PRACTICAL

= =ctron|ce

MAY 1978

CONSTRUCTIONAL PROJECTS

MOVING LIGHTS DISPLAY by C. J. Bowes
A basis for telecasting or animating the Christmas lights 642
P.E. STRING ENSEMBLE-3 by A. J. Boothman
Chorus System description and construction details 648
RANDOM DECISION UNIT by P.D. Scargill
I'Il build it-l'Il build it not-l'll build it 660
TTL TEST CLIP by P. A. Birnie
A neat pocket sized project 664
WORKSHOP POWER SUPPLY UNIT by l. Hickman
Supplies up to 25 volts at $1 \frac{1}{2}$ amps 672
P.E. CHAMP-9 by R. W. Coles and B. Cullen CHAMP-PROG construction and PROMPT 676
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices 663
INGENUITY UNLIMITED-MINISONICS SPECIAL 666
ELECTRIFYING TIME by M.E. Theaker
From pith balls to the atomic clock 669
NEWS AND COMMENT
EDITORIAL 641
READOUT
A selection of readers' letters 646
STRICTLY INSTRUMENTAL by K. Lenton-Smith
Get better with Wersi 647
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office 654
MARKET PLACE
Interesting new products 658
SPACEWATCH by Frank W. Hyde
Salyut, Soyuz and Progress 662
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 671

Our June issue will be on sale Friday, 12 May, 1978
(for details of contents see page 657)

[^0]
 \title{
HOME
 \title{
HOME MICROCOMPUTER
}

Z80

Monitor Program 2K R.A.M. P.C.B.

Querty Keyboard VDU Interface (TV) Cassette Interface Teletype Interface Expandable System

NASCOM I £197.50 + vat

LYNX ELECTRONICS (LONDON) LTD, 92 BROAD STREET, CHESHAM, BUCKS. 0240575151

TWO NEW SUPERMODULES: 170W INTO 4 OR 8 OHMS	
 TRANSFORMERS, only 50 mm high, with a $120-240$ primary and single bolt fixing. Write or phone for more information and biased opinions.	
	CRIMSON ELEKTRIK Please note our new address and telephone number: 1A STAMFORD STREET, LEICESTER LE1 6NL Telephone: (0533) 537722

LOOK! Here's how you master electronics

the practical way

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is avaitable to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

. Build an oscilloscope

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar

2 Read, draw and understand circuit diagrams
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television radio, computers and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuits

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc
piece of essential equipment.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

Handy size Reels and Dispensers

OF THE WORLD'S FINEST CORED SOLDER TO DO A PROFESSIONAL JOB AT HOME

Ersin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required

Two more dispensers to simplify those smaller jobs PC115 provides 6.4 metres approx. of 0.71 mm solder for fine wires, small components and printed circuits.
PC115 69p
Or size 19A for kit wiring or radio and TV repairs
2.1 metres approx of

22 mm solder
Size 19A 63p
handy solder dispenser

Contains 2.3 metres Ersin Multicore Savbit Solder Savbit increases life of copper bits by 10 times Size 5 58p For soldering fine joints

(1) BIB WIRE STRIPPER and CUTTER
 Fitted with unique 8 -gauge selector and handle locking device Sprung for automatic opening. Strips flex and cable in seconds

Pat. No
1443913 Model 8B 97p

Kelsey House. Wood Lane End. Hemel Hempstead, Herts. HP2 4RO
Prices shown are recommended retail, inc. VAT. From electricál and hardware shops. In difficulty send direct, plus 20p P. \& P Prices and specifications subject to change without notice.

More power perf from Stirling

4 CHANNEL MIXER/CONTROL UNIT \& POWER SUPPLY

By designing and manufacturing in our own Essex factory and seiling direct to YOU the customer, we believe we have produced just about the best value ever in mixer/control equipment. You can buy the Dise 2 assembled, tested and ready connect Basic Mo ates. Either bay your own unit using Stirling Sound Basic Modules. Eet sensibly arranged controls lon the buil advantages you get-sensibly arranged controls ton the buil

- INPUTS - Left deck, right deck, mic, and aux.
- INPUT IMPEDANCE - 47 K ohms
- POWER SOURCE - 220-240V. A.C. Mains
- CONTROLS - Mains on-off, master volume, base $\pm 15 \mathrm{db}$ treble $\pm 15 \mathrm{db}, L$ and R mixing, L and R motor switches
selector switch for P.F.L. (Pre-Fade Listening), headphone volume, mic, vol., aux. vol., LED indicators on main and decks on/off switches.
- HEADPHONE AMPLIFIER - Powerful 2 watts into 8 ohms separate vol. contol
- TERMINATIONS - Five $\frac{1}{4}{ }^{\prime \prime}$ jack sockets -2 input, 2 output. headphones.
- SIZE $-23 \frac{1}{4}^{\prime \prime} \times 3 \frac{34^{\prime \prime}}{} \times 2 \frac{1}{2}^{\prime \prime}$ max. depth to rear (plus separate power unit). Panel in matt black with controls sensibly grouped for easy handling.

Suggested Stirling Sound power amps with heat sinks and power supply units - 140 PH f18. 160 PH £22. 1100 PH £ 26.75 .
£39.95
POST FREE in U.K. and INC. V.A.T
Kit of basic modules less power pack, pots. 5 jack sockets, and 3 ains switches, but with fron
£21.00
POST FREE in U.K. and INC. V.A.T

READY BUILT OR D.I.Y. MODULES

READY BUIIT

(Prices inc. VA.T. but NOT cost of carriage) SOUND-LIGHT UNITS
SSTL $3 / 250 \mathrm{~B}-3$ channels, 250 w , each SSTL $3 / 1000 \mathrm{~B}-3$ channels, 1000 w . each. INTEGRATED POWER AMPS
In strongly made metal cases, complete
POWER AMP $40-40 \mathrm{w}$. r.m.s. $/ 4$ ohms. 2 ch . mixer

POWER AMP 60-60w. r.m.s. $/ 4$ ohms, 2 ch . mixer .. POWER AMP $100-100 \mathrm{w} . \mathrm{r} . \mathrm{m} . \mathrm{s} / 4 \mathrm{ohms}, 4 \mathrm{ch}$. mixer 100w. SLAVE AMP.
LOUDSPEAKERS
Disco $25-25 \mathrm{w}$. r.m.s. in cabinet, 20^{\prime} lead
Disco 50-50w. r.m.s. in cabinet 20^{\prime} lead Disco 50-50w. r.m.s. in cabinet 20^{\prime} lead
Disco $100-100 \mathrm{w}$. r.m.s. in cabinet, 20^{\prime} lead Disco $100-100 \mathrm{w}$. r.m.s. in cabinet, 20^{\prime} lead .
Ampower $50-50 \mathrm{w}$, amp \& speaker in cabinet Ampower 100-100w. amp \& speaker in cabinet Cabinet 880.00

£48.00 Complete Disco witt, Disco 2 console and ¢85.00 Ampower 50 ditto with Disco 2 console \& two Ampower 50s $£ 210.00$ ditto with Disco 2 console \& one Ampower 100 $£ 175.00$ ditto with Disco 2 console \& two Ampower 100s $£ 250.00$ Carriage in U.K. please add for sstl unit £1: for power Amps 40 \& 60 £1.50: for power Amp. 100 \& 100w Slave
amp disco 25 or 50 £2.00. Ampower 50 and 100: Disco Console, disco 25 or $50 £ 5.00$. Complete discos. $£ 10$

BASIC MODULES

For constructors wishing to build systems to their own

module is supplied assembled on its own PCB. SSB4 Phase splitter (for two SS. 105s

 SS104/2 Two channel mixer stageSS.DTM
£2.75
£3.75 SSTL3/250
£7.00 SSTL3/1000

Output control stage Master vol 30 dB variation on both treble and bass: 3 mV in for 2 V out, 18 V working voltage Sound/light, 3 ch .250 w . ea.
Sound/light, 3 ch .1000 w .
£6.75 £9.25

POWER AMPS.

Ready assembled on P.C.Bs., tested and guaranteed
to connect. With instructions. Output ratings +1 dB 1 C amp. 3 watts R.M.S using $20 \mathrm{~V} / 8 \Omega$ or $14 \mathrm{~V} / 4 \Omega$. Input 100 mV Stereo version of above, 2 I.C.s.... Sensitivity - 30 mV . THD - 0.3%
 Sensitivity -60 mV THD -0.3%. $3 \frac{1}{n}^{n} \times 2^{\prime \prime} \times 1^{\prime \prime}$.
20 watts R.M.S. into 4Ω using 34 V . Sensitivity - 80 mV . THD -0.3%
 Sensitivity -140 mV . Distortion Less than 0.05% into $8 \Omega \mathrm{~S} / \mathrm{N}$ better than 70 dB .
SS. $140 \quad 40$ watts R.M.S. Into 4Ω using 45 V . Sensitivity -300 mV . Distortion typically $0.1 \% .5$ " $\times 3 \frac{1}{1 "}^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{4} \ldots \ldots$. 64 watts R.M.S. into 4Ω using 50 V . Sensitivity - 350 mV . Distortion typically $0.1 \% .5^{\prime \prime} \times 3 \frac{1}{4 \prime}^{\prime \prime} \times 1 \frac{1}{4}^{\prime \prime}{ }^{2} . . .$. $70 \mathrm{~V} / 2 \mathrm{~A}$. Input sensitivity -500 mV $70 \mathrm{~V} / 2 \mathrm{~A}$. Input sensitivity -500 mV . Distortion at half-power, typically $0.1 \% 5^{\prime \prime} \times 3 \frac{1}{2} \times 1 \frac{1}{4}$............
Multi-finned heatsink for SS .140 or SS 160 Ditto for SS. 1100

POWER SUPPIIES

Every Stirling Sound Power Unit is tested and guaranteed under working conditions before despatch. All units except SS 312 include a stabilised low voltage take-off point (13-15V) for pre-amp, tone control, radio tuner, etc. Outputs quoted are minimal unloaded ratings.

SS. 312	$12 \mathrm{~V} / 1 \mathrm{~A}$	$£ 6.60$
SS. 318	$18 \mathrm{~V} / 1 \mathrm{~A}$	$£ 6.95$
SS.324	$24 \mathrm{~V} / 1 \mathrm{~A}$	$£ 7.65$
SS.334	$\mathbf{3 4 V} / 2 \mathrm{~A}$	$£ 8.75$
SS.345	$45 \mathrm{~V} / 2 \mathrm{~A}$	$£ 10.75$
SS. 350	$50 \mathrm{~V} / 2 \mathrm{~A}$	$£ 11.75$
SS.360	$60 \mathrm{~V} / 2 \mathrm{~A}$	$£ 12.75$
SS.370	$70 \mathrm{~V} / 2 \mathrm{~A}$	$£ 14.75$

SS. 310/50 Stabilised power supply unit with variable output from 10 V to $50 \mathrm{~V} / 2 \mathrm{~A}$ Short circuit protected
£17.75

SS. 300 Power stabilising unit variable from 10 to 50V/8A for adding to unstabilised supply units

CONTROL/PREAMPS.

UNIT ONE
Combined stereo pre-amp \& active tone control unit 50 mV in for 200 mV out 1016 V operation Bass $\pm 15 \mathrm{~dB}$; Treble $\pm 15 \mathrm{~dB}$; Balance control; volume control. Ceramic P.U., radio or tape inputs. UNIT TWO
Controls as UNIT ONE but for magnetic cartridge nput. 5 mV in for 200 mV out. RIA.A. corrected. ITH FREE CONTROL PANEL FASCIA£12.43 - CONTROL PANEL FASCIA

For above.
■SS. 100
Basic active stereo tone control module to provide +15 dB on bass at 30 Hz and on treble at OKHz ...

- SS. 101

Stereo pre-amp suitable for ceramics, tape, radio,
SS. 102
Stereo pre-amp for mag. pick-ups 4.45
STIRLING SOUND PRODUCTS ARE MADE IN OUR OWN ESSEX FACTORY AND SOLD DIRECT TO YOU. THE CUSTOMER. SEND NOW FOR YOUR FREE CATALOGUE SHEETS.

ACCESS OR BARCLAYCARD - JUST LET US KNOW YOUR No.

 To STIRLING SOUND, 37 VANGUARD WAY, SHOEBURYNESS, ESSE
Please send

(or as list attached) for which I enclose $£$
NAME
ADDRESS.

RIST

VALVE MAIL ORDER CO.

Climax House
Fallsbrook Road, London SW16 6ED
SPECIAL EXPRESS
MAIL ORDER SERVICE

[^1]
THE MOST COMPREHENSIVE RANGE OF TUNER MODULES EVER DISPLAYED

HF 7948 FRONT END

TECHNICAL CHARACTERISTICS:
Output terminal for digital frequency meter; Antenna impedance - 75 to 300 Ohms; Frequency ranges 87.5 to 104 MHz or to 108 MHz ; Sensitivity -0.9 uV 26 dB signal to noise ratio +75 kHz deviation; Intermodulation 80 dB Image rejection - 60 dB ; Tuning voltage - 1 V to 11 V ; Total gain 33dB; Intermediate frequency -10.7 MHz ; Power supply voltage +15 V ; Power consumption 15 mA ; Dimensions 104×50 mm .

TECHNOLOGY:

Double sided epoxy printed circuit board with plated through holes. Dual gate effect transistors; Silvered coils.

FI 2846 IF AMP AND DECODER

TECHNICAL CHARACTERISTICS:
Intermediate frequency - 10.7 MHz . IF Bandwidth -280 kHz ; Signal to noise ratio -70 dB with 1 mV input; Distortion - mono 0.1%, stereo 0.3\%; Sensitivity - 30uV up to the 3 dB limit; Channel separation -40 dB at 1 kHz ; Pass band -20 to $15,000 \mathrm{~Hz}$ Rejection at 38 kHz greater than 55 dB ; Am rejection - 45dB; De-emphasis - 50 to $75 \mu \mathrm{~s}$; Pilot capture at $19 \mathrm{kHz}+4 \%$; Channel matching within less than 0.3 dB ; Output impedance - 100 Ohms; Output voltage -500 mV ; Phase locked loop stereo decoder; Output for LED VU-meter; Null indicator; Outputs for AGC AFC and interstation muting; Consumption -55 mA LEDs extinguished; 100 mA LEDs illuminated; Power supply - 15V; Dimensions $195 \times$ 76 mm .
CIRCUIT TECHNOLOGY
Epoxy printed circuit board; Monolithic integrated circuits; ceramic filter.

ALS 1500
STABILISED POWER SUPPLY

£2.53
Inc. VAT P\&P

TECHNICAL CHARACTERISTICS:
Output voltage - 15 V ; Max. output current - 500 mA ; Thermal coefficient less than $1 \mathrm{mV} / \mathrm{C}$; 15 V power supply for modules HF 7948 and FI 2846; Supply protected against short circuit (power and current protection); Dimensions $-65 \times 55 \mathrm{~mm}$.

TECHNOLOGY:

Double sided epoxy circuit board; Monolithic integrated circuit.

OPTOELECTRONIC OPTIONS

£8.06

£13.50
Inc. VAT P\&P
ILLUMINATED POINTER
Station finder

£22.74
Inc. VAT P\&P
FREQUENCY METER
Digital display of received station frequency.

LED VU-METER
Station strength indicator 0,
E8.77
Inc.VATP\&P
TOUCHCONTROL
PRE-SELECTIONUNIT

LED channel indication

the quickest fitting $\backslash||\mid 1 /$ CLIP ON

 capacitive discharge electronic ignition in KIT FORM
Introductory
 SPECIAL OFFER £2 OFF Kit

\author{
Smoother running
 Instant all-weather starting

Continual' peak performance

 Longer coil/battery/plug life Improved acceleration/top speeds Optimum fuel consumption

}

Sparkrite X_{4} is a high performance, high quality capacitive discharge, electronic

 ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $1 / 3 \mathrm{mins}$.Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contaci breaker. There is no misfire due to contact breaket bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is ellminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge rgnitions are not completely fooproof in this respect). The circuit incorporates a voltage regulated output for greatly improved cold starting. The circuit includes built in static timing light, systems function light, and security changeover switch. All kits fit vehicles with
coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 year guaranteed transformer and components, cables, connectors, P.C.8., nuts, bolts and silicon grease. Full instructions to assemble kit neg. or pos. earth and fully illustrated installation instructions.
NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachometer pulse slave unit. Price $£ 3.35$ inc. VAT. post \& packing Electronic Design Associates, 82 Bath Street, Walsall, WS1 3DE.

AITKEN BROS.
 35, High Bridge, Newcastle upon Tyne Tel: 063226729

S-DEC
This, the most popular Board is designed solely for the use of discrete components and is particularly useful for basic educational purposes. PRICE Contacis: 70)
PRICE $\{2.43$ inc. VAT
T-DEC
This Board allows 2 TO5 or 1 DIL IC Station to be used and so is primarily intended for discrete work or for linear IC application where considerable numbers of discrete components may be required.
PRICE Cantacts: 208)
PRICE $\{4.30$ inc. VAT

μ-DEC ' A '

The μ-Dec ' A ' is specialiy designed for ease of use with IC's and allows 2 DIL or 4 TO5 stations to be used but will accommodate discrete components with equal facility
(No. of Contacts: 208)
PRICE $\{4.31$ inc. VAT
μ-DEC 'B'
The μ-DEC ' B ' is for similar uses as μ-DEC ' \mathbf{A} ', but has two 16 lead IC sockets as part of the Board.
(No. of Contacts: 208)
PRICE $\mathbf{~} 7.55$ inc. VAT

PANEL METERS

Dims: $60 \mathrm{~mm} \times 45 \mathrm{~mm}$.
50μ amp. 100μ amp, 500μ amp. $1 \mathrm{MA}, 5 \mathrm{MA}$ $10 \mathrm{MA}, 50 \mathrm{MA}, 100 \mathrm{MA}, 500 \mathrm{MA} .1 \mathrm{amp}, 2 \mathrm{amp}$ 50-0.50, 100 , 100 . 50 50-0-50 $\mu \mathrm{a}$. $100-0-100 \mu \mathrm{a}$, 500-0-500 $\mu \mathrm{a}$.
PRICE 4.13 inc. VAT.

POTS* CAPACITORS, BOXES, INST. CASES, DIN PLUGS, RESISTORS, ETC., ALWAYS IN STOCK. POSTAGE AND PACKING $20 p$ EXTRA. CATALOGUE AVAILABLE. PLEASE SEND 40 .

24 HR. CLOCK/APPLIANCE TIMER KIT

$\begin{aligned} & \text { witches any oppliance of up to } 1 \mathrm{~kW} \text { on and oft of } \\ & \text { preset times once a day. KIT contains: AY-5-1230 }\end{aligned}$
preset times once a doy. KIT contains: AY-5-1230
lock/Appliance Timer IC, O.5" LED display, mains
with PCBs ond full instructions.
Special white box ($56 \times 131 \times 71 \mathrm{~mm}$) with red
Acrylic window-undrilled $£ 2.38$
drilled $£ 2.70$

TOUCH CONTROLLED LIGHTING KITS

MAINS TRANSFORMER 240 Volt AC Bnput Output 25 Volt Tapped at 14 Volt 1 amp (a) £1.25 (25p post and packing)

001
100K LIN WIRE WO ND GANGED POTENTIOMETERS at 50 p .
200 ASGORTED H Y Witresistors for $75 p$
B AANOED 10 WATT ZENERS 18v. $33 \mathrm{v} .5 / \mathrm{V}$, TOOv, 200 Vott . All at 30 p each.

GLASS WIRE ENDED CRYSTALS 28 KHz .28 .5 KHz Both at 50 p each. ELECTRET MT SAOPHONE WWEAT withFET Pre-AMDO-E4:05: MINIATURE 8 uf $300 \mathrm{v} . \mathrm{w}$. ELECTROLYTIC CAPACITORS 10 for 57 p .
SWITCHED STEREO STANDARD JACK SOCKETS at $18 p$ each
BOOKS By G. Dobbs. "Practical Iost-Equipmem" $\mathbf{7 5 0}$ "Simple Transistor Shewave
Tonsistor heceivers" (ab0p)'Practical Electronic Projects 975 p . The thrg,
M 311 D COMPARITOR I.C. BY National at 30pmerner
AUDIO AMPLIFIER I.C. LM 380 with circuits at 80 p each
FEARANTI NPN POWER TRANSISTORS ZT 3583 at 25p each.
1000uf 40 v.w. ELECTROLYTICS size $1 \frac{1}{4} \times \frac{1}{\frac{1}{2}}$ at 3 for 35 p.
MCMURDO 8 PIN PLUGS @ 20p, 8 PIN SOCKETS @ 20p, COVERS @ $15 p$
6 LIFT TELESCOPIC AERIALS Ext. $24^{\prime \prime}$ (6) 60p.
BAW 62 HIGH SPEED SILICON DIODES 12 for 35p
RCA VERSION OF BFY 90 (2 N 2857) TRANSISTORS at 55p each
LARGE FLANGE SOLDER-IN FEED-THRU's 6 for 18p.
ERIE RED CAP SUB-MINIATURE $01 \mathrm{uf} 100 \mathrm{v} . \mathrm{w}$. CERAMIC CAPACITORS
5p each.
TUBULAR TANTALUM CAPACITORS . $47 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$., $1.5 \mathrm{uf} 20 \mathrm{v} . \mathrm{w}$., $2.2 \mathrm{uf} 20 \mathrm{v} . \mathrm{w}$., 68 u 15 vw ., 100uf $20 \mathrm{v.w}$. All at 5 p each. 6 for 25 p .
TEXAS S.C.R's TIC 47200 PIV 300 mA at $18 \mathrm{8p}$ each.
20 PHOTO TRANSISTORS and DARLINGTONS Assorted Untested for $£ 1$
BF 451 SILICON PNP 300 MHz TRANSISTORS at 6 for 35p.
TO 35 DARLINGTON 5 WATT NPN TRANSISTORS at 20 p each.
ITT CAPACITORS PMT-2R. Iuf 100v.W. at 20 p doz
MOTOROLA WIDE AMPLIFIER I.C. TYpe MC 1350 @ 50 p .
MOTILARD PRE-AMPLIFIER IC TYpe TAA 435 (eie 40p
MULLARD PRE-AMPLIFIER I.C. Type TAA 435 (as) 40p.
10 AMP S.C.R's 100 PIV © 25 p, 400 PIV © 50 p . 800 PIV @ 600
10 AMP S.C.R's 100 PIV @ $25 p$, 400 PIV © 50 p, 800 PIV@ $60 p$.
MINIATURE ROTARY SWITCHES 2 Pole 4 way @ $20 p$. 3 Pole 3 way @ $40 p$. 1 Pole
MINIATURE RO
SUB-MINIATURE TANTALUMS $4.7 \mathrm{uf} 10 \mathrm{v} . \mathrm{w}$. @ 5 p each. 6 for 25 p
100 MULLARD C280 CAPACITORS Assorted for 57p.
100 MULLARD C280 CAPACITORS Assorted for
50 PLASTIC BC 107-8-9 TRANSISTORS Assorted Untested © 87 F FM FRONT ENDS 88 To 108 MHz with circuit © f 4 .
VERNITRON FM4 10.7 MHz FILTERS at 50 peach
Please add 20 p for post and packing unless otherwise stated. on UK orders under $£ 2$. Overseas orders at cost

J. BIRKETT

RADIO COMPONENT SUPPLIERS

25 The Strait, Lincoln LN2 1JF
 Tel. 20767

Join the Digital Revolution

Understand the latest

 developments in calculators, computers, watches, telephones, television, automotive instrumentationEach of the 6 volumes of this self-instruction course measures $11 \frac{13}{2} \times 8 \frac{1}{4}$ in and contains 60 pages packed with information. diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers
Design of Digital Systems.

plus 90p packing and surface post anywhere in the world.

Ovarseas customers should send for proforma invoíce

Payment by credit cards accepted
Also avallade-a more elementary course assuming no prior knowledge except simple arithmetic Digital Computer Logic and Electronics

In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
£4-60
plus 90 p P. \& P.
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

Offer Order both courses for the bargain price $£ 11 \cdot 10$, plus 90 p P. \& P.-a saving of £1.50.

Designer
 Manager
 Enthusiast
 Scientist

Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

FLOW CHARTS \& ALGORITHMS - The Algorithm Writer's
Guide - Construction, content, form, use, layout of
algorithms and flow charts. Vital for computing, train- $\mathbf{f 2 . 9 5}$
ing, wall charts etc. Size: A5, 130 pages.
Guarantee-If you are not entirely satisfied your money will be refunded.
CAMBRIDGE LEARNING ENTERPRISES, Unit 2, Freepost, RIVERMILL LODGE, ST. IVES, HUNTINGDON, CAMBS, PE17 4BR, ENGLAND. TELEPHONE ST. IVES O480) 67446. PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE: RIVERMILL LODGE, ST. IVES. Giro Ac. No. 278 9159. REGD. IN ENGLAND NO. 1328762
Cambridge Learning Enterprises, Unit 2, Freepost.
Rivermill Lodge, St. Ives, Huntingdon, Cambs, PE1 7 4BR, England,
Please send me the following books:
sets Digital Computer Logic \& Electronics (a) E5•50, p \& p included sets Design of Digital Systems © $£ 8 \cdot 00$, p \& p included
Combined sets (6) £ $12 \cdot 00, \mathrm{p}$ \& p included
The Algorithm Writer's guide @ £3.40.p \& p included
Name
Address
enclose a "cheque/PO payable to Cambridge Learning Enterprises
for E .
Please charge my *Access/Barclaycard/Visa/Eurocard/Mastercharge/
Inferbank account number
Signature
*delete as appropriate
Telephone orders from credit card holders accepted on 0480-67446
(ansafone). Overseas customers should send a bank draft in sterfing drawn on
a London Bank.

KITS FOR SYNTHESISERS, SOUND EFFECTS

COMPONENTS SETS include all necessary resistors, capscitors, semiconductors, potentiometers and ransformers. Hardware such as cases, sockets, knobs, keyboards, etc. are not included but most of these may be bought separately. Fuller details of kits, PCBs and parts are shown in our lists.
CIRCUIT AND LAYOUT DIAGRAMS are supplied free with all PCBs unless "as published"
PHOTOCOPIES of all P.E. texts for most of the kits are available-prices in our lists.

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET
P.E. MINISONIC MK. 2 SYNTHESISER

A portable mains-operated Miniature Sound Synthesiser. with keyooard circuits. Although having slightly fowe affered by this designe P.E Synthesiser the function orrered by this design give it great scope and versatility. Consisis of $2 \log$ VCOs. VCF. 2 envelope shapers. 2 voltage
controlled amps. keyboard hold and control circuits. HF oscillator and detector. ring modulator. mixer, power supply.

Set of basic component kits from $£ 62.23$
Set of printed circuit boards
£9.71
P.E. SYNTHESISER (P.E. Feb. 73 to Feb. 74)

The well acclaimed and hignly versatile large-scale mains-operated Sound Synthesiser complete with keyboard Synthesiser to good advantage.
The" Maln Synthesiser: PSU. 2 linear VCOs. 2 ramp generators. 2 input amps. sample hold, noise generator reverb amp. ring modulator. peak level circuit. envelope shaper, voltage controiled amp.
Set of printed circuit boards
E83. 03
$\varepsilon 13.20$
The Synthesiser Keyboard Circuits (can be used without the Main Synthesiser to make an independent musical instrument): 2 logarithmic VCOs, divider, 2 hold circuits, 2 modulation amps, mixer. 2 envelope shapers and PSU.
$\begin{array}{lr}\text { Set of basic component kits } & \text { £48.18 } \\ \text { Set of printed circuit boards } & £ 7.88\end{array}$

GUITAR EFFECTS PEDAL (P.E. July 75)

Modulates the attack. decay and filter characteristics of an audio signal not only from a guitar but from any audio source. producing 8 differen t switchable effects that can be further modified by manual controls Possibly the most interesting of all the low-priced sound effects units in our Overdive Unit

Component set with special foot operated switches
Alternative component ser with panel switches
Printed circuit board
¢7.59

SOUND BENDER (P.E. May 74)
A multi-purpose sound controller. the functions of which include envelope shaper, tremolo. vorce-operated fader. automatic fader and frequency-doubler. Component set for ab

P.E. JOANNA PLUS ORGAN VOICING

The basic five octave electronic piano (P.E. May/Sept 75 anc Sound Design) has switchable alternative voicings for HonkyTonk, ordinary piano, and Harpsichord or a mixture of any of these three, rogether with facintes including fast and slow tremolo, loud and soft pedal switching, and sustain pedal switening. The modicalit relain all he ancuin absociatod with piano but in addition provides an organ-voice envelope facility with 5 switchable pitches, variable attack and sustain, phasing and vibrato.

Set of components (excl switches) for PSU. Frequency generator, Pitch and Note Divider, Envelope Shapers, Voicings. and Control circuitries. (Order as KIT 71-5) £109.75 Set of PCBs (Order as PCB SET 71-6
c29.18

SYNTHESISER TUNING INDICATOR (P.E. July 77)

A simple 4 -octave frequency comparator for use with ynthesisers and other instruments where the full versatility Component and PCB (but excl sw.)

GUITAR FREQUENCY DOUBLER (P.E. Aug. 77)
A modified and extended version of the circuit published
Component get and PCB

GUITAR SUSTAIN (P.E. Oct 77)

Maintains the natural attack whilst extending note duration. Component set, PCB and foot switches £4.90 Component set, PCB and panel switches

WIND AND RAIN UNIT

A manually controlled unit for producing the above-named sounds.
Compo
Component set (iricl. PCB)
£3. 72

GUITAR OVERDRIVE UNIT (P.E. Aug. 76)
Sophisticated, versatile Fuzz unit. including variable and switchable controls affecting the fuzz qually whilst retaining the attack and decay. and also providing filtering. Does not duplicate the effects from the Guitar Effects Pedal and can be used with it and with other electronic instruments Component set using dual slider. por $\begin{array}{ll}\text { Printed circuit board } & \text { E6.20 } \\ \text { E1-62 }\end{array}$

FUZZ UNIT
Simple Fuzz unit based upon P.E. "Sound Design" circuit. Component set (incl. PCB)
P.E. SYNCHRONOME (P.E. Mar. 76)

An accented-beat electronic metronome. providing duple triple and quadruple times with full control over the beat rate Can also be used as a simple drum-beat rhythm Component set (inct loudspeaken
Printed circuit board 811.62

TAPE NDISE LIMITER

Very effective circuit for reducing the hiss found in most tape recordings. All kits include PCBs
Standard tolerance set of components
Regulated power supply (will drive 2 sets)

ENVELDPE SHAPER WITHOUT VCA (P.E. Oct. 75)
Provides full manual control over atlack. decay. sustain and release functions, and is for use with an existing voltage Controlled amplitie
Component set (incl PCB)

ENVELOPE SHAPER WITH VCA (P.E. Apr. 76)
This unit has its own voltage controlled amplifier and has full manual control over attack, decay. sustann and release functions.

Component set ($1 \mathrm{ncl} . \mathrm{PCB}$)
£6.68
TRANSIENT GENERATOR (P.E. Apr 77)
An envelope shaper, without VCA, having the usual attack decay. sustain and release functions. and in addition it also provirma Repeat enabling a synthesiser to be banjo
Component set
Printed circuit boaro

WAVEFORM CONVERTER

Slightly modified from a circuit published in "Elektor". Converts a saw-tooth waveform into four different waveforms: sine-wave mark-space saw-tooth, regular triangle form, and squarewave with an externally variable mark-space ratio.

Component set (incl. PCB but excl. sw/s)

VOLTAGE CONTROLLED FILTER (P.E. Dec. 74)
Part of the P.E Minisonic now released as an independen kit for use with other synthesisers.
Component set (incl PCB) (Order as Kit 65-1) 22

RING MODULATOR (P.E Jan 75)
Part of the P.E. Minisonic now released as an independen Component set (incl. PCB) (Order

NOISE GENERATOR (P.E. Jan. 75)

Part of the P.E. Minisonic nów released as an independent
kit for use with other synthesisers.
Component set (incl. PCE) (Order as Kıt 60-1) \quad \&3. 35

SOPHISTICATED POWER SUPPLIES

A wide range of highly stabilised low noise power supply kits s available-details in our lists.

MICROPHONE PRE-AMP (P.E Apr. 77:
Component set (incl. PCB)
E3.78
Produces 84 switch-selected frequency-accurate tones. A LED monitor clearly displays all beat note adjustments. Ideal for tuning acoustic or electronic musical in struments. Main component set (incl. PCB)
Power supply set (incl. PCB)
£
$\mathbf{6} .03$

SEE OTHER PAGE FOR KEYBOARDS, AND OUR LISTS FOR OTHER COMPONENTS AND ACCESSORIES STOCKED

VOICE OPERATED FADER (P.E Oec. 73)
For automatically reducing music volume during talk-over - particularly useful for Disco work or for home-movie shows.
Component set (incl. PCB)

OYNAMIC RANGE LIMITER (P.E. Apr. 77)
Automatically controls sound output to within a preset

Component set (incl. PCB)
[4.58

EXPORT ORDERS are welcome, though we advise that a current copy of our list should be obtained before ordering as it also shows Export postage rates. All payments must be cash-with-order, in Sterling and preferably by International Money Order or through an English Bank. To obtain list send 50p.

AND OTHER PROJECTS

PHOTOGAAPHS in this advertisement how two of our units containing some of PCBs. The cases were buill by ourselves and are not for sale. though a small selection of other cases is available.

LIST-Send stamped addressed envelope with atI U.K. requests for free ist giving fuller details of PCBs. kits and ther components.

OVERSEAS enquiries for list Eurode send 20p: other countries send 50p.

KIMBER-ALLEN

KEYBOARDS AND CONTACTS

Kimber-Allon Keyboards as required for many published circuits. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C, the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminiump frame. 3 Octave (37 notes
£25.50
4 Octave (49 notes)
f32.25
5 Octave (61 notes)
£39.75
Contact Assemblies (gold-clad wire) for use with the above keyboards (1 required for each nota):
Type GJ: Single-pole change-over

Type $\mathrm{GB}: 2$ pairs of contacts, each pair normally open
Type GC: 3 pairs of contacts, each pair normally open
Type GE: 4 pairs of contacts, each pair normally open
Type GH: 5 pairs of contacts, each pair normally open
Type 4PS: 3 pairs of contacts plus single-pole chengeover
Printed Circuit Boards for use with CJ. GB and 4PS contacts (thus eliminating much interwiring) are available. Details in our lists.

RHYTHM GENERATOR

15-Rhythm Tempo, Timing and Logic control unit (excl. sw's but incl. PCB)
PCB for Effects circuits
812.90

ع13.66
Power Supply incl. PCB

128-NOTE TUNE-PROGRAMMABLE SEQUENCER

(P.E. Nov/Dec 77)

Enabies a voltage controlled synthesiser to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and rhythmic pattern are externally variable. (Please use order codes quoted in brackets.)

Main Circuit (Nov) excl. sw's (KIT 76-1)
Power Supply \{ KIT 76-3 \}
Trigoer Inverter and Alt Output (KIT 76-2)
PCB (as published) for K
CB to KITS 76d for KITS 76-1 \& 3 (PCB 76A)
P.E. STRING-ENSEMBLE (P.E. commencing Mar 78)

The new keyboard string-instrument synthesiser. - - - -
Tone Generators (incl. Test components)
PC8 for PSU and Tone Generator
Details of further kits and PCBs in our list

FORMANT SYNTHESISER (Elektor 1977/78)

Very sophisticated music synthesiser for the advanced con structor who puts performance before price. Details in our lists.

3-CHANNEL SOUND-TO-LIGHT (P.E. Apr. 76)
A simple but effective sound-to-light controller capable of operating 3 lamps each of approximately 700 watts. Includes ower supply, thyristors, and by-pass switches. Component set (incl. PCB)

C11.95
DISCOSTROBE (P.E. Nov. 78)
4-channel light-show controller giving a choice of sequential, random, or full strobe mode of operation asic component set

ع18.19
Printed circuit board
f3.45
BIOLOGICAL AMPLIFIER (P.E. Jan/Feb. 73)
Multi-function circuits that, with the use of other extema equipment, can serve as lie-detector, alphaphone, cardiophone stc.

Pro-Amp Module Components set (incl. PCB) \quad E4.22 Basic Output Circuit -combined component sel with PCBs, for alphaphone, cardiophone, frequency meter and visual feed-back tempdriver circuits. $\mathbf{E 6 . 5}$ Audio Amplifier Modula Type PC7
Recio ampimer mocuio Yype

10\% DISCOUNT VOUCHER (PE85)

TERMS: Correctly costed, C.W.O., U.K. orders over $\mathbf{E 4 0}$ goods value. Valid until end of month on covar of P.E. This voucher must accompany order.

PHONOSONICS

The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace tbat suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates

Excelient job prospects await those who hold one of these recognised certificates. ICS can coach you for
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour T.V. Servicing
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE.

STEREO
 PRE-AMPLIFIER
 PA 100

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations, any of which may be altered as often as you choose, by simply changing the settings of the preset controls.
Used with your existing audio equipment or with the BI-KITS STEREO 30 or the MK60 Kit etc. Alternatively the PS12 can be used if no suitable supply is available, together with the Transformer T461.
The S450 is supplied fully built, tested and aligned. The unit is easily instalied using the simple instructions supplied.

25 Watts (RMS)

- Max Heat Sink temp 90C. Frequency response 20 Hz to 100 kHz - Distortion better than 0.1 at 1 kHz - Supply voltage $15-50 \mathrm{v}$. Thermal Feedback Latest Design Improvements Load-3, 4, 5 or 160 hms. Signal to noise ratio 80 db Overall size 63 mm 105 mm .13 mm .

Especially designed to a strict specification. Only the finest components have been used and the latest solid-state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F enthusiast.

£4.55

Stabilised Power Supply Type SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watts (r.m.s.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5A at 35 V . Size: $63 \mathrm{~mm}, 105 \mathrm{~mm}$. 30 mm . Incorporating short circuit protection.
Input Voltage: 33-40 V.A.C.
Output Voltage: 33 V D.C. Nominal
Output Current: $10 \mathrm{~mA}-1.5 \mathrm{amps}$
Overlead Current: 1.7 amps approx
Dimensions:
$105 \mathrm{~mm} \times 63 \mathrm{~mm} \times 30 \mathrm{~mm}$
Transformer BMT80:
$£ 5.40+86$ p postage
£4.25
3. Magnetic P.U. 3 mV into 50 K ohms
P.U. Input qqualises to R1AA curve within $1 d B$ from 20 Hz to 20 KHz Supply-20-35V at 20 mA . Dimensions
$299 \mathrm{~mm} \times 89 \mathrm{~mm} \times 35 \mathrm{~mm}$ $20 \mathrm{~Hz}-20 \mathrm{KHz}$ Sensitivity of inputs:

1. Tape input 100 mV into 100 K ohms
2. Radio Tuner 100 mV into 100 K ohms

£15.80

 MK60 AUDIO KIT: Comprising: $2 \times$ AL60 $1 \times$ PPM80 P PAP45p panel and knobs. 1 Kit of parts to include on x SPM80. $1 \times$ PA100. 1 fron headphone sockets plus instruction onfich switch, neon indicator, sterao 62 postage. TEAK 60 AU$3 \frac{3}{4}$ ". other parts include aluminium chassis heatsink and size $16 \frac{3}{4}{ }^{\prime \prime} \times 11 \frac{1^{n}}{2} \mathrm{X}$ plus back panel and appropriate sockesis, heatsink and front panel bracket postage.

STEREO 30 gawa

 $7+7$ WATTS R.M.S

 power supply. This produce a high quality audio unit suitabler or overwind will high quality ceramic pick install, capable of pro full instructions, black front pang really first class results, this unit is supplied with universal mounting brackt panel, knobs, mains switch, fuse and fuse holder and cabinets of yourting brackets enabling it to be installed in a record plinth. cabinets of your own construction or the cabinet available. Ideal for the beginner or the advanced constructor who requires Hi-Fi performance with a minimum of installation (can be installed in 30 minutes)TRANSFORMER £3.25

$$
\text { plus } 50 p \text { p \& p }
$$

TEAK CASE E5.45 plus 70p $\mathrm{p} \& \mathrm{p}$
£18.95
p. \& p. 45 p

uipment mono and other modules for Stereo

NOW BI－PAK BRINGS YOU－ The AL80
 MPA 30

 $35{ }_{w}^{\text {Rss }}$ power Amp！ ONLY £7．15 $+8 \%$ VAT

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new BI－PAK M．P．A． 30 which is a high quality pre－amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only．Used in conjunction are 4 low noise high gain silicon transistors．It is provided with a standard DIN input socket for ease of connection．Supplied with full，easy－to－ follow instructions．

A High Fidelity Power Amplifier with a maxi－ mum Power Output of 35 watt R．M．S．， which has a maximum operating voltage of 60 v ．A MUST for all HI－FI users．

Maximum supply voltage
Power output for 2% THD
Harmonic distortion
Load impedance
nput impedance
Frequency response +3 dB
Sensitivity for 25 watt $0 / P$
Max．Heat sink temperature Dimensions
Mounting
Fuse requirements
$15-60 \mathrm{v}$
35 watts R．M．S．
0．1\％
3－8－16 ohm
50 K ohm
$20 \mathrm{~Hz}-40 \mathrm{KHz}$
280 mV R．M．S． $90^{\circ} \mathrm{C}$
$102 \mathrm{~mm} \times 64 \mathrm{~mm} \times 15 \mathrm{~mm}$ 2，4BA fixing holes in heat sink 1．5A

AND for those who need more
P-O-W-E-R

POWER AMP
Specially designed for use in－
Disco Units，P．A．Systems，high power Hi－Fi，Sound reinforcement systems SPECIFICATION：

Output Power： 125 watt RMS Continuous

Operating voltage：50－80
Loads：4－16 ohms
Frequency response： $25 \mathrm{~Hz}-$ 20 kHz Measured at 100 watts Sensitivity for 100 watts output at $1 \mathrm{kHz}: 450 \mathrm{mV}$
Input impedance： 33 K ohms

Total harmonic distortion 50 watts into 4 ohms： 0.1% 50 watts into 8 ohms： 0.06% S / N ratio：better than 80 dBs Damping factor， 8 ohms：65 Semiconductor complement： 13 transistors 5 diodes
Overall size：Heatsink width 190 mm ，length 205 mm ，height 40 mm

SAXON ENTERTAINMENTS LTD

 THE PIONEERS OF MODULAR DISCO/P.A. EQUIPMENT

 THE PIONEERS OF MODULAR DISCO/P.A. EQUIPMENT NOW OFFER PACKAGE DEALS AT INCOMPARABLE PRICES

 NOW OFFER PACKAGE DEALS AT INCOMPARABLE PRICES}

CENTAUR STEREO DISCOS

 C/W LIGHT SHOW \& DISPLAY, TWIN SPEAKERS \& LEADSStandard 100W £225 or Deposit $£ \mathbf{2 8 . 8 0}$
12 Months © £21.18 or 24 Months £ 11.81

Super 200W £275 ${ }_{\text {or opopisif }} 132.80$

12 Months © $£ 25.89$ or $\mathbf{2 4}$ Months © $£ 14.44$
GXL 200W $£ 349$ or feopsisi 42.72
12 Months £ $£ 32.49$ or 24 Months © $£ 18.11$

COMPLETE STEREO
 ROADSHOWS - BUILT IN SOUND TO LIGHT/SEQUENCER \& DISPLAY

TWO YEAR GUARANTEE

illustratian shows GXL Centaur System
These systems feature full mixing for twa decks tape \& mic with monitaring facilities - override ond are supplied camplete with sound to light + sequencer, display, speoker leads etc.

JUST PLUG IN AND GO!

BSR Decks - 17,000 Line Loudspeakers - Rugged Aluminium Trimmed Cabinets - Cue Light And Phones Output - Slave Output - Deck Lights/Mator Starts (GXL)

MINI DISCO 100 WATT MONO SYSTEM £179.50 Deposit $£ 24.66$

12 Months @ £16.95 or 24 Months @ $£ 9.45$
Similar in appearance to the Centaur and camplete with loudspeakers and leads.

Headphanes ta suit any system	$\mathbf{£ 7 . 5 0}$
EM507 Electret Mic	$\mathbf{1} 5.00$
ECM 81 Electret Mic	$\mathbf{£ 1 9 . 9 5}$
Baam Stand	$\mathbf{£ 1 5 . 5 0}$
Carriage an all disca and PA systems	$\mathbf{£ 1 0 . 0 0}$
(Included in H.P. Prices)	

10\% Deposit Terms On All Orders Over E150-12 or 24 Months - Low Interest
D.I.Y. MODULES FOR ALL DISCO/P.A. AMPLIFIERS

SA308 30W 8 ohms 45V	£9.95*	(yypiv for	£10.90*	
SA604 60W 4 ohms 50V	£13.25	suph foins		
SA608 60 W 8 chms 65 V	£14.25		£13.50	
SA1204 120W 4 ohms 75V	£15.95	spery be:		
SAl208 120 W 8 ohms 95V	£21.00	suppu	£22.50	
SA2404 240 W 4 ohms 95 V	£29.50	supy for		

TOP QUALITY COMPONENTS THROUGHOUT
COMPLETE LIGHTING CONTROL AT YOUR FINGERTIPS!

Lighting Control Unit Mk II
£44.50
Mand

+ Automatic Level Integrated Logic Module $\mathbf{£ 3 2 . 5 0}$ Circuitry Panel £2.95

Three Channel Sound to Light $£ 26.75$ 3kW l.240W input - master Module $£ 19.75$ Plus channel controls. Panel $£ 2.95$

SPARES \& ACCESSORIES - LOUDSPEAKERS \& CABINETS

Rape Lights - Red or Multicolour	£22.00	Melos Echo Chamber	¢59.00
	er 12 tt .	Headphones	¢7.50*
Rope Light Controller for up to 120	£30.00	Sirens: English Police, USA Palice,	
Fuzz Lights-Red/Blue/Yellow/G	22.80	Destroyer, Alien Voice Simulator	£7.50
Magnetic Cartridge Equolisers	£3.50	Bulgin 8 woy lighting plug/sacke	¢1.90

c 7.50
$£ 7.50$ £ 1.90

DISCO MIXERS - COMPLETE OR MODULAR

$033000000 \begin{aligned} & \text { MONO OR STEREO } \\ & \text { WITH AUTOFADE }\end{aligned}$
 MODULES

Avoiloble complete and ready to plug in or as an easy to connect module with all controls except monitor switch already fitted - full instructions supplied.

FEATURES INCLUDE:
Twin Deck - Mic \& Tape Inputs - Wide range bass 8 treble controls - Full headphone monitoring Crosstade - Professionol standard performance.

STROBE UNITS

Pro-Strobe 4-6 Joules $\mathbf{£ 3 7 . 5 0}$ Super Strobe 2-3 Joules $\mathbf{E 2 2 . 5 0}$ (Pro-Strobe has external trigger facility).

PROJECTORS - PLUTO - NEW LOW PRICES!!!
 CHOICE OF WHEEL/CASSETTE

P150 150 W Tungsten	$£ 34.00$	Liquid wheels	$£ 7.50$
P500 100W Q.I.	$£ 69.50$	Cassettes	$£ 8.00$
P500 250W Q.I.	$£ 79.50$	Picture wheels from	$£ 4.75$

PIEZO HORNS only $£ 7.50$ YES! - only $£ 7.50$
(As fitted to our package PA system) Direct from Motorolo Inc., USA ot on UNBEATABIE PRICE

No crossover required $4 \mathrm{kHz}-30 \mathrm{kHz}$ rated $75 \mathrm{~W} / 8$ ohms $150 \mathrm{~W} / 4$ ohms use two per 100 W amplifier - Full instructions supplied.
 Mono module 5250 Stereo module $\quad £ 33.50$
Panel Kit of knobs/sockets ats $\quad \mathbf{E 3 . 9 5}$ COMPLETE MIXERS (with case) Mono l8V E39.50 Stereo 18V E57.50 Monomains $£ 45.75$ Stereo mains E63.75

100 Watt Chassis Loudspeakers 12" £23.50 18" £47.50
Empty Loudspeoker Cobinets: Smoll 12" Lorge $12^{\prime \prime} £ 21.50 \quad$ Smoll $2 \times 12^{\prime \prime} £ 22.50$ £ 15.50 , Lorge $2 \times 12^{\prime \prime} £ 28 \quad 1 \times 18^{\prime \prime} £ 29.50$

Prajector lomps: All67£2.90. M6 £5.65 loow Spot lomps Red/8lue/Yellow/Green £ 1.50 eo $£ 13.50$ for 10
MD Spat Banks: 3-woy 300W £19.50,
4-woy 400W £22.50.
Bubble machines (optikinetics) $£ 36.50$

Strobe fubes $80 \mathrm{~W} £ 8.50$
ICI Vynide $50^{\prime \prime}$ wide $£ 3.50$ Metre
Kickproof Grille 24" wide £3.25 Metre Kick Resistant Grill $50^{\prime \prime}$ wide $£ 3.25$ Metre FULL RANGE OF RE-AN PRODUCTS IN STOCK SEND FOR OUR BROCHURE NOW!!

AND
 PACKAGE P.A. SYSTEMS (Guvanante)

Complete with PIEZO horn columns fitted with 100 watt units (100 watt system illustrated)

100 Watt £ 149.50

Deposit £17.26

12 Manths @ $£ 14.60$ ar 24 Months @ $£ 8.14$ Includes 4 Channel 100 Watt Amplifier with Treble, Bass and Master Cantrals plus Leads and Twin Pieza Horn Columns (shown an right).

200 Watt $£ 225.00$

Deposit £28.80

12 Months @ £21.18 or 24 Months @ $£ 11.81$ zsix Mixed inputs plus Three Sets of Bass and Treble Controls plus Slave Output and Master Control.

ACCESSORIES

Melos Echo Unit $£ 59.00$

A high quality Cassette Tape Echo Unit giving long tape life, infinitely variable echo depth and speed control. Suitable for all mics. and instruments.
High quality Boom Stand $£ 15.50$. Floor Stand $£ 9.90$. ECM81 Condenser Mic. Removable Lead - Good Anti-Feedback £19.95.* EM507 Condenser Mic. - Good Value £15.00. Phasers £19.80.
D.I.Y. MODULES FOR P.A. SYSTEMS

Make your own mixer - Mono/Stereo - up to 20 channels with these, easy to wire modules - Available as PCB^{\prime} s or assembled on panels.

Input Stages Up to 20	$\begin{aligned} & \text { Mono } \\ & \text { PCB } \end{aligned}$	$£ 5.95$	Mono (/W panel etc.	£8.95
	$\begin{aligned} & \text { Stereo } \\ & P C B \end{aligned}$	£9.50	Stereo (/W panel etc.	£12.50
Mixer/Monitor (One only	$\begin{aligned} & \text { Mono } \\ & \text { PCB } \end{aligned}$	$£ 5.95$	Mono (/W panel etc.	£8.95
	$\begin{aligned} & \text { Stereo } \\ & P C B \end{aligned}$	£9.50	Stereo C/W panel etc.	f12.50
Power supply for up 1020 channel		£9.50	Blonk ponel	£1.00

Send for free brochure for complete specification
Saxon AP100 Amplifier £45
Four mixing inputs - 100 W into 4 ohm Wide range bass \& treble controis + master - Twin outputs
Saxon 150 Amplifier £59
Four mixing inputs - 100 W into 8 ohms 150 W into 4 ohms - wide range bass
\& treble controls + master
All prices subjeci to 8% VAT except where asterisked ($12 \frac{1}{2} \%$) Shop premises open Mon to Sat 9 am - 5 pm Lunch $12.30-1.30 \mathrm{pm}$ Mail order dept open Mon to Fri 10 am - 4 pm - Ring 01.6846385

TO ORDER

By Post
Send your requirements with cheque crossed P.O. or 60 p COD charge to address below or just send your Access or Barclay Card Number NOT THE CARD.
By Phone You may order COD. Access or Barclay Card.
-Post \& Packing 50p on all orders except where stated.
SAXON ENTERTAINMENTS LTD.
327 Whitehorse Road, Croydon, Surrey
All Enquiries Large SAE Please Brochures on request.

BARGAIN PARCELS SAVE POUNDS

Huge quantities of electronic components must be cleared as space required. 1000 's of copacitors, resisfors, tronsistors. Ex equipment panes
sell by weight $7 \mathrm{lbs}-£ 4.95 ; 14 \mathrm{lbs}-£ 7.95 ; 28 \mathrm{lbs}-£ 12.00 ; 56 \mathrm{lbs}-£ 20.00 ; 112 \mathrm{lbs}-£ 30.00$: BARGAIN PACKS

Hondy Packs
4 aluminium boxes $128 \times 44 \times 38 \mathrm{~mm}$ ideal for signal injectors, etc. £1.00.
100 miniature reed switches ideat for burglar glarms, modelroiwoys, eic E3.30. 6×6-pole 12 volt reed relays on board $£ 2.45$
 Mrode companens: M iniafure edgewise panel Miniafure edgewise panel merers 200 va . fso E1.00
Miniature transistorised $4 . \mathrm{m}$. front end with integral tuning gang $88.108 \mathrm{MHz} £ 2.50$. New U.H.F. transistor TV funers 4 pushbutton type $₹ \mathbf{2 . 5 0}$.
Rotary type with slow motion drive $\mathbf{£ 2 . 5 0}$ Aluminium TV coox plugs. 10 for $£ 1.00$.
Miniature $5 \mathrm{~K} \log$ pats with s / p switch. 4 for £i. 00 .
Hardware Packs each contoining 100's of items including: BA nuts and bolts, Nylon, Self "apping, Posidrive, "P" clips, Cable clomos, ouse holders, Spire nuts etc, etc. $£ 1.00$ pe Heavily insulated E.H.T. Discharging Probe with leod and earth connector 60 p each.
Dual laok Bolance Pots, Minioture, PC Mounting with Nuts. 4 for $£ 1.00$
$20 \Omega 2$ 16wt. Ceramic W.W. Resistors. 5 for $£ 1.00$ $1355_{2} 15 \mathrm{wt}$. Ceramic W.W. Resistors 5 for $£ 1.00$ 1055210 wt . Ceramic WW. Resistors 6 For $£ 1.00$ $0.22 \mu \mathrm{~F} 400 \mathrm{~V}$ Polyester Caps. 12 for $£ 1.00$ $470 \mu \mathrm{~F} 25 \mathrm{~V}$ Rodiol, Joponese Caps. 5 for £ 1.00 DE IUXE FIBRE GLASS
PRINTED CIRCUIT ETCHING KITS
includes 150 sq. ins. copper dod $1 / \mathrm{g}$ board, obrosive cleaner, 2 mini drill bits, etch roy and instructions - only $£ 5.30$.
150 sq. in. fibre glass board................... $£ 2.00$ Dalo pen 1 lb perric chloride to mil spec................. £1.25 5 lbs ferric chloride to mil spec................. $£ 5.00$ instruction sheet20p Miniature mains tronsformers, fully shrouded. 25 assorted preset ports, skeleton, etc. $\mathbf{\Sigma} 1.20$ 40p P \& P ON ALL ABOVE ITEMS. SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPLY, DEPT PE, 149 A BROOKMILL RD., DEPTFORD SE8

THIS is the Catalogue you need to solve your component buying problems!

The finest components catalogue yet published

- Over 200 A-4-size pages
- About 5,000 items clearly listed and indexed
- Nearly 2,000 illustrations
- Bargain List sent free.
- At $£ 1 \cdot 40$, incl. p. \& p., the catalogue is a bargain.

Send the coupon below now

TMPRE I.C.E. MULTIMETERS
 WWICE the inforn in Half the Size
 The I.C.E. range of multimeters provide an unrivalled combination of maximum performance within minimum dimensions, at a truly low cost. Plus, a complete range of add-on accessories for more ranges, more functions.

Supertester 680R (illustrated)

$20 \mathrm{k} \Omega / \mathrm{V}, \pm 1 \% \mathrm{fsd}$ on d.c $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
80 Ranges - 10 Functions
$140 \times 105 \times 55 \mathrm{~mm}$

$\mathbf{£ 2 5 . 2 5}$ + VAT

Supertester 680G

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 48 Ranges -10 Functions
$109 \times 113 \times 37 \mathrm{~mm}$

$\mathbf{\Sigma 1 9 . 9 5}$ + VAT

Microtest 80

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c. * 40 Ranges - 8 Functions
* Complete with case only $93 \times 95 \times 23 \mathrm{~mm}$

$\mathbf{E 1 4 . 9 5}$ + VAT

All I.C.E. multimeters are supplied complete with unbreakable plastic carrying case, test leads, etc, and a 50-plus page, fully detailed and illustrated Operating and Maintenance Manual.
Now available from selected stockists. Write or phone for list, or for details of direct mail-order service.

SPECIAL

THIS month we bring you yet another special issue-the third in as many months. We have enclosed a Guide to the Language of Microcomputers in this issue and feel sure that this will be of interest to virtually all readers. The booklet contains over 120 words allied to microcomputers and gives a concise meaning to each. Even those with little or no interest in the field at present will, we are sure, soon find it necessary to keep up with the language as these devices enter into our everyday lives from all directions at an increasing rate.

The next two issues of P.E. will also be rather special as they contain details and entry coupons for a "free entry" competition. This is special because it could result in financial backing for a reader's idea. Some inventive readers could thus be financially rewarded as well as win a couple-of-hundred pounds worth of oscilloscope.

This competition is the result of an exclusive arrangement between P.E. and a Venture Capitalist. The aim is to attract ideas that could be developed to form commercial products. The presenter of such an idea will be involved in
the development and will reap the benefit in the form of a stake in any company set up to handle the product or in the form of a royalty or other payment.

The competition is also open to companies, who could thus win backing for their prototype designs. We think you are an inventive lot and remember -it is often the simple ideas that are the best ones. So put your thinking caps on and watch out for full details in the next two issues of P.E. only.

SAVING

In this day and age it seems that one thing is becoming more and more im-portant-that is the best possible use of available finances. For the electronics man this often means the construction of a piece of equipment rather than its purchase and also means the use of electronics to save energy by providing automatic control of such things as central heating, etc.

It is probably true to say that it is now easier to get into electronic construction than ever before-the tools for the job are readily available as are the necessary components. Most construction can be carried out with the
minimum of metal bashing and the use of readily available plastic cases, knobs and finishing materials can result in a very professional end product.

So, all those regular readers who enjoy the theory, or just reading all about it, perhaps now is the time to get stuck in! If you want further encouragement there's an item under Strictly instrumental that tells you how to save about $£ 4,500$!

SUBSCRIPTIONS

As some alert readers may have noticed we have recently reinstated the subscription service for P.E. Although this may not interest many "home" readers, we know that a large number of overseas readers have problems in getting regular issues. This should no longer be the case as you can now have them posted to you each month with the minimum of fuss-see the foot of this page for details.

The subscription service is of course also available to British readers; if you have problems getting issues this service should guarantee you a copy: The next best thing is to place an order with your local newsagent.

Mike Kenward

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
Alan Turpin PRODUCTION EDITOR
David Shortland TECH. SUB EDITOR

ADVERTISEMENT
 MANAGER D.W.B. Tilleard

Jack Pountney ART EDITOR
Keith Woodruff SENIOR ARTIST
George Dilks SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Jenny Best SECRETARY

P. J. Mew REPRESENTATIVE
C. R. Brown CLASSIFIED MANAGER

Editorial Offices:

Westover House,
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 71191
Advertising Offices:
King's Reach Tower,
King's Reach, Stamford Street, SE 1 9LS
Phone: Advertisements 01-2615000
Telex: 915748 MAGDIV-G

Make Up and Copy Dept.
Phone: 01-261 6601

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH.

Back Numbers and Binders
Copies of most of our recent issues are available from: Post Sales Department, IPC

Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 65p each including Inland/Overseas p \& p.

Binders for PE are available from the same address at f 2.85 each to UK addresses, £3.45 overseas, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Cheques and postal orders should be
made payable to IPC Magazines Limited.

Letters

Queries regarding articles published in PE should be addressed to the Editor, at the Editorial Offices, and a stamped, addressed envelope enclosed. We cannot undertake to answer questions regarding other items, nor to answer technical queries over the telephone.

FOR some years advertising signs have used strings of lights wired up and controlled in such a way as to make lights appear to move in a continuous movement along the string. Such effects are also fairly popular as backgrounds in television shows and on the stage. Smaller units are also used to create the same effects in discos.

The device to be described is designed to provide the same effect using either three strings of low voltage pygmy lights or up to a 3 kW total power loading of mains voltage bulbs wired in three circuits.
The movement effect is obtained by wiring the lamps as three circuits so spaced out that every third bulb in the series of bulbs is wired to the same circuit. The three circuits are switched on and off in sequence and the effect created is that of a moving point of light if one circuit is on at a time and the other two off.

If the circuits are so arranged that two circuits are on and one is off at any one time the effect is the opposite in that a moving gap in a string of lights is created.

Here, both possibilities can be obtained, depending on the position of a selector switch. A sprint facility is included which, if switched into operation, will make the speed of change of the output circuits increase for a short period at regular intervals in the cycle.

POWER SUPPLIES

Two voltages are required to power the circuitry: +5 V stabilised which is used to power the TTL circuits and the lamp changing multivibrator and +12 V which is used to power the reay driver circuitry and to provide part of the output for the sprint circuit.

The power supply is shown at the left of Fig. 1. The two voltages are derived from the secondary of a single 9 V transformer the oulput of which is rectified by a bridge rectifier and smoothed.

This circuit gives 12 V , the negative connection of which is grounded. The +5 V stabilised supply is derived from the smoothed 12 V raii by $\mathrm{IC1}$. This device is a 100 mA stabiliser mounted in a TO92 case and only requires the addition of C2, C3 and R1 to form a complete stabilisation circuit.

TR1, TR2, C4. C5. R2. R3, R4, R5 and VR1 form a conventional multivibrator circuit. The speed of the lamp change is governed by the frequency of the output, which is set by VR1.

SELECTION AND OUTPUT CIRCUITS

The output sequence is obtained by counting the output pulses from the multivibrator and decoding the numerical sequence obtained to switch the lamp circuits.

This circuit uses trl logic and is shown in Fig. 2.
In this an input to a gate is logic 1 when a voltage of more than 2.4 V is present and at logic 0 when less than 0.4 V is present. As most logic circuits require a clean transition between these two states the output from the multivibrator circuit is cleaned up by means of a Schmitt trigger which gives a clean square waveform.

This is achieved by using half of a $\overline{7413 \text { (IC2a). }}$
As any unused TTL input automatically floats to the logic 1 condition it is customary to tie any unused input to a used input on the same gate so the used inputs of IC2s are connected to the output of the multivibrator.

The square wave output from IC2a passes to IC3 which is a 7492 divide-by-twelve counter. The truth table for this is given in Table 1.

Table 1

Count (Pin 14)	Output (Pin 8)					C (Pin 9)	B (Pin 11)	A (Pin 12)
	0	0	0	0				
	0	0	0	1				
2	0	0	1	0				
3	0	0	1	1				
4	0	1	0	0				
5	0	1	0	1				
6	1	0	0	0				
7	1	0	0	1				
8	1	0	1	0				
9	1	0	1	1				
10	1	1	0	0				
11	1	1	0	1				
12	1	1	1	1				

After 12 the counter resets to 0 and runs through the sequence again.

Outputs A and B are used to drive relays 1 and 2 respectively each of which controls one circuit of lamps. The third circuit of lamps needs to be on when neither

Fig. 1. Power supply and lamp changing multivibrator

A or B is at logic 1 . This would be most easily obtained by using a NOR gate, but to do so would require an additional i.c. To implement this an alternative circuit using three inverters from unused gates are used.

A two input NAND gate has a truth table as shown in Table 2.

Table 2

B	A	Output
$\mathbf{0}$	0	1
1	0	1
0	1	1
1	1	0

Although this circuit gives us the required output at logic 1 when both A and B are at logic 0 , it gives us the same output when either of the inputs are at logic 0 and the other is at logic 1. However, we can make use of the fact that the gate gives us an output of logic 0 when both of the inputs are at logic 1. By inverting outputs A and B of the counter and connecting the inverted outputs to the inputs of the NAND gate we can obtain an output from the gate which changes from logic 1 to logic 0 when the counter outputs are both at logic 0 . This output is the opposite of what we wanted but this can easily be rectified by inverting the output of the gate.

If we allowed the 7492 counter to continue further through its cycle after it had reached the count of two we would obtain a very strange light display and we therefore need to return the counter to zero when it would normally go onto a count of three. This is achieved by making use of the reset line connected to pins 6 and 7. When both of these pins are connected to logic 0 the circuit counts but if the reset pins are taken to logic 1 the counter resets all outputs to logic 0 .

COMPONENTS . . .

Resistors

R1	$4 \cdot 7 \mathrm{k} \Omega$
R2-8	$2 \cdot 2 \mathrm{k} \Omega$
R9	470Ω
R10	$1 \mathrm{k} \Omega$
$\frac{1}{2} \mathrm{~W}$	10% carbon

Potentiometer
VR1 $5 k \Omega$ dual linear potentiometer

Capacitors

C1	$2,200 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic
C 2	$0.22 \mu \mathrm{~F} 250 \mathrm{~V}$ polyester
C 3	$0.47 \mu \mathrm{~F} 250 \mathrm{~V}$ polyester
C 4	$1,000 \mu \mathrm{~F} 10 \mathrm{~V}$ electrolytic
C 5	$100 \mu \mathrm{~F} 10 \mathrm{~V}$ electrolytic
C 6	$0.1 \mu \mathrm{~F}$ disc ceramic

Semiconductors

TR1-11	BC109 (11 off)
IC1	7805 regulator
IC2	7413
IC3, IC6	7492
IC4	7404
IC5	7400
D1-7	OA81 (7 off)

Miscellaneous

T1 $\quad 240 \mathrm{~V}$ primary 9 V secondary 6 VA
S1 D.p.s.t. rocker switch with neon indicator
S2 S.p.d.t. rocker switch
S3 S.p.s.t. rocker switch
FS1 10A fuse
RLA-C 12V 110Ω. Contacts rated $10 \mathrm{~A}, 240 \mathrm{~V}$ according to requirement
SK1 $\quad 5$ way output socket with plug to match. Each pin rated 5A 240V
Double sided printed circuit board $140 \mathrm{~mm} \times 102 \mathrm{~mm}$ Metal case $204 \mathrm{~mm} \times 152 \mathrm{~mm} \times 76 \mathrm{~mm}$

A two input nand gate, IC5b, is connected with its inputs to the outputs A and B of the counter. When both of these inputs are at logic 1 (when the counter goes to a count of three) the gate gives an output of logic 0 ; this is inverted so that the counter is reset to zero every time it goes to a count of three. As the reset only takes about 8 ns the unwanted display never appears and the counter appears to count $0,1,2,0,1,2 \ldots$.

SPRINT CIRCUIT

A sprint circuit can be engaged so that the speed of the display will increase for eighteen counts and then continue at the set speed for a further eighteen counts before speeding up again.

The circuit takes an output from the reset circuit to a 7492 counter. The output of this counter at pin 8 (output D) goes to logic 1 for counts 6 to 12 and as the counter is incremented every time the first counter is reset this corresponds to 18 counts in all. This output is used to drive TR10 and TR11 which are arranged to form saturated transistor switches which short out the variable resistance VR1 of the multivibrator circuit.

When the collector voltage of the transistor is lower than the base voltage the transistor saturates and the emitter collector path behaves as a short circuit. R3 and R4 are therefore in effect connected to the +5 V line and set the frequency of the multivibrator.
In order to operate the transistor switches the output voltage of the 7492 is used to lift the base voltage of the two transistors to be above the collector voltage. Unfortunately the logic 1 voltage of TTL gates is typically only $+2 \cdot 4 \mathrm{~V}$ and so voltage amplification is required. TR9, R9 and R10 form a simple voltage amplifier.
This single stage amplifier inverts the output from the 7492 in the process of amplifying the voltage and therefore the circuit sprints when the output of IC6 is at logic 0.
Switch S3 disengages the output of TR9 from the bases of TR10 and TR11 and when this switch is in the off position the sprint circuit is inoperative.

OUTPUT RELAY DRIVE

The use of s.c.r.s as the output elements of this device was considered but was abandoned in order to reduce the

[^2]

Fig. 2. Logic and drive circuit

Fig. 3. Etching details shown full size for p.c.b.

Fig. 4. Component layout and assembly on p.c.b.

Fig. 3. Wiring for a large display
cost of the device since relay drives are easily inverted to give the two light or one light circuit operative at a time.

The output from the trl logic circuits is insufficient to drive the relays directly and the relays are driven by transistors connected in the standard Darlington pair configuration, controlled by the output from the TTL circuits. The drive circuits for each relay are identical.

In order to provide the option of one light circuit or two light circuits active at a time the relays are wired with
the common terminal connected to the lamps and the normally closed contacts of each relay wired together. If two lamp circuits are required to be on at any one time and the third circuit off (giving a moving gap effect) the mains connection is made to the normally closed contacts of each relay so that the selection by the TTL logic circuits switches off the required circuit. If one light circuit is required to be on and the other two circuits off, giving a moving light effect, the mains is connected to the normally open contacts of the relays and the tTL logic circuits activate the relay to switch the required lamp on.

LIGHT DISPLAY

An easy way to obtain the necessary light display is to use three strings of low voltage bulbs connected with a common wire from each string to the neutral connection of the output socket and the live connection to the appropriate output pin of the output socket. The strings should be taped together so that the lamps of each string are interleaved to give the correct impression of movement. If a bigger display is required this could be obtained by wiring mains bulb holders together as shown in Fig. 3. \star

Riondout A SEIECTION FROM OUR POSTBAG

Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the telephone.

CHamping of The Bit

Sir-I have read the first parts of the CHAMP project with great interest, but am somewhat reluctant to spend, to me, a fair amount of money on the system shown for the following reasons:
(1) The seemingly poor availability of the Intel devices, in fact, all the i.c.s not in the 74 range. I have noticed that in the past, a project has been published, and, next month, the retailers adverts are full of "complete kit of parts for . . . project" but not for CHAMP.
(2) The fact that the 4040 is a 4 -bit device as opposed to the 8 -bit devices of which there seem to be more types available at the moment. Coupled with this the 4040 is an "old" device-will there be spares available for this 4 -bit device in the years (months?) to come amid all the parts for 8 -bit and now 12-bit (16-bit? 20-bit?) devices on the market?
I am very keen to learn more about microprocessors and thought that CHAMP might provide a good start.
P. C. Chamberlain,

Anglesey.

Point 1:- The "chip kit" mentioned in part II of CHAMP contains all the necessary Intel i.c.s and is available for a very reasonable price. These i.c.s are also available separately from Rapid Recall, G.E.C. Semiconductors, Jermyn, and several other suppliers.

Point 2:- The Intel 4040 has been a very successful microprocessor, and has been incorporated in a very wide range of commercial equipment which guarantees its availability for many years to come. I would urge Mr Chamberlain not to be misled by current advertising which concerns the "latest and the greatest" microprocessor chips. It has been the trend to "push" these chips often before they are available in useful quantities, and this can cause frustration for intending users. I would also point out that to use a sixteen bit microprocessor for example, a considerable investment in equipment and software is necessary before anything like full use can be made of its admittedly powerful facilities. CHAMP does not, and will not, require teletypes, VDUs, bulk memory, assembler software or high level com-
pilers for its effective employment.
The writer is currently using the 4040 in a number of applications which involve the control of printers, paper tape stations, and keyboards, all of which involve binary arithmetic, B.C.D. arithmetic and binary to B.C.D. conversion along with other tasks such as time measurement and analogue output. All these applications were programmed directly in hexadecimal and involve the simplest basic 4040 hardware. I have the highest regard for the more powerful microprocessors, but believe me, they are only worth having if you invest in a powerful memory, software, and input output onvironment to do them justice. RW Coles.

Quality

Sir-I feel that the quality of projects in P.E. is not as good as a year ago. For instance Dec. 1977 three out of four projects were continuations of projects from previous months. Jan. 1978 had six projects in, one of which was a continuation and another three were suitable only for (your usually excellent) Ingenuity Unlimited!
P.E. Champ is all very nice and educational but, at the cost indicated not very many people can afford to build it. For this reason I think that Champ should be a General Features/Project, rather than just a project. This would allow for four projects plus P.E. Champ.

R. A. Austin,

 Brentwood.Although we endeavour to present a varied selection of constructional projects each month we cannot promise to please "all of the people all of the time". It is also necessary to give a good selection of additional news and features as we are sure most readers would not like a purely constructional magazine.-Ed.

There is a case on record of the businessman who visited his doctor, to be told that he was suffering from strain, hypertension and was likely to have heart trouble. The treatment prescribed was not the usual course of drugs: instead, he was advised to buy an electronic organ. Perhaps a bit expensive, but good advice as a method of unwinding from the effects of the rat-race.

HATH CHARMS

It appears that the treatment worked, though learning to play from scratch demands a good deal of concentration and co-ordination of mind and limbs. For the perfectionist in particular, this will be hard going at first but before long the tiro can become completely absorbed. As a large percentage of organ sales are to first-time owners, manufacturers compete with each other to offer aids to the beginner-from a special pedal Legato to illuminated keys. Many of these features can also be put to good use by the skilled player, Arpeggiators and A.O.C. as two examples. Aside from organ features, specialist magazines and sheet music scored for electronic keyboard instruments are more common than hitherto.

WERSI D.I.Y.

Klaus Wunderlich, who records for Telefunken, has many best selling records to his name. One of his more recent discs is "In the Miller Mood". played on the Wersi "Helios" organ and multi-tracked to obtain an orchestral effect (Selecta 6-23026AS). Though many of his past records were made using Hammond or Lowrey organs, he appears to be confining his attentions to Wersi at present and, although he would not claim to be an electronics engineer, I am certain that the Wersi design team have taken heed of his suggestions.

Since Wersi organs were mentioned in "Market Place" last October I have had a chance of hearing and examining a "Helios" W2T assembled from a kit. There is no doubt that this is an outstanding instrument, embodying the
latest state-of-the-art circuitry. The Wersi concern is some eight years old, comprising an enthusiastic team of engineers and musicians: it provides both assembly kits and the complete instrument.

Readers of practical magazines need no reminder that it is usually cheaper to construct than buy a ready-made product. Organ building is one of the more complex projects, especially where the shopping list is concerned, so that buying a kit really makes sense. In the case of the "Helios" W2T the saving is very considerable as the finished product costs over $£ 7,000$, whilst the kit retails for about $£ 2,500$. If even the kit price sounds expensive, 1 would point out that this is a very comprehensive instrument and that Klaus Wunderlich's opinion of it may be verified by hearing the record previously mentioned.

Keying is fully electronic, the Transposer allows brilliant key changes while the special effects include autoWah, Repeat, Contracussion and Second Voice. There are three outstanding features of the W2T, in my opinion. "Wersivoice" is an electronic doppler-effect superior to any I have heard, based on several "bucket brigade" devices: two speeds at three intensities provide a perfect rotating baffle effect. "Wersidatal" is a system for programming preset sounds, each of the 20 programs having random access: thus, favourite combinations may be memorised and altered if superseded. Lastly, the "Wersimatic" rhythm unit is one of the best in its field. Based on 24 patterns and 15 instruments, it can produce alternating bars, stereo effects, drum breaks and has touch and automatic control.

Despite the complexity of the "Helios", it can easily be disassembled into three parts-top, base and chrome legs. Perhaps the only musical criticism is that the pedal section consists only of 13 notes, though a larger clavier is available in the "Zenith" series, if required. Potential constructors can obtain further information on the kits from Aura Sounds, Copthorne Bank, Crawley, West Sussex.

Building from a kit or published design has the advantage that the circuitry will have been proven beforehand, though the shopping list will call for careful planning in the latter case. By carefully following instructions and taking care to understand what is being assembled at each stage, this option should prove both successful and educational in familiarising the organist with the routing and processing of signals. Once the instrument is playable, he will not be deterred from changing component values-especially in the formant stages-to suit his taste and musical requirements. In this respect, a commercial organ under guarantee tends to: preclude getting to work with an iron land sidecutters!

For most owners, the professionally built instrument will tend to be the natural choice but, because organs are happily obeying the cost of living graph, a great deal of thought is required before parting with one's money.

CAVEAT

The buyer must beware of himself, so se ipsum caveat emptor would be more appropriate! Whether a new or used model is in prospect, a few guidelines may not be out of place in this column.

The amount of money available will narrow the field and, having decided on what the bank balance can stand, a specification commensurate with the musical requirements should be aimed for. In this respect, salesmen are not only helpful but extremely honest as they know that you will recommend the firm if satisfied-or perhaps buy a more expensive model at a later date.

Arrange for a demonstration of the models within the range that can be afforded and, having heard them, ask for detailed brochures of those that lived up to expectations. Then take these home and study them carefully, with time no object: after all, having been without an instrument for years, what does another week matter? By all means take advice from a musical friend but remember that your money is involved and that the final decision lies with you. Look at the accompaniment manual in particular: the solo manual may offer a number of pitches, but the lower manual is often thread-bare-perhaps one pitch only-and could begin to sound monotonous. Check the dimensions of the instrument against the available room space and confer with the "household management" as to the appearance of the cabinet as a piece of furniture.

Those who are classically inclined will look for fewer trimmings and more "straight" organ in the specification. A spinet organ, with short manuals and 13 stub pedals, will not suit anyone aspiring to Widor and Bach.

Assuming that a single tone frequency is fed into the input of the chorus generator whilst one delay line is at maximum and the other at minimum delay, then two separate sounds will be produced at the generator outputs. This would be unlikely to be noticeable, but if the length of the two lines is slowly changed towards the opposite extremes then the phase relationship of the two sounds will be changing which will then be detectable.

Dependent upon the input frequency the phase relationship between the two sounds may pass through a cancellation point ($180^{\circ} \times$ odd number) or be additive ($180^{\circ} \times$ even number), and with a number of input frequencies present a phasing effect, sweeping through the frequency range is obtained. Superimposing a faster modulation on the v.c.o. control voltage enhances the multiple image, causing relatively rapid changes in phase relationship which when combined with the slow sweep give a complex pattern of relative phase simulating more than two sources and resulting in a rich chorus sound. The sweep rates of the slow and fast modulators are approximately 0.5 Hz and 10 Hz respectively.

BUCKET BRIGADE

The term "Bucket Brigade Delay Line", is derived from the anology of a number of people, each with a bucket, forming a chain along which it is desired to transmit water.

Fig. 3.1. Schematic of Chorus Generation system

Fig. 3.2. Circuit of TDA1022 analogue delay line

Assuming that the first person has a full bucket, and all others are empty, it is possible to pour the water from bucket one into bucket two, then bucket two into bucket three, and so on until eventually all the water from the first bucket, excluding spillage, is transferred to the last bucket.
This description infers a delay which is dependent on both the speed at which each person reacts in filling his neighbour's bucket, and the number of buckets in the chain. In the String Ensemble it is fundamental that this delay line is controllable at will, and since the number of buckets, or stages in the device, is constant it is necessary to instruct each person how quickly to react before pouring the contents of their bucket into the next bucket, thus controlling the overall delay. The reaction time is quoted since in the electronic version the speed of pouring is very high such that variation in the "stage delay" is controlled by introducing a pause before the instruction to pour. Electronically the pause is created by an instruction to pour constituting the leading edge of a square wave which is known as the "clock". An increase in clock frequency corresponds to shouting "pour" at greater frequency thus shortening the stage and overall delay.

Carrying the analogy further, two instructions are used, which equate to two clocks, where one can visualise one male and one female instructor each instructing persons of their own sex in a line where the sexes are alternated. This is only a matter of electronic convenience and in future generations of bucket brigade delay line i.c.s one can expect that the required conversion from a single clock will be carried out in the same package.

ANALOGUE DELAY

The system described above can be digital or analogue, in the first case either full or empty buckets would always be concerned and in the second case the amount of water in the last bucket would directly relate to the amount contained in the first bucket as it commenced its journey.

In order to fully understand the electronic analogue delay line, sometimes called the a nalogue shift register, an alternative method of operation within our chain of bucket carriers and water pourers should be considered. Since we are not concerned with the actual transfer of water along the chain, but simply require to know how much water was in the first bucket when the chain commenced its sequence of operation, we can start with all buckets full apart from the first one which will be filled to the amount (analogue) of interest. On
the first instruction (leading edge of Clock 1) the first person (male) puts the required amount of water into his bucket, which is equivalent to the level of the input signal at that moment, and on the second instruction the second person (female) fills up the first bucket leaving her with the same quantity of water previously contained in the first bucket. On the next instruction the third person fills up the second bucket and this continues down the line until the last bucket contains the same quantity of water as was present in the first bucket at the commencement of the sequence.

This can of course be a continuous process such that whilst the third person is topping up the second bucket, the first person is correcting the quantity in his bucket to match the new analogue or signal level.

BUCKET BRIGADE DEVICES

Many of the earliest instruments incorporating analogue delay line i.c.s used an ITT device, the TGA350, which contains 185 stages of delay in the package, but since that time Reticon, Matsuchita and Phillips (Signetics) have produced devices in various configurations ranging from a single 512 stage line in a package to 2×512 stage lines, tapped lines, and now rumours of considerably longer lines in a package. The potential application for A.D.L.s are numerous including echo, reverberation, double tracking, flanging and phasing, vibrato, chorus generation, speech delay matching in P.A., signal scrambling, time compression, pseudu-stereo, voice threshold switching and test equipment circuitry particularly associated with oscilloscope storage displays.

THE CHORUS MODE

Circuits have been proposed in which chorus is achieved by mixing a direct signal with the output of one delay line and the output of a second line fed from the first, both lines using the same changing clock frequency, but for the greatest effect the outputs from two or more lines should be mixed using clock frequencies modulated in an out of phase rela-tionship-e.g. 180° for two lines, 120° for three lines. In practice this poses a problem for dual packaged lines in that on-chip intermodulation occurs in the form of both audio frequency tones and high noise. It is therefore necessary to use a separate package for each line, although noise advantages can be gained by using parallel dual lines in each position providing only one clock frequency is fed to the package.

FREQUENCY CONSIDERATIONS

The bucket brigade principle described earlier relies on sampling the input waveform at discrete moments in time, and since a bucket cannot be involved in both filling and emptying operations at the same time, Bucket 1 must wait for the transaction between Buckets 2 and 3 to be completed before it can again be involved with Bucket 2, and half the information from the input is automatically lost. This imposes a relationship between the bandwidth (DC to maximum input frequency) and the clock frequency, such that the input bandwidth should be limited to less than one-half of the clock frequency, and normally to less than one-third. The resulting sampled waveform at the output of the delay line requires heavy filtering to recover the original waveform and remove the clock frequency content.

TDA1022

The internal circuitry of the Signetics A.D.L. is shown in Fig. 3.2, using mos technology f.e.t.s to switch the charge in the required manner between capacitors at each stage. The supply required is a nominal -15 volts, and at the clock frequencies used in the Ensemble ($50-100 \mathrm{kHz}$), the average delay for the 512 stages totals approximately 3.5 ms , and for a distortion level of less than $\frac{1}{2}$ percent the input level can slightly exceed 2 V r.m.s., with a band width of $12-15 \mathrm{kHz}$, and attenuation through a line will be typically 4 dB .

Fig. 3.3(a)-(h) indicate the operation of the delay line in conjunction with Fig. 3.2. Clocks 1 and 2 are in anti-phase, odd number stages linked to Clock 2 and even number stages, together with the input gate, connected to Clock 1.

Taking a waveform as shown in Fig. 3.3(b), the voltage present whilst Clock 1 is up is transferred direct to C_{0} in Fig. 3.2. When Clock 2 rises the charge in C_{0} is topped up reducing the charge in C to that which was previously present on C_{0}. Thus in Fig. 3.3(c) the voltage on. C_{0} rises to V and in Fig. 3.3(d) the voltage at the output of Stage 1 falls to the value at the input immediately prior to the rise of Clock 2. This situation now prevails until Clock 1 rises again at which time C is topped up reducing the charge on C_{2} to that which was previously on C_{1}.

With the rise of Clock 1 again C_{0} continues to monitor the input voltage such that when Clock 2 rises again the new voltage level (second sample) at the input, immediately prior to the rise of Clock 2, is transferred to the output of Stage 1, whilst the voltage at the output of Stage 2, which is equal to the first sample, is transferred to the output of Stage 3.

Thus it can be seen that the time taken for each sample to move from one stage to the next is half a clock period, and input samples are taken once per clock cycle with the input blocked for one half of each clock cycle.

When stage 512 is reached, a further stage (513) is used to fill in the half of the clock cycle during which a sample has not been passed through the delay line giving the stepped waveform shown in Fig. 3.3(h) which is then filtered to reconstitute the input waveform.

CHORUS GENERATOR CIRCUITRY

The complete circuit of the Chorus Generator is given in Fig. 3.4. The bandwidth of the incoming signal is first limited by the low pass filter associated with IC19, and parallel connections taken to Channels A and B incorporating. TDA 1022 delay lines IC25 and IC26 respectively. The delay lines in each channel are followed by two low pass active filters based on IC20 and IC21 in Channel A and IC22 and IC23 in Channel B.
Clock frequencies are generated in IC28 and IC30 for Channel A and IC29 and IC31 for Channel B using the
conventional v.c.o. configuration based on the CMOS 4007. In Channel A the variable resistance with voltage of the n-channel f.e.t. (pins 3,4 and 5) is used to control the frequency of the oscillator comprising two gates of IC28 by virtue of its effect on the value of R59 which in combination with C45 determines its frequency of operation.

Two gates within IC30 are used to shape the waveform and produce an inverted version for the second phase of the clock.

In Channel B the p-channel f.e.t. (pins 1, 2 and 3) is used to control the oscillator comprising two gates in IC29, such that for the same modulation waveforms as pin 3 of IC30 and IC31, the oscillators work in anti-phase with respect to frequency variation.

Some gate wastage occurs in IC28 and IC29 due to the necessity to provide good decoupling of clock frequencies between the two channels, without which clock intermodulation would occur leading to a high noise level and swept audio frequencies at the output of the delay lines.

The modulation signals at pin 3 of the 4007's are generated by IC27 and amplified by IC24. IC27 is connected as two oscillators, similar to the clock oscillation but without voltage control, one operating at approximately 0.5 Hz and the other at approximately 10 Hz .

Filters, consisting of R47, C36, R48 and C37 for the slow modulator and R52, C40, R53 and C41, provide smooth modulation waveforms the level of which is controlled by VR9 and VR10 for slow and fast modulations respectively.

signal is delayed ay half a clock period for each stage.

Fig. 3.3. Waveshapes showing operation of delay line

Fig. 3.4. Circuit of Chorus Generator

CHORUS GENERATOR

Capacitors

C14	$0.22 \mu \mathrm{~F}$ polyester
C15	$4.7 \mu \mathrm{~F}-\mathrm{V}$ electrolytic
C16	100 pF polystyrene
C17	470 pF ceramic
C18	$0.1 \mu \mathrm{~F}$ polyester
C19	220 pF polystyrene
C20	$4.7 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C21	47pF polystyrene
C22	$2 \cdot 2 \mathrm{nF}$ ceramic
C23	$4.7 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C24	$2 \cdot 2 \mathrm{nF}$ ceramic
C25	$0.22 \mu \mathrm{~F}$ polyester
C26	470 pF ceramic
C27	$0.1 \mu \mathrm{~F}$ polyester
C28	220 pF polystyrene
C29	$4.7 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C30	47pF polystyrene
C31	2.2 nF ceramic
C32	$4.7 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
С33	2.2 nF ceramic
C34	$0.22 \mu \mathrm{~F}$ polyester
C35	$2 \mu \mathrm{~F}$ non polarised
C36-38	$47 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C39	$0.1 \mu \mathrm{~F}$ polyester
C40-43	$4.7 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C44	10 nF ceramic
C45-46	470 pF ceramic
C47-49	$100 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C50	10 nF ceramic
C51	$100 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C52	10 nF ceramic
C53	$100 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C54-55	10 nF ceramic

Potentiometers
VR8-11 $47 \mathrm{k} \Omega$ presets 100 mW subminiature
Diodes
D31 12 volt 300 mW Zener
Integrated Circuits

IC19-24	741
IC25-26	TDA1022
IC27-29	4011
1C30-31	4007

IC30-31 4007

Miscellaneous

1 Printed circuit board; 2-16 lead d.i.l. sockets; 5-14 lead d.i.l. sockets; 5 terminal pins

Photo of Chorus Generation board

SETTING UP THE CHORUS GENERATOR

VR8 provides a d.c. control to the input filter which sets the input bias on both delay lines. This preset potentiometer should be adjusted such that with a signal present at the input, the combined $\mathrm{A}+\mathrm{B}$ outputs will move from zero, through a distorted period, through a clear range, a further distorted period and back to zero. VR8 should be finally set for the centre of the clear transmission range to give maximum signal handling capacity for the delay lines.

With VR9 and VR10 at minimum, VR11 adjusts the centre frequency of the two v.c.o.s to approximately the same value. This is achieved by initially setting VR11 near its midpoint and VR9 slowly increased. The combined A and B output signals should be subject to a phasing effect with a smooth sweep and sweep turn-around characteristic. If the sweep appears to pause at one end, VR11 should be adjusted to recover the even sweep. VR9 should then be reduced and VR10 increased to mix in the fast modulator, the levels of both being adjusted to taste.

All the adjustments associated with the clock modulation are slow to take effect due to the long time constants associated with the slow modulator filters. This time constant also produces a turn on delay of a few seconds, before the chorus modulation commences, after switching on the instrument. Rapid adjustment will stop the chorus modulation which will then recover after a few seconds.

CHORUS GENERATOR CONSTRUCTION

All the chorus generation circuits are mounted on a single printed circuit board, the etching and drilling details of which are given in Fig. 3.5 with the component assembly details in Fig. 3.6.

To assemble the board the previously recommended order of terminals, pins, resistors, Zener (D31), i.c. sockets, preset potentiometers, small capacitors, and finally large capacitors may be used. Sockets are recommended for the 14 and 16 lead i.c.s which are all of mos type and therefore sensitive to handling, but these are not necessary for the 741 type i.c.s.

Careful attention should be paid to correct orientation of the i.c.s.
Note-the track cutting amendment given finally last month refers to IC3
NEXT MONTH: Voice/preamp board construction

SOUND GONTROL

BP 1479516
Patents continue to give an interesting insight into the areas under research by Sony in Tokyo. In BP 1476 516, Sony describe how a.g.c. circuits in a stereo amplifier must act on both channels if image swing from left to right, through one channel level dipping in volume while the other remains untouched, is to be avoided.

However, there is a difficulty with this approach, because a high level transient in one channel can dip the level of both channels and in so doing push quiet sounds down to inaudible levels. Sony have patented a circuit which is claimed to overcome this problem. The block diagram, Fig. 1,

Fig. 1
shows left channel amplifiers feeding detector and filter circuits to produce gain control signals. Diode D1 connects the output of the detector circuit 2 to the base of gain control transistor TR1. A right channel is arranged in corresponding fashion, with the output of detector circuit 4 connected to gain control transistor TR2 via D4. There is also, however, a crossfeed of the outputs of detector circuits 1 and 3 between channels, via further blend diodes, D2 and D3.

In action, control signals of high amplitude applied to the base of the gain control transistors reduce the collector-emitter impedance and thus
reduce the gain of the signals passing between the amplifiers. The attack time of both detector circuits 2 and 4 is made small (around 0.1 second) and their recovery time is made large (between 20 and 30 seconds). Thus the circuits are capable of passing relatively short transient signals which control the gain of their own respective left and right channels.

The attack time of the cross-channel circuits 1 and 3 is however approximately 5 second, i.e, substantially longer than the attack time of circuits 2 and 4. The recovery time of the cross-channel circuits is also much shorter, for instance, around 5 seconds.

When a transient of high amplitude is applied to one channel only, the a.g.c. function of that channel begins to operate in less than 0.1 second; but the gain control of the other channel transistor will not be affected. During normal operation, the a.g.c. functions of both channels are controlled by the average voltage. In this way there is overall a.g.c. and a transient peak in one channel should cause neither an image swing nor inordinate depression of the other channel's level.

HIHH VOLTAEE SWITCH BP 1486804.

Siemens AG, in BP 1486 804, suggests a clever way of controlling high voltage remote switching, for instarice in the order of 1 MV , without corona discharge.

A series of thyristors, each suited to control a voltage of 1 kV , are arranged in a circle. A second series of similar thyristors are arranged in a second, smaller circle, spaced from the first, so that the two circles lie as if on the exterior of an imaginary cone (see Fig. 1). To enable remote operation, the thyristors are associated with light or other electromagnetic radiation-sensitive circuitry. A radiation source, " s " is arranged at the focal point of a parabolic reflector " r "', with a firing control signal " z " supplied to a radiation generator " e ". The emitted signal " h " is beamed towards the two rings of thyristors, which by virtue of their arrangement (as if on an imaginary cone) all
receive similar amounts of radiation, with no one thyristor and its sensor shielding another.

The individual thyristors are connected in series with each thyristor switching the next-higher potential, so that in the first circle t 1 switches 1 kV , t2 switches 2 kV relative to 1 kV , and so on, up to t 8 , which switches 8 kV relative to 7 kV . A similar arrangement is obtained in the lower circle of thyristors, so that there is between two adjacent group planes no greater potential than 8 kV , and between the neighbours of a group plane no more than 1 kV . In this way corona discharge and flashover are avoided, with the single safe firing signal " z " remotely switching a voltage of level governed only by the number of thyristors placed on the notional cone.

Now from Texas Instruments. For professionals and college students. The right calculator choice at the right price.

The T1-45 at £26.95*

For scientific problem solving. The Texas Instruments TI-45 places a full 48 scientific functions at your fingertips. It can handle as many as 15 sets of parentheses with 4 pending operations. With an 8-digit display, including scientific notation. And it's fully rechargeable.

But the TI-45's big feature is AOS. Texas unique Algebruic Operating Systemt.More, much more, than just algebraic entry. It lets you key-in even complex problems naturally. left to right.
 The TI-41 at $£ 29.95$ *
For finuncid probem solving.
The Texas lnstruments Tl-41 quickly handles such financial calculations as compound interest loans, margins and annuities - enhancing the productivity of people in insurance. property, banking. securities and buying or selling.

The SR-51-II al £39.95*

For statistical problem solving.
The Texas Instruments SR-51-II offers in addition to its scientific functions and Texas unique $A O S$ feature - many preprogrammed statislical operations. Mean. Cariance Standard deviation. Correlation coefficient is evaluated with a single key Linear regression can be performed with an independent sel of registers
The new programmable T1-57 at $£ 39.95^{*}$ For oll hinds of problem solving.

The Texas Instruments TI-57 ofters the features and functions mosl required by students and protessionals. It is a nowerful slide rule calculator that can also be programmed directly from the keyboard Quickly Easily. A graphic learning guide containing over 80 pages is provided with the TI-57 and illustrates the power and convenience of programming.

The econonical

answer to repetilive problem solving. Use the coupon ti) obtain full product information.
All orders by post to 186 High St. Slough.

Texas Instruments. Innovators in personal electronics.

TEXAS INSTRUMENTS

[^3]
You'll learn a lot from the free Heathkit catalogue.

The Heathkit catalogue is packed with scores of top quality electronic kits. Educational, practical and fascinating

There are Heathkit Electronics Centres at 233 Tottenham Court Road, London (01-636 7349) and at Bristol Road, Gloucester (Gloucester 29451).

 $\begin{array}{ll}\text { Electronics oniy kit: } & \text { Non Alarm } £ 10.00 \\ \text { Complete with case: Alarm } £ 13.00\end{array}$ Complete with case, Working: Alarm £13.00 Alarm £16.00 Ready Built Tested Working: add $\mathbf{£} 1.00$
Timer Facility: Display Seconds, Stopwatch use, Sleep Delay: 50p extra DISPLAYS: $\frac{1}{2}^{\prime \prime}$ Red LED FND500 £1.20 each. 6 for $\mathbf{~} 6.48$. NSB5430 $\frac{1}{2}^{\prime \prime}$ red LED. Stick of $\mathbf{4} \mathbf{£ 4 . 3 2 .} 5$ LTO2 stick of 4 Green £5.40.
CLOCK CHIPS: MK50253 Alarm 12/24hr 4/6 digit £5.40. MM5385 £4.32. MK50362N calendar £7.56. 6 digit counter $50395 / 6 / 7 £ 9.18$
MICRO PROCESSOR: $Z 80$ CPU £21.60. CTC \& PIO £15.12. MK4096N 300nS 4 KXI DUn RAM £6.75. 1702A UV PROM 450 nS £10.80 BATTERY RECHARGER: Mains Adaptor with 4-way Plug. 4XAA (1.2v) Ni Cads plus holder $£ 8.64$. AA Ni Cads separately $£ 1.20$

BARON (PE), 6 Gower Road, Royston, Herts. (0763) 43695 Use Barcleycerd or Access
 If you enter our competition you some test gear. financial reward and of the projects devisuds and, with this provide backing. We feel that many for commercial proventure capitalist in addition to the chance of suitable candidute arrangement wost everyone and, scopex 'scopes to be won! made an exclusive is open to almost eve 640 worth of Scopex scopes The competition is open there will be $£ 4$ winning thi

With eight decade ranges it is possible to read capacitance from 300 pF to $3,000 \mu \mathrm{~F}$ on a linear scale, due to integrator circuit operating techniques. An absolute accuracy +2.5 per cent can be attained if suitable components are used, and for matching, comparative measurements can be made to an accuracy of as little as +0.25 percent.

KIN CONTROLLER

Pottery is now a popular hobby and many amateur potters, schools, etc. possess small kilns. Most kilns are only supplied with an indicating pyrometer and have no temperature control; this can be provided by our project, described next month.

PRACTICAL

marige PLALE

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

TUNE SEQUENCER

To the numerous electronics kits for the home constructor available from Phonosonics, has been added the 128 Note Sequencer of P.E. November and December 77.

This programmable sequencer was designed with the $P . E$. Minisonic in mind, for which Phonosonics can provide the various kits, and Kimber-Allen Keyboard.

A kit comprising components for the Sequencer Main Board (K it 76-1) is now available. Control switches and p.c.b.s are not included. Kit 76-2 provides the cemponents for three "Optional Trigger Inverters" and one "Alternative Output Circuit"

The same company are also able to supply kits for the $P . E$. String Ensemble.

Details of the above component kits, p.c.b.s, and prices can be obtained by sending a s.a.e. to Phonosonics, 22 High Street, Sidcup, Kent, DA14 6EH.

TOMORROW'S TECHNICAL LANGUAGE

The International Electrotechnical Commission, the organisation responsible for the preparation of world-wide standards in the electrical and electronic fields announces the publication of the 1978 edition of their International Electrotechnical Vocabulary (IEV).

The purpose of the IEV "dictionary" is for there to be one common technical language for the scientists and engineers of tomorrow.

Containing originally some 2,000 terms, today the IEV, in line with the unparalleled growth in electrotechnology, accounts for more than seventy thousand internationally agreed terms.

The International Electrotechnical Commission comprises member countries representing 80 per cent of the world's population consuming 95 per cent of electrical energy. At present there are some twenty thousand pages of IEC standards in each of the official languages of the Commission, the largest set of international standards existing in the world.

Details from IEC, 1 Rue de Varembé, 1211 Geneva 20, Switzerland.

BEAUTIFUL AND CLEVER

A slim and elegant accessory (present) for the modern woman. That's the Casio MQ-1 multi-function micro-computer.
lis time display is constantly visible even in bright light and quartz accuracy is plus or minus fifteen seconds per month.

The calendar function is capable of helping the busy female to be in the right place on the right day up until 31st December 2099. If she wishes to compute whether a friend was born "full of grace", the same function can do calculations back to 1 st January 1901.
A genuine stopwatch allows a full 24 hours of continuous timing of one
tenth of a second accuracy
The timer function can count down enabling, say, remaining parking time to be seen at a glance. Also, by setting the timer to count up from a set origin a continuous read out of an overseas time zone can be run without altering home time.

Finally, the four basic mathematical functions are possible on the petite calculator panel which is beautifully designed for a slim feminine finger.
£34.95, including leatherette wallet available from Tempus, 19-21 Fitzroy Street, Cambridge, CB1 1EH.

An American test clip which doubles as an insertion and removal tool for 14 and 16 d.i.1. packages is available, priced $£ 9.04$ (14 pin) and $£ 9.38$ (16 pin), from BCE Ltd., Briticent House, New Street, Ringwood, Hants.

IIY ALARM SYSTEM

Motor vehicle alarms fitted by garages tend to be expensive. These systems usually consist of switches fitted to the doors, bonnet and boot or operate with a trembler switch.

An install it yourself (IIY) alarm by Photain Controls operates on an entirely new current sensing principle. This unit monitors the outflow of current from the battery of a vehicle. Current flow can be caused by anyone attempting to start the vehicle or when a lamp is illuminated by the opening of a door, the bonnet or the boot. The alarm can operate the existing vehicle horn or a separate siren from Photain.

When activated the horn will sound for a period of sixty seconds and the unit will then automatically reset for the next operation. To enable the owner to leave and enter the vehicle quietly two time delays are incorporated.

The easily installed unit operates from the 12 volts DC vehicle battery (negative earth) and has a current consumption of only 1 mA in the set condition. The complete unit measures $55 \mathrm{~mm} \times 100 \mathrm{~mm}$ $\times 64 \mathrm{~mm}$, weighs 227 grams and will operate over a temperature range of minus 20 degrees to plus 60 degrees centigrade.

Price complete with on/off switch, mounting brackets, fixing screws and connecting cable is $£ 20$ plus $12 \frac{1}{2}$ per cent VAT. Siren costs $£ 12$ plus VAT. Photain Controls Ltd., Unit 18, Hangar No. 3, The Aerodrome, Ford, Arundel, West Sussex.

A NEW PET FOR YOUR HOME

The Commodore PET is now available in the U.K. although you will have to wait at least 30 days to get one-provided of course you have $£ 695$. The PET is a "low priced" all-in-one microcomputer designed with the user in mind. The package incorporates a 9 inch CRT which will accommodate 25 lines of 40 characters and a standard cassette system for program storage and entry. A keyboard containing 73 alpha numeric keys plus 64 additional graphic characters for plots, games or "artwork", lower case letters is also available.

PET operates in BASIC and comes with

8 k of RAM and 14 k of rom which includes 4 k operating system and 1 k diagnostic routine.

Commodore will be marketing PET from office/showroom premises in London and they will also be setting up a PET Owners Club. They hope to offer such items as extra RAM (24 k we believe), floppy disks, printers etc., at a later stage.

We also hear from Commodore that they have been able to reduce the price of KIM1 to $£ 149.00$ plus VAT.

More details from Commodore Systems, 446 Bath Road, Slough, Berkshire.

BACKGAMMON COMPUTER

The latest microprocessor-based game now available from Gemini Electronics is backgammon. The unit which is called the Gammon Master II is based on the Motorola 6800 microprocessor and is designed to change its strategy depending on the type of game you choose: running block and hit, back games, it is capable of playing them all.

It is claimed that the unit will on average defeat an intermediate player and
compete evenly with experts. Each game is "charted" with regular pieces and the location of every man on the board can be verified by the touch of a button. The dice is also electronically "rolled" ensuring each game is different

The total cost of the game including VAT and post and packing is $£ 175.00$. It is available by mail order only from Gemini Electronics, 3 Branksome Avenue, Prestwich, Manchester.

MAINLINER

Co-axial cable de-braiding tools handting cables from 3.3 mm to 13.5 mm and having the memorable name of "Mainliner" are available at $£ 5.58$ plus VAT from Eraser International Ltd, $2 / 3$ Hampton Court Parade, East Molesey, Surrey, KT8 9HB.

Fig. 1. Wiring diagram of Random Decision Unit.
The outputs of IC3 feed the l.e.d. segments of the display.
To be safe, 100Ω resistors should be inserted in series with the four cathode leads to the display, however, in the prototype these were not used as all the i.c.s tried appeared to limit their own output current without the inclusion of these resistors. They have not been shown in the diagram nor in the layout drawing but can be included if it is desired to play safe.

IC1c and D1 serve to gate the oscillator (IC1a and b). Attempts were made to use one of the spare inputs of these gates, but in two of the i.c.s tried, this made start up of the oscillator unreliable so the present method was adopted.

When the junction of IC1c and D2 is taken high, C3 charges through D2 and hence the display is activated, also IC1c goes

Fig. 2. Circuit diagram.

Fig. 3. Printed circuit board design
low and the oscillator starts up. As the above mentioned junction goes low, the oscillator stops immediately, however the display remains active until C3 has discharged through R4, hence sufficient time is given (5-6 seconds) to read the resulting display. ICld serves as a buffer with its input normally kept high via R3.

Touching the plate takes ICld input low (due to skin conductivity) and the above explained process occurs.

In the quiescent state, the i.c.s take virtually no current, and the only real flow is that through D1 and R1, this amounting to around $\frac{1}{2} \mathrm{~mA}$. Hence an on-off (mechanical) switch is not really justified.

CONSTRUCTION

The touch plate is shown full size and the copper lines should not be made any closer than that shown, otherwise dampness caused by breathing near the plate could lead to shortened battery life. If trouble is experienced, the value of R3 can be reduced slightly without significantly affecting the sensitivity of the touch plate. See Fig. 1.

Construction methods will vary depending on the type of case available, however in the prototype construction of both the p.c. board and the touch plate was on copper coated p.c. board. An excellent system to use for etch resisting is the Alfac range of electronic symbols (lines, bends, etc), however these are expensive, but if a professional looking finish is desired, this system is excellent. The i.c.s should be mounted on sockets if space permits and they should be mounted last, and must not be handled until you are ready to use them as they are liable to damage by static, and the more often handled, the greater the chance of damage. The battery should not be fitted until all parts and all connections have been checked.

COMPONENTS . . .

Resistors

R1-R2 $15 \mathrm{k} \Omega \frac{1}{4} \mathrm{~W} 10 \%$ (2 off)
R3-R4 $10 \mathrm{M} \Omega \frac{1}{4} \mathrm{~W} 10 \%$ (2 off)
Capacitors
C1-C2 $\quad 0.01 \mu \mathrm{~F}$ polyester $\mathrm{C} 3 \quad 0.47 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum
Integrated Circuits
IC1/IC3 4011 (2 off)
IC2 4027
XI FND 507 (common anode)
Diodes
D1-D2 1N914 (2 off)
Miscellaneous
Printed circuit board, sockets for i.c.'s (if req.), PP3 battery, suitable battery press studs.

OPERATION

In use, the plate is touched and all 4 segments will light up, appearing to be all on at once due to the high oscillator speed used. On release of the plate, 2 of the 4 segments will remain alight. Which two is totally random and there should be no bias toward any particular combination (of the four possible alternatives). If segments bce and f are used as in the prototype, it could be said that a straight line represents "EVENS" and a staggered line represents "ODDS".

Keep the unit in a reasonably dry atmosphere and the battery should last for many months. A

THE SAGA OF SALYUT, SOYUZ AND PROGRESS

The year 1978 will mark a special place in the history of Soviet space progress. On Valentine's day Yuri Rmanenko and Georgi Grechko began using equipment brought up to them by the cargo spacecraft Progress 1 .

They began erecting an electric heating chamber in a special lock compartment. Photographic and other monitoring equipment was set up also. Part of the programme included the photography of Earth and space phenomena. Optical instruments for navigation were tested in the new mode where operation can be automatic or manual depending whether the station is with or without crew. This facility can be operated whether the vehicle is on the dark side or the light side of the Earth.

The furnace was brought up by Progress 1 and assembled by the two cosmonauts. This furnace, whose temperature is in excess of $1,000^{\circ} \mathrm{C}$ is controlled by a computer. An accuracy of plus or minus five degrees can be maintained. The unit is installed in the lock compartment which is arranged so that the rear end of the furnace faces into space.

The first experiment in smelting was to study the diffusion process of molten metals in weightless conditions. A capsule of aluminium-magnesium, copperindium and indium-antimonide was introduced into the heating chamber. The airlock was depressurised and the heating switched on. At the same time the control of the spacecraft for orientation was switched off to allow the vehicle to drift. The process of crystallization was completed and the control engines took over again. The materials obtained during the experiment will be brought back to Earth for study.
A second experiment was carried out;
research materials were aluminium-tungsten, molybdenum-gallium and semiconductor materials. These results will also be examined when they are returned to Earth. Information about the interaction between liquid and solid metals will show what reaction occurred under weightless conditions. The aim of these experiments is to gain knowledge of welding and soldering and also the possibility of the creation of new composite materials.

Optical observations have also been carried out particularly with regard to silver clouds, which may provide information about the state of the atmosphere. These clouds tend to appear at about 80 kilometres above the poles. Many drawings have been made as well as photographs. It is clear that these clouds are in distinct layers. Three of these layers have been observed between -130° and $-150^{\circ} \mathrm{C}$. During this time the Aurora was very prominent and reached a height of about 500 kilometres.

In the mission there was a programme for the study of biological effects involving drosophila, micro-organisms and tissue culture. Two day larvae of drosophila were taken aboard the spacecraft in a nutrient medium, contained in a special thermostatically controlled container, Bio-therm-4. The temperature was held constant at $24^{\circ} \mathrm{C}$. The first flies appeared in December 1977 and the reproduction cycle began again. This time it was in the condition of weightlessness. The object of this experiment is to determine effect of weightlessness on the insects' hereditary systems.
An important phenomenon was confirmed regarding the productivity level of the cosmonauts. There was an increase in their output of 10 per cent. This was noticed with the activity of the previous long term team, Sevastyanov and Klimuk, which lasted 63 days. It would appear that prolonged weightlessness is like getting second wind.
Another point which is being closely watched is the calcium loss in the bone structure. It would seem that as the skeleton is no longer needed to support the body the amount of calcium reduces. This was of course also noticed with the American teams.

RADIO TELESCOPE

The largest telescope of its kind has been installed in the Salyut-Soyuz space station and is to operate in the 1.5 millimetres band. The detector, which consists of crystals, is cooled in a closed circuit using liquid helium at a temperature of $-269^{\circ} \mathrm{C}$: The liquid helium is made on board and the final cooling is by an expanding throttle valve.
The telescope is being used to detect radiation in the infrared part of the spectrum. This particular wavelength is not observable from Earth because of the cut-off caused by the atmosphere. The instrument will be turned towards Earth to examine the upper layers which are important in weather forecasting. The control system uses Jupiter and

Sirius as test locations.
Also included in this programme are observations of the centre of the galaxy, the Orion nebulosity and interstellar clouds.

THE PROGRESS 1 DESIGN

The development of Progress 1 was based on economy and reliability. Both these parameters were best served by making use of existing tried materials and units. For example the carrier was similar to that of an ordinary manned Soyuz. Only the emergency rescue system was removed. Since there were no crewmen this was redundant.
The main re-design was on the spacecraft itself. In order that the maximum payload might be carried it was decided that the Progress 1 should be nonrecoverable. This decision enabled the heavy heat protection shield to be discarded.

Progress 1 weighed 7,020 kilogrammes and could carry 2,300 kilogrammes of cargo. This amounted to 30 per cent of the lift-off weight, a very high proportion for a spacecraft. Progress was 2.2 metres in diameter and 8 metres long. Without solar panels the flight time was for eight days, in independent operation. However its design was such that it could have remained a month in space if linked to the space station. The vehicle was indeed a tanker for it carried upwards of half a ton of fuel, plus 1,300 kilogrammes of dry cargo.
In order that the dynamic characteristics should not be affected a new power scheme was developed.

A number of frames supporting the hull were removed to make economical use of the space. These were replaced by a structural framework supporting shelves to which containers were attached by quick release locks.

New systems in the craft included a pumping installation to transfer the fuel to the space station. Control systems were extended to ensure reliability in the absence of manual control.
It took the cosmonauts twelve trips to unload Progress 1 on its arrival and docking with the space station. Before the re-fuelling operation, the cosmonauts had replenished the air supplies from that brought up by the cargo craft. Stock air had been depleted by the disposal of waste and the space walk.
While still locked to the space station another series of 'resonance' experiments were carried out. No doubt the cosmonauts enjoyed using the cargo ship as a trampoline.

The Progress engines were used to make a correction to the orbit of the space station. After that the cosmonauts set about the separation of the two craft.

Before the Progress 1 was allowed to enter the atmosphere it performed one more task. One orbit after separation, when it was 12 to 15 kilometres away, the back-up automatic and approach systems were tested. This had never been tried before.

Semiconductor UPDATITEm
 FEATURING: 8086, 28000, MC6809, TLI70C, 355

THE 16 BIT CHALLENGE

You may remember that I was less than enthusiastic about the Texas Instruments announcement that the ... "end of the two-bit eight bit" was imminent. There is still no doubt in my mind that the eight bit micros, such as the 6800 , the 8080 and the Z80, will be with us for many years yet, as indeed will the four bit chips such as the 4040 and the TMS 1000.

Certainly the current sixteen bit contenders, represented by the Texas TMS 9900, the General Instrument CP1600, and the Ferranti F100L, are hardly taking the micro world by storm, and have so far proved to be of little interest to computer hobbyists who still have plenty of elbow room left in their existing eight bit systems.

But time marches on, and the sixteen bit challenge is soon to be reinforced by the three giants in microprocessor technology, who have at last decided that the market, and their own technology, are now ready. First of the giants on the scene will be Intel with its new 8086, a powerful 16 bit design which is software compatible with its 8080 and 8085 predecessors and yet offers on-chip multiply and divide, a one megabyte address range and internal clock rates of up to 8 Mhz . Close on the heels of Intel are Zilog with their new $\mathbf{Z 8 0 0 0}$ chip which, like the 8086 , offers software compatibility with its eight bit predecessors. Rumour has it that one version of the $\mathbf{Z 8 0 0 0}$ will be able to address eight megabytes of memory!

FROM MOTOROLA

Last but not least come Motorola with their MC6809 device which has the interesting distinction of being at an "in-between" stage in microprocessor development because, while it uses 16 bit internal architecture, externally it interfaces with the eight bit data bus common to all current 6800 systems. This "best of both worlds" design, while not as powerful as the Intel or Zilog chips, has the advantage that existing hardware and memory investment can be carried through into the more capable sixteen bit arena.

If you relish the thought of a powerful home computer based on a sixteen bit chip, then this news from the three giants will please you, because confident predictions of price erosion are already being
made. Before throwing your old micro away though, try calculating the cost of eight megabytes of RAM!

HALL SWITCH

Becoming increasingly popular in the professional electronics market these days, and looking extremely attractive for amateur applications are the new generation of magnetic sensors, the Hall effect switches.

These useful devices have been mentioned once before in this column, but at that time they were difficult to obtain. Now Texas Instruments have introduced the TL170C which is likely to become freely available at a very low price, and so there are no longer any excuses for not sampling the delights of this robust and useful switching device!

Hall effect switches like the TL170C are basically silicon integrated circuits which include a Hall sensor able to sense the presence or absence of steady, state magnetic fields, and a transistor switching stage which provides a logic type output. The TL170C itself is packaged in a tiny plastic three lead transistor package and operates from-standard five volt supplies. The output switching stage is a basecollector transistor with a 30 volt rating so that the output voltage swing can be tailored with the aid of a pull-up resistor and a suitable supply rail to suit most applications. Output sink current is a respectable 20 mA .

EASILY INFLUENCED

Magnetic sensitivity is rated in milliTeslas, with a positive threshold of about 35 mT and a negative threshold of about minus 35 mT . If, like me, you do not have much of a feel for milli-Teslas, suffice to say that the TL170C can be reliably operated with quite a small magnet! To prevent erratic switching or threshold oscillations the new chip has a built in hysteresis of 20 mT .

Applications for these devices must be legion, and are surely not limited to the main commercial use which is as contactless keyboard switches for high quality teletypes and VDUs. All kinds of clever, perhaps concealed, magnetic switches are possible, and how about a solid state
magnetic replacement for the mechanical or reed switch car contact breakers used with electronic ignition systems? And don't forget model train layouts, and slot cars, and ... well I am sure you can see that it really is amazing how you have been able to manage without these devices for so long!

SPIKELESS TIMER

No doubt everyone will have used that great little 555 timer integrated circuit by now, probably with great success. You may have used it as a monostable, an astable, a voltage controlled oscillator, a long period timer or any number of the other jobs at which it excels, but if you used it on a board with TTL flip-flops, you may have come unstuck.

The trouble is that the 555 generates a large current spike in the supply lines when it switches to the high output state, a spike which can be as large as 300 mA and last for 100 nanoseconds or more. This sort of spike can cause glitches in the Vcc line which will have unfortunate effects on TTL or other flip-flops, particularly if the decoupling arrangements are not of the best.

The only way out of this problem until now has been to hang a few hundred microfarads of capacitance across the 555 supply pins so that it could guzzle current from its own personal supply during a spike, with out communicating its bad habits to the other occupants of the board!

But now a rather more elegant solution has appeared from Teledyne Semiconductor in the shape of their 355 timer.

Yes, that's right folks! It's a pin for pin replacement for the 555 chip without the current drinking problem! Actually, the 355 does take a tiny sip when it switches but the current spike generated is only about 1 mA .

The 355 not only tackles the 555's drinking problem, but also solves another couple of problems on the side. The 555 has a tendency not to reset reliably on command, and can get too hot on 15 volt supplies. The goody-goody 355 never puts a foot wrong. Personally my sympathies are with my red-faced, overheated, intemperate, 555's who sometimes forget to reset. I think it's an identity problem!

27bIESTM P.A.BIRNIE

This unit gives a usual indication of the logic states of any 14 or 16 pin i.c. in the 74 family

T- His tester was designed for use on all 14 and 16 pin integrated circuits in the 74 TTL series. It is powered from the circuit under test and uses TTL hex inverters with light emitting diodes to indicate the logic states of the i.c. under test.

POWER SQURCE

As the tester is powered from the circuit under test and because in the 74 series the pins used for the power supply connections vary from device to device, it was necessary to ensure that the tester received a voltage of the correct polarity irrespective of the i:c. being tested.

This was achieved by listing all the pins used to supply power in the 74 series and then designing a diode circuit capable of providing the correct voltage.

CIRCUIT OPERATION

The complete circuit diagram of the tester is shown in Fig. 1 with the four hex inverters enclosed within the dotted lines.

Under typical operating conditions with output voltages over 0.6 V the 74 L 04 hex inverter acts as a 13 mA constant current generator. This current is sufficient to illuminate an l.e.d. and so indicate a "logic 1 " state.

When the testcr is applied to an i.c. its positive and negative supply rails are obtained by two of the diodes D18 to D23 being forward biased from the supply pins of the i.c. under test. If for example a 16 pin i.c. with its +5 V and earth connected to pins 5 and 12 respectively is to be tested, then diodes D18 and D23 will be forward biased establishing the supply rails.

If any inverter senses a logic 1 input its output is switched low and the l.e.d. connected to it is illuminated. When a logic 0 is sensed by an inverter its output is switched high and the appropriate l.e.d. turned off.

Fig. 1. Circuit diagram of the Test Clip. Pins 14 and 17 are used as the positive and negative connections of the 7404

Fig. 2. Printed circuit board pattern

CONSTRUCTION

The two printed circuit boards (Fig. 2) used in the tester are identical and their respective component layouts are shown in Figs. 3 and 4. The components should be soldered as close as possible to the p.c.b.s to allow easy mounting of the boards into the case.
The unused pins of each i.c. should be cut off before the i.c. is soldered into the p.c.b.s.

Each l.e.d. should have its cathode lead cut to about \ddagger in and its anode lead to about $\frac{1}{8} \mathrm{in}$. A piece of sleeving should be fitted over the cathode lead to prevent it shorting out to the positive supply line.

When soldering the l.e.d.s in place care should be taken to keep the spacing between them even to ensure neat indicator rows in the finished tester.

TEST CLIP

The test clip was made using $0 \cdot 1$ in edge connector which was modified as shown in Fig. 4. One side of the connector was carefully' cut off, leaving a strip of 8 contacts with con-

Fig. 5. Modifications and mounting details for the edge connectors

COMPONENTS
 - -

Diodes
D1-D16 TIL 209 (16 off)
D17-D23 OA47 (7 off)
Integrated Circuits
IC1-IC4 74L04 (4 off)

Miscellaneous

Printed circuit board, 4 in length of 0.1 in pitch edge connector for probe, clear and opaque Perspex, Araldite, Tensol No. 6 cement

Fig. 3. Component layout for Board A

Fig. 4. Component layout for Board B

SIDES AND ENOS - 1 mm OPACUE PERSPEX

Fig. 6. Case cutting details
venient "spills" which were used to solder the connectors to the p.c.b.s. Araldite was then used to securely hold the connectors in place.

TESTING

The tester should be checked before it is fitted into the case to ensure that it is working correctly. $A+5$ volt supply should be connected to the positive and negative supply lines of the boards and all the l.e.d.s should light up. If a lead is taken from the negative supply to each inverter input in turn the corresponding l.e.d. should be turned off.

CASE ASSEMBLY

The case was constructed using 1 mm Perspex (Fig. 6). A special solvent is available for fixing Perspex and this should be used rather than an adhesive.

The two p.c.b.s are first Araldited to the sides taking care to align the connectors in the centre of the case. The top of the case, which should be made of clear Perspex, may then be fitted to one side.

The two ends of the case can be curved by warming them over a hot soldering iron and gently bending them until they match the curves of the sides. These may now be fitted to the top and side of the test clip. The other side can now be fitted and all the corners rounded off with wet and dry sandpaper. The Perspex can be restored to its original finish using Brasso. Finally the top of the tester should be marked with a spot of white paint to indicate the position of pin 1. A stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to its merits.
Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

Here are a number of circuits contributed by E. F. Flint which should be of interest to constructors of the Minisonic 2 synthesiser
Copies of Sound Design containing this are still available from Post Sales Dept., IPC Magazines Ltd., Lavington Street, London SE1 OPF at $£ 1 \cdot 20$ each including Inland/Overseas p. \& p.)

VOLTAGE CONTROLLED OSGILLATORS

Fig. 1

One of the modifications incorporated in Minisonic 2 was in the design of the v.c.o.s. The new circuit used an LM318 N op-amp as a comparator on the grounds that this device has a much faster slewing rate than the $741-70 \mu \mathrm{~V} / \mathrm{sec}$. It is however both expensive and hard to obtain, and an alternative approach is to use a 555 timer, which contains two comparators with slewing rates comparable to the 318 , and is cheap and readily available. Two designs are possible, the second being more complex and having two output waveforms.

This version (see Fig, 1) provides only a ramp waveform as in the original design. The two comparators in the 555 have thresholds of $\frac{1}{3}$ and $\frac{2}{3}$ of $V_{\text {ce }}$, so that by operating the device with supplies of -3 volts and +6 volts the thresholds become zero volts and +3 volts.
The mode of operation is as follows: the 741 integrator ramps in a positive direction as before until the ramp level reaches +3 volts. At this point the output of the 555 goes rapidly to the negative supply rail; this switches on TR2, connecting the gate of the f.e.t. to
+6 volts and discharging the integrating capacitor. When the ramp output reaches zero volts, the 555 output goes positive, switching off the f.e.t., and integration begins again. Thus the oscillator produces a ramp of 3 volts amplitude, rising from zero volts.

The synchronisation network is slightly different from the published design; since the 555 produces negativegoing pulses the gating diode must be reversed, and the sync. pulses are fed to the inverting input of the integrator.

Fig. 2

This version provides triangle and square wave outputs; in addition to the 555 and 741 it uses a cmos chip 4007 as a two-way switch. The switch works as follows: the 4007 contains two complementary pairs of f.e.t.s and an inverter. The two complementary pairs are wired as a pair of bilateral switches with one common terminal, and the inverter controls their on/off state so that when one is on the other is off, and vice versa. (Fig. 2).
The 4007 is used in this application to switch the constant current generator between the inverting and non-inverting
inputs of the 741 integrator, so that it can ramp both positively and negatively. The 555 is connected to ± 6 volts, so the threshold levels are +2 and -2 volts.

If we consider first the ramp rising positively, the 555 output is also positive and the 4007 is in position $2+9$. When the ramp reaches +2 volts, the output of the 555 swings to -6 volts, the 4007 switches to position $11+4$, and the integrator begins to ramp negatively. When the ramp reaches -2 volts the 555 output swings back to +6 volts, the 4007 switches back to
position $2+9$, and the integrator once more ranips in a positive direction.
This oscillator uses only negativegoing sync pulses so the gating diode is reversed and the pulses are routed to the common terminal of the switch; this means that when the ramp is positive-going the spikes from the sync pulses are too, and when the ramp is negative-going, the spikes are again in the same direction as the ramp, i.e. the sync pulses always augment the ramp voltage to induce triggering of the comparators at a sub-threshold voltage.

Fig. 3

A completely different approach to v.c.o. construction is to use the 8038 (Fig. 3), a 14 d.i.l. package which contains a v.c.o. with sine, square and triangle outputs, having variable symmetry, adjustable harmonic distortion on the sine-wave output, and an extremely wide frequency range of 0.001 Hz to 1 MHz (by changing the component values in the timing network then in the voltage controlled mode the sweep range is $1,000: 1$).

The internal workings of the package are far too complex to describe in detail but it can be considered as a black box whose output frequency depends on the values of R3, R4, Cl and the voltage between pin 8 and the positive supply rail. It is the last of these variables with which we are concerned. The frequency is a linear function of this voltage, but a logarithmic function can be introduced using a modified version

THE 8038 V.c.0.

of the well-known Minisonic v.c.o. control node.

Here the constant current generator (c.c.g.) instead of working from an integrator draws its current from the positive rail via resistor R_{X}. Since the collector current of the transistor is a logarithmic function of the voltage on its base, it follows from Ohm's Law that the voltage across R_{X} follows the same log function, and therefore the frequency of the oscillator becomes a log function of the voltage on the transistor base.

The control node works exactly as before, and setting up therefore follows the established procedure. Symmetry is adjusted by varying either R3, R4 or both, but note that this also affects the frequency. This is best done using an oscilloscope to monitor the square wave output.

Fig. 4
Sine wave distortion can be adjusted in two ways-the first is simpler and should be used where it may be desired to introduce some harmonics during use, for example in simulating flutes etc. A variable resistor is connected
from pin 12 to the negative rail (Fig. 4) and adjusted for the required purity of waveform or harmonic content.
Where a pure sine wave is required the circuit of Fig. 5 is used and the two

potentiometers adjusted for minimum distortion-this requires an oscilloscope and a sine wave generator for comparison, and distortion as low as 0.5 per cent can be achieved.

The circuit of Fig. 6 produces a train of pulses of variable width and repetition frequency, for so long as a key is pressed. These can be used to repeatedly trigger an envelope shaper so as to produce an effect like a banjo, mandolin or xylophone (all of these require an ADSR envelope shaper).

The circuit uses a 741 in the astable mode, with a few alterations from the usual design. It is basically a comparator, with R1 and R2 added to allow operation from a single supply.

The two diodes allow the charging and discharging times of Cl to be adjusted independently. TR1 connects R1 to the negative supply when a key trigger pulse is present, allowing the multivibrator to oscillate. VR2 controls the charging time of C 1 , and therefore the width of the output pulses, and VRI controls the discharging time and therefore the width of the spaces between the pulses.

The circuit of a sawtooth to triangle converter is shown as Fig. 7 with examples of waveforms produced (Fig. 7a). The sawtooth wave first passes through a d.c. blocking capacitor so that it is symmetrical about zero volts. A pair of diodes then gate the signal so that positive half waves are applied to the non-inverting input of a differential amplifier, and negative halves to the inverting input. As shown, this produces an output train of alternate positive and nega-tive-going ramps, i.e. a triangle wave.

Since this rectification process effectively halves the signal amplitude, the resistor values in the amplifier are chosen to give a gain of two. A second d.c. blocking capacitor in the output again makes the output symmetrical about ground.

The same circuit can also be used as a frequency doubler for triangle wave signals, as shown in Fig. 7b.

REPEAT/PERCUSSION CIRCUIT

To trigger point on
Envelope Shaper.
 CONVERTER CIRCUIT
SAWTOOTH TO thiangle

Fig. 6

Fig. 7

REaders of this magazine who have observed the sudden rise of digital clocks and quartz watches over the last few years may be surprised to learn that electric timekeeping goes back over 150 years. Last year an exhibition at the Science Museum, "Electrifying Time", commemorated the centenary of the death of the Father of Electric Horology, Alexander Bain. The exhibition surveyed electric timekeeping from its infancy at the beginning of the 19th Century through to the atomic clocks of the present day.

ELECTROSTATIC

Zamboni and others in Europe experimented with electrostatically maintained clocks at the start of the 19th Century. They relied on the repulsion between a charged ball at the end of a pendulum and two oppositely charged plates at each end of the pendulum's swing. A high voltage battery such as a Zamboni pile maintained the potential difference between the ball and the plates. As the ball swung to one plate it would be electrostatically repelled to the other and so on, thereby maintaining the pendulum. This system was so highly temperature

sensitive that Zamboni concluded that it was a better thermometer than a clock and this approach was soon abandoned.

In 1819 Oersted had demonstrated the principle of electromagnetism and in 1841 a Scotsman, Alexander Bain, produced the first successful electric clock using an electromagnetically maintained pendulum. One of the difficulties associated with these early electric clocks was the temperature dependence of the cell driving the clock, usually a Daniell cell. In 1843 Bain hit on the idea of the Earth Cell in which copper and zinc electrodes were buried several feet down in the soil which acted as the electrolyte. At a depth of six or more feet the temperature of the soil is constant and so Bain managed to eliminate at least one of the causes of poor electric timekeeping.

SYNCHRONISATION

One of the great virtues of electric clocks is that the pulses of electrical energy which maintain the pendulum swinging may also be used to synchronise other clocks in the same building or at greater distances. Bain demonstrated such a system with a master clock in Edinburgh synchronising a slave clock in Glasgow, the synchronising pulses being transmitted over telegraph wires.

Despite Bain's innovations, it appears that he did not meet with any great commercial success. He installed an electric turret clock in St. John's Church, Loughton, Essex, in 1846, but within four years it was replaced by a mechanical clock. A similar fate befell Shepherd's electric clock for the 1851 Great Exhibition in Hyde Park.

By the end of the 19th Century new methods of electrifying time were being evolved. In 1881 Chester H. Pond of the U.S.A. produced the first electrically maintained spring driven clock in which the spring mechanism was wound every hour by an electric motor. The "Synchronome" master clock using a deadbeat escapement was patented in 1895 , but was not practically realised until $1905-7$ by F. Hope-Jones and G. B. Bowell. In this clock a gravity arm falls every half minute to give the pendulum

Alexander Bain 1810-1877 (Photo courtesy Science Museum)
a push. This done, the gravity arm is restored to its original position by an electromagnet. At the same time as the elecromagnet is energised, a pulse is sent to move the slave clocks. The great advantage of this scheme over all previous ones is that the master pendulum itself does not have to provide the synchronising pulses.
William Hamilton Shortt carried this principle further in 1921. Shortt's master pendulum was placed in a vacuum and did not even have to turn a counting wheel. A slave clock carries out the counting and every half minute releases a light arm carrying a jewel which falls on to a small wheel mounted on the master pendulum. In rolling off this wheel it imparts a light impulse to it and after transmits a synchronising signal to the slave clock. The master pendulum runs completely free except for this impulse every half minute and maintains an accuracy of 1 part in 107 . This type of clock was in use at the Greenwich Observatory until 1942, when it was replaced by a quartz clock.

Electric clock of the type patented by Bain in 1845 (Photo courtesy Science Museum)

Rear view of Scott clock (Photo courtesy Science Museum)

The idea of using the mains to distribute time occurred to Ferranti in 1895 when the first alternating current generator was installed at Deptford. At that time, however, there was no means of controlling the mains frequency with sufficient accuracy and the idea had to wait until 1916 when H. E. Warren of the Warren Telechron Company devised a method of precision frequency measurement and a low power-consumption synchronous motor which led to the first mains driven electric clock.
Quartz oscillators were first constructed in the early 1920s and in 1927-30 Warren Alvin Morrison of the Bell Telephone Laboratories produced the first quartz clock. The reliability of electronics at that time was low and consequently three such independent clocks were used to confirm the time. The accuracy of these quartz clocks was improved and now accuracies of better than 1 part in 10^{8} are achievable, ten times better than the best pendulum clock

The quartz oscillator which is the timekeeping element of the quartz clock relies upon the vibration of a quartz crystal between two metal electrodes. This high frequency vibration, which usually takes place above 100 kHz , is amplified by an active device, originally a valve but nowadays a semiconductor device, and a portion of this amplified output is fed back to the quartz crystal to maintain its oscillation. The high frequency signal is then divided to provide a low frequency signal (hetween 50 Hz and 1 Hz) to drive a synchronous or stepping motor to provide an analogue display of time or a digital display via counter and decoder circuits.

ATOMIC CLOCK

Up until the early 1950 s the method of timekeeping had always relied on the oscillation of a solid body whether it be a pendulum. a balance wheel or quartz crystal. These are calibrated with respect to the rotation of the Earth on its axis which is irregular. In 1955, Dr Louis Essen and Mr Parry of the National Physical Laboratory in England produced the first atomic clock. This essen-

A typical domestic electric clock of the 1920's
(Photo courtesy Science Museum)

Hamilton electric analogue watch (Photo courtesy Science Museum)
tially was a quartz clock controlled by the vibration of cæsium atoms and was accurate to within 1 second in 300 years (1 part in 10^{10}). As a result, in 1967, the second was re-defined in terms of the cæsium vibrations and in 1971 the International Atomic Time Scale was adopted. Currently casium clocks are accurate to within 1 second in 100,000 years (3 parts in 1013)-a quite mind-boggling accuracy which, if it surprises us, would have shaken Alexander Bain. Rubidium clocks which rely on the vibrations of rubidium atoms are used as secondary standards and are at present accurate to within 1 second in 1,000 years (3 parts in 1011).

DIGITAL

On the domestic scene Max Hetzel devised a clock employing an electrically maintained tuning fork. This was the forerunner of the Bulova Accutron, a wristwatch in which the tuning fork was maintained by a transistor circuit. The first domestic quartz clock was manufactured by Junghan's in 1967. Only two years later, Seiko introduced the world's first electronic watch and later that same vear Longines introduced their electronic watch. All three of these timepieces used a motor driving the hands of an analogue display. In 1972 Hamilton produced the first quartz watch with a digital l.e.d display and, in the same year, a Swiss Company, Societe des Gardes-Temps, produced a quartz watch using a liquid crystal digital display.

All of these brings us just about up to date. The accuracy of even a cheap quartz watch is beyond the dreams of watchmakers of a hundred years ago. Although it is improbable that atomic clocks will ever be used domestically, their accuracy can be tapped by receiving and decoding the radio clock signals transmitted by MSF, Rugby. Such radio clocks and designs for the experienced constructor are available, so if you ever feel the need for a clock with an accuracy of 1 second in 100,000 years, that's the way to achieve it.

CB RADIO

Last year's clamour from pressure groups advocating Citizens Band Radio is now somewhat muted, perhaps because the problems of introducing a CB "service" in a smallish country like the UK have now been more fully examined and debated.

An interesting sidelight on $C B$ in the United States is that Texas Instruments has been working with the FCC on developing a high-performance TV receiver which is less susceptible to interference from $C B$ radios, the implication being that interference is a major problem to viewers. Improving front-end performance of mass-produced TV receivers is a worthy end in itself but it costs money.

Ninety-five per cent of Britain's 20 million households have a TV receiver and the average viewing time is 18 hours per week. The great mass of the population would not take kindly to interruption of their principal recreation and even less kindly to having to spend more to overcome the difficulties caused by enthusiastic chatterers on CB.

PRELUDE

Project Prelude, now running on a trial basis in the United States could be the shape of things to come in Business Communications. Big companies need to talk from their headquarters to their factories and offices at remote locations and often to each other. The modern way to do this is by communications satellite which can provide high-speed data, facsimile and teleconference transmission, all over the same links. In the teleconference mode, for example, you can have largescreen projection colour TV for group discussions and even person-to-person viewphones.

Three big businesses are involved in the trials, Texaco, Rockwell International and Montgomery Ward. Using small transportable earth terminals they are currently operating through the Communications Technology Satellite (CTS) which operates on the same frequencies as a proposed Satellite Business Systems (SBS) satellite.

LUCAS ELECTRICAL

Lucas seldom gets in the news as an electronics company but the company is strong in thick film technology and has large semiconductor manufacturing operations in Birmingham to supply devices for alternators, electronic ignition and other automotive electronic applications. Lucas has now increased its shareholding in Ducellier, France, from 49 per cent to 100 per cent, having bought out, DBA (the American Bendix Automotive subsidiary) for a reported 26 million dellars.

Ducellier has 7,000 employees in four factories. Lucas-France already has 4,300 employees in six factories as well as a 49 per cent share in ThomsonLucas which serves the aerospace market, making Lucas a major company in France. The Lucas move appears to be following the trend of investment overseas into areas where the industrial climate is less restrictive than in Britain under the present regime.

DISTRIBUTION

The Association of Franchised Distributors of Electronic Components (AFDEC) have forecast a total component market this year worth $£ 531$ million of which about 16 per cent will be served through distributors, the balance being bulk direct supplies from manufacturers.
Despite talk of overcrowding in the distribution business there are still some eager entrants. One such is Jack Evans Electronic Distribution Ltd, scheduled to start up in April near London Airport, an area already heavily populated with distributors. JEE Distribution, as the company will be called, is to concentrate on electronic hardware which, according to company hand-outs, is a neglected area.

Jack Evans is a familiar name in the business. He was the prime mover in setting up ITT Electronics Services and was general manager there from 1964 to 1970. Most new companies in distribution start off with one or two good franchises as the foundation of the business. Evans is starting with over 30.

JEE's hardware catalogue is said to be a real engineering manual rather than a list of products and is expected to be a prime addition to the equipment design engineer's technical library. The first edition has some 150 pages of products and technical data.

HEWLETT-PACKARD

John A. Young, newly elected president and chief operating officer of Hewlett-Packard has inherited a strong financial and technological position. He is only 45 so has many years ahead of him to seek further growth in what is one of the most powerful and respected companies in world electronics. He heads up over $35,000 \mathrm{H}-\mathrm{P}$ people of whom 10,000 are outside the United States. The two founders of the company who started up in a backyard garage are continuing to exercise influence on long-term policy.

Ten years ago H-P was still the classical test and measurement company with 86 per cent turnover in that field out of a total turnover of less than 300 million dollars. Today the company is approaching 1.5 billion dollar turnover and test and measurement activities are only 42 per cent of the total, having now been overhauled by an equal share in electronic data products which was only 4 per cent of the total 10 years ago.

It's now full speed ahead on computational technology in H-P, which means "smart" instruments, computers, terminals and analytical tools. To keep the whole effort moving H-P has invested in component technology, one example being H-P's silicon-on-sapphire microprocessor which has over 10,000 circuit elements on one chip. But above all H-P invests in people. Graduate student intake last year totalled nearly 400, and over 10,000 employees took advantage of educational programmes to develop technical and management skills. R and D spend last year was running at the rate of about $£ 1$ million a week. Nothing succeeds like success.

BIG BATTERIES

With so much emphasis on micromin in electronics we tend to overlook that some things get bigger. In contrast to the tiny cells which power our watches and calculators, Chloride Industrial Batteries have recently roped in £4 million of orders for submarine batteries. Individual cells are said to be nearly as tall as a man and weigh about half a ton. A complete set for a submarine can weigh as much as 250 tons.

AVO's DMM

AVO, the oldest name in multimeters, is having another crack at the digital multimeter market with a unit, the DA116, with liquid crystal display and a price tag of £99. An important feature is high-speed resistance measurement, claimed to be ten times faster in response than conventional dmms. A single i.c. is used for analogue-digital conversion.

provides a variable power source limit

AN essential piece of equipment for any home lab is a power supply as batteries come extremely expensive-particularly the high power types.
This design is stabilised and has a performance which vies with a number of much higher priced commercial designs.
The maximum power available is 25 V at 1.5 A . The voltage output is continuously variable and the protection offered by an adjustable over-current limit is very reassuring-especially when experimenting with breadboards that have been inadvertently wired with shorts.
To cut cost, meters have been deliberately excluded but the ingenious use of l.e.d.s compensate in part for this omission.

STABILISER

Transistors TR1, 6, 7 and 8 constitute the constant voltage stabiliser. The reference voltage for TR1 is provided by D3 with the decoupling components C3 and R2 removing any hum that could be fed back.
Assuming S2 in the B switched position then TR8 is providing current to the load. For a full rated 1.5 A the base input to this comes via R11, R14 and R16.
The output voltage seen at the terminal is sampled by the preset VR5 and R18 and if too negative (dependent on VR1 setting) switches on TR1. As a result of this TR6 and TR7 are turned on so that some of the base current available to TR8 is shunted.

This feedback ensures that the output voltage will be such that the base of TR1 is always just negative with respect to the slider of VR1, the voltage setting potentiometer.
Returning TR6 collector to a tapping on the divider chain feeding TR8 base ensures that dissipation in this transistor is kept low. Note that R16 cannot be omitted, otherwise TR7 would be unable to bottom sufficiently to control TR8 base current.

Stability in the feedback loop is ensured by the roll off provided by C6 and C5, although the main role of the latter is to maintain a low output impedance at high frequencies. C4 provides this additional h.f. roll off when the output is switched off.

CURRENT LIMITING

The active components in the current limit loop are TR2, 6, 7 and 8. To understand the working, assume calibration has been made-VR2, VR3 adjusted-and a current limit value has been set on VR6. If the volt drop across D4 and R3 is such as to turn on TR2 then TR6 and TR7 will turn on, subtracting base current from TR8 and preventing any further increase in load currents.

If the whole of the volt drop across R3 were fed to TR2 base, it would be necessary to vary R3 to adjust the current limit and to obtain a wide control range-say 20 mA to full load-requiring a low value non-linear wirewound potentiometer. This has been done in some commercial stabilised supplies, but such a specialised component is hard to come by. Therefore, a power diode D4 is included and this still drops an appreciable voltage even at low currents, enabling front panel control VR6 to be calibrated directly in current down to low values.
VR2 sets the maximum current the stabiliser can supply (with VR6 fully clockwise) and VR3 is set to make the anticlockwise position of VR6 correspond to virtually zero short circuit output current.

Fig. 1. Circuit of Power Supply Unit

R21 ensures that C5 discharges when the output is turned off at $\mathbf{S} 2$. Consequently, when $\mathbf{S} 2$ is switched on again, the charging current into C 5 momentarily takes the power supply into current limit, causing the output voltage to ramp up linearly from zero. This feature in conjunction with the adjustable current limit provides complete protection of any circuit connected to the stabiliser.

L.E.D. INDICATORS

Whilst the omission of meters saves a considerable amount of money, one needs to know if the output voltage set by front panel control VR1 is really appearing across the load or whether the supply is in current limit. TR 3 and 4 detect whether TR1 or TR2 is controlling the output and light an appropriate l.e.d. Thus, if the output voltage really is as

COMPONENTS

Resistors		
R1	$1 \mathrm{k} \Omega$	
R2	$3.3 \mathrm{k} \Omega$	
R3	0.33Ω.	7 in of $24 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. Eureka wire
R4	47 k ת	may be used. Eureka wire is
R5	$1 \mathrm{k} \Omega$	obtainable from The Scien-
R6	$27 \mathrm{k} \Omega$	tific Wire Co., PO Box 30,
R7	$33 \mathrm{k} \Omega$	London E4 9BW.
R8	$120 \mathrm{k} \Omega$	
R9	$68 \mathrm{k} \Omega$	
R10	$100 \mathrm{k} \Omega$	
R11-14	$470 \Omega \frac{1}{2} W$	
R15	$1 \mathrm{k} \Omega$	
R16	68 k ת	
R17	$3.9 \mathrm{k} \Omega$	
R18	$4.7 \mathrm{k} \Omega$	
R19	8.2k Ω	
R20	$3.9 \mathrm{k} \Omega$	
R21	$2 \cdot 2 \mathrm{k} \Omega$	
(1)W 5\%	i stab exc	ept where stated otherwise)

Potentiometers

OR1	$5 \mathrm{k} \Omega$ linear
VR1	
VR2, 3	$4.7 \mathrm{k} \Omega$ vertical miniature skeletal
VR4	$100 \mathrm{k} \Omega$
vertical miniature skeletal	
VR5	$4.7 \mathrm{k} \Omega$ vertical miniature skeletal
VR6	$2.5 \mathrm{k} \Omega$ linear

Capacitors

C1, C2	$2 \times 4,700 \mu \mathrm{~F} 40 \mathrm{~V}$
C3	$150 \mu \mathrm{~F} 15 \mathrm{~V}$
C4, C5	$2 \times 22 \mu \mathrm{~F} 40 \mathrm{~V}$
C6	330 pF

Semiconductors

TR1,	2N2905A (2 off)
TR3,	BC109 (2 off)
TR5	BC214
TR6	BC109
TR7	BFY50
TR8	2N3055 with mica insulating set
TR9	BC109
D1,2	1N5402 (2 off)
D3	BZY88 C7V5
D4	1N5402
D5	1N916
D6,	TIL209 (2 off)
D8	1N5402

Miscellaneous

T1 MT104AT pri. 240 V ; sec. $25-0-25 \mathrm{~V} 1 \frac{1}{2} \mathrm{~A}$, FS1 1 A , S1 On/off switch, S2 S.P.C.O. switch, Heatsink 401-807 (Radiospares). LK301 Side Plate No. 1 (2 off) LK211 Chassis rail (4 off) LK431 Front panel LK521 short perforated plate (3 off) (Home Radio)

Fig. 3. (above) Component layout and wiring details for p.s.u. board

Fig. 2. (left) Printed circuit board layout. Holes should be drilled to conform with the component wire inserts as shown above

indicated by VR1 setting, TR1 is controlling the loop and the volt drop across R4 due to its collector current will ensure that TR3 is on and TR4 is off. Therefore TR5 and TR9 will be off and D7 lit. In current limit TR2 takes over control of the loop, so the drop across VR4 will cause TR4 and hence TR5 and TR9 to turn on and l.e.d. D6 will light, extinguishing D7.
S2 enables the output to be turned off and R19 ensures that even with little or no load the output voltage will then collapse to zero within a second or so. If the mains switch were used instead, then the output voltage could hold up for several seconds when lightly loaded, leading to possible damage to a circuit being worked on whilst still connected to the supply. D8 protects the stabiliser when switching off a highly inductive load and also when the supply is being used in series with another to obtain a higher voltage. Under these circumstances, if the stabiliser goes into current limit, the voltage at its terminals could reverse if it were not for D8.

CONSTRUCTION

Figs. 2 and 3 show the track layout and component assembly of the main board. In the prototype a Lektrokit chassis system was used for the case with TR8 heat sink mounted to the rear. A free air circulation must be ensured around this.
The sink specified will cope with the dissipation in TR8 at 1.5 A output current into a short circuit at ambient temperatures in excess of 50 degrees centigrade if heat sink compound is used on both sides of the insulating mica washer.
As D4 can get rather warm on full load it should be mounted with its body away from the board.

Various views showing p.s.u. prototype assembly. Four lower value reservoir capacitors were used in this

CALIBRATION

On completion, set VR1, 2, 3, 4 and 5 midway, VR6 fully clockwise and check the raw supply voltage across CI. Off load it should be 37 V . With $\mathbf{S} 2$ on, monitor the output voltage. Increase it to maximum by rotating the voltage control VR1 fully clockwise and set VR5 to give 25 V output. VR1 may now be calibrated directly in output volts.

With output voltage control VR1 set fully anti-clockwise, the minimum output voltage is about 1.75 V . Next set VR1 fully clockwise and current limit control VR6 fully anticlockwise and measure the short circuit output current. Adjust VR3 to set this to 1 or 2 mA . Now adjust VR6 clockwise until the short circuit current reaches 1.5 A . Adjust VR2 so that 1-5A short circuit current occurs with VR6 fully clockwise. As the settings of VR2 and 3 will interact somewhat, readjust them alternately so that the short circuit current with the current limit control VR6 fully anti-clockwise and clockwise is 2 mA and 1.5 A respectively. VR6 may now be calibrated directly in short circuit current.
Next connect a suitable load to draw 1.25 A at 25 V and adjust current limit control VR6 so that the output voltage just begins to fall. Adjust VR4 so that l.e.d. D6 just takes over from D7. The l.e.d.s now indicate the mode of operation, i.e. if D 7 is !it the output voltage is as indicated by the setting of voltage control VR1, whilst if D6 is lit the power supply is in current limit. The current limit control VR6 can thus be used as indication of the current drawn by the load, by noting its reading at the point where the current limit l.e.d. D6 just lights.

USE

Whilst the power supply can look after itself, with 25 V at 1.5 A available, care is needed to avoid damage to low power circuits being run from the supply. Always connect up with $\mathbf{S} 2$ switched off and check the voltage and current limit settings before switching the output on. Set the current limit at about 50 per cent more than the current you expect the circuit to take and you will then seldom damage it even if it has been assembled wrongly.

Note that the current limit control has been calibrated in terms of the short circuit output current. Of course, when the output is short circuited, R21 draws no current, but at 25 V output it will draw about 11 mA . Consequently, if the current limit is set to less than 11 mA , even though the voltage control VR1 is set to maximum, the output voltage will be less than 25 V . At high current limit settings, the 11 mA difference between current at the onset of limiting at 25 V and the current at short circuit is of course barely perceptible.

WITH the circuit details of CHAMP-PROG behind us, this month we can move on to consider the construction of the main board, power supply and plinth, and to an examination of the PROMPT firmware program. Anyone who has already built CHAMP itself should have no problems with CHAMP-PROG, because the techniques required will have already become familiar.

CIRCUIT BOARD

Most of the CHAMP-PROG circuitry is mounted on a piece of Veroboard measuring 165 mm by 225 mm , and this has to be cut from a larger sheet, of the same type as was used for the CHAMP main board. When the board has been cut to size, the three unperforated copper strips which run along the two long edges should be removed by easing up each of their ends with a sharp knife and then carefully pulling them away from the board along their entire length. The removal of these strips makes for easier insertion of the board into the card guide supports, and insertion can be further eased by chamfering the four board corners with a fine file.

The required track cuts and component positions are detailed in Fig. 9.3 and it is a good idea to study the component layout at this stage so that when construction starts you will "know-your-way-around". There are three distinct circuit areas on the board, the top quarter being occupied by the regulator components, the next quarter by the timing generator and the lower half by the CHAMP interface and the data and address circuits. The layout chosen provides plenty of room in which to work and makes fault finding fairly easy.

Track cuts can be made right at the start, which makes life easier later but requires great care initially to prevent errors creeping in. Alternatively they can be incorporated as construction proceeds so that some layout flexibility is retained.

CONNECTING UP

The circuitry on the CHAMP-PROG board is a fair mixture of digital and analogue integrated circuits and discrete components, and of course high voltages will be present during operation. Needless to say, great care must be taken during wiring-up to avoid expensive mistakes. A wiring error on the prototype caused a transistor to quite literally "blow its top" when power was first
applied! One consolation though, faults on this kind of circuitry are usually easy to locate, just watch out for the smoke signals!

As with the CHAMP main board, Soldercon pins are recommended for every integrated circuit, but not for the 16 and 24 way connector socket positions where standard or low-profile sockets are best. Remember to leave the bandolier attached to the Soldercon pins until construction is complete, and be sure not to plug in the 4265 mos chips until the debugging process is over.
Using the Soldercon pins and sockets as a reference framework, wiring up is carried out using Fig. 8.2. Kynar wire is highly recommended for the interconnection of all logic circuitry address and data drivers, although sturdier single core PVC covered wire is better for the $+5 \mathrm{~V},-10 \mathrm{~V}$ and +80 V interconnections because of its higher current rating and higher voltage insulation.

TESTING

The complex timing generator and voltage regulator circuitry lends itself well to being tested in isolation without benefit of PROMPT software or 4265 interface chip. Before testing can take place, +5 V and -10 V supplies must be connected, and the 80 V supply will have to be built using the circuit of Fig. 9.1 and the layout shown in Fig. 9.2.

To start the testing procedure, first connect pin 1 of ICl to OV temporarily to enable the timing generator to free-run (this can be achieved by grounding pin 11 of the vacant IC8 socket if desired). Next apply the +5 V and -10 V power, but not the +80 V supply and examine the timing generator waveforms at the Q and $\overline{\mathrm{Q}}$ outputs of the 74123 using an oscilloscope set to measure pulse amplitudes of a few volts and pulse durations of a few milliseconds.

At ICl pin 13 you should be able to see narrow pulses with a 15 ms separation. If the pulses you see are separated by much more or less than this, the value of fixed resistor R3 should be changed to compensate. A timing accuracy of ± 10 per cent should be the target.

On IC2 pin 13 a series of 3.25 ms wide pulses should be obtained, and of course the width of these pulses can be accurately set using VR1. On IC3 pin 12 the pulses should be set to a width of 3.0 ms using VR2, and on IC2 pin 12 pulses about $60 \mu \mathrm{~s}$ wide should be observed. Finally on IC3 pin 13, pulses of about $155 \mu \mathrm{~s}$ width should be visible.

REGULATOR OUTPUTS

If the monostable circuits are operating correctly and VR1 and VR2 have been properly adjusted, the next step is to set VR3 to its mid-travel position (Remember that all three adjustment pots are of the 10 turn variety) and connect up the +80 V supply. Providing that the
fuse does not blow (and that no wisps of smoke are observed!), the next step is to examine the 7405 outputs, IC4 pins $2,4,8$, and 10 and compare these with Fig. 8.5 published last month.

If these drive pulse outputs are correct switch the 'scope probe to the junction of D7 and D8 in the regulator area and decrease the 'scope sensitivity to show pulses of about 50 V . The waveform at this point should consist of a steady +4.5 V level with pulses 3.25 ms wide superimposed every 15.0 ms . The amplitude of these pulses can be set by means of VR3, and this should be adjusted to give a peak of +47 V . (Note that the +47 V should be measured with respect to 0 V and not with respect to +4.5 V .)

At this point you can relax a little, because the worst is over! All that remains is to check the remaining Cs, Vbb, Vgg, Prgm and Vdd outputs and to ensure that they all conform to the timing and amplitudes specified in Fig. 8.5 last month. The Prgm pulse must have the characteristic "two-eared" shape and you will find that final trimming of this pulse can be achieved using VR1 and VR2. The high voltage programming waveforms can all be found on the board-mounted 24 pin socket as well as on the regulator transistors themselves of course.

CASE CONSTRUCTION

The CHAMP-PROG case, or plinth, is made of plywood and aluminium and is relatively easy to construct using the techniques described in part four for the CHAMP case. The plywood framework should be pinned and glued together, and mated carefully with the aluminium top cover and the separate aluminium back

Fig. 9.1. Circuit diagram of 80 V supply

Fig. 9.2. Component layout of 80 V Supply
panel. When the overall fit is satisfactory all necessary holes can be drilled in accordance with Fig. 9.4 and the board runners made up and pop riveted or bolted in place on the cover.

It is of course essential at this stage to ensure that the board runners are positioned so as to provide a satisfactory sliding fit on the CHAMP-PROG circuit board. A great deal of care was taken to ensure that the CHAMP-PROG prototype finish matched that of CHAMP itself, and again the process of applying several coats of primer, sanding it smooth and finishing off with a couple of colour coats, was followed. After allowing the paint to harden for a couple of days Letraset lettering was applied along with outlines drawn with a spirit based pen. Finally a coat or two of polyurethane clear varnish was applied to bring out a high gloss and to protect the lettering.

ZERO INSERTION FORCE SOCKET

With the plinth hardware completed, overall assembly can begin with items such as the ON/OFF rocker switch and the zero insertion force socket mounted on the front panel section of the cover.

If an economy CHAMP-PROG is required, the zero insertion force socket could be left out, and Proms programmed directly in the 24 -pin socket on the board, but levering expensive proms in and out of this type of socket is less than satisfactory, and the sheer convenience of the lever action type is well worth the few pounds it costs. If used, the front panel socket can be mounted either by adhesive, or more securely by first removing the two small Phillips screws from the socket, and ivith the socket lever in the upright position removing the face of the socket so that two holes can be drilled at the top and bottom of the socket. These should clear the two Phillips screw holes to take two 8BA countersunk screws. Using the socket as a template, two 8BA clear holes can be drilled in the plinth cover so that the socket can be mounted securely and its faceplate replaced.

EIGHTY VOLT SUPPLY

The programming voltages are derived from a simple power supply which consists of a transformer with a $25-0-25 \mathrm{~V} 2 \mathrm{~A}$ secondary, a 200 V 2 A bridge rectifier, and a $3,300 \mu \mathrm{~F}, \quad 100 \mathrm{~V}$ electrolytic capacitor. These bulky components are mounted inside the plinth using the separate aluminium back panel as a support and as a heat sink for the transformer and the rectifier. Mains input is via a three pin connector and, of course, the rocker switch on the front panel. The 80 volt output is routed to two wander sockets on the back panel, and the CHAMP-PROG board connects to these via a couple of flying leads.

The 80 V generated by this circuit is of course sufficient to give the unwary quite a tingle, and caution is advisable when making the back panel connections! A fully insulated connector could of course be used instead of the Wander plugs and sockets if required. Since the 80 V is also present on the CHAMP-PROG circuit board some protection against prying fingers has been provided by mounting a tailored sheet of perspex over the parts of the board where danger exists. Five 4BA plastic mounting pillars were cut to size and cemented to the Veroboard using cyanoacrylate adhesive. The perspex safety cover is screwed to these pillars when construction is complete.

Fig. 9.3. CHAMP-PROG component layout. For interconnections see Fig. 8.2.

Row	Positions
4	$X, Y, Z, A A, A B, A C, B K$
$5{ }^{\text {' }}$	$A T, A V, A X$
9	$X, Y, Z, A A, A B, A C$
11	$A S, A T, A U, A V, A W, A X$
12	BA
13	$A F, A H, A L, B P$
16	AR-AY
17	$W, X, Y, Z, A A, A B, A C, A F$
20	BL
21	AF, AH, AL
22	AN, AR-AY, BA
24	$B K, B L, B M, B P$
25	AF, AH, AL
26	$D-Z, A A, A B, A C$
27	AR-AY
28	AN, BN
29	AF, AH, AL, BJ, BK
30	BL
31	AR-AY, BA
33	$A F, A H, A L, B A, B P$
35	W-Z, AA, AB, AC, BE, BF, BH, BJ
37	$A F, A H, A L, A R-A Y, B A$
39	BM
42	AR-AY
43	$D-U, W-Z, A A, A B, A C, B A, B E-B N$
44	AF-AK
47	$B L, B M$
48	$A F-A K, A N, A R-A Y$
50	$W-Z, A A, A B, A C$
51	BE-BJ, BM
52	$A F-A K, A N$
56	$A F-A K, A N, B E, B H-B N$
57	AR-AY
, 60	$A F-A K, A N, A T, B C, B D$
61	$D-U, W-Z, A A, A B, A C$
63	AS, BJ
64	AF-AK, AN, AT
65	BN
66	AS, BA
68	$A F-A K, A N, A T, B D$
70	AS, BE, BF
72	$\begin{aligned} & \text { W-Z, AA, AB, AC, AF, AH, AJ, AK, AN, } \\ & \text { AT, BD } \end{aligned}$
74	BN
75	AN-AZ
76	BF, BK
79	BC, BD, BF
81	BN
82	$A M-A Z$
84	$X, A A$
	of track cut positions on CHAMP. PROG Veroboard

TWENTY-FOUR WAY CONNECTOR

The zero insertion force socket on the front panel is connected via a flying lead to the socket on the circuit board, and in addition to the 24 wires required for the PROM three others are needed for the "PROM POWER" switch and l.e.d. On the prototype a 27 -way wiring loom was made up with the three extra wires being terminated at the board end with individual sleeved Soldercon sockets which provided a very convenient means of connection to terminal pins soldered to the Veroboard (Fig. 9.5).

The 24 -pin plug required was actually made using a "header plug with top" which is available from Doram. Fine flexible wire was used for the interconnection, and this was soldered to the plug pins and brought out through a hole cut in the right hand side of the header plug top. When fully wired the header plug pins were potted in quick-set Araldite and the top clamped in position until the epoxy hardened. This method of construction has provided a satisfactory and trouble free plug which is a less expensive but more time consuming alternative to the flat-strip cable connectors used on CHAMP itself.

PROMPT FIRMWARE

When construction is complete, and the timing circuits and voltage regulator outputs have been set up correctly, you are ready to plug in the 4265 chips and run the PROMPT firmware program using the control sequence detailed last month. The 4702A containing PROMPT must be in the Chip One socket on the CHAMP main board, and arrangements have been made to enable CHAMP-PROG constructors to get their own devices programmed with PROMPT by using the CHAMP PROM programming service. Of course, once CHAMPPROG is operating with PROMPT, CHAMP programmers will be totally independent and will never again have to rely on outsiders for programming facilities. The full listing of PROMPT is given in Fig. 9.7 and as you can see there is no wasted space in the 256 line Prom. All users of CHAMP will find it useful to study the operation of the PROMPT software, and to make this easier to follow, some words of explanation might be helpful.

DESIGN AIMS

A prime objective of the software design was that it should make CHAMP-PROG simple to use and preferably self explanatory. To this end the program has been made "interactive" with the programmer. PROMPT issues a prompting message via the keyboard display and waits for a response from the programmer, this process is repeated three times for address entry. At the termination of a programming run, CHAMP-PROG will issue the message "done" or "fail".

For address entry the CHOMP keyboard interrupt routine is "borrowed", and for the display of messages and keyboard entries the CHOMP DDRV subroutine is used. Here is a good example of why it pays to make software routines as general-purpose as possible from the outset, and to code them as subroutines callable from anywhere in program memory! The DDRV subroutine is segment, rather than BCD based and so it is quite capable of refreshing a display of alphanumeric characters when required. The generation of text messages is of course a new facility, and PROMPT includes a new subroutine, TEXT, to handle this job.

MAIN FLOWCHART

Referring to Fig. 9.6 PROMPT is entered at the top via a JUN instruction, from CHOMP. Since CHOMP itself was unaware of the presence of CHAMP-PROG during CHAMP initialisation, the first job here is to set the modes of the two new 4265 chips via WMP instructions (box 1). Next, (box 2) the prompt message "Adr 1 " is loaded into the display ram buffer register by the subroutine TEXT, and then an interruptible display loop is entered to await keyboard response (boxes 3 and 4). The continuous looping automatically refreshes the display via DDRV, while accepting up to three hexadecimal digits via the INTER routine.

An exit from the loop is made via box 4 by pressing

the enter data button. At this time, a three digit hexadecimal address should be resident in 4040 registers C, D and E, and of course visible on the left of the display. The next job is to store Adr 1 away in its appointed storage locations (box 5) and to change the display message to Adr 2 (box 6). In this case it is not necessary to change the message radically, and so rather than employ TEXT once more, the display buffer is modified directly to save program lines. Boxes 7 and 8 are of course identical to boxes 3 and 4 also boxes 11 and 12 further down, and this makes them ideal subroutine candidates. (In fact a subroutine ENTERL does contain this pair of boxes, but for the purposes of our flow chart these activities have been included individually, to clarify program action.)

Fig. 9.4. Physical dimensions of CHAMP-PROG chassis

Fig. 9.5. Cable loom arrangement for z.i.f. socket

With three new hexadecimal digits entered, ENTER data is pressed once more and the Adr 2 data stored away in Ram register 2 where it will later be needed for comparison with Adr 1 (box 9). The display is now modified to show Adr 3, and the interruptible display loop again used for address entry. Adr 3 data is left in the 4040 registers C, D and E, and so box 13 does not so much represent an action but rather it is a reminder that no action takes place in this case.

Next the keyboard display is blanked by writing OOH to ports X and Y of the CHAMP 4265 so that in the absence of a refresh loop, a single display digit does not remain on continuously.

Box 15 represents a largish subroutine called WUNBYTE which has the job of programming a single PROM location each time it is called. This subroutine reads data from the appointed area in program RAM, sends it out together with Adr 3 to the CHAM-PROG 4265 chips, initiates a program cycle via 4265 number 1 port $\mathrm{Z3}$, and waits during a software delay of about 540 milliseconds before reading the results of its programming and storing them away in RaM register 2 before returning to the main program.

In box 16 a subroutine called MATCH is used to compare a copy of the PROM input data stored in ram with the output data read by WUNBYTE after its cycle. MATCH returns a flag which is tested in box 17 , where a conditional jump (JCN) either aborts operations if the output is bad, or passes on to an address compare operation using MATCH (box 18) if the output is good.

Address comparison is needed to check whether all necessary locations have been programmed. In this case
further programming is suspended if a good comparison results. If on the other hand Adr 1 and Adr 2 are not yet the same, then Adr 1 and Adr 3 are incremented to point to the next source address and the next destination (PROM) address respectively, before a JUN loop to the label MORE is carried out (boxes 20 and 21).

Boxes 22 and 23 load the base addresses of text messages stored in PROM before jumping to a routine which loads the message into the display using TEXT

PROMPT

paise	ITE	POM	CODINE	Larse	OFRration	OPERAM	Sumixas
1	0	D9		PROMPT	LDM	9	LOAD DCLRSEC CODF
	-	FD			DCL		SELFCT RAM BANKI
		B8			XCH	8	$\mathrm{q}_{\mathrm{H}} \rightarrow \mathrm{R}_{8}$
		29			SRC	9	SEWECT 4265 CHIP
	4	D4			LDH	4	
	5	E1			WMP		SET TO MODE 4
		DF			LDM	F	BIT SET PORT 23
		EO			WRM		
	8	D2			LDM	2	
	\%	FD			DCL		SERET RAM BANK 2
	\wedge	29			SRC	9	SELECT 4265 CHIP
	B	D6			LDM	6	
	c	El			WMP		SET TO MODE 6
		DO			LDM	0	
	\pm	FD			DCL		SELECT RAM BANK 0
	$\stackrel{\square}{\text { P }}$	OB			SB 1		SKLFCT PEG. BANK 1
1	1.	20			FIM	0	StT UP ADDRESS
		F4			F	4	of Mbsace "Adrl"
		51			JMS		LOAD MESAEE INTO
		E1			TEX	T	DISPIAY
		51			JMS		Loop For Adrl Teriont
		CO			ENT	RL	Entry 2 'ence OATA'
	-	AD			LD	D	Get Adrl Lenst Sif
		83			XCH	3	Put in R_{3}
	\%	AC			LD	c	GETAdrl MID
	-	82			XCH	2	Putin R2
	\wedge	$A E$			LD	E	Cet Adri most sis
	B	B4			KCH	4	Purin R_{4}
	-	51			JHS		COFY LERST SIG\& HID
	D	Do			LAD	R1	OF AdF 1 TO RAM
	g	20			FIM	0	CODE FOR TEKT
	F	68			6	B	OF "2"
1	2.	51			JMS		CHANGE DISAAT TO
	1	B6				10	"Adr 2"
	a	51			JMS		LOOP For Adr 2 KEYPOARD
	3	CO			ENT	RL	ENTRT ${ }^{\prime \prime}$ ENTER DATA"
	4	28			FIM	8	SET UP Ad-2 RAM
	5	22			2	2	ADPress
	6	29			SRC	9	
		AD			LD	D	LEASTSIE AdF-2 TO RAM
	8	EO			WRM		
	9	69			INC	9	
	1	29			SRC	9	
	B	AC			LD	c	Mid Adr2 To RAM
	c	EO			WRM		
		20			FIM	0	GET CODE FOR TEX
	8	E9			E	9	of "3"
	$\stackrel{5}{5}$	51			TMS		CMANGE DISPLAT TO
1	3	B6			AD	0	"Adr3" ${ }^{\text {a }}$
	1	51			JMS		LOOP FOR Mdr 3 KETDOARD
	2	co			ENT	RL	Entries lenter dafa
		28			FIM	8	
	4	80			8	0	
	5	29			SRC	9	SELELT CHAMP 4265
	。	Fo			CLB		
		ES			WRI		2 BLANK
	8	E6			WR?		\int Displat
1	3.	51		More	JMS		Pbogram one priom
	1	54			WUNB	TE	Location
	B	20			FIM	0	SET UP ADORES OF
	c	10			-	0	IN' DAMA For match
	D	22			FIM	2	SET UP ADPress of
	8	20			2	0	BUT' DATA FORMATSH.
	r	51			JMS		

Pace	12x	ROL	Sontw	LLAEEL	Opzeatios	OPERME	mavase
1	4	A6			MATEH		
	?	20			FIM	0	SET UPGASE ADPEESS
	:	F8			F	8	OF TOT MBSAGE"FAIL"
	1	1 C			JNZ		STOP \& PASAAY "EAIL"
	4	DA			FINIS		IF AS NOT zero.
	\pm	20			FIM	\bigcirc	SET UP ADORESS OF Adrl
	:	12			I	2	For match.
		22			Fim	2	SET UP ADDRESS OF Adr 2
	B	22			2	2	FOR MATCH.
	?	51			JMS		compare current Adti
	\wedge	A6			MATCH		with Adr 2
\cdots	B	20			Fim	0	SFT UP BASE ADREESS
	\bigcirc	Fc			F	c	OF TEXTHEXKFE" "done"
		14			Ј		STCPR DISRAAY
	E	DA			Fin	is	"done"
	F	0a			SB6		SAET RESEBNK O
1	5	73			152	3	
	1	53			PAST		Cinkreliment Adri
		62			INC	2	$\}$)
1	5.	51		PAST	JMS		NEW Adrl TO RAM
	4	Do			LADR1		
		70			152	D	
	¢	39			MORE		Increment Adr 3
	,	$6 c$			INC	c	
	?	41			JUN		LOOP BACK FOR NEXT BME
	5	39			MORE		END OF MAIN PROG.
1	5.	28		WUNETE.	FIM	8	SUBPONTE PROCO 1 BYTE
	B	00			0	\bigcirc	
	c	29			SRC	9	SELEET PROCRAM Meart
	2	A4			LD	4	SOURCE CHIP
	3	E1			WHP		
	9	23			SRC	3	SEAD OUT AdI I
1	6.	OE			RPM		READ EIRST NIBRLE.
	\pm	F4			CMA		Combement IT.
	$\stackrel{1}{2}$	B1			\times CH	1	Putitin Ri
	3	OE			RPM		READ SECOND NIEBLE.
	7	F4			CMA		COMPEMENT IT
	5	BO			XCH	0	PUT IT IN RO
	$\dot{\square}$	28			FiH	8	PU ITIN RO.
	1	10			1	\bigcirc	
	8	29			SRC	9	Put in data in
	3	A 1			LD	1	(RAM FOR USE
	\wedge	EO			WRM		NITH MATCH
	B	69			INC	9	later.
	${ }^{\circ}$	29			SRC	9	
		AO			LD	0	
	\&	EO			WRM)
	$\stackrel{\square}{8}$	D2			LDM	2	
1	7	FD			DCL		SFLECT RAM BANKZ
	1	28			FIM	8	
	2	80			8	0	SERRT 4265 No 2
	3	29			SRC	9	
	4	A1			LD	1	
		E6			WR	2	- IN data to Ports
	。	AO			LD	0	$Y \& \geq$.
		E7			WR	3	
	3	D1			LDM	1	
		FD			DCL		LOAD Adr 3 TO POETS
	$\stackrel{ }{ }$	AD			LD	D	Wex 4265 NO 1
	3	E4			WR O		$\}$
	:	Ac			LD	c	
	D	E5			WR I		
	8	DE			LDM	E	TURN ON PROSRAM
	F	EO			WRM		Pulses.

Fig. 9.7. PROMPT program listing

MK14-the only low-cost keyboard -addressable microcomputer

 The new Science of Cambridge MK14 Microcomputer kit
The MK14 National Semiconductor Scamp based Microcomputer Kit gives you the power and performance of a

 professional keyboard-addressable unit - for less than half the normal price. It has a specification that makes it perfect for the engineer who needs to keep up to date with digital systems, or for use in school science departments. It's ideal for hobbyists and amateur electronics enthusiasts, too.But the MK14 isn't just a training aid. It's been designed for practical performance, so you can use it as a working component of, even the heart of, larger electronic systems and equipment.

MK14 Specification

* Hexadecimal keyboard
* 8 -digit, 7 -segment LED display
* 512×8 Prom, containing monitor programand interface instructions
* 256 bytes of RAM
* 4 MHzcrystal
* 5V stabiliser
* Single 6V power supply
* Space available for extra 256 byte RAM and 16 port 1/0
* Edge connector access to all data lines and 1/0 ports

Free Manual

Every MK14 Microcomputer kit includes a free Training Manual..It contains

operational instructions and examples for training applications, and numerous programsincluding mathroutines (square root, etc) digital alarm clock, single-step, music box, mastermind and moon landing games, self-replication, general purpose sequencing, etc.

Designed for fast, easy assembly Each 31-piece kit includes everything you need to make a full-scale working -microprocessor, from 14 chips, a 4-part keyboard, display interface components, to PCB, switch and fixings. Further software packages, including serial interface to TTY and cassette, are available, and are regularly supplemented.

The MK14 can be assembled by anyone with a fine-tip soldering iron and a few hours' spare time, using the illustrated step-by-step instructions provided.

Tomorrow's technology - today! "It is not unreasonable to assume that within the next five years ... there will be hardly any companies engaged in electronics that are not using microprocessors in one area or another."

Phil Pittman, Wireless World, Nov. 1977.

The low-cost computing power of the microprocessor is already being used to replace other forms of digital, analogue, electro-mechanical, even purely mechanical forms of control systems.

The Science of Cambridge MK14 Stan/\&ard Microcomputer Kit allows youtolearn more about this exciting and rapidly advaincing area of technology. It allows you to use your own microcomputer in practical applications of your own design. And it allows you to do it at a fraction of the price you'd have to pay elsewhere.

Getting your MK14 Kit is easy. Just fill in the coupon below, and post it to us today, with a cheque or PO made payable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantee. If for any reason, you're not completely satisfied with your MK14, return it to us within 14 days for a full cash refund.

Science of Cambridge Ltd,
6 Kings Parade,
Cambridge,
Cambs., CB2 1SN.
Telephone: Cambridge (0223) 311488

VAT INCILSIVE PRHCRS

Postage and Packing 25p
tems followed by a * Include V.A.T. @ 8% ail others include 12.5% ALWAYS PLEASED TO SEE PERSONAL CALLERS TRADE AND EXPORT CUSTOMERS MOST WELCOME Overseas Customers deduct $2 / 27$ from items marked with a * $1 / 9$ from others

BEFORE YOU BUY AN AMPLIFIER MODULE-CHECK: DOES IT HAVE * 30A power transistors * 2 -year guarantee De $\quad \star 3$ A drivers (100W unit)
 * Integral output capacitor

Then compare with the Tamba range-excellent value-25, 50 and 100 W R.M.S

TAM 1000.100 W 4 ohms 65 V	¢9.80
TAM500 50W 4 ohms 45V	£7.50
TAM250 25 W 8 ohms 45V	¢5-75
POWER SUPPLIES	
For 1 or 2 TAM250/500	¢7.50
For 1 or 2 TAM1000	¢9.80
(Carriage 50p on supplies)	

[^4]High grade components used throughout: Texas, Mullard, R.C.A. Plessey, etc

- Suitable for multiple input systems - High and low impedance inputs - High sensitivity
- Built-in supply smoothing
- $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
-80dB noise level
- Accepts a wide variety of inputs

Wide range bass and treble controls
Use up to 10 PRE-AMPS with 1 power supply
Printed circuit board assembly with treble and bass controls plus slider volume control
£6.50

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc)-C.O.D. (60p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at 8% to orders for 50 and 100 W systems and at $12 \frac{1}{2} \%$ for 25 W systems (including preamp if ordered at same time).

Hours, 9.30 a.m. -5 p.m. Monday - Saturday. Callers welcome. Tel. (01) 6840098

TAMBA ELECTRONICS

Bensham Manor Road Passage, Bensham Manor Road, Thornton Heath, Surrey.
(box 24) and then enters a display loop using DDRV (box 25). From the foregoing you can see that the program always terminates with one of the two messages "fail" or "done" displayed, and that return to CHOMP must be carried out by use of the reset button.

SUBROUTINE FLOWCHARTS

The flowchart of the ENTERL or "interruptible loop" subroutine is shown in Fig. 9.8, note the use of EIN and

DIN to control interrupts, and the way that the ENTER data flag is read using RDR and tested using JCN; the WRR before the BBL is used to reset the ENTER data flag. Fig. 9.9 shows the TEXT subroutine and its look-up tables. This subroutine is passed the base address of a text message table in register pair 0,1 so that the FIN command can be used to fetch the message a byte at a time.

In PROMPT only four-character messages are per-

PROMPT

Paic	Live		codina	LLABEL	Opremiton	Opreant	comesis
1	8	OB			SBI		
	1	22			FIM	2	
		19			1	9	Preset delat
	3	24			FIM	4	COUNTER.
	4	9 A			9	A	f countr
1	85	72		WAIT	is 2	2	
	-	85			WA1T		
		73			is 2	3	
	B	85			WA	T	SAOM.S. DELAY
	3	74			152	4	Soms. DELAY
	\wedge	85			WA1	I	
	8	75			152	5	
	\bigcirc	85			WA1	T	
		DF			LDH	F	TURN OFF
	E	EO			WRM		Program pulses
1	8 8	74		DELAY	152	4	
		8F			Del		DELAT BEFORE
	1	75			1sz	5	$\text { READ } 16 \mathrm{~m} . \mathrm{s} \text {. }$
		8 F			DEL	AY	
		D2			LDM	2	$)$
		FD			DCL		Saret 4265 NO 2
		29			SRC	9	
	-	EC			RDO		
		85			XCH	5	REAT Prom 'our data
	8	ED			RDI		Put in R5, R4.
	4	B4			XCH	4	
	1	DO			LDM	\bigcirc	
	B	FD			DCL		SELETRAM BANK O
	c	28			FIM	8	CMIPO REGZ 2
	.	20			2	0	
	B	29			SRC	9)
	F	AS			LD	5	
1	A	EO			WRM		
	-	69			INC	9	Putóot' data into
	\therefore	29			SRC	9	RAM.
	3	A4			LD	4	
	4	EO			WRM		\int
	,	CO			BBL	\bigcirc	END OF WUNBYTE.
1	A ${ }^{\text {e }}$	FA		MATCH	STC		SURROUTINE COMPMRES 2 PMES.
		DE			LDM	E	PRETET MIPFLF COUNTER.
	,	B5			XCH	5	
1	A.	F3		Loop 2	CmC		
	$\stackrel{1}{1}$	21			SRC	1	
	B	E9			RDM		Read first nisple.
	c	23			SRC	3	
		E 8			SBM		SuETPACT SFROND NIBPLE.
	Σ	61			INC	1	3 Increment Ram
	${ }^{5}$	63			INC	3	ADPRRSES.
1	B 0	14			丁2		
		83			SK1	P	
		Cl^{7}			BBL	1	15 AC. Noto BBLI
1	B	75		Skip	152	5	NEXT PAIP OF
	4	A9			LOOP	2	NIBELES?
	-	CO			BBL	-	If AC snce 0 B8LO.
1	B	28		ADNO	Fin	8	Suprainne noypies displat
		OE			0	E	SLERT RAMBMK O,
	8	29			SRC	9	CHIP O, CHARE.
	*	Ao			LD	0	Put first nibblein
	A	EO			WRM		CHAR E.
	B	69			INC	9	NEXT GHAR
		29			SRC	9	NEXT GAAR
	D	A1			LD	,	Put sezond NibBle
	B	EO			WRM		INCHAR F.
	F	co			BRL	0	END OF ADNO

Pais	- $\mathrm{SR}^{\text {P }}$	RCY	cosing	LAEEL	OPrRation	Oprabal	conems
1	c	0		ENTERL	EIN		SuRPOINE: KEY ENTR TCOPR
		28			FIM	8)
		40			4	0	READ SWITEH RAGS.
		29			SRC	9	
	4	EA			RDR		J
	5	F6			RAR		Rutentr anai in cy
	-	OD			DIN		DISABLE INTERUPTS.
	1	50			JMS		dispar next digit.
	8	B1			DDR	v	
	3	12			JC		IF Éenter matai not
	1	co			ENTE	21	PRESSED TIEN LDOP
	B	28			FIM	8	Now Pressed so
	c	50			5	0	clear switeh rlags.
		29			SRC	9	
	E	E2			WRR		
	F	co			BBL	0	END OF ENTERL
1	D.	28		LADRI	Fim	8	Supeoun ${ }^{\text {a }}$: AdrI TO RAM.
	1	12			1	2	SELECT RAM BANKO
	?	29			SRC	9	KHIP O RET 1, CMAR 2
	3	A3			LD	3	
	4	EO			WRM		Uinat sie to ram.
	5	69			INC	9	
	6	29			SRC	9	I NEXT CHAR
		A2			LD	2	3 NID TO RAM
	-	EO			WRM		MID TO RAM.
	-	co			$B B^{\prime}$	0	END OF LADR1
1	DA	51		Finls	JMS		SUPTMNE:END OF PROCG
	${ }^{\text {B }}$	El			TEX		lCad text to dishay
1	D 0	0 A .		LooPx	SBO		
	,	50			JMS		DISPLAY NEET PIGT
	B	B1			DDR	v	
	$\stackrel{5}{1}$	41			IUN		Loop until Rezer.
1	E				LOO		ENS OF FINIS.
1	E 1			TEXT	FIM	2	SUROUTINE: LOADS TEXT
	:				-	8	SEET RAM BANK $Q, C 0, R 0,18$
	3				LDM	c	Preat rute connt.
	${ }_{5}$				- CH	5	
1	E5			LOOP I	Fin	6	LOOK UP INTEXT TABLE.
	6				INC	1	NEKT TABLE LINE
	1				SRC	3	RAM SRC
	B				LD	7	First miprlf To RAM
	9				WRM		DISAT BUFFER.
	1				INC	3	NEETRAM CHAR
	B				SEC	3	
	c				LD	6	SECOND NIPBLE TO
					WRM		ram displal buffer.
	E				INC	3	NEXTRAM CHAR.
	${ }_{\text {F }}{ }^{\text {F }}$				152	5	
1	F				L00	1	NEXT BYTE?
	1				SBO		
	2				BBL	0	END OF TEXT
					Nof		
1	F_{4}			ADE1	E	E	teattagle: A
	5				B	c	d
	-				A	0	r
	${ }^{7}$				0	c	1
1	F:			FAIL	E	2	F
	4				E	E	A
	\wedge				6	0	1
	${ }^{\text {B }}$				7	0	L
1	Fo			DONE	B	c	d
	D				B	8	\square
	B				A	8	\square
	F				F	2	E

Fig. 9.10. MATCH subroutine
mitted to save program space, but any message of up to eight characters could be used in other applications, with appropriate table entries and a different preset for the byte counter, register 5 . The messages themselves were worked out to give the most pleasing display within the restrictions of a seven segment format.

The MATCH subroutine is shown in Fig. 9.10, and here the ploy is to subtract one byte of data from the other and check if the result is zero. The result of the comparison is flagged to the main program via alternative BBL exits, BBL 0 means match, BBL 1 means no match. The addresses of the data to be compared are passed to MATCH in register pairs 0,1 and 2,3 by the main program.

Fig. 9.9. TEXT subroutine

PROMPT FIRMWARE

Send PROM with remittance of $£ 5 \cdot 35$ to:

$$
\begin{aligned}
& \text { C.C. Consultants, Dept. P.E., } 3 \text { Gainsborough } \\
& \text { Drive, Worle, Weston-S-Mare, Avon. }
\end{aligned}
$$

Please ensure PROM is securely packaged, and state clearly whether CHOMP or PROMPT firmware is required.

There is not sufficient room to fully detail WUNBYTE, but since this subroutine is so important, readers may like to draw up their own flowchart using the listing in Fig. 9.7. Fortunately WUNBYTE is relatively straightforward and should pose few problems.

Note that source data is complemented using CMA before programming to compensate for the 74 L 00 in version. Notice also the way the registers 2, 3, 4, 5 are preset using FIM instructions to give a 16 bit counter which produces a delay of 540 milliseconds. For further details see page 2.17 of the MCS40 manual.

PROMPT LISTING

For PROMPT we have chosen to list the program code in the format introduced in Part 7 for the TONE program. This format differs from the cross assembler listing given in Part 6, and is used to demonstrate to all budding CHAMP programmers that hand-coding of long programs is perfectly feasible! No facilities other than CHAMP itself were used in the development of the PROMPT firmware.
NEXT MONTH: Using CHAMP-PROG and construction of CHAMP-U.V. (Conclusion of series).

Mini-priced breadboards for

 maxi-sized projects.Experimentor low-cost solderless breadboards áre the first in the world specially designed for $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIP's.
They clip together by an exclusive interlocking system in any configuration, (just.like dominoes), so you arrange the breadboards to suit your circuit, not vice-versa.
They are precision moulded from durable, flame-retardant plastic, and feature alphanumeric coding for easy circuit building, and non-corrosive, pre-stressed nickel-silver alloy contactsreliable for well over 10,000 insertions.

Contact resistance is a mere $0.4 \mathrm{~m} \Omega$ and interterminal capacitance is typically less than 5 pF . The Experimentor is usable to over 100 MHz .
Experimentor 600 and 650 models are ideal for RAM's ROM's and PROM's ($0.6^{\prime \prime}$ centre IC's) while the 300 and 350 models are for smaller DIP's ($0.3^{\prime \prime}$ centres) All four models, of course, also take alt standard components, the $0.1^{\prime \prime}$ grid being compatible with transistors, diodes, LED's, capacitors, resistors, pots - in fact any component with lead sizes between $0.015^{\prime \prime}$ and 0.032."

A useful quad bus strip (EXP4B) further

Model	Length"	Width"	Centre channel	5-way tie points	Bus	Price All units are 0.330^{\prime} deep
ExP300	6.0	2.1	0.3	94(470)	2(80)	£7.29 Prices include VAT (8%) and p\&p for
EXP350	3.6	2.1	0.3	- 46(230)	2(40)	£4.21 UK Orders.
EXP600	6.0	2.4	0.6	94(470)	2(80)	£7.88 Add 5\% to all orders outside UK.
ExP650	3.6	2.4	0.6	46(230)	2(40)	£4.69 All prices and specifications correct
EXP4B	6.0	1.0	N/A	N/A	4(160)	$\mathbf{£ 3 . 2 9}$ at the time of going to press.

expands the versatility of the system for the MPU user.
Experimentor breadboards can be used alone or mounted on any convenient flat surface, thanks to moulded-in mounting holes and vinyl insulation backing that prevents short circuits. Mount them from the front with 4.40 flathead screws or from the rear with 6 - 32 self tapping screws.
But however you use them, Experimentor breadboards are the quickest and easiest way to build and test circuits.
If you're working on IC's, MPU's, memories,
displays or any other circuits, buy the breadboards that are designed for you.
Ring us (01-8900782) with your Access, Barclaycard or American Express number and your order will be in the post that night.
Alternatively, send a cheque, or postal order (don't send credit cards!) and it still only takes a few days.
Otherwise ask for our complete catalogue.

GREENWELD
 443 Milibrook Road Southampton
 Tel:(0703) 772501 All prices quoted include VAT. Add from schools, atc. (Minimum Invoice deapetched on day of receipt. SAE with marge ES. Whore/ wholesale enquiries VAquiriee plano. MiNIMUM ORDER for bone-fide traders. Surplus com- ponemts always wanted.
 SEMICONDUCTORS
 Diodes; 1N4001/2 5p; 4004/5 7p; 4006 8p; 4007 9p; 1250 V 1 A .10 p ; 1250 V 1.5A, 12p; 50V 3A 10p;

$100 \mathrm{~V} 3 \mathrm{~A}, 12 \mathrm{p} ; 400 \mathrm{~V} 3 \mathrm{~A}, 15 \mathrm{p}$; 200V 10A stud, 40p; 400V 10A stud, 48p.
50 V 1 A 26 p ; 200V 1A 32p; 400V 1A 36p; 100 V 2A 48p; 400V 2A 58p: $100 \mathrm{~V} 4 \mathrm{~A} 65 \mathrm{p} ; 400 \mathrm{~V} 4 \mathrm{~A} 80 \mathrm{p}: 100 \mathrm{~V}$ 6A 74p; 400V 6A 98p.
400 mW Zeners 2 V 7 to $36 \mathrm{~V}, 10 \mathrm{p}$ each. 1.3W Zeners 3V3-200V, 20p. 10 watt zeners from 4 V 3 to 200 V 93p.
OA81 Ep; OA91, Bp; 1N4148, 4p. SCR's

 - digit driver 8 for fl LiN309 100 p .
 static shifipegister 21.50 .
(Supplied with data. If requested

KONTAKT 60
FOR INACCESSIBLE CONTACTS
-More than just a cleaner. KONTAKT 60 guarantees perfect cleaning of contacts chemically in accordlance with today technology.
KONTAKT offers the following advantages:

Dissolves oxides and sulphides the safe way without attacking contact sub stances.
Which do carefully selected solvents they do not arrack plastics whereas greases and dirt.
3. Contains no silicone
4. Contains a hight lubricant in order to . avoid the contact paths being corroded 5. Prevents further oxidation setting in 6. Prevents 'creep' currents.

Because of these outstanding properties Kantakt 60 is one of the best and mos world.

Used by major industrial companies

OTHER KONTAKT PRODUCTS ARE

70 Protective Lacquer
72 Insulating Spray.
75 Cold Spray for Fault Location.

80 Special Siliconized Polish
100 Antistatic Agent for Plastics.
101 Dehydration Fluid

Write for full details of above complete range of
Kontakt products to:

SPECIAL PRODUCTS DISTRIBUTERS LIMITED

81 Piccadilly, London, WIV OHL. 01-629 9556

CRESCENT RADIO LTD. MAIL ORDER DEPT
 1 ST. MICHAELS TERRACE, WOOD GREEN. LONDON N22 4SJ
 PHONE: 888-4474

GLOBAL CAR SPEAKERS Eagle's CG2 high-performance car speakers.
The CG2's have adjustable pedestals and are

> PC ETCHING KIT MK III Now contains 200 sa. ins. copper clad board lib. Ferric Chloride. DALO etch-resist pen
abrasive cleaner, two miniature drill bits. abrasive cleaner tho miniature
etching dish and instructions. $£ \mathbf{~} 3.90$

CALCULATOR CHIP

Type C500 by G1. 4 function + constant. 8
digit. Multiplexed output for simple keyboard digit. Multiplexed output for simple keyboard
interfacing. 24 pin DIL With comprehensive interfacing. 24 pin D
data + socket $£ 1.50$

DARLINGTON COMP PAIR BD695A and BD 696A-45V.8A 7OW
plastic powerll gain 750 @ 4 A . PNP-NPN plastic
pair $£ 1.50$

VERB OFFCUTS
Pack A. All 0.1 " Pack B, All 0.15 "
Each pack contains 7 or 8 pieces with s total Each of 100 sq in. Each pack is 81.30 . Also
 $0.1^{\prime \prime}$ Plain $\mathrm{E1} .83$

EDGE CONNECTORS

Special purchase of these 0.1^{n} pitch doublesided gold-plateded connectors enables us to
offer them at less than one-third of their offer them at less than one-third of their
original list prices. original list price
18 way $41 p ; 21$ way 90p; 49 way 114 pp; 32 way 72p; 40
intended for rear parcel shelf mounting. Supplied in pairs with connecting cable
Dimensions: $120 \times 140 \mathrm{~mm}$. Impedance: Dimensions: $120 \times 140 \mathrm{~mm}$. Impedance 4 ohms. Power Handling: 5 watts.
OUR PRICE: $£ 6.45+12 \frac{1}{2} \%$ VAT.
 headphones and iwo
speakers. A 3 position switch enables you All speaker terminations are All speaker terminations are 2 pin din type
OUR PRICE: $\mathbf{E 3 . 2 0}+12 \frac{1}{2}$ VAT.

EFFECTS PROJECTOR " 150 "
(150 watt)
work, this versatile
machine takes a
range of accessories
and is of a sturdy
metal construction. Comes complete with bulb and 6 in . Liquid Wheel. Ready to use.

A bargain at e34
3 KILOWATT PSYCHEDELIC LIGHT CONTROL UNIT (1000 Watt per channel)
Three channel: Bass, Middle, Treble. The input of this unit is connected to
the loudspeaker terminals of an ampthe loudspeaker terminals of amp-
lifier and the required lighting is lifier and the required lighting is
connected to the output terminals of connected to the output terminals of
the unit thus enabling you to produce a fascinating sound to light display.
Fut instructions supplied or S.A.E for detaits.

> ie Value at £20.00 8% V.A.T.

LOUDSPEAKER SELECTION
$2 \frac{1}{4}$ in. 8. 40, and 75 ohm at E1-10 (please state which impedance is required)
Sin. 8 ohm Ceramic at $£ 1.70$
Bin. Goodmans "Audion 8PA" 8 ohm 15W E5.26.
10 in. "ELAC"' Dual Cone 8 ohm
10 watt at $\mathbf{~ 4 . 7 5}$

TI 206 2-STATION INTERCOM Ideal for home, office or shop. Resilient
high-quality plastic housing with concealed speaker. Master station has calVtalk button and on-off/volume control, 4 transistor circuit gives clear speech. Supplied ready for table-
top or wall mounting with approx. 12 metres of connecting lead, staples and battery. Dimensions: $115 \times 78 \times 38 \mathrm{~mm}$.
OUR PRICE: $\mathbf{f 6 . 7 5}+12 \frac{1}{2} \%$ VAT.

ACCESS AND BARCLAYCARD ACCEPTED-PHONE ORDERS WELCOMED WITH ALL ENQUIRIES PLEASE
Personal callers welcome at: 21 GREEN LANES, PALMERS GREEN, N13. Phon: 8883206 and 13 SOUTH MALL, EDMONTON NS

Could Advance InstrumentsProfessional quality ata realistic price.

Alphailil Digital $0 n i v \in 89$ Multimeter
 (excluding VAT)

OS245A Oscilloscope

Fault-finding, circuit testing or servicing - an oscilloscope is indispensable. It saves time, prevents costly mistakes, and enables you to tackle bigger, better projects.

Now, Gould Advance offer you this professional-quality, dualtrace instrument, at a price which brings it within reach of the amateur enthusiast.

Just look at these great Gould Advance features - then compare the OS245A for value!
*DC-10M Hz bandwidth
*Dual trace

* Clear controls, simple operation
* Fully guaranteed for 2 years
* $5 \mathrm{mV} /$ div. sensitivity
*Time-base speeds to
$100 \mathrm{~ns} / \mathrm{div}$.
*4"CRT with 8×10 div.

Alpha III Digital Multimeter

With a choice of 25 ranges and basic accuracy of $\pm 0.2 \%$, the Alpha III is a professional's multimeter, yet it is versatile enough to cover every amateur application.

And although it is offered at such a modest price, it shares the advanced design features of the more expensive Gould Advance instruments - in particular, the purpose-built chip, incorporating all analogue and digital circuitry. $* 2,000$ scale length (100 mV resolution)
*Tough, attractive moulded case
*Bright red LED display *25 ranges
*Fully guaranteed for 2 years

Note: Thls offer applies to the U.K. and Ireland only.

SUPERSOUND 13 HI-FI MONO AMPLIFIER

(20) 8-15 onm speakers. Inpuz for ceramic or crystal cartrige.
Senstivity approx 40 mV for full output Supplied ready built and tessied with knobs. escutcheon panel, input and output plugs
Overall $\operatorname{size~} 3$ in high $\times 6$ in wide $\times 7$ in deep. AC 200.250 V PRICE $£ 15-00$ P. \& P. § 120

HARVERSONIC MODEL P.A. TWO ZERO
purpose mono solid state general for Public Address system suitable Gutar Gram. etc Feaiures 3
ndividually controtled inputs (each
input has a separate 2 stage pre-amp.). Input $1,15 \mathrm{mV}$ input 2.15 mV into 47 k (suitable for use with mic. or guitar etc.). Input $3,200 \mathrm{mV}$ into 1 meg , suitable for gram. tuner, or tape etc. Full mixing tacilities with full range bass \& treble controls Ali inputs plug into standard jack sockets on front panel Output
socket on rear of chassis for an 8 ohm or 16 ohm speaker Output in excess of 20 watts RMS Very attractively finished purpose buit cabinet made from black vinyi covered steel with a brushed anodised aluminium front escutcheon For ac mains operation 200240 volts Size approx 12zin wide . $5, n$ high *
$7_{\text {al }}$ deep Special introductory price $£ 28 \cdot 00$ - $\$ 2 \cdot 50$ carriage and packing
Mullard LP1159 RF-IF module 470 kHz £2.25
Full specitication and connection detalls supolied
Full specitication and connection details supplied
Pye VHF FM Tuner Head covering $88-108 \mathrm{MHz}$, 107 MZ if output 7 gV - earth Supplied pre-aligned. with fuli circuit dagram with precision-geared FM gang and $323 \mathrm{PF}=323 \mathrm{PF}$ A M Tuning gang only $\mathbb{£ 3 \cdot 1 5}$ - P. \& P 35p
STILL AVAILABLE
HA34 3 Valve Audio Amp. 4 iw o/p. Ready buill and tested es. 50
E1.40 P. 8 p.

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER
 200.240 V Mains operated Solid Slate FM A.M. Stereo $540-1605 \mathrm{KHZ}$ Covering MW AM AM $88-108 \mathrm{MHz}$ Built-In Ferrite rod aerial for AM and FM Stereo Beacon Lamp Indicator Bultt in Preamps with variable output contol Max op Volta 600 mV R.M S S imto 20 K Simulated Teak
 4 in high $\times 9 \frac{1}{5}$ in deep approx.
Limited number only at $£ 28 \cdot 00+£ 1 \cdot 50 \mathrm{P}$ \& P .
WNAIR \& REXINE SPEAKERS \& CABINET FABRICS app. 54 in. wide. Our price $£ 2.00$ yd. length. P. \& P. 50 p per yd. (min. 1 vd.). S.A.E. for samples.

10/14 WATT HI-FI AMPLIFIER KIT

A stylishly finished monaural amplitier with an output of 14 watts Arom 2 EL84s in push-pull Super reproduction of both music and speech, with negligible hum Separate inputs tor mike and gram allow records and announcements to follow each other
Fully shrouded section wound output transformer to match $3-15 \Omega$ speaker and 2 independent volume conirols. and separate bass and treble controls are provided giving good lift and cut Valve line-up 2 EL84s. ECC83. EF86 and EZ80 rectifier Simple instruction Dookiet 25p . S A E (Free with parts) All parts sot separately. ONLY £13.50 P. \& P. $£ 1.40$. Also available ready
built and tested $£ 1800$ P. \& P. 1.40 .
"POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
 $40 \mathrm{~Hz}-20 \mathrm{KHz}$ Can De mounted on ceilings. walls doors tables, etc, and used with or without baffle Send SAE for full details. Only $£ 8.40$ each + P. \& P. (one 90 p, two $£ 1-10$). Now available in either 8 in round version or 41×81 in rectanqular.

SPECIAL OFFER. $6 \frac{1}{2}$ in long throw. roll surround, ceramic magnet 8 ohm 10 watt speaker chassis. Specially suitable for Hi Fi

2 in PLASTIC CONE HF TWEETER 4 ohm
£ 3.50 per matched pair +50 p P. \& P.
HGH POWER HI-FI 8 ohm Dome Tweeter. 1 in voice coil. Magnet size 3 in dia. Suitable for use in up to 50 watt systems.
$\mathbf{£ 4 . 5 0}$ each 60 P P. \& P.

HARVERSONIC SUPERSOUND

 10 + 10 STEREO AMPLIFIER KIT
A really first-class Hi-Fi Stereo Amplifier Kit Uses 14 transistors

 including Siticon Transistors in the first five stages on each sensitivity. Integral pre-amp with Bass. Treble and two Volume controls. Suitable for use with Ceramic of Crystal cartriages. Very simple to modify to suit magnetic cartrioge-instructions included. Output stage for any speakers from 8 to 15 ohms. Compact design. all parts supplied including drilled metaiwork. high quality ready marked. smart brushed anodised aluminium front panel with matching knobs. wire, solder, nuts. bolts-no extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of. Briet specification, Power output 14 watts RM.S per channel into 5 ohms Frequency response $=3 \mathrm{~dB}$$12-30.000 \mathrm{~Hz}$ Sensitivity belter than 80 mV into 1 M Ω Full power bandwidth $\pm 3 \mathrm{~dB} \quad 12-15.000 \mathrm{~Hz}$ Bass boost approx to $\pm 120 \mathrm{~B}$. Treble cut approx. to -16 dB Negative teedback 18 dB over main armp. Power requirements 35 V at 1 A
Overall size 12 in wide $\times 8$ in deep $\times 2 \frac{3}{4}$ in high.
Fully detaled 7 page construction manual and parts list free with
kit or send 25 p plus large $\mathrm{A} E$ kit or send $25 p$ plus large S AE
AMPLIFIER KIT
(Magnetic input components 33p extra) POWER PACK KIT
£13.50 P. 8 P. 80p
55.50 P. \& P. 95p

CABINET \quad E5.50 P. \& P. 95 p
SPECtAL OFFER-Only E 23.75 H all 3 lt tm
ordered at one time plus E1-25 P. \& P.
Also avaslable ready built and tested $£ 31-25 \quad P \quad \& \quad P \quad \$ 150$

HARVERSONIC STEREO 44

A solid state stereo amplitier chassis. With an output of 3-4 watts per channel into 8 ohm speakers. Using the latest high technology integrated circult amplifiers with buitt in shont term thermal capacitor, fuse, tone control, volume conirols, 2 pin din speaker sockets and 5 pin din tape rec.iplay socket are mounted on the printed circuit panel Size approx 9 in $\times 2$ in \times in max. depth. Supplied brand new and tested. With knobs. brushed anodised horizontally or vertically) at only $£ 9.00+500$ P. 88 P. Mains transtormer with an output of 17 V a c at 500 m A can be supplied at $\$ 1.50-40$ p P \& P if required Full connection detals supplied

STEREO DECODER

 arth operation. Can be fitted to almost any FM VHF radio or tuner.
Stereo beacon light can be fitted it required. Full detaits and instructions (mclusive of hints and tups) supplifeg. E6.00 plus 20 p
P. \& P. Stereo beacon light if required 40p extra.

Open $9.30-5.30$ Monday to
Friday. $9.30-5$ Saturday Closed Wednesdey.
Prices and specifications correct at time of press. Subject
alteration without notuce

HARVERSON SURPLUS CO.

(Dept. P.E.) 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel.: 01-540 3985
(Please write clearly)
PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO U.K. ONLY P. P. ON OVERSEAS ORDERS

LEADER ElectronicKits

Digital Clock Kits

Available in 24 hour version (Kit No: LCK101)
or 12 hour version (Kit No: LCK201)
0.5^{n} High brightness Red LED display, Teak case with Optical grade red perspex front. Fast \& slow reset. $240 v 50 \mathrm{~Hz}$. Modular construction
Full instruction booklet. Full instruction booklet

Rec. Retail $£ 13.99$ inc. VAT/P \& P (Ex VAT $£ 12.95$

Bench Power Supply LPU102
Variable voltage power supply kit with
$5-30 V$ DC. at 1 Amp. Featuring unique
Fairchild regulator chip (as featured in E.T.I. Magazine) Fuirchild regulater $\&$ painted case/chassis, Meter, all parts. Full instruction booklet.
Rec. Retail $\mathbf{E 1 8 . 7 5}$ inc. VAT/P\&P
(Ex. VAT $£ 17.38$)

Laboratory Power Supply LPU103

 Excellent power supply design featuring exceptional regulation, Zero to 30 volt and Zero to 1 Amp vanable output with variable limiting in two ranges \& voltage System can stand meter reads both current \& voltage. System can stand up to 2 hours in full Fully punched plated panel decal, Building manual/circuits etc Rec. Retail $\mathbf{£ 2 9 . 9 9}$ inc. VAT/P\&P (Ex. VAT £27.77)Test Bench Oscillator LTO104
Sine wave test oscillator featuring: Output variable 600 Ohm output impedance. Max. 1% distortion at 1 kHz . Fully portable (uses $2 \times \mathrm{PP} 3$ batteries - extra) Rec. Retail $\mathbf{9 7 . 9 9 \text { inc. VAT/P\& P } \quad \text { (Ex. VAT f7.40) }}$

[^5] equipment of excellent appearance through our policy of providing:
Comprehensive manual of building instructions, Fully finished cases/chassis including all necessary drilling, punching, plating, painting.
And most of all - All PARTS to the last nut \& bottc. Matching instrument knobs
"LeADEA"
"LEADER" Electronic kits are distributed by Arrow Electronicas Limited, Leader House, Coptfold Road, Brentwood, Essex Tel: 0277219435 Telex 99443

$4 \frac{1}{4}$ in $\times 3 \frac{1}{4}$ in METER. $30 \mu \mathrm{~A}, \quad 50 \mu \mathrm{~A}$ or $100 \mu A, £ 5.43 .19 p$ P. \& P.

MICROPHONES FOR

 TAPE RECORDERS DM228R 200 ohm with $3: 5$ and 2.5 mm Jack Plugs $\quad \mathbf{1 . 3 0}$ DM229R 50K with 3.5 and 2.5 mm Jack Plugs£1.60 DM18D 200 ohm and 3 pin Din Plugs 51.75 Postage on above microphones 11p

CARDIOID DYNAMIC MICROPHONE

Model UD-130 Frequency response $50-15.000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50 K and 600 onms. $88 \cdot 02$. 26p P. \& P.

2 in $\times 2$ in meters $1 \mathrm{~mA}, 500 \mathrm{~mA}$, £3. 65.16 p P. \& P.
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mathrm{\mu A}$ 500 HA and 1 mA VU meter, £4.46. 11 p P. \& P.
6 V BUZZERS. 50 mm diameter 30 mm high, 52p. 15 p . P. \& P.

TRANSFORMERS Primary 240V		
6-0-6V	100mA	¢0.75
$9-0-9 \mathrm{~V}$	75 mA	¢0.75
12-0-12V	50 mA	¢0.85
12-0-12V	100 mA	£1.05
Post on above transformers $30 p$.		
9-0-9V	1 A	£1.80
12-0-12V	1A	E2. 15
15-0-15V	1A	22.36
$30-0-30 \mathrm{~V}$	1 A	£3. 10
$6 \cdot 3 \mathrm{~V}$	$1 \frac{1}{2} A$	¢1.80
6-0-6V	$1 \frac{1}{2} A$	E2. 20
Post on above transformers 45		

All above prices include V.A.T. Send 40 p for new fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate • Bolton • Lancs. BL2 1BA
A. Marshall (London) Ltd, Dept. PE. London: 40-42 Cricklewood Bdwy, NW2 3ET Tel: 01-452 0161 Telex: 21492 \& 325 Edgware Rd, W2 Tel 01-723 4242. Glasgow: 85 West Regent St, G2 20 D Tel: 041-332 4133. Bristol: 1 Straits Parade, Fishponds Rd, BS $162 L X$ Tel: 0272654201

2N696	0.39	2 N 2	0.3	2N3397	0.19	2N4062	0.20	2N5247	0.44	40410								${ }^{\text {BC5 } 5498}$					0.37				$\begin{aligned} & 0.50 \\ & 0.70 \end{aligned}$
2N697	0.31	2N2219A	0.39	2N3438	0.85	2 N 4084	1.35	2N5248	0.44	40411							${ }_{0}^{0.17}$	${ }^{\text {BC5 }}$ B49C	0.15 0.14	${ }_{802454}^{8024}$	${ }^{0.87}$	$\begin{aligned} & \text { BF183 } \\ & \text { BF184 } \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.41 \end{aligned}$	BFY5	$\begin{aligned} & 0.27 \\ & 0.27 \end{aligned}$	MJE521	${ }_{1}^{0.85}$
2N698	0.49	2N2220	0.39	2N3440	0.75	2N4074	2.65	2N5294	0.44	40594	0.87	${ }^{\text {BCl }} 4$	0.13	8 C	0.15	BC214L8	${ }_{0}^{0.181}$	${ }_{\text {BC558 }}$	0.13	B02454	0.69 0.85	8F184	0.41	BFY52	0.27	MPF3055	1.05
2N699	0.58	2N2221	0.25	2N344	0.92	2 N 4121	0.27	2 N 5295	0.44	40595	0.98		0.13		0.15	BC214LC	0.18	BC559	0.15	BD246A	0.72	BF194	0.18	8FY90	1.35	MPF102	0.3i
2N706	0.30	2N2221A	0.25	2N3442	1.45	2 N 4122	0.27	2N5298		40869	0	${ }_{\text {BC1488 }}$	0.13 0.13	BC182LA	0.15	${ }_{\text {BC2378 }}$	0.15	BCY70	0.21	BD24BC	0.93	${ }_{\text {BF1 }} 195$	0.16	8R101	0.55	MPF103	0.44
2N706A	0.30	2 N 2222	0.25	${ }^{2 N} \mathbf{N} 3638$						${ }_{\text {AC128 }}{ }^{4069}$	1.30 0.48	${ }_{8 C 1488}^{8 C 1}$	0.13	${ }_{\mathrm{BC} 183}^{\mathrm{BC}} 182 \mathrm{l}$	0.12	BC238A	0.13	ECY71	0.26	${ }_{80433}$	0.4	8F198	0.16	8RY39	0.55	MPF104	0.44
2N708	0.30	2 N 2222 A	025	2N3638A	0.17	2N4124	0.19	2N5448	0.16	${ }_{\text {AC127 }}$	0.48	BC149	0.15	BC183A	0.12	BC2388	0.13	8CY72	0.18	80434	0.46	BF197	0.18	BSX19	0.35	MPS 105	0.44
2N718	0.30	2 N 2368 A	0.27	2N3703	0.14	2N4128	0.19	2N5449	0.20	AC128	0.48	BC149C	0.15	BC1838	0.13	BC238C	0.13	BD115	0.88	80435	0.46	BF198	0.19	BSX20	0.35	MPSAOS	0.27
2N720A	0.85	2N2846	0.80	2N3704	0.14	2N4284	0.38	2N5457	0.38	AC151	0.43	BC157A	0.15	BC183C	0.13	BC2398	0.16	80131	0.55	B0436	0.46	BF199	0.19	BS $\times 21$	35	6	0.27
2N722	0.45	2N2647	1.55	2N37	0.14	2N4286	0.22	2N5458	0.35	AC152	0.54	BC158A	0.15	BC1831	0.15	BC239C	0.11	80132	0.75	BR	0.55	BF224J	0.22	8 8104	. 00		. 33
2N727	0.50	2N2903	1.60	2N3706	0.14	2N4287	0.22	2N5459	0.32	AC153	0.59	BC158B	0.15	8Cib3La	0.15		0.18	880135	0		0.4	BF2	${ }_{0}^{0.38}$	BU126	. 08		0.27
2N914	0.36	2N2904	0.31	2N3707	14	2N4288	0.22	2N5480	0.65	AC.153k		BC159A	17	BC1	15	BC2588	0.19	80137		${ }_{80530}$	0.55	BF244B	0.33		2.20	MPSA5	0.27
2N916	0.33	2N2904	31	2N3708	12	2N4289	0.22	2N5484	0.37	AC176	0.70	BC159	0.17	BC184	0.12	8С300	0.4	80138	0.41	B0535	0.70	BF 2454	0.44	8U205	2.40	A2008B	2.45
2 N 917	0.38	2N2905	0.31	2 N3709	0.12	2 N 4347	2.20	2N5485	0.40	AC187	0.54	8C161	0.38	BC184B	0.13	BC301	0.43	8D139	0.43	BD536	0.70	BF245B	0.44	BU206	2.70	R20108	2.15
2 N 918	0.45	2 N 2905 A	0.31	$2 N 37$ 2 N 3	2.20	${ }^{2} \mathrm{~N} 4$	2.65	2N5490	0.46	AC187k	0.65	${ }_{8 C 167}$	0.13	${ }^{\text {BC }} 184 \mathrm{C}$	0.13	8c302	0.37	BD140	0.43	B0537	0.74	BF257	0.35	BU208	2.70	29A	0.49
2 N 929	0.37	2N290	25	${ }_{2}^{2 N 3}$	2.20	2N4918	0.65 0.70	2N5492	${ }_{0}^{0.64}$	${ }_{\text {AC1 }} 188$	0.54	${ }_{8 C 1878}$	0.13	BC1841	0.15	8С303	0.54	80181	. 90	BD538	0.77	BF258	0.35	ME0401	0.22	TIP29C	0.65
${ }_{2}^{2 N 9294}$	0.37	2 N 2907	0.25	2N3819	36	2N4920	0.83	2N5494	0.65	AC188K	0.55	BC168A	0.13	BC184LB	0.15	BC307	0.18	B0182	2.20	80539	0.60	BF259	0.35	ME0402	0.22	TIP30A	0.54
2N930A	0.95	2N2907A	0.25	2N3820	0.39	2N4921	0.54	2N5496	0.67	AD161	1.00	BC1688	0.13	BC184LC	0.15	BC307A	0.16	${ }^{80183}$	2.35	80540	0.60	8F336	0.42	ME0404	0.17	TIP31A	
2N1711	0.30	2N2923	0.17	2N3821	0.96	2 N 4922	0.60	6027		AD162	. 00	BC168C	0.13	8C212	0.15	${ }^{\text {BC307 }} 308$	0.15	${ }_{8}^{80187}$	0.95	B0X14 8018 18	1.32	${ }_{8}^{8 F 337}$	0.49	ME0414	0.22	TIP31C	0.72
1889	0.30	2N2924	0.17		. 3	2 N 4923	${ }^{0.75}$		0.45	${ }_{\text {AF106 }}$	0.62	${ }_{\text {BC1 }}$	0.13	${ }_{\text {BC2 }}$	0.15	${ }_{8 C 3088}^{8 C 308}$	0.16	${ }^{80236}$	0.44	${ }^{80} 8$	1.10	${ }^{\text {BFFR39 }}$	0.30	ME4001	0.16	TIP32A	0.59
2N1890	0.30	2N2925	0.19	2N3901	030	2 N 4924	1.15	2N6108	0	${ }_{\text {AC107 }}$	0.16	${ }_{\text {BC1 }}$	0.22	${ }_{\text {BC2 }}$	0.18	BC309A	0.16	8D237	0.44	BDY55	1.90	BFR40	0.29	ME4002	0.16	TIP32C	0.82
2N1893	0.30	2N2926	0.17	2N3903	0.20	2 N	30	${ }^{2}$ 2N6111	0.49	BC107A	0.16	BC177A	0.22	${ }_{\text {BC212L }}$	0.18	ВС3098	0.16	BD238	0.44	BOY56	10	BFAd 1	0.30	ME4003	0.16	TIP41A	0.76
2N2102	0.50	2 N 305	0.25	2 N 3904	0.18	2N50	0	2NB121	0.41	${ }_{\text {BC107 }}$	0.16	${ }_{\text {BCLI7 }}$	0.25	BC212LB	0.18	вС309C	0.16	90239A	0.44	8F115	0.39	BFR79	0.30	ME4101	0.11	IIP41C	0.97
2N2192	0.58	2 N3055	0.72	2N3905	0.18	${ }^{2 N 5089}$	0.30	2N6122	0.44	BC108	0.16	${ }_{8} \mathrm{C} 178$	0.22	BC213	0.15	8С327	0.22	BD239C	0.59	BF180	0.33	BFA80	0.30	ME4102	0.11	TIP42A	0.86
${ }^{2} \mathrm{~N} 2193 \mathrm{~A}$	0.52	2N3390	0.50	2N4031	0.55	2N5190	0.85	2N6123	0.48	BC108A	0.16	BC178A	0.25	BC213A	0.15	BC328	0.20	BD240A	0.49	8F161	0.65	BFR81	0.30	ME4103	0.11	IP42	1.08
2N2194	0.42	2N3391	0.40	2N4032	0.65	2N5191	0.75	2N6124	0.45	BC108B	0.16	8С178B	0.35	BC2138	0.15	BC337	0.20	BD240C	0.59	8F167	0.37	BFX29	0.34	ME			59
2N2194A	0.45	2N3391A	0.45	2 N 4036	. 12	2N5192	0.80	2N6125	0.47	8C108C	0.17	8C179	0.25	BC213C	0.15	BC338	0.23		0.49	$8 \mathrm{BFI7}$	0.37	8 Bx 30	0.34		0.22	1P34	1.55
2N2195	0.40	2N3392	0.17	2N4037	0.60	2N5193	0.75	40361	0.55	8 Cl 09	0.16	BC179A	0.25	8C213	0.17	BC	. 13	${ }^{802} 2424$		8F178	0.27	8FX85	0.38	MJ2955	,	TIS42	0.50
2N2195A	0.40	2N3393	0.17	2N4058	0.22	2N5194	0.80	40382	0.55	8 8.1098	0.17	BC1798	0.25	BC2 31	0.17	BC547	0.13			F179	0.33	BY886	0.30	MJE340	0.62	TIS43	0.47
2N2217	0.55	2N3394	0.17	2N4059	0.17	2N5195	0.97	40363	1.45	${ }^{8 C 109 C}$	0.18	${ }_{8 C 1785}$	0.26	BC213LC	0.17		0.13	B0243A	0.65	BF180	0.37	8 Ex 87	0.35	MJE370	0.62	IIS90	0.22
2N2218	0.35	2N3395	0.19	2N406D	0.22	2N5245	0.37 0.38	40408 40409	0.82	BC BC14	0.32	8C182A	0.12	${ }_{\text {BC214 }}$	0.17	BC549	0.14	BD243C	0.87	8F181	0.37	BFX88	0.30	MJE371	0.86	H1591	0.27

MICROPROCESSOR SUPPORT

Data 30p

National have
60 support
60 support
devices for 8080
devices for 80
Intel have 30

 ORDER
The new CRT control chip from Thomson CSF
SFF96364. Convert your N set into an electronic teletype -16 lines $\times 64$ characters - requires RAM.
character generator and littje else for a basic teletype. Available as chip or full dispiay
control, 5 volts TTL compatible, line erase, full card includes UART.
Moodem. char, gen etc.,comp video NEW Send S.A. . Io dala.
$3 \frac{1}{2}$ DIGIT PANEL METER KIT

	026	7415		$74 \mathrm{Cl173N}$	0.90	7485N	
T4LSOIN	026	74LS	1.20	74C174N	0.90	86	
741502 N	0.26	74LS156N		74 Cl 175 N	0.90	7489 N	2.45
74 SD3N	0.26	74LS157N	N 0.60	74 C 192 N	1.11	7496	
741504 N	029	74LS158N	0.65	74 C 193 N	1.1	7491	0.85
744 SO8N	026	74LS160N		74C195N	1.04	7492 N	
$744 S 10 N$	026	74LS161N	0.85	7400 N	0.17	7493 N	
74LS12N	026	741S162N	1.43	7401 N	0.1	7494 N	0.90
741513 N	0.56	74LS163N	0.85	7402 N	0.17	74951	
$74.514 N$	143	741S164N	1.43	7403 N	0.11	7496	
744520 N	026	74LS168N		7404N	0.17	7497	1.95
74.528 N	039	741S169N	2.43	7405 N	0.22	74100	
74.527 N	0.50	74S174N	1.33	7406 N	0.56	7410	0.35
74.S28N	022	74LS175N	1.26	7407 N	0.55	7411	
74LS30N	0.26	74LS181N	3.95	7408 N	0.22	7419 N	
74.532 N	0.27	741S189N		7409 N	02	74121 N	
74.537N	0.32	74LS190N	1.00	7410 N	02	74122	
74LS38N	0.32	74LS191N	1.00	741 N	26	741	
14.540 N	0.29	74LS192N	N 1.98	7412 N	020	7412	
74.542 N	1.07	741 S 193 N	N198	7413N	36	7414	
741547 N	1.09	7415196 N		7416	0.80	7414	
741548 N	1.09	74 COON	0.24	7416 N	0.38	7414	
741549N	1.09	$74 \mathrm{CO2N}$	0.24	417 N	8	7415	
74iS51N	0.26	74 CO 2 N	0.24	7420 N	0.22	7415	
74LS54N	0.26	74 COBN	0.24	7423	0.32	74	
74LS73N	0.42	74 ClON	0.24	7425 N	0.32	74154	1.20
741574N	0.42	74 Cl 14 N	1.41	7427N	0.32	74155	0.70
744575 N	58	74 CzON	0.24	7430 N	0.22	7415 N	
741576N	0.42	74C30N	0.24	7432	0.30	74180	10
341578 N	0.42	$74 \mathrm{C3} 2 \mathrm{~N}$	0.24	743	0.3	74161AN	
74isb3AN	120	$74 C 42 \mathrm{~N}$	0.92	7438	0.32	74162AN	10
74585 N	1.10	74 CABN	. 38	7440	0.20	74163 A	1.10
741586 N	0.44	74 C 73 N	0.54	7441A	0.84	74164 N	
745900 N	1.10	74 C 74 N	0.56	7442N	0.76	7185	
744591 N	1.20	74 C 76 N	0.54	7445 N	. 40	74187 N	2.50
741592 N	0.86	${ }^{74 C 83 N}$	1.30	7446A	0.90	74174 N	00
741593 N	1.10	74C85N	1.30	7447AN	0.80	74175 N	
74LS95AN	1.10	$4 \mathrm{Ca} \times \mathrm{N}$	0.84	7448 N	0.80	74176 N	
74.596 N	1.35	$74 \mathrm{Cs9N}$	4.39	7450 N	0.22	7417]N	
7415107 N	10.42	74 CgON	1.85	7451 N	0.22	74180 N	1.00
S109N	0.42	74C93N	85	7453 N	0.22	74181 N	20
$74.5122 N$	0.80	$74 \mathrm{C95N}$	1.04	7454 N	0.22	74182 N	
4 S 123 N	0.83	74 Cl 107 N	1.22	7460N	0.22	74184 N	50
4 S 124 N	2.70	74C.150N	4.14	7470 N	0.48	74185AN	50
74LS125N	050	74C151N	2.47	7472 N	0.30	74188AN	
7415126 N	0.50	74C154N	3.68	7473 N	0.44	74189 N	2.80
74LS132N	N 0.85	74C157N	2.21	7474 N	0.32	74190 N	
74 LS136N	0.44	74 Cl 160 N	1.1	7475 N	0.0	74191N	
4 S 138 N	0.65	74 Cl 161 N	1.11	7476 N	0.45	74192N	20
74LS139N	0.65	74C162N	1.11	7480N	0.60	74193 N	20
LS145N	1.30	746183 N	1.11	7481 N	1.00	74198 N	120
741515 IN	1.07	74 C 164 N	1.04	1482N	0.90	74197 N	00
74LS153	0.59	74C185N	1.0	7483 N	5		2.00
				748	120	74199 N	2.00
TRIACS ${ }_{\text {plastic pack } 400 v \text { TO22 }}$ THYRISTORS ${ }_{\text {plastic power }}$ Branded Texas quality product							

WE STOCK MORE
TTL \& CMOS

NATIONAL	VERO
TEXAS	ANTEX
MULLARD	ELECTROLUBE
SIEMENS	SIFAM
SESCOSEM	ARROW HART
MAKES COMPONENTS BUYING EASY	

TO MAKE WAY FOR OUR EXCITING NEW RANGE OF KITS, WE ARE OFFERING OUR OBSOLETE MODELS AT TRADE PRICE!

UK 585
(Electronic Beam Switch for Oscilloscopes) $\$ 16.64 \begin{aligned} & \text { REC. PRICE } \\ & \text { INC. VAT }\end{aligned}$
SALE PRICE

UK 302
(4 Channel Radio Control Transmitter)
£14.76 REC. PRICE
INC.VAT
SALE PRICE

UK 167
Stereo Preamplifier R.I.A.A. 56.28 REC. PRICE

VHF Tuner -$120-160 \mathrm{MHz}$
\&10.78 INC.VAT SALE PRICE

 INC. VAT Li post and
We have on offer POWER SUPPLIES, AMPLIFIERS, (Stereo and Mono) ULTRA-SONIC BURGLAR ALARMS, MIXERS, TEST EQUIPMENT KITS and many others. Send SAE for list, and our NEW RANGE catalogue.

NEW RANGE OF KITS

RHYTHM GENERATORS-6 channel STEREO MIXERS, AMPLIFIERS, STEREO TUNERS, V.H.F. RECEIVERS \& TEST EQUIPMENT.

AMTRON (UK) LTD.
7, HUGHENDEN ROAD, HASTINGS, SUSSEX, TN34 3TG
Telephone: (0424) 436004

ELEGTROCLILIE

Alf the many types of components we supply are BRAND NEW and guaranteed and only from manufacturers direct or approved suppliers. No surplus, no seconds

CMOS - buffered and protected

4000	23p	4013	51p	4023	23.	4043	1.00	4081	23p
4001	23p	4014	1.07	4024	1.04	4044	94p	4082	28 p
4002	23p	4015	1.14	4025	23p	4046	1.40	4510	1.42
4006	1.14	4016	51p	4026	1.75	4049	$54 p$	4511	1.50
4007	23p	4017	1.14	4027	60p	4050	53p	4516	1.44
4008	99p	4018	1.32	4028	96p	4060	1.40	4518	1.26
4009	62 p	4019	62p	4029	1.23	4069	30p	4520	1.26
4010	62p	4020	1.32	4030	51p	4070	50p		
4011	23p	4021	1.14	4041	840	4071	28p		
4012	23\%	4022	1.13	4042	96.	4072	26p		

OUR COMPUTER TAKES GOOD CARE OF YOUR ORDERS

SIEMENS CAPACITORS*

 World famous for quality and dependability PCB TYPES -7.5 mm PCM 0.001 to 0.01 5p each: 0.012 to $0.0686 p$ eaCERAMIC 2.5 mm PCM 0.01 4p: 0.022 0.0335 p ea: $0.047,0.0686 p$ ea: 0.17 p, $0.0335 p$ ea: $0.047,0.0686 p$ өa:0.1 $7 p$.
ELECTROLYTICs $-1 / 100,10 / 25,10 / 63$ ELECTROLYTICS - $1 / 100,10 / 25,10 / 63$,
$100 / 25$, etc. For full range see our current lists.

RESISTORS

立. $\frac{1}{2}, \frac{3}{3}$ watts" - 2p each": metal film, metal oxide and 1 watt carbon $5 p$ ea*: Magnetic field dependent from $£ 1.50$. Hall Effec from E1.23
SIEMENS TRANSISTORS Silicon npn and pnp from $8 p$ ea: LEDs, red 19 p : yellow or gieen 23 p (3 or 5 mm): Photo transistors from 76p.

KEEN PRICES * GOODSERVICE * WIDERANGES

DISCOUNTS

5% if list value of order
V.A.T. - Add 8\% to value of order or No VA.T over $£ 10$ (No V.A.T, on overseas orders)
10% if list value of order U.K. over $£ 5$ list value If unde. orders in . Discounts available where cash (P.O. or cheque) per order.

MONTHLY BARGAIN LISTS S.A.E. brings monthly list of bargains Also current quick reference price list of all
is sent with order.
Cash with order (P.O. or cheque payable to Electrovalue Ltd) or your Access or Barclaycard number.
TRADE AND INDUSTHIAL E NOUIRIES INVITE
For all round satisfaction be

ELEGTROVALUE LTD

Dept PE5, 28 St Judes Rd, Englefield Green, Egham. Surrey TW20 OHB. Phone Egham 3603: Telex 264475.
Northern Branch (Personal shoppers only) 680 Burnage Lane, Burnage. Manchester M19 1NA. Phone (061) 4324945.

TUNEIN TO THE WORLD OF

 MICROPROCESSORS

Plays.
Greensleeves
God Save the Queen
Rule Britannia'
Land of Hope and Giory
On Come All Ye Faithtul Oranges and Lemons Westminster Chimes
Sailor's Hormpipe
Beethoven's "Fate Knocking
The Marsellarse
The Mar
Mozart
Mozart

Cook House Door The Stars \& Stripes Beethover's Ode to Joy Willam lell Overture William lell Overture
Soldier's Chorus Soldier's Chorus Twinkle Twinkle Litlle Star Great Gate of Kev
Maryland
Deutschland uber Alles Bach

Colonel Bogie

-These funes play longer if the push bution is kept pressed

- Handsome purpose built ABS cabinet
- Easy to build and install
- Uses Texas Instruments TMS1000 microcomputer
- Absolutely all parts supplied including I.C. socket
- Ready drilled and legended PCB included
- Comprehensive kit manual with full circuit details
- No previous microcomputer experience necessary
- All programming permanently retained is on chip ROM
- Can be built in about 3 hours!
- Runs off 2 PP3 type batteries
- Fully Guaranteed

The Chroma-Chime is the world's first electronic musical door chime which uses a pre-programmed microcomputer chip to generate tunes. Instead of boring old buzzes, dings or dongs, the Chroma-Chime will play one of its 24 well known tunes from its memory using its tiny 'brain' to all the music synthesizing! Since everything is done by precise mathematics, it cannot play the notes out of tune.

The unit has comprehensive built-in controls so that you can not only select the 'tune of the day' but the volume, tempo and envelope decay rate to change the sound according to taste.

Not only visitors to the front door will be amazed, if you like you can connect an additional push button for a back door which plays a different tune!

This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.
The CHROMA-CHIME is exclusively designed by

GHROMATRONICS

River Way, Harlow, Essex.

*Complexe chnoma chime Kirinclucles P\&P +VAT

* A great intraduction to the fascinating world of microcamputers.
* Save an normal retail price by building yourself.

SOUNDSAVINGS ONDORAMKITS.

Low distortion audio oscillator kit KEY DATA 0.005% THD min; $10 \mathrm{~Hz}-100 \mathrm{kHz}$ ONLY £79.95 Also available ready-built

Harmonic Distortion meter kit KEY DATA range $20 \mathrm{~Hz}-40 \mathrm{kHz}$ THD down to 0.003\%
ONLY £79.95 Also available ready-built Complete the coupon and post today! Doram, PO Box TR8, Wellington Rd., Industrial Estate, Wellington Bridge Leeds LS 12 2UF West Yorkshire

Audio millivoltmeter kit
KEY DATA 1M ni/p impedence or 600n,
$15 \mathrm{~Hz}-100 \mathrm{kHz}+1 / 2 \mathrm{~dB}$
ONLY £69.95 Also available ready-built Available from 23rd March-order now.

Please send me the following. I enclose cheque/PO made payable to Doram Electronics value £

Order Code
60-610-7 PE
74-710-7 PE

60-612-1 PE
74-720-0 PE

60-614-5 PE
74-730-3 PE

LOW DISTORTION AUIDIO OSCILLATOR
Kit form : $\mathbf{£ 7 9 . 9 5}$
Ready built : £99.95

HARMONIC DSTORTIION METER

Kit form : $£ 79.95$
Ready built : £99.95
AUIDO MILLIVOLTMETER
Kitform: $\mathbf{£ 6 9 . 9 5}$
Ready built : $\$ 89.95$ All prices subject to 8% VAT

NAME
ADDRESS \qquad
\qquad

TOWN
COUINTY
Department PE , PO Box TR8, Wellington Rd., Industrial Estate Wellington Bridge, Leeds LS12 2UF, West Yorkshire

JC12. JC20 AND JC40 AMPLIFIERS A range of integrated circuit audio amplifiers supplied with free data and printed circuits.
JC12 6 watts $£ 1-95$. JC 20 10 wams $£ 2-95$. JC40 20 watts $£ 4-20$. Send sae for free data on our range of matching power and preamp kits.
ic radio chip $\mathrm{f} 1-05$. Extra parts and pcb for radio $£ 3-85$. Case $£ 1$. Send sae for free data. BATTERY ELIMINATOR BARGAINS 100 gamas $£ 3-25$. 3-way unit stabilized 7.7 V output and 4 -way multi-jack:- $3 / 4 \frac{1}{3} / 6 \mathrm{~V}$ $100 \mathrm{ma} £ 2-92$. $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ 300ma $£ 3-30$ 100 ma radio models same size as a PPg battery, with press stud connectors. $9 \mathrm{~V} £ 2-$ $8 V+6 V £ 4-50.4 \frac{3}{2} V+4+V$ f $4-50$. cassotto recorder mains unit $7 \frac{1}{3} V 100 \mathrm{ma}$ with 5 pin din plug $\mathrm{f} 2-85$. fulfy stabilized model switched output $3 / 6 / 7 \frac{1}{1 / 9 V} 400 \mathrm{~ms}$ E6 40 . car convertors 12 V dic input. output.
$300 \mathrm{ma} £ 1-50$. output $7 \frac{1}{2} V 300 \mathrm{ma} £ 1-50$.
BATTERY ELIMINATOR KITS
Send sae for free leaflet on range. 100 ma radio types with press stud connectors. $4 \frac{1}{2} \mathrm{~V}$
$\mathrm{f} 1-80$. 6 V f $1-80$. 9 V f1-80. $4 \frac{1}{2}+4 \mathrm{~V}$ £2-50. 6+6V £2-50. $9+9 \vee £ 2-50$. cessen type $7 \frac{1}{2} \mathrm{~V} 100 \mathrm{ma}$ with din plug $\mathrm{E} 1-80$. transiator stabilized 8-way types for low hum $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{6} / 9 / 12 / 15 / 18 \mathrm{~V}$. 100 ma £ $3-20$ 1 Amp I $6-40$. heavy duty 13 -way types. 1amp £4-65. 2 Amp E $7-25$. car convertor kit input 12 V dc. output $6 / 7 \frac{1}{2} / 9 \mathrm{~V} 1 \mathrm{~A}$ stabilized. stabilized power kitis $3-18 \mathrm{~V}$ 100ma £3-60. 3-30V 1A £9-95. 3-30V 2A BULK BUY OFFERS Minimum purchase f 10 any mix from this section only. AC76023N exact equiv of ZN414 84p. 4.43MHz PAL crystals 45 p . 741 , ZN4 1484 p .4 .43 MHz PAL crystols 45 p .741
8 dil 20 p . NE555 8 dil 32 p . Delo pens 53 p .
 2 N 3055827 p .1 N 4148 1.0p. 8D131 30p.
8 C 1077 p BCto9 7p. 8C212 8p. TN4 002 4.2 p .250 V polyester caps .015 mf 1.1p. resistors $1.4 \mathrm{p}, 1 \mathrm{mf} 1.5 \mathrm{p}, .33 \mathrm{mf} 2.5 \mathrm{p}$. it
 EI-PAK AUDIO MODULES
New low prices. S450 tuner £21-95. AL60 £3-99. PA100 £ 13 -95. MK 60 audio kit $£ 36$ 45. Stereo 30 £16-75. SPM80 £4-30.
BMT 80 £5-95. Send sae for free data.

SWANLEY ELECTRONICS

DEPT. PE, PO Box 68, 32 Goldsel Ad., Swanley. Kent BRB $8 T 0$
Mail order only. Please add 30 p to the total cost of order for postage. Prices include VAT. Overseas customers deduct 7% on items marked ${ }^{\circ}$ and 11% on others. Official credit orders welcome.

HAVE YOU DONE IT LATELY!

B24-RP stereo cassette glass/ferrite record/playback $\mathbf{£ 9 . 8 4}$
812-01 mono cass. playbk. £1.60 824-01 stereo cass. playbk. £2.80 A28-05 stereo 8tk cartridge $£ 1.80$ E12-09 stereo/mono cmas. erase $£ 1.80$

5/7 Church St, Crewkerne, Som. Tel. (0460) 74321

Clef Products

P.E.JOANNA

\&
'STRING ENSEMBLE'

Send S.A.E. for details of Kits \& P.C.B.s
Please indicate which instrument required.
16 Mayfield Road, Bramhall, Cheshire SK7 1JU

U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

This kit is suitable for record ptayers, tape play back. gultars. electronic instruments or small P.A systems. Two versions are
available. The mono kit uses 13 semiconductors. The stereo kit available. The mono kir uses Both kits have printed front panel and volume. bass and treble controls. Spec. 10 W output into 8 ohms, 7 W into 15 ohms. Response $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$. input $100 \mathrm{M} . \mathrm{V}$. high
imp. Size $9 \mathrm{~m} \times 3 \times 21 \mathrm{~A}$ AC mains operated. 1 mp . Size 9) $\times 3 \times 2 \mathrm{In}$ AC mains operated

Easy to build Full instructions suppliad

ELAC

 10 inch £4.50Ribbed cone. Large ceramic magnet $50-16,000 \mathrm{c} / \mathrm{s}$. Bass resonance $55 \mathrm{c} / \mathrm{s}$. 10W. 15 ohm impedance.

RCS STEREO PRE-AMP KIT. All parts to build this pre-amp. Inputs for high, medium or low imp. per channel. with volume
control and P.C. Board. Can be ganged to make multi-way mixers. £2.95 Post 35p
MAINS TRANSFORMERS ALL POSI
$250-0-250 \mathrm{~V} 70 \mathrm{~mA} .6$ 3, 2A

 220 V 45 mA . 63 V 2 A
HEATER TRANS, 63 V 3 A . 51.45 . t amp. GENERAL PUAPOSE LOW VOLTAGE Tapped outputs

AUTO TRANSFORMERS. 115 V to 230 V or 230 V to 115 V CHAGER TPANSFORMERS E8. CHARGER TRANSFORMERS Input 200/250V for 6 or 12 V FULL WAVE BRIDGE CHARGER RECTIFIERS 6 or 12V outputs 1 A $40 \mathrm{p} ; 2$ A $55 \mathrm{p} ; 4 \mathrm{~A} 95 \mathrm{p}$. HALF WAVE 12V $1 \frac{1}{2} A 25 \mathrm{p}$.

GOODMAN'S COMPACT 12in BASS WOOFER
Standard $12 i n$ diameter fixing with cut sides
10 in square 14,000 gauss magnet 30 wat $\mathrm{r} . \mathrm{ms}$. 4 ohm impedance Bass resonance 30 c.p.s Frequency response $30-8000$ c p.s.
£10.95 each. Post $£ 1.00 .20$ Watt model $£ 9.95$.

10 WATT PER CHANNEL STEREO AMPLIFIER In chassis form. A.C. mains operated. Volume, balance, treble and bass slider controls. Pick up and lape inputs. Recording output.
Front panel size: $16 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{in}$.
Bargain

HEATING ELEMENTS | सAFEE |
| :---: |
| THiN |

Size $10 ;$ * ${ }^{8}$; in Operating voltage 200,250V a c. 250W
approx Sultable for Heating Pads. Food Warmers. Convector heaters, etc Must be clamped between two sheets of metal or astestos
ONLY 40p EACH (FOUR FOR $£ 1.50$)
ALL POST PAID-Discounts for quannity
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$

SPEAKER SALE! with iwester And crossover State
10W Model $£ 7.95$
15W model $£ 10 \cdot 50$
20W model $\quad 11.50$
8 or 15 ohms Post 75p

Post 50 p

TEAK VENEER HI-FI SPEAKER CABINETS
MODEL "A" $20 \times 13 \times 12 \mathrm{in}$.
For 12 in . dia. or 10 in . speaker. lllustrated - $£ 14.50$ Post $£ 1.60$ MODEL "B" BOOKSHELF
For $13 \times 8 \mathrm{in}$. EMI
Loudspeakers.
L8.50
Post
§ 1 R.C.S. BOOKSHELF complete with speakers. Size $14 \times 9 \times 6 \mathrm{in}$. approx. Response 50 to $14,000 \mathrm{cps} 12$ watt rms 8 ohms f19 pair Post $£ 1.50$ ACOUSTIC WADDING 18 in . wide, 20 p ft.

MONO PRE-AMPLIFIER

A mains operated solid state pre-amplitier unit designed to compliment amplifiers without low level phono and tape input stages. This free standing cabinet incorporates phono input and A A B equalisation for tian on magnetic N/OFF PHONO/TAPE switches and piot lamp are on ON/OFF, PHONO/TAPE switches and pilot lamp are on the front panel; phono socket puted AC mains 240 V cated. AC mains 240 V Size $6 \times 3 \frac{1}{2} \times 2$ in.
£4.50 ea. - 2 for $£ 8$.

BAKER MAJOR 12 INCH £15

$30-44.500 \mathrm{c} / \mathrm{s}$. 12 in double cone, wooter and tweter cone together with a BAKEA ceramic magnet assembly having a flux
density of 14,000 gauss and a tota flux of 145,000 Maxwells. Bass resonance $40 \mathrm{C} / \mathrm{s}$. Rated 25 W .
NOTE 4 or 8 or 26 onms avaliable

Module kil. $30-17.000 \mathrm{c} / \mathrm{s}$ with iweeter: crossover. baftile, $19 \times 12 \mathrm{in}$,
instructions. As illustrated.
19
Please slate 4 or 0 or 16 ohms Post II 60

"BIG SOUND"' BAKER SPEAKERS

periots of constructed to stand up to long groups and discos. Useful response by leading 5 Bass Resonance $55 \mathrm{c} / \mathrm{s}$
GROUP " 25
421n 30 w
GROUP " 35 ’
12In 40 W
4. 8 or 16 hms 812

GROUP 50/12in 4 or 8 or 16 onms with
4
$£ 21$
GROUP 50/15in 15in 75W
8 or 16 ohms £26
Dieco, Group + PA Cabinets In Post EY 60 Leaflet. Cabinet Firtings, Mandies, Corners.

ROBUSTBLACK PLASTIC BOX
facia. Ideal for constructional projects
$£ 1.50$
R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER-BRITISH MADE
£1.45
deal for Mike Tape. P U. Guitar Battery 9-12V or H T line 200-300V do operation. Size $14 \times 1 \frac{1}{*} \times 1$ in $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s}$
value or transistor equipment instructions supplied

ELECTRO MAGNETIC
PENDULUM MECHANISM
95 p pon 8 xp
15 V d.c operation over 300 hours continuous on SP2 battery, fully
adjustable swing and speed ideal dispiays, teaching electro adjustable swing and speed ideal dispiays. teaching electro magneism or or meironome, sirove, olc.

BSR HI-FI AUTOCHANGE
 Plays 12 in. 10 in or 7 ln records Auto of Manual. A high quality unit backed by
 Manual Ahigh quality unit backed by BSR reliability with 12 monthe
 guarantee a c. 200/250V. Size $13+\times$

motor board $2 \frac{2}{\text { in }}$.
With STEREO/MOONO CARTRI

Single Pleyer version £15.50.
BSA P128 with Magnetic Cartridge
£12.95
All Post 75p
GARPARO MINICHANGER plays all recor $\begin{array}{r}24.50 \\ \hline\end{array}$
 BSR OE LUXE AUTOCHANGER eatures balanced arm. Cueing device, hize records. fitted with - plays ceramic cartridge. Size:
x 12 ins. Posi£1.
$\mathbf{2 1 7 . 5 0}$
magnetic cartridge
£21.50

R.C.S. DISCO DECK SINGLE RECORD PLAYER
ritted with auto stop, stereo compatible cartridge. Baseptate. Size
$11 \times \operatorname{Btin}$ Turntable Size 7 in diameter a c mains $220,250 \mathrm{~V}$ $\begin{array}{ll}3 \text { speeds plays all size records } & \text { P7. } \\ \text { Two for } £ 15 \text {. Post } 75 \mathrm{p} \text {. } & \text { Pos }\end{array}$

HEAVY METAL PLINTHS

With PVC. Cover Cul out for most B.S A or $\mathbf{8 6 . 5 0}$
Garrard decks Siver groy finish
Model. A Size $12 \mathrm{i} \times 144 \times 7 \dot{7}$.
 Extra Large Plinth and Cover. For transcription decks Size
$20 \cdot 17 \%$ an uncui board Callers only $\mathrm{E} 18 \cdot 50$.
TINTED PLASTIC COVERS ONLY
 $15 \times 13 \frac{1}{2} \times 3$ in, $£ 3.50$. $174 \times 4 \times 9 \frac{1}{2} \times 3 \frac{1}{4}$ in. £3.
$14+\times 143 \times 2$.
$14 \frac{1}{2} \times 14 \frac{2}{x} \times 2 \frac{1}{2} i n$, Rosenwood sides
ldeal for record decks, tape decks, etc. Post $75 p$.
BAKER HI-FI SPEAKERS
HIGH QUALITY-BRITISH MADE
SUPERB
12in 25 watt
Qualty loudspeaker low cone resonance ensures clear reproduction of the deepest weeter cone Full range reproduction with weeter cone
emarkable egister.
Flux Density etticrency in complete kit of parts with R.C.S. printed circuit. Three 1000W channels. Will operate from 20 mV signal source. CABINET extra £
$K I T=\{17.00$

GOODMANS CONE TWEETER

or 16 ohms mode
$25 \mathrm{c} / \mathrm{s}$
16.500 gauss

$88.000 \mathrm{c} / \mathrm{s} 25 \mathrm{~W} 8 \mathrm{ohm}$
E.M I Sin mid range 25w $\mathbf{5 4} .95$
Price £3.25
R.C.S. 100 WATT VALVE AMPLIFIER CHASSIS

Protessional model Four inputs Treble. Bass. Master Volume
 order Sultable carrying case $£ 16.50$. LOW VOLTAGE ELECTROLYTICS

AUDITORIUM
12in 35 watt
Electic Gutrars. Pi
Eleciric Gutars. public address. mulli-MI-FI and Discotheques
Bass Resonance
Useful response
AUDITORIUM
15,000 gauss
£26
15in 45 watt
BLANK ALUMINIUM CHASSIS, 18 s.w.g. 2 i in. sides, $6 \times 4 \mathrm{in} .95 \mathrm{p}$;

 $50 \mathrm{p} ; 12 \times 5 \mathrm{in}$. $50 \mathrm{p} ; 12 \times 8 \mathrm{in} .50 \mathrm{p} ; 16 \times 6 \mathrm{in}$. $75 \mathrm{p} ; 14 \times 9 \mathrm{gin}$. 80 p ; 12. 12in. 80p; $16 \times 10 \mathrm{in}$. 95p.

ALUMINIUM ANGLE BRACKET, $6 \times \times 3$. $\times 15 p$.
ALUMINIUM BOXES. MANY SIZES IN STOCK

THE . 'UNSTANT'' BULK TAPE
ERASER \& MEAD DEMAGNETISER
ERASER A HEAD DEMAGNETISER.
Suitable for cassettes, and all sizes of
Surtable for cassettes. and all sizes of

 2000 mF 6V $25 \mathrm{p} ; 25 \mathrm{p} 42 \mathrm{~m}$. 2500 mFF 50 V 82p; 3000 mF 25V 47 p ;

R.C.S. LOW VOLTAGE STABILISED

POWER PACK KITS
All parts and instructions with Zener diode.
printed circuit rectifiers and double wound \quad P2.95

voltages avalable 6 or 7.5 or 9 or $12 V$ d.c. up
Size $3 \times 2 \dagger \times 1+1 n$. Please state voltage required

WHAT'S NEW?

100 EXPERIMENTS

and creating more than 20 practical applications
You learn all about the most up to date electronic circuits: how to calculate, repair, and design them, while pursuing your favorite hobby. Start from scratch, or improve your present knowledege. Train and ear money in your spare time turn your pastime into valuable job opportunities.
Compare our price: you receive the entire course, "mini laboratory" and components for LESS than the price of the collponents alone.
COMPLETE KIT: nothing olee to buy" you get:

> - instruction manual : over 200 pages of detailed step-by step instructions -starting from scratch, explains basic laws and physics of Electricity, semiconductor principles and operation electronic circuits : from diodes (including liac, zener) transistors, triacs to integrated circuits (C.MOS, operational amplifiers) etc...
> - over 200 Electronic components : aerospace technologie printed circuit experiment board, phototransistor, triac, thyristor I.c.S Transistors (including FET, MOSFET) LEDS + resistors, capacitors, speaker, milliameter, potentiometers, variable capacitor, etc... etc... etc...
> - measuring instruments (you assemble yourself from among componenis furnished in kit.)
> ELECTRONIC VOLTMEIER, LOW FREQUENCY MEASURING AMPLIFIER,
> LOGIC INDICATORS, REGULATED POWER SUPPLY, MILIIAMMETER.

you porform:

$$
\text { - over } 100 \text { DIFFERENT EXPERIMENTS : from the most basic vol- }
$$ tage measurements to radio transmitter circuits and including HI FI, Flip Flops, Ic applications, triac use, etc...

BAVE ETO-mall ooupon today-BAVE ≤ 10 P置 ENGLAND: P.O. Box 401
Q $\begin{aligned} & \text { ENGLAND: P.O. Box } 401 \\ & \text { Kingsmead, Kings Lane, Chipperfield, } \\ & \text { Nr. King's Langley, Herts. WD4 9PB }\end{aligned}$
ploase send me

I onclose Cheque/Postal order for \qquad ${ }^{\mathrm{E}}$

NAME
ADRES

The TANK BATTLE T.V.GAME

4 Hide behind barricades and avoid being hit dodge the enemy's mines

* force your opponent into deserting the battlefield three forward and reverse tank speeds
* tank firing range is two-thirds of the battlefield * on-screen scoring * 32 rotational angles * shells travel in an authentic curved trajectory \& sound direct from the TV
*realistic battle sounds derived from a synthesiser tanks move and fire in all directions
\&black and white kit available NOW budget-priced colour add-on unit available shortly
TANK BATTLE PRINTED CIRCUIT BOARD Application and assembly notes $£ 3.90$ TANK BATTLE AY-3-8710 I.C. and application drawing $£ 10.90$ ((Normal Retail Price $£ 21.50$) TANK BATTLE BASIC KIT (Just add controls and cases) $£ 19.90$
TANK BATTLE CASES with printed facia plate and hand controls $£ 4.95$
TANK BATTLE COMPLETE KIT Including mains power unit and case - no extras needed £27.90

STUNT CYCLE

Super Stunt Cycle

Drag Race

Stunt Cycle

策 Realistic stunt-cycle sounds come directly from the TV Realistic crash effects and penalty points
Four competitive games with amateur and professional modes On-screen scoring Up to 36 buses can be jumped

* Throttle has the 'feel' of a motorbike: too much and you will skid and crash, too little and you will not get over the buses or obstacles

DEMONSTRATIONS AT OUR SHOP HAVE PROVED THIS TO BE THE MOST COMPULSIVE TV GAME EVER MADE!

STUNT CYCLE I.C. AY-3-8760-1 £11.90
STUNT CYCLE PRINTED CIRCUIT BOARD, application and assembly notes $£ 2.50$
STUNT CYCLE BASIC KIT (Just add controls and case) £19.90
ST UNT CYCLE CASE with printed facia panel £2.50
STUNT CYCLE COMPLETE KIT including mains power unit and case no extras needed $\mathbf{£ 2 5 . 5 0}$

TEN-GAME PADDLE II Ar 3.8600

X-Y axis bat movement sound direct from TV automatic ball speed-up击 small or large bats for one or both players for handicapping SPECIAL NOTICE to customers who have already purchased this game - two extra games now available - send a s.a.e. for free switching diagram
PADDLE II basic $b+w$ kit (just add controls and case) $£ 15.00$
 PADDLE If basic colour kit (just add controls and case) $£ 20.90$ JOYSTICK CONTROLS suitable for AY-3-8600 and AY-3-8550 ic's $£ 3.50$ pair (or one only for $£ 1.90$)

MAINS ADAPTOR UNIT for TV games (9 v 100 mA) $£ 3.25$

WHILE STOCKS LAST AY $\mathbf{3 - 8 5 0 0}$ i.c's $£ 3.90$

 CASES FOR PADDLE GAMES(less facia plates) £4.50 per set
Colour Converter for AY-3-8500 and AY-3-8550 games
$£ 8.50$ complete

SOUND MODULATORS £2.90 VISION MODULATORS £2.90 (or buy both for just $£ 5.50$)
suitable for TV games

BARGAIN OF THE MONTH

SIX-GAME AY-3-8500 COLOUR
Basic Kit (just add controls and case) Football, Tennis, Squash and Practice 2 Rifle games - Rifle not supplied £12.90

All prices include VAT. For orders under $£ 10$ add 20 p p\&p. Cheques and postal orders to be made payable to TELEPLAY; or telephone your order quoting your Barclaycard or Access number

EARCIATCADD

WORLD RADIO T.V. HANDBOOK

1978 edition
Price: $£ 8.00$

THE RADIO AMATEUR'S HANDBOOK 1978 by A.R.R.L.

Price: $£ 7.85$
AN INTRODUCTION TO MICROCOMPUTERS VOLUME O THE BEGINNER'S BOOK
by A. Osborne
Price: $£ 5.35$
BEGINNER'S GUIDE TO INTEGRATED CIRCUITS by I.R. Sinclair Price: $£ 3.00$ MASTER HANDBOOK OF 1001 PRACTICAL ELECTRONIC CIRCUITS
by K. W. Sessions Price: $£ 7.80$
MASTER TRANSISTOR / IC SUBSTITUTION HANDBOOK No. 970 Price: £5.60 AUDIO AMPLIFIERS FOR THE HOME CONSTRUCTOR by I. R. Sinclair Price: £2.60 TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR by A. Douglas Price: 34.90 RADIO CIRCUITS EXPLAINED
by G. J. King
Price: $£ 6.00$
LEARNING TO WORK WITH INTEGRATED CIRCUITS by A.R.R.L. Price: $£ 2.25$

- all prices include postage *

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET LONDON W2 INP

Phone 01-723 4185
Closed Saturday 1 p.m.

ETCH RESIST TRANSFER KIT SIZE 1:1
COMPLETE KIT 13 SHEETS 6 in $\times 4 \frac{1}{3}$ in $\mathbf{~} 2.50$ WITH ALL SYMBOLS FOR DIRECT APPLICATION TO P.C. BOARD. INDIVIDUAL SHEETS' $25 p$ EACH. (1) MIXED SYMBOLS (2) LINES 0.05 (3) PADS (4) FISH PLATES AND CONNECTORS (5) 4 LEAD AND 3 LEAD AND PADS (6) DILs (7) BENDS 90° AND 130° (8) 8-10-12 (6) DILs (7) BENDS 90° AND 130° (8) 8-10-12
T.O.5. CANS (9) EDGE CONNECTORS $0.15(10)$ T.O.5. CANS (9) EDGE CONNECTORS 0.15 (10)
EDGE CONNECTORS 0.1 (11) LINES $0.02(12)$ EDGE CONNECTORS O. 1 (11) LI
BENDS 0.02 (13) QUAD IN LINE.

CIRCUIT LAYOUT TRANSFERS SIZE 2:1 ONE SHEET $12 \mathrm{in} \times 9 \mathrm{in}$ GIVING ALL TRANSFERS AS IN ETCH RESIST FROM No. 3 to No. 10 inclusive makes circuit LAYOUT EASY. BLACK ONLY. PRICE £1. ALSO LINES AND BENDS PRICE $£ 1$.

FRONT AND REAR PANEL TRANSFER SIGNS
ALL STANDARD SYMBOLS AND WORDING. OVER 250 SYMBOLS. SIGNS AND WORDS. ALSO AVAILABLE IN REVERSE FOR PERSPEX eTc. ChOICE OF COLOURS RED, BLUE, BLACK OR WHITE. SIZE OF SHEET 12 in $\times 9$ in. PRICE $E 1$.
GRAPHIC TRANSFERS WITH SPACER ACCESSORIES
AVAILABLE ALSO IN REVERSE LETTERING COLOURS RED, BLUE, BLACK OR WHITE. EACH SHEET 12 in $\times 9$ in CONTAINS CAPITALS EACH SHEET 12 in $\times 9$ in CONTAINS CAPITALS, LOWER CASE AND NUMERALS. tin
KIT £1 COMPLETE. STATE SIZE REO.

ALL ORDERS DISPATCHED PROMPTLY. ALL POST AND VAT PAID.
EX. U.K. ADD 50p FOR AIR MAIL. SHOP AND TRADE ENQUIRIES WELCOME.

E. R. NICHOLLS

P.C.B. TRANSFERS. DEPT. PE

46 LOWFIELD ROAD, STOCKPORT, CHES. $061-4802179$

WATCH BATTERIES 65p.

 Ray-O-Vac long life. Most types.
D.I.Y. KIT 35p.

(With battery order)
Case opening tool, fits most watches, Tweezers, Equiv. chart, Instructions.

THE MIND READER Your electronic secretary.

It schedules your day, every day. Files and displays "things to do daily. Stopwatch or countdown with bleeper. Dual Time Zone digital clock and perpetual calendar. Pre-programmed computer. Touch tone keyboard. $10 \times 7 \frac{1}{2} \times 4^{n}$. 9 lb . AC and battery standby.
£299 Plus 8% VAT.
CASIO CHRONOGRAPH
38CS-14B
Up to 25
functions
including
1st-2nd
place times.
£49.95

RRP £64.95
Six digit $\frac{10}{60}$ second timing. 7.9 mm thick. LCD. Automatic calendar. Light. Stainless steel. Mineral glass. Water resistant to 100 ft . 12 months battery. ± 15 secs/month.
Other Casio watches from $£ 26 \cdot 95$. Special offars on S21B, 37CR-10B, MQ-1, Citizen watches. SAE or phone.

NEW LOWER PRICE

CASIO AQ 810
Pocket watch.
Calculator
Two way timer
Alarm (24hr).
3000 hr batteries.
$\frac{1}{4} \times 2 \frac{3}{5} \times 4{ }^{\frac{1}{8}}$
£16.95 including

CASIO MQ-2 (Pictured last month) Clock +2 Alarms, Alarm Timer, Time Memory Calendar and Calculator. RRP £39.95 £34.95

IB\|CO O75. LCD calculator plus clock calendar, alarm and STOPWATCH measuring lap times from $\frac{1}{10}$ second to 10 hours. Will display hours, minutes, day and date. Memory, V, \% 5000 hrs battery. Wallet. $£ 23.50$

CASIO Calculators. FX-3000 LCD £25.95. FX-120 £19.95. LCD, with 3 key memory,
$\%$:- Mini Card $£ 16.95$. LC 822 (1) $£ 10.95$. \%:- Mini Card £16.95. LC 822 () $£ 10.95$

OPTIM TRAVEL/ ALARM CLOCK

Portable. Battery powered. $\angle C D$ display

Constantly displays hours, minutes, AM, and PM Nightlight. STOPWATCH facility. 4 minute alarm with cancel switch (24 hr). Brushed aluminium/ black finish. $5 \times 1 \times 1 \frac{13}{4}$.

$£ 19.50$ including case. Ref. Ic-1.

Send 25p for our illustrated catalogue. Prices include VAT and P\&P. Send cheque, P.O. or phone your credit card no. to:-

Dept. P.E.
1921 Fitzroy Street
Cambridge CBI 1 EH Telephone (0223) 312866

NEW FROM AEW

AGW Electronics Ltd., established in high quality electronic components and industrial equipment now offer the first in a new line of test equipment for the home constructor and service engineer.

DIRECT READING CAPACITANCE METER

An easy to use portable instrument with

 linear scale requiring no manual balancing. Housed in an attractive plastic case and supplied with test leads and a PP6 battery.Accuracy - better than 5\%
C.W.O. £24.95 inc. VAT and P \& P

AGW ELECTRONICS Ltd. HAYFORD WAY, STAVELEY DERBYSHIRE

TEL. 0246-87-3086/7

OSMABET LTD $\begin{gathered}\text { We make transformers } \\ \text { amongst other things }\end{gathered}$

 CT E5.30; 6A CTE8.BE; 18V T.5ACT E5.30; 24V $1.5 A$ CT E5. 30; 3A CT ع6.85;
3A CT $£ 9.75$.
TWIN SECTFAKNSFORMERS: Prim 240V ec.
$6 V$ O. $64+6 V 0.6 A ; 9 V 0.4 A+9 V 0.4 A \cdot 12 V 0.25 A+12 V 0.25 A$.

 MiDO: 12 V 4 A . 12V TA CR.10; $25 \mathrm{~V} 2 \mathrm{~A}+25 \mathrm{~V}$ 2A E8.10.
MIDGET RECTIFIER TRANSFORMERS: 240 V ec.
$6-0.6 \mathrm{~V}$ 1.5A or $9-0.9 \mathrm{~V}$ 1A $\& 2.45$ each: $12-0.12 \mathrm{~V} 1 \mathrm{~A}$ or 20-0-20V 0.75 A £2.95 each: $9-0-9 \mathrm{~V} 0.3 \mathrm{~A}$ or $12-\mathrm{O}-12 \mathrm{~V} 0.25 \mathrm{~A}$ or $20-\mathrm{O}-20 \mathrm{~V}$ 0.15A E2.95 each.

OT TO-12-14-16.18V 2A CA.85; 4A F8.50; 0-12-15-20-24-30V

MAINS TRANSFORMERS $\$$ PECIAL OFFER: PRIM 240 V ac .
$250-0-250 \mathrm{~V}$ 60Ma 6.3 V 1A £1.50; $250 \mathrm{~V} 100 \mathrm{Ma} 6.3 \mathrm{~V} 2 \mathrm{~A} \mathrm{E2;} \mathrm{9V}$
$3 \mathrm{~A} £ 2 ; 23 \mathrm{~V} 0.5 \mathrm{~A} £ 1.25 ; 20 \mathrm{~W}$ Auto. $110 / 240 \mathrm{~V}$ £1.75.
SPEAKER AUTO MATCHING TRANS FORMERS
12 W .3 to 8 or 15 up or down; $\mathbf{£ 2 . 5 0}$.
LOUDSPEAKERS
38 or 45 mm or $2 \mathrm{tin} 8 \Omega, 2 \frac{1}{2} 8$ or 250.2 in 8 or 80Ω. 3 in 35Ω,
ci-25; 7×4 in $3,8,16,25$ of 80Ω, $£ 7.75 ; 8 \times 5 \times 5$ in 4,8 or 25Ω,

'INSTANT" BULK CASSETTE/TAPE ERASER
hstant erasure of cessettes and tape spools. any diameter, demag-
netises tape heads, $200 / 240 \mathrm{~V}$ ac $£ 5.50$
POWER SUPPLY, TWIN OUTPUT: Prim 240 V ec.
stabilised output of 15 V 100Ma. plus 12 V ac 0.5 A output. com
plete with diagram, $£ 3.00$.
CONDENSERS
Electrolytic $1000 / 50 \mathrm{~V}$ 30p; 2000/30V $30 \mathrm{p} ; 1200 / 75 \mathrm{~V}$ 50p;
$3900 / 100 \mathrm{~V}$ f1.25; Paper tubular W/E $0.47 / 600 \mathrm{~V}$ 2.2/400V $3900 / 100 \mathrm{~V}$ £1.25; Paper tubulat W/E $0.47 / 600 \mathrm{~V}, 2.2 / 400 \mathrm{~V}$.
EDGWISE LEVEL METER FSD $200 \mu \mathrm{~A}$
Size $19 \times 18 \times 20 \mathrm{~mm} 800 \Omega$, E 1.10 .
SYNCHRONOUS GEARED NOTORS, 240 V BC.
Brand new, bult in gearbox. 1. 6. 8. or 20, APP all at $£ 1.20$ each. P.P. SREC tapped $3-8-15$, A-A GK 3OW fili.50; A-A $3 K 50 W$

G.E.C MANUAL OF POWER AMPLIFIERIS-

Covers valve amplifiers 30 W to 400 W 75 p .
MULTI WAY CABLE, SCREENED PVC COVERED
 2 way 10p; 1 way $8 p$; fig 8 s
indluidually screened $20 p$ per metre.
TWIN FIG 8 CABLE
Polarised. 100 metre $£ 4.50$
MINI 3 CORE CIRCULAR CAESLE, $19 \times .10 \mathrm{~mm}$
ALL PRICES INCLUDE V.A.T
CARRIAGE EXTRA ON ALL ORDERS
Callers by appointment only
46 Kenilworth Roed, Edgware, Middx HA8 8 YG

15-240 WATTS!

HY5
Preamplifier
The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner, etc.) are catered for internally, the desired function is achieved either by a multi-way switch or direct connection to the appropiate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.
FEATURES: complete pre-amplifier in single pack. multi-function equalisation: low noise, low distortion. high overload. two simply combined for stereo.
NS: hi-fi; mixers, disco. guitar and organ: public add ress.
SPECIFICATION: Inputs-magnetic pick-ud 3 mV : ceramic pick-up 30 mV . tuner 100 mV : microphone 10 mV : auxiliary $3-100 \mathrm{mV}$: input impedance $47 \mathrm{k} \Omega$ at 1 kHz . Outputs-tape 100 mV , main output 500 mV R.M.S. Active Tone Controls-treble $\pm 12 \mathrm{~dB}$ at 10 kHz : bass $\pm 12 \mathrm{~dB}$ at 100 Hz . Distortion- 01% at 1 kHz : signalinoise ratio 68 dB . Overload- 38 dB on magnetic pick-up Supply Voltage $\pm 96-50 \mathrm{~V}$. Price $\mathbf{5 5} \cdot \mathbf{2 2}+65$ VAT. P. \& P. free
HY5 mounting board B.1. 48p +6p VAT. P. \& P. free
1 The HY30 is an exciting New kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of: I.C., heatsink. P.C. board. 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up to date technology available FEATUAES: complete kit: low distortion. short. open and thermal protection; easy to build. APPLICATIONS: updating audio equipment, guitar practice amplifier. test amplifier, audio oscillator SPECIFICATION: Output Power-15W R.M.S. into an Distortion- 0.1% at 15 W . Input Sensitivity500 mV . Frequency Response- $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
Price $55 \cdot 22+65 p$ VAT. P. \& P. free
The HY50 leads I.L.P.s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World. FEATURES: low distortion, integral heatsink, only five connections, 7 amp output transistors. no' external components.
APPLICATIONS: medium power hi-fi systems. low power disco. guitar amplifier.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power-25W A.M.S. into 8 L Load Impedance-$4-16 \Omega$. Distortion-0 04% at 25 W at 1 kHz . Signal/ Noise Ratio- 75 dB . Frequency Response- $10 \mathrm{~Hz}-$ $45 \mathrm{kHz}-30 \mathrm{~B}$. Supply Voltage $- \pm 25 \mathrm{~V}$. Size- $105 \times 50 \times 25 \mathrm{~mm}$.
Price $\mathbf{5 6} \mathbf{8 2}+85$ V VAT. P. \& P. free
The HY120 is the baby of I.L.P. s new high power range. designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design
FEATURES: very low distortion: integral heatsink, load line protection. thermal protection. five connections. no external components.
APPLICATIONS: hi-fi. high quality disco. public address. monitor amplifier. guitar and organ. SPECIFICATION: Input Sensitivity- 500 mV Output Power- -60 W R.M.S. into 8Ω. Load Impedance-$4-16 \Omega$. Distortion- 0.04% at 60 W at 1 kHz . Signal/Noise Ratıo- 90 dB Frequency Response- 10 Hz $45 \mathrm{kHz}-30 \mathrm{~B}$ Supply Voltage $- \pm 35 \mathrm{~V}$. Size $-114 \times 50 \times 85 \mathrm{~mm}$.
Price $\{15 \cdot 84+£ 1 \cdot 27$ VAT. P. \& P. free
The HY200 (now improved to give an output of 120 watts) has been designed to stand the most rugged conditions such as disco or group while stitl retaining true hi-fi performance.
FEATURES: thermal shutdown, very low distortion. losd line protection. integral healsink, no external components.
APPLICATIONS: hi-fi. disco monitor power slave. industrial. public address
SPECIFICATION: Input Sensitivity- 500 m V. Output Power-120W R.M.S. into 8Ω. Load Impedance-4-16n. Distortion- 0.05% at 100 W at 1 kHz . Signal/Noise Ratio- 96 dB Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage $- \pm 45 \mathrm{~V}$. Size $-114 \times 50 \times 85 \mathrm{~mm}$.
Price $\mathbf{5 2 3} \mathbf{3 2}+$ £1. 87 VAT. P. \& P. free
The HY400 is I.L.P.s Big Daddy of the range producing 240 W into $4 \Omega^{\prime}$ 't has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module
FEATURES: thermal shutdown, very low distortion, load line protection, no external components. APPLICATIONS: public address disco. power slave. industrial
SPECIFICATION: Output Power-240W R.M.S into 4Ω. Load Impedance-4-16 Distortion- 0.1% at 240 W at 1 kHz . Signal/ Noise Ratio-94dB. Frequency Response- $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage $- \pm 45 \mathrm{~V}$. Input Sensitivity -500 mV . Size $-114 \times 100 \times 85 \mathrm{~mm}$
Price $\mathbf{£ 3 2 \cdot 1 7 + £ 2 \cdot 7 5 \text { VAT. P. \& P. free }}$
POWER SUPPLIEs: P8U34-suitable for two HY30s $55 \cdot 22+65 \rho$ VAT. P. \& P. free. PsUS0-suitable for two HY50s $\mathbf{E f} \cdot \mathbf{8 2}+$ $85 p$ VAT. P. \& P. free. PeU70-suitable for two HY120s $\$ 13 \cdot 75+1 \cdot 10$ VAT. P. \& P. free. PSUse-suitable for one HY200 $\mathbf{\Sigma 1 2 . 6 5 + £ 1 . 0 1 ~ V A T . ~ P . ~ \& ~ P . ~ f r e e . ~ P e U 1 8 0 - s u i t a b l e ~ f o r ~ t w o ~ H Y 2 0 0 s ~ o r ~ o n e ~ H Y 4 0 0 ~} \mathbf{2} 23 \cdot 10+\varepsilon 1 \cdot 85$ VAT. P. \& P. free. I.L.P. Electronice Ltd., Croseland House, Nackington, Canterbury, Kent CT4 7AD

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd. Crossland House, Nackington, Canterbury Kent CT4 7AD

Total Purchase price
I Enclose: Cheque
Postal Orders \square
Money Order \square Please debit my Access account \square Barclaycard account \square
Account number
Name and Address

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance,
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching.orders with the minimum of delay.

RECEIVERS AND COMPONENTS

BARGAIN SUPPLIES

'A' Barrel Kits 90\% good devices, 100\% money back if not absolutely delighted. All brand new and fully marked. 99p each.
25 Linear devices $741,381,555$ etc. 257400 TTL, mostly National large mix
25 Linear \& digital devices
'B' Barrel Kits 100\% good devices. 99p each
15 TO3 NPN silicon power transistors ar_
5 TO220 plastic power similar to TIP41/A
100 400piv 500 mA silicon diodes
2 240v/12-0-12 100mA transformers p \& p this line 30p.
U2 for size Ni Cad cells brand new $\mathbf{E 2} .50$ p ea, Al prices include VAT. Please add 20p P \& P JONES SUPPLIES, 588, ASHTON RD. OLDHAM, LANCS. 061-652 7879.

VALVES - Radio. T.V., industrial, transmitting, and projector lamps many types. We dispatch to any part of the worid by return of post. Air or Sea Mail. 4000 types in stock. 1930 to 1976 obsolete types a speciality. List 30p.
Projector Lamps. Quotation S.A.E. Open to callers. Mon. to Sat. 9.30-5.00. closed Wed. 1.00. We purchase all type of new and boxed values. And projector lamps. COX RADIO (Sussex) Erd., Dept P.E., The Parade, East Wittering, Susex-RO20 8BN. West Wittering 2023. (STD code ${ }^{(1366)}$.

BRAND NEW COMPONENTS BY RETURN Electrolytic Capacitors $16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V} .0 .47,1 . \mathrm{N}_{2} 2.2 .4 .7$
$\& 10 \mathrm{mfds} .5 \mathrm{p} .22,47-5 \frac{1}{2} \mathrm{p} .(50 \mathrm{~V}-6 \mathrm{p}) .100-7 \mathrm{p}$ $8 \mathrm{p}) .220-8 \mathrm{p} .(50 \mathrm{~V}-10 \mathrm{p}) .470-11 \mathrm{p}$. (50v-18p).
$1000 / 15 \mathrm{~V}-15 \mathrm{p} .1000 / 25 \mathrm{~V}-18 \mathrm{p} .1000 / 50 \mathrm{~V}-22 \mathrm{p}$ Subminiature bead tantalum electrolytics. 0.1 . 0 . 2 . Subminiature bead tantalum olectrolytics. $0.1,0.2{ }^{2}$.
$0.47,1.0 @ 35 \mathrm{~V} .4 .7$ @ $6.3 \mathrm{~V}-8 \mathrm{o} .2 .2 / 35 \mathrm{~V}$ \& $4.7 / 25 \mathrm{~V}$.
$9 \mathrm{p} .10 / 25 \mathrm{~V}, 15 / 16 \mathrm{~V}-12 \mathrm{p} .22 / 16 \mathrm{~V}, 33 / 10 \mathrm{~V}, 47 / 6 \mathrm{~V}, 68$ \& $100 @ 3 \mathrm{~V}-14 \mathrm{p}$.
Mullard Miniature Coramic E12 Series $63 \mathrm{~V} 2 \%$. 10 pf . to
$47 \mathrm{pf} .-3 \mathrm{p} .56 \mathrm{pf}$ to $330 \mathrm{pf} .-4 \mathrm{p}$. 47 pf . 3 p . 56 pf to 330 pf . - 4 p .
Vertical Mounting Ceramic Plate Caps. 50V. E12 22 pf, 1000f. E6 1500 pf. -47000 pf. - 2p. Polystyrene E12 Series 63V. Hor. Mour
1000 p. -3 j .1200 pf . to 10000 pf. 4 p . Multard Polystyrane 250 V Vert. Mitg. Eis Series, 01 to 1 - 4 p..15. 22 - 5 p. $.33, .47-8 p . ~$
-28 p. 2.2 - 11 p. $1.0-14$ p. 1.5 Mylar (Polyester) Film 100V. Vertical Mig. .001, . 002. Miniature Film Rasitetors Highstab. E12 6\%. 0.125 watt 100 to $2 \mathrm{M} 2 \Omega$. 0.50 watt 108 to 2 MR . 110% over 1 M 0.500 watt 10Ω to 2 M . Ω.
1.000 watt 10Ω to $10 \mathrm{M} \Omega$.

1N4148-3p. 1N4002-5p. 1N4006-7p. 1N4007 $8 C 107 / 8 / 9,8 C 147 / 8 / 9$, BC157/8/9, 8F194 \& 7-
20mm. fuses. $15,25,5,1.0,2.0,3.0 \& 5 A-3 \mathrm{p}$. 20 mm . fuses. $15,25, .5,1.0,2.0,3.0 \& 5 \mathrm{~A}-$
Printed Circuit Holders for 20 mm . fuses - 5 p . Printed Circuit Holders for 20 mm . fuses-5p.
Rost $10 p$. (Free over £4.) Prices VAT inclusive. THE C.R. SUPPLY CO.
127. Chesterfield Rd.. Sheffieldis8 ORN.

SMALL ADS

The prepaid rate for classified advertisements is 18 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 6.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed '"Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertismement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanoing that the Advertise warrants that the dvertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice 2. The publishers reserve the right to refuse or withdraw any advertisement.
. Although every care is taken, the Publishers hall not be liable for clerical or printers arrors or their consequences.

COMPONENTS FOR P.E. PROJECTS. Components lists with prices available for P.E. Projects from November 1977 onwards. Send SAE stating project and November 1971 cation (Maximum four projects per SAE). Lists sent by cation (Maximum four projects per SAE). Lists sent by
return together with ACE order form/catalogue. ACE MAILTRONIX, Tootal Street, Wakefield, W. Yorks. WFI 5JR.

SOLAR CELLS

57 mm dia 255 mW 14.90
 25 mm dia 35 mW f3.80
 $4.7 \mathrm{~mm} \times 9.00 \mathrm{~mm} 2.5 \mathrm{~mW}$ $£ 0.55$
 Booklet "SOLAR CELLS" f0.75
 Data Sheets on 255 \& 35mW cells
 Prices include VAT and postage. Large SAE for lists. Mail order only. Speedy service. IC's books, capacitors, solar batteries, half price bargains and surplus PCBs resistors, semiconductors etc etc
 Edencombe Ltd.,
 34 NATHANS ROAD, N. WEMBLEY, MIDDX HAO 3RX

POCKET PAGER Miniature crystal controlled FM RX Single Superhet around 30 MHZ 450 KHZ 1 F contains various tone detectors. Ideal for modification to 27 MHZ Radio Control OR 28MHZ Amateur Band. Many complete with built in $2.5 v$ DEAC + circuit of similar type $£ 3.95$. P / P 25p. L. B. ELECTRONICS, 43 Westacott, Hayes, Middle sex UB4 8AH.

ELECTROLYTIC CAPACITORS (V/NF) 6.3V/470 Ep; 1000 13p;
2200 140: 3300 15p; $470018 \mathrm{p} ; 10 \mathrm{~V} / 10$ 47 220 ep; 470 9p; 2200 18p; 3300 18p; $16 \mathrm{~V} / 100,2208_{\mathrm{p} ;} 330,470$ 16p; 1000 20p; 25V/22. 33 ep; 100, 220 9p; 330, 470 12p; 1000 2ep; $35 \mathrm{~V} / 477 \mathrm{p} ;$ $100,220.33030 p ; 50 \mathrm{~V} / 17 \mathrm{pp}$ 22, 33 10p; 47, 100 28p; 330, 470
$49 \mathrm{p} ; 1000 \mathrm{esp}$. SWITCHES TOg
VAC 1A 30p.
MICRO SWITCH (with lever) 250 vac 1 A BOp.
 60p; 3 way $\times 470$ pig 3 way $\times 3$ 8Ep; Singla fole (SREPi 8 way $\times 6$ 130p; Assorted switchas on 1 of more wafers 400
SILVER MICA (pfi 220. 10% 8p; 3200, 3300, 82001% 19p; 17000. 22000 1\% 26p; $27000,33000,56000$ 1\% 38p. $5 K$ O $7 K O$
 50KR. 60p.
TATMMEF. CAP ACITORS 0.5 pf-5 pf, 1.5 pf-7 pf 17 p.
 $4.7 \mathrm{HF}, 22 \mu \mathrm{~F} 24 \mathrm{P}{ }^{\circ} \mathrm{B}$.

BAARIER STRIP 7 wBy (4BANSolder tag) 38p; 3 way (4BANSolder
tagi 2Ep.
EDOE CONNECTOR Oouble Sided 44 wey $0.15^{\prime \prime}$ pitch $97{ }^{1}$. CERAMIC CAPACITORS (pn $100 \mathrm{~V} 20,24,33,43,503 p$; 200 , 500, 750, 27000 4p.

[^6]ELECTRONIC, T.V. ANO AUDIO COMPONENTS AND ACCESSDRIES. New, surplus and ex-equipment. Write to us for your requirements. S.A.E. Please. Lists 15p. We always do our best to help. J. P. S. 9 East Street, Colne, Huntingdon, Cambs.

DIGITAL BONANZA
 PACK M1 (100% Good) 2 Calculator keyboards. E1.00. PACK M2 $(100 \%$ Good) $1 \times 2102 \mathrm{~L}-1,1024$ bit static RAM E1.50. power requirement version of the 2102 . With data.
 PACK M3 (100\% Good) $1 \times$ MM5725 4 function calculator PACK E1 80% Guaranteed Good) 5 . WAAN 37 segment - $0.127^{\prime \prime}$ LED display
 PACK T1 (100\% Good $1 \times$ digital wristwatch I.C. Directit wristwarch but-eeutdibe wsed to butld a closk. With dat E1.OK. T2 100% Good) $1 \times 3 \frac{1}{2}$ digit wristwatch Liquid Crystal display with centre colon. With data. €1.00. PACK L1 20 Assortect Op-amper.Alarke devices you identify and test. Excellent value for $£ 1.00$. PACK 20 LM709 op-amps. (Untested). Another bargain PACK D1 180% Guaranteed Goud) $15 \times$ DTL logic I.C.'s Mainly dual $J-K$ flip flops. Replaces those costly TTL flip flops in most projects. Saves E£E's. E1.00. PACK D2 $25 \times$ SN7400 type I.C.s. 100 tw We guarantee at least 50 good. A giveaway at only $£ 1.00$.
 Minimum percentage guaranteed good is shown alongsidg Peck number. Where no guaranteed minimum is stated will prove to be much cheaper than buying at average mail order prices. Satisfaction guaranteed or return complete pack fora replacement or refund.
 MAIL ORDER ONLY / NO GALLERS PLEASE Postage and Packing Piease add 20p
 CODESPEED P.O. Box 23, 34 Seafield Road Copnor, Portsmouth, Hants., PO3 5BJ

ELECTHOLYTIC CAPACITORS of assorted valves and voltages 50 for 99 p . Inc. VAT. P \& P 10p. ELECTRONIC SUP PLIES, 588 Ashton Road, Hathershaw, Oldham, Lancs. Tel: 061-6529879

PC8s Paxotin $9 \frac{1}{2}^{\prime \prime} \times 8^{n \prime}$ 55p. $12^{\prime \prime} \times 9^{\prime \prime} \times 70 \mathrm{p}$. $17 \frac{1}{2}^{n} \times 9 \frac{1^{n}}{}{ }^{n} £ 1.15$. Fibre Glass Double Sided $13^{n} \times 6^{n}$
 75p. Three Assorted Meters £2.40. C280 Polyester
Caps 150 . 1.20 . S/Mica Caps 100 - 75 p. 300 Small Components Trans. Diodes $£ 1.30$ - 75 p. 300 Components $£ 2.95$. List $15 p$ Refundable. Post 20 p under f 1 Insurance add 15 p .
J.W.B. RADIO

2 Bamfield Crescent, Sale, Cheshire M33 1NL

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO., 103 South Brink, Wisbech, Cambs, 0945-4188. Immediate settlement.

LED'S. Mixed bags of 4 different sizes and 4 different colours. 50 \$5.25, 100 . 9.25 including VAT and colours. 50 . 5.25 , 100 . $£ 9.25$ including VAT and 47 Vicarage Avenue, Cheadle Hulme, Cheshire. SK8 7JP

BOOKS AND PUBLICATIONS

SIMPLIFIED TV REPAIRS. Full repair instructions individual British sets £4.50, request free circuit diagram Stamp brings details unique. TV Publications. (AUSEPE) 76 Church Street, Larkhall, Lanarkshire.

AUDIO ENGINEER REQUIRED BY DISCOTHERUE COMPANY FOR SITE, INSTALLATION ANO MAINTENANCE WORK. U.K. AND ABRDAD. Write to London Town Discotheques, 124 Dawes Road, London SW6 7EF. Or Telephone 01-3855521.

LADDERS

LADDERS. Varníshed $25 \frac{1}{\mathrm{f}} \mathrm{ft}$. Extd. £35.70. Carr. £2.40. Leaflet. Callers welcome. Open Sat. Ladder Centre, (PEE4) Halesfield (1) Telford, Salop, Tel: 586644.

ELECTRICAL

LIST No. 28 now ready - Styli illustrated equivalents also Cartridges, Leads, etc., free for long S.A.E. Felstead Electronics, (PE), Longley Lane, Gatley, Cheadle, Cheshire. SK84EE.

EDUCATIONAL

TELEVISION TRAINING

12. MONTHS' full-time course in Radio and TV for beginners (GCE or equivalent - in Maths and English).

26 WEEKS' full-time course in Mono and Colour TV (basic electronics knowledge essential).

13 WEEKS' full-time course in Colour TV (Mono TV knowledge essential)

These courses incorporate a high percentage of practical training.
Next session starts on April 17 th.
Prospectus from London Electronics College, Dept. A5, 20 Penywern Road, London SW5 9SU. Telephone 01-3738721.

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 272 T Intertext House, London SW8 4 IJ Tel. 01-6229911 (all hours)

State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 272T Intertext House, London SW8 4IUJ Tel. 01-622991! (all hours) State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principies, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 272T Intertext House, London SW8 4UJJ Tel. 01 -622991| (all hours) State if under 18

Radio Technicians

Government Communications Headquarters has vacancies for Radio Technicians Applicants should be 19 or over

STANDARDS required call for a sound knowledge of the principles of electricity and radio, together with 2 years'experience of using and maintaining radio and electronic test gear.
DUTIES cover highly skilled telecommiunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.

QUALIFICATIONS: Candidates must hold either the City and Guilds
Telecommunications Part 1 (Intermediate) Certificate or equivalent HM Forces qualification.

SALARY (inc. supps.) from $£ 2,673$ at 19 to $£ 3,379$ at 25 (highest pay on entry) rising to $£ 3,883$ with opportunity for advancement to higher grades up to $£ 4,297$ with a few posts carrying still higher salaries.
Opportunities for service overseas.
Further particulars and application forms available from:

GCHQ

Recruitment Officer, (Ref PE/5) GCHQ, Oakley,
Priors Road, Cheltenham, GL525AJ.
Cheltenham (0242)21491 Ext 2270

FOR SALE

Computeriseo chess Chailenger Three Levelis of skill normally £200 our price only £124.95. JAGBERRY LTD., 95 c Ardwell Avenue, Barkingside, Ilford, Essex. Mail Order Only.

PE JOANMA Complete with stand and pedals. \&120. Rhythm unit. $£ 15$, Phone Southport 33860 after 4.00 pm .

MAPLIN ORGAN almost complete in professional case 2 manuals plus pedals and stool. Ideal Constructor. Bargain at $£ 120$. -100 w speaker cabinet fitted $2 \times 12^{\prime \prime}$ base units at £120. - 100w speaker cabinet fitted $2 \times 12^{\prime \prime}$ base units plus $2 \times$ Piezo Tweeters $£ 40 .-A k a 1 ~ 4000 D S ~ T a p e ~ D e c k ~$
\&50. - P.E. P.W. E.T.I. FROM 1972 to current issue over 200 magazines $£ 15$. - W / W Teletex decode. in case £25. Ring Tony 01-960 3663.
drgan keybdards 2×61 Note. Pedal Board 30 Note. All with 5 pole K.A. Contacts. $£ 40$ each. Tel: Lichfield 24870.

SEEN MY CAT? 5000 Odds and ends. Mechanical Electrical. Cat free. Whiston, Dept. PRE. New Mills, Stock port.

Vou dios 402-2A Keyboard, ASC11, RS232 Interface. No control unit required. £120. Microprocessor-intercept JNR. Built. Excellent tutorial and development system. £110. Evenings (0733) 241555.

SERVICE SHEETS

BELL'S TELEVISIDN SERVICES for Service Sheets on Radio, TV, etc. 75p plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel: (0423) 55885.

SERYICE SHEETS for Radio, Television, Tape Recorders, Steren etc. With free Fault-finding guide, from 50 p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 4^{4} Bohemia Road, St. Leonards, Sussex.

PE MINISDNIC MKII SYNTHESISER working with 4 octave keyboard. £200. Tel: 021-747 8489.
NEW BACK ISSUES of "PRACTICAL ELECTRONICS" available 65 p each Post Free. Open P.O./Cheque returned if not in stock - Bell's Television Services, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.
P.E. DECEMBER 1969 to present. Very good condition, any reasonable offer accepted. Nigel, 01-928 5567.
PRACTICAL ELECTRONICS/WIAELESS January 1976 onwards 50p each: 5 Deedes Avenue, Shrewsbury, Salop.
ODRAM DFM KIT Box opened but kit complete. £60. Phone 043266716 evenings.

WANTED

WANTED - NEW VALVES. Transistors. Top Prices, popular types. Kensington Supplies, (B) 367 Kensington Street, Bradford 8, Yorkshire.
"RAOIO AND TELEVISION Servicing". Books wanted from 1964-1965 edition up to date. 23.00 plus postage paid per copy by return of post. Bell's Television Services, 19C Kings Road, Harrogate, N. Yorks. Telephone (0423) 55885.

MISCELLANEOUS

CABINET FITTINGS
 FOR

Stage Loudspeakers and Amplifier Cabs Fretcloths, Coverings, Strap \& Recess Handles, Feet, Castors, Jacks \& Sockets, Cannons, Bulgin 8 ways, Reverb Trays, Locks \& Hinges, Corners, Trim, Speaker Bolts efc.

Send $2 \times 9 p$ Stamps for samples and list.
ADAM HALL (P.E. SUPPLIES) Unit O. Starline Works, Grainger Noad

100 Resistors 75p

10 each of any value. Send S.A.E. for free sample CSO CASSETTES 30p All Cassettes in Plastic COO CASSETTES 45p Case with ińdex and Scrowed Aasembly Add Postege 10p in E 1
sALOP ELECTHONIC BALOP ELECTRONICE 23 WYEE COP Tol. 5320

LABELS MADE TO Your specification, self adhesive, plastic or metal, orders for small quantities accepted. Tel: 04216 5305.

PRACTICAL ELECTRONICS P.C.B

in glass fibre tinned and drilled
Dec. 77 Car Burglar Alarm 1412-1 88p.
Feb. 7B Auto Ranging Volt Meter incl. power £3.10. C.W.O. Please.

For full list and current boards please send S.A.E. P.C.B's also produced from customer's own master plesse send for quote.

PROTO DESIGN
4 Highcliffe Way, Wiokford, Essax, SS11 8LA

PLEASE MENTION
 PRACTICAL ELECTRONICS

WHEN REPLYING TO ADVERTISEMENTS

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans mitter-Receiver Kit. Only $\mathbf{£ 9 . 7 5}$ plus 25p P. \& P
'Brain-Freeze' 'em with a MINI-STROBE Kit, pocket-sized 'lightning flashes', vari-speed for discos and parties. A mere $£ 4 \cdot 30$ plus 20 p P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sound with the BIG EAR sound-catcher; ready-made multi-function modules. $£ 5$ each plus 20 p P. \& \mathbf{P}

LOTS MORE! Send 20p for lists. Prices include VAT. (Mail order U.K. only).

BOFFIN PROJECTS
 Cunliffe Road, Stoneleigh
 Ewell, Surrey (P.E.)

We would like you to know that we make -- BEC Cabinets

- Special cabinets
- Prototype printed circuits
- Instrumant panela

We also have a quantity punchin

shrice GB3/AT

H.M. ELECTRONICS
 275a Fuhwood Rd: Sheffield S10 38DI TEL: (0742) 669876 Send 15 p (refundable) for leaflets

SUPERB INSTRUMENT CASES BY BAZELI, manufactured from P.V.C. faced steel. Hundreds of people and industrial users are choosing the cases they require from ou vast range. Competitive prices start at a low 90 p , chassig punching facilities at very competitive prices, 400 models to chonge from free literature (stamo would be appreci ated). BAZEL LI Dept: No 23 St Wilfred's Foundry Lane, Halton, Lancaster, LA2 6LT.

SINTEL FOR BOOKS, CMOS AND COMPONENTS
6800 Booklet 1.80, MOT CMOS Databk 3.50, 6800 Appl Mon 12.95, 0800 Prog Mon 5.35, SC/MP Introkit Man 0.75 NS ITL Databk 2.10, RCA CMOS Databk 5.45, 2085 User's Mon 5.15, 280 Ass long Prog Man 7.50, 280 CPU Man 5.60, 280 CTC Spec 0.80, 280 P10 Man 3.30. Also a full range of CMOS - send for free catologve. MPUs: MEK6800D2 205.20, MC6820 8.66, 280 30.72, 280A 39.94, Z80CTC 13.82, Z80P 10 13.82, Mameries: 2102-A $2.55,2112 \mathrm{~A} .4$ 3.13. Displays: Type FNO500 C.C. 1,40 Type TIL321 C.A. 1.61, 51 TOI 5.29 . Crystals: 32.768 KH $3.78,5.12 \mathrm{MHz} 3.89$. Clock ICs: AY51202 4.35, AY5 1224 3.78, MK50253 6.05. Soldercon Pins: 100 0.54, 1000 4.32, 3000 11.34. Free cotalogive by return. All items CWO. Prices inclusive of VAT. Add 35p p\&p. SINTEL, P.O Lox 758, 209 Cowley Road, Oxford. Tel. (0865) 49791

ARMATURE AND COIL WINDING ENAMELLED COPPER WIRE Only top quality materials supplied. All orders despatched within 24 hours	
S.W.G. ${ }_{10}$	9 9 th reel
20 to 29	[3.15 [1.80
30 to 34	4 ¢3.45 \$1.90
35 to 40	
All prices inclusive of P. \& P. in U.K.	
102 Parrswood Road, Withington,	

SCOPE CALIBRATOR, portable, battery operated, s.a.e. details. Ramar Constructor Services, Masons Rd, Stratford on Avon, Warwickshire.

100 WATT GUITAR/PAMUSIC AMPLIFIER

With superb treble, bass. Overdrive, slimline, 12 months guarantee. Unbeatable offer at £39. Also twin channel with separate treble/bass per channel £48. Money returned if not absolutely delighted within 7 days. Also fuzz boxes grea sound robust construction E6.60. Also 100 watt 12 in peakers E22.60.
All inclusive of P.P. Send cheque or P.O. to
WILLIAMSON AMPLIFICATION
62, THORNCLIFFE AVENUE, DUKINFIELD,
CHESHIRE. TEL: 061-344 5007

MANUFACTURERS SURPLUS Teletext Display P.C.B.'s; COLOUR, Upper/Lower case ASCII, Graphics, Flash etc Ideal start MPU O/P onto T.V's, With cct, notes $£ 5.94$. Requires TTL, ROM. Char Gen I.C. Only E12.96. Post Free. TECHNALOGICS, 8 Egerton St., Liverpool L8 7 LY .

PRINTED CIRCUITS

 and HARDWAREReadily available supplies of Constructors' hardware. Printed circuit boards, top quality for individual designs. Prompt service. Send 25 p for catalogue. From:

RAMAR CONSTRUCTOR SERVICES,
Mosons Road, Stratford upon Avon, Worwicks. Tel. 4879.

PAINTED CIACUIT BOARDS in glass fibre, drilled tinned or varnished, from your own or published designs. S.A.E, for guotations. R. F. DARLISON, 12 Whiteoaks Road, Oadby, Leicester.

> MAKE YOUR OWN PRINTED CIRCUITS
> RUB-ON TRANSFERS - Starter pack (5 sheqts, lines, pads, l.C. pads) C1.30, Single Sheets 27p. FERRIC CHLORIDE - I lb bags 70p (P. 8. P. 40p.) ** SOLDERCON SOCKETS - $10065 p$. quantity $\begin{gathered}\text { rotes). PLASTIC SUPPORTS }-7 \text { or } 8 \text { hole } 6 p . / \text { po } \\ \text { S.A.E. lists somple. P. } 8 \text { P. } 15 p \text { order except*. }\end{gathered}$
> A.E. lists somple. P. \& P. $15 \mathrm{P} /{ }^{\circ} \mathrm{O}$ (ECTR
> OAK LODGE, TANSLEY, DERBYSHIRE

CLEARING LABORATORY. Scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads stabilised P.S.U.s, sweep generators, test equipment, etc Lower Beeding 236 .

armatures armatures. B and D, Wolf, Bridges, Makita etc. Exchange Armatures and Fields for most power tools. Obsolete models covered. S.A.E. for quotation or Ring 061 7990624. Inter-Q-Control, 26 Broadway, Worsley, Manchester.

THE FABULOUS D2 MICROPROCESSOR EVALUATION KIT FROM MOTOROLA.

Featuring 24 key keyboard *Seven segment display *Cassette interface *Erom \& Ram Expandable Interface Capability Full Documentation ${ }^{*} 5$ Volt power supply Required *One years FREE membership of The Amateur Computer Club with every purchase*. $£ 1.76+$ $£ 1.50$ P \& P + 8\% VAT.

ENAMELLED COPPER WIRE

SWG	$\mathbf{1 . b}$	$\mathbf{8 o z}$	$\mathbf{4 o z}$	$\mathbf{2 0 z}$
$10-19$	2.60	1.40	.66	.55
$20-29$	2.80	1.60	.85	.65
$30-34$	3.00	1.70	.95	.70
$35-40$	3.35	1.90	1.10	.79
$40-43$	4.50	2.50	1.90	1.25
$44-46$	5.00	3.00	2.10	1.65
47	8.00	5.00	3.00	1.76
48	15.00	9.00	6.00	3.30

Tinned Copper, Even Gauges 14-30 $£ 3$ per lb. Multicore $60 / 40$ Solder 18SWG $£ 3.24$ per lb. Prices include P \& P and VAT.
SAE brings list of copper and resistance Wires.

THE SCIENTIFIC WIRE COMPANY
 PO Box 30 London E.4.
 Reg. Office. 22 Coningeby Gdna

PRINTED CIRCUIT BOARD LAYOUTS from 60 p per component. S.A.E. to Consultant Design Service, The Galleon, Porlock, Somerset. 862567

MUSICAL DOORBELL
 with a Programmable Chime. 119 tunes or PROGRAN YOUR OWN. Just neads bell tran SURPRISE FRIENDS for only $\$ 17.90$
 SIG GEN, $10-200 \mathrm{~K} \mathrm{~Hz}$, sine, square only $\mathbf{£ 9 . 8 0}$. Each easy-assembly kit includes all parts, printed circuit. Case etc., instru SEND off NOW
 CAMBRIDGE KITS
 45(FE) Old School Lane, Milton, Cambridge

NEW PREAMPS $14-50 \mathrm{p},{ }^{2}$ inputs bass + Treble, also 100 watts into 80MHS Amp Modules 17-50p. Mail Orders to Panther Audio, 2 Lower Addiscombe
Road, Croydon. Barclay and Access taken. Tel: 6801476.

SEMICONOUCTORS, ALL FULL SPEC, BC2 12, BC1B2, BC237, BCY71, BF197, BC159 all 8p each. RCA 2015 TO3 POWER TRANSISTORS (SIM. 2N3055) 35p. SIMILAR 40673 35p, 3 N140 MOSFETS 50p, M203 DUAL MATCHED PAIR MOSFETS SIMILAR $4067335 p, 3 N 140$ MOSFETS 50 p , M203 DUAL MATCHED PAIR MOSFETS.
SINGLE GATE PER FET 40 p, SL301 DUAL. MATCHED PAIR SIL.NPN TRANSISTORS Ft. 300MHz, 30 p . INTEL C1103 1024 BIT MOS RAMS 95 p , BB113 TRIPLE VARICAP DIODE 35 p , MC1310 STEREO DECODER IC 1.20 p , TBABOO IC's $90 \mathrm{p}, \mathrm{CD} 4051$ IC's 50 p , 741 B PIN IC's 23p, OIOOES, IN 4002 4p, IN400's 7p, RED LED's $0.2^{\prime \prime}$ or $0.125^{n} 12 \mathrm{p}$. NIXIES: !TT 5B70ST 85p, GN9A 65p. MAN3A $3 / m m 7$ SEC. DISPLAYS 50p. MICROPHONES: GRUNDIG ELECTRET MICROPHONE INSERTS WITH FET PREAMF
1.50 p, CRYSTAL MIKE INSERTS 37 mm 45 p ELECTRET CONDENSER MIKES, IK IMP WITH STANDARD JACK PLUG 2.85p, EM506 CONDENSER MIKES, UNIDIRECTIONAL, FET AMP DUAL IMPEDANCE $50 K / 600$ OHMS ON/OFF SWITCH $30-18 \mathrm{KHz} 11.00 \mathrm{p}$.
EM1O4 MIN. TIE CLIP CONDENSER MIKES, OMNI, 1 K IMP, USES DEAF AID BATERY (SUPPLIEDI 4.95 p ,
MORSE KEYS: PLASTIC TYPE 95p, ALL METAL HI-SPEED TYPE 2.25p
NUMERICALDISPLAYS 275 , BANDWIDTH) 35p. LM381 90p. TIL305 ALPHASWR/POWER METER TYPE SWR 50 SWR $1: 3-1: 1$, POWER $0-1 \mathrm{Kw}, 3.5$ TO 150 MHz 52 OHMS IMPED. 12.75p. SWR ANO F.S. METER $3-150 \mathrm{MHz} 50$ OHMS IMPED 9.50 p . FX 2000 CRYSTAL MARKER GENERATOR 100 KHz to 50 MHz (LESS XTAL)

SOLDER SUCKERS PLUNGER TYPE, REPLACEABLE NOZZLE. EYE PROTECTION SHIELD, HIGH SUCIION 4.95p.
CRYSTALS, $300 \mathrm{KHz} 40 \mathrm{p}, 4.43 \mathrm{MHz}$ CTV XTAL 45 p .
EOGE CONNECTORS O. 1 MATRIX 64 WAY $65 p$, 34 WAY 40 g. $0.2^{*} 18$ WAY $15 p$. RELAYS MIN SEALED TYPE 4 POLE CHANGEOVER 36 gHM WHTH QASE) $45 p$, 8 WAY RIBBON CABLE, MTN SOLID CORE 15p MFRRE.
MOTORS. 1-5 TO 6V DC MOUEL MOTORS 28p, 12 v DC 5 POLE 35p, SUB. MIN. BIG INCH $115 V A C$ 3APM MOTORS $30 p$. $35 \mathrm{~mm} 44 \mathrm{p} 95 \times 71 \times 35 \mathrm{~mm} 52 \mathrm{p}, 115 \times 95 \times 36 \mathrm{~mm}$. 15 S INSERTS AND LID $75 \times 56 \times$ TRANSFORMERS: $6-0.6 \mathrm{v} 100 \mathrm{~mA}$, $9-0-975 \mathrm{ma}$ 12-0.12v.
$12 \mathrm{v} 100 \mathrm{~mA} 95 \mathrm{p}, 12$ volt 500 mA 95 p . $1: 1$ TRIAC/XENON PU GMH 3amp CHOKES 30p.
 $(50 \mathrm{~mm})$ LOUD NOTE 50p. MIN. SOLID STATE BUZZERS, $6-9-12$ OR 24 volt, ALL 15 mA
U.H.F. TUNERS, PUSH BUTTON T.V. TYPE (NOT VARICAP) NEW AND BOXED 2.50 D . TAPE HEAOS: STEREO CASSETTE 3.00p. MN 1330 DUAL IMPED. R/P HALF TRACK HEADS 50p. SRP9O $\frac{1}{2}$ TRACK R/P HEADS 1.95p. STANDARD 8 TRACK STEREO 1.75p. TD 10 DUAL HEAD ASSEMBLIES 2 HEADS, BOTH + TRACK R/P WITH BUILT IN SPECIAL OFFER. ZN414 RAOIO CHIP
METERS: 200 MICRO AMP MiN. LEVEL METERS $75 p$, GRUNDIG IMA BATT. LEVEL METERS $40 \times 40 \mathrm{~mm} 1.10 \mathrm{p}$. STEREO TUNING METERS 100 MICROAMP PER MOVEMENT $2.75 p^{\circ}$
30 JEAMORAL MECHANISMS WITH LOCKING ARM, ALUMMYUM DIAL SCALED O100. WINOOW SCALED $0-30,32 \mathrm{~mm}$ DIAMETER, I^{N} SPINDLE NEW $1,75 \mathrm{~F}$.
TRANSOUCERS, ULTRASONIC MADE BY MURATA 4OKHz 2.95 P PAIRDWMITCHES: MIN TOGGLE, SPST $8 \times 5 \times 7 \mathrm{~mm} 45 \mathrm{p}$, DPDT8 $\times 7 \times 7 \mathrm{~mm} 50 \mathrm{p}$. DPDT CEATRE OFF $12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}$. MIN. PUSH TO MAKE OR PUSH TO BREAK $16 \times$ DPDT MREACH TYPE, 10 amp ROCKER SWITCHES, SPST 12 g . SLIOER SWITCHES: ROLLER ACTION ${ }^{2}+50, M I N .13 \times 10 \times 4 \mathrm{~mm}$ 20p. PLESSEY WHAKEER SWITCRES, 1 POLE 30 WAY 2 BANK ADJUSTABLE GTQR 7 Ep:

TERMS CASH WITH OROER (ORORFICIAL OROER FROM COLLE GES ETC..)
POSTAGE 30p, OVEREEASPOSTAFLOST. VATK [NCLUOEO IN ALLPRICES. S.A.E. FORZUSTS.

ROGRESSIVE RADIO

(31, CHEAPSIDE, LIVERPOOL 2. TEL. 051-23.5 0982.

STEREO DISCO MIXER

With touch sensitive switching and auto fade
INPUTS Four edentical stereo inputs avalable with any equalisation Iwo magnetic and two flai supolied as Sensitivity nlag $3 \mathrm{mVIR} \mid \mathrm{A} \mathrm{A}$ comp/Flat 50 mV al 1 kHz Bass controls. 180 B al 60 Hz Trebre conirols. 18 dg at 15 kHz
OUHP OUTPUT Up to 3 voits i. 12 dab avallable Allenuated outpul for TUAC Power Modules Rolary master and balance controls Band width 15 Hz 25 kHz : d日
PFL Output 250 mV mio 8 ohmis Rorary volume rouch sensitive illuminated switches Switched visual cue indicator Miscellaneous Facilitiess. Two lluminated deck on off switches Mains illuminatec on oft swithes Auro tade Hitumaled on oft switch Mains powered with integral screen and back cover Complete with full instructions Mono Disco Mixer with autofade $£ 45.00$

SEND NOW

FOR OUR FREE 20 PAGE ILLUSTRATED
CATALOGUE of
LIGHTING EFFECT MODULES AMPLIFIER MODULES ETC.
Please Enclose Large Stamped Addressed Envelope
All Our Products
Manufactured in
GREAT BRITAIN FULLY TESTED and GUARANTEED

PRICES INCLUDE VAT. P \& P FREE correct at 1.3.78
 TO ORDER BY POST

Make cheques/P.O.s payable to TUAC LTD. (PE58) or quote Access/Barclaycard No. and post to TUAC LTD. (PE 58) 119 Charlmont Road, London SW17 9AB. We accept phone orders
from Access/Barclaycard Holders. Phone 01-672 9080 from Access/B arclaycard Holders. Phone 01-672 9080

London College of Furniture

Electronics for Musical Instrument Technology

A full-time three year course is offered in those aspects of electronics related to the design, building and repair of all types of equipment associated with music.
Students will be encouraged to involve themselves in project work in the fields of acoustics, group amplification, electronic organs, synthesizer design, etc.
Prospective students should have some knowledge of electronics or some basic science and mathematics at ' O ' level GCE or the equivalent.

For details apply to:-

Mail Order Protection Scheme

The Publishers of Practical Electronics are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Jrading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure ta supply goods advertised in a catalogue or in a direct mail solicitation.
In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Electronics within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretian. Since all refunds are made by the magazine valuntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence. For the purpose of this scheme, mail order advertising is defined as:-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail order advertising are excluded.

A.G.W. Electronics 698	Eagle International 692	P.K.G. Electronics....................................... 702
Adam Hall (P.E. Supplies) 701	Edencombe Ltd.. 700	Phonosonics.....................................634, 635
Aitken Bros... 632	Electronic Brokers 640	Progressive Radio 703
Alben Engineering 633	Electrovalue Ltd.. 692	Proto Design ... 702
Amtron.. 692		
Arrow Electronics..................................... 690	Fraser-Manning Ltd. 700	
Astra-Pak... 656	Fraser-Manning Lid. 700	Radio \& T.V. Components 640
	Gould Advance .. 689	$\begin{aligned} & \text { Ramar Constructor Service ... } 630 \\ & \text { R.S.T. Valve Mail Order........... } \end{aligned}$
Baron .. 656	Government Communications Headquarters	
Barrie Electronics 628	701	Saga ... 696
Bib Hi-Fi... 637	Greenweld Electronics 688	Salop Electronics....................................... 702
Bi-Rak...	702	Saxon Entertainments638,639
Boffin Projects ... 702	Harversons ... 690	Science of Cambridge \qquad
Brewster S \& R... 630	Heathkit Ltd.. 656	Sentinel Supply ... 639
British National Radio \& Electronics	Home Radio ... 639	Service Trading.................................... cover iii
School ...		Sintel Ltd ... 702
	I.C.S. Intertext635, 701	Special Products....................................... 688
CWAS Alarm... 702	I.L.P. Electronics631,699	Stirling Sound.. 629
Cambridge Kits ... 702		Swanley Electronics.................................. 694
Cambridge Learning................................... 633	J.W.B. Radio .. 700	System Techniques (Electronic) Ltd............ 700
Chromasonic .. 684	Jones Supplies.. 700	
Chromatronics .. 693		Tamba Electronics.....f.............................. 684
Clef Products.. 694	London College of Furniture 703	Technomatic Ltd.. 704
Component Centre, The 696	London Electronics College 701	Teleplay (Logic Leisure)............................... 697
Continental Specialities 687	Lynx Electronics. \qquad 626	Tempus ... 698
Copespeed.. 700		Texas ... 655
Copper Supplies .. 702		T.K. Electronics .. 632
Crescent Radio Ltd..................................... 688	Maplin Electronic Supplies Cover iv	Trampus Electronics 703
Crimson Elektrik ... 626	Marshall A. (London) Ltd............................. 691	T.U.A.C. ... 703
Crofton Electronics.................................... 702	Minikits Electronics...................................... 702	
C.R. Supply Co.. 700	Modern Book Co. ...	Watford Electronics \qquad cover ii West London 656
Doram .. 694		Williamson Amplification........................... 702
Dzuibas M.. 690	Nicholls E. R... 698	Wilmslow Audio 630
E.D.A. .. 632	Osmabet .. 698	Xeroza Radio.. 626

		ve=
	\% ${ }^{\text {a }}$	
	${ }_{\text {and }}^{\text {asen }}$	
		边
		-
		LITTLE NEWPORT STRELONDON WC2H 7JJ
	trADINGCO.	

 everything for the mcdern D.I.Y. electronics enthusiast and more.

[^0]: © IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Open daily to callers: Mon.-Fri. 9 a.m.-5 p.m.
 Valves, Tubes and Transistors . Closed Saturday Terms C.W.O. only - Tel. 01-677 2424-7 Quotations for any types not listed S.A.E.
 Post and Packing 25p per order $+8 \%$ V.A.T.
 when going
 to press Items marked * $12 \frac{1}{2} \%$

[^2]: Showing component assembly to front and back panels with p.c.b. and transformer which fixes to box base panel

[^3]: Texas Instruments Ltd. Supply Division. Manton Lane. Bedford. ' Tel: Bedford (0234) 67466. Branch Offices at: Slough 0753-33411. Edinburgh 031-229 5573. Slockyort 061-442 7000. Southampton 070327267

[^4]: Suits loads 4-16 ohms
 $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
 Siticon circuitry throughout
 Glass fibre P.C.B
 High sensitivity (100 mV 10 k)

[^5]: LEADER" Electronic kits enable even the inexperienced constructor to produce

[^6]: Meil order only. P. \& P. 2sp. Add ©\% VAT. CWO
 STE Ltd.
 8veid, stock Hill, Edenbridge Kem, TNE EML

