 4 0}$
BEGINNER'S GUIDE TO ELECTRONICS
by T. L. Squires Price: $\mathbf{£ 2 . 5 5}$
THE RADIO AMATEUR'S HANDBOOK 1978
by A.R.R.L.
Price: $£ 7.60$

* PRICES INCLUDE POSTAGE

THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST
of Brisish and American Technical Books

19.21 PRAED STREET LONDON W2 INP

Phone OI-723 4185
Closed Saturday 1 p.m.

กาํㅒㄴ닌

 everything for the modern D.I.Y. electronics enthusiast and more.

AUDIO MIXER

A superb stereo audlo mixer. It can be equipped with up to 16 input modules of your choice and its performance matches that of the very best tape-recorders and hi-fi equipment. It meets the requirements of professional recording studios. FM radio stations, concert halls and theatres. Full construction details in our catalogue. A component schedule is avaitable on request.

9-CHANNEL RADIO CONTROL SYSTEM A comprehensive model control system, featuring nine independent fully proportional channels achieved by a design using very few components thus keeping the cost to a minimum. Full construction details in our booklet (XF03D)
price $£ 1$ - 20.
All prices include V.A.T and postage \& packing.

ELECTRONIC ORGAN

The only organ you can build in stages and tailor to your requirements as you go along-and at each stage you'll have a fully working instrument We haven't got the gimmicks yet-(they're coming soon) but we have got the most beautiful sounds-you won't find them on any organ less than twice our price. So get our MES50 series leaflets now! 65p buys the three available so far.

Build a mine Build a mini-computer with our microprocessor
kit. Features: 46 different instruction types: 256 bytes of read/write memory (more are easily added) microprocessor can address up to 65,536 8 bit-bytes, Complete kit for use with teletype 20 -key keyboard for use with above (in place of teletype) (X892A) E71.11. Both kits with detailed nastruction books. See our newsletters for details of additional RAM's. tri-
state interfacing chios, number-cruncher and standard state interfacing chips, number-cruncher and standard
casserfe tape-recorder interface to store your programmes. (Ail prices include V.AT. and p\&p.)
T.V. GAME

A fascinating TV game kit that plays football, tennis, squash and practice for only $\mathbf{£ 2 1} 59$. Reprint of construction

POST THIS COUPON NOW FOR YOUR COPY OF OUR CATALOGUE PRICE GOp

Please rush me a copy of your 216 page catalogue I enclose BOp . but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my $6 \square$ p refunded immediately.
details 25p. Add on rifle kit only $£ 10 \cdot 60$. (All prices include V.A.T. and $p \& p$).

MASSIVE RANGE OF COMPONENTS
For instance the capacitor section in our catalogue includes nonpolarised electrolytics and our resistor section includes even 1% tolerance types. Get our fascinating catalogue now-you won't regret it.

Our bi-monthly newsletter keeps you up to date with latest
guarentead prices - our latest special offers -
for the next six issues (5 p discount voucher with each copyl.

IT S A FANTASTIC BESTSELLER!

216 big ($11^{\prime \prime} \times 8^{\prime \prime}$) pages! Over a thousand illustrations! Over 30 pages of complete Frojects to build! Thousands and thousands of iseful components described and illustrated! No wonder it's a bestseller!
DON'T MISS OUT! SEND EOp NOW! MAPLIN ELECTRONIC SUPPLIES
P.O. BOX 3 RAYLEIGH ESSEX SS 6 8LR

Telephone: Southend (0702) 715155
Shop: 284, London Road, Westcliff-on-Sea, Essex

[^0]: (C) IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Personal Shoppers EDGWARE ROAD LONDON W2 Tal: $01-7238432$. $9.30 \mathrm{am}-5.30 \mathrm{pm}$. Half day Thursday. ACTON: Mail Order only. No callers GOODS NOT DESPATCHED OUTSIDE UK

[^2]: Note: This offer applies to the U.K. and Ireland only

