

${ }_{B}^{B} 103$-The Connoisseur's Professional Choice

An exceptional transcription unit that performs to truly professional standards. Fitted with a new specially designed
arm, the BD 103 will form the start, or an integral part, of a system for those who never believed they could achieve this level of quality at a reasonable price, simply compare specifications. *Low voltage DC servo controlled motor with electronic speed variation on all 3 speeds $-33 \frac{1}{3}, 45$ and 78 rpm . *xternally housed power source, thereby eliminating hum fields, convertible for 120 or 230 v mains supply. *Belt drive with precision ground natural rubber moulded belt of round cross section. *Neon illuminated st roboscope underneath $12^{\prime \prime}$ aluminium turntable is viewed through a mirror in the platiorm; available with either 50 or 60 Hz stroboscope. *Pick-up arm automatically raises at the end of the playing section of the record.
Automatic lift-off can be overridden for non-standard records. *Low friction pick-up bearings - unipivot for horizontal motion, knife edges for vertical motion - with a unique system of magnetic stabilization on the unipivot bearings. *Playing weight adjusted by sliding weight on arm tube, which is calibrated. Additional counter weights provided for ac commodation of a full range of cartridges. Adjustable magnetic bias, calibrated for varying playing weights. *Inter-changeable lightweight plug in head shell accepts cartridges with !" mounting centres The turntable unit is solidly mounted on to a walnut plinth, which stands on a sprung and damped anti-vibration suspension system, thereby using maximum
 mass to improve performance, and fitted with a hinged acrylic dust cover with lid stay Dimensions: $15^{\prime \prime} \times 18^{\prime \prime} \times 5{ }_{5}^{\prime \prime}$ An alternative version is available without the pick-up arm and lifting device, incorporating a larger walnut/ plastic cover, enabling most high quality pick-up arms to be used. Dimensions: $15^{\prime \prime} \times 18^{\prime \prime} \times 7^{\prime \prime}$. BD 103 Alternative unit without arm and lifting device.

The BD 103 Transcription
furntable and External
power unit

EEEGTROTLIUE

COMPONENTS FOR ALL WHO MUST HAVE ACCURACY, WITH QUALITY, SERVICE AND KEENEST PRICES

\star All the many types of components we sell are BRAND NEW, conform completely to manufacturers' specifications. NO SURPLUS OR SECONDS

* AMONGST THE MANY RANGES WE CARRY WE ARE PLEASED TO RECOMMEND

> SIEMENS Capacitors for quality and dependability. SIEMENS silicon pnp \& npn transistors from 8p. POTS - wide range always available inc. W and W/O switch; mono \& stereo slide etc. RESISTORS
> LEDS
> CMOs BE types + \& - Regulators 7805,7905 etc. MAGNETO RESISTORS and HE devices. TEMP. CONTROLLED SOLDER IRONS, solder suckers.

* PRICE LIST - for latest up-to-date and complete price list, please send $9 p$ S.A.E. (large). Good discounts on orders $£ 10$ and upwards. Goods over $£ 5$ sent post paid in UK.
* MONTHLY BARGAIN LIST Thanks to computer controlled stocks, we are able to offer a monthly bargains list. This month it's germanium \& small power transistors; ceramic \& electrolytic capacitors, polyesters. Please send S.A.E. for your copy.

ELEGTROMILIE LTD

Dept PE4. 28 St Judes Rd. Englefield Green, Egham, Surrey TW20 OHB. Phone Egham 3603: Telex 264475
Northern Branch (Personal shoppers only) 680 Burnage Lane, Burnage, Manchester M19 1NA Phone (061) 4324945.
T.T.L. 74 I.C.'s By TEXAS, NATIONAL, I.T.T., FAIRCHILD etc

74	14 p	74	25 p	7473	30 p	7421	30	74	${ }^{65 p}$	74179	p
	14p		25 p .	74	${ }^{30 p}$	74122	${ }^{40} 9$	${ }_{7}^{74153}$	${ }^{659}$	74180	1000
7402	149	7428	40 P	7475	30 p	74123	${ }^{\text {s0p }}$	${ }^{74154}$	120 p	74181	200 p
7403	14 p	7430	15 p	7476	30 p	74125	50p	74155		182	759
7404	14p	7432	25p	7483	${ }^{35 p}$	74126		74156	700	74.84	150 p
7405	14p	7437	25p	7485	1000	74130	${ }^{130} \mathrm{p}$	74157	700	74185	150p
7406	40 P	7438	$25 p$	7486	300	74131	100p	74180	s0p	74188	350p
7407	40 p	7440	15p	7489	$250{ }^{\circ}$	74132	65p	74161	90p	74189	350p
	20 D	74	658	7490	35p	7435	100 p	7416	90 p	74190	140p
	${ }^{208}$	74	85p	74	75	7436	${ }^{80}$	7416	${ }_{90 p}$	7419	140 p
	15p	74	cop	74	45	7437	${ }_{125}^{1009}$	7716	${ }^{125 p}$	7419	${ }^{120}$
	20 p	74	35p	74	40	7438	${ }^{1250}$	7416	${ }^{125 p}$	7419	120p
7412	200	7447	75p	7495	60p	7413	100p	${ }_{7} 716$	${ }^{1255}$	74194	100 p
7413	30 p	7448	70 p	7496	70p	74141	60p	7416	${ }^{325 p}$	74195	100p
7414	60 P	7450	15p	74100	95p	74142	270p	74177	200 p	7419	100p
16	30 p	7451	15p	74104		74143	270p	74173	150p	74197	100p
7417	${ }^{30} \mathrm{p}$	${ }^{7453}$	15 p	${ }^{74105}$	${ }^{40}$	74144	${ }^{2700}$	74174 74175	${ }^{1009}$	96	${ }_{185}^{185}$
	15 p	7454	15 p	74107	${ }_{50}$	${ }_{7}^{74145}$	${ }^{\text {730 }}$	74175	${ }^{750}$		${ }^{185}$
7422	${ }^{200}$	7460	${ }^{150}$	74109			${ }^{2300}$	74176			
25	${ }^{25}$	7470	30 p	7418	S0p			74177			
7425	25p	747	25p	741	sop	7450	120p	4178	1400		

CmOS				IN4148 BY ITT/TEXAS 100 for $£ 1.50$.	$1200 \mu \mathrm{~F} 63 \mathrm{~V} .2$ for $£ 1.00$. $2200 \mu \mathrm{~F} 63 \mathrm{~V}$, 2 for $£ 1.50$. $3300 \mu \mathrm{~F} 63 \mathrm{~V}$. 2 for $£ 1.60$.
${ }_{4000}$	${ }^{200}$	4030	${ }^{\text {sop }}$		
4002	${ }_{200}$	4043	${ }_{200}$	TEXAS TIS88A VHF FET	
4006	${ }^{120}$	4046	${ }^{1500}$	10 for £2.30. 100 for	
4007 4009	${ }_{70}^{200}$	${ }^{4044}$	${ }^{1150}$	£20.00.	BD607/608 COMP.
4011	${ }^{200}$	${ }^{40550}$	${ }^{509}$	555 Timer, 10 for £2.80.	ER $£ 1.50$
${ }_{4013}$	${ }_{550}$	${ }_{4} 4055$	1409		
4015	sop	${ }_{4056}$	1450	741 Op. amp. 10 for $£ 2.00$.	BF257 10 for £1.50.
${ }_{4016}^{4017}$	${ }^{\text {5pp }}$	${ }_{4066}^{4060}$	$\begin{array}{r}1300 \\ 550 \\ \hline 50\end{array}$	RCA SCR TO3 case	
${ }_{4019}$	250p	4069	30	100V 12.5A £2.50.	
4020	1400	4071	309		- 7440010 for El 1000
	$100 p$ 200	${ }_{4081}^{4072}$	300	BTY 87-100R SCR 100 V 8.5A 81.00 eac	743010 for $\mathrm{\Sigma} 1.00$
4024	1000	4082	300	100V 8.5A 21.00 each.	744210 for £3.50
+4025	${ }_{200}^{209}$	4510	${ }_{200 p}^{1459}$	' ALL PRICES INCLUDE	748310 for $£ 7.00$
4027	${ }^{209}$	4516	140 O	POSTAGE AND V.A.T. AT	749610 for E 4.50
4028	${ }^{155 p}$	${ }_{4}^{4518}$	${ }_{1109}^{130}$	8 or $12 \frac{1}{2} \%$ AS	74107 74161 10 for $£ 2.00$ 8.00
4029	130 p	4528	130D	APPROPRIATE.	7416110 for £8.00

XEROZA RADIO

306 ST. PAUL'S ROAD,
HIGHBURY CORNER, LONDON N. 1
Telephone: 01-226 1489
Easy access to Highbury vie Victorla Line (London Transport) British Rail

Understanding Digital Electronics
 New teach-yourself courses

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

The contents of Design of Digital Systems include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; com plementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND. NOR and exclusive-NOR functions; multiple input gates: truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders: processors and artithmetic logic units (ALUs); multiplication and division systems
Book 4 Flip flops; shift registers; asynchronous and sychronous counters; ring, Johnson and exclusive-OR feedback counters; ran dom access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Digital Computer Logic and Electronics is designed for the begınner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it designer, execxutive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

CAMbRIDGE LEARNING ENTERPRISES. Unit 2. Freppost, RIVERMLL LODGE, ST. IVES. HUNTIMGDON. CAMBS. PE17 4BR, EMGLAND. TELEPHONE ST. NES (0480) 67446. PROPRIETOAS: DRAYRIDGE LTD. REG. OFFICE: RIVERMILL LODGE, ST. IVES. Giro Ac. No. 2789159.

REGD. IN ENGLAND NO. 1328762

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are alr.eady commonplace. Tomorrow a digital display could show vour vehicle speed and fuel consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new prece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

The six volumes of Design of Digital Systems cost only:

And the four volumes of Digital Computer Logic and Electronics cost only:

But if you buy both courses, the total cost is only:
£7.10
£4.60 £11.10

90p post \& packing by surface mail anywhere in the world. Airmail extra.

Flow Charts \& Algorithms

HELP YOU PRESENT:
safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.

THE ALGORITHM WRITER'S GUIDE explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.
2295 + +45p post and packing by surface mail anywhere

GUARANTEE
If you are not entirely satisfied your money will be refunded.

Cambridge Learning Enterprisẹs, Unit 2, Freepost,
Rivermill Lodge, St. Ives, Huntingdon, Cambs, PE1 7 4BR, England.
Please send me the following books:
sets Digital Computer Logic \& Electronics f5.50, p \& p included
.........sets Design of Digital Systems if8.00, p \& p included
Combined sets $\downarrow 12.00$ p \& p included
The Algorithm Writer's quide \& $£ 3.40, p$ \& p included (PE4)
Name ..
Address..

I enclose a "cheque/PO payable to Cambridge Learning Enterprises for E
Please charge my *Access/Barclaycard/Visa/Eurocard/Mastercharge/ Interbank account number .
Signature \qquad ."delete as appropriate Telephone orders from credit card holders accepted on 048067446 (ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank.

TO MAKE WAY FOR OUR EXCITING NEW RANGE OF KITS, WE ARE OFFERING OUR OBSOLETE MODELS AT TRADE PRICE!

UK 585 (Electronic Beam Switch
 for Oscilloscopes) $£ 16.64$ REC. PRICE
SALE PRICE
4
UK 302
(4 Channel Radio Control Transmitter)
\&14.76 REC. PRICE
SALE PRICE

UK 525
VHF Tuner A
$120-160 \mathrm{MHz}$
S10.78 INC.VAT
SALE PRICE

UK 167
Stereo Preamplifier R.I.A.A. S6.28 REC. PRICE

We have on offer POWER SUPPLIES, AMPLIFIERS, (Stereo and Mono) ULTRA-SONIC BURGLAR ALARMS, MIXERS, TEST EQUIPMENT KITS and many others. Send large SAE for list, and our NEW RANGE catalogue.

NEW RANGE OF KITS

RHYTHM GENERATORS-6 channel STEREO MIXERS, AMPLIFIERS, STEREO TUNERS, V.H.F. RECEIVERS \& TEST EQUIPMENT.

AMTRON (UK)LTD.
7, HUGHENDEN ROAD, HASTINGS,
SUSSEX, TN34 3TG
Telephone: (0424) 436004

TWO NEW SUPERMODULES: 170W INTO 4 OR 8 OHMS

	mom					
By popular demand we ha modules. The CE 1704 whi 170 W into 8 ohms are ph audibly superior to the com We have also produced suit TRANSFORMERS, only 50 m Write or phone for more infor			er powered versi to 4 ohms and th o the original typ only choice if you es which again us -240 primary and opinions.	ns of our well known CE 1708 which gives s and have the same have an ear for music. our superb TOROIDAL ingle bolt fixing.		
POWER Amplafieh modules	Home	Euro	T.H.D.	TYPICALLY C.02\% ANY		
CE $60860 \mathrm{~W} / \mathrm{B}$ ohms 3 3 -0.-35	¢16.30	E16.60		POWER, $1 \mathrm{kHz}, 8 \mathrm{OH}$		
CE 1004 :00W/4 ohms 35-0.35V	¢19.22	£19.30	T.I.D.	NSIGNIFICANT		
CE $1008100 \mathrm{~W} / 8$ ohms $45.0-45 \mathrm{~V}$	E23.22		SLEW rate limi	: $20 \mathrm{~V} / \mathrm{us}$		
CE $1704170 \mathrm{~W} / 4$ dhms 45.0 .45 V	£29.12	-31.04	s/N ratio FREQ. RESPONSE	110 dB		
CE $1708170 \mathrm{~W} / 8 \mathrm{ghms} 60.0 .60 \mathrm{~V}$	¢31.90 ¢			: $10 \mathrm{~Hz}-35 \mathrm{kHz},-3 \mathrm{~dB}$		
tordidal Power Supplies			STABILITY	UNCONDITIONAL		
	¢14.47	£18.40	protection	DRIVES ANY LOAD SAFELY		
	f16.82		Sensitivity			
CPS 2 年 $2 \times$ CE 1004 or $2 / 4 \times$ CE 608 CPS 3 tor $2 \times$ CE 1008 or $1 \times$ CE 1704	$\underline{17.56}$	${ }^{\text {f21.35 }}$: 775 mV (250mV or100 mV ON REQUEST)		
CPS 4 Iar $1 \times$ CE 1008			SIZE			
CPS 5 (or $1 \times$ CE 1708	¢22.68 E23.98.50 f 27.70			(100mV ON REQUEST)		
HEATSINKS LIGHT OUTY $\quad 50 \mathrm{~mm} \quad 2^{\circ} \mathrm{CN}$ MEDIUM POWER $100 \mathrm{~mm} 1.4^{\circ} \mathrm{C} / \mathrm{W}$ $150 \mathrm{~mm} / 1^{\circ} \mathrm{CW}$ THERMAL CUT-OUTS Recommended tor improved reliability $70^{\circ} \mathrm{C}$ tor use with Free Air Hearsink $40^{\circ} \mathrm{C}$ tol use with Fan Cooled Heatsink			CRIMSON ELEKTRIK Please note our new address and telephone number: 1 A STAMFORD STREET. LEICESTER LE1 6NL Telephone: (0533) 537722			
THERMAL CUT-QUTS Recommended for improved reliabitity $70^{\circ} \mathrm{C}$ tor use witt Free Air Heatsink $40^{\circ} \mathrm{C}$ tol use with Fan Cooled Heatsink						
Home prices include V.A.T. and postage. C.O.D. 90 p extra. $\mathbf{£ 1 0 0}$ itmit. Export no problem European prices include carriage. insurance and handiling, payment in Sterling by bank draft, P.O. Internatonal Giio or Money Order. Outside Europe, please write for specificquote by return. Send SAE or two International Reply Coupons for full literature. Fayourable trade quantity price list on request. High quatity pre-amp circuit 20 p						

CRESCENT RADIO LTD. MAIL ORDER DEPT. 1 ST. MICHAELS TERRACE, WOOD GREEN LONDON N22 4SJ PHONE: 888-4474		
A special bulk purchas meters enables us to their range at up to 15\% Recommended Retail	Ideal for disco work. this versatile machine takes a	
	and is of a sturdy metal construction. with bulb and 6 in Ready to use A bargain $+8 \%$ V.	mes complete Liquig Wheel T
$50,250,1000$. AC volts: 0 to 10. 50, 250, 1000. DC amps: 0 to 100 MA . Resistance: 0 to 150 K ohms. Declbels: - 10 to 22 dB . 55.97 . 8% VAT with leads and battery.	3 KILOWATT PSYC CONTROL UNIT chann Three channel: Bass The input of this unit the loudspeaker term lifier and the requi connected to the ould	EDELIC LIGHT I Middle. Treble is connected to inals of an amped lighting is ut terminals of
C1095 20,000 OPV MULTIMETER with hinged 4position scale for easy reading	the unit thus enab duce a fascinating display Full instructions sup for details Fantastic Valu $+8 \% \mathrm{~V}$	g you to prosound to light lied or S.A.E $\text { at } £ 20 \cdot 00$ T
bench use. Antiparallax mirror 3-colour scale	$+12 \frac{1}{1} \% \text { V.A.T. }$	
overioad prote	2\%in 8. 40. and 75 ohm at $£ 1.10$	
tion. Aanges: DC 500. 2.500 (20,000	required)	
50, 100, 500, 1.000 ($10,000 \mathrm{opv}$). DC	Sin. 8 ohm Ceramic at £1.708 in . Goodmans "Audiom 8PA" 8 ohm	
amps: $50 \mu \mathrm{~A}, 2.5 \mathrm{~mA}, 250 \mathrm{~mA}$. R sistance: 50 K ohms, 5 megohm		
Decibels: 20 to 22 dB . £14.31 VAT.	10 watt at $£ 4.75$	
ACCESS AND BARCLAYCARD ACCEPTED-PHONE ORDERS WELCOMED ALL PAICES INCLUDE POSTAGE-PLEASE ADD V.A.T. AS SHOWN-S.A.E. WITH ALL ENQUIRIES PLEASE		
Personal callers welcome at: 21 GREEN LANES and 13 SOUTH MALL	ALMERS GREEN, N13. MONTON Ng.	Phone: 888

KONTAKT 60

FOR INACCESSIBLE CONTACTS - More than just a cleaner. = KONTAKT 60 guarantees perfect cleaning of contacts chemically in accordance with todays technology.
KONTAKT offers the following advantages:
way withoxdes and sulphides the safe stances
2. Contains carefully selected solvents
which do not attack plastics whereas they do dissolve resinified contact greases and dirt.
3. Contains no silicone

Contains a light lubricant in order to avold the contact paths being corroded 6. Prevents creep currents

Because of these outstanding properties Because of these outstanding properties popular contact cleansing agents in the popular contact cleansing agents in the

Used by major industrial companies
OTHER KONTAKT PRODUCTS ARE:

> 70 Protective Lacquer
> 72 Insulating Spray
> 75 Cold Spray for Fault Location

80 Special Siliconized Polish 100 Antistatic Agent for

Plastics.
101 Dehydration Fluid

Write for foll details of above complete range of Kontakt products to

SPECIAL PRODUCTS DISTRIBUTERS LIMITED

81 Piccadilly, London, W1V OHL. 01-629 9556.

COIL FORMERS $3^{3 \prime}$ dia. with core at $5 p$ ea or 6 for $\mathbf{2 5 p}$.
SPECIAL STRIPLINE 2 GHz NPN LOW NOISE TRANSISTOR at $\mathrm{E1}$ each
50 VARI-CAP DIODES Untested for 57p
WIRE WOUND VARIABLERESISTORS 1.2 K 6 Watt © 22 p .
VERNITRON FM4 10.7 MHz CERAMIC FILTERS at 50p ea
BAW 62 HIGH SPEED SILICON DIODES at 12 for 35p. 100 MULLARD C280 CAPACITORS assorted for 57p.
BF 451 SILICON PNP 300 MHZ TRANSISTORS 6 for 35 p
BF 451 SILICON PNP 300 MHz TRANSISTORS 6 for 35
ELECTRET MICROPHONE INSERT with FET PRE-AMP @ 1.85
UNIJUNCTIONS TIS 43 TYpe (a, 20p, MEU 21 @ 22p, MU 4894 (a) 22p, $2 N 4871$ (
25p, GE4JD5E29 (a) 22p, D13T1 (1) 25p, 2N 6028 @ 30p.
BELLING LEE CO-AX PLUGS \& 15 p . CO-AX SOCKETS @ 15 p
TEXAS SCR TIC47 200 PIV 300 mA (a. 18 p each
TO39 NPN 5 WATT DARLINGTON TRANSISTORS © 20p
100 ASSORTED DISC CERAMIC CAPACITORS @ $57 p$.
12 BRANDED VHF FETS Assorted for f1
500 yd Reel of PVC CABLE 25 Strand .004 for $£ 3$
100-0-100uA TUNING METER $1_{8^{\prime \prime}} \times 1^{1 \frac{15}{\text { n }}} \cdot 3190 \mathrm{p}$
20 PHOTO DARLINGTONS and PHOTO TRANSISTOR assorsed untested for $£ 1$
BD 1874 AMP PLASTIC POWER NPN TRANSISTORS © 25p each
30 ASSORTED $10 X A J$ CRYSTALS 5100 To 7900 KHz tor $£ 1.10$
DIE CAST ALLOY BOXES $4 \times 2 \times$
MAINS TRANSFORMERS 240 v A.C. Input. Type $2.22 \mathrm{v} 300 \mathrm{~mA}, 7.5 \mathrm{v} 1 \mathrm{amp}$ (a) 99 p $\{20 \mathrm{p}$ P \& P). Type 4. 9 v 500 mA (6) 88p (20p P \& P). Type 5. 12v 500 mA (38 B8p (20p P \& P). Type 6. $50 \mathrm{v} 2 \mathrm{amp} 50 \mathrm{y} 500 \mathrm{~mA} @ f 3.50(85 \mathrm{p}$ P \& P). Type 7. 20 v 1 amp Twice. 10 V 1 amp Twice @ $£ 4.50$ (95 p P \& P), Type 8 . 16 v 500 mA @ $88 \mathrm{p}(20 \mathrm{p}$ P \& P)
 (25 p P \& P). Type $11.25 v$ Tapped $14 v 1 \mathrm{amp}$ (a) f 1.25 (25 p P \& P) 50 ASSORTED TRANSISTOR ELECTROLYTIC CAPACITORS @57p. 200 ASSORTED \& I watt RESISTORS for 75p
NKT 214 equivalent to OC 71 TRANSISTORS at 10p. 6 for 50 p .
10 AMP S.C.R.'s 100 PIV @ 25p. 400 PIV @ 50p. 800 PIV @ 60p
400 mW UNMARKED GOOD ZENERS $3.3 \mathrm{v}, 6.8 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 24 \mathrm{v}, 30 \mathrm{v}$ 33 V . 36 V all at 10 for 40 p .
TBA 120 S FM IC. 's Untested with data 6 for 60p £3.20
5 TURN POTENTIOMETERS $5 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}$ (al) £1 each
2N 706 UNMARKED GOOD TRANSISTORS at 12 for 50 p .
MINIATURE ROTARY SWITCHES 2 Pole 4 way @ 20p, 3 Pole 3 Way @40p. 1 Pole way@ 40p

J. BIRKETT
 RADIO COMPONENT SUPPLIERS 25 The Strait, Lincoln LN2 1JF
 Tel. 20767.

Iyne latest it inovationt
 trom Sparkhrite

the quickest fitting $\backslash 11 \mid 11 /$
CLIP ON capacitive discharge electronic ignition in KIT FORM

Introductory SPECIAL OFFER £2 OFF Kit

Smoother running
Instant all-weather starting
Continual peak performance
Longer coil/battery/plug life
Improved acceleration/top speeds Optimum fuel consumption

Sparkrite X 4 is a high performance, high quality capacitive discharge, eiectronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $1 / 3 \mathrm{mins}$
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker prevents the unit firing if the points bounce open at high R.P. M. Contact breaker burn is siminated by reducing perform equally well with new old or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproot in this respect). The circuit incorporates a voltage requlated output for greatly improved cold starting. The circuit includes built in static timing light systems function light, and security changeover switch. All kits fit vehicies with coil/distributor ignition up to 8 cv linders
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 vear guaranteed transformer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions to assemble kit neg, or pos. earth and fully illustrated installation instructions
NOTE - Vehicles with current impulse tachometers (Smiths code on dial RVI) will require a tachometer pulse slave unit. Price $£ 3.35$ inc. VAT, post \& packing Electronic Design Associates, 82 Bath Street. Walsall, WS1 3DE.
e: (0922) 61479

Electronics Design Associates, Dept. PE4 82 Bath Street, Walsall. WS1 3DE. Phone : (0922) 614791 Name
Address

Phone your order with Access or Barclaycard

Inc. V.A.T. and P.P.

X4 KIT $£ 14-95 \mathrm{f} 12.95$	
TACHS PULSE SLAVE UNIT $\mathbf{£ 3 . 3 5}$	
Access or Barclaycard No.	

endose cheque: PO^{\prime} 's for

£
Cheque No.
Send SAE it brochure onty required.

MINI CONSOLES Ideal for small desk control panels and consoles. Moulded in orange, blue, black and grey ABS. Incorporates slots for holding 1.5 mm thick pcb's Aluminium panel sits recessed into front of console and held by screws running into integral brass bushes. MC $161 \times 96 \times 58 \mathrm{~mm} \quad £ 2.12(1.9)$ (includes VAT) MC $215 \times 130 \times 75 \mathrm{~mm}$ £2.94 (1.9) (Includes VAT) (Prices include VAT \& P.P.)	Stop wasting time soldering The NEW MW BREADBOARD accepts Transistors, LED's, Diodes, Resistors, Capacitors and all DIL packages with 6 to 40 pins	SC BOXES Easily drilled or punched, orange, blue, black and grey ABS. Incorporate slots for holding 1.5 mm thick peb's. Aluminium panel sits recessed into front of the box and held by screws running into integral brass bushes. $\mathrm{SC} 85 \times 56 \times 35 \mathrm{~mm} \quad 97 \mathrm{p}(1.9) \quad$ (Includes VAT) SC $111 \times 71 \times 48 \mathrm{~mm} \quad$ £1.29 (1.9) (includes VAT) SC $161 \times 96 \times 59 \mathrm{~mm} \quad \mathrm{f} 1.81$ (1.9) (Includes VAT) Add 25p per $£ 1$ order value for Post \& Packing
ECONOMY QUALITY LED's 50 for only $£ 5-100$ for only $£ 9$ Mixed bags, all sizes, various colours Full specification LED's also available Red (specify size) 75p per pack Green, Yellow, Orange (specify size) $£ 1.20$ per pack Packs contain 5 LED's, mounting clips and data	Includes slot-in Component Support Bracket and has 470 individual sockets, plus Vcc and Ground Bus Strips Price $£ 9.72$ (includes VAT \& P.P.) TYPE MP NEON INDICATOR Supplied with resistor for 240 Volts operation 150 mm leads, held in 6.4 mm hole by nut Red, Amber, Clear, Opal 20p each	240 VOLTS MINI HAND DRILLS Ideal for drilling pcb's, chassis etc as well as model making. Supplied with 3 collets that accept tools and drills with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ and $1 / 8^{\prime \prime}$ dia shanks. £9.72 (includes VAT \& P.P.) Accessory tools... 5 Burrs, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 1 / 8 \mathrm{th}$ Drills, 3/32" Collet Price £1.75 (Includes VAT \& P.P.)
TYPE A NEON INDICATORS	SEVEN SEGMENT DISPLAYS Economy quality Red, yellow and green Only 45p each Common Anode-0.3"-Left Decimal Full specification displays also available as above Red @ 98p each Green and Yellow @ $£ 1.35$ each. Data supplied with full spec. displays only.	RC100×62*25mm
12 VOLTS MINI HAND DRILL Ideal for drilling pcb, chassis etc as well as model making. Supplied with 2 collets that accept tools and drills with $3 / 32^{\prime \prime}$ and $0.50^{\prime \prime}$ dia shanks. £7.56 (Includes VAT \& P.P.)	Quantity quotations on request P.P. Note Unless included in price add 25p Post \& Packing for orders totalling under $£ 10$. All prices include VAT and are valid in UK only for 2 months from journal issue date Mithael Williams Electronits 47 Vicarage Av. Cheadle Hulme, Cheshire SK8 7JP	RC $112 \times 62 \times 31 \mathrm{~mm}$ 79 p 94 p 1.23 RC $120 \times 65 \times 40 \mathrm{~mm}$ 88 p 1.22 1.59 RC $150 \times 80 \times 50 \mathrm{~mm}$ 1.03 1.64 2.11 RC $190 \times 110 \times 60 \mathrm{~mm}$ 1.77 2.53 3.08 Polystyrene version in grey only, no slots, no integral brass bushes $R C(P) 112 \times 61 \times 31 \mathrm{~mm} 61 p$ All prices are 1.9 off, include VAT, but please add 25 p per $£ 1$ order value for Post \& Packing

BARGAIN PARCELS SAVE POUNDS

Huge quantities of electronic components must be cleared as space required. 1000 's of capacitors resistors, transistors. Ex equipment panels etc. covered in valuable components. Na time to sort Mubt sell by weight $7 \mathrm{lbs}-£ 4.95 ; 14 \mathrm{lbs}-£ 7.95 ; 28 \mathrm{lbs}-£ 12.00 ; 56 \mathrm{lbs}-£ 20.00 ; 112 \mathrm{lbs}$ £ 30.00 .
Handy Packs
4 aluminium boxes $128 \times 44 \times 38 \mathrm{~mm}$ ideal for signal injectors, etc. £1.00
100 miniature reed switches olarms, model railways, etc. $£ 3.30$ 15×2-pole reed relays an board operate at 12 volts E2.45.
6×6-pole 12 volt reed relays on board $£ 2.45$ High quality computer panels smothered in top grade camponents: 5 lbs $\mathbf{£ 4 . 7 5 \text { ; } 1 0 \mathrm { lbs } , ~}$ $€ 8.95$
Minioture edgewise panel meters 200 va . \& sd £1.
per pound. 100 assarted " p "
DE LUXE FIBRE GLASS PRINTED CIRCUIT ETCHING KITS
Includes 150 sa. ins copper clad f / g boord, ilb ferric chloride, I dala etch resist pen, abrasive cleaner 2 mini drill bits, etch tray and instructions/ only $£ 5.30$
 $40 p \mathrm{P} \& \mathrm{P}$ ON ALL ABOVE ITEMS. SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPLY, DEPT PE, 149A BROOKMILL ROAD, DEPTFORD SE8.

 SEND NOW FOR OUR FREE 20 PAGE ILLUSTRATED CATOLOGUE S.A.E. STAMPED PLEASE

KITS FOR SYNTHESISERS, SOUND EFFECTS
 COMPONENTS SETS include all necessary resistors. capacitors. semiconductors, potentiometers and transtormers. hardware such as most of these may be bought separately. Fuller detals of kits PCBs and parts are shown in our
 PHONOSONICS

 tists
CIRCUIT AND LAYOUT DIAGRAMS are supplied free with all PCBs designed by Phonosonics
PHOTOCOPIES of the PE texts for most of the kits are avallable-prices in our lists

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS. KITS AND COMPONENTS TO A WORLD-WIDE MARKET
P.E. MINISONIC Mk. 2 SYNTHESISER

A portable mains-operated Miniature Sound Synthesiser with keyboard circuits. Although having slightly fewe facilities than the large PE Synthesiser the functions offered by this design give it great scope and versatility Consists of 2 log VCOs. VCF, 2 envelope shapers. 2 voltage controlled amps. keyboard hold and cor nolse generator oscilput amp and mixer power supply sutput amp and mixer. pownt kits
Set of printed crrcuit boards
from 564.25
P.E. SYNTHESISER (P.E. Feb. 73 to Feb. 74)

The well acclaimed and highly versatile large-scale mains-operated Sound synthesilisis may be used with the Synthesiser to good advantage, notably P.E. Minisonic. Phasing Unit. Wind and Rain. Rhythm Generator. Sound Bender. Voltage Controlled Filter. Guitar Elfects Pedal and Overdrive. Fuzz. Tremolo and Wah-Wah units.
The Main Synitealser: PSU. 2 linear VCOs. 2 ramp generators. 2 input amps. sample hold. noise generator. reverb amp. ring modulator, peak level circuit. envelope shaper. voltage controlled amp. Full details in lists
Set of basic component kits
$\mathbf{8 8 3 . 0 3}$
$\mathbf{5 1 3 . 2 0}$
The Synthesleer Keyboard Cliculte (can be used without the Main Synthesiser to make an independent musical instrument) 2 logarithmic VCOs. divider, 2 hold circuits. 2 modulation amps, mixer. 2 envelope shapers and additional PSU. Full detalls in our hists.

Set of basic component kits
Set of printed circuit boards
548.18
57.66

GUITAR EFFECTS PEDAL (P E July 75)
Modulates the attack. decay and filter characieristics of an audio signal not only from a guitar but from any audio further modified by manual controls Possibly the most nteresting of all the low.priced sound effects units in our range. Circuit does not duplicate effects from the Guitar Overdrive Unit
Component set with special foot operated switches $\mathbf{~} 7$.59 Alternative component sel with panel mounting switches
$\{4.96$
$\{1.43$ Printed circuit board
.E. JOANNA (P.E. May/Sept. 75)
A five-octave electronic prano that has switchable alternative volcing of Honky-Tonk plano. ordinary plano. harpsichord, or a mixture of any of the three. logether with lacilities switching and susiain pedal switching The power amplifier ypically delivers 24 watts into 8 ohms. The PCBs have been edesigned by ourselves making improved use of the space available
Main power supply. tone generator. 61 envelope shapers. orcing and pre-ainp circuits
Se: of basic component kits for above
Set of printed circuit boards tor above Power amplifier
Printed circuit board for power amp

ELECTRONIC ORGAN

5 -octave electronic organ with 5 basic voices that can be used individually or together. 5 pitches (2ft. 4itt. 8 ft . 161 t . 32ft), variable attack. tremolo. vibrato. phasing and variable sustain. Details in our list.

ORGAN CONVERSION KIT

Converts the P.E Joanna electronic piano to also provide most of the facitities offered by the above electronic organ
Basic component set and PCB
$\{12 \cdot 34$

SYNTHESISER TUNING INDICATOR (P.E. July 77)
A simple 4 -octave frequency comparator for use with synthesisers and other instruments where the full versatility the P.E. Tuning Fork is not required.
Component and PCB (but excl sw.)
[7-45
GUITAR FREQUENCY DOUBLER (P.E. Aug. 77)
he circuit published Details in list

SEE OTHER PAGE FOR KEYBOARDS, AND OUR LISTS FOR OTHER COMPONENTS AND ACCESSORIES STOCKED

WIND AND RAIN UNIT

A manually controlled unit tor producing the above-named sounds
Component set (ricl PCB)
โ3-72
GUITAR OVERDRIVE UNIT (P E. Aug. 76)
Sophisticated versatile Fuzz unit. including variable and switchable controis affecting the fuzz quality whilst retaining the atlack and decay, and also providing fittering. Does no duplicate the effects from the Guitar Effects Pedal and can be used with it and with other electronic instruments.
Component set using dual slider pot
Component set using
Printed circuit board
c6. 86
56.20
56.52

fuzz UNIT

Simple Fuzz unit based upon PE Sound Design circuit Component set (uncl PCB)
c2. 03

TREMOLO UNIT

Based upon PE Sound Design crrcuit
Componen! set (incl PCB)
c3. 64
TREBLE BOOST UNIT (P.E. Apr. 76)
Gives a much shriller quality to audio signals fed through it
The depth of boost is manually adiustable.
Component set (incl PCB)
£2.40
P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones. A LED monitor clearly displays all beat note adiusiments. Idea for turing acoustic and electronic musical instruments alike

Main component set (incl. PCB)
Power supply set (inct PCB)
$\begin{array}{r}〔 15.59 \\ \\ \hline 7.03\end{array}$

DON T FORGET VAT!

Add $12 \frac{1}{2} \%$ (or current rate if changed) to full total of goods. post and handling. (Does not apply to export orders).

P.E. SYNCHRONOME (P E. Mar. 76)

An accented-beat electronic metronome. providing duple. triple and quadruple times with full conirol over the bea rate Can also be used as a simple drum-beat rhythm generator includes power supply

Component set (incl loudspeaker)
11.62
52.04

TAPE NOISE LIMITER

Very effective circuit for reducing the hiss found in most tape ecordings. All kits include PCBs
Slandard tolerance set of components
Superior tolerance set of components
E2. 96
$\mathbf{c 3 . 7 6}$
Regulated power supply (will drive 2 sets)

ENVELOPE SHAPER WITHOUT VCA (PE Oct 75)
Provides full manual control over attack. decay. sustain and release functions. and is for use with an existing voltage controlled amplifier
Component set (incl PCB)
ENVELOPE SHAPER WITH VCA (P.E. Apr 76)
This unit has its own voltage controlled amplifier and has full manual control over attack. decay. sustain and release unctions
Component set (incl. PCB)

TRANSIENT GENERATOR (P E Apr. 77

An envelope shaper. Without VCA. having the usual attack. decay, sustatn and release functions. and in addition it also programmed to imitect programmed
banio
Printed ant set
54.52
51.82

WAVEFORM CONVERTER

Slightly modified from a circuit published in a German edition of Elektor Converts a saw-tooth wavetorm into four different wavetorms sine-wave mark-space saw-tooth. regular triangle form, and squarewave with an externally ariable mark-spet ratio
Component set (incl PCB but excl sw s)
[8.19

VOLTAGE CONTROLLED FILTER (P E. Dec. 74)
Part of the PE Minisonic now released as an independent
Component set (incl. PCB) (Order as Kit 65.1)

RING MODULATOR (P.E Jan 75)
Part of the PE. Minisonic now released as an independent
kit for use with other synthesisers k 1 t for use with other synthesisers
Component set (incl PCB)
$55 \cdot 50$

NOISE GENERATOR (P.E. Jan. 75)
Pari of the PE. Minisonic now released as an independent kit ror use with other synthesisers.
Component set (incl. PCB) , Order as Kit 60-1)

SOPHISTICATED POWER SUPPLIES

A wide range of highly stabilised low noise power supply kits is available-details in our lists

MICROPHONE PRE-AMP (P.E. Apr. 77)

VOICE OPERATED FADER (P E. Dec. 73)
For automatically reducing music volume during talk-over -particularly useful for Disco work or for home-movie shows
Component set (incl PCB)
53.97

DYNAMIC RANGE LIMITER (P.E Apr. 77)
Automatically controls sound output to within a preset
Component set (incl. PCB)

EXPORT ORDERS are welcome, though we advise that a current copy of our list should be obtained before ordering as it also shows Export postage rates. All payments must be cash-with-order, in Sterling and preferably by Internatıonal Money Order or through an English Bank. To obtain list send 40 p.

AND OTHER PROJECTS

PHOTOGRAPHS in inis advertisement show two of our units contraining some of the P.E projects built from our kits and PCBs. The cases were buili by ourselves selection of other cases is avallable

LIST-Send stamped addressed envelope with all $U K$ requests for free list giving fuller details of PCBs. kits and other components.
OVERSEAS enquiries for list Europesend 20 p other countries-send 40 p

KEYBOAROS AND CONTACTS

Kimber-Allen Keyboards as required for many published circuits. Including the P.E. Joanna, P.E. Minisonic, and P.E. Synthesiser. The manufacturers claim that these are the finest moulded plastic keyboards avalable All octaves are C to C The keys are plastic, spring-loaded and Onted on a robust aluminium frame
 Joanna and PE Minisonic. Two-pole normaly Single-pole change-over (type SP as for PE Syninesiser Special contact assembly (type 4PS) having 4 poles. 3 of which are normally-open make-break contacts and the fourth is a change-over contact-this special assembly enables THE SAME KEYBOARD to be used with the PE Synthesiser PE Mintsonic and the PE Joanna simultaneously thus avoiding the cost of more than one keyboard See our list for other contacts

Contact	Each	3 Octave Set	4 Octave Set	5 Octave Set
SP	24p	¢ 8.88	¢11.76	£14.64
2 P	27p	[9.99	£13.23	£16.47
4PS	53p	¢19.61	¢25.97	¢32.33

PRINTED CIRCUIT BOARDS for use with the above contacts and thus eliminating most of the inter-wiring required, are avalable Details in our lists

```
MORE KITS!
NEW RHYTHM GENERATOR
Redesigned, improved and extended version of the PE
1974 design and including new automatic riythm
programme selector
TUNE-PROGRAMMABLE SEQUENCER
(PE Nov. 77) The new music unit currently being published
```


FORMANT SYNTHESISER

```
(Elekior Magazine 1977). Very sophisticated music synthesiser for the advanced constructor and for whom cost is secondary to performance.
GUITAR SUSTAIN UNIT
(PE Oct. 77)
Details in lists. Please send S.A E
```

SOUND-TO-LIGHT (P E Aurora) (P.E Apr-Aug. 71)
Four channels each responding to a different sound
most audio systems and lamp intensites Basic component set (excl thyristors) Printed circuit board for above Power supply
PCB tor power supply

CHANNEL SOUND-TO-LIGHT (P.E Apr 76)
A simple but effective sound-10-light controller capable of perating 3 lamps each of approximately 700 watts includes power supply. thyristors. and by-pass switches
$\$ 11.95$

DISCOSTROBE (PE Nov 76)
-channel light-show controller giving a choice of sequential. random, or full strobe mode of operation
Printed circuit board

BIOLOGICAL AMPLIFIER (PE Jan Feb 73)
Multi-function circuits that with the use of other external equipment can serve as lie-detector. alphaphone. cardiophone etc
Pre-Amp Module Component set (incl PCB) \&4.22 Basic Output Circults-combined component set with PCBs. for alphaphone. cardiophone trequency meter and visual foed-back lampdriver
circuits
£6.59 Audio Amplifier Module Type PC7

SEMI CONDUCTOR TESTER (P.E. Oct. 73)
Essential test equipment for the enterprising home constructor While stocks last
Set of resistors. capacitors. semiconductors. potentiometers, makaswitches and PCB 89.63 Panel meter $(500, \mu \mathrm{~A})$

PRICES ARE COARECT AT TIME OF PRESS. E. a. E. DELIVERY SUBJECT TO AVAILABILITY.

PHONOSONICS

The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.'

City and Guilds Cortificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour T. V. Servicing
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE.

NEW SEASON'S COMPONENTS

BRIDGE RECTIFIERS

SILICON 1 amp		
Type 50 VMS	Order No. $8 R 1 / 50$	Price
100 V RMS	BR1/100	£0. 22
200 RMS	8R $1 / 200$	${ }_{\text {co }}$
400 V RMS	BR1/400	c0. 36
SILICON 2 amp		
	8R2/50	60.45
100 V RMS	BR2/100	${ }^{\text {¢0. }} 48$
200 V RMS	BR2/200	${ }^{\text {f0. } 52}$
400 RMS	BR2/400	
1000V RMS	BR2/1000	${ }_{60} 68$

BOOKS BY BABANI

```
Purchase books to the value of f5.00 from the list below
and choose any 60p pak from this page FREE.
BP2 Handbook of Radio. TV & Industrial &
    Transmitting Tube & Valve Equivalents
BP3 Handbook of Tested Transistor Circuits
BP6 Engineers and Machinists Reference Tables
8P7 Radio & Electronic Colour Codes and Data Chart
    Beginners
BP44 Second Book of Transistor Equivaients
    Constructors Manual of Electronic Circuits fo
    the Home
    Parboractronic Circuils for the Amateu
1B Boys and Beginners Book of Practical Radio
    and Electronics
BP22 79 Electronic Novelty Circuits
BP24 5% 51 Projects Using IC741 Eloctronic Projects
gP26 Aado AntennaHandtook for (ong Distan
    Reception and Transmission
    Giant Chart of Radio Electronic Semiconductor
    and Logic Symbols
    Major Solid State Audio Hi-Fi Construction
    Projects
P32 How to Build Your Own Metal & Treasure
Locators
35 Handbook ofic & Renovation of Colour TV 
P36 50 Circuits Using Germanium, Silicon & Zener
BP37 50 Projects Using Retays. SCR's and TR|ACS
BP39 50 (FET) Field Effect Transistor Projects
    Coit Design and Construction Manual
    Radio, TV and Electrorics Data Book
    AF-RF Reaclance Frequency Chart for
    Constructors
    and Substitutes
    First Book of Hi-Filoudspeaker Enclosures
    Electronic Circuits for Model Railvays
    Audio Enthusiasts Handbook
    Solid State Power Supply Handbook
    Solid State Novelty Projects
    Accessories
    Solid State Short Wave Receivers for Beginners
    50 Projects Using IC CA3130
    50 CMOSIC Projects
M
RCC Resistor Colour Code Disc Calculator

\section*{BOOKS BY NEWNES}

No. 229 Beginners Guide to Electronics
Price \(£ 2.25 \dagger\)
Nô. 230 Beginners Guide to Television
Price £2. 25 t
No. 231 Beginners Guide to Transistors
Price \(\mathbf{f} \mathbf{2 . 2 5}{ }^{\dagger}\)
No. 233 Beginners Guide to Radio
Price \(£ 2.75\)
No. 234 Beg
Price \(£ 2.25 \dagger\)
No. 235 Electronic Diagrams
Price £1.80
No. 236 Electronic Components
Price f1.08
Price £1.08.
No. 238 Transistor Pocket Book.
Price \(\mathbf{£ 3 . 9 0 4}\)
No. 225110 Thyristor Projects Using SCRs \& Triacs
Price \(\mathbf{E 2} \mathbf{5 0}\)
No. 227110 COS/MOS Digital iC Projects For the Home
Price £2.25
No. 226110 Operational Amplifier Projects for the Home
Price \(\mathbf{£ 2} 501\)
No. 242 Electronics Pockér Book
Price \(\mathbf{£ 3 . 7 5 \dagger}\)
No. 23930 Photoelectric Circuits \& Systems
Price f 1 -80

\section*{CASES}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{ALUMINIUM BOXES. Made from bright ali., folded and screws. ach box complete with half inch deep lid} \\
\hline \(\stackrel{+}{N}\) & \(\xrightarrow{\text { Length }}\) & Width & Height & Price \\
\hline \[
\begin{aligned}
& 159 \\
& 169 \\
& 169
\end{aligned}
\] &  & 2 din
\(\substack{\text { in }}\)
in & & \\
\hline \[
\begin{aligned}
& 161 \\
& 162
\end{aligned}
\] & \({ }_{5}^{4 n}\) & \({ }_{4 i n}\) & \(1{ }^{1+\text { in }}\) & \({ }^{620^{2}}{ }^{\text {a }}\) \\
\hline +163 & \({ }_{\text {chen }}^{\text {din }}\) & \({ }^{2}\) & \({ }^{\text {com }}\) & 64p. \\
\hline 165 & 7 im & Sin & 2 2in & \({ }^{\text {f1, }} 1.04{ }^{\text {a }}\) \\
\hline 167 & \% & \({ }_{\text {¢ }}^{\text {¢in }}\) & \(\underset{\substack{\text { in }}}{\substack{\text { in }}}\) & - \({ }^{32}{ }^{32}\) \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{INSTRUMENT CASES. In two sections vinyl}} \\
\hline & & & & \\
\hline No. & Length & Width & Height & \\
\hline \({ }^{156}\) & (17in & 5 & & \({ }^{\text {c1. }} 180^{\circ}\) \\
\hline 158 & \(6{ }_{6} 6\) in &  &  & \({ }_{\text {c11.60* }}^{\text {¢12. }}\) \\
\hline
\end{tabular}
SPECIAL OFFER
AGFA CASSETTES

\section*{BALANCE/} TUNING
Size \(45 \times 22 \times 34 \mathrm{~mm}\)
Sensitivity \(100 / 0 / 100 \mathrm{U}\)
Sensitivity 100/0/100UA
Po. Price
1319


PANEL METERS


TRANSFORMERS
MINIATURE MAINS Primary 240 V


MINIATURE MAINS Primary 240 V
No.
\(\begin{array}{ll}\text { No. } & \text { Secondary } \\ 2021 & 6 \mathrm{~V}-6 \mathrm{~V} \text { 100mA } \\ 2022 & 9 \mathrm{~V}-0-9 \mathrm{~V} \text { 100ma }\end{array}\)
2023
\(12 \mathrm{~V}-0-12 \mathrm{~V} 100 \mathrm{~mA}\)
1 AMP MAINS Primary 240 V
No.
Secondary
\begin{tabular}{|c|c|c|c|}
\hline No. & Secondary & Price & \\
\hline 2026 & 6 V -0-6V1 amp & £2-80* & P. \& P. 45 p \\
\hline 2027 & 9V-0 9V 1 amp & £2.00* & P. \& P. 45 p \\
\hline 2028 & \(12 \mathrm{~V}-0-12 \mathrm{~V} 1 \mathrm{amp}\) & f2.60* & P. \& P. 550 \\
\hline 2029 & 15V-0-15V 1 amp & £2.75* & P. \& P 66p \\
\hline 2030 & 30V-0-30V 1 amp & £3.45* & P. \& P. 86 p \\
\hline
\end{tabular}

STANDARD MAINS Primary 240 V
amp, 1 apmp and 2 amp current rating. Secondary taps are
\(0-19-25-33-40-50 \mathrm{~V}\).
Voltages available by use of taps
\begin{tabular}{|c|c|c|c|}
\hline No. & Rating & Price & \\
\hline 2031 & \(\frac{1}{4} \mathrm{amp}\) & \(55.50{ }^{\circ}\) & P. \& P. 86 p \\
\hline 2032 & 1 amp & ¢6.60* & P.\& P.B6p \\
\hline 2033 & 2 amp & ¢8 40* & \& P. f \\
\hline
\end{tabular}
G.P. SWITCHING TRANS.

BSY27/28/95A. All usable devices. No open and shorts. ALSO AVAILABLE IN PNP similar to 2 N2 2906, BCY 70 .
20 for \(\mathbf{5 0 p} .50\) for \(£ 1,100\) for \(£ 1.80,500\) for \(£ 8,1,000\) for \(£ 14\).

When ordering please state NPN or PNP

\section*{JUST OUT - NEW EDITION BI-PAK CATALOGUE}

65p \({ }^{+}\)TO

\section*{WORLD SCOOP! JUMBO} SEMICONDUCTOR PAK Thyristors, ICs and Zeners Approx 100 ALL NEW AND CODED Approx 100 pieces. Offering the amateur a fantastic bargain
PAK and an enormous saving ORDER No. 16222
 PART NUMBER AND YOUR NAME AND

INTEGRATED CIRCUITS CMOS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & Price & Type & Price & Type & Price \\
\hline CD4000 & c0. 15 & CD4022 & f0.90 & CD4046 & f1.30 \\
\hline CD4001 & c0. 18 & CD4023 & f0. 20 & CD4047 & ¢1.10 \\
\hline CD4002 & c0.18 & CD4024 & f0-80 & CD4049 & f0. 55 \\
\hline CD4006 & C0. 98 & CD4025 & ¢0.20 & CD4050 & ¢0.55 \\
\hline CD4007 & £0.18 & CD4026 & £1.70 & CD4054 & f1.10 \\
\hline CD4008 & ¢0.98 & CD4027 & £0.60 & CD4055 & f1.40 \\
\hline CD4009 & £0.58 & CD4028 & £ 0.98 & CD4056 & ¢1.35 \\
\hline CD4010 & E0.58 & CD4029 & f1.15 & CD4069 & £0.40 \\
\hline CD4011 & f0. 20 & CD4030 & ¢0.55 & CD4070 & ¢0.40 \\
\hline CD4012 & ¢0. 20 & CD4031 & £2.20 & CD4071 & f0. 23 \\
\hline CD4013 & £0.52 & CD4035 & £1-30 & CD4072 & £0.23 \\
\hline CD4015 & £0.98 & CD4037 & ¢0.95 & CD4081 & f0. 20 \\
\hline CD4016 & £0.50 & CD4040 & f0.95 & CD4082 & £0.23 \\
\hline CD4017 & £0.98 & CD404 1 & £0.82 & CD4510 & £1.30 \\
\hline CD4018 & £1.00 & CD4042 & £0.82 & CD4519 & \(\mathbf{5 1 . 6 0}\) \\
\hline CD4019 & £0.55 & CD4043 & ¢0.98 & CD4516 & £1.40 \\
\hline CD4020 & £1.10 & CD4044 & £0.94 & CD4518 & £1.25 \\
\hline CD4021 & £0.98 & CD4045 & £1.40 & CD4520 & £1.25 \\
\hline \multicolumn{6}{|c|}{LINEAR} \\
\hline Type & Price & Type & Price & Type & Price \\
\hline CA3011 & f1.05* & MC1303L & ¢1.48* & 709 P & £0.25* \\
\hline CA3014 & £170* & MC1304P & £1.90* & UA710C & £0.40* \\
\hline CA3018 & £0.75* & MC1310P & ¢0 95* & 72710 & ¢0.30 \\
\hline CA3020 & £1.70* & MC 1312 P & & UA711C & f0.32* \\
\hline CA3028 & £1.02* & & £1.90* & 72711 & £0.32* \\
\hline CA3035 & £1.70* & MC1330P & & UA723C & £0.45 \\
\hline CA3036 & £1.35* & & \({ }^{\text {f1.20 }}\) & 72723 & ¢0.45 \\
\hline CA3024 & £1-50* & MC1350 & £1-20* & UA741C & f0.24* \\
\hline CA3043 & £185 \({ }^{\circ}\) & MC1351P & f1.20* & 72741 & £0.24* \\
\hline CA3046 & \({ }^{\text {£0.80* }}\) & MC1352P & £1.40* & 741 P & ¢0.20* \\
\hline CA3052 & f1 \(60^{\circ}\) & MC1456G & & UA747C & ¢0.70* \\
\hline CA3054 & £1.35* & & f1.40* & 72747 & £0.79* \\
\hline CA3075 & £1.50* & MC1466L & & UA748 & c0.35* \\
\hline CA3081 & £150* & & £4.50* & 72748 & ¢0.35* \\
\hline CA3089 & £2 \(10^{\circ}\) & MC1469R & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{SN76013N}} \\
\hline CA3090 & £4.25** & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{(14969 \(£\)}} & & \\
\hline CA3123 & £1.90* & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MC1496G \(\mathrm{£O.98}^{\text {. }}\)}} & & f1.75* \\
\hline CA3130 & ¢0.93* & & & \multicolumn{2}{|l|}{SN76023N} \\
\hline CA3140 & C0.90* & NE536 & £3-50* & & £1.75* \\
\hline LM301 & E0.39* & NE515A & £3.50 & SN76110 & ¢1.50* \\
\hline LM304 & £1.60 & NE540 & £1.50 & SN76115 & £1.90* \\
\hline LM308 & ¢1.40* & NE550 & \(£ 0.95\) & SN76660 & £0.75 \\
\hline LM309K & £1.50 & NE555 & £0.32 & SL414A & £1.95* \\
\hline LM320 5v & £1.50 & NE556 & ¢0.82 & TAA550B & ¢0.35 \\
\hline LM320-12 & & NE561 & £3.95* & TAA621a & £2.00* \\
\hline & £150 & NE562B & ¢3.95* & taA661a & £1.65* \\
\hline LM320-1 & & NE565A & £1.75* & TAD 100 & £1.30 \\
\hline & £1.50 & NE566 & ¢1.50* & tBA5400 & £2.20* \\
\hline LM320-24 & & NE567 & £1.80* & TBA6418 & £2.25* \\
\hline & E1.50 & UA702C & ¢0.46* & t8A800 & £0.80 \\
\hline LM3B0-14 & & 72702 & ¢0.46* & TBAB10S & £1.05* \\
\hline & f0.85* & Ua703A & ¢0.25* & TBAB20 & ¢0.80 \\
\hline LM381 & £1-55. & UA709C & f0.25* & tBa9200 & £3.40* \\
\hline LM3900N & f0.65* & 72709 & £0.46* & TCA270S \(£\) & £2 \(20^{\circ}\) \\
\hline
\end{tabular}
pe price


PACKING
Small orders Medlum orders Small orders Medlum orde 25p 50p 25p
num order \(\mathrm{E1}-00\) arge ord
\(75 p\) ARE ZERORATED

\section*{POSTAGE AND} 50p

DEPT. PE4, P.O. Box 6, Ware, Herts. COMPONENTS SHOP: 18 BALDOCK STREET, WARE, HERTS

Our price \(\mathbf{£ 1 . 6 0}\) Our price \(\mathbf{f 1}\) : 80 Our price \(\mathbf{£ 2 . 6 0}\)

Our price \(£ 1.00\) Our price £1.50 Our price \(£ 2.00\)

\section*{G.P.}

ES SIL
LIY-TESTED
eal for


\section*{ORDERING}

PLEASE WORD YOUR ORDERS EXACTLY AS PRINTED, NOT FORGETIING TO INCLUDE OUR PART NUMBER.

\section*{VAT}

ADD VAT AT \(12 \frac{1}{2} \%\) EXCEPT TO THOSE MARKED * WHICH ARE 8\%.


DEPT. PE4, P.O. Box 6, Ware, Herts

\title{
SAXON ENTERTAINMENTS LTD THE PIONEERS OF MODULAR DISCO/P.A. EQUIPMENT NOW OFFER PACKAGE DEALS AT INCOMPARABLE PRICES
}

\author{
CENTAUR STEREO DISCOS C/W LIGHT SHOW \& DISPLAY, TWIN SPEAKERS \& LEADS \\ \section*{Standard 100W} £225 or feposit \(£ 28.80\) \\ 12 Months e£21.18 or 24 Months © \(£ 11.81\) \\ \section*{Super 200W £275 \({ }^{\text {o fepensif }}\) E32.80} \\ 12 Months a \(£ 25.89\) or 24 Months @ \(£ 14.44\) \\ \title{
 £ 349 or Deposit \(£ 42.72\) \\ \\ 12 Months e \(£ 32.49\) or 24 Monthse \(£ 18.11\)
} \\  \\ illustration shows GXL Centaur System \\ These systems feature full mixing for two decks tape \& mic with monitoring facilities - override and are supplied complete with sound to lightsequencer, display, speaker leads etc. JUST PLUG IN AND GO! \\ BSR Decks - 17,000 Line Loudspeakers - Rugged Aluminium Trimmed Cabinets - Cue Light And Phones
Output - Slave Output - Deck Lights/Motor Starts (GXL)
}

\section*{MINI DISCO 100 WATT MONO SYSTEM £179.50 Deposit £24.66}

\section*{12 Months @ £16.95 \\ or 24 Months @ \(£ 9.45\)}

Similar in appearance to the Centaur and complete with loudspeakers and leads.

Headphones to suit any system
£7.50 EM507 Electret Mic
£ 15.00 ECM \(8^{\dagger}\) Electret Mic
Boom Stand
Carriage on all disco and PA systems £ 15.50 (Included in H.P. Prices)

\section*{10\% Deposit Terms \\ On All Orders Over £150-12 or 24 Months - Low Interest}
D.I.Y. MODULES FOR ALL DISCO/P.A. AMPLIFIERS
\begin{tabular}{|c|c|c|c|c|}
\hline SA308 30W 8 ohms 45V & £9.95 * & sppir fox & f10.90* & \\
\hline SA604 60W 4 ohms 50V & £13.25 &  & & \\
\hline 5460860 W 8 chims 65V & £14.25 &  & £13.50 & \\
\hline SAl204 120W 4 ohms 75V & £15.95 & sump & & \\
\hline SAl208 120W 8 ohms 95V & £21.00 & suphit for & £22.50 & \\
\hline SA2404 240 W 4 ohms 95V & £29.50 & Sumh foil & & \\
\hline , & D.C. 8 Outp & es fited & & \\
\hline
\end{tabular}

COMPLETE LIGHTING CONTROL AT YOUR FINGERTIPS!

\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Lighting Control Unit Mk II 4 kW Sequencer Sound Light Dimmers} & ¢44.50 \\
\hline * Automotic Level Integroted Logic & Module & ¢32.50 \\
\hline Circuitry & Panel & £2.95 \\
\hline Three Channel Sound to Light & & ¢26.75 \\
\hline \(3 \mathrm{~kW} \mathrm{1-240W} \mathrm{input} \mathrm{-} \mathrm{master}\) & Module & E19.75 \\
\hline Plus channel controls & Ponel & £2.95 \\
\hline
\end{tabular}

\section*{SPARES \& ACCESSORIES - LOUDSPEAKERS \& CABINETS} Rope Lights - Red or Multicolour \(£ 22.00\) Melos Echo Chamber \(£ 59.00\)
Rope Light Controller for up to \(120 \mathrm{f} £ 30.00\) Sirens: English Police, USA Police, £7.50*

Fuzz Lights-Red/Blue/Yellow/Green \(£ 22.80\) Destroyer, Alien Voice Simulator
£7.50 Magnetic Cartridge Equalisers
£3.50* Bulgin 8 way lighting plug/socket
\(£ 1.90\)
DISCO MIXERS - COMPLETE OR MODULAR
\(030000000000 \begin{gathered}\text { MONO OR STEREO } \\ \text { WITH AUIOFADE }\end{gathered}\)

Avoilable complete and reody to plug in or as an easy to connect module with all controls except monitor switch already fitted - full instructions supplied.
FEATURES INCIUDE
Twin Deck Mic \& Tape inputs Wide range bass 8 treble contrals Full headphone monitoring
Crasstade - Professianal stondord performance

MODULES
Mono module
£ 22.50
Stereo module
Manel \(\mathbf{E 3 . 9 5}\) COMPOS/sockets etc \(\mathbf{£ 5 . 5 0}\) COMPLETE MIXERS (with case) Mono 18V
Stereo 18 V Stereo 18 V
Mono mains
Mono mains
Stereo mains


\section*{STROBE UNITS}

Pro-Strobe 4-6 Joules \(£ 37.50\) Super Strobe 2-3 Joules \(£ \mathbf{2 2 . 5 0}\) (Pro-Strobe has external trigger facility).

PROJECTORS - PLUTO - NEW LOW PRICES!!! CHOICE OF WHEEL/CASSETTE
\begin{tabular}{llll} 
P150 150W Tungsten & \(£ 34.00\) & Liquid wheels & \(£ 7.50\) \\
P500 100W Q.I. & \(£ 69.50\) & Cassettes & \(£ 8.00\) \\
P500 250W Q.1. & \(£ 79.50\) & Picfure wheels from & \(£ 4.75\) \\
& & & \\
& & & \\
& &
\end{tabular}

P500 100W Q.I.
P500 250 W Q. 1 .
\(£ 34.00\)
E 79.50

Picfure wheels from \(\quad \mathbf{~} 4.75\) (Wide choice ovailable)

Complete with PIEZO horn columns fitted with 100 watt units (100 watt system illustrated)

\section*{100 Watt £149.50}

\section*{Deposit £17.26}

12 Months © \(£ 14.60\) or 24 Months @ \(£ 8.14\) Includes 4 Channel 100 Watt Amplifier with Treble, Bass and Master Controls plus Leads and Twin Piezo Horn Columns (shown on right).

\section*{200 Watt £225.00}

\section*{Deposit \(£ 28.80\)}

12 Months @ \(£ 21.18\) or 24 Months @ \(£ 11.81\) zsix Mixed Inputs plus Three Sets of Bass and Treble Controls plus Slave Output and Master Control.

\section*{ACCESSORIES}

\section*{Melos Echo Unit \(£ 59.00\)}

A high quality Cossette Tape Echo Unit giving long tape life, infinitely variable echo depth and speed control. Suitable for all mics. and instruments.
High quality Boom Stand £15.50. Floor Stand £9.90. ECM81 Condenser Mic. Removable Leod - Good Anti-Feedback £19.95.* EM507 Condenser Mic. - Good Value \(£ 15.00\). Phasers \(£ 19.80\)
D.I.Y. MODULES FOR P.A. SYSTEMS


Make your own mixer - Mono/Stereo - up to 20 channels with these, easy to wire modules - Available as PCB's or assembled on panels.

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Input Stoges Up to 20} & Mono PCB &  \\
\hline & \[
\begin{aligned}
& \text { Stereo } \\
& \text { PCB }
\end{aligned}
\] & [9.50 \\
\hline \multirow[t]{2}{*}{Mixer/Monitor (One only per system} & \[
\begin{aligned}
& \text { Mono } \\
& \text { PCB }
\end{aligned}
\] & \[
£ 5.95
\] \\
\hline & \[
\begin{aligned}
& \text { Stereo } \\
& \text { PCB }
\end{aligned}
\] &  \\
\hline
\end{tabular}
Mono (/W
ponel etc.
P8.95
\begin{tabular}{l} 
Stereo \(C / W\) \\
ponel etc \\
P \\
\hline
\end{tabular} 2.50

\begin{tabular}{c} 
Steeo c/w/ \\
ponel ete \\
\hline
\end{tabular} \(\mathbf{1 2 . 5 0}\)
Power supply for up to 20 chonnels
\(£ 9.50\)
\(\substack{\text { Blank } \\ \text { ponel }}\)
\(£ 1.00\)

Send for free brochure for complete specification

\section*{Saxon AP 100 Amplifier \(£ 45\)}

Four mixing inputs - loow into 4 ohms Wide range bass \& treble controls master - Twin outputs
Saxon 150 Amplifier \(£ 59\)
Four mixing inputs - 100 W into 8 ohms
150 W into 4 ohms - wide range bass
 \& treble controls + master

\section*{TO ORDER}

By Post Send your requirements with cheque crossed P.O. or top COD charge to address below - or just send your Access or Barclay Card Number - NOT THE CARD.
By Phone You may order COD. Access or Barclay Card.
Post \& Packing 50p on all orders except whete stated.

\section*{SAXON ENTERTAINMENTS LTD. 327 Whitehorse Road, Croydon, Surrey. \\ All Enquiries Large SAE Please Brochures on request}

\section*{AITKEN BROS.}

35, High Bridge, Newcastle upon Tyne Tel: 063226729


S-DEC
This, the most popular Board is designed solely for the use of discrete components and is particularly useful for basic educational purposes. (No. of Contacts 70 ) PRICE \(£ 2.43\) inc: VAT

T-DEC
This Board allows 2 TO5 or 1 DIL IC Station to be used and so is primarily intended for discrete work or for linear IC appllcation where considerable numbers of discrete components may be required
(No of Contacts: 208)
PRICE 24.30 inc . VAT
\(\mu\)-DEC 'A'
The \(\mu\)-Dec ' \(A\) ' is specially designed for ease of use with IC's and allows 2 OIL or 4 TO5 stations to be used but will accommodate discrete components with equal facility
No. of Contacts: 208
PRICE \(£ 4.31 \mathrm{inc}\). VAT
\(\mu\)-DEC ' \(B\) '
The \(\mu\)-DEC ' \(B\) ' is for similar uses as \(\mu\)-DEC ' \(A\) ' but has two 16 lead iC sockets as part of the Board.
(No. of Contacts: 208)
PRICE 87.55 inc. VAT

\section*{PANEL METERS}

Dims \(60 \mathrm{~mm} \times 45 \mathrm{~mm}\).
\(50 \mu \mathrm{amp}\). \(100 \mu \mathrm{amp}, 500 \mu \mathrm{amp}\). \(1 \mathrm{MA}, 5 \mathrm{MA}\) \(10 \mathrm{MA}, 50 \mathrm{MA} .100 \mathrm{MA}, 500 \mathrm{MA} .1 \mathrm{amp}, 2 \mathrm{amp}\) \(25 \mathrm{v} \mathrm{dc} .30 \mathrm{v} \mathrm{dc}, 50 \mathrm{v}\) ac, 300 vac . "S". "VU" \(50-0-50 \mu \mathrm{a}\). 100-0-100 \(\mu\) а, \(500-0-500 \mu \mathrm{a}\). PRICE 4.13 inc. VAT.

POTS* CAPACITORS, BOXES, INST. CASES, DIN PLUGS, RESISTORS, ETC., ALWAYS IN STOCK. POSTAGE AND PACKING 20p EXTRA. CATALOGUE AVAILABLE. PLEASE SEND \(40 p\).

\section*{Become a radio amateur.}

Learn how to become a radioamateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.


\section*{GREENWELD}

443 Milbrook Road Southampton SD1 ロHX Tel:(ロ703) 772501
BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU
* SAVE ON TIME - No delays in waiting for parts to come or
shops fo open!
* SAVE ON MONEY - Bulk buying means lowest prices - just com pare with others!
* HAVE THE RIGHT PART - No guesswork or substitution necessary!
ALL PACKS CONTAIN FULL SPEC BRAND NEW, MARKED DEVICES SENT BY RETURN OF POST. VAT INCI USIVF PAICFS
\(5 \%\) Kapactors \(5 \%\). 10 of each value 22 pF to 100 pF K002
K002 Extended range. 22 pF to \(0.1 \mu \mathrm{~F}\) 330 values 24.90
\(K 003\) Polyester capacitors. 10 each of these values: \(0.01,0.015,0.022\), \(0.33,0.47, \mathrm{~F}, 0.068,0.1,0.15,0.22\) \(0.33,0.47 \mu \mathrm{~F} .110\) altogether for \(£ 4.75\)
K 004 Myłar capacitors, min 100 V Koo4 Mylar capacitors, min 100 V
type. 10 each all values from 1000 pF type. 10 each all values from 1000
to \(10,000 \mathrm{pF}\). Total 130 for \(£ 3.75\) K005 Polystyrene capacitors.
 E12 series \(5 \% 160 \mathrm{~V}\). Total 370 for \&12.30
K006 Tantalum bead capacitors. 10 each of the following: \(0.1,0.15,0.22\), \(0.33,0.47,0.68,1,2.2 .3 .3,4.7,6.8\) \(\begin{array}{llll}\text { all } 35 \mathrm{~V} ; & 10 / 25 \quad 15 / 16 \quad 22 / 16 \quad 33 / 10 \\ 47 / 6 & 100 / 3 \text {. Total } 170 \text { tants for } £ 14.20\end{array}\) \(\mathrm{K007}\). working, small physical size. 10 each of these popular values: 1, 2.2, 4.7, \(10,22,47,100 \mu \mathrm{~F}\). Total 70 for \(£ 3.50\) \(K 008\) Extended range, as above, also including 220, 470 and \(1000 \mu \mathrm{~F}\). Total 100 for \(\$ 5.90\)
\(K 021\) Miniature carbon film 5\% resistors, CR25 or similar. 10 of each value from 10 R to 1 M . E12 series. Total 610 resistors, \(\mathbf{\Sigma 6 . 0 0}\)
K022 Extended range, total 850 resistors from 1R to \(10 \mathrm{M} £ 8.30\)
K041 Zener diodes. \(400 \mathrm{~mW} 5 \%\). to 36 V E24 series Tolal 280 for 10 36 V , E24 series. Total 280 for K042 A
K042 As above but 5 of each value

\section*{PC ETCHING KIT MK III} Now contains 200 Sq. ins. copper clad board, 1lb. Ferric Chloride. DALO etch-resist pen, abrasive cleaner, two miniature drill bits. etching dish and instructions. £4.15.

\section*{FERRIC CHLORIDE}

Anhydrous technical quality in 11b double sealed packs. Ib \(£ 1.0\)

\section*{SIRENS}

Work off \(4 \times\) HP7 batteries, emit very oud noise. Overall size \(110 \times 75 \times\) 60 mm . Use as Burglar Alarm in car. house, workshop etc. ONLY £1.95.

\section*{VERO OFFCUTS}

Pack A, All 0.1"; Pack B, All 0.15" Pack C. Mixed; Pack D, All 0.1" plain Each pack contains 7 or 8 pieces with a total area of 100 sq in. Each pack is \(£ 1.50\). Also avallable by weight. 1 lb
\(£ 4.20,10 \mathrm{f} \mathrm{f} \mathbf{3 2 . 5 0}\).
\(17 \times 3 \frac{3}{4}^{n}\) strips: \(0.1=2.20,10\) for \(£ 15\);
\(0.15^{\prime \prime}\) £1.96; \(0.1^{\prime \prime}\) plain £1.83.

\section*{TEXAS 741}

\section*{8 PIN DIL}

FULL SPEC.
100 off £19.50
25 off £5.50
TRANSFORMERS
Special - 12V 8A for only £4.00. 6-0 6 V 100 mA 85 p ; \(9-0-9 \mathrm{~V} 75 \mathrm{~mA} 85 \mathrm{p}\) 12-0-12V 50mA 85p; 100mA 95p; \(12-\) 20V 2.75 A \& 4.

VERO PLASTIC BOXES Protessional quality, two tone grey polystyrene with threaded inserts for mounting PC Boards
Type
\(2518120 \times 65 \times 40 \mathrm{~mm}\) \(2520150 \times 80 \times 50 \mathrm{~mm}\)
\(2522188 \times 110 \times 60 \mathrm{~mm}\) £2.24 £2. 72
Sloping front versions:
Type
\(2523220 \times 174 \times 100 / 52 \mathrm{~mm} \quad £ 6.90\) \(1798171 \times 121 \times 75 / 37.5 \mathrm{~mm} \quad £ 4.65\) Gen. purpose plastic potting box 71 Hand controller box, shaped for ease of use in the hand, \(94 \times 61 \times 23 \mathrm{~mm}\) of us
64p.

S-DECS \& T-DECS
S-DEC Breadboard
£2.25
RELAYSAND SOLENOIDS Open construction relay with 210 A c/o contacts, coil rated 24 V AC, but works well on 6VDC 60p 240 V AC enclosed. 11 piri plug in base. 3 10A c/o contacts. \(£ 1.20\) 240 V AC oper. 2 15A c/o contacts \(\$ 1.50\)
Solenord, rated \(48 \mathrm{~V} D C\), but work on 24 V . 10 mm push or pull action Single hole fixing. Size \(27 \times 18 \times\) 15 mm . Made by Varley. Only 40 p .
1977/8 CATALOGUE NOW AVAIL-ABLE-MUCH BIGGER AND BETTER, WITH 50p DISCOUNT VOUCHERS. ONLY 30 p plus 15 p

WIRE AND FLEX
Flex pack - 5 m of 5 diff colours, thick or thin. 25 m for 30 p .

\section*{POWER PACK}

Wood grained metal case \(90 \times 80 \times\) 75 mm containing mains transformer giving 6 V at \(200 \mathrm{~mA}, 2\) co-ax sockets, etc. Only \(\mathbb{E 1}\).

\section*{EDGE CONNECTORS}

Special purchase of these 0.1 pitch double-sided gold plated connectors enables us to offer them at less than \(\frac{1}{3}\) rd their original list price! 18 way 41p 21 way 47p 32 way 72 p 40 way 90 p 49 way 111 p.

\section*{SOLAR CELLS}

As used on space labs etc., these tiny cells give \(50 \mu \mathrm{~A}\) at 05 V in sunlight. ldeal for powering small C-MOS projects etc. Can be banked for
greater power output. Size 19 greater power output. Size 19 100 for \(£ 25\).

CALCULATOR CHIP Type C500 by GI-8 digit 4 function + constant. Multiplexed for simple keyboard interfacing. Supplied with comprehensive data and 24 pin IC socket. Only £1.50.
DARLINGTONCOMP. PAIR
Motorola type BD695A and BD696A 45V 8A 70W - gain 750 @ 4A PNP. NPN pair. Only E1.50.

MISCELLANEOUSIC'S
All supplied with data
MC3302 Quad comparator \(£ 1.20\). TT7105 LED Digit driver 8 for \(\varepsilon 1\). 710 TO99 case Diff. comparator 40p. MC1469R Voltage reg. \(£ 1.50\). ZN1034E Precision timer \(\mathbf{\Sigma 2 . 2 5}\). LM1303 Dual stereo preamp \(£ 1.40\). 733 Diff. video amp E1.20. LM301 Op amp 40p. ITT326 \(2 \times 2 \& 2 \times 3 \mathrm{i} / \mathrm{p}\) TTL nand gate. 10 for £1. SLD2128 Dual 128 bit static shift reg. \(£ 1.50\). Our retal shops at 21 Deptiord 2009) and 38 Lower Addiscombe Road, Croydon (01-688 2950) stock Road, Croydon (01-688 2950) stock
some of the advertised goods for personal callers only. Aing them for details.
All prices quoted include VAT and UK/BFPO postage. Most orders despatched on day of recelpt. SAE with VALUE E1. Otficial orders accepted from schools, etc (Minimum invoice charge I5) Export/wholesale enquiries weicome. Wholesale list now available for bona-fide traders. Surplus components always wanted


FERRANTI SEMICONDUCTORS WE ARE THE EXPERTS!
 \(\begin{array}{llllllllll}\text { BC415 } & \text { 17p } & \text { ZS178 } & \text { 54p } & \text { ZTX212 } & \text { 15p } & \text { ZTX384W } & \text { 24p } & \text { BD700"f1.28 } \\ \text { BFS60 } & \text { 15p } & \text { ZS271" } & \text { 23p } & \text { ZTX213 } & 15 p & \text { ZTX450 } & \text { 16p } & \text { MC1310p } & \mathbf{f 1 . 8}\end{array}\) \(\begin{array}{lllllllllll}\text { BFS61 } & 15 p & \text { 2TXA20 } & 10 p & \text { 2TX214 } & 17 p & \text { 2TX550 } & 16 p & \text { MC1357PQ } & \mathbf{1 1 . 6 5} \\ \text { BFS97 } & 15 p & \text { ZTX107 } & 11 p & \text { 2TX239 } & 10 p & \text { 2TX4403 } & 16 p & \text { SN76660N } & & 75 p\end{array}\) We can supply any FERRANTI semiconductor device. SAE for Quotation.
ZNAl16E* £6.00 ZN1040E* £7.50 ZN1034E* £1.80 ZN424E \(\mathbb{C 1 . 2 0}\) PE DIGITAL VOLTMETER (April 77) Send SAE for dur special prices

\section*{PE TV SOUND SEPARATOR}

Complete set of semiconductors \(\mathbf{2 2} \mathbf{3 0}\), High quality glass fibre p.c.b. \(\mathbf{~} 1\) POS AGE AND PACKING 15p per order. Orders over \(£ 5\) post free. All device are tof grade, brand new and to full manufacturer's spec. We do not sell seconds or rejects. Send S.A.E. Oor our data sheet and price list
Prices do not include VAT-add \(8 \%\) to items marked*, and \(12 \frac{1}{2} \%\) to all
DAVIAN ELECTRONICS
(mall order only)
13 Deepdale Avenue, Royton, Oldham OL2 6XD

\section*{24 HR. CLOCK/APPLIANCE TIMER KIT}


\begin{abstract}
Switches ony appliance of up to 1 kW on and oft o Clock/Applionce \({ }^{\circ}\) doy. KIT contains: AY-5-1230 Clock/Appliance Timer IC, \(0.5^{\prime \prime}\) LED display, moins
supply, dispotay 1 driven, swithes, \(1 E D\), triac supply, disphayldrvers, switches, LEDs, triac, complios Special white box \((56 \times 131 \times 71 \mathrm{~mm})\) C14.8 Apecial white box ( \(56 \times 131 \times 71 \mathrm{~mm}\) ) with red Acrylic window - undritted \(£ 2.38\)
\end{abstract}

\section*{TOUCH CONTROLLED LIGHTING KITS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{\begin{tabular}{l}
These KITS replace conventional light switches and contral 300 W of lighting. No mains rewiring required. Insulated touch plates. Complete with easy to follow instructions. \\
TSD 300 K - TOUCHSWITCH and DIMER combined. ONE touchplate to swith light on or off. Brightness controlied by small knob. \(\quad \mathbf{£ 5 . 6 2}\) \\
TS300K - TOUCHSWITCH. TWO touch plates. One for ON one for OFF. \(\mathbf{~ 4 . 3 2}\) \\
TSA30OK - AUTOMATIC TOUCHSWITCH. ONE touch plate. Touch for ON and light stoys on for preset time (varioble from 2 secs. to \(3 \frac{1}{2}\) mins.). Ideol for stairs and hall. \(£ 4.32\)
\end{tabular}} \\
\hline \multicolumn{10}{|l|}{LD300K - 300W LIGHT DIMMER KIT. Replaces conventional light switches. \(\mathbf{E 3 . 0 2}^{\text {a }}\)} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{AY.5.1230 Clock/Appliance Timer I.C.
UM3911 Thermometer/Temperature Conirol IC (with data)
NE 1.08
NE555 Timer I.C. 8 pin dil 39 p ( 3 for f 1.08 )
741 Op. Amp. I.C. 8 pin dil 26 ( 5 for fI .08 )}} & \multicolumn{3}{|l|}{TRIAC BARGAINS} \\
\hline & & & & & & & \multicolumn{3}{|l|}{\multirow[t]{7}{*}{\begin{tabular}{lr} 
\\
400V Plastic & *isolated tab \\
3 A & 68 p \\
6.5A with Irigger** & 86 p \\
\(8.5 \mathrm{~A} *\) & 85 p \\
12A & 91 p \\
16A & 112 p \\
20A & 178 p \\
25 A & 192 p \\
DIAC & 23 p
\end{tabular}}} \\
\hline & & 50 & & & & & & & \\
\hline BC148 & p & 2N3055 & 43p & & & 2 & & & \\
\hline BC158 & 1 p & TIP31A & 54p & 1 N & & 5 p & & & \\
\hline BC182L & p & TIP32 & 54p & IN4 & & 5 & & & \\
\hline & & & & & & & & & \\
\hline \multicolumn{7}{|l|}{CMOS LOW PRICES} & & & \\
\hline 40001 & & 4012 19p & 4023 & 19p & & 49 & C1060 5A/400V & & 54p \\
\hline 4001 19p & & 4013 55p & & & & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{MINI MAINS TRANSFORMERS}} \\
\hline 40021 & & 4015 98p & & & & 162p & & & \\
\hline 40071 & & 4016 55p & & & & 162p & \multirow[t]{2}{*}{\[
\begin{gathered}
6.0 .6 \mathrm{~V} 100 \mathrm{~mA} \\
12.0 .12 \mathrm{~V} 100 \mathrm{~mA}
\end{gathered}
\]} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{array}{r}
92 p \\
103 p
\end{array}
\]}} \\
\hline 40111 & & 4017 98p & & 54p & & \(61 p\) & & & \\
\hline \multicolumn{3}{|l|}{OPTO ELECTRONICS} & \multicolumn{7}{|r|}{\multirow[t]{5}{*}{\begin{tabular}{l}
C280 Polyester Copacitors 250 V d.c. (values in \(\mu \mathrm{F}\) ) \\
\(.015 p ; .022, .033,0.47,0.686 p ; 0.17 p ; .58 p ; .229 p ;\) .33 12p; . 47 13p; 68 19p; 1.0 22p; 2.2 39p. \\
RESISTORS . \(33 \mathrm{~W} 5 \% 22 \mathrm{ohm}\) to 10 M ohm \\
Push Button, push to make
\end{tabular}}} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{lr}
\(0.2^{\prime \prime}\) & Red LED \\
\(0.2^{\prime \prime}\) & Green LED \\
\(0.2^{\prime \prime}\) Yellow LED & \(11 p\) \\
DLI27 Dual \(0.5^{\prime \prime}\) Display & 23 p \\
E & 27 p \\
\hline
\end{tabular}}} & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline \multicolumn{10}{|c|}{QUANTITY DISCOUNTS ON REQUEST} \\
\hline \multicolumn{4}{|c|}{PRICES VAT INCLUSIVE.} & DD & P8P & & \multicolumn{3}{|l|}{AIL ORDER ONLY TO:} \\
\hline \multicolumn{10}{|c|}{\begin{tabular}{l}
T.K. ELECTRONICS (PE) \\
106 STUDLEY GRANGE ROAD, LONDON, W7 2LX.
\end{tabular}} \\
\hline
\end{tabular}

\title{
THE MOST COMPREHENSIVE RANGE OF TUNER MODULES EVER DISPLAYED
}

HF 7948 FRONT END


TECHNICAL CHARACTERISTICS:
Output terminal for digital frequency meter; Antenna impedance - 75 to 300 Ohms: Frequency ranges 87.5 to 104 MHz or to 108 MHz ; Sensitivity -0.9 uV 26 dB signal to noise ratio +75 kHz deviation; Intermodulation 80 dB Image rejection -60 dB ; Tuning voltage - 1 V to 11 V ; Total gain 33 dB ; Intermediate frequency -10.7 MHz ; Power supply voltage +15 V ; Power consumption 15 mA ; Dimensions \(104 \times 50\) mm .

TECHNOLOGY:
Double sided epoxy printed circuit board with plated through holes. Dual gate effect transistors; Silvered coils.

FI 2846 IF AMP AND DECODER


TECHNICAL CHARACTERISTICS:
Intermediate frequency -10.7 MHz . IF Bandwidth -280 kHz ; Signal to noise ratio -70 dB with 1 mV input; Distortion - mono \(0.1 \%\), stereo \(0.3 \%\); Sensitivity -30 uV up to the 3 dB limit; Channel separation -40 dB at 1 kHz ; Pass band -20 to \(15,000 \mathrm{~Hz}\); Rejection at 38 kHz greater than 55 dB ; Am rejection - 45 dB ; De-emphasis - 50 to \(75 \mu \mathrm{~s}\); Pilot capture at \(19 \mathrm{kHz}+4 \%\); Channel matching within less than 0.3 dB ; Output impedance - 100 Ohms; Output voltage -500 mV ; Phase locked loop stereo decoder; Output for LED VU-meter; Null indicator: Outputs for AGC AFC and interstation muting; Consumption -55 mA LEDs extinguished; 100 mA LEDs illuminated; Power supply - 15V; Dimensions \(195 \times\) 76 mm .

\section*{CIRCUIT TECHNOLOGY}

Epoxy printed circuit board; Monolithic integrated circuits; ceramic filter.

ALS 1.500
STABILISED POWER SUPPLY

£2.53
nc. VAT P\&P

TECHNICAL CHARACTERISTICS:
Output voltage - 15V; Max. output current - 500 mA ; Thermal coefficient less than \(1 \mathrm{mV} / \mathrm{C}\); 15 V power supply for modules HF 7948 and FI 2846; Supply protected against short circuit (power and current protection); Dimensions \(-65 \times 55 \mathrm{~mm}\).

\section*{TECHNOLOGY:}

Double sided epoxy circuit board; Monolithic integrated circuit

\section*{OPTOELECTRONIC OPTIONS}
\(£ 8.06\)

-

£13.50
inc. VAT P\&P
ILLUMINATED POINTER
Station finder

£22.74
Inc. VAT P\&P
FREQUENCY METER
Digital display of received
station frequency.

\section*{LED VU-METER}


NUMERICAL DISPLAY
Pre-selected channel number

\title{
The Sinclair PDM35. A personal digital multimeter for only \(£ 29.95\) \\ \\ Technical specification
} \\ \\ Technical specification
}


\section*{Now everyone can afford to own a digital multimeter}

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PIMM35 gives you all the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedence. Yet at \(\lesssim 29.95\) \(\left(+8 \%\right.\) VA' \(\left.^{\prime}\right)\), it costs less than you'd expect to pay for an analogue meter!

The Sinclair PIM135 is tailormade for anyone who needs to make rapid measurements. I)evelopment engineers, field service engineers, lab technicians, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the PDM35 is perfectly suited for hand work in the field, while its angled display and optional AC power facility make it just as useful on the bench.

\section*{What you get with a PDM35}
\(31 / 2\) digit resolution,
Sharp, bright, easily read LEE)
display, reading to \(\pm 1.999\).
Automatic polarity selection.
Resolution of 1 mV and 0.1 nA
( 0.00014 A ).
Direct reading of semiconductor forward voltages at 5 different currents, Resistance measured up to 20 Mr . \(1 \%\) of reading accuracy.

Operation from replaceable battery or AC adaptor.
Industry standard 10 Ms 1 input impedance.

\section*{Compare it with an analogue meter!}

The PIDM 35 's \(1 \%\) of reading compares with \(3 \%\) of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average.

The PDDM 135 will resolve 1 mV against around 10 ml for a comparable analogue meter - and resolution on current is over 1000 times greater.

The PI)M135's DC input impedance of \(10 \mathrm{Ms} /\) is 50 times higher than a \(20 \mathrm{kt} /\) /volt analogue meter on the 10 V range.

The PDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movement to damage. And you can resolve current as low as 0.1 nd and measure transistor and diode junctions over 5 decades of current.
DC. Volts (4 ranges)

Range: 1 ml tolot V .
Accuracy of reading \(1.0 \% \pm 1\) count.
Note: 10 M1sinput impedance.
AC Volts ( \(40 \mathrm{~Hz}-5 \mathrm{kHz}\) )
Range: 1 1 to 500 V :
Accuracy of reading: 1.0\()^{1 \%} \pm 2\) counts.
DC. Current ( 6 ranges)

Range: 1 nd to 200 mid .
Accuracy of reading: \(1.0 \% \pm 1\) count. Note: Max resolution 0.1 n .

\section*{Resistance (5 ranges)}

Range: 111 to 20. M1.
Accuracy of reading: \(1.5^{0} \pi \pm 1\) count Also provides 5 junction-ten ranges.
Dimensions: 6 in \(\times 3\) in \(\times 1 / 2\) in.
Weight: \(61 / 20 \%\).
Power supply: 9\' battery or Sinclair AC:adaptor.
Sockets: Standard 4 mm for resilient plugs.
Options: AC.adaptor for 240 V
50 Hz power. De-luxe padded carrying wallet. 30 kl prohe.

\section*{The Sinclair credentials}

Sinclair have pioneered a whole range of electronic world-firsts - from programmable pocket calculators to miniature TV's. The PIDM35 embodies six years experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.
Tried, tested, ready to go!
The Sinclair l'l MM 35 comes to you fully built, tested, calibrated and guaranteed. It comes complete with leads and test prods, operating instructions and a carrying wallet. And getting one couldn't be easier. Just fill in the coupon, enclose a cheque/ P() for the correct amount usual 10-day money-back undertaking, of course , and send it to us.

Sinclair Radionics l td, London Road, St Ives, Huntingdon, Cambs., PE17 +HJ, England. Regd No: 699483.

\footnotetext{
To: Sinclair Radionics Ltd, London Road, St Ires, Huntingdon, Cambs., PE:17.411]. PE/4 Please send me utyllloM35s \(\pi, \ell 33.00\) inc \(\{2.40\) VAT and \(65 \mathrm{p} \mathrm{P} \$\) I')
each:..................................................
carrying case (s) (T) \(C 3.00\) (inc VAT
and \(P \& P\) ) each:...............................
240 V 50 Hz power (01 \(£ 3.00\)
(inc VAT and P\&P) each:.
I enclose cheque/PO made payable
to Sinclair Radionics Led for
(indicate total amount):...................... \(\mathcal{L}\) -
I understand that if I am not completely satisfied with my PDM 35 , I may return it
within ten days for a full cash refund.

}

\section*{DESIGN IDEAS}

THE STRENGTH of P.E. is mainly based on the readers and this point is amply demonstrated by the Extra Design Ideas contained in this issue, in the form of seven pages of Ingenuity Unlimited. We make no apologies for presenting a product you have partly made yourselves-and of course charging 45p for it! Don'r forget that we pay, quite handsomely some may say, for every original idea published.

We feel that the I.U. section of P.E. is outstanding in the quality and, yes, ingenuity of the submissions. We must hasten to add that we do not put them to the test of actual construction and they are presented as design ideas for you-the ever inventive readers-to build upon or modify for your own ends.

However when you have modified and incorporated why not give others a chance to benefit from your further experiments by returning the design to us for further inclusion? We get many, many I.U.'s submitted and a good proportion of them are published, but if one of yours is, or has been, rejected do not despair-it may only have been
because we already had similar ideas on file-by all means have another bash!

Very often we find that good and unusual projects come from I.U. ideas and we're always on the lookout for those too, so keep that in mind when you've built the latest "computer controlled egg timer" or "golf ball finder"!

\section*{READOUT}

Even if you have no ideas to send we always like to see readers' comments on projects, features, the magazine in general and any other topical "electronic" subjects. Our Readout page appears irreguiarly but with some lively correspondence and comment from you we could improve on the regularity and present an interesting, topical and possibly controversial page for and from you each month. Such subjects as C.B. in Britain, hobby computers, electronic games, even the front cover of P.E. must at one time or another have aroused interest or disgust in some of you, so why not send us your views, get them aired in public and see how others feel.

If you want to start a computer club or arrange electronics evening classes
in your area we can help by publicising that too. Take the trouble to write and say what you feel, we can't promise we will publish your letter but we will try and air as many views as possible, even if we don't agree with them. Readout could be such an interesting feature and we are sure most of you enjoy reading it when it does appear; if you don't, let us know!

\section*{CATALOGUES}

The presentation of another catalogue within P.E. will no doubt meet with the approval of all readers. It is interesting to note the vast range of items stocked by many companies that are, and can, never be advertised; they only appear in the catalogue. For this reason we recommend you to investigate, not just those presented with P.E., but the catalogues of all our advertisers. We are sure you will find it worthwhile.

For those regular readers who did not read this page last month the colour is here to stay. We hope you like it, we feel it will improve our presentation. It is, in fact, just one of a number of moves to improve the product.

Mike Kenward

\section*{EDITORIAL \\ EDITOR}

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
Alan Turpin PRODUCTION EDITOR
David Shortland TECHNICAL SUB EDITOR

Jack Pountney ART EDITOR
Keith Woodruff SENIOR ARTIST
George Dilkes SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR Phone: 01-261 5000

Editorial Offices:
Westover House
West Quay Road, Poole.
Dorset BH15 1JG
Phone: Editorial Poole 71191

\section*{ADVERTISEMENTS ADVERTISEMENT MANAGER}

\author{
D. W. B. Tilleard
}
P. J. Mew REPRESENTATIVE
C. R. Brown CLASSIFIED MANAGER

\section*{Subscriptions}

Copies of PE are available by post, inland or overseas, for \(\mathbf{£ 1 0 . 6 0}\) per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RHI6 3DH.

\section*{Back Numbers and Binders}

Copies of most of our recent issues are available from: Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SEI OPF, at 65p each including Inland/Overseas D \& p.

Binders for PE are available from the same address at \(£ 2.85\) each to UK addresses, \(\mathbf{\$ 3 . 4 5}\) overseas, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Cheques and postal orders should be made payable to IPC Magazines Limited.

\section*{Letters}

Queries regarding articles published in PE should be addressed to the Editor, at the Editorial Offices, and a stamped, addressed envelope enclosed. We cannot undertake to answer questions regarding other items, nor to answer technical queries over the telephone.

\title{
marrei PLACE
}

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

\section*{PCB PRODUCTION KIT}

An easy way to produce a number of p.c.b.s is to use master artwork and expose the circuit design onto the copper clad board using an ulltraviolet exposure unit. All the necessary materials for this method of p.c.b. production have been available for sometime. Now a company called Mega Electronics Limited have introduced a complete p.c.b. kit. This kit enables the user to produce his own printed circuit boards, right from the preparation of the artwork to the finished circuit board.
The kit, which is called Photolab, consists of the ultraviolet exposure unit, drafting aid and film, positive resist coated epoxy glass laminate sheets, deloping and etching trays, labels, a high-speed drill and all the necessary developers.
This unit can handle boards up to \(9 \times 6\) in and is priced at \(£ 44.50\) complete.
For further information contact Mega Electronics Ltd., 9 Radwinter Road, Saffron Walden, Essex CB11 3HU.

\section*{ELECTRONIC MULTIMETER}

The Miselco "Tester Electronic" from Alcon Instruments is a 48 range instrument constructed with "Self Service" in mind. This facility allows a damaged board or movement to be quickly and easily replaced by the user.

The instrument offers a \(1 \mathrm{M} \Omega / \mathrm{V}\) sensitivity for both a.c. and d.c. except on the 300 V and 1 kV ranges where it is \(100 \mathrm{k} 3 / \mathrm{V}\).

Accuracy is 2.5 per cent on a.c., 1.5 per cent on the d.c. and resistance ranges. The very clear scaleplate includes an anti-parallax mirror and a centre zero scale for galvanometric and null detection applications.
Maximum current measurement is 1 amp f.s.d. on a.c. and d.c. whilst there are optional high voltage probes which extend the voltage range to 3 kV on both a.c. and d.c. or 30 kV on d.c. only. Five resistance ranges cover \(10 \mathrm{k} \Omega 2\) f.s.d. to \(100 \mathrm{M} S 2\) f.s.d. and power measurements can be made from -70 dB to +51 dB .

An optional built in signal injector is capable of providing a 1 kHz modulated 500 kHz signal at 20 V peak-to-peak, so rich in harmonics, as to be detectable up to 500 MHz .

The Tester Electronic, complete with cartying case and leads costs \(£ 48.20\) exclusive of VAT.

For further information contact Alcon Instruments Limited, 19 Mulberry Walk, London SW3 6DZ.

\section*{LOGIC ANALYSER}

A new modular instrumentation system available from Tektronix UK Limited enables any oscilloscope or X-Y monitor with more than 500 kHz bandwidth to be converted into a versatile logic analyser or word recogniser.

The LA501 logic analyser system incorporates 4096 bits of storage, which may be used as four channels of 1024 bits, eight channels of 512 bits or 16 channels of 256 bits according to the required application.

On the oscilloscope screen, stored data is displayed in the form of a timing diagram, in groups of four. Each trace displays high and low logic states and a magnifier provides the capability to zoom in on any segment of the timing diagram. Channel to channel timing comparisons are simple because any trace can be moved vertically and positioned next to any other.

The WR 50116 bit paraliel word recogniser with digital delay produces trigger pulses when a preselected parallel word occurs, giving fast access to almost any unique word in the data stream.

For further information contact Tektronix UK Ltd., Beaverton House, P.O. Box 69, Harpenden, Herts.

\section*{NEW CASSETTE TAPE}

An iron oxide tape, Ferro Super LH1, has been developed by BASF in Germany to give the optimum performance on the widest possible range of Japanese recorders using high bias currents in the record head.

Cassette recorder manufacturers in Japan have moved away from the DIN standard to a high bias situation. The standard was established by the DIN Committee with Philips, the inventors of the compact cassette. However, manufacturers have not adhered to the standard, each one preferring to choose his own personal bias setting.

The majority of high bias recorders have bias settings in the range of 1.5 dB to 2 dB . Using this range as its datum, BASF developed Ferro Super LH1. The bias settings are midway between 1.5 dB and 2.0 dB making it suitable for a wide range of high bias recorders.

The tape is available in C60, C90 and C120 cassettes, with a suggested retail price of \(£ 1 \cdot 66, £ 2 \cdot 22\) and \(£ 2 \cdot 90\) (exc. VAT at 8 per cent) respectively.

\section*{ALARM CALCULATOR}

The latest calculator in the Casio range is the AQ810 alarm computer. This versatile unit has the normal range of calculating functions plus an alarm clock and two count down timers. It can be used as a calculator whenever required, irrespective of the timing mode it is in.

The calculator covers the four basic functions, square/powers, square roots, automatic access to memory, percentage and time calculations. The capacity of the unit for time calculations is 99 hours 59 mins 59 secs.


The clock can be used in the 12 or 24 hour mode and the alarm will sound for 10 secs after which it will automatically clear itself.

The two count down timers sound the alarm after a predetermined time period has elapsed, timer I automatically clears itself and timer II will repeat itself everytime the preset period has elapsed.
The accuracy of the clock is within \(\pm 3\) secs per day, it has a liquid crystal display and the unit gives approximately 3000 hours continuous operation on two silver oxide batteries.
The calculator is housed in an attractive carry case and really is just the right size for the pocket. The flip top case allows rapid operation of the unit.
The calculator costs \(£ 19.95\) inclusive of VAT, post and packing and further details can be obtained from Tempus, Talk of the Town, 19-21 Fitzroy Street, Cambridge CB1 1EH.

\section*{PULSE GENERATOR AND P.S.U.}

The setting up of different types of power supply units for operating t.t.l., CMOS and op amps can be both time consuming and awkward.

The latest development of Mechtric Engineering Ltd. overcomes this problem by combining the essential power supplies necessary for cmos, t.t.l. and op amps together with a pulse generator. The power supplies and generator outputs are all protected against short circuits.

The cmos supply is variable from \(4-16 \mathrm{~V}\) d.c., the t.t.l. is 5 V d.c. and the balanced op amp supply is variable from \(6-21 \mathrm{~V}\) d.c.
The instrument has two square wave outputs one leading the other by 90 degrees with a frequency range of 0.45 Hz to 500 kHz .

The price of the instrument is \(£ 198.00\) excluding VAT and further details can be obtained from Mechtric Engineering Ltd., 12 Brunel Road, Manor Trading Estate, Benfleet, Essex SS7 4PS.


Bench Power Supply LPU102 ELECTRONIC KITS

A new range of Leader electronic kits is now available from Arrow Electronics Limited. The range which includes a digital clock, bench and laboratory power supply and a test bench oscillator have been extensively tested and are of guaranteed "bug proof" design.

With each kit is a comprehensive manual of building instructions, fully finished case/chassis including all the necessary nuts and bolts. The front panel is lettered and has a distinctive horizontal red stripe.

For further information contact Arrow Electronics Limited, Leader House, Coptfold Road, Brentwood, Essex.


Laboratory Power Supply LPU 103
P.E. will shortly be assembling and reviewing the Leader kit LPU103, Laboratory Power Supply.

\section*{CABINET}

No more hole cutting! That's the theme behind the Instrument Case Type PDS by Amatek.
The moulded plastics front panel of this box is designed to take a wide combination of push buttons (including RS and Doram types), toggle switches, 4 mm terminals, indicator \(l \mathrm{amps}\), and also has a location for a rotary switch. By laying on the lable plate and cutting with an art knife to expose the holes which are to be used, a piece of equipment can acquire an instant and effortless professional finish.

The case measures \(178 \mathrm{~mm} \times 80 \mathrm{~mm} \times\) 152 mm , is made of p.v.c. coated aluminium, and has a frontal display aperture of \(70 \mathrm{~mm} \times 29 \mathrm{~mm}\).

Various accessories are available, including display modules, 4 mm terminals, and fuse-holder and cable clamp kits.
The basic case costs \(£ 8.50\) complete. For further details contact:
Amatek, 22 Bardsley Lane, Greenwich, London, SE10 9RF.


\section*{DIGITAL WATCHES}

Pulse, pulse, digital time is \(10: 58\) and 50 seconds; press a button, digital month, date and day is \(4: 12 \mathrm{MO}\); press another button for Paris time, Kuwait time, Hong Kong time, Tokyo time, Honolulu time, San Francisco time, Chicago time, New York time, Sáo Paulo time.

This all seems a long way from three chickens past Mickey Mouse but if you commute by Concorde then Casio's World Time LCD digital watch could well save you many frustrating synchronizations to local times. For the traveller interested in minimum "lift off" to "touch down" times the Casio Chronograph has a one hundredth second stopwatch which can be started then left to count away unobserved while normal time read out resumes display. For sports activity measurers the Chronograph can
give normal time, net time, lap time and first and second place times.
The liquid crystal display is quick to change and easily viewed if the face of the watch is nearly at right angles to line of sight. At more than 45 degrees from vertical the structure of the LCD causes a faint, shadowed image. At dusk a third button supplies a bright white light across the display.
Time keeping is better than half a minute per month and with only the 29th February to be coped with (fourth and final button) the days of winding and setting to GMT appear to be past.

Chronograph, \(\mathbf{6 6 4 9 5}\). World TimePrice and availability to be announced shortly.

Further information is available from: Tempus, 19-21 Fitzroy Street. Cambridge.


THIS project should appeal to those constructors who already have a taste for electronic games, and those who are looking for an interesting application of a logic circuit on which to try their skill.

The game itself is essentially a contest of speed and manual dexterity between two players, and it has proved to have almost instant appeal to gamesmen of all ages. 'This attraction seems to be based on the fact that while beginners are quick to grasp the idea, the game is at all levels limited only by the players' dexterity; not by the circuitry. Thus there is never a point at which the game can be mastered and hence devoid of any further challenge.

\section*{THE GAME}

Fumble-Nudge is an easy game to play, and only a few minutes are needed to understand the basic details, and reference to Fig. 1 will help while reading the following explanation.
The playfield consists of a row of 16 l.e.d.s, the inner 14 of which are each labelled with a four bit binary code representing their position in the row, while the l.e.d.s at either end represent "goals" and are unmarked.
The game begins with D15 (code 1000) being illuminated, and this l.e.d. represents the "ball" during play. The object of the game is for both players simultaneously to try to force the ball into the goal at their opponent's end of the field by a series of "fumble" and "nudge' sequences, which operate as follows:

Each player has in front of him four "Fumble" switches and a "Nudge" button, and in order to move the ball towards his opponent his four "Fumble" switches must first be set to equal the binary code directly alongside the ball (in this case 1000 ). Having done this the Nudge button becomes effective and when pressed it advances the ball a random one, two or three positions along the playfield.

Only the first valid Nudge signal is accepted by the circuitry so that the quicker of the two players succeeds in moving the ball towards his opponent. If, for example, the "Down" player wins the first exchange, the ball may
have advanced two positions and D13 (code 0110) is then lit.

To nudge the ball again both players must race to set up the new code ( 0110 ) on their "Fumble" switches before a second nudge is accepted. Thus the play continues until one playēr succeeds in nudging the ball into his opponent's goal to win the game.

\section*{CIRCUIT DETAILS}

A block diagram illustrating the operation of the circuit is shown in Fig. 2. At the start of each game, the 74193 is preset to the 1000 position and D15 lights up. Each of the 4 ouptut bits of the 74193 is also fed to one input of an EXCLUSIVE-CR gate (7486), the other input of

Fig. 3. Circuit diagram


Fig. 3. Circuit detail of Fumble Nudge


Fig. 2. Block diagram of Fumble Nudge


Fig. 7. Layout of power supply, i.c.s. and ribbon cabling

Fig. 6. i.c. layout and wiring
which is derived from one of the player's "Fumble" switches. Only when a player has set the correct code on his switches are the outputs from the EXCLUSIVE-OR gates all at logical 1 . The occurrence of this condition is detected for each player by the NAND gate ICI2 (7420), and is used to open the appropriate "Nudge" gate. Pressing the "Nudge" button gives a short pulse which, when passed through the "Nudge" gate, triggers a monostable (74121). Only the first player to nudge at this time gains access to his monostable since the UP COUNT inhibits the DOWN nudge gate, and vice versa.

If, for example, the "Up" player has been successful then the UP count line of the 74193 is enabled for a time of approximately \(1 / 2 \mathrm{f}\) seconds. During this period, the fast- and slow-clocks are also gated to the UP COUNT line via IC13. Their frequencies of fHz and approximately 5 fHz are designed to give a random one, two or three counts for each nudge. (The operation of this can be seen in the timing diagram, Fig. 4).

The frequency f can be any convenient value. (In the prototype it is about 70 Hz ).

After each nudge, the output from the equality checkers are no longer "true" and the nudge buttons are inhibited until the new input code is set up. When the illuminated l.e.d. eventually reaches one end of the playfield this state is detected by ICll and the win delayed ReSET mono is triggered. This provides a short pause


Fig. 8. Hole positions
to enable the win to be noted before presetting the 74193 with the starting code for a new game.

Power for the game is provided from the mains via a simple series regulator (Fig. 5), and current consumption is \(200-250 \mathrm{~mA}\). Only one decoupling capacitor is used as this was found to be adequate, but for some layouts it may be necessary to fit one further \(0 \cdot 1 \mu \mathrm{~F}\) capacitor for every three i.c.s to ensure freedom from supply noise problems.

\section*{CONSTRUCTION}

A suggested layout of the logic i.c.s is shown in Fig. 6. All the components together with the power supply can be accommodated on a single piece of Veroboard approximately 150 mm square, and the arrangement is not critical.

The circuit board and the mains transformer are mounted on an aluminium sheet which then forms the base of the game box. The l.e.d.s and switches are fitted on a further aluminium panel which is painted and lettered to provide the playfield. The construction of the box and front panel are detailed in Figs. 1•and 7.

\section*{COMPONENTS . . .}

\section*{Resistors}
\begin{tabular}{ll} 
R1-R6, R15-R20, R23 & \(10 \mathrm{k} \Omega\) (13 off) \\
R7, R14, R12 & \(22 \mathrm{k} \Omega\) (3 off) \\
R8 & \(39 \mathrm{k} \Omega\) \\
R9 & \(180 \Omega\) \\
R10 & \(100 \Omega\) \\
R11, R13 & \(1 \mathrm{k} \Omega\) (2 off) \\
R21 & \(333 \Omega\) \\
R22 & \(270 \Omega\) \\
All resistors \(\frac{1}{4} \mathrm{~W} 10 \%\) &
\end{tabular}

Capacitors
\(\mathrm{C} 1, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 8, \mathrm{C} 10, \mathrm{C} 12 \quad 0.1 \mu \mathrm{~F}\) (6 off)
C2, C9
C6, C7 C11 \(0.47 \mu \mathrm{~F}\) (2 off) \(0.01 \mu \mathrm{~F}\) (2 off) \(1,500 \mu \mathrm{~F}\) elect. \(22 \mu \mathrm{~F}\) elect.
Diodes D1-D5 D6 7 D22

1N4004 or similar 5.6 V Zener ( 400 mW ) TIL 209 or similar

Transistors
TR1 2N697
TR2 2N3055 or 2N697 with heatsink
Integrated Circuits
\begin{tabular}{lll} 
IC1 & SN 74154N & 4 to 16 line decoder \\
IC2 & SN 74193N & Up/down counter \\
IC3, IC4 & SN 7486N & Quad EXCLUSIVE OR \\
IC5 & NE 556 & Dual timer \\
IC6, IC7, IC8 & SN 74121N & Monostable \\
IC9 & SN 7414N & Hex Schmitt Inverter \\
IC10 & SN 7410N & Triple 3 input NAND \\
IC11 & SN 7400N & Quad 2 input NAND \\
IC12, IC13 & SN 7420N & Dual 4 input NAND
\end{tabular}

Miscellaneous
\begin{tabular}{ll} 
S1 to S8 & S.P.S.T. Toggle Switches (8 off) \\
S9, S10 & S.P.S.T. Pushbuttons (2 off) \\
T1 & Mains Transformer \(6-0-6 \mathrm{~V}\) at 300 mA \\
FS1 & 500 mA
\end{tabular} 0.1 inch matrix Veroboard and pins, fuseholder, 2A terminal block, lettering for playfield


FAST NI-CAD BATTERY CHARGER

TThe usual form of constant current nickel cadmium charger is designed to charge a battery of cells fully in 12-14 hours. However, it is often necessary to be able to charge a battery in a shorter time. This circuit is capable of charging \(1-81.25 \mathrm{~V}\) cells in 8 hours.
A flat battery is connected to the output terminals and the "Boost" button S1 depressed momentarily. The l.e.d. will then extinguish whilst a constant high charge current is delivered to the battery.
When the terminal voltage exceeds a preset level, the i.e.d. comes on and the battery is trickle charged until disconnected. The trickle charge cur-
rent is approximately \(\frac{1}{3}\) of the high charge current. With the l.e.d. on, the battery can be feft charging indefinitely without causing any damage.

A level about 10 per cent greater than the nominal battery voltage is set on the preset potentiometer. The charge current is set by the value of the emitter resistor of TR1. \(16 \Omega\) gives a charge current of about 130 mA which is satisfactory for charging HP7 size (AA) cells.

Both TR1 and TR4 should be mounted on adequate heatsinks.
R. Dudley,

Berkhampstead,
Herts.

Fig. 1


\section*{MAGNETIC TAPE SPEEDOMETER}


THIS circuit (Fig. 1) was designed as an aid to teaching about motion and collisions, as an alternative to the more usual "tickertape". No doubt readers could think of many other applications.

A square wave tone is recorded on an ordinary piece of recording tape (open reel), so that a fixed number of pulses is recorded on the tape per cm . The tape is attached to the trolley used in the motion experiment, and drawn past a playback head. The frequency of the signal from the playback head is proportional to the speed at which the tape is travelling. The circuit converts this frequency into a meter reading.

The circuit is designed to work under all sorts of adverse conditions, including mild tape "drop out", and ailing batteries. IC1 is a tape head preamplifier and equaliser. The output from most tape heads increases with frequency, and this is compensated by the capacitor C 2 in the feedback network. The stage has a gain of about 50 dB at low frequency, falling off at 20 dB per decade above 100 Hz .

The second stage, IC2, is a clipper, producing a square wave of the same frequency as the signal from the tape head, and this square wave trig-
gers a monostable consisting of TR1 and TR2. The monostable produces pulses, each \(75 \mu \mathrm{~s}\) wide and \(5 \cdot 1 \mathrm{~V}\) high, at the frequency of the incoming signal. It is worth mentioning the function of the Zener diode, D2, here. It is often not realised that during the action of a monostable (or for that matter an astable), the base of one of the transistors (TR2) goes negative by an amount equal to the supply rail. Now most modern smallsignal transistors cannot sustain more than about 5 V reverse bias across their base-emitter junctions before they avalanche, which would give a rather shorter pulse than expected. The Zener diode has been included for two reasons; to keep the supply rail down to 5 V , and to stabilise the amplitude of the output pulse from the monostable.
The pulses from the monostable are then smoothed and amplified by IC3 to drive the meter. The waveform on the collector of TR2 does not actually go down to 0 V , but to about 0.2 V depending on the transistor. R 15 has been included to offset this effect. If the meter gives a positive reading with no tape passing the head, R 15 may need to be reduced (or increased if a negative reading is obtained).

The prototype was built into a small box with a tape head, rescued from a defunct tape recorder, on the side. One of the biggest problems was friction at the head; for reliable operation a felt pressure pad had to be used. One way to overcome the effect of this friction would be to perform the motion experiment on a sloping runway. However, with a little experimentation with the position of the tape head and the path of the tape, it may be possible to do away with the pressure pad altogether.

A table of the square wave tones recorded on the tape is given.

Once the tapes have been made up they can be used for many experiments. R 19 should be adjusted to give the correct full scale deflection on the meter with one of the tapes. One way to do this would be to use the \(25 \mathrm{~cm} / \mathrm{s}\) tape, and arrange for it to be pulled past the head by a tape recorder movement running at \(7 \frac{1}{\frac{1}{i} \text { i.p.s. }}\) \((19 \mathrm{~cm} / \mathrm{s})\). Once R 19 has been adjusted for one tape, the other tapes will give their correct f.s.d., provided, of course, that the frequencies of the recorded tones were reasonably accurate.
K. J. Dorrell,

Southampton, Hants.


RECENTLY acquired a bulk purchase of i.c.s which contained many 741 series op-amps said to be untested. Looking through articles for the past couple of years failed to give any circuits for this purpose (although digital i.c. testers and transistor testers were fairly numerous). I therefore built the tester inustrated in Fig. 1, a simple circuit which has proved quick and easy to use as well as being relatively cheap.

The input is tapped off a low impedance source, VRI which can supply \(0-10 \mathrm{mV}\), and this was read off by using a knob with a skirt labelted \(0-10\) directly. This is supplied via switch \(S 1\) to either the inverting or normal input of the 8 pin d.i.l. socket and the gain set using VR2. With the values used for VR2, R3 and R4, the gain is continuously variable from around unity to 10,000 ,
and the use of a log potentiometer enable gains up to 1,000 to be read off with fairly good resolution. The gain scale was in fact calibrated by using an ohmeter, marking off the \(10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega \quad 100 \mathrm{k} \Omega, 500 \mathrm{k} \Omega\) and \(1 \mathrm{M} \Omega\) points and then labelling these points directly with the gain figures 100 to 10,000 .
The output from pin 6 of the socket is taken across two l.e.d.s which on the panel are tabelled normal for D4 and invert for D5, and this gives instant indication of the correct mode of operation of the i.c. under test. The diodes D2 and D3 limit the reverse voltage across the l.e.d:s to 0.6 V .

The brightness of the l.e.d.s also should vary as both VR1 and VR2 are changed, and sockets are provided so that the output can be measured directly with a multimeter if more
accurate data is required.
Finally S3 is used to switch in the offset nuld potentiometer VR3 which should cause the l.e.d.s to change over as it is slowly rotated.

When a "good" 741 i.c. was used to test the device, it was found that the open loop gain, i.e. with S2 open, gave a voltage saving of \(\pm 7.5 \mathrm{~V}\) whereas the rails were \(\pm 9 \mathrm{~V}\), but this is probably due to the combined effect of R5 and R6 which give a load of about \(500 \Omega\) compared to the output impedance of the i.c. of around 150S. However, this should not prove a problem during testing.

Using the 741 tester, it was possible to very quickly check all the main parameters on over forty 741 op-amps. It was unfortunate for me that only two proved fully functional!
T. Smales,

Wrexham,
Clwyd.

VERSATILE V.c.o.


AI present there are available a large number of both ready built tremolo units and plans for building them. Whilst providing a useful effect for guitars, they nearly all just regularly vary the amplitude of the signal and, if used a lot, they can become monotonous. This unit produces an effect totally different from normal tremolo or any other effect available at present.

Most electric guitars have two pickups, the idea behind this being that due to their different positions they give different tones, the guitar having a selector switch allowing both or either one of the pick-ups to be used. The novelty in this unit is that it regularly switches from one pick-up to the other, thus giving a regular change in the tone quality produced, however the effect is totally different from Wah-Wah and is very distinctive.

The circuit below is fairly simple, consisting of a multi-vibrator which alternatively switches on TR3 and TR4. Whichever transistor is "on"" shorts out the pick-up which is in effect wired across it.

The value of VR1a/b depends upon the internal resistance of the guitar's pick-ups, and can easily be found by finding the lowest value of resistor which, when put in place of the variable resistors will just produce a noticeable effect with the unit on. This value should be under 1 kilohm .

As the outputs of the pick-ups are mixed together then fed to the guitar output socket it will be necessary to remove the mixing (usually the final) stage from the internal circuitry of the guitar and fit a stereo jack socket in place of the mono output socket, with one pick-up wired to each channel of the sooket, the output of the guitar then being fed to the unit by
a stereo lead, with the output of the unit going to the amplifier.

Alternatively (and preferably) the unit can be built into the guitar, with its controls mounted alongside the guitar controls on the scratchboard, with the output of the unit connected to the guitar's output socket. This method is preferable as it allows the unit's controls to be altered more quickly and a normal lead to be used to connect the guitar to the amplifier.

With a few minor alterations to the unit's inout/output connections it could be used to tremolo in and out another effect such as Fuzz or even between two instruments alternatively, but by far the most effective use of the unit is in its original form.
S. J. Baxendale,

South Shields,
Tyne \& Wear


The circuit to be described is the outcome of many months' experimenting in search for an accurate, versatile and cheap voltage controlled oscillator.
, In Fig. 1, positive value of Vin produces a positive going ramp of about 5 V peak. The ratio of \(\mathrm{R} 1 / \mathrm{R} 2\) controls the output voltage. The slightly unconventional configuration of the p.u.t. (TR2) is necessary as when using the standard u.j.t. replacement circuit the p.u.t. is liable to latch on and if a current limited power supply is not used, excessive current drain can result in the destruction of ICl and the p.u.t. The circuit as shown produces a foolproof stable circuit with a very fast reset time. A u.j.t. shows slower reset and this spoils the triangle wave symmetry at high frequencies. The ramp shows a small \((10 \mu \mathrm{~s})\) reset pulse caused by the internal circuit of the

LM3900. No way has been found to overcome it, however, it is of no consequence if the oscillator is used for audio work.
The maximum usable frequency is about 25 kHz .
The ramp to triangle wave convertor consists of a phase splitter and a form of linear or gate. The former produces two equal but opposite output which are fed into the differential pair. The \(b / e\) junctions of these "select" the highest possible voltage at any instant and combine the two ramps to produce a perfect triangle waveform, the symmetry of which is adjustable from ramp to triangle using the 4.7 kilohm potentiometer.

TR4/5 also act as emitter followers and produce a low impedance output.

Four v.c.o.s can be made with one LM3900 and if attention is paid to decoupling there is only very small interaction between each.

The best way of adjusting the frequency range over wide limits is by altering the integrator capacitor. For the value given the range is \(1 \mathrm{~Hz}-\) 25 kHz .

The resistor R 3 can also be altered over a very wide range as ICl input current requirements are low.

Some interesting and unusual effects can be obtained by driving one fast v.c.o. with a slow one (integrator capacitor about \(1 \mu \mathrm{~F}\) ).
If a \(\operatorname{lnF}\) capacitor in series with a 500 kilohm potentiometer is wired between two p.u.t. anode gates the two v.c.o.s can be made to lock onto each others harmonics. With the reduction of potentiometer resistance to zero the slower running v.c.o. will speed up to the fast one in harmonic "jumps" until finally both run at the same speed.
J. A. Oliver, Wellington,
New Zealand

\section*{GAR LIGHTS-ON INDIGATOR}

WIth the new laws calling for car lights to be used during daylight hours, when the visibility is poor, the great problem is in remembering to turn them off at the end of a journey. When motoring in daylight, if rain, sleet or snow begins to fall, the head lights are switched on. The panel illumination is too dim to see and if, at the end of the journey, the lights are left on a flat battery mav result.

With this unit, if the engine is switched on, no warning tone will be generated during the day or night. If the engine is switched off during daylight, this will start a warning tone. This will stop when the driver switches off the lights.

Should the driver stop at night and leave the lights on, again no waming will be generated as leaving lights on at night is still necessary in poorly lit areas.

The unit is dormant until the lights are switched on, then power is applied to an audio oscillator. TR2 and TR3 form part of this with C2 and R6 in the feedback loop. These values can be adjusted to set the pitch of the tone (Fig. 1).
\(\mathrm{TR}^{1}\) and surrounding components make up a nand gate, where TR1 will be switched off as long as a positive d.c. potential is applied to its base. If the potential is removed TR1 will become biased through R3 and turn on, biasing TR2 and switching the audio oscillator on.

A d.c. positive potential is applied through D1 (from light sensor) or D2 from the ignition switch so that when the engine is running, 12 V is continually holding TR1 off. Once the engine is switched off, this potential is removed leaving \(\mathrm{D} \mid\) holding the oscillator off.

In darkness R 7 resistance will be very high, making pin 3 of ICl positive and providing a positive ouptut to TR1 through D2.

In daylight when the lights are on and ignition off, R7 resistance will be very low, making pin 2 drop in voltage to almost zero, and causing the output to drop to zero volts. The ignition is off, therefore D2 is off, it is daylight therefore pin 6 is at zero volts and so D1 is off, hence TRI will turn on through R3, activating the oscillator.

The tone will be cancelled by turning off the lights (or switching off the device).

The unit was mounted behind the dashboard, out of view, with R7 in a position where it can best sense the general illumination level.
G. Luck,

Gosport, Hants

Fig. 1


\section*{QUIZ MASTER}

Previously published circuits for multi-station "Quiz Masters" have relied on circuits similar to that shown in Fig. 1. If S 1 is closed when all the inhibit lines are at " 1 ", gate G1 ouptut will go to 0 , thus inhibiting all other stations. (All stations except No. 1 will have one of their inputs connected to Gl's inhibit line).

As soon as S1 is released, G1's output will go high and the other stations will no longer be inhibited.

This circuit can be adapted for different numbers of stations and can also use NOR gates (interchange resistor and switch-this arrangement uses less quiescent current), however, it does have the following disadvantages:
(a) Limited by the number of inputs on each gate (8 usually, unless additional circuitry is used).
(b) Limited by the fan-out of each gate ( 10 usually).
(c) Stations grow more complex as total number of stations increase.


Fig. 1


The circuit shown in Fig. 2 solves all these problems, using only two inhibit lines, one the inverse of the other.
If S 1 is closed when Gz 's output is low, Gb will go low, sending Gz's output high via the diode. All other stations will now be inhibited but because S1 was closed before the inhibit line was activated, Gb will remain low until S 1 is released. At this point the inhibit line will be deactivated and other stations will no longer be inhibited.

The prototype used silicon diodes and worked satisfactorily; however, germanium types are preferable. Gz uses any spare gates wired as invertors.
If the number of stations exceeds 10 (the normal fan-out) several gates can be wired in parallel or a power gate used (e.g. 7437 with fan-out of 30). An inverted (normally positive) low current output can be taken from point X (remembering it also has to sink current for Ga and Gz ). Alternatively, this output can be inverted by a further gate as shown to give a non-inverted output with a fan-out of 10.

This circuit has several other applications. For example, the control of a vending machine selling several different brands or types of goods with a select button for each.
T. Turner, Stock port, Cheshire

WAS recently asked to repair a car tachometer which had "self destructed". Research into back issues of Practical Electronics produced a suitable circuit which used an SN74121 monostable integrated circuit. However, I did not have a SN74121, but I did have a NE555 timer i.c. This was duly pressed into service as a monostable and the circuit shown is the result.

The circuit is designed to operate from a 12 V supply, but other voltages may be used provided that R7 is altered using the following formula:
\[
\mathrm{R} 7=\frac{\mathrm{V}_{\mathrm{s}}-4.7}{0.025} \Omega
\]

The meter may be any type up to 10 mA f.s.d. However, the value of
the resistance in series with the meter may need to be altered to give the correct r.p.m. range.

Input pulses from the contact breaker drive TR1 into saturation which triggers the monostable via C2 producing pulses of fixed width at pin 3 of ICl which are, in turn, used to drive the meter. The timing components R6 and C4 give a pulse width of approximately 2.5 ms .

As the engine r.p.m. is increased, the monostable is triggered more frequently and therefore the average voltage seen by the meter is also increased.

The reverse biased diode D1 connected across the meter prevents spurious operation of the circuit due to the back e.m.f. generated by the meter with its pulsed operation.

The tachometer may be calibrated via VR1 using a signal generator. The corresponding meter readings for 4 -stroke engines are given in Table 1; these should be halved for 2 -stroke engines.
J. R. Shield,

Blaydon,
Tyne \& Wear.

Table 1
\begin{tabular}{|c|c|}
\hline No. of cylinders & \begin{tabular}{c} 
R.p.m. \\
corresponding \\
to 50 Hz input
\end{tabular} \\
\hline 2 & 3,000 \\
4 & 1,500 \\
6 & 1,000 \\
8 & 750 \\
\hline
\end{tabular}

\section*{HELIPOT SUBSTITUTE}

WHEN there is a requirement for a variable resistor with a broad span and finely realisable accuracy one is generally recommended to a multi-turn helipot with suitable apologies for the high expense involved in such a purchase. Such occasions can arise when "settingzero" on an operational amplifier.

The circuit shown in Fig. 1 achieves that of a " 10 -turn" potentiometer in sensitivity for the price of two common potentiometers.

Zero can be set by moving R2 to mid scale-zeroing as best possible with the "coarse" RI and finally trimming with R2.

Although there are two knobs to twiddle, the 100 kS 2 potentiometer does give a \(\times 10\) resolution whilst the ganged potentiometer gives a full range coarse control.

> O. Ormrod,
> Auckland,
> New Zealand


Fig. 1



\title{
The amazing, automatic
}
automatic


Just clip it over your IC.
It instantly and accurately shows both static and dynamic logic states, on a bright, 16-LED display.

It finds its own power.

It cuts out guesswork, saves time, and eliminates the risk of short-circuits.

LM-1 is suitable for all dual-inline logic ICs; DTL, TTL, HTL, CMOS; up to 16 pins.


LED on = logic state 1 (high), LED off = logic state 0 (low), and each LED is clearly numbered 1 to 16 in the conventional IC pattern.

Try the LM-1 and
\(=\square\)
\begin{tabular}{|c|c|}
\hline Input Threshold & \(2 \mathrm{~V} \pm 0.2\) volts. \\
\hline Input Impedance & 100,000 Ohms \\
\hline I nput Voltage Range & 4 volts minimum 15 volts maximum across any two or more input leads \\
\hline Maximum Current Drain & 200 mA @ 10 volts \\
\hline Maximum Input Frequency & \(10,000 \mathrm{~Hz} 50 \%\) duty cycle \\
\hline Operating Temperature Range & \(0^{\circ} \mathrm{C}\) to \(50^{\circ} \mathrm{C}\) \\
\hline Weight & 3 ounces (85 grams) \\
\hline Maximum Dimensions & \[
\begin{aligned}
& 4.0 \times 2.0 \times 1.8^{\prime \prime} \\
& 102 \times 51 \times 45 \mathrm{~mm}
\end{aligned}
\] \\
\hline LM-' 1 will' respond to signals up signal swing exceeds the thresh 0.5 volts. & to 0.1 MHz when the input old voltage by more than \\
\hline
\end{tabular}

\section*{It's Easy to Order}

Ring us (01-890 0782 ) with your Access, Barclaycard or American Express number and your order will be in the post that night. Alternatively, send a cheque, or postal order (don't send credit cards!) and it still only takes a few days.
Otherwise ask for our complete catalogue.

Plus 8\% VAT, plus post and packaging
total \(£ 32.34\), including box and instruction manual.

TRANSFORMERS
ALL EX-STOCK—SAME DAY DESPATCH. VAT \(8 \%\)



PLUS
HIGH QUALITY AMPLIFIER MODUL

\section*{10 WATT RMS AMP (AL30)
25 WATT RMS AMP (AL60)}

35 WATT RMS AMP (AL60) 125 WATT RMS AMP (AL 350\()\) VAT \(8 \%\)
PRE-AMP for \(5-10\) WAT PRE-AMP for 5 -10 WATT (PA12)
PRE-AMP for 25 WATT (PA100) POWER SUPPLIES 5-10 WATT (PS 12) POWER SUPPLIES 25 WATT ISPMBO) TRANSFORMER S 10 WATT ISOLATOR IKVA 240 V to 240 V enclosed siyle terminal connection Sp
Carriage \(52 \cdot 75\). Ref BE 7 . 20,000 ohm \(/ \mathrm{V}\) Multimeter, 20,000 ohm \(/ \mathrm{N}\) mirror
scale. Ranges \(\mathrm{AC} / \mathrm{DCC}\) to \(1000 \mathrm{~V}, \mathrm{DC}\) currents to


ELECTRONIC CONSTRUCTIONKITsoldering needed \(\mathbf{8} 7 \mathbf{2 9}\). VAT \(8 \%\) F \& 70 D

COMPONENT PACKS
\[
200 \text { Mixed value resistors (count by weight) }
\]
\[
\begin{aligned}
& 150 \text { Mixed value capacitors (count by weigh } \\
& 30 \text { Mixed value precision resistors } \% W 2 \%
\end{aligned}
\] 15 Assorted pots 10 Reed switches 15 Wire wound resistors-mixed wattage
1 Pack wire 50 metres 25 pre-sets assoried types Please state pack required.
60p per pack. VAT \(12 \frac{1}{2} \%\) P \(\&\) 40p Prices corre
ather \(P \& P\).

If you are finding George Loveday's articles on Fault Finding to be worthwhile and stimulating then you must read-

\section*{FLFCIRONIC FAUTH DIAGNOSIS GeorgeLoveday}

Consolidate, regularize and complete your knowledge and techniques with this essential introduction.
112 pages/160 line illustrations/ paperback/0 27301027 1/£2.80 net. Place an order with your bookseller, today. In case of difficulty, available from Pitman Publishing Ltd, 39 Parker Street, London, WC2B 5PB.
Enclose a cheque/postal order, adding 20p for postage and packing. Pitman
BC159 811 8p each. RCA 2015 TO3 POWER TRANSISTORS (SIM. 2 N3055) 35p.

> 1.50 p . CAYSTAL MIKE INSERTS 37 mm 45 D . ELECTRET CONDENSER MIKES. IK IMP. FET AMP DUAL IMPEDANCE \(50 \mathrm{~K} / 600\) OHMS ON/OFF SWITCH \(30-18 K H z 11.00 \mathrm{P}\). \(\begin{aligned} & \text { FET AMP DINAL IMPEDANCE } 50 K / 600 \text { OHMS ONOFF SWITCH } 30-18 K H z ~ 11.00 \text { P. } \\ & \text { EMM } 104 \text { MIN. TIE CLIP CONDENSER MIKES, OMNI, IK IMP, USES DEAF AID BATTERY }\end{aligned}\) (SUPPLIED) 4.95 p .
> \(\begin{aligned} & \text { MORSE KEYS:PLASTIC TYPE 95p. ALL METAL HI-SPEED TYPE 2.25p. } \\ & \text { HEADPHONES: HI-MMP } 2 \mathrm{ZK} 1.95 \mathrm{P} \text {. } 8 \text { OHM STEREO PHONES PADDED EARPIECES }\end{aligned}\) \(\begin{aligned} & \text { AND HEADBAND, CURLYCORD } 30-18 \mathrm{KHz} \text { ONLY } 3.00 \mathrm{P} \text {. } \\ & \text { SWR/POWER METR TYPE SWR } 50 ~ S W R ~ \\ & 1.3-111 \text { POWER } 01 \mathrm{KW}, 3.5 \text { TO } 150 \mathrm{MHz} \text {. }\end{aligned}\) 52 OHMS IMPED. 12.75 F . SWR AND F.S. METER \(3-150 \mathrm{MHZ}, 50\) OHMS 1 MPED 9. 50 P. FX 2000 CRYSTAL MARKER GENERATOR 100 KHZ to 50 MHZ (LESS XTAL) SOLDER SUCKERS PLUNGER TYPE, REPLACEABLE NOZZLE. EYE PROTECTION SHIELD. HIGH SUCTHON 4.95 p .
> \(\begin{aligned} & \text { EDGE CONNEETORS } 0 \text {. } 1 \text { MATRIX } 64 \text { WAY } 65 \text { P } 34 \text { WAY 40p, } 0.2^{\prime \prime} 18 \text { WAY } 15 p \text {. } \\ & \text { RELAYS MIN SEALED TYPE } 4 \text { POLE CHANEOVER } 36 \text { OHM (WITH BASE) 45p, } 700\end{aligned}\) OHM 55p. MIN. SEALED 240 V AC 2 POLE CIO RELAYS 40 P. 4 POLE REED RELAYS. 12 MOTORS. 1.5 TO \(6 V\) OC MODEL MOTORS 20 P. 12 V DC 5 POLE 35 p. SUB. MIN. BIG BOXES: BLACK ABS PLASTIC PROJECT BOXES, BRASS INSERTS AND LID \(75 \times 56 \times\) \(35 \mathrm{~mm} 44 \mathrm{p} .95 \times 7 \times 35 \mathrm{~mm} 52 \mathrm{p}, 115 \times .95 \times 36 \mathrm{~mm} 60 \mathrm{p}\).
150 mml LOUD NOTE 50 P. MIN. SOLID STATE BUZZERS, 6-9-12 OR. 24 volt. ALL 15 mA
75p each.
MPED R/P HALF TRACK HEADS 500 SRP90 - TRACK R/P HEADS 1.95 P STANDARD
8 TRACK STEREO 1.75 p . TD 10 DUAL HEAD ASSEMBLIES 2 HEADS. BOTH \& TRACK
\(\begin{aligned} & \text { R/PWITH BUILT IN ERASE, MOUNTED ON BRACKE1.20p. } \\ & \text { SPECIAL OFFER. ZN414 RADIO CHIPS } 75 \text {. LM } 38080 \text {. }\end{aligned}\)
\(\begin{aligned} & \text { METERS: } 200 \text { MICRO AMP MIN. LEVEL METERS 75P. GRUNDIG IMA BAT LEVEL } \\ & \text { METERS } 40 \times 40 \mathrm{~mm} 1.10 \text {, STEREO TUNING METERS } 100 \text { MICROAMP PER }\end{aligned}\)
MOVEMENT \(2.750^{2}\) TURN DIAL MECHANISMS WITH LOCKING ARM, ALUMINIUM DIAL SCALED O-
\(\begin{aligned} & 100 \text { WINDOW SCALED } 0-30.32 \mathrm{~mm} \text { DIAMETER. U' SPINDLE NEW } 1.75 \mathrm{p} \text {. } \\ & \text { TRANS UUCERS. ULTRASONIC MADE BY MURATA } 40 \mathrm{KHz} 3.95 \mathrm{p} \text { PAIR. } 115 \mathrm{~mm}\end{aligned}\)
DIAM).
CENTRE DFF \(12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}\). MIN. PUSH TO MAKE OR PUSH TO BREAK \(16 \times\)
\(\begin{aligned} & \text { 6mm } 15 p \text { EACH TYPE, } 10 \text { amp ROCKER SWITCHES, SPST } 12 \text { SR SLIDER SWITCHES: } \\ & \text { OPDT MIN } 12 \text {, DPDT CJOFF 20p. } 4 \text { PW 20p. MICRO SWITCES: STANDARD SIZE }\end{aligned}\)
\(\begin{aligned} & \text { OPDT MIN } 12 \text { P. DPDT CJOFF } 20 \mathrm{p} \text {. } 4 \text { P2W 20p. MICRO SWITCHES: STANDARD SIZE } \\ & \text { ROLLER ACTIN } 15 \mathrm{P} \text {, MIN } 13 \times 10 \times 4 \mathrm{~mm} \text { 2Op. PLESSEY WINKLER SWITCHES, } 1\end{aligned}\)
POLE 30 WAY 2 BANK ADJUSTABLE STOP 75 p .
\(\begin{aligned} & \text { TERMS CASH WITH ORDERIOR OFFICIAL ORDER FROM COLLEGES ETC, } \\ & \text { PGSTAGE } 30 \mathrm{D} \text {. OVERSEAS POSTAT COST, VA.T. INCLUDED IN ALLPRICES }\end{aligned}\)
S.A.E. FOR LISTS.
31, CHEAPSIDE, LIVERPOOL 2. TEL. 051-236 0982.

G. LOVEDAY

So far in this series we have introduced the basic concepts for fault finding in transistor and thyristor circuits, and methods used to locate faults in systems. Now we turn to perhaps the most important area of modern electronics, that of integrated circuits.

Most experimenters will have already used a few types of i.c. since most projects nowadays are built round either an analogue or digital type. The variety of i.c.s available for project work is very large and prices are really very modest.
I.C. BASICS

With this device the whole of a circuit function is contained inside one encapsulation. All the necessary diodes, transistors and resistors for a particular circuit function are diffused and interconnected in one piece of silicon. For example the popular 741 contains twenty transistors and eleven resistors and functions as a high gain differential amplifier. It's termed an analogue i.c. since it responds linearly to small changes of input signals.

A TTL i.c. on the other hand such as the SN7400N has four identical two input NaND gates so it contains sixteen transistors, four diodes and twenty resistors. Such an i.c. is termed digital since it switches between two logic states-its output being either high or low.

These two examples are of comparatively simple i.c.s. There are now several others available that contain many circuit functions inside the encapsulation making the whole i.c. almost a self contained system. The simpler circuits are grouped under the general heading of small scale integration, and as circuits become more complex they are termed Medium Scale Integration (MSI) typically between 15 and 100 equivalent gates per package, and finally Large Scale Integration (LSI) typically above the level of 100 equivalent gates per package.

DEVICE FAILURE
It follows from the preceding paragraph that a failure of one part of the i.c. renders the whole device useless, with a consequent complete loss of performance. It then has to be replaced.
I.c.s are designed to give very high reliability, in fact this is one of the benefits obtained by diffusing all the components into one piece of silicon, but failures will ocsur. Fitilures can result from any natural environmental stresses. Temperature cycling for example weakening an internal connecting lead and finally causing an open circuit. But more often the failures are caused by misuse such as exceeding the rated value of current, voltage and power.

High voltage 'spikes' on the supply leads will damage i.c.s in just the same way as other semiconductor devices. If relay coils are being switched ensure that they are properly suppressed.

It is also wise to keep in mind the maximum rated voltages for the type of i.c. you are using. TTL, for example, requires a regulated power supply of between 4.75 V and 5.25 V , and the absolute maximum voltage must not exceed 7.0 volts. Overvoltage would cause the i.c. to overheat and lead to possible damage.

Most i.c. power supplies are fitted with an overvoltage protection circuit-called a crowbar-which automatically switches the power off if the voltage rises above a preset value.

HANDLING AND TESTING
Apart from observing the maximum values of power supply voltages and input signal levels there are one or two other points worth noting when servicing units with i.c.s.

When making measurements don't use large test probes as these may short some of the i.c. pins together. If the i.c.s are mounted in sockets, never remove or plug them in while the power supply is switched on. Under these conditions large current surges can be taken by the i.c. which could destroy it like a fuse. It's also wise not to apply test signals while the power is off.

When fault finding, always check the power supply voltage at the actual pins of the i.c., not between board connections or on the printed circuit wiring. If, for example, you leave the -ve prod of the meter on chassis and put the \(+v e\) prod to the i.c. pin, a break in the ground line to the i.c. will not be indicated.


Fig. 4.1 Simple stabilised power unit

Having checked that power is present at the correct i.c. pins, next make sure that the required input signals are present, then finally test for the correct output. Since i.c.s are very reliable a lot of faults are caused by dry joints and breaks in copper tracks so always check visually and with a meter for any open or shorted connections.

If you are using an i.c. for the first time, before you switch on your project, double check the wiring and ensure that the i.c. is connected the right way round. A pin connection diagram of the i.c. is a must.

The best way to learn fault diagnosis is to practice on a few circuits so as an introduction we shall start with a project using a 741 p op-amp.

\section*{STABILISED POWER UNIT}

Since the 741 p is a differential amplifier with very high gain it makes an ideal comparator and error amplifier for a linear series stabiliser. This gives a relatively simple circuit with quite a good performance. A circuit example is given in Fig. 4.1. The specification is as follows:
\begin{tabular}{ll} 
Output voltage range & 7 V to 12 V \\
Max. output current & 0.4 A (current limited) \\
Ripple & \(2.5 \mathrm{mV} \mathrm{pk-pk}\). \\
Load regulation & \begin{tabular}{c} 
Better than 0.02 per cent \\
\\
zero to full load \\
Line regulation \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
mains per cent change in \\
\\
output per cent change in
\end{tabular}
\end{tabular}

The circuit is a conventional stabiliser, the noninverting input ( + ) of the 741p amplifier being held at a constant voltage by the Zener diode \((5 \cdot 6 \mathrm{~V})\). The inverting input ( - ) is taken to a potentiometer. Since the 741 has such a high gain \((100,000)\) it only requires a difference of a millivolt or so between the \((+)\) and ( - ) input terminals for the output to be driven positive or negative by a large amount. If for example the input difference is 1 mV negative the output would try to move several volts positive. The output therefore assumes a voltage which will cause the difference between the Zener voltage and the voltage on VR1 slider to be as small as possible.

Take the example when VR1 is set so that its slider is at the same point as the top of R5 (Fig.4.2). The voltage across R 5 must be nearly 5.6 volts. This means that the voltage across R4 and VR1 is about 7 volts so that the total output voltage is just over 12 volts. By moving the slider of VR1 towards R4 the output voltage must reduce, giving an output of about 7 V when the slider is at R4.

Neglecting the action of the current limit we can see how the circuit operates to hold the output constant by imagining a fall in output caused by an increased load. This would provide at ICl's inverting input a net negative input. The output will go positive causing TR1 (the series element) to conduct more, thus forcing the output back to very nearly its initial value. The opposite will occur if the output rises for any reason.

The changes in output voltage from zero to full load current are very small because of the very high gain of the 741. Thus one i.c. gives this relatively simple power supply very good performance.

The maximum output current is limited to about \(0 \cdot 4 \mathrm{~A}\). If the current increases beyond this the voltage across R3 causes TR2 to conduct and the output voltage falls. Thus, if TR1 is mounted on a small heat sink no damage occurs if the output is accidentally short circuited.

We have to understand how a circuit operates before we can do some fault diagnosis so having grasped the operation let's turn to some faults.


Fig. 4.2 Illustrating voltage control at ICI

\section*{SOME FAULTS}

To start with we will ignore all the other components and concentrate on possible faults with the 741 p i.c. It is possible for many different faults to occur inside the actual silicon chip and for faults in the connecting leads. Internal shorts or opens may occur, the connecting pins or track can become open circuit or short to adjacent pins. Naturally it isn't always possible to pinpoint the actual fault but it's a good idea to sort out the type of fault since it may show a possible external cause.
Take for example an internal open circuit on the inverting input of the 741. The voltage reading with a 100 mA load are :
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pin No. & 2 & 3 & 7 & 6 & Output \\
\hline Voltage & \(+9 \cdot 3 \mathrm{~V}\) & \(5 \cdot 7 \mathrm{~V}\) & 16.2 V & \(15 \cdot 1 \mathrm{~V}\) & 12.5 V \\
\hline
\end{tabular}

Symptom is no control and poor regulation.
Since the inverting lead is open circuit the output of the 741 has been driven hard positive forcing the output to rise. VR1 will have no control. Note that that there is an excessive positive difference signal between 2 and 3 which should drive the output down, not up.

If the output going high is a symptom for an open circuit pin 2 then we must expect the reverse effect if pin 3 were open circuit. This is in fact the case as indicated:
\begin{tabular}{|c|c|c|c|c|}
\hline Pin No. & 2 & 3 & 7 & 6 \\
\hline Voltage & 1.7 V & 5.7 V & 16.2 V & 3.5 V \\
\hline
\end{tabular}

It's important to note that similar symptoms would be produced if the Zener or C2 became short circuit, or if R1 went open, except for the fact that pin 3 would then read zero volts. We have to sort out the difference between possible i.c. faults and those of external components.
(a) What would be the fault on the i.c. that gives the following?
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pin No. & 2 & 3 & 7 & 6 & Output \\
\hline Voltage & 0 V & \(5 \cdot 7 \mathrm{~V}\) & 16.2 V & 0 V & 0 V \\
\hline
\end{tabular}

Can you work out the symptoms for the following faults?
(b) Open circuit connecting lead to pin 7
(c) VR1 slider open circuit
(d) R5 open circuit.
(Answers at end of article.)

\section*{DIGITAL CIRCUITS}

Digital circuits are those that respond to logic signals. The outputs being switched between two well defined states. With tre logic ' 0 ' is typically 200 mV (not greater than 400 mV ) and ' 1 ' is typically 3.3 V (not less than \(2 \cdot 4 \mathrm{~V}\) ). Faults in digital circuits can then be stated as output "stuck at 1 " or "stuck at 0 ". However, if an output is stuck, don't necessarily assume that the fault is with that particular i.c., since the required inputs signals also have to be present.

\section*{LOGIC GROUPS}

In general, digital logic circuits can be grouped into combinational and sequential types. With combinational logic various input conditions have to be met simultaneously to give an output. Whereas in sequential logic the elements are in series, the output of one feeding the input of the next and so on. A frequency standard unit with divider chain is a good example of this (Fig. 4.3). A 1 MHz crystal is used to provide the stable frequency and SN7490 decade dividers the various lower frequencies.

This can be a handy unit to have since the spot frequencies can be used to calibrate oscilloscopes, signal generators and frequency meters.

Now fault diagnosis on sequential circuits is relatively straightforward since a failure of one i.c. or its connections can easily be checked using the beginning to end method, or if the divider chain is long, the half split.

In the example imagine that there is a fault such that there is no 100 Hz output although the 10 kHz signal is present. The fault can only lie with IC4 or IC5 or their connections.

First check the input of IC5 on pin 1, this should be


Fig. 4.3 Frequency standard unit


Fig. 4.4 Telephone tone generator
a 1 kHz square wave. If this signal is present the fault must lie in this chip. Measure the power supply between pins 5 and 3, check all connections and then if necessary replace it.

What would be the symptoms for the following faults?
(a) IC3 open circuit track from +5 V line to pin 5
(b) IC1b output stuck at 1
(c) C 2 open circuit

\section*{TELEPHONE TONE GENERATOR}

This generator (Fig. 4.4) was developed as a simulator of the four tones and as part of a demonstration telephone system. It is also a useful unit for learning about logic and fault diagnosis.

Three rTl i.c.s are used. A 74132 Quad Schmidt to generate three frequencies of approximately \(400 \mathrm{~Hz}, 25 \mathrm{~Hz}\), and 1.6 Hz . The other two i.c.s are a 7400 , used for gating the signals and a 7473 dual JK bistable, wired to divide by 4 , so generating a 0.4 Hz square wave from the 1.6 Hz output.

The simultaneous outputs are:
\begin{tabular}{ll} 
Dialling tone & 25 Hz approx. \\
Number unobtainable & 400 Hz \\
Engaged & \begin{tabular}{l}
400 Hz gated with 1.6 Hz \\
Ringing tone \\
\\
\\
\\
\\
\\
\\
\\
\\
gated first with 1.6 Hz then \\
with 0.4 Hz.
\end{tabular}
\end{tabular}

The outputs can readily be checked by a small speaker via an emitter follower as shown (Fig. 4.5) so no special test gear is required.

The circuit is really a mixture of combinational and sequential logic. The Nand gates of the SN7400 being the combinational portion. With Nand gates both inputs must be at logic 1 (high) for the output to be at logic ' 0 '


Fig. 4.5 Audio amplifier for tone generator


Fig. 4.6 Output waveforms at IC3
(low). Take IC3a for example, the waveforms at pins 1 and 2 will be as shown in Fig. 4.6. If the 1.6 Hz oscillator failed with its output stuck at 0 the symptoms would be no outputs on the "Engaged" or "Ringing" tones (since IC3a and IC3c gates would be closed). On the other hand if this oscillator failed with its output stuck at 1 , the output on the engaged tone would be 400 Hz . A fault such as this last one would occur if C3 became short.

Consider fault symptons of the ringing tone being almost the same as the engaged tone. Obviously all the oscillators are functioning correctly, and also the four gates of the 7400 are working. The fault can only be that the output (pin 9) of the 7473 bistable is stuck at 1 . Verify this for yourself.

Now try and diagnose the component faults from the following symptoms. Assume outputs are correct unless stated otherwise.
(a) No ringing tone available-although an engaged tone is present on pin 13 of the 7400
(b) No dialling tone available
(c) No engaged tone available.

What would be the symptoms for the following faults?
(d) TR1 base emitter open
(e) IC3c output stuck at 1
(f) Open circuit connection \(1 \cdot 6 \mathrm{~Hz}\) o/p to pin 1 IC 3 a .

\section*{CONCLUSION}

This series is only intended as an introduction to fault diagnosis. We haven't explored the more troublesome faults such as intermittent shorts and opens, these can really be frustrating. It's hoped that the articles have given some encouragement to newcomers, and shown that successful fault diagnosis is mostly combining an understanding of circuit operation with logical investigations and measurements.
My thanks to Pitmans for permission to use some of the material from my book on Electronic Fault Diagnosis.

ANSWERS
Power supply
(a) Open circuit output or internal supply lead of 741.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symptom & 2 & 3 & 7 & 6 & Output \\
\hline (b) & 0 V & 5.7 V & 0 V & 0 V & 0 V \\
\hline (c) & 0 V & 5.7 V & 16.2 V & 14 V & 13.3 V \\
\hline (d) & 5.7 V & 5.7 V & 16.2 V & 6.5 V & 5.8 V \\
\hline
\end{tabular}

Frequency standard
(a) No \(10 \mathrm{kHz}, 1 \mathrm{kHz}\) or 100 Hz output. No +5 V to pin 5 on IC3.
(b) No 1 MHz output, although rest of output frequencies will be present.
(c) No outputs. Since oscillator will not function.

\section*{Tone generator}
(a) Output from bistable (pin 9) stuck at 0.
(b) 25 Hz oscillator circuit failed, output high.
(c) IC3a failure or open circuit connections.
(d) 400 Hz oscillator fails output high.

Therefore engaged tone will be 1.6 Hz
'Number unobtainable' will be dead.
Dialling tone will be o.k.
Ringing tone will be 1.6 Hz gated with 0.4 Hz .
(e) Ringing tone will be 0.4 Hz .
(f) With an open circuit on a TTL Nand gate the gate will be open. Therefore the engaged tone will be 400 Hz only.


TELEVISION \& RADIO 1978

\section*{Editor Eric Croston}

Published by Independent Broadcasting Authority 224 pages, \(230 \mathrm{~mm} \times 190 \mathrm{~mm}\). Price \(£ 1.85\)
|ba's prestigiously published year book is thoughtfully designed and well endowed with colour photographs. The buik of the book is concerned with interesting details about programmes; News, Current Affairs, Documentary, Children's Television, Science, Drama, Arts, Sport, Educational TV, Religion and Light Entertainment.

Independent Local Radio has a large mention and station coverage is mapped out, as are the television areas. An engineering section on better viewing and listening heralds the possibilities of the 'all digital studio', 'digital VTR', the 'suitcase transposer', 'surround-sound', ORACLE, adaptive aerials, and the studio caption machine which has become a 'character generator' programmed by a 'video typographer'. This section also explains some studio jargon which inevitably creeps into the TV programme magazines.

For a producer's approach to developing a major drama series an article on 'Love for Lydia' gives the low down on how a special atmosphere can be created for a story set in the Midlands in the 1930's.


\section*{CHAMP-PROG}

THOSE readers who have successfully completed the construction of CHAMP can now look forward to many interesting and rewarding hours of programming and experimentation. Their systems can be used as learning aids to gain practical experience of the exciting new microprocessor technology, and as development aid to encourage the fulfillment of a multitude of software and hardware ambitions. When CHAMP is used in the latter mode, as a proving ground for hardware circuits and software programs which perform some useful function, there will come a time when programs tried out in CHAMP program ram will need to be committed to a more permanent kind of storage for eventual use in some other small, dedicated, 4040 based system. This is when CHAMP-PROG and CHAMP-U.V. become very useful, if not essential, as additions to the CHAMP family. CHAMP-PROG is a PROM programming attachment which allows the user to copy a program stored in CHAMP program ram into a 4702 A device mounted in a "zero insertion force" (z.i.f.) front panel socket. CHAMP-U.V. is a simple erase light unit for 4702A and similar proms which allows a single device to be programmed and reprogrammed many times over.
These facilities make for extremely low cost program amendment or enhancement when it is required, and represent a big improvement over the one-shot fusiblelink PROM techniques sometimes used in m.p.u. system development.
This month we shall be looking at the operating principles and circuit of CHAMP-PROG, and how this unit is integrated with CHAMP itself.

\section*{CHAMP-PROG}

As you can see from the title picture, CHAMP-PROG is built using the same system principles which were developed for CHAMP itself. The circuitry is carried on a fairly large sheet of Veroboard, which is mounted above a stylish low profile plinth made of wood and aluminium. The front panel carries a mains ON/OFF rocker switch in addition to the special 24 pin programming socket for the PROM being programmed. CHAMP-PROG has its own separate mains connector, and housed inside
the plinth is a special +80 V programming supply. The standard +5 V and -10 V supplies also required are provided by the main CHAMP power source over the same 16 way connector that is used to transmit and receive programming data. In accordance with standard CHAMP techniques, the 16 way umbilical link terminates at low cost 16 pin di.l. sockets, the link itself being made from d.i.l. header plugs, and ribbon or multiway cable.
The programming operation requires the application of voltage pulses with an amplitude considerably in excess of the 15 Volts used during normal operation, and the level and timing of these pulses must be kept within tight limits. The CHAMP-PROG board carries all the voltage regulation, switching, and timing functions required for successful programming of 4702A type PROMS, together with the necessary data and address drivers which are driven in their turn by two 4265 programmable interface chips.

\section*{PROMPT}

The programming operation is carried out under the control of a program called PROMPT (Prom Programming Technique) which is housed in a 4702A Prom plugged into the second socket on the CHAMP main board (ChipOne). PROMPT is an interactive program which uses the keyboard interrupt routine and display driver subroutine of the CHOMP program, which must also be present in the Chip-Zero socket (as usual) before programming can take place. PROMPT is entered via CHOMP on the depression of the TEST button on the CHAMP front panel. (You may recall that when test is detected, CHOMP carries out a JUN to 100 H , which is the start of PROMPT when it is resident in the Ohip-One socket). After the depression of TEST, the 7 segment display will show "Adr 1 " which is a cue to the user that a three digit hexadecimal address is required which corresponds with the start of the source data block in CHAMP program memory. After entering a suitable address, which will appear as usual on the left of the display, the enter data button is pressed to confirm that entry is complete. The display will now change to show "Adr 2", and a similar procedure is followed to enter an address which indicates the end of the source data block in CHAMP program memory. A display of "Adr 3 " is next, and on this cue an address is entered which represents the start of the destination area in the-PROM to be programmed. Although the last address need only be a two digit hexadecimal quantity (because there are only 256 locations in a 4702 A PROM), a three digit address is nevertheless expected by PROMPT since this makes the initialisation procedure as uniform as possible. The most significant digit, or chipselect hexadecimal digit, is in fact ignored, and so you can enter anything you like in this position; but usually a zero of course to prevent confusion!

After the entry of Adr 3, but before depression of the enter data key, the program power switch adjacent to the programming socket is turned oN. Subsequent depression of the enter data key starts the programming sequence which takes about 2.5 minutes for 256 locations. Completion is signalled by a display of "done", but if any location was not erased properly, or failed to program at any point in the sequence, programming will stop prematurely and a display of "Fail" will result.

\section*{THREE ADDRESS SYSTEM}

The fact that PROMPT uses a three address system makes CHAMP-PROG extremely versatile since blocks of data from CHAMP program memory can be moved to new locations in the PROM being programmed, and a PROM can be loaded with blocks of data from several sources if necessary. For example :
(i) To duplicate Chip-Zero, (CHOMP), Adr 1 is entered as 000 H , Adr 2 as OFFH , and Adr 3 as 000 H .
(ii) To put the first half of Chip-Two into the second half of the \(\operatorname{prom}\) being programmed, Adr \(1=200 \mathrm{H}\), Adr \(2=27 \mathrm{FH}\), Adr \(3=080 \mathrm{H}\).
(iii) To put the single line of data at address 300 H into address 020 H of the PrOM Adr \(1=300 \mathrm{H}\), Adr \(2=\) 300 H, Adr \(3=020 \mathrm{H}\).
Of course, when relocating blocks of data in this way, account must be taken of the label destinations of any JUN, JMS, JCN, or ISZ instructions in the source block because these will probably be incorrect when loaded into the prom. In the usual case the source block will be in program ram, Chip-Two or Chip-Three, and so these label destination addresses can be temporarily changed (using CHOMP), to those applicable in the new PROM and its intended hardware system. (Obviously the 12 bit JUN and JMS addresses must also refer to the correct chips in the new system).

\section*{FAMOS PROMS}

The 4702 A is an mos device using the famos (Floating gate, Avalanche injection, Metal, Oxide, Semiconductor) technology to store data in the form of isolated charges on the gates of an array of mosfet transistors. Each of the 2,048 memory cells (Fig. 8.1) consists of a single MOSFET with its gate electrode unconnected and isolated by means of a silicon dioxide insulating layer. When a cell is unprogrammed or erased there is no charge on the gate, and the source-to-drain resistance, RDS, is very high. To program a logic one into a cell, a drain to source voltage of about 47 volts is applied for a short period of time and this causes an avalanche breakdown between the drain and the substrate material. Electrons are swept across the junction, and some are energetic enough to penetrate the silicon dioxide insulator to become trapped on the buried gate electrode. A negative charge builds up on the gate and this opens a low resistance channel between source and drain in normal enhancement mode mosfet fashion. The charge accumulated on the buried gate is proportional to both the programming voltage and to the length of time that the voltage is applied, and so these must be carefully controlled by the programmer circuitry.
In addition, the avalanche action generates considerable heat, and so the programming must be carried out not with one long pulse but with a succession of narrow pulses with a "cooling-off" period between each one.

Fortunately the 4702A data sheet (Page 5-153, MCS40 manual) contains full details of the voltages and duty cycles which must be used to provide reliable programming without overheating.

\section*{BLOCK DIAGRAM}

The CHAMP-PROG design is based on an original circuit supplied by Intel and used in their "Intellec" development systems. The circuit has been simplified and in many cases components have been changed to make them easier to obtain in this country. The full circuit (Fig. 8.2) is still quite complex, and contains facilities such as current limiting and crowbar overvoltage protection to protect the PROM being programmed.

The best way to appreciate the way it works is to first study the block diagram Fig. 8.3. The voltage regulator block is required to generate the programming waveforms, and it actually contains two separate regulators, one a high current +47 V circuit from which the VCCS, CS, Vgg, Vdd and Program pulses are derived, and the other a +60 V low current circuit which supplies Vbb . The outputs from the regulator block are not continuous d.c. voltages, but pulses of accurately determined amplitude, and the switching which generates these pulses is carried out in the regulator block under the control of the timing circuit. This consists of a chain of t.t.l. monostables

Fig. 8.1. Memory cell used in the 1702A PROM. The cell is an f.e.t. whose gate has no lead. Source to drain resistance is a function of gate charge


Fig. 8.2. CHAMP-PROG circuit diagram



\section*{JUDGE US BY THE COMPANIES WE KEEP}

\section*{TO ALL OUR CUSTOMERS - ALL PRICES NOW INCLUDE VAT}

If you have never had a marshall's catalogue before, you've probably only seen our adverts and never really appreciated the vast range of products we can OFFER. WELL HERE'S AN OPPORTUNITY TO CHANGE ALL THAT! IN THIS 40 PAGE CATALOGUE. WE HAVE SET OUT TO MAKE YOUR COMPONENT BUYING EASY. YOU WILL FIND OVER 8000 LINE ITEMS LISTED AND PRICED AND FOR THOSE OF YOU WHO BUY COMPONENTS IN QUANTITY WE CAN offer attractive discounts; we carry stock in all our four u.k. branches so please DO NOT HESITATE TO CONTACT US.

WE ARE AN OFFICIALLY appointed distributor for the companies listed on the right AND AS SUCH CAN SUPPLY QUALITY COMPONENTS AT REASONABLE PRICES - WHATEVER YOUR NEEDS MAY BE.

IF, ON THE OTHER HAND, YQU have already got one of our catalogues, you ll already know the range of components we keep, and the specialist services we provide in all our locations, but we trust that the new lines we have included meet with your APPROVAL... READ ON
A. MARSHALL (LON.) LTD.

SPECIALIST
CONSUMER DISTRIBUTOR

\author{
- NATIONAL \\ - TEXAS \\ - MULLARD \\ - SIEMENS \\ - THOMSON CSF \\ - VERO \\ - ANTEX \\ - ARROW HART \\ - SIFAM \\ - BAHCO \\ - DOUGLAS \\ - REDPOINT \\ - ERMA \\ - ELECTROLUBE
}

\section*{TERMS AND CONDITIONS OF SALE}

Our Retail and Trade Counters are open 9.00-5.30 Monday to Friday and 9.00-5 00 on Saturday. Cheques accepted only with Bankers Card. Barclay Card, Access and American Express weicome

\section*{CASH WITH ORDER}

No minimum order charge if cash or cheque is sent. Post \& Packing charge is 40 pence All postal orders, money orders and cheques must be crossed and made payable to A. Marshall (London) Ltd. Please use our mail order forms to speed the processing of your order

\section*{CREDIT ACCOUNTS}

Minimum order charge \(£ 10\). Credit facilities will be provided subject to the submission of two satisfactory trade references and a Bank reference Government Departments and Government Sponsored Organisations, H.M. Forces, Educational Establishments and Nationalised Industries automatically qualify for a credit account
Accounts are granted solely on the understanding that payment is made 30 days from date of invoice
All credt sales are subject to a minimum invoice value of \(£ 10\) The post 8 packing charge is 50 pence

\section*{DESPATCH}

All items in stock are despatched the same day as receipt of order and are sent by first class parcel post. Exceptions to our same day turn round service are where matched transistors are required or when we are out of stock of a particular item. In the latter case the balance of your order will be sent as soon as possible.

\section*{NON-DELIVERY}

All complaints should be made in writing giving exact details of the items ordered, the remittance sent if applicable and the date the order was posted to us.

\section*{CARRIAGE \& PACKING CHARGES}

Minimum 40p, balance will be charged at cost

\section*{ENQUIRIES}

Requests for quotations and details of the items offered for sale by this company should be sent separate from any orders, and we would appreciate the enclosure of a stamped addressed envelope to facilitate prompt attention.

\section*{ORDERS}

These should be worded exactly as per description in our catalogue and confirmation orders must be clearly marked confirmation, otherwise we cannot be held responsible for duplication

\section*{PRICES}

All goods will be supplied as per prices quoted in our lastest catalogue, subject to no special quotation having been made, but we do reserve the right to change prices without prior notification and would point out that all prices quoted are inclusive of VAT
As we are distributors for a large number of British. Continental and American semiconductor and component manufacturers, we can offer attractive quantity prices for all devices in this and our other product lists.

Please note that one of the main factors affecting prices is the parity of the \(£\) to other currencies, particularly the \(\$(\mathrm{U}\). .)

\section*{RETURNS/SHORT DELIVERIES/DAMAGED GOODS}

No goods may be returned without our prior consent. There will be a \(10 \%\) handling charge on goods returned other than for replacement due to fauls or damage as described below, e.g. goods wrongly ordered
1. Marshall's liability is limited to goods lost or damaged in transit and claims must be made within 7 days of delivery
2. Goods which can be proved to be of faulty manufacture or below manufacturer's specification should be returned to us accompanied by a full statement specifying the fault and the application, and will be returned by us to the original supplier for checking. Claims of this kind must be made within 14 days of despatch and returned to us in the original condition and packing material. Please note no claims can be accepted for goods which have been soldered
3. We must emphasise that we cannot replace components that have been soldered, and recommend the use of sockets, or if in doublt, prior testing

\section*{EXPORT \& DOCUMENTATION}

For customers requiring detals on export procedures with any necessary documentation, please apply to our Sales Department

\section*{CONSEQUENTIAL DAMAGE}

We cannot accept responsibility for damage to persons or equipment as a result of fallure of product supplied by us

\section*{DATA}

All data in this catalogue is believed to be correct but Marshall's cannot accept responsibility if errors or omissions occur

\section*{TELEPHONE ORDERS}

Orders for promt delivery can be accepted from account customers subject to our standard minimum order charge
Credit Card telephone orders are subject to the same £10 min. - goods can only be sent to the cardholders home address.

\section*{MAIL ORDER FACILITIES}

Our Company offers a return-of-post service on all stock items
Marshall's mail order forms should be used whenever possible in order to reduce errors and save time. The prices shown in this catalogue are those valid at the date of publication and are subject to change without notice, but every effort will be made to ensure you a swift return service. In the event of a price change, or an item being out of stock, you will be notified immediately of the problem. Items ordered which are out of stock will be sent on at a later date as soon as we receive fresh'stocks. We can only ask you to be patient as in some cases deliveries are very extended
When writing out an order to us. we would appreciate a complete description of the items being ordered, including the various type numbers where available
All goods are guaranteed brand new and to makers' specification. Faulty goods will be replaced under guarantee providing they are returned within 14 days from date of purchase, unused and with full information on the fault Subject only to our technical agreement. Note: We cannot exchange soldered devices.


DIGITAL MULTITESTERS-PORTABLE

\section*{COMPLETE WITH CHARGER}
three oigit
Accuracy \(1 \%\) reading


Model: LM- 3 A f88. 56

MAINS/BATTERY OPERATED - COMPLETE WITH RECHARGEABLE NICad BAT-

\section*{eatures} TERIES \& CHARGER UNIT
- Measures DC volts. AC volts, ohms and current
* Automatic polarity decımal and overload indication
* No zero adjustment and no full scale ohms adjust * Battery operated - NiCad batteries; also AC line operation
* Large LED display for easy reading without interpolation
* Size \(1.9^{\prime \prime} \mathrm{H} \times 2.7^{\prime \prime} \mathrm{W} \times 4^{\prime \prime}\) deep
* Parts and labour guaranteed for one year
- Input voltage protection in ohms and current range

Ranges
Volts \(D C=0.1,10,100,1000\) volts Volts \(A C=0.1,10,100,1000\) volts Resistance \(-0.1 \mathrm{k}, 10 \mathrm{k}, 100 \mathrm{k}, 1 \mathrm{meg} .10 \mathrm{megohms}\) Current - \(0-1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}\)

IOEAL FOR SERVICEMEN

THREE \& A HALF DIGITS

Complete with till stand for benchwork or optional case \(\mathbf{£ 8 . 7 5}\)

Accuracy \(0.5 \%\) reading


Model: LM-3.5A f102.60



\section*{NEW DIGITAL ALARM CLOCK MODULES}

MA1002F 12-hr \(£ \mathbf{1 0 . 4 5}\) MA1010E'12-hr. £13.75 MA1002H 24-hr \(£ 10.45\) MA1010G 24-hr. £13.75


The MA1002 \& MA1010 Series Electronic Clock Modules are assembled and pretested modules which combine a monolthic MOS-LSI integrated clock circuil. 4-digir LEO display power supply and orher associated liscren a comple erict in user horm a complere electronic ciock movemen lons user need add onk a lor application lockestios alarm or digital clock for appleation in clock-radios alarm or or 60 Hz inouts and 12 or 24 -hour display lormats or 60 Hz Inpuls may be chosen Direct LED drive eliminates RF interterence lime setting is made easy through use ri
Fasi and Slow scanning controls scanming controls

The MA 1002 F and MA1010E have a 12 hour dispiay witt an AM and PM indicator The MA1002H and with an AM and PM Indication
Malolog have a 24 -hour dispiay
Features include alarm on and PM indicators sleep and snooze timers and vartable brighiness conuol capability the modules are extemely compact the MA1002 measurng ' \(375^{\prime \prime}\) by \(305^{\prime \prime}\) the MA 1010 measuring \(175^{\prime \prime}\) by \(375^{\prime \prime}\) This simall size is acheved by bonding the I C to the back of the carcur board
It is highly recommended that the tianstormer be obtanlied with the clock module ds it is a special dual secondary type nol otherwise readily avaliable


\section*{PHOTO TRANSISTORS}

2N5777 Darlington Amplifier \(\begin{array}{ll}\text { 2N5778 } & \text { Darlington Amplifier } \\ \text { 2N5779 } & \text { Darlington Amplifier }\end{array}\) BPX25 General Purpose Silicon \(\begin{array}{ll}\text { BPX25 } & \text { General Purpose Silicon } \\ \text { BPX29 } & \text { General Purpose Silicon }\end{array}\) \(\begin{array}{ll}\text { BPX29 } & \text { General Purpose Silicon } \\ \text { BPX80 } & \text { General Purpose Silicon Array (10) }\end{array}\) BPX81 General Purpose Silicon BPX86 General Purpose Silicon (5) TIL63 General Purpose Silicon TIL64 General Purpose Silicon TIL65 General Purpose Silicon TIL66 General Purpose Silicon TIL67 General Purpose Silicon \(\begin{array}{ll}\text { TIL67 } & \text { General Purpose Silicon } \\ \text { OCP71 } & \text { Germanium Photo Transistor }\end{array}\) \(\begin{array}{ll}\text { OCP71 } & \text { Germanium Pho } \\ \text { TIL78 } & \text { Photo Transistor }\end{array}\)

\section*{PHOTO DIODES}

\section*{BPW32}

TIL32
BPX60 Differential (Precision)
BPX60
BP 61
BPX6 63
BP 66
BP 665
BPX65
BPX65
BPX 97
BPX68

High Output Voltage \(10 \mathrm{MH}_{2}\)
Ultra Sensitive Silicon High Speed Silicon
General Purpose Silicon
General Purpose Silicon
\begin{tabular}{l}
\(P R I C E\) \\
\(£ 0.88\) \\
\(£ 0.99\) \\
\(£ 1.30\) \\
\(£ 1.80\) \\
\(£ 1.80\) \\
\(£ 7.20\) \\
\(£ 0.86\) \\
\(£ 5.75\) \\
\(£ 1.60\) \\
\(£ 1.87\) \\
\(£ 2.15\) \\
\(£ 2.20\) \\
\(£ 2.30\) \\
\(£ 2.20\) \\
\(£ 0.75\) \\
\\
\(P R I C E\) \\
\(£ 2.87\) \\
\(£ 1.10\) \\
\(£ 4.28\) \\
\(£ 4.75\) \\
\(£ 3.95\) \\
\(£ 2.20\) \\
\(£ 5.17\) \\
\(£ 1.78\) \\
\(£ 2.00\) \\
\hline
\end{tabular}



\title{
NEW DIGITAL CAR CLOCK MODULE
}

THE MA1003 ready-built module was specially built and designed for the American market. with the luxury HE MA1003 ready-built module was specially buit and designed form quartz clocks. this unit operates from a very high frequency crystal resonating at over 2 MHz for extra accuracy and stabilty Stingent safety regulations dictate that this module is completely suitable for use in hostile environments and "shake. rattle and roll' conditions Automatic display blanking is included when igntion is turned off. to consume a miserly 3 mA

THE BRIGHT GREEN DISPLAY, fluorescent, can be filtered from green to blue to give that personalised look The compact and rugged design enables the module to be mounted anywhere, easily and with the minimum of effort Works from any 12 volt supply First time in Europe

DEVELOPED BY NATIONAL SEMICONDUCTORS. A name known worldwide and respected RECOMMENDED TO RETAIL AT £29.95 + VAT
- internal crystal timebase + 5 Sec/day - COMPLETE. TESTED MODULE. JUST ADD SWITCHES - bright o 3" display - green for safety on - TRANSIENT PROTECTED, TIMEKEEPING DOWN TO 9 V
- easily installed. compact and rugged DESIGN

\section*{OPTOELECTRONICS}


\section*{SEVEN SEGMENT LED DISPLAYS - SIEMENS}

A unique, high quality range of displays to suit all applications. Extra bright red display. Sizes quoted are in mm.
\begin{tabular}{lr} 
Current per segment & 20 mA \\
Luminous intensity segment & .3 mcd \\
Forward voltage at 20 mA & 2.0 volts
\end{tabular}

PIN CONNECTIONS - TOP VIEW
\begin{tabular}{|c|c|c|}
\hline a - 1 & 1 & 1 \\
\hline f-2 & 1 & 1 \\
\hline A-3 & 1 & 1 \\
\hline 4 & 1 & 1 \\
\hline 5 & 1 & 1 \\
\hline dp-6 & 1 & 1 \\
\hline e-7 & 1 & 1 \\
\hline
\end{tabular}

A \(=\) common anode
HA 1081
\(f-1\)
\(g-2\)
\(k-3\)
\(k-4\)
\(e-6\)
\(d-7\)
\(k=\)\(\left[\begin{array}{ll|l}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 8\end{array}\right.\)
\(K=\) common cathode
HA 1083
\(\mathrm{A}=\) common anode HA 1101 HA 1103

DESCRIPTION
8 mm CHARACTERS HA1081 CAn HA1083 C Cath
10 mm CHARACTERS HA1101 CAn HA1103 C Cath

14 mm CHARACTERS HA1141 CAn HA1143 C Cath
18 mm CHARACTERS HA1181 CAn HA1183 C Cath NB.

DL707 replaced by HA 1081 DL704 replaced by HA1083


Single Digit Displays
SIEMENS
QUALITY


HA 1181
HA 1183
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline a 1 & 1 & 1 & 14 A & a 1 & 1 & 1 & 14 K \\
\hline f 2 & 1 & 1 & 13 b & \(f 2\) & 1 & 1 & 13 b \\
\hline A 3 & 1 & 1 & 12 A & K3 & 1 & 1 & 12 K \\
\hline A 4 & 1 & 1 & 11 g & K4 & 1 & 1 & 11 g \\
\hline A 5 & 1 & 1 & 10 c & K5 & 1 & 1 & 10 c \\
\hline e 6 & 1 & 1 & 9 A & e 6 & 1 & 1 & 9K \\
\hline d 7 & 1 & 1 & 8 dp & \(f 7\) & 1 & 1 & 8 dp \\
\hline
\end{tabular}

HA 1141
\(f, g\) a b \(A\)
10'98' 6


12345
+11
\(A=\) common anode

HA 1143
f.g, a b \(K\) \(109876^{\prime}\)
g a b \(k\)



A common anode
\(K=\) common cathode
\(K=\) common cathode

\section*{Thomson-CSF...a European second source for the \(\mathbf{6 8 0 0}\) microprocessor}


IN STOCK NOW AT MARSHALL'S 6800 DII EVALUATION KIT SEE PAGE 21 SUPPORT CHIPS
PRICE
£16.99
£ 9.20
£10.50
£10.99
f 4.95
\begin{tabular}{|c|c|c|}
\hline 6800 A - & 8 Bit 1.5 MHz CLOCK micro & £16.99 \\
\hline 6820 A - & PIACHIP & £ 9.20 \\
\hline 6821 A - & increased o/p pIa chip & £10.50 \\
\hline 6850 A - & ACIA 1.5 MHz Clock & £10.99 \\
\hline memory & & \\
\hline 6810 A - & \(128 \times 8\) Statc fam & f 4.95 \\
\hline
\end{tabular}

Write or phone for full technical data


\section*{Great value,superb quality.}

That's the wonder of Texas. We have all you need for your next design project and at prices that are unbeatable all the way down the High Street

Take our new 16K Dynamic Ram TMS4116. Hundred off price is just \(£ 22.84\) each 16 -pin, 300 mm ceramic DIL package, fully TTL compatible, address and data inputs latched for system simplicity, data output unlatched for flexibility. Low power dissipation and even lower standby consumption. Ideal for high-density memory applications where system costs are critical.

And we've a new line up of four 4K Static RAMs and a new EPROM, the TMS2716, which doubles the capacity of the TMS2708. Great range, great value!

TEXAS Instruments

FRANCHISED CONSUMER DISTRIBUTOR A. MARSHALL (LONDON) LTD. 40/42 CRICKLEWOOD BROADWAY LONDON NW2 3ET TEL: 01-452 0161

\section*{SILICON POWER TRANSISTOR SELECTION CHART}
* NB. COMPLEMENTARY PAIRS SHOW NPN TRANSISTOR FIRST IAT TOPI. I F NO PAIR IS SHOWN TRANSISTOR IS NPN.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\checkmark\) A & 1 A & 2A & 3 A & 4A & 5 A & 6 A & 7 A & 10A & 12 A & 15A & 16 A & 20 A & 25A & \(30 A\) & \(40 A\) & 50A \\
\hline 40 V & \[
\begin{array}{|l|}
\hline \text { BD135 } \\
\text { BD136 }
\end{array}
\] & \begin{tabular}{|l|}
\hline BFR41 \\
BFR81
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { BD131 } \\
\text { BD132 }
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { 2N6121 } \\
\text { 2N6124 }
\end{array}
\] & \[
\begin{array}{|l|}
\text { 2N4913 } \\
\text { 2N4901 }
\end{array}
\] & \[
\begin{array}{|l|}
\hline 8 D 233 \\
\hline 8 D 234 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|l|}
\hline \text { BD201 } \\
\text { BD202 } \\
\hline
\end{array}
\] & BD181 & 40514 & BD142 & & & & 2N3771 & & \\
\hline 60 V & \[
\begin{array}{|l|l|}
\hline \text { BD137 } \\
\text { BD138 } \\
\hline
\end{array}
\] & \[
\begin{array}{|l|l|}
\hline \text { BFR4O } \\
\text { BFR80 }
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { TIP31A } \\
\text { TIP32AA } \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { 2N6122 } \\
\text { 2N6125 }
\end{array}
\] & \[
\begin{array}{|l|}
\hline 2 N 4914 \\
2 N 4902
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { TIP41A } \\
\text { TIP42A } \\
\hline
\end{array}
\] & \[
\begin{array}{|l}
\mathrm{BD203} \\
\text { BD204 }
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { TIP33A } \\
\text { TIP34A } \\
\hline
\end{array}
\] & & \[
\begin{array}{|l|}
\hline \text { 2N3055 } \\
\text { MJ2955 } \\
\hline
\end{array}
\] & & 2N3772 & \[
\begin{aligned}
& \text { TIP35A } \\
& \text { TIP36A }
\end{aligned}
\] & & & \\
\hline 80 V & \[
\begin{array}{|l|l|}
\hline \text { BD } 139 \\
\text { BD140 }
\end{array}
\] & \[
\begin{aligned}
& 40594 \\
& 40595
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 2 N 4923 \\
2 N 4920
\end{array}
\] & \[
\begin{aligned}
& \text { 2N6123 } \\
& \text { 2N6126 }
\end{aligned}
\] & \[
\begin{array}{|l|}
2 \mathrm{~N} 4915 \\
2 \mathrm{~N} 4903
\end{array}
\] & BDY24 & & \[
\begin{array}{|l|}
\hline \text { 2N3715 } \\
\text { 2N3790 } \\
\hline
\end{array}
\] & & BD183 & & & BDY57 & 40411 & & \\
\hline 100V & \[
\begin{array}{|l|}
\hline \text { TIP29C } \\
\text { TIP30C } \\
\hline
\end{array}
\] & \[
\begin{array}{|l|l|}
\hline \mathrm{BD} 237 \\
\mathrm{BD} 238 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { TIP31C } \\
\text { TIP32C } \\
\hline
\end{array}
\] & & & \[
\begin{array}{|l|}
\hline \text { TIP41C } \\
\text { TIP42C } \\
\hline
\end{array}
\] & \[
\begin{array}{|l}
40871 \\
40872 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|l|}
\hline \text { TIP33C } \\
\text { TIP34C } \\
\hline
\end{array}
\] & & & & & \[
\begin{aligned}
& \text { TIP35C } \\
& \text { TIP36C } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { MJ802 } \\
\text { MJ4502 } \\
\hline
\end{array}
\] & & \\
\hline 120V & & & 2N3441 & 40373 & 2N4347 & BDY25 & & 2N3442 & BDY54 & BDY56 & 2N3773 & & BDY58 & & & BUX20 \\
\hline 150 V & 40412 & & & & 40374 & & 25025 & & & & & & & & & \\
\hline 200V & & & 2N3738 & & 2N5239 & & & & & & & & & & BUX21 & \\
\hline 250V & \[
\begin{array}{|l|}
\hline \text { 2N3440 } \\
\text { 2N5415 }
\end{array}
\] & 2N3584 & & & & & & & & & & & & & BUX22 & \\
\hline 300V & \[
\begin{array}{|l|}
\hline \text { 2N3439 } \\
\text { 2N5416 } \\
\hline
\end{array}
\] & 2N3585 & 2N3902 & & & & & & & & & & & BUX23 & & \\
\hline 400V & & & & & & & BU104 & & & & & BUX24 & & & & \\
\hline 500 V & & & & & & & & & & BUX25 & & & & & & \\
\hline 700V & & & BU205 & & & BU126 & BU208 & & & & & & & & & \\
\hline 800V & & & BU206 & & & & & & & & & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{A. MARSHALL (LON) LTD 01-452 0161}} \\
\hline 1 kV & & & & BD×32 & & & & & & & & & & & & \\
\hline \multicolumn{17}{|l|}{THIS TABLE IS ONLY INTENDED AS A GENERAL GUIDE; COST EFFECTIVENESS, PACKAGE DETAILS, FREOUENCY RESPONSE AND OTHER FACTORS ARE NOT TAKEN INTO ACCOUNT-CONSULT MANUFACTURERS DATA SHEET FOR DETAILED APPLICATIONS.} \\
\hline
\end{tabular}

\section*{MARSHALL＇S}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & Price & Type Da & Data Price & Type Da & Data Price & Type Dal & Data Pric & & Type Dat & Data Pric & Price \({ }^{\text {T }}\) & Type & Data & Type Da & Data Price & Type Da & Data Pr & Price \\
\hline \(2 \mathrm{Cl11}\) & 5.20 & & 38 & 2N3446 & N66 10.00 & & & & \(2 \mathrm{Na926} \mathrm{~N}\) & N70 & 1.70 & －2N5486 & 86 ． 40 & 2313 & \begin{tabular}{lll}
28 & 1.38 \\
\hline 18
\end{tabular} & AF172 & P98 & 70 \\
\hline 26301 & ． 70 & & N70 ． 39 & 2 2 3447 & & &  & & & N70 & 1．70 & & \begin{tabular}{cc} 
N37 \\
N37 \\
\hline
\end{tabular} & & \begin{tabular}{cc}
770 \\
128 \\
\hline 1.95 \\
\hline 10
\end{tabular} & & \({ }_{\text {P64 }} 96\) & \(\begin{array}{r}1.30 \\ \hline 55\end{array}\) \\
\hline \({ }_{26309}^{26339}\) & ． 70 & 2N2220 & N70 ． 39 & 3448 & & & P70 & & 2 N 4944 N & N54 & 30 & 2 N 5494 & 65 & & 60 & & & \\
\hline & 70 & & 25 & & N70 10.00 & 2N4032 & 70 & & 2Na945 & & 30 & 2 N & & & & & & \％ \\
\hline & 70 & 2 N 2222 & N70 ． 25 & 2N3512 & N70 1.10 & 2 N 4033 & P70 & & 2N4964 & P70 & 28 & 2N5543 & NF76 7.50 & 40325 & N66 1.35 & & & 70 \\
\hline & 70 & & & 3553 & N70 3.25 & 2 N 036 & P70 & & 2N4965 & P70 & ． 28 & －2N5550 & N57．38 & 40326 & N70 ． 60 & AF240 & P65 & ． 25 \\
\hline \({ }_{2}\) & \begin{tabular}{l}
70 \\
70 \\
\hline
\end{tabular} & & 3.99 & & N54 25 & & P70 & & 2N4966 & N54 & ． 28 & －2N5 & N57．44 & 40327 & N70 ． 73 & －AF279 & P99 & \({ }^{88}\) \\
\hline 263748 & ． 70 & & & & N54 ． 25 & & P50． & & & & ． 28 & & \({ }^{1486} .65\) & 40348 & N70 1.10 & AF280 & P99 & 95 \\
\hline \(2 \mathrm{C3814}\) P54 & ． 55 & 2N2270 & N70 ． 49 & & & & & & & & \({ }_{28}^{28}\) & & NF86． 45 & & 1.45 & & 5 & ． 65 \\
\hline \({ }^{26417}\) P70 & & 2N & ． 50 & & 25
25 & －2N4060 & P50 & & 2N4969 &  & 5．75 & －2N5640 &  & \({ }_{40361}^{40360}\) & \begin{tabular}{l} 
N70 \\
\\
\hline 70 \\
\hline
\end{tabular} & \({ }^{8}\) & 69 & 10 \\
\hline 2N335 N70 & ． 80 & & ． 27 & 2N3570 & N65 4.50 & & & & & & 8． 25 & & & & 55 & & & 82 \\
\hline 388 & ． 77 & 2 N & 27 & & N65 1.90 & & N81 1.35 & & & & 22 & & 75 & & \({ }^{1} 666\) & & & 82 \\
\hline 2 N 398 & ． 80 & & \({ }^{6} 6\) & 572 & N65 & & & & & Pf83 & & 2N5657 & \begin{tabular}{l}
37 \\
\hline 661750 \\
\hline 68
\end{tabular} & & \begin{tabular}{l} 
N27 \\
N66 \\
1．15 \\
\hline 1.45 \\
\hline
\end{tabular} & & \({ }_{\text {P696 }}\) & \\
\hline 47 & & & N70 1.40 & & N66 1.25 & & & & 2N5036 & N84 & 1.20 & & ． 98 & 403 & N66
N1．65 & & P66 & 2.70 \\
\hline  & 5.40 & 2N2411 & ． 8.80 & 2N3585 & \begin{tabular}{l} 
N666 \\
N66 \\
1.55 \\
\hline 1.55 \\
\hline
\end{tabular} & \({ }_{2}^{2 N 4093}\) & & & 2N508 & P57 & 30 & 2N5813 & 55 & 403 & N66 1.65 & \(8{ }^{8} 1\) & N70 & ． 16 \\
\hline 2 N 48 & 5.90 & & ． 10 & & N50 ． 18 & －2N4121 & P54 & & 2N5087 & 57 & 30 & 27 & Pu88 64 & 40389 & N70． 70 & BC 107A & 70 & 16 \\
\hline & 4．99 & & N 7 C .30 & & & & & & 2N5088 & N57 & 30 & & N37 ． 62 & 403 & N70 1.05 & & N70 & 16 \\
\hline & 6.90 & 2 & N70 ．30 & 2n3607 & N50． 18 & & \({ }_{\text {N57 }} \times\) & & & \({ }_{\text {N57 }}\) & 44 & & 55 & 40392 & N27 7.90 & \(\underbrace{\text { BC108A }}_{\text {BC108 }}\) & N70 & 16 \\
\hline & & & \({ }^{\text {P598 }}\) & & 70.17 & & P57 & & － & N54 & 22 & & 55 & 40394 & 90 & & N70 & 16 \\
\hline &  & 2 N 261 & \({ }^{\text {P599 }} 1.70\) & 2N36 & ． 17 & & & & & & & & & & & & & \\
\hline 471 & 6.25 & 2N2646 & 171 & －2N3639 & 33 & & & & & 54 & 22 & & & & & & & \\
\hline 2N492A 471 & & & 1.55 & & P70 ． 25 & & & & & N54 & 22 & & －337 \({ }^{4} 48\) & &  & & & \\
\hline & & & 1.35 & & N70 ． 25 & & & & \({ }_{-2 N 5133}\) & N54 & 22 & & \begin{tabular}{lll} 
\\
\hline 37 & .45 \\
\hline 8
\end{tabular} & & 82 & \({ }_{\cdot} \cdot \mathrm{BC}\) & N54 & 22 \\
\hline 2N492C & 10.09 & －2N271 & N50 ． 30 & \({ }_{-2 \times 3643}\) & N70 ． 38 & 4224 & NF82 & & －2N51 & N54 & & & & & & & & \\
\hline \(2 \mathrm{~N} 493 \mathrm{~B} \quad \mathrm{U7}\) & 8.75 & －2N27 & ． 25 & －2N3644 & ． 40 & \({ }^{2 N 4234}\) & & & & P54 & 22 & & 48 & & \({ }^{82}\) & & & 22 \\
\hline & & & N50 ． 22 & & & & & & & P54 & 22 & & ，337．60 & & 10 & & & 21 \\
\hline & & & & & & & & & & & & & & & & & & \\
\hline & ． 40 & & &  & N50 ． 25 & \({ }_{\text {2N4238 }}\) & N70 & & －2N5142 & P70 & 22 & 2N6132 & & 40422 & N666 2.20 & －BC118 & & \({ }_{22}\) \\
\hline  & \({ }^{9.35}\) & & \begin{tabular}{l} 
N70 2.50 \\
N70 2.50 \\
\hline 1
\end{tabular} & －2N3663 & ． 45 & 2 N & \％ & & \({ }^{2} 2 \mathrm{~N} 5172\) & NF83 & 24 & 2N6133 & 70 & 40440 & P66 \({ }^{\text {P6 }}\) & BC119 & & 33 \\
\hline 2N681 THY7 & 2.20 & & & & 45 & & & & & & 15 & & & & & & & \\
\hline & ． 39 & & & & & & & & & & 58 & & & & & & & \\
\hline \(2 \mathrm{~N} 697 \times 70\) & ． 31 & 2903 & N73 1.60 & & N54． 50 & & P4 & & & N2O & 55 & 2N6180 & 8 & \({ }_{40468}\) & & － 8 C & & 33
22
22 \\
\hline N70 & 58 & & p7o & & ． 14 & 2N4254 & N51 & & 2N & \({ }^{\text {N20 }}\) & 12 & \({ }_{2} 2 \mathrm{N6} 253\) & 1．80 & 4051 & \begin{tabular}{l} 
NF82 \\
095 \\
\hline 1.70
\end{tabular} & \({ }_{-8 \mathrm{Cl} 135}\) & \({ }_{\sim}\) & \({ }_{22} 2\) \\
\hline N70 & \({ }^{30}\) & 2N29 & P70 31 & N3703 & 14 & & P54 & & & N70 & 4 & & 1.45 & & 研 & & & 22 \\
\hline N70 & ． 30 & & （r） & & 14
14
14 & & N54 & & & N2 & ． 65 & & \begin{tabular}{ll}
167 & 50 \\
\hline 138 \\
\hline 50
\end{tabular} & 405 & \({ }_{\text {P70 }}^{\text {N84 }}\) &  & P70 & 44 \\
\hline N70 & 54 & 2 N 2906 & 70.25 & － \(\mathrm{N}^{2} 106\) & 14 & & N54 & & & N2 & 75 & & 37 & & & & & 2 \\
\hline & ． 85 & 290 & 70.25 & N3707 & 14 & & & & & \({ }_{\text {P2 }}\) & 75 & & N37 50 & 40 & & & N70 & 32
32
32 \\
\hline & ． 05 & \({ }_{\text {2N29020 }}\) & P70 \begin{tabular}{rl} 
P73 \\
\\
\hline 1.30
\end{tabular} & N3709 & N50 & －2N42 & N77 & & & P2 & & & 50 & & & & & 32 \\
\hline P7 & ． 50 & \({ }_{-2 \mathrm{~N} 2923}\) & N50 \({ }^{\text {N／}} 17\) & －2N3710 & 12 & －2N42 & & & 2 N 195 & & 97 & & 6.00 & & 98 & & & \\
\hline N7 & ． 35 & & N50 ． 17 & & 12 & & & & & & 35 & & N70 8.25 & & & & & \\
\hline & ． 35 & & N50 ． 19 & \({ }^{2} \mathbf{N} 3712\) & 35 & & & & & & & & 9．75 & & NF92． 60 & & & 13 \\
\hline 2N760
2N869 & ． 35 & & & － & N66 1.50 & －2N42010 & N77 & & \({ }^{2} 2 \mathrm{~N}\) & N57 & 5 & 25024 & N89 13．00 & 40603 & NF92 70 & －BC148 & & 3 \\
\hline N7 & ． 38 & & 37 & & 1.55 & & N77 & \(2 \cdot\) & 2N5221 & P57 & 16 & 25 & 50 & & 3 & & N61 & 15 \\
\hline & 33 & & ． 37 & & N66 1.70 & 429 & & \[
3
\] & 522 & N57 & 20 & & 3.25 & 406 & N70 1.65 & & N61 & 5 \\
\hline \({ }^{2 N 917}\) & ． 35 & & 37 & & & & NF83 & & 522 & & 16 & & ． 28 & 406 & N68 1.60 & & & （38 \\
\hline 2N929 N70 & ． 37 & \({ }^{2} \mathbf{N} 3015\) & N70 ．4 & & ． 80 & \(2{ }^{2}\) & f83 &  & 2 N & \({ }_{\text {N57 }}\) & 16 & 251 & 83 & \({ }_{40631}^{40626}\) &  & \({ }_{-\mathrm{BC154}}\) & & \\
\hline 2 2n929A \({ }^{\text {N }}\) & 3.37 & & ． 75 & & ． 75 & 2N4313 & P70 & & 25 & P57 & 16 & \({ }_{2} 5301\) & P70 1.65 & 40632 & N38 \(\quad .95\) & －BC157A & & 15 \\
\hline 2 N 930 N 7 & ． 95 & & ． 25 & & 00 & & & & & & 16 & & P70 1.65 & 40633 & N84 1.20 & BC 158A & 61 & 5 \\
\hline 2 N & ． 32 & N3054 & 28.72 & 738 & 1.35 & N & P883 & & － & 51 & & 2530 & 3．25 & 40635 & N70 1.58 & －BC1588 & & 15 \\
\hline N & ． 35 & 305 & N66．75 & & P28 2.10 & & & & & & & \({ }_{2532}^{2530}\) & \begin{tabular}{ll} 
\\
\hline 1 \\
\hline 1 & 3.35 \\
\hline
\end{tabular} & \({ }_{40673}^{40636}\) & \(\begin{array}{ll}\text { N66 } & 1.37 \\ \text { NF92 } & \text { 80 } \\ \end{array}\) & \({ }^{-8 \mathrm{BC} 1598}\) & & \\
\hline 2N1204
2 N1302 & 1.65 & \(2N3107

N210\) & N70 \({ }^{\text {N70 }}\) & 2 & 1.50 & & 83 & & & N78 & & 25 & 90 & 40669 & 30 & & \({ }^{\text {P67 }}\) & 38 \\
\hline 2N1302 \(\begin{aligned} & \text { N70 } \\ & \text { 2N1303 }\end{aligned}\) & ． 80 & \({ }_{\text {2 }}\) & N70 ：80 & 2 23771 & N66 2.15 & \(\cdot 2 \mathrm{~N}\) & N70 & & －2N5 & N78 & & & & & & & & \({ }^{38}\) \\
\hline \({ }_{2} 2 \mathrm{Ni} 304 \mathrm{~N} 70\) & ． 80 & 2N3119 & P70 4.00 & \({ }_{2}{ }^{\text {N3772 }}\) & N66 2.20 & 2N4400 & 5 & & － & & & \({ }^{25503}\) & 70 \({ }^{\text {．} 50}\) & 40 & & & & 13 \\
\hline 2N1305 P70 & & 3133 & P70 ． 50 & \({ }^{2} 127773\) & N66 3.15 & 44 & 557 & & －2N5248 & NF7 & & 25702 & \begin{tabular}{l}
3.30 \\
3.95 \\
\hline
\end{tabular} & \({ }_{\text {AC }}\) &  & & & －13 \\
\hline 2N1306 & 1.00 & N3134 & P70 878 & 2N3789 & P66 11.95 & \(\cdot 2 \mathrm{~N} 44\) & \({ }^{\text {P5 }} 7\) & & 2N5266 & PF8 & & 2S73 & \({ }_{65}\) & & P69 \({ }_{\text {P69 }}\) & & & \({ }_{13}\) \\
\hline －\({ }_{\text {2N1307 }}^{2 N 1308}\) & 1．10 & \(2 \times 3135\)
\(2 \times 3136\) & P70 971 & 2 2N3791 & P666 2.25 & －2N44 & 57 & & 2 N 5293 & N38 & & 2 S 733 & N70 ． 55 & 4 C 15 & & 硡 & & 13 \\
\hline \({ }_{2}\) N1309 & 1.10 & 2N3232 & N66 1.50 & & P66 2.40 & N4410 & \({ }^{N 57}\) & O & & & 44 & & N70 3.30 & \({ }_{4}{ }^{\text {c }} 152\) & P69 ． 54 & －8C1698 & N50 & 13 \\
\hline 2 N 1370 & ． 55 & 2 N 242 & 68 & 3794 & N77 21 & \({ }^{2}\) N4416 & & 8 & 2 N 5295 & \({ }^{\text {N38 }}\) & 44 & 25745A & & \({ }^{4} 15153\) & P69 \({ }^{\text {P99}}\) & \(\bigcirc\) & N50 & \\
\hline 42 & 55 & & ． 90 & ， 3819 & 36 & 2N4440 & 5 & & 2N5296 & N37 & & \({ }_{3}^{3 N 8}\) & \begin{tabular}{l} 
Scss90 3.50 \\
Scs9o 2.25 \\
\hline
\end{tabular} & \({ }_{\text {a }}^{\text {act } 153 \mathrm{~K}}\) & \begin{tabular}{l}
79 \\
70 \\
\hline
\end{tabular} & & & 19 \\
\hline \begin{tabular}{l}
483 \\
485 \\
\hline 10 \\
N70
\end{tabular} & 1．85 & & .33
.39 & N3820 &  & \({ }^{-2 N 4870 L}\) & 51 & 58 & 2N5301 & N70 & 4．00 & －\({ }_{\text {3N83．}}^{3} \mathbf{3} 128\). & NF82 1.35 & \({ }_{\text {act } 176}\) & N69 ． 54 & \({ }^{-8 C 170 C}\) & N 51 & 19 \\
\hline 2 N 1507 & \({ }^{35}\) & & ． 45 & & NF79 ． 55 & －2N4871L & U5 & 51 & 2 25303 & N70 & 5.50 & \(3{ }^{139}\) & NF82 1.60 & \({ }_{\text {AC187 }}\) & N69 59 &  & 51 & \\
\hline 2N1524
2N1553
P64 & ． 50 & & ． 45 & & NF79 ． 85 & 888 & P59 & 54. & 2N5305 & & 26 & 3 N & NF92 1.10 & AC187K & K P69 65 & －BC171A & N51 & 析 \\
\hline  & 1．30 & \({ }^{2} 133302\) & 39 & \({ }^{2} 13824\) & NF79 80 & 14889 & P59 & 75 & \({ }^{2} 2 \times 3306\) & N050 & ． 33 & 3N14 & NF92 95 & AC188 & 54 & & N51 & 17 \\
\hline \(2{ }^{2} 1637\) & ． 72 & －2N3390 & 35
.50 & & N50
N50
1．70 & 488 & P65 & & & N050 & & 3N142 & NF82 & \({ }_{\text {ACYI }}{ }^{\text {ACP }}\) & P70 1.00 & \({ }_{-B C 172 A}\) & \({ }_{\text {N51 }}\) & 15 \\
\hline  & ． 30 & －2N3391 & N50 ． 40 & \(2{ }^{\text {N3831 }}\) & 7704.50 & ， & b6 & & －2N & N70 & 97 & 3N152 & NF82 \(1 ; 10\) & ACY22 & \({ }_{65}^{65}\) & \({ }^{-8 \mathrm{Cl} 172 \mathrm{~B}}\) & N51 & 15 \\
\hline 889 N & ． 30 & －2N339 & 45 & －2N3854A & A \begin{tabular}{c} 
N50 \\
\(N 50\) \\
\(N 50\) \\
\hline
\end{tabular} & 2N4902 & P66 & & －2N & P4 & & 3 N & NF82：\({ }_{\text {NF82 }}^{\text {N99 }}\) & \({ }_{\text {ACr }}^{\text {ACr }}\) & P70 \({ }_{\text {P70 }} .655\) & \({ }^{-8 \mathrm{BC} 172 \mathrm{C}}\) & N51 & 15
17 \\
\hline 890
893
N70 & \({ }_{30}^{30}\) & －2N3392 & N50 & －2N3 & 50 \(\quad 30\) & & P66 & & －2N5356 & NF82 & 23 & 3N159 & NF92 1.35 & ACr & 86 & \({ }^{8} 8\) & N5 & 17 \\
\hline 2N1907 & ． 95 & －2N3394 & ． 17 & －238 & 50 & \(2 \mathrm{Na905}\) & P6 & & 2 25358 & P41 & 1.75 & 3N187 & NF92 1.80 & AD1 & 2.75 & & N51 & 26 \\
\hline \(2{ }^{2} 1974\) & ． 98 & －2N3395 & ． 19 & \({ }^{2}\) 2N385 & 550 ． 22 & 2N4906 & P66 & & －2N5365 & P41 & & & （ & \({ }^{\text {AD }}\) & ． 45 & \({ }^{\circ} \mathrm{BC} 174 \mathrm{~A}\) & N51 & 268 \\
\hline 2 N 2060 N73 & 200 & －2N340 & 45 & －2N3 & N50


N & 2 N & ¢ & 30 & 2 N 416 & P10 & 1.65 & 4083 & N7\％ 1.20 & AD150 & 3.10 & & P70 & 22 \\
\hline \({ }^{2} \mathrm{~N} 2102 \mathrm{~N} 70\) & ． 50 & －2 & ． 55 & －2N3860 & N50 20 & 2 N 4910 & N66 & & －2N5447 & P51 & 1.16 & \({ }_{40233}^{40232}\) & \begin{tabular}{l} 
N70 \\
\(N 70\) \\
\hline 100
\end{tabular} & AD161
AD 162 & 1．00 & （78 & P70 & 22
25
25 \\
\hline 2N2147
2 21606
P67 & 1.55 & －2 & N50 ． 18 & \({ }_{-2 \mathrm{~N} 3877}^{2}\) & \begin{tabular}{cc} 
N70 \\
N50 & 1.98 \\
\hline 18
\end{tabular} & 2N4913
2N4914 & N66 & 55 & －2N5448 & N5 & 16
20 & 40233
40235 & \begin{tabular}{cc} 
N70 \\
N65 & .70 \\
\hline 65
\end{tabular} & \({ }_{\text {AF }}^{\text {Af } 162}\) & P66 & \({ }_{8 C 178}^{\text {BC177 }}\) & P70 & 25
22
22 \\
\hline 2N2192 N70 & ． 58 & & N50 ． 18 & －2N3877A & N50 30 & 2N4915 & N66 & 40 & －2N5450 & N51 & 16 & 40237 & N65 ． 45 & AF109 & P65 ． 82 & BC178A & & 25 \\
\hline \({ }^{2} \mathbf{N 2 1 9 3}\) N70 & ． 50 & 2N34 & N50 ． 21 & 2N3879 & 20 & －2N4916 & P54 & 22 & 2 N 5451 & N51 & 16 & 40242 & \({ }^{66}\) & \({ }_{\text {AF1，}}\) & \({ }_{\text {P64 }}{ }^{\text {P64 }}\) & \({ }^{\text {BCC178 }}\) & P70 & 35
25
25 \\
\hline N21934 N70 & ． 52 & 2N3417 & 50 12.25 & －2N & \begin{tabular}{c} 
N50 \\
N50 \\
\\
\hline
\end{tabular} & \({ }^{\text {－2N4917 }}\) & PP2 & 27
.65 & －2N5457 & \({ }_{\text {NF86 }}^{\text {NF86 }}\) & & \({ }_{40254}^{40251}\) & \begin{tabular}{l} 
N666 \\
P66 \\
\hline 1.66 \\
\hline
\end{tabular} & \({ }_{\text {AFI } 116}^{\text {AF }}\) & P64
P64 & \({ }_{\text {BC179 }}^{\text {BC179a }}\) & & 25
25 \\
\hline 2N2194A N70 & ． 45 & 2N3439 & N70 85 & 2 N & N666 7.00 & 2N4919 & \({ }^{\text {P2 }}\) & 70 & －2N5459 & NF86 & \({ }^{32}\) & 40264 & N70 ．95 & AF117 & 70 & \({ }^{\text {BC1798 }}\) & 70 & （25 \\
\hline 55 N70 & ． 49 & 2 N & 75
92 & \({ }_{-2}\) & N57 & \({ }^{4} 4929\) & \({ }^{\text {P2 }}\) & \({ }_{54}^{83}\) & －2N54 & NF86 & & \({ }_{40309}^{4028}\) & 3．70 &  & \begin{tabular}{ll} 
P64 \\
\hline 20 \\
\hline 20 \\
\hline 70 \\
\hline 10
\end{tabular} & & P70 & \\
\hline \({ }_{2}\) 2N2217 \({ }^{\text {N }}\) N70 & ． 55 & & 1.95 & 2 N & N57 \({ }^{\text {N57 }} 18\) & 2 N 4922 & \({ }^{\mathrm{N} 2}\) & \({ }_{60}\) & \({ }^{2} \mathrm{~N} 546\) & \({ }_{\text {NFB6 }}^{\text {NF66 }}\) & ． 65 & 40310 & N28 85 & \({ }_{\text {AFL } 125}^{\text {af }}\) & 20.70 & \({ }_{\text {BC182 }}\) & N5 & \\
\hline \({ }_{84}^{8}\) N70 & \begin{tabular}{l}
.35 \\
.38 \\
\hline
\end{tabular} & \({ }^{2} 13444\) & 1.35 & & N5 & 2 N 4923 & & 75 & & & & & & & 70 & & N51 & ． 13 \\
\hline 2N22184 N70 & & 2N3445 & & 2N3945 & & 2N4924 & & & －2N5485 & & & 4031 & N28－99 & AF1 & & －BC1 & N50 & \\
\hline  & & D &  & & \[
\underbrace{000}_{1200}
\] & \[
\frac{3}{2}
\] &  & & & & & & \[
2
\] & & \[
1 \mathrm{~J}
\] & & & \\
\hline  & & 5o & \[
\frac{1}{3}
\] &  & \(0^{3}\) & \[
5
\] & & & \[
0
\] & & &  & \[
\left[\begin{array}{c}
c^{3} \\
\hdashline \\
0 \\
0 \\
0
\end{array}\right.
\] &  &  & & A & \\
\hline
\end{tabular}


CAPACITORS

\section*{SIEMENS—MULLARD \\ THOMSON CSF}

ELECTROLYTIC - AXIAL watasemens By SIEMENS and MULLARD
Types B41313 B412B3 B41010.015.016
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline UF & Volts & Size mm & Price 1-99 & UF Volts & Size mm Pri & Price 1-99 \\
\hline 47 & 100 & \(4.5 \times 11\) & £0.14 & 4740 & \(8.5 \times 15\) & £0.12 \\
\hline 1.0 & 40 & \(3.2 \times 11\) & £0.14 & 4763 & \(8.5 \times 20\) & £0.15 \\
\hline 1.0 & 100 & \(4.5 \times 11\) & £0.14 & \(68 \quad 16\) & \(6.7 \times 18.5\) & £0.10 \\
\hline 1.5 & 63 & \(6.1 \times 12.5\) & £0.10 & \(100 \cdot 16\) & \(8.5 \times 15\) & £0.13 \\
\hline 2.2 & 25 & \(3.2 \times 11\) & £0.14 & 10025 & \(8.5 \times 17.5\) & £0.14 \\
\hline 2.2 & 63 & \(4.5 \times 11\) & £0.14 & 10040 & \(10 \times 20\) & £0.16 \\
\hline 2.2 & 100 & \(5.8 \times 11\) & £0.15 & 10063 & \(10 \times 25\) & £0.22 \\
\hline 3.3 & 63 & \(6.1 \times 12.5\) & ¢0.10 & 100100 & \(14 \times 30\) & £0.30 \\
\hline 4.7 & 16 & \(3.2 \times 11\) & £0.14 & 15016 & \(8.3 \times 18.5\) & £0.13 \\
\hline 4.7 & 40 & \(4.5 \times 11\) & f0.14 & 15025 & \(10.3 \times 18.5\) & 5 £0.15 \\
\hline 4.7 & 63 & \(5.8 \times 11\) & £0.15 & 22016 & \(8.5 \times 20\) & 20.15 \\
\hline 4.7 & 100 & \(6.5 \times 17.5\) & £0.11 & 22025 & \(10 \times 20\) & f0.18 \\
\hline 6.8 & 40 & \(4.8 \times 12.5\) & £0.09 & 22040 & \(10 \times 25\) & E0.22 \\
\hline 6.8 & 63 & \(6.1 \times 12.5\) & £0.09 & 22063 & \(14 \times 30\) & £0.31 \\
\hline 10 & 25 & \(4.5 \times 11\) & £0.14 & 220100 & \(18 \times 30\) & 10.42 \\
\hline 10 & 40 & \(5.8 \times 11\) & £0.15 & 47016 & \(10 \times 25\) & £0.20 \\
\hline 10 & 63 & \(6.5 \times 17.5\) & ¢0.12 & 47025 & \(12 \times 30\) & £0.23 \\
\hline 10 & 100 & \(8.5 \times 15\) & £0.13 & \(470 \quad 40\) & \(14 \times 30\) & £0.28 \\
\hline 15 & 16 & \(4.8 \times 12.5\) & £0.09 & 47063 & \(18 \times 30\) & £0.44 \\
\hline 15 & 40 & \(6.1 \times 12.5\) & \(\mathbf{8 0 . 0 9}\) & \(470 \quad 100\) & \(21 \times 40\) & £0.66 \\
\hline 15 & 63 & \(6.7 \times 18.5\) & ¢0.09 & 100016 & \(14 \times 30\) & £0.27 \\
\hline 22 & 25 & \(5.8 \times 11\) & f0.15 & 100025 & \(16 \times 30\) & ¢0.38 \\
\hline 22 & 40 & \(6.5 \times 17.5\) & ¢0.12 & 100040 & \(18 \times 35\) & £0.47 \\
\hline 22 & 63 & \(8.5 \times 15\) & £0.12 & 100063 & \(21 \times 40\) & £0.66 \\
\hline 22 & 100 & \(8.5 \times 20\) & £0.15 & 220016 & \(18 \times 35\) & £0.46 \\
\hline 33 & 16 & \(6.1 \times 12.5\) & £0.09 & 220025 & \(21 \times 40\) & £0.55 \\
\hline 33 & 40 & \(6.7 \times 18.5\) & £0.10 & 220040 & \(25 \times 40\) & £0.60 \\
\hline 47 & 16 & \(6.5 \times 20\) & f0.12 & 470016 & \(21 \times 40\) & £0.66 \\
\hline 47 & 25 & \(6.5 \times 17.5\) & £0.12 & 470025 & \(25 \times 40\) & \(\mathbf{1} 0.90\) \\
\hline
\end{tabular}

\section*{ELECTROLYTIC—RADIAL}
\begin{tabular}{|c|c|c|c|c|c|}
\hline UF & Volts DC & Size mm & Price 1 & & - \\
\hline 1000 & 40 & \(25 \times 35\) & £1.02 & \multirow{10}{*}{\[
\begin{aligned}
& \text { Tol } \\
& +50 \% \\
& -10 \%
\end{aligned}
\]} & \\
\hline 1000 & 63 & \(25 \times 45\) & £1.15 & & \\
\hline 2200 & 25 & \(25 \times 45\) & £1.10 & & 5 \\
\hline 2000 & 40 & \(30 \times 45\) & f1.18 & &  \\
\hline 2200 & 63 & \(30 \times 55\) & £1.43 & & - Dic uf \(25 \%\), \\
\hline 2200 & 100 & \(30 \times 55\) & £1.65 & & - cane \\
\hline 4700 & 25 & \(30 \times 45\) & £1.26 & & \\
\hline 4700 & 40 & \(35 \times 55\) & £1.50 & & \(\checkmark 1\), \\
\hline 4700 & 63 & \(40 \times 74\) & f2.20 & & \\
\hline 10000 & 25 & \(35 \times 55\) & f 1.98 & & SEIMENS B41070 \\
\hline
\end{tabular}

ELECTROLYTIC—PLUGGABLE
\begin{tabular}{|c|c|c|c|c|c|}
\hline UF & Volts DC & Size mm & PRICE 1-99 & \multicolumn{2}{|l|}{SIEMENS} \\
\hline 1.0 & 63 & \(87 \times 12.6\) & £0.13 & & 1 1 \\
\hline 2.2 & 63 & \(8.7 \times 12.5\) & £0.13 & & \\
\hline 4.7 & 63 & \(8.7 \times 12.5\) & £0.13 & & \\
\hline 10 & 63 & \(8.7 \times 12.5\) & £0.13 & & \\
\hline 22 & 63 & \(10.7 \times 12.5\) & f0.13 & & \\
\hline 47 & 63 & \(12.7 \times 16.5\) & £0.16 & & \\
\hline 100 & 63 & \(15 \times 20\) & f0. 21 &  & \\
\hline 220 & 10 & \(12.7 \times 16.5\) & f0.15 & + \(+100 \%\) & \\
\hline 470 & 16 & \(15 \times 20\) & £0.20 & -10\% & \\
\hline 1000 & 16 & \(15 \times 30\) & £0.30 & & I \\
\hline
\end{tabular}

\section*{TANTALUM BEAD}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline UF & Volt DC & Size mm & Price 1 - 99 & UF & Volts & Size mm & Price \\
\hline 0.1 & 35 & \(9 \times 5\) & ¢0. 17 & 10 & 6.3 & \(10 \times 5.5\) & £0.17 \\
\hline 0.22 & 35 & \(9 \times 5\) & £0.17 & 10 & 16 & \(11 \times 6\) & £0.21 \\
\hline 0.47 & 35 & \(9 \times 5\) & ¢0.17 & 15 & 15 & \(12 \times 7\) & £0.23 \\
\hline 1.0 & 35 & \(9 \times 5\) & £0.17 & 15 & 25 & \(12 \times 7.5\) & £0.25 \\
\hline 2.2 & 16 & \(9 \times 5\) & £0.17 & 22 & 6.3 & \(11 \times 6\) & £0.21 \\
\hline 2.2 & 35 & \(10 \times 5.5\) & £0.17 & 33 & 10 & \(11 \times 6\) & £0.23 \\
\hline 4.7 & 16 & \(10 \times 15\) & £0.17 & 47 & 6.3 & \(12 \times 7.5\) & £0.23 \\
\hline 4.7 & 35 & \(11 \times 6\) & £0.21 & 100 & 3 & \(12 \times 7.5\) & £0.23 \\
\hline \multicolumn{8}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
TYPE B45134 SIEMENS \\
Radial lead Tol \(\pm 20 \%\) \\
MINIATURE TANTALUM BEAD
\end{tabular}}} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{CERAMIC DISC 63V situns}

Flat Ceramic Capacitors from a New Material with Dielectric Constant of 50,000

The development of a new titanate ceramic material represents a step towards reducing capacitor size which is significant for capacitors used for coupling and decoupling in AF circuits.
\begin{tabular}{llll} 
& & & \multicolumn{1}{c}{\(\mathbf{1 . 9 9}\)} \\
UF & VDC & Size mm & Price \\
.01 & 63 & \(4 \times 2.5 \times 4\) & \(\mathbf{£ 0 . 0 7}\) \\
.022 & 63 & \(4 \times 2.5 \times 4\) & \(\mathbf{£ 0 . 0 7}\) \\
.033 & 63 & \(4 \times 2.5 \times 6\) & \(\mathbf{£ 0 . 0 7}\) \\
.047 & 63 & \(4 \times 2.5 \times 8\) & \(\mathbf{£ 0 . 0 7}\) \\
.068 & 63 & \(4 \times 2.5 \times 10 \mathbf{£ 0 . 0 9}\) \\
.1 & 63 & \(4 \times 2.5 \times 9\) & \(\mathbf{£ 0 . 0 9}\) \\
.22 & 63 & \(6 \times 2.5 \times 18 \mathbf{£ 0 . 1 9}\)
\end{tabular}

\section*{HIGH VOLTAGE CERAMIC DISC}

Capacitance VDC Price
\begin{tabular}{rc} 
100pf 1 kv & \(\mathbf{£ 0 . 0 8}\) \\
100pf 2 kv & \(\mathbf{£ 0 . 1 0}\) \\
100pf 3 kv & \(\mathbf{£ 0 . 1 0}\) \\
100pf 4 kv & \(\mathbf{£ 0 . 1 0}\) \\
220pf 6 kv & \(\mathbf{£ 0 . 0 8}\) \\
470 pf 2 kv & \(\mathbf{£ 0 . 0 8}\) \\
470 pf 6 kv & \(\mathbf{£ 0 . 1 1}\) \\
1.0002 kv & \(\mathbf{£ 0 . 0 8}\) \\
1.000 pf 4 kv & \(\mathbf{£ 0 . 1 0}\) \\
1.000 pf 6 kv & \(\mathbf{£ 0 . 1 7}\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline 2,200pt 2 kv & £0.10 \\
\hline 2,200pf 4kv & \(\mathbf{1 0 . 1 3}\) \\
\hline 2,200pf 5kv & f0.19 \\
\hline 3.300 pf 2 kv & f0.12 \\
\hline 3,300pf 4kv & 10.16 \\
\hline 4,700pf 2kv & f0. 12 \\
\hline 4.700pf 4kv & f0.20 \\
\hline 10.000pi 2kv & £0.14 \\
\hline 10,000pf 3kv & f0.19 \\
\hline
\end{tabular}


HIGH
vOLTAGE

\section*{CERAMIC PLATE}

ALL 63 VDC WORKING 6p EACH
Values avallable of
Quantity Price on request
\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{r}
390 \\
1000 \mathrm{pl}
\end{array}
\] & \[
\begin{array}{r}
\text { rance } \\
25 \% \\
+\quad 2 \% \\
+\quad 5 \% \\
10 \%
\end{array}
\] &  \\
\hline & AND " PIN CING & \\
\hline pF & Size & Dmas \\
\hline 1.8-22 & 1 & \(3.5 \times 45 \mathrm{~mm}\) \\
\hline 27.47 & 2 & \(45 \times 5.5 \mathrm{~mm}\) \\
\hline 56.68 & 3 & \(55 \times 65 \mathrm{~mm}\) \\
\hline 82-100 & 4 & \(6.5 \times 7.5 \mathrm{~mm}\) \\
\hline 120-150 & 5 & \(65 \times 10.5 \mathrm{~mm}\) \\
\hline 180-220 & 4 & \(6.5 \times 75 \mathrm{~mm}\) \\
\hline 270-330 & 5 & \(65 \times 10.5 \mathrm{~mm}\) \\
\hline
\end{tabular}

\section*{POLYSTYRENE}

Close tolerance Polystyrene capacitors from Siemens B31110/B31310
\(5 \%\) Tolerance. 160 v working


\section*{Values available}

10 pf , 15 pf , \(22 \mathrm{pf}, 33 \mathrm{pf}, 47 \mathrm{pf}\), 68 pf , 100pf, 150 pf , 220pf, 330pf, 470pf, 680pf, 1000pt

6p each
1500pf 2200pf, 3300pf, 4700pf. 6800pf. 10000pf

10p each

\section*{POLYESTER MULARD Czzo sents CAPAICTOR - DIMENSIONS INEDM}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{POLYCARBONATE} & \multirow[b]{2}{*}{} & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Polycarbonate- \\
Poivester
\end{tabular}} & & \\
\hline \multicolumn{4}{|l|}{7.5 mm lead spacing tinned} & & \\
\hline 250 V & olt working & Price & & & \\
\hline 001 & \(9 \times 2.6 \times 7.3\) & ¢0.07 & & & \\
\hline 0022 & \(9 \times 2.6 \times 7.3\) & ¢0.07 & & & \\
\hline 0033 & \(9 \times 2.3 \times 7.3\) & ¢0.07 & & & \\
\hline . 0047 & \(9 \times 2.3 \times 7.3\) & ¢0.07 & & 7.5 and 10 mm spa & \\
\hline . 0068 & \(9 \times 2.7 \times 7.3\) & ¢0.07 & & & \\
\hline 0082 & \(9 \times 2.7 \times 7.3\) & £0.07 & & & \\
\hline 01 & \(9 \times 2.3 \times 7.3\) & ¢0.07 & & & 1-99 \\
\hline . 012 & \(9 \times 2.5 \times 7.3\) & ¢0.07 & 100 & Volt DC & Price \\
\hline . 015 & \(9 \times 2.9 \times 7.3\) & ¢0.07 & 12 & \(9 \times 3.5 \times 8: 3\) & ¢0. 10 \\
\hline 022 & \(9 \times 2.6 \times 73\) & ¢0.07 & 15 & \(9 \times 36 \times 10\) & f0.10 \\
\hline 027 & \(9 \times 2.4 \times 7.3\) & ¢0.07 & 18 & \(9 \times 4.1 \times 10\) & f0. 12 \\
\hline 033 & \(9 \times 2.6 \times 7.3\) & ¢0.07 & 22 & \(9 \times 4.7 \times 10\) & £0. 12 \\
\hline 039 & \(9 \times 29 \times 73\) & ¢0.07 & 27 & \(9 \times 5.0 \times 11\) & ¢0.16 \\
\hline 047 & \(9 \times 3.2 \times 73\) & ¢0.07 & 33 & \(9 \times 5.5 \times 11.5\) & £0.16 \\
\hline 056 & \(9 \times 3.5 \times 7.5\) & ¢0.07 & 39 & \(9 \times 6.6 \times 11.5\) & f0. 20 \\
\hline 068 & \(9 \times 35 \times 75\) & ¢0.09 & 47 & \(9 \times 7.2 \times 12.5\) & £0.20 \\
\hline 082 & \(9 \times 3.5 \times 11\) & f0. 11 & 56 & \(9 \times 8.4 \times 12.5\) & ¢0.25 \\
\hline 1 & \(9 \times 3.9 \times 11\) & c0. 11 & 68 & \(9 \times 8 \times 13\) & f0. 25 \\
\hline \multicolumn{6}{|l|}{accordance with DIN \(41 ? 79\) these types are designated MK} \\
\hline \multicolumn{6}{|l|}{B32541/61 Polycarbonate / Polyester as B32540/60 but 10 mm lead spacing - also available in 100 and 250 volt DC working 1-99} \\
\hline & & & UF & Dimensions mm & Price \\
\hline \multicolumn{2}{|l|}{250 Volt working} & 1-99 & 1 & \(11.5 \times 3.5 \times 83\) & ¢0.09 \\
\hline \multicolumn{2}{|l|}{UF Dimensions mm} & Price & 15 & \(11.5 \times 4.2 \times 9.6\) & £0.11 \\
\hline 01 & \(11.5 \times 3.2 \times 66\) & ¢0.07 & 22 & \(11.5 \times 4.9 \times 11.5\) & ¢0.13 \\
\hline 015 & \(11.5 \times 3.2 \times 6.6\) & \(¢ 0.07\) & 100 & Volt working & \\
\hline \multirow[t]{2}{*}{022} & \(11.5 \times 3.2 \times 6.6\) & 60.07 & 22 & \(11.5 \times 3.9 \times 95\) & f0. 11 \\
\hline & & & 47 & \(11.5 \times 5.3 \times 115\) & ¢0.17 \\
\hline 047 & \(115 \times 3.2 \times 6.6\) & ¢0.07 & 1.0 & \(115 \times 98 \times 115\) & ¢0.31 \\
\hline 068 & \(11.5 \times 3.2 \times 6.6\) & ¢0.07 & 2.2 & & £0.60 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Self healing flat capacitor winding with polyetheleneterephtalene dielectric to DIN 41379 spec Encapsu. lated and epoxy resin sealed. The case is provided with spacers to improve solderability in solder bath parrallel leads. plug in, suirable for printed circuits} \\
\hline 100 & ot DC & 1-99 & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{В 32234 -4}} \\
\hline uF & Dimensions mm & Price & & & \\
\hline 1 & \(4 \times 95 \times 13\) & ¢0.14 & \multicolumn{2}{|l|}{250Volt DC} & 1-99 \\
\hline 15 & \(5 \times 10.5 \times 13\) & ¢0.16 & uF & Dimensions & Price \\
\hline 22 & \(6 \times 115 \times 13\) & ¢0.17 & 047 & \(4 \times 9.5 \times 13\) & ¢0. 13 \\
\hline 33 & \(5.5 \times 11 \times 18\) & f0. 20 & 1 & \(5.5 \times 11 \times 18\) & ¢0.14 \\
\hline 47 & \(5.5 \times 11 \times 18\) & f0. 25 & 22 & \(7 \times 13 \times 18\) & ¢0.15 \\
\hline 68 & \(7 \times 13 \times 18\) & £0.30 & 1.0 & \(8.5 \times 18.5 \times 27\) & ¢0.35 \\
\hline 10 & \(9 \times 145 \times 18\) & ¢0.36 & & & \\
\hline 1.5 & \(7 \times 16.5 \times 27\) & f0.47 & 400 V & Volt DC & \\
\hline 2.2 & \(8.5 \times 18.5 \times 27\) & ¢0.54 & 01 & \(4 \times 95 \times 13\) & ¢0.11 \\
\hline 3.3 & \(10.5 \times 19 \times 27\) & f0.70 & 015 & \(4 \times 9.5 \times 13\) & ¢0.11 \\
\hline 4.7 & \(11 \times 20 \times 32\) & ¢0.82 & 022 & \(4 \times 95 \times 13\) & £0.11 \\
\hline 6.8 & \(13 \times 22.5 \times 32\) & f1.11 & 047 & \(5.5 \times 11 \times 18\) & ¢0.15 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{PLASTIC FO\|L_H|GH RELIABIUITY} \\
\hline \multicolumn{6}{|l|}{SIEMENS B32110 High reliability plastuc foil Axial lead 20\% Tol MKL} \\
\hline 63 V & olt working & 1-99 & & & 1-99 \\
\hline uF & Dimensions & Price & uF & Dimensions & Price \\
\hline 15 & \(5.4 \times 18.5\) & f0. 53 & 3.3 & \(9.4 \times 25\) & £1.55 \\
\hline 22 & \(5.4 \times 18.5\) & ¢0.56 & 4.7 & \(10.7 \times 25\) & £1.62 \\
\hline 33 & \(6.4 \times 18.5\) & f0. 59 & 68 & \(107 \times 34\) & f2. 20 \\
\hline 47 & \(7.4 \times 18.5\) & ¢0.66 & 10 & \(12.7 \times 34\) & £2.80 \\
\hline . 68 & \(7.4 \times 18.5\) & ¢0.70 & & & \\
\hline 1.0 & \(7.4 \times 21\) & ¢0.78 & 100 & Oolt Working & \\
\hline 1.5 & \(8.4 \times 21\) & f0.80 & 1 & \(5.4 \times 18.5\) & f0.61 \\
\hline 2.2 & \(10.7 \times 2\) ! & ¢1.37 & 10 & \(94 \times 2 i\) & £1.16 \\
\hline \multicolumn{6}{|l|}{In accordance with DIN 41379 these types are designated MKU capacitors.} \\
\hline \multicolumn{6}{|l|}{Enclosed in tubular metal case, shrunk sleeve insulated, epoxy resin sealed face ends. Central axial leads.} \\
\hline
\end{tabular}

\section*{MINIATURE FILM DIELECTRIC}

\section*{} )

\author{
MULLARD
}
, لinimum
\begin{tabular}{cccc} 
Type & swing pF & capacitance pF & \(\boldsymbol{£ . p}\) \\
80800005 & 8 & 2 & \(\mathbf{£ 0 . 2 0}\) \\
80800006 & 20 & 2 & \(\mathbf{£ 0 . 2 2}\) \\
80801001 & 59.5 & 5.5 & \(\mathbf{£ 0 . 2 7}\)
\end{tabular}

METALLISED POLYESTER up to 630 volt
832231 metallised Polvester from SIEMENS

\section*{Axial leads}

Tolerance 20\%
Type MKH similar to
Mullard C281 range
available in three
voltages 250. 400 and
630 VDC
250 Volt DC
uF Dimensions mm
\(04745 \times 8.5 \times 14\)
\(.068 \quad 55 \times 9 \times 14\)
\(6 \times 9 \times 14\)
\(2245 \times 10.5 \times 19\)
\(337 \times 11 \times 19\)
\(4745 \times 13.5 \times 265\)
\(686 \times 15 \times 26.5\)
\(1.0 \quad 8 \times 17 \times 265\)
\(1.5 \quad 8.5 \times 205 \times 29\)
\(2.210 .5 \times 22.5 \times 29\)
\(4.7 \quad 12 \times 275 \times 44\)

\(10 \quad 19.5 \times 34.5 \times 44\)
NB 630 V .d.c rating equivalent 250 V ms .
Self-heating flat capacitor winding with polyethylene-teraphtalate as dielectric. In accordance with DIN 41379 these types are esignated MKT capacitors

Capacitor winding coated with insulating material epoxy resin sealed face ends.

\section*{METALLISED POLYESTER EXTENDED FOIL-MULLARD}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
MULLARD C296 SERIES 400 VOC WORKING 10\% Tolerance \\
Temp range - 40 to +80 C
\end{tabular}}} & \multicolumn{4}{|c|}{0.47 \(\mu \mathrm{F}\)} \\
\hline & & & & \multicolumn{4}{|c|}{\(\pm 10 \%\)} \\
\hline & & & & \multicolumn{4}{|l|}{} \\
\hline uF Dim & nsio & & Price & uF & nsio & & Price \\
\hline 0.001 & 21 & 75 & f0.11 & 0.033 & 21 & 10 & f0.14 \\
\hline 0.0015 & 21 & 7.5 & £0.11 & 0.047 & 21 & 11.5 & ¢0.16 \\
\hline 0.0022 & 21 & 75 & £0.11 & 0.068 & 35 & 95 & £0.17 \\
\hline 0.0033 & 21 & 75 & £0.11 & 01 & 35 & 11 & ¢0. 20 \\
\hline 0.0047 & 21 & 75 & f0. 11 & 0.15 & 35 & 12.5 & f0. 25 \\
\hline 0.0068 & 21 & 7.5 & f0.11 & 0.22 & 35 & 145 & f0. 33 \\
\hline 0.01 & 21 & 75 & f0.12 & 0.33 & 35 & 17 & ¢0.47 \\
\hline 0.015 & 21 & 75 & f0.12 & 0.47 & 35 & 195 & f0.56 \\
\hline 0.022 & 21 & 85 & f0. 12 & \multicolumn{4}{|l|}{Radial leads} \\
\hline
\end{tabular}


\section*{DIODES AND RECTIFIERS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TYPE & PRICE & TYPE & PRICE & TYPE PRICE & TYPE & PRICE & TYPE & PRICE & TYPE & PRICE \\
\hline AA116 & f0.13 & BA243 & f0.38 & BY206 \(\mathbf{E 0 . 2 2}\) & DK110 & ¢0.36 & Z344 & ¢0.28 & IN4009 & f0.27 \\
\hline AA118 & f0.13 & BA244 & f0.55 & BY207 ¢0.22 & GEX23A & £0.08 & IN345 & f0.17 & IN4148 & f0.08 \\
\hline AA119 & ¢0.14 & BA316 & ¢0.07 & BYW 1 1-600 & \(1 T 133\) & ¢0.08 & IN461 & f0.15 & IN4 150 & £0.20 \\
\hline AA129 & ¢0.10 & BA317 & ¢0.07 & £2.80 & ITT44 & f0.08 & IN659 & £0.08 & IN4 154 & £0.22 \\
\hline AA144 & f0.11 & BA318 & ¢0.07 & BYW11-800 & ITT210 & £0.75 & IN82 1 & f0.35 & IN4446 & £0.15 \\
\hline AAY30 & ¢0.18 & *BAV10 & ¢0.09 & f3.25 & ITT920 & f0.11 & IN823 & £0.55 & IN4448 & £0.09 \\
\hline AAY32 & ¢0.18 & *BAV19 & ¢0.11 & BYW11-1000 & ITT921 & f0.12 & IN825 & f0.65 & IN4517 & \(\mathbf{8 0 . 1 2}\) \\
\hline AAY33 & £0.20 & *BAV20 & £0.12 & f4.00 & \(17 T 922\) & f0.13 & IN914 & f0.08 & IN5172 & f0.19 \\
\hline AAY43 & £0.20 & BAW49 & £0.17 & BYW12-100 & \(1 T 1923\) & f0.20 & IN916 & f0.08 & IN5176 & £0.30 \\
\hline AAZ 13 & £0.35 & -BAX13 & £0.07 & £2.00 & 172001 & f0.12 & IN1183R & £1.00 & IN5233A & £0.30 \\
\hline AAZ 15 & £0.25 & -BAX16 & ¢0.08 & BYW12-200 & \(1 T T 2002\) & f0.13 & IN1 188 & £2.50 & IN5400 & f0.15 \\
\hline AAZ17 & f0.20 & BAY31 & f0.17 & £2.25 & \(1 T 2003\) & £0.25 & IN1 190 & £2.75 & IN5401 & f0.17 \\
\hline BA100 & f0.20 & BAY36 & f0.28 & BYW 12-400 & OA10 & £0.60 & INI 1194 & £1.25 & IN5402 & f0.18 \\
\hline BA102 & £0.20 & BAY38 & f0.28 & £2.65 & OA47 & £0.15 & IN 1194 A & £1.30 & IN5404 & f0.19 \\
\hline BA111 & ¢0.30 & BAY44 & £0.17 & BYX10 £0.30 & OA85 & £0.20 & IN 1196 & £1.80 & IN5406 & f0.25 \\
\hline BA115 & £0.17 & BAY71 & f0.18 & BYX97-600 & OA90 & f0.09 & IN1 198A & f2.75 & IN5407 & ¢0.30 \\
\hline BA127 & £0.22 & BAY72 & f0.22 & £3.90 & OA91 & f0.09 & IN1201A & f0.80 & IN5408 & ¢0.45 \\
\hline BA130 & f0.11 & BAY74 & f0.19 & BYX97-1200 & OA95 & f0.11 & IN3492 & f0.88 & IS44 & f0.08 \\
\hline BA133 & £0.28 & B8103 & £0.35 & ¢4.35 & OA200 & f0.11 & IN3493 & £0.95 & IS 120 & f0. 16 \\
\hline BA138 & f0. 25 & *BE104 & f0.44 & BYX99-600 & OA202 & \(\underline{4} \mathbf{0 . 1 5}\) & IN3595 & £0.33 & IS 121 & f0.16 \\
\hline BA142 & £0.19 & *B8105A & ¢0.33 & f1.55 & OA211 & £0.27 & IN3602 & £0.17 & IS 130 & f0.11 \\
\hline BA144 & £0.14 & *B81058 & f0.33 & BYX99-1200 & OAZ200 & ¢0.30 & IN3604 & f0.17 & IS 131 & f0. 11 \\
\hline BA145 & £0.20 & -8B105G & £0.40 & £1.80 & OAZ201 & £0.30 & IN3766 & £3.95 & IS 132 & f0.25 \\
\hline BA154 & £0.11 & *BB109 & f0.40 & CL1506 £0.95 & OAZ204 & f0.30 & IN3766R & ¢4.00 & IS134 & ¢0.25 \\
\hline BA155 & £0.13 & *88139 & £1.25 & CL1507 £1.05 & OAZ206 & f0.30 & IN3768R & ¢4.75 & IS 136 & ¢0.45 \\
\hline BA156 & £0.16 & BY103 & ¢0.55 & CV7047 £0.70 & OAZ209 & f0.30 & IN3826 & f1.35 & IS 420 & ¢0.80 \\
\hline BA157 & £0.32 & BY126 & ¢0.32 & CV7071 \(£ 0.55\) & OAZ2 12 & £0.30 & IN4001 & ¢0.07 & IS421 & ¢0.85 \\
\hline BA158 & £0.42 & BY127 & £0.39 & CV7130 f0. 28 & OAZ237 & ¢0.30 & IN4002 & ¢0.08 & IS423 & £0.90 \\
\hline BA159 & f0.55 & BY 133 & £0.35 & CV7641 f0.55 & OAZ241 & £0.30 & IN4003 & ¢0.09 & IS425 & £0.95 \\
\hline BA182 & f0.22 & BY134 & f0.33 & , DD000 £0.17 & OAZ244 & f0.20 & IN4004 & f0.09 & 15427 & ¢1.10 \\
\hline BA201 & £0.10 & BY182 & ¢1.65 & D1300A £0.50 & OAZ245 & £0.20 & IN4005 & £0. 11 & IS429 & £1.45 \\
\hline BA202 & f0.10 & BY189 & £3.75 & DK13 £0.24 & OAZ270 & £0.20 & IN4006 & f0. 12 & IS940 & ¢0.07 \\
\hline BA203 & f0.13 & BY190 & \(\mathbf{~} 3.70\) & DK14 £0.24 & TV12 & £0.17 & IN4007 & f0.13 & IS941 & \[
\mathbf{£ 0 . 0 8}
\] \\
\hline & & & & & & & & & IS961 & £0.16 \\
\hline
\end{tabular}

RECTIFIER DIODE FINDER CHART

- NB. BYW11 \& BYW12 ARE FAST RECOVERY RECTIFIERS.

BRIDGE RECTIFIERS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TYPE & RATING & & \multirow[t]{2}{*}{CASE} & PRICE & TYPE & \multicolumn{2}{|l|}{RATING} & \multirow[t]{2}{*}{CASE Case} & \multirow[t]{2}{*}{PRICE C 0.48} & \multirow[t]{2}{*}{TYPE PW01} & \multicolumn{2}{|l|}{RATING} & \multirow[t]{3}{*}{\begin{tabular}{l}
CASE \\
Case \\
7
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { PRICE } \\
& \text { £0.95 }
\end{aligned}
\]} \\
\hline W005/T1005 & 1 A & 50 v & & ¢0.28 & SO2 & 2A & 200v & & & & 6 6A & 100v & & \\
\hline W01 & 1 A & 100 V & Case & ¢0.30 & SO4 & 2A & 400 v & 4 & c0.60 & PWO2 & 6 A & 200v & & \(¢ 0.97\) \\
\hline W02 & 1 A & \(200 v\) & 1 & f0.32 & S06 & 2A & 600 v & & c0.70 & PW04 & 6 6A & 400 v & & ¢1.08 \\
\hline W04 & 1 A & 400 v & & f0.40 & SO8 & 2A & 800 v & & \(\underline{5} .84\) & PW06 & 6 A & \(600 v\) & & f1.18 \\
\hline W06 & 1 A & 600 v & & f0. 50 & 64600 & 6 A & 600v & Leads & ¢1.35 & PW08 & 6A & 800 v & & f1.28 \\
\hline VM18 & - 1A & 100 v & - New Dual & f0.44 & BY164 & 1.4 A & \(120 v^{\prime}\) & & ¢0.75 & & & & & \\
\hline VM28 & 1 A & 200v & in line & ¢0.48 & 840C1500 & 1.5A & 100 v & Case & ¢0.53 & \(K 005\) & 25A & 50 v & & £2.20 \\
\hline VM48 & 1 A & 400 v & 2 & c0.50 & B40C3200 & 3.2A & 100 v & 586 & ¢1.20 & K01 & 25A & 100v & Case & £2.37 \\
\hline S005 & 2 A & 50 v & & c0.39 & B80C1500 & 1.5A & 200 v & & f0. 82 & KO2 & 25A & 200v & 8 & ¢2.75 \\
\hline SO1 & 2 A & 100v & & c0.44 & 880 C 3200 & 3.2A & 200 v & & f1. 25 & KO4 & 25A & 400 v & & 83.40 \\
\hline BY179 & & & & ¢0.90 & PW005 & 6 6 & 50 v & & £0.90 & K06 & 25A & 600 v & & C3.99 \\
\hline
\end{tabular}

(1)


\section*{THYRISTORS}



INTEGRATED CIRCUITS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline AY-3.8500 & BNTV Games Chip G.I. & \({ }^{88.50}\) & CO4095 & Gared J-K Filip-Flop & ع1. 30 & LM7812KC & Positive 3 Terminal 12 Volt. Reg. 1 A TO3 & \({ }^{11.75}\) \\
\hline AY-3-8710 & Trank Batile TV Game & 221.98 & CD4096 & Gated J-K Filip-Flop & 11.30 & LM7815KC & Positive 3 Terminal 15 Vort. Reg. 14 TO3 & \({ }^{1} 1.75\) \\
\hline с 43000 & Temp. Comp. Diff. Amp. DC to 30 MHz & 83.30 & C04097 & Dual 8 -1 Muthiplexer & c4.65 & LM7824KC & Positive 3 Terminal 24 Volt. Reg. 1 A TO3 & ¢1.75 \\
\hline CA3001 & Temp. Comp. Dity. Amp. LOz out & 84.25 & CD40998 & 8 Bit Addressabla Latch & ¢1.60 & LM78L05Cz & Positive 3 Terminal 5 Volt, Reg. 100 FiA TO92 & \({ }^{20.30}\) \\
\hline CA3002 & Tomp. Comp. Ditit Amp. & 83.30 & CO45108 & Presentrbie UR/Down Counter (BCD) & 81.20 & LM78122Cz & Positive 3 Terminal 12 Volt. Reg. 1007 A T 092 & c0.30 \\
\hline са3005 & RF Amplifier & c2. 50 & C04511 & Decade Counter/Driver 7 Segment & E1.75 & LM78L15Cz & Positive 3 Terminal 15 Volt. Reg. 1000 fiA To92 & c0.30 \\
\hline ca3006 & RF Amplifier & ع4.60 & CD4516 & Presatuabe 8inary Up/Down Counter & c2. 10 & LM78644Cz & Posilive 3 Terminal 24 Volt. Reg, lootia TO92 & \({ }^{20.30}\) \\
\hline CA3007 & Aud. Driver for Class B C/P & 84.15 & CD45188 & Dual BCD Up Counters & ع1.20 & MC667P & OTL Delay Line - Variable & c2.75 \\
\hline CA3008 & Wide Band Op. Am. Untr. GN. at 50 MHz & E2.55 & CD4520日 & Dual Binary Up Counters & 11.20 & Mc671p & Triple 3-Inoul NAND/NOR Gate - ACTIVE Output & 11.78 \\
\hline CA3012 & If Lg. Amp. 100 KHz to 20 MHz & 11.65 & OM8131 & Hex. Comparalor & ع2.70 & MC672P & Quad 2 -Input NAND/NOR Gate - ACTIVE Dutput & \({ }^{11.75}\) \\
\hline CA3013 & IF Lig. Amp. with Discrim. 100 KHz to 20 MHz & \({ }^{11.85}\) & ом8280 & Proseltable Deecade Counter & \({ }_{8}^{81.85}\) & mC724P & Quad 2-Input NOR Gata & ¢2.10 \\
\hline CA3014 & IF Lgg. Amp. with Discrim. 100 KHZ to 20 MHZ & 82.20 & DM8281 & Prasentabie Binery Counter & ¢1.65 & MC789P & Hex. Inverser & c1.80 \\
\hline \({ }^{\text {CCA3018 }}\) & Transistor Atray & ع0.75 & ОM8288 & Presettable Divide br Twetlve Counter & \({ }^{21.65}\) & MC790P & Dual J-k Flip-Flop & E3.10 \\
\hline - Ca3018A & Transistor Arrav & E1.10 & ом8300 & 4 -Bit Paralliol-in-Out Shith Register & \({ }^{\text {c1. }} 1.65\) & MC798P & Dual 2 -nnout Butier & c2.20 \\
\hline - ca3020 & Wide Band Pww. Amp. 8m Hz/o.5W & c2.20 & OM8601 & Retriggerable Monostable Multivibrator & ع1.75 & мс799P & Dual Buter & ¢2.20 \\
\hline -CA3020A & Wide Band Pwr. Amp. \(8 \mathrm{MHz/1} 1 . \mathrm{WW}\) & E2.50 & סM9601 & Retriggerable Monostable Mulitivitrator & 81.75 & mс832P & Duai 4-Input NAND/NOR Butre & c0.70 \\
\hline - Ca3021 & Lo. Pwr. Video 4MW/2MHZ EW & 82.40 & OM9097 & Dual J-k Flip-Flop Common Clock (2k) & 80. 87 & мс833P & Dual 4 - Input Expander & \\
\hline -CA3022 & Lo. Pwi. Video 12.5MW/7.5MHz 8 WW & ¢2.20 & Dм9099 & Dual J-k Flip-Fiop Common Clack ( 6 kk ) & c0.87 & мся336P & Hex. Inverter & c0.82 \\
\hline -CA3023 & Lo. Pwr. Video 35MW/160MHz BW & c2.20 & FH101 & 8 -Input NAND Gate without RC & \({ }^{\text {E2. }} 75\) & MC837P & Hex. Invererer with Fast Rise Time & \({ }^{\text {c0. }} 82\) \\
\hline -CA3026 & Dual Ditherential Amplifer & 80.80 & FJLI51 & BCD-Decimal Decoder & \({ }^{\text {f1.es5 }}\) & mс838P & Symchronous 4 Bit Decade Counter & E1.65 \\
\hline CA3028A & Diff/Cascade Amp. DC to 120 MHz & \$0.90 & FJ101 & Dual 4 -Input Expander & \({ }^{\text {c1. }} 8.85\) & MC840P & Hex. Inverter withour inour Diodes & \({ }^{11.65}\) \\
\hline CA30288 & Premium Dith/Cascade Amp. DC to 120 MHz & 21.25 & FJH111 & TLL Dual 4 in NAND & £2.75 & MC844P & Dual 4 -Input NAND/NOR Power Ga & c0.70 \\
\hline CA3029 & Wide Band Op. Amp. Fr at 60 MHz & f0.75 & Loosti & 5 V -Voltage Reg. TO3 SGS & ¢2.25 & MC846P & Quad 2 -Input NAND/NOR Gate & \(\varepsilon 0.70\) \\
\hline CA3029A & Precision Wide Band Op. Amp. FTat 60 MHz & 80.90 & LM 114 H & High Gain Matched Duai Mono Lithic & E2.75 & mC848P & Flip-Fiop with Set and Clear & E1.10 \\
\hline CA3030 & Wide Band Op. Amp. FT at 60 MHz & 11.50 & - Lm3014, & 1 Improved Operational Amplifier TO99 & 80.50 & mс849P & Quad 2-Input Nand/Nar - Fast Rise Time & £0.70 \\
\hline CA3030A & Premium Wide Band Op. Amp. FT at 60 MHz & 52.20 & -Lm301-8 & 1 mproved Operational Amp. 8 Pin D.I.L. & £0.30 & MC857P & Quad 2-Input NAND Butier Gate & ¢0.85 \\
\hline CA3033 & High Pwr. O/P Op. Amp. 1.2W & c3.70 & LM304 & Negative Votrage Regulator & ¢2.60 & MC861P & Dual 4 -Input NAND/NOR Fast Rise T & ع0.85 \\
\hline CA3034 & Phase Detector & E2.75 & Lm307N & General Purpose Compensated Op. Amp. & 20.50 & MC1035P & Tripe Line Recoiver & ¢1.90 \\
\hline ca3035 & Ulira. Hi. Gain 3 Amp. ARF. 12908 at 40 KHz & 11.95 & - Lm 308 H & Super Gain Op. Amp. To5 Multi-Lead & ¢1.20 & \({ }^{\text {MC1 }}\) 1327P & Dual Chroma Demodulator & E1.70 \\
\hline -CA3036 & Dual Dartington Array & 11.21 & -Lm308N & Super Gain Op, Amp. 8 Pin OI.IL. & 80.95 & MC1330P & \({ }^{\text {3rd d }}\) F and video Oetector & E1.10 \\
\hline сАз 3038 & Operational Amplifier & [2.90 & LM 309kC & 5 voll. Regulator 14 TO3 Case & ¢1.95 & -MC \({ }^{\text {1352P }}\) & TV Vid. If Amp. & 2 \\
\hline CA3038A & Operational Amplitier & ع4.10 & LM317K & Also availible in other cases. See \(p\). & ¢3.35 & -MC14336 & Operational Amp. Non-Como. & E3.65 \\
\hline CA3039 & Diode Array & c0.77 & LM318N & High Slaw Rate Op. Amp. & E2.45 & -MC1435G & Operational Amp. Non-Comp. & ¢2.20 \\
\hline C43040 & Wide Band Amp. DC to 200MHz & \({ }^{3} 3.75\) & ᄂм320т-5 & 1.00 Amp. Negative 5 Volt. Reg , TO220 & [2.15 & -MC1439G & Power Boster//rivers & 81.75 \\
\hline -CA3041 & TV Sound Section/Oriver - Tubes & 11.85 & Lм320т-12 & 1.00 Amp. Negative 12 Volt. Reg. TO220 & f2.15 & MC1440G & Operational Amplifier & 11.65 \\
\hline -Ca3042 & TV Sound Section Dvi. Trans. & \%1.85 & LM3200-15 & 1.00 Amp. Negative 15 Volt. Reg. TO220 & ¢ 2.15 & \({ }^{-M C 1456 G}\) & Op, Amp. Internally Compensated & c2.75 \\
\hline -Ca3043 & FM Receiver System 1020 MHZ & c2. 20 & Lм320т-24 & 1.00 Amp. Negative 24 Volt. Reg. To220 & \({ }^{\text {E2, }} 15\) & MC1463R & Neg. Voltage Reg. \(\frac{1}{}\) to - 40 V & E3.30 \\
\hline ca3045 & 5 VHF Trans. Ar. DC to 120MHz & 51.57 & LM320MP-5 & 0.5 Amp. Negative 5 Volt. Reg. T 2022 & E1.15 & MC1468L & Dual 115 V . Trackng Reg. & E3,85 \\
\hline -CA3046 & 5 Tranzistor Array Inpni & \({ }^{20.77}\) & Lm320MP-12 & 0.5 Amp. Negative 12 Volt. Reg. \(\mathrm{TO} 202^{2}\) & E1.15 & MC1469 & Positive Yoltage Reg. : A ( \(25 \mathrm{~V}, 37 \mathrm{~V}\) & c3.10 \\
\hline CA3047 & Medium Pwr. Op. Amp. 0.75 W & \({ }^{2} 2.20\) & LM320MP. 15 & 0.5 Amp. Negstive 15 Volt. Reg. 10202 & ¢1.15 & MC1488L & Quad Line Driver & E4.25 \\
\hline ca3047A & Premium Medium Pwr. Op. Amp.0.75W & \(\underline{53.70}\) & LM320MP-24 & 0.5 Amp. Negative 24 Volt, Reg. 10202 & \({ }^{\text {c1. }} 1.15\) & -MC1495L & Linear Four-Quadrant Multipler Chio & \({ }^{55.50}\) \\
\hline -CA3048 & Cuad-Low Noise Amp. Nf 0.608 & \({ }_{\text {c1. }}\) & LM3236 & Five Volt. 3 Amp. Regulator & \begin{tabular}{c} 
28.95 \\
c0.75 \\
\hline
\end{tabular} & -MC1529G & Diff Video Amplifier & f7.10
2.20 \\
\hline CA3049 & Dual Ditterentias Amp. & \({ }_{\text {c12.86 }}\) & LM324 & Quad op Amp & co.75
80.80 & MC4024P & Dual Voltage Controlied Multvibrator & 20 \\
\hline ca3050 & Dual Difter rential Amp. & \({ }^{2} 2.86\) & LM339N & Quad Comparator & \({ }^{\text {co. }} 80\) & MC14000AE & See CD4000 Series CMOS & \\
\hline CA3051 & Dual Differential Amp. & ع1.83 & Lм 349 er .5 & Positive 3 Terminal 5 Volt: Reg. 1A TO220 & c0.88 & MM5314 & Digtral Clock IC or 24 Hr . or 6 Digits & ¢4.60 \\
\hline -CA3052 & Quad-Audio Preamps 300kHz BW & ¢1.78 & LM340T-12 & Positive 3 Terminal 12 Volt Reg 14 TO220 & \({ }^{\text {c0.88 }}\) & MM5316 & Digital Clock 1 C as above and Alarm ( 40 Pint & \({ }^{4} 4.60\) \\
\hline CA3053 & Difi/c Cascada Amp. & \({ }^{2} 0.77\) & LM3400-15 & Possitive 3 Terminal 15 Volt Reg. 14 TO220 & cie. & MM5330N & \(4 \ddagger\) Digit Digital Voltmeter Chip & \({ }^{4.20}\) \\
\hline CA3054 & Dual Ditherantial Amp. & c1.10 & LM340T-24 & Positive 3 Terminal 24 Volt. Reg, 14 TO220 & ¢0.88 & NE555 & Precision Timer & 80.33 \\
\hline CA3059 & zero Voltage Trigger S.C.R., Triac & \({ }^{2} 2.10\) & Lm34.1P-5 & Positive 3 Terminal 5 Voltt Reg. 54 TO202 & ع0.80 & NE556 & Dual Precision Timer & \({ }^{\text {c0. }} \mathbf{8 5}\) \\
\hline C43062 & Photo Det. and Pur. Amp. 100MA O/P & c3.75 & LM341P-12 & Positive 3 Terminal 12 Volt. Aes. 54 TO202 & 80.80 & NE558N & Quad Timer & \(\underset{4}{18.98}\) \\
\hline -CA3064 & Aft. Syatem. Gen. Puppose and TV & \({ }^{21.10}\) & LM341P. 15 & Positive 3 Terminal 15 Volt. Aeg, 5410202 & c0.80 & NE560 & Phase Locked Loop & . 50 \\
\hline -CA3065 & Sound If Amp. Det. DC Vol. Cont. & c1.10 & LM 341 P-24 & Positive 3 Terminal 24 V Volt. Reg. 54 TO202 & c0.80
80.95 & NE561 & Phase Locked Loop
Phase Locked Loop & 84.50
4. \\
\hline -CA3068 & TV Video if Svsiem & \({ }^{53.80}\) & LM348N & Quad 741 Operational Amplifier \({ }^{\text {a }}\) a & ¢0.60 & Ne562 & & \\
\hline - Ca3070 & TV Chrome Sig. Proc & \({ }_{\text {ci }}^{1.90}\) & LM360N & Low Power Dual Operational Ampititer & \({ }_{\text {E3.00 }}\) & NE565 & Phase Locked Loop & \({ }_{61.75}\) \\
\hline -CA3072 & TV Chrome Demod. & E1.90 & -LM370N & AGC/Squelch Amplifier 14 Pin & E3.30 & NE567 & Tone Decoder Phase Locked Loon & E1.90 \\
\hline \({ }^{\text {Ca33075 }}\) & FM-IF Amp Limititad Det, & ع1.70 & -LM371H & Integrated Rf/if Amplifier & f2.35 & NE571N & Compandor & 84.95 \\
\hline \({ }^{\text {-CA3076 }}\) & Hi-Gain If Amp/limilier & ¢2.12 & -LM350k & 3 Amp. Version LM317. See p. 13 & \({ }^{\text {c6.45 }}\) & SAS560 & Switching Amp, for 4 Ch Touch Switch & 22.70 \\
\hline Ca3080 & Op. Transconductance Am & c0.85 & -Lm373N & AM/FM/SSB Strip (14 Pin) & \({ }^{\text {f3.35 }}\) & SA5S570 & Swirching Amp. dor 4 Ch Touch Switch & \(\underline{22.70}\) \\
\hline CA3080A & Op. Transduclance Amp. & ¢2.10 & -LM374N & AM/FM/SSB if Video Amp. & E 5.35 & SAs580 & Touch tuner amplitier & \(\underline{2.40}\) \\
\hline \({ }^{\text {-CA3086 }}\) & Transistor Atray IN-P-N/ & c0.50 & -LM377N & Dual 2 W Power Amp. & \({ }^{\text {f1. }} 80\) & SAS590 & Touch tuner amplifier & \(\underline{2.40}\) \\
\hline - Ca3088F & AM Receiver Sub. Sys. Network & ¢1.87 & -LM378N & Dual 1 W Audio Amp. & ¢2.40 & SN7700N & Ouad 2 Inpur NAND & c0.17 \\
\hline - \({ }^{\text {CA3089E }}\) & FM-IF System & £2.90 & -LM379S & Dual 6 W Audio Amp. & \({ }^{24.25}\) & SN7401N & Ouad 2 Input NAND O/C & c0.17 \\
\hline -CA30900 & FM stereo Multiolax Decoder & E4.40 & -LM380N- 8 & 0.6 Watt Audio Amplifier 8 Pin \(0 . .1 \mathrm{~L}\) & \({ }^{\text {cien }}\) & SN7402N & Ouad 2 Input NOR & \({ }^{\text {co. }} 17\) \\
\hline CA3130 & FET Operational Amplitior & \({ }^{\text {c1.08 }}\) &  & 2 Wall Audio Power Amp. 14 Pin DI.I.L. & ¢1.08 & \(5 \mathrm{SN7403N}\) & Ouad 2 hiput NAND O/C & \({ }_{c}^{60.17}\) \\
\hline CA3140
CD4000 & FET Operational Ampifitier
Oual 3 -Input NOR gate plus Inverter & fli.04 & -LM381AN & Low Noise Dual Pre-Amp. D. l . L . Package
Low Noise Dual PreAmp. & ¢2.78 & SN7404N
SN7405N & Hex Inverier
Hex. Invertar O/C & \({ }_{\text {co. }} \mathbf{c} 0.17\) \\
\hline CD40018 & Quad 2-Indut NOB Gate & \({ }_{60.22}\) & -LM382N & Low Noise Dual Pre-Amp. & 11.32 & SN7406N & Hex. Inveriar/Butler 30v. O/P. & co. 5.5 \\
\hline CO4002 & Dual 4 -Input NOR Gate & ¢0.22 & -Lm384N & 5 Watt Audio Amp. & \(\underline{11.55}\) & SN7407N & Hex. Butter 30v. \(0 / \mathrm{P}\) & c0.55 \\
\hline CD4006 & 10-Stage Static Shit Register & £1.26 & -LM386N & Low Vollage Audio Amp & f0.88 & SN7408N & Ouad 2 tiput and Gate & \\
\hline CD4007 & Dual Complemstrary Pair Plus inverter & c0.22 & -Lm387N & Low Noise Dual Pro-Amp. & c1.10 & SN7409N & Ouad 2 Input and Gate & c0.22 \\
\hline CD44008 & 4-Sir full Adder with Parailel Carry & \({ }_{8}^{80.99}\) & -LM388N & 1.5 Wail Aucio Amp. \({ }^{\text {a }}\). & 17.00 & SN7410N & Triole 3 Inpur NAND & \\
\hline CD4009
CD4010 & Hex Bufter/Converter (liverring) & co. & \({ }^{-} \cdot \mathrm{Mm} 3855 \mathrm{cN}\) & Low Volt. Aud pwr, amp. with NPN tran array
See NE555 aimer &  & SN74112
SN7412N & Trple 3 Inpur and Gate & \({ }_{\text {ce }}^{60.20}\) \\
\hline CD40118 & Quad 2-Input NAND Gate & c0.22 & -LM565CN & See NE565 & 11.39 & SN7413N & Dual 4 Input NAND Schmitt & ع0.36 \\
\hline CD4012 & Dual 4 -Input NAND Gate & 60.22 & LM7018 & Operational Amplifier T 999 & c2.99 & SN7414N & Hex. Scnmirt Trige & c0.60 \\
\hline CD40138 & Dual "D" "Flip-Flop with SevReser & ¢0.52 & -LM701C & Operational Amplitier TC99 & c2.99 & SN7416N & Hex. Inverier/Butter 15 V O/C & ¢0.36 \\
\hline \({ }^{\text {CDAOO14 }}\) & \({ }^{\text {8-Stage Static Shit Registar }}\) & ¢1.00 & - 1 M702C & Wide Band D.C. Amp. Commercia TO99 & \({ }^{\text {c0. }} \mathbf{8 1}\) & SN7417N & Hex. Butier 15vo/C & E0.36 \\
\hline CD4015
\(\mathrm{CD4016}\) & Dubl 4-Stage Slatic Shitt Register & ¢ \({ }_{\text {f } 0.0 .05}\) & - LM -M 703 OLN &  & c1.15 &  & \({ }^{\text {Oual } 4 \text { Input NAND }}\) Expandable Dual 4 Inout NOR Gare & \\
\hline CDO4016
CO4017 & Ound Bitateral Swich
Decade Counter/Divider & \(\underset{\substack{\text { f0.52 } \\ f 1.05}}{ }\) & - - LM 7 709 709 -8 & Ooerational Amplifier 7 T 5 Mutit Lead
Operational Amplifier 8 Pin D.I.L & \({ }_{\text {cose }}\) & SN7423N
SN7425N & Expandable Dual 4 Input NOR Gate
Oual 4 Inpu NOR-Strobe & c0.32
c0.32 \\
\hline  & Presettable Divide-By**** Counter & f1.05 & -LM709-14 & Operational Amplifier 14 Pin Di.L. & 80.49 & SN7427N & Truple 3 Input NOF & ¢0.32 \\
\hline CD40198 & Qusd AND-OR Select Gate & 80.92 & LM710 & Dififerential Comparator TO5 & c0.67 & SN7430N & 8 Inpui NAND & c0.22 \\
\hline CD40208 & 14.Stage Binary Ripple Counter & f1.15 & LM710-14 & Differential Comparator 14 Pin D IL.L. & \({ }^{80.64}\) & SN7432N & Ouad 2 Input OR & ¢0.30 \\
\hline CD4021 & 8 -Stage Static Snift Register & E1.05 & -LM711CN & Ditherential Comparator - Dual 14 D.IIL. & \({ }^{20.72}\) & SN7437N & Quad 2 Inpur NAND Buter & \({ }^{60.38}\) \\
\hline CD40223 & Divide-by-8 Counter/Divider & \({ }^{\text {c1.00 }}\) & LM723C & Precision Voltage Reg. To5 & 80.78 & SN7438N & Quad 2 Input NAND Butfer O, & \({ }^{\text {c0. }} 32\) \\
\hline CD40238 & Triple 3-Input NAND Gate & \({ }_{\text {coin }}^{60.22}\) & .LM723C-14 & Precision Votiage Reg. 14 Pin D.I.L.L. & c0.45
¢5.80 & & & \\
\hline CD40248
CD4025 & \({ }_{\text {7 }}\) 7-Stage Binary Counter & ¢0.76 & :LM726 & Temp. Controlied Ditt Pair T099 & ¢5.80 & SN7441AN & BCD to Decimal Decoder/Diver
BCD- \(e\) ecimal
Decoder &  \\
\hline CD40278 & Dual J-K Mastar Slave Flip-Fiop & ¢0.55 & -LM741C-8 & Compenssated Op. Amp. 8 D.II. & f0. 30 & SN7445N & BCD-Decimal Decoder 30V 0/C & £1.40 \\
\hline CD4028B & BCD-TO-Decimal Decoder & £0.92 & -Lm741C-14 & Compensated Op. Amp. 14 D.1.L. & c0.30 & SN7446AN & BCD-Seven Segment Decoder 30V & c0.90 \\
\hline CD40298 & Presegetible Ua/Down Counter & 11.10 & -LM747CN & 14 Pin D.IIL. Dual Comp. Op. Amp & ¢0.99 & SN7447AN & 8 BCD-Seven Segment Decoder 15V. & co.80 \\
\hline CD4030 & Quad Exclusive-OR Gate & E0.84 & \({ }^{-1 M 74888}\) & Operational Amp. 8 D.I.L. & co. & SN7448N & BCD to 7 Segment Decoder/Divel & cienter \\
\hline CD40318
CD40358 & \({ }^{\text {64-Stage Staric Shit Register }}\) 4-Stage Parallo IN/OUT Shit Register & ¢2.25
E1.30 & & & & & & \\
\hline CD40358 & - 4-Stage Perallel IN/OUT Shitr Register & E1.30
\(\varepsilon 1.20\) & LM716
LM900 & National Semiconductor I/C Op Amp.
Butfer & c1.00 & \(\mathrm{S}_{\text {SN7451N }}^{\text {SN7433 }}\) & Dual-2-Wide-2-Input \(\mathrm{AO} / \mathrm{hnv}\)
4.wide \(\mathrm{A} / 11\) & cick \\
\hline CD40418 & Ouad True/Complement Sutfer & \({ }_{50.86}\) & LM911 & 4 4-hput or NOR Gate & 80.50 & SN7454N & 4 -wide AO/1 & ¢0.22 \\
\hline CD04423 & Quad Clocked "-7. Latch & \({ }_{\text {cter }}\) & LM921 & Dubil-Input Gate Expander & c0.50 & SN7460N & Dual 4 - Input Expandor & \({ }^{80.22}\) \\
\hline CD4043 & Ouad 3-State NOR R/S Latch & E1.05 & LM923 & J-K Fhop-Flop & c0. \({ }_{\text {co }}\) & SN7470N & J-k Flip-Fiop Edge Trig and Gate & \({ }^{\text {E0.45 }}\) \\
\hline CD4044 & Ouad 3-State NAND R/S Latch & \({ }_{c}^{\text {c1, }} 1\) & -LM1303N & Stereo Pre-Amp. (0.70) MC1 303 & f1.15
E1.52 & SN7472N
SN743N & J-K Flio-Fiop and Gated M.S FF PS/CL & ¢0.
¢0.44 \\
\hline CDP445
C04046 &  & E1.50 & -LM 1305N & F.M. Mulitipexer Sterae Oemoctulator & £1.52 & SN7474N & Oual D - Typo Flip Fliop & E0.32 \\
\hline CD40478 & Monostabie/Assable Mulivivirator & c0.95 & -LM1307N & F.M. Multiplexer Stereo Demodulator & \({ }^{\text {c }} 1.22\) & SN7475N & Quad Latch & ¢0.60 \\
\hline CD4049 & Hex. Buf/ Con. (linvtg) & \({ }^{20.55}\) & -LM1310N & & & SN7476N & Dual J-K Fip-Froo & \\
\hline CD40508
Co40518 & Hex. But/Con. Non-Invening & c0.5s
c0. 85 &  & F.M. Detector Limiter and Aucio Pre-Amp. & ¢1.30
80.45 & SN7480N & \({ }^{\text {Gated Full }} 16\) Ader & c0.60
f1.00 \\
\hline CD40528 & Dual 4 -Channel Multiolexer & c0.85 & -LM1496N & Baianced MOD/Demodulator 10-70 \({ }^{\circ}\), & ¢0.97 & SN7482N & 2 Bit Binary full Adder & c0.80 \\
\hline CD40538 & Triple 2 -Cha nnel Multiplexer & c0.85 & -Lmigoon & PLL Demodulator & £1.94 & SN7483N & 4 Bit Binary Full Adder & ¢1.05 \\
\hline CD4054 & 4-Line LIO-xTAL Display Driver & \(\underline{1.45}\) & -LM 1808 N & Mono Lithic TV Sound Systerm & ¢2.10 & SN7484N & Gared Input 16 Brt Memory & E1. 20 \\
\hline CD4055 & BCD 7 Segment Decoder/Driver & \begin{tabular}{l} 
c1. \\
c1.65 \\
\hline
\end{tabular} & - LM1812N & UMbrasonic transceiver & \(\underset{\text { c1.16 }}{ }\) &  & \({ }^{4}\) Bit Comparator & 81.35
¢0. 36 \\
\hline CO4056 &  & \({ }_{\text {cise }}\) & -LM1828N &  & ع1.90 & SN7489 & 64 Bit Ram & \({ }^{\text {c2 } 2.45 ~}\) \\
\hline \({ }^{\text {codete608 }}\) & 12-Stsage CCunter and Osseillator
4-Sit Magniude Comparator & c1.16
c1.35
c1. & LM 1830 N
-LM184in & Fluid level dectior & & & & \\
\hline CD4063 & \({ }^{\text {4.-Sia Magnitude Comparator }}\) & 81.35
c0.75 &  & F.M Detector Limitar & ع1.90
ع1.150 & SN7491AN
SN7492N & 8 Bir Shith Regster SIso
Divide-Ev-12 Counter & 80.85
80.45 \\
\hline C04067 & 1.16 Muliplexer & c4.85 & LM1848N & Chroma Demodulator & c1.98 & SN7493N & 4 Bit Bnary Counter & \({ }^{\text {c0.4. }}\) \\
\hline \({ }^{\text {c }}\) C04068 & 8 Input NAND Gate & \({ }_{c}^{20.27}\) & LM1850N & Ground Fault inierrupter & \({ }_{\text {c }} 1.90\) & SNT794N & \({ }_{4}^{4}\) Bit Shit Register PISOO & \({ }^{80} \mathbf{8 0} 90\) \\
\hline CD40698
CD4070 & Hex. Inverrar \(\begin{aligned} & \text { Ouded } \\ & \text { Oxciusive or Gate } 2 \text { Input }\end{aligned}\) & \({ }_{c}^{c 0.24}\) & LM1889N & \({ }^{T}\) v video modulator &  & SN7495N & \({ }_{5}^{4}\) Biit Shit Regiter Plipo & ce.76 \\
\hline CD4470
CD40713 & Ouad txicusive or Gate 2 Input
Ouad 2 Input of Gate & cios & LM2991N-8 & \({ }_{F}^{\mathrm{F} \text { to } \text { to } \mathrm{V} \text { conviverter } \text { converer and zener }}\) & \({ }_{\text {ci }} 1.80\) & SN7497N & \({ }_{6} 6\) Brin Binary \({ }^{\text {counter }}\) & ع1.95 \\
\hline CD4072 & Dual 4 Input of Gate & 20.27
60.24 & LM3301N & Ouad Ampififier & \({ }_{\text {cos }}^{\text {co. } 50}\) & SN74100N & Dual Guad Latch & c1.40
c0.35 \\
\hline CD40738
C04075B & Triple 3 Inpul NAND Gate
Tripte 3 Input NOR Gate & 80.24
80.24 & LM3302N & Quad Complatar & \({ }_{\text {cose }} 8.58\) & SN74118N & Hex. S-R Latich & c0.95 \\
\hline CDA0768 & Quad "D" Type flip-Flop & \({ }_{80}^{60.99}\) & - LM3900N & Quad Amplifier D.ILL. 14 Pin & \({ }_{\text {ce. }}^{51.88}\) & SN74119N & \({ }_{\text {B }}^{\text {Hex S S Priority }}\) Encoder & c1.40
\(\mathbf{8 1 , 3 5}\) \\
\hline  & Quad Exclusive NOR Gate
8 linut NOR Gate & c0.70
80.27 & LM3905N
- LM &  & cile & (SN74148 & M/3 Priority Encoder & \({ }_{\text {cole }}\) \\
\hline \({ }_{\text {colaci }}\) &  & \({ }^{20.24}\) & LM3911N & Temperature Controller , & ¢1.10 & SN74122N & Monostable Multivibitor & \({ }_{60.55}^{60.55}\) \\
\hline CD4082 & Dual 4 Inpur and Gate & \({ }_{\text {coser }}^{80.27}\) & LM4250CN &  & c1.30
co. 85 & SN74123N & Dual Monostable Mulivivrator
Tristate Ouad Buther & ¢0.55 \\
\hline CD4085
C04086 & Dual 2 Wide 2 Input AOI Gate & c0. 89
80.99 & LM78105CH & 5 Volt. Regulator 12 Votes 100 mA Positive & \({ }_{80.85}^{20.85}\) & SN74141N & BCD-Decimal Decode//Diver & 20.65 \\
\hline СD40898 & Binarl Rate Multiplier & E2.10 & LM78L15CH & 15 Volt. Regulator T05 100 mA Positive & \({ }^{20.85}\) & SN74145N & \({ }^{\text {BCD }}\) to Decimal Dec/Driver & \({ }^{\text {c0. } 85}\) \\
\hline CD40938
CD4094 & Ouad 2 Input NAND Schmit Trigger
8 git.Serial Paraliel Hodidim Bus Register & ¢1.60
ع2.30 &  &  &  &  &  & ¢1.20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline SN74153N & Dual 4-to-1-Line Selector \\
\hline SN74154N & 4-16 Line Decoder \\
\hline SN74155N & Dual 2 and 4 Demultiolexer \\
\hline SN74157N & Quad 2 Input Data Selector \\
\hline SN74t60AN & Synchronous Decade Counter \\
\hline SN74161AN & Synchronous Binary Counter \\
\hline SN74162AN & Synchronous Decade Counter \\
\hline SN74163AN & Synchronous Binary Counter \\
\hline SN74164N & 8 Bit Shit Register SIPD \\
\hline SN74165N & 8 Bit Shit Register PISO \\
\hline SN74167N & Synchronous Decade Decimal Rste Multple \\
\hline SN74174N & Hex D-Type Filip-Flop Quad \\
\hline SN74175N & Quad D-Type Flip-Flop Hex \\
\hline SN74176N & Decode Counter \\
\hline SN74177N & \({ }^{\text {Binar Counter }}\) \\
\hline SN74180N & 88 al Parity Generator \\
\hline SN74181N & 4 Bit Arithmetic Logic Unit \\
\hline SN74182N & Carry Look Anead \\
\hline SN74184N & BCD to Bimary Converter \\
\hline SN74185AN & BCD 10 Binary Converter \\
\hline SN74188AN & 256 Bit Field Prog hom \\
\hline SN74189N & Th1 State 64 Bit Ram (DM8599) \\
\hline SN74190N & Synch. Decade Uo/Down Counter \\
\hline SN74191N & Synchronous B inary Up/Down Counter \\
\hline SN74192N & Reversible Decade Counter \\
\hline SN74193N & Reversible Binary Counter \\
\hline SN74196N & Decade Counter \\
\hline SN7497N &  \\
\hline SN74199N & Parallel In and Out 8 Bit Shift Reg \\
\hline SAL110 & Frequency divder for electromic org \\
\hline S041p & FMif amotifier \& demodulator \\
\hline SO42P & Mixer to 200 MHz \\
\hline SN74HOON & High Speed TL \\
\hline SN74HO1N & High Speed 7 T \\
\hline SN740HO4N & Hegh Speed \({ }^{\text {Hil }}\) \\
\hline SN74HION & High Speed TL \\
\hline SN74H11N & High Speed TL \\
\hline SN74H2ON & High Speed TTL \\
\hline SN74H21N & High Speed TL \\
\hline SN74H3ON & Hign Speed \(\Pi\) L \\
\hline SN75H40N & (ligh Speed \({ }_{\text {ML }}\) \\
\hline SN74H53N & High Speed TI \\
\hline SN74H54N & High Speed TL \\
\hline SN74H55N & High Speed \(\pi\) L \\
\hline \({ }_{\text {S }} \mathrm{SN} 74 \mathrm{HR62N}\) &  \\
\hline SN74soo & Schotrky \(\Pi\) L \\
\hline SN74503 & Schotky \({ }^{\text {TL }}\) \\
\hline SN74504 & Schotiky \(\pi\) L \\
\hline SN74S10 & Schoitky \(\Pi\) L \\
\hline SN74S20 & Schotiky \(\pi\) L \\
\hline SN74S64 & Schotiky \(\pi\) I \\
\hline SN74S65 & Schottky \(\pi /\) \\
\hline SN74S112 & Schotiky TL \(^{\text {L }}\) \\
\hline SN74S114 & Schorky \({ }^{\text {TL }}\) \\
\hline ( \(\begin{aligned} & \text { SN74S140 } \\ & \text { SN74S262 }\end{aligned}\) &  \\
\hline SN74LOO & Low Power TTL \\
\hline SN74L02 & Low Power TL \\
\hline SN74404 & Low Power TL \\
\hline SN744.47 & Low Power \({ }_{\text {K }}\) Low Power \(\Pi\) L \\
\hline SN74L85 & Low Power TTL \\
\hline \({ }^{\text {SN74493 }}\) & Low Power TL \\
\hline SN75451限
SN75458P & Dual Peripheral Drivers \\
\hline SN75452BP & Dual Pertpheral Drvers \\
\hline \multicolumn{2}{|l|}{74CMOS + 74 LS See Page 19} \\
\hline -SN76001N & 1 Watt Power Amputier \\
\hline \({ }_{-}^{\text {-SN7 }}\)-SN6003N & Audio Amp of HT Sink 4W 35V, 15 R \\
\hline -SN76008KE & 10 Wall Addio Amp 5 Pin \\
\hline -SN76012ND & As abovere no HT S Snk \\
\hline -SN76013ND & 10 Wath Audio Amp. 5 P \\
\hline -SN76023N & Aucio Ampa and HTSink 4W. 24V. 8 B \\
\hline  & As above. without HT Smink
Audio Amp and \(H T\) Smk \\
\hline -SN76110N & Stereo Demodulator \\
\hline -SN76115N & Stereo Demodulator \\
\hline -SN76116M
-SN75131N & Stereo Decoder (Radiogram) \\
\hline -sN76226N & Colour (Pal) ecocoder \\
\hline -SN77227N & Colour [Pall Decoder \\
\hline -SNT6228N & Colour (Pal) Decoder \\
\hline -sN76532N & Line Frame Processor (Spares Only \\
\hline -SN76533N & Line Frame Processor (Spares Only) \\
\hline -SN76544N & Line Frame Procassor \\
\hline -SN76545N & Line Frame Processor \\
\hline -SN76546N & Line frame Processor \\
\hline - SN16552-2 & Tuner Control Votage Stabi iser \\
\hline -SN76570N & V ideo If \\
\hline -SN76620AN & Sound IF \\
\hline -SNT6660N & Sound If \\
\hline \({ }^{-5 N 76666 N}\) & Sound IF \\
\hline -St610C & RF Amplifier \\
\hline -st6116 & RF Amplitier \\
\hline - SL620C & \({ }_{\text {Vogad }} \mathrm{F}\) Ampifier \\
\hline -SL621C & AGC Generator \\
\hline - SL623C & AM Det. \& AGC Amp. + SSB Demod \\
\hline - SLL630C &  \\
\hline -St641C & Recenver Mixer \\
\hline - SLP7016 & ODerational Amplifier \\
\hline - TAAA3630 & 1 ( Wam Amplifitier \(4.5-\mathrm{gV}\) \\
\hline - ta 3204 & MOS If Preamplifier \\
\hline - taa350a & Wide Eand Differsotial Amp \\
\hline - TAA521 & Operational Amplifier \\
\hline - taA522 & Operational Amplfier \\
\hline - TAAS50 & Vothage Stabiliser 31-35V \\
\hline -1/ TAA570 & \({ }_{4}\) Level Control Amplitier \\
\hline ta43704 & Hearing aid amplifiter \\
\hline taA630 & Synchronous demodutitor (PAL) \\
\hline taA960 & Triple amp for active filers \\
\hline taA970 & Microphone amp T074 \\
\hline - TAA6118 & 3 Watt Audio Ampliter \\
\hline - TAA621 & 4 Watt 24 V Audio Ampliter \\
\hline - TAA661A & Limuting IF Amp./FM Detector \\
\hline  & Lumting IF Amps FM Detector \\
\hline - TAA930 \({ }_{\text {- }}^{\text {- }}\) & IF Amo-Limiter F PM Demod \\
\hline
\end{tabular}

\footnotetext{

}
\begin{tabular}{|c|c|c|}
\hline -tad 100 & Pre-amp, Stages of AM Receiver & 82.00 \\
\hline -t8A120 & Limering IF Amplem M Detactor & \\
\hline -tba400 & Adiustable Broadband Amplifier & t2.20 \\
\hline - tbasoo & Colour Processing-TV Luminence Combination & 82.24 \\
\hline -tbas000 & Quad-in-Line Version of above & ¢2.34 \\
\hline - teasio & Colour Processing-Chrominance Comb & ¢2.35 \\
\hline -tbasioo & Quad-m-Line Version of above & ¢2.48 \\
\hline -tbaszo & Cullut Demodulation Circuit & 82.60 \\
\hline - teas200 & 011 Version of above & £2.70 \\
\hline -tBas30 & R G B. Matix Preamelifier & ¢2.35 \\
\hline - tibas300 & Q I L. Version of above & ¢2.45 \\
\hline - TBA540 & Reterence Oscillator Circuit & E2.00 \\
\hline -tbastoo & O I.L. Version of above & ¢2.70 \\
\hline -tBA550 & Signal Processang - TV Receivers & 83.60 \\
\hline -tba5500 & \(01 . \mathrm{L}\) Version of above & 53.80 \\
\hline -tBas6oco & Luminance \& Chrome Control & ¢3.00 \\
\hline -tbas70 & AM/FM Radio Receiver Circuit 6V & ¢2.10 \\
\hline -tbas700 & Q.IL. Version of above & £2.20 \\
\hline - tbab418 & Audio Power Amp 4.5 W (1kV-4R) & 23.00 \\
\hline -tba65 1 & Tuner and IF Amplifier & ¢2.50 \\
\hline - tbat000 & AM/FM Radio Recelver IW Output & E2.20 \\
\hline  & Lene Ostallator combination for TV & £2.06 \\
\hline -tialso &  & 35 \\
\hline -t847500 & O.I.L Version of above & ع2.45 \\
\hline -tbaboo & 5 Watt Audio Amp 24 V 16 R & £1.30 \\
\hline -tbabios & 7 Wall Audio Amp. 16V 4R & £1.30 \\
\hline -t8A820 & 2 Watt Audio Amp 12V 日R & ¢0.a0 \\
\hline - t8A920 & Line Oscillator Combination IMulard) & ¢2.99 \\
\hline -tba9200 & Line Oscrilitor Combination (Mullard) & \({ }^{\text {c3.09 }}\) \\
\hline -TBA9900 & i.C. Colour Demadulator for TV & 82.75 \\
\hline -TCA 160C & Audio Amp 2 watt battery op 516 V and Hi Sink & \\
\hline -tcal60b & Audio Amp. 2 Wati Baterv Op. 5-16V DI.L. & \({ }_{\text {ck }}\) \\
\hline - TCA270 & Synchronous Demodulato \& Processing & [2.99 \\
\hline -TCA280A & Trigger IC for Thyristors \& Triacs & E2.42 \\
\hline - TCA290a & Stereo Decoder for F.M. 15V Supply & E2.84 \\
\hline - tca4zoa & 107 MHZ L Limiter I.F Amp for FM . Recept & c2. 60 \\
\hline - TCA730 & D.C. Stereo Audro Vol \& Balance Circuit & E4.50 \\
\hline - tca740 & DC. Stereo Audio tone Control Circuit & ¢4.50 \\
\hline -TCA750 & Multi-Stabilizer for Elec. Tuning & ¢3.00 \\
\hline - TCA760 & Audio Amp Sattery Op 4.14V 1 Wall 16 DIL & c2.00 \\
\hline - TCA800 & IC Colour Oemod. with Feed Back Clamps for TV & \\
\hline tCA105 & Theshold switch & c3.75
c1.49 \\
\hline tCA440 & AM recenver circuir & 51.65 \\
\hline icas40 & Chroma amp for PalSecam reciivers & c4.40 \\
\hline tCa650 & Chroma demodulator Pav/Secam reeeivers & 54.40 \\
\hline rcab60 & Contrast saturation conteol receivers & c4.40 \\
\hline t'asa & Microphone amp (TO12) & c3.19 \\
\hline T0A1022 & Bucket Brigade delay line & c7.50 \\
\hline TDA1024 & Triac control IC & c1.24 \\
\hline TDA1034 & High pertormance op amp & ¢4.75 \\
\hline IDA2540 & VID IF amp \& delector & c3.84 \\
\hline TDA 1002 & IC Tape Recorder Cricult Preamp \& Record & c2.10 \\
\hline toazezoad & 20 Watt Audio Power Amp & ¢4.50 \\
\hline -tDA1003 & 1.C Tape Fecorder Motor Regulator Bras Erase and & \\
\hline -tDA 1004 & Stop & \(\underline{22.30}\) \\
\hline -tDA1005 & Phase locked ioop Stereo Decoder F.M. & \({ }_{\text {c3. }}\) \\
\hline -toaz6 10 & 47 Watl Sound Outpur Cricut for TV Rec & c3.10 \\
\hline -toaz640 & Switched Mode Power Supply Control Circuit & c2.70 \\
\hline UA1170 & 1 C lor Oriving Led Oisplay Line (Up to 161 & ¢2.15 \\
\hline UAA 180 & If tor Driving Led Display Line & c2.15 \\
\hline
\end{tabular}

\section*{BIFET OP-AMPS}


\section*{AUDIO ICS}


\section*{RADIO \& TV SPARES}


A full range of IC's for the designer, serviceman, hobbyist or experimenter. Top quality semiconductors.

\section*{QUANTITY DISCOUNTS}

\section*{CONSUMER CIRCUITS}
NATIONAL
TEXAS INSTR.
MULLARD
SIEMENS
SESCOSEM
RCA, SGS
MOTOROLA
SIGNETICS
PLESSEY

DATA
available on
most devices
SEND 30p+S.A.E
(30p per data sheet)
- PLESSEY

Texas Instruments manufacture a wide range of MOS and Bipolar memory devices to complement the leadership T.T.L. products. Listed below, you will see the complete range of memory products with a cross reference list of the major 2nd sources and our highly competitive 100 up pricing. If you have not already - try Texas Instruments and get ex-stock delivery of high quality memory products from Marshalls.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{N10S Nieleres} \\
\hline INTEL & TEXAS ORDER CODE & \[
{\underset{1-99}{ }}^{\mathbf{£}}
\] & \[
\begin{aligned}
& \mathbf{f} \\
& 100+
\end{aligned}
\] \\
\hline & TMS4027NL & 6.10 & 3.81 \\
\hline 2101-1 & TMS4033NL & 2.04 & 1.27 \\
\hline 2102-2 & TMS4034NL & 1.94 & 1.22 \\
\hline 2102 & TMS4035NL & 1.88 & 1.17 \\
\hline - & TMS4036 & 3.11 & 1.94 \\
\hline 2101 & TMS4039NL & 3.37 & 2.11 \\
\hline 2101-2 & TMS4039-1NL & 3.63 & 2.27 \\
\hline 2101-1 & TMS4039-2NL & 4.20 & 2.62 \\
\hline 2111 & TMS4042 \({ }^{\text {NL }}\) & 3.37 & 2.11 \\
\hline 2111-2 & TMS4042-1 NL & 3.63 & 2.27 \\
\hline 2111-1 & TMS4042-2NL & 4.20 & 2.62 \\
\hline 2112 & TMS4043NL & 3.37 & 2.11 \\
\hline 2112-2 & TMS4043-1NL & 3.63 & 2.27 \\
\hline 2112-1 & TMS4043-2NL & 4.20 & 2.62 \\
\hline - & TMS4044NL-45 & 15.88 & 9.92 \\
\hline 2114 & TMS4045NL-45 & 15.88 & 9.92 \\
\hline 2107A/B & TMS4060NL & 7.69 & 4.81 \\
\hline 2107A/B & TMS4060-1NL & 8.47 & 5.29 \\
\hline 2107A/B & TMS4060-2NL & 9.31 & 5.82 \\
\hline 5270*NS & TMS4050NL & 7.43 & 4.30 \\
\hline 5270* NS & TMS4050-1NL & 7.58 & 4.74 \\
\hline 5270* NS & TMS4050-2NL & 8.35 & 5.22 \\
\hline 2116* & TMS4116JL & 36.55 & 22.84 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Tinotares} \\
\hline NSC (DM) &  & ORDER CODE T.I. & \[
{\underset{1-99}{ }}^{\mathbf{E}}
\] & \[
\begin{aligned}
& £ \\
& 100_{+}
\end{aligned}
\] \\
\hline 8577 & 7602 & SN74S188N & 2.70 & 1.67 \\
\hline 8578 & 7603 & SN74S288N & 2.70 & 1.67 \\
\hline - & NPROM
\[
512
\] & SN74186N & 10.71 & 6.70 \\
\hline 8574 & 3621 & SN74S287N & 4.32 & 2.70 \\
\hline 8573 & 3601 & SN74S387N & 4.32 & 2.70 \\
\hline 74S470 & - & SN74S470N & 8.53 & 5.33 \\
\hline 745471 & - & SN74S471N & 8.53 & 5.33 \\
\hline 745472 & - & SN74S472N & 13.48 & 8.42 \\
\hline 745473 & - & SN74S473N & 13.48 & 8.42 \\
\hline 87S296 & 3624 & SN74S474N & 13.48 & 8.42 \\
\hline 87S295 & 3604 & SN74S475N & 13.48 & 8.42 \\
\hline \[
\begin{aligned}
& \text { FSC } \\
& 1-1
\end{aligned}
\] & & & & \\
\hline 93403 & 3101A & SN74S189N & 1.81 & 1.13 \\
\hline 93404 & - & SN74S289N & 1.81 & 1.13 \\
\hline 93411 & 3106 & SN74S201N & 3.71 & 2.32 \\
\hline 93410 & 3107 & SN74S301N & 3.71 & 2.32 \\
\hline 93411 & 3106A & SN74S200AN & 5.06 & 3.16 \\
\hline 93410A & 3107A & SN74S300N & 5.06 & 3.16 \\
\hline - & *27LS01 & SN74LS200AN & 5.89 & 3.48 \\
\hline - & *27LS00 & SN74LS300N & 5.89 & 3.48 \\
\hline
\end{tabular}

\section*{Static Random-AccessMemories}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DEVICE} & \multirow[t]{2}{*}{ORGANIZATION} & \multirow[t]{2}{*}{MAX. ACCESS/ MIN. CYCLE} & \multirow[t]{2}{*}{TYPICAL POWER DISS.} & \multicolumn{2}{|c|}{PACKAGE} \\
\hline & & & & TYPE & PINS \\
\hline TMS 210114039 & \(256 \times 4\) & 1000 ns & 175 mW & CDIP/Plas & 22 \\
\hline TMS 2101-240393-1 & \(256 \times 4\) & 650 ns & 175 mW & CDIP/Plas & 22 \\
\hline TMS 2101-1/4039.2 & \(256 \times 4\) & 450 ns & 175 mW & CDIP/Plas & 22 \\
\hline TMS 2102-1/4033 & \(1024 \times 1\) & 450 ns & 22.5 mW & CDIP/Plas & 16 \\
\hline TMS 2102-24034 & \(1024 \times 1\) & 650 ns & 225 mW & CDIP/Plas & 16 \\
\hline TMS 210214035 & \(1024 \times 1\) & 1000 ns & 225 mW & CDIPIPIas & 16 \\
\hline TMS 211114042 & \(256 \times 4\) & 1000 ns & 175 mW & CDIPIPIPas & 18 \\
\hline TMS 2111-24042.1 & \(256 \times 4\) & 650 ns & 175 mW & COIPIPİlas & 18 \\
\hline TMS 2111-1/4042.2 & \(256 \times 4\) & 450 ns & 175 mW & CDIPIPlas & 18 \\
\hline TMS 211214043 & \(256 \times 4\) & 1000 ns & 175 mW & CDIP/P1/as & 16 \\
\hline TMS 2112-24043-1 & \(256 \times 4\) & 650 ns & 175 mW & CDIPIPİas & 16 \\
\hline TMS 40432 & \(256 \times 4\) & 450 ns & 175 mW & CDIPIPlas & 16 \\
\hline TMS 4036 & \(64 \times 8\) & 1000 ns & 250 mW & Plas & 20 \\
\hline TMS 4036-1 & \(64 \times 8\) & 650 ns & 250 mW & Plas & 20 \\
\hline TMS 4036-2 & \(64 \times 8\) & 450 ns & 250 mW & Plas & 20 \\
\hline TMS 4044 & \(4098 \times 1\) & 200 ns & 450 mW & COIPIPlias & 18 \\
\hline TMS 4045 & \(1024 \times 4\) & 200 ns & 450 mW & CDIPIPlas & 18 \\
\hline
\end{tabular}


\section*{Dynamic Random-AccessMemories}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DEVICE , & ORGANIZATION & NO. & \begin{tabular}{l}
MAX \\
ACCESS
\end{tabular} & MIN CYCLE & SUPPL & MINAL VOLTA & & &  & R DISS & & \\
\hline & & CLOCKS & (ns) & (ns) & \(V_{\text {CC }}\) & \(V_{\text {DD }}\) & \(\mathrm{V}_{\mathbf{S S}}\) & VBB & STANDBY & ACTIVE & TYPE & PINS \\
\hline TMS 4050 JR, JL, NL & \(4096 \times 1\) & 1 & 300 & 470 & N/A & 12 & 0 & -5 & 0.1 & 420 & CDIP/Plas & 18 \\
\hline TMS 4050-1 JR, JL, NL & \(4096 \times 1\) & 1 & 250 & 430 & \(N / A\) & 12 & 0 & -5 & 0.1 & 420 & CDIP/Plas & 18 \\
\hline TMS 4050-2 JR, JL, NL & \(4096 \times 1\) & 1 & 200 & 400 & \(N / A\) & 12 & 0 & -5 & 0.1 & 420 & CDIP/Plas & 18 \\
\hline TMS 4051 JL . NL & \(4096 \times 1\) & 1 & 300 & 470 & \(N / A\) & 12 & 0 & -5 & 60 & 460 & CDIP/Plas & 18 \\
\hline TMS 4051.1 JL, NL & \(4096 \times 1\) & 1 & 250 & 430 & N/A & 12 & 0 & -5 & 60 & 460 & CDIP/Plas & 18 \\
\hline TMS 4060 JR . JL. NL & \(4096 \times 1\) & 1 & 300 & 470 & 5 & 12 & 0 & -5 & 0.2 & 400 & CDIP/Plas & 22 \\
\hline TMS 4060.1 JR, JL, NL & \(4096 \times 1\) & 1 & 250 & 430 & 5 & 12 & 0 & -5 & 0.2 & 400 & CDIP/Plas & 22 \\
\hline TMS 4060-2 JR, JL, NL & \(4096 \times 1\) & 1 & 200 & 400 & 5 & 12 & 0 & -5 & 0.2 & 400 & CDIP/Plas & 22 \\
\hline SMC 4050 JR & \(4099 \times 1\) & 1 & \multicolumn{2}{|l|}{(same as TMS 4050s)} & N/A & 12 & 0 & -5 & 0.1 & 420 & CDIP & 18 \\
\hline SMC 4060 JR & \(4096 \times 1\) & 1 & \multicolumn{2}{|l|}{(same as TMS 4060s)} & 5 & 12 & 0 & -5 & 0.2 & 400 & CDIP & 22 \\
\hline TMS 4116 JL & \(16384 \times 1\) & 2 & 350 & 500 & 5 & 12 & 0 & -5 & 10 & 600 & CDIP & 16 \\
\hline TMS 4027 NL & \(4096 \times 1\) & 1 & 250 & 430 & N/A & 12 & 0 & -5 & 0.1 & 420 & CDIP & 16 \\
\hline
\end{tabular}


\section*{READ ONLY MEMORIES}

8 BIT ERASABLE-PROGRAMMABLE READ ONLY MEMORIES
\begin{tabular}{|c|c|c|c|}
\hline MM1702AQ. & \(256 \times 8\) & EPROM & £8.10 \\
\hline MM5204Q & \(512 \times 8\) & EPROM & £11.00 \\
\hline MM27080 & \(1024 \times 8\) & EPROM & £13.00 \\
\hline TMS2716 & \(2048 \times 8\) & EPROM & £40.0 \\
\hline
\end{tabular}
- \(1024 \times 8\) Organization
- All Inputs and Outputs Fully TTL-Compatible
- Static Operation (No Clocks, No Refresh)
- Maximum Access Time . . . 450 ns
- Minimum Cycle Time . . . 450 ns
- 3-State Outputs for OR-Ties
- N-Channel Silicon-Gate Technology
- 8-Bit Output for Use in Microprocessor Based Systems

\author{
UV ERASABLE PROMS \\ 1024-WORD BY 8-BIT ERASABLE PROGRAMMABLE READ-ONLY MEMORIES \\ - MM2708 Features \\ - Power Diss. 800 mW (max) \\ - 5\% Power Supply Tolerance \\ -T.T.L. Compatible I/Os \\ - 2 standard TTL loads drive capability
}


\section*{SC/MP POWER SUPPLY}

POWER SUPPLY FOR SC/MP INTROKIT


Note: Disconnect common secondary winding

Parts list:
TI MT 79AT
R1 LM 309 K R2 LM 320-12 B 1. B2 WOO5

C1 \(1000 \mu\) F \(25 v\) B4 1010 C2 \(0.22 \mu\) F B37449 C3 \(2.2 \mu \mathrm{~F}\) TANT B45134 C4 \(220 \mu\) F \(40 v\) B4 1283 C5 \(0.22 \mu \mathrm{~F}\) B3 7449 C6 2.2 山F TANT B45134
 NATIONAL First-choice for linear and digital circuits

National, currently the secondlargest manufacturer of integrated circuits in the world, can offer an unparalleled range of products in all semiconductor technologies. Many are made in the UK.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{NATIONAL DATA} \\
\hline \({ }_{\substack{\text { scmp } \\ \text { Sc/MP }}}\) & Propraming and assember maual & ceien \\
\hline \(\substack{\text { scli } \\ \text { Natio }}\) & Aphiatios. & 边 \\
\hline National &  & cistiso \\
\hline Natioal & Soceial unction dat book & cistion \\
\hline National & Memorn & cis \\
\hline (Nataioal &  & cisti.25 \\
\hline  &  &  \\
\hline  & \begin{tabular}{l}
TEXAS DATA BOOKS \\
TL data book (hardback)
\end{tabular} & \(\underbrace{}_{\substack{\text { c5, } \\ \text { c.75 }}}\) \\
\hline \multicolumn{3}{|c|}{Prics are exclusiv of postpacking 50p perr book} \\
\hline
\end{tabular}


TYPE
\begin{tabular}{|c|c|c|}
\hline DM74LSOON & 0.26 & 0.16 \\
\hline DM74LS01N & 0.26 & 0.16 \\
\hline DM74LS02N & 0.26 & 0.16 \\
\hline DM74LSO3N & 0.26 & 0.16 \\
\hline DM74LS04N & 0.29 & 0.18 \\
\hline DM74LS05N & 0.29 & 0.18 \\
\hline DM74LS08N & 0.26 & 0.16 \\
\hline DM74LS09N & 0.26 & 0.16 \\
\hline DM74LS10N & 0.26 & 0.16 \\
\hline DM74LS11N & 0.27 & 0.16 \\
\hline DM74LS12N & 0.26 & 0.16 \\
\hline DM74LS13N & 0.58 & 0.39 \\
\hline DM74LS14N & 1.43 & 1.05 \\
\hline DM74LS15N & 0.26 & 0.16 \\
\hline DM74LS20N & 0.26 & 0.16 \\
\hline DM74LS21N & 0.27 & 0.16 \\
\hline DM74LS22N & 0.26 & 0.16 \\
\hline DM74LS26N & 0.39 & 0.21 \\
\hline DM74LS27N & 0.50 & 0.38 \\
\hline DM74LS28N & 0.42 & 0.32 \\
\hline DM74LS30N & 0.26 & 0.16 \\
\hline DM74LS32N & 0.27 & 0.23 \\
\hline DM74LS33N & 0.35 & 0.27 \\
\hline DM74LS37N & 0.32 & 0.23 \\
\hline DM74LS38N & 0.32 & 0.23 \\
\hline DM74LS40N & 0.29 & 0.16 \\
\hline DM74LS42N & 1.07 & 0.43 \\
\hline DM74LS47N & 1.09 & 0.80 \\
\hline DM74LS48N & 1.09 & 0.80 \\
\hline DM74LS49N & 1.09 & 0.80 \\
\hline DM74LS51N & 0.26 & 0.16 \\
\hline DM74LS54N & 0.26 & 0.16 \\
\hline DM74LS55N & 0.26 & 0.16 \\
\hline DM74LS73N & 0.42 & 0.25 \\
\hline DM74LS74N & 0.42 & 0.28 \\
\hline DM74LS75N & 0.58 & 0.38 \\
\hline DM74LS76N & 0.42 & 0.25 \\
\hline DM74LS78N & 0.42 & 0.25 \\
\hline DM74LS83AN & 1.20 & 0.64 \\
\hline DM74LS85N & 1.10 & 0.73 \\
\hline DM74LS86N & 0.44 & 0.28 \\
\hline DM74LS90N & 1.10 & 0.80 \\
\hline DM74LS91N & 1.20 & 0.86 \\
\hline DM74LS92N & 0.86 & 0.63 \\
\hline DM74LS93N & 1.10 & 0.80 \\
\hline DM74LS95AN & 1.10 & 0.80 \\
\hline DM74LS96N & 1.35 & 1.00 \\
\hline DM74LS107N & 0.42 & 0.29 \\
\hline DM74LS109N & 0.42 & 0.29 \\
\hline DM74LS112N & 0.42 & 0.39 \\
\hline DM74LS113N & 0.42 & 0.29 \\
\hline DM74LS114N & 0.42 & 0.29 \\
\hline DM74LS122N & 0.80 & 0.62 \\
\hline DM74LS123N & 0.83 & 0.65 \\
\hline DM74LS124N & 2.70 & 2.15 \\
\hline DM74LS125N & 0.50 & 0.36 \\
\hline DM74LS126N & 0.50 & 0.36 \\
\hline DM74LS132N & 0.85 & 0.56 \\
\hline DM74LS136N & 0.44 & 0.33 \\
\hline DM74LS138N & 0.65 & 0.43 \\
\hline
\end{tabular}

TYPE
\(1+\)
DM74LS139 DM74LS145N DM74LS151N DM74LS153N DM74LS154N DM74LS155N DM74LS156N DM74LS157N DM74LS158N DM74LS160N DM74LS161N DM74LS162N DM74LS163N DM74LS164N DM74LS168N DM74LS169N DM74LS170N DM74LS173N DM74LS174N DM74LS175N DM74LS181N DM74LS189N DM74LS190N DM74LS191N DM74LS192N DM74LS193N DM74LS196N DM74LS197N DM74LS221N DM74LS247N DM74LS248N DM74LS249N DM74LS251N DM74LS253N DM74LS257N DM74LS258N DM74LS261N DM74LS266N DM74LS279N DM74LS283N DM74LS289N DM74LS290N DM74LS293N DM74LS295N DM74LS298N DM74LS352N DM74LS353N DM74LS365N DM74LS366N DM74LS367N DM74LS368N DM74LS386N DM74LS670N DM81LS95N DM81LS96N DM81LS97N DM81LS98N DM86LS52N

THE ADVANTAGES OF LS OVERALL
 cost, low power Schottky is becoming the leading logic family - eliminates the need for large power supplies + no loss of speed over standard TTL.
\begin{tabular}{l} 
Family Type \\
\hline \\
74 LS series \\
74 series \\
74 S series \\
74 H series \\
74 L series
\end{tabular}

Delay Per Gate
Average Power Per Gate

10 nano seconds 2 milliwatts 10 nano seconds 3 nano seconds 6 nano seconds 33 nano seconds

10 milliwatts 20 milliwatts 23 milliwatts 1 milliwatt

TYPE
MM74COON
MM74C02N
MM74C04N
MM74C08N
MM74C10N
MM74C14N
MM74C20N
MM74C30N
MM74C32N
MM74C42N
MM74C48N
MM74C73N
MM74C74N
MM74C76N
MM74C83N
MM74C85N
MM74C86N
MM74C89N
MM74C90N
MM74C93N
MM74C95N
MM74C107N
MM74C150N
MM74C151N
MM74C154N
MM74C157N
MM74C160N
MM74C161N
MM74C162N
MM74C163N
MM74C164N
MM74C165N
MM74C173N
MM74C174N
MM74C175N
MM74C192N
MM74C193N
MM74C195N
MM74C200N
MM74C221N
MM74C901N
MM74C902N
MM74C903N
MM74C904N
MM74C905N
MM74C906N
MM74C907N
MM74C908N
MM74C909N
MM74C910N
MM74C914N
MM74C915N
MM74C918N
MM74C920D
MM74C921D
MM74C922N
MM74C923N
MM74C925N
MM74C926N
MM74C927N
MM74C928N
MM74C929D
MM74C930D
MM74C935N
MM74C935N-1
MM80C95N
MM80C96N
MM80C97N
MM80C98N
MM82C19N
MM88C29N
MM88C30N
\begin{tabular}{ll}
\(1+£ \quad 100+£\) \\
\hline
\end{tabular}

\subsection*{0.24}
0.24
0.24
\begin{tabular}{l|l|}
0.24 & 0.175 \\
0.24 & 0.175 \\
\hline
\end{tabular}
\begin{tabular}{l|l}
0.24 & 0.175 \\
1.41 & 1.00
\end{tabular}
1.00
\begin{tabular}{l|l|l}
0.24 & 0.175
\end{tabular}
\begin{tabular}{l|l|}
0.24 & 0.175
\end{tabular}
\begin{tabular}{l|l|l}
0.92 & 0.70
\end{tabular}
1.381 .00
\begin{tabular}{l|l}
0.54 & 0.50 \\
0.56 & 0.43
\end{tabular}
0.540 .50
\begin{tabular}{l|l}
1.30 & 0.96 \\
1.30 & 0.96
\end{tabular}
0.640 .49
\begin{tabular}{l|l|l} 
& 4.39 & 3.35
\end{tabular}
\begin{tabular}{l|l}
0.85 & 0.61 \\
0.85 & 0.61
\end{tabular}
\begin{tabular}{l|l|l|}
\hline 1.04 & 0.78
\end{tabular}
1.220 .88
4.14
\begin{tabular}{l|l}
2.47 & 1.80 \\
3.68 & 2.67
\end{tabular}
\begin{tabular}{l|l}
3.61 & 1.60 \\
2.21 & 1.60
\end{tabular}
1.110 .82
1.110 .82
1.110 .82
\begin{tabular}{l|l}
1.11 & 0.82 \\
1.04 & 0.78
\end{tabular}
\begin{tabular}{l|l}
1.04 & 0.78 \\
1.04 & 0.78
\end{tabular}
\begin{tabular}{l|l|}
\hline 0.90 & 0.82
\end{tabular}
\begin{tabular}{l|l}
0.90 & 0.82 \\
0.90 & 0.82 \\
\hline
\end{tabular}
1.110 .82
1.110 .82
\begin{tabular}{l|l}
1.04 & 0.78 \\
6.70 & 4.99
\end{tabular}
\begin{tabular}{l|l|}
1.36 & 1.05
\end{tabular}
\begin{tabular}{l|l}
0.54 & 0.50
\end{tabular}
\begin{tabular}{l|l}
0.54 & 0.50 \\
0.54 & 0.50
\end{tabular}
\begin{tabular}{l|l}
0.54 & 0.50 \\
7.28 & 5.25
\end{tabular}
\begin{tabular}{l|l}
7.28 & 5.25 \\
0.54 & 0.50
\end{tabular}
\begin{tabular}{l|l}
\hline 0.54 & 0.50 \\
0.54 & 0.50
\end{tabular}
\begin{tabular}{l|l}
0.96 & 0.71 \\
1.63 & 1.18
\end{tabular}
6.794 .88
1.411 .01
\begin{tabular}{ll|l|}
1.11 & 0.82
\end{tabular}
\begin{tabular}{l|l|l} 
& 2.72 & 1.85
\end{tabular}
\begin{tabular}{r|r}
11.83 & 8.65 \\
11.83 & 8.65
\end{tabular}
\begin{tabular}{l|l|}
\hline 3.90 & 2.70
\end{tabular}
\begin{tabular}{l|l|}
\hline 3.74 & 2.83 \\
5.36 & 3.87 \\
\hline
\end{tabular}
\begin{tabular}{l|l}
5.36 & 3.87 \\
5.36 & 3.87 \\
\hline 5.36 & 3.87
\end{tabular}
\begin{tabular}{l|l|}
5.36 & 3.87
\end{tabular}
11.838 .65
\begin{tabular}{l|l}
11.83 & 8.65 \\
12.60 & 9.85
\end{tabular}
\begin{tabular}{r|r|}
10.20 & 7.00
\end{tabular}
\begin{tabular}{l|l}
0.54 & 0.50 \\
0.61 & 0.55
\end{tabular}
0.540 .50
0.61 0.55,
4.142 .85
1.931 .40
1.93
1.40

\section*{TV-CRT CONTROLLER - SF.F \(96364 \quad £ 17.20\)}

\section*{GENERAL DESCRIPTION}

A 1024 six bit word size (at least) static or dynamic memory and a character generator ( \(7 \times 5\) ) used with the SF.F 96364 allows to change any TV set into a visual display for computing system.
This processor preforms text refreshment, characters writing and cursor management on TV screen.
Line erasing, line end erasing and other special functions capabilities make it strictly compatible with any computing system (computer or microprocessor).
An internal top generator, CCIR compatible, ensures control of any TV set.
The SF.F 96364 is manufactured in MOS \(N\) channel silicon gate technology.

\section*{PRINCIPAL FEATURES}
- Single power supply +5 V
- Automatic line erase
- TTL-LS compatible
- 250 mW typical power
- Automatic end of line
- \(1,6 \mathrm{MHz}\) typical clock freq.
- Read cursor address
- Dual in line 28 pins pack
- 16 lines 64 characters disp.
- Read refresh memory
- Text shifts up when index reaches the end of a page
- Pages linking capability
- Variable display size
- Flickering cursor ( 2 Hz )
- Mobile in the 4 directions
- "Hard copy coupling"
- Static or dynamic memory
- Character flickering
- Brilliancy increasement

NEW FROM SESCOSEM
SEND 30p FOR DATA NOW
ins 8080A
The National 8080 direct plug in replacement for Intel 8080A - 8 bit micro now at a fantastic price!

SEND 30p FOR DATA
£7.42
ins 8900D
The latest addition to the farnily of National micro's - 16 bit system and equal in price to many 8 bits. Low power schottky compatible and capable of interfacing with all 8080A memory and peripheral chips.
send 3op for data \(£ 15.00\) \\ LISTED BELOW IS OUR COMPREHENSIVE RANGE OF MICRO SUPPORT DEVICES TOTAL SYSTEM SUPPORT AT COMPETITIVE PRICES \\ \section*{\title{
MICROPROCESSOR SUPPORT DEVICES
}} \\ \section*{\title{
MICROPROCESSOR SUPPORT DEVICES
}}

\begin{tabular}{|l|}
\hline PART No \\
\hline 8080 A \\
8060 N \\
8900 D \\
8224 N \\
8228 N \\
8238 N \\
\\
\hline
\end{tabular}
\begin{tabular}{llr} 
DIGITAL I/O & & \\
8202 & Tri State 8 Bit Bus Driver/Buffer & DM8 \\
8203 & Tri State 8 Bit Bus Driver Inverting & DM8 \\
82 LS05 & 1 out of 8 Binary Decoder & \(\mathbf{7 4}\) \\
82 C06 & 8 Bit I/O Latch & \\
8208 & 8 Bit Bi-directional Bus Driver & \\
8212 & 8 Bit Input/Output Port & \\
8213 & Bi-directional 8 Bit I/O Port & \\
8216 & 4 Bit Bi-directional Bus Driver & \\
8226 & 4 Bit Bi-directional Bus Inverting & \\
& &
\end{tabular}

PERIPHERAL CONTROL CHIPS
\begin{tabular}{llr}
\(\mathbf{8 2 4 4}\) & 90-Key Keyboard Encoder & \(\mathbf{£ 7 . 2 3}\) \\
8245 & 16-Key Keyboard Encoder & \(\mathbf{M M 7 4 C 9 2 2}\) \\
8246 & 20-Key Keyboard Encoder & \(\mathbf{M M 7 4 C 9 2 3}\) \\
8247 & 4 Digit Display Control & \(\mathbf{£ 7 . 5 0}\) \\
8248 & 6 Digit Display Control & \(\mathbf{£ 7 . 5 0}\) \\
8253 & Programmable Interval Timer & \(\mathbf{£ 1 1 . 3 8}\) \\
8254 & Bit Programmable Peripheral Interface & \(\mathbf{£ 4 . 5 0}\) \\
8255 & Programmable Peripheral Interface & \(\mathbf{£ 6 . 2 7}\) \\
8257 & Programmable DMA Controlier & \(\mathbf{£ 1 1 . 9 3}\) \\
8259 & Programmable Interrupt Controller & \(\mathbf{£ 1 1 . 3 7}\) \\
\(\mathbf{8 2 7 2}\) & Floppy Disk Formatter/Control & \(\mathbf{£ 2 2 . 0 0}\) \\
8276 & CRT Controller & \(\mathbf{£ 1 2 . 9 5}\) \\
\(\mathbf{8 2 8 5}\) & Character Generator & DM8678CABN \\
8292 & 8 Bit ADD Converter + 16CH•ANA MUX & \(\mathbf{£ 2 0 . 0 0}\) \\
8298 & LLL 80BAA "Basic" Interp. + HEX DEBUG & \(\mathbf{£ 7 2 . 7 5}\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline PART No. & DESCRIPTION & PRICE/EQUIV. \\
\hline \multicolumn{3}{|l|}{COMMUNICATIONS} \\
\hline 8250 & Async. Communications Element (ACE) & \(\underline{8.99}\) \\
\hline 8251 & Program. Communications Interface & \(\underline{18.18}\) \\
\hline 8252 & Advanced Communications Interface & £17.80 \\
\hline 8261 & Program. Communications Subsystem & £15.75 \\
\hline 8274 & Multi-Protocol Communications & £13.90 \\
\hline \multicolumn{3}{|l|}{Memory (See Page 16, 17 \& 18)} \\
\hline 8154 & \(128 \times 8\) Static Ram with \(16-\mathrm{Bit}\) I/O & \\
\hline & Ram I/O Chip ISP-8A/650D & £8.83 \\
\hline MM74C920 & \(256 \times 4\) Stat Ram + Separate I/O CMOS & ¢11.83 \\
\hline MM74C921 & \(256 \times 4\) CMOS Static Ram + Comm. I/O & £11.83 \\
\hline MM74C929 & \(1024 \times 1\) CMOS Static Ram & £11.83 \\
\hline \multicolumn{3}{|l|}{TEXAS THS9900} \\
\hline TMS9900 & 16 Bit Microprocessor & \(\mathbf{8 6 1 . 5 0}\) \\
\hline TMS9980NL & 16 Bit Microprocessor & £29.89 \\
\hline TMS9901NL & Program. Interrupt and I/O Interface & £10.65 \\
\hline TMS9902NL & Async. Communications Controller & £9.15 \\
\hline TMS9903NL & Binary Synch Interface & TBA \\
\hline TIM9904N & Four Phase Clock Driver & £7.56 \\
\hline TIM9905N & Data Selector/Multiplex & 74LS251 \\
\hline \multicolumn{3}{|l|}{CALCULATOR ORIENTED PROCESSOR SYSTEMS - COPS} \\
\hline MM57109N & Number Cruncher & £12.75 \\
\hline MM57160N & "Stac" Standard Timer and Controller & £10.25 \\
\hline MM57161N & "Sit" Standard Interval Timer & £10.25 \\
\hline \multicolumn{3}{|l|}{EXTRAS} \\
\hline MM5307AA/N & Baud Rate Generator & £13.69 \\
\hline MM5303N & UART & £6.85 \\
\hline AY-3-1013 & UART Replaced Pin for Pin BY T & TMS6011NC \\
\hline TMS6011NC & UART 5-8 Bit 200 kHz & £5.35 \\
\hline DMB678CABN & CRT Character Generator \(5 \times 7\) UC & £15.40 \\
\hline AY-2513 & CRT Character Generator \(5 \times 7\) UC & £8.75 \\
\hline
\end{tabular}

The kit when assembled is a fully functional microcomputer. The integral heyboard/display module can be used in conjunction with monitor program. For entering and debugging of user programs. a second P.IA allows operation via TTY or other inpul/outpuls

FEATURES
- 72 basic instructions
- 7 addressing modes
- On board monitor program

- On board cassette interface - connecting direct to cassette mike and earphone socket
- Spare prewired sockets for additional ROM/RAM, etc. + space for user's extra circuitry
- Expandable via data bus to 65 k words using inbuilt motherboard techniques
- 256 words of RAM + monitor program
- Comprehensive literature / fact pack
a full range of support devices WILL BE AVAILABLE SHORTLY

PRICE £205 INC. VAT DATA 30p+Sae


Now second sourced from Thomson-CSF See page 6 for details of chips

SC/MP MICROPROCESSOR
 SC/MP MICROPROCESSOR FAMILY 1SP-8A/500D
1 SP-8A/600N SC/MP CPU chip
N-channel CPU chip (NEW N 2 INS \(8060 N\) )

\section*{INTROKIT - NATIONAL}

Price \(£ 71.63\) INCL. VAT
SC/MP, the Microprocessor kit from National Semiconductor includes everything yu need to build a compietely functional microprocessor system - leaturing the National SC/MP microprocessor - the low Email Business Machines Word Processing Sysiems, Educational Systems. Mubtiprocessors Systems. Process Conirollers. Terminal Contral Laboratory Instrumentation. Sophisticated Games; Auromotive Corel Ablan Controllers Controller and Appliance Controilers
ludes and literature you need in a looseteaf binder includes The SC/MP Microprocessor - a single chip Central Processing Unit in a 40 -pin. dual iralthe package fatures static operations. forty-six intruction types single-byte and doub in Stater bus. partallel data/port and tatched 12 -bit TRI.STATER addess port ROM -512 bytes ( 8 -bits/byte) of pre orogrammed Read-Only-memory containing KITBUG -a monitor and debugging program to assist int he development of ryour applicalion programs. KITBUGprovides teletypewrite inpul/output routines and ailows examination modification and controlled execution of your programs. RAM- 256 byles of slatic read / wrtte memory for storage of your application programs Transfers of data to and from RAM are contiolled by SC/MP and KiTBUG Teletypewiter Interface including buffer and drive capability tor 20 MA current ioop intertace Voltage REgulator Data Buffer-providing interface between memory and bidirectional data unes All the literature vou need. ncluding schematics and proqramming manuals Tining Crystal-providing 1.000 MHz uming signat Plus alf the passive compnents and circuit board with 72 pin edge connector requred to puld and interconnect yout microprocessor system with external with 72 pin

KEYBOARD KIT - National Semiconductors f68.74 INCL. VAT Replaces the need for a conventional teletype terminal for input/output data The calculator type keyboard provides manual input commands to the SC/MP and a six digit hex display provides visual output. An umbilical cord connects it to the Introkit P.C.B Using the keyboard, programmes can be entered in hexadecimal (easier to use than binary). As well as the 16 hexadecimal keys ( \(0-9\), A. B. C, D. E and F) there are 4 control keys. which allow the contents of any RAM address to be examined or modified ISP \(8 \mathrm{~K}-400\)

\section*{NEW data acouisition chip \\ SINGLE CHIP 8-BIT DATA ACQUISITION SYSTEM}

The ADC0816, ADC0817 (MM74C948) data acquisition components are monolithic CMOS devices with an 8-bit analog-to-digital converter, a 16 -channel multiplexer and microprocessor compatible control logic. The 8-bit A/D converter uses successive approximation as the conversion technique. The converter features a high impedance chopper stabilized comparator, a 256 R voltage divider with analog switch tree and a successive approximation register. The 16 -channel multiplexer can directly access any one of 16 single-ended analog signals and provides the logic for additional channel expansion. Signal conditioning of any analog input signal is eased by direct access to the input of the 8 -bit \(\mathrm{A} / \mathrm{D}\) converter
The device eliminates the need for external zero and full-scale adjustments and features an absolute accuracy

1 LSB including quantitizing error. Easy interfacing to microprocessors is provided by the latched and decoded address inputs and latched TLL TRI-STATE \({ }^{\text {a }}\) outputs
* ADC8017CCN STOCKED. PRICE £18.92 INCL. VAT DATA SHEET AVAILABLE PRICE 30p + SAE

SC/MP RETROFIT
\(\star\) KIT \(\star\) £13.38

ISP 8K-205 Kit National
- Kit contains all the components including the CPU \& Crystal etc. To convert existing SC/MPI users over to the new N -channel \(\mathrm{SC} / \mathrm{MP}\) complete with literature.

\section*{ELEKTOR SC/MP \\ EXPERIMENTING WITH SC/MP'}

ELEKTOR
PROJECTS
PROJECTS
WORK!
A series of articles and constructional projects using SC/MP Micro to build into a hexadecimal 7 -segment Micro computer with cassette interface. (Video/TV interface + full keyboard - to come). Build as much or as little as your budget allows. All components available.
\(+P C B+\) Back Issues etc. \(+4 \mathbf{K}\) RAM CARD
* SEND S.A.E. FOR FUll DETAILS *

\section*{AUDIO VISUAL \\ PLUS \\ BROCHURES}

\section*{'TEACH YOURSELF"}
"WHAT IS A MICROPROCESSOR?
COMPLETE TEACH YOURSELF COURSE
The amazing response we experienced at our last iwo microprocessor forums in London - and the tremendous interest shown by individuals in microprocessor technology. has prompted us to release an edired recording of the lecture on cassette accompanied by a 72-page booklet keyed to the tapes - the forum was arranged by National Semiconductors. Practical Electronics and ourselves in an elfort to remove the problems and uncertainties arising for anyone not familiar with this new and increasingly important subject. The lecture (on \(1 \times\) C90 and \(1 \times \mathrm{C} 60\) cassetfes) was given by two of National Semiconductors' leading microprocessor engineers
\(£ 9.95\) incl VAT \& \(P / P\) i

\section*{RESISTORS}


\section*{PRESET POTENTIOMETERS-TRIMMERS}
这P|HER \begin{tabular}{c} 
FORTHE \\
PROFESSIONAL \\
FINISH
\end{tabular}

PT10 SERIES (FULLY ENCLOSED) .............. 13p
PT10h (2.5) vertical mounting 0.15 watt at \(40^{\circ} \mathrm{C}\) PT10V horizontal mounting 0.15 watt at \(40^{\circ} \mathrm{C}\) Tol. 20\%


Price 13p each. Please specify horizontal or vertical. PT15 SERIES (FULLY ENCLOSED)
PT15 Nh vertical mounting 0.3 watt at \(40^{\circ} \mathrm{C}\). PT 15 Nv horizontal mounting 0.3 watt at \(40^{\circ} \mathrm{C}\). Tol. 20\%.
Price \(\mathbf{1 5 p}\) each. Please specify horizontal or vertical. The PT1 5 range has the extra facility of clip in thumb wheels or spindles for easy adjustment without a screwdriver.
Thumb wheels

\section*{POTENTIOMETER-VOLUME CONTROLS}

ROTARY POTENTIOMETERS All standard \(1 / 4^{"}\) spindles
35p 1) SINGLE LESS SWITCH Long spindle, double wiper. available in following values
75p 2) SINGLE SWITCHED As above but with 2 Pole Switch 2 Amp 250V AC
95p 3) DUAL GANGED-STEREO As above, but dual No Switch
\begin{tabular}{llll} 
& \(5 k\) & \(10 k\) & LIN \\
\(25 k\) & \(50 k\) & \(100 k\) & or \\
\(250 k\) & \(500 k\) & 1 Meg & LOG \\
\(5 k\) & \(10 k\) & \(25 k\) & LIN \\
\(50 k\) & \(100 k\) & \(250 k\) & or \\
\(500 k\) & 1 Meg & & LOG \\
\(5 k\) & \(10 k\) & \(25 k\) & LIN \\
\(50 k\) & \(100 k\) & \(250 k\) & or \\
\(500 k\) & 1 Meg & & LOG
\end{tabular}

SLIDER POTENTIOMETERS 250R, 500R, 1k, 2.5k, 5k, 10k, 25k, 100k, 250k, \(500 \mathrm{k}, 1 \mathrm{M}, 2.5 \mathrm{M}, 5 \mathrm{M}, 10 \mathrm{M}, 50 \mathrm{k}\).

1) SINGLE-LOG OR LINEAR in following values \(5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}\), \(250 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}\). Price 55 p includes Knob.
2) DUAL GANGED-STEREO-LOG OR LINEAR, matched to 2 dB . \(5 \mathrm{k}, 10 \mathrm{k}\). \(25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}, 250 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}\). Price 95 p includes Knob.


\section*{NON LINEAR RESISTORS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Thermistors & \multicolumn{2}{|l|}{R at \(25^{\circ}\) C. Price} & VA1111 & 33k & f0.24 \\
\hline \multicolumn{6}{|l|}{1) Rod type 0.6 w Dissipation} \\
\hline VA 10665 & 4.7k & £0.22 & \multicolumn{3}{|l|}{3) Disc Types 1 w Dissipation} \\
\hline VA 10555 & 15k & £0.22 & VA1086 & 2.2 & £0.18 \\
\hline VA 10565 & 47k & £0.22 & VA1033 & 4 & £0.18 \\
\hline VA 10655 & 150k & ¢0. 22 & VA1074 & 6 & £0.18 \\
\hline \multicolumn{3}{|l|}{2) Disc Type 0.6w Dissipation} & VA1053 & 8 & £0.18 \\
\hline VA1096 & 150 & £0.20 & VA1110 & 10 & £0.18 \\
\hline VA1097 & 470 & £0. 20 & VA1100 & 15 & £0.18 \\
\hline VA1098 & 1.5k & ¢0.20 & VA1077 & 32 & - \\
\hline VA1109 & 4.7k & f0. 24 & VA1034 & 50 & £0.18 \\
\hline VA1108 & 15k & £0.24 & VA1040 & 130 & ¢0. 20 \\
\hline VA1112 & 22k & \(\underline{50.24}\) & VA1039 & 500 & ¢0. 22 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{VOITAGE DEPENDENT} & E29900 / P224 & 57 & £0.20 \\
\hline 1) Rod Types & & Price & E29900/P226 & 60 & f0. 20 \\
\hline E298ED / A258 & 1500 & ¢0. 22 & E2990D/P228 & 70 & £0.20 \\
\hline E298ED / A260 & 1800 & ¢0.22 & E2990D / P230 & 85 & £0.20 \\
\hline E298ED/A262 & 2200 & ¢0.22 & E29900/P232 & 100 & £0.20 \\
\hline E298ED / A265 & 2400 & E0. 22 & E2990D/P336 & 190 & £0.20 \\
\hline E298ED / P268 & 3000 & f0. 22 & E2990D /P338 & 230 & f0. 20 \\
\hline E298ZZ/06 & 3020 & ¢0.22 & E2990D/P340 & 300 & £0.20 \\
\hline 2) Disc Types & & & E29900 / P342 & 350 & ¢0.20 \\
\hline E29900/P116 & 14 & £0.20 & E2990D/P344 & 400 & f0. 20 \\
\hline E2990D/P118 & 18 & £0.20 & E2990D/P346 & 500 & £0.20 \\
\hline E2990D/P120 & 21 & £0. 20 & E29900 / P348 & 600 & £0.20 \\
\hline E29900 / P216 & 25 & £0.20 & E29900/P350 & 750 & £0.20 \\
\hline E29900 / P218 & 32 & ¢0.20 & E2990D /P352 & 900 & £0. 20 \\
\hline E29900 / P220 & 40 & \(\underline{50.20}\) & E2990D/P354 & 1100 & £0.20 \\
\hline
\end{tabular}

\section*{TRANSFORMERS douglas and repanco}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TYPE No & SECONOARY VOLTAGES & CURRENT & WEIGHT & P/P & PRICE & & & & & & \\
\hline MT11ICS & \(0.12+0.12\) (24 volt) & 250 mA & 275 g & 60p & ¢2.50 & & MinIATURE MAI & RANSF & RMERS & & \\
\hline MT213CT & \(0-12+0.12(24\) volt) & 500 mA & 450 g & \(60 p\) & £3.15 & TYPE No. & SECONDARY VOLTAGES & CURRENT & & P/P & PRICE \\
\hline MT71AT & \(0.12+0.12\) (24 volt) & 1 amp & 825 g & \(90 p\) & £4.90 & MT6 & 6-0-6v & 500 mA & 200g & 40p & ¢1.65 \\
\hline MT68AT & \(0.12+0.12\) (24 voit) & 1.5 amp & 1.05 kg & E100 & ¢5.50 & MT12 & 12.0 .12 v & \[
250 \mathrm{~mA}
\] & 200 g & 40p & ¢1.65 \\
\hline MT18AT & \(0.12+0.12\) (24 volt) & 2 amps & 980 g & 90p & ¢6.00 & MT20 & 20-0-20v & 150 mA & 2009 & 40p & £1.65 \\
\hline MT85AT & \(0.12+0.12\) (24 volt) & 2.5 amps & 1.3 kg & £1.00 & ¢6.50 & & & & & & \\
\hline \multicolumn{6}{|l|}{MT111CT . MT85AT may have their secondaries parallel to give 0.12 v at twice the secondary current ratings: i.e MT71AT to give \(0-12 \mathrm{v}\) at 2 A or \(0-24 \mathrm{v}\) at 1 A .} & YPE No & \multicolumn{4}{|l|}{SUB MINIATURE MAINS TRANSFORMERS SECONDARY VOLTAGES CURRENT WEIGHT P/P} & \multirow[t]{2}{*}{PRICE f1. 10} \\
\hline TYPE No & SECONOARY VOLTAGES & CURRENT & WEIGHT & P/P & PRICE & TR1 & 6-0-6 & 100 mA & 759 & 40p & \\
\hline MT1 12CT & 0.12.15.20.24,30v & 500 mA & 575 g & 60 p & £3.30 & TR2 & \multirow[t]{2}{*}{12-0-12} & \multirow[t]{2}{*}{50 mA} & \multirow[t]{2}{*}{759} & 40p
\(40 p\) & \multirow[t]{3}{*}{\[
\begin{aligned}
& £ 1.20 \\
& £ 1.35
\end{aligned}
\]} \\
\hline MT79AT & 0, 12, 15, 20, 24, 30v & 1 amp & 725 g & 60p & ¢4.50 & TR3 & & & & \(40 p\)
\(40 p\) & \\
\hline MT3AT & 0, 12, 15, 20, 24, 30v & 2 amp & 135 kg & ¢1.00 & ¢6.20 & TR4 & 12-0-12 & 100 mA & 75.9 & & \\
\hline MT20AT & 0, 12. 15, 20, 24, 30v & 3 amp & 195 kg & \(£ 1.00\) & £7.25 & \multirow[t]{2}{*}{TYPE No MT207CT} & \multirow[t]{2}{*}{SECONOARY VOLTAGES
\[
0.8 .9 \mathrm{v}
\]} & \multirow[t]{2}{*}{CURRENT 500 mA} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { WEIGHT } \\
& 510 \mathrm{~g}
\end{aligned}
\]} & & \multirow[t]{2}{*}{PRICE £3.75} \\
\hline MT21AT MT51AT & O. 12 15. 20. \(24,30 v\)
\(0.12 .15 .20 .24,30 v\) & 4 amp & 2.73 kg & £125 & ¢8.70 & & & & & & \\
\hline \multicolumn{6}{|l|}{Secondary output of MT112CT to MT51AT may be taken from between any of the following voltages \(2,45,6,8,9,10,12,1518,20.24,30 \mathrm{v}\) or \(15-0-15 \mathrm{v}\)} & & \multicolumn{5}{|c|}{SIZES IN MM OF TRANSFORMERS} \\
\hline TYPE No & SECONDARY VOLTAGES & CURRENT & WEGGHT & P/P & PRICE & & MT6 & & & & \\
\hline MT102AT & 0.19.25 33.40.50V & 500 mA & 800 g & 90p & £4.90 & 1 1 & MT12
MT 20 & \[
\begin{aligned}
& 60 \times 40 \times 45 \\
& 60 \times 40 \times 45
\end{aligned}
\] & MT85AT MT102AT & & \[
\times 70
\] \\
\hline MT 104AT & \(\begin{array}{lllll}0 & 19 & 25.33 .40 .50 v\end{array}\) & 1 A & 13 kg & E100 & £5.50 & & MT 20
TR1 & \(45 \times 25 \times 27\) & \[
\begin{aligned}
& \text { MT 102AT } \\
& \text { MT 103AT }
\end{aligned}
\] & & \\
\hline MT105AT & 0, 19, 25, 33, 40, 50 v & 3A & 2. 9 gkgm & £125 & 18.25
\(\mathbf{f 9 . 9 0}\) & & TR2 & \(45 \times 25 \times 27\) & MT 104AT & & \(\times 100\) \\
\hline MT 107AT & 019 25, 33, 40, 50v & 4A & 525 kgm & £2.00 & £16.50 & & TR3 & \(45 \times 25 \times 27\) & MT 105AT & & \(0 \times 90\) \\
\hline \multicolumn{6}{|l|}{\multirow[t]{3}{*}{The secondary output of MT102AT to MT107AT may be taken from between any of the above tappings to give the voltages: \(6,7,8,10,14,15,17,19,21,25,31,33,40\) 50 v or 25-0-25v.}} & & TR4 & \(50 \times 27 \times 30\) & MTi07AT & & 05× 120 \\
\hline & & & & & & & MT3AT & \(75 \times 55 \times 90\) & MT112CT & & \(\times 60\) \\
\hline & & & & & & & MT18AT MT20AT & \[
95 \times 60 \times 70
\] & MT 123AT & & \[
00 \times 100
\] \\
\hline YPE No & SECONOARY VOLTAGES & CURRENT & WEIGHT & \(P / P\) & PRICE & & MT2IAT & \(100 \times 90 \times 85\) & MT 126 AT & & \(0 \times 85\) \\
\hline MT124AT & 0, 24, 30, 40, 48, 60v & 500 mA & 700 gm & \(60 p\) & £4.90 & & MT51AT & \(120 \times 80 \times 110\) & O MT127AT & & \\
\hline MT126AT & 0. \(2430,40,48.60 \mathrm{~V}\) & 1 A & 14 kgm & E100 & ¢6.75 & & MT68AT & \(85 \times 80 \times 75\) & MT207CT & & \(\times 60\) \\
\hline MT127AT & \(0.24,30.40 .48 .60 \mathrm{v}\) & 2 A & 24 kgm & £125 & £8.80 & & MT71AT & \(75 \times 75 \times 75\) & MT213CA &  & \(\times 45\) \\
\hline MT123AT & 0. \(24,30,40.48,60 \mathrm{v}\) & 4A & 525 kgm & £2.00 & £14.50 & \multicolumn{6}{|l|}{} \\
\hline \multicolumn{12}{|l|}{Following voltages available from secondary tappings. MI 124 AT to MT123AT 6.8. \(10,12,16,18,20,24,30,36,40,48,60 \mathrm{v}\) or \(30.0-30 \mathrm{v}\)} \\
\hline
\end{tabular}

HEATSINKS-REDPOINT

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Y-TYPE POWERSINKS} & PRICE \\
\hline 2 Y 1 Undrilied & 6.2 & C/W & 55 gms & ¢0.55 \\
\hline \(2 \mathrm{Y} 21 \times \mathrm{TO} 3\) & 6.2 & C/W & 55 gms & \(\underline{80.60}\) \\
\hline 4 Y 1 Undrilled & 3.9 & C/W & 110 gms & \(\underline{20.85}\) \\
\hline \(4 \mathrm{Y} 42 \times \mathrm{TO} 3\) & 3.9 & C/W & 110 gms & £1.10 \\
\hline \(4 \mathrm{Y} 52 \times\) TO66 & 3.9 & \(\mathrm{C} / \mathrm{W}\) & 110 gms & £1.32 \\
\hline Compact design & Oc & d in & lengths & \\
\hline
\end{tabular}

\section*{W-TYPE POWERSINKS}

ORDER CODE RATING WEIGHT PRICE 2W 1 Undrilled \(\quad 1.9 \mathrm{C} / \mathrm{W} 150 \mathrm{gms} \mathbf{E} 0.90\) 4 W 1 Undrilled \(\quad 1.3 \mathrm{C} / \mathrm{W} 280 \mathrm{gms} \mathbf{£ 1 . 3 7}\) 4W4 \(2 \times\) TO3 \(\quad 1.3 \mathrm{C} / \mathrm{W} 280 \mathrm{gms} \mathbf{£ 1 . 6 5}\) 6 W 1 Undrilled \(1.1 \mathrm{C} / \mathrm{W} 425 \mathrm{gms} \mathbf{£ 1 . 9 8}\) 6W4 \(2 \times\) TO3 \(11 \mathrm{C} / \mathrm{W} 425 \mathrm{gms} \mathbf{£ 2 . 3 5}\) Stocked as Standard HT-Sink in three lengths \(2^{\prime \prime}, 4^{\prime \prime}\) and \(6^{\prime \prime}\) with Transustor Drillings as shown.

\section*{M-TYPE POWERSINKS}

2 M 1 Undrilled \(\quad 4.2^{\circ} \mathrm{C} / \mathrm{W} 90 \mathrm{gms} \boldsymbol{£ 0 . 6 0}\) \(2 \mathrm{M} 21 \times \mathrm{TO} 3 \quad 4.2 \mathrm{C} / \mathrm{W} 90 \mathrm{gms}\) £0.71 \(2 \mathrm{M} 31 \times\) TO66 \(4.2 \mathrm{C} / \mathrm{W} 90 \mathrm{gms} \mathrm{f0.90}\) 4 M 1 Undrilled \(\quad 2.8 \mathrm{C} / \mathrm{W} 170 \mathrm{gms} \mathrm{f} 1.05\) \(4 \mathrm{M} 21 \times\) TO3 \(\quad 2.8 \mathrm{C} / \mathrm{W} 170 \mathrm{gms} \mathrm{E} 1.10\) \(4 \mathrm{M} 31 \times\) TO66 \(2.8 \mathrm{C} / \mathrm{W} 170 \mathrm{gms} \mathbf{£ 1 . 2 5}\) Stocked in \(2^{\prime \prime}\) and \(4^{\prime \prime}\) lengths Transistor Mountings as shown


\section*{CABLE}

\section*{AUDIO-SCREENED CABLE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline  & \begin{tabular}{l}
ricer per "mer \\
12p
\end{tabular} & \begin{tabular}{l}
2.20-MULTISCREENES 4 WAY \\
GREY
\end{tabular} & 28p & 18p & 2.33-3 CORE ROUND, STANDARU \(21 / 2\) AMPS \\
\hline 2.2-MICROPHONE SINGLE HEAVY DUTY & 17p & Z.21-PICK.UP. SINGLE SUBMINIATURE & 12p & & 2.34-3 CORE ROUND. HEAVY DUTY. RIBBED \\
\hline \begin{tabular}{l}
BLACK \\
2.3-MICROPHONE, TWIN 8. \(\qquad\) 2 \(\qquad\)
\end{tabular} & 19p &  & 14p & 28p &  \\
\hline \begin{tabular}{l}
Z.8-MULTICORE, STANDARD, B-WAY \\
crey
\end{tabular} & 45p & 2.23-Stereo screened lead & 18p & 24p & \begin{tabular}{l}
COAXIAL CABLES \\
Z.41-U.H.F. (BANDS I-V) \\
75 OHMS
\(\qquad\)翏 \(\square\)
\end{tabular} \\
\hline 2.12-MULTICORE STANDARD 12.WAY & 55p & MAINS CABLE
2.25-FIGURE B-RIB POLARISED & & 18p &  \\
\hline Z.14-MULTICORE, MINIATURE. 4-WAY 6 GREY & 30p & \(10 p\) & & & \begin{tabular}{l}
H.F. FEEDER CABLES \\
Z.50-V.H.F./F.M, TWIN RIBEON FEEDER
\end{tabular} \\
\hline \begin{tabular}{l}
2.19-MULTICORE, MINIATURE, 9.WAY \\

\end{tabular} & 46p & \[
12 \mathrm{p} \quad \text { 2.31-2 CORE OVAL - } 2 \% / 4 \text { AMPS }
\] & & 12p &  \\
\hline
\end{tabular}

\section*{INSTRUMENT CASE}

THE PROFESSIONAL TOUCH!

CASE-A housing unit for plug in Eurocards \((100 x \$ 60)\) and/or modules. Can be used free standing or in 19" racking. Consists of aluminium frame, 34 prs of guides and separate mounting rail for 31 way connectors - \(10 p\), rear and base removable - blue PVC clad aluminium - base and reat are ventilated .- inside width is \(17^{\prime \prime}\) - to take a combination of modules and front panels
\(4^{\prime \prime}\) MODULE-Consists of \(4^{\prime \prime}\) front panel. 4 guide rails with fixing holes, a rear and base plate -- rigid construction
FRONT PANELS available \(1^{\prime \prime}\) or \(2^{\prime \prime}\) wide made of anodised atumntium --. easily attached to Eurocards with mounting angles and screws - economic way of bulloing control units.
CARDS-Standard Eurocards - - designed to slide in and out eastly
CONNECTORS - A 31 -way plug and socket array - designed to work quickly and efficiently - accurately guided logether when cards are inserted
Description:
CASE (including guides) 71.3841 L Price
- 4" MODULE

71-3841.L \(\quad \mathbf{£ 2 3 . 0 0}\)
- \(2^{\prime \prime}\)
\(\begin{array}{ll}71-3845-\mathrm{G} & \mathbf{E 1 . 1 0}\end{array}\)
- 1" FRONT PANEL
\(71.3846-\mathrm{H}\)
f1.10
E 1.05
- VEROBOARD

09-1034F £1.32
DIP BOARD
31. War plug
\(10-1041 \mathrm{~J} \quad \mathbf{£ 3 . 6 0}\)
31-WAY SOCKET
\(17-0267 \mathrm{H} \quad £ 1.40\)
postage
Although the case comes flat. please allow an exträ f1.20 for postage. Many


\section*{}

\section*{* THE SYSTEM}

Verowire is basically a new kind of interconectro system for P.C. Boards enabling maximum density to be achieved using integrated and/or discrete components.
The verowire wiring system is ideal for protolypes. bread boards and limited production runs. Finished appeafance achigh standard with a neat and orderly appearance achieved in significantly less time than required
avaitable available


\section*{KIT \\ CONTAINS}

Wiring Pen
Reels of Wire. 38 AWG. (Red) (one reel fitted to wiring pen) Reels of \(W\)
Hatf pins
Shouldered Terminal Pins Plastic Wiring Comb Lead deformation tool Pin insertions tool Cutters
inspection magnifier
PRICE \(\mathbf{f 1 9 . 0 0}\) FULL KIT
verawire

\section*{WIRE WRAPPING /}

UNWRAPPING TOOL
PRICE \(\mathbf{f 6 . 5 0}\)
This tool does the job of two at less cost and with less
weight It is quick, convenient and easy-10 use
TYPE \(58-1908 \mathrm{k}\)

\section*{WIRE WRAPPING}

\section*{WIRE}

Standard nacks of \(500 \times 4^{\text {" }}\) lengths of Kynar insulated wire - Silver plated soft copper wire - pre-stripped 59-1766L

WIRE WRAPPING SOCKETS
\(\begin{aligned} 8 \text { PIN DIL } & \text { e35p } \\ 14 \text { PIN DIL } & \text { 45p }\end{aligned}\) 16 PIN DIL

High quality sockets designed to provide max reliability at a mos
Excellent performance


NEW


\section*{VEROBOARDS}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{- . 1 MATRIX COPPER BACKED} \\
\hline 10345/P16 & \(2.5^{\prime \prime} \times 5^{\prime \prime}\) & ¢0.55 \\
\hline 10346/P16 & \(2.5^{\prime \prime} \times 3.75^{\prime \prime}\) & f0.46 \\
\hline 13236/P16 & \(2.5^{\prime \prime} \times 17^{\prime \prime}\) & £1.69 \\
\hline 10347/P16 & \(3.75{ }^{\prime \prime} \times 5^{\prime \prime}\) & £0.62 \\
\hline 10348/P16 & \(3.75{ }^{\prime \prime} \times 3.75^{\prime \prime}\) & f0. 55 \\
\hline 13237/P16 & \(3.75^{\prime \prime} \times 17^{\prime \prime}\) & £2.18 \\
\hline Packets of 5pcs & \(25^{\prime \prime} \times 1\) " & f0.67 \\
\hline 126/P16 & \(4.7^{\prime \prime} \times 17.5^{\prime \prime}\) & £2.81 \\
\hline 14354/P16 & \(2.51 \times 1^{\prime \prime}\) & £0.15 \\
\hline \multicolumn{3}{|l|}{- PLAIN BOARD . 1} \\
\hline 520 & \(2.5^{\prime \prime} \times 3.75^{\prime \prime}\) & ¢0.31 \\
\hline 521 & \(3.75^{\prime \prime} \times 5^{\prime \prime}\) & £0.50 \\
\hline 522 & \(3.75{ }^{\prime \prime} \times 17^{\prime \prime}\) & £1.41 \\
\hline \multicolumn{3}{|l|}{- INDUSTRIAL BOARD . 1} \\
\hline VB111001 & \(9.95^{\prime \prime} \times 4.4{ }^{\prime \prime}\) & £2.50 \\
\hline VB111004 & \(6.95^{\prime \prime} \times 7.9^{\prime \prime}\) & £3.25 \\
\hline VB111005 & \(9.95^{\prime \prime} \times 7.9^{\prime \prime}\) & £4.20 \\
\hline VB124 & \(7.05^{\prime \prime} \times 17.9\) " & ¢4.40 \\
\hline \multicolumn{3}{|l|}{- 15 PLAIN BOARD} \\
\hline 441/4501 & \(25^{\prime \prime} \times 17^{\prime \prime}\) & ¢0.92 \\
\hline 442/4505 & \(3.75^{\prime \prime} \times 17^{\prime \prime}\) & ¢1,20 \\
\hline 444/8023 & \(4.95^{\prime \prime} \times 17^{\prime \prime}\) & ¢1.83 \\
\hline 14352 & \(3.75^{\prime \prime} \times 5^{\prime \prime}\) & ¢0.43 \\
\hline 11990 & \(2.51 \times 5^{\prime \prime}\) & ¢0.31 \\
\hline 1:991 & \(2.5{ }^{\prime \prime} \times 1.75^{\prime \prime}\) & ¢0.24 \\
\hline
\end{tabular}
. 15 STANDARD COPPER BACKED
\begin{tabular}{|c|c|c|}
\hline 41/P16 & 2. \(5^{\prime \prime} \times 17^{\prime \prime}\) & £1.35 \\
\hline 42/P16 & 2.5 "×5" & £0.50 \\
\hline 43/P16 & \(25^{\prime \prime} \times 3.75^{\prime \prime}\) & ¢0.36 \\
\hline 44/P16 & \(3.75{ }^{\prime \prime} \times 17^{\prime \prime}\) & ¢1.80 \\
\hline 45/P16 & \(3.75{ }^{\prime \prime} \times 5^{\prime \prime}\) & ¢0.67 \\
\hline 46/P16 & \(3.75{ }^{\prime \prime} \times 3.75^{\prime \prime}\) & ¢0.50 \\
\hline Pkts of 5 pcs & 2.5"'x1" & ¢0.62 \\
\hline 14353/P16 & \(2.5{ }^{\prime \prime} \times 1^{\prime \prime}\) & ¢0.15 \\
\hline \multicolumn{3}{|l|}{. 2 PITCH} \\
\hline 4/1101/P16 & \(4.80^{\prime \prime} \times 18^{\prime \prime}\) & ¢2.30 \\
\hline \multicolumn{3}{|l|}{GROUP BOARDS} \\
\hline 11986 (0.15) & \(8.4^{\prime \prime} \times 1.5^{\prime \prime}\) & \\
\hline 13897 (0.1) & 8.4 "11.5" & ¢0.53 \\
\hline Spot Face Lutte & & f0.80 \\
\hline
\end{tabular}


\[
\text { VERO TYPE } 13401.4 .15^{\prime \prime} \times 6.15^{\prime}
\]

Most popular integrated circuit Breadboard

\section*{VERO \\ V-0 BOARD}

\(150 \times 75 \mathrm{~mm}\)
SPECIAL DESIGN FOR DILIC'S \(-14 \times 4\) hole SEGMENTS ELIMINATES TRACK CUTTING - 28 STRIPS


\section*{INSTRUMENT KNOBS}

Function styling handing \& simplicity of assembly are the main teatures of this new range of collet knobs The various accessories caps. ponters \& nut covers -- are simply plugged anto basic knobs to form a vibration proot unit. Full size illustrations shown here indicate the possible combinations of colours avallable

Two basic ranges are stocked along with related accessories, these are a 15 mm diameter range and a 21 mm diameter range

KNOBS avallable in black or grey
S150-15 mm shors knob plain
S \(151-15 \mathrm{~mm}\) short knob and tine pointer
K150-15mm standard knob and plain
K 151 - 15 mm standard knob and line pointer W151-15mm wing knob and line pointer K210-21mm standard knob plain
K11 - 21 mm standard knob and line pointer W211-21mm wing knob and line pointer CAPS available in black, red grey green blue or yellow C150 - cap for 15 mm knob , specify colour C210 - cap for 21 mm knob, specify colour POINTERS available in same colours as caps P150-pointer for 15 mm knobs P210 - pointer for 21 mm knobs NUT COVERS available black red. grey N 150 - nut cover for 15 mm knobs Nut covers not needed on 21 mm knobs FIGURE DIALS available as shown Black with white pointe Grey with black pointer Clear with black taper Figure dial 1.10 clear AL KNOBS ARE FOR \(1 /{ }^{\prime \prime}\) SPINDIES
DON T FORGET TO SPECIFY COLOUR REQD


BOXES AND CASES

\(\begin{array}{lll}\text { BA13 } 12 \times 8 \times 3^{\prime \prime} & £ 2.15 \\ \mathbf{£ 2 . 5 8}\end{array}\)


A small high quality ABS plastic box supplied complete with lid and screws VPB1 POTTING BOXES
\(2 \times 3 \times 1\) Black 50p -75 -1413E

\section*{HAND HELD CONTROL BOX}

The new Vero Hand Held Control Box -- ideal for remote control uses -- specially designed for the purpose. White ABS plastic Measures \(94 \times 61 \times 22.6 \mathrm{~mm}\) Price 68 p vero cases

1 PLASTIC BOXES
VB : \(-65 \times 120 \times 40 \mathrm{~mm}\) CODE 65-251B

VB2 - \(80 \times 150 \times 50 \mathrm{~mm}\) CODE 65-2520,

V83-110×188×160mm CODE 65-2522K

Moulded in 2 tone high impact polysty rene - screw fixing - very strong ideal for wall mounting or bench use threaded brass inserts for PC mounting

\section*{2 PLASTIC CASES}
a) illustrated

VC1 \(-205 \times 140 \times 40 \mathrm{~mm}\)
CODE 75.1410 J
£3.20

VC2 \(-205 \times 140 \times 75 \mathrm{~mm}\) £3.60 CODE 75-1411D

 vC3-205x \(140 \times 110 \mathrm{~mm}\) f4.70 CODE 75-1412K

Moulded in light grey high impact \(A B S\) ncludes internal P C.B fixing screws and anodised aluminium front panel held in anodised aluminium front panel heid
piace by the two halves of the case screw fixing plus rubber feet

3 PLASTIC CLIP CASES
VCC1-B5 \(\times 40 \times 154 \mathrm{~mm}\)
CODE 75.1237J
VCC \(2-85 \times 60 \times 154 \mathrm{~mm}\)
CODE 75-12380
VCC \(3-85 \times 80 \times 154 \mathrm{~mm}\)
CODE 75.1239 K
\(£ 2.27\)

Similar to plastic boxes (1) but with anodised aluminium front panel two tone hatves clip togethe solidly without screws for ease of access P.C B fixings screws
inside
4 PLASTIC SLOPING CASE
VSC1-220×174×100/50mm £6.95 CODE 65-2523E

VSC2-171×121×75/37.5mm CODE 75-1798K

Two tone case - removable anodised ali from panel and recess at rear for cable entry. ideal instrument case


CCN
15 watt 240 volts miniature soldering iron with ceramic shatt to ensure perfect insulation.
SPARE BITS AVAILABLE


\section*{MODEL X25-25 watt}
£3.69
Near perfect insulation. Breakdown voltage 1.500v A.C Leakage 3.5uA
Stainless steel shaft and phenolic handle Length 22 cms . weight 50 g



DESOLDERING TOOL. £5.94


A new and improved model to deal with solder removal where components are tightly grouped or otherwise inaccessible Instantly removes all unwanted solder from printed circuits and all other solder joints Simple reliable speedy and accurate

\section*{CORDLESS SOLDERING IRONS}


\section*{The Oryx Super 30 £3.78}

The Oryx Super 30 gives you these features as standard.
- A long life screw-on iron coated tip.
- Extended element life through current phase control built into the handle.
- Neon light in handle - a unique safety feature.
- Robust - very rigid construction.
- Stainless steel shaft and clip-on hook.
- Beautifully styled handle designed.

\section*{The Oryx Super 50 £9.61 TEMPERATURE-CONTROLLED}

Temperature controlled iron so small, light and because it runs at an even temperature, it can be set to a lower heat than conventional uncontrolled irons. This is an important advantage when dealing with P.C. boards, I.C.s etc.
50 watts, \(210 / 250\) volts, Heating: 45 secs./ Length 8"/200mm Weight \(2 \frac{3}{4}\) ozs/ 77 grms. Safety, Range of tips as for Oryx 75.
\& Temperature range from \(200^{\circ} \mathrm{C}\) to \(400^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\).
ش Long life iron coated tip fitted as standard
4 Built-in indicator lamp operates with thermostat
म Aluminium heat sink keep handle cooler

SPARE TIPS \(£ 0.95\)

LL/SF/16


\section*{COOLING FANS}

The new Mule' fan represents a breakthrough in slım axial fan desıgn
It reverses the drive principle in normal use with this type of fan by employing an outer stator/inner fotor design
The result is up to \(20 \%\) more output than other fans of its size fup to 60 cfm ) and a large saving in production costs.
The impeller is glass re-inforced nylon with a specially-developed aerofoll section for maximum performance
The fan is designed to be mounted enther way round to enable induction or extraction and can be positioned inside or outside the cabinet
Built to the highest standards of safety. the unit incorporates a thermal cut-out to elimınate overheating problems should the fan be ןammed
It will be of great use in electronics, vending machines, refrigeration air conditioning, and other fields

\section*{New design means}

Lower price
Up to \(20 \%\) more output than other fans of its size
Easily mounted for either induction or extraction
High performance oin impeliers
Thermal cut-out to protect unit and installation.



\section*{PRINTED CIRCUIT KIT}
ideal PCB kit for the enthusiastic printed circuit board designer.
Contains
Printed Circuit Board
Circuit Marker Pen Etching Crystals
Solvent
Kit. Price \(£ 3.50\)


SOCKETS \& HOLDERS
TO18 4 pin holder A1236/4L TO5 3 pin holder A1192
TO18 3 pin holder A1236
T099 8 pinholder A23 2013
TO99 10 pin holder A23 A2014


TO99 12 pinholder Al200
DUAL-IN LINE SOCKETS
8 pin DIL
14 pin DIL
16 pin DIL
\(18 \mathrm{pInD:L}\)
22 pin DIL
NEW
LOW PROFILE
28 pin DIL
Price

\section*{£0.18p} £0.19p

\section*{£0.16p}
f0.44p
£0.49p

\section*{£1.30p}
£0.15p
£0.16p
ع0.27p
£0.30p
£0.45p
£0.55p
TRANSISTOR COVERS
TO3C Plastic cover \(\mathbf{E 0 . 1 1 p}\)
TO66C Plastic cover
£0.11p
SOLDERCON PINS
FOR LOW COST
IC SOCKETS £0.55/100 STRIP Strip of 100 pins for those odd moments you find
yourself without a socket

ENAMELLED COPPERWIRE
Avalable on 2 oz Reels in the following guages


ETCH RESIST PEN

\section*{decon-dalo 33 PC}

DIN PLUGS \& SOCKETS


PHONO PLUGS \& SOCKETS

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{JACK PLUGS \& SOCKETS} \\
\hline \[
\text { CiII: } C=0
\] & ```
1/4" STANDARD JACK
PLUG - FULLY
SCREENED
``` & 29p \\
\hline \[
=100
\] & \begin{tabular}{l}
\(1 / 4^{\prime \prime}\) STANDARD JACK \\
PLUG - UNSCREENED
\end{tabular} & 17p \\
\hline & \begin{tabular}{l}
\(1 / 4^{\prime \prime}\) STANDARD JACK \\
CHASSIS SOCKET \\
SWITCHED
\end{tabular} & 22p \\
\hline \[
06-610
\] & 1/4" \({ }^{\prime \prime}\) STANDARD LINE SOCKET PLASTIC or METAL & \[
\begin{aligned}
& \text { 22p } \\
& \text { 33p }
\end{aligned}
\] \\
\hline \multicolumn{3}{|c|}{STEREO} \\
\hline \(0 \times \mathrm{CH}=0\) & \(1 / 4^{\prime \prime}\) STEREO JACK PLUG FULLY SCREENED & 38p \\
\hline \[
\leftrightarrows \text { Cuco }
\] & \(1 / 4 "\) STEREO JACK PLUG UNSCREENED & 27p \\
\hline & \(1 / 4^{\prime \prime}\) STEREO JACK CHASSIS SOCKETSWITCHED & 27p1 \\
\hline \[
06=610
\] & \begin{tabular}{l}
1/4" STEREO LINE SOCKET 1) METAL \\
2) PLASTIC
\end{tabular} & \[
\begin{aligned}
& 49 p \\
& 27 p
\end{aligned}
\] \\
\hline CTC & 3.5 mm JACK PLUG FULLY SCREENED PLUG LINE SOCKET & \[
\begin{aligned}
& 17 p \\
& 17 p
\end{aligned}
\] \\
\hline EGGm & \begin{tabular}{l}
3.5 mm JACK PLUG \\
PLASTICUNSCREENED \\
LINE SOCKET
\end{tabular} & \[
\begin{aligned}
& 11 p \\
& 11 p
\end{aligned}
\] \\
\hline 5 & 3.5 mm JACK SOCKET CHASSIS-PLASTIC & 13p \\
\hline & 3.5 mm JACK SOCKET CHASSIS-METAL & 11 p \\
\hline \(\square\) & 2.5 mm JACK PLUG PLASTIC METAL & \[
\begin{aligned}
& 11 p \\
& 16 p
\end{aligned}
\] \\
\hline & 2.5 mm JACK SOCKET CHASSIS, SWITCHED PLASTIC & \(11 p\) \\
\hline
\end{tabular}

POWER CONNECTORS
\begin{tabular}{|c|c|c|}
\hline 33p & 12 WAY FLEXIBLE CONNECTOR BLOCK 2 AMPS & ruccux \\
\hline 10p & BANANA PLUGS RED OR BLACK & \\
\hline 7p & BANANA SOCKET RED OR BLACK & \\
\hline 16p & POWER PLUG USA 2 PIN MAINS CONNECTOR PLASTIC & \\
\hline \(16 p\) & USA MAINS POWER LINE SOCKET PLASTIC & \[
\frac{\cos }{(1)}
\] \\
\hline 16p & USA MAINS POWER CHASSIS SOCKET PLASTIC & \\
\hline \multirow[t]{2}{*}{11p
15p} & PP3 BATTERY SNAPS & \(=-\cdots-6 \leq 0\) \\
\hline & PP9 BATTERY SNAPS & \\
\hline 20p & \begin{tabular}{l}
MAINS CONNECTOR NON-REVERSIBLE \\
2 PIN CALCULATOR PLUG
\end{tabular} & \[
427
\] \\
\hline 35p & NON-REVERSIBLE CHASSIS MOUNTING CALCULATOR SOCKET & \\
\hline 15p & ROCA PLUG BATTERY USE, SLIDING SLEEVE & \(\square-0\) \\
\hline 13p & \[
\begin{aligned}
& \text { ROCA SOCKET } \\
& \text { SWITCHED FOR } \\
& \text { BATTERY CONNECTION }
\end{aligned}
\] & \[
\text { -4 } 69
\] \\
\hline
\end{tabular}

\section*{U.S.A. COAXIAL CONNECTORS}

BNC CONNECTORS (75R)

\(75 \Omega\) COAXIAL CONNECTORS BY ĠREENPAR

TERMINALS \& CLIPS
TWO POLARISED
21p SCREWS \&/OR
PHONO SOCKET
\(2-3 / 8^{\prime \prime} \times 3 / 4^{\prime \prime}\)
DOUBLE, SPRING LOADED PUSH TO RELEASE CABLE TERMINAL ONE RED ONE BLACK DOUBLE SPRING
55p LOADED TRIGGER
TERMINALS ONE RED ONE BLACK FOUR WAY SPRING
£1.00 LOADED TRIGGER TERMINALS 2 RED \& 2. BLACK

FOUR WAY SPRING
80p
LOADED PUSH TO RELEASE CABLE TERMINAL

CROCODILE CLIPS
7p \(\quad 1 / 2^{\prime \prime}\) long Red or Black PLASTIC HANDLES
2 mm METER PLUG
15p 4 mm METER PLUG
Red or Black
2 mm CHASSIS SOCKET
11p
Red or Black. Not insulated SPADE TERMINALS
16p
Red or Black

TERMINAL POST--Will
22p accept 4 mm Meter Plug Red or Black

4 mm LINE COUPLER
11p
Red or Black
CROC CLIP 4 mm PLASTIC-Red or
27p
Takes 4 mm plug
CROC CLIP MINIATURE
7p FULLY INSULATED
Red or Black

\section*{COAXIAL CONNECTORS}
\(16 p\)
COAXIAL TV AERIAL ALUMINIUM PLUG
\(11 p\)
COAXIAL PLASTIC PLUG

COAXIAL CHASSIS
SOCKET Plastic or metal

COAXIAL SNAP-IN CHASSIS SOCKET

COAXIAL LINE SOCKET METAL

COAXIAL IN LINE ALUMINIUM COUPLER

\(\mathrm{Ca}_{3}\)

त्ता च-\(-\)

Ce

\section*{QUANTITY DISCOUNTS CONTACT US NOW}

\section*{STANDARD TOGGLES}

STANDARD
PRICE
SPST (2 tags) 2A 250V
Chrome toggle - on / off plate DIMS \(25 \times 14 \times 14 \mathrm{~mm}\)

DPDT 6 tags) 2A 250 V
Extra long toggle + plate
DIMS \(29 \times 18 \times 17 \mathrm{~mm}\)

SUB MINIATURE 2A 250 V
SPST (2 tags) \(12 \times 6 \times 9 \mathrm{~mm}\)
Red toggle
SPDT (3 tags) \(12 \times 6 \times 9 \mathrm{~mm}\) Red toggle
DPDT (6 tags) \(12 \times 11 \times 9 \mathrm{~mm}\) Red toggle DPDT (6 tags) \(12 \times 11 \times 9 \mathrm{~mm}\) Centre off Red toggle

MICRO MINIATURE 2A 250 V
SPST 2 tags) \(8 \times 5 \times 7 \mathrm{~mm}\)
Chrome toggle
SPDT (3 tags) \(8 \times 5 \times 7 \mathrm{~mm}\)
Chrome toggle
DPDT 6 tags) \(8 \times 7 \times 7 \mathrm{~mm}\) Chrome toggle
STANDARD

SPST 2 tags) \(24 \times 16 \times 17 \mathrm{~mm}\) 6A 250 extra long paddle shaped chrome toggle

250v, 15 amp. SPST 2 tags) Body dims \(24 \times 13 \times 14 \mathrm{~mm}\) Black plastic togale
FLAT TOGGLE
\(250 \mathrm{~V}, 3 \mathrm{amp}\) SPST (2 tags)

As above but SPCO (3 tags)

\section*{QUALITY TOGGLES \\ CT SERIES \\ Approved to BS3955 Spec 2A 250 V AC, 5 A 29 V DC}

\section*{ARROW}

Low cost subminiature toggle switches, designed for applications where compact size, low weight and rugged construction are required Fitted with solder lug terminais of silver alloy, moving contacts of silver atloy and fixed contacts of silver alloy
\begin{tabular}{ll}
Initial Contact Resistance & \(10 \mathrm{M} \mathrm{Max} \mathrm{(at} 4 \mathrm{Vd.c} \mathrm{IA})\). \\
Proof Voltage & \(2000 \mathrm{Vr.m.s}\) at sea level \\
Insulation Resistance & 1000 M Min \\
Electrical Life & 50.000 cycles Min. \\
Mechanical Life & \(100,000 \mathrm{cycles} \mathrm{Min}\). \\
Operationat Force & \(150-200\) grms \\
Temp. Range, & -40 C to +80 C \\
Angular Movement & \(24+3\)
\end{tabular}

1 POLE, 2 AND 3 POSITIONS - 3 TAGS

2 POLE, 2 AND 3 POSITIONS - 6 TAGS

\section*{ROCKER SWITCHES}

SPECIFICATION: 1.6A, 250 Volts A C Contact Rating
Dimensions
1600 Series Cutout \(27.4 \times 12.3 \mathrm{~mm}\)
2600 Series Cutout \(274 \times 22 \times 3 \mathrm{~mm}\)
FEATURES
- Low cosi
- Compact design with popular snap-in fixing.
- Choice of colour and termination.
- Complementary pilot lights and illuminated switch
- Slow, make and break action providing Class B
disconnections as defined in BS. 3955 Part 3, 1972
- Overseas approved.
- Choice of single pole \(\mathbf{1 6 0 0}\) Series or double pole 2600

\section*{\(A B M\)}

1 POLE 2 AND 3 POSITION
1600-22E 1 Pole On-Off (2 tags)
Price

1602-22E 1P2W Changeover 3 tag
1603-22E IP2W Changeover biased one way 3 tags 1604-22E \(\quad 1\) P2W Changeover 3 position centre off 3 tags 1622-R22E I Pole On/Off with 250 v red neon

2 POLE 2 AND 3 POSITION
\begin{tabular}{|c|c|c|}
\hline 2600-22E & 2 Pole On-Off (4 tags) & ¢0.53 \\
\hline 2602-22E & 2P2W Changeover 6 tags & ¢0.67 \\
\hline 2603-22E & 2P2W Changeover biased one way 6 tags & ¢0.68 \\
\hline 2604-22E & 2P2W Changeover 3 position centre off & ¢0.71 \\
\hline 2600-R22E & 2 Pole On/Off with red mains neon 4 tags & \(£ 1.07\) \\
\hline 2600-R52E & As above but for 12 v filament indicator & £1.02 \\
\hline \multicolumn{3}{|l|}{PILOT LIGHTS/INDICATORS} \\
\hline 1609-R22E & 250v Red mains neon indicator & ¢0.53 \\
\hline 1609-G22E & \(250 v\) Green mains neon indicator & ¢0.78 \\
\hline 1609-R52E & 12 v Filament indicator red & f0.48 \\
\hline 1609-G52E & \(12 v\) Filament indicator green & ¢0.48 \\
\hline
\end{tabular}

\section*{SIEMENS micro minislide switch}

\section*{ROTARY SWITCHES}

Avalable in four types all having adjustable rotation limit stop

\section*{MICROSWITCHES}

Miniature Microswitches-10A 250v AV Changeover type BODY DIMS. \(28 \times 16 \times 10 \mathrm{~mm}\). Available as standard (S 160) Or with free action lever-roller 17 mm long (S 162)

MAINS SWITCH \(\mathbf{£ 0 . 5 0}\)
POLE BUSH-BUTTON £ 0.45

8-WAY MOUNTING FRAME \(£ 0.15\)
Both the push-button and the mains switch are supplied with a single mounting frame, which can be removed enabling them to be mounted on the mourting frame-up to 8 Way. The push-button is a latching action, Push-on, Push-off but can be converted to momentary contact by removal of the locating pin. All switches include knobs. Independent action.

\section*{FOOT SWITCH}

2 Pole Change Over
Alternate Action (Latching)
A Professional Switch - sturdy and rugged construction with strong metal or plastic button Body DIMS
\(17 \times 32 \times 18 \mathrm{~mm}\) Rated 3A 250 AC

\section*{SLIDE SWITCHES}

\author{
STANDARD \\ PRICE \\ DPDT 1A 250V 17p
}

Small \(15 \times 8 \times 12\)
DPDT 1 A 250 V
Medium \(16 \times 17 \times 9\)

DPDT 1 A 250 V
Large \(22 \times 13 \times 8\)
DPDT 1A 250V 17p
Large \(22 \times 13 \times 8\) Centre off

MULTIPOSITION
2 POLE- 3 POSITION
5295CS
2 POLE- 4 POSITION
5295CS

\section*{PUSH BUTTONS}

6p Push to make - Spring off
1 A 250 V Red. Yellow. Green DIMS \(16 \times 6 \mathrm{~mm}\) (dia)
25p Push to break -as above-Black
Push On/Push Off DPDT (6 tags)
50p DIMS \(20 \times 12 \times 13 \mathrm{~mm}\) Red or Black

SPST (2 tags) DIMS \(11 \times 7 \times 17 \mathrm{~mm}\)
Spring loaded Red top
SPDT (3 tags) DIMS \(11 \times 7 \times 17 \mathrm{~mm}\) Spring loaded Red top
ع1.08 DPDT (6 tags) DIMS \(11 \times 11 \times 17 \mathrm{~mm}\)
Spring loaded Red top latching Push to make-Spring off 1A 250 V
15p DIMS \(14 \times 6 \mathrm{~mm}\) Diameter
ALTERNATE

\section*{ROCKERS}

PRICE EACH
SP On-Off (3 tags) 3A 250 V
75p White, See Saw
When on. Neon Lights
DIMS: \(29 \times 11 \times 21\)
On-Off-On 10A 250 V British made, Rocks on-
Off-On
DIMS. \(29 \times 11 \times 18\)
SPST (2 tags) 6A 250 V
White, miniature
IBODY DIMS: \(21 \times 15 \times 13 \mathrm{~mm}\)

\section*{SIEMENS DILSWITCHES}

The new dual-in-line switch of printed circuits.
The transparent cover protects the contacts against dust. Voltage rating \(\quad \leq 24 \mathrm{~V}\) = Current rating \(\quad \leqq 0.5 \mathrm{~A}\) All contact parts are nickel plated and gold plated.

8 WAY
D.I.L.
£2.75

TYPE C42315-A1341-A4

\section*{RELAYS—DIL}
D.H.L. REED RELAYS

Low power drive - 35 mW -- for operation direct from TTL
5,12 and 24 V nominal coils available
Contact rating 10 VA switched to carry 1 A
Optional internal diode and electrostatic screen
Isolation between coil and contacts.
10.000 M -ohms -- proof tested to 500 V min

At present available with 1 form \(A\) contact configuration
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{VOLTAGE DC} \\
\hline & Coil & Operate & Release & Max & Nom & \\
\hline & Resistance & & & & & PRICE \\
\hline 15002 & 530 & 8. & 2 & 18 & 12 & £2.55 \\
\hline 15003 & 2000 & 16 & 4 & 32 & 24 & £2.55 \\
\hline 15005 & 360 & 3515 & 1 & 15 & 5 & ¢2.55 \\
\hline 15005 AB & 360 & 3.5 & 1 & 15 & 5 & ¢3.25 \\
\hline \% 5005B & 360 & \(3.5{ }^{\text {d }}\) & 1 & 15 & 5 & ¢2.75 \\
\hline 15015 AB & 2000 & 11.5 & 4 & 32 & 15 & £3.35 \\
\hline
\end{tabular}

Modification 'A' -- Electrostatic shield connected to pin 2.
Modification ' \(B\) ' -- Diode connected between pin 6 and 9.

PIN CONNECTIONS

PCB PLUG
£3.95
BOTH PLUG \& SOCKET FIT STANDARD EUROCARD AND ARE SUITABLE FOR ELEKTOR SC/MP PROJECT

Siemens Limited, Great West House,
Great West Road, Brentford, Middx. TW8. 9DG. Telephone: 01-568 9133
Maximum quality.
Minimum size.

> Examples from a range of thousands. Siemens.

\section*{INDICATORS \& LAMPS}
\begin{tabular}{llllll}
IN1 & M575 \\
IN2 & M575 \\
IN3 & M575 \\
IN4 & M575 \\
IN5 & M575
\end{tabular}
\begin{tabular}{ccrr}
\multicolumn{5}{c}{ To fit indicators M575, B215 and B218 } \\
\hline BU1 & 12 v & 12 volt. 0.1 amp. Lilliput screw \\
BU2 & 6 v & 6 volt. 02 amp. Lilliput screw & \(\mathbf{1 0 p}\)
\end{tabular}

BATTERY HOLDERS
\begin{tabular}{|c|c|c|c|c|}
\hline B 1 & B205 & \[
2 \times \sqrt{5} \sqrt{3} \sqrt{6}
\] & Moulded To take four SP11 HP1I batteries in line Tag terminals & 32p \\
\hline B2 & B203 & & \begin{tabular}{l}
Moulded To take four \\
SP11. HP11 batterres \\
Two by two Snap terminals
\end{tabular} & 32p \\
\hline B3 & A302 & & Moulded To take four penlight batteries Two by two Snap terminals & 20p \\
\hline B4 & A303 & & Moulded. To take four penlight batteries Side by side Snap terminals & 20p \\
\hline 84A & A304 & & Moulded. To take six penlight batteries. Three by three. Side by side. Snap terminals & 28p \\
\hline
\end{tabular}

\section*{SERVICE AIDS}

ELECTROLUBE - SERVICE AIDS

AUDIO CONNECTORS

Compatible with Cannon

A()F CORD PLUGS
Fresh. streamlined design includes rugged, diecast zinc body, satin nickel finish. high.impact resistant thermosetting plastic socket insert, moulded latchlock, dual pressure plates, keyed neoprene relief bushing. Features "Ground Terminal" and Ground Contactors offers 4., 5., 6-, and A \() \mathrm{M}\) and other connectors with similar 7 maciact diameter \(3 / 4^{\prime \prime}\)

Has "Captive Design" insert screw one-piece pan insert assembly easily removable for fast soldering Polarizing groove. Die-cast zinc shell, satin nickel finish Mates with Switcheratt A()F and other connectors with similar contact arrangements. Brass. silver plated chromate dipped pins to resist tarnishing Overall length \(225 / 32^{\prime \prime}\) : dia

\section*{RIGHT-ANGLE
CORD PLUGS}

Newly styled right angle cord plugs with rugged die-cast housings in two types. [\(\mathbf{A}\)] R (if female and. B IR()M male Ideal for equipment with limited space for connectors. Satin nuckel finish, high-impact resistant thermoserting plastic insert. moulded latch-lock. dual pressure plates. Features "Ground Termınal" and "Ground Contactors". Mates with Switchcraft A()M, R()M, S()FM and other connectors and receptacles with similar contact arrangernents.

\section*{D()F RECEPTACLES}

Rectangular flange design receptacle permits close mounting on crowded panel or chassis features "Captive Design" loss-proof insert screw, positive latch locking device and high impact thermoserting socket insert Mates with Switchcraft A(MM and other connectors with similar contact arrangements Dimensions Flange \(1 / / 16^{\prime \prime} \times 17 / 16^{\prime \prime}\) : Barrel 13/64" overall. pin extension \(1 / 4\)

\section*{D(')M RECEPTACLES}

Narrow. rectangular flange design receptacle for mounting on compact panel or chassis Mates with Switchcraft Al IF and other connectors with similar contact arrangements. Dimensions. Flange \(7 / \theta^{\prime \prime} \times\) \(17 / 16^{\prime \prime}\) : Barrel 13/16" overall: pin extension 9/32"
the above are available in 3 \& 5 pin versions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline A3F & - & 3 Pin & -- & f1.90 & R3M & -- & 3 Pin & -- & E4.10 \\
\hline A5F & - & 5 Pin & \(-\) & ¢3.85 & D3F & - & 3 Pin & -- & £2.75 \\
\hline A3M & - & 3 Pin & - & f1.65 & D5F & - & 5 Pin & - & £4.10 \\
\hline A5M & - & 5 Pin & - & ¢3.30 & D3M & - & 3 Pin & - & f1.60 \\
\hline R3F & - & 3 Pin & - & ¢450 & D5M & - & 5 Pin & \(\cdots\) & ¢285 \\
\hline \multicolumn{3}{|l|}{\(15 \%\) DISCOUNT for 50-piece Mix} & \multicolumn{7}{|l|}{THE PROFESSIONAL CONNECTION} \\
\hline
\end{tabular}

\section*{SILICON GREASE}

Thermpath 167 - When mounting semiconductors this material improves thermal resistance by up to \(40 \%\). The compound is stable over a wide temp range and maintains insulation

12 gm vial not illustrated)
20 ml . syringe \((46 \mathrm{gms})\)

QUARTZ CRYSTALS
-100 kHz
-200 kHz
-1 MHz
-2 MHz
-3.2768 MHz
-4 MHz
-4.194304 MHz
-4.433619 MHz
10 MHz
-10.7 MHz
-18 MHz
-100 MHz
\(-H C 13 / \mu\)
\(-H C 6 / \mu\)
\(-H C 6 / \mu\)
\(-H C 33 / \mu\)
\(-H C 33 / \mu\)
\(-H C 18 \mu\)
\(-H C 18 \mu\)
\(-H C 33 \mu\)
\(-H C 18 \mu\)
\(-H C 6 / \mu\)
\(-H C 18 \mu\)
\(-H C 18 \mu\)

\footnotetext{
FOR MICROPROCESSORS - CLOCKS - TV \& GENERAL APPLICATIONS
}

SINGLE POLE

DOUBLE POLE

\(\mathbf{C R}\) (alternative rocker lever)

other dimensions as for CP switch

Panel thickness 3.2 max.
\begin{tabular}{|c|c|}
\hline Specification & 2 Amps 250 Volts \\
\hline \multicolumn{2}{|l|}{Base Moulding \(\qquad\) glass filled phenolic} \\
\hline \multicolumn{2}{|l|}{Contacts \(\qquad\) silver and silver/ copper alloy (gold plated to order)} \\
\hline \multicolumn{2}{|l|}{Weight 4 grms. approx. 1 pole
6 grms . approx. 2 pole} \\
\hline \multicolumn{2}{|l|}{Contact Resistance.......... 10 milliohms maximum} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Proof Voltage 2000v RMS}} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Electrical Life 50,000 operations}} \\
\hline & \\
\hline Mechanical Life & .. 100,000 operations
(50,000 momentary actionl \\
\hline Temperature Rang & \(-40^{\circ} \mathrm{C}\) to \(+80^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{OUR PRICES INCLUDE VAT}
\begin{tabular}{llllllll}
TYPE & PRICE & TYPE & PRICE & TYPE & PRICE & TYPE & PRICE \\
CRS3 & \(\mathbf{£ 0 . 9 0}\) & CRS6 & \(\mathbf{£ 1 . 2 5}\) & CPS3 & \(\mathbf{£ 0 . 9 0}\) & CPS6 & \(\mathbf{£ 1 . 2 5}\) \\
CRM3 & \(\mathbf{£ 1 . 1 0}\) & CRM6 & \(\mathbf{£ 1 . 4 0}\) & CPM3 & \(\mathbf{£ 1 . 1 0}\) & CPM6 & \(\mathbf{£ 1 . 3 5}\) \\
CRC3 & \(\mathbf{£ 0 . 9 5}\) & CRC6 & \(\mathbf{£ 1 . 3 5}\) & CPC3 & \(\mathbf{£ 0 . 9 5}\) & CPC6 & \(\mathbf{£ 1 . 3 5}\) \\
CRE3 & \(\mathbf{£ 1 . 1 0}\) & CRE6 & \(\mathbf{£ 1 . 4 5}\) & CPE3 & \(\mathbf{£ 1 . 1 0}\) & CPE6 & \(\mathbf{£ 1 . 4 5}\) \\
CRG3 & \(\mathbf{£ 1 . 1 0}\) & CRG6 & \(\mathbf{£ 1 . 4 0}\) & CPG3 & \(\mathbf{£ 1 . 1 0}\) & CPG6 & \(\mathbf{£ 1 . 4 0}\)
\end{tabular}

WHEN QUALITY, RELIABILITY AND STYLE REALLY COUNTS USE ARROW

\section*{MULLARD \\ QUALITY VALVES BY MULLARD \\ VALVES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & Price & Type & Pric* & Type & Price \\
\hline DY87/802 & f1.05 & GY501 & c2.55 & PCL805/8S & £1.55 \\
\hline ECC82 & ¢1.15 & GZ34 & £1.90 & PD500 & £3.90 \\
\hline ECC83 & ¢1.15 & PC86 & £2.05 & PFL200 & £1.97 \\
\hline ECC84 & ¢1.35 & PC88 & £2.05 & PL36 & £2.05 \\
\hline ECC88 & ¢1.90 & PC97 & £1.15 & PL83 & £2.55 \\
\hline ECF80 & ¢1.36 & PC900 & £1.27 & PL84 & £1.55 \\
\hline ECH84 & ¢2.45 & PCC84 & £1.37 & PL95 & £1.27 \\
\hline ECL80 & ¢1.52 & PCC85 & £1.52 & PL504 & £2.15 \\
\hline ECL82 & ¢1.52 & PCC89 & £1.55 & PL508 & £2.55 \\
\hline ECL86 & ¢1.55 & PCC 189 & £1.90 & PL509 & £3.65 \\
\hline EF80 & £1.05 & PCF80 & £1.37 & PL519 & ¢5.20 \\
\hline EF85 & £1.05 & PCF86 & £1.55 & PL802 & ¢ 3.45 \\
\hline EF86 & £2.62 & PCF200 & £2.45 & PY800 & £1.27 \\
\hline EF183 & £1.35 & PCF201 & £2.45 & PY88 & £1.40 \\
\hline EF184 & £1.45 & PCF801 & £1.55 & PY500A & £2.20 \\
\hline EL34 & £2,25 & PCF802 & £1.55 & UCH81 & £2.67 \\
\hline EL36 & £2.25 & PCF806 & £1.85 & UCL82 & £1.65 \\
\hline EL84 & f1.15 & PCH200 & £2.58 & UCL83 & ¢1.65 \\
\hline EL86 & £2.15 & PCL82 & £1.37 & UL84 & ¢1,85 \\
\hline EL95 & £1.52 & PCL84 & f1.45 & & \\
\hline EY86/802 & £1.05 & PCL86 & f1.55 & & \\
\hline
\end{tabular}

WHY SETTLE FOR ANYTHING LESS - ASK FOR MULLARD

\section*{MULLARD AUDIO MODULES}
\begin{tabular}{|c|c|c|}
\hline TYPE & FUNCTION & PRICE \\
\hline LP1173 & Audio Amplifier Module 10 watts & \(\mathbf{5 1 0 . 5 0}\) \\
\hline LP1 181 & AM, IF Amplifier Module & £6.30 \\
\hline LP1183/2 & Stereo Pre-Amplifier Module & £7.70 \\
\hline LP 1184/2 & Stereo Pre-Amplifier Module & £11.90 \\
\hline LP1186 & FM Tuner Module with Diode Tuning & £11.20 \\
\hline LP1400 & Stereo Decoder Module & £11.90 \\
\hline \multicolumn{3}{|l|}{All modules built and factory tested.} \\
\hline \multicolumn{3}{|l|}{Full data with each module or send \(5 p+\) S.A.E.} \\
\hline
\end{tabular}

\section*{SOLDERLESS TERMINALS}
RING TONGUE
Red
\(\mathbf{1 5 7 1 5}\)
\(\mathbf{£ 1 . 6 5}\)

\section*{TOOLS \& CUTTERS}

GENERAL PURPOSE \(100 \mathrm{~mm}\left(41 / 2^{\prime \prime}\right)\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{NERAL PURPOSE \(100 \mathrm{~mm}\left(41 / 2^{\prime \prime}\right)\)} \\
\hline DIAGONAL CUTTERS & RS \(\quad \mathbf{£ 3 . 4 0}\) \\
\hline ROUND NOSE PLIERS & ERS . \(£ 3.25\) \\
\hline FIAT NOSE PLIERS & S \(£ 3.20\) \\
\hline SNIPE NOSE PLIERS & RS \(\quad \mathbf{£ 3 . 2 0}\) \\
\hline END/TOP CUTTERS & RS \(\quad \mathbf{£ 3 . 6 0}\) \\
\hline \multicolumn{2}{|l|}{quality range of tools for the service man and} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{thusiast Box foint construction for strength Small mpact and reliable. insulated handes and smart}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{dividual wallet} \\
\hline \multicolumn{2}{|r|}{If all five tools} \\
\hline ar & are bought at the \\
\hline \multicolumn{2}{|r|}{same time deduct \(20 \%\)} \\
\hline
\end{tabular}

\section*{FROM BAHCO \& BRINDLEY}

\section*{PROFESSIONAL TOOLS/CUTTER}

OIAGONAL CUTTERS TYPE 2111.4
with bevel on outer edge DIAGONAL CUTTERS. TYPE 2112.4
with no bevel -- cuts flush SNIPE NOSE PLIERS TYPE 2411 -4

PROTO CLIPS \({ }^{\text {Foolproof-power-ron incurcuit }}\) clips pay for themselves within weeks. Available in 14 and 16 DIL versions - short proof.

14 PIN DIL PC14£2.80 16 PIN DIL PC14 £2.97

\section*{LOGIC PROBES AND MONITORS}

LP2 - LOGIC PROBE (ILustrated on righti
Hand held design/test tool gives instant overview of circuit conditions. Just clip power leads to circuit supply rail - switch to TTL or CMOS and trace logic. Logic levets and pulses through digital circuits. Instant LED readout "Hi" "Lo" and blinking pulse detector.

LM1 - LOGIC MONITOR
(Illustrated below) with the speed of light, you can check all digital 'IC'S and get foolproof readouts - self powered tests TTL, COS, DTL and HTL up to 16 Pin DIL. Versatile. fast and accurate. You can even watch your circuits spring to life as signals work effortlessly through.

LP2 LOGIC PROBE. SAFER THAN A VOLTMETER. MORE ACCURATE THAN A SCOPE

PRICE \(\underset{\text { War }}{\text { Wac }} £ 18.55\)

\section*{PROTO BOARD \\ TEST SOCKETS \& BUS STRIPS}

Design and build circuits as fast as you can think using the CSC Proto Board solderless-Bread Boards. Unique exclusive snaplock allows expansion to any size. DIP compatible, accepts all standard components. Can be mounted on any flat surface to form a permanent design station. All boards are \(-33^{\prime \prime}\) thick.

QT-59S \(6.5^{\prime \prime} \times 1.3^{\prime \prime}\) Socket \(£ 7.75\)

OT-59B \(6.5^{\prime \prime} \times .36^{\prime \prime}\) Bus £1.56.

USE YOUR COMPONENTS OVER \& OVER AGAIN - NO SOLDERING

MULLARD
CL8960 X-BAND DOPPLER RADAR MODULE

TYPICAL APPL.
- INTRUDER ALARM
- microwave FENCE
- COUNTING DETECTION - INDEXING - MANY MORE
£25.92
data on
REQUEST

The X-Band doppler module CL8960 is a device designed specifically for detecting movement of a remote target by detecting doppler-shift in microwave radiation reflected from the target. The CL8960 contains a fixed frequency gunn oscillator, which produces the energy to be radiated, and a mixer cavity which mixes the reflected energy with a sample of the oscillator signal.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
*Range-feet \\
Man detection \\
(typical)
\end{tabular} & \begin{tabular}{c}
Supply \\
Voltage \\
(typical)
\end{tabular} & \begin{tabular}{c}
Running Supply \\
Current (typical)
\end{tabular} & \begin{tabular}{c}
Output \\
Power \\
(typical)
\end{tabular} & \begin{tabular}{c}
Centre \\
Frequency
\end{tabular} \\
\hline 30 to 100 & \begin{tabular}{c}
7 V \\
\((\pm 0.1 \mathrm{~V})\)
\end{tabular} & 140 mA & 8 mW & 10.687 GHz \\
\hline
\end{tabular}

\section*{PCB MOUNTING KEYBOARD SWITCHES}

Digitast is a remarkable new modular electronic switch input component for use with dual in-line packages (DIP). The inner construction, in connection with standard TTLICs, eliminates more costly and troublesome conductor plate sandwiched switches.

The contact arrangement also lends itself to economical PC board designs, and assembly techniques of sophisticated electronic equipment The single pole, double throw momentary contact element is made of gold-plated over nickel-plated brass. Included in the contact arrangement is a unique bussing contact precluding the need for double-sided printed circuit boards in most cases.
SUITABLE FOR MOUNTING ON. \(1^{\prime \prime}\) MATRIX bOARD
ANDASUSED ELEKTORsc.mp PROJECT
INTHE

Standard SPST-SR £0.95 or with LED TYPE SRL £1.85

\section*{SCREW KITS}

METRIC SIZES

BA
SIZES
\begin{tabular}{|c|c|}
\hline .5 mm slorted Pan Haad Kit 12Screws \(4 \times 68 \mathrm{~mm}+4 \times 12 \mathrm{~mm}\) +12 Nuts. Washers and \(\qquad\) & £0.45 \\
\hline 3 mm Sloted Pan Head Kit 12 Screws \(4 \times 8 \mathrm{~mm}, 4 \times 12 \mathrm{~mm}, 4\)
+12 each - Nuis, Washers and Sha & \begin{tabular}{l}
£0.45 \\
Washers
\end{tabular} \\
\hline \begin{tabular}{l}
4BA slotted Round Head Kit 12 Screws 4 each \(\frac{1}{5}\). \\
12 Nuts Washers and Shakeproofs
\end{tabular} & £0.55 \\
\hline 6BA slotted Round Head Kit 12 Screws 4 each \(\frac{1}{4} \cdot \frac{1}{2} . \frac{3}{2}^{\prime \prime}\)
+12 Nuts. Washers and 12 Nuts, Washers and Shakeproofs & £0.50 \\
\hline & \\
\hline
\end{tabular}

12 Screws \(4 \times 6 \mathrm{~mm}+4 \times 12 \mathrm{~mm}\) +12 Nuts. W
\(\mathbf{3 m m}\) slorted Pan Heed Kit \(£ 0.45\)
12 Screws \(4 \times 8 \mathrm{~mm}, 4 \times 12 \mathrm{~mm}, 4 \times 20 \mathrm{~mm}\) £0.55
£0.50 \({ }_{12}^{2}\) screws 4 sactid Round \(, 4, t\)

NOW YOU NEED NEVER bE WITHOUT!

\section*{3 \(\frac{1}{2}\) DIGIT LCD PANEL METER KITS}

\section*{these low-cost, easy-to-assemble kits using the new Intersil 7106 A/D converters}

Intersil's 7106 is the first single-chip CMOS A/D for driving LCD displays - including backplane - directly. The 7107 is the first single-chip CMOS A/D for driving instrument-size LED displays directly without buffering. Each provides parallel seven segment outputs, ideal for DVMs, DPMs and anywhere modern digital displays are needed. Both new devices provide cost advantages over multi-chip designs, because they require no additional active components. Bcth have internal reference and clock, and both are CMOS so you get low noise (12 to \(15 \mu \mathrm{~V}\)) comparable with the finest bipolar devices, and low power (10 mW max. @) 10V). A few more features:
- \(\pm 1\)-count accuracy over the entire \(\pm 2000\)-count range.
- Guaranteed to read Zero for \(O\) Volts input.
- Provides true polarity at Zero count for precise null detection.
- Differential input from 200 mV to 2.000 V full scale.

Kits provide all materials . . .
Including PC board, for a functioning panel meter. Assembly time is only \(\frac{1}{2}\) hour.

ONLY LCD KIT AVAILABLE. ICL \(7106 E V(L C D) £ 26.99\).

\title{
The Sinclair PDM35. A personal digital multimeter for only \(£ \mathbf{£ 2 . 3 5}\)
}

PDM35 - Meter Padded Carrying Case A.C. Adaptor 240 V 50 Hz
\(£ 32.35\)
£3.00
£3.00

Operation from replaceable battery or AC adaptor. Industry standard \(10 \mathrm{M} \Omega\) input impedance.

\section*{Now everyone can afford to} own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

\section*{What you get with a PDM35}
\(3 \frac{1}{2}\) digit resolution.
Sharp, bright, easily read LED display, reading to \(\pm 1.999\). Automatic polarity selection. Resolution of 1 mV and 0.1 nA (\(0.0001 \mu \mathrm{~A}\)).
Direct reading of semiconductor forward voltages at 5 different currents.
Resistance measured up to \(20 \mathrm{M} \Omega\). \(1 \%\) of reading accuracy.

\section*{THE MINI-BLEEPTONE 525 £4.05 \\ is an electronic warning device that doubles as a fault indicator or localised warning of fire or intruders. Developed for panel mounting its solid state electronics gives reliability whilst its small size and low current consumption of \(3-15 \mathrm{~mA}\) produce a choice of iwo signals up to 80 dBA . Its wide voltage range ensures operation from almost any transistorised equipment, completing the flexibility of this unit. \\ Requires \(12.7 \mathrm{~mm}\left(0.5^{\prime \prime}\right)\) fixing hole \\ }

\section*{BUZZERS}

\section*{VERY LOUD NOTE}

CREAM PLASTIC CASE 50 mm DIAMETER BY 30 mm HIGH THREE FIXING FEET WITH HOLES SPACED AT 50 mm AVAILABLEIN

6 VOLTS - PRICE \(\mathbf{£ 0 . 7 0}\)
12 VOLTS - PRICE £0.83

\section*{CHOKES}

CH 1 RF Choke 2.5 mH 48p CH 2 RF Choke \(5.0 \mathrm{mH} \quad \mathbf{5 5 p}\) CH3 RF Choke \(7.5 \mathrm{mH} \quad \mathbf{5 5 p}\) CH 4 RF Choke 10 mH 55p CH5 RF Choke 1.5 mH 48p

\section*{COIL FORMERS}
\(\frac{1}{4}^{\prime \prime}\) Coil Formers complete Price £0.16 each
4 mm Coil Formers 15 peach

\section*{FUSES \& FUSEHOLDERS}
1) PANEL MOUNTING

For \(11 / 4^{\prime \prime}(32 \mathrm{~mm})\) fuse
Coloured spring-off safety top \(\mathbf{£ 0 . 3 8}\) Colours available: Red. Blue, White.

\section*{Yellow}
2) PANEL MOUNTING

With see-through cover
For 32 mm fuse
\(£ 0.20\)
3) CAR IN LINE (not illustrated)

Fuse holder takes \(11 / /^{\prime \prime}\) fuses \(£ 0.15\) 4) PANEL MOUNTING

Fuse Holders for 20 mm or \(11 / /^{\prime \prime}\) fuses

\section*{\(20 \mathrm{~mm} \quad \mathbf{~} 0.32\) \(1^{1 / 4^{\prime \prime}} \quad \mathbf{~} 0.35\)}
5) PRINTED CIRCUIT MOUNTING FUSE CLIPS for 20 mm fuses only £0.05 pair
6) CHASSIS MOUNTING FUSE HOLDERS for 20 mm fuses on paxoline \(\mathbf{f 0 . 1 0}\) each
\begin{tabular}{lcc}
& \multicolumn{2}{c}{ FUSES \(11 / /^{\prime \prime}\)} \\
\hline VALUE & QUICK & ANTI- \\
& BLOW & SURGE \\
\hline 100 mA & £.06 & \(\mathbf{£ . 2 2}\) \\
150 mA & .06 & .22 \\
250 mA & .06 & .13 \\
500 mA & .06 & .13 \\
750 mA & .06 & .13 \\
1 AMP & .06 & .13 \\
1.5 A & .06 & .13 \\
2 AMP & .06 & .13 \\
3 AMP & .06 & .13 \\
5 AMP & .06 & .13 \\
7 AMP & .06 & .13 \\
10 AMP & .06 & .13 \\
15 AMP & .06 & - \\
20 AMP & .06 & - \\
25 AMP & .06 & - \\
& &
\end{tabular}
\(\square\)

\begin{tabular}{lcc}
\multicolumn{3}{c}{ FUSES 20mm } \\
\hline VALUE & QULCK & ANTI- \\
\hline 100 mA & BLOW & SURGE \\
\hline 125 mA & .06 & \(\mathbf{E . 2 2}\) \\
160 mA & .06 & .22 \\
200 mA & .06 & - \\
250 mA & .06 & .13 \\
315 mA & .06 & .13 \\
400 mA & .06 & .13 \\
500 mA & .06 & .13 \\
630 mA & .06 & .13 \\
800 mA & .06 & .13 \\
1 AMP & .06 & .13 \\
1.25 A & .06 & .13 \\
1.6 A & .06 & .13 \\
2 AMP & .06 & .13 \\
3.15 & .06 & .13 \\
4 A & .06 & .13 \\
5 A & .06 & .13 \\
6.3 A & .06 & .13
\end{tabular}

Both 20 mm and \(11 / 4^{\prime \prime}\) fuses are available in quick blow or anti-surge Please specify

PANEL METERS
\begin{tabular}{|c|c|c|}
\hline REF & CAT & F.S.D. \\
\hline ME1 & T21 & 0.50 UA \\
\hline ME2 & T22 & 0.100 UA \\
\hline ME3 & T23 & 0.500 UA \\
\hline ME4 & T24 & 0.1 MA \\
\hline ME5 & T25 & 0-5 MA \\
\hline ME6 & T26 & 0-10 MA \\
\hline ME7 & T27 & 10.50 MA \\
\hline ME8 & T28 & 0.100 MA \\
\hline ME9 & T29 & 0-500 MA \\
\hline ME10 & T30 & 0.1 AMP \\
\hline ME1 1 & T33 & \(0-50 \mathrm{v} . \mathrm{AC}\) \\
\hline ME12 & T34 & \(0-300\) v.AC \\
\hline ME13 & T35 & 'S' \\
\hline , ME14 & T36 & "VU" \\
\hline ME15 & T40 & 50-0-50 UA \\
\hline ME16 & T41 & 100-0-100 UA \\
\hline ME17 & T42 & 500-0-500 UA \\
\hline
\end{tabular}

Illumınating Kit For Above 90p

\section*{AVO TEST LEADS}

AVO TEST LEADS
REPLACEMENT. MANUFACTURED FROM HIGHEST GRADE MATERIALS TO GIVE IDENTICAL SPECIFICATION TO ORIGINAL AVO LEADS. ONE CROCODILE CLIP SUPPLIED.

PRICE £3.75/PAIR

\section*{A.MARSHALL is your MAN OF MANY PARTS with components it pays you to use-}

\section*{Mullard components}

He can give a fast supply from large stocks of all the electronic components you need - the very best components for TV, Radio, Audio and Domestic Appliance servicing. Mullard Components.
It pays to fit a Mullard quality component because its reliability and long service life will save time, trouble, and money. By giving real customer satisfaction Mullard quality is always cheaper in the long run!

Keep up-to-date on all Mullard components with Mullard Component News.

\section*{Mullard quality components - cheaper in the long run}

\section*{INDEX}
\begin{tabular}{|lrllllllllll}
\hline & & & & & \\
\hline
\end{tabular} onoon NOON - W2. 325 Edgware Rowd GLASGOW - 85 West Regent Stueer G2 200 Tel 041-3324133 BRISTOL - I Straits Palade Fishmonds Rd. BS 162 LX . 0272654201

\section*{FREE OVER + 15 RECEIVED
BEFOR MAY 78}

PRECISIUN SCREWDAIVER SEI WORTH 127

ohders can oni y be accepted un THEF FORM BELOW AND IS LIMITED TO ONE TOUL SET PER ORDER

GLASGOW
041-332 4133
BRISTOL
0272654201

Distributors
NW2 40/42 CRICKLEWOOD BDY LONDON NW2 3ET
W2 325 EDGWARERD LONDON W2. 01-7234242

85 WEST REGENT STR
GLASGOW G2 200

1 STRAITS PARADE
FISHPONDS, BRISTOL BS 16 2LX

ALL ORDERS OVER
£50 FOR TRANSISTORS \& IC's

NOTE
THIS OFFER CLOSES

\section*{31st APRIL}

1978 ORDERS CAN ONLY BE ACCEPTED ON THE FORM BELOW. DISCOUNTS ARE FROM OUR 1 OFF PRICES AS PUBLISHEDINSIDE.

> SIEMENS SESCOSEM ANTEX VERO

NATIONAL TEXAS MULLARD

ALL PRICES include vat

PLEASE ENSURE THAT YOU COMPLETE YOUR ORDER FORM ACCURATELY
 NW2 3ET

Name (USE BIOCK CAPS)

Address
IUSE BLOCK CAPS

CREDIT CARD SALES Please complete card detarls and Subject to \(£ 10\) minimum
* To access/barclarcard 1 authorise you to debit my Account with the amount of \(\varepsilon\)

\section*{My Card Number is}

that trigger each other continuously in the presence of a logic zero on the output of 4265 Number 1 port Z3. The timing generator produces a 3 ms program pulse every 15 ms , to give a \(5: 1\) duty cycle, and also provides pulses to enable the program data input, and to invert the address information while Vdd and Vgg are in transition.

Because of the need to control the pulse timings to within tens of microseconds the timing function could not be carried out effectively by the 4040 itself, and so it has to be content with merely controlling the total number of 3 ms pulses applied by means of port \(\mathrm{Z3}\) of 4265 Number 1. At present about thirty five consecutive pulses are applied, and this is determined by a 540 ms software delay controlled by PROMPT. Some commercial PROM programmers operate in a slightly different way in that they provide four times the number of program pulses initially required to program a particular location, and thus adjust themselves to the needs of individual locations, using less pulses than CHAMP-PROG for most locations, but more for the stubborn ones. This latter technique has the advantage of faster (and some say more reliable) programming, but needs more complicated software. We mention it here in case anyone would care to modify the PROMPT software and try it, but there's no need to worry about this since we have never had a programming failure, and none of our PROMS ever forget! Intel themselves use the fixed duration programming techniques.

\section*{CHAMP INTERFACE}

As mentioned earlier, all data, address, and control information is passed to and from the CHAMP-PROG circuit over the four-bit 4040 main data bus which is interfaced to two 4265 chips on the programmer circuit

Fig. 8.3. CHAMP-PROG block diagram
board. Up to four 4265's (including the one on the CHAMP máin board) can be used with the basic CHAMP system, one to each Cм-Ram line where it will respond to the Ram Chip-Two SRC address, 80 H .4265 Number 1 (IC8) is controlled by CM RAM 1 and is set to mode 4 (four four-bit output ports) as soon as PROMPT is initialised. This chip provides an eight bit address to select a prom location on ports W and X , and uses output Z 3 to control the timing generator. The other outputs are unused. 4265 number two (IC11) is set to mode 6 (two four-bit input ports, two four-bit output ports) and provides the data to be programmed on ports \(Y\) and \(Z\), and monitors the data from the \(\mathbf{P r o m}\) between program pulses, using ports W and X . Monitoring the results of a programming sequence is necessary because after programming a location PROMPT checks the data output against the data sent earlier to ports \(Y\) and \(Z\), to ensure that they are the same. Any discrepancy results in a program abort and a fail message. During programming, the data and address inputs to the PROM must take up voltage levels commensurate with the programming supplies, and so the outputs of the 4265 chips are connected to the prom via discrete transistor drive circuits and low power t.t.l. gates. The address drivers are fed by 74 L 86 exclusive or gates which are controlled by the timing generator and used to invert the address information from 4265 number one during the transition period of 60 microseconds.
If you are wondering how the input data is presented to the 4702A when these devices do not have any inputs, the answer is that the data outputs are used as inputs during programming.

\section*{LED DISPLAY}

On the prototype of CHAMP-PROG, an in-line array of l.e.d.s which provided a binary display of data in the PROM being programmed, was provided. This display was very pretty but was later thought to provide little information that was not available elsewhere, and so was deleted from the final version, with the happy result of a gain in noise immunity at the inputs to 4265 number two ports W and X . These l.e.d.s are shown dotted on the circuit and can be used if desired, they do at least provide helpful data during circuit debugging operations!

The output data from the PROM is monitored in a rather unusual way. The emitters of the Prom data line drivers (i.e. TR19) have a resistor in series, and in between program pulses the collector of this driver transistor is effectively "wire-ored" with the PROM output driver. If the stored data is a logic 1 , the collector voltage of the driver becomes +5 V , and a voltage is developed across the emitter resistor due to the current through the transistor. If a logic 0 is stored however, the driver transistor collector is clamped to zero volts and it turns OFE, therefore no voltage is developed across the emitter resistor. Thus, the emitter resistor voltage is an indicator of the stored data, and this voltage is used to control another transistor (TR27) which provides a 5 Volt logic level at its collector to drive the 4265 inputs and the l.e.d.s if fitted.

\section*{TIMING GENERATOR CIRCUIT}

The timing generator and voltage regulator sections of Fig. 8.2 are complicated enough to deserve a more complete explanation. IC's 1, 2 and 3 form the heart of the timing generator, and are 74123 (or 74 L 123 if you can get them) dual monostable circuits. ICl provides the basic 15 millisecond P.R.F. and is a free running multivibrator which produces narrow negative going pulses at the pin 13 Q output. These pulses trigger IC2a which provides an accurately timed pulse of 3.25 ms , its length being adjustable by means of VR1. The leading edge of this pulse triggers IC3a which provides a \(155 \mu \mathrm{~S}\) delay before triggering the actual program pulse monostable (IC3b). IC3b is set to 3.0 ms by VR2. IC2b is triggered at the same time as IC3a, and this mono provides a pulse of about \(60 \mu\) s to invert the 4702A addresses while the supplies move to their programming levels. Four separate control outputs are produced by the timing generator, and these are buffered by means of 7405 (not low power) open collector inverters before distribution. The timing of these outputs is summarised in Fig. 8.4.

Fig. 8.4. Timing generator waveforms (not to scale)

You may have noticed that two of the 7405 outputs are returned, via \(27 \mathrm{k} \Omega 2\) resistors to the +80 V rail. This is done to provide superfast switching by minimising the time required to charge the wiring capacitance to the voltage regulator switch transistors, but the use of 80 volts does mean that these outputs should never be disconnected from their following transistor stage (during circuit testing for example), because the 7405 would be destroyed. Under normal circumstances the clamping effect of the base-emitter diode of the switch transistors makes the use of an 80 V supply quite safe.

\section*{VOLTAGE REGULATOR CIRCUIT}

The heart of the +47 V regulator circuit is formed with IC5, TR3 and TR1. IC5 is a 14 -pin 200 mA regulator chip type NE550, similar to the more common LM123, and this device is used to provide the basic voltage reference and error amplifier functions required by any regulator circuit. The output of this chip controls the collector current of TR3, which has its base clamped to +12 V by D 4 and operates in the unusual "common base" mode. The collector load of TR3 is returned to the +80 V supply rail, and the collector itself drives the base of TR1, which is the device which forms the "business end" of the regulator. TR1 has 80 V at its collector, and during programming provides \(\mathrm{a}+47 \mathrm{~V}\) output at its emitter whilst passing current pulses of up to 0.5 A . Obviously this is a demanding job, and the transistor chosen is a Texas TIP ' 122 monolithic darlington with a 100 V 5 A specification, and a current gain of at least 1,000 at 3 A . The output voltage of the regulator is sensed at the cathode of D7 via a resistive divider, R17 and VR3, and is fed to the non-inverting input of the error amplifier in IC5. VR3 is of course used to set the output voltage to the required 47.0 V .

\section*{PROTECTION}

A double measure of protection is provided by the regulator circuit. TR2 acts as a current limiter when turned on by a voltage drop across \(\mathrm{R} 23 \mid 24(0.5 \mathrm{ohms})\) which exceeds its Vbe threshold, thus diverting TRI base current which clamps the output current to a level low enough to prevent destruction of the regulator during short-circuits. CSR1 and D6 act as a crowbar overvoltage protection circuit to prevent damage to other regulator components on the PROM being programmed should TRI ever fail. On the appearance of a potential in excess of about 56 V at the cathode of D7, D6 turns on and triggers CSR1 causing it to short out the 80 V supply via R20 and blow FS1 (1A). A ruthless procedure perhaps, but without doubt the simplest and neatest way to disconnect supplies in an emergency!

Transistor TR6 and D10 form the other 60 V regulator circuit, and in this case a simple Zener/emitter follower combination is all that is necessary.

\section*{SWITCHING CIRCUITS}

Up to now I have referred to the regulators as though they were standard d.c. circuits, but of course they are not, because pulsed operation is necessary for proper programming. Both regulators are turned off by means of the clamp transistor TR5 which when not turned off itself by means of the 3.25 ms Vbb CNTRL pulse from the timing generator, conducts to clamp the bases of TRI and TR6 to a low voltage so that they cease to function.

\section*{COMPONENTS . . .}

Resistors
\begin{tabular}{cl}
2 off \(1 \Omega 1 \mathrm{~W} 5 \%\) & R23, R24 \\
1 off \(6.8 \Omega 5 \mathrm{~W} 5 \%\) & R20 \\
1 off \(100 \Omega 1 \mathrm{~W}\) & R28 \\
8 off \(100 \Omega\) & R63-R70 \\
2 off \(330 \Omega\) & R22, R33 \\
11 off \(470 \Omega\) & R10, R25, R31, R87-R94 \\
8 off \(560 \Omega\) & R46-R53 \\
14 off \(1 \mathrm{k} \Omega\) & R4, R7, R12, R26, R36, R37, \\
& \multicolumn{1}{l}{ R71-R78 } \\
2 off \(2.7 \mathrm{k} \Omega\) & R6, R8 \\
7 off \(47 \mathrm{k} \Omega\) & R1, R2, R14, R21, R32, R34, R35 \\
24 off \(6.8 \Omega\) & R38-R45, R55-R62, R79-R86 \\
3 off \(10 \mathrm{k} \Omega\) & R17, R29, R30 \\
1 off \(12 \mathrm{k} \Omega\) & R9 \\
1 off \(22 \mathrm{k} \Omega\) & R18 \\
6 off \(27 \mathrm{k} \Omega\) & R3, R5, R11, R13, R15, R27 \\
1 off \(100 \mathrm{k} \Omega\) & R16
\end{tabular}

All resistors \(\frac{1}{9} \mathrm{~W} 2 \%\) unless otherwise stated,
R87-R94 are optional l.e.d. resistors

Potentiometers
1 off 10ks 20 turn min preset VR3
2 off \(50 \mathrm{k} \Omega 20\) turn min preset (Doram) VR1, VR2

In parallel with TR5 is TR4, and this transistor is capable of the same clamping action, but in this case it is controlled manually by means of the program power switch on the front panel.

\section*{PROGRAMMING SUPPLIES}

The other active components, TR7, TR8, TR9 and TR10 are used to generate the required PRGM, Cs, Vgg and Vdd voltage pulses from the "raw material" provided by the 47 V Vccs line, the +5 V line and the -10 V line. The full complement of program voltage waveforms is shown in Fig. 8.5, and no doubt most readers will be able to see for themselves just how these are generated by the circuit. The Vccs line actually switches between +5 V and +47 V , and D 8 provides the clamping action to maintain the +5 V level in the absence of program pulses. Notice also that the 3.0 ms PRGM pulse itself is actually a negative going waveform (+47 V to 0 V).

\section*{Transistors}

1 off TIP122
28 off BC182L
1 off ZN3053
2 off BFR50
2 off BFR60

TR1
TR2-TR5, TR11-TR34
TR6
TR7, TR10
TR8, TR9

Integrated Circuits
3 off 74123 or 74L123
1 off 7405
1 off Signetics NE550
2 off 74L86
2 off 4265-2
2 off 74L00

IC1-IC3
IC4
IC5
IC6-IC7
IC8, IC11
IC9, IC10

\section*{Miscellaneous}

Prom socket 2, which is a 24 -pin d.i.l. Iow profile p.c.b. type. Also a 24 -pin d.i.l. header plug and suitable miniature flexible wire to form a loom.
Zero insertion force 24-pin PROM socket.
Fuse hoider (p.c.b. type) and 1 A fuse.
Reel of Kynar wire or similar
Piece of VB24 Veroboard cut to 88 holes \(\times 160 \mathrm{~mm}\). Soldercon pins (approx 200).
Terminal pins (0.1 inch).
One single sided 16 -way d.i.l. low profile p.c.b. socket, complete with two 16-way d.i.l. header plugs joined by a 16 -way ribbon cable to form a link between CHAMP and CHAMP-PROG, approx. 300 mm long.
Fine 4BA plastics pillars cut to 20 mm and glued to p.c.b.

Thin clear perspex sheet \(650 \times 220 \mathrm{~mm}\) (to be fastened to pillars).

Diodes and Rectifiers
5 off 1N4148
3 off 1N4002
1 off 12 V zener 1 W
2 off 36 V zener 1 W
1 off 56 V zener 1 W
1 off 60 V zener 1 W
8 off Min red I.e.d. (optional)
1 off Front panel red I.e.d.
1 off Thyristor \(400 \mathrm{~V} / 4 \mathrm{~A}\)

D1, D2, D5, D9, D11
D7, D8, D13
D4
D3, D12
D6
D10
D14-D21
D22
CSR1

C9
C10, C14
C3, C12
C1, C8, C15, C18, C20-C24

C6
C4, C5
C2
\({ }^{\mathrm{C} 2}\)
C7, C16, C17, C19

Constructor's Note
The zero insertion force 24 -pin PROM socket (Type 2, part No. 224-3344-00-0602) is available from: B.F.I. Electronics, Sinclair House, The Avenue, West Ealing, London W13.

\section*{SUCCESSFUL}

CHAMP-PROG has proved to be a really useful addition to the CHAMP system, and the prototype has been used to program a total of more than 50 PROMS of mixed origin without a failure.

Intel 4702A and 1702A devices have been tried together with low cost surplus devices of unknown origin, and CHAMP-PROG has coped with them all. Anyone who has tried to develop their own software while using the CHAMP "postal programming service" will know just how expensive and unsatisfactory this can be. CHAMPPROG will enable CHAMP programmers to be completely independent in their activities, and consequently very productive!

\section*{NEXT MONTH: CHAMP-PROG construction and PROMPT}

A number of Intel MCS-40 User's Manuals and 40041 4040 Programming Manuals are held by P.E. at Poole, which we are willing to give away in sets on a "first come first serve" basis to anyone supplying a strong \(11 \times 13\) inch s.a.e. with \(54 p\) stamp (67 p 1st class).

Fig. 8.5. Address lines and regulator circuit outputs during program pulse

\section*{Ring A Rig}

Could a worker on a North Sea oil rig 150 miles northeast of the Shetlands, pick up a normal telephone and dial directly to anywhere on the mainland? The answer is yes! Thanks to a \(£ 5\) million top priority Post Office project, even the most distant oil platform, Thistle " \(A\) ", came into the telephone network last November, giving workers there a telephone dial capable of calling 355 million phones in 67 different countries, just like subscribers on the mainland!

Over the next 15 months there are a number of platforms still to be linked into the system, known as the technique of trans-horizon radio, and which has never before been used by the PO. It all relies on the tropospheric scattering of microwave frequencies normally used for line-of-sight communication, but which are still visible to aerials far beyond the horizon. Turbulence in the troposphere (Earth's lower atmosphere) will cause this "fringe" of radio signals in much the same way as the glow from a distant searchlight might be seen, even when the beam itself is out of sight.

A powerful signal is beamed in the direction of the production platform, and a signal reduced in strength by something in the order of \(1 / 10^{10}\) will reach the directional aerial waiting for it.

The control station is located near Fraserburgh, Aberdeenshire, and two relay stations are sited on South Shetland. Two separate troposcatter paths link land to a pair of platforms up to 30 miles apart, which are linked to each
other by line-of-sight microwave. This completes the triangle for alternative path operation, giving high service reliability.

\section*{Traffic Computer}

NCT all drivers in the Leicester area will realise that they are being told what to do by a computer, and have been since the Leicester Area Traffic Control Scheme became operational in October 1974.
The traffic plan swung into action with 96 traffic signals and Pelican crossings linked to a central computer via Telecommand \(/ 5\) remote control systems, built by Plessey Controls Ltd of Poole, Dorset. As additional urban area signals were installed, they too were connected to the computer, bringing the total to 128 signals with expansion capability to 192.
Some of that spare capacity is now being used with an extension of the traffic control system to Loughborough, 11 miles away. Fourteen extra signals, including 7 on the A6, will spread the improved traffic flow situation, which was found in Leicester to give a 12 per cent decrease in delays to general traffic, and save travel time to buses of about 6 per cent during peak periods. There are now also 53 special detectors continuously relaying traffic information.
The Leicester Control Centre monitors both cities, where consoles comprising VDUs, closed circuit television, and a large mosaic map showing the condition at each intersection can be used to call up reserve plans for relieving congestion. Be it caused by a breakdown, an accident or any other unexpected event, the use of a reserve plan will activate a warning light at the appropriate point on the mosaic map. Any predictable problems such as the rush hour or football matches, will be dealt with by one of the computerised traffic plans.
A side-benefit of this system is immediate location of the majority of traffic light faults, and the computer even runs a special program during the nigh't to check out all the signal timings and report any errors.

Copies of Patents can be obtained from : the Patent Office Sales, St. Mary Cray, Orpington, Kent Price 95p each

\section*{NAVIGATION AID \\ BP 1484183}

In BP 1484 183, Shell internationale of the Hague, describes an interesting electronic movement sensing system for a ship. The need for a ship's captain to know exactly where he is, at exactly what speed, and in what direction he is travelling is obvious. Previous systems have used fixed master radars on a jetty with transponders on board the ship, or acoustic transducers underneath the ship's hull to set a fix on the sea bed. But transponders are only useful where there is a pair of master radars close by, and operation of the acoustic transducers is often upset by aeration effects under the ship created by the propeller during manœuvring. The Shell plan is to use a series of sensors along the ship and correlate the information they produce. At the ship's stern, where there is no aeration, a crossed pair of acoustic transducers or laser logs, working on the doppler principle, are mounted.

Element (5) provides a longitudinal speed signal and element (7), lateral velocity. At the side, amidships, there is mounted a rate of turn transducer, which can work on the tuning fork, gyroscope or laser principle.

A processor (12), has three inputs, one for the longitudinal speed signal, one for the rate of turn, and one for the lateral speed. The first signal, longitudinal speed, is amplified, and fed to a servo system to provide direct readout of forward/aft velocity. The rate of turn signal is amplified and fed both to a servosystem for direct read-out, and also to an operational amplifier 20, with three preset potentiometer positions. These represent the stern, midship and bow of the ship, and serve to introduce into the rate of turn signal the three longitudinal components of the distance between the positions on board ship and the location of the velocity transducer. The selected output signal is summed at (32) with the lateral speed signal.

The captain switches the presets to provide a signal representative of the absolute lateral velocity at the stern, midship or bow station. The claim is that this signal summation technique will, when the midship station is selected, cause any unwanted oscillatory rate of turn signal to cancel any unwanted oscillatory lateral velocity signal. This clever approach permits absolute velocity of the ship to be displayed,
without any need for the signal damping techniques which are normally necessary to obviate high seas motion and so preserve readability of the data display. Damping is of course undesirable because it reduces accuracy of the display. The algebraic theory behind the invention is detailed by Shell, and it is likely that it would be applicable to private yachts.

\title{
Semiconductor UPDATE FEATURINE : HDSP 6504/6508 MC6875 1435
}

\section*{SHOWING THE FLAG}

When you are desperate, it is possible to display a sort of Alphabet on cheap seven segment indicators, but be warned that the resulting mixture of upper and lower case, with a few inverted letters like M and W , is usually quite unintelligible to the uninitiated! There can of course be excellent reasons for using this revolutionary new kind of script, and you will discover the most important of these when you examine the cost of buying and driving a multi-character, true alphanumeric, l.e.d. dot matrix type of display. A very sobering experience indeed! At this point you either have to resign yourself to that weird new alphabet that you invented or, if you need a lot of characters, you can deprive the family of "Kojak" and rewire the family T.V. set as a V.D.U. (This solution will cost you about \(£ 50\) and a couple of front teeth.)

Before you pursue either of these alternatives, cast an eye in the direction of two new displays from Hewlett Packard, the HDSP 6504 and the HDSP 6508, because these may be offering you a compromise too good to miss. The new displays are l.e.d. segment units, but they boast not seven but sixteen segments arranged as a sort of "upended Union Jack" which can handle not just the alphabet, but the full 64 character ASCII set which includes punctuation marks and arithmetical signs.

"Union Jack" display fount of the HDSP6504/6508 display

Driving these displays is just like driving the seven segment types only more so, a job easily handled by your pet microprocessor using a 128 byte look-up table and a few I/O ports. The "Union Jack" format is not new, and was available in the older gas discharge type of display families, but what Hewlett Packard have

done is to put together potentially cheap, multi character display "sticks" of 0.15 inch character height, which are almost as easy to drive as any other multiplexed l.e.d. display. The 6504 has four characters, and the 6508 has eight, and these may be used together and stacked end to end to give a line of any reasonable length. The availability of these displays gives us a viable alternative to the v.d.u. where only a single line of data is really needed, or where space is a problem.

\section*{CHEAPER CLOCKS}

Anyone who uses the 6800 micro from Motorola is probably very pleased about the easy-to-use, 5 volt operation of their system, but perhaps not so pleased about the requirement for an external clock generator in not-so-cheap hybrid form. This requirement probably wouldn't bother anyone using a ready made system, but when you want to put together a dedicated system, like an electronic door bell, low cost is vital and an on-chip clock can save a lot of money. Well, I can't offer a new 6800 with an on-chip clock, but Motorola
have made it possible to build a cheap offchip clock, br introducing the MC6875 monolithic clock generator. This chip can be used instead of the existing hybrid module designs MC6870A, MC6871A, and MC6871B, and offers other advantages like a built in power-on reset circuit and logic for implementing various DMA (Direct Memory Access) schemes. The hybrid modules did have the unique advantage of an internal crystal, whereas the MC6875 requires a separate crystal, but the new device is more flexible because it can be used over a wide range of frequencies, and for ultra low cost designs the crystal can be replaced by a simple RC network.

The new chip makes possible the use of sophisticated DMA schemes and dynamic RAM refresh systems with a 6800 processor, because in addition to the clock and reset logic the MC6875 contains circuitry to stretch clock cycles on demand. For this purpose a DMA/REFRESH REQUEST input and a DMA/REFRESH GRANT output are provided. The chip uses high speed Shottky t.t.l. logic and is housed in a 16 pin ceramic d.i.p.

entire compass of a piano keyboard. The bottom note \(\left(\mathrm{C}_{3}\right)\) is approximately 130 Hz whilst the top note \(\left(\mathrm{C}_{7}\right)\) is approximately \(2 \cdot 1 \mathrm{kHz}\).

This register is available in string voicing only and is called "String II".

Returning to the theory of organ registers, the use of a longer open pipe, approximately 16 ft in length, produces an octave lower at 33 Hz , which from Fig. 2.1(a) can be seen to be the bottom \(\mathbf{C}\left(\mathrm{C}_{1}\right)\) on a piano. Again using a shorter 49 note keyboard, the range produced from a 16 ft register is \(\mathrm{C}_{2}\) at approximately 65 Hz to \(\mathrm{C}_{6}\) at approximately 1.05 kHz with middle \(\mathrm{C}\left(\mathrm{C}_{4}\right)\) exactly half-way up the keyboard. This 16 ft register shown in Fig. 2.1(c) is available in string, woodwind, and brass voicing and is the fundamental orchestral register (I) used in the String Ensemble.

\section*{LOWER KEYBOARD SPLIT}

With the "Couple" push button control depressed all 49 notes give a continuous range, at either 16 ft (I) or 8 ft (II), for the voices selected on the Upper Voice sliders. However three further push puttons allow the keyboard to be split such that the lower 16 notes are independent of the upper 33 notes.

Fig. 2.1(d) indicates the "String I" button depressed, and under these conditions the upper 33 notes remain under the control of the sliders, whilst the lower 16 notes convert to 16 ft (I) strings only:

The lower range is \(\mathrm{C}_{2}\) to \(\mathrm{E}_{3}^{\mathrm{b}}\) at approximate frequencies between 65 Hz and 156 Hz . Depression of "String" (II) converts the lower section to 8 ft , ranging from approximately 130 Hz to \(311 \mathrm{~Hz}\left(\mathrm{C}_{3}\right.\) to \(\mathrm{E}^{\mathrm{b}}\)), Fig. 2.1 (e), now converting middle \(C\left(\mathrm{C}_{4}\right)\) into the left hand, in addition to remaining within the compass of the 16 ft (I) setting, Fig. 2.1(c), of the upper section of the keyboard which is played by the right hand.

The "String III"" push button converts the lower section to 4 ft pitch (\(\mathrm{C}_{4}\) to \(\mathrm{E}_{5}^{\mathrm{b}}\)), which as shown in Fig. 2.1(f) commences at middle C on the piano compass and it can now be seen that the lower section clearly rises in register above the middle of the upper keyboard section, with a fundamental range of approximately 261 Hz to 622 Hz .

Fig. 2.1. Keyboard registers of the String Ensemble relative to a piano compass (a) Piano compass (b) Ensemble 8 ft register-"String II" (c) 16 ft register (String I, woodwind and brass) (d) Lower keyboard split-16ft "String I" depressed (e) Lower keyboard split 8ft String II depressed

\section*{ADDITIONAL FREQUENCIES}

The highest fundamental frequency shown for the instrument is indicated in Fig. 2.1(b) as approximately \(2.1 \mathrm{kHz}\left(\mathrm{C}_{\uparrow}\right)\). Frequencies up to approximately 8.4 kHz are available from the Tone Generator system and these are used to give additional even harmonics to be described later in association with the voice circuitry.

\section*{FREQUENCY SWITCHING}

The switching of the large number of frequencies, including harmonics, described above is complex by traditional means in which direct signal keying by multi-

\section*{COMPONENTS ...}

DIODE GATES (49 required)

\section*{Resistors}

R5 \(3.3 \mathrm{k} \Omega\) (49 off)
R6-R13 \(120 \mathrm{k} \Omega\) (392 off)
R14 \(10 \mathrm{k} \Omega\) (49 off)
\(\frac{1}{4}\) W \(5 \%\) carbon film

\section*{Capacitors}

C13 \(4 \cdot 7 \mu \mathrm{~F}\) elect. 25 V (49 off)

\section*{Potentiometers}

VR6 \(10 \mathrm{k} \Omega\) linear slider VR7 \(4.7 \mathrm{k} \Omega \quad \log\) slider

\section*{Diodes}
D14-D22 1 N4148 (441 off) D23-D30 1N4148 (8 off)

\section*{Miscellaneous} 3 printed circuit boards 49 note keyboard (Italian style) with set of keyswitch components-(Clef Products)
mechanical contacts has been used. Many modern electronic organs simplify this problem by the use of electronic keying utilising diode, transistor, or integrated circuit elements with single mechanical contacts.

Diode keyswitching has been adopted in the String Ensemble.

\section*{DIODE KEYING}

Switching of the Tone Generator frequencies through to the voice circuits is accomplished by diode gating circuits shown in Fig. 2.2. One circuit within the shaded area is required for each note of the keyboard such that whilst that key is down four octave related square waves corresponding to the note concerned, are switched independently onto busbars identified as \(16 \mathrm{ft}, 8 \mathrm{ft}, 4 \mathrm{ft}\) and 2 ft .

\section*{SHAPING FOR ATTACK}

On depression of the key the moving keyswitch makes contact with a keyswitch rod which is at a positive potential thus charging C 13 via R 5 with a relatively slow time constant to simulate the slow attack of a string section. The keyswitch rod receives its potential via a slider potentiometer VR6 which further slows the charging rate of C 13 , and the optimum string attack rate is chosen to coincide with VR6 in its mid position.

Fig. 2.2. Diode gating circuits

This simple "Attack Control" produces a degree of automatic levelling of the overall output as the number of notes depressed changes which is useful in simulating the smooth flow of the string section, but the slowest attack position can introduce the effect to an excessive degree, whilst in the fastest attack position the keyboard section is fully additive.

\section*{SUSTAIN}

When the key is released the capacitor Cl 3 is discharged at a rate dependent on the time constant of C13 coupled with the combined effect of resistors R6-13, which are eventually grounded via terminating resistors on the busbars, but modified by the effect of R14 which is returned via D22 to a potential set on slider potentiometer VR7. When the potential is high it is isolated from C13 by D22, but when VR7 is at minimum potential \((0 \mathrm{~V})\) the low value of R14 dominates over the R6-13 combination to produce a short sustain. As the potential from VR7 is set at an increased level, the domination of R14 ceases when the falling potential on C13 approaches that on VR7 such that the longer time constant associated with R6-13 comes in earlier giving an overall increased length of sustain.

Fig. 2.3. Envelope shapes produced by the Diode Gate circuits

The resulting envelope shapes available are shown in Fig. 2.3, indicating the variations possible from the mid position each of the slider potentiometer controls.

\section*{TONE SWITCHING}

The required octave related square waves for a particular note are connected to the cathodes of D14-17, and have amplitudes of approximately 14 volts. Assuming the key is at rest with the keyswitch in the open circuit condition then C13 will be discharged and the junction of R5 and C13 at zero potential. Thus the anodes of D14-17 will also be at zero potential and the reverse characteristics of the diodes will block the Tone Generator signals.

Whilst a positive potential is present on C 13 during the envelope generation process, the signals will pull down the voltages on R6-9 via D14-17 allowing signals to pass through R10-13 which are proportional to the envelope amplitude.

\section*{BEEHIVE REDUCTION}
"Beehive" is the term used to describe the effect of all frequencies in the Tone Generator breaking through into the amplifier circuits in chorus, producing a background level of sound which gives considerable annoyance. There are many routes in a polyphonic instrument by which this can occur, related to screening, cable looming and earthing of the various sub-assemblies, but the first route to consider is the direct transmission of low level tones through the keyswitch system when it is supposedly in its quiescent state.

Diodes D18-22 first isolate each gate from the other 48 such that from the point of view of one signal it does not see the 120 kilohm resistors in all other notes of the same pitch, only considering the terminating resistor at the end of the busbar in determining its final level at the preamplifier. Secondly the diodes block the sum total of signals from the keys depressed feeding back to C13 and providing a small positive potential for the signal to modulate in a supposedly quiescent note. The diodes also
-
 ne he ne he te he 0 \(0-0\) O
-

\(\sqrt{6 t^{\circ}}\)\(\sqrt{65}\) \(\sqrt{28^{\circ}}\) \(\sqrt{25^{\circ}}\) \(\sqrt{185}\) - \({ }^{20}\) , \(0^{\circ}\) \(58{ }^{\circ}\)

Fig. 2.4. Track layout of Diode Gate p.c.b.

have a high impedance in the forward direction at low voltages to assist the blocking of any small residual voltage on C13, and effectively increase the values of D18-22 in this condition.

Finally it has to be accepted that even when reversed biased D14-17 allow low level spike signals to pass due to internal capacitance, and the small finite stray capacitance of D18-22 further reduces to a small degree the onward transmission of signals from this source.

\section*{THRESHOLD DIODES}

Even at this stage beehive signals are present on the pitch busbars in the quiescent state and diodes D23-30 are used to further block the breakthrough from reaching the preamplifiers. Since the keyboard is split with two independent sets of outputs from the keyswitch circuits, two sets of threshold diodes are required, D23-26 for the lower section of the keyboard and D27-30 for the upper end of the keyboard.

The overall result is negligible beehive due to transmission through the Diode Gate circuits, and since all signals are in square wave form, with a common baseline potential, the signal harmonic content or distortion level is not modified.

\section*{DIODE GATE P.C.B. CONSTRUCTION}

All Diode Gate circuits are mounted on three printed circuit boards, the etching and drilling details of which are given in Fig. 2.4, with the component assembly details in Fig. 2.5. The boards are designed to accommodate 49
identical circuits of the type previously described within the shaded area of Fig. 2.2. Since each board has a pattern to cover 17 notes, two are omitted, one at each end of the final three board assembly, and the remaining spaces are used to accommodate the threshold diodes D23-30. Thus in Fig. 2.6 it can be seen that PCB1 is at the lower end of the keyboard and contains 16 notes plus threshold diodes D23-26 on the left hand end, PCB2 contains 17 notes, whilst PCB3 contains 16 notes plus threshold diodes D27-30 at its right hand end at the upper end of the keyboard.

To assemble the Diode Gate p.c.b.s resistors R5, R14 and R6-9 should first be fitted to the board, omitting R10-13 at this stage. All diodes, including D23-30, should then be soldered followed by R10-13, and finally C13. Care should be taken when fitting R10-13, which are mounted across R6-9, that none of the resistor lead ends are positioned such that shorting can occur.

\section*{CLOSE INSPECTION}

Experience has shown that whilst repetitive soldering of the type involved in this project is easy, ninety percent of problems occurring in similar projects can be eliminated by close physical inspection of the completed p.c.b. The most common fault is to completely miss a solder connection, such that after cropping the waste leads a superficial check on the board indicates that all connections are made. On closer more careful inspection it can then be seen that a component wire is simply passing through a hole without any solder present.

A second possible fault is the creation of a solder bridge

Fig. 2.6. Assembly of Diode Gate p.c.b.s under Veroboard

Fig. 2.7. Keyswitch and Diode Gate p.c.b. mounting detail
between two adjacent lands or tracks which again requires careful inspection to detect.

Whilst on the subject of faults the one other error which does occur is the incorrect reading of resistor or capacitor values by factors of ten. Careful attention to these three points in a positive manner leads to a very high degree of complete project success first time when using modern reliable components.

\section*{GATE CONTROLS AND P.C.B. MOUNTING}

The "Attack" and "Sustain" controls, VR6 and VR7 respectively, are mounted on the front panel at a later stage, and are unnecessary in any tests carried out after assembly of the Diode Gate p.c.b.s and keyswitch.

Referring back to Fig. 2.6 the position of the Gate p.c.b.'s can be seen and before any interwiring is carried out the mounting points \((\mathrm{m})\) for the p.c.b.s can be marked on the keyboard chassis using both Figs. 2.6 and 2.7. Fig. 2.6 also indicates connections between each of the diode gate p.c.b.s.

The interconnection pattern to distribute the signals from the Tone Generator is given in detail later, but it should be noted that earth and sustain links are required both between PCB1 and 2 and between PCB2 and 3. A link should also be made from an earth track to the keyboard chassis to provide an additional screening effect. A further four output links are required between PCBs 2 and 3 which together constitute the 33 notes of the upper section of the keyboard. Outputs for this section are taken from diodes D27-30 and for the lower section from diodes D23-26.

Output footages are marked in Fig. 2.5, with a point \(E\) for connecting the four-core cable screen.

\section*{KEYBOARD AND KEYSWITCH}

The keyswitch action is integrated with the Diode Gate p.c.b.s and consists of gold clad springy wires approximately 2 inches long soldered onto lands provided on the p.c.b.s. Details are shown in Fig. 2.7.

Fig. 2.8. Interconnection pattern for Diode Gate p.c.b. and connections to Tone Generator

The Diode Gate p.c.b.s are shown fixed to the underside of the keyboard with stand off insulated washers.

\section*{INTERCONNECTION PATTERN}

In order to distribute signals at the four pitches 16 ft , 8 ft , 4 ft and 2 ft from the Tone Generator to each note on the keyboard an interconnection process to the pattern shown in Fig. 2.8 is required. This is carried out on the Diode Gate p.c.b.s, a continuous wire linking for example the 2 ft gate input for note No. 7 with the 4 ft gate input for note No. 19, the 8 ft gate input for note No. 31, and the 16 ft gate input for note No. 43 , then continuing as the interconnecting lead to the Tone Generator board output F\#(4).

All notes in this example are F\#'s and it can be seen from Fig. 2.8 how the same \(F \#(4)\) tone generator frequency acts as the fundamental where \(\mathrm{F} \# 5\) in the piano keyboard, shown in Fig. 2.1(a), occurs, i.e. at 16 ft and 8 ft in notes 43 and 31 respectively, whilst in note 19 it acts as the fourth harmonic for \(F \# 3\) at 16 ft and the second harmonic for \(F \# 4\) at 8 ft , and in note 7 as the eighth harmonic for \(F \# 2\) at 16 ft , the fourth harmonic for \(F \# 3\) at 8 ft and the second harmonic for \(F \# 4\) at 4 ft .

This pattern is repeated for every pitch of every note until a complete matrix is made up with 85 interconnecting leads to the Tone Generator board.

\section*{MATRIX CONSTRUCTION}

The three Diode Gate board assembly is constructed before it is fixed to the keyboard. The three boards should be temporarily clamped in line using nuts, bolts and washers at the front and rear of each junction, or in a temporary timber frame which allows the boards to sit in slots during assembly.

The first process is to solder the earth and output linkages previously described and shown in Fig. 2.6. Two extra link pads are also provided on the p.c.b.

Copper wire of approximately 28 s.w.g. with a solderable insulated coating is used to build the matrix. A few

Fig. 2.9. Cross section of solder joint and method of threading copper wire through Diode Gate p.c.b.s
guidelines for the pattern are given on the p.c.b. component identification diagram in Fig. 2.5. A continuous wire both interconnects the relevant pitch on each note and acts as a lead between the Diode Gate p.c.b.s and the Tone Generator. A solder land is provided on the Gate board for each pitch of each note and has two holes one on each side of the land.

The copper wire is threaded through one hole from the top of the board and then returned through the remaining hole. All interconnect wires can be "knitted" in this way prior to soldering and then as a final process a hot iron is used to melt the insulation providing the solder connection to each land. A cross section of the joint is shown in Fig. 2.9.

\section*{TONE GENERATOR CONNECTION}

The points at which interconnect wires are taken from the Diode Gate boards to the Tone Generator are shown in Fig. 2.8. The corresponding Tone Generator frequency reference numbers are also given in this diagram, i.e. \(C(1)\) to \(C(8)\).

When threading the wires to construct the matrix, an extra length should be allowed to reach the Tone Generator. For connections taken from the left hand group in Fig. 2.8 an extra 16 inches should be allowed, and for connections taken from the right hand group an extra 30 inches should be allowed.

As each wire is fitted to the matrix, labels can be attached to the tone generator end of the lead identifying the tone generator reference numbers, or alternatively identification can be ignorsd whilst interwiring and a multi-meter used to locate the leads at a later stage.

\section*{TESTING THE GATE/KEYSWITCH ASSEMBLY}

A test of the system can be carried out at this stage by terminating each of the output busbars with 10 kilohm resistors to ground giving simple square wave outputs at \(16 \mathrm{ft}, 8 \mathrm{ft}, 4 \mathrm{ft}\) and 2 ft , from lower and upper parts of the keyboard. The Keyswitch rod should be fed direct from the +20 Volt supply on the Tone Generator board, and the sustain line may be fed from either +20 Volts or ground to give maximum and minimum sustain respectively.

Note: In Fig. 1.6 the copper track between pins 1 and 14 should be broken.

Next Month: Cabinet assembly and Chorus System description,

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{21}{*}{} & & & & & & \\
\hline & & cos & \(\underset{\substack{7412 \\ 7413}}{\substack{\text { 74，}}}\) & & 7494 & \\
\hline & \({ }_{4073}^{4072}\) & 180 & \({ }_{\substack{7414 \\ 7414}}^{\substack{414}}\) & 509\％ & & \\
\hline & \({ }_{4087}^{4087}\) & 200 & \({ }^{3420} 7\) & \％oi & & \\
\hline & \({ }^{4082}\) & 25p & \({ }_{\substack{7422 \\ 7423}}\) & \({ }_{\substack{29 \\ 320}}\) & \％ & \\
\hline & 4 & 边 & & \({ }_{1}^{327}\) & & \\
\hline & & 560\％ & 7428 & \({ }_{80}^{80 \%}\) & & \\
\hline & & \({ }_{128}^{268}\) & 7433 & 边 & 38 & \\
\hline & & \({ }_{123}^{123}\) & \({ }_{7438}^{7437}\) & & － \(7412125{ }^{\text {7 }}\) & 为 7419251008 \\
\hline & & & \({ }_{744}^{740}\) & \％op & － & \\
\hline & & & \({ }_{7}^{7444}\) & \({ }^{130}\) & & \\
\hline & \({ }_{4}^{4553}\) & 115 & \({ }_{7} 7445\) & 边 & & \\
\hline & & \({ }_{3148}\) & \(\underset{\substack{745 \\ 7 \\ 7 \\ \hline}}{\substack{\text { a }}}\) & 边 & & － \\
\hline & \({ }_{4}^{4582}\) & 980 & \({ }_{7}^{7} 745\) & 砣 & & \(\xrightarrow{742}\) \\
\hline & & 1088 & \({ }_{7}^{7} 4780\) & 部 & & \({ }_{\substack{74279 \\ 7483}}\) \\
\hline & TTL & & \({ }_{747}^{74}\) & & & \\
\hline & & \({ }^{180}\) & & & & \\
\hline & 7093 & \({ }_{208}^{188}\) & \({ }_{7483}\) & & & 7438 \\
\hline & \({ }_{740}^{7405}\) & & & & & \\
\hline & & & & & & \\
\hline & 7409 & 25 B & & & & 90 2 \\
\hline
\end{tabular}

Full price list of tinears discretes．capacitors，resistors．potentiometers．tools． soldering irons and accessories available．Send 20 p or large S．A．E This list is sent free with the first order
Prices correct December 1977.
Terms C．W．O．Add VAT to prices at 8\％．Post，etc U．K．25p．overseas 75p Access and Barclaycard，and all convertible currencies accepted．

\section*{TIRRO ELECTRONICS}

Grenfell Place，Maidenhead，Berks．
Tel．（0628） 36229
Mail order division of RITRO Electronics UK Ltd

\section*{THIS is the Catalogue you need to solve your component buying problems！}

－The finest components catalogue yet published －Over 200 A－4－size pages －About 5,000 items clearly listed and indexed．
－Nearly 2,000 illustrations
－Bargain List sent free
－At \(£ 1 \cdot 40\) incl．\(p\) \＆\(p\) ．，the catalogue is a bargain．

Send the coupon below now．

\section*{SUPERSOUND 13 HI-FI MONO AMPLIFIER}

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER
 200. 240 V Mains operated
Solid State F.M A.M. Stereo
Tuner Covering M.W A.M Tuner Covering M.W A.M
\(540-1605 \mathrm{KHz}\) \(540-1605 \mathrm{KHz}\)
\(88-108 \mathrm{MHz}\) Builtin Ferrite rod aerial tor
\(M W\) Full AFC and AGC on MW Futi AFC and AGC on Lamp Indicator Bull in Preamps with variable output
voltage adjustable by pre-set control Max op Voliage 600 mV R.M M into 20 K Simulated Teak fimish cabinet Will match almost any amplitier Size \(\boldsymbol{B}_{\text {in }}\) wide 4 in high - 9ín deep approx
Limited number only at \(£ 2800+£ 1 \cdot 50 \mathrm{P}\) \& P .
VYNAIR \& REXINE SPEAKERS \& CABINET FABRICS app. 54 in. wide. Our price \(£ 2.00\) vol. length. P. \& P. 50 p
per yd. (min. 1 yd.). S.A.E. for samples. for samples

\section*{10/14 WATT HI-FI AMPLIFIER KIT}

A stylishly finished monaural amplifier with an output ol 14 watts
trom 2 EL84s in push-pull Super repioduction of boin music from 2 EL84s in push-pull Super reproduction of both music
and speech with negligible hum Separate inputs for mike and and speech with negligible hum Separate inputs for mike and
gram allow records and announcements to follow each other gram allow records and announcements to follow each other speaker and 2 independent volume controis. and separate bass and treble controls are provided giving good lift and cut Valve line-up 2 EL84s. ECC83. EF86 and EZ80 rectifier Simple
instruction booklet 25p. SAE (Free with parts) Alt paris soid separately. ONLY \(£ 13.50\) P. \& P. \(£ 1.40\). Also available ready
built and tested \(£ 18.00\) P. \& P. \(£ 1.40\).
"POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
 \(40 \mathrm{~Hz}-20 \mathrm{KHz}\) Can be mounted on cellings. Walls. doors under tables. etc, and used with or withoul baffle Send S A E for,
full details. Onfy \(£ 8.40\) each P. \& P. (one 80 p, two \(£ 110\)). Now available in either 8 in round version or \(4 / \times 8 \mathrm{in}\) rectangular. 10
watts A.M.S. \(60 \mathrm{~Hz}-20 \mathrm{KHz} 55.25\). P. \& P. (one 85 p , two 75 F .).

SPECIAL OFFER. \(6 \frac{1}{2}\) in long throw, roll surround, ceramic magnet 8 ohm 10 watt speaker chassis. Specially suitable for Hi Fi \(\mathbf{£ 3 . 9 5 7 5 p \text { P. \& P. }}\)
2 in PLASTIC CONE HF TWEETER 4 ohm,
f 3.50 per matched pair +50 pP . \& P.
HIGH POWER HI-FI 8 ohm Dome Tweeter. 1 in voice coil. Magnet size 3 in dia. Suitable for use in up to 50 watt systerns.
£4.50 each 60 p P. P.

\section*{HARVERSONIC SUPERSOUND}

10 + 10 STEREO AMPLIFIER KIT
A really tirst-ciass Hi-Fi Siereo Amplifier Kit Uses 14 iransisiors
including Silicon Transistors in the first five stages on each channel resulling in even lower noise level with improved sensilivity integral pre-amp with Bass. Treble and two Volume conirols Suitable for use with Ceramic or Crystal cartridges Very
simple to modity to suit magnetic cartridge-instructions included Output stage for any speakers trom 8 to 15 ohms Compact design atl parts supplied including drilled melalwork high quality ready dillied orinted circuit board with component identification clearfy marked. smart brushed anodised aluminium front panel with malching knobs. wire, solder. nuts, bolts-no extras to buy
Simple step by step insiructions enable any consiructor to build an amplifier to be proud of Brief specification Power output 14 watts RM.S per channel into 5 ohms Frequency response \(=30 \mathrm{~B}\) \(12-30.000 \mathrm{~Hz}\) Sensitivity better than 80 mV into 1 MC Full power bandwidth \(\leq 3 \mathrm{~dB} \quad 12-15.000 \mathrm{~Hz}\) Bass boost approx to \(\leq 12 \mathrm{~dB}\) Treble cut approx to -46 dB Neqativ
amp. Power requirements 35 V at 1 A .
Overall size 12 in wide \(\times 8\) in deep \(\times 2 \frac{3}{4}\) in high.
Fully detaised 7 page construction manual and paris list tree with kit or send 25p plus large S A E
AMPLIFIER KIT
(Magnetic input components 33 pexira) §13.50 P \& P 80p POWER PACK KIT £5.50 P \& P 95p CABINET
\(\mathbf{5 5} 50\) P \& P 95p
SPECIAL OFFER-only \(£ 23.75 \mathrm{if}\) all 3 itema
ordered et one time plue \(£ 1-25 \mathrm{P}\). \& P .

\section*{HARVERSONIC STEREO 44}

A sohd state siereo amplifier chassis, with an output of 3-4 watts aer channel into 8 ohm speakers Using the latest high technology
integrated circult amplifiers with ouit in short term thermal overload protection All components including recifier smoothing capacitor. fuse tone control volume controls, 2 pin din speaker sockets and 5 pin din tape rec play socket are mounled on the
prinied circuit panal Size approx 9 an \(\cdot 2 ; 1 n\). in max depin prined circuit panel Size approx grin kntin brin max depin
Supplied brand new and lested witn knobs brushed anodised aluminium 2 way escutcheen (to allow the amplifier to be mounted horizontally or vertically) al only \(59 \cdot 00\) - \(50 \mathrm{p} \mathrm{P} \& \mathrm{P}\) Mains transfortiner with an outpul of 17 V a c at 500 m A can be supplied at \(\$ 1.50\) - 40 pP 8 P it required Full connection detaits supplied
STEREO DECODER
SIZE 2
\(\begin{array}{ll}\text { SIZE 2 } & 3^{-1} \\ \text { ready buit. Pre-aligned and lested for } 9-16 \mathrm{~V} \text { neg } \\ \text { earth operalion. Can be fitted to almost any FM VHF radio or tuner }\end{array}\) Stereo beacon light can be fitted if required. Full detals and instructions (inclusive of hints and tups) supplied. \(£ 600\) plus 20 p
P. \& P. Stereo beacon inght if required 40 extra.

\section*{Clef Products}
P. E. JOANNA \& 'STRING ENSEMBLE'

Send S.A.E. for details of Kits \& P.C.B.s Please indicate which instrument required.

\section*{STOCK CLEARANCE BARGAINS!!}

We are proud and privileged to announce that wo hove been opponnted to dispose of the PROFESSIONAL EQUIPMENT MANUFACTURER All thase first grode, top specification devicess are ovailoble for immediote delivery by means of our

FAST-RETURN DELIVERY SERVICE
check our prices:-

\begin{tabular}{|c|}
\hline \multicolumn{7}{|l|}{All prices include V.A.T. Carriage \& packing add 25p (U.K.), Add extra for overseas. CWO. only. Diacounts over C 5 less \(5 \%\). over £ 10 less 10\%, over ¢25 less 15\%, over ¢50 less 20\%.} & \multicolumn{8}{|c|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& \text { A@ } \\
& \text { 92 GODSTONEROAD } \\
& \text { WHYTELEAFE SURREYCR3 OER }
\end{aligned}
\]}} & \[
\begin{aligned}
& 74 \mathrm{~S} 175 \\
& 74176 \\
& 74177 \\
& 74178
\end{aligned}
\] & \(\mathbf{6} 4.70\)
\(\mathbf{0 0 . 9 9}\)
\(\mathbf{8 1 . 9 9}\)
\(\mathbf{1} 1.40\) & 4007
4008
4009
4010 & \&0.19 f0.98 \(f 0.60\)
\(f 0.56\) f0.56 & 4046
4047
4048
4049 & \[
\begin{aligned}
& \mathbf{8} 1.32 \\
& 60.96 \\
& 60.63 \\
& 60.55
\end{aligned}
\] & \[
\begin{aligned}
& 74118 \\
& 741-14 \\
& 741-T 099 \\
& 747-14
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{f0.} 22 \\
& \mathrm{C0} .2 \mathrm{D} \\
& \mathrm{co.48} \\
& \mathrm{CO} .70
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{ values \(11 \mathrm{p} ; 2.23 .34 .768 \mathrm{LuF} 35 \mathrm{~V}\) all values 12p: \(10 \mu \mathrm{~F} 25 \mathrm{~V} 22 \mu \mathrm{~F} 16 \mathrm{~V}\) both values \(13 p: 33 \mu \mathrm{~F}\) 10V \(14 \mathrm{p}:\)
\(10 \mathrm{~F} 35 \mathrm{~V} 47 \mu \mathrm{~F} 6.3 \mathrm{~V} 68\) and \(100 \mu \mathrm{~F}\) 10 \(\mu \mathrm{F}\) all values 15 p : \(47 \mu \mathrm{~F} 18 \mathrm{~V} 20 \mathrm{p}\). \(100 \mu \mathrm{~F} 10 \mathrm{~V} 48 \mathrm{p}\).}} & \multicolumn{5}{|l|}{\multirow[b]{2}{*}{f}} & & & & & & & & & 74179
74180 & f1.38
f0.99 & 4011
4012 & f0.19
c0.19 & 4050
4052 & \[
\begin{aligned}
& \mathbf{E 0 . 5 0} \\
& \mathbf{0 . 5 0 . 9 2}
\end{aligned}
\] & 3130-TO99
3900 & \[
\begin{aligned}
& \mathrm{c} 1.00 \\
& \mathbf{E 0 . 5 0}
\end{aligned}
\] \\
\hline & & & & & & & & & & & & & & & 74180 & f0.99 & 4013 & E0.50 & 4053 & c0.95 & VOLTAGE & \\
\hline & & & \(04{ }^{10}\) & - 05p & 05 ¢p & P & 7400 & ¢0.14 & 7437 & ¢0.25 & 745 & ¢1.50 & 74 & C0. & 74182 & f0.75 & 4014 & ¢1.00 & 4054 & f 1.10 & REGS. & \\
\hline & & \[
\begin{array}{ll}
1 & 5 \\
2 & 2
\end{array}
\] & 04 & - 05 & 05 & & 7401 & ¢0.14 & 7438 & ¢0.25 & 7489
7490 & ¢2. 65 & 74141
74142 & ¢0.60
f2.46 & 74184
\(74185 A\) & f1.45
\(\mathbf{1} 1.45\) & 4016 & 80.50
80.95 & 4060 & f1.10 & 309K-T03 & \\
\hline & & \[
33
\] & 04 & 05 & \(1 p\) & 06p & 7403 & E0.14 & 7441 & £0.64 & 7491 & E0.70 & 74143 & £2.70 & 74186 & ¢8.60 & 4018 & £1.00 & 406 & f0. 24 & 723-14 & c0.46 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{CARBON FILM RESISTOMS :Wall in 10 Mn E 12 Series 1p each 9p tor 10 of any one value 75p for 100 of any one value}} & & & & & & 7404 & & & & 7492 & E0.44 & 7414 & ¢2.70 & 4188 & E2.7 & 4019 & \(\underline{50.52}\) & & ¢0.3 & \(5 \mathrm{TO22}\) & £1.30 \\
\hline & & 10 & & 05; & 06p & & 7405 & 0.1 & & & & & & & & & & & & & & E1.30 \\
\hline & & 22 & & \multirow[b]{3}{*}{07p} & 09p & 13p & 7406 & \({ }_{5} \mathbf{C O . 3 2}\) & 7444 & E1.10 & 7494 & ¢0.87 & 74147 & 51.40 & 744191 & C1.38 & 4021 & 80.95 & 407 & c0. 23 & 790510220 & \\
\hline & & \multirow[t]{2}{*}{33
47} & \multirow[t]{2}{*}{} & & Op & 15p & 408 & c0.16 & 7446 & ¢0.83 & 7496 & 10.69 & 74150 & £1.16 & 74193 & ¢1.18 & 4023 & E0.19 & 4081 & f0.19 & 7912 & \\
\hline \multicolumn{2}{|l|}{75 p for 100 ot any one value} & & & & 12p & 9 p & 7409 & c0.16 & 7447 & ¢0.74 & 749 & ¢2.82 & 7415 & f0.6 & 7419 & c0.99 & 4024 & c0.75 & 4093 & f0.80 & 791570220 & \\
\hline \begin{tabular}{l}
I.C. SOCKETS \\
8 pin 11 p
\end{tabular} & S.c.e.s & 68 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 00 p \\
& 10 p
\end{aligned}
\]} & \({ }_{12 p}\) & 1ap & \(3{ }^{\circ}\) & 7410 & c0.15 & 7448 & ¢0.68 & 74100 & £0.94 & 74153 & f0.6 & 7419 & \(\underline{1} 0.95\) & 4025 & E0.19 & 4097 & f3.80 & LINEAR & \\
\hline 14 pin 12p & 4 AmP 200 V 40 & \[
\begin{aligned}
& 100 \\
& 150
\end{aligned}
\] & & & & & 7411 & c0. 20 & 7450 & ¢0.15 & 74104 & £0.40 & 74154 & f1.17 & 7419 & \(\underline{6} 0.99\) & 4026 & ¢1.65 & 450 & c0. 20 & Ta4550B & 0.35 \\
\hline \(16 \mathrm{pin} \quad 13 \mathrm{p}\) & 4 Amp 400 V 50 & \[
\begin{aligned}
& 150 \\
& 220
\end{aligned}
\] & \multirow[t]{2}{*}{\(12 p\)} & & 22p & 2p & 7412 & \begin{tabular}{c}
f0. \\
c0. 28 \\
\\
\hline
\end{tabular} & 7451 & ¢0.15 & 74105 & C0.40 & 74155 & f0.68 & 74197
74198 & 10.99 & 402 & & & ع0.95 & TBA120S & c0.68 \\
\hline \(18 \mathrm{pin} \quad 30 \mathrm{p}\) & 7Amp 100 V 50 p & \multirow[t]{2}{*}{\[
\begin{aligned}
& 330 \\
& 470
\end{aligned}
\]} & & 18p & 26p & 36p & 7414 & E0.60 & 7454 & £0.15 & 74109 & 20.50 & 74157 & E.68 & 74199 & ¢1. & 4029 & E1.16 & 4508 & E2.84 & TBA641A & c1.88 \\
\hline 22 pin 38p & m0 400 V & & \[
\begin{aligned}
& 14 p \\
& 16 p
\end{aligned}
\] & \multirow[t]{2}{*}{} & 29p & 40p & 7416 & E0.30 & 7460 & ¢0.15 & 74110 & E0.52 & 74159 & 2200 & 74221 & \(\underline{1} 1.50\) & 4030 & ¢0.55 & 451 & f1.38 & tbab00 & 80.90 \\
\hline 24 pin \(42 p\) & 10amp 200 V 60p & \multirow[t]{3}{*}{\[
\begin{aligned}
& 680 \\
& 1000 \\
& 2200
\end{aligned}
\]} & \multirow[t]{3}{*}{18p
20p
24p} & & 35p & & 7417 & ¢0.30 & 7470 & ¢0.30 & 74111 & c0.75 & 74160 & f0.88 & 74273 & E2.15 & 4031 & E2.34 & 451 & f1.50 & TBA810S & 81.16 \\
\hline 28 pin 52p & 16Amp loov 75p & & & \multirow[t]{2}{*}{29p
38p} & \multicolumn{2}{|l|}{} & & C0.15 & 7472 & ¢0.25 & 74116 & E1.96 & 74161 & f0.88 & 74279 & E1.25 & 4033 & E1.50 & 4518 & f1.13 & TCA270SO & E2.21 \\
\hline 40 pin 70p & moloov & & & & & & 7421 & E0.35 & 7473 & ¢0.30 & 74118 & E0.90 & 74162 & f0.88 & 74283 & E1.70 & 4034 & ¢2.00 & 4520 & f1.26 & TDA2020 & c3.56 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
400mW ZENER \\
DHODES \\
\(27 V-33 V\)
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { LEDS } \\
& 0 \quad 125 \mathrm{~m} 0 \\
& 0
\end{aligned}
\]} & 4700 & \multicolumn{4}{|l|}{39p} & 7422 & c0. 20 & 7474 & ¢0.30 & 74119 & £1.65 & 74163 & ¢0.88 & 74284 & ¢6.85 & 4035 & ¢1.28 & 4527 & ¢1.60 & 2N4 14 & E1.20 \\
\hline & & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{polvesten loov Aidual lead}} & 7423 & c0.25 & 7475 & £0.30 & 74120 & c0.88 & 74164 & E1.00 & 74293 & £1.35 & 4036 & c2.40 & 4528 & f1.05 & 380-14 & f1.00 \\
\hline & \multirow[t]{4}{*}{\(\begin{array}{llr}\text { Red } & \text { 9p } & \text { 9p } \\ \text { Green } & 20 p & 20 p \\ \text { Yellow } & 20 p & 20 p \\ \text { LED clup } 4 p & 4 p\end{array}\)} & & & & & & 7425 & c0. 20 & 7476 & ¢0.30 & 74121 & ¢0.25 & 74165 & £1.00 & 74298 & ¢1.92 & 4037 & ¢0.99 & 4536 & f3.85 & 381-1 & 50.6 \\
\hline \multirow[t]{4}{*}{} & & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} & 7426 & c0.25 & 7480 & ¢0.50 & 74122 & c0.40 & 74168 & f1.23 & 7439 & f1.92 & 4038 & 11.00 & 454 & £1.60 & 555-8 & c0.36 \\
\hline & & & & & & & 7427 & ¢0.25 & 7481 & ¢0.98 & 74123 & ¢0.60 & 74167 & £3.20 & 74393 & ¢2.12 & 4039 & 22.85 & 4555 & f0.85 & 710-14 & c0. \\
\hline & & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{lllllll}018 & 022 & 05 & 027 & 033 & 039\end{array}\) 047 \(055 \quad 056 \quad 068 \quad 07 \quad 092\)}} & 7428 & c0.35 & 7482 & ¢0.85 & 74126 & ¢0.50 & 74170 & £1.95 & CMOS & & 4040 & £1.00 & 4556 & f0.85 & 710-14 & f0.32 \\
\hline & & & & & & & 7430 & ¢0.15 & 7483 & £0.83 & 74128 & ¢0.68 & 74172 & £4.75 & 4000 & \(\underline{1}\) & 4041 & \(\underline{0.86}\) & 4583 & ¢0.8 & 711 & f0.32 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
1 WATT RENER DIODES \\
\(3.3 \mathrm{~V}-100 \mathrm{~V}\)
\end{tabular}}} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{lllllllllll}
1 & 12 & 15 & 075 & 18 & 22 & 27.09 \\
33 & .10 & 39 & -11 & 47.12
\end{array}
\]}} & 7432 & ¢0.25 & 7485 & ¢1.98 & 74135 & E0.68 & 74 & & 4002 & E0.19 & 4043 & .95 & & & & \\
\hline & & & & & & & 7433 & c0.34 & 7486 & E0.30 & 74136 & C0.76 & 74175 & ¢0.74 & 4006 & E1.00 & 4044 & ¢0.9 & 709- & £0.46 & 3045-1 & +2.20 \\
\hline
\end{tabular}

Electronic locks have always held a strange fascinaEtion for electronics constructors; they are primarily novelties, although one can always think of many more serious applications; for instance the "keyswitch" can be used as a safety device to isolate the power to a piece of equipment unless someone authorised to use it is available to insert the key.

The basic design is very flexible, since the keyswitch can be considered in terms of building blocks, which can be altered to fulfil the requirements of most applications. The basic version of the design uses four CMOS logic integrated circuits, which are readily available, easy to use, and inexpensive. The key is in fact a jack plug, the two terminals of which are connected to a resistor housed in its body.

\section*{CIRCUIT DESCRIPTION}

The complete circuit diagram of the keyswitch is shown in Fig. 1 with the four cmos i.c.s. enclosed within the dotted lines.

The operation of the circuit can first be considered without a key inserted in the socket. In this quiescent state the diode (D1) is reverse biased and the output of the comparator (IC1) is low. The 'inhibit 1' input to the gating circuit (IC3) is high, holding off the monostable and alarm circuits. When the output of IC1 is low the outputs of the schmitt trigger (IC2) and the gating circuit remain low with the transistor (TR1) reverse biased and the relay de-energised.

When a key is inserted into the socket its resistance is measured by the comparator and if its value is within an acceptable range, \(\overline{\mathrm{D}} 1\) is forward biased and the 'inhibit 1 ' input is switched to a low state. At the same time the schmitt trigger receives a positive pulse from IC1; before the gating circuit can use this pulse without error it must be modified into a square wave by the schmitt trigger. On receiving a correct signal from the schmitt trigger, output (a) of the gating circuit switches
to its high state turning on TR1 and energising the relay.
The schmitt trigger output holds the monostable and alarm circuits off in place of the inhibit 1 input which is switched low.

If an incorrect input is applied to the circuit the comparator, schmitt trigger and gating outputs all remain in their low state with TR1 switched off and the relay deenergised. The diode D1 will be forward biased, the 'inhibit 1' input to IC3 will be switched low and the monostable IC4 triggered. The output of the monostable will remain high for a time period determined by the values of C3 and R9. The inhibit 2 input to IC3 ensures that any input applied to the keyswitch is disregarded until the monostable returns to its quiescent state and turns off the alarm.

\section*{CONSTRUCTION}

Nearly all the components can be mounted on one printed circuit board: the p.c.b. layout is shown in Fig. 2. Fig. 3 shows the component locations on the board. The cable connecting the keyswitch input socket to the main circuit should be screened, with the braiding connected to the 0 V supply rail; this can be earthed for safety. Microphone cable is quite satisfactory for this.

The prototype keyswitch was housed in an aluminium box, type AB10, with dimensions \(101 \mathrm{~mm} \times 133 \mathrm{~mm} \times\) 38 mm , which is probably the smallest size that the circuit can be fitted into, if it is powered from the mains.

The mains transformer was bolted to one side of the box: and to save space, the two rectifier diodes were soldered direct to the transformer secondary connections.

The output device in the prototype was controlled by a relay, which was held in place by an aluminium clamp which also held the input and output cables. The diode, D4, was connected directly across the relay coil connections, and D5 was connected directly across the speaker coil.

When assembling the components on the printed circuit

\section*{COMPONENTS . . .}

Resistors
R1, R2, R3
R4, R12
R5, R6, R15
R7
R8, R14
R9, R10, R11, R13
R16
All resistors \(\frac{1}{4}\) W 10\% carbon except where stated

\section*{Capacitors}
C 1
\(\mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 5\)
C 3
C 6
C 7

See text
\(1 \mathrm{k} \Omega\) (2 off)
\(10 \mathrm{k} \Omega\) (3 off)
33k \(\Omega\)
\(1 \mathrm{M} \Omega\) (2 off)
\(10 \mathrm{M} \Omega\) (4 off)
\(470 \Omega \frac{1}{2} W 10 \%\) carbon
\(100 \mu \mathrm{~F} 10 \mathrm{~V}\) elect.
\(0.1 \mu \mathrm{~F}\) polyester (3 off) \(100 \mu \mathrm{~F} 16 \mathrm{~V}\) elect.
1,000pf polystyrene
\(1,000 \mu \mathrm{~F} 25 \mathrm{~V}\) elect.

Semiconductors
\begin{tabular}{ll}
TR1, TR3 & BFY 51 (2 off) \\
TR2 & BC108 \\
D1, D4, D5 & IN4148 (3 off) \\
D2 & 5.6 V 400 mW Zener \\
D3 & 3.3 V 400 mW Zener
\end{tabular}

Integrated Circuits
\(\begin{array}{ll}\text { IC1, IC2, IC4 } & \text { CD4001 (3 off) } \\ \text { IC3 } & \text { CD4025 }\end{array}\)
Miscellaneous
\(\left.\begin{array}{l}\text { PL1 } \\
\text { SKTA }\end{array}\right\} \quad\) 2-pole \(0-25\) in jack plug and socket
\begin{tabular}{l}
RLA \\
LS1
\end{tabular}\(\quad 12 \mathrm{~V} / 150 \Omega\) relay

LS1 \(\quad 35 \Omega\) loudspeaker

Fig. 2. Printed circuit board layout

Fig. 3. Component layout for p.c.b.

\section*{BATTERY OPERATION}

It is possible to incorporate automatic battery switchover in the event of a mains failure, using the circuit shown in Fig. 5. When the mains supply fails, D8 conducts (it is normally revers-biased), and the 9 V battery powers the circuit until the mains voltage is re-established. The voltage drop from 14 V to 9 V should not affect the circuit, unless R3 (if it is made preset) is set too close to the limit (i.e. to give a very small acceptance range).

If the circuit is to be permanently battery powered, some form of battery voltage'check will be required to ensure that the batteries are changed before their voltage drops below 7V.

\section*{ALARM OPTIONS}

There are several alternatives to using an alarm tone generator and loudspeaker; an electric bell or any other load (e.g. a light mounted above the doorway) can be controlled in the same way, using a relay or transistor.

\section*{INPUT PROTECTION}

If a high voltage is applied to the input socket, the effect on the circuitry is rather unpredictable; although it is unlikely that such an action would result in the

Fig. 4. Power supply

Fig. 5. Standby battery supply
external circuit being activated, the possibility of it doing so is still present.
The cmos gates would probably be the first casualties if this should happen, but damage can be prevented by wiring 1 Megohm resistors in series with the gate inputs; these will not affect the circuit operation in any way (since the input impedance of a cmos gate is typically \(10^{12}\) ohms), but will limit the input currents to very low values.

\section*{SETTING UP}

Because of the long monostable time constant, setting up would be extremely time-consuming and tedious, unless a 470 kilohms resistor is temporarily connected in parallel with R9; the alarm circuit then only operates for a few seconds, rather than the usual 12 minutes. The setting-up procedure for the basic circuit is as follows:

With the circuit operating from its normal supply voltage, connect a multimeter across the output of the schmitt trigged and the 0 V line: with the key inserted, adjust R1 for a high output voltage. It will be found that this voltage is high for variations in R1 over a small range: R1 should be set to the middle of this range. No further setting up should be necessary.

If a preset is used for R3, the following , procedure should be followed:

Set R3 to maximum, and adjust R1 in the same way as for the basic circuit: it will be found that the possible variation of R1 is quite large. Now R3 should be reduced in value until the schmitt trigger voltage drops, when R1 should be readjusted. R3 and R1 should be adjusted in turn until no further adjustment is possible. Although in this state the circuit is very sensitive, R3 should be increased in value by a small amount, to give some allowance for supply voltage and temperature changes.

The keyswitch is then ready for use.
this 24 Page
PRESENTED FREE WITH PRACTICAL ELECTRONICS MAY

The literature of the computer world is riddled with its own brand of mystifying esoteric jargon which can make the undersis handy reference technology a hard slog. This endeavours with offers to simplify such vocabulary.

This p.s.u. has an adjustable output up to 25 volts with over voltage protection. The current is variable to a maximum of 1.5 amps .

A compact unit which is capable of testing all 74 series 14 and 16 pin packages. It has a clip on action and l.e.d.'s are used to indicate the logic states ' 1 ' and ' 0 '. Its specification matches many of the more expensive ready built types.

PRACTICAL

Appearing every two months, Micro-Bus will present ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data books. The most original ideas will probably come from readers working on their own microcomputer systems, and payment will be made for any contribution featured here. This is also the place to air your views, in general, on this new technology, so let's be hearing from you!

\section*{FOUR MICROS COMPARED}

This month's Micro-Bus looks at and compares the four microprocessors which have so far proved most popular with home programmers: SC/MP, M6800, MCS6502, and Z80. Obviously it would be possible to devote several pages of detailed description to each one, but since such data is available from the manufacturer or a distributor this article will concentrate on the differences between them from a programming point of view.

This should help people familiar with one micro to understand programs intended for another. To this end each of these micros' approaches to solving the same simple problem will be presented. The choice of a suitable "benchmark" problem is tricky because a particular micro may handle certain operations with an ease that does not reflect its general capability; for example, the Z80 can move blocks of data with a single instruction, and SC/MPP has a delay instruction.
The task chosen does not favour any particular micro: the sorting of an array of numbers in memory using an "exchange sort". Although for large amounts of data a more efficient algorithm could certainly be found, this was chosen for its simplicity. It involves scanning through the array exchanging pairs of elements which are out of order; this is repeated until a complete scan has been done without any exchanges, when the array must be in correct order and the program stops.
Additionally it was specified that the length of the array should be less than 256 bytes and passed to the routine in a suitable register, and that the array could reside anywhere in memory, its address being also passed to the routine.

The programs for each micro are given in Fig. 1. These are assembler listings, and the formats are similar in that the addresses and machine code are in hexadecimal on the left, and the symbolic form of each instruction appears to their right. Assembler is a symbolic language
which makes it possible to think about and write programs in terms of mnemonic words rather than numbers, and without having to calculate details inessential to the logic of the program (such as addresses and relative jumps). A program called "the assembler" takes the program in symbolic form-the righthand side of the listings-and calculates the corresponding addresses and opcodes. In addition the assembler can be told to perform other operations, such as reserving storage for variables and positioning the program in memory. Such "assembler directives" tend to differ between manufacturers; for example, the symbol for the current address is ., \({ }^{*}\), or \(\$\) for these four micros.

The programs are believed to be the shortest possible, but we would be pleased to hear from anyone who feels that a particular micro has had an unfair presentation.

\section*{NATIONAL'S SC/MP}

SC/MP (pronounced "scamp") is one of the cheapest micros available, and it has a very simple and symmetrical instruction set. There are three 16 -bit pointer registers, P1, P2, and P3, and all memory addressing (apart from immediate) is indexed either using one of these, or relative to the program countereffectively a fourth pointer PO. Jumps are similarly either PC-relative or pointer-relative. There is one 8 -bit accumulator, AC, which is used in all operations, and an 8 -bit "extension" register which can be specified instead of a memory address in most dual-operand instructions, or used as a temporary store.
In SC/MP's version of the sort routine, Fig. 1 (a), P1 is used to point to the pair of elements being compared. The ,duat-operand instructions may also autoincrement/decrement the pointer register; for example, the instruction LD @1 (1) in the program increments the pointer by 1 after loading the AC with the value it addressed. Besides saving instructions, this facility makes it possible to implement stacks quite neatly.

Subroutine calls are performed by the XPPPC instruction which exchanges the specified pointer register with the program counter, causing a jump. The current value of the program counter is thus saved in the register, and a second XPPC wid return control to the calling program. The subroutine address must first have been loaded into the register, and this unfortunately takes four instruc-tions-a fact which tends to discourage the liberal use of subroutines. The other three micros all automatically stack the program counter on a subroutine call and restore it on a return, so nested or recursive subroutine calls are no problem.

SC/MP's instruction set has been pared down to the essentiaits, and its version of the sort routine is longer than for the other micros. It also seems to be harder to understand programs written for it due to the need for nonobvious tricks; for example, there is no "jump if carry clear" instruction; instead one must first copy the status word to the \(A C\) and then, since the carry is the top bit of the status word, a "jump if positive" achieves the required result. Nevertheless its three index registers, auto increment/decrement, and the ability to write relocatable programs, all make it an attractive micro once such tricks have been mastered.

\section*{MOTOROLA'S M6800}

The sort routine for the M6800 is shown in Fig. 1 (b). The M6800 differs from the other micros considered here in having two primary accumulators, A and B, either of which can be specified as an operand in the majority of instructions. This saves instructions where otherwise temporary variables would be needed, as for example in the section of the routine which swaps the two adjacent elements.

All the memory reference instructions use either direct or indexed addressing. With direct addressing the address is given in the instruction and the singleoperand instructions such as increment, decrement, or clear, can therefore operate

directly on memory without using an accumulator. Indexed addressing adds the contents of the 16 -bit index register to the second byte of the instruction to give the effective address, thus making it possible to service arrays of any length and positioned anywhere in memory.

The orderliness of the instruction set and the variety of branch-on-condition instructions available make it possible to implement most problems directly and ina comprehensible way. The only real limitation is in the provision of only one index register which makes it necessary, when processing two independent arrays of data as in multibyte arithmetic, to save and load its value to and from memory between operations on each array. The other three micros are more fortunate in this respect.

An upward-compatible addition to the family due out later this year, the 6809, will overcome this by providing an extra 16 -bit index register together with several new addressing modes.

\section*{MOS TECHNOLOGY'S MCS6502}

The MCS6502 is a member of the MCS5600 range of micros, all with different hardware options but the same instruction set. They were designed with the same basic philosophy as the M6800 and at first sight programs for them look similar. However, MOS Technology have made a number of simplifications and improvements to the M6800 instruction set resulting in a machine which tends to execute programs faster, and which solves certain types of problems more efficiently.
The 'M6800's 16 -bit index register has been replaced by two 8 -bit index registers, X and Y , and there is only one
accumulator, A. As well as normal indexed addressing, which can use either of the index registers, two addressing modes are provided which are not found in the M6800 or indeed in either of the other two micros: pre-indexed and postindexed indirect addressing.

\section*{THE MODES DESCRIBED}

With pre-indexed indirect addressing the contents of the X register and the second instruction byte are added to give an address in the first 256 bytes of memory-page zero-and the two bytes of data at that address are taken as the indirect address for the operation. This mode of addressing is useful for servicing a set of independent locations whose addresses are kept in a table in page zero.

With post-indexed indirect addressing, the mode used in the MCS6502's version of the sort routine in Fig. 1 (c), the second byte of the instruction specifies an address in page zero where an indirect address is found. The contents of the \(Y\) register are added to this to give the effective address.
Post-indexed indirect addressing makes it possible to index arrays whose positions could be anywhere in memory, as in the sort program. The address of the array in this program is stored in page zero at PTR, and this indirect address is indexed by Y to select elements of the array. Note that this makes the SWAP part of the routine rather inelegant; this could be improved if the address of the array were known in advance. The array is scanned backwards from the end in this version because the program works out shorter this way.

Fig. I. Four microprocessors approaching the same programming problem of sorting an array of numbers into ascending order using an "exchange sort" algorithm.
(a) SC/MP. (b) M6800. (c) MCS6502.
(d) \(\mathbf{Z 8 0}\).

\section*{ZILOG'S Z80}

The Z 80 is an improved version of the popular 8080A and contains all its codes as a subset of its instruction set. To it have been added an additional set of seven 8 -bit registers, a large number of new instructions, program-relative jumps, and indexed addressing. The indexed addressing uses one of the two 16 -bit index registers. IX or IY, and the codes have been obtained by prefixing the existing indirect addressing code, which takes the address from the register pair HL, by one of two modifiers which were, unassigned codes on the 8080A, "DD" or "FD". The displacement, where applicable, is the last byte of the instruction, resulting in lengths of four bytes for the indexed addressing operations.

Th Z80's version of the sort routine is taken from the Z80-CPU Technical Manual and it illustrates several of the additions to the 8080 A instruction set: the "decrement and jump if non-zero" uses the B register as a counter to provide very neat loop control, and the bit clear (RES), set (SET), and test (BIT) instructions each achieve what would otherwise take two or three instructions.

The question arises: is it worth paying the price of a messy instruction set for the advantage of upward compatibility with the 8080A? Firms with 8080A software already written are one matter, but as far as amateurs intending to program in machine code are concerned the answer seems to be no. Instruction set design has come some way since the 8080A and yet the Z 80 has retained its basic design philosophy resulting in a confusing mixture of low-level and highlevel operations.

Low cost systems currently known to be available for the four popular microprocessors discussed in this article.

Fig. 2. Maximal-length sequence generator using CMOS gates and shift registers. The output, taken from any stage, is a random noise.

Fig. 3. Complete program for the M6800 which generates a pseudo-random sequence of bits in a way analogous to the circuit of Fig. 2.

\section*{RANDOM NOISE}

Electronics constructors with no computting background should not despair at the thought of programming microprocessor systems; in many cases programs can be denived directly from a consideration of how the same task is carried out in hardware. To illustrate this a circuit to generate random noise is given together with an analogous program written for a M6800 micro. There should be no problems in converting this for other micros.

The circuit in Fig. 2 shows how a 23 -stage shift register can be arranged to produce a maximal-length sequence of bits by connecting the outputs from stages 18 and 23 back to the input by an exclusive-OR gate.

\section*{ANALOGOUS PROGRAM}

In the analagous program, shown in Fig. 2, the shift registers are replaced by three 8 -bit memory locations designated LAST, LAST + 1, and PIAREG. The third of these is contained in a versatile
input/output chip, Motorola's MC6802 Peripheral Interface Adapter, and the first two lines of the program are for configuring this so that the contents of the location PIAREG are available at the PIA's eight output pins PAO-PA7. The first of these locations is ANDed with binary 01000010 to isolate bits 23 and 18 , and adding 00111110 then sets bit 23 to the exclusive-OR of these two bits. This is then shifted into the carry bit, and from there into the bottom bit of the three locations.

The sequence is \(2^{23}-1\) or \(8,388,607\) bits long and with the program as it stands the output, which can be taken from any stage, is a white noise with a power spectrum substantially flat over the audible frequency region. With a delay inserted into the loop the sequence of bits can be used as random-coin tosses for use in games, modelling, or psychological expeniments. If the bits are generated at a rate of 1 per second the sequence will repeat itself only after 97 days; for most practical purposes it is random!

\section*{Addresses for Firms in table}

Bywood Electronics, 68 Ebberns Road, Hemel Hempstead, Herts HP3 9QRC.

Cramer Electronics, 16 Uxbridge Road, London W5 2BP.

Computer Workshop, 174 Ifield Road, London SWIO 9AG.
G. R. Electronics Ltd., 80 Church Road, Newport, Gwent.

Lynx Electronics (London) Ltd., 92 Broad Street, Chesham, Bucks.
A. Marshall (London) Ltd., 40-42 Cricklewood Broadway, London NW2 3ET.

The Newbear Computing Store, 7 Bone Lane, Newbury.

Science of Cambridge Ltd., 6 King's Parade, Cambridge CB2 ISN.

Sintel, P.O. Box 75A, Oxford.

FRANK W. HYDE

\section*{THE NEXT FEW MONTHS}

During the next few months the American space programme is a full one. One of the major events is the mission of two probes to Venus for an extensive investigation of that planet's atmosphere and surface. This mission has already been specially described in Spacewatch for March.

A new Earth spacecraft called 'Seasat will be launched in May. This vehicle will be of particular value to meteorologists. Seasat will measure the dynamics of the Earth. In particular it will measure the changing shape of ocean surfaces, the heights of waves and the movements of the many ocean currents. It will track icebergs and locate oil slicks using radar. In addition there will be a special watch on eddies and tides.
The extent of these activities is another step forward in this technology. The benefits will be felt in many other areas apart from meteorology. Oceanography will have access to valuable data and the world shipping and fishing industries will also benefit from the knowledge of the daily conditions.

Another mission, HCMM (Heat Capacity Mapping Mission), is devoted to the measurement of land temperatures. Special sensors on the spacecraft will monitor land surface temperatures at daytime maximum and night time minimum. From the changes that are noted in the way that solar heat is retained in trees, in surface rocks and soil it is hoped that the types of rock may be deduced, plant temperatures indicating stress of disease, water cycles and soil moisture.

Some success in this area has already
been achieved with previous Earth Resources Satellites. The wider activities of the HCMM mission will make soundings in temperature over snow covered areas, hot springs and detect man made pollution.
Another new programme is an astronomical observatory; the IUE, International Ultraviolet Explorer. This mission is a joint activity involving science and industry. The European Space Agency and the American National Agency for Space Administration (NASA) are joining to study objects which generate, reflect or re-radiate ultraviolet light. Some young hot stars radiate mostly in the ultraviolet region of the spectrum. In consequence they are almost invisible at other wavelengths. There are also other targets for this mission and among these are studies of the Seyfert Galaxies and observation of the gas and dust between stars where absorption and reemission of ultraviolet takes place.
Another mission launched in July; this is the third ISEE spacecraft (International Sun-Earth Explorer) which will join the two that were launched in 1977. Each of these craft will be stationed at a different point between the Earth and the Sun. They will be observing the relationships between solar events and magnetic phenomena in the outer environment of the Earth. Recent work has indioated a relationship between magnetic storms and the weather. This co-operative venture involves all the nations of ESA.
The launch schedules in addition to those already mentioned include a third Landsat Earth Resources satellite and the second HEAO. This latter will deal with High-Energy Astronomy. It is an observatory mainly for the study of Xrays and Gamma rays. HEAO 1 launched in August 1977 has observed a dense star which seems to be a good candidate for the title of Black Hole.

\section*{THE HOT LINE}

The Hot Line between Washington and the USSR has now entered the sDace age; two independent systems of communication via two satellites. The new line, officially known as Direct Communications Link (DCL), will be more efficient and less liable to failure during times of emergency. The link is less vulnerable than the old system since it depends to a much lesser degree on the extensive microwave links. It also makes it possible for direct communication without a third country being involved. Like its predecessor DCL, contrary to popular belief, makes possible the exchange of printed messages and not telephone calls. The advantage of the printed message is that the tanguage barrier is overcome. It avoids the misunderstanding by translators and provides a written record of the communication. The main purpose of this link is to provide direct communication between the President of the United States and the President of the Soviet Union.

\section*{SOVIET CARGO SPACESHIP}

Work on the Soviet Cargo Spaceship Progress 1 was put in hand when the space station proper was commenced. According to Konstatin Feoktistov, speaking on this subject, it was realised that there were a number of items which could not be kept in space over long periods of time. Also there were items which might need replacement because of malfunction, replenishment of such things as fuel for control and gas stocks for the atmosphere within the spacecraft. There was also the question of water for showers and washing of linen etc.

It is estimated that each cosmonaut requires about 30 kilogrammes of materials per day. The cargo ship is similar in basic design to the Soyus spacecraft. The unit module has remained unchanged but the size of the instrument module has been increased. Special tanks for liquid cargoes and a compartment for dry cargo were added. The freight compartment is hermetically sealed so that, after docking, the cosmonauts can work in it to transfer cargo to Salyut-6. Because the power circuit and the layout of the spacecraft were substantially changed, a new set of intensive tests for rigidity, strength, vibration and heat cycles, was made. Since the movement of even small things takes time in space, the design changes were for making such work by the cosmonauts easier and more comfortable.

Progress 1 docked after two days instead of one, as would be normal. This was because the cargo ship was unmanned and the ground commands by radio take longer. Also it was considered that it was better not to hurry the operation.
The cosmonauts aboard Salyut-6 performed the role of a standby system for the automatic control during docking. During the approach phase, data on the speed of Progress 1 and its orientation were transmitted to Salyut-6. The crew watched the approach and would have, if malfunction had occurred, aborted the docking, or, if the craft was approaching dangerously fast, started the motors and escaped from impact. None of this was necessary as the whole operation was carried out according to plan.

\section*{PUTTING THE RECORD STRAIGHT}

In the January issue of Spacewatch reference was made to the Kettering School Station. Unfortunately the name of the master who is its director was given as Mr. Cooper. This error on the writer's part is regretted. The more so because in the early days of the space scene we were in close contact. G. E. Perry MBE, FInstP is famous for his activities in the field of monitoring, particularly in the case of Soviet launchings. On a number of occasions launches were detected and announced from Kettering before official news was given. On a number of occasions Spacewatch has mentioned Mr. Perry and the school.

\section*{OUTLOOK}

All indicators suggest this will be a good year for the European electronics industry and not least for the UK. Even the depressed consumer sector can take heart from the pre-election sweetener of big tax concessions which will encourage consumer spending.

An interesting point is that taking Western Europe as a whole the balance of trade with the rest of the world is only just favourable, with total imports only marginally lower than total exports. But this has to be accepted in a world industry like electronics. The time to worry is when the balance is wholly and consistently unfavourable.

Meantime, the structural shake-up of the British electronics industry, a big talking point in the latter half of 1977, is only barely being kept alive. Plessey, one of the favourites for chopping up and merging with others in a huge regroup, turned in a reasonable if not sparkling performance last year. Decca, another candidate according to industry gossip, still has founder Sir Edward Lewis in the chair who is said not to be in favour. Some recent 'kite-flying' suggests that STC, at present wholly owned by the US giant PTT, might be a catalyst but only if STC shares were made available to British buyers so that the company could claim to be 'British', or partly so. There is talk of government intervention. But my own thought, shared by a large part of what is a very successful industry, is that this would be the kiss of death.

The proposed government support for microelectronics development in the UK is, however, welcome. The idea is that \(£ 25\) million invested by the indus. try itself should be matched by an equal amount from the taxpayers. It
sounds generous until you compare it with the reported \(£ 135\) million which the Japanese government is spending on similar projects. And when you compare \(£ 25\) million with the hundreds of millions spent supporting loss-making industries like steel and shipbuilding it looks downright mean. A sound business maxim is to back your winners and shed your losers. But logic counts little in an election year.

\section*{ATE}

The final round-up of Automatic Test 77, held late last year at Brighton, reveals an even higher level of interest as well as increased attendance. Membrain, as usual, had one of the biggest stands. There had been industry rumours for some time that the six-year-young dynamic company was on the market but it was only after the exhibition that a terse announcement came that Membrain had been acquired by Schlumberger Measurement and Control (UK) Ltd, who already have Solartron and Sangamo Weston under their belt. Membrain, however, will continue to operate as a separate company. Among its recent successes is a contract connected with development of the British Army Ptarmigan communications system.

Because of the huge international interest in automatic test equipment, this year's show and conference will be staged by the British organisers in Paris.

ATE is now showing through as a great money-saver. It is super-efficient. But for ATE, according to one company, they would have to employ 250 test engineers instead of only 50 . Looked at in another way, ATE throws people out of work. Which illustrates the difference between wealth-creation and job-creation.

\section*{RAILWAY SIMULATOR}

Redifon Simulation Ltd, world leaders in flight simulators, are firmly on the ground with their latest project, an order for three railway cab simulators for training drivers on the new underground system in Hong Kong. As in flight simulators, the trainees will have a lively and realistic experience with vision and sound effects while the instructors will be able to introduce various faults which, in real life, could be catastrophic.

\section*{MIDDLE EAST}

The \(£ 1 \cdot 6\) billion sale-of-the-century telecommunications contract for SaudiArabia left Britain out in the cold. The winning consortium was Philips/Ericsson/Bell (Canada).

Philips and Ericsson will build the equipment and Bell (Canada) will
operate and maintain it. The contracts will solve many problems for Ericsson in Sweden and Philips in Holland, both of whom had been shedding labour in their telecommunications factories but are now recruiting again.

A consolation prize for Britain is a £40 million contract with Egypt for the Swingfire anti-tank guided weapon. Britain has now supplanted the Soviet Union as a major weapons supplier to Egypt but the long-term penalty is that eventually Egypt will, with British assistance, build up her own independent industry. A purpose-built factory is being erected near Cairo where the missiles will be assembled from UKmade components. Ultimately the whole project will move to Egypt.

This pattern is already being followed in Egypt by at least one British electronics company. A. British executive tells me there is now no alternative to this type of agreement. If you turn it down you get no business at all. Such arrangements are not confined to the Middle East. The \(£ 128\) million contract for Hawk trainer aircraft for Finland gives the Finns the opportunity of assembling the aircraft from piece parts, many of them being also manufactured in that country. We thus not only train overseas customers in what, to them, is advanced technology but also transfer the know-how. It is therefore more than ever important to stay one stage ahead in advanced technology.

\section*{ENGINEERING INQUIRY}

Of the chairman and \(1 t\) members serving on the Committee of Inquiry into the Engineering Profession only one member is identifiable as having deep practical knowledge of the electronics industry. He is Dr. John A. Powell, managing director of EMI Ltd.

The IEE was among the first to make a submission to the Inquiry. Calling for tougher entry qualifications and more demanding degree courses the IEE stated that entry standards have fallen and this has encouraged students to undertake theoretical studies that are beyond their intellectual capacity. The implication is that the weaker students should go for HNC or diploma courses and emerge as first-class technician engineers rather than third-rate graduates.

\section*{DIGITAL BROADCASTING}

Two sessions on digital techniques in broadcasting were held at the IEE recently. It was a joint presentation by the BBC, IBA, ITCA and the Post Office and as well as the usual propagation methods there was a demonstration of digital techniques transmitted through fibre-optics. We shall be hearing a great deal more on this topic in the future.

\title{
BEFORE YOU BUY AN AMPLIFIER MODULE-CHECK: DOES IT HAVE * 30A power transistors \(\star 2\) 2year guarantee Then compare with the Tamba range-excellent value- 25,50 and 100 W R.M.S
}
\begin{tabular}{|c|c|}
\hline TAM 1000.100 W 4 ohms 65 V & E9.80 \\
\hline TAM 50050 W 4 ohms 45V & E7.50 \\
\hline TAM250 25 W 8 ohms 45 V & ¢5.75 \\
\hline POWER SUPPLIES & \\
\hline For 1 or 2 TAM250/500 & £7-50 \\
\hline For 1 or 2 TAM 1000 & £9-80 \\
\hline (Carriage 50p on supplies) & \\
\hline
\end{tabular}
Suits loads \(4-16 \mathrm{ohms}\)
\(20-20.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}\)
Silicon circuitry throughout
Glass fibre P. C. B.
(High sensitivity (100 mV 10k)

High grade components used through out: Texas. Mullard, R.C.A.. Plessey. etc

Use up to 10 PRE-AMPS with 1 power supply
Printed circuit board assembly with treble and bass controls plus slider volume controt
£6. 50

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc)-C.O.D. (60p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at \(8 \%\) to orders for 50 and 100 W systems and at \(12 \frac{1}{2} \%\) for 25 W systems (including preamp if ordered at same time).

Hours, 9.30 a.m. -5 p.m Monday - Saturday Callers welcome. Tel. (01) 6840098

\section*{TAMBA ELECTRONICS}

Bensham Manor Road Passage, Bensham Manor Road, Thornton Heath, Surrey.

\section*{NEW FROM CASIO NEW}

All watches disploy hours, minutes, seconds, AM/PM, with day, date and month at a tauch of the calendar button.
CHRONOGRAPH: Times from \(1 / 100\) second to 59 minutes, 59.99 seconds then restorts from zero. Meosures normol lime, net time, lap time and first and second place times. \(\pm 15\) seconds/month accuracy. 31QS-12B. Stopwatch, Dual Time Zane. 31QR-17B, Stopwatch. All stainless steel, mineral glass. Shack resistant. Water resistont (100 feet). Night light. Automatic colendar. One battery lasts 12 manths or more.

MQ-2 LCD Clock, Calendar, Alarm, Alarm Timer, Time Memory, Calculator. Two daily alorms or countdown alorm timer (10 second duration). 24 hour Time Memory. Time, Date and \(\%\) calculations. \(\frac{3}{1} x\) \(4 \frac{5}{8} \times 1 \frac{3^{\prime \prime}}{8} .1 .6 \mathrm{oz} . \pm 15\) secands accuracy. 18 months battery.
RRP £ 39.95.
Our price \(\mathbf{£ 3 4 . 9 5}\)
Casio Mini Card. \(4 \times 55 \times 91 \mathrm{~mm}, 3\) key memory, \%, LCD, 1000 hours \(£ 16.95\) New powerful scientifics with || and permutations/combinations. Numerous Sei functions, Fractians, \%, SD etc. FX 120 £19.95. FX 3000 (LCD) £25.95. OPTIM Battery LCD travel/alarm clack. Stapwatch feature. \(1 \times 1 \frac{3}{4} \times 5^{\prime \prime} £ 19.50\). Send 25p (refundable an purchase) for our illustrated catalogue.
Prices include VAT, P\&P. Send cheque, P.O., or phone your credit card number to:

\section*{THMPUS}

Dept. P.E.
\(19 / 21\) Fizroy Streer
Cambridge CB1 1 EH Cambridge 611 EH
Tel. 0223312866

\section*{IKATITDUS \\ }

BARGAIN MONTH ! POST FREE E5+ FREE 1978 CATALOGUE SALE LIST. MANY SURPLUS \& CLEARANCE LINES. SENDS.A.E. DO YOURSELF A FAVOUR A SEMICONDUCTOR POWER HOUSE.
TRAMPUS ELECTRONICS LTD 58-60 GROVE ROAD, WINDSOR BERKS. SLA \(1 H S\). TELEPHONE WINDSOR (07535) 54525.
Fast service on ex stock product. Normally 24 hour turn around. Quality
devices to manutacturers specifications. No minimum order charge excep devices to manufacturers specifications. No minimum order charge excep Barclaycard or Access by post or telephone \(£ 5\) minimum. Send C.W.O. post tree over \(£ 5\), except invoiced or credit card orders, otherwise add 20 p po
\(\&\) packing. Add \(8 \%\) VAT to items marked - \(12 \%\) VAT to unmarked items
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{ Red no clip \(\begin{array}{ll}0.2 \text { or } 2098 \text { clip } & \mathbf{1 2 p}{ }^{\circ} \\ \text { Colour LEDS all } & 16 p^{\circ}\end{array}\)} & \multirow[t]{3}{*}{\begin{tabular}{l}
BULK BUY BARGAINS FULL SPEC PAKS. \\
All \(£ 1\) each
\end{tabular}} & \multicolumn{2}{|l|}{REDUCED LINES IC's \& TRANSISTORS} \\
\hline & & & MJE2955 £ \\
\hline & & BC. & JE3055 \\
\hline & PAK A: \(12 \times\) Red LEDs & BC109 8p & ORP 1250 \\
\hline & PAK B: \(5 \times 7418\) PIN \(\mathrm{fl}^{\text {(*)}}\) & BC109C \({ }^{15} p^{*}\) & TIP2955 65 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
DISPIAY \\
0.3" DL704/2 \& 707/2
\end{tabular}} & \multirow[t]{2}{*}{PAK C: \(4 \times 2 \mathrm{~N} 305590 \mathrm{~F}\)} & \multirow[t]{2}{*}{BC177/8/9 \({ }^{\text {20p }}\).} & T1P305 \\
\hline & & & 2N3055 45p* \\
\hline & PAK D: \(12 \times\) BC109 \({ }^{\text {f }} \mathbf{1}^{*}\) & \multirow[t]{2}{*}{\(\mathrm{BC} 182 / 3 / 4\)
\(\mathrm{BC} 212 / 3 / 4\)
70} & 2N3702/4 8p \({ }^{\text {c }}\) \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.6^{\prime \prime} \mathrm{DL} 747 / 2 \\
& \text { TGS Gas Detectors }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{array}{lr}
\text { PAKE: } 13 \times \text { BC182 } & \text { £1 } \\
\text { PAKF: } 13 \times 2 \text { N3704 } & £ 1 \\
\text { PAKG: } 7 \times \text { BFY51 } & £ 1 \\
\text { PAKH: } 7 \times 2 \text { N3819E } & £ 1
\end{array}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline \multicolumn{3}{|r|}{} & \\
\hline & & \multirow[b]{2}{*}{BDI31/39 \({ }^{\text {eq }}\)} & 2N5457 50p* \\
\hline CAPACITORS & PAK J: \(6 \times 2 \mathrm{~N} 3053\) £1* & & Matching +200 \\
\hline \multirow[t]{2}{*}{Ceramic 22pf to 0.5 Electrolytic \(1 \mu \mathrm{f}\) to 200 \(\mu \mathrm{f}\)} & \multirow[t]{2}{*}{PAK K: \(40 \times 1 \mathrm{~N} 4148 \mathrm{f} \mathbf{1}^{*}\) PAK M: \(4 \times\) Pair NPN/PNPZA} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Ins Bush Sets } \\
& \text { AOD } \quad 10 \mathrm{p}
\end{aligned}
\]} \\
\hline & & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{ll}
\(1000 \mathrm{ut} / 25 \mathrm{v}\) \\
Tantalums only & \(\mathbf{1 6 p} \mathbf{2 0 9}\)
\end{tabular}} & ¢1* & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\(\begin{array}{ll}\text { ZENERS 4OOMW } & 9 p \\ \text { DIODES:IN4148/914 } & 5 p^{\circ} \\ \text { IN4001 } 5 p^{\circ} & 4004 \\ 7 p^{*}\end{array}\)}} \\
\hline & \(50 \times 0481 / 91 \quad\) ¢1 & & \\
\hline & PAK P: \(20 \times\) Plastic \(109 \mathbf{f 1}\) & & \\
\hline & PAK R: \(14 \times\) BC 107 £1* & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { RESISTORS } \frac{1}{2} / \frac{1}{2} w \begin{array}{r}
\text { 2p ea } \\
\text { Presets } 10 p
\end{array} \text { Pots } 25 p
\end{aligned}
\]} & PAK S: \(14 \times\) BC 108 £1* & \multicolumn{2}{|l|}{LINEARS:IC's 7812 £ \(1^{*}\)} \\
\hline & PAK T: \(10 \times N \mathrm{NN} 2 \mathrm{Ca} 60 \mathrm{E} 1^{\circ}\) & 301/14pin 29p \({ }^{\circ}\) & 7815 75p* \\
\hline & PAK U: \(4 \times 1\) A 50vSLR \({ }^{\text {P1 }}\) & 3080PA ¢1* & 76013 £1.49 \\
\hline & PAK V: \(40 \times 5 \mathrm{MFD}\) 10v \(\mathrm{E}^{\text {P }}\) & 555 29p* & LM309K f1 \\
\hline \multirow[t]{2}{*}{VERO} & PAK W: 20 Electrolytics \({ }^{\text {f }} 1\) & 741/8 219 \({ }^{\text {\% }}\) & LM380 89 \\
\hline & \[
\text { PAK Y: } 4 \times \text { LM301/14 } \quad \mathbf{f}
\]
\[
\text { PAK Z: } 20 \times 2 \mathrm{~N} 3702
\] & 747 89p* & LM381 £1.55 \\
\hline & \[
\begin{aligned}
& \text { PAK Z: } 20 \times 2 N 3702 \quad \text { fype PNP } \\
& \text { TY }
\end{aligned}
\] & 748/14 29p* & LM3900 69 \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{NEW PAK X: \(4 \times 555 \quad £ 1\) TRIAC: 10A 400 v} & \(\begin{array}{ll}748 / 8 & \mathbf{3 9 p} \\ 7805 & \\ \text { ¢1* }\end{array}\) & MC1310 \\
\hline & & & \\
\hline \multirow[t]{2}{*}{Nyion Board Copper \(6 \times 4\)} & \multirow[t]{2}{*}{\[
\begin{array}{ll}
\text { SCR: } 4 A \text { 400V } 11061 & 50 \\
\text { D|AC: BR } 100 / S T Z & 2
\end{array}
\]} & 7400 TTL 12p* & 7480 45p \({ }^{\text {m }}\) \\
\hline & & 7401 8p & 7490 33p \({ }^{\circ}\) \\
\hline \multirow[t]{2}{*}{Tub FEC Etch \(\frac{1}{2} \mathrm{~kg}\)
RS Bleeper 12 v
¢1.50
¢} & \multirow[t]{2}{*}{SCR: TAG 1A600v} & 7405 8p* & 74121 27p* \\
\hline & & 7413 27p* & 74123 50p" \\
\hline \multirow[t]{4}{*}{Knobbs: Cheap Relay. Multi Pole 12 v Silicon Grease Satchet故 igital Clock IC} & \multirow[t]{2}{*}{DIL Sockets: Lo Protile} & 7420 8p* & \multirow[t]{2}{*}{CMOS eic} \\
\hline & & 7430 8p* & \\
\hline & 8 pin 12p* & 7445 50p* & 4001 18p \\
\hline & 14 or 16 pin 15p & 79p & 4011 18p \({ }^{\circ}\) \\
\hline
\end{tabular}

FREE: 1978 CATALOGUE SALE LIST. SEND S.A.E. BARGAIN OFFERS!
THIS MONTH'S SNIPS. LIMITED STOCKS.
TUNER MODULE. BRAND NEW EXPENSIVE. EX MUS
CENTRE MW. LW FM, MPX PUSH BUTION \(£ 22.50\)
CENTRE MW. LW, FM, MPX PUSH BUTHON \(£ 2\)
7 wart STEREO AMPLIFIER MODULE \(£ 31.69\)
TUNING GANG. AIR SPACED O-360/395

\section*{LOOK! Here's how you} master electronics
... the practical way

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course

\section*{1 Build an oscilloscope}

As the first stage of your training, you actually build your own Cathode ray oscilloscope ' This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar very large saving over buying
piece of essential equipment.

2 Read, draw and understand circuit diagrams
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television. radio. computers and countless other electronic devices and their servicing procedures.

\section*{3 Carry out over 40 experiments on basic circuits}

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing. servicing and maintaining all types of electronic equipment. radio. t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

\title{
British National Radio \& Electronic School
}
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

Minimum Order £2. Cheque-P/O with order
We are situated 2 min . from Watford Junction Station.
Send 40 p for our latest catalogue.

\title{
THE COMPONENT CENTRE
}

7 Langley Road, Watford, Herts WD3 2PR Tel: Watford 45335
Open Mon - Sat 9.30-5.30. Closed Wed

Do-it-Yourself Kits Or Factory Assembled
(1)IIIER=IOrgans

이프탸I String Ensembles
(1)IIEREIMATICRhythm
© (1) EREIMATICAccompaniment
©IIEREIVOICERotorSound:String Choir ©IIIEREIProfessional Series
(1) \(\boldsymbol{W}=\mathbf{R E I}\) Audio Mixer 2004
(1)IㅡㅌㅏITITONERotating Baffles (1)IIIERFISpeaker Cabinets

Send for our 104 page full-colour catalogue and 16-page price list, for \(£ 2.00\), which is refunded against your first order value \(£ 25.00\).

AURA SOUNDS (P2), Copthorne Bank, Crawley, W. Sussex.

Our new 1978 catalogue lists a whole range of plastic boxes to house all your projects. And we've got circuit boards, accessories, module systems, and metal cases - everything you need to give your equipment the quality you demand. Send 25p to cover post and packing, and the catalogue's yours.

VERO ELECTRONICS LTD. RETAIL DEPT. Industrial Estate, Chandlers Ford, Hants. SO5 3ZR

Telephone Chandlers Ford (04215) 2956

\section*{IT'S EASY WHEN YOU KNOW!}

To avoid missing your copy of PRACTICAL ELECTRONICS - simply complete this order form and hand it to your newsagent.

\section*{ORDER FORM}

To:
(name of newsagent)
Address

Please reserve/deliver every month one copy of PRACTICAL ELECTRONICS until further notice.

My Name
Address

\section*{(1) IVNX}

NORTHERN SEMINAR MANCHESTER

APRIL 1
\(£ 5.50\)
AFTER THE ENORMOUS
SUCCESS OF THE WEMBLEY
SEMINAR LYNX HAVE BEEN
PERSUADED THAT THERE
ARESUFFICIENT
NORTHERNS WAITING TO
ATTEND THEIR OWN SHOW.
ALL DAY.
MICROPROCESSOR
LECTURES AND
PRESENTATION OF THE
NASCOM I. ONLY 350
SEATS.

\section*{HOME}

MICROCOMPUTER

LYNX ELECTRONICS (LONDON) LTD, 92 BROAD STREET, CHESHAM, BUCKS. 0240575151

6in \(\times 2 \operatorname{tin} \times 3\) in

\section*{TEAK OR PERSPEX CASE}
non alabm \(£ 12.50\) alarm \(£ 15 \cdot 50\)

All prices include P. \& P. and VAT

FEATURES: 4 LED digits \(\frac{1}{2}\) h high. Red. 12 hour display with a.m./p.m. indication. Mains frequency accuracy. Easy to build. all components included. Beautiful real wood case or perspex White, Black. Red. Blue and Green. Flashes to indicate power cuts.
NON ALARM: Complete kit including case, \(£ 12 \cdot 50\). Ready built, \(£ 14 \cdot 50\). Module kit excluding case, \(£ 9 \cdot 50\). Ready built, \(£ 10-00\).
ALARM: Pulsed alarm tone. Automatic brightness control. 9 minute "Snooze" Simple setting. Complete kit including case, £15.50. Ready built, £17.00. Module kit excluding case, \(£ 13.00\). Ready built, \(£ 13.50\).
TIMER FACILITY: Stopwatch use 109 min .59 sec , extra 50 p .
EXCELLENT VALUE - GUARANTEED
LCD Gent's Watch. 5 function. Back light. Chrome case. Black
strap...............................
DISPLAYS: FND500 \(\frac{1}{2}\) in.LED, \(\mathbf{£ 1 . 1 9}\) each: 6 for E6.48. NSB 5430, \(\frac{1}{2}\) in Red LED stick of 4 £4.32. 5LTO2, \(\frac{1}{2}\) in Green Phosphor stick of \(4 £ 5.40\)
CLOCK CHIPS: 50253N Alarm \(12 / 24\) hour \(4 / 6\) digit, \(\mathbf{~ 5 5}\) - 67 .
50362 N Calendar clock, \(£ 7.75\). MM5385N 12 hr 4 digit Alarm \(\mathbf{~} 4.32\). 6 Decade up/down counters, \(50395 / 6 / 7\) £9.45.
MICROPROCESSOR: Z80 CPU, £22.68. Z80 CTC, £15.70.
1702A UV Erazable PROM, £11.35. 280 PIO £15.70. 2102NA, IK Static RAM £2.70. UV PROM Erazer, £103 plus £5 P. \& P. 4 KXI 16 pin Dyn. RAM £7.05.

RECHARGEABLE BATTERY SET: Super Value E8.10, Includes 4 AA (1.2V) Nickel Cadmium batteries (separately \(£ 1-18\) each).
Mains Adaptor with 4 plug connector for most calculators (separately £3.78), plus battery holder.
payment with order to:
BARON
Southview House, 6 Gower Road Royston, Hertiordshire

Buy it with Acoem
 Service second to
none-Try us and see SUPPLIERS SUPPLIERS D.O.E.

UNIVERSITIES, FOR A FANTASTIC SERVICE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& p & BRIDGES
100 V 1 A & 0.28 & DI & & \[
\begin{array}{r}
7490(A) \\
\mathbf{7 4 9 1} \\
745 \\
0.75
\end{array}
\] & \[
\begin{aligned}
& \text { DISPLAYS } \\
& \text { DL704 }
\end{aligned}
\] \\
\hline BC107/8/9 \(\quad 0.10\) & 200 V 1 A & 0.30 & 7400 & 0.15 & \(7492 \quad 0.55\) & \\
\hline and C's \(\quad 0.12\) & 400 V 1 A & 0.32 & 7401 & 0.20 & 7493 & \\
\hline BC147/8/9 0.10* & 400 V 2ita & 0.65 & 7402 & \(0 \cdot 18\) & 0. & \\
\hline BC167/8/9 0.12* & & & & 0.18 & \(\begin{array}{ll}7495 & 0.74 \\ 7496 & 0.90\end{array}\) & \[
\begin{gathered}
\text { An. } \\
0.75
\end{gathered}
\] \\
\hline BC177/8/9 0.18* & \multicolumn{2}{|l|}{TANTALUM BEA} & 404 & 0.23 & \(\begin{array}{ll}7496 & 0.90 \\ 74107 & 0.30\end{array}\) & \\
\hline BC182/3/4 A or \(L\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{.15 MFO/35V \({ }^{\text {13p }}\)}} & 7409
7410 & 0.23
0.18 & \(\begin{array}{ll}74107 & 0.30 \\ 74121 & 0.38\end{array}\) & TRANS. FORMERS \\
\hline 011 & & & 7410 & 0.18
0.24 & \(\begin{array}{ll}74121 & 0.38 \\ 74123 & 0.49\end{array}\) & \\
\hline BC212/3/4 A or \(\frac{1}{}\) & 1. MFD/35V
6.80 MFD/16V & \[
\begin{aligned}
& 13 \mathrm{p}^{*} \\
& 13 \mathrm{p}^{*}
\end{aligned}
\] & 7411 & 0.24
0.25 & \(\begin{array}{ll}7414 \\ 74141 & 0.80 \\ & 0.85\end{array}\) & \[
6-100 \mathrm{MA}
\] \\
\hline -14* & \multirow[t]{2}{*}{\begin{tabular}{l}
10. MFD/10V \\
22. MFD/16V
\end{tabular}} & \[
\begin{aligned}
& 13 p^{*} \\
& \text { 14p }
\end{aligned}
\] & 7413 & 0.38
0.38 & 74145 & \\
\hline BCY
BD1 & & 18p* & 7414 & 0.72 & \(\begin{array}{ll}74151 \\ 74174 & 0.94\end{array}\) & \\
\hline BD132 0.52 & 100. MFD/6V3 & 20p* & 7416 & \(0 \cdot 36\) & \(\begin{array}{ll}74174 & 1.20\end{array}\) & 9-0-9-1 \({ }^{\text {A }}\) - 3-20 \\
\hline Y50, 51, 52 0. & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{PR}} & 7420 & O. 18 & \[
\begin{array}{lll}
74190 & 1.60
\end{array}
\] & 12-0-12-50 m A \\
\hline JE3055 1.25 & & & 7420 & 0.36
0.3 & \[
74191 \quad 2.10
\] & \(1 \cdot 3\) \\
\hline ORP12 0.68 & \multicolumn{2}{|l|}{MIN \& SUB-MIN} & 7422 & O. 22 & \(74192 \quad 1.60\) & \\
\hline TIP29A 30A 31 A & \multicolumn{2}{|l|}{1000hm, 2200 hmm} & 7423 & 0.34 & 74192 1.60 & \[
2.75
\] \\
\hline \(\begin{array}{ll}\text { TIP41A } & 0.67\end{array}\) & \multicolumn{2}{|l|}{4K7, \(10 \mathrm{~K}, 20 \mathrm{~K}, 50 \mathrm{~K}\).} & 7425 & 0.34 & & C71/2 use \\
\hline TIP42A 0.80 & \(100 \mathrm{~K}, 250 \mathrm{~K}, 470 \mathrm{~K}\) & \[
\text { K. } 1 \mathrm{M} \text {. }
\] & 7428 & 0.36 & & \\
\hline P2955 0.97 & \multicolumn{2}{|l|}{2M2 8p* each.} & 74 & 0.32
0.50 & \(\begin{array}{ll}4000 & 0.19 \\ 4001 & 0.19\end{array}\) & A \\
\hline TIP3055 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{I/C LINE}} & 7430 & \(0 \cdot 14\) & \(4002 \quad 0.19\) & \\
\hline \(\begin{array}{ll}\text { TIS43 UJT } & 0.45 \\ \text { 2N2646 }\end{array}\) & & & 7432 & 0.28 & 4006 & \(\begin{array}{ll}12-0-12 & 2.40 \\ 150 \mathrm{~mA} & 2.40\end{array}\) \\
\hline \(\begin{array}{ll}\text { 2N2646 } & 0.65 \\ 2 N 2904 A & 0.33\end{array}\) & \[
709 \text { (T }
\] & 0.35
0.40 & 7433 & 033 & 4007 0-19 & 10T 700 OP \\
\hline \[
\begin{array}{ll}
\text { 2N2904A } \\
\text { 2N2926 O/Y/G } & 0.33 \\
0.14
\end{array}
\] & 741 (8 PIN DIL) & 0.28 & 7437 & 0.42 & \(4011 \quad 0.19\) & P-1K2 \\
\hline 2N3053 0.25 & AY-5-1224 & 3.75 & 7438 & 0.30 & \(4012 \quad 0.19\) & \(8 \Omega 200 \mathrm{MW}\) \\
\hline N3054 0.58 & CA3130 & \(087{ }^{\text {c }}\) & 7440 & 0.18 & 4013 & \\
\hline 3055 0.66 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { LM301 AN } \\
& \text { LM309K }
\end{aligned}
\]} & . 55 & 7441 & & 4015 & CERAMIC 50V \\
\hline 2N3702/3/4/5 & & 2.00 & 7442 & 0.68 & \(\begin{array}{ll}4015 & 1.10 \\ 4016\end{array}\) & 10. \\
\hline 6, 7, 8, 9, 10, 11 & LM324 & 205 & 7443 & 1.00 & \(\begin{array}{ll}4017 & 1.12\end{array}\) & 22, 33, 39, 47, \\
\hline 2N3819E, or 23E 0.25 & LM380/SL60745
LM381N & \(1 \cdot 29\) & 744 & 1.00 & 4023 0.19 & 100, 200, 470 , \\
\hline 2N5457 FET 0.40* & \multirow[t]{2}{*}{LM723} & & 7446 & 1.00 & \(4024 \quad 0.75\) & 560, 1000,1500, \\
\hline \multirow[b]{2}{*}{THYRISTOR} & & , & 7447 & 0.98 & \(4029 \quad 1.95\) & \\
\hline & \multirow[t]{2}{*}{MC1310} & 2.55 & 7473 & 0.30 & 40511 & \[
\mathrm{v}
\] \\
\hline 60 V 1A 0.25 & & \(135 *\) & 7474 & 0.35 & \(4511 \quad 1.94\) & \\
\hline 100 V IA 0.38 TAG & MC 1330 P & \(0.75 *\) & 7475 & 0.49 & & \(1 \mathrm{MFD63V} 8 \mathrm{p}^{*}\) \\
\hline 100 200V 1A 0.60 & \multirow[t]{2}{*}{MC1350P} & \(0.75 *\) & 7476 & 0.32 & & \\
\hline TAG 1200600 V 1 A & & 0.49 & 7480 & 0.48 & ES & ER \\
\hline \(0 \cdot 80\) TAG 1600700 V & NE555 & 1.90* & 7481 & 1.00 & 3 A & ED LED's 2 \\
\hline 1 A 1.40 BT 106400 V & NE567 & \(2.70{ }^{*}\) & 7492 & 0.90 & 3 & 10 tor \(£ 1\) \\
\hline 4 A 0.65 C 106 D 1500 V & \multirow[t]{2}{*}{SN76003N
SN76013ND} & \(2.80 *\) & 748 & & 3 A & 108C 11 \\
\hline \(6 \frac{1}{4}\) A 1.85 BT109 & & \(1 \cdot 60\) & 748 & \(1 \cdot 20\) & & \\
\hline & SN76013N & & & & 200V 3 A & ¢8 \\
\hline & SN76023N & - & 析 & & & 3702 for \(£ 9\) \\
\hline VARICAP TUNER & SN76023ND & 1.60 & 7487 & 1.65 & O 3 & 100 for \(£ 9\) \\
\hline £5.00 & SN76033N & 2.75 & 7489 & \(3 \cdot 30\) & & 100 for \(£ 9\) \\
\hline LED Til 209/0 \(125^{\prime \prime}\) & \(0.2^{\prime \prime}\) RESI & \multirow[t]{2}{*}{RESISTORS + WATT 5"} & \multirow[t]{4}{*}{} & & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
POTENTIOMETERS \\
Lin/Log \\
\(5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, 250 \mathrm{~K}\) \\
\(500 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}, 28 \mathrm{p}^{*}\) each.
\end{tabular}}} \\
\hline Red 20p & 20p + WA & & & & & \\
\hline Green 29p & 29 p 10 of 1 & value & & 15p. & & \\
\hline Clips for above & 3p & ed valu & & 30p* & & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
POST AND PACKING 25p. \\
VAT* ADD 12 \({ }^{1 \times 2}\) ", REST 8", \\
DISCOUNTS £.5 \(5^{\circ}\) ", \(£ 10\) \\
\(7 \frac{1}{2} \%\) £ \(15-10^{\%} \%\) S.A.E. Stocklist
\end{tabular}} & \multicolumn{5}{|l|}{ORCHARD ELECTRONICS, Orchard House, St Martins St. Wallingford, Oxon 049135529.} \\
\hline
\end{tabular}

\section*{THERMOSTATS}

Refrigeration as illustrated with \(36^{\circ}\) Limpet Stat must be mounted in close contact calibrated \(90^{\circ}-190^{\circ} \mathrm{F} \quad 15\) amp
contacts \(£ 1.62\). Appliance Stat fix like a volume contro15 amp contact \(30^{\circ}-80^{\circ} \mathrm{F} 85 \mathrm{p}\).
ditto but for high temps \(£ 1.25\) ditto but for high temps \(£ 1.25\)

\section*{MAINS OPERATED SOLENOIDS}

Modot irs-small but poweriu

DELAY SWITCH be accurately delay wan pointers knob for periods of
up to \(2 \frac{1}{2}\) hrs. 2 contacts
suitable to amps-second contact opens

\section*{MOTORISED DISCO SWITCH}

SMITHS CENTRAL HEATING CONTROLLER
 Push button gives 10 variations as follows:
(1) continuous hot water and continuous central heating (2) continuous hot water but central heating off at night (3) con-
tinuous hot water tinuous hot water but central heating on
only for 2 periods during the day (4) hot water and central heating both on but day
time only (5) hot water all day but centra heating only for 2 periods during the day (6) hot water and central
heating on for 2 periods during the day time only-then for heating on for 2 periods during the day time only-then for summer time use with central heating off (7) hot water con-
tinuous (8) hot water day time only \((9)\) hot water twice daily (10) linuous (8) hot water day time only (9) hot water twice daily (10)
everything off. A handsome looking unit with 24 hour movement and the switches and other parts necessary to select the desired programme of heating. Supplied complete with wiring diagram.
Originally sold we betieve at over \(£ 15\). We offer these while Originally solc we betieve at over \(£ 15\). We offer these while
stocks last at \(\mathbf{£ 6 . 9 5}\) each INCLUDING VAT and Postage.

\section*{LOW R.P.M. MOTORS}

\section*{EXTRACTOR FAN} Cleans the air at the rate of 10.000
cubic feet per hour. Suitable for
kitchens kitchens, bathrooms factories, changing rooms, etc. It's so quiet it can hardy be heard. Compact, \(5 \frac{1}{2}\) in. connector and fixing brackets. E5. 25 including post and VAT. Monthly list available free send long
stamped enveiope.

\section*{FLUORESCENT TUBE}

INVERTOR

For camping - car repairing - emergency lighting from a 12 v battery you can't beat fluorescent lighting, it will otfer plenty of we.l distributed light and is economical. We offer invertor for
\(21^{\prime \prime}\) and 13 watt miniature tube for only \(\mathbf{£ 3 . 7 5}\) with tube and ube holders as well.

\section*{MINI-MULTI TESTER}

Amazing, deluxe pocket size precision moving coil instrument-
jewelled bearings- 1000 opvewelled bearings- 1000 opv DC volts \(10,50,250,1000\)
AC volts 10, 50. 150,1000
DC amps \(\mathrm{O}-1 \mathrm{~mA}\) and \(0-100 \mathrm{~mA}\) Continuity and resistance \(0-150 \mathrm{~K}\)
ohms. Ohms.
Comple Complete with insulated probes,
leads, battery, circuit diagram and instructions.
\(50+50 \mathrm{p}\) post and insurance.

\section*{free}

Amps ranges kit enable you to read DC current from 0 - 90 a mps. you already own a mini tester and would like one send \(\mathbf{f} 1.50\).

MULLARD UNILEX A mains operated 4
stereo system. Rated one stereo system. Rated one
of the finest performers
in the stereo field this in the stereo field this
would make a wonderful for almost any one in easy-10assemble modular form and
complete with a pair of Piesser speekers this should of Plesse
 speakers this should sell at about c30-but due to a special offer the system complete at only f 15 including VAT and

\section*{UNISELECTORS}

\begin{tabular}{lrlr}
3 pole & \(\mathbf{£ 4 . 8 0}\) & 4 pole & \(\mathbf{~} 5.94\) \\
5 pole & \(\mathbf{£ 7 . 0 2}\) & 8 pole & \(\mathbf{£ 9 . 7 2}\) \\
10 pole & \(\mathbf{£ 1 0 . 8 0}\) & 12 pole & \(\mathbf{£ 1 2 . 9 6}\) \\
3 pole 50 way & \(\mathbf{£ 1 0 . 5 8}\) & 4 pole 50 way & \(\mathbf{£ 1 2 . 7 4}\)
\end{tabular}

\section*{24 HOUR TIMERS}

\section*{The one illustrated is ' \(E\) ' controls this uses} the Smiths mechanism as in their autoset. 2 On/iffs per 24 hours, 13 amp contacts.
override switch f6-50. Smiths 100 amp model one on/off per 24 hours \(£ 10.50\),
extra contacts \(£ 1.00\) per set. AEG 60 amp extra contacts \(£ 1.00\) per set. AEG 60 amp
model with clockwork standby, one on/off model with clockwork standby, one on/off
per 24 hours \(£ 9.50\), extra contacts \(\mathbf{£ 1 . 0 0}\) per set.

\section*{INDUCTION MOTORS}

One illustrated is our reference MM
made for ITT \({ }^{\prime \prime}\). stack \(1 \frac{1}{2}\). spindle

\section*{MAINS}

TRANSFORMERS
201

\section*{WAFER SWITCHES}

\begin{tabular}{lrrr}
6 pole 2 way & 12 pole 2 way & 18 pole 2 way \\
5 pole 3 way & 10 pole 3 way & 15 pole 3 way \\
4 pole 4 way & 8 pole 4 way & 12 pole 4 way \\
3 pole 5 way & 6 pole 5 way & 9 pole 5 way \\
2 pole 6 way & 4 pole 6 way & 6 pole 6 way \\
2 pole 8 way & 4 pole 8 way & 6 pole 8 way \\
1 pole 10 way & 4 pole 9 way & 6 pole 9 way \\
1 pole 12 way & 2 pole 10 way & 3 pole 10 way \\
all £1.32 each & all \(£ 2.41\) each & all \(£ 3.12\) each \\
Multi bank switches up 1072 pole 2 way-to 12 pole 12 way \\
quickly made to special order.
\end{tabular}

\section*{THIS MONTH'S SNIP}

Japapase made FM funer and matching
decocor. Two items for less than averag pitce of the tuner only - E11.20 the
Donit miss this - stocks will not last tong.

\section*{RELAYS}
 changeover miniature wire ended 95 p . 12 volt ope
single ser single screw fixing two 10 amp changeovers \(85 p\)
12 voit open three 10 amp changeovers \(\mathbf{~} 1.25\). Latching relay mains operated 2 co contact open type one screw fixing \(£ 1.25\). Many othe types, with different coil voltages and
arrangements are in stock, enquiries invited

\section*{TANGENTIAL HEATER UNIT}

A most efficient and quier running
blower-heater by
sol atronsame vereater is ifted to to many
samous name heaters-ComPamous name heaters-Com-
 heating eiement and thermo-
satic sity static setery trip-simply
connect to the mains for imy connect to the mains for im-
mediate heat mount in a mediate heat-mount in a
simple wooden or metal case or mount dooden onto base of say
kitchen unit-price \(£ 4.95\) post
 1 kw , cold blow or off available
60 extra.

Terms. Prices include Post \& VAT. But orders under \(\mathbf{2} 6.00\) please add 50p to offset packing. Bulk enquiries - Please Phone for Generous Discounts 6881833

\section*{J. BULL (electrical) LTD \\ (Dept. PE), 103 TAMWORTH RD. CROYDON CR9 1SG}

\section*{IT'S FREE!}

Our monthly Advance Advertising Bargains List gives details of bargains arriving or just arrived - often bargains which sell out before our advertisement can appear. - It's an interesting list and it's free - just send S.A.E. Below are a fow of the Bargains still available from previous lists.

\section*{FM Tuner and decoder, 2 very well made (Japan) units, nice} clear dial. excellent reproduction. £11-20 the pair. amp chengeover contacts. A pransparent dust cover paice of 10 suitable 111 pin base 45 . 4 Changaover Relay
changeover contacts, mains voltage coilif \(\mathbf{f} \mathbf{\$} \mathbf{7 2} 4\) sets of 10 amp 12 Voht Pump. Designed we believe as a bilge pump. this is 12 volt \(A C / D C\) motor coupled by a long enclosed shaft to a sub-
mersible pump. Suitable for water or most any fluids. Price mersible
£ 12.50 .
Just arrived. Fruit machines, working order very impressive choice of several but very heavy so you must collect. \(£ 50\). High Load 24 Hour Clock Switch, made by the famous AEG company for normal mains but with clockwork reserve has load with large loads of say shop lighting water theating dealing with large loads of say shop lighting, water heating. storage extra triggers will be available, Price \(£ 1.50\) per pair. Size of clock approximately \(8^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}\), totally encased but has lift up flap for Enciosed 24 swour Clack. Price \(\mathbf{~} 7.50\).
amps at 240 volts. This one has two contacts for breaking 10-12 price \(£ 7.00\). Light Dimmer, our timer module with small mods makes an
excellent light-dimmer. Contains a 4 amp 400 V - SCR so it should e suitable for loads approaching 1 KW . Price of module and insPuctions Ez 2.25 as well as or instead of pull. Very heavy duty, estimate this at \(201 b s\) push or pull. \(1 \frac{13}{4} \times 3 \frac{1}{1}^{\prime \prime} \times 4^{\prime \prime}\) made Magnetic Devices Co. 77.50
etc. etc. can easily be achieved using our dishes, strobe effects etc. etc. can easily be achieved using our disco switches. These
switches are ex-equipment but guaranteed perfect and supplied suitable for mains working. To get some idea of the loading Number, each switch is 10 amp. For the light pipe or Catherine Wheel effect order the 12 switch model with light pipe data model, interconnecting the switches 10 give fastest speed. 6
Switch model \(\mathbf{£ 5} 9\) Switch Model \(£ 9.75\). 12 Switch model \$6.20.
Reed Switchas, standard 60 watt glass type. Normal open con-
tacts glass lengths 2 diameter t".", 10 for \(\mathbf{£ 1 .} 100\) for \(£ 8.1000\) for El 7 F .
Flat Red Switches, for stacking, greater quantity in confined space. Price 50p.
Singla Ended Types for jobs where it is not easy to bring a lead
to each end. 75 peach to each end. 75p each. All these switches are normally open but can be biased to a normally closed position by fitting a magnet adjacent. The reed switch would then be opened by a magnet of Coramic Magnats suitable for operat
oprating reed switches, central
Music Centre Transformer 12-0-12 at 1 amp and 9 volt at amp. Normal primary. uprighting, impregnated and varnished for quiet operation. Price \(\mathbf{W}^{\prime}\) Shaped Filuoresc
W' Shaped Fluorescent Tubes for porch light, box signs or where you want light evenly spaced over a confined area of
approx. \(10^{\prime \prime} \times 10^{n} .30\) watts, made by Philips price \(\mathbf{£ 2} 24\). Extansion Spoakers 8 ohm 4-5 watts handling power. We have 5 or 6 different models in stock, cheapest being the Partytime
at \(£ 3.95\) each. again only really a bargain for callers as at \(£ 3.95\) each. again only
postage is \(£ 1.50\) per speaker. T.V. Monitors, an item for callers. betieved to be in good
working order, switchable thro \(405-525 \& 625\) \& 21 , line systems, normal controls, volume, brightness, contrast,
width etc. Price \(£ 16-20,12^{\prime \prime}\) models \(£ 18\), suitable for con version into special pura fose scope, elc.
completely enclosed in sheet metal case with American type flat output socket made for computer so obviously first ciass 500 watts. With cang handle. offered at about half price only \(£ 15\). These may be a bit soiled but are fully guaranteed. Similar bu
1000 watt \(£ 29.50\). Car Starter Cha
Car Srartar Charger Kit. New version. We supply two 10 with instructions, price \(\mathbf{£ 9} \mathbf{7 5}\). This is probably charge switch useful pieces of equipment you can have in your garage. Soone or later you or someone will leave something on and you wil than 5 minutes. operated. Intended for surface mounting has a fixing flange a h2V Drip proof Relay.
12V Drip proof Relay. Specially designed for going under the bonnet of a car, made by one of our big manufacturers, this
really has a removable semi-hard rubber cover. Contacts look suitable for up to 10 amps so this could be the right one if you are thinking about making an anti-thief device. Price E1 +8 p .
High Speed Unisalector. As many custoner know High Speed Unisalactor. As many customers know. We have a
very comprehensive stock of uniseletors as very comprehensive stock of uniselectors as used in automatic
telephone exchanges, light flashing device etc. etc. Just arrived however, is a high speed model made by famous Plessey, this is 2 pole 32 way with make before break wipers, overall size approx. \(4^{\prime \prime} \times 3^{\prime \prime} \times 21^{\prime \prime}\), price \(£ 3-50+28\) p.
Pneumatic Ram for
Preumatic Ram for lifting, thrusting. pulling etc., etc. has \(2 \frac{z^{N}}{}\)
travel looks large enough to open doors, lift. staircase, ventilators
etc. Price \(£ 7.00\).
Soldar Gun Bargain. The ETP, this is 100 watt solder gun, a very well made tool with lamp to illuminate work, has double insulated mains transformer and is built into the shockproot hermoplastic case. Comes complete with spare tips. Mains nterssted in Tape Control.
really beautiful units full of sophisticat made tape punches, believe to automatically operate typewriters, and they can of course be used to operate other punch tape controlled machines. We believe these are 8 bit paper tape punches 205 H8 R56. 115 V 50 HZ in very good condition with tape \(\mathbf{£ 1 8}\).00, carriage is E 3.20 .
Momories. The memory units which work with these tape punches, again by NCR, are in very good condition and we Tangential Blowers. \(12^{\prime \prime}\) lang with powerfil
motor ideal for blowing heaters or general air extraction ar circulation, offered at low price of \(\mathbf{£ 2} \mathbf{7 0}\). The motors are 110 V so you will have to work them in pairs or through a
dropper or mains transformer. Post f 1.08 for one or two. dropper or mains transformer. Post \(£ 1.08\) for one or two.
Digital Panal made for the G.P.O. for incorporation stand, in push button dialling units, this has the usual 10 digits. each of which when depressed operated a two pole changeover switch. Really beautifully made size approximately \(4^{\prime \prime}\)
square. price \(£ \mathbf{3} \mathbf{7 8}\).
 resistors, capacitors, diodes, transistors, etc. Rigid plastic units interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots. 10 and 20 have space dividers. Build up any size cabinet for wall, bench or table top.

As supplied to Post Office, Industry and Government Depis.

SINGLE UNITS (1D) \((5 \mathrm{in} \times 2 \mathrm{t} \mathrm{in} \times 2 \mathrm{t} \mathrm{in})\). E2.9O DOZEN.
DOUBLE UNITS (2D) \(\left(5 \mathrm{in} \times 4 \frac{1}{2}\right.\) in \(\left.\times 2 \frac{1}{2} \mathrm{in}\right)\) \&4.90 DOZEN
TREBLE (3D) 84.90 for 8
DOUBLE TREBLE 2 drawers, in one outer case (6D2), \(\mathbf{5 7} \cdot 25\) for 8.
EXTRA LARGE SIZE (6D1) \(\mathbf{5 6} \mathbf{2 5}\) for 8 .
PLUS QUANTITY DISCOUNTS
Orders over \(£ 20\). tess \(5 \%\)
Orders over \(£ 60\), less \(7 \frac{1}{2} \%\)
PACKING/POSTAGE/CARRIAGE: Add 75p to all orders under \(£ 10\). Orders \(£ 10\) and over. please add \(10 \%\) carriage.

QUOTATIONS FOR LARGER QUANTITIES
Pleate add 5\% V.A.T. to total remitance
All prices corret atime of to pres

\section*{FLAIRLINE SUPPLIES \\ (Dept. PE4)}

124 Cricklewood Broadway: London NW2 Tel. 01-450 4844

\title{
NW for elactronit desimnaminaers!
}

FIX-PRINT JIG for printed circuits

\section*{AN INTRODUCTION TO MICROCOMPUTERS}

VOL O-BEGINNERS BOOK Price: \(\mathbf{£ 5 . 3 0}\)
written for the complete beginner explains what a computer system consists of - its component parts and what they can do for you.

VOL I - BASIC CONCEPTS Price: \(£ 5.30\) takes you by the hand from elementary logic and simple binary arithmetic, every aspect
of microcomputers is covered.
VOL II - SOME REAL
PRODUCTS Price: \(£ 10.80\)
covers real microcomputers in consider-
able detail. Every major microcomputer 4
bit, 8 bit or 16 bit is described. More than
20 microcomputers in all.
8080 PROGRAMMING
Price: \(£ 5.30\)
for logic design.
SOME COMMON BASIC
PROGRAMS
Price: \(\mathbf{£ 6 . 3 0}\)
P.C.B.s and other panels
when inserting and soldering components. Can be adjusted to suit work up to 280 mm , rotated to gain access to reverse side and locks in any position. All metal. Price \(£ 10\) inc. VAT. p. \& p. £1.

\section*{S2}

Drill Stand
Robust, all metal with ample throat dimensions. Adjustable height cantilever with lever actuated feed. Spring return. Will accept both Pl and P2 Mk 2 drills.
Price \(£ 18.50\) inc. VAT. p. \& p. 106p.

P2 Mk 2 Drill In case, room for transformer In case with vari/transformer
18.00 p. \& p. 86p £ 19.50 p. \& p. 86 p. £29.00 p. \& p. 86p

\section*{S1 Drill Stand}

Constructed to take the popular PI drill and ensure a high degree of accuracy in all types of electrical precision work.
Price £5. 13 inc. VAT. p. \& p. 38p Pl Drill£9.67 inc. VAT. p. \& p. 38p.

Write or phone for details.

Sole UK Distributors
PRECISION
PETITE LTD
119a HIGH STREET
TEDDINGTON MIDDLESEX TW11 8HG TEL: 01-977 0878
describes 76 short programs.
6800 PROGRAMMING
Price: \(\mathbf{£ 5 . 3 0}\) for logic design.
* all prices include postage *

\section*{THE MODERN BOOK CO.}

RITAINS LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET LONDON W2 INP

Phone 01-723 4185
Closed Saturday 1 p.m.

- IT'S YOU AGAINST THE COMPUTER (IN YOUR OWN HOME!)
A Microcomputer. programmed to challenge you at one of THREE levels to match and improve your game. With this unique game, there is no need to find an opponent! You simply enter your moves, then \(5-40\) seconds later, after analysing the new position, the computer will respond!
This amazing microprocessor computer is supplied complete with Chessmen, comprehensive instructions, and mains adaptor; and is fully guaranteed. You can now play chess when you are ready, day or night, without the bother of finding a chess partner.
The 'COMPUTER CHESS CHALLENGER' has many other features to intrigue and excite the chess enthusiast, whether young or old, including: Castling and en passant, position verification by on the board! chess problems on the board
Available by mail ordes post free. Price: \(\mathbf{1 8 5 5 . 0 0}\) (SINGLE level model available at \(£ 135.00\)).
Write or telephone now for full colour literature and dasa sheets. - Write or 'phone for full details.

Sinclair Microvision Pocket Television - Write or 'phone for full details.
We offer SEIKO watches at discount prices - SAE. Scientific We accept company purchase orders by telephins. SAE We accopt paymont by Accass - just send vour number
GEMINI ELECTRONICS
3 Branksame Avenue, Prestwich. Manchester M25 5AG.
Tel:061-7734467. EXPORT ORDERS WELCOME

\section*{\(15-240\)} WAT
The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge. tuner, etc.) are catered for internally. the desired function is achieved either by a multi-way switch or direct connection to the appropiate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.
FEATURES: complete pre-amplifier in single pack. multi-function equalisation low noise. low distortion, high overload. two simply combined for stereo
APPLICATIONS: hi-fi, mixers disco. guitar and organ. public address
SPECIFICATION: Inputs-magnetic pick-up 3 mV ceramic pick-up 30 mV . iuner 100 mV . microphone 10 mV . auxiliary \(3-100 \mathrm{mV}\). input impedance \(47 \mathrm{k} \Omega\) at 1 kHz Outputs-tape 100 mV . main output 500 mV R.M.S Active Tone Controls-treble \(\pm 120 \mathrm{~B}\) at 10 kHz bass \(\pm 12 d \mathrm{~dB}\) at 100 Hz Distortion- \(0 \% \mathrm{~m}\) at 1 kHz . signalinoise ratio 68 dB Overload- 38 dB on magnetic pick-up Supply voltage \(\pm 16-50 \mathrm{~V}\). Price \(55 \cdot 22+65\) p VAT. P. \& P. free HY5 mounting board B.1. \(48 p+6 p\) VAT. P. \& P. free
The HY30 is an exciting New kit from I.L.P it features a virtually indestructible I.C. with short circuit and thermal protection The kit consists of I.C., heatsink. P.C. board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions This amplifier is ideally suited to the beginner in audio who wishes to use the most up to date technology available. FEATURES: complete kit. Iow distortion, short. open and thermal protection, easy to build APPLICATIONS: updating audio equipmen: guitar practice amplifier, test amplifier audio osciliator SPECIFICATION: Output Power-15W R M S into \(8 \Omega\) Distortion-0 \(1 \%\) at 15 W Input Sensitivity500 mV Frequency Response- \(10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}\)
Price \(55 \cdot 22\) + 65p VAT. P. \& P. free
The HY50 leads 1 L.P. s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World FEATURES: low distortion integral heatsink only five connections 7 amp output transistors no external components
APPLICATIONS: medium power hi-fisystems low power disco guitar amplifier
SPECIFICATION: Input Sensitivity- 500 mV Output Power- 25 W R M S into \(8 \Omega\) Load Impedance-4-16 \(\Omega\) Distortion-0 04\% at 25 W at 1 kHz Signal Noise Ratio- 75 dB Frequency Response- 10 Hz \(45 \mathrm{k} \mathrm{Hz}-3 \mathrm{~dB}\) Supply Voltage \(\pm 25 \mathrm{~V}\) Size \(-105 \times 50 \times 25 \mathrm{~mm}\)
Price \(56.82+85 p\) VAT. P. \& P. free
The HY120 is the baby of I.L.P. s new high power range, designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design
FEATURES: very low distortion integral heatsink load line protection thermal protection five connections. no external components
APPLICATIONS: hi-fi high quality disco. public address monitor amplifier guitar and órgan
SPECIFICATION: Input Sensitivity- 500 mV Output Power - 60 W R M S into \(8 \Omega\) Load Impedance-\(4-16 \Omega\) Distortion-0 \(04 \%\) at 60 W at 1 kHz Signal Noise Ratio- 90 dB Frequency Response- 10 Hz \(45 \mathrm{kHz}-3 \mathrm{~dB}\) Supply Voltage- \(\pm 35 \mathrm{~V}\) Size- \(114 \cdot 50 \times 85 \mathrm{~mm}\)
HY200
Price \(£ 15 \cdot 84+£ 1.27\) VAT. P. 8 P. free
The HY200 (now improved to give an output of 120 watts) has been designed to stand the most rugged conditions such as disco or group while still retaining true hi-fi performance.
FEATURES: thermal shutdown very low distortion load line protection integral heatsink no external components
APPLICATIONS: hi-fi disco monitor power slave industrial public address
SPECIFICATION: Input Sensitivity- 500 mV Output Power-120W R.M S into \(8 \Omega\) Load Impedance-4- \(16 \Omega\) Distortion-0 \(05 \%\) at 100 W at 1 kHz Signal Noise Ratio- 960 B Frequency Response- 10 Hz \(45 \mathrm{kHz}-3 \mathrm{~dB}\) Supply Voliage \(=45 \mathrm{~V}\) Size \(114 \times 50 \times 85 \mathrm{~mm}\) Price \(£ 23 \cdot 32+£ 1.87\) VAT. P. \& P. free

The HY400 is I.L.P. S Big Daddy of the range producing 240 W into \(4 \Omega\) ' It has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module
FEATURES: thermal shutdown very low distortion load line protection no external components APPLICATIONS: public address disco power slave industrial
SPECIFICATION: Output Power-240W R M S into \(4 \Omega\) Load Impedance- 4-16 \(\Omega\) Distortion-0 1\% at 240 W at \(t \mathrm{kHz}\) Signal NoIse Ratio-94dB Frequency Response- \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\) Supply Voltage一 \(\pm 45 \mathrm{~V}\) Input Sensitivity- 500 mV Size- \(114 \times 100 \times 85 \mathrm{~mm}\)
Price \(\{32 \cdot 17+\varepsilon 2 \cdot 75\) VAT. P. \& P. free
POWER SUPPLIES: P8U3e-suitable for two HY \(308 \mathbf{8 5} \cdot \mathbf{2 2}+65 \mathrm{p}\) VAT. P. \& P. free. PSU50-_suitable for two HY50s \(\mathbf{8 6}\) - \(\mathbf{8 2}+\) \(85 p\) VAT. P. \& P. free. P8U70-suitable for two HY120s £13.75 + 110 VAT P. \& P. free. PSUgo-suitable for one HY200 I.L.P. Electronlcs Ltd., Crossiand House, Nackington, Canterbury, Kent CTA 7AD

\section*{TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS}
> I.L.P. Electronics Ltd. Crossland House, Nackington, Canterbury Kent CT4 7AD

Please supply
Total Purchase price
I Enclose: Cheque \(\square\) Postal Orders \(\square\) Money Order \(\square\) Please debit my Access account \(\square\) Barclaycard account \(\square\)
Account number
Name and Address

Tel (0227) 63218

VALVE MAIL ORDER CO.
Climax House Fallsbrook Road, London SW16 6ED

SPECIAL EXPRESS MAIL ORDER SERVICE

Open daily to callers: Mon.-Fri. 9 a.m.-5 p.m. Valves, Tubes and Transistors Closed Saturday Terms C.W.O. only. Tel. 01-677 2424-7
Quotations for any types not listed S.A.E.
ost and Packing \(25 p\) per order \(+8 \%\) V.A.T ltems marked * \(12 \frac{1}{2} \%\)

\(\cdots\)

\section*{THE firm for speakers!}

SEND 10p STAMP FOR THE WORLD'S BEST CATALOGUE OF
SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND dISCOUNT PRICE LIST

\section*{ACT - AUDAX - BAKER}

BOWERS \& WILKINS - CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS - GOODMANS - HELME - I.M.F ISOPHON - JR - JORDON WATTS
KEF - LEAK - LOWTHER - McKENZIE MONITOR AUDIO - PEERLESS - RADFORD

RAM - RICHARD ALLAN - SEAS
TANNOY VIDEOTONE WHARFEDALE
WILMSLOW AUDIO (Dept. P.E. 8) SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Discount HI-FI, etc. at 5 Swan Streat and 10 Swan Street Tel. Wilmsiow 29599 for Speakers

Tel. Wilmslow 26213 for \(\mathrm{Hi}-\mathrm{Fi}\)

cased TV games: Black and A 8500 f5 950nly 1480
95 AY 38600 t 1195 Black and whine TV
gaines kils
standard model tho-50.
 Colour yenerator kil adds colour 10 most
black and white games 17.50 . Ritle kit \(£ 4\) new component service
 M2 loy or lin. Single 30 p buat 95 p \begin{tabular}{l}
polystyrene capacitors \\
8200 p \\
\(3 \frac{1}{2} \mathrm{p}\). ceramic capacitors 50 V E6 \\
\hline
\end{tabular}
 25 V 5 . 10 mft 5 p .16 V 22.33 .47 ml 6 m 18 p zener diodes 400 mW E24 3 V 3 to 33 V

MAINS TRANSFORMERS

PRINTED CIRCUIT MATERIALS
138250 sal ins \(p \mathrm{ct}) 40 \mathrm{p}\). 1 lb FeCl E1-05 Lammate cutler 75 p .
S-DECS ANDT-DECS
\(\begin{array}{ccc}\text { f3-98. } & \text { u-DeCA } & \text { f3-97 } \\ \text { u-DeCB } \\ \text { f } 67 & 16 & \text { dil }\end{array}\) \(\begin{array}{ll}\text { adaptors: plain } \\ \text { with socket } & 990 \\ 91\end{array}\)

\section*{RPROOUCTS}

Cambridge scientific programmabie
calculator E \(13-95\). prog library f \(4-95\). main adaptor [3-20. carnbridge scientific f8-45
oxford scientic \(10-60\). PDM35 digita

BI-PAK AUDIO MODULES
\(\$ 450\) tuner \(\subset 21\)-95. AL60 54 -86. PA 100 f14-95. MK60 audio kit ©36-45 Stereo 30
t17-95. SPM80 f3-75. BMT80 E5-95. SWANLEY ELECTRONICS

\footnotetext{
customers deduct 7's, on items marked* and 11\% on others. Officiai credit orders welcome
}

\section*{GREAT SOUND－GREAT VALUE！}

Stirling Sound

\section*{Disco 2}

Mixer Control unit＋power supply

By designing and manufacturing in our own Essex factory，with strict material control and stage by stage checking and then selling direct to YOU，the customer，we can save you pounds，offer better service and guarantee satisfaction．Our latest modular assembly，Disco 2，has already been thoroughly field tested and is ready for immediate service under the toughest working conditions
－INPUTS－Left deck，right deck，mic．and aux．
－INPUT IMPEDANCE－47K ohms
－POWER SOURCE－220－240V．A．C．Mains
－CONTROLS－Mains on－off，master volume，bass \(\pm 15 \mathrm{db}\) ，treble \(\pm 15 \mathrm{db}\) ， \(L\) and \(R\) mixing，\(L\) and \(R\) motor switches，selector switch for P．F．L．（Pre－ fade Listening），headphone volume；mic．vol．，aux．vol．，LED indicators on mains and decks on／off switches．
HEADPHONE AMPLIFIER－Powerful 2 watts into 8 ohms；separate vol control．
TERMINATIONS－Five \(\frac{1}{4}\)＂jack sockets－ 2 input； 2 output，headphones．
－SIZE \(-23 \frac{1}{4}{ }^{\prime \prime} \times 3 \frac{3}{4}^{\prime \prime} \times 2 \frac{1}{2}{ }^{\prime \prime}\) max．depth to rear（plus separate power unit）． Panel in matt black with controls sensibly grouped for easy handling．

资 PRICE－Post free，with power unit and inc．V．A．T
£39．95
Delivery ex－stack，built，tested and guaranteed
Suitable Stirling Sound power amps with heat sinks and power supply units -140 PH （ 40 watts RMS）£18．160PH（ 60 watts RMS） £22． 1100 PH （ 100 watts RMS）\(£ 26.75\).

Mail Orders to Dept．PE4

\section*{Over 200 kits in the free Heathkit Catalogue}

\section*{OTHER STIRLING SOUND DISCO／P．A．ITEMS}

\section*{舀 BASIC CONSTRUCTIONAL MODULES}
\(5 S\) ． \(104 / 2\) Two cho
SS．104／4 Four chonnel mixer stoge

£3．75 for 2 V out． 18 V working voltoge．

\section*{＊INTEGRATED POWER AMPLIFIERS}

Reody bult in coses，lested and guaranteed -60 warts R．M．S．into 4 ahms．
POWER AMP 60／with two channel mixer
\(\begin{array}{ll}\text { POWER AMP } 40 \text {－wotts R．M．S，into } 4 \text { ohms with two channel mixer } & £ 48.00 \\ \text { POWER AMP } & \text { £43．00 }\end{array}\)
POWER AMP 100－100 wotts R．M．S into 4 ohms with 4 chonnel mixer
100 watt SLAVE AMP
解 READY BUILT ITEMS TESTED AND GUARANTEED
SSTL \(3 / 2508\) Sound to light unit 3 channels， 250 w ．each
SSYL3／1000B Sound to light unit 3 chonnels， 1000 w ．each
£23．95
Also loudspeakers，iwin \(\mathrm{T} / \mathrm{T}\) consoles，eic．
£25．95
STIRLING SOUND－LIGHT MODULES
SSTI 3／1000 three chonnels，each 250 wolts outpu
£9．25

OR ORER BY ACCESS OP BARCLAYCARD JUST WRITE OR PHONE IN YOUR NUMBER．AUDIO CONSTRUCTORS，HAVE YOU HAD YOUR LATEST STIRLING SOUND CATALOGUE SHEETS YET？FREE ON REQUEST．
ALL PRICES QUOTED INCLUDE VAT GOODS SENT POST FREE IN U．K．with CWO orders except same heavy reody amendment without notice

5tirling 50und \(\sqrt{2}\)

The Heathkit catalogue is packed with top quality kits －hundreds of practical and fascinating items which you can build yourself．

FSend for your copy now！
To Heath（Gloucester）I td Department PE 48 Bristol Road，Gloucester；GL 26 EE ． Please send a copy of the Heathkit Catalogue． I enclose 11 p in stamps to cover postage only． Name \(\qquad\) Address

There are Heathkit Electronics Centres at 233 Tottenham Court Road， London（01－636 7349）and at Bristol Road，Gloucester（Gloucester 29451）．

\section*{NOTICE TO READERS}

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

\section*{RECEIVERS AND COMPONENTS}

\section*{CHIPS AND THINGS}
I.C.s at give-away pricos! - you tost you save!!

PACK E1 (80\% guaranted good). \(5 \times\) MAN3 \(0.127^{\prime \prime} 7\) segment LEO displays f .00
PACK E2 (100\% good) \(1 \times 8\) digit (plus overflow) \(0.33^{\prime \prime} 7\) segment Liquid Crystal calcultator strvie display f 3.95
PACK M1 \(100 \%\) gurantees goodi. \(2 \times\) Calculator keyboards \(£ 1.00\) PACK 01 (\(80 \%\) guaranteed good). \(15 \times\) Logic \(1 . C .5\) mainty dual \(J-\mathrm{K}\) oTL Ffip-flips. compatible with TTL. Could replace those costly TTL flip-llops in most projects \(£ 1.25\)
PACK D2. \(25 \times\) SN7400 type 1.C.s 100 two itp nand gates. We Puerantere 50 good f 1.25
PACK 11 (marked and unmariked) \(20 \times\) Assorted \(\mathrm{O}_{\mathrm{p}}\).Amps Could include LM301. 741. 709.555 etc. \(\mathbf{f 1} .25\)
PACK L2. \(20 \times\) LM 709 Op-Amps (8 lead T05) \(£ 1.50\)
Could be they are all OK. but as they're untested - we don't know. For packs with no stated guaranteed minimum, weill guarantee it works out much chaper than average mail order prices buying this way Satistaction
guaranteed or raturn complefe pack for replacement or relund
MAIL OROER ONLY - NO CALLERS POSTAGE \& PACKING add 20 D
CODESPEEO, P. O. Box 23, 34 Soafiold Moad, Copnor, Portmouth, Hants. P03 58J.
L.B. ELECTRONICS, BF195 9p, BC213 9p, BC108C 10p, OCP70 16p, BXY49 34p, \(1 \mathrm{~N} 41484 \mathrm{p}, 3 \cdot 3 \mathrm{~V}, 24 \mathrm{~V}\), zeners
 \(74 \mathrm{HOO} 20 \mathrm{p}, 7\) way DIL switches \(60 \mathrm{p}, \min\) push button switches (change over) \(40 \mathrm{p}, 75450\) 34p, Fenwell Thermisswitches (change over) \({ }^{\text {tors, pair potted }+ \text { lead-plug } 20 \mathrm{p}, \mathrm{PCB} 1 \text { watt amplifier }}\) tors, pair potted + ead-pluz \({ }^{\text {LM }} 380\) etc \(\$ 1.20\), ITT 5870 ST nixi + data 50 p. Sperry SP425-09 (9 digit 7 seg) + data \(11,7476^{\prime \prime}\) (Red) \(£ 1.35\), D.P.M. Display 41 digit (LED) with bezel \(\$ 2.50\). P \& P 10p. L.B. ELECTRONICS, 43 Westacott. Hayes, Middx. UB4 8AB.

\footnotetext{
Now Stereo Modules by Famous Manufacturer
Stereo amplifier, \(10 \mathrm{w} \times 10 \mathrm{winc}\). rect \(£ 4.90\) each As above plus pre-amp with 4 slider controls. 6 push buttons Speakers to suit \(8^{n}\) elac \(8 \Omega 15 \mathrm{wpk}\)
Stereo gram amplifiers \(3 \mathrm{w} \times \times\) Stereo gram amplifiers 3w \(\times 3 \mathrm{w}\) with pre.25 each - pre-amp 5.90 Controls
Mono VHF-FM rec module varicap tuner, I.F. filter 8
IC demod \(0 . P 300 \mathrm{mV}\) IC. demod. O.P. 300 mV Prices inc. P\&P \& VAT Cash with order

ELECTRONICAL SUPPLIES, CROYDON 40 Lower Addiscombe Road, Croydon, Surrey CRO BAA
}

\section*{SMALL ADS}

The prepaid rate for classified advertisements is 18 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting \(£ 6.00\) per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd"', Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertismement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

\section*{CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS}

\section*{1. Advertisements are accepted subject to the} conditions appearing on our curfent advertise ment rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act o Parliament nor is it an infringement of the British Code of Advertising Practice. 2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is taken, the Publishers shall not be liable for clerical or printers errors or their consequences.

VALVES - Radio, T.V., industrial, transmitting, and projec tor lamps many types. We dispatch to any part of the world by return of post. Air or Sea Mail. 4000 types in stock. 1930 to 1976 obsolete types a speciality. List 30 p . Projector Lamps. Quotation S.A.E. Open to callers. Mon. to Sat. \(9.30-5.00\), closed Wed. 1.00. We purchase all types of new and boxed valves. And projector lamps. COX RADIO (Sussex) Ltd., Dept P.E., The Parade, East Wittering, Sussex PO20 8BN. West Wittering 2023. (STD code 024366).

\section*{SOLAR CELLS}

\section*{57 mm dia 255 mW}
\(£ 4.90\)
25 mm dia 35 mW £3.80
\(4.7 \mathrm{~mm} \times 9.00 \mathrm{~mm} 2.5 \mathrm{~mW}\)
£. 0.55
Booklet "SOLAR CELLS"
f. 0.75

Data Sheets on 255 \& 35 mW cells.
f0.20
Prices include VAT and postage. Large SAE for lists. Mail order only. Speedy service. IC's books, capacitors. solar batteries, half price bargains and surplus PCBs resistors, semiconductors etc etc

\section*{Edencombe Ltd.}

34 NATHANS ROAD, N. WEMBLEY, MIDDX HAO 3 RX
COMPONENTS FOR P.E. PROJECTS. Components lists with prices a vailable for P.E. Projects from November 1977 onwards. Send SAE stating project and month of publication (Maximum four projects per SAE). Lists sent by return together with ACE order form/catalogue. ACE
MAILTRONIX, Tontal Street. Wakefield, W. Yorks. MAILTRO
WF1 5 JR .

\section*{BRAND NEW COMPONENTS BY RETURN} Electrolytic Capacitors 16V, 25V, \(50 \mathrm{~V}-0 \cdot 47 \cdot 1 \cdot 0,0 \cdot 2,4 \cdot 7\) and

 and \(100 / 3\) Y 15 p .

Vertical Mounting Ceramic Plate 50V-E12 selies יㅡ-
 Polyalyrene E12 Series 63 V Horizontal Mounting-10-

Mullard Polyester 250 V Vertical Mounting E8 Series-0.0t
 Mylar (Polyester) Film 100 V Vertica! Mounting-0.twl
 Miniature Resistors Hishstab E12 Series \(5 \%\). Carlom Pilto

tout 10 p (free over \(\mathrm{E}^{2}\)). Pricey inchasive uf VAT
THE C.R. SUPPLY CO
127 Chesterfield Road, Sheffield S8 ORM
240/12-0.12V. 100 mA transformers with power supply P.C.B. 4 for \({ }^{11} .99\). To3 metal power transistors 35 for £1.99. Push to make switches Red/Y/Blue 12 for \(£ 1,99\). 588 Ashton Road. Oldham, Lancs. 0616529879.
 E1.15. FI8RE GLASS DOUBLE SIDED \(13^{\prime \prime} \times 6^{\prime \prime} £ 1.30\),
\(12 \times 107^{\prime \prime}\) £2.10. UNIT WITH B SIICONDIODS 600 20A. 8 SCRS 3 or \(400 \mathrm{~V} / 6 \mathrm{~A} 6\) VINITORS W.W. RES. f1,30. 7 IL ASSORTED COMPONENTS £2.95. LIST 15 p f1,30. 7ID ASSORTED COMNONENI INSURANCE ADD \(15 p\).
J.W.B. RADIO

2 BARNFIELD CRESCENT, SALE.
CHESHIRE M33 1NL
TURN YOUR SURPLUS capacitors, transistors, etc., into cash.
Contact COLES-HARDING \& CO., 103 South Brink, Wisbech, Cambs, 0945-4188. Immediate settlement.

ELECTRONIC, T.V. AND AUDIO COMPDNENTS AND ACCESSORIES. New, surplus and ex-equipment. Write to us for your requirements. S.A.E. Please. Lists 15p. We always do our best to help. J. P. S. 9 East Street, Colne, Huntingdon, Cambs.

\section*{LADDERS}

LADDERS. Varnished \(25 \frac{1}{\mathrm{ft}}\). Extd. \(£ 35.70\). Carr. £2.40. Leaflet Callers welcome. Open Sat. Ladder Centre (PEE4) Halesfield (1) Telford, Salop, Tel: 586644.

\section*{FOR SALE}

SEEN MY CAT? 5000 Odds and ends. Mechanical Electrical. Cat free. Whiston, Dept. PRE. New Mills, Stockport.

MICRDPRDCESSDR introkit. SC/MP, never been assembled, only board removed from shrink-wrap. Reason for sale purchaser blind. \(\mathbf{x} 55\) o.n.o. Phone 078.163957.

550' of Triple play tape (Ex-Recording Studio) on \(3^{n \prime}\) unbreakahle reel. Ideal for messages. Bargain at 25 p each P\&P 30p. 10 \(\psi^{\prime \prime}\) Metal Spool (NAB) in sturdy Box 80p. p\&p 30p. R. Southern, 551 Chorley Old Road, Bolton Lanes. BLI GAE.

PRACTICAL ELECTRONICS Sports Centre new chip \(\mathbf{1 1 2}\), of nearest offer. Needs attention. Mark Andrews, Bank View Parson Drove. Wisbech, Cambs.

MINISONIC Synthesiser plus many extras, needs atten tion. £125 n.n.o. Tel: Banbury 51534.

\section*{P.E. MULTIMETER \\ ANTI-LOCK-UP KIT \(£ 1.20\) inc.}

FULL SPEC DL704s NOW \(£ 1.50\) each
P.C. BOARDS \(£ 2.65\). All Parts Available

\section*{S.A.E. for details:}

\section*{SPARKS DEVELOPMENTS \\ 53 North Street, Melbourne, Derby.}

NEW ISSUES of "Practical Electronics" available from April 1974 edition up to date. Price 65 p each. Post Free.
BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. (Tel: 0423) 55885.

PRACTICAL ELECTRONICS 1967-1977 FDR SALE. Mainstone, Chandlersford 4882. Evenings - Weekends.

DRGAN PARTS, abandoned project. C-C 49 note Keyboard. Plastic \(£ 14\) wood \(£ 7\). Reverb \& Valve driver \(£ 7\). Metal Pedal Plastic \(£ 14\) wood \(£ 7\). Revert \& Valve driver 57 . Metal Pedal
Board \(\mathrm{f12} .43\) stops 64 . S.A.E. please. 31 Steele Road. Board \(\mathbf{6 1 2 . 4 3} \mathbf{~ s t}\)
Wellingborough.

WANTED－NEW VALVES，Transistors．Tup Prices，popular types，Kensington Supplies，（B） 367 Kensington Street． Bradford 8．Yurkshire．

RADIO AND TELEVISIDN Servicing＂Borks wanted from 1964 －1965 edition up tu date．L：3．（N）plus postage paid per copy by return of post．Bell＇s Television Services， 90 Kings Road．Harrogate．N．Yorks．Telephone（0）423）动内梛：

WANTED．Synthesisers，modules，etc．Cash or part exchange with Fartisa Organ．Phone Wolverhampton 732306．After 5 pm ．

\section*{BOOKS AND PUBLICATIONS}

SIMPLIFIED TV REPAIRS．Full repair instructions individual Rritish sets \(\mathbb{E} 1 . \overline{\mathrm{O}}\) ，reguest free cireuit diagram． Stamp brings details mique．TV Publications，（AUSEPE） 76 Church Street．Larkhall，Lanarkshire．
ELECTRONIC TIMESAVER Learning Program．30－stage easi－ learn electronics program including boards．terminals． plans and circuit know－how．Ideal for beginners，students， schomls and colleges．Special intro－offer 41.75 ．Money back if not delighted．TFCHNO（＇FNTRE（PE）．PO Box
：3：．\＆Adint Road．Middlesbrough．

\section*{PERSONAL}

ELECTRONICS SERVICE Engineer required to give part time Tuition．Please Ring 599－140：3．

\section*{SERVICE SHEETS}

BELL＇S TELEVISION SERVICES for Service Sheets on Ratio．TV：etc． 7 ．ip plus S．A．F．Colnur TV Service Mannals on request．SA．F．with enquiries tore 190 Kings Ruad．Harrogate．N．Yorkshire．Tel：（0423） ．

SERVICE SHEETS tior Radin．Television．Tape Recorders Steren etr．W＇ith tree Fault finding suide，from \(51 l_{\mathrm{p}}\) and S．A．E．Catalogue \(-3 p\) and S．A．E．Hamilon Radio． 47 Bohemia Ruad．St．Iemards．Sussex．

\section*{ELECTRICAL}

LIST No． 28 muw ready Styli illustrated equivalents alson（＇artridges．Leads．，etc．．．free for long S．A．F．Felstead Flettronic，iPE）．Donnley Lane．Gatley，Cheadle． Ehest rontica \({ }^{\text {（PE）}}\)
（heshire．SKX

\section*{EDUCATIONAL}

WhY NOT \＆E A PROFESSIONAL？New T．E．C．Higher rertificate in Marine Electronics．Apply Maritime Studies Department．Lowestoft Cullege of Further Education l orwestuft．Suffirlk

\section*{TECHNICAL TRAINING}

Get the fraining you need to move up into a higher paid job．Take the first step now－wrate or phone ICS for details of ICS specialist homestudy courses on Radio．TV．Audio Eng．and Servicing．Electronics Computers：also self－build radio kits．Full details from

「el．相．f229911（all hours）
State if under IX

\section*{CITY \＆GUILDS EXAMS}

Study for success with ICS．An ICS homestudy course will ensure that you pass your C．\＆G．exams．Special courses for：Telecoms．Techniclans，Electrical Installatıons，Radio．TV \＆Electronics Technicians， Radio Amateurs．Full details from：

HSSCHOOI OHEIECIRONX
「el（0）－f229911（aill hours） State if under \(1 \times\)

\section*{COLOUR TV SERVICING}

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers．Covers principles，practice and align－ ment with numerous illustrations and diagrams．Other courses for radio and audio servicing．Full details from：

Depi． 2725 Imtertew Ilouxe．I ondons Sinxti．J Fel．（11－622 991 I（all hours） Stite if under Is

\section*{Radio Technicians}

Government Communications Headquarters has vacancies for Radio Technicians．Applicants should be 19 or over．
STANDARDS required call for a sound knowledge of the principles of electricity and radio，together with 2 years＇ experience of using and maintaining radio and electronic test gear． DUTIES cover highly skilled telecommunications／electronic work， including the construction，installation，maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery．
QUALIFICATIONS：Candidates must hold either the City and Guilds Telecommunications Part 1 （Intermediate）Certificate or equivalent HM Forces qualifications．
SALARY（inc．supps．）from \(£ 2,673\) at 19 to \(£ 3,379\) at 25 （highest pay on entry）rising to \(£ 3,883\) with opportunity for advancement to higher grades up to \(£ 4,297\) with a few posts carrying still higher salaries．
Opportunities for service overseas．
Further particulars and application forms available from：

\section*{GCHQ}

Recruitment Officer．
Government Communications，
GCHQ．Oakley，Priors Road，
Cheltenham，GL52 5 AJ ．
Cheltenham（0242）21491 Ext 2270

BB

\section*{REPAIR AND CALIBRATION TECHNICIAN}

The BBC has a vacancy for a technician to look after the repair and calibration of a wide range of test equipment used in its Test Laboratory in Chiswick．The work is interesting and varied and the instruments in use include d．v．m．＇s，oscilloscopes，sweep generators，spectrum analysers，signal generators，used over the frequency spectrum from d．c．to 1 GHz ．

A suitable technician，male or female，will have a good basic knowledge of electronics and the techniques used in test equipment， and will have had considerable experience of repair and calibration or similar testing work．

Starting salary depending on experience will be in the range of \(£ 3535\) to \(£ 3835\) rising by increments to \(£ 4285\) ．

For further details please ring Mr．P．Green，No：01－994 8541 Ext：232，or write for an application form to the Engineering Recruit－ ment Officer，BBC，Broadcasting House，London W1A 1AA，quoting reference 78 ．E．2033／PE and enclosing a foolscap envelope．Closing date for completed application forms is fourteen days after publication．

The Electronics Industry has always been a breeding ground of professional talent, particularly within the specialist areas. At EMI, we have always attracted talented people, graduates and specialist engineers with valuable experience to contribute.

We're a flexible company, which is undoubtedly one of the attractions to professional people. We're also an acknowledged major force in the industry. Our training is excellent, our products ahead of the field. Our expertise has changed the face of electronics time and time again.

People joining us at any level rapidly acquire a great deal of knowledge and experience which puts them on a steady path to promotion. And right now, we have a very special need for a limited number of men and women as Semi-Conductor Consultant Engineers within our Engineering Standards Group.

We are extending our invitation to both experienced Electronics Engineers and men and women who have a particular interest, though not necessarily experience, in electronics as a hobby.

Your role with EMI Electronics will be to advise engineers, production personnel, buyers and Q.A. staff on various aspects of semi-
conductor and micro-processor products, to liaise with suppliers and initiate/draft standards. You will also be expected to undertake laboratory testing, evaluate devices and be responsible for seeking out new products.

These varied duties require people with at least HNC qualifications but probably more important for this work, is the right personality. You must enjoy resolving technical problems and yet be capable of confident and effective communication with a wide and varied range of people. Knowledge of passive components, the foreign components markets and a working fluency in a European language, would be very useful though is not absolutely essential.

The men and women we envisage joining us will be aged between 20 and 35 and will be looking for a challenging and rewarding career with one of the major forces in international electronics.

For further information, please contact Neil Robotham, Personnel Department, EMI Limited, 135 Blyth Road, Hayes, Middlesex.
Telephone 01-573 3888 or Record-a-call anytime on 01-573 5524.

\section*{MISCELLANEOUS}

CLEARING LABORATORY. Scopes, recorders, testmeters, bridges. audio. R.F. generators. turntables. tapeheads stabilised P.S.U.s. sweep generators, test equipment, etc Lower Beeding 236

\section*{RECHARGEABLE BATTERIES}
'AA' penceII(HP7) \(£ 1.32\); sub 'C' \(£ 1.64\); \({ }^{\circ} C^{\prime}(H P 1\) I) £2.43; 'D' (HP2) £3.56; PP3 £4.98. Matching chargers \(\mathbf{£ 6 . 9 8}\) each except PP3 charger \(\mathbf{£ 5 . 8 2}\) Charging holders for \(2,3,4,5\) or 6 pencells \(50 p\). C and ' \(D\) ' size holders, 4 cell only, 80p. 250/12 volt inverters now available.
Prices include VAT. Add \(10 \%\) post, package and insurance orders under E20.5\% over f20. S.A.E for full details plus 75p for "Nickel Cadmium Power booklet. Mail orders to:

\section*{SANDWELL PLANT LTD. DEPT. P.E.}

201 Monmouth Drive, Sutton Coldfield. Wes Midlands. Tel. 021-354 9764 Callers to T.L.C., 32 Craven Street, Charing Cross, London, WC2.

MANUFACTURERS SLIRPLUS Teletext Display P.C.B.'s; COLOUR, Upper/Lower case ASCII, Graphics, Flash etc. Ideal start MPU O/P onto T.V's. With cct, notes £5.91. Requires TTL, ROM Char Gen I.C. Only \&12.96. Post Free. TECHNALOGICS, 8 Eqerton St., Liverpool L8 7 LY .

\title{
CABINET FITTINGS \\ Stage Loudspeakers and Amplifier Cabs Jacks \& Sockets, Cannons, Bulgin 8 wandles, Feet, Castors, Jacks \& Sockets, Cannons, Bulgin 8 ways, Reverb Trays, \\ Send \(2 \times 9 p\) Stamps for samples and lis \\ ADAM HALL (P.E. SUPPLIES) Starline Works, Grainger Road
Sauthend-on-Sea, Essex.
}

OUTSTANDING \(2200 \mathrm{Hi}-\mathrm{Fi}\) FM Tuner. Full Coverage 88.102 MHz . Varicap tuning. Latest silicon superhet design. Ideal for push button/manual tuning only \(\mathbf{X 9 . 9 5}\). peak, complete stered pre-amplifer 2 power 32 watts peak, complete stereo pre-amplifier 2 power amplifiers, specification as above 2 only \(i 19.45\) All uner amplifier + specification as above 2 only \(\begin{aligned} & \text { i } 19.95 \text {. All equipment built, }\end{aligned}\) GREGG ELECTRONICS, 86-88 Parchmore Rop). Thornton Heath, Surrey.

\section*{MAKE YOUR OWN PRINTED CIRCUITS}
\[
\text { RUB-ON TRANSFERS - Starter pack } 15 \text { sheets, }
\] lines, pads, I.C. pads) £1.30, Single Sheets 27 p . FERRIC CHLORIDE - 1 lb bags 70 p (P. \& P. 40p.) \({ }^{*}\) SOLDERCON SOCKETS - 10065 p, (quantity ates). PLASTIC SUPPORTS - 7 or 8 hole \(6 p\)./pair
S.A.E. lists sample. P. \& P. \(15 p\) /order excep \({ }^{*}\)

OAK LODGE, TANSLEY, DERBYSHIRE

SINTEL FOR BOOKS, CMOS AND COMPONENTS
6800 Booklet 1.80, MOT CMOS Databk 3.50, 6800 Appl Man 12.95, 6800 Prog Man 5.35, SC/MP Introkit Man 0.75 NS TTL Databk 2.10, RCA CMOS Databk 5.45, 8085 User's Man 5.15, 280 Ass Lang Prog Man 7.50, 280 CPU Man 5.60 , Z80 CTC Spec 0.80 , 280 P10 Man 3.30 . Also a full range of CMOS - send for free cotologue. MPUs: MEK \(6800 \mathrm{D} 2205.20^{-}\), MC6820 8.66 , 280 30.72, Z80A 39.94, Z80CTC 13.82, Z80P 10 13.82, Memories: 2102-A 2.55, 2112 A .4 3.13. Displays: Type FND 500 C.C. 1.40 , Type TIL 321 C.A. 1.61, 5 LTO1 5.29 . Crystals: 32.768 KHz
\(3.78,5.12 \mathrm{MHz} \mathrm{3.89} \mathrm{} .\mathrm{Clock} \mathrm{1Cs:} \mathrm{AY51202} \mathrm{4.35}, \mathrm{AY51224}\) \(3.78,5.12 \mathrm{MHz}\) 3.89. Clock 1Cs: AY51202 4.35, AY5 1224
3.78, MK50253 6.05 . Soldercon Pins: \(1000.54,1000\) 4.32, 300011.34 . Free cotalogue by return. All items CWO. Prices inclusive of VAT. Add 35p p\&p. SINTEL, P.O. Box 75B, 209 Cowley Road, Oxford. Tel. (0865) 49791

We would like you to know that we make - BEC Cabinets
- Special cabinets
- Prototype printed circuits

Instrument panels
We also have a quanity punching

\section*{H.M. ELECTRONICS}

275a Fulwood Rd: Sheffield S10 38D TEL: (0742) 669676
Send \(15 p\) frefundablel for leaflets

AUTOMATIC ELECTRONIC Time Delays, 1 KW Output. Kit 26.10, PCB/Details \&l.20. Information - SAE. L. O. Green. 4 Gurney Road, Costessey, Norwich, NR5 OHA.

\section*{SPEAKER CONSTRUCTORS}

Acoustically Transparent
Reticulated Polyurethane Foam
Special Dense Black Colour - \(\frac{1}{2}{ }^{\prime \prime}\) thick Cut to size 3p per sq. inch (includes VAT \& P. \& P.)

Acoustic Wadding - Mixture of synthetic and superfine glass fibre media Ideal for packing cabinets
1 Kg. Bag f 1 inc. VAT +66 p post.
AUTOMET ACOUSTICS CHARLES LANE MILL HASLINGDEN, ROSSENDALE, LANCS.

100 WATT GUITAR/PA/MUSIC AMPLIFIER
With superb treble, bass. Overdrive, slimline. 12 months guarantee. Unbeatable offer at £39. Also twin channel with absolutely delighted within 7 days. Also fuzz boxes grea sound robust construction \(£ 6.60\). Also 100 watt 12 in speakers \(£ 22.50\).
Alt inclusive of P.P. Send cheque or P.O. to
WILLIAMSON AMPLIFICATION
62. THORNCLIFFE AVENUE, DUKINFIELD,

CHESHIRE. TEL: 061-3445007

\section*{BUILD YOUR OWN TV CAMERA \\ ONLY KNOWN HIGH PERFORMANCE SOLID STATE CAMERA IN industry security, education etc. *Will work with most other CCTV
equip equipment. *Fully guaranteed. Completely self-contained. With our with Vidicon C99. Less Vidicon E82.35. (Lens available as optional
extra). SAE for info or phone your order through using your Barclay \\ CROFTON ELECTRONICS LIMITED}

PRACTICAL ELECTRONICS P.C.B.'s
in glass fibre tinned and drilled
Dec. 77 Car 8 urglar Alarm 1412-1 88p.
Feb. 78 Auto Ranging Volt Meter incl. power \(\mathbf{£ 3 . 1 0}\) C.W.O. Please

For full list and current boards please send S.A.E P.C.B.'s also produced from customer's own master please send for quote.

PROTO DESIGN
4 Highcliffe Way, Wickford, Essex, SS11 8LA

PRINTED CIRCUIT BOARD LAYOUTS from 60p per component. S.A.E. to Consultant Design Service, The Galleon, Porlock, Somerset. 862567

\section*{THE FABULOUS}

\section*{D2 MICROPROCESSOR EVALUATION KIT FROM MOTOROLA.}

Featuring *24 key keyboard *Seven segment display *Cassette interface *Erom \& Ram Expandable *Interface Capability *Full Documentation *5 Volt power supply Required *One years FREE membership of The Amateur Computer Club with every purchase*. £I \(76+\) \(£ 1.50\) P \& P + 8\% VAT.

ENAMELLED COPPER WIRE
\begin{tabular}{lrrrr}
SWG & 11 b & \(8 \mathbf{0 z}\) & \(\mathbf{4 0 z}\) & \(\mathbf{2 0 z}\) \\
\(10-19\) & 2.60 & 1.40 & .66 & .55 \\
20.29 & 2.80 & 1.60 & .85 & .65 \\
\(30-34\) & 3.00 & 1.70 & .95 & .70 \\
\(35-40\) & 3.35 & 1.90 & 1.10 & .79 \\
\(40-43\) & 4.50 & 2.50 & 1.90 & 1.25 \\
\(44-46\) & 5.00 & 3.00 & 2.10 & 1.65 \\
47 & 8.00 & 5.00 & 3.00 & 1.76 \\
48 & 15.00 & 9.00 & 6.00 & 3.30
\end{tabular}

Tinned Copper, Even Gauges \(14-30 £ 3\) per lb. Multicore 60/40 Solder 18SWG \(£ 3.24\) per lb. Prices include P \& P and VAT.
SAE brings list of copper and resistance Wires.

\section*{THE SCIENTIFIC WIRE COMPANY}

PO Box 30 London E.4.
Reg. Office, 22 Coningsby Gdns.

SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 50 , chassis punching facilities at verv competitive prices, 400 models to choose from, free literature (stamp would be appreciated). BAZELLI. Dept: No. 23, St. Wilfred's, Foundry Lane. Halton. Lancaster. LA2 6L'T.

\section*{NO LICENCE EXAMS NEEDED}

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only \(\mathbf{8 9 . 7 5}\) plus 25 p P. \& P
'Brain-Freeze' 'em with a MINI-STROBE Kit, pocket-sized 'lightning flashes', vari-speed, for discos and parties. A mere \(£ 4 \cdot 30\) plus 20 p P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multi-function modules. \(£ 5\) each plus 20 p P. \& P.

LOTS MORE! Send 20p for lists. Prices include VAT. (Mail order U.K. only).

\section*{BOFFIN PROJECTS \\ Cunliffe Road, Stoneleigh \\ Ewell, Surrey (P.E.)}

\section*{PRINTED CIRCUITS and HARDWARE}

Readily avoilable supplies of Constructors' hardware. Printed cirevit boords, top quality for individual designs. Prompt vice. Send 25 p for catologue. From
RAMAR CONSTRUCTOR SERVICES,
Masons Rood, Stratford upon Avon, Warwick Tel. 4879

\section*{SOWTERTRANSFORMERS REPRODUCINCONDINGAND}

We are suppliers to many well-known companies, studios and broadcasting authorities and were established in
1941 . Early deliveries. Competitive prices. Large or small 1941. Early deliveries. Competitive prices. Large or small quantities. Let us quote
SOWTER TYPE 3678
A recent release microphone transformer
MULTITAP MA Primary windings for 600 ohm. 200 ohm and 60 ohm
with Secondary loadings from \(2 \times 2\) quency reponse plus/minus \(\frac{1}{3} d 820 \mathrm{~Hz}\) to 25 KHz . Contained in well finished Mumetal box. 33 mm diameter by 22 mm high. with colour coded end leads. low distortion. DELIVERY (small quantities) EX-STOCK. HIGHLY
E. A. SOWTER LTD.

Transformer Manufacturers and Designers
The Boat Yard. Cullingham Road Ipswich. Tet. 0473219390 \& 52794

SCOPE CALIBRATOR. portable, battery operated, s.a.e. details. Ramar Constructor Services, Masons Rd, Stratford on Avon, Warwickshire.

\section*{PLACE YOUR ORDER BYPHONING \\ SANDY GATES SERVICES \\ PRINTED CIRCUIT BOARD}

CUT TO YOUR REQUIREMENTS
\(1^{1 / 2 " ~ T h k ~} \times 6^{n}-12^{\prime \prime}\) wide - single/double side \(\quad 80 \mathrm{p} / \mathrm{sq}\). ft \(\frac{1^{n}}{1 / 2}\) Thk \(\times 5^{n}\) max. width - single/double side. 55p/sq. it Mixed P.C. Board - \(3^{n-4 "}\) wide (Approx 4 sq. ft.) £1.00 Terms - as above + P \& P - C.O.D. - Money back
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{} \\
\hline \multicolumn{7}{|l|}{} \\
\hline \multicolumn{7}{|l|}{} \\
\hline & \multicolumn{6}{|l|}{} \\
\hline \multicolumn{7}{|l|}{} \\
\hline & \multicolumn{6}{|l|}{} \\
\hline
\end{tabular}
\begin{tabular}{|lll}
\hline
\end{tabular}
U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

\section*{R.C.S. 10 WATT AMPLIFIER KIT}

This kit is sultable for record players, tape play back, guitars.
eiectronic instruments or small PA systems Two versions are avallable The monokit uses 13 semiconductors The stereo k , uses 22 semiconductors Both kits have printed fromi panel and volume. bass and treble controls Spec low output into 8 onms. \(W\) into 15 ohms Aesponse \(20 \mathrm{c} / \mathrm{s}\) to 30 kc s input 100 MV hig

Mnor \(_{\text {Mno }}\{11 \cdot 25\)
\(\underset{\substack{\text { Sitereo }}}{\text { lit }}\)
Easy to Dula Full instructions supplied

\section*{ELAC} 10 inch
\(£ 4.50\)
Ribbed cone. Large ceramic magnet \(50-16,000 \mathrm{c} / \mathrm{s}\) Bass resonance \(55 \mathrm{c} / \mathrm{s}\). 10W 15 ohm impedance.
RCS STEREO PRE-AMP KIT. All parts to build this pir-amp. inputs for high, medium or low imp. per channel, with volume. £2.95 Post 35p
\begin{tabular}{|c|c|}
\hline MAINS TRANSFORMERS & \\
\hline 250- & \\
\hline \(350-3-35080 \mathrm{~mA} .6 \mathrm{6}\) 3 3 & 80 \\
\hline -0-300 \(120 \mathrm{~mA} \mathrm{~S}^{2}\) & \\
\hline ATER TRA & \\
\hline & \\
\hline 2 & \\
\hline & \\
\hline +10 \(4 \times 2+2{ }^{\text {a }}\) & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{8}{*}{\begin{tabular}{l}
 AUTO TRANSFORMERS 115 V 10230 V or 230 V to 115 V CHARGER TARASFOOMEAS IAPQU: 200,250V tor 6 or 12 V \\
 \\
1:A40R 2 A 5 IDGE CHARGEA PECTIFIERS 6 or 12 V outpuls 1:A A0p; 2A 55p; 4A 95p. HALF WAVE 12V 1;A 25p.
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

GOODMAN'S COMPACT 12in BASS WOOFER

10 din square 14000 gauss magnet 30 sides
watt

10 WATT PER CHANNEL STEREO AMPLIFIER In chassis form. A.C. mains operated. Volume. ape inputs. Recording output. Front panel size: \(16 \frac{1}{2} \times 1 \frac{1}{2}\) in.
Chassis size: \(13 \times 15 \mathrm{in} . \quad\) Bargaın. 18.50

HEATING ELEMENTS WAFE
 Heaters etc Must be clamped between two sheets of metal or

ONLY 40p EACH (FOUR FOR (1.50)

\section*{E.M.I. \(13 \frac{1}{2} \times 8\) in}

SPEAKER SALE!
10W Model \(£ 7.95\)
15W model \(£ 10 \cdot 50\)
20W model \(\quad\) [11.50
TEAK VENEER HI-FI SPEAKER CABINETS
MODEL "A" 20 . \(13 \times 12 \mathrm{in}\)
For 12 in . dia. or 10 in . speaker lliustrated \(£ 14.50\) Post \(£ 1.60\) MODEL "B" BOOKSHELF For \(13, \sin\). EMI \(\quad £ 8.50\) Post \(£ 1\) R.C.S. BOOKSHELF complete with speakers. Size \(14 \times 9 \times 6 \mathrm{in}\). approx. Response 50 to 14.000 CPS 6 watt rms 8 ohms £ 16 pair Post \(£ 1\)
ACOUSTIC WADDING 18 in . wide, 20 p

\section*{}

Leaftet. Cabinet Fittings. Handies. Corners.
BAKER 150 WATT
ALL PURPOSE
TRANSISTOR AMPLIFIER

Ideal for Groups Disco \(P\) A and Musical Inst
speech and music 4 way mixing ourpui \(4 / 8 / 16\) ohm. a.c. Mains 240.
Separate treble and bass cont

\section*{NEW "DISCO 100 WATT \\ \(£ 59\)}

2 inputs \(\&\) outputs separate volume treble and bas
disco or slave ampliter chassis Made by Jennings
R.C.S. SOUND TO LIGHT DISPLAY MK If
Complete kit of parts with R.C.S. printed circuit. Three
1000 W channels. Will operate from 20 mV signal source. CABINET extra £4. \(\quad £ 17.00\)

GOODMANS CONE TWEETER

R.C.S. 100 WATT VALVE AMPLIFIER CHASSIS

ROBUST BLACK PLASTIC BOX
Size \(6 \frac{1}{2} \times 3 \underset{3}{3} \times 2\) in with brushed alu
£1.50
racia. Ideal for constructional projects.
Postico
R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER-BRITISH MADE £1.45

ELECTRO MAGNETIC
95 p pos \(x_{n}\)
15 Vac operation over 300 hours continuous on SP2 Dattery fully adjustable swing and speed ldeal displays leaching electro
magnetism of tor metronome strobe etc

\section*{}

HEAVY METAL PLINTHS
 Model A Size 12 Model \(B\) Size \(16{ }^{\circ}\) \(20 \cdot 17 \xi_{5}\). 9in uncut board Catiers only E 1850
 \(\times 3\) in, \(£ 3.50\). 171
Rosenwood sides \(£ 4\).
eal or record decks. tape decks. etc. Post \(75 p\).
BAKER HI-FI SPEAKERS high quality-british made
SUPERB
12in 25 watt
£22

Niss
 eqister
Bass Resonance
Useful response
80116 ohms modet
AUDITORIUM

\footnotetext{

 ALUMINIUM ANGLE BRACKET
ALUMINIUM BOXES, MANY SIZES IN STOCK.
\(\qquad\)
THE "INSTANT" BUIK TAPE 150
THE INSTANT" BULK TAPE
ERASER HEAD DEMAGNETISER.
ERASER A MEAD DEMAGNETISER.
Sultable tor cassentes and all sizes of
lape reels a
lape reels a c mains 200240 V
Leaflet SAE
Leafiet SAE \(\quad \mathbf{~ E 4 . 9 5} \begin{aligned} & \text { Post } \\ & 500\end{aligned}\)
}

\section*{}

\section*{everything for the modern D.I.Y. electronics enthusiast and more.}

100W RMS STEREO DISCO
A genuine 100W RMS per channel (both channels
driveni stereo disco with auto fade on microphone, VU meters, full
monitoring an
monitoring and
cueing facilities cueing facilities quality light show. Complet construction booklet MES4 1 , price 25 p. Cabine comes comp carrying handies.

LOW-DISTORTION AUUDIO OSCILLATOR The very low distortion sine wave i
suitable for testing very high quality hi-fi audio.

PEDAL UNIT
A completely self-contained pedal unit. 13 -note. 2-Octave range. 4 organ stops It can be added to any organ. A really unusual extra is the bass guitar stop which uses four envelope shapers to give a real bass guitar sound. A must for the solo guitarist. Full construction details in our catalogue - post the coupon below. now!

\section*{ELECTRONIC} IGNITION SYSTEM A high performance electronic ignition system that saves fuel, cuts points wear gives strong spark and easy start even with very low battery, improves engine power at high revs. Change back to conventional system in seconds. Total cost around f14. Full construction details in our catalogue. Send the coupon below. now! (All prices include V.A.T. and p \& p)

\section*{IT'S A FANTASTIC BESTSELLER!}

216 big (\(11^{\prime \prime} \times 8^{\prime \prime}\)) pages! Over a thousand Illustrations! Dver 30 pages of complete projects to build! Thousands and thousands of useful components described and illustrated! No wonder it's a bestseller!
DON'T MISS OUT! SEND EOp NOW! MAPLIN ELECTRONIC SUPPLIES
P.O. BOX 3 RAYLEIGH ESSEX SS6 8LR

Telephone: Southend (0702) 715155
Shop. 284, London Road. Westcliff-on-Sea, Essex
equipment. Also includes square wave output. Range
20 Hz to 26 kjz . Output OV to \(1 V\) in three continuously variable steps. Total cost
around f 21 . Full construction details in our catalogue. Send the All prices include V.A.T and \(p\) \& \(p\))

10 CHANNEL STEREO GRAPHIC EQUALISER

A new design with no difficult coils to wind but a specification that puts it in the top-flight hi-fi class. All this for around £70 including fully punched and printed metalwork and woodwork. Send for our component schedule now Full construction details orice 25 p. (All prices include V.A.T. and \(p\) \& \(p\))

\section*{(an+mया}

\section*{INTEGRATED CIRCUITS}

Over 35 pages in our catalogue devoted to hundreds of useful I.C.s. All with data, pin connections and many with applications circuits and projects to build. Post the coupon now!```

