PRACTICAL

 FHANCIA 5 and $2,8,0$ Worth of OScillos
TO BE WON

cOUHD Fipe Fitionl!

CAPACI D.C.MCROAMPERES cisortiance Meter

You need never buya colour filmagain！

 thanks to the Practical Electronics Colour Print Service

 thanks to the Practical Electronics Colour Print Service}

「Rッシ Kodak colour film

for every one of yours we process
SEND NO MONEY see your prints before you pay RELIABLE
film service
LUXURY colour prints with a borderless hi－definition sheen finish

So it can now cost you less to take photographs and，thanks to our reliable developing and printing service，you don＇t send your money until you＇ve actually seen your pictures．
Hundreds of thousands of magazine readers are delighted with this out－ standing Colour Print service．So why don＇t yougive it a try？

heres what youdo

Send us any make of colour print film inside the envelope enclosed in this issue．Or fill in the double coupon below and send it with your film in a strong envelope to：The Practical Electronics Colour Prini Service， FREEPOST，Teddington，Middlesex， TWII IBR．No stamp is required． FREE KODAK COLOUR FILM
In return you will receive a free Kodak colour film worth over $£ 1$ ，the same size as the one you sent us for developing．Meanwhile we produce your prints，every one of which will be checked by piofessionals at our laboratories before being sent to you．

Youll love the quality－all crisp， sharp，hi－definition sheen prints，and borderless to give you maximum picture area．

UNBEATABLE FOR QUALITY AND VALNE
What about our prices？Certainly much less than you par in most shojs， and remember you get another fim FREE．With our Colour Print servize， you only pay 14 p for zach print，p us $85 p$ towards developing，postage 2 id packing．The minimum charge is $\delta 5 p$ （assuming no prints can be made）iac． VAT．The offer is limited to UK，E E ， Cl and BFPO．
A SERVICETO BENEFIT YOU
You benefit in two additional wavs． Firsıly，you enjoy a personal service， with every care taken over each individual order．And secondly，you pay only for what yon get－with no credit vouchers like many other companies．An invoice comes with your prints，so it＇s a straight business transaction．

Films accepted on Standard Terms of Business（available on request）．
Use these labels if you haven＇t got an unvelope，or pass them to a fricnd who might like to take advantage of our offer．

CONSTRUCTIONAL PROJECTS

LINEAR CAPACITANCE METER by A. A. LuhaA battery powered instrument for the home lab722
KILN CONTROLLER by G. I. Williams
For protection of both workpieces and kiln from overheating 732
CHAMP-10 by R. W. Coles and B. Cullen
Using CHAMP-PROG and construction of CHAMP-U.V. (conclusion of series) 735
HEADPHONE AMPLIFIER by J.P. Macaulay A flexible stereo system 744
TEMPERATURE PROBE by R.W. Jones
An accessory for use with analogue or digital voltmeters 746
STRING ENSEMBLE-4 by A. J. Boothman Voice Circuitry 752
BATTERY VOLTAGE MONITOR by S. V. Essex
Gives visible indication of battery condition 758
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles A look at some recently released devices 751
MICROBUS by D.J.D.
A bi-monthly focus on micro's for the home constructor 760
INGENUITY UNLIMITED
Musical Calculator-Stereo Expander/Compressor-Waveform Generator- Simple Waa-Waa-Speed Controller 769
NEWS AND COMMENT
EDITORIAL 721
SPACEWATCH by Frank W. Hyde Skylab, Cosmos 954, Shuttle, Jupiter 727
INVENTORS COMPETITION
Your chance to win financial backing and a 'scope for your ideas 728
KIT REVIEW OF LEADER 103 P.S.U.
Assembly and performance 730
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office 741
MARKET PLACE
Interesting new products 742
SEEN AT THE IEA-ELECTREX EXHIBITION 748
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 766
READOUT
A selection of readers' letters 750
POINTS ARISING
Digital Multimeter-Auto Ranging D.C. Voltmeter 750

[^0]| MINI CONSOLES
 Ideal for small desk control panels and consoles. Moulded in orange, blue, black and grey ABS. Incorporates slots for holding
 1.5 mm thick pcb's
 Aluminium panel sits recessed into front of console and held by screws running into integral brass bushes.
 MC $161 \times 96 \times 58 \mathrm{~mm} \quad £ 2.12$ (1.9) (includes VAr)
 MC $215 \times 130 \times 75 \mathrm{~mm} £ 2.94$ (1-9) (Includes VAT)
 (Prices include VAT \& P.P.) | Stop wasting time soldering
 The NEW MW BREAOBDARO accepts Transistors, LED's, Diodes, Resistors, Capacitors and all DIL packages with 6 to 40 pins
 Includes slot-in Component Support Bracket and has 470 individual sockets, plus Vcc and Ground Bus Strips Price $£ 9.72$ (includes VAT \& P.P.) | SC BDXES
 Easily drilled or punched, orange, blue, black and grey ABS. Incorporate slots for holding 1.5 mm thick peb's. Aluminium panel sits recessed into front of the box and held by screws running into integral brass bushes.
 SC $85 \times 56 \times 35 \mathrm{~mm} \quad 97 \mathrm{p}(1-9)$ (Includes VAT) SC $111 \times 71 \times 48 \mathrm{~mm} \quad £ 1.29$ (1-9) (Includes VAT) SC $161 \times 96 \times 59 \mathrm{~mm} \quad £ 1.81 \quad(1-9)$ (Includes VAT) Add 25 per $£ 1$ order value for Post \& Packing |
| :---: | :---: | :---: |
| ECONOMY QUALITY LEO'S
 50 for only $£ 5-100$ for only $£ 9$ Mixed bags, all sizes, various colours | | |
| Full specification LED's also available Red (specify size) $75 p$ per pack Green, Yellow, Orange (specify size) $£ 1.20$ per pack Packs contain 5 LED's, mounting clips and data | TYPE MP NEON INDICATOR
 Supplied with resistor for 240 Volts operation 150 mm leads, held in 6.4 mm hole by nut
 Red, Amber, Clear, Opal
 20p each | 240 VDLTS MINI HANO ORILLS
 Ideal for drilling pcb's, chassis etc as well as model making. Supplied with 3 collets that accept tools and drills with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ and $1 / 8^{\prime \prime} \mathrm{dia}$ shanks.
 $£ 9.72$ (includes VAT \& P.P.)
 Accessory tools... 5 Burrs, 1 mm , 2 mm , $1 / 8$ th Drills, $3 / 32^{\prime \prime}$ Collet Price $£ 1.75$ (Includes VAT \& P.P.) |
| TYPE A NEON INOICATORS | SEVEN SEGMENT DISPLAYS
 Economy quality Red, yellow and green Only 45p each Common Anode - 0.3"- Left Decimal Full specification displays also available as above Red @ 98p each Green and Yellow@ $£ 1.35$ each. Data supplied with full spec. displays only. |
 1.5 mm pcb slots and close fitting flanged lids. ABS in orange, blue, black or grey colours. Diecast in natural or grey hammertone colour. Lid held by screws running into integral brass bushes.
 ABS
 Natural
 Hammertone
 Diecast
 RC $100 \times 62 \times 25 \mathrm{~mm}$
 Diecast
 68 p
 70p
 93p |
| 12 VOLTS MINI HANO ORI
 Ideal for drilling pcb, chassis etc as well as model making. Supplied with 2 collets that | Quantity quotations on request
 P.P. Note Unless included in price add 25p Post \& Packing
 for orders totalling under $£ 10$. All prices include VAT and | RC $100 \times 62 \times 25 \mathrm{~mm}$ 68 p 70 p 93 p
 RC $112 \times 62 \times 31 \mathrm{~mm}$ 79 p 94 p 1.23
 RC $120 \times 65 \times 40 \mathrm{~mm}$ 88 p 1.22 1.59
 RC $150 \times 80 \times 50 \mathrm{~mm}$ 1.03 1.64 2.11
 RC $190 \times 110 \times 60 \mathrm{~mm}$ 1.77 2.53 3.08 |
| accept tools and drills with $3 / 32^{\prime \prime}$ and $0.50^{\prime \prime}$ dia shanks. £7.56 (Includes VAT \& P.P.) | valid in UK only for 2 months from journal issue date
 Mithael Uilliams Electronits
 47 Vicarage Av. Cheadle Hulme, Cheshire SK8 7JJP | Polystyrene version
 in grey only, no slots, no integral brass bushes $R C(P) 112 \times 61 \times 31 \mathrm{~mm} \quad 61 \mathrm{p}$ All prices are $1-9$ off, include VAT, but please add $25 p$ per $£ 1$ order value for Post \& Packing |

HOME

 MICROCOMPUTER
Querty Keyboard VDU Interface (TV)

Cassette Interface
Teletype Interface

Expandable System
NASCOM I £197.50+ vat
LYNX ELECTRONICS (LONDON) LTD, 92 BROAD STREET, CHESHAM, BUCKS. 0240575151

Q
 .
 ELECTRONICS LTD.

THE MOST COMPREHENSIVE RANGE OF TUNER MODULES EvER DISPLAYED

HF 7948 FRONT END

TECHNICAL CHARACTERISTICS:
Output terminal for digital frequency meter; Antenna impedance - 75 to 300 Ohms; Frequency ranges 87.5 to 104 MHz or to 108 MHz ; Sensitivity -0.9 uV 26 dB signal to noise ratio +75 kHz deviation; Intermodulation 80 dB Image rejection - 60dB; Tuning voltage -1 V to 11 V ; Total gain 33 dB ; Intermediate frequency -10.7 MHz ; Power supply voltage +15 V ; Power consumption 15 mA ; Dimensions 104×50 mm .

TECHNOLOGY:
Double sided epoxy printed circuit board with plated through holes. Dual gate effect transistors; Silvered coils.

FI 2846
IF AMP AND DECODER

ALS 1500
STABILISED POWER SUPPLY

£2.53
Inc. VAT P\&P

TECHNICAL CHARACTERISTICS:

Output voltage - 15 V ; Max. output current - 500 mA ; Thermal coefficient less than $1 \mathrm{mV} / \mathrm{C} ; 15 \mathrm{~V}$ power supply for modules HF 7948 and FI 2846; Supply protected against short circuit (power and current protection); Dimensions $-65 \times 55 \mathrm{~mm}$.

TECHNOLOGY:

Double sided epoxy circuit board; Monolithic integrated circuit.

OPTOELECTRONIC OPTIONS

LED VU-METER

$\mathbf{£ 1 3 . 5 0}$
Inc. VAT P\&P
ILLUMINATED POINTER
Station finder

Inc. VAT P \& P
FREQUENCY METER
Digital display of received station frequency.

Station strength indicator
$£ 8.77$

NUMERICAL DISPLAY
Pre-selected channel number

WAITEOD ELEEGTIONICS MAIL ORDER，CALLERS WELCOME．Tel．Watford 40588／9 ALL DEVICES BRAND NEW，FULL SPEC．AND FULLY GUARANTEED．ORDERS
DESPATCMED BY RETURN OF POST．TERMS OF BUSINESS：CASH／CHEQUE／ DESPATCMED BY RETURN OF POST．TERMS OF BUSINESS：CASH／CHEQUE／
P．O．OR BANKERS DRAFT WITM ORDER．GOVERNMENT AND EDUCATIONAL INSTITUTIONS OFFICIAL ORDERS ACCEPTED．TRADE AND EXPORT INQUIRY POSTAGE AT COST．AIR／SURFACE
 We stock many more items．It pays to visit us．We are situated behind Watford Football
Ground．Nearest Underground／BR Station：Watford High Street．Open Monday to Saturday 9.00 am -6.00 prn．Ample Free Car Parking space available．

 DUBILIER： $1000 \mathrm{~V}: 0.01 \quad 0.01516 p$ ； $0.02218 p$

 TANTALUM BEAD CAPACITORS

\qquad

\qquad | MINIATURE TYPE TRIMM |
| :--- |
| 256 pF 310 pF 10 AOPF |
| 525 DFF 545 pF 60 pF 88 |

2.5 mm
3． 5 mm
MONO
S．

TANK
 BATTLE

Build this fantastic TV GAME with realistic battle sounds－Steerable Tanks－ Controllable Shell trajectory and Minefields to avoid． A really exciting and skilfut game simply constructed with our easy to follow instructions．
IC AY－3－8710 £9．78
Basic Kit（just add controls） Price：Only £17．98＊ （ $\mathrm{p} \& \mathrm{p} 30 \mathrm{p}$ ）
Complete Kit incl．cases \＆controls Price：Only $\mathbf{£ 2 4 . 3 0 \star}$ （ $\mathrm{p} \& \mathrm{p} 30 \mathrm{p}$ ）

RHYTHM

GENERATOR

Build this PE（Jan．＇78）Easi－ build Low cost Rhythm Gen－ erator．We are the sole sup－ pliers of the complete Kit including the case，pre－ drilled printed front panel and the printed Circuit Boards
Complete Kit price incl．VAT $\mathbf{£ 4 9 . 9 5}$ only．P \＆P £ 1.10 insured．Ready Built Units available in limited quan－ tities at $\mathbf{£} 65.00$ plus P \＆P． Send S．A．E．for descriptive

竍 ISTORS
 $\overrightarrow{O N J N J J}$ NーVコー○
为为
7423
7425
426
427
7428
7430
7432
7437
7438
7440
7441
7442
7443
744
445
7446
7447
7450
7451
7453
7454
7460
7470
7472
7473
7474
7475
7476
7480
7481
482 7407
708
7409 400
401
402
403
404
405
406
407
408
409

Abstract

－

4513 4514 4515 4516 4517

 LINE702
709 C
7104
7410
7474
748 C
753
810
8038 9 C 14
0 C
1 C
7 C
8 C
310
8038 CC
8 pin
 AAAA
NONO
NOO 102
59
108
268

199 | 192 | 4526 |
| :--- | :--- |
| 59 | 4527 |
| 88 | 4528 |
| 4529 | |
| 99 | 4530 | －Non 199

152
99
165
85
疗

RST

VALVE MAIL ORDER CO.
Climax House
Fallsbrook Road, London SW16 6ED
SPECIAL EXPRESS MAIL ORDER SERVICE

[^1]
TWO NEW SUPERMODULES: 170W INTO 4 OR 8 OHMS

By popular demand we have designed higher powered versions of our well known modules. The CE 1704 which gives 170 W into 4 ohms and the CE 1708 which gives
170 W into 8 ohms are physically similar to combination of compatible performance features which makes CRIMSON amplification audibly superior to the competition and the only chooice if you have an ear for music. TRANSFORMERS, only 50 mm high, with a $120-240$ primary and single bolt fixing. Write or phone for more information and biased opinions.

POWER AMPLIFIER MOOULES CE $60860 \mathrm{~W} / 8$ ohms $35 \cdot 0.35 \mathrm{~V}$	Hame $f 1830$	Europe $\uparrow 18.80$	T.H.D.	: TYFICALLY < 0.02% ANY POWER, $1 \mathrm{kHz}, 80 \mathrm{HMS}$
CE $1004100 \mathrm{~W} / 4 \mathrm{ohms} 35-0-35 \mathrm{~V}$	119.22	[19.30	T.I.O	: INSIGNIFICANT
CE $1009100 \mathrm{~W} / 8$ ahms 45-0-45V	123.22	¢23.00	SLEW RATE LIMIT: $20 \mathrm{~V} / \mu \mathrm{S}$	
CE 1704 170W/4 ohms 45-0-45V	$f 23.12$	¢28.46		
CE 1708 170W/8 ohms 60-0-60V	¢31.90	¢31.04	FREQ. RESPONSE: $10 \mathrm{~Hz}-35 \mathrm{kHz},-3 \mathrm{~dB}$	
TOROIDAL POWEA SUPPLIES			STABILITY	: UNCONDITIONAL
CPS 1 tor $2 \times$ CE 808 or $1 \times$ CE 1004 CPS 2 ior $2 \times$ CE 1004 or $2 / 4 \times$ CE 608	f14.47	$¢ 18.40$ 20.57	PROTECTION	: DRIVES ANY LOAD SAFEEY
CPS 3 for $2 \times$ CE 1008 or $1 \times$ CE 1704	¢17.85	£21.35	SENSITIVITY	$\begin{aligned} & : 775 \mathrm{mV} \text { (250mV or } \\ & 100 \mathrm{mV} \text { ON REQUEST) } \end{aligned}$
CPS 4 lor $1 \times$ CE 1008	£15.31	¢18.18		
CPS 5 for $1 \times$ CE 1708	f22.68	¢26.50	SIZE	$=120 \times 80 \times 25 \mathrm{~mm}$
CPS 8 tor $2 \times$ CE 1704 or $2 \times$ CE 1708	f23.98	127.78		
HEATSINITS $50 \mathrm{~mm} 2^{\circ} \mathrm{cm}$			CRIMSON ELEKTRIK	
LICHT DUTY $50 \mathrm{~mm} \quad 2^{\circ} \mathrm{CW}$ MEDIUM POWER $100 \mathrm{~mm} / 4^{\circ} \mathrm{CW}$	60.90 $\mathbf{1 1 . 8 0}$	11.30 $\mathbf{2 2 4 0}$	Please note our new address	
DISCO/GRDUP $150 \mathrm{~mm} 1.1{ }^{\circ} \mathrm{CW}$	¢230	¢3.65	and telephone number:	
TMERMAL CUT-DUTS			1 S STAMFORD STREET,	
Rocommended tor improved rebiability $70^{\circ} \mathrm{C}$ for uss with Free Air Heat sink	¢1.60		LEICE	TER LE1 6NL
$40^{\circ} \mathrm{C}$ tor use with Fan Cooled Heatsink	11.80	f1. 90	Telephone: (0533) 537722	
Home prices include V.A.T. and postage. C.O.D. 90p extra, £ 100 limit. Export no problem. European prices include carriage. insurance and handling, payment in Sterling by bank draft, P.O., International Giro or Money Order. Outside Europe, please write for specific quote by return. Send SAE or two International Reply Coupens for full literature. Favourable trade quantity price list on request. High quality pre-amp circuit 20 p.				

DIGITAL CLOCK KITS
thousands sold
TEAK or PERSPEX cases
$\frac{1}{2}{ }^{\prime \prime}$ Red LEDS. 4 digit 12 hr display PM indicator. Mains frequency accuracy Complete instructions. Power cu flasher. Real wood or Perspex: White Black, Red, Green, Blue. $6^{n} \times 2 \frac{1}{2}^{n} \times 3^{\prime \prime}$

Electronics only kit:
Ready Built Tested Working:
Non Alarm £10.00 Alarm $£ 13.00$ Alarm $\mathbf{f} 16.00$

Timar Fecility: Display Seconds, Stopwatch use, Sleep Delay: 50p extra
DISPLAYS: $\frac{1}{2}^{\prime \prime}$ Red LED FND500 $£ 1.20$ each. 6 for $\mathbf{E 6 . 4 8}$. NSB5430 $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ red LED. Stick of 4 £4.32. 5LTO2 stick of 4 Green E5.40.
CLOCK CHIPS: MK50253 Alarm 12/24hr 4/6 digit f5.40. MM5385 £4.32. MK50362N calendar £7.56. 6 digit counter 50395/6/7 £9.18.
MICRO PROCESSOR: Z8O CPU £21.60. CTC \& PIO £15.12. MK4096N 300nS 4 KXI Dun RAM £6.75. 1702A UV PROM 450nS £10.80 BATTERY RECHARGER: Mains Adaptor with 4-way Plug. 4XAA (1.2v) Ni Cads plus holder £8.64. AA Ni Cads separately $£ 1.20$

BARON (PE), 6 Gower Road, Royston, Herts. (0763) 43695.
Use Barclaycard or Access

Cambridge Learning Enterprises

SUMMER OFFER until 1st. August 1978

Just send this token with your order for a 10\% discount which entitles you to books at the following prices:

Digital Computer Logic \& Electronics $£ 4.95$
Design of Digital Systems $£ 8.10$
Combined set $\{11.70$
Algorithm Writer’s Guide £3.06

Join the Digital Revolution

Understand the latest developments in calculators,

computers, watches, telephones,

 television, automotive instrumentationEach of the 6 volumes of this self-instruction course measures $11 \frac{\text { in }}{} \times 8$ tin and contains 60 pages packed with information diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems.

plus $₹ 1$ packing and surface post anywhere in the world.

Overseas customers should send for proforma Involce

Payment by credit cards accepted
Also avalladle-a more elementary course assuming no
prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics
In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Logical Circuit Elements
4. Designing Circuits to Carry Out Logical Functions
5. Flipflops and Registers

Offer Order both courses for the bargain price £13, plus £1 P. \& P. - a saving of 81.50 .

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

> FLOW CHARTS \& ALGORITHMS - The Algorithm Writer's Guide - Construction, content, form, use, layout of algorithms and flow charts. Vital for computing, train- $\mathbf{£ 2 . 9 5}$ ing, wall charts etc. Size: A5, 130 pages.

Guarantee-If you are not entirely satisfied your money will be refunded.
CAMBRIDGE LEARNING ENTERPRISES, Unit 2, Freepost, RIVERMILL LODGE ST. IVES, HUNTINGDON, CAMBS, PE17 4BR, ENGLAND. TELEPHONE ST. IVES O480) 67446. PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE: RIVERMILL LODGE, ST. IVES. Giro Ac. No. 2789159. REGD. IN ENGLAND NO. 1328762

Cambridge Learning Enterprises, Unit 2, Freepost
Rivermill Lodge, St. Ives, Huntingdon, Cambs, PE17 4BR, England.
Please send me the following books:
sets Digital Computer Logic \& Electronics @ $£ 5 \cdot 50$, p \& p included
sets Design of Digital Systems © $£ 9.00$ p\&p included
Combined sets @ $£ 13.00$ p\&p included
..The Algorithm Writer's guide (a) $£ 3.40$, p \& p included
Name
Address

I enclose a cheque/PO payable to Cambridge Learning Enterprises
for f
Please charge my *Access/Barclaycard/Visa/Eurocard/Mastercharge/ Interbank account number
Signature
Telephone orders from credit card holders accepted on 0480-67446
(ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank.

\title{

KITS FOR SYNTHESISERS, SOUND EFFECTS
 COMPONENTS SETS include all necessary resistors. capacitors, semiconductors. potentiometers and capacitors, semiconductors. potentometers and
transformers. Hardware such as cases, sockets, knobs, keyboards, etc. are not included but most of these may be bought separately. Fuller details of kits, PCBs and parts are shown in our lists

CIRCUIT AND LAYOUT DIAGRAMS are supplied free with all PCBs unless "as published"
PHOTOCOPIES of all P.E. texts for most of the kits are available-prices in our lists.

PHONOSONICS

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET.
P.E. MINISONIC Mk. 2 SYNTHESISER

A portable mains-operated Miniature Sound Synthesiser. with keyboard circuits Although having slightly fewer facilttes than the large PE. Synthesiser the functions olfered by this design give it great scope and versatility Consisis of 2 log veOs. Werf hold and control circuits. HF oscillator and detector. ring modulator. noise generator. mixer, power supply.
Set of basic component kits
from $\mathbf{£ 6 2 . 2 3}$
P.E. SYNTHESISER (P.E. Feb. 73 to Feb. 74)

The well acclaimed and highly versatile large-scate mains-operated Sound Synthesiser complete with keyboard circuits. Other circuits in our lists may be used with the
Synthesiser to good advantage.

The Maln Synthealeer: PSU. 2 linear VCOs. 2 ramp generators. 2 input amps. sample hold. noise generator. reverb amp. ring modulator, peak level circuit, envelope shaper, voltage controlled amp.

Set of basic component kits £83.03 Set of printed circuit boards $£ 13.20$

The Synthesiser Keyboard Circuita Ican be used without the Main Synthesiser to make an independent musical instrument 2 logarithmic VCOs, divider 2 hold circuits. 2 modulation amps mixer, 2 envelope shapers and PSU.
Set of printed circuit boards
£7.66

GUITAR EFFECTS PEDAL (P.E. July 75)
Modulates the attack. decay and filter characteristics of an audio signal not only from a guitar but from any audio source. producing 8 different switchable effects that can be further modified by manual controls Possibly the most interesting of all the low-priced sound effects units in ou range Circuit does not duplicate effects from the Guita

Component set with special foot operated switches Alternative component set with panel switches Printed circuit board

SOUND BENDER (P.E. May 74)

A multi-purpose sound controller, the functions of which include envole shaper tremolo. voice-operated fader Component set $\quad £ 7.8$ Printed circuit board

E1.81
Optional extra-additional Audio Modulator the use of which. in conjunction with the above component set. can produce jungle-drum thythms Component set (thel PCB)
£2.88
PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlled unit for introducing the "phasing sound into live or recorded music

PHASING CONTROL UNIT (P.E. Oct 74)
For use with the above Phasing Unit to automatically control
the rate of phasing
Component set (incl. PCB)
SOPHISTICATED PHASING AND VIBRATO UNIT
A slightly modified version of the circuit published in Elekior. December 1976, and includes manual and automatic control over the rate of phasing and vibrato
Component set Printed circuit b

WAH-WAM UNIT (P.E. Apr. 76)
The Wah-Wah effect produced by this unit can be controlled manually or by the integral automatic controlter
Component set (incl PCB)

AUTOWAH UNIT (P E. Mar. 77)

Automatically produces Wah-pedal and Swell-pedal sounds each tume a new note is played
Comporent set. PCB. spectal foot switches

POST AND HANDLING

U.K. orders-under $£ 15$ add 25 p plus VAT, over $£ 15$ add 50 p plus VAT. Keyboards $£ 2.00$ plus VAT
Optional insurance for compensation against loss or damage in post, add extra 50 p for cover up to $£ 50$, £ 1.00 for $£ 100$ cover, C2.00 for $\mathbf{~} 200$ cover
Eire, C.l., B.F.P.O., and otner countries are subject to

P.E. JOANNA PLUS ORGAN VDICING

The basic five octave electronic piano (P.E. May/Sept 75 and Sound Design) has switchable alternative voicings for Honky Tonk, ordinary piano, and Harpsichord or a mixture of any of thes three, together with facilities including fast and slow tremolo, loud and soft pedal switching, and sustain pedal switching. The modification retains all the circuitry associated with the piano but in addition provides an organ-voice envelope facility with 5 switchable pitches, variabie attack and sustain, phasing and vibrato.
Set of components (excl switches) for PSU. Frequency generator, Pitch and Note Divider, Envelope Shapers, Voicings and Control circuitries. (Order as KIT 71-5) £109.75 Set of PCBs (Order as PCB SET 71-6)

SYNTHESISER TUNING INDICATOR (P.E. July 77)

A simple 4 -octave frequency comparator for use with synthesisers and other instruments where the full versatility of the P.E. Tuning Fork is not required.
Component and PCB (but excl sw.). $\mathbf{£ 7 . 4 5}$

GUITAR FREQUENCY DOUBLER (P.E. Aug. 77)
A modified and extended version of the circuit published Component set and PC8
£4.22

GUITAR SUSTAIN (P.E. Oct 77)

Maintains the natural attack whilst extending note duration. Component set. PCB and foot switches 4.90

WIND AND RAIN UNIT

A manually controlled unit for producing the above-named sounds

Component set (ir.cl PCB
£3.72

GUITAR OVERDRIVE UNIT (P E. Aug. 76)

Sophisticated. versatile Fuzz unit. including variable and switchable controls affecting the fuzz quality whilst retaining the attack and decay and also providing filtering. Does no duplicate the effects from the Gutar Eith it and with other electronic instruments be used with it and with other electronic instruments
Component set using dual slider pot Component set using dual rotary pot £8.20 Printed circuit board $£ 1.62$

FUZZ UNIT

Simple Fuzz unit based upon P.E. "Sound Design" circuit Component set (incl. PCB)

E2.05
TREMOLO UNIT
Based upon PE Sound Design circuit.
c3. 84

TREBLE BOOST UNIT (P.E Apr. 76)
quality to audio signals led thro sgh it the depth of boost is manually adjustable.
P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones. A LED monitor clearly displays all beat note adjustments. Ideal for tuning acoustic or electronic musical instruments.

Main component sat (incl. PCB
Power supply set (incl. PCB)
$£ 15.59$
£7.03

SEE OTHER PAGE FOR KEYBOARDS, AND OUR LISTS FOR OTHER COMPONENTS AND ACCESSORIES STOCKED
P.E. SYNCRRONOME (P.E Mar. 76)

An accented-beat electronic metronome. providing duple. riple and quadruple times with full control over the beat ate Can also be used as a simple drum-beat rhythm enerator Includes power supply
Printed circuit board

TAPE NOISE LIMITER

Very effective ciscuit for reducing the hiss found in most tape ecordings. All kits include PCBs
$£ 2.98$
$\begin{array}{ll}\text { Standard tolerance set of components } & \mathbf{£ 2 . 9 8} \\ \text { Superior tolerance set of components } & \mathbf{£ 3 . 7 8}\end{array}$
Regulated power supply (will drive 2 sets)
f4.69

ENVELOPE SHAPER WITHOUT VCA (P.E. Oct. 75)
Provides full manual control over attack. decay, sustan and release functions, and is for use with an existing voltage ontrolled amplifier
Component set (incl. PCB)
ENVELOPE SHAPER WITH VCA (P.E. Apr. 76)
This unit has its own voltage controlled amplifier and has full manual control over attack. decay. sustain and release
Component set (Inct PCB)
ع6.68

TRANSIENT GENERATOR (P E. Apr. 77)

An envelope shaper. Without VCA, having the usual attack decay. sustain and release functions. and in addition it also programmed iomitate such instruments as a mand to be banjo
Component set
£4.52 Printed circuit board

WAVEFORM CONVERTER

Slightly modified from a circuit published in "Elektor". Converts asa-tooth waveform into four different waveforms: sine-wave, mark-space saw-tooth, regular triangle form, and squarewave with an externálly variable mark-space ratio.
Component ser (incl. PCB but excl. sw/s)
f. 8.19

VOLTAGE CONTROLLED FILTER (P.E. Dec. 74)
art of the PE. Minisonic now released as an independent
Component set (incl. PCB) (Order as Kıt 65-1) \quad ¢8-22

RING MODULATOR (P.E Jan 75)
Part of the P E Minisonic now released as an independent Component set (incl PCB) (Orde \qquad

NOISE GENERATOR (P.E. Jan. 75)
Part of the P E. Minisonic now released as an independent it for use with other synthesisers.
Component set (incl. PCB) (Order as Kıt 60-1) $£ 3.35$

SOPHISTICATED POWER SUPPLIES

wide range of highly stabilised low norse power supply kits
s available-details in our lisis.

MICROPHONE PRE-AMP (P.E Apr 77)
Component set (incl. PCB)
83.78

VOICE OPERATED FADER (P.E. Dec. 73)
For automatically reducing music volume during tak-over - paricularly useful for Disco work or for Component set (incl PCB) $£ \mathbf{£ 3 . 9 7}$

DYNAMIC RANGE LIMITER (P.E Apr. 77)
Automatically controls sound output to within a preset Component set (Incl PCB)
f4.58

EXPORT ORDERS are welcome, though we advise that a current copy of our list should be obtained before ordering as it also shows Export postage rates. All payments must be cash-with-order. in Sterling and preferably by international Money Order or through an English Bank. To obtain list send 50p.

AND OTHER PROJECTS

PHOTOGRAPHS in this advertisemen show two of our units containing some of
the P.E. projects bult from our kits and the P.E. projects bult from our kits and
PCBs. The cases were built by ourselves and are not for sale, though a small selection of other cases is avalable

LIST-Send stamped addressed envelope with all U.K. requests for free list giving fuller details of PCBs. kits and
other components.

OVERSEAS enquiries for list Europesend 20 p: other countries--send 50p.

KIMBER-ALLEN

KEYBOARDS AND CONTACTS

Kimber-Allen Keyboards as required for many published circuits. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C , the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame. 3 Octave 137 notes
$£ 25.50$
5 Octave 161 notes
£ 32.25
Cortact Assemblies (gold-clad wire) for use with the above keyboards (1 required for each
notel:
Type GJ: Single-pote change-over
Type GB: 2 pairs of contacts, each pair normally open
each 24p
Type GC: 3 pairs of contacts, each pair normally open
Type GE: 4 pairs of contacts, each pair normally open
Type GH: 5 pairs of contacts, each pair normally open
Type 4PS: 3 pairs of contacts plus single-pole changeover
each 57p
Printed Circuit Boards for use with GJ. GB and 4PS contacts (thus eliminating much interwir ingl are available. Details in our lists.

RHYTHM GENERATOR

15-Rhythm Tempo. Timing and Logic control unit (excl. sw's	
but incl. PCB)	$£ 12.90$
10-Instrument Effects circuits	$£ 13.56$
PCB for Effects circuits	$£ 4.25$
Power Supply incl. PCB	$£ 12.00$

128-NOTE TUNE-PROGRAMMABLE SEQUENCER (P.E. Nov/Dec 77)

Enables a voltage controlled synthesiser to automatically play pre-programmed tunes of up to 32 pitches and 12B notes long. Programs are keyboard initiated and note length and rhythmic pattern are externally variable. (Please use order codes quoted in brackets.)

Main Circuit (Nov) excl. sw's (KIT 76-1) \quad £20.60
Power Supply (KIT 76-3)
Trigger Inverter and Alt. Output (K|T 76-2)
LED Counter (KIT 76-4)
PC8 (as published) for KITS 76-1 \& 3 (PCB 76A)
PCB for KITS 76-2 \& 4 (PCB 768)
P.E. STRING-ENSEMBLE (P.E. commencing Mar 78)

The new keyboard string-in strument synthesiser.
Power Supply Basic component set
Tone Generators (incl. Test components)
PCB for PSU and Tone Generator
$£ 9.22$
$£ 14.93$
Details of further kits and PCBs in our list.
FORMANT SYNTHESISER (Elektor 1977/78)
Very sophisticated music synthesiser for the advanced constructor who puts performance before price. Details in our lists.

3-CHANNEL SOUND-TO-LIGHT (P.E. Apf. 76)

A simple but effective sound-to-light controller capable of operating 3 lamps each of approximately 700 watts. Includes power supply. thyristors, and by-pass switches.

Component set (incl. PCB)
DISCOSTROBE (P.E. Nov. 76
4 -channel light-show controller giving a choice of sequential. andom, or full strobe mode of operation
Basic component set
£18.19
Printed circuit board $£ 3.45$
BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)
Multi-function circuits that, with the use of other external equipment. can serve as lie-detector, alphaphone. cardiophone tc.

Pro-Amp Module Components set (incl. PCB) £4.22 Basic Output Circuits-combined component set with PCBs, for alphaphone, cardiophone, frequency meter and visual feed-back lampdriver circuits
Audio Amplifier Module Type PC7
£6.59
£7.75

10\% DISCOUNT VOUCHER (PE66)
TERMS: Correctly costed. C.W.O., U.K. orders over £40 goods value. Valid until end of month on cover of P.E. This voucher must accompany order.

		0 0 2 0 0 0 2 0 1

The latestift trom Spailhriite

the quickest fitting CLIP ON capacitive discharge electronic ignition in KIT FORM
 Introductory SPECIAL OFFER £2 OFF Kit

Smoother running
 Instant all-weather starting
 Continual peak performance
 Longer coil/battery/plug life Improved acceleration/top speeds Optimum fuel consumption

Sparkrite X 4 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $1 / 3 \mathrm{mins}$. Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ h of the norm It will perform equally well with new, old, or even badly pitted points and is not
dependent upon the dwell time of the contact breakers for recharging the system Sparkrite ificorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing th transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). The circuit incorporates a voltage regulated output for greatly improved cold starting. The circuit includ es built in static timing light, systems function light, and security changeover switch. All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 year guaranteed transformer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions to assemble kit neg. or pos. earth and fully illustrated NOTE Vehicesw
NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachometer pulse slave unit. Price $£ 3.35$ inc. VAT. post $\&$ packing Electronic Design Associates. 82 Bath Street, Walsall, WS1 3DE.
Phone: (O922) 614791.

Electronics Design Associates, Dept. PE6.
82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 614791
Name
Address

Phone your order with Access or Barclaycard
Inc. VA.T. and P.P. QUANTITY REO'O.

X4 KIT Eluts f1295	
TACHS PLUSE SLAVE UNIT £3.35	
Acces5 or Barclaycard No.	

Access or Barclaycard No.

1 enclose cheque: PO's for £

Cheque No.
Send SAE if brochure only required.

24 HR. CLOCK/APPLIANCE TIMER KIT

MOS PRE-AMPLIFIER I.C. TAA 350 with circuit @ 35p SMALL R.T. TELESCOPING AERIALS at 60 p ea.
50 BC 107-8-9 TRANSISTORS Assorted untested for 57p.BAW 62 HIGH SPEED DIODES at 12 for 35 p:50 ASSORTED 2 WATT ZENERS Untested for 57 .
McMURDO 8 PINPLUG @ 20p. 8 PIN SOCKET @ 20p, COVERS @ ${ }^{2} 5^{p}$
BD 1844 Amp NPN PLASTIC TRANSISTORS @ 25p, 5 for fthen
NKT 214 TRANSISTORS equivalent to OC 71 \& 10p, 6 for 50 p .
8 uf $300 \mathrm{v} . \mathrm{w}$. ELECTROLYTICS at 10 for 57 p .
$3010 \times \mathrm{K} J$ CRYSTALS 5100 to 7900 KHz assorted for $£ 1.10$
ERIE RED CAP SUB-MINIATURE. 01 u T00v.w. © 5p ea.
I.V. S.A.W. FILTERS Untested. 3 for $35 p$

LD 130 CIo D CMOS CONVERTER with data © 16.
DIE CAST ALLOY BOXES $4 \times 2 \times 1$ "(1) $55 p$, $47 \frac{7}{16} \times 2 \frac{7}{16} \times 1 \frac{1}{2}$ " (1) $65 p$

5OO mW UNMARKED GOOD ZENER DIODES $3.6 \mathrm{v}, 6.8 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 1$. $24 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}, 36 \mathrm{v}$. all at 19 for 40 p
FERRANTI $2 T X 108$ TRANSISTORS 7 for 50 p .
10 MULTI TURN PRE-SET POTENTIOMETERS Assorted 80
MULLARD PRE-AMP I.C. TAA 435 with circuit (a) 40p
4 Amp PNP TRANSISTORS BCX 36 @ 12p. BCX 37 @ $10 p$,
TEXAS SCR's FIC 42200 PIV 300 mA @ 18 p ea.
ELECTROLYTICS $20+20 \mathrm{uf} 450 \mathrm{v} . \mathrm{w}$. (1) $20 \mathrm{p}, 32+32 \mathrm{uf} 275 \mathrm{v} . \mathrm{w}$. (a) 10p, $32+32 \mathrm{up}$ 450 nw . (120p, $50+50 \mathrm{uf} 275 \mathrm{v.w}$. (6) 15p, 2200uf $100 \mathrm{v} . \mathrm{w}$. @ 60p. 3300uf 40v.w. (G) $50 \mathrm{p} .4700 \mathrm{uf} 63 \mathrm{v} . \mathrm{w}$. © B0p.

MULLARD 10.7 MHz PLUS 455 KHz MODULE with da:a © 4 50 ASSORTED POLYSTYRENE CAPACITORS @ $57 p$.
TRANSFORMER 240 volt. Sec. 24 volt tapped at 14 volt 1 amp@ © 1.30 (20 p P\& PIN AUDIO I.C's SL4 14 @ $£ 1.80$, SN 76001 N @ 50p, LM 380 @ 85p VERNITRON FM4 10.7 MHz FILTERS @ 50 p ea
MOBILE IN-LINE FUSE HOLDERS for $11^{\prime \prime}$ fuses @ 22p ea.
TBA $120 S$ FM I C's Untested with data 6 for BOp
TBA. 120 S FM I.C's Untested with data at 6 for $80 p$.
10 AMP S. P EDGEWISE LEVELMETERS @ 1.25 ea.
10 AMP S.C.R
TUB ULAR TANTALUM CAPACITORS $47 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$.. $1.5 \mathrm{uf} 20 \mathrm{v} . \mathrm{w} ., 2.2 \mathrm{uf} 20 \mathrm{v}$.w. 6Byt
500 yd REEL OF PVC CABLE 25 strand .004 for $£ 3$
DUAL 1OOK LIN WIRE WOUND POTENTIOMETERS @ 50 p
50 AC 128 TRANSISTORS Branded but untested @ 57p.
5.5 MHz CERAMIC FILTERS @ 27 p

CLOCK PC BOARDS with buzzer, bridge
No data Brand New (a) £1.
Please add 20p for post and packing, unless otherwise stated, on U.K. arders under $\mathbf{£ 2}$.

J. BIRKETT

RADIO COMPONENT SUPPLIERS

25 The Strait, Lincoln LN2 1JF Tel. 20767

BOOKS BY BABANI

Purchase books to the value of $£ 5.00$ from the list below and choose any 60p pak from this page FREE.
BP2 Handbook of Radio. TV \& Industrial \&

Transmitting Tube \& Valve Equivalents

 BP6 Handbook of Tested Transistor Circuits BP6BP7 Rineers and Machinists Reference Tables
Radio Electronic Colour Codes and Data BP10 Modern Crystal and Transistor Set Circuits for beginners
BP 16 Constructors Manual of Electronic Circuits for
8P16 Handbook of Electronic Circuits for the Amateur Photographer
BP18 Boys and 8eginners Book of Practical Radio and Electronics
BP22 79 Electronic Novelty Circuits
BP23 First book of Practical Electronic Projects BP24 52 Projects Using IC741 (or equivalents) 26 Radio Antenna Handbook for Long Distance Reception and Transmission Giant Chat of Radio Electronic Semiconductor and Logic Symbols
BP29 Major Solid State Audio Hi-Fi Construction Projects
BP32 How to Build Your Own Metal \& Treasure Locators
BP34 Practical Repair \& Renovation of Colour TVs Amplifier Construction Power Amplifier Constuction
BP36 50 Circuits Using Germanium, Siliton \& Zener BP37 50 Pros
BP37 50 Projects Using Relays, SCR's and TRIACS BP39 50 (FET) Field Effect Transistor Projects
129 Universal Gram-motor Speed Indicator
60 Coil Design and Construction Manual 161 Radio. TV and Electronics Data Book 196 AF-RF Reactance--Frequency Chat

Constructors

and Substitutes
Integra
Hi-Fi
First Book of Hi-Fi Loudsper
Electronic Circuits for Model Railways
Audio Enthusiasts Handbook
Electronic Gadgets and Games
Solid State Power Supply Handbook
219 Solid State Novelty Projects
220 Build Your Own Solid State HiwFi and Audio Accessories
Solid State Short Wave Receivers for Beginners
50 Projects Using IC CA3130
50 CMOS IC Projects
225 A Practical Introduction to Digital IC's
226 How to Build Advanced Short Wave Rec
RCC Resistor Colour Code Disc Calculator

BOOKS BY NEWNES

No. 229 8eginners Guide to Electronics	Price
No. 230 Beginners Guide to Television	Pric
No. 231 Beginners Guide to Transistors	
No. 233 Beginners Guide to Radio	
No. 234 8eginners Guide to Colour Television	
No. 235 Electronic Diagrams	
No. 236 Electronic Components	
No. 237 Printed Circuit Assembly	
No. 238 Transistor Pocket 8 ook	
No. 225110 Thyristor Projects Using SCRs \& Triacs	Pric
No. 227 110 COS/MOS Digital IC Projects For the Home Constructor	Price
No. 226110 Operational Amplifier Projects for the Home Constructor	Price
No. 242 Electronics Pocket B ook	
No. 23930 Pinotoelectric Circuits \& Systems	Pr

Price $\mathbf{E 2 . 2 5} \uparrow$ Price £2.25 \dagger Price E2.25 \dagger Price $\mathbf{£ 2 . 7 5 \dagger}$ Price $£ 2.25$ Price $£ 1.80 \dagger$ Price $£ 1.08 \dagger$ Price $\mathbf{E 3 . 9 0} \dagger$ Price $\mathbf{£ 2 . 5 0} \dagger$

Price $£ 2.25$ t

Price $\mathbf{E 2 . 5 0}{ }^{\dagger}$ Price $\mathbf{£ 3 . 9 0 \dagger}$ Price $£ 1.80 \dagger$

NUTS AND BOLTS

BA BOLTS - packs of 8A threaded cadmium plated screws slotted cheese hesd.
Supplied in multiples of 5

Type	No.	Price	Type	No.	Price
1 in 08A	839	£1. 20	$\frac{1}{2}$ in 48A	846	£0.32
$\underline{\operatorname{lin}}$ OBA	840	¢0.75	fin 4BA	847	£0. 25
f in 2BA	842	¢0.65	i in 6BA	848	£0.40
$\frac{1}{2}$ in 2BA	843	¢0.45	$\frac{1}{2}$ in 6BA	849	£0.21
$\frac{5}{4}$ in 2BA	844	c0.52	tin 6BA	850	f0. 25
\% 3 4 4 BA	845	¢0.44			
BA NUTS - packs of cadmium plated full nuts in multiples of 50.					
Type	No.	Price	Type	No.	Price
OBA	855	f0. 72	4BA	857	f0-30
28A	856	co. 48	6BA	858	c0.24
BA WASHERS - flat cadmium plated plain stamped washers supplied in multiples of 50 .					
Type	No.	Price	Type	No.	Price
OBA	859	¢0.14	48 A	861	¢0.12
2BA	860	¢0. 12	6BA	862	f0.12
SOLDER TAGS - hot tinned supplied in multiples of 50.					
Type 08A	No. 851 85	Price CO 40	Type 4 BA	No. 853	$\begin{aligned} & \text { Price } \\ & \text { PO. } \end{aligned}$
2BA	852	f0. 28	6BA	854	£0.22

SWITCHES

Description
DPDT miniature slide
DPDT standard slide
Togqle switch SPST
loggle $1 \frac{1}{2}$ amp 250 V a.c.
Toggle switch DPDT
1 amp 250 V a.c.
Alatary
Rotary on-off mains switch
Push switch - Push to make Push switch - Push to make
Push switch - Push to break

ROCKER SWITCH
A range of rocker
swithes SPST
Switches SPST - moulded
in high insulation
Material available in a
choice of colours ideal
choice of colours ineal
for small apparatus.
for small app
Description
Miniature SPST toggle. 2 amp
Miniature SPST toggle. 2 amp
Miniature DPDT toggle, 2 amp
Miniature DPDT toggle, centre
off. 2 amp 250 V a.c.
Push button SPST
Push button SPST, 2 amp
Push button SPST, 2 amp
250 V a.c.
Push button DPDT, 2 amp
250 V a.c.
MIDGET WAFER SWITCHES
Single-bank wafer type - suitable for switching at 250 V a.c. 100 mA or 150 V d.c. in non-reactiver loads make-before-break dexts. These switches have a spindle 0.25 in dia. and 30°

Description

$\begin{array}{cc}\text { Order No. } & \text { Price } \\ 1965 & £ 0.48^{\circ} \\ 1966 & £ 0.48^{\circ} \\ 1967 & £ 0.48^{\circ} \\ 1968 & £ 0.48^{\circ}\end{array}$
MICRO SWITCHES
Order No. Price
Plastic button gives simple
Rating 10 amp 250 V a.c. $1969 \quad \mathbf{£ 0 . 2 0}$
Button gives 1 pole change
Rating 10 amp 250 V a.c. 1970 $£ 0.25$

FUSE HOLDERS AND FUSES

Description	Order No.	Price
$20 \mathrm{~mm} \times 5 \mathrm{~mm}$ chassis mounting	506	c0.07*
$1 \frac{1}{4} \mathrm{in} \times \frac{1}{4}$ in chassis mounting	507	¢0.12*
$1 \frac{1}{\text { fin }}$ car inline type	508	£0.15*
Panel mounting 20 mm	509	¢0. 20
Panel mounting $1 \frac{1}{1}$ in	510	¢0. 30

Type 150 mA 250 mA 550 mA 800 mA	No.	Type	No.	Type	No.
	611	1 A	615	3 A	619
	612	1.5 A	616	4 A	620
	613	2A	617	5A	621
	614	2.54	618		
		All 5 p	ach ex	16 whic	s 7p.
ANTI-SURGE 20 mm					
Type100 mA 250 mA 500 mA	No	Type	No.	Type	No.
	622	1 A	625	2.5 A	628
	623	2A	626	3.15A	629
	624	1.6 A	627	5A	630
		All 7p	ach		
QUICK BLOW 1 ${ }_{\text {1 }}^{\frac{1}{4} \text { in }}$					
Type 250 mA	No.	Type	No.	Type	No.
	631	500 mA	632	800 mA	634
		All 7p	each		
$\begin{aligned} & \text { Type } \\ & 1 \mathrm{~A} \\ & 1.6 \mathrm{~A} \\ & 2 \mathrm{~A} \end{aligned}$	No.	Type	No.	Type	
	635	2.54	638	4 A	641
	636	3A	639	5A	642
	637				
		All 6p	ach		

CASES AND BOXES

INSTRUMENT CASES. In two sections vinyl covered top
and sides, aluminium bortom, front and back.

No.	Length	Width	Height	Price
155	8 in	$5 \frac{1}{19}$	2 in	£1.52*
156	11 in	6 6in	3 in	¢2.12*
157	6 in	4* ${ }^{\text {a }}$	13in	£1.30*
158	9 in	$5 \frac{1}{4}$ in	$2 \frac{1}{2} 10$	£1.76*
ALU con and	UM BO n each	Made comple	bright h half	folded eep lid
No.	Length	Width	Height	Price
159			$1 \frac{1}{2}$ in	$62 \mathrm{p}{ }^{\circ}$
160	4 in		1 in	62 p "
161	4 in	219in	112 in	62p*
162	5tin	4 in	$1 \frac{1}{2}$ in	74 p *
163	4 in	$2 \frac{1}{2}$	2 m	$64{ }^{\text {c }}$
164	3 in	-2ín	1 in	$44{ }^{\circ}$
165	7 in	5 n	2 $\frac{1}{2}$ in	£1.04*
166	8 in	6 in	3 in	¢1.32*
167	6 in	4 in	2 in	$86 p{ }^{\circ}$

MIDGET WAFER SWITCHES

1965 - 1 pole 12 way
$1966-2$ pole 6 way
$1967-3$ pole 4 way
$1968-4$ pole 3 way

TRANSFORMERS

MINIATURE MAINS Primary 240 V
No.
202
2022
202
Secondary
$6 \mathrm{~V}-0-6 \mathrm{~V}$
100 mA
100 mA $12 \mathrm{~V} 0-12 \mathrm{~V} 100 \mathrm{~mA}$
MINIATURE MAINS Primary 240 V
with two independent secondary windings
No.
2024
Type
MT280-0-6V, $0-6 \mathrm{~V}$ RMS
MS
Price
11.50°
$\mathbf{~} 1.50^{\circ}$
2025 MT150-0-12V.O
1 AMP MAINS Primary 240V

P. \& P. $45 p$
P. \& P $45 p$
P. 81 P. $55 p$
P. \& P. $66 p$
P. $8.86 p$

STANDARD MAINS Primary 240 V
Multi-tapped secondary mains transformers available in amp, 1 amp and 2 amp current rating. Secondary taps are Vottages available by use of taps
$4,7,8,10,14,15,17,19,25,31,33,40,25-0-25$

$\begin{aligned} & \text { No } \\ & 2031 \\ & 2032 \\ & 2033 \end{aligned}$	$\begin{gathered} \text { Rating } \\ \text { famp } \\ \text { famp } \\ 2 \text { ampp } \end{gathered}$	Price E5.50 ${ }^{6660} 0^{\circ}$ £8.40	$\begin{array}{r} \text { P. \& P. } 86 \mathrm{p} \\ \text { P. \& P. } 86 \\ \text { P. \& P. E } 1.10 \end{array}$

AUDIO LEADS

$\begin{aligned} & 107 \\ & 113 \end{aligned}$	FM Indoor Ribbon Aerial 3.5 mm Jack plug to 3.5 mm jack plug. Length 1.5 m	6060 c0. c
114	5 pin DIN plug to 3.5 mm . Jack connected	
115	5 tin DIN plug to 3.5 mm . Jack connected	85
	to pins 184 . Length 1.5 m	¢0.85*
116	Car aerial extension. Screened insulated lead. Fitted plug \& skt.	f1.10*
117	AC mains connecting lead for cassette	
118	recorders \& radios. 2 metres 5 pin DIN phono plug to stereo	¢0.68*
	headphone iack socket	£1.05*
119	$2+2$ pin DIN plugs to stereo jack socket with attenuation network for stereo headphones. Length 0.2 m	¢0.90*
120	Car stereo corinector. Variable geomerry plug to fit most car cassette, 8 track cartridge \& combination units. Supplied	
	with inline tused power lead and instructions.	¢0.60*
3	6.6 m Colled Guitar Lead Mono Jack Plug to Mono Jack Plug BLACK	£1.50*
124	3 pin DIN plug to 3 pin DiN plug.	
125	Length 1.5 m	c0.75*
	5 pin Din plug to 5 pin DIN plug Length 1.5 m	£0.75*
126	5 pin DIN plug to Tinned open end.	
	Length 1.5 m , 4 Phono Pluge	E0.75*
127	5 pin Din plug to 4 Phono Plugs.	
	All colour coded. Length 1.5 m	£1.30*
128	5 pin DIN plug to 5 pin DIN socket. Length 1.5 m	¢0.80*
129	5 pin DIN plug to 5 pin DIN plug mirror image Length 1.5 m	£1.05*
130	2 pin DIN plug to 2 pin DIN inline socket.	
131	Length 5 m 5 pin DIN plug to 3 pin DIN plug. $1 \& 4$	68*
	and 385. Length 1.5 m	¢0.83*
132	2 pin DIN plug to 2 pin DIN socket.	
\$33	5 pin DIN plug to 2 phono plug	£0.98
	Connected pins 38.5 . Length 1.5 m	¢0.75*
134	5 pin DIN plug to 2 phono sockets.	
	Connected pins 38.5 . Length 23 cm	f0.68*
135	5 pin DIV socket to 2 phono ph	
136	Coiled stereo headphone extension lead.	f0-68*
	Black. Length 6 m	¢175*
178	AC mains lead for calculators etc.	£0.68*
AVDELBOND		
CYANOACRYLATE G2		

The wonder adhesive which works in seconds. Bonds plastic, rubber, transistors, components, permanently - immediately
O/D 143 . ONLY 700° for a 2 gm phial.

BI-PAK CATALOGUE
 NEW EDITION NOW AVAILABLE

 semiconductors. components and our famous range of BI-KITS audio modules.
ONLY 65p POST FREE

ORDERING

V.A.T. Add $12 \frac{1}{2} \%$ prices marked*. 8% to those unmarked Items marked are zero rated. P\&P. 35p unless otherwise shown

B/PAK

DEPT. PE6, P.O. Box 6, Ware, Herts COMPONENTS SHOP: 18 BALDOCK

STREET, WARE, HERTS.

SAXON ENTERTANMENTS LTD

THE PIONEERS OF MODULAR DISCO/P.A. EQUIPMENT NOW OFFER PACKAGE DEALS AT INCOMPARABLE PRICES

CENTAUR STEREO DISCOS

C/W LIGHT SHOW \& DISPLAY TWIN SPEAKERS \& LEADS

Standard 100W

 £225 or Deposit $£ 50.80$ 12 Months @ $£ 19.11$ or 24 Months @ $£ 10.66$Super 200W £275 ${ }^{\circ}$ or pepsifi 661.80

12 Months@ £23.17 or 24 Months @ $£ 12.92$

GXL 200W £349 or fopsif $£ 77.72$
12 Months @ $£ 29.19$ or 24 Months @ $£ 16.28$

COMPLETE STEREO ROADSHOWS - BUILT IN SOUND TO LIGHT/SEQUENCER \& DISPLAY
TWO YEAR GUARANTEE

illustration shows GXI Centaur Sy stem
These systems feature full mixing for two decks tape \& mic with monitoring facilitian - override and are supplied complete with sound to light sequencer, display, speqker legd etc. JUST PLUG INAND GO!

BSR Decks - 17,000 Line Loudspeakers - Rugged Aluminium Trimmed Cabinefs Gue Light And Phornes Output - Slave Output - Deck lights/Motof Starts (OXL)

COMPLETELIGHTING CONTROL AT YOUR FIWGERTIP\$!
$\sigma \bar{\sigma}, \overline{0}, \overline{0}$
£44.50
$0,0,0$
Automatic Level Integraded Logic Cirevitry
Three Changet wound rometh
$3 \mathrm{~kW} 1-24$ ow inpu - master maste \qquad 4
\qquad

SPARES \& ACCESSORIES - LOUDSPEAKERS \& CBBINETS

$$
\text { Rope Lights - Red or Multicolouf } £ 22.00 \text { Melos Echo Chamber } £ 59.00
$$

Rope light Controller for up to 120 t $£ \mathbf{£ 3 0 . 0 0}$ Sirens: Englishfolice, USA Police, Fuzz Lights-Red/Blue/ Yellow/Green $£ 22.80$ Dextroyer, Milion Voice Simulator $£ 7.50$ Magnetic Cartridge Equaliser $£ 3.50^{*}$ 8ulginh 8 weral lighting plug/socket £ $\sum 0$
\qquad

100 Watt Chassis Loudspeakers $12^{\prime \prime} £ 28.50 \quad 18^{\prime \prime} £ 47.50 \quad$ (Add/L. 50 carr. £15.50, Lorge $2 \times 12^{\prime \prime} £ 28$ 1 $18^{\prime \prime} £ 29.50$

Projector lamps: A $1167 £ 2.90$, Mó £sin5. 100W Spot lamps Red/Blue/Yellewforeen £1.50 ea £ 13.50 for 10 MD Spot Banks: 3 -way $300 \mathrm{~W} £ 19.50$, 4 -way 400 W £ 22.50 .
Bubble machines (optikinetics) $£ 36.50$

Strobe tubes $80 \mathrm{~W} £ 8.50$

ICI Vynide $50^{\prime \prime}$ wide $£ 3.50$ Metre Kick proof Grill " $24^{\prime \prime}$ wide $£ 3.25$ Metre Kick Resistant Grill $50^{\prime \prime}$ wide $£ 3.25$ Metre FULL RANGE OF RE-AN PRODUCTS IN STOCK SEND FOR OUR BROCHURE NOW!!

STROBEUNITS
Pro-Strobe 4-6 Joules $£ 37.50$ Super Strobe 2-3 Joules $£ 22.50$ (Pro-Strobe has external trigger facility)

PROSECTORS - PLUTO - NEW LOW PRICES!!! CHOICE OF WHEEL/CASSETTE

		P150 150W Tungsten	$£ 37.50$
Liquid wheels	$£ 7.50$		
P500 100W Q.I.	$£ 74.95$	Cassettes	$£ 8.00$
P500 250W Q.1.	$£ 84.95$	Pisture wheels from	$£ 4.75$

PIEZO HORNS only $£ 7.50$ YES! - only £7.50
(As fitted to our package PA system) Direct from Motorola Inc., USA at on UNBEATABLE PRICE
No crossover required $4 \mathbf{k H z}-30 \mathrm{kHz}$ rated $75 \mathrm{~W} / 8$ ohms $150 \mathrm{~W} / 4$ ohms use two per 100 W amplifier - Full instructions supplied.

PACKAGE P.A. SYSTEMS (${ }^{2}$ vuarartee)

Complete will PIEZO horn columns fitted with 100 watt fiunits (100 watt system tilustrated)

100 Watt £ 149.50

Deposit $\$ 35.26$
12 Months @ 12.91 or 24 Miviths @ 47.20
 Treble, Bass and Master Controls plus Lead and Twin Piezzo Horn delumns (shown on right.

200 Watt $£ 225.00$

Deposit E 50.80
12 Months @ 419.11 or 24 Menths @ £ 10.41 zsix Mixed imputs plus Thrite Sets of Sess and Treble Controls plus Slave Ounput and Master Control.

ACCESSORIES

Melos Echo Unil 559.00
A high quality Casetve Tape Echo Unit giving long tape life, isfinitely variable echo depth and speed control. Suitable for all mics. and instruments.
High quality Boam Stand $£ 15.50$ Floor Stand £9.90. ECM81 Condenser Mic. Removable Leod - Good Anti-Feedback £19.95** EM507 Condensof Mic. - Good Value £15.00. Phasers $£ 18: 80$.
D.I.Y. MODUIES FOR P.A. SYSTEMS Mono or, Stereo Niake youptown mixer - Mono/Stereo - up to 20 channels with these, easy to wire modules - Available as $P C B^{\prime}$ s or assenbled on panels.

Saxon AP100 Amplifier £45
four mixing inputs - 100 W into 4 ohms Wide ronge boss \& treble controls moster - Twin outputs Saxon 150 Amplifier $£ 59$ Four mixing inputs - 100 W into 8 ohms 150 W into 4 ohms - wide range bass
 \& treble controls + master

All prices subject to 8% VAT except where asterisked ($12 \frac{1}{2} \%$) Shop premises open Mon to Sat 9 am - 5 pm lunch 12.30 - 1.30 pm Mail order dept open Mon to Fri 10 am - 4 pm - Ring 01-684 6385

TO ORDER

By Post
Send your requirements with cheque crossed P.O. or 60p COD charge to address below or just send your Access or Barclay Card Number NOT THE CARD.
By Phone You may order COD. Access or Barclay Card.
Post \& Packing 50p on all orders except where stated.

> SAXON ENTERTAINMENTS LTD. 32.7 Whitehorse Road, Croydon, Surrey

> All Enquiries Large SAE Please Brochures on request.

AT LAST! SEEMET THE FAMOUS POCKETSIZE METAL DETECTOR

AVAILABLE IN KIT FORM

Seemet readily detects concealed ferrous and non-ferrous metals within range of its detector field. Ideal for finding concealed pipes, wires, nails etc. One-handed operation, uses standard PP3 Battery (not supplied). ONLY E3.25 plus p. 8 p. 25p. (inc. VAT), full instructions supplied.

UNBEATABLE DIMMER OFFER

from Britain's largest Dimmer Makers.
Complete Kit of Parts for our
VCL 500M, 500W Dimmer Switch.
Only $£ 2.00$, plus \mathbf{p}. \& p. 25p.
linc. VAT) full instructions supplied.
Send coupon below with your remittance.

Please supply:- PE2 NAME

at $£ 3.50$ incl. of $\mathrm{p} . \& \mathrm{~d}$. ADDRESS
\square DIMMER KITS
\square at f 2.25 inc of D . \& p
I enclose cheque/P. O .
POSTCODE

110 Fotherby,Willis Electronics LId.

GLADSTONE TERRACE, STANNINGLEY, LEEDS, LS28 6NE Telephone Leeds (STD O532) 563373 Telex 557111 GLYNWED

- The finest components catalogue yet oublished.
- Over 200 A-4-size pages
- About 5,000 items clearly listed and indexed.
- Nearly 2,000 illustrations
- Bargain List sent free.
- At $£ 1 \cdot 40$, incl. p. \& ρ., the catalogue is a bargain.

Send the coupon below now.
HOME RADIO (Components) LTO., 234-240 London Road. Mitcham. Surrry CR4 3 HO

NEW FROM PITMAN FORTEC STUDENTS

AND FOR THOSE SERIOUS ENTHUSIASTS WHO WISH TO CONSOLIDATE AND EXTEND THEIR KNOIVLEDGE

Telecommunication SystemsI

P.H. SMALE

Explains and describes the fundamental make-up of the systems used in all telecommunication processes. 120pp//113 line figures/ISBNO 27301123 5/Cat. No. 0010 :32/£2.50

Transmission SystemsII

D.C. GREEN

A complete introduction to the principles of hoth line and radio communication systems. 144 pp/ $/ 21$ line drawings/ISBN 027301124 3/Cat. No.0011:32/£3.20

Radio Systems II

D.C. GREEN

A basic course in the fundamentals and
practice of radio communication systems.
$120 \mathrm{pp} / 103$ line figures/ISBN $027301126 \mathrm{X} / \mathrm{Cat}$.
No.0014:32/£3.00

Electronics II

D.C. GREEN

A comprehensive and concise descriptive treatment of the primary elements of electronic devices and circuits.
$168 \mathrm{pp} / 160$ line figures/ISBN O 27301125 1/Cat.
No.0016:32. 3.50
The coverage is based on the syllabuses of the Technician Education Council and completely covers the requirements of the units, offering coherent and complete treatment of the subject topics.

Further Principles and Systems for Radio and TV Mechanics

K.F. IBRAHIM

A good texthook for all radio, television and electronic technicians who desire to learn, and consolidate their practical knowledge with, a theoretical basis.
256pp/320 line figures/ISBN O 27301122 7/Cat.
No.0006:32/€3.20
PLACE AN ORDER WITH YOUR BOOKSELLER TODAY:
In case of difficulty available from
Pitman Publishing Limited, 39 Parker Street, London WC2B 5PB
adding $20 p$ as a small order surcharge.
T.T.L. 74 I.C.'s By TEXAS, NATIONAL, I.T.T., FAIRCHILD etc

T. POWELL

306 ST. PAUL'S ROAD, HIGHBURY CORNER, LONDON N. 1 Telephone: 01-226 1489

```
Essy accese to Highbury vila Victoria Line (London Transport) Britizh Rall
```


MONEY

PROBABLY one thing that is of
universal interest is cash. As electronics enthusiasts we have particular interests in money. Will the chancellor reduce the tax rate? Surely that interests all earners? Will he change the V.A.T. rates? More about that later. Will the government impose further wage restraints?

We now know the answers to most of these points-this is being written a few days after the budget. Although we doubt if many M.P.s are constructors or, even if they have the interest, have time to read this, however a couple of points are worth making ...

CAREERS

At the time of writing it is still not obvious if we will be returning to "free collective bargaining". For the last two years many in the electronics industry have found that their qualifications and experience no longer give them any monetary advantage. For some time we have seen the "electronics workers" on the move; more applicants for jobs than ever before simply because it is one way to get ahead financially.

It may be argued that this movement is healthy for the industry although we
doubt it. What it does mean is that people are finding a way of beating the system and that they are finding it necessary to do this.
It has now been suggested that four year degree courses should be introduced. Great, we are in favour. The rate technology is moving we are going to need some of the best, most highly educated people we can find, and make no mistake the British educational system can produce the best. It may mean fewer degrees but we will need the elite; there is already a danger of too many chiefs and too few indians. But will we find these people, can we continue to encourage them to take a degree course, and a longer one than at present-perhaps not if the rewards are not there at the end of the rainbow!
V.A.T.

No doubt many readers, in particular those in the component supply business, will remember all the fuss a while back over the introduction of two rates of V.A.T. to electronic components. It may be necessary to remind some that this system is still in force.

It means that one component-say a loudspeaker-can be subject to different rates if sold for different
applications. It would probably be interesting to carry out a survey now that manufacturers, distributors and retailers have been living with this system for some time. For instance, it may be that proportionately fewer speakers are now made and sold for radio applications-an application that is subject to the higher tax ratealthough just as many will find their way into radios. This is no doubt more prevalant in the amateur world than anywhere else.

We can only hope that at some stage someone will be able to make enough fuss about the component situation to get the whole thing reviewed and then maybe, just maybe, we could get back to the lower rate for all components. This would reduce the workload of all concerned in their supply and, most important, reduce the price of some of them to us.

One point that we are thankful for is that this product (P.E.) is not subject to V.A.T. We are sure that all readers will stand behind us on that one, even if their views do not concur with those expressed above.

Mike Kenward

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
Alan Turpin PRODUCTION EDITOR
David Shortland TECH. SUB EDITOR
ADVERTISEMENT
$\begin{array}{ll}\text { MANAGER } & \text { D. W.B. Tilleard }\end{array}$
P. J. Mew REPRESENTATIVE
C. R. Brown CLASSIFIED MANAGER

Editorial Offices:
Westover House
West Quay Road, Poole.
Dorset BH15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical
enquiries cannot be answered
over the telephone.
Advertising Offices:
King's Reach Tower,
King s Reach, Stamford Street, SE1 gLS
Phone: Advertisements 01-261 5000
Telex: 915748 MAGDIV-G
Make Up and Copy Dept.
Phone: 01-261 6601

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

Back Numbers and Binders

Copies of most of our recent issues are available from: Post Sales Department, IPC

Magazines Ltd., Lavington House, 25 Lavington Street, London SE 1 OPF, at 65p each including Inland/Overseas p \& p.

Binders for PE are available from the same address at $£ 2.85$ each to UK addresses, £3.45 overseas, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Cheques and postal orders should be
made payable to IPC Magazines Limited.

Letters

Queries regarding articles published in PE should be addressed to the Editor, at the Editorial Offices, and a stamped, addressed envelope enclosed. We cannot undertake to answer questions regarding other items, nor to answer technical queries over the telephone.

* MEASURES UNKNOWN CAPACITANCE
 * PINPOINTS ILLUSIVE WIDE TOLERANCE ELECTROLYTICS \star ENABLES PRECISION MATCHING OF CAPACITORS EASY TO USE, EASY TO READ THIS PIECE OF EQUIPMENT IS JUST WHAT YOU NEED!

THE need to measure capacitance accurately and quickl! arises fairly often in electronics. The construction of Wien bridge oscillators, precision timers, active filters and tuned circuits all demand component selection if best results are to be obtained. In the past the most common methods of measurement have been the use of a capacitance bridge or the measurement of reactance using a multimeter and a.c. source. Both methods are cumbersome and lead to instruments with non linear scales, and in the form usually constructed by amateurs have limited accuracy and range. The instrument described here overcomes most of these problems offering direct measurement of capacitance over a range of eight decades on a linear scale.

PRINCIPLE OF OPERATION

The operation is based on the integrator shown in Fig. 1a. The behaviour of this circuit is described by the mathematical expression:

$$
\begin{equation*}
\text { Vout }=-\frac{1}{\mathrm{RC}} \int \operatorname{VIN} \mathrm{dt} \tag{1}
\end{equation*}
$$

Solving this equation gives

$$
\begin{equation*}
\text { Vout }=-\frac{\text { VIN }^{\prime}}{\text { RC }} \Delta t \tag{2}
\end{equation*}
$$

By making Vou'r $==-$ Vin and rearranging equation 2 as an expression for C , we have:

$$
\begin{equation*}
C=\frac{\Delta t}{R} \tag{3}
\end{equation*}
$$

It follows that we can measure the capacitor in the feedback loop of the integrator by measuring the time taken for the output voltage to fall to -VIN. The measurement of time interval is the most accurate measurement available and it follows that this need not limit the accuracy and precision of the measurement. In the meter to be described the limitations of accuracy are imposed by the meter movement, range resistors, and timer capacitor, but the accuracy could be greatly improved if required, by measuring time digitally.

CIRCUIT DESCRIPTION AND OPERATION

The operation of the instrument is indicated in the block diagram Fig. 1b. The integrator is fed from a reference voltage generator and the integrator output is compared with this voltage in an inverting comparator. An analogue timer, based on a second integrator, measures the time taken for the output of the integrator to fall to -Vref, and the output is shown on a panel meter. In use the unknown capacitor is connected across the input terminals and the reset/START button depressed. At the end of the measurement period a green I.e.d. indicates that measurement is complete. A second push of the reset/Start button discharges the unknown capacitor and resets the circuit for a further measurement. The reset state is indicated by a red l.e.d. and is automatically entered on initial application of power.

The complete circuit is given in Fig. 2 and its operation is best understood with the aid of the timing diagrams in Fig. 3. The instrument consumes little power and may be battery operated. In Fig. 2, can be seen the supply arrangement and the Vref generator, which is a simple zener diode source buffered by an operational amplifier connected as a voltage follower. The temperature stability of this circuit is not particularly good but is maximised by ensuring a constant Zener current of about ImA. This is insignificant compared to the performance limitations of the analogue meter movement. If a digital version was constructed it would be worthwhile using a more expensive reference diode here. The reference voltage is adjusted to 1V by VR1. It should be noted that this adjustment is only needed in an analogue instrument because Vref is also used in the time measurement circuit.

The reference voltage is supplied to the first integrator IC2 via the transmission gate IC7a and one of the range resistors. The unknown capacitor is connected as the feedback element of this integrator in parallel with the transmission gate IC7b. The negative going integrator output is compared with Vref at the summing junction of IC3 which operates open loop as a comparator. The output voltage of the comparator is

Abstract

Ranges Accuracy*

Precision Measurement time Power consumption *Precision is defined as the relative standard deviation for repeated measurements on the same capacitor, calculated from the equation: $$
\text { Percentage Precision }=\frac{\sqrt{\frac{\overline{\Sigma(x-\bar{x})^{2}}}{n}}}{x} \times 100
$$ where x is the mean of n measurements, and x is an individual measurement. The precision is a guide to the accuracy which can be obtained if measurements are referred to a known value capacitor.

8 ranges: $300 \mathrm{pF}-3000 \mu \mathrm{~F}$ in decade steps Typically 2.5% on all ranges (dependent upon meter movement, range resistors and capacitor) 1% on range $1(300 \mathrm{pF})$ 0.25% all other ranges 3 seconds max from $3 \mu \mathrm{~F}-3000 \mu \mathrm{~F}$ 300 ms all other ranges 25 mA max (each battery)

monitored by the indicator circuit comprising R15, R16, TR1 and D3, and is also fed into the NOR gate IC4a. The comparator output is gated with the output of the RESET/START generator, and the resultant output of IC4a is the actual time taken for Cx to charge to the reference voltage (which relates to the value of $\mathbf{C x}$). In a digital instrument this time would be measured directly with a clock generator.

In the analogue instrument described here, time is measured by the second integrator comprising IC5, C3 and one of the range resistors R10-R14. The way this circuit measures time is apparent from equation 2. We see that in Fig. la the output voltage of the integrator is proportional to the time for which the input voltage Vin is connected, for constant R and C. In the meter unit the input voltage to the second integrator is Vref and it is connected through the transmission gate IC7c which is open only during the integration period of the unknown capacitor Cx. This time measuring integrator is reset by the transmission gate IC7d. It is this second integrator which requires Vref to be set accurately to IV in order to measure time accurately. It is further important that the time measuring integrator capacitor is a precision component. Although 1% precision capacitors are expensive it is worth pointing out that this design requires only one such component in order to cover an eight decade range. This is because the input resistors of the two integrators can both be varied.

In the reset and run circuitry of Fig. 2 half of a dual JK FLIP FLOP is used, connected as a simple toggle circuit. The initial condition of reset is established by holding the SET input of the CD4027 high during the period when power is first applied. As C5 charges through R22 the output of IC4d eventually goes low which then enables the clock input. The clock input is driven from the output of the monostable comprising IC4b, c, R21, C4 and S3. The input of IC4b at pin 1 is normally held low by R20, C4 is uncharged, and the input applied to IC 4 c is high. The output of IC4c is therefore low and this is applied to the second input of IC4b. As soon as pin 1 of IC4b receives a positive pulse from S3 via R19, the output goes low (being a NOR gate). This is transmitted via C4, which can only charge slowly via R21, to the input of IC4c whose output therefore goes high. This high is applied to the input of IC4b which therefore remains low even if the other input has now gone high. This condition remains until C4 has charged through

Fig. 1 (b) Block diagram of Linear Capacitance Meter
R21 when the circuit reverts to its initial state. The long time constant of C4, R21, was chosen by experience to prevent false output pulses. It is surprising how long human fingers dwell over pushbuttons!

INITIAL RESET

Fig. 3 shows the initial conditions as produced by the "power-up reset" function. The first integrator output VINT is held at zero because IC7b is open and IC7a is closed. The second integrator output is similarly zero. As soon as the push button is pressed the first and second integrators ramp negatively until the first integrator crosses -Vref. At this point the comparator IC3 changes state and disenables the transmission gate IC7c via the NOR gate IC4a. The timing capacitor C 3 remains charged because the off resistance of the transmission gates IC7c and IC7d is extremely high and the input bias current of the CA3140 is extremely low. The output of IC2 continues to ramp negatively until the amplifier saturates. This is close to the negative rail. The circuit is now in a stable state with the meter displaying the measured capacitance. Capacitor C3 will of course be discharging slowly, but the rate is measured in only fractions of a millivolt per second. In the author's instrument no discernable movement of the pointer takes place in a one minute period after completion of a measurement. A second press of the push button initiates a reset and returns the circuit to its initial state ready for the next measurement.

CONSTRUCTION

The circuit was built on a piece of stripboard measuring 36 conductors by 43 holes (see Fig. 4.) and then mounted against the back of the meter, using the meter screws for fixing. The case size or shape is not too important, but the prototype used a plastics box of dimensions $172 \times 100 \times$ 55 mm , and was fairly compact at this size. The battery holders were clamped under a stiff cardboard plate, and fastened by two 6BA nuts and screws.

Fig. 2. Circuit diagram. Cx is the capacitor under test. The MINT line is the measurement period integration signal

Fig. 3. Timing diagram
(a) VINT
(b) RSET
(c) VEND
(d) MINT
(e) $\overline{\text { RSET }}$

COMPONENT SELECTION

A number of components call for some comment, and a few are best selected during setting up of the meter. The use of the relatively new CA3140 operational amplifier is of prime importance in the design. This device is one of a new family of bimos amplifiers which incorporate the advantages of mos and bipolar technologies on a single chip. They seem destined to take over from the 741 in many areas because they can offer greatly improved performance, albeit currently at somewhat increased cost. Both integrators in the present circuit use the CA3140 to minimise errors caused by the integrator capacitor charging (or discharging) via the input bias current of the amplifier. The maximum input bias current for the device is 50 pA (typical 10 pA) at $25^{\circ} \mathrm{C}$ compared with $1 \mu \mathrm{~A}$ for the standard 741. This current is small compared with the smallest charging current used in the circuit, which is 100 nA , and therefore is not a significant source of error. The CA3140 also has a very creditable slew rate of $9 \mathrm{~V} / \mu \mathrm{S}$ making it some 15-18 times faster than the 741, and therefore quite useful as a comparator. In this circuit the positive and negative extremes of the comparator output are directly compatible with the cmos logic circuits. The CA3140 does contain mos transistors in its input stage and is susceptible to the same problems of static as any смоs logic i.c.

Fig. 4. Component layout (actual size). Ensure that the fixing holes are
Electrolytic capacitors may have tolerances as wide as $-25+100 \%$. In multiple time constant systems the meter can be used to ensure that, for example, "period A"' really does outlive "period B" when near-value capacitors are used spaced correctly for the meter being used

In general the accuracy of the instrument is dependent on the range resistors, the timer capacitor C 3 , and the reference voltage Vref. The latter can be set accurately if the constructor has access to a digital voltmeter, otherwise it can be set up with a multimeter to $\pm 2 \frac{1}{2} \%$. The range resistors should be high stability 2% metal oxide types and could be selected with a digital multimeter to advantage. Note, however, that the range resistors are in series with the transmission gates IC7a and IC7c. They therefore define the charging currents only when they are large compared with the "on" resistance of the gates. The typical resistance of a CD4066 at room temperature can be as much as 550Ω. Ideally this device should be selected for low "on" resistance but if this is impracticable the most serious error occurs on range 1 and this can easily be circumvented.

When range 1 is selected the input resistor of the second integrator is nominally $1 \mathrm{k} \Omega$. Thus with a typical CD4066 the actual input resistance defining the charging current would be about $1.12 \mathrm{k} \Omega$ with a worst case of $1.55 \mathrm{k} \Omega$. This would obviously give rise to errors of 12% and 55% respectively, with the indicated capacitance being too small. The simplest solution is to select this resistor by direct calibration with a known capacitor. This is quite simple on this particular range because silver mica capacitors of 100 pF 200 pF of 1% tolerance are cheaply and easily available.

The procedure for calibrating the instrument on this range is therefore as follows. Using $1 \mathrm{k} \Omega$ as the range resistor, press the RUN button and record the reading. Now reset the meter by pressing the button again and place a known 100 pF (or similar value) capacitor across the input terminals and press the button. The difference between the second and first readings should be the value of the capacitor. If the reading is too low reduce the value of the range resistor and vice versa. Alternatively a $1 \mathrm{k} \Omega$ skeleton preset could be fitted. Note that the reason for making two measurements
is that the circuit does not contain provision for eliminating stray wiring capacitance which will be of the order of $5-10 \mathrm{pF}$. This only affects the lowest range and can be otherwise neglected.

The meter multiplier resistances R17, R18, have not been defined because the actual values will depend on the meter movement used. This is not critical since the output of the second integrator is of low Impedance and can swing close to the negative rail. Thus any voltmeter with a sensitivity of 5 V f.s.d. or better could be used directly without R17/R18, because the output is defined in terms of volts $/ \mu \mathrm{F}$ according to Table 1. Alternatively if a current meter is available the multiplier resistors R17/R18 must be used. Two resistors have been specified because in general it is not possible to select a single resistor from the preferred values available to make a meter multiplier. Note that it is essential to know or to measure the internal resistance of a current meter in order to calculate the multiplier resistance. This should be borne in mind if a purchase is made since many of the cheapest meters available through retail outlets do not have this information supplied. The method of calculating ${ }^{1}$ R17/R18 is best illustrated by example. The author had available a $30 \mu \mathrm{~A}$ movement of internal resistance 1400Ω. This is converted to a 3 V f.s.d. meter by a multiplier resistor fulfilling the equation:

$$
\text { Ef.s.d. }=\text { If.s.d. } \times(\text { Rmeter }+ \text { Rmultiplier })
$$

where Ef.s.d. is the required full scale deflection voltage, and If.s.d. is the meter sensitivity for full scale deflection. Thus in the present example

$$
\begin{aligned}
& 3.0=3.0 \times 10^{-5}(1400+\text { Rmultiplier }) \\
& \begin{aligned}
\therefore \text { Rmultiplier } & =10^{5}-1400 \\
& =98600 \Omega
\end{aligned}
\end{aligned}
$$

Resistors	
R1	$4.7 \mathrm{k} \Omega$
R2	$100 \mathrm{k} \Omega$
R4, R8, R9, R12	$10 \mathrm{k} \Omega 2 \%$ m.o. (4 off)
R5, R11	$100 \mathrm{k} \Omega 2 \%$ m.o. (3 off)
R6, R10	$1 \mathrm{M} \Omega 2 \%$ m.o. (2 off)
R7, R14	$10 \mathrm{M} \Omega 2 \%$ m.o. (2 off)
R3, R13	$1 \mathrm{k} \Omega 2 \% \mathrm{~m} . \mathrm{o}$.
R15, R23	$27 \mathrm{k} \Omega(2 \mathrm{off})$
R16	470Ω
R17, R18	see text
R19	$1 \mathrm{k} \Omega$
R20	$1 \mathrm{M} \Omega$
R21	$10 \mathrm{M} \Omega$
R22	$100 \mathrm{k} \Omega$
R24	680Ω

All resistors $\frac{1}{4}$ W 5\% unless otherwise stated. R7 and R14 may be difficult to obtain and so selection from 5% tolerance resistors may be necessary

Potentiometer
VR1 $50 \mathrm{k} \Omega \mathrm{min}$ preset

Capacitors

$\mathrm{C} 1, \mathrm{C} 2$	$1,000 \mu \mathrm{~F} / 12 \mathrm{~V}$ elect (2 off)
C 3	$1 \mu \mathrm{~F} 1 \%$ polycarbonate (Electrovalue)
C 4	220 nF polyester
C 5	100 nF polyester

Transistors and diodes

D1	BZY88 C3V9
D2	l.e.d. red
D3	l.e.d. green
D4	1N4001
TR1, TR2	BC109

\section*{Integrated circuits
 | IC1 | 741 |
| :--- | :--- |
| IC2, IC3, IC5 | CA3140 (3 off) |
| IC4 | CD4001 |
| IC6 | CD4027 |
| IC7 | CD4066 |}

Switches

S1 d.p.s.t. switch
S2 2-pole 8-way (make before break)
S3 push to make (momentary contact) switch

Miscellaneous

B1, B2 4 off HP7 each. Battery holder to suit 4 mm terminals red, black
1 mm sockets red, black
Pointer knob
Meter (see text)
Clips for I.e.d.s
Plastics box (prototype used $172 \times 100 \times 55 \mathrm{~mm}$) Stripboard 0.1in matrix

This can be made up from $91 \mathrm{k} \Omega 2$ and $7.5 \mathrm{k} \Omega$ to an acceptable accuracy from E24 resistors. It is worthwhile making the output voltage of the final integrator available externally if a digital voltmeter is available, because although the accuracy of the instrument is limited, the precision or reproducability is very high indeed. This makes it possible to measure capacitors to better than $\pm 0.2 \%$ providing a known standard capacitor is available to correct the readings.

FRANK W. HYDE

SKYLAB

In March this year space engineers of the USA successfully re-established contact with Skylab. The space station has been dormant for four years. It was necessary to do this as a first step towards the boosting of the vehicle to a higher Earth orbit.

In April a further manoeuvre was made. Another will be needed in or about October 1979. These actions are required because Skylab is losing height faster than was predicted when it was launched in May 1973.

At that time it was expected that Skylab would remain in stable orbit until the 1980s when the Shuttle would be available to assist.
The fear that made these decisions necessary was that Skylab might make an unscheduled and perhaps disastrous reentry and not burn up without mishap. The effect of the early demise of Cosmos 954 no doubt has had some effect on the decision about Skylab. It is perhaps relevant to point out that large units may not completely burn up and that some 5 to 10 per cent may fall to Earth. Should the second action on Skylab, in April, subsequently prove ineffective then the vehicle can be targeted to remote regions of the oceans.

The first corrective move commenced in March. A series of commands were sent to Skylab to activate the receivers and speaker systems. It was expected that the telemetry system would operate even after the interval of four years. The condition of the temperatures and pressures, the orientation of the vehicle in space and the gas that was still available for its thruster motors. The first command did in fact bring a response but this was lost after two minutes.
As the space station passed over the

Bermuda tracking station some 92 minutes later a second command was sent. There was a "hum" response but no data. The flight control then resorted to the back-up system for communication. This was entirely successful. Further commands were then sent to charge the station's batteries from the solar panels. Finally the computer was checked out on March 13th.

If the plans work out successfully then Skylab may have a second lease of life. Studies are already being undertaken as to how the station could be used in conjunction with the European Spacelab brought up in the Shuttle.

If the problems are solved then Skylab might well become the first space platform for the construction of large space structures to collect energy from the Sun or as a launch pad for other missions.

COSMOS 954

The post mortem on Cosmos 954 has so far yielded a few scraps and a little information. The parts that have been found have been radio active at about 20 roentgens/hour. One large piece found in a crater two metres in diameter showed a level of 100 roentgens/hour and was removed in a safety package for examination. New equipment was sent out to search for parts which might have been buried in the ice.
From the information available it has been estimated that the satellite was of 6,000 kilogrammes. Specialists have estimated that a satellite of such mass would have a residue of 5 to 10 per cent which was not vaporised. It would seem therefore that it was as the USSR said, the satellite was intended and indeed did burn up almost completely on re-entry.

The nuclear reactor on board was thought to be about 50 kilogrammes of enriched uranium. It is worth noting that a killer satellite could be used in emergencies of the Cosmos 954 type. It is perhaps a significant point that a few days after the scare the Soviet Union launched Cosmos 967, and in a circular orbit at 66 degrees from the equator. Eight days later Cosmos 970 was launched into a highly elliptical orbit inclined at 65 degrees to the equator. Before one whole revolution had been completed Cosmos 970 had been moved to a more circular orbit and at the same inclination as Cosmos 967, so that it passed close to Cosmos 967. On command from control on the ground Cosmos 970 blew up. It was considered that this was a satisfactory indication that Cosmos 967 would have been destroyed had control so wished when they were close together.

It should be noted that both the USSR and the USA are examining the use of high energy laser beams for use against spacecraft. Already a level of generation has reached hundreds of joules per pulse.
The USA has been attempting to close the gap in defence against satellite vulnerability. One of the most sensitive areas is that of solar "sails". Although they are transparent to most forms of radiation they
are susceptible in the region of the wavelengths which absorb power. The positive step is to remove the solar arrays and use radio isotope generators. Already two US satellites have been fitted with such generators and a range of new applications were planned with generators from 10 to 100 kilowatts. However, President Carter has proposed a ban on reactors in orbit. This is ironic because the USSR has already adopted the thermal isotope generator. At least ten of the recent launchings have had them.

SHUTTLE BOOKINGS
 IN ADVANCE

The US Space Agency is now taking reservations for the years 1982 and 1983. This information comes from the manager of flight cargo schedules, Chester M. Lee.
Iran and West Germany have made partial payments for 1982/83 launches. Japan is considering a spaceflight in 1983. Canada, India and the European Space Agency (ESA) have also reserved Shuttle flights.
Mr Lee said: "We have all the cargo we can handle for 1980 and a few spaces left in 1981."
The Goddard Memorial Symposium on the international uses of the space shuttle and space laboratory drew 400 participants from the United Kingdom, Italy, Canada, Germany, France, India, Japan and the United States. The prime topic at the symposium was the European Spacelab, built by ESA to fly in the Shuttle's cargo bay. This multi-purpose facility will be used for experiments in Earth observations, astronomy, physics, solar and atmospheric chemistry, biology and space manufacturing.
NASA and ESA will equally share the first Spacelab flight, now scheduled for December 1980. Spacelab 1 will be truly of an international content. Spacelab 2, scheduled for April 1981 will carry the experiments of 47 USA scientists and 12 United Kingdom scientists. Among the principal investigators are Allen Gabriel of the Appleton Laboratory and Peter Willmore of the University of Birmingham. Spacelab 1 will be carried by Shuttle Orbiter 102. It is being built in California. The first of its six test flights will take place in June 1979.

JUPITER: PLANET OR STAR

A Soviet scientist has produced some evidence to add to the theory that Jupiter is a star rather than a planet. The suggestion is that Jupiter is either a star in formation or a dying one.

Professor N. Kozyrev of the Leningrad ,Pulkovo Observatory told a scientific 'meeting that the nucleus of Jupiter has a temperature of 196,000 degrees Centigrade. The professor constructed a mathematical model of Jupiter's nucleus and the results of using this model seem to agree with those obtained from astrophysical observations and also from details of the Jupiter heat stream recorded by Pioneer 10 and Pioneer 11 probes.

15 Prize A Scopex 4D10A dual beam oscilloscope worth over $£ 200$.
 illanea Ta PrizeS Two Scopex 4S6 single beam
 oscilloscopes each worth over $£ 140$.

Can you invent or design a novel project that could form a commercial product? We give you the chance to win the financial backing your ideas might deserve. Successful designs may be backed commercially by a Venture Capitalist to develop saleable products and you-as the designer-would receive financial benefit.
Even if your design is not deemed suitable for development you could still win yourself a piece of test gear worth over £200. Some designs may also be published in P.E. as constructional projects and payment will be made at the time of publication-so you could gain in any or all of three ways!
If you do come up with a winning design, who knows, you could soon be a partner in a going concern.

HOW TO ENTER

The contest is for practical items incorporating electronics as a major part of the overall system. There is no restriction on the application, e.g. it could be a video tape recorder or a door bell. It may be for domestic use or for industry.
Entries must be written/drawn clearly on one side of plain paper with the entrant's full name and address at the top of every sheet. Each entry to comprise:
(a) a brief summary of the design (about 50 words);
(b) any such further descriptions, drawings, sketches, photographs and circuit diagrams, etc., you consider the judges may need to form the best appraisal of your design. DO NOT SEND ACTUAL MODELS.
Each entry must have a properly completed entry coupon cut from P.E. firmly affixed to the back of the summary. Entrants may be requested to supply prototypes for evaluation at later stages of the judging. All entries must be in English.

Readers may be assured by P.E. that ideas submitted will not be misused or transmitted to other parties by anyone concerned with the competition.

SEND YOUR ENTRY TO

Practical Electronics Inventors Competition 55 Ewer Street, London, SE99 6YP

PRACTICAL ELECTRONICS INVENTORS' COMPETITION

(Block letters please)
NAME (Mr/Mrs/Miss).
ADDRESS
..
\qquadTELEPHONE NUMBER if any

I certify that

* delete clause NOT applicable
* (a) This entry is my own original idea and has not been copied from any other source;
*(b) This entry has been made on behalf of the company/group members listed and is our own original idea not copied from any other source;
(c) This idea has not been published or offered for publication elsewhere.
1/We agree to abide by the rules and conditions.
SIGNED

SECOND CHANCE

Another free entry coupon will appear next month.
 The closing date is August 31st 1978.

RULES AND CONDITIONS

There is no entry fee nor limit to the number of entries a reader may submit but each entry must be accompanied by a proper printed entry coupon, cut from PRACTICAL ELECTRONICS, and must bear the entrant's own full name and address. Entries will also be accepted from groups or companies, in which case the entry must be submitted and represented by an individual and the other involvements declared on a separate sheet of paper attached to the back of the summary with the coupon.

All accepted entries will be examined by a panel of expert judges including the Editor of Practical Electronics, and assessed on (a) originality of the idea, (b) technical merlt, (c) practicability, (d) economic viability, (e) market potential, (not necessarily in that order). The prizes will be awarded for the best entries in order of merit. In the event of the same idea being submitted by two or more entrants, presentation of the entry (clarity, best expression, etc.) will decide such winner(s) or winning order.
In the event that the judges consider there are not enough entries of a sufficiently high standard, the Editor reserves the right not to award any prize(s) at his discretion.

Entries arriving after closing date will not be considered, nor will any received that are illegible, not wholly understandable, are not accompanied by a properly completed entry coupon or in any other way do not comply exactly with the instructions and rules.

No responsibility can be accepted for entries lost or delayed in the post or otherwise; proof of posting will not be accepted as proof of receipt. No entries can be returned.

The competition sponsors reserve the right to adapt or amend any entry-after judging has been completed-for purposes of publication and/ or commercial development. They also reserve the right to consider any other entries for commercial production. Where any idea is adapted or developed for commercial production payment and/or royalties and/or direct involvement in the company concerned will automatically be negotiated with the designer or person named on the entry coupon.
Winning entries will not necessarily be developed commercially, but Practical Electronics will pay the usual reproduction fee for any entries published.
Ideas already covered by a patent owned by the representer, but not already in or on offer for commercial production, may be submitted but this fact must be clearly stated together with the relevant patent nnmber.
Decisions of the judges, and of the Editor in all other matters affecting the competition, will be final and legally binding. No correspondence will be entered into nor interviews granted.
Winners will be notifled by post and brief details of winning entries published later in Practlcal Electronics.
The contest is open to all readers, but those outside the U.K. may be requested to provide a British address to which any prize may be sent. Development of any idea must take place within the U.K.
Employees and the families of employees of IPC Magazines Ltd., and the printers of Practical Electronics and anyone directly connected with the competition are not eligible to enter.

A PRACTICAL ELECTRONICS PUBLICATION

A SPECIAL SELECTION OF MUSICAL PROJECTS FROM PE

THE MINISONIC MK2 SOUND SYNTHESISER

An up-dated version of the published Mk 1, the Mk 2 has an integral keyboard, two 250 mW monitoring channels and loudspeakers, and facilities for amplitude, frequency and harmonic modulation.

THE JOANNA ELECTRONIC PIANO

has realistic piano effect with touch-sensitive keyboard and additional choice of harpsichord or honky-tonk voicing.

THE ORION STEREO AMPLIFIER

A hi-fi amplifier with output of over
$20+20$ watts. Compact and complete in one unit, it measures only $14^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime}$.

PLUS
Some great sound effects units for guitars, keyboard instruments and general recording.

Available Now
 f1.20

(Please allow at least 2 weeks for delivery)
If you do not wish to mutilate your copy of the magazine, please send your order on a separate sheet.

POST PAID
To: Practical Electronics
IPC Magazines Ltd., Receiving Cashiers Dept.,
King's Reach Tower, Stamford Street, London SE1 9LS
Please send me \qquad copy(ies) of
"Sound Design". I enclose a Postal Order/Cheque for $£ 1.20$ (post paid) or (state amount for more than one copy)
for 2 copies)
PLEASE WRITE IN BLOCK LETTERS
Name
Address

Post code
Remittances with overseas orders must be sufficient to cover despatch bv sea or air mail asrequired. Pavable by International Money Ordar only

Company registered in England. Regd. No. 53626
A subsidiary of Reed International Limited.

Kit Revielu.

THE LPU103 power supply unit reviewed here is one of a new range of kits available from Arrow Electronics. The company claim the kits are of "bug proof" design and because they are only supplied in kit form the minimum of components have been used whilst still retaining a high standard in both performance and reliability.

Nickel cadmium batteries can also be recharged using the p.s.u. with the charging voltages and currents being displayed on the meter of the instrument.

SPECIFICATION

The output voltage of the LPU103 is variable from 0 to 30 V with current limiting available in two ranges: 0 to 100 mA and 0 to 1 A .

The unit can sustain short circuits at full current for considerable lengths of time but because of heat dissipation, when the short is removed the meter calibration will alter by 3-5 per cent until the case temperature is reduced.

Therefore sufficient space must be left around the unit to allow adequate air circulation.

CIRCUIT DETAILS

The circuit of the LPU103 is designed around two 741 operational amplifiers connected as differential voltage comparators, one to control the current and the other the voltage. The outputs of these two i.c.s are fed to a triple Darlington of which one transistor, a 2 N 3055 , is used as the series pass transistor and is mounted on a heatsink.
The problem of output transients when switching the unit on is eliminated by the inclusion of an output switch. This switch allows the unit to be on continuously with the output terminals only showing a voltage when it is on.

TOOLS

The only tools required to build the unit are, small wire cutters, a suitable earthed soldering iron with a $3 / 32$ inch bit, fine nosed pliers, screwdriver, 4BA spanner and, to avoid

Circuit diagram of the LPU103
damaging the front panel when fitting the switches and potentiometers, the correct sized spanners.

The kit includes solder, plenty of wire and also rubber sleeving for the soldered joints.

ASSEMBLY INSTRUCTIONS

If any type of kit is to be constructed successfully clear instructions are of paramount importance. Therefore before starting to build the unit the instructions were read through carefully and using the component list provided each part was checked and identified. The p.c.b.s were also checked for any short or open circuit.

The instructions advised that all the components should be placed so that their values or type printed on the body can be read from above the board to enable them to be easily checked in case of incorrect positioning; with this noted the first of the two p.c.b.s could be soldered.

The assembly instructions are very comprehensive and any constructor who reads them carefully should have no difficulty in successfully building the kit.

CONSTRUCTION

Vero pins were supplied for connecting wires to and from the p.c.b.s and these were inserted using a layout drawing to ensure correct positioning and then soldered to give a good connection to the track.

The instructions gave a point by point soldering guide with a p.c.b. component layout for visual checking.

The only criticism of the p.c.b. assembly was the fitting of a $1000 \mu \mathrm{~F} 63 \mathrm{~V}$ capacitor which according to the instructions should be soldered second. As this is such a large component it was felt that this would hamper the assembly of the rest of the board and so noting its position the board was soldered leaving this capacitor to be fitted last.

After both p.c.b.s had been soldered they were cleaned and checked for any shorts and then placed to one side and the front panel assembly started.

As the front panel of the unit is anodised, care was taken to avoid handling it with dirty hands or marking it when fitting the switches, potentiometers and sockets.
The heatsink and transformer were already mounted onto the chassis so only the power transistor and p.c.b.s had to be fitted. The main p.c.b. had to be filed on one corner to enable it to fit correctly. With this completed the unit was ready for wiring.

To reduce the noise to a minimum in the finished unit the position and length of the interconnecting wires is of prime importance and for this reason the length of every wire used is given.

With the wires soldered into position and sleeved where appropriate the unit was then ready for testing.

TESTING AND CALIBRATION

All the supply connections were rechecked and using a multimeter both phases of the mains lead and earth were tested for shorts. The interconnecting wires were also checked to ensure they were soldered correctly.

With the testing completed without problems the unit was connected to the supply and as the unit worked first time the voltage and current outputs were calibrated.

The final test to be carried out on the p.s.u. was to check the output noise level.
The reading obtained for the output noise was outside the manufacturer's stated limit. The instructions advised that this figure could be improved by adjusting the front panel wiring and after several attempts the best reading obtained was 0.15 mV which was inside the stated limits.

FINISHED UNIT

The LPU103 is a rugged reasonably priced instrument capable of meeting the needs of most constructors. The specification matches many of the more expensive ready built units availablc. As each kit is housed in an attractive hammer finished case with a distinctive red stripe across its front panel, constructors can if they wish build up a complete range of matching test equipment.

The LPU103 kit can be obtained from Arrow Electronics Limited, Leader House, Coptfold Road, Brentwood, Essex. Price $£ 29.99$ (including VAT and Post and Packing).

FOOTNOTE

Peter Clarke of Arrow tells us that he had so many problems trying to get instructions for his kits printed that eventually, being faced with a further three weeks delay, he went out and bought himself a printing machine and the equipment to make the plates. He then taught himself how to print and printed the instructions, all within a week.

It's good to hear of a company that is prepared to take such steps to supply the goods.

Pottery has become a very popular hobby with many amateur potters now possessing their own small electric kilns. Many such kilns are only supplied with an indicating pyrometer and have no automatic temperature control. The sight of a kiln which has been forgotten and gone above its firing temperature is heart-breaking because the clay melts (vitrifies) at high temperatures and can cause many pounds worth of damage to the inside of the kiln.
The unit described here does two things. Firstly, it enables a control temperature to be set, and holds the kiln at this temperature; secondly, it enables the potter to "soak" his glazes, thus improving the glaze quality. The controller can also be used with enamelling kilns.

THE PYROMETER

It is assumed that a thermocouple and indicator (indicating pyrometer) are already fitted to the kiln. Fig. 1 shows how the voltage across the indicating meter varies with temperature. This particular pyrometer is for a stoneware kiln capable of reaching $1300^{\circ} \mathrm{C}$, so the thermocouple will be of the platinum-rhodium type.

CIRCUIT DESCRIPTION

The complete circuit diagram of the controller is shown in Fig. 2. The unit is connected directly across the pyrometer meter at points A and B using nickel-plated terminals and a short length of single-core screened cable. With the high input impedance of ICl (when used as a voltage follower) the connection of the controller across the meter will not affect the meter reading. No cold-junction temperature compensation has been included since it is assumed that the controller

Fig. 1. Graph showing the millivolt/temperature curve of the platinum-rhodium thermocouple
will always be working above $1000^{\circ} \mathrm{C}$, therefore compensation will have little effect.
The output of IC1 is amplified 100 times by IC2. The voltage variation at the output of IC2 is therefore $0-1.3$ volts

Fig. 2. Circuit diagram of the controller

Fig. 3. Kiln up to temperature alarm (optional)

Fig. 5. Main circuit board

Fig. 4. Wiring diagram of the kiln contactor
for the thermocouple response shown in Fig. 1. IC3 acts as a voltage comparator with its reference voltage derived from a temperature-compensated, 6.2 volt, zener diode.

When the voltage of pin 2 of IC3 goes positive with respect to pin 3 (reference) then the output of IC3 will go negative, turning off TR1, de-energising RLA and switching off the kiln. On the author's controller no hysteresis was included as the relatively long thermal time constant of the thermocouple and kiln prevented erratic operation. However, hysteresis may be added by the inclusion of R9 if erratic operation occurs. VR2 should be a ten-turn wirewound potentiometer fitted with a turns counting dial.

Fig. 6. Wiring diagram of power supply unit

COMPONENTS

Resistors

R1, R2, R5, R7, R8	$10 \mathrm{k} \Omega$ (5 off)
R3	$1 \mathrm{M} \Omega$
R4	$2.2 \mathrm{k} \Omega$
R6	$3 \mathrm{k} \Omega$ (see text)
R9	$4.7 \mathrm{M} \Omega$ (see text)
R10	100Ω

All $5 \% \frac{1}{4}$ W carbon

Potentiometers

VR1 $10 \mathrm{k} \Omega 20$-turn cermet trimmer $\frac{3}{4}$ in
VR2 $1 \mathrm{k} \Omega 10$-turn wirewound

Capacitors

C1 $\quad 0.1 \mu \mathrm{~F}$ ceramic
C2 $0.22 \mu \mathrm{~F} 45 \mathrm{~V}$ polycarbonate

Semiconductors

$\begin{array}{ll}\text { D1 } & \text { 1N4148 } \\ \text { D2 } & \text { 1N821 }\end{array}$
TR1 BFY51

Integrated Circuits

IC1, IC2, IC3 741 op amp (3 off)

Switches
S1 5A toggle
S2 1A toggle D.P.S.T.
S3 Single pole on/off toggle

Miscellaneous

Heavy duty relay RS type 348-920 with mounting plate and socket
Chassis mounted fuse holder (2 off)
100 mA fuse (2 off)
Turns counting dial for VR2
Thermocouple
Outlet plug and socket
Diecast box $180 \times 120 \times 60 \mathrm{~mm}$
Contactor (if req.)

Constructor's Note

A suitable outlet plug and socket can be obtained from Harrison Mayer, Craft and Education Division, Uttoxeter, Meir, Stoke-on-Trent.
The catalogue number is 365741 .

CONSTRUCTION

In the prototype the components were soldered on to $0 \cdot 1$ in. matrix stripboard using the layout shown in Fig. 5.

After soldering, the board was mounted into a 180×120 $\times 60 \mathrm{~mm}$ diecast box and secured in position using 6BA countersunk screws and spacers. The heavy duty relay was fitted into the case on a mounting plate and socket.

The mains power supply used in the prototype was a fully encapsulated commercial unit, but any regulated dual supply with an output current of 100 mA could be used. The mains input to the power supply was protected with two 100 mA fuses fitted into chassis mounted fuse holders.

If the kiln to be used is fitted with safety switches on the doors a mains contactor is normally fitted in the back compartment. If it is not, a suitably rated contactor should be fitted into the back compartment and can either be permanently wired to the controller using high temperature cable or by using an outlet plug and socket. If a plug and socket is to be used care should be taken to ensure that it is capable of handling the high temperatures involved. For this reason it is recommended that constructors use the type given in the component list.

A "kiln up to temperature" alarm circuit is shown in Fig. 3. This unit can be incorporated into the controller if required using the relay contact RLA2. The 4.5 V battery, switch 3 and the buzzer were all enclosed in a separate case outside the unit.

SETTING UP

Those constructors with access to a high impedance d.c. millivoltmeter or a d.v.m. can produce a millivolt/temperature curve for their own thermocouple
If a chrome-alumel thermocouple is used its output will be approximately four times that shown in Fig. 1 and the resistor R6 should be lowered so the reference voltage V can be varied from zero to Vt :

$$
\text { Where } \mathrm{Vt}=\mathrm{mV} \times 100
$$

At the highest working temperature needed.
With R6 selected the input leads should be shorted together and VR1 adjusted to give zero volts at the output of IC3. The unit can either be calibrated by applying known millivolt levels to the input of the IC1 and adjusting VR2 until the relay de-energises or it can be directly calibrated in use from the pyrometer reading.

When in use the controller should be placed a short distance away from the kiln, otherwise the components will become overheated.
Finally a table (or graph) showing the setting of VR2 against temperature cut-out should be produced.

CHAMP-U.V.

THE combination of CHAMP and CHAMP-PROG produces' a microprocessor development system which can be used not only to experiment with software techniques, but also to produce other working microprocessor systems with dedicated PROM based programs and hardware interface circuitry which has been fully tested in advance on the CHAMP breadboard.

This month we conclude the CHAMP series with a deeper examination of the uses to which CHAMP-PROG can be put, and with the constructional details of the CHAMP-U.V. рROM erasing system.

USING CHAMP-PROG

You may remember that in part one of the CHAMP series we stated that CHAMP-PROG extended the CHAMP system not only in its role as a PROM programmer but also as a system for copying data already stored in a prom back into the CHAMP program ram. A facility for copying data into ram makes the whole system even more flexible and allows the following:
(i) Programs can be "dumped" into a Prom to release the valuable CHAMP смOs RAM area for more pressing jobs with the knowledge that the original programs can be easily reloaded into ram when necessary.
(ii) PROMS can be modified by loading their contents into CHAMP ram, making the necessary changes, and then reloading the erased PROM with the updated contents.
(iii) Proms can be "insert/delete" edited using the relocating ability of the PROMPT program.
(iv) PROMs can be duplicated by first copying them into RAM and then using CHAMP-PROG in the usual way.
The PROMPT software published last month does not have the ability at present to load data back into ram, because there simply was not room in the single 4702A chip to do this. The PROMPT program is, however, laid out in such a way that it is very easy to produce a new version, say PROMPT II, which will perform this useful function. Before you start to groan at the prospect of another financial outlay for software, remember that if you already have a CHAMP-PROG and PROMPT, then PROMPT II will only cost you the price of
an additional PROM because of course you can now do all the programming yourself! In addition, the generation of PROMPT II makes an excellent introduction to the use of the CHAMP-PROG system, and so we have treated the production of this new firmware as a worked example accordingly.

WUNBYTE II

If you examine the flowchart and listing of PROMPT published last month you will notice that the only part of the program directly involved with the programming hardware is the subroutine WUNBYTE which addresses the source and destination, and generates with software the accurately timed program-enable pulse. To generate the new PROMPT II firmware all that is required is the replacement of this subroutine by a new one which transfers data in the other direction. The new subroutine can be called WUNBYTE II and does not need to be as lengthy or as complex as the original because there is no longer a need for the program-enable timing counter. A listing of the new subroutine is shown in Fig. 10.1. and as you can see WUNBYTE II starts at the same address as WUNBYTE so that the JMS WUNBYTE call is still effective. The new subroutine is shorter than the original, but this is of no consequence because the BBL instruction will pop the stack as usual, and operations will recommence at the line immediately following the JMS.

Apart from the new subroutine and an area of blank space following it, the rest of PROMPT II is identical to the original PROMPT, and of course the new PROM is destined for the same socket on the CHAMP main board, where it can be used alternately with the original when required.

PROGRAMMING SEQUENCE

To create PROMPT II the following sequence must be followed.
(i) Connect up CHAMP-PROG to CHAMP and connect the mains supplies. Ensure that CHOMP and PROMPT are in their respective sockets on the CHAMP main board, and place an erased PROM in the CHAMP-PROG programming socket.
(ii) Switch on CHAMP and enter the 56 lines of WUNBYTE II into CHAMP program RAM starting at, say, address 200 H (you could of course start anywhere in the CHAMP ram space).
(iii) Press reset then test to enter PROMPT, turn on the CHAMP-PROG mains, and then enter Adrl, Adr2 and Adr3 as follows to copy WUNBYTE II into the new PROM at location 15AH.

Adr1 $=200 \mathrm{H}$ (for example)
$\mathrm{Adr} 2=237 \mathrm{H}(200 \mathrm{H}+56$ decimal $)$
Adr3 $=05 \mathrm{AH}$ (destination in PROM)
(Remember to turn the PROM POWER switch to the ON position immediately before pressing the ENTER DATA button after Adr3 has been keyed in).

(iv) When the "done" message is displayed, turn the PROM POWER switch to the off position and then press reset and test to re-enter PROMPT. Enter the following addresses to copy the part of PROMPT before WUNBYTE into the new PROM, and then initiate programming in the usual way.

```
Adrl = 100H (start of PROMPT)
Adr2 = 159H
Adr3 = 000H (start of PROMPT II)
```

(v) When "done" is displayed once more, turn the Prom power switch to the off position, and then press reset and test to re-enter PROMPT. The following addresses are then entered to program the remaining part of PROMPT into the new РROM in the usual way.

```
Adrl = 1A6H (start of MATCH)
Adr2 = 1FFH (end of PROMPT)
    Adr3 =0A6H
```

(vi) When "done is again displayed turn off the Prom power and remove the newly programmed PROM. PROMPT II now lives!

USING PROMPT II

Apart from the subroutine WUNBYTE, the new PROMPT II is identical to the old one, and addresses are entered exactly as before with the same meanings:

Adr $1=$ start of source data
Adr2 $=$ end of source data
Adr3 $=$ start of destination area
The important difference is of course that the source addresses now refer to a PROM in the programming socket, and the destination address refers to a location in CHAMP program ram. This also means that the most significant digit of addresses 1 and 2 is redundant and can be set to anything (usually zero to avoid confusion), and that the most significant digit of Adr3 now becomes important and is used to select the destination chip in CHAMP program ram. Provided you think in terms of source and destination rather than RAM and $\mathbf{P R O M}$ no confusion should arise when swopping

TITIE			WUNBYTE II				mate 09 of 78
							Pact \ddagger, 2 cr 3
HEx			Bİ	Hexiolic			
Page	Live	ROM	CODIEO	LABEL.	OFERATIOE	OPERS.SD	momasws
	$6:$	E4			WRO		IN PROM
	1	A2			LD	2	
	2	E5			WR 1		
	3	D2			LDM	2	ADIRESS 42.65 No 2
	4	FD			DC L		
	5	29			$5 R C$	9	
	6	OB			SBI		SELET REG. BANK 1
	1	EC			RDO		
	8	F_{4}			CMA		COMPLEMENT IT,
	9	B1			$\times \mathrm{CH}$	1	PUT IN REGI
	1	ED			RD 1		READ PROM ($2^{\sim}{ }^{\text {N }}$ NIBELE $)$
	H	F_{4}			CMA		COMPLEMENTIT
	c	Bo			XCH	0	PUT IN REGO.
	,	DO			LDM	0	
	${ }_{5}$	Fs			DCL		
	F	20			FIM	8	SELECT DATA RAM
1	70	10			1	0	CHIPO REG 1 , OHARO
	1	29			SPC	9	
	2	Al			LD	1	
	1	EO			WR M		STPRE $1^{\text {Et }}$ NIBRLE FOR MACH.
	4	69			INC	9	NEXT RAM CHAP
	5	29			SRC	9	
	6	AO			LD	0	STORE $2^{\text {NO }}$ NIPBLE FOR MATCH.
	7	EO			WRM		
	-	28			FIM	B	
	9	00			0	0	ADVESS CORRECT
	\wedge	29			SRC	9	(PROGRAM RAM
	B	BE			LD	E	DESTINATION CHIP
	c	E1			WMP)
	D	2 D			SRC	D	SELECT RRCGRAM RAM
	8	Al			$L D$	1	BYTE
	?	E3			WPM		WRITE $1^{\text {st }}$ NIBBLE

Fig. 10.1. WUNBYTE II program listing
from one PROMPT version to the other! Data transfer is initiated as usual by the depression of enter data after keying in Adr3, although now the "done" message is displayed almost immediately because the transfer to ram is very much faster. When using WUNBYTE II, there is no need to turn the program power switch to on of course, since all the necessary power is supplied by CHAMP itself.

OTHER POSSIBILITIES

No doubt many readers have spotted the fact that with extra PROM space available on CHAMP, the two versions of PROMPT could both be available simultaneously, and of course there would be no need to duplicate all of the original PROMPT, only the WUNBYTE II would be needed, with some means of selecting which subroutine is used by PROMPT when it is run. (This would require a reference to switches, and the enter data and enter address buttons could easily be redefined for this purpose.)

Of course the addition of an extra PROM or Proms is a major modification to CHAMP, but this could nevertheless be done without too much trouble.

If you did add this extra Prom it would of course be mostly empty, and then your thoughts could turn to what other goodies you could add to the system. How about a WUNBYTE III which would not transfer data but simply check one area against another, thus providing a new VERIFY facility in fact. Or how about a WUNBYTE IV which would be used to move data around in CHAMP ram and would not need the benefit of CHAMP-PROG at all. Insert/delete editing would be possible with WUNBYTE IV providing some spare locations were left at the start of a program (think about it). Flow charts for these other WUNBYTE variants are shown in Fig. 10.2 and these could be the source of a lot of fun for CHAMP users, with many other possibilities no doubt suggesting themselves as experience is gained.

PROM ERASER

An essential companion to a PROM programmer like CHAMP-PROG is of course a PROM eraser, and fortunately these units are not difficult to build. All that's really required is a lightproof box with a short wave ultraviolet (U.V.) lamp mounted inside it and a resting place for the proms being erased. We decided against the minimal "lash up" approach to the design of an eraser at a very early stage for two very important reasons:
(i) Short wave U.V. light at the correct wavelength of 2537 Angstroms can be harmful to living organisms, and this of course includes CHAMP programmers!
(ii) Over exposure of 4702A proms to the erase light can shorten their life.
In order to avoid the implications of both (i) and (ii), a good deal of thought was put in to make CHAMP-U.V. safe for both the programmer and Prom. Technically, there is no real problem to building a PROM eraser, short wave lamps are available from specialist companies such as Anderman who seemingly stock them primarily for medical purposes. The lamps resemble normal 8 watt fluorescent strip lights, and use exactly the same miniature 2-pin base, and the same ballast choke and starter. Lamp power is provided by the usual 240 V a.c. mains supply. The required integrated light dose, which is defined as intensity \times exposure time, is stated by Intel to be six Watt-Seconds per square centimetre, and this can be provided quite quickly by the small 8 W tubes when they are placed within lin of the PROM.

CHAMP U.V.

CHAMP-U.V. is built in a plywood case measuring $380 \times 140 \times 100 \mathrm{~mm}$ and is completely self contained. Eye safety is ensured by the use of a microswitch which will not allow the lamp to light until the lid is closed and secured. PROM safety is ensured by the incorporation of a clockwork timeswitch which allows "set-and-forget" erasing to be undertaken.

Fig. 10.2. Flowcharts for WUNBYTEs II, III \& IV. Note: WUNBYTEIV makes a RAM block-move possible. Source and destination blocks can overlay each other, but with an incrementing address counter data can only be moved down in RAM, if over-writing unused source data is to be avoided. Modifying PROMPT to permit address decrementing would be possible, and would allow data to be moved up (i.e. to a higher start address). WUNBYTE IV allows program blocks to be moved aside to make room for single extra instructions when required

The circuit of CHAMP-U.V. is shown in Fig. 10.4, and as you can see, after the complexities of CHAMP and CHAMPPROG, CHAMP-U.V. should come as a spot of light relief! The microswitch, which is operated by the box lid, is in series with the mains input, as is the clockwork timer. The neon mains indicator is wired to show that mains is applied correctly when the lid is closed, and not to show that the timeswitch is still on. The timeswitch itself makes a distinct sound rather like the ticking of a time-bomb when active, and so there seemed little need for additional facilities to announce the end of an erase cycle. The timeswitch can be set by means of a knob inside the case to provide erase cycles ranging from zero to thirty minutes, with periods of about twenty minutes being the norm for 4702 A devices.

The lamp is mounted lengthways in the lid of the case and provides a full 200 mm of active length for the erasure of proms. A total of twelve proms can be erased simultaneously when required, and these are mounted on a strip of conductive plastics foam which is located immediately under the tube when the lid is in the closed position.

CONSTRUCTION

The CHAMP-U.V. case is made from 8 mm plywood and is pinned and glued together using simple butt joints. The best way to build the case is to start by assembling the body and the lid as one piece and then to saw the resulting box completely through to separate the lid. Plywood runners are

(a) Basic case dimensions

(b) Plywood parts

MICRO SWITCH
RUNNERS a \& b $300 \times 15 \times 10$ $300 \times 15 \times 10$
$60 \times 15 \times 10$ $60 \times 15 \times 10$ $60 \times 15 \times 10$
$40 \times 45 \times 10$

ALL DIMENSIONS IN mm

(d) Internal layout of case

Fig. 10.3. Constructional details of CHAMP-U.V.

(e) Aluminium parts

Fig. 10.4. Circuit diagram of CHAMP-U.V.

Fig. 10.5. Wiring layout of U.V. unit

It is most important that the lid operated microswitch feature of this design is incorporated, to immediately switch off the U.V. tube when the top is lifted. The optimum position for the microswitch is near the front of the box as shown in this photograph

Ultraviolet tube. 12 inch, 8 watt, 2537 Angstrom Choke. Smart \& Brown 69386, 8 watt, 0.16A (or similar).
Starter. GEC 155/100 (or similar).
Timeswitch. 30 minute clockwork timer unit. Contacts closed during timing period, and of mains rating. (Available from many surplus suppliers).
Microswitch. 240 V a.c., 2A, with leaf spring and actuating plunger.
Neon indicator lamp. 240 V type.
Miscellaneous. 2-pin tube sockets. 3-way terminal block, 4 mm and 8 mm plywood, aluminium sheets, etc.
The U.V. tube is available from Anderman \& Co. Ltd., Central Avenue, East Molesey, Surrey KT8 OQZ.

WARNING

It is essential that these U.V. lamps are used correctIy if health damage through U.V. exposure is to be avoided. Observe the manufacturers caution fully:
then pinned and glued inside the box to locate the timer panel and the PROM panel, which are both cut from aluminium sheet. Two aluminium brackets are also cut out and bent to form a PROM carrier which can be lined with conductive plastics foam when the rest of the case is completed (Fig. 10.3).

The lid is attached to the body of the case by means of a plastics piano hinge secured externally with small woodscrews, and this hinge, together with aluminium shuttering glued along the other three edges of the lid, ensures a lighttight seal for complete safety.
The U.V. lamp bases are fitted to the inside of the lid with the aid of small plywood blocks, and the starter, ballast and a terminal block are secured to the bottom of the case using small woodscrews and nuts and bolts. The microswitch is secured to the inside of the case with small woodscrews, and must of course be carefully positioned to ensure correct operation when the lid is closed. A small plywood fillet is mounted in the case lid to actuate the microswitch.

Wiring up should be carried out with mains quality flexible

FREE OFFER NOTICE

No further Intel Programming manuals are available, but many MCS Users Manuals remain. These will continue to be sent free of charge on receipt of an 8×10 inch envelope with $25 p$ stamp ($32 p$ 1st class).
wire in accordance with Fig. 10.5. Notice that the aluminium panels must be connected to the mains earth for safety reasons.

When wiring up is completed, the unit can be connected to the mains and tested for correct operation. A conventional fluorescent tube could be substituted for the U.V. version during the testing phase if it becomes necessary to operate the lamp with the lid open.

The prototype case was finished with aerosol paints and polyurethane varnish using the same techniques as before on CHAMP and CHAMP-PROG. Finally, a carrying handle should be screwed to the lid of the case, and an attache case latch screwed to the front to hold the lid closed for transportation purposes.

USING CHAMP-U.V.

Complete erasure of proms prior to reprogramming is absolutely essential for reliable operation. The erasure process is a linear one and does not occur suddenly, and so even when a cell location appears to be erased, further exposure may be required to reach a satisfactory level of gate discharge.

A CHAMP-U.V. system built as described will probably erase all 4702A type proms satisfactorily if they are given a 20 minute exposure, but for greater accuracy, system calibra, tion can be an advantage. This is achieved by programming a PROM with all "ones" (FFH in every location) and then giving it short erase increments of say, 2 minutes; checking after each increment for proper erasure. When the chip appears to be completely erased, note the time required and in normal practice always use a cycle of five times that duration.

This calibration need only be carried out once, since PROMS are very consistent in their requirements, and a factor allowing for ageing in the lamp tubes has been incorporated.

PROM PREPARATION

Before erasure, always check the quartz window on the PROM for any dirt particles which may cause shadows on the chip, and also wipe them over with a swab soaked in methylated spirit to remove any films which may be opaque to U.V. light. This latter precaution is particularly nedessary if gummed labels have been used to cover the PROM when in use.

CHAMP-U.V. is quite capable of erasing any U.V. sensitive PROM including the larger capacity 2704 and 2708 types. The 2704/2708 chips do, however, use a different technology and generally require exposure periods of up to one hour for correct erasure. If CHAMP-U.V. is to be used to erase these devices exclusively, a clockwork timer with a one hour endurance could easily be substituted instead of the thirty minute unit specified earlier.

CONCLUSION

This brings us to the end of the CHAMP series, and we feel sure that everyone who has successfully built all, or part, of the CHAMP system will share our enthusiasm in the results obtained. Our CHAMP is in constant use and has been used to develop several dedicated systems and some "just for fun" software. There are of course many possibilities for additions to the basic system, and we will be glad to hear from anyone who has specific needs which may be catered for in subsequent articles, and from those who wish to pass on programs or hardware designs to their fellow CHAMP enthusiasts.

Meanwhile, the CHAMP programming service for CHOMP, PROMPT, and user programs will continue to be available as long as it is required.

Good luck, and successful programming!

Copies of Patents can be obtained from :
the Patent Office Sales, St. Mary Cray, Orpington, Kent Price 95p each

3111 viraine

Several circuits for enabling a wouldbe singer to perform along with a solo voice on a pre-recorded disc or tape, the pre-recorded voice being routed to one loudspeaker of a stereo pair and the amateur voice to the other have recently been patented by Sony. Now, in BP 1477 217, Sony patent what is the logical conclusion of this train of patenting activity-a circuit for eliminating a featured solo voice and enabling would-be singers to replace that voice with their own.

The circuit, Fig. 1, shows a right channel amplifier TR1 operating as an emitter-follower. The left channel amplifier TR2 is operable, under switch control (S1), either in similar manner as an emitter-follower or as an inverting amplifier, e.g. common-emitter configuration.

The adders 1, 2 and 3 together combine the signals from the left and right amplifiers with that from a microphone X 1 into which the would-be vocalist sings. The adder outputs are then fed to tape recorder amplifiers with playback through the loudspeakers.

A stereo source from conventional disc or tape, is applied to the inputs of the left and right amplifiers and the right stereo signal is applied to adders 1, 3. The left stereo signal is, in one position of the phase switch S1, inverted in phase. In the alternative switch position, the phase is non-inverted

It is here important to note that the featured solo sound on a conventional recording (which solo sound the Sony circuit is required to eliminate and replace with an amateur sound) is recorded in phase and in equal amplitude in both channels. In the inverting state
of the left channel amplifier, the adder 2 is supplied with amplified right stereo signal, including the original common solo signal components, along with the phase-inverted left stereo signal, which now includes the same solo signal components as the right but in opposite phase. Adder 2 thus subtracts right from left and in so doing cancels the common solo components.

Fresh solo sounds, produced by microphone X 1 , can now be added at 1, 2 to the remaining signal, which corresponds to instrumental accompaniments. The reproduced sound thus corresponds to the original accompaniment, plus fresh solo. For the purposes of comparison, a mono mix of the original solo and accompaniment can be reproduced by the left channel loudspeaker either simultaneously or alternatively with the replacement mix.

Fig. 1

13 AMP SOCKET TESTER

Here is a tester which could have started out as an idea in Ingenuity Unlimited. It is a very compact 13 amp plug with two indicator lights to show up live, neutral or earth faults.

A positive must for any "sparks" tool box, contractors, installation engineers.

The retail price is $£ 3.95$ and quantity discounts are available from Galatrek Engineering, Scotland Street, Llanrwst, North Wales. (0492 640311).

Inventive minds that would relish the opportunity of materialising an electronic idea into a commercial product with financial backing should turn to page 728.

ACE CARD

The Casio Mini Card calculator is the same length and width as a playing card. It is as thin as two ice cream wafers. Being so thin it is fragile and in fact will flex without much force. Nevertheless, for the careful user it is an extremely compact shirt pocket masterpiece of miniaturisation.

The LCD display will show up the respective sign when any of the four basic mathematical functions are performed. There are memory plus and minus keys, memory recall, a per cent function and clear and all clear keys.

If an overflow of the eight digit display occurs during calculation, in an answer or in the memory, an E appears and further operations are halted until the all clear key is pressed.

A couple of G-10 silver oxide batteries give approximately 1,000 hours of continuous operation.

Designated the LC-78, it is available at $£ 16.95$ from Tempus, 19-21 Fitzroy Street, Cambridge, CB1 1EH.

KITCHEN QUARTZ

Smiths Industries have introduced a range of domestic quartz clocks under the brand name "Astral".

The model shown is the "Melanie Pendulum", with blue or brown pattern and battery powered decorative pendulum, at £18.95.

For those not wishing to be pendulous the price is $£ 11.50$.

NON TIC TAC

This LCD alarm clock is the size of a packet of razor blades and has a quiet but effective waking tone, a pleasurable change from the old analogue fire bells.

Some digital alarms require a considerable amount of button pushing if an earlier alarm time is needed. This little fellow cleverly uses simultaneous button pressing to advance in 10 minute jumps or straight from a.m. to p.m. etc. Inadver tent resetting is prevented by the incorporation of a hold down setting lock.

Its logic element is mos-LSI and for insomniacs there is a backlite(sic). The operating instruction booklet does read a little funny at times-"The reminder alarm will ring when the local time four minutes before it automatically cuts off."

Clock accuracy is the familiar ± 30 seconds per month.

The model, TAC-1, which gets its name from the abbreviation of Travel Alarm Clock, is available at $£ 22 \cdot 50$ from Tempus, 19-21 Fitzroy Street, Cambridge.

Tempus also offer a battery change kit-watch case opening tool, battery specifications chart, replacement instructions and non-metaliic tweezers-all for $35 p$. Watch batteries 65 p each

SMOKE DETECTOR IC

A single chip smoke detector i.c. is announced by Siliconix of Swansea. The SM110 operates from a standard 9 volt alkaline battery with a current drain of less than 10 microamps in the standby mode. Its input-impedance is very high making it suited to photoelectric sensors; the output needs only a simple drive circuit to power either a piezoelectric or electromechanical horn.

Other features include a very low input leakage current, adjustable sensitivity, noise input suppression, adjustable sourcing current and trouble signal timing as well as latching and non-latching operation.

The price of the SM110 is $£ 2$. A 12.6 volt version, the SM120 is also available, price soon to be announced.

Full data from Siliconix Ltd., Llanllienwen Close, Morriston, Swansea, SA6 6NE.

SEMINAR ON CASSETTE

Late last year Intel held a very successful two-day Memory Designers Seminar at Wembley, London. The proceedings of this seminar were recorded and are now available on C-120 cassettes complete with slide book and explanatory manual.

AVP811 CCD Memory Devices and Systems

AVP812 Static and Dynamic rams $£ 4$ £4
AVP813 EPROMS and 22-pin 4K RAMS
AVP814 Memory Design with 4K £6 and 16 K RAMS
AVP816 Debugging a Memory £4 System
AVP817 The complete set £15
Intel Corporation (UK) Ltd, 4 Between Towns Road, Cowley, Oxford OX4 3NB.

MINI-REEL

The Burgess mini-reel extension cable is fitted with a twin 13 amp outlet and eight metres (26 feet) of three core cable.

A thermal and current overload cut-out permits normal usage of up to six amps.

Weighing less than a metric bag of sugar the mini-reel has a recommended price of $£ 8.35$ plus VAT.

PRICE REDUCTION

Ampex has announced a price reduction, effective immediately, on the Ampex 220 demagnetizer and headcleaner.

The demagnetizer and headcleaner is a special cassette patented by Ampex in which a rotating ceramic magnet is used to degauss the head of a cassette recorder or player. Simultaneously, a strip of nonabrasive fabric is transported by the machine to clean the head and tape path. This enables the recorder/player to deliver its best performance.

The Ampex demagnetizer cassette works automatically without batteries or mains power and can be used hundreds of times without reduction of its effectiveness.

From its former recommended retail price of $£ 3.32$ p, the Ampex 220 demagnetizer is now reduced to a recommended price of $£ 2 \cdot 89$.

Ampex magnetic tape products are available throughout the United Kingdom, from leading hi-fi and record shops. Ampex International, 72 Berkeley Avenue, Reading, Berks.

BIG LED

A large (20 mm) l.e.d. display has been placed on the market by Hewlett-Packard. The new HDSP- 3400 series numeric device is the largest display in HewlettPackard's seven segment product line which starts at 2.6 mm .

Readable in bright light at distances of up to ten metres the big l.e.d. is designed for use in electronic instruments, point-of-sale terminals, television sets, weighing scales, digital clocks and other applications requiring low power consumption in a large, easy to read display.

Packaging is standard 15 mm d.i.l. Price $£ 1.80$.

Data, Hewlett-Packard Limited, King Street Lane, Winnersh, Wokingham, Berkshire, RG1 5AR.

IC MOTOR CONTROL

A range of hybrid i.c.s in TO3 8 pin packages for the control of motors up to $0 \cdot 1$ horsepower from low level inputs, has been announced by Rapid Recall.

The devices comprise of a 741 operational amplifier, a special driver chip and a complementary pair of power transistors together with a frequency compensating capacitor all enclosed in a TO3 package. The internal circuitry is electrically isolated from the outer casing thus allowing easy heat sinking.

There are three basic models which differ in output current capability. They are 8510 (1 amp), 8520 (2 amp) and 8530 (2.7 amp), all of which will provide maximum output current at output voltages up to 24 volts. Multiple devices can be connected in parallel to provide even higher currents or voltages. Each device is available in two temperature ranges: -55 to $125^{\circ} \mathrm{C}$ (suffix M) and -25 to $85^{\circ} \mathrm{C}$ (suffix I).

The chip has short circuit protection, the maximum current of which is set by a pair of external resistors chosen to suit the application.

The 741 is powered by an internal regulator and will provide a gain of $>100 \mathrm{~dB}$ if required. Quiescent current of the unit is only 50 mA max.

An interesting application of the device is in programmable power supplies. The input can be coupled to a digital-to-analogue conventer which can, in turn, be controlled by thumbwheel switches, This arrangement allows the output voltage to be set to within $\pm 0 \cdot 1 \mathrm{~V}$ d.c.

Further details obtainable from Rapid Recall Limited, 9 Betherton Street, Drury Lane, London WC2H 9BS.

RECHARGEABLE IRON WITH SPOTLIGHT

A new version of the Engel B50 rechargeable soldering iron is available.
The iron now incorporates a built-in spotlight to illuminate the working area and has long life rechargeable nickelcadmium batteries. Of compact design, the B50 will give up to 100 intermittent operations (350 continuous). Recharging can be performed overnight in about eight hours (overcharging is impossible).

The trigger switch is fitted with a safety catch to prevent accidental operation. The bit, for work up to $2.5 \mathrm{sq} . \mathrm{mm}$, heats up to an operating temperature in the region of 350 degrees centigrade in about seven seconds. Other bits are available.

Designed for recharging from normal AC mains, the B50 comes complete with cleaning pad, protective cover, two lighting fittings and screwdriver. A particular advantage is that no stray eddy currents which might damage a sensitive i.c. are generated when the iron is being used.

Priced at $£ 16.50$ including carriage, packing and VAT it is available only from the UK agents, Kelgray Products Ltd., Kelgray House, Sandy Lane, Crawley Down, Sussex RH10 4HS.

HIGH quality stereo headphones have been available for many years now but they are usually considered as merely an adjunct to a full scale stereo system. This is a pity since even a relatively cheap pair are capable of the kind of reproduction usually associated with expensive speakers. There are also many situations which preclude the use of a speaker system at orchestral levels whereas a pair of headphones will deliver the same sound levels with an input of a few milliwatts, without disturbing the neighbours!
It was these thoughts that prompted the design described in this article. The main requirements of such an amplifier are the same as those for any hi-fi unit with the main problem being the minimisation of noise, especially hum.
The amplifier must also possess a fairly high input impedance in order to match most signal sources. In the development stage many different circuits were considered but most were found not to measure up to the requirements already outlined.

Fig. 1. Circuit diagram of one channel of the Headphone Amplifier

Consideration was given to the inclusion of Baxendall tone controls but this was rejected on the assumption that the amplifier would be used mainly as a monitor of high quality sources, many of which would already provide such control.

Sensitivity is 20 mV for maximum output, and as this is very high it is recommended that a potential divider, or a log. volume control is used in front of the amplifier. This should have a value of at least $220 \mathrm{k} \Omega$ in order to avoid shunting the input impedance of the circuit.

CIRCUIT DESCRIPTION

The circuit diagram of one channel of the headphone amplifier is shown in Fig. 1. The transistor TR1 which is connected in the common emitter mode provides all the voltage amplification for the circuit.

ICI is a 741 op . amp. which is used with 100 per cent negative feedback and operates as a voltage follower with unity gain. In this mode the bandwidth extends from d.c. to over

Fig. 2. Series regulator circuit which can be used if the unit is to be fitted into an existing piece of equipment.

Fig. 3. Circuit board layout for Headphone Amplifier

100 kHz .

The non-inverting input of IC1 is taken from the collector of TR1 and the i.c. used as a non-inverting amplifier with signal feedback applied via R6 to the base of TR 1 .

The complete circuit acts as a virtual earth amplifier, the gain of which is determined by the ratio of R 5 to R6. The output power available from this arrangement is limited to about 25 mW , which proved sufficient to deafen most listeners!

The current consumption of the circuit is about 6 mA and it can be operated either from a 9 V battery or the series regulator circuit shown in Fig. 2.

COMPONENTS . . .

Resistors		
R1	R101	$100 \mathrm{k} \Omega$ (2 off)
R2	R102	$560 \mathrm{k} \Omega$ (2 off)
R3	R103	$68 \mathrm{k} \Omega$ (2 off)
R4, R5	R104, R105	27 k ת (4 off)
R6	R106	$1 \mathrm{M} \Omega$ (2 off)
*R7		$1 \mathrm{k} \Omega$
Capacitors		
C1	C101	$25 \mu \mathrm{~F}$ (2 off)
C2	C102	$100 \mu \mathrm{~F}$ (2 off)
C3	C103	$100 \mu \mathrm{~F}$ (2 off)
C4		1,000 $\mu \mathrm{F}$
All 25 V electrolytics		
Semiconductors		
*D1		BZY 8810 V
TR1	TR101	BC109 (2 off)
*TR2		BFX 84
IC1	IC101	741 op. amp. (2 off)

Miscellaneous

1 off 0.1 in matrix stripboard
2 off stereo jack plug and socket (see text)
1 off PP3 battery (see text)
1 off battery clip (if req.)
2 off holder for i.c. (if req.) 1 off S.P.S.T. toggle switch (see text)

[^2]
CONSTRUCTION

In the prototype both channels of the amplifier were mounted on $0 \cdot 1$ in Veroboard using the layout shown in Fig. 3.
Care should be taken to ensure that the appropriate breaks are made to the copper tracks and that all the electrolytic capacitors are correctly orientated before soldering them to the board. The two i.c.s can either be mounted in holders or soldered directly onto the Veroboard.

After soldering, the board was checked for any solder shorting the copper tracks and the excess flux was also removed.
The output connections from the circuit board to the headphones were made via a stereo jack socket and the two input leads to the amplifier were made using screened cable. The screened lead of each cable should be connected to the 0 V line.

HOUSING THE UNIT

The amplifier can either be housed in an existing piece of equipment or in a separate case.
If the unit is to be installed in an existing piece of equipment the series regulator circuit shown in Fig. 2 could be used with the inputs of both channels connected internally and the jack socket fitted to the control panel.
The prototype is used as a piece of test equipment fitted into a separate case and powered by a PP3 battery.
The two screened input leads were terminated using another stereo jack socket and an on/off switch was fitted to the positive lead of the battery.

USES

The headphone amplifier has many applications, the prototype being used mainly for checking f.m. tuners on the author's bench.

Radio Circuits Explained
By Gordon J King
Published by Butterworth Co Ltd
145 pages, $160 \mathrm{~mm} \times \mathbf{2 4 0 \mathrm { mm } \text { . Price } \mathbf { 5 5 } 5 0}$

T
here have been many advances made in the field of radio circuits and with the introduction of new devices many different design ideas are being incorporated into modern receivers. The problem for both the technician and hobbyist is keeping abreast of these advances.

This book examines the developments made and explains the principles involved in each section of the receiver with the aid of clear diagrams and graphs.
The opening chapters cover block flow and FIMS diagrams and progress through mixers, RF amplifiers and oscillators to detector circuits. Basic audio and power amplifiers are discussed and with the use of manufacturers' diagrams it is shown how they are employed in practical circuits. Also included are power supplies and regulators with the final chapter dealing with stereo coding and decoding.

Many people should find this book very helpful in developing a clearer understanding of the techniques used in modern radio circuits.
D.J.S.

THIS probe was designed to enable temperature measurements from -10 to $100^{\circ} \mathrm{C}$ to be made using the $0-100 \mathrm{mV}$ range of a digital multimeter. It is possible for an analogue meter with the same full scale deflection $(0-100 \mathrm{mV})$ to be used, but for readings below $0^{\circ} \mathrm{C}$ the meter connections would have to be reversed.

CIRCUIT DESCRIPTION

The circuit diagram of the probe is shown in Fig. 1. Its operation is dependent on the linear relationship between the changes in resistance and temperature of a p.n. junction.

The two f.e.t.s are used as constant current generators with the 741 amplifying the difference in voltage between the temperature probe (a) and the $0^{\circ} \mathrm{C}$ reference level (b) which are connected to pins 2 and 3 of the op. amp. The meter is connected across VR2 and measures the amplified

COMPONENTS . . .

Resistors

R1	$2 \cdot 2 \mathrm{k} \Omega 2 \% \pm W$
R2	$680 \Omega 2 \% \pm W$
R3	$3 \cdot 3 \mathrm{k} \Omega 2 \% \pm W$
R4, R5, R6, R7	$10 \mathrm{k} \Omega 1 \% \pm W$ (4 off)
R8	$1.2 \mathrm{k} \Omega 5 \% \pm W$ carbon

All metal oxide types except where stated
Potentiometers
VR1 $1 \mathrm{k} \Omega \cdot 10$ turn cermet
VR2 $10 \mathrm{k} \Omega$ single turn cermet
Switches
S1 D.P.S.T. pushbutton (latch type)

Semiconductors

D1	1N4148
D2	Miniature l.e.d. (red) T.I.L. 209
TR1, TR2	2N3819 n channel f.e.t. (2 off)
IC1	741 op. amp.

Miscellaneous
1 off Polystyrene case $100 \times 50 \times 40 \mathrm{~mm}$
2 off PP3 batteries
2 off Battery clips
1 off Tube of Araldite Length of copper tube $\frac{7}{3}$ in inside diameter High temperature wire R.S. type (357-110) 0.25 in 2-pole jack plug and socket
output of the 741. This output is directly read as degrees Centigrade.

If the probe senses a temperature of $0^{\circ} \mathrm{C}$, the difference between the two 741 inputs should be zero and the meter should indicate $0^{\circ} \mathrm{C}$.

When the probe is exposed to a positive temperature change its resistance is reduced and the voltage applied to pin 2 of the 741 falls. The voltage on pin 3 remains constant and the 741 amplifies the voltage difference between these two pins. The amplifier output is then measured by the meter across VR2.

The l.e.d. is used as an on/off indicator with its current controlled by R8.

CONSTRUCTION

The prototype was housed in an R.S. polystyrene case with the on/off switch, l.e.d. and jack plug fitted into the side of the case and the two 4 mm sockets mounted on the top.
The components are soldered onto a printed circuit board, the design of which is shown in Fig. 2 with the component overlay shown in Fig. 3. The two board contacts which are used for the output terminals should be drilled out to 4 mm diameter and after the p.c.b. has been soldered and checked it can be mounted into the case (Fig. 4) using the two 4 mm sockets to hold it in position.

PROBE

A cross section of the probe is shown in Fig. 5; it can be constructed using $\frac{3}{8}$ in inside diameter copper tubing and is connected to the unit via high temperature wires and a jack socket.
The diode must be well insulated to ensure that it does not short out to the case of the probe and after the high tempera-

Fig. 1. Circuit diagram of the Temperature Probe

Fig. 2. Printed circuit board design

Fig. 3. Component layout for p.c.b.

Fig. 4. Mounting details for p.c.b.

Fig. 5. Probe assembly
ture wires have been connected, the diode should be placed in the tube as close as possible to one end. The entire probe can then be encapsulated with Araldite.

BATTERIES

The unit is powered by two batteries which are fitted to the bottom of the case and then covered with a piece of foam to protect the back of the p.c.b. from any damage.

CALIBRATION

' After the unit has been assembled and tested it is then ready
for calibration. As the characteristics of diodes vary from device to device the instrument should be recalibrated whenever the sensing diode/probe is replaced.

For calibration, boiling water is used as the $100^{\circ} \mathrm{C}$ standard and melting ice as the zero $0^{\circ} \mathrm{C}$ standard. The probe should first be immersed in a bowl of melting ice and water and the multiturn pot VR1 adjusted until the meter connected across the output terminals indicates zero. The probe should then be placed in simmering water and VR2 adjusted to obtain full scale deflection on the meter.

With the calibration completed the unit is now ready for use.

A look at some of the more interesting items at the Birmingham Exhibition Centre (13-17 March)

W\& T Avery Limited are pioneering the use of microprocessors in the weighing machine industry. A number of successful applications have already been made, one of which is at the National Coal Board's Grimethorpe Colliery in Yorkshire, where a weighing-in-motion system has been installed as part of a new bulk loading scheme.
In the picture above a locomotive has shunted filled wagons through the loading bay and over the weighing system seen in the foreground.
The system is designed to weigh two-axle wagons whilst travelling at speeds of up to $8 \mathrm{~km} / \mathrm{h}$.
The inset shows the instrumentation used. The printer produces individual axie weights for each wagon and the total weight for the entire train excluding the locomotive.

An entirely new type of test instrument for the analysis and synthesis of digital waveforms has been introduced by Gould instruments Division. Designated the Gould Advance DSA600, it consists of a memory which stores digital waveforms plus peripheral circuitry which permits the capture of signals from a circuit under test, the programming or modification of signals by the operator, the generation of the stored signals and the display of the memory contents.

Analyser applications include logic testing and simulation on both asynchronous and synchronous systems, such as avionics, radar, communications, data processing and industrial control, for research and development, test, service and production purposes. It can also be used to turn a basic oscilioscope into a form of storage oscilloscope and can be used in conjunction with the Gould Advance PG52 pulse generator to provide a programmable high-power data output.

Above is a 2-3 seater open sports car developed by Electraction Ltd., of Maldon, Essex. The glass fibre body is mounted on a galvanised steel tubular chassis arranged to absorb energy in the event of an accident through a safety bumper at the front and an energy absorption compartment at the rear. The batteries are mounted on sliding trays.

Range: Up to 90 km (56 miles)
The Moore \& Wright "Micro 2000" electronic hand micrometer. The Micro 2000 uses a unique combination of specially developed solid state electronics and precision optical systems to measure to an accuracy of ± 2 microns and show the reading on a brightly lit integral digital display.

Speed: Up to $58 \mathrm{~km} / \mathrm{h}$ ($36 \mathrm{~m} . \mathrm{p.h}$.)
Control: Thyristor controller made by Cableform (Pulsomatic Mark 10).

At the F.W.O. Bauch stand, visitors could enter realms of Startrek when trying out the new IE-10A Audio Spectrum Analyser from lvie Electronics Inc. A slick hand held unit weighing only $150 z$ (430 gms) can be aimed at a sound source to get an immediate breakdown of its frequency components. Powered by rechargeable Ni -Cad cells, the analyser/sound level meter will display graphically on a matrix of l.e.d.s sound pressure levels over a 45 dB range.
The 160 l.e.d. display matrix gives ten octave channels on the x axis $(32 \mathrm{~Hz}-16 \mathrm{KHz})$, and the y axis is selectable for 1,2 , or 3 dB resolution, calibrated from 45 dB to 140 dB S.P.L. $(-116$ to +9 dBm) on A or C weighting.
A range of inexpensive accessories enable the analyser to measure amplifier power, voltage and harmonic distortion.

The new digital clamp meter KEW 777 from Eagle International is designed for safety and ease of operation. It has large, clear definition liquid crystal display and measures to 1,000 amps a.c. as well as $1,999 \mathrm{ohms}$ and 1,000 volts a.c.

Also from Gould is the DMM9 a new $4 \frac{1}{2}$ digit multimeter with a 0.05 per cent measurement accuracy and true r.m.s. measuring facilities.
It features 28 a.c. and d.c. voltage, current and resistance measurement ranges, including a separate 10 A current range, and is also available with optional probes for temperature, radio-frequency and high-voltage measurements.
The DMM9 has a maximum reading 19999, and maximum resolutions on the current, voltage and resistance ranges of $10 \mu \mathrm{~V}, 10 \mathrm{nA}$ and $100 \mathrm{~m} \Omega$, respectively.

A combined a.c./d.c. faclity is also available to measure a.c. waveforms with a d.c. content.
Because true r.m.s. voltage measurement is the only accurate way of assessing the energy content of an a.c. waveform, the DMM9 is ideal for applications where power is the main parameter of interest, e.g. in the electricity supply industry or in applications involving thyristor control.

A railway of the future, controlled by micro computers, was the centrepiece of the CAF MicroSoft Ltd. stand. With 13 points, 25 yards of HO gauge track, an eight stage speed controller, and two Fleischmann diesel-outline locomotives, the layout represents a versatile, flexible, low-cost peripheral to a microcomputerbased industrial control system.

Latest product news from Bryans Southern is of a compact "combination" instrument that they believe to be unique throughout the world. It introduces entirely new transient store electronics developed by Bryans, and fitted within the mainframe of their well-proven 28000 series chart recorder. The resulting instrument offers a facility for processing transient signals and producing precision hard copy plots of them.

.- : a selection from our postbag
Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the telephone.

"Camm's Comic"

Sir-Whilst in no way disagreeing with M. Hughes' tribute to Mr Fred Bennett I must object to the disparaging reference to "Camm's Comic". In the immediate post-war years through to the dawn of the transistor age the so-called "comic" provided a fund of information for many embryo radio/electronic engineers where contemporary publications featured circuitry and components beyond the capabilities and finances of most students.

Personally I feel my introduction to the magic of this hobby (and latterly, my profession) owes much to the writings of the late F. J. Camm and I am surprised that no attempt has ever been made to commemorate him-perhaps by an annual competition for the best article from a newcomer?
As for the amateur forsaking the "junk-box", junk box does not equate with junk components nor apparatus. Rather the term junk may be applied to many of the modern gadgets seemingly devised to use as many components as possible instead of offering useful function.
L. G. Rix, BSc,

Melton Mowbray.

Electronics Club

Sir-I wish to inform you that our Club was set up in September 1977 at Shakespear House, Clapcot Way, Wallingford, Oxon.

The Club is a non-profit-making club for the pursuance of electronics as a hobby. The Club exists to provide mutual exchange of knowledge and experience in the fields of radio, electronics, electrical engineering and related sciences and technology. The club also provides education and encouragement to younger members who wish to make electronics their hobby and/or their career.

J. Gilpin,

Wallingford Electronics Club.

Future

Sir-I was prompted by your editorial in the March issue of P.E. to consider the future of the electronics hobbyist. At the present time, nearly all electronics publications are fairly brimming with articles and courses to introduce the hobbyist to the latest arrival on the scene-microprocessors. It seems that any amateur so inclined, providing his pocket will stand
it, can learn all about these devices. Fine!
But what of the future? In a few years, when the enthusiasm has died down, will you continue to deliver elementary articles on such matters? Will it be possible for beginners to work their way up from Ohm's law to micros as has now been the case? Or will you only publish articles which presume the reader to have a working knowledge of the interior of a microprocessor chip, program writing etc.? If that is the case, then the "amateur" electronics field will surely be limited to those already into electronics by virtue of their profession.

Let us hope that this will not be so, and that you will run a series of "Teach-In" articles every few years as Everyday Electronics does in an elementary way.
C. Nelms,

Elstead, Surrey.
You are certainly looking ahead, but the point is very valid, and one that is well taken. No doubt many people from all walks of life will ultimately want, or need, to know more about microcomputers and we are sure you will not find this need overlooked.-Ed.

pollits nilisinc

DIGITAL MULTIMETER (October 1977)

The Siliconix LD130 i.c. used in this project is apparently prone to "lock-up" when the power is first switched on. This condition manifests itself by a constant display reading of 007, and it is necessary to re-cycle the power supplles to clear it.
A modification is illustrated (right) which will rectify the fault and not affect the accuracy of the instrument. Adjustment of the instrument is best carried out with the meter set to DC CURRENT, no input applied, and well-used rather than new batteries. With the preset wiper towards $0 V$ the display will flash as if on over-range. As the wiper is revolved towards the negative rall the display will cease flashing, and indicate a number which decreases as the control is further rotated. Correct setting of the preset is just beyond the point where zero is displayed.
Modification kits comprising the preset potentiometer, E204 f.e.t., and necessary striphoard and fixings (with instructions) are available from Sparks Developments, Dept. P.E., 53 North Street, Melbourne, Derby, DE7 1 FZ.

AUTO-RANGING D.C. VOLTMETER (February 1978) A few corrections are necessary in Fig. 5, the component layout (specifically the power supply). Zener diodos D5 and D6 should be transposed, and also R1 with R2, so that they conform to Fig. 3. These are drawling errors which will not affect operation, but a correction which must be made is to transpose the labelling of +6 V out and -6 V out.
Also, note that in Fig. 2, VR2 is connected between pins 1 and 5 of IC_{3}, and the output of IC3a is pin 3 .

FFATURING : SNT5416/17/18/19 BC650/BC651 1435 R.W. Coles ADC0816/ADC0817

THE HEAVY MOB

Want to make a solenoid an offer it can't refuse? Then call in the heavy mob from Texas. Working under the "SN75416 series" alias, and not using their real names like "Crusher Hargreaves" and "Hammer Hoskins", these new arrivals are guaranteed to beef up any logic team. Each member comes in a smart black fourteen pin package and carries two drivers which can each sink 500 mA and hoid off over 70 volts. The four members currently in town cater for ail four varieties of logic gating, NAND, AND, NOR and OR and have low current p.n.p. input stages so that they can makeout with TTL or MOS families when required. Any loads which try any funny business with inductive spikes get clamped with a 500 mA diode, and remember these boys are fast, 100 nanoseconds fast.

THE QUIET ONES

Any advance in the art of hi-fi is sure to be popular, even though most advances these days are pretty marginal! For those who strive to eliminate all sources of noise from their system, so that they are better able to hear the noise generated by their records or tapes, Motorola have something new to offer. The BC650/651 transistors are claimed to be the lowest noise input transistors available today, generating noise voltages of only 4,3 and 2.5 nanovolts at 10,120 and 1,000 hertz respectively when run at collector currents of 200 mA . The two new transistors are n.p.n. devices and are rated at 30 volts (BC650) and 45 volts (BC651) with a minimum he of 380 at 2 mA and an f_{t} of 300 MHz . They come in low cost TO92 plastic packages and should be ideal for use in the "front ends" of domestic hi-fi amplifiers and high power disco' music systems.

THE FAST ONE

I am including my next offering, not because I expect anyone to rush out and buy one (they are a little expensive), but because it is an interesting new device which has pushed out the frontiers of performance in the analogue amplifier field quite dramatically.

I am talking about the Teledyne Philbrick 1435 which is described as an "Ultrafast differential input operational amplifier' in the data sheet. Ultrafast it certainly is because it sports a gainbandwidth product approaching one gigahertz, and can be used in standard operational amplifier configurations to provide a 20 db to 40 db gain from d.c. to beyond 10 MHz ! Despite its high speed performance the 1435 is a precision device, offering 0.01% gain accuracies and rapid recovery from input voltage steps, making it ideal for the amplification of complex waveforms in video and other signal processing applications.

When I first read the data sheet I immediately saw in this device the makings of a very simple, but capable, Y amplifier for an oscilloscope, and there seems to be no reason why it should not be used for this purpose when provided with an f.e.t. source follower input stage and a switched attenuator. In this role its 75 nanosecond settling time and less than 1\% overshoot on square pulses would be a great advantage.

The 1435 is made using hybrid technoogy and lives in a small 14-pin hermetic d.i.p. package.

BRIDGING THE GAP

It has been said that any signal conditioning that can be carried out with analogue circuitry, can (in theory anyway), be carried out just as well with digital circuitry. Of course, microprocessors have not yet reached the point at which we can connect an aerial to an input port and a speaker to an output port and then expect to write some software which will tune in "Desert Island Discs". Given a micro' that worked sufficiently fast however, this sort of high speed signal processing would become perfectly feasible because the processes involved in converting a modulated r.f. signal into a signal suitable for driving a loudspeaker can be described mathematically, and we all know just how nifty micro's can be at doing sums! Speed is not the only limiting factor though; the conversion of analogue signals to digital form has been an expensive business which precluded its use except for the most demanding
applications, even when only low frequencies were involved.
There have been major advances recently which have made the digital processing of analogue signals more practical; modules or circuit boards are now available which contain an analogue-todigital converter paired with analogue signal multiplexers which permit the converter to be shared by a number of analogue inputs. These modules and circuit boards have been made fully compatible with the popular microprocessor fuses, but costing several hundred pounds apiece they are still not the stuff of which revolutions are made. To take the analogue world by storm we need a low cost monolithic converter and multiplexer, and the first example of such a system-on-a-chip has just been announced by National. Termed "Single Chip Data Acquisition Systems', the National ADC0816 and ADC0817 devices really do represent an attempt to bridge the gap between the microprocessor and the essentially analogue world that it lives in. The chips accept up to sixteen separate analogue signal inputs and then select one by means of a multiplexer for conversion to an eight bit digital word. Signal selection is controlled by means of a four bit binary address word which can be latched in directly from a microprocessor bus, or fed via an existing output port.

The eight bit data outputs are tri-state and can also be connected directly to a data bus.

The multiplexer output is brought out to a package pin and must be linked externally to the converter input, allowing signal conditioning and/or multiplexer expansion to be achieved easily. The converter itself is a rather unusual 256R type (256 resistors of value R and a switch tree selection system) instead of the more usual R2R type. Conversion is achieved by means of a successive-approximation sequence, and takes only $100 \mu \mathrm{~s}$ per channel which means that a.c. signals of up to 300 Hz per channel can be coped with (proportionately higher if less channels used), as well as d.c. inputs.

The ADC0816 is specified over a wide temperature range whereas the ADC0817 is specified at $25^{\circ} \mathrm{C}$ only and has reduced performance, albeit at a lower cost. Both chips are CMOS and draw only about 1 mA from a 5 V supply.

The Voice circuitry of the String Ensemble is primarily designed to produce a basic tone which when processed through the Chorus Generator gives the simulated sound of an orchestral string section. Two other voices are also provided to add variety to the overall effect and have the basic characteristics of Woodwind and Brass instruments. The circuitry includes the facility to vary the degree of mixing of the voices, and the switching which enables changes of register to be made in both upper and lower sections of the .keyboard.

THE VOICING SYSTEM

The outline of the voicing system is shown in Fig. 4.1, and consists of two sections covering upper and lower parts of the keyboard separately. Outputs from the threshold diodes, following the diode gates, for the upper section of the keyboard are taken to staircase networks in the voicing system

Fig. 4.1. Schematic of the voicing system
which produce stepped waveforms suitable for the four instruments, three at 16 ft pitch and one at 8 ft pitch. Each instrument is controlled by a slider potentiometer and has its own filter. The string voicing consists of a combination of both high and low pass filters which in conjunction with the second filter, which processes both registers, are in active form. Brass and Woodwind voices are produced by ringing band pass active filters and following a common preamplifier all upper voices are adjusted by a level control on the front panel.

A similar staircase network section produces stepped waveforms for strings in the lower section of the keyboard at 16 ft , 8 ft , and 4 ft , which are then controlled by the lower voice switches and followed by similar string filters to the upper section with a preset level control on the Voice Board.

The combined voices from the full keyboard are amplified together and set by the master level control on the front panel. This signal is passed to the Chorus Generator for processing and returned to the Voice Board for distribution to the Swell Pedal and output sockets.

STAIRCASE NETWORKS

The effect of the Staircase networks is shown in Fig. 4.2 where waveforms (a) to (d) are square waves at $2 \mathrm{ft}, 4 \mathrm{ft}, 8 \mathrm{ft}$, and 16 ft each coming from the respective diode gate busbar. The square waves contain odd harmonics only which have limited use in the generation of musical instrument tones. Since the square waves on each busbar are octave related even harmonics are available by mixing outputs from each busbar. Generally an amplitude relationship is used where the level of each successively higher even harmonic content is half that of the harmonic below.

Waveform (e) in Fig. 4.2 is produced by mixing an input at 16 ft (d) with half the level at 8 ft (c), and is used as the base waveform for the woodwind. The description "staircase" can be understood from the shape obtained. Waveform (f) is produced by mixing an input at 16 ft with half the level at 8 ft , a quarter the level at 4 ft , and one eighth the level at 2 ft . This waveform is used for all 16 ft strings and brass, giving the addition of higher even harmonics.

Waveform (g) is obtained by mixing a fundamental at 8 ft with half the level at 4 ft and a quarter the level at 2 ft for the 8 ft strings, whilst waveform (h) has a fundamental at 4 ft with half the level at 2 ft and is used for the 4 ft strings in the lower section.

VOICE CIRCUITRY

Full circuit details are given in Fig. 4.3. Resistors R69 to R76 terminate the output busbars from the diode gate circuits and are essential in any tests of the diode gate system if the Voice Board is removed. R77 to R98 perform the staircasing function prior to slider or switch controllers. The upper string filters are associated with IC32, the brass with IC33, woodwind with IC34 and lower strings with IC35. VR16 and VR17 control the resonant frequencies of the brass and woodwind filters respectively and require setting to avoid the violent peak occurring within the keyboard range. IC36 amplifies all the upper voices and is followed by the upper level control VR18.

LOWER STRING CONTROLS

Switches S3 to S6 are interlinked. With S3 depressed the 16 ft and 8 ft waveforms from the lower section of the keyboard are linked to String I and II slider controls respectively, and

Fig. 4.2. Formation of staircase waveforms from octave related squarewaves

Fig. 4.3. The complete voice circuitry

Fig. 4.4. Etching detail for the voice p.c.b.

Fig. 4.5. Showing component assembly and drillings

COMPONENTS.

VOICING SYSTEM

Resistors			
R69-76	$10 \mathrm{k} \Omega$	R105	$47 \mathrm{k} \Omega$
R77	$120 \mathrm{k} \Omega$	R106	$10 \mathrm{k} \Omega$
R78	$47 \mathrm{k} \Omega$	R107	$22 \mathrm{k} \Omega$
R79	$22 \mathrm{k} \Omega$	R108	10kS
R80	220ks)	R109-111	$47 \mathrm{k} \Omega$
R81	120 k ת	R112	$4.7 \mathrm{k} \Omega$
R82	$47 \mathrm{k} \Omega$	R113	$10 \mathrm{k} \Omega$
R83	$22 \mathrm{k} \Omega$	R114	$47 \mathrm{k} \Omega$
R84	330 k ,	R115-116	$10 \mathrm{k} \Omega$
R85	$180 \mathrm{k} \Omega$	R117	$10 \mathrm{k} \Omega$
R86	$120 \mathrm{k} \Omega$	R118-120	$47 \mathrm{k} \Omega$
R87	$47 \mathrm{k} \Omega$	R121	$4.7 \mathrm{k} \Omega$
R88	$120 \mathrm{k} \Omega$	R122	$10 \mathrm{k} \Omega$
R89-90	$47 \mathrm{k} \Omega$	R123	47 k S
R91	$22 \mathrm{k} \Omega$	R124	270kS
R92	$120 \mathrm{k} \Omega$	R125	$10 \mathrm{k} \Omega$
R93	$47 \mathrm{k} \Omega$	R126	$47 \mathrm{k} \Omega$
R94	$22 \mathrm{k} \Omega$	R127	$10 \mathrm{k} \Omega$
R95	$220 \mathrm{k} \Omega$	R128	$47 \mathrm{k} \Omega$
R96	$120 \mathrm{k} \Omega$	R129	$10 \mathrm{k} \Omega$
R97	$47 \mathrm{k} \Omega$	R130	$47 \mathrm{k} \Omega$
R98	$22 \mathrm{k} \Omega$	R131	$150 \mathrm{k} \Omega$
R99	$10 \mathrm{k} \Omega$	R132	$10 \mathrm{k} \Omega$
R100	$47 \mathrm{k} \Omega$	R133	$47 \mathrm{k} \Omega$
R101	$10 \mathrm{k} \Omega$	R134	$47 \mathrm{k} \Omega$
R102	$47 \mathrm{k} \Omega$	R135	$220 \mathrm{k} \Omega$
R103	$470 \mathrm{k} \Omega$	R136	$22 \mathrm{k} \Omega$
R104	$10 \mathrm{k} \Omega$	R137	$2.2 \mathrm{k} \Omega$
$\frac{1}{4}$ watt 5	carbon film		
Capacitors			
C56	4.7 nF ceramic	C82	47nF ceramic
C57	10 nF ceramic	C83	47 nF ceramic
C58	22 nF ceramic	C84-85	4.7 nF ceramic
C59	47nF ceramic	C86	10 nF ceramic
C60	10 nF ceramic	C87	4.7 nF ceramic
C61	22 nF ceramic	C88	10 nF ceramic
C62-63	47nF ceramic	C89	$0.22 \mu \mathrm{~F}$ polyester
C64	10 nF ceramic	C90	180pF
C65	22 nF ceramic	C91	22 nF ceramic
C66-67	47nF ceramic	C92-93	4.7nF ceramic
C68-69	$2 \cdot 2 \mathrm{nF}$ ceramic	C94	47 nF ceramic
C70-71	4.7 nF ceramic	C95-96	10 nF ceramic
C72	$0.1 \mu \mathrm{~F}$ polyester	C97	$0.1 \mu \mathrm{~F}$ polyester
C73	100 pF	C98-99	22 nF ceramic
C74	4.7 nF ceramic	C100	$0.22 \mu \mathrm{~F}$ polyester
C75	47 nF ceramic	C101	470 pF ceramic
C76	22 nF ceramic	C102	4.7 nF ceramic
C77-78	4.7 nF ceramic	C103	47 nF ceramic
C79	10 nF ceramic	C104	47 nF ceramic
C80	4.7 nF ceramic	C105	180 pF
C81	10 nF ceramic	C106-112	10 nF ceramic

Potentiometers
VR12-15 10k Ω lin Sliders, VR16-17 $47 \mathrm{k} \Omega$ Presets 100 mW submin. VR18 $10 \mathrm{k} \Omega$ lin, VR19 $4.7 \mathrm{k} \Omega$ Preset, VR20 $10 \mathrm{k} \Omega$ lin, VR21 $10 \mathrm{k} \Omega$ Pedal

Integrated Circuits

IC32-37 741
Miscellaneous
SK2-4 Mono standard jack. S3-6 bank of two-pole two-way switches interlocked. 47 terminal pins 1 printed circuit board.
the 4 ft signal is inoperative. $\mathrm{S} 4,5$ and 6 convert the lower section to $16 \mathrm{ft}, 8 \mathrm{ft}$ and 4 ft strings only, but more than one control button may be depressed at the same time. Except when in the couple condition the Lower Voices have a fixed amplitude preset by VR19, and balancing of the two parts of the keyboard is achieved with the Upper Level Control.

PREAMPLIFIER

Upper and Lower Voices are fed to the complementary (anti-phase) inputs of preamplifier IC37 to compensate for the additional inverting amplifier, 1 C 36 , in the upper voice channel. The main purpose of the Master Level Control VR20 is to compensate for the many modes and styles in which the instrument may be played, either melodic or chordal, single or multi-voiced, and it may be used to prevent overloading of the Chorus Generator input under extreme conditions.

OUTPUT AND SUPPLIES

After processing by the Chorus Generator the signal is returned to the Voice Board on which it is controlled by the Expression Dedal via socket SK2. Divider resistors R136 and R137 give high and low level outputs at SK3 and SK4.
The Voice Board is powered by +15 volt and -15 volt supplies obtained from the regulators on the PSU/Tone Generator Board, and capacitors C106 to C112 are incorporated to ensure stable operation to the 741 Operational Amplifiers.

Fig. 4.6. Voice and Chorus interwiring

VOICE BOARD CONSTRUCTION

The Voice circuits described are mounted on a printed circuit board, the etching and drilling details of which are given in Fig. 4.4, with the component assembly details in Fig. 4.5. To assemble the board the terminal pins should first be inserted followed by resistors, i.c.s, preset potentiometers, small capacitors, large capacitors and the wire link next to R103.

INTERWIRING OF THE VOICE AND CHORUS CIRCUITRY

The Chorus Generator interfaces with the Voice Board only, as shown in Fig. 4.6, whilst the Voice Board provides connections to all controls and output sockets. The wiring details given in Fig. 4.6 should be followed carefully, and it should be particularly noted that in some cases screen connections are made at one end of a cable only whilst in others both ends of the screen are connected.

Supply inputs to the Voice Board are taken direct from the PSU/Tone Generator at +15 volts, -15 volts, and 0 volts. Pedal and output signals are taken through a single 3-core screened cable to sockets SK2-SK4 with both ends of the screen connected.

High and low inputs are each taken from the diode gate busbars through a four-core screened cable with the screen connected at each end. The Upper and Master Level Controls are connected by two-core screened cables with the screen soldered at both ends.

UPPER VOICE CONTROLS

A ground lead is taken from the Voice Board and connected to one of the slider controls. A lead is then taken from this point to each voice potentiometer. The remaining terminals on VR12 and VR13 are connected via a four-core screened cable with the screen soldered at the Voice Board end, but not to the potentiometers. Similarly VR14 and VR15 are connected via a four-core screened cable.

LOWER VOICE SWITCHES

A ground lead is taken to the tags (or pins) shown on S4, S5 and S6, which are strapped together. Three multi-screened leads are then used to complete interconnection to the switches and in each case the screen is only soldered to the Voice Board end whilst the other end is cropped and cleaned up to prevent shorting to other switch connections.

The first lead is two-core and interconnects the relevant pins on the Voice Board to S3. The second lead is three-core and interconnects the Voice Board to S3. The second lead is also three-core and interconnects to the two tags shown on S3 and one tag on S6. Ordinary wire connections are then made as shown between S3 and S4, and between S3 and S5.
Note: Omissions from Part One Components List are C6, C7, C9, C12-10nF ceramic, C8-68pF.
In Fig. 2.5 diodes D23-30 should be reversed. Fig. 2.2 shows them correctly polarised.
In Fig. 3.6 lC28 should be a 14 pin device. The two extreme left pin connections should be ignored.

NEXT MONTH-Cabinet construction

CIRCUIT OPERATION

The circuit is shown in Fig. 1. Each of the four 2 -input NOR gates in the CD4001 cmos i.c. is used as an inverter by connecting the two inputs together.

The negative supply connection to the four gates is taken to the battery negative line via the light-emitting diode D1, across which an almost constant voltage is developed; even when the circuit is in its quiescent state (i.e. the battery voltage is relatively high), a small leakage current flows through the i.c., which is sufficient to bias the l.e.d. on, although it is not enough to illuminate it beyond a faint glow.
Two of the four gates are connected in cascade, the output from the second gate being connected to the inputs of the two remaining gates, which are connected in parallel. The four gates form one high gain amplifier, such that the output switches very rapidly from high to low when the input voltage to the first gate exceeds a certain proportion-usually 45-50 per cent-of the voltage supplied to the i.c. In figures this is the battery voltage minus about 1.6 V developed across the 1.e.d.

When the output from the last two gates begins to change state the threshold voltage is thus about 5.3 V at a battery voltage of 9 V , dropping to about 4.3 V when the battery voltage has fallen to 7 V .

Battery Voltage Monitor

S.V.ESSEX

Utilising one inexpensive cmos integrated circuit, the device described in this article gives a positive indication, by means of a light emitting diode, whenever battery voltage falls below a certain preset level.

BATTERY LEAKAGE

Whenever a battery is allowed to discharge too far it usually leaks-as many people have found to their cost at one time or another. Not only is the leakage unsightly and messy, but it is also extremely hard to remove.

Occasionally batteries will leak even when the equipment being supplied gives no indication of falling battery voltage.

Battery voltage is also of paramount importance in connection with test instruments-although these may be stabilised by means of a Zener diode, once the battery voltage falls past a certain level the diode can no longer exercise control and inaccuracies result.

Both leakage and inaccuracy can be prevented by employing a battery voltage monitor, which gives a positive indication of when batteries should be changed well before these problems are encountered.

POTENTIAL DIVIDER

R1, VR1 and R2 form a potential divider across the supply lines; if VR1 is adjusted so that its slider is at a potential of $5 \cdot 4 \mathrm{~V}$ (relative to the battery negative line) when the battery voltage is 9 V , it will be found that at 7 V the slider voltage is $4 \cdot 2 \mathrm{~V}$. Thus, although the slider voltage is higher than the threshold voltage when the battery voltage is high, as battery voltage falls a point is reached where the slider voltage is lower than the threshold voltage and the output of the gates goes from low to high.

Since R3 is connected between the output and the i.c. negative supply pin, it thus draws current which increases the current flowing through D1. This slightly increases the voltage developed across the l.e.d., which, in turn, increases the threshold voltage: a regenerative process is initiated and the i.c. output gates saturate, causing an appreciable current to flow through D1, which then becomes illuminated.

Because the circuit operation is regenerative, there is a certain amount of hysteresis present (about a fifth of a volt), so that if the l.e.d. lights up when the battery voltage drops to 7 V , it will remain on until the battery voltage exceeds $7 \cdot 2 \mathrm{~V}$. This characteristic could be useful where a load is drawing high current peaks from a partially discharged battery. Although the battery voltage in between current

Fig. 1. Circuit of Voltage Monitor

Fig. 2. Suggested printed circuit layout

Fig. 3. Showing component assembly and wiring
peaks may be above the safe limit, any excessive rise in the internal resistance of the battery-which in this case could be the deciding factor as to whether or not the battery requires changing-would still mean that the l.e.d. would light up, since the battery voltage would momentarily drop below the preset limit; the hysteresis in the circuit would hold the diode on.

If the hysteresis provided by the basic circuit is insufficient, it can be increased by including a low value resistor (less than 10 ohms) in series with the l.e.d.

WORKING RANGE

The prototype was set to switch on when a nominal 9 V battery voltage dropped to $7 \cdot 2 \mathrm{~V}$, although the circuit will work on any voltage in the range $6-15 \mathrm{~V}$. With the value of R4 given, the current through D1 is about 10 mA just before the 1.e.d. cuts out.

COMPONENTS

Resistors
R1, R2 $100 \mathrm{k} \Omega$
R3 220Ω
All $1 \mathrm{~W} 10 \%$ carbon
Potentiometer
VR1 $100 \mathrm{k} \Omega$ miniature preset
Semiconductors

| D1 \quad TIL 209 |
| :--- | :--- |
| IC1 \quad CD4001 |

If a higher voltage is used, or a higher current through the l.e.d. is required, the value of R4 can be altered, although care must be taken not to exceed the current and dissipation ratings of the i.c.

The standby current is about 0.4 mA at 10 V , if this is felt to be excessive a small pushbutton switch can be included in the supply to the circuit, so that battery voltage is monitored only when the button is pressed.

The standby current is roughly proportional to battery voltage.

CONSTRUCTION

The circuit, being small, can easily be constructed on a scrap of printed circuit board or Veroboard left over from a larger project: the layout is entirely non-critical although a suggested p.c. board layout is shown (Fig. 2).

When assembling the circuit, small components should be soldered in first and the смOs i.c. left to last to prevent damagedue to overheating. An i.c. socket can be used if desired.

The i.c. should not be handled excessively; although static discharge protection circuits are built into the inputs to the gates, there is no point in taking unnecessary risks. Care should also be taken to connect the i.c. into the circuit the right way round; incorrect connection could lead to an excessively high current flowing through it and the l.e.d.

SETTING UP

The easiest way to set VR1 correctly is to connect the circuit up to a variable voltage power supply, and adjust VR1 so that D1 lights up at the required battery end voltage. The battery voltage monitor can then be connected into the piece of equipment which is to be protected.

PI
 A Volume of Practical Know-how

can be made using these new-look self binders for PRACTICAL ELECTRONICS to become your most valuable source of reference. With the Easi-Binder current copies can be inserted as they are received, without waiting for the completion of twelve issues.
They are attractively made with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers, please advise year and volume and a separate set of gold transfer figures will be supplied.
At $£ 2.85$ inc. VAT and postage they are obtainable from:

Post Sales Department, IPC Magazines Lid. Lavington House, 25 Lavington Street London SE1 OPF
I enclose P.O./cheque value.........for.....binders at $\mathbf{5 2}$-85 each for Practlcal Electronlcs Vol. No's.......
Name.
Addrese \qquad
\qquad
Dete. PE

MICRO-EUS

Compiled by DJD

Abstract

Appearing every two months, Micro-Bus will present ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data books. The most original ideas will probably come from readers working on their own microcomputer systems, and payment will be made for any contribution featured here. This is also the place to air your views, in general, on this new technology, so let's be hearing from you!

THIS month's Micro-Bus describes a system which was developed to enable a microprocessor to play waltzes as it composes them. The main part of the program, which will play polyphonic tunes containing up to three notes sounded simultaneously, is described in full, together with the codes to enable it to play the first eight bars of a waltz. With the addition of a random-number generator and some extra control routines the micro can be made to compose as it plays.

MOZART'S DICE WALTZES

The idea of composing music mechanically has its origins in the 18 th century when a number of pieces were published which used the throws of dice to randomly select between possibilities at different points in the music. Perhaps the best known of these is the "Musikalisches Würfelspiel" or "Musical Dice Game" attributed to Mozart and published two years after his death in 1793. This pamphlet enables anyone without the least musical ability to compose an almost unlimited number of different waltzes with the aid of a pair of dice. There is some doubt as to whether Mozart actually designed the game, although he was undoubtedly interested in such subjects, and the manuscript for his Adagio KV516 shows the bars arranged by letters in a similar way to the Musical Dice Game.

The Musical Dice Game consists of a set of bars numbered from 1 to 176 , and a pair of tables. To compose the first eight bars of a waltz a pair of dice is thrown eight times, and the first table gives the number of the bar to be used at each stage for each throw. The other table is used with a second set of eight dice throws to give the second half of the waltz. The bars are so contrived that, no matter what combination of them is put together, the result will be a pleasant waltz. Since the choices for the eighth bar in each part are the same there are a total of 11^{14} possible waltzes; a number so large that playing a different one every minute it would take 700 million years to hear them all!

MUSIC FROM A MICRO

Although it is simple enough to write a program which uses software timing to play monophonic tunes (only one note sounded at a time), most of the interest of music lies in the simultaneous sounding of several notes to produce harmony and counterpoint, and this dictates the use of some extra hardware to produce the notes independently of the micro. Originally a design was contemplated using a topoctave note generating chip, three 1 -of-12 selectors for the note selection, three 6 -stage binary dividers and three 1 -of-6 selectors for the octave selection, together with latches and addressing logic for interfacing this with the micro. The scheme was soon abandoned when it was realised that the same capability is provided in one Motorola part: the MC6840 Programmable Timer Module. In the mode of operation used here it effectively acts as three independent programmable dividers, so that an organ based on one chip can sound up to three notes at once.

MC6840 PROGRAMMABLE TIMER MODULE

The Programmable Timer Module, or PTM, is a recent addition to the M6800 family, and is Motorola's answer to the Intel 8253 Counter/Timer which it resembles in many ways. It contains three 16-bit counters whose contents can be read at any time, and three 16 -bit buffer registers which can be written to by the micro. The contents of these buffers can be transferred to the counters either immediately they are written, or else only under the control of an external gate input $\overline{\mathrm{GI}}, \overline{\mathrm{G} 2}$, or $\overline{\mathrm{G} 3}$. The counters are decremented on each clock pulse derived either from the microprocessor clock \varnothing_{2}, or from an external signal of lower frequency presented at the respective clock input $\overline{\mathrm{Cl}}, \overline{\mathrm{C} 2}$, or $\overline{\mathrm{C3}}$. When a counter reaches the count of zero, a time-out occurs and a bit is set in the status register. What happens next depends on the mode of operation programmed for that counter by its control register. There are four basic modes of
operation, and any of the three counters can operate in any mode. In single shot mode the counter's output goes low at time-out and remains low until the counter is re-initialized. In continuous mode the content of the buffer register is loaded into the counter at each time-out so that a continuous square-wave is produced at the output. Additionally the timers can be programmed to generate an interrupt when a time-out occurs. In frequency comparison mode an interrupt is generated if the input period is less than (or alternatively, greater than) the counter time-out, and finally, in pulsewidth comparison mode an interrupt is generated if the input "down time" is less than (or greater than) the counter time-out.

The PTM is addressed as eight consecutive memory locations, the first two of which provide access to the three control. registers and the status register, and the '-st three pairs of which are used to write to the buffer registers or read the current values of the counters. The MC6840 is available from Cramer Components Ltd., 16 Uxbridge Road, Ealing, London, W5 2BP, for $£ 12.73$ plus 80 p postage (VAT extra).

MUSIC INTERFACE

The complete circuit for the music interface is shown in Fig. 1. The three counters of the PTM are used in continuous mode, and the gate inputs are grounded to enable the counters. The clocks are derived from the microprocessor clock, so the inputs $\overline{\mathrm{Cl}}, \overline{\mathrm{C}} 2$, and $\overline{\mathrm{C} 3}$ are left unconnected. The three outputs are taken to an adder circuit at the input of an LM386 I watt audio amplifier chip which drives a loudspeaker. The two MT8T26 quad bidirectional buffer packages and the tTL gates are needed to interface the PTM to the D2 kit's bus. In a small system the PTM could be connected directly to the microprocessor's address and data lines in which case these parts could be dispensed with. As shown, the PTM is addressed as locations $\$ 2010$ to $\$ 2017$.

The music produced by the circuit sounds "organlike" since the amplifier
is fed with the unmodified squarewave outputs of the PTM, but with extra circuitry it would be possible to add filtering or envelope shaping, possibly under control of the micro, to simulate other instruments or sounds. Once configured, the three counter outputs will produce frequencies equal to half the clock frequency divided by $\mathrm{N}+1$, where N is the 16 -bit number loaded into the respective buffer register. To obtain silence from any output, zero can be loaded into the buffer to give an inaudibly high frequency. To play tunes a program is needed to read the music stored in some notation in memory, and from this, load the correct divisors chosen to give the musical scale of notes, into the three counters at the correct times.

MUSIC NOTATION

The notation used for encoding tunes to be played by the micro uses one byte for each note, and one byte for each change in duration. The codes are shown in Fig. 2. The note codes use the lower four bits to determine the note, and bits 4 to 6 to determine the octave of the note (7 for the highest octave and 1 for the lowest), giving a total range of 7 octaves. For silence, a code of $\$ 60$ is used. The top bit specifies whether the notes will be sounded. If the top bit is zero, the next note code is fetched immediately; if one, the program waits for a certain duration while the notes sound. This duration is set up by specifying a duration code with $\$ D$ in the lower four. bits. The upper four bits then give a duration of 1 to 16 units. Fig. 3 shows the note codes for a section of the keyboard (the values in brackets give the codes with the top bit set).
The notation is best explained by an example. Fig. 4 shows the music for the first eight bars of a dice waltz, together with the hex codes which, when supplied to the program to be described, will play the tune at the loudspeaker of the music interface.

MUSIC PROGRAM

The main part of the music program is subroutine PLAY, shown in Fig. 5, which converts the note codes into the correct divisors and loads them into the PTM to generate the music. Its operation is shown by the flowchart of Fig. 6. A duration code, when encountered at any time, sets the duration parameter DURN to the value of the top four bits. Note codes cause the divisors for the notes specified to be loaded into successive buffer registers of the PTM until a note code with the top bit set has been encountered; at this point the program delays for the currently standing duration, and the register pointer is reset. The table SCALE gives the divisors for a well-tempered top octave; these are doubled for each successive lower octave.

The main program to call subroutine PLAY and play a tune, such as the one given in Fig. 4, is shown in Fig. 7. This is

Fig. 1. Circuit for the music interface described in the text, based on the MC6840 PTM

Fig. 2. The four types of 8 -bit code used to encode tunes for the music program described

Fig. 3. Note codes corresponding to the notes of a section of the keyboard. The same values with the top bit set are shown in brackets

WALTE FCB \$2D, \$72,\$4A,\$EO,\$EA, \$65, \$EO
WALTZ $\$$ PCB $\$ 2 \mathrm{D}, \$ 72, \$ 4 \mathrm{~A}, \$ E 0, \$ 2$
PCE $\$ 1 \mathrm{D}, \$ 6$

FCB $\$ 74, \$ C A, \$ 10, \$ F 7, \$ F 4, \$ 6 \mathrm{C}, \$ 20, \$ 84,860, \$ E O$
$\mathrm{PCB} \$ 75, \$ 4 \mathrm{C}, \$ \mathrm{FC}, \$ \mathrm{~F}, \$ 75, \$ 4 \mathrm{C}, \$ \mathrm{SC}, \$ \mathrm{Fs}, \$ 2 \mathrm{D}, \$ 6 \mathrm{C}, \$ 4 \mathrm{C}, \mathrm{sCC}$
PCB $\$ 1 \mathrm{D}, \$ 72, \$ 4 \mathrm{~A}, \$ E 0, \$ E A, \$ 69, \$ \mathrm{CC}, \$ 87, \$ 65, \$ \mathrm{BC}, \$ \mathrm{E} 4,0$

Fig. 4. The music for the first eight bars of one possible Mozart dice waltz, together with the hex codes for playing this on the system described in the article. Each line of codes corresponds to one bar of the music

entered at BEGIN. These programs were developed and run on a Motorola D2 kit, which is based on the MC6800 micro, although it should be a simple matter to modify them to run on any other. To implement the composing of dice waltzes a random number generator is used to choose between several alternatives for each bar. One approach would be to use the random number as an
offset to a table of pointers to the alternative bars. The composition of music by computer is certainly not exhausted by the techniques described, and it is hoped that those interested will be stimulated to experiment further. It seems as unlikely that music generated in this linear way will be memorable any more than a line of random numbers will form a pleasing overall pattern.

A more enlightened approach might be to compose from the top down; for example, starting with a simple theme which is developed and embellished. Perhaps the most amusing suggestion was to use the Musical Dice Game to generate continuous "musak" which would never repeat itself! When by chance an especially pleasing waltz cropped up, the sequence of bars could be noted down for posterity.

MK14-the only low-cost keyboard-addressable

The MK14 National Semiconductor Scamp based of a professional keyboard-addressable unit -for less than half the normal price. It has a specification that makes it perfect for the engineer who needs to keep up to date with digital systems or for use in school science departments. It's ideal for hobbyists and amateur electronics enthusiasts, too.

But the MK14 isn't just a training aid. It's beendesigned forpractical performance, so you can use it as a working component of, even the heart of, larger electronic systems and equipment.

MK14 Specification

* Hexadecimal keyboard
* 8 -digit, 7 -segment LED display
* 512×8 Prom, containing monitor program and interface instructions
* 256 bytes of RAM
* 4MHzcrystal
* 5V stabiliser
* Single 6V power supply
* Space available for extra 256 byte RAM and 16 port I/O
* Edge connector access to all data lines and I/O ports
Free Manual
Every MK14 Microcomputer kit includes a free Training Manual. It contains

microcomputer! The new Science of Cambr
MK14 Microcomputer kit Microcomputer Kit gives you the power and performance
 examples for training applications, and numerous programs includingmathroutines (square root, etc) digital alarm clock, single-step music box, mastermind and moon landing games, self-replication, general purpose sequencing, etc.

Designed for fast, easy assembly Each 31-piece kit includes everything you need to make a full-scale working microprocessor, from 14 chips, a 4 -part keyboard, display interface components, to PCB, switch and fixings. Further software packages, including serial interface to TTY and cassette, are available, and are regularly supplemented.

The MK14 can be assembled by anyone with a fine-tip soldering iron and a few hours' spare time, using the illustrated step-by-step instructions provided.

Tomorrow's technology - today! "It is not unreasonable to assume that within the next five years ... there will be hardly any companies engaged in electronics that are not using microprocessors in one area or another."

Phil Pittman, Wireless World, Nov. 1977.

The low-cost computing power of the microprocessor is already being used to replace other forms of digital, analogue, electro-mechanical, even purely mechanical forms of control systems.

The Science of Cambridge MK14 Standard Microcomputer Kit allows youtolearnmore about this exciting and rapidly advancing area of technology. It allows you to use your own microcomputer in practical applications of your own design. And it allows you to do it at a fraction of the price you'd have to pay elsewhere.

Getting your MK14 Kit is easy. Just fill in the coupon below, and post it to us today, with a cheque or PO made payable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantee. If for any reason, you're not completely satisfied with your MK14, return it to us within 14 days for a full cash refund.

Science of Cambridge Ltd,
6 Kings Parade,
Cambridge,
Cambs., CB2 1SN.
Telephone: Cambridge (0223) 311488

To: Science of Cambridge Ltd,
6 Kings Parade, Cambridge,
Cambs., CB2 1SN.
Please send me an MK14 Standard Microcomputer Kit. I enclose cheque/ Money order/PO for $£ 43.55$ ($£ 39.95$
$+8 \%$ VAT and $40 p \mathrm{p} \& \mathrm{p}$).
Allow 21 days for delivery.

SUPERSOUND 13 HI-FI MONO

 AMPLIFIER

A superb solid state audio ampifief. Brand new components
throughout 5 silicon tranthroughout 5 silicon tran-
sistors plus 2 power sistors plus 2 power
output lransistors in
push-pull Full wave pusth-pult Full wave
rectification. Outpus approx 13 watts r.m.s.
into 8 ohms. Frequency respanse 12 Hz 30 KHz
$\pm 3 \mathrm{db}$ Fully 10 Hz pre-amplifier stage with sep-
arate Volume gass boosi and a -15 ohm speakers input tor ceramic or crystal cartriage.
Sensitivity approx 40 mV tor full output Supplear tested tested with knobs. escutcheon panet. input and output plugs.
Overall size 3in high $\times 6$ in wide $\times 7$ in deep. AC $200,250 \mathrm{p}$ PRICE \&15-00 P \& P $£ 1-20$.

HARVERSONIC MODEL P.A. TWO ZERO
An advanced solid slate general purpose mono amplifier suitable for Public Address system. Disco.
Guitar. Gram. etc Features 3 Guliar. Gram. erc reatures ${ }^{3}$

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER
 200.240 V Mains operated
Solia State F.M A M Stereo
Tuner Covering M W A M $540-1605 \mathrm{KHz}$ VHF FM $88-108 \mathrm{MHz}$
Bullt-1n Fern Built-1n Ferrite rod aerial for
$M W$ Full AFC and AGC on A.M and FM Stereo Beacon Lamp Indicator Built in Preamps with variable output
voltage adjustable by pre-sel control Max o/p Voltage 600 mV A.M S into 20 K Simulated Teak tinish cabinet will match almost any amplitier. Size 8_{i} in wide 4in high x 9fin deep approx.
Limited number only at $£ 28 \cdot 00$ - $£ 150$ P. \& P
VYNAIR R REXINE SPEAKERS g_{I} CABINET FABRICS app. 54 in. wide. Our price $£ 2.00$ yd. length. P. \& P. 50 p

10/14 WATT HI-FI AMPLIFIER KIT

A stylishly finished monaural amplifier with an output of 14 watts from 2 EL84s in push-pull Super reproduction of both music and allow records and announcements to follow each other fram ally shrouded section wound output transtormer to match 3 -15n speaker and 2 independent volume controls. and separate bass
and treble controls are provided giving good lift and cut valve and treble controls are provided giving good lift and cut Valve line-up 2 EL84s. ECC83. EF86 and EZ80 rectitier Simple
instruction booklet 250 . SAE (Free with paris) All parts sold separately. ONLY $£ 13.50$ P. \&P. $£ 1.40$. Also available ready
"POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
 $40 \mathrm{~Hz}-$ zokhz Can be mounted on ceilings. walls, doors. under tables. etc and used with or without baffle Send S.AE for, full details. Only $£ 8.40$ each + P. \& P. (one 90 , two $£ 1.10$). Now available in either 8 in round version or $4 \frac{1}{2} \times 81$ in rectangular. 10
watts R.M.S. $60 \mathrm{~Hz}-20 \mathrm{KHz} \mathbf{~} 5.25$. P. \& P. (one 85 p, two 75 p .).

SPECIAL OFFER. $6 \frac{1}{2}$ in long throw, roll surround, ceramic mag net 8 oh orm 10 watt speaker chassis. Specially suitable for $\mathrm{Hi} F$ $£ 3.9575 \mathrm{p}$ P. $\&$ P.
2 in PLASTIC CONE HF TWEETER 4 ohm ,
HIGH POWER HI-FI 8 ohm Dome Tweeter. 1 in voice coil. Magnet size 3 in dia. Suitable for use in up to 50 watt systems.
$\mathbf{~} 4.50$ each 60 p P. \& P.

HARVERSONIC SUPERSOUND $10+10$ STEREO AMPLIFIER KIT
A really first-class Hi-Ft Stereo Amplifier Kit Uses 14 transistors including Silicon Transistors in the tirst live stages on each channel resulting in even lower noise level with improved controis. Sultable for use with Ceramic or Crystal cartioges. Very simple to modity to suit magnetic cartidge-instructions included Output slage for any speakers from 8 to 15 ohms Compact design. drilled narked printed circult board with component identoct panel with matching knobs. Wire, solder. nuts. bolts-no extras to buy Simple sitep by step instructions enable any constructor to buld an A.M S per channel into 5 ohms Frequency response $\pm 3 \mathrm{~dB}$ $12-30.000 \mathrm{~Hz}$. Sensitivity better than 80 mV into 1 Mn . Full power bandwidth $\pm 3 \mathrm{~dB} \quad 12-15.000 \mathrm{~Hz}$ Bass boost approx to $\pm 12 \mathrm{~dB}$ Treble cut approx to -16 dB Negative feedback 18 dB over main Overall size 12 in wide $\times 8$ in $\times 2$
$\times 8$ in deep $\times 2$ in high
Fully detalled 7 page construction manual and paris list tree with MPLIFIER KIT
(Magnetic input components 33p extra) POWER PACK KIT
§13-50 P. \& P. 80p
£5.50 P \& P. 95p
cabinet
£5-50 P. \& P. 95p
SPECIAL OFFER-only $\mathbb{C} 23.75$ if all 3 litem
ordered ot one time plusiti2s. A
Also avarable ready built and tested $£ 31.25 \mathrm{P}$ \& P §1 50

HARVERSONIC STEREO 44

A solid state stereo amplifier chassis, with an output of 3-4 watts per channel thio 8 ohm speakers Using the latest high technology overload protection All components including rectitier smoothing capacitor, fuse. tone control, volume controls. 2 pin din speaker sockets and 5 pin din tape rec play socket are mounted on the
 atuminium 2 way escutchecn (to allow the amplitier to be mounted horizontally or verlically) at only $59.00-50 \mathrm{p}$ P \& P Marns transformer with an output of 17 Vac at $500 \mathrm{~m} / \mathrm{A}$ can be supplied at $£ 1.50-40 \mathrm{p}$ P \& P if equired Full connection detals supplied

STEREO DECODER
SIZE 2". 3^{*}
SIZE $2^{\prime \prime} \cdot 3^{*} \cdot y^{\prime \prime}$ ready built. Pre-allgned and tested for $9-16 \mathrm{~V}$ neg. Stereo beacon light can be fitted if required. Full details and P. \& P. Stereo beacon hight it required 40 p extra. $\mathbf{8 6}$.00 plus 20 p

Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday Closed Wednesday.
Prices and specifications correct at fime of press. Subject alteration without notice

LTD.
(Dept. P.E.) 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel.: 01-540 3985
(Please write clearly)
PLEASE NOTE: P. A P. CHARGES OUOTED APPLY TO U.K. ONLY CMARGED EXTRA.

GLOUCESTER INDUSTRIAL SALES AND AUCTIONS LIMITED

Eastington Trading Estate, Nr. Stonehouse, Glos.
Tel: Stonehouse 4118
(M. 5 Motorway - Exit No. 13)

We hold regular monthly auction sales of mostly new electronic and electrical goods consisting of transistors, triacs, integrated circuits, diodes, capacitors and resistors, together with fractional motors, transformers, power packs, etc., etc.

Phone or write to be put on our auction mailing list.

Why not get in touch with our Mr. Jack Bailey and enquire about our terms for the disposal of your surplus stocks, etc., through our auctions.

BARGAIN PARCELS SAVE POUNDS

Huge quantities of electronic components must be cleared os space required. 1000 's of capocitors,
resistors, Ironsislors. Ex equipment ponels ets. covered in voluable components. No time to sort. Must resistors, Itonsislors. Ex equipment ponels ets. covered in voluable components. No time to sort. Must
sell by weight $7 \mathrm{lbs}-£ 4.95 ; 14 \mathrm{lbs}-£ 7.95 ; 28 \mathrm{lbs}-£ 12.00 ; 56 \mathrm{lbs}-£ 20.00 ; 112 \mathrm{lbs}-£ 30.00$. BARGAIN PACKS

Don't let your environment dehydrate you. Buy a Honeywell Humidity Controller membrone operated with $\frac{1}{4}$ " shoft ideal for greenhouses, centrally heoted homes, etc. Build your own humidity olorm. 1.75 A . Contacts of 250 v £ 1.50 eoch. 3 for $£ 4$.
4 oluminium boxes 128×44
signo

signol injectors, etc. £1.00

alarms, model railwoys, etc. $£ 3.30$
0 0-pole 12 valwoys, elc. 23.30 . High quality computer ponels smothered in $\mathbf{£ 2 . 4 5}$. grade companents: $5 \mathrm{lbs} £ 4.75$; $10 \mathrm{lbs} £ 8.95$. Miniature edgewise panel meters 200 wo. fsd £ 1.00 .
Minioture tronsistorised f.m. front end with integrol tuning gang $88-108 \mathrm{MHz} \mathbf{E 2} .50$. New U.H.F. transistor TV tuners 4 pushbution type $£ 3.50$.
Aluminium TV coox plugs. 10 for $£ 1.00$.
Minioture $5 \mathrm{~K} \log$ pots with s / p switch. 4 for £ 1.00 .
Hardwore Packs eoch containing 100 's of ilems including: BA nuts ond balts, Nylon, Selftopping, Posidrive, " P " clips, Coble clomps, pound. 100 t in "p". Clips 60 p, 200 for $£ 1.00$ pound. 100 in. "P" Clips 60p, 200 for $£ 1.00$. Heovily insuloted E.H.T. Dischorging
leod ond earth connector 60 p each
leod ond earth connector 60 p each.
Dual 100 K Balance Pots, Mimature, PC Mounting with Nuts. 4 for $£ 1.00$.
20Ω lowt. Ceromic W.W. Resistors. 5 for $£ 1.00$ 135Ω 15w. Ceramic W.W. Resistors. 5 for $£ 1.00$ $105 \Omega 10 \mathrm{wt}$. Ceramic WW. R. Resistors. of for $£ 1.00$. $0.22 \mu \mathrm{~F} 400 \mathrm{~V}$ Polyester Cops. 12 for $£ 1.00$. $470 \mu \mathrm{~F} 25 \mathrm{~V}$ Radial, Japanese Cops. 5 for $£ 1.00$. DE LUXE FIBRE GLASS
> .PRINTED CIRCUIT ETCHING KITS

Includes 150 sq. ins. copper clad $\$ / 9$ board, Ib terric chloride, 1 dalo etch resist pen, instructions - only $£ 5.30$. 150 sq . in. fibre glass board Dalo pen... 1 lb ferric chloride to mil spec.. 25 5 lbs ferric chloride to mil spec...................... $\mathbf{£ 5 . 0 0}$ Instruction sheet...

Miniature mains tronsformers, fully shrouded. 240 V in $6.0-6 \mathrm{~V}$ at 100 MA . out. Ex. New equipment, complete with moins leod ond plug on input ond short leods on output. 95 p

Semiconductor Bargains TH3 Thermistors. 10 for $£ 1.00$.
100 new ond morked silicon and germonium transistors including $8 \mathrm{Cl} 48, \mathrm{BF194}, \mathrm{BC183}$, etc. $£ 3.95$
200 new ond marked tronsistors, including
2 N 3055 , AC128, BFY50, BD 131, etc. $£ 6.95$ 100 mixed diodes $\operatorname{NN4} 148$, etc. $\mathbf{\Sigma} 1.20$. 100 mixed diodes including zener, power and bridge types $£ 3.30$.
Bridge rectifier 100 V 2.5 amp .4 for $£ 1.00$ Brand new ITT 25 kV T.V. triplers for Decco Brodford chassis $£ 2.50 .5$ for $£ 10.00$. 50 Germonium diodes ideol for cryslal sets etc. $£ 1.00$.
Motorolo wott audio amplifier I.C. supplied with doto and crreuts £ 1.00 100 for $£ 4.50$. SN76115N $£ 1.00$ for $£ 1.00$ Ror

Component Bargains

300 mixed resistors $\frac{1}{4} \& \frac{1}{2}$ watl $£ 1.50$ 300 modern mixed caps, most types, £3.30. 200 mixed resistors, mostly 1 \& 2 watt, $\mathbf{\Sigma} 1.50$ 100 mixed polyester cops $£ \mathbf{2 . 2 0}$. 100 mixed modern miniature and ceromic plote cops, £1. 50.
100 muxed electrolytics $£ 2.20$.
300 printed circuit resistors $\mathbf{£ 1 . 0 0}$.
100 mixed carbon film $£ 1.50$.
mixed corbon film ond metol film resis-
for $£ 4.90$.
or 100 mixed
00 mixed high wottoge resistors, wirewound,
20 assorted VDRs and Thermistors $£ 1.20$.
25 assorted preser pots,-skeleton, etc. $£ 1.20$.

HETT आоाए

Not just one game that needs two playors and may quickly become boring, but 14 games, some of which are for practice by a single player and some which are timed and may thus be played by any number of competitors.

The basic games (many have various options) are: Shooting, Basketball, Ice Hockey, Tennis, Soccer, Squash, Gridball, Motorcycle Jumping, Drag Racing, Motocross.
Joystick controls, colour option, automatic ball speed-up and sound from the set are just some of the features. Probably the most worthwhile set of games available, just right for all the family-from 4 years upwards.

Provides a visual display of eight simultaneous logic states. Ideal for the speedy testing of i.c.s as gate inputs can be simply monitored. To aid clarity marker pips can be added to the display.

... Second Chance to enter the Inventors'Competition!
See page 728

The Common Good

International political and economic quarrels are constantly in the news. The USA and Britain are at odds with the Japanese in matters of trade, for example. And Britain is frequently in dispute with EEC partners, individually or collectively. Such squabbles tend to obscure some fine international cooperative ventures.

One such is Meteosat, 22,000 miles up, quietly doing its iob of providing world weather maps and met. data for the common good of mankind. It was built for the European Space Agency by the COSMOS consortium of aerospace companies and launched by the Americans from Cape. Canaveral. In all there will be five satellites to give complete global coverage. The Americans are supplying two and the Japanese and the Russians one each.

Japanese Imports

But having recorded with pleasure something that unites us all through science, we still cannot avoid considering what divides us internationally in trade and industry. In the UK, Japanese car imports have displaced colour TV as the main talking point. Not that the Japanese threat to British electronics goods manufacturers has disappeared although there is some easement in the TV sector where the agreement on restricting sales is reported to be working reasonably well.

The knock-out blow which closed Thorn's Skelmersdale picture-tube plant has left Mullard in a more favourable position as Britain's sole producer. Even so, Mullard have had to adopt an aggressive attitude (i.e. reduce prices and profits margins) to sell 650,000 tubes out of 1.8 million used in the UK last year. The Japanese, however, still managed to sell 583,000 with the rest coming mainly from Canada and the

USA. Mullard also got some help from the rise in value of the Japanese yen. Mullard report having "turned the corner" with the Japanese market share in the UK dropping sharply in recent months.

The British Radio Equipment Manufacturers Federation (BREMA) has been negotiating an agreement on music centres where the Japanese have over half the UK market. Trade in this sector is said to be sluggish and with large stocks of Japanese products already in the UK it seems likely that even if agreement is reached there will be little effect in the short term.

Brain-power Exports

The Post Office Viewdata service, becoming operational in the UK a year earlier than expected, looks like being an export success. Already adopted by Germany, it is now being examined in the United States following its public showing at Atlanta, Georgia, last October. The system is being sold through Insac Data Systems Ltd, a company set up by the NEB to market British computer software overseas.
Another software company, Compeda Ltd, owned by the National Research Development Corporation, specialises in selling systems based on university and government-sponsored research. Exports of systems packages are expected to account for at least 60 per cent of turnover according to Keith Trickett, managing director of Compeda. One of the systems offered is called the Pipework Design Management System expected to appeal to the petrochemical, gas and process industries. Another is Gaelic, a design system for i.c.s and p.c.b.s.

Setting Up the Arabs

Closely allied to pure brain-power exports such as selling software and supplying consultancy services is technology exporting, a controversial subject because as well as transferring technology it can also transfer jobs, not politically attractive at periods of high domesic unemployment.

Egypt, for example, is anxious to move into high-technology industries such as electronics and aerospace and some British electronics technology has already been transferred to the Cairo area and is in production. Recently announced is a big helicopter deal in which the Anglo-French Lynx will be built in Egypt, both airframe and engines, initially from kits of parts but progressively building up an indigenous aerospace industry which eventually could conceivably compete in the world market and with lower labour costs pose a threat to the companies now supplying all the know-how.

The process of educating those nations aspiring to industrial expansion is something we have to learn to live with. It is not new. I remember being
startled to discover an American multinational, well known for antagonism to the Communist political system, cheerfully selling technology, and production machinery to match, to some Eastern Bloc countries. The Americans involved were confident that by the time the Eastern Bloc manufacturers had mastered the technology, they themselves would already be well ahead on the next generation of products, always a step ahead. A support ing argument was that if they didn't supply the know-how and equipment, then somebody else would, so you might as well get the business while it is going.

IEA/E/ectrex

People are slowly becoming accustomed to the National Exhibition Centre near Birmingham. The IEA/Electrex show attracted a substantially greater attendance than formerly. Facilities for visitors are far greater than at the old London venue but it wasn't just this that brought the crowds along but a more optimistic trade outlook and the stands were certainly busy with good enquiries for products and services. The electrical part of the exhibition was more dominant and busier but I heard no complaints from exhibitors in the electronics section.
An interesting feature was the number of new towns and industrial development areas which took exhibition space, some with very large stands, in an effort to encourage industrial investment. Their full-colour brochures are fully on a par with those from travel agents, and it seems hard to resist the advertised attractions. "When you're in Wakefield you are in the heart of Rugby League country-and among people who work as hard as they play.'

Overstretch

Videomaster, who built a $£ 4$ million turnover company from scratch in four years has been unable to finance expansion and, although still trading, is in the hands of the Official Receiver. Fresh capital is being sought. Eighty per cent of the business was in the volatile TV games sector where promotional costs are high and pricecutting nothing short of savage.

Engineers' Pay

The IEE Salary Survey shows that the hypothetical average professional electrical/electronics engineer had a salary increase of 5 per cent since the last annual survey, well below the rate of inflation. But the gap between those employed in the public and private sectors narrowed. In the public sector the average Fellow or Member engineer was ahead by $£ 1,180$ p.a. and this has now fallen to $£ 840$. In the case of Associate Members the respective figures are $£ 890$ and $£ 630$ p.a.

The Sinclair PDM35. A personal digital multimeter for only $£ 29.95$

 Technical specification

 Technical specification}

Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedence. Yet at $\lesssim 29.95$ ($+8 \%$ VAT), it costs less than you'd expect to pay for an analogue meter!

The Sinclair PDM35 is tailormade for anyone who needs to make rapid measurements. Development engineers, field service engineers, lab technicians, computer specialists, radio and electronic hobbyists will find it ideal

With its rugged construction and battery operation, the PIDM35 is perfectly suited for hand work in the field, while its angled display and optional AC power facility make it just as useful on the bench.

What you get with a PDM35

$31 / 2$ digit resolution
Sharp, bright, easily read LED) display, reading to ± 1.999. Automatic polarity selection. Resolution of 1 mV and 0.1 nA (0.0001 MA).
Direct reading of semiconductor forward voltages at 5 different currents. Resistance measured up to 20 Ms . 1% of reading accuracy.

Operation from replaceable battery or AC adaptor.
Industry standard 10 M1s input impedance.
Compare it with an analogue meter!

The PloM 35 s 1% of reading compares with 3% of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average

The PIDM35 will resolve 1 mV against around 10 mV for a comparable analogue meter - and resolution on current is over 1000 times greater.

The PDM 35 's DC input impedance of $10 \mathrm{Ma} \Omega$ is 50 times higher than a $20 \mathrm{ks} /$ volt analogue meter on the 10 V range.

The PIDM135 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movement to damage. And you can resolve current as low as 0.1 nA and measure transistor and diode junctions over 5 decades of current.

DC Volts (4 ranges)
Range: 1 mV to 1000 V .
Accuracy of reading $1.0 \% \pm 1$ count
Note: 10 Ma input impedance.
AC Volts ($40 \mathrm{~Hz}-5 \mathrm{kHz}$)
Range: 1 V to 500 V .
Accuracy of reading: $1.0 \% \pm 2$ counts.
DC Current (6 ranges)
Range: 1 nA to 200 mA .
Accuracy of reading: $1.0 \% \pm 1$ count.
Note: Max. resolution 0.1 nd .
Resistance (5 ranges)
Range: lis to 20 Ma .
Accuracy of reading: $1.5 \% \pm 1$ count
Also provides 5 junction-test ranges.
Dimensions: 6 in $\times 3$ in $\times 1 / 2$ in.
Weight: $61 / 207$.
Power supply: 9 V' battery or
Sinclair AC adaptor.
Sockets: Standard 4 mm for resilient plugs.
Options: AC adaptor for 240 V
$50 \mathrm{H} \%$ power. De-luxe padded carrying wallet. 30 kV probe.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts - from programmable pocket calculators to miniature TV's. The PIDM35 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.

Tried, tested, ready to go!

When you buy your PDM35 it comes complete with leads and test prods, carrying wallet and comprehensive operating instructions.

The PDM35 is a new concept in multimeters - but over 20,000 have already been sold! If you'd like to know more about the PDM35, and how to get one, complete the coupon and post it to us. We'll send you detailed information by return. Send the coupon today!
Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE17 4HJ, England.

FULL ASCII 奥程利 ，官

KIT

＊Intended for professional micro－ processor applications．
＊This one Keyboard will meet most present and future requirements
＊Full 128－character ASCII 8－bit code
＊Tri－mode MOS encoding．
＊Applications notes for auto repeat， numeric pad，serial output．
＊Upper and lower case characters generated by keyboard with latching shift－lock．
＊Selectable polarity
＊Size $305 \times 140 \times 32 \mathrm{~mm}$ $\left(12 \frac{1}{4} \times 5 \frac{1}{2} \times 1 \frac{1}{4} \mathrm{in}\right)$ ．
＊MOS／DTL／TTL compatible outputs
＊New guaranteed OEM grade components．
＊Needs +5 and -12 V supply

Carter Associates
 P．O．Box 11262
 VLAEBERG
 South Africa postal code 8018

＊Board has space for small low－cost DC／DC converter so that entire unit operates off single 5 V rail．

PRICED LOWER THAN SURPLUS KEYBOARDS

Please write for full technical details and price，and for names and addresses of our UK and European stockists．

Kit or Assembled

＊User selection of positive or negative logic data and strobe output
＊Alpha lock
＊Extra loose keys available
＊Supplied complete with gold－ plated PCB connector and full technical data．
＊Rugged mil．spec．G－10 PCB with plated through holes．
＊2－key roll－over．
＊DC level and pulse strobe signa for easy interface to any 8－bit input port microprocessor system， video display or terminal board． Strobe pulse width 1 ms

ETCH RESIST TRANSFER KIT SIZE $1: 1$
COMPLETE KIT 13 SHEETS 6 in $\times 4 \frac{1}{2}$ in $\mathbf{£ 2} \mathbf{5 0}$ WITH ALL SYMBOLS FOR DIRECT APPLICA TION TO P．C．BOARD．INDIVIDUAL SHEETS $25 p$ EACH．（1）MIXED SYMBOLS（2）LINES 0.05 （3）PADS（4）FISH PLATES AND CON NECTORS（5） 4 LEAD AND 3 LEAD AND PADS （6）DILs（7）BENDS 90° AND 130°（8）8－10－12 T．O．5．CANS（9）EDGE CONNECTORS 0.15 （10 EDGE CONNECTORS 0.1 （11）LINES 0.02 （12） BENDS 0.02 （13）QUAD IN LINE．

CIRCUIT LAYOUT TRANSFERS SIZE 2：1 ONE SHEET $\uparrow 2$ in x 9in GIVING ALL TRANSFERS AS IN ETCH RESIST FROM No． 3 to no． 10 inclusive makes circuit LAYOUT EASY．BLACK ONLY PRICE £1．ALSO LINES AND BENDS PRICE $£ 1$ ．

FRONT AND REAR PANEL TRANSFER SIGNS
ALL STANDARD SYMBOLS AND WORDING OVER 250 SYMBOLS，SIGNS AND WORDS also avallable in reverserfor perspex ETC．CHOICE OF COLOURS RED，BLUE，BLACK OR WHITE．SIZE OF SHEET $12 \mathrm{in} \times 9 \mathrm{in}$ ．PRICE £1．

GRAPHIC TRANSFERS WITH SPACER ACCESSORIES
available also in keverse lettering COLOURS RED，BLUE，BLACK OR WHITE EACH SHEET 12 in $\times 9$ in CONTAINS CAPITALS， LOWER CASE AND NUMERALS．$\frac{1}{8}$ in KIT OR $\frac{1}{4}$ in KIT £1 COMPLETE．STATE SIZE RÉO．

ALL ORDERS DISPATCHED PROMPTLY ALL POST AND VAT PAID
EX．U．K．ADD 50 P FOR AIR MAIL．SHOP AND TRADE ENQUIRIES WELCOME

E．R．NICHOLLS

P．C．B．TRANSFERS．DEPT．PE 46 LOWFIELD ROAD，STOCKPORT，CHES 061－480 2179

THE
 RADIO AMATEUR＇S HANDBOOK 1978

by A．R．R．L
Price：$£ 7.60$

INTRODUCTION TO MICROPROCESSORS by D．Aspinall

Price：$£ 5.30$
FOUNDATIONS OF WIRELESS \＆ELEC－ TRONICS by M．G．Scroggie Price：$£ 5.25$ RADIO DATA REFERENCE BOOK by T．G．Giles

Price：$£ 3.50$ WORLD RADIO TV HANDBOOK by J．M．Frost

Price：$£ 8.00$
THE OSCILLOSCOPE IN USE by 1．R．Sinclair

Price： $\mathbf{£ 2 . 8 0}$

RADIO CIR
dIGITAL ic EQUIVALENTS \＆
Price：$£ 5.90$ NECTIONS by A．Michaels
Price：$£ 2.80$ SELECTOR by T．D．Towers Price：$£ 5.25$ HIGH FIDELITY AUDIO AMPLIFIER CiRCUITS by Texas Inst．Price：£1．30
＊all prices include postage＊

THE MODERN BOOK $\mathbf{C O}$ ．

BRITAIN＇S LARGEST STOCKIST
British and American Technical Books

19－2I PRAED STREET LONDON W2 INP

Phone 01－723 4185
Closed Saturday 1 p．m

\section*{OSMABET LTD | We make transtomers |
| :---: |
| amonasi loner himos |}

LOW VOLTAGE TRANSFORMERS：Prim 240 V ac． 285
 3A CT £6．85；5A CT f14．00；ВА СТ E23．75；12A CT £30；40 3A CT $\mathbf{5} 9.75$.
TWIN SEC TRANSFORMERS：Prim 240V ac．
$6 V 0.6 A+6 V 0.6 A: 9 V 0.4 A+9 V 0.4 A: 12 V 0.25 A+12 V 0.25 A$

 MIDGET RECTIFIER TRANSFORMERS： 240 V sc 6－0 6V 1 SA or $9-0-9 \mathrm{~V}$ 1A E2． 45 each：12－0－12V IA or 20－0－20V $75 \mathrm{~A} £ 2.95$ each； $9-0-9 \mathrm{~V} 0.3 \mathrm{~A}$ or 12012 V 0.25 A or $20-0-20 \mathrm{~V}$ 15A $\mathbf{f} 2.95$ eac
TTRANSFORMERS TAPPED SEC：Prim 240V ac． 2A f5．65；4A £8．90；O－5－20－30－60V $1 \mathrm{~A} \mathbf{4} \mathbf{6 . 7 5 ;} 2 \mathrm{~A} £ 9.75 ; 0-40$ $50-60-80-100-110 \mathrm{~V}$＇A $£ 9.70$ ．
MAINS TRANSFORMERS SPECIAL OFFER：Prim 240V ac $250-0-250 \mathrm{~V} 60 \mathrm{Ma} 63 \mathrm{~V} 1 \mathrm{~A} £ 1.50 ; 250 \mathrm{~V} 100 \mathrm{Ma} 6.3 \mathrm{~V} 2 \mathrm{~A} £ 2 ; 9$ SPEAKER AUTO MATCMING TRANSFORMERS
12 W .3 to 8 or 15 up or down： $\mathbf{£ 2 . 5 0}$ ．
LOUDSPEAKERS
38 or 45 mm or 2 i in $8 \Omega, 2$ in 8 or 250 ， 2 in 8 or $80 \mathrm{n}, 3$ in 35Ω t． 25 ， 7×4 in 8 ，

－INSTANT＂BULK CASSETTE／TAPEERASER
Instant erasure of casseltes and tape spools，any diameter，demag
netises tape heads．200／240V oc $£ 5.50$ ．
POWER SUPPLY，TWIN OUTPUT：Prim 240V ac
stabilised output of 15 V i $i 00 \mathrm{~N}$ ，，plus 12 V ac 0.5 A outpu．pius
mitete with diagram $£ 3.00$
CONDENSERS
Electrolytic $1000 / 50 \mathrm{~V}$ 30p；2000／30V 30p； $1200 / 75 \mathrm{~V}$ 50p
$3900 / 100 \mathrm{~V} £ 1.25$ ；Paper tubular W／E $0.47 / 600 \mathrm{~V}, 2.2 / 400 \mathrm{~V}$ EDGWISE LEVEL METER FSD $200 \mu \mathrm{~A}$
Size $19 \times 18 \times 20 \mathrm{~mm} 800 \mathrm{~K} \times 1.10$ ．
SYNCHRONOUS GEARED MOTORS， 240 V a
 ／P TRANSFORMERS FOR VALVE POWER AMPLIFIERS P．sec tapped 3－8－15．A－A 6 K 30W $£ 11.50$ ：A－A 3 K 50 W
$\mathbf{5 1 7 . 0 0}$ ； 100 W IEL34 KT8Q，etc）$£ 22.00$ ． GEC MANUAL OF POWER AMPLIFIER Covers valve amplitiers 30 W to 400 W 75 p ．
MULTI WAY CABLE，SCREENED PVC COVERED 36 way $\mathbf{6 1 . 0 0 ;} 25$ way $75 p ; 14$ way $50 \mathrm{p} ; 6$ way 25 p ； 4 way 20 p； individually screened 20 p per metre．
TWIN FIG 8 CABLE
Polarised． 100 metre $\mathbf{£ 4 . 5 0}$
MINI 3 CORE CIRCULAR CABLE， $19 \times \cdot 10 \mathrm{~mm}$
ALL PRICES INCLUDE V．A．T
CARRIAGE EXTRA ON ALL ORDER Callers by appointment only S．A．E．enquiries．lists 66 Keniworth $\begin{gathered}\text { Road，Edgware，Middx HA8 } 8 \text { YG } \\ \text { Tel：01－958 9314．}\end{gathered}$

A selection of readers. original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
Why not submit your idea? Any idea published will be awarded payment according to its merits

Articles submitted for publication should conform to the usual practices of this journal. e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the originar work of the undersigned, and that it has not been accepted for publication elsewhere.

THE rapid advances in pocket calculator technology has resulted in many cheap keyboards being available on the surplus market, several of which are suitable to form the basis of a small electronic organ

Using the two CD4011 i.c.s as shown in Fig. 1 at least two octaves may be covered, each key selecting an individually adjusted miniature skeleton preset thus producing the required note. The oscillator drives a simple amplifying stage consisting of a Darlington pair and a balanced armature insert producing a more than adequate sound level.

IC2 provides a switchable tremolo
effect needing only one key to turn it either on or off; a further key being used to parallel C4 with C3 to produce the flats to any note pressed. The range covered by the keyboard can be extended by using another "control" key to double the value of the capacitor in the oscillator.
Of especial benefit when used by the forgetful child is the fact that no on/off switch is necessary. With a 6 volt supply, and high gain, low leakage transistors, the quiescent current is unmeasurable on a $50 \mu \mathrm{~A}$ meter, although the tremolo should be left in the off condition as it consumes nearly
0.5 mA .

Only the simplest keyboards have an independent connection available to each key but the printed circuit of most is easily modified after a little patient examination. The circuit is, of course, monophonic, i.e. depression of two keys produces a third, unrelated note, nevertheless an amusing musical toy can be constructed at very little cost, its accuracy dependant only on careful tuning of each note.
D. Ian, Hampton Court,

Surrey.

STEREO EXPANDER/ COMPRESSOR

THis circuit will help in making low noise, high quality recordings on a good stereo tape recorder. It could also enhance the reproduction from an f.m. tuner or from discs. The input signals are mixed and buffered by ICl, which has a variable gain to enable inputs within the range 10 mV to 1 V r.m.s. to be accepted. The signal is then half-wave rectified by IC2, and further amplified by IC3, which can work in the inverting or non-inverting mode depending on the setting of VR2, which also dictates the gain of this stage. A control voltage then appears across C6. The attack and decay time of this voltage is controlled by VR3 within the range 20 ms to 200 ms .

The control voltage is fed to two voltage controlled amplifiers (v.c.a.s), one for each channel. These utilise the forward conducting resistance of silicon diodes, which can be varied according to the current being passed through them.

Looking at the left channel v.c.a., the current through diodes D3 and D4 is controlled by TR1, and hence by the control voltage. The audio signal is injected into TR2 which along with TR3 forms a long tailed pair. Anti-phase signals appear at the inputs of IC4, which amplifies the difference as the output signal. R18 tends to minimise this difference, and hence the gain of the v.c.a. As more
current is passed through the diodes, the gain increases.

VR4 and VR5 are adjusted so that 550 mV is dropped across each of the resistors R17 and R29. VR1 is adjusted so that when a signal of normal listening level is fed into the inputs, adjustment of VR2 makes little difference to the overall output level.
P. R. Williams,

Stevenage, Herts.

FADE UP/DOWN IN THYRISTOR CIRCUITS

Fig. 1

Among the many published thyristor circuits for power control, I do not recall seeing one with a "fade-up/ fade-down" feature. The circuit depicted in Fig. 1 will do this; as shown it is applicable to a load requiring 12 V , but it could probably be adapted to higher power requirements.

The main controls are VR1 for thyristor firing control, and switch S1 for fade-up/down control. The setting of VR1 determines maximum load current, via two stages of amplification TR1 and TR2, then through a conventional u.j.t. firing circuit based on

TR3. Fade-up/down is provided by the charging and discharging of Cl , as regulated by S1, R1 and R2. With S1 switched to position (a), CSR1 output will gradually rise to the maximum governed by VR1, whilst with S1 switched to position (b), C2 will discharge and fade-down will occur.

Fade times of about 30 seconds were obtained with R1 or R2 equal to $5 \mathrm{~m} \Omega$, whilst at $68 \mathrm{k} \Omega$ fade times were nil. R1 and R2 could be made variable if required.

VR2 and VR3 are included for
setting the bias on TR2; they should be adjusted when setting up so that zero output and full output from the s.c.r. are obtained from the extreme settings of VRI (do this with C1 disconnected and $\mathbf{S} 1$ connected to the positive rail).
J. Duffill,

Cheltenham,
Glos.

SIMPLE WAA-WAA

T
This system is very cheap but very effective, and comparable with many commercial circuits now on the market. It was designed chiefly for use with an electric guitar, though it is also very effective on other instruments.
It consists of a basic " T "-filter network in the feedback bias of a transistor amplifier. According to the component values, a small range of frequencies are boosted while others around are attenuated. As VR1 is
rotated, the range is shifted and a different band of frequencies are boosted.
In the circuit shown, the component values have been selected so that with potentiometer rotation the narrow frequency-selective band sweeps over the entire range of the guitar, so giving the desired "Waa-Waa" effect.

The value of VR1 should not be more than $5 \mathrm{k} \Omega$ as the degree of rotation would then be too small for the musician to be able to control the
effect confidently. If the guitar used with the unit has a particularly weak output signal then RI can be reduced. The circuit will run on a PP3 9 V battery.
S. D. Le Maistre,

St. Laurence,
Jersey.

SPEED CONTROLLER

THIS system was designed to control the speed of a radio controlled car capable of speeds of up to 35 m.p.h. The circuitry is intended for use in conjunction with the "Proportional Radio Control System" published in P.E.

One of the main disadvantages of using a variable resistor between the supply and the motor to provide speed control is that any control action which varies the speed of the car, also varies the current available to the motor and consequently the torque or pulling power. The speed controller shown in Fig. 1 uses pulse width modulation techniques which not only overcome these problems, but also provide reduced current consumption from the supply of nickel cadmium batteries used in the car.

Since the racing car is to be driven in one direction, i.e. for forward control, only one half of the servo amplifier circuit is required for use. This is shown for convenience in Fig. 1 and comprises transistors TR1, TR2 and TR3. A $1 \mathrm{k} \Omega$ resistor acts as a dummy load in place of the servo motor. The servo feedback potentiometer on the servo drive board is replaced by a trimming potentiometer of the same value in order to trim the completed system with respect to the transmitter.

A variable d.c. output of 0 to 4 V is available between points C and OV rail when the corresponding joystick movement in the transmitter is 0 to $5 \mathrm{k} \Omega$. This available voltage is used to switch transistors TR4 and TR5 to provide a maximum d.c. output of 8 V which is necessary to provide the

variable speed control of the car as follows:
TR6 and TR7 form a Schmitt trigger and TR8 provides the phase inversion for oscillations to occur. The output at TR8C is a square wave whose mark/space ratio depends on the d.c. voltage present at point C . When mark/space ratio is 50 per cent, the time that the voltage is on is the same as the time that the voltage is off, giving an average value of the voltage as shown in Fig. 2. If the mark/space ratio is altered so that the on time is increased the average value of the voltage will rise and hence the car will speed up. Consequently when the mark/space ratio is decreased the car will slow down.

The output of the Schmitt circuit feeds a Darlington connected driver and output stage TR9 and TR10 that drives the motor. The motor used in the car is the popular "Bullett" motor supplied by most radio control
shops. This motor was found to have a "start" current of 10 A at 18 V and a "run" current of approximately 6A which varies at different motor speeds. Diode D1 suppresses inductive kickback of the motor while D2 protects TR10 from voltage transients of the motor.

Transistor TR11 serves as a current sense amplifier in order to compensate via the feedback resistor $\mathbf{R x}$ for variations in the frequency of the Schmitt trigger output.

A stack of 2 ampere-hour nickel cadmium batteries have been used to provide the 18 V supply. The circuit can also be used with a 12 V supply by decreasing R11 to approximately 100S.

Transistors TR 9 and TR10 must be mounted on a heatsink.
L. Sadarangani,
W. Ealing.

WAVEFORM GENERATOR

Fig. 1

Fig. 2

Fig. 3

WHEN the circuit shown in Fig. 1 is switched on, the input of IClb is held "low" by Cl , setting all the outputs of the 7496 shift registers to the "low" state, and setting the Q output of flip-flop IC4 "high". The "Set Entry" of IC5 (pin 9) is, therefore, also "high". When Cl charges to the threshold value, IClb changes state, thus removing the reset instruction to the shift registers.

ICla forms a clock whose frequency is determined by CT its output passes via IC2a to the \mathbf{C}_{k} input of the registers and to IC3a. On the first negative going clock pulse, the "high" on pin 9 of IC5 is transferred to output number 1 (pin 15). This "high" is fed to IC3a, and when the clock output next goes "high" the output of IC3a goes "low" resetting IC4 and presenting a "low" to the set entry of IC5. On
subsequent clock pulses the "high" on output 1 is shifted through the registers (ICs 5-7), each of the outputs switching "high" in turn.
When pin 10 of IC7 switches "high", IC2c and IC3b apply a "high". to the SET ENTRY of IC5, thus starting the sequence once more.
IC6 may be duplicated to provide more outputs (circuitry within dotted lines). If this is required, IC2a and IC2d should have one or more inverters connected in parallel with them to facilitate the extra load.
A waveform may be divided into \mathbf{X} portions, each portion having a specific amplitude (Fig. 2). By connecting each output of Fig. 1 to a potential divider (Fig. 3), the amplitude of each output pulse may be pre-set, thus enabling the desired waveform to be taken off at point Y . The more
outputs used, the more accurate will be the resulting waveform.

R1, R2, R3 . . can be around $2 \cdot 2 \mathrm{k} \Omega$ and RA, RB, RC ... may be varied to provide the required amplitude.

A unit was built in which the variable resistors were built onto a piece of Veroboard which plugged into an edge connector mounted on the case. Each waveform needed could then have its own program card.

The circuit of Fig. 1 could also be used to "scan" a solid state display etc.
A. Damper,

Carshalton,
Surrey.

WHAT'S NEW?
 ME
 teaching kif
 The most MODERN, RAPID ECONOMIC way to master space age electronic
 carting even from ZERO

 100 EXPERIMENTS

creating more than 20
practical applications

You learn all about the most up to date electronic circuits; how to calculate, repair, and design them, while pursuing your favourite hobby. Start from scratch, or improve your present knowledge, train and earn money in your spare time, turn your pastime into valuable job opportunities.
compare "our prices. you receive the entire LESS than the price of components fo

- MPLETE KIT

COMPLETE KIT: nothing else to buy*
You get
Instruction manual: over 200 pages of detailed step-by-step instructions. Start from scratch
explains basic laws and physics of Electricity, semiconductor principles and operation electronic circuits: form diodes (including dias, zener)
transistors, triacs to integrated circuits (C .MOS Operational amplifiers)
Over 200 Electronic components\% aerospace technology. Printed circuit experiment board, photo transistor. ${ }^{\text {trial. }}$ thyristor I.C.S transistors
(including FET. MOSFET) LEDS pIUs resistors. capacitors. milliameter. potentiometers. variable measuring instruments (you assemble yourself from among components furnished in k it)
ELECTRONIC VOLTMETERS. LOW FREQUENCY MEASURING AMPLIFIER LOGIC INDICATORS
REGULATED POWER SUPPLY. MULTIAMTER.

You perform:
Over 100 different experiments: from the mos basic voltage measurements to radio transmitter
circuits and including HI FI. Flip Flops, Ic applicaions. Triad use, etc

You construct:
More than 20 complete functional systems: light modulator. high fidelity amplifier, radio control gadgets and games and many. many more. -Hand too's not furnished

INCREDIBLE! $x 5$ x

1

AVE 610 - mail coupon today - SAVE $£ 10$

saga

King's Mead, King's Lane 401
Chipperfield. Ni King's Langley,
Please send me ——— (QTY) IK2 KIT (S)
I enclose cheque (money order) for
E

Name
Address

B

WATCH BATTERIES 65p. Ray-O-Vac long life. Most types.

D.I.Y. KIT 35p. (With battery order)

Case opening tool, fits most watches.
Tweezers, Equiv, chart, Instructions.

NW W

FROM CASIO
F-100 SPORTS WATCH
Chronograph with up to 25 functions
including Net times Lap times and 1 st \& and place times to 1/100 second. Water resistant (100f) and shock resistant plastic case \& strap.
f19.95
RR $£ 24.95$
52QS-14B. Metal encase
RRP £44.95 £34.95
CASIO ALARM WATCHES
At last they have arrived! Six digit display of Hours,
Minutes, and optional Seconds or Date, with Day of Minutes, and optional Seconds or Date, with Day of week and am/pm indication. Date and Month on
demand. Loud 24 hour alarm with on/oft indication 25CR-16B. Round faced watch
RR P £64.95 £49.95
25CS-16B. Superbly styled square faced watch. Slim case.

RR $£ 74.95 £ 59.95$

29CS-11B WORLD TIME
ten world areas
en world areas
One touch summer
time adjustment.
Second display.
$\pm 10 \mathrm{secs} /$ month 15 mont is battery 9.6 mm thick.
£59.95 RR P $£ 74.95$
31QR-16B. This new round faced watch is really well styled. $7+2$ functions plus STOPWATCH from one second to 13 hours. 7.45 mm RRP £44.95 £34.95
31QR-17B. As above but 8.4 mm
RR $£ 35.95 £ 29.95$
Unless otherwise stated
CASIO watches have a constant LCD display of hours, minutes, seconds, am/pm with day, date and month on demand. With night light, automatic 28, 30,31 day calendar, mineral glass face and all stainless steel cases, they are water resistant to months. One battery lasts approximately

IBICO 075

CLOCK/CALCULATOR displays Hours, Minutes, Day and Date. STOPWATCH measures Net and Lap times from $1 / 10$ second 10 hours, with rollover Full access Memory, Percentages, . 5000 hours batteries
£23.50

OPTIM TAC-1
TRAVEL/ALARM Clock For car, pocket, house 4 minute alarm. $11.5 \times 32 \times 65 \mathrm{~mm}$

£22.50

CASIO CLOCK/CALCULATORS
MQ-1. MQ-2 £34.95. AO810 £16.95. ST-1 £24.95 CASIO LCD CALCULATORS
LC 78 Mini Card £ 16.95 . LC 822 £ 10.95
CASIO SCIENTIFICS
DIGITRON: PX 31 £ 11.95 . EX 39 ¢ 15.95
EX 140 £ 17.95. FX $120 £ 19.95$
LCD: EX 2200 £ 19.95 . FY 3000 £ 25.95
Send 25 p for our illustrated catalogue
Prices include VAT and P\&P.
Send cheque, P.O. or phone your credit card no. to:-
Dept. P.E.
Cambridge CB 1 IE H Telephone (0223) 312866

HiN for electronics design anyinaers!

FIX-PRINT JIG for printed circuits

P.C.B.s and other panels
when inserting and soldering components. Can be adjusted to suit work up to 280 mm , rotated to gain access to reverse side and locks in any position. All metal. Price $£ 10$ inc. VAT. p. \& p. f 1

SO

P2 Mk 2 Drill
18.00 p. \& p. $86 p$

In case, room for transformer $\quad £ 19.50$ p. \& p. 860 case with vari/transformer $\quad £ 29.00$ p. \& p.86p

S1 Drill Stand

Constructed to toke the popular PI drill and ensure a high degree of accuracy in all types of electrical precision work.
Price £5. 13 inc. VAT. p. \& p. 38 p
P1 Drille9.67 inc. VAT.
p. \& p. 38p

HAVE YOU TRIED

SPADE DRILLS?
for printed circuit boards and other soft materials No clogging - cooler - cleaner holes - there's a range of sizes, 0.1 to 2.5 mm .
Send for full illustrated details NOW.

> Sole UK Distributors
> PRECISION PETITE LTD

> 119a HIGH STREET TEDDINGTON MIDDLESEX TWI 8HG TEL: 01-977 0878

BEFORE YOU BUY AN AMPLIFIER MODULE-CHECK: DOES TTHAVE $\quad \star 30$ power transistors $\star 2$-year guarantee
 Then compare with the Tamba range-excellent value- 25,50 and 100 W R.M.S

TAM 1000 100W 4 ohms 65 V	¢9.80
TAM500 50W 4 ohms 45V	[7. 50
TAM250 25W 8 ohms 45V	£5.75
POWER SUPPLIES	
For 1 or 2 TAM250/500	¢7. 50
For 1 or 2 TAM 1000	¢9.80
(Carriage 50p on supplies)	

- Suits loads 4-16 ohms
- $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
- Silicon circuitry throughout
- Glass fibre P.C.B
- High sensitivity (100 mV 10k)

High grade components used through out: Texas, Mullard, R.C.A., Plessey, etc

ALL PURPOSE MIXER/PRE-AMP

(with 60 mm slider volume) Suitable for multiple input systems

High and Iow impedance inputs
High sensitivity
Built-in supply smoothing
$20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
-80 dB noise level
Accepts a wide variety of inputs
Wide range bass and treble controls
Wide range bass and treble con 10 power supply
Printed circuit board assembly with treble and bass controls plus slider volume control
£6.50

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc)-C.O.D. (60p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at 8% to orders for 50 and 10 JW systems and at $12 \frac{1}{2} \%$ for 25 W systems (including preamp if ordered at same time).

Hours, 9.30 a.m. -5 p.m. Monday - Saturday. Callers welcome. Tel. (01) 6840098

TAMBA ELECTRONICS

Bensham Manor Road Passage, Bensham Manor Road, Thornton Heath, Surrey.

CAIT

 addressed envelope for catalogue. order form and up to four price lists of components for PE projects from November 1977. Examples from the Ace range of $700+$ components.| 741 | 555 | TIL209 | WN4001 |
| :---: | :---: | :---: | :---: |
| ${ }^{\text {oncy }} 30$ | ${ }_{50}{ }^{2} \mathrm{Op}$ | ${ }^{\text {ONLY }} 15 \mathrm{p}$ | ${ }^{\text {OLL }} 5$ 5p |
| All bricos include VAT. PQP FR | | | |
| Name | | | |

Get on AGEup youn sleeve!

ACE MAIITRONIX LTD Dapt. PE Tootal Street Wikefietd. W. Yorksivire WFI5/R

Clef Products

P.E.JOANNA
\&
'STRING ENSEMBLE'

Send S.A.E. for details of Kits \& P.C.B.s Please indicate which instrument required.

16 Mayfield Road, Bramhall, Cheshire SK7 1JU

asTRA-РАк
 92 GODSTONE ROAD

LOOK! Here's how you master electronics

the practical way

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1

Build an oscilloscope

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course s practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read, draw and understand circuit diagrams
In a short time you will be able to read and draw circuit diagrams, ynderstand the very fundamentals of television radio, computers and countless other electronic devices and their servicing procedures

3 Carry out over 40 experiments on basic circuits

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing servicing and maintaining all types of electronic equipment, radio, t.v. etc

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice

To find out more about how to learn etectronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

British National Radio \& Electronic School

P.O. Box 156, Jersey, Channel Isiands

NAME
ADDRESS

You'll learn a lot from the free Heathkit catalogue.
 The Heathkit catalogue is packed with

NEW De-luxe $12^{\prime \prime}$ CRT Ignition Analyser

WITH UNIT THREE WE INTRODUCE OUR

-

MONEY SAVING, VERSATILE

with a new module every constructor is going to welcome

Audio Plan Unit
Three stereo six push button selector/filter unit with front panel fasci Size $240 \times 105 \mathrm{~mm}$

£6.75 POST FREE \& INC. VAT.

POWER

 AMPLIFIERSOutputs quoted in watts R.M.S. into 4 ohms ± 1 dB. Figures in brackets indicate the appropriate Stirling Sound power supply. For full range, see our new catalogue.

SS. 103 $\begin{array}{ll}\text { SS. } 105 & 5 \text { watts R.M.S. into } 3 \Omega \text { using } 13.5 \mathrm{~V}\end{array}$ 5 watts R.M.S. into 3Ω using 13.5 V $3 \frac{1}{4}^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$. (Car batt.)
SS. $110 \quad 10$ watts R.M.S. (SS. 324
SS. 12020 watts R.M.S. into 4Ω (SS. 334)
$3 \frac{1}{4}^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$
40 watts R.M.S. (SS. 345).
$5^{\prime \prime} \times 3 \frac{1}{4}^{\prime \prime} \times 1 \frac{1}{4}^{\prime \prime}$
SS. $160 \quad 64$ watts R.M.S. (SS.360). Distortion typically $0.1 \% 5^{\prime \prime} \times 3 \frac{1}{4}^{\prime \prime} \times 1 \frac{1}{4}^{\prime \prime}$ 100 watts R.M.S. (SS. 370)
$5^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{4}^{n}$
£2.85
$£ 5.00$
£ 3.95
£4.65
£5.15
£6.50
£8.50
SS. 1100
HS. 160 Heatsink for SS. 140 or SS. 160
HS. 1100 Ditto for SS. 1100
Power Units have low volt D.C. take off point

UNIT TWO
CONTROL UNIT
Provides treble cut/boost $\pm 15 \mathrm{~dB}$ at 10 kHz ; bass $\pm 15 \mathrm{~dB}$ at 30 Hz ; volume control; stereo balance control. Input
sensitivity $1-5 \mathrm{mV}$. R.I.A.A. compensated. S / N ratio 75 dB for 5 mV in Output 200 mV to 1 volt according to 75 dB roltage. Black front panel, white titles. $220 \times 80 \times 50 \mathrm{~mm}$ Supply voltage $10-16$ V.D.C.

$£ 12.45$ POST FREE \& INC. VAT.

Assembly	Powérámps.	Control	Selector	Power Supply	Price Post Free \& Inc. VAT
AUDIO PLAN A	2×60 W.r.m.s	Unit 2	Unit 3	60 V	$£ 49.95$
AUDIO PLAN B	2×40 W.r.m.s.	Unit 2	Unit 3	45 V	$£ 44.95$
AUDIO PLAN C	2×20 W.r.m.s.	Unit 2	Unit 3	34 V	$£ 38.95$

*THE STIRLING SOUND DISCO/PA PROGRAMME

Modular D.I.Y. assemblies for great economy: Control/Mixer Consoles: Sound-light Units including the cable-free Spectrasonic: Mixers: Amps.: Speakers: 'Ampower' amplified speakers, etc. Mention "Disco' when sending for free catalogue as below.

ALL PRICES INC. VAT \& POST FREE \star ACCESS OR BARCLAYCARD - JUST GIVE YOUR NUMBER

Dept. PE.6, 37 VANGUARD WAY, SHOEBURYNESS, ESSEX. Telephone (03708) 5543.

Cash (cheque/money order) with order or your Access/Barclaycard No. Goods lexcept heavy discol sent post free in U.K. All prices inc. VAT. Prices subject to alteration without prior notice.
New Stirling Sound Catalogue with full product ranges, prices, technical information, etc. Send $20 p$ in stamps for your copy by return.

Shop \& Showroom: 222-2.24 West Rd., Westcliff-on-Sea, Essex.
Telephone Southend (0702) 351048

Special Announcement to Readers Introductory Offer

MARK SAWICKI'S "BUILD A MIXER PROJECT" (International Musician \& Recording World Magazine) is now available in kit form and as a complete unit Designed by Mark Sawicki M.Sc. (Eng.)

Sawicki Mk.2-5 Channel Microphone Mixer

Easy to construct D.I.Y, kit includes
All Metalwork screened and plated. All specially selected components, including iC sockets. Ready drilled and legended PCBs.
Teak finished end pieces. Simple assembly instructions with all diagrams and colour codings. Can be built in a couple of evenings: no previous experience necessary. Fully guaranteed against defective materials and components.

Features
5 Independent unbalanced microphone channels
$\frac{1}{4}$ " jacks - I/P and O/P Sockets*
D.I.N. 5 pin Aux/PFL sockets

Treble/Bass - Active Equalisation
HI/LO Gain Switch
Foldback and PFL circuits
Accurate VU Meter ($-20: 0:+3$) VU
Headphones monitoring output
Internally built SINE test oscillator
Echo/Send/Return/Aux sockets
"(Cannon's available on request)
Specifications
$1 / \mathrm{p}$ sensitivity 7 mV r.m.s. for $1.2 \mathrm{Vr} . \mathrm{m}$ s. output
THD - Better than 0.1\%
S / N ratio Better than 65 dB
Frequency response Better than $\pm 2 \mathrm{~dB}$ Ref. $30 \mathrm{~Hz}-30 \mathrm{KHz}$
Lo Frequency EQ better than 35 dB swing (©) 20 Hz
Hi Frequency EQ better than 30dB swing (a) 10 KHz
Aux Level -220 mV @ 1.0 KHz available
Foldback -100 mV @ 1.0 KHz available
$1 / \mathrm{P}$ Clipping level-600mV @ 1.0 KHz
UUMeter calibration $-\mathrm{OVu}=4 \mathrm{dBM}(1.228 \mathrm{VRMS})$
Power requirements - less than 3VA. Ref. 220-240v AC

Kits available at $£ 70+\mathbf{1 2} \frac{1}{2} \%$ VAT $£ 8.75$.
 Cheques payable to:
 TSS ELECTRONICS (Dept. P.E.),
 22 ALBANY ROAD,
 LONDON W13 8PG.
 (Mail Order Only)

Also fully assembled, ready to use mixer (guaranteed and tested) $\mathbf{£ 9 9}+\mathbf{1 2} \frac{1}{2} \%$ VAT $=\mathbf{£ 1 2 . 3 7}$.
Please add $£ 2.50$ for postage/ packing/insurance.
Please allow 3 weeks for delivery.

Front View

Rear Panel Viaw

PE SUSTAIN UNIT
buIL a sustain unit equal to the BEST COMMERCIAL MODELS. COMPLETE KIT - £7.95
ALL HIGH QUALIIY COMPONENTS AS SPECIFIED.
DESIGNER APPROVED.

tuner

Complete set of semiconductors

 LP1 186 Tuner HeadGlass fibre PCB, printed with component locations £4.99 $£ 9.60$
PE DIGITAL VOLTMETER (APRI 1977)

PE DIGITAL VOLTMETER (APRIL 1977) SPECIAL CLEARANCE OFFERS (while stocks last)

PE TV SOUND SEPARATOR

Complete'set of semiconductors $£ 2 \cdot 30$, High quality glass fibre p.c.b. £1 POSTAGE AND PACKING 15 p per order. Orders over $£ 5$ post free. All devices are top grade, brand new and to full manutacturer's spec. We do not sell seconds or rejects. Send S.A.E. for our data sheet and price list. Prices do not include VAT-add 8% to items marked*, and $12 \frac{1}{2} \%$ to all others
DAVIAN ELECTRONICS
(mail order only) 13 Deepdale Avenue, Royton, Oldham OL2 6XD

[^3]We can help you See and Solve your problems
HONELIGHT
Universal Portable Inspection Light The shadowless Honelight utilises the principle of optical fibres, in a tube of virtually unbreakable material, insulated transparent and resistant to alcohol. It gives all-round illumination to otherwise inaccessible confined spaces and corners Simple, lightweight and practical (weight with batteries 40 grammes approx.). Suitable for all professions-Electronics, Radio/TV-machines of all types. Also useful in the realm of Medicine general and specialised. Dentistry. Veterinary etc.
(Operates from 2-1.5 voll batteries).

Desoldering Tool "SPECIPROD'
High precision manufacture de-soldering pump. Available three sizes for all de-soldering requirements.
Chromed interior, nickel pump. teflon nozzle.
Three Sizes.
'Maxi Super' ${ }^{\text {' length } 37 \mathrm{~cm}}$
nozzle diameter 2 mm .
'Maxi Mini'" length 22 cm , nozzle diameter 1.5 mm .
'Maxi Micro' length 16cm
(diameter body 12 mm , nozzle
diameter 1.5 mm)
(The smallest de-soldering pump available)
Literature and general catalogue available on request from
Special Products Distributors LImlted, 81 Piccadilly, London W1V OHL Tel: 01-629 9556

0
 Wilmslow Audio

THE firm for speakers!

SEND 15p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

```
            ACT - AUDAX - BAKER
BOWERS & WILKINS - CASTLE - CELESTION CHARTWELL COLES DALESFORD decca e emi eagle elac fane GAUSS - GOODMANS - HELME I.M.F ISOPHON - JR - JORDON WATTS
KEF - LEAK - LOWTHER - McKENZIE MONITOR AUDIO - PEERLESS - RADFORD RAM RICHARD ALLAN - SEAS TANNOY VIDEOTONE WHARFEDALE
```

WILMSLOW AUDIO (Dept. P.E. 8) SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Discount HI-FI, etc. at 5 Swan Street and 10 Swan Street
Tel : Wilmslow 29599 for Speakers
Tel. Wilmslow 26213 for $\mathrm{Hi}-\mathrm{Fi}$

SAVBIT handy solder dispenser
Contains $2 \cdot 3$ metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times.
Size 5 58p
For soldering fine joints

Two more dispensers to simplify those smatler jobs. PC115 provides 6.4 metres approx. of 0.71 mm solder for tine wires, small components and printed circuits.
PC115 69p
Or size 19A for kit wiring or radio and TV repairs. 2.1 metres approx. of 1.22 mm solder

Size 19A 63p

Handy size Reels and Dispensers

OF THE WORLD'S FINEST CORED SOLDER TO DO

 A PROFESSIONAL JOB AT HOMEErsin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and.makes fast, reliable soldering easy. No extra flux is required.

handy size reels of SAYBIT, 40/60, 60/40 and ALU-SOL solder
alloys
These latest Multicore solder reels are ideal for the toolbox. Popular specifications cover all general and electrical applications, plus a major advance in soldering aluminium. Ask for a free copy of 'Hints on Soldering' containing clear instructions to make every job easy.

Ref.	Alloy	Diam. (mm)	Length metres approx.	Use	Price
$\begin{gathered} \text { Size } \\ \hline \end{gathered}$	$\begin{gathered} \text { 40/60 } \\ \text { Tin/Lead } \end{gathered}$	$1 \cdot 6$	10.0	For economical general purpose repairs and electrical joints.	£2.16
Size	ALU-SOL	$1 \cdot 6$	$8 \cdot 5$	For aluminium repairs. Also solders aluminium to copper, brass etc.	¢2.46
$\begin{gathered} \text { Slze } \\ 10 \end{gathered}$	$\begin{gathered} \text { 60/40 } \\ \text { Tin/Lead } \end{gathered}$	0.7	$39 \cdot 6$	For fine wires. small components and printed circuits.	£2.38
$\begin{gathered} \text { Slze } \\ 12 \end{gathered}$	SAVBIT	1.2	$13 \cdot 7$	For radio, TV and similar work. Increases copper-bit life tenfold.	£2.29

Sole U.K. Sales Concessionaires

IC TEST CLIPS

FOR DUAL-IN-LINE PACKAGES

- Provide full access to integrated circuit DIP leads
- Solve probe attachment problems
- Simplify prototype and production testing, fiald service work, and quality control
- Remove DIP's damage free
- Available in sizes to accommodate all DIP's: TC-14 fits 14-pin DIP's etc.

The unique design of the $A P$ Test Clip assures positive, non-shorting electrical connection and positive mechanical clamping to dual-in-line packages.

Gold-plated phosphor bronze spring contacts are designed for wiping action.

The "contact comb" separating the spring contacts provides positive positioning to prevent accidental shorting of adjacent leads.

VAT \& P\&P included.
Cash with Order.
Full range of bread-boards also

TIRRO ELECTRONICS
Grenfell Place, Maidenhead, Berks.
Tel. (0628) 36229
A. Marshall (London) Ltd. Dept. PE. London: 40-42 Cricklewood Bdwy, NW2 3ET Tel: 01-452 0161 Telex: 21492 \& 325 Edgware Rd, W2 Tel 01-723 4242. Glasgow: 85 West Regent St, G2 2QD Tel: 041-332 4133. Bristol: 1 Straits Parade, Fishponds Rd, BS 162 LX Tel: 0272654201

2N896 2N697 0.0 .39	${ }_{2}^{2 N 22192940.38 ~}$	${ }_{\text {2N33938 }}^{2 \text { N397 }}$	5		135										017		0.14		0.70				1.37		
	${ }_{2} \mathbf{2 N 2 2 2 0} 0.39$				1.35	2N5248	0.44																7		
${ }^{2 N 699} \quad 0.50$	${ }_{2} \mathrm{~N} 22210.25$	2 N344	0.92	2N4121	0.27	$2 \mathrm{H5295}$	0.44	40595	0.98	BC1	${ }_{0.13}^{0.13}$	${ }_{8 C 1821}^{81821}$	0.15	BC21418	0.1				0.69				0.27	MJE2955	
${ }^{2} \mathbf{N 7 0 6} \quad 0.30$	2N2221A 0.25	$2{ }^{13442}$	1.45	2N4122	0.27	2N5296	0.4		0.80		0.13	BC18	0.15	BC2	0.18				0.72		0.3				
2 2N7064 0.30	${ }^{2} \mathbf{N 2 2 2 2} 0.25$	2 23638	0.17	2 N 123	0.19	2N5298	0.44						0.15		0.15				0.93		. 1			MPF103	43
${ }^{2 N 708}$	${ }^{2 N 22224} 0.25$	${ }^{2 N 36384}$	0.17	${ }^{2 N 4124}$	0.19	${ }^{2}$ 254					0.13	BC183	0.12	${ }_{\text {BC2 } 238}$	0.13	ECY71	0.25	${ }_{80433}$	0.4	${ }_{8 F 196}$	0.16	${ }_{\text {BRY }}$ 89 9	0.55	MPFF104	0.44
${ }^{2 N 718}$	$\begin{array}{ll}\text { 2N2369 } & 0.27\end{array}$	2 N370	0.14	2 N 41	0.19		0.16		0.48	BC14	0.15	BC1834	0.12	8С2388	0.13	BCY72	0.18	80434	0.46				0.35	MPS 105	0.44
2 2N7188	${ }_{2}^{2 N 23694} 0.27$	2 N	0.1	2 N 41	0.19	2 N 54	0.20	${ }^{4} 1$	0.48	BC1	0.15	BC1838	0.13	BC23	0.13	80115	0.88						0.3	MPSAOS	0.27
2N7	${ }_{2}{ }^{\text {N26464 }}$	2N3705	0.14	${ }_{2}{ }_{2} \mathrm{Na} 2$	0.32	${ }_{2}^{2} 5$	${ }_{0}^{035}$	${ }^{\text {ACL }}$	0.43		0.15				${ }^{0.16}$				0.45	8F1			0.3	MPS	1.27
2 N	2 N	${ }_{2 \text { N37 }}$	0.14	2 N 428	0.22	2N5459	0.32	${ }_{\text {AC1 }}$	0.59	${ }_{\text {BC1588 }}$	0.15	${ }_{\text {BC1 }}^{8181}$	0.15	${ }_{\text {BC257A }}^{\text {BC239C }}$	0.17	${ }_{8013}^{80132}$	${ }_{0}^{0.75}$	${ }_{804}^{804}$	0.5	${ }_{\text {BF224, }}$	0.22	${ }^{\text {Bu }}$		MPSA12	0.44
${ }^{2} \mathrm{N914} 00.38$	2 N 29040.31	2 N3707	0.14	${ }^{2 N 4288}$	0.22	2 N 5460	0.65	AC153K	0.59	BC159A	0.17	вC183L	0.15		0.1		0.40						1.08		27
${ }_{2} \mathbf{N 9 1 8} 90.33$	2 N 290440.31	2 N 3708	0.12	$2 \mathrm{N4} 42$	0.22	$2{ }^{\text {N5484 }}$	0.37	AC178K	0.70	BC	0.17		0.15					${ }^{80530}$	0.55	${ }_{\text {BF } 2448}$	0.33	BU2	2.20	MPSA56	0.27
2N917	${ }_{2 \mathrm{~N} 29}{ }^{2}$	${ }_{2}{ }_{2} \mathbf{N} 3737$	${ }_{2} 0.15$	${ }_{2}^{2 N 43}$	2.65	${ }_{2}^{2 N 548}$	0.40 0.40	${ }_{\text {ACI }} \mathrm{ACl}$	0.54 0.59		0.38 0.38	${ }_{8 C 18}^{8 C 18}$	0.1	${ }^{\text {BC }}$	-0.43		${ }_{0}^{0.41}$	805	0.70	BF245A	0.44	Bu2	2.40	${ }^{\text {R2008B }}$	2.45
${ }^{\text {2N929 }}$	2N2906 0.25	2 N 3772	2.20	2 N 4918	0.65	2 N 54	0.64	${ }_{4}$	0.65		0.13	${ }_{\text {BCI }}{ }^{\text {d }}$	0.13		0.37		0.43		0.74		0.44	${ }_{\text {8U206 }}$	270	${ }_{\text {IIP29a }}^{\text {R20 }}$	2.15
2 N 929 A 0.37	2 229064 0.25	2 N 3773	3.1		0.70		0.64	AC1	0.54	BC1878	0.13	BC1841	0.15	${ }_{8 C 303}$	0.54	${ }_{80181}$	1.90	${ }_{80538}^{8057}$	0.77	${ }_{\text {BF258 }}^{8185}$	0.35	ME04		${ }_{\text {T1P29A }}^{\text {T1P2 }}$	0.49
${ }^{2 N 930} 0.37$	${ }^{2 N 2907} 0.25$	2 N 3819	0.35		0.83		0.65		. 5		,	BC1 8418	.	${ }_{86} 307$	0.16		20	80538	0.60	${ }_{\text {B2F259 }}$	0.35	ME04			
2 N					0.544	2	${ }_{0}^{0.67}$	${ }^{\text {A }}$ D 1	1.00	C1688	0.13	${ }^{\text {BC1 } 18464}$	0.15	${ }^{\text {BC3 }} 3074$	0.16	80	2.35	805	0.60	8F336	0.4	Meo			0.70
2 N	2 N 29240.17	2 N	${ }_{0} .98$	2 N 49	0.75	${ }_{2 N 6107}^{2 N 0}$	${ }_{0}^{0.45}$	${ }_{\text {AF106 }}$	${ }_{0} .00$	${ }_{\text {BCIIG98 }}^{\text {ECl }}$	0.13	${ }_{\text {BC2 }}{ }^{8 C 212}$	0.15	${ }_{\text {BC3 }}^{8} 8808$	0.16	${ }_{\text {80235 }}^{80187}$	${ }_{0}^{0.46}$				0.49				0.54
2 N 18900.30	${ }^{2}$ N2925	2N3901	0.30	2 N 4924	1.15	2N6108	0.55	AF109	0.52		0.13	${ }_{\text {BC } 2128 ~}^{\text {B }}$	0.15	Bc30	0.16	802	0.4		1.10		${ }_{0} 0.30$				${ }_{0}^{0.59}$
${ }_{2 N 1893} \mathbf{2} 180$	2 N 292	2 N 390	0.20	${ }^{2} \times 15086$	0.30	${ }^{2} 8109$	0.55	BC107	0.16	BC1			0.18		0.16	8023	-	80Y55	1.90	8FR40	0.29	M 40002	0.16	TIP32C	
(2N2102 0.50	${ }_{2}^{2 N 305354}$	${ }_{2}^{2 \mathrm{~N}_{3} 990}$	${ }^{0.18}$	${ }_{2}^{2 N 508788}$	0.30 0.30	${ }^{2} \mathrm{NBI}$	0.49	8C1074	0.16	BC1	0.22	BC2121A	0.11	8c30	0.16	${ }^{802}$. 4	8	2.10	BFR41	0.30	ME4003	0.16	TIP41A	0.75
2N2193 0.50	2 N 30550.75	${ }_{2}{ }^{\text {N390 }}$	0.18	2 N	${ }_{0}^{0.30}$			${ }_{8 \mathrm{BCl}}^{8 \mathrm{Cl}}$	${ }^{0.16}$	${ }_{8 C}^{8 C}$	0.25	${ }_{8 \text { BC }}$	0.18	${ }_{\text {BC3 }}$	0.22	${ }_{80}^{80}$	0.44	${ }^{8 F 515}$	0.33	BFR	0.30	ME4	0.11	TIP	0.97
2N2193A 0.52	2 N 33900.50	2 N 40	0.55				0.48								${ }_{0}^{0.20}$			${ }_{8}^{8 F 1}$			0.3	Me4		T1P42A	${ }^{0.86}$
${ }^{2} \mathbf{N} 219440.42$	2 N3391 0.40		0.65	2 N 51	.	2 N 61	0.45	8 Cl 1088		${ }_{\text {BC178 }}$	0.35	BC2 213 B	0.15	${ }_{8 c 337}$	0.20	B0240C	0.59	${ }_{8 F 1}$	0.3		0.34				
${ }^{2 N 212944} 0.45$	$2{ }^{\text {N3}}$	${ }_{2}$.	2519	0.80	${ }^{\text {2N6125 }}$	0.45	BC108C	0.17	8 C 179	0.25	${ }_{\text {BC2 } 213 C}$	0.15	${ }_{\text {всз38 }}$	0.23	B0241A	0.49		0.3	${ }_{8 \times}$	0.34				0.59
${ }^{2} \mathbf{N 2 1 9 5} 0.40$	2 N	${ }^{2}$	0.60	2 N	0.75	40	0.55	8 Cl 10	0.16	8C179A	0.25	BC2 13	0.17	BC54	0.13	41	0.6				30				
2 N 219540.40						62	0.55	${ }^{8 C 1098}$	0.17	${ }^{\text {BC1798 }}$	0.25	8c213	0.17						. 27	${ }_{8 \times \times 85}$	${ }^{0.38}$	MJ2955	1.35	TIS	0.50
${ }_{2 \times 2218}^{2 N 218} 0.35$	${ }_{2}^{2} \mathbf{2} 33395$		0.17		0.97		1.45		0.18		0.26		0.17				0.62	8F1	0.33	恹86	0.30	мје340	0.62	IIS	
2N2218A 0.38	2 N 3996	2 N 4061	0.19	2N5246	0.38	40409	${ }_{0.82}^{0.82}$		0.30	BC182	${ }_{0}^{0.12}$	BC213LC	0.1	${ }_{\text {BC548 }}$	0.13	${ }_{\text {B02243 }}$	0.65	${ }^{85180}$	0.37	${ }^{\text {BF }}$	0.35	70	0.62	IIS90	0.22

BIG BARGAIN TV GAMES KITS

TANK BATTLES
 Based on AY-3-8710 chip

NOW ONLY*
B \& W Kit£18.90
Colour Kit.......................................£24.90
Mini Kt...£11.50

* Battle as Professiona or Territoria Soldier.
\star On screen scoring coded to tanks.
\star Tanks controlled by toggle switches or joystick and fire button.
\star Realistic tank, shell burst and explosion sounds through TV speaker.
\star Three speed tank control.
\star Exploding mines and terrain barriers
\star Guided missile shells \star Single 9 v supply.

STUNT RIDER		
4 GAMES	based on the	NOW
AY-3-8760 chip		ONLY*
B \& W Kit		..£17.90
Colour Kit.		. $£ 23.90$
Mini Kit..		. 11.50

Monikit

* Super Stunt Bus Stunt, Moto-cross,

 Drag Race.\star On screen scoring and timing.
\star Realistic throttle and crash sounds through TV speaker.
\star Amateur or professional selection mode.
\star Simple potentiometer throttle control.

* Single 9 v supply.

SUPER TELESPORTS
10 GAMES based on the NOW AY-3-8600 chip ONLY*
\qquad
\qquad
Mini Kit .. £9.50

\star On screen scoring coded to player.
\star Triple sounds through TV speaker.
\star Auto ball speed-up mode.

* Controlled by joystick and fire/serve button.
* Single $9 v$ supply.

TUNE IN TO A BARGAIN TODAY. Send cheque or P.O. to:

VIDEOTIME PRODUCTS
the video and time products people

56 QUEENS ROAD BASINGSTOKE, HANTS RG21 1RE
TEL. (0256) 56417 TELEX 858747

Trade enquiries welcome

INTERPROJECTS LTD. Technical Services

In association with the
UNIVERSITY OF LIVERPOOL'S COMPUTER LABORATORY are organising a FOUR DAY INTENSIVE COURSE on

LOGIC \& MICROPROCESSOR SYSTEM DESIGN

Conducted by Prof. D. Zissos, University of Calgary, and Dr. M. Taylor, Computer. Laboratory, University of Liverpool
JULY 10-13, 1978 - 9am to 5pm

at the

University of Liverpool's Greenbank House University Club
Proceedings to be opened by Dr. J. Alty, Director of the
Computer Laboratory, University of Liverpool.
An intensive four day course aimed to enable engineers, technical managers, physicists, medics and academics to design and implement their own microprocessor systems using methods that require no specialist knowhow of electronics or programming other than a basic knowledge of logic.
D. Zissos has written numerous books and articles on the subject and he is a practising design consultant known for his pragmatic approach - M. Taylor, Hardware Specialist, is responsible for Microprocessor applications.
Fees: Residential - £185.00. *Non Residential - £165.00
*Includes course, dinner and buffet luncheons only
INTERPROJECTS LTD,
29 Church St., Edmonton, London N9 90Y.
Tel: 01-8036896 Registered Office no. 1159260

To INTERPROJECTS LTD., Technica/ Services

Please reserve place(s) Residential/Non Residentia

Name(s)
\qquad
Enc. cheque/PO £ \qquad Payable - Interprojects Ltd

JONES SUPPLIES

Prices. Please Add 8\% VAT. 10p. P\& P. Except were shown.
 JONES SUPPLIES

588 Ashton Rd, Hathershaw, Oldham, Lancs. 061-6529879

$15-240$
 The HY5 is a mono hybrid amplifier ideally suited for all applications. All common

HY5

Preamplifier input functions (mag Cartridge, tuner. etc.) are catered for internally, the desired function is achieved either by a multi-way switch or direct connection to the appropiate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.
FEATURES: complete pre-amplifier in single pack, multi-function equatisation. low noise, low distortion, high overload. two simply combined for stereo.
APPLICATIONS: hi-fi. mixefs. disco, guitar and organ. public address
SPECIFICATION: inputs-magnetic pick-up 3 mV . ceramic pick-up 30 mV . iuner 100 mV . microphone 10 mV . auxiliary $3-100 \mathrm{mV}$. input impedance $47 \mathrm{k} \Omega$ at 1 kHz . Outputs-iape 100 mV . main output 500 mV at 1 KHz : signalinoise ratio 68 dB . Overioad- 38 dB on magnetic pick-up Supply Voltage- $\pm 16-50 \mathrm{~V}$ Price $\mathbf{2 5} \cdot \mathbf{2 2}+\mathbf{6 5 p}$ VAT. P. \& P. free HY5 mounting board B. $1.48 p+6 p$ VAT. P. \& P. free
The HY30 is an exciting New kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of: I.C.. heatsink. P.C. board, 4 resistors. 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up to date technology available.
FEATURES: complete kit. low distortion, short. open and thermal protection. easy to buld FEATURES: complete kit. Iow distortion, short. Open and thermal protection. easy to buld
APPLICATIONS: updating audio equipment. guitar practice amplifier. test amplifier. audio oscillator SPECIFICATION: Output Power-15W R.M.S. into in Distortion-0 1% at 15 W Input SensitivitySPECIFICATION: Output Power-15W R.M.S. into an Distortion-0 1% at 15 W Input Sensitivity-
500 mV . Frequency Response- $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$. 500 mV . Frequency Response- $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
Price $\mathbf{5 5} \cdot \mathbf{2 2}+65 p$ VAT. P. \& P. free
The HY50 leads I.L.P. s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World. FEATURES: low distortion integral heatsink. only five connections. 7 amp output transistors no external components.
APPLICATIONS: medium power hu-fi systems. Iow power disco, guitar amplifier
SPECIFICATION: Input Sensitivity- 500 mV Output Power-25W R M.S. into 8Ω Load Impedance$4 \mathrm{-16O}$ Distortion- 0.04% at 25 W at 1 kHz Signal Noise Ratio- 75 dB Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage $- \pm 25 \mathrm{~V}$ Size- $105 \times 50 \times 25 \mathrm{~mm}$
Price £6-82 + 85p VAT. P. \& P. free
The HY 120 is the baby of I.L.P. s new high power range, designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: very low distortion integral healsink load line protection thermat protection five connections. no external components
APPLICATIONS: hi-fi high quality disco. public address monitor amplifier, guitar and organ
SPECIFICATION: Input Sensitivity- 500 mV Output Power--60W R M.S into 8Ω. Load Impedance-$4-16 \Omega$ Distortion- 004% at 60 W at 1 kHz Signal Noise Ratio- 90 dB Frequency Response-10Hz$45 \mathrm{kHz}-3 \mathrm{~dB}$ Supply Voltage $- \pm 35 \mathrm{~V}$ Size $-114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 15 \cdot 84+£ 1 \cdot 27$ VAT. P. \& P. free
The HY200 (now improved to give an output of 120 watts) has been designed to stand the most rugged conditions such as disco or group while still retaining true hi-fi performance.
FEATURES: thermal shutdown very low distortion load line protection integral heatsink no external components.
APPLICATIONS: hi-fi. disco, monitor, power slave, industral, public address
SPECIFICATION: Input Sensitivity- 500 mV Output Power-120W R.M.S into 80 Load Impedance-$4-16 \cap$. Distortion-0 05% at 100 W at 1 kHz Signal Noise Ratio- 96 dB Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage- $\pm 45 \mathrm{~V}$ Size- $114 \times 50 \times 85 \mathrm{~mm}$ Price £23. $\mathbf{3 2}+£ 1.87$ VAT. P. \& P. free
The HY400 is I:L.P.s Big Daddy of the range producing 240 W into $4 \Omega^{\prime}$ It has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: thermal shutdown. very low distortion. load line protection. no external components APPLICATIONS: public address disco power slave. Industrial
SPECIFICATION: Output Power-240W R M.S into 4 K Load Impedance-4-16n. Distortion-0 1% at 240 W at 1 kHz . Signal/Noise Ratio- 94 dB Frequency Response- $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ Supply Voltage at 240 W at 1 kHz . SignaliNoise Ratio- 94 dB Frequency Response- $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ Supply Voltage
$- \pm 45 \mathrm{~V}$. Input Sensitivity- 500 mV Size- $114 \times 100 \times 85 \mathrm{~mm}$ Price $832 \cdot 17+\Sigma 2 \cdot 75$ VAT. P. \& P. free
POWEA SUPPLIES: P8U36-suitable for two HY30s E5. $22+65$ V VAT. P. \& P. free. P8U50-suitable for two HY50s $85 \cdot \mathbf{s 2}+$ 85p VAT. P. \& P. free. P8U70-suitable for two HY120s £13.75 + $1 \cdot 10$ VAT. P. \& P. Pree. Psuso-suitable for one HY200 $£ 12 \cdot 85+£ 1 \cdot 01$ VAT. P. \& P. free. P8U1s0-suitable for two HY200s or one HY400 $£ 23 \cdot 10+£ 1 \cdot 85$ VAT. P. \& P. free.

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

> I.L.P. Electronics Ltd. Crossland House, Nackington, Canterbury Kent CT4 7AD
Tel (0227) 63218

Total Purchase price
I Enclose: Cheque
Postal Orders \square
Money Order Please debit my Access account \square Barclaycard account \square
Account number
Name and Address

GREENWNELD

443 Milibrook Foad Southampton SO1 DHX Tel：（0703）フ725ロ1 All prices quoted include VAT．Add from schools，etc．（Minimum invoice
25 P UK／BFPO Postage．Most orders charge f5）．Export／Wholesale enquiries despatched on day of receipt．SAE VALUE E 1 ．Official orders accepted

SEMICONDUCTORS

 Diodes；1N4001／2 5p；4004／5 7p； 4006 8p； 4007 9p；1250V 1A，10p； $1250 \mathrm{~V} 1.5 \mathrm{~A}, 12 \mathrm{p}$ ； 50 V 3A 10p； $100 \mathrm{~V} 3 \mathrm{~A}, 12 \mathrm{p} ; 400 \mathrm{~V} 3 \mathrm{~A}, 15 \mathrm{p} ; 200 \mathrm{~V}$ 10A stud，40p；400V 10 A stud，48p． Bridge Rectifiers．$50 \mathrm{~V} \uparrow \mathrm{~A} \mathrm{26p;} \mathrm{200V} \mathrm{1A} \mathrm{32p;} \mathrm{400V} \mathrm{1A}$ 36p； 100 V 2A 48p； 400 V 2 A 58p； 100 V 4 A 65p； $400 \mathrm{~V} 4 \mathrm{~A} \mathrm{80p;} 100 \mathrm{~V}$ 6A 74p；400V 6A 98p．
400 mW Zeners 2 V 7 to $36 \mathrm{~V}, 10 \mathrm{p}$ each． 1.3 W Zeners $3 \mathrm{~V} 3-200 \mathrm{~V}, 20 \mathrm{p}$ ． 10 watt zeners from $4 \vee 3$ to 200
OAB 1 5p；OA91，8p；1N4148，4p．
SCR＇s
SCR
O．8A
$1 A$
4A
4A
$6 A$
$6 A$
$6 A$
$10 A$
$10 A$
$10 A$
$10 A$
Triacs
$6 A$
$8 A$
$15 A$
$15 A$

60 V	TO92
400 V	TO5
200 V	TO220
400 V	TO220
200 V	TO220
400 V	TO220
400 V	TO66
100 V	TO220
200 V	TO220
400 V	TO220
600 V	TO220
400 V	TO220
600 V	TO220
200 V	TO220
400 V	Stud
TRANSISTORS	

$35 p$

60 p 18p BC548 10p BRY56 $\begin{array}{lllll}\text { AC128 } & 18 \mathrm{p} & \text { BC549 } & 10 \mathrm{Dp} & \text { OCP71 }\end{array}$ $\begin{array}{lllll}\text { AC176 } & \text { 18p } & \text { BCY70 } & 15 p & \text { TIP41A }\end{array}$ $\begin{array}{lllll}\text { AC188 } & 20 \mathrm{p} & \text { BCY71 } & 15 \mathrm{p} & \text { TIP42A }\end{array}$ $\begin{array}{lllll}\text { A0149 } & \text { 70p } & \text { BD131 } & \text { 14p } & \text { IIP } \\ \text { IIP2355 }\end{array}$ AD161 40p BD132 40p T1S43 $\begin{array}{llllll}\text { AD162 } & 40 \mathrm{p} & 8 D 133 & 48 \mathrm{p} & 2 \mathrm{~N} 2646\end{array}$ $\begin{array}{lllll}\text { AF279 } & 75 \mathrm{p} & 80137 & 40 \mathrm{p} & 2 \mathrm{~N} 2905\end{array}$ $\begin{array}{lllll}\mathrm{BC} 107 & 12 \mathrm{p} & \text { BD138 } & 40 \mathrm{p} & 2 \mathrm{~N} 2926 \\ \mathrm{BC} 108 & 10 \mathrm{p} & 80139 & 42 \mathrm{p} & 2 \mathrm{~N} 3253\end{array}$ $\begin{array}{llllll}\text { BC108 } & 10 \mathrm{p} & 80139 & 42 \mathrm{p} & 2 \mathrm{~N} 3053 & 28 \mathrm{p} \\ \text { BC } 108 \mathrm{C} & 12 \mathrm{p} & 80140 & 44 \mathrm{p} & 2 \mathrm{~N} 3054 & 52 \mathrm{p}\end{array}$ $\begin{array}{lllll}\mathrm{BC} 109 & \text { 12p } & \text { BF } 173 & \text { 20p } & \text { 2N3055 }\end{array}$ $\begin{array}{llll}\text { BC109C } & 15 p & \text { BF181 } & 30 \mathrm{p} \\ \text { 2N3442 }\end{array}$ $\begin{array}{lllll}\mathrm{BC} 147 & 10 \mathrm{p} & \text { BF } 194 & 10 \mathrm{p} & 2 \mathrm{~N} 3702\end{array}$ BC148 10 $\begin{array}{lllll} \\ \text { BC149 } & 10 \mathrm{p} & \text { BF195 } & \text { 10p } & \text { 2N3703 }\end{array}$ $\begin{array}{llllll} \\ \text { BC } 157 & 10 \mathrm{p} & \text { BF196 } & 10 \mathrm{p} & 2 \mathrm{~N} 3704 & 10 \mathrm{p} \\ \text { BF197 } & 12 \mathrm{p} & 2 \mathrm{~N} 3705 & 10 \mathrm{p}\end{array}$ $\begin{array}{llllll}\text { BC158 } & \text { 10p } & \text { BF20D } & \text { 28p } & \text { 2N3706 } & \text { 10p } \\ \text { BC159 } & \text { 10p } & \text { 日FR39 } & \text { 24p } & \text { 2N3708 } & \text { 10p } \\ \text { BC182 } & \text { 12p } & \text { BFR79 } & \text { 26p } & \text { 2N3710 } & 10 p\end{array}$ $\begin{array}{lllll}\text { BC1B2 } & 12 \mathrm{p} & \text { BFR79 } & 26 \mathrm{p} & 2 \mathrm{~N} 3710 \\ \text { BC1B3 } & 12 \mathrm{p} & \text { BFX29 } & 22 \mathrm{p} & 2 \mathrm{~N} 3819\end{array}$ | BC184 | 12p | BFX48 | 32p | 2N3819 | 2np |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BC212 | 14 p | BFX84 | 22 p | 2N3908 | 15 p |

$\begin{array}{llllll}8 C 441 & 32 \mathrm{p} & \text { BFY501 } & 18 \mathrm{p} & \text { 2N6028 } \\ \text { BC4 } & \text { 180673 }\end{array}$	BC461
BC547	
10	${ }_{74} 8$ Series 110 p 74 Series 7 L

$7400 \quad 12 \mathrm{p}$ $\begin{array}{ll}7400 & 12 \\ 7401 & 14\end{array}$ 7401 7404 1410 $\begin{array}{ll}7420 & 1 \\ 7429\end{array}$ $427 \quad 3$ 743
743 7440
7442
7445
7445
7446
4000
4001
4002
4007
4011
40124011
4012
4013
4016
4013
4016
4017$\begin{array}{ll}4016 & 48 \mathrm{p} \\ 4017 & 84\end{array}$8 BFY 52
8 BY 39
40 p
84p 741$37 p$
$36 p$
7451
7453
$\begin{array}{ll}14 \mathrm{p} & 7 \\ 14 \mathrm{p} & 74\end{array}$ 74122
79123
74132$51 p$
$64 p$
56
79 p
44 p
73 pseries．Tota value 400
K042 As ab 280 for $£ 15.30$
PC ETCHING KIT MK III
Now contains 200 sq ins．copper clad boardlib．Ferric Chloride，DALO etch－resist pen，
abrasive cleaner，two miniature drill bitsabrasive cleaner，two miniature d
etching dish and instructions． $\mathbf{£ 3 . 9 0}$
CALCULATOR CHIP
Type C500 by G1， 4 function＋constant． 8digit．Multiplexed output for simple kayboardinterfacing 24 pin DIL．With comprehensive
DARLINGTON COMP PAIRBD695A and BD696A 45V 8A 70W
plastic powerl！gain 750 ＠4A．PNP－NPNplastic pow

VERO OFFCUTS

Pack A，All O．1＂Pack B，All 0．15＂

 Pack C．Mixed Pack D，all $0.1^{\prime \prime}$ PlainEach pack contains 7 or 8 pieces with a total area of 100 sq in．Each pack is $£ 1.30$ ．Also available by weight． $11 \mathrm{lb} £ 4.20,101 \mathrm{~b} £ 32.50$ $17 \times 3 \mathbf{3}^{\prime \prime}$ Strips： $0.1^{\prime \prime} \mathbf{£ 2} \mathbf{2 0 ;} 10$ for $\mathbf{£ 1 5}$ $0.15^{\prime \prime} \mathrm{E1.96}$
$0.1^{\prime \prime}$ Plain $\mathrm{f1} .83$
EDGE CONNECTORS Special purchase of these $0.1^{\prime \prime}$ pitch double－ sided gold－plated connectors enables us to
offer them at less than one－third of their offer them at less than one－third of their
original list price！
18 way 41 p； 21 way 47 p； 32 way 72 p； 40 way 90 p； 49 way 111 p．

STORAGE CABINETS

Metal cabinets with transparent plastic drawers．Ideal for components，small parts，nuts，bolts etc．Many other uses in the home， workshop，laboratory etc．

Type 1118
Choose from the following range to suit your own needs．

| Type | Height
 （ins．） | No．of Drawets | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | ---: | Price

All cabinets are finished Blue， $12^{\prime \prime}$ wide $\times 5 \frac{3}{4}{ }^{\prime \prime}$ deep． Prices include VAT and Post．Satisfaction or money refunded．Cheque／P．O．to：

MILLHILL SUPPLIES（TOOLS）

35 PRESTON CROWMARSH， BENSON，OXON．OX9 6SL

From your Local Dealer or Direct from Manufacturers
S：BPRTEMSTERTए
86－88 Union St•Plymouth PLI 3HG
Tel：0752 650II TRADE ENQUIRIES WELCOME

S-DECS AND T-DECS
S-DeC E3-39. T-DeC E4-44. u-DeCA E4-52. U-DeCB 27-03. 16 dil or 10 TO5 adaptors:- with socket £2-14. New SINCLAIR PRODUCTS*
PDM35 digital multimeter $\mathbf{\text { E } 2 5 - 9 5 . ~ M a i n s ~}$ adaptor $£ 3-24$, Doluxe padded carry case € $3-25$. 30 kV probe $£ 18-36$. Cambridge scientific programmable calculato £ 13-15. Prog. library £4-65. Mains adaptor $\begin{array}{cc}\text { E3-20. Cambridge } & \text { Scientific } \\ \text { Oxford } & \text { E8-45 } \\ \text { scientific } & \text { E9-95. IC20 } \\ \text { stereo }\end{array}$ 10 W .10 W integrated circuit amp ki supplied with PZ20 power kit $£ 11-95$
VP20 preamp kit for above $£ 8-95$.
BATTERY ELIMINATOR BARGAINS
TV games power unit stabilized 7.7 V 100 ma f3-10. 3-way models with
switched output and 4 way multi-jack switched output and 4 -way, multi-jack:-
$3 / 4 \frac{1}{2} / 6 \mathrm{~V} 100 \mathrm{ma}$ E $2-92.6 / 7 \frac{1}{2} / 9 \mathrm{~V} 300 \mathrm{ma}$ £ $3-30.100 \mathrm{ma}$ redio models same size as a PP9 battery. With press stud conineciors. $9 V \in 2-85.6 V$
$£ 4-50.62-85.4 \frac{1}{2} V \in 2-85,9 V+9 V$ cassette recorder mains unit $7 \frac{1}{2} V 100 \mathrm{ma}$ with 5 pin din plug $\mathbf{E 2 - 8 5}$. car convertors 12 V de input. Output 9 V 300 ma E $1-50$ Sutput $7 \frac{1}{2} \vee 300$ ma E $1-50$
BATTERY ELIMINATOR KITS

Send sae for free leaffet on range, 100 ma adio types with press stud connectors | $〔 2-50$. | $6+6 \mathrm{~V}$ | 62.50 | $9+9 \mathrm{~V}$ |
| :--- | :--- | :--- | :--- |
| 2 | $4 \frac{1}{2}+4 \frac{1}{2} \mathrm{~V}$ | | | cassette types $7 \frac{1}{2} \mathrm{~V}$ 100ma with din plug £1-80. transistor stabilized 8 -way types for low hum $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{1} / 9 / 12 / 15 / 18 \mathrm{~V}$. 100 ma £ 3 -20. 1 Amp $66-40$, heavy-duty

 E7-25. car convertor kit input 12 V de. output $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ 1A stabilized. stabilized
power kits $3-18 \mathrm{~V} 100 \mathrm{ma}$ £ $3-60.3-30 \mathrm{~V}$ power kits 3-18V 100 ma §3-60. 3-30V
A £9-95. 3 -30V 2 A € $14-95$.
JC12. JC20 AND JC40 AMPLIFIERS A range of integrated circult audio amplicircuits. JC12. 6 watts $£ 1-60$. JC20 10. watts f2-95, JC40 20 watts f4-20. Send sae for free data on our range of
BULK BUY OFFERS
Minimum purchase $£ 10$ any mix from this section only. AC76023N exact equiv of ZN4 1484 p . 4.43 MHz PAL crystals 45 p 7418 dil 20 p . NE555 8 dit 32 p . Dalo pens 58p. Plastic equiv of BC108/9 3.8p/4.4p.
2N3055B 27p. 1 N4 $148 \quad 1.9 \mathrm{p}$.

SWANLEY ELECTRONICS

Mail order DEPT. P.E. PO Box 68, 32 Goldsel Rd., Swanley, Kent BR8 8 TO
customers deduct 7% on items marked cost of order for postage. Prices include VAT Oversea

Test Equipment Multimeters
 The Eagle range of multimeters covers every possible need of the electrical or electronic engineer. They cost from about £ 6 to $£ 58$ (inc V.A.T.). There's at least one which suits your job precisely.

helped tho have ands to move up into higherpaid more eecure jobe higher paid - cironice now it can be your turn Whether you are a newcomer to the field or already working in the industry. ICS can provide you with the specialised training so essential to success

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace tbat suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.

City and Guilds Cortificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour T.V. Servicing
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

BRAND NEW COMPONENTS BY RETURN

$\begin{array}{ll}(50 \mathrm{~V}-6 \mathrm{p} .100-7 \mathrm{p} . \\ 10 \mathrm{p}) .40 \mathrm{~V}-11 \mathrm{p}-8 \mathrm{p}) . & 220-8 \mathrm{p} . \\ 100 \mathrm{~V}-16 \mathrm{p}) . & 1000 / 15 \mathrm{~V}-15 \mathrm{p} .\end{array}$
$1000 / 25 \mathrm{~V}$-18p. $1000 / 50 \mathrm{~V}-22 \mathrm{p}$.

Mullard
10
Miniature
pf.
to
47
Vertical Mounting Ceramic Plate Caps. 50V.
E12 22 pf.- 1000 pf. E6 1500 pf.-47000 pf.-2p.

Mylar (Polyester) Film, 100 V . Vertical Mtg.
$.001, .002, \quad 005-3 p . \quad 01, .02-4 p . \quad 04, ~ 05-5 p$.
Miniature Film Resistors Highstab. E12 5\%.
0.125 watt 10Ω to $2 \mathrm{M} 2 \Omega$...
0.500 watt 10Ω to $2 \mathrm{M} 7 \Omega$
1.000 watt 10Ω to $10 \mathrm{M} \Omega$
1N4148-3p. 1N40O2-5p 1N4006-7p 1N4007
BC107/8/9. BC147/8/9. BC157/8/9. BF194 \& 7-9p.

Printed Circuit Hoiders for 20 mm . fuses-5p.
Post 10p (Free aver E4). Prices VAT inclusive.
THE C. R. SUPPLY CO.
127. Chesterfield Road, Sheffield S8 ORN

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES.HARDING \& CO., 103 South Brink Wisbech, Cambs, 0945-4188. Immediate settlement.
ELECTROLYTIC CAPACITORS IV/UFI 6.3V/470 5p; 1000 13p;
2200 14p; 3300 1 ${ }^{6} p ; 4700$ 18p; $10 \mathrm{~V} / 10,47,220$ 8p; 470 9p;
ELECTROLYTIC CAPACITORS IV/UFI 6.3V/470 5p; 1000 13p;
2200 14p; 3300 1 ${ }^{6} p ; 4700$ 18p; $10 \mathrm{~V} / 10,47,220$ 8p; 470 9p;

25v/22. 33 बp; 100 p; $2209 \mathrm{pp} ; 330.470$ 12p; 1000 28p; $35 \mathrm{~V} / 477 \mathrm{7p} ;$
25v/22. 33 बp; 100 p; $2209 \mathrm{pp} ; 330.470$ 12p; 1000 28p; $35 \mathrm{~V} / 477 \mathrm{7p} ;$
25V/22, 33 ep; 100, 220 9p; $330,47012 \mathrm{p} ; 100028 \mathrm{p} ; 35 \mathrm{~V} / 477 \mathrm{p} ;$
$100,20,33030 \mathrm{p} ; 50 \mathrm{~V} / 17 \mathrm{p} ; 22,3310 \mathrm{p} ; 47,10025 \mathrm{p} ; 330,470$
25V/22, 33 ep; 100, 220 9p; $330,47012 \mathrm{p} ; 100028 \mathrm{p} ; 35 \mathrm{~V} / 477 \mathrm{p} ;$
$100,20,33030 \mathrm{p} ; 50 \mathrm{~V} / 17 \mathrm{p} ; 22,3310 \mathrm{p} ; 47,10025 \mathrm{p} ; 330,470$
49p; 1000 85p.
SWITCHES TO
49p; 1000 85p.
SWITCHES TO
作 SPST 250 vac 2A 25p; Push-to-make SPST250
作 SPST 250 vac 2A 25p; Push-to-make SPST250
MICRO SWITCH (with lever) 250 vac $1 A$ EOp.
MICRO SWITCH (with lever) 250 vac $1 A$ EOp.
WAFER SWITCH Single Pole (ceramic) 8 way $\times 380$; 3 way $\times 2$
60 p; 3 way 470 ; 3 way $\times 385$; Single fole (SABP) 8 way $\times 6$
WAFER SWITCH Single Pole (ceramic) 8 way $\times 380$; 3 way $\times 2$
60 p; 3 way 470 ; 3 way $\times 385$; Single fole (SABP) 8 way $\times 6$
60p; 3 way $\times 4$ 70p; 3 way $\times 3$ 85p; Single Pole (SRBP) 8 way $\times 6$
60p; 3 way $\times 4$ 70p; 3 way $\times 3$ 85p; Single Pole (SRBP) 8 way $\times 6$

$17000,220001 \% 26$ p; $27000,33000,560001 \%$ 35p.
$17000,220001 \% 26$ p; $27000,33000,560001 \%$ 35p.
PAE-SET POTENTIOMETEAS CAFOO LLinear tw 2 KR . $5 \mathrm{~K} \Omega$, $7 \mathrm{~K} \Omega$
PAE-SET POTENTIOMETEAS CAFOO LLinear tw 2 KR . $5 \mathrm{~K} \Omega$, $7 \mathrm{~K} \Omega$
$10 \mathrm{~K} \Omega$. $15 \mathrm{~K} \Omega$. 25p; 470 K , $1 \mathrm{MQ}, 3 \mathrm{MQ}, 26 \mathrm{p}$; Wire Wound $10 \mathrm{~K} \Omega$
$10 \mathrm{~K} \Omega$. $15 \mathrm{~K} \Omega$. 25p; 470 K , $1 \mathrm{MQ}, 3 \mathrm{MQ}, 26 \mathrm{p}$; Wire Wound $10 \mathrm{~K} \Omega$
TRIMMER CAPACITORS $0.5 \mathrm{pt}-5 \mathrm{pf}, 1.5 \mathrm{pf}-7 \mathrm{pf} 17 \mathrm{p}$.
TRIMMER CAPACITORS $0.5 \mathrm{pt}-5 \mathrm{pf}, 1.5 \mathrm{pf}-7 \mathrm{pf} 17 \mathrm{p}$.
TANTELUM CAPACITOAS 6V/200F. $330 \mu \mathrm{~F} 10 \mathrm{~V} / 120 \mu \mathrm{~F} 20 \mathrm{p}$ es:
TANTELUM CAPACITOAS 6V/200F. $330 \mu \mathrm{~F} 10 \mathrm{~V} / 120 \mu \mathrm{~F} 20 \mathrm{p}$ es:

4.7 $\mathrm{HF}, 22 \mu \mathrm{~F} 24 \mathrm{p}$ 8B.
MF CONNECTOR BNC Socket (Chassis Mountingl EOp.
4.7 $\mathrm{HF}, 22 \mu \mathrm{~F} 24 \mathrm{p}$ 8B.
MF CONNECTOR BNC Socket (Chassis Mountingl EOp.
OARMIEN SThIP 7 way 148 A Solder tagl 35p; 3 way 14 BA Solder
OARMIEN SThIP 7 way 148 A Solder tagl 35p; 3 way 14 BA Solder
tag) 2Ep.
EDOE CONNECTOR Double Sided 44 way $0.15^{\prime \prime}$ pltch 175^{2} p.
CERAMIC CAPACITORS (p) $100 \mathrm{~V} 20,24,33,43,50 \mathrm{3p}$; 200,
tag) 2Ep.
EDOE CONNECTOR Double Sided 44 way $0.15^{\prime \prime}$ pltch 175^{2} p.
CERAMIC CAPACITORS (p) $100 \mathrm{~V} 20,24,33,43,50 \mathrm{3p}$; 200,
$500,750,270004$ e.
MUH order only. P. \& P. 2 Ep , Add 8% VAT. CWo.
$500,750,270004$ e.
MUH order only. P. \& P. 2 Ep , Add 8% VAT. CWo.
STE Ltd.
STE Ltd.

SMALL ADS

The prepaid rate for classified advertisements is 18 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 6.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Lid". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertismement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London. SE1 9LS. (Telephone 01-261 5846).

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accopted subject to the conditions appearing on our current advertise ment rate card and on the express undersiand ing that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice. 2. The publishers reserve the right to reluse or withdraw any advertisement.
2. Although every care is taken, the Publishers shall not te liable for clerical or printers errors or their consequences.

 $17 \frac{10}{2} \times 9 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} £ 1.15$. Fibre Glass Double Sided 13" $\times 6^{\prime \prime}$ $\mathbf{~} \mathbf{7 5}$ p. Three Assorted Meters $£ 2.40$ C280 Polyester Caps $150-£ 1.20$. S/Mica Caps $100-75 \mathrm{p} .300$ Caps $150-£ 1.20$. S/Mica Caps 100 - 75p. 300
Smals Components Trans. Diodes $£ 1.30$. 7 ib Assorted Components $£ 2.95$. List 15p Refundable. Post 20p under $£ 1$ Insurance add 15p.
J.W.B. RADIO

2 Barnfield Crescent, Sale, Cheshire M33 1 NQL

SPECIAL OFFERIT

If you can buy the same for leps, we will refund the difference. Brand new and full specification pots. transformers switches linears, TTL, CMOS, transistors and other semiconductors. Send large SAE for catalogue.

DELTA TECH \& CO. 62 NAYLOR ROAD, LONDON N20.OHN.

Valves. Radio - T.V. - Industrial - Transmitting and Projector Lamps. We dispatch Valves to all parts of the world by return of posi, Air or Sea mail, 4000 Types in stuck, 1930 to 1976. Obsolete types a speciality. List 20p. Quotation S.A.E. Open to callers Monday to Saturday 9.30 to 5.00 closed Wednesday 1.00 . We wish to purchase al types of new and hoxed Valves, Projector Lamps and Semiconductors. COX RADIO (SUSSEX) LTD., Dept.
P.W. The Parade, East Wittering, Sussex, PO20 8BN, West Wittering 2023 (STD Code) 024366.

SOLAR CELLS

Abstract

57 mm dia 255 mW $£ 4.90$ 25 mm dia 35 mW £3.80 $4.7 \mathrm{~mm} \times 9.00 \mathrm{~mm} 2.5 \mathrm{~mW}$ £ 0.55 Booklet "SOLAR CELLS" £0.75 Data Sheets on 255 \& 35 mW cells $\mathbf{f 0} \mathbf{0} 20$ Prices include VAT and postage. Large SAE for lists. Mail order only. Speedy service. IC's books, capacitors, solar batteries, half price bargains and surpius PCBs resistors, semiconductors etc etc

Edencombe Ltd.,

34 nathans road, n. WEmbley, middx hao 3fX

SEMI-		BY $127 \quad 10 \mathrm{p}$	capacitions
		T1P 293	0.1/8D0v
${ }_{\text {BC }}^{8 C 1} 107$	${ }_{10}^{9 p}$	${ }^{1 N} 8645$	${ }^{25 / 25 v}$ WVESISTORS ${ }^{\text {5p }}$
${ }_{\text {BC }} 147$	${ }_{8}$	integbated	2.5W Axis1 12p
BC 2048	9 p	CIRCUITS	5 W Radial bp
${ }^{\text {BC }} 351$	118		100 Axisal ${ }_{\text {dem }}$
8 B 131	340	M252 181 A 57.00	15W Radied 110
${ }^{80} 138$		(Rahylthm Gea.l	
${ }^{\text {Bf }} 106$	$\underline{1.10}$	BRIDGE	SAE. FOR LIS
BU 205 BU 208	¢1.80 ¢1.90		
	TRIBUT	and Wholessale enquiries RS 52 BARKBY RS, 52 BARKBY ROAD TEL: 0533609391.	welcome SYSTON, Leicester.

ASSORTEPSMALL JAPANESE IF. Transformets 20 for $\mathbf{1 1 . 2 5 ,}$ Assorted Huts. Bolts, Washers, Eyelets Self Tappping, Self cutting screws a real-bargain $1-10$ weight $\mathbf{1 1 . 7 5}$. Assorted Ceramic Capacitors 100 for $\mathbb{E} 1.00$, Assorted Polystyrene Capacitors 100 for $\$ 1.50$, Assorted Polyester Capacitors 100 for $\mathbf{5 2 . 0 0}$, Assorted Carbon and Carbon Film Resistors 100 for $\mathbf{\$ 1 . 0 0 \text { , Assorted Wire-Wound }}$ Resistors 100 for $\mathbf{i 2 , 0 0}$, Assorted Transistors/Zeners Diodes all marked 100 for $£ 2.00$. Mullard Modules LP 1152 £1.00; LP 1153 \&4.00; LP 1165 \&4.00; $\begin{array}{lllll}\text { LP } & 1166 & \text { £4.00; LP } 1169 \text { £4.00; LP1173 } \mathbf{~ L 4 . 0 0 ; ~}\end{array}$ LP 1181 s4.0U. All above prices include VAT \& Postage. T. Powell, 306 St. Paul's Road, London N.1. Telephone 01-2261489.

BOOKS AND PUBLICATIONS

> HOW TO DEAL SUCCESSFULLY IN USED COLOUR TELEVISIONS Exciting new business guide reveals how anyone with average inelligence can make a high spare-time CASH INCOME selling used colour TV's from home. Written mainly for the non-technical. but with immediate applications for the engineer, this comprehensive publication describes: how to start - where and what to buy - which sets to avoid - reconditioning - how, where and when to advertise - presentation, how to expand - comprehensive sections on general business formalities, . guarantees, manufacturers, spares, and monochrome sets. PLUS MUCH MORE! This unique guide presents a sound, reputable and very profitable home business which can be started for less than E20! Send just £3.95 today for fast delivery. Includes FREE advice and FREE up-dating service. CITY PUB LISHING (PE) 2 Nottingham Road, Spondon, Dorby DE2 7NH

SIMPLIFIED TV REPAIRS. Full repair instructions individual British sets $\mathbf{\& 4} \mathbf{5 0}$, request free circuit diagram. Stamp hrings details unique. TV Publications, (AUSEPE) 76 Cnurch Street, Larkhall, Lanarkshire.

TAPE EXCHANGES

RECORDER DWNERS (cassette/reel) can now speak to the world! All ages ... every interest. Send stamp: WORLDWIDE TAPETALK, 35 The Gardens, Harrow.

SERVICE SHEETS

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc. 75p plus S.A.E. Colour TV Service 190 Kings Read, Harrogate, N. Yorkshire, Tel: (0423) 55885.

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo etc. With free Fault-finding guide, from 50 p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards. Sussex

WANTED

"RADIO AND TELEVISION Servicing". Books wanted from 1964-1965 edition up to date. \&3.00 plus postage paid per copy hy return of post. Bell's Television Services, 190
Kings Road, Harrogate, N. Yorks. Telephone (0423) 55885.

WANTED MK. 120 American heavy duty Dynamotor unit, 210V $/ 12 \mathrm{~V} .220$ watt. Similar considered. Tel: Leicester 897632.

Radio Technicians

Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over
STANDARDS required call for a sound knowledge of the principles of electricity and radio, together with 2 years'experience of using and maintaining radio and electronic test gear.

DUTIES cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.
QUALIFICATIONS: Candidates must hold either the City and Guilds Telecommunications Part 1 (Intermediate) Certificate or equivalent HM Forces qualification.

SALARY (inc. supps.) from $£ 2,673$ at 19 to $£ 3,379$ at 25 (highest pay on entry) rising to $£ 3,883$ with opportunity for advancement to higher grades up to $£ 4,297$ with a few posts carrying still higher salaries.
Opportunities for service overseas.
Further particulars and application forms available from:

GCHQ

Recruitment Officer, (Ref PE/6)
GCHQ, Oakley,
Priors Road, Cheltenham, GL525AJ.
Cheltenham (0242)21491 Ext 2270

FOR SALE

 NEW BACK ISSUES of "PRACTICAL ELECTRONICS" available65 p each Post Free. Open P.O./Cheque returned if not in 65p each Post Free. Open P.O./Cheque returned if not in
stock - Bell's Television Services, 190 Kings Road, stock - Bell's Television Services,
Harrogate, N. Yorks. Tel: (0423) 55885.

COMPUTERISEO CHESS Challenger Three Levels of skill normally $£ 200$ our price only il24.95. JAGBERRY LTD. 95 c Ardwell Avenue, Barkingside, Ilford, Essex. Mail Order Only. LOGIC PROBE SUITABLE TTL/CMOS 5-15V indicates Oakrield Road, Croydon, Surrey. CRO 2UA.

AMPEX FR 120024 Track Tape Recorder, six speed, solid state electronics, inc. tapes etc. Ideal for use with Micro processor or conversion to Audio, must clear space hence $\mathrm{L}_{3} 300$. Dursley 3768.

PHILLIPS GM 2889 Laboratory A.M./F.M. sweep generator 47.5. Maitland Electronic Services. Tel: Wolverhampton (0902) 21164 .

WORKING, cased minisonic. 5 octave keyboard plus extras. 2:201. M. Hadley, 64 Alma Rd., Southampton.

SEEN MY CAT? 5000 Odds and ends. Mechanical Electrical. Cat free. Whiston, Dept. PRE. New Mills, Stockport,

OEWTRON SYNTHESIZER MOOULES. For Sale VCO's, P-V, SEQ etc. Mostly unused. Dursley 3768

ELECTRICAL

[^4]
EDUCATIONAL

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Full details from

ICSSCHOOL OF ELECTRONICS
Dept. 273 V' Intertext House, London SW8 4(1J
Tel. 01-6229911 (all hours)
State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
[lept. 273 V Intertext House, London SW8 4 ('J
Tel. 01-622991I (all hours)
State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 273 V Intertext House, London SW8 4(1J Tel. 01-6229911 (all hours)

State if under 18

TEST TECHNICIAN

We are a small expanding electronics company looking for a self-motivated person who can utilise their initiative in a variety of interesting work. Formal qualifications
are desirable, however candidates with a basic knowledge of electronics will he candidates with a basic knowledge good salary and all be considered. The position offers Contact M. C. BIGGS on Erith 41933

LADDERS

LAOOERS. Varnished $25 \frac{\mathrm{ft}}{}$. Extd. $\mathbf{L 3} 3 \mathbf{5} \mathbf{7 0}$. Carr. $£ 2.40$ Leaflet. Callers welcome. Open Sat. Ladder Centre (PEE4) Halesfield (1) Telford, Salop, Tel: 586644

miscellaneous

SINTEL
 FOR BOOKS, CMOS AND COMPONENTS

3800 Booklet 1.80 , MOT CMOS Darabk 3.50, 6800 Appl Man 12.95, 6800 Prog Man 5.35 , SC/MP Introkit Man 0.75 NS TTL Databk 2.10, RCA CMOS Databk 5.45, 8085 User's Mon 5.15, 280 Ass Lang Prog Man 7.50, 280 CPU Mon 5.60, 280 CIC Spec $0.80,280$ P10 Man 3.30. Also a full range of CMOS - send for free catalogue. MPUs
 24.19. Z80CTC 10.96, 280 P10 10.96, Memories: 2102-A 2.00, 2112A-4 3.13. Displays: Type FND500 C.C. 1.40 , rype 1 3.19. Clock $\mathrm{Cs}_{\text {: }}$ AY 202 3.35, AY51224 3.73, MK50253 5.83. Soldercon Pins: 100 0.54, $10004.32,300011.34$. FAT. Add 35p p\&f. SINTEL, P.O. Box 75B, 209 Cowley Road, Oxford. Tel. 10865149791.

ARMATURE AND COIL WINDING ENAMELLED COPPER WIRE Only top quality materials supplied. All orders despatched within 24 hours.	
S.W.G.ig	19 $\begin{gathered}\text { Alb reel } \\ \mathbf{C 2 . 9 5}\end{gathered}$
208029	¢ ¢3.15 Cl.80
30 to 34	34 C3.45 ¢1.90
$35: 040$	40 ¢3.65 ¢2.10
All prices inclusive of P. \& P. in U.K. COPPER SUPPLIES	
102. Parriwood Road, Withington, Manchester 20 Telephone 061.4458753	

SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p , chassis punching facilities at very competitive prices, 400 models to choose from, free literature (stamp would be appreciated). BAZELLI, Dept: No. 23, St. Wilfred's, Foundry Lane, Halton, Lancaster. LA2 6LT.

RADIO CONTROL SPECIALISTS
Kits for multi channel systems. Special parts
and and accessories. S.A.E. For leaflets Tel: 0602395418
MICRON R/C. Hayworth Road, Sandiacre, Nottingham.

PR.O.M. PROGRAMMING SERVICE. Specialising in the custom programming of the following PROMS from your hexidecimal Lists - $1702 \mathrm{~A}, 4702 \mathrm{~A}, 8702 \mathrm{~A}$ or your hexidecimal Lists - 1702A, 4702A, 8702A or
equivalents. 2704, 2708 or equivalents. S.A.E. for further details to: C. C. Consultants Lid., Dept. P.E., 3 Gainshorough Drive, Worle, Weston-super-Mare, Avon.

100 WATT GUITAR/PAMMSIC AMPLIFIER

With superb treble, bass. Overdrive, slimline. 12 months guarantee. Unbeatable offer at $£ 39$. Also twin channel with separate treble/bass per channel £48. Money returned if not
absolutely delighted within 7 days. Also fuzz boxes ireat absolutely delighted within 7 days. Also fuzz boxes great
sound rooust construction $£ 6.60$. Also 100 watt 12 in. speakers $£ 22.50$.
All inclusive of P.P. Send cheque or P.O. ro:
WILLIAMSON AMPLIFICATION
62. THORNCLIFFE AVENUE, DUKINFIELD,

CHESHIRE. TEL: 061-3445007

ARMATURES ARMATURES. B and D, Wolf, Bridges, Makita etc. Exchange Armatures and Fields for most power tools. Obsolete models covered. S.A.E. for quotation or Ring 061 7990624 . Inter-Q-Control, 26 Broadway, Worsley,

MAKE YOUR OWN PRINTED CIRCUITS

RUB-ON TRANSFERS - Starter pack 15 sheets. lines. pads. 1.C. pads) $£ 1.30$, Single Sheets 27p. FERRIC CHLORIDE-1 16 bags 70 (P. \& P. 40 p.)". SOLDERCON SOCKETS - 10065 p. (quantity rates). PLASTIC SUPPORTS -7 or 8 hole 6 P./pair. S.A.E. lists sample. P \& \& P. 15 . ${ }^{\text {P/ order er except }}$ P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only $£ 9.75$ plus 25p P. \& P

Brain-Freeze' 'em with a MINI-STROBE Kit, pocket-sized 'lightning flashes', vari-speed. for discos and parties. A mere $\mathbf{5} \mathbf{4 - 3 0}$ plus 20p P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multi-function modules. $£ 5$ each plus 20p P. \& P.

LOTS MORE! Send 20p for lists. Prices include VAT. (Mail order U.K. only).

BOFFIN PROJECTS

Cunliffe Road, Stoneleigh Ewell, Surrey (P.E.)

We would like you to know that we make-- bec Cabinats

- Special cabinets
- Prototype printad circuits
- Instrument panels

We also have a quantity punchin
sevice, and undertake artwork.

H.M. ELECTRONICS

275a Fulwood Rd : Sheffield S10 3BD TEL: (0742) 669676 Send 15 p (refundable) for leaflets

SCOPE CALIBRATOR, portable, battery operated, s.a.e. details. Ramar Constructor Services, Masons Rd, Stratford on Avon, Warwickshire.

PRACTICAL ELECTRONICS P.C.B.'s
in glass fibre tinned and drilled
Dec. 77 Car Burglar Alarm 1412-1 88p.
Feb. 78 Auto Ranging Volt Meter incl. power $£ 3.10$ C.W.O. Please.

For full list and current boards please send S.A.E. P.C.B.'s also produced from customer's own master please send for quote.

PROTO DESIGN
4 Highclifte' Way. Wickford. Essex, SS11 8LA

PRINTED CIRCUITS

 and HARDWAREReadily available supplies of Constructors' hardware. Printed Readily available supplies of Constructors hardware. Printed
circuit boards, top quality for individual designs. Prompt service. Send 25 p for cataiogue. From

RAMAR CONSTRUCTOR SERVICES,
Masons Road, Stratford upon Avon, Warwicks. Tel. 4879.

CLEARING LABORATORY. Scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236

THE FABULOUS D2 MICROPROCESSOR EVALUATION KIT FROM MOTOROLA.

Featuring * 24 key keyboard *Seven segment display *Cassette interface *Erom \& Ram Expandable *Interface Capability *Full Documentation ${ }^{5} 5$ Volt power supply Required *One years FREE membership of The Amateur Computer Club with every purchase*. £176 + ${ }^{-1.50} \mathbf{P}$ \& P + 8\% VAT.

ENAMELLED COPPER WIRE				
SWG	1 lb	8 az	4 oz	2 oz
10-19	2.60	1.40	. 6	. 55
20-29	2.80	1.60	. 85	. 65
30.34	3.00	1.70	. 95	. 70
35-40	3.35	1.90	1.10	79
4043	4.50	2.50	1.90	1.25
44.46	5.00	3.00	2.10	1.65
47	8.00	5.00	3.00	1.76
48	15.00	9.00	6.00	3.30

Tinned Copper, Even Gauges $14-30 £ 3$ per lb. Multicore $60 / 40$ Solder 18SWG $£ 3.24$ per lb. Prices include P \& P and VAT.
SAE brings list of copper and resistance Wires.

THE SCIENTIFIC WIRE COMPANY
 PO Box 30 London E.4.
 Reg. Office, 22 Coningsby Gdns.

SINCLAIR SCIENTIFIC, $\mathbf{x} .75$ inc., new, boxed. Mail Order to Lintronics. 313 Green Lane, Ilford, Essex.

RECHARGEABLE BATTERIES
'A4' pencell (HP7) £1.32; sub 'C' £1.64; 'C' (HP11) £2.43: ' D ' (HP2) £3.56: PP3 £4.98. Matching £2.43: 'D' (HP2) £3.56; PP3 £4.98. Matching chargers $\mathbf{£ 6 . 9 8}$ each except PP3 charger is5.82.
Charging hoiders for $2,3.4,5$ or 6 pencells 50p. ' C ' Charging hoiders for $2,3,4,5$ or 6 pencells 50p. 'C'
and ' D ' size holders, 4 cell only, 80 p. $250 / 12$ volt inverters now available.
Prices include VAT. Add 10\% post, package and insurance orders under £20.5\%.over £20. S.A.E. for full details plus 75 p for 'Nickel Cadmium Power' booklet. Mail orders to:

SANDWELL PLANT LTD. DEPT. P.E.

201 Monmouth Drive, Sutton Coldfield, West Midlands.

NEW PHEAMPS $14-50 \mathrm{p}, 2$ inputs bass + Treble, also 100 watts into 80 MHS Amp Modules $17-502$. Mail 100 watts into 80 MHS Amp Modules $17-50 p$. Mail Orders to Panther Audio, 2 Lower Addiscombe
Road, Croydon. Barclay and Access taken. Tel: Road,
6801476.

TRANSFORMER PROBLEMS?

Send SAE with requirements for return of post quote.

TRENT TRANSFORMERS LTD
Chapal Street,
Long Eaton, Nottm. 0607666716

PRINTED CIRCUIT BOARD LAYOUTS from 60p per component. S.A.E. to Consultant Design Service. The Galleon,
Porlock. Somerset. 862567 .

ORDER FORM PLease Write in block Capitals

Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

[^5]
CABINET FITTINGS

Stage Loudspeakers and Amplifier Cabs Fretcloths, Coverings, Strap 8 Recess Handles, Feet, Costors, Jacks 8 Sockets, Cannons, Bulgin 8 ways, Reverb Irays Locks \& Hinges, Corners, Trim, Speaker Bolts etc.
Send 2×9 p Stamps for samples and illustrated catalogue
ADAM HALL (P.E. SUPPLIES)
Unit 3. Carlton Court, Grainger Road
Southend-an-Sea, Essex.

240 V AC

BUILD YOUR OWN TV CAMERA ONLY KNOWN HIGH PERFORMANCE SOLID STATE CAMERA IN
KIT FORM. AISO aVailable factory assembled. Ideal for expermenters. industry security, education etc. *Will work with most other CCTV equipment. *Fully guaranteed. *Completely self-contained. With our with Vidicon C99. Less Vidicon E82.35. (Lens available as optional extra). SAE for info or phone your order through using your Barclay
or Access Card.

CROFTON ELECTRONICS LIMITED
CROFTON ELECTRONICS LIMITED
35 Grosvenor Road, Twickenham, Middiesex. 01 -891 1923

PLEASE
MENTION
'PRACTICAL
ELECTRONICS'
WHEN
REPLYING
TO
ADVERTISEMENTS

-N-TE R L-Q C K-I-NG
PLASTIC STORAGE DRAWERS
 Rigid plastic units interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots. 1D and 2D have space dividers. Build up any size cabinet for wall, bench or table top.

As supplied to Post Office, Industry and Government Depts.

SINGLE UNITS (1D) (5 in $\times 2$ ifin $\times 2$ iin).

 £2.90 DOZEN.DOUBLE UNITS (2D) $\left(5 \mathrm{in} \times \frac{4}{2} \mathrm{in} \times 2 \mathrm{i} \mathrm{in}\right)$ ¢4.90 DOZEN.
TREBLE (3D) $\mathbf{5} 4.90$ for 8.
DOUBLE TREBLE 2 drawers, in one outer case (6D2), £7-25 for 8 .
EXTRA LARGE SIZE (6D1) $\mathbf{5 6} \mathbf{2 5}$ for 8
PLUS QUANTITY DISCOUNTS
Orders over 220. less 5\%.
Orders over $\mathbf{5 6 0}$, less $7 \frac{1}{2} \%$
PACKING/POSTAGE/CARRIAGE: Add 75p to all orders under $£ 10$. Orders $£ 10$ and over. please add 10\% carriage

QUOTATIONS FOR LARGER QUANTITIES
Pleaso add \%\% V.A.T. to totel remittince
All prices correct at time of gaing to press
FLAIRLINE SUPPLIES
(Dept. PE6)
124 Cricklewood Broadway. London NW2 Tel. 01-450 4844

COURSES

 have Math Ping about a career in Electronics? If you then why no Certificate Course. This 2 year full time course gives you a qualification recognised by industry - the Full
Technological Certificate - and also provides an entrance qualification for a degree course. Specialisations include Computer Engineering (including Microprocessors), Sound Studio Engineering and Radar and Microwaves Write to the Secretary, Department of Electronic and Communications Engineering, Polytechnic of North London, Holloway Road, London N7 8DB for details.

The Polytechnic of North London

New from Mantec

A comprehensive Home Study Course in Electronics

Suitable for Beginners and Students

The Course which gives you "Right from the
Start" the practical experience as well as the all important back-up theory.
Suitable preparation for C and G examinations Ensure your future in tomorrow's technology
The home study course that tells not only how but why The Course includes:- 1 The Manual. Easy to read and understand, set out in a clear and concise way, includes numerous

concise way, includes numerous
2 The Kit. All components necessary for the experiments
 a tutorial support service for students requiring further advice. Send today for your "Right from the start" Home Study Course. Price £35.00 including VAT.

Fill in the coupon Now! Mantec the leaders in Manufacturing Technology Mantec, 7 Dellsome Lane, Welham Green, Hatfield, Herts.
To: Mantec, 7 Dellsome Lane, Welham Green, Hatfield, Herts.
Please send me. "Right from the Start" home study course(s).
I enclose Cheque / Postal Order for $£$
Name:
Address: \qquad

								OA47 ${ }^{\text {OAP }}$																		
													\% $\begin{aligned} & \text { N914 } \\ & \text { N916 }\end{aligned}$													
											$\begin{gathered} 250 \\ \substack{24 \\ 250 \\ 250} \\ 250 \end{gathered}$															
																$\begin{aligned} & \text { ZENERS } \\ & 27 \mathrm{~V}-33 \mathrm{~V} \\ & 400 \mathrm{~mW} \quad 11 \mathrm{p} \\ & 1 \mathrm{~W} \quad 22 \mathrm{p} \end{aligned}$										
										-																
															350080300 ra											
																tic Ra										
									$\cos _{\substack{5 \\ \hline}}$		cist															
								(PD. No olher																		
									LCHNOMATIC LTD. Telex:922800																	

U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

ELAC

 10 inch£4.50 Ribbed cone. Large ceramic magnet $50-16,000 \mathrm{c} / \mathrm{s}$. Bass resonance $55 \mathrm{c} / \mathrm{s} .10 \mathrm{~W}$ 15 ohm impedance.
RCS STEREO PRE-AMP KIT. All parts to build this pre-amp. Inputs tor high, medium or low inp. per channel, whth volumpe.
control and PC . Board. Can be ganged to make multi-way mixers. £2.95 Post 35p

MAINS TRANSFORMERS	
${ }^{250-0-250 V} 70 \mathrm{~m}$	
(ex	. 60
O-300 $120 \mathrm{ma} 2 \times 63 \mathrm{SV} 2 \mathrm{~A}$	
Ater Trans	
,5.6.8	
8. 10 12. 16. 118.20. 24	
	${ }_{\text {a }}^{48.60}$
 AUTO TAANSFORMERS H 115 V 10 230 V or 230 V 10 115 V 	

GOODMAN'S COMPACT 12in BASS WOOFER
Standard 12 in dameter fixing with tut sides
10 im square 14000 gauss magnet 30 watt

10 WATT PER CHANNEL STEREO AMPLIFIER In chassis form. A.C. maıns operated. Volume. balance, treble and bass slider controls. Front panel size: $16 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{in}$.
Chassis size: $13 \times 15 \mathrm{in}$.

HEATING ELEMENTS $\underset{\substack{\text { whfer } \\ \text { THiN }}}{\text { Hen }}$ Size 10, 8, at in Operating woltage 200250 V
approx Sultable for Heating Pads Foood Warmers
Heaters etc Must be clamped between two sheets Heaters etc Musi be clamped detween two sheets of metal or

ONLY 40p EACH (FOUR FOR E1.50)
E.M.I. $13 \frac{1}{2} \times 8$ in SPEAKER SALE!
State
10 W M Mond
Model
£7.95
15W model
£10-50
20W model
£11.50

TEAK VENEER HI-FI SPEAKER CABINETS
MODEL "A" $20,13,12 \mathrm{in}$. For 12 in . dia. or 10 in . speaker Illustrated $£ 14.50$ Post $£ 1.60$ MODEL "B" BOOKSHELF
For 13 • 8 in . EMI $£ 8.50$ Post $£ 1$ R.C.S. $800 K S H E L F$ complete with speakers. Size $14 \times 9 \times 6 \mathrm{in}$. approx. Response 50 to $14,000 \mathrm{cps}$ 12 watt rms 8 ohms f19 pair Post $£ 1.50$ ACOUSTIC WADDING 18 in. wide, 20p ft.

MONO PRE-AMPLIFIER

A mains operated solid state pre-amplifier unit desıgned
to compliment amplifiers without low level input stages. This free standing cabinet incorporates circuitry for automatic R.I.I.A.A. equalisation on magnetic phono input and N.A.B. equalisation for tape heads. Power ON/OFF. PHONO/TAPE switches and pilot lamp are on the front panel; phono socket
input and output are input and output are rear located. AC mains 240 V . Size $6 \times 3 ; \times 2 \mathrm{in}$. £4.50 ea. - 2 for £8.

BAKER MAJOR 12 INCH £15
 30-14.500 cis 12 In double cone zooter $30-14.500 \mathrm{cis} 121 \mathrm{n}$ double cone. wooter
and tweeter cone togather with a BAKER
ceramic magnet assembly having a fiux ceramic magnet assembly having a flux
density of 14,000 gauss and a total tlux density of 14,000 gauss and a total tlux
of 145.000 Maxwells Bass resonanc $40 \mathrm{C} / \mathrm{s}$. Rated 25 W
NOTE 4 or 8 or 16 ohms avarlable Module kit. 30-17.000 c/s with iweeter c:ossover balfle 19×12 win
instructions As illustrated
$£ 19$ Please state a or our 16 ohms Post $£ 1$ 60

"BIG SOUND

 BAKER SPEAKERS GROUP ' 25

	£12
GROUP " 35 12in 40W	f14
4.8 or 16 ohms	Post ${ }^{\text {c }}$

GROUP 50/12in
ar 8 or 16 onms with
aluminum presence dor
GROUP 50/15in
15in 75 W
8 or 16 hmms
Post $£ 160$
Disco, Group. PA Cabinets in stock. Send for
Leaftet. Cabinet Fittings. Handtes. Corners, Feel Covaring Melerial ail in slock.

Cart $£ 1$
inputs \& outputs separate volume weble and bass controls 1 Ideal
R.C.S. SOUND TO LIGHT DISPLAY MK II

Complete kit of parts with R.C.S. printed circuit. Three 1000 W channels. Will operate from 20 mV signal source. CABINET extra §4. $K I T=\mathbf{£ 1 7 . 0 0}$

GOODMANS CONE TWEETER

18.000 cis 25 W 8 ohm EMI Sin mid range 25 W E4.95

 E WAY CROSSOVER WITH TREBLE \& MID RANGECONTROLS. 50 WATT. $£ 5$ POST £1.

-

R.C.S. 100 WATT VALVE

ROBUST BLACK PLASTIC BOX
ROBUST BLACK PLASTIC BOX
facia. Ideal for constructional projects.
R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER-BRITISH MADE $£ 1.45$

ELECTRO MAGNETIC
PENDULUM MECHANISM
1 SV d c operation over 300 hours continuous on SP2 battery fully
adjustable swing and speed Ideal displays teaching electro

HEAVY METAL PLINTHS

$20 \cdot 17$: 9 in uncut board Callers only $£ 18 \cdot 50$
TINTED PLASTIC COVERS ONLY
Sizes: $14 \frac{1}{2} \times 12 \frac{1}{2} \times 4 \frac{1}{4}$ in, $£ 3$.

BAKER HI-FI SPEAKERS high ouality-british made
SUPERB
12in 25 watt ensures clear reproduct on of the doepenest weeter cone Full range reproduction with remarkable etticiency in the upper equster
Bass Resonance

AUDITORIUM
12in 35 watt
A full range reproducer for high pown
Electric Gultars, pubhic address
speaker systems. public address
Bass Resonance
Fass Resility
Useful response
35 c s
15.000 gmuss
$25-16000 \mathrm{c} / \mathrm{s}$
AUDITORIUM
£26
i5in 45 watt
BLANK ALUMINIUM CHASSIS, 18 s.W.g. $2 \frac{1}{2}$ in. sides. 6×4 in

 $10 \times 7 \mathrm{in} .54 \mathrm{p} ; 12 \times 5 \mathrm{in} .50 \mathrm{p} ; 12 \times 8 \mathrm{in} .70 \mathrm{p} ; 16 \times 6 \mathrm{in} .70 \mathrm{p}$,
$14 \times 9 \mathrm{in} .94 \mathrm{p}: 12 \times 12 \mathrm{in}, \mathrm{E} 1 ; 16 \times 10 \mathrm{in} . £ 1.16$. ALUMINIUM
ALUMINIUM ANGLE BRACKET, $6 \times 3 \times 3$ Bin. 15p.

THE 'INSTANT'' BULK TAPE
ERASER \& HEAD OEMAGNETISER.
Sultable for cassettes, and all stzes of
tape reeis a c mains 200 , 240 V .
tape reels a c mains 200.240 V
Leafler SAE Post

Leaflet SAE
24.95

RADIO COMPONENT SPECIALISTS

everything for the modern D.I.Y. electronics enthusiast and more.

100W RMS STEREO DISCO
A genulne 100W RMS per channel (both channels
driven! stereo disco with auto fade on microphone, VU
drivent stereo disco with auto fade on microphone, VU meters, full monitoring and
cueing facilities cueing facilities quality light show Complete construction booklet MES41,
price 25p. Cabinet comes complete with lid and
carrying handes

LOW-DISTCRTION AUDIO OSCILLATOR The very low distortion sine wave $\langle\lll 0 / \%$ output is
suitable for zesting very high quality K-fi audio

IT'S A FANTASTIC BESTSELLER!

216 big ($11^{\prime \prime} \times 8^{\prime \prime}$) pages! Over a thousand illustrations! Over 30 pages of complete projects to build! Thousands and thousands of useful components described and illustrated! No wonder it's a bestseller!
DON'T MISS OUT! SEND EOp NOW!
'PE' STRING ENSEMBLE
Unbeatable prices and finest quality components only when you buy from Maplin. All parts available to build this fascinating project. Component schedule available shortly (s.a.e. appreciated). available shortly (s.a.e. appreciated). Phone now and compare our prices.

Unbeatable prices and finest quality

10 CHANNEL STEREO GRAPHIC EQUALISER
A new design with no difficult coils to wind, but a specification that puts it in the top-flight hi-fi class. All this for around $£ 70$ including fully punched and printed metalwork and woodwork. Send for our component schedule now Full construction details price 25 p . (All prices include V.A.T. and p \& p)

INTEGRATED CIRCUITS

Over 35 pages in our catalogue devoted to hundreds of useful I.C.s. All with data, pin connections and many with applications circuits and projects to build. Post the coupon now

[^0]: (C) IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Open daily to callers: Mon.-Fri. 9 a.m.-5 p.m.
 Valves, Tubes and Transistors. Closed Saturday Prices correct Terms C.W.O. only - Tel. 01-677 2424-7 Quotations for any types not listed S.A.E.
 Post and Packing 25p per order $+8 \%$ V.A.T. Items marked * $12 \frac{1}{2} \%$

[^2]: * See Fig. 2 and text

[^3]: BC159 all Bp each. RCA 2015 TO3 POWER TRANSISTORS (SIM. $2 N 3055$ 35p.
 MRD 3051 PHOTO TRANSISTORS 35 p . FET's SIMILAR TO $2 N 3819$ 17p. MOSFET SIMILAR 4067335 p . 3 N 140 MOSFETS 50 p , M203 DUAL MATCHED PAIR MOSFETS SINGLE GATE PER FET 40p, SL301 DUAL MATCHED PAIR SIL.NPN TRANSISTORS Ft 300MHz, 30p. INTEL C1 1031024 BIT MOS RAMS $95 p$. BB113 TRIPLE VARICAP
 DIODE 350 . MC1310 STEREO DECODER IC 1.20 p TBABOD IC 90 p CD 4051 IC 50 p 7418 PIN IC's 23 p , DIODES: IN 40024 p , IN 4005 7p, RED LED's $0.2^{\prime \prime}$ or $0.125^{\prime \prime} 12 \mathrm{p}$. NIXIES: 1TT 5870 ST B5p. GN9A 65p. MAN3A $3 / m \mathrm{~mm} 7$ SEC. DISPLAYS 50 p .
 MICROPHONES: GRUNDIG ELECTRET MICROPHONE INSERTS WITH FET PREAMP 1.50p, CRYSTAL MIKE INSERTS 37 mm 45 p , ELECTRET CONDENSER MIKES, IK IMP, FET AMP DUAL IMPEDANCE $50 \mathrm{~K} / 600$ OHMS ON/OFF SWITCH $30-18 \mathrm{KHz} 11.00 \mathrm{p}$. EMIO4 MIN. TIE CLIP CONDENSER MIKES, OMNI, 1 K IMP, USES DEAF AID BATTERY MORSE KEYS : ALL METAL MI-SPEED TYPE 2.25p.
 NE555 35 p . 741 S (WIDE BANDWIDTH) 35 p . LM 381 90p. TIL 305 ALPHANEMERICALDISPLAYS 2.75 p. ANDWIDTH) 35p. LM381 90p. TIL305 ALPHASWR/POWER METER TYPE SWR 50 SWR $1: 3-1: 1$, POWER 0-1 KW, 3.5 TO 150 MHz ,
 52 OHMS IMPED. 12.75 F . SWR AND F.S. METER $3-150 \mathrm{MHz} 50$ OHMS IMPED. 9.50 p . FX2000 CRYSTAL MARKER GENERATOR 100 KHz to 50 MHz (LESS XTAL) OLDER SUCKERS PLUNGER TYPE REPLACEABLE NOZZLE EYE PROTECTION SHIELD, HIGH SUCTION 4.95 p .
 CRYSTALS, $300 \mathrm{KHz} 40 \mathrm{p}, 4.43 \mathrm{MHz}$ CTV XTAL 45p.
 EDGE CONNECTORS O. 1 MATAIX 64 WAY 65 p . 34 WAY 40p, $0.2^{\prime \prime} 18$ WAY $15 p$ RELAYS MIN SEALED IYPE 4 POLE CHANGEOVER 36 OHM (WITH BASE) 45p. MIN. SEALED $240 V$ AC 2 POLE C/O RELAYS 40p. 4 POLE REED RELAYS, 12 volts 20p MOTORS. $1-5$ TO 6 V DC MODEL MOTORS 20p. SUB. MIN. 'BIG INCH. $115 v$ AC 3RPM MOTORS 30p.
 BOXES: 8LACK ABS PLASTIC PROJECT BOXES, BRASS INSERTS AND LID $75 \times 56 \times$ $35 \mathrm{~mm} 44 \mathrm{p}, 95 \times 71 \times 35 \mathrm{~mm} 52 \mathrm{p}, 115 \times 95 \times 36 \mathrm{~mm} 60 \mathrm{p}$. RANSFORMERS: 6-0-6v $100 \mathrm{~mA}^{2}$, 9-0-975ma, $12-0-12 \mathrm{~V} 50 \mathrm{~mA}$ ALL 75 p each. 12-0 TMH 100mA 95p. 12 voit $500 \mathrm{~mA} 95 \mathrm{p} .1: 1$ TRIAC/XENON PULSE TRANSFORMERS 30p. BUZZERS. GPO TYPE $6-12$ volts $30 \mathrm{p}, 12$ volt LARGE PLASTIC DOMED BUZZERS 150 mml LOUD NOTE 50p. MIN. SOLID STATE BUZZERS. 6-9-12 OR 24 volt, ALL 15 mA
 U.H.F. TUNERS, PUSH BUTTON T.V. TYPE (NOT VARICAP) NEW AND BOXED 250 . TAPE HEADS STEREO CASSETTE 3.00 p. MN 1330 DUAL IMPED. R/P HALF TRACK HEADS 50p. SRP9O $\frac{1}{2}$ TRACK R/P HEADS 1.95 p. STANDARD 8 TRACK STEREO 1.75p TD 10 DUAL HEAD ASSEMBLIES 2 HEADS. BOTH $\frac{1}{6}$ TRACK R/P WITH BUILT IN RASE, MOUNTED ON BRACKET 1.20 .
 METERS OFFER. ZN414RADIO CHIPS 75p. LM38080p
 METERS $40 \times 40 \mathrm{Mm}$ AMP MIN. LEVEL METERS 75 p , GRUNDIG IMA BATT. LEVEL . STERE TUNING METERS 100 MICROAMP PER 30 TURN DIAL MECHANISMS WITH LOCKING ARM, ALUMINIUM DIAL SCALED O00. WINDOW SCALED $0-30,32 \mathrm{~mm}$ DIAMETER, $1^{\prime \prime}$ SPINDLE NEW 1.75 p

 TRANSDUCERS, ULTRASONIC MADE BY MURATA $40 K H z 2.95 p$ PAIR. 115 mm
 SWITCHES: MIN TOGGLE, SPST $8 \times 5 \times 7 \mathrm{~mm} 45 \mathrm{p}$, DPDT8 $\times 7 \times 7 \mathrm{~mm} 50 \mathrm{p}$. DPDT CENTRE OFF $12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}$. MIN. PUSH TO MAKE OR PUSH TO BREAK $16 \times$ mm 15 P EACH TYPE, 10 amp ROCKER SWITCHES, SPST 12 P . SLIDER SWITCHES MOLLER ACTION 15 p , MIN. $13 \times 10 \times 4 \mathrm{~mm} 20 \mathrm{p}$. PLESSEY WINKLER SWITCHES POLE 30 WAY 2 BANK ADJUSTABLE STOP 75p.
 TERMS CASH WITH ORDER IDR OFFICIAL ORDER FROM COLLEGES ETC POSTAGE 30p, OVERSEAS POST AT COST. V.A.T. INCLUDED IN ALL PRICES S.A.E. FOR LISTS.

 ORDER ADDRESS
 PROGRESSIVE RADIO
 31, CHEAPSIDE, LIVERPOOL 2. TEL. 051-236 0982.

[^4]: LIST No. 28 now ready - Styli illustrated equivalents also Cartridges, Leads, etc., free for long S.A.E. Felstead Electronics, (PE), Longley Lane, Gatley, Cheadle,
 Cheshire. SK84EE.

[^5]: Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

