

VOLUME 14 No. 7 MARCH 1978

CONSTRUCTIONAL PROJECTS

P.E. STRING ENSEMBLE-1 by A. J. Boothman P.S.U./Tone Generator 482
P.E.CHAMP-7 by R. W. Coles and B. Cullen
Putting Champ to work 491
DIGITAL LAP COUNTER by S. Morgan Useful addition for model car layout 504
NICAD BATTERY CHARGER by E. A. Parr
Assures a full charge with no overcharging problems 508
AUTOMATIC ENLARGER TIMER by M. Dix
Darkroom aid for black and white enlargements 518
GENERAL FEATURES
FAULT FINDING-3 by G. Loveday
Triac and thyristor circuits 500
MATRIX MARKER
Custom designed tool 507
NOMOGRAPHS FOR I.C. TIMERS by E. A. Parr
Enables quick selection of component values 512
INGENUITY UNLIMITED 521
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices 525
NEWS AND COMMENT
EDITORIAL 481
MARKET PLACE
Interesting new products 490
NEWS BRIEFS
Sound 78 International
Systems Interference-HiFi Show-MPU Courses 496, 516
POINTS ARISING
P.E. Champ-Car burglar alarm 503
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 506
SPACEWATCH by Frank W. Hyde
Two spacecraft to Venus 517
READOUT
A selection of readers' letters 520
PATENTS REVIEWThought provoking ideas on file at the British Patents Office526

Our April issue will be on sale Friday, 10 March, 1978
(for details of contents see page 499)

[^0]

24 HR. CLOCK/APPLIANCE TIMER KIT

Handy size Reels and Dispensers

OF THE MORLD'S FINEST CORED SOLDER TO DO A PROFESSIONAL JOB AT HOME

Ersin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.

handy size reels of SAVBIT, 40/60, 60/40 and ALU-SOL | soldar |
| :---: |
| alloys |

These latest Multicore solder reels are ideal for the toolbox. Popular specifications cover all general and electrical applications, plus a major advance in soldering aluminium. Ask for a free copy of 'Hints on Soldering' containing clear instructions to make every job

Ref.	Alloy	Diam (mm)	Length metres approx	Use	Price
$\begin{gathered} \text { Size } \\ 3 \end{gathered}$	$\begin{gathered} \text { 40/60 } \\ \text { Tin/Lead } \end{gathered}$	$1 \cdot 6$	10.0	For economical general purpose repairs and electrical joints.	¢2.16
$\begin{gathered} \text { Size } \\ 4 \end{gathered}$	ALU-SOL	1.6	8.5	For aluminium repairs. Also solders aluminium to copper. brass etc.	£2.46
$\begin{gathered} \text { Slze } \\ 10 \end{gathered}$	60/40 Tin/Lead	0.7	39.6	For fine wires, small components and printed circuits.	£2.16
$\underset{12}{S 1 z e}$	Saveit	1.2	13.7	For radio. TV and similar work. Increases copper-bit life tentold.	£2.16

 easy.

Two more dispensers to simplify those smaller jobs. PC115 provides 6.4 metres approx. of 0.71 mm solder for fine wires. small components and printed circuits.
PC115 69p
Or size 19A for kit wring or radio and TV repairs. 2.1 metres approx. of 1. 22 mm solder.

Size 19A 63p

SAVBIT

handy solder dispenser
Contains $2 \cdot 3$ metres approx. of $1 \cdot 22 \mathrm{~mm}$ Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times. Size 5 58p
For soldering fine joints

A SPECIAL FREE OFFER FROM DORAM The revolutionary new'Cyalume'lightstick as featured in'Tomorrow'sWorld'.

The lightstick is a safe, easy-to-use emergency liquid lighting device. Quickly activated by bending, the lightstick,will illuminate an average room giving sufficient light for reading. It's ideal for camping and boating and floats on water.

To obtain your free lightstick order $£ 15$ worth of goods from the Doram Edition 4 catalogue, issued in September, attaching this advertisement to your order.

The catalogue contains a complete range of kits, test equipment and high-quality components.

If you don't have the Doram catalogue, send 20p to cover post and packing with the coupon. We will despatch it by return to enable you to take advantage of this offer.

Check out your Doram catalogue today and send your order to:
Doram Electronics Limited, PO Box TR8, Leeds LS12 2UF.
Offer closes March 10th, 1978. (PEM).

Electronics you can dependon.

Please send a copy of the Doram catalogue by return. I enclose 20 p to cover post and packing.
Name
Address

Doram Electronics Limited, PO Box TR8, Leeds LS12 2UF. (PEM)

LOOK! Here's how you master electronics

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1 Build an oscilloscope

As the first stage of your training, you actually build your own Cathode ray oscilloscope' This is no toy, but a test instrument that you will need not only for the course s practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read, draw and understand circuit diagrams
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television radio. computers and countless other electronic devices and their servicing procedures

3 Carry out over 40 experiments on basic circuits
 We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

SAXON ENTERTAINMENTS LTD
 THE PIONEERS OF MODULAR DISCO/P.A. EQUIPMENT NOW OFFER PACKAGE DEALS AT INCOMPARABLE PRICES

CENTAUR STEREO DISCOS

C/W LIGHT SHOW \& DISPLAY, TWIN SPEAKERS \& LEADS

Standard 100W

$£ 225$ or Deposil $£ 28.80$
12 Months $£ 21.18$ or 24 Months $£ 11.81$

Super 200W $£ 275_{\text {or }}$ Deposifif 132.80

12 Months $£ 25.89$ or 24 Months @ $£ 14.44$

GXL 200W (withion £ 349 or Deposit $£ 42.72$

12 Months @ £ 32.49 or 24 Months © $£ 18.11$

COMPLETE STEREO
ROADSHOWS - BUILT IN SOUND TO LIGHT/SEQUENCER \& DISPLAY

TWO YEAR GUARANTEE

illustration shows GXL Centour System
These systems feature full mixing for two decks tope 8 unic with monitoring focilities - override and ore supplied complete with sound to light + sequencer, disploy, speoker leads etc.

JUST PLUG IN AND GO!

BSR Decks - 17,000 Line Loudspeokers - Rugged Aluminium Trimmed Cabinets - Cue Light And Phones Output - Slove Output - Deck Lights/Motor Starts (GXL)

> MINI DISCO 100 WATT MONO SYSTEM $£ 159.50_{\text {opopsilif22.66 }}$

> 12 Months $£ £ 14.60$ or $\mathbf{2 4}$ Months a $£ 8.14$
> Similor in appearance to the Centaur and complete with loudspeokers and leods.

Heodphones to suit any system $£ \mathbf{£} .50$
EM507 Electret Mic
£ 15.00 ECM 81 Electret Mic £19.95 Boom Stand £ 15.50 Corrioge on oll disco systems $£ 10.00$ (Included in H.P. Prices)

D.I.Y. MODULES FOR ALL DISCO/P.A. AMPLIFIERS

COMPLETE LIGHTING CONTROL AT YOUR FINGERTIPS!

Lighting Control Unit Mk II
4 kW Sequencer + Sound Light - Dimmers

+ Automatic Level Integrated Logic Module £32.50

Three Channel Sound to Light $£ 26.75$
W 1-240W input-master Module $£ 19.75$ Plus channel controls Panel £2.95

SPARES \& ACCESSORIEŞ - LOUDSPEAKERS \& CABINETS
Rope Lights - Red or Multicolour $\mathbb{E 2 2 . 0 0}$ Melos Echo Chomber $£ 59.00$
Rope Light Contraller for up to $120 \mathrm{ft} \mathbf{£ 3 0 . 0 0}$ Sirens: English Police, USA Police,
Fuzz Lights-Red/Blue/Yellow/Green £22.80 Destroyer, Alien Voice Simulato
100 Watt Chassis Loudspeakers $12^{\prime \prime} £ 23.50 \quad 18^{\prime \prime} £ 47.50$ (Add $£ 1.50$ corr.)
Emply Loudspeaker Cabinets: Small $12^{\prime \prime \prime}$ Lorge $11^{\prime \prime} £ 21.50$ Small $2 \times 12^{\prime \prime} £ 22.50$ £15.50, Large $2 \times 12^{\prime \prime} £ 28 \quad 1 \times 18^{\prime \prime}$ £29.50

Strobe tubes $80 \mathrm{~W} \mathbf{£ 8 . 5 0}$ ICl Vynide $50^{\prime \prime}$ wide $£ 3.50$ Metre Kickproof Grille 24 wide 23.25 Merre FUIL RANGE OF RE-AN PRODUCTS IN STOCK SEND FOR OUR BROCHURE NOW!!

DISCO MIXERS - COMPLETE OR MODULAR
000000000000

Available complete and ready to plug in or as an eosy to connect module with all controls except monitor
supplied.

FEATURES INCIUDE
Twin Deck-Mic \& Tape inpuls - Wide ronge boss 8 treble controls - Full heodphone monitoring Crossiode - Professional stondard performance.

MODULES
Mono miodule
Stereo module
Ponel
$£ 22.50$
$£ 33.50$
Kit of knobs/sockets \quad E3.95 COMPIETE MIXERS (with case) Mono 18V $£ 39.50$ Stereo 18 V Mono mains Stereo moins
f57.50
$£ 45.75$
$£ 63.75$

STROBE UNITS

Pro-Strobe 4-6 Joules $£ 37.50$ Super Strobe 2-3 Joules $£ 22.50$ (Pro-Strobe has external trigger facility).

PROJECTORS - PLUTO - NEW LOW PRICES!!! CHOICE OF WHEEL/CASSETTE

P150 150W Tungsten P500 100W Q.I.

 P500 250W Q.I£ 34.00 £69.50 £79.50

Liquid wheels
Cassettes
Picture wheels from (Wide choice available)

PIEZO HORNS only $£ 7.50$ YES! - only $£ 7.50$
(As fitted to our package PA system) Direct from Motorola Inc,., USA at an UNBEATABLE PRICE
No crossover required $4 \mathrm{kHz}-30 \mathrm{kHz}$ rated $75 \mathrm{~W} / 8$ ohms $150 \mathrm{~W} / 4$ ohms use two per 100 W amplifier - Full instructions supplied.

Complete with PIEZO horn columns fitted with 100 watt units (100 watt system illustrated)

100 Watt $£ 145$
 Deposit f 19.70

200 Watt £225

Deposit E 28.80
12 Months £ $£ 21.18$
24 Months $=$ £ 11.81

These systems come complete with a Four Channel Amplifier, Leads etc. The 200 Watt system teatures Twin 100 Watt drive units in each cabinet.

ALSO ILLUSTRATED:
Melos Echo Unit $£ 59.00$ Boom Stand $£ 15.50$ Electret Mic ECM81 £19.95* Floor Stands £9.90 EM507 Mic* £15.00 Phasers £ 19.80
D.I.Y. MODULES FOR P.A. SYSTEMS Mono or stereo Make your own mixer - Mono/Stereo - up to 20 channels with these, easy to wire modules - Available as PCB's or assembled on panels.

0 SSSTETI	input Stages Up 1020	$\begin{aligned} & \text { Mono } \\ & \text { PCB } \end{aligned}$	£5.95	Mono (/W ponel etc.	£8.95
		$\begin{aligned} & \text { Stereo } \\ & \text { PCB } \end{aligned}$	£9.50	Stereo C/W ponel etc.	£12.50
	Mixes/Monitor (One only per system)	$\begin{aligned} & \text { Mono } \\ & \text { PCB } \end{aligned}$	$£ 5.95$	Mono (/W ponel etc.	£8.95
		$\begin{aligned} & \text { Sereeo } \\ & \text { PCB } \end{aligned}$	E9.50	Stereo C/W panel etc.	E12.50
	Power supply for up to 20 chonnels		£9.50	Blank ponel	E1.00

Send for free brochure for complete specification
Saxon AP100 Amplifier $£ 45$
Four mixing inputs - 100 W into 4 ohms Wide range bass \& treble controls + moster - Twin outputs
Saxon 150 Amplifier $£ 59$
Four mixing inputs - 100 W into 8 ohms
150W into 4 ohms - wide range bass

\& treble controls + master
All prices subject to 8% VAT except where asterisked (121%) Shop premises open Mon to Sat 9 am - 5 pm lunch 12.30 - 1.30 pm Mail order dept open Mon to Fri 10 am - 4 pm - Ring 01-684 6385

TO ORDER

By Post Send your requirements with cheque crossed P.O. or 60p COD charge to address below or just send your Access or Barclay Card Number NOT THECARD.
By Phone You may order COD, Access or Barclay Card.
Post \& Packing 50 p on all orders except where stated.

SAXON ENTERTAINMENTS LTD.
 327 Whitehorse Road, Croydon, Surrey.
 All Enquiries Lerge SAE Please Brochures on request

tom Sparkrite

Giron capacitive discharge electronic ignition in KIT FORM

Introductory SPECIAL OFFER £2 OFF Kit

Smoother running

Instant all-weather starting
Continual peak performance
Longer coil/battery/plug life
Improved acceleration/top speeds Optimum fuel consumption

Sparkrite X 4 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $1 / 3$ mins.
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker prevents the unit firing if the points bounce open at high R P M Contait which burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). The circuit incorporates a voltage regulated output for greatly improved cold starting. The crrcuit includes built in static timing light, systems function light, and security changeover switch. All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 year guaranteed transformer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions to assemble kit neg. or pos. earth and fully illustrated installation instructions

NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachometer pulse slave unit. Price $£\} 35$ inc. VAT. post \mathcal{E} packing.

[^1]

G8CZW Digital Frequency Meter

Complete 50 MHz kit $554 \cdot 00$ inc. VAT, post íree (U.K.)

Hardware and Wire Pack
Case. Two-tone pyc-laced steel. punched and lettered $(-95 p$ P. 8 P) Min BNC Sockets (50 ohm) Semiconductor and Diode Pack Resistor and Capacitor Pack Logic and Display PC B s 5 MHz Crystal Min BNC Plugs (50 ohm) 500 MHz Prescaler Kı SP86318 500 MHz i C NE592 Wideband Video Amp $1+75 \mathrm{p}$ \& \& P Switches. Knob. BNC s etc
NEW! DFM Reprint (posi tree)

Jointhe Digital Revolution

Understand the latest developments in calculators,

computers, watches, telephones, television, automotive instrumentation . .
Each of the 6 volumes of this self-instruction course measures 11符in $\times 8 \frac{1}{\mathrm{j}} \mathrm{in}$ and contains 60 pages packed with information diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems.

Also avallade-a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics
in 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements

£4-60

3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new plece of information before proceeding to the next.
FLOW CHARTS \& ALGORITHMS - The Algorithm Writer's Guide - Construction, content, form, use, layout of algorithms and flow charts. Vital for computing, trainf2.95
ing, wall charts etc. Size: A5, 130 pages.
plus $45 p p \& p$
Guarantee-If you are not entirely satisfied your money will be refunded.
CAMBRIDGE LEARNING ENTERPRISES, Unit 2, Freepost, RIVERMILL LODGE, ST. IVES, HUNTINGDON, CAMBS, PE17 48R, ENGLAND. TELEPHONE ST. IVES (O480) 67446. PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE: RIVERMILL LODGE, ST. IVES. Giro Ac. No. 2789159 . REGD. IN ENGLAND NO. 1328762
Cambridge Learning Enterprises, Unit 2, Freepost
Rivermill Lodge, St. Ives, Huntingdon, Cambs, PE1 7 4BR, England.
Please send me the following books:
.......sets Digital Computer Logic \& Electronics @ $£ 5 \cdot 50, \mathrm{p}$ \& p included
......sets Design of Digital Systems © $£ 8 \cdot 00, \mathrm{p}$ \& p included
.........Combined sets @ $£ 12 \cdot 00, p$ \& p included
.........The Algorithm Writer's guide @ $£ 3 \cdot 40 . p \& p$ included
Name
Address

I enclose a cheque/PO payabie to Cambridge Learning Enterprises for \mathbf{f}...........
Please charge my *Access/Barclaycard/Visa/Eurocard/Mastercharge/ Interbank account number
Signature
Telephone orders from credit card holders accepted on 0480-67446 (ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank.

THYRISTORS
No. THY1AN50 1 Amp. 50 volt TO5 No. THY1A400 1 Amp. 400 volt 105 No. THY3A50 3 Amp. 50 volt TO64 No. THY3AN200 3 Amp. 200 volt TO64
No. THY 3 A $400 ~$
3 Amp. 400 volt TO64 No. THY5A50 5 Amp. 50 volt TO66 $\begin{array}{ll}\text { No. THY5A/50 } & 5 \text { Amp. } 50 \text { volt TO66 } \\ \text { No. THY5A } 400 & 5 \text { Amp. } 400 \text { volt TO66 }\end{array}$ No. THY5A600 5 Amp. 600 volt TO66 $\begin{array}{lll}\text { No. C106/4 } & 6 \text { Amp. } 400 \text { volt TO220 } & \text { 50p } \\ \text { 42p }\end{array}$

TRIAC
S84
DIACS
BR100
D32
SWITCHES
No. $161785 \times$ Mains Slide Switches No. S17 $5 \times$ Miniature Slide Switches No. S18 $4 \times$ Standard Slide Switches No. S19 $4 \times$ Miniature Push to Make single hole mounting No. S20 $3 \times$ Miniature Push to Break single hole mounting
Push button Switch Pak $4 \times$ Assortad types multi bank and singles Latching and non-Latching $\mathrm{E1.00}^{*}$

CAPACITOR PAKS		
16201	18 Electrolytics	$4.7 \mu \mathrm{~F}-10 \mu \mathrm{~F}$
16202	18 Electrolytics	$10 \mu \mathrm{~F}-100 \mu$
16203	18 Electrolytics	$100 \mu \mathrm{~F}-680 \mu \mathrm{~F}$
All 3 at SPECIAL PRICE of £1.20*		
16160	24 Ceramic Caps	22pF-82pF
16161	24 Ceramic Caps	100pF-390p
16162	24 Ceramic Caps	470pF - 3300
16163	21 Ceramic Caps	4700pF - 0.047
All 4 at SPECIAL PRICE of f1.60		
RESISTOR PAKS		
Order No.		
16213	$60 \frac{1}{4}$ W.	100 ohm - 820 ohm
16214	60 w W.	1K-8.2k
16215	60 w W.	10K-82K
16216	601w.	100K-B20K
All 4 at SPECIAL PAICE of f1. 60°		
16217	401w	100 ohm - 820 ohm
16218	$40 \frac{1}{2} \mathrm{~W}$	1W-8.2k
16219	$40 \frac{1}{2} \mathrm{~W}$.	1K-8.2k
16220	$40 \frac{1}{2} \mathrm{~W}$.	100K-820K
All 4 at SPECIAL PRICE of $£ 1.60{ }^{\circ}$		

PACK, GERM, SILICON, POWER, NPN, PNP. ALL MIXED. YOURS TO SORT AND TEST. Approx. 500 Pieces. Order No. S23 £1.25 per pack.

VOLTAGE REGULATORS

MICROPHONES

DYNAMIC JUAL IMPEDANCE UNI
DIRECTIONAL CARDIOID MICROPHONE
Impedance 600 ohms and 50 K . Response 50
.000 Hz . Sensitivity 54 db at 50 K .

DYNAMIC CASSETTE MIC
Fitted with On/Off switch. 1 metre of tough lead with floating 2.5 and 3.5 mm plugs.
Impedance 200 ohms . Sensitivity 90 db . Size 20 mm Dia. $\times 120 \mathrm{~mm}$ Lon
Order No. $1326 \quad$ £1.15

LOGIC PROBE

A pocket size instrument capable of detecting T.T.L., D.T.L Flip flop and other pulse circuits. It is easy
to use and operates from the 5 V . O.C. supply of the circuit under test. The logic levels are indicated by 2 red LEO's one for High and the other for Low. unit.
No. S59

B-PAK GREAT SPACE

 WE NEED THE SPACE TRANSISTORSBRAND NEW - FULLY GUARANTEED

Type	Price	Typo	Price	Type	Price	Type	Price	Type	Price
AC107	25p	8 C 177	12p	BF194	9p	TIP32A	34p	2N1613	15 p
AC126	14p	BC178	12p	8F195	-9p	TIP32 ${ }^{\text {B }}$	35p	2N1711	15p
AC127	18p	BC179	12p	BF196	-12p	TIP32C	36p	2N1893	28p
AC12B	16p	BC182	-9p	BF197	-12p	TIP41A	34p	2N2218	15p
AC128K	24p	BC1B2L	-9p	BF200	25p	TIP418	35p	2N221BA	18p
AC176	16p	BC183	${ }^{\bullet} 9 \mathrm{p}$	BFX29	22p	TIP41C	36p	2N2219	15 p
AC176K	24p	BC183L	${ }^{9} 9$ p	BFX84	18p	TIP42A	36p	2N2219A	18p
AC187	18p	BC184	${ }^{9} 9$	BFY50	12p	TIP428	37p	2N2221	$15 p$
AC187K	26p	BC184L	${ }^{\text {app }}$	BFY51	12p	TIP42C	38p	2N2221A	18p
AC188	18p	BC2 12	-10p	BFY52	12p	TIP2955	65p	2N2222	15p
AC188K	28p	BC212L	-10p			TIP3055	42p	2N2222A	18p
AD161/		BC213	-10p	MPSA05	-22p	21×107	-6p	2N2369	10p
162 MP	80p	BC213L	-10p	MPSA06	-22p	21×108	${ }^{6 p}$	2N2904	14p
AF139	30p	BC2 14	-10p	MPSA55	-22p	2TX109	-7p	2N2904A	$15 p$
AF239	30p	BC214L	-10p	MPSA56	-22p	21×300	-7p	2N2905	14 p
BC107	6p	BC251	-10p	OC44	12p	21×301	${ }^{-7 p}$	2N2905A	15p
BC108	6p	BCY70	12p	OC45	12p	21×302	${ }^{-9 p}$	2N2906	12p
BC109	6p	BCY7 1	12p	OC71	9 p	21×500	${ }^{-8 p}$	2N2906A	14p
BC118	-10p	BCY72	12p	OC72	12p	21×501	-10p	2N2907	12p
BC147	8p	ED115	40p	OC75	10p	2TX502	-12p	2N2907A	13p
BC148	${ }^{8} 8 \mathrm{p}$	8D131	-35p	OC81	14p	2N696	10p	2N2926G	*8p
BC149	-8p	ED132	-37p			2N697	10p	2N2926Y	-7p
BC 154	-16p	EF115	17p	TIP29A	35p	2N706	7p	2N3053	12p
8 C 157	${ }^{\text {-9p }}$	BF167	19p	TIP298	38p	2N706A	8p	2N3055	35p
BC158	${ }^{49}$	BF173	20p.	TIP29C	38p	2N708	8 p	2N3702	-7p
BC159	${ }^{-9 p}$	BF180	25p.	TIP30A	$36 p$	2N1302	12p	2N3703	7p
BC169C	-10p	BF181	25p	TIP30B	37p	2N1303	15p	2N3704	-6p
BC170	$6 p$	8F182	25p	TIP30C	$38 p$	2N1304	15p	2N3903	-11p
BC171	${ }^{6 p}$	8F183	25p	TIP31A	32p	2N1307	18p	2N3904	$\bullet 11 p$
BC172	-6p	BF184	25p	TIP318	33p	2N1308	22p	2N3905	-11p
BC173	7 p	BF185	25p	TIP31C	34p	2N1309	22p	2N3906	-11p

DIODES

Type	Price	Trpe	Price	Type	Price	Type	Price	Trpe	Price
AA119	5p	BAX16/		8 BZ 16	30p	OA85	7p	IS44	3p
AAZ13	4p	OA202	5p	BYZ17	28p	0490	6p		
BA100	6p			BYZ 18	28p	0491	7p	IN5400	10p
BA115	5p	BY 100	15p	BYZ19	28p	OA95	7 p	IN5401	11p
BA144	5p	8×127	*10p					IN5402	12p
BA148	10p	BYZ10	32p	0447	5p	IN34	5p	IN5404	13p
BA173	10p	BYZ11	32p	OA70	5p	IN60	6 p	IN5406	16p
84×13/		8YZ12	32p	OA79	7 p	IN914	4p	IN5407	17p
OA200	5p	BYZ 13	30p	OAB 1	$7 p$	IN4 148	4p	IN5408	19p

TBABOO	12 pin OIL	-75p	UAT11C	1099	25p	UA748	T099	28p
tBAB10	12 pin OIL	- 11.00	UA703	TO99 (Plastic)	20p	72558	(Oual 748) T0	9945
TBA820	14 pin OIL	-80p	741 P	8 pin DIL	18p	MC1310	OP 14 pin D	${ }^{\text {¢ }} 1.25$
LM380	14 pin DIL	-80p	72741	14 pin DIL	20p	76115	14 pin OIL	- £1.25
LM381	14 pin DIL	- £1.35	UA741C	T099	20p	NE555	8 pin OIL	32p
72709	14 pin DIL	28p	72747	14 pin OIL	55p	NE556	14 pin DIL	60p
UA709	T099	28p	748 P	8 pin DIL	28p	SL414A	10 pin	${ }^{\bullet} \mathbf{8 1} \mathbf{8 0}$

NEW CONSIGNMENTZN 414 RADIO CMIP 75p OPTOELECTRONICS

Display	
No. 1510	707 LED Display 70peach
No. 1511	747 LED Display \quad ¢ 9.50 each
No. S53	OL33 Triple 7 Segment LED
	Display Character height . 11 "
	Common Cathode 12 pin OIL
	30p each

 (including Data)
Neon Indicator Lamps 230 V A.C State Cotour (Red. Amber and
Green.)

MAMMOTH I.C. PAK
Approx. 200 Pieces. Assorted fall-out integrated circuits. including: Logic, 74 series,
Linear, Audio and D.T.L. Many coded devices. Linear, Audio and D.T.L. Many coded devices.
but some unmarked - you to identify. Out some unmarked - you to identify.
Order No. $16223 \quad £ 1.00$

POWER SUPPLY STABILIZER BOARD Unused ex-equipment stabilizer board, Input 30V. D.C. Output 20V. Complete with circuit diagram. Order No. S8 1 f 1.25
P.O. RELAYS S85-2 Off Post Office retays
BATTERY HOLDERS to take $6 \times \mathrm{HPT}$'s Order No. 202 10p each
EX. G.P.O. MICROSWITCHES Order No. S84A. 4 for 50p
CABLECLIPS S84-50 2.5 mm round single pin fixing $\quad 30 \mathrm{p}$

SPECIAL OFFER!

UNTESTED

SEMICONDUCTOR PAKS
Code No's shown below are given as a guide to the type of device. The devices themselves are normally
unmarked.
No. $16130 \quad 100 \mathrm{Germ}$. Gold bonded diodes
$\begin{array}{ll}\text { No. } 16131 & \begin{array}{ll}\text { like OA47 } \\ 150 \text { Germ. Point contact diodes }\end{array}\end{array}$
No. $16132 \quad 100200 \mathrm{~mA}$ Sil. diodes like 40 p
No. $16133 \quad 15075$ A0p
$\begin{array}{lll}\text { No. } 16134 & \text { diode like IN4148 } & 50750 \mathrm{~mA} \text { Sil. top hat Rects. } \\ \text { Nop } & \text { 40p }\end{array}$
No. $16134 \quad 50750 \mathrm{~mA}$ Sil. top hat Rects. 40p
No. $16135 \quad 203 \mathrm{amp}$ Sil, stud Rect. No. 1613650400 mw Zeners D. 0.7 case 40 No. 16137 30 NPN Plastic trans. like No. 16138 30 PNP Plastic trans. like No. 16139 BC17/B 40p ${ }^{\circ}$ $\begin{array}{lc}\text { No. } 16139 & 25 \text { NPN trans. like 2N697/ } \\ - & \text { 2N1711 TO39 }\end{array}$ No. 1614025 PNP trans. like 2 N2905 TO39 40p No. 1614130 NPN trans. like 2N706 TO1B 40p No. 16143 30 NPN Plastic trans. like 2N3906 40p No. 1614530 PNP Germ. trans. like OC71 40p $\begin{array}{lll}\text { No. } 16147 & \\ \begin{array}{ll}\text { 10 NPN to } 3 \text { Power trans. like } \\ \text { 2N3055 }\end{array} & 80\end{array}$

80p

I.C. SOCKET PAKS		
No. S66	11×8 pin DIL Sockets	c1.00
No. 567	10×14 pin DIL Sockets	¢1.00
No. S68	9×16 pin DIL Sockets	¢1.00
No. S69	4×24 pin DIL Sockets	¢1.00
No. 570	3×28 pin DIL Sockets	¢1.00
TRANSISTOR SOCKETS		
No. S71	$15 \times$ TO 18 Sockets	¢1.00
No. S72	$10 \times$ TO5 Sockets	f1.00
	MOUNTING PA	
No. S 73	50 Mixed Transistor Pads TO18 and TO5	40p
TRANSISTOR HEATSINK PAK		
20 Assorted types, TO1. TO5. TO 18, TO92		

'TRANSISTOR INSULATING KITS Mica washers and bushes assorted types i.e. TO220 TO66, TO3 etc. Approx. 100 pieces. 1 Approx. 40 sets).

DARLINGTON POWER
TRANSISTORS
70 watt 8 amp NPN and PNP in plastic case 199 High Voltage (Typ. 80V). High gain. 10 pieces 5 NPN and 5 PNP. Data Sheet supplied.

Onder No. S78 \& Si.00 per Pak
MATCHED PAIRS OF
PNP GERMANIUM
MED. POWERTRANS

	FET's		
2N3819	15p	2N5458	18p

2 AMP. BRIDGE RECTIFIERS
No. S45 50V (K8S 005)
No.S46 100V (KBS 01)
No. $\$ 47$ 200V (KBS 02)
10 AMP. BRIDGE RECTIFIERS 200 V
SPECIAL CLEARANCE OROER NO. S 22 - $\mathbf{~} 1.00$ SILICON RECTIFIERS G.E. 1 Amp.

	SIM1LAR IN4000 SERIES	
No. S4 1	25 Like (N4001 (1A 50V)	
No. S42	20 Like IN4002 (1AN100V)	
No. S43	18 Like IN4003 (1A/200V)	
No. 544	15 Like IN4004 (1A/400V)	

SAVING SALE YOU MAKE THE SAVING!
 SILICON RECTIFIERS -

$\frac{1}{2}$ AMP. G.E.

No. S48	$40 \times 50 \mathrm{~V}$		60p
No. S49	$30 \times 200 \mathrm{~V}$		60 p
No. 550	$20 \times 700 \mathrm{~V}$		60p
G.E. HIGH VOLTAGE SILICON			
GR559 GA432	10 mA 14 KV 11 AMP. 2 KV 12	$\begin{aligned} & 4,0001 \\ & 2,0001 \end{aligned}$	20p each 20 peach
FD2.5 2.5	$5 \cdot \mathrm{KV}$ Vollage D	Doubler	20p each
POTENTJOMETERS			
Slider 40mm TRAVEL			
Order No.			
16191	6×470 Ohm	LIN Single	40p*
S24	$6 \times 1 \mathrm{~K}$	LIN Single	$40 \mathrm{p}^{*}$
S25	$6 \times 5 \mathrm{~K}$	LIN Single	40p*
16192	$6 \times 10 \mathrm{~K}$	LIN Single	40p*
S26	$6 \times 10 \mathrm{~K}$	LOG Single	$40 \mathrm{p}^{*}$
16193	$6 \times 22 \mathrm{~K}$	LIN Single	$40 \mathrm{p}^{\circ}$
16195	$6 \times 47 \mathrm{~K}$	LOG Single	$40 p^{\circ}$
16194	$6 \times 47 \mathrm{~K}$	LIN Single	400 ${ }^{\circ}$
S27	$6 \times 100 \mathrm{~K}$	LIN Single	40p*
S28	$6 \times 100 \mathrm{~K}$	LOG Single	40p*
529	$6 \times 500 \mathrm{~K}$	LOG Single	40p*
Slider 60 mm TRAVEL			
S30	$6 \times 2.5 \mathrm{~K}$	LOG Single	40p*
531	$6 \times 10 \mathrm{~K}$	LIN Single	$40{ }^{\circ}$
532	$6 \times 50 \mathrm{~K}$	LiN Single	40p*
533	$6 \times 250 \mathrm{~K}$	LOG Single	$40 \mathrm{p}^{\circ}$
S34	$4 \times 5 \mathrm{~K}$	LOG Dual	$40{ }^{\circ}$
535	$4 \times 10 \mathrm{~K}$	LIN Dual	$40{ }^{*}$
536	$4 \times 100 \mathrm{~K}$	LOG Dual	$40 p^{*}$
537	4×1.3 MEG	LOG Dual	40p*
538	20 MIXED SLIDER POTS - VARIOUS VALUES AND SIZES - OUR MIX		
	ONLY ${ }^{\text {O }} 1.00^{\circ}$		
	S39 $6 \times \mathrm{CHRO}$	OME SLIDER	
		IREWOU	
range of wirewound single gang pots. with linear			

Order No.	Value	Order No	Value
1891	10 ohms	1894	100 ohms
1893	47 ohms	1895	220 ohms
1896	470 ohms	1898	2K2
1897	1 K	1899	4K7
NOW 35p- each			

$\overline{16173} 15$ Rotary Potentiometers. Assorted values and 1618625 Pre-sets Assorted Values and types $\quad 40 p^{\circ}$ SALE PRICE 40p

MULTI-TURN PRE-SETS

AUDIO PLUG AND SOCKET PAKS

Order No.		
S1	$5 \times 3.5 \mathrm{~mm}$ Plastic Jack Plugs	40p*
S2	$5 \times 2.5 \mathrm{~mm}$ Plastuc Jack Plugs	40p*
S3	$4 \times$ Std. Plastic Jack Plugs	50p*
S4	$2 \times$ Stereo Jack Plugs	30p
S5	5×5 Pin 180° DIN Plugs	$50 p^{*}$
56	8×2 Pin Loudspeaker Plugs	50p
S7	$6 \times$ Phono Plugs Plastic	50p
S8	$5 \times 3.5 \mathrm{~mm}$ Chassis Sockets (Switched)	25p*
59	$5 \times 2.5 \mathrm{~mm}$ Chassis Sockets (Switched)	25p*
510	$4 \times$ Metal Std. Chassis Switched Jack Sockets	50p*
S11	$2 \times$ Stereo Jack Sockets with instruction leaflet for $\mathrm{H} /$ Phone connection.	50p*
S12	5×5 Pin 180° DIN Chassis Sockets	40p*
S13	8×2 Pin DIN Chassis Sockets	50p ${ }^{\text {c }}$
S14	$6 \times$ Single Phono Sockets	40p ${ }^{\text {c }}$

AUDIO LEADS

Order No.

A.C. Mains connecting lead for cassette recorders and radios Telefunken type	45p*
5 pin OIN headphone plug to stereo socket	78p*
2×2 pin plug to inline stereo socket for headphones	60p*
20 tr . of coiled guitar lead	E1.15*
3 pin to 3 pin DIN plug	50p*
Audio lead 5 pin plug to 5 pin DIN plug	50p ${ }^{\circ}$
Audio lead 5 pin DIN plug to tinned open ends	50p*
Audio lead 5 pin DIN plug to 4 phono plugs	90p*
Audio lead 5 pin plug to 5 pin DIN plug Mirror Image	70p*
5 metre lead 2 pin DIN plug to 2 pin DIN inline socket	45p ${ }^{\text {c }}$
10 metre lead 2 pin DIN plug	$65 p^{\circ}$

HEAVY GAUGE

BLACK PLASTIC BOX
With aluminium lid and fixing screws. Size $6 t^{-\prime} \times 34^{-*}$
Ordar No. $\mathrm{S} 16 \quad$ Onty 75p

74 SERIES TTLICs

CMOS ICs

$\begin{array}{lllllll}\text { Type Price } & \text { Type } & \text { Price } & \text { Type } & \text { Price } & \text { Type } & \text { Price }\end{array}$ $\begin{array}{llllllll}\text { CD4000 } & \mathbf{£ 0 . 1 4} & \text { CD4018 } & \mathbf{£ 0 . 8 5} & \text { CD4035 } & £ 1.40 & \text { CD4056 } & \mathbf{£ 1 . 1 5}\end{array}$ $\begin{array}{llllllll}\text { CD4001 } & \mathbf{f 0 . 1 6} & \text { CD4019 } & \mathbf{f 0 . 4 5} & \text { CD4037 } & \mathbf{£ 0 . 7 8} & \text { CD4069 } & \mathbf{f 0 . 3 2} \\ \text { CD4002 } & \mathbf{f 0 . 1 6} & \text { CD4020 } & \mathbf{6 0 . 9 5} & \text { CD4040 } & \mathbf{6 0 . 7 8} & \text { CD4070 } & \mathbf{5 0 . 3 2}\end{array}$ $\begin{array}{llllllll}\text { CD4002 } & \mathbf{£ 0 . 1 6} & \text { CD4020 } & \mathbf{£ 0 . 9 5} & \text { CD4040 } & \mathbf{£ 0 . 7 8} & \text { CD4070 } & \mathbf{£ 0 . 3 2} \\ \text { CD4006 } & \mathbf{£ 0 . 8 0} & \text { CD4021 } & \mathbf{£ 0 . 8 5} & \text { C04041 } & \mathbf{£ 0 . 6 8} & C D 4071 & \mathbf{~ C O . 2 0}\end{array}$ $\begin{array}{llllllll}\text { CD4006 } & \mathbf{£ 0 . 8 0} & \text { CD4021 } & \mathbf{5 0 . 8 5} & \text { CD404 } & \mathbf{£ 0 . 6 8} & \text { CD4071 } & \mathbf{£ 0 . 2 0} \\ \text { CD4007 } & \mathbf{£ 0 . 1 7} & \text { CD4022 } & \mathbf{f 0 . 8 0} & \text { CD4042 } & \mathbf{£ 0 . 6 8} & \text { CD4072 } & \mathbf{£ 0 . 2 0}\end{array}$ $\begin{array}{lllllllll}\mathrm{CD4007} & \mathbf{f 0 . 1 7} & \text { CD4022 } & \mathbf{£ 0 . 8 0} & \text { CD4042 } & \mathbf{£ 0 . 6 8} & \text { CD4072 } & \mathbf{£ 0 . 2 0} \\ \mathrm{CD4008} & \mathbf{£ 0 . 8 0} & \text { CD4023 } & \mathbf{5 0 . 1 8} & \text { CD4043 } & \mathbf{£ 0 . 7 8} & \text { CD4081 } & \mathbf{£ 0 . 2 0}\end{array}$
 $\begin{array}{llllllll}\text { CD4010 } & \mathbf{£ 0 . 5 0} & \text { CD4025 } & \mathbf{£ 0 . 1 8} & \text { CD4045 } & £ 1.15 & \text { CD4510 } & \mathbf{£ 1 . 1 0}\end{array}$ $\begin{array}{llllllll}\text { CD4011 } & \mathrm{£0.18} & \text { CD4026 } & \mathrm{£1.85} & \text { CD4046 } & £ 0.95 & \text { CD451 } & £ 1.25\end{array}$ $\begin{array}{lllllllll}\text { CD4012 } & \mathbf{£ 0 . 1 7} & \text { CD4027 } & \mathbf{C 0 . 4 8} & \text { CO4047 } & \text { £0.75 } & \text { CD4516 } & £ 1.10\end{array}$ $\begin{array}{lllllllll}\text { CD4013 } & \mathbf{£ 0 . 4 2} & \text { CD4028 } & \mathbf{C 0 . 8 0} & \text { CD4049 } & \mathbf{£ 0 . 4 6} & \text { CD4518 } & \mathbf{1 1 . 1 0}\end{array}$
 $\begin{array}{lllllll}\mathbf{C D 4 0 1 7} & \mathrm{£0.80} & \mathrm{CD} 4031 & £ 1.80 & \mathrm{CD} 4055 & £ 1.60\end{array}$

AUDIO MODULE SALE

Type	Description	Normal Price	Sale Price
AL30A	10W RMS Power Amp	f3:65*	£2.95*
A L60	25W RMS Power Amp	14.35*	£3.55*
AL80	35W RMS Power Amp	66.95	$¢ 5.95$
AL250	125 W RMS Power Amp	¢16.95	¢14.45
SPM80	35 V Power Supply	c3.75*	¢3.10*
PS 12	20-30V Power Supply for AL30A	c1.30	E1.15*
PA12	Stereo Pre-Amp for Al30A	C6.70	¢5.95*
PA100	Stereo Pre-Amp tor AL60/AL80	¢13.75	£12.45*
S450	Stereo F.M. Tuner	120.45*	f16.65*
MPA30	Magnetic-Ceramic Pre-AInp	[2.85*	c2.55*
Stereo 30	Complete Audio Chassis		
	7W, TW RMS	126.250	£14.95*

LOOK \& LISTEN

GE 100 NINE CHANNEL
MONO-GRAPHIC EQUALIZER MODULE
The GE100 has nine 1 octave adjustments using integrated circuit active filters. Boost and Cut limits are $\pm 12 \mathrm{db}$, Max. Voltage handling 2 V RMS. T.H.D., 0.5%, input impedance 100 K , output impedance less than 10 K . Frequency response $20 \mathrm{~Hz}-20 \mathrm{KHz}$ (3db). The nine gain controls are centred at 50,100 , 200, 400. 800, 1600, 3,200, 6.400 and $12,800 \mathrm{~Hz}$. The suggested gain controls are 10 K LiN sliders. (Not supplied with the module). See Paks S31 and 16192.

ONLY £19.50

SG30 Power supply board for GE 100 15-0-15 Volt £4.50
SEND SAE FOR TECHNICAL DATA

Dept. PE3, P.O. Box 6, Ware, Herts COMPONENTS SHOP: 18 BALDOCK

JWire ica. wurwerters

TWICE Ehe inf orn in Halle the Size Sin

The I.C.E. range of multimeters provide an unrivalled combination of maximum performance within minimum dimensions, at a truly low cost. Plus, a complete range of add-on accessories for more ranges, more functions.

Supertester 680R

(illustrated)

* $20 k \Omega / V, \pm 1 \%$ fsd on d.c.
$4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 80 Ranges -10 Functions
* $140 \times 105 \times 55 \mathrm{~mm}$
$\mathbf{\Sigma 2 5 . 2 5}+$ VAT

Supertester 680G

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 k \Omega / V, \pm 2 \%$ fsd on a.c.
* 48 Ranges -10 Functions
* $109 \times 113 \times 37 \mathrm{~mm}$
£19.95 + VAT

Microtest 80

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 40 Ranges -8 Functions
* Complete with case only $93 \times 95 \times 23 \mathrm{~mm}$
£14.95 + VAT

All I.C.E. multimeters are supplied complete with unbreakable plastic carrying case, test leads, etc. and a 50-plus page, fully detailed and illustrated Operating and Maintenance Manual. Now available from selected stockists. Write or phone for list, or for details of direct mail-order service.

Electronic Brokers Ltd. 49-53 Pancras Road, London NW1 2QB
Tel: 01-837 7781

complete digital clock kits

TEAK OR PERSPEX CASE
 non alarm $£ 12.50$
 alarm $£ 15 \cdot 50$

All prices include P. \& P. and VAT
FEATURES: 4 LED digits $\frac{t}{2}$ in high. Red. 12 hour display with a.m./p.m. indication. Mains frequency accuracy. Easy to build: all components included. Beautiful real wood case or perspex: White, Black, Red, Blue and Green. Flashes to indicate power cuts.
NON ALARM: Complete kit including case, $\mathbf{5 1 2} 50$. Ready built, £14. 50.
Module kit excluding case, $\mathbf{5 9 \cdot 5 0}$. Ready built. $\mathbf{5 1 0} 00$.
ALARM: Pulsed alarm tone. Automatic brightness control. 9 minute "Snooze'.
Simple setting. Complete kit including case, $£ 15.50$. Ready buith.
£17.00. Module kit excluding case, £13.00. Ready built, £13.50.
TIMER FACILITY: Stopwatch use to 9 min .59 sec, extra 50 p .

EXCELLENT VALUE - GUARANTEED - LCD Gent's Watch. 5 function. Back light. Chrome case. Black strap. \qquad f15.95 4 Function Calculator \qquad f3.78	

DISPLAYS: FND500 $\frac{1}{2}$ in.LED, $£ 1.19$ each: 6 for $\mathbf{£ 6 . 4 8}$. NSB 5430, $\frac{1}{2}$ in Red LED stick of 4 £4.32. 5LTO2, $\frac{1}{2}$ in Green Pnosphor stick of 4 £5.40.
CLOCK CMIPS. 50253 N ,

50362 N Calendar clock, £7.75. MM5385N ${ }^{\text {\& }}$ [32. 6 Decade up/down counters, $50395 / 6 / 7$ £13.10.
MICROPROCESSOR: Z80 CPU, £22.68. Z80 CTC, £15.70.
1702A UV Erazable PROM, £11.35. Z80 PIO £15.70. 2102NA, IK Static RAM £2.70. UV PROM Erazer, £103 plus £5 P. \& P. 4 KXI 16 pin Dyn. RAM £7.05.

RECHARGEABLE BATTERY SET: Super Value ع8.10, Includes 4 AA (1.2V) Nickel Cadmium batteries (separately $£ 1.08$ each). $3 / 6 / 9 \mathrm{~V}$ switched Universal Mains Adaptor with 4 plug connector for most calculators (separately £3.78), Mains Adaptor with
plus battery holder.

[^2]28\textrm{KHz},28.5\textrm{KHz}.\mathrm{ Both 50p each.
UNMARKED GOOD 400mW ZENERS 6.8v, 10v, 11v, 12v, 13v, 16v, 24v, 30v, 33v,
36v. All e 10 for 40p.
6 TO 1 FRICTION SLOW MOTION DRIVES e 55p.
MINIATURE 8uf 300v.w. ELECTROLYTICS \& 10 for 57p.
12 BRANDED ASSORTED F.E.T's for £1.
30 ASSORTED 10XAJ CRYSTALS Between 5100 To 7900 KHz \& f1.10.
SUB-MINIATUAE 10x 10pf DIFFERENTIAL PRE-SET CAPACITORS = 22p.
100 MULLARD C280 CAPACITORS Assorted -57p.
TRANSFORMER 240v Input, Output 24v Tapped at 14v 1 amp f1.25 (2Op P\&P)
Please add 20p for post and packing on UK orders under £2, unless otherwise stated
Overseas orders at cost.
J. BIRKETT
RADIO COMPONENT SUPPLIERS
25 The Strait, Lincoln LN2 1JF
Tel. }20767

```

\title{
THE \\ \\ DYMamIC \\ \\ DYMamIC DUO
} DUO
}


The C15/15 is a unique Power Amplifier providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radio/tape unit. It is simply wired in series with the existing speaker leads and in conjunction with our speakers S 15 produces a system of incredible performance.
A novel feature is that the amplifier is automatically switched on or off by sensing the power line of the radio/tape unit hence alleviating the need for an on/off switch.
The amplifier is sealed into an integral heatsink and is terminated by screw connectors making installation a very easy process.
The S15 has been specially designed for car use and produces performance equal to domestic speakers yet retaining high power handling and compact size.

C15/15
15 watts per channel into \(4 \Omega\)
Distortion \(0.2 \%\) at 1 kHz at 15 watts
Frequency response \(50 \mathrm{~Hz}-30 \mathrm{kHz}\)
Input Impedance \(8 \Omega\) nominal
Input sensitivity \(2 V\) R.M.S. for 15 watts output
Power line \(10-18 \mathrm{~V}\)
Open and Short circuit protection
Thermal protection
Size \(4 \times 4 \times 1\) inches
C15/15 Price \(£ 17 \cdot 74+£ 2 \cdot 21\) VAT . P. \& P. free

Data on S15
6in Diameter
51/in air Suspension
2 in Active Tweeter
20oz Ceramic magnet
15 watts R.M.S. handling
\(50 \mathrm{~Hz}-15 \mathrm{kHz}\) frequency response

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS

\section*{I.L.P. Electronics Ltd \\ Crossland House \\ Nackington, Canterbury \\ Kent CT4 7AD \\ Tel. (0227) 63218}
```

Please Supply
Total Purchase Price
1 Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account
Account number
Name and Address
Signature.

```


RECEIVERS AND COMPONENTS

\section*{CHIPS AND THINGS}

7?1.C.s at give-away prices 1-you tesst you save!! ? ?
Untested devices (NOT manutacturers rejects. fallouls etc) ?, PACK E1 (80\% guaranteod goodl. \(5 \times\) MAN3 \(0127^{*} 7\) stgment LLO displays f 1.00
7 PACK E2 \(1100 \%\) good) \(1 \times 8\) dign (plus overilow) \(033^{\prime \prime} 7\) segment Ligend Crystal catevilator styive display \(£ 3.95\)
PACK M1 \(1100 \%\) guarantend pood \(2 \times\) Calculatar kerbaards \(£ 1.00\) PACK 01 ( \(80 \%\) guarantred goodl. \(15 \times\) Logic \(1 . C 5\) manily dual JK OTL
 most proiects \(\mathbf{~} 1.25\)
PACK D2. \(25 \times\) SN7400 type IC. 100 two VD nand gates We guarantee 50 good f 1.25
PACK 11 inarked and unmarkedl. \(20 \times\) Assorted Dp-Amps. Could inctude LM301 741. 709.555 etc. \(£ 125\)

Could be they are all \(\mathrm{O} . \mathrm{K}\). bur as they re untested - we dorit know. For pocks with no stried puasanteed minumum. we'l guarantee it wolks ou much creaper than average mall order prices buynng this way. Satistaction guarantied ot return compiete pack for replacement or refund.

MAIL ORDER ONLY - NO CALLERS
CODESPEED. P.O. Box 23, 34 Seafield Road, Copmor
Portsmouth, Hants. P03 5RN.

VALVES - Radio. TV, industrial. transmitting. We dispatch to any part of the world by return of post. Air or Sea Mail 2.700 types in stock. 1930 to 1976 obsolete types a speciality. I ist 20 p. Quotation S.A.E. Open 10 callers. Mon to Sat. 4.30-5.00. closed Wed. 1.00 . We purchase all types of new and boxed valves. COX RADio (Sussex) Lld. 8 BN. West Wittering 2023. ISTD code 024366).
P.C.Bs Paxolin \(9 \frac{1}{2}\) in. \(7 \mathrm{in}, 50 \mathrm{p} .12 \mathrm{in} \times 9 \mathrm{in} 70 \mathrm{p} .17 \mathrm{in}\) \(9 \frac{1}{2}\) in, \(£ 1.15\). Fibre glass double sided 7 in \(\times 8 \mathrm{in}_{\text {, }}\) 00p. 12 in . \(6 \mathrm{in}, \mathrm{£1}\) 20. 1074 Series I.C.s on panel(s) 75p. Three assorted meters £2.40. T, V. Conver: gence panels, full of good gear. \(\mathbf{1 1 - 5 0}\). S/Mica caps 100 assorted 75 p . 300 Small components. Trans, Diodes \(£ 1.30 .7 \mathrm{lb}\) Assorted components \(22-95\). Lis 15p. R
15p.
2 Barnfield Crescent, Sale, Cheshire, M33 INL

LEO'S. Mixed hags of 4 different sizes and 4 different colours. 50 ( \(5.52 .5,100\). 19.25 including VAT and post and packing. CWO. Michael Williams Electronics \({ }_{47}\) Vicarage Avenue. Cheadle Hulme, Cheshire. SK8 7JP.

\section*{ORCHARD ELECTRONICS}
I.C.s. TTI. C MOS. Linear. Capacitors. Resistors (E12). SIL/Rectifiers. Diodes. LED. Thyristors. Zeners. Voltage Reg. DIL Sockets. Bridge Rectifiers. Potentiometers. Presets. Triacs. Diac. Plugs. Sockets. Cable. Vero. Carefully selected range, excellent despatch service. Same day turn round S.A.E. List. Suppliers to A.E.R.E. U.K.A.E.A. Government Depts. Schools. Universities. Manufacturers. Accounts opened far trade and amateur. Join the professionals. Phone by 4 p.m. Goods out lst class by ORCHARD ELECTRONICS
Flint House, High Street, Wallingford, Oxon Telephone 0491.35529

\section*{SMALL ADS}

The prepaid rate for classified advertisements is 18 pence per word (minimum 12 words), box number 60p extra. Semi-display setting \(£ 6.00\) per single column centimetre (minimum 2.5 cms ). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertismement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

\section*{CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS}
1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act o Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is taken. the Publishers shall not be liable for clerical or printers errors or their consequences.

\section*{BRAND NEW COMPONENTS BY RETURN}


 1,440 (mov) 22 p.
 ani 100/31"15p



SOV-V:I: mrins \(\cdots\)


Mullard Polyester 250 V Vertical Mounting E6 Series-0 (1)


Mylar 'Polyester' Film 100V Vertical Mounting - \(0 \cdot 001\) Miniature Resistors Highatab E12 Spries \(5 \%\)


 BC147/8/9, BC \(57 / 8 / 9\). BF 194, 1979

THE C.R. SUPPLY CO.
127 Chesterfield Road, Sheffield S8 ORM

TURN YOUR SURPLUS capaciturs, transisturs, etc.. inta ash. Contart COLES.HARIING: \(\&\) CO. 10.3 South Hrink. Wisthech. Camhs. 0945-418R. Immediate settlenent.

\section*{SOLAR CELLS}

57 mm dia 255 mW 25 mm dia 35 mW

Booklet "SOLAR CELLS" \(£ 0.55\)

Data Sheets on 255 \& 35 mW cells
\(\oint 0.75\)

Prices include VAT and postage. Large SAE for lists. Mail order only. Speedy service. IC's books, capacitors, solar batteries, half price bargains and surplus PCBs resistors, semiconductors etc etc

Edencombe Ltd.,
34 NATHANS ROAD, N. WEMBLEY, MIDDX HAD 3RX
nicad hechargeable cells. Pupular sizes: button cells
 Penlite fortmat) \(\begin{aligned} & \text { hatteries Close. Lansted. Sittinghurne. Kent. (Postal }\end{aligned}\) Ratterie
inly.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{LOW, LOW PRICES FOR 7400 SERIES TTH} \\
\hline 00 & 13p & 32 & \({ }^{24} \mathrm{P}\) & & ¢2.20 & 145 & 69 \\
\hline 01/2/3 & 14 p & 37 & 27p & \(90 / 2 / 3\) & 44p & 153 & 63p \\
\hline 04/5 & 16pm & 40 & 14p & & \({ }^{58 p}\) & 157 & 64p \\
\hline 06 & 32p & 41 & \(61 p\) & 95 & \({ }^{60} \mathrm{p}\) & 174 & 94 P \\
\hline 08 & 18p & 42 & \(54 p\) & 96 & 73p & 175 & \(75 p\) \\
\hline 10/20 & 14p & 45/7/8 & \(75 p\) & 100 & 70p & 181 & ¢2.56 \\
\hline 13 & 30p & 73/4/6 & 27p & 121 & 31 p & 190 & E1.24 \\
\hline 17 & 27p & & 43p & 123 & 53p & & 3 ¢ 1.00 \\
\hline 30 & 15p & & 27p & 125/6 & 44p & & \\
\hline \multirow[t]{2}{*}{} & \multicolumn{7}{|r|}{\begin{tabular}{l}
Full Spec. Devices. Prices include Var \\
mplete listst \(P\) \& \(P\) (hat class) 20p. C.W.O.
\end{tabular}} \\
\hline & \multicolumn{7}{|l|}{J. C. JONES (PE29). Mail Order Only 46 Burstellors, St. Ives, Combs. PE17 4XX.} \\
\hline
\end{tabular}

RESISTORS, CAPACITORS, SEMICONOUCTORS, ICs, Poten tiometers, DIN Sockets, Plugs, Cabinets, Hardware Kits of parts tur Tuners, Anıplifiers, Train Controllers, Capacitor Discharge Power supply etc. Send \(9 \not t p\) stamps for catalukue and price hist. R.B. Electronics. 2 Springtield Park. Halypurt, Maidenhead. 39798


BARGAIN SEMI-CONDUCTORS


CARBON FILM RESISTORS \(\mathrm{s}^{\prime}\), F.12 \(1 / 8 \mathrm{~W}, 14 \mathrm{~W}, 12 \mathrm{~W}\). Your mix 90p 1/HI. Metal Filim \(12 W\). \&i.10 100. p\&p 15\%. Mail Order unlv. (CANDAR. 9 Galloway Close. Bletchley
```

GEW GAMMA ENTERPMISES
NEW COMPONENTS - }24\textrm{Hr SERVICE
BC107C/109C-9p.
24p. NN4OO19E-23p. LM381N-145p. 1N914-3p, 2NOSets
7\frac{1}{2}
Trans-85p,5 pin DIN Plg 13p. 2 pin DIN PIg.7p. Veropins
\$0 for 20p,Twin white flex-5p/'m. Insulated croc, clips-5p.
add VAT, POST-3Op. STAMP DIIngS LISTS of. RESISTORS
PIODES, LOGIC LINEAR. BOLTS. NUTS, WIRE. CABLE
THY.TRIACS. CARTRIDGES + STYLI1 + MORE + + + + +

+ DISCOUNTS.
Dept PE, 18 Landale Rd, PETERHEAD. Aberdeenshire.

```

\section*{BOOKS AND PUBLICATIONS}

SIMPLIFIEO N REPAIRS. Full repair instructions individual Rritish sets i \(^{4} .511\). request free circuit diagram. Stamp hrings details unique. TV Puhlications, (AUSEPE) 76 Church Street, Larkhall, Lanarkshire.

ELECTRONIC TIMESAVER Learning Prugram, 30-stage easilearn electronic* prograin including boards, terminals plans and circtut know-how. Geal for hepinners, students. schmis and colleges. Special intro-offer 24.75. Money hack if not delighted. TECHNOCENTRE (PE). PO Box 33, 54 Adcott Road. Middleshrough.

UFO's MAP: The final solution? Flight Pattern: TV Detectinn (Doppler): Optical Detection: Radiation/ Optical Detectun: Siahting Recurder; Metal Detection: Newssheet: "Antigravity". "Prupulsion". Prediction (wave) sisp each chart. R \& E. Highlands. Needham Market. Suffolk.

\section*{SERVICE SHEETS}
beLLS TELEVISION SERVICES for Service Sheets on Radir. TV. etc. 75p plus S.A.E. Colour TV Service S.E with enquiries to B.T.S 190 Kings Ruad. Harrogate, N. Yorkshire. Tel: (0423) - \(\mathrm{B} \times \mathrm{k} 5\).

SERVICE SheEtS for Radio. Television, Tape Recorders, Steren etc. With free Fault-finding guide, from 50 p and S.A.F. Catalugue 25p and S.A.F. Hamilton Radio, 47 Buhemia Ruad. St. Lernards, Sussex.

\section*{SITUATIONS VACANT}

\section*{TELEVISION TRAINING}

12 MONTHS full-time course in Radio and TV for beginners (GCE -or equivalent-in Maths and English).
26 WEEKS' full-time course in Mono and Colour TV (basic electronics knowledge essential).

13 WEEKS' full-time course in Colour TV (Mono TV knowledge essential).

These courses incorporate a high percentage of practical training.

Next session starts on April 17 th.
Prospectus from London Electronics College, Dept. A3, 20 Penywern Road, London SW5 9SU. Telephone 01-373 8721.

\section*{TECHNICAL TRAINING}

Get the training you need to move up into a higher paid job. Take the first step now-w'rite or phone ICS lor details of ICS specialist homestudy courses on Radio. TV. Audio Eng. and Servicing, Electronics. Computers: aiso self-build radio kits. Full details from:

 Tel. 01-622991 ( aill hours) Sitate if under I I

\section*{CITY \& GUILDS EXAMS}

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians. Electrical Installations, Radio. TV \& Electronics Technicians, Radio Amateurs. Full detals from:
Tel. O)-hこ29011 (all hours)
Stale if under IX

\section*{COLOUR TV SERVICING}

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radin and audio servicıng. Full details from:

ICSLCHOOI.OF IIIFCIRONICS
 Tel (01-622991I (all hours) State if under IX

\section*{LADDERS}

LAODERS. Vamished \(25 \not t \mathrm{ft}\). Extd. \(£ \mathbf{~} 35.70\). Carr. \(\mathbb{L} 2.40\). Leaflet. Callers welcome. Open Sat. Ladder Centre. (PEE4) Halesfield (1) Telford, Salop. Tel: 586644.

\section*{FOR SALE} E.T.1. 4600 SYNTHESISER. Complete in case, Offers: Mr
Calderwood. 177 Duntocher Road. Clydebank, Scotland. Phone Duntocher 74451 .

REVOX A77 Quarter track Portable with amplifiers and Inudspeakers. Buyer collects. Offers over k 3 m considered. M. G. Couch, 37 Henl Rhosyn. Morriston. Swansea. W Gilam.

NEW ISSUES of "Practical Electronics" available from April 1974 edition up to date. Price 6isp each. Post Free. BELL'S TELEVISION SERVICES, 190 Kings Road. Harrogate, N. Yorkshire. (Tel: 0423) 55885.

PRACTICAL ELECTRONICS complete from first issue to date 225. Offers Chelmsford 5565

OEWTRON SYNTHESISER thirteen modules plus keyboard, over \(\mathbb{2} 300\) worth of components. Needs attention. There fore \& 156. Tel: Dartford 29101.

\section*{RADIO TECHNICIANS}

\section*{Government Communications Headquarters has vacancles for Radlo} Technicians. Applicants should be 19 or over.
Standards required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radio and electronic test gear.
Duties cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.
Qualifications: Candidates must hold either the City and Guilds Telecommunications Part 1 (Intermediate) Certificate or equivalent HM Forces qualifications.
Salary scale from £2,230 at 19 to \(£ 2,905\) at 25 (highest pay on entry) rising to \(£ 3,385\) with opportunity for advancement to higher grades up to \(£ 3,780\) with a few posts carrying still higher salaries. Pay supplements total between \(£ 443\) and \(£ 522\) per annum.
Annual leave allowance is 4 weeks rising to 6 weeks after 27 years service. Opportunities for service overseas.
Candidates must be UK residents.

Further particulars and application forms available from: Recruitment Officer, Government Communications Headquarters Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ Tel.: Cheltenham (0242) 21491 (Ext. 2270)

\section*{FOR SALE - continued}
motorola 02 MPU Kit. Fully Built plus extra 256 Bytes Ram. D/A Convertor. \& £15 worth of MPU Books. \(\ddagger 19 \|\) (ino. Heathkit VVM (FET) \(\mathbf{3 5}\). 100 assorted Electronic Magazines - Offers. Phone 0909783918.

\section*{TOROIDAL \\ MAINS TRANSFORMERS FOR SALE}

Small quantity of Toroidal Transformers for sale at f5.50 each plus postage, packing and VAT (add £ 1.50 to order).
\({ }^{\mathrm{f}}\) Primary: \(10-0-1\) 10-200-220-240 Volts. Primary: Secondary: 11.5 V (a 4 amps, 35 V (ats 1 amp. 17 V (II 0.4 amps. 16 V @ 0.2 amps and \(11 \mathrm{~V} @ 0.3 \mathrm{amps}\). Please send cash with order to:-

Cifer Systems Limited
Avro Way, Bowerhill, Melksham, Wiltshire
Allow 21 days for delivery.

MPU KEYBOARO/OISPLAY. Calculators suitable for "CHAMP" Keybord easily modified. Display and drivers working. \& En inc. P \& P \& data. IINTRONICS. 313 Green Lane. Ilford. Essex.

MAPLIN ORGAN PARTS. Pedalboard, DMO2T, Tone Boards etc. Walsall ( 0922 ) 25.26 .3 after 6.30 pm .
PE JDANNA PARTIALLY ASSEMBLEO. All components inounted on PC'BS but not testerl. Complete with Clef Prudacts calinet in original box, KIMBER-ALLEN Kevhorard and Assembly Jig. 295 . WHEELER. 15 Hawthorn Crescent, Bewdley. Wurcestershire. Tel: 402885.
SCOPES: Tektronix \(5: 31\) with 52:53 Plug-in \(\mathbf{~ 1 / 7 5 .}\). Marconi 1:330 \& Go, Phone Colchester 6:3N09.

\section*{WANTED}

Wanteo - new valves, Transistors. Tup Prices, popular types. Kensington Supplies, (B) 367 Kensington Street. types. Kensington Su
Bradford 8 . Yorkshire.
"RADIO ANO TELEVISION Servicing". Books wanted from 1961.1965 edition up to date. \(1: 3,010\) plus pustage paid per cops by return of post. Bell's. Television Services. 190 Kings Ruad. Harrogate. N. Yorks. Telephone (0423) Kings
5085.

\section*{ELECTRICAL}

LIST No. 28 now ready - Styli illustrated equivalents also Cartridges. Leads. etc.. Iree for long S.A.E. Felstead Electronics. (PE). Langley Lane. Gatley, Cheadle. Cheshire. SK8 4 EE

\section*{MISCELLANEOUS}

LOW OEFINITION TELEVISION (Baird Style) revived. Membership L.D.T.V.A. still only \&aird S.a. WRITE) revived. Mem\begin{tabular}{l} 
brive. Wollaton. Nottingham. \\
Dra. WRITE. 1 Burnwood \\
\hline
\end{tabular}

\section*{MISCELLANEOUS - continued}

\section*{NO LICENCE EXAMS NEEDED}

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only \(£ 9.75\) plus \(\mathbf{2 5 p}\) P. \& P
'Brain-Freeze’ 'em wish a MINI-STROBE Kit, pocket-sized 'lightning flashes', vari-speed, for discos and parties. A mere \(£ 4.30\) plus 20 p P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIGEAR sound-catcher; ready-made multi-function modules. £5 each plus 20p P. \& P

LOTS MORE! Send 20p for lists. Prices include VAT. (Mail order U.K. only)

\section*{BOFFIN PROJECTS}

Cunliffe Road, Stoneleigh
Ewell, Surrey (P.E.)

OUTSTANOING 2200 Hi Fi FM Tuner. Full Cowerage \(68-102 \mathrm{MHz}\). Varicap tuning. Latest silicos superhet design. Ideal for push button/manual tuning only \(\mathbf{x 9} 95\). Unique 3300 steren class A Amplifier, power 32 watts peak, complete stereo pre-amplifier 2 power amplifiers. all inputs accepted only \(\mathbf{2} 10, \mathbf{4}, \mathbf{5}, 5(0)\) Tuner amplifier + specification as abuve 2 unly ily. 45 . All equipment buitt. tested and guaranteed with fill instructions (P\&P 50p). GREGG ELECTRONICS. 86-88 Parchmore Road. Thormtom Heath. Surrey.

\section*{100 WATT GUITAR/PA/MUSIC AMPLIFIER}

With superb treble, bass. Overdrive slimline, 12 months guarantee. Unbeatable offer at \(£ 39\). Also twin channel with
separate treble/bass per channel \(\mathbf{4 8}\). Money returned if not separate treble/bass per channel \(\mathbf{E 4 8}\). Money returned if not absolutely delighted within 7 days. Also fuzz boxes great sound robust construction \(\mathbf{f 6 . 6 0}\). Also 100 watt 12 in. speakers \(£ 22.50\).
All inclusive of P.P. Send cheque or P.O. to
WILLIAMSON AMPLIFICATION
62, THORNCLIFFE AVENUE, DUKINFIELD. CHESHIRE. TEL: 061-3445007


BURGLAR ALARM GOODIESI 12 V Siren 25.53 .240 V Siren £9.61. Plastic coated and lettered Bell Box £5.25. Flush Magnetic Contart 60p, surface 65p. S.A.E. for price Bradturd 682674 All prices full inclusive

\section*{GLASS FIBRE P.C.B.'s}

From your own tope, film or ink moster. Send S.A.E. for avolotion.
PRACTICAL ELECTRONICS P.C.B.'s in gloss tibre, tinned ond drilled. Complete set of Radio Control boords, June to Aug. 76 £5.80p. Cross Hatch Generotor \(£ 2.85\) p.
Moy 77 Burglar Alarm (1305-1) © 1.68 . June 77 Sports Centre (1306-1) ond power supply p.c.b. E2.66. July 77 ण゙igitol Sropwarch ( 1307.1 ) El . Oseilloscope trace doubler 95 p . Eorth leakage C.8. (1307.2) f1.96p. Aug. 77 C/R Meter (1308-1) 97p. Sept. 77 Freq. Counter Timer \((1309-2 / 3) € 3.98\) set of two boards. Scope Probe (1309.1) 50p. Oct. 77 Digital Multimeter ( \(1401.1 / 2\) ) £3.15, set of two boords. Guitor Sustoin (1410-3) 55p. Dec. 777 Cor Burglor Alarm (1412-1) 88p. 128 Nore Sequence ( \(1412-2 / 3\) ) \(£ 2.71\) set of iwo boords. C.W.O. Please. S.A.E. For Complete Lis?.

PROTO DESIGN
4 Highcliffe Way. Wickford, Essex SSII 8LA
SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. faced steel. Hundreds of people and industrial users are chunsing the cases they require from our trial users are chunsing the cases they require from our
vast range. Competitive prices start at a low 90 , chassis vast range. Competitive prices start at a low nunching tacilities at verv combetitive prices. atedi) BAZELL.!. Dept: No. 23, St. Wilfred's. Foundry Lane. Halion, Lancaster. LA2 6L.T.


CLEARING LABDRATDRY. Scopes. recorders. testmeters. hridges, audio. R.F.generators, turntables, tapeheads. stabilised P.S.I.s. sweep generators. test equipment. etc. buwer Beeding 연,

\section*{PRINTED CIRCUITS and HARDWARE}

Reodily ovoiloble supplies of Consteuctors' hordware. Printed circuit boords, top quality for individual designs. Prompt service. Send 25 p for corologue. From:
RAMAR CONSTRUCTOR SERVICES,
Masons Rood, Strotford upon

BUILD YOUR OWN TV CAMERA ONLY KNOWN HICH PERFORMANCE SOLIO STATE CAMERA IN
KIT FORM. AISO availsole factory assembled. Idesil for experimenters, industry security, eduesition etc. " will work with mose other CCTV equipment. Fuliy guarantesd. Completely self-confained. With our
modulator will connect to any domestic TV set. Model Cimplete modmiator
with
exira). SAE for info or phone your order through using your Earefiay
oriAccess carc.
CROFTON ELECTRONICS LIMITED
35 crosvenor

\section*{THE FABULOUS D2 MICROPROCESSOR EVALUATION KIT FROM MOTOROLA.}

Featuring *24 key keyboard *Seven segment display *Cassette interface *Erom \& Ram Expandable *Interface Capability *Full Documentation * 5 Volt power supply Required *One years FREE membership of The Amateur Computer Club with every purchase*. \(£ 176+\) £1.50 P \& P + 8\% VAT.

\section*{ENAMELLED COPPER WIRE}
\begin{tabular}{lrrrr} 
SWG & 1 Ib & 802 & 402 & \(\mathbf{2 0 2}\) \\
\(10-19\) & 2.60 & 1.40 & .66 & .55 \\
\(20-29\) & 2.80 & 1.60 & .85 & .65 \\
\(30-34\) & 3.00 & 1.70 & .95 & .70 \\
\(35-40\) & 3.35 & 1.90 & 1.10 & .79 \\
\(40-43\) & 4.00 & 2.50 & 1.90 & 1.25 \\
4.46 & 5.00 & 3.00 & 2.10 & 1.65 \\
47 & 8.00 & 5.00 & 3.00 & 1.76 \\
48 & 15.00 & 9.00 & 6.00 & 3.30
\end{tabular}

Tinned Copper, Even Gauges \(14-30 £ 3\) per 1 lb . Multicore 60/40 Solder 18SWG £3.24 per lb. Prices include P \& P and VAT
SAE brings list of copper and resistance Wires

\section*{THE SCIENTIFIC WVIRE COMPANY}

PO Box 30 London E. 4. Reg. Office, 22 Coningsby Gdns.

\section*{MAKE YOUR OWN PRINTED CIRCUITS}

RUB-ON TRANSFERS - Starter pack (5 sheets. lines, pads. I. C pads) 1.30 , Single Sheets \(27 p\) SOLDERCON SOCKETS - 100 (P. \& P. 40 p ) rotes). PLASTIC SUPPORTS -7 or 8 hole 6 p./pair
S.A.E. lists sample. P. \& P. \(15 p /\) order except* P.K.G. ELECIRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

\section*{100 Resistors 75p}
 C60 CASSETTES 30p All Cassettes in Plastlc C90 CASSETTES 45p
All prices include VAT
Quantity Discounts
10 Units 5\%
50 Units \(7 \%\)
200 Units \(10 \%\) Screwed Assembly Add Postage 10p in f1 SALOP ELECTRONICS SALOP ELECTR
23 WYLE COP
SHREWSBURY SHREW88
Tol. 53206
STABILISEO P.S.U.s. Large range of various voltages and currents, availahie cased or in chassis form. SAE for ful rarticulars and prices. A BARTON, J'E, Highbanks, Newport Ruad. SANDOWN. I.W

\section*{CABINET FITTINGS \\ FOR \\ Stage Loudspeakersand Amplifier Cabs} Fretclaths, Coverings, Strop \& Recess Handles, Feet, Castors, Jocks \& Sockets, Connons, Buigin \& woys, Reverb Trays, Locks \& Hinges, Corners, Trim. Speaker Bolts etc.

Send \(2 \times 9 p\) Stamps for samples and list.
ADAM HALL (P.E.SUPPLIES)
Unit \(Q\), Starline Works. Grainger Road
SINTEL FOR BOOKS, CMOS AND COMPONENTS
6800 Bookle 1.80, MOT CMOS Dotabk 3.50, 6800 Appl Man 12.95, 6800 Prog Man S.35, SC/MP Introkit Man 0.75 N5 TIL Dotob= 2.10. RCA CMOS Datobk 5.45, 8085 User's Man 5.15, 280 Ass Lang Prog man 7.50, 280 CPU Man 5.60 , 280 CTC Spec \(0.80,280\) P10 Mon 3.30. Also a full range of CMOS - send for free catologue. MPUs: \(\begin{array}{lllll}\text { MEK } 6800 \mathrm{D} 2 & 205.20, ~ M C 6820 & 8.66, & 280 & 30.72, ~ 280 A\end{array}\) 39.94, 280CTC 13.82 , 280P 10 13.82, Memories: 2102-A 2.55, 2112A-4 3.13. Disploys: Type FND500 C.C. 1.40, Type TH321 C.A. 1.61, 51TO1 5.29 . Crystals: 32.768 KMz 3.78, 5.12MHz 3.89. Clock ICs: AY5I202 4.35, AY51224 3.78, MK50253 6.05. Soldercon Pins: \(1000.54,1000\) 4.32. 300011.34 . Free colalogue by refurn. All items CWO. Prices inclusive of VAT. Add 35p P\&P. SINTEL, P.O. Box 75B, 209 Cowley Rood, Oxford. Tel. (0865) 49791

\section*{H. M. ELECTRONICS 275a Fulwood Road, Broomhill, Shettieid S10 380 \\ BEC
CAGINE \\ ORION \\  \\ Give your project tha protesstonal looking
finish 'Build it in a BEC Dry transter lettering Dry transter le Send 15 p (relundable) for feallets}

\section*{ORDER FORM please Write in block capitals}

Please insert the advertisement below in the next available issue of Practical Electronics for .................................. insertions. I enclose Cheque/P.O. for \(£\).................................................
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)
\begin{tabular}{|l|l|l|l|l|l|}
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{NAME} & Send to: Classified Advertisement Manager PRACTICAL ELECTRONICS \\
\hline & GMG, Classified Advertisements Dept., Room 2337, King's Reach Tower, Stamford Street, \\
\hline \multirow{2}{*}{ADDRESS} & London SE1 9LS. Telephone 01-2615846 \\
\hline & \begin{tabular}{l}
Rate: \\
\(18 p\) per word minimum 12 words. Box No 60p extra.
\end{tabular} \\
\hline
\end{tabular}


\section*{IKATIDIS}

\section*{BARGAIN MONTH ! POST FREE E5+} REE 1978 CATALOGUE SALE LIST. MANY SURPLUS \& YOURSELFA FAVOUR TRAMPUS EIFCTRONICS ITD 58-60 GROVE ROAD WINDSOR BERKS. SL4 1HS. TELEPHONE WINDSOR (07535) 54525. Fast service on ex stock product. Normally 24 hour turn around. Quality Barclaycard or Access by post or telephone \(£ 5\) minimum. Send C.W.O. post free over ES, except invoiced or credit card orders, otherwise add 20 . post
\& packing. Add 8\%VAT to items marked \(\% 12 \%\) VAT to unmarked items.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{LEDs \(\frac{1 .}{8}\) \& 0.2 "dia. Red no clip \(\begin{array}{ll}\text { Red no chip } & 9 p^{\circ} \\ 0.2 \text { or } 209 \& & 12 \mathbf{p}^{\circ} \\ \text { Colour LEDS all } & 16 \mathbf{p}^{\circ}\end{array}\)} & \multirow[t]{3}{*}{\begin{tabular}{l}
BULK BUY BARGAINS FULL SPEC PAKS. \\
All E 1 each
\end{tabular}} & \multicolumn{2}{|l|}{REDUCED LINES IC's \& TRANSISTORS} \\
\hline & & BC & JE2955 \\
\hline & & BC & JE3055 \\
\hline & PAK A: \(12 \times\) Red LEDs \(\mathrm{fr}^{*}\) & BC109 & ORP12 50 \\
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
DISPLAY \\
0.3" DL704/2 \& 707/2
\end{tabular}} & PAK B: \(5 \times 741 \mathrm{BPIN}\) E1* & BC109C 15p* & TIP2955 65p \\
\hline & \multirow[t]{2}{*}{PAK C: \(4 \times 2 \mathrm{~N} 3055 \mathrm{SOW}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{BC} 177 / 8 / 9 \\
& 20 p^{\circ}
\end{aligned}
\]} & TIP3055 55p \({ }^{\circ}\) \\
\hline & & & 2N3055 45p \({ }^{\circ}\) \\
\hline \multirow[t]{4}{*}{\begin{tabular}{lr}
\(0.6^{\prime \prime}\) DL747/2 & \begin{tabular}{r}
\(590^{\circ}\) \\
TGS Gas Detectors \\
\(\mathbf{£ 1 . 5 0}\) \\
\\
\(£ 5^{\circ}\)
\end{tabular}
\end{tabular}} & PAK D: \(12 \times \mathrm{BC1} 09\) f1* & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{BC} 182 / 3 / 4 \quad 7 p \\
& \mathrm{BC2} 12 / 3 / 47 p
\end{aligned}
\]} & 2N3702/4 8p \({ }^{\circ}\) \\
\hline & PAK E: \(13 \times\) BC 182 E1 & & 2N3819E 18p \({ }^{\circ}\) \\
\hline & PAKF: \(13 \times 2 \mathrm{~N} 3704\) ¢1 & \multirow[t]{2}{*}{\[
\text { BCY7O/1/2 } 20 p^{\circ}
\]} & 2N3820 38 \({ }^{\circ}\) \\
\hline & PAK G: \(7 \times\) BFY51 E1* & & 2N2646 50p \\
\hline TGS Gas Detectors \(£ 5^{\circ}\) & PAK H: \(7 \times 2\) N3B19E \(\mathbf{f 1}^{\circ}\) & \multirow[t]{2}{*}{BD131/132 \({ }^{\text {eq }}\).} & 2N5457 50p \\
\hline capacitors & PAK J: \(6 \times 2\) N3053 £1* & & Marching +20p \\
\hline \multirow[t]{2}{*}{Ceramic 22 pi to 0.5 Electrolytic 1 H to 200 H} & PAK K: \(40 \times 1\) N4148 \(\mathbf{f 1}^{\circ}\) & \multirow[t]{2}{*}{\({ }^{\text {M.J2955 }} \underset{\text { f1.50* }}{ }\)} & Ins Bush Sets \\
\hline & PAK M: \(4 \times\) Pair NPN/PNPZA & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{ll}
\(1000 \mathrm{uf} / 25 \mathrm{~V}\) & 20 p \\
Tantalums only & 16 pea
\end{tabular}} & ¢1* & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{ZENERS 400MW 9p}} \\
\hline & PAK N: \(50 \times 0 \mathrm{AB}^{1 / 91} \mathrm{f1}\) & & \\
\hline & PAK P: \(20 \times\) Plastic 109 ¢1 & & \\
\hline & PAK R: \(14 \times\) BC107 £ \(1^{\text {- }}\) & (N4001 5p \({ }^{\circ}\) & 4004 7p \\
\hline RESISTORS \(\frac{1}{4} / \frac{1}{2} w\) 2pea & PAK S: \(14 \times 8 \mathrm{BC} 108\) £1* & & \\
\hline \multirow[t]{3}{*}{Presets 10p Pots 25p} & PAK T: \(10 \times\) NPN 2A 60ve 1 & \(301 / 74 \mathrm{pin} 290^{\circ}\) & \\
\hline & PAK U: \(4 \times 1\) A 50VSLR f1 & \(30808 \mathrm{ff}{ }^{\text {- }}\) & \({ }_{76013}^{7815} \mathbf{8 1 . 4 9}{ }^{\text {7 }}\) \\
\hline & PAK V: \(40 \times 5 \mathrm{MFD} 10 \mathrm{~V}\) ¢1 & 555 29p \({ }^{\text {- }}\) & LM309K £1* \\
\hline & PAK WV: 20 Electroiytics \(\mathrm{f1}\) & \(741 / 821 \mathrm{p}\) - & LM380 89p \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
VERO O. 1 MATRIX \\
\(2 \frac{1}{3} \times 3 \frac{3}{2} 42 p^{\circ} 3 \frac{3}{2} \times 5^{\prime \prime} 59 p^{\circ}\)
\end{tabular}} & PAK Y: \(4 \times 2\) & 747 89 \({ }^{\circ}{ }^{\circ}\) & LM381 £1.55 \\
\hline & Type PNP E1 &  & LM3900 69p \\
\hline \multirow[t]{2}{*}{} & NEW PAK X \(: 4 \times 555\) & \(748 / 8\) 3990. & MC1310 E1 \\
\hline & TRIAC: \(104400 \mathrm{~V} 55 \mathbf{f l}^{\text {¢ }}\) & 7805 E1* & 2N414RX 75p \\
\hline NyIon Board Copper \(6 \times 4\) & SCA: 4 A 400V (106) 500 & 7400TTL 12p* & 7480 45p* \\
\hline & DIAC: BR100/STZ 25p & 7401 80* & 7490 33p* \\
\hline \multirow[t]{2}{*}{Tub FEC Etch \(\frac{1}{2} \mathrm{~kg}\)
RS Bleeper 12 vg
¢1.51
¢} & SCR TAG 1AV00v 60p & 7405 87p \({ }^{\circ}\) & 74121 27p* \\
\hline & & 7413 27p \({ }^{\circ}\) & 74123 50p \\
\hline Knobbs: Cheap 10p* & & 7420 8 \(p^{\circ}\) & 7415750 p \\
\hline Relay. Multi Pole 12v £1* & 8 S Sockets: Lo Profile & \(743088{ }^{\text {P }}\) & CMOS etc \\
\hline Silicon Grease Satchet \(\mathbf{2 5}\) & 8 pin 12p* & 7445 50p \({ }^{\text {c }}\) & 4001 18p* \\
\hline \& Digital Clock IC & 14 or 16 pin \(\quad 15 p^{*}\) & 7447 790* & 4011 18p \\
\hline
\end{tabular}

\footnotetext{
FREE: 1978 CATALOGUE SALE LIST. SEND S.A.E. BARGAIN OFFERS
THIS MONTH'S SNIPS. LIMITED STOCKS.
TUNER MODULE, BRANDNEW EXPENSIVE. EX MUSIC || TUNING GANG.
7 WaIt STEREO AMPLIFIER MODULE 331.69
AIR SPACED O-360/395
}



\section*{INDEX TO ADVERTISERS}

\begin{tabular}{|c|c|c|}
\hline & & \multirow[t]{3}{*}{\begin{tabular}{l}
GEARED MOTORS \\
100 r．p．m．115tbin． \(110 \mathrm{~V}, 50 \mathrm{~Hz} \quad 2 \cdot 8 \mathrm{~A}\) single phase split capactior motor
Immense power Continuously rated Tomense power Continuously rated gearbox Length 250 mm ．Dia 135 mm ．Spindiedia 15 mmm Length 145 mm Ex－equipment tested £12．Post £1 50 （£14．58 Inc．VAT \＆P）Suitable transformer 230／240V operation \＆8．
Post 750 （ \(\mathbf{P} 9.45\) inc VAT \＆P） Post 75p（ \(£ 9.45\) inc VAT \＆\(P\)
\end{tabular}} \\
\hline DE RANGE OF & \multirow[t]{2}{*}{INPUT \(230 / 240 \mathrm{~V}\) a．c． \(50 / 60\) OUTPUT VARIABLE 0－260V All Types SHROUDED TYPE} & \\
\hline \multirow[t]{2}{*}{} & & \\
\hline & \multirow[t]{2}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
CITENCO \\
FHP motor type C 7333／15 220／240V a．c 19 r．p．m reversible motor，torque 145 kg ． gear ratio 144－1．Brand new incl
capacitors．our price \(\{14.25\) ．P \＆\(\quad\) \＆ 125 （ 196.20 inc VAT \＆P）．
\end{tabular}} \\
\hline \multirow[t]{3}{*}{} & & \\
\hline & \multirow{8}{*}{\begin{tabular}{l}
\(0-12 \mathrm{~V} / 24 \mathrm{~V}\) at 1 amp ．£2．50．P．\＆P．50p（ \(£ 3.24\) inc．VAT \＆P） \(25-025 \mathrm{~V}\) at \(2 \frac{1}{2}\) amp．£4．50．P．\＆P．75p（£5．67 inc．VAT \＆P．） 0－12V／24V 10 amp ，£12．35．P．\＆P．© \(\mathcal{I} .50\)（ \(£ 14.96 \mathrm{inc}\) ．VAT \＆P．） \(0-4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}\) at 12 amp ．£13．P\＆P．£ 1.50 （ \(£ 15.66 \mathrm{inc}\) VAT \＆P．I． \\
\(0-12 \mathrm{~V}\) al 20 amp or \(0-24 \mathrm{~V}\) at 10 amp ，£12．00．P．\＆P．fl 1.50 （ \(\mathbf{5} 15.01 \mathrm{inc}\) ．VAT \＆P．）． \\
\(0-6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}\) at 20 amp ．£14．P．\＆P．£ 1.50 （£ 16.74 inc．VAT \＆P．）． \\
\(0-6 \mathrm{~V} / 12 \mathrm{~V}\) at \(20 \mathrm{amp}, \mathbf{f 1 1 . 8 5}\) ．P．\＆P．\＆）（f13．88 inc．VAT \＆P） Other types in stock－phone your enquiries．
\end{tabular}} & \\
\hline & & \multirow[t]{6}{*}{\begin{tabular}{l}
BODINE TYPE N．C．I． \\
GEARED MOTOR \\
（Type J） 71 r．p．m．10rque 101b．in Reversible \(1 / 70 \mathrm{Hh}\) h．p． 50 Hz \\
The above precision made U．S．A \\
motor is offered in as new condition \\
Input valtage of motor 115 V a．c Supplied complete with transformer for \(230 / 240 \mathrm{~V}\) a．c．Input． \\
Price．either type £6－25．Posi 75p（ 57.56 inc VAT \＆P P）or less transformer \(£ 3.75\) ．Post 65 p （ \(\mathbf{5 4} .75 \mathrm{inc}\) VAT \＆\(P\) \\
（Type 3） 71 r．p．m． \(410.1 n .230 \mathrm{~V}\) a c Continuously rated Reversible \(£ 6 \cdot 50\) ．Pos： 75 p （ \(£ 7\) 83 inc VAT \＆P）
\end{tabular}} \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
METERS NEW－ 90 mm Diameter \\
Type：65C5 d．e Mc 0－2．0－5，0－20 0.50 a－100 amp 0－15V de \(0-30 \mathrm{~V}\) d c Type ： 62 T 2 ac M10－1V．0－50 amp 0－15V．0－30V Type \(P\) 50p（ 54.32 each inc VAT \＆P）
\end{tabular}} & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
NEW HEAVY DUTY SOLENOID．mfg \\
by Magnetic Devices 240 V a．c \\
operation approx． 2016 pull at 125 in \\
Price £7．P \＆P． 75 p Similar to above approx 10 ib pull［3．50，P \＆P 60p 230－250V a．c Solenoid Similar in appearance to illustration．Approx 1thb pull．Size of feet it \(x\) it in Price f1．P \＆P 25p
\end{tabular}} & & \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
RACMO \\
6 r．p m．． \(501 \mathrm{~b} . \mathrm{m} .240 \mathrm{~V}\) a．c． \(50 \mathrm{~Hz}, 0.7\) \\
mp sharplength 35 mm ，dia， 16 mm ． 8 P £1 50 （ E 17 g 2 ）．
\end{tabular}} \\
\hline & R⿴囗玉E！STROEE！S & \\
\hline & \multirow[b]{4}{*}{\begin{tabular}{l}
Latest type Xenon white tight tlash tube Solid state timing and triggering circuit 230／240V a．c operation．
Designed \\
Designed for larger rooms，halls，etc Speed adjustable \(1-20\) f． p Lignt output greater than many （so called a Joule）strobes．Price \(\varepsilon\) is．Post \(£ 1\)（f20 56 \\

\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
ARVALUX GEARED MOTOR． \\
\(30 / 240 \mathrm{~V}\) A．C． 30 rpm 50 lbs inch．Price \(£ 15.00 \mathrm{psp} \mathrm{f} 1.00\) 17.82 inc．VAT）
\end{tabular}} \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
UNISELECTOR SWITCHES bank 25 way 75 ohm ．Coil． \(36-48 \mathrm{~V}\) d c operation Ex NEW equipment £4 25．P \＆P 75p Total price inc VAT
55.40 MINIATURE UNISELECTOR \\

\end{tabular}} & & \\
\hline & & \multirow[t]{3}{*}{\begin{tabular}{l}
R．P．M． \\
pe SD48 801b in input 100／140V AC Length incl gearbox 0 mm Herght 135 mm Width 150 mm Drive shaft 16 mm eight 85 kg BRAND NEW Ppice［10．Cart f1（E11－88 inc AT \＆P） \\

\end{tabular}} \\
\hline & & \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
XENON FLASHGUN TUBES \\
Range avallable from stock SAE for detalls
\end{tabular}} & \\
\hline & & \multirow[t]{3}{*}{\begin{tabular}{l}
COMPRESSOR \\
recision built by Emerson USA． orizontally opposed iwin thead dia－ S．I per head． 3.5 plus C．F．M．Out－ ut virtually pulse free．Powered by 10 VAC motor size \(30 \times 23 \times 15 \mathrm{~cm}\) ， eight 7 kilos．Pri
fe．VAT \(\mathbf{f 2 3} 76\) ． \\
uitable transformer for \(\mathbf{2 3 0 / 2 4 0 V}\) A．C．\(£ 8-00\) p\＆p \(£ 1.00\)（inc． AT \(£ 9.721\)
\end{tabular}} \\
\hline  & ULTRA VIOLET BLACK LIGHT FLUORESCENT TUBES & \\
\hline M & \multirow[t]{4}{*}{} & \\
\hline  & & E．G．WATER PUMP \\
\hline pa & & O／240V a．c．motor． 2.850 r．p．m． \\
\hline Sub min Hon & & fugal pump with it in ilet and outler
delivering approx． 40 gallons per min． \\
\hline & \multirow[t]{3}{*}{\begin{tabular}{l}
GALVANOMETER \\
50 micro mirror galvo Calibrated 50－0 50 and \(0,100 \mathrm{Mig}\) by Griffin \＆George tid Oifered at a traction of makers price，in
original ministry packing \(£ 12 . P\) \＆\(P\) ． 60 p （ \(\mathbf{E 1 3} .60 \mathrm{inc} V A T\) \＆\(P\) ）
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
culating any non－corrosive light
iscosity liquid．Dozens of uses in \\
dustrial labs．，etc．Note this pump is not self－priming．Price f 15 ． ost 75 p（ \(£ 17.01\) inc．VAT \＆P．）．
\end{tabular}} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
24 VOLT DC SOLENOIDS \\
UNIT containing 1 heavy duty sotenold approx 2510 pull 9 inch travel Two approx lib pull sin travel 6 ．approx 402 pull ith travel One 24 V d．c \({ }^{1}\) heavy duiv single make relay Price
BARGAIN．
\end{tabular}} & & \\
\hline & & \multirow{3}{*}{cam model Es 74 Post 60 P Also Viun ininin if． allable for 50 V operation Price as ove} \\
\hline & \multirow[b]{2}{*}{SAE（foolscap）for details} & \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
VORTEX BLOWER AND VACUUM UNIT \\
Dynamically balanced totally en－ Closed \(91 n\)
delivery of of with max air
1 delivery of 15 cubic metres per \(W G\) Suction or blow from 2 side－ by－side 37 mm ID circular aper－ tures fitted to base of unit Power－
ful continuously rated 115 V a c motor mounted on alloy base with fixing facilites Dimansions lengin 22 cm width 25 cm height 25 cm These units are ex equipment but have had minimum use Fully tested prior 10 despatch Price \(£ 12\) Ef 0 \＆\＆（aid 58 inc VAT \＆P \\
\begin{tabular}{ll} 
Sulable transtormer for \(230 / 240 \mathrm{~V}\) \\
inc ac C & E 6 \\
\hline
\end{tabular} nc VAT \＆P
\end{tabular}} & & \\
\hline & \multirow[t]{4}{*}{\begin{tabular}{l}
CONTACTOR \\
Mifg by Mendrey Relays type C2839 220250 a c ops Contact 4 C O at 20 amp at 440 V ac Price E6．P \＆P 75p （£7．29 inc．VAT）
\end{tabular}} & \multirow[t]{3}{*}{100 Sensitivity 2000 V 24 range olameter 133 93 by \({ }^{46 \mathrm{mmm}}\) Price \＆6． 50 plus 50p P \＆P} \\
\hline & & \\
\hline & & \\
\hline & & \multirow[b]{4}{*}{\begin{tabular}{l}
ime Switch \\
nner Type ERD Timeswitch \(200 / 250 \mathrm{~V}\) a．c 2 on／2 every 24 hrs ．at any manually pre－sel time． 36 ur Spring Reserve and day omitting device．Built highest Electricity Board specification．Price 50 P．\＆P． 75 p ．（ \(£ 9.18\) ）．
\end{tabular}} \\
\hline & \multirow[t]{4}{*}{\begin{tabular}{l}
RESET COUNTER \\
230 V a．c．， 3 digits mfg．Veeder Root Type \\
 （ 11.89 inc．VAT \＆P P） 6 fig． \(24 \mathrm{~V} \mathrm{d.c}\). ．resetrable £3．P．\＆P．25p（£3．51 inc．VAT \＆P！ 230 V a．c．Fan Assembly Powerfuł continuously Aluminium fan．Price f3．95．P．\＆P． 65 p ． （£4．97）
\end{tabular}} & \\
\hline & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
CENTRIFUGAL BLOWER \\
Mif by Smins industries 230.240 Vac
Miniature model．Series SE 200 size \\
\(95 \mathrm{~mm} \cdot 82 \mathrm{~mm}-82 \mathrm{~mm}\) Aperfure \\
post 500 （ 3.51 inc．VAT \＆P）． \\
Smith type FFB 1906022 220／240V A．C．Aperture \(10 \times 4 \frac{1}{\mathrm{~cm}}\) \\
overall size \(16 \times 14 \mathrm{~cm}\) Price \(£ 3.75\) p \(\mathrm{S}_{\mathrm{s}} \mathrm{p} 75 \mathrm{p}\) ．（inc．VAT \(£ 4.86\) ）．
Other types available phone for detais．
\end{tabular}} & & \\
\hline & & \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
BIG INCH \\
precision bult 3APM U S A motor size ondy \\
 for \(\varepsilon 5\) post pard（E5． 40 inc．VAT \＆\(P\)
\end{tabular}} & \\
\hline & & \multirow[t]{4}{*}{\begin{tabular}{l}
New ceramic construction，vitreous brush assembly continuously raled \\
25 WATT \(10,25 / 50 / 100 / 150 / 250 / 5001 \mathrm{k} \Omega\) \\
50 WATT \(100 / 2505001 \mathrm{k} \Omega\) £ \(2 \cdot 90\) ．Post 25 p（£3 40 iNC VAT \(\&\) \\
 \\
E4．90．Post 35p \(\{\mathbf{5} .67 \mathrm{inc}\) VAT \＆P．
Biack Sllver．Skirted knob calibrated in Nos 1 ig 1 tin dia \\
brass bush ideal for above Rheostats \(24 p\) each
\end{tabular}} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
INSULATION TESTERS NEW！ \\
Test cole E Spec Ruggea metal construc tion suitable for bench or field wurk
consiani speed ciuich Size Lin W Ain H 61 n weight \(610,500 \mathrm{~V}, 500\) megahms．\(£ 40\) ． Post 800（ 544.06 inc VAT \＆\(P\) ） 1000 V 1． 000 Mn £46．Post 80 p （ \(\mathbf{5 0} 54 \mathrm{INC}\) VAT \＆ \\
P SAE for leaflei
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
VAT \\
AT CURRENT RATE MUST BE ADDED TO ALL ORDERS FOR THE TOTAL VALUE OF GOODS INCLUDING POSTAGE UNLESS OTHERWISE STATED
\end{tabular}} & \\
\hline & & \\
\hline & & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
All Mail Orders－Callers－Ample Parking Dept．PE12， 57 BRIDGMAN ROAD CHISWICK，LONDON W4 5BB Phone 01－995 1560 \\
Showroom open Mon，－Fri．
\end{tabular}} & & \\
\hline & & 9 LITTLE NEWPORT STREE \\
\hline & & Phone 01－437 0576 \\
\hline
\end{tabular}

\footnotetext{
Published approxinnately on the 15 th of each month by IPC Magazines Ltd．．Westover House．West＇Qualy Road，Poole，Dorset BH15 IJG．Printed in England by Chapel River Press，Andover，Hants Sole Agents or Ausiralia and New Zealand－Gordon \＆Gotch（A／sia）IId．：South Africa－Central News Agency Lid．
Subscriptions INLAND and OVERSEAS \(£ 10.60\) payable to IPC Services，Oakfekd House，Perrimount Road，Haywards Heath，Susse
Trade at nocre than the recommended selling price shown on the cover．texcluding Eirc where the selling price is subject to P Publishers first given．be lent，resold，hired out or otherwise disposed of by way of mate at nore than the recommended selling price shown on the cover．excluding Eire where the selling price is subject to V．A T．，and thal it shall not be lent，resold or hired out or otherwise disposed of in
mutilated condition or in any unauthorised cover by way of Trade，or affixed to or as part of any publicalion or adverising．literary or pictorial matler whatsoever．
}

\title{
กก® \\ P \\ t
} in a modern world of electronics

100W RMS STEREO DISCO A genuine 100W RMS per channel (Both channels driven) stereo disco with auto fade on microphone, VU meters, full monitoring and cueing facilities and a very high quality light show. Complete construction booklet MES41 price 25 p. Cabinet comes complete with lid and carrying handles. RHYTHM GENERATOR
Organists, pianists, guitarists...an automatic drum set to accompany you! Nine highly realistic instruments play fifteen different rhythms. Fifteen rhythm-select touch switches and a touch plate for stop/start without rhythm change gives absolute ease of operation. Build it yourself for under £65 including smart teak-effect cabinet. See it and hear it in our shop! Send for full construction details now: MES 49 price 25 p.

\section*{T.V. GAME \\ A fascinating TV game kit tha plays football, tennis, squash and practice for only £21.59. Reprint of construction details \(35 p\). Add-on rifle kit only £ 10.60 .}

\section*{ELECTRONIC ORG'AN}

The only organ you can build in stages and tallor to your requirements as you go alonty - and at each stage you'll have a fully working instrument! We haven't got the gimmicks yet - (they're coming soon) but we have got the most beautiful sounds - you won't find them on any organ less than twice our price So get our MES50 series leaflets now! 65p buys the three available so far

Who says the Maplin Cata
logue's worth having?
\begin{tabular}{l} 
"in ou \\
\(-P\). \\
\hline .
\end{tabular}

\section*{WIDE RANGE OF COILS \& CHOKES} Component section in our catalogue includes a wide range of coils, pot cores, ready-wound coils and chokes from microHenries to Henries, plus ranges of Denco coils and i.f. transformers etc.
contains . . just about everything the DIY probably the most comprehensive catalogue we have ver come across"-E.E
has been carefully prepared and is very well pre-sented"-R.E.C
- makes the job of ordering components an easy, accurate and enjoyable pastime -P.W.
"Only one word describes the publication-superb!"-
OVER 60,000 COPIES SOLD. DON'T MISS OUT!
SEND 60p NOW

Our bi-Monthly
newsletter keeps you up to date with latest guaranteed prices-our latest special offers-details of new projects and new lines. Send 30 p for the next six issues (5p discount voucher with each copy).

MAPLIN ELECTRONIC SUPPLIES P.O Box 3. Rayleigh. Essex SS6 8LR Telephone: Southend (0702) 715155 Shop: 284 London Road, Westeliff-on-Sea Essex. (Closed on Monday). Tele-

POST THIS COUPON
NOW FOR YOUR COPY OF oUR CATALOGUE PRICE 60p

Please rush me a copy of your 216 page catalogue. I enclose 60 p , but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 60p refunded immediately.

Name
Address```


[^0]:    C IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]:    THE COMPONENT CENTRE
    7 Langley Ropad. Watford. Heris WD3 2PR
    ODen Mon -Sa: Wartora 930.5335 Cosed wed

[^2]:    POST THIS COUPON with cheque or P.O. for $£ 1.40$
    

    The finest components catalogue yet published.

    - Over 200 A-4-size pages.
    - About 5,000 items clearly listed and indexed.
    - Nearly 2,000 illustrations
    - Bargain List sent free.
    - At $£ 1 \cdot 40$. incl. p. \& p., the catalogue is a bargain.

    Send the coupon below now.

    HOME RAOIO (Components) LTO, 234-240 London Road, Mitcham, Surrey CR4 3HO
    

    ## Over 200 kits in the free Heathkit Catalogue

    

    NEW Digital Clock with repeater alarm

    NEW 4 Function Solid State Multimeter - One of a whole range of test equipment
     - Gives a distinctive 'yelping' sound-signal the moment your car is tampered with

    Freezer Alarm - Gives audible signal if freezer temperature rises to -6 C for any reason
    

    Right now, there's a brand new edition of the Heathkit Catalogue - packed with hundreds of practical and fascinating items which you can build yourself.

    ## Send for your copy now!

    To Heath (Gloucester) Ltd. Department PE 28
    Bristol Road, Gloucester, GL2 6EE.
    

    There are Heathkit Electronics Centres at 233 Tottenham Court Road London (01-636 7349) and at Bristol Road, Gloucester (Gloucester 29451).

    # KITS FOR SYNTHESISERS, SOUND EFFECTS 

    
    P.E. MINISONIC Mk. 2 SYNTHESISER

    A portable mains-operated Miniature Sound Synthesiser with keyboard circuils. Although having slightly lewe facililies than the large PE Synthesiser the functions offered by this design give 11 great scope and versatility Consists of $2 \log$ VCOS. VCF. 2 envelope shapers. 2 voltage conlrolled amps. keyboard hold and control circuits. HF oscillator and detectior, ring modulator. noise generator
    $\begin{array}{lr}\text { output amp and mixer. power supply } & \text { from } \mathbf{5 6 4 . 2 5} \\ \text { Set of basic component kits } & \mathbf{S 9 . 7 1}\end{array}$
    Set of printed circuit boards

    ## P.E. SYNTHESISER (P.E. Feb. 73 to Feb. 74)

    The well acciaimed and highly versatile large-scale mains-operated Sound Synthesiser complete with keyboard circuits. Other circuits in antisis notably P.E. Minisonic Shninesiser to good advantage. Nhtably Generator. Sound Bender. Voltage Controlled Filter, Guitar Eftects Pedal and Overdrive. Fuzz. Tremolo and wah-Wah units.
    The Maln Synthesiser: PSU. 2 linear VCOs. 2 ramp generators. 2 input amps. sample hold, noise generator reverb amp. ring modulator. peak level circuit. envelope shaper voltage controlled amp. Full details in lists.

    Set of basic component kits
    283.03

    Set of printed circuit boards
    E13.20 Main Synthesiser to make an independent musica insirument) 2 logarithmic VCOs, divider, 2 hold circuits. 2 modulation amps. mixer. 2 envelope shapers snd additiona PSU. Full detaits in our lists.

    Set of basic component kits
    Set of printed circuit boards
    GUITAA EFFECTS PEOAL (P E. July 75)
    Modulates the attack. decay and filter characteristics of an audio signal not only from a guitar but from any audio source. producing 8 different switchable eflects that can be further modified by manual controls. Posstbly the most range. Circuit does not duplicate effects from the Guitar Overdrive Ünit
    Component set with special foot operated swithes $£ 7.59$ Alternative component set with panel mounting switches
    Printed circuil board
    84.96
    $\mathbf{8 1 . 4 3}$

    SOUND BENDER (P.E. May 74)
    A mulli-purpose sound controller. the functions of which include envelope shaper. tremolo, voice-operated fader automatic fader and frequency-doubler

    Component set for above functions (excl SWs) $\quad \mathbf{~ 5 7 . 8 4}$ Printed circuit board Optional extra-additional Audio Modulator, the use of produce jungle-drum rhythms produce jungle-drum Phyth
    Component set (incl. PCB)

    PHASING UNIT (P E Sept. 73)
    A simple but effective manually controlled unit for introducing the phasing sound into live or recorded music
    [2.87
    PHASING CONTROL UNIT (P.E Oct. 74)
    For use with the above Phasing Unit to automatically control
    Componenl set (incl PCB)
    SOPHISTICATED PHASING AND VIBRATO UNIT
    A slightly modified version of the circuit published in Eutomatic controt over the rate of includes manual and automatic conirot over the rate of phasing and vibrato
    Component set
    Printed circuit board
    [17. 69
    $£ 2.33^{\prime}$ Printed circuit board

    WAH-WAH UNIT (P.E. Apr. 76)
    The Wah-Wah effect produced by this unit can be controlled manually or by the integral automatic controlle Component set (incl. PCB)
    AUTOWAH UNIT (P.E. Mar. 77)
    Automatically produces Wah-pedal and Swell-pedal sounds
    each time a new note is played.
    Component set. PCB, special foot switches
    Component set and PCB . with panel switches
    $\begin{array}{r}\text { ع } 7.27 \\ \text { c4. } \\ \hline\end{array}$

    ## POST AND HANDLING

    U.K. orders--under $£ 15$ add 25p plus VAT, over $£ 15$ add 50 p plus VaT. Keyboards $£ 2 \cdot 00$ plus VAT.
    Optional insurance for compensation against loas or damage in post, add 35p in addition to above post and Eire. Cl.. 日.F.P.O.. and other countries are subject to

    COMPONENTS SETS include all necessary resistors. capacitors. semiconductors. polentio meters and transformers Hardware such as cases. sockets, knobs. etc are not included bu most of these may be bought separately fulle delails of kits. PCBs and parts are shown in our lists
    CIRCUIT AND LAYOUT DIAGRAMS are supplied free with all PCBs designed by Phonosonics PHOTOCOPIES of the PE texts for mosi of the kits are available-prices in our lists

    ## PHONOSONICS

    MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET.
    P.E. JOANNA (P E. May Sept 75)

    Alive-octave electronic piano that has swilchable alternative voicing of Honky-Tonk piano ordinary piano, harpsichord, or a mixture of any of the three. together with facilities including fast and slow tremolo. loud and soft pedal switching. and sustain pedal switching the PCWer have been edesigned by ourselves making improved use of the space vaitable
    Main power supply, tone generator, 61 envelope shapers. oreing and pre-aimp carcuits
    Set of basic component kits for above $\quad 575.29$
    Sel of printed circuit boards tor above
    Power amplifier
    Printed circuit board for power amp
    $20 \cdot 35$

    ## ELECTRONIC ORGAN

    S-octave electronic organ with 5 basic voices that can be ssed individually or together. 5 pitches (2ft. 41 t . 8 ft . 16 ft .32 ft ). sustain Detalls in our list

    ## ORGAN CONVERSION KIT

    Converts the PE Joanna electionic piano to also provide nost of the facilities offered by the above electronic organ
    E12.34

    ## SYNTHESISER TUNING INDICATOR (P.E. July 77)

    A simple toctave frequency comparator for use with
    synthesisers and other instruments where the full versatility
    of the P.E. Tuning Fork is nol required.
    Component and PCB (but exel sw.)
    ع7. 45
    GUITAR FREQUENCY DOUBLER (P.E. Aug 77)
    A modified and extended version of the circuit published Details in list

    SEE OTHER PAGE FOR KEYBOARDS, AND OUR LISTS FOR OTHER COMPONENTS AND ACCESSORIES STOCKED

    ## WIND AND RAIN UNIT

    A manvally controlled unit for producing the above-named sounds
    Component set (Ir.cl PCB)

    GUITAR OVERDRIVE UNIT (PE Aug 76)
    Sophisticated. versatile Fuzz unit. including variable and switchable controls affecting the fuzz quality whalst retaining duplicate the effects from the Gultar Elfects Pedal and can be used with it and with other electronic instrumenis
    Component set using dual slider pot
    Component set using dual rotary pot
    Printed circuit board
    c6.85

    ## FUZZ UNIT

    Simple Fuzz unit based upon PE Sound Design circuit

    ## TREMOLO UNIT

    Based uponPE Sound Design circuit
    Component set (incl. PCB)
    E3. 64
    TREBLE BOOST UNIT (P E Apr. 76)
    Gives a much shrilier quality to audio signals fed through it
    The depth of boost is manually adjustable
    Component set (incl PC8)
    C2.40
    P.E. TUNING FORK (P.E. NOV. 75 )

    Produces 84 swith-selected frequency-accurate tones A LED monitor clearly displays all beat note adjustments Ideal or tuning acoustic and electronic musical instruments like.
    Main component set (incl. PCB)
    815.59
    87.03

    ## DON'T FORGET VAT!

    Add $12 \frac{1}{3} \%$ (or current rate if changed) to full total of goods, post and handling. (Does not apply to export orders).
    P.E. SYNCHRONOME (PE Mar 76

    An accented-beat electronic metronome. providing duple triple and quadruple times with full control over the beat rate Can also be used as a simple drum-beat rhythm generator Includes power supply
    $\begin{array}{lr}\text { Component set (incl loudspeaker) } \\ \text { Printed crrcuit board } & \text { £11-62 } \\ & \text { [2.04 }\end{array}$

    TAPE NOISE LIMITER
    Very effecive circull for reducing the hiss found in mosi tape recordings. All kits include PC8s

    Standard tolerance set of components
    Superior tolerance set of components 52.96
    53.76

    Regulated power supply (will drive 2 sets) $\quad$ I4.69

    ENVELOPE SHAPER WITHOUT VCA (P E Oct. 75)
    Provides fult manual control over attack. decay. sustain and release functions. and is for use with an existing voltage Compod amplifer
    Component set fincl PCB)
    ENVELOPE SHAPER WITH VCA (P.E. Apr. 76 )
    This unit has its own voltage controlled amplifier and has full manual control over attack. decay. sustain and release Compon

    ## TRANSIENT GENERATOR (P.E Apr 77)

    An envelope shaper. without VCA, having the usual atlack decay sustain and release functions and in addition it also provides a Repeat Effect enabling a synthesiser to be programmed to imitate such instruments as a mandolin or
    banio banio

    Component set
    54.52

    ## WAVEFORM CONVERTER

    Slightly modified from a circuit published in a German edition of Elektor Converts a saw-tooth waveform into four different waveforms sine-wave mark-space saw-tooth regular triangle form. and squarewave with an externally ariable mark-space rati
    Component set (|ncl PC8 but excl sw s) Es-19

    VOLTAGE CONTROLLED FILTER (P E Dec. 74)
    Part of the PE Minisonic now released as an independent Component set tincl PCB) (Or

    AING MODULATOR (P.E Jan 75)
    Part of the PE Minisonic now released as an independent
    kit for use with other synthesisers
    Component set (incl PCB) (Order as Kıt 59-1) $\quad \mathbf{5 . 5 0}$
    NOISE GENERATOA (P.E. Jan. 75)
    Part of the PE Minisonic now released as an independent
    kit tor use with other synthesisers
    Component set (incl. PCB) (Ord

    ## SOPHISTICATED POWER SUPPLIES

    A wide range of highly stabilised low noise power supply kits
    is available--details in our iists.
    MICROPHONE PRE.AMP (P.E Apr. 77)
    Component set (incl PCB)
    E3. 78

    VOICE OPERATED FADER (P E Dec. 73)
    For automatically reducing music volume during lalk-over -particu
    nome-movie shows.
    Component set (incl PCB)
    DYNAMIC RANGE LIMITER (i $\subseteq$ Apr. 77)
    Automatically controls sound output to within a preset
    level
    level
    Component set (incl PCB)
    E4.58

    EXPORT ORDERS are welcome, though we advise that a current copy of our list should be obtained before ordering as it also shows Export postage rates. All payments must be cash-with-order. In Sterling and preferably Dy International Money Order or through an English Bank. To obtain lisi send 40p.

    ## AND OTHER PROJECTS

    PHOTOGRAPHS in this advertisemen show two of our units containing some of the P. E. projects bull from our kits and and are not tor wate though a small selection of other cases is avallable

    List-Send stamped addressed envelope with all U.K requests for free list giving fuller delails of PCBs. kits and other components
    OVEASEAS enquiries for list Europesend 20 p other countiles-send 40 p
    

    KEYBOARDS AND CONTACTS
    Kimber-Allen Keyboards as required for many published circuits. including the P.E. Joanna, P.E. Minisonic, and P.E. Synthesiser. The manu'acturers clarm that these are the finest moulded plastic keyboards available. All octaves are C to C The keys are plastic. spring-loaded and mounted on a robust aluminium frame
    
    Contact Assemblies for use with above keyboards Single-pole change-over (type SP) as for P E , doanna and PE Minsonic. Two-pole normally-open make-break (type DP) as for PE Synthesiser Special contact assembly (type 4PS) having 4 poles. 3 of which are normally-open make-break contacts and the fourth is a change-over contact-this special assembly enables THE SAME KEYBOARD to be used with the PE Synthesiser. PE Minisonic and the PE Joanna simultaneously thus avoiding the cost of more than one keyboard see our list for other
    contacts

    | Contact | Each | 3 Octave Set | 4 Octave Set | 5 Octave Se |
    | :---: | :---: | :---: | :---: | :---: |
    | SP | 24p | $£ 8.88$ | $£ 11.76$ | $\varepsilon 14.64$ |
    | 2P | 27 p | $£ 9.99$ | $£ 13.23$ | $£ 16.47$ |
    | 4PS | 53 p | $£ 19.61$ | $£ 25.97$ | $£ 32.33$ |

    PRINTED CIRCUIT BOARDS for use with the above contacis and thus eliminating most of the inter-wiring required. are avallable Details in our lists
    MORE KITS!
    NEW RHYTHM GENERATOR
    Redesigned. Improved and extended version of the PE
    1974 design and including new automatic rhythm
    programme selector.
    TUNE-PROGRAMMABLE SEQUENCER
    (PE Nov 77) The new music unit currently being
    published
    FORMANT SYNTHESISER
    (Elektor Magazine 1977). Very sophisticated music
    synihesiser for the advanced constructor and for whom
    cost is secondary to pertormance
    GUITAR SUSTAIN UNIT
    (PE Oct 77)
    Details in lists Please send SAE

    SOUND-TO-LIGHT (P E Aurora) (PE Apr-Aug 711
    Four channels eact responding to a different sound frequency and controlling its own light Can be used with mos! audio systems and lamp intensities
    Basic component set (excl thyristors)
    Printed circuit board tor above
    Power supply
    $£ 15.92$
    83.90
    PCB for power supply

    | TRANSISTORS |  |
    | :---: | :---: |
    | AC 128 | 26p |
    | AC176 | 26p |
    | BC107 | 14p |
    | BC108 | 14 p |
    | BC109 | 14p |
    | BC 147 | 12p |
    | BC 148 | 12p |
    | BC149 | 12p |
    | BC157 | 13p |
    | BC158 | 13p |
    | BC159 | 13p |
    | BC182L | 12p |
    | BC184 | 12p |
    | BC187 | 25p |
    | BC204 | 14 p |
    | BC209C | 14 p |
    | BC212L | 15p |
    | BC213 | 15p |
    | BC478 | 29p |
    | BCY71 | 22p |
    | BD131 | $44 p$ |
    | BD132 | 54 p |
    | BFY50 | 22p |
    | BFY51 | 22p |
    | BFY52 | 24p |
    | BSY95A | 22p |
    | MD8001 | 172p |
    | OC28 | 60p |
    | 0 O 71 | 20p |
    | 0 C 72 | 25p |
    | OC84 | 25p |
    | ORP12 | 10p |
    | ZTX107 | 12p |
    | ZTX108 | 9 p |
    | ZTX501 | 13p |
    | 2T×503 | 15p |
    | ZTX531 | 23p |
    | 2N706 | 13p |
    | 2N914 | 22p |
    | 2N1304 | 22p |
    | 2N2219 | 27 p |
    | 2N2905 | 35p |
    | 2N2905A | 36p |
    | 2N2907 | 22p |
    | 2N3053 | 18p |
    | 2N3054 | 66p |
    | 2N3055 | 48 p |
    | 2N3702 | 12p |
    | 2N3703 | 12p |
    | 2N3704 | 12p |
    | 2N3819 | 35p |
    | 2N3820 | 64 p |
    | 2N3823E | 39p |
    | 2N4060 | 12p |
    | 2N5245 | 51p |
    | 2N5459 | 33p |
    | 2N5777 | 45 p |
    | INTEGRATED | CIRTS. |
    | 318 | 230 p |
    | 709 TOS | 40p |
    | 709 8-pin DIL | 48p |
    | 723 TO5 | 105p |
    | 7418 -pin DIL | 32p |
    | 748 TO5 | 6.3p |
    | 7488 8-pin DIL | 63p |
    | LA7805 TO220 | 205p |
    | LA7808 10220 | 205p |
    | HA7812 TO220 | 205p |
    | HA7815 TO220 | 205p |
    | HA7818 TO220 | 205p |
    | AY-1-0212 | 650p |
    | AY-1-6721/6 | 195p |
    | CA3046 | 90p |
    | MC3340 | 150p |
    | SG3402N | 262 p |

    
    PRICES ARE CORRECT AT TIME OF PRESS.
    E. © . E. OELIVERY SUBJECT TO AVAILABILITY.

    PHONOSONICS
    

    The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when $m y$ course is completed.'

    ## City and Guilds Certificates

    Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for
    Telecommunications Technicians
    Radio, T.V. Electronics Technicians
    Technical Communications
    Radio Servicing Theory
    Radio Amateurs
    Electrical Installation Work
    Also MPT Radio Communications Certificate

    ## Diploma Course:

    Colour T.V. Servícing
    Electronic Engineering \& Maintenance
    Computer Engineering and Programming
    Radio, T.V. and Audio, Engineering \& Servicing
    Electrical Engineering, Installations \& Contracting

    ## Other Career Courses

    A wide range of other technical and professional courses are available including GCE.

    Post this coupon or 'phone today for free ICS careers guide.

    Age
    To ICS, Dept. 2730, Intertext House London SW8 4UJ
    or telephone 01-622 9911 (all hours)

    # Gould Advance Instruments Professional quality ata realistic price. 

    

    ## Alpha III Digital $0 \mathrm{nly} \mathbf{~} \mathrm{E} 9$ Multimeter <br> (excluding VAT)

    ## OS245A Oscilloscope

    Fault-finding, circuit testing or servicing - an oscilloscope is indispensable. It saves time, prevents costly mistakes, and enables you to tackle bigger, better projects.

    Now, Gould Advance offer you this professional-quality, dualtrace instrument, at a price which brings it within reach of the amateur enthusiast.

    Just look at these great Gould Advance features - then compare the OS245A for value!
    *DC-10MHz bandwidth
    *Dual trace

    * Clear controls, simple operation
    * Fully guaranteed for 2 years
    $* 5 \mathrm{mV} /$ div. sensitivity
    * Time-base speeds to
    $100 \mathrm{~ns} /$ div.
    *4" CRT with $8 \times 10$ div.


    ## Alpha III Digital Multimeter

    With a choice of 25 ranges and basic accuracy of $\pm 0.2 \%$, the Alpha III is a professional's multimeter, yet it is versatile enough to cover every amateur application.

    And although it is offered at such a modest price, it shares the advanced design features of the more expensive Gould Advance instruments - in particular, the purpose-built chip, incorporating all analogue and digital circuitry. $* 2,000$ scale length $(100 \mathrm{mV}$ resolution)
    *Tough, attractive moulded case
    *Bright red LED display *25 ranges
    *Fully guaranteed for 2 years

    Gould Instruments Division,
    Roebuck Road, Hainault, Essex IG6 3UE.
    Telephone: 01-500 1000 Telex: 263785
    Registered Number 263834 England.

    (excluding VAT)

    


    ## THE FUTURE

    WHERE do we go from here? The question is often put to us, sometimes by people who, one might feel, are in a far better position to provide a sensible answer than the staff of P.E.! Maybe they think we have a crystal ball, or that everyone on the frontiers of technology confides in us-alas not so.

    Unfortunately many of the individuals beating new paths have neither the time nor the interest in publicity or keeping others informed. It is also often true that the ideas they are developing do not have any obvious impact on the public at large.

    Well, where do we go from here? Our simple answer is to look at those items around us just crying out for some form of improved (electronic) control, or to look at the systems already developed which could stand expansion and improvement. Do not let the mind be restricted by restraints of the present technology; try to concentrate on how things could be improved.

    We once asked a high ranking official of Tek, the company that make Tektronic equipment, where he saw possible uses for the microprocessor in the home. He simply said "everywhere!" Digging a little further it became clear that, to him, applications were so obvious that they should really need no explanation. He continued his reply by going over basic movements
    during the day. Almost every operation could be computer controlled e.g. it is so much easier to get up if the bed is hard, your morning cuppa has been served, the lighting has been controlled to provide an artificial dawn and your shower is running-at the correct temperature of course.

    Other obvious development areas are in the video field where Viewdata is on the way and video discs should soon be making a real appearance into everyday life.

    ## PRINTING

    There are a number of mechanical systems that are being or have been updated and sometimes even totally replaced by electronics. The print you are reading in this magazine has, since P.E. was first produced in 1964, been set by a linotype machine: A wonder of mechanical engineering with coded type transport systems; a compositors keyboard with the sensitivity of a modern electric typewriter; a mechanical justification system to get the spaces in each line accurate and finally a bowl-full of hot metal to actually cast the line of type. Watching one of these machines in action has always been fascinating with their mass of levers and cams, travelling bits of type and the final production of an "upside down, inside out" line of cast words.
    The linotype machines producing P.E. will, within the next two months,
    be replaced by a photocomposition system and the words you read will never have "seen" hot metal or "type" of the soon-to-be-outdated kind. The factory atmosphere of the typesetting department will give way to the clean air, clean floor atmosphere of a computer room with copy being enteredvia a keyboard and eventually, maybe, via an optical reader straight off the typewritten page-into a v.d.u. for correction and then onto punched tape, to be later read and set by a photo-scanning system onto light sensitive paper.

    ## CHANGES

    So there is a pretty good example of "where do we go from here?" that has, or will have, improved the production of your magazine without any obvious changes as far as you are concerned.

    One or two changes will however soon be obvious within these pages. The use of colour from our next issue onwards may not improve P.E. technically but it should help with presentation of such things as multiple curve graphs and double sided printed circuit boards.

    So that is where we are going from here. We are not content to be the highest setting electronic hobbyist magazine in the U.K., we want to go on improving the quality and value of P.E.

    Mike Kenward

    ## FDRORTE <br> EDITOR

    Mike Kenward
    Gordon Godbold ASSISTANT EDITOR
    Mike Abbott TECHNICAL EDITOR
    Alan Turpin PRODUCTION EDITOR
    David Shortland TECHNICAL SUB EDITOR
    P. J. Mew Representative
    C. R. Brown CLASSIFIED MANAGER

    Jack Pountney ART EDITOR
    Keith Woodruff SENIOR ARTIST
    George Dilkes TECHNICAL ILLUSTRATOR
    Make Up and Copy Dept. Phone: 01-261 5000

    ## Editorial Offices.

    Westover House,
    West Quay Road, Poole.
    Dorset BH15 1JG
    Phone: Editorial Poole 71191

    ## ADVERTSEMENTS

    ADVERTISEMENT MANAGER
    D. W. B. Tilleard

    ## Subscriptions

    Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RHI6 3DH.

    ## Back Numbers and Binders

    Copies of our June 1977 and subsequent issues are available from: Post Sales Department, IPC Magazines Led., Lavington House, 25 Lavington Street, London SEI OPF, at 65p each including Inland/Overseas p \& p.
    Binders for PE are available from the same address at $£ 2.85$ each to UK addresses, 63.45 overseas, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

    Cheques and postal orders should be made payable to IPC Magazines Limited.

    ## Letters

    Queries regarding articles published in PE should be addressed to the Editor, at the Editorial Offices, and a stamped, addressed envelope enclosed. We cannot undertake to answer questions regarding other items, nor to answer technical queries over the telephone.

    #  

    THE increasing availability in the last two years of solid state delay line integrated circuits has led to a major leap forward in electronic musical instrument design. Applications for these devices are manifold and amongst the various growth areas the instrument manufacturers have been very quick to establish what has now become an accepted standard instrument to simulate the multi-string or chorus effect obtained within an orchestra and the term "String Ensemble" has become widely applied to the whole generation of keyboard instruments which have evolved.
    The String Ensemble has become standard equipment in many pop bands across a wide spectrum of musical styles, usually in combination with an electric/electronic piano and/or an electric organ, joining the monophonic or sometimes now a polyphonic programmable synthesiser to give tremendous variation in musical effect. The solo creations of Isao Tomito on multi-track recordings now cover numerous classical composers and utilise the String Ensemble effect to perfection in combination with other very sophisticated electronic synthesiser and recording techniques.

    Commercial instruments are readily available in the price range from $£ 350$ to $£ 550$ and this project offers the constructor a complete design for an instrument with a specification matching many of the commercial instruments at a cost in the region of $£ 135$. In addition to the value of the String Ensemble in its own right the project also offers an ideal introduction to modern electronic organ circuitry for the constructor with musical inclinations.

    ## SCOPE OF THE INSTRUMENT

    The prime object of the instrument is to simulate the multiple source situation present in the string section of an orchestra, but a number of playing features have been introduced into the String Ensemble which add to its enjoyment and have practical advantages during a performance.

    The split keyboard facility which operates on the bottom 16 notes commencing at $\mathrm{E}^{\mathrm{b}}$ below middle C (See Fig. 1.1) allows the musician to select a register in the left hand which is either below or above the general compass of the right hand. The effect thus obtained of a moving string section in the right hand passing through a chord in the left hand is impressive. An inverse situation is the use of a single bass note in the left hand against moving chords in the right hand. Many combinations of this sort are possible giving effectively two manual capability.

    A Pitch Transposition Control is available primarily for $B^{b}$ and $E^{b}$ instrumentalists who would like to use the Ensemble as a rest from playing saxophone or trumpet using their existing music pad, while the B transposition makes it easy to play with those determined guitarists who insist on playing everything in $E$ major. For the home entertainer the apparent increase in the musical capability can bring forth admiration.

    The alternative voices are not designed to achieve the same degree of simulation as the strings, but by using these voices in combination with the attack and sustain controls a wide range of sounds can be obtained from trumpet against strings, through piano accordion to the proverbial "Mighty Wurlitzer".

    Due to the non-percussive nature of the String Ensemble it is safe to use with a normal hi-fi system although some care should be exercised in the use of heavy bass at full volume! Use with an existing organ speaker system is an alternative solution.

    ## OVERALL SYSTEM

    The block diagram shown in Fig. 1.1 contains the complete system and illustrates the inter-relationship of the various sub-assemblies within the system.

    A single printed circuit board assembly contains regulated power supplies and a complete 96 pitch tone generator of which 85 pitches are used in the Ensemble. An oscillator running at approximately 2 MHz , controlled by the transposer switch and Fine Tuning potentiometer, feeds into a 12 note master tone generator integrated circuit. Each M.T.G. output is followed by a seven stage divider giving a total of 96 available different frequency square waves, including the top octave.

    Diode gating circuit boards are attached to the back of the keyboard with solder bands to anchor the contact wires which travel from the open circuit condition to a positive rail on depression of a key. The envelope available from the gates is controlled by attack and sustain sliders, and each keyer switches four octave related square waves, obtained from the tone generator, onto busbars at $16 \mathrm{ft}, 8 \mathrm{ft}, 4 \mathrm{ft}$ and 2 ft pitch. The gating boards are arranged such that the lower 16 notes are transferred separately from the upper 33 notes, each section having for "footage" busbars as described feeding into the voice circuitry.

    On the Voice Circuits Board the square waves are mixed and filtered to produce the required instrumental voices as controlled from the front panel. Balance, Expression Pedal and Master Level control are also connected to the Voice Board.
    

    Fig. 1.1. Block diagram of complete system

    The description to this stage follows one of the most popular methods employed in electronic organ design, and is easily adaptable to the conventional two manual type of instrument based on square wave tone generation. The circuitry used throughout is of cmos type and the result is a very economic and easily constructed system.

    ## CHORUS GENERATION

    The fundamental difference between the String Ensembie and a conventional electronic organ comes from the chorus generation technique coupled with suitable voice circuitry.

    Chorus generation will be covered in depth later in the series, but for readers not familiar with the term in this context, it can be deñned as the creation of an apparent multiplicity of sound sources from a single generator, each source producing on average the same note. Within a string section the score will dictate that a group of instruments play the same note but due to changing variations in the phase relationship of each sound the ear detects the fact that more than one instrument is playing.
    

    ## SPECIFICATION . . .

    ## MUSICAL COMPASS

    Four Octaves C to C-49 Notes
    Keyboard Split-16 Notes Lower Section/33
    Notes Upper Section
    Strings available at 16 ft and 8 ft
    Transposable Pitches C-B-B ${ }^{\text {b }}-\mathrm{E}^{\text {b }}$
    FREQUENCY COMPASS (Concert Pitch)
    Fundamental Range ( 16 ft ) 60 Hz to 1 kHz approx
    Fundamental Range ( 8 ft ) 120 Hz to 2 kHz approx
    Even Harmonic Generation up to 8.2 kHz
    Master Oscillator Frequency $\mathbf{2} \mathbf{M H z}$ approx

    ## NOMINAL OUTPUT LEVELS

    | High Level | IV |
    | :--- | :--- |
    | Low Level | 100 mV |

    ## MAINS INPUT

    240 Volts. 10 Watts
    SIZE AND WEIGHT
    Dimensions $33 \frac{1}{2}$ in $\times 12 \frac{3}{4}$ in $\times 5$ in
    Weight 2016 approx

    ## CONTROLS

    Power Indicator (1.e.d.)
    Transposition Switch
    Fine Tuning
    Upper Voice Sliders
    String I (16ft)
    String II (8ft)
    Woodwind (16t1)
    Brass ( 16 ft)
    Upper Level Balance
    Lower Voice Push Buttons
    Couple Strings.
    String I (16ft)
    String II (8it)
    String III (4ft)
    Master Level
    Expression Pedal
    Envelope Sliders
    Attack Rate
    Sustain Length

    ## REAR PANEL TERMINATIONS

    Mains Supply Socket and Switch
    Mains Fuse
    Pedal Socket
    High and Low Level Output Sockets

    ## COMPONENTS...

    ## POWER SUPPLY/TONE GENERATOR

    ## Resistors

    $\begin{array}{ll}\text { R1 } & 1.8 \mathrm{k} \Omega \\ \text { R2 } & 3.9 \mathrm{k} \Omega \\ \text { R3 } & 470 \Omega \\ \text { R4 } & 1.5 \mathrm{k} \Omega\end{array}$
    All $\frac{1}{4}$ W 5\% carbon

    ## Capacitors

    C1-C2 $1000 \mu \mathrm{~F}$ elect. 25 V (2 off)
    C3-C4 $\quad 10 \mu \mathrm{~F}$ ceramic ( 2 off)
    C5 $\quad 4.7 \mu$ F elect. 16 V

    ## Potentiometers

    VR1-VR4 $1 \mathrm{k} \Omega$ presets ( 100 mW sub miniature)
    VR5 $500 \Omega$ linear

    ## Semiconductors

    D1-D9 1N4002
    D10-D12 1N4148
    D13 TIL209
    IC1 LM341-15 + ve regulator
    IC2 LM320-15 - ve regulator
    IC3 4069
    IC4 AY-1-0212
    IC5-6 4069 (2 off)
    IC7-18 4024 (12 off)

    ## Miscellaneous

    FS1 315mA slow blow fuse and holder. S1 Mains on-off switch. S2 4 -way rotary switch. T1 Mains transformer with two secondaries each 15 V 10 VA . SK1 Mains input socket. 15 off 14 lead d.i.l. sockets. 1 off 16 lead d.i.l. socket. 114 off terminal pins. 1 printed circuit board.

    The changing phase difference is caused by many factors associated with physical variations in the instruments, for example string tension, mass and length, body resonance and bridge design, bow characteristics, in addition to the effects introduced by the instrumentalist through bowing technique and small changes from absolute pitch. The controlled addition of vibrato introduces a further major variation in phase relationships, which are very noticeable, particularly when it is realised that the ear is extremely sensitive to small changes in phase relationships between two sound waves.

    In the String Ensemble the effective length of electronic delay lives are controlled in a continually changing manner such that the phase relationship between similarly pitched notes coming out of the lives is continuously changing thus simulating a multiple source.

    ## ENSEMBLE LAYOUT

    All the circuitry of the string ensemble is laid out on printed circuit boards which are mounted either on the underside of the keyboard or flat on the chipboard base panel. The simplicity of the concept can be seen in the photograph. Three p.c.b.s contain all the diode gating circuits and contact wires which are pressed onto the keyswitch rest when a note is played. The transformer, P.S.U. Tone Generator, Chorus and Voice p.c.b.s are mounted on the base. An earthed screen covers the chorus and voice circuitry to prevent pick-up from the tone generator harness. All controls are fixed to a front panel and input/output sockets are mounted within apertures in the rear panel.

    ## BUILDING SEQUENCE

    The cabinet has been designed to give a convenient construction sequence for the whole project. The base panel of the cabinet is cut to $32 \mathrm{in} \times 11$ in $\times \frac{1}{2}$ in chipboard
    

    Fig. 1.2. Circuit of power supply
    and used as the test bed throughout the project. Veneered sections of the cabinet may be assembled towards the end of the sequence to avoid damage to the surfaces.

    The first sub-assembly described is the P.S.U./Tone Generator consisting of the transformer and one printed circuit board. These units can be fixed to the base panel, interwired and tested. The keyboard is then mounted onto the base panel from a timber key-bar supporting the rear of the keyboard via hinges. The Diode Gating p.c.b.s will be described, followed' by the method of fixing to the keyboard and setting up the keyswitch action. After interwiring of the diode gate inputs to the tone generator, square wave tests may be carried out from the keyer output busbars. The Chorus printed circuit board will be described and may be initially tested using the square waves available at that stage. Finally, the Voice p.c.b. is constructed, and after interwiring to the front panel controls, and construction of rear ad side panels, the instrument is complete.

    ## POWER SUPPLY

    The circuit of the power supply is shown in Fig. 1.2, and consists of a transformer with two 15 volt secondary windings, followed by two bridge rectifiers, which give an efficient running condition for the transformer, producing unregulated supplies of approximately plus and minus 20 volts. The positive rail provides the supply to the keyswitch busbar via the attack potentiometer, whilst the negative rail supplies the l.e.d. front panel power indicator (D13) via R1.

    After capacitive smoothing integrated circuit voltage regulators produce plus and minus 15 volts which are used to supply the Voice and Chorus boards. Diodes D9-D12 reduce the supply levels to conform with the requirements of the AY-1-0212 master tone generator, taking into account the tolerance spread which can be obtained from
    the 15 volt regulators and the voltage supply envelope given in the AY-1-0212 data sheet. In the prototype instrument +14.8 and -15.0 volts were obtained from the regulators giving +14.0 volts and -12.5 volts at the AY-1-0212. This is equivalent of the General Instruments Mioroelectronics data sheet definition of $\mathrm{V}_{\mathrm{DD}}=-14$ volts and $\mathrm{V}_{\mathrm{GG}}=26.5$ volts which is the best condition for use at its highest operating frequency as required in the String Ensemble.

    The integrated circuit dividers are also supplied from the voltage derived after D9 and were operating at 14.0 volts in the prototype. Whilst the mains current taken by the power supply is only 40 mA , the surge at switch-on created by the inductance in the transformer can be many times greater and it is therefore recommended that a slow blow fuse be used; the 315 mA version being a convenient standard type which gives ample protection to the instrument.

    ## TONE GENERATOR SYSTEM

    Frequency generation is centred on the use of the G.I. integrated circuit type AY-1-0212. The remainder of the tone generation circuitry ' is entirely dependent on cmos integrated logic circuits producing a system which is very economic, easy to construct and reliable in operation.

    A single integrated circuit is used to produce the starting frequency of approximately 2 MHz . Many application notes produced by cmos manufacturers give the simple oscillator shown in Fig. 1.3 which consists of two inverting gates, which in themselves are high gain amplifiers.

    Gates connected this way are inherently unstable such that if one considers the input to Inverter 1 to be low, its output and hence the input to Inverter 2 to be high, and the output to Inverter 2 to be low, then capacitor $C$ will charge through resistor $R$ until the voltage at point (A) rises sufficiently to change the state of Inverter 1 such
    

    Internal layout of String Ensemble
    that its output becomes low. Inverter 2 then also changes its state to become high at the output. The low state of the output of Inverter 1 then provides a low impedance to ground for $\mathbf{C}$ to discharge through $\mathbf{R}$ thus reversing the cycle.

    The cmos oscillator shown in Fig. 1.4 has considerable advantages over that previously described, the first of which is that it must oscillate. Some polyphonic instruments have been manufactured which when switched on do not always operate due to the fact that the oscillator does not start. Usually this can be cured by switching off and on again quickly but it can be disconcerting to the non-electronically minded musician.
    

    Fig. 1.3. Two inverter CMOS oscillator
    

    Fig. 1.4. Multi-inverter CMOS oscillator

    In Fig. 1.4 the first inverter comprises three gates, and it is a fact that any odd number of gates connected from the final output back to the input will oscillate at a frequency determined by the total delay through the chain obtained by running the propagation delay time of each gate. The three gate circuit in the String Ensemble has a natural oscillating frequency of approximately $10 \mathrm{M} \cdot \mathrm{Hz}$.

    Inverter 2 consists of one gate and, by the process described for the simple oscillator, the C and R now slow down and determine the frequency of oscillation.

    Two extra gates (inverters) finally shape the driving signal to a good square wave swinging over the full power supply range and not degrading as the frequency is changed.

    ## MASTER TONE GENERATOR

    The very clean driving wave form produced by the last two gates in the multi-inverter oscillator allow the AY-1-0212 to be used reliably over its full operating frequency range, and although the G.I.M. specification gives a $1.5 \mathrm{M} \cdot \mathrm{Hz}$ maximum for the standard device; out of twenty or so samples tried all worked in excess of 2 MHz , many over 3.5 MHz .
    The slightly more expensive AY-1-02:12A is guaranteed to work up to 2.5 MHz and this could be used instead of the standard device.

    Since its initial introduction the specifications associated with the AY-1-0212 have varied, particularly in respect of operating voltage. As described earlier the power supply has been designed to meet the latest recommendations, particularly for high frequency operation, but it should be noted that circuit descriptions in the String Ensemble adopt the convention of $\mathrm{V}_{\mathrm{DI}}=$ Ground, $\mathrm{V}_{\mathrm{SS}}$ is positive, and $V_{G G}$ is negative for the $A Y-1-0212$.

    ## TONE GENERATOR CIRCUIT

    The complete Tone Generator circuit is shown in Fig. 1.5 and is capable of producing 96 tones of which 85 are used.
    A single 4069 cmos integrated circuit, IC3, provides the
    

    Fig. 1.5. Circuit of $\mathbf{9 6}$ Tone Generator
    six inverters required for the oscillator, the frequency determining network consisting of $\mathrm{C8}$ and the resistive combination of R3 in series with VR5 and VR1, VR2, VR3 or R4 plus VR4.
    The alternative resistor combinations are switched by $\mathbf{S 2}$.
    Following IC4, two hex inverters, IC5 and IC6, are used as buffers to ensure reliable operation of the 4024 seven stage dividers.

    Twelve dividers are required, one for each semitone produced by the master tone generator.

    The mains input socket, fuse holder and switch feeding the P.S.U./Tone Generator p.c.b. are mounted on a subpanel at the rear of the cabinet, details of which will be given later.

    The transformer T1 is mounted on the base panel which it is suggested is used for all construction work as the project proceeds.

    All other power supply and tone generator components are mounted on a single printed circuit board, the etching and drilling details of which are given in Fig. 1.6 with the component assembly details in Fig. 1.7.

    To assemble the board the terminal pins should be fitted, followed by resistors, diodes, i.c. sockets, preset potentiometers, small capacitors and finally the large capacitors C1 and C2 and the voltage regulators IC1 and IC2. Sockets have been recommended for all dual in line integrated circuits on this board, partly due to the relative cost of the i.c.s and for easy fault tracing, and also to minimise handling of the i.c.s.

    ## HANDLING PRECAUTIONS

    The AY-1-024. and cmos integrated circuits are susceptible to damage by static electricity. All contain internal protection networks designed in by the manufacturers, and after handling considerable quantities of cmos the author is convinced that he has never damaged a device through static even though handing of the devices has been careless. Nevertheless it is wise to take the precaution of minimising device handling, and carry out the advice of touching an earthed lead before proceeding to insert the integrated circuits into their sockets. Damage will occur if the devices are reversed.
    
    

    Fig. 1.6. Printed circuit layout of P.S.U./Tone Generator p.c.b.
    
    

    Fig. 1.7. Component layout of P.S.U./Tone Generator p.c.b.
    

    Fig. 1.8. Mounting of P.S.U./Tone Generator components

    The danger of incorrect insertion could arise on the voltage regulators IC1 and IC2. A clearly identified p.c.b. is recommended to avoid this, but for those constructors who may not be using p.c.b.s your attention is drawn to Fig. 3 and to the point that ICl and IC2 pin connections are different.

    ## INTERWIRING AND TESTING

    Wiring at this stage is limited to connecting the T I secondaries to the printed circuit board AC input pins as shown in Fig. 1.8. The sketch also shows how the base panel can be prepared by fitting the key bar, and after mounting T1 and the P.S.U./Tone Generator printed circuit board a sub-assembly test can be performed.

    To simulate the Transposer and Tuning controls a test resistor of 270 ohms should be soldered between the pins marked " $B^{b}$ " and "Tune". On connecting the mains, signals should be present at all the output pins grouped around each of the twelve 4024 integrated circuits, and the frequency should be variable by adjusting VR3.

    To check the operation the probe network shown in Fig. 1.8 could be used which reduces the signal to approximately 300 mV to feed a test amplifier. It is important to note that the 47 kilohm resistor is necessary in order not to overload the dividers. The 14 volt peak-to-peak voltage available from these is far too high for the average amplifier without the 3.3 kilohm attenuation resistor shown.

    This test should be carried out very carefully since shorting the output pins to each other or ground could cause damage to the divider integrated oircuits.

    Next Month: Keyboard, keyswitch and diode gating assemblies.

    # m <br> $?$ R 1 EI PLACE 

    lock the door. After $1 \frac{1}{2}$ mins it will automatically turn off the light, having allowed sufficient time for the driver to get out of the car and leave the garage.
    The radio control works on the longwave frequency and is not subjected to interference from other electrical equipment; nor does it impair radio or television in the area.
    The compact transmitter unit runs on a 9 V battery and has a transmitting range of 40 feet. Each radio controlled unit is individually coded to ensure that only the transmitter with the corresponding code can set the motor in motion. Any number of additional transmitters with the same frequency can be purchased as an optional extra.
    The system includes a push button switch that can be placed within the home, garage or suitable outbuilding to enable operation of the system without the use of the transmitter. In situations where there is no secondary entry into the garage an outside key release is available, allowing the garage door to be opened manually from the outside in the event of a power failure.
    If the door is obstructed during the closing cycle, the motor automatically reverses and the door returns to the fully open position. If an obstruction occurs within 50 mm of the ground-or in the fully closed position-the clutch falls into neutral stopping the door until the closing cycle is completed and the motor shuts off.

    The system is available in two sizes, deluxe and standard, depending on the size of the door to be lifted, the deluxe model also has a built-in light. The cost ranges from $£ 150$ to $£ 250$ depending on the type of unit required. As a licence is required before operating the appliance the Haos Company obtain the first licence on behalf of the purchaser.

    For further information contact The Haos Company Limited, Built in Centre, 32 Letchworth Drive, Bromley, Kent.
    

    Radio controlled garage door operator from the Haos Company

    ## CABLE STRIPPER

    The new AB MK 02 cable stripper which has been developed by A.B. Engineering Co. is a very useful tool, as it has an additional facility which allows electrical power cable insulation to be slit longitudinally.

    It is suitable for all sizes of .round cable from 4.5 mm to 28.5 mm dia and it has an adjustable cutting blade which can be set by turning the knurled screw to match the precise thickness of the insulation to be stripped.
    The cable is retained by a spring loaded gripping clamp, rotation of the tool around the cable cuts cleanly through the insulation. The cutting blade is then turned through 90 degrees by depressing a knob on the side of the tool, this allows the insulation to be cut along the length of the cable and simply peeled away from the core.

    Further details of the range of cable strippers may be obtained from A.B. Engineering Co, Apem Works, St Albans Road, Watford, WD2 4AN.

    ## DECADE RESISTANCE UNIT

    A very useful 7 decade resistance unit covering the range 1 ohm to 11 Megohms in 1 ohm increments has just been produced by Electronic Services \& Products.

    It is called the R-Decade 111 and the unit, which fits into one hand, could solve the frustrating problem of being unable to find the right value resistor.
    A third terminal allows the unit to be used as an accurate potential divider or as an attenuator, variable from 0 to 140 dB .
    The R-Decade 111 employs 0.5 W I per cent high stability metal film resistors and uses a b.c.d. switching technique.
    Further details can be obtained from E.S.P. Unit 2, Middle March, Long March Industrial Estate, Daventry, Northants.
    

    Decade resistance unit from E.S.P.
    

    WITH the construction of CHAMP and its keyboard behind us, and with a 4702A containing the CHOMP program plugged into the Chip Zero socket, we can now move on and put the system to work for its living.

    This month we will be covering the operation of the system, and showing how it can be used for the development of software and hardware, which can later be used in a separate "SON OF CHAMP" dedicated system, or be used as an extension of CHAMP itself.

    ## LOADING A PROGRAM

    When CHAMP is turned on, with the keyboard connected, a display of 000200 should appear. The 200 tells us that the CHOMP address counter points to the first available ram location, Chip 2 Location 00, and that program loading can now begin. Program instructions or data are entered one byte at a time, by pressing the two appropriate hexadecimal keys in succession. As each key is pressed the digits appear in the proper position on the left of the display, replacing the zeros which existed to start with. If an error is made on entry, the incorrect digits can be replaced with zeros or overwritten simply by pressing extra keys until the display is satisfactory.

    If all is well, pressing the enter data key will enter the single byte into ram location 200 and the CHOMP counter will be incremented to show 201, the next location in sequence. A complete program can be entered in this step by step fashion quite rapidly, each pair of hexadecimal digits being entered into the next available location by means of the enter data key.

    If you wish to enter subroutines or data tables starting at some address other than 200 H , the ENTER ADDRESS key can be used to reset the CHOMP address counter. A CHAMP address is twelve bits long, and so three
    hexadecimal keys are pressed before using the ENTER address key. Any address in the range 200 H to 3 FFH can be entered in this way, in preparation for program entry, and in fact any address from 000 H to 3 FFH can be entered ready for an examination of its contents using the dump key. This means that a PROM based user program in the Chip One socket, or even CHOMP itself, can be examined if required.

    Operation of the DUMP key will display on the two lefthand digits the hexadecimal content of the memory location indicated by the three right-hand display digits. Note that it displays the byte whose address was indicated before depression of the DUMP key, and that DUMP, like ENTER DATA, automatically increments the CHOMP address counter so that whole programs can be quickly examined by rapid operation of this key.

    After using the dump key once, the two left-hand digits display the byte resident at the next lowest address to that indicated on the three right-hand digits.

    ## RUNNING A PROGRAM

    When a program has been entered and is considered satisfactory, it may be allowed to run by changing the MODE switch to RUN MODE. Operation of this switch causes CHOMP to carry out a JUN to location 200 H where the first instruction of any user program should be situated.

    CHOMP assumes that every program starts at 200 H and this may be inconvenient, particularly if a number of small programs are co-resident in the CHAMP RAM area. To ensure that entering RUN MODE starts the required program, regardless of its position in memory, a JUN can be entered into locations 200 H and 201 H . To leave this option open it is best to begin any program which
    starts at 200 H with a couple of NOP instructions, thereby leaving room for the JUN should it ever be required.

    Once a user program has been started, CHOMP takes no further part in the proceedings until program mode is re-selected and the RESET key is depressed. User programs can of course use any of the CHOMP subroutines such as DDRV or CLRF, without prejudice.

    ## PROGRAM DE-BUGGING

    When a program is tried out for the first time, it is normal for it to contain "bugs" which prevent it from operating correctly. To help in the de-bugging process CHAMP can be set to sTOP and instructions carried out one at a time using the SINGLE SHOT key. For simple programs which control lamps or relays, for example, the use of the single shot can quickly point to the problem area, but for more complicated programs which contain several JCN, JMS, or JUN instructions, the SINGle Shot capability alone is not enough.

    In these circumstances it is an advantage to have a knowledge of the 4040 data bus contents, or the 4289 data and address bus contents so that the operation of the program can be closely studied, and the changes after each instruction execution, monitored.

    Monitoring the data and address buses cannot be achieved with software of course, and requires the use
    of a hardware device normally called a "Bus Analyser" which samples the buses at an appropriate moment and latches their content for display on l.e.d.s or lamps.

    A very simple bus analyser which we have called "BUS BOX" has been designed for use with OHAMP, and the circuit for this unit is shown in Fig. 7.1. The "BUS BOX' can be plugged into sockets 2,4 or 6 on CHAMP to observe the 4040 main data bus, the program memory data bus, or the program memory demultiplexed address bus, respectively. BUS BOX will display up to eight bits in binary form, although a hexadecimal format could easily be achieved with the use of appropriate decoders and seven bar displays if required.

    The principle of operation is quite simple: The 4040 SYNC pulse is used to start a variable delay formed by a 74121 monostable circuit. When the delay expires, a second 74121 monostable generates a strobe pulse to load up to eight bits from the CHAMP buses into 7475 quad latches whose $\overline{\mathrm{Q}}$ outputs drive l.e.d. lamps. When the BUS BOX is connected to the four bit 4040 bus (SK2) any of the eight time periods from A1 to X3 (see 4040 manual, Fig. 1-2) can be monitored and the bus contents displayed on four of the eight l.e.d.s. By this means all twelve bits of the current address, eight bits of the fetched instruction, four bits of the current accumulator value, and the eight bit SRC address can all be monitored in sequence by selecting an appropriate delay with the first 74121 monostable.
     CHAMP

    Notice that the data on the 4040 bus is inverted by TR2 to TR5 on the CHAMP main board so that the required positive logic $1=$ l.e.d. $O N$ is realised. Being able to monitor the main data bus is very useful when sorting out elusive bugs, but looking at the data four bits at a time can be tedious if all you need to do is to follow the address flow of a program, or to monitor each instruction byte as it is fetched. To simplify this task the BUS BOX can also be connected directly to the 4289 data and address buses (SK4, SK6) where all eight l.e.d.s are used simultaneously, and in this case the delay is set so that it monitors the M2 bus time slot when both address and data information are available on their respective buses.

    ## SIMPLE

    The Bus Box circuit presented here is of the most basic type possible, and suffers from several disadvantages as a result. This was a deliberate policy so that construction costs could be kept to an absolute minimum; but anyone who feels that the rather crude method of time slot selection (which really requires an oscilloscope for initial set-up) or the primitive binary display, are not good enough can of course design something better. A counter, reset by the SYNC pulse can be used with a decoder for time slot selection, and combined hexadecimal latch, decoder, display chips can be used to present bus content.

    All kinds of other embellishments can be added to produce a very powerful de-bugging tool, but if low cost is high on your list of priorities the Bus Box makes a good starting point.

    ## WRITING PROGRAMS FOR CHAMP

    Program writing for a simple four-bit chip like the 4040 can be carried out quite successfully at the machine code level, and there is no need for an extensive knowledge of computer science or of any high level languages such as Fortran. If you are already knowledgeable about such things, the simplicity of the 4040 might strike you as a disadvantage, but if you are basically a "hardware person" you will soon feel at home thanks to an intimate contact with the registers, gates and flip-flops which you will control via your programs. The creation of programs is of course a skill which must be learned gradually, by trial and error really, and the most important tip that we can give is to start with something simple, so that the almost inevitable "bugs" can easily be unravelled.

    To start you on your way we have put together a simple program which involves both hardware and software design, and which serves as a useful springboard for a greater range of more sophisticated projects. As we describe the creation of this program we will introduce a number of useful programming tips and aids.

    ## SAMPLE PROGRAM

    The program we have written is called "TONE", and its sole purpose is to generate an audio tone of about 1 kHz in an external speaker whenever the CHAMP TEST button is depressed.

    The first step in program writing is of course the flow chart, and Fig. 7.2 illustrates this first stage in the design of TONE.

    Box 1 indicates that we want to do nothing but idle while waiting for TEST to be pressed, and here we have a simple wait loop which will use the JCN conditional branch instruction to monitor the state of the TEST input.

    Box 2 is entered when teST is pressed and here we want to generate a delay of about one millisecond to set the frequency of the generated tone. The best way to generate delays of this sort is to set up a counter chain using ISZ instructions with 4040 registers acting as the counters; it also seems reasonable (though not essential) to make this a separate subroutine. After the delay, we can activate the output pulse which will drive the speaker, and one of the 4265 output lines which is subject to the bit set/reset command, WRM, seems a good choice to receive this output signal.
    

    Fig. 7.2. Flow chart for the TONE program
    In this simple program we are not after a $1: 1$ mark space ratio for the tone signal and so we can set the output pulse width by means of a very simple delay formed from NOP instructions (Box 4) before turning the pulse off again (Box 5). Having generated a single pulse we must of course loop back to see whether test is still depressed, and we can achieve this by means of a JUN.

    Note that after drawing the basic boxes and lines required, we have added notes on the way we may want to code the program when we eventually reach that stage.

    ## HARDWARE

    During the flow-charting stage, port $\mathrm{Z3}$ was proposed as a suitable interface to the external hardware, in this case, the speaker. A glance at the 4265 data sheet (page 5-41, 4040 Handbook) shows that any of the $Z$ outputs can sink 1.6 mA in the low state, whereas their high
    

    Fig. 7.3. Hardware required by TONE program. The breadboard mounted on the CHAMP facia is provided for such supporting hardware.
    

    Fig. 7.4. TONE program instructions laid out on a standard program sheet
    state sourcing ability is probably poor. This fact suggests the use of a p.n.p transistor stage to drive the speaker, and so the final hardware circuit is as shown in Fig. 7.3. Notice that these few external components can be assembled on the breadboard socket, and that the SK7-SK8 jumper is removed to gain access to $\mathrm{Z3}$ on pin 16.

    ## CODING THE PROGRAM

    With the flow-charting and hardware design out of the way it is now possible to turn the program outline into a set of ready-to-load 4040 instructions, and our attempt at this is shown in Fig. 7.4. To make life a little easier we have designed our own 4040 program sheets which we duplicate and make up into, pads, each sheet having room for 32 separate instructions. If you can get sheets like this duplicated then it is a good idea to copy our design, although an exercise book with a few lines ruled on it would serve just as well.
    Each line on the sheet corresponds to a single address in program memory, hexadecimal address information being entered in the first two columns as required. The second two columns are for entry of hexadecimal instruction codes (and the binary equivalent if required) but these columns are filled out last of all. Column 5 is used to hold any address label or name that may be applied to any particular location, and columns 6 and 7 are used to write out the mnemonic form of the instructions as the program is developed.

    Column 8 allows the insertion of plain-English comments to explain the action of the program: a necessary 'addition as you will soon appreciate when trying to unravel programs which you may have written some weeks previously, without useful comments!

    The first address of TONE is 200 H , the start of program ram, and the first four lines of the program represent Box 1 of the flow chart. The two NOPs are not essential but we inserted them to allow a JUN to be entered when running programs elsewhere in the ram address range, as discussed earlier.

    ## SUBROUTINE

    The one millisecond delay is coded as a subroutine which we have called ONEK. The actual location of the subroutine is unimportant but we chose address 218 H , to allow some room between it and the end of the main TONE program, in case TONE "grew" after de-bugging. Reference to page $2-18$ of the 4040 manual shows that a one millisecond delay can be achieved with two four bit counters, given the standard $5 \cdot 185 \mathrm{MHZ}$ clock frequency normal with 4040 systems, including CHAMP.

    Since the total period of the pulse stream is determined not only by ONEK but also the time the pulse is ON and the time taken to execute other instructions in the loop, a value of 821 microseconds is actually used, and the "fine tuning" of this delay is achieved by loading the two
    count registers with hexadecimal data before counting begins. This register, preset to DDH, is performed by means of the FIM instruction at the start of ONEK.

    After the JMS ONEK instruction in the main program, comes another FIM which loads register-pair 8 with the SRC address value of the 4265 (actually 80 H ). This is then sent out by the SRC 9 in line 208 H to select the 4265 ready for output.

    The pulse is turned on by setting $\mathbf{Z 3}$ to the low output state using LDME WRM, a sequence which can be best understood by reference to page $5-39$ of the 4040 manual. After the 54 microsecond delay produced by the five NOPs, LDMF, WRM is used to return Z3 to its high state, followed by a JUN back to TONE. When all the mnemonics and comments had been entered, we coded the program by looking up the hexadecimal equivalents in the manual and entered these along with hexadecimal addresses (in place of the labels) into column 3 of the program sheet.

    ## REGISTER MAP

    The subroutine ONEK required Index registers for use - as counters, and the main program used an Index register pair as a source for SRC addresses, but you may be wondering just why we used the registers that we did use.

    TONE is a very simple program which uses only two register pairs out of the total of twelve available, and so we could have used any of the Index registers with equal success. When writing larger programs this is often not the case: CHOMP and PROMPT use every available
    

    Fig. 7.5. Index register map. A standard sheet such as the one shown would serve as a method of recording the deployment of each register, and this one has been entered up for TONE
    

    Fig. 7.6. Possible "Son of CHAMP" layout for a 4040 or 4004 based system for dedicated application. The 16 -way socket is for bus analyser testing and a manual control unit. The 4002s and 4702As should be socket mounted so that only the required chips are used
    COMPONENTS . .
    BUS BOX
    Resistors
    8 off 330 S ..... R1-R8
    2 off 1 ks ..... R9, R11
    1 off 470s ..... R12
    1 off $10 \mathrm{k} \Omega$ ..... R10
    All $\frac{1}{4}$ W 5\% carbon
    Potentiometers
    8 off $10 \mathrm{k} \Omega$ presets VR1-VR8
    Capacitors
    1 off $0.01 \mu \mathrm{~F}$ ..... C1
    1 off $10 \mu \mathrm{~F}$ elect ..... C2
    1 off 1000 pF ..... C3
    1 of 100 pF ..... C4
    Semiconductors
    8 off discrete l.e.d.s, orone bar l.e.d. array D1-D81 off 1N4148 D9
    1 off BC108 ..... TR1
    Integrated circuits
    2 off 74121 IC1, IC22 off 74LS75 IC3, IC4
    Miscellaneous
    1 off 16 -way d.i.l. socket ..... SK1
    1 off single pole 8 -way rotary switch ..... S1Stripboard, cabinet e.t.c.
    register for example, and use some of them for several different jobs. This means that keeping track of Index register usage is very important. To help with this aspect of programming we have put together another duplicated sheet which we call an Index Register Map, and Fig. 7.5 shows how this looks for TONE.

    Of course TONE is a very simple program and not much use as it stands, but we feel that its basic principles can be incorporated in such projects as Stylophone type instruments, musical doorbells and a host of others.

    ## CHAMP PROGRAMMING SERVICE

    Readers who have no PROM programming facilities may have their own 4702A or 1702A PROM programmed by post with the following:

    (a) CHOMP

    £5.35

    (b) Reader's own software
    £10.35
    (c) Reader's own software re-programmed with up to 16 corrections to original program
    £3.35
    All prices include postage and packing.
    Programs, or corrections to programs, must be supplied as a clear list of two-digit hexadecimal code with hex' address information alongside. Also, PROMS should be sent well packed, and protected with conductive foam.

    CHOMP software will be tested on a CHAMP system, otherwise programs are committed to PROM at reader's own risk.
    This service is provided by, and payment should be made to:

    ## C. C. CONSULTANTS,

    Dept P.E., 3 Gainsborough Drive, Worle, Weston-super-Mare, Avon.
    Do not send PROMS to P.E.

    ## DEDICATED SYSTEM

    After developing hardware and software for, say, a musical doorbell, you will need to produce a small dedicated hardware system into which you can plug the PROMs programmed by CHAMP-PROG.

    Figure 7.6 shows a possible layout for a small 4040 or 4004 based system which could be put to a multitude of different uses, and which would fit onto a six inch square circuit board.

    ## NEXT MONTH: CHAMP-PROG.

    ## NEWS BRIEFS

    ## SOUND 78 INTERNATIONAL

    This exhibition has been organised by the Association of Sound and Communications Engineers (formerly the Association of Public Address Engineers), and is to be held at the Cunard International Hotel, Shortlands (near Hammersmith flyover), London W6.

    The Sound 78 International Exhibition will be held over the period from March 14-16 inclusive, and on display will be some of the most sophisticated and up to date sound and communications equipment in the world. It will be possibie to view amplifiers, microphones, automatic announcement equipment, alarm systems, background music systems, sports event timing equipment, loudspeakers, hotel and hospital communication systems, discotheque equipment, intercoms and paging equipment, mixers, studio recording and audio visual equipment.

    There will allso be experts present who can discuss the design, installation and function of most of the equipment on display.

    The exhibition is to be open each day from 10.00 to 18.00 ( 17.00 on the last day), and admission will be absolutely free to anyone having a professional or business interest.

    # Noweven better, even more powerfull The unique wrist calculatoto 

    ## AVAILABLE ONIY AS A KIT.

    ## Assembling the Science of Cambridge wrist calculator.

    The wrist calculator comes as finished components, ready for assembly. All you need is two or three hours, and a finetip soldering iron

    If anything goes wrong, we'll replace damaged components free. We want you to enjoy building the kit, and to end up with a valuable, useful, powerful calculator.

    ## Contents.

    Acrvlic/ABS case and display window parts. Two-part stitched strap and spring bar clips. PCB. Special directdrive chip (no interface chip required). Display. Keyboard components. Batteries.

    Each of the 34 components is contained in a plastic box; and neatly shrink-wrapped, accompanied by full instructions for assembling and using the calculator. All components are fully guaranteed. common-sense portable calculating power. Goes where you go, ready for action at a flick of your wrist.

    By virtue of its size, a wrist calculator is different to a pocket calculator. And now this wristmachine has another difference. It has even more power than some much larger pocket calculators!

    And what's more, because it's a kit, supplied to you direct from the manufacturer, it costs just $\mathcal{L} 9.95$ (plus $8 \% \mathrm{VAT}^{\circ}, \mathrm{P} \& \mathrm{P}$ ). And for that you get a calculator with extra power, and all the satisfaction of building it yourself!

    ## Put real calculating power up your sleeve.

    The Science of Cambridge wrist calculator gives you the full range of arithmetic functions $(+,-,-, \times,=)$. It uses ordinary algebraic logic, which means you enter calculations as you would write them. It has a $\%$ key, the convenience functions, $\sqrt{x}, 1 / x, x^{2}$ and a full 5 -function memory.

    And incredibly, it has a clear-last-entry key, pi, brackets, and $-/+$. It even has an automatic linear metric conversion function!

    Very few ordinary calculators have the same functions for the same sort of money.

    ## Now 10 keys can do the work of 32.

    All those functions, from just 10 keys? In such a small calculator? The secret lies in the special four-level keyboard. Each level has a different set of functions. Simple two-way switching system allows you to select any keyboard level quickly and easily. Each set of functions is carefully grouped, to let you whisk through calculations with the minimum of switching.

    And the answers come up bright and clear, too. The display uses 8 full-size red LED digits. It has wide-angle magnification, and is easily visible under any light conditions.

    ## More battery power, too!

    With the Science of Cambridge wrist-calculator, you'll get up to 30 hours use between battery changes (that's a lot of calculating!).

    The wrist calculator kit is available only direct from Science of Cambridge.If, for any

    ## KIT ONLY $\mathbf{8} 0.95$ <br> Plus VAT, P\&P

    reason, you're not completely satisfied with your wrist calculator, return it to us within 10 days for a full cash refund. Send the coupon today!
    ## Science of Cambridge Ltd.

    6 Kings Parade, Cambridge, Cambs. CB2 ISN.

    

    ## ANNOUNCING THE $m / 1 / c / R / o / s$

    JOIN THE MICRO REVOLUTION!
    £550 for a Z80 based microcomputer, built and tested
    

    * Includes CPU, ROM, RAM, TV and Audio cassette interface, UHF modulator, ASCII keyboard, power supplies and cabinet.
    * Connect to domestic TV or video monitor to complete the system.
    * $\quad 48 \times 16$ character video matrix
    * Hard copy on teletype
    * Also available in kit form $£ 470$, or 5 kitpacks at $£ 95$ each
    * Designed for educational establishments, personal computing and small business users
    * Load and dump programmes on unmodified cassette recorder
    * $\quad 57$ key contactless ASCII keyboard
    * British designed and built
    * Credit terms available

    THE MICRONICS COMPANY
    PART OF THE MICRO REVOLUTION
    1, STATION ROAD TWICKENHAM
    MIDDLESEX
    
    

    ## Clef Products

    P.E.JOANNA \&
    'STRING ENSEMBLE'

    Send S.A.E. for details of Kits \& P.C.B.s Please indicate which instrument required.

    16 Mayfield Road, Bramhall, Cheshire SK7 1JU

    ## For Semi-Conductors

    including
    Small Signal Transistors
    Power Semi-conductors
    TTL, CMOS, I.C.s
    Linear I.C.s
    Signal and Power Diodes
    Zener Diodes
    Magneto Resistors
    Hall-effect devices
    Magnetic Proximity Switches
    Opto-electronic devices
    Cata
    EEEGROLALUE
    TO MAKE THE BEST OF

    ## For passive components

    including
    Plastic Film Capacitors
    Electrolytics
    Semi-precision capacitors
    Transformers
    Pot Cores
    R. M. Cores

    Ring Cores, etc.
    Gata
    ELEGTROVALUE
    THE PROJECTS YOU BUILD

    ## For Service \& Quality

    It's the Electrovalue Catalogue No. 8 (4th edition black and white cover) with completely up-dated prices. 144 pages, well illustrated. 40p post free with 40p voucher usable on orders for 55 or more. Send for yours now and order in confidence.
    GOODS SENT POST FREE IN U.K. FOR C.W.O. ORDERS $£ 5.00$ or more. If under, add 25 p handling charge. Keenly competitive prices plus ATTRACTIVE DISCOUNTS and only best quality goods.

    ## ELEGTROMALDE LTD

    (Dept. PE28) 28 Si. Jude's Road, Englefield Green, Egham, Surrey TW20 0HB. Tel. Egham 3603. Telex 264475. North: 680 Burnage Lane, Burnage, Manchester Tel. (061) 4324945
    

    ## marstalis

    TO P.E. RE ${ }^{18}$ catalogue, which This new spring ther constructort ${ }^{3}$ ses and will cost other cor inems, price contains 8000 line data.$$
    \begin{aligned}
    & \text { A contest of speed and } \\
    & \text { dexterity between two } \\
    & \text { almost any age. } \\
    & \text { player. }
    \end{aligned}
    $$

    $$
    \begin{aligned}
    & \text { players, any age. The two players of } \\
    & \text { devoid skill and the game ic }
    \end{aligned}
    $$

    $$
    \begin{aligned}
    & \text { devoid of fuill and the game is limited by cannot the } \\
    & \text { iner challenge. be masterod }
    \end{aligned}
    $$

    LE NUDGE

    ## EXTRA DESIGN IDEAS

    We present a bumper bundle of readers' design ideas for your edification. A large number of ingenious circuits will be shown together with a brief description of each.
    

    ## Electronic KEYSWITCH

    Employing CMOS logic, this unit presents an unusual approach to the construction of an electronic lock.

    ## PAACTICAL

    

    ## G. LOVEDAY

    ## Fault finding on triac and thyristor circuits

    Thyristors and triacs are semiconductor devices that are increasingly being used to replace conventional mechanical switches and relays, mainly because they offer faster switching speeds, high reliability and the ability to smoothly control the power dissipated in a load. They find many diverse applications such as lamp dimmers, sound-to-light units, power supplies, motor speed control etc., so an understanding of their operation, use, and fault diagnosis is important for anyone interested in electronics.

    ## OPERATION AND CONSTRUCTION

    Just like any other component it is important to appreciate how thyristors or triacs work before attempting to diagnose faults in typical circuits containing them, so a small amount of theory follows.

    A typical thyristor structure is shown in Fig. 3.1a. It consists of a four layer $p-n-p-n$ silicon sandwich, just like two rectifiers connected in series. The symbol is of a rectifier with an additional terminal called the gate (Fig. 3.1b).

    It is the gate that enables the action of the rectifier to be controlled. As for an ordinary rectifier, when the anode is negative with respect to the cathode the device is reverse biased and no current flows. If the anode is made positive with respect to the cathode the device will still not conduct (provided that the forward breakover voltage is not exceeded) and it is said to be forward blocking (Fig. 3.1c).
    

    Fig. 3.1(a). Thyristor structure (b) symbol (c) characteristic

    The thyristor can be triggered into a forward conducting state by applying a short pulse of relatively low power at the gate. Once switched on it will pass large values of current, limited only by the external load, with only a small voltage dropped between anode and cathode. Only a few milliwatts of gate power are required to switch hundreds of watts in the anode circuit and it remains conducting even if the gate signal is removed.

    It can only be turned off by reducing the anode current to just below the holding value, the specified minimum current that will ensure conduction. It is typically a few per cent of the maximum forward current.
    In a.c. circuits the thyristor turns off every time the supply-voltage passes through zero, but in d.c. circuits special techniques must be used to reduce the anode current and achieve turn off.

    ## THE TRIAC

    The triac is similar to two thyristors connected in reverse parallel (Fig. 3.2a) but with a common gate connection. This means that the device can pass or block current in both directions. It is triggered into conduction in either direction by positive or negative gate signals. The symbol and operational characteristics are shown in Figs. 3.2 b and c .

    Both devices find their main application in power controllers. With an a.c. supply, power dissipation in the load can be made greater or smaller by controlling the time during the mains cycle at which the trigger pulse is applied to the gate. Triacs are used in full wave a.c. power control circuits in preference to two thyristors, because simpler heat sink and economical trigger circuits can be used.

    ## FAILURES-THEIR CAUSES AND SYMPTOMS

    As with most other electronic components, thyristors and triacs fail largely for thermal reasons. High temperatures in the relatively small volume, or a high rate of temperature cycling causes the device to slowly deteriorate and this ultimately leads to failure.

    They can also be destroyed like fuses if the maximum ratings are exceeded, so don't expect them to withstand large overload surges. Make sure that an adequate heat sink is used.

    Failure can also be caused by the rate of change of the anode current. At the instant of triggering, the gate current and also the anode current is constrained to flow in a small area. If the rate of rise of anode current exceeds a critical value the heat generated in this small area may be too large and the thyristor will fail. Normally the inductance of the load circuit limits the rate of rise to a safe value.

    The faults that do occur in a thyristor are:
    Anode to cathode - No current flow from anode to open circuit cathode.
    Anode to cathode - Thyristor conducts in both forshort circuit ward and reverse directions. Measured voltage between anode and cathode will be zero.
    Gate to cathode - Thyristor off and cannot be open circuit triggered into conduction. Measured gate signal will be high.
    Gate to cathode - Thyristor off and cannot be short circuit triggered into conduction. Measured gate signal will be zero.
    
    (b)
    

    Fig. 3.2(a). Triac structure (b) symbol (c) characteristic
    These are complete failures, but remember that partial failures such as poor gate sensitivity and low forward breakcover voltage can also occur.
    With some circuits it is possible to test the thyristor or triac while it remains in circuit. When switched on the voltage between anode and cathode should be approximately 1 V and the voltage between gate and cathode about 0.7 V .

    With the power switched off you can measure for short circuit anode to cathode or for open or short gate to cathode with an ohmmeter. The gate cathode of a thyristor has similar characteristics to a diode. A low resistance (typically a few hundred ohms) should be indicated with the gate + ve with respect to cathode and a high resistance (greater than $100 \mathrm{k} \Omega$ ) with the gate -ve with respect to cathode. But remember that other components in parallel with the gate circuit will affect the readings. If in doubt unsolder and lift the gate lead before making the measurement. Now let's move on to some fault diagnosis in typical circuits.

    ## TRIAC LAMP DIMMER

    A common circuit for a lamp dimmer is shown in Fig. 3.3 using a RS134 triac and a phase shifting network of R1, VR1 and C2. In fact VR1 and C2 act as a variable potential divider and variable phase shift network. This feeds an attenuated and phase shifted signal to a slave network R2, C3. When the voltage across C3 exceeds about 35 volts the diac D1 triggers to partially discharge C3 into the triac gate. This then conducts and power is applied to the lamp.
    

    Fig. 3.3. Triac lamp dimmer circuit

    The purpose of the slave network is to prevent any large change of voltage occurring across C 2 when the diac triggers.

    The conduction angle of the triac can be controlled up to nearly 170 degrees. This is when VR1 is set to near maximum value. Under these conditions very little power would be applied to the lamp and it would run at low brightness. Note that the triac switches off when the mains voltage goes through zero and is pulsed on in both the negative and positive half cycles of the mains.

    L 1 and C1 are filter components to prevent switching spikes being fed back from the triac into the mains supply.

    ## FAULT CONDITIONS

    Having looked at the way the unit works, let's consider some possible faults. Suppose that on switch on the lamp burned at maximum brightness and no control could be achieved with VR1. Without making any measurements we can see that the fault can be caused by only two components, either a short circuited triac ( $\mathrm{MT}_{2}$ to $\mathrm{MT}_{1}$ ) or possibly Cl short. Lift one lead, say, $\mathrm{MT}_{2}$, to determine which component is at fault. No other component fault could give these symptoms.

    On the other hand if the lamp fails to light at all and assuming that we know the lamp is o.k. which components could cause this? In this case we are looking for an open circuit in components such L1, R1, VR1, R2, R3, D1, and open junctions on the triac; either open gate to $\mathrm{MT}_{1}$ or open circuit $\mathrm{MT}_{1-2}$ to $\mathrm{MT}_{1}$.

    Another cause could be C2 or C3 short also. Measurements with a multirange meter (set to 250 V a.c.) at the test points have to be made to narrow down the fault to one component. Suppose we obtain the following readings from the test points with respect to the neutral line:

    | Test point | 1 | 2 | 3 |
    | :--- | :---: | :---: | :---: |
    | A.c. voltage | 235 V | 56 V | 43 V |

    Lamp will not light.

    These indicate that components L1, R1, RV1 C2, R2 C3 and R3 are o.k. and that the fault can only be an open circuit diac or an open circuit gate connection on the triac.

    Which component fault would give the following symptoms?
    (Answers are given at the end)
    (a)

    | Test point | 1 | 2 | 3 |
    | :--- | :---: | :--- | :--- |
    | A.c. voltage | 235 V | 0 V | 0 V |

    Lamp will not light.
    (b)

    | Test point | 1 | 2 | 3 |
    | :--- | :---: | :--- | :---: |
    | A.c. voltage | 235 V | 53 V | 32 V |

    Lamp will not light.
    (c)

    | Test point | 1 | 2 | 3 |
    | :--- | :---: | :--- | :---: |
    | A.c. voltage | 0 V | 0 V | 0 V |

    Lamp will not light.
    (d)

    | Test point | 1 | 2 | 3 |
    | :--- | :---: | :--- | :--- |
    | A.c. voltage | 235 V | 36 V | 32 V |

    Lamp very dim. No light increase can be obtained by varying VR1.

    Finally what would be the symptoms for these conditions?
    (e) R2 open circuit.
    (f) C2 open circuit.

    ## THYRISTOR LAMP FLASHER

    This circuit is of a lamp flasher unit, the flashing of a lamp commencing if the ambient light falls below a selected level.

    At first glance the circuit may look a little complicated, but if it is split up into sections the operation is more easily understood. A light dependent resistor (ORPI2) is used to sense the ambient light level and the changes in resistance are detected by TR1 (Fig. 3.4). With sufficient light the l.d.r. has a fairly low resistance and TR1 is therefore forward biased with a low collector voltage so that D1 is reversed biased. Cl cannot charge and no pulses occur at R5.

    If the light level falls, the resistance of the l.d.r. rises and TR1 turns off. D1 then conducts and C1 charges via R3. When the voltage across Cl exceeds the trigger point of TR3 the u.j.t. conducts and rapidly discharges C1 through R5 to give a positive pulse on $b_{1}$. This pulse is fed through C2, R6 to trigger on CSR2 and so the bulb lights. The anode voltage of this falls to about 1 V and forward biases TR2. Cl is now charged via R3 and TR2 and the u.j.t. triggers again to give another pulse. CSR2 is already on so the pulse switches on CSR1 causing its anode voltage to fall sharply. C3 couples this negative step to CSR2 anode which reverse biases it and therefore turns it off, and the lamp goes out. Note that R7 is $10 \mathrm{k} \Omega 2$, a value that maintains the current through CSR1 below the holding current value so that it turns off automatically.

    While the light level is low the lamp will flash at a rate determined primarily by R3 and C1 about 2 flashes per second.

    Now we can consider some fault conditions.

    ## FAULT CONDITIONS

    Suppose we had the following fault conditions. With bright light falling on the l.d.r. as soon as the unit is
    

    Fig. 3.4. Thyristor lamp flasher circuit
    switched on the lamp lights and remains on without flashing. Before reaching for the meter we should study these symptoms because they are the guide to the faulty component. Unless we have a number of simultaneous faults the failure can only be caused by one component. You've probably worked out already that it is an anode to cathode short on CSR2.

    If on the other hand we had the symptoms that the lamp would light when the l.d.r. was obscured but then remained on without flashing, we have the possibility of a failure in CSR1 and its associated components, R7, R8 and C3. An open circuit in any one of these would give these symptoms.

    You can see that with this type of unit fault diagnosis is helped a lot by the visual indication given by the lamp. It's quite a simple matter to check bulb operation too by just shorting the anode to cathode of CSR2. Also a quick check can be made on each thyristor by momentarily connecting a $2.2 \mathrm{k} \Omega$ resistor from gate to +12 V .

    Can you work out the symptoms for the following?
    (1) C3 short circuit.
    (2) TR1 base emitter short.
    (3) CSR2 gate to cathode short.

    ## PoInts arising

    P.E. CHAMP (December 1977)

    The use of wiring pens on the CHAMP board should be restricted to small signal connections and not supply lines. Pen wire may have maximum current ratings of as little as 30 mA , thus introducing resistance which can cause poor localised supply regulation due to switching transients.

    CAR BURGLAR ALARM (December 1977)
    It seems that constructors are experiencing considerable difficulty in procuring the capacitors $\mathrm{C}_{1}$ and $\mathrm{C}_{4}$ ( $150 \mu \mathrm{~F} / 15 \mathrm{~V}$ tantalum). They are, however, available from the Radio Resistor Co. Ltd., of Hitchin, Herts, part number SD-15-157K.
    (4) TR2 collector base short.
    (5) CSR 1 anode to cathode short.

    ## ANSWERS

    ## Lamp dimmer faults:

    (a) R1 or VR1 open circuit or possibly C2 short.
    (b) Gate to $\mathrm{MT}_{1}$ on triac short.
    (c) L 1 open circuit.
    (d) VRI wiper open circuit.
    (e) With R2 open Lamp not on

    | Test Point | 1 | 2 | 3 |
    | :---: | :---: | :---: | :---: |
    | A.C. | 235 V | 75 V | 0 V |

    (f) With C 2 open the control over the lamp's brightness will become very limited. The lamp will burn at high brightness with VRI at minimum but will only reduce slightly in intensity with VR1 at maximum.

    ## Thyristor circuit:

    (1) C3 short circuit.

    Assuming power is applied while ambient light is high then the lamp will be off. When the light level falls the lamp will be lit and will remain on.
    (2) TR1 base-emitter short.

    Lamp will flash on and off irrespective of ambient light conditions.
    (3) CSR2 gate to cathode short.

    Lamp will not light at all.
    (4) TR2 collector base short.

    Cl will slowly charge via R 9 . So the lamp will flash at a very low rate even when ambient light conditions are high.
    (5) CSR1 anode to cathode short.

    As soon as light level falls lamps will come on and remain on.
    

    THIS circuit is a very useful addition to any model car racing layout and has several advantages over the mechanical lap counter.
    The mechanical counter is prone to either jamming or not working at all, whereas this digital method of recording the number of laps completed is not only reliable but has the added advantage that it can be cheaply constructed; the only two critical components are ICl and IC2.

    The number of laps can be preset so that after the winning car has crossed the finishing line the power to the track is automatically out off.

    ## THE CIRCUIT

    The circuit diagram is shown in Fig. 1 and consists of an SN7490 binary counter and an SN7448 b.c.d. to 7 segment display decoder. The pulses for the 7490 counter are generated by a Light Dependent Resistor (R1) and lamp arrangement either side of the track. The lamp is set to shine directly onto the 1.d.r., and whenever a car passes
    between the lamp and the l.d.r. a pulse is sent to the counter. On receiving a pulse, the counter will count one, and on each subsequent lap it will add one more up to a maximum of nine, after which it will reset to zero.

    When the automatic power shut-off is used, the preset number of laps can be set to either one, two, four or eight by means of $S 2$. If $S 2$ is set to position 5 , the base of TR1 is connected to ground permanently so that the circuit will not turn off the power but just count the laps, resetting each time at nine.

    When S2 is set to either one, two, four or eight laps it connects one of the four outputs from the 7490 to the base of TR1. If, for example, output $C$ of the counter is connected to the base of TR1 it will count up to four and then the output $C$ of 7490 will go high, turning on TR1 and consequently the relay, which in turn interrupts the power supplied to the track via its normally closed contacts (RLA1).

    When the reset button is depressed the counter is automatically reset to zero.
    

    Fig. 1. Circuit diagram of the Digital Lap Counter

    ## CONSTRUCTION

    In the prototype the relay was mounted on the Veroboard, and a hole drilled: through the relay case to take a fixing screw. The relay was then used to hold the Veroboard in position on the front panel; brackets could, however, be used. The i.c.'s were soldered directly onto the board but holders could be used if preferred. The Veroboard layout shown in Fig. 2 is slightly more expanded than that used in the prototype, and this is to make the wiring between the i.c.'s less congested. Hence the position of $\mathbf{S} 2$ must be altered to allow for the longer board.

    The seven segment display used was of a sub-miniature type, but as this type does not now seem readily available,
    one of the more common ones is specified. A suitable fixing arrangement is shown in Fig. 3 for this seven segment display. The Veroboard should be assembled first, the relay quoted can be directly mounted to the board without the need for a relay holder.

    ## ALTERNATIVE HOUSING

    If the unit is to be mounted in a case, the front panel should be drilled and cut so that the two switches and seven segment display can be mounted. R1 was fitted on two spare terminals of switch S2. It may be necessary to . cover RI with a piece of plastics tube in order to protect it from ambient light; a hole must be drilled in the side of the case for RI.
    

    Fig. 2. Component layout and wiring of the lap counter
    

    Fig. 3. Fixing arrangement for the seven segment display

    ## INSTALLATION

    For the normal dual lane layout two complete circuits will be required.
    The R1/lamp arrangement should be approximately one car's length behind the start/finish line because the completed lap is not recorded until the car actually passes completely through it.
    

    Rear view of the chassis
    

    Front panel marking

    ## POWER SUPPLY

    The circuit can be supplied using a 6 V lantern battery but the current drain is quite high (approximately 100 mA ) according to the type of relay used.

    If preferred a power supply unit could be constructed using one of the many designs that have been previously published.
    

    ## NEW BROOM

    A prime minister's or a president's first hundred days in office are crucial. This is the period when the leader establishes style and example. There is a parallel in large commercial enterprises and Sir William Barlow, chairman of the Post Office, has just completed his first hundred days as leader of Britain's largest business.

    Sir William arrived on the scene with a lot of old-fashioned virtues. So out-moded that they appeared almost revolutionary. Concepts like improved customer service and keeping prices down. He said: "Let us look at what we can give, not take away." He has views on aggressive marketing, on expansion of the services. He wants to run the Post Office for the benefit and convenience of the customer rather than for the Post Office, though it, too, will gain in the end because value for money always expands trade. In fact, quite like old times.

    We must hope, too, that Sir William will devote some of his time to procurement policies and avoid such shambles as last year's mass cut-backs in orders to the telecommunications manufacturing industry which caused such chaos and real distress, the repercussions of which are still being felt today.

    Sir William Barlow deserves every success.

    ## STILL GOING WEST

    The livelier European enterprises are still looking to the United States as the best market for expansion and have recognised that the quickest way
    in is through acquisition. Latest British buy in the USA is Carterphone of Dallas, Texas, acquired by Cable \& Wireless for $£ 9.3$ million. Carterphone rents, leases, sells and services data communications terminals through 40 branches throughout the nation.

    Apart from the USA being the biggest individual market for electronics equipment in the world, the most significant business reason for investing there is political stability. As a C \& W official points out, "---- political risks are low." The disadvantage is that the USA is also the most competitive market in the world so you have to be smarter and work harder for every dollar earned. But with a market twice the size of the whole of Europe, even quite a small penetration can mean very big business by UK or European standards.

    ## AVIONICS BOOST

    British avionics companies have had a strong injection of orders for updates and new equipment. Nimrod maritime reconnaissance aircraft are now being progressively withdrawn from service for installation of improved sensor, navigational and tactical systems. A new tactical computer on the aircraft will process information from sonobuoys more than 50 times faster than on existing equipment. The new computerassisted Searchwater radar can spot even smaller targets at greater range, and a new inertial navigation system will improve precision. Communications improvements include teleprinters with on-line encryption. The update programme is intended to meet all envisaged submarine threats through to the 1990s.

    A parallel production line is being established for converting some of the Nimrods to the airborne early warning role, itself a multi-million pound programme. More than 100 avionic units are being developed for the communications system alone and the programme is providing 2,000 jobs for the main contractor (Marconi) and the subcontractors.

    Plessey and Marconi also have huge contracts running for updating over 30 types of RAF aircraft with v.h.f. and u.h.f. radio equipment. The programme is said to be worth $£ 10$ million and involves building and fitting 2,000 sets of equipment. The technical requirement is to double the number of radio channels available from 360 to 720. This is achieved by reducing the channel spacing from 50 kHz to 25 kHz .

    Ferranti have got the go-ahead for development of a new horizon gyro for the air defence variant of the Tornado (MRCA). Unusual feature is pitch and roll pick-offs feeding signals to the avionics systems.

    Fly-by-wire, i.e. electrical control of aircraft which superseded push-pull
    rods and mechanical cables and pulleys is now, in turn, being superseded by fly-by-light using optical fibres. MarconiElliott has five systems on trial in the US Boeing YC-14 STOL transport aircraft and expect orders for 300 more sets this year with a possible long-term sale of 3,000 sets. Optical fibre links have definitely arrived after years of experimentation and learning how to make the fibres and, equally important, how to connect them together. A trial installation over 100 yards long in the warship HMS Tiger has given over 6,500 hours service with no degradation in performance. American confidence in such systems is such that a fibreoptic data link between computers in the Cheyenne Mountain command post of the North American Air Defence System has been in operation since 1975, again with no fallures reported.

    ## HITACHI . . .

    The Japanese company Hitachi has shelved but not cancelled plans for setting up a TV manufacturing plant in the UK. The news got a mixed reception, relief from UK manufacturers and frustration from those in favour of increased capital investment in the UK from whatever source.

    ## ... AND MULLARD

    Meantime, Mullard is planning to invest another $£ 4.5$ million in the Southampton semiconductor plant to meet production demand for the upsurge in business expected from Teletext, Viewdata, digital tuning of TVs and TV games. The range of i.c.s and modules is based on technology drawn from the whole of the Philips Group including the US Signetics, based in Silicon Valley. Mullard currently claims 33 per cent of a UK market estimated at $£ 12$ million. By 1982 the market is expected to grow to $£ 30$ million with Mullard targeted on £18 million.

    ## INDUSTRY NEWS

    The bloom has faded from the medical scanner business. It was too much to hope that EMI's world lead could last forever. Now the going is much tougher, especially in the USA where domestic competition has increased. AB Electronics and Chloride have both been hit by strikes, now resolved but at great cost.

    There are 108 distributors of electronics components in the UK in a recently published list. But according to some sources there are actually over 170 operating. Strange when you think that only a few years ago it was confidently predicted that the number, then approaching 100, would drop to three very large broad line distributors and half a dozen specialists.

    ## Your

    ## Explained

    The Matrix Marker is a useful aid to the electronics constructor, and is marked on both sides to enable grid referencing of both 0.1 and 0.15 inch striphoard. By placing the marker against the corner of your stripboard, component and track cut positions can be identified instantly.
    The illustration below shows how the

    Matrix Marker can be used for checking clearance drill and screw sizes for Metric and BA range screws. There are two ruled edges for inches and centimetres, and hole arrays to suit most i.c.s. and transistors. The first hole array is for up to 24 lead d.i.l. i.c.s, and the second array is for the quad in-line packages and
    less usual ones often associated with audio i.c.s. Positions for 8 and 10 lead TO5 linear i.c.s, and TO5 and TO18 transistors are also included. These holes can be used for marking out copper clad board when making a p.c.b., or simply for aligning device pins prior to insertion. See below for Matrix Marker layout.
    

    ## It full charge

    everytime with no danger of ouerchargingNICAD battery chargers usually fall into one of two types. The first is the constant current charger, which charges the battery at a constant current for an indefinite period. The user has to note the state of charge of the battery by measuring the short circuit current and relating this to the charge required; note the start time and be back in time to take the battery off charge. In theory this works, in practice it does not. The author once maintained mobile radios on a steelworks and the battery chargers worked on this scheme. The number of batteries ruined by overcharging was surprising.

    The second type of charger is the charge to a voltage type. In this type of charger the battery is charged until its terminal voltage rises to a set level. If the voltage is correctly set the battery cannot be ruined by overcharging. Unfortunately, the charge curve of a Nicad battery is very flat, see Fig. I, and if the trip voltage is only slightly out you can end up with a 50 per cent charged battery or a battery ruined by overcharging. In addition, the trip voltage required will not be the same for all batteries, even those of the same nominal type.

    The tendency is for people using this type of charger to set the trip voltage on the low side (for safety) and put up with partly charged batteries.

    This article describes a charger which gives a fully charged battery every time, with no danger of overcharging. It uses the Ferranti ZN 1034 timer to define the charging time, which in conjunction 'with a constant current, defines the charge put into the battery. To accept a battery in any state of charge, the battery is discharged before charging commences. This is perfectly alright since completely discharging a Nicad battery does no harm. The circuit will stand reversed battery or short circuited output.

    ## TIMER CHIP

    The Ferranti ZN1034 is a timer chip designed for long time applications. It consists of an oscillator feeding a twelve stage binary counter (Fig. 2). The control logic
    

    Fig. 1. Nicad battery charge curve at constant current
    

    Fig. 2. Block diagram of ZN1034
    

    Fig. 3. Circuit of Nicad charger
    times out after 4095 counts, giving a long period monostable with reasonable value components. The timed period is given by:

    $$
    T=K R C \text { seconds }
    $$

    where K is a constant determined by an external resistor connected between pins 11 and 12 . With pins 11 and 12 linked, $K=2730$. With an external resistor connected between them, $K$ increases up to $K=7500$ for a resistance of 200 kilohms.

    The ZN1034 has an internal 5V shunt regulator, allowing it to run off any voltage supply, with a suritable dropper resistor. True and complement outputs are available on pins 3 and 2 respectively and the device is triggered by 0 V to pin 1.

    ## CIRCUIT DESCRIPTION

    The basic charger circuit diagram is shown on Fig. 3. ICl controls the battery discharge, IC2 the battery charge. Both use their internal 5V regulators; R3 and R8 being the dropper resistors, decoupled by C3 and C2, C6 and C5.

    IC 1 is set for about 2 hours by R4, C4 and IC2 for about 8 hours by R9, C7. Both timers start together by S2, giving 2 hours discharge and 6 hours charge, a total of 8 hours.

    Transistor TR1, Zener D9 and resistors R12, VR1 form a simple constant current source. This current can go to the battery, via D13, or be shunted to 0 V by transistor TR2. TR3 is turned on by Q1 (IC1) or $\overline{\mathrm{Q} 2}$ (IC2) via D1:1. The current is thus shunted during the discharge time and after the charging is complete.

    TR3 discharges the battery by R15. This is simply turned on by Q1 output, hence the battery is discharged for the 2 hour period of ICl .

    The charge period is thus the difference between the
    periods of IC 1 and IC2, nominally 6 hours. The charge/ discharge cycle is summarised on the timing diagram in Fig. 3.

    The operation is displayed by three l.e.d.s. D6 is driven direct off Q1 and hence indicates "Discharge". D7 is connected from Q2 to Q1 outputs and indicates "Charge". D8 is driven off Q2 and indicates "Cycle Complete".

    The power supply is a simple unregulated 24 V supply. The two i.c.s provide their own 5 V rail from their internal regulators as described previously.

    Resistor R14 and diodes D10, D14 provide protection against a reversed battery.

    ## CONSTRUCTION AND USE

    The prototype was built on Veroboard with the layout shown in Fig 4. Transistor TR1 has to dissipate about 1.5 W in a reversed battery condition and should be mounted on a heat sink or onto the case. The unit was made to charge one battery, and fitted comfortably into an 8 in $\times 5$ in box.

    It is suggested that the circuit is first tested with R4 set at 5.6 kilohms and R9 at 6.8 kilohms to give three minutes discharge and one minute charge. Eight hours is a long time to wait to see if it all works.

    A link somewhere in the battery leads where the charge/ discharge currents can be monitored is also very useful.

    Since the capacitors used have a tolerance of $\pm 20$ per cent, it follows that the timed periods are not going to be exactly two hours and eight hours. There are two options, the aesthetically pleasing and the practical. In both cases it is essential that the capacity of the battery is known. The batteries used in the prototype were 225 $\mathrm{mA} / \mathrm{hr}$. In both cases, set up without the battery in, observing the l.e.d.s.
    

    Fig. 4. Veroboard component layout and wiring diagram

    The aesthetic first. The discharge and charge periods are made two hours and six hours exactly by calibration trim pots. The links between pins 11 and 12 on each i.c. are replaced by 200 kilohm trim pots, and R4 reduced to 180 kilohms and R9 to 820 kilohms.

    Adjust the trim pots to set IC 1 to two hours and IC2 to eight hours. If a 'scope with a high impedance probe is available, the oscillator period can be measured on pin 13 of each i.c. The total period is found by multiplying the period by 4095 . The current is then set to the capacity divided by six.

    The practical method is recommended, however. The discharge/charge times are measured, and the charging current changed to suit.

    The prototype was found to have a discharge time of about 1.8 hours and a total time of about 8.6 hours. This gives a charge time of 6.8 hours. The charge current required, therefore, is capacity $/ 6 \cdot 8(225 / 6 \cdot 8=33 \mathrm{~mA})$ and the current set by VRI accordingly.

    In both cases the calibration should be checked if C 4 or C 7 is changed.

    The eight hour cycle was chosen to give overnight charging. By doubling $C 4$ and $C 7$ a sixteen hour cycle can be made. The lower charging current would probably be better for battery life.

    The sixteen hour cycle is suitable for equipment like mobile radios being used on a three shift system. The batteries spend two shifts on charge and one in use.
    

    Fig. 5. Charging method for several batteries
    

    Fig. 6. Schematic for fully automatic charger

    ## COMPONENTS . . .

    | Resistors |  |  |
    | :--- | :--- | :--- |
    | R1 |  | $4.7 \mathrm{k} \Omega$ |
    | R2 | $10 \mathrm{k} \Omega$ |  |
    | R3 | $820 \Omega$ | 1 W |
    | R4 | $270 \mathrm{k} \Omega$ |  |
    | R5-R7 | $470 \Omega(3 \mathrm{off})$ |  |
    | R8 | $820 \Omega$ | 1 W |
    | R9 | $1.2 \mathrm{M} \Omega$ |  |
    | R10 | $3.3 \mathrm{k} \Omega$ |  |
    | R11 | $10 \mathrm{k} \Omega$ |  |
    | R12 | $100 \Omega$ |  |
    | R13 | $1 \mathrm{k} \Omega$ |  |
    | R14 | $100 \mathrm{k} \Omega$ |  |
    | R15 | $150 \Omega$ | 2 W |

    Potentiometer
    VR1 200S2 linear

    ## Capacitors

    C1 $2000 \mu \mathrm{~F}$ elect. 40 V
    C2 $0.01 \mu \mathrm{~F}$ ceramic
    C3 $1 \mu \mathrm{~F}$ tantalum 6 V
    C4 $10 \mu \mathrm{~F}$ tantalum 6 V
    C5 $1 \mu \mathrm{~F}$ tantalum 6 V
    C6 $0.01 \mu \mathrm{~F}$ ceramic
    C7 $10 \mu \mathrm{~F}$ tantalum 6 V
    Semiconductors

    | IC1 | ZN |
    | :---: | :---: |
    | TR1 | BD132 |
    | TR2-TR3 | BC107 (2 off) |
    | D1-D4 | 1 A 50V Bridge Rectifie |
    | D5-D8 | TIL 209 l.e.d. (4 off) |
    | D9 | $4.7 V$ Zener 200 mW |
    | D10, D13, D14 | 1 N 4001 (3 off) |
    | D11-D12 | 1 N914 (2 off) |

    ## Switches

    S1 Double-pole mains on/off switch
    S2 Press switch
    Transformer
    T1 240 V pri; 20 V sec at 0.5 A

    ## VARIATIONS

    The prototype was built to meet the author's requirement of a one battery overnight charge, with a battery of unknown charge state.

    The control logic can be extended to charge several batteries at the same time by changing TR2 and TR3 as in Fig. 5.

    For several batteries it is costly to provide a true constant current source for each, and a reasonable compromise would be to take the supply rail up to about 36 V and utilise a single resistor ( R la-c).

    This would approximate a constant current source over the voltage range and the battery would vary ( $12-14 \mathrm{~V}$ ).

    With a 36 V rail R3 and R8 should be increased to 1.8 kilohms with a 1 W rating.

    If it is certain that the batteries are already discharged, IC1 can be omitted, along with D12, R13, TR3, R15, etc.

    D7 should be connected to 0 V . Note that the battery charges for the whole period of IC2 now, and the period or the charging current should be adjusted to suit.

    ## AUTOMATE

    One further development that could be made is to automate the battery discharge along the lines of Fig. 6. The start button sets the memory IC1 which turns on the discharge transistor TR3, discharging the battery in the usual manner.

    The battery terminal volts are measured by a voltage trip circuit. When the voltage goes below, say, 9 V , the memory is reset and a charge timer, IC2, started to charge the now flat battery for the correct time.

    This sets the discharge period correct for the battery, and shortens the whole cycle for the average, nearly discharged, battery.

    ## nOMOCRAPHS for integrated circuit timers E.A.PARR e.sc.

    THE integrated circuit timers that have become available in recent years have proved to be amongst the most useful devices for both the professional and the amateur electronics engineers. Unfortunately the choice of components for a desired result necessitates juggling with kilohms, megohms, microfarads and picofarads. It is very easy to end up with a period or frequency that is out by a factor of ten or a hundred.
    

    Fig. 1. Nomograph for the 555 monostable.

    The nomographs in this article were drawn up to make a selection of component values for all the common timers a quick and foolproof process.

    ## 555 MONOSTABLE

    The nomographs for the 555 monostable are shown in Fig. 1. A line drawn between resistance, capacitance and
    

    Fig. 2. Nomograph for the 555 astable (both resistors have value $\boldsymbol{R}$ ).
    time will give the third when two are known.
    For example, suppose we have a $1 \mu \mathrm{~F}$ capacitor and we want a one second period. The nomograph gives $800 \mathrm{k} \Omega$, so the nearest preferred value of $820 \mathrm{k} \Omega$ is chosen.

    ## 555 ASTABLE

    There are three possible ways of using the 555 as an astable, making both timing resistors equal (giving 2:1 mark space), coupling pin 3 (output) to pins 2 and 6 with a timing resistor to give equal mark space or choosing different values for the two timing resistors to give a definite waveform. All are covered by the four 555 astable nomographs.

    The simple case of both resistors equal is covered by Fig. 2. As can be seen, a typical result would be $50 \mathrm{k} \Omega$ and $0 \cdot 1 \mu \mathrm{~F}$ giving 100 Hz .
    

    Fig. 3. Nomograph for equal mark/space 555 astable.

    The equal mark space arrangement is shown by Fig. 3, a typical result being 1 kHz ; approximately given by $4.7 \mathrm{k} \Omega$ and $0.15 \mu \mathrm{~F}$.

    To assemble a desired waveform use Figs. 4 and 5. The general equations for an astable are:

    Output high $T_{\mathrm{a}}=0.7\left(R_{\mathrm{a}}+R_{\mathrm{b}}\right) \times C$
    Output low $T_{\mathrm{b}}=0.7 R_{\mathrm{b}} \times C$
    Total period $=T_{\mathrm{a}}+T_{\mathrm{b}}=0.7\left(R_{\mathrm{a}}+2 R_{\mathrm{b}}\right) \times C$
    A nomograph for $R_{\mathrm{b}}$ and $C$ is given in Fig. 4 to select the output low time (which must be done first).

    Given $R_{\mathrm{b}}$ and $C$, $\left(R_{\mathrm{a}}+2 R_{\mathrm{b}}\right)$ is now found from Fig. 5 for the desired period or frequency. Knowing $R_{\mathrm{b}}, R_{\mathrm{a}}$ is easily found.

    To demonstrate this, suppose we want a 0.1 second pulse occurring every second, then:
    

    Fig. 4. 555 astable. Plot for selection of $R_{\mathrm{b}}$ to give output low time. Use in conjunction with Fig. 5 to give desired waveform.

    $$
    \begin{aligned}
    & T_{\mathrm{a}}=0.9 \mathrm{~S} \\
    & T_{\mathrm{b}}=0.1 \mathrm{~S} \\
    & T=1 \mathrm{~S}
    \end{aligned}
    $$

    $$
    \text { frequency }=1 \mathrm{~Hz}
    $$

    First we select $R_{\mathrm{b}}$ and $C$ using Fig. 4 to give $0 \cdot 1$ second. Typical values would be $33 \mathrm{k} \Omega$ and $4 \cdot 7 \mu \mathrm{~F}$ (to the nearest preferred values).
    Now we use Fig. 5. We have $C(4 \cdot 7 \mu \mathrm{~F}$ from above) and the frequency is 1 Hz . The nomograph gives ( $R_{\mathrm{a}}+2 R_{\mathrm{b}}$ ) to be $280 \mathrm{k} \Omega$, hence $R_{\mathrm{a}}$ is $220 \mathrm{k} \Omega$ to the nearest preferred value. The values desired are thus $R_{\mathrm{a}}=230 \mathrm{k} \Omega, R_{\mathrm{b}}=$ $33 \mathrm{k} \Omega, C=4.7 \mu \mathrm{~F}$.

    ## ZN1034 TIMER

    The ZN1034 is a very useful device for applications in
    

    CAPACITANCE
    

    Fig. 5. Nomograph for 555 astable, plotted for $\boldsymbol{R}_{\mathfrak{a}}+2 \boldsymbol{R}_{b}$.
    long delay circuits. It has been described elsewhere, but for people not familiar with it, it consists of an oscillator and a 12 bit binary counter. This allows very long delays to be obtained with reasonable value components.
    The device has the facility for trimming the period. This is done by connecting a resistor between pins 11 and 12. With pins 11 and 12 linked, the calibration resistor is $100 \mathrm{k} \Omega$. With a $200 \mathrm{k} \Omega$ resistor between pins 11 and 12 the calibration resistor is $300 \mathrm{k} \Omega$.

    The timed period given by:
    $T=\mathbf{K} \times R \times C$
    Where K is a multiplier dependent on the calibration resistor. For a calibration resistor of $100 \mathrm{k} \Omega$, the multiplier is 2,700 . For a calibration resistor of $300 \mathrm{k} \Omega$, the multiplier is 7,500.

    Two nomographs are shown: Fig. 6 has a multiplier of 2,700 and Fig. 7 has a multiplier of 7,500. Between
    

    Fig. 6. Nomograph for ZN1034 timer. Pins 11 and 12 linked (internal calibration $100 \mathrm{k} \Omega$ ). Multiplier $K=2,700$.
    them the two nomographs show the limits attainable with a $250 \mathrm{k} \Omega$ potentiometer between pins 11 and 12 . Note the small value components to give a specific value compared with the 555 monostable.

    If it is desired to get a specific value choose a time $2 / 3$ of the desired time and use Fig. 6. The desired time can then be trimmed with the $250 \mathrm{k} \Omega$ pot between pins 11 and 12.

    For example, assume we want one minute. We choose values for 40 seconds on Fig. 6. A typical choice would be $1 \mu \mathrm{~F}$ and $15 \mathrm{k} \Omega$. Fig. 7 confirms the maximum attainable with this combination is 100 seconds. The desired value of 60 seconds is around the middle of the range and can be accurately set with the $250 \mathrm{k} \Omega 2$ pot.

    Note that the calibration is not precise for values of $C$ below $0.068 \mu \mathrm{~F}$. Times up to 20 per cent away from the calculated value may be expected.

    Fig. 7. Nomograph for ZN1034 timer with $200 \mathrm{k} \Omega$ between pins 11 and 12 (calibration $300 \mathrm{k} \Omega$ ). Multiplier $K=7,500$.

    ## TTL MONOSTABLES

    The nomographs Figs. 8 and 9 cover the 74121, 74122, 74123 and 96000 series monostables. The operation of these is similar to the 555 monostable.
    In general TTL monostables are best suited to times below one second, above this it is probably easier to use the 555. For very short periods the stray capacitance will probably increase the calculated time.

    ## GENERAL OBSERVATIONS

    The accuracy of capacitors, particularly electrolytics, is not good, so do not be surprised if there is' a difference between calculated and observed values. The nomographs have an accuracy of about 10 per cent which is better than most electrolytics.
    Electrolytics also have a characteristic of exhibiting a
    

    Fig. 8. Nomograph for 74121 monostable.
    N.B. Capacitors up to $10 \mu \mathrm{~F}$ allowed. For $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ use 0.1 to $1 \mu \mathrm{~F}$ part of capacitor scale and multiply time by ten.

    For times above 100 mS , divide time by ten, and multiply capacitance found by ten, e.g. 250 mS : 25 mS gives $0.8 \mu \mathrm{~F}$ with $39 \mathrm{k} \Omega$, therefore $8 \mu \mathrm{~F}$ with $39 \mathrm{k} \Omega$ will give 250 mS .
    low value until about 10 per cent of their working voltage. If a 100 V electrolytic was used in a 12 V circuit, the observed times could be different from the calculated times by a factor of four. For best results the circuit volts should be. only just below the working voltage of the timing capacitor.

    For use in an electrically noisy environment, it is always preferable to use a large $C$ and small $R$ rather than vice versa. This is not, however, the cheapest way to give a specific time. The cheapest way is to use a small $C$ and large $R$. For small values of $C$, however, remember that stray capacitance will increase the observed period.
    

    Fig. 9. Nomograph for $74122 / 3$ monostables. Use also for 9600 monostables.

    ## NEWS BRIFFS

    ## Interference Between Systems

    $\mathrm{A}^{5}$A result of the increase in electronic systems of all types in recent years, there is a greater possibility of interference between systems if proper precautions are not taken. An example of what can occur in the absence of such precautions was a ship's officer who could tune his radio telephone to a certain frequency, press the transmit button only to find that it provoked a sudden change in the ship's course. This potentially hazardous case highlights the problems of non-compatability between separate but adjacent electronic systems, concerned respectively with communications and control.

    The problems of preventing or controlling the generation of interference signals and the reduction of the sensitivity of equipment to interference between and within systems is the main theme of the conference on Electromagnetic Compatability which is being organised by the Institute of Electronics and Radio Engineers at the University of Surrey, Guildford, in April.

    ## Spring Hi Fi Show

    THE 1978 International Spring High Fidelity Exhibition is to be staged at the Cunard International Hotel. Hammersmith, London. This decision was the result of a policy change by the Heathrow Hotel Management to limit their operations to classic hotel functions rather than large exhibitions.
    The previous four Spring Exhibitions were held at the Heathrow Hotel, but because the 1977 Autumn Show logistics worked successfully at the Cunard, it was considered possible to introduce smoothly the 1978 Spring Exhibition into the same venue.

    The Exhibition will run from May 2 to May 6 (10 am to 8 pm ), with the first three days open to trade only.
    Microproceessor Courses

    AMICROPROCESSOR consultancy and training company, Bleesdale Computer Systems Ltd, regularly present two microprocessor courses. Both courses deal with the Motorola M6800 microprocessor. One is a five day introductory course costing over $£ 200$ and the other a ten day workshop course.

    The introductory course assumes that the participants have little or no knowledge of computers and starting with the basic principles, the operation of a complete 6800 system is dealt with. There is also an introduction to the basic concepts associated with the programming of computers. This includes the aspect of defining the solutions to problems in the format of a flowchart. The rules regarding the design and development of good quality software are discussed. Course members are involved in the designing and writing of software solutions to set problems. .

    The ten day course is designed for people who have a basic knowledge of microprocessors and ideally who have attended the introductory five day course.

    The objective of the course is to learn how to design and produce good quality, highly reliable microprocessor based systems. The participants have ample opportunity, to get practical experience using Motorola development systems. They are also expected to design and build the' software for one of several set problems, or design and produce the software for one of their own projects.
    

    FRANK W. HYDE

    ## TWO PIONEER SPACECRAFT TO VENUS

    Two spacecraft will be launched to Venus this year. They are the Orbitor and a Multiprobe vehicle. The Orbitor will be launched in May and will be inserted in the planned orbit in December. The second vehicle will be launched in August and timed so that the probes enter the Venusian atmosphere five days after the arrival of the Orbitor. The probes will be launched from the Multiprobe vehicle 20 days before the rendezvous date. Each will have a different target point on the surface of Venus. There are four probes, one large and the others small.

    The target areas are scattered so that one small probe will enter on the dark side of the planet high up to polar latitude and another just below the equator, also on the dark side. The large probe will land on the equator and the third small probe will land in the middle latitude below the equator, both on the sunlit side. The carrier vehicle, or 'bus', will enter the atmosphere of the planet at a low elevation, making measurements of the atmosphere by means of a spectrometer, before it burns up at an estimated height from the surface of 125 kilometres.

    ## THE ORBITOR

    The Orbitor mission is designed to cover the whole globe of the planet and map the atmosphere by remote sensing and radio occultation. The upper levels of the atmosphere will be directly measured as will the ionosphere and its reaction with the solar wind. The Orbitor will also study the planetary surface by remote sensing and radar mapping techniques. It is hoped that there will be
    useful information on the surface craters and also perhaps an estimate of the global shape of the planet.

    The Orbitor will be inserted in a highly inclined elliptical orbit. At its lowest point this orbit would bring the spacecraft 200 kilometres above the mid latitude. This would mean that the observations could go on for a period exceeding the Venusian day which is 247 Earth days. The spacecraft is about 250 centimetres in diameter and weighs 567 kilogrammes. It carries a payload of 43 kilogrammes. The launch trajectory will take the Orbitor more than 180 degrees round the solar system in eight months. With the apogee at a point some 60 thousand kilometres, perigee is at 200 kilometres. The spacecraft will make most of its measurements when at the perigee point. The useful time for data transmission will be about 1 hour each day.

    ## THE MULTIPROBES

    This spacecraft consists of the basic bus unit which has been modified to carry two scientific instruments and four probes. The whole assembly will be spin stabilised for the interplanetary flight and powered from solar cells. All trajectory movements and corrections will be made by the bus, as well as targeting the probes when they are launched. The four probes will be launched toward the planet 20 days before the target date.

    The large probe and the small probes are each complete systems that provide the necessary subsystems to carry the instruments to the target. During this time communications links will be direct from the probes to the Earth based stations.

    ## the large probe

    The large probe is 145 centimetres in diameter and weighs about 291 kilogrammes. The data transmission will be at the rate of 256 bits per second. The instrument load is of the order of 28 kilogrammes. "Like the small probes the front end is a heat shield of carbon phenol; it also serves to stabilise the vehicle aerodynamically when descending through the atmosphere of Venus with the parachute system.

    The other probe subsystems, that is the data handling equipment, power, thermal protection, communications, are enclosed in the pressure vessel. The scientific payload is also inside the pressure vessel.

    ## THE SMALL PROBES

    Each of the three small probes are identical. They are 71 centimetres in diameter and weigh 86 kilogrammes. There are for each probe scientific instruments weighing 2.7 kilogrammes. Transmission of data is at the rate of 16 to 64 bits per second. The pressure vessel seals the instruments against the hostile atmosphere of Venus. Each probe has a conical shield of heat resistant
    material at the forward end. No parachutes are used with these probes. The time of descent after entering the atmosphere is estimated to be about 70 minutes. During this period measurements will be made to give details of the winds and circulation patterns. The probes will not survive the impact. An instrument called the Nephelometer, developed by the Ames Research Centre, will measure the extent of the clouds, their density and altitude. A net flux radiometer will be included in the instruments in order to investigate the change of heat energy between the Sun and the atmosphere.

    ## RADAR AND RADIO SYSTEMS

    An interesting point about the communications on these vehicles is the fact that the communications equipment can be employed as a scientific instrument. This is accomplished by using the radio signals to assess the alterations in performance caused by the planet Venus and its atmosphere. As the radio signal passes through the atmosphere, the signal is changed and these changes can be measured. The type of change can reveal the characteristics of the atmosphere. The radio system will therefore be used to determine composition and density of the atmosphere, the cloud locations, atmospheric turbulence and wind velocities.
    These radio experiments will be carried out with the Orbitor and the probe vehicle as well as the probes themselves. All the entry vehicles will be involved using the S -band equipment. Each entry vehicle transmits directly to the Earth-based stations in the Deep Space Network. The Orbitor will use the S-band telemetry and a specially designed X-band beacon system.

    ## THE MISSION PHILOSOPHY

    The study of weather patterns on other planets can help to solve some of the vital problems that exist regarding the weather patterns of the Earth which at the moment are of great concern. For example, no data is available to help decide the freakishness of the tornado and hurricane paths which occur. Study of the meteorology of Venus will be a great opportunity to solve such problems for the Earth. Many factors are involved on the Earth such as the mixing of the Oceanic and Continental air masses. Partial cloud cover too is involved. Many things are difficult in the study of the atmosphere of the Earth such as the axial tilt, and the rapid rotation. Venus is easier to study in depth. It has an atmosphere which contains 95 per cent carbon dioxide, very slow rotation, very little tilt of the axis and no oceans.

    Many fundamental questions can be answered by the study of the vital conditions on slow and fast rotating planets. There will also be answers with regard to the different evolutionary paths that each planet has taken.

    ## 'AUTOMATIE' ENLARGER TIMER

    THIS unit was designed as a result of the need for a simple to operate "automatic" darkroom timer for use on all black and white enlargements. With the sensor in place under a diffuser and the enlarger set up, it is only necessary to make one simple adjustment for "automatic" timing of exposures.

    ## CIRCUIT

    The power supply (see Fig. 1) consists of a $6-0-6 \mathrm{~V}$ transformer which, along with D1, D2, D3 and C1, C2 give a $\pm 8 \mathrm{~V}$ d.c. unstabilised output. The -8 V is needed for ICl only. All the power supply components are mounted on a separate circuit board. The main board can then be used with batteries, without modification.

    The principle of the sensor (R1, R6, R7 and VR1) is simply a potential divider with a manually variable element, VR1a. When the light dependent resistor is
    exposed to light from the enlarger, its resistance alters, thus also altering the voltage on pin 3 of ICI, VR1a serves to "balance" the voltage at this point to within useful limits.

    Integrated circuit IC1 is a voltage follower which is included to impedance match between the balance circuit and the lamp driver. If the follower is not included the base current drawn by TR1 loads down the lower half of the balance circuits.

    Lamp driver, TR1, is driven by ICl and responds to the voltage change created by VR1a and R7: When the circuit is balanced, the voltage at TR. 1 base is approximately 650 mV and the transistor does not conduct, hence the display lamp, LP1, is extinguished. Conversely, when the circuit is out of balance, the voltage on TRI base rises, the transistor conducts and LP1 lights to display an out of balance condition. This method of indication was used for its simplicity and to avoid the cost of a meter.
    

    Fig. 1. Power supply/timer circuit

    ## TIMER

    The timer is based on the well proven circuit built around the versatile 555 i.c. Potentiometer VR1b acts as the variable element in the timer cirouit and C3 the timing capacitor. Pushbutton S1 initiates the timer.

    The output of IC2 drives a relay used to switch the enlarger lamp. Switch $S 2$ is supplied to give the manual control required for balancing; LP2 is used to indicate enlarger lamp "live" condition for setting up or in case of enlarger lamp failure.

    Layout and construction, etc. are not critical and the user can build the unit according to his/her requirements. The sensor can be made of anything that will house the ORP12 in a horizontal position under the diffuser.

    Layout and wiring of the components mounted on the cirouit board is shown in Fig. 2 whilst Fig. 3 shows wiring of the power supply unit and controls, etc.
    

    Front panel wiring
    

    Fig. 2. Main circuit board

    ## SETTING UP

    The initial setting up procedure is very simple; one needs a multimeter and a "known" negative.
    Assuming that the "known" negative's exposure time is, say, 5 seconds, all that is required is to expose the negative to the sensor in the usual way (explained later) and balance the unit, then switch off (plug out) the timer and measure the resistance (between track and wiper) of VR1b; then, using the formula:

    $$
    C=\frac{t}{1 \cdot 1 R}(\text { where } C=\text { Farads })
    $$

    Calculate the value of the timing capacitor C3. So, if the resistance was found to be 25 kilohms then:

    $$
    \begin{aligned}
    \mathrm{C} 3 & =\frac{5 \text { secs }}{1 \cdot 1 \times 25,000 \leq 2} \\
    \mathrm{C} 3 & =181 \cdot 8 \mu \mathrm{~F}
    \end{aligned}
    $$

    In this case, obviously some trouble has to be taken to select a component as close to this as possible, and, if an a.c. null voltmeter is not available then it requires trial and error methods of soldering in nearest preferred values, not moving the setting of VR1, depressing S1, and timing the "on" period of LP2, this being repeated until 5 seconds is achieved.

    Resistors
    R1 $3.9 \mathrm{k} \Omega$
    R2 $470 \Omega$
    R3 $6.8 \Omega$
    R4 $1 \mathrm{k} \Omega$
    R5 $15 \mathrm{k} \Omega$
    R6 $10 \mathrm{k} \Omega$
    R7 ORP12 light dependent resistor

    ## Capacitors

    C1 $1,000 \mu$ F elect. 25 V
    C2 $220 \mu \mathrm{~F}$ elect. 25 V
    C3 see text (tantalum if possible)
    C4 $0.1 \mu \mathrm{~F}$
    Semiconductors

    | D1-D3 | 1N4001 (3 off) |
    | :--- | :--- |
    | D4 | 1N4148 |
    | TR1 | BC107 |
    | IC1 | 741 op. amp. |
    | IC2 | 555 timer |

    ## COMPONENTS . . .

    ## Miscellaneous

    FS1 1 amp fuse and panel mounting holder
    T1 $6-0-6 \mathrm{~V}$ at $1 \mathrm{~A}, 240 \mathrm{~V}$ primary mains transformer VR1 $50 \mathrm{k} \Omega$ lin. ganged tandem potentiometer (VR1a and VR1b)
    RLA1 $6 \mathrm{~V} 400 \Omega$ relay with normally open contacts capable of switching the enlarger lamp current
    LP1 6 V 0.36 W lilliput lamp
    LP2 main neon with built-in resistor
    S1 miniature push to make, release to break pushbutton

    ## S2 single pole on/off toggle switch

    Veroboard, connecting wire, case, mounting for R7, Perspex for diffuser, etc.

    ## USE

    Before use, two simple things must be arranged; they are, a method of easily switching off the darkroom safelight as this upsets the unit during measurement (the safelight can be used as normal during exposure, etc. but must be off during the measurement procedure) and a light dispersing filter made of finely sanded perspex sheet; this makes the light from the negative into a neutral grey and saves errors in judgement if looking for such an area on the negative.

    So, having done this the procedure is as follows:

    1. Switch S2 to turn on enlarger lamp.
    2. Place and focus negative.
    3. Swing diffuser into place (remove filter to fit diffuser).
    4. Stand sensor roughly centrally on baseplate illuminated area.
    5. Balance, using VR1, until display lamp LP1 is just out. (LP1 is fitted "naked" in a grommet so that in the dark even the dullest glow of the filament can be seen.) One should try and keep the balance roughly in the centre (or above) of
    the potentiometer span so that very short exposures of, say, 0.5 or 1 second are not produced; often this is achieved by "stopping down" on the enlarger lens.
    6. Remove the sensor from the baseplate, cover it (use a small plastic cup-this prevents the safelight "lighting" LP1 during exposure) and swing the diffiuser out of place.
    7. Switch off the enlarger lamp with $\mathbf{S} 2$ and turn on the safelight.
    8. Place the paper in the frame and depress S 1 ; the lamp will light for the required time and go out automatically. The print can now be removed and processed in the usual way.
    This may seem complex but it becomes automatic after a few sessions.
    The instrument is very hardy and needs no special attention other than allowing the sensor a few seconds to settle after exposure to bright light. No on/off switch is provided because the instrument will be required all the time the other darkroom equipment is used, and therefore, can be plugged in with other units and controlled by one master switch.

    # Ricidurt A SELECTION FROM OUR POSTBAG 

    Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the telephone.

    ## Tribute

    Sir-As one of your "founder readers" and, in more recent years, a contributor may I say how sorry I am to hear that Fred Bennett has relinquished his post as Editor.

    I would like to pay tribute to the way Fred has dedicated himself to the amateur electronics cause over the last dozen years and congratulate him on his expertise and far sightedness. I am privileged to have had the opportunity of working for him and to have shared private discussions with him. Above all things I think that Fred, through the pages of PE, inspired the amateur to get away from the "junk box" approach to amateur construction and over the years has elevated the standard of the magazine from "Camm's comic" to a periodical valued by amateur and professional alike.

    He wasn't right all the time! I remember one occasion in 1967 when he expressed the sentiment that ICs would
    "never catch on with the amateur". One only has to analyse the content of the magazine from that year onwards to see that he was quick to make up for this slanderous statement and bring the excitement and challenge of professional electronics into the dining room and kitchen.

    I would like to thank him, on behalf of all readers and contributors, for all he has done for our hobby and in particular for all the help, advice and encouragement he has given to me personally. It is good to know that he is continuing with your sister magazine (Everyday Electronics). You had better "watch it" because, knowing Fred, he'll be out to steal your readership! With all his energy channelled in that direction your loss is going to be the gain of all young people keen to get started on one of the most exciting, challenging and satisfying hobbies.

    ## M. Hughes Biggin Hill Kent.

    ## Production method

    Sir-Having tried various different methods for the production of printed circuit boards I have finally settled upon the following.

    A piece of Shire Seal or similar clear self-adhesive plastic is cut slightly larger than the circuit, which is then traced on to the plastic film with a ballpoint, felt-tipped or ink pen (I use a Rotring 0.2 mm drafting pen). Do not attempt to copy the circuit exactly, rather aim to include curves, component pads, etc., within straight lines, leaving as much copper as possible in the finished board. The backing is removed and the plastic film stuck carefully down on to the cleaned copper surface of the p.c.b., making sure that no air bubbles are trapped. The traced design is now cut around with a very sharp knife (e.g. a scalpel or craft knife with a scalpel type blade) and the plastic peeled off in the areas to be etched.

    A wipe with a cloth slightly dampened with white spirit (to remove any adhesive) and straight into the etching solution, the plastic film protecting the copper areas which are to remain. When the board is etched peel off the plastic film, wipe with white spirit, then scrub the board with soap and water to remove any residual etching solution.

    Although this system sounds time consuming it has proved itself admirabły on some very complex boards. The greatest advantage, however, is the ability to produce professional looking switch plates, or keyboards for mini electronic organs, since it is possible to produce sharp edged "keys" separated by extremely small gaps.

    Roger D Knight,
    Sheffield.
    
    

    Fig. 1

    ## UP-DOWN COUNTER

    This circuit was originally designed for counting turns on a hand operated coil winding machine, and automatically subtracting any removed turns. The circuit is triggered by a magnet sequentially passing over two reeds, the order determining the direction of count. A clock pulse will only be delivered after both reeds have been energised, eliminating any miscount due to contact bounce. The circuit shown in Fig. 1 works as follows.

    Energising the reeds momentarily will set flip-flops 1 and 2. IC2b detects that both flip-flops have been set, which fires the monostable IC4. The $\overline{\mathrm{Q}}$ output (pin 1) resets the flipflops, making them ready to accept further input pulses, and the $Q$ output (pin 6) clocks the counter.

    Only one reed is energised at any time, so only the output from the last reed to be activated will coincide with the output from IC2b.
    This is detected by either IC2a or IC2c, 'setting flip-flop 3 output either high or low. This is fed to the up-down inputs of the counter thus determining the direction of the count. The counters are connected for asynchronous operation and further stages may be cascaded by taking the ripple through output to the next stage.
    TR1 and associated components set the counter to zero when first switched on.

    Philip R. Landau, Southend-on-Sea,

    Essex.

    A selection of readers. original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

    Why not submit your idea? Any idea published will be awarded payment according to its merits.

    Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

    Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

    The
    and
    convenient breadboards on the
    market!
    They are the PROTO-BOARD*PB-6 and PB- 100 solderless breadboard kits.
    Buy them, and you are only minutes away from the first circuit.
    Contacts are made from non-corrosive nickel-silver alloy, and are reliable for more than 10,000 insertions.
    Contact resistance is a mere $0.4 \mathrm{~m} \Omega$, insertion force is typically 3ozs per lead, and interterminal capacitance is typically less than 5 pF .
    The kits are a must for experimental and development work in digital, audio, RF, video and beyond.
    Resistors, capacitors, transistors, DIP's, LED's, transformers, pots, jumpers and any other component with leads between $0.015^{\prime \prime}$ and $0.032^{\prime \prime}$ will fit the contacts.

    You can run circuits well beyond the recommended ambient operating temperature $\left(100^{\circ} \mathrm{C}\right)$ if you wish, because the plastic used in the PROTO-BOARD is rated to over $200^{\circ} \mathrm{C}$.
    The kits come complete with instruction manual, assembly hardware, binding posts, non-scratch feet and the appropriate number of preassembled sockets and bus strips.
    The sooner you order, the sooner you'll have that first circuit operating.
    
    -

    THE PB-6.630 SOLDERLESS CONTACTS. TAKES UP TO SIX 14-PIN DIP'S.OREQUIVALENT IN LARGER AND SMALLERIC'S FOUR 5-WAY BINDING POSTS. $6^{\prime \prime} \times 4^{\prime \prime}$ ONLY COSTS £10.47.
    
    continental specálies

    THE PB-100. 760 SOLDERLESS CONTACTS TAKES UP TO TEN 14-PIN DIP'S. OR EOUIVALENT IN LARGER AND SMALLER IC'S TWO 5-WAY BINDING POSTS. $6^{\prime \prime} \times 4.5$ " ONLY COSTS £13.50.
    
    specialties

    Ring us (01-8900782) with your Access, Barclaycard or American Express number and your order will be in the post that night. Alternatively, send a cheque, or postal order (don't send credit cards!) and it still only takes a few days.
    Otherwise ask for our complete catalogue. Our prices include VAT (8\%) and postage. All prices and specifications correct at the time of going to press.
    
    compact

    ## SUPERSOUND 13 HI-FI MONO <br> AMPLIFIER

    

    ## HARVERSONIC MODEL P.A.

    TWO ZERO
    An advanced sotid state general
    purpose mono amolitier suftabie
    for Public Address system, Disco. Guitar.Gram...etc Featuros
    individually controiled inputs (each
    
    input has a separate 2 stage pre-amp in input 1.5 mV into 47 k . Input 3 toomv into 1 meg. suifable for gram. funer or tape etc
    Full mixing facilities with tull range inputs plug tinto standard fack sockets on tront panel Output
    int socket on rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 20 watts P.M S Very aftractively finished
    purpose buil cabinet made from black vinyl covered steel with a brushed anodised aluminium front escurcheon. For ac mains operation $200 / 240$ volts Size approx 12 inn wide $\times 5$ in high $\times$
    7 indeep
    Special introductory price $£ 28 \cdot 00-£ 2.50$ carriage and packing
    Muliard LP1159 RF.IF module 470 kHz E2.25
    Full specification and connechon detalls supplied
    Pye VMF FM Tuner Head covering $88-108 \mathrm{MHz}$
    oulput 7 BV earth Supplied pre-aligned. with full cifcult
    diagram with precision-geared $F M$ gang and $323 P F .323 P F A M$ Tuning gang oniy $£ 3 \cdot 15-P \& P 35 p$.
    STILL AVAILABLE
    HA34 3 Valve Audio Amp. $4 \frac{1}{2} \mathrm{w}$ o/p. Ready built and tested $\mathbf{\varepsilon 8 . 5 0}$ £ 7.40 P \& P Pur' Amp. Similar to above but in kit form. $£ 8.00$
    Also HSL 'Four'

    MAINS OPERATED SOLID STATE
    AM/FM STEREO TUNER
     200. 240 V Mains operated
    Solid State FM AM Stereo Solld State F.M A.M Stereo
    Tuner Covering M.W A.M
    540 . $540-1605 \mathrm{KHz}$ Y. H.F. F.M $88-108 \mathrm{MHz}$
    Bullt-in Férrite rod aerial for M.W Full AFC and AGC on
    A. M and F.M Stereo Beacon AM and F.M Stereo Beacon
    Lamp Indicator Buit in PreLamp indicator buil in pre- voltage adjustabie by pre-sel control Max olo Voliage 600 mV A.M.S. into Z0K. Simulated Teak finish cabinel will march almo
    Limited number only at $£ 28 \cdot 00+£ 1 \cdot 50$ P. \& P
    VYNAIR \& REXINE SPEAKERS \& CABINET FABRICS app. 54 in . wide. Our price $£ 2.00$
    per yd. (min. 1 yd.). S.A.E. for samples.

    ## 10/14 WATT HI-FI AMPLIFIER KIT

    A stylishly finished monaural amplifier with an output of 14 watts
    from 2 ELass in push-pull. Super reproduction of both music thom 2 EL84s in push-pull Super reproduction of both music gram allow records and announcements to follow each other. Fully shrouded section wound output lransformer to match 3-15 $\Omega$
    speaker and 2 independent volume controls, and separate bass speaker and and treble controls are provided giving good litt and cut Valve and treble controls are provided giving good lift and cut Valve
    line-up 2 EL84s. ECC83. EFB6 and EZ80 recuier Simple
    insifuction booklet 25 p -S.A.E. (Fiee wilh parts). All parts sold separately. ONLY $£ 13-50$ P. \& P. $£ 1.40$. Also available ready
    buitt and tested $£ 18.00$ P \& $£ 1.40$.
    "POLY PLANAR'" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
     20W R.M.S ( 40 W peak) Impedance 8 onm only Response
    $40 \mathrm{~Hz}-20 \mathrm{KHz}$ Can be mounted on celings. walts. doors. under tables. elc, and used with or without battle Send S. A.E. tor Iull details. Only $£ 8.40$ each + P. \& P. (one 90 p , two $£ 1.10$ ). Now
    available in either 81 n round varsion or $41 \times 88 \mathrm{ln}$ rectangular. 10 available in either 81 n round version or $41 \times 8 \mathrm{in}$ rectangular. 10
    watts R.M.S. $60 \mathrm{~Hz}-20 \mathrm{KHz} \mathbf{H 5} 25$. P . \& P. (one 55 p , two 75 p .).

    SPECIAL OFFER. $6 \frac{1}{2}$ in tong throw, roll surround. ceramic magnet 8 ohm 10 watt
    £ 3.9575 P. \& P .
    2 in PLASTIC CONE HF TWEETER 4 ohm
    HIGH POWER HI-FI 8 ohm Dome Tweeter. 1 in voice coil.
    HIGH POWER HI-FI 8 onm Dome Tweeter. 1 in voice coil.
    Magnet size 3 in dia. Suitable for use in up to 50 watt systems.
    $\mathbf{E} 4.50$ each 60 P $\&$ \& $P$.

    ## HARVERSONIC SUPERSOUND

    ## 10 + 10 STEREO AMPLIFIER KIT

    A really first-Class Hi -Fi Stereo Amplitier Kit Uses 14 transistors includrng Siticon Transistors in the first tive stages on each
    channel resulting in even lower noise level with improved channel resulting in even lowet hoise level with improved controls Suntable for use with Ceramic or Crystal cartridges Very simple 10 modify to sult magnetic cartridge-instructions included
    Output stage for any speakers trom 8 to 15 ohms. Compact design. Output stage for any speakers trom 8 to 15 ohms. Compact design.
    all parts supplied including drilled metalwork, high quality ready all parts supplied including drilted metalwork, high quality ready marked, smart orushed anodised aluminium front panel with matching knobs, wire, solder nuts. bolts-no extras to buy Simple step by step instructions enable any constiuctor to build an
    amplitier to be proud of. Brief specification: $\rho$ ower output 14 watts ampliter to be proud intie specis. Frequency response +3 dB $12-30,000 \mathrm{~Hz}$ Sensitivity better than 80 mV intó $9 \mathrm{M} \Omega$ Full power bandwidth $=30 \mathrm{~B} \quad 12-95.000 \mathrm{~Hz}$ Bass Doost approx to $=12 \mathrm{~dB}$ Treble cu: approx. to -16 dB . Negative teedback 18 dB over main amp. Power requirements 35 V at A
    Overall size 12 in wide $\times 8$ in deep $\times 2$ zin high.
    Fully detailed 7 page construction manual and parts list free with kill or send KIT
    AMPLIFIEA KIT (Magnetic input comoonents 330 extra)
    POWER PACK KIT
    〔13.50 P \& P 80p
    ©5-50 P \& P. 95p
    $\qquad$
    SPECIAL OFFEA $=$ only $£ 23.75 \mathrm{Ha}$ all 3 items
    ordered at one time plue 81.25 P . \& P .
    HARVERSONIC STEREO 44
    A soltd state stereo amplifter chassis. with an output of 3-4 watts per channet into 8 ohm speakers. Using the latest high technology integrated circult ampliters with bull in short term thermal capacitor, fuse tone control. volume controls. 2 pin din speaker sockets and 5 pin din tape rec. play socket are mounted on the printed circuit panel Size approx 9 in E 2kin $\times$ lin max depth.
    Suppied brand new and tested with knobs, brushed anodised Supplied brand new and tested with knobs, brushed anodised
    aluminum 2 way escutchecn (lo allow ine amplitier to be mounted aluminium 2 way escuicheon (lo allow the amplitier to be mounted horizontally or vertically) at only $£ 9 \cdot 00-50 \mathrm{p}$ P \& P Mains
    transtormer with an output of $17 \mathrm{Va} . \mathrm{c}$ at 500 m a can de suppied at $£ 1.50$. $40 \mathrm{p} P$ \& $P$ if required. Full connection detals at $\mathrm{Li} \cdot 50$
    supplied

    ## STEAEO DECODER

    SIZE 2" $3^{\prime \prime} y^{\prime \prime}$ ready built. Pre-aligned and tested for 9.16 V neg, earth operation. Can be fitted to aimost any FM VHF radio or tuner instruchions (Inclusive of hints and thps) supplied. E6.00 plus 20p instruchions Stereo beacon light if required 40p extra.

    Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday Closed Wednesday.
    Prices and specifications correct at time of press. Subject to
    alteration without notice

    HARVERSON SURPLUS CO.
    (Dept. P.E.) 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel.: 01-540 3985

    PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO U.K. ONLY
    P. A ON OVERSEAS ORDERS CHARGED EXTRA.
    

    TRANSFORMERS $\quad 6-0.6 \mathrm{v} \quad 100 \mathrm{~mA}, 9.0-9 \mathrm{v} ~ 75 \mathrm{~mA}, 12.0 .12 \mathrm{v}$ $50 \mathrm{~mA} 75 p$ each. $12-0-12 \mathrm{v} 100 \mathrm{~mA} 95 \mathrm{p}$. 12 v . 500 mA 95 p .
    35 v 2 A AND 2.5 v 2 A TOROID $\mathrm{E} 2.75+35 \mathrm{p}$ \& P . 18 v 1 omp
    
    
     8 P. $25-0.25 v 2 A \subset 3.95 * 35 p$ P \& $P$. 100 volt LINE
     IRANSFORMER IS WOITS MAX - O.8.15NE $1.80+35 \mathrm{P}$ P 8 P . CHOKES 30p.
    CHOKES 30p.
    SWITCHES MIN. TOGGLE, SPST $12 \times 6 \times 9 \mathrm{~mm} 34 \mathrm{P}$ DPDT $12 \times 11 \times 9 \mathrm{~mm} 60 \mathrm{p}$. DPDT CENTRE OEF $+2 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}$ 4 P 2 W SLIDERS 20 p - 3 W SLIDERS 30 p . DPDT C/O Stretes 20 p. SPST 10 omp ROCKERS 12 p . R.S. SINGIE POLE C/O PUSH-BUTIONS 45p. ROLLER MICRO SWITCHES 15 p . MIN. MICRO SWITCHES $13 \times 10 \times 4 \mathrm{~mm} 20 \mathrm{p}$. G.P. KEYSWITCH ASSY. 3 SWITCHES $2-3$ WAY, $1-2$ WAY MULTIPOLE 35p. MIN. PUSH TO MAKE OR PUSH TO BREAK SWITCHES $16 \times \mathrm{mm}$ 15p. PLESSEY WINKLER STUD SWITCHES 2 BANK, I POLE 30 WAY ADJ. STOP 75 p
    DE.SOLDERING TOOIS, PLUNGER TYPE E4.95.
    TAPE HEADS-JAP. CASSETTE MONO 90p. CASSETTE STEREO E3.00. BSR MNI $330 \frac{1}{2}$ TRACK DUAL IMPEDANCE REC/PLAYBACK 50p. BSR SRP90 $\ddagger$ TRACK STEREO REC/PLAYBACK E1.95. TDIO ASSEMBLIES TWO HEADS
    TRACK REC/PLAYBACK STAGGERED STEREO WITH BUIIT ERASE PER HEAD $I$ IO ERASE PER HEAD E1.20. TAPE HEAD DEMAG 240v AC
    $\mathbf{£ 1 . 9 5 1 2 v} 750 \mathrm{~mA}$ CONTACT COOLED SEL.BRIDGE RECT isp E1.9512v 750 mA . CONTACT COOLED SEL. BRIDGE RECT. 1 Sp BUZZERS-GPO TYPE o. 12v 30p. 6.12v HOOTERS 50p. MIN. SOLID STATE BUZZERS 6.9 .12 OR $24 \cup 15 M A 75 P$.
    U.H.F. T.V. TRANSISTORISED PUSH BUTTON TUNERS U.H.F. T.V. TRANSISTORISED PUSH BUTTON TUNERS
    NOT VARICAP. NEW-ANOBOXEDE2.SO. POT CORES-ADJ. VINKOR 250-370 MICRO H 20p. 269 OR 500 MHLII HENRY CORES 10p eoch.
    METERS-100:0-100pO LEVEL METERS 75p. STEREO TUNING METERS $100 \mu$ O PER MOVEMENT E2.75. GRUNDIG BATT. LEVEL METER $1 \mathrm{~mA} 40 \times 40 \mathrm{~mm}$ E1.10. MIN. LEVEL METER $200 \mu \mathrm{a} 25 \times 15 \mathrm{~mm} 75 \mathrm{p}$. FERRANTI 1 mA PANEL METER $55 \times 70 \mathrm{~mm}$ £2.95. FERRANTI PANEL METER $100 \mu \mathrm{O} 55 \times$ 70 mm E3.50. FERRANTI 600 v AC METER E 3.95 .
    BOARDS-G.P.O. BOARD WITH 64, BC107 TYPE TRANSISTORS, 2 REED, 1 MERCURY RELAY ETC. £2.00. + 55 P P \& P. CANNON 50 WAY (GOLD INLAY) PLUGS AND SOCKETS, MALE OR FEMALE FREE. £1.50 PAIR. 465 KHz I.F. PANELS. 6 I.F.T. ' 30 p. BOARD WITH $1412 v$ N.O. REED RELAYS £2.40. BOARD WITH OV CIO REED RELAY \& 1.20. AEROSOLS-SERVISOL SWITCH CLEANER + IUBRICANT 8ozs $55 p$. FREEZER bOZs 50p. GEAR CLEANER \& TAR
    REMOVER $1402585 p$. REMOVER $1402585 p$.
     POSTAGE 30p UNLESS OTHERWISE SHOWN (EXCESS OOST AGE REFUNDED WITH ORDER). OVFRSEAS POST AT COST. AT INCLUDED IN ALL PRICES.

    ## RADIO CIRCUITS EXPLAINED

    by G. J. King Price: $\mathbf{£ 6 . 0 0}$ BEGINNER'S GUIDE TO INTEGRATED CIRCUITS by I.R. Sinclair Price: $\mathbf{E 3} .00$ RADIO \& TELEVISION SERVICING 1976/77 MODELS, by R. N. Wainwright

    Price: $£ 9.10$
    FOUNDATIONS OF WIRELESS \& ELEC TRONICS by M. G. Scroggie Price: $\mathbf{£ 4 . 2 5}$ T.V. TECHNICIAN'S BENCH MANUAL by G. R. Wilding Price: $\mathbf{5} 5.00$ OP-AMP CIRCUIT DESIGN \& APPLICATIONS bY J. Carr

    Price: $£ 4.00$
    THE CATHODE RAY OSCILLOSCOPE \& ITS USE by G. N. Patchett Price: $\mathbf{£ 3 . 8 5}$ BUILD YOUR OWN WORKING ROBOT by D. L. Heiserman

    Price: $\mathbf{£ 3 . 5 5}$
    TTLCOOKBOOK by D. Lancaster Price: $\mathbf{C 6} .55$
    HI FI YEAR BOOK 1978 by K. Ellmore
    110 ELECTRONIC ALARM PROJECTS
    FOR THE HOME CONSTRUCTOR bY
    R. M. Marston Price: $£ 3.25$

    * ALL PRICES INCLUDE POSTAGE *

    THE MODERN BOOK CO.
    BRITAIN'S LARGEST STOCKIST
    of British and American Technical Books
    19-21 PRAED STREET LONDON W2 INP

    # Semiconductor UPDATITEm FEATURING: tLo71 MC14412 UDN-6118A/6128A 

    ## BIFET UPGRADE

    Until recently, if you needed an op-amp with a very high input impedance you were forced to use either a discrete f.e.t. input stage with a conventional op-amp i.c., or to use an i.c. which contained an op-amp chip and an f.e.t. chip already wired together, such as the NE536. Both solutions were expensive and involved compromises on other parameters such as input offset voltage, and this meant that high input impedance was something we learned to do without unless it was absolutely essential.
    All this changed with the introduction of BIFET technology which for the first time allowed high quality matched junction f.e.t.s to be integrated on the same chip with other conventional bi-polar op-amp components. Since its introduction the BIFET process has mushroomed in popularity, and today there are several BIFET op-amps, with assorted characteristics, to choose from, all at knock down prices. One example which caught my eye because of its immediate practical applications, is the TL071 from Texas Instruments.

    The TL071 is optimised for use in hi-fi amplifiers, and has the advantage that it is a plug-in replacement for the 741 types which have been widely used in the past. Using the TL071 to replace 741's in past, present or future designs, will improve system noise figures, and gives the advantage of a very high input impedance where this is useful.
    Texas have proved their point about plug-in replaceability by upgrading the performance of their own popular "Texan" amplifier with three TL071 devices in place of the original 741 's, a substitution which required no other component changes, and which costs very little.
    For newer designs Texas offer the TL072 dual and the TL074 and TL075 quads, all of which have identical performance characteristics to the TL071 but with higher circuit density.

    The TL071 family are available in 8 or 14 pin plastic dual in line packages, and operate from standard op-amp supply rails. For the hi-fi buff, the typical noise
    figure of the TL071 family is only 18 nanovolts per root Hertz, and when you consider that a 100 kilohm resistor can introduce 40 nanovolts per root Hertz, you can see that these chips are pretty quiet.

    ## CMOS MODEM

    When you want to send binary data to a distant terminal you have to resort either to radio or to telephone type lines. In either case sending your data in the form of an interrupted voltage or current is not such a good idea because such a simple communication link would have no protection against the inevitable build up of noise signals.
    To prevent the corruption of transmitted binary data a more sophisticated scheme must be used, so that 0 s and 1 s on the line can be filtered out from all the other rubbish at the receive end.
    One common way to improve matters is to employ Frequency Shift Keying (F.S.K.) where the link is modulated with two different audio tones; one for a logic 1 signal and another for a logic 0 signal. This system has the advantage that it is compatible with existing speech communication links such as Post Office telephone lines, regardless of whether the links employ wire, multichannel cables, microwave links, or sateliites

    A further advantage of F.S.K. is that since audio frequency tones are used to transmit the data, it is not strictly necessary to make electrical connections to telephone lines at all, signals can be coupled acoustically by placing a speaker/ microphone combination in intimate contact with a standard telephone handset.

    Commercial equipment of this type is available and all you need to couple your microprocessor system to any remote location are a couple of boxes called "Modems", which will both send and receive F.S.K. data. Preset Modems are rather costly and are stuffed full of i.c.s, filters and discrete components, but this is all set to change with the introduction of the Motorola MC14412 "Universal-

    Low-Speed-Modem' chip.
    The MC14412 is a CMOS 16 pin dil package, and yet it contains all the digital and analogue circuitry required to transmit serial binary data as a sine wave F.S.K. signal, and to turn similar received signals back into logic levels.

    A typical use for this component is as an interface between the U.A.R.T. output of a microprocessor system and a wide variety of communication links, including acoustic couplers used with standard P.O. telephones. Data rates of up to 600 bits per second can be achieved, and transmitted carrier frequencies can be set to conform to either the U.S. standard or the European CCITT standard.

    Under logic control this device will also send a special 100 Hz tone to disable the line echo suppressors often used with long distance telephone systems so that they cannot corrupt the transmitted data

    The number of extra components required to complete a working system is small, the timing of the MC14412 being set by means of a 1 MHz crystal.

    ## FLUORESCENT DISPLAY DRIVER

    If you like the distinctive green characters produced by those fluorescent displays often found on pocket calculators, you may be interested to hear that Sprague have just introduced a couple of chips to take care of all the display driving functions for this type of display. The two devices coded UDN-6118A and UDN-6128A can each act as either digit or segment drivers in a multiplexed display scheme. The UDN-6118A can be driven from TTL or 5 volt CMOS whereas the UDN-6128A is intended for use with PMOS or CMOS circuits operating from 6 to 12 volt supplies.

    The new devices are housed in 18 pin plastic packages, and will operate from supplies of 25 to 85 volts. There are some very practical fluorescent display panels now available, and their continued use in calculators means that they have certainly not been made obsolete by l.e.d.s so if you do like them, you can now consider using them for one of your own pet projects!
    

    There is currently much controversy in the hi-fi world over the relative merits of "linear phase" or "minimum phase'" loudspeakers. In a linear phase loudspeaker, there is at least an approximation to phase coherence over the frequency range covered, so that low notes and high notes are reproduced in phase.

    One of the first patents on linear phase systems to appear is BP 1487176 from Bang \& Olufsen of Denmark. The patent covers the ''filler driver' technique that is now an integral part of B \& O loudspeakers.

    Conventionally, a loudspeaker contains at least two transducers, with an electronic crossover routing high frequency signals to one transducer (the tweeter) and low frequency signals to the other (the woofer). If the crossover action is gradual, involving first order pass filters only, each transducer must operate well outside its normal frequency range without. distortion or break-up. This is difficult to achieve. If the crossover filters are of higher order and cut off more sharply, there is a far greater signal disturbance unless the transducer transfer functions are corrected by meticulous and expensive design.

    The B \& O proposal, which demonstrations have shown to work well, is that a third and extra transducer unit (operating in the range between the woofer and the tweeter) should be employed to fill the acoustic gap left between the other two, and provide an overall transfer function which is constant.

    Fig. 1 shows how a gap centring on crossover frequency $f_{0}$ is left between the curves $a$ and $b$, representing the characteristics of the high and low pass filters of a crossover circuit. Curve c represents the transfer function of the auxiliary or filler driver, which fills in the gap.

    Fig. 2 shows a three-way system, using three transducers or drivers of 4 ohms each and a crossover frequency of 2 kHz . Woofer 2, tweeter 4 , and filler driver 8 are associated with simple pass filters based, on components for which representative values are given in the patent. It is suggested that adoption of the invention enables relatively inexpensive transducer units to be used, with minimal loss of quality, because the acoustic correction provided by the auxiliary driver throws far less demand on the design and performance of the woofer and tweeter. For a three-way system (woofer, tweeter and midrange unit) filler drivers are used between each acoustically adjacent pair.
    

    BP 1487 360—Ito-Patent AG. Method of automatically orientating and controlling a vehicle. A self-positioning vehicle, for instance a highly sophisticated invalid carriage, which uses electro-optical distance sensing for long distances, and electro-acoustic or electromagnetic sensing for short distances. Computer evaluation of the long and short distance sensing enables the vehicle to position itself in a room and avoid stairs, etc.
    BP 1485 682—General Electric Co. Audio amplifier. Details of an i.e. to provide audio amplification with reduced idling current, achieved by a novel combination of feedback loops.

    ## More power per f from Stirling

    ## 4 CHANNEL MIXER/CONTROL UNIT \& POWER SUPPLY

    By designing and manufacturing in our own Essex factory and selling direct to YOU the customer, we believe we have produced just about the best value ever in mixer/control equipment. You can buy the Disco 2 Unit assembled, tested and ready to connect up and use at once, or build your own unit using Stirling Sound Basic Modules. Either way you stand to save - and look at the advantages you get - sensibly arranged controls fon the built unit), proper DJ/PA facilities and RELIABILITY.

    - INPUTS - Left deck, right deck, mic. and aux
    - INPUT IMPEDANCE -47 K ohms
    - POWER SOURCE - 220-240V. A.C. Mains
    - CONTROLS - Mains on-off, master volume, base $\pm 15 \mathrm{db}$, treble $\pm 15 \mathrm{db}, L$ and $R$ mixing, $L$ and $R$ motor switches
    selector switch for P.F.L. (Pre-Fade Listening), headphone volume, mic, vol., aux. vol., LED indicators on main and decks on/off switches.
    - HEADPHONE AMPLIFIER - Powerful 2 watts into 8 ohms; separate vol. contol.
    - TERMINATIONS - Five $\frac{1^{\prime \prime}}{}$ jack sockets - 2 input, 2 output, headphones.
    - SIZE $-23 \frac{1}{4}^{\prime \prime} \times 3 \frac{34^{\prime \prime}}{} \times 2 \frac{1}{2}^{\prime \prime}$ max. depth to rear (plus separate power unit). Panel in matt black with controls sensibly grouped for easy handling.
    Suggested Stirling Sound power amps with heat sinks and power supply units -140PH £18. 160PH £22. 1100 PH £26.75
    £39.95
    POST FREE in U.K, and INC. V.A.T.
    Kit of basic modules less power pack, pots, 5 jack sockets, and 3 mains switches, but with fron
    $£ 21.00$

    POST FREE in U.K. and INC. V.A.T. READY BUILT OR D.I.Y. MODULES

    ## READY BUILT

    Prices inc. V.A.T. but NOT cost of carriage)
    SOUND-LIGHT UNITS
    SSTL 3/250B - 3 channels, 250 w . each . SSTL $3 / 1000 \mathrm{~B}-\mathbf{3}$ channels, 1000 w , each.
    INTEGRATED POWER AMPS
    In strongly made metal cases, complete
    In strongly made metal cases, complete
    POWER AMP $40-40 \mathrm{w}$. r.m.s. $/ 4$ ohms. 2 ch. mixer

    POWER AMP 60-60w. r.m.s. $/ 4$ ohms, 2 ch. mixer POWER AMP $100-100 \mathrm{w} . \mathrm{r} . \mathrm{m} . \mathrm{s} / 4 \mathrm{ohms}, 4 \mathrm{ch}$. mixer 100w. SLAVE AMP.

    LOUDSPEAKERS
    Disco 25-25w. r.m.s. in cabinet, $20^{\prime}$ lead
    Disco 50-50w. r.m.s. in cabinet $20^{\prime}$ lead
    C25.95
    Disca.100-100w. r.m.s. in cabinet, $20^{\prime}$ lead Ampower $50-50 \mathrm{w}$. amp \& speaker in cabinet Ampower 100-100w. amp \& speaker in cabinet
    548.00 £ 85.00 550.00
    $£ 23.95$
    $£ 39.95$
    $\begin{array}{r}£ 59.95 \\ \\ \hline 55.95\end{array}$
    $\mathbf{5} 5.95$
    $\mathbf{6} 0.00$
    £80.00

    ## Complete Disco with Disco 2 console and

    Ampower 50.
    itto with Disco 2 console \& two Ampown 50 .......... and ditro with Disco 2 console \& one Ampower 100 210.00 ditto with Disco 2 console \& two Ampower 100s ....... f175.00 f250.00 Camiage in U,K. please add for sstl unit f1; for power mps $40 \& 60$ £1.50; for power Amp. $100 \& 100 \mathrm{w}$ slave Cons disco 25 or 50 £2.00. Ampower 50 and 100: Disco Console, disco 25 or $50 £ 5.00$. Complete discos. $£ 10$.

    EVERYTHING RIGOROUSLY TESTED AND GUARANTEED
    

    ## POWER AMPS.

    Ready assembled on P.C.Bs. tested and guaranteed. Easy SS. 103 1.C. amp. 3 watts R.M.S. using $20 \mathrm{~V} / 8 \Omega$ or $14 \mathrm{~V} / 4 \mathrm{\Omega}$. Input 100 mV . 5 watts R.M.S. into 30 using 13.5 V . Sensitivity -30 mV . THD - $0.3 \%$. 10 watts R.M.S. into $4 \Omega$ using 24 V . Sensitivity - 60mV. THD - $0.3 \%$. $3 \frac{1}{4} \times 2 \times 1$. 20 watts R.M.S. into $4 \Omega$ using 34 V . Sensitivity-80mV.THD - 0.3\%. 25 watts A.M.S. into $8 \Omega$ using 50 V . Sensitivity - 140 mV . Distortion better than 70 dB Sos $8 \Omega \mathrm{~N}$ better than TOdB 40 watts R.M.S. into $4 \Omega$ using 45 V . Sensitivity - 300 mV . Distortion 64 witr $P$ MS $\times 1$ 64 watts R.M.S. into $4 \Omega$ using 50 V . typically $0.1 \% 5^{n} \times 3 \frac{1}{n}^{n} \times 11^{n}$ 100 watts R.MS into 40 uslo $70 \mathrm{~V} / 2 \mathrm{~A}$. Input sensitivity -500 mV . Distortion at half-power typically $0.1 \% 5^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{} \times 1 \frac{1^{\prime \prime}}{}$................

    ## POWER SUPPLIES

    Every Stirling Sound Power Unit is tested and guaranteed under working conditions before despatch. All units except SS. 312 include a stabilised low voltage take-off point (13-15V) for pre-amp, tone control, radio tuner, etc. Outputs quoted are minimal unloaded ratings.

    | SS. 312 | 12V/1A | £6.60 |
    | :---: | :---: | :---: |
    | SS. 318 | 18V/1A | £6.95 |
    | SS. 324 | $24 \mathrm{~V} / 1 \mathrm{~A}$ | £7.65 |
    | SS. 334 | 34V/2A | £8.75 |
    | SS. 345 | $45 \mathrm{~V} / 2 \mathrm{~A}$ | £10.75 |
    | SS. 350 | $50 \mathrm{~V} / 2 \mathrm{~A}$ | £11.75 |
    | SS. 360 | 60V/2A | £12.75 |
    | SS. 370 | 70V/2A | £14.75 |

    SS.310/50 Stabilised power supply unit with variable output from 10 V to $50 \mathrm{~V} / 2 \mathrm{~A}$. Short circuit protected
    £17.75
    SS. 300 Power stabilising unit variable from 10 to $50 \mathrm{~V} / 8 \mathrm{~A}$ for adding to unstabilised supply units

    ## CONTROL/PRE-AMPS.

    - UNIT ONE

    Combined stereo pre-amp \& active tone control unit 50 mV in for 200 mV out 1016 V operation Bass +15 dB . Treble +15 dB ; Balance control Volume control. Ceramic PU. radio or tape inputs WITH FREE CONTROL PANEL FASCIA .......£9.00 - UNIT TWO

    Controls as UNIT ONE but for magnetic cartridge input. SmV in - CONTROL PANEL FASCIA For above

    - SS. 100

    Basic active stereo tone control module to provide $\pm 15 \mathrm{~dB}$ on bass at 30 Hz and on treble at 10KHz.. SS. 101
    Stereo pre-amp suitable for ceramics, tape, radio, etc.
    £2.75

    - SS. 102

    Stereo pre-amp for mag. pick-ups ................. 4.45

    STIRLING SOUND PRODUCTS ARE MADE IN OUR OWN ESSEX FACTORY AND SOLD DIRECT TO YOU. THE CUSTOMER. SEND NOW FOR YOUR FREE CATALOGUE SHEETS

    WHEN ORDERING. All goods sent post free in U.K (except certain heavy ready built items) and ALL INCLUDE V.A.T. Prices subject to alteration without notice. E. \& O.E. S.A.E. with enquiries, please.

    220-224 West Road, Westcliff-on-Sea
    Telephone: Southend (0702) 351048.

    ## stirling

    TO STIRLING SOUND. 37 VANGUARD WAY. SHOEBURYNESS, ESSEX

    ## Please send

    (or as list attached) for which I enclose $£$
    NAME .
    ADDRESS
    ACCESS OR BARCLAYCARD - JUST LET US KNOW YOUR No.
    

    ## VALVE MAIL ORDER CO.

    Climax House
    Fallsbrook Road, London SW16 6ED
    SPECIAL EXPRESS MAIL ORDER SERVICE

    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    |  <br>  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


    ## BARG AIN PARCELS SAVE POUNDS

    7Huge fuantities of electronic components must be clecred as spoce required. 1000 's of capocitors.
    resistrins transistors. Ex equipment panels etc. covered in vaboble components. No time to sort.
     Must shll by weight $\mathbf{5 3 0 . 0 0}$ lbs - £4.95; i4lbs - $\mathbf{E 7 . 9 5}$; 28
    Handy Packs -BARGAIN PACKS
    4 aluminium boxes $128 \times 44 \times 38 \mathrm{~mm}$ ideal for New UH.F. transistor TV tuners 4 pushbutton signal injectors. etc. £ 1.00
    Self fluxing enamelled copper wire 18 \& 22
    wg on 2 or reels. 2 for $£ 7.70$
    100 minioture reed switches ideot for burglor
    diarms, model railways, etc. $£ 3.30$
    $15 \times 2$ poter reed retops en pherate of
    12 ohts $E 2.45$.
    $6 \times \delta$-pole 12 volh reed reloys on bogrdele 2.45
    Nigh-quatin compurer ponets smothered in
    2
    type E2.50
    Rotary type with slaw motion drive $£ 2.50$
    Aluminium TV coox plugs. 10 for $£ 1.00$
    Miniature $5 K \log$ pots with s $p$ switch. 4 for $£ 1$ Hardware Pocks each contoining 100 's a items including. BA nuts and balts. Nylan Self-tapping, Posidrive. "P" clips. Cable clamps, Fuse holders, Spire nuts etc, etc. El per pound 100 assorted " $p$ " clips $£ 1$.

    ## DE LUXE FIBRE GLASS PRINTED CIRCUIT ETCHING KITS

    includes 150 sq. ins. copper clad $1 / 9$ baard, I lb ferric chloride, 1 dalo etch resist pen, abrasive
    cleaner, 2 mini drill bits, etch tray and instructions / only $£ 5.30$
    SO sq. in tibre glass board. ...................... 22 . 50 Germaum diodes deal for crystal sets
    Dalo pen ........ ....................................90p etc. £1.
    Werric chioride to mil spec ...............icl.25 5 lbs ferric chloride to mil spec $£ 5.00$
    Miniature marns tronsformers, fully shrouded.
    240 v . in $6.0-6 \mathrm{v}$ of 100 MA . out. Ex. New
    plug on ingu-ant short teads on output.
    plug on
    £1.20.
    Transisiar circuit bard, range can
    Cansistar circuit board, range can
    hol, connection chart and tamper proo
    swint. Mounted in smori aluminum cosps
    with grtike Brond new and boxed $£ 5.25$
    Semicond uctor burgown
    TH3 Thermistors. 10 for
    100 new \& marked silicon and germonium
    etc. 13.95
    200 new 8 morked transistors. including
    2N3055. AC128, BFY 50 , BDI 31 , etc. f 6.95
    100 muxed diodes 1 N 4148 , etc. f1. $20-$
    100 mixed diodes includina iener, power an
    bridge Types E3. 30
    oridge rectilier $100 \times 2.5$ omp. 4 tor E1. $\quad \begin{aligned} & 100 \text { mixed electralyines } £ 2.20 \\ & 100 \text { mied wirewounds } £ 2.20\end{aligned}$
    Brand new ITI 25 kv triplers for Decco 200 printed curcuit resistors El 1.00
    Brodford chassis $£ 2.50$. 5 for $£ 10$. 25 mixed pots $\$$ presets E 1.00
    40p $P$ \& $P$ ON ABOVE ITEMS. SEND CHEQUE OR POSTAL OROER
    WITH ORDER TO SENTINEL SUPPLY, DEPT PE, $149 A$ BROOKMLLL ROAD, DEPTFORD SE8

    | 4 $\frac{1}{4} \mathrm{in} \times 3 \frac{1}{4} \mathrm{in}$ METER. $30 \mu \mathrm{~A}, 50 \mu \mathrm{~A}$ | 2 in $\times 2$ in meters $1 \mathrm{~mA}, 500 \mathrm{~mA}$, £3.65. 16p P. \& P. <br> $60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ $500 \mu \mathrm{~A}$ and 1 mA VU meter, $\mathbf{~ E 4 . 4 6 .}$ 11pP.\&P. <br> 6 V BUZZERS. 50 mm diameter 30 mm high, 52p. 15p. P. \& P. |
    | :---: | :---: |
    | MICROPHONES FOR <br> TAPE RECORDERS <br> DM228R 200 ohm with 3.5 and 2.5 mm Jack Plugs $\quad £ 1.30$ DM229R 50K with $3 \cdot 5$ and 2.5 mm Jack Plugs $\quad £ 1.60$ DM18D 200 ohm with 5 and 3 pin Din Plugs <br> 81.75 Postage on above microphones 11p | MULTIMETER |
    |  | Model IT1-2 |
    |  | $\begin{aligned} & \text { 20,000 ohm/volt, } \\ & \text { £10.38. 33p } \end{aligned}$ |
    |  | P.\&P. |
    |  | TRANSFORMERS Primary 240 V |
    | MICROPHONEModel UD-130 Frequencyesponse $50-15,000 \mathrm{c} / \mathrm{s}$.mpedance Dual 50 K and00 ohms, $88.02 . \quad 26 p$ | 6-0-6V 100mA ¢0.75 |
    |  | $9-0-9 \mathrm{~V} \quad 75 \mathrm{~mA} \quad$ co.75 |
    |  | 12-0-12V $50 \mathrm{~mA} \quad \mathrm{CO} .85$ |
    |  | 12-0-12V $100 \mathrm{~mA} \quad$ \&1.05 |
    |  | Post on above transformers 30p. |
    |  | 9-0-9V 1A $\quad 11.80$ |
    |  | 12-0-12V 1A $\quad$ ¢2.15 |
    |  | 15-0-15V 1A E2.36 |
    |  | 30-0-30V 1A E3.10 |
    |  | 6.3V $\quad 1 \frac{1}{2} \mathrm{~A}$ ¢1.80 |
    |  | 6-0-6V $\quad 1 \frac{1}{2} \mathrm{~A} \quad \mathrm{E2} \cdot \mathbf{2 0}$ |
    |  | Post on above transformers 45p. |

    All above prices include V.A.T. Send 40 p for new fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.

    ## M. DZIUBAS

    158 Bradshawgate • Bolton • Lancs. BL2 1BA

    # 1 

    The HY5 is a mono hybrid amplifier ideally suited for all applications. All common connector is supplied with each pre-amplifier.
    FEATURES: complete pre-amplifier in singte pack multi-function equalisation. low noise. low distortion. high overload, two simply combined for stereo
    APPLICATIONS: hi-fi, mixers, disco. guitar and organ. public address R.M.S Active Tone Controls-treble $\pm 12 \mathrm{~dB}$ at 10 kHz . bass $\pm 12 \mathrm{~dB}$ at 100 Hz . Distortion- $01 \%$ Price $\mathbf{5} 5 \cdot 22$ + 65p VAT. P. \& P. free
    HY5 mounting board B.1. 48p + 6p VAT. P. \& P. free beginner in audio who wishes to use the most up to date technology available
    FEATURES: complete kit. Iow distortion. short. Open and thermal protection, easy to build
    APPLICATIONS: updating audio equipment. gutar practice amplifier. test amplifier, audio oscillator SPECIFICATION: Output Power-15W RM S into 8 O Distortion- $01 \%$ at 15 W Input Sensitivity500 mV Frequency Response- $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$
    Price $\mathbf{L 5} \cdot \mathbf{2 2}+65 p$ VAT. P. \& P. free external components
    APPLICATIONS: medium power hi-fi systems. low power disco. gutar amplifier 4 -16 $\Omega$ Distortion- $004 \%$ at 25 W at 1 kHz Signal Noise Ratio- 75 dB . Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$ Supply Voltage $\pm 25 \mathrm{~V}$ Size- $105 \times 50 \times 25 \mathrm{~mm}$
    Price $\mathbf{1} 6 \cdot 82+85 p$ VAT. P. \& P. free exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design. connections. no external components
    APPLICATIONS: hi-fi high quality disco. public address monitor amplifier. guitar and organ $45 \mathrm{kHz}-3 \mathrm{~dB}$ Supply Voltage $\pm 35 \mathrm{~V}$ Size $-114 \times 50 \times 85 \mathrm{~mm}$
    Price $£ 15 \cdot 84+\Sigma 1 \cdot 27$ VAT. P. \& P. free hi-fi performance.

    ## components

    APPLICATIONS: mi-fi disco monitor, power slave. industrial, public address 4-16ת Distortion- $0.05 \%$ at 100 W at 1 kHz Signal Noise Ratio- 96 dB Frequency Response- 10 Hz $45 \mathrm{kHz}-30 \mathrm{~B}$. Supply Voltage- $\pm 45 \mathrm{~V}$. Size- $114 \times 50 \times 85 \mathrm{~mm}$
    Price $223 \cdot 32$ + $£ 1.87$ VAT. P. \& P. free power hi-fidelity power module. APPLICATIONS: public address. disco, power slave industrial at 240 W at 1 kHz Signal Noise Ratio- 94 dB . Frequency Response- $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 3dB Supply Voltage $- \pm 45 \mathrm{~V}$ Input Sensitivity -500 mV Size- $114 \times 100 \times 85 \mathrm{~mm}$
    Price $£ 32 \cdot 17+£ 2.75$ VAT. P. \& P. free
    POWER SUPPLIES: PSU30-suitable for two HY30s $\mathbf{2 5} \cdot \mathbf{2 2}+65$ PVAT. P. \& P. free. P8U50-suitable for two HY50s $\mathbf{2 8}$ - $82+$ 85p VAT. P. \& P. free. P者U70-suitable for two HY120s E13-75 + 1 10 VAT. P \& P. free. PSUg0-suitable for one HY200 £12.65 + £1.01 VAT. P. \& P. free. P8U180-suitable for two HY200s or one HY400 $\mathbf{\Sigma 2 3} \cdot \mathbf{1 0}+\mathrm{E} 1.85$ VAT. P. \& P. free. function is achieved either by a multi-way switch or direct connection to the appropiate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C.

    SPECIFICATION: Inputs-magnetic pick-up 3 mV . ceramic pick-up 30 mV . tuner 100 mV . microphone 10 mV . auxilary $3-100 \mathrm{mV}$. input impedance $47 \mathrm{k} \cap$ at 1 kHz Outputs-tape 100 mV : main output 500 mV at 1 kHz . signal/noise ratio 68 dB . Overload- 38 dB on magnetic pick-up. Supply Voltage- $\pm 16-50 \mathrm{~V}$

    The HY30 is an exciting New kit from I.L.P. It features a virtually indestructible 1.C. with short circuit and thermal protection. The kit consists of: I.C., heatsink, P.C. board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the

    The HY50 leads I.L.P. s total integration approach 10 power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World FEATURES: lów distortion integral heatsink only five connections 7 amp output transistors no

    SPECIFICATION: Input Sensitivity- 500 mV Output Power- 25 W R.M S into 8 . Load Impedance-

    The HY120 is the baby of I.L.P. s new high power range. designed to meet the most

    FEATURES: very low distortion. Integral heatsink load line protection, thermal protection five SPECIFICATION: Input Sensitivity- 500 mV Output Power -60W R M.S. Into 8 ח Load Impedance-$4-16 \Omega$. Distortion- $004 \%$ at 60 W at tkHz Signal Noise Ratio-90dB Frequency Response- 10 Hz -

    The HY200 (now improved to give an output of 120 watts) has been designed to stand the most rugged conditions such as disco or group while still retaining true
    very low distortion load line protection integral heatsink no external

    SPECIFICATION: Input Sensitivity- 500 mV . Output Power-120W R M.S into $8 \cap$ Load Impedance-

    The HY400 is I.L.P s Big Daddy of the range producing 240 W into $4 \Omega^{\prime}$ It has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended The amplifier includes all the qualities of the rest of the family to lead the market as a true high

    FEATURES: thermal shutdown very low distortion. load line protection. no external components
    SPECIFICATION: Output Power-240W R.M S into $4 \cap$ Load Impedance-4-16n Distortion-0 $1 \%$
    I.L.P. Electronics Lid., Crossland House, Nackingion, Canterbury, Kent CT4 7AO
    

    PRODUCTS

    Please supply
    Total Purchase price
    I Enclose: Cheque $\square$ Postal Orders $\square$ Money Order $\square$ Please debit my Access account $\square \quad$ Barclaycard account $\square$
    Account number.
    Name and Address
    > I.L.P. Electronics Ltd. Crossland House, Nackington, Canterbury Kent CT4 7AD

    Tel (0227) 63218 NASCOM I

    HARDWARE FEATURES:
    \& SUPPLIED IN KIT FORM FOR SELF-ASSEMBLY.
    \& FULL DOCUMENTATION SUPPLIED.
    $\Leftrightarrow$ INCLUDES PRINTED CIRCUIT BOARD.
    \& FULL KEYBOARD INCLUDED.
    \& INTERFACES TO KEYBOARD, CASSETTE RECORDER \& T.V.
    \& $2 \mathrm{~K} \times 8 \mathrm{RAM}$
    ~ $1 \mathrm{~K} \times 8$ EPROM MONITOR PROGRAM
    \& POWERFUL Z80 CPU.
    म 16 LINE $\times 48$ CHARACTER DISPLAY INTERFACE TO STANDARD, UNMODIFIED T.V. SET.
    \& ON BOARD EXPANSION FACILITY FOR ADDITIONAL 16 LINES I/O.
    $\leadsto$ TOTAL EXPANSION TO $64 \mathrm{~K} \times 8$ MEMORY.
    $\approx$ TOTAL EXPANSION TO 256 INPUT PORTS AND 256 OUTPUT PORTS.

    ## SOFTWARE FEATURES:

    ¿ $1 \mathrm{~K} \times 8^{\prime}$ 'NASBUG' PROGRAM IN EPROM.
    \& PROVIDES 8 BASIC OPERATOR COMMANDS INCLUDING SINGLE STEP.
    \& EXPANDABLE SOFTWARE SYSTEM VIA ADDITIONAL USER PROGRAMS IN RAM OR EPROM.
    

    COST £197.50 PLUS 8\% VAT
    Phone or write for details to: 92 BROADSTREET, CHESHAM, BUCKS.

    TELEPHONE: (02405) 75154.
    
    

    ## TUNEIN TO THE WORLD OF MICROPROCESSORS <br>  <br> Plays <br> Greensleeves <br> God Save the Queen <br> Rule Bratannia <br> Land of Hope and Glory Oh Come All Ye Faithiu Oranges and Lemons Westminster Chimes Sailor's Hornpmpe <br> Stethovens "Fate Knocking <br> The Marsetlarse <br> Mozart <br> Wedding March <br> -These tunes play longer it the push buttonis kept fressed <br> - Handsome purpose built ABS cabinet <br> - Easy to build and install <br> - Uses Texas Instruments TMS1000 microcomputer <br> The Stars \& Supes <br> Beethoveris Ode to Joy Willam Tell Overtur <br> Twinkle. Twinkle Liftle Star Great Gate of Kiev <br> Marytand <br> Deutschtand uber Alles <br> Buch <br> Colonel Bogie <br> 

    - Absolutely all parts supplied including I.C socket
    - Ready drilled and legended PCB included
    - Comprehensive kit manual with full circuit details
    - No previous microcomputer experience necessary
    - All programming permanently retained is on chip ROM
    - Can be built in about 3 hours!
    - Runsoff 2 PP3type batteries
    - Fully Guaranteed

    The Chroma-Chime is the world's first electronic musical door chime which uses a pre-programmed microcomputer chip to generate tunes. Instead of boring old buzzes, dings or dongs, the Chroma-Chime will play one of its 24 well known tunes from its memory using its tiny 'brain' to all the music synthesizing! Since everything is done by precise mathematics, it cannot play the notes out of tune.

    The unit has comprehensive built-in controls so that you can not only select the 'tune of the day' but the volume, tempo and envelope decay rate to change the sound according to taste.

    Not only visitors to the front door will be amazed, if you like you can connect an additional push button for a back door which plays a different tune!

    This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.
    The CHROMA-CHIME is exclusively designed by

    ## GHROMATIBOnles

    River Way, Harlow, Essex.

    ## GREENWELD

    443 Millbrook Road Southampton SO1 DHX Tel:CO7

    BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

    - SAVE ON TIME - No dolays in waiting for parts to come or
    shops to open!

    SAVE ON MONEY - Bulk buying means lowest prices - just com pare with others!
    HAVE THE RIGHT PART -'NO guesswork or substitution necessary!
    ALL PACKS CONTAIN FULL SPEC BRAND NEW, MARKED DEVICES SENT BY RETURN OF POST. VAT INCI IISIVF PRICFS
    K001 50 V ceramic plate capacıors $5 \%$. 10 of each value 22 pF to 100 pF Total $210 . \varepsilon 3.35$
    330 Extended range. 22pF to $0.1 \mu \mathrm{~F}$ 330 values $\mathbf{~} 4.90$
    K003 Polyester capacitors. 10 each of these values: $0.01,0.015,0.022$ $0.033,0.047 .0 .068,0 ., 0.15 .0 .22$ $0.33,0.47 \mu \mathrm{~F}$. 110 altogether for $£ 4.75$ Ko04 Mylar capacitors. min 100 V type. 10 each all values from 1000p $K 005$ Polysiyrene capacitors. Koos polystyrene capacitors. 10 E12 series $5 \% 160 \mathrm{~V}$. Total 370 to \&12.30
    K006 Tantalum bead capactiors. 10 each of the following: $0.1,0.15,0.22$ $0.33,0.47,0.68,1,2.2,3.3,4 \cdot 7,6.8$ $47 / 6100 / 3$. Total 170 tarts for $£ 14.20$ $K 007$ Electrolytic capacitors 25 V working, small physical size. 10 each of these popular values: 1, 2.2. 4.7 $10,22,47,100 \mu \mathrm{~F}$. Total 70 tor $£ 3.50$ K008 Extended range, as above, also including 220, 470 and $1000 \mu \mathrm{~F}$. Tota 100 for 55.90
    K021 Miniature carbon film 5\% resistors, CR25 or similar. 10 of each value from 10 R to 1 M . E12 series. Total 610 resistors, $\mathbf{E 6 . 0 0}$ K022 Extended range. total 850 resistors from 1A to $10 \mathrm{M} £ 8.30$
    K041 Zener diodes. $400 \mathrm{~mW} 5 \%$ BZY88 etc. 10 of each value from 27 V to 36 V . E24 series. Total 280 for C15.30
    K042 As above but 5 of each value c8.70
    PC ETCHING KIT MK III Now contains 200 sq ins. copper DALO etch-resist pen, abrasive cleaner, two miniature drill bits etching dish and instructions. £4.15.

    FERRIC CHLORIDE
    Anhydrous technical quality in 1 tb double sealed packs. Ilb $£ 1.00 ; 31 \mathrm{l}$
    £2.18; $101 \mathrm{lb} £ 5.60 ; 100 \mathrm{lb} £ 39.00$

    ## SIRENS

    Work off $4 \times$ HP7 batteries, emit very loud noise. Overall size $110 \times 75 \times$ 60 mm . Use as Burglar Alarm in car house, workshop etc. ONLY $£ 1.95$.

    ## VERO OFFCUTS

    Pack A. All 0.1"; Pack B, All 0.15 Pack C, Mixed: Pack D, All 0.1" plain Each pack contains 7 or 8 pleces with a total area of 100 sq in. Each pack is £1.50. Also available by welght. Ilb £4.20, 101 b £32.50.
    $17 \times 3 \frac{3}{4}$ strips: 0.1" 2.20, 10 for $\mathbf{~ E 1 5}$
    TEXAS 741

    ## 8 PIN DIL

    FULL SPEC.
    100 off \&19.50

    ## 25 off $£ 5.50=$

    ## TRANSFORMERS

    Special - 12V 8A for only £4.00. 6-0 6 V 100 mA 85 p ; $9-0-9 \mathrm{~V} 75 \mathrm{~mA} 85 \mathrm{p}$ $12-0-12 \mathrm{~V} 50 \mathrm{~mA} 85 \mathrm{p} ; 100 \mathrm{~mA} 95 \mathrm{p} ; 12$ 0-12V 1A £2.90; 20-0-20V 2 A £4.70; 20 V 2.75 .4 E 4.

    VERO PLASTIC BOXES
    Professional quality, iwo tone grey polystyren win inreaded inserts fo mounting PC Boards.
    Type
    $2518120 \times 65 \times 40 \mathrm{~mm}$
    $\Sigma 2.24$ $2520150 \times 80 \times 50 \mathrm{~mm}$ 2.68 $2522188 \times 110 \times 60 \mathrm{~mm}$ 53.72 Sloping front versions:
    Type
    $523220 \times 174 \times 100 / 52 \mathrm{~mm} \quad £ 6.90$ $198171 \times 121 \times 75 / 37.5 \mathrm{~mm} \quad £ 4.65$ Gen. purpose plastic potting box 71 Hand controller box shaped for apse tuse in the hand $94 \times 61 \times 23 \mathrm{~mm}$ of use in the hand

    S-DECS \& T-DECS
    S-DEC Breadboar
    £2.25 T-DEC Breadboard E3.95 RELAYS AND SOLENOIDS Open constructior, relay with 2 IOA c/o coritacts, coll rated 24 V AC, but works well on 6V DC 60p
    $240 \mathrm{~V} A C$ ericlosed. 11 pin plug in base. 3 10A c/o coritacts, $£ 1.20$ $240 V$ AC oper. 2 15A c/o corilacts ¢1.50
    Solerioid, rated 48 V DC, but work on 24 V . 10 mm push or pull action Single hole fixirig. Size 2718 15 mm . Made by Varley. Only 40p.
    1977/8 CATALOGUE NOW AVAIL ABLE-MUCH BIGGER AND BETTER, WITH 50p DISCOUNT VOUCHERS. ONLY 30 p plus 15 p

    WIRE AND FLEX
    Flex pack - 5 m of 5 diff colours, thick or thin. $25 m$ for $30 p$. 25 way screen and PVC wheath $40 \mathrm{p} / \mathrm{m}$

    ## POWER PACK

    Wood grained metal case $90 \times 80 \times$ 75 mm contaning mairis trarisformer giving 6 V at $200 \mathrm{~mA}, 2$ co-ax sockets etc. Orily £1.

    EDGE CONNECTORS Special purcnase of these of pitch double-sided gold plated connectors enables us to offer them at less than 41021 way $47 p 32$ pay 72 p 40 way 40043 way $97 p 49$ way 1110 , way $90 \rho^{43}$ way 97 p 49 waylo
    As used or space labs etc. Inese tiny cells give $50, \mathrm{~A}$ at 05 V in sunligh ldeal for powering smail C.MOS prolects etc. Can be bas,ked for greater power outpu Size 19 6.5 mm . 3 for $£ 1$; 10 tor £3; 25 for $£ 7 ~$

    CALCULATOR CHIP
    Type C500 by GI - 8 digit 4 function + constant. Multiplexed for simple keyboard interfacing. Supplied with comprehensive data and 24 pin IC socket. Only £1.50.
    DARLINGTONCOMP.PAIR Motorola type ED695A and BD696A
    45 V 8A 70W - gain 750 @ 4A PNPNPN pair. Only £1.50.

    MISCELLANEOUS IC'S All supplied with data.

    ## -MC3302 Quad comparator- $24-20$.

    ITT7105 LED-Digit driver. 8 for $£ 1$, ,710 T099 caserith eompertor atp MC1469R Voltage reg. $£ 1.50$. $\begin{array}{lccc}\mathrm{MC} 1469 R & \text { voltage reg. } £ 1.50 \text {. } \\ \text { ZN1034E } \\ \text { Precision timer } \\ £ 2.25\end{array}$ ZN1034E Precision timer $£ 2.25-$
    LM1303 Dual stereo preamp $£ 1.40$. LM1303 Dual stereo preamp £1.40.
    733 Dift. video amp $£ 1.20$. LM301 Op amp 40p. ITT326 $2 \times 282 \times 3 \mathrm{i} / \mathrm{p}$ Op amp 40p. ITT $3262 \times 2 \& 2 \times 3$ i/p
    TTL nand gate. 10 for $\varepsilon 1$. SLD2128 *. Dual 128 bit static shift reg. £1.50: Our retall shops at 21 Deptlord Broadway, London, SE8 (01-692 2009) and 38 Lower Addiscombe Road, Croydon (01-688 2950) stock personal callers only. Fing them for details.
    All prices quoted include VAT and UK/BFPO postage. Most orders des patched on day of recelpt. SAE witl enquiries please. MINIMUM ORDER VALUE \&1. Oticial orders accepted from schools. etc. (Minimum invoice Charge \&5). Export/wholesale enquiries weicome. Wholesale ilst Surplus components always wanted

    TV GAMES IN FULL COLOUR
     1-95. Black and white $T V$
     garnes kits:- standard model E10-50. Economy model £5-95. Colour TV
    games kits:- standard £ $17-95$. Economy games kits:- standard $£ 17-95$. Economy
    13-45. Colour generator kit adds colour to E13-45. Colour generator kit adds colour to
    most black and white games $£ 7-50$. Rifle kit £4-95. Send sae for giant free data leaflet. NEW COMPONENT SERVICE
    resistors $5 \%$ carbon E12 10 to 10 M . $\ddagger W$ 100 to 4 M 7 . 9p. potentiometers $1 W 4 \mathrm{~K} 7$ to 2 M 2 log or lin. Single 30 p . Bual 95 p . polystyrens capacitors E12 63 V 22 pt to
    $8200 \mathrm{pf} 3 \frac{1}{2} \mathrm{p}$. ceramic capacitors 50 V E 6 82 pf to 47000 pt . 3 p . mylar capacitors
    $100 \mathrm{~V} .001,002,005 \mathrm{mf} 4 \mathrm{p}$ $1 \frac{1}{2} \mathrm{D}$. polyester capacitors 250 V E6.01 to
     electrolytics
    $10 \mathrm{mf} 5 \mathrm{p} .16 \mathrm{~V} 22,33,47 \mathrm{mf} 6 \mathrm{p}$. 100 mf 7 p . $220,3309 \mathrm{p} .47011 \mathrm{p} .1000 \mathrm{mf} 18 \mathrm{p}$. zener diodes 400 mW E24 3 V 3 to $33 \vee 8 \frac{1}{2} \mathrm{p}$.
    MAINS TRANSFORMERS
    $6-0-6 \mathrm{~V}$
    $0-12 \mathrm{~V} 50 \mathrm{ma} 94 \mathrm{p}$ 9p. $9-0-9 \mathrm{~V} 75 \mathrm{ma} 94 \mathrm{p} .12-$ E1-89. $6-0-6 \mathrm{~V}$ 1 $1 \frac{1}{2} A$ © $2-35$. $9-0-9 \mathrm{~V}$ 1A $\mathrm{E}^{2} 1-$ 99. 12-0-12V 1A £2-49. 15-0-15V 1A E2-0-9V 2A E2-60.
    PRINTED CIRC UIT MATERTALS E $3-8250$ sq ins pcb 40 p . 1 lb FeCl . Etch resist pens:- economy type 45 p . Dato type 83p. Small drill bit 20p. Laminate cutter 75 p . Etching dish 68p.
    S-OECS ANO T-OECS
    -DeC E2-23. T-DeC
    $\begin{array}{lll}\text { S-DeC } & \text { E2-23. T-DeC } \\ \text { E3-98. } \\ u-D e C A & \text { E3-97. }\end{array}$ U-DeCB $56-67$ 16-97. adaptors:- plain 99 p . with sockel $f 1$
    S-de-kit $£ 4.95$

    SINCLAIR PROOUCTS*
    Cambridge scientific programmable adaptor $£ 3-20$. cambridge scientific $£ 8-45$. oxford scientific $£ 10-60$. enterprise $£ 8-95$. president £16-95. PDM35 digital multimeter
    BI-PAK AUOIO MOOULES
    S450 tuner $£ 21-95$. Al60
    S450 tuner $£ 21$-95. AL60 £4-86. PA 100 £14-95. MK60 audio kit $£ 36-45$. Stereo 30
    §17-95. SPM80 £3-75. BMTBO E5-95. Send sae for free data.

    JC12. JC20 ANO JC40 AMPLIFIERS A range of integrated circuit audio amplifiers
    supplied with free data and supplied with free data and
    printed circuits. JC12 printed circuits. JC12 ${ }^{6}$-95. JC 2010 Watts E2-95. JC4 20 Watts £4-20. Send sae for free data on all 3 models and our range of matching power supply and preamp kit
    IC radio chip $£ 1-44$. Extra parts and pcb fo IC radio chip $£ 1-44$. Extra parts and pcb fo
    radio $£ 3-85$. Case $£ 1$. Send sae for free data BATTERY ELIMINATOR BARGAINS TV games power unit stabilized 7.7V output and 4 -way multi-jack:- $3 / 4 \frac{1}{2} / 6$ 100 ma £2-92. $6 / 7 \frac{1}{2} / 9 \mathrm{~V} \quad 150 \mathrm{ma}$ £ 3 -30. 100 ma redio models with press stud con-
    nectors. 9 V , $£ 2-85$. 6 V £2-85. $4 \frac{3}{2} \vee £ 2-85$
     54-50. casserte recorder mains unit $7 \frac{7}{2} V$ 100 ma with 5 pin din plug $E 2-85$. fully stabilized model switched output o $3 / 6 / 7 \frac{1}{2} / 9 \mathrm{~V} 400 \mathrm{ma}$ stabilized $\mathrm{E} 6-40$. ca convertors 12 VOC input. Output 9 V 300 ma BATTERY ELIMINATOR KITS Send sae for free leaflet on range. 100 ma radio types with press stud battery terminals. $4 \frac{1}{2} \mathrm{~V} 1-80.6 \mathrm{~V} \mathrm{~F} 1-80$. 9 V f $1-80$. $4 \frac{1}{2} V+4 \frac{1}{2} V \quad £ 2-50.6 \mathrm{~V}+6 \mathrm{~V} \quad £ 2-50.9 \mathrm{~V}+9 \mathrm{~V}$
    $\mathrm{f}-50$. casserte type $7 \frac{1}{2} \mathrm{~V} 100 \mathrm{ma}$ with din plug E 1.80 . transistorstábilized 8 -way trpe for low hum. $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{~V}$. 100 ma E3-20. 1 Amp $£ 6-40$. heavy duty 13 -way types $4 \frac{1}{2} / 6 / 7 / 8 \frac{1}{2} / 11 / 13 / 14 / 17 / 21 /$ 25/28/34/42V. 1 Amp $£ 4.85 .2 \mathrm{Amp} £ 7-95$. car convertor
    $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ DC 1 A transistor stabilized $\mathrm{E} 1-95$. stabilized power kits 3-18V 100 ma 〔3-60 $3-30 \mathrm{~V}$ 1A E9-95. 3-60V 1 A E10-95. 3-60V 2A £13-95.
    BULK BUY OFFERS NE555 timer 8 dil $£ 17-50 / 50$. Dalo pens
     £15/50. BC107 £7/100. BCC109 £7/100.
    BC212 $8 / 100$ 1 4002 ¢8-50/200. Bridge BC212 [B/100. 1N4002 f8-50/200. 8ridge rectifiers:- $1 \mathrm{~A} / 50 \mathrm{~V}$ rms $£ 13-50 / 50.2 \mathrm{~A} / 50 \mathrm{~V}$ rms $£ 18 / 50$. ZN4 14 E1 $1 / 10$. Electrolytics
    2000 mf 40 V f $18 / 50$. Sinclair PZ20 mains power unit kits 22 V 1 A E14/5.
    CUT PRICE TELETEXT
    Labgear CM 7026 ready to use, attractively cased complete unit which just plugs straight into the aerial socket of the set, giving full TV. Remote control page selection. $£ 323$. Texas Instruments fifax Module for the experienced 'do it yourself' man. f 120 .

    SWANLEY ELECTRONICS
    OEPT. P.E. PO Box 68, 32 Goldsoi Rd., Swanley, Kent BR8 8TO
    Masl order oniy. Pease add 30 p to total cost of order for postage. Prices include Vat. Overseas

    ## THE firm for speakers!

    SEND 10 p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

    ACT - AUDAX - BAKER<br>BOWERS \& WILKINS - CASTLE O CELESTION CHARTWELL COLES - DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS - GOODMANS - HELME I.M.F. ISOPHON - JR - JORDON WATTS KEF - LEAK - LOWTHER - McKENZIE MONITOR AUDIO - PEERLESS - RADFORD RAM RICHARD ALLAN - SEAS TANNOY VIDEOTONE WHARFEDALE

    WILMSLOW AUDIO (Dept. P.E. 8) SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

    Discount Hi-Fi, etc. at 5 Swan Street and 10 Swan Street
    Tel.: Wilmslow 29599 for Speakers
    Tel.: Wilmslow 26213 for $\mathrm{Hi}-\mathrm{Fi}$

    ## CRESCENT RADIO LTD. MAIL ORDER DEPT <br> 1 ST. MICHAELS TERRACE, WOOD GREEN. LONDON N22 4SJ PHONE: 888-4474

     battery

    EFFECTS PROJECTOR " 150 (150 wall)

    ## Ideal for disco work. this versatile

    machine takes a range of accessories and is of a sturdy metal construction. Comes complete with bulb and 6in. Liquid Wheel Ready to use.

    A bargain at $£ 34$

    3 KILOWATT PSYCHEDELIC LIGHT CONTROL UNIT ( 1000 Watt per channel)
    Three channel Bass, Middle, Treble The input of this unit is connected to the loudspeaker terminals of an amplifier and the required lighting is connected to the output terminals of the unit thus enabling you to produce a fascinating sound to light display.
    Full instructions supplied or S.A.E. for details.

    Fantastic Value at $£ 20.00$
    8\% V.A.T
    LOUDSPEAKER SELECTION
    ${ }_{2}^{2}$ in 8. 40 . and 75 ohm at $£ 1 \cdot 10$
    (please state which impedance required)
    $\sin$. ohm Ceramic at $£ 1.70$
    8in. Goodmans "Audiom 8PA" 8 ohm 15W E5.26.
    TOin. "ELAC" Dual Cone 8 ohm

    ACCESS AND BARCLAYCARD ACCEPTED-PHONE OADEAS WELCOMED ALL PAICES INCLUDE POSTAGE-PLEASE ADD V.A.T. AS SHOWN-S.A.E. WITH ALL ENOUIRIES PLEASE
    Personal callers weicome at 21 GREEN LANES, PALMERS GREEN. N13. Phone: 8883206 and 13 SDUTH MALL. EDMDNTON N9.

    Phone: 8031685
    T.T.L. 74 I.C.'s By TEXAS, NATIONAL, I.T.T., FAIRCHILD etc

    | 7400 | 14p | 7425 | 25p | 7473 | 30 p | 74121 | 25p | 74151 | 65p | 74179 | 140p |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 7401 | 140 | 7427 | 25p | 7474 | 30p | 74122 | 40p | 74153 | 65p | 74180 | 100p |
    | 7402 | 14p | 7428 | 40p | 7475 | 30 p | 74123 | 60p | 74154 | 120p | 74181 | 200p |
    | 7403 | $14 p$ | 7430 | 15p | 7476 | 30 p | 74125 | 50 p | 74155 | 70p | 74182 | 75p |
    | 7404 | 14 p | 7432 | 25p | 7483 | 85p | 74126 | 50 p | 74156 | $70 p$ | 74184 | 150p |
    | 7405 | 140 | 7437 | 250 | 7485 | t00p | 74130 | 130p | 74157 | 700 | 74185 | 150p |
    | 1406 | 40p | 7438 | 25p | 7486 | 30p | 74131 | 100p | 74160 | 900 | 74188 | 350p |
    | 7407 | 40p | 7440 | 15p | 7489 | 250p | 74132 | 65p | 74161 | 90 p | 74189 | 350p |
    | 7408 | 20p | 7441 | 65p | 7490 | 35p | 74135 | 100p | 74162 | 90 p | 74190 | 140p |
    | 7409 | ${ }^{20 p}$ | 7442 | 65p | 7491 | 75p | 74136 | 80p | 74163 | 90 p | 74191 | 140p |
    | 7410 | 15p | 7445 | $80 p$ | 7492 | 45p | 74137 | 100p | 74164 | 125p | 74192 | 120p |
    | 7411 | 20p | 7446 | $85 p$ | 7493 | 40 p | 74138 | 125p | 74165 | 125p | 74193 | 120p |
    | 7412 | 20p | 7447 | 75p | 7495 | 60p | 74139 | 100p | 74166 | 125p | 74194 | 100p |
    | 7413 | 30p | 7448 | 70p | 7496 | 70p | 74141 | 60p | 74167 | 325p | 74195 | 100p |
    | 7414 | 60p | 7450 | 15p | 74100 | $95 p$ | 7442 | 270p | 74170 | 200p | 74196 | 100p |
    | 7416 | $30 p$ | 7451 | 15p | 74104 | 40p | 74143 | 270p | 74173 | 350p | 74197 | 100p |
    | 7417 | 30 p | 7453 | 15p | 74105 | 40p | 74144 | 270D. | 74174 | 100p | 74198 | 185p |
    | 7420 | 15p | 7454 | 15p | 74107 | 30 p | 74145 | 75p | 74175 | 75p | 74199 | 185p |
    | 7422 | 20p | 7460 | 15p | 74109 | 50 p | 74147 | 230p | ${ }^{7} 4176$ | 100p |  |  |
    | 7423 | 25p | 7470 | 30p | 74118 | 90 p | 74148 | 180p | 74177 | 100p |  |  |
    | 7425 | 25p | 7472 | 25p | 74120 | 90 p | 74150 | 120p | 74178 | 149p. |  |  |
    | cmos |  |  |  | IN414 | BY | T/ | AS | $1200 \mu$ | 63 V | for | . 00. |
    | 4000 | ${ }^{20}$ | 4030 | s00 | 100 fo | £1.50 |  |  | $2200 \mu$ | F 63 V | for |  |
    | 4001 | 20p | 4032 | 150 p |  |  |  |  | $3300 \mu$ | F 63 | for |  |
    | 4002 | 200 | 4043 | 2200 | TEXA | TIS88 | A VHF | Fet |  |  |  |  |
    | 4006 | 120 p | ${ }_{4}^{4046}$ | 150 p | 10 fo | £2 | 100 | for |  |  |  |  |
    | $4007$ | 20p | 4047 4049 | 1150 | £20.00 |  |  |  | B0607 | /608 | MP. |  |
    | 4011 | 20 p | 4050 | 50 p |  |  |  |  | POWE | ¢ $£ 1$ | air. |  |
    | 4012 | 20 p | 4054 | 1300 | 555 T | ner, | 0 for | 2.80. |  |  |  |  |
    | 4013 | 55p 90 | 4055 4056 | 140p | 7410 | amp. | 10 tor | 2.00. |  |  |  |  |
    | 4016 | 55p | 4060 | 1300 | 7410 | amp. | 10 or | 2.00. | BF257 | 10 fo | 1.50 |  |
    | 4097 | 1100 | 4066 | 55p | RCA | A TO | case |  |  |  |  |  |
    | 4018 | 2500 | 4069 | 30 p | 100 V | 2.54 | . 50. |  |  |  |  |  |
    | 4020 | 140 p | 4071 | 30 p |  |  |  |  | 7410 | 10 for | . 00 |  |
    | 4022 | 180 p | 4072 | 30 p | BTY 8 | 100R | SCR |  | 7420 | 10 for | . 00 |  |
    | 4023 4024 | ${ }^{20 \mathrm{p}}$ | 4081 | ${ }_{30 \mathrm{p}}^{20}$ | 100 V | 8.5A | 1.00 | each. | 7430 | 10 for | . 00 |  |
    | 4024 | ${ }^{100 \mathrm{p}}$ | 4082 4510 | 145p ${ }^{\text {30 }}$ |  |  |  |  | 7442 | 10 for 10 for | . 50 |  |
    | 4026 | 200p | 4591 | 2000 | ALLP | GEA | NCLU |  | 7483 | lofor | . 50 |  |
    | 4027 | ${ }^{85 p}$ | 4516 | ${ }^{140}{ }^{\text {p }}$ | POST | GEAN | D V.A. | . AT | 7496 | 10 for | 2. 50 |  |
    | 4028 | 155p | 4518 4528 | 110 p 130 p | 8 or 12 APPR | \%RIA |  |  | 74107 74161 | loto 10 to | 2.00 |  |

    306 ST. PAUL'S ROAD, HIGHBURY CORNER, LONDON N. 1 Telephone: 01-226 1489
    Easy acce ${ }^{*}$ to Highbury via Victoria Line (London Trensport) Britioh Reil

    # ELECTRONIC KITS <br> TO MAKE WAY FOR OUR EXCITING NEW RANGE OF KITS, WE ARE OFFERING OUR OBSOLETE MODELS AT TRADE PRICE! 

    

    UK 302
    (4 Channel'Radio Control Transmitter)
    £14.76 REC. PRICE
    INC.VAT
    SALE PRICE
    

    UK 525
    VHF Tuner
    $120-160 \mathrm{MHz}$
    £10.78 INC.VAT
    SALE PRICE
    ${ }^{\mathrm{E}} 7.65$

    UK 167
    Stereo Preamplifier R.I.A.A. £6. 28 REC. PRICE

    ## $\underset{\text { PRICE }}{\text { SALE }} \mathrm{f}-5$ <br> INC. VAT

    post and packing on all orders)
    We have on offer POWER SUPPLIES, AMPLIFIERS, (Stereo and Mono) ULTRA-SONIC BURGLAR ALARMS, MIXERS, TEST EQUIPMENT KITS and many others. Send large SAE for list, and our NEW RANGE catalogue

    ## NEW RANGE OF KITS

    RHYTHM GENERATORS - 6 channe! STEREO MIXERS, AMPLIFIERS, STEREO TUNERS, V.H.F. RECEIVERS \& TEST EQUIPMENT.

    ## AMTRON (UK) LTD.

    7, HUGHENDEN ROAD, HASTINGS, SUSSEX, TN34 3TG
    Telephone: (0424) 436004

    # BEFORE YOU BUY AN AMPLIFIER MODULE-CHECK: <br> DOES IT HAVE * 30A power transistors $\star 2$-year guarantee <br> $\star 3$ A drivers (100W unit) <br> Integral output capacitor <br> Then compare with the Tamba range-excellent value- 25,50 and 100 W R.M.S 

    | TAM 1000 100W 4 ohms 65 V | 19.80 |
    | :---: | :---: |
    | TAM500 50W 4 ohms 45V | £7.50 |
    | TAM250 25W 8 ohms 45V | £5.75 |
    | POWER SUPPLIES |  |
    | For 1 or 2 TAM250/500 | 17.50 |
    | For 1 or 2 TAM 1000 | £9-80 |
    | (Carriage 50 p on supplies) |  |


    
    

    ALL PURPOSE MIXER/PRE-AMP.
    (with 60 mm slider volume)

    Use up to 10 PRE-AMPS with 1 power supply
    Printed circuit board assembly with treble and bass controls plus slider volume control
    £6.50

    You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc)-C.O.D. (60p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at $8 \%$ to orders for 50 and 100 W systems and at $12 \frac{1}{2} \%$ for 25 W systems (including preamp if ordered at same time).

    Hours, 9.30 a.m. -5 p.m Monday - Saturday Callers welcome. Tel (01) 6840098

    # TAMBA ELECTRONICS 

    Bensham Manor Road Passage, Bensham Manor Road, Thornton Heath, Surrey.

    ## Become a radio amateur.

    Learn how to become a radioamateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

    | C-M | OS | $\begin{aligned} & 4066 \\ & 4069 \end{aligned}$ | 60p $27 p$ | $\begin{aligned} & 7410 \\ & 7411 \end{aligned}$ | $20 p$ | $7492$ <br> 7493 | $54 p$ 44p | $74172$ <br> 74173 | 880p |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 4000 | 20p | 4070 | 50 p | 7412 | 20 p | 7494 | 8 p | 74174 | 100p |
    | 4001 | 20p | 4071 | 25p | 7413 | 30 p | 7495 | 65 | 74175 | 98 p |
    | 4002 | 20p | 4072 | 25p | 7414 | 96p | 7496 | 90p | 74176 | 123p |
    | 4006 | 114p | 4073 | 28 P | 7416 | 35p | 7497 | 358p | 74177 | 123p |
    | 4007 | 20p | 4076 | 118p | 7417 | 40 P | 74100 | 120p | 74178 | 110p |
    | 4008 | 99p | 4077 | 48 P | 7420 | 20p | 74104 | 73p | 74179 | 138p |
    | 4009 | 57p | 4081 | 20p | 7421 | 40p | 74105 | 73p | 74180 | 106p |
    | 4010 | $57 p$ | 4082 | 25p | 7422 | 26p | 74107 | 36p | 74181 | 282p |
    | 4011 | 20p | 4093 | 95p | 7423 | 32 p | 74109 | 75p | 74182 | 83p |
    | 4012 | 20p | 4502 | 123p | 7425 | 32p | 74110 | 50p | 74184 | 234p |
    | 4013 | $51 p$ | 4510 | 139P | 7426 | 107p | 74111 | 86p | 74185 | 187p |
    | 4014 | 107p | 4511 | 150p | 7427 | 89p | 74116 | 251p | 74190 | 134P |
    | 4015 | 114p | 4512 | 81p | 7428 | $81 p$ | 74120 | 155p | 74191 | 134p |
    | 4016 | $51 p$ | 4514 | 264p | 7430 | 20p | 74121 | 35p | 74192 | 115p |
    | 4017 | 114p | 4515 | 264p | 7432 | 29p | 74122 | 53p | 74193 | 115p |
    | 4018 | 110p | 4516 | 123p | 7433 | 118p | 74123 | 61p | 74194 | 107p |
    | 4019 | 62p | 4518 | 123p | 7437 | $38 p$ | 74125 | 59p | 74195 | 102p |
    | 4020 | 115P | 4520 | 123P | 7438 | 30p | 74126 | 59p | 74196 | 134p |
    | 4021 | 101p | 4522 | 122p | 7440 | 20p | 74128 | 98p | 74197 | 130p |
    | 4022 | 99p | 4526 | 122p | 7442 | $89 p$ | 74132 | 75p | 74198 | 124p |
    | 4023 | $20 p$ | 4527 | 140p | 7443 | 130p | 74142 | 302p | 74199 | 189p |
    | 4024 | 79p | 4528 | 115p | 7444 | 130p | 74143 | 346p | 74221 | $109 p$ |
    | 4025 | $20 p$ | 4531 | 115p | 7445 | 105p | 74144 | 346p | 74246 | 205p |
    | 4026 | 155p | 4543 | 115p | 7447 | $90 p$ | 74145 | 90p | 74247 | 195p |
    | 4027 | 60p | 4555 | 115p | 7448 | 90p | 74147 | 148p | 74248 | 171p |
    | 4028 | 95p | 4556 | 115p | 7450 | $20 p$ | 74148 | 150p | 74249 | 171p |
    | 4029 | 123p | 4581 | 348p | 7451 | 20 p | 74150 | 150p | 74251 | 170p |
    | 4030 | 55p | 4582 | 140p | 7453 | $20 p$ | 74151 | 78p | 74265 | 94p |
    | 4033 | 155p | 4584 | 99p | 7454 | 20p | 74153 | 78p | 74278 | 331p |
    | 4034 | 347p | 4585 | 100p | 7460 | 20p | 74154 | 138p | 74279 | 75p |
    | 4035 | 118p |  |  | 7470 | 33p | 74155 | 90p | 74283 | 94p |
    | 4040 | 132 p | TL |  | 7472 | 30 p | 74156 | 90p | 74284 | $712 p$ |
    | 4041 | $84 p$ | L |  | 7473 | 33p | 74157 | $82 p$ | 74285 | 712p |
    | 4042 | $88 p$ | 7400 | 18p | 7474 | 33p | 74158 | 140p | 74290 | 122p |
    | 4043 | 99p | 7401 | $18 p$ | 7475 | 46p | 74159 | 265p | 74293 | 122p |
    | 4044 | 91p | 7402 | $18 p$ | 7481 | 125p | 74160 | 102p | 74298 | 173p |
    | 4046 | 137P | 7403 | 20p | 7483 | 95p | 74161 | 102p | 74365 | 93p |
    | 4049 | 55 p | 7404 | ${ }^{24} \mathrm{p}$ | 7484 | 119p | 74162 | 102p | 74366 | 93p |
    | 4050 | 55p | 7405 | $24 p$ | 7485 | 128p | 74163 | 102p | 74367 | 93p |
    | 4051 | 140 p | 7406 | $42 p$ | 7486 | 33p | 74164 | 115p | 74368 | 93p |
    | 4052 | 140p | 7407 | 58p | 7489 | 340p | 74165 | 115p | 74390 | 189p |
    | 4053 | 140p | 7408 | 25p | 7490 | 43p | 74167 | 358p | 74393 | 189p |
    | 4060 | 140p | 7.409 | 25p | 7491 | 77p | 74170 | 213p | 74490 | 254p |

    Full price list of linears, discretes. capacitors, resistors, potentiometers, tools, soldering irons and accessories available. Send 20D or large S.A.E. This list is sent free with the first order
    Prices correct December 1977.
    Terms C.W.O. Add VAT 10 prices at $8 \%$. Post, etc.: U.K. 25 p, overseas 75 p. Access and Barclaycard, and all convertible currencies accepted.

    ## TIRRO ELECTRONICS

    Grenfell Place, Maidenhead, Berks.
    Tel. (0628) 36229
    Mail order division of RITRO Electronics UK Lto
    U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE
    

    This kit is suitable for record players, tape play back, gutars. electronic instruments or small P.A. systems. Two versions are available. The mono kit uses 13 semiconductors. The stereo kit
    uses 22 semiconductors. Both kits have printed front panel and volume. base and treble conth kis have prout por ohms 7 W into 15 ohms . Response $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$. input $100 \mathrm{M} . \mathrm{V}$. high mpp . Size $9 \dagger \times 3 \times 2$ in AC mains operated
    
    Easy to build Full instructions supplied
    ELAC 10 inch
    $£ 4.50$
    Ribbed cone. Large ceramic magnet $50-16,000 \mathrm{c} / \mathrm{s}$. Bass resonance $55 \mathrm{c} / \mathrm{s} .10 \mathrm{~W} .15 \mathrm{ohm}$ impedance.
    RCS STEREO PRE-AMP KIT. All parts to build this pre-amp. Inputs for nigh. medium or low imp. per channel. with volume
    control and P.C. Board. Can be ganged to make multi-way mixers.
    £2.95 Post 35p

    ## MAINS TRANSFORMERS

    $250-0-250 \mathrm{~V} 70 \mathrm{~mA} .63 .2 \mathrm{~A}$
    $250-0-25080 \mathrm{~mA} .6 \mathrm{~V} 3 \mathrm{SA} .6 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2 A
    ${ }^{\text {ALL POST }}$
    $250-0-25000 \mathrm{~mA} .63 \mathrm{Z} 35 \mathrm{SA}, 63 \mathrm{~V}$ 1A or 5 V 2 A $350-0-35080 \mathrm{~mA} .63 \mathrm{~V} 3 \mathrm{SA} .6 \mathrm{KV}$ tA or 5 V 2 A
    $300-0-300120 \mathrm{~mA} 2 \times 63 \mathrm{~V} 2 \mathrm{~A}$ С. T .6 V 2 A 220 V 45 mA . 6 3V 2 AA
    220 V 45 mA .63 KA
    HEATER TRANS, 63 V 3 A . $£ 1.45$.
    GENERAL PURPOSE LOW VOLTAGE Tapped Outputs $2 \mathrm{~A} 3,4,5,6,8,9,10,12,15$. 18, 24 and 30 V
     50 p each
    53.45
     ع1 30.40 V 2 A tapped 10 V or $30 \mathrm{~V} \mathrm{E} 2 \cdot 95$. $20 \mathrm{~V} 3 \mathrm{~A} \mathrm{E2}$. 40 V 2 A E g 5 . $30 \mathrm{~V} 5 \mathrm{~A} \cdot 34 \mathrm{~V} 2 \mathrm{Act} . \mathrm{£3} .75 .2$, 18V6A 99.
    
    AUTO TRANSFORMERS. 185 V to 230 V or 230 V to 115 V
    150W $£ 5$; 250 W E8; 400 W £7; 500W EB . 200250 V tor 6 or 12 V
    CHARGER TRANSFORMERS. InPut 1HA 2.75 ; 4A E5-20.
    FULL WAVE BRIDGE CHARGER RECTIFIERS 6 or 12 V outpuls $1!A 40 p: 2 A 55 p ; 4 A 95 p$. HALF WAVE $12 V 1 \frac{1}{2} A 5 p$.

    GOODMAN'S COMPACT 12in BASS WOOFER
    Standard $121 n$
    10 diameter fixing with cut sides
    
    ADSETRA 3 + 3W STEREO AMFHIFIER, fo-fransistor Push-Pull Ready bass controls. 240 V operated
    Size 8 . 3 . 6in. $£ 10.95$
    heAting elements when
     Heaters, efc Must be clamped between two sheets of metal or
    asbetios asbestos

    ONLY 40P EACH (FOUR FOR $£ 1 \cdot 50$ )
    ALL POST PAID-Discounts for quantify
    E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$ SPEAKER SALE!
    
    

    ## MONO PRE-AMPLIFIER

    A mains operated solid state pre-amplifier unit designed to compliment amplifiers without low level phono and tape inpul stages. This free standing cabinet incorporates phono input and N.A.B equalisation for tape heads. Power ON/OFF, PHONO/TAPE switches and pilot lamp are on the front panel; phono socket nput and output are rear ocated. AC mains 240 V . Size $6 \times 3 \frac{1}{2} \times 2 \mathrm{in}$.
    £4.50 ea. - 2 for £8.
    

    BAKER MAJOR 12 INCH $£ 15$
    
    $30-14.500 \mathrm{c} / \mathrm{s}$. 12 in double cone. woofer and tweeter cone together with a BAKER ceramic magnet assembly having a flux
    denaity of 14.000 gauss and a total flux of 145.000 Maxwells. Bass resonance $40 \mathrm{c} / \mathrm{s}$. Pated 25 W
    NOTE 4 or 8 or 16 ohms avallable.

    Module kit. $30-17.000 \mathrm{c} / \mathrm{s}$ with tweeter. crossover, baffie. $19 \times 12$ qin.
    instructions. As illustrated.
    Please state 4 or 0 or 16 ohms Post $£ 160$

    ## "BIG SOUND"" BAKER SPEAKERS

    Robustiy constructed to stand up to long periods of electronic power As used by leading
    groups and discos Useful response $30-13.000$ $\mathrm{c} . \mathrm{s}$. Bass Resonance $55 \mathrm{c} / \mathrm{s}$
    GROUP ' ${ }^{25}$
    12 in 30 w
    4.8 or 16 ohms. £12
    GROUP-' 35 '
     tai £14

    ## GROUP 50/12in

    4 iot 8 or 16 onms win £21
    ## GROUP 50/15in

    15 in 75 W$B$ or $\$ 6$ ohms £26

    Disco, Group PA Cabinete in stock. Send for Lasflet. Cabinet Fitilinga. Handies, Corners.
    

    BAKER 150 WATT ALL PURPOSE TRANSISTOR AMPLIFIER
     $4 / 8 / 16$ ohm. a.c. Mains 240 V .
     bass controls.
    £75

    ## NEW "DISCO 100 WATT" 559

    ALL TRANSISTOR AMPLIFIER
    disco or slave amplifier chassis Made by Jennings
    PW SOUND TO LIGHT DISPLAY
    Complete kit of parts with A C S printed crrcuit three 1000 W
    channels As teatured in Practical Wireless $\begin{aligned} & \text { CABINET extra } 53\end{aligned} \quad \mathbf{1 4 . 0 0}$
    GOODMANS CONE TWEETER
    

    ## R.C.S. 100 WATT VALVE AMPLIFIER CHASSIS

    

    Professional model. Four inputs Treble. Bass, Master Volume Controis Ideal disco. P.A. or groups SA.E for $£ 94$
    

    LOW VOLTAGE ELECTROLYTICS
    ${ }^{1} 2 \mathrm{~V}^{2} 20 \mathrm{~T}, 5,8,16.25,30.50 \quad 100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p} .500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p}$ : $25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
    $2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V} 82 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p}$.
     12 V 42 p ; $25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p} ; 5600 \mathrm{mF} 76 \mathrm{~V}$ £1.60; $1200 / 76 \mathrm{~V} 80 \mathrm{p}$.
    R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS
    All parts and instructions with Zener diode. printed circuit rectifiers and double wound
    mains transformer input $200 / 240 \mathrm{~V}$ a c. Output voltages avallable 6 or 75 or 9 or 12 V d c up
    Size $3 \times 2 \ddagger \times 1$ in Please state voltage required
    R.C.S. POWER PACK KIT

    12V. 750 mA Complete with prin
    £3. 35
    board and assembly instructions
    Post 30p
    R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER—BRITISH MADE £1.45
    

    - MAGETIC

    ELECTRO MAGNETIC
    PENDULUM MECHANISM
    s on SP2 battery. fully
    adjustable swing and speed ldeal displays. teaching electro magnetism or for metronome. strobe etc
    

    HEAVY METAL PLINTHS
    
    
    Post £1 30
    Extra Large Plinth and Cover. For transcription decks Size
    $20.17,9$ in uncui board Callers only 18.50 .
    $20 \cdot 17_{5}$. 9in uncui board Callers only $\$ 18 \cdot 50$.
    TINTED PLASTIC COVERS ONLY
    
    
    BAKER HI-FI SPEAKERS
    high quality-British made
    SUPERB
    £22
    12in 25 watt
    Poan 60
    Quality loudspeaker low cone resonance ensures clear reproduction of the deepest
    bass Special copper drive and concentric iweeter cone Full range reproquction with remarkable etticiency in the upper ${ }^{r}$ rogister
    Bass Resonance Flux Density ly
    ypo
    anse 25 c s
    16.500 gauss
    $0-17000 \mathrm{c} / \mathrm{s}$
    

    ## AUDITORIUM

    12in 35 watt
    A full range reproducer for high speaker systems. electric organs ldeal H1-FI and Discotheques
    Bass Resonanc
    Useful response
    55,000 gas/s
    AUDITORIUM
    £26
    15in 45 watt
    Post 1160
    

    BLANK ALUMINIUM CHASSIS, 18 s.w.g. $2 \frac{1}{2} \mathrm{in}$. sides. $6 \times 41 \mathrm{n} .95 \mathrm{p}$;
     ALUMINIUMPANELS, $18 \mathrm{~s} . \mathrm{w.g.6} \times 4 \mathrm{in} 20 \mathrm{p} ; 8 \times 6 \mathrm{in} .40 \mathrm{p} ; 10 \times 7 \mathrm{in}$.
    $50 \mathrm{p} ; 12 \times 5 \mathrm{in} .50 \mathrm{p}: 12.8 \mathrm{in} .50 \mathrm{p} ; 16 \times 6 \mathrm{in} .75 \mathrm{p} ; 14 \times 9 \mathrm{in} .80 \mathrm{p} ;$ $50 \mathrm{p} ; 12 \times 5 \mathrm{in} .50 \mathrm{p} ; 12 \times 8 \mathrm{in} .50 \mathrm{p} ; 16 \times 6 \mathrm{in} .75 \mathrm{p} ; 14 \times 9 \mathrm{in} .80 \mathrm{p}$; ALUMINIUM ANGLE BRACKET
    ALUMINIUM BOXES, MANY SIZES IN STOCK.
    
    THE 'INSTANT" BULK TAPE
    ERASER A HEAD DEMAGNETISER.
    Suitable for cassettes. and all sizes of
    tape reels a c mains $200,240 \mathrm{~V}$ Post
    Leaflet SAE $\quad$ E4.95 $\begin{aligned} & \text { Post } \\ & 50 \mathrm{p}\end{aligned}$
     2 semiconductor feaching kit
    the most MDOERN, RAPID, ECONOMIC way to maeter - pace age electronics.

    Btarting even from ZERD,
    

    100 EXPERIMENTB
    and creating morethen 20 prectical epplicstion:
    you learn all about the most up to date electronic circuits how to calculate, repair, and design them, while pursuing your favorite hobby. Start from scratch, or ioprove your present knowledege. Train and ear money in your spare time turn your pastime into valuable job opportunities. Compare our price: you receive the entire course. "mini labo$\overline{\text { ratory }{ }^{71}}$ and components for LESS than the price of the conponents alone

    ## CDMPLETE KIT: nothing aise to buy*

    ## you got:

    - instruction manual : over 200 pages of detailed step-by step instructions -starting from scratch, explains basic laws and physics of Electricity, semiconductor principles and operation electronic circuits : from diodes (including fiac, zener) transistors, triacs to integrated circuits (C.MOS, operational amplifiers) etc...
    - Over 200 Electronic components : aerospace technologie printed circuit experiment board, phototransistor, triac. thyristor I.C.S Transistors (including FET, MOSFET) LEDS * résistors , capacitors, speaker, milliameter, potentiometers, variable capacitor, etc... etc... etc...
    - measuring instruments (you assemble yourself from among componen is furnished in kit.)
    ELECTRONIC VOLTMETER, LOW FREQUENCY MEASURING AMPLIFIER, LOGIC INDICATORS, REGULATED POWER SUPPLY, MILLIAMMETER.


    ## -you porform:

    - over 100 DIFFERENT EXPERIMENTS : from the most basic voltage measurements to radio transwitter circuits and including HI FI, Flip Flops, Ic applications, triac use, etc...


    ## etc... etc

    

    GAVE ETD-mill Boupon todey-8AVE 290
    

    ENGLAND: P.O. Box 401 Kingsmead, Kings Lane, Chipperfield, Nr. King's Langley. Herts. WD4 9PB
    Please send me (OTY) IK2 teaching Kit(s)
    I enclose Cheque/Postal order for $\qquad$ E
    NAME
    ADRESS
    

    This book is intended for home constructors and other electronics enthusiasts who require information on operational amplifiers in order to use them in conventional circuits. The text is written in an easy-to-read, non mathematical style and is profusely illustrated with circuit diagrams. A useful glossary of terms is included.
    Contents: Introduction
    Some basic 7.41 circuits
    Further 741 circuits
    Various integrated circuit amplifiers
    FET input devices
    Audio power circuits
    Low noise audio preamplifiers
    Appendix
    Glossary of terms
    Index
    Early 1978
    96 pages
    £2.25 approx
    

    Order now from your bookseller or from Newnes Technical Books Borough Green, Sevenoaks, Kent TN15 8PH

    ## IT'S EASY WHEN YOU KNOW!

    To avoid missing your copy of PRACTICAL ELECTRONICS - simply complete this order form and hand it to your newsagent.

    ## ORDER FORM

    To:
    (hame of newsagent)
    Address

    Please reserve/deliver every month one copy of PRACTICAL ELECTRONICS until further notice.

    ## My Name

    Address
    

    LONDON-40-42 Cricklewood Broadway NW2 3ET LONDON- 325 Edgware Rd W2. Tel: 01-7234242/3
    LASGOW-85 West Regent Street G2 2OD
    CATALOGUE 1978
    OUR NEW 40pp SPRING 78 CATALOGUE PRICE 35p TO CALLERS. 45p POST PAID

    TOP 400 SEMICONDUCTORS FROM THE LARGEST RANGE IN THE U.K. EXPRESS M.O. SERVICE BY RETURN POST-all orders recelved despatched same day on stock tiems
    

    MICROPROCESSOR COMPONENTS $\underset{\substack{\text { RAN } \\ 201 \\ 201 \\ 202}}{ }$
     PROMS
    74 S 287 $\begin{array}{lll}\text { 74S287 } & \text { F.33 FAMILY } \\ \text { MM52040 } & \text { FA }\end{array}$
    
     transiormer to complete it or 24 nt
    modules
    mand MA :002F
    MA 12 hr
    Min dispotay
    24 hr
    Sin display
     CAR CLOCK MODULE
    $\qquad$
    SAE
    NATIONAL
    

    TTL FROM NATIONAL, ITT, TEXAS, SIGNETICS, ETC

    ## CMOS <br> LOW POWER

    SCHOTTKY

    ## (nenvivi

    | CO4000 | 0.24 | CD4018 | 15 |
    | :---: | :---: | :---: | :---: |
    | CO4001 | 0.24 | CO4019 | 0.70 |
    | CO4002 | 0.24 | CO4020 | 1.27 |
    | CD4006 | 1.36 | CD4021 | 1.15 |
    | CD4007 | 0.24 | CD4022 | 1-10 |
    | CD400日 | 1.10 | CD4023 | 0.24 |
    | CO4009 | 0.64 | C04024 | 0.84 |
    | CD4010 | $0 \cdot 64$ | CD4025 | 0.24 |
    | CD4011 | 0.24 | CD4027 | 0.64 |
    | CD4012 | 0.24 | CD4028 | 1.02 |
    | CD4013 | 0.60 | CD4029 | $1 \cdot 30$ |
    | CD4014 | 1.15 | CD4030 | 0.64 |
    | CD4015 | 1. 15 | CD4031 | 2.53 |
    | CD4016 | 0.64 | CD4035 | 1.34 |
    | CD4017 | 1.15 | CD4037 | 1-10 |


    | CD4041 | 0.96 | CD4059 | 5.45 |
    | :---: | :---: | :---: | :---: |
    | CD4042 | 0.96 | CD4060 | 1.27 |
    | CD4043 | 1.15 | CD4063 | 1.25 |
    | CD4044 | 1.06 | CD4066 | 0-80 |
    | CO4045 | 1.59 | CD4067 | 4.25 |
    | CO4046 | 1.52 | CD4068 | 0.25 |
    | CD4047 | 1.15 | CD4069 | 0.25 |
    | CD4049 | 0.64 | CD4070 | 0.66 |
    | CD4050 | 0.64 | CD4071 | 0.25 |
    | CD405 ${ }^{\circ}$ | 1.06 | CD4072 | 0.25 |
    | C04052 | 1.06 | CD4073 | 0.25 |
    | CD4053 | 1.06 | CD4075 | 0.25 |
    | CD4054 | 1-32 | CD4076 | $1 \cdot 17$ |
    | CD4055 | 1.50 | CD4077 | 0.66 |


    | CD4081 | 0.25 | 74LS02 | 0.24 |
    | :---: | :---: | :---: | :---: |
    | CD4082 | 0.25 | 74LSO4 | 0.27 |
    | CD4085 | 0.81 | 74LS08 | 0.24 |
    | CD4086 | 0.81 | 74LS 10 | 0.24 |
    | CD4089 | 1.77 | 74LS13 | 0.65 |
    | CD4093 | 0.91 | 74LS32 | 0.25 |
    | CD4094 | 2-13 | 74LS42 | 1.01 |
    | CD4095 | 1.19 | 74LS74 | 0.48 |
    | CD4096 | 1.19 | 74LS 75 | 0.60 |
    | CD4510 | $2 \cdot 00$ | 74LS76 | 0.40 |
    | CD4511 | 2. 30 | 74LS85 | 1.45 |
    | C04516 | 2.00 | 74LS86 | 0.48 |
    | CO4518 | 2.00 | 74LS90 | 1.00 |
    | CO4520 | 2.00 | 74LS92 | 90 |

    

    | 14 Cmos |  | Low profile |
    | :---: | :---: | :---: |
    | (14c00 |  |  |
    | Hecter |  |  |
    | cor |  |  |
    | cock | ${ }^{\text {cose }}$ |  |
    |  |  |  |
    |  |  |  |

    ## E MICROPROCESSO

    KEYBOARD KIT
    Budget VDU for Teletype substitule. The calculator type
    keyboard provides manual lio commands to introut
    Full insiruction and data supplied with each kit Com-
    8 bit trislato bustio
    plete kit easily mates with cassette recorder
    R SYSTEMS
    new faom woroatala 6800
    V̌2

    ## ORCHARD ELECTRONICS <br> SERVICE SECOND TO NONE TRY US AND SEE <br> NEW BIG CAT 50p + Refundable

    VouchersOrchard House, St. Martins Street, Wallingford, Oxon (Tel. 0491 35529)

    SUPPLIERS TO D.O.E., A.E.R.E., U.K.A.E.A. Government Depts., Universities, Schools and equipment manufacturers.
    Stock list FREE with S.A.E.
    Post \& Packing $\mathbf{2 5}$ p. Discounts $\mathbf{5 5}=5 \%, \mathbf{£ 1 0}=$ $7 \frac{1}{2} \% £ 15=10 \%$. VAT * add $12 \frac{1}{2} \%$. Rest at $8 \%$

    | TRANSISTORS |  |  |  |  |  |  |  | CAPACITORS Elec. MFD/V |  |  |  | CERAMICS 50V$2 \cdot 2,4 \cdot 7,6,10,22,33,39,47$ | I/C LINEAR |  | TTL OIGITAL |  | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
    | AA119 -08 | BC | -18 | BF167 | $0 \cdot 21$ | $0 \mathrm{Cl1}$ | 0.35 | 2N3703 0.14* |  |  |  |  | $555$ | 0.48 | 7400 | 15p |
    | ${ }^{\text {AC1 }} 125 \quad 0.26$ | BC1 | $0 \cdot 19$ | BF173 | $0 \cdot 20$ | $0 \mathrm{C72}$ | -. 45 | 2N3704 0.13* | 1/53 | -10** | 47/35 | -12* |  | 100, 200, 470, 560, 1000, 1500, | 700 (TO99) | 0.35 | 7401 | 24 p |
    | AC128 - 2 | BC182B | - 12* | BF178 | 0.24 | $0 \mathrm{OC7}$ | 0.45 | 2N3705 -14* | 1/75 | $0 \cdot 10$ | $50 / 10$ | $0.18{ }^{\circ}$ |  | 709 (8 PIN | 0.40 | 7402 | $18 p$ |
    | AC127 0.28 | BC182L | $0.11{ }^{\text {0 }}$ | BF179 | - 25 | $0 \mathrm{C81}$ | -60 | 2N3707 -12* | 2-2/25 | $0 \cdot 10$ | $50 / 15$ |  |  | 741 (8 PIN DIL) | - 23 | 7403 | 18 p |
    | AC128 $0 \cdot 0$ | BC1838 | -18* | BF163 | 0.34 | 0 C 82 | - 70 | 2N3708 0.12* | 2.2/63 | - $10^{*}$ | 100/18 | $0 \cdot 0{ }^{\circ}$ | ¢p* each. 1MFD 63V ip*. | AY-5-1224 | 3.75 | 7404 | 23p |
    | $\begin{array}{ll}\text { AC151 } & 0.35\end{array}$ | BC183L | 0.10* | BF184 | 0.25 | ORP12 | - 68 | 2N3709 -14* | 2.5/64 | $0 \cdot 10{ }^{\circ}$ | 100/25 | -10* | RESISTORS $2 p^{*}$ | AY-3-8500 T.V | . 00 | 7407 | 40 |
    | AC153 <br> 15 | BC184B | -12* | BF185 | 0.25 | TIP29A | - $4.4{ }^{\circ}$ | ${ }^{2 N} 3710$-11* | 4.7/16 | 0.08** | 100/35 | -11. | One-third WATT E12 (5\%) | AY-3-8550 | 9.00** | 7408 | 24 p |
    | AC176 | BC184L | - 11* | BF194 | -10* | TIP30A | 0.58* | ${ }^{2 N} 3711{ }^{\circ} \mathrm{Cl} 1^{\circ}$ | 4.7/63 | - $0.10{ }^{\circ}$ | 100/50 | $0.15{ }^{\circ}$ | $1 \mathrm{ohm}-10 \mathrm{~m}$ ohm. | AY-3-8600 | 12.50** | 7410 | 14p |
    | AC187 -22 | BC18\% | - 25 | BF195 | -10* | TIP31A | - 57 | 2N3819E 0.25* | 5/10 | $0.10^{\circ}$ | 100/35 | -15 |  | CA 3130 | 0.37* | 7411 | 24 p |
    | AC188 -26 | BC187 | - 24 | BF196 | -12** | TIP32A | - 87 |  | $5 / 16$ $6.8 / 25$ | 0.19* | 220/16 | -15* | SUEBETM WIN. M. | LM 3014 N | 0.55 | ${ }_{7413}$ | ${ }^{25 p}$ |
    | A C187/188 | BCro4A | -11* | BF197 | - $12{ }^{*}$ | TIP33A | - 04 | 2N3823E 2N4036 | $6.8 / 25$ $8.8 / 40$ | ${ }^{0.10}{ }^{\text {c }} 10$ | $220 / 25$ $220 / 63$ | -18 $0 \cdot$ 0 | SUB MIN V 2000 hm , $2200 \mathrm{hm}, 4700 \mathrm{hm}$, | LM 308 | 1.40 | 7413 7414 | 33 p |
    | mtch. probe 5 | BC204B | -16* | BF199 | . $15^{\circ}$ | TIP34A | 1.13 | ${ }^{2 N} 2 \mathrm{~N} 4036$ - 40. | $6-8 / 40$ $8 / 70$ | ${ }^{-10} 10^{*}$ | 220/63 | ${ }^{-12}{ }^{\text {- }}$ | 1000 hm, $1 \mathrm{~K}, 2 \mathrm{K2}, 4 \mathrm{K7}, 10 \mathrm{~K}, 20 \mathrm{~K}, 50 \mathrm{~K}$, | LM ${ }^{3090}$ | 2-00 | 7414 7416 | 72p |
    | AD149 - Et | BC209B | - $13 *$ | 8F200 | 0.38 | TIP41A | - 67 | 2N4058 (16. <br> 2N4059  | $8 / 70$ $10 / 16$ | ${ }^{-10}{ }^{-6}$ | 2501150 | -12* | ${ }_{100 \mathrm{~K}, 250 \mathrm{~K}, 470 \mathrm{~K},} \mathbf{1} \mathrm{M}, 2 \mathrm{M} 2$. | LM 324 |  | 7417 | 36p |
    | AD161 - 52 | BC212A | -13* | BFX29 | 0.28 | TIP42A | - $\cdot 6$ | 2N4059 2N4061 O-12* | $101 / 18$ $10 / 25$ | $0 \cdot 0$ | 250/50 | -20. | 80, each. | LM 380/SL6074 | 1.23************* | 7420 |  |
    | AD162 . 52 | BC212L | -15* | BFX30 | $0 \cdot 25$ | TPP2955 | - 67 |  | 10/35 | 0.9 | 250/64 | $0 \cdot 15$ |  | LM 381 N | 2.0** | 7421 | $\operatorname{sip}^{19}$ |
    |  | BC2138 | -12* | BFX 40 BFX 48 | 0.28 | TiP3055 | $0 \cdot 45$ | 2N4126 ${ }^{\text {2N }}$-30* | 10/64 | $0 \cdot 10$ | $470 / 6 \mathrm{~V} 3$ | $0 \cdot 10^{-}$ | THYRISTOR | LM 555 | 0. | 7427 | 32 p |
    | AF118  <br> AF117 24 <br> AF12  <br> 28  | BC213L | -14* | BFX84 BFX88 | - 0.22 | TIS43 | 0.45: | 2N4126 2N5298 | 10/250 | $0.14{ }^{\circ}$ | $470 / 10$ | -12* | sov 1A | LM 39300 N | - 50 | 7428 |  |
    | AF124 0.30 | BC214L | 0.17* | BFY50 | 0.25 | ZTX300 | 0.13* | 2N5457 - 50 | 15/40 | $0 \cdot 10^{*}$ | $470 / 16$ | -18. | 200V 1A O.00 TAG 1200 |  |  | 7430 | 18p |
    | AF186 - 05 | BC237A | 0.18* | BFY51 | - 25 | ZTX301. | 0.13* | N5458 0.4** | 15 | $0.35^{\circ}$ | 470 | -25: | 600V 1A 0.20 TAG 1600 |  | 2.55* | 7432 | P |
    | AF239 -46 | BC238A | 0.15* | BFY52 | 0.25 | ZTX302 | - $11{ }^{\text {c }}$ | 5459 -4. | 1810 | ${ }^{-10^{*}}$ | ${ }^{6} 000 / 15$ | - ${ }^{25} 5^{\circ}$ | 700V 1A 1.40 BT 106 | MC 1327/SN 7622 |  | 7440 | p |
    | AU113 2.23* | BC261A | - 18 | BS $\times 20$ | $0 \cdot 23$ | ZTX500 | $0 \cdot 15^{\circ}$ | ${ }_{40361}{ }^{2 S 5123.00}$ | 20170 | -10* | 100/25 | $0.30^{\circ}$ | $400 \mathrm{~V} 4 \mathrm{~A} \quad 0.55$ C106D1 |  | 1.35* | 7442 | p |
    | BC107 - 11 | BC262A | 18 | BU108 | 2.30* | ZTX502 | -11" | 40361 40363 | $22 / 6 \mathrm{~V} 3$ | - 10 * | $1000 / 50$ | - $4.40^{\prime}$ | 500 V 6id 1.65 BT 109 | MC 1330P | -75* | 7443 | . 0 p |
    | BC107A 0.12 | BC267A | 0.17 | BU208 | $3 \cdot 0 \cdot$ | ZTX504 | - ${ }^{25}$ | 40673 - 5 | $22 / 16$ | - $0.10^{\circ}$ | 1500/25 | - $35{ }^{*}$ | ZENERS (409mw) E2X ${ }^{\text {3 }}$ | MC 1350P | -75* | 744 | $1 \cdot 4 p$ |
    |  | ${ }^{\text {BC268B }}$ | -.17 | BY126 BY127 | 0.18 | ${ }_{\text {2T }}$ N914 ${ }^{\text {a }}$ | ${ }^{-23}$ |  | 25/25 | $0.61{ }^{*}$ | $2200 / 6 \mathrm{~V}$ | - 34 | $3 \mathrm{~V}, 3 \mathrm{3}, 5 \mathrm{~V} 1,5 \mathrm{~V}, 7 \mathrm{5}, 9 \mathrm{~V} 1$. | NE 555 |  | 7446 | $1 \cdot 0 \mathrm{p}$ |
    | BC108 CIL108 cte | BC269 BC287 | $0 \cdot 17$ 0.21 | BY133 | ${ }_{0} \cdot 18$ | 1 1N4001 | - 05 | VARICA | 33/50 | -12* | 2200/40 | -60 | $10 \mathrm{~V}, 12 \mathrm{~V}, 18 \mathrm{~V}, 22 \mathrm{~V}, 30 \mathrm{~V}$. | SK 1122 T.V. |  | 7447 | 98 |
    | $\begin{array}{ll}\text { CIL108 } & \cdot 10 \\ \text { BC1088 } & \text { P11 }\end{array}$ | BC287 | - 23 <br>  |  | - 40 | 1N4002 | 08 |  | 4716 V 3 | $0.10^{*}$ | 2500/15 | -45* | All at 12p each. | Game | $18.00{ }^{\circ}$ | 7448 | 3 |
    | BC108B - 11 | BC300 | -.35 | ME0401 | -18* | 1N4003 | - 07 | 043/05 | $47 / 10$ | - $100^{*}$ | 3300/30 | - ${ }^{-45}$ | MULTI METERS | SN 76013 |  | 7451 | 11 p |
    | BC108 - 12 | BC303 | - 35 | ME0402 | - $10^{*}$ | 1N4004 | - 0 |  | 47116 |  |  |  | U 4324 20,000 ohms VDC | SN 76013N | 1.75* | 7470 | 32 p |
    | BC1098 0.13 | BC327 | 0.20* | ME0411 | -18* | 1 N 4005 | - 0 | TRANE. | POL | R/Lend | 109VDC |  | ACIDC recommended at | SN 78023N | 1.75* | 7472 | 30 p |
    | $8 \mathrm{BC109C} 0.13$ | 8 C 328 | - 18 * | ME0412 | - $10^{\circ}$ | 1 N4008 | - 10 | FORMERS | 001 | - |  |  | E14.50 EXCELLENT VALUE | SN 76023ND | 1.60* | 7473 | 30 p |
    | ${ }^{\text {BC117 }}$-18 ${ }^{\circ}$ | 8C338 | -18* | ME0413 | -15* | 1 N4007 | - 11 | TA | . 0022 | 0.60 | . 068 | $0.07^{*}$ |  | SN 76033N | $2.75^{\circ}$ | 7474 | $35 p$ |
    | BC136 -18* | BC310 | -18* | ME0414 | - $15{ }^{\circ}$ | 1N4148 | ${ }^{-05}$ | ${ }^{-24}$ | -0033 | $0 \cdot 0 \cdot$ | -1 | -0.07* | TIL 2ve/ | SN 76660 | - 84. | 7475 | 49 p |
    | BC142 - 24 | BC340 | $0 \cdot 15^{\circ}$ | ME0461 | ${ }^{-27}$ | 1N5400 | $\cdot 13$ |  | . 0047 | $0 \cdot 0{ }^{\circ}$ | - 15 | $0 \cdot 0{ }^{\circ}$ | Green | TAA 550 | 0.60. | 7476 | 32 p |
    | BC143 0.24 | BC481 | 0.35 | ME0462 | $0.21{ }^{\circ}$ | 1N5401 | 0.15 | 9-0.9 i $^{\text {a }} 3.20$ | -0068 | -6. | 22 | -10* | Cllp for above 3 3p | TBA 120ASQ |  | 7480 | ${ }^{3} \mathrm{p}$ |
    | BC147A ${ }^{\circ}$ | BC557 | - 15 - | ME4001 | . $14{ }^{\circ}$ | 1 N5404 | - 71 | $9-0.9$ $12-0.12$ | . 01 | 0.00 | . 33 | $0.11^{\circ}$ | Clip lor above 3p | TBA 395 | $225^{2}$ | 7481 | 9.04p |
    | BC1478 -90* | BC558 | - $0.15 *$ | ME4101 | - $11{ }^{\circ}$ | 2N708 | $0 \cdot 20$ | 50mA | . 015 | $0.57{ }^{\circ}$ | -47 | $0.15{ }^{\circ}$ | NATIONAL BCOOP | T8A 4800 | 1.25: | 7485 | $1 \cdot 34 \mathrm{p}$ |
    | BC148 0 | BC559 | - 15 * | MJE340 | 0.78* | $2 \mathrm{2N1613}$ | - 30 | 12-0-12 1A | -022 | $0 \cdot 7{ }^{\circ}$ | - 1250 V | - $60^{\circ}$ | SK 1122 TV GAME KIT | TBA 5200 | 1.74: | 7488 | 43 p |
    | BC1488 -10, | BCY70 | - 15 | MJE3055 | 1.25* | 2N1711 | - 30 | ${ }^{12-0-12 ~ 14.75 ~}$ | . 033 | $0.07{ }^{\circ}$ | -1600V | $0.45^{\circ}$ | Colour and Sound inc. PCB | TBA 5300 | 1.20. | 7490 (A) | ${ }^{58}$ |
    | 8C149 0.10' | BCY71 | $0 \cdot 18$ | MPF102 | - 74 | 2N2102 | - 50 | min O/P for | 0.017 | -6.07* | 1.0400 V | 0.12* | Semi-cons, Pots, Res, Caps, | TBA 5400 | 1.20. | 7492 | $55^{5 p}$ |
    | BC1498 ${ }^{\text {BC14 }} 1{ }^{\text {c }}$ | ${ }^{8 C Y} 72$ | $0 \cdot 14$ |  | - 71 | 2N2219 | - 24 | OC71/2use75p | OFFER |  |  |  |  | T8A 560Co | $2 \cdot 30$ * | 7496 |  |
    | BC153 ${ }^{\circ} 8^{\circ}$ | BD124 | -. 0 | OA47 | - 14 | 2N2648 | - 65 | 06-06 280mA |  |  |  |  | MA 1003 CAR CLOCK | TBA 641 | $2.55{ }^{\circ}$ | 74107 |  |
    | BC154 -18* | 80131 | 0.64 | OA81 | $0 \cdot 30$ | 2N29200 | - 13 * |  |  | 11 |  |  | MODULE | TBA 780 | 1.0** | 74121 | 310 |
    | $8 \mathrm{BC157}{ }^{\circ} \cdot 12^{\circ}$ | 8D132 | 0.52 | OACO | $0 \cdot 6$ | 2N2926G | - $15^{*}$ | 150mA | ${ }^{\text {BC108C }}$ | tor |  | for E ¢ | Built complete incl. Date | TBA 8000 | 1.35* | 74123 |  |
    | BC157B -14* | BD139 | - $5.5{ }^{\circ}$ | OA91 | - 08 | 2N3053 | - 25 |  | 2N3702 |  |  | for 2 | 817.00 | T8A 10 SO | 1.40" | 7414 |  |
    | BC15AA ${ }^{\text {a }} 1{ }^{\circ}$ | BD140 | - 58: | OA95 | - 0 | 2N3054 | - 5 | P-1K2 ${ }^{\text {P/ }}$ | 2N3704 |  |  |  | CAR INTERIOR LIGHT | TEA 82 | 1.8 | 74145 | 15 p |
    | BC159A ${ }^{\text {a }} 12^{*}$ | 80155 | 0.75* | OA200 | 0.16 | 2N3663 | - 2 | 200 mW 50p |  |  |  |  | DELAY | TBA 9200 | 2. | 74151 | P |
    | BC172A 0.15* | 80820 | - 0 | OA202 | $0 \cdot 11$ | 2N3055 | - 0 | 200mw sop | POTEN | 10m | Re8 |  | 4 to 40 seconds varlable. | TBA 9909 | $2.80{ }^{\circ}$ | 74174 | 20 |
    | BC1738 - 15* | $8 F 115$ | 0.42 | OC35 | 1.2* | 2N3643 | - $17{ }^{\circ}$ | O18PLAYS | Lin/Lo |  |  |  | Time to find keys and clunk- | TCA 2700 | $2.25 *$ | 71180 | -20p |
    | BC177 - 17 | BF158 | - 20 | OC44 | - 45 | 2N3646 | - $17{ }^{*}$ | DL704 0.85 | 5K, 10 | 25K, 5 | KK, 200K | 250K, | click. Complete, 2 wires to | TOA 2080 | 4.25* | 74100 |  |
    | BC1778 | BF186 | - 36 | 0 C 45 | . 45 | 2N3702 | -11* | DL707 0 | 500\%. | M, 2M. | 25p* | eneh. | connect (protected). \&5.25 | ZN414 | 1.40* | 7418 | 2.10p |

    ## Mail Order Protection Scheme

    The Publishers of Practical Electronics are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.
    In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Electronics within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence.
    For the purpose of this scheme, mail order advertising is defined as:-
    'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail order advertising are excluded.

    ```
 50 ASSORTED TANTALUM BEAD CAPACITORS for £1.50.
 12 BRANDED F.E.T's Assorted f1.
    ```

    
    

    ```
 1N4148 SILICON DIODES 20 for 50p.
 AUDIO I.C's TAA6118 & 65p.SN 76001N & 50p.SL 414 & £1.60.
 VERNITRON 10.7 MHZ CERAMIC FILTERS & 50p.
 TBA 120S FM I.C's Untested with data e 6 for 60p.
 50 VARI-CAP DIODES Assorted Untested for 57p.
 BOOKS. By G. Dobos. "Practical Test Equipment". 75p, "Simple Transistor Short Wave
 Receiver" * 60p, "Practical Electronic Projects" 75p. The Three 800ks for f1.60.
 STANDARD 2 AMP TV CHOKES & 10p, 6 for 50p.
 MINIATURE 8uf 300v.w. ELECTROLYTICS & 10 for 57p
 SWITCHED STEREO SOCKETS & 4 for 60p.
 2GHz NPN STRIPLINE TRANSISTORS - E1 each.
 10 AMP 2 POLE MAKE TOGGLE SWITCHES & 40p each.
 POSTAGE STAMP TRIMMERS 10pf, 30pf, 50pf, 1000pf. All & 6p each.
 100 ASSORTED DISC CERAMICS for 57p.
 O0 ASSORTED \frac{1}{3},1 watt RESISTORS for 75p.
 50 ASSORTED PLASTIC BC 107-8-9 TRANSISTORS 85% Good *57p
 5WATT NPN TO39 DARLINGTON TRANSISTORS - 20p each.
 MO MTIT URN TRIMPOTS Assorted Values & 57p.
 FF 451 SIUICON PNP 300 MHZ TRANSISTORS - 6 for 35D
 B B 451 SILICON PNP 300 MHz TRANSISTORS 6 6 for 35D.
 NUT FIXING 1000pH FEEDTHRU's 500v.w. 15p each.
 1 2K WIRE WOUND POTENTIOMETERS 6 Watt 22p.
 5.5MHZ CERAMIC FILTERS - 27p each.
 JACKSON TYPE C8O4 VARIABLE CAPACITORS 5pf: 75p.
 ITT TRANSISTORS NPN TYPE TM 11 300 MHz & 24 for 60p
 DAU TRIMMERS 2 To 9pf 10p, 5 To 38pf = 10p, 6 To 45pf = 10p, 8 To 125pf=12p.
 8 To 140pf - 15p.
 COIL FORMERS Sub-Miniature 6/8 > ". with core = 5p, 6 for 25p
 WIRE ENDED CRYSTALS ```

