PRACTICAL

atetranics
 FEBRUARY 1978
 $45 p$

MIII RMDINIS

ALGO INEIDE. .

KIM Hobby Computer Review

Part 2 of our New FAULT FINDING Series

CONSTRUCTIONAL PROJECTS

AUTO-RANGING VOLTMETER by S. Roberts
A useful piece of test gear that leaves your hands free 400
STRENGTH METER by N. Riddiford
A game to test your grip 412
P.E. CHAMP-6 by R. W. Coles and B. Cullen
422
422
CHOMP firmware put under the microscope
CHOMP firmware put under the microscope
432
RHYTHM GENERATOR by N. A. Cooke
RHYTHM GENERATOR by N. A. Cooke
Construction and final setting up
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices 411
INGENUITY UNLIMITED
Telephone Monitor 437
FAULT FINDING-2 by G. Loveday
Trouble shooting complete systems 445
NEWS AND COMMENT
EDITORIAL399
KIM 1 REVIEW
Report on another new microprocessor 408
NEWS BRIEFS
Microcomputer Kit-Watts On The Road-Exhibition 417
MARKET PLACE
Interesting new products 418
SPACEWATCH by Frank W. Hyde
U.F.O.s, Life And Death From Outer Space, Landsat 421
MICRO-BUS by DJD
A bimonthly focus on micro's for the home constructor 429
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 438
PATENTS REVIEW
The history of the gramophone 441
BOOK REVIEWS
Selected new books we have received 448

Our March issue will be on sale Friday, 10 February, 1978
(for contents see page 407)

[^0]EASY BUILD SPEAKER DIY KITS Specially de signed by RT-VC for cost conscious hi-fi enthusiasts. these kits incorporate two teak-simulate enclosures, two EMI $13^{\prime \prime} \times 8^{\prime \prime}$ (approx.) woofers, two tweeters and a pair of matching crossovers. Supplied complete with an easy- 10 -follow Aircuit diagram. and crossover components. $+p \& p 55.50$ Cahinet size $20^{\prime \prime} \times 11^{\prime \prime} \times 9{ }^{\prime \prime}$. SPEAKERS AVAILABLE WITHOUT CABINETS. It's the units which we supply with the enclosures illustrated Stze 13" $\times 8^{\circ}$ (lapprox. | wooler. feMII, $22^{\prime \prime}$ app. . f 1700 per tweater, and matching crossover components. stereo pais Power handling 15 watts rms. 30 watts peak. $+p \& p$ \& 3.40
COMPACT FOR TOP VALUE These infinite baffie enclosures come to you ready mitred and protessionaily finished. Each cabinet measures approx. per stereo pair $12^{\prime \prime} \times 9^{\prime \prime} \times 5^{\prime \prime}$ deep, and is in wood simulate. Complete with two 8 " (approx.) speakers for. $\quad \mathbf{8} 80$ maximum power handing of 7 warts. 8Ω. $+p \& p E 2.20$ SPEAKERS Two models - Ouo Ilb. teak veneer. 12 watts ms, 24 watts peak, $18 \frac{1}{2} \times 13 \frac{1}{2} \times 7 \frac{1}{2}$ (approx.). Duo III, 20 watts rms. 40 watts peak, $27^{\prime \prime} \times 13^{\prime \prime} \times 11{ }^{\prime \prime}$ "appx
 DECCA 20 WATTS STEREO SPEAKER Stereo pair This matching loudspeaker system is hand made, kit comprises of two $8^{\text {" }}$ diameter approx. base drive unit. with heary die cast chassis laminated cones with rolled P.V.C. surrounds. twa $3 \frac{1}{2}$ " diameter ap prox. domed tweeters complete with crossover networks. $8 \Omega . \quad ¢ 4.00$ p \& p. $\mathbf{E} \mathbf{2 0}^{00}$
PERSONAL SHOPPERS
STEREO CASSETTE record/replay fully buill P.C. boaid f $\mathbf{2}^{75}$ AM. FM. TUNER P.C.B. with Mullard L.P. 1186. 1185.1181 modules.

100K Multiturn Varicap tuning pots, 6 for PAIR STEREO 8 WATI SPEAKERS ${ }^{8}$ bass units with $3 \frac{1}{2}$ " approx. tweeter s Size $16 \frac{1_{2}^{*}}{} \times 11^{\prime \prime} \times 8 \frac{1^{*}}{}$
Plinth 8 cover BSR or Garrard teak finish DECCA DC1000 Stereo Cassette P.C.B. f. 6^{00} AM. FM. Stereo Multiplex Car Radio/cassette $\mathbf{1} \mathbf{3 6 0 0}$ player in dash fixing Negative earth 5 watts output I.C. Stereo 8 Track to Cassette adaptor converts, $\mathbf{1 8}^{95}$ any 8 track player to cas sette player.
(20) 20×20 WATt Stere 0 AMPLIFIER Superb Viscount IV unit in teak-finished cabinet ${ }^{1} 29^{90}$ Silver fascia with aluminium rotary controls and $p \& p$ pushbuttons, red mains indicator and stereo jack $£ 2.50$ socket. Function switch for mic. magnetic and erystal pick. ups, lape, funer, and auxiliary Rear panel features two mains outlets. OIN speaker and input sockets, plus fuse. $20+20$ watts rms $40+40$ watts peak
30×30 WATT AMPLIFIER KIT
Specially designed by RT.VC for the experienced constructor. complets in every detail. Same facilities as
Viscount IV amplifier. $60+60$ peak. p \& $\mathrm{p}\left\{2.50 \quad £ 2 \mathbf{g}^{00}\right.$ NOW AVAILABLE fully built and tested. $\quad £ 3500$
Output $30+30$ watts ims, $60+60$ peak Dutput $30+30$ watts rms. $60+60$ peak.
32 Io cash or chequa personal shoppers Vistcount 20×20 a channel Stereo Adaptor to all buyers of the V iscount $20 \times 20 \quad £ 2990$ Available separately $\mathbf{f}^{\text {Amplifier at }} \mathbf{3}^{95} 0$

ADD-ON STEREO CASSEITE TAPE DECK KIT, Designed for the experienced D.I.Y. man, This $=$ kit comprises of a tape transport mechanism ready built and tested record/replay electronics with twin V.U. meters and level control for mating with mechanis Specifications: Sensitivity - Mic. 0.85 mV ä 20 K OHMS: Din. 40 mV 400 K OHMS: Output - 300 mV RMS per chat KHz from 2 K DHMS source : Cross 7alk - 30db: Tape Counter 3 Digit. Resettable : Frequency Response $-40 \mathrm{~Hz}-8 \mathrm{KHz} \pm 6 \mathrm{db}$ Deck Motor - 9 Volt OC with electronic speed regulations: Key Functions - Record, Rewind, Mans Transformer $\mathrm{f}_{19} 95$
 Opt. extras: Par of Oynamic microphones $£ 3.95+\mathrm{f} 1.00 \mathrm{p} \& \mathrm{p}$.

45 WATT MONO DISCO AMP
 Size approx.
$133^{*} \times 5 \frac{1^{\prime \prime}}{} \times 6 \frac{1}{7}^{\frac{1}{4}}$
45 watts rms. 90 watts peak output. Big features
include wo disc inputs. both for ceramic cartridges. tape imput and microphone input. Level mixing controls fitted with integral push-pull switches. Independent bass and treble controls and masier volume.

70 \& 100 WATT MONO DISCO A $14^{\prime \prime} \times 4^{\prime \prime} \times 10$ Brushed aluminum ascia and rotary controls.
Five vertical slide coatrols - master volume, 28 tape level. muc leve for perfect graduated change from record deck No. 10 No. 2. or vice versa. Pre-fade level control 70 watt
(PFL) lets YOU hear next disc hefore
140 watt peak it in. VU meter monitors output level fading p \& $\mathrm{p} \mathbf{\mathrm { f }} \mathbf{4 . 0 0}$ Output 100 watts RMS 200 watts peak. 100 watt $\mathbf{f} 65$ CHASSIS RECORD BSR BD S 95 TYPE llius. f2495
 \& Acos, magnetic stereo $£ 4.95$ Ceramic stereo $\quad £ 1.95$
Type It5 BSR automatic record player deck cueing device and stereo ceramic head. p \& p £2.55 f.g95 BSR MP 60 type, complete with magnetic cartudge. 129 diamond stylus. and de luxe plinth and cover. p\&p $£ 4.50$ Home 8 Track cartridge player This unit will match $f 16^{50}$
with the ViscountIV $9^{\prime \prime} \times 8^{\prime \prime} \times 3 \frac{1}{2}$. p \& $\mathrm{p}\{2.50$ with the VIs
CAR RADIO CAR RADIO KIT
For the experienced constructor only Output 4 watts into 4 ohms.
12 volts pos or neg (altered internaliy) $\mathbf{f} 12^{50} \boldsymbol{\rho}$ \& $p \mathrm{E} .50$ FREE TO PERSONAL SHOPPERS BUYING CAR RAOIO KIT worth ELECTROMATE Rear window heater, modern line element, $\mathbf{5} 3.00$

Become a radio amateur.

Learn how to become a radioamateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

TUNEIN TO THE WORLD OF MICROPROCESSORS
 Plays.
 God Save the Queen
 Rule 8 ritannia:
 Land of Hope and Glory Oh Come All Ye Faithful Oranges and Lemons Westminster Chimes
 Saitor's Hornpipe
 Beethoven's "Fate Knocking"
 The Marseillarse
 Mozart
 Wedding March
 Cook House Door The Stars \& Stripes
 Beethoven's Ode to Joy Willam lell Overture
 Soldier's Chorus
 Twinkle. Twinkle Little Star
 Great Gate of Kiev
 Maryland
 Deutschland uber Alles
 Bach
 Colonel 8 ogie
 The Loralle
 - Handsome purpose built ABS cabinet
 - Easy to build and install
 - Uses Texas Instruments TMS1000 microcomputer

- Absolutely all parts supplied including I.C. socket
- Ready drilled and legended PCB included
- Comprehensive kit manual with full circuit details
- No previous microcomputer experience necessary
- All programming permanently retained is on chip ROM
- Can be built in about 3 hours!
- Runs off 2 PP3 typebatteries.
- Fully Guaranteed

The Chroma Chime is the world's first electronic musical door chime which uses a pre-programmed microcomputer chip to generate tunes. Instead of boring old buzzes, dings or dongs, the Chroma-Chime will play one of its 24 well known tunes from its memory using its tiny 'brain' to all the music synthesizing! Since everything is done by precise mathematics, it cannot play the notes out of tune.

The unit has comprehensive built-in controls so that you can not only select the 'tune of the day' but the volume, tempo and envelope decay rate to change the sound according to taste.

Not only visitors to the front door will be amazed, if you like you can connect an additional push button for a back door which plays a different tune!

This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step bystep constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.

The CHROMA-CHIME is exclusively designed by

CHROMATRORICS

RiverWay, Harlow, Essex.

*Complexe chnoma~ chime

 Kixincludes P \& P +VAT* Agrear intraduction to the fascinating warld of micracamputers.
* Save pounds an normal retail price by building yourself.

BD1-The Connoisseur's Budget Choice

The Connoisseur BD1 transcription turntable is a precision engineered product designed to provide top grade performance at a moderate cost. Simplicity is the main feature of this unit giving excellent performance and reliability. A slow speed synchronous motor is used and because of its construction the hum field is very low, so that even the most sensitive of pickups can be used, including the Connoisseur SAU2 or the SME 3009 Series II.
Speed change is achieved by a press button unit at the rear of the platform which automatically moves the drive belt from one pulley groove to the other whilst the turntable is turning. The BD1 turntable kit can be assembled by the home constructor within the hour and when completed will give top quality performance. No soldering is required. Complete the unit with

8D1 with Plinth, a modern BD1 plinth and cover. The plinth is finished in walnut veneer and fitted with spherical anti-vibration feet. Add to this a strong Acrylic, bronze cover, hinged with 2-position lid stay and you have a first class turntable at a budget price!

Write for further details to:
A. R. Sugden \& Co. (Engineers) Ltd.

Manufacturers of Connoisseur Sound Equipment, Connoisseur Works, Atlas Mill Road, Brighouse, West Yorkshire HD6 1ES
Telephoné: Brighouse (0484) 712 142, Telex: 517144 Sugden Crighouse, Telegrams \& Cables: Connoisseur Brighouse.

B. BAMBER ELECTRONICS

Dept. P.E.5 STATION ROAD, LITTLEPORT, CAMBS., CBG $10 E$ Telephone: ELY (0353) 860185 (2 lines) Tuesday to Saturday

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

A RANGE OF DRAPER TOOLS FOA THE ELECTRONICS ENTHU81AST

DIAGONAL SIDECUTTERS $6+$ " 11.90
SMALL SIDE CUTTERS LJ2, Standard £3.70, LU7 (with wire holding devico) \&4. 10 .
MIOGET OPEN ENDED SPANNER SETS
$0+12^{2+2} \quad 3+5 \quad 4+6 \quad 6+8 B A \quad$ SIZES 22.85 set
 E3.50 set of 8
MINIATURE FILE SETS. Set of 6 £1.00. Set of 10 E3.25 (Round, llat, otc.).
of $0,2,4,8,8$, BA SIZES in Dies, Plug Taps, Taper Taps, Amefican type tap wrench, T type tap wrench, Die Hołder. $£ 11.00$

LARGE ELECTROLYTIC PACK8. Contaln range of terge electrolytic capacitors, low and high voltage typen.
$(+12 \ddagger \%$ VAT $)$.
Sider Switches, 2 pole make and break (or can
be used as 1 pole change-over by linking the two centre pins). 4 for sop.
A NEW RANGE OF QUALITY BOXES B ANSTRUMENT CASES.

Aluminium Boxer with Lids.		
A810	$54 \times 4 \times 11$	80p
AB13	$6 \times 4 \times 2$	30p
A日14	$7 \times 5 \times 2$	\$1.00
AB15	$8 \times 6 \times 3$	[1.30
AB16	$10 \times 7 \times 3$	51.50
AB17	$10 \times 4 \% \times 3$	51.30
AB25	$6 \times 4 \times 3$	[1.00
Vinyl Coated inetrument Ce		
Light Blue tops and White lower sections smart tilnish.		
WB1	$5 \times 2 \ddagger \times 2 \ddagger$	60p
WB2	$6 \times 4 \times 14$	[1-10
W83	$8 \times 5 \times 2$	¢1-50
W84	$9 \times 5 \dagger \times 2 \dagger$	\$1.20
WB5	$11 \times 6+\times 3$	[2.00
WB6	$11 \times 7+3$	c2. 25
WB7	$12 \times 84 \times 5 t$	¢2. 50
W8853	$8 \times 5+\times 3+$	¢2.00

MAIN8 TRANSFORMERS. Type BO/2, Mains input 200-210-220-230-240-2sov a.c., output 0-20-$40-60 \mathrm{~V}$
$7 \ddagger \times 4 \times 4$, fully Metased (ideal for PSU) E 3.00 7×4

Terms ol Business: CASH WITH ORDER. MINIMUM ORDER £2. ALL PRICES INCLUDE POST \& PACKING (UK ONLY) SAE with ALL ENOUIRIES Please please ado vat as shown. ALL GOODS in Stock despatched by return callers welcome by appointment onli

BARGAIN PARCELS SAVE POUNDS

Huge quantities of electronic components must be cleored os spoce required. 1000's of capacitors
resistors, Iransistors. Ex equipment panels etc. covered in voluoble components. No time to Must sell by weight $7 \mathrm{lbs}-\mathbf{£ 4 . 9 5} ; 14 \mathrm{lbs}-\mathbf{E} 7.95 ; 28 \mathrm{lbs}-\mathbf{£ 1 2 . 0 0 ; ~ 5 o l b s}-\mathbf{£ 2 0 . 0 0} 112 \mathrm{lbs}$ ¢30.00. BARGAIN PACKS

40p P \& P ON ALL ABOVE ITEMS. SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPIY, DEPT PE, 20A WADDON ROAD CROYDON, SURREY

G8CZW Digital Frequency Meter

Complete 50 MHz kit $\mathbf{\Sigma 5 4} \mathbf{0 0}$ inc. VAT, post free (U.K.)

ZNT040E COunt/Display I.C. \quad\begin{tabular}{l}
E

\hline .10

 integrated Circult Pack Displays and Filter Pack Semiconductor and Diode P Resistor and Capacitor Pack Logic and Display P C.B s 5 MHz Crystai Transformer 8-0 (-75p P. \& P

2.48

\hline
\end{tabular}

Hardware and Wire Pack Case, Two-tone P V.c.-faced slee, punched and lettered Min BNC Sockets (50 ohm) Min BNC Plugs (50 ohm) 500 MHz Prescater Kit SP8631B 500 MHz I.C NE592 Wideband Video Amp D.F.M. Reprint (post tree)

NEW!
 G8CZW Digital Voltmeter

ELECTRONICS (OLDHAM) LTD 83 Lees Road, Oldham OL4 1JW

Tel. 061-624 8812

SAXON ENTERTAINMENTS LTD THE PIONEERS OF MODULAR DISCO/P.A. EQUIPMENT NOW OFFER PACKAGE DEALS AT INCOMPARABLE PRICES

CENTAUR STEREO DISCOS

C/W LIGHT SHOW \& DISPLAY, TWIN SPEAKERS \& LEADS

Standard 100W

 $£ 225$ or Deposit $£ 28.80$12 Months @ £21.18 or 24 Months @ $£ 11.81$

Super 200W $£ 275_{\text {o } \text { opopis }}$ f32.80

12 Months @ £25.89 or 24 Months @ £14.44
 £ 349 or Deposit $£ 42.72$
12 Months © $£ 32.49$ or 24 Months \& $£ 18.11$

COMPLETE STEREO
ROADSHOWS - BUILT IN
SOUND TO LIGHT /SEQUENCER \& DISPLAY
TWO YEAR GUARANTEE

illustration shows GXL Centaur System
These systems feature full mixing for two decks tape \& bilic with monitoring facilities - override and are supplied complete with sound to light + sequencer. display, speaker leads etc.

JUST PLUG IN AND GO!

BSR Decks - 17,000 Line Loudspeakers - Rugged Aluminium Trimmed Cabinets - Cue Light And Phones Output - Slave Output - Deck Lights/Motor Starts (GXL)

MINI DISCO 100 WATT MONO SYSTEM $£ 159.50_{\text {Deposifif22.66 }}$
 12 Months © $£ 14.60$ or 24 Months $\mathbb{\text { ® } £ 8 . 1 4}$
 Similar in appearance to the Centaur and complete with loudspeakers and leads.
 Headphones to suit any system
 £7.50 EM507 Electret Mic £15.00 ECM 81 Electret Mic $£ 19.95$ Boom Stand £15.50 Carriage on all disco systems $\quad £ 10.00$ (Included in H.P. Prices)

D.I.Y. MODULES FOR ALL DISCO/P.A. AMPLIFIERS
 TOP QUALITY COMPONENTS THROUGHOUT

COMPLETE LIGHTING CONTROL AT YOUR FINGERTIPS!

Lighting Control Unit Mk II $4 k W$ Sequencer + Sound Light + Dimmers $£ 44.50$

+ Automatic Level Integrated Logic Module $£ 32.50$ Circuitry Panel E2.95

Three Channel Sound to Light 3kW 1-240W input - master Plus channel controls

DISCO MIXERS - COMPLETE OR MODULAR

	MONO OR STEREO WITH AUIOFADE	
MODULES		
Avoilable complate ond ready to plug in or as on	Mono module	£ 22.50
easy to connect module with oll controls except	Stereo module	£33.50
monitor switch olreody fitted - full instructions	Panel	£3.95
supplied.	Kit of knobs/sockets etc	¢5.50
	COMPIETE MIXERS (with case)	
FEATURES INCLUDE:	Mono.18V	£39.50
Twin Deck - Mic \& Tope Inputs - Wide ronge boss	Stereo 18V	£57.50
\& treble controls - Full headphone monitoring -	Mono moins	£45.75
Crossfade - Professional standord performance.	Stereo moins	£63.75

STROBE UNITS

Pro-Strobe 4-6 Joules $£ \mathbf{3 7 . 5 0}$
Super Strobe 2-3 Joules $£ \mathbf{2 2} .50$ (Pro-Strobe has external trigger facility).

PROJECTORS - PLUTO - NEW LOW PRICES!!! CHOICE OF WHEEL/CASSETTE
Rope Lights - Red or Multicolour $\mathbf{£ 2 2 . 0 0}$ Melos Echo Chamber $\mathbf{£ 5 9 . 0 0}$ per 12 ft . Headphones
Rope Light Controller for up to 120 ft E 30.00 Sirens: English Police, USA Police,
Fuzz Lights-Red/Blue/Yellow/Green $£ 22.80$ Destroyer, Alien Voice Simulator $\mathbf{£ 7 . 5 0}$ Magnetic Cartridge Equalisers $£ 3.50^{*}$ Bulgin 8 way lighting plug/socket $£ 1.90$

100 Watt Chassis Loudspeakers $12^{\prime \prime} £ 23.50 \quad 18^{\prime \prime} £ 47.50$ (Add $£ 1.50$ corr.)
Empty Loudspeaker Cabinets: Small $12^{\prime \prime}$ Large $12^{\prime \prime} £ 21.50$ Small $2 \times 12^{\prime \prime} £ 22.50$ £15.50, Large $2 \times 12^{\prime \prime} £ 28 \quad 1 \times 18^{\prime \prime} £ 29.50$

Projector lamps: All67 £2.90. M6 £5.65.

loow Spot lamps Red/Blue/Vellow/Green £1.50 ea£ 13.50 for 10
MD Spot Banks: 3-way 300W £ 19.50,
4.way 400W E22.50.

Bubble machines (optikinetics) $£ \mathbf{3 6 . 5 0}$

Strobe tubes $80 \mathrm{~W} £ 8.50$
ICI Vynide $50^{\prime \prime}$ wide $£ 3.50$ Metre
Kickproof Grille $24^{\prime \prime}$ wide $£ 3.25$ Metre Kick Resistant Grill $50^{\prime \prime}$ wide $£ 3.25$ Metre. FULL RANGE OF RE-AN PRODUCTS IN STOCK SEND FOR OUR BROCHURE NOW!!

$£ 34.00$	Liquid wheels	$£ 7.50$
$£ 69.50$	Cassettes	$£ 8.00$
$£ 79.50$	Picture wheets from	$£ 4.75$
	(Wide choice avaitable)	

$E 79.50$

Cassettes $\quad \mathbf{E 8 . 5 0}$ Picture wheels from $\quad \mathbf{~} 4.75$ (Wide choice avaitable)

PIEZO HORNS only $£ 7.50$ YES! - only $£ 7.50$
(As fitted to our package PA system) Direct from Motorola Inc., USA af an UNBEATABLE PRICE

Na crossover required $4 \mathrm{kHz}-30 \mathrm{kHz}$ rated $75 \mathrm{~W} / 8$ ohms $150 \mathrm{~W} / 4$ ohms use two per 100 W amplifier - Full instructions supplied.

 PACKAGE P.A. SYSTEMS (Guvarante)

Complete with PIEZO horn columns fitted with 100 watt units (100 watt system illustrated)

100 Watt £145 Deposit $£ 19.70$

12 Months ef 13.66 or 24 Manths - £ 7.61

200 Watt £225

Deposit $£ 28.80$
12 Months E21.18
24 Roonths © E 11.81

These systems come complete with a Four Channel Amplifier, Leads etc. The 200 Watt system features Twin 100 Watt drive units in each cabinet.

ALSO ILLUSTRATED:
Melos Echo Unit $£ 59.00$ Boom Stand $£ 15.50$ Electret Mic ECM81 £19.95* Floor Stands $£ 9.90$ EM507 Mic* £15.00 Phasers $£ 19.80$
D.I.Y. MODULES FOR P.A. SYSTEMS Mono or stereo

Make your own mixer - Mono/Stereo - up to 20 channels with these, easy to wire modules - Available as $P C B^{\prime}$ s or assembled on panels.

Input Stages
Mon
PCB
¢50.95
Mono (/W panel etc.
$£ 8.95$
(eneo $£ 9.50$
Stereo (/W
panel etc.
£12.50

Send for free brochure for complete specification

Saxon AP100 Amplifier £45

Four mixing inputs - 100 W into 4 ohms Wide range bass \& treble controls + master - Twin outputs
Saxon 150 Amplifier $£ 59$
Four mixing inputs - 100 W into 8 ohms 150W into 4 ohms - wide range bass \& treble controls + master

All prices subject to 8% VAT except where asterisked ($12 \frac{1}{2} \%$) Shop premises open Mon to Sat 9 am - 5 pm tunch 12.30-1.30 pm Majl order dept open Mon to Fri 10 am - 4 pm - Ring $01-6846385$

TO ORDER

By. Post Send your requirements with cheque crossed P.O. or 60 p COD charge to address below or just send your Access or Barclay Card Number NOT THE CARD
By Phone You may order COD, Access or Barclay Card.
Post \& Packing 50 p on all orders excepl where stated.

> SAXON ENTERTAINMENTS LTD. 327 Whitehorse Road, Croydon, Surrey.
> All Enquiries Large SAE Please Brochures on rèquest.

WHAT'S NEW?

, semiconductor
Raching kit
the mont MODERN, RAPID, ECONOMIC way to mastor space age electronice.
Btarting even from ZERO, by performing over. 100 EXPERIMENTB
and creating more than 20 practical applicationa
cou learn all about the most up to date clectronic circuits: how to calculate, repair, and design them, while pursuing your favorite hobby. Start from scratch, or improve your present knowledege. Train and ear money in your spare time turn your pastime into valuable job opportunities
Compare our price: you receive the entire course, "mini laboratory" and components for LESS than the price of the components alone.

BOMPLETE KIT: nothing else to buy

YOu Ret

- instruction manual : over 200 pages of detailed stop-by step instructions -starting from scratch, explains basic laws and physics of Electricity, semiconductor principles and operation electronic circuits : from diodes (including liac, zener) transistors, triacs to integrated circuits (C.MOS, operational amplifiers) etc...
- Over 200 Electronic components : aerospace technologie printed circuit experiment board, phototransistor, triac, thyristor I.C.S Transistors (including FET, MOSFET) LEDS + résistors , capacitors, speaker, milliameter, potentiometere, variable capacitor, etc... etc... etc...
- measuring instruments (you assemble yourself from among components furnished in kit.)
ELECTRONIC VOLTMETER, LOW FREQUENCY MEASURING AMPLIFIER LOGIC INDICATORS, REGULATED POWER SUPPLY, MILLIAMNETER.

-YOMDPrimen:

- over 100 DIFFERENT EXPERIMENTS : from the most basic voltage measurements to radio transmitter circuits and including HI FI, Flip Flops, Ic applications, triac use, etc... etc... etc.

YOM POn ERMPE

-more than 20 complete fonctional systems : light modulator high fidelity amplifier, radio control set, radio receiver and transmitter, electronic gadgets and games and many, many more.

* Hand tools not fumisbed

FAV $210 \cdot m$ ill ooupon todey-8AVE $=10$
 =NOLAND: P.O. Box 401
Kingsmead, Kings Lane, Chipperfield,
Nr. King's Langley, Herts. WD4 9PB Please send ${ }^{-0}$ (QTY) IK2 teaching Kit(s) I enclose Cheque/Postal order for \qquad f
nave
ADRESS

DON' MISS OUR SPECIAL CASSETTE OFFER! LOOK AT OUR BOOKS

SAVING SALE YOU MAKE THE SAVING!

BH-PAK

SILICON RECTIFIERS $\frac{1}{2}$ AMP. G.E.

AUDIO LEADS

Order No.
17 A.C. Mains connecting lead for cassette
recorders and radios Telefunken type $\quad 45 p^{*}$
185 pin DiN headphone plug to stereo socke
2×2 pin plug to inline stereo socket for
headphones
20 ft . of coiled guitar lead
3 pin to 3 pin DiN plug
3 pin to 3 pin DIN plug $£ 1.15^{\circ}$
Audio lead 5 pin plug to 5 pin DIN plug $\quad 50 p^{\circ}$.
127 Audio lead 5 pin DIN plug to tinned open ends $50 p^{*}$
. Audio lead 5 pin Din plug to 4 phono plugs
129 Audio lead 5 pin plug to 5 pin DIN plug -
70p*
1305 metre lead 2 pin OIN plug to 2 pin DIN
70p*
13210 metre lead 2 pin DIN plug
$45 p^{\circ}$
$65 p^{\circ}$

HEAVY GAUGE
 BLACK PLASTIC BOX

74 SERIES TTLICs

TYPE	QUANTITY		TYPE	QuANTITY		TYPE	QUANTITY	
	1	100		1	100		1	100
	fp	Ep		Ep	Ep		fp	fp
7400	0.09	0.08	7448	0.70	0.68	74.122	0.45	0.42
7401	0.11	0.10	7450	0.12	0.10	74123	0.65	0.62
7402	0.11	0.10	7451	0.12	0.10	74141	0.68	0.65
7403	0.11	0.10	7453	0.12	0.10	74145	0.75	0.72
7404	0.11	0.10	7454	0.12	0.10	74150	1.10	1.05
7405	0.11	0.10	7460	0.12	0.10	74151	0.65	0.60
7406	0.28	0.25	7470	0.24	0.23	74153	0.70	0.68
7407	0.28	0.25	7472	0.20	0.19	74154	1.20	1.10
7408	0.12	0.11	7473	0.26	0.22	74155	0.70	0.68
7409	0.12	0.11	7474	0.24	0.23	74158	0.70	0.68
7410	0.09	0.08	7475	0.44	0.40	74157	0.70	0.68
7411	0.22	0.20	7476	0.26	0.25	74160	0.95	0.85
7412	0.22	0.20	7480	0.45	0.42	74169	0.95	0.85
7413	0.26	0.25	7481	0.90	0.88	74162	0.95	0.85
7416	0.28	0.25	7482	0.75	0.73	74163	0.95	0.85
7417	0.26	0.25	7483	0.88	0.82	74164	1.20	1.10
7420	0.11	0.10	7484	0.85	0.80	74165	1.20	1.10
7422	0.19	0.18	7485	1.10	1.00	74166	1.20	1.10
7423	0.21	0.20	7486	0.28	0.26	74174	1.10	1.00
7425	0.25	0.23	7489	2.70	2.50	74175	0.85	0.82
7426	0.25	0.23	7490	0.38	0.32	74176	1.10	1.00
7427	0.25	0.23	7491	0.65	0.62	74177	1.10	1.00
7428	0.36	0.34	7492	0.43	0.35	74180	1.10	1.00
7430	0.12	0.10	7493	0.38	0.35	74181	1.90	1.80
7432	0.20	0.19	7494	0.70	0.68	74182	0.80	0.78
7433	0.38	0.36	7495	0.60	0.58	74184	1.50	1.40
7437	0.26	0.25	7496	0.70	0.68	74190	1.40	1.30
7438	0.26	0.25	74100	0.95	0.90	74191	1.40	1.30
7440	0.12	0.10	74104	0.40	0.35	74192	1.10	1.00
7441	0.60	0.57	74105	0.30	0.25	74193	1.05	1.00
7442	0.80	0.70	74107	0.30	0.25	74194	1.05	1.00
7443	0.95	0.90	74110	0.48	0.45	74195	0.80	0.75
7444	0.95	0.90	74111	0.75	0.72	74196	0.90	0.85
7445	0.80	0.75	74118	0.85	0.82	74197	0.90	0.85
7446	0.80	0.75	74119	1.30	1.20	74198	1.90	1.80
7447	0.70	0.68	74121	0.28	0.26	74199	1.80	1.70

for the above series of ICs in booklet form price 35p.

CMOS\\|Cs							
Type	Price	Type	Price	Type	Price	Type	Price
CD4000	f0.14	CD4018	¢0.85	CD4035	£1.40	CD4056	E1.15
CD4001	¢0.16	CD4019	£0.45	CD4037	ع0.78	CD4069	c0.32
CD4002	£0.16	CD4020	f0.95	CD4040	$\underline{1} .78$	CD4070	¢0.32
CD4006	£0.80	CD4021	£0.85	CD4041	£0.68	CD4071	c0.20
CD4007	¢0.17	CD4022	£0.80	CD4042	f0.68	CD4072	c0. 20
CD4008	10.80	CD4023	£0.18	CD4043	¢0.78	CD408 1	¢0. 20
CD4009	f0.50	CD4024	¢0.64	CD4044	¢0.78	CO4082	c0. 20
CD4010	10.50	CD4025	¢0.18	CD4045	£1.15	CD4510	£1.10
CD40 11	c0.18	CD4026	£1.85	CD4046	c0.95	CD4511	£1.25
CO4012	¢0.17	CD4027	¢0.48	CD4047	¢0.75	CD4516	£1.10
CO4013	¢0.42	CO4028	¢0.80	CD4049	$\underline{6} 0.46$	CO4518	£1.10
CD4015	£0.80	C04029	£0.95	CD4050	¢0.46	C04520	¢1.10
CD4016	¢0.42	CO4030	£0.46	CD4054	c0.95		
CD4017	¢0.80	CD403 ${ }^{1}$	£1.80	CD4055	¢1.60		

AUDIO MODULE SALE

Type	Description	Normal Price	Sale Price
AL30A	10W RMS Power Amp	¢3.65	E2.95*
AL60	25W RMS Power Amp	¢4.35*	E3.55*
AL80	35W RMS Power Amp	66.95	$¢ 5.95$
AL250	125 W RMS Power Amp	¢15.95	£14.45
SPM80	35 V Power Supply	63.75	¢3.10*
PS12	20-30V Power Supply for AL30A	¢1.30*	¢1.15*
PA12	Stereo Pre-Amp for Al30A	¢6.70	¢5.95*
PA100	Stereo Pre-Amp for AL60/ALB0	cta.75*	£12.45*
S450	Stereo F.M. Tuner	¢20.45*	£18.65*
MPA30	Magnetic-Ceramic Pre-Amp	42.85	¢2.55*
Stereo 30	Complete Audio Chassis 7W + 7WRMS.	£16.25	£14.95*

LOOK \& LISTEN

GE 100 NINE CHANNEL
MONO-GRAPHIC EQUALIZER MODULE
The GE100 has nine 1 octave adjustments using integrated circuit active filters. Boost and Cut limits are $\pm 12 \mathrm{db}$, Max. Voltage handling 2 V RMS, T.H.D., 0.5%, input impedance 100 K . output impedance less than 10 K . Frequency response $20 \mathrm{~Hz}-20 \mathrm{KHz}$ (3db). The nine gain controls are centred at 50, 100, 200, 400, 800, $1600,3,200,6,400$ and $12,800 \mathrm{~Hz}$. The suggested gain controls are 10 K LIN sliders. (Not supplied with the module). See Paks S31 and 16192.

ONLY £19.50
SG30 Power supply board for GE100 15-0-15 Volt $£ 4.50$ send sae for technical oata on any of the AUDIO MODULES.

SPECIAL OFFER! COMPONENT PAKS

Order No
 Ouantity $16164 \quad 200$ approx. Resistors mixed values.
 $\frac{1}{2}$ PRICE BARGAIN!

(Count by weight)		
16165	150 approx. Capacitors mixed values.	
(Count by weight)		

E4 worth (min. value)
of Electronic Project Books, Technical, Semiconductor Data and Equivs - Books of Assorted Titles. OUR CLEARANCE PRICE Order No. S80
£2 per bundle

SUPER SOUND SAVING METROSOUND LOW NOISE CASSETTES

Order No. S53 10 for $\mathbf{f 2 . 5 0 *}$ BIB GROOVE CLEAN Model 60. Chrome Finish Plastic Order No. 829 £1.40*

HOT OFFER

ANTEX SOLDERING IRONS
Order No. 1931×2525 watt. LOW LEAKAGE Usually $\mathbf{£ 3 . 4 0}$ SALE PRICE $£ 2.95$ PLUS FREE Heatshunt
1948 Model C 15 watt General purpose Usually £3~* SALE PRICE £2.95 PLUS FREE Heatshunt
1939 ST3 Soldering Iron Stand suitable for either lron.
£1.20
NEW Siren Alarm Module
American Police screamer powered from any 12 volt supply into 4 or 8 ohm speaker. Ideal for car burglar alarm, freezer break down, and other securrity purposes.

Order No. S15 $£ \mathbf{~} 3.50$

AVDEL BOND

Cyanocrylate adhesive bonds - plastic rubber, transistors, componerits in seconds. Order No. 143

55p per 2 gm. phial

ORDERING

Please word your orders exactly as printed, not forgetting to include our part number.

VAT

Add $12 \frac{1}{2} \%$ to prices marked* Add 8% to others excepting those marked t. These are zero.

Dept. PE 2, P.O. Box 6, Ware, Herts COMPONENTS SHOP: 18 BALDOCK

KITS FOR SYNTHESISERS, SOUND EFFECTS

COMPONENTS SETS include all necessary resistors, capacitors, semiconductors. potentiometers and transformers. Hardware such as cases, sockets. knobs. etc. are not included but most of these may de bought separately. Fuller details of kits. PCBs and parts are shown in our lists
CIRCUIT AND LAYOUT DIAGRAMS are supplied free with all PCBs designed by Phonosonics.
PHOTOCOPIES of the P.E. texts for most of the kits are avalable-prices in our lists.

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

P.E. MINISONIC MK. 2 SYN THESISER

A portable mains-operated Miniature Sound Synthesiser. with keyboard circuits. Although having slightly tewer facilities than the large P.E. Synthesiser the functions olfered by this design give it great scope and versatility. controlled amps. keyboard hold and control circuits. HF oscillator and detector, ring modulator, noise generator. output amp and mixer. power supply. from $\mathbf{E 6 4 . 2 5}$

Set of pasic component circuit boards
89.71

P.E. SYNTHESISER (P.E. Feb. 73 to Feb. 74)

The well acclaimed and highly versatile large-scale nains-operated Sound Synthesiser complete with Keyboard circuits. Other circuits in our fiets may be used with the Synthesiser to good advantage, notably P.E. Minisonic. Phasing Unit, Wind and Rain, Rhythm Generator, Sound Bender, Voltage Controlled Filter, Guitar Effects Pedal and Overdrive. Fuzz. Tremolo and Wah-Wah units.
The Moin Synthesicer: PSU. 2 linear VCOs. 2 ramp generators. 2 input amps. sample hold. noise penerator. reverb amp. ring modulator. peak level circuit. envelope haper. voltage controlled amp. Full details in lists Set of basic component kits

C 33.03
C 13.20
Se symitheerkeyboard Circulte (can be used without the Mein Synthesiser to make an independent musical instrument): 2 logarithmic VCOs, divider. 2 hold circuits, 2 modulation amps, mixer, 2 envelope shapers and additional
PSU. Full detais in our lists.
Set of basic component kits
$c 48-18$
$c 7.66$
GUITAR EFFECTS PEDAL (P.E. July 75)
Modulates the attack, decay and fifter characteristics of an audio signal not only from a guitar but from any audio source. producing 8 difierent switchable effects that can be interesting of all the low-priced sound effects units in our range. Circuit does not duplicate effects from the Guitar Overdrive Unit.
Component set with special foot operated switches 57.59 Alternative component set with panel mounting switches
Printed circuit board
$\mathbf{8 4 . 9 6}$
$\mathbf{8 1} .43$
SOUND BENDER (P.E. May 74)
A multi-purpose sound controller, the functions of which include envelope shaper, tremolo, voice-operated fader. automatic fader and trequency-doubler
Component set for above functions (excl. SWs) \quad P7.84 Printed circuit board
Optional extra-additional Audio Modulator, the use of hich. in conjunction with the above component set. can Component set (Incl. PCB)

PHASING UNIT (P.E. Sept. 73)
A simple but effective manualiy controlled unit for introducing the phasing sound into live or recorded music.
Component set (incl. PCB)
£2. 87
PHASING CONTROL UNIT (P.E. Oct. 74)
For use with the above Phasing Unit to automatically control
Component set (incl. PCB)
54.48

SOPHISTICATED PHASING AND VIBRATO UNIT

A slightly modified version of the circuit published in utomatic control over the rate of phasing and vibrat and Component set Printed circuit board

E2. 33^{1}

WAM-WAH UNIT (P.E. Apr. 76
The Wah. Wah effect produced by this unit can be controlled manually or by the integral automatic controller.
Component set (incl. PCB)
AUTOWAH UNIT (P.E. Mar. 77)
Automatically produces Wah-pedal and Swell-pedal sounds each time a new note is played.
$\begin{array}{ll}\text { Component set, PCB, special foot switches } & \text { e7.27 } \\ \text { Component set and PCB. with panel switches } & \mathbf{~ 4 . 8 3}\end{array}$
P.E. JOANNA (P E. May/Sept. 75)

A ive-octave electronic piano that has switchable alternative vorcing of Honky-Tonk plano, ordinary piano, harpsichord or a mixture of any of the three. together with facilitie including rast and siow remolo, typically delivers 24 watts into 8 ohms. The PCBe have been redesigned by ourselves making improved use of the spac avail avainable.
erator, 61 envelope shapers. voicing and pre-arnp circuits

Sel of basic component kits for above
Set of printed circuit boards for above
Power amplifier
Printed circuit board for power amp

ELECTRONIC ORGAN

5 -octave electronic organ with 5 basic voices that can be used individually or together. 5 pitches (2ft, 4ft, 8ft, 16ft, 32ft) variable attack, tremolo, vibrato, phasing, and variabl sustain. Detalls in our list.

ORGAN CONVERSION KIT
Converts the P.E. Joanna electronic piano to also provide Basic component set and PCB

SYNTHESISER TUNING INDICATOR (P.E. July 77)
A simple 4-octave frequency comparator for use with
syninesisers and other instrumenis where the full versatility of the P.E. Juning Fork is not required.

Component and PCB (but excl sw.)
E7. 45
GUITAR FREQUENCY DOUBLER (P.E. Aug. 77)
A modified and extended version of the circuit published
Details in list.

SEE OTHER PAGE FOR KEYBOARDS, AND OUR LISTS FOR OTHER COMPONENTS AND

 ACCESSORIES STOCKEDWIND AND RAIN UNIT
A manually controlled unit for producing the above-named Component set (iricl PCB)
[3. 72

GUITAR OVERDRIVE UNIT (P.E. Aug. 76
Sophisticated, versatile Fuzz unit, including variable and Switchable controls affecting the fuzz quality whitst retaining the attack and decay. and also providing filtering. Does no be used with it and with other electronic instruments.
Component set using dual shider pot
Component set using dual rotary po
Printed circuit board

FUZZ UNIT

Simple Fuzz unit based upon P.E. Sound Design'" circuit
Component set (incl. PCB)

TREMOLO UNIT

Based upon P.E. Sound Design" circuit

TREBLE BOOST UNIT (P.E. Apr. 76)

Gives a much shrilter quality to audio signals fed through it
The depth of boost is manually adjustable.
Component set (incl. PCB)
[2. 40
P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switct-selected frequency-accurate tones. A or funing acoustic and electronic adjustments. deal alike.
Main component set (incl. PCB)
815.59
87.03

Power supply set (incl. PCB)
P.E. SYNCHRONOME (P.E. Mar. 76)
accenred-beat electronic metronome. providing duple. riple and quadruple times with full control over the beat ate. Can also be used as a simple drum-beat rhythm generator. Includes power supply.
Component set (incl. loudspeaker)
Printed circuit board
511.62
$E 2.04$

TAPE NOISE LIMITER

Very effective circuit for reducing the hiss found in most tape ecordings. All kits include PCBs
Standard tolerance aet of components
Superior tolerance set of components
Regulated power supply (will drive 2 sets)
52.96
53.76
54.69

ENVELOPE SHAPER WITHOUT VCA (P.E. Oct. 75)
Provides full manual control over attack. decay, sustain and elease functions. and is for use with an existing voltage Component set (in
\&4. 86
ENVELOPE SHAPER WITH VCA (P.E. Apr. 76)
This unit has its own voltage controlled amplifier and has full manual control over attack. decay. sustain and release Compo

TRANSIENT GENERATOR (P.E. Apr. 77)

An envelope shaper, without VCA. having the usual attack. decay. sustain and release functions. and in addition it also provides a "Repeat Effect" enabling a synthesiser to be programmed 10 imitate such instruments as a mandolin or banjo.
Component set
Printed circuit board
84.52
51.82

WAVEFORM CONVERTER

Slightly modified from a circuit published in a German edition of Elektor" Converts a saw-tooth waveform into four different waveforms sine-wave. mark-space saw-tooth. regutar triangle form, and squarewave with an externally variable mark-space ratio
Component set (incl. PCB but excl. sw's)
58. 19

VOLTAGE CONTROLLED FILTER (P.E. Dec. 74)
Part of the P.E Minisonic now released as an independent
Component set (incl. PCB) (Order as Kıt 65-1)
E8-22

RING MODULATOR (P.E. Jan. 75)
Part of the P.E. Minisonic now released as an independent
kit for use with other synthesisers.
Component set (incl. PCB) (Order as Kit 59-1) \quad §5.50

NOISE GENERATOR (P.E. Jan. 75)

Part of the P.E. Minisonic now released as an independen
Component set (incl. PCB) (Order as Kit 60-1) \quad 13.35
SOPHISTICATED POWER SUPPLIES
A wide range of highly stabilised low noise power supply kits

MICROPHONE PRE-AMP (P.E. Apr. 77)
£3.78
VOICE OPERATED FADER (P.E. Dec. 73
For automatically reducing music volume during
"talk-over"-particularly useful for Disco work or for
Component set (incl. PCB)
53.97

DYNAMIC RANGE LIMITER (P.E. Apr. 77)
Automatically controls sound output to within a prese level.

Component set (incl. PCB)
C4. 5

EXPORT ORDERS are welcome. though we advise tha a current copy of our list should be obtained before ordering as it also shows Export posiage rates. All payments must be cash-with-order, in Sterling and preferably by International Money Order or through an English Bank. To obtain list send 40 p

POST AND HANDLING

U.K. orderg-under $£ 15$ add 25p plus VAT, over $£ 15$ add 50p plus VAT. Keyboards $£ 2.00$ plus VAT
Optional Insurance for compensation against loss or damage in post. add 35p in addition to above post and Eire. C.I.. B.F.P.O.. and other countries are subject to
Export postage rates.

DON'T FORGET VAT!

Add $12 \frac{1}{2} \%$ (or current rate if changed) to full total of goods, post and handling. (Does not apply to export orders).

AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of CBs. The cases were built by ourselves and are not for sale. though a small selection of other cases is available.
LIST-Send stamped addressed envelope with all U.K. requests for free other components.

OVERSEAS enquiries for list: Europe send 20p. Other countries-send 40p.

KEYBOARDS AND CONTACTS

Kimber-Allen Keyboarde as required for many published circuits, including the P.E. Joanna, P.E. Minieonic, and P.E. Syntheeleer. The manułacturers claim that these are the finest moulded plastıc keyboards available. All octaves are C to C. The keys are plastic, spring-loaded and mounted on a robust aluminium frame.
 Contact Assemblles for use with above keyboards: Single-pole change-over (type Synthesiser. Special contact assembly (type 4PS) having 4 poles. 3 of which are normally-open make-break contacts and the fourth is a change-over contact-this special assembly enables THE SAME KEYBOARD to be used with the P.E. Synthesiser, P.E. Minisonic and the P.E Joanna simultaneousty thus avoiding the cost of more than one keyboard. See our list for other contacts.

Contact	Each	3 Octave Set	4 Octave Set	5 Octave Sel
SP	$24 p$	E 8-88	[11.76	£14.64
2 P	27p	¢ 9.99	[13.23	£16.47
4 PS	53 p	£19.61	525.97	£32.33

PRINTED CIRCUIT BOARDS for use with the above contacts and thus eliminating most of the inter-wiring required, are available. Details in our lists.

MORE NEW KITSI

NEW RHYTHM GENERATOR
Redesigned, improved and extended version of the PE 1974 design and including new automatic rhythm programme selector

TUNE-PROGRAMMABLE SEQUENCER published.

FORMANT SYNTHESISER
(Elektor Magazine 1977). Very sophisticated music enthesiser for the advenced constructor and for whom cost is secondary to performance.

GUITAR SUSTAIN UNIT
(PE Oct. 77)
Details in lists. Please send S.A.E

SOUND-TO-LIGHT (P.E. Aurora) (P.E. Apr.-Aug. 71) Four channels each responding to a different sound masic component set (excl. thyristors) Printed circuit board for above
Power supply
PCB for power supply

3-CHANNEL SOUND-TO-LIGHT (P.E. Apr. 76)
A simple but effective sound-to-light controller capable of operating 3 lamps each of approximately 700 watts. Includes power supply. thyristors, and by-pass switches Component set (incl. PCB

DISCOSTROBE (P.E. Nov. 76)
4-channel light-show controller giving a choice sequential, random, or full strobe mode of operation. Printed circuit board

BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)
Multi-function circuits that with the use of other external equipment, can serve as lie-detector. alphaphone Pre-Amp Module Component set (incl. PCB) Basle Output Circulte-combined component se with PCBs. for alphaphone, cardiophone frequency meter and visual teed-back lampdrive circuits
er Module Type PC7
$\mathbf{8 6} .59$
$\mathbf{8 7} .35$

SEMI CONDUCTOR TEStER (P.E. Oct. 73)
Essential test equipment for the enterprisling home set of resistors capacitors potentiometers. capacitors. semiconductors Panel meter $(500 \mu \mathrm{~A})$
$89 \cdot 63$

55.70

PHONOSONICS

GREENWNELD

443 Milibrook Road Southampton SO1 OHX Tel:(0703) 772501

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

- SAVE ON TIME - No delays in walling for parts to come or shops to open!
* SAVE ON MONEY - Bulk buying means lowest prices - just com pare with others!
- have the right part - No guesswork or substitution necessary!
ALL PACKS CONTAIN FULL SPEC BRAND NEW, MARKED DEVICES SENT BY RETURN OF POST. VAT INCI USIVF PRICFS.
K001 50 V ceramic plate capacitors $5 \% .10$ of each value 22 pF to 100 pF Total 210, E3.35
K002 Extended range, 22 pF to $0.1 \mu \mathrm{~F}$ 330 values $£ 4.90$
K003 Polyester capacitors. 10 each of these values: $0.01,0.015,0.022$ $0.033,0.047,0.068,0.1,0.15,0.22$ $0.33,0.47 \mu \mathrm{~F} .110$ altogether for $£ 4.75$ K004 Mylar capacitors. min 100 V type. 10 each all values from 1000 p
to 10.000 pF . Total 130 for $~$
3.75 to $10,000 \mathrm{pF}$. Total 130 for $£ 3.75$ K005 Polystyrene capacitors. 10 each value from 10 pF to $10,00 \mathrm{pF}$ E12 series 5% E12.30
$K 006$ Tantalum bead capacitors. 10 each of the following: 0.1. $0.15,0.22$ $0.33,0.47,0.68,1 \dot{2}, 16$. $3 / 4.7 .6 .8$ $47 / 6100 / 3$. Total 170 tants for $£ 14.20$ K007 Electrolytic capacitors 25 V K007 Electrolytic capacitors 25 working, small physical size. 10 each of these popular values: $1,2 \cdot 2,4 \cdot 7$ K008 Extended range, as above, also including 220, 470 and $1000 \mu \mathrm{~F}$. Tota 100 for E 5.90
K021 Miniature carbon film 5\% resistors, CR25 or similar. 10 of each value from 10 R to 1 M . E12 series. Total 610 resistors, $\mathbf{8 6 . 0 0}$ K022 Extended range, total 850 resistors from 1 to $10 \mathrm{M} \mathrm{Es.30}$
K041 Zener diodes. $400 \mathrm{~mW} 5 \%$ BZY88 etc. 10 of each value from 27 V to 36 V . E24 series. Total 280 for to 36 V
E 15.30
K042 As above but 5 of each value
C8.70 E 8.70

PC ETCHING KIT MK III Now contains 200 sq. ins. copper ciad board. lib. Ferric Chloride DALO etch-resist pen, abrasive
cleaner, two miniature drill bits etching dish and instructions. £4.15.

FERRIC CHLORIDE

Anhydrous technical quality in 116
double sealed packs.

SIRENS

Work off $4 \times$ HP7 batteries, emit very Work of $4 \times$ HP7 batteries, emit very
loud noise. Overall size $110 \times 75 \times$ 60 mm . Use as Burglar Alarm in car house, workshop etc. ONLY 81.95

VERO OFFCUTS

Pack A, All 0.1"; Pack B, All 0.15 Pack C, Mixed; Pack D, All 0.1" plain Each pack contains 7 or 8 pieces with a total area of 100 sq in. Each pack £1.30. Also available by weight. 1 lb £3.45, 101 b E31.
17 * 3J" strips: 0.1" E2.20. 10 for E15
$0.15^{\prime \prime}$ £1.96; 0 - $1^{\prime \prime}$ plain E1.83.

TEXAS 741

 8 PIN DIL FULL SPEC. 100 off $£ 19.50$ 25 off $£ 5.50$
TRANSFORMERS

Special-12V 8A for only $£ 4.00$. $6-0-$ $6 \mathrm{~V} 100 \mathrm{~mA} 85 \mathrm{p} ; 9-0-9 \mathrm{~V} 75 \mathrm{~mA} 85 \mathrm{p}$ 12-0-12V 50mA 85p; 100mA 95p; 12 $0-12 \mathrm{~V} 1 \mathrm{~A} £ 2.90 ; 20-0-20 \mathrm{~V} 2 \mathrm{~A}$ [4.70 20V 2.75 A £ 4.

VERO PLASTIC BOXES
Professional quality, two tone grey polystyrene with threaded inserts fo mounting PC Boards
Type
2518
$2518120.65 .40 \mathrm{~mm} \quad$ C2.24 $\begin{array}{ll}2520150 \cdot 80.50 \mathrm{~mm} & \mathbf{〔 2 . 6 8} \\ 2522188.110 .60 \mathrm{~mm} & \mathbf{\kappa 3 . 7 2}\end{array}$ Sloping front versions:
Type
$\begin{array}{lll}2523220 & 174 & 100 / 52 \mathrm{~mm} \\ 1798171 & 121 & \mathbf{~} 6.90\end{array}$ $1798171 \cdot 121 \cdot 75 / 37.5 \mathrm{~mm}$ E4.65 Gen. purpose plastic potting box 7 Hand controller box, shaped tor ease of use in the hand, $94 \cdot 61 \cdot 23 \mathrm{~mm}$ 64 p.

S-DECS \& T-DECS S-DEC Breadboard
£2.25 T-DEC Breadboard
RELAYSAND SOLENOIDS 12V DC enclosed, 2 10A c/o contacts [1.00
Open construction relay with 2 10A c/o contacts, coll rated 24 V AC, bu works well on 6V DC 60p
$240 \mathrm{~V} A C$ enclosed, 11 pin plug in base. 3 10A c/o contacts, $\mathbf{£ 1}, 20$
240 V AC open, 2 15A c/o contacts £1.50
6 V miniature low profile for PC mounting, $0.1^{\prime \prime}$ pitch 2 pole c/o 137R coil - RS price E2.71 - our price £ 1.00
Solenoid, rated 48 V DC, but work on 24 V . 10 mm push or pull action Single hole fixing. Size 27 - 18 15 mm . Made by Varley. Only 40p.
1977/8 CATALOGUE NOW AVAIL-ABLE-MUCH BIGGER AND BETTER, WITH 50p DISCOUNT VOUCHERS. ONLY 30p plus 15p POST.

WIRE AND FLEX
Flex pack - 5 m of 5 diff colours. thick or thin. 25 m for 30p. 25 wa (14/0076) cable with braided over

POWER PACK

Wood grained metal case 90.80 75 mm containing mains transformer giving 6 V at $200 \mathrm{~mA}, 2$ co-ax sockets, PC board with $1 \frac{1}{4}$ ' tuseholder R's C's etc. Only $E 1$.

EDGE CONNECTORS
Special purchase of these 0.1" pitch double-sided gold plated connectors enables us to offer them at less than $\frac{1}{3}$ rd their original list price! 18 way 41 p 21 way 47p 32 way 72 p 40 way 90p 43 way 97p 49 way 111p.

SOLAR CELLS
As used on space labs etc., these tiny cells give $50 \mu \mathrm{~A}$ at 0.5 V in sundight. Ideal for powering small C-MOS projects etc. Can be banked for greater power output. Size 19 . 6.5 mm . 3 for £1; 10 for $£ 3 ; 25$ for £7; 100 for E25

SCR PANEL

Has 1260 V 0.8A thyristors (gate current only $200 \mu A!$), MEU21. 2N3904, 1N4004 , 14, R's C's etc. Only E1.00.

MISCELLANEOUS IC's

All supplied with data
MC3302 Quad comparator $£ 1.20$ TT7105 LED Digit driver, 8 for $£ 1$. 710 TO99 case Diff. comparator 40p. MC1469R Voltage reg. $£ 1.50$. ZN1034E Precision timer $£ 2.25$. LM1303 Dual stereo preamp £1.40.
733 Diff. video amp $£ 1.20$. LM301 733 Diff. video amp $\times 1.20$. $2 \times 31 / \mathrm{p}$ Op amp $40 p$. ITT326 $2 \times 2 \& 2 \times 31 / \mathrm{p}$ Dual 128 bit static shift reg. £1.50. Our retall shops at 21 Deptlord Broadway, London, SE8 (01-692 2009) and 38 Lower Addiscombe Road, Croydon hor porsonal callers only Ring them for personal cail details
All prices quoted include VAT and UK/BFPO postage. Most orders despatched on day of receipt. SAE with HuLue please. MINIMUM ORDEA alue ch. Ohcia orders accepled rom se s. (worlwholesal hargries wholcome Whot now available tor bona-fide traders. Surplus components always wanted.

Over 200 kits in the free Heathkit Catalogue

Right now, there's a brand

new edition of the Heathkit Catalogue - packed with hundreds of practical and fascinating items which you can build yourself. Send for your copy now! To Heath (Gloucester) Ltd. Department PE 28

Bristol Road, Gloucester, GL2 6EE. Please send a copy of the Heathkit Catalogue. I enclose 11p in stamps to cover postage only. Name Address

Schlumberger
The world's biggest producers of electronic kits.

There are Heathkit Electronics Centres at 233 Tottenham Court Road, London (01-636 7349) and at Bristol Road, Gloucester (Gloucester 29451).

C-M	OS	4066 4089	${ }_{270} 8$	74		748		74172	p
4000	20p	4070	80	74		749			
4001		407	250	7413		7495	P	74175	
4002	$11{ }^{\text {P }}$	4072		7414	38	749		74176	123p
4008	114 P			7416	38	748	350p	74177	123p
4007	20p	4076	11	7417	40 p	74100	120p	74178	110p
4008		4077	20	7420	20	74104	${ }^{738}$	74179	130p
4009	578	4081	208	7421	40	74105	73	74	
4010	578	4082	${ }^{28 p}$	7422		74107	38	74	282
4011	200	4093	23	7423	$32 p$	74108	75		3 P
4012	20	4502	$123 p$	7425	32p	74110			234P
4013	51p	4510	139	7428	$107 p$	74111	859	7418	187
4014	${ }_{114}^{107 p}$	+4511	${ }^{150 p}$	7427 7428	${ }_{810}^{80 p}$	74118 74120	${ }^{2515}$	74190	${ }_{134} 1$
4018	s1p	4514	284p	7430	20 p	7421	33\%	74192	115p
4017	114p	4515	264p	7432	20p	74122	53	74193	11sp
4018	110p	4516	123p	7433	114p	74123	61	7419	
4018	62	4518	123p	7437	300	74125	58	7419	
4020	115p	4520	123p	7438	38	74126	5	74	134p
4021	101p	4522	122p	7440	20p	74128	98	741	130
4022	${ }^{99 \mathrm{P}}$	+4526	122 P	7442	69 p	74132	75	74198	124
4024	${ }_{79 \mathrm{P}}^{20 \mathrm{p}}$	+4527	140 p	7443 744	${ }^{130} \mathrm{p}$	74142 74143	${ }_{348} 30$	74199	
4025	20	4531	115p	7445	105p	74144	346	7424	208p
4026	${ }^{155 p}$	4543	$115 p$	7447	90p	74145	90p	74247	
402		4555	115p	7448	90	7414	148p	74248	171p
4028	${ }^{95}$	4556	${ }^{115 p}$	7450	20	74148	150	7424	
4029	123p	4581	340 p	7451	20p	74150	150	74251	
4030	${ }^{\text {55P }}$	+4582	140	7453	20	74151	78	74285	
+4033	${ }_{\text {135p }}^{1547}$	4584 4585	108p	7454	200	7415	7	74278	
+4035	1178		108p	7480 7470	23p	7154 74155	138p	74279	
4040	132 P	TL		7472	30 p	74158	${ }^{\text {gop }}$	74284	712p
4041	$4{ }^{10}$	-		7473	33p	74157	2p	74285	
4042	90p	7400	18 p	7474	33 p	74158	140	74290	
4043	92p	7401		7475	48 D	74159	285p	74293	
4044	91P	7402		7461	$125 p$	74160	102	74298	
4048	137 p	7403	20 P	7483	${ }^{95}$	74181	102	74365	
4049	${ }^{558}$	7404	24	7484	119	74162	102p	74386	${ }^{93 p}$
4050	${ }^{555}$	7405	24	7485	128p	74163	102	74387	${ }^{3}$
-4051	140	7408	${ }^{2}$	7486	33p	74164	118p	74388	
4052	140 P	7407	58 p	7489	340 p	74167	115p	74390	188
	140 p	7408	25p	7490	43p	74167		74393	
4080	140	7409	25	7491	77p	74170	213p	74490	25
Full price list of linears, discretes, capacitors, resistors, potentiometers, tools, soldering irons and accessories available. Send 20p or large S.A.E. This list is sent free with the first order. Prices correct December 1977.									
Terms C.W.O. Add VAT to prices at 8\%. Post, etc.: U.K. 25p, overseas 75p. Access and Barclaycard, and all convertible currencies accepted.									
Grenfell Place, Maldenhead, Berks. Tel. (0628) 36229									

CHIPS UP!

CHIPS could be going up in the next few months! There have been various guarded comments about the cost of i.c.s, and the more popular l.s.i. devices, over the last few months; some time ago at least one of the larger manufacturers rationalised their range and increased the price of a number of items-some by very large factors.
It is not the cost of production which is likely to send prices up, since it is well known that the production cost of each item is an insignificant part of the total price. However, manufacturers have followed a policy of price reduction and this must soon (and is now in some cases) come to an end, since the major part of the cost of each item is the marketing, distribution and back up which all the devices require.
Unfortunately this price factor will probably not affect the multinational concerns that can buy tens or even hundreds of thousands of devices but it will affect the smaller companies and, of course, the hobbyist since neither he nor the component supplier is
able to purchase in vast quantities. Admittedly some suppliers are connected with distribution houses and the advantage that they already have appears likely to be increased.

MADE IN SPACE

Looking ahead rather further, it seems likely that some devices may be manufactured in space and will thus be coming down an even greater path to us! It has been muted that the space (area?) availability on some space shuttle flights could be used for the manufacture of integrated devices with the obvious advantages of clean "air" etc. The technology would obviously add to the 5,000 pounds (weight) of electronics which will be a permanent part of each shuttle.

HOBBY COMPUTERS

Having indicated that we may well be in for some cost increases in devices, we must hasten to add that we fully expect to see the cost of many complete systems to continue in a downward direction. The major one-and obviously the one that many are watching at the present time-being the microprocessor based systems and
the "hobby computer". You will find a review of the KIM I system in this issue and also mention of a British designed system in kit form which is now available (NASCOM I).

NEW TECHNOLOGY

We do not intend to "bury our (editorial) head in the sand" when it comes to any new technology and its possible use by the hobbyist. In fact we believe that it is part of our job to help the introduction of new systems and devices to your home and workbench. This policy is borne out by the use of modern phasing devicesc.c.d.s. or bucket brigade, call them what you will-in the P.E. String Ensemble to be featured in next month's issue. Even. if the actual unit does not interest you as a constructional project, the use of these devices and the circuitry must.

In addition to the use of delay line technology to produce a rich orchestral string sound, the unit employs CMOS i.c.s. throughout the divider circuit and unique CMOS chorus drive circuitry.

Mike Kenword.

EDITORIAL EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR Mike Abbott TECHNICAL EDITOR
David Shortland TECHNICAL SUB EDITOR
Jack Pountney ART EDITOR
Keith Woodruff SENIOR ARTIST
George Dilkes TECHNICAL ILLUSTRATOR

ADVERTISEMENTS
 ADVERTISEMENT MANAGER

D. W. B. Tilleard

P. J. Mew REPRESENTATIVE
C. R. Brown CLASSIFIED MANAGER

Make Up and Copy Dept. Phone: 01-261 5000

[^1]Advertising Offices:
King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS
Phone: Advertisements 01-261 5000
Telex: $\mathbf{9 1 5 7 4 8}$ MAGDIV-G

Back Numbers and Binders

Copies of our June 1977 and subsequent issues are available from: Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SEI OPF, at 65p each including Inland/Overseas p \& p.

Binders for PE are available from the same address at $£ 2.85$ each to UK addresses, $E 3.45$ overseas, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Cheques and postal orders should be made payable to IPC Magazines Limited.

Letters

Queries regarding articles published in PE should be addressed to the Editor, at the Editorial Offices, and a stamped, addressed envelope enclosed. We cannot undertake to answer questions regarding other items, nor to answer technical queries over the telephone.

STEVE ROBERTS

TO ANYONE concerned with practical work with electronic circuits, the type of measurement most frequently required is undoubtedly voltage. Many instruments are available today which enable voltages to be measured with various degrees of accuracy, clarity or ambiguity, and which present the information on one two types of readout-linear or digital

The cost effective digital meter is relatively new upon the scene, but is felt by many people to have disadvantages over its analogue counterpart. One problem is its tendency to create false confidence; 1.32 volts displayed probably means 1.32 ± 0.015 volts. The analogue meter, by its very nature, serves as a constant reminder that the reading is not an absolutely indisputable value. Needle width and parallax effects are two sources of reminder. Another shortcoming of the digital display is its inability to provide qualitative information. A meter needle spinning wildly up to the top end of the scale, or vibrating about a reading, is much more evocative than a simple overrange indication, or a number that keeps changing.

It may also appear to be something of a paradox that when it is required to measure a voltage (implying that the voltage is initially unknown), it is first necessary to select the meter range appropriate to the measurement, for which it is required to know the voltage. This is of course not normally a problem, since the approximate voltage can usually be anticipated, and confirmation or greater accuracy is all that is required.

Much more of a problem is that of remembering to change the meter range for each measurement, or even changing the test leads over when the polarity is reversed. An auto-ranging facility overcomes these problems, and in doing so aids continuity of mental effort, not to mention prevention of damage to meters!

SPECIFICATION

Input resistance Ranges

Polarity

Accuracy
Power requirements
Size
$10 \mathrm{M} \Omega$
$0.3 \mathrm{~V}, 1 \mathrm{~V}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}$ automatically selected
Either + or - accepted and indicated
2% attainable
Optional mains supply, or $\pm 6 \mathrm{~V}$ batteries
$110 \mathrm{~mm} \times 188 \mathrm{~mm} \times 60 \mathrm{~mm}$ (mains option)

The design to be described is therefore a combination of the best features of analogue and digital instrumentation. It is adequate for all the more usual voltage measurements, and takes up no more room on the bench than the average multimeter.

DESIGN CRITERIA

The instrument was designed with the following points in mind:
(a) Accuracy comparable with better quality analogue meters.
(b) High input resistance.
(c) As clear a display as possible.
(d) As few controls as possible to leave hands free.
(e) Total measurement range to cover all normal d.c. voltage reading requirements for i.c. and transistor work.
(f) Foolproof in use.

Fig. 1. Block diagram of Auto-Ranging D.C. Voltmeter

CIRCUIT DESCRIPTION

Referring initially to the block diagram of Fig. 1, the voltmeter section consists of an input attenuator, a two stage amplifier and a rectifier/meter driver.

Referring to the auto-ranging logic section, if the voltage present at the moving-coil meter does not fall within a predetermined window (between 20 per cent and 90 per cent of full scale), the output of the window detector enables the range counter on the next pulse of the clock oscillator. The range counter output controls the status
of the cmos range selector switches, and thus the gains of the voltmeter amplifiers are changed. The whole process is repeated until a gain has been selected which causes the voltage being displayed to fall within the range of the window detector, at which time the range counter is inhibited and the range remains selected. A decoder is provided which decodes the output of the range counter and drives the range indicating l.e.d.s.

For the detailed circuit description, we must now refer to the full circuit diagram, Fig. 2.

Fig. 2. Full circuit diagram of Voltmeter unit. Although the circuit contains a rectifier, it will not give the conventional true r.m.s. reading for an a.c. input

The input attenuator, R1 and R2, determines the input resistance of the instrument, and reduces the highest possible voltage presented for measurement to a level that can be handled by the input circuitry. Diodes D1 and D2 prevent damage to the circuit should a very high input voltage be applied inadvertently.

The switched-gain amplifier is formed by IC1 and IC2. Op amp ICl is a very high input resistance device, which is necessary to preserve the integrity of the input attenuator. The gain of the amplifier is adjusted by changing the degree of negative feedback through the cmos switches.

A conventional full-wave rectifier circuit is formed by IC3a, which presents about +3 V at the cathode of D3 for full scale deflection of the meter. The polarity of the voltage at IC 3 pin 3 is monitored by IC 3 b , and this in turn causes the appropriate polarity indicator to be illuminated.

The meter drive voltage is also presented to IC 3c and IC3d, which are connected as voltage comparators. If the meter drive voltage is higher than the reference voltage provided by R16 and R17, the pin 10 output is "Low". Similarly, if the voltage is lower than the reference
voltage from R14 and R15, the pin 4 output is "High", and IC4 pin 3 is therefore "Low". The two low inputs presented to IC4b produce a high output, which is present only when the two inputs are both low. After inversion by IC8d, this output is used to inhibit the range counter IC6. Note the hysteresis resistors R18 and R19 (giving slight positive feedback) which eliminate any tendency to indecision around the comparison voltage.

Nor gates IC4c and IC4d form an oscillator of around 10 kHz . The actual frequency is uncritical as it only affects the search rate of the instrument. The oscillator may be disabled by a high input from IC5, to which reference will be made later.

The dual 4-bit binary counter (IC6), has only half in use. IC8a, b and c, cause the counter to reset on a count of six, thus preventing the selection of invalid gain settings occurring. The binary outputs of the counter are used to activate the cmos switches, thus selecting the different gain values. See Table 1 under "Test And Calibration".

The binary-to-decimal decoder IC7 provides a " 1 of 10 " output, which is used to drive directly the range l.e.d.s.

Fig. 3. Optional power supply circuit. If batteries are used, a larger case will be necessary, and a battery check facility would be advisable

LOW READING STABILITY

A problem could occur when the meter has a zero or near-zero input. The window detector would see a voltage too low for the 0.3 V range, and would therefore change scales in an attempt to locate the correct range. As there is no more sensitive range, the circuit would search continuously and prevent very low voltage measurements from being made.

The output from pin 6 of IC7, which is high when the most sensitive range is selected, is monitored by IC5, as is the output of IC3d. If the lowest range is selected now, and if the measured voltage falls below the magnitude window, the clock oscillator is inhibited, thus preventing further searching.

Occasions may arise when it is desirable that the range does not automatically change; for example, when examining a voltage that is fluctuating between 8.5 and 9.5 volts. As these figures embrace a range change, meter indications would largely be meaningless unless the range is "held" at, say, 10 V . The exact behaviour of the input may then be observed as long as the Hold button is pressed. Pressing this button has the effect of inhibiting the clock oscillator as before.

CONSTRUCTION

The prototype was built in a Type 103 Verobox which provided an attractive and durable housing.

Constructors should decide, before choosing a case, whether the mains, or a battery supply is to be used. As there is no 6 V battery of modest dimension readily available, a somewhat larger case than the suggested Verobox would be required. This factor, and the cost of replacement batteries, led to the author's choice of a mains power supply for the prototype. See Fig. 3.

The main printed circuit board (Fig. 4) was secured by means of the meter terminals only; a method found to be quite satisfactory. With the depth of meter body used, the leads of the eight l.e.d.s were found to be just long enough to allow them to protrude through the front panel (see photograph). Mounting clips were not used as these would have made assembly and subsequent removal very difficult, and with the correct size holes a more attractive appearance is presented. Note from the photograph that the l.e.d.s are mounted on the copper side of the p.c.b. See Fig. 5 for assembly of the p.c.b.

Use of the suggested printed circuit board layout is to be recommended due to the complexity of the design. There is, however, no reason why other forms of construction may not be used.

If a mains supply is decided upon, note that the mains earth is not connected to the instrument ground. It is desirable, therefore, to use a transformer with an earthed interwinding screen, and to ensure that the instrument is connected particularly carefully where the mains wiring is concerned. Care should also be taken to ensure that this mains wiring is kept as far away as possible from the high impedance input components, as this area is susceptible to hum pick-up. Because of the rectifying action of the meter driver, any a.c. signal present at the input will register as a d.c. voltage on the meter.

The resistors used to select the amplifier gains (R3, R4 and R6) and the \pm balance resistor R8 might advantageously be mounted on extension pins which would aid component changing if required during the calibration procedure.

As most of the i.c.s use mos technology, the appropriate handling precautions should be taken.

The CA3140 was chosen for ICI as it requires no phase compensation. If this fairly new device is not readily available, a CA3130 may be used instead, with a 47 pF ceramic capacitor connected between pins 1 and 8 on the copper side of the board.

If the recommended meter is used, it will need to be re-scaled as shown in Fig. 6.

Note the cut out power supply section from the main p.c.b. Also that the l.e.d.s are mounted at maximum length from the board on the conductor side

Fig. 4. Printed circuit board layout (full size). The power supply board is included on the same layout so that both can be etched simultaneously. The power supply area would still need to be cut out even if batteries are to be used. Note the shape of the p.c.b. in the photographs

Fig. 5. Component layout of the p.c.b. The optional power supply portion of the circuit board is shown by dotted line

D.C. VOLTMETER

COMPONENTS

BASIC AUTO-RANGING D.C. VOLTMETER

Potentiometers

VR1-VR3 $10 \mathrm{k} \Omega$ vertical preset (sub min)

Capacitors

C1	1000 pF polyester
C2	$22 \mu \mathrm{~F} 25 \mathrm{~V}$
C3, C4	$10 \mu \mathrm{~F} 10 \mathrm{~V}$ tant (2 off)

Diodes

D1, D2	BZY88C4V7 zener (2 off)
D3	1N914
D4-D11	$0.2^{\prime \prime}$ red I.e.d. (8 off)

Integrated Circuits

IC1 CA3140T
IC2 μ A741T
IC3 RC4136D
IC4 CD4001
IC5 CD4048
IC6 CD4518
IC7 CD4028
IC8 CD4001
IC9 CD4066

Miscellaneous

S1 Single pole, push-to-make
Case $110 \mathrm{~mm} \times 188 \mathrm{~mm} \times 60 \mathrm{~mm}$
M1 $50 \mu \mathrm{~A}$ panel meter (with scale recalibrated)
P.c.b.

4 mm plugs and sockets, wire, and prods for probes

COMPONENTS . . .

OPTIONAL MAINS SUPPLY

Resistors

R1, R2 $330 \frac{1}{4} \mathrm{~W}$ carbon (2 off)

Capacitors

C1, C2 $1000 \mu \mathrm{~F} 25 \mathrm{~V}$ (2 off)
C3, C4 $10 \mu \mathrm{~F} 10 \mathrm{~V}$ (2 off)

Diodes

D1-D4 1N4001 (4 off)
D5, D6 BZY88C6V2 Zener (2 off)

CONSTRUCTOR'S NOTE

If the recommended p.c.b. design is used, the CA3140T type should be ordered for IC1 (T stands for 8 -lead TO5 package).
Since P.E. does not operate a p.c.b. service we cannot quote a supplier of ready made boards for those who do not wish to make their own, but we can advise that readers keep an eye on P.E. advertisers who specialise in p.c.b. manufacture, and have in the past generally followed up with a service.
The "Large Moving Coil Meter"' is available from Maplin Electronic Supplies (see advertisers' index for address).

The RC4136D (IC3) is made by Raytheon, and available

Miscellaneous

S1 Sub min d.p.s.t.
F1 250 mA and suitable holder
T1 $9-0-9 \mathrm{~V}$ mains transformer with screen from Distronic Ltd., 50/51 Burnt Mill, Elizabeth Way, Harlow, Essex. Tel: Harlow 32947. Type RC4136DP may be used (D stands for d.i.l. and P for plastic).
The estimated cost to build this unit using all new parts, is in the region of $£ 25$.

TEST AND CALIBRATION

Before first switch-on, all preset pots should be at approximately mid-range. Any meter reading should be ignored for the present, although a large offset in ICl may cause a range change, necessitating adjustment of VRI to cancel this effect.

Odd combinations of range l.e.d.s, or "searching" should be resolved during calibration, and this procedure is as follows:

(A) Set zero

(1) With the power off, set the meter mechanically to zero.
(2) Switch on. Check that the 0.3 V range is indicated, and allow a few minutes for thermal stabilisation.
(3) Short IC2 pin 3 to the zero volt rail. Adjust VR2 for minimum reading on the meter. Remove short.
(4) Short input. Adjust VRI for minimum reading. The meter should now read zero.

(B) Set positive/negative balance

(1) Apply an input to the meter and adjust for a convenient reading.
(2) Reverse the connections to the meter and check that exactly the same reading is displayed. If not, adjust R8 as necessary.

Table 1. Should a fault exist, this table may be used to check the switching functions. Check all supply voltages first

COUNTER CONTENT	SWITCHES CLOSED	IC 1 GAIN	$\begin{aligned} & \text { IC } 2 \\ & \text { GAIN } \end{aligned}$	TOTAL GAIN	RANGE
0	-	$\times 1$	$\times 1$	$\times 1$	100V
1	A	$\times 1$	$\times 3.3$	$\times 3.3$	30 V
2	B	$\times 10$	$\times 1$	$\times 10$	10 V
3	A, B	$\times 10$	$\times 3.3$	$\times 33$	3 V
4	c	$\times 100$	$\times 1$	$\times 100$	IV
5	A.C	$\times 100$	3.3	$\times 333$	0.3 V
6 7	B, C A. B, C	INVALID SETTINGS WHICH DO NOT APPEAR - COUNTER RESETS AT 6			

(C) Set meter calibration

This adjustment compensates for any small inaccuracy in the input attenuator.
(1) Apply about 50 V to the meter input, thereby selecting the 100 V range.
(2) Check meter reading against a known good meter.
(3) Adjust VR3 for correct reading.
(D) Check $\times 100$ amp gain
(1) Apply about 0.5 V to input, thereby selecting 1 V range.
(2) Press hold. Adjust input voltage to IV exactly
(3) Check that meter reads IV. If not, adjust R3 for an acceptable result.
(E) Check $\times 10 \mathrm{amp}$ gain
(1) Apply about 5 V to input, thereby selecting 10 V range.
(2) Press hol.D. Adjust input to 10 V exactly.
(3) Check that the meter reads 10 V . If not, adjust R 4 for an acceptable result.
(F) Check $\times \mathbf{3 . 3} \mathbf{~ a m p}$ gain
(1) Apply about 15 V to input thereby selecting 30 V range.
(2) Press hold. Adjust input voltage to 30 V exactly.
(3) Check that the meter reads 30 V . If not, adjust R6 for an acceptable result.
(G) Check upper range-change point
(1) The range should change to the next highest at about 90 per cent of full-scale reading. If not, adjust R14/R15 as necessary.
(H) Check lower range-change point
(1) The range should change to the next lower at about 20 per cent of full scale. Adjust R16/R17 if necessary.

This completes the calibration, and the instrument, if correctly set up, should conform to the figures in the specification.

Acknowledgement

The author would like to thank Mr. D. Bowers for his helpful comments and suggestions during this project.

 ... a useful toal for constructors

PRACTICAL
ELECTRONICS
OUR MARCH ISSUE WILL BE ON SALE FRIDAY, FEBRUARY 10, 1978

 HOBBY COMPUTER REVIEW R.W. COLES

T"HE LAST twelve months have been very exciting for anyone interested in microprocessors and their application.

Of course, these fascinating and powerful devices have been around for several years now and have already taken the professional electronics industry by storm, but it is really only in the last year or so that microprocessor manufacturers have turned their attention squarely towards the needs of the electronic and computer hobbyist, with some very interesting results.

The hobby market trail blazer (in terms of wide availability anyway) was the National Introkit which featured the SC/MP microprocessor. The Introkit was of course reviewed within these pages earlier in the year, and reviews of other units like the Intercept Junior, featuring the IM6100 MPU chip, and the Motorola D2 kit featuring the M6800, were soon to follow.

To start with, manufacturers were a little lazy about just who they were aiming their "small system" designs at. Their cautious approach was obvious from the way systems were described as "Prototyping systems", "Introductory systems", and "Tutorial systems" with manuals written, it seemed, for professional engineers who were expected to rapidly move on to bigger and better things, with their loyalty to a particular MPU chip already established! With the unexpected mushrooming of the hobby computer market in the U.S.A. manufacturers soon realised that a huge new market had arisen, and also that this new breed of hobbyist was not going to be satisfied with a cheap system which had a limited usefulness and future. The average amateur was not likely to move on to a de-luxe development system with floppy discs and a teletype; he wanted a low cost system which nevertheless could be used to do practical things, a system which had inputs and outputs available for his use, a system with a self-contained keyboard and display, a system with a reasonable RAM memory capacity, a system which could use low cost peripherals such as cassette tape recorders, and of course, above all, a system which he could expand when he felt the need for more performance.

HOBBY COMPUTER

K1M-1 is the result of a deeper understanding of the requirements of hobbyists, and is a successful attempt to provide the amateur with the things he needs at a realistic price. KIM-1 is a design from M.O.S. TECHNOLOGY, INC. and uses their own 6502 microprocessor array in a ready built system which arrives
tested and guaranteed for 90 days. The cost of KIM-1 is around the $£ 200$ mark but for this you get a well made microcomputer circuit board which includes a hexadecimal keyboard and 8 digit l.e.d. display, an audio cassette interface, 1,024 words of RAM storage, a comprehensive monitor program in 2,048 words of ROM and 15 input/output lines available on an edge connector. In addition to the KIM-1 board itself, you get a User Manual, a Programming Manual, a Hardware Manual, a system wall chart and a programmer's reference card. The three manuals together are no less than 4 cm thick, and even at first glance these appeared to be very comprehensive to us!

With a full 1 k of user RAM available from the start, a KIM-1 owner is unlikely to feel cramped for space for quite a while, especially since programs can bé stored on, and retrieved
from, conventional cassette tapes with the simple addition to the system of a low cost audio cassette recorder. As a user becomes more ambitious however, the KIM-I board can be augmented with the KIM-2, 3, 4, or 5 boards which will provide sufficient extra RAM memory to run sophisticated high level software, like BASIC for example. when this becomes available.
The 6502 microprocessor and associated circuits require only a single 5 volt supply which can be easily put together using a fixed voltage LM309K regulator. When a cassette recorder is used, an additional low current 12 volt supply is required to power the interface circuitry.

THE MPU CHIP FAMILY

The MCS6502 chip used as the heart of KIM-1 is one member of a large family of microprocessor chips produced

At a price of $£ 199$ upwards, the KIM-1 is supplied as an assembled and tested microcomputer with keyboard, display and full documentation. Available from GR Electronics Ltd., Newport, Gwent

Vss -1	40- RES
RDY ${ }^{2}$	39- B_{2} (DUT)
D_{1} (OUT) ${ }^{\text {cos }}$	$38-5.0$.
$\overline{I R Q}-4$	$37-\mathrm{D}_{0}(1 N)$
N.C. -5	$36-N . C$.
NTI -6	35-N.C.
SYNC - 7	$36-R / W$
Vec -8	$33-$ DBO
$A B O-9$	$32-\mathrm{DBI}$
AB1 - 10	$31-\mathrm{DB2}$
$A B 2-11$	$30-\mathrm{DB3}$
AB3 - 12	29-DB6
$A B 6-13$	28 - DB5
AB5-16	27-086
A86 - 15	26-DB7
$A B 7-16$	25-AB ${ }^{5}$
A88-17	$24-\mathrm{AB} 14$
AB9 -18	$23-\mathrm{AB} 13$
ABIO-19	$22-\mathrm{AB} 12$
ABt1-20	21 - Vss

The NCS6502 microprocessor chip used in KIM-1.
by M.O.S. TECHNOLOGY, INC. Many readers may be unfamiliar with this manufacturer and the MCS 65 XX series of MPU chips, although they are fairly well known in the U.S.A. The family is described by M.O.S. as "Third generation" and it is certainly true to say that several advanced features are available within the family, which obviously owes a lot of its basic design to the Motorola M6800 chip with which its members are bus compatible.

There are nine microprocessors in the family and these offer complete software compatibility (the same instruction set) but differing hardware features such as 28 or 40 pin package, on or off chip clocks, varying address range from 4 k to 65 k words, and choice of interrupt facilities. All members of this family offer NMOS high speed (2 MHz maximum) operation and a very efficient in-
struction set with 56 basic instructions. The MCS6502 is an on chip clock, 40 pin package version with an address range of 65 k words, making it a very sophisticated device with lots of potential.

PERIPHERAL CHIPS

Also on the KIM-1 board are two MCS6530 chips, and these devices are not microprocessors but a powerful combination of a ROM array, a RAM array, an Interval timer and two eight bit input/ output ports, all in a single 40 pin package! It is probably the availability of these devices which makes the K.IM-I possible at such a low price, because providing these facilities separately would certainly be expensive!

Each MCS6530 contains 1,024 words of mask programmed ROM normally used to hold programs, and 64 words of RAM which can be used for scratch pad storage, stacks, etc. The interval timer is a down counter which can be preset under program control, and which will interrupt the MPU chip when a count of zero is reached. Under program control the MCS6530 timer can be used to generate a wide variety of timing functions which allows this important system task to be unloaded from the microprocessor itself, promoting software efficiency.

The sixteen input/output lines are individually programmable as either inputs or outputs under software control, and they can source 3 mA at $1 \cdot 5$ volts when used as outputs, making interfacing straightforward.

CAUTION

One word of caution on the MCS6530; its ROM section, being mask programmable, is unsuitable for use in any "homebrew" system, although of course,
it is ideal for the KIM-1 itself where the monitor program is loaded during manufacture by M.O.S. themselves. A homebrew system would be possible using external EPROM chips such as the 2708 or 1702 A , if required.

User program storage on the KIM-1 board is provided by eight 1024 by 1 bit 2102 type NMOS RAM chips, although as you will have gathered from the description of the MCS6530 chip, a further 128 words is available if required. The basic address range of KIM-I is 8 k words, with the MCS6530 ROM, RAM 1/O and TIMERS mapped into the upper three 1 k pages, and the user R:AM mapped as the lower 1 k page. Expansion to the full 65 k words can be carried out externally at a later date if desired.

OUR EXPERIENCES

With the system up and running with the aid of a bench 5 volt supply, we tried out the simple program on page 9 of the User Manual. The method of program entry is, in our opinion, better than the MEM, TERM system used on the SC/MP Introkit, because it is rnuch simpler. To set an address you press the AD key followed by four HEX digits. To enter instructions or data you press the DA key followed by two HEX digits, and to increment to further locations for further entries you press the + key followed by the next two HEX digits and so on. To run a program you enter its start address using the AD mode, and press the GO key.

The other keys available are RS, which causes system reset, ST which terminates the current program and PC which allows you to display the value of the program counter at the time that an interrupt occurred or the ST key was pressed. Execution can be continued from where it was stopped by the ST key by pressing

KIM-1 block diagram.

the GO key. A slide switch on the keyboard allows you to enter the "singlestep" mode so that single instructions are executed for each press of the GO key.

With a feeling of "So far so good", we hooked up a 12 volt supply in addition to the 5 volts already connected then blew the dust off of our portable cassette recorder and connected it up, too, following the simple diagram in the manual.

CASSETTE

The KIM-1 monitor program controls the storage and retrieval of data on the cassette, and when recording a program a checksum is added in at the end so that verification is possible during replay into KIM-1 RAM. Each program must be given a unique "name" before recording takes place, and this "name" (actually a two digit HEX code) is used to identify the required program on replay. We dumped the simple trial program from RAM onto a cassette, switched off the power, and then attempted to reload it into RAM-failure!

After a lot of experimentation we discovered that it was necessary to use different volume control settings for record and replay to get the system to work. Now this might have been the fault of our cassette recorder, which was not new but seemed perfectly serviceable, but the manual certainly led us to understand that a unit of the type we used would be quite satisfactory, and that no adiustment of the controls would be required.

After some practice the record and replay functions were operating correctly most of the time, and we began to realise the enormous advantages of the cassette system compared with the pencil and paper method of storing programs! By hooking up a microphone to the recorder it is also possible to cue programs verbally on the tape, so that both you and your KIM-1 know what's going on! (Voice signals are ignored by the monitor routines on replay.)

KIM-I also comes with a routine for handling teletypes or VDUs of any standard baud rate, and is equipped with a 20 mA current loop interface for this purpose. We were unable to try out this particular aspect of system operation however.

MCS6502 MICROPROCESSOR INSTRUCTION SET-ALPHABETIC SEQUENCE

ADC	Add Memory to Accumulator with Carry
AND	"AND" Memory with Accum
ASL	Shift Left One Bit (Memory or Accumulator)
BCC	Branch on Carry Clear
BCS	Branch on Ca
BEQ	Branch on Result Zero
BIT	Test Bits in Memory with Accumulator
BMI	Branch on Result Minus
BNE	Branch on Result not Zero
BPL	Branch on Result Plus
BRK	Force Break
BVC	Branch on Overflow Clear
BVS	Branch on Overflow Set
CLC	Clear Carry Flag
CLD	Clear Decimal Mode
CLI	Clear Interrupt Disable Bit
CLV	Clear Overflow Flag
CMP	Compare Memory and Accumulator
CPX	Compare Memory and
CPY	Compare Memory and Index Y
DEC	Decrement Memory by One
DEX	Decrement Index X by One
DEY	Decrement Index Y by One
E®R	"Exclusive-or" Memory with Accumulator
INC	Increment Memory by One
INX	Increment X by One
INY	Increment Y by One
JMP	Jump to New Location

JSR
LDA
LDX
LDY LSR

N6P
©RA
PHA
PHP
PLA
PLP
ROL
ROR Rotate One Bit Right (Memory or Accumulator)

RTI

RTS
SBC

SEC

SED
et Decimal Mode
SEI Set Interrupt Disable Status
STA Store Accumulator in Memory
STX Store Index X in Memory
STY Store Index Y in Memory
TAX Transfer Accumulator to Index X
TAY Transfer Accumulator to Index Y
TSX Transfer Stack Pointer to Index X
TXA Transfer Index X to Accumulator
TXS Transfer Index X to Stack Pointer
TYA Transfer Index Y to Accumulator

VERDICT

The thing which impressed us most about the KIM-1 system was the provision of the three excellent manuals which between them covered all aspects of system operation and programming in minute detail. Anyone with a basic knowledge of microprocessors, or computers in general, should be able to find their way around easily with the aid of these books. The User Manual is written in a chatty informal style which puts the reader at ease right from the word "go". Following this book in step-by-step fashion is rather like taking a programmed learning course, and most KIM-1 owners will find themselves eager to delve into the other two manuals, which are rather more formal, once they have mastered its contents.

Suitable power supply for KIM-1

On the hardware side, the powerful MCS6502 chip, the full 1 k of user RAM and the cassette interface, speak for themselves.
KIM-I also has that magic ingredient "expendability" so that owners need not feel boxed in. Expansion can be carried out without a soldering iron, and those who look forward to a powerful "Home computer" have every chance of achieving this later if a VDU or teletype is added to the system, and the manufacturers start to provide software on cassette (which is likely). As it is, the basic KIM-1 can be programmed easily in machine code, and can of course be connected up directly to external gadgetry by means of the input output lines, if required.

The instruction set of the MCS6502 has some powerful features, like 13 addressing modes, and the ability to set the arithmetic unit to "Decimal mode" for the duration of a B.C.D. calculation rather than having to use "Decimal adjust" instructions as is the case with other devices. The mnemonics looked easy to learn to us, although they are different to those used with the 8080 , or the 6800 its two major competitors.
The construction and component quality looked good. We noticed that the cassette recording format is not of the "Kansas City" type, which means a black mark. although the system used is self clocking which is to its credit. The seven segment displays were a little difficult to decipher in high ambient lighting, but we soon cured this by adding a piece of red filter material.

All in all then, the KIM-1 seems a good buy for all low-budget micronuts, and a useful step nearer that impossible dream, the "perfect" system.

Semiconductar UPDATITEm

BAR DRIVER

Sometimes a digital display can actually be inferior to more traditional analogue displays such as the moving coil meter. This is particularly true where useful information can be gleaned from the rate of change of a reading, or where a simple comparision is required between the current reading and some pre-set or variable limit. Needless to say, electronics manufacturers have not iust ignored this requirement, and there are a number of alternatives to the moving coil meter presently available.

One of the more attractive of these is the bar graph display, where a column of light of variable length provides an easy to read analogue display. Bar graph displays can be made up with bar type l.e.d.s, but where high definition is required the l.e.d. solution is rather costly and power hungry, and so recourse to gas discharge technology is essential. Burroughs of the U.S.A. make an excellent dual gas discharge bar graph display which has become increasingly popular as an alternative to more conventional analogue readouts, but until now the peripheral drive circuitry to control this useful device had to be built with a collection of TTL and analogue circuits which could fill a fair sized board.

Thanks to Signetics, the Burroughs "Self-Scan" bar graph display is now a lot easier to use because a new i.c., the NE580 has been introduced which contains 80 per cent of the necessary drive circuitry.

The "Self-Scan" display contains two 201 element bar graphs and is driven in a multiplexed fashion which requires the generation of 200 cathode clock pulses in an interlaced five phase sequence.

The display anodes are switched on at the start of a scan and off when the appropriate display level is reached, and this is accomplished by comparing the signal voltage with a reference voltage ramp. The NE580 contains most of the required external circuitry, including a clock oscillator, sample hold,
ramp generator, counter, phase decoder, comparators and anode switches and requires only cathode and anode drivers to complete the system. The NE580 is housed in a 22 pin d.i.l. and runs from a single five volt supply. An example of the chip in action is shown below.

BIT BY BIT

After the four bit micros came the eight bit micros, and after the eight bit micros came the sixteen bit micros but if you are expecting me to present a sneak preview of a thirty two bit mega-chip . . . forget it!

However, the latest, hottest chip from the microprocessor men is, wait for it, a one bit processor called an "Industrial control unit" (i.c.u.) by Motorola, the manufacturers.

The new i.c.u. has been coded MC14500B, making it a standard 1400 series buffered CMOS part which will be taking its place alongside the MC14001B quad gate and all the other common-or-garden logic blocks in the family.

If up to now you have been a "doubting Thomas", and still think that micros are a passing fad, the MC14500B is all set to convince you otherwise! This new chip is a real microprocessor all right. It has a sixteen entry instruction set, on a chip clock oscillator, and is designed to be paired up with a ROM

or PROM program store, along the same lines as its bigger cousins.

The i.c.u. does differ from other micros in its bit-by-bit logic orientated instruction set, and it is not directly capable of the arithmetic type operations which are the bread and butter of other micros. For many applications, the conventional microprocessors are just too powerful, and so relay systems or printed circuit boards full of random logic are used instead.

The new chip runs from 3 V to 18 V supplies, and comes in a plastic sixteen pin package. The internal oscillator requires only a single external resistor to set the clock frequency to a value between d.c. and MMh , and system expansion can be carried out using standard CMOS components to provide input parts, output parts, and program counters of any length. With only a sixteen entry instruction set, programming should be child's play, and you can use existing TTL fusible link PROMs or the newer CMOS types to hold the programs once written. I forsee a big future for this unexpected infant!

FET DIODES

We all know that when we require a source of constant voltage the easiest way to provide it is to employ a Zener diode with the required voltage rating. But what about a source of constant current?

Probably the way most of us tackle this is to use a Zener in conjunction with a transistor and a couple of resis-tors-but there is a much simpler alternative in the form of the two terminal f.e.t. current regulator diode.

A better way would be to employ one of the Teledyne Crystalonics f.e.t. diodes which are produced in a range which will give accurate current regulation from 220 microamps. to 4.7 milliamps.

Thirty two devices are available coded 1N5283 to 1N5314, and these can be put to good use in a wide range of analogue circuits.

ANYONE looking for a simple and novel project to build, just for fun, may be interested in the Strength Meter described in this article

The power of the contestant's grip is displayed on a row of l.e.d.s while he squeezes two cannisters as tight as he can. However, the indicator is not to be treated with scientific reverence since it really works by measuring the resistance between the hand-grips.

CIRCUIT DESCRIPTION

The circuit shown in Fig. I is designed so that the number of l.e.d.s which illuminate along the row comprising DI to D4, increases as the resistance between the hand-grips falls; which of course happens when the contestant squeezes harder.

A potential divider is produced between 0 V and +9 V by R 1 and R 2 , and since their resistance ratio is $1: 1$, the voltage at point " B " will be half the supply, which is +4.5 V . The differential amplifier formed by Cl uses this voltage as a reference, so that it amplifies the difference between points " A " and " B ".

Voltage " A " however, is produced by a potential divider of variable ratio, which is dependent on the hand-grip resistance. This voltage, for any given degree of hand-grip squeeze, can be set using VR1, but the voltage generated by zero squeeze (no hand-grip contact at all) always starts of from 0 V . This "slope" setting will also determine the amount of grip necessary to pull up all four l.e.d.s.

After amplification in the non-inverting amplifier ICl , the generated voltage is fed to the base of TR1. This stage has no voltage gain (some voltage will in fact be
lost across the base-emitter junction), but simply multiplies the output current capability of the 741 by the gain figure of the $\mathrm{BC107}$, a figure which of course will vary from one such transistor to another due to production spread. But in any case TR1 will add sufficient current drive to take the load consisting of the resistor chain R5 to R9.

The point of the resistor chain is to divide the voltage produced at point " C " into five equally spaced potentials. This way, as the voltage at "C" increases, the voltage at "D" will eventually become sufficient to overcome the baseemitter junction potential of TR2, plus a little more to push some current through R10. When this happens DI will illuminate as TR2 switches into conduction.

If the voltage at " C " continues to increase, then the voltage at " E " will become sufficient to bias TR3 into conduction, and so on, until all the l.e.d.s are illuminated. Just as R10 to R13 limit the base current to their respective transistors, resistors R14 to R17 limit the l.e.d. currents to around 17 mA .

CONSTRUCTION

The circuit was built on a piece of 0.1 inch matrix stripboard and the layout, shown in Fig. 2, will accommodate either an 8 -pin d.i.l. or the 14 -pin version of the 741 amplifier. Care should be taken to ensure that the appropriate breaks are made to the copper tracks, and that no blobs of solder or shavings of copper form a bridge between conductors.

A simple aluminium box was used for the prototype, and this could be formed from a sheet of metal if a

Fig. 1. Complete circuit diagram of Strength Meter. The diode D5 protects TR1 from a negative voltage swing at IC1 output. Although the photographs show a single-pole on/off switch, the arrangement detailed in this circuit diagram is recommended, and uses a two-pole rocker for total switch-off

suitable size cannot be found ready made. Four holes should be drilled in the base to accommodate 4 BA screws for fixing rubiber feet to the unit. Two of these screws should be long enough to take spacers, the stripboard and fastening nuts. Two holes need to be drilled to mount. the 4 mm sockets, and a further four in the lid to house the l.e.d. bezels. Finally an oblong hole should be cut out (using an Abrafile) if the R.S. type switch is used for the on/off function.

The prototype bex which was "home made" had 6BA nuts held in place on the side of the base, by an epoxy resin glue, to take the lid retaining screws (see photograph).

The 741 op amp in this photograph is a TO5 type, which is not the recommended i.c. package
If the box is "home made' ', 6BA nuts to take the lid retaining screws can be fixed to the case using Araldite Rapid or similar resin based adhesive

Fig. 2. Stripboard layout. A 14-way i.c. socket may be used for IC1, which can be positioned to allow either 8-pin or 14-pin 741 s to be used without stripboard modification. As can be seen in the photographs, this would even allow an 8-lead TO5 type to be used if necessaly. Note that R4 is connected to the wrong end of D5 in this diagram

BATTERY RETAINERS

It was felt that a small modification to the prototype featured in the incidental photographs could be made, which would provide a simple but effective means of clamping the PP3 batteries.

If the "rubber feet" screws nearest to the 4 mm sockets are positioned 18 mm away from that inside edge, and are about 25 mm long, then they can be used as battery retaining pillars, whereby the PP3s will squeeze between these and the side of the case (see Fig. 3). Lengths of p.v.c. sleeving should be slipped over them to improve appearance and protect the batteries from damage. Some sleeving stripped from 3 -core mains cable (lightweight type) will do admirably for this!

If this is done, the 4 mm terminals will need to be mounted nearer the centre-line of the box (at about 30 mm apart) to make room for the PP3 batteries.
continued on page 417

Fig. 3. Using the 4BA 'rubber feet's screws to create battery retaining studs. The positions of the rubber feet and 4 mm sockets necessary for this facility will be slightly different from those appearing in the photographs

Mini-priced breadboards for

 maxi-sized projects.Experimentor: low-cost solderless breadboards are the first in the world specially designed for $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIP's.
They clip together by an exclusive interlocking system in any configuration, (just like dominoes), so you arrange the breadboards to suit your circuit, not vice-versa.
They are precision moulded from durable, flame-retardant plastic, and feature al phanumeric coding for easy circuit building, and non-corrosive, pre-stressed nickel-silver alloy contactsreliable for well over 10,000 insertions.

Contact resistance is a mere $0.4 \mathrm{~m} \Omega$ and interterminal capacitance is typically less than 5 pF . The Experimentor is usable to over 100 MHz .
Experimentor 600 and 650 models are ideal for RAM's ROM's and PROM's (0.6 " centre IC's) while the 300 and 350 models are for smaller DIP's ($0.3^{\prime \prime}$ centres). All four models, of course, also take all standard components, the 0.1"grid being compatible with transistors, diodes, LED's, capacitors, resistors, pots - in fact any component with lead sizes between $0.015^{\prime \prime}$ and 0.032.'

A useful quad bus strip (EXP4B) further
$\begin{array}{|lllllll|}\hline \text { Model } & \text { Length" } & \text { Width" } & \text { Centre } \\ \text { channel" } & \text { 5-way } \\ \text { tie points }\end{array}$ Bus $)$ Price All units are $0.330^{\prime \prime}$ deep.
expands the versatility of the system for the MPU user.
Experimentor breadboards can be used alone or mounted on any convenient flat surface, thanks to moulded-in mounting holes and vinyl insulation backing that prevents short circuits. Mount them from the front with 4-40 flathead screws or from the rear with 6-32 self tapping screws.
But however you use them, Experimentor breadboards are the quickest and easiest way to build and test circuits.
If you're working on IC's, MPU's, memories,
displays or any other circuits, buy the breadboards that are designed for you.
Ring us (01-8900782) with your Access, Barclaycard or American Express number and your order will be in the post that night Alternatively, send a cheque, or postal order (don't send credit cards!) and it still only takes a few days.
Otherwise ask for our complete catalogue.

ELECTRONICS (London) Ltd.

 NASCOM I Microcomputer for the Hobbyist
HARDWARE FEATURES:

ヶ SUPPLIED IN KIT FORM FOR SELF-ASSEMBLY.
ヶ FULL DOCUMENTATION SUPPLIED.
\& INCLUDES PRINTED CIRCUIT BOARD.
\& FULL KEYBOARD INCLUDED.
\leadsto INTERFACES TO KEYBOARD, CASSETTE RECORDER \& T.V.

- $2 \mathrm{~K} \times 8$ RAM

4 $1 \mathrm{~K} \times 8$ EPROM MONITOR PROGRAM
\& POWERFUL 280 CPU.
~ 16 LINE $\times 48$ CHARACTER DISPLAY INTERFACE TO STANDARD, UNMODIFIED T.V. SET.
\& ON BOARD EXPANSION FACILITY FOR ADDITIONAL 16 LINES I/O.
TOTAL EXPANSION TO $64 \mathrm{~K} \times 8$ MEMORY.
\& TOTAL EXPANSION TO 256 INPUT PORTS AND 256 OUTPUT PORTS.

SOFTWARE FEATURES:

\& $1 \mathrm{~K} \times 8$ 'NASBUG' PROGRAM IN EPROM.
\& PROVIDES 8 BASIC OPERATOR COMMANDS INCLUDING SINGLE STEP.
\leadsto EXPANDABLE SOFTWARE SYSTEM VIA ADDITIONAL USER PROGRAMS IN RAM OR EPROM.

COST £197.50 PLUS 8\% VAT

Phone or write for details to:
92 BROADSTREET, CHESHAM, BUCKS.
TELEPHONE: (02405) 75154.

HAND-GRIPS

The hand-grips can be made from a number of things such as curtain or stair rod, or as in the prototype, 18 mm diameter brass tubing. To connect wires to these it is necessary to drill a hole in each, so that a 6 ba nut and bolt can be passed through to clamp a solder tag. The wires should be soldered to the tags before clamping them, as objects showing thermal inertia of this magnitude will not solder readily without a very large soldering iron indeed.

The prototype used 4 mm plugs and sockets to terminate the hand-grips, so that they can be disconnected, wrapped in something soft, and then stored inside the case. If the recommended size is used, there will be ample room for this.

SETTING UP

The potentiometer VR1 should be adjusted so that a gentle hold on the hand-grips will just illuminate D1, the weakling light.

NEWS BRIEFS

Exhibition

The 1978 IEA (Instruments, Electronics and Automation) Exhibition will be held at the National Exhibition Centre, Birmingham, from March 13-17.

A computerised visitor registration and enquiry system will be operating in four languages, and this will give specific information on product categories and exhibitors to the visitor, thus providing a mutually beneficial two-way service.

The exhibitors will be of a highly international mixture, consisting of manufacturers ranging from passive components right through to computerised machine automation, and they will occupy the largest hall at the centre.

The exhibition is claimed to be the only recognised trade fair of 1978 in the U.K. covering the electronic instruments industries, and will again be held alongside ELECTREX, following their successful coming together in 1976.

Watts On The Road

The first three of a planned 62 strong fleet of electric delivery vans hit the roads of London in November last year, as part of a three year plan to assess the performance of electric vehicles in urban conditions.

The machines are confined to the $0.75-1.75$ tonne range, with high acceleration, regenerative braking, top speeds of around $50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$, and a realistic range of up to 60 miles per charge-up.

Under the scheme the Department of Industry is contributing in all, up to $£ 400,000$ to users of these vehicles to offset the cost over that of conventional vans.

Co-operation between the DoI, the manufacturers, the operators, the Department of Transport and the GLC, has led to the use of three types of electric vehicle being used in the scheme: 12 vehicles from Crompton Electricars, 25 "Silent Karriers" from a consortium of Chloride Technical, Chrysler Motors and the National Freight Corporation,
and 25 "Bedford CF Vans" from Joseph Lucas Ltd. in association with Vauxhall Motors.

The GLC will collect data from such operators as Initial Services and National Carriers for collating, and a final report will be published by the Dol upon conclusion of the scheme.

Microcomputer Kit

| N the face of much criticism concerning the potential usefulness of microcomputers in the home, Lynx Electronics have launched the NASCOM 1 microcomputer kit which carries a basic price tag of $£ 197.50$ plus VAT. The launch came as part of a seminar entitled Home Microcomputer Symposium which was attended by some 550 people. Over 300 kits were sold in the two weeks following the launch.

The concepts of NASCOM 1, as described by Mr K. Borland of Lynx, were: "To produce for sale a complete microprocessor system that is of intelligent use to the home users and is priced around $£ 200 \cdot 00$.

By using the best available product on the market, within our price range, to design the maximum possible system. This is an advantage that an independent design has over an in-house design by a manufacturer with his own product range.

To design for maximum control by software. By the choice of components it should be possible to totally minimise the constrictions of hardware.
To design a system that offers major future expansion. Either expansion by the user to his own design, or by additional Lynx products.

These were the four main ideas. It followed on that certain other details were going to be necessary.

Firstly, it would be essential in providing an intelligently usable system, to have a full keyboard. The limitations of a calculator type keyboard are now well known. Also any major expansion would make a full keyboard essential.

Secondly, there must be sufficient memory for the user to load and execute reasonably sized programs.

Thirdly, incorporate a fixed command program to allow easy user communication with the system.

We are delighted that it has been possible to achieve all these goals in the NASCOM 1."

For full details write to Lynx Electronics (London) Ltd., 92 Broad Street, Chesham, Bucks.

MARKET PLACE

STOPWATCH

One of the pities of metrication is that it does not extend to time measurement. With a stopwatch you can assess quite accurately the length of one cycle in hours, minutes and seconds. But you can't immediately tell how long 100 cycles will take simply by shifting the decimal point two places. You have to work instead in sexagesimal arithmetic.

To the rescue come Casio Electronics Co with their new ST-1 stopwatch/ calculator. It will time any operation up to a maximum of about ten hours, to an accuracy of a tenth of a second, and then its calculator section will perform any of the four arithmetic functions you like, on that, or any other time. It can yield an answer in decimal hours and/or conventional hours. minutes and seconds.

Alternatively, the Casio ST-1 will handle ordinary decimal arithmetic, complete with independent memory, per cent and square root keys.

As a stopwatch, this instrument offers a choice of four modes: standard start/ stop with automatic reset at every start, time-out or net timing where a restart carries on from the previous stop time, and lap timing with or without reset at each start. There is also a totalling feature whereby in standard stop timing, it tells you the total of say, a series of separately timed operations (from which the average can be calculated on the same machine). In the time-out mode it can indicate time loss during stoppages, and in split lap timing it adds the "splits" to give an overall time.

The calculation capacity is eight digits, or one second short of 100 hours, and there is a clip-on hood for increasing readout contrast in strong ambient light.

Measuring approximately $127 \mathrm{~mm} \times$ $76 \mathrm{~mm} \times 25.4 \mathrm{~mm}$ and weighing under 5 ounces complete with AA size battery, Casio ST-1 sits neatly in the hand. Supplied with security wrist strap, this amazing little instrument has a recommended retail price of only $£ 29.95$.

Casio Electronics Co. Ltd., 28 Scrutton Street, London, EC2A 4TY.

SCRUMPI 2

Following the microprocessor development kit Scrumpi 1, comes Scrumpi 2 which has all the facilities of the former system plus additional Prom and ram.

The new kit is still mounted on a single p.c.b. but increased in size to include two edge connectors for interfacing with extender cards. Developed around the new nmos National Semiconductor SC/MP2 microprocessor, Scrumpi 2 from Bywood Electronics Ltd gives reduced power consumption and increased speed.

The memory consists of 768 bytes of ram and 512 bytes of Prom. Two 4 -bit latches act as an 8 -bit $1 / \mathrm{O}$ port in which each set of four can be wired as either inputs or outputs. The various functions of the kit are controlled by a flip-flop, a 555 Timer, and Nand gates, all of which are selected by eight toggle switches: RESET, SLOW, STOP, PROTECT, SENSE-A, SEnSe-b, rom/ram start and load. Programming can only be carried out during a read cycle, since during a write cycle the microprocessor is putting data on the data bus.

Interfacing facilities on Scrumpi 2 are suitable for either 4 -bits or 8 -bits and simple VDUs

Scrumpi 2 will also drive several MM2112 ram chips and/or Prom on EAROM chips without further buftering.

The basic kit (without ram and rom i.c.s) costs $£ 55.56$ and with the extra memory facilities $£ 74 \cdot 07$. The Prom can be supplied blank or programmed by Bywood to customer specification for an extra $£ 20$.

All parts are supplied in the kit, including sockets for all i.c.s. The switches are soldered directly to the board, and the circuit needs supplies of $+5 \mathrm{~V},-7 \mathrm{~V}$ and -12 V (which could be derived from a 17 V supply with a 5 V Zener diode).

Further information from Bywood Electronics Ltd, 68 Ebberns Road, Hemel Hempstead, Herts, HP3 9QR.

Scrumpi 2 from Bywood

The Sinclair PDM35. A personal digital multimeter for only $£ 29.95$
 \section*{Technical specification}

Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM 35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedence. Yet at $£, 29.95$ ($+8 \%$ VAT), it costs less than you'd expect to pay for an analogue meter!

The Sinclair PDM35 is tailormade for anyone who needs to make rapid measurements. Development engineers, field service engineers, lab technicians, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the PDM35 is perfectly suited for hand work in the field, while its angled display and optional AC power facility make it just as useful on the bench.
What you get with a PDM35
$31 / 2$ digit resolution.
Sharp, bright, easily read LEI)
display, reading to ± 1.999.
Automatic polarity selection.
Resolution of 1 mV and 0.1 nA
(0.00014 A).
Direct reading of semiconductor forward voltages at 5 different currents Resistance measured up to 20 M 1 .
1% of reading accuracy.

Operation from replaceable battery or AC adaptor.
Industry standard 10 Ms input impedance

Compare it with an analogue meter!

The PDM 35 's 1% of reading compares with 3% of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average.

The PDM 135 will resolve 1 mV against around 10 mV for a comparable analogue meter - and resolution on current is over 1000 times greater.

The PDM35's DC input impedance of 10 Ms is 50 times higher than a $20 \mathrm{kn} /$ volt analogue meter on the 10 V range.

The PDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movement to damage. And you can resolve current as low as 0.1 nA and measure transistor and diode junctions over 5 decades of current.

DC Volts (4 ranges)
Range: 1 mV to 1000 V .
Accuracy of reading $1.0 \% \pm 1$ count.
Note: 10 Mr 1 input impedance
AC Volts ($\mathbf{4 0 ~ H z - 5 ~ k H z}$)
Range: 1 V' to 500 V
Accuracy of reading: $1.0 \% \pm 2$ counts.
DC Current (6 ranges)
Range: 1 nd to 200 mA .
Accuracy of reading: $1.0 \% \pm 1$ count.
Note: Max. resolution 0.1 nd .
Resistance (5 ranges)
Range: lat to 20 Ma
Accuracy of reading: $1.5 \% \pm 1$ count.
Also provides 5 junction-test ranges.
Dimensions: 6 in $\times 3$ in $\times 1 / 2 \mathrm{in}$.
Weight: $61 / 20 z$.
Power supply: 9 V' battery or
Sinclair AC adaptor.
Sockets: Standard 4 mm for resilient plugs.
Options: AC adaptor for 240 V
50 Hz power. De-luxe padded carrying wallet. 30 kV probe.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts - from programmable pocket calculators to miniature TV's. The PIDM35 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.

Tried, tested, ready to go!

I'he Sinclair IDIM 135 comes to you fully built, tested, calibrated and guaranteed. It comes complete with leads and test prods, operating instructions and a carrying wallet. And getting one couldn't be easier. Just fill in the coupon, enclose a cheque/ $P()$ for the correct amount (usual 10-day money-back undertaking, of course), and send it to us.

Sinclair Radionics Lid, L.ondon Road, St Ives, Huntingdon, Cambs., PE174HJ, England. Regd No: 699483.

BEFORE YOU BUY AN AMPLIFIER MODULE-CHECK: DOES $1 T$ HAVE \quad * 30A power transistors
 * 2-year guarantee
 * Integral output capacitor Then compare with the Tamba range-excellent value- 25,50 and 100 W R.M.S

TAM 1000.100 W 4 ohms 65 V	¢9.80
TAM500 50W 4 ohms 45 V	¢7. 50
TAM250 25W 8 ohms 45V	55.75
POWER SUPPLIES	
For 1 or 2 TAM250/500	[7. 50
For 1 or 2 TAM 1000	¢9.80
(Carriage 50p on supplies)	

6 Suits loads 4-16.ohms $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$

- Silicon circuitry throughout

Glass fibre P.C.B

- High sensitivity (100 mV 10 k)

High grade components used throughout: Texas, Mullard, R.C.A. Plessey, etc

ALL PURPOSE MIXER/PRE-AMP
(with 60 mm slider volume)

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc)-C.O.D. (60p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at 8% to orders for 50 and 100 W systems and at $12 \frac{1}{2} \%$ for 25 W systems (including preamp if ordered at same time)

Hours, 9.30 a.m.-5 p.m Monday - Saturday Callers welcome. Tel 01) 6840098

TAMBA ELECTRONICS

Bensham Manor Road Passage, Bensham Manor Road, Thornton Heath, Surrey

For Semi-Conductors

including
Small Signal Transistors
Power Semi-conductors
TTL, CMOS, I.C.s
Linear I.C.s
Signal and Power Diodes
Zener Diodes
Magneto Resistors
Hall-effect devices
Magnetic Proximity Switches
Opio-electronic devices

For passive components

including

Plastic Film Capacitors
Electrolytics
Semi-precision capacitors
Transformers
Pot Cores
R. M. Cores

Ring Cores, etc

Gata
 ELEGTROVALUE
 THE PROJECTS YOU BUILD

For Service \& Quality

It's the Electrovalue Catalogue No. 8 (4th edition black and white cover) with completely up-dated prices. 144 pages, well illustrated. 40p post free with 40 p voucher usable on orders for $\mathbf{5}$ or more. Send for yours now and order in confidence. GOODS SENT POST FREE IN U.K. FOR C.W.O. ORDERS $£ 5.00$ or more. If under add 25p handling charge. Keenly competitive prices plus ATTRACTIVE DISCOUNTS and only best quality goods

ELEGTROALIVE LID

(Dept. PE28) 28 St . Jude's Road, Englefield Green, Egham, Surrey TW200HB. Tel. Egham 3603 . Telex 264475 North: 680 Burnage Lane, Burnage, Manchester. Tel. (061) 4324945

FRANK W. HYDE

UN-IDENTIFIED FLYING OBJECT

Now that the excitement of a possible new planet has died down it is perhaps a good time to look at the facts that are available. The suggested size is between 100 and 400 miles in diameter, that the orbit is near circular and that the orbit lies between Saturn and Uranus.

From these data it can be deduced that the object is not a comet because a comet has a highly eccentric orbit. The orbit was determined by sequential photographs so that the circular orbit is now confirmed. The probable distance from the Sun is about 1,500 midlion miles. It is possible that this "Object Kowal" is the first of a new swarm of asteroids. If a regular watch is kept, it could well be possible that the computation of the orbit, would show that Voyager I might observe it after leaving the vicinity of Saturn and on its way to Uranus.

Many of these small bodies are now on record and Charles Kowal now has the right to choose a name for his discovery. The number of the planetoid is 2042. It is interesting to record that by about 1890 some three hundred of these small planetary bodies were known. A year later another of those new applications of technology which open up new vistas took place. This time it was the advent of photographic methods which widened the horizons. Very quickly many hundreds of faint objects were identified as coming from the asteroid belt which lies between the orbits of Mars and Jupiter.

Another spurt was given when computers appeared and now over 2,000 are numbered, and at least a similar figure covering those lost or not yet determined
exactly. Since they can be accurately timed both into the future and back into the past their behaviour in relation to other planets in the solar system can be examined; even so, many of these bodies are just accidental discovery.

So scarce is time on the world's telescopes that searches for those lost is not economically possible. This emphasises the value of orbiting telescopes with continuous operation. In fact technically there is a great advantage, for only small telescopes are required in space for purposes of this kind. That there is very great scientific interest in knowing about these bodies is shown by the fact that already there are a number of projects for sending probes to land on or take samples from them. A great deal is already known and it would need a lengthy article to describe the present state of the art.

LIFE AND DEATH FROM OUTER SPACE

Whenever something unusual occurs in the environment or in space, outside agencies are postulated as being concerned with the welfare of the human race. Scarcely a week passes without some past happening being brought out as support for unknown origins of events. It is not surprising therefore that from science fiction and "new thought" a new look at data takes place. Much of it may be discarded at once but always there is left a glimpse of what might be. If it stirs someone or some team to relook at past happenings and link them with new possibilities then it is worth while as an exercise. In the dissemination of knowledge the negative results often have the greatest impact.

The sensational situation has arisen about the star Sirius and its "companions'. On the strength of some "evidence" from religious beliefs a whole edifice of presumed happenings has been raised. Many people are now convinced that the skills and ills were brought by someone from outer space. Diagrams and pictures are produced in support of the idea mostly without careful examination and indeed in some cases manipulation to support the theory. On this particular theory great claims have been made that scientists are actively, and keenly supporting the theory. In fact this is not so.

To set the scene for this Sirius mystery, the first point of importance is that Sirius is an extremely unlikely candidate for the support of a planetary system. It is true that some very eminent astronomers have indeed been active in their examination of certain data. However, no evidence has been found to support the claims as made. There is the existence of the folk lore, which at first sight is difficult to evaluate. However, this is not really the field of astronomy or space science, still less can it be justified when more specialised branches of science engage in such matters.

Two radio observatories have just released information of their previously unpublished activities. One of these in Canada used a 46 metre radio telescope with entirely negative results. No intelligible signals were received. The other observatory is that of Ohio State University where Dr. R. S. Dixon used the 21 centimetre hydrogen line frequency. Over a period of search, carried out each day, there were no detectable transmissions. The publications from the sensational media do not take into account these tests. Indeed two British scientists found it necessary to insist on a disclaimer that they supported the theories. This particular case has been cited because it is concerned with space. It follows then that the less fanciful but certainly more tenable cases should be in the same area. Both are concerned with life on earth as well as in space.
A number of disciplines have been concerned with the possibility of life having begun outside the earth and found its way to the planet. It is so frequent for the work of some individuals and groups to be quoted out of context in support of sensation, yet in the cases now to be detailed there are sensational features. It has often been put forward that cometary bodies could be carriers of some form of life. The earth passing through a tenuous medium would not, except by the use of highly sophisticated techniques, show any indication that anything had happened.

Scientists Sir Fred Hoyle and Chandra Wickeamsingh announced that they favour the theory that in the centres of comets there exist the building blocks of life and disease. As the comets travel through the solar system changes take place which lead to the formation of new viruses and bacteria. When a comet brushes the Earth these are released. The two scientists suggest that this is a far more plausible account of new epidemics.
A number of groups are investigating the possibilities of life being brought to Earth by means of meteorites and other interplanetary debris. In Russia V. I. Goldanski of the Institute of Chemical Physics of the Academy of Sciences in Moscow is known to be working in this area. Certain changes take place near absolute zero temperature and interstellar clouds could be a source of the grains of cold life. A new planetary system rich in dust would be an ideal situation for this kind of evolution.

LANDSAT

The Landsat vehicle is to help the Navajo Indians to assess the resources of their 16 million acres of reservation, the volume of timber and its condition. This is the first time a private company has had this kind of co-operation with NASA. The activity will eventually range over five states. A great deal of headway has been made with this satellite which has justified the project.

Now that the "hardware" description of OHAMP is complete, we can move on to consider that magic new ingredient, "software". As you will no doubt recall, the program which makes CHAMP work is called CHOMP (CHamp Operating system and Monitor Program), and this month we shall examine the program.

.COMMERCIAL KITS

Most commercial microprocessor development kits provide the user with only a simple listing of their operating programs, and ploughing through these listings to gain an understanding of how the system operates can be a painful experience.

CHAMP is for hardware oriented people: not the software genius: so we have done more than just provide a simple listing of the code you will need in PROM chip zero to get CHAMP to work. We cannot, for space reasons, give an intimate description of every line in the program, but we will be discussing the overall program flow chart. As an introduction to programming techniques, we will be showing how segments of the overall flow chart are converted first into more detailed flow charts, and then into hexadecimal code. In this way we hope to use CHOMP not only as an essential part of CHAMP, but also as a sort of software training ground for fledgling CHAMP programmers!

Constructors are advised to spend some time developing a familiarity with this program, and also of course with the 4040 instruction set which it uses.

4702A PROM

CHOMP should, strictly speaking, be called a firmware program, because is resides not on paper tape or magnetic cassette, but in a rom or Read Only Memory. The type of rom used is in fact an eraseable and reprogrammable type using the famos technology, and these devices are
more properly described as EPROMS, or just Prom for short. The actual device used is the 4702 A chip which contains 256 eight bit words, has supply requirements compatible with the 4040 , and can be erased by means of exposure to short wave ultra violet light. The 4702 A is a selection from the 1702 A family, characterised to work on +5 V and -10 V supplies over the full temperature range, instead of the usual +5 V and -9 V of the 1702 A . The 4702A is also a less speedy device than the 1702A, having a 1.7μ s maximum access time. The only extra requirement the 4702 A has, is for that extra volt on the supply rails, and in fact it is virtually certain that any 1702A chip will work well in the CHAMP circuit, at least over the usual domestic temperature range. This has been tried on the prototype with complete success, and opens up the possibility of using the low cost 1702As now being advertised. Of course, it is not possible for us to guarantee success with anything other than the 4040 manufacturers' recommended 4702A devices.
CHOMP uses 248 locations out of the 256 available in a 4702A, and the PROM containing CHOMP has to be plugged into the CHIP ZERO location, i.e. the left hand PROM socket.

MAIN FLOW CHART

Figure 6.1 shows the main flow chart of CHOMP, and this is in effect an overview of the whole program in a much simplified form. We have chosen to use just four symbols to draw the flow chart:
(a) Circles represent the beginning and end of events.
(b) Oblong boxes represent actions to be performed.
(c) Diamonds represent decision points with two possible exits.
(d) Square arrows represent "Jumps" to other pages of memory.
When power is first applied to CHAMP, or when the

RESET button is pressed, the 4040 address counter is cleared to address 000 H , and it fetches its next instruction from this address, which is of course the first location in chip zero, and the beginning of CHOMP. The flow chart can be traced from this RESET point which is located at the top left of Fig. 6.1.

The first box is not very exciting; it simply tells us that we must jump past address 003 H , because this is the program location which contains the first instruction of the Interrupt routine, and we only want to go to that address when a hardware interrupt is acknowledged.

Box three represents the first "meaty" part of the program, and here we carry out all the preliminary housekeeping jobs required by the rest of the program. The 4265 INPUT/OUTPUT chip is programmed into mode 9; the switch flag latches are cleared (in case any were already indicating a switch closure when power was applied), and the various software counters are initialised to a required starting condition (i.e. the CHOMP address counter is set to point to the first location in program Ram, 200 H). Finally, the interrupt system is enabled so that any interrupt signal from now on will cause the 4040 to save the current address on its internal stack, and jump to 003 H , the interrupt vector. The only source of interrupt recog. nised by CHOMP itself is the keyboard, but for the moment let's assume that no interrupt has been received and continue on to box 4.

After initialisation, the CHOMP address counter holds 200 H , and this box is present to load that address value into the display buffer register, so that we can see it on the right hand three display digits. Notice that box 4 is also entered via LOOP 2, and in this case the current address value (whatever it is) will be displayed.

Box 5 performs the vital job of refreshing the l.e.d. display. Each time this box is entered, a new eight bit word is presented to the segment lines and the display shift register is stepped on one position. Eight entries are required to refresh the complete display, and to ensure regular use, box 5 is made part of LOOP 1, through which the 4040 cycles continuously as long as no control switches are pressed.

Box 6 is also part of LOOP 1, and the main purpose of this box is to read into the 4040 accumulator register the state of the four control switches, so that the state of these may be checked and appropriate action taken. The interrupt system is again disabled at this point to prevent interference with switch responses. The inTERRUPTS RECOGNISED zone is quite extensive enough for a prompt response to any key press, and making the rest of the program interruptible would be an unnecessary complication.

Box 7 is a decision based not upon the switch flags, but upon the separate 4040 TEST input. If the TEST button is pressed, box 7 ensures a jump to the start of Chip 1, address 100 H . Chip 7 is normally used for the PROMPT programmer software of course, but if the programmer is not in use, any 4702A resident program can be started by pressing test.

Boxes 8, 9, 10 and 11, check each of the switch flag bits in the accumulator in turn, by shifting them into the carry flip-flop and performing a JCN instruction. If no switches are pressed at box 6 time, then LOOP 1 is completed, and is in fact repeated indefinitely, refreshing the display and checking the switches on each pass. Needless to say, CHAMP spends most of its time in this loop when CHOMP is running, only leaving it intermittently, to respond to control switch closures.

If the enter data switch is pressed then CHAMP exits from LOOP 1 at box 8 . Box 12 represents a routine which takes data previously entered via the keyboard and stores that data (8 bits) in the program ram location pointed to by the CHOMP address counter, before passing on to box 16 to increment to the next address in sequence. The new address is displayed by means of box 4 , and then LOOP 1 is re-entered.

If the ENTER address switch is pressed, then LOOP 1 is left at box 9 . Box 13 is then executed, and this loads the three digit hexadecimal data previously entered via the keyboard into the CHOMP address counter to replace the previous contents. In this case there is no need to increment the address counter, and so LOOP 1 is reentered via LOOP 2.

When the DUMP switch is pressed, a sequence of operations similar to those for enter data takes place, although in this case box 14 represents a routine which reads data (8 bits) from the program ram location pointed to by the CHOMP address counter, and loads it into the display buffer for examination. When the PROGRAM MODE/RUN MODE switch is in the RUN position box 15 is entered, and a routine is executed to cause an unconditional jump to the start of the user program ram at address 200 H . From this point onwards of course, CHOMP has relinquished its control of CHAMP facilities to whatever user program is resident in Ram.

Fig. 6.1. CHOMP main flow chart. The complete CHOMP

: H HOX

C
2
2
-1
-1
π
3

FIRST KBD DIGIT INRE
SECOND TO RC MS TABLE INDEX NIBBLE
PUT KBD IN ACC
BRANCH VIA TABLE GO TO USER IR
SELECT 4265
GET KBD BCD
PUT IN KBD TEMP
BUMP TABLE INDEX USER IR SO RESTORE STATUS GET PROG/RUN SWITCH
PUT IN CY

ヘষษ $\forall \supset$ aN $\forall \supset \forall \exists \wedge \forall S$
ADDRESS COUNTER
RELOAD COUNTER WITH 12 BIT
ADDRESS
CLEAR SWITCH FLAGS
SELECT RAM CHIP
ADDRESS BYTE
GET LS NIBBLE
GET MS NIBBLE
CLEAR KBD COUNT
CLEAR FLAGS BUT NOT KBD
DISPLAY DUMP BYTE

RELOAD COUNTER WITH 12 BIT
ADDRESS
CLEAR SWITCH FLAGS

 LD OEH
WPM；
JMS CLRF：
JUN COUNT：
ENTAD：LD ODH： HヨO 07 \qquad

 $\frac{0}{2}$

> WRITE MOST SIG NIBBLE
CLEAR SWITCH FLAGS
BUMP ADDESS COUNT
PUT KBD IN COUNTER
> WRITE LEAST SIG NIBBLE
TO RAM SELECT PROGRAM RAM CHIP
ADDRESS BYTE JUMP TO USER PROG IN
CHIP 2

BLANK DISPLAY
RUN OR BACK AGAIN NEXT FLAG TO CY
DUMP？ NEXT FLAG TO CY
ENTER ADDRESS
NEXT FLAG TO CY ENTER DATA？

JUMP TO CHIP 1 IF TEST SET READ IN SWITCHES
DISABLE INTERRUPTS
FIRST FLAG TO CY DISPLAY DRIVER SET UP 4265 MODE
CLEAR SWITCH FLAGS
SET MS ADDR．COUNT AND
DDRV COUNT
LOAD ADDRESS TO DISPLAY
ENABLE INTERRUPTS SKIP INTERRUPT
INTERRUPT VECTOR

 BBL OH
DDRV：SRC $6 ;$
RDM；
FIM $8,80 H$
SRC $8 ;$
WR1
INC $7 ;$
SRC 6
RDM
SRC 8
WR2；
INC $7 ;$
ISZ 5 ，DATO；
LDM OFH；
WRM
LDM O8H；
XCH 5
JUN PASS
DATO：LDM $0 E H ;$
WRM；
PASS：FIM $8,080 H_{;}$

SLOW DOWN MULTIPLEX
RATE FETCH WRM CODE PRESET SHIFT COUNTER HOIH \＆Z G9zt LコS yヨINกOJ $\perp 1 H \mathrm{HS} \perp$ NJWZyONI LOW FOUR TO 4265 PORT Y
BUMP NIBBLE POINTER 200\％WOUA BCOA HOIH yヨ LNIOd $3798 I N$ dWng LOW FOUR TO 4265 PORT X DISPLAY DRIVER ROUTINE
LOW FOUR FROM 4002 CONVERT TO SEVEN SEG
CODE

> CONVERT TO SEVEN SEG

CONVERT TO SEVEN SEG
CODE

g Lyod d＇o woy $\perp 0 \exists 7 \exists \mathrm{~S}$
RESTORE STATUS
 －ay NI quilhi

HOO HVO HOX：GYاH」

INTERRUPT

If CHOMP is running and a keyboard switch is pressed, one interrupt is latched by IC10 and CHOMP responds (from the interrupts recognised zone) with a jump to box 2 (address 003 H) which is called the interrupt vector.

Box 2 contains another jump to the start of the interrupt routine proper, which just happens to be elsewhere in chip zero (actually at address 066 H). Before the keyboard handler routine is entered, CHOMP makes a check to see whether it is actually in program mode. Interrupts to run MODE user programs are also vectored to address 003 H , so this check is essential, and is represented by box 17. If Program mode is current, then box 18 is entered and a routine executed to read-in a single four bit hexadecimal digit from the keyboard, and store it away in a 4040 register. The keyboard routine also updates the display buffer so that each digit appears on the left hand side of the display as it is entered.

User interrupts are re-vectored to address 203 H , so that the ram resident program can define how a response is to be made. If you want to use the keyboard interrupt routine in your own program, simply carry out a JUN (Jump UNconditional) to address 066 H from address 203 H . Remember to use a BBS (Branch back and SRC) at the end of any "custom" interrupt routines you write!

CHOMP LISTING

Figure 6.2 is a complete listing of the CHOMP program, showing hexadecimal address data (column 1), hexadecimal instruction code data (column 2), mnemonic instruction codes (column 3) and comment lines (column 4).

The listing of Fig. 6.2 is the output of an assembler program which runs not on CHAMP, but on a much larger computer. Before anyone cries cheat! let me hasten to point out that CHOMP was originally written without the benefit of any such sophisticated facilities, directly in hexadecimal code. The reasons for eventually putting CHOMP into this form are simple:
(a) The assembler program does produce nice neat output listings which are useful for publication purposes.
(b) Since we are indeed saying that you do not need assembler programs when writing CHAMP software, we thought it only fair to show you what you are doing without!
When entering programs into an assembler, you have to enter columns 3 and 4 of Fig. 6.2 via a teletype terminal. From these the assembler produces columns 1 and 2 which tell you what hexadecimal code to enter where in program memory. The advantages of using an assembler program are firstly that the mnemonic instruction codes are all you have to remember, and that is fairly easy: and secondly, that instead of having to specify addresses in hexadecimal code you can use labels (i.e. names) instead. The assembler program will turn instruction mnemonics and address labels directly into hexadecimal code, and produce neat listings like the one shown here.

These sort of facilities sound very useful of course, and we would be the first to agree that with more complicated micros such as the Z80 or the 6800 they are very helpful indeed. The disadvantages are of course that you have to have lots of ram available to store all those useful comments, and you also need a teletype or a V.D.U. The authors have assembler facilities available to them, but even so we prefer to write our 4040 programs directly in hex, with a pencil and paper: an exercise which is quite. simple after a little practice!

Before leaving the subject of assemblies, let me explain a few things about the output listing shown in Fig. 6.2 which may be puzzling some readers:
(a) ORG and END are pseudo instructions, nothing to do with the 4040 but understood by the assembler.
(b) Some lines in column 2 have four hexadecimal digits. These involve two line instructions such as JUN, and will of course occupy two consecutive bytes in program memory.
(c) Some lines are field separators required by the assembler program.
(d) Notation. The assembler requires hexadecimal data to start with a decimal digit (don't ask us why!), and to be followed by an H . This means that FF hex is written 0FFH, while 2 F hex is written 2 FH .
(e) Register references can be made in a variety of ways, but we referred to them using hexadecimal, or decimal where this was equivalent.
Putting this information together, refer to Fig. 6.3 which explains how a complete assembler line is made up.

To get a CHOMP Prom from Fig. 6.2, all you have to do is step through the Prom addresses (column 1) entering the hexadecimal instruction codes from column 2. To do this you need a PROM programmer of course, and since most constructors will not have access to such a unit, arrangements have been made for the provision of a CHAMP programming service which will carry out the programming for you. Details next month.

Fig. 6.3. One assembler output line and what it means

DETAILED FLOW CHARTS

No doubt many readers who felt reasonably happy with the overall flow chart in Fig. 6.1 had second thoughts when they tried to relate it to the program listing of 6.2. This is inevitable, because there is a missing link between the two, namely the detailed flow charts of each separate section of the program. Figures 6.4 to 6.8 show some of the detailed flow charts needed, but lack of space makes it impossible to reproduce all of them, so a certain amount of "unravelling" will still be necessary if any reader wishes to trace the operation of the complete program.

Let us start off with something easy, and have a look at how box 16 of Fig. 6.1 is turned into a 4040 program seg. ment. Box 16 is a software implemented 12 bit binary counter routine which is updated each time the ENTER DATA or DUMP switches are pressed. The current count value is used during the enter data or dump program segments as a program memory address, and is displayed on the rightmost three display digits in hexadecimal.

Counters are implemented in 4040 software by using the ISZ (Increment and Skip if Zero) instruction which has the effect of incrementing the value of an internal four bit 4040 register by one, and jumping to a specified address if the contents of the register are not zero. If they are zero, the jump does not take place, and the next instruction in sequence is fetched. Figure 6.4 shows the implementation of the 12 bit address counter using ISZ,

Fig. 6.4. Twelve bit address counter flow chart. Refer to box 16 in CHOMP main flow chart, and address OO5EH. The CHAMP address counter should not be confused with the 4040 address counter

Fig. 6.5. Display driver subroutine. Refer to box 5 in CHOMP main flow chart, and address 00B1H on CHOMP program listing

Fig. 6.6. Interrupt routine. Refer to boxes 17 and 18 in CHOMP main flow chart, and address 066 H in CHOMP program listing

Fig. 6.7. Load keyboard subroutine. Refer to address 00 CEH in CHOMP program

Fig. 6.8. Seven segment from hex look-up subroutine. Refer to address 00DDH in CHOMF program
the registers used being 3,2, and 4 in that order. (The order is important because the high order address bits during an SRC instruction are taken from the lower register of a pair, and of course we use the lower eight bits of the counter as a SRC value when addressing program memory, before using RPM or WPM instructions.) The required 12 bit length of the counter is arranged by using three cascaded ISZ instructions, each with a common jump address, namely LOOP 2. You can probably see that Register 3 is incremented 16 times more often than Register 2, which itself is incremented 16 times more often than Register 4, in traditional binary counter fashion.

DISPLAY DRIVER

The subroutine DDRV is the full version of box 5 in Fig. 6.1, and its detailed flow chart is shown in Fig. 6.5.

This subroutine increments a counter (Register 7) twice each time it is called, and uses the counter contents as part of a SRC address to the data RAM display buffer (ram chip 0 , register 0). On each call it reads two four bit locations from the 4002, and sends their contents to the 4265 output ports X and Y which control the display segment lines. After doing this it increments another counter (Register 5) which it uses as a digit counter. This counter is preset to 8 hex (using LDM) when it reaches zero, and a logic one is placed on the 74164 shift register data input via 4265 output Z3, using the WRM command. If this counter does not reach zero during a call then a logic zero is placed on the shift register data input.

You can probably see how this subroutine displays eight digits, one per call; and how it recycles to repeat the process over and over again. On seven out of eight calls it shifts a logic zero into the register, but on the eighth it generates a new "digit strobe" for the display, to replace the one which has just "dropped off the end" of the 74164.

INTERRUPT ROUTINE

Figure 6.6 shows the interrupt routine, INTER, which is boxes 17 and 18 on the overall flow chart of Fig. 6.1. The main thing of interest here is the use of a "Branch Table" accessed using the JIN (Jump Indirect) instruction to route the program flow to the correct segment depending on whether the current keyboard digit entry is the first, second, or third in sequence. Notice also that at the start of the routine the current accumulator and carry flip-flop contents are saved in registers 6 and 7 of Bank 1 , to be restored at the end of the routine so that the main program flow can continue normally. A subroutine LOKY is used to enter the newly entered keyboard data into the display buffer.
The subroutine LOKY is itself shown in Fig. 6.7. It takes the contents of the three keyboard registers (E, C, and D) and converts their hexadecimal data into seven segment code using another subroutine HEXL.
HEXL itself is shown in Fig. 6.8, and as you can see it uses a FIN (Fetch Indirect) instruction to access a lookup table with sixteen entries. To convert hex to seven segment code, the hex is used as part of an indirect address so that the correct segment data can be "looked up" in the table. Table look-up is a powerful and simple technique which is very useful when converting data from one format to another. HEXL also loads the seven segment data into the 4002 ram buffer register, at the appropriate address passed to it in registers 8 and 9 by the subroutine LOKY.

There are several other detailed flow charts required for a full understanding of CHOMP, and it would be excellent practice for CHAMP users to try and draw these up for themselves using Figs. 6.1 and 6.2 for reference. Don't be discouraged if it takes a while for the flash of inspiration to arrive, programming a microprocessor takes some getting used to, and is invariably a frustrating business at first, particularly for us "hardware people".

NEXT MONTH: Putting CHAMP to work

Abstract

Appearing every two months, Micro-Bus will present ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data books. The most original ideas will probably come from readers working on their own microcomputer systems, and payment will be made for any contribution featured here. This is also the place to air your views, in general, on this new technology, so let's be hearing from you!

CALCULATING ON A MICRO

SINCE microprocessors are designed as Sontrollers rather than as computers they do not lend themselves to arithmetic work, and most instruction sets do not even include multiply and divide operations. There are two ways to add the capability of a scientific calculator to a micro. One is to add a floating-point package: a collection of programs to handle calculations involving floatingpoint numbers, and providing trigonometrical and logarithmic functions in addition to the arithmetic operations. The disadvantage is the extra memory required-typically $1 \frac{1}{2} \mathrm{k}$.

The alternative is to add a hardware "arithmetic processing unit" which performs the calculations independently of the main micro. One such device is National Semiconductor's MM57109 "Number Cruncher Unit" or NCU. This chip offers the functions of a programmable calculator (see Table 1), a fourelement stack and a memory, and float-ing-point arithmetic to 8 -digit accuracy.

NUMBER CRUNCHER UNIT

The NCU is similar in operation to a calculator; 6-bit instructions correspond to key-presses, and these are presented to it on six input lines, $11-16$. Numbers are entered digit by digit as in a calculator.

A summary of the instructions is given in Table 1. The NCU shows that it has finished executing an instruction by pulsing its RDY output high. When RDY is high you must either send it another instruction or else put HOLD high to halt it until you are ready.

The result of a calculation is obtained by presenting the OUT instruction. The NCU then puts the digits out on DO1DO4 at regular intervals and pulses R / W low when each digit is valid. There are some test instructions, such as $\mathrm{TX}=\mathrm{O}$, and these cause the $\overline{B R}$ output to be pulsed low if the result is true.
The NCU is not directly compatible with a microprocessor bus but fortunately all the necessary logic is provided within a single device, the Motorola MC6820 Peripheral Interface Adapter or PIA, also manufactured by MOS Technology in their 6500 series as the MCS6520. The PIA is a versatile general purpose input/output circuit whose particular mode of operation is determined by numbers loaded into its two control registers. It consists of two similar halves, A and B, each with an 8 -bit I/O port PA0-PA7 (or PB0-PB7) and two control lines CA1 and CA2 (or CB1 and CB2).
In the present application the PIA is configured to operate as represented in Fig. 1: DO1-DO4 input to location 0400;
$\overline{\mathrm{R} / \mathrm{W}}$ and $\overline{\mathrm{BR}}$ are latched inputs which set the top two bits of control register A at location 0401; 11-16 are fed by latched outputs from location 0402; and RDY and HOLD are in "handshake mode" with RDY setting the top bit of control register B at location 0403. In handshake mode HOLD is taken high when RDY goes high, halting the NCU, and goes low when an instruction is written to the NCU, thus releasing the NCU to execute the instruction. This handshaking makes it unnecessary for the micro to respond immediately to the RDY pulse from the NCU.

INTERFACE

The complete interface circuit is shown in Fig. 2. The NCU is a PMOS device requiring a 9 V supply (at 20 mA) and to make it compatible with the microprocessor system supplies of +5 V and -4 V are used. The PIA side A inputs PA0-PA7 and CA2 presents one TTL load, and so pull-down resistors to the -4V rail are needed on the DO1-DO4 outputs, and $\overline{\mathrm{BR}}$ needs a buffer transistor. The CA1 and CB1 inputs are high impedance so a pull-down resistor to 0 V is needed on the R / \bar{W} and R.DY outputs.
The HOLD and POR (Power-On Reset) inputs to the NCU must be driven between its supply rails and so transistor

Table 1. Summary of the instructions available in the MM57109.

$I_{4}-11$	$1_{6} 1_{5}$			
	00	01	10	11
0000	0	TJC*	INV	XEY
0001	1	TX=0*	EN	EX
0010	2	TXLTO*	TOGM	10X
0011	3	TXF*	ROLL	
0100	4	TERR*	SIN(SIN ${ }^{-1}$)	SQRT
0101	5	JMP*	$\operatorname{COS}\left(\mathrm{COS}^{-1}\right)$	
0110	6	OUT*	TAN(TAN-1)	LOG
0111	7	IN*	SFI	$1 / X$
1000	8	SMDC*	PFI	YX
1001	9	IBNZ**	SF2	+(M+)
1010	DP	DBNZ*	PF2	$-(M-)$
1011	EE	XEM	ECLR	$\times(M \times)$
1100	CS	MS	RTD	$1(M /)$
1101	PI	$M R$	DTR	PRWI
1110	AlN	LSH	POP	PRW2
1111	HALT	RSH	MCLR	NOP

*indicates a two-word instruction.

Fig. 1. Block diagram showing the logic needed to interface the Number Cruncher Unit with a micro as described. This logic is all provided in the PIA

Fig. 2. Circuit using a PIA to interface the Number Cruncher Unit with a microprocessor system such as KIM
drivers are needed, and a OMOS inverter re-inverts HOLD to active high. Two other gates in the CMOS package form a simple 400 kHz oscillator to drive the OSC input. Finally, a resistor is required from I6 to +5 V as shown. The circuit was constructed on a plain matrix board using wire-threading (see Fig. 3) and connected to the microprocessor system by a 16-way ribbon cable.

PROGRAM

The Number Cruncher Unit circuit was used with the MOS Technology KIM development system (see review elsewhere in this issue), which is based on their 6502 micro, and the interface program is given in Fig. 4. The 6502 is similar in some respects to the 6800 and converting the program for the latter should present few problems. The 6502 has two 8 -bit index registers, X and Y, and one accumulator. In the program the X register is used to point to the next
instruction to be sent to the NCU, and the Y register points to the address at which digits output by the OUT instruction are to be stored.

The program first configures the PIA, and points X to the first instruction for the NCU. It then waits in a loop testing for a signal on one of the control inputs. The BIT instruction in the 6502 loads the top two bits of the memory word-the control register A in this case-into the N and V status flags. If R / \bar{W} has gone low, bit 7 will be set and a branch to the label $\overline{R W}$ is called for. If $\overline{B R}$ has gone low bit 6 will be set and a branch
to $\overline{\mathrm{BR}}$ is required. Finally, bit 7 of control register B wilt be set by RDY going high, and an instruction should be sent. If not set the program continues to wait.

The NCU's test instructions and OUT, each generate two RDY pulses; i.e. they are effectively two-word instructions. The second word is used by this program as the address (in page zero) for the jump or for the output of digits, and is ig nored by the NCU. The OUT instruction causes one digit to be stored per byte, although the program could be modified to pack two per byte.

Fig. 3. The Number Cruncher Unit and interface circuits described in this article. Top and underside view

A sequence of instructions for the NCl! is shown in Table 2. This finds the sum of the terms of the series $1 / \mathrm{M}^{2}$ for $\mathrm{M}=\mathrm{i}$ to 100 and gives the result 1.6349839 (close to $\pi^{2} / 6$, the infinite sum). The program takes 9 seconds. The NCU is slow by computer standards; the slowest instruction X^{Y} takes up to 1 second, and multiply takes 32 milliseconds.

One advantage of a hardware arithmetic processor over the software equivalent is that while instructions are being executed the micro is free to go away and do something else. In the program described it waits in a loop, but with a trivial modification the three inputs RDY, R//W, and $\overline{\mathrm{BR}}$ could cause interrupts so that a negligible time would be taken up in servicing the NCU. Perhaps someone may be inspired to write a BASIC interpreter which uses an arithmetic processor working in parallel with the micro in this way.

GENERATING SINE WAVES

The program for generating sine waves in October's Micro-Bus used a look-up table for the values. Mr. T. Froggatt of York University has shown how this can be dispensed with:
"The problem is not to generate the sine of a given angle, but to generate the sine of an angle having just generated the sine of a nearby angle. So remembering that the rate of change of a sine wave is a cosine wave, and that the rate
of change of a cosine wave is an inverted sine wave, the following program is all we need:

> Cosine $=0.0$ Sine $=1.0$

Loop: Output (Sine) Cosine $=$ Cosine - Delta \times Sine Sine $=$ Sine + Delta \times Cosine Go to Loop.
To make this program work on an 8 -bit micro the sine and cosine should each be held as two-byte items, and each time round the loop the upper byte of the sine subtracted from the cosine and the upper byte of the cosine added to the sine. This avoids the need for multi-
plication and effectively fixes Delta as 1/256."
The period of the sine wave produced is about $2 \pi /$ Delta iterations of the loop. Mr. Froggatt described a program he has written which uses this method of generating a sine wave to sing Christmas carols, using a table to give the value of Delta for each note.

ADDENDUM

In December's Micro-Bus the second Chess Challenger game contained an error. The fourth move should have read: 4. $7 \mathrm{a}-6 \mathrm{c} \quad 3 \mathrm{~h}-2 \mathrm{~g}$

Table 2. Example of a sequence of instructions for the Number Cruncher Unit.
This calculates the sum of the first 100 terms of the series $1 / \mathrm{M}^{2}$.

Address	Code	Mnemonic	Comments
00	3 F	NOP	First 3 instructions are
01	3 F	NOP	ignored by the NCU after
02	3 F	NOP	a Power-on Reset
03	01	'1'	Digit input
04	OB	EE	Enter exponent
05	02	- 2	$\mathrm{X}=100$; push stack
06	1 C	MS	Store X in memory
07	00	- 0 '	$X=0$; push stack
08	1 D	MR	Recall memory to stack
09	33	SQ	$\mathrm{X}=\mathrm{X}^{2} \mathrm{X}$
OA	37	1/X	$X=1 / X$
${ }^{\text {OB }}$	39	+	$X=X+Y$
${ }^{0} \mathrm{C}$	IA	DBNZ	Decrement memory and go
OD	08		to 08 if non-zero
OE	16	OUT	Output X starting at $\mathrm{H}, \mathrm{i}^{\prime}$,
OF	40		40 (i.e. 0040)
10	OF	HALT	Return to monitor

THis month the second and final part will deal with constructional details and setting up procedures.

CONSTRUCTION

Construction is very straightforward as all components are mounted on two p.c.b.s with the exception of the three potentiometers, the switches, fuse holder, socket and indicators which are mounted on either the front or back panels.

Figs. 10 and 11 show the etching details and component layout of the main board.

It is advisable when assembling the p.c.b.s to fit the components of smallest dimensions first. Bending their leads to an angle of 45 degrees after insertion will prevent them from falling out when the board is turned over for soldering. Figs. 12 and 13 gives p.s.u. board assembly details.
Care should be taken to make sure diodes and radial lead electrolytic capacitors are fitted the right way round With the general purpose 1 N4148 the larger width band indicates the positive end of the diode. Positive or negative markings will be printed on the electrolytic capacitors.

The polyester radial lead capacitors should fit the p.c.b. exactly. They are very fragile and the leads will break off if the capacitor is forced into position.

If lead adjustment is necessary this should be carried out with the use of a small pair of pliers while firmly gripping each end of the capacitor.

SOCKETS

It is advisable to use sockets to fit the four cmos i.c.s. These devices are supplied in a conductive foam or wrapped in tin foil and should not be removed until immediately prior to insertion. Although the devices are internally protected they are still vulnerable to high static charges and it is worth earthing oneself when handling them.
Another point to remember is that they should not be inserted or removed from their sockets while the power is switched on.

The p.c.b. should be visually checked upon completion of assembly to ensure that components are in their correct positions and the track side inspected for any dry joints or solder bridging. Figs. 14 and 15 show the positions of the components mounted to the front and back panels.

SWITCH MOUNTING

The subminiature switches used on the control panel must be tightened from the back of the panel otherwise severe scratching of the anodised finish and the legend will result. The potentiometer spindles should be cut to approximately $\frac{1}{2}$ in before fitting to the panel. The three knots used have a very fine taper on the internal $\frac{1}{4}$ in fixing bore and once pushed on and rotated into place may be difficult to remove:

The DIN socket with the 3.5 mm jack socket, fuse holder and grommet are mounted to the back panel as indicated in Fig. 15.

Fig. 11. Component layout on maln board

Fig. 10. Printed circuit layout of main board

Fig. 12. Power supply board etching details

Fig. 13. Component layout of power supply board

Plan view of Generator interior

Fig. 15. Back panel wiring

INTERWIRING

The interwiring is reasonably straightforward with the exception of the selection switch wiring.

Fig. 14 shows the back of the control panel. The five common connecting rails across the switches should be fitted first. The common $0 V$ rail not only links the switches but also VR2 and VR3 and the stop/start switch. It is suggested as this 0 V rail is the most complicated of the five that this should be fitted first.

For each of the five rails a length of $22 \mathrm{~s} . w . g$. tinned copper wire should be used.

Start at one end of the line of switches and terminate the wire by wrapping and soldering it into position. The wire is then wrapped over a screwdriver which spaces the bridging link to the next switch. It is not necessary to wrap the wire around each switch tag however-each joint should be soldered quickly to prevent the wiring from springing from the previous switch contacts.

The rest of this interwiring must be made with the front panel, p.c.b. and back panel lying horizontally. The front and back panels must be arranged either side of the p.c.b.

The row of Veropins should be nearest the front panel and two gaps of 30 mm each should be left between the p.c.b. and front and back panel. If this gap is not left all the wires will be too short when the assembly is fitted into the case framework.

The connections from the common rails and individual switches can now be made to the p.c.b. It is worthwhile to check every joint after making it as it is possible to forget a connection and be left with one extra Veropin at the end!

SAFETY FIRST

Whenever a metal case is used to house mains operated equipment, it is advisable to take extra care with the mains wiring connections. Each joint should be inspected to ensure a good mechanical and soldering bond.

It is advisable to scrape away a small section of the anodised finish on the internal surfaces of the four aluminium extrusions and the front and back panels. This should be done to ensure a good earth contact throughout the case, as unfortunately the anodised surfaces act as an insulator.

HOLES MARKED $A=10 \oplus$

$$
\begin{aligned}
& \mathrm{B}=6 \Phi \\
& \mathrm{C}=8 \Phi \\
& \mathrm{D}=15 \varnothing
\end{aligned} \quad \text { ALL DIMENSIONS IN mm }
$$

Fig. 16. Front panel showing dimensions and drilling details

holles marked $D=150$ $E=12.5 \varnothing$
ALL DIMENSIONS IN mm
Fig. 17. Back panel

ALL DIMENSIONS IN mm.
ALL HOLES 6BA CLEAR

Fig. 18. Base panel

FINAL CHECK

Apply mains voltage (without any i.c.s in place). The neon should light. Check the voltage across pin 1 (positive) and 2 (negative) of the M253AA socket. The reading should be $17 \pm 1 \mathrm{~V}$. Also check that the outputs from the power supply board are $+12,+5$ and -12 V .
If the voltages check out, again isolate the supply and carefully fit the i.c.s taking the necessary precautions described earlier with the four cmos devices.

Check that all the chips are fitted in their correct positions, but do not turn on until you have completed the initial setting up procedures.

INITIAL SETTING UP

Set all the internal preset controls as follows:

Identification	Adjustment	Control Description
VR4	Midway	Oscilla tor damping
VR5	Midway	Oscillator damping
VR6	Midway	Oscillator damping
VR7	Midway	Oscillator damping
VR8	Fully anti- clockwise	white noise generation level VR9
	Midway	Balance of noise to Snare Drum simulators
VR10	Midway	Output attenuation

Set the front panel controls as follows:

VR1	Midway	Tempo
VR2	Fully clockwise	Tone
VR3	Fully anti-	Volume

Stop/Start Switch
"Rhythm Select"

CONNECT UP

Connect the DIN output to the radio socket of an external amplifier and turn on.

The downbeat lamp should light and by advancing VR3 a rhythmic beat should be heard. The tempo control should be adjusted to suit the rhythm. Continuous oscillations may be heard as well and will be corrected in the final setting procedure.

FINAL SETTING UP

With the unit operating the four presets VR4-VR7 should be adjusted just to prevent continuous oscillation. VR9 should be set to give a realistic balance between the white noise simulators and the Snare Drum. VR8 may be backed off from full anticlockwise slightly to reduce harshness of the white noise effect if necessary.

In combination with the adjustment of VR8, switch to the March rhythm and adjust VR9 to achieve the best setting for a realistic Snare Drum sound and correct Cymbals level.

VR10 controlling the output attenuation should be adjusted to suit the amplifier being used. Re-adjustment, using the prescribed procedure may be repeated once or twice to obtain the most balanced and realistic sound. \star

NOTE: In the Components List R61 is $33 \Omega 2$, VR2-25ks logarithmic, C31-0.1 1 F polyrad and ICI-M253AA, Watford Electronics, 33-35 Cardiff Road, Watford, Herts, can supply a complete kit of parts for $£ 49.95$ including VAT \& P. \& P. £1. 25 (insured).

A TELEPHONE MEMORY

Fig. 1

In Fig. I a 100 -turn 3in. diameter coil of 30 s.w.g. enamelled copper wire is positioned on the underside of the telephone in a position (approximately dead centre where the bell magnetic field can be picked up. Voltage induced in the coil appears across the gate/cathode of thyristor MCR201 which is already biased close to conduction by the voltage across diode D1. This additional voltage, caused by the bell, triggers the thyristor and lights the l.e.d.

To reset the circuit a normallyclosed push button is pressed to temporarily interrupt the supply to the circuit.

As the value of VR1 is reduced, a point will be reached where the thyristor will spontaneously trigger. The value of VR1 should be increased a small amount from this point to set the circuit at its most sensitive.

This circuit draws approximately $60 \mu \mathrm{~A}$ when the l.e.d is not lit, and 7 mA when it is, therefore dry batteries will give quite a good life.
A. Russell,

Whinmoor,
Leeds
| T is often useful to know if your telephone has been ringing while you have been away. This circuit will light an l.e.d. when it detects the magnetic field of a telephone bell. The l.e.d. remains on until it is later reset by the telephone user

MARINE ELECTRONICS

The slump in the shipping industry and in particular in the fishing industry has gravely affected a few companies, notably Redifon now phasing out their Cwmbran, South Wales, manufacturing plant with 250 redundancies. But some companies in the marine business continue to prosper. Prime example is Decca Radar, currently selling over 5,000 marine radars a year. Starting from nothing in 1950 the grand total is 75,000 radars sold, 15,000 in the last three years of difficult trading conditions.
Another boom sector is in the North Sea drilling rigs where the chief beneficiary is Marconi with multi-channel over-the-horizon troposcatter systems coupled into the UK telephone network. The investment by the Post Office in such systems is $£ 5$ million.

Finally, there is the VLF global navigation system code-named Omega which will get its final validation for accuracy in 1982, the aim being one nautical mile accuracy in daylight and two miles at night. The market for shipborne Omega as a master navigation system is already established but is clearly capable of enormous growth.

BIGGEST DATA BANK

Disk storage of 2,800 million bytes, all of it on-line and said to be equivalent of 10,000 books of novel length, is now available at Aberdeen University through its recently commissioned Honeywell 66/60 computer. University departments can interrogate the system through 100 remote terminals, most of them VDUs.

Of topical interest is the work of the Department of Arts and Social Science using the computer to analyse trade union bargaining and wage rounds.

How sensible it would be to feed in workers' demands on the one hand and employer's ability to pay on the other, the length of time a strike could last without the employer (or the country) collapsing, or workers starving, overall cash loss to the country (there is never a gain), damage to trade both in short and long term etc., and let the computer work out the compromise solution which is invariably arrived at. If every dispute were to be solved by computer there would be no need for strikes. I doubt if the, Aberdeen researchers are thinking along these lines. I offer the idea free of charge but with little hope of its adoption. Far too many trade union officials and industrial relations officers have a vested interest in interminable argument to accept the impartial and practically instantaneous solution that the computer can and should be allowed to provide. And where could such people, if made redundant, find alternative employment?

INVENTOR'S CHANCE

Odd phenomenon of 1977 was the National Research Development Corporation's inability to attract new joint venture schemes to exploit inventions and ideas. With a pre-tax surplus of over $£ 10$ million for the year 1976-77, up from $£ 3.7$ million the previous year, NRDC has plenty of cash to back new projects but few takers. NRDC holds some 5,000 patents in the UK and overseas and is currently co-operating with nearly 1,000 companies.

Should 1978 prove to be a vintage year for inventions, NRDC has the cash but any schemes put forward needs to have originality and the prospect of profitable exploitation in the market place. Perpetual motion machines are not encouraged. In its life-time, NRDC has examined schemes from over 28,000 companies and only 7,000 have qualified for a second look.

PLESSEY STAYS FIRM

Plessey, hard hit by the Post Office cut-backs in orders, shows great underlying strength. Pre-tax profits for the quarter to last September totalled $£ 9.6$ million against $£ 8.1$ million on world sales nine per cent up at $£ 149 \cdot 7$ million. Exports over a half year have increased by 51 per cent.

The weakness of being overdependent on a single large customer, in this case the British Post Office, is illustrated by the labour force of 20,000 (slimmed down from 23,600) on telecommunications which contributed only 30 per cent of sales in the last half year. Contrast this with the 8,800 people in Plessey Electronic Systems who accounted for 37 per cent of sales and 40 per cent of the pre-tax profit.

The big breakthrough for Plessey may come next April when the International Civil Aviation Organisation (ICAO) is meeting in Montreal to decide on the next generation of instrument landing systems for airports. Plessey's doppler microwave system has a good chance of succeeding in the competition and if it does it will create work for years ahead and good profits from manufacturing and licence agreements.
Meantime, an example of Plessey's advanced technology is the recently announced PR2250 professional communications receiver which includes a microprocessor for programmed surveillance of spot frequencies and a memory module which allows instant tuning to 16 pre-set frequencies at the touch of a button. Real state-of-the-art, but it also costs real money, about £6,500 each says Plessey but you might be able to negotiate a quantity discount!

RACAL EXPANDS

It's still action all the way in the Racal Electronics Group with expansion at home and overseas. Dana Laboratories in Irvine, California is the latest acquisition together with the Dana sales affiliates in the UK and France. The Dana range of digital instruments is now added to the complementary range from Racal Instruments Ltd and the combined instrument operations will soon be trading with the new name of Racal-Dana Instruments Ltd under the overall direction of John Ceresa who heads up Racal Instruments in the UK.
The new acquisition immediately bumps up Racal turnover in instruments by $£ 5$ million and the combined Racal-Dana is targeted for $£ 13.8$ million turnover in its first full year of operation. So Racal-Dana is now pressing hard on the heels of Marconi Instruments, at present the largest of the British-owned companies in electronic test and measuring instruments.

British Physical Laboratories, the specialist analogue panel meter company in the Racal Group has now established West Germany as its largest single export market. Among recent successes is a five-year contract for the supply of meters to Robert Bosch GmbH. Also in Germany, Racal-Redac the CAD company has opened a new sales office at Bensberg near Cologne, supplementing the Munich office which was opened in January 1977.

Of course anyone can build turnover by buying companies or selling products at give-away prices. What counts in the end is profitability and here Racal cannot be faulted, having achieved the number one spot in the profitability league table of 200 British companies published by "Management Today", topping even ICI and Shell.

LOOK! Here's howyou master electronics

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course

1 Build an

 oscilloscopeAs the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a

2 Read, draw and understand circuit diagrams
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television. radio. computers and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuits

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing. servicing and maintaining all types of electronic equipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

British National Radio \& Electronic School

P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

SUPERSOUND 13 HI-FI MONO AMPLIFIER

HARVERSONIC MODEL P.A. TWO ZERO
An advanced solid state general
purpose mono amplitier sultable for Public Address system, Oisco Guitar. Gram... etc. Features 3
input has a separate 2 stage pre-amp.). Input 15 mV into 47 k input 2.5 mV into 47 k (sultable for use with mic. or guitar etc.). Input 3100 mV into 1 meg. sutable for gram. tuner. Or tape etc.
Full mixing fecilities with full range bass 8 treble controls. All Full mixing facilities with full range bass 8 treble controls. All
inputs plug into standard lack sockets on front panel. Output socket on rear of chassis for an 8 ohm or 16 ohm speaker
Output in excess of 20 watts R M.S Very attractively finished purpose built cabinel made from black vinyl covered steel. with a brushed anodised aluminium front escuicheon. For ac mains operation $200 / 240$ volts. Size approx. $12 \frac{1}{6} 1 \mathrm{n}$, wide $\times 5$ in high \times
7 in deep Special introductory price $£ 28 \cdot 00+£ 2 \cdot 50$ carriage and mack
Mullard LP1159 RF-IF module $470 \mathrm{kHz} \mathbf{C 2 . 2 5}+$ P. \& P. 20p Full specitication and connection details supplied output 7 BV - earth Supptied pre-aligned. with tull circuit diagram with precision-geared F M gang and $323 \mathrm{PF}+323 \mathrm{PF}$ A M Tuning gang only $£ 3.15$ - P. \& P. 35p.
STILL AVAILABLE
HA34 3 Valve Audto Amp. $4 \frac{1}{2} \mathrm{wo} \mathrm{o} p$. Ready built and tested $£ 8.50$
. $£ 1.40$ P. \& P . Also HSL \& 'Four' Amp. Similar to above but in kit form. $\mathbf{\varepsilon 8 . 0 0}+$
£1.40 P. \& P.

Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday Closed Wednesday.
Prices and specifications correct at time of press. Subject to teralion without notice

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER
$200 / 240 \mathrm{~V}$ Mans operated
Solid State FM. M M Solid State F.M. A.M. Stereo
Tuner. Covering M.W. A.M. $\begin{array}{ll}540-1605 K \mathrm{Kz} & \text { V.H.F. } \\ 88 & \text { F.M. }\end{array}$ $88-700 \mathrm{MHz}$.
Bult-in Ferrite rod aerial for
M.W. Full AFC and AGC on M.W. Full AFC and AGC on
A.M. and F.M. Stereo Beacon Lamp Indicator. Bult in Preamps with variable output voltage adjustable by preset control. Max o/p Voltage 600 mV R.M.S into 20K. Simulated Teak finish cabinet. Will match almost any amplitier. Size 8 íin wide x 4in high $\times 9$ gin deep approx.
Limited number only at $£ 28 \cdot 00+\varepsilon 1 \cdot 50$ P. \& P.
 S/P C/O interlocked switches plus ${ }^{1}$ Cancel Button plus ${ }^{3}$
D / P C/O Overall size $\sin \times 2$ in \times in. Supplied complete with chrome inished switch buttons 2 for $£ 1 \cdot 80+20 p P \& P$.

10/14 WATT HI-FI AMPLIFIER KIT

A stylishly finished monaural amplitier with an output of 14 watts
from 2 EL84s in push-pull. Super reproduction of both music from 2 EL84s in push-pull. Super reproduction of both music and speech, with negligible hum. Separate inputs for mike and gram allow records and announcements to follow each other. Fully shrouded section wound output transformer to match $3-15 \Omega$
speaker and 2 independent volume controls. and separate bass and treble controls are provided giving good lift and cut Valve Ine-up 2 EL84s. ECC83. EF86 and EZ80 rectitier. Simple
linstruction booklet 25p + S. A.E. Friee with patts) All parts sold instruction booklet $25 p+$ S.A.E. (Froe with parts). All parts sold
separately. ONLY 13.50 P. separately. ONLY 13.50 P. \&P. $\sum 1.40$. Also available ready
built and tested 18.00 P. \& P. £1.40.

"POLY PLANAR" WAFER-TYPE, WIDE

 RANGE ELECTRO-DYNAMIC SPEAKER ${ }^{20 W}$ R.M.S. (40W peak). impedance 8 ohm only. Response tables. Atc. and used with or without baffle. Send S.A.E. for full details. Only E8-40 each + P. \& P. (one gop, two E1-10). Now availabie in either 8 in round version or $4 \frac{1}{2} \times 81 \mathrm{In}$ rectangular, 10
watts R.M.S. $60 \mathrm{~Hz}-20 \mathrm{KHz} £ 5.25+\mathrm{P}$. \& P. (one 85 p , two 75 p .).
 75 p . 8 w P.
2in PLASTIC CONE HF TWEETER 4 ohm, $\mathbf{~} 3.50$ per matched
HIGH POWER HI-FI 8 ohm Oome Tweeter. tin voice coil. Magnet size 3 in dia. Suitable for use in up to 50 wan systems. E4.50 each
+60 p . \& P.

HARVERSONIC SUPERSOUND

10 + 10 STEREO AMPLIFIER KIT

A peally first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors

 including Siticon Transistors in the first tive stages on each Channel resulting in even lower noise level with improvedsensitivity. Integral preamp with Bass. Treble and two Volume controls. Suitable for use with Ceramic or Crystal cartridges, Very simple to modify to suit magnetic cartridge-instructions included. Output stage for any speakers from 8 to 75 ohms. Compact design all parts supplied including drifled metalwork, high quality ready drilled printed circuit board with component identification clearly matching knobs, wire, solder, nuts, bolts-no extras to buy Simple step by step instructions enable any constructor to build an amplifier to be proud of. Briet specification; Power output: 14 watts R.M.S. Per channel into 5 ohms. Frequency response $\pm 3 \mathrm{~dB}$ $12-30,000 \mathrm{~Hz}$. Sensitivity better than 80 mV into $1 \mathrm{M} \Omega$. Full power
bandwidit.
$=30 \mathrm{~B}$
$12-15,000 \mathrm{~Hz}$. Bass boost aprox to Treble cut approx. to -16 dB . Negative teedback 18 dB over main amp. Power requiremenis 35 V at 1 A
overall size 12 in wide $\times 8$ in deep $\times 2$ in high.
Fully detailed 7 page construction manual and parts list free with kit or send 25p plus targe S.A.E AMPLIFIER KIT
13.50 P. \& P. 80p POWA PACK comoonenis 33 p extra)
POWER PACK KIT
¢5.50 P. \& P. 95p
CABINET
15.50 P. \& P. 95p

SPECIAL OFFER-Only c23-75 14 all 3 tom

HARVERSONIC STEREO 44

A solid state stereo amplifier chassis, with an output of $3-4$ watts per channel into 8 onm speakers. Using the latest high technology
integrated circuit amplifiers with buill in short term thermal integrated circuit amplifiers with built in short term thermal overiad protection. All components including rectifier smoothing
capacitor, fuse, tone control, volume controls. sockets and 5 pin din tape rec./play socket are mounted on the printed circuit panel. Size approx. 9 in $\times 2$ 2in \times lin max. depth Supplied brand new and tested. with knobs, brushed anodised horizontally way escutchecn (10 allow he ampliner to be mounted horizontally or vertically) at only $\mathbf{~} \mathbf{9 . 0 0} \rightarrow 50 \mathrm{p}$ P \& P. Mains
tranaformer with an output of 17 V . at $£ 1.50$ - 40 p P. \& P . required Full con bo suplied supplied. 40 P P. \& P; if required. Full connection detaits STEREO DECODEA
 earth operation. Can be ilted to almost any FM VHF radio or tuner. instructions (incluslve of hints and tips) supplied. Full details and
in.00 plus 200 P. \& P. Stereo beacon light if required 40 p extra.

HARVERSON SURPLUS CO.
(Dept. P.E.E) 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel.: $01-5403985$
(Please write clearly)
PLEASE NOTE: P. \& P. CHARGES OUOTED APPLY TO U.K. ONLY CHARGEO EXTRA.

AITKEN BROS.

35, High Bridge, Newcastle upon Tyne Tel: 063226729

S-DEC

This, the most popular Board is designed solely or the use of discrete components and is par cularly useful for basic educational purposes. PRICE $£ 2.43 \mathrm{inc}$. VAT.

T-DEC

This Board allows 2 TO5 or 1 DIL IC Station to be used and so is primarlly intended for discrete work or for linear ic application where considerable numbers of discrete components may be required.
(No. of Contacts: 208)
PRICE E4.30 inc. VAT.
μ-DEC 'A'
The μ-Dec ' A ' is specially designed for ease of use with ic's and allows 2 DIL or 4 TO5 stations ponents with equal facoilitymodate discrete com ponents with equal facility PRICE E4.31 inc. VAT.

μ-DEC ' B^{\prime}

The μ-DEC ' B ' is for similar uses as μ-DEC ' A ' but has two 16 lead IC sockets as part of the Board.
PRICE © 55 in: 208)

PANEL METERS

Dims: $60 \mathrm{~mm} \times 45 \mathrm{~mm}$.
$50 \mu \mathrm{amp}$. $100 \mu \mathrm{amp}, 500 \mu \mathrm{amp}$. $1 \mathrm{MA}, 5 \mathrm{MA}$,
 25 v dc, 30 v dc, 50 v ac, 300 vac , " S ", " VU ", 50-0-50 $\mathrm{La}, 100-0-100 \mu \mathrm{a}, 500-0-500 \mu \mathrm{a}$.
PRICE 4.13 inc. VAT, PRICE $£ 4.13$ inc. VAT.

POTS" CAPACITORS, BOXES, INST. CASES, DIN PLUGS, RESISTORS, ETC., ALWAYS IN STOCK. POSTAGE AND PACKING 20p EXTRA.
1978 CAT. AVAILABLE JAN. PLEASE SEND 40p.

INHIIIDUS (t)

A EEMICOMDUCTOR POWER HOUBE
 BERKS SL41HE. TELEPHONE WINDSOR (07535) 54525
CALLERS WELCOME MON-8AT AAM-5PN CALLERS WELCOME MON-8AT GAM-5PM. Faial service, on ox stock product, normally 24 hour turn mround. Quality
devices to manufacturers specifications. Barclay Card devices to manufacturers specitications. Barclay card Accosas by post or 8\% VAT to toms marked ${ }^{\circ} 122 \%$ VAT to unmarked items. No minimum order charge tor chegue or postal orders. Government Depts. Schools.
N.M.A. $£ 5 \mathrm{~min}$. order. Free cataiogue sale list. Send SAE. Money beck it not satisfied. (Prices may change.)
1C's
555 DIL 8 Time 723 Regulator
741 DIL 8 pin
741 DLI $14 / \mathrm{TO}$ 741 DIL $14 / \mathrm{TO}$
747 Dual 741 748 DIL 14 pin 748 DLL 8 pin
7805 plastic or 7805 plastic or
7812 or 15 7812 or 15
78013 or 76023 8038 Sig. Gon. AY51224 Clock LM301 DIL 14
LM301 DIL8 LM309K TO3, 5 V LM382 (LM381) LM380/80745
LM3130/CA313 LM3130 MC1310 MPX D NES55 Timer TBA 810 or 820 LEDE E゙ $^{\text {a a }} .2^{\text {n }}$ dia.
Red no clio Red or 2088
Collour CED
Cl NEW BEZit CED Cover
DISPLAYS (Red LED) 0.3" DL704/2 . 3" DL707/2
O. DL747/2 No DP TGS 308 GAS D
390 pF Tuning Ca 390pF Tuning Ca Blospor RS type
DALOPCB PEN SABP $6^{\prime \prime} \times 4^{\circ}$
KKGFERAIC TU PCB otch KIT
VUMETERS

TUNER SALE MW/LW ALM WIT
 MPXDWECODER \&

 BUTTONS ONLYQTEREO 7 W AMP

All price

 210
22.0

The centenary year of recorded sound has now passed; so it seems fitting to mention briefly some of the most important patents relating to sound reproduction which have been granted over the past hundred years. All the patent specifications mentioned can be referred to, free of charge, at the Science Reference Library attached to the Patent Office, just off Chancery Lane in London, during Civil Service working hours. Where possible British rather than foreign specifications have been cited because many of these will also be available for reference in the two dozen public libraries in cities around the UK that hold patents.

INVENTOR

There is a dispute over who should be credited with the invention of the gramophone. One school of thought argues in favour of Frenchman Charles Cros, who, in April, 1877, deposited a sealed packet of documents at the Academy of Sciences, with instructions that it should not be opened until December 1877. The packet described a photo-mechanical process of recording sound on a disc, but it was never put into practice by Cros. Meanwhile, Thomas Alva Edison was working on improvements to the basic telephone and telegraph system.

In July 1877, Edison filed a British Patent (BP 2927/1877) for a scheme to make a permanent record of a telegraph message by making impressions in paper on a disc or cylinder backing. In the same month, Edison patented (BP 2909/1877) a microphone system which enabled the human voice to be transmitted over telegraph wires. The electrical resistance of a point of contact on a diaphragm varied as the diaphragm vibrated, so as to modulate a d.c. current. Although this patent appears to contain details for producing the first gramophone, or phonograph as Edison called it (by teaching how to use the vibrating diaphragm to cut a groove in a cylinder), the filing date for the relevant drawings and description is, in fact, much laterJanuary, 1878. By this time Edison had

Copies of Patents can be obtained from : the Patent Office Sales, St. Mary Cray, Orpington, Kent
already filed what is the master patent
on the Phonograph, USA Patent
200521 .

This patent described a cylinder recording system for the human voice. Its filing date, December 24, 1877, is regarded by many as the birth-date of recorded sound.

LATERAL CUT

In 1887 Emile Berliner patented lateral-cut recording (USA Patent 372786) as the solution to the mass reproduction of recordings, and although Edison had already patented similar suggestions (even in the 1877 Christmas patent), Berliner's claims are regarded as the birth-date of the modern pressed disc record. Interestingly, Berliner's patent refers to a "gramophone", rather than the "phonograph" referred to by Edison.

Two years before Berliner (in 1885) Sumner Tainter had patented the basic

Edison phonograph, Home Model A, American 1898 (Science Musєum Photograph).

concept of magnetic recording. He proposed a disc with a groove cut in its surface to induce electric currents in a coil when tracked by a needle, with the currents transduced into sound by a telephone diaphragm (USA Patent 341287). In 1899 Valdemar Poulsen of Denmark patented (BP 8961/1899) a magnetic recorder designed to function as a phonograph or a telephone answering machine. Poulsen was probably the first man actually to make a reliable magnetic recording, and at the Paris Exposition of 1900 he won the Grand Prix. In the same year, Guglielmo Marconi patented the first tunable wireless system (BP 7777/1900).

VALVE

In 1904 John Ambrose Fleming of University College, London, patented (BP 24850/1904) 'a vacuous vessel having in it two conductors . . . one of them heated" and the diode valve was born. In 1907 Lee de Forest, of New York, patented (BP $1427 / 1908$) a modified "evacuated vessel" which contained an extra electrode to make it a triode. Although de Forest is rightly credited with inventing the audion, as it was then called, it is important to note this valve really only found a valuable use, and fame, when Edwin Howard Armstrong in the USA invented and patented the leedback principle. The relevant patent is USA 1,113,149 which dates back to a notarised document of January, 1913.

It is also interesting to recall that in 1882 Edison had almost patented the valve! His USA patent No. 273,486 related to an early form of electric light bulb and described the phenomenon whereby material gradually disperses from the filament and accumulates on the inside surface of the glass envelope, blackening it and leaving the filament weak. Edison's answer, buried in the patent as an afterthought amongst other suggestions, was to use a second filament in the same envelope electrically connected to one side of the d.c. supply. This attracted or repelled the particles leaving the filament and thus prevented them from reaching the glass. In other words Edison had patented a diode, nearly twenty years before it was invented.

Incidentally, Edison as far back as 1878, had also patented disc and cylinder machines with facilities for electro-magnetic cutting and reproduction (British Patent 1644/1878). Oliver Lodge, of University College, Liverpool, in 1898, was almost certainly the first worker to invent and patent (BP 9712/ 1898) a moving coil microphone or speaker system.

Everything had so far, of course, been in mono, or single channel. In 1920, a Washington inventor, Samuel Waters, filed a patent (USA Patent 1520378) for a two-channel disc reproducer. The object of the exercise was
to improve signal to noise ratio rather than to create true stereo, as was interesting other workers at the same time, especially in the cinema. As early as 1911 Augustus Rosenberg of High Holborn, London, had patented a twochannel optical film recording system (BP 23620/1911). Incidentally, it was in 1925 (in British Patent 258 864) that the word "stereophonic" was used almost certainly for the first time.

STEREO

In 1927, W. Bartlett Jones, of Chicago, patented (USA Patent 1855149) the first binaural, or dummy head, stereo system. And in 1931 Alan Blumlein of EMI patented loudspeaker stereo and the 45 degrees double modulation of a 90 degrees groove, as used today (BP 394 325).
In 1936, Bell Telephone Laboratories filed a patent (USA Patent 2137032) which, buried in amongst its other disclosures, taught how the apparent direction of a sound source could be manipulated by altering volume levels to the loudspeakers-the way in which modern pan-potted recordings are made and stereo balance controls function.
Earlier, in 1929, Arthur Keller of Bell Telephone Laboratories in New York had patented the basis of modern multiplexing (USA Patent 1910254), by describing how two separate channels of sound could be recorded in a single record groove by division into two separate frequency bands.
Modern multi-channel discs of discrete multiplex type (as marketed by JVC for the CD-4 system) find their origin there and in a 1946 invention made by EMI engineer William Livy (BP 612 163). The system relied on a recorded carrier to lock a demodulation oscillator to the rotational speed of the record.
Meanwhile, there was considerable invention in other closely associated areas. As early as 1900 Joseph Poliakoff of Moscow had patented (BP 18046/1900) an optical film recording system using a selenium photo-cell. The idea was taken several stages further by Eugene Lauste of London in 1906 (18057/1906). In 1924, Paul Voigt of London patented (BP 231 972) a feedback circuit for an amplifier to compensate for distortion introduced by the loudspeaker-i.e. motional feedback. In 1933, Maj. Edwin Armstrong of New York, USA, patented the basis of modern f.m. radio (USA Patent 1941069).

F.E.T.

In 1934 in Berlin, Oskar Heil invented a solid-state amplifier of semi-conductive material and patented it in Britain (BP 439 457). Oskar Heil is better known for the air-motion transformer loudspeakers sold today by ESS, but his 1934 invention was the first f.e.t.!
A workable system of video recording

Paul Voigt patent illustration of 1924
was first patented in 1955, by the Ampex Corporation of California (BP 798 927), one of the named inventors being Ray Dolby. BP 1120 541, of 1965, is in the name of Ray Dolby alone, and constitutes the first patent disclosure of the now well known Dolby noise reduction system. Over recent years much audio patenting activity has centred around surround sound or quadraphonics, the first major matrixing patent being that filed in 1969 by Peter Scheiber of New York (BP 1328141 and 1328 142). The current resurgence of interest in surround sound and the lack to-date of any standardisation on an agreed world system, suggests that the next few years will see this trend of interest continuing. Most recently, and in a slightly lighter vein perhaps, the cinema sound development, Sensurround, which enables audiences to be literally shaken in their seats by very low frequency sound waves generated by high power "effects" circuits is patented in USA Pat. No. 3973 839. This lengthy patent and ten sheets of circuit diagrams give very full details of how the effects are generated and handled.

Readers who are particularly interested in the history and development of sound may find the current exhibition of over a hundred instruments from the EMI collection of vintage phonographs and gramophones, at the Science Museum, South Kensington, London, of particular interest.
Included in the display is an example of the gramophone that appears in the famous "dog-and-trumpet" trademark and an instrument that could be folded up and pocketed. The exhibited instruments illustrate developments from 1877 to about 1935 but a further display of posters, record sleeves and photographs covers the full 100 years.
The exhibition is located in gallery 1, and is open daily until April.

Understanding Digital Electronics New teach-yourself courses

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.
The contents of Design of Digital Systems includs:
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mappıng; three-state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and artithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and sychronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it designer, execxutive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

CAMBRIDGE LEARNING ENTERPRISES, Unit 2, Freepost, RIVERMILL LODGE, ST. IVES. HUNTINGDON, CAMBS. PE17 4BR. ENGLAND. TELEPHONE ST. IVES [0480) 67446. PAOPAIETORS: DRAYRIDGE LTD. REG. OFFICE; RJVERMILL LODGE, ST. IVES. Giro Ac. No. 2789159.

REGD. IN ENGLAND NO. 1328762

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show vour vehicle speed and fuel consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

The six volumes of Design of Digital Systems cost only:

And the four volumes of Digital Computer Logic and Electronics cost only:

But if you buy both courses, the total cost is only:

Flow Charts \& Algorithms

The Algorithm Writer's Guide is a practical book on how to write flow charts and algorithms. Nothing is assumed, though the student should have an aptitude for analytical and logical thought. One volume, A5 size, 130 pages.
Contents: construction, content, form, use, layout of algorithms and flow charts.

£2.95

$+45 p$ post and packing by surface mail anywhere in the world. Airmail extra.

GUARANTEE

If you are not entirely satisfied your money will be refunded.

Cambridge Learning Enterprises, Unit 2, Freepost,
Rivermill Lodge, St. Ives, Huntingdon, Cambs, PE17 4BR, England.
Please send me the following books:
.sets Digital Computer Logic \& Electronics E5.50, p \& p included
.sets Design of Digital Systems \&8.00, p \& p included
.........Combined sets e $£ 12.00$, p \& p included
The Algorithm Writer's guide £3.40, p\&p included (PE2)
\qquad
\qquad

I enclose a *cheque/PO payable to Cambridge Learning Enterprises

 for fPlease charge my *Access/Barclaycard/Visa/Eurocard/Mastercharge/ Interbank account number
Signature
delete as appropriate
Telephone orders from credit card holders accepted on 048067446 (ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank.

NW for aleatronis dasign enjinears!

FIX-PRINT JIG for printed circuits

P.C.B.s and other panels
when inserting and soldering components. Can be adjusted to suit work up to 280 mm , rotated to gain access to reverse side and locks in any position. All metal.
Price $£ 10$ inc. VAT. p. \& p. fl .
Write or phone for full details.

S2 Orill Stand

Robust, all metal with omple throat dimen. sions./Adjustable height cantilever with lever actuated feed. Spring return. Will accept both P 1 and P 2 drills.
Price $£ 18.50$ inc. VAT, p. \& p. 106p.

P2 Drill $£ 16.50$ inc. VAT. p. \& p. 8op

$S 1$Drilt Stand

Constructed to take the popular Pl drill and ensure a high degree of accuracy in all types of electrical precision wark.
Price £5.13 inc. VAT. p. \& p. 38p Pl Drill£9.67 inc. VAT. p. \& p. 38p.

Sole UḰ Distributors
PRECISION PETITE LTD

119a HIGH STREET TEDDINGTON MIDDLESEX TW11 8HG TEL: 01-9770878

SINGLE UNITS (1D) $(5 \mathrm{in} \times 2 \mathrm{in} \times 2 \mathrm{iin})$
E2.90 DOZEN
DOUBLE UNITS (2D) ($5 \mathrm{in} \times 4 \frac{\mathrm{i}}{\mathrm{in}} \times 2 \frac{\mathrm{i}}{\mathrm{i}} \mathrm{in}$)
£4.90 DOZEN
TREBLE (3D) $\mathbf{5} 4.90$ for 8
DOUBLE TREBLE 2 drawers, in one outer case (6D2), $\varepsilon 7 \cdot 25$ for 8.
EXTRA LARGE SIZE (6D1) $\mathbf{\varepsilon 6} \cdot \mathbf{2 5}$ for 8
PLUS QUANTITY DISCOUNTS
Orders over £20, less 5\%
Orders over $£ 60$, less $7 \frac{1}{2} \%$
PACKING/POSTAGE/CARRIAGE: Add 75p to all orders under $£ 10$. Orders $£ 10$ and over please add 10% Carriage.

QUOTATIONS FOR LARGER QUANTITIES
All prices correct at time of going to press

FLAIRLINE SUPPLIES

(Dept. PE2)
124 Cricklewood Broadway, London NW2 Tel. 01-450 4844

TV GAMES IN FULL COLOUR AY-3-8500-£6.30.
AY-3-8550- $\mathbf{5 9 . 9 5}$. Black and
White TV games kits: - Standard model 1 11.95. Economy
model £6.95. Colour TV garnes
kits:- Stondard $£ 19.45$.

Economy $£ 14.45$. Colaur Gen-
erator kn adds colour to mest black and white games

NEW COMPONENT SERVICE
Resistors 5% Corbon E12 1S to 10M $\frac{1}{4}$ W $1 \frac{1}{2} p$. IW 3p Preset pots subminiature $0.1 \mathrm{~W} 100 \Omega$ to 4 M 79 9p. Potentic meters iW $4 K 7$ to 2 M 2 log or lin. Single 30 p . Dual 95 Polystyrene capacitors E12 63 V 22 pf to $8200 \mathrm{pf} 3 \frac{1}{2} \mathrm{p}$
Ceramic capacitors 50 V E 22 pf ta 47000 pf 3 p . Ceramic capacitars 50 V EO 22 pf ta 47000 pf 3 p
Polyester copacitors 250 V E6 01 to $.1 \mathrm{mf} 5 \frac{1}{2} \mathrm{p} .15,-22$ 33 mf 7 p .47 mf 11 p . Electrolytics 50 V . 47 , $1,2 \mathrm{mf} 5 \mathrm{p}$. 330 mf 9 p .470 mf . 11 p .1000 mf 18 pf . Zener diodes 400 mw E24 3V3 to $33 \mathrm{~V} 8 \frac{1}{2} \mathrm{p}$.

MAINS TRANSFORMERS
6.0 .6 V 100 mA 94 p. $9.0 .9 \mathrm{~V} 75 \mathrm{~mA} 94 \mathrm{p} .0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V}$ 1A E3.85. 12-0-12V 50 mA 94 p . $0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V} 2 \mathrm{~A}$ £.15. $6.3 V$
$£ 2.39 .12-0.12 \mathrm{~V}$ IA $£ 2.69$. $15-0.15 \mathrm{~V}$ IA $£ 2.89$. $30-0.30 \mathrm{~V} \mid \mathrm{A}$ £2.39.
E 3.59.

PRINTED CIRCUIT MATERIALS
50 sq ins pcb 40p. I lb FeCl $£ 1.05$. Etch resist pens:Economy type 45 p. Dolo type 83 p. Smail drill bit 20 p Lominate cutter 75 p . Etching dish 68 p .

S-DECS AND T-DECS*
S.DeC $£ 2.23$. T. DeC $£ 3.98$. u-DeCA £3.97. U-DeCB£6.67 Cocriers with sockets:-

SINCLAIR CALCULATORS AND DVM*
Cambrige scientific progrommable $£ 13.95$. Prog, tibrory $£ 4.95$. Cambridge scientific $£ 8.45$. Oxford scientific $£ 10.60$, moins odaptors $£ 3.20$. PDM 35 digital multimeter $£ 26.95$. Adoptor f3.20.

BATTERY ELIMINATOR BARGAINS
TV GAMES POWER UNIT
Stobilised $8 \frac{1}{2} \mathrm{~V} 100 \mathrm{~mA}$ £ 3.20
3-WAY MODELS
With switched output and 4-way multijock
Type 1:- $-3 / 4 \frac{1}{2} / 6 \mathrm{~V}$ of $100 \mathrm{~mA} £ 2.60$
Type 2:-6/71/9V 300 mA \& 3.30 .
100 mA RADIO MODELS
With press-stud connectors. oV $£ 3.45$. oV $£ 3.45$. $\mathrm{OV}+9 \mathrm{~V}$ $5.15 .6 V+6 V \in 5.15 .4 \frac{1}{2} V+4 \frac{1}{2} V \in 5.15$

CASSETTE MAINS UNIT
$7 \frac{1}{3} \mathrm{~V}$ with 5 pin din plug 150 mA £ 3.65
FULLY STABILISED MODEL £6.40. Switched output of $3 / 6 / 7 \frac{1}{3} / 9 \mathrm{~V} 400 \mathrm{~mA}$ stobilised
CAR CONVERTORS 12 V INPUT
Output $9 V 300 \mathrm{~mA} £ 1.80$. Output $7 \frac{1}{2} \vee 300 \mathrm{~mA} £ 1.80$.

BATTERY ELIMINATOR KITS
 Send s.o.e. for tree leoflet on ronge

100 mA radio types with press-stud battery terminals. $4 \frac{1}{2} \mathrm{~V} £ 2.10 .6 \mathrm{~V} £ 2.10 .9 \mathrm{~V} £ 2.10 .4 \frac{1}{2} \mathrm{~V}+4 \frac{1}{2} \mathrm{~V} £ 2.50 .6 \mathrm{~V}+6 \mathrm{~V}$
$£ 2.50 .9 \mathrm{~V}+9 \mathrm{E} 2.50$ $2.50 .9 \mathrm{~V}+9 \mathrm{~V} £ 2.50$.
Cossette type $7 \frac{1}{2} \mathrm{~V} 100 \mathrm{~mA}$ with din plug f 2.10
ransistor stabilised 8 -way type for low hum $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{~mA}$ £3.20. 1A £6.40 Heavy duty 13 -way types $4 \frac{1}{2} / 6 / 7 / 8 \frac{1}{1} / 11 / 13 / 14 / 17 / 21 /$ 25/28/34/42V. 1 Amp £4.85. 2 Amp $£ 7.95$
Car Converter kit. Input 12V DC. Output $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ DC
Stabilised power kits. 3.18V
tabilised power kits. 3.78 V 100mA $£ 3.60$. 3.30 V IA

BI-PAK AUDIO MODULES
S450 puner $£ 21.95$. AL 60 £4.86. PA $100 £ 14.95$. MK60 oudio
kit $£ 36.45$. Stereo $30 £ 17.95$. SPM80 $£ 3.75$, BMT80 $£ 5.95$
Send s.o.e. for free dato
JC12, JC20, JC40 AMPLIFIERS
JC12 6W IC oudio
mp with free dato
ond printed
Also new JC40 20W
model with pcb
£3.95. Sensationol now JC20, 10 W integrated circuit amp with peb $£ 2.95$. Send s.a.e. for free leaflet on all 3 models and wish piated power supply and pre-omp kits
oss

FERRANTI ZN4 14

C radio chip $£ 1.44$. Extra parts and pcb for radia $£ 3.85$
Case f1. Send s.o.e. far tree dato

SWANLEY ELECTRONICS

Dept. PE, PO Box 68, 32 Goldsel Rd., Swanley, Kent Post 30p. Prices include VAT. Officiol orders welcome. Over eas customers deduct 7% on items marked *and 11% on others.

G. LOVEDAY

Fault Finding on Systems

THE first part of this series dealt with faults caused in an electronic circuit by one component failure. It was shown that when a component fails; goes open or short circuit, then a certain set of symptoms result, and by using these symptoms it is possible to pinpoint the faulty component. The symptoms are any changes in the circuit operation, such as low output signal with distortion, and changes in the d.c bias voltages. However, when it comes to fault finding on a complete electronic instrument, or system, the situation is made more difficult because of the size and complexity of the system. One component failure will often cause the whole system to fail, but the total number of components may number several hundred. Since time, in the service situation, is of prime importance, it's not acceptable to sit down and methodically measure every voltage and waveform until the faulty component is found. Another technique must be used.

Luckily nearly all electronic instruments can be divided up into several functioning circuit blocks and the quickest way to find the faulty component is by measuring to first of all locate which portion or block of the system has failed, then to work on that block to find the actual component.

THE BLOCK DIAGRAM

This is a really valuable aid in servicing and in helping to understand the operation of a complex piece of equipment. For example, let's look at the block diagram of a basic r.f. signal generator shown in Fig. 2.1. It is made up of six blocks, each of these performing a separate circuit function.

A variable r.f. oscillator feeds a sine wave signal to an amplifier and the output of this amplifier can either be amplitude modulated at 400 Hz or constant wave (c.w.) depending upon the setting of the switch.

Since these are two output signals and two possible output conditions for the r.f. output, we can use the states of the outputs as symptoms to fault find the generator. If, for example, there were no outputs at all the fault would most probably lie in the power supply, since it would be unlikely (although possible) that both oscillators had failed. Suppose, however, that the r.f. output was correct in both the modulation and c.w. switch positions but no a.f. output could be obtained. The fault lies in the a.f. attenuator or its connections. These examples show the sort of logical approach

Fig. 2.1. Block diagram of r.f. generator
that's required. The various methods for system fault finding will be shown later in this article. What would be the symptoms for (a) an a.f. oscillator failure or (b) a modulator failure.

INTERPRETING IT

Now let's look at the way in which a block diagram can help in understanding how a unit operates. A switched mode power unit has a full circuit diagram that can look rather forbidding, but when it is drawn out in block form (Fig. 2.2) the operation can be more clearly understood and fault diagnosis is made much easier. Switch power supplies are used in relatively high power applications (e.g. 5 volts at 20 amps) because they have high efficiency, low heat loss and therefore use up less space than a conventional stabilised power unit. The mains voltage is itself rectified and smoothed giving about 340 volts d.c. This voltage is switched at a frequency above audio, usually 20 kHz , by high voltage transistors to provide an alternating waveform to the transformer primary.

Since a fairly high frequency is used the transformer need not be so bulky as a 50 Hz type. The a.c. voltage at the secondary is rectified and smoothed to give a d.c. voltage across the load. The output is stabilised by comparing it with a reference supply (usually a Zener) and using the different signal to alter the duty cycle of the switching signal to the transistors. If the d.c. output should fall when the load is increased the comparator gives a signal to the pulse width modulator that switches the transistors on for a longer time than they are off during the 20 kHz switching period. This provides more power via the transformer to the load and the output voltage rises. The opposite occurs if the load current is reduced.

METHODS FOR SYSTEM FAULT FINDING

One of the first jobs when fault finding on a system is to accurately define the fault. To do this a functional check must be made and the exact symptoms noted. This usually entails making measurements and comparing the performance with the actual specification. In a service department
the engineer would need the up-to-date figures for the performance specification plus the circuits and service manuals and also the necessary test gear. In any project work we should follow the same procedure.

At this stage, depending on the symptoms, it is wise to check that the power supply rails are at their correct voltage levels before proceeding to make measurements to narrow down the search for the faulty component to one part of the block diagram.

It's possible of course to use a completely random approach to find which block is faulty, checking the circuits in any order, but usually a systematic logical approach yields the quickest results. The three methods are called:
(1) Input to output (or beginning to end)
(2) Output to input (or end to beginning)
(3) Half-split.

Here we are considering actual measurements, but don't forget that a visual inspection for broken wires, dry joints, burnt components, damaged copper track, etc., can also be worthwhile. This is especially the case when a system that you have just assembled refuses to function at all.

METHODS ANALYSED

The first two methods listed above are fairly obvious and most of us used input to output checking before we knew that somebody had given it a name! A suitable input signal (if required) is injected into the first block and then measurements are made sequentially at the output of each block in turn until the faulty block is located. Output to input is the reverse; leaving the input to block (1) measurements are made from output block towards the input. This presupposes that the units are all in series, but this is rarely the case. The s.m.p.u. for example cannot be fully checked using a straightforward sequence of tests. Suppose the unit fails with the symptom of zero output. The fault could be in almost any block. One sequence of checks to find that fault could be the following:
(a) Measure d.c. voltage from mains rectifier block (1) (b) Measure output of 20 kHz oscillator block (2)

Fig. 2.2. Block diagram of switched mode power unit

Fig. 2.3. Frequency divider chain

By doing these checks first we verify the two primary conditions for an output across the load. Assuming both these blocks are functioning correotly we can then use output to input by measuring (4), (3), (2) and then (5), (6), (7), (8) or input to output measuring from (8), (7), (6), (5), (2), (3), (4). Either method is satisfactory, but the first is probably the best as it checks early on through the circuits that probably have the highest failure rate (namely the switching transistors). Using this criterion the sequence of test could be (1), (9), then (2), (3), (4), and finally (5), (6), (7), (8). The important thing to realise is that the tests ought to follow some logical sequence.
Imagine now a fault with the symptoms of high unstabilised output voltage. From this we can conclude that blocks (1), (2), (3), (4) and (9) are all operating. The fault is somewhere in blocks (5), (6), (7), (8). Here a good start would be to measure the output of (8) since an open circuit reference supply would give these particular symptoms.

HALF-SPLIT METHOD

The half-split method for system fault location is really useful when the instrument or system is made up of a large number of blocks in series. A good example is fault finding on the frequency divider chain of a digital frequency meter (Fig. 2.3). Here the frequency of a 1 MHz crystal oscillator is divided down by decade counters to give the required timing pulses. Since eight blocks are used it is possible to divide the unit into two equal parts, test to decide
which half is working correctly, then split the non-working section into half again to locate the fault. Let's assume that block (6) has failed; the sequence of tests would be as follows:

1. Split whole unit into half by measuring output from block (4). This will be alright showing that the fault lies somewhere in blocks (5) to (8).
2. Split blocks (5) to (8) in thalf checking output of block (6). There will be no output.
3. Check output of block (5). This will be all right proving that the fault is in block (6).
Now try the method for yourself by assuming that block (3) or block (8) has failed, and you will find that the number of checks necessary to locate the fault is always three. On average more tests would be required using any other method. Unfortunately many instruments are not made up of many blocks in series. More often than not a system has feed back loops that are necessary for operation and which cannot be split. Also convergence, where two inputs are required to make a circuit block operate correctly, and divergence, where an output from a block feeds two or more other blocks are quite common. These situations complicate the use of the half split. When fault finding try and use the method, or a combination of methods that will locate the faulty block in the shortest possible time. This isn't always achieved with the minimum number of test measurements. A common sense logical approach to the problem is the basic requirement.

Fig. 2.4. Block diagram of temperature controller

TEMPERATURE CONTROLLER FAULT DIAGNOSIS

As a final exercise we are going to look at the block diagram of an oven temperature controller. This is a nice series type of circuit but with the added complication of feedback from the temperature sensor. The unit uses burst cycle firing of a triac to control the power dissipated in a heating element. With this type of control, power is applied for a few cycles of the mains at a time, say 40 out of 50 cycles when the temperature is lower than required, reducing to maybe 5 out of 50 cycles when the oven temperature has stabilised. A zero voltage switch ensures that the triac is only pulsed on when the mains voltage is near zero thus eliminating the generation of r.f. interference.

The operation is fairly straightforward. A clock generator gives pulses via a shaping circuit of 1 Hz to a ramp generator. This ramp is compared with the d.c. level from the temperature sensor. When the temperature inside the oven is lower than required this d.c. level is also low so the output of the comparator is high. The ramp goes from a positive voltage towards zero. While the ramp voltage exceeds the d.c. voltage from the sensor the output is high. This level is amplified and then applied via an opto-coupler to the zero voltage switch. The opto-coupler ensures that the mains side of the system is isolated from the low voltage portion. While the comparator output is high the zero voltage switch delivers pulses to gate on the triac and so power is applied to the heater. As the temperature in the oven rises so does the d.c. voltage from the temperature sensor and this means that the comparator output is high for a shorter time during the 1 second clock period.

A FEW QUESTIONS

The feedback could complicate fault diagnosis but since
all the rest of the circuit blocks are in series it is possible to use any of the methods described. We just have to ensure that a reasonable d.c. level is present on the inverting terminal (-) of the comparator. Assuming that the temperature sensor is o.k. a meter could be used to monitor this d.c. voltage or alternatively the feedback line could be broken and an adjustable d.c. voltage applied in its place.

If you are still with it, try your hand at answering a few questions:
(1) Which fault finding method should theoretically get the quickest results?
(2) What would be symptoms for the following faults?
(a) Short circuit triac.
(b) Temperature sensor open circuit.
(c) No output from 1 Hz unit.
(d) Ramp output failed with output permanently low.
(e) Ramp failed with reduced amplitude (lower starting voltage).

ANSWERS

(1) Half split.
(2) (a) Oven overheating, no control. Few pulses at the output of the zero voltage switch.
(b) Oven overheating, no control. Many pulses at the output of the zero voltage switch.
(c) Ramp output will remain at $+V$ therefore full power will be applied to the load. Many pulses at the output of the zero voltage switch.
(d) No heating. Low d.c. level from temperature sensor. Output of comparator remaining low however. (e) Slow response to changes in temperature control.

Next month: Fault diagnosis of thyristor and triac circuits.

MODERN ELECTRONICS MADE SIMPLE By G. H. Olsen

Published by W. H. Allen \& Co Ltd
306 pages, $130 \times 215 \mathrm{~mm}$. Price £1.75

THIS book is good value indeed! It covers a wide variety of fields, and would serve as an excellent reference to have around for those whose memories occasionally require refreshment (most of us), or for the student of " A " Levels or an ONC Course, or C\&G, at college.
The author has gauged the contents so that no prior knowledge of electronics is needed, other than basic electricity, and each new device covered is explained in terms of its physics before commencing with applications and design theory. The explanations are fairly thorough; for instance, the chapter entitled "Power Supplies" starts with batteries and their very chemical structure. Questions are posed at the end of each chapter, which you should be able to answer correctly before advancing to the next section.

The final chapter, "Projects", gives a number of circuits to play around with-just to satisfy yourself that what you've learned really works! These are by no means constructional projects in the sense that P.E. presents them, but if reading is the way to learn, then this is the way to remember.

My only criticism would be against the title, in that it's not so much a case of Modern Electronics Made Simple as just modern electronics set out clearly; but perhaps this is a trivial point since clarity is half the battle.
M.A.

TV TECHNICIAN'S BENCH MANUAL

By G. R. Wilding

Published by Argus Books Ltd.

217 pages, $143 \times 224 \mathrm{~mm}$. Price $£ 4.50$
${ }^{\mathrm{T}}$ Is the objective of this hardback, to present in a handy form adequate information for the service technician or enthusiastic amateur to locate television receiver faults of all kinds, fairly promptly.

Each chapter gives a brief run-down of all important aspects of the receiver section it covers, followed by the recommended servicing procedure to break down the most likely cause of trouble in order of probability.

Circuit diagrams for specific television receivers are present throughout, extracted from various manufacturers, but not too many circuit diagrams from Japanese sets are given.
There are 13 chapters, covering just about all the aspects of television receivers, and the last four chapters form a section devoted to colour.
This book gives fairly thorough coverage of its subject, but assumes a certain amount of prior knowledge, and therefore is not suitable for anyone seeking to understand television for the first time. As the name suggests, it is for the technician who already understands the overall functioning of a television, but perhaps needs a reference source for the more subtle variations he may encounter with different sets, and the appropriate servicing routines.
M.A.

15-240 WATTS!
 Preamplifier
 The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner, etc.) are catered for. internally, the desired function is achieved either by a multi-way switch or direct connection to the appropiate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.
 FEATURES: complete pre-amplifier in single pack: multi-function equalisation. low noise: low distortion; high overload: two simply combined for stereo.
 APPLICATIONS: hi-fi: mixers: disco: guitar and organ; public address.
 SPECIFICATION: Inputs-magnetic pick-up 3 mV : ceramic pick-up 30 mV , tuner 100 mV : microphone 10 mV . auxiliary $3-100 \mathrm{mV}$. input impedance $47 \mathrm{k} \Omega$ at 1 kHz . Outputs-tape 100 mV . main output 500 mV R.M.S. Active Tone Controls-treble $\pm 12 \mathrm{~dB}$ at 10 kHz ; bass $\pm 12 \mathrm{~dB}$ at 100 Hz . Distortion -0.1% at 1 kHz : signal/noise ratio 68 dB . Overload- 38 dB on magnetic pick-up. Supply Voltage- $\pm 16-50 \mathrm{~V}$.
 Price $\mathbf{6 5} \cdot \mathbf{2 2}+65$ VAT. P. \& P. free

HY5

HY5 mounting board 8.1. $48 \mathrm{p}+6 \mathrm{p}$ VAT. P. \& P. free

15 W into 8Ω
The HY30 is an exciting New kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of: I.C., heatsink, P.C. board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up to date technology available.
FEATURES: complete kit. low distortion; short. open and thermal protection, easy to build APPLICATIONS: updating audio equipment: guitar practice amplifier; test amplitier: audio oscillator. SPECIFICATION: Output Power-15W R.M.S. into 8Ω. Distortion- 0.1% at 15 W . Input Sensitivity500 mV . Frequency Response-10 $\mathrm{Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
Price $55 \cdot 22+65 p$ VAT. P. \& P. free
The HY50 leads I.L.P.s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World. FEATURES: low distortion; integral neatsink. only five connections. 7 amp output transistors: no external components.
APPLICATIONS: medium power hi-fi systems. Iow power disco: guitar amplifier.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power- 25 W R.M.S. into 8Ω. Load Impedance${ }^{4-16 \Omega}$. Distortion-0 04% at 25 W at 1 kHz . Signal/ Noise Ratio- 75 dB . Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage- $\pm 25 \mathrm{~V}$. Size- $105 \times 50 \times 25 \mathrm{~mm}$.
Price $\mathbf{5 6} \mathbf{8 2}+85$ p VAT. P. \& P. free
The HY120 is the baby of I.L.P. s new high power range, designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: very low distortion, integral heatsink. load line protection. thermal protection, five connections: no external components.
APPLICATIONS: hi-fi; high quality disco, public address. monitor amplifier. guitar and organ.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power- -60 W R.M.S. into 8 n . Load Impedance-$4-16 \Omega$. Distortion- 0.04% at 60 W at 1 kHz . Signal/Noise Ratio- 90 dB . Frequency Response-10Hz$45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage $- \pm 35 \mathrm{~V}$ Size- $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 15 \cdot 84+£ 1 \cdot 27$ VAT. P. \& P. free
The HY200 (now improved to give an output of 120 watts) has been designed to stand the most rugged conditions such as disco or group while still retaining true hi-fi performance.
FEATURES: thermal shutdown, very low distortion: load line protection. integral heatsink. no external components.
APPLICATIONS: hi-fi disco. monitor: power slave. industrial. public address.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power- 120 W R.M.S. into 8Ω. Load Impedance-$4-16 \Omega$. Distortion- 0.05% at 100 W at 1 kHz . Signal/ Noise Ratio- $96 d \mathrm{~B}$ Frequency Response- 10 Hz $45 \mathrm{kHz}-3 d \mathrm{~B}$. Supply Voltage $\pm 45 \mathrm{~V}$. Size $-114 \times 50 \times 85 \mathrm{~mm}$.
Price $\mathbf{5 2 3} \cdot \mathbf{3 2}+$ £1. 87 VAT. P. \& P. free
The HY400 is I.L.P.s Big Daddy of the range producing 240 W into $4 \Omega^{\prime}$ it has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: thermat shutdown. very low dietortion: load line protection, no external components APPLICATIONS: public address. disco. power slave. industrial.
SPECIFICATION: Output Power-240W R.M.S. into 4Ω Load Impedance-4-16 Ω. Distortion-0.1\% at 240 W at 1 kHz . Signal/Noise Ratio- 94 dB . Frequency Response- $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Vottage

Price $£ 32 \cdot 17+£ 2 \cdot 75$ VAT. P. \& P. free
POWER SUPPLIE8: PSU36-suitable for two HY30s $\mathbf{5 5} \cdot \mathbf{2 2}+65 \mathrm{p}$ VAT. P. \& P. free. P8U50-suitable for two HY50s $\mathbf{5 6} \cdot \mathbf{8 2}+$ 85 VAT. P. \& P. free. Psu7o-suitable for two HY120s $813.75+1.10$ VAT. P. \& P. free. PSUso-suitable for one HY200 £ $12.65+£ 1 \cdot 01$ VAT. P. \& P. free. Psu100-suitable for two HY200s or one HY400 $\mathbf{£ 2 3 \cdot 1 0}+£ 1 \cdot 85$ VAT. P. \& P. free. 1.L.P. Electronićs Lid., Crossland House, Nackington, Canterbury, Kent CT4 7AD

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd.

Crossland House, Nackington, Canterbury Kent CT4 7AD
Tel (0227) 63218

Please supply
Total Purchase price
1 Enclose: Cheque Postal Orders \square Money Order \square Please debit my Access account \square Barclaycard account \square
Account number.
Name and Address

MINI CONSOLES Ideal for small desk control panels and consoles. Moulded in orange, blue, black and grey ABS. Incorporates slots for holding 1.5 mm thick pcb's Aluminium panel sits recessed into front of console and held by screws running into integral brass bushes. MC $161 \times 96 \times 58 \mathrm{~mm} \quad £ 1.53(1.9) \quad £ 1.50 \quad(10+)$ MC $215 \times 130 \times 75 \mathrm{~mm}$ £2.20 (1-9) £2.17 ($10+$) Add $25 p$ per $£ 1$ order value for Post \& Packing	Stop wasting time soldering The NEW MW BREAOBOARO accepts Transistors, LED's, Diodes, Resistors, Capacitors and all DIL packages with 6 to 40 pins	SC 80XES (square corners) Easily drilled or punched, orange, blue, black and grey ABS. Incorporate slots for holding 1.5 mm thick peb's. Aluminium panel sits recessed into front of the box and held by screws running into integral brass bushes. SC $85 \times 56 \times 35 \mathrm{~mm} \quad 80 \mathrm{p}(1.9) \quad 77 \mathrm{p}(10+1$ SC $111 \times 71 \times 48 \mathrm{~mm} \quad$ £ $1.07 \quad(1.9) \quad$ £ $1.04 \quad(10+1)$ $\mathrm{SC} 161 \times 96 \times 59 \mathrm{~mm} \quad \mathrm{E} 1.49 \quad(1.9) \quad \mathrm{£} 1.46 \quad(10+1)$ Add $25 p$ per $£ 1$ order value for Post \& Packing
ECONOMY QUALITY LEO's 50 for only $£ 5-100$ for only $£ 9$ Mixed bags, all sizes, various colours	Includes slot-in Component Support Bracket and has over 400 individual sockets, plus Vcc and Ground Bus Strips Price $£ 9.72$ (includes VAT \& P.P.)	
FULL SPECIFICATION LEO's Red (specify size) 75 p per pack Green, Yellow, Orange (specify size) $£ 1.20$ per pack (Each pack contains 5 LED's, Mounting Clips and Datak	TYPE MP NEON INOICATOR Supplied with resistor for 240 Volts operation 150 mm leads, held in 6.4 mm hole by nut Red, Amber, Clear, Opal	Supplied with 3 collets that accept tools and drills with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ and $1 / 8^{\prime \prime}$ dia shanks. £9.72 (inctudes VAT \& P.P.) Accessory tools... 5 Burrs, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 1 / 8 \mathrm{th}$ Drills, 3/32" Collet Price £ 1.75 (Includes VAT \& P.P.)
TYPE A NEON INOICATORS	SEVEN SEGMENT OISPLAYS Economy Quality Common Anode - 0.3" - Left Decimal Red, Yellow and Green @ 45p each Full Specification Common Anode - 0.3" - Left Decimal Red @ 98p each Green and Yellow @ $£ 1.35$ each (Data supplied with Full Spec. displays only)	RC 80XES (round corners) Easily drilled or punched, orange, blue, black and grey ABS. Incorporate slots for holding 1.5 mm thick peb's. Close fitting flanged lids held by screws running into integral brass bushes.
12 VOLTS MINI HAND DRILL Ideal for drilling pcb, chassis etc as well as model making. Supplied with 2 collets that accept tools and drills with $3 / 32^{\prime \prime}$ and .050" dia. shanks. E7.56 (Includes VAT \& P.P.)	Quantity quotations on request P.P. Note Unless included in price add 25p Post \& Packing for orders totalling under $£ 10$. All prices include VAT and are valid in UK only for 2 months from journal issue date Mithael Williams Electronits 47 Vicarage Av. Cheadle Hulme, Cheshire SK8 7JP	$R C 100 \times 50 \times 25 \mathrm{~mm}$ $51 \mathrm{p}(1.9)$ $49 \mathrm{p}(10+)$ $R C 112 \times 62 \times 31 \mathrm{~mm}$ $59 \mathrm{p}(1.9)$ $52 \mathrm{p}(10+)$ $R C 120 \times 65 \times 40 \mathrm{~mm}$ $68 \mathrm{p}(1.9)$ $62 \mathrm{p}(10+)$ $R C 150 \times 80 \times 50 \mathrm{~mm}$ $77 \mathrm{p}(1.9)$ $74 \mathrm{p}(10+)$ $R C 190 \times 110 \times 60 \mathrm{~mm}$ $£ 1.33(1.9)$ $£ 1.30(10+)$ Polystyrene version in grey only with no slots, no integral brass bushes $R C(P) 112 \times 61 \times 31 \mathrm{~mm} \quad 35 \mathrm{p}(1-9) \quad 32 \mathrm{p}(10+)$ Add 25 p per $£ 1$ order value for Post \& Packing

SEMICONDUCTOR OFFERS ALI FUIL SPEC

BC212, BC182, BC237, BF 197 , BC159, ALL 8 p each. RCA 2015 TO3 POWER TRANSISTOR (SIM TO 2 N3055) 35p. ACY18 18 p . BF 200 20p. MOTOROLA MRD 3051 PHOTO TRANSISTORS 35p. N. CHANNEL F.ET.T.S SIMILAR TO 2 N 3819 18p. MOSFET SIM. TO 40673 35p. 3 N140 MOSFETS 50p. M203 DUAL MATCHED PAIRS MOSFETS SINGLE GATE PER F.E.T. 40p. SL301 DUAL MATCHED PAIR SIL. N.P.N. POWER TRANSISTORS FT 300 MH I 30 p. INTEL 1024 BIT MOS RAMS 95 P. MULLARD BB113 TRIPLE VARICAP DIODE 35p. MC1310 STEREO DECODER I.C. E1. 20 TBA800 I.C. AMPS 90 p . CD 4051 CMOS 50 p. MCI 303 N ST PREAMP I.C. E1.30. 7418 PIN D.I.L. 23 P. MM5316 CLOCK CHIPS E3.50. 400 V 15 omp SIUD S.C.R. 75 P .500 v 600 mA BRIDGE RECS, (EX. EQUIP.) 25p. IN4002 100v IA DIODES 4 p. 14005 BOOV $1 A$ DIODES 7 p . 200 volt 5 amp SIL. BRIDGES EX. EQUIP., 40 p. CV7556 200 v 150 amp STUD RECS. E1.25. E.H.T. SIL. REC. ISKV $2.5 \mathrm{~mA}, 15 \mathrm{~mm} \times 5 \mathrm{~mm}$ 85p. 7812 2V IA PLASTIC V. REGS. 95p. MIN. NIXIES ITT 5870ST $13 \times 6 \mathrm{~mm}$ FIG SIZE 85p. NIXIES ITT GN/9A $13 \times$ ${ }^{8} \mathrm{~mm}$ 65p. $0.2^{\prime \prime}$ OR 0.125" RED LEDS 12 p each. MAN3A 3 mm LED DISPLAYS 50 p .
CATH DISPIAYS 950
MICROPHONES-GRUNDIG ELECTRET INSERTS WITH BUIIT IN F.E.T. PREAMP E1.50. CRYSTAL MIKE INSERTS 37 mm SOp. ELECTRET CONDENSER MIKES IKA IMP. WITH 37 mm SOp. ELECTRET CONDENSER MIKES NK MP. WIIH
STD JACK PLUG E2.85. CASSETE CONDENSER MIKES WITH 2.5 AND 3.5 JACK PLUGS $£ 2.85$. STANDARD CASSETE MIKES 200 OHM MPED. WITH 2.5 AND 3.5 JACK PLUGS EI.20. P.A. MIKES MOBIEE TPPE SOKQ, THUMB SWITCH E4.20.
MORSE KEYS PLASTIC TYPE 95 p . HI-SPEED TYPE ALL METAL $£ 2.25$. HI-IMP. PHONES $2 K$ K E1.65. AERIAL COAX SWITCH 3 POSITION, 3 OUTPUTS, O.30MHz, 150 wath MAX. USES SO239 SOCKETS E4.95. LOW PASS IN-LINE FILTERS, 30 MHZ CUT OFF, 50 OHM IMP. £ 3.30 . S.W.R. METER, 50 OHMS IMP. WITH POWER SCAIE E10.50. XTAL MARKER GEN. 300 KHz STEPS TO 60 MHz , SUPPLIED WITH XTAL FOR THIS COVERAGE 57.90
CRYSTALS 300KHz HC 6 U 40 . 4.43 MHz C.T.V. XTALS 45p. $0.1^{\prime \prime}$ EDGE CONNECTORS 64 Way 65 p. 32 Way 40 p. RELAYS-MIN. SEALED RELAYS ALL 4 POLE CHANGEOVER 36Ω ($6 v$ DC) $45 \mathrm{p} .700 \Omega$ (24v DC) 55p. MIN. 220 V AC 3 POLE RELA 2 M CONACIS. I PIN BASE BOL RELA 3 POLE C/O 5 AMP CONTACIS 11 PIN BASE BOp. 12 VOLT 4 POLE N.O. REED RELAY 20 p .
MOTORS- 1.5 TO OV DC MODEL 20p. 115 v AC MIN. 3 R.P.M. WITH GEARBOX 30p. $240 v$ AC SYNCH. MOTOR 65p.
BOXES-BLACK A.B.S. PLASTIC WITH BRASS INSERTS AND LID, $75 \times 56 \times 35 \mathrm{~mm} 40 \mathrm{p} .95 \times 71 \times 35 \mathrm{~mm} 49 \mathrm{p} .15 \times 95 \times$ $36,75 \times 56 \times 35 \mathrm{~mm}$ 4Op. $95 \times 1 \mathrm{p}$. GREY POITING BOXES WITH LUGS. $23 \times 48 \times$ $23 \mathrm{~mm} 11 \mathrm{p} .38 \times 52 \times 25 \mathrm{~mm} 13 \mathrm{p} .00 \times 80 \times 42 \mathrm{~mm} 28 \mathrm{p}$.

TRANSFORMERS $-6.0 .6 \mathrm{~V} 100 \mathrm{~mA}, 9.0-9 \mathrm{~V} 75 \mathrm{~mA}, 12-0.12 \mathrm{v}$ 50 mA 75 p each. $12-0-12 \mathrm{~V} 100 \mathrm{~mA} 95 \mathrm{p}$. 12 V 500 mA 95 p . RECTIFIED $E 1.95+35 \mathrm{PP} \& P .25 \mathrm{v} 2 \mathrm{amp}$ E1.75p $+35 \mathrm{P} P$ \& P. $0.12-15 \cdot 20.24-30 \mathrm{v}$ p omp $£ 3.25+35 \mathrm{p} \& \& \mathrm{P}$ (2 amp VERSION $£ 4.45+35 p P \& P$). $30-0-30 \mathrm{~V} 1 \mathrm{~A} £ 3.00+35 \mathrm{p} P$ \& P. $25-0.25 \mathrm{~V}$ 2A $\mathrm{f} 3.95+35 \mathrm{p} P$ \& P .100 volt LINE TRANSFORMER 15 watts MAX -0 - -15Ω E1. $80+35 \mathrm{p}$ P \& P. $1: 1$ TRIAC XENON PULSE TRANSFORMER 30 p . 6 MH 3 omp CHOKES 30 p .
SWITCHES-MIN. TOGGLE, SPST $12 \times 6 \times 9 \mathrm{~mm} 54$ p. D.PDT $12 \times 11 \times 9 \mathrm{~mm} 60 \mathrm{p}$. DPDI CENTRE OFF $12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}$. 4 ZP 2 W SLIDERS 20 p . $6 P 3 W$ SIIDERS 30 p . DPDT C/O SLIDERS 20p. SPST 10 amp ROCKERS 12 p . R.S. SINGIE POLE C/O PUSH-BUTITONS 45 P . ROILER MICRO SWITCHES 15 P . MIN. MICRO SWITCHES $13 \times 10 \times 4 \mathrm{~mm} 20 \mathrm{P}$. G.P.O. KEYSWITCH ASSY. 3 SWITCHES 2.3 WAY, 1.2 WAY MUITIPOLE 35p. MIN. PUSH TO MAKE OR PUSH TO BREAK SWITCHES $16 \times 6 \mathrm{~mm}$ 15p. PLESSEY WINKLER STUD SWICHES 2 BANK, I POLE 30 WAY ADJ. STOP 75p. DE-SOLDERING TOOLS, PLUNGER TYPE £4.95.
TAPE HEADS - JAP. CASSETTE MONO 90 . CASSETTE REC/PLAYBACK 50 . BSR SRP9O + TRACK SIEREO REC/PLAYBACK E1.95. TD 10 ASSEMBLIES TWO HEADS TRACK REC/PLAYBACK SIAGGERED STEREO WITH BUIIT IN ERASE PER HEAD E1.20. TAPE HEAD DEMAG 240v AC f1.95.
BUZZERS-GPO TYPE 6 - $12 v 30 \mathrm{p}$. 6-12v HOOTERS 50p. MIN. SOLD STATE BUZZERS $6 \cdot 9.12$ OR $24 V 15 M A$ 75p.
U.H.F. IV. TRANSISTORISED PUSH BUTTON TUNERS U.H.F. T.V. TRANSISTORISED PUSH BUTTON TUNERS (NOT VARICAP), NEW AND BOXED $£ 2.50$.
POT CORES ADI. VINKOR 250-370 MICRO H 20p. 2500° OR 500 MILLI HENRY CORES 10 p edch.
ME TERS- $100-0-100 \mu$ a LEVEL METERS 75p. STEREO TUNING METERS 100μ O PER MOVEMENT £2.75. GRUNDIG BATT. LEVEL METER $1 \mathrm{~mA} 10 \times 40 \mathrm{~mm}$ E1.10. MIN. LEVEL METER $200 \mu \mathrm{a} 25 \times 15 \mathrm{~mm} 75 \mathrm{p}$. FERRANTI ImA PANEL METER $55 \times 70 \mathrm{~mm}$ £2.95. FERRANTI PANEL METER $100 \mu \mathrm{HO} 55 \times$ 70 mm £3.50. FERRANTI 600 V A C METER E3.95.
BOARDS-G.P.O. BOARD WITH O4, BC 107 TYPE RRANSISTORS, 2 REED, 1 MERCURY RELAY EIC. E2.00. + $55 P$ P \& P. SINGLE STAGE STEREO PRE-AMP BOARDS MAX I/P 700 MN (HI-Z) GAIN 26 DB 40 p . 465 KHz I.F. PANELS. 6 E2.40. BOARD WITH OV C/O REED RELAY E1. 20.
AEROSOLS-SERVISOL SWITCH CLEANER + LUBRICANT AEROSOLS-SERVISOL SWITCH CLEANER + LUBRICANT
Bozs 55 F . FREEZER GOZS 50p. GEAR CLEANER \& TAR Bozs 55p. FREEZER
REMOVER 14035 85p.
 POSTAGE 30p UNLESS OTHERWISE SHOWN (EXCESS POSTAGE REFUNDED WITH ORDER). OVERSEAS POST AT COST. VAT INCIUDED IN ALL PRICES.
'COMPUTER CHESS CHALLENGER'

- IT'S YOU AGAINST THE COMPUTER (IN YOUR OWN HOME!)
A Microcomputer, programmed to challenge you at one of THREE levels to match and improve your game. With this unique game, there is no need to find an opponent! You simply enter your moves, then 5.40 seconds later, after analysing the new position, the computer will respond!
This amazing microprocessor computer is supplied complete with Chessmen, comprehensive instructions, and mains adaptor; and is fully guaranteed. You can now play chess when you are ready, day or night, without the bother of finding a chess partner.
The 'COMPUTER CHESS CHALLENGER' has many other features to intrigue and excite the chess enthusiast, whether young or old, including: Castling and en passant, position verification by computer memory recall. You can even set up chess problems on the board!
Available by mail order post free. Price: $\mathbf{1 1 8 5 . 0 0 \text { (SINGLE }}$ level model available at $£ 135.00$)
Write or telephone now for full colour literature and data sheets.
COMPUTER BACKGAMMON GAME NOW AVAILABLE - Write or 'phone for full details.

Sinclair Microvision Pocket Television - Write or 'phone for full details.
We offer SEIKO watches at discount prices - SAE.
We accept company purchase orders by telephone. Scientific calculators - all brands - supplied at discount prices - SAE.

GEMINI ELECTRONICS
3 Branksome Avenue, Prestwich. Manchester M25 5AG.
Tel: 061-7734467.
EXPORT ORDERS WELCOME
A. MARSHALL (LONDON) LTD. DEPT. P.E.
LONDON $-40-42$ Cricklowood Broadway NW2 $3 E T$ LONDON-325 Edgware Rd W2. Tel: $01-7234242 / 3$ GLASGOW-85 West Regent Street G2 2OD
BRISTOL-1 Siraits Parade, Fishponds Rd BS16 2LX
CATALOGUE NEvy EOMLETE BUYERS GUIOE TO ELECTRONICS COMPONENTS
PRICE 35p POST PAID. 25 p FOR CALLERS

TOP 400 SEMICONDUCTORS FROM THE LARGEST RANGE IN THE U.K

EXPRESS M.O. SERVICE BY RETURN POST-aIl
lved despatched same day on stock items
orders

. $35 \mid 2 N 37$

GE IN THE U.K.
Flease add VAT to your order. P \& P 400

MICROPROCESSOR COMPONENTS

FEPRED

CLOCK MODULE DIGITAL
Built and rested-aquires only ${ }^{\text {gwitches an }}$
transtormer to complete .12 or 24 hr alarth

MA 1002F 12 hr Sin displey.

CAR CLOCK MODULE

"What is a microprocessor?"-a complete teach yourself course with cassettes + brochure £ 9.95 incl. VAT \& P. \& P

NEW SC/MP RETROFIT KIT

Now available from stock this new SC/MP/11 Retrofit, which enables existing SC/MP Intro Kit users to evaluate the new SC/MP/1 Microprocessor-£18.40 excl. VAT. P. \& P. 750

VAT
Al our prices
EXCLUDE
AT. Pleas
enclose
enclose
40 p tor 00 s
4op lor 00
and packin

CO4041	
CD4042	0.
C04043	1.
CD4044	1.
CO4045	1.59
CO4046	
CO4047	
C04049	
CD4050	0.6
CD405 ${ }^{4}$	1.
CD4052	
CD4053	1.
CO4054	
CO4055	1.50
CD4056	

96	C04059
96	CO4060
15	CD4063
05	CD4066
59	CD4067
52	C04068
15	CO4069
64	CO4070
64	CD4074
06	CD4072
06	CD4073
06	CD4075
32	CD4076
50	CO4077

- 5

|CD408
$081 \quad 0.25$

74C MOS
TTL FROM NATIONAL, ITT, TEXAS, SIGNETICS, ETC

ㄹ MICROPROCESSOR SYSTEMS

SC/MP INTROK
 Compieats with explatantion data and appilcations KEYBOARD KIT
 auget vo for Teletype substitute. The calculator type keyboard provides manual l/O commands in kitrokit plete kit easily mates whth cassette recorder

SC/MP
new from motorola
ом моtorola 6800

8 bit trialate bue lila | S12 byies rom |
| :---: |
| 256 butes lem |

ORCHARD ELECTRONICS

 SERVICE SECOND TO NONE

 SERVICE SECOND TO NONE TRY US AND SEE TRY US AND SEE

 NEW BIG CAT $50 \mathrm{p}+$ Refundable

 NEW BIG CAT $50 \mathrm{p}+$ Refundable Vouchers

Flint House, St. Martins Street, Wallingford, Oxon (Tel. 0491 35529)

> SUPPLIERS TO D.O.E., A.E.R.E., U.K.A.E.A. Government Depts., Universities, Schools and equipment manufacturers. Stock list FREE with S.A.E.
> Post \& Packing 25 p. Discounts $\mathbf{£ 5}=5 \%, £ 10=$ $7 \frac{1}{2} \% £ 15=10 \%$ VAT add $12 \frac{1}{2} \%$. Rest at $\mathbf{8 \%} \%$

SAVE

WITH THIS UNBEATABLE OFFER

from Britain's Largest Dimmer Makers
Complete Kit of Parts for our VCL500M, 500W Dimmer Switch, only $£ 1.85$, plus p\&p 25p.
(inc.Vat.) Full Instructions supplied.

BARGAIN COMPONENTS

ELECTROLYTIC CAPACITORS

| $470 \mathrm{MFD}-6.3 \mathrm{~V}$ | 15 p. | $1000 \mathrm{MFD}-16 \mathrm{~V}$ | $\ldots 30 \mathrm{p}$. |
| :--- | ---: | ---: | ---: | ---: |
| $150 \mathrm{MFD}-6.3 \mathrm{~V}$ | 17 p. | $330 \mathrm{MFD}-63 \mathrm{~V}$ | $\ldots .39 \mathrm{p}$ |
| $470 \mathrm{MFD}-10 \mathrm{~V}$ | 18 p. | $68 \mathrm{MFD}-6.3 \mathrm{~V}$ | $\ldots 12 \mathrm{p}$. |

POLYESTER CAPACITORS

0.01 MFD - 400V9p.

THYRISTORS
C106.01
70p. 41 RCS60

B.L.12-WAY TERMINAL BLOCK

P.C.B. MOUNTING ...39p.

POTENTIOMETERS

Pre-set $1 \mathrm{M} \Omega$ Linear 11 p . Pre-set $4.7 \mathrm{~K} \Omega$ Linear. 12p Pre-set 220K Ω Linear.. 11p. Pre-set $25 \mathrm{~K} \Omega$ Linear. 19p A.B. 2 Gang $25+25 \mathrm{~K} \Omega$. 82p. A.B. 1 Gang $220 \mathrm{~K} \Omega$ 26p.

All prices include VAT. Postage $\&$ packing included on all orders over 50 p. Under 50 p. please add postage. For quick delivery please send cheque or P/O to :- Dept. PE1.

Fotherby, Willis Electronics Ltd.

GLADSTONE TERRACE,STANNINGLEY,LEEDS, LS28 6NE Telephone Leeds (STD O532) $563373 \quad$ Telex 557111

24 HR. CLOCK/APPLIANCE TIMER KIT

Insulated touch plates. Complete with easy to follow instructions
TSD300K - TOUCHSWITCH and DIMER combined. ONE touchplate to switch light on or off. Brightness
OUCHS Wy smoll knob. E5.62
TSA30OK - AUTOMATIC TOUCHSWITCH. ONE touch plate. Touch for ON ond light stoys on for prese time (vorioble from 2 secs. to $3 \frac{1}{\frac{1}{2}}$ mins.). Ideol for stoirs ond hall. $\mathbf{£ 4 . 3 2}$
LD 300K - 300W LIGHT DIMMER KIT. Reploces conventionol light switches. £3.02
 NE555 Timer I.C. 8 pin dil $39 \mathrm{p}(3$ for fI .08$)$
741 Op. Amp. I.C. 8 pin dil 26 p (5 for fl .08)

BC 147 8C148 BC 158 BC182L	$\begin{array}{r} 9 p \\ 9 p \\ 9 p \\ 11 p \\ 9 p \end{array}$	$\begin{aligned} & \text { BFY50 } \\ & \text { 2N3055 } \\ & \text { TIP31A } \\ & \text { TIP32 } \end{aligned}$	16p 43p 54p 54p	$\begin{aligned} & \text { 2N6027 PUT } \\ & \text { TIS43 UJT } \\ & \text { IN4I } 48 \\ & \text { IN4004 } \end{aligned}$		$\begin{array}{r} 37 p \\ 26 p \\ 5 p \\ 5 p \end{array}$	$\begin{aligned} & 6.5 \mathrm{~A} \text { with trigger** } \\ & 8.5 \mathrm{~A}^{* *} \\ & 12 \mathrm{~A} \\ & 16 \mathrm{~A} \\ & 20 \mathrm{~A} \\ & 25 \mathrm{~A} \\ & \text { D1AC } \end{aligned}$	$\begin{array}{r} 86 p \\ 85 p \\ 91 p \\ 112 p \\ 178 p \\ 192 p \end{array}$
CMOS LOW PRICES								23p
4000 19p	4012 19p		4023	$\begin{aligned} & 19 p \\ & 19 p \end{aligned}$	4077	49p	CIO6D 5A/400V	54p
4001 19p		4013 55p	4025		4501	22p		
4002 19p		4015 98p	4040	105p	4510	162p	MINI MAINS TR	RMERS
4007 19p		4016 55p	4049	54p	4516	162p	6.0 .6 V 100 mA	92p
4011 19p		4017 98p	4050	54p	4519	61p	$12.0-12 \mathrm{~V} 100 \mathrm{~mA}$	103p

OPTO ELECTRONICS

$0.2^{\prime \prime}$ Red LED
$0.2^{\prime \prime}$ Green LED
727 Dual 0.5" Display ${ }^{27}$
1.b2

QUANTITY DISCOUNTS ON REQUEST

T. K. ELECTRONICS

106 STUDLEY GRANGE ROAD, LONDON, W7 2LX
$.015 p ; .022,033,0.47,0.686 p ; 0.17 p ; .58 p ; .229 p ;$ $.3312 p ; .4713 p ; .6819 p ; 1.022 p ; 2.2$ 39p.
RESISTORS . $33 \mathrm{~W} 5 \% 22 \mathrm{ohm}$ to 10 Mohm
Push Button, push to moke

Stirling Sound

OUR UNIQUE BARGAIN PLAN CLOSES JAN. 31 st

STIRLING POLICY means specs. and prices yau can rely on - na hidden extras - nothing to misunderstand. Until Jan. 31 st, when ordering a power amp. and power supply unit together.

DEDUCT	Ifordered with	DEDUCTA FURTHER	If ordered with	DEDUCTA
FURTHER				

AMPLIFIERS 3 to 100 WATTS R.M.S.

Ready ossembled on P.C.Bs., tosted ond guaronteed. Eosy to
$5 S .103$ I.C. amp. 3 wotts R.M.S. using $20 \mathrm{~V} / 8 \Omega$ or $14 \mathrm{~V} / 4 \Omega$. Input $100 \mathrm{mV} \quad £ 2.85$ $\$ 5.103-3$ Stereo version of obove, 2 I.C.s
$£ 5.00$ SS. 1055 wars R.M.S. into 3Ω using 13.5 V .
 SS. 11010 wotts R.M.S. into 4Ω using 24 V .
 $\$ 5.12020$ watts R.M.S. into 40 using 34 V . Sensitivity - 80mV. THD - 0.3\%. $3 \frac{1^{\prime \prime}}{} \times 2^{\prime \prime} \times$ SS. 12525 wotts R.M.S. into 80 using 50 V . Sensitivity -140 mV . Distartion - Less than 0.05% into $8 \Omega \mathrm{~S} / \mathrm{N}$ better thon $70 \mathrm{db} \quad £ 7.25$ SS. 14040 worts R.M.S. into 4Ω using 45 V . Sensitivity -300 mV . Distortion typicolly
$0.1 \% .5^{\prime \prime} \times 34^{\prime \prime} \times 11^{\prime \prime}$

THE CONTROL AND PRE-AMP MODULES

- UNIT ONE

Combined stereo pre-amp ond active tone control unit. Input sensitivity 50 mV for 200 mV out, 1016 V operation, Boss $\pm 15 \mathrm{db}$ of 30 Hz ; Treble $\pm 15 \mathrm{db}$ of $10 \mathrm{KHz}_{2}$; Balonce control; Volume control, For ceromic P.U., rodio or ope inputs. WITH FREE CONTROL PANEL ASCIA

- UNIT TWO

With contral focilities similar to UNIT ONE but for mognetic cortridge input. R.I.A.A. corrected, Input sensitivity- 5 mV for 200 mV PANEL FASCIA E12.43 - CONTROL PANEL FASCIA ovoiloble

50p © 5.100

50p
Basic active stereo tone control module to treble at $10 \mathrm{n}^{\prime} \mathrm{Hz}$
$£ 3.00$

POWER SUPPLY UNITS

Every Stirling Sound Power Unit is tested ond guoronteed under working conditions before despotch. All units except 15V) for pre-omp, tone controi, rodio tuner, etc. Outputs quoted minimol unlooded ratings.

SS. 312	12V/1A	¢6.60	
SS. 318	$18 \mathrm{~V} / 1 \mathrm{~A}$	¢6.95	
SS. 324	$24 \mathrm{~V} / 1 \mathrm{~A}$	¢7.65	
SS. 334	$34 \mathrm{~V} / 2 \mathrm{~A}$	¢8.75	SS.310/50 Srabilised power supply with
\$5.345	$45 \mathrm{~V} / 2 \mathrm{~A}$	E10.75	vorioble output 10 V to $50 \mathrm{~V} / 2 \mathrm{~A}$. Short cirevit
55:350	50V/2A	E11.75	protected. £17.75
55.360	$60 \mathrm{~V} / 2 \mathrm{~A}$	E12.75	55.300 Add-on power stobilising unit variable
55.370	70V/2A	E14.75	from 10 to 50V/8A ¢5.50

LLL GOODS POST FREE IN U.K. ALL PRICES INCLUDE VAT
STIRLING SOUND, 37 VANGUARD WAY, SHOEBURYNESS ESSEX
Phone (03708) 5543
Shop \& Showroom 220/224 West Rd., Westclift-on-Sea. Phone Southend (0702) 351048

ACCESS OR BARCLAYCARD CUSTOMERS - JUST TELL US YOUR NUMBER
STIRLING SOUND, 37 VANGUARD WAY, SHOEBURYNESS, ESSEX
Pleose send
(or os attoched list) for which I enclose f
NAME
ADDRESS

SS. 16064 watts R.M.S. into 4Ω using 50 V . Sensitivity -350 mV . Distortion typicolly SS. $1100 \times 100 \times \frac{1}{4}$. \quad. 80 $70 \mathrm{~V} / 2 \mathrm{~A}$ wotts R.M.S. into 4Ω using thelt nput sensitivity -500 mV . Distortion
 HS. 160 Multi-finned heatsink for SS 140 or SS. 160.
HS. 1100 Dimo for SS. $1100 \quad$ £1.50
d

RST
VALVE MAIL ORDER CO.
Climax House
Falisbrook Road, London SW16 6ED
SPECIAL EXPRESS
MAIL ORDER SERVICE

Open daily to callers: Mon.-Fri. 9 a.m.-5 p.m.
Valves, Tubes and Transistors - Closed Saturday Prices correct Terms C.W.O. only - Tel. 01-677 2424-7 Quotations for any types not listed S.A.E.
Post and Packing 25p per order $+8 \%$ V.A.T. when going to press

Do-it-Yourself Kits Or Factory Assembled

미페튜=IOrgans
TII튜NIPianos
이Iㅣ탸탸IString Ensembles
이IIEREFIMATICRhythm
©IIEREIMATICAccompaniment
(1)HEREIVOICERotorSound:StringChoir 이핕FIIProfessional Series
© II탸F=IA Audio Mixer 2004
ㅇII퉄I TONERotating Bafles 이피탘ISpeaker Cabinets

Send for our 104 page full-colour catalogue and 16-page price list, for $£ 2.00$, which is refunded against your first order value £25.00.

AURA SOUNDS (P2), Copthorne Bank, Crawley, W. Sussex.

Superb CASIO LCD watches. Seven functions, Light, Auto Calendar STOPWATCH (ST) DUAL TIME ZONE (TM). All Stainless steel, Mineral glass, WATER RESISTANT to 100 feet. AVAILABLE JANUARY: CASIO Chronograph $£ 59.95$ and $£ 64.95$. ALARM watch (ST) $£ 59.95$
Send 15 p for our illsutrated catalogue. lowest discount prices.
Prices include VAT, P \& P. Send cheque.P.O. or phone your credit card number to:-

CHINAGLIA DINO-ELECTRICAL AND ELECTRONIC TEST EQUIPMENT MANUFACTURERS

PRESENT THE
DOLOMITI
$20 \mathrm{k} \Omega / \mathrm{V}$ a.c. and d.c.

A NEW HIGH SENSITIVITY MULTIMETER WITH ALL THE FEATURES YOU WILL EVER NEED

Accuracy: D.C. ranges $\pm 2.0 \%$. A.C. \& Ω ranges $\pm 2.5 \%$
39 ranges: d.c. $V, 0.150 \mathrm{mV}, 500 \mathrm{mV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1.5 \mathrm{kV}$ d.c.1, $0.50 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 0.5 \mathrm{~A}, 5 \mathrm{~A}:$ a.c. V. $5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}$ $150 \mathrm{~V}, 500 \mathrm{~V}, 1.5 \mathrm{kV}$; a.c. $1,5 \mathrm{~mA}, 50 \mathrm{~mA}, 0.5 \mathrm{~A}, 5 \mathrm{~A} ; \mathrm{dB}-10$ to +65 in 6 ranges;
500 kpF .
n
$0.05 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega, \mathrm{pF} 50 \mathrm{kpF}$, 500 kpF .

Automatic overioad protection and high current range fusing
Scale mirror and fine pointer for accuracy of reading. Single knob main range switching and all panel controls. C.E.l. Class 1 movement with sprung jewel bearings. Extended 92 mm scale length for extra clarity. Compact ABS case $125 \times 131 \times 37 \mathrm{~mm}$. Weight 750 g with batteries. Supplied complete with carrying case, fused leads, handbook and full 12-month guarantee. Optional 30 kV d.c. probe available

Meter £45•90 incl. VAT (11 P. \& P.)
30 kV Probe $£ 12.85 \mathrm{incl}$. VAT
For details of this and the many other exciting instruments in the Chinaglia range, including multi-meters, component measuring, automotive and electronic instruments please write or telephone.

19 MULBERRY WALK. LONOON SW3 60Z TEL: 01-352 1897

We can help you See and Solve your problems

HONELIGHT

Universal Portable Inspection Light
The shadowless Honelight utilises the principle of optical fibres, in a tube of virtually unbreakable material, insulated. transparent and resistant to alcohol. It gives all-round illumination to otherwise inaccessible confined spaces and corners Simple, lightweight and practical (weight with batteries 40 grammes approx.). Suitable for all professions-Electronics, Radio/TV-machines of all types. Also useful in the realm of Medicine: general and specialised, Dentistry.
Veterinary etc.
(Operates from 2-1.5 volt batteries).

Desoldering Tool "SPECIPROD'

High precision manufacture de-soldering pump. Avaitable three sizes for all de-soldering requirements.
Chromed interior, nickel pump, teflon nozzle.
Three Sizes.
'"Maxi Super'' length 37cm, nozzle diameter 2 mm .
'"Maxi Mini" length 22cm, nozzle diameter 1.5 mm .
"Maxi Micro" length 16 cm (diameter body 12mm, nozzle diameter 1.5 mm).
(The smallest de-soldering pump available).

Literature and peneral catalogue available on request from
Spectai Products Dletributors Limited, 81 Piecadilly, London WiV oHL Tel: 01-629 9556 Cables: Speciprod London $W 1$

The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour T.V. Servicing
Electronic Engineering \& Maintenance
Computer Engineering and Programming,
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Othar Carcer Courses

A wide range of other technical and professional courses are available including GCE.

All you need for listening!

Listen with the complete hi-fi magazine

Hiffexuo
 Every month 40p

ASSORTED TANTALUM BEAD CAPACITORS for $£ 1.50$ 2 BRANDED F.E.T's Assorted © $£ 1$
DIE CAST ALLOY BOXES sizas $4^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}=55 p, 48^{\prime \prime} \times 22^{\prime \prime} \times 1 \frac{1}{2}=65 p$

1N4 148 SILICON DIODES 20 for 50 p.
AUDIO I.C's TAA61 1B e 65p. SN 76001N e50p. SL 414 e £1.60.
VERNITRON 10.7 MHz CERAMIC FILTERS ${ }^{\circ} 50 \mathrm{p}$
TBA 1205 FM I.C's Untested with data e 6 for 60p.
50 VARI-CAP DIODES Assorted Untested for 67p.
BOOKS. By G. Dobbs. "Practical Test Equipment" 75p, "Simple Transistor Short Wave Receiver 60p, "Practical Electronic Projects" 75 p . The Three Books for $\mathrm{f1.60}$ TANDARD 2 AMP TV CHOKES ${ }^{10} 10 \mathrm{p} .6$ for 50 p.
MINIATURE 8uf 300v.w. ELECTROLYTICS - 10 for 57 p.
SWITCHED STEREO SOCKETS © 4 for 60p.
2 GHz NPN STRIP LINE TRANSISTORS e $£ 1$ each.
10 AMP 2 POLE MAKE TOGGLE SWITCHES e 40p each.
POSTAGE STAMP TRIMMERS 10pf, 30pf, 50pf, 1000pf. All $6 p$ each.
100 ASSORTED DISC CERAMICS for 57%.
200 ASSORTED $\frac{1}{4}$. $\frac{1}{2}$ watt RESISTORS for $75 p$.
50 ASSORTED PLASTIC EC 107-8-9 TRANSISTORS 85\% Good 57p.
5 WATT NPN TO39 DARLINGTON TRANSISTORS 20p each.
10 MULTI TURN TRIMPOTS Assorted Values a 57 p .
. AC 128 TRANSISTORS Branded but Untested e 57 p.
F 451 SILICON PNP 300 MHz TRANSISTORS 6 for 35p.
ARGE HEAT SINKS suitable for two TO3 Transistors 60p (20p P\&P).
NUT FIXING 1000 pf FEEDTHRU's $500 \mathrm{v.w}$. 15 p each.
. 2 K WIRE WOUND POTENTIOMETERS 6 watt © 22p.
.5MHZ CERANIC FUTERS - 27 p each.
TT TRANSISTORS NPN TYPE TM 11 300 MHS 5pf e 75p.
TT TRANSIST
 8 To 140pf e 15 p .
MI FORMERS Sub-Miniature 6/8 \times " " with core - 5p, 6 for 25 p.
VIRE ENDED CRYSTALS $28 \mathrm{KHz}, 28.5 \mathrm{KHz}$. Both 50 p ath
UNMARKED GOOD 400 mW ZENERS $6.8 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 24 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}$ 36 v . All e 10 for 40p.
S To 1 FRICTION SLOW MOTION DRIVES 55 p .
MINIATURE 8uf 300v.w. ELECTROLYTICS e 10 for 57p.
12 BRANDED ASSORTED F.E.T's for $£ 1$.
30 ASSORTED 10XAJ CRYSTALS Between 5100 To 7900 KHz \# £1. 10 .
SUB-MINIATURE $10 \times 10 \mathrm{pf}$ DIFFERENTIAL PRE-SET CAPACITORS $\mathbf{2 2 p}$
100 MULLARD C280 CAPACITORS Assorted 57 p .
TRANSFORMER 240v Input, Output 24v Tapped at 14v 1 amp f1.25 (20p P\&P)

Please add 20p for post and packing on UK orders under $£ 2$, unless otherwise stated. Overseas orders at cost.

J. BIRKETT

RADIO COMPONENT SUPPLIERS 25 The Strait, Lincoln LN2 1JF

Tel. 20767.

P.E. JOANNA ELECTRONIC PIANO

ALL PARTS CAN BE SUPPLIED

Keyboard, Keyswitch, P.C.B.s, Hardware, Semiconductors, Resistors, Capacitors, Cabinets Complete kits or easy stages Send S.A.E. for details
Clef Products 16 Mayfield Road Bramhall, Stockport, Cheshire SK7 1LY

THE DYMamIC duo

The C15/15 is a unique Power Amplifier providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radio/tape unit. It is simply wired in series with the existing speaker leads and in conjunction with our speakers S15 produces a system of incredible performance.
A novel feature is that the amplifier is automatically switched on or off by sensing the power line of the radio/tape unit hence alleviating the need for an on/off switch.
The amplifier is sealed into an integral heatsink and is terminated by screw connectors making installation a very easy process.
The S15 has been specially designed for car use and produces performance equal to domestic speakers yet retaining high power handling and compact size.

C15/15

15 watts per channel into 4Ω Distortion 0.2% at 1 kHz at 15 watts
Frequency response $50 \mathrm{~Hz}-30 \mathrm{kHz}$
Input Impedance 8Ω nominal
Input sensitivity 2 V R.M.S. for 15 watts output
Power line 10-18V
Open and Short circuit protection
Thermal protection
Size $4 \times 4 \times 1$ inches
C15/15 Price $£ 17.74+£ 2.21$ VAT. P. \& P. free

Data on S15 6in Diameter $5 \frac{1}{i n}$ air Suspension 2in Active Tweeter $200 z$ Ceramic magnet
15 watts R.M.S. handling
$50 \mathrm{~Hz}-15 \mathrm{kHz}$ frequency response
4Ω Impedance
two years' guarantee on all of our products

I.L.P. Electronics Ltd
 Crossland House Nackington, Canterbury Kent CT4 7AD
 Tel. (0227) 63218

Please Supply
Total Purchase Price
Enclose Che
Please debit my Access account \square Barclaycard account \square
Account number
Name and Address
Signature.. . .

A VIDEO NEW YEAR

Impress the neighbours with A game they haven't seen yet and proudly tell them you made it yourself.

BASED ON AY-3-8600

* Basket-ball *Grid-Ball *Hockey *Tennis * Squash * Football + Two - One-Player Games. \% Horizontal and Vertical Bat Coverage * Automatic Ball Speed-Up * Players Colour Coded \% Three Tone Sound-Effects \% Sound from T.V.
* Ball Colour Coded to indicate turn in Squash-Game
* All Components supplied guaranteed including sound and vision modulator C.H. 36 UHF.
\$ Power requirement $9 v$ battery \& Just add controls and case
Basic AY-3 $\mathbf{8 6 0 0}$ Paddle II Kit B + W $£ 21.00$ only $\mathbf{£ 1 5 . 0 0}$
Colour $\mathbf{£ 2 9 . 0 0}$ only $\mathbf{£ 2 0 . 9 0}$ B+W Mini-Pack Chip + P.C.B. only $£ 12.90$ COLOUR MiniPack Chip + P.C.B. only $£ 13.90$

POPULAR AY-3-8500 PADDLE I

* Three Tone Sound Effects

* All components supplied guaranteed just add controls, speaker and case

\% UHF varicap modulator ($B+W$)
* Power requirement - 9v battery
※ Stock clearance price down
Black + White $£ 10.50 £ 9.90$ Colour CH36 $£ 16.50 £ 15.90$ Mini-Pack P.C.B. + chip B+W $£ 6.90$ Colour $£ 7.90$

JOY STICK CONTROLS

DESIGNED FOR T.V. GAMES
(AY-3-8550-AY-3-8600) Subminiature Size
UNBEATABLE LOW PRICE
One off $£ 1.90$
Two off $£ 3.50$

COLOUR CONVERTER KIT

* Easily connects to all $b+w$ games using AY-3-8500 - AY-3-8550 * Green background-Red boundaries - Yellow and Blue bats - White ball * No extra parts \% No special equipment needed \& New even lower price $\mathbf{£ 8 . 5 0}$ complete

VISION MODULATOR UHF-CH36 BULLT \& TESTED E..90 Orde

 SOUND MODULATORCONNECTS WITH ABOVE $£ 2.90$ together-
toth

NEW\&5.50 TELETEXT DECODER ${ }^{\text {SAVEOVER }}$

TEXAS TIFAX - XM11
Tested and Guaranteed Only $£ 99.90$ Full Colour Display ORACLE AND CEEFAX Simple to interface with most TV's.
Keyboard and power supply extra.
Also in stock NEW Colour TV's complete with Teletext FROM $£ 399.00$
All Projects suppiled with easy to follow assembly instructions. All prices include VAT + Postage. Orders under $£ 10.00$ - Add 20p p \& p. Make all Cheques or Postal Orders payable to

A Dedicated Visual Display-Company
Mail Orders: 53 Warwick Road, New Barnet, Herts, EN5 5EO. Retail Shop and Demonstrations - 14 Station Road, New Barnet, Herts. For further Details and Technical Help - Phone 01-440 7033
(French and German spoken) Quantity discount negotiable.
For extra speed phone your order on Barclay-or-Access Cards.

Wilmslow

 Audio
THE firm for speakers!

SEND 10p STAMP FOR THE WORLD'S 日EST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

ACT - AUDAX BAKER
BOWERS \& WILKINS CASTLE CELESTION CHARTWELL - COLES DALESFORD DECCA - EMI - EAGLE © ELAC - FANE GAUSS - GOODMANS - HELME - I.M.F ISOPHON - JR - JORDON WATTS KEF - LEAK - LOWTHER - McKENZIE MONITOR AUDIO - PEERLESS RADFORD RAM - RICHARD ALLAN - SEAS TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO (Dept. P.E. 8) sWan works, bank square, wilmslow, CHESHIRE SK9 1HF

Discount Hi-FI, etc. at 5 Swan Street and 10 Swan Street Tel.: Wilmslow 29599 for Speakers

Tel. : Wilmslow 26213 for $\mathrm{Hi}-\mathrm{Fi}$

complete digital clock kits

TEAK OR PERSPEX CASE

non alarm
 £12.50

alarm
£15.50
Alf prices include P. \& P. and VAT
FEATURES: 4 LED digits $\frac{\operatorname{con}}{3}$ in high. Red. 12 hour display with a.m./p.m. indication. Mains frequency accuracy. Easy to build all components included. Beautiful real wood case or perspex: White, Black, Red, Blue and Green. Flashes to indicate power cuts.
NON ALARM: Complete kit including case, $£ 12 \cdot 50$
Module kit excluding case, $£ 9 \cdot 50$. Ready built, $£ 10 \cdot 00$
Module kit excluding case, $£ 9 \cdot 50$. Ready built, $£ 10 \cdot 00$.
ALARM: Pulsed alarm tone. Automatic brightness control. 9 minute "Snooze'
Simple setiling. Complete kit including case. $\$ 15 \cdot 50$. Ready built, £17.00. Module kit excluding case, £13.00. Ready built, £13.50. ITMER FACILITY: Stopwatch use to 9 min . 59 sec , extra 50 p .

EXCELLENT VALUE - GUARANTEED NOVUS

- LCD Gent's Watch. 5 function. Back light. Chrome case. Black

DISPLAYS: FND500 $\frac{1}{2}$ in. LED, $\mathbf{£ 1 . 1 9 \text { each: } 6 \text { for } \mathbf { ~ } 6 . 4 8 \text { . NSB 5430, } \frac { 1 } { 2 } \text { in Red LED }}$

CLOCK CHIPS: 50253 N Alarm $12 / 24$ hour $4 / 6$ digit. $£ 5 \cdot 67$.
50362 N Calendar clock, $\mathbf{~ 7 7 . 7 5}$. MM5385N 12 hr 4 digit Alarm £4.32. 6 Decade up/down counters, 50395/6/7 £13-10.
MICROPROCESSOR: Z80 CPU, £22.68. Z80 CTC, £15.70
1702 A UV Erazable PROM, £11.35, Z80 PIO £15.70. 2102NA, IK Static RAM £2.70. UV PROM Erazer, £103 plus £5 P. \& P. 4 KXI 16 pin Dyn. RAM £7.05.

RECHARGEABLE BATTERY SET: Super Value E8.10, Includes 4 AA (1.2V) Nickel Cadmium batteries (separately $£ 1.08$ each). $3 / 6 / 9 \mathrm{~V}$ switched Universal Mains Adaptor with 4 plug connector for most caiculators (separately £3.78), plus battery holder

payment with order to

BARON

Southview House, 6 Gower Road Royston, Hertfordshire Telephone: Royston (0763) 43695

A SPECIAL FREE OFFER FROM DORAM The revolutionary new 'Cyalume'lightstick as featured in'Tomorrow'sWorld':

The lightstick is a safe, easy-to-use emergency liquid lighting device. Quickly activated by bending, the lightstick will illuminate an average room giving sufficient light for reading. It's ideal for camping and boating and floats on water.

To obtain your free lightstick order $£ 15$ worth of goods from the Doram Edition 4 catalogue, issued in September, attaching this advertisement to your order.

The catalogue contains a complete range of kits, test equipment and high-quality components.

If you don't have the Doram catalogue, send 20p to cover post and packing with the coupon. We will despatch it by return to enable you to take advantage of this offer

Check out your Doram catalogue today and send your order to: Doram Electronics Limited, PO Box TR8, Leeds LS12 2UF. Offer closes March 10th, 1978.(PEF)

DRIRIM

Please send a copy of the Doram catalogue by return. I enclose 20 p to cover post and packing.
Name
Address

Doram Electronics Limited, PO Box TR8, Leeds LS12 2UF.
(PEF)

GREAT SOUND - GREAT VALUE!

Stirling Sound
 Disco 2
 Mixer Control unit + power supply

By designing and manufacturing in our own Essex factory, with strict material control and stage by stage checking and then selling direct to YOU the customer, we can save you pounds, offer better senvice and guarantee satisfaction. Our latest modular assembly, Diseo 2, has already been thoroughly field tested and is ready for immediate service under the toughest working conditions,

- INPUTS - Left deck, right deck, mic. and aux.
- INPUT IMPEDANCE - 47K ohms
- POWER SOURCE - 220-240V. A.C. Mains
- CONTROLS - Mains on-off, master volume, bass $\pm 15 \mathrm{db}$, rreble $\pm 15 \mathrm{db}, L$ and R mixing, L and R motor switches, selector switch for P.F.L. (Pre-Fade Listening), headphone volume, mic. vol., aux. vol., LED indicators on mains and decks on/off switches.
4 HEADPHONE AMPLIFIER - Powerful 2 watts into 8 ohms; separate vol. control.
- TERMINATIONS - Five $\frac{1}{4}^{\prime \prime}$ jack sockets - 2 input, 2 output, headphones.
- SIZE $-23 \frac{1}{4}{ }^{\prime \prime} \times 3 \frac{33^{\prime \prime}}{4} \times 2 \frac{1}{2}^{\prime \prime}$ max. depth to rear (plus separate power unit). Panet in matt black with controls sensibly grouped for easy handling.
\square PRICE - Post free, with power unit and inc. V.A.T. 539.95
Delivery ex-stock.
Suitable Stirling Sound power amps with heat sinks and power supply units-140PH £18. 160PH £22. 1100PH £26.75.

OTHER STIRLING SOUND DISCO/P.A. ITEMS

- BASICCONSTRUCTIONAL MODULES
SS. $104 / 2$ Two channel mixer stoge 63.75
SS.DTM Output control stoge 30 db

部 INTEGRATED POWER AMPLIFIERS
Ready built in cases, tested and guaronteed -60 watts R.M.S. into 4 ohms
POWER AMP $60 /$ with two chonnel mixer
£48.00
POWER AMP 40-40 wotts R.M.S. into 4 ohms with nwo channel mixer
POWER AMP 100-100 watts R.M.S. info 4 ohms with 4 channel mixer $\begin{array}{ll}\text { POWER AMP } 100 \text { - } 100 \text { watts R.M.S. into } 4 \text { ohms with } 4 \text { channel mixer } & £ 85.00 \\ 100 \text { watt SLAVE AMP } & £ 50.00\end{array}$
£ 43.00

细 READY BUILT ITEMS TESTED AND GUARANTEED $\begin{array}{ll}\text { SSTL 3/250B Sound to light unit } 3 \text { chonnels, } 250 \mathrm{w} \text {, eoch } & £ 23.95 \\ \text { SSTL3/1000B Sound to light unit } 3 \text { channels, } 1000 \mathrm{w} \text {, each } & £ 25.95\end{array}$ $\begin{array}{ll}\text { SSFL 3/250B Sound to light unit } 3 \text { channels, } 250 \mathrm{w} \text {, eoch } & £ 23.95 \\ \text { SSTL3/1000B Sound to light unit } 3 \text { channels, } 1000 \mathrm{w} \text {, each } & £ 25.95\end{array}$

- STIRLING SOUNG-LIGHT MODULES

SSTL3/250 Three chonnels, each 250 watts output
TO ORDER BY ACCESS OR BARCLAYCARD JUST WRITE OR PHONE IN YOUR NUMBER

ALL PRICES QUOTED INCLUDE VAI AND GOODS SEND POST FREE IN U.K. with C.W.O. orders. Owing to length of time between preporing this od. and its oppearance to the public, prices are subject to amendment without notice.

5tirling Sound ed

Mail Orders to Dept. PE28
STIRLING SOUND, 37 VANGUARD WAY, SHOEBURYNESS, ESSEX (03708) 5543. Shop \& Showroom 220/224 West Rd., Westcliff-on-Sea (0372) 351048

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your lecter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

ORCHARD ELECTRONICS

I,C.s. TTI. C/MOS. Linear. Capacitors. Resistors (E12). SIL/Rectifiers. Diodes. LED. Thyristors. Zeners. Voltage Reg. DIL Sockets. Bridge Rectifiers. Potentiometers. Presets. Triacs. Diac. Plugs. Sockets. Cable. Vero. Carefully selected range, excellent despatch service. Same day turn round. S.A.E. List, Suppliers to A.E.R.E. U.K.A.E.A. Government Depts. Schools. Universities, Manufacturers. Accounts opened far trade and amateur. Join the professionals. Phone by 4 p.m.
Goods out Ist class by 5 p.m. Try us and prove it! ORCHARD ELECTRONICS
Flint House, High Street, Wallingford, Oxon Telephone 0491-35529

VALVES - Radio, T.V., industrial, transmitting. We dispatch to any part of the world by return of post, Air or Sea Mail. 2,700 types in stock. 1930 to 1976 obsolete types a speciality. List 20p. Projector Lamps. Quotation S.A.E. Open to callers. Mon. to Sat. 9.30-5.00, closed Wed. 1.00. We purchase all types of new and boxed valves. And projector lamps. COX RADIO (Sussex) LTD., Dept. P.E., The Parade, East Wittering, Sussex PO20 8BN. West Wittering 2023. (STD code 024366).

CHIPS AND THINGS

I.C.s at give-away prices - you test you savell Untestod devicos (NOT manufacturers rejeris, follouts etc.)

PACK E1 ($\mathbf{0 0 \%}$ guoranteod good). $5 \times$ MAN3 $0.127^{\prime \prime} 7$ segment LEJ displays E1.00
PACK E2 (100% good). 1×2 digit (plus avarflow) $0.33^{\prime \prime} 7$ sogment Liquid Crystol coitulator style dispiay $£ \mathbf{3 . 9 5}$
PACK M1 $(100 \%$ guaranteed good). $2 \times$ colculator keyboards $£ 1.00$ PACK DI (80% guoranteod good). IS x Logit I.C.s msinly duai J-K OTL flip-fleps, compatible with TIL. Could replece these costly TIL flip-Sleps in most projecls. £ 1.25
PACK D2. $25 \times$ SNT 400 type I.Cs. 100 Imo i/p nand goles. Wo guarantea 50 good. $£ 1.25$
PACK 11 (markad and unmarkad). $20 \times$ Assertod $0 p$-Amps. Could iacludo LM301, 741, 709,555 etc. $£ 1.25$
PACK L2. 20×1 m709 Op-Anps. (1 leod TOS) $£ 1.50$
PACK M2 (No guarantess). 50 Minidip I.C.s for £1.00. Mossly unmorked. We don't know what thay ore. (At 2 p . acch con you ga wrong?) Could be they ore all O.K., bur as they're untested - we don't know. For packs with no stotod guaranted minimum, wo'll guaranter it works out much chaopar than overoge mail arder prices buying this way. Satisfection guarantese or refurn camplite pock for replocement or refund.

MAIL ORDER ONLY - NO CALLERS
CODESPEED, P.O. Box 23, 34 Saafiald Road, Copner, Portsmeuth, Hants. P03 5BJ.

SMALL ADS

The prepaid rate for classified advertisements is 18 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 6.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertismement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

CONDITIONS OF ACCEPTANCE

 OF CLASSIFIED ADVERTISEMENTS1. Advertisements are accepted subject to the conditions appearing on our current advertise ment rate card and on the expreas understand ing that the Advertiser warrants that the Parlioment nor it cofringement of British Code of Advertising Practice.
British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisemen
3. Although every care is taken, the Publishers shall not be liable for clerical or printers arrors or their consequences.
L.B. ELECTRONICS, MJE3055 40p, BF 195 9p, BC213 9p, BC108C 10p, OCP70 16p, BXY49 38p, 1N4148 4p, 3.3V 24 V , zeners 5 p. 2102 (500NS) + data £1.50, 8080A £16, 1702A £7.50, CD4250 70p, 741 20p. 741 TO99 (DIL) 30 p $55545 \mathrm{p}, 74 \mathrm{HOO} 20 \mathrm{p}, 7$ way DIL switches 60 p , min push button switches (change over) 40p, 75450 38p, Fenwell Thermistors, pair potted + lead-plug 20p, PCB 1 watt amplifier LM 380 etc £1.20, ITT 5870ST nixi + data 50p, Sperry SP425*09 (9 digit 7 seg) + data $£ 1,7476^{\prime \prime}$ (Red) £1.35, D.P.M. Display $4 \frac{1}{2} \operatorname{digit}$ (LED) with bezel $£ 2.50$. P \& P 10p. L.B. ELECTRONICS, 43 Westacoth, Hayes, Middx. UB4 8AH.

QUALITY COMPONENTS AT LOW PRICES

Tremstor and		beyso	0.20	[a91	0.05	Electrols	come	
$16:$		BFY51	0.28	04202	B.00	$10{ }^{1 / 4}$	18 V	0.05
${ }_{4}{ }^{1} 27$	0.22	BPY52	0.20	W4001	0.05	2.2 听	83V	0.10
${ }^{\text {a }} 128$	0.21	2N3055	9.60	180002	0.055	4.7 M ${ }^{\text {f }}$	63v	0.10
40161	0.50	741	0.28	134003	0.88	10 \%	${ }^{63 V}$	0.10
${ }^{40182}$	1.50	7400	0.16	W4004	8.06	$22 \mu \mathrm{f}$	25 V	0.09
BC107	0.10	355	0.48	W4005	0.87	$32 \mu \mathrm{~F}$	184	0.08
8С108	0.10	7430	0.17	m4008	0.07	47 رf	25 V	0.09
BC109	8.11	7490	0.42	m 4007	0.00	$47{ }^{\mu+}$	${ }^{33}$	0.12
147	0.08	72709	0.38	INA148	0.04	100μ	25	0.09
80148	8.88	72741	0.35	1N5401	0.13	220 \%	25 V	0.20
$\mathrm{BC}^{\text {c }} 148$	0.08			IM5404	0.15	$470{ }^{\prime \prime}$	35 V	0.25
BC207	0. 10			IM5408	0.15	1000 /f	18V	0.28
80131	0.60	Dindm		TW5407	0.15	1000 - ${ }^{\text {c }}$	50V	0.32
88132	0.50	0447	0.12	IM5408	0.18	$1000 \mu \mathrm{f}$	70V	0.38
80140	0.40	0a90	0.18	BzY88	0.18	2200 \%	S0V	0. 8

Resistors. Carbon film 5\% 2W-0.05 1W-0.04 $\frac{1}{2} \mathbf{W}-0.025$ $\ddagger W-0.02$
Also stocked: Brldge Rectifiers, Fuses, Fuse Holders, Leads and Cables, Plugs and Sockets, Microphones, Multimeters, Antex Soldering Irons. Solder, Speakers. 'Speaker Cabinsts and many other items all at low prices. Send for comprahensive stock list for full details. Quantity discounts cover post \& packing

D S M ELECTRONICS LIMITED

Unit 22, Low Mill Ind. Estate, Ravensthorpo.

Dewshury, W. Yorks.

Tol: Mirfield (0924) 495871

GAMMA ENTERPRISES for transistors, resistors, capacitors, ICs, hardware etc. Large SAE for Catalogue. 18 Landale Road, Peterhead, Aberdeenshire AB4 6QP.

BRAND NEW COMPONENTS BY RETURN Electrolytic Capacitors 18V, 25V, 50V-0.47. 1-0, 2.2. $4 \cdot 7$ and $10 \mathrm{mF} 5 \mathrm{p} ; 22.475 \frac{1}{2 p}(50 \mathrm{~V} 6 \mathrm{p}) ; 1007 \mathrm{p}(\overline{0} 0 \mathrm{~V} 8 \mathrm{p}): 2208 \mathrm{p}$ (50 V $1,000$ (50 V$\rangle 22 \mathrm{p}$.
Subminiature Beed Tantalum Electrolytice- $0.1,0.22,0.47$, $1 \cdot 0,2.2 \mathrm{at} 35 \mathrm{~V}, 4.7 / 25 \mathrm{~V} 11 \mathrm{p} ; 10 / 2 \mathrm{~V} \mathrm{~V} 13 \mathrm{p} ; 22 / 16 \mathrm{~V}, 47 / 6 \mathrm{~V}$ and $100 / 3 \mathrm{~V} 15 \mathrm{p}$

Ceramic E12 Series 68v 2\%-10pF to 47 pF Vertical to 330 pF 4 p .
Verical Mounting Ceramic Plate 50V-E12 series $22-$ 1,000pF and E6 geries $1,500-47,000 \mathrm{pF} 2 \mathrm{p}$. Polystyrane E12 Serie: 63V Horizental Mounting-10$1,000 \mathrm{pF} 3 \mathrm{p} ; 1,200-10,000 \mathrm{pF} 4 \mathrm{p}$.
 2.222 p . Mylar (Polyeater) Film 100V Vertical Mounting-0.001, $0.002,0.0053 p ; 0.01,0.024 p ; 0.04,0.054 \frac{1}{1 p}$. Ministure Resistori Highstab E12 Sorias 5%. Carbon Film
 to $10 \mathrm{M} \Omega \mathrm{q} \mathrm{p}$. to 10MR 2p. $1 N 4148$ p; iN4002 5p; 1N4006 7p; 1N4007 8p; BC107/8/9. BC147/8/9, BC 157/8/9, BF194, 197 9n.
Fuses 20 mm glass, 11 in glass, 1 in ceramic $2 \frac{1}{2 p}$.
Post 10 p (free over 44). Prices inclusive of VAT.
THE C.R. SUPPLY CO.
127 Chesterfield Road, Sheffield S8 ORM

240/12-0-12V. 100 mA , transformers with power supply P.C.B. 4 for $\mathbf{1 1 . 9 9}$. TO3 metal power transistors 35 for 11.99. U11. Push to make switches Red/Y/Blue 12 for £1.99. Please add 30p P\&P VAT included. JONES SUPPLIES, 588 Ashton Road, Oldham, Lancs. 0616529879.

P.C B.s Paxolin $9 \frac{1}{2}$ in $\times 7 \mathrm{In}, 50 \mathrm{p}$. 12in $\times 91 \mathrm{n}$. 70p. $17 \frac{1}{2}$ in $\times 9 \frac{1}{2} \mathrm{in}, £ 1.15$. Fibre glass double sided $6 \frac{1}{2}$ in x 6 in . 80p. $12 \mathrm{in} \times 6 \mathrm{in}, £ 1.20 .1074$ Series l.c.s on panel(s) 75p. Three assorted meters £2.40. T.V. Convergence panels, full of good gear, $£ 1.50$. S/Mica caps 100 assorted $75 p$. 300 Small components, Trans, Diodes £1.30. 7 lb Assorted components 22.95 . List 15p. Refundable. Post 20p under \&1. Insurance add 15p

2 Barnfield Crescent, Sale, Cheshire, M33 1NL.
TURN YOUR 8 URPLU8 capacitors, trausistors, etc., into cash. Contact COLES-HARDING \& CO., 103 south Brink, Wisbech, ('ambs. Tel. 09454188. Imnediate settlement.

SOLAR CELLS

$2.25^{\prime \prime}$ Dia. 250 mW at $0.5 \mathrm{~V}-68.00$
$1.00^{\prime \prime}$ Dia. $\quad 35 \mathrm{~mW}$ at $0.5 \mathrm{~V}-\mathbf{~} 4.50$
$5.3 \times 6.3 \mathrm{~mm} 2.5 \mathrm{~mW}$ at $0.5 \mathrm{~V}-\mathbb{1} .25$
Cells are supplied with leads attached and are, coated with varnish. Solar Cells bookler 75 p . Dat a sheets.
on above devices 20p. Mail Order only. Speedy service.

EDENCOMBE LIMITED
16 Princes Avenue, Kingsbury, London NW9 9JB

BOOKS AND PUBLICATIONS

800KS AT BARGAIN PRICES: Semiconductors, international dictionary in 7 languages, English-French-German-Italian-Portuguese-Russian-Spanish. 2 volumes (pub, price £15) £3. Freeman, Worked Examples in Alternating Current for Engineering Students f 1 . FrostSmith, The Theory and Design of Magnetic Amplifiers (pub. price £2) £1. Post Free. From: F. WEATHERHEAD \& SON LTD., 58 Kingsbury, Aylesbury, Bucks. Tel: 0296 23153.

8IMPLIFIED TV Repairs. Full repair instructions individual British sets $\mathbf{2 4 \cdot 5 0}$, request free circuit diagram. Stamp brings details unique. TV PCBLI-
CATIONS (Ausepe), ${ }^{6} 6$ Church Street, Larkhall, Lanarkshire.

FOR 8ALE

P.E. CH. RADIO CONTROL (Unfinished Project), Case, 5K sticks, P.C.B.s, etc. Offers. Tel: Christchurch 78339.
NEW I88UES of "1'ractical Electronics" available from April 1974 edition up to date. Price $65 p$ each. l'ost frce. $13 E L L$ 'S TELEVISION SERVICES, 190 kings Road, Harrogate, K. Yorkshire. Tel. (0423) 55885.

FOR SALE, PE November 1964 (No.1) to July 1971 complete £15. Buyer Collects. 01-524 5350 (London E4).

UNENCODED ASCII Keyboard with case and Hexadecimal keyboard with case. Offers 01-828 8695.
MOTOROLA MEK 6800D2 with power supply cassette extra ram. £240. WILMOT, Horsham 69835.
E.T.I. 4600 SYMTHESISER. Complete in case. OFFERS: Mr. Calderwood, 177 Duntocher Road, Clydebank, Scotland. 'Phone Duntocher 74451.

ORION AMPLIFIER. One channel working. Ideal spares or repair. £20. Practical Electronics Feb. '74, August' $76 £ 10$. Everyday Electronics Nov. '73 to date £15. Tel: 07917 5450.

BACK ISSUES of P.E. from 1971 to 1974. Phone 0533 413646.

WANTED

"RADIO AND TELEVISION Servicing". Books wanted from 1964-1965 edition up to date. $£ 3.00$ plus postage paid per copy by return of post BELL'S TELEVISION SER VICES, 190 Kings Road, Harrogate, N. Yorks. Telephone (0423) 55885.

WANTED-NEW VALVES, Transistors. Top Prices, popular types. KENINGTON s!PPLIES, (13) 367 Kensington street, Bradford 8, Yorkshire

EDUCATIONAL

COURSES-RADIO AMATEURS EXAMINATION. ('ity and Guilds. Pass this innportant examination, and obtain your Gs licence, with an RRC Home study coursc. For details of this, and other courses (COE, Professional Examinations etc) write or phone THE RAPII IEESUITS COLLEGE, Dept. J.S.1. Tuition House, London SW19 4DS, Tel. 01-94T 7272 (Carpers Advisory Service) or for a prospectus only ring 01-946 1102 . (24hr recording service).

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Fuli details from:

ICS SCHOOL OF ELECTRONICS
Dept. 272M Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

CITY \& GUILDS EXAMS
Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 272M Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 272M Intertext House, London SW8 4UJ Tel. 01-622 9911 (all hours) State if under 18

RADIO TECHNICIANS

Government Communicatlons Headquarters has vacancles for Radlo Technlcians. Appllcants should be 19 or over.

Standards required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radio and electronic test gear.
Duties cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer, and analytic machinery.
Qualifications: Candidates must hold either the City and Guilds Telecommunications Part 1 (Intermediate) Certificate or equivalent HM Forces qualifications.
Salary scale from $£ 2,230$ at 19 to $£ 2,905$ at 25 (highest pay on entry) rising to $£ 3,385$ with opportunity for advancement to higher grades up to $£ 3,780$ with a few posts carrying still higher salaries. Pay supplements total between $£ 443$ and $£ 522$ per annum.
Annual leave allowance is 4 weeks rising to 6 weeks after 27 years service. Opportunities for service overseas. Candidates must be UK residents.
Further particulars and application forms available from:
Recruitment Officer, Government Communications Headquarters Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ Tel.: Cheltenham (0242) 21491 (Ext. 2270)

SERVICE SHEETS

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc. 75 plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885

8ERVICE 8 HEET8 for Radio, Television, Tape Recorders, Sterco etc. With free Fault-finding guide, from 50p and s.A. $\%$ ('atalogue 25p and S.A.E. HAMLLTOS RAJJO, 47 Bohemia Road, St. Leonards, Nussex.

MISCELLANEOUS

SINTEL FOR BOOKS, CMOS AND COMPONENTS
6800 Booklet 1.80, MOT CMOS Databk 3.50, 6800 Appl Man $12.95,6800$ Prog Man 5.35, SC/MP Introkit Man 0.75 NS TTL Databk 2.10, RCA CMOS Databk 5.45, 8085 User's Man 5.15, 280 Ass Lang Prog Man 7.50, 280 CPU Man 5.60, Z80 CIC Spec 0.80, 280 P10 Man 3.30. Also a full ange of CMOS - send for free catalogue. MPUs: MEK 6800 D 2 205.20, MC6820 8.66, 280 30.72, 280A 39.94, 280CTC 13.82, 280 P 10 13.82, Mernories; 2102 -A 2.55, $2112 \mathrm{~A}-4$ 3.13. Displays: Type FND500 C.C. 1.40 , Type til321 C.A. 1.67, 5LIOI 5.29. Crystals: 32.768 KHz 3.78, MK50253 6.05. Soldercon Pins: $1000.54,1000$ 3.78, MK50253 6.05. Soldercon Pins: 1000.54 , 1000 4.32, 300 II.34. Free catalogue by return. All items Box 75B, 209 Cowley Road, Oxford. Tel. (0865) 49791

SYNTHESIZER. Case, Chassis, Keyboard, Contacts, DEWTRON Modules; 2 VCO-2, SHE-1A, OFT-1A, DEWTRON Modules; 2 VCO-2, SHE-1A, OFT-1A,
VCF, Pots, Switches, etc., Full Plans, worth $£ 250+$ Gift at $£ 100$, or best offer. T.U.A.C. $2^{+1} 100 \mathrm{~W}$. Amplifier, in verocase, perfect. 595 o.n.o. P.E. Mag. since March 73, offers? Ring Dick: WAKEFIELD (0924) 256949. After 7pm.

100 WATT GUITAR/PA/Music Amplifer superb treble bass overdrive slimiline solidstate 12 months guarantee unbeatable offer at E 39 . Money returned if not absolutely delighted within 7 days. Send TloN, 62 Thorncliffe Avenue Dukinfield Cheshire

DIRECT READING FREQUENCY METER

* Complete kit $£ 29.50$
* Linear scale
$\star 6$ ranges up to 100 KHz
- Accepts any waveform
* Easy to calibrate quarzz standard supplied on loan.

Send S.A.E. for details to: James Cooper (Elec.) Litd.
120 Castle Lane, Solihull, Warwickshire.

OUTSTANDING 2200 HI-FI FM TUNER. Full Coverage $88-$ 102 MHz . Varicap tuning. Latest silicon superhet design. Ideal for push button/manual tuning. Only 89.95 . Unique 3300 stereo class A amplifier, power 32 watts peak, complete stereo pre-amplifier, 2 power amplifiers, all inputs accepted. Only £10.95. 5500 Tuner amplifier, specification as above 2 . Only $\mathbf{1} 19.95$. All equipment built, tested \& guaranteed with full instructions (P\&P 50p). GREGG ELECTRONICS, 86-88 Parchmore Road, Thornton Heath, Surrey.

RECHARGEABLE BATTERIES

'AA' pencell (HP7) $£ 1.32$; sub 'C' $£ 1.64$; ' ${ }^{C}$ ' (HP11) £2.43; 'D' (HP2) £3.56; PP3 £4.98. Matching chargers $\mathrm{E6.33}$ each except PP3 charger £4.99. Chorging holders for $2,3,4,5$ or 6 pencells 50 p. volt inverters now ovailable.
Prices include VAT. Add 10% post, package and insurance orders under $£ 20.5 \%$ over $£ 20$. S.A.E. for full details plus 75 p for 'Nickel Cadmium Power' booklet. Mail orders to:

SANDWELL PLANT LTD. DEPT. P.E. 201 Monmouth Drive, Sutton Coldfield, West Midlands.
Cross, London, WC2.
ELECTRONIC COMPONENTS, Electrical fittings appliance spares, cables, hardware, tools, audio accessories, stylii and cartridges, TV spares etc. At discount prices. 30p for catalogue. No Callers. TROJAN ELECTRONICS, 3 Station Road, Shortlands, Bromiey, Kent.

NO MORE DING-DONG

Now get MUSIC from your DOOREELI - or your CAR. New programmable Chime announces you- or your surprised programmable Chime announces your or your suprised guests. 119 easy-to-change tunes or PROGRAM YOUR
OWN. Just needs spaaker and existing bell transformer or 12 V . All parts, instructions and programs, postage, money
back assurance, send $£ 17.90$ now.

CAMBRIDGE KITS

45 (FB). Old School Lane, Milton, Cambridge.
SUPERE INSTRUMENT CASES BY BAZELLI, manufactured from P. V.C. faced steel. Mundreds of people and industrial users are choosing the cases they require rom our vast range. Competitive prices start at a low gop, chassis punching facilities at very competitive prices. 400 models to choose from, free literature (stamp would be appreciated). BAZELLI, Dept. No. 23, St. Wilfrid's, Foundry Lane, Halton, Lancaster LA2 6LT.
INYENTORS. 'Proht from Your Invention'". Sources of Finance and other assistance. Details: Large N.A.E, DELTA (PE), 15 St . Mary Street, Sonthanip-
ton, Hants.

ONL Y KNOWN HIGH PERFORMANCE SCLID STATE CAMERA IN
KIT FORM. Also available factory assembled. Iseal for experimenters. industry security, education etc. Will work with most other CCTV equipment. *Eully guaranteed. *Completely self-contained, Writh our modulator vin connect vicon E99. Less Vidicon f.82,35. (Lens available as optional extra). SAE for info or phone your order through using your Barclay
or Access Card.
CROFTON ELECTRONICS LIMITED
Grosvenor Road, Twickenham, Middiesex. of 8911923

CARBON FILM RESISTORS 5% E12 $\ddagger W$, $\downarrow \mathrm{W}, \frac{1}{2} W$. Your mix, $90 \mathrm{p} / 100$. Metal Film $\frac{1}{2}$ W, $\{1.10 / 100$. P. \& P. 15p. Mail Order Only. CANDAR, 9 Galloway Close, Bletchley.

CABINET FITTINGS FOR

Stage Loudspeakers and Amplifier Cabs Frotcloths, Coverings, Strap \& Recess Handles, Feet, Castors, Jacks \& Sockens, Cannons, Bulgin 8 ways, Reverb Trays, Locks \& Hinges, Corners, Trim, Speaker Bolis etc.

Send $2 \times 9 p$ Stamps for samples and list.
ADAM HALE (P.E. SUPPLIES)
Unit Q, Starline Works, Grainger Road

BURGLAR ALARM equipment, safes, trade supplies. ASTRO-ALARMS, 25 Stockton Rd., Sunderland. Tyne and Wear. Tel.: 77825. Free list S.A.F.

TREASURE TRACER
MK III metal Localor

5 Varicep luning

- Brtean so bean certing motal locator kit
- Firned with Farciday thimad
- Firred wirh Farsuday ohiald
- Bpobker and ceron
- Prabulif asever ocil ecocombly
- Frie troneletor atreuil

- You only need matcering iren, serow
- As won on eevc-1 anc sac-2 TV

Gend stam
Hor reshot

HIGH ENERQY LITHIUN BATTERIES outperform conventional dry cells for less volume and weight. Remarkable voltage stability, long shelf life. S.A.E. for details: HIRST JACOBSON LTD. 91 Marylebone High Street, London W.l.

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only $\mathbf{5 9 . 7 5}$ plus 25p P. \& P.
'Brain-Freeze' 'em with a MINI-STROBE Kit, pocket-sized 'lightning flashes', vari-speed, for discos and parties. A mere $\mathbf{£ 4} \mathbf{4 0}$ plus 20 p P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multi-function modules. $£ 5$ each plus 20 p P. \& P.

LOTS MORE! Send 20p for lists. Prices include VAT. (Mail order U.K. only).

BOFFIN PROJECTS

Cunliffe Road, Stoneleigh Ewell, Surrey (P.E.)

CLEARING LABORATORY. Scopes, recorders, trstmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.s.U.s, sweep generators, test erpipment, etc. Te\}. Jower Hecding 236.

MAKE YOUR OWN PRINTED CIRCUITS

RUB-ON TRANSFERS - Starter pock (5 sheets, lines, pads, I.C. pads) £1.30, Single Sheets 27 p . FERRC CHLORIDE - 16 bogs $70 p$ (P. \& P. $40 p$.
SOLDERCON SOCKETS - 100 . rotes). PLASTIC SUPPORTS - 7 or 8 hole 6 quantity
S.A.E. lists somple. P. \& P. $15 p /$ order except*.
P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

LOW COST aluminium boxes with lids and screws. $3 \times 2 \times$
$142 p, 4 \times 3 \times 1 \frac{1}{2} 9 p, 4 \times 3 \times 256 p, 6 \times 4 \times 262 p, 6 \times 4$ $\times 372 \mathrm{p}, 8 \times 6 \times 297 \mathrm{p}, 8 \times 6 \times 3 \mathrm{f1.08}$. Prices include P \& P. HARRISON BROS. P.O. Box 55, Milton Road, Westeliff-on-Sea, Essex SS0 7LQ.

PRINTED CIRCUITS

and HARDWARE
Peodily available supplies of Constructors' hardware. Printod clrcuit boards, top quality for individual designs. Promp sarvice. Send 25p for cotalogue. From:

RAMAR CONSTRUCTOR SERYICES,
Mesons Roed, Strofford upon Avon, Warwicks. Tel. 4879.

STABILISED P.S.U.s. Large range of various voltages and currente, available cased or in chassis form. S.A.E. for full particulars and prices. A. BARTON, PE, Highbanks, Newport Road, Sandown, I.W.

THE FABULOUS D2 MICROPROCESSOR
 EVALUATION KIT FROM MOTOROLA.

Featuring *24 key keyboard *Seven segment display ${ }^{\circ}$ Cassette interface *Erom \& Ram Expandable Interface Capability Full Documentation 5 Volt power supply Required *One years FREE membership of The Amateur Computer Club with every purchase*. $£ 176+$ £1.50 P \& P + 8\% VAT.

ENAMELLED COPPER WIRE				
swg	1 lb	8 oz	402	202
10.19	2.60	1.40	. 66	. 35
20.29	2.80	1.60	. 85	. 65
30.34	3.00	1.70	. 95	. 70
35-40	3.35	1.90	1.10	. 79
40.43	4.50	2.50	1.90	1.25
44-46	5.00	3.00	2.10	1.63
47	8.00	5.00	3.00	1.76
48	15.00	9.00	6.00	3.30

Tinned Copper, Even Gauges $14-30 £ 3$ per lb . Multicore $60 / 40$ Solder 18SWG $£ 3.24$ per lb . Prices include P \& P and VAT.
SAE brings list of copper and resistance Wires.

THE SCIENTIFIC
 WIRE COMPANY
 PO Box 30 London E.4.
 Reg. Office, 22 Coningsby Gdns.

DO YOU UNDERSTAND I.C's and the workings of calculators? Then you can design and bulld a circuit for me. Will pay generously. Phone 01-328 7972. Or write to DAVID PARFITT, 40 Dunster Gardens, London NW6 for details.

ORDER FORM PLEASE WRITE IN block CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for $£$ \qquad
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

		-	

NAME
Send to: Classified Advertisement Manager
PRACTICAL ELECTRONICS
GMG, Classified Advertisements Dept., Room 2337,
ADDRESS.
King's Reach Tower, Stamford Street,
London 8E1 9LS.
Telephone 01-261 5846
Rate:
18p per word, minimum 12 words. Box No. 60p extra.
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

Abstract

GLASS FIBRE P.C.B.'s From your own tape, film or ink master. Send S.A.E. for quotation. PRACTICAL ELECTRONICS P.C.B.'s in glass fibre, tinned and drilled, Complete set of Radio Control boards, June to Aug. 76 £5.80p. Cross Hatch Generator $£ 2.85$ p. May 77 Burglar Alarm (1305-1) £1.68. June 77 Sports Centre (1306-1) and power supply p.c.b. £2.66. July 77 Digita Stopwatch (1307-1) E1. Oscilloscope trace doubler 95p. Earth Leakage C.B. (1307-2) £1,96p. Aug. 77 C/R Meter (1308-1) 97 p. Sept. 77 Freq. Counter Timer (1309-2/3) £3.98 set of two boards. Scope Probe (1309-1) 56p. Oct. 77 Digital Multimeter ($1401-1 / 2$) $£ 3.15$, set of two baords. Guitar Sustain (1410-3) 55p. Dec. '77 Car Burglấ Äform (14̄12-1) $88 p$. 128 Nate Sequence ($1412.2 / 3$) £2.71 set of two boards.

PROTO DESIGN 4 Highcliffe Way, Wickford, Essex SSII 8LA

BURGLAR ALARM GOODIES! 12 V siren $\mathbf{5 5 . 5 3 , 2 4 0 \mathrm { V } \text { siren }}$ $\mathbf{£ 9 . 6 1}$, plastic coated and lettered bell box $\mathbf{£ 5 . 2 5}$. Flush magnetic contact 60 p, surface 65 p. S.A.E. for price list. C.W.A.S. 11 Denbrook Walk, Bradford BD4 OQS. Tel: Bradford 682674. All prices fully inclusive.

WIRE THREADING KIT: Consists, W.D. Pencil, W.D. Board, W.D. Strips (Glue and Press Fix). Spare Spool of Wire, I.C. Leg Deformer, Comprehensive Instructions E7.51 nc. £2.60 (4 for £8.00), W.D. Strips $6^{\prime \prime}$ Glue Fix $£ 1.30 /$ pkt 10. Green, Blue, Copper (0.19 mm) 40p ea. Misc: Oryx Temp. Cont. Iron and Stand $£ 12,40$, Cutters $£ 2,84$. Tweezers 900 , Conductive Paint (3 g tube) £2.30.
Terms: 35 p P \& P/E 10 of goods then add 8% VAT. Overseas 1 extra. (Iron and Stand 54p P \& P).
ZARTRONIX. 115 Lian Lane, Haslemere. Surrey

LADDERS

LADDERS. Varnished $251 / 2 \mathrm{ft}$ extd. $£ 35.70$. Carr. $£ 2.40$. Leaflet. Immed. despatch. THE LADDER CENTRE (PEE3), Halesfield (r), Telford, Salop. Tel. 586644.

ELECTRICAL

LIST NO. 28 now ready - Stylii illustrated equivalents also Cartridges, Leads, etc., free for long SAE. FELSTEAD ELECTRONICS (PE), Longley Lane, Gatley, Cheadle, Cheshire SK 8 4EE.

YOUR OWN COMPUTER WHY NOT!

The Microprocessor Users Group can help you build it, with a regular magazine of circuits and software, plus free use of our software library, free technical and programming assistance and discounts on all components systems and services sold by us. For full details write with S.A.E. to Computabits Ltd, 41 Vincent Street, Yeovil, Somerset. Tel. (0935) 26522.

PLEASE
MENTION
PRACTICAL
ELECTRONICS WHEN REPLYING TO ADVERtISEMENTS

SOLID STATE DESIGN FOR THE RADIO AMATEUR

by A. R.R.L.
Price £6.10

IC TIMER COOKBOOK by W. $\begin{gathered}\text { Grice } £ 7.50 \\ \text { Jung }\end{gathered}$

 HI FI YEAR BOOK 1978 by IPC Price $£ 3.65$RADIO \& T.V. SERVICING 1976/77 MODELS by R, N. Wainwright Price $£ 10.25$ RADIO DATA REFERENCE BOOK by T. G. Giles MICROPROCESSORS \& SMALL DIGITAL COMPUTER SYSTEMS FOR ENGINEERS $\%$ SCIENTISTS by G. A. Korn Price $£ 19.00$ MASTER TRANSISTOR/IC SUBSTITUTION HANDBOOK by TAB BKS No. 970 Price $£ 5.60$ OP-AMP CIRCUIT DESIGN \& APPLICA. TIONS by J. Carr Price £3.85 INTRODUCTION TO MICROPROCESSORS by D. Aspinall Price £5.30
HOW TO BUILD \& USE ELECTRONIC DEVICES WITHOUT FRUSTRATION PANIC, MOUNTAINS OF MONEY, OR AN ENGINEERING DEGREE by S. A. Hoenig

* all prices include postage *

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-2| PRAED STREET

 LONDON W2 INPPhone 01-723 4185
Closed Saturday I p.m.
T.T.L. 74 I.C.'s By TEXAS, NATIONAL, I.T.T., FAIRCHILD etc

306 ST.'PAUL'S ROAD, HIGHBURY CORNER, LONDON N. 1

Telephone: 01-226 1489
Easy accese to Highbury via Victoria Line (London Transport) British Rail

CRESCENT RADIO LTD. MAIL ORDER DEPT 1 ST. MICHAELS TERRACE, WOOD GREEN, LONDON N22 4SJ PHONE: 888-4474	
meters enables us to their range at up to 15 Recommended Retail	
and	
MULTIMETER with hinged 4	
ALL PRICES INCLUOE POSTAGE-PLEASE ADD V.A.T. AS SHOWN-S.A.E 	

INDEX TO ADVERTISERS

U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

This kit is suitable for record players. tape play back. guitars. electrontc instruments or small P.A. systems. Two versions are
available. The mono kit uses 13 semiconductors. The stereo kit vailable. The mono kit uses 13 semiconductiors. The stereo kit
wses 22 semiconductors. Both kitit have printed front panel and volume, bass and treble controls. Spec. printed rout into 8 ohms. Winto 15 ohms. Aesponse $220 \mathrm{c} / \mathrm{s}$ to to $30 \mathrm{kc} / \mathrm{s}$, unput $100 \mathrm{M} . \mathrm{V}$. high
men $_{\text {mon }} £ 11 \cdot 25$

Easy to build. Full instructions supplied
ELAC
10 inch
£4.50
Ribbed cone. Large ceramic magnet $50-16,000 \mathrm{c} / \mathrm{s}$. Bass resonance $55 \mathrm{c} / \mathrm{s} .10 \mathrm{~W} .15 \mathrm{ohm}$ impedance.
RCS STEREO PRE-AMP KIT. All parts to build this pre-amp. Inputs for high. medium or low imp. per channeli, with volume
control and P.C. Board. Can be ganged to make multi-way mixers. E2.95 Post 35p

GOODMAN'S COMPACT 12in BASS WOOFER
Standard iain diameter fixing with cut sides 10 in square 14,000 gauss magnet 30 wat cps. Frequency response $30-8,000$ cp.s.
$£ 10.95$ each. Post $£ 1.00 .20$ Watt model 99.95 .

ADASTAA $3+3 W$ STEREO AMPLIFIER. 10 Transistor Push-Pull Ready built with volume, treble and bass controls. 240 V operated.
Size 8.3.6in. $£ 10.95$

HEATING ELEMENTS $\underset{\text { Thfin }}{\text { Ther }}$
Size $10{ }^{\prime} \cdot 8_{1}^{1} \frac{1}{2} \times \frac{1}{1}$ in Operating voltage 200250 V a C 250 W approx Suttable for Heating Pads. Food Warmers. Convector
Heaters etc Must be clamped between iwo sheets of metal or
asbes'os

ONLY 40p EACH (FOUR FOR E1.50) ALL POST PAID-Discounts for quantity
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$ SPEAKER SALE!
4 or 8 ohm
10W Model $\quad £ 7.95$
15W model $£ 10: 50$
20W model $£ 11.50$
TEAK VENEER HI-FI SPEAKER CABINETS
MODEL "A" $20 \times 13 \times 12 \mathrm{in}$
For 12 in . dia. or 10 in . speaker
Iflustrated $£ 14.50$ Post $£ 1.60$ MOQEL "B" BOOKSHELF
For 13×8 in. EMI £8.50 Post £1
Loudspeakers.
R.C.S. BOOKSHELF complete with speakers. Size $14 \times 9 \times 6 \mathrm{in}$. approx. Response 50 to 14.000 cps 6 wattrms 8 ohms £16 pair Post ACOUSTIC W W $\overline{A D D I N G} 18 \mathrm{in}$. wide, $20 \mathrm{p} t$

MONO PRE-AMPLIFIER

A mains operated solid state pre-amplifier unit designed to compliment amplifiers without low level phono and tape input stages. This free standing cabinet incorporates phono input and N.A.B. equalisation for tape heads. Power ON/OFF, PHONO/TAPE switches and pilot lamp are on the front panel; phono socket input and output are rear located. AC mains 240 V Size $6 \times 3 \frac{1}{2} \times 2 \mathrm{in}$.
£4.50 ea. - 2 for $\underset{\text { Post } 50 \text { p. }}{ }$

£15
30-14,500
$30-14,500 \mathrm{c} / \mathrm{s}$. 121 n double cone. Waoter
and iweter cone together with a BAKER ceramic magnet assembly having a flux of 145,000 Muxwelis. Bass resonance $40 \mathrm{c} / \mathrm{s}$. Rated 25 W.
NOTE 4 or 8 or 16 ohms avallable.

Module kit, $30-17,000 \mathrm{c} / \mathrm{s}$ with tweeter. crossover, batfle. 19×12 in, $£ 19$ instruction
16 ohms.

BAKER 150 WATT ALL PURPOSE transistor AMPLIFIER
Ideal tor Groups, Disco. PA and Musical Instruments. 4 inputs speech and music 4 way mixing Output
4/8/16ohm.a.c. Mains 240 V .
Separate treble and bass controls. NEW "DISCO 100 WATT" £59 ALL TRANSISTOR AMPLIFIER
2 inputs 2 outputs separate volume treble and Dass controls. Idea 2 inputs 2 outputs separate volume treble and Das
disco or slave amplifier chassis. Made by Jennings

PW SOUND TO LIGHT DISPLAY

GOODMANS CONE TWEETER

1.000 c 1 s 25 W B onm

EM1 sin mid range 25w e4.95.
Price $£ 3.25$
R.C.S. 100 WATT VALVE AMPLIFIER CHASSIS

R.C.S. POWER PACK KIT
board and assembly instructions
£3. 35
12 V 300 mA KIT. E3. 15 .
R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER—BRITISH MADE f 1.45
Ideal for Mike. Tape, P U., Guitar Battery $9-12 \mathrm{~V}$ or H. T line $200-300 \mathrm{~V}$ vaive or transistor equipment instructions supplied
ELECTRO MAGNETIC
PENDULUM MECHANISM
1.5 V d.c. operation over 300 hours continuous on SP2 battery. fully adjustable swing and speed Ideal displays, teaching electro

HEAVY METAL PLINTHS

Model A S Size $16 \times 13 \ddagger \times 7 / \pi$. $27-50$. Post $£ 130$ Exira Large Plinth and Cover. For transcription decks Size
20 a 17%. 9 in uncut board Callers only $£ 18 \cdot 50$. $20 \times 17 \%$ - 9 in uncut board Callers only $£ 18.50$.
TINTED PLASTIC COVERS ONLY
Sizes: 141
 ideal for record decks, tape decks, etc. Post 75 p.
BAKER HI-FI SPEAKERS HIGH QUALITY—BRITISH MADE SUPERB $£ 22$ 12in 25 watt
Quality loudspeaker, low cone resonance ensures clear reproduction of the deepest
bass Special copper drive and concentric tweeter cone full range reproduction with remarkable efficiency
register.
regıster.
Bass Res
Bass Resonance
Flux Density
Useful response
16.500 gauss
$20-17$

AUDITORIUM
12in 35 watt
A full range reproducer for high Electric Guitars. public address. speaker systems. electric organs. Ideal for
Bass Resonance
Flux Density
Useful response
AUDITORIUM
15.000 gauss
$25-16.000 \mathrm{c} / \mathrm{s}$
£26
15in 45 watt

BLANK ALUMINIUM CHASSIS, 18 s.w.g. $2 \frac{1}{2}$ in. sides, $6 \times 4 \mathrm{in} .95 \mathrm{p}$

$12 \times 3 \mathrm{in}$. £1.20; $16 \times 10 \mathrm{in} . £ 2.20 ; 12 \times 8 \mathrm{in} . \mathrm{E1.70}$
ALUMINIUMPANELSS, $18 \mathrm{~s}, \mathrm{w}, \mathrm{g}, 6 \times 4 \mathrm{in} 20 \mathrm{p} ; 8 \times 6 \mathrm{in} .40 \mathrm{p} ; 10 \times 7 \mathrm{in}$.
5ip; 12in. 80 p ; $16 \times 10 \mathrm{in} .95 \mathrm{p}$.

$4 \times 2 \times 2 \mathrm{in}, 55 \mathrm{sp;} 3 \times 2 \times 1 \mathrm{in}, 55 \mathrm{Sp} ; 6 \times 4 \times 2 \mathrm{in}, 65 \mathrm{p} ; 8 \times 6 \times 3 \mathrm{in}, \mathrm{K} 1$
$9 \times 4 \times 4 \mathrm{in}, 5120 ; 12 \times 4 \times 4 \mathrm{n}, 81.50 \times 2$
THE 'INSTANT"' BULK TAPE
ERASER A HEAD DEMK TAPE
Suitable for cassettes. and
II
Suitable for cassettes. and all sizes of
Leaflet SA.E $\quad £ 4.95 \begin{gathered}\mathrm{Pos} \\ 50 \mathrm{p}\end{gathered}$

[^0]: C IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Editorial Offices:
 Westover House.
 West Quay Road, Poole,
 Dorset BH15 1JG
 Phone: Editorial Poole 71191

