PRACTICAL

EEFE1ETONICS

GOTSTANI DISPLAY FREQDENGY COÍNIİB MGROPROGESSOI RUL RAUIEW

Vouneed neverbyya colourfilmagain!
 thanks to the Practical Electronics Colour Print Service

Kodak colour film

for every one of yours we process

SEND NO MONEY

 see your prints before you pay RELIABLEfilm service
LUXURY colour prints with a borderless hi-definition sheen finish

So it can now cost you less to take photographs and, thanks to our reliable developing and printing service, you don'l send your money until you've actually seen your pictures.

Hundreds of thousands of magazine readers are delighted with this outstanding Colour Print service. So why don't yougive it a try?
HERE'S WHAT YOU DO
Send us any make of colour print film inside the envelope enclosed in this issue. Or fill in the double coupon below and send it with your film in a strong envelope 10: The Practical Electronics Colour Print Service, FREEPOST, Teddington, Middlesex, TWI| IBR. No stamp is required.

FREE KODAK COLOUR FILM

In return you will receive a free Kodak colour film worth over $£ 1$, the same size as the one you sent us for developing. Meanwhile we produce your prints, every one of which will be checked by professionals at our laboratories before being sent to you.

You'll love the quality - all crisp, sharp, hi-definition sheen prints, and borderless to give you maximum picture area.

UNBEATABLE FOR QUALITY AND VALEE
Whas about our prices? Zertainly much less thatn you pay in mest shofs, and renember you get ano her film FREE. With our Colour Prin service, you onl, pay 14 p for each pint, ples 85p tou-a ds developing, pos age and packing The minimum charge is 8.9 (assuming no prints can be mide) inc. VAT. The ofler is limited to LK, Eire, Cl and FFPO .
A SERVICE TO BENEFIT YOU
You benefit in two additional ways. Firstly, you enjoy a personal service, with every care taken over each individual order. And secondly, you pay only for what you get - with no credit iouchers like many other companies. An invoice comes with your prints, so it's a straight business transaction.

Films accepted on Standard Terms of Business (available on request).

From: Practical Electronics Colour Print Service,

 Freepost, Teddington, Middlesex TW11 1BR
$\mathrm{Mr} / \mathrm{Ms}$

Addıess

PLEASE FILL IN BOTH LABELS

This label

 used to sand your printsThis label used to send your free film

From: Practical Electronics Colour Print Service, Freepost, Teddington, Middlesex TW11-1BR
$\mathrm{Mr} / \mathrm{Ms}$
Address

CONSTRUCTIONAL PROJECTS

TOUCH SWITCH by G. Davis Direct replacement for a mains light switch	890
P.E. TV GAME CENTRE-2	
Concludes with construction and setting up	892
DIGITAL THERMOMETER by M. Plant Measurement range of $-99.9^{\circ} \mathrm{C}$ to $+99.9^{\circ} \mathrm{C}$. Single LSI chip simplifies construction	896
MOTOR SPEED CONTROLLER by R. F. Mack	
You set the speed which the controller maintains irrespective of loading	916
12V CONVERTOR by D. J. Bradbury	
Enables a 24 V iron to be powered from a car battery	924
CONSTANT DISPLAY FREQUENCY METER byJ. Becker Monitors frequency without flicker	934

GENERAL FEATURES

MICROPROCESSOR REVIEW-AMICOS by P. Birnie
Kit review of this 6800 system 906
P.C.B. ASSEMBLY JIGS by W. English 909

MAKING P.C.Bs by A. R. Damper 910
INGENUITY UNLIMITED
Envelope Shaper-pH Meter-Touch Sensitive Keyboard—Calculator-Decade Counter-
CMOS Doorbell—Trace Multiplier—L.e.d. Flasher
SEMICONDUCTOR UPDATE byR. W. Coles
A look at some recently released devices 930
MICROBUS by D.J.D.
A bi-monthly focus on micro's for the home constructor 932

NEWS AND COMMENT

EDITORIAL 889
SPACEWATCH by Frank W. Hyde
Out of the Ecliptic, Sun Shivers, Uranus, Landsat, Halley's Comet 901
NEWS BRIEFS Heat Pipe device-Eagle's Launch-New Microprocessors- 902
Ink Jet System 905
MARKET PLACE
Interesting new products 912
READOUT
A selection of readers' letters 918
BOOKREVIEWS
Selected new books we have received 918
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office 919
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 931
POINTS ARISING
Linear Capacitance Meter 938

Our September issue will be on sale Friday, 11 August 1978
(for details of contents see page 929)

[^0]

[^1] SEND NOW FOR OUR FREE 28 PAGE ILLUSTRATED CATALOGUE. SEND STAMP PLEASE

GANON COMPONENTS

OFFER A FANTASTIC RANGE AT VERY COMPETITIVE PRICES inc/uding

- R.F
- DIGITAL
- TRANSISTORS
- LINEAR I.C.'s
- DISPLAYS
- LED's
- RESISTORS
- CAPACITORS
- HARDWARE
- CHASSIS
- BOXES
- S-DEC
- N-DEC
- TRANSFORMERS
- SPEAKERS
- CABINETS
- AMPLIFIERS
- MICROPHONES
- MIXERS
- HEADPHONES
- TURNTABLES
- LIGHT MODULATORS
- LIGHT BOXES
- SPOTS
- BULBS
- JINGLE MACHINES
- PACKS
- TWEETERS
- LEADS
- PLUGS
- JACKS
- POWER SUPPLIES
- METERS
- SURPLUS ITEMS
- TAPES
- RADIO's
- CALCULATORS
- TEST EQUIPMENT
- KITS
- VERO BOARD
- SOLDERING IRONS
- SOLDER

PHONE OR SEND S.A.E. FOR LISTS
ACCESS OR BARCLAYCARD
ACCEPTED
322-324 WHITEHORSE ROAD CROYDON SURREY CRO 2LF
OPEN DAILY 9.30 A.M. - 6 P.M.
TEL. 01-684 9872

THE

RADIO AMATEUR'S

 HANDBOOK 1978by A.R.R.L

WORLD RADIO TV HANDBOOK by J. M. Frost

Price: $\mathbf{£ 8 . 0 0}$
SCELB। ' 6800^{\prime} SOFTWARE GOURMET GUIDE \& COOK BOOK by R. Findley Price: $£ 7.30$ SCELBI '8080' SOFTWARE GOURMET GUIDE \& COOK BOOK by R. Findley Price: $\mathbf{E 7 . 8 0}$
MICROCOMPUTER PRIMER by M. Waite

Price: $\mathbf{£ 6 . 0 0}$
BASIC FOR BEGINNERS
by G. G. Bitter
Price: $\mathbf{£ 7 . 0 0}$
THE OSCILLOSCOPE IN USE
by I. R. Sinclair
Price: $\mathbf{£ 2 . 8 5}$
RADIO CIRCUITS EXPLAINED by G. J. King

Price: $\mathbf{f 6 . 0 0}$
amateur radio techniques
by P. Hawker
Price: $\mathbf{£ 4 . 0 0}$

* all prices incilude postage *

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-2| PRAED STREET LONDON W2 INP

Phone 01.723 4185
Closed Saturday I p.m

WHAT'S NEW?

ME teaching kill

The most MODERN, RAPID ECONOMIC way to master space age electronics.
Starting even from ZERO

\qquad

100 EXPERIMENTS

creating more than 20
practical applications

You learn all about the most up to date electronic circuits; how to calculate, repair, and design them, while pursuing your favourite hobby. Start from scratth, or improve your present knowledge, train and earn money in your spare time, turn your pastime into valuable iob opportunities
Compare our prices: you receive the entire course. "mini laboratory" and components for LESS than the price of the components alone

COMPLETE KIT: nothing else to buy*
You get:

- Instruction manual: over 200 pages of detailed step-by-step instructions. Start from seratch.
explains basic laws and physics of Electricity. semiconductor principies and operation electronic circuits: form diodes (including diac. zener)
transistors, triacs to integrated circuits (C.MOS ranistors, triacs to integrated circuits (C.MOS. Over 200 Electronic components: aerospace technology. Printed circuit experiment board. phototransistor. triac thyristor I.C.S. transistors
(including FET. MOSFET) LEDS plus resistors. capacitors. milliameter, potentiometers, variable capacitor. etc...etc. etc..... eters, variable among components furnished in kit ELECTRONIC VOLTMETERS. LOW FREQUENCY MEASURING AMPLIFIER, LOGIC INDICATORS.
REGULATED POWER SUPPLY. MULTIAMTER

You perform:
Over 100 different experiments: from the most basic voltage measurements to radio transmitter circuits and including HI FI. Flip Flods, Ic adolica-- $=$

You construct:
More than 20 complete functional systems: light modulator. high fidelity amplifier, radio control set, radio receiver and transmitter. electronic
gadgets and games and many, many more.
*Hand tools not furnished.

MINI CONSOLES Ideal for small desk control panels and consoles. Moulded in orange, blue, black and grey ABS. Incorporates slots for holding 1.5 mm thick pcb's Aluminium panel sits recessed into front of console and held by screws running into integral brass bushes. MC $161 \times 96 \times 58 \mathrm{~mm} \quad £ 2.12$ (1-9) (Includes VAT) MC $215 \times 130 \times 75 \mathrm{~mm} \quad £ 2.94$ (1-9) (Includes VAT) (Prices include VAT \& P.P.)	Stop wasting time soldering The NEW MW BREADBOARD accepts Transistors, LED's, Diodes, Resistors, Capacitors and all DIL packages with 6 to 40 pins	SC BOXES Easily drilled or punched, orange, blue, black and grey ABS. Incorporate slots for holding 1.5 mm thick pcb's. Aluminium panel sits recessed into front of the box and held by screws running into integral brass bushes.
ECONOMY QUALITY LED's 50 for only $£ 5-100$ for only $£ 9$ Mixed bags, all sizes, various colours $16^{\prime \prime}$ $2^{\prime \prime}$ iens Full specification LED's also available Red (specify size) 75p per pack Green, Yellow, Orange (specify size) f 1.20 per pack Packs contain 5 LED's, mounting clips and data	Includes slot-in Component Support Bracket and has 470 individual sockets, plus Vcc and Ground Bus Strips Price $£ 9.72$ (includes VAT \& P.P.) TYPE MP NEON INDICATOR Supplied with resistor for 240 Voits operation 150 mm leads, held in 6.4 mm hole by nut Red, Amber, Clear, Opal 20p each	240 VOLTS MINI HAND DRILLS Ideal for drilling pcb's, chassis etc as well as model making. Supplied with 3 collets that accept tools and drills with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ and $1 / 8^{\prime \prime}$ dia shanks. £9.72 (includes VAT \& P.P.) Accessory tools... 5 Burrs, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 1 / 8 \mathrm{th}$ Drills, $3 / 32^{\prime \prime}$ Collet Price $£ 1.75$ (Includes VAT \& P.P.)
TYPE A NEON INDICATORS Supplied with resistor for 240 Volts operation Held in 8 mm hole by plastic bezel 150 mm wire leads	SEVEN SEGMENT DISPLAYS Economy quality Red, vellow and green Only 45p each Common Anode - 0.3"-Left Decimal Full specification displays also available as above Red @ 98p each Green and Yellow @ $£ 1.35$ each. Data supplied with full spec. displays only.	
12 VOLTS MiNI HAND ORILL Ideal for drilling pcb, chassis etc as well as model making. Supplied with 2 collets that accept tools and drills with $3 / 32^{\prime \prime}$ and $0.50^{\prime \prime}$ dia shanks. £ 7.56 (Includes VAT \& P.P.)	Quantity quotations on request P.P. Nate Unless included in price add 25p Post \& Packing for orders totalling under $£ 10$. All prices include VAT and are valid in UK only for 2 months from journal issue date Mithael Williams Electranits 47 Vicarage Av. Cheadle Hulme, Cheshire SK8 7JP	RC $112 \times 62 \times 31 \mathrm{~mm}$ 79 p 94 p 1.23 RC $120 \times 65 \times 40 \mathrm{~mm}$ 88 p 1.22 1.59 RC $150 \times 80 \times 50 \mathrm{~mm}$ 1.03 1.64 2.11 RC $190 \times 110 \times 60 \mathrm{~mm}$ 1.77 2.53 3.08 Polystyrene version in grey only, no slots, no integral brass bushes $R C(P) 112 \times 61 \times 31 \mathrm{~mm} 61 \mathrm{p}$ All prices are 1.9 off, include VAT, but please add $25 p$ per $£ 1$ order value for Post \& Packing

Do-it-Yourself Kits Or Factory Assembled

엪NFIOrgans
 이프NIIIPianos
 이프탸II String Ensembles
 (1)IIEREIMATICRhythm
 ©IIIEREIMATICAccompaniment
 이표탸IVOICERotorSound:String Choir ©IㅔㅌㅑII Professional Series
 OMIIEREIAudio Mixer 2004
 에턑ITONE Rotating Baffles 이Iㅔㅌㅏ=ISpeaker Cabinets

Send for our 104 page full-colour catalogue and 16 -page price list, for $£ 2.00$, which is refunded against your first order value £25.00.

AURA SOUNDS (P2),
 Copthorne Bank, Crawley, W. Sussex.

PE DIGITAL VOLTMETER (APRIL 1977)

SPECIAL CLEARANCE OFFERS (while stocks last)
Set of semiconductor devices including all I.C.'s, tronsistors,
diodes, regulators etc. but without displays.
£13.50*
Set of two professionol grade printed circuit boards in
glass fibre and printed with component locations.
Complete set of resistors, including attenuator resistors.
Complete set of copocitors, including 2200uF gower supply
 ZN423£1.00*. PE TV SOUND SEPARATOR
Complete set of semiconductors $£ 2.30$. High quality glass fibre p.c.b. $£ 1.00$ Murato filters: SFE6.OMA 35p. CDA6.OMC 35p. P \& \& 15 p per order. Orders over $£ 5$ post free.
All devices are top grade, brond new and to full manufacturer's spec. We do not sell seconds or rejects. Send S.A.E. for our data sheet and price list. sell seconds or reeects. Send S.A.E. for 8% to items marked ${ }^{*}$, and $12 \frac{1}{2} \%$ to all Prices
others.
DAVIAN ELECTRONICS $\begin{gathered}\text { (Mail order, callers by bintment only). }\end{gathered}$ 13 Deepdale Avenue, Royton, Oldham OL2 6XD

$\begin{aligned} & \quad \begin{array}{c} 0 \\ 0 \end{array} \infty \\ & =0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	
	Х

the MIGHTY MIDGETS

MINIATURE SOLDERING IRONS ACCESSORIES
 SPARE BITS STANDS

From your Local Dealer or Direct from Manufacturers S: R BREUSTER L 86-88 Union St-Plymouth PLI 3HG Tel:0752. 65011 TRADE ENQUIRIES WELCOME

NEW FROM BI-KITS! AL120 AUDIO AMPLIFIER
 (WITH INTEGRAL HEAT SINK) BETTER THAN 50w RMS!
 Out Power THD 1\% Supply Voltage Max
 Supply Voltage Max
 Operating voltage range
 Load
 Frequency Response $\pm 1 \mathrm{~dB}$
 Sensitivity for 50 watts into 8 ohms Input Imperdance
 Input Impedance
 THD at all power levels up to clipping S/N ratio
 Max. ambient operational temp. S/C Complement Size overall
 50 watts min.
 70 volts $50-70$
 50-70
 $8-16$ ohms
 $25 \mathrm{~Hz}-20 \mathrm{kHz}$
 500 mV
 35 k ohms
 . 05% max. typically $.02 \%$
 100 dBs
 45 deg. C 13 transistors 3 diodes
 $192 \times 89 \times 40 \mathrm{~mm}$ 240 gms
 $+8 \%$ VAT 25p P\&P.

 \section*{FOR ONLY

 \section*{FOR ONLY

 £11.95}

 £11.95}}

A/so SPM120 Stabilised Power Supply

 AVAILABLE IN 3 ALTERNATIVE VOLTAGES - 45, 55, 65 volts TO POWER THE FOLLOWING BI-PAK AMPLIFIERS: SPM 120/45 Two AL60's up to 25 w per channel simultaneously $£ 4.95+12 \frac{1}{2} \%$ VAT. SPM 120/55 Two AL80's up to 35w per channel simultaneously $£ 4.95+12 \frac{1}{2} \%$ VAT. SPM 120/65 Two AL120's up to 50w per channel simultaneously $£ 5.95+12 \frac{1}{2} \%$ VAT. SPM 120/65 One AL250 up to $125 w £ 5.95+12 \frac{1}{2} \%$ VAT. Please add 25 p P\&P to all orders.AC Input:
AL120/45 40-48v • AL120/55 50-55v • AL120/65 60-65v • OUTPUT CURRENT 2.5A • RIPPLE © 1A 100mV • 2A 150 mV

USE YOUR SPM120 WITH ANY OF THESE!
AL60. 25w (RMS) AMPLIFIER £ $4.55+12 \frac{1}{2} \%$ VAT $25 p$ P\&P. AL80. 35w (RMS) AMPLIFIER £ $7.15+8 \%$ VAT 25pP\&P. AL250. 125w (RMS) AMPLIFIER £17.25 + 8\% VAT 40p P\&P. PA200. Pre-amplifier for use with all the above modules $£ 16.30$ $+12 \frac{1}{2} \%$ VAT 40p P\&P.

DEPT. PE8, P.O. Box 6, Ware, Herts COMPONENTS SHOP: 18 BALDOCK STREET, WARE, HERTS.

1 ST. MICHAELS TERRACE, WOOD GREEN, LONDON, 01-888-4474 N22 4SJ	
TELESCOPIC AERIAL $+12 \frac{1}{2} \%$ VAT 1 I Section Telescopic Aerial Length, extended: 1 metre ($39 \frac{1}{4}^{\text {" }}$) Length, closed: 135 mm ($5 \frac{1}{4}{ }^{1 \prime}$) Nut and bolt fixing through recess at base of aerial. Only 75p each!	3 KILOWATT PSYCHEDELIC UIGHT CONTROL UNIT 1000 lighting per channel. maxt A 3 channel sound to light unit housed in a robust metal case, with a sessitivivy control tor each channel i.e. Bass, middle and treble. Full instructions make this unit easy io connect to your present amplifier.
POPULAR CAPACITORS $+12 \frac{1}{2} \% \mathrm{VAT}$	Still only $£ 20.00+8 \%$ VAT.
$0.1 \mathrm{mtd} / 1 \mathrm{kV}-22 \mathrm{p}$ axial $470 \mathrm{mtd} / 25 \mathrm{~V}-30$ p axial $470 \mathrm{mfd} / 50 \mathrm{~V}-35 \mathrm{p}$ axial $1000 \mathrm{mfd} / 25 \mathrm{~V}-35 \mathrm{p}$ axial $1000 \mathrm{mfd} / 50 \mathrm{~V}-30 \mathrm{p}$ axial $1000 \mathrm{mfd} / 63 \mathrm{~V}-48 \mathrm{paxial}$ $2200 \mathrm{mfd} / 50 \mathrm{~V}-72 \mathrm{p}$ axial $2500 \mathrm{mfd} / 25 \mathrm{~V}-57 \mathrm{p}$ axial $3300 \mathrm{mfd} / 64 \mathrm{~V}-\mathrm{f} 1.45$ tag end $4700 \mathrm{mfd} / 25 \mathrm{~V}$ - 72 p axial $4700 \mathrm{mfd} / 70 \mathrm{~V}-\mathrm{f} 1.80$ tag end.	POWER SUPPLY UNIT PP1 - switched 3, $4 \frac{1}{2}, 6,7 \frac{1}{2}, 9$ and 12 volts at 500 mA , with on/off switch and pilot light. Size: $130 \times 55 \times 75 \mathrm{~mm}$ approx. Our Price: $\mathbf{£ 6 . 0 0 + 8 \%}$ VAT
	BARGAIN PACK $+12 \frac{1}{2} \%$ VAT. 10 pois. for only $\mathbf{£ 1 . 5 0 \text { : }}$ 1 each of the following - 10 k dual C.T., 500 k dual log.. 1 meg log L/S,
BARGAIN LOUDSPEAKER Goodmans $5^{\prime \prime} 8$ ohm long throw heavy duty LSPKR. Mounting plate is integral with L/S chassis and has fixing holes with centres spaced at $5 \frac{1}{2 \prime \prime}$ (diagonally). Only $55.00+12 \frac{1}{2} \%$ VAT.	Limited stocks! All carbon track, std. dia. spindle.
	PIEZO ELECTRIC HORN UNITS High Quality. High Power Tweeter. No Xover reqd. Freq. Response: $3.8 \mathrm{kHz}-2 \mathrm{BkHz}$. Spec.
2 WAY 8 OHM HEAVY DUTY XOVER. A 2 way 8 ohm H / D Xover suitable for L/S systems up to 1oow. input via screw terminals. Fitted with a 3 position switch which selects either Flat, $-3 d 8$ or switch. Buy now while stocks last! Only £3.00 + 8\% VAT.	rice
	BARGAIN TRANSFORMERS 240 V Primary $12-0-12 \mathrm{~V} 500 \mathrm{~mA}$ sec. Approx. size: $60 \times 40 \times 50 \mathrm{~mm}$. Fixing centres: 75 mm Price: $£ 1.50+8 \%$ VAT. Also available Mains Transformer with 18 V 500 mA sec. Price and size same as above.
'P\&P' orders up to $£ 5$. Add 30 p. Orders $£ 5-£ 10$. Add 50p. All orders over $£ 10$ post freel Please add V.A.T. as shown. S.A.E. with all enquiries please.	

POTS* CAPACITORS, BOXES, INST, CASES, DIN PLUGS, RESISTORS, ETC., ALWAYS IN STOCK. POSTAGE AND PACKING 20p EXTRA, CATALOGUE AVAILABLE. PLEASE SEND 75p.

SAXON ENTERTAINMENTS LTD

THE PIONEERS OF MODULAR DISCO/P.A. EQUIPMENT NOW OFFER PACKAGE DEALS AT INCOMPARABLE PRICES

CENTAUR STEREO DISCOS

C/W LIGHT SHOW \& DISPLAY, TWIN SPEAKERS \& LEADS

Standard 100W

$£ 225$ or Deposit $£ 50.80$
12 Months @ $£ 19.11$ or 24 Months @ $£ 10.66$

Super 200W $£ 275_{\text {or Deposit } £ 61.80}$
12 Months @ $£ 23.17$ or 24 Months @ £12.92

GXL 200W (£ 349 or Deposit $£ 77.72$
 12 Months@ £29.19 or 24 Months @ £16.28

COMPLETE STEREO

ROADSHOWS - BUILT IN SOUND TO LIGHT/SEQUENCER \& DISPLAY
TWO YEAR GUARANTEE

illustration shows GXL Centaur System
These systems feature full mixigg for two deks tape \& mic with monitoring afacilities - override and ore supplied complete with sound to light sequencer, display, speaker leads elc JUST PLUG IN AND GO!

BSR Decks - 17,000 Line Loudspeakers - Rugged Aluminium Trimmedpabinets Cue Light And Phofies Output - Slave Output - Deck Lights/Mator Starts (GXL)

MINI DISCO 100 WATT MONO SYSTEM $£ 179.50_{\text {Deposisif } 80.66}$ 12 Months @ 15.45 of 24 Monhs @ ${ }^{2}$.61
 Similar intappearatemto the Centaur and
 complete with louḍspeakers and jepals. Headphoner fo willany system EM507 Elechret Mic ECM 8 6 Electref Mic
 Baom Stard
 fathage on all disco and"esysters. +15.00 -150
 (Included in H.P. Prices)

20\% Deposit Terms On All Orders Over E150-12 or 24 Months - Low Interest
D.I.Y. MODULES FOR ALL DISCO/P.A. AMPLLFERS SA308 30W 8 ohms 45V £9.95* COMPLETELIGHTING CONTROL AT YOUR FINGERTIPS!
\qquad Automotic Level integroted Logic Module $£ 32.50$ Circuitry Ponel £2.95 Three Channe) Sound ro thela $3 \mathrm{~kW} 1-240 \mathrm{~W}$ input - mos
Plus dhannel conerols

SA604 60W 4 ohms 50 V SA608 60W 8 chims 65 V SAl204 120W 4 ohms 75 V SAl208 120W 8 ohms 95 V SA2404 240 W 4 ohms 95 V 02% Distortion, $30 \mathrm{H}_{2} 2 \mathrm{O}$, KHz朝 TOP QUALITY COMPONENTS THROUGHOUT

\qquad

DISCO MIXERS - COMPLETE OR MODULAR

030000000000 WNOph sitrle

STROBEUNITS
Pro-Strobe 4-6 Joules $£ 37.50$
Super Strobe 2-3 Joules $£ 22.50$ (Pro-Strobe has external trigger facilify).

PROJECTORS - PLUTO - NEW LOW PRICES!!! CHOICE OF WHEEL/CASSETTE

P150 150W Tungsten	$£ 37.50$	Liquid wheels	$\mathbf{£ 7 . 5 0}$
P500 100W Q.I.	$£ 74.95$	Casserpes	$\mathbf{£ 8 . 0 0}$
P500 250W Q.1:	$£ 84.95$	Picture wheels from	$\mathbf{~} 4.75$

PIEZO HORNS only $£ 7.50$ YES! - only $£ 7.50$
(As fitted to our pockoge PA system)

No crossover required $4 \mathrm{kHz}-30 \mathrm{kHz}$ rated $75 \mathrm{~W} / 8$ ohms $150 \mathrm{~W} / 4$ ohms use two per 100 W amplifier - Full instructions supplied.

Direct fram Motorola Inc., USA at an UNBEATABLE PRICE

MD Spot Banks: 3-way 300W $£ 19.50$,
4.way 400W £22.50.

Bubble machines (aptikinetics) $£ 36.50$

Strobe tubes 80 W £8.50
CIV Vynide $50^{\prime \prime}$ wite $£ 3.50$ Metre Kickproof Grille $24^{\prime \prime}$ wide $£ 3.25$ Metre Kick Resistant Grill $50^{\prime \prime}$ wide $£ 3.25$ Metre. FULL RANGE OF RE-AN PRODUCTS IN STOCK SEND FOR OUR BROCHURE NOW!!

100 Watt Chassis Loudspeakers $12^{\prime \prime} £ 23.50 \quad 18^{\prime \prime} £ 47.50$ (Aado 1.50 cort.)
Empty Loudspeaker Cobinets Small $12^{\prime \prime}$ *arge $12^{\prime \prime} £ 21.50$ Small $22^{\prime \prime} £ 22.50$ $£ 15.50$, Latge $2 \times 12^{\prime \prime} £ 28 \times 18^{\prime \prime} £ 29.50$

Projector lamps: All 167 £2.90. M6 £S. 65
Projector lamps: Allolen
low Spot lamps Red/Blue/Yellow/Green 100W Spot 150 eaf 13.50 for 10
£59.00
£7.50*
£7.59 £190

RIES - LOUDSPEAKERS \& CABINETS

Complete with PIEZO horn columns fited with 100 watt units (1 watt systertimustrated)

100 Watt £149.50

Deposit $£ 35.26$
12 Months @ 512.91 or 24 Momh e $\$ 20$ meludes 4 Channel 100 Wott Amplifier with Treble, Bass and Master Controls plus Leadi and Twin Piean Horn Columns (shown on righ

200 Welt $£ 225.00$

Deposit 850.80

12 Months © 519.11 or 2 Whonths @ $£ 10.66$ zsix Mixed thenuts plus Thite Sens of Hoss ond Treble Cantrols plus Slove Catput and Master Control.

ACCESSORIES

Melos Echo Unil $£ 59.00$

A high qualhy Casthte Tape Echo Unit giving lang tape life, tufinitely variable echo depth and speed control. Suitable for all mics. ond instruments.
High quality Boom Stand $£ 15.50$. Floor Stond $\mathbf{9 9 . 9 0}$. ECM81 Condenser Mic. Removable Lead - Good Anti-Feedbock £19.95.* EM507 Condensef Mic. - Good Volue £15.00. Phasers £19:80.

D.I.Y. MODUKES FOR P.A. SYSTEMS Mono or stereo

Make your own mixer - Mono/Stereo - up to 20 channels with these, easy to wire modules - Available as $P C B^{\prime}$'s or assembled on panels.

Send for free brochure for complete specification

Saxon AP 100 Amplifier $£ 45$
Four mixing inputs - 100 W into 4 ohms Wide range boss $\&$ treble controls master - Twin outputs
Saxon 150 Amplifier $£ 59$
Four mixing inputs - 100 W into 8 ohms 150 W into 4 ohms - wide ronge boss

\& treble controls - moster

All prices subject to 8% VAT except where asterisked ($12 \frac{1}{2} \%$) Shop premises open Mon to Sar 9 am - 5 pm tunch 12.30-1.30 pm Mail prder deptepen Mon to Fri-10 am. 4 pm = Ring 0.1-684 6385

TO ORDER

ByPost Send your requirements with cheque crossed P.O. or 60p COD charge to address below or just send your Access or Barday Card Number NOT THE CARD.
By Phone You may order COD. Access or Barclay Card
Post \& Packing 50p on all orders except where stated
SAX ON ENTERTAINMENTS LTD.
327 Whitehorse Road, Croydon, Surrey.
All Enquiries Large SAE Please Brochures on request.

ITT . 1 uf 100v.w. MINIATURE POLYESTER CAPACITORS © 20p doz
50 BC 107-8-9 TRANSISTORS Assorted Untested fir $57 p$.
TBA 120 S F.M. IC's with data. Untested. 6 for 60 p .
LED's $0.2^{\prime \prime}$ Red © 15p, Green @ 18 p .
$17^{\prime \prime}$ LOUDSPEAKERS 8 ohm at 75 p .
200 ASSORTED 1 , watt RESISTORS for 75p.
5 WATT NPN DARLINGTON TRANSISTORS 20p. 3 for 50 p .
30 ASSORTED $10 \times A J$ CRYSTALS 5100 TO $7900 \mathrm{k} H \mathrm{~Hz}$ \& 1.10
TO 1 FRICTION SLOW MOTION ORIVES © 60p
MAINS TRANSFORMERS 240 Volt, 22-0-22 Volt 500 mA out © E 1.60
NKT 214 equivalent OC 71 @ $10 \mathrm{p}, 6$ for 50 p .
ZTX 108 TRANSISTORS at 7 for 50 p .
SUB-MINIATURE TANTALUMS 47 IU © $57 p$
SUB-MINIATURE TANTALUMS 4.7 uf $10 \mathrm{v} . \mathrm{w}$ at $5 p, 6$ for 25 p .

SILICON DIODES 400 PIV 1.2 Amp © $5 p$, 6 CO PIV 2 Amp (3) 10 p
MULLARD ELECTROLYTICS $2240 \mathrm{uf} 40 \mathrm{v} . \mathrm{w}$. © 40 o . 4500 uf 25 v .w. (6) 40p.
5000uf 10v.w. @ 15 p . 6400uf $16 \mathrm{v} . \mathrm{w}$. ©. 25p, $8000 \mathrm{uf} 10 \mathrm{v} . \mathrm{w}$. © 25 p .
LOCK P.C. BOARD wh Buzza

MOTOROLA WIDE BAND AMPLIFIER I.C. 450 KHz TO 45 MHz Type MC 1350
with data @ 50p.
D 400 mW ZENERS $3.6 \mathrm{v}, 6.8 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 24 \mathrm{v}$
ERIE RED CAP SUB-MINIATURE 01 uf $100 \mathrm{v.w}$. © 5 . 5 p each
TV SAW FILTERS Untested at 3 for 35 p .
MAINS TRANSFORMERS 240 Volt Input, 24 Volt Tapped at 14 volt 1 Amp
(1 f 1.30 (P \& P 25p).
OBRANDEDAC 128 ThP .C. with data @ $35 p$
COIL FORMERS with
50 ASSORTED TANTALUM BEAD CAPACCITORS for $£ 1.50$
01 uf 125v.W. 1% CAPACITORS for 10 p each
VERNITRON 10.7 MHz FILTERS @ 50 p each
S.C.R's 10 Amp Type 100 PIV @ $25 p, 400$ PIV @ 50p, 800 PIV @ 60p.

ELECTRET MIKE INSERT with FET PRE-AMP @ E1.85.
10 ASSORTED MULTI-TURN TRIM POTS for 60 .
2000uf 100w.w. ELECTROLYTIC CAPACITORS at 60p each
HONO SOCKETS sincle @ 5p, Double @ 10p. 3 Way @ 15p, 4 Way @ 20 p GENERALPURPOSEP CHANNEL FETS with circuits 10 for 75 p . AUDIBLE ALARM SYSTEM with Transistors and I.C. Made for Car Seat Beits. No details at $75 p$

Please add 20p for post and packing (unless כtherwise stated) on UK orders under $\mathbf{£ 2}$. Overseas orders at cost

J. BIRKETT
 RADIO COMPONENT SUPPLIERS

25 The Strait, Lincoln LN2 1JF Tel. 20767

New from Mantec

A comprehensive Home Study Course in Electronics
Suitable for Beginners and Students
The Course which gives you "Right from the
Start" the practical experience as well as the all important back-up theory.
Suitable preparation for C and G examinations
Ensure your future in tomorrow's technology
The home study course that tells not only how but why The Course includes:- 1 The Manual. Easy to read and understand, set out in a clear and concise way, includes numerous
 2 The Kit. All components necessary for the experiments
and projects covered. Mantec also provides a tutorial support service for students requiring further :advice. Send today for your "Right from the start" Home Study Course. Price $£ 35.00$ including VAT. Fill in the coupon Now!

Mantec the leaders in Manufacturing Technology

 Mantec, 7 Dellsome Lane, Welham Green, Hatfield, Herts.To: Mantec, 7 Dellsome Lane, Welham Green,
Hatfield, Herts.
Please send me.
"Right from the Start" home study course(s).
/ enclose Cheque/ Postal Order for $£$
Name:
Address:

BOOKS BY BABANI

Purchase books to the value of $\mathbf{£ 5 . 0 0}$ from the list and choose any 60 p pak from this page FREE.
BP2 Handbook of Radio, JV \& Industrial \&
BP6 Engineers and Machinists Reference Tables
BP7 Radio \& Electronic Colour Codes and Data
BP15 Coginners $\begin{aligned} & \text { Constors Manual of Electronic Circuits for }\end{aligned}$
he Home
BP1 18 Boys and Beginners Book of Practical Radio and Electronics
79 Electronic
$\begin{array}{ll}\text { BP22 } & 79 \text { Electronic Novelty Circuits } \\ \text { 8P23 } & \text { First book of Practical Electronic Projects }\end{array}$
BP24 52 Projects Using IC741 (or equivalents)
Reception and Transmission
$8 P 27$ Giant Chart of Radio Electronic Semiconducto
and Logic Symbols
Projects
Projects
How to B
BP34 Practical Repair 8 Renovation of Colour TVs
Handbook of IC Audio Preamplifier \& Power
50 Circuits Using Germanium. Silicon \& Zener
Diodes
50 Projects Using Relays, SCR's and TRIACS
50 (FET) Field Effect Transistor Projects
How to make Walkie Talkies
I.C. 555 Projects

Mobile Discotheque Handbook
Universal Gram-motor Speed Indicator
Coil Design and Construction Manual
AF-RF Reactance-Frequency Char for Constructors
Handbook of Int
First Book of Hi-Fi Loudspeaker Enclosures Electronic Circuits for Model Railways Audio Enthusiasts Handbook
Solid State Power Supply Handbook Solid State Novelty Projects
Build Your Own Solid State Hi-Fi and Audio
Solid State Short Wave Receivers for Beginners 50 Projects Using IC CA3 130
50 CMOS IC Projects
A Practical Introduction to Digital IC's How to Buld Advanced Short Wave

SWITCHES

Description	No.		Price.
DPDT miniature slide	1973		£0.11*
DPDT standard slide	1974		¢0.14*
Toggle switch SPST			
amp 250 V a.c.	1975		¢0.33*
Toggle switch DPDT			
1 amp 250 V a.c. Rotary on-off mains switch	1976		f0.50*
Rotary on-off mains switch Push switch - Push to make	197 B		¢0.13*
Push switch - Push to break	1979		co. $18{ }^{*}$
ROCKER SWITCH	Colour	No.	Price
A range of rocker	RED	1980	¢0.30*
switches SPST - moulded	BLACK	1981	¢0.30*
in high insulation.	WHITE	1982	¢0.30*
Material available in a	BLUE	1983	£0.30*
choice of colours ideal	YELLOW	1984	¢0.30*
for small apparatus.	LUMINOUS	1985	c0.30*
Description	No.		Price
Miniature SPST toggle, 2 amp 250 V a.c.	195B		¢050*
Miniature SPST toggle. 2 amp			
$250 \mathrm{Va.c}$.	1959		£0.55*
Miniature DPDT toggle. 2 amp 250 V	1960		£0.70*
Miniature DPDT toggle. centre			
off, 2 amp 250 V a.c.	1961		£0.85*
Push bution SPST. 2 amp	1962		¢0.78*
Push button SPST, 2 amp			
250 V a.c.	1963		£0.83.
Push button DPDT. 2 amp	1964		¢0.98.
MIDGET WAFER SWITCHE			
Single-bank wafer type - sui	table for swi	itching at	OV a.c.
100 mA or 150 V d.c. in non-r contacts. These switches have	eactiver loads a spindle	s make-bef 0.25 in dia.	$\begin{aligned} & \text { e break } \\ & \text { nd } 30^{\circ} \end{aligned}$
indexing.			
Description		Order No.	Price
1 pole 12 way		1965	¢0.48**
2 pole 6 way		1966	¢0.48*
3 pole 4 way		1967	f0.48***
4 pole 3 way		1968	¢048*
MICRO SWITCHES		Order No	Price
Plastic button gives simple 1 p	le change ov	er action	
Rating 10 amp 250 V a.c.		1970	0.25

FUSE HOLDERS AND FUSES

CASES AND BOXES

INSTRUMENT CASES. In two sections vinyl covered top

$\begin{aligned} & \text { and } \\ & \text { No. } \\ & 155 \\ & 156 \\ & 157 \\ & 158 \end{aligned}$	Length	Width	Height	Price
	$8 \mathrm{in}^{\text {n }}$	$5 \frac{1}{2}$ in	2 in	¢1. 25
	1 in	6 \%	3 in	E2.12
	6in	43 in	$1 \frac{3}{4} \mathrm{in}$	E1.30
	9 in	$5 \frac{1}{4}$ in	$2 \frac{1}{2}$ in	E1.76
ALUMINIUM BOXES construction each box and screws.		Made from bright ali., folded complete with half inch deep lid		
No.	Length	Width	Height	Price
159	5 ¢in	$2 \frac{1}{4} \mathrm{in}$		62p
160	4 in	4 in	$1 \frac{1}{2}$ in	62p
161	4 in	2tin	$1 \frac{1}{2}$ in	62p
162	5t $\frac{1}{4}$	4 in	$\frac{1}{\frac{1}{2}}$ in	$70 p$
163	4 in	2 in	2 in	64p
164	3 in	2 m	1 in	44p
165	7 in	5 in	21 ${ }^{\text {in }}$	£1.04
166	8 in	6 in	3 ín	£1.32
167	6 in	4 in	2 in	86p

P.C.B. BOARDS

$\begin{array}{ll}\text { C26 } 4 \text { pieces } 8^{\prime \prime} \times 3 \downarrow^{\prime \prime} \text { (approx.) Single-sided fibreglass } & 80 \mathrm{p} \\ \text { C27 } 3 \text { pieces } 7^{\prime \prime} \times 37^{\prime \prime} \text { (approx.) Double-sided fibreglass } & 60 p\end{array}$

TRANSFORMERS
MINIATURE MAINS Primary 240 V

AUDIO LEADS

107	FM Indoor Ribbon Aerial 3.5 mm Jack plug to 3.5 mm jack plug. Length 1.5 m	¢0.60*
13		
		£0.75*
114	5 pin DIN plug to 3.5 mm . Jack connected to pins 38.5 . Length 1.5 m	f0.85*
115	5 pin DiN plug to 3.5 mm . Jack connected	c085*
116	Car aerial extension. Screened insulated	
	lead. Fitted plug ${ }^{\text {a }}$ skt.	¢1 10*
117	AC mains connecting lead for cassette recorders \& radios. 2 metres	£0 68*
118	5 pin DIN phono plug to stereo headphone jack socket	£1.05*
119	$2+2$ pin OIN plugs to stereo jack socket with attenuation network tor stereo headphones. Length 0.2 m	¢0.90*
120	Car stereo connector. Variable geometry plug to fit most car cassette, 8 track carlitge \& combination units. Supplied with inline fused power lead and instructions.	¢0.60*
123	6.6 m Coiled Guitar Lead Mono Jack Plug to Mono Jack Plug 8LACK	£1.50*
124	3 pin DiN plug to 3 pin DIN plug. Length 1.5 m	£0.75*
125	5 pin DIN plug to 5 pin DIN plug. Length 1.5 m	¢0.75*
126	5 pin DIN plug to Tinned open end. Length 1.5 m	¢0.75*
127	5 pin Din plug to 4 Phono Pluas. All colour coded. Length 1.5 In	£1.30*
128	5 pin DiN plug to 5 pin DIN socket. Length 1.5 m	¢0.80*
129	5 pin DIN plug to 5 pin DIN plug mirror image Length 1.5 m	¢1 05*
130	2 pin DIN plug to 2 pin OIN inline socket. Length 5 m	¢0 $68{ }^{*}$
131	5 pin DIN plug to 3 pin DIN plug. 184 and 38.5 . Lengt 1.5 m	¢0.83*
132	2 pin DIN plug to 2 pin DIN socket. Length 10 m	¢0.98*
133	5 pin DIN plug to 2 phono plugs. Connected pins 385 . Length 1.5 m	¢0.75*
134	5 pin DIN plug to 2 phono sockets. Connected pins 38,5 . Length 23 cm	c0.68*
135	5 pin DIN socket to 2 phono plugs. Connected pins 385 . Length 23 cm	¢0.68*
136	Coiled stereo headphone extension lead. Black. Length 6 m	¢1.75*
178	AC mains lead for calculators etc.	c0.45*

BI-PAK CATALOGUE

NEW EDITION NOW AVAILABLE
Send tor your copy of our revised catalogue and price list NOWI
It contains 127 pages packed with literally hundreds of semiconductors.
components and our famous range of B1-KITS ONLY 65p POST FREE

ORDERING Do not forget to state order number and your name and address.
V.A.T. Add $12 \frac{1}{2} \%$ to prices marked*. 8% to those unmarked P\&P. 35p unless otherwise shown.

B/PAK

DEPT. PE8, P.O. Box 6, Ware, Herts COMPONENTS SHOP: 18 BALDOCK STREET, WARE, HERTS.

High quality audio modules for Stion		
S450		$\xrightarrow{\text { y.amm }}$
\%an		
		famam
Stereo 30	ation mome	
	2-3.	3-3

Stereo and mono

MPA3O
 MAGNETIC CARTRIDGE PRE-AMPLIFIER

Enjoy the quality of a

SENSITIVITY
EQUALISATION
INPUT IMPEDANCE
SUPPLY
DIMENSIONS
Within for 100 mV output Within $\pm 1 \mathrm{~dB}$ from 20 Hz to 50 K ohms
18 to 30 V -re earth $110 \times 50 \times 25 \mathrm{~mm}$ (inc DIN

PA12

STEREO
PRE-AMPLIFIER

£7-10

The PA12 Stereo Pre-
Amplifier chassis is designed and recommended for use with the AL $20 / 30$ Audlo Amplifier Modules, the PS12 power supply and the T538 Transformer. Features include on/off volume, Balance, Bas and Treble controls. Complete with tape output.
FREQUENCY RESPONSE $\quad 20 \mathrm{~Hz}-20 \mathrm{kHz}(-3 \mathrm{~dB})$ BASS CONTROL $\quad \pm 12 \mathrm{~dB}$ at 60 Hz TREBLE CONTROL I 14 dB at 10 Hz INPUT IMPEDANCE $\quad 1$ Meg. ohm NNPUT SENSITIVITY $\quad 300 \mathrm{mV}$ CROSSTALK $-60 \mathrm{~dB}$ $-65 \mathrm{~dB}$ SIGNAL/NOISE RATIO 20 dB OVERLOAD FACTOR $\quad \pm 20 \mathrm{~dB}$ DIMENSIONS
$152 \mathrm{~mm} \times 84 \mathrm{~mm} \times 25 \mathrm{~mm}$

PS12 POWER SUPPLY

Designed for use with the AL30A S. 450 and MPA30 in conjunction with transtormer T538.		
INPUT VOLTAGE	17-20v A	
OUTPUT VOLTAGE	$27-30 \mathrm{v}$ DC	
OUTPUT CURRENT	800 ma	
SIZE	$60 \mathrm{~mm} \times 43 \mathrm{~mm}$	

GE 100 NINE CHANNEL MONO-GRAPHIC EQUALIZER

The GE100 has nine octave adjustments using integrated circuit
active filters. Boost and Cut limits are $\pm 12 \mathrm{~dB}$. Max. Voltage andling $2 \vee$ RMS. T.H.D 0.05% input impedence 100 K . Outpui mpedence less than 10 K . Frequency response $20 \mathrm{~Hz}-20 \mathrm{KHz}(3 \mathrm{~dB})$ The nine gain controls are centred at $50,100,200$,
$400,800,1,600,3,200,6,400$ and $12,800 \mathrm{~Hz}$. The f 22.00 suggested gain controls are 10 K LIN sliders (not 22 supplied with the module) See Paks S 31 and $16192+125 \mathrm{p}$ pap SG30 POWER SUPPLY BOARD for GE100 15-0-15 VOLT E5• $50+$ 12立\% VAT + 25p pap

SIREN ALARM MODULE

American Police screamer powered from any 12 volt supply into and other security purposes Order No. S15. No. BP124 Only $\mathbf{f 3} 50+8 \%$ VAT $+25 p$ pAp

MA60 HI-FI AMPLIFIER KIT

Build you own top quality amplifier, save yourself pounds. The MA60 kit comprises the following Bl-kits modules, $2 \times$ AL60 amps, \times PA100 pre-amp, $1 \times$ SPM80 stab, power supply, $1 \times$ BMT80
ransf. giving 17 watts RMS per channel STEREO. All modules covered by the BI-PAK satisfaction or money back guarantee. Details of the above modules are in this ad
Price $£ 32 \cdot 00+12 \% \% \vee A T+62 p$ p\&p.

TC60 KIT

A beautifully designed genuine TEAK WOOD veneered cabinet o put the professional touches to your home built amplifier. Ful Sockets, Noen, etc. Ideal for the MA60. Sire: $425 \mathrm{~mm} \times 290 \mathrm{~mm} \times$
$95 \mathrm{~mm} .19 .95+12 \frac{1}{2} \%$ VAT $+86 p$ p\&p

TRANSFORMERS

T538 For use with S. 450 AL30A MPA30 $+55 p$ psp $+12 \frac{1}{2} \%$ VAT Order No. 2036
T2050 For use with Stereo 30 Order No. 2050
BMTBO For use with AL60 SPM 80
Price: $\mathbf{f 3} \mathbf{2 5}+55 p$ p\&p $+12 \frac{1}{2} \%$ VAT Order No. 2034 Price: $\mathbf{E 5} 40+86 p$ p\&p $+12 \frac{1}{2} \%$ VAT BMT250 For use with AL250
Order No. 2035
Order No. $2035 \quad$ Price: $\mathbf{f 6} \cdot \mathbf{3 5}+\mathbf{£ 1} 10$ p\&p $+\mathbf{1 2 1} \%$ VAT

DEPT. PE8, P. O Box 6, Ware, Herts

COMPONENTS SETS include all necessary resistors, capacitors, semiconductors, potentiometers and translormers. Hardware such as cases, sockets, knobs keyboards, etc. are not included but most of these may be bought separately. Fuller details of kits, PCBs and parts are shown in our lists.
CIRCUIT AND LAYOUT DIAGRAMS are supplied free with all PCBs unless "as published"
PHOTOCOPIES of all P.E. texts for most of the kits are available-prices in our lists.

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET
P.E. MINISONIC MK. 2 SYNTHESISER

A portable mains-operated Miniature Sound Synthesiser, with keyboard circuits. Although having slightly fewer lacities than the large PE Synthesiser the functions
 controlled amps keyboard hold and control circuits. HF oscillator and detector, ring modulator. nolse generator. mixer, power supply.

Set of basic component kits from $£ 62.23$
Set of printed circuit boards
$£ 9.94$
P.E. SYNTHESISER (P.E. Feb. 73 to Feb. 74)

The well acclaimed and highly versatile large-scale mains-operated Sound Synthesiser complete with keyboard circuits. Other circuits in our lists may be used with the Synthesiser to good advantage.
The Main Synthesleer: PSU, 2 linear VCOs. 2 ramp generators. 2 input amps, sample hold, noise generator. reverb amp, ring modulator. peak level circuit. envelope Sel of basic component kits
Set of printed circuit boards
£83.03
The Synthesiser Keyboard Circuits (can be used without the Main Synthesiser to make an independent musical instrument): 2 logarithmic VCOs, divider, 2 hold circuits, 2 modulation amps mixer, 2 envelope shapers and PSU.
Set of basic component kits $\quad \mathbf{~ 4 8 . 1 8}$
Set of printed circuit boards.

GUITAR EFFECTS PEDAL (P E July 75)
Modulates the attack decay and fiter characteristics of an audio signal not only from a guitar but from any audio source. producing 8 different switchable effects that can be further modified by manual controls Possibly the most interesting of all the low-priced sound effects units in ou ange Circult does not duplica Overdrive Unit

Component set with special foot operated switches
Alternative component set with panel switches
£7.59
Printed circuit board
$£ 4.96$

SOUND BENDER (PE May 74)
multi-purpose sound controller. the functions of which nclude envelope shaper remolo vie functions of which automatic fader and frequency-doubler
Component set for above functions (excl SWs) $£ 7.84$ Printed circuit board $£ 1.81$ Optional extra-additional Audio Modulator, the use of produce jungle-drum rhythms
Component set (incl PCB)
£2.88
PHASING UNIT (PE Sep1 73)
A simple but effective manualty controlled unit for
introducing the phasing sound into live or recorded music Component set (inel PCB) £2-87

PHASING CONTROL UNIT (PE Oct 74)
For use with the above Phasing Unit to automatically control he rate of phasing
Component set (incl PCB) $£ 4.48$
SOPHISTICATED PHASING ANO VIBRATO UNIT
A slighlly modified version of the circult published in automatic control over the rate of phasing and vibrato $\begin{array}{lr}\text { Component set } & \mathbf{£ 1 7 . 6 9} \\ \text { Printed circuit board } & \mathbf{£ 2 . 3 3}\end{array}$

WAH-WAH UNIT (P E Apr 76)

The Wah-Wah effect produced by this unit can be controlled manually or by the integral automatic controller
Component set (incl PCS) Component set (incl PCE)
AUTOWAH UNIT (P E Mar 77)
Automatically produces Wah-pedal and Swell-pedal sounds
each time a new note is played
comporit special foot switenes
$£ 7.27$

POST AND HANDLING

U.K. orders-under £15 add 25 p plus VAT, over £ 15 add 50 p plus VAT. Keyboards E2.00 plus VAT.
Optional Insurance for compensation against loss or damage in post, add extra 50 p for cover up to $£ 50, £ 1.00$ for $£ 100$ cover $£ 2.00$ for $£ 200$ cover.
Eire. C.I.. B.F.P.O., and other countries are subject to Export postage rates.

PE JOANNA PLUS ORGAN VOICING

The basic five octave electronic piano (P.E. May/Sept 75 and The basic five octave electronic piano (P.E. May/Sept 75 and
Sound Design) has switchable alternative voicings for HonkySound Designt has swichable anerna Three together with socilities including fast and slow tremolo loud and soft pedal switching and sustain pedal switching. The modification petains all the circuitry associated with the piano wut in addition provides an organ-voice envelupe facility with 5 switchate pitches, variabla atrack and sustain phasing and vibrato. vibrato.
Set of components lexcl switches) for PSU, Frequency generator. Pitch and Note Divider, Envelope Shapers, Voicings, and Control circuitries (Order as KIT 71-5) £109.75 Set of PCB (Order as PCB SET 71 6।
£29,18

SYNTHESISER TUNING INDICATOR (P.E. July 77)
A simple 4-octave frequency comparator for use with synthesisers and other instruments where the full versatility Tuning Fork is not required
Component and PCB (but excl sw)

GUITAR FREQUENCY DOUBLER (P.E. Aug. 77)
A modified and extended version of the circuit published. Component set and PCB

GUITAR SUSTAIN (P.E. Oct 77)

Maintains the natural attack whilst extending note duration. Component set. PCB and foot switches £4.90 Component set. PCB and panel switches E3.48

WIND AND RAIN UNIT

A manually controlled unit for producing the above-named sounds

Component set (ir.cl PCB)
£3.72

GUITAR OVERDRIVE UNIT (P E. Aug 76)
Sophisticated. versatile Fuzz unit. including variable and switchable controls affecting the fuzz quality whilst retaining the attack and decay. and also providing fitering Does no duplicate the effects from the Guitar Effects Pedal and can be used with it and with other electronic instruments
component set using dual shder pot
$\begin{array}{ll}\text { Component set using dual shder pot } & \text { E8.86 } \\ \text { Component set using dual rotary pot } & \text { E6.20 }\end{array}$
$\begin{array}{ll}\text { Component set using dual rotary pot } & \text { e6.20 } \\ \text { Printed circuit board } & \mathbf{~} 1.62\end{array}$

FUZZ UNIT

Simple Fuzz unit based upon P.E. "Sound Design" circuit. Component set (incl. PCB) $£ 2.05$

TREMOLO UNIT

Based upon PE Sound Design circuit
Component set (incl PCB) $\quad £ 3.64$

TAEBLE BOOST UNIT (P E Apr 76)
Gives a much shriller quality to audio signals fed through it

The depth of boost is manually adjustable

Component set (incl PCB)
£2.40
P.E. TUNING FORK (PE Nov 75)

Produces 84 switch-selected frequency-accurate tones. A PED monitor clearly displays all beat note adjustments. Ideal for tuning acoustic or electronic musical instruments.
$\begin{array}{lr}\text { Main component set lincl. PCB) } & \mathbf{£ 1 5 . 5 9} \\ \text { Power supply set lincl. PCB) } & £ 7.03\end{array}$

SEE OTHER PAGE FOR KEYBOARDS, AND OUR LISTS FOR OTHER COMPONENTS AND ACCESSORIES STOCKED

AND OTHER PROJECTS

PHOTOGRAPHS in this advertisemen show two of our units containing some of the P.E projects buill from our kits and and are not tor sale, though a small selection of other cases is available.

IST-Send stamped addressed envelope with all U.K. requesis tor free ist giving fuller details of PCBs. kits and other components
OVERSEAS enquiries for list Europesend 20p: other countries-send 50 p .

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKimber-Allen Keyboards as required for many published circuits. The manufacturers claim that hese are the finest moulded plastic keyboards available. All octaves are C to C, the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame. 3 Octave (37 notes)
4 Octave (49 notes)
5 Octave (61 notes) $\mathbf{£ 2 5 . 5 0}$
$\mathbf{£ 3 2}-25$
$£ 32.25$
$\mathbf{£ 3 9}$
Contact Assemblies (gold-clad wire) for use with the above keyboards (1 required for each notel:

Type GJ: Single-pole change-over
Type GB: 2 pairs of contacts, each pair normally open
Type GC: 3 pairs of contacts, each pair normally open
Type GH: 5 pairs of contacts, each pair normally open
$\begin{array}{ll}\text { Type GE: } 4 \text { pairs of contacts. each pair normatly open } & \text { each 45p } \\ \text { Type GH: } 5 \text { pairs of contacts, each pair normally open } & \text { each 57p } \\ \text { Type 4PS: } 3 \text { pairs of contacts plus single-pole changeover } & \text { each 53p }\end{array}$
each 24p
each 27p
ing) are available. Details in our lists

RHYTHM GENERATOR

15-Rhythm Tempo. Timing and Logic control unit (excl. sw's but incl. PCB)
10-Instrument Effects circuits
PCB for Effects circuits
128-NOTE TUNE-PROGRAMMABLE SEQUENCER
(P.E. Nov/Dec. 77)

Enables a voltage controlled synthesiser to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and rhythmic pattern are externally variable. (Please use order codes quoted in brackets.!

Main Circuit (Nov) excl. sw's (KIT 76-1)
Power Supply (KIT 76-3)
£20.60
Trigger Inverter and Alt. Output (KiT 76-2)
LED Counter (KIT 76-4)
PCB (as published) for KITS 76-1 \& 3 (PCB 76A)
PCB for KITS 76-2 \& 4 (PCB 76B)
P.E. STRING ENSEMBLE (PE Mar-July 78)

The new keyboard strin
Power Supply (KIT 77-1)
Tone Generator (KIT 77-2)
Diode Gates (KIT 77-3)
Chorus Generator (KIT 77-4)
Voicing System (KIT 77-5
Double-sided PCB for Power Supply, Tone Generator \& Diode Gates with most of the Matrix wiring as printed tracking
 PCB for Voicing System (PCB 770)
Fuller details of kits \& PCBs are in our lists.
FORMANT SYNTHESISER (Elektor 1977/78
Very sophisticated music synthesiser for the advanced con structor who puts performance before price. Details in our lists.
OISCOSTRDBE (P.E. Nov. 76)
4 -channel iight-show controller giving a choice of sequential random, or full strobe mode of operation. Basic component set

8IOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)
Multi-function circuits that, with the use of other external equipment, can serve as lie-detector. alphaphone, cardiophone

Pre-Amp Module Components set (incl. PCB) Basic Output Circuits-combined component set with PCBs, for alohaphone, cardiophone, frequenc meter and visual feed-back lampdriver circuits. £6.59 Audio Amplifier Module Type PC7 £7.75

10\% DISCOUNT VOUCHER (PE 68)
TERMS: Correctly costed, C.W.O., U.K. orders over $£ 50$ goods value. Valid until end of month on cover of P.E. This voucher must accompany order.

Kontakt products $60-61$ and WL provide an unsurpassed cleaning capability for contacts and swltchgear.

KONTAKT 60

Safely dissolves oxides and sulphides and disposes of resinated contact greases and dirt, but does not attack plastics or any standard production materials.

Is sllicone free.

Contains a light lubricant to avoid possible corrosion of contact paths and obviates further oxydlsation and creep' currents.

Quality Industrial Sprays from Kontakt Chemie

K70 Protective Plastic Spray
K72 Insulating Spray
K75 Cold Spray
K80 Siliconised Polish K100 Antistatic Spray
K101 Dehydrating Spray and Pos. 20 POSITIVE PHOTO RESIST VARNISH.

Distributed by:

SPECIAL PRODUCTS DISTRIBUTORS LTD.
 81 Piccadilly, London W1V OHL.

Tel: 01-629 9556
Cables: Speciprod, London W1
Descriptive leaflets of the above products are freely available on request.

JONES SUPPLIES

TTL				CMOS			
7400	. 13	7447	. 08	4001	. 17	4047	. 95
7401	. 13	7451	. 16	4002	. 17	4049	. 48
7402	. 16	7470	. 30	4011	. 19	4050	- . 53
7403	. 16	7472	. 28	4013	. 45	4070	- . 53
7404	. 19	7473	. 30	4014	. 85	4502	2.95
7406	. 36	7474	. 30	4015	. 85	4508	2.09
7407	. 36	7475	. 40	4016	. 52	4510	1.51
7408	. 19	7476	. 35	4017	. 85	4511	1.75
7410	. 14	7486	. 35	4018	. 85	4514	42.98
7413	. 36	7493	. 35	4023	. 19	4516	61.09
7414	. 74	7496	. 82	4027	. 52	4518	1.02
7416	. 36	74107	. 32	4028	. 97	4528	1.02
7420	. 16	74141	. 70	4042	. 85	4536	5.00
7442	. 68			4046	1.40		
MAINS TRANSFORMERS (P\&P 60p each)				miscellaneous $U 2$ size Ni Cad Bat.			
6-0-6			. 89	(P\&P 30			¢1.95
9-0-9			. 93	8 pin 74			. 18
12-0-12			. 93	Scope P	号e,	Plug	¢14.99
12-0-12			. 99	BNC So			. 90
9-0-9			£2.44	Signal I	ector		¢5.20
12-0-12		Sh.	£2.69	Multime	er 1,0	PV.	
15-0-15			£2.69	11 Rang	(P8		£6.25
30-0-30		Sh.	£3.10	Telepho	e Pick	Coil	. 92
20-0-20		Unsh.	£4.40	$3^{\prime \prime} 8 \Omega$	kr. (P	Op)	. 99
30-0-30		Unsh.	£5.50	4"8 8 S	kr. (P	Op)	£1.44
				0-1 mA	anel		£4.20
Stereo Amp Module $6+6$ watts				$240 \mathrm{v} \mathrm{AC/9v} 120 \mathrm{~mA}$ Regulated			
O.P. Imp. $8 \Omega .24 \mathrm{v}$ DC			£7.99	Supply in Plastic Case			£1.95
F.M. Tuner. Module. 9v DC $£ 7.99$							

PRICES: PLEASE ADD 8\% VAT, P\&P 10P EXCEPT WHERE SHOWN RETAIL \& MAIL ORDER

OPEN 7.30 p.m. M. TH. FRI. SAT.
JONES SUPPLIES
588 ASHTON ROAD, HATHERSHAW, OLDHAM, LANCS. 061-6529879

The expert and personel guidance by fully qualified tufors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.'

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificàte

Diploma Courses

Colour T.V. Servicing
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Carcer Courses

A wide range of other technical and professional courses are available including GCE.

Post this coupon or 'phone today for free ICS careers guide.

To ICS, Dept. 273X, Intertext House, London SW8 4UJ
or telephone 01-6229911 (all hours)
促

Wilmslow Audio

THE firm for speakers!

SEND 15p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

ACT AUDAX BAKER
BOWERS \& WILKINS CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA - EMI © EAGLE © ELAC - FANE GAUSS GOODMANS - HELME I.M.F ISOPHON - JR - JORDON WATTS KEF - LEAK - LOWTHER - McKENZIE MONITOR AUDIO - PEERLESS - RADFORD RAM - RICHARD ALLAN - SEAS tannoy - videotone wharfedale

WILMSLOW AUDIO (Dept. P.E. 8) sWan works, bank square, wilmslow, CHESHIRE SK9 1 HF
 Discount HI-FI, etc. at 5 Swan Street and 10 Swan Street
 Tel. Wilmslow 29599 for Speakers
 Tel.: Witmslow 26213 for $\mathrm{Hi}-\mathrm{Fi}$

56 FORTIS GREEN ROAD. MUSWELL HILL, N10 3HN TELEPHONE: 01-883 3705

OUR LATEST CATALOGUE CONTAINS FREE 45 pence WORTH OF VOUCHERS

CONTAINS MICROPROCESSORS + BOARDS MEMORIES, TTL, CMOS, ICs, PASSIVES, ETC., ETC.

SUPERSAVERS

ALL FULLSPEC DEVICES

texas	timer	Red led
741	555	TIL209
5 for	4 for	10 for
£1.00	£1.00	£1.00

A4 IC BOOKLET

SUPPLIED FREE WITH ORDERS OF ANY ICs WORTH £5.00 OR MORE, CONTAINS CIRCUITS, PIN CONNECTIONS AND DATA (35 p + SAE IF SOLD ALONE).

You'll learn a lot from the Heathkit catalogue.

The Heathkit catalogue is packed with scores of top quality electronic kits. Educational, practical and fascinating items which you can build yourself.

Send for the catalogue now.

To Heath. (Gloucester) Limited,
Department [PE883]. Bristol Road,
Gloucester, GL2 6EE. (Regstered number 666177) Name Address

Please tick the literature you want and enclose the appropriate amount in postage stamps.
Heathkit catalogue only \square (enclose 20p).
16 page computer brochure only \square (enclose 20p).
N.B. If you are already on the Heathkit maling list you will
automatically receive a copy of the latest catalogue without having to use this coupon.

The world's biggest producers of electronic kits.

There are Heathkit Electronics Centres at 233 Tottenham Court Road London (01-636 7349) and at Bristol Road, Gloucester (Gloucester 29451)

LOOK! Here's how you master electronics

the practical way

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1 Build an oscilloscope
As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course s practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a

2 Read, draw and understand circuit diagrams
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio. computers and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuits

 We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etcvery large saving over buying a similar piece of essential equipment.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

British National Radio \& Electronic School

P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS
All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

FAST MOVING?

RECENT news of the development of further advanced passenger trains capable of 150 m.p.h. has triggered interest from overseas governments. The Japanese are known to have a particular interest in the systems used to tilt the trains by up to nine degrees on curves; this is an electro-hydraulic system, the design of which interests the Japanese Government. Let us hope that we can sell these systems, or at least the technology, to them rather than once again allow others to capitalise on our inventiveness.

INFORMATION

We have also noted one or two other improvements-the installation of "travel computers" at main line stations being one of particular interest.

A simple unit that quickly provides all train times and other general information at the push of a few buttons is a great boon to many travellers. The unfortunate part is that one must be at the station to use the computer. With the now inadequate telephone information system, one can spend a whole day trying to obtain
train times, etc. as anyone who has tried recently in the London area will know.

With the widespread use of Viewdata still a good few years away, it is a problem which would appear to require an interim solution-perhaps the installation of a Viewdata terminal at all stations would assist!

ROBOTS

These are just two minor areas where we are seeing the immediate application of "the new electronics" and it is being widely reported that the advance of technology will change the whole face of industry and society. With approximately 70,000 industrial "robots" already in use in Japan is it any wonder that they are able to produce many items cheaper than Western countries. Although we in Britain are employing robots in increasing numbers, we are generally rather behind other industrial countries in this area, for a variety of reasons.

The knowledge that a revolution is about to commence is said to be partly behind the NEB plan to set up a microelectronics company in partnership with a group of engineers. This controversial scheme has rocked the
established companies in this country-few of which have made the necessary capital investment to enable them to compete with i.c. manufacturers in America and Japan.

The business of chip production was recently referred to as "silicon printing" by Dr. Ed. Sack of General Instrument Microelectronics, one of the few companies producing chips in Britain. It is sad to note that GIM was set up by a. group of British engineers with American backing about 10 years ago to design and sell chips for the communications industry. However, many of its products are now selling well abroad but not in Britain because the technology employed is in advance of the British systems.

GIM see the next boom as being in games-particularly hand held onesand toys. They have developed a remote control system for toy cars which employs two m.p.u.'s. GIM are also active in programmable TV games and have joined forces with EMI who will be selling software in cassette form. Perhaps their recent Queen's Award for export achievement will be augmented by a rapidly expanding home market!

Mike Kenward

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
Alan Turpin PRODUCTION EDITOR
David Shortland TECH. SUB EDITOR

ADVERTISEMENT

MANAGER D. W. B. Tilleard

Jack Pountney ART EDITOR
Keith Woodruff SENIOR ARTIST
Isabelle Greenaway TECH. ILLUSTRATOR

Editorial Offices.
Westover House
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 71191

We regret that lengthy technical enquiries cannot be answered over the telephone.

Advertising Offices:
King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS Phone: Advertisements 01-261 5000 Telex: 915748 MAGDIV-G

Make Up and Copy Dept.
Phone : 01-261 6601

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH.

Back Numbers and Binders

Copies of most of our recent issues are available from: Post Sales Department, IPC

Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 65p each including Inland/Overseas p \& p.

Binders for PE are available from the same address at f 2.85 each to UK addresses, £3.45 overseas, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Cheques and postal orders should be
made payable to IPC Magazines Limited.

Letters

Queries regarding articles published in PE should be addressed to the Editor, at the Editorial Offices, and a stamped, addressed envelope enclosed. We cannot undertake to answer questions regarding other items nor to answer technical queries over the telephone.

THIS touch switch can be used to directly replace an ordinary household light switch without the need for either additional wiring or fixing. The unit is capable of handling a mains load of up to 300 Watts and if the quadrac CSR1 (a diac and triac combined) is mounted on a suitable heatsink this figure can be increased to 750 Watts.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Touch Switch is shown in Fig. 1. Gates " a " and " b " of IC1 are connected as a bistable multivibrator with gates " c " and " d " used as a buffer stage.

When the switch is off the output from the buffer stage (pins 10 and 11) is high and the transistor TR1 is on. Because TR1 is connected across the diode bridge D1 to D4, when it is on the capacitor C 4 is prevented from charging. As the quadrac is switched on by a rising voltage across C4, when the transistor TR1 is on the quadrac and consequently the lamp are both off.

If when the lamp is off a finger is placed against the "ON" plate this capacitively grounds the plate due to the high input impedance of the stage and a voltage is developed across R1 and R2. This voltage takes the input of gate " b " high which results in the output of the bistable being switched from the low to the high state. This high state output from the bistable is inverted by the buffer stage to a low state and TR1 is turned off.

With the transistor off, capacitor C4 is no longer prevented from charging via R7 and the voltage across the capacitor increases. When this charging voltage reaches approximately 33 V the quadrac switches the lamp on.

When the switch is off the "ON" touch plate is illuminated to enable the switch to be easily located in the dark.

The capacitors C1 and C2 filter any voltage spikes that may occur from motor starting surges elsewhere in the house, such as when a fridge or freezer is turning on. These spikes could cause false triggering of the switch.

CONSTRUCTION

The p.c.b. design for the Touch Switch is shown in Fig. 2 with Fig. 3 showing the layout of the components. Note that where R1 is joined to R2 and R3 is joined to R4 the components are not soldered to the board.

As the plain side of the printed circuit board is used as the frontplate for the switch (with all the components being mounted on the copper track at the rear of the board) only four drilled holes are necessary in the p.c.b.; two for fixing the switch to the wall and one in the middle of each touch plate.

After the holes have been drilled the p.c.b. can be sprayed the desired colour and then dry cellotape should be placed on the front panel over the two touch plate holes. If the board is then turned over clear epoxy resin can be used to fill the "ON" plate hole while the "OFF" plate hole should be filled with black epoxy resin. When both resins have set the cellotape can be removed.

The components should then be soldered onto the board keeping the leads as short as possible.

TESTING AND MODIFICATIONS

The "lamp" wire from the touch switch should be connected via the lamp to the neutral lead. If the power is turned on and a finger placed over each touchplate in turn the light should go on and off. Care should be taken to ensure the live and lamp wires are connected correctly otherwise the switch will not operate satisfactorily.

If the switch is to be used to drive a fluorescent light the circuit should be modified as shown in Figs. 4 and 5.

By incorporating the CR Network shown in Fig. 6 the light will remain on for a preset time period determined by the value of the $C R$ network, i.e. if $C=22 \mu F$ and $R=10 M \Omega$ the delay is $22 \mu \mathrm{~F} \times 10 \mathrm{M} \Omega=2 \mathrm{mins}$.

COMPONENTS . . .

Resistors

R1, R3	$10 \mathrm{M} \Omega$ (2 off)
R2, R4	$4.7 \mathrm{M} \Omega$ (2 off)
R5, R7	$100 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$ (2 off)
R6	$100 \mathrm{k} \Omega$
R8	$220 \mathrm{k} \Omega$

All $5 \% \frac{1}{4} \mathrm{~W}$ carbon unless otherwise stated
Capacitors

C1	150 pF 50 V Ceramic
C2	47 pF 50 V Ceramic
C3	$22 \mu \mathrm{~F} 16 \mathrm{~V}$ Tantalum
C4	10 nF 100 V Polyester

Semiconductors
D1-D4 1N4148 (4 off)
D5 $\quad 6.2 \mathrm{~V} 400 \mathrm{~mW}$ Zener
D6 1 N4004
TR1 ZTX304
IC1 CD4001
CSR1 400V 6.5A Quadrac

Miscellaneous

Miniature wire ended neon RS type 586-015

CONSTRUCTOR'S NOTE

All the components including the p.c.b. can be obtained from G.J.D. Electronics; 105 Harper Fold Road, Radcliffe, Manchester.

Fig. 1. Complete circuit diagram of the Touch 8witch

Fig. 2. Printed circuit board design

Fig. 4. Modification necessary for switching a fluorescont light

Fig. 3. Component layout for p.c.b.

Fig. 5. Modification required to p.c.b. design for switching a fluorescent light

Fig. 6. Modification for obtaining a preset "ON" time period

CONSTRUCTION

Mount all the switches and the potentiometer on the front panel and wire them up as shown in Fig. 2.1, using ribbon cable but leaving the p.c.b. end of the ribbon unconnected.

Insert the i.c.s lastly when assembling the p.c.b., removing them from the conductive foam packing only at the moment necessary. The games chips themselves (IC1 and IC2) should be inserted last of all. Some earthed tin foil laid out on the worktop surface will help to reduce the possibility of damage due to static electricity. It would be advisable to mount the modules early on so that the remaining component space is more apparent. On the UM1263 (sound modulator) it is necessary to remove the lid and solder a 100 pF capacitor (C5) between the coaxial socket centre-pin and the p.c.b. The capacitor lead can be threaded to the inside of the modulator box through the socket centre hole, and then soldered at the point where it emerges.

board powered from external power pack

minimal
 setting-up
 procedure

Fig. 2.1. Switch panel wiring diagram. This matrix wiring system was referred to in Part 1, Fig. 1 (wrongly as Fig. 10)

Fig. 2.2. Component board layout. Note that CI 7 couples the Sound Modulator output socket to the p.c.b.

Fig. 2.3. Printed circuit layout (actual size)

Fig. 2.4. Component side p.c.b. (actual size)

The hand-held units (shown here with lid removed), contain dual-axis potentiometers for movement of the bat both up and down, and left and right across the television

The serve buttons supplied by Teleplay are mounted on the outside surface of the box, with only the connection tags passing through the lid

CORRECTIONS TO PART ONE

In part one, capacitors C10 and C12 were marked in the components list as $0.8 \mu \mathrm{~F}$. This should read $0.18 \mu \mathrm{~F}$.

TR1-TR3 are BC337 transistors, and the tunable choke should be $40 \mu \mathrm{H}$ R17 is 100 תand not $1 \mathrm{~K} \Omega$.

It is also necessary to add the following resistors to the components list:

R38, R39	$8.2 \mathrm{~K} \Omega$
R53	$5.6 \mathrm{~K} \Omega$
R54	$2.2 \mathrm{~K} \Omega$
R55	$222 \mathrm{~K} \Omega$
R60, R61	$6.8 \mathrm{~K} \Omega$
R62	100Ω
C17	100 pF silvered mica

The main box should be cut for cable entry holes, and for the miniature jack socket (d.c. supply input). The hand-held units require a square hole of $15 \times 15 \mathrm{~mm}$ to accommodate the dual axis controls, in addition to further drillings for the push buttons and cable entry.

Screened 5 -way cable is necessary to connect the hand-held units to the main box, and the wiring of these can be seen in the main circuit diagram.

Once all the switches and potentiometers are mounted and wired up, the p.c.b. can be fixed into the main box using self-tap screws, and then wired to the various controls. Low loss coaxial lead should be used for the aerial input signal to the television set, the other end of which is connected to the UM1163E36 vision modulator coaxial output socket.

The system is now ready to check out, but first look over the p.c.b. and wiring for possible dry joints, and ensure that all diodes and electrolytic capacitors are connected in the right polarity.

SETTING-UP

All modules supplied by Teleplay should be pre-tuned, but it may be necessary to adjust the oscillator frequency using L 1 , to lock the picture onto the screen. This should be done with the unit powered up and the television tuned to Channel 36. Fine tuning of the PAL colour encoder crystal is achieved by trimming XL1 ($4 \cdot 4336 \mathrm{MHz}$).

The unit is powered by a mains adaptor unit which plugs straight into a 13 A socket, and jacks into the Game Centre via a low tension lead (jack tip + Ve).

I7 EI. II

DIEITAI THERMOMFIER

M. PLANT

N order to provide a BCD to seven segment display of an analogue quantity, analogue-to-digital circuitry is required. Formerly this meant the use of a large number of discrete and integrated circuit devices which posed problems for the constructor of electronic instruments making use of these digital techniques. The availability of the Siliconix LD130 CMOS i.c. now enables the analogue to digital conversion to be performed with the one device plus a handful of additional components. Sophisticated instrumentation functions can now be obtained with a few components: the LD130 lends itself to the measurement of temperature, voltage, current, resistance, sound intensity, rotational speed, for example, indeed any physical quantity which lends itself to conversion into a voltage change which can then be processed digitally.

In this article the construction of a digital thermometer is described which has the following specifications:

Range
 Transducer
 Display
 Resolution
 Over-and-under range indication
 Minus sign
 Power supply
 $-99.9^{\circ} \mathrm{C}$ to $+99.9^{\circ} \mathrm{C}$
 pn junction diode
 3 digit 7 segment
 $0.1^{\circ} \mathrm{C}$
 flashing display
 illuminated I.e.d.
 $6 \mathrm{~V}(4 \times 1.5 \mathrm{~V}-\mathrm{HP} 7)$

Initially the circuit was assembled on Veroboard and gave satisfactory results but a printed circuit board assembly produced improved performance.

THE LD130

Details of the internal operation of the LD130 will not be described here but are covered in the relevant Siliconix application note. As Fig. 1 shows the LD130 is an 18 pin dual-in-line package which features the low power
consumption of all CMOS devices: 25 mW at $\pm 5 \mathrm{~V}$ power supply. The lower limit of the supply voltages is $\pm 4.3 \mathrm{~V}$ and the upper limit is $\pm 8 \mathrm{~V}$ (60 mW consumption). The twin supply voltages must be matched to within 1.5 V for correct operation of the device.

Internal counting is achieved through an oscillator which becomes functional when a single capacitor C4 is connected between pin 14 and ground. This capacitor and C1 together determine the sampling rate of the circuit. In use the i.c. samples the analogue voltage and displays its value in digital form at a sampling rate of $f_{\text {osd }} / 6144$.

Fig. 1. Pin identity for the LD130

Fig. 2. Graph of frequency related to capacitor choice

Fig. 3. Thermometer circuit

The oscillator frequency as a functon of C4 is shown in Fig. 2 for various values of the positive supply voltage V 1 . Thus at $\mathrm{V} 1=5 \mathrm{~V}$ and $\mathrm{C} 4=0.001 \mu \mathrm{~F}, \mathrm{f}_{\mathrm{osc}}$ is about 30 kHz . Therefore the sampling rate is about 5 Hz .

The value of the integrator capacitor C 1 must be chosen according to the equation $\mathrm{C} 1=\left(10^{3} / \mathrm{f}_{\text {osc }}\right) \mu \mathrm{F}$ approximately, that is, C 1 should be of the order of $0.02 \mu \mathrm{~F}$. The value of the auto zero capacitor should be $0.1 \mu \mathrm{~F}$.

The sign and under-and-over range signal appears at pin 5. The analogue input is applied to pin 17 and a reference voltage $\left(\mathrm{V}_{\text {ref }}\right)$ is required at pin 2. The multiplexed outputs from pins 10 to 13 and the digit scanning signals from pins 7,8 and 9 are connected as shown in Fig. 3.

CIRCUIT ACTION

The complete digital thermometer circuit omitting the power supply circuitry is shown in Fig. 3. The reference voltage $\mathrm{V}_{\text {ref }}$ for the LD130 is provided by the current regulator diode D2 in series with the potentiometer VR1, the wiper of which is connected to pin 2 . This particular current regulator has a zero temperature coefficient and therefore VR1 is able to provide a stable voltage- $V_{\text {ref }}$.

The digits of the seven segment display are scanned by the LD130 pins 7,8 and 9 via the npn Darlington current buffer transistors TR1, TR2 and TR3.

High gain Darlingtons were used ($\beta=50,000$) although the constructor may use discrete pairs of npm transistors to obtain the same function. The l.e.d. D1, indicating the negative sign of the temperature, is driven by transistor TR4.

The digit segments of the common cathode displays $\times 1-3$ are driven from IC2 through the current limiting resistors of IC3. For increased brightness these resistors may be reduced to 100 ohms and, of course, individual 0.25 W resistors may be used.

TRANSDUCER

Provided the forward current is much greater than the reverse saturation current, the voltage across a pn junction diode biased with a constant current varies by about $-2.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ and thus provides a linear temperature-tovoltage transducer-D5. A proportion of the temperature dependent voltage across this sensor is selected by R3, VR2, and R4 voltage divider, one end of which is connected to the negative supply voltage in order that VR2 may be able to set the zero of the temperature scale.

For correct and stable operation of the thermometer, the LD130 must be provided with a short term stable positive supply voltage. As you will see from Fig. 2, any variation in the supply voltage produces a marked change in the oscillator frequency $f_{\text {osc }}$ which in turn leads to jitter of the display reading. This variation in positive supply voltage as seen by the LD130 is liable to be caused by the variable and high currents drawn by the display. These currents can vary from 4 mA , when a digit is blanked, to about 100 mA assuming say 12 mA per segment for a display of 8 .

These currents, flowing through the battery impedance and the copper tracks on the circuit board, cause the voltage seen at pin 15 of the LD1 30 to vary. Some a.c. decoupling at this pin is therefore provided by means of the diode D4 and the capacitor C3.

Note that this provides a positive supply voltage for the LD130 of 0.6 V less than the battery e.m.f. The second circuit design feature which ensures display stability is the return of the analogue ground pin 1 of the LD130 direct to the ground connection of the power supply, i.e. the battery negative.

Rather than use a separate battery to supply the negative voltage with respect to analogue ground required by the LD130, an inverter is used to provide a -5 V supply relative

Fig. 4. Main board component layout

Fig. 5. Etching detail of main board

Fig. 6. Inverter p.c. detail

Fig. 7. Component layout
to the zero volts terminal of the battery. An inverter circuit suitable for this is shown in Fig. 8, the output voltage of which is D8's Zener voltage minus TR8's 0.6 V be drop, that is 5.6 V .

ASSEMBLY

The circuit boards were designed to fit into a $120 \times 65 \times$ 40 mm box. Four 1.5 V calculator batteries power the circuit and display and these just fit across the width of the base of the box. A four pack HP7 type battery holder was broken apart to obtain the terminals. These were fitted into two pieces of SRBP glued into place along the inside edge of the box. This provided a tight fit for the batteries.

The main board is stood off with screws and spaces. Track layout and component assembly for this are given in Figs. $4 / 5$. The base of the box also carries the inverter p.c.b. the track layout and component overlay for this is shown in Figs. $6 / 7$. This board also contains three electrolytic capacitors to soak up any voltage variation on the wires to the LD130 caused by large display current variations as explained above.

A twin power supply leaves the inverter board for the A / D p.c.b.; the negative lead going to pin 3 of the LD130, and OV to the analogue ground connection pin 1 with the battery positive to pin 15 of the LD130 via diode D4.

It is recommended that a d.i.l. holder be used for the i.c.s so that thay may be reused unless the constructor has the facilities for desoldering i.c.s in the event of failure. IC1 and IC2 are CMOS devices and need the usual care when handling them, in particular do not solder components in place when power is supplied to the board and do not insert or remove these i.c.s when power is supplied.

SENSOR

The $p n$ junction temperature sensor is the base-emitter junction of any general purpose silicon bipolar transistor. Both the BC107 series metal can TO18 style and the ZTX300E line types were found suitable.

Using the ZTX 300 , the collector lead was cut off close to the encapsulation leaving only the base and emitter leads. Single core screened cable, core to base and screen to emitter was soldered to these transistor leads. One connection must be sleeved to avoid shorting.

Quick setting Araldite mixture was smeared over the sleeved and bared connections and the screened cable then threaded through a piece of nylon tubing or similar until the transistor sits tight against one end of the tube. The excess

Araldite was then wiped off so that when the remaining was set it formed a water tight seal against the effects of moisture when the probe is in use.

The other end of the screened cable is terminated in a 2.5 mm plug so that it can be plugged into a socket in the box at the side of the push switch. However to save expense the plug and socket can be dispensed with and the lead taken directly to the circuit board.

Fig. 8. Inverter circuit

COMPONENTS . . .

\author{

Resistors
 \begin{tabular}{ll}
R1 \& 82Ω

R2 \& $4.7 \mathrm{k} \Omega$

R3 \& $20 \mathrm{k} \Omega$

R4 \& $270 \mathrm{k} \Omega$

R5 \& $47 \mathrm{k} \Omega$ (2 off)

R6-R7 \& $4.7 \mathrm{k} \Omega$

All 1 W carbon

 \section*{Capacitors}

C1 \& $0.022 \mu \mathrm{~F}$ polyester

C2 \& $0.1 \mu \mathrm{~F}$ polyester

C3 \& $100 \mu \mathrm{~F}$ elect. 25 V

C4 \& $0.001 \mu \mathrm{~F}$ polystyrene

C5-C6 \& $10 \mu \mathrm{~F}$ elect. $25 \mathrm{~V}(2$ off $)$

C7 \& 470 pf

C8-C10 \& $660 \mu \mathrm{~F}$ elect. (3 off)
\end{tabular}

}

Potentiometers

VR1 $2 k \Omega$ cermet 20 turn variable
VR2 $20 \mathrm{k} \Omega$ cermet 20 turn variable

Inductor

$\begin{array}{ll}\text { L1 } & 1.5 \mathrm{mH}\end{array}$

Semiconductors
TR1-TR3 MPSA12 Darlingtons (3 off)
TR4 BC109
TR5 BC477
TR6 BC108
D1 TIL209
D2-D3 CRO33 current regulator diode (Siliconix)
D4 \quad N4148
D5 Sensor diode; ZTX300 (base/emitter only)
D6-D7 1 N4148 (2 off)
D8 BZY88 6.2V
X1-X3 MAN3640 (Monsanto) (3 off)
IC1 LD130 (Siliconix)
IC2 CD4511
IC3 $7 \times 150 \Omega$ thick film resistor array (Stock No. 140-013-R.S.)

EXTRACTING THE DIGIT

Constructors should note that if resolution is not required to the nominal accuracy of $0.1^{\circ} \mathrm{C}, \times 3$ in Fig. 3 can be omitted and the associated driver transistor TR3. Resolution is then to $1^{\circ} \mathrm{C}$ giving a steadier display which is more restful on the eye and slightly easier on the pocket!

CALIBRATION

When the boards have been assembled in the box, and all connections checked, the push switch may be pressed whereupon the display will do one of the following:
(a) Does not light: Check the operation of the switch and all circuit connections.
(b) Lights and all digits flash on and off rapidly. Adjust VR1 (Range) so that the voltage at pin 2 of the LD130, relative to ground, to 0.35 V . This may bring the reading to a steady value, excepting rapid updating of the third digit. If not, adjust VR1 until the display is steady. Place the sensor body in some water at a steady temperature of say $25^{\circ} \mathrm{C}$ making sure base/emitter leads are not short ciruit. Adjust VR1 until the display reads this value.
Note that due to the operation of the LD130 the display will not stabilise at a precise tenth of a degree reading but will range by as much as $0.3^{\circ} \mathrm{C}$ around the true reading. With experience it will be possible to estimate the temperature to the nearest tenth. Heat some water in another container to say $75^{\circ} \mathrm{C}$ and place the sensor in it applying the same precautions as before and adjust the range potentiometer until the display reads $75^{\circ} \mathrm{C}$. Return the probe to $25^{\circ} \mathrm{C}$ and readjust VR1 until the display reads this value. Repeat the procedure until the correct temperatures are displayed.

Finally check that the l.e.d. indicating negative temperature lights up when the sensor is in the fridge.

COMPONENTS

All components are readily available except for the i.c.s and current regulators. Both the LD130 and the CRO33s can be obtained from Semiconductor Specialists (UK) Ltd., Premier House, Fairfield Road, Yiewsley, West Drayton, Middlesex. The Darlington pair MPSA12 digit driver transistors can be obtained from Technomatic Ltd. 54 Sandhurst Road, London NW9.

FRANK W. HYDE

OUT OF THE ECLIPTIC

All spacecraft till now have operated close to the plane of the ecliptic, the plane in which the planets of the Solar System revolve around the Sun. In order to study the higher latitudes of the heliosphere, that is, the environment around the Sun, it is necessary to leave the thin disc of this environment occupied by the planets.

Most of the planets have orbits quite close to the plane of the ecliptic. These are at different angles ranging from approximately 7° for Mercury to 0° for the earth. The exception is Pluto which has an inclination of just over 17°. Thus with this one planet as an exception, the planets are contained in the narrow space at right angles to the place of the ecliptic of 14°.

Since the Sun is in an oblate spheroid, it follows that much of what can be directly viewed is subject to angular distortion, when the observing point is confined to a narrow angle. It is of paramount importance, in an attempt to understand the astrophysics of our own star, that a spacecraft is put in an orbit at right angles, or nearly so, to the ecliptic plane.

To this end the European Space Agency's first deep space mission will be set up, for a launch in 1983, of two spacecraft simultaneously. The launch will be a joint operation with NASA. Designated Out of Ecliptic (OOE) by the European Space A gency and Solar/Polar by NASA, these two spacecraft weighing some 300 kg each will be directed toward Jupiter. It is necessary to use the "sling shot" technique to achieve the orbits required. As the two craft near Jupiter, the trajectories will diverge.

One spacecraft will go round Jupiter from north to south and the other from south to north and then toward the Sun, one toward the southern hemisphere and the other to the northern hemisphere. They will be in the vast unknown volume of space round the Sun.

Under certain conditions, the Sun, in addition to the solar wind, emits particles of
very high energy. Streams of such particles are capable of producing "blast" waves in the solar plasma. Lethal gamma-ray bursts could be produced in this manner. It will be possible, it is hoped, to measure the amount of protection that the solar wind provides in inhibiting the intrusion of particles and radiation from galactic sources. From the data acquired by the vehicles it will be possible to discover the precise values for the loss of mass and energy of the Sun. The changes in the acceleration of the Solar Wind can be recorded and related to the other scientific measurements.

The effects of Novae and super Novae are already known in relation to the environment. Recently Hoyle and Wickramsinghe have written on the subject of debris and cometary matter bringing hostile organisms into the Earth's environment. The protection afforded by the high activity of the Sun is a direct effect. An examination of the effects on both Man and the environment can be correlated with the weather and health. This alone would justify the mission of the two spacecraft.

A total of eight experiments will be put aboard each of the spacecraft. One of these is an entirely British package. Dr. Peter Hedgecock of Imperial College is the principal investigator of the project involving a sensitive magnetometer. It is designed to measure the interplanetary magnetic field drawn out from the Sun by the plasma flow. The measurements will be used to provide a map of the Sun's magnetic field in the heliosphere. This will also help to show how lethal radiation is deflected from Earth by the solar magnetic field.

THE SHIVERS OF THE SUN

In April this year there was a European Conference on Solar Physics at Toulouse. It is remarkable that these conferences suddenly serve as a reminder that, matters obvious, are frequently shrouded in mystery.

The mystery is usually provided by the assessment of the mechanism involved. Yet by the very nature of the body, many photographs and films of the surface show violent and continual activity. Perhaps this is an elaborate way of saying that seeing is not necessarily believing. So it is implied that corroboration is a necessity.

In the matter of the "Shivering Sun" it seems obvious that the internal activities at the temperatures of the elements involved, would lead to a disturbed state. To the three groups of astronomers, who independently came to similar conclusions in this matter some time ago, there must at least have been some considerable satisfaction that their position was unscathed.

It must be said that one of the observers only, saw physical and direct changes. It is certain that more will be heard of this. To be more serious, the phase measurements made by Hill at various frequencies do at least give some clue as to the "ringing" of the Sun.

URANUS

Another star occulation by the rings of Uranus has disclosed that there are in fact, 8 ring systems around this remarkable planet. This observation also disclosed that one of the rings varies in width. At the point where the
ring is nearest to the planet it is narrower than at the point farthest from Uranus. This ring also appears to precess. These observations were made with the 2.5 metre du Pont telescope at Campas Observatory in Chile by Eric Persson of Hale Observatories. The rings are very tenuous for until a star is occulted by them it is not possible to see them with any certainty.

LANDSAT 3

The first pictures from Landsat 3 show considerable improvement over those of the first two Landsats. The type of imaging on Landsat 3 is different from that on the previous vehicles. The Return Beam Vidicon (RBV) system has now been accepted as a useful tool for the purpose required. Disappointment with Intelstats 1 and 2 was partly due to the system used and also to a degraded camera system. Landsat 3 was launched in March this year and has vindicated the Intelstat project. The RBV system does have a higher order of resolution that the MSS (Multispectral Scanning) system previously used.

The pictures from Intelstat 3 show that objects of 50 metres in length can be resolved and areas of 0.25 hectare. This higher resolution is also accomplished by two cameras instead of four. The two cameras image two adjacent areas of 99 kilometres square. The spectral band width is $0.5-0.75 \mu \mathrm{~m}$. Further improvements in resolution were obtained by doubling the focal length of the lens systems on the cameras. Such items as roads, railways and areas like lakes and reservoirs are clearly seen and provide useful information for both Earth resources scientists and resources surveyors.

There seem to be one flaw in the whole matter and that is the objections from the armed services. They seem to fear that too much information is being revealed by way of maps and other means, which may reach unauthorised persons. It is a sad reflection on the integrity of technology when equipment is deliberately degraded in the interest of the services. It seems quite illogical, since what one nation can do another can do also, especially in the matter of observation where the altitudes involved are around 900 kilometres.

HALLEY'S COMET

In previous SPACEWATCH reports Halley's comet has been the object of assessment for a special mission. After the fiscal set-back which seemed likely to kill it years ago there are now second thoughts. NASA has now accepted that it would be a valuable mission. Because of the heavy commitments to EXOSAT and the Large Space Telescope, there may be some hard bargaining.

The new mission is for a two in one project designed to widen the scope of the experiments. A flight past Halley's Comet would be followed by a swing by the Earth and a show flyby of another comet Tempel-2, in 1988. This project would be the first to use solar-electric propulsion, to attain the high velocity which can match the speed of the comets. It is thought that there is a likelihood of the mission now getting under way.

HEAT IN THE PIPELINE

0NE could only guess what it would be called, but it had to come, and RCA brought it onto the electronics scene. It's called the "transcalent" device, and it's a new class of power semiconductor which uses heat pipes to cool off hot junctions.

These lightweight devices feature integral heat pipes bonded directly to large silicon wafers capable of handling currents of hundreds of amperes. The first devices available include rectifiers, thyristors and transistors.

The integral heat pipes in these devices minimise thermal resistance and increase radiator fin efficiency, thereby permitting RCA to produce semiconductors significantly smaller and lighter than conventional semiconductor/heatsink assemblies of similar power ratings. Typical size reduction is by a factor of four, and weight reduction by a factor of seven.

Other advantages of RCA's heat-pipe/integral-fin construction technique include improved resistance against overloads and highcurrent surges, and the opportunity either to reduce the silicon-junction temperature for enhanced reliability, or to operate at full ratings at high ambient temperatures.

Installation is also simplified by the elimination of separate heatsinks.
The first RCA transcalent devices available are the P95000EB Series of $250 \mathrm{~A}, 500 \mathrm{~W}$ rectifiers with blocking voltages up to $1,200 \mathrm{~V}$, the P95400EB Series of 400A, 500W thyristors with blocking voltages up to $1,200 \mathrm{~V}$, and the P95200EE4 100A, 500 W n.p.n transistor.

The rectifiers and thyristors use compact radiator structures resulting in a weight of only 340 g , and a volume of less than 230 cubic centimetres. The transistor uses a different radiator structure with a dissipation capability of 500 W , yet the device weighs less than 1 kg and occupies a volume of less than 1,100 cubic centimetres.

Any of these devices can be supplied with radiator structures to accommodate either air or liquid cooling. Thermal resistances are of the order of 0.1 to $0.2^{\circ} \mathrm{C} / \mathrm{W}$, and operating ambient temperatures at full ratings range up to $50^{\circ} \mathrm{C}$.

The transcalent device is appropriate for a wide range of commercial and military applications involving fixed, mobile or aerospace equipment. Typical uses are in welders, electro-chemical platers, power conversion and distributing systems, motor-speed controls, militaryvehicle drives, radar power supplies and aircraft power systems.

EAGLE'S LAUNCH

0N May 21 Eagle International unveiled over 132 new editions to its range of consumer and industrial electronics products, including new hi-fi, public address, security, business and educational equipment. The biggest ever launch in Eagle's history.

Many of these new products are being displayed at the 1978 Radio Show, where the Eagle International stand is in the Piccadilly Hotel, Piccadilly.

The centre piece of the range of consumer products is 20 new hi-fi separates including five loudspeakers, four amplifiers, three receivers, two tuners, two turntables and a front-loading cassette deck. Eagle are also introducing a number of audio products and accessories, such as headphones, cartridges, table radios, and ribbon aerials. Important additions to the public address range with new disco and group PA systems have also been made.

Among the new products in the security field are domestic burglar and fire alarm equipment, including one single-zone combined fire/intruder panel, suitable for private homes and smaller offices or industrial premises.

Eagle is also introducing five test equipment products including multimeters; three emergency lighting products, two headsets specifically designed for educational purposes, and eight intercoms.

NEW MICROPROCESSORS

ANEW 16-bit microcomputer, the Intel 8086, has been formally introduced, and is Intel's highest performer yet, being seven to twelve times faster than the 8080 at program execution. It joins the 8085A and 8048 industry standard micro families, and employs the same software development tools as MCS-80 and MCS-85. To protect the customers' software investment, the 8086 is source code compatible with the 8080 A and 8085 via a translator package.

The 8086 provides all the previous features with 16 -bit arithmetic, signed 8 - and 16 -bit arithmetic dynamically relocatable programs; design features multi-processor configuration support, and it can address a megabyte of memory. The standard clock rate is 5 MHz (8 MHz optional).

The Intel HMOS process has put 29,000 transistors on a chip only $225 \mathrm{~mm}^{2}$ which is better than the average home constructor can manage!

Another new device from Intel is the 8022, and this will be of much more interest to the amateur because it is the first micro with an onboard analogue to digital converter! This most useful addition to the microprocessor is accompanied by an input port which can be directly connected to a "touch-panel" keyboard.

The 8022 has twice the program memory (2 kilo bytes) as that of the 8021. With a dual input A to D converter, variable threshold 8 -bit input port of 100 mV sensitivity, zero-crossing capability, and an extra test pin for conditional jumps, this microprocessor has to be a device we shall hear a lot more of.

The A to D converter is of the successive approximation type accepting inputs up to 5 V , and requires an external voltage reference source.

Machine code instructions select which input is to be used, whilst the converter runs continuously, updating a results register every $40 \mu \mathrm{~s}$. This speed of conversion allows multiplexing of the two analogue inputs, to provide many analogue channels without complex handshaking, or converter stop/start instructions.

Test pin 1 of the 8022 will detect sinewave zero crossing, so that when used in conjunction with mains control, the system can switch power via triacs, etc. at the optimum time for minimum generation of electrical noise. This "symmetrical" zero-crossover switching is also preferred by the Electricity Generating Board.

The 8022 is housed in a 40 -pin package, and has an internal clock generator which requires one external component-a crystal or resistor. There are also two high current drive outputs.

```
No soldering. No de-soldering. No heat-spoilt components. No manual labour. No wasted time.
```

With a Proto-Board you can hook
wircuit together as quickly as you can think.

And you can have second thoughts, and third thoughts, equally quick and easy, till you've got the whole thing right.

Then you can solder up if you want to, but most engineers don't because the -Proto-Board push-fit connectors are highly reliable.

And everything is visible; come back next week and you 'read' the circuit immediately.

Model Number	No. of Solderless Tie-points	$\begin{aligned} & \text { IC Capacity } \\ & \text { (14-pin } \\ & \text { DIP's) } \end{aligned}$	Unit Price	$\begin{aligned} & \text { Postage } \\ & \text { \& } \\ & \text { Package } \end{aligned}$	VAT	Total Price	managed without it. Other features
PB-6	630	6	£ 920	£1.00	$£ 0.82$	$£ 11.01$	Kit-10 minute assembly
PB-100	760	10	11.80	1.00	1.02	13.82	Kit-with larger capacity
PB-101	940	10	17.20	1.25	1.48	19.93	8 distribution buses, higher capacity
PB-102	1240	12	22.95	1.25	1.94	26.14	Large capacity, moderate price
PB-103	2250	24	34.45	1.50	2.88	38.83	Even larger capacity; only 1.73 pence per tie-point
PB-104	3060	32	45.95	1.50	3.80	51.25	Largest capacity; lowest price per tie-point
PB-203	2250	24	55.15	1.50	4.53	61.18	Built-in 1\%-regulated 5V, 1 A low ripple power supply
PB-203A	2250	24	74.10	1.50	6.10	82.30	As above plus separate $1 / 2 \mathrm{Amp}+15 \mathrm{~V}$ and -15 V internally adjustable regulated supplies

[^2]
D@rAm

Quality Range of Products

 from The Doram Catalogue include:
Single Semiconductors

Wide range of single diodes, zener diodes, rectifiers and general purpose transistors.

Integrated Circuits

Quality linear and digital IC's, regulators etc.
Mains Transformers
Comprehensive top quality selection of low voltage transformers.

Switches

A switch for most applications.

Hand Tools

We stock a large range of tools for most electronic projects.

Books

We can supply a wide range of books from simple projects to detailed text books.

Wire \& Cable

Small or large quantities
Doram Electronics Ltd.
PO Box TRB. Wellington Road Estata, Wellington Bridge. Leeds LS12 2UF OFOOODSTREE YOUR. FOR aETALLS SEE YOUR
EDMON 5 CATAL OGUE! Peomong catalogue

Send now for the NE W'78-•79 edition 5 catalogue. PEI
New merchandise including MICRO PROCESSOR BASED KITS. Over 2,000 items - 120 payes. Send for your copy now

75p
incl. p.p.
Name
Address

Doram Electronics Ltd PO Box TR8.
Weltinyton Road Estate, Weltington Bridge. Leeds LS 12 2UF
Overseas orders, except for N.ireland, Please add 35p
to cover despatch by Air. \qquad Reg. No. London 1155856.

Cambridge Learning Enterprises

SUMMER OFFER until 1st. August 1978

Just send this token with your order for a 10\% discount which entitles you to books at the following prices:

Digital Computer Logic \& Electronics $£ 4.95$
Design of Digital Systems $£ 8.10$ Combined set £11.70
Algorithm Writer's Guide $\mathfrak{£ 3 . 0 6}$

Join the Digital Revolution

Understand the latest developments in calculators,

 computers, watches, telephones, television, automotive instrumentation . . .Each of the 6 volumes of this self-instruction course measures $11 \frac{1}{2}$ in $\times 8 \frac{1}{4}$ in and contains 60 pages packed with information diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

plus $£ 1$ packing and surface post anywhere in the world
Overseas customers should send Bank Draft in Sterling drawn on a London Bank

Payment by credit cards accepted
Also avanadie-a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics
In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements

E4-60
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers
plus 90p P. \& P.
Offer Order both courses for the bargain price fi2, plus $£ 1$ P. \& P. - a saving of $£ 1.50$.

Designer

Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

FLOW CHARTS \& ALGORITHMS - The Algorithm Writer's Guide - Construction, content, form, use, layout of algorithms and flow charts. Vital for computing, train£2.95 ing, wall charts etc. Size: A5, 130 pages.
plus 45p p\&p
Guarantee-If you are not entirely satisfied your money will be refunded.
CAMBRIDGE LEARNING ENTERPRISES, Unit 2, Freepost, RIVERMILL LODGE, ST. IVES, HUNT!NGDON, CAMBS, PE17 4BR. ENGLAND. TELEPHONE ST. IVES (O480) 67446 . PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE: RIVERMILI LODGE. ST. IVES. Giro Ac. No. 278 9159. REGD. IN ENGLAND NO. 1328762

Cambridge Learning Enterprises, Unit 2, Freepost.
Rivermill Lodge. St. Ives, Huntingdon, Cambs, PE1 7 48R. England.
Please send me the following books:
…......sets Digital Computer Logic \& Electronics (6) 65.50, p \& p includedsets Design of Digital Systems © © $£ 9 \cdot 00$ p\&p included
.........Combined sets @ $£ 13.00 \mathrm{p} \& \mathrm{p}$ included
.........The Algorithm Writer's guide @ £3-40. p \& p included
Name
Address

I enclose a *cheque/PO payable to Cambridge Learning Enterprises
for E
Please charge my *Access/Barclaycard/Visa/Eurocard/Mastercharge/ Interbank account number.
Signature
Telephone orders from credit card holders accepted on 0480-67446 (ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank.

News Rriafs

CHAREED AND ARRESTED

AN ingenious system for printing has been employed to produce a unique device for depositing alphanumeric characters on moving chart recorder paper, by Gould Instruments Division.

Primarily intended as an add on unit for their standard "continuous stream" ink chart recorders, Gould have developed this improved system (pictured below) whereby ink is virtually "shocked" into a set of minute uniform particles, and charged to a high potential so that it can be electrostatically deflected along one axis. The position on the paper at which a particular ink particle is arrested will depend upon the potential of the deflector plates at that time.
The characters are described as "highly readable" and are formed on a 5×7-dot matrix. They appear along the edge of the oscillograph paper to allow annotations concerning relevant parameters whilst the recording is being made. In some cases this can allow event triggered recording, to save chart paper, with the nature of each trace and event details in juxtaposition. The "ink jet" device is instructed with ASC11 words which can originate from a manually operated keyboard or perhaps a minicomputer system for fully automatic monitoring.

The mechanism works like this: the basic impulse jet consists simply of a glass capillary tube with an orifice at one end, a coaxial piezoelectric driver, and a plastics supply line leading to an unpressurised ink reservoir. The piezoelectric driver is pulsed, and the shock waves squirt a metered amount of ink through the jet, just like a tiny microscopic valve-less pump. This art of obtaining ink particles of consistently equal masses and velocities is important for the next step; which is to charge the particles and electrostatically deflect them with a staircase waveform, and know for certain where they are going to be headed for afterwards.
As the paper advances under the head, the deflection staircase waveform builds up each character in raster fashion (5 rows of 7 dots), the pump "spitting" out (or missing out) ink at the appropriate times, controlled by the electronics.

Some of the statistics are: character width held constant over a $1,000: 1$ chart speed range (from $0.05 \mathrm{~mm} / \mathrm{s}$ to $50 \mathrm{~mm} / \mathrm{s}$), achieved through paper/character generator speed synchronisation. The mechanism is silent, and could print on almost anything without damage. A single $10^{3} \mathrm{~cm}$ cartridge will print over two million characters.

A real-time clock module is also available for time scale print-out along the oscillograms.

A PRACTICAL ELECTRONICS PUBLICATION

A SPECIAL SELECTION OF MUSICAL PROJECTS FROM PE
 THE MINISONIC MK2 SOUND SYNTHESISER

An up-dated version of the published Mk 1 , the Mk 2 has an integral keyboard, two 250 mW monitoring channels and loudspeakers, and facilities for amplitude, frequency and harmonic modulation.

THE JOANNA ELECTRONIC PIANO

has realistic piano effect with touch-sensitive keyboard and additional choice of harpsichord or honky-tonk voicing.

THE ORION STEREO AMPLIFIER

A hi-fi amplifier with output of over
$20+20$ watts. Compact and complete in one unit, it measures only $14^{\prime \prime} \times 6^{\prime \prime} \times 2$ ".

PLUS
Some great sound effects units for guitars, keyboard instruments and general recording.

Available Now
 11.20

(Please allow at least 2 weeks for delivery)
If you do not wish to mutilate your copy of the magazine, please send your order on a separate sheet.

POST PAID
IPC Magazines Ltd., Receiving Cashiers Dept. King's Reach Tower, Stamford Street, London SE1 9LS Please send me.
copy(ies) of
Sound Design". I enclose a Postal Order/Cheque for $£ 1.20$ (post paid) or (state amount for
more than one copy).......... (£2.35 post paid
for 2 copies)
PLEASE WRITE IN BLOCK LETTERS
Name
Address

Post code
Remiltances with overseas orders must be sulfictent to cover despatch by sea or alr mail as required. Payable by Internalronal Money Order only.

MIEROPROEESSR Kit Reuien.
 By P. A. Birnie

Contente of the CON-COS box as supplied in the kit.

The appearance in the market-place of a bewildering number of microprocessors has sparked off the home computer industry-first in the U.S.A. and later in the U.K.and has resulted in an equally bewildering number of "systems" for the amateur. These range from the simplest "keys and lamps" systems, which are more useful as teaching aids than as home computers, through the hex. keypad/hex. display systems to the keyboard and v.d.u. systems running in BASIC and capable of performing the most sophisticated of computing tasks.

Recent months have seen the emergence of several "keys and lamps" systems from such firms as Ritro and Newbear Computing, and these are designed primarily as a means of "getting started" in home computing while at the same time offering the facility of later expansion to virtually any level of system complexity. The system reviewed here is the Ritro AMICOS system, which is 6800 based and when operational allows the user to run programs entered by means of keys in hex. machine code, and read out the "answers" on two l.e.d. arrays, i.e. it is intended primarily as a cheap means of getting into microprocessor computing.

As can be seen in the photograph, an array of 16 l.e.d.s and 16 switches allows the address bus to be monitored on l.e.d.s and have addresses entered onto itself by keys. A similar array of 8 l.e.d.s and 8 switches performs the same functions on the data bus. Other switches allow single step or clocked operation, automatic address increment when inputing data, access to the 6800 register, interrupts and other functions. In other words, access is given to all parts of the system to allow the basic principles of microprocessor operation to be rapidly learned and later applied to the solution of problems by relatively simple programs.

MAIN-COS components as supplied in the kit.

THE HARDWARE

The kit of parts consists of two plastic boxes containing MAIN-COS and CON-COS and a large thick instruction manual-MAIN-COS being the name given to the circuit module containing the 6800 microprocessor and peripheral circuitry, CON-COS, on the other hand, is a circuit module which interconnects the operation panel and MAIN-COS. Both modules are impressively packed in the appropriate conducting foam or polystyrene packaging and each plastic box is slipped into a sleeve which outlines the contents and overall function of that module, and it is at this point that a problem, which was to recur, came to light. The MAIN-COS sleeve is printed in Dutch and English, but the CON-COS sleeve is printed only in Dutch, which proves no problem with such words as "processor", but rather more tricky when one is confronted with "drukknoppen" (pushbuttons?).

The manual consists of an A. 4 sized loose-leaf book about 25 mm thick with sections on construction of the MAIN-COS and AMI-COS modules, theory of the 6800 , sample program derivation and general background of the devices used in the system. Unfortunately, the manual contains only about 50 pages of actual constructional information, about one half of its total being devoted to a reprint of device data sheets-very useful background, but few constructors will need or want to plough through this material. A section devoted to a very clear explanation of the 6800 instruction set is very well produced and the author found the information was more easily understood than that given in the Motorola Programing Manual.

A further section deals with program writing and associated flow-diagram production; the explanations are very clear and two programs are written from flow diagrams through to machine code listing. These programs, an 8 bit binary to three
word BCD convertor and a "running light" program, are subsequently handy as an easy way of checking on correct function of the system when completed. The shortest section of the manual is entitled "General Mounting Directions", and is intended to give guidance on constructional techniques. The advice given is at a very basic level and is obviously translated from some other language, which has caused some amusing "directions" to be given-mentioning a "soldering rod", and requesting that a joint should be kept still "during the hardening process" (please see the footnote concerning the construction section of the manual).

Presentation of the kit including the complete manual.

CONSTRUCTING MAIN-COS

The circuit board used for MAIN-COS is a simple eurocard size double-sided fibre glass board without plated through holes and thus the first task is to make a number of through board connections using the 0.8 mm wire supplied. The manual says to cut 149 pieces and link as shown in a photograph of the board. Unfortunately, due to the poor quality of this photograph, it requires considerable care to link all the required holes and not link holes subsequently to be occupied by i.c. legs or component leads, particularly as the figure of 149 seems to be excessive137 links being used in this prototype. While completing this task, ample opportunity is given to examine the circuit board, which is to a very high quality with a gold-plated double-sided 64 way edge connector and relatively high packing density of i.c.s and a few discrete passive components.

The next activity involves inserting a 7404 inverter package and a "test l.e.d." and probe. This assembly is extensively used during construction, in conjunction with "forcing wires" or earth-connected wires, to de-bug the system as it is assembled. This allows the experimenter, without even a multimeter, to confidently construct the kit-a very helpful idea. Assembly of the board is performed in several stages, each stage being followed by a comprehensive test routine using tables which instruct one to monitor with the test l.e.d. and "force" with forcing wires at specified points, thus checking each i.c. and its interconnections step by step.

The construction of the clock generator in microprocessor systems is frequently a cause for concern, but the AMI-COS module simply uses two back-to-back monostables (74123) with fixed resistors and capacitors, resulting in the prototype constructed by the author, in a clock frequency of 750 kHz and a mark/space ratio of about 1:1. This frequency and mark/space ratio can, of course, only be checked using an oscilloscope, so, if the constructor requires a given clock ratio to allow real-timing in software, then he will need to have access to such an instrument.

The final stage in construction involves inserting the 6800 microprocessor and two ROM chips and applying a +5 volt supply, at which point the processor board tests itself out using a diagnostic program contained in the ROM's. A set of eight small l.e.d.s flashes-through a defined sequence, testing, among other things, data and address lines, RAM locations and the presence of other modules. Failure of any test results in the appropriate 1.e.d. being lit, allowing relatively easy debugging of the MAINCOS module-a very neat solution to the problem of testing microprocessor systems in general, and all the more remarkable for its appearance in a basic system such as this. Assuming the manual has been followed, then the MAIN-COS board should function correctly, and may be set aside pending the construction of CON-COS; Fig. I shows a block diagram of MAIN-COS.

CONSTRUCTING CON-COS

CON-COS occupies a second eurocard which again has to have a number of through holes linked, the number given in the manual-92-being correct this time. Again, the picture

Fig. 1. MAIN-COS block diagram.

Construction of the kit in the Desko case. Veroboard was used for switch and I.e.d. wiring.
showing the positions of the holes is of very poor quality and a diagram would have been much more useful. Construction continues in stages, a test schedule allowing a thorough check to be made of all devices and interconnections. At any rate, this is the intention, but this part of the constructional information is bad, having many errors, causing much cross-reference to the circuit diagrams (see footnote). If the constructor has sufficient ability to overcome these problems, then construction and testing of the board is relatively straightforward and results in a module which controls the interface between MAIN-COS and a front panel-Fig. 2 shows the block diagram of CON-COS.

The final part of construction consists of mounting the switches and l.e.d.s in the CON-COS kit of parts on a panel, or, as was done by the author, on the front plate of a Desko, sloping front case (TEK 364 from West Hyde Developments).

Fig. 2. Block diagram of CON-COS.

The switches and l.e.d.s can either be mounted on a sheet of Veroboard or a printed circuit board which can be obtained as an optional extra from Ritro. The front panel must be connected to CON-COS using insulated wires which are soldered direct on to the board rather than connecting via the edge connector, effectively tying the panel and CON-COS together by a harness of 61 wires. A simple power supply giving 2 amps at +5 volts must be provided by the constructor to drive the MAIN-COS and CON-COS modules.

TESTING AND PROGRAMMING

Testing of the completed system is carried out in two parts. Firstly, the test program in the two ROMs in MAIN-COS is used in conjunction with the RESET key to check out the system using the eight test l.e.d.s on MAIN-COS. This test program also clears the front panel displays and prepares the system for the second part of the test. This final test is probably best performed using the "running lamp" program-an 18 hex. byte program which causes all l.e.d.s to light except for one, which "runs" along the data and address displays at a rate which can be varied by making small changes to the program.

The program can be stepped through one instruction at a time or at full system clock rate to allow an easy check of the system performance. The author's attempts were rewarded in success, after several "hiccups" caused by errors in the front panel circuit

MAIN-COS and power supply construction.
diagram, which effectively caused some switches to be "upside down" on the panel, so that, for instance, the switch which selects either program counter or index register was inverted when connected "as diagram". In practise, this prevents one easily entering a program as the RAM address of the program bytes is not displayed on the front panel and apparently indicates that the auto-increment of the program counter is not working-all very confusing and the source of several hours of head scratching!

Having sorted out these problems, the system proved very easy to use and seemed reliable, although this aspect of the system is probably more influenced by the quality of construction than by the content of the kit itself.

VERDICT

The purpose of any "keys and lamps" microprocessor system must be primarily to introduce the newcomer to microprocessors to the intricacies of what is a complex subject. In this respect, AMI-COS, as presented to us, cannot be said to be a complete success. The circuit boards and hardware are all top quality and the concept of step by step checking, using a built-in test l.e.d., is excellent. The use of the microprocessor to check itself and the system out with the aid of test programs in ROM is similarly a very well thought-out concept, and yet all this good engineering
is spoiled by a poor set of assembly instructions.
The system, once constructed, is excellent as a "tutor" in microprocessors, when used in conjunction with the relevant sections of the manual, but, at a price of $£ 166 \cdot 50$ plus VAT, seems expensive when, for only small additional outlay, a system running on keyboard and TV set-v.d.u. could be obtained.

For more information contact Ritro Electronics (UK) Ltd., Grenfell Place, Maidenhead, Berkshire.

FOOTNOTE

As a result of our kit construction and findings concerning the manual, Ritro and Mr. P. Birnie have got together and the construction section of the manual has now been completely rewritten.

The completed unit in the Desko case. Approximately $£ 20$'s worth of extra components (including the case) were used in the construction of this unit.

P.C.B. ASSEMBLY JIGS
 W. ENGLISH

ONE of the main problems involved in soldering p.c.b.s and stripboard is being able to hold the boards in an accessible position to enable a satisfactory joint to be made.
The two assembly jigs described here show how this can be accomplished with both large and small boards.

CONSTRUCTION (TYPE 1)

A very simple but effective jig for holding small pieces of board is shown in Fig. 1. It consists of a piece of 12 mm plywood $130 \times 130 \mathrm{~mm}$ onto which is glued a wedge shaped piece of 15 mm softwood cut to an angle of 30 degrees.

To complete the device, a spring clothes peg with the jaws modified as shown below is glued to the slope of the wedge.

CONSTRUCTION (TYPE 2)

The assembly jig shown in Fig. 2 is capable of accepting boards up to $300 \times 140 \mathrm{~mm}$. If larger sizes are to be used, then the relevant dimensions can be scaled up.

The board to be soldered is gripped in slots cut into two bars, one of which is movable to take boards as narrow as 20 mm . A self-tapping screw through the metal band at each end of the movable bar enables it to be clamped so that the board is held firmly. A detail of this is given in Fig. 3.

A. R. Damper

MANY readers of P.E. are newcomers to the construction of electronic circuits, and will most probably construct simple projects on tagstrips or Veroboard. It will not have escaped their notice that most large published projects give details of a printed circuit layout. The reason is simply that printed circuit boards (p.c.b.s) are simple to make (once you know how!), and provide a much neater and professional looking endproduct. Smaller published circuits often give a Veroboard layout or no constructional details at all. This article is intended to be a guide for those wishing to make p.c.b.s from circuit diagrams for the first time. Single-sided boards only will be considered. Double-sided boards are mostly used in more complex projects, and when published in magazines, can usually be obtained ready made.
There are two main types of board material to choose from, SRBP and glassfibre. In general applications either may be used, the SRBP being cheaper but not as strong as glass-fibre. In higher quality applications where maximum isolation between tracks is essential, glass-fibre boards are preferable. For small general projects SRBP is quite adequate.

AN EXAMPLE

The object of the exercise is to produce a conductor network on the board by covering, or masking the areas where copper is to remain, and then dissolving away the remaining areas. However, before the tracks can be marked onto the board the layout must be determined from the circuit diagram. A simple circuit (one stage amplifier), provides an example. See Fig. 1.

The circuit is a simple one with no interconnections to other parts of a complex design, enabling the layout on the board to follow the layout of the diagram. Now see how this circuit can be
transformed into a finished p.c.b. The points marked with and " O " represent the need for a hole in the board to take a component lead. At point " A " there are four holes necessary; one for a capacitor lead, two for resistors, and one for the transistor base lead. If the components were now to mystically vanish, Fig. 2 results, and the Os indicate where the holes are to be drilled. This is the general layout and only gives a guide to the track layout.

The resistors are probably low-wattage and can therefore be mounted vertically; consequently the distances between the two holes for Rs need only be about 6 mm . However, C2 is an electrolytic capacitor, and for an amplifier having a low pass characteristic, may be of large value, hence large size. The holes for C2 may need to be 50 mm apart. So from Fig. 2, Fig. 3 is produced taking into account the component sizes. It is therefore very important that the components are obtained prior to building the board if their size is unknown. Figure 3 still shows the track from the component side of the board and must be reversed to give the layout as it will be etched. To ensure that the input and output are isolated, it is always best to fill in large otherwise empty spaces with conductor, and earth it making sure there is one continuous path to earth. This gives the final full size layout as in Fig. 4, the shaded area being the "filled-in" portion carried out after the main track is applied.

METHOD

There are quite a few different types of etch resists on the market. In the author's opinion the best board is produced by a combination. Until recently the resist used was painted onto the board (enamel paint and nail-varnish being common), but these did not lend themselves to small scale work such as integrated circuit con-
nections. Then etch-resist pens appeared which enabled the circuit to be drawn directly onto the board, and although they sound fine, the author has found that they often "run" to produce very thick lines unsuitable for fine work. Without running these pens down, the dry transfer system seems the cleanest and simplest method. It is also fairly cheap, and if a mistake is made, the offending line can be scraped off. So, the author recommends that for the main track, dry transfers are used whilst the larger filled-in areas are covered with nail varnish, paint or etchresist ink.

MAKING THE BOARD

Having worked out the final layout as in Fig. 4 the board can be prepared. Firstly cut from a larger sheet, a piece of copper-clad board of the required size, using a hack-saw with a fine blade and then file the edge smooth. The surface of the copper must now be thoroughly cleaned to remove all grease, dirt and finger-marks. A good method is to rub the surface gently with a cloth after sprinkling a little "Ajax" or similar cleanser onto the board. This is very effective and no trouble whatever has ever been experienced with the fine scratches produced. The board is then rinsed in fresh water and dried.

Dry transfer systems are sold by many P.E. advertisers and complete packs consists of ten sheets, each carrying a different symbol such as lines, drilling points, transistor and i.c. sockets, etc. whilst extra individual sheets are usually available also. It is advisable to buy extra sheets of lines, as these are most frequently used. The author once used Letraset sheets of symbols and line rules, before this system became available, and in certain circumstances such as when fine lines are needed, Letraset is still handy. However, these sheets are more

expensive and therefore only used when necessary. Letraset is useful for applying lettering to the board to identify component positions. If Letraset is included in the masking the etchant should be reduced to around half the normal concentration, as this type of transfer may start to loosen. The p.c.b. transfer system is of course unaffected by the full strength solution.

Working from the layout, the transfers should be applied by placing the required symbol face down on the board and rubbing the backing sheet gently with a bluntish pencil. When transference is complete, the backing sheet is carefully peeled away and the remaining transfer symbol gently pressed onto the copper to secure it. Clean hands are necessary for this operation. Should something go wrong, the transfer can be removed by scraping it off with a finger-nail or blunt instrument.

When all the lines (as in Fig. 4) have been applied, the larger shaded area can
be filled in with etch-resist ink or paint. The board should then be left to dry.

ETCHING

The etching solution used is ferric chloride, which is also obtainable from advertisers in this magazine. The solution is made up as follows. For each pound weight of ferric chloride, one pint of cold water should be added, and placed in a plastics container (a plastics orange juice bottle with the top sawn off is ideal). The ferric chloride should then be added slowly, stirring all the time with a piece of wood or plastics rod. Don't add too much at a time because the solution gets hot, and it becomes necessary to stop and let it cool. Never add water to the crystals, because the heat generated is enormous and the steam produced might shower you with hot ferric chloride, or melt the plastics container. If any ferric chloride gets on your skin, wash the area thoroughly with water. Store the solution in a plastics container with a secure
stopper.
To etch the board, pour some of the etchant into a shallow plastics or glass tray and lay the board face down on the solution. This allows any by-product from the etching process to fall away from the surface of the board. If the board sinks, or you would rather see what's going on, lay the board face-up in the bottom of the container, but keep the solution moving by gently rocking the container. When etching is complete, remove the board with non-metallic tweezers and rinse in cold water. After drying, the resist can be removed by rubbing the surface with medium or fine grade "wet and dry" paper obtainable at d.i.y. shops. The holes can then be drilled with a 0.8 mm drill. Some components will have larger diameter leads and the appropriate drill should be at hand. To give the drill a start, it is useful to mark the position with a centre-punch, but be very gentle otherwise the board may crack.

GETTING STARTED

Delta Distribution is a very new company initially concentrating on power supply transformers, regulators and common i.c.s. Good, fast service is their intention and they are at present setting up mail order and telephone credit services with Access and Barclaycard.

The product range will be expanded as soon as possible and the current price list is available from Delta Distribution Co., 75 Willowtree Ave., Gilesgate Moor, Durham, DH1 1DZ (0385 62760).

SOUND ON VISION

An all British invention, the Videograph, has recently been announced. It converts sound from a record, tape, organ or synthesiser into a display on a domestic colour or black and white TV screen.

Two inputs allow direct display of stereo sound as independent left and right channels, or alternatively a mono signal may be used to feed, for example, low frequencies to one channel and high frequencies to the other.

When used with a colour TV the waves are orange and blue, while the background performs an eight stage colour cycle.

Connection to the TV is directly via the aerial socket.

The Generator Kit costs $£ 12$ and the UHF Colour Modulator Kit is $£ 6.95$. Cabinet and controls cost $£ 6.95+£ 1 \mathrm{p} \& \mathrm{p}$.

Ready built units are available at $£ 39.95$. All prices include VAT.

William Stuart Systems Ltd., Dower House, Herongate, Brentwood, Essex.

AMERICAN COMPUTER BITS

Another supplier of computer bits and pieces has arrived on the scene; Interam Computer Systems Ltd, who are geared up to service both the hobbyist and small businesses.

As we move further into the "software age" more of these suppliers are sure to pop up, with all sorts of novel odds and ends. Among the literature sent for our perusal by Interam were details of such things as the Cybernetic Systems 1000 Speech Synthesiser. This p.c.b. can be programmed to talk, using standard English and American phonemes, callable using ASCII characters. It is described as a real conversation piece!

Then there is the Newtech Model 6 Music Board which is $\mathrm{S}-100$ bus compatible, and with built-in audio amp and loudspeaker can be programmed to produce melodies, rhythms, sound effects, morse code, touchtone synthesis, and much more.

And yet another American product available from Interam, is the George Risk 753 ASCII Keyboard module with 53 keys on the popular ASR-33 format and 3 user definable keys.

What is PROROM? This is an 8 K EPROM memory board with on-board programming circuitry intended to make high programming charges a thing of the past, and made by Mountain Hardware (USA).

Much much more is available from Interam; disk systems, optical tape readers, a Z80 c.p.u. system, software, and many American books and magazines.

More details are obtainable from Interam Computer Systems Ltd, 59 Moreton Street, Victoria, London SW1.

ONE-CHIP TV SOUND SYSTEM

The TDA 1190 is a 12 -pin silicon monolithic i.c., mounted in a "batwing" plastic power package. The device which performs all the functions needed for a TV sound system has an audio output power of typically 4.2 watts into a 16Ω load with a supply voltage of +24 V . The TDA 1190 is particularly suited to use with 5.5 MHz (PAL) sound systems.

The package provides a FM IF amplifier and detector of high sensitivity which only requires the addition of few extra components and a single tuned coil. AM rejection is excellent; figures of 55 dB being typical. An active low pass filter is used to attenuate IF harmonics. Other features include an on-chip audio power output stage and a d.c. volume control.

Although primarily intended for use in TV sets the device can be used in inexpensive FM radios and other FM receiver applications at IF frequencies up to 10.7 MHz .

For further information contact Fairchild Camera and Instruments (UK) Ltd, 230 High Street, Potters Bar, Herts.

SOLDERING TOOLS

For many years the name Adcola has been synonymous with soldering irons. "Adcola ' 78 " is a very well produced booklet about the other products manufactured by "The soldering equipment people".

Perhaps initially written for volume production solderers this booklet makes useful reading for any hobbyist.

The advantages of thermostatically controlled "soldering stations" are well documented. Their main improvement over the commonly used "thermal balance" iron is a more rapid rise to operating temperature and an ability to maintain a set temperature during repetitive working.

Among the numerous sizes and profiles of plain copper and iron plated bits is an 80° p.c.b. tip. Iron plated bits oxidise much less quickly than plain copper and are claimed to have a ten times greater working life.

Of particular interest to project builders is a desoldering bit for 14 or 16 pin i.c.s although it does require to be used in a 27-30 watt iron. Adcola also supply an i.c. puller. This is a simple spring loaded extractor used to withdraw i.c.s. from a board after a desoldering bit has melted the surrounding pin solder.

Other desoldering aids are a heated tip with suction bulb, a desoldering gun and various sizes of desoldering braid.

For quick access to both sides of a rigidly held p.c.b. Adcola's Variclamp deserves consideration. This is a lightweight portable holding device which can hold items in any preset position.

The right tools make the job easier and help towards a good finish. The range of cutters, nippers, pliers, shears and strippers gives the craftsman constructor the means of achieving professional quality boards.

Copies of "Adcola '78" and a full price list may be obtained from Adcola Products Ltd, Adcola House, Gauden Road, London SW4.

TRISTATE L.E.D.

A light-emitting diode which produces red or green emission according to the polarity of the applied voltage is now available from Distronic. Known as the Xciton XC5491, the device uses a back-to-back double-diode configuration which produces red or green light of equal intensity for both colours.
The forward bias is typically 2.2 V at a current of 10 mA with a dynamic resistance of 25Ω. The maximum continuous forward current is 25 mA for both colours and the operating temperature is $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The XC5491 is supplied in a T-1-3/4 package measuring 0.2 in diameter $\times 0.34$ in height, and is supplied with wire-wrappable leads.

For further information contact Distronic Limited, 50-51 Burnt Mill, Elizabeth Way, Harlow, Essex.

CHUCKLESS P.C.B. DRILLING MACHINE

A p.c.b. drilling machine operating on a new design system allows inexperienced operators to drill perfect p.c.b.s immediately.

The unit has no chuck and does not require guide bushes for turbo shank tungsten carbide drills.

The drill bits run in vee-blocks at the end of the drill arm allowing extremely accurate running at 15,000 r.p.m. Belt idler pulleys run on ballraces and the mains motor is silent running.

An integral vacuum attachment for efficient swarf removal will optionally accept standard Hoover vacuum cleaner attachments if required.

The ultra lightweight drill arm can be easily raised and lowered to allow modifications to p.c.b.s where components are already in place. The machine will accept drills from 0.35 mm to 2 mm diameter.

Standard fitments include back stop and side gauge-fully adjustable in both X and Y axis, and a jig to ensure accurate location when fitting drill bits.

The unit cost $£ 140$ with accessories and is available from P.B. Electronics (Scotland) Ltd, 9 Radwinter Road, Saffron Waiden, Essex.

STORAGE SCOPE

The new oscilloscope available from Gould Advance, is a general purpose two channel digital storage oscilloscope and waveform digitizer which features several new facilities, including an $\mathrm{X}-\mathrm{Y}$ display and a sensitivity of $100 \mu \mathrm{~V} / \mathrm{cm}$ combined with isolation from earth to avoid hum and ground loop problems.

It is based on an 8-bit analogue/digital converter operating at a 1 MHz sampling rate into a 1 k bit store to provide a -3 dB bandwidth up to 600 kHz .

In addition to facilities for displaying the sum or difference of the input signals, the instrument has a comprehensive range of signal conditioning and trigger facilities, including a "trigger-window" feature which is unique in oscilloscopes. In this mode, trigger occurs whenever the input goes outside either of two levels, symmetrically spaced above and below the original trigger level.

Internal trigger sensitivity is equivalent to 2 mV of signal at frequencies from d.c. to 1 MHz , and external sensitivity is better than 100 mV up to 1 MHz . Trigger coupling allows selection of d.c. or a.c. with high-frequency and/or low-frequency rejection if required.

An important feature of the digital storage system is a signal delay switch, which inserts a quarter scan length delay into the digital signal path, so that events happening prior to the trigger event may be viewed on the screen.

An 18-position rotary switch varies the speed rate over a very wide range, $100 \mu \mathrm{~s} / \mathrm{cm}$ to $50 \mathrm{~s} / \mathrm{cm}$, while an X-expand control offers the facility of expanding the display horizontally, even after storage has taken place.

In addition to the normal dual-channel form of display against a time axis, channel 1 can

be displayed against channel 2 in the $X-Y$ mode.

A split-trace facility is incorporated; in the single-trace mode, alternate samples of the input signal are frozen, so that an image of the signal may be stored and superimposed on the display of the current input waveform.

The digital storage system incorporated in the Gould Advance OS4100 offers considerable advantages over conventional tubestorage oscilloscopes incorporating expensive limited-life storage tubes. The X - Y facility means that the instrument is ideally suited for looking at transients where more than one variable is involved.

For further information including price contact Gould Instruments Division, Roebuck Road, Hainault, Essex.

RADIOCODE CLOCK

A clock which has been specifically designed to receive the time and date information which is transmitted by the National Physical Laboratory from Rugby on MSF 60 kHz is available from Circuit Services.

By decoding the Rugby signals the clock can set itself automatically within two minutes of being switched on and displays either the time or the date. No subsequent adjustments are necessary because the clock is capable of accounting for both leap years and BST.

Its estimated range is around 1,000 miles and for continental use the clock has an add-on-hour facility or alternatively, a modified version can be supplied which receives a similar signal from the DCF77 transmitter at Mainflingen, West Germany. This allows the clock to be used in Eastern Europe where the MSF transmission may be weak.

The unit can be supplied with an alarm/timer module which enables the clock to control other equipment at certain times for precise periods. A record/replay unit can also be supplied which allows the time or date to be recorded on one track of a conventional tape recorder while the other tracks monitor instrument outputs, transients, etc. On replay the recorded time is shown on the Radiocode Clock display. In this mode the clock operates

exactly as if it was receiving a normal transmitted signal. Once the tape has been started on replay, the clock circuitry requires around two minutes to synchronise with the code. After synchronisation has taken place any events recorded on other tracks of the same tape will be timed to within approximately 10 mS of their occurrence.

Another advantage of this system is that if the Rugby transmitter should happen to break down during an important recording period, the back up crystal clock will take over and provide an accurate time reference.

For further information contact Circuit Services, 6 Elmbridge Drive, Ruislip, Middx.

HONEY AT 2.507

The Casio F-100 digital chronograph can display time, calendar, or a stopwatch function. The $1 / 100$ th second stopwatch measures net and lap times and can record 1st and 2nd place times.

Timekeeping is ± 15 seconds per month and gains or losses of up to 30 seconds are easily adjusted by pressing two buttons and zeroing in on a time signal. A complete setting of hours, minutes and seconds takes a little longer.
The calendar display is similarly easy to set, and looks after itself with only the 29th February to contend with.
Although water resistant the watch should not be subjected to swimming, bathing or even car washing. The manufacturers say the display may disappear if kept under constant sunlight but will reappear after normal temperature resumes. Battery life is approximately 18 months.
It is not understood why the function buttons on the watch are coloured grey, yellow, brown and green whereas the user's guide refers to them as B.L.C. and A.
If you want to brush up on your watch knowledge in German, French, Spanish or Italian then Casio's user's guide serves as a miniature Hugo's. Soon, perhaps, the average music centre will have Stoppuhrfunktion: Travail buttons; oxido de plata batteries; and interfaced Luce shows.

The English language and the traditional clock face are disappearing into an oriental

sunset. The last two lines of The Old Vicarage, Grantchester by Rupert Brooke survived the attack by Peter Sellers' cafe waitress but what hope have they against the digital time display.

Stands the church clock at ten to three?
And is there honey still for tea?
F-100, £19.95, Tempus, 19-21 Fitzroy St., Cambridge, CB1 IEH.

DAWN CHORUS DEVICE

Aptly named the Wren, this new quartz movement miniature alarm clock by Smith's Industries is a mere 59 mm high.

The hands and hour positions are luminous and the moulded case is available in white with a black or gilt dial, or brown with a gilt dial.

The recommended retail price is $£ 12.90$.

AMPLIFONE

This telephone amplifier fits nearly under a standard instrument and not having any wiring to the telephone can be installed instantly.

Dialling and ringing tones and voices are amplified enabling the caler to hear incoming sound "hands off". The flight deck is simplified to one combined On/Off switch and volume control.
Posted and packed price is $£ 10$.
Southern Developments, 120 High Street, Billingshurst, Sussex, RH14 9QS.

SHAFT SHEAR

Manufactured from hardened Swedish tool steel, this guillotine-type tool will cut copper, aluminium, mild and stainless steel, and plastics rod of the following diameters: $\frac{1}{16}, \frac{1}{8}$ and $\frac{1}{4} \mathrm{in}$, and $3,4,5$, and 6 mm .

Shock and vibration have caused problems when the spindles of sensitive components have been sewn or cut on a lathe; but the Telpro Shaft Shear may be used to cut the spindles of even delicate helical potentiometers, since it does not transmit shock or vibration.

A further advantage is that it gives such a clean, smooth cut that no filing or other finishing operation is needed before control knobs are fitted.

Manufacturers are Tele-Production Tools Lid., Stiron House, Electric Avenue, Westcliff-on-Sea, Essex SS0 9Nw.

Mini vice

This, Design Centre selected vice, needs only a $\frac{5}{16}$ inch clearance hole in a work bench to give an infinitely positionable third hand. It is an ideal addition to the Home Radio Electronic Workshop (below) and is also supplied by them, at $£ 5 \cdot 50+8$ per cent VAT and 85 p postage, but post free if supplied with an Electronic Workshop.

TRAVEL

If you have ever been evicted from the kitchen table just as you were getting your project into a "critical" mode you will understand the marketing theory behind The Electronic Workshop. At the first sign of an approaching ketchup bottle the self contained unit can up and away to the safety of the cupboard under the stairs.
The working surface is two feet wide and 20 inches deep. Rubber mat covers the centre area and formica protects the side portions. Pieces of pine $1 \frac{1}{2}$ inches high form the outer edges and also double as tool holders.

At each end of the back section is a flush 13A shuttered mains socket. The right hand
compartment contains a power pack, giving $0-20 \mathrm{~V}$ at 1 A . The left hand compartment houses a small 35Ω speaker and volume control. The centre compartment acts as a tool box and dispenser for reels of solder, plain wire and tinned copper which feed out of three holes into the work area.

The price of the workshop complete, but for wiring up, is $£ 45$. Ready wired, $£ 54$. VAT and carriage, $£ 4.56$.

Home Radio (Components) Ltd. 240 London Road, Mitcham, Surrey CR 4 3HD.

Please note that the photograph shows a mark one version which had AC and DC controls on the power supply. The present workshop has a single control.

DIGITAL THERMOMETER REVIEW

There are many different types of digital thermometer now available which cover a very wide temperature range.

The hand-held types use cmos technology to ensure low power consumption with either l.e.d. or l.c.d. indication.

The shape and type of sensor depends on the particular application for which the unit is required, i.e. medical, surface, liquid, powder or gas measurements.

800 SERIES

This series incorporates twelve different models with a wide variety of thermocouples to cover the temperature range from $-150^{\circ} \mathrm{C}$ to $1,750^{\circ} \mathrm{C}$.

To ensure maximum life is obtained from the internal batteries a three position switch: momentary-off-on is used. This facility enables the instrument to be either switched on only for the instant at which it is required, or maintained continuously on. HP7 batteries are included with the unit and rechargeable cells with a charger are available as an optional extra.

The $\mathbf{8 0 0 0}$ series vary in price from $\mathbf{£ 9 4 . 0 0}$ to $£ 125.00$ subject to the temperature range and resolution required.

Further details can be obtained from Channel Electronics Ltd., PO Box 58, Seaford, Sussex.

THERMISTOR PROBES

The Technoterm 1500 uses precision thermistors with negative temperature coefficients in their probes. This enables response times of between 6 and 10 secs to be achieved over a temperature range of $-40^{\circ} \mathrm{C}$ to $140^{\circ} \mathrm{C}$, depending on the type of probe chosen.

A wide range of probes is available to suit most applications. Accessories include nickel cadmium batteries, recharger and a handy dispenser for silicone paste which reduces the response times on rough surfaces.

The Technoterm 1500 is priced at $£ 169.00$ and is available from Thermographics Ltd., 16 Canal Street, Congleton, Cheshire.

CLINICAL TYPE

The 4755 has been designed specifically for medical and environmental measurements and is available in two ranges, $33^{\circ} \mathrm{C}$ to $42.9^{\circ} \mathrm{C}$ (clinical) and $1^{\circ} \mathrm{C}$ to $48^{\circ} \mathrm{C}$ (environmental).
The medical unit is capable of retaining the highest temperature detected within a patient and to prevent cross infection both the instrument and the sensor can be sterilised. To avoid the need for sterilisation after each test disposable sheaths for the sensor are supplied with the unit. The response time of the thermometer is 15 secs with rechargeable cells as an optional extra.

The Digitron 4755 is available priced £92.00 from Digitron Instrumentation Ltd., Mead Lane Industrial Estate, Hertford, Herts.

TEMPSTIK

The Tempstik thermometer has been designed to meet the low cost instrument need and is capable of measuring a temperature range of $-100^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ with reasonable accuracy.

The instrument has a liquid crystal display and is powered from a PP3 battery which is not included.

The Tempstik which is priced at $£ 73.00$ is available from Process Measurement Ltd., 8 High Street, Littlehampton, West Sussex.

BENCH TYPE

The 7000 series was designed for bench or rack mounted applications and is mains operated. The temperature is indicated on three or four 14 mm Sperry gas discharge displays. Thirteen models are available for the temperature range $-100^{\circ} \mathrm{C}$ to $1,800^{\circ} \mathrm{C}$.

All the models in this series can be fitted with an alarm circuit which consists of two totally independent alarm points each having its own relay and front panel l.e.d. The relay contacts which are rated at 240 V 2 A provide normally open, common and normally closed outputs at the rear of the unit.

The price of the 7000 series is between $£ 109.00$ and $£ 149.00$ depending on the temperature range chosen.

For further information contact Jenway Ltd., 26 Broomhills Industrial Estate, Rayne Road, Braintree, Essex.

THIS circuit was developed to control the speed of a small model vehicle driven by a permanent magnet electric motor, and provides the following features:

1. A wide range of continuous speed control down to about 200 r.p.m. motor speed.
2. Substantially constant speed despite changes in mechanical resistance due to inclines, cornering, or surface variation-carpet to lino, for example.
3. Substantially constant speed despite changes in electrical resistance-varying track length in a model railway, for example.
4. Economical low-speed operation, unlike some opamp based controllers.

PRINCIPLE OF OPERATION

The controller makes use of the fact that when the permanent magnet motor is temporarily disconnected from the drive battery, it acts as a generator driven by the wheels of the free-wheeling vehicle, with the generated voltage representing the actual speed of the vehicle.

The controller compares this generated voltage with a voltage selected to represent the desired speed, and when the vehicle speed is less than the desired speed the controller momentarily reconnects the battery to the motor.

This process is repeated continuously, resulting in the motor being fed with a stream of fixed magnitude pulses, with a repetition rate governed by the external conditions, as shown in the waveform diagram.

CIRCUIT DESCRIPTION

A voltage representing the desired speed is fed to terminal A. This voltage may be derived in various ways, the potential divider VR1 being shown as an example. Transistor TR1 compares this voltage with the generated voltage from the motor via filter components R9, C3, and switches on TR2 when the actual speed is less than the desired speed. Monostable M1 then produces a fixed magnitude pulse at

COMPONENTS

Resistors

R1	$10 \mathrm{k} \Omega$
R2	$10 \mathrm{k} \Omega$
R3	$39 \mathrm{k} \Omega$
R4	$39 \mathrm{k} \Omega$
R5	470Ω
R6	$1 \mathrm{k} \Omega$
R7	$10 \Omega 2 \mathrm{~W}$
R8	$1 \mathrm{k} \Omega$
R9	39Ω
R10	$1 \mathrm{k} \Omega$

(t W carbon except where otherwise stated)

Capacitors

C1	$0.022 \mu \mathrm{~F}$ plastic
C2	$0.1 \mu \mathrm{~F}$ plastic
C3	$0.047 \mu \mathrm{~F}$ plastic
C4	$0.01 \mu \mathrm{~F}$ ceramic
C5	$0.01 \mu \mathrm{~F}$ ceramic
C6	$0.01 \mu \mathrm{~F}$ ceramic

Semiconductors

TR1	BC107	TR4	AD142
TR2	BC157	D1	AAY12 (see text)
TR3	BFY50	IC1	SN74123

Fig. 1 (above). Circuit diagram; Fig. 2 (below) waveforms

pin 13 of the i.c. and applies power to the motor via TR4, which is an AD142, chosen for its low saturation voltage at high current levels.

Diode D1 is provided to prevent the monostable output terminal from being held low by the base-emitter junction of TR3, and must be a gold bonded germanium component to ensure that TR3 turns off adequately when required.

When the power is removed from the motor inductive effects cause a negative voltage spike at the motor terminal D, as shown in the waveform diagram, so monostable $M 2$ is provided to prevent re-operation of M1 until this back-e.m.f. has decayed and the voltage across the motor truly represents the vehicle's speed.

Separate Nicad batteries were used to avoid interference problems caused by the large surges of motor current and the sensitivity of the TTL monostables.

MONOSTABLES

The 74123 is a dual retriggerable, resettable monostable multivibrator providing an output pulse whose duration and accuracy is a function of external timing components.

There are two inputs per function, one active low and one active high. This permits triggering on either the positive going leading edge or negative going trailing edge of a pulse. Triggering is independent of input transition time or pulse width.

Since the switching voltage requirement for silicon is higher than the germanium with no pulse output from M1, D1 conducts and TR3/TR4 remain off.

With a pulse output, D1 is blocked and TR3 conducts so that TR4 provides current to the motor.

To prevent the pulse period being extended with the appearance of the inductive spike, Q output is routed back

Fig. 3. Board layout

Fig. 4. Component connections to board
to M 2 producing a high output at pin 5 which inhibits the Q output of M1.
As can be seen from the waveform diagrams the pulse widths at $M 1$ and $M 2$ outputs have been preset by choice of R4-C2 and R3-C1 respectively, the pulse period being a function of the product of these.

CONSTRUCTION

All components except TR4, R7, R8, C5 and C6 are mounted on a piece of $0.1 \mathrm{in} \times 0.1 \mathrm{in}$ Veroboard as shown. \star

..: a selection from our postbag
 Readers requiring a reply to any letter must include a stamped addressed envelope.

Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

Audio compass

Sir-A number of compasses have been, and are being, adapted to provide an audible signal for use by blind yachtsmen. However, none of these provide all the facilities that I, as a blind helmsman, would like to have incorporated into one device.

The device that I want would comprise the following: a unit which will generate an electronic signal indicating the boat's direction, detected by the strength and/or direction of the compass's magnetic field; a calculator-type keyboard to be used to enter desired courses and alterations to them; an audio output stage; and, at the heart of it all, a microprocessor to control and coordinate everything.

I have a good knowledge of programming and a basic knowledge of electronics. But I need help to design and construct this device. If you would like to help me with this, please contact me, preferably by telephone, 01-591 5491 (home) or 01-432 6277.

Kenneth C. Knowles, 3 Sheringham Drive,

Barking, Essex
IG119AL.

CB v TV continued

Sir-I read with interest your article "CB Radio" under Industry Notebook in the May edition of Practical Electronics.
While one is delighted at the content of the article with regard to the recognition of the TV receiver front end problem and the development of better systems, it is a pity that your last paragraph, re interference, is typical of the uninformed and hysterical comment in the electronic/radio press concerning CB Radio. Over the last year comments like this have caused concern to laymen and authority alike.

Of course the great mass of population would not take kindly to TV interference caused by CB Radio and rightly so. But before you spread alarm and despondency a little investigation on your part would have revealed that interference (or prevention of it) stood high on the list of priorities produced by the CB pressure groups. Indeed their call was for VHF/UHF spectrum with low power (2W) FM. Not the AM/SSB kilowatts on 27 MHz
which has been responsible for the interference problem in other countries.
A. J. Cawthorne,
T.ENG(CEI). FSERT. G3TDJ. Bude, Cornwall.

Nexus comments: "As a licenced amateur Mr Cawthorne will be aware of the problems of TVI and of controlling abuses of radio usage however well the regulations are framed and policed. We all start off with good intentions. If, in fact, CB users with kilowatt outputs do exist this proves the point. There is no reason to suppose that British CB enthusiasts, once they catch the bug, will be content with 2 Watts or even 20 Watts. Mr Cawthorne will also be aware that his fellow fully-licenced amateurs, supposedly responsible, are often tempted to abuse their conditions of licence. We cannot assume that $C B$ enthusiasts with on-demand permits, no RAE, and no signed log-books, will be better behaved."

IC 555 PROJECTS

By E. A. Parr
Published by Bernard Babani Ltd
141 pages $180 \times 115 \mathrm{~mm}$. Price £1.45

0NE of the most versatile i.c.s available to constructors in recent years has been the 555 timer. This book explains the operation of the timer in detail and then describes the basic circuits that can be built around it.

Specific applications for the device are a collection of designs which have appeared in P.E. and other magazines and are given under four headings; model car, model railway, alarm and general circuits.

Variations of the 555 , namely the 556,558 and 559 which are the dual and two quad versions available are also briefly covered. Practical notes are given on how to construct the circuits with tables to determine the values of the timing capacitors. Many readers will find this book useful both for constructing the circuits and as a handy pocket reference book on the 555 timer.
D.J.S.

OP-AMPS; THEIR PRINCIPLES AND APPLICATIONS

By J. B. Dance Published by Newnes Technical Books 88 pages, $135 \times \mathbf{2 1 5 m m}$. Price £2.25.

SO MANY books published have been along the same lines as this, and indeed on exactly the same subject, that it is perhaps better to stick to the bare facts.

The book has been written for the non-specialist engineer and home constructor. A non-mathematical approach has been adopted, and internal workings of devices area not discussed in any depth; only applications.

The initial three chapters are devoted to the 741 i.c., followed in Chapter 4 by external frequency compensation. Chapter 5 covers f.e.t. input op-amps, and the last two chapters go into i.c.s for audio applications. At the end of the book there is a glossary of op-amp terminology.

Although the original concept of operational amplifiers was that of performing mathematical operations, no devices for performing mathematical functions are included, as part of the author's aim of keeping the book at a simple practical level. There are clear and well printed working circuit diagrams throughout, each with component values given, and anyone seeking to understand operational amplifiers could do worse than read this material, which is an updated version of the Electronics Australia series "Op-Amps Without Tears."

Copies of Patents can be obtained from: the Patent Office Sales, St. Mary Cray, Orpington, Kent

Price 95p each

SICNAL CLIP•胃O NITCATI

The Sony Corporation has already patented (BP 1439 241) protective circuit for shutting down an audio amplifier when the impedance value at its output falls below a preset value, for instance due to shortcircuiting of the driven loudspeaker. Now, in BP 1458 857, Sony describes a circuit which will indicate clipping of the output signal as, for instance, may follow from over driving the amplifier into distortion.

The circuit shows a power amplifier with three differential amplifiers (Diff. Amp. 1, 2, 3) and a push-pull output. The signal path
from the output to the base of TR2 forms an in-phase negative feedback loop. Detecting terminals SK1 and SK2 are con'nected to the collectors of TR4, TR5 respectively of differential amplifier 2.

In normal operation, similar signals of a few volts are delivered to detecting terminals SK1 and SK2. Transistor TR12 of the detecting circuit is conductive, and hence TR13 is non-conductive. This causes TR14 of the monostable multivibrator to be conductive, and transistor TR15 nonconductive. As a result, the light emitting
diode D3 is energised to emit green light which indicates that the power amplifier is operating normally.

When the amplifier is subjected to excess load or the load is short-circuited or the output signal is clipped, the voltages at terminals SK1, SK2 approach that of the voltage source $-V_{C C 1}$ for the differential amplifiers. As a result, D1 or D2 is biassed to $-V_{\text {cc1 }}$, TR12 goes non-conductive and TR13 conductive. D3 extinguishes and the red l.e.d. D4 illuminates, to indicate overload or clipping.

A selection of readers' original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
Why not submit your idea? Any idea published will be awarded payment according to its merits.
Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.
Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere

THE circuit shown above is for an attack/release envelope shaper with automatic triggering.

IC1 is a 555 tiner connected in the astable mode with VR1 controlling the duration and VR2 the width of a pulse. No series resistors are used to enable maximum span and flexibility of operation. Automatic triggering is obtained by S2 with S1 used for manual triggering.

The pulse from the output of 1 C 1 (pin 3) is fed via $\mathbf{S} 2$ through D3 and VR4 (which controls the attack time) and charges C3 which in turn switches on TRI.

When the pulse is finished C3 is
discharged through VR3 and D2 to DI and R1. The purpose of D1 and RI is to form a discharge path for C3 and to indicate when a pulse is applied to C3. The discharge time of C3 depends upon the setting of VR3. As C3 gradually discharges TR1 is turned off.

The cycle of the envelope shaper is monitored by D4 which in turn is controlled by TR2.

To operate, the circuit requires 100 to 200 mA and can be driven either by a 9 V PP3 battery or a separate power supply unit.

Stephen Trouse,
Australia.

With only a few components, a modern pH meter (acid/alkali level) can be built using the relatively new RCA 3140T operational amplifier.

Stripboard is not suitable because of the close proximity of the tracks, and so the TOS style op amp should be used with its leads spread out and terminated on a good quality p.c.b. with lead 3 of the i.c. soldered to a teflon insulated terminal. From there, a stiff bare copper wire should connect to the input socket.
The meter ME1 can be a cheap $\pm 100 \mu \mathrm{~A}$ movement and it should be easy to re-mark the scale from 2 to 12 pH , with 7 pH at the centre (being neutral), or from 0 to 14 pH . The unit can be powered from two PP3 9V batteries.

With the electrode in a pH 7 solution (distilled water will do) adjust VR1 for a reading of 7 . Now place the electrode in a buffer solution of pH 4 (acidic solution for calibrating) and adjust for a reading of 4. An alkaline buffer solution (above pH 7) could be used instead. The instrument is now calibrated. See P.E. March and April 1977 for pH theory.

Walter Hediger

Switzerland

TOUCH SENSITIVE KEYBOARD

THHE circuit described here was designed to provide a synthesiser keyboard with an additional control voltage output, whose magnitude is proportional to the velocity at which a key is struck. This voltage can, for example, be used to control the maximum aplitude which a note attains during the attack time to give the keyboard a piano-like feel, in that it is sensitive to how "strongly" the music is played.
The circuit, shown below, requires an extra set of changeover contacts on the keyboard. ICI detects when
any contact spring is touching neither of its contacts. Thus the output of IC1 will switch negative for a duration which is inversely proportional to the key velocity. During this time, capacitor C3 is discharged through VR2 to a voltage proportional to the key velocity. TR2, in switching on, charges C4 to a voltage governed by the charge on C3. The output is prevented from going positive at this time by D4 and D5. When the contacts remake, TR2 shuts off preventing any further charge on C4, whose voltage is now buffered by IC2 and passed to the out-
put. C3 now re-charges ready for the next cycle. This sequence of events is prevented from re-occuring when the key is released by the keyboard trigger signal, which inhibits IC 1 during this time. VRI sets up the key detection circuit, and should be adjusted so that the output of ICl gives a negative pulse when a key is pressed slowly. VR2 sets up the velocity/voltage relationship, and is adjusted to give the required output voltage range.
P. R. Williams,

Stevenage,
Herts.

CALCULATOR-DECADE COUNTER

Aconventionally-built decade counter can be rather costly and complicated compared to a calculator with the same digit capability. However, by using the adding function, a calculator can be converted into a decade counter by entering the key sequence $1+, 1+, 1+, 1+, \ldots$ etc. electronically. The corresponding display will then be $1,2,3,4, \ldots$ etc. The given circuit is designed for adding on to the CBM SR 7919D calculator, with part of the calculator circuit board shown, showing the three take-off points required (Fig. 2).

The circuit essentially consists of a monostable multivibrator driving two switching circuits. This circuit operates on an independent supply and it is advised not to decouple the supply with an electrolytic capacitor. When the monostable receives an input, it generates an output pulse of a given duration. The leading edge of this pulse triggers the "I" input while the trailing edge triggers the "+" input; forming the " $1+$ " sequence for a single input.
The time delay of the monostable is made variable by VRI so that it can be set just above the minimum duration at which the calculator counter will operate. Even then the time delay (time between the "l" and "+" input) shows to be quite high which means that the maximum frequency input is low. In fact in my set-up, the maximum counting rate is only about 4 per second!

This counter can be used in applications where low and extremely low counting rate suffices when the time out signal feature of the calculator can be utilised.
For example, by feeding a crystal derived 1 Hz input, the counter can be used as a precision seconds timer. Similarly it can be used as a counter for registering the number of people entering a building, etc. by adding the resistor and switch as shown in dotted lines in the diagram.

Fig. 2
Furthermore the calculator-counter may be connected to a conventional counter to increase its counting capacity. In this way the inherent low counting rate of the calculator-counter can be compensated. For example, the unit digit of the calculator-counter will become the thousand digit if appropriately connected to a conventional 3 digit counter.

Pek Yaw Kee,
Sarawak,
East Malaysia.

CMOS DOORBELL

THis i.c. doorbell is built around a CD4011 nand gate package, using only a handful of readily available components, and forms two oscillators.

The basic tone for the bell is produced by the high frequency oscillator (G3, G4, R2 and C2), and is interrupted by the low frequency oscillator (G1, G2, R1 and C1). These component values can of course be varied to produce different interrupt rates or basic tone.

The output is fed to a BC108 tran-
sistor which drives an 8Ω loudspeaker, and a PP3 battery can be used to power the circuit. The prototype was
housed in a plastics case measuring $116 \times 80 \times 35 \mathrm{~mm}$.
A. W. Cunningham, Glasgow.

TRACE MULTIPLIER

Fig. 2

THis circuit, while using only three common cmos i.c.s allows four separate signals to be displayed on a single beam oscilloscope with independent vertical position and amplitude controls. Instead of using an internal free-running oscillator, this circuit employs the sweep output of the oscilloscope to trigger the switches and therefore displays the first trace on the whole of the screen before displaying
the second in the same way, the switch being triggered by the negative going pulse of the sawtooth wave from the sweep output as it moves back to the other side of the screen.

As the sweep output of most oscilloscopes often exceeds 50 V , a series capacitor, series resistor and potentiometer are used to modify the wave and trigger flip-flop. Four sequential outputs are obtained by using the Q
output of F / F_{1}, to trigger F / F_{2}, thus having F / F_{2} run at half the frequency of F / F_{1}. Then the Q and \bar{Q} outputs of both flip-flops are connected to the inputs of four NOR gates as shown, whose output oily goes high when both inputs are low. The outputs of the four gates therefore go high in sequence and trigger the electronic switches which allow the four inputs into the oscilloscope one by one.

Each input, before reaching the switches must be attenuated to a useful amplitude relative to the others, and also must be given a different height on the screen to the other traces. This is achieved by the circuit in Fig. 2, which must be repeated for each input. For this reason, it is best to use preset potentiometers as eight normal potentiometers would cost more than the смоs circuitry itself.

It may be necessary to use a different capacitor on the input from the oscilloscope's sweep output, but this depends on the voltage range of the output. We have found that a $0.02 \mu \mathrm{~F} 200 \mathrm{~V}$ capacitor works admirably where the sweep output is 100 V peak-to-peak.
A. Hetherington

Nevilles Cross Durham.

LED FLASHER

Flashing l.e.d. indicators are most often used to indicate a hazard. But there are times when a rather less insistant winking indication, would be appreciated, indicating to proceed at caution.

This circuit which uses an LM 3909N l.e.d. Flasher/Oscillator i.c. has a pulse frequency that can be varied by VR1, from 10-60 pulses per minute.

With the decay control VR2 set to zero, the time of each pulse of light from the l.e.d. corresponds to the discharge time of Cl , this discharge time can be lengthened, by increasing the resistance by means of VR2, between the positive of Cl and pin 2 of the i.c. So that each pulse of light fades away instead of switching abruptly "off".

Decay time of up to 1 second can be obtained with the components shown. It should be noted that a long decay is not possible with a fast frequency.
M. Miller,

Reading,
Berks.

12v CONVERTER for Weller TCP 1\&2 Irons D. J. BRADBURY

WHEN working on an automobile electrical system it can be very useful to have a soldering iron that will operate from the vehicle's battery. This relieves both the inconvenience and possible hazards involved in arranging external supplies such as a main extension lead.
The unit described in this article is a 12 V to 24 V d.c. converter designed to supply Welier TCP1 and TCP2 temperature controlled soldering irons from a standard car battery. The converter is housed in a small die-cast box which will also serve as a stand for the iron when it is not in use.

CIRCUIT DESCRIPTION

A 24 V Weller iron consists of a 45 to 48 W heating element in series with a magnetic "Curie" effect temperature switch. Because of this switch the iron only takes current when the soldering bit falls below its correct operating temperature. Thus to work efficiently the converter circuit must be able to supply 50W to the soldering iron and yet take minimal quiescent current when its load is open circuit.

The circuit shown in Fig. 1 achieves both these aims, operating at an efficiency of over 80 per cent whilst the iron is warming up and taking only micro-amps when the iron reaches its correct temperature.

When the circuit is connected to a battery and the soldering iron plugged in, bias current is fed to the base of TR1 via the transformer T1, diodes D1, D2 and the iron. This starts to turn TR1 on, causing its collector voltage to fall, enabling the transformer to increase the voltage applied to the load. The load thus biases TR1 on harder until the transistor finally saturates, giving a peak voltage of approximately 28 V across the soldering iron.

While the transformer has a voltage across its windings, a magnetising current slowly builds up until the ferrite transformer core is saturated; it then rises rapidly as the core loses its high relative permeability. When the collector current of TR1 reaches about 10A, the transistor no longer receives sufficient base drive to remain saturated and so its collector voltage begins to rise. This causes the load voltage to fall, reducing the base drive of TR1 which further reduces the load voltage and by this feedback action the transistor is turned off.
When TR1 is turned off, its collector voltage rises rapidly above the supply due to the magnetising current flowing in the transformer. Also the output voltage of the transformer goes negative, reverse biasing diodes D1 and D2, so isolating the transformer from the load. The magnetising current causes the unloaded transformer to 'ring' for half a cycle at a frequency mainly determined by its inductance and the value of C 1 . The high voltage half cycle 'ring' reverses the flow of the magnetising current and as a result defines the length of time for which TR1 does not conduct.

This period must be kept short if the converter is to be efficient. However, the shorter the time the higher the voltage required across $T 1$ to reverse the magnetising current. Since part of this voltage appears across TR1 a compromise was chosen for the converter that gives the

COMPONENTS

Resistors

R1

Capacitors

C1
C2
Semiconductors
D1, D2
D3
ZS271 (2 off)
TR1
BD243B

Transformers

Length of 22 s.w.g. enamel covered copper wire Bobbin (type DT2205, ITT Part No 52352E)
Ferrite pot core Itype FX 2241, ITT Part No 52707BI

Miscellansous

* 4 mm banana sockets (2 off)
*3 pin 1.5A Bulgin P430 socket
Diecast box $120 \times 95 \times 30 \mathrm{~mm}$
Support spring (Weller SK 185, ITT Part No 66304X) Funnel (Weller SK 1527, ITT Part No 18668E) FS1 Fuseholder Bulgin F55 with 5A fuse
*See text

Fig. 1. Circuit diagram of the Converter

Fig. 2. Printed circuit board design
transistor a peak collector-emitter voltage of 55 V during its off period which lasts for about 25 per cent of the full oscillation cycle.

When the magnetising current flowing in T 1 is finally reversed, the output voltage of the transformer swings positive and turns TR1 on again thus starting another cycle. The converter continues to oscillate in this manner, feeding 24 V r.m.s. to the soldering iron until its working temperature is reached and the magnetic switch opens.

As the bias for TR1 is supplied through the load, when the temperature switch opens the converter ceases to oscillate. In this condition the only current taken by the circuit is the leakage in TR1, C2 and D3, the sum of which is very small.

When the iron cools, the magnetic switch will close, and so the converter will reheat the bit. The unit will thus operate intermittently, maintaining the soldering iron at its correct working temperature.

The diode D3 has been included in, the circuit to protect the converter against reverse polarity connection to the battery. Normally the diode is reverse biased and so it draws little current from the circuit. However, if the supply connections are accidentally reversed the diode will take a heavy current and blow the 5A fuse before the converter circuitry is damaged. Although a series diode would have the advantage of saving the protection fuse if the battery polarity is wrong, it was not used in this case as it would have to pass a current of 5A under normal operating conditions and so for a silicon device would nearly double the power losses of the converter.

CONSTRUCTION

The prototype was constructed using the printed circuit board layout in Fig. 3 with the component overlay shown in

Fig. 3. Component layout and wiring diagram

Fig. 4. If the printed circuit board is to be traced, constructors should remember that the copper tracks will carry high currents and so it is recommended that the diagram is followed closely, keeping the tracks as wide as possible.

Once the board has been etched, cleaned and drilled, the components and lead out wires may be soldered. The supply input leads should be fitted with large crocodile clips for making connections to the battery. Although the power dissipation in TR1 is not very high, it is necessary to mount the transistor on the converter box to keep the device within its temperature ratings. To facilitate this, the transistor is soldered to the back of the printed circuit board with its leads left long so that they can span the gap between the box and the circuit.

The transformer for the converter consists of a 39 turn coil wound with 0.71 mm dia. ($22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$.) enamel covered copper wire mounted inside a 30 mm dia. ferrite pot core. The coil should be neatly wound in layers on the plastic bobbin with a tapping taken 15 turns from the start of the winding. As the converter oscillates at a frequency of about 4 kHz , the transformer can be the source of an annoying audible whistle. To minimise this, when assembling the pot core halves smear a thin layer of grease on the mating surfaces to dampen core vibrations.

The transformer is fastened to the converter box using a 1 in . long countersunk 2BA bolt with nut and spring washer. The spring washer should be placed between the box and the transformer as in this position it acts as a vibration insulator. Do not overtighten the retaining nut as no advantage is gained by doing so and it could result in breaking the brittle ferrite cores.

The $120 \times 95 \times 30 \mathrm{~mm}$ die-cast alloy box used to house

Fig. 4. Case drilling and mounting details

the converter was drilled to the dimensions shown in Fig. 4. Since the two Weller irons have different connector arrangements the diagram includes the holes for both types of sockets.

The position of the hole to mount TR1 is not given' in the diagram as it will depend on how the transistor was soldered to the printed circuit. The correct location can be found by placing the component board in position inside the box and marking the hole through the transistor tab after having checked that the device is lying flat. When the transistor is mounted it should be electrically insulated from the box by using a mica washer and plastic bush.

TESTING

Having completed the converter and checked its wiring, plug in the soldering iron and connect the unit to a 12 V battery, being careful to observe the correct polarity. The converter should emit a soft whistling sound and the following voltages may be measured from the negative end of C2 using a moving coil voltmeter. TR 1 collector +12 V , TR1 base +0.8 V , soldering iron output +20 V .

If there are any serious discrepancies in the voltage readings, disconnect the battery and recheck the converter for faulty components, dry joints and wiring errors. In cases where the converter cannot be heard to oscillate and all the voltage readings are zero, check the fuse and the battery polarity. Never use fuses rated at more than 5A or those with "slow blow" characteristics as they may result in damage to D3 or TR 1 under fault conditions.

If the converter is operating correctly it should oscillate for between 1 and $1 \frac{1}{2}$ minutes from switch-on, after which time the soldering iron will have reached its working temperature and the soft whistle will cease. The converter may be occasionally heard as it reheats the bit.

MK14-the only low-cost keyboard-addressable microcomputer!

 The new Science of CambThe MK14 National Semiconductor Scamp based Microcomputer Kit gives you the power and performance of a professional keyboard-addressable unit-for less than half the normal price. It has a specification that makes it perfect for the engineer who needs to keep up to date with digital systems or for use in school science departments. It's ideal for hobbyists and amateur electronics enthusiasts, too.

But the MK14 isn't just a training aid. It's beendesignedforpractical performance, so you can use it as a working component of, even the heart of, larger electronic systems and equipment.

MK14 Specification

* Hexadecimal keyboard * 8 -digit, 7 -segment LED display
* 512×8 Prom, containing monitor program and interface instructions * 256 bytes of RAM
* 4MHzcrystal
* 5V stabiliser
* Single 6V power supply
* Space available for extra 256 byte RAM and 16 port I/O
* Edge connector access to all data lines and I/O ports
Free Manual
Every MK14 Microcomputer kit includes a free Training Manual. It contains

operational instructions and examples for training applications, and numerous programs includingmath routines (square root, etc) digital alarm clock, single-step music box, mastermind and moon landing games, self-replication, general purpose sequencing, etc.

Designed for fast, easy assembly Each 31-piece kit includes everything you need to make a full-scale working microprocessor, from 14 chips, a 4-part keyboard, display interface components, to PCB, switch and fixings. Further software packages, including serial interface to TTY and cassette, are available, and are regularly supplemented.

The MK14 can be assembled by anyone with a fine-tip soldering iron and a few hours' spare time, using the illustrated step-by-step instructions provided

Tomorrow's technology - today! "It is not unreasonable to assume that within the next five years ... there will be hardly any companies engaged in electronics that are not using microprocessors in one area or another."

Phil Pittman, Wireless World, Nov. 1977.

The low-cost computing power of the microprocessor is already being used to replace other forms of digital, analogue, electro-mechanical, even purely mechanical forms of control systems.

The Science of Cambridge MK14 Standard MicrocomputerKit allows youtolearn more about this exciting and rapidly advancing area of technology. It allows you to use your own microcomputer in practical applications of your own design. And it allows you to do it at a fraction of the price you'd have to pay elsewhere.

Getting your MK14 Kit is easy. Just fill in the coupon below, and post it to us today, with a cheque or PO made payable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantee. If for any reason, you're not completely satisfied with your MK14, return it to us within 14 days for a full cash refund.

Science of Cambridge Ltd,
6 Kings Parade,
Cambridge,
Cambs., CB2 1SN.
Telephone: Cambridge (0223) 311488

To: Science of Cambridge Ltd
 6 Kings Parade, Cambridge,

Cambs., CB2 1SN.
Please send me an MK14 Standard Microcomputer Kit. I enclose cheque/ Money order/PO for $£ 43.55$ ($£ 39.95$ $+8 \%$ VAT and 40 p p\&p).
Allow 21 days for delivery.

PE TV GAME CENTRE. 14 GAMES

ALL PARTS AVAILABLE FOR THE 14-GAME PROJECT

PCB and information
Colour encoder UM1164E36
Sound modulator UM1263
Vision modulator UM1163E36
AY-3-8760 Motorbike chip
AY-3-8600 10-Game chip
Crystal
Choke
CD 4013
CD 4081
CD 4071
CD 4012
CD 4069
8V2 Zener
BC 182
BC 337
28 pin socke
14 pin socket

$£ 3.50$

 22.50 $£ 2.90$ $\varepsilon 2.90$ $£ 2.90$$\mathbf{~} 9.90$ $\begin{array}{r}£ 9.90 \\ \\ \\ \hline 7.50\end{array}$ 7.50
.90

.90

.45 .90

.90 P

.45

20

 each each . 20 each $\begin{array}{r}.20 \\ .15\end{array}$each
each each . 45 each . 25

220 mfd capacitor	each . 10
100 mfd capacitor	each . 10
All resistors	each . 03
All diodes	each . 03
All cepacitors	each . 04
Extra parts for finishing complete Game	
$3.5 \mathrm{~m} . \mathrm{m}$. power socket	. 12
Pair of joysticks	£3.50
2 metres of 6 core cable	. 90
Pushbuttons	each . 15
Knob	. 45
Toggle switch	each . 65
Box-set with fascia (printed	£4.90
Aerial lead	. 45
Power supply	£3.25
Complete kit, no extras nee	ded £47.50

All prices include VAT. For orders under $£ 10$ add 20 p p\&p. Cheques and postal orders to be made payable to TELEPLAY; send your order (No stamp needed,) to Teleplay, Freepost, Barnet, EN5 2BR. or telephone your order quoting your Barclaycard or Access number

TWO NEW SUPERMODULES: 170W INTO 4 OR 8 OHMS

A New dimension in audio/ visual entertainment

the

patent pending

- Turn your television into a full colour light organ!
- Beautiful wave patterns - every record is excitingly different.
- A must for Hi-fi enthusiasts really hypnotic to watch.
- Oscilloscope display shows stereo channel separation etc

Order now from:
William Stuart Systems Ltd. Dower House, Billericay Road, Herongate, Brentwood,
Essex CM13 3SD.
Telephone 0277810244

- Use microphones for dramatic $\mathrm{Bio} /$ feedback effects.
- Simply plugs into T.V. aerial socket \& tape /auxiliary outputs.
- Special offer for limited period £39.95 + £1.00 post $=$ packing (or DIY Kit for only $£ 26.90$ inclusive).

PRACTICAL

OUR SEPTEMBER ISSUE WILL BE ON SALE FRIDAY, 11 AUGUST, 1978

Semiconductor UPDATHzom FEATURING: mo4301 AD3500

ALARMING DEVELOPMENT

One of the problems of using modern large scale integrated circuits is that we, the users, have become obliged to surrender a lot of our design independence to the semiconductor manufacturers.

To ensure volume sales of their chips, the manufacturers tend to build devices which are aimed at the widest possible market, and we, as willing customers, have had to forego some of the "oddball" applications that we could indulge in when using discrete transistors and individual amplifiers or logic gates.

Of course, a ray of hope is visible in the shape of the microprocessor, but unless you happen to be a confirmed "Micro-nut" there are still many fearsome obstacles to deflect you from that path, not least the cost of it all.

When you think about it, the bastions of the LSI industry are calculators, clocks, microprocessors, voltmeters, and TV games, and precious little else. Not exactly a fertile ground for the amateur who wants the benefits of LSI but who can cope with only so many variations on the digital clock theme before trading the whole lot in for a pair of beam-tetrodes and a 50-Watt soldering ir on!

The point I am trying to make is that any original large scale integrated circuits that do turn up deserve a rousing welcome from our beleaguered band, and this month I have managed to turn up a beauty!

I refer to the MD4301, from the Canadian firm of Mitel, (no-don't groan, you can get them from Rastra Electronics Limited!), which is unassumingly labelled a "CMOS Alarm Circuit." Inside its tiny fourteen pin plastic package, the MD4301 has an amazing array of odds and ends which enables it to act as, among other things, a complete fire alarm system with all the practical bits and pieces you would design in yourself, given the chance.

There is a comparator circuit, which will trigger an alarm condition for a 150 mV voltage differential between its two inputs.

There is an audio oscillator which is turned on by an alarm condition, a 300 mA switch output to drive a horn or siren, and a
separate pulsed l.e.d. driver for local poweron indication.

There is also a "low-battery" detector which gives an unobtrusive but hard to ignore output of 50 milliseconds each minute on all alarm outputs when the battery voltage gets too low for comfort, (which shouldn't be too often, because the standby battery drain is a miserly 25 microamps!)

There is an alarm trigger "in" and "out" which allows any number of MD4301 circuits to be cascaded so that any one active unit can trigger all the others for a full scale fire alert, and other variations and options too numerous to mention.

To use the MD4301 in a self contained fire alarm system, you need only hook it up to an ion chamber smoke detector cell, a nine volt battery, a horn or siren and a few discrete components. A much more exciting and useful prospect than building yet another digital clock!

$3 \frac{1}{2}$ IS TWICE AS GOOD AS 3

Some time ago 1 featured a 3 digit single chip voltmeter device in this column, and suggested that the traditional moving coil meters with their inherent fragility and accuracy limitations would soon be losing ground to the newcomer. A new chip from National brings the demise of springs and jewelled bearing even closer. They have managed to cram a complete $3 \frac{1}{2}$ digit voltmeter system on to a single LSI chip, a system which up to now had taken at least two chips, and usually many more, to implement.

A $3 \frac{1}{2}$ digit display is actually twice as
good as a 3 digit display because you get a full scale output of 1999 instead of 999, double the dynamic range and precision of earlier single chip systems.

The new chip is coded AD3500 and it contains not only the digital conversion circuitry but also the l.e.d. segment drivers, the system clock and the analogue "front end".

The chip uses low consumption CMOS technology and runs from a single plus five volt supply. so building a digital multimeter with the AD3500 should be child's play!

To build a complete voltmeter all you need to add lapart from some kind of power source) is an l.e.d. display, a low cost 75492 digit driver, a voltage reference, and a handful of discrete resistors and capacitors-the whole thing could be fitted on to a circuit board about 8 cm square.

The addition of a range switch and a few extra resistors would allow a full complement of voltage and current ranges, and with a constant current source added, resistance ranges would be possible.

If you wanted to be really cunning, you could use the over-range outputs provided by the AD3500 to control an auto-ranging system which did the range changing for you using reed relays or solid state analogue switches, very useful for handsfree trouble shooting!

In terms of accuracy, the new device beats the moving coil meter hands down with a ± 0.05 per cent specification. You will probably degrade that figure with your external components of course, but the traditional meter is hard pressed to deliver even 2 per cent accuracy!

The Pay-Off

Further to my recent reports on overseas investment, especially in the United States, it is worthy of note that Racal has now formed a Data Communications Group headed up by D. Leighton Davies. Leighton, a B.Sc.(Hons) graduate from the University of Wales, was ten years with Solartron and in senior positions with GEC Computers and Automation, and STC, before becoming managing director of Racal-Milgo Ltd in 1969, then a tiny UK operation owned 50/50 by Racal in the UK and Milgo Inc in the USA. It was virtually a marketing company set up to exploit Milgo products outside the Americas.

First-year turnover was in the tens of thousands of pounds. Now, less than ten years later, Leighton heads up a wholly British-controlled data communications group of world standing with a predicted £75 million profitable turnover in the current financial year and operating from manufacturing, systems engineering and marketing bases in Reading, Frankfurt, Tokyo, Miami and Sunnyvale, and through an associated company in Rio de Janeiro and Brazilia. The present huge boost in turnover came from Racal's recent acquisition of Milgo Inc and Vadic Inc in the USA and further acquisitions are being sought.

Just one example explains what overseas investment is all about. Racal-Milgo Inc, Miami, Florida, has just signed a contract with Eastern Airlines for a System 200 Management Centre to streamline Eastern's data network covering 300 locations in North America and the Caribbean. As well as the Management Centre (which monitors and controls a network of up to 16,256 communications devices and modems on as many as 64
channels) the Eastern Airlines contract includes orders for hundreds of high-speed modems. No British company confined to a UK base would have been considered for such a contract, let alone win it. The Eastern Aidines contract plus many others in the US is a pay-off for Britain.

It works in reverse, too. North Thames Gas would not have bought $£ 120,000$ of equipment to improve its data links from a company based solely in Miami, Florida. But North Thames Gas were very happy to contract with Reading-based Racal-Milgo with its full local engineering support, even though a percentage of the equipment is built by the now British-owned Racal-Milgo in the USA. For this type of business you need to be on the spot.

Outlook

Public opinion polls are not invariably reliable but a recent poll of electronics goods manufacturers has shown a downturn in optimism (as distinct from downright pessimism) on future prospects, especially in exports in the capital goods sector where a number of respondents are clearly suffering the effects of stronger foreign competition. Paradoxically, except for the hard-pressed consumer sector, the great bulk of returns showed increased business and general buoyancy. Best sector of all is automatic test equipment (ATE) with a boom in the home market, perhaps because of the shortage of good test engineers as well as their cost, and of course it is much easier to introduce laboursaving equipment into the progressive electronics industry than into moribund industries where job protection is a worker obsession, perpetuating out-moded processes.

Apropos my remarks in earlier paragraphs on overseas investment, there is still plenty of movement at home too. Racal, already mentioned, is spending $£ 1.5$ million on microelectronics development, Pye has just completed a $£ 5$ million complex housing 1,200 workers for mobile radio, Decca Communications has acquired the whole of the h.f. radio business of Granger Associates of California, and English Electric Valve has added 100,000 sq. ft. of manufacturing space through purchase of the former Marconi-Elliott i.c. plant at Witham, Essex.

Poland Buys British

The controversial Polish order for British shipyards, heavily subsidised by the taxpayer, has turned up trumps for Redifon who landed the contract for all the electronics packages on the 22 ships involved. Redifon has undertaken to plan and commission all the equipment, together worth many millions. For starters Redifon will supply 44 of their new R1000 Series communications receivers worth,
possibly, $£ 5,000$ or more each, and this is just the fringe.

Decca Marine has also done well in the Polish market recently by contracting £ 330,000 worth of Decca Navigator receivers and plotters to the Polish fishing fleet operating in the Baltic. There are now some 500 Polish ships fitted with the Navigator. The Japanese have also recently contracted to expand their Decca Navigator coverage with new chain stations so that all four major Japanese ports will now have Decca coverage.

Employment

I note that the IEE Annual Report comments on the scale of recruitment advertising in the past year, so high that special recruitment supplements had to be issued with the Institution journals. Anticipated revenues from situations vacant adverts were handsomely exceeded and a total of $£ 1,000$ a day was received in the year from this source.

The shortage of engineers is tending to push up salaries and I notice far more firms offering posts in the $£ 5,000-£ 7,000$ bracket than formerly. But is this enough when one reads that a London bus driver can make $£ 6,000$ a year plus perks like free travel? Glancing through the ads the cash plums are still overseas provided you can put up with the climate and general conditions. Up to $£ 21,000$ in Libya, $£ 20,000$ in Iran, $£ 18,000$ (tax free) in Saudi Arabia.

Such salaries are only for senior people with long experience on major products but even scaled down to average engineer level it seems overseas salaries in the Middle East are still more than twice that which can be earned at home and nearly all carry tax concessions.

More of the gentle sex are entering engineering but it is still a mere trickle. Of 190,000 chartered engineers registered in the UK there are only 200 women, less than half of whom work in industry. Of the women I note that the three senior ladies on the secretariat of the Electronic Engineering Association are all designated in the Annual Report as Ms whereas none of the men, not even the Director, is dignified by Mr.

More on Mats

The French company Thomson-CSF is also in the field of mobile automatic telephones (MATS) and claims to have 8,000 subscribers world-wide using their equipment linked to public or private telephone exchanges. Their new microprocessor-controlled car telephone has a capacity of 16 pre-programmable numbers of up to 24 digits each. There is clearly going to be keen competition for this fast-growing business.

Abstract

Appearing every two months, Micro-Bus will present ideas, applications, and programs for the most popular microprocessors; ones that you are uniikely to find in the manufacturers' data books. The most original ideas will probably come from readers working on their own microcomputer systems, and payment will be made for any contribution featured here. This is also the place to air your views, in general, on this new technology, so let's be hearing from you!

SCOPE FOR GRAPHICS

0SCILLOSCOPES were used for troubleshooting with the earliest computers, and so it is hardly surprising that they soon became permanently connected as a convenient way of displaying drawings produced under computer control. Since then the CRT has remained the most widely used peripheral for high-speed graphical output.

An oscilloscope can only display a single point at a time, so to present a line or a picture it is necessary to refresh the scope by repeating the same sequence of movements of the spot over and over again; at least 30 times a second if the picture is to be seen without flicker. There are two main ways of controlling the spot from a computer, and both will be covered here. One is to store the coordinates of every point to be displayed in memory, and use these to drive the display. The other method is to generate the individual point co-ordinates as they are to be displayed from a "display file" which contains shorthand commands for drawing lines, circles, characters, etc. A program illustrating

Fig. 1. Block diagram showing the circuitry needed for a microprocessor-controlled graphics display using an oscilloscope.
this approach will show how lines can be generated given the co-ordinates of their endpoints.

SCOPE INTERFACE

The configuration needed to control a CRT from a computer is shown in Fig. 1. The two D/A converters determine the number of possible point positions; with two 8 -bit D/A converters one can display any point on a 256 $\times 256$ grid. The outputs of the D/A converters drive the X and Y inputs of the scope, and these should be d.c. coupled. Since there is no need for timebase circuitry or for sensitive input amplifiers it should be possible to construct a suitable display quite simply. The prototype used two Ferranti ZN425E 8-bit D/As, and these were interfaced to the microprocessor by two 8 -bit latches and some addressing circuitry; alternatively a MC6820 PIA could have been used.

The program in Fig. 2, which is for the M6800 micro, illustrates the method of generating a display from the co-ordinates of

Fig. 2. Program for the M6800 which displays co-ordinate pairs from memory.
every spot position. BUFFER is the address of the list of co-ordinates, and with the list shown the program will display a short diagonal line from $(0,0)$ to $(4,4)$. In this and the next program the D/As are assumed to be located at addresses $\$ 8100$ and $\$ 8101$. If a

PIA is used to interface them with the micro a few instructions will have to be added at the start of the programs to configure it correctly.

INTERPOLATION PROGRAM

This method of storing the co-ordinates of every spot position really eats up memory; to draw a square border around the screen would require about 2 k bytes of memory ($1,022 \mathrm{co}$ ordinate pairs). It has the advantage that any arbitrary drawing can be displayed; however most graphs and diagrams can be broken down into a number of straight line segments, so a far more economical approach is to store only the co-ordinates of the endpoints of the lines in memory, and generate the points in between as they are needed. Lines other than diagonals or horizontals and verticals cannot be exactly represented on a square lattice, so the program must generate the best approximation.

The program of Fig. 3 does just this-given the two endpoints of a line it generates the intermediate points. It has the feature that it needs no division or multiplication operations, so it can be used to generate fairly complex displays in real time. With the co-ordinate pairs shown at FIRST the program will draw a triangle between the points $(0,0),(7,3)$, and $(0,6)$. The first side of this triangle is shown in detail in Fig. 4: the approximated line is composed of three diagonal moves, $(1,1)$, and four horizontal moves, $(1,0)$.

PROGRAM FLOWCHART

The flowchart of Fig. 5 shows how the program works, and will help those unfamiliar with the M6800 to implement the algorithm on another micro. First of all the two unit vectors DIAGAB and SINGAB are calculated; some combination of these will make up the required approximation to the line. Each point of the line is generated from the previous point by adding either the diagonal move vector, DIAGAB, or the horizontal/vertical move vector, SINGAB. The choice of which to add is determined by the test variable TEST.

			NAM		PLOT		004A	44			LSR				
		＊					0048	5 F			CLR	B			
		xaxis	EQU		\＄8100	D／A OUTPUT	004 C	90	OA	，	541	A	SINGLE		
	8101	Yaxis	Equ		\＄8101	PORTS	0045	97	07		STA	A	TEST＊1		
							0050		00		5.36	－	10		
0000	0002	NEWPR	RMB		2	POINTS TO COORDINATE PAIR	0052	D7	06		5 TA		TEST		
0002	0002	DIAGAB	RMB		2	DIAGONAL MOVE	0054	A6	00		LDA	A	0， x		
0004	0002	SINGAB	RMB		2	SINGLE MOVE	0056	E6	$0:$		LDA	B	1，\times		
0006	0002	test	RMb		2		0058	7D	0006	TESTM	TST		TEST	UHAT MO	OVE？
0008	D001	total．	RMB		1	total no．of moves	0 50	2 A	14		BPL		Doublm		
0009	0001	DOUBLE	RMB		1	no．of double moves	005 F		05	SInglm	ADO	A	SINGAB		
ODOA	0001	SINGLE	RMB		1	NO．OF SINGLE MOUES	0061		S		ADD	B	SINGAB +1		
		＊					0062	36 96			PSt	A			
0008	CE 0098	Entry	LDX		EFIRST		0064	95	0		LDA	A	TEST＋1		
OODE	DF 00	NEULIN	STX		NEUPR		0066	97	07		ADD	A	DOUBLE		
0010	CE 0101		LDX		Cs 0101		0068		06		LDA	A	TEST＋1		
0013	DF 02		STX		diagab		006 A	89	00		ADC	A	\＆ 0		
0015	CE 0000		LDX		530		$006 C$	97	06		STA	A	TEST		
0018	DF 04		STX		SINGAB		006 E	32			PUL	A			
$001{ }^{\text {d }}$	DE 00		LDX		NEWPR		006 F		12		Bra		OUT		
001 C	A6 02		LDA	A	2．x	NEXT A，B PAIR	0071	98	02	DOUBLM	ADD	A	diagab		
001 E	E6 03		LDA	日	3．x	Of COORDINATES	0073	D8	03		ADD	B	diagab＋1		
0020	A0 00		SUB	A	0，x		0075	36			PSH	A			
0022	2404		BCC		APOS		0076		07		LDA	A	TEST＋1		
0024	00 70 0		NEG	A			0078		OA		Sue	A	SINGLE		
0025	$\begin{array}{ll}70 \\ \text { E0 } & 01\end{array}$		NEG		Diagab		0078		07		STA	A	TEST＋1		
0028	$\begin{array}{ll}\text { E } & 01 \\ 24 & 04\end{array}$	APO5	SUB	8	lex		007 C	96	06		LDA	A	TEST		
002 C	50		NEG	8			ODTE	82	00		5 SC	A	$\Sigma 0$		
002 D	700003		NEG		DIAGAB ${ }^{1}$		0080	37	06		STA	A	TES T		
0030	1！	BPOS	CBA				0083	87	8100		STA	A			
0031	2409		BCC		AGEB		0086	F7	8101	Out	STA	${ }_{\text {A }}$	yaxis	display	Y POINT
0033	36		PSH	A			0089		0008		STA	B	YAXIS		
0034	9603		LDA	A	D1AGAB＋1		008 C		CA		BNE		TOTAL		
0036	9705		STA	A	SINGAB＋1		OOBE	08			INX		TESTM		
0038	17		TBA				0085	0 B			INX				
0039	$\begin{array}{lll}33 & \\ 20 & 06\end{array}$		PUL	B			0090	8 C	00A3		CPX		Elast		
003 A	20 36		明A		CONT		0093	27	03		aEd		BACK		
0030	9602	AGES	PDA	A	diagab		0095	7 E	O00E		JMP		NEVL IN		
003 F	9704		STA	A	Singab		0098	7 F	0008	BACK	JMP		Entry		
0041	32		PUL	A											
0042	9708	CONT	STA	A	total		0098			FIRST	A ${ }^{\text {a }}$	TR1	ANGLE＊		
0044	D7 09		STA	8	DOUBLE		0098	OOA		last	EQU		0，0．7．3，	，0，0．0	
0046	10		SBA							${ }_{*}$ LAS	Eav				
0047	97 0A		STA	A	SINGLE										
0049	18		ABA								END				

Fig．3．Program for the M6800 to display lines from the co－ordinates of their endpoints．

The photograph of Fig． 6 shows a pen－ tagram drawn by specifying the five corner co－ ordinates twice each in the correct order，and illustrates the maximum complexity that can be achieved before flicker becomes intolerable． It is also possible to produce moving displays by inserting instructions at BACK to alter the co－ordinates in the＂display file＂between each sweep of the drawing．With slight modification the program could be used to calculate the path of a moving object，such as a tennis ball in a microprocessor－controlled game．

PROGRAMMING SWITCHES

Sometimes within a program one wants to jump to one of several addresses depending on the value of a variable．For example，a program might perform a different function depending on a number typed in or a key pressed；the＂switch＂routine would then cause a jump to the relevant section of code． In a high－level language like Basic or Fortran this function is achieved by a statement like：

GO TO N OF 50，20，45，77， 12

Fig．4．Points generated by the in－ terpolation program of Fig． 3 for the line joining $(0,0)$ to $(7,3)$ ．The initial values of the variables used by the program are shown．
where $50,20,45$ ，etc．are labels in the program which will be jumped to if $\mathrm{N}=1,2,3$ ， etc．This can be implemented in machine code on a micro by means of a＂jump table＂con－ taining the addresses of the various different routines．

The great variety of branch－on－condition instructions available in the M6800 micro makes possible the unusually compact ＂switch＂shown in Fig．7．LABEL 0 to

Fig．5．Flowchart showing the operation of the main section of the interpolation program in Fig． 3.

Fig．6．Pentagram dieplay generated using the interpolation program described in this article．

				NAM		SW1TCh	
0000	86	0100	Switch	LDA	A	N	
0003	06			tap			put a in status
0004	25	08		日Cs		xXI	
0006	2 E	OE	xx0	BGT		Labelo	
0008	26	2 C		BNE		Labela	
D00A	28	4A		Buc		Labela	
000 C	20	68		Bra		LABEL6	
O00E	2 E	16	xxı	EGT		labeli	
0010	26	34		BNE		LABEL3	
0012	2 B	52		BvC		labels	
0014	20	70		BRA		Label 7	

Fig．7．Eight－way switch for the M6800，achieved by putting the control variable into the status register and testing its effect on the condition codes．
LABEL 7 are the eight addresses which are branched to for values of N from 0 to 7 respectively，giving an 8 －way switch．In this example the addresses are assumed to be $\$ 10$ bytes apart at $\$ 0016, \$ 0026, \$ 0036$ ，etc．

Coustaut Display FREQUENGY METER

J. BECKER

AN ELEMENTARY
PIECE OF WORKSHOP OR LABORATORY EQUIPMENT

[T is often undesirable to engage an oscilloscope or other versatile apparatus to merely monitor frequency.-and to this end the "Constant Display Frequency Counter" specification has been kept simple. The unit is not crystal controlled. but uses an clementary low frequency oscillator which necessitates far less dividing down circuitry, the whole unit thus comprising just a few readily available components. This would be an encouraging project for the beginner

CLOCK GENERATOR

The 1 Hz clock signal is produced by IC Ia (see Fig. 1), whose rate depends upon C1, VR1 and R1. The pulse width generated is about 45 ns. and this enables the system to "read" the count almost instantancously.

The monosta力le IC ib is repctitively triggered by the output from the multivibrator to produce pulses of about 70 ns . controlled by C2 and R2, and which in fact nccurs fractionally afterwards due to propogation delay in the i.c. of about 20 ns . This second pulse is used to reset the counter at the end of each cycle.

DECADE COUNTERS AND LATCHES

The input pulses to be counted are amplified and shaped by TR1 and fed to a series of decade counters (IC2-6), each of which successively divides the signal by 10 . Each group of four outputs from each of the decade counters is taken. BCD fashion. to the Data inputs of the quad-latch i.c.s. IC7-11.

When the clock inputs of the latch i.c.s are held at a logic zero, the outputs remain in their previous-logical states. but at the clock input positive excursion to logic I. the ouputs follow the logic states of the Data inputs. Consequently the outputs

From IC 2-6 will effectively be ignored by IC7-11 until they receive the "read" pulse from IC la, at which time, and for the curation of the pulse, the latch outputs will follow the logical states of the decade counters. Upon cessation of the "read" fulse the gate outputs will hold their new logical states and ignore further changes at their Data inputs-until they receive t.ee next "read" pulse!

DECIMAL DECODERS AND DISPLAYS

Following the latches. IC 12-16 are decoders providing rutputs suitable for the numeric displays X1-5. The outputs from the decoders logically follow the outputs of IC7-11 and will only change state when these change state. thus each indicator will continue to display a particular number until the latches alter outputs.

The decade counters are reset at the start of each cycle by the arrival of the pulse from IC Ib approximately 20 ns after the "read" pulse from IC Ia. The result is that if the same number of pulses is counted by a particular decade stage in two or more cmsecutive sampling cycles, then the relevant display will not c lange its number, and will only do so if a consecutive count is d.ficrent from the previous one. Thus if the frequency stays the same the display will appear to be static even though the sampling is still continuing once a second.

POWER SUPPLY

The a.c. voltage from transformer T 1 is rectified by D1-4. and the d.c. ripple is reduced by C4. IC 17 reduces and stabilises the main power rail 10 a nominal 5 V . d.c. It is internally pontected against thermal or current overloading, and if oycrloaded will automatically shut itself off until the cause is

Fig. 1. Full circuit diagram of Frequency Counter

removed, whereupon it will revert to normal operation. In this particular unit it is essential that it is bolted to the metal case in order to provide an adequate heat sink, as it is being used close to its specified limits. The displays have an acceptable voltage range of 2.2 V to 3.4 V , and are driven from the regulated supply via three IN 4001 diodes, each of which reduce the voltage by about 0.7 V to provide a supply line of about 3 V . Because of the high currents flowing (nearly 1A), the power line connections between the p.c.b., IC17 and C4 must be made using fairly heavy duty wire, and only in the manner shown. Failure to do so could result in unreliable performance of the counter, and "jittery" triggering of the clock generator.

CONSTRUCTION

The original front panel is re-mounted internally on two blocks of wood fixed to the side panels, and with the p.c.b. mounted on it. This assembly is set back just enough for the displays to level with the front panel mounting-flange of the box. A clear perspex sheet is used as the new front panel, and should be painted on the inside with emulsion (white on the prototype), after masking off the viewing window and lightly sandpapering the remaining surface area.

The mains switch, panel mounting fuse holder, transformer and reservoir capacitor are mounted in the rear section of the box. It is also advantageous to fix a tag strip on the back panel

Fig. 2. Printed circuit board full size

The original front panel is re-mounted internally in the box to provide a base on which to mount the p.c.b. A new front panel is them made of clear perspex and painted, leaving a display window.

Fig. 3. Component layout (not full size)

along with switch and fuseholder, to facilitate the necessary low tension wiring junctions.

The p.c.b. is shown in Fig. 2, and the component layout of this is shown in Fig. 3.

SETTING-UP

Following the usual checks for short circuits between tracks, preferably with a magnifying glass, and for possible assembly errors, the unit should be switched on and allowed to warm up for a few minutes. Then a known frequency can be fed in, and VR1 adjusted so that the display read-out is correct for that frequency. A hole is provided in the case immediately below VR1 to provide screwdriver access. In the absence of a good signal generator, the 440 Hz of "Concert A" of a musical instrument, or the note of a mechanical tuning fork of the same frequency, can be fed into the counter via a microphone and suitable preamplifier. Alternatively the residual 100 Hz ripple on C 4 can be fed in, and a switch is included to enable this, but the

COMPONENTS . . .

Resistor 3

Resistor	
R1	$39 \mathrm{k} \Omega$
R2	$5.6 \mathrm{k} \Omega$
R3	$100 \mathrm{k} \Omega$
R4-RG	$1 \mathrm{k} \Omega \quad$ (3 off)

All resistcrs $\frac{1}{4} \mathrm{~W} 5 \%$ carbon film

Semiconductors	
IC1	74123
IC2-IC6	7490 (5 off)
1C7-IC11	7475 (5 off)
IC12-IC16	7447 (5 off)
IC17	78055 V 1 A regulator
TR1	BC108 or BC109
X $1-\times 5$	EP27 7-seg display (5 off)
D1-D4	50 V 1 A rectifier stack
D5-D7	IN4001
Miscellaneaus	
S2	S.P.D.T. toggle switch
S 1	D.P.S.T. toggle switch (mains)
F1	1 amp fuse and holder
SK1-2	2 mm sockets (red and green)
T1 0-4.5V 0-4.5V 20VA transformer (Type207-122)	
Printed circuit board, capacitor clip for C4, tag strip, probe	
leads, metal case (RS 509888)	
All components	including p.c.b. are available
Phonosonics	

S2
S1
SK 1-2
207-1221

Printed circuit board, capacitor clip for C4, tag strip, probe All components including p.c.b. are available from Phonosonics

Fig. 4. Wiring diagram. Use either double wires or heavy gauge wire when connecting up C4
higher the calibration frequency the greater the potential accuracy. However, beware that many oscillators can be far less stable than the counter; indeed with the prototype the most stable oscillator tested was the Tone Generator of P.E. Joanna, but even that was found to drift when checked against a mechanical tuning fork.

ALTERNATIVE SAMPLING RATES

If a sampling rate other than 1 Hz is required, Cl may be increased or decreased without limit, but the resistance total of R1 and VR1 must be kept within the limiting range of $5 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$ unless additional circuitry is used. Also if an external potentiometer is contemplated in place of VR 1, the fixed resistor (of at least $5 \mathrm{k} \Omega$) must also be kept physically close to IC 1.

The clock rate frequency to be expected from changes to C 1 may be approximated by assuming that doubling the capacitance will double the frequency count, and halving it will halve the count. However, in practise the actual count time is
likely to vary from that calculated due to component tolerances and capacitor leakage currents, especially with electrolytic capacitors. In respect of tolerances, the actual values obtained from a nominal value can vary by as much as $\pm 5 \%$ for R 1 , $\pm 20 \%$ for VR1, and -10% to $+50 \%$ for C1. Capacitor leakage currents will depend, of course, upon the specific types used.

STABILITY

The unit was checked by the author against the frequencies generated in the P.E. Joanna, which itself was kept in tune against a mechanical tuning fork, and after the initial warm-up period the counter was found to be stable within about 1 pulse per thousand, although the clock rate of IC 1a was found to be slightly dependent upon ambient temperature. However, although a more accurate clock pulse might be achieved by making use of the 100 Hz ripple available from C 4 , it was felt that the extra components required did not justify the marginal improvement.

PoInts ailsine

LINEAR CAPACITANCE METER (June 1978)

Note that in Fig. 2, resistor R9 in series with S3 (run switch) should be marked R19.

In Fig. 4, the underside link (dotted) should go to IC1 pin 7 and not pin 6. An extra wire link is necessary between IC7 pins 12 and 5 .

Do not miss out the track cut on Fig. 4, which lies to the right of the junction of R1 and R2, and which has not shown up very clearly in print.

The common line between B1 and B2 should be wired to OV on the component board (notshown in Fig. 4). Also link pin 5 to pin 12 on IC7. A track break is necessary to isolate S2 a wiper from IC5 pin 4.

See Market Place, July 1978 for 1 per cent components.

FREE OFFER ENDS

P.E. CHAMP (April and June 1978)

Our stocks of Intel Programming Manuals and MCS User's Manuals have now exhausted, and unfortunately we cannot therefore continue the free offer of these books. No further requests shall be dealt with, but stamped selfaddressed envelopes already in the post will be returned.

LINEAR CIRCUITS

,

LEDS + OPTO
Displays 7 seg

Comanode or cath $\begin{aligned} & \text { LEDS } \\ & \text { Smal } 3 \mathrm{~mm} \\ & \text { RED }\end{aligned}$ | 8 mm HT | $£ 1.50$ | Earge 5 mm |
| :---: | :---: | :---: |
| 10 mm HT | $£ 1.55$ | Vred bright |

14 mm HT
18 mmHT
$\mathbf{£ 1 . 5 7}$
1.85

MICROPROCESSOR SUPPORT

| | |
| :--- | :--- | :--- |
| RAM | STATIC |
| $2101-1$ | $\mathbf{£ 2 . 0 4}$ |
| 2102.2 | $\mathbf{£ 1 . 9 4}$ |
| 2111 | $\mathbf{£ 3 . 3 7}$ |
| 2112 | $\mathbf{£ 3 . 3 7}$ |

\section*{| 4K |
| :---: |
| STATIC |
| RAM |
| TMS $4044 / 5$ |
| f15 88 |}

\section*{RAM DYNAMIC} | 4K TMS 4050 | $\mathbf{~} 7.43$ |
| :--- | :--- |
| 16 K TMS 4116 | $\mathbf{3 6} 55$ |

8 BIT CPU $\begin{array}{lr}\text { 8 BITCPU } & \\ \text { INS } 8080 A & \mathbf{£ 7 . 4 2} \\ \text { MC } 6800 & \mathbf{£ 1 6 . 9 9} \\ \text { SC/MP! } & \mathbf{£ 1 2 . 9 6} \\ \text { SC/MPH } & \mathbf{£ 1 0 . 8 0}\end{array}$

16 BIT MICRO $\begin{array}{ll}\text { TMS } 9900 & £ 61.50 \\ \text { INS } 99000 & £ 15.00\end{array}$

COMPUTER ON A

The Texas
Data 30 p

60 support devices for 8080

Intel have 30

- see our new cataiog

CMOS ZINGERS

MM74C910 £6.79

$\begin{array}{lr}\text { MM74C914 } & \mathbf{£ 1 . 4 1} \\ \text { MM74C920 } & \mathbf{£ 1 1 . 8 3}\end{array}$
MM74C929 £11.83

PRICES

TTL \& CMOS

74LSOON	0.26	741S162N	N 1.43	7400 N	0.17	7490 a	
74LSOIN	0.26	74LS164N	N 1.43	7401 N	0.17	7491	85
74LSO2N	0.26	74LS168N	243	7402 N	0.17	7492N	5
741503 N	0.26	741S169N	N 2.43	7403N	0.17	7493N	0.45
74LSO4N	029	74LS174N	N 1.33	7404	0.17	7494N	0.90
74LSION	0.26	741S175N	N 126	7405 N	022	7495 N	6
74LS12N	0.26	74LS181N	N 3.95	7406 N	0.56	7496 N	0.70
74LSI3N	0.58	741S189N	N 3.74	7407N	0.55	7497N	1.95
74LS14N	1.43	74LS190N	1.00	7408 N	0.22	74100	, 40
74LS20N	0.26	74LS191N	N 1.00	7409 N	022	74107 N	35
741S26N	0.39	74LS192N	N 1.98	7410 N	0.20	74118 N	0.95
74LS27N	0.50	74LS193N	1.98	7411 N	026	7411	1.40
74 LS28N	0.42	74LS196N	128	7412N	0.20	74121 N	2.28
74LS30N	0.26	74 COON	0.24	7413 N	0.36	74122 N	55
741S37N	0.32	74 CO 2 N	0.24	7414	0.80	74123 N	0.55
74LS38N	0.32	$74 \mathrm{CO4N}$	0.24	7416 N	0.36	74125 N	0.45
74LSAON	0.29	74 COBN	0.24	7417	0.36	74141 N	0.86
74LS42N	1.07	74 Cl 10 N	0.24	7420 N	0.22	74148 N	35
74LS47N	1.09	74 Cl 14 N	1.41	7423 N	0.32	74145 N	0.86
74LS48N	1.09	74 CzON	0.24	7425 N	0.32	74150 N	20
74LS49N	1.09	$74 \mathrm{C3ON}$	0.24	7427	0.32	7415 N	76
74LS51N	0.26	$74 \mathrm{C32N}$	0.24	7430 N	0.22	74153 N	76
74LS54N	0.26	74 C 42 N	0.92	7432	0.30	74154 N	20
741S73N	0.42	$74 \mathrm{C48N}$	1.38	7432	0.35	74155	0.70
741576 N	0.42	$74 \mathrm{C73N}$	0.54	7438 N	0.32	74157	0.78
74LS78N	0.42	74.74 N	0.56	7440 N	020	74160AN	-
74LS83AN	120	74 C 76 N	0.54	7441A	0.84	74161aN	1.10
74LS85N	1.10	$74 \mathrm{CB3N}$	1.30	7442 N	0.76	74162AN	1.10
74LS90N	1.10	74 C 85 N	130	7445 N	1.40	$74163 A A$	
741591 N	1.20	$74 \mathrm{C86N}$	0.64	7446 AN	0.90	74154 N	1.36
74LS92N	0.86	$74 C 89 \mathrm{~N}$	4.39	7447A	0.80	74165 N	
741593 N	1.10	$74 \mathrm{C90N}$	0.85	7448 N	080	74167 N	2.50
74LS95AN	1.10	74 C 33 N	0.85	745 CN	0.22	74174 N	1.60
74 LS96N	1.35	74.855 N	1.04	7451 N	0.22	$74175 N$	1.00
74LS107N	0.42	74 Cl 107 N	1.22	7453N	0.22	74176 N	0.90
74 LS109N	0.42	74 Cl 150 N	414	7454 N	0.22	74177 N	0.90
74LS122N	0.80	74C151N	2.47	7460 N	0.22	74180 N	1.00
74LS123N	0.83	74 Cl 54 N	3.68	7470 N	0.46	74181N	2.00
LS124N	2.70	74 Cl 57 N	221	7472 N	0.30	74182 N	
74 LS125N	0.50	74 Cl 160 N	1.11	7473 N	0.44	74184 N	1.50
74 LS126N	0.50	74C161N	1.11	7474 N	0.32	74185AN	
74 LS136N	0.44	74 C 162 N	1.11	7475 N	0.80	74188AN	325
7415145 N	1.30	74C163N	1.11	7476 N	0.45	74189 N	2.60
74LS151N	1.07	74 Cl 164 N	1.04	7480 N	0.60	74190 N	
74 LS153N	0.58	74C165N	1.04	7481 N	1.00	74191N	1.20
74 LS154N	1.45	$74 \mathrm{C173N}$	0.90	7482 N	0.90	74192 N	20
$4 \mathrm{SS155N}$	1.20	$74 \mathrm{C174N}$	0.90	7483N	1.05	74193 N	20
74 LSI56N	1.20	74 C175N	0.90	7484 N	1.20	74196 N	1.20
74LS158N	0.65	74C192N	1.11	7485 N	1.36	74197N	1.00
74LS160N		74C193N		7486 N	0.35		2.00
74LS161	0.85	74C195N		74891		74199N	
NEVV LOMV PREES							
TRIACS.plastic pack 400v T0220							
					93p		
4 amp					21		
6 amp							
8 amp	82		25	mp $\mathbf{f 2}$			
THYRISTORS plastic power							
4 amps		8 amps		12 ar			
100vo	38	100Vo	47	100			
OOvo	44	200vo		200			
				400			
Branded Texas quality product							

WE STOCK MORE

NATIONAL	VERO
TEXAS	ANTEX
MULLARD	ELECTROLUBE
SIEMENS	SIFAM
SESCOSEM	ARROW HART
MAKES COMPONENTS BUYINGEASY	

STORAGE CABINETS

Type 1118

Choose from the following range to suit your own needs:

| Type | Height
 (ins.) | No. of Drawers | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | ---: | Price

All cabinets are finished Blue, $12^{\prime \prime}$ wide $\times 5 \frac{3^{\prime \prime}}{4}$ deep. Prices include VAT and Post. Satisfaction or money refunded. Cheque/P.O. to:

MILLHILL SUPPLIES (TOOLS)

35 PRESTON CROWMARSH BENSON, OXON. OX9 6SL

BARGAIN PARCELS SAVE POUNDS

Huge quantities of electranic camponents must be cleared as spoce required. 1000 's of capocitors, sell by weight $7 \mathrm{lbs}-£ 4.95 ; 14 \mathrm{lbs}-£ 7.95 ; 28 \mathrm{lbs}-£ 12.00 ; 56 \mathrm{lbs}-£ 20.00 ; 112 \mathrm{lbs}-£ 30.00$.

BARGAIN PACKS

Dan't let your environment dehydrote you. VERNITRON FM4 10.7 mHz minioture cer Buy o Honeywell Humidity Controller mem- amic filters 50 peoch. 3 for $£ 1.00$.
brane operoted with $\frac{1^{*}}{}{ }^{*}$ shaft, ideol for greenhouses, centrally heated homes, erc. Build your own humidity alarm 3.75A. Contacts of 250 V £ 1.50 each. 3 for $£ 4.00$
4 oluminium boxes $128 \times 44 \times 38 \mathrm{~mm}$ ideol for signol injectors, etc. £1.00.
100 miniature reed switches ideal for burglar olarms, model railwoys, etc. $£ 3.30$.
6×6-pole 12 volt reed relays on boord $£ 2.45$. High quality computer panels smothered in top grode components: $5 \mathrm{lbs} £ 4.75$; $10 \mathrm{lbs} £ 8.95$. meters 200 va. fsd £ 1.00 .
Minioture transistorised f.m. front end with integral funing gang $88-108 \mathrm{MHz} £ 2.50$.
New U.H.F. transistor TV tuners 4 pushbutton type £ 3.50 .
Rotory type with slow drive and $A E$. socket £3.50.
Aluminum TV coax plugs. 10 for $£ 1.00$.
Miniature $5 \mathrm{~K} \log$ pots with s / p switch. 4 for

£1.00

Hardware Pocks each containing 100 s of items including: BA nuts and bolts, Nylon, Self. topping, Posidrive, P clips, Coble clomps, Fuse holders, Spire nuts etc, etc. $£ 1.00$ per pound. 100 in. "P" Clips 60p, 200 for $£ 1.00$. Heavily insulated E.H.T. Dischorging Probe with leod and earth connector 60p each.
Ultrosonic transducers, transmitter ond receiver 4 mm diam. $40 \mathrm{kcs} £ 4.25$ per poir.
Magnetic earpieces with plug and lead 25p eoch. 5 for $£ 1.00$.
Crystol eorpieces with lead 40 p each. 3 for £ 1.00. DE LUXE FIBRE GLASS

PRINTED CIRCUIT ETCHING KITS

Includes 150 sq. ins. copper clad f / g boord lo terric chloride, 1 dolo etch resist pen, brosive cleoner, 2 m. 30 . bils, eich froy ond 150 sq in fibre glass boor
150 sq. in.
Dolo pen..
. $£ 2.00$
lolo pen............................
5 Ibs ferric chloride to mil spec
Instruction sheet to mil spec................ $£ 5.00$
40p P \& P ON ALL ABOVE ITEMS. SEND CHEQUE OR POSTAL ORDER WITH
ORDER TO SENTINEL SUPPLY, DEPT PE, $149 A$ BROOKMILL RD., DEPTFORD SE8
$\ldots20 p$ preset pots, skeleton, etc. £1.20.
inioture mains transformers, fully shrouded. . in $0.0-0 \mathrm{~V}$ or 100 MA . out. Ex. New input and shoct loods on output 95 plug n input and short leads on output. 95 p
100 K slider pots, slim type, good quolity mono or stereo 50 p each. 3 for $\$ £ 1.00$. Varicop luning thumb wheet slider pots, very E 100 . for $£ 1.00$

Semiconductor Bargoins

TH3 Thermistors. 10 for $£ 1.00$
100 new and marked silicon ond germonium ronsistors including $\mathrm{BCl} 148, \mathrm{BF} 194, \mathrm{BC183}$, etc. 3.95

200 new ond morked transistors, including N3055, AC128, BFY 50, BDI31, etc. £6.95. 00 mixed diodes IN4148, etc. £1. 20
00 mixed diodes including zener, power and bridge types £3.30.
ridge rectifier 100 V 2.5 amp .4 for $£ 1.00$. rand new ITT 25kV T.V. triplers for Decco radford chossis $£ \mathbf{2 . 5 0} 5$ for $£ 10.00$
Germanium diades ideal for crystol sets etc. $£ 1.00$.
16810.400 WV oudio omplifier I.C. 9.16V, ink required. Supplied with do. proof, no heot £1.00. full spec. I.R. diodes, 200 V IA. 20 for $£ 1.00$. 100 for $£ 4.50$. SN761 I5N £ 1.00 .

Component Bargains

300 mixed resistors $\frac{1}{\&} \frac{1}{2}$ wott $£ 1.50 .300$ modern mixed caps, most types, £3.30. 200 mixed resistors, mostly 1 \& 2 watt, $£ 1.50 .100$ mixed polyester cops $£ 2.20 .100$ mixed modern miniature and ceramic plote caps $£ 1.20 .100$ mixed electrolytics $£ 2.20 .300$ printed circuit £1 50, $£ 1.00 .25$ mixed pols and presers resistors mastly minioture lats of yalues $£ 120$ 500 for $£ 4.90$. 100 mixed high watroge 500 for $£ 4.90$. 100 mixed high wattoge VDRs and Thermistors $£ 1.20 .25$ ossorted
T.T.L. 74 I.C.'s By TEXAS, NATIONAL, I.T.T., FAIRCHILD etc

7400	14 p	7426	25p	7473	30p	74121	3^{30}	74151	65p	74179	1400
7401	140	7427	25p	747	30 p	74122	40p	74153	3p	7418	100
7402	14 p	7428	40p	7475	30p	74123	80 p	74154	120p	74181	200
7403	140	7430	15p	7476	30 p	74125	50p	74155	70p	7418	$75 p$
7404	14p	7432	25p	7483	$15 p$	74126	$50 p$	74156	70p	7418	150p
7405	14 p	7437	25p	7485	1009	74130	130 p	74157	70p	7418	150p
7406	40p	7438	$25 p$	7486	30p	74131	100p	74160	s0p	7418	3500
7407	40 p	7440	15p	7489	250p	74132	65p	74161	s0p	74189	350p
7408	20 p	7441	65p	7490	359	74335	100p	74162	90p	74190	1400
7409	$20 p$	7442	$65 p$	7491	75 p	7413	00p	74163	sop	7419	140p
7410	15p	7445	80 p	7492	$45 p$	74137	100p	74164	125p	74192	120p
7411	20p	1446	85p	7493	40 p	74138	125p	74165	125p	74193	120p
7412	20p	7447	759	7495	600	74139	100p	74166	125p	7419	100p
74	30 p	7448	70p	7496	70 p	74141	sop	74467	$325 p$	74195	100
7414	$60 p$	7450	15p	74100	959	74142	270p	74170	200p	74196	100p
7416	30 p	7451	15p	74104	40p	74143	270p	74173	150p	74197	100p
7417	30 p	7453	15p	74105	40p	7414	270p	74174	1000	7419	185p
7420	15p	7454	15p	74107	30 p	74145	75p	74175	$75 p$	74199	
7422	20p	7460	15p	74109	50p	74147	230p	74176	100		
7423	25p	7470	30 p	74118	90p	74148	160p	74177	100		
7425	25p	2	25p	74120	90p	74150	120p	74178	140p		
C. MOS				IN4148 BY ITT/TEXAS 100 for $\mathbf{£ 1 . 5 0}$.				2112-4 256×4 BIT 450 NANO SEC. STATIC RAM. £2.95 each. $4 / £ 11.60$.			
4000	$14 p$	4032	95p								
4002	14p	4033	120p	UNENCODED				8/¢22.80.			
4006	$90 p$	4047	100p	HEXADECIMAL 19 KEYBOARD. 1-10 A.B.C.D.E.F. 2				2513 CHARACTER			
4007	16p	4048	55p								
4009	55p	4049	40p	OPTIONAL KEYS. SHIFT KEY				$\begin{aligned} & \text { GENER } \\ & \text { Y7.00. } \end{aligned}$			
4011	14p	4050	${ }_{120 p}^{40 p}$	f				2513 CHARACTERGENERATOR. LOWER CASE			
4013	50p	4055	140 p	555 Timer, 10 for $\mathbf{£ 2 . 5 0}$.							
4015	90p	4056	135p					£7.00.			
4016	40p	4060	120p	741 Op. amp. 10 for $\mathbf{E 2 . 0 0}$.				MM $5204 A O$ PROM 4096BIT READ ONLY MEMORY			
4017	90p	4066	55p 20	RCA S'CA TO3 case							
4018	100p	4071	$16 p$					£8.00.			
4022	90p	4072	16 p					B212 8 BIT INIOUT PORT £3.00.			
4023	16p	4081	$16 p$	MURATA ULTRASONIC				1 TRI-STATE QUAD			
4024	$65 p$	4082	16p	$\underline{2} .50$ each. $\mathbf{E 4 . 0 0}$ pair.							
4025	160p	4511	150p	2102AN-2L 1024×1 BIT 250 NANO SEC. STATIC RAM. f2.20 each. 4/f8.40. 8/£16.00.				8833 TRI-STATE TRANSCEIVER (TRUE) £2.00.			
4027	50p	4516	$110 p$								
4028	90p	4518 4528	130p					8835 TRI-STATE TRANSCEIVER (INVERTING) £2.00.			
4029	110p	4528	100p								
LEDS 125 OR .2 RED ONLY. 10 FOR £1.20, 100 FOR f9.00, 1000 FOR £60.00				2102AN-4L 1024×1 BIT 450 NANO SEC. STATIC RAM. $£ 1.60 .4 /$ £6.00. 8/£11.60.				AY5-1013 UAR/T £6.00. LM309K/LM340K VOLTAGE REGULATOR $\mathbf{f} 1.00$ each.			

306 ST. PAUL'S ROAD, HIGHBURY CORNER, LONDON N. 1 Telephone: 01-226 1489
ALL PRICES INCLUDE POST AND V.A.T.

SUPERSOUND 13 HI FI MONO AMPLIFIER

8-15 ohm speakers input for coble cut contiols Sutabit for Sensitivily approx 40 mV for full outpuric Supplied ready built and tested, with knobs, escuicheon panel. input and output plugs
Overall size 3 in high $\times 6$ in wide $: 7 \mathrm{kin}$ deep AC 200250 V PRICE \& $15 \cdot 00$ P \& P. $£ 120$.

HARVERSONIC MODEL P.A.

TWO ZERO
An advanced solid state general
purpose mono amplifier suteabl purpose mono amplifier sultable Guitar. Gram etc Features 3
individually controlled inputs (each
 Input $2,15 \mathrm{mV}$ into 47 k (suitable for use with mic. or guitar etc.)
mpput $3,200 \mathrm{mV}$ into 1 meg . suirable for gram Input $3,200 \mathrm{mV}$ into 1 meg. suitable for gram. tuner, or tape etc.
Full mixing tacilities with full range bass 8 treble controls All inputs plug into standard jack sockets on front panel Output socket on rear of chassis for an 8 ohm or 16 onm speaker
Output in excess of 20 watts RM S Very attractively finished puppose built cabinet made from black vinyt covered steel. with a operation 200240 volts Size approx 12 in wide 5 . 5 in high.
7 in deep Special introductory price $£ 28 \cdot 00-£ 250$ carriage and packing
Mullard LP1 159 RF-IF module $470 \mathrm{kHz} £ 2.25+\mathrm{P}$ \& P 20 p Full specification and connection details supplied.
Pye VHF FM Tuner Head covering $88-108 \mathrm{MHz} 10.7 \mathrm{MHz}$ I.F. output. $7-8 \mathrm{~V}$ + earth. Supplied pre-aligned, with full circuit diagram with precision-geared F.M. gang and 323 PF +323 PF
A.M. Tuning gang only $£ 3.15+$ P. \& P. 35 p . STILL AVAILABLE
HA34
\& $1.40 \mathrm{P} . \& \mathrm{P}$ P. . Also HSL 'Four' Amp. Similar to above but in kit form. $£ 8.00$
£1.40 P. \& P.

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER

200/240V Mains operated
Solid State FM A.M Stere Solid State FM A.M Stereo
Tuner Covering M W AM A
$540-1605 \mathrm{KHz}$ V. H F FM $540-1605 \mathrm{KHz}$
$88-108 \mathrm{MHz}$
Built-in Ferrite rod aerial for
$M W$ Full AFC and AGC on A M and FM S Stereo Beacon Lamp Indicator Built in Prevollage adjustable outpur contiol Max op Voltage 600 mV R M S into 20 K Simulated Teak inish cabinet Will match almost any amplifier Size 8 -in wide, 4in high - 9tin deep approx
Limited number only at $£ 28 \cdot 00+$ § 150 P. \& P.
MAINS TRANSFORMER. PRI. 0.110 and 240 . Sec .28 V at
1.8 amps. Also tapped at $12 \mathrm{~V}-3 \mathrm{amp}$. Overall size $2 \mathrm{~s}^{\prime \prime} \mathrm{h} \times 3{ }^{\prime \prime} \mathrm{w}$ к

10/14 WATT HI-FI AMPLIFIER KIT

A styishly linished monaural amplifier with an output of 14 watts rom 2 EL84s in push-pull Super reproduction of both music and speech with negligible hum Separate inputs for mike and Fully shrouded sectron wound ourput translormer to match $3-15 n$ speaker and 2 independent volume controls. and separate bass and treble controls are provided giving good lit1 and cut Valve
ine-up 2 ELB4s ECC83 EFB6 and EZ80 rectifer Simple line-up 2 ELB4s ECC83 EF86 and EZ80 rectitier Simple
instruction booklet 25p. S AE (Free with parts) All parts sold separately. ONLY $£ 13.50 P$ \& P. $£ 1.40$. Also avallable ready
built and tested $\varepsilon 18.00$ P \& P. $£ 1.40$.
'POLY PLANAR' ' WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER Size 11 in a ${ }^{14} 14$ in . 1 itin deep Weight 19oz Power handling $40 \mathrm{~Hz}-20 \mathrm{KHz}$ Can be mounted on cerlings. walls, doors, under ables. etc and used with or without baffle Send SAE for full details. Only 88.40 each + P. 8 P. (one 90p, two £1.10). Now available in either 8 in round version or $4 \frac{1}{2} \times 8 \frac{1}{2}$ in rectangular. 10
watts R.M.S. $60 \mathrm{~Hz}-20 \mathrm{KHz}\{5.25, P$.

SPECIAL OFFER. $6 \frac{1}{\frac{1}{2}}$ in long throw, roll surround, ceramic magnet 8 onm 10 watt speaker chassis. Specially suiteble for Hi Fi
E .9575 p \& P

2 in PLASTIC CONE HF TWEETER 4 ohm.
HIGH POWER HI-FI 8 otm Dome Tweeter. 1 in voice coil Magnet size 3 in dia. Suitable for use in up to 50 watt systems.
$\mathbf{E 4 . 5 0}$ each 60 p P. \& P.

Open 9.30-5.30 Monday 10 Friday. 9.30-5 Salurday Closed Wednesday.
Prices and specifications correc at time of press. Subject
alteration without nolice

HARVERSONIC SUPERSOUND
 10 + 10 STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amphifer Kit. Uses 14 transistors ncluding Silicon Transistors in the lirst tive stages on each channel resulting in even lower noise level with improved controls. Suitable for use with Ceramic or Crystal cartridges Very simple to modity to suit magnetic cartridge-insiructions included. Output stage for any speakers from 8 to 15 ohms Compact design. all parts supplied including dritled metalwork, high quality ready marked, smart brushed anodised alumintum tronication clearly matching knobs. wire. solder. nuts. bolts-no extras to buy, Simple step dy step instruclions enable any constructor to buld an R.M S per channel into 5 specificalion. Power output 14 watts $12-30.000 \mathrm{Mz}$ Sensitivity better than Frequency response $\pm 3 \mathrm{~m}$ in bandwidth $=3 \mathrm{~dB} 12-15.000 \mathrm{~Hz}$ Bass boost approx to $=12 \mathrm{~dB}$ Treble cut approx $10-16 d 8$ Negative teedback 18 da over main mp. Power requirements 35 V at 1 A .
Overall size 12 in wide $\times 8$ in deep $\times 2 \frac{3}{4}$ in high
Fully detaited 7 page construction manual and parts list tree with
kit or send 25p plus large S AE AMPLIFIER KIT $£ 13.50$ P \& P. 80ρ POWER PACK KIT $\quad \mathbf{5 5} \mathbf{5 0}$ P. \& P. 95ρ CABINE
£5.50 P. \& P. 950
SPECIAL OFFER-only $£ 23-75$ if all 3 ltem
有
Also avaliable ready built and tested £31-25 P \& P \& \quad \& 50

HARVERSONIC STEREO 44

A solid state stereo amplifier chassis. With an output of 3-4 watts per channel into 8 ohm speakers Using the latest high technology
integrated circuit amplifiers with built in shori term thernal ovegrated circut amplifiers with buit in short term therma capacitor. luse, tone control volume conirols 2 pin smoothing sockets and 5 pin din tape rec play socket are mounted on the printed circulf panel Size approx 9 rin x 2 inn , lin max depth Supplied brand new and tested with knobs brushed anodised horizontally or vorucally) horizontally or vertically at only $£ 9.00-50 \mathrm{p} P$ \& P Mains at $£ 1.50-40 p P \& P$ if required $F u l l$ connection supplied

STEREO DECODER
SIZE $2^{\prime \prime} \cdot 3^{\prime \prime} \cdot 1^{*}$ ready buitt. Pre-aigned and tested for $9-16 \mathrm{~V}$ neg. earth operation. Can be fitted to almost any FM VHF radio or tuner insiructons (inclusive of hints and tips) supplied. Fuil details and P. 8 P. Stereo beacon light if required 40 p extra.
(Please write clearly)
PLEASE NOTE: P. a P. CHARGES QUOTED APPLY TO U.K. ONLY P. AP. ON OVER
CHARGED EXTRA.

> SEMICONDUCTORS, ALL FULL SPEC. BC212, BC182, BC237. BF197, BC159 all 8p each. LM380 80p. LM38195p, NE555 33p, 7418 pin 23p, 741 (wide bandwidth) 8 pin to photo cell Alpha numerical display (with datal $£ 2,50$. BX504 opto isolators infra red led 14p. MRD3051 photo transistors 35p, FETS similar to 2 N 3819 18p. MOSFET similar 40673 35p, Min. E.H.T. Stick Recs.. 15 kV 2.5 mA 30 p , Intel C1103 1024 bit mos rams 95p. TBA800 80p, CD405145p. 72314 pin I.C.'s 35p.
> DIODES, BY 127 9p, IN4002 4p, IN4005 7p, 600 V 3 amp 17 p , Lucas bridge recs, 400 V 1.5 amp 30p.
> MAN 3A 3mm led displays 50p. Min. Nixie 5870 ST 75 p. POT CORE unit, has six pot cores including one FX2243 (45mm) and two FX2242 (35mm) 3 TO3 sil, power transistors on heastic SCR $£ 1.75$ plus 75 peholders and panel with various transistors, diodes and a 5 amp MOTORS, Model type $1.5-6$ volts 2
> 240 V AC SYNCH., MOTORS WITH GEAR 80 X . if rpm 75 p , motor 115 V AC, $3 \mathrm{rpm} \mathbf{2 5 p}$. $\begin{aligned} & \text { Crouzet } 115 V \text { AC } 4 \mathrm{rpm} 95 \mathrm{p}, 12 \mathrm{~V} \text { DC } 5 \text { Pole 35p. } \\ & \text { HI-SPEED MORSE KEY, ALL METAL f2 } 25 .\end{aligned}$
> HI-SPEED MORSE KEY, ALL METAL £2.25.
> HI-IMP MONO HEADPHONES 2 K IMP E1.95. Crystal microphone inserts 37 mm 45 p . Grundig electret condenser inserts with built in FET pre-amp $£ 1.50$, ELECTRET PENCIL $\begin{aligned} & \text { HAND MICROPHONES } 1 \mathrm{~K} \text { IMP WITH STANDARD JACK PLUG £2.85, TIE CLIP } \\ & \text { CONDENSERMIKES OMNI, } 1 \mathrm{~K} \text { IMP (uses deaf aid batter suplied) fa } 95 \text {, }\end{aligned}$ CONDENSER MIKES OMNI. IK IMP fuses deaf aid battery, sup
> PROJECT BOXES, BLACK ABS PLASTIC WITH BRASS INSERTS AND LID, $75 \times 56 \times 35 \mathrm{~mm} 44 \mathrm{p}, 95 \times 71 \times 35 \mathrm{~mm} 52 \mathrm{p} .115 \times 95 \times 3660 \mathrm{p}$.
> BUZZERS, GPO open type $3-6 \vee 30 \mathrm{p}$. Large plastic domed type loud note 6 or 12 volts 50 p . Solid State buzzers, miniature, 6-9-12-24 volt 15 ma 75 p each.
> TAPE HEADS, Mono Cassette $£ 1.30$. Stereo cassette $£ 3.00$. BSR MNI 330 half track dual imped. heads 50p, BSR SRP9o $\frac{1}{4}$ track R/P Heads £1.95, 8 track heads $£ 1.75$, TD 10 $\begin{aligned} & \text { Dual head assemblles } 2 \text { heads both } \frac{1}{4} \text { track R/P with built in erase, mounted on bracket, } \\ & £ 120 \text {. }\end{aligned}$ £1.20.
contacts 55 p , Min sealed 220 V AC 2 pole c/o 40 p . Open type 12 V DC 4 pole c/o $50 \mathrm{p}, 4$ pole
GRYSTALS, $300 \mathrm{KHz} 40 \mathrm{p}, 4.43 \mathrm{MHz}$ CTV 45p.
AEROSOL 'Touch up' paint one colour yellow/grey, $60 z$ can 35 p . 50 V AC cam units.
motor switching ten c/o micro switches, supplied with capacitor for 240 V AC use $£ 1.95$ plus
$\begin{aligned} & \text { 35p postage. Belling Lee } L 4305 \text { masthead amplifiers and mains power unit, new but only } \\ & \text { for }\end{aligned}$
$\begin{aligned} & \text { for group A UHF } £ 7.50 \text {. } \\ & \text { TRANSFORMERS, } 6 \text {-0- }\end{aligned}$
TRANSFORMERS, $6-0-6 \mathrm{~V} 100 \mathrm{ma}, 9-0975 \mathrm{ma}$, $12-01250 \mathrm{ma} 75 \mathrm{p}$ each, $4-6-9 \mathrm{~V} 150 \mathrm{ma}$.
65p, $12 \mathrm{~V} 500 \mathrm{ma} 95 \mathrm{p}, 1: 1$ triac/xenon pulse transformers 30 p , CHOKES 6 MH 3 amp 20 p .
$\begin{aligned} & \text { U.H.F. TV Tuners, push button (not varicap) new and boxed £2.50. Miniature toggle } \\ & \text { switches, SPST } 8 \times 5 \times 7 \mathrm{~mm} 45 \mathrm{p} \text {. DPDT } 8 \times 7 \times 7 \mathrm{~mm} 50 \mathrm{p} \text {. DPDT }\end{aligned}$
75p. Min. push to make or push to break $16 \times 6 \mathrm{~mm} 15 \mathrm{p}$ each type. Slider $\times 9 \mathrm{~mm}$
DPDT standard 15p. Min 12p. Std. c/o 20p. Roller action micro switches $15 p$.
TOOLS, Small side cutters $5^{\prime \prime}$ insulated handles $£ 1.35$. Snub nosed pliers $5^{\prime \prime}$ insulated
handles $£ 1.35$. Watchmakers screwdriver sets, 5 drivers in wallet $£ 1.00$. Large mains
tester screwdrivers, fully insulated $8^{\prime \prime} \mathbf{4 4 p}$. Test lead jumper sets, 10 leads with insulated croc
clips each end. different colours 80p. Telephone pick up coil, suction type with 3.5 mm
jack plug 50 p . 9 volt battery eliminators, 240 V AC input 9 V DC out at 120 ma stabilised
$\begin{aligned} & \text { replaces PP3. PP6, PP7, PP9 £2.45. Edge connectors, } 0.164 \text { way } 65 \text { p, } 34 \text { way } 40 \text { p, } 0.2 \\ & 18 \text { way } 15 p \text {. Amplifier modules, OTL410 } 10 \text { watt }\end{aligned}$
$\begin{aligned} & 555 \mathrm{~S} \text { Stereo module, } 3 \text { watt output into } 8 \text { ohms, } 12 \mathrm{~V} \text { DC } £ 3.35 \text {. Tape head demagnetizers, } \\ & 240 \mathrm{~V} \text { AC with on/off switch, straight probe } £ 2.00 \text { curved probe (cassette) } £ 2.35 \text {. }\end{aligned}$
TERMS: Cash with order (or official orders from colleges etc). Póstage 30p unless
shown, overseas post at cost. VAT inclusive prices. S.A.E. for lists.
31 CHEAPSIDE, LIVERPOOL L2 2DY. TEL. 051-236 0982.

EVERYBODY'S DOING IT!

Doing what? Sending for the latest Home Radio Catalogue It's the most comprehensive components catalogue you can get. 128 pages, about 2.500 items listed, and profusely illustrated. Still only f 1.40 , with a free bargain list. Send your cheque or postal order now.

Home Radio Components Ltd.
Dept. PE, 234 London
Road,
Mitcham, Surrey CR4 3HD

©3 WIRE WRAPPING CENTRE

HOBBY WRAP

WIRE-WRAPPING TOOL For. $025^{\prime \prime}$ ($0,63 \mathrm{~mm}$) sq. post "MODIFIED" wrap, positive indexing, ant | For AWG 30 | BW-630 | |
| :--- | :--- | :--- |
| B | For AWG 26-28 | BW-2628 |

Bit for AWG 30	BT-30
Bit for AWG $26-28$	BT-2628

OK PLIERS AND CUTTERS
UNIVERSAL CUTTER
Cuts everything. Leather wire, plastic, tin-plate, cardboard. Stainless steel blades.
Just one of the range of high quality pliers, cutters tweezers and screwdrivers.

3136 £ 3 -20

A£24.77 B£29.58 C£2.61 D£6.89

3 IN 1 WIRE DISPENSER New wire dispenser cuts and strips three different colours of wire. Quick and easy to use pocket size. Wire sizes 30 AWG. $50 f t$ Red, Blue \& White Kynar insulated.

FROM 75p

TERMINAL AND
DISTRIBUTION STRIPS
Bread boarding building blocks with universal matrices of sciderless plug-in -iepoints.

- Facili-ate quick
solderless circuit build-up and check-cut on universal. $1^{\prime \prime} \times 1^{\prime \prime}$ matrix.

Are offered in ten configurations.
Accept all component with teads up to .032' diameter.

- Require no special patch cords.
- Includes integral nonshorting instant mounting backing.

DIP/IC INSERTION TOOL WITH PIN STRAIGHTENER

STRAIGHTEP
STRA
14-16 Pn Dip

$14-16$ Pn Dip		
IC Inserter	INS-1416	$£ 2.58$

DIP/IC EXTRACTOR

 TOOLThe EX-1 Extractor is deally suited for hobby enthusiast or lab engineer. Featuring one piece spring teel corstruction. It will extract all LSI, MSI and SSI devices of from 8 to 24 pins. Extracter Tool EX-1.£1-10

PICK UP

INSERT

RELEASE

DSTBIBUTO $\%$ *
 OK Machine\&ToolU.K. Limited 48a The Avenue Southampton SO12SY

WIRE-WRAPPING KIT

Contains: Hobby Wrap Contains: Hobby Wrap Dispenser WD-30-B (2) 14 DIP's (2) 16 DI's's Hobby Boara H-PCB-1 DIPMC Insertion Tool DIP/IC insertion Extractor Tool EX-1. | Wire-Wrapping | WK-4B |
| :--- | :--- | Kit £ 17.80

HOBBY WRAP TOOL Wire-wrapping, stripping, unwrapping tool for AWG 30 on . $025(0,63 \mathrm{~mm})$
Square Post.

Regul

Regular Wrap	WSU-30
Modified Wrap	WSU-30M

WSU-30M $£ 4.69$
 problems.

- Simplify prototype and production testing, field service work, and quality control.

IC TEST CLIPS
FOR DUAL-IN-LINE
PACKAGES

- Provide full access to leads.
- Remove DIP's damàge free.
- Available in sizes to accommodate all DIP's TC. 14 fits 14-pin DIP's
$£ 2.75$ etc.

DIP SOCKET
Dual-in-line package, 3 level wire-wrapping, phosphor bronze contact, gold plated pins. 025 $(0,63 \mathrm{~mm})$ sq., 100 ($2,54 \mathrm{~mm}$) centre spacing.

14 Pin Dip Socket	14 Dip
16 Pin Dip Socket	16 Dip

FROM 14p

RIBBON CABLE ASSEMBLY FROM £2.70 With 14 Pin Dip Plug 2" Long DE 14-2 | With 14 Pin Dip Plug - 4 " Long | DE 14.4 |
| :--- | :--- | :--- | With 14 Pin Dip Plug - $8^{\prime \prime}$ Long DE 14.8 With 16 Pin Dip Plug - $\mathbf{2}^{\prime \prime}$ Long DE 16 -2 With 16 Pin Dip Plug -4" Long DE 16.4

GREENWNELD

443 Milibrook Road Southampton 501 DHX Tel:(0703) 772501

 Gquiries please. MINIMUM ORDER for bona-fide tradors. Surphus com-
VALUE Ef. Official orders accepted ponents always wanted.

DIODE SCOOP!!!
We have been fortunate to obtain a large quantity of untested, mostly unmarked glass
silicon diodes. Testing a sample batch reveated about 70% usable devices-signal diodes, high voltage rects and zeners may all
be included. These are being offered at the be included. These are being offered at the
incredibly low price of $£ 1.25 / 1000$ - or a bag of 2500 for $£ 2.25$. Bag of $10,000 \mathrm{£8}$ Box of 25,000 £17.50. Box of 100,000 $£ 80$.

TTL PANEL
52 logic IC's including 32×74161 (4 bit binary counter) +16 tant bead caps. R's. C's.
etc. Over E 30 worth of $\prod \mathrm{L}$ alone!! ONLY erc. Over
£ 3.00 .

MISCELLANEOUSIC's

Alt supplied-with data, if requested. MC3302 Quad comparator £1.20 1777105 LED Digit driver, 8 for $\mathbf{7 1}$ 710 TO99 case Diff. comparator 40 p ZN 1034 E Precision timer $\mathbf{f 2 . 2 5}$ LM 1303 Dual stereo preamp $£ 1.40$

 £1-50.

CALCULATOR CHIP

Type C500 by G1. 4 function + constant. 8 digit. Multiplexed output tor simple keyboar interfacing. 24 pin DIL. WIth comprehensiv

TMS4030 RAM

4096 bit dynamic RAM with 300 ns access 4096 bit dyna 470 ns cycle time: sing acces capacitance high level clock i/p: Fully TI compatible: Low power dissipation. Supplied
with data $£ 2.75$

CLOCK CHIPS

MK50253N £3.95.

DISPLAYS

DG-1001 Green seven segment display tubes. 0.3 characrer height. Require 0.6 filament voltage and 18 V HT. Supplied with connection
for $£ 5-50$.

SPECIAL TRANSISTOR

 OFFERSPN108(BC108)
PN109(BC109)
PN70
PN70(BCY70)
PN71 (BCY71)
14 for E 1

HEAT SINK OFFER

Copper TO5 sink 17 mm dia $\times 20 \mathrm{~mm}$. 10 for
DARLINGTON COMP PAIR BD695A and BD696A-45V 8A 70W Blastic power!! gain 750 G 4 A . PNP-NPN
pair £1-50

SPECIAL SUMMER OFFERS

Audio IC's			
76003 N 76023 N	$£ 1.40$ $¢ 1.00$	76013 N 76033 N	. 40
$\begin{aligned} & \text { 76023N } \\ & \text { LM380 } \end{aligned}$	${ }_{\text {E }}{ }_{80} 1.00$	TBA810S	70
Linear IC's etc 741 (8DIL)			
	25	BD	
N4148	2 p	2N3819	

LOW COST

PLASTIC BOXES
Made in high impact ABS. The lids are retained by 4 screws into brass inserts. interiar or box has PCB guide slots (excep V219)
$\mathrm{V} 210 \quad 80 \times 62 \times 40 \mathrm{~mm}$ black
$\begin{array}{ll}\mathrm{V} 213 & 100 \times 75 \times 40 \mathrm{~mm} \text { black } \\ \mathrm{V} 216 & 120 \times 100 \times 45 \mathrm{~mm} \text { black }\end{array}$
$\begin{array}{ll}\text { V219 } \\ \text { 120x } & 100 \times 45 \mathrm{~mm} \text { white }\end{array}$

VEROCASES

Plastic top and bottom. ally panels front and

1237	$154 \times 85 \times 40$	¢2.53
1238	$154 \times 8 \times 60$	¢2.79
3007	+ $180 \times 120 \times 40$	${ }_{\text {¢ }}$
3008	$180 \times 120 \times 65$	£3.50
3009	180×120×90	¢3.74
1410	$205 \times 140 \times 40$	¢ 3.51
1411	205x140x75	£4.05
1412	205×140×110	¢5.12

We keep a very large range of VERO products - inc. Their recently introduced their catalogue,

1977/8 CATALOGUE

48 BIG pages packed with over 4,000 items, many of them illustrated. Discount vouchers worth 50p. PRICE $30 p+15 p$ post. (Overseas send 60p surface or $\mathbf{£ 1}$ airmail.) Also included is our current Bargain List. Send SAE for bargain list alone.

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

* SAVE ON TIME-No delays in waiting for parts to come or shops to open!
* SAVE ON MONEY-Bulk buying means lowest prices-just compare with others!
* HAVE THE RIGHT PART-No guesswork or substitution necessary!

ALL PACKS CONTAIN FULL SPEC, BRAND NEW MARKED DEVICES SPEC, SENT BY RETURN OF POST. VAT INCLUSIVE PRICES.
K001 50V ceramic plate capacitors, 5\%. 10 of each value 22 pF to 1000 pF . Total 210 , K002 Extended range. 22pF to $0.1 \mu \mathrm{~F} .330$ values $£ 4.90$
$K 003$ Polvester capacitors, 10 each of these values: $0.01,0.015,0.022,0.033,0.047$ $0.068,0.1,0.15,0.22,0.33,0.47 \mu \mathrm{~F} .110$ altogether for $£ 4.75$
K004 Mylar capacitors, $m i n ~ 100 \mathrm{~V}$ type. 10
each all values from 1000 pF to $10,000 \mathrm{pF}$. each all values rom 1000 pF to $10,000 \mathrm{pF}$. . 130 for $£ 3.75$ K005 Polvstyrene capacitors, 10 each value rom 10 pF to 10.000 pF . E12 series 5% 16008. Total 370 for $£ 12 \cdot 30$
the following: $0.1,0.15,0.22,0.33,0.47$ $0.68,1,2.2 .3 .3,4.7,6 \cdot 8$, all $35 \mathrm{~V} ; 10 / 25$ $15 / 16 \quad 22 / 1633 / 1047 / 6100 / 3$. Total 170 ants for $£ 14.20$
small physical size. 10 each of these working values: $1,2.2,4.7,10,22,47,100 \mu \mathrm{~F}$. Tota 70 for f 3 . 50
K008 Exiended range, as above, slso including 220. 470 and $1000 \mu \mathrm{~F}$. Total 100 for

K021 Miniature carbon film 5\% resistors, CR25 or similar. 10 of each value from 10 R to 1 M , E 12 series. Total 610 resistors, $\mathbf{~} \mathbf{6} 6.00$ 022 Extended range, total 850 resistors rom 1 Rener diodes 4 10 of each value from $2 \cdot 7 \mathrm{~V}$ to 36 V , E24 series. Total 280 for $£ 15.30$.

PCETCHING KIT MK II

Now contains 200 sq. ins. copper clad board lib. Ferric Chloride. DALO etch-resist pen.
abrasive cleaner, two miniature drill bits. etching dish and instructions. $\mathbf{£ 4 . 1 5}$

VERO OFFCUTS

Pack A, All 0.1" Pack 8, All 0.15"
Pack C. Mixed
Pack C. Mixed Pack D, all O.1" Plain
Each pack contains 7 or 8 pieces with a 10 ala area of 100 sq . in. Each pack is $£ 1.30$. Also
avaitable by weight. $1 \mathrm{lb} £ 4 \cdot 20$, 10 Ib $£ 32.50$. $17 \times 3 \frac{\text { 土 }^{\prime \prime}}{}$ Strips: $0.1^{\prime \prime} £ 2.20 ; 10$ for $\mathbf{£ 1 5}$ $0.15^{\prime \prime}$ £1.98

EDGE CONNECTORS

Special purchase of these 0.1^{n} pitch double sided gold-plated connectors enables us to
offer them at less than one-third of their original list pricel 18 way 41p; 21 way 90p.

DISC CERAMIC PACK Amazing variety of values and voltages from a few pF $102.2 \mu \mathrm{~F}!3 \mathrm{~V}$
$\mathbf{£ 1 . 0 0}, 500 £ 2.25,1000 £ 4.00$.

COMING SOON Look out for details of the GREENWELD 100 W amplifier kit and an IC amplifier kit and some incredible component bargains!

DIGITAL VOLTMETER/THERMOMETER KIT TRIAC BARGAINS

75 Willowtree Avenue Gilesgate Mor Durham ロH1102 (0385) 62760 or 61765

TRANSFORMERS ($\mathrm{p} / \mathrm{p} 35 \mathrm{p}$ each) 240 V 12 V ($\mathrm{p} / \mathrm{p} 35 \mathrm{p}$ each) f ICs $240 \mathrm{~V} 12 \mathrm{~V} \quad$ (or $6-0.6$) $\quad 200 \mathrm{~mA} \quad 0.98 \quad$ LM 555 CN Timer 8 DIL 240 V 12 V .12 V (or 24) both 250 mA . 195 LM 349 CN-8 Op.Amp 801 L ${ }_{2}^{240 V} 12 \mathrm{~V} .12 \mathrm{~V}$ (or 24) both 250 mA 1.95 LM 348 N Quad 74114 DIL HEF401 IP MUNOR 1400.33
240 V 12 V 2 A 3.95
voltage regulators
LM 342 P-5 +5V
3 3in T0-202 200mA
LM 342 P- $12+12 \mathrm{~V}$
3 3pin $70-202200 \mathrm{~mA}$
LM 342 P- $24+24 V$
${ }^{3}$ 3pin TO-202 200 mA
LM 317 MP Adjustable
$3 \mathrm{pin} \mathrm{T0}-202500 \mathrm{~mA}$
RESISTDRS
${ }^{2} W$ W 100R $10 \mathrm{M}(10.47 .68 \mathrm{etc})$ preser iim and 1 KW on and on a Clock App once a day. KIT contains: AY-5-1230 mains sup 1 , isplay drive, 0.5 LED display. complete with PCBs and full instructions $£ 14.85$ E2.70

Cash/cheques/drafts/P.O's/ACCESS No. accepted.
Telephone us with your ACCESS No. for really fast service. Post/packing 25p unless otherwise stated + VAT 8\% (Except Export Orders) TRADE AND EXPORT ENOUIRIES WELCOME.

Clef Products
P. E.JOANNA \&
'STRING ENSEMBLE'

Send S.A.E. for details of Kits \& P.C.B.s
Please indicate which instrument required.

16 Mayfield Road, Bramhall, Cheshire SK7 1JU

U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

R.C.S. 10 WATT AMPLIFIER KIT

This kit is sultable for record players. tape play back. guttars. electionic instruments or small P.A. systems. TWo versions are availabie. The mono kit uses 13 semicon printed front panel and volume. bess and treble controls. Spec 10 W output into 8 ohms. TW into 15 ohms . Response $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$. nout 100 M .V. high imp. Size $9 \frac{1}{2} \times 3 \times 2$ in. $A . \mathrm{C}$ mains operated
 Easy to build Full instructions supplied

ELAC SPEAKER 10 inch £4.50

Twin cone. Large ceramic magnet $50-16,000 \mathrm{c} / \mathrm{s}$. Bass resonance $55 \mathrm{c} / \mathrm{s} .10 \mathrm{~W}$. 8 ohm impedance.
RCS STEREO PRE-AMP KIT. All parts to build thts pre-smp. Inputs for high. medium or low imp. per channel, with volume
control and P.C. Board. Can be ganged to make multi-way mixers. $\mathbf{C 2 . 9 5}$ Post 35p

GOODMAN'S COMPACT 12in BASS WOOFER
Standard $12 i n$ diameter fixing with cut sides 10 inn $^{\prime 2}$ square. 14.000 gauss magnet 30 wat r.m.s. 4 Frequency c.p.s. Frequency response $30-8,000$ cep.
¢ 10.95 each. Post $£ 1.00 .20$ Watt model $£ 9.95$.

E.M.I. $13 \frac{1}{2} \times 8$ in

SPEAKER SALE!
With tweater. And crossover.
Stote or or ohm.
10W Model $\quad £ 7.95$

20W model $£ 11.50$
TEAK VENEER H-FI SPEAKER CABINETS
MODEL "A" 20, 13, 12in.
For 12in. dia. or 10 in . speaker Illustrated $£ 14.50$ Post $£ 1.60$ MODEL "B"BOOKSHELF
For 13 , 8 in. EMI $£ 8.50$ post $£ 1$
R.C.S. BOOKSHELF complete with speakers. Size $14 \times 9 \times 6 \mathrm{in}$. approx. Response 50 to $14,000 \mathrm{cps}$ 12 watt rms 8 ohms $\mathbf{£ 1 9 \text { pair Post } £ 1 . 5 0}$
ACOUSTIC WADDING 18 in . wide, 20 p 4 .

MONO PRE-AMPLIFIER

A mains operated solid state pre-ampiifier unit designed o compliment amplifiers without low level phono and tape input stages. This free standing cabinet incorporates circuiry for automatic R.I.A.A. equalisation on magnetic ON/OFF, PHONO/TAPE switches and pilot lamp are on he front panel; phono socket input and output are rear located. AC mains 240 V Size $6 \times 3 \frac{1}{2} \times 2$ in
£4.50 ea. - 2 for £8.

BAKER MAJOR 12 INCH $£ 16.88$
 Post E 100 $30-14.500 \mathrm{c} / \mathrm{s} .121 \mathrm{n}$ double cone, woofer and twetter cone together with a BAKER density of 14.000 gauss and a total flux of 145,000 Maxwells Bess resonance 40 c/s. Rated 25 W
NOTE 4 or 8 or 16

Module kit. 30-17.000 c/s with tweeter, Module kut. $30-17.000 \mathrm{c/s}$ with tweeter,
crossover, baffle. $19 \times 12 \mathrm{k} / \mathrm{In}$. f 20.52
instructions. As illustrated Please state 4 or our 16 onms. Post 5160

"BIG SOUND" BAKER SPEAKERS

Robustly constructed to stana up to long groups and discos Useful response $30-13.000$
pis leading C s Bass Resonance 55 cs
GROUP ' 25
12 In 30 w
4.8 or 16
£12.96
GROUP ' 35 '
122. 40 L
4.8 or 16 onms
£15.12
GROUP 50/12in

BAKER 150 WATT
ALL PURPOSE
TRANSISTOR
AMPLIFIER

deal tor Groups Disco. PA and Musical instruments 4 inputs
 Separate treble and bass controls.
NEW " DISCO 100 WATT"' $\begin{array}{r}\text { E59 } \\ \text { ALL TRANSISTOR AMPLIFIER }\end{array}$ 2 inputs Qoutputs separate volume treble and bas
R.C.S. SOUND TO LIGHT DISPLAY MK II Complete kit of parts with R.C.S. printed circuit. Three 1000W channels. Will operate from 20mV signal source.
CABINET extra $£ 4$. $\mathrm{KIT}=\mathbf{£ 1 7 . 0 0}$

GOODMANS CONE TWEETER

18.000 cs 25 W 8 ohm

Price £3-25
3 WAY CROSSOVER WITH TREBLE \& MID RANGE
R.C.S. 100 WATT VALVE AMPLIFIER CHASSIS

ROBUST BLACK PLASTIC BOX
Size $6!\times 33 \times 21 \mathrm{n}$ with brushed aluminium
£1.50
facia. Ideal for constructional projects

Post 30p

HEAVY METAL PLINTHS

Model A Size $12 \mathrm{t} \times 144 \times 7 \mathrm{fin}$ Post $£ 130$
Extra Large Plinth and Cover. For transcript on decks. Size Extra Large Plinth and Cover. For transcript on decks.
$20 \times 17 \frac{1}{8} \times 9$ in. uncut board. Shop callers only $£ 18-50$. TINTED PLASTIC COVERS ONLY Sizes: $14 \frac{1}{2} \times 12 \frac{1}{2} \times 4$ inn, $£ 3$.

$4 \frac{1}{2} \times 14 \frac{3}{4} \times 2 \frac{1}{2}$ in, Rosenwood sides $\mathrm{E4}$.
deal for record decks, tape decks, etc. Post $75 p$.
BAKER HI-FI SPEAKERS high ouality-british made SUPERB £24.75 12in 25 watt
Quality loudspeaker low cone resonance
ensures clear reproduction of the deepest bass Special copper drive and concentric tweeter cone Full range reproduction with
remarkable etficiency in the uppe registar
Bass Resonan
Flux Density
$25 \mathrm{c} / \mathrm{s}$
Flux Density
16,500 gauss
$20-17.000 \mathrm{cs}$

BLANK ALUMINIUM CHASSIS. 18 s.w.g. $2 \frac{1}{2} \mathrm{in}$. sides, $6 \times 4 \mathrm{in}$. $95 \mathrm{p} ; 8 \times 6 \mathrm{in} . £ 1.40 ; 10 \times 7 \mathrm{in}$. $£ 1.55 ; 14 \times 9 \mathrm{in} . \mathrm{f1} .90 ; 16 \times 6 \mathrm{in}$ ALUMINNIUM PANELS, 18 s.w.g. $6 \times 4 \mathrm{in}$. 24 p ; $8 \times \operatorname{Bin} .38 \mathrm{p}$ $10 \times 7 \mathrm{in}$. 54p: $12 \times 5 \mathrm{sin} .50 \mathrm{~s}$: $12 \times 8 \mathrm{in} .70 \mathrm{p}: 16 \times 6 \mathrm{in} .70 \mathrm{p}$ 14×9 in. $94 \mathrm{P}: 12 \times 12 \mathrm{in}$ E1: $16 \times 10 \mathrm{in}$. £1.16.
ALUMINUM ANGLE BRACKET $6 \times$.
ALUMINIUM BOXES, MANY SIZES IN STOCK $95 \mathrm{p} ; 8 \times 6 \times 3 \mathrm{in}$
 THE 'INSTANT" BULK TAPE
ERASER \& HEAD DEMAGNETISER Suitable tor casseltes. and all sizes of sultabie ror cassenes. and all stzes of Leaflet SAE \quad \&4.95 $\begin{gathered}\text { Post } \\ 50 \mathrm{p}\end{gathered}$

RADIO COMPONENT SPECIALISTS
337 WHITEHORSE ROAD, CROYDON, U.K. Tel. 01-684 1665

The latest hit from Sparthriite Sparkrit

 the quickest fitting CLIP ON
 capacitive dischärge electronic ignition in KIT FORM
 Smoother running
 Instant all-weather starting Continual peak performance Longer coil/battery/plug life Improved acceleration/top speeds Optimum fuel consumption

ignition systern in kit form. Tried assembled in two or three hours and fitted in $1 / 3 \mathrm{mins}$
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). The circuit incorporates a voltage regulated output for greatly improved cold starting. The circuit includes built in static timing light systerns function light, and security changeover switch. All kits fit vehicles with coil/distributor ignition up to 8 cylinders
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 year guaranteed transformer and components, cables, connectors, P.C.B.. nuts, bolts and silicon grease. Full instructions to assemble kit neg. or pos. earth and fully illustrated installation instructions.
NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachometer pulse slave unit. Price $£ 3.35$ inc. VAT. post $\&$ packing
Electronics Design Associates, Dept. PE8, 82 Bath Street, Walsall, WS1 3DE. Phone : (9) 614791

Electronics Design Associates, Dept. PE8 82 Bath Street, Walsall, WS1 3DE. Phone: (9) 614791
Name
Address

Phone your order with Access or Barclaycard
Inc. VA.T. and P.P.

XU KIT E14. 95	
TACHS PULSE SLAVE UNIT £3.35	

Send Sat if brochure only required.
I enclose chequelPD's for

£

Please state polarity pos or neg earth.
Access or Barclaycard No
Cheque No

ALL EX-STOCK—SAME DAY DESPATCH. VAT 8%								
12 AND 24 Voit	 							
Prim 220/20VV Soce PANGE 								
					120 V			
		electronic construction kit 						
			3, THE MINORIES, LONDON EC3N 1BJ					

GLOUCESTER INDUSTRIAL SALES AND AUCTIONS LIMITED

Eastington Trading Estate, Nr. Stonehouse, Glos. Tel: Stonehouse 4118 (M.5 Motorway - Exit No. 13)

We hold regular monthly auction sales of mostly new electronic and electrical goods consisting of transistors, triacs, integrated circuits, diodes, capacitors and resistors, together with fractional motors, transformers, power packs, etc., etc.

Phone or write to be put on our auction mailing list.

Why not get in touch with our Mr. Jack Bailey and enquire about our terms for the disposal of your surplus stocks, etc., through our auctions.

-	a
 	-
(1)	
	践

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatchi.gg orders with the minimum of delay.

RECEIVERS AND COMPONENTS

\section*{PE ELECTRONIC TOUCH SWITCH DESIGNER APPROVED
 | Kit with finished PCB | $\mathbf{£ 3 - 7 5}$ |
| :--- | ---: |
| Fibreglass PCB | $0-95$ |
| Pre-finished PCB | $1-15$ |
| ZNN100E CNT/DIS/IC | $5-90$ |
| 7489 Speed Failures | $0-60$ |
| P\&P 15p mail order only | |
| GJD ELECTRONICS | |
| 105 Harper Fold Road | |
| Radcliffe, Manchester M26 ORQ | |}

Valves. Radio - T.V. - Industrial - Transmitting and Projector Lamps. We dispatch Valves to all parts of the world by return of post, Air or Sea mail, 4000 Types in stack, 1930 to 1976. Obsolete types a speciality. List 20 p . Quotation S.A.E. Open to callers Monday to Saturday 9.30 to 5.00 closed Wednesday 1.00 . We wish to purchase ald types of new and boxed Valves, Projector Lamps and Semiconductors. COX RADIO (SUSSEX) LTD., Dept.
PW. The Parade, East Wittering, Sussex, PO20 8BN, P.W. The Parade, East Wittering, Susse
West Wittering 2023 (STD Code) 024366.

RECHARGEABLE BATTERIES

'AA' pencell (HP7) $£ 1.32$; sub 'C' $£ 1.64$; $C^{\prime}(H P 11)$ £2.43; ' D ' (HP2) £3.56; PP3 £4.98. Matching chargers £6.98 each except PP3 chargerif5.82 Charging holders for 2, 3, 4, 5 or 6 pencells 50p. ' C ' and ' D ' size holders, 4 cell only, 80p.
Prices include VAT. Add 10% post, package and insurance orders under $£ 20.5 \%$ over $£ 20$. S.A.E. insurance orders under for 'Nickel Cadmium Power' booklet. Mail orders to:

SANDWELL PLANT LTD. DEPT. P.E.

Midlands.
 Midiands. Tel. 021-354 9764 Callers to T.L.C., 32 Craven Street, Charing Cross,

CONPONENTS FOR P.E. PROJECTS. Components lists with prices available for P.E. Projects from November 1977 onwards. Send SAE stating project and month of publication (Maximum four projects per SAE). Lists sent by return together with ACE order form/catalogue. ACE MAILTRONIX, Tootal Street, Wakefield, W. Yorks. WF15JR. PC8s Paxolin $9 \frac{1}{\frac{1}{n}^{\prime \prime}} \times 8^{\prime \prime}$ 55p. $12^{\prime \prime} \times 9^{n} 70$ p.
$17 \frac{1}{2}^{\prime \prime} \times 9^{\frac{1}{2}} £ 1.15$. Fibre Glass Double Sided $13^{\prime \prime} \times 6^{\prime \prime}$ £1.30. $1 \frac{1}{2}^{\prime \prime} \times 9 \frac{1}{2}^{\prime \prime} \times 10 \frac{1}{2}^{\prime \prime}$ £2.10. Unit with 8 Silicon Diodes £1.30. $12^{\prime \prime} \times 10 \frac{1^{\prime \prime}}{}$ E2.10. Unit with 8 Silicon Diodes
600 V 20 amp. 8 SCRs 400 V 16 amp. 6 Vinkors w.w. resistors etc. $\mathbf{6 6 . 7 5}$. 300 Small Components Trans. Diodes $£ 1.30$. 7 lbs . Assorted Components $£ 2.95$.

J.W.B. RADIO

2 Barnfield Crescent, Saie, Cheshire M33 1NL

SMALL ADS

The prepaid rate for classified advertisements is 18 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 6.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertismement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertise ment rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act o Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is taken, the Publishers shall not be liable for clerical or printers errors or their consequences.

SPECIAL OFFERS
 Buy NOW while soocks last. PRICES INCLUDE V.A.T
 2N3055
 I IP3I or TIP32 $\mathrm{I} \mid \mathrm{P} 41$ or TIP 42
 0.022 uF Polyester
 0.033 uF Polyester
 22uF 450 V Electrolytic 47uF 25 V Electrolytic
 40uF 25 V Electrolytic
 680uF 16 V Electrolytic
 Red LED's (5 mm)
 33p each
 39p each 39p each
 3 3 each
 $6 p$ each
 $19 p$ eoch $5 p$ each
 $5 p$ eoch
 2p each
 All COMPO
 ONLY AVAILABIS ARE BRAND NEW AND GUARANTEED
 Please add 15 p for Postage. Send 2 stamps for Catalogue.
 BARCLAYCARD 'phone service available. Tel. 047350975.
 FRASER-MANNING LTD.
 26 HERVEY STREET, IPSWICH, IP4 2ES.

COVENTRY AREA:- Radio/TV/Audio components from: BARRAS ELECTRONICS, 11 North Street, Coventry 441141.

BRAND NEW COMPONENTS BY RETURN

 $22 / 16 \mathrm{~V}$. $33 / 10 \mathrm{~V}$. $47 / 6 \mathrm{~V}$. 68 \& 100 @ $3 \mathrm{~V}-14 \mathrm{p}$ Mullard Miniature Caramic E12 Saries
10 pf. to 47 pf. 3 p . 56 pf. to 330 pf. 4 p . Vertical Mounting Caramic Plate Caps. 50V.
$\mathrm{E} 1222 \mathrm{pf} .-1000 \mathrm{pf}$ E6 1500 pf.-47000 pf.-2p. Polystyrene E12 Series 63V. Hor. Mounting 10 pf . to 1000 pf - -3 p . 1200 pf . to 10000 pf - 4 p
 Mylar (Polyester) Film 100V. Vertical Mtg. -5p

 0.500 watt 10Ω to $2 \mathrm{M} 7 \Omega$
1.000 watt 10Ω to $10 \mathrm{M} \Omega$

1N4148-3p, 1N4002-5p. 1N4006-7p, 1N4007-8p 8C107/8/9, 8C147/8/9, BC157/8/9, 8F194 \& 7-9p 20 mm . fuses $.15,25,5,9.0,2.0,3.0$ \& $5 A-3$ p. Post 10p (Free over £4). Prices VAT inclusive.

THE C. R. SUPPLY CO.
127. Chasterfield Road, Sheffield S8 ORN

ASSORTED SMALL JAPANESE IF. Transformers 20 for $\mathbb{£ 1 . 2 5 ,}$ Assorted Nuts, Bults, Washers, Eyelets Self Tappping, Self cutting screws a real bargain 1 lb weight $£ 1.75$. Polystyrene Capacitors 100 for \&l.50. Assorted Polyester Capacitors 100 for $£ 2.00$, Assorted Carbon and Carbon Film Resistors 100 for $\dot{1 l .00, ~ A s s o r t e d ~ W i r e-W o u n d ~}$ Resistors 100 for $£ 2.00$, Assorted Transistors/Zeners Dindes ail marked 100° for $£ 2.00$. Mullard Modules LP 1152 £ $1.00 ;$ LP 1153 £4.00; LP $1165 £ 4.00$;
 LP 1181 £4.00. All above prices include VAT $\&$ Postage. T. Powell, 306 St. Paul's Road, London N.1. Telephone 01-226 1489.

SPECIAL OFFER: If you can buy the same for less, we will refund the difference. Brand new and full specification pots, switches, transformers, linears, TTL, CMOS, ransistors, and other semiconductors. Send large SAE for catalogue. DELTA TECH (P) \& Co., 62 Naylor Road, London N20 OHN.

BARGAIN TIME WITH CODESPEED

Full Spec. Devices
Pack P1 $1 \times$ MM5 5330 Digital Voltmetar I.C. With full instructions on how to build a digital multimeter or panel mater,
Liquid Crystal wristwatch display with data. $£ 1.00$. digit Pack T3 $1 \times$ MM5316 Digital Arlarm Clock I.C. 12 or 24 hour. Will drive LED. LCD or fluorescent displays. With full instructions. $\mathbf{E 2 . 7 5}$
Pack T 4
with $\mathrm{am} / \mathrm{pm}$ indicator. An excellent display for $3 \frac{1}{2}$ digit your digital clock project at only $£ 4.95$.
Pack E2 1×8 digit 0.33 in high 7 segment Liquid Crystal calculator style display. With data. E2.95. alculator style display. With data, $\mathbf{E 4 . 2 5}$. Pack E4 A $1 \frac{1}{2}$ digit 0.3 in high 7 segment gas discharge display. Requires 100-180V Anode voltage. Makes an excellent replacement for LED's in your mains operated projects. Fantastic value at only $90 p$
ack E5 Same as Pack E4, but dual digit. 90p.
Pack M2 1×2 102L-1, 1024 bit static RAM. Low current version of the famous 2102. With full data.
Pack M3 $1 \times$ MM5725 4 function Calculator Chip (not designed for use with Pack M1). With data book.

Untested Packs

Pack E1 180% Guaranteed Good) $5 \times$ MAN3 7
segment 0.127 in LED displays. Excellent value, E1.00. segment 0.127 in LED displays. Excelient value, E1.00. bargain. $2 \times$ Upper half of a calculator case with built-in keyboard. A snip at only 60 p the pair

Satisfaction guaranteed or return complete pack for
MAIL ORDER ONLY - NO CALLERS PLEASE postage and Packing pleast add $25 p$ CODESPEED
P.O. Box 23, 34 Seafield Road

Copnor, Portsmouth, Hants. PO3 5RJ

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO., 103 South Brink, Wisbech, Cambs, 0945-4188. Immediate settlement.

ELECTRICAL

STVLI - illustrated equivalents (List 28) also cartridges, leads, etc. Superb quality and service at lowest prices: Fully guaranteed, Free for S.A.E. from FELSTEAD LLECTRONICS (PE), Longley Lane, Gatley, Cheadle, Cheshire SK8 4EE. (Closed holidays Aug. 11 th to 31st - no service).

PROPERTY

LEASE OR SALE (Mortgage potentiality) BIJOU FACTORY, LOCATION SOMERSET, Semi-Rural: Suit small aspiring Electronics Entrepreneur. Enquire details: S.A.E. Please Box 74.

NEW BACK ISSUES of "PRACTICAL ELECTRONICS" available 65p each Post Free. Open P.O./Cheque returned if not in stock - Bell's Television Services, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

ELECTRONIC KITS SAE for new catalogue, and clearance list of obsolete kits. AMTRON U.K. 7 Hughenden Road, Hastings, Sussex

3600 SYNTHEZISER NEEDS ATTENTION, with Solortron Oscilloscope £170. Norwich 21649. (9.00a.m.-4.30p.m.)

ESCOL LOGIC PROBE. Suitable CMOS/TTL $5-17 \mathrm{~V}$ supply taken from board under Test. Detects both states and pulses down to 50 NS . Only £10. C. Marshall, 22 Oakfield Road, Croydon, Surrey.

SUPERB MINISONIC. Cased and fully operational. Ten turn puts. PCBs etc. $£ 220$. Tel: Southport 33860 . 2N1034E, f1.70. Electronic Time delay:- 9 hours MAX.
$\mathbf{\$ 6 . 5 0}$. L. O. Green, 4 Gurney Road, Costessey, Norwich NR.50. L.
NR 0HA.

SEEN MY CAI? 5000 Odds and ends. Mechanical Electrical. Cat free. Whiston, Dept. PFE. New Mills, Stockport.

LADDERS

LAOOERS. Varnished $25 \frac{1}{2} \mathrm{ft}$. Extd. £34. 36, Carr. $\mathfrak{L}_{2} 2.70$. Leaflet. Callers welcome. Open Sat. Ladder Centre (PEE4) Halesfield (1) Telford, Salop. Tel: 586644.

BOOKS AND PUBLICATIONS

SIMPLIFIED TV REPAIRS. Full repair instructions individual British sets $£ 4.50$, request free circuit diagram. Stamp brings details unique. TV Publications, (AUSEPE) 76 Church Street, Larkhall, Lanarkshire

TECHNICAL TRAINING

Gel the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 272 X Intertext Himese, I indon SW8 4 JJ
Tel. 01-6229911 (ali hours)
State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS

Ibept. 272X Intertext House, Londm SW8 4UJ
Tel. 01-6229911 (all hours)
State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from

ICS SCHOOL OF ELECTRONICS
Dept. 272X Intertext House, 1 ondon SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

TAPE EXCHANGES

RECORDER OWNERS (cassette/reel) can now speak to the world! All ages ... every interest. Send stamp: WORLDWIDE TAPETALK, 35 The Gardens, Harrow.

SERVICE SHEETS

SERVICE SHEETS for Radio, Television, Tape Recorders, Steren etc. With free Fault-finding guide, from 50p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Buhemia Road, St. Leonards, Sussex.

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc. 75p plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S $19(1$ Kings Road, Harrogate, N. Yorkshire, Tel: (0423) 55885

MISCELLANEOUS

PRINTED CIRCUITS and HARDWARE

Readily availoble supplies of Canstruetars' hardware. Printed circuit baords, top quality for individuol designs. Prompt service. Send 25 p for cotologue. From:

RAMAR CONSTRUCTOR SERVICES,

Masons Rood, Stratford upon Avon, Warwicks.
Tel. 4879
CLEARING LABORATORY. Scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stahilised P.S.U.s, sweep generators, test equipment, etc Lawer Beeding 236

SINTEL FOR BOOKS, CMOS AND COMPONENTS

6800 Bookiel 1.80, MOT CMOS Databk 3.50, 6800 Appl Man 12.95, 6800 Prog Man 5.35, SC/MP Intrakt Man 0.75 Man 12.95, 6800 Prog Man 5.35 , SC/MP Intrakt Man 0.75 NS TTL Databk 2.10, RCA CMOS Databk $5.45,8085$ User's Man 5.15. 280 Ass Lang Prog Mon 7.50, 280 CPU Mon 5.60, 280 CTC Spec $0.80,280$ P10 Man 3.30. Also o full ronge of CMOS - send for tree colalogue. MPUs:
MEK 6800 D 2 205 20 MC6820 7.50 , $280 \quad 18.14$ Z 20 A
 $\begin{array}{lll}\text { 24.19, Z20CTC } 10.96, ~ Z 80 P 10 ~ 10.96, ~ M e m o r i e s: ~ & 2102 . A \\ \text { 2.00,-2112A.4 3.13. Displays: Type FND500 CC } 1.40,\end{array}$
 Type TL321 C.A. .40. SLTO 5.29 . Crystols: 32.768 KHz 5.83. Soldercon Pins: $1000.54,10004.32,300011.34$. Free catalogue by retuin. All items CWO. Prices inclusive of Free catalogue by return. All tems CWO. Prices inclusive of
VAT. Add 35p p\&p SINTEL, P.O. Box $75 \mathrm{~B}, 209$ Cowley Road, Oxford. Tel. 10865149791

SITUATIONS VACANT

Radio Technicians

Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over

STANDARDS required call for a sound knowledge of the principles of electricity and radio, together with appropriate experience of using and maintaining radio and electronic test gear.

DUTIES cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.
QUALIFICATIONS: Candidates must hold either the City and Guilds Telecommunications Part 1 (Intermediate) Certificate or equivalent HM Forces qualification.

SALARY (inc. supps.) from $£ 2,673$ at 19 to $£ 3,379$ at 25 (highest pay on entry) rising to $£ 3,883$ with opportunity for advancement to higher grades up to $£ 4,297$ with a few posts carrying still higher salaries.
Opportunities for service overseas.
Further particulars and application forms available from:

GCHQ

Recruitment Officer,(Ref PE/8)
GCHQ, Oakley,
Priors Road, Cheltenham, GL525AJ.
Cheltenham (0242)21491 Ext2270

MISCELLANEOUS - Continued

Bullo the TREASURE TRACER

MK III metal Locator

- Varicap Iuning
- Britein s been tating meral loctar knt
- 0.000 alrondy mota
- Probulit masich coil asemmbly
- Five tranimator carcuit
- Thoroughiy protessionsi firisum
ariver pliere and enipa "on ace
- As seon on BBC-1 ana bec-3 3

Sond stampoo lor lastlet

CABINET FITTINGS

Stage Loudspeakers and Amplifier Cabs Fretcioths, Coverings, Strop \& Recess Hondies, Feet, Castors, Jacks \& Sockets, Cannons, Bulgin 8 woys, Reverb Trays, Locks \& Hinges, Corners, Trim; Specker Bolts etc.

ADAM HALL (P.E. SUPPLIES)
Unit 3, Carton Court, Grainger Road Southend-on-Sea, Essex.

PRACTICAL ELECTRONICS P.C.B.'s in glass fibre tinned and drilled
Dec. 77 Car Burglar Alarm 1412-1 88p.
May 78 Moving Light Display £2.96.
May 78 Workshop Power Supply $£ 1.97$
May 78 Chorus Generator $£ 2.55$.
June 78 voice $£ 2.95$. C.W.O. Please.
For full list and current boards please send S.A.E. P.C.B. s s also produced from customer's own master -
please send for quote. PROTO DESIGN
14 Downham Roed, Rameden Heath, Billericay, Essex
SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. faced steel. Hundreds of people and indus trial users are choosing the cases they require from ou vast range. Competitive prices start at a low 90 p , chassis punching facilities at very competitive prices, 400 models to choose from, free literature (stamp would be appreci ated). BAZELL, Dept: No. 2n, st. Wilfred's, Foundry Lane, Halton, Lancaster. LA2 6L'T

MAKE YOUR OWN PRINTED CIRCUITS

Etch Resist Transfers - Starter pock $(5$ sheets, lines, pads, I.C. pads) £1.30. Large range of single sheets in stock of $27 p$ per sheet.
Ferric Chloride - 11 lb bags 80p (P\& P 40p)*
Master Posilive Transparencies from P.C. layouts in magazines by simple photographic process. Full in magazines by simple photogrophic process. Full in-
structions supplied. 2 sheets $(20 \times 25 \mathrm{~cm})$ negative structions supplied. 2 sheets (20 $\times 25 \mathrm{~cm})$ negative
paper and 2 sheets $(18 \times 24 \mathrm{~cm})$ positive film $£ 1.20$. paper and 2 sheets ($18 \times 24 \mathrm{~cm}$) positive film $\boldsymbol{\Sigma 1 . 2 0}$
S.A.E. lists and information. P\&P 15 p/order exept*
P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

RADIO CONTROL SPECIALISTS
Kits for multi channel systems. Special parts and accessories.
S.A.E. FOR LEAFLETS

Tel: 0602395418
MICRON R/C, Hayworth Road, Sandiacre, Nottingham.

THE FABULOUS
 D2 MICROPROCESSOR EVALUATION KIT FROM MOTOROLA.

Featuring *24 key keyboard *Seven segment display ${ }^{*}$ Cassette interface *Erom \& Ram Expandable *Interface Capability *Full Documentation * 5 Volt power supply Required *One years FREE membership of The Amateur Computer Club with every purchase*. $£ 176+$ £1.50 P \& P + 8\% VAT.

NAMELLED COPPER WIRE				
sw,	1 th	8 oz	4 oz	2 oz
10-19	2.60	1.40	. 66	. 55
$20-29$	2.80	1.60	. 85	. 65
30-34	3.00	1.70	. 95	. 70
35-40	3.35	1.90	1.10	. 79
40-43	4.50	2.50	1.90	1.25
44.46	5.00	3.00	2.10	1.65
47	8.00	5.00	3.00	1.76
48	15.00	9.00	6.00	3.30

Tinned Copper, Even Gauges $14-30 £ 3$ per lb. Multicore 60/40 Solder 18SWG $£ 3.24$ per lb. Prices include P \& P and VAT.
SAE brings list of copper and resistance Wires.

THE SCIENTIFIC WIRE COMPANY

PO Box 30 London E.4.
Reg. Office, 22 Coningaby Gdns.

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only $£ 9.75$ plus 25 p P. \& P.
'Brain-Freeze' 'em with a MINI-STROBE Kit, pocket-sized 'lightning flashes', vari-speed, for discos and parites. A mere $£ 4.30$ plus 20p P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multi-function modules. $£ 5$ each plus 20 p P. \& P.

LOTS MORE! Send 20p for lists. Prices include VAT. (Mail order U.K. only).

BOFFIN PROJECTS

Cunliffe Road, Stoneleigh
Ewell, Surrey (P.E.)

100 WATT GUITAR/PA/MUSIC AMPLIFIER

With superb treble, bass. Overdrive, slimline, 12 months guarantee. Unbeatable offer at E39. Also twin channel with separate treble/bass per channel $£ 48$. Money returned if not absolutely delighted within 7 days. Also fuzz boxes great
sound robust construction $\mathbf{£ 6 . 8 0}$. Also 100 watt $12 \mathrm{in}$. speakers $£ 22.50$.
All inclusive of P.P. Send cheque or P.O. to:
WILLIAMSON AMPLIFICATION
62, THORNCLIFFE AVENUE, DUKINFIELD.
CHESHIRE. TEL: 061-3445007

PROGRAM YOUR OWN

TUNES with this MUSICAL DOORBELL, have a new JINGLE every DAY, with 119 programs, just needs bell transforme and speaker. only $£ 19.50$.
NEED THE TIME? MSF 60 KHz Receiver, internal ferite rod, agc, only $£ 13.70$. or with parts (no case, pcbl fo sequential YEAR. MONTH, DAY. HOURS, MINUTES,
SECONDS display only $£ 24.40$.
SIG. GEN. $\boldsymbol{f} 10 \mathrm{~Hz}-200 \mathrm{KHz}$, sine/square, only $\mathbf{f 1 0 . 8 0}$
Each easy-assembly kit inctudes all parts, printed circuit SEND off NOW.

CAMBRIDGE KITS
45(FH) Old School Lane
Milton, Cambridge.
P.R.O.M. PROGRAMMING SERVICE, Specialising in the custom programming of the following PROMS from your hexidecimal lists - 1702a, 8702a or Equivalents, 2704. 2708 or equivalents. S.A.E. for further details to C.C.Consultants, Dept P.E., 3 Gainsborough Drive Worle, Weston Super Mare, Avon.

NICKEL CADMIUM BATTERIES

Rechargeable and suitable for 'fast charge' HP ${ }^{7}$ (AA
$£ 1.13$. SUB C $£ 1.47$, HP 11 (C) $£ 2.16, H_{2}$ (D) £1.13. SUB C $£ 1.47$, HP 11 (C) £2.15, HP 2 (D £3.27. PP3 £4.09, PP3 charger $£ 5.81$. All above
|Nickel Cadmium batteries are guaranteed 'EVER READY Nickel Cadmium batteries are guaranteed EVER READY
full spec, and are supplied complete with solder tags (except PP31. Just in stock - New rechargeable sealed lead acid maintenance free batteries suitable for burglar alarms etc 1.2 amp hr . $6 \mathrm{v} £ 4.40 .2 .6 \mathrm{amp} \mathrm{hr}$. $6 \mathrm{v} £ 5.65$. Quantity prices available on request. Data and charging circuits tree on request with orders over $£ 10$ otherwise 30 p
post and handling (specify battery type) all prices include VAT. Please add 10% P\&P on orders under $£ 10$. 5% ove E10.
Cheques, postal orders, mail order to.
SOLID STATE SECURITY DEPT PE, 10 BRADSHAW LANE,
PARBOLD, WIGAN, LANCS. 02575-4726.

NOTICE то READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine

WATCH BATTERIES 65p. Ray-O-Vac long life. Most types. D.I.Y. KIT 35p. (With battery order) Case opening tool, fits most watches. Tweezers, Equiv, chart, Instructions.

SAVE £££s WITH

 THE MONITELDisplays the cost of.your telephone call - while you are talking. See your money ticking away, day or night, local or long distance. Programmed for and Post Office charge band Also a Digital Clocke bands. your phone in colour and styling For the UK model
£28.95 Quantity discounts available £38.50 international model

NEW

CASIO MO-5
Clock/Calendar plus Two Alarms, Alarm Timer, Time Memory and Calculator.
24-hour Alarm and Timer (with countdown). Time and Date calculations. months battery life, +15 seconds/month accuracy Superb case hinged cover $\frac{1}{2} \times 2 \frac{1}{4} \times 3 \frac{1}{2} \mathrm{in} .2 .6 \mathrm{oz}$
£39.95
CASIO MO-2.

CASIO LC78 MINI CARD (illustrated) LCD. 1000 hrs batteries. $\frac{1}{8} \times 3 \frac{1}{2} \times 2 \frac{1}{8} \mathrm{in} . \quad £ 16.95$

FX-48 SCIENTIFIC MINI CARD

Similar to LC78 but also has scientific functions. Available July/Aug $£ 24.95$

CASIO QUALITY AND VALUE 31OR-17B Left. 8.4 mm
$£ 29.95$
310S-12B Right. 7.7 mm £39.95 Stopwatch,
Dual Time, Dual Time,
Water Resistan All S / S.
 310R-16B (Round face - not illustrated). Luxury version of 31 QR-178. Only 7.45 mm thick. £34.95 SPORTS WATCHES. F-100 £ 19.95 52OS-14B £34.95. 38CS-14B £48.95 ALARM WATCHES. 25CR-16B (round) £49.95 25CS-14B (square) £59.95
WORLD TIME WATCH. 29CS-11B £59.95 ULTRA SLIM 31CS-10B £59.95 SEIKO Calculator/Watch (£ 165) £135 CITIZEN Multi-Alarm (£135) £108 SPORTSMAN'S Quartz analogue. Water resistant to 300 ft .5 year battery. ($£ 99.50$) £80 CITIZEN AND CASIO LADIES WATCHES, S.A.E. MAINS DIGITAL ALARM CLOCKS Fairchild Timeband C500, Black or white £9.95 Unik Time, Blaak, white, red or yellow $£ 9.95$ CASIO CALCULATORS
ST-1 Stopwatch (four way) £24.95
LCD LC822 £10.95. LC78 £16.95
AQ-1000 Clock, alarm, stopwatch $£ 19.95$ CASIO SCIENTIFICS
DIGITRON: FX-3 1 £11.95. FX-39 £15.95 FX-140 £17.95. FX-120 £19.95. FX-360£49.95. LCD: FX-2200 £19.95, FX-3000 £25.95 NEW!! FX-8000. Available July/August. Full scientific plus $1 / 100$ second stopwatch, 5 different timers, etc. £29.95

Send 25p for our illustrated catalogue.
Prices include VAT and P\&P.
Send cheque, P.O. or phone your credit card no. to:-
TEMPUS Dept. P.E.
1921 Fitzroy Street
Cambridge CB1 1 EH Cambridge CB1 1EH
Telephone (0223) 312866

NWNfor Eleatronit dasign enjinears!

FIX-PRINT JIG for printed circuits
 P.C.B.s and other panels
when inserting and soldering components. Can be adjusted to suit work up to 280 mm , rotated to gain access to reverse side and locks in any position. All metal. Price $£ 10$ inc, VAT. p. $\&$ p, $£ 1$.

P2 Mk 2 Drill $\quad 18.00$ p. \& p. 86p In case, room fortransformer $\quad £ 19.50$ p. \& p. B6p In case with vari/transformer $\quad £ 29.00$ p. \& p. 86p

S1 Drill Stand
Constructed to take the popular PI drill and ensure a high degree of accuracy in all types of electrical precision work.
Price E5. 13 inc. VAT. p. \& p. 38p
Pl Drill£9.67 inc.VAT.
p. \& p. 38p.

HAVE YOU TRIED

SPADE DRILLS?

for printed circuit boards and other soft materials. No clogging - cooler - cleaner holes - there's a range of sizes, 0.1 to 2.5 mm .
Send for full illustroted details NOW.

Sole UK Distributors
 PRECISION PETITE LTD
 119a HIGH STREET TEDDINGTON MIDDLESEX TW11 8HG TEL: 01-977 0878

Trs	TEXAS						linearics												
1400		74116	200p	74368 150p	$9302 \quad 175 p$	4014 840	－AY1－0212	600p	MC1495	400p	AC127／8 ${ }_{\text {a }}$	${ }_{\text {BFF56 }}$	${ }_{33 p}^{22 p}$	${ }_{\text {TIP4 }}$	${ }^{70 \mathrm{p}}$	${ }_{2}^{2 N 3823}$	$\begin{aligned} & 70 p \\ & 90 p \end{aligned}$	DIODES	bRIOGE
7401	148	74118	130 D	$74390 \quad 2000$	9308 3160	4015 84p	－AYY－1313	${ }^{668 p}$	－MC1496	100．	A0149 70 p	BFY90	$9{ }_{90}$	T1P42C	${ }_{32 \mathrm{p}}$	－2N3903／4	18 p	－0447 9p	
7402	14p	74119	${ }^{210 p}$	$14393 \quad 2000$	$9310 \quad 275 p$	4016 45p	－Ayl－s050	212p	－MC3340	160 p	ADE61／2 45	${ }_{81 Y 83}$	700p	IIP2955	${ }_{78 p}{ }^{\text {Pp }}$	－2N3905／6	${ }_{20}$		－1a ${ }^{\text {a }}$ 500V 210
7403	14 p	74120	110p	74430 225p	9311 275p	4017 B0p	－Ars－1315	${ }^{600} \mathrm{p}$	－MC3360	${ }^{120 p}$	$8 \mathrm{BC} 107 / 8 \quad 11 p$	${ }^{\text {日RY } 39}$	45p	IIP3055	700	－ 2 N4036	$65 p$		－ 14.400 V 320
7404	17 p	74121	${ }^{28}$		9312 160p	4018 89p	AY5－1317	${ }^{6369}$		120 p	8C109 11p	BSX19／20	20 p	－Tis43	34 p	－2N4058／8	120	－0A90 ${ }^{\text {ap }}$	－ 2 A － 50 V 300
7405	${ }^{18} \mathrm{p}$	7412	48 p	74IS SERIES	9314165	4019 45p	－AY5－1320	320 p	MK50398	${ }^{150}$	－BC147／8 9p	－ 81105	190	－Tis93	30 p	－ 2 N 4660	120	－0A91 9p	－2A 100 ${ }^{\text {a }}$ 35p
7406	32 p	${ }^{74123}$	55p	741500 22p	$9316 \quad 2250$	$4020 \quad 1000$	－ca3019	${ }^{80} \mathrm{p}^{\text {p }}$	－Ne531	${ }^{130}{ }_{p}$	${ }^{-8 C 149} 100$	－bul 08	250p	： 2×1008	12 p	－2N4061／2	180	＊0a95 9 9p	－ 2 A 400V 45p
7467	33 p	74125	$55 p$	74LS02 22 p	9322 150 p 9368 150	4021 110p	－СаЗ3046	${ }^{70 p}$	＊NE540	${ }^{2000}$		－Bul205	220 p	－21x300	13 p	－ $2 \mathrm{~N} 41231 / 4$	220	－OA200 ${ }^{\text {gp }}$	－34 200 V 80p
7408	$19 p$	74126	60 p	741504 22 p	$9368 \quad 200 \mathrm{p}$	4022 100p	${ }^{\text {－}}$ ca3048 ${ }^{\text {ca3080t }}$	2250 720	NE543K	$225 p$	－BCL59 11p	－ Bu 208	2009	－ 21×500	15 p	－2N4125／6	22p	－0a202 10p	－34 800V 12p
7410	$19 p$	${ }^{74128}$	750	${ }^{741508} 822$	${ }_{9374}^{9370} 2000$	4023 22p	－Ca，${ }^{\text {cas }}$	225p	NE555	30 p	－${ }_{-8 C 169 C}{ }^{12 p}$	－ Cu 4068	145 p	－ 21×502	${ }^{18 p}$	－ 2 N 4289	20 p	－1N914 4p	－4A 100V 95p
7411	24 p	74136	${ }_{75} 5$	${ }_{741513}{ }^{245}$	9601 100 p	（4025 408	${ }^{\text {Ca }}$ C 309090 ab	${ }_{375}$	NE581日	${ }_{425 p}$		M M 4991	1750	2 N 457 A	250p		$27 p$ $90 p$		
7412	20 p	74141	70p	741514 1000	98002175	$4026 \quad 1300$	CA3130S	100p	NE5628	425	${ }^{\text {BCL }} 179$ 18p	M 22501	225	2N696	35p	－ 2 N4871	600	$1 \mathrm{~N} 4001 / 2 \mathrm{Sp}$	${ }_{6 A}^{64} 100 \% 1908$
7413	${ }^{30 \mathrm{p}}$	74142	${ }^{200}$	741520 220	9603 60p	4027 50p	CA3140E	700	Nf565	${ }^{130}$	$\because \mathrm{BC182/3} 10 \mathrm{pap}$	MJ2955	100 p	${ }^{2} \mathbf{N 6 9 7}$	250	－2N5087	${ }^{27 p}$	1N4003／4 ${ }_{\text {6p }}$	6A 400\％120p
7414	${ }^{60} \mathrm{O}_{\mathrm{p}}$	74145	${ }^{908}$	741522 ${ }^{28}$		4028 84p	CA3160E	1000 p	NE566	155	－${ }^{\text {EC184 }} 101 \mathrm{p}$	M M 3001	225p	2N698	45 p	－ 2 25099	${ }^{27 p}$	iN4005 6p	104400 V 200 p
77416	27 p	${ }^{74147}$	$190{ }^{190}$	${ }^{741527} 38{ }^{315}$	interface	4029 100p	${ }_{\text {Ex }} \times 209$	7500 9250	NE567	155p	${ }^{\text {BCLI87 }}$ 309	－MJE330	65	2N706A	20 p	－ 2 NS172	${ }^{27} 7^{2}$	1 N 400677 7p	254400 V 400 p
7417 7420	${ }^{270}$	74148 74150	${ }^{150}{ }^{50}$	741530 22p		$4030 \quad 550$	ICL7106	9250 3400		4000	： $\mathrm{BC212/3} 11 \mathrm{p}$	MJE2955	100p	2 N 701 AA	20p	2 2N5179	27.	$1 \mathrm{~N} 5401 / 3 \quad 14 \mathrm{p}$	triacs
1421	40 p	74151	${ }^{70}$	74\S55 30	MC1489 100p		IM3014	${ }_{36 \mathrm{p}}$	－SN76013N	140 p		－MPF102	70 p		${ }_{18 p}^{45 p}$	2NS191	${ }^{8} 8$	$1 \mathrm{~N} 5404 / 7$ 19p	PLASTIC
7422	22p	74153	70 p	${ }^{74} 4$ LS 73 50p	75107 ：609	${ }_{4034} \quad 200 \mathrm{p}$	（M311	$190 p$	－SN76013N0	120 p	${ }_{8 C 47 / 8}{ }^{\text {c }}$	－MPF103／4	${ }_{40}$	2N1131／2	${ }_{20 p}$	－2N5245	40 p	ZEMERS	3A 400V 600 y
7423	$34 p$	74154	100p	741574 40p	$75182 \quad 230 \mathrm{p}$	4035 110p	1 M318	200 p	－SN16023N	140p	－BC516／7 50p	－MPF 105／6	$4{ }^{\text {p }}$	2 N1613	25p	－2N5296	550	27v33v	6A 40JV 70p
7425	$3{ }^{30 \mathrm{p}}$	74155	90 p	${ }^{741575} 55^{50}$	$75450 \quad 120 \mathrm{p}$	$4040{ }^{100 p}$	LM324	70p	－SN76023N0	12 p	－BC5478 16p	－MPSAO6	30 p	2N1711	25 p	－2N5401	${ }^{50} \mathrm{p}$	$400 \mathrm{mw} \quad 3 \mathrm{p}$	68500 V 88p
7426 7427	${ }_{340}^{40}$	74156 74157	70 p		75451／2 72	${ }^{4041} 4048$	LT339	90p	－SN76033N	1750	${ }^{-8 C 549 C 5}$	－MPSA12	${ }^{50 \mathrm{p}}$	2N2102	${ }^{60} \mathrm{p}^{1}$	－2N5457／8	${ }_{4}^{40 p}$	IW 15p	${ }^{84} 400 \mathrm{~V}$ 75p
7428	36 p	14159	1900	74LS88 40 p		4043 308		$175 p$	－T8A641811	225		－MPSU006	${ }_{639}$	2N2219A	200	－2N5460	${ }_{40 p}$		${ }^{84} 500 \mathrm{~V}$
7430	17 p	74160	${ }^{100} \mathrm{p}$	74LS90 90p	C－MOS IC：	4044 90p	－ C 380	99p	－Tbaboo	${ }^{90 \mathrm{p}}$	8СY70 18p	－MPSU56	18p	2N2222A	20p	－2N5485	44^{4}	OFFEAS	12 A 500\％ 105 p
7432	30 p	74161	100 p	$741593{ }^{\text {90p }}$	74C00 $\quad 250$	$4 \mathrm{EAG6} \quad 130 \mathrm{p}$	－M3381AN	${ }^{150 p}$	－teas10	100p	BCY71／2 22p	${ }_{0}^{0} 288$	130 p	2 223694	${ }^{16 p}$	－ 2 N6027	48 p		18 A 400 V 110 p
7433 7437	${ }^{40 p}$	74162 74163	${ }_{1000}^{100}$	7415107 $74 . S 112$ 100 100			－im339N	$140 p$ 360	－t¢a820	990p	BD131／2 BOY56	${ }_{-820088}$	130 200 200	2N2484	${ }^{30 \mathrm{p}}$	2N6 247 2N8254	${ }^{190}{ }^{190}$	41	168500 V 130 p
7438	35p	74164	$120{ }^{\circ}$	74LS123 75p	$14 \mathrm{CO日}$ 27p	4049 40	LM710	50 p	－toal022	${ }_{6000}$	${ }_{8 F} 200{ }^{\text {a }}$	－${ }^{\text {20，}}$	${ }_{200}$	${ }_{2}{ }^{\text {N2 } 2904 / 5}$	$25 p$	${ }_{2 N 6290}$	${ }_{65 p}$		ThYRISTORS
7440	17 p	74165	130_{p}	74LS124 180p	$74 \mathrm{C10}$ 27p	4050 49p	（m733	${ }^{100}{ }^{\text {p }}$	XR2206	400p	－8F2448 35p	－TIP29a	40 p	2N2906A	24p	2N6292	65p		${ }_{14}{ }^{\text {14 }} 400 \mathrm{~V}$
7441	70p	74166	140，	7415132 120p	$14 \mathrm{Cl} 4{ }^{20} 9$	4051	［M74	$22 p$	－${ }^{\mathrm{X} 22207}$	400 p	${ }^{-852568} \quad 70 \mathrm{p}$	－Tip290	55 p	$2 \mathrm{2N2907A}$	30 p	3N128	1200	$100+555$	1A 600 V 700
7442 A	${ }^{60 p}$	74167	${ }^{200}{ }^{\text {p }}$	$74151333^{60 p}$	$74.20{ }^{78}$	$4052 \quad 80{ }^{\text {a }}$	LM747	70 p	－\times R2218	6750	BF257／8 32p	－TIP30a	48 p	－2N2928	9 p	3 N 140	${ }^{100 p}$		3 A 400 V 90.
7443 744	$112 p$ $112 p$	74170 74172	${ }_{720 \mathrm{p}}^{240 \mathrm{p}}$	7415138 7415139 60 p 1	$74 C 30$ 279 74.32 360	$\begin{array}{rr}4053 & 80{ }_{0} \\ 4055 & 1250\end{array}$	LM748	${ }_{70}^{350}$	－XR2240	${ }^{4000}$		＊TIP30¢	${ }_{60} 0^{0}$	2N3053	20 p	3 N 201	$110 p$		8A 600V 140p
7445	$112 p$ $100 p$	${ }_{74173} 74$	20p 1200	7415139 741511000_{0}	$\begin{array}{rr}74 \mathrm{C42} & \\ 786 \\ 110 \mathrm{p}\end{array}$	$\begin{array}{ll}4055 & 125 \\ 4056 & 135 p\end{array}$	（M3911	${ }^{1300}$	${ }_{\text {2N4 } 4245}$	＋935		TIP3IA	$58 p$ $62 p$	－${ }_{\text {2N3054 }}$	$65 p$ $48 p$	$3 N 204$ 40290	250p	N3055	12a 400 V 160p
7446A	93 p	74174	93 p	7415153 60p	744^{88} 250p	$4059 \quad 6000$	－M4136	${ }^{120}{ }^{\text {p }}$	2N4258	400p	＊BFR4 4 30p	TIP32A	689	2 N 3442	1400	40360	$4{ }^{\text {p }}$		16A 400 180p
7447A	70p	74175	$85 p$	7415157 60p	$74 C 73 \quad 75 p$	$4050 \quad 115$	＊MC1310P	150p	2N1034E	2000	$\because 8 F A 79$ 30p	TIP32C	82 p	2N3553	240p	$40361 / 2$	45p		16a 600V 220p
7448	80 p	74176	90 p	741S158 120p	74C74 70p	4063120 p	MC1458	55p	95H90	8009	＊BFR80 30，30p	TiP334	90p	－ 2 N3565	$3{ }^{\text {p }}$	40364	120 p		${ }_{97105} 110 \mathrm{p}$
7450	$17 p$	74171	90p	7415160 130p	74C85 200p	4066 55p	voitage re	egulator	R			［17P33C	114p	－2N3643／4	${ }^{48 p}$	40408	70p		c1060 45p
7451	$17 p$	74178	${ }^{160} \mathrm{p}$	$7415161100 p^{\text {p }}$	74 7886 65	$4068 \quad 22 \mathrm{p}$	Fixed Plastic T	10－220			${ }^{88 \times 29}$	TiP 340	1150	－2N3702／3	$12 p$	40409	${ }_{65}^{65}$		MCR101 36p
7453 7454	$17 p$	74180	93p	74LST62 140p	${ }^{744690} \quad 95$	$4069 \quad 200$	$14 .+\mathrm{ye}$		－ve			TIP34C	${ }^{1600}$	－ 2 N3704／5	${ }^{12 p}$	40410	${ }^{65 p}$		2N3525 120p
7460	17 p	74182	${ }^{200 p}$	7415184 120 p		4070 4230	5V7805	${ }_{90}^{90}$	7905	${ }_{120 \mathrm{p}}^{120}$		TIP35C	22900	－ $2 \mathrm{~N} 370 \mathrm{~B} / 9$	12 p	${ }_{40594}$	${ }^{300 p}$		2N5060 2N5064
7470	36 p	74984	150p	7415185 80p	74C150 250p	$4072 \quad 22 \mathrm{p}$	1287812 1547815	${ }_{90 p}^{90}$	7912 7915	120 p	8Fx88 30p	TIP36A	2700	－2N3773	300p	40595	105p		
7472 7473	${ }^{30 \mathrm{p}}$	74185	150p	7415173 110a	74C151 260 p	4073 22p	18 c 7818	90.	7918	120 p	8FW10		340p	－ 2 N 3819	25p	40603	${ }^{\text {bp }}$		
7474 747	$3{ }_{30} 3$	741	700p	741S174 110p	${ }^{74 C 157}$ 250p	$4075 \quad 229$	2407824	${ }^{90 p}$	792	120p	BFY50 22p	TIP418	65p	${ }^{2} \mathrm{~N}$	50p	40673	7p		Sat
7475	36 p	74191	100 p	7415181 320p	74C181 155p	4081 $\begin{array}{ll}\text { 42p }\end{array}$	100 ma to－9				MEMDRIES	AY5－1013		OTHER		$40871 / 2$	$\begin{aligned} & 90 p \\ & 900 p \end{aligned}$		
7476	35p	74192	100 p	7415190 100p	74C162 155p	$4082 \quad 22 \mathrm{p}$	12V 78112	${ }_{35 p}$	79612	80	2102 120p	AY5－2378		3205	320p				
7480	5^{50}	74193	100p	$7415191100 p$	${ }^{74 C 163}$ 155p	4093 80p	15 V 78115	35p	7915	${ }_{80 \mathrm{p}}$	2102.2140 p	\％03．2513		3245	${ }^{400} \mathrm{p}$	LOWPR	Oti	KETS By texas	
7481	$100{ }^{1}$	74194	100p	74LS192 140p	74C164 120p	4098 107p					$21078 \quad 600{ }_{p}$	SN745262	1450p	4209 4289	${ }^{390} 0^{p}$		11p	18 pin $\quad 25 p$	${ }_{20}^{24} \mathrm{pman} \quad 33 \mathrm{p}$
7482	${ }^{84}$	${ }_{7}^{74195}$	95p	${ }_{7}^{7415193140}$		$\begin{array}{ll}4502 & 1200 \\ 4503\end{array}$	LM309k	${ }_{135 p}$	rBA625	120p	$\begin{array}{ll}2111.2 & 325 p \\ 2112.2 & 3000\end{array}$	TMS6011	500p	4889 4801	900p		13^{19}	22 gin	$\begin{array}{ll}28 \mathrm{pin} & \text { 420 } \\ 40 \text { pin }\end{array}$
7484	1009	74197	${ }_{80}{ }^{\text {P }}$	7415198 120p	${ }_{74 C 175}{ }^{219}$	${ }_{4507}^{4509}$	LM317T	200p	r1430	65p	$\begin{array}{ll}2112.2 & 3000 \\ 2114 & 1500\end{array}$	EPROM		6820	600p				
7485	110 p	74198	${ }^{150}$	7415221 100p	${ }^{74 C 192}$ 150p	4510 99p	LM323K	${ }^{625 p}$	78 HO 5 KC	${ }^{\text {575p }}$	51015	${ }^{17024}$	500 p	6850	700 p	${ }_{\text {\％}}$	${ }_{30}$		40
86	$3{ }^{34}$	74199	${ }^{150}$	74152402450	$74 \mathrm{Cl} 33{ }^{1500}$	$4511 \quad 150 \mathrm{p}$	（M723	${ }_{\text {370 }}^{\text {37 }}$	78MGT2C	135p	6810 400p	2708	900 p 3000 p	8205 8212	320 p 2250	14 pin	$\begin{array}{ll} 40 p \\ 40 p \end{array}$	$24 \text { pin } \quad 350$	40 p
${ }_{7}^{74999}$	${ }^{210 p}$	74221	${ }^{160}{ }_{\text {p }}$	74152412459	$74 \mathrm{Cl194} 220 \mathrm{p}$	$4514 \quad 250 p$	2N5777	ThONICS				4702							
7491	B0p	74259	$250{ }^{2}$	7415243 2459	74C221 ${ }^{\text {7 }}$	$\begin{array}{ll}4516 & 110 p \\ 4518 & 100 p\end{array}$	OCP71 130	15p ORPP	12 90 p ORP61 00 90p TIl78	90 p 70 p	ROM／PROM ${ }_{2}$			${ }_{8} 8224$	2250 4000			ORS	
7492A	45 p	74265	90 p	$7415245300 p$		4520 100p	$0.125^{\prime \prime}$	LEDs 0.	．${ }^{\circ}$		7481888	CPO_{4}		8228	5750	2×10 Way	${ }^{8} 5$		
7493 A	33p	14278	${ }^{290} \mathrm{p}$	74.5251200 p	4000 SERIES	$4528 \quad 100 \mathrm{p}$	TII32 ，R．	${ }^{75}$	TH220 Red	16p	745287 745387	${ }_{6502}$	${ }_{1200 p}^{670 p}$	8251	${ }^{7000}$	2×15 way	100 p	$\begin{aligned} & \frac{2}{2} \times 18 \text { Way } 1200 \\ & 2 \times 22 \text { Way } 135 p \end{aligned}$	25 Way 160p
74948	${ }^{84}{ }^{\text {p }}$	74279	${ }^{1400}$	7415257 120	$400015 p$	4543 180p	T1209 Red	13 p	T1L222 ${ }^{\text {a }}$	${ }^{18 p}$	93436	6502	${ }_{1000}^{1200 p_{0}}$	8255 9905					
${ }_{7} 74968$	${ }_{65 p}$	${ }^{74283}$	${ }^{1900}$	7415259175	$4001 \quad 17 p$	4553 $450 p$ 4560 2500	${ }_{\text {Hil } 212 \mathrm{Y}}$	20p		1220p	93446 650p		600p		${ }_{275}{ }^{2}$			$12 \frac{1}{2} \%$	
747	180 p	14285	${ }_{400}$	7415373 2000	${ }_{4006}^{4002}$	4583 ${ }^{4959}$	Til216 Red	180	Cligs	3 p									
74100	${ }^{1300}$	74290	${ }^{150} \mathrm{p}$	74L5374 195p	4007 18p	4584.90 p	DISPLAYS		fn0357	120p	dd 25	\＆VAT							
	${ }^{650}$	74293	${ }^{150}{ }^{\text {p }}$	$81 / 5951600$	${ }_{4008}^{4008} 80$	40014 900	3015 F	${ }^{200} \mathrm{p}$	FNO500	120 p									
74107	34p	14298	${ }_{200}$	814597150	4010	40097 ${ }^{4000}$	OLT07	${ }^{140 \mathrm{p}}$	fNO507	1200									
74109	$55 p$	74365	${ }^{150}$	811598160 p	4011 17p	14433 ¢ 11	107 Gr	${ }^{140 \mathrm{p}}$	T12311	$600 p$ $110 p$	Govt．Colleges，	Orders ac	ccepted		4			AD，LON	ON NW9
74110	${ }_{5}^{5} 5$	74366	${ }^{150}{ }^{\text {p }}$	$8728 \quad 2300$	4012 18p	SHiTH REG	D1747 REd	225p	T1L321／2	130 p	CALLERS WELCO		INTMEN						
74111	70 p	74387	150 p	9301 160p	4013 S0p	AM2833 400p	747 Gr	225p	Tll330	140 p		BY APPOI	NTEN			－204	，	lex	22800

INDEX TO ADVERTISERS

Adam Hall（P．E．Supplies）．．．．．．．．．．．．．．．．．．．．．．．．．． 950
Aitken Bros．．． 879
Alben Engineering ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 878
Astra－Pak ．．． 947
Aura Sounds．．． 876
Barrie Electronics ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 947
Bi－Pak．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．879，882， 883
Boffin Projects ．． 950
Brewster S \＆R
British National Radio \＆Electronics
School ．． 888
CWAS Alarm．
Cambridge Learning．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 904
Canon Components ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 875
Chromasonic．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 886
Clef Products ．．． 94
Codespeed ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 948
Colour Print Express．．．．．．．．．．．．．．．．．．．．．．．．．．．．cover ii
Component Centre，The ．．．．．．．．．．．．．．．．．．．．．．．． 887
Continental Specialities ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 903
Copper Supplies ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 950
Crescent Radio Ltd．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 879
Crimson Elektrik ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 928
Crofton Electronics．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 95
C．R．Supply Co．．
Davian Electronics ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 876
Delta Distributions ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 944
Doram Electronics Ltd．．．．．．．．．．．．．．．．．．．904，cover iii
946
ctrovalue Lid 946

[^3] Sole Agenis for Australia and
Subscnptions PLactical Ele
Practical Electronics is sold subject to the following conditions．namely，that it shall not，without the written consent of the Publishers first given，be lent，resold，hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover，excluding Eire where the selling price is subject to V．A．T．，and that it shall not be lent，resold or hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade，or affixed to or as part of any publication or advertising，literary or pictorial natter whatsoever．

 everything for the modern D.I.Y. electronics enthusiast and more.

100W RMS STEREO DISCO
A genuine 100W RMS per channel (both channels
driven) stereo disco with auto fade on microphone. VU meters, full monitoting and
cueing fácilities cueing facilities
and a very high and a very high
quality light show. Complete construction price 25p. Cabinet comes complete with lid and carrying handies.

LOW-DISTORTION AUDIO OSCILLATOR The very low distortion sine wave $(<0.01 \%)$ output is suitable for testing very high quality tiotia audio

IT'S A FANTASTIC BESTSELLER! 216 big ($11^{\prime \prime} \times 8^{\prime \prime}$) pages! Over a thousand illustrations! Over 30 pages of complete projects to buld! Thousands and thousands of useful components described and illustrated! No wonder it's a bestseller!
DON'T MISS OUT! SEND GOp NOW! MAPLIN ELECTRONIC SUPPLIES PO. BOX 3 RAYLEIGH ESSEX SS6 8LR Shop 284.London Ruad Westcliff-on-Sea. Essex
square wave output. Range
20 Hz to 26 kHz . Outpur OV 20 Hz to 26 kHz . Output 0 V
to 1 V in three continuously to 1 V in three continuously
variable steps. Total cost variable steps.
around f 21 . Full construct on detaits in our catalogue. Send the coupon balow, now
|All prices include V.A.T And pices pl

PEDAL UNIT

A completely self-contained pedal unit 13-note. 2-Octave range. 4 organ stops. It can be added to any organ. A really unusual extra is the bass guitar stop which uses four envelope shapers to give a real bass guitar sound. A must for the solo guitarist. Full construction details in ourcatalogue - post the coupon below. now! ENSEMBLE

Unbeatable prices and finest quality components only when you buy from Maplin. All parts available to build this fascinating project. Component schedule available shortiy (s.a.e. appreciated). Demonstration model in our shop soon. Phone now and compare our prices.

'PE' STRING

Unbeatable prices and finest quatiy Maplin. All parts available to bulld his

SYNTHESISER

The International 4600 Synthesiser. A very comprehensive unit. Over 400 sold. We stock all the parts costing less than $£ 50$ including fully punched and printed metalwork and a smart teak cabinet. Far less than half what you'd pay for a ready made synthesiser of equal quality. Specification on request. Full construction details in our construction book $£ 1.50$. (All prices include V.A.T. and p \& p)

MAPLIMONIC ELECTRO SUPPLIES

10 CHANNEL STEREO GRAPHIC EQUALISER
A new design with no difficult coils to wind, but a specification that puts it in the top-flight hi-fi class. All this for around $£ 70$ including fully punched and printed metalwork and woodwork. Send for our component schedule now. Full construction details price 25 p. (Alt prices include V.A.T. and p \& p)

INTEGRATED CIRCUITS

Over 35 pages in our catalogue devoted to hundreds of useful I.C.s. All with data, pin connections and many with applications circuits and projects to build. Post the coupon now!

गणन

TOUCH-SENSITIVE

 PIANOThe revolutionary new IC AY-1-1320 first seen on 'Tomorrow's World' is now available. Complete kit of IC's to build a 60 -note piano (18×1 C's) order as H053H price $£ 36.86$. Preliminary circuit details in our October newsletter. Complete design, pcb's attractive veneered wooden cabinet
available soon. It's the most realistic-sounding electronic piano we ve ever heard and includes simulated damping, loud and soft pedals. Full details in our newsletters. (All prices include V.A.T. and p \& p)

SWITCHES

We stock a wide range of switches including a really low-priced high quality interlocking push-button switch system which is extremely versatile. We've got toggle switches, slide switches, push switches, rotary switches there are dozens to choose from. but it's only a tiny part of our fantastic range

Dur bi-monthly newsletter keeps you up to date with latest guaranteed prices - our latest special offers for the next six issues ($5 p$ discount voucher with each copy).

POST THIS COUPON NOW FOR YOUR COPY OF OUR CATALOGUE PRICE EOp

Please rush me a copy of your 216 page catalogue I enclose 60 p , but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 60p refunded immediately.

[^0]: (C) IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: SUPPLIERS TO H.M. GOVT. DEPTS. MANUFACTURED AND ASSEMBLED IN GT. BRITAIN FULLY TESTED AND GUARANTEED

[^2]: How to order. Telephone 01-890 0782 and give us your Access, Barclaycard or American Express number, and your order will be in the post that night. Or, write your order, enclosing cheque, postal order, or stating credit card number and expiry date. (Don't post the card!). Alternatively, ask for our latest catalogue. showing all CSC products for the engineer and the home hobbyist. (Prices are for UK only. For Europe add 10\%, outside Europe add $121 / 2 \%$ to total prices.)

 CONTHENTAL SPECIALIIES CORPORAIION

[^3]: Published approximately on the ISth of each month by IPC Magazines Litd．，Westover House，West Quay Road，Poole，Dorset BHIS 1JG．Printed in England by Chapel River Press，Andover，Hants

