PRACTICAL

HLECTRONICE
 JANUARY 1978
 45p

 \title{Rlaythent
 \title{
Rlaythent

}

}

CONSTRUCTIONAL PROJECTS

RHYTHM GENERATOR by N. A. Cooke
A low cost unit capable of 12 basic rhythms 322
BATTERY CONDITION INDICATOR by P. Scargill
Tri-state car battery voltage monitor 330
BREADBOARDING SYSTEM by D. F. McGinley
A versatile and inexpensive d.i.y. breadboard
ELECTRONIC DIE by I.J. Dillworth
H format l.e.d. die with some unusual features 340
9 VOLT STABILISED P.S.U. by C. H. Banthorpe
An overload protected 9 V stabiliser for car cassette recorders etc
$\begin{array}{ll}\text { P.E. CHAMP-5 by R. W. Coles and B. Cullen } & \mathbf{3 5 2} \\ \text { The keyboard/display unit using a calculator }\end{array}$

GENERAL FEATURES

SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices 332
FAULT FINDING by G. Loveday
Introduction and component faults in simple circuits
INGENUITY UNLIMITED
Simple Lie Detector-Tape Recorder Peak Level Indicator-XY Burn Eliminator-
Model Train Speed Controller-Two Way/Two Wire Bell System-Touch Actuated
Generator-Timesetting For The MK50250
347

NEWS AND COMMENT

EDITORIAL321

STRICTLY INSTRUMENTAL by K. Lenton-Smith
Keyboard instruments at the British Musical Instrument Trade Fair 329
SPACEWATCH by Frank W. Hyde
Soyas/Salyut, Soviet Meteor 2, Intelstat 5 336
MARKET PLACE
Interesting new products 346
POINTS ARISING
Burglar Alarm-Frequency Counter/Timer
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office 358
$\begin{array}{ll}\text { CHROMA-CHIME KIT REVIEWED } & \mathbf{3 6 0}\end{array}$
The assemble prisfs
NEWS BRIEFS
GEC Computer For RNIB-Solar Water Heaters-IBC
INDUSTRY NOTEBOOK
What's happening inside industry 362
$\begin{array}{ll}\text { READOUT } & \mathbf{3 6 6} \\ \text { A selection of readers' letters }\end{array}$
BOOK REVIEWS
$\begin{array}{ll}\text { Selected new books we have received } & 366\end{array}$
Our February issue will be on sale Friday, 13 January, 1978
(for details of contents see page 351)

[^0]
NEW BOOK

chases In-Car Entertainment
 Whether you are stuck in the frustrating immobility of a traffic jam, or suffering

Author: Vivian Capel CONTENTS:
The Car Equipment scene mono, Stereo or Quad? Mobile Tape Players. The Cartridge Player. The Cassette Player. Cassette or Cartridge? Car Radios. Car Antennas. Interference Suppression. Installing the System. Trouble Shooting.
the boredom of a long car journey, you are sure to find facilities for in-car entertainment a great boon. Published information on the choice and installation of mobile audio equipment has not kept pace with the rapidly growing interest in the subject. This book fills the gap in a highly informative easy-to-read manner. Written by an expert, and illustrated with many attractive two-colour diagrams, it sets out the relative merits of mono, stereo and quad in the car, and describes cartridge and cassette players as well as giving helpful advice on choosing between the systems.
1977
128 pages
£2.50

LOOK More books for the enthusiast:

All above prices include V.A.T. Send 40 p for new fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request

M. DZIUBAS

158 Bradshawgate • Bolton • Lancs. BL2 1BA

STRIKE YOUR OWN BARGAIN WITH NO EXTBAS TO PAYFOR POSTAGE ORVAT. Stirling Saund

 Britain's most go-ahead module manufacturers

 Britain's most go-ahead module manufacturers
 CHOOSE THE ITEMS YOU WANT AND BUY THEM THE STIRLING SOUND BARGAIN WAY

 whether for a new system, to up-grade what you use now, to build a disco or P.A. outfit, a domestic intercom or any other device where an amplifier might be used. Whatever it be, there's a Stirling Sound power amp for it up to 100 watts R.M.S., together with a choice of stereo tone control/pre-amps. Build with Stirling Sound now! See what you save and hear how good it sounds.

Made in our own Essex
factory and sold direct to
you, the user.

INFO SHEETS - the new way to build your Stirling Sound Catalogue. LARGE $12 \frac{1}{2}$ P S.A.E. brings first set (A .4 size) covering items advertised here.

- UNIT ONE

Combined stereo pre-amp
\& active tone control unit.
Input sensitivity 50 mV for
200 mV out. $10 \cdot 16 \mathrm{~V}$ operation. Boss
$\pm 15 \mathrm{~dB}$ at 30 Hz ; Treble $\pm 15 \mathrm{~dB}$ at
10 KHz ; Balance control; Volume control. For
ceramic p.U., radio or tape inputs. WITH FREE

- CONTROL PANEL FASCIA. $£ 9.00$
- UNIT TWO

With control facilities similar to UNIT ONE but for magnetic cartridge input. Input sensitivity - 5 mV for 200 mV out (can be variod). WITH FREE CONTROL PANEL FASCIA £ 12.43 CONTROL PANEL FASCIA available separately 50 p
-SS. 100
Basic active stereo tone control module to provide $\pm 15 \mathrm{~dB}$ on bass at 30 Hz and on treble at 10 KHz . $\quad £ 3.00$

- 55.101

Stereo pre-amp suitable for ceramies, tape, radio, etc. $£ 2.75$

- SS. 102

Stereo pre-amp for mag. pick-ups.
£4.45

- F.M. STEREO DECODER, phase lock loop type, with LED indicator showing when a stereo transmission is being received.

WHEN ORDERING

All PRICES QUOTED INCLUDE V.A.T. AND GOODS ARE SENT POST FREE IN U.K. Owing to time between sending our ad. to this iournal and the time it appears, prices moy be subject to olteration withoul notice. E.\&O.E. ORDER AYY ACCESS OR BARCLAYCARD - SIMPLY LET US HAVE YOUR Number.

37 VANGUARD WAY, SHOEBURYNESS, ESSEX. Telephone (03708) 5543.
Shop - 220-224 West Rd., Westclift-on-Sea, Essex. Telephone Southend (0702) 351048.

POWER UNITS

Every Stirling Sound Power Unit is tested and guaranteed under working conditions before despatch. All units except SS .312 include a stabilised low voltage take-off point (13-15V) for pre-amp, tone control, radio tuner, etc. Outputs quoted minimal unloaded ratings.

AMPLIFIERS 3 to 100 WATTS R.M.S.
Reody assembled on P.C.Bs., tested and guaranteed. Easy to connect. With instructions. Outputs rated $\pm 1 \mathrm{~dB}$.
SS. 103 I.C. amp. 3 watts R.M.S. Using $\begin{array}{lll}55.103-3 & 20 \mathrm{~V} / 8 \mathrm{Q} \text { or } 14 \mathrm{~V} . / 4 \Omega \text {. Input } 100 \mathrm{~m} \\ \text { Stereo version of above. } 21 . \mathrm{C}\end{array}$
$\begin{array}{ll}\text { SS. } 105 & 5 \text { wans R.M.S. into } 3 \Omega \text { using } 13.5 \mathrm{~V} \text {. }\end{array}$ 5 waths R.M.S. into 3Ω using 13.5 V .
Sensitivity - 30 mV . THD -0.3%. Sensitivity
$31^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$
SS. 11010 watts R.M.S. into 4Ω using 24 V Sonstivity -60 mV . THD -0.3%. Sensitivity $3 t^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime} 60 \mathrm{mV}$. THD - 0.3%. $3 x^{\prime} \times 2 \times 1$. 20 watts R.M.S. into 4Ω using 34 V.
Sensitivity -80 mV . THD -0.3%. $3 \frac{1}{\prime \prime}^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$.
SS. 12525 watts R.M.S. into 8Ω using 50 V . Sensitivity - 140 mV . Distortion - Less than 0.05% inta $8 . S / \mathrm{N}$ better than 70 d 8 .
SS. $140 \quad 40$ watts R.M.S. into 4Ω using 45 V . Sensitivity - $\quad 300 \mathrm{mV}$. Distartion typically $0.1 \% .5^{\prime \prime} \times 3 \frac{1}{4}^{\prime \prime} \times 1 \frac{1}{4}$ ".
SS. $160 \quad 64$ watts R.M.S. inta 4Ω using 50 V . Sensitivity $-\quad 350 \mathrm{mV}$. Distortion typically $0.1 \% .5^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{} \times 1 \frac{1}{t^{\prime \prime}}$.
$\mathbf{C 2 . B 5}$
$\mathbf{C 5 . 0 0}$ 100 watts R.M.S. into 40 using
$70 \mathrm{~V} / 2 \mathrm{~A}$. Input sensitivity - 500 mV $70 \mathrm{~V} / 2 \mathrm{~A}$. Input sensitivity - 500 mV .
Distortion at half-power, typically Distortion at half-power, typically $0.1 \% .5^{\prime \prime} \times 3 \frac{1}{2} \times 1 \frac{1}{2}^{\prime \prime}$
HS. 160 Multi.finned heatsink far SS. 140 or SS. 160.
HS. 1100 Ditta far $\$ \$.1100$
$12 V / 1 A$
$18 V / 1 A$
$24 V / 1 A$
$34 V / 2 A$
$45 V / 2 A$
$50 V / 2 A$
$60 V / 2 A$
$70 V / 2 A$

SS.312 12V/1A £6.60
SS.318 18V/1A E6.95
SS. $324 \quad 24 \mathrm{~V} / 1 \mathrm{~A} \quad \mathrm{E} 7.65$
SS. $334 \quad$ 34V/2A £8.75
SS. $345 \quad 45 \mathrm{~V} / 2 \mathrm{~A} \quad \mathrm{E} 10.75$
$\begin{array}{lll}S S .350 & 50 \mathrm{~V} / 2 \mathrm{~A} & £ 11.75 \\ S S .360 & 60 \mathrm{~V} / 2 \mathrm{~A} & £ 12.75\end{array}$ SS. $370 \quad$ 70V/2A $\quad £ 14.75$

SS.310/50 Stabilised power supply unit with variable output from 10 V to $50 \mathrm{~V} / 2 \mathrm{~A}$. Short circuit protected
£ 17.75
SS.300 Power stabilising unit variable from 10 to $50 \mathrm{~V} / 8 \mathrm{~A}$ for adding to un-stabilised supply units
£5.50
Improved circuitry and performance standards. More to choose from.

${ }^{\text {B }} 103$-The Connoisseur's Professional Choice
 An exceptional transcription unit that performs to truly professional standards. Fitted with a new specially designed

arm, the BD 103 will form the start, or an integral part, of a system for those who never believed they could achieve this level of quality at a reasonable price, simply compare specifications. "Low voltage DC servo controlled motor with electronic speed variation on all 3 speeds - $33 \frac{1}{3}, 45$ and 78 rpm . "Externally housed power source, thereby eliminating hum fields, convertible for 120 or 230 v mains supply. *Belt drive with precision ground natural rubber moulded belt of round cross section. *Neon illuminated stroboscope underneath $12^{\prime \prime}$ aluminium turntable is viewed through a mirror in the platform; available with either 50 or 60 Hz stroboscope. *Pick-up arm automatically raises at the end of the playing section of the record. Automatic lift-off can be overridden for non-standard records. *Low friction pick-up bearings - unipivot for horizontal motion, knife edges for vertical motion - with a unique system of magnetic stabilization on the unipivot bearings. *Playing weight adjusted by sliding weight on arm tube, which is calibrated Additional counter weights provided for accommodation of a full range of cartridges Adjustable magnetic bias, calibrated for varying playing weights. *Inter-changeable lightweight plug in head shell accepts cartridges with $\frac{z^{\prime \prime}}{\frac{1}{2}}$ mounting centres. The turntable unit is solidly mounted on to a walnut plinth, which stands on a sprung and damped anti-vibration suspension system, thereby using maximum
 mass to improve performance, and fitted with a hinged acrylic dust cover with lid stay. Dimensions: $15^{\prime \prime} \times 18^{\prime \prime} \times 5 \frac{l^{\prime \prime}}{}$ An alternative version is available without the pick-up arm and lifting device, incorporating a larger walnut/ plastic cover, enabling most high quality pick-up arms to be used. Dimensions: $15^{\prime \prime} \times 18^{\prime \prime} \times 7^{\prime \prime}$. BD 103 Alternative unit without arm and lifting device

Minimum Order $£ 2$
Brand new full spec. and fully guaranteed devicesOrders despatched by return of pos -cheque-P/O with order
We are situated 2 min. from Watford Junction Station Our retail shop carries a comprehensive range of electronic and audio component parts and accessories Send 40 p for our latest catalogue.
Government, Colleges and Educational Institution orders accepted
Trade and export enquiries welcome.
THE COMPONENT CENTRE
7 Langley Road Wafford Herts WD3 2PR

Ooen Mon Sa: $8,30.530$ Closea ined

A new professional instrument case from
AMATEK

Size:
Panel 7" $\times 3$
Depth $6{ }^{\prime}$

AMATEK's new instrument Case Type PDS - professionally designed for you. Everything just drops into place. It's assembled in minutes - no dritling or filing.

CHECK THESE FEATURES

1. Front panel moulding ready pierced, with fixing brackets for up to 10 pushbutton switches (Doram etc); recessed fixing for full sized rotary switch; panel drilled for input sockets or terminals; blank adhesive label supplied, easily worked and lettered
2. Aluminium PVC-coated body with ready-punched back panel fuseholder and mains cord; holes easily blanked off for battery use.
3. Display aperture with bezel and filter accepts up to seven digits, or meter movement
With AMATEK's new PDS Case, range of hardware accessories, and display. DVM and counter modules, you can make a really professional instrument - and fast I
Case PDS with red filter and screw kit: $£ 8.50+30$ p postage $+8 \%$ VAT Display Module DB 4-500 (multiplexed, $3 \frac{1}{2}$ or 4 digits, 0.5 "): £6.20 $30 p$ postage $+8 \%$ VAT (state common anode or common cathode)
SAE brings illustrated leaflet and price list.

22 Bardsley Lane, Greenwich, London SE10 9RF. Phone Orders 01-853 0868. Access, Barclaycard. Visa accepted. Trade and OEM enquiries wetcome.

0

 Wilmslow

 Wilmslow Audio

THE firm for speakers!

SEND 10p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

```
            ACT AUDAX - BAKER
BOWERS & WILKINS CASTLE CELESTION
    CHARTWELL COLES DALESFORD
        DECCA EMI EAGLE ELAC - FANE
GAUSS - GOODMANS HELME I.M.F.
        ISOPHON - JR - JORDON WATTS
    KEF - LEAK - LOWTHER - McKENZIE
MONITOR AUDIO - PEERLESS - RADFORD
            RAM - RICHARD ALLAN - SEAS
    TANNOY VIDEOTONE WHARFEDALE
```


WILMSLOW AUDIO (Dept. P.E. 8)

 SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HFDiscount Hi-Fi, etc. at 5 Swan Street and 10 Swan Street

Tel.: Wilmslow 29599 for Speakers

Tel.: Wilmslow 26213 for $\mathrm{Hi}-\mathrm{Fi}$

CHINAGLIA DINO--ELECTRICAL AND ELECTRONIC TEST EQUIPMENT MANUFACTURERS

PRESENT THE

DOLOMITI

$20 k \Omega / V$ a.c. and d.c.

A NEW HIGH SENSITIVITY MULTIMETER WITH ALL THE FEATURES YOU WILL EVER NEED

Accuracy: D.C. ranges, $\pm 2.0 \%$. A.C. \& Ω ranges $\pm 2.5 \%$
39 ranges: d.c. $V .0 .150 \mathrm{mV}, 500 \mathrm{mV}$. $1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V} .50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 5 \mathrm{kV}$ d.c.l. $0.50 \mu \mathrm{~A} .500 \mu \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 0.5 \mathrm{~A}, 5 \mathrm{~A}:$ a.c. V, 5 V . $15 \mathrm{~V}, 50 \mathrm{~V}$ $150 \mathrm{~V}, 500 \mathrm{~V}, 1.5 \mathrm{kV}$ a a.c.l. $5 \mathrm{~mA}, 50 \mathrm{~mA}, 0.5 \mathrm{~A}, 5 \mathrm{~A} ; \mathrm{dB}-1010+65 \mathrm{in}$ 6 ranges: $\cap 0.05 \mathrm{k} \Omega$. $5 \mathrm{k} \Omega .50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega$. $5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$. PF 50 kPF ,
500 kpF . 500 kpF .
Automatic overload protection and high current range fusing.
Scale mirror and fine pointer for accuracy of reading. Single knob main range switching and all panel controls. C.E.I. Class 1 movement with sprung jewel bearings. Extended 92 mm scale length for extra clarity. Compact ABS case $125 \times 131 \times 37 \mathrm{~mm}$. Weight 750 g with batteries. Supplied complete with carrying case, fused leads, handbook and full 12 -month guarantee. Optional 30 kV d.c. probe available.

Meter $£ 45 \cdot 90$ incl. VAT ($£ 1$ P. \& P.)
30kV Probe $£ 12 \cdot 85$ incl. VAT
For details of this and the many other exciting instruments in the Chinaglia range. including multi-meters. component measuring, automotive and electronic instruments please write or telephone.

Join the Digital Revolution

Understand the latest

 developments in calculators, computers, watches, telephones, television, automotive instrumentation . . .Each of the 6 volumes of this self-instruction course measures $11 \frac{i}{i}$ in $\times 8 \frac{1}{4}$ in and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers. Design of Digital Systems.

Designer These courses were written so that you could teach yourself the theory Manager and application of digital logic. LearnEnthusiast
Scientist
Engineer Student

NEfrom Cambridge Learning Enterprises:

F́L'́'W CHARTS AND ALGORITHMS-use, design and layout; vital for computing, training, wall charts, etc. $\mathbf{\Sigma} 2$-95
plus 45 P P. \& P.
Guarantee-If you are not entirely satisfied your money will be refunded.
Cambridge Learning Enterprises, Unit 2, Rivermill Lodge, St. Ives. Cambs. PE17 4BR. Proprietors: Drayridge Ltd. Reg. Office: as above. Regd. in England No. 1328762.

To: Cambridge Learning Enterprises, FREEPOST, Unit 2,
Rivermill Lodge, St. Ives, Huntingdon, Cambs. PE17 4BR
*Please send me....set(s) of Design of Digital Systems at £8-00 each, P. \& P. included
*orset(s) of Digital Computer Logic and Electronics at £5-50 each, P. \& P. included
*or. . . .combined set(s) at $£ 12.00$ each, P. \& P. included
*or....the Algorithm Writers Guide at $£ 3 \cdot 40$ each, P. \& P included

Name
Address
*delete as applicable
No need to use a stamp-just print FREEPOST on the envelope

FIRST GRADE DEVICES BY MAJOR MFRRS

SPECIAL XMAS OFFER

TEXAS TTLs

7400.	12p	74123	48p	4009	p
7402.	12p	74141	59p	4011.	16p
7404.	15p	74145	60p	4013	35p
7408.	$16 p$	74151	50p	4016	$35 p$
7410	12p	74153	50p	4017	65p
7413	28p	74154	90p	4024	55p
7414.	54p	74157	52p	4046	100p
7420	12p	74160	65p	4049	35p
7430	12p	74164	80p	4510	80p
7441.	60p	74190	90p	4518	70p
7442	45p	74192	$75 p$	4528	$75 p$
7447	60p	74193	75 p		P
7474	25p	74196	70p		
7486	$34 p$ $25 p$	TEXAS OIL SOCKETS			
7490	30p	14 pin	$11 p$	24 pin	24p
7493.	30p	16 pin	12p	40 pin	43p
7496	55p				
74121	26p	AY-5-1	3 P UA		£5

MINIMUM ORDER £ 10 EXC. VAT
DISCOUNTS 10% on order over $£ 50$ 20% on order over $£ 100$

OFFER CLOSES ON 21 / $1 / 1978$
Please add VAT to total
MAIL
TECHNOMATIC LTD (PE)
Please add Ins. + P \& P 54p

ORDER

 54 SANDHURST ROADONLY LONDON NW9 9LR

Please send SAE for complete offer lists. We stress the fact that we are totally quality conscious and do not offer sub-standard or rebranded products for sale.

STAR OFFERS

7418 pin DIL	
5558 pin DIL	25p
72314 pin DIL	30p
LM309K TO3	110
TIL209 LED	10
2102-2 RAM	125p

\author{

1 Am	Posit		1 Am	Negative
5 V	7805	85p	5 V	$7905110 p$
12V.	7812	85p	12 V	$7912110 p$
15 V	7815	85p	15 V	7915110 p
$\begin{aligned} & 100 \mathrm{mp} \\ & 5 \mathrm{~V}, 12 \end{aligned}$	$\begin{aligned} & \text { Ositiv } \\ & 15 \mathrm{~V} \end{aligned}$	- TO		35p

}

301A	28p
748	28p
LM380N	$75 p$
TBA800	80p
TBAB10S	85p

CRESCENT RADIO LTD. MAIL ORDER DEPT
1 ST. MICHAELS TERRACE, WOOD GREEN, LONDON N22 4SJ
PHONE: 888-4474

POPULAR MIGH POW̄ER AMPLIFIER 70 watts R.M.S continuous into 8 ohms. Ready to use. S.A.E. for further details. Size: $540 \mathrm{~mm} \times 250 \mathrm{~mm}$ $\times 145 \mathrm{~mm}$ approx. Cost: $\quad £ 71+8 \%$ VAT

CLEAR PLASTIC PANEL METERS (FULL SCALE)
Size: $59 \times 46 \times 35 \mathrm{~mm}$. These meters requir ME $6=0-50 \mu \mathrm{~A} \quad$ ME $13=0-100 \mathrm{~mA}$ ME $7=0-100 \mu \mathrm{~A} \quad$ ME \quad ME $13=0-500 \mathrm{~mA}$ $\begin{array}{ll}\text { ME } 8=0-500 \mu \mathrm{~A} \\ \text { ME } & =0-1 \mathrm{~mA} \quad M E 16=0-50 \mathrm{VDC}\end{array}$ ME $10=0-5 \mathrm{~mA} \quad$ ME $17=0-300 \mathrm{VAC}$ ME11 $=0-10 \mathrm{~mA} \quad$ ME $18=$ 'VUMETER ME12 $=0-50 \mathrm{~mA}$
Our Price: $\mathbf{~} 5.00+8 \%$ V.A.T
'CRESCENT" 100 WATT R.M.S AMPLIFIER KIT
This kit consists of three modules power amp. module, pre-amp module and power supply module including mains transformer Requires no technical knowledge as full instructions are supplied. S.A.E. or further details
Limited Stock-Buy Now While Stocks Last. Cost: $£ 30+8 \%$ VAT
Stocks Last. Cost: $£ 30+8 \%$ VAT. 10 watt at $£ 4 \cdot 75$ ALL PRICES INCLUDE POSTAGE-PLEASE ADD V.A.T. AS SHOWN-S.A.E WITH ALL ENQUIRIES PLEASE
Personal callers welcome at: 164-166 High Road, Wood Green, N22. Phone: 8883206 and 13 South Mall, Edmonton Ng. Phone: 8031685

EFFECTS PROJECTOR " 150° (150 watt)
Ideal for disco work, this versatile machine takes a range of accessories and is of a sturdy
 metal construction. Comes complete with bulb and 6 in . Liquid Wheel Ready to use.

A bargain at £34
3 KILOWATT PSYCHEDELIC LIGHT CONTROL UNIT (1000 Waft per channel)
Three channel: Bass, Middle, Treble The input of this unit is connected to the loudspeaker terminals of an amplifier and the required lighting is connected to the output terminals of the unit thus enabling you to produce a fascinating sound to ligh display.
Full instructions supplied or S.A.E for details.

Fantastic Value at $\mathbf{\Sigma 2 0 . 0 0}$
$+8 \%$ V.A.T
LOUDSPEAKER SELECTION

+ $12 \frac{1}{2} \%$ V.A.T.
$2 \frac{1}{4} \mathrm{in}, 8,40$, and 75 ohm at $\varepsilon 1 \cdot 10$ (please slate which impedance is required)
5 in .8 ohm Ceramic at $£ 1 \cdot \mathbf{7 0}$
8in. Goodmans "Audiom 8PA" 8 ohm 15W £5.26.
10in. "ELAC" Dual Cone 8 ohm

MAIL ORDER PRICES:
(including VAT and P and P)

Bit type 20 fitted as standard).

AIT SIZEs:
BIT SIZES
$19(1.5 \mathrm{~mm}) 20(3.0 \mathrm{~mm})$ $21(4.5 \mathrm{~mm}) \quad 22(6.0 \mathrm{~mm})$
Trade Enquiries Welcome

86-88 UNION ST • PLYMOUTH Tel $0752 \cdot 65011$

LOOK! Here's how you master electronics

the practical way

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

I Build an oscilloscope

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no loy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents, a very large saving over buying a similar piece of essential equipment.

2 Read, draw and understand circuit diagrams
In a short time ycu will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuits
 We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio. t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free-colour brochure and full details of enrolment.
British National Radio \& Electronic School
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

SAXON ENTERTAINMENTS LTD THE PIONEERS OF MODULAR DISCO/P.A. EQUIPMENT NOW OFFER PACKAGE DEALS AT INCOMPARABLE PRICES

CENTAUR STEREO DISCOS

C/W LIGHT SHOW \& DISPLAY, TWIN SPEAKERS \& LEADS

Standard 100W $£ 225$ or Reposisif 28.30
 12 Months @ $£ 21.18$ or 24 Months e $£ 11.81$

Super 200W £275 ${ }^{\text {o Deopsifif }} \mathbf{f 3 2 . 8 0}$

12 Months @ £25.89 or 24 Months @ $£ 14.44$

GXL 200W (minn in £349 or Deposit $£ 42.72$
 12 Months © $£ 32.49$ or 24 Months © $£ 18.11$

COMPLETE STEREO
ROADSHOWS - BUILT IN
SOUND TO LIGHT /SEQUENCER \& DISPLAY

TWO YEAR GUARANTEE

illustration shows GXL Centaur System
These systems feature full mixing for two decks tape \& mic with monitoring faculities - override and are supplied complete with saund to light + sequencer, display, speaker leads etc

JUST PLUG IN AND GO!

BSR Decks - 17,000 Line Loudspeakers - Rugged Aluminium Trimmed Cabinets - Cue Light And Phones Output - Slave Output - Deck Lights/Motor Starts (GXL)

MINI DISCO 100 WATT MONO SYSTEM $£ 159.50_{\text {opossifif22.66 }}$
 12 Months © £14.60 or 24 Months e $£ 8.14$
 Similar in appearance to the Centaur and complete with loudspeakers and leads.
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Headphones to suit any system</td>
<td style="text-align: right; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$\mathbf{£ 7 . 5 0}$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">EM507 Electret Mic</td>
<td style="text-align: right; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$£ 15.00$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">ECM 81 Electret Mic</td>
<td style="text-align: right; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$£ 19.95$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Boom Stand</td>
<td style="text-align: right; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$£ 15.50$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Carriage on all disco systems</td>
<td style="text-align: right; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$£ 10.00$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">(Included in H.P. Prices)</td>
<td style="text-align: right; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Headphones to suit any system | $\mathbf{£ 7 . 5 0}$ |
| :--- | ---: |
| EM507 Electret Mic | $£ 15.00$ |
| ECM 81 Electret Mic | $£ 19.95$ |
| Boom Stand | $£ 15.50$ |
| Carriage on all disco systems | $£ 10.00$ |
| (Included in H.P. Prices) | |</table-markdown></div>

D.I.Y. MODULES FOR ALL DISCO/P.A. AMPLIFIERS

DISCO MIXERS - COMPLETE OR MODULAR

| | | MONO OR STEREO |
| :--- | :--- | :--- | :--- |
| WITH AUTOFADE | | |

COMPLETE LIGHTING CONTROL AT YOUR FINGERTIPS!

Lighting Control Unit Mk II
4 kW Sequencer + Sound Light + Dimmers + Automatic Level Integrated Logic Module $£ 32.50$ Circuitry Panel £2.95

Three Channel Sound to Light $£ 26.75$
3kW 1-240W input - master Module $£ 19.75$
Plus channel controls Panel $£ 2.95$

SPARES \& ACCESSORIES - LOUDSPEAKERS \& CABINETS

Rope Lights- Red or Multicolour			
	Rope Light Controller for up to 120 + $£ 30$		
Fuzz lights-Red/Blue/Yellow/Green £22.80			
Magnetic Cartridge Equalis			
100 Watt Chassis Loudspeakers 12"			
Empty Loudspeaker Cabinets: Small $12^{\prime \prime} £ 1$ Large $2 \times 12^{\prime \prime} £ 2$			
Projector lamps: All $167 £ 2.90$. M6 $£ 5.65$. 100W Spot lamps Red/Blue/Vellow/Green £ 1.50 eaf f 13.50 for 10 Spot banks: 3 way $£ 7.506$ way $£ 11.50$			
12 way £ 18.50			

Melos Echo Chamber	$\mathbf{£ 5 9 . 0 0}$
Headphones	
Sirens: English Police, USA Police,	$\mathbf{£ 7 . 5 0}$
Destroyer	$£ 8.90$

STROBE UNITS

Pro-Strobe 4-6 Joules $£ 37.50$ Super Strobe 2-3 Joules $£ 22.50$ (Pro-Strobe has external trigger facility).

PROJECTORS - PLUTO -
CHOICE OF WHEEL/CASSETTE

Pl50 150W Tungsten	$£ 37.50$	Liquid wheels	$£ 7.50$
P500 100W Q.I.	$£ 79.50$	Cassettes	$£ 8.00$
P500 250W Q.I.	$£ 89.50$	Picture wheels from	$£ 5.00$
			Wide choice available)

PIEZO HORNS only $£ 7.50$ YES! - only $£ 7.50$
(As fitted to our package PA system) Direct from Motorola Inc., USA at an UNBEATABLE PRICE
No crossover required $4 \mathrm{kHz}-30 \mathrm{kHz}$ rated $75 \mathrm{~W} / 8$ ohms $150 \mathrm{~W} / 4$ ohms use two per 100 W amplifier - Full instructions supplied.

Complete with PIEZO horn columns fitted with 100 watt units (100 watt system illustrated)

100 Watt £145 Deposit $£ 19.70$

200 Watt £225

Deposit $£ 28.80$
12 Menths á E21.18
29 Months E [11.81

These systems come complete with a Four Channel Amplifier, Leads etc. The 200 Watt system features Twin 100 Watt drive units in each cabinet.

ALSO ILLUSTRATED:
Melos Echo Unit $£ 59.00$ Boom Stand $£ 15.50$ Electre ${ }^{+}$ Mic ECM81 £19.95* Floor Stands $£ 9.90$ EM507 Mic* $£ 15.00$ Phasers $£ 19.80$
D.I.Y. MODULES FOR P.A. SYSTEMS Monoor, stereo

Make your own mixer - Mono/Stereo - up to 20 channels with these, easy to wire modules - Available as PCB's or assembled on panels.

Input Stages
Up to 20
Mono
PCB
£5.95
Mono (/W panel etc.
£8.95
${ }_{\substack{\text { Sleefe } \\ \text { PCB }}} £ 9.50$
Stereo (/W
£12.50
Mixer/Monitor
${ }_{\substack{\text { Mene } \\ \text { Me }}} £ 5.95$
Mono C/W
ponel etc.
£8.95
(One only
per system
${ }_{\substack{\text { Slete0 } \\ \text { pe8 }}} \mathbf{£ 9 . 5 0}$
Stereo (/W panel etc.
£12.50
Power supply for
up to 20 chonnels
£9.50
Blonk
ponel
£1.00

Send for free brochure for complete specification
Saxon AP100 Amplifier $£ 45$
Four mixing inputs - 100 W into 4 ohms Wide range bass \& treble controls + master - Twin outputs
Saxon 150 Amplifier $£ 59$
Four mixing inputs - 100 W into 8 ohms
 150 W into 4 ohms - wide range bass
\& treble controls + master
All prices subject to 8% VAT except where asterisked ($12 \frac{1}{2} \%$) Shop premises open Mon to Sat $9 \mathrm{am} \cdot 5 \mathrm{pm}$ lunch 12.30 - 1.30 pm Mail order dept open Mon to Fri $10 \mathrm{am}-4 \mathrm{pm}$ - Ring 01.6846385

TO ORDER

ByPost Send your requirements with cheque crossed P.O. or 60 p COD charge to address below or iust send your Access or Barclay Card Number. NOT THE CARD
By Phone You may order COD. Access or Barclay Card
Post \& Patking 50 p on all orders except where stated.
SAXON ENTERTAINMENTS LTD.
327 Whitehorse Road, Croydon, Surrey:
All Enquiries Large SAE Please Brochures on request:

Pribuitame Capacitive discharge electronic ignition kit

VOTED BEST

('POPULAR
MOTOALN MOTORING
MAGAZINE CCT. 74

* Smoother running
* Instant all-weather starting
* Continual peak performance
* Longer coil/battery/plug life
* Improved acceleration/top speeds
* Optimum fuel consumption

Sparkrite Mk. 2 is a high performance, high quality capacituve discharge, electronic ignition systern in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $15 / 30$ mins.
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old or even badly pitted points and is not dependent upon the dwell tirne of the contact breakers for recharging the system. Sparkrite incorporates a short circuit protected inverter which eliminates the probiems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Ready drilled pressed steel case coated in matt black epoxy resin. ready drilled base and heat-sink, top quality 5 year guaranteed transforme and components, cables, coil conneciors, printed circuit board, nuts bolts, silicon grease, full instructions to make the k it negative or positive earth. and 10 page installation inspructions.

OPTIONAL EXTRAS

Electronic/conventional ignition switch
Gives instant changeover from "Sparkrite" ignition to conventional ignition for performance comparisons, static timing etc., and will also switch the ignition off completely as a security device, includes switch connectors, mounting bracket and instructions. Cables excluded Also available RPM limiting control for dashboard mounting (fitted in case on ready built unit)

CALLERS WELCOME. For Crypton tuning and fitting service 'phone (0922) 33008
PRICES INCLUDE VAT, POST AND PACKING Improve performance \& economy NOW NOTE-Vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachometer pulse slave unit. Price $£ 3 \cdot 35$ inc. VAT, post \& packing

ELECTRONICS DESIGN AssOCIATES, 22 Beth St.. Waleall, WS1 3DE
Quick installation no engine modification required

Electronics Design Associates, Dept. PE1 82 Bath Street, Walsall, WS 1 3DE. Phone: (0922) 33652

58Name

THE 'NUTS \& BOLTS' OF THOSE PROJECTS

TRANSFORMERS			
MINIATURE MAINS Primary 240 V with two independent secondary windings			
No.			Price
2024	MT280 0-6	RMS	£1.30*
2025	MT 150 0-12	2 VRMS	£1.30*
MINIATURE MAINS Primary 240 V			
No.	Seco		Price
2021	$6 \mathrm{~V}-0-6$		$90{ }^{\text {P }}$
2022	9 V -0-9		$90{ }^{\text {p }}$
2023	$12 \mathrm{~V}-\mathrm{O}-1$	mA	$95 p$ *
1 AMP MAINS Primary 240 V			
	Secondary	Price	
2026	$6 \mathrm{~V}-0-6 \mathrm{~V} 1 \mathrm{amp}$	£2.70*	P. \& P. 30p
2027	$9 \mathrm{~V}-0-9 \mathrm{~V} 1 \mathrm{amp}$	f2.20*	P. \& P. 30p
2028	12V-0-12V 1 amp	¢2.60*	P. \& P. 30 p
2029	$15 \mathrm{~V}-0.15 \mathrm{~V} 1 \mathrm{amp}$	£2.75**	P. \& P. 30p
2030	30V-0-30V1amp	£3.45*	P. \& P. 30p
STANDARD MAINS Primary 240 V Multi-tapped secondary mains transformers available in $\frac{1}{2}$ amp. 1 amp and 2 amp current rating. Secondary taps are 0.19-25-33-40-50V.			
Voltages available by use of taps: 4. 7. 8, 10, 14, 15, 17, 19, 25. 31, 33. 40. 50, 25-0-25V			
$\begin{aligned} & \text { No } \\ & 2031 \\ & 2032 \\ & 2033 \end{aligned}$	Rating	Price	
	$\frac{1}{2} \mathrm{amp}$	£3.42*	P. \& P. 30 p
	1 amp	£4.40*	P. \& P. 50p
	2 amp	£5.45*	P. \& P. 85p

AUDIO LEADS

S1275 pin DIN plug to 4 phono plugs length $1.5 \mathrm{~m} \quad £ 1.30^{*}$ S1285 pin DIN plug to 5 pin DIN socket length $1.5 \mathrm{~m} £ 1.05^{*}$ S1295 pin DIN plug to 5 pin DIN plug mirror image S1302 pin DIN plug to 2 pin DIN socket length $5 \mathrm{~m} \quad \mathbf{6 8 p}{ }^{\circ}$ S131 5 pin DIN plug to 3 pin DIN plug 1 \& 4 and 3 \& 5 length 1.5 m
S 1322 pin DIN plug to 2 pin DIN socket length $10 \mathrm{~m} \quad 98 p^{*}$ S1335 pin DIN plug to phono plugs connected to pins 385 length 1.5 m
S1345 pin DIN plug to 2 phono sockets connected to pins 3 \& 5 length $23 \mathrm{~cm} 68 \mathbf{p}^{\circ}$ S123 5 pin DIN socket to 2 phono plugs connected to pin
$3 \& 5$ length 23 cm
$68 p$ S136 Coiled stereo headphones extension cord extends to 7 m S124 3 pin DIN plug to 3 pin DIN plug length $1.5 \mathrm{~m} \quad 75 p^{*}$ S125 5 pin DIN plug to 5 pin DIN plug length $1.5 \mathrm{~m} \quad \mathbf{7 5 p}{ }^{*}$ $\$ 1133.5 \mathrm{~mm}$ Jack to 35 mm Jack length $1.5 \mathrm{~m} \quad 75 p^{*}$ S 1145 pin DIN plug to 3.5 mm Jack connected to pins 38 S 1155 pin DIN plug to 3.5 Jack connected to pins $8 \mathbf{8 p}^{\mathbf{8}}$ length 15 m 85p

G.P. SWITCHING TRANS.

TO18 SIM. TO 2N 706/8
BSY/27/28/95A. All useable devices. No open and shorts ALSO AVAILABLE IN PNP similar to 2 N 2906 . 8 CY 70 . 20 for $50 \mathrm{p}, 50$ for $\mathrm{f} 1,100$ for $£ 1.80,500$ for $\mathrm{£8}, 1,000$ for E 14 .

When ordering please state NPN or PNP.

SIL G.P. DIODES

300 mW 40 PJV (min) SUB-MIN FULLY TESTED
$\mathbf{3 0}$ for 50p, 100 for $\mathbf{£ 1 . 5 0 , 5 0 0}$ for $\mathbf{5 5}, \mathbf{1 , 0 0 0}$ for $\mathbf{£ 8}$

L.E.D.s				
Type	Size	Order No.	Colour	Price
til209	0.125in	1501	RED	12p
TIL2 11	$0.125 i n$	1502	GREEN	25p
TIL213	0.125 in	1503	Yellow	25p
FLVI15	0.2 in	1504	RED	12p
FLV310	02 in	1505	GREEN	$25 p$
FLV410	$0 \cdot 2 \mathrm{in}$	1506	YELLOW	25p
2nd Grade L.E.D.s				
A pack of 10 standard sizes and colours which fail to perform to their very rigid specification, but which are ideal for experiments. Order No. 1507 $\text { fo. } 90$				
L.E.D.CLIPS				
Pack of 5	Size 0.125		No. $1 / 0.125$	Price $15 p$
Pack of 5	0.2 in		/0. 2	13p

BA BOLTS - packs of BA threaded cadmium-plated screws, slotted cheese head.
Supplied in multiples of 100

Type	No.	Price	Type	No	Price
lin OBA	839	¢1.50	1 in 4BA	845	f0.51
$\frac{1}{2}$ in 08A	840	¢0.83	$\frac{1}{2}$ in 48A	846	£0.38
1 in 2BA	842	f0.69	$\frac{1}{4}$ in 48A	847	f0. 33
$\frac{1}{2}$ in 2BA	843	c0.54	1 in 6BA	848	¢0.50
$\frac{1}{4}$ in 2BA	844	¢0.63	$\frac{1}{2}$ in 6BA	849	¢0.30
tin 6BA 850 £0.33					
BA NUTS - packs of cadmium-plated full nuts in multiples of					
100					
Type	No.	Price	Type	No,	Price
08A	855	f0.90	48A	857	f0.42
28A	855	£0.60	6BA	858	£0.36
BA WASHERS - flat cadmium-ptated plain stampe washers supplied in multiples of 100					
Type	No.	Price	Type	No.	Price
OBA	859	¢0.20	48A	861	c0.15
2BA	860	¢0.15	6BA	862	f0.12
SOLDER TAGS - hot tinned supplied in multiples of 100					
Type	No.	Price	Type	No.	Price
08A	851	c0.42	4BA	853	£0.30
28A	852	f0.36	6BA	854	£0.30

CASES

INSTRUMENT CASES. in two sections, vinyl covered top and sides, aluminium bottom, front and back

No.	Length	Width	Height	Price
155	8 in	51 in	2 in	¢1.40*
156	11 in	6 in	3 in	¢1.80*
157	6 in	4娄in	13 ${ }_{\text {a }}$ in	£1.25*
158	6 in	5 $\frac{1}{4}$ in	$2 \frac{1}{2}$ in	£1.60*
ALUMINIUM BOXES. Made from bright all., folded construction, each box complete with half inch deep lid and				
No.	Length	Width	Height	Price
159	51 in	2tin	$1 \frac{1}{2}$ in	62p*
160	4 in	4 in	$1 \frac{1}{2}$ in	$62 p^{*}$
161	4 in	219in	$1 \frac{1}{2} \mathrm{in}$	$62 p^{*}$
162	$5 \frac{1}{6}$ in	4 in	$1 \frac{1}{2}$	74p ${ }^{\circ}$
163	4 in	$2 \frac{1}{2}$ in	2 in	$64{ }^{\circ}$
164	3 in	2 in	1 in	44p*
165	7 in	5 in	$2 \frac{1}{2}$ in	£1.04*
166	8 B	6 in	3 in	f1.32*
167	6 \% ${ }^{\text {n }}$	4 in	2 in	$86 p^{*}$

BRIDGE RECTIFIERS
SILICON 1 amp

Type	Order No.
50V RMS	BR $1 / 50$
100V RMS	BR $1 / 100$
200V RMS	BR $1 / 200$
400V RMS	BR $1 / 400$
SILICON 2 amp	
50 V RMS	BR $2 / 50$
100VRMS	BR $2 / 100$
200V RMS	BR $2 / 200$
400V RMS	BR $2 / 400$
1000 RMS	BR $2 / 1000$

Price
$\mathbf{£ 0 . 2 8}$
$\mathbf{£ 0 . 3 0}$
$\mathbf{£ 0 . 3 2}$
$\mathbf{£ 0 . 3 6}$

$\mathbf{£ 0 . 4 5}$
$\mathbf{£ 0 . 4 8}$
$\mathbf{£ 0 . 5 2}$
$\mathbf{£ 0 . 5 8}$
$\mathbf{f 0 . 6 8}$

FUSE HOLDERS AND FUSES
Description
$20 \mathrm{~mm} \times 5 \mathrm{~mm}$ chassis mounting $1 \frac{1}{6}$ in \times fin chassis mounting 1 tin car inline type
Panel mounting 20 mm
Panel mounting $1 \frac{\mathrm{~T}}{\mathrm{in}}$
QUICK BLOW 20 mm

QUICK BLOW 20 mm (
Type	No.	Type	No.	Type	No.
150 mA	611	1 A	615	3 A	619
250 mA	612	1.5 A	616	4 A	620
550 mA	613	2 A	617	54	621
800mA	614	2.5A	618	All 5p	ch
ANTI-SURGE $\mathbf{2 0 m m}$					
Type	No.	Type	No.	Type	No.
100 mA	622	1 A	625	2.5 A	628
250 mA	623	2 A	626	$315 A$	629
500 mA	624	1.5 A	627	5A	630
All 7peach					
QUICK BLOW 1 ¢ ${ }^{\text {in }}$					
Type	No.	Type	No.	Type	No.
250 mA	631	500 mA	632	800 mA	634
All 7p each					
Type	No.	Type	No.	Type	No.
1 A	635	2-5A	638	4A	641
1.5A	636	3 A	639	5A	642
2A	637	All 6p each			

Just a jalection from our SEE OUR 1977 CATALOGUE 126 pages packed with ORDER NÓW ONLY 50p pius $15 p p . \& p$.

SWITCHES

Description	No		Price		
DPDT miniature slide	1973		¢0.10*		
DPDT standard slide	1974		£0.12*		
Toggle switch SPST			£0.33*		
Toggle switch DPDT					
1 amp 250 V a.c.	1976		£0.36*		
Rotary on-off mains switch 1977			£0.42*		
$\begin{array}{ll}\text { Push swltch - Push to make } & 1978 \\ \text { Push switch - Push to break } & 1979\end{array}$			£0.13*		
			£0.18		
ROCKERSWITCH C	Colour	No.	Price		
A range of rocker switches SPSTmoulded in high insulation. Material available in a choice of colours, ideal for small apparatus	RED	1980	£0.22*		
	BLACK	1981	£0.22*		
	WHITE	1982	£0.22*		
	blue	1983	£0.22*		
	YELLOW LUMINOUS	1984	£0.22*		
		1985	¢0.22*		
Description No.			Price		
Miniature SPST toggle. 2 amp 250 V a.c. 1958			£0.50*		
Miniature SPST toggle, 2			¢0.55*		
Miniature DPDT toggle, 2			¢0.65*		
Miniature DPDT toggle.			¢0.85*		
Push button SPST, 2 amp			¢0.65*		
Push button SPST. 2 amp			£0.68*		
Push button DPDT, 2 amp			¢0.80*		
MIDGET WAFER SWITCHES					
Single-bank water type - suitable for switching at 250 V a.c. 100 mA or 150 V d.c. in non-reactiver loads make-before-break contacts. These switches have a spindle 0.25 in dia. and 30° indexing.					
Description		Order No.	Price		
1 pole 12 way		1965	£0.48*		
2 pole 6 way3 pole 4 way		1966	£0.48*		
		1967	£0.48*		
$4 \text { pole ' } 3 \text { way }$		1968	f0.48*		
MICRO SWITCHES Plastic button gives simple on-off action		rder No.	Price		
Rating 10 amp 250 V a.c.		1969	f0. 20		
Button gives 1 pole change over action					
Rating 10 amp 250 V a.c.		1970	£0.25		
DISPLAYS					
TypeBDL707 $0-3 \mathrm{in}$ single	Order No.1510		Price		
			f0.80		
BDL7470.6in single		1511	f1.50		
BDL7270.5in double		1512	£1.80		
COLD CATHODE ITT 5087 ST Side viewing indicator tubes. Displays 0-9 and decimal points. Wide viewing angle - operates from 180 V with $16 \mathrm{k} \Omega$ series anode resistors - character height 16.5 mm pin connections supplied. Order No. 1513 Price $\mathbf{f 0 . 6 0}$					

VOLTAGE REGULATORS

Positive Regulators TO220 case $\begin{array}{lll}\text { MVR } 7805 & 5 \mathrm{~V} & \mathbf{£ 1 . 2 5} \\ \text { MVR } 7812 & 12 \mathrm{~V} & \mathbf{£ 1 . 2 5}\end{array}$
Negative Regulators TO220 case MVR 7905 5V $£ 1.85$ MVR791212V 1.85
$\begin{array}{ll}\text { MVR 7815 15V } \\ \text { MVR } 782424 \mathrm{~V} & \mathbf{£ 1 . 2 5}\end{array}$
MVR 782424 V £1.25
MVR791515V £1.85 MVR 7924 24V $\mathrm{E}_{1.85}$

ORDERING

PLEASE WORD YOUR ORDERS EXACTLY AS PRINTED, NOT FORGETTING TO INCLUDE OUR PART NUMBER.

VAT
ADD $12 \frac{1}{2} \%$ TO PRICES MARKED*. ADD 8\% TO OTHERS EXCEPTING THOSE MARKEDt. THESE ARE ZERO RATED

POSTAGE \& PACKING

Add 25 p for postage and packing unless otherwise shown. Add extra for airmail. Min. order $£ 1$

Dept. PE.1, P.O. Box 6, Ware, Herts COMPONENTS SHOP: 18 BALDOCK STREET, WARE, HERTS.

KITS FOR SYNTHESISERS, SOUND EFFECTS

COMPONENTS 8ET8 include all necessary esistors. cepacitors, semiconductors. potentiometers and transformers. Hardware such as most of thess, knobs, etc. are not included Fuler details of kits, PCBs and parts are shown in our lists.
CIRCUIT AND LAYOUT DIAGRAMS are supplied free with all PCBs designed by Phonosonics. PHOTOCOPIES of the P.E. texts for most of the kits are available-prices in our lists.

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET
P.E. MINISONIC Mk. 2 SYNTHESISER
portable mains-operated Miniature Sound Synthesiser with keyboard circuits. Although having slightly few lacilities than the large P.E. Synthesiser the functions otfered by this design give it great scope and versatility Consists of $2 \log$ VCOs, VCF, 2 envelope shapers, 2 voltage controlled amps, keyboard hold and control circuits. HF oscillator and detector, ring modulator, nolse generator utput amp and mixer, power supply.
Set of printed circuit boards
from $\mathbf{5 8 4 . 2 5}$
P.E. SYNTHESISER (P.E. Feb. 73 to Feb. 74)

The well acctaimed and highly versatile large-scale mains-operated Sound Synthesiser complete with keyboard circuits. Other circuits in our lista may be used with the Synthesiser to good edvantage, notably P.E. Minisonic, Bender, Voltage Controlled Filter Guitar Ettacts Pedal and Bender. Voltage Controled Fiter, Gutar Eftects Fedal and The Maln Syntheslear: PSU, 2 linear VCOs, 2 ramp generators. 2 input amps, sample hold, noise generator. reverb amp, ring modulator, peak level circuit. envelope haper, voltage controlled amp. Full details in lists.
Set of basic component kits
543.03

Set of printed circuit boards
$\$ 13.20$
The 8ynthealaer Koyboard Circults (can be used without the Main Synthesiser to make an independent musical modulation amps mixer 2 envelope shapers and additional PSU. Full details in our liste.
Set of basic component kita
Set of printed circuit boards
$548 \cdot 11$
57.80
GUITAR EFFECTS PEDAL (P.E. July 75)
Modurates the attack. decay and filter characteristics of an audio signal not only from a guitar but from any audio source, producing 8 different switchable effects that can be further modified by manual controls. Possibly the most interesting of all the low-priced sound effects units in our range. Circuit does not duplit.
Overdrive Unit. Overdrive Unit
Component set with special foot operated switches $£ 7$. Aliernative component set with parel mounting
Switches
$\mathbf{5} .96$
51.43

SOUND BENDER (P.E. May 74)
A multi-purpose sound controlter, the functions of which include envelope shaper. tremolo, voice-operated fader automatic fader and frequency-doubler.

Component set for above functions (excl. SWs) Printed circuit board
Optional extra-additional Audio Modutior $\quad \mathbf{8 1 . 8 1}$ which in conjunction with the above compone the use of produce :"jungle-drum" rhythms

Component set (incl. PCB)
PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlled unit for introducing the "phasing." sound into live or recorded music.
Component set (incl. PCB
c2. 8
PHASING CONTROL UNIT (P.E. Oct. 74)
For use with the above Phasing Unit to automatically control he rate of phasing
Component set (incl. PCB)
SOPHISTICATED PHASING ANO VIBRATO UNIT
A slightly modified version of the circuit published in Elektor'. December 1976. and includes manual and automatic control over the rate of phasing and vibrato.
Component set
Printed circuit

WAH-WAH UNIT (P,E, Apr. 76)
The Wah-Wah effect produced by this unit can be controlled manually or by the integral automatic controller. Component set (incl. PCB)
c3.55
AUTOWAH UNIT (P.E. Mar. 77)
Automaticaly produces Wah-pedal and Swell-pedal sounds oach time a new note is played

Component set, PCB. special loot switches
Component set and PCB, with panel switches
c7.27

POST AND HANDLING

U.K. order:-under $£ 15$ add $25 p$ plus VAT, over $£ 15$ add 50 p plus VAT. Keyboards $£ 2.00$ plus VAT
Optional Insurance for compensation againat tow or damage in post, add 35 p in addition to above post and hanaling. Export postage rates. and other countries are subject to
P.E. JOANNA (P.E. May/Sept. 75)

A five-octave electronic piano that has awitchable alternative voicing of Honky-Tonk piano, ordinary piano, harpsichord or a mixture of any of the three. together with facilitie including tast and slow tremolo. loud and soft peda switching, and sustain pedal switching. The power amplifie typically delivers 24 watts into 8 ohms. The PCBs have been redesigned by ourselves making improved use of the space Mailable.
Main power supply, tone generator, 61 envelope shapers Set and pre-ainp circuits
Set of printed circuit boards for above
Power amplifier
Printed circuit board for power amp

ELECTRONIC ORGAN

5 -octave electronic organ with 5 basic voicea that can be used individuslly or together, 5 pitches ($241,4 \mathrm{ft}, 8 \mathrm{ft}, 18 \mathrm{ft}, 32 \mathrm{ft}$) variable attack, tremolo. vibrato, phasing. and variable

ORGAN CONVERSION KIT

Converts the P.E. Joanna electronic piano to also provide most of the facilities offered by the above electronic organ Basic component set and PGB $\quad\{12 \cdot 3$

SYNTHESISER TUNING INDICATOR (P.E. July 77)

A simple 4-octave frequency comparator for use with ynthesisers and other instruments where the full versatility the P.E. Tuning Fork is not required.
Component and PCB (but excl sw.)
17.45

GUITAR FREQUENCY DOUBLER (P.E. Aug. 77) A modified and extended version of the circuit published Details in list.

SEE OTHER PAGE FOR KEYBOARDS, AND OUR LISTS FOR OTHER COMPONENTS AND ACCESSORIES STOCKED

WIND AND RAIN UNIT

A manually controlled unit for producing the above-named Comp.
Component set (incl. PCB)
£3.72

GUITAR OVERDRIVE UNIT (P.E. Aug. 76

Sophisticated. versatile Fuzz unit. including variable and switchable controls affecting the fuzz quality whitst retaining he attack and decay, and also providing filtering. Does no uplicate the effects from the Guitar Effects Pedal and can
Component set using dual slider pot instrument
Component set using dual rotary pot
$\begin{array}{ll}\text { Printed circuit board } & \text { E6.20 } \\ & \text { [1.62 }\end{array}$

FUZZ UNIT

imple Fuzz unit based upon P.E. 'Sound Design' circuit.
Component set (incl. PCB)
\&2. 03

REMOLO UNIT

ased upon PE "Sound Desion" circuit
Component set (incl. PCB)
[3.64
TREBLE BOOST UNIT (P.E. Apr. 76)
Gives a much shriller quality to audio signals fed through it
Comph of boost is manually adjustable.
Component set (incl. PCB)
2. 40
P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones. A or tuning acoustic and electronic note adjustments. Ideal

Main component set (incl. PCB)
Power supply set (inci. PCB)
515.59
57.03
P.E. SYNCHRONOME (P.E. Mar. 76)
an accented-beat electronic metronome, providing duple. can also ate. also be used as simple drum-beat rhythm
Component set (inct toudspeaker)
Printed circuit board
11.62
62.04

TAPE NOISE LIMITER

Very effective circuit for reducing the hiss found in most tape
ecordings. All kits include PCBs
Standard tolerance set of components
Regulated power supply (will drive 2 sets)

ENVELOPE SHAPER WITHOUT VCA (P.E. Oct. 75)

rovides full manual control over attack, decay, sustain and release functions, and is for use with an existing voltage Controlled amplitier
Component set (incl. PCB)

ENVELOPE SHAPER WITH VCA (P.E. Apr. 76)
This unit has its own voltage controlled amplifier and has fult manual control over attack, decay. sustain and release unctions.
Component set (incl. PCB)
TRANSIENT GENERATOR (P.E. Apr. 77)
An envelope shaper, without VCA, having the usual atlack decay. sustain and release functions. and in addition it also provies a Rynthesiser to be banjo.
Component set
Printed circuit board
c. 52
1.82

WAVEFORM CONVERTER

Slightly modified from a circuit published in a German edition of "Elektor". Converts a saw-tooth waveform into regular triangle form and squarewave with an saw-tooth reguiar triangle form, and squatiable mark-space ratio
Component set (incl. PCB but excl. sw-s)
ce. 19

VOLTAGE CONTROLLED FILTER (P.E. Dec. 74)
Part of the P.E. Minisonic now released as an independen
kit for use with other synthesisers.
Component set (incl. PCB) (Order as Kit 65-1) ce. 22

RING MODULATOR (P.E. Jan. 75)
Part of the P.E. Minisonic now released as an independent Component set (incl. PCB)

NOISE GENERATOR (P.E. Jan. 75)

Part of the P.E. Minisonic now released as an independen
Compe with other synthesisers.

SOPHISTICATED POWER SUPPLIES
A wide range of highly stabilised low noise power supply kits
is avairable-details in our lists.

MICROPHONE PRE-AMP (P.E. Apr. 77) Component set (incl. PCB)
13.78

VOICE SPERATED FADER (P.E. Dec. 73)
For automatically reducing music volume during
"talk-over"-particularly useful for Disco work or for
Component set (incl. PCB)
c3. 97

DYNAMIC RANGE LIMITER (P.E. Apr. 77)
Automatically controts sound output to within a preset
Component set (incl. PCB)
[4.5

DON'T FORGET VATI

Add $12 \frac{1}{2} \%$ (or current rate if changed) to full total of goods, post and handling. (Does not apply to export orders).

EXPORT ORDERS are welcome, though we advise tha a current copy of our list should be obtained before ordering as it also shows Export postage rates. Alt payments must be cash-with-order, in Sterting and preterably by International Money Order or through an English Bank. To obtain list send 40p.

AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two af our units containing some of the P.E. projects built trom our kits and PCBs. The cases were built by ourselves and are not for sale, though a small selection of other cases is available.
LIST-Send stamped addressed envelope with all U.K. requests for tree other components.

OVERSEAS enquiries for list Europe-
send 20 p , other countries-send 40 p .

KEYBOARDS AND CONTACTS

Kimber-Allen Keyboards as required for many published circuits, including the P.E. Joanna, P.E. Minisonic, and P.E. Synthesteer. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C. The keys are plastic, spring-loaded and mounted on a robust aluminium trame
3 Octave (37 notes) $£ 25 \cdot 50$. 4 Oct (49 notes) £32-25. 5 Oct (61 notes) £39-75. . Contact Asembiles for use with above keyboards. Single-pole change-over (type SP) as for P.E.
Joanna and PE. Minisonic. Two-pole normally-open make-break (type DP) as fo: P.E. Joanna and PE. Minisonic. Two-pole normally-open make-break (type DP) as to: P.E. Synthesiser. Special contact assembly (type 4PS) having 4 poles, 3 of which are normally-open
make-break contacts and the fourth is a change-over contact-this special assembly enables THE SAME KEYBOARD to be used with the P.E. Synthesiser, P.E. Minisonic and the P.E. Joanna simultaneously thus avoiding the cost of more than one keyboard. See our hist for other contacts.

Contact	Each	3 Octave Set	4 Octave Set	5 Octave Set
SP	24p	[8.88	\$11.76	£14.64
2 P	27p	[9.99	\{13.23	516.47
4PS	53\%	\$19.61	¢25.97	¢32.33

PRINTED CIRCUIT BOARDS for use with the above contacts and thus eliminating most of the inter-wiring required, are avallable. Details in our lists.

MORE NEW KITS!

```
NEW RHYTHM GENERATOR
Redesigned, improved and extended version of the PE 1974 design and including new automatic thythm programme selector.
TUNE-PROGRAMMABLE SEQUENCER
(PE Nov. 77) The new music unit currently berng published.
```


FORMANT SYNTHESISER

```
Elektor Macazine 1977, Very sophisticated music年保 cost is secondary to performance.
```


GUITAR SUSTAIN UNIT

```
(PE Oct. 77).
Details in lists. Please send S.A.E.
```

SOUND-TO-LIGHT (P.E. Aurora) (P.E. Apr.-Aug. 71) Four channels each responding to a different sound frequency and controlling its own light. Can be used with most audio systems and lamp intensities Printed circuit board for above Power supply
PCB tor power supply

-CHANNEL SOUND-TO-LIGHT (P.E. Apr. 76)

simple but effective sound-to-light controller capable of operating 3 lamps each of approximately 700 watts. Includes power supply, thyristors, and by-pass switches Component set (inct. PCB)

DISCOSTROBE (P.E. Nov. 76)
4-channel light-show controller giving a choice of
sequential, random, or full strobe mode of operation Pasic component se

BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)
Multi-function circults that. with the use of other external quipment, can serve as lie-detector. alphaphone. Pra-Amp Module Component set (incl. PCB) Basic Output Clrculte-combined component set with PCBs, for alphaphone, cardiophone, frequency meter and visual feed-back lamporiver ircuits
Audlo Amplifier Module Type PC7

SEMI CONDUCTOR TESTER (P.E. Oct. 73)
Essential test equipment for the enterprisuing home Set of resistors capacitors
potentiometers. makaswit semiconductors. Panel meter $(500 \mu \mathrm{~A})$

Prices are correct at time of pmess.
E. I O. E. DELIVERY SUBJECT TO AVAILABILITY.

TRANSISTORS	
AC128	26p
AC176	26p
BC107	14p
BC108	14p
BC109	14p
BC147	12p
BC148	12p
BC149	12p
BC157	13p
BC158	13p
BC159	13p
BC182L	12p
BC184	12p
BC187	25p
BC204	14p
BC209C	14p
BC212L	15p
BC213	15p
BC478	29p
BCY71	22p
BD131	44p
BD132	$54 p$
BFY50	22p
BFY51	22p
BFY52	${ }^{24} \mathrm{p}$
BSY95A	22p
MD8001	172p
OC28	60 p
OC71	20p
0 O 72	$25 p$
$0 \mathrm{OC8}$	25p
ORP12	70p
ZTX107	12p
ZTX108	9 p
ZTX501	13p
ZTX503	15p
ZTX531	23p
2N706	13p
2N914	22p
2N1304	22p
2N2219	27p
2N2905	35p
2N2905A	38 p
2N2907	22p
2N3053	18p
2N3054	66p
2N3055	$48 p$
2N3702	12p
2N3703	12p
2N3704	12p
2N3819	35p
2N3820	64p
2N3823E	39p
2N4060	12p
2N5245	51p
2N5459	33p
2N5777	45p
INTEGRATED	CIRTS.
318	230p
709 TO5	40 p
709 8-pin DIL	48 p
723 T05	$105 p$
741 8-pin DIL	32p
748 TOS	$83 p$
7488 -pin DIL	63p
HA7805 TO220	205p
HA7808 TO220	205p
$\mu \mathrm{A} 7812$ T0220	205p
HA7815 TO220	205p
HA7818 TO220	$205 p$
AY-1-0212	650p
AY-1-6721/6	195p
CA3046	90p
MC3340	150p
SG3402N	282p

PHONOSONICS

BARGAIN PARCELS SAVE POUNDS

Huge quantities of electronic components must be cleared as space required. 1000 's of capacitors, resistors, transistors. Ex equipment panels etc. covered in valuable components. No time to sort Must sell by weight $7 \mathrm{lbs}-£ 4.95$; 14 lbs $-£ 7.95 ; 2 \mathrm{lbs}-£ 12.00 ; 56 \mathrm{lbs}-£ 20.00 ; 112 \mathrm{lbs}$ £30.00.

Handy Packs
BARGAIN PACKS
4 aluminium boxes $128 \times 44 \times 38 \mathrm{~mm}$ ideal for signal injectors, etc. £1.00
Self Huxing enamelled copper wire 1B \& 22 swg on 202 reals. 2 for £ 1.10
100 miniature reed switches ideal for burglar olarms, model railways, etc. $£ 2.20$
15×2-pole reed relays on board operate a 12 valts f 2.45 .
6×6-pole 12 voit reed relays on board $£ 2.45$ High quality computer panels smothered in top grade components: 5 lbs $£ 4.75$; 10 lbs $£ 8.95$

DE LUXE FIBRE GLASS PRINTED CIRCUIT ETCHING KIIS
ncludes $\$ 50$ sq. ins. copper clad f / g board, I lb ferric chloride, 1 dolo atch resist pen, abrasive cleaner, 2 mini drill biss, etch tray and instructions / only $£ 5.30$

REFILL PACKS FOR ABOVE

150 sq. in fibre glass boord \qquad . .12
.90
1 Ib ferric chloride to mil............................

IV SURPLUS

rand New ITT CTY Triplers, fit Desca "Pradford" chassis $£ 250$ oach 5 for $£ 10$ Pye and Philips "GB" C TV panely various ye and Phips Eb C.I.V. panelf; various ypes. Alleting 6 are ble C 750
 manutacturers surplus $£ 1.50$ each
Pye 11 U contrast controls 10 for $f 1$
Thorn tape motors mains $f 1.20$ each
Thorn tape motors mains $£ 1.20$ each
Ceramic P/C mounting valve bases. For
erami P1508 10 forfl bases. For
PLS09, PLSos, etc. 10 for LI
Semiconductor Bargains
100 new \& marked silicon and germanium transistors including $\mathrm{BC} 148, \mathrm{BF} 194, \mathrm{BC183}$, transistors
200 new \& marked ransistors, including 2 N 3055 , AC 128, BFY50, BD131, etc. $£ 6.95$ 100 mixed diodes IN4 148 , atc. $£ 1.20$
100 mixed diodes including zener, power and bridge types $£ 3.30$

New U.H.F. transistor TV tuners 4 pushbutton type $£ 2.50$
Rotary type with slow motion drive $\mathbb{£ 2 . 5 0}$ Aluminium TV coax plugs. 10 for $£ 1.00$ Miniature $5 \mathrm{~K} \log$ pots with s / p switch. 4 for $£ 1$. Hardware Packs sach containing 100's of items including: BA nuts and bolts, Nylon, Self-tapping, Posidrive, "p"t clips, Cable clamps, Fuse holders, Spire nuts otc, etc. £1 per pound. 100 assorted " P " clips $£ 1$.
Belling Lee outdoor Triplexers, U.H.F., Band 1, Band 2,50p each, 3 for $£ 1$.
$40 p$ P \& P ON ALL ABOVE ITEMS. SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPLY, DEPT PE, 20A WADDON ROAD, CROYDON, SURREY.

Still soldering on?

You may be that rare person who gets his circuit designs right first time, everytime.

But it's much more likely that you experiment to see what works, and what doesn't.

In which case you ought to know about Bandridge Decs.

Bandridge Decs enable you to try almost any number of possible circuits, without having to use your soldering iron.

You simply push the wires of your circuit components into the holes in the Dec to make a perfect solderless contact.

Which means that you can use the components over and over again.

And, of course, we don't have to tell you how much time it will save you.

There are four Decs available
to suit every possible circuitry requirement.
From simple discrete work to $2 \times$ DIL or $4 x$ TO 5 Station work.

And for larger or more complex circuits you can use any number of Decs linked together.

Eventually of course, you'll need that soldering iron to make up the permanent version of your circuit design.

And when you do you'll probably want to use one of the matching Bandridge Blob boards, to make your job that much easier.

But until then we suggest you put your soldering iron aside and get yourself a Bandridge Dec.

Bcndridge Decs - Available at all good component stockists, where you see the Bandridge sign.

SIGNING OFF

AS MANY readers will have noted, Fred Bennett signed off as Editor of P.E. in his editorial last month. Regular readers-and P.E. has many who have been loyal from the first issue-will know that Fred Bennett was the driving force behind this magazine from the word go.
Having personally worked under him for nearly nine years I can safely say that his professionalism, foresight and planning have put the magazine where it is today-the highest selling electronic hobby magazine in Britain-that alone is testimony to his abilities.
Being the man he is, Fred Bennett would give credit to the staff of P.E. for their part in this achievement. With the move to Poole the magazine has also lost other staff. One exmember who has been "in the thick of it" was the Production Editor, Dave Barrington; a loyal employee since the word go. The magazine will miss them.

SIGNING ON

Having said my piece about departing colleagues-continued, as Fred Bennett left off, in the first person-l suppose the next logical step is to introduce myself before continuing in the normal way.

Perhaps some readers will have seen the name Mike Kenward in past issues of P.E.; in fact I started my
career as a journalist with P.E. in 1968, having previously been employed by the then Ministry of Aviation. Later, after being involved in the launch of Everyday Electronics, I moved on to become Assistant Editor of that publication. More recently I have been the Editor of a similar hobbyist publication in Canada and now find myself in the position of taking on P.E. as a result of the move to Poole.

NEW

A new year, a new editor, a new address and some new subjects for your magazine! One topic that we are continually being asked about is fault finding and this month sees the start of an important series which takes a look at ways and means of getting things going again.

Perhaps one of the most difficult tasks of the editorial team of P.E. is answering readers' queries regarding equipment built, or even part built, that has a strange fault or is missing a few parts. Some carefully chosen words may help.

We say "carefully chosen" because, as we would be the first to acknowledge, we, as a team, play an important role in feeding you "the truth, the whole truth and nothing but the truth" and though this is our continual aim we are only human and sometimes things can go awry! It has always been the policy of this magazine to keep readers
fully informed of any corrections, corrigenda, general developments or improvements on all the constructional articles we publish, and that will continue to be our policy.

Having explained our "carefully chosen words" we had better choose them: Our fault finding series is, we feel, excellent material for hobbyist and technician alike, it does however leave some of the more obvious statements unsaid. This is simply because it is a fault finding series rather than a guide to the successful completion of equipment

We are often asked to provide additional information on components or test and setting up procedures for equipment when, in fact, the information is contained in the article; please read carefully. So often we can only ask constructors to check their unit carefully as we know of no corrections or additions.

We feel this illustrates our point perfectly-it's not easy to diagnose faults if part of your equipment is not there in the first place!

Good fault finding is a peculiar skill, usually practised better by the humble repairman than by the honours-degree-engineer. It is a skill that can be learnt and one that can be improved with practice. A good TV repairman can find the "impossible" in a few minutes; however, even for him, miracles'take a little longer!

Mike Kenward.

EDITORIAL
EDITOR
Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
Jack Pountney ART EDITOR
Keith Woodruff GENERAL ARTIST
D. J. Gooding TECHNICAL ILLUSTRATOR
R. J. Goodman TECHNICAL ILLUSTRATOR

ADVERTISEMENTS

ADVERTISEMENT MANAGER

D. W. B. Tilleard
P. J. Mew representative
C. R. Brown CLASSIFIED MANAGER

Make Up and Copy Dept.
Phone: 01-261 5000

Editorial Offices:
 Westover House.

West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 71191

King's Reach Tower
King's Reach, Stamford Street, SE1 9LS
Phone: Advertisements 01-261 5000
Telex: 915748 MAGDIV-G

Back Numbers and Binders

Copies of our June 1977 and subsequent issues are available from: Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SEI OPF, at 65p each including Inland/Overseas p \& p.

Binders for PE are available from the same address at $£ 2 \cdot 10$ each to UK addresses, $£ 2.70$ overseas, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Cheques and postal orders should be made payable to IPC Magazines Limited:

Letters

Queries regarding articles published in PE should be addressed to the Editor, at the Editorial Offices, and a stamped, addressed envelope enclosed. We cannot undertake to answer questions regarding other items, nor to answer technical queries over the telephone.

With twelve rhythms that can be superimposed and eight sound generators

THIS Rhythm Generator design compacts eight percussion instruments and a percussionist into a neat professionally styled case measuring some $300 \times 130 \times$ 60 mm .

The advantage of this unit over many others is that rhythms are selected directly and can be superimposed to create new and musically more interesting patterns. There are 12 basic rhythms and these are as follows:-Tango, Waltz, Shuffe, March, Slow Rock, Swing, Pop Rock, Rumba, Beguine, Cha Cha, Samba and Bossa Nova. By simply selecting two or more, their patterns will be superimposed and a blend of the selected rhythms will result.

CIRCUIT BREAKDOWN

The block diagram (Fig. 1) shows the complete Rhythm Generator. The various circuits can be placed within four main groups:

1. Rhythm pattern generation.
2. Musical instrument simulators.
3. Pre-amplification.
4. Power supply.

To assist in understanding the complete circuit it is best to deal with each of the above groups in turn.

RHYTHM PATTERN GENERATION

The object of this circuit is to provide the instrument simulators with rhythmically pulsed information which in turn is transformed into recognisable percussion sounds.

The heart is the M253AA chip which contains a read only memory matrix pre-programmed with the 12 basic rhythm patterns. All that is required to obtain this information is to provide the chip with a square wave at the clock input, pin 24. By varying the frequency of this square wave the tempo of the thythm may be controlled.

Fig. 2 shows the circuit diagram of the Rhythm Generator with rhythm selection stop and reset switches and downeat indicator.

To select a rhythm the desired input must be clamped to the 0 V rail (logic 0) with the other inputs tied to 4.7 V (logic 1). Change-over switches S1-12 are required for this function. Here the other change over section of the switches is used to select Claves or Snare Drum as appropriate for the particular rhythm.

The square wave for the clock input is generated by a simple astable multivibrator using two cmCS NAND gates together with the associated timing components $\mathrm{C} 2, \mathrm{R} 2$ and VRI which control the operational frequency. This frequency may be adjusted from approximately 5 to $50 \mathrm{~Hz}_{z}$

COMPONENTS . . .

Resistors	
R1	$22 \mathrm{k} \Omega$
R2	$100 \mathrm{k} \Omega$
R3	$22 \mathrm{k} \Omega$
R4	$10 \mathrm{k} \Omega$
R5	$22 \mathrm{k} \Omega$
R6	$2 \cdot 2 \mathrm{M} \Omega$
R7	$510 \mathrm{k} \Omega$
R8	$2.7 \mathrm{k} \Omega$
R9	$220 \mathrm{k} \Omega$
R10	$150 \mathrm{k} \Omega$
R11	$68 \mathrm{k} \Omega$
R12	$68 \mathrm{k} \Omega$
R13	$27 \mathrm{k} \Omega$
R14	$12 \mathrm{k} \Omega$
R15	$47 \mathrm{k} \Omega$
R16	$10 \mathrm{k} \Omega$
R17	$150 \mathrm{k} \Omega$
R18	$68 \mathrm{k} \Omega$
R19	$68 \mathrm{k} \Omega$
R20	$27 \mathrm{k} \Omega$
R21	$1 \mathrm{k} \Omega$
R22	$47 \mathrm{k} \Omega$
R23	$10 \mathrm{k} \Omega$
R24	$150 \mathrm{k} \Omega$
R25	$68 \mathrm{k} \Omega$
R26	$68 \mathrm{k} \Omega$
R27	$27 \mathrm{k} \Omega$
R28	$12 \mathrm{k} \Omega$
R29	$47 \mathrm{k} \Omega$
R30	$10 \mathrm{k} \Omega$

R31	$150 \mathrm{k} \Omega$
R32	$68 \mathrm{k} \Omega$
R33	$68 \mathrm{k} \Omega$
R34	$27 \mathrm{k} \Omega$
R35	$12 \mathrm{k} \Omega$
R36	$47 \mathrm{k} \Omega$
R37	$10 \mathrm{k} \Omega$
R 38	$470 \mathrm{k} \Omega$
R39	$390 \mathrm{k} \Omega$
R40	$390 \mathrm{k} \Omega$
R41	$390 \mathrm{k} \Omega$
R42	$10 \mathrm{k} \Omega$
R43	$22 \mathrm{k} \Omega$
R44	$1 \mathrm{M} \Omega$
R45	$100 \mathrm{k} \Omega$
R46	$470 \mathrm{k} \Omega$
R47	$1 \mathrm{M} \Omega$
R48	$22 \mathrm{k} \Omega$
R49	$2 \cdot 2 \mathrm{k} \Omega$
R50	$1 \mathrm{M} \Omega$
R51	$1 \mathrm{M} \Omega$
R52	$1 \mathrm{M} \Omega$
R53	$4.7 \mathrm{k} \Omega$
R54	$4.7 \mathrm{k} \Omega$
R55	$22 \mathrm{k} \Omega$
R56	$10 \mathrm{k} \Omega$
R57	$39 \mathrm{k} \Omega$
R58	$10 \mathrm{k} \Omega$
R59	$2.2 \mathrm{k} \Omega$
R60	$22 \mathrm{k} \Omega$
R61	$33 \mathrm{k} \Omega$

All $\frac{1}{4}$ W 5\% Carbon Film

C22	$0.1 \mu \mathrm{~F}$ polyrad
C23	$0.33 \mu \mathrm{~F}$ polyrad
C24	$0.068 \mu \mathrm{~F}$ polyrad
C25	$0.22 \mu \mathrm{~F}$ polyrad
C26	$0.1 \mu \mathrm{~F}$ polyrad
C27	$0.05 \mu \mathrm{~F}$ ceramic
C28	4.7 nF ceramic
C29	4.7 F ceramic
C30	$0.02 \mu \mathrm{~F}$ mylar
C31	$0.1 \mu \mathrm{~F} 16 \mathrm{~V}$ radial electrolytic
C32	$0.1 \mu \mathrm{~F}$ polyrad
C33	$0.22 \mu \mathrm{~F}$ polyrad
C34	$2500 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic
C35	$100 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic
C36	$470 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C37	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C38	$1000 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C39	$1000 \mu \mathrm{~F}$ 16V electrolytic
C40	$100 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
All Electrolytics are vertical p.c.b. mounting types	
Note: polyrad means polyester radial lead	
capacitors Mullard C280 Range	

Semiconductors

TR1	BC108B	D11	12 V 400 mW Zener
TR2	BC108B	D12-D15	Bridge Rectifier 50 V ,
TR3	BC108B		1A, type W0-005
TR4	BC108B	D16	0.15 in l.e.d.
TR5	BC108B	IC1	M523AA
TR6	2N1132	IC2-IC4	CD4011AE
D1-10	1 N4148	IC5	741 Op Amp
	(10 off)	IC6	78L12 AWC Regulator
			+12 Volt Bridge Rectifier 100 V 1 amp
		IC7	78L05 AWC Regulator
			+5V

Miscellaneous

1	8 pin d.i.l. socket
3	14 pin d.i.l. socket
1	24 pin d.i.l. socket
13	D.p.d.t. sub min toggle (S1-S13)
1	S.p.s.t. sub min toggle (S14)
1	Neon indicator (LP1)
T1	12-0-12V 100 ma transformer
L1, L2	SC60 100mH min choke
SK1	3.5 mm jack socket
SK2	5 pin DIN socket
FS1	20 mm panel fuse-holder and 250 mA "quick blow" fuse
1	din rubber grommets
1	Earth tag; $\frac{1}{4}$ in fixing lug
10	6BA nuts and bolts
7	6BA clearance spaces ${ }_{\text {B }}^{\text {in }}$
1	Wire clamp ("P" Clip)
	1 metre $22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. tinned copper wire
	2 metres 3 core mains cable
	2 metres single screen cable
35	Veropins 0.1 in pitch
2	Printed circuit boards
3	K15 knobs
1	"AWAB" case $12 \mathrm{in} \times 5 \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}$. $1 \frac{1}{2}$ metres stranded connecting wire
1	Foot switch press-to-break fitted with 3.5 mm jack plug (optional extra)

Fig. 1. Block diagram of Rhythm Generator

Fig. 2. Rhythm generation circuit

Fig. 3. Block diagram of M253AA

Fig. 4. The basic sinusoidal oscillator
by the tempo control VRI. The output of the clock generator is fed to the clock input pin 24 of the M253AA.

The rhythm stop/start switch S14 is connected through a NAND gate, operating as an inverter, to the external reset pin 23. When this switch is closed the clock generator is inhibited with its output remaining at logic 1. A pulse is also supplied via the inverter through the blocking diode D1 to reset the rhythm pattern to the beginning of the bar.

On opening the switch the output of the oscillator will immediately go to logic 0 generating the first command pulse which is the first beat in the bar.

DOWNBEAT START

The rhythm pattern always begins on the downbeat, it

Fig. 5. Fundamental white noise circuit
then lights the l.e.d. with successive downbeats until S14 is closed.

A short pulse is present at the external reset/downbeat pin of the M253AA when the internal logic resets at the end of the rhythm pattern. This pulse is of very short duration only about 2 to $3 \mu \mathrm{~s}$ which is obviously too short to light the l.e.d. The lamp must also light at the beginning of the beat and not at the end of a bar which is when the downbeat pulse is present.

Two nand gates together with R5, R6 and C3 operate as a monostable and extend this pulse to some 350 ms . The third NAND gate inverts the output of the monostable in order that TR1 is switched on and this lights the l.e.d. during the set state of the monostable.

Fig. 6. The four white noise instrument simulators

Fig. 7. The four sinusoidal oscillators

THE M253AA IC

Internal operation of the M253AA is shown in Fig. 3. Here the clock input is first divided by two and the output fed to a five-stage counter. The counter resets after 32 pulses for $4 / 4$ time and after 24 pulses for $3 / 4$ time. The counter states are then decoded to drive the rom (read only memory) matrix which has been pre-programmed with the 12 different rhythm patterns. These, of course, are defined at manufacture but customer options do exist at a price!

The rhythm selection input is decoded to determine the reset point of the counter and to programme the multiplexer to read the memory matrix. Its outputs are then modified to become suitable to drive the eight instrument simulators by means of a driver stage. This driver stage also includes the logic to reset the memory output after each reading in order that successive readings occur on the correct triggering edge of the following beat.

The internal reset pulse is fed to the external pin 23 to provide downbeat indication and to allow external resetting when the generator is stopped.

PERCUSSION VOICES

The Bass Drum, High Bongos, Low Bongos and Claves are created by the use of damped sinusoidal oscillators. The long and short Cymbals and Maracas are simulated by the use of damped filtered white noise.

An example of the simple twin T oscillator used is shown in Fig. 4. The nand gate is held just below continuous oscillation by the use of VRA.

All four oscillators in this group are identical with the exception of the values of the timing capacitors which set the frequency of oscillation (Fig. 7). The values of the capacitors are chosen to suit the instrument being simulated.

VRA regulates the decay of the oscillation and should be adjusted to give the most realistic effect. The pulsing output of the M253AA is a square wave and this is differentiated by C3a and Rla into two opposite spikes

Fig. 8. Pre-amplifier circuit

Fig. 9. Circuit of p.s.u.
which are attenuated by $R 2 a$ and rectified to a single positive spike by Dla. Resistor R3a is necessary to tie the input to earth when no pulse is present as the outputs of the M253AA are open drain types.

Fig. 5 shows the basic circuit of the white noise generators. Transistor TRIb turns on during a command pulse from the M253AA. This charges capacitor Clb which then discharges through R1b to the base of transistor TR2b.

White noise is produced by the reverse biased Zener effect of TR3b which is selectively filtered by C2b and LIb. The level of the white noise at the output of the transistor follows the decaying voltage at the base until the potential across C 1 b has fallen to a level which causes the transistor to switch off.

The metallic timbre of the Snare Drum is produced on a real instrument by a set of steel springs-the snares which run across the diameter of the underside of the drum. It is the snares vibrating against the skin of the drum that give it its characteristic sound.

This sound is recreated in this unit by combining filtered white noise with the damped oscillation of the High Bongo. The two separate simulators are combined via a diode which prevents the Snare Drum from sounding when the High Bongo is activated.

The Maracas simulator is unusual in that it is the only
instrument in which the sound increases gradually and then decreases. This effect is produced by means of the integrator/differentiator circuit C25, D8, D9, R45, R46 and C26 (Fig. 6).

PRE-AMPLIFICATION AND P.S.U.

Fig. 8 shows the circuit of the pre-amplifier. All eight instruments are combined by means of a resistor, capacitor network. This composite signal is applied through a potential divider VR10 to the non-inverting input of a 741. Feedback resistors R57 and R56 set the gain and a simple high cut filter, adjusted by means of VR2, acts as a tone control. The output to the external amplifier may be varied by the potentiometer VR3.

Fig. 9 shows the complete power supply unit. A $12-0-12 \mathrm{~V}$ miniature transformer is used, its output being rectified by the bridge rectifier D12-15. The centre tap is at 0 volts providing a dual supply. Three regulators, two of which are cascaded, are used to provide the output voltages of $+12,+5$ and -12 volts. The supplies must be stable and ripple free to prevent spontaneous oscillation from the sensitive instrument simulators. To prevent an earth loop, which might cause hum, the case and transformer are earthed to the mains supply and the 0 V circuit line is left floating.

Next month : Construction and setting up.

Microprocessor technology is changing the face of the electronic and computer industry, allowing existing products to be more effective and revealing new application areas in industry and the home.

MICROPROCESSORS is a new bimonthly technical journal covering the hardware, software and applications of microprocessors and microcomputers.

For further details please complete and return the coupon.

Annual subscription (six issues) is $£ 23$ UK, $£ 31$
TO: MICROPROCESSORS,
IPC Science and Technology Press Ltd, IPC House, 32 High Street, Guildford, Surrey, GU1 3EW, England.
Telephone: Guildford (0483) 71661
Please send me further details on
MICROPROCESSORS overseas.

Name \qquad
Organization and address \qquad
by K. Lenton-Smith

The British Musical Instrument Trade Fair is held at three London centres simultaneously each year. One of these concentrates on keyboard instruments and, as these interest me primarily, my visit to the Fair mainly consisted of reexploring the veritable warren of hotel rooms to see what the Electronic Organ Distributors Association (E.O.D.A.) had been hatching over the past year.

AIDE MÉMOIRE

When the programmable calculator started to become commonplace, I wondered how long it would be before certain of its principles were applied to electronic music. The Trade Fair produced one example-the EKO Tivoli Elite Automatic Chord Organ, distributed by John Hornby Skewes of Leeds.

In many respects, this chord organ is conventional, with rhythm unit able to trigger fundamental basses and chords. For the raw beginner finding difficulty in coping with playing both keyboard and chord buttons, the Tivoli Elite provides three memory controls: Program/Play, Reset and Clear.

The sequence of chords is loaded into the memory bank by pressing Major or Minor chord buttons (but not Fundamentals) in the same order that the sheet music suggests, this being a silent operation. Once the sequence has been banked, it can be recalled by use of "Memory Play" controf. Each time this control is operated, the next chord is released.
The tiro, thus armed with a memorised chord sequence, can concentrate on reading the right hand part, using "Memory Play" as a master chord button.

SALES

The E.O.D.A. is in business to sell musical instruments and, perhaps surprisingly, the majority of organs are sold to private individuals, rather than groups or clubs. Any demonstrator will confirm that he can sell an instrument if it sounds good in the hands of a prospective purchaser, however inexperienced. Today's instruments are bristling with gadgets to this end and it is difficult to find a"straight" organ on sale anywhere; attempting to buy such an organ inevitably will mean taking a number of non-optional extras.

BAFFLED

Rotating-baffle speaker systems and the name of Leslie are synonymous, their addition on an organ system giving a new and exciting dimension. These cabinets are a difficult proposition for the homeconstructor, who usually ends up buying the commercial article.
If considering a purchase, I suggest the Sharma range of speakers is studied. These are manufactured in England despite the Japanese-sounding name (derived from Sharon and Mark, children of the company's owner) and represent very good value.
Two ranges of cabinet are available, for professional and home use, with power outputs ranging between 30 W and 300 W .
All but the least expensive model in each range is fitted with a treble pressure driver, revolving horns and bass rotor giving tremolo, chorale or straight signals. The technical details are less important than the end result, which is excellent throughout the range.

THE LEADER

The Allen RMI Keyboard Computer has been mentioned previously in this column, but has since been re-designed in some respects. It is neither piano, synthesiser nor organ and contains no oscillators, dividers or filters. It is a musical digital computer and unique in its field.

The present model includes presets for instant changes of contrasting sounds through its stereo system, though a single manual instrument, left and right channel volume pedals allow delicate answering between "Alto Recorder" and "Harpsichord", for example. "Organ" and "Bells" or "Jazz Flute" and "Clavichord" can also be obtained by use of the stereo presets.
This highly expressive instrument has eight foot-controls and, apart from volume, are used for percussion length, sustain, attack/decay, pitch bending, staccato and vibrato. One of the new presets, "Electric Organ', imitates to perfection the drawbars, third harmonic percussion and twospeed doppler speakers of a well known competitor company! All told, this is the perfect keyboard for modern jazz group with money no object.

The Allen organs use digital techniques for tone generation in their instruments. Musical waveshapes, often those of windblown pipes, are stored in digital form and can be re-created at any frequency by a high-speed signal processor. Scaling is even across the keyboards and, though complex, the microcircuits are extremely reliable and never need adjustment or tuning. The Digital Theatre Compact organ has its complete generator on a single plug-in board about $25 \times 50 \mathrm{~cm}$ in size.
In addition to the usual tabs round the horseshoe console, most Allen models (including the RMI) have card readers; inserting punched cards will give an endless variety of extra tone colours. The transposer, through five semitones upward and seven downward, provides brilliant key changes without involvement in double flats! This facility might be useful for accompanying singers with a poor sense of pitch.
A feature of the Theatre Compact is the reality of its 16^{\prime} solo voices, usually a weak point with electronic organs. Pipe organ realism is enhanced by the "Chiff" stoptab. This makes upper harmonic pitch components speak slightly in advance of the fundamental.
Though expensive by most standards owing to the complexity of the digital generator, the Allen organ is the leader in its field both for serious music or the theatre organ enthusiast.

SYNTHESISERS

The small performance keyboard is now commonplace and selling at a price within reach, often being part of an organ's circuitry. A tab found on many organs this year is "Auto Wah" implying that a v.c.f. is included in the tone forming department even if the specification does not include a complete synthesiser.

The complexity of arpeggiators and automatic chord systems seems to have grown over the past year. Used sparingly and with good taste, these can be a definite performance asset. The Yamaha D Series of organs have an interesting "walking bass", where the pedal notes go through a sequence. This is useful for twelve bar blues and, linked to the rhythm unit, can be made to follow any dance pattern.
Electronic vibrato of the "motorphaser" type appears to be popular in certain quarters, giving a good imitation of the run-up and run-down of a mechanical rotor. However, the high-frequency modulation is never as deep as could be wished for and is more characteristic of a v.c.o. modulated phase-shift system according to my experiments with such circuitry.
The E.O.D.A. might like to consider a gimmick for the 1978 show-a straightforward organ! They may be assured that there is a market for a realistic instrument at a sensible price, as there are plenty of musicians who can already read fluently and are prepared to take up organ-playing as a new venture.

ANYoNe who has experienced the discovery of a flat car battery, particularly at the wrong end of a journey in the pouring rain, will appreciate the value of being able to watch the battery voltage. Since most modern cars do not have a voltmeter fitted as standard, it was decided to "dream up" a small indicator unit. The circuit arrived at gives the tri-state indication of high, normal, and low voltage condition; the two presets providing a wide range of possible settings.

PRINCIPLE OF OPERATION

The circuit works by comparing a stable reference voltage level to a fixed ratio of the battery's actual supply level. The reference chosen was about half the theoretical battery voltage, which for most modern cars will be 6 V . Zener diodes of around this value do not create too much trouble with temperature variations, although in the final analysis the Zener voltage will not be entirely critical anyway.

As the battery voltage fluctuates due to loading, charging, and its general state of health, it will be compared to the relatively stable reference voltage, and the difference between the two levels magnified by the comparitor to drive the l.e.d.s. These will not indicate by how much the reference voltage has been exceeded or fallen short of, only that one of the preset limits either side of it has been crossed over. Crossing the upper limit will indicate overcharging, and crossing the lower limit will indicate undercharging or overloading.

CIRCUIT DESCRIPTION

Referring to Fig. 1, the reference voltage is generated by R4 and D1, and is fed to the non-inverting input of ICI; the current through R4 being just under 2.4 mA . This is compared to (or amplified with reference to) a fixed proportion of the car battery voltage. the ratio being determined by VR1.
Sensitivity to change is controlled by VR2 and R1. This is simply the gain control of the amplifier, and is used to determine how little voltage difference at the input, is needed to reach the l.e.d. threshold levels after amplification.

COMPONENTS . . .

Resistors
R1 $\quad 1.5 \mathrm{k} \Omega$
R2, R3 330Ω
R4 $2 \cdot 7 \mathrm{k} \Omega$
All $10 \% \frac{1}{2} \mathrm{~W}$ carbon
Potentiometers
VR1 $10 \mathrm{k} \Omega$ lin preset
VR2 $4.7 \mathrm{M} \Omega$ lin preset
All miniature horizontal
Semiconductors
IC1 741 d.i.l.
D1 $\quad 5 \cdot 6 \mathrm{~V} 400 \mathrm{~mW}$ Zener
D2 \quad TIL209 red (or similar)
D3 \quad TIL209 green (or similar)
Miscellaneous
FS1 200 mA
Flying fuse holder for FS1
Printed circuit board, etc.

Fig. 1. Circuit diagram of Battery Condition Indicator. (For positive earth vehicles, simply connect the input supply wires the opposite way around, so that the line through FS1 connects to chassis instead)

Fig. 2. Printed circuit layout. (Full size)

Since the reference is approximately half the supply voltage, then it follows that the switching mid-point will be roughly correct when VR1 is set halfway. If the battery voltage increases, the voltage at point " A " will also increase, and eventually exceed the reference voltage. When this happens, the output of ICI swings low and illuminates D3. Conversely, if the battery voltage falls D2 will light up; and of course the nominal battery voltage will leave both l.e.d.s off. Resistors R2 and R3 limit the current in D3 and D2 respectively, and the maximum current, as a result of these will be around 20 mA . Therefore the unit can be wired independently of the ignition switch, since this would take months to drain the average car battery.

CONSTRUCTION

A full size p.c.b. layout is shown in Fig. 2, the component layout of which is shown in Fig. 3. Care should be taken over the correct orientation of ICl and D1. The l.e.d.s are mounted on the vehicle dashboard in an eyecatching position, and only two leads are necessary for the connection of these. The type of l.e.d.s used is completely a matter of choice, but larger ones will be noticed more readily. It would be a good policy to mount these l.e.d.s away from too much ambient light.

Note that in the photograph the posture of R4 is slightly different to that in Fig. 3. This is of no significance. If the component board is to be mounted behind the fascia panel, there is ample space on the p.c.b. to drill fixing holes.

Fig. 3. Component layout for Battery Condition Indicator. A fuse (FS1) should be inserted into the + ve supply wire using a flying lead type fuse holder

Tri-state l.e.d.s are now available which will illuminate either red, green, or remain off. These are merely two back to back l.e.d.s in one package, and although one of these is "made for the job", they are considerably more expensive than using two discrete diodes.

The circuit board can be mounted in a box, or simply screwed behind the fascia panel, but it is a good idea to lacquer the component board to protect it against moisture.

SETTING UP

Both presets should be set to midway position, and the unit connected to the car battery ensuring that the correct polarity is applied, otherwise ICI will be damaged.

Assuming that the car battery is at the correct voltage to start with, adjust VR1 until both l.e.d.s are off. If this cannot be achieved, set VR2 for less sensitivity (clockwise) and try again. VR1 should be adjusted to the centre of the "dead zone", and then VR2 re-adjusted to give a dead zone supply variation of $\pm 1 \mathrm{~V}$ either side of nominal (13V) before a l.e.d. lights up. A wider range than this can be adjusted for, if other applications are envisaged.

Semiconductor UPDATIT FEATURING : LM144 MC14433 ISP-8A/650

A SHOCKER

One tends to get a bit blase about the giant strides made recently in the operational amplifier field; mention of four amplifiers in one d.i.l. pack, or input impedances measured in giga-ohms, stirs hardly more than a bored yawn in these days of rapid microcircuit progress. It was therefore rather nice to be shaken out of this complacency by a warning footnote in the data sheet of a newly available National device, the LM144 operational amplifier, which refers to the possible electric shock hazard to users!

Well, you could have knocked me down with a feedback resistor, electric shocks indeed! While I do admit to cutting my teeth on a beam tetrode, and was at one time well used to the hazards surrounding valve circuits, I really thought that I had put all that behind me when I traded in my ECL82's for the harmless delights of a 741!

Closer examination of the LM144 data sheet revealed that this intriguing device, described as a high voltage, high slew rate operational amplifier, will run from plus and minus 40 V supplies, and of course, 80 V across a set of well brought up fingers can impart quite a tingle! The LM144 is an externally compensated op. amp available in either a 14 pin d.i.l., an 8 pin metal can or even a 10 pin flat-pack, and it sports a nimble 30 V per microsecond slew rate which makes it a very useful addition to the existing range of low voltage devices in applications which demand that something extra.

As an example, an LM144 with a voltage gain of ten can provide a plus and minus 30 V swing with a 120 kHZ full power bandwidth in applications such as audio power amplifiers or line drivers, so get your rubbergloves on, and start breadboarding!

COLD COMFORT

Available now from Motorola is the MC14433 CMOS analogue to $3 \frac{1}{2}$ digit b.c.d. converter chip. This chip has upstaged most of the competition by offering a full $3 \frac{1}{2}$ digit resolution along with auto polarity, auto zero, minimum external component requirement, and of course, all the well known advantages of the CMOS technology, at a very low cost.

The MC14433 coding given to this sophisticated chip makes it "just another member" of the complex function CMOS family produced by Motorola, and not a one-off prima-donna as you might expect. To go along with this "standard function" image, the MC14433 comes in a common-or-garden 24 pin plastics package and costs less than $£ 8$ in hundreds, so that you can order it along with your CMOS gates, counters and monostables and treat it like just another building block!

To realise its full potential, you could build it into a sophisticated $3 \frac{1}{2}$ digit multimeter with an l.e.d. or l.c.d. display, but because of its low unit cost you can consider using it in much humbler applications too, perhaps to open up whole new areas to the power and convenience of digital measurement and display.

To emphasise the wider application horizons of the MC14433, Motorola have published a design for a 2 digit thermometer for use on domestic refrigerators or freezers which uses very few components and offers high accuracy and low cost. Anyone who owns a home freezer will no doubt appreciate the comforting presence of such a gadget which could put an end to peering at glass thermometers (or even just hoping for the best!). A casual glance at a pair of l.e.d. digits would tell
you whether your assets are being kept properly frozen!

SHAPING UP

I recently mentioned the new n-channel version of the SC/MP microprocessor, and the increased attractiveness of this low cost device as a result. SC/MP rises even further in my estimation this month thanks to the announcement by National of the ISP-8A/650 peripheral chip.

The SC/MP systems to date have generally had to rely on standard CMOS or t.t.l. peripheral circuitry, and have not had the benefit of special programmable 1/O devices such as those available in the Intel 4040 and 8080 , or the Motorola 6800 families. The ISP-8A/650 changes all this by bringing together in one low cost 40 pin plastics package a 128 -word by 8 bit RAM array and two multifunction 8 bit input/output ports.
The new chip is made using n-channel technology and runs from the SC/MPII 5 V supply. Putting it together with an SC/MP MPU chip and a program ROM or PROM gives you a full function microcomputer using just three chips. In most systems the new RAM $1 / O$ chip could replace around a dozen standard components!

Fig. 1. Circuit diagram for a freezer thermometer using the MC14433

G. LOVEDAY

A vital new series on the rudiments of faults diagnosis

Probably every experimenter or constructor has experienced the frustration of finding that the circuit he has just built fails to work correctly at switch on, or after a short time in use. Assuming that the circuit has been designed and built correctly, the failure is generally caused by some component fault.

For the newcomer to electronics this can be very discouraging and the causes of failures can seem baffling. However, there are some basic rules to follow in diagnosing faults, and one learns more about electronics in the process.
The skill of rapid fault diagnosis is also very important in Test and Service Departments of the electronic industry, - and anyone wishing to enter the profession usually has to complete a suitable course of study at a technical college. For example, the City and Guilds 272 and 222, or one of the new T.E.C. courses. In the final year an examination in fault diagnosis has to be passed.

BASIC REQUIREMENTS

What then are the basic requirements for fault diagnosis? A short list would include the following:
(a) An understanding of the way in which components work and how they fail.
(b) A good understanding of how the circuit or instrument operates.
(c) Skill in recognising fault symptoms.
(d) A systematic common sense approach to the problem.

When, for example, a faulty instrument is returned to a service department the engineer's first job is to define the fault. To do this he has to check the functional performance of the instrument and then list the symptoms associated with the fault. For a complex instrument he then has to narrow down the search for the faulty component by dividing the unit into functional blocks: power supply, oscillator, amplifier, etc. The various methods used for this are dealt with next month.
Let's first of all consider how to diagnose faults in a single electronic circuit such as the simple oscillator shown in Fig. 1.1. Like most oscillators it is made up of an amplifier, a tuned circuit, and a positive feedback loop. R1 and R2 provide forward bias for the transistor amplifier, $\mathrm{L} 1, \mathrm{C} 1$ and C2 determine the operating frequency and a portion of the output is fed back to the emitter in order to maintain the oscillations. All the components are vital for correct operation and should any one of them fail the circuit would stop producing oscillations.

HOW AND WHY DO COMPONENTS FAIL?

Just like everything else an electronic component has a finite operating life. Stresses are acting continuously on all components. These stresses are of two kinds, operating and envir'onmental. The operating conditions of current, voltage, and power are determined by the design and naturally the life can be extended by operating the component well within its maximum rating. Environmental stresses are those caused by the surrounding conditions.

Fig. 1.1. Sinewave oscillator
High humidity, extremes of temperature and mechanical shock and vibration being three that will, if excessive, rapidly reduce the life of a component.

Take for example 'a resistor. It is subjected to continuous cycles of heating and cooling; this causes it to expand and contract and very slowly its chemical properties change. It becomes brittle and one day it will suddenly fail open circuit. Of course, not all failures are sudden and complete; a component may gradually drift out of specification causing a gradual loss of circuit performance.

Another common cause of component failure is where high voltage pulses or "spikes", generated from switched reactive loads, are transmitted along the mains lines and appear on internal power supply leads. These "spikes" can easily lead to the breakdown of semiconductors.

Table 1 shows the most likely type of failure for different types of components which would appear as follows:

Table 1

Component	Common type of fault
Resistors	high in value or open circuit
Variable resistors (pots)	open circuit or intermittent contact resulting from mechanical wear
Capacitors	short or open circuit
Wound components (inductors and transformers)	open circuit or shorted turns or short circuit coil to frame
Semiconductor devices, diodes, transistors, thyristors, etc.	open or short circuit at any junction

DIAGNOSING FAULTS IN THE CIRCUIT

One component failure usually gives a unique set of symptoms. These being changes in the output signals and changes in dic. bias levels. Returning to the oscillator, let us imagine that L1 becomes open circuit. A possible fault since the coil is made of relatively thin wire. The signal
output would be zero and the d.c. bias voltages, measured with a standard ($20 \mathrm{k} \Omega /$ volt) multimeter at the three test points with respect to zero volts will be:

Test Point	1	2	3
Voltage	1.2 V	0.6 V	0.7

(meter readings with L1 open circuit)

Whereas the expected readings should be:

Test Point	1	2	3
Voltage	2.4 V	1.8 V	+9 V

How can we use the first set of voltages to guide us to the faulty component? When $\mathrm{L1}$ is open circuit an equivalent circuit of the fault conditions is as shown in Fig. 1.2. There is no d.c. path for collector current, so the base emitter junction acts as a forward biased diode passing base current only. The voltage at TP2 will be low because current through R3 has fallen. Given the values and the equivalent circuit for the fault you can readily calculate that the voltage on the emitter will be approximately 0.7 V and the voltage on TP1 will be about 0.6 V above that at 1.25 V .

Fig. 1.2. Fault conditions for $L 1$ open circuit
Most readers might assume that TP3 would read zero volts but when a meter is connected from the collector to the $0 V$ rail, the base collector junction acts as a forward biased diode and so a small voltage is indicated.

When you have a set of symptoms for a particular fault try and fit the effects of the component you suspect with these results. Take for example a fault with the following symptoms:

TP	1	2	3
Voltage	0.7 V	0.7 V	9 V

(Fault readings)

Note that the voltage on TP1 is the same as that of TP2 and this indicates a possible short circuit between those points. This would mean a short circuit between the base and emitter of the transistor. If this happens all transistor action ceases, since no emitter current is going to flow across the base into the collector, and the collector voltage should rise. This then is the correct fault, since it fits the symptoms.

Now try your hand at diagnosing the following oscillator fault conditions. The answers are given at the end of the article (Answer (1)). The symptom is no oscillations.

TP	1	2	3
Fault A	0 V	0 V	+9 V
Fault B	2.5 V	0 V	+9 V
Fault C	1.2 V	0.6 V	+9 V
Fault D	2.5 V	2 V	+9 V

FAULTS IN A MORE DIFFICULT CIRCUIT
Many circuits contain d.c. negative feedback loops which tend to complicate diagnosis since a change in bias level at one point usually effects all voltages. A simple series regulator is a good example of this. The circuit shown in Fig. 1.3 is designed to give a relative stable output of 10 volts at 200 mA from an unstabilised 15 volt supply. A larger output current can be obtained by mounting TR'l on a heat sink. Remember, if you build the circuit for fault diagnosis, the circuit is not short circuit proof.

Most readers will have a good understanding of the operation but it's worth going over it briefly. TR1, the so called series control transistor, acts like an emitter follower so that an output voltage is provided across the potential divider R3, VR1 and R4.

A portion of the output voltage selected by VR1 appears on the base of TR2, the error amplifier, and this voltage is compared with the reference voltage from the Zener diode. Since the Zener has a fairly constant voltage across it any change in output voltage causes more or less current to flow through TR2. The output of TR2 is used to control the base of the series element TR1. Thus, if the output voltage falls, caused by an increase in load, TR2 conducts less, its collector voltage rises and TR1 is turned on more to correct the original fall in output.

When the circuit is working correctly and supply a 200 mA load current the voltages at the test points are:

Test Point	1	2	3	4
Voltage	$10 \cdot 7 \mathrm{~V}$	6.05 V	5.2 V	19 V

normal readings

Let us start by imagining a fault caused by an open circuit Zener diode. We should expect an unstabilised output with higher ripple, and this in fact would happen. Since the emitter voltage of TR2 rises towards the unstabilised input $(+15 \mathrm{~V})$ the output must also rise because TR2 is cut off. However, the output voltage will not rise much above +12 V because the load current requires that TR1 be supplied with base current resulting in a volt drop across R2. If the load is disconnected the output voltage will increase.

The fault conditions are:

Test Point	1	2	3	4
Voltage	13 V	12.3 V	$15 \cdot 2 \mathrm{~V}$	12.3 V

D1 open circuit.

Naturally other faults will cause the output voltage to rise and for stabilisation to be lost. For example R3, VR1 or TR2 base emitter open circuit would do this. The particular symptom that points to D1 open circuit is of course

Fig. 1.3. Representative series regulator
that TP3 has risen to $+15 \cdot 3 \mathrm{~V}$. What then would be the symptons for R3 open circuit? (See Answer (2) at end of article.)

Electrolytic capacitor Cl is included to reduce the amount of ripple on the reference voltage. Consider the effect of this becoming short circuit. The emitter of TR2 becomes zero volts, and this causes TR2 to conduct hard. TP2 falls to about 0.7 V setting up a voltage of about 1.3 V at the output (TP4). This means that TP3 must be at about 2 V , that is 0.7 V greater than TP4. The output voltage must be about twice $V_{b, e}$ of TR2 because of the potential divider R3, VR1 and R4.

Voltages for C 1 short circuit:

Test Point	1	2	3	4
Voltage	2 V	0.7 V	0 V	1.3 V

Finally, try and diagnose faults from these symptoms. Voltages measured with 200 mA load. (Answer below)

Test Point	1	2	3	4
Fault A	0 V	0 V	5.2 V	0 V
Fault B	14.8 V	0 V	5.2 V	0 V
Fault C	7 V	5.9 V	5.3 V	6.2 V
Fault D	1.5 V	0.67 V	5.2 V	1.5 V
Fault E	13 V	7 V	5.2 V	12.3 V

ANSWERS

(1) Fault A R1 open circuit.

Fault B Base-emitter open circuit.
Fault Collector open circuit.
Fault D R3 open circuit.

(2) | TP | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| Voltage | 13 V | $12 \cdot 3 \mathrm{~V}$ | $5 \cdot 2 \mathrm{~V}$ | 0 V |

(3) Fault A R2 open circuit.

Fault B Base/emitter open circuit.
Fault C R4 open circuit.
Fault D TR1 b/e short circuit.
Fault E TR2 b/e open circuit.
Next Month: Fault finding on systems

FRANK W. HYDE

SOYUS/SALYUT

The failure of the Soyus 25 -Salyut 6 mission was the eighth time of disappointment for the Soviet space commission. Thirteen launches of spacecraft had been made during the year, so it would appear that there is some special reason for such a high rate of loss. In proportion this failure was the second for 1977 in the Soyus/Salyut programme, and the sixth mission in which procedural errors or the malfunction of equipment was involved during docking or in the rendezvous area.

There is a standard procedure in the Soyus/Salyut docking missions for the Soyus to be automatically guided through the rendezvous stage until it closes within 300 feet of the Salyut space station. At this point control is taken over by the commander who executes the remaining manœuvres and docking. This is done by manual control of the thrusters. The vehicle had reached this point when the trouble became such that the mission could not be completed normally. It seems that during the manual sequence it was not possible to reach a safe closing-in speed for the Soyus. One thing that seems to have had some place in the failure, was that the final positioning of the spacecraft took somewhat longer than usual. Normally the actual link up would take place at the 17 th orbit. In this case it was necessary to go to 18 orbits.
Some direct information on the activities of the cosmonauts has been given by the Observer Group at Kettering School, who have become very expert under the guidance of Mr . Cooper in plotting Soviet space activities. Several conversations between the cosmonauts and the ground station were recorded at
this time. This indicated that there had been an attempt at orbit 17 to initiate the preliminary techniques. However on the 18 th revolution Kettering heard none of the usual discussion about the equalising of pressures which takes place after a docking. On revolution 19, Kettering heard a systems check which was normal and suggested that no problems seemed to be involved. American observations revealed that the two spacecraft were close together, and seen as one object up to at least orbit 25 .
The inability of the Soyus to dock certainly meant an immediate return to earth of the vehicle and crew. Soyus missions have the facility to operate on batteries for at least two days. This enables the solar sails to be jettisoned to allow for speedier mancuuving. The return to earth of a vehicle means in any case that the docking section cannot be examined, because it is jettisoned before re-entry.

SOVIET METEOR 2

On June 29, 1977, the Soviet Space Agency launched their first vehicle into a 98 degree sun-synchronous orbit. This is a multispectral equipped vehicle, and two scanners are involved. One is twoband and the other is four-band.

The two-band unit is designated the MSUS, and this instrument operates in the 0.5 to 0.7 , and the 0.7 to 1.1 micron bands. The resolution in these bands is 250 m , with a swath of $2,000 \mathrm{~km}$ at a height of 900 km . The four-band unit operates on the same band as the USA Landsat spacecraft. The resolution on these bands is $1,000 \times 1,600 \mathrm{~km}$, with a swath of $2,800 \mathrm{~km}$ at a height 900 km .
Although this degree of resolution does not approach that of the US spacecraft, there is the advantage that repetitive plots are made every two-three days as against the US nine day intervals. The level of resolution is, however, not sufficiently high to merit computer enhancement. In the Soviet Union the data obtained is being put to use in a number of environmental and economic spheres. These are:

Atmospheric Research. The effect of air pollution was being studied by monitoring the amount of snow melting due to increased absorption of solar energy caused by pollution laden air. Dus't storm boundaries were being monitored by the four-band instrument.
Snow Surveys. Snow cover registered over Siberia was to within 5% of the total area by the twoband equipment, and within 15% of the total by the four-band equipment.
Geology. Continental and regional structural units have been monitored, and geotectonic maps have been produced, on a scale of $1: 5$ million for 50 million kilometres. The extremely wide field of view has been used to define extra large fault lines and massive circular
structures which would have required image mosaics to observe by any other method.
Agriculture. Both the two- and four-band instruments have been used to examine vegetation stress conditions. The grazing grass over an area of 50 million hectares has been assessed to within 100 kg .

INTELSTAT 5

This satellite, to be launched in late 1979 will be provided with flight tested instrumentation which has been emphasised as a prerequisite for efficient missions in the future. This design will have an improved capacity over the Intelstats 4A. There will be 12,000 twoway circuits which will double the capacity compared to the 4 A design. There will, however, be a number of departures from the previous designs. Intelstat 5 will be the first to use the $14 / 11 \mathrm{gHz}(\mathrm{K}$ band) region of the radio frequency spectrum as well as the traditional $6 / 4 \mathrm{gHz}$ (C band) region. The total band width will therefore be 1 gHz . The uplink is at the higher frequency and the down link is at the lower frequency. Frequency re-use is by both spacial and polarisation diversity. Three axis stabilisation of the vehicle is installed, and is to be launched by shuttle.

New technology is going to be introduced. Although the tried and tested travelling wave guide systems are being retained, the introduction of graphite fibre reinforced plastics for antennas will be a great advantage. The structures too will benefit from these techniques. In some cases the solid state technology will be fully exploited in order to reduce weight. But since the innovation of new techniques is largely governed by ministries, it may be some time before the field effect transistor replaces the tunnel diode in spite of superior performance.

There are six communications antennas which link the spacecraft with the Earth. The down link operates on 4 gHz having an 88 element feed array. Each feed horn produces a small spot beam whose phase and amplitude are controlled by an associated feed network. The individual beams merge to form a composite beam of the proper shape and offset to serve the desired area of the Earth's surface.
There is a 6 gHz hemizone receive uplink antenna, a 4 gHz global coverage transmit horn, a 6 gHz global coverage receive horn, and two identical $14 / 11 \mathrm{gHz}$ spot beam antennas. Each of these spot beams generate uplink and downlink beams.

The spacecraft is to be kept to within ± 0.1 deg. of its assigned longitude, and ± 0.1 deg. of its equatorial plane. Other limits for pitch, roll and yaw are not yet given, but it is expected that they may be in the region of ± 0.2 deg. in roll and pitch, with a limit of ± 0.4 in yaw. The power supply is by solar cell, and cadmium batteries which will operate during eclipse periods. The total power available will be 1,205 watts.

The amazing.

 automaticLogic
MonitorLM-1.
Just clip it over your IC.
It instantly and accurately shows both static and dynamic logic states, on a bright, 16-LED display.
It finds its own power.
It cuts out guesswork, saves time, and eliminates the risk of short-circuits.

LM-1 is suitable for all dual-in-
line logic ICs; DTL, TTL, HTL, CMOS; up to 16 pins.

LED on=logic state 1 (high), LED off = logic state 0 (low), and each LED is clearly numbered 1 to 16 in the conventional IC pattern.

> Try the LM-1 and you won't know how you ever managed without it!

Applications

Design, breadboarding, testing and checking new logic systems. Direct real-time monitoring of logic function in operating equipment. Long-term testing of individual ICs. Identification of unused elements, to find room for an extra gate, clock etc. Observing relationships between ICs on different boards of multiple board systems (you need more than one LM-1 to observe simultaneously, of course).
Plus dozens of other uses. You'll find them.

It's Easy to Order

Ring us (01-890 0782) with your Access, Barclaycard or American Express number and your order will be in the post that night. Alternatively, send a cheque, or postal order (don't send credit cards!) and it still only takes a few days.
Otherwise ask for our complete catalogue.

CONTINENTAL SPECIALTIES CORPORATION (UK) LTD

1
EASY BUILD SPEAKER DIY KITS Specially designed by RT-VC for cost conscious hi. fi enthusiasts, these kits incorporate two teak- simulate enclosures, wo EMI $13^{\prime \prime} \times 8^{\prime \prime}$ (approx.) woofers. two iweeters and a pair of matching crossovers. Supplied complete with an eas $y \cdot 10-$ follow

£2800ircuit diagram, and crossover $\mathbf{t} \mathbf{0}$ - 10110 w STEREO PAIR Input 15 watis mm , 30 watts peak. each unit SPEAKERS AVAILABLE WITHOUT CABINETS. It's the units which we supply with the enclosures illustrated Size $13^{\prime \prime} \times 8^{\prime \prime}$ lapprox.) wooter. (EMII. 2 $\frac{1}{2}^{\prime \prime}$ app. $\quad 1700$ per tweeter, and matching crossover components. stereo pair Power handling 15 watts rms. 30 watts peak. + p \& p f 3.40
COMPACT FDR TDP VALUE These infinite baffle enclosures come to you ready mitred and professionally finished. Each cabinet measures approx. perstereo pair $12^{\prime \prime} \times 9^{\prime \prime} \times 5^{n}$ deep, and is in wood simulate. \quad [850 maximum power handing of 7 watts. 8Ω. $\quad+p \& p £ 2.20$ SPEAKERS Two models - Ouo ll b , teak veneer. 12 watts rms. 24 watts peak, $18 \frac{1^{\prime \prime}}{} \times 13 \frac{1^{\prime \prime}}{\frac{1}{2} \times 7 \frac{1}{4}^{\prime \prime}}$ (approx.). Ouo III. 20 watts rms. 40 watts peak, $27^{\prime \prime} \times 13^{\prime \prime} \times 111^{\prime \prime}$ appx
 dECCA 20 WATTS STEREO SPEAKER stereo pair This matching loudspeaker system is hand made, kit comprises of two 8" diameter approx. base drive unit, with heavy die cast chassis laminated cones with rolled P.V.C surfounds, two $3 \frac{1}{2}$ diameter approx. domed tweeters complete with crossover networks 8Ω. $\quad \mathbf{4 . 0 0}$ p \& p. $£ 200$ PERSONAL SHOPPERS
STERE 0 CASSETTE record/replay fully built P.C. board f $\mathbf{2}^{75}$ AM. FM. TUNER P.C.B. with Mullard L.P. 1186. 1185, 1181 modules.
100K Multiturn Varicap tuning pots, 6 for
PAIR STERE 08 WATT SPEAKERS
$8^{\prime \prime}$ bass units with $3 \frac{1}{2}{ }^{\prime \prime}$ approx. tweeters Size $161^{\prime \prime} \times 11^{\prime \prime} \times 8$
Plinth \& cover BSR or Garrard teak finish DECCA DC1000 Stereo Cassette P.C.B

20×20 WATT STEREO AMPLIFIER
${ }^{〔} 2990$ Superb Viscount IV unit in teak-finished cabinet. Silver fascia with aluminum rotary controls and p\& pushbuttons, red mains indicator and stereo jack $\mathbf{£ 2 . 5 0}$ socket. Function switch for mic. magnetic and crystal pick-ups. tape, Iuner, and auxiliary Rear panel features two mains outlets. DIN speaker and input sockets, plus fuse. $20+20$ watts rms, $40+40$ watts peak.
30×30 WATT AMPLIFIER KIT
Specialiy designed by RT-VC for the experienced constructor. complete in every detail. Same facilities as
Viscount IV amplifier. $60+60$ peak. p \& p $£ 2.50 \quad £ 2900$ NOW AVAILABLE fully built and tested.
$55 \begin{aligned} & \text { To cash or cheque personal shoppers } \\ & \text { A } 4 \text { channel Stereo Adaptor to all buyers of the }\end{aligned}$ $\begin{array}{lrl}\text { Visicount } 20 \times 20 & £ 2990 & \text { Available separately } £ \mathbf{Z}^{95} \\ \text { Amplifier at } & +\mathrm{f} 1.00 \mathrm{p} \& \mathrm{p} .\end{array}$

ADD-ON STEREO CASSETTE TAPE OECK KITת Designed for the experienced D.I.Y. man. This kit comprises of a tape transport mechanism, ready built and tested record/replay electronics with iwin V.U. meters and level control for mating with mechanism. Specificstions: Sensitivity-Mic.

$$
0.85 \mathrm{mV} \text { a } 20 \mathrm{~K} \text { OHMS: Oin. } 40 \mathrm{mV}
$$

'a 400 K OHMS: Output - 300 mV RMS per channel 1 KHz from 2 K OHMS source : íross Talk -. 30 db . Tape Counter 3 Digit-Resettable: Frequency Response $-40 \mathrm{~Hz}-8 \mathrm{KHz}^{2} \pm 6 \mathrm{db}$ Deck Motor - 9 Volt DC with electronic speed regulations: Key Functions - Record, Rewind. Mans Transtormer $£ 1995$ Fast Forward. Play, Stop \& Eject. $\mathbf{f} 2.50+\mathrm{El}$ o \& D.p \& $\mathrm{p} \mathbf{f} 2.50$ Opt. extras: Parr of Oynamic microphones $£ 3.95+£ 1.00$ p $\& p$.

$\square \square \square$

 All enquines sent starnped addres sedenvelope

323 EJGWARE ROAO, LONDON W2 21 HIGH STREET. ACTON W3 6NG ALL PRICES INCLUDE VAT AT 121\%
All items subject to avalabilty. Price correct
at 1.10 .77 and subject to change winout notice

45 watts ims. 90 watts peak output. Big features include two disc inputs, both for ceramic caftridges, tape input and microphone input. Level mixing controls fitted with integral push.pull switches. Independent bass and treble controls and master volume.

70 \& 100 WATT MONO DISC
$14^{\prime \prime} \times 4^{\prime \prime} \times 10 \frac{1}{4}^{\prime \prime}$
Brushed aluminium
ascia and rotary controls.
Five vertical slide coptrols - master volume. ape level, mic level, deck level. PLUS INTER-DECK FAOER for perfect graduated change from record deck No. 1 to No. 2, or vice versa. Pre-fade level control 70 watt $£ 57$ it in. VU meter monitors output level. \quad P\&p P 4.00 Output 100 watts RMS 200 watts peak. 100 watt $\mathbf{E} \mathbf{5}$ CHASSIS RECORD BSRBDS 95 SERIES Illus. $\mathbf{E} 2495$ PLAYER DECKS
 Belt drive turntable unit, 2 speed. semi automatic p \& P 12.55 BSR MP60 TYPE Single play record deck f1595 less cartridge. p\&pf2.55 Cartridges to suit above Acos, magnetic stereo $\mathbf{£ 4 . 9 5}$ BSR automatic record play deck

BSR MP 60 type, complete with magnetic cartridge, $£ 29$
diamond stylus, and de luxe plinth and cover. $p \& p \in 4.50$ Home 8 Track cartridge player This unit will match $£ \mathbf{6 5 0}$
with the ViscountIV $9^{\prime \prime} \times 8^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{}{ }^{2} . p$ \& $p \mathrm{f} 2.50$

Tourist IV

CAR RADIO KIT For the experienc
Output 4 watts into 40 hms .
12 volts pos or neg (altered internally) $£ 1 \mathbf{2}^{50 p} \& p £ 1.50$ FREE TO PERSONAL SHOPPERS BUYING CAR RADIO KIT worth ELECTROMATE Rear window heater, modern line element, f3.00

All prices include V.A.T. Carriege \& packing sod 25p (U.K.).
 BEADTANTALUM 8EAD TANTALUM
$122.3347681 \mu \mathrm{~F} 35 \mathrm{~V}$ all values
11 p
$22334768 \mu \mathrm{~F} 35 \mathrm{~V}$ all values 12 p
$10 \mu \mathrm{~F} 25 \mathrm{~V} 22 \mu \mathrm{~F} 16 \mathrm{~V}$ both values 13 p $10 \mu \mathrm{~F} 25 \mathrm{~V} 22 \mu \mathrm{~F} 16 \mathrm{~V}$ both values 13
$33 \mu \mathrm{~F} 10 \mathrm{~V}$
$47 \mu \mathrm{~F} 63 \mathrm{~V} 68$ and 100 F 3 V all values
$47 \mu \mathrm{~F} 16 \mathrm{~V}$ $100 \mu \mathrm{~F} 10 \mathrm{~V}$
CARBON FILM RESISTORS
TWat in-10MR-E12 Series each. 90 for 10 of any one value.

75 p for 100 of any | 1.c. SOCKETS | |
| :---: | :---: |
| 8 pin | $11 p$ |\quad LEDS

 ${ }_{28}^{24} \mathrm{pin}$

DIODES	1 Amp 200V 30p	POLPESTER 100 V Radial lead
$27 \mathrm{~V}-33 \mathrm{~V}$	4Amp 200V 40p	001001200150018.0022
sp anch	4 Amp 400 V 80p	. 0027 0033 .0039 .0047 . 0056
30p for 10	7 Amp 100V 60 p	0068.0082 .01 .048012015
c3.50 for $50 \mathrm{~S}^{\text {chix }}$	7 Amp 400 V 65p	
E6.25 for 100	16Amp 100 V 7 Fp	$47.055 \quad 056 \quad 068.07 \quad 082$
		$\begin{array}{llll}1.12 \quad 15.075 & 18 & 22\end{array}$

THIS breadboard system is designed to facilitate developing, or experimenting with circuits without the need for continual soldering and desoldering. It not only saves time, but also reduces the risk of burning components and/or fingers.

The board can accommodate i.c. packages with up to 20 pins, as well as discrete components, but the concept is capable of being expanded to any desired size. It is constructed from Veroboard and i.c. socket strip (200 sockets).

CONSTRUCTION

The Veroboard is cut according to Fig. 1 which gives four groups of 10 electrically separate modes, each mode having sockets. The i.c. socket strip is cut and trimmed as
in Fig. 2, and the sharp edges are removed with a file. The socket strips are then inserted in the Veroboard.

SOLDERING

Each group of ten strips is retained in the Veroboard using a spare finger, and one end of each strip is soldered. When all strips are secure, each joint is resoldered while its respective strip is positioned perpendicular to the board. The other end pins of the strips are then soldered. The three inside pins of each strip are not soldered.

INSULATION

Because of the close proximity of the stocket strips on the board, it is necessary to provide insulation between

adjacent rows of sockets, to avoid accidental shorts between rows. Any insulating material will be sufficient, but 6 mm strips of thin plastics material, 110 mm long, cut from an ice cream container proved to be very suitable. These are inserted between the socket strips and also help to maintain the alignment of the four groups of sockets.

MOUNTING

The board is mounted on a small block of wood, being held just clear by spacers on the screws. A piece of hardboard, with several suitably sized holes drilled in it, may be screwed to the block to serve as a panel for holding switches, pots and sockets.

USE

External connections to the board, and jumper leads between stips should be made from single core bell wire. The board as designed is capable of accommodating a wide variety of circuits, and with reasonable care, should give long and trouble free service. Should any of the sockets become deformed after prolonged or over enthusiastic use, it is an easy and inexpensive matter to remove the offending strip, and replace it with a new one.

Ideal for many board games

The basic idea for this electronic die developed with the idea of having a hand-held unit that would be small and have a long battery life. Because of the latter it was desirable to display a number from the die by simply switching the unit on by depressing a pushbutton; releasing the push-switch isolates the battery and switches the unit off.
The display, in the H format, consists of seven light emitting diodes gated in such a way to produce the six required numbers.
To obtain a random number from the die a high frequency multivibrator is gated on and off by a much slower read rate oscillator. By making the mark to space ratio of this read rate oscillator large and the frequency of the other multivibrator high. sufficient difference in the number of cycles allowed through into the display each read rate pulse is assured and the randomness in the decoded number does not appear weighted toward any number.

DESCRIPTION

To decode in binary the required number of states, three JK flip-flops are required. In this design DTL 9093 devices are used, two being contained in one 14 pin dual-inline package.

To fully decode the seven diode matrix of l.e.d.s the minimum gating required is two, two input nand gates and one three input nand. Conveniently one can use three, three input NAND gates contained in one package, i.e. SN7410 strapping the inputs on two of the gates.

Reference to Fig. 1 the circuit diagram, will show that the three JK flip-flops are connected in series, the decoding takes place as indicated in Fig. 2 which shows total display.

On binary seven Q2 and Q3 are reset leaving inverse Q1 output high and hence D1 on since this is connected to Q I

Author's prototype, although any box can be used

Fig. 1. Circuit of die

No.	LED DISPLAY			No.	LED DISPLAY		
1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	4	\bigcirc		\bigcirc
2	\bigcirc	\bigcirc	\bigcirc	5	\bigcirc		\bigcirc
3	O		\bigcirc	6	-		\bigcirc

Fig. 2. Showing the l.e.d. display for a count up to six

Fig. 3. Upper side pattern of the main p.c.b. shown full size

Fig. 5. Upper side pattern of the display board shown full size

Fig. 6. Lower side pattern of the display board shown full size

Fig. 7. Component layout of the display p.c.b. (upper side) note that the print pattern shown is of the upper side with underside connections shown with blobs

Fig. 4. Lower side pattern of the main board shown full size

Fig. 8. Component layout of the main board (upper side). Print pattern shown is of the upper side with all underside connections shown with blobs

Table 1

No.	$\overline{\mathbf{0}} 1$	$\overline{\mathbf{Q}} 2$	$\overline{\mathbf{Q}}_{3}$
1	1	0	0
2	0	1	0
3	1	1	0
4	0	0	1
5	1	0	1
6	0	1	1
7	1	1	1

Table showing the binary decoding necessary to drive the l.e.d. display

As can be seen gate IC 3 a resets the two flip-flops when the three input lines correspond to 111. Similarly gate IC3c decodes two l.e.d.s concerned only with displaying six. By considering the various states indicated in Table 1 one can follow how the decoding works.

Transistor TR7 feeds $0-5$ volt pulses into IC1a on the first JK flip-flop input. TR3 and TR2 constitute a multivibrator oscillating at approximately 50 kHz . This square wave is fed into the base of TR7 continuously but only appears at the output on collector TR7 when TR6 is off. TR6 is gated on and off by the multivibrator TR5, TR4.

TR1 drops the 9 volt battery to 5 volts while providing good regulation until the battery is finished. Cl is included to avoid the 50 kHz being modulated with multivibrator pulses from TR4, TR5 so avoiding any possible synchronisation.

CONSTRUCTION

A double sided printed circuit board is shown in Figs. 3 through to 8 . Construction whether on the printed circuit board or other means is straightforward but it is very necessary to ensure the l.e.d.s are the correct way round before soldering them in.

THE DIE IN USE

Once Sl is depressed pulses are immediately fed into C_{1} because TR6 should be hard off in this initial condition. The first number to be displayed will thus appear almost simultaneously, keeping the button down: the display will be seen to gate again after a display period of approximately $1-2$ seconds. This will be recognisable because all the l.e.d.s will glow softly for a very short period, another number will then be displayed; this proçess continues as long as the die is left on.

Games such as Monopoly require two throws of the die and conveniently by leaving the die on, two numbers are

Interior view of die

COMPONENTS . . .
Resistors

R1, R2, R12, R13, R14	$270 \Omega \Omega$	(5 off)
R11	390Ω	
R15	470Ω	
R10	$1 \mathrm{k} \Omega$	
R3, R4, R7	$2.2 \mathrm{k} \Omega$	
R5, R8, R9	$15 \mathrm{k} \Omega$	
R6	$220 \mathrm{k} \Omega$	

$\frac{1}{8}$ watt (carbon)
Capacitors
C1, C2, C3
C4, C5
$50 \mu \mathrm{~F} 6$ volt electrolytic
$0.001 \mu \mathrm{~F}$ disc ceramic

Semiconductors

TR2, TR3

ZTX500
TR1, TR4, 5, 6, 7
IC1, IC2
ZTX300
9093 (Bi-Pak)
SN7410
TIL209
5.6 V 200 mW Zener

Miscellaneous
PP3 battery snap and 9 V battery
Pushbutton switch
Miniature jack socket
displayed then the die is passed around. Unfortunately in the heat of play distrust does sometimes creep in when getting say two sixes. To avoid this a jack socket with a plug and extension lead complete with pushbutton wired in parallel with SI facilitates leaving the die in the middle of the board where everyone can seen the number thrown, merely passing the pushswitch round when one has had a go. The PP3 battery when used in this way proves economical, consequently a larger battery is not needed making miniaturisation of the whole unit easy.

Alihough car radios and tape players are fitted into some cars, many less endowed motorists would like to use their domestic battery-operated radios, radio/ recorders or recorders in their cars at times such as during holidays, long journeys or more permanently and would prefer to use the car battery supply instead of the internal costly dry batteries. This article describes a unit which can be used for such a purpose.

Measurements have shown that under normal operating conditions the nominal 12 V available from the car battery can vary from 10 V to 14.5 V , a tremendous variation, and means must therefore be provided to obtain from such a varying input voltage an output voltage which varies very little from the one required, such as $6 \mathrm{~V}, 7.5 \mathrm{~V}$ or 9 V .

It is a highly desirable feature of any circuit but particularly one for constructors that excellent performance is designed in and no adjustments or tailoring of component values is necessary when it is made up. This circuit has this feature.

CURRENT LIMITING

The energy available from a car battery is very considerable indeed and it is not impossible for wiring damage to result from breakdowns or accidental short circuits in equipment connected to a car battery system unless safety measures are taken. This unit includes such measures and its outputs can be short-circuited indefinitely without any ill effects. Under such çonditions the output current falls to a low value and remains almost cut off until the short circuit is cleared.

The components used are not critical and similar alternatives should be quite satisfactory. Silicon transistors and diodes should be used, however, because they operate satisfactorily at higher temperatures than germanium types.

THE CIRCUIT

The circuit is shown in Fig. 1 and may first of all be considered with D3 omitted and D2 short-circuited. It will then be seen to consist of a stabilised voltage provided by the Zener diode Dl fed from the unstabilised input via R1.

To this stabilised voltage point is connected a complementary emitter follower TR1 and TR2, the output being
taken from the emitter of TR1 which is also connected to the collector of TR2. If the circuit was used in this form it would provide a stabilised output voltage of about 0.5 V lower than that of the Zener diode, but if the output was overloaded, particularly if it was short-circuited, the transistors would be destroyed.

The inclusion of D2 prevents the output current rising beyond a chosen limit. For a given set of other components the maximum current is determined by the value of R2 and when this current is reached D2 becomes reverse biased and ceases to conduct. Even if the output is shortcircuited the output current will not increase beyond the chosen value. However, under such conditions TR2 would have the full input voltage applied across it and as it would also be passing maximum current it would be dissipating maximum wattage. Unless means were provided to dissipate the heat generated by this wattage, TR2 would become overheated and damage result. Much more cooling would therefore have to be provided than necessary

Fig. 1. Circuit of stabilised p.s.u.

Fig. 2. Veroboard layout and track cutting details
under all conditions except severe overload such as a short circait.

If D3 is included such a severe overload causes the diode to conduct, the Zener diode is almost shorted out, TR1 and TR2 become almost non-conducting and the short circuit output current is determined mainly by R1 in series with D3 and the output load or short circuit all across the battery circuit. This current is very small so under severe overload conditions the power dissipated in TR2 is negligibly small and cooling arrangements for normal output only need be provided.

CHANGING THE OUTPUT

In this circuit the output voltage is almost exactly that of the Zener diode used and an output of $6 \mathrm{~V}, 7.5 \mathrm{~V}$ or 9 V may be obtained by merely fitting a Zener of the appropriate voltage. No meter is needed for setting-up purposes. The normal current required by the sort of load for which this unit was designed is up to 150 mA and a current of at least 250 mA has therefore been made available to provide an adequate margin.

There is a possible problem of starting current which in the case of brush type recorder motors is very much higher than the run current. It is this characteristic which makes them attain their running speed very quickly and is why they are so suitable for cassette recorders. However, the starting current can be up to ten times the run current and it is possible that with some recorders the unit as shown will not start up if the recorder is switched on before power is applied to the input of the stabiliser.

COMPONENTS . .

Resistors

R1	$2 \cdot 2 \mathrm{k} \Omega 2$
R2	$3 \cdot 3 \mathrm{k} \Omega$
$\frac{1}{2} W$	10% carbon

Capacitor C1 $\quad 0.047 \mu \mathrm{~F}$ polyester film

Semiconductors

TR1	BD132
TR2	BC108
D1	BZY88C9V1 9.1V 400 mW Zener
D2, D3	BYX10 (2 off)

Miscellaneous

Veroboard, heat sink, nuts, bolts and lock washers.

If this is regarded as a drawback it can be overcome by putting another similar diodc in series with D3. Although the short circuit current is then somewhat higher than when one diode is used it is very much less than with no diode and no starting problem will arise.

Capacitor Cl is included to eliminate any possibility of the circuit oscillating at high frequencies.

PERFORMANCE

The unit described has been used in a typical family car to operate a cassette recorder and has given no trouble. At an output of 100 mA the voltage varies from 9.08 V to 9.13 V if the input voltage varies from 10 V to 15 V .

At a steady 12 V input the output voltage varies from 9.1 V to 9.05 V if the output current varies from 100 mA to 250 mA .

The output current into a short circuit is 10 mA .

CONSTRUCTION

The layout of this unit is not critical as indicated in Fig. 2.

It is not always realised just how difficult are the conditions in which the "electrics" in cars operate. Vibration and temperature variations are two of the real environmental hazards. Anything which can vibrate loose or break loose will do so. Leads, components and screws must be very secure, particularly with any sub-assemblies constructed.

The temperature in a car can vary from below freezing to $55^{\circ} \mathrm{C}$ or above during a year and due regard of this must be taken when choosing components.

Where no convenient connection, such as a cigarette lighter socket, is available it is quite simple to run a separate lead or leads to the car battery or fuse box, but a fuse should be incorporated somewhere in the "live" lead.
The easiest way of doing this is by means of a lead mounted fuse if a lead is taken directly to the battery. If the lead is taken to the fuse box it is best to choose the position, often marked "AUX", which connects to such things as the clock, roof lamp, heater, etc. Failure of wiring will not then put the car out of action.

Final parameters are material and application dependent, but in general bubbles can be supplied to 812 mm (32 in) diameter and beyond. Other shapes are available but this is dependent on sheet dimensions. In-house facilities include normal engineering functions such as turning, drilling and bending.

Further particulars of this design service can be obtained from Viglen Acrylics Ltd., Dept. P.E., 2 Madrid Road, London, SW13.

DISPLAY CABINET

With so much happening recently in the field of microprocessors and t.v. games, particularly in the constructor magazines, it is interesting to see that Mentor Electronics have just introduced a universal cabinet for V.D.U's.

Ideal for such applications as computer terminals, t.v. games, audio equipment and test gear, the Jubilee cabinet is injection moulded from Noryl highimpact thermoplastic material. It has a moulded-in blower opening, which could be used for a small speaker grille, ventilation grilles and component mounting pillars and bosses.

The front keyboard plate is held in place by an acrylic screen. The cabinet is available unpainted or painted in a textured black and light grey.

The Jubilee housing measures 533 mm $\times 493 \mathrm{~mm} \times 387 \mathrm{~mm}$, costs $£ 79$ and is available from Mentor Electronics Ltd., Dept P.E., Ryefield Crescent, Northwood, Middlesex, HA6 1NN.

ADJUSTABLE VICE

A precision made bench vice which should interest both the model making and electronic constructor enthusiast is now available from Greenwood Electronics, manufacturers of professional soldering irons and equipment.

The Oryx Model 1 B vice is a versatile tool with 89 mm jaws and is fully

The Oryx 1B adjustable bench vice from Greenwood Electronics
adjustable to rotate through 360 degrees and can be locked in any position. The vice is equipped with nylon jaw linings giving a firm grip with no damage to the work piece. Jaw linings are replaceable. The main components of the vice are cast in high tensile strength lightweight alloy and finished in stove enamelled green.

Cost of the Oryx IB bench vice is $£ 19.95$ plus VAT at 8 per cent and is available from Greenwood Electronics, Dept P.E., Portman Road, Reading, Berks, RG3 1NE.

NEW TURN

Coinciding with their move to new trading premises, Trueturn Electronics have regraded their popular standard TT wirewound potentiometer series into three classes. Grade "A" devices are guaranteed to have $a \pm 1$ per cent linearity and resistance tolerance. Grade "B" are guaranteed to ± 3 per cent and grade " C " ± 5 per cent, but nearer to 3 per cent linearity in practice.

The overall resistance range has been extended to 47 ohms and 47 kilohms.

The grade " A " range is more suited to applications in telecommunications and instrumentation. While grade "C" range is more suited to commercial and constructors less stringent requirements.

Further details, prices and nearest stockists can be obtained from Trueturn Electronics Ltd., Dept. P.E., 2/3 Golden Square, London, W1R 3AD.

NOTE

We have been asked by Semiconductor Specialists to point out that they are not able to deal with individual enquiries or orders for the kit of piano i.c.s mentioned on page 7 of our Supplement in the November 1977 issue.

All enquiries and orders for these chips should be placed with Maplin Electronic Supplies, P.O. Box 3, Rayleigh, Essex SS6 8LR.

Futuristic plastics hi fi console by Viglen Acrylics

A selection of readers' original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to its merits.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undeìsigned, and that it has not been accepted for publication elsewhere.

TOUCH ACTUATED GENERATOR

Fig. 1

THIS pulse generator provides extended pulses and is controlled by finger contact. It has the added advantage of the output being able to be held in a low or a high state.

The Nand gates of ICl (Fig. 1), form a Schmitt trigger fed from the series diode/resistor combination D1-R2, connected to the gate of the f.e.t. The output from the Schmitt is fed to the clock of a D-type flip-flop (IC2) connected in the divide by two mode. Two capacitors provide feedback from the output of the flip-flop.

Capacitor Cl , feeds the gate of the f.e.t., which, in turn controls the current flowing through R1, D1, and R2.

Hence the potential at the input to the Schmitt will rise and fall according to the state of charge of C1. The rate at which this potential changes is governed by the value of C 2 . With this absent the highest pulse frequency attained is 25 Hz .

When the gate is low less current will flow through D1 and vice versa. Thus, the input at ICI/pin 3 is alternately low and high, giving a low and high output at Q , which is at one half the frequency.

It is interesting to note that if $\mathbf{C} 2$ is very much greater than C 1 , then it is C 2 that controls the pulse width. For example when C 2 is $4,700 \mathrm{pF}$,
the pulse width is about 10 s .
The values of capacitors shown in the diagram, give a pulse frequency of about 0.5 Hz .

The generator is initiated, merely by finger contact on the lower plate. If it is desired to hold the output at one level or another, finger contact on the upper plate will hold the output until released. Both the touch plates should be situated close to mains wiring.
P. R. G. Reynolds,

Benfleet,
Essex

SIMPLE TIMESETTING FOR THE MK50250/253

Fig. 1

$H^{\text {aving }}$ recently built an alarm clock using the MK50250/253 range of digital clock i.c.s it was found that the less technical members of the family had some diffioulty in understanding the correct procedure for setting the clock accurately, so it was decided to simplify the time setting procedure, the new arrangement being as follows:
(1). On altering the time, i.e. depressing one or more of the time advance buttons S3 and S4, the clock widl automatically be stopped from counting.
(2). A single push switch (S1) should be used to re-start the clock.
(3). The clock will not stop on altering the alarm time.

The circuit shown in Fig. 1 uses a CD4001 cmos quad NOR gate to perform the required logic functions, and is shown with connections to the MK 50250/253 clock i.c. The 18 V clock supply is dropped to the 15 V required by the cmos. The required level interfacing is achieved using R5, R7 and R6, R8.

It should be noted that with this particular i.c. in this arrangement the alarm time cannot be set unless the clock time is set and running. The circuit can be adapted to suit other clock i.c.s that have similar time setting arrangements to the MK50250/ 253.
F. Dart,

Glasgow

NOVEL STABILISER CIRCUIT

|F an n-channel field effect transistor is used to drive an n.p.n. bipolar device, benefit can be derived from the fact that, for normal openation within the characteristics of both devices, the gate of a low- or mediumtolerance f.e.t. will lie some volts negative to the bipolar emitter.

One useful application of such a combination is an adaptation of the familiar source-resistor-biased f.e.t. constant current device, when more current is required than the f.e.t. alone would provide.

A conventional n.p.n. series voltage stabiliser suffers the disadvantage that its base must be positive to the stabilised output and must therefore be

Fig. 1
fed either from the crude d.c. at the reservoir capacitor or from a separately controlled supply. An f.e.t. driving the series element overcomes this disadvantage and enables a novel circuit (Fig. 1) to be constructed with both the gate and the reference diode fed from the output.

The simple arrangement shown will provide 1 A at an output impedance of 50 milliohms.
P. Smith,
Burnley,
Lancs

SIMPLE LIE DETECTOR

N this skin resistance indicator the output from a 741 operational amplifier is used to control the frequency of a cmos voltage controlled oscillator. The base frequency, with the components shown is 300 Hz with a control voltage V_{r}, at zero rising to 5 kHz at a control voltage of 10 V .
The 741 is operated in the differential mode. Here, the voltage applied to the non-inverting terminal (pin 3) via the probes, is compared to the voltage at the inverting terminal (pin 2). This latter voltage will be held at one half of the supply voltage by the two $100 \mathrm{k} \Omega$ resistors. Thus, as the skin resistance decreases, the voltage at pin 3 increases to become more positive than that at pin 2. The point at which this occurs is set by means of VR2.
The increase in the output voltage, causes an increase in the output frequency from the v.c.o. Potentiometers VR1/2 are interactive and are adjusted to give a suitable starting frequency at the v.c.o. output.

Fig. 1

The circuit may be used to monitor changes in skin resistance under stress (or relaxation!) for biofeedback or other purposes. Supply rails down to 6 V may be used without any real degradation in performance.
The output may be quite easily detected using a crystal earpiece.

For the greatest sensitivity the probes should be connected to alternate strips of copper if the circuit is made up on Veroboard.
P. R. G. Reynolds, $\begin{array}{r}\text { Benfleet, }\end{array}$

Benfleet,

TAPE REGORDER PEAK LEVEL INDIGATOR

Many of the high quality tape decks presently available utilise VU meters to monitor the recording levels in each stereo channel. Unfortunately, only the most sophisticated and expensive models provide any indication of the peak level rather than the average level. Because of this, it is possible for overloads to go unnoticed, especially in percussive music.
The purpose of this circuit is to form an add-on unit to perform this function. The input level is sensed for each channel by gates acting as

Fig. 1

Schmitt triggers (Fig. 1). They have present a d.c. bias which sets the input level at which triggering occurs. Their outputs are fed to a monostable type circuit which lights the J.e.d. in a short pulse for each input peak.
I have found the best setting for the bias pot. to be at the point
where the l.e.d. is just turning on with a two-tone sine wave input to the deck which gives a level of about +2 VU .
R. J. Crowther, Stourbridge

MODEL TRAIN SPEED CONTROLLER

THE main disadvantage with many model train controllers is that they do not give a linear control of train speed. The following circuit gives a linear control enabling the train's speed to be set anywhere between a very slow pace and full speed (Fig. 1).

Mark-space variation in oscillator output is used to change the power output to the motor. Circuit operation is as follows: T1, the bridge rectifier and Cl provide a smooth d.c.
supply of about 12 V to the motor. S2 reverses the train's direction of travel. TR1 and TR2 form an astable multivibrator whose frequency ef operation is about 200 Hz and whose mark-space ratio is variable from about $1: 11$ to about $18: 1$.
The output from TR2 is current amplified by the Darlington pair TR3 and TR4 and applied to C2 and the motor. S 2 reverses the train's direction of travel.

R1 serves as a current limiting re-
sistor in the event that the rails are shorted together.
Transistor types and component values are not too critical and the circuit can probably be built up from near value components. Component layout is not critical and the circuit can easily be built on a small piece of Veroboard.
G. Hughes,

TWO WIRE/TWO WAY BELL SYSTEM

IN the home the use of an intercom is seldom necessary as the most usual "calls" are to come in for meals, to answer the door/telephone or even to watch a particular television programme. I think that it is also fair to say that a bell is louder than an intercom so if communication with a shed, garage or workshop is required a bell is the best bet to be heard above the noise of the drilling, filing, sawing and hammering that can often be present.

Having decided to use a bell system for two way communication, there are two existing ways. The first (Fig. 1a) uses one battery/transformer with three connecting wires. The second (Fig. ib) uses two batteries/transformers and only two connecting wires. Batteries are very expensive and decay with time, even without use, so a transformer is cheaper in the long-run.

This leaves the choice of using an extra transformer or an extra core in the connecting cable. These can easily work out at the same cost, so how about using neither?
This is the object of my circuit in Fig. 1c. Here the direction of the current determines which bell rings, the direction being set by the push switches. Since each bell runs on alternate mains half cycles, it is run

on d.c. so if your bell has terminals marked positive and negative, connect it up as shown. When both switches are pushed at the same time both bells will ring without damage to anything.

If you have to run a long length of cable it will be much cheaper to use one conductor with the earth as the common. This is shown in Fig. Id.

No details about the bells/buzzers or transformer have been given as they do not have to be matched precisely at all. Transformers which could not supply the necessary current continuously, because of the heating effect of the current, can be

(c)

used as the bells will only be on for a very short time. In the same way the transformer voltage can be in excess of the rated value for the bells. In fact it is desirable to run the bells from a higher voltage transformer than recommended by the manufacturers as it is being run from a half wave rectified supply.
L. O. Green,

Norwich

A combination of the best features of analogue and digital instrumentation, employing auto-ranging from 0.3 V up to 100 V , together with polarity indication. These features make it simple to use and foolproof, in addition to its high accuracy ($\pm \mathbf{2} \%$) and input impedance ($10 \mathrm{M} \Omega$).

anacricat
 ELECTRONICS

OUR FEBRUARY ISSUE WILL BE ON SALE FRIDAY, JANUARY 13

Plus... Part 2. of Our Important New FAULT FINDING Series

The RHYTHM GENERATOR

Tне only language that CHAMP is programmed to understand is hexadecimal, and therefore to be able to talk to it a hexadecimal keyboard is required, and for it to talk back, a hexadecimal display is required. Hexadecimal is a base 16 number system which we human beings represent with 16 separate characters, namely 0 to 9 and A to F ; and which CHAMP represents with a four bit binary word from 0000 to $1111(0000=0$, and $1111=$ F). Every time we press a single key therefore, we enter a four bit word or "nibble" into CHAMP's internal registers, two presses being necessary to enter a single instruction word of eight bits, and three presses being necessary to enter a single address word of 12 bits.

The hexadecimal notation is useful because it enables us to enter data much quicker than would be possible with binary notation, and because codes for the various instructions in the 4040 instruction set are much easier to remember and use in this format. This makes program writing and debugging much simpler than would be possible if binary, or even octal were employed. The hexadecimal character set can also be represented on the cheap and freely available seven segment l.e.d. display devices, albeit in a stylised form.

CALCULATOR

As the basis of our hexadecimal keyboard/display unit we need 16 separate keys and several seven segment display digits, and of course, this combination is handily available in the form of any cheap four function calculator, making the use of such a unit the natural choice. The advantages of using a calculator rather than building
from scratch are that firstly, all the case and hardware construction has been done already, and secondly, it is unlikely that you can buy a 16 digit keyboard and an eight digit display, with drivers, for the price! Cheap "throw away" calculators can now be found for less than five pounds, and there are numerous first generation machines no longer in use, and left lying around gathering dust. For CHAMP we chose to use one of the early Sinclair Cambridge machines which were produced in very large numbers, and the result was a very compact and economical keyboard/display unit at very low cost.

We realise that you may not be able to lay your hands on such a machine, and if this is the case it should be possible, using the design and notes presented in CHAMP-5, to adapt most cheap four function calculators to suit, or even to build from scratch if you prefer.

HOW THE DISPLAY WORKS

Referring back to Fig. 2.3, you will see that there are two 75491 i.c.s (top right,) and these drive the segments of the seven segment display in the calculator. The eight inputs for the 75491 (seven segments plus decimal point) are provided by the 4265 programmable i/o chip which uses ports X and Y for this purpose. The CHAMP display is an eight digit unit and is of course driven in multiplex fashion, and this requires an additional eight control lines to select the currently active digit.

Rather than produce these digit strobes on the CHAMP board itself, a shift register controlled by only two wires from CHAMP, is used instead. The shift register, along with other circuitry, is situated inside the calculator case.

Fig. 5.1. Method of driving the display direct from RAM. A 'replica'' of the energised segments is stored, so that no decoding i.c.s. are necessary. Logic 1 in $4002=$ Lo'. Logic 1 on $4265 \mathrm{o} / \mathrm{p}=\mathrm{Hi}^{\prime}=$ segment "on"

The CHOMP display/driver software loads a single logic 1 into the shift register, and then clocks it along to enable each digit in turn. When the logic 1 "drops off the end" of the shift register it is replaced, at the correct time, by a new one at the data input to the register.

The display driver software is responsible for making sure that the correct segment information is presented to the display at the correct digit time. It achieves this by keeping a replica code for the required display in the 4002 data RAM; reading out the data for each segment in turn to the 4265 , and then going back to do it again when digit eight has been displayed, and a fresh logic 1 has been presented to the register.

The display replica is held in 4002 chip zero, register zero, where the available 16 four bit characters are used in pairs to hold the complete eight digit by eight segment display readout. This can be seen more clearly by referring to Fig. 5.1, which shows how the ram characters map onto the display digits. Notice that the replica is already in seven segment code when stored in the ram by CHOMP. Because the replica is not in binary, no external decoder chips are necessary to drive the display. The decoding is executed using software by means of a "look-up" table, and this will be examined in detail next month.

One advantage of driving the display in this fashion is that user programmes can drive the segments in any way -they please. For example, as decimal digits only, as a full alphabet of characters (which can just about be done with some improvisation), or simply as a " 0 " and " 1 " binary display.

When CHOMP is running, only six of the possible eight display digits are used, the left-most three being used for address or data entries and dumps, and the three right-most digits being used to show the current value of the address pointer maintained by CHOMP. User programmes can of course employ all eight digits, and there is no need to write any display driver software because the CHOMP subroutine DDRV handles all eight digits, and can be called by a user programme when required.

HOW THE KEYBOARD WORKS

By using a four bit output port, a four bit input port, and some software, the 4040 chip can easily encode and debounce a 16 key keyboard, and even has a special instruction, KBP (keyboard process), available to make the job simple. Despite this, CHAMP does not use software for this purpose, and uses instead a hardware keyboard encoder and debounce circuit; so perhaps a word of explanation is called for. During the CHAMP design process it was realised that the addition of software for keyboard purposes would make the use of two 4702A chips necessary to house CHAMP, and for economy reasons this was not desirable. In addition, the two four bit ports required would not be available on the 4265 and so some extra port hardware would be necessary, which could either be an extra 4265 or some TTL to do the same job. These two things together made the apparently simple software solution untenable in this particular case, and this constitutes, we think, an interesting example of the hardware/software trade off which is necessary in any microprocessor system design.

The hardware encoder/debouncer is in fact quite simple, and requires just four tTL packages, three of which are housed in the calculator case itself. Two 74148 eight input priority encoders with their active-low outputs nored together by a 7400 gate provide the 16 key to four bit binary encoding function, and the debouncing is achieved with the aid of a 74123 dual monostable.

KEYBOARD/DISPLAY CIRCUIT

Figure 5.2 shows the internal circuitry of the keyboard and display and also covers the interface of this unit to the CHAMP main board. This circuit is intended for direct use by those who have a Sinclair Cambridge calculator of the correct type, but can also be used by those with a similar calculator, and by those who intend to build a unit from scratch. All that is in fact required from the calculator is the eight digit seven segment display

Fig. 5.2. Complete keyboard/display system showing the interconnections to CHAMP board. The shaded area shows which components are mounted on the Veroboard within the calculator case

Fig. 5.2a. Driver circuitry for $\mathbf{0 . 1 2 5}$ inch I.e.d. display digits. The diode (1 N4148) is only required when some of the cathodes are driven by a 75492 i.c.
unit (which must be a small common cathode l.e.d. unit), the digit drive circuitry (which may be discrete transistors or a 75492 chip), and the keyboard array itself (which must be capable of being rewired as 16 single keys with one common connection). The calculator mos chip and all other circuitry is not required and can be removed. Some more recent calculator designs drive the digit lines directly from the LSI chip without separate digit drivers, and if you have one of these, then the required drivers can be added by using either a pair of 75492 s or eight silicon n.p.n. transistor stages of the type shown in Fig. 5.2a. Anyone building from scratch (why not build it on the breadboard?) can use the Fig. 5.2a driver circuitry, and must add their own l.e.d. display. In this case it is important not to use the 0.3 in or 0.6 in type of discrete l.e.d. because these have a voltage drop which is "too high for comfort" on the 5 V supply scheme employed here. Only small $0 \cdot 125$ in common cathode arrays are suitable.
Those using other calculators, or building from scratch, may also find it necessary to alter the value of the current limiting resistors R51 to R58 on the main board to achieve a satisfactory display intensity.

ADDITIONAL CIRCUITRY

Returning to Fig. 5.2, display, drivers, and keyboard components can be identified which form part of the original calculator, and also the additional components which must be mounted inside the calculator case.

Four integrated circuits are added to the calculator, as we shall see later, and these are mounted on a small piece of Veroboard which may be housed in the battery compartment of the Sinclair Cambridge. The digit drive shift register is formed by IC4, with its A data input driven by output Z 3 of the 4265 , and its clock input driven by output $\mathrm{Z2}$, under the control of the CHOMP software. The eight outputs of the 74164, are the digit strobes and are applied to the display via digit drivers which in the case of the Sinclair unit, are already available on the calculator p.c.b. The 75492 driver has only six stages, and to make this up to eight, Sinclair have added two discrete transistor stages, but this poses a small problem when working from 5 V supplies because the difference in voltage drops between the two types of driver causes a difference in l.e.d. digit brightness. This was easily cured in our keyboard unit by adding silicon diodes in series with the discrete driver outputs. Anyone who used all 75492 drivers, or all transistor drivers, should of course omit these diodes.
Integrated circuits IC3, IC5 and IC6 form the keyboard encoder, where IC5 and IC6 are 74148 eight input priority encoders, which give a three bit binary output code corresponding to the active input line with the highest numerical weighting. To get a full 16 line encoder, two 74148 devices are cascaded using the output enable and input enable facility provided on these chips. Chip IC3 provides the final three low order BCD bits and the common "group strobe" which is present when any key is pressed, the high order bcd bit being taken directly from the enable output of the 8 to F encoder. This encoder scheme is simple and very effective, having the advantage of requiring a very simple switching array of 16 s.p.s.t. keys with one side of all of these wired common to 0 V . This overcomes a major obstacle when using a cheap calculator keyboard, because almost any design can be rewired into this configuration from the "row and column" matrix usually employed. The type of matrix used in a calculator design varies a great deal, but a little careful thought should be
enough to enable a CHAMP builder to adapt any design to suit this simple new requirement.

As you can see, a total of 17 connections are required between the keyboard unit and the CHAMP main board, which poses a bit of a problem because 16 -way sockets have been chosen as Standard. The solution was to carry the 15 logic signals using the standard 16 -way ribbon cable connection system, and to add two extra wires for the 0 V and +5 V power supply to the keyboard. As you can see in the photographs, these two extra wires were the two "outers" of an 18 -way ribbon cable connection, and were terminated at the CHAMP end by means of sleeved Soldercon pins which can be pushed on to terminal pins adjacent to SK3 on the main board. This arrangement has worked well in practice, and allows the keyboard to be disconnected easily when required.

KEYBOARD CONSTRUCTION

From now on, we will be considering the keyboard design used with the CHAMP prototype, and this means that details which follow relate only to a particular version of the Sinclair Cambridge which uses the Texas Instruments' TMS0801 calculator chip. This type of Cambridge can be recognised by the fact that it has a ce button between the c button and the on/OFF switch, whereas some others have a K button.

Start by dismantling the case. This is achieved by locating a screwdriver in the slot around the side of the case and twisting. The buttons and keyplates are held in position by means of a plastics retaining frame which has three studs protruding through the circuit board which are welded on the component side. Lay the calculator circuit board face down on a flat surface and snip the welded studs away, then lift the circuit board off and you should be left with the key buttons and their retaining frame. The stainless steel keyplate will be left attached to the circuit board by means of the on/OFF switch, and this should be removed, together with its thin plastics insulating spacer. Put these parts aside for later use. If you have any trouble with this part of the modification, refer to Fig. 5.3.

Fig. 5.3. A guide to the basic construction of the Sinclair 0801 keyboard assembly

COMPONENT REMOVAL

Using Fig. 5.4, identify and remove the following unwanted components:

```
\(\mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4\).
D1, D2, D3, D4.
R1, R2, R3, R4, R6.
TR1, TR2.
L1.
IC1.
```


Fig. 5.4. Component layout of the Sinclair calculator. The shaded components should be removed (see text)

Fig. 5.5. After the calculator chip (IC1) has been removed from the Cambridge, terminal pins should be inserted through the lead holes. The vacated i.c. pad can then be wired as shown in the diagram

Fig. 5.6. Modifications to be made around the calculator display

The removal of IC1 in particular should be carried out with great care, since the board is double sided and uses plated-through holes. A "Solder Sucker" or de-solder braid must be used.

With IOl removed, refer to Fig. 5.5, insert the terminal pins and make the links (except those to PL1 and the Veroboard) as indicated.

Using Fig. 5.6, identify the Bowmar l.e.d. display and then, working from left to right, break the tracks connecting display digits 2 and 3 to the circuit board proper, and bridge the gaps with two IN4148 Silicon diodes as shown. Next, add a flying lead from the hole location shown, to act as a 0 V connection to the Veroboard, to be added later. Using Fig. 5.7, which shows the component side of the calculator circuit board, make the 16 track breaks required with a sharp modelling knife or similar implement, and be sure to get rid of any swarf which may cause shorts later. The flying leads from individual keypads can now be added, and these should be of Kynar wire (or similar) left long at first, and trimmed to size when the Veroboard is added. To avoid disaster, these wires should be soldered very carefully to avoid solder running through the plated hole to the keyplate side where it will cause trouble

THE VEROBOARD

The Veroboard layout is shown in Fig. 5.8, and this board can now be cut to size and assembled in the usual way. Soldercon pins were used for all four i.c.s in the prototype although this is not essential. Make sure that all track breaks, terminal pins, wire and fixing holes are correctly located, and then wire up the board with the fine wire in accordance with Fig. 5.2. Notice that PL1 does not mate with a socket, but is soldered directly to the board.

Fig. 5.7. Proprietary p.c.b. inside the Sinclair Cambridge, showing the keyboard end where track cuts are necessary

Fig. 5.8. Component layout for Veroboard to be mounted inside the calculator case

Terminal pins could be used for this termination instead of the 16 -way plug, but in this case some kind of "strain relief" should be provided for the loom to prevent wires breaking during everyday use of the keyboard.

Using the circuit diagrams the Veroboard can now be connected up to the rest of the calculator circuitry. This involves:

16 connections to keypads
17 connections to IC 1 (now removed)
one connection to the hole left by the emitter of TR2 (now removed).

KEYBOARD ASSEMBLY

In the prototype, the Veroboard was attached to the calculator p.c.b. by means of a countersunk 6BA screw, which made it necessary to drill and countersink a hole in the main circuit board. This had the advantage of easy dismantling should it be required, and the addition of two insulating strips act as spacers. Perhaps a better solution would be the use of double sided sticky pads.

Reassembly of the calculator can be achieved fairly easily by reversing the dismantling procedure, the separate parts of the keyboard assembly being adequately retained by the case when it is snapped together.

pollits nitisnt

BURGLAR ALARM (May 1977)

Constructors may find that in the GUARD condition, sufficient current can leak through LP1 and LP2 to energise WD1, (see Fig. 1). This can be overcome either by replacing these bulbs with l.e.d.s (in series with 560Ω resistors), or placing a OA47 diode in series with LP2 only, wired in forward bias.

In order that the TAMPER SWITCH (S3) will operate at any time, it should be wired between points " 12 " and " 1 " via a 330Ω resistor, and not points " 12 " and " 11 " as shown in Fig. 1.

FREQUENCY COUNTER/TIMER (September 1977)

Some readers have found that the crystal XL1, in Fig. 4, does not control the oscillator frequency as it shuuld do. Anyone experiencing this difficulty should try reducing the value of C 6 to around 330 pF .

COMPONENTS

KEYBOARD/DISPLAY UNIT

Resistors

1 off $1 \mathrm{k} \Omega$ R1
Capacitors
1 off $0.01 \mu \mathrm{~F}$ ceramic C 1

Semiconductors

2 off 1 N4148 D1, D2
1 off 74L00 IC3
1 off 74164 IC4
2 off $74148 \quad$ IC5, IC6

Miscellaneous

Sinclair Cambridge calculator (type using TMS 0801 chip) Stripboard, 0.1 inch matrix
Terminal pins
16-way d.i.l. plug (PL1) and ribbon cable
Kynar, or similar wire

CONSTRUCTOR'S NOTE

The keyboard/display unit, as with other system parts extraneous to the CHAMP board, can be linked using ribbon cable and d.i.I. plugs and sockets. The sockets are readily available, but the plugs may be obtained from: P.S.P. Electronics, 228 Preston Road, Wembley, Middlesex, HA9 8PB. The plugs are made by T \& B Ansley, part No. 609-M165 (16-way).

TESTING

The keyboard encoder can be checked in isolation by wiring four l.e.d. lamps with 1 kJ 2 resistors in series to pins $13,14,15$ and 16 of the 16 -way d.i.l. plug on the end of the flat cable. The anodes of the l.e.d.s should be connected to +5 V , and the supplies should be connected to the keyboard as if for normal use. Pressing any key should generate the correct binary code on the four l.e.d.s, though in inverted form (light off equals logic 1). The strobe output on pin 9 should always be generated regardless of which key is pressed, and this can be checked with a fifth l.e.d. or by means of a voltmeter. Checking the display is more difficult, although if trouble is experienced, ohmmeter checks between the segment drive lines and the outputs of the digit drives can be carried out as a starting point.

WIDE USE

The CHAMP keyboard/display described this month is by no means dedicated only to the CHAMP system, and could, if required, be interfaced to almost any microprocessor system where its ready encoded keyboard output and flexible display format would be an advantage.

NEXT MONTH: CHOMP Firmware

An outline of the various techniques adopted to-date to provide stray field capacitor switching is given in BP 1477252 by Robert Bosch GmbH, Stuttgart.

Essentially, such switches incorporate two flat electrodes, spaced apart. so that one transmits and the other receives a signal, in a manner responsive to any change in the signal path, for instance by the approach of a finger. The new patented circuit is intended to overcome disadvantages of this basic type, for instance sensitivity to moisture and humidity.

In Fig. 1 a transmitting electrode is connected to a high frequency generator and capacitively coupled to the receiving electrode by the stray field. The receiver is connected to a compensating amplifier, which also directly receives the output of the generator for comparison with the received signal. Between the two electrodes there is a further central electrode which is earthed.

Under a normal condition, the compensating amplifier senses the presence of a reasonable signal from the receiver and holds the relay (operative
on a load such as a horn) open. When the tip of a finger is moved towards the surface of a metal screen covering the three electrodes, some of the field is diverted upwards by capacitive coupling and this attenuates the signal received. Accordingly, the difference between inputs to the compensating amplifier increases, as does the output. This triggers the changeover of the relay contacts.

It is claimed that the comparison technique overcomes the difficulties caused to conventional trigger circuits when they become dirty or wet.

|17:

BP 1459 902—Stiefenhofer KG: Control Switch. Control apparatus for use by at least partially paralysed persons. A cyclically stepped switch, which can, for instance, be used to control a telex machine, is itself controlled by the logic interpretation of very basic pulses generated by a simple switch which can be controlled by a paralysed person, e.g. by light finger pressure or air pressure from the mouth.

PATEIT HPPIES

Every month we carry a note telling readers how to go about buying copies of British Patents mentioned by number. Unfortunately the British Patent Office still maintains its flat-rate pricing policy, whereby a simple patent of two or three pages costs the same (currently $95 p$) as a four-volume computer specification.

Inevitably this deters many people from buying copies of patents, for instance of new electronic circuits, which they would otherwise like to have
for reference at home. As we have previously reminded readers, however, it is possible to economise by visiting any one of the two dozen libraries around the country which have copies of British Patents, or at least abridgements of them, on their public shelves.

This also presents a useful and quite legal way of beating the pricing system. In virtually all the British libraries with patents on their shelves (except the main patents library housed in the building of the London Patent Office in Chancery Lane) it is possible to have on-the-spot photocopies made of selected pages of a patent. Average cost is around 6 p per page.
The main London library will not make selective photocopies in this way
at page rate, because they very rightly fear that so many people would use the system and so many bound volumes of patents would be continually off the shelves and in the photocopying room that the library would cease to be useful for reference. But the provincial patent libraries are far less busy, and anyone wanting a copy of just a couple of pages of a patent, for instance the main circuit diagram and a list of component values, will be able to get it for just a few new pence if they go to a provincial patents library.

Most of the major cities have such libraries, but if in doubt readers can phone 01-405 8721, ask for Library Information, and. check their nearest source of patents.

...TWO-DAY COURSE

Spansared by

SYSTEM DESILN with MICROPROCESSDRS

Organised by INTERPROJECTS Limited Technical Services

JANUARY G and 71978

9 a.m. to 5 p.m. at the INSITIUTION of EIECTRICAI ENGINEERS SAVOY PIACE LONDON W.C. 2

Conducted by D. ZISSOS

Professor of Computer Science University of Calgary Canada

An intensive two-day course aimed to enable practising engineers, technical managers and hobbyists to design and implement their own microprocessor systems using methods that require no specialist knowhow of electronics or programming other than a basic knowledge of logic.

Professor D. Zissos is an established authority on logic. design, on both sides of the Atlantic. He has written numerous books and articles on the subject. Professor Zissos is also a practising design consultant known for his pragmatic approach, with severai projects to his credit.

Registration

The course is of limited enrolment and applicants will be dealt with strictly in order of receipt of completed coupon and remittance

Fee: £45 (plus £3.60 VAT)
includes a book "Problems and Solutions in Logic Design" by D. Zissos and comprehensive lecture notes.

The proceedings will be opened by Professor C. Turner, King's College, London.

Please use BLOCKCAPITALS

CHROMA-GHME

kit review

BRaIN child of a young British engineer, Robin Palmer, the ChromaChime is claimed to be the world's first microprocessor-driven electronic door chime. The Chroma-Chime has been on the market for some months, and more recently has been made available in kit form for constructors.

The Chroma-Chime Kit is of particular interest since it brings the microprocessor (in a dedicated form) into the hands of the constructor in a reasonably priced project which has the great merit of being a useful and attractive item for installing in one's home. Thus the constructor can satisfy his curiosity concerning these latest devices, gain experience using them, and at the end of a five-hour building stint possess an article whose functioning wid never fail to amuse and amaze friends and all callers!

THE HEART

The heart of this electronic door chime is a 4 bit microprocessor, Texas T'MS1000. This 28-pin p-channel device incorporates a clock generator, RAM, ROM and $1 / 0$, as well as CPU and therefore is correctly described as a one-chip microcomputer.
It is of interest to note that the TMS1000 is currently in use in various dedicated applications, including taximeters, scientific calculators, a board game and, perhaps the most sophisticated use so far, as an electric cooker controller where it times the on/off periods according to recipes and fires the triacs in the power circuits.

In each of its customised forms, the TMSIOOO is marked additionally with a unique code number. In the case of the Chroma-Chime, this is MP0027A.

For this particular dedicated application the original software programme written by the Chroma-Chime designer has been built into the rom during chip manufacture by Texas Instruments.

CHROMA-CHIME DETAILS

All the notes necessary to produce the 24 tunes are generated by counting down from the master clock oscillator. Since they all have precise digital relationships they cannot go out of tune to each other.

Five transistors are included in the twenty-odd discrete components that go to make up the overall circuit. Three are used in control circuits and two form a Darlington pair driving the loudspeaker.
Twenty-four tunes are "in-store". Selection is made via two control knobs readily accessible at the front of the unit. Other controls are provided for volume, tempo (speed) and tone.

The Chroma-Chime can be operated from two separate bell-pushes. One circuit provides access to the full repertoire, the other (intended for the back door) allows a choice of two tunes only.

The jingles include Greensleeves, God Save The Queen, Oranges and Lemons, and Beethoven's "Fate Knocking".

THE KIT

The Kit was well organised. Everything in the component and material line (including solder) was provided. (With our kit was an Erratum slip: the five

points covered were duly noted and the relevant parts of the Manual amended accordingly.)

An excellent Assembly Manual explained everything very clearly, with many line diagrams and photographs illustrating different operations in the assembly. If the maker's advice to read the Manual through before starting construction, and then to follow it through paragraph by paragraph in practice is adopted, success should be achieved first time.

PREPARATION

Close examination of the parts, checking every item against the list provided, is an important first step. We discovered a bonus in our kit, in the form of a spare $39 \mathrm{k} \Omega$ resistor.

The microprocessor chip was supplied mounted on a piece of expanded polystyrene, with a piece of tin foil sandwiched between. The chip was not removed from this packing until the time had arrived to mount the i.c.

To the tools specified for the job, we would suggest adding a bench light or torch, and a magnifying glass. It's best to have no doubts or uncertainty as to

whether a connection point has been well and truly soldered.

Do not forget to acquire the two PP3 batteries. To finish the construction work (say one evening) and then be unable immediately to test one's workmanship must be frustrating, to say the least.

ASSEMBLY

The actual assembly work on the p.c.b. is not difficult, provided one has had some experience with small-scale operations, and has a certain adroitness with a miniature soldering iron. The Manual recommends a bit less than $\frac{1}{8}$ in (3mm). We used a 1.5 mm bit, which proved ideal; except for sweating the four battery contacts, when we switched on a 3 mm bit. The amount of $22 \mathrm{~s} . w . g$. multicore solder provided was well in excess of actual requirements.

We took time over the assembly of components on the p.c.b., double-checking values and positions of every component.

The big moment was mounting the i.c. socket and fitting the i.c. in position. Having first carefully aligned the pins with the sockets, a good firm downward pressure was applied and i.c. was home,
safe and secure. The i.c. socket connecting strips came away cleanly after repeated bending with pliers.

When the p.c.b. assembly work was completed there were only two further soldered connections to make-to the loudspeaker. This unit is clamped to the case with three "Starlok" washers. We adopted the Manual's advice and found that an old ball point pen case served admirably as a box spanner for this purpose.

The completed p.c.b. was then fitted into the case. The control knobs were located in the holes at the front of the case and they then engaged with their respective parts on the p.c.b. Finally, a few screws were fitted and a pair of PP3 batteries inserted into the compartment.

TESTING

Still carefully following the Manual, we set the various controls as stated, placed a screwdriver blade over terminals three and four and were almost immediately regaled with the opening theme from Beethoven's Fifth.

After carrying out the full testing procedure we fixed the labels (decorative

and informative) to their respective places on the case, and fitted the two access covers and the base cover.

INSTALLATION

Installation should present no problems. Any lamp incorporated in a bellpush must be removed before connecting up, otherwise the Chroma-Chime will sound continually. Detailed instructions concerning Installation and Operation are provided in a separate deaflet accompanying the kit.

NEWS BRIEFS

GEE Computer System for RNIB

THe Royal National Institute for the Blind has placed an order on GEC Computers Limited, valued in the region of £175,000, for the supply and maintenance of GEC 4070 computer equipment to be used in the production of braille literature. The order is part of a major expansion and modernisation exercise which will make the RNIB's work in this field the most advanced in the world.

The computer equipment will be used in the RNIB's new printing centre and will speed publication of a greatly increased range of braille books and periodicals for educational, vocational and recreational purposes.

Operators at 16 text-entry visual display terminals will key in text from English originals. The computer system will directly accept these inputs and translate the data into braille output coded onto magnetic tape cassettes. These are used to control embossing machines which automatically punch the braille characters (called cells) onto zinc plates suitable for use on a printing press. Alternatively, for single copies of a document, the computer can itself drive a paper embosser thus eliminating the need to manufacture a metal printing plate. The use of visual display units as input terminals gives the operators the facility to edit text on entry. Separate purposebuilt refresh graphics display terminals are used to edit the braille cells prior to committing the output to embossed paper or zinc.

The new GEC system wild replace an existing system which uses punched cards as the text input medium.

At present if edits are necessary which cannot be contained on one single source card-and this really means changes of a very minor nature indeed-then repunching and re-translating of all subsequent cards may be necessary. Editing, particularly on a large work, is thus a very laborious procedure, wasteful in time and materials. It is only then this stage is completely
satisfactory that the output deck of punched cards, representing braille, can be produced.

Solar Water Heaters

A
ONE day technical meeting organised by the UK Section of The International Solar Energy Society held at the Royal Institution, London, in October was devoted to Practical Aspects of Domestic Solar Water Heaters. Papers were delivered by specialists in various subjects, dealing with component parts such as collector plates, control systems and complete solar installations in houses.

Of the latter, two examples of conversions for solar energy collection and storage in existing properties were described: one was an energy saving house project sponsored by Granada TV, the other concerned experiences with a pilot domestic solar-assisted water heating system installed in a modern flat, under the auspices of a South London Consortium of Local Authorities. Finally, a lecturer from Ayr (Scotland) Technical College described progress in the house he is building himself, in which solar heating has been planned-in right from the start.

Electronics came into the picture during the discussions on control systems. Standard modules containing most of the electronics are normally used. The thermistor is the generally used and favoured sensor, and thermal-couples were not recommended because of attendant problems with pipes. There was some discussion about the position of the sensor: important that it be within the collector panel, and critical in placing on cylinder (about one-third up from bottom being suggested), incorrect positioning could cause feedback to occur.

International Broadcasting Convention

BECAUSE it has outgrown the facilities available at Grosvenor House, its traditional home since 1968 , the next International Broadcasting Convention will be held at the Wembley Conference Centre, London, September 25-29, 1978.

The IBC is a biennial event; it provides an international forum for engineers with interests in the wide field of broadcasting to discuss technical developments, and to exhibit and demonstrate the latest equipment. Further information can be obtained from The Secretariat, International Broadcasting Convention, IEE, Savoy Place, London WC2R 0BL.

BERLIN SHOW

Old-timers in the UK look back with nostalgia to the great Radiolympia shows of the late '30s when thousands of the listening and looking (highdefinition TV had just started) public flocked to the Olympia exhibition halls to see what was new. Attempts were made to revive the shows in the postwar years but without commercial success.

For a taste of the excitement of a huge radio show you now need to visit Berlin. The international show this year attracted over 600,000 visitors, an alltime record reflecting the many attractions and brilliant organisation laid on. There were 468 exhibitors from 27 countries so there was plenty to see.

Perhaps the most interesting statistics to emerge from the show post-mortem was the result of a special poll of private, as distinct from professionally engaged, visitors on whether they were familiar with Teletext and Viewdata. Of those questioned 69 per cent knew about Teletext and 60 per cent Viewdata. And of those polled, 33 per cent said they would be prepared to buy both systems.

One sector which is flourishing is Citizen's Band radio. German manufacturers were complaining that the Bundespost didn't give enough warning before the facility became available. Now, however, at least seven German manufacturers are making equipment to meet a demand estimated at 50,000 sets a month.

All equipment has to be submitted for approval to the Bundespost and this may hamper some of the cheaper imports from the Far East. Twelve channels have been allocated for CB in the 27 MHz band and it appears there is already much channel congestion in centres of high population.

Overall the German market in entertainment electronics is expected to grow
between eight and ten per cent in 1977, certainly not exciting but not unsatisfactory in the prevailing economic climate.

Meantime, back in the UK there is still considerable pressure to restrict the imports of Asian consumer electronics goods and, at the time of writing, the Hitachi affair is stil] unresolved. For those who haven't been following the story, the Government is anxious to encourage foreign investment and two Japanese companies have already set up TV manufacturing plants in the UK. They are National Panasonic (Matsushita) and Sony. Now Hitachi wants to come in and set up a TV plant to employ 400 people.

Mullard, Britain's largest component manufacturers and only TV tube maker is objecting, supported by Thorn, Britain's largest TV manufacturer who say that if Hitachi comes in and competes in the UK they may be forced to buy far more components from the Far East to compete in price, thus withdrawing component orders from Mullard and other UK suppliers. It is argued that to create 400 new jobs in the proposed Hitachi plant may result in the loss of 1,500 jobs or more elsewhere and lead to the eventual collapse of British component manufacturers.

Among those lobbying are the trade unions, members of Parliament, component and set manufacturers. The Department of Industry is split in its views and so, it is said, are working parties discussing the problem in the National Economic Development Council.

British companies have a production capacity of 2.4 million TV sets a year. Total output in 1977 is expected to be only 1.5 million. So clearly the nation doesn't need any more capacity for manufacturing. But, perversely perhaps, the buying public likes Japanese sets. So better to make them in the UK with British labour rather than import them. Or is it? The debate continues.

on the move

Apart from microwave ovens and Doppler-shift type intruder detectors, neither of which are yet in the real mass-market, it is hard to see microwave devices catching on with the general public. But in the USA where they are more liberal on such matters, car-mounted radar speed-trap detectors have been making good progress. One forecast is that a million will have been sold by the end of 1977.

The only snag is that nearly all the detectors work on X-band while the American police have been moving their speed measuring equipment up to K-band. The police use hand-held equipment like a gun pointed at the suspect and momentarily press a trigger to obtain a measurement instead of the X-band method of continuous radiation. So not only are the road-hogs' detectors foiled by being in the wrong waveband
but the momentary radiation on K-band will be very hard to detect in time to avoid a fine.

THE MIDDLE EAST

The $£ 500$ million extension of British Aircraft Corporation's defence contract with Saudi Arabia was heartening. BAC employs 2,000 people overseas in a massive training and equipment programme for the Royal Saudi Air Force and 750 other companies, including electronics suppliers, stand to gain through sub-contracts.

Rumours that Racal Electronics Group had set up a factory in Egypt were confirmed at the recent Racalex exhibition in London. Racal chairman, E. T. Harrison, stated that the Egyptian and other joint manufacturing agreements overseas had been worth $£ 25$ million and that the need to collaborate with overseas governments was recognised and would continue.

The contract with the Egyptian Government involves the training and supervision of a local labour force of over 200 people for manufacture of Racal-designed SSB communications equipment in a purpose-built factory.

Selling technology is good business but it also exports jobs.

The counter argument is that if companies like Racal don't step in then others will. Harrison said that Racal held off powerful competition for the Egyptian contract from leading French, American and other British firms. And it is a fact of life today that when a large contract is negotiated through overseas governments that some measure of local production is stipulated. Only in such ways can a developing country establish an indigenous electronics manufacturing capability.

Another good contract from Arab sources is for Marconi Marine equipment for the United Arab Shipping Company. Forty of the company's fleet of 60 ships are already fully equipped with Marconi radar, radio, ADF and echo sounders. The older Russian-built vessels in the fleet are now being reequipped as necessary with Marconi equipment.

SHAKE-OUT

The South African electronics industry, dominated largely by subsidiaries of British, French and American companies, is now virtually seli-sufficient and, under Government pressure, is currently moving to completely local control, especially in key areas of defence electronics and "strategic" products. The trend is for maiority shareholdings to be acquired by local interests with the former principals permitted to retain a minority interest.

ITT, for example, has already relinquished control of one of their South African groups of companies, retaining some 30 per cent of the equity.

NEW COMPONENT SERVICE
Resistars 5% Corbon E12 1 C to 10 M JW 1 lpp . IW 3p. meters ' W 4 K 7 to 2 M log or lin single 30 p . Duol 95 p .
 Ceramic copacitors 50 V E6 22 pf to 47000 pl 3 p .
Polyester capacitors 250 V E6 .01 to $1 \mathrm{mf} 5 \frac{1}{2} \mathrm{p} .15,22$, 25 VF , 10 mf 5 p . $16 \mathrm{~V} 22,33$, 47 mf 6 p . 100 mf 7 p . $220,330 \mathrm{~m}$ 9 p .470 mf 11 p .1000 mf 18 p . Zener diodes 400 mW E24 3 V 3 to 33 V 8 t p .

MAINS TRANSFORMERS
$6-0.6 \mathrm{~V} 100 \mathrm{~mA} 94 \mathrm{p}$. $9-0.9 \mathrm{~V} 75 \mathrm{~mA} 94 \mathrm{p}$. $0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V}$ 1A £3.85. $12 \cdot 0.12 \mathrm{~V} 50 \mathrm{~mA} 94 \mathrm{p}$. $0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V} 2 \mathrm{~A}$ £2.39. 12.0.12V 1 A E2.69. 15-0.15V 1 A E2.89. 30 -0.30V 1 A E3.59.

PRINTED CIRCUIT MATERIALS

50 sq ins peb 40p. 1 lb FeCl $£ 1.05$. Etch resist pens: Economy type 45p. Dalo type 83p. Small drill bit 20p Laminate cutter 75 p. Etching dish 68 p .

S-DECS AND T-DECS S.DeC £2.23. T-DeC E3.98. C carriers with sockets:16 dil $£ 1.91$. 10 TO 5 f 1.91

SINCLAIR CALCULATORS AND DVM*
Combridge scientific progrommable £13.95. Prog. librory $£ 4.95$ adaptors £3.20. PDM35 digital multimeter $£ 26.95$

BATTERY ELIMINATOR BARGAINS

TV GAMES POWER UNIT
Stabilised $8 \frac{1}{2} \mathrm{~V} 100 \mathrm{~mA} £ 3.35$.
3-WAY MODELS
With switched dutpur
Type $1: 3 / 4 \frac{1}{1 / 6 V}$ at 100 mA £ 2.60.
Type 2: $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ 300mA E 3.30 .
100mA RADIO MODELS
With press-stud connectors. 9 V £ 3.45. of $£ 3.45$. $9 \mathrm{~V}+9 \mathrm{~V}$ £5.15. 6 V . $6 \mathrm{~V} £ 5.15 .4 \frac{1}{2} \mathrm{~V}+4 \frac{1}{2} \mathrm{~V} £ 5.15$

CASSETTE MAINS UNIT
$7 \frac{1}{2} V$ with 5 pin din plug 150 mA £ 3.65
FULLY STABILISED MODEL E6.40. Switched output of $3 / 8 / 7 \frac{1}{3} / 9 \mathrm{~V} 400 \mathrm{~mA}$ stabilised
CAR CONVERTORS 12 V INPUT
Output $9 V 300 \mathrm{~mA}$ £ 1.80 . Output $7 \frac{1}{2} V 300 \mathrm{~mA} \mathrm{C} 1.80$

BATTERY ELIMINATOR KITS

Send s.o.e. for tree leaflet on ronge.
100 mA radio types with press-stud battery terminals.
$4 \frac{1}{2} V £ 2.10 .6 \mathrm{~V} £ 2.10 .9 \mathrm{~V} £ 2.10 .4 \frac{1}{2} \mathrm{~V}+4 \frac{1}{2} \mathrm{~V} £ 2.50 .6 \mathrm{~V}+6 \mathrm{~V}$ $4 \frac{1}{V} V £ 2.10 .6 \mathrm{~V} £ 2.10 .9 \mathrm{~V} £ 2.10 .4 \frac{1}{2} \mathrm{~V}+4 \frac{1}{2} \mathrm{~V}$
$£ 2.50 .9 \mathrm{~V}+9 \mathrm{~V} 2.50$.
Cassette type $7 \frac{1}{2} \mathrm{~V} 100 \mathrm{~mA}$ with din plug E 2.10
Transistor stobilised 8 -way type for low hum $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 V 100 \mathrm{~mA} \in 3.20 .1 \mathrm{~A} £ 6.40$.
Heavy duty 13 -way types $4 \frac{1}{2} / 6 / 7 / 8 \frac{1}{2} / 11 / 13 / 14 / 17 / 21$
25/28/34/42V. 1 Amp £4.85. 2 Amp $£ 7.95$
Car Converter kit. Input 12 V DC. Output $8 / 7 \frac{1}{2} / 9 \mathrm{~V}$ DC A transistor stabilised $£ 1.95$.
tobilised power kits. 3 -18V 100 mA £3.60. 3.30 V 1 A $9.95 .3 \cdot 60 \mathrm{~V}$ IA £ 10.95 . 3-60V 2A E13.95

BI-PAK AUDIO MODULES

5450 tuner $£ 21.95$. AL $80 £ 4.86$. PA 100 £ 14.95. MK60 audio kit $£ 36.45$. Stereo $30 £ 17.95$. SPM80 £3.75. 8MT80 £5.95. Sand s.a.e. for free dato

JC12, JC20, JC40 AMPLIFIERS
JC12 6W IC audio
amp with free dato
ond printed
circuit E1.95
Also new JC40 20W
model with pcb
$£ 3.95$. Sensational new JC20, 10W intagrated circuit amp with peb $£ 2.95$. Send sae for free leatlet on all 3 models and associated power supply and pre-amp kits.

FERRANTI ZN414

C rodio chip $£ 1.44$. Extra ports and pcb for radio $£ 3.85$. Cose £1. Send s.o.e. for free data

SWANLEY ELECTRONICS

Dept. PE, PO Box 68, 32 Goldsel Rd., Swanloy, Kent Post 30 p. Prices include VAT. Official orders welcome. Over seas customers deduct 7\% on items morked * and 11% on others.

Abstract

SEMTCONDUCYOR OFFERS ALL FULL SPEC B ACY 1818 p . BE200 OOM NOTOROLA MRD 3051 PHOTO 2NELTS 18 p . MOSFET SIM. TO $40673 \quad 35 \mathrm{p}$. 3 HW4 SINGLE GATE PER F.E.T. 40p. SL301 DUAL MATCHED PAIR SIL. N.P.N. POWER TRANSISTORS FT 300 MHz 30 p . INTE DIODE 35 p . MC1310 STEREO DECODER I.C. 51.20. TBAB00 I.C. AMPS 90p. CD4051 CMOS 50p. MC1305 PREAMP I.C. E1.30. 7418 PIN D.I.L. 23 p. MMS3 750 w 600 mA BRIDGE RECS, (EX. EQUIP.) 25 p . 1 N4002 100 v 1 IA DIODES 4 p .14005800 v 1 A DIODES 7 p .200 volt 5 amp SIL. BRIDGES EX EQUIP 40 p . CV7558 200 v 150 mp STUD RECS. 21.25 . E.H.T. SIL. REC. $15 \mathrm{KV} 2.5 \mathrm{~mA}, 15 \mathrm{~mm} \times 5 \mathrm{~mm}$ 85 p. 7812 12v IA PLASTIC V. REGS. 95 p. MIN. NIXIES IT $58705 T 13 \times 6 \mathrm{~mm}$ FIG SIZE 85p. NIXIES ITT GN/9A 13 8 mm 65 p . 0.2" OR $0.125^{\prime \prime}$ RED LEDs 12 p pach. MAN3A 3mm LED DISPLAYS 50p. MONSANTO 4640A $0.3^{\prime \prime} 7$ SEG. C CATH. DISPLAYS 95 p . MICROPHONES GRUNDIG ELECTRET INSERTS WITH BUILT IN F.E.T. PREAMP EI.50. CRYSTAL MIKE INSERTS 37 mm 50 p . ELECTREI. CONDENSER MIKES 1 KK IMP. WITH STD JACK PLUG $£ 2.85$. CASSETTE CONDENSER MIKES WITH 2.5 AND 3.5 JACK PLUGS $£ 2.85$. STANDARD CASSETIE MIKES 200 OHM IMPED. WITH 2.5 AND 3.5 JACK PLUGS E1.20. P.A. MIKES MOBILE TYPE 5OK, THUMB SWITCH $£ 4.20$ MORSE KEYS PLASTIC TYPE 95p. HI-SPEED TYPE ALL METAL £2.25. HI-IMP. PHONES 2K 2 £ 1.65 . AERIAL COAX SWITCH 3 POSITION, 3 OUTPUTS, $0-30 \mathrm{MHz}$, 150 watt MAX. USES SO239 SOCKETS $\mathbb{C 4 . 9 5}$. LOW PASS IN-LINE FILTERS, 30 MHz CUT OFF, 50 OHM IMP. £3.30. S.W.R METER, 50 OHMS MP. WITH POWER SCALE SUPLIED WITH XTALFOR THIS COVERAGE $£ 7.90$. 45 p . RELAYS-MIN. SEALED RELAYS ALL 4 POLE CHANGEOVER 36Ω ($6 v D C$) $45 p$. 700Ω ($24 v D C$) 55 p . MIN. $220 v$ AC SEALED RELAY 2 pole C/O 45 p . 240v ac SEALED RELA 3 POLE C/O 5 AMP CONTACTS 11 PIN 8ASE 80p. 12 VOL 4 POLE N.O. REED RELAY 20p. MOTORS- 1.5 TO ov DC MODEL 20p. 115v AC MIN. 3 R.P.M. WITH GEARBOX 30p. $240 v$ AC SYNCH. MOIOR 1/5TH R.P.M. 65p. 240v AC SYNCH. MOTOR 1/24TH. R.P.M 65p. BOXES-BLACK A.B.S. PLASTIC WITH BRASS INSERTS AND LID, $75 \times 56 \times 35 \mathrm{~mm} 40 \mathrm{p}$. $95 \times 71 \times 35 \mathrm{~mm} 49 \mathrm{p} .115 \times 95 \times$ 36 mm 57 p . GREY POTTING BOXES WITH LUGS, $23 \times 48 \times$ $23 \mathrm{~mm} 11 \mathrm{p} .38 \times 52 \times 25 \mathrm{~mm} 13 \mathrm{p} .60 \times 80 \times 42 \mathrm{~mm} 28 \mathrm{p}$.

ORDER ADDRESS:

TRANSFORMERS - $6-0.0 \mathrm{v} \quad 100 \mathrm{~mA}, 9-0.9 \mathrm{v} 75 \mathrm{~mA}, 12-0-12 \mathrm{v}$ 50 mA 75 p each. $12-0-12 \mathrm{y} 100 \mathrm{~mA} 95 \mathrm{p}$. 12 v 500 mA 95 p .
 RECTIFIED $\mathrm{E} 7.95+35 \mathrm{p}$ \& \& P. $25 v 2 \mathrm{omp}$ E $1.75 \mathrm{p}+35 \mathrm{p}$ P
 \& P. $25-0-25 v 2 A £ 3.95+35 p$ P \& P. 100 volt 1 N \& P. $25-0-25 V 2 A$ £3.95 $+35 p$ P \& P. 100 volt LiN 1 TRIAC XENON PULSE TRANSFORMER 30p. 6 MH 3 omp CHOKES 30p
SWITCHES-MIN. TOGGLE, SPST $12 \times 6 \times 9 \mathrm{~mm} 54$ p. D.PDT $12 \times 11 \times 9 \mathrm{~mm} 60 \mathrm{p}$. DPDT CENTRE OFF $12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}$. 4 P 2 W SLIDERS 20 p . 6 P 3 W SLIDERS 30 p . DPDT C/O SLIDERS 20p. SPST 10 amp ROCKERS 12 p . R.S. SINGLE POLE C/O PUSH-BUTTONS 45p. ROLLER MICRO SWITCHES 5p. MIN. MICRO SWITCHES $13 \times 10 \times 4 \mathrm{~mm} 20 \mathrm{p}$. G.P.O KEYSWITCH ASSY. 3 SWITCHES $2-3$ WAY, $1-2$ WAY MULTIOLE 35p. MIN. PUSH TO MAKE OR PUSH TO BREAK SWITCHES $16 \times 6 \mathrm{~mm} 15 \mathrm{p}$. PLESSEY WINKLER STUD SWITCHES 2 BANK, 1 POLE 30 WAY ADJ. STOP 75 p. D.P.D.T. MIN. ROCKERS 15p

TAPE HEADS JAP. CASSETTE MONO 9OP. CASSETTE TEREO £3.00. BSR MN1330 $\frac{1}{2}$ TRACK DUAL IMPEDANCE REC/PLAYBACK 50p. BSR SRP9O $\frac{1}{1}$ TRACK STEREO EC/PLAYBACK £1.95. TD 10 ASSEMBLIES TWO HEADS \ddagger RACK REC/PLAYBACK STAGGERED STEREO WITH BUILT IN RASE PER HEAD $£ 1.20$. TAPE hEAD DEMAG 240v AC UTIE
UZZERS-GPO TYPE 6-12v 30p. 6-12v HOOTERS 50p AIN. SOLID STATE BUZZERS 6-9-12 OR $24 \vee 15 \mathrm{MA} 75 \mathrm{p}$
OMPUTER CAPS- $50,000 \mathrm{MFD} 30 \mathrm{v}$ DC $75 \mathrm{p} .14,000 \mathrm{MFD}$ $35 \vee 75$ p. $20,00045 \vee$ (EX. EQUIP.) 40 p .

CRO H20p. 260 Of S00 MILLI HENNY CORES IOp each.
METERS-100-0-100 O LEVEL METERS 75p. STEREO TUNING METERS 100μ O PER MOVEMENT $£ 2.75$. GRUNDIG AETER LEVEL METER $1 \mathrm{~mA} 40 \times 40 \mathrm{~mm}$ \& 1.10 . MIN. LEVE $55 \times 70 \mathrm{~mm}$ \&2.95 FER 5 P. FERRANTI 1 TA PANEL MET $70 \mathrm{~mm} £ 3.50$. FERRANTI 600 v AC METER $£ 3.95$
BOARDS-G.P.O. BOARD WITH 64, BC107 TYPE RANSISTORS, 2 REED, 1 MERCURY RELAY ETC £2.00 $55 p$ P \& P. SINGLE STAGE STEREO PRE-AMP BOARDS MAX /P 700 MN (HI-Z) GAIN 28 DB 40p. 465 KHz I.F. PANELS, 6 I.F.T.'s, 3 TRANSISTORS 30p. BOARD WITH $1412 v$ N.O. REED RELAYS £2.40. BOARD WITH ov C/O REED RELAY E1. 20.
AEROSOLS- SERVISOL SWITCH CLEANER + LUBRICANT $80 z 555$ p. FREEZER 6025 50p. GEAR CLEANER \& TAR REMOVER $1402585 p$.
 POSTAGE 30p UNIESS OTHERWISE SHOWN (EXCESS POSTAGE REFUNDED WITH ORDER). OVERSEAS POST AT COST. VAT INCLUDED IN AIL PRICES

PROGRESSIVE RADIO 31 CHEAPSIDE, LIVERPOOL 2. 051-236 0982

SOLID STATE DESIGN FOR THE RADIO AMATEUR

by A.R.R.L.
Price $\mathbb{5 6} 10$

 HI FI YEAR BOOK 1978 by IPC Price $£ 3.65$
RADIO \& T.V. SERVICING 1976/77 MODELS by R. N. Wainwright Price £ 10.25 RADIO DATA REFERENCE BOOK by T. G. Giles MICROPROCESSORS \& SMALL DIGITAL COMPUTER SYSTEMS FOR ENGINEERS ${ }^{8}$
PCIENTISTS by
Price $£ 19.00$ MASTER TRANSISTOR/IC SUBSTITUTION HANDBOOK by TAB BKS No. 970 Price $£ 5.60$ OP-AMP CIRCUIT DESIGN \& APPLICA. TIONS by J. Carr Prise £3.85
INTRODUCTION TO MICROPROCESSORS by D. Aspinall Price $£ 5.30$

HOW TO BUILD \& USE ELECTRONIC DEVICES WITHOUT FRUSTRATION, PANIC, MOUNIAINS OF MONEY, OR AN ENGINEERING DEGREE by S. A. Hoenig

* all prices include postage *

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-2I PRAED STREET LONDON W2 INP

Phone 01-723 4185
Closed Saturday 1 p.m

TMMRE I.C.E. MULTIMETERS unrivalled combination of maximum performance within minimum dimensions, at a truly Iow cost. Plus, a complete range of add-on accessories for more ranges, more functions.

Supertester 680R
(illustrated)

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 1 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 80 Ranges - 10 Functions
* $140 \times 105 \times 55 \mathrm{~mm}$
$\mathbf{E 2 5 . 2 5}+\mathbf{V A T}$
All I.C.E. multimeter

Supertester 680G

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 k \Omega / V, \pm 2 \%$ fsd on a.c.
* 48 Ranges - 10 Functions
* $109 \times 113 \times 37 \mathrm{~mm}$
$\mathbf{£ 1 9 . 9 5}$ + VAT

Microtest 80

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 40 Ranges - 8 Functions
* Complete with case only $93 \times 95 \times 23 \mathrm{~mm}$
£14.95 + VAT
(For Mall Order add 80 p P\&P) 50-plus page, fully detailed and illustrated Operating and Maintenance Manual. Now available from selected stockists. Write or phone for list, or for details of direct mail-order service.

Electronic Brokers Ltd.
49-53 Pancras Road, London NW1 2QB
Tel: 01-837 7781

Become a radio amateur.
 Learn how to become a radio-

 amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

HAM RADIO
By K. Ullyett
Published by David \& Charles
163 pages, $145 \times 225 \mathrm{~mm}$. Price $\mathbf{£ 4 . 5 0}$
With no mathematics, and only simplified written theory not backed up with diagrams, this hardback really only serves as an introduction at a very general level to ham radio. It begins with a brief history of ham radio activities (worldwide), bringing you up to the present time. Various interesting black and white photographs are included. The book does, however, serve as an excellent insight into the field of interest as a whole, revealing such unexpected aspects as ham television, something which many "outsiders" do not realise exists!

If the numerous call signs and codes associated with ham radio are a complete mystery to you, then the information given in the tables at the back of this book (including international ham prefixes and abbreviations) should reveal all. There is 'a chapter entitled "Getting A Permit" telling you everything you need to know about this first step, and to further help you into the fraternity, should you be interested, is a list of useful international addresses for both ham radio
and television organisations and societies.
Other information given under the heading "Miscellaneous Data" is various charts covering component identification marks, and frequency band allocations.

HOW TO BUILD ADVANCED SHORT WAVE

 RECEIVERS
By R. A. Penfold

Published by Bernards (Publisher) Ltd
117 pages, $110 \times 180 \mathrm{~mm}$. Price £1.20

L
ISTENING to short wave transmission holds a fascination for certain people, and if you wish to discover if this includes yourself, How To Build Advanced Short Wave Receivers might be a good starting point!
Proprietary receivers are not cheap, and if you are a constructor, why not build your own? The author proposes that sets with a performance equal to that of commercial equipment are not too difficult to put together, and are certainly a lot cheaper when home made. Also, a greater understanding of the principles involved will result from such activity.

There are no constructional details in the sense of nuts and bolts, but the component manufacturers are given, and physical layout requirements where necessary. Circuit theory is explained on everything in the four chapters, which work upwards from simple sets to those comparable with commercial receivers.

The principles of superhet', a.g.c., i.f., b.f.o. and alignment, are a few of the things you'll be wiser about after reading the book. Stages using f.e.t. devices and varicap diodes are described too.

Chapter Four is called "Add-On Circuits" and covers those extra "odds and ends" such as the " S " Meter, Crystal Calibrator, and Power Supply Unit.

Riondout
 A SELECTION FROM OUR POSTBAG

Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the telephone.

On The Air

Sir-May I comment on your mention of Citizens' Band Radio in October's Practical Electronics, see "Industry Notebook".
The Citizens' Band Association, who are the most powerful CB lobby in Britain, propose a v.h.f. f.m. Citizens' Band using $230-232 \mathrm{MHz}$ and having 40 to 8025 KHz channels. Such a service would cause far less spectral pollution than the 27 MHz a.m. used elsewhere and
would also provide a welcome boost to the British Radio Industry. Three British firms are already developing sets for use in such a CB service and if the type-approval procedure was arranged to favour domestic sets for the first two or three years we would not need to fear the Japanese.
Our studies suggest that the introduction of CB in Britain would lead to sales of over $f 150 \mathrm{M}$ in the first two years, creating 5,000 direct jobs and up to 10,000 indirect ones and yielding over $£ 30 \mathrm{M}$ in VAT and licence revenue. Even
if the Japanese did all the manufacturing (and, as suggested above, this could be prevented) the cost to our balance of payments would be under $£ 70 \mathrm{M}$ and the 10,000 indirect jobs and $£ 30 \mathrm{M}$ tax revenue would still be created.

If any of your readers would like to support our campaign may I suggest that they contact our membership secretary, Pamela Webster, at 16 Church Road, St. Marks, Cheltenham, Gloucestershire.
J. M. Bryant, President,

Cheltenham.

Instant Wipe

Sir-I I noted with interest K. D. Horton's "Wiper Delay Circuit" in your Ingenuity Unlimited, September issue, since I have used an almost identical circuit for the past year or so.

However, I have found it an advantage to connect Cl to the 12 V switched line instead of 0 V (reversing the polarity of course). This gives an immediate sweep of the wipers on switching on.
C. J. Collins,

Letch worth.

Builda microprocessor electronic musical door chime which can play 24 different tunes!

Acomplete chnoma onime Rit for ouly E18inc.p. \&p. \&VATT.

* Agreat introduction to the fascinating morld of microcamputers.
* Save pounds an normal retail price by building yourself.

[^1] Please allow 7-21 days for delivery.

Pays

Greensleeves
God Sove the Queen
Rule Britannia
Land of Hope and Glory
Oh Come All Ye Falthtu
Oranges and Lemons
Westminster Chimes
Sailor's Hornpipe
Beethoven's "Fate Knocking
The Marsellalse
Mozart
Wedding March

* Handsome purpose built ABS cabinet
* Easy to build and install
* Uses Texas Instruments TMS1000 microcomputer
* Absolutely all parts supplied including I.C. socket
* Ready drilled and legended PCB included
* Comprehensive kit manual with full circuit details
* No previous microcomputer experience necessary
* All programming permanently retained is on chip ROM
* Can be built in about 3 hours!
* Runs off 2 PP3 type batteries.
* Fully Guaranteed

The Chroma-Chime is the world's first electronic musical door chime which uses a pre-programmed microcomputer chip to generate tunes. Instead of boring old buzzes, dings or dongs, the Chroma-Chime will play one of its 24 well known tunes from its memory using its tiny 'brain' to all the music synthesizing! Since everything is done by precise mathematics, it cannot play the notes out of tune.

The unit has comprehensive built-in controls so that you can not only select the 'tune of the day' but the volume, tempo and envelope decay rate to change the sound according to taste.

Not only visi tors to the front-door will beamazed, if you like you can connect an additional push button for a back door which plays a different tune!

This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.

The CHROMA-CHIME is exclusively designed by

River Way, Harlow, Essex.

BEFORE YOU BUY AN AMPLIFIER MODULE-CHECK:
 $\star .30$ A power transistors
 * 3A drivers (100W unit)
 * 2-year guarantee
 * Integral output capacitor

Then compare with the Tamba range-excellent value- 25,50 and 100 W R.M.S

TAM 1000 100W 4 ohms 65 V	£9.80
TAM 50050 W 4 ohms 45 V	£7.50
TAM250 25W 8 ohms 45V	¢5.75
POWER SUPPLIES	
For 1 or 2 TAM250/500	£7. 50
For 1 or 2 TAM1000	£9.80
(Carriage 50p on supplies)	

Suits loads $4-16$ ohms
$20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$

- Silicon circuitry throughout
- Glass fibre P.C.B
- High sensitivity (100 mV 10 k)

High grade components used throughout: Texas, Mullard, R.C.A., Plessey, etc.

ALL PURPOSE MIXER/PRE-AMP.
(with 60 mm slider volume)

- Suitable for multiple input systems
- High and low impedance inputs
- High sensitivity
- Built-in supply smoothing
$20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
-80 dB noise level
Accepts a wide variety of inputs
Wide range bass and treble controls
Use up to 10 PRE-AMPS with 1 power supply
Printed circuit board assembly with treble and bass controls plus slider volume control
£6.50

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc)-C.O.D. (60p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at 8% to orders for 50 and 100 W systems and at $12 \frac{1}{2} \%$ for 25 W systems (including preamp if ordered at same time).

Hours, 9.30 a.m. -5 p.m Monday - Saturday Callers welcome. Tel (01) 6840098

TAMBA ELECTRONICS

Bensham Manor Road Passage, Bensham Manor Road, Thornton Heath, Surrey-

PHOENIX ELECTRONICS (SOLENT) LTD 46 Osborne Road, Southsea, Hants All prices include VAT Include 20 p extra for carriage	
	tw metal film (5) capacitors Disc ceramic. Aluminium electrolytic. Tantalum bead. panel hardware Connectors, lampholders, switches, tuses, knoos. miscellaneous Hand tools, instrument cases, Veroboard, relays, transtormers. SOLDERING EQUIPMENT Weller and Adcola irons, tips, desoldering tools, instant-heat
Buy More for Less Outlay with Our Bargain Packs	
Please send your 1977 catalogue-free! Name Address	

Get agreat deal from
Marshall＇s

MARSHALL（LONDON）LTD DEPT．P．E Ckiowood Broadway NW2 3ET LONDON 325 Edgware Fd W2．Tel： $01-7234242 / 3$ GLASGOW－85 West Regent Street G2 200
Tel：041－332 4133 BRISTOL－ 1 Straits Parade Fishponds CATALOGUE NEWM \star COMPLETE BUYERS GUIDE TO
ELECTRONICS COMPONENTS PRICE 35p POST PAID．25p FOR CALLERS

TOP 400 SEMICONDUCTORS FROM THE LARGEST RANGE IN THE U．K． EXPRESS M．O．SERVICE BY RETURN POST－all

どった

0.35	2N3703	0.15	2N6：26	0.4
0.30	2N3704	0.15	40361	0.50
0.62	2N3705	0.15	40362	0.55
0.55	2N3706	0.16	40363	． 30
0.28	2N3707	0.18	40406	0.60
0.28	2N3738	0.13	40407	0.52
0.28	2N3709	0.15	40408	0.75
0.50	2N3710	0.16	40409	0.7
0.27	2N3711	0.16	40410	0.75
0.50	2N3712	1.20	40411	2.85
0.80	2N3713	$2 \cdot 30$	40594	0.80
0.35	2N3714	2.45	40595	0.90
0.30	2N3745	2.55	40673	0.75
0.38	2N3716	3.00	AC126	0.45
0.25	2N3771	1.95	AC127	0.45
0.26	2N3772	2.00	AC128	0.45
0.30	2N3773	2.90	AC151V	0.40
0.37	2N3789	2.90	AC152V	0.50
0.30	2N3790	3.10	AC153	0.55
0.30	2N3791	3． 10	AC153K	0.55
0.38	2N3792	3.50	AC176	0.50
0.98	2N3794	0.20	ACI76K	0.65
0.33	2N3819	0.36	AC187K	0.60
0.37	2N3820	0.38	AC 188 K	0.60
0.35	2N3823	0.80	AD161	1.00
0.36	2 N 3904	0.21	AD162	1.00
0.35	2N3906	0.22	AF106	0.55
0.25	2N4036	0.67	AF109	0.75
0.26	2N 4037	0.55	AF124	0.65
0.25	2N4058	0.20	AF125	0.6
0.25	2 N 4059	0.15	AF126	0.65
0.25	2N 4060	0.20	AF139	0.69
0.25	2N4061	0.17	AF186	0.50
0.25	2 N 4062	0.18	AF200	1．20
0.75	2N4126	0.17	AF239	0.85
\＄． 40	2 N 4289	0.20	AF240	14
0.36	2N4919	0.65	AF279	0.80
0.37	2N4920	0.75	AF280	0.85
0.37	2 N 4921	0.50	BC107	0.15
0.34	2N4922	0.55	BC108	0.15
0.28	2N4923	0.70	BC 109	0.15
0.35	2N5190	0.60	BCil3	0.20
0.25	2N5191	0.70	BC115	0.20
0.25	2N5192	0.75	8C116	0.19
0.15	2N5495	0.90	BC116A	0.20
0.17	2N5245	0.34	BC119	0.22
0.55	2N5294	0.40	BC118	0.20
0.26	2N5295	0.40	－C 119	0.30
0.60	2N5296	0.40	BC121	0.45
0.70	2N5298	0.40	BC132	0.30
0.20	2N5447	0.45	8 BC 134	0.20
0.20	2N5448	0.15	BC＋35	0.20
0.20	2N5449	0.19	BC 136	0.19
0.16	2N5457	0.32	BC137	0.20
0.15	2N5458	0.33	BC140	8.35
0.15	2N5459	0.29	BC14	0.40
0.88	2N5484	0.34	8C142	0.30
0.64	2N5486	0.38	BC_{14}	0.30
0.11	2N6027	0.60	BC147	0.12
1． 35	2N6101	0.45	BC148	0.12
$0-16$	2N6107	0.42	BC149	0.14
0.18	2N6109	0.50	8 BC 53	0.27
0.30	2N6121	0.38	BC154	0.
0.20	2N6122	－41	BC157	

MICROPROCESSOR COMPONENTS

MAluor $12 n$ Sin dispay

CAR CLOCK MODULE

What is a microprocessor？＂－－a complete teach yourself course with cassettes＋brochure £9． 95 incl．VAT \＆P．\＆P．

NEW SC／MP RETROFIT KIT

Now available from stock this new SC／MP／11
Retrofit，which enables existing SC／MP Intro Kit users to evaluate the new SC／MP／11
Microprocessor－ 18.40 excl．VAT．P．\＆P． 75 p

OPTOELECTRONICS
LEDS

DISPLAYS Sis．

C

CMOS
LOW POWER
SCHOTTKY

MTMT

 $\begin{array}{ll}74182 & 108 \\ 74184 & 246 \\ 74185 & 246\end{array}$

를 MICROPROCESSOR SYSTEMS
 sich nrokit she resioce wr $\mathrm{SC} / \mathrm{MP}$

KEYBOARD KIT

Full insiruction and data suppled with each
plete kit easily mates with cassette recorder

Handy size Reels and Dispensers

OF THE WORLD'S FINEST CORED SOLDER TO DO A PROFESSIONAL JOB AT HOME

Ersin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.

Two more dispensers to simplity those smaller jobs. PC115 provides 6.4 metres and printed circuits.
PC115 69p radio and TV repairs. 2.1 metres approx. of 1.22 mm solder.

Size 19A 63p

handy size reels of SAYB/T, 40/60, 60/40 and ALU-SOL | solder |
| :---: |
| alloys |

These latest Multicore solder reels are ideal for the toolbox. Popular specifications
 40/60 60/40 and cover all general and electrical applications, plus a major advance in soldering aluminium. Ask for a free copy of 'Hints on Soldering' containing clear instructions to make every job easy

Ref.	Alloy	Diam. (mm)	Length metres approx	Use	Price
$\begin{gathered} \text { Slze } \\ \hline \end{gathered}$	Tin/Lead	$1 \cdot 6$	$10 \cdot 0$	For economical general purpose repairs and electrical joints.	ع2.16
Slze	ALU-SOL	$1 \cdot 6$	8.5	For aluminium repairs. Also solders aluminium to copper, brass etc.	£2.46
$\begin{gathered} \text { SI2e } \\ 10 \end{gathered}$	$\begin{gathered} 60 / 40 \\ \text { Tin/Lead } \end{gathered}$	0.7	$39 \cdot 6$	For fine wires, small components and printed circuits.	£2.16
$\underset{12}{\mathrm{SI}_{12}}$	Savbit	1.2	$13 \cdot 7$	For radio, TV and similar work. Increases copper-bit life tenfold.	£2.16

Size 5 58p
For soldering fine joints approx. of 0.71 mm solder for fine wires, small components

Or size 19A for kit wiring or dispenser Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Ersin Mu bits

BIB WIRE STRIPPER and CUTTER

Fitted with unique 8 -gauge selector and handle locking device. Sprung for automatic opening. Strips flex and cable in seconds.
Pat. No.
1443913
SOLDERWICK

Absorbs solder instantly from

Model 8B 97p
tags, printed
circuits etc. Only needs 40-50 watt soldering iron. Quick and easy to use. Non-corrosive. Slze 18 97p

Sole U.K. Sales Concessionaires
Bib Hi-Fi Accessories Limited,
Kelsey House, Wood Lane End. Hemel Hempstead. Herts. HP2 4RQ

Prices shown are recommended retail, inc. VAT. From electrical and hardware shops. In difficulty send direct, plus 20 P P. \& P. Prices and specifications subject to change without notice.

The

Amazing Mk. 2
MINISONIC
IS HERE
TO STAY
A sound investment and a pleasure to build. available as a
complete kit, module kits. pre-finished metal
work kit or complete instruments. We supplied
components for the original P.E. Minisonics, now fet
us supply yours.
Send S.A.E. tor full price structure.
Kits for the P.E. Sound Synthesiser are still available.

BUY FROM THE SPECIALISTS

EATON AUDIO

P.O. Box 3 (6 Jutland Rise) St. NEOTS, CAMBS. PE19 3JB

TERMS: MAIL ORDER ONLY, C.W.O. MINIMUM ORDER \&1. VAT: Plesse add 12\%\%
to value of order Inc. P. \& P. Untess otherwise stated. Cheques or P.O.s payable to Eaton Audio. Orders over ES tree of P. \& P., otherwise please add 10 p in the $£ 1$. Callers by appointment only.

STOCK CLEARANCE BARGAINS!!

We are proud and privilaged to announce that we have been appointed to dispose of the surplus stock requirements of a major

PROFESSIONAL EQUIPMENT MANUFACTURER All these first grade, top specification devices are available for immediate delivery by means of our

FAST-RETURN DELIVERY SERVICE
check our prices:-

check ou	prices:-	$\begin{gathered} \text { CATAGG } \\ \text { (high rat) } \end{gathered}$	0.23	${ }^{100 \mathrm{nF}} 4$	0.035
${ }_{\text {aclamic }}$	0.09	43301	0.34	100F 160	0.035
CC214t	0.10	сА3900	0.65	loup 35V	0.04
(low noins nalect)		$1 \mathrm{~N} / 148$	0.03	6s00wf 63 V	1.40
\%F24s	0.25	IN4002	0.06	tW 5% Rewistort	
BFR 39	0.30	1 A bridgo	0.22	10 tor	0.15
${ }^{2 N 11332}$	0.21	10A arido	1.30	100 for	0.98
2 N 3953	0.17	33 pf	0.025	6 W 0.33 h	0.20
$2{ }^{2} 3053$	0.45	3 3 3	0.03	Wirewound	
${ }^{2} \mathrm{NSL4} 15$	0.35	$4{ }^{4} 7$	0.03	Mono iock skt	
${ }^{2 N 6254}$	0.95	15 nf	0.035	Stareo iock it	${ }^{0.30}$
(150w asy					
Full component lists ovailable on request. For further details please send SAE to:-					
$\text { , } \begin{aligned} & \text { 4 Greens Rood, } \\ & \text { CAMBRIDGE CB4 3EF. } \\ & \text { (O223) } 54093 . \end{aligned}$					

For Semi-Conductors

including

Small Signal Transistors
Power Semi-conductors
TTL, CMOS, I.C.s
Linear I.C.s
Signal and Power Diodes
Zener Diodes
Magneto Resistors
Hall-effect devices
Magnetic Proximity Switches
Opto-electronic devices

For passive components

including

Plastic Film Capacitors
Electrolytics
Semi-precision capacitors
Transformers
Pot Cores
R. M. Cores

Ring Cores, etc.

The Open Door to Quality

It's the Electrovalue Catalogue No. 8 (4th edition black and white cover) with completely up-dated prices. 144 pages, well illustrated. $40 p$ post free with $40 p$ voucher usable on orders for $\mathbf{5}$ or more. Send for yours now and order in confidence. GOODS SENT POST FREE IN U.K. FOR C.W.O. ORDERS. Keenly competitive prices plus ATTRACTIVE DISCOUNTS and only best quality goods.

ELEGTROMALDE LTD

(Dept. PE11) 25 St. Jude's Road, Englefleld Green, Egham, Surrey TW20 OHB.
Tel. Egham 3603. Telex 264475.
North: 680 Burnage Lane. Burnage. Manchester. Tel. (061) 4325945

BRED-CIRCUIT BOARD
Combines versatility of Breadboard with usefulness of BlobBoard

BCB2 board size $6^{\prime \prime} \times 2^{\prime \prime}$ with 516 DIL Sockets
Pack of 3 boards with 15 sockets

SOCKETS
16 DIL IC Sockets with stepped legs

Normally 20p each
Pack of 20 for only $£ 2.00$ + 35p Post and VAT

I.C. BREADBOARD

U DeC B Breadboard + 212 IC Blob Boards

Normally $£ 14.00$
HALF PRICE OFFER $£ 7.00$ + £1.30 post \& VAT

normally $£ 3.84$

ONLY $£ 1.92+50 p$ post \& VAT

We wish you a Tappy Christmas

and suggest that one of the best ways to ensure it is to treat yourself to a Home Radio Components Catalogue. Only $£ 1.40$ including p. \&p. The best Christmas present you could buy - for yourself or for any of your electronics friends or relations.

T.T.L. 74 I.C.'s By TEXAS, NATIONAL, I.T.T. FAIRCHILD etc

7400	$14 p$	7426	$25 p$	7473	30 p	74121	$23 p$	74151	05	4179	140p
7401	14p	7427	$25 p$	7474	$30 p$	74122	40p	74153	Sp	74180	100p
7402	14 p	7428	400	7475	$30 p$	74123	$00 p$	74154	120p	74181	200p
7403	$14 p$	7430	15p	7476	30 p	74125	50 p	74155	$70 p$	74182	75p
7404	14p	7432	$25 p$	7403	${ }^{35}$	74126	50p	74158	70p	74184	150p
7405	14p	7437	$25 p$	7485	100p	74130	130p	74157	700	74185	150p
7406	40 p	7438	25 p	7486	30p	74131	100p	74180	00	74188	350p
7407	40p	7440	150	7489	250p	74132	15p	74161	sop	74189	350p
7408	$20 p$	7441	OSp	7490	35 p	74135	100p	74162	sop	74190	140p
7409	20 p	7442	$05 p$	7491	75p	74136	20p	74163	00p	74191	140p
7410	$15 p$	7445	80p	7482	45p	74137	100 p	74164	125p	74192	120p
7411	$20 p$	7446	05 p	7493	$40 p$	74138	125p	74185	125p	74193	120p
7412	20p	7447	$75 p$	7495	cop	74139	100p	74166	125p	74194	100p
7413	30 p	7448	rop	7496	rop	74141	80p	74167	325p	74195	100p
7414	00 p	7450	15p	74100	5^{5}	74142	270p	74170	$200 p$	74198	100p
7416.	30 p	7451	15p	74104	40p	74143	270p	74173	150p	74197	$100 p$
7417	30 p	7453	$15 p$	74105	40p	74144	270p	74174	100p	74198	125p
7420	15p	7454	.15p	74107	$30 p$	74145	73p	74175	75p	74198	185p
7422	20 p	7480	15p	74109	50 p	74147	230p	74176	100p		
7423	$25 p$	7470	30p	74118	sop	74148	1e9p	74177	$100 p$		
7425	250	7472	250	74120	300	74150	120p	74178	140p		
CMOS					CIAL	OFFE		MU	ARD	OT C	ES
4000	20p	4030	000		4810			LA3	100	00kHz	75p
4001	$20 p$	4032	$150 p$		8			LA4	10-	kHz	100p
4002	$20 p$	4043	2200		Tlmer	35p		LAS	30-1	kHz	100p
${ }_{4006}$	1200	4046	1509		100 for	30.0		LA7	-		Op
4007 4009	20p	4047	115p					LA13	for	W.	illo-
4011	200	4050	sep)	$20 \cdot 1$					
4012	200	4054	130 p								
4013 4015	550	4055	140 p		I.C.'s	0 for					
4015 4016	${ }^{900}$	4056 4060	$145 p$ $130 p$)	- 0					
4017	110p	4068	5 sp								
4018	250 p	4089	$30 p$								
4020	140p	4071	$30 p$	PLEASE NOTE ALL PRICES INCLUDE postage and vat AT I OR 121° AS APPROPRIATE				WIRE WOUND RESISTORS BY VTM			
4022	100 p	4072	$30 p$								
4023	${ }^{200}$	4081	200					5K 9 Wetts			
4024	1000	4082	${ }_{145 p}$								
4026	2009	4511	200p					100 for Es. 00			
4027	${ }^{35 p}$	4516	140 p					1,000 for $\$ 50.00$ 10,000 for $£ 400 \cdot 00$			
4028 4029	$155 p$ $130 p$	4518 4528	$110 p$ $130 p$								

XEROZA RADIO

306 ST. PAUL'S ROAD, HIGHBURY CORNER, LONDON N. 1

Telephone: 01-226 1489
Easy accese to Highbury via Victoria Line (London Transport) British Rall

SUPERSOUND 13 HI-FI MONO

AMPLIFIER

HARVERSONIC MODEL P.A. TWO ZERO
An advanced solid state general purpose mono ampliffer suitable
for Public Address system, Disco Gutar. Gram.. etc. Features 3
individually controlied inputs (each Input 2.5 mV into 47 k (sutable for use with mic. or guitar etc.). input 3100 mV into 1 meg . suitable for gram. tuner, or tape etc. Full mixing factitios with full range bass \& treble controla. Ali inputs plug into standard jack sockets on front panel. Output
socket on rear of chassis for an 8 ohm or 16 ohm speaker. socket on rear of chassis for an 8 ohm or 16 ohm speaker.
Output in excess of 20 watts R.M. \mathbf{S}. Very attractively finished purpose built cabinet made from black vinyl covered steel, with a brushed anodised aluminium front escuicheon. For ac mains operation 200/240 volts. Size approx. 12 fin. wide $\times 5$ in high \times fin deep.
Special introductory price £28-00+£2.50 carriage and packing.
Multard LP1s59 RF-IF module $470 \mathrm{kHz} \quad \mathbf{2} \cdot 25+$
Fult specitication and connection details supplied outout. 7.8 V + earth. Supplied pre-aligned, with full circuil diagram with precision-geared F.M. gang and 323PF +323 F F AM. Tuning gang oniy $\mathbf{E 3} \cdot \mathbf{1 5}+\mathrm{P}, 8 \mathrm{P} .35 \mathrm{p}$.
STHLLAVAILABLE
HA34 3 Valve Audlo Amp, 4 zw o/p. Ready buit and teated $\mathbf{\varepsilon e . 5 0}$ Also HSL 'Four' Amp. Similar to above but in kit form. $\mathbf{\varepsilon 8 . 0 0}+$

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER

200/240V Mains operated Solid State F.M. A.M. Stereo Tuner. Covering M.W. A.M
$540-1605 \mathrm{KHz}$
V.H.F. F.M. $88-108 \mathrm{MHz}$.
Built-in Ferrite rod aerial tor
M.W. Full AFC and AGC on M.W. Full AFC and AGC on Lamp Indicator. Built in Pre amps with variable output votrage adjustable by pre-sel antrol Max o/p Voltage 600 mV R.M.S. into 20K. Simulated Toak 4 in high $\times 9$ tin deep approx.
Limited number only at $£ 28 \cdot 00+£ 1 \cdot 50$ P. \& P
Push Button Switch bank. ${ }^{8}$ buttons giving ${ }^{16}$ SiP CO intarlocked switches plus Cancel Button plus 3 chrome finished awitch buttons 2 for $£ 1.80+20 \mathrm{pP} \& \mathrm{P}$.

10/14 WATT HI-FI AMPLIFIER KIT
A stylishly inished monaural ampinier with an oulput of th watts from 2 EL84s in push-pull. Super reproduction of both music and speech, with negligible hum. Separate inputs for mike and gram allow records and announcements to follow each other. speaker and 2 independent volume controls, and separate bass and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s. ECC83. EFB6 and EZ80 rectifier. Simple

"POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER Size 114 in $\times 14 \mathrm{H}^{1 /} \times 1 \frac{1}{1}$ in deep. Weight 190z. Power handing $40 \mathrm{~Hz}-20 \mathrm{KHz}$. Can be mounted on collings walls doors, uncer tables, etc.. and used with or without baffle. Send S.A.E. tor full details. Only $£ 8.40$ each + P. \& P. (one $80 p$, two $£ 1-10$). Now available in elther 8 in round version or $4 \ell \times 8 . \ln$ rectangular.
sPECIAL OFFER. 6 tin long throw, roll surfound, ceramic magne $80 \mathrm{hm}{ }^{10}$ watt speaker chassio. 8peciolly euttable for HI FI. E3. 85 + 75p P. \& P.
2 in PLASTIC CONE HF TWEETER 4 ohm, $£ 3.50$ per matched pair + 50p P. \& P.
HIGH POWER HI-FI 8 ohm Dome Tweeter. 1 In volce coll. Magnet size 3 in dla. Sultable for use in up to 50 watt syatems. 24.50 each 8ize
+60 p P. A P

HARVERSONIC SUPERSOUND 10 + 10 STEREO AMPLIFIER KIT
A really first-class Hi-fi Stereo Amplitier Kit. Uses 14 transistors including Silicon Transistors in the first five stages on each channel resultung in oven lower noise lovel with improved
sensitivity. Integral pro-amp with Bass, Treble and two Volume controls. Suitable for use with Ceramic or Crystal cartridges. Very simple to modify to suit magnetie cartridge-instructions incluced. Output stage for any speakers from to to 15 ohms. Compact deaign, all parts tupplied including arilled metalwork. high quality ready marked. smart brushed anodised aluminium front panel with matching knobs, wire, solder, nuts, bolts-no extras to buy. Simple step by stop instructions enable any constructor to build an amplifier to be proud of. Brief specification: Power output: 14 watts $12-30,000 \mathrm{~Hz}$. Senmetivity: better than 80 mV into 1 MA . Full power bandwidth: $\pm 3 \mathrm{~dB} 12-15,000 \mathrm{~Hz}$. Bass boost approx to $\pm 12 \mathrm{~dB}$. Treble cut approx. to -16 dB . Negative feedback 18 dB over main amp. Power pequirements 35 at 1 A
overall size 12 in wide $\times 8$ in deep $\times 24$ in high.
Fully detailed 7 page construction manual and parts list tree with MPLFIER KT
(MPLIFIER KIT CABINET
SPECIAL OFFER-only 523.75 H all 3 Itoms
orcered al one time pHut 1.25 P. $\$$ P.
Full after sales service
Also suavala reat bult and tested $\& 31 \cdot 25$ P. \& P. $£ 1 \cdot 50$

HARVERSONIC STEREO 44

A solid state stereo amplifier chassis, with an output of 3 Hatts per channel into 8 ohm speakers. Using the latest high technology
intagrated circuit amplifiers with built in short term thermal overload protection. All components including rectifier smoothing capacitor, fuse, tone control, volume controis, 2 pin din speaker sockets and 5 pin din tape fec./play socket are mounted on the printed circuit panel. Size approx, 9in x 2 inn x hin max. depth. aluminium 2 way escutcheon (to allow the amplifter to be mounted horizontaliy or vertically) at only $\mathbf{5 0 . 0 0}+50 \mathrm{p}$ P. \& P, Mains iransformer with an output of 17 V a.c. at $500 \mathrm{~m} / \mathrm{A}$ can be supplied at $\varepsilon 1.50$ + 40p P. \& P. if required. Full connection detalis supplied.
8FEAEO DECODER
ILE stereo beecon light cinn be fitted if required. Full details and P.R.P. Stereo beacon llight frequired supplied. 40 extra.

Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday Closed Wednesday.
Prices and specifications correct at time of press. Subject to alteration without notice

HARVERSON

SURPLUS

CO.
(Dept. P.E.) 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel.: $01-5403985$ A fow minutes from south Wimbledon Tube Station
(Please write clearly)

PLEASE NOTE: P. \& P. CMARGES OUOTED APPLY TO U.K. ONLY P. CHMRGED ON OVERBEAB ORDERS CHARGED EXTAA.

GREENWELD

443 Millbrook Rioad Southampton SO1 DHX Tel:(0703)772501

BUY A COMPLETE

 RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU* SAVE ON TIME - No delays In waiting for parts to come or shops to open!
* SAVE ON MONEY-Bulk buying means lowest prices - just compare with others!
- have the right part - No guesswork or substitution necessary!
ALL PACKS CONTAIN FULL SPEC. BRAND NEW, MARKED DEVICES SENT BY RETURN OF POST. VAT INCLUSIVE PRICFS
K001 50 V ceramic plate capacitors. 5%. 10 of each value 22 pF to 100 pF . Total 210, £3.35
K002 Extended range, 22pF to $0.1 \mu F$. 330 values $\mathbf{£ 4 . 9 0}$
K003 Polyester capacitors. 10 each of these values: $0.01,0.015,0.022$, $0.033,0.047,0.068,0.1,0.15,0.22$, K004 Mylar capacitors, min 100 V type. 10 each all values from 1000pF to $\mathbf{1 0 , 0 0 0 p F}$. Total 130 for $\mathbf{~} \mathbf{4 . 4 5}$
$K 005$ Polystyrene capacitors. 10 each value from 10 pF to $10,000 \mathrm{pF}$. E12 series $5 \% 160 \mathrm{~V}$. Total 370 for $£ 12.30$
K008 Tantalum bead capacitors. 10 each of the following: $0.1,0.15,0.22$ $0.33,0.47,0.68,1,2.2,3.3,4.7,6.8$, $\begin{array}{llll}\text { all } 35 \mathrm{~V} ; & 10 / 25 \quad 15 / 16 & 22 / 16 & 33 / 10\end{array}$ $47 / 6100 / 3$. Total 170 tants for $£ 14.20$ K007 Electrolytic capacitors 25 V working. smalt physical size. 10 each of these popular values: $1,2.2,4.7$ ko 22 , 47, 10 . K008 Extended range, as above, also including 220, 470 and $1000 \mu \mathrm{~F}$. Tota
100 for $£ 5.90$ 100 for $£ 5.90$
K021 Miniature carbon film 5\% resistors, CR25 or similar. 10 of each value from 10R to 1M. E12 series. otal 610 resistors, 2.00
K022 Extended range, total 850 resistors from $1 R$ to $10 \mathrm{M} £ 8.30$ K041 Zener diodes. $400 \mathrm{~mW} 5 \%$
BZY88 etc. 10 of each value from 27 V to 36 V , E24 series. Total 280 for $\Sigma 15.30$
K042 As above but 5 of each value $\varepsilon 8.70$
PC ETCHING KIT MK III Now contains 200° sq. ins. copper clad board, 11b. Ferric Chioride DALO etch-resist pen, abrasive etching dish and instructions. £4.15.

FERRIC CHLORIDE
Anhydrous technical quatity in 11 b double sealed packs. 10 \& 1.0

SIRENS

Work off $4 \times$ HP7 batteries, emit very oud noise. Overall size $110 \times 75 \times$ 60 mm . use as Burglar Alarm in car, house, workshop etc. ONLY $£ 1.95$.

VERO OFFCUTS
Pack A. All $0.1^{\prime \prime}$
Pack B. All 0.15
Pack C. Mixed
Pack D.All $01^{\prime \prime}$ plain
Each pack contains 7 or 8 pieces with Each pack co 100 sq in. pieces with a total area of 100 sq in. Each pack is £3.45, 10 lb £31.

VEROCASES
Plastic top and bottom, ally panels front and back.
Type
14102
$1410205 \times 140 \times 40 \mathrm{~mm} \quad \varepsilon 3.70$ $\begin{array}{ll}1411205 \times 140 \times 75 \mathrm{~mm} & \mathbf{8 4 . 1 7} \\ 1412205 \times 140 \times 110 \mathrm{~mm} & \mathbf{\Sigma 5 . 2 0}\end{array}$ $\begin{array}{ll}1412205 \times 140 \times 110 \mathrm{~mm} & \varepsilon 5.20 \\ 1237154 \times 85 \times 40 \mathrm{~mm} & \varepsilon 2.83\end{array}$ $1237154 \times 85 \times 40 \mathrm{~mm} \quad £ 2.83$
$1238154 \times 85 \times 60 \mathrm{~mm} \quad £ 3.05$ $\begin{array}{lll}1238154 \times 85 \times 60 \mathrm{~mm} \\ 1239154 \times 85 \times 80 \mathrm{~mm} & £ 3.05 \\ & \end{array}$

TRANSFORMERS

Special - 12V 8 A for only 84.00 . 6-06 V 100 mA 85p; 9-0-9V 75 mA 85 p $12-0-12 \mathrm{~V} 50 \mathrm{~mA} 85 \mathrm{p} ; 100 \mathrm{~mA} 95 \mathrm{p} ; 12-$
$0-12 \mathrm{~V}$ 1A $22.90 ; 20-20 \mathrm{~V} 2 \mathrm{~A}$. 4.70 ; 20V2.75A £4.

VERO PLASTIC BOXES Protessional quality, two tone grey polystyrene with threaded inserts for mounting PC Boards.
Type
2518
$2520150 \times 85 \times 40 \mathrm{~mm}$ $2522188 \times 110 \times 60 \mathrm{~mm} \quad £ 3.72$ Sloping front versions: Type
$2523220 \times 174 \times 100 / 52 \mathrm{~mm} \quad \varepsilon 8.90$ $1798171 \times 121 \times 75 / 37.5 \mathrm{~mm} \quad \mathbf{~} 4.65$ Gen. purpose plastic potting box 71 $\times 49 \times 24$. In black or white 40p Hand controller box, shaped for ease of use in the hand, $94 \times 61 \times 23 \mathrm{~mm}$ 64 p .

S-DECS \& T-DECS
$\begin{array}{ll}\text { S-DEC Breadboard } & £ 2.10 \\ \text { T-DEC Breadboard } & £ 3.75\end{array}$
RELAYSAND SOLENOIDS 12V DC enclosed, 2 10A c/o contacts $\Sigma 1.00$
Open construction relay with 210 A c/o contacts, coll rated 24 V AC, bu works well on 6V DC 80p
240 V AC enclosed, 11 pin plug in base. 3 10A c/o contacts, $£ 1.20$
240 V AC open, 2 15A c/o contacts 1.50

6 V miniature low protile for PC mounting, $0.1^{\prime \prime}$ pitch 2 pole c/o 137R coil - RS price £2.71 - our price 1.00

Solenoid, rated 48 V DC, but work on 24 V . 10 mm push or pull action. Single hole fixing. Size 27×18
15 mm . Made by varley. Only 40 p . 1977/8 CATALOGUE NOW AVAIL-ABLE-MUCH BIGGER AND BETTER, WITH 50p DISCOUNT VOUCHERS. ONLY 30p plus 15p POST.

WIRE AND FLEX
Flex pack - 5 m of 5 diff colours, thick or thin. 25 m for 25p. 25 way (14/0076) cable with braided overal screen and PVC sheath. $40 \mathrm{p} / \mathrm{m}$.

POWER PACK
Wood grained metal case $90 \times 80 \times$ 75 mm containing mains transformer giving 6 V at $200 \mathrm{~mA}, 2$ co-ax sockets, PC board with 1t" fuseholder R's C's etc. Only $£ 1$.

EDGE CONNECTORS

Special purchase of these 0.1" pitch double-sided gold plated connectors enables us to offer them at less than 41p 21 way 47p 32 way 72 p 40 way 90 p 43 way 97p 49 way 111p.

SOLAR CELLS
As used on space labs etc., these tiny cells give $50 \mu \mathrm{~A}$ at 0.5 V in sunlight. projects etc. Can be banked for projects etc. Can be banked for 6.5 mm . 3 for $£ 1$; 10 for $£ 3 ; 25$ for $£ 7$ 100 for $£ 25$.
$\mathrm{Has}-26 \mathrm{~V} 0.8 \mathrm{~A}$ thyIItstors igate C(rrent only 200 $\mu \mathrm{A}$), MEU21

MISCELLANEOUSIC's All supplied with data.
MC3302 Quad comparator $£ 1.20$. ITT7105 LED Digit drlver, 8 for $£ 1$. 710 TO99 case Diff. comparator, MC1469R Voltage reg. $£ 1.50$. ZN1034E Precision timer $£ 2.25$. LM1303 Dual stereo preamp $£ 1.40$. 733 DIff. video amp $£ 1.20$. LM301 Op amp 40p. ITT326 $2 \times 2 \& 2 \times 31 / p$ TTL nand gate, 10 for £1. SLD2128 Dual 128 bit static shift reg. $£ 1.50$. Our retail shops at 21 Deptlord Broadway, London, SE8 (01-692 2009) and 38 Lower Addiscombe Road, Croydon (01-688 2950) stock some of the advertised goods for personal callers only. Ring them for details.
All prices quoted include VAT and UK/BFPO postage. Most orders despatched on day of receipt. SAE with enquiries please. MINIMUM ORDER VALUE \&1. Official orders accepted from schools, etc. (Minimum invoice charge £5). Export/wholesale enquiries welcome. Wholesale lis now available for bona-fide traders. Surplus components always wanted.

QUALITY FOR CHRISTMAS

Superb CASIO watches - probably the best value for money available today. Constant LCD display of 7 functions plus night light, plus outamatic calendar, plus STOPWATCH to 13 hours and, excopt $31 \mathrm{QR}-12 \mathrm{~B}$, plus DUAL TIME ZONE. The all stainless steel cases are WATER RESISTANT to 100tt. (3at.) Mineral glass faces. Not illustrated: As above but ultro-slim ($\mathbf{1}^{\prime \prime}$) on bracelet, $31 \mathrm{CS}-108 £ 59.95$. On strap, 31CS-15L, $£ 49.95$. LADIES CASIO. Five models, os above but without dual time zone. Prices from $£ 29.95$ to $\mathbf{£ 7 9 . 9 5}$.
but whinour dur Hmo zono. Picoshom 29.95 to

C 500 Alarm
Black or white

flack or

Chrome $£ 23.95$

Ladies LCD 5 si 3 functions
Light

Western Time

New ultra-slim Ibice 407. 6 digit display af hrs., mins., secs. (or date), day $£ 39.95$. Now slim analogue 701. Hrs., mins., secs., date. Luminous. Precise second sotting. £54.50. Many other digital and Q. Analogue watches, stopwatches, clocks, car clocks, otc. from Accurist, Casio, Citizen, Ibico, Fairchild Timeband, N-S, etc. Colculators. Send 15 p for our illustrated catalogue Prwest Discount prices.
Prices include VAT, P\& P. Send cheque, P.O. or phone your credit cord number to--

Dept.P.E.
 THMPUS
 19/21 Fitzroy Street
 Cambridge CBI 1 EH
 Telephone (0223) 312866

PINNER ELECTRONICS

S-DEC
T-DEC
U-DEC
U-DEC A
U-DEC B
UNEC B
ANTEX IRON C240-15W
ANTEX IRON CCN240-15W
ANTEX IRON CX240-17W
ANTEX ST3 STAND
ANTEX C240 ELEMENT
TOWERS TRANSISTOR DATA \&
EOWERS FET
EQUIV BOOK DATA \&
SERVISOL SWITCH CLEANER Boz
SERVISOL FREEZER GOZ
SERVISOL FREEZER 602
TMK500 M/METER 30,000 O.P.V.
TMK 500 CARRY CASE SP25 MK. III MOTORS SP25 MK. IV MOTORS
OE SOLOA BRAIO OE SOLDA BRAID

PLEASE ADO 8% V.A.T. except those marked when you should add $12 \frac{1}{2} \%$ V.A.T. $(Z)=$ Zero Ten of any individual item - less 10\%. CASH
WITH ORDER TO:
PINNER ELECTRONICS, 4 Village Way East, Rayners Lane, Harrow, Middlesex.
Telephone: 01-888-5500

ADD A VDU TO YOUR OSCILLOSCOPE

For just $£ 57.30$ you can turn any oscilloscope with \mathbf{Z} mod input into a versatile computer display capable of displaying alphanumeric data, graphs, or pictures. It can be used with any 8 bit computer output port or without a computer from any TTL or MOS circuit capable of driving it. This unit can form the basis of other interesting projects, e.g. a low frequency storage scope, a spectrum analyser, or a multi-channel logic analyser. Price for kit including PCB, components, documentation, VAT and P\&P, $£ 57.30$ from: Computabits Ltd., 41 Vincent Street, Yeovil, Somerset. Tel: (0935) 26522.

You can work wonders with your free time.

There's immense satisfaction in making your own equipment. And you'll get excellent results with Heathkit.

Every kit is absolutely complete down to the last nut and bolt. The quality is the best. And each kit has an easy to follow instruction manual that explains exactly what to do at each step.

So you enjoy assembling your kit and you finish with first-class equipment every time.

That's why Heathkit are so successful. And that's why the range is the biggest in the world.

It's all in the new edition of the free Heathkit catalogue. Everything from the simplest to the most sophisticated. Alarms, digital clocks, testers, transceivers and lots more . . even the tools are there!

See for yourself. Send the coupon now.
new Catal ogue
NEW TEST INSTRUMENTS
NEW DIGITAL BATHROOM SCALES NEW AMATEUR RADIO EQUIPMENT NEW AUDIO SYSTEMS AND MANY OTHER NEW ITEMS

The new Heathkit catalogue. Out now FREE

To: Heath (Gloucester) Ltd., Dept. PE 18, Gloucester, GL2 6EE. Please send me my Heathkit catalogue. I enclose an 11 p stamp for postage.

Name
Address

		Dept．P．E． 5 STATION ROAD，LITTLEPORT，CAMBS．，CBG $10 E$ Telephone：ELY（0353） 860185 （2 lines）Tuesday to Saturday	
PLEASE ADD 8\％VAT UNLES A MERRY XMAS TO ALL OUR CUSTOMERS PLUS A XMAS PRESENT FROM US IN THE FORM OF A	OTHERWISE STATED	PLEASE ADD 8\％VAT	WELen soldering ioons
10\％DISCOUNT ON ALL ORDERS RECEIVED FROM 1st to 31st DECEMBER For items In our current THIS OFFER IS FOR 1 MONTH ONLY	Vilcon scin colls triansisior yoe．bur noCatal compal Band Now	（Brand New）70p each of 2 for $21 \cdot 20$ ． TO3 transistor insulator sets， 10 for 50 p	its 35 p par． E RANGE OF CAPACITORS AVAILABLE ．a．E．FOR LIST．
	List NEW FOR THE VHF CONSTRUCTOR．A IA		 ALUSOL ALUMINIUM SOLDER（made oy
Slider Switches． 2 pole make and break（or can centre pins）． 4 for Sop．	cosan		
		reducers， 65 p each SO239 Sockets（PTFE），brand new（4－hole fixhng type）．50p each	
		SOLDER SUCKERS（Plunger type）．Standard Model．©5．Skirted Model $55 \cdot 50$ ．Spare Nozzles Model． 55 60p each．	
（tay		G	
	SEmICONDUCTORS		
MAINS TRANSFORMERS．Type 60／2，Mains input $200-210-220-230-240-250 \mathrm{~V}$ a．c．，output $0-20-$			
MAINS TRAMSFORERE．TYpe 153300 240V			Actions
MAINS TRANSFORMERS．Type $15 / 300240 \mathrm{~V}$Input． 15 V a 300 mA output，$\{1.50$ each MAINS TRANSFORMERS．Type $45 / 100,240,220$ ，110,20 ．OV input， 45 V at 100 mA output，$£ 1 \cdot 50$each．			

Terms of Business：CASH WITH ORDER．MINIMUM ORDER \＆2．ALL PRICES INCLUDE POST \＆PACKING IUK ONLY）SAE with ALL ENQUIRIES Please．PLEASE ADD VAT AS SHOWN．ALL GOODS IN STOCK DESPATCHED BY RETURN CALLERS WELCOME BY APPOINTMENT ONL

```
```

UNIJUNCTIONS TIS43 Type 20p, MEU 21-22p, 2N4B71-22p.

```
```

UNIJUNCTIONS TIS43 Type 20p, MEU 21-22p, 2N4B71-22p.
MU 4894 22p.GE4JD5E29 22p, D13T1 25p, 2N6028 30p
MU 4894 22p.GE4JD5E29 22p, D13T1 25p, 2N6028 30p
NPN PHOTO TRANSISTORS 15p. DARLINGTONS = 20p
NPN PHOTO TRANSISTORS 15p. DARLINGTONS = 20p
1O0-0-100UA TUNING METER 1f % 1% at 90p.
1O0-0-100UA TUNING METER 1f % 1% at 90p.
MINIATURE Buf 300v.w. ELECTROLYTICS 10 for 57p
MINIATURE Buf 300v.w. ELECTROLYTICS 10 for 57p
NKT 214 equivalent to OC 71 at 10p each.
NKT 214 equivalent to OC 71 at 10p each.
100 ASSORTED SILVER MICA CAPACITORS 57p.

```
```

100 ASSORTED SILVER MICA CAPACITORS 57p.

```
```



```
```

50 BC 107-8-9 TRANSISTORS Assorted Untested * 57p

```
```

50 BC 107-8-9 TRANSISTORS Assorted Untested * 57p
100 MULLARD C2BO CAPACITORS Assorted 57p.
100 MULLARD C2BO CAPACITORS Assorted 57p.
TV COAX PLUGS \& 15p, SOCKETS 1 15p.
TV COAX PLUGS \& 15p, SOCKETS 1 15p.
2 PIN DIN SOCKETS Single w 10p, Double - 18p
2 PIN DIN SOCKETS Single w 10p, Double - 18p
TUNING CAPACITORS 250+250+20+20+20pf 75p
TUNING CAPACITORS 250+250+20+20+20pf 75p
AUDIO AMPLIFIERI,C.SL414 \& \&1,50 each.
AUDIO AMPLIFIERI,C.SL414 \& \&1,50 each.
A
A
PLASTIC 90 WATT NPN POWER TRANSISTORS type BD 207-55p each
PLASTIC 90 WATT NPN POWER TRANSISTORS type BD 207-55p each
500vds. of PVC CABLE 25 strand .004 at £3.
500vds. of PVC CABLE 25 strand .004 at £3.
F.M. TUNER FRONT HEAD 88 to 10B MHz with conversion data to Aircratt 8and or
F.M. TUNER FRONT HEAD 88 to 10B MHz with conversion data to Aircratt 8and or
\144 MHZ £3. TRIMMERS 2 to 9pf 10p, 5 to 3Bpl 10p. 6 to 45pf e 10p,
\144 MHZ £3. TRIMMERS 2 to 9pf 10p, 5 to 3Bpl 10p. 6 to 45pf e 10p,
DAU MHZIAE3.
DAU MHZIAE3.
8 to 125pf 12p, 8 to 140pf 15p
8 to 125pf 12p, 8 to 140pf 15p
UNMARKED GOOD 400mW ZENERS 6.8v, 10v, 11v, 12v,13v,16v, 24v,30v, 33v,
UNMARKED GOOD 400mW ZENERS 6.8v, 10v, 11v, 12v,13v,16v, 24v,30v, 33v,
36 volt. All at to for 40p.
36 volt. All at to for 40p.
MERRANTE ZTX 108 TRANSISTORS ot 7 for 57p.
MERRANTE ZTX 108 TRANSISTORS ot 7 for 57p.
TANTALUM BEAD CAPACITORS . Iuf 35v.w., . 33uf 35v.w., . }47\textrm{uf}35\textrm{v}.w., Iuf 35v.w.
TANTALUM BEAD CAPACITORS . Iuf 35v.w., . 33uf 35v.w., . }47\textrm{uf}35\textrm{v}.w., Iuf 35v.w.
lol
lol
2.2uf 35v.w., 3.3uf 16v.w.,4.7uf 10v.w.,.4.7uf 35v.w., 5uf 25v.w., 6.8uf 25v.w
2.2uf 35v.w., 3.3uf 16v.w.,4.7uf 10v.w.,.4.7uf 35v.w., 5uf 25v.w., 6.8uf 25v.w
TO 395 WATT NPN DARLINGTON TRANSISTOR = 20p.
TO 395 WATT NPN DARLINGTON TRANSISTOR = 20p.
6 to 1 FRICTION SLOWMOTIGMDRMVE,55%.
6 to 1 FRICTION SLOWMOTIGMDRMVE,55%.
3 DIGIT A to D CONVERTERR I.C. TYPE LD 130 with data \& E6
3 DIGIT A to D CONVERTERR I.C. TYPE LD 130 with data \& E6
BOAGSORTEDNANTULUMGEAD CARACLTORS Fon \&1.50-

```
```

BOAGSORTEDNANTULUMGEAD CARACLTORS Fon \&1.50-

```
```



```
```

 MAINS TRANSFORMERS 240V Input. Type 1. 22v 1 amp % 88p (20p P & P).
    ```
```

 MAINS TRANSFORMERS 240V Input. Type 1. 22v 1 amp % 88p (20p P & P).
 Type 2. 22v 300mA 7.5v 1 amp (99p (20p P & P). Type 4. 9v 500mA 88p (20pp
 Type 2. 22v 300mA 7.5v 1 amp (99p (20p P & P). Type 4. 9v 500mA 88p (20pp
 (85p P & P). Type 7. 20v 1 amp twice, tov 1 amp twice f4.50 (95p P & P). Type 8.
 (85p P & P). Type 7. 20v 1 amp twice, tov 1 amp twice f4.50 (95p P & P). Type 8.
 (85p P & P). Type 7. 20v 1 amp twice, 10v 1 amp twice ef4.50 (95p P & P). Type 8.
 (85p P & P). Type 7. 20v 1 amp twice, 10v 1 amp twice ef4.50 (95p P & P). Type 8.
 16v 500mA 88p (20p P & P). Type 9. I4v 2 amp fl.60 (25p P & P). Type 10.
 16v 500mA 88p (20p P & P). Type 9. I4v 2 amp fl.60 (25p P & P). Type 10.
 (20p/P & P). Type 12. 22v 1 amp, 7.5v 500mA,6v 1 amp- £1.60 (20p P & P). Type 13.
 (20p/P & P). Type 12. 22v 1 amp, 7.5v 500mA,6v 1 amp- £1.60 (20p P & P). Type 13.
 (20p/P & P). Type 12. 22v 1 amp, 7.5v 500mA,6v 1 amp f1.60 (20p P & P). Type 13.
 (20p/P & P). Type 12. 22v 1 amp, 7.5v 500mA,6v 1 amp f1.60 (20p P & P). Type 13.
 6v 1 amp & f1.60 (25p P & P).
 6v 1 amp & f1.60 (25p P & P).
 TBA 120S FM I.C's Untested with data - }6\mathrm{ for 60p.
TBA 120S FM I.C's Untested with data - }6\mathrm{ for 60p.
30 ASSORTED 1OXAJ CRYSTALS between 5100 To 7900 KHz e £1.10.
30 ASSORTED 1OXAJ CRYSTALS between 5100 To 7900 KHz e £1.10.
200 AS SORTED RESISTORS 产. \# watt for 75p.
200 AS SORTED RESISTORS 产. \# watt for 75p.
RCA 40410 PNF53 WATT 90 VOLT 100 MHZ TRANSISTORS f 15p each
RCA 40410 PNF53 WATT 90 VOLT 100 MHZ TRANSISTORS f 15p each
100 ASSORTED DISC CERAMICS for 57p.
100 ASSORTED DISC CERAMICS for 57p.
|ess otherwise slated. Overseas orders at
|ess otherwise slated. Overseas orders at
J. BIRKETT
J. BIRKETT
RADIO COMPONENT SUPPLIERS
RADIO COMPONENT SUPPLIERS
25 The Strait, Lincoln LN2 1JF
25 The Strait, Lincoln LN2 1JF
Tel. 20767.
Tel. 20767.
TUNING CAPACITORS 250+250+20+20
TUNING CAPACITORS 250+250+20+20
cost.

```
```

cost.

```
```


C－MOS

C－

4001
400
400
400 lain 9 fully adjustable cams and 9 change over Needs slow－motion motor to drive（not sup－ pied）．Ideal por disco ughts，sequence switch

VIDICON SCAN COILS（Transistor type，but no data）comp
Brand New
FULL RANGE OF BERNARDS／BABANI
ELECTRONICS BOOKS IN STOCK．S．A．E．FOR LIST．

NEW FOR THE VHF CONSTRUCTOR．A range of cans．Frequencies quoted are approximate，and range an be greatly extended by using varying capaciters in aralle：
Type SA 201030 MHz （when 33 pl fitied in paral｜ei）．
Type SB 35 to 50 MHz （with link winding）．
Type SC 70 to 100 MHz （with link winding）．
Type SD 135 to 175 MHz （with link winding）
rype M（Min．Iin．square types）．
Type MA 99 to 28 MHz （when 33 of fitted in parallel），
Type MB 22 to 32 MHz （when 33 pF fitted in paraltel）
Type MC 25 to 35 MHz （when 33 pF fitted in parallel）．
Type MD 39 to 50 MHz （when 33 pF fitted in paraliel）．
Type ME 45 to 60 MHz （when 33 pF fitted in parallel）．
Type MF 100 to 200 MHz （without slug）when 0 to 30 pF
All the above colls avallable in packs of five only（same

SEMICONDUCTORS

BSX20（VHF Osc／Mult）． 3 for 50p．
BC108（metal can）（piastce BC 108）， 50 for 50 p
BFY5t Translstors， 4 for 60 p
BCY 72 Transistors， 4 for 50 p
PNP audio type TOS Transistors， 12 for 25p．
日F152（UHF amp／mixer） 3 for 50 ．
日F 152 （UHF amp／mixer）， 3 for 50 p ．
2 N3819 Fet．， 3 for 60 p ．
BC 148 NPN SILICON
BC158 PNN SILICON，for 50 p ．
BAY31 Signal Dlodes， 10 for 35p．
BA121 Varicap Diodes， 4 for 50p．
741 CG op amps by RCA． 4 for $\mathbf{4}$
RED LEDs（Min type） 5 for 70 p

PLEASE ADD 8\％VAT UNLESS OTHERWISE STATED

（in black ABS）with brass inserts．
Type NB1 approx 3 in ．$\times 2$ tin．$\times 1 \frac{1}{i n}$ ．40p each Type NB3 approx． $34 \mathrm{in} . \times 22 \mathrm{in} \times 12 \mathrm{in}$ ． 50 peach

MULLARD 65 A2 35 V STABILISER VALVES

To3 ransistor insular sers， 10 ror

PERSPEX TUNER PANELS（for FM Band 2 luners）marked 8e－108MHz and Channels o－7
clear numbers，rest blacked out，smart modern appearance，size approx $8 \mathrm{tin} \times 1 \mathrm{tm}$ ．， 2 for

PLUGS AND SOCKETS

N－Type Plugs 50 ohm， 60 peach， 3 for $£ 1.50$ ．
PL259 Plugs（PTFE），Drand new，packed
reducers，65p each
SO239 Sockets（PTFE），brand new（4－hole fixing （ype）． 50 p each
SOLDER SUCKERS（Plunger type）．Standard Model，c5．Skirted Model $55-50$ ．Spare Nozzles

S1250 25W 240 V £3． 80.
S1250K 25 W 240 V ＋bits etc．，KIT $\mathbf{\$ 4} .90$
BENCH STAND with sping and sponge for
Marksman irons $\mathrm{Ez} \cdot \mathbf{3 8}$ ．
PRICES＋ 5%
Temperature contrelled lron and PSU IRON． SPARE TIPS
Type CC single fiat，Type K double flat fine tip

MULTICORE SOLDER
Size 5 Savbit 18 s．w．g．in alloy dispenser

Kg．（ $1 \cdot 11 \mathrm{lb}$ ） $60 \times 40,20 \mathrm{s.w.g}$ ．on plastic reel
$+3+$ VAT（ 24 p ）．

EXPERT．Bullt－in－spotlight illuminates work． Pistol grip with fingertlp trigger．High efficiency EXPERT SOLDER CUN $8100 \mathrm{D} 59 \cdot 90$
EXPERT SOLDER GUN KIT（spare bits．case Spare bits 35p par．
ALARGE RANGE OF CAPACITORS AVAILABLE
MIXED COMPONENT PACKS，containing resistors，capacitors，pots，etc．All naw． last．
ALUSOL ALUMINIUM SOLDER（made by Multicore）．Solders aluminium to itself or
copper，brass．steel．nlckel or tinplate． $16 \mathrm{s.w.g}$. with multicores．flux，with instructions．Approx， 1 metre coil 40p pack．Large reel $\mathbf{\Sigma 2 - 7 5}$ ．
VARTCAP TUNERS Mullard typ ELC1043，05．
BARGAIN PACK OF LOW VOLTAGE ELECTROLYTIC CAPACITORS．Up to 50 V
working．Seatronic Manufacture．Approx． 100. £1－50 per pack＋ 124% VAT

OSMOR REED RELAY COILS（for reed relays up
to tin dia．，not supplied） 12 V ， 500 ohm coil． 2 for to fin dia．，not supplied） $12 \mathrm{~V}, 500 \mathrm{ohm}$ coil． 2 for
sop．

We now stock Sptratux Tools for the electronic Metric sizes，pop rlvet guns，etc．S．A．E．for list． Dubilier Electrolytics， $50 \mathrm{uF}, 450 \mathrm{~V}$ ． 2 for 50 p ． Plessey Electrolytics， $470 \mu \mathrm{~F}, 63 \mathrm{~V}, 3$ for 50 p ． TCC Electrolytlcs， $1000 \mu \mathrm{~F}, 30 \mathrm{~V}, 3$ for 60 p ． Dubilier Electrolytics， $5000 \mu \mathrm{~F}, 35 \mathrm{~V}, 50 \mathrm{p}$ each
Dubilier Electrolytics． $5000 \mu \mathrm{~F}, 50 \mathrm{~V}, 50 \mathrm{p}$ each iTT Electrolytics， $6300 \mu \mathrm{~F}$ ， 25 V ，high grade．screw
terminals，with mounting clips， 50 p each． PLEASE ADD 124% VAT TO ALL
CAPACITOAS．
TV PLUGS AND SOCKETS
TV Sockets（metal typel， 4 for 50 p ．
Sop．
50p．

THE DYMamIC duo

The C15/15 is a unique Power Amplifter providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radio/tape unit. It is simply wired in series with the existing speaker leads and in conjunction with our speakers S15 produces a system of incredible performance.
A novel feature is that the amplifier is automatically switched on or off by sensing the power line of the radio/tape unit hence alleviating the need for an on/off switch.
The amplifier is sealed into an integral heatsink and is terminated by screw connectors making installation a very easy process.
The S15 has been specially designed for car use and produces performance equal to domestic speakers yet retaining high power handling and compact size.

C15/15

15 watts per channel into 4Ω
Distortion 0.2% at 1 kHz at 15 watts
Frequency response $50 \mathrm{~Hz}-30 \mathrm{kHz}$
Input Impedance 8Ω nominal
Input sensitivity 2V R.M.S. for 15 watts output
Power line $10-18 \mathrm{~V}$
Open and Short circuit protection
Thermal protection
Size $4 \times 4 \times 1$ inches
C15/15 Price $\{17 \cdot 74+82 \cdot 21$ VAT.. P. \& P. free

Data on. S15
Gin Diameter
51̣in air Suspension
2 in Active Tweeter
$200 z$ Ceramic magnet
15 watts R.M.S. handling
$50 \mathrm{~Hz}-15 \mathrm{kHz}$ frequency response
4Ω Impedance

S15 Price per pair $\mathbf{5 1 7 \cdot 7 4 + \mathbf { 2 } \cdot 2 1 \text { VAT. P. \& P. free }}$
two years' guarantee on all of our products

I.L.P. Electronics Ltd
 Crossland House
 Nackington, Canterbury
 Kent CT4 7AD
 Tel. (0227) 63218

RSI
VALVE MAIL ORDER CO.
Climax House Fallsbrook Road, London SW16 6ED

SPECIAL EXPRESS MAIL ORDER SERVICE

Open daily to callers: Mon.-Fri. 9 a.m. -5 p.m. Valves, Tubes and Transistors Closed Saturday Prices correct Terms C.W.O. only • Tel. 01-677 2424-7

Quotations for any types not listed
Post and Packing 25 p per order $+8 \%$ V.A.T. when going to press

AITKEN BROS.

35, High Bridge, Newcastle upon Tyne Tel: 063226729

S-DEC
This, the most popular Board is designed solely for the use of discrete components and is par cularly useful for basic educational purposes. (No. Of Contacts: 70)

T-DEC

This Board allows 2 TO5 or 1 DIL tC Station to be used and so is primarly intended for discrete work of for linear IC application where considerable numbers of discrete components may be equired.
No. of Contacts: 208)
PRICE \&3.83 Inc. VAT.
$\mu-D E C$ 'A'
The $\boldsymbol{\mu}$-Dec ' A ' is speclally designed for ease of use with IC's and allows 2 DIL or 4 TO5 stations to be used but will accommodate discrete components with equal facillty.
PRICE Contacts: 208)
-DEC 'B'
The μ-DEC ' B ' is for similar uses as μ-DEC ' A ', but has two 16 lead IC sockets as part of the Board.
No. of Contacts: 208)
PRICE $\mathbf{8 7 . 5 5}$ inc. VAT

PANEL METERS

500 μ amp. 1MA 5MA $10 \mathrm{MA}, 50 \mathrm{MA}, 100 \mathrm{MA}, 500 \mathrm{MA}$. 1 amp, 2 amp , 25 v dc, 30 v dc, 50 v ac, 300 v ac, " S ", "VU", $50-0-50 \mu \mathrm{a}, 100-0-100 \mu \mathrm{a}, 500-0-500 \mu \mathrm{a}$. PRICE \&4.13 inc. VAT.

POTS* CAPACITORS, BOXES, INST. CASES, DIN PLUGS, RESISTORS, ETC., ALWAYS IN STOCK. POSTAGE AND PACKING 20p EXTRA. 1978 CAT. AVAILABLE JAN. PLEASE SEND 40p.

complete digital clock kits

TEAK OR PERSPEX CASE
 non alarm
 ALARM
 £12.50
 £15-50

All prices include P. \& P. and VAT
FEATURES: 4 LED digits $\frac{t}{2}$ in high. Red. 12 hour display with a.m./p.m indication. Mains frequency accuracy. Easy to build: all components included. Fieen. Fear to indicate power cuts. Green. Fiashes to indicate power cuts
NON ALARM: Complete kit including case, $£ 12 \cdot 50$. Ready built, $£ 14 \cdot 50$ Module kit excluding case, $\mathbf{5 9}$-50. Ready built, $£ 10 \cdot 00$.
ALARM: Pulsed alarm tone. Automatic brightness control. 9 minute "Snooze Simple setting. Complete kit including case, 215.50 . Ready built £17.00. Module kit excluding case, $£ 13.00$. Ready buit,
TIMER FACILITY: Stopwatch use to 9 min .59 sec, extra 50 p .

EXCELLENT VALUE - GUARANTEED

- LCD Gent's Watch. 5 function. Back light. Chrome case. Black

DISPLAYS: FND500 $\frac{1}{2}$ in.LED, $\mathbf{~ 1 1 . 1 9}$ each: 6 for 86.48. NSB 5430, itin Red LED stick of 4 £4.32. 5LTO2, $\frac{1}{2}$ in Green Phosphor stick of 485.40.
CLOCK CHIPS: 50253N Alarm 12/24 hour $4 / 6$ digit, $55 \cdot 67$.
50362 N Calendar clock. 87.75 . MM5385N 12hr 4 digit Alarm £4.32. 6 Decade up/down counters, 50395/6/7 £13.10.
MICROPROCESSOR: Z8O CPU, £22.68. Z80 CTC, £15.70.
1702A UV Erazable PROM, £11.35. Z80 PIO £.15.70. 2102NA, IK Static RAM £2.70. UV PROM Erazer, 2103 plus £5 P. \& P. 4 KXI 16 pin Dyn. RAM £7.05.

RECHARGEABLE BATTERY SET: Super Value £8.10, includes 4 AA (1.2V) Nickel Cadmium batteries (separately $£ 1.08$ ench). $3 / 6 / 9 \mathrm{~V}$ switched Universa Malns Adaptor with 4 plug connector for most calculators (separately 83.78), plus battery holder.
ELECTRONIC DOORBELL: Warbling tone. Runs off PP3 E5.40.

Bryit with Acoeme

U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

R.C.S. 10 WATT AMPLIFIER KIT

This kit is suitable for record players. tape play back, guitars electronic instruments or small P.A. systems. Two versions are
available. The mono kit uses 13 semiconductors. The atereo kit usee 22 semiconductors. Both kits have primed front panel and volume, bass and treble controls. Spec. 10W output into 8 ohms. TW into 15 ohms. Response $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$. input $100 \mathrm{M} . \mathrm{V}$. high imp . Size $9 \mathrm{i} \times 3 \times 2 \mathrm{in}$. AC mains operated

ELAC 10 inch $£ 4 \cdot 50$ Ribbed cone. Large ceramic magnet.
$50-16.000 \mathrm{c} / \mathrm{s}$. Bass resonance $55 \mathrm{c} / \mathrm{s}$ loW. 15 ohm impedance.
ELAC $9 \times 5 \operatorname{Hin} H H_{1}$ \& 3.45 SPEAKER TYPE 59RM Post 35p this famous unit now avallable. 10 W , 8 ohm.
ELAC HI-FI SPEAKER 8in TWIN CONE
Dual cone plastic roll surround. Large ceramic magnet. 50-16,000 15 watts. RMS.
£5.95 Poat 35p

| MANS TRANSFORMERS | ALL POST |
| :---: | :---: |
| 250-0-250V 70 mA . | 83.45 |
| $250-0-25080 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 3 \cdot 5 \mathrm{~A} .6 \cdot 3 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2 A | C4.60 |
| 350-0-350 90mA. 6. $3 \mathrm{~V} 3.5 \mathrm{AA}, 6.3 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2 A | c5.00 |
| $300-0-300120 \mathrm{~mA} 2 \times 6.3 \mathrm{~V} 2 \mathrm{~A}$ C.T., 6.3 V 2 A | ci. 50 |
| $220 \mathrm{~V} 45 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}$ | ¢1.75 |
| GENERAL PURPOSE LOW VOLTAGE. Tapped outputs at | |
| | |
| $2 \mathrm{~A}, 3,5,6,8,9,10,12,15,18,24$ and 30 V | 55.30 |
| ${ }^{14}, 6,8,10,12,16,18,20,24.30,36,40,48.60$ | 55.30 |
| 2A, 6, 8, 10, 12, 16, 18, 20. 24, 30, 36. 40, 48, 60 | ci. 50 |
| 3A, 6, 8, 10, 12, 16, 18. 20. 24, 30, 36. 40, 48, 80 | ¢11.00 |
| $5 \mathrm{~S}, 6,8,10,12,16,18,20,24,30,36,40,48$, | c14.50 |
| $10,18 \mathrm{~V}$ tA 22.12 V 100 mA £1. 12 V 300 | 750 mA |
| £1.30. 40 V 2 A tapped 10 V or 30 V 82.95 .20 V 3 A | V 2A e2.95. |
| 5A + 34 V 2 A ct. $83.75 .2 \times 18 \mathrm{~V}$ 8A 111. | |
| A $52.85 .30 \mathrm{~V} 1+4.52 .7520 \mathrm{~V}$ | |
| 60 V , 40 V . 20 V or $20-0-20 \mathrm{~V}$. 1 A ¢3.50. 30-0-30 | |
| AUTO TRANSFORMERS. 115 V to 230 V or 230 V | |
| | |
| CHARGER TRANSFORMERS. Input $200 / 250$ | or 12V |
| 1+A E2.75; 4A E5.20. | |
| FULL WAVE BRIDGE CHARGER RECTIFIERS: 6 or ${ }^{2} 2 \mathrm{~V}$ outputs | |
| $1 \frac{1}{2} A 40 p ; 2 A$ 55p; 4A 95p. HALF WAVE 12V $1 \frac{1}{2}$ | |

GOODMAN'S COMPACT 12in BASS WOOFER
Standard 12 in diameter fixing with cut sides 10 fin square. 14.000 gausa magnet. 30 watt
r.m.s. 4 ohm impedance. Bass resonance: 30 c.p.s. Frequency responss:' $30-8,000$ c.p.s.

ADASTRA 3+3W STEREO AMPLIFIER. 10 Transistor Push-Pull Ready bass controls. 240 V operated.
Size $8 \times 3 \times 6$ in. \&10.95

heAting elements wili

 Heaters, etc Must de clamped between two sheets of matal or
asbestos.

ONLY 40D EACH (FOUR FOR $\mathbf{\varepsilon 1 . 5 0)}$ ALL POST PAID--Discounts for quantity.
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$

SPEAKER SALE! With tweseter. And croasover. State
10W Model $£ 7.95$
15W model $£ 10: 50$
20W model $£ 11.50$
8 or 15 ohms Post 75p

TEAK VENEER HLFI SPEAKER CABINETS
MODEL " A " $20 \times 13 \times 12 \mathrm{in}$.
For 12 in. dia. or 10 in . speaker. Illustrated \quad £14.50 Post£1.60 MODEL "B" BOOKSHELF
For $13 \times 8 \mathrm{in}$. EMI
Loudspeakers.
L8.50 Post $£ 1$ Loudspeakers.
R.C.S. BOOKSHELF complete with speakers. Size $14 \times 9 \times 6 \mathrm{in}$. approx. Response 50 to $14,000 \mathrm{cps} 6$ watt rms 8 ohms $£ 16$ pair Post $£ 1.30$ ACOUSTIC WADDING 18in. Wide, 20p ft.

MONO PRE-AMPLIFIER

A mains operated solid state pre-amplifier unit designed to compliment amplifiers without low level phono and tape input stages. This free standing cabinet incorporates phono input and NAB RI.A.A. equallsation on magnetic NHOFF PHONOITAPE witches and pilo heads. Power he front panel: phono socket and pilot lamp are on the front panel; phono socket mput and output are rear 17 6 $6 \times 3 \frac{1}{2} \times 2 \mathrm{in}$
£4.50 ea. -2 for £8.

Post 50p.

BAKER MAJOR 12 INCH $£ 15$

$30-14.500 \mathrm{c} / \mathrm{s} .12 \mathrm{in}$ double cone $£ 1.00$ and iwoeter cone together with a BAKER ceramic magnet assembly having a flux of 145,000 Maxwells. Bass resonance $40 \mathrm{c} / \mathrm{s}$. Rated 2 wW .
NDE 4 or or 16 ohms availeble.
Module kit. 30-17,000 c/s with tweeter.
crossover, baffle, 19×12 in.
instructions. As illuatrated.
Plasese state 4 or o or

16 ohms. Post 51 -60
"BIG SOUND"'
BAKER SPEAKERS
Robustly constructed to stand up to long periods of electronic power. As used by leading

groups and discos. Useful response $30-13.000$ | groups and oiscos. |
| :--- |
| c / s. Bass Resonance $55 \mathrm{c} / \mathrm{s}$ |

GROUP ' 25 '
121n 30 W
4.8 or 16 onms.
GROUP " 35

12in tow
4,8 or 16 ohms. $\{12$

GROUP 50/12inE14

12in 60 w
4 or 8 or 16 ohms with4 or 8 or 16 ohms with
alumtnium presence dome$£ 21$

GROUP 50/15in $151 n$
8 or 16 w
onms

Disco, Group + PA Cabinets in atock. Send to Leaflot. Cabinot Fitings, Handien, Corners

BAKER 150 WATT
ALL PURPOSE transistor

AMPLIFIER

Ideat for Groups. Disco, P.A. and Musical Instrumente. 4 inputs peech and muaic. way mixing. Output 4/8/16 ohm. a.c. Mains 240V.
NEW "DISCO 100 WATT", 559
$872 \begin{aligned} & \text { Carr } \\ & \text { \&1 } 50\end{aligned}$

ALL TRANSISTOR AMPLIFIER CMASSIS Carr. I
2 inputs. 4
outputs separate volume treble and bass controls. Ideal inputs. outputs separate volume treble and bas
drsco or slave amplifier chassis. Made by Jennings
BLACK CARRYNG CABINET AVAlABLE

PW SOUND TO LIGHT DISPLAY

Complete kit of parts with R.C.S. printed crrcuit. Three 1.000 W channels As featured in Practical Wireless $\quad \mathrm{E14.00}$
CABINET extra £3.
GOODMANS CONE TWEETER

Price $\{3.25$
R.C.S. 100 WATT VALVE AMPLIFIER CHASSIS

Protessional model. Four inputs. Treble. Bass. Master volume Controls. Ldeal disco. P.A. or groups. S.A.E. for $\mathbf{C 9 4}$ order. Sutable carrying case $\mathrm{C16} \cdot 50$. plus $£ 2 \cdot 50 \mathrm{carr}$
order. Suntaber carying case cis.so.
LOW VOLTAGE ELECTROLYTICS
25V 20. $2.8 .8 .16 .25 .30,50,100,200 \mathrm{mF}{ }^{15 \mathrm{~V}} 10 \mathrm{p} .500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p}$;

R.C.S. LOW VOLTAGE STABILISED

POWER PACK KITS

All parts and instructions with Zener diode.
printed circuit rectifiers and double wound \quad \&2.95
mains transformer. input $200 / 240 \mathrm{~V}$ a.c. Output
voltages available 6 or 7.5 or 9 or $12 \mathrm{~V} \mathrm{d.c}$.Up
Size $3 \times 24 \times 1 \mathrm{tm}$. Please state voltage required.
R.C.S. POWER PACK KIT

12V. 750 mA . Complete with printed circuit
board and asmembly instructiona.
£3. 35
12 V 300 mA KIT. e3-15.
Post 30p
R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFER-BRITISH MADE $£ 1.45$
Ideal for Mike. Tape. P.U. Guitar Battery $9-12 \mathrm{~V}$ or H.T.T. IIne 200-300V d.c. Operation Size $1 \frac{17}{} \times 1 \neq 1 \times 1 \mathrm{n} .25 \mathrm{c} / \mathrm{s} 1025 \mathrm{kc} / \mathrm{s}$. 26 dB gain For
valve or tranaistor equipment. instructions supplied.

ELECTRO MAGNETIC
PENDULUM MECHANISM
95 p pou x.

1. 5 V d.c. operation over 300 hours continuous on Sp2 battery. fully adjustable swing and speed. Ideal displays. teaching electro
magnetism or for metronome, strobe. etc.

HEAVY METAL PLINTHS

Extre Large Pinth and Cover. For transcription decks. Size
$20 \times 97+\times 9$ in uncut board. Callers only $\mathbf{E 1 8} 18.50$.

BAKER HI-FI SPEAKERS
HIGH QUALITY-BRITISH MADE SUPERB £22
12in 25 watt Poat 51.80
Quality loudspeaker. Iow cone resonance ensures clear reproduction of the deepest
bass. Special copper drive and concentric tweeter cone Full range reproduction with remarkable efticiency in the upper register.
Bass Resonance
Usetul respon
16.500 geuss

AUDITORIUM
12in 35 watt
A full range reproducer for high power.
Electric Guitars, public address, multispeaker systems. electric organs. ldeal for Hi -Fi and Oiscotheques Bass Resonance
Flux Density Useful response or 16 onms modets. $15.000 \mathrm{gh} \mathrm{c} / \mathrm{s}$
$25-16.000 \mathrm{~cm}$
2 s

AUDITORIUM
£26
15in 45 watt
Post $£ 160$
OLANK ALUMINIUM CHAS8I8, 18 s.w.g. $2 \frac{1}{1 / n . ~ s i c e s, ~} 6 \times 4 \mathrm{in}$. $95 \mathrm{p} ;$
 ALUMINIUMPANEL.8, $188 \mathrm{siw.g.6} 6 \times 4 \ln 20 \mathrm{p} ; 8 \times 6 \mathrm{in} .40 \mathrm{p} ; 10 \times 7 \mathrm{in}$.
$50 \mathrm{p} ; 12 \times 5 \mathrm{in}$. $50 \mathrm{p} ; 12 \times 8 \mathrm{in} .50 \mathrm{p} ; 16 \times 6 \mathrm{in} .75 \mathrm{p} ; 14 \times 8 \mathrm{in} .80 \mathrm{p}$. $50 \mathrm{p} ; 12 \times 5 \mathrm{in} .50 \mathrm{p} ; 12 \times 8 \mathrm{in}$.
$12 \times 12 \mathrm{in} .80 \mathrm{p} ; 16 \times 10 \mathrm{in} .95 \mathrm{p}$.
ALUMINIUM ANGLE BRACKET, $6 \times i \times$ in, $15 p$
ALUMINIUM BOXES, MANY SIZES IN
STOCK.

THE '‘NSTANT' BULK TAPE
ERASER A HEAD DEMAGNETIRER
Suitable for cassentes, and all sizes of
tape reels. a.c. mains 200240 V .
tape reels. a.c. mains 200/240V.

RADIO COMPONENT SPECIALISTS 337 whitehorse road, croydon, u.k. Tel. 01-684 1665
 Minimum poot 30p. Acceas/Eurocerd and Barclaycard/Vien. seme day deapatch. Redio Books and Componente Liets 2ap. Open g-s wed. 9-1 sat. g-5 (Cloeed for lunch $1.15-2.30$)

SMALL ADS

The prepaid rate for classified advertisements is 18 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 6.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertismement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertiesment rate card snd on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the Gritish Code of Advertising Practice. 2. The publishers reserve the right to refuse or withdraw any advertisement.
2. Although every care is taken, the Publishers hall not be liable for clerical or printers. errors or their consequences.

RECEIVERS AND COMPONENTS

| TTL AT NEW LOW PRICES INCLUDING VAT! | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| All full spec. by famous manufacturers | | | | | |
| 7400 | 13p | 7460 | 15p | 74141 | 58 p |
| 7401/2/3 | 14p | 7472 | 22p | 74145 | 69 |
| 7404/5 | $16 p$ | 7473/4/6 | 27p | 74150 | ¢1.09 |
| 7406 | $32 p$ | 7475 | 43p | 74151 | 64 p |
| 7408 | 18p | 7480 | 38p | 74153 | 639 |
| 7410/20 | $14 p$ | 7483 | 70p | 74154 | ¢1.08 |
| 7411 | 18 p | 7484 | 90 p | 74155 | $67 p$ |
| 7412 | $26 p$ | 7485 | £1.00 | | p |
| 7413 | $30 p$ | 7486 | ${ }^{27}{ }^{27}$ | 74160 74164 | 750 ¢1.06 |
| 7414 | 64p | 7489 | £2.20 | 74164 | £1.06 |
| 7417 | $27 p$ | 7490/2/3 | 44; | 74174 | 94p |
| 7422 | 18p | 7491 | 58p | 74175 | $75 p$ |
| 7425/7 | 27p | 7495 | $60 p$ | 74181 | £2.56 |
| 7430 | 15p | 7496 | $73 p$ | 74190 | ¢1. 24 |
| 7432 | 24p | 74100 | 97 p | 74191 | ¢ 1.06 |
| 7437 | 27p | 74107 | $31 p$ | 74192/3 | £1.00 |
| 7440 | 14p | 74109 | 40p | 74195 | 67p |
| 7441 | $61 p$ | 74121 | 31 p | 74196 | 84 p |
| 7442 | 545 | 74122 | $40 p$ | IN4148 | 2 p |
| 7445/7/8 | 75p | 74123 | $53 p$ | DL707E | 698 |
| 7450/3/4 | 15p | 74125/6 | 44p | 2102A-6 | E2.50 |
| S.A.E. for full lists. P. \&. P. (1 st class) 20p. C.W.O.
 J. C. JONES (PE28) Moil Order only.
 6 Burstellars, Si. Ives, Cambs., PE174XX. | | | | | |
| | | | | | |

VALVES - Radio, TV, industrial, transmitting. We dispatch to any part of the world by return of post, Air or Sea Mail. 2,700 types in stock. 1930 to 1976 obsolete types a to S at $9.30-5.00$, closed Wed 1.00 . We purchase all types to Sat. $9.30-5.00$, closed Wed. 1.00 . We purchase all types of new and boxed valves. COX RADIO (Sussex) Ltd., 8BN. West Wittering 2023. (STD code 024366).
P.C.Bs Paxolin $9 \frac{1}{2} \ln \times 7 \ln , 50 p .12 \ln \times 9 \ln 70 p .17 \frac{1}{2} \ln$ $\times 9 \frac{1}{2} \ln , ~ E 1.15$. Fibre glass double sided 7In \times Bin 90p. $12 \mathrm{in} \times 6 \mathrm{in}, \mathrm{\Sigma 1}-20$. 1074 Series I.C.s on panel(s) 75p. Three assorted meters £2-40. T.V. Conver gence panels, full of good gear, £1.50. S/Mica caps 100 assorted 75p. 300 Small components, Trans Diodes £1.30. 7 lb Assorted components $£ 2.95$. Lis 15p. Refundable. Post 20p under $£ 1$. Insurance add 15p.
2 Barnfield Crescent, Sale, Cheshire, M33 INL

TRANSISTORS: BC107 8p, BC118 $11 p$, BC132 10p, BC2048 10p, BC3489p, BC351 10p, BO131 32p, BU205 f1.90 BU208 £2.10, WE1075 9p, TIP29 30p, XK1152 7p, 7×212 8p, $1 \times 5029 \mathrm{p}$.
DIODES: IS940 3p; BY126 10p, BY127 10p.
BRIDGE: IS BO5 (1 $\mathrm{A} / 50 \mathrm{~V}) 16 \mathrm{p}$.
LINEAR I.C.: M252 BI AA £6.00.
CAPACITOR: (Hixed Dielectric) $0.1 / 600 \mathrm{~V} 4 \mathrm{p}$.
WIRE WOUND RESISTORS: 0.5 ohms to 27 K 2.5 W Radial Lead 5p, 5W Radial Leod 6p, 10W Axial Lead 7p, 15w Rodial Leod 8p, 20W Rodial Leod 10p.
HORIZONTAL PRESET: I Megohm 0.25w 12p. MIN ORDER £3.
K \& A DISTRIBUTORS, 9 St. Peter's St, Syston Leics. MAIL ORDER ONLY. P \& P 25p.

LED's. Mixed bags of 4 different sizes and 4 different colours. 50 at $£ 5 \cdot 25,100$ at $\$ 9.25$ including VAT and post and packing. CWO. MICHAEL WILLIAMS FLBCTRONICS, 47 Vicarage Avenue, Cheadle Hulne, Cheshire SKy iJP.

ORCHARD ELECTRONICS

I,C.s. TTI. C/MOS. Linear. Capacitors. Resistors (El2). SIL/Rectifiers. Diodes. LED. Thyristors. Zeners, Voltage Reg. DIL Sockets. Bridge Rectifiers. Potentiometers. Presets. Triacs. Diac. Plugs. fiers. Potentiometers. Presets. Cable. Vero. Carefully selected range, excellent despatch service. Same day turn round. S.A.E. List. Suppliers to A.E.R.E. U.K.A.E.A. Government Depts. Schools. Universities. Government Depts. amateur. Join the professionals. Phone by $4 \mathrm{p} . \mathrm{m}$. Goods out ist class by 5 p.m. Try us and prove it! ORCHARD ELECTRONICS
Flint House, High Street, Wallingford, Oxon Telephone 0491-35529

TURN YOUR SURPLU8 capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO., 103 South Brink, Wisbech, ('inibs. Trel. 09454188. Immediate settlement.

BRAND NEW COMPONENTS BY RETURN

 Electrolytic Capacitors $16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}-0.47 .1 \cdot 0,8.2,4.7$ and $10 \mathrm{niF} 5 \mathrm{p} ; 22,4751 \mathrm{p}(50 \mathrm{~V} 8 \mathrm{p}) ; 1007 \mathrm{p}(50 \mathrm{~V} 8 \mathrm{p}) ; 2208 \mathrm{p}$ (50V$10 \mathrm{p}) ; 47011 \mathrm{p}(50 \mathrm{~V} 16 \mathrm{p}) ; 1,000(16 \mathrm{~V}) 15 \mathrm{p}, 1,000(25 \mathrm{~V}) 18 \mathrm{p}$, $10 \mathrm{p}) ; 47011 \mathrm{p}(50 \mathrm{~V} 16 \mathrm{p}) ; 1,000(16 \mathrm{~V}) 15 \mathrm{p}, 1,000(2 \overline{\mathrm{~V}}) 18 \mathrm{p}$.
$1,000(50 \mathrm{~V}) 2 \mathrm{p}$.
 and $100 / 3 \mathrm{~V} 15 \mathrm{p}$.
Mullard Min. Ceramic E12 Series 63V 2\%-10pF to 47 pF $3 \mathrm{p} ; 56 \mathrm{pF}$ to 330 pF 4 p .
Vertical Mounting Ceramic Plate 50 V
$1,000 \mathrm{p}$ and Ef Beries $1,000-47,000 \mathrm{pF}$ \&
,000 PF and Ef series 1,000-47,000pF \&p. 8eries -2Polytyrene E12 Serien 63V Ho
$1,000 \mathrm{pF}$ 3p; $1,200-10,00 \mathrm{pF} 4 \mathrm{p}$.
Mullard Polyester 250Y Vertical Mounting $\mathrm{E6}$ Series-0.01$0.14 p ; 0.15,0.225 p ; 0.33,0.478 p ; 0.6811 \mathrm{p} ; 1.013 p ; 1520 \mathrm{p}$;
${ }^{2}$ Mylar (Polyester) Film 100V Vertical Mounting-0.001, $0.002,0.0053 p ; 0.01,0.0244 p ; 0.04,0.054 \frac{1}{4} \mathrm{p}$. Miniature. Resiniors Highatab' E12 Series 5%. Carbon Filin
 to 10M 2 2p.
IN4148 Sp; $4 N 40025 p ; 1 N 40067 p ; 1 N 40078 p ; B C 107 / 8 / 9, ~$

Fuses 20 mm glass, 1 lin glass, 1 in ceramic $2 \frac{1}{2} p$.
Post 10 p
THE C,R, SUPPLY CO.
127 Chesterfield Road, Sheffield S8 ORM
L.B. ELECTRONICS, MJE3055 40p, BF195 9p, BC213 9p, BC 108C 10p, OCP70 16p, BXY49 38p, 1N4148 4p, 3.3V 24 V , zeners 5 p. 2102 (500 NS) + data $£ 1.50,8080 \mathrm{~A}$ £16, 1702A 17.50, CD4250 70p, 741 20p, 741 TO99 (DIL) 30p, $55545 \mathrm{p}, 74 \mathrm{HOO} 20 \mathrm{p}, 7$ way DIL switches 50 p , min push button switches (change over) $40 \mathrm{p}, 75450$ 38p, Fenwel Thermistors, pair potted + lead-plug 20p, PCB 1 wat amplifier LM 380 etc $£ 1.20$, ITT 5870 ST nixi + data 50 p Sperry SP425-09 (9 digit 7 seg) + data $£ 1,7476^{\circ \prime}$ (Red) £1.35, D.P.M. Display $4 \frac{1}{2}$ digit (LED) with bezel $£ 2.50$. P \& P 10p. L.B. ELECTRONICS, 43 Westacott, Hayes, Middx. UB4 8AH

SOLAR CELLS

$2.25^{\prime \prime}$ Dia. $250^{\circ} \mathrm{mW}$ at $0.5 \mathrm{~V}-£ 8.00$
$1.00^{\prime \prime}$, Dia. $\quad 35 \mathrm{~mW}$ at $0.5 \mathrm{~V}-\mathbf{6} 4.50$
$5.3 \times 6.3 \mathrm{~mm} 2.5 \mathrm{~mW}$ at 0.5 V - f 1.25
Cells are supplied with leads attached and are coated with varnish.

EDENCOMBE LIMITED

16 Princes Avenue, Kingsbury, Londan NW9 91B
luy NOW while stocks last. PRICES INCLUDE V.A. RESISTORS 1 W \$\% carbon film E24 range 10R.1M.
E12 serries pack $10 \mathrm{R}-1 \mathrm{M}, 10$ of eoch value (610 resistors)
 $\begin{array}{r}\mathbf{8} .9 .9 \\ \mathbf{~} 6.40 \\ \hline\end{array}$

NAIMS TRAMSFORMERS 240V Pri two separate secs each. 7 V at 500 mA . £1.30 each +35 p P \& P. Two for $22.4+5 \mathrm{~T}$. Bristol.

CHIPS AND THINGS

I.C.s at give-away prices! - you test you save!! Untested devices (NOT manufacturars rajerts, fallants atc

PACK E1 (80% guarantood good). $5 \times$ maM3 $0.127^{\prime \prime} 7$ segment LED disploys $\mathbb{E} 1.00$
PACK E2 (100% good). 1×8 digit (plus overflow) $0.33^{\prime \prime} 7$ sogment Liquid (rystol calculator style display $\mathbf{£ 2 . 9 5}$
PACK M1 (100% guaranteed good). $2 \times$ colculater keyboards $£ 1.00$ PACK DI (80% guaranteed good). $15 \times$ Logic I.C.s mainly dual J.K OTL lip.flops, compotible with TIL. could replace thes costy Tic flip-flops most projects. $£ 1.25$
PACK D2. $25 \times 5 \mathrm{x} 7400$ tye $1 . C . \mathrm{s}$. 100 twe i/p nand gates. We guarantea 50 good. $£ 1.25$
PACK 11 (marked and unmarted). $20 \times$ Asserted $0 p$-Amps. (ould includte LM301, 141, 709, 555 ttc. $£ 1.25$
PACK L2. $20 \times$ L.m709 Op.Amps. ((load TOS) $\mathbb{C} 1.50$
PACK M2 (Mo quaranters). So Minidip i.C.s for £1.00. Mostly unmarked. Wi don't know whet thay orte. (At 2p. aech can you go wrang?) Could be they are all O.K., but as thay're antesied - we don'l knem. For acks with no stoted guaranted minimum, wa'll guarantee il works oul much cheoper thon average mail order prites buying this way. Satisiaction

MAIL ORDER ONLY - NO CALLERS
CODESPEED, P.O. Box 23, 34 Sopfiaid Road, Copnor,
Portsmouth, Hants. P03 58J.

CARBON FILM RESISTORS 5% E12 $+\mathrm{W}, \frac{1}{4} \mathrm{~W}, \frac{1}{2} \mathrm{~W}$. Your mix, 90 p - 100. Metal Film $\frac{1}{2}$ W. £1.10-100. P\&P 15p. Mail Order Only. CANDAR, 9 Galloway Close, Bletchley.

AERIALS

| AERIALS FOR FM \& TV Types for all Bands I to V available. TV UHF | | | |
| :---: | :---: | :---: | :---: |
| Fuba XC 391 | E.38.90 | DX 87 Ch 21.60 | £22.75 |
| DX43 Ch21-68 | \$14.50 | Exa08 Panel Ch21-68 | f11.25 |
| FM | | | |
| Fuba Uka St. 8 | ¢33,33 | DX8-H | £22.75 |
| DX7-H $\quad \mathbf{1 9 . 0 0}$ DX5-H \quad ¢12.50 | | | |
| All above have anodised alloy finish. Cables, Rotators, Masts, | | | |
| Lashings, M/H Amps, Dist Amps etc., Carriage free mainland | | | |
| UK orders above $\mathbf{8 2 5}$. Carr. $\mathbf{5 1}$ Otherwise. Audio Workshops | | | |
| Ltd., 33 Londen Romd, Southborongh, Tunbridge Wells, Kent, TN4 0PB. Tel: Tun. Wells (0892) 39222. Access/Barclaycard. | | | |
| | | | |

SERVICE SHEETS

SERVICE SHEET8 for Radio, Tulevision, Tape Recorders, stereo ete. With free loult-finding guide, rom 50 p and $\mathrm{SA} . \mathrm{A} . \mathrm{E}$. Catalogue 25 p and s.A. T . hamilton radio, 47 hohemii Road, it. Leonards, sussex.
BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc. 75 p plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

AMATEUR CLUB

THE BRITISH AMATEUR ELECTRONICS CLUB for all interested in electronics. Four Newsletters a year with help and special offers for members. Major projects sponsored by the B.A.E.C. designed and made by members, currently the B.A.E.C. Z. 80 Computer. Membership fee for 1978 £3.50 UK. overseas $£ 4.50$ surface and $\mathbf{£ 5 . 5 0}$ airmail payable in sterling. S.A.E. for details and application form to the Hon. Sec. J. G. Margetts, 42 Old Vicarage Green, Keynsham, Bristol.

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, 'TV, Audio Eng. and Servicing, Electronics, Computers: also self-buld radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept: 272R, Intertext House, London SW8 4UJ.
Tel. 01-622 9911 (all hours)
State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 272R, Intertext House, London SW8 4UJ.
Tel. 01-622 9911 (all hours)
State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from

ICS SCHOOL OF ELECTRONICS
Dept. 272R, Intertext House, London SW8 4UJ. Tel. 01-622 9911 (all hours)

State if under 18

COUR8E8-RADIO AMATEURS EXAMINATION. (ity and Guilds. Pass this important examination, and obtain your G8 licence, with an RRC Home study course. For details of this, and other courses (GCE, Professional Fxaminations etc) write or phone THE RAPID RESULTS COLLEGE, Dept. J.S.1, Tuition House, London SW19 4DS. Tel. 01-947 7272 (Careers Advisory Service) or for a prospectus only ring $01-946$ 1102. (24 hr recording
service).

THEVISION TRAINING

12 MONTHS' full-time course in Radio and TV for beginners (GCE or equivalent-in Maths and English).
26 WEEKS' full-time course in Mono and Colour TV (basic electronics knowledge essential)
13 WEEKS' full-time course in Colour TV (Mono TV knowledge essential).

These courses incorporate a high percentage of practical training.

Next session starts on January 3rd.
Prospectus from London Electronics College, Dept. A1, 20 Penywern Road, London SW5 9SU. Telephone

01-3738721

ELECTRICAL

8TYLI, CARTRIDGE8, AUDIO LEAD8 ete. FOI keenest prices send S.A.E. for free list to: FELSTEAI) ELECTRONICS (PE), Longley Lame, Gatley ('headle, ('heshire, SK४'4EE.

WANTED

WANTED-NEW VALVE8, Transistors. Top Prices,
popular types. KENLNGTON SUPPLIES, (1i) $36 \overline{\mathbf{8}}$ Kensington strect, Bradford 8, Yorkshire

ORIGINAL OR COPY. Darkroom Timer Plan. P.E. January 1965. Potters Bar (0707) 54856.

RADIO TECHNICIANS

Government Communicatlons Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over.

Standards required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radlo and electronic test gear.
Duties cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.
Qualifications: Candidates must hold either the City and Guilds Telecommunications Part 1 (Intermediate) Certificate or equivalent HM Forces qualifications.
Salary scale from $£ 2,230$ at 19 to $£ 2,905$ at 25 (highest pay on entry) rising to $£ 3,385$ with opportunity for advancement to higher grades up to $£ 3,780$ with a few posts carrying still higher salaries. Pay supplements total between $£ 443$ and $£ 522$ per annum.
Annual leave allowance is 4 weeks rising to 6 weeks after 27 years service. Opportunities for service overseas.

Candidates must be UK residents.
Further particulars and application forms available from. Recruitment Officer, Government Communications Headquarters Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ Tel.: Cheltenham (0242) 21491 (Ext. 2270)

FOR 8ALE

NEW I88UE8 of "Practical Electronics" available from April 197. edition up to date. l'rice $65 p$ each. Post frce. IBELIS'S TELEVISIOA SliRVICLES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. (042:3) 55885.

Direct Drive Turntable Motors and Die dast Turntables. $£ 17.50$ incl. VAT. SAE for details Frequency Generator D.C. Servo Motors for Belt Drive Turntables. As used by many well known makers. $£ 3.50$ incl. VAT. SAE for details.
Selection of External Rotor A.C. Motors as used on top quality tape recorders. Spoofing motors and capstan motors from $£ 2.50$. SAE for details.
SYMOT LIMITED, 22a-Reading Road, Henley-on-Thames, Oxon RG9 1AG. (Tel. (04912) 2663).

SYMTHESISER in Cabinet. (Needs attention), 37 note K.B.D. and contacts + cab. Tel: Wolverhampton 732306.

P. E. MULTIMETER

P.C. BOARD SET $£ 2.65$ ine.

LDI $30-£ 5.50$ inc., Switch Set $£ 12.18$ Complete Kits $£ 42.50$. S.A.E. for details

SPARKS DEVELOPMENTS
53 North Street, Melbourne, Derby.

[^2] Tel: Glossop 4015

BOOKS AND PUBLICATIONS

8IMPLIFIED TV Reprairs. Full repair instructions individual British sets 84.50 , request free circuit diagram. stamp brings details unique. TV PCBLICATIOXS (Ausepe), ${ }^{6} 6$ church street, Larkhall, Lanarkshire.

MISCELLANEOUS

INVENTOR8. ' Pr rofit from Your Invention'.'.'sources of Finance and other assistance. Details: Large S.A.E. DELTA (PE), 15 St . Mary Street, Southampton, Hants.

MAKE YOUR OWN PRINTED CIRCUITS RUB-ON TRANSFERS - Starter pack (5 sheets, ines, pads, 1.C. pads) $£ 1.30$, Single Sheets 27 p. FERRIC CH'LORIDE - 1 lb bags 70 p (P. \& P. 40 p. $)^{*}$ SOLDERCON SOCKETS - 10065 p . (quantity rates). PLASTIC SUPPORTS - 7 or 8 hole $6 p$./pair.
 S.A.E. lists sample. P \& \& P. 15 p /order except*.
 P.K.G. ELECTRONICS
 OAK LODCEFTAHLEY, DERBYSHIRE

100 WATT GUITAR/PA/Music Ammoliflef superb cole bass overdrive slimline solidstater 12 month tarantee unbeatable offer at $£ 39$. Money returned if not absolutely delighted within 7 days. Send cheque or P.O. to: WILLIAMSON AMPLIFICAION, 62 Thorncliffe Avenue, Iukinfici, Cheshire.

NO LICENCE- EXAMS NEEDED

To operate this miniature, solid-state Trans mitter-Receiver Kit. Only $\mathbf{£ 9 . 7 5}$ plus 25p P. \& P
'Brain-Freeze' 'em with a MINI-STROBE Kit, pocket-sized 'lightning flashes', vari-speed, for discos and parties. A mere $£ \mathbf{£} \mathbf{3 0}$ plus 20 p P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIGEAR sound-catcher; ready-made multi-function modules. $£ 5$ each plus 20 p P. \& P.

LOTS MORE! Send 20 p for lists. Prices include VAT. (Mail order U.K. only).

BOFFIN PROJECTS

Cunliffe Road, Stoneleigh
Ewell, Surrey (P.E.)

100 Resistors 75p
10 each of any value. Send S.A.E. for free sample

C60 CASSETTES 30 p C9O CASSETTES 45p All prices include VAT Quantity Discounts 10 Units 5\% 50 Units 7\%
100 Units 10%

All Cassattes in Plastic Screwed Aasembly Add Postage 10 p In ct BALOP ELECTMONICs 23 WYLE COP SHAEWSBURY Tol. 53200 industry security, education etc. *Will work with most other CCTV, equipment. *Fully quaranteed. *Completely self-contained. With our with Vidicon £99. Less Vidicon £82.35. (Lens available as optional extra). SAE for info or phone your order through using your Barclay

CROFTON ELECTRONICS LIMITED
35 Grosvenor Road, Twickenham, Middlesex. 01 - 8911923

OUTSTANDING 2200 HI-FI FM TUNER. Full Coverage 88102 MHz . Varicap tuning. Latest silicon superhet design. Ideal for push button/manual tuning. Only $\mathbf{2 9 . 9 5}$. Unique 3300 stereo class A. amplifier, power 32 watts peak, complete stereo pre-amplifier, 2 power amplifiers, all inputs accepted. Only $£ 10.95$. 5500 Tuner amplifier, specification as above 2. Only $£ 19.95$. All equipment built, tested \& guaranteed with full instructions (P\&P 50p). GREGG ELECTRONICS, 86-88 Parchmore Road, Thornton Heath, Surrey.

DIRECT READING FREQUENCY METER

- Complete kit £29.50
* Lincar scale
- 6 ranges up to 100 KHz
. Accepts any waveform
* Easy to'cllibrate quartz standard supplied on loan.

Send S.A.E. for details to: James Cooper (Elec.) Ltd. 120 Caste Lanc, Solihull, Warwickahire.

HIGH EMERGY LITHIUM BATTERIES outperform conventional dry cells for less volume and weight. - Remarkable voltage stability, long shelf life. S.A.E. for details: HIRST JACOBSON LTD., 91 Marylebone High Street, London W.I.

THE FABULOUS D2 MICROPROCESSOR EVALUATION KIT FROM MOTOROLA.

Featuring *24 key keyboard *Seven segment display *Cassette interface *Erom \& Ram Expandable *Interface Capability *Full Documentation * 5 Volt power supply Required *One years FREE membership of The Amateur Computer Club with every purchase ${ }^{*}$. $£ 1.76+$ £1.50 P \& P + 8\% VAT.

ENAMELLED COPPER WIRE

| swG | 1.16 | 8 oz | 4oz | $\mathbf{2}$ oz |
| :--- | :--- | :--- | :--- | :--- |
| $14 .-19$ | 2.60 | 1.40 | .66 | .55 |
| 20.29 | 2.80 | 1.60 | .85 | .65 |
| 30.34 | 3.00 | 1.70 | .95 | .70 |
| $35-40$ | 3.35 | 1.90 | 1.10 | .79 |
| 40.43 | 4.50 | 2.50 | 1.90 | 1.25 |
| 44.46 | 5.00 | 3.00 | 2.10 | 1.63 |
| 47 | 8.00 | 5.00 | 3.00 | 1.76 |
| 48 | 15.00 | 9.00 | 6.00 | 3.30 |

Tinned Copper, Even Gauges $14-30 £ 3$ per lb. Multicore $60 / 40$ Solder 18 SWG $£ 3.24$ per lb. Prices include P \& P and VAT.
SAE brings list of copper and resistance Wires.

THE SCIENTIFIC WIRE COMPANY
 PO Box 30 London E.4.

Reg. Office, 22 Coningsby Gdns.

[^3]CLEARING LABORATORY. Scopes, recorders, tustmeters, bridges, audio, IR.F. generators, turntables, tapeheads, stabilisel P.S.E.s, sweep genera tors, test elpuipment, etc. Tpl. Jower Beeding 236.

CABINET FITTINGS FOR
 Stage Loudspeakers and Amplifier Cabs

 Fretcloths, Coverings, Strap \& Recess Handles, Feet, Castors, Jacks \& Sockets, Cannons, Bulgin 8 ways, Reverb Trays, Locks \& Hinges, Cornars, Trim, Speaker Solts etc.Send $2 \times 9 p$ Stamps for samples and list.
ADAM HALL (P.E. SUPPLIES)
Unit Q, Starline Works, Grainger Road

AMPEX FR1200 24 track instrumentation recorder, six speed, solid state, inc. tapes etc. Ideal for use with microprocessor or conversion to Audio. $£ 400$. Dursley 3768.

DEWTRON SYNTHESIZER Modules for sale, VCO's, P-V, SEQ etc. Mostly unused. Dursley 3768.

SINTEL FOR BOOKS, CMOS AND COMPONENTS
6800 Booklet 1.80, MOT CMOS Databk 3.50, 6800 Appl Man 12.95, 6800 Prog Man 5.35, SC/MP Intrakit Man 0.75 NS TTL Databk 2.10, RCA CMOS' Databk 5.45, 8085 User's Man 5.15, 780 Ass lang Prog Man 7.50, 280 CPU Man 5.60 , Z80 CTC Spec 0.80, 280 P10 Man 3.30. Also a full range of CMOS - send for froe catalogue. MPUs: MEK6800D2 205.20, MC6820 8.66, 280 30.72, 280A 39.94, Z80CTC 13.82, 280P10 13.82, Memories: 2102-A 2.55, 2112A-4 3.13. Displays: Type FND 500 C.C. 1.40 , Type TII 321 C.A. 1.61, 51 TO1 5.29. Crystals: 32.788 KHz $3.78,5.12 \mathrm{MHz} 3.89$. Clock ICs: AY51202 4.35, AY5 1224 3.78, MK50253 6.05. Soldercan Pins: $1000.54,1000$ 4.32, 300011.34 . Free catalogue by refurn. All iterns
CWO. Prices inclusive of VAT. Add 35 p p\&p. SINTEL, P.O. Box 758, 209 Cowley Rood, Oxford. Tel. (0865) 49791 4

SUPERB INBTRUMENT CASES BY BAZELL, manufactured from P.V.C. faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low $90 p$, chassis punching facilities at very competitive prices. 400 models to choose from, free literature (stamp would be appreciated). BAZELLI, Dept. No. 23, St. Wilfrid's, Foundry Lane, Halton, Lancaster I.A2 6LT.

LOW COST BOXES, Instrument cases, aluminium, self tapping screws, BA nuts bolts and washers. Send a stamped self addressed envelope for pamphlet to HARRISON BROS. P.O. Box 55, Westcliffe-on-Sea, Essex SSO 7LQ.

BURGLAR ALARM equipment, safes, trade supplies. ASTHO-ALARMS, 25 Stockton Rd., Sunderland. Tyne and Wear. Tel.: 77825. Free list S.A.H.

PRINTED CIRCUITS

 and HARDW AREReadily available supplies of Constructors' hardware. Printed circuit boards, top quality for individual designs. Prompt service. Send 25 p for catologue. From:

RAMAR CONSTRUCTOR SERVICES, Masons Road, Stratford Upon Avon, Warwicks. Tel. 4879.

PRINTED CIRCUIT BOARDS supplied in glass fibre, drilled, tinned or varnished, from your own or published designs. Send S.A.E. for quotations. UNIVERSAL APPLICATIONS, 12 Whiteoaks Road, Oadby, Leicester.

LADDERS

LADDER8, Varnished $25 \frac{1}{2} \mathrm{ft}$ extd. $830 \cdot 41$. Carr. $£ 1 \cdot 90$. J,eaffet. Immed. despatch. THE LADDER CENTRE (PEE3), Halesfield (1), Telford, Salop. Tel. 586644.

NOTICE TO READERS
Whilst prices of goods shown in classified advertisements are correct at the thime of closing for press, readers are advised to check with ihe adveriser bort prices and quailability of
goods before ordering from non-cu r rent issues of the magazine.

PLEASE MENTION PRACTICAL ELECTRONICS

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace tbat suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.'

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work

Mail Order Protection Scheme

The Publishers of Practical Electronics are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.
In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Elecironics with in three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged affer this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order adventisers with the fullest confidence. For the purpose of this scheme, mail order advertising is defined as-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail order advertising are excluded.

ACE MAIITRONIXITD
Dept.PE Tootal Street
Wakefied W. Workshive WFI 5. An

Get en ACEup uoun slesu!

Also MPT Radio Communications Certificate

Diploma Courses

Colour T.V. Servicing
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio. T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE.

| | | |
| :---: | :---: | :---: |
| Ace Mailtronix Ltd. 383 | E.D.A. .. 315 | Phonosonics 318, 319 |
| Adam Hall (P.E. Supplies) 382 | Edencombe Ltd 380 | Pinner Electronics 374 |
| Advanced Electromusic Applications 370° | Electronic Brokers 365 | Progressive Radio 364 |
| Aitken Bros. 378 | Electrovalue Ltd 370 | Proto Design 382 |
| Alben Engineering 306 | | |
| Alcon Instruments 311 | Fraser-Manning Ltd........................... 380 | Radio Component Specialists 379 |
| Ametek .. 310 | | Radio and T.V. Components 338 |
| Astra-Pak 338 | Government Communications | Ramar Constructor Service 382 |
| Audio Workshops Ltd . 380 | Headquarters... 374 | R.S.T. Valve Mail Order 378 |
| Bamber B. Electronics 376 | | Salop Electronics 382 |
| Bandridge Ltd 320 | H. M. Electronics 382 | Saxon Entertainments 314, 315 |
| Baron .. 378 | Harversons 372 | Scientific Wire Co............................. 382 |
| Barrie Electronics 308 | Heathkit Ltd 375 | Sentinel Supply 319 |
| Bib Hi-Fi 370 | Home Radio 372 | Service Trading Co.......................cover iii |
| Bi-Pak................................... 316, 317 | | Sintel Limited 382 |
| Birkett J 376 | I.C.S. Intertext 381,383 | Sparks Developments....................... 381 |
| Boffin Projects 381 | I.L.P. Electronics 363, 377 | S.S.T. Distributors 319 |
| Brewster S \& R 312 | | Stirling Sound................................ 307 |
| British National Radio \& Electronics | J. C. Jones 380 | Sugden A. R. 308 |
| School 313, 365 | J. W. B. Radio 380 | Swanley Electronics 364 |
| Butterworths.................................. 306 | James Cooper (Electronics) Ltd.............. 382 | Symot Limited 381 |
| Cambridge Learning. 311 | K \& A Distributors . 380 | Tamba Electronics 368 |
| Chromatronics 367 | London Electronics College 381 | Technomatic Ltd. 312, 384 |
| Clef Products 338 | Lynx Electronics 375 | Tempus 374 |
| Component Centre, The 310 | | Tirro Electronics 376 |
| Computabits Ltd 374 | Maplin Electronic Suppliescover iv | T.K. Electronics 380 |
| Continental Specialties 337 | Marshall A. \& Sons 369 | Trampus Electronics Ltd 365 |
| Codespeed 380 | Microsystems '78 373 | T.U.A.C. 309 |
| Copper Supplies 381 | Minikits Electronics 382 | |
| Crescent Radio Ltd 312 | Modern Book Co. 364 | Vero Electronics 383 |
| Crimson Elektrik 310 | | |
| Crofton Electronics \qquad 368, 382
 C. R. Supply Co. \qquad | Orchard Electronics 380
 Osmabet.. 364 | Watford Electronics cover ii |
| C. R. Supply Co. 380 | | West London Direct Supplies
 Wilmslow Audio \qquad |
| Dziubas M. $306^{\text { }}$ | P.K.G. Electronics 381 | Wlimslow Audio 31 |
| Eaton Audio 370 | Phoenix Electronics Ltd 368 | Xeroza Radio 372 |

| RELAYS ${ }_{\text {L MINIA }}^{\text {SIEME }}$ | | GEARED MOTORS 100 r.p.m. $115 \mathrm{lb} . \mathrm{Im} .110 \mathrm{~V}, 50 \mathrm{~Hz} 28 \mathrm{~A}$ tmmense power Continuously rated Tally encosed Fan cooled gearbox 140 ngth Ex0mm. Dia. 135 mm . Spindie dia 15 mm inc VAT \& P.) Sultable transtormer 230/240V operation [8Post 75 p (59.45 inc VAT $\&$ P)\qquad |
| :---: | :---: | :---: |
| | | |
| | | |
| | | CITENCO
 FHP motor type C 7333/15 220/240V a.c. 19 r.p.mp reversible motor torque 145 kg gear ratio l44-1 Brand new incl capacitors, our price £14.25.P \& P \& 125 (E16. 20 inc VAT \& P) |
| | | |
| Post 50p per unit ${ }^{80}$ | L.T. TRANSFORMERS

 0 -aV 6V 24V 32V at 12 amp. E13. P \& P P \& 50 (E15 66 inc

 nc VAT \& P . $0-6 \mathrm{~V}$ t2V at 20 amp . $811.85 . \mathrm{P}$ \& P £1 (£13.88 inc VAT \& Other types in stock-phone your enau ries. | BODINE TYPE N.C.I.
 GEARED MOTOR

 The above precislon riade us A
 input voltage of moior 115 V a c Supplied complete with

 Reversible 56 . 50 . Post 75 (Ex. 83 inc VAT \& P |
| | | |
| NEW HEAVY DUTY SOLENOID. mig by Magnepic Devices 240 V a.coperallon approx 2010 pull at 125 in operalion approx 201 b pull at 25 inPrices 7 . P \& 75 p Similar to above approx 1016 pull 53.50 . P \& P 60p appearance 10 illusiration Approx 1stb pull Size of teel 1i it in Price £1. $P \& P 25 D$ | | |
| | | FRACMO
 56 pm. 50 on 240 V a.c. $50 \mathrm{~Hz}, 0.7$ weignt 6 kilos 600 grammes. Price $\varepsilon 15.00$ \& \& E E150 〔17. \qquad |
| | | |
| | HY-LIGHT STROBE KIT MK IV Latest lype Xenon white light tlash tube. Solid state and priggering cipcuit 230240 V ac operation rooms nalls etc Speed so called 4 Joule) strobes Price $£ 18$. Post $£ 1$ ($£ 20$. 56
 | 15 R.P.M.
 Type SO 48 BOIb in input $100,110 \mathrm{VAC}$ Lengit incl gearbox 270mm Height 135 mm Wiath 150 mm Drive shatt 16 mm

 |
| ${ }_{4}{ }^{4}$ | | |
| $\begin{aligned} & \text { MINTA } \\ & 12 \text { 2 yor } 10 \\ & \hline \end{aligned}$ | | A.E.G. WATER PUMP
 centritugal purnp with is inlet and galions per min at toft head Ideal non-corrosive light viscosily labs. Dozens this pu
 |
| TYPE O-60 sed a a ased proces press | XENON FLASHGUN TUBES
 Range avalable from slock SAE for detalis | |
| | FLUORESCENT TUBES

 | PROGRAMME TIMERS 12 cam model 58.74. Post 60p Also above |
| MICRO SWITCHES

 | | |
| | | |
| | GALVANOMETER
 Sa micro mirror galvo Callibraed 50-0-50 and $0-100$ Mto gy Gritin 8 George
 | WHY PAY MORE?
 MULTI RANGE METEA Type MF15A a

 (E7) 56 inc VAT \& P P) |
| | EQUIPMENT
 SAE (foolscap) for details | ime Switch
 Tenner Type ERD Timeswitch 200/250V a.c. 2 on/2 overy 24 hrs. at any manually pre-set time. 36 highest Electricity Board specification. Price . 50 P. \& P. 75 p . (19.18). |
| | CONTACTOR

 at s40V a Price 56 P 8 P 75020 amp | |
| | | |
| | RESET COUNTER | |
| | | |
| | | |
| INSULATION TESTERS NEW! Test to $\mathrm{E} E$ Spec Rugged metal constive

 p SAE for leatiet | a.c Price $£ 2 . P$ \& P. 20 p ($£ 2.37$ inc. VAT \& P.) 4 for $£ 5$ pos! paid ($\$ 5.40$ inc VAT \& P.
 VAT
 AT CURRENT RATE MUST BE ADDED TO ALL ORDERS FOR THE | |
| All Mail Orders--Callers-Ample Parking
 Dept. PE11, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560
 Snowroom open Mon-Fri | AT CURRENT RATE MUST BE ADDED TO ALL ORDERS FOR THE TOTAL VALUE OF GOODS INCLUDING POSTAGE UNLESS OTHERWISE STATED
 SERVICE | 9 LITTLE NEWPORT STREE LONDON WC2H 7JJ Phone 01-437 0576 |

Niflella
 in a modern world of electronics

AUDIO MIXER

A superb stereo audio mixer. It can be equipped with up to 16 inpat modules of your choice and its performance matches that of the very best tape recorders and hi-fi equip ment. It meets the requirements of professional recording studios, FM radio stations, concert halls and theatres. Full construction detalls in our catalogue, A component schedule is available on request

STEREO 10 CHANNEL GRAPHIC EQUALISER A new design with no difficult coils to wind, but a specification that puts it in the top flight hi-fi class. All this for less than £70 including fully punched and printed metalwork and woodwork. Send for our component schedule now. Full construction details price 40p.

PEDAL UNIT

A completely self-contained pedal unit. 13-note, 2-Octave range. 4 organ stops. It can be added to any organ. A really unusual extra is the bass guitar stop which uses four envelope shapers to give a real bass guitar sound. A must for the solo guitarist. Full construction details in our catalogue-post

[^0]: (C) IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: To CHROMATRONICS, River Way, Harlow, Essex, U.K.

 Please send \square Chroma-Chime Kits at $£ 18-00$ each
 including VAT and post and packing
 PLEASE USE BLOCK CAPITALS
 Name
 Address

 enclose cheque/PO value $£$
 or debit my ACCESS/BARCLAYCARD account No.

 Signature
 N.B. The CHROMA CHIME is also available, fully assembled, price $£ 24.95$ inc VAT and post and packing

[^2]: COMPLETE SET OF PRACTICAL ELECTRONICS from Vol. 1 No. 1 (Nov. 64) to date. Offers Box. No. 72.

 MICROPROCESSOR KIT (SC/MP Introkit \& Keyboard Kit). New, unopened. Details in Nov, 76 PE. Offers -

[^3]: GLASS FIBRE P.C.B.'s
 From your own tape, film or ink master. Send S.A.E. for
 quotation. drilled. Complete set of Rodio Control boards, June to Aug. $76 £ 5.80$ p. Cross Hatch Generalor $£ 2.85 \mathrm{p}$;
 May 77 Burglar Alarm (1305-1) $\mathrm{E1.68}$. June 77 Sports Centre (1306-1) and power supply p.c.b. £2.66. July 77 Digital Stopwatch (1307-1) f1. Oscilloscope trace doubler 95p. Earth Leakage C.B. (1307-2) £1.96p. Aug. 77 C/R Meter (1308-1) 97p. Sept. 77 Freq. Counter Timer ($1309-2 / 3$) £3.98 set of two boards. Scope Probe (1309-1) 56p. Oct. 77 Digital Multimeter ($140 \mathrm{l}-1 / 2$) $\mathbf{f} 3.15$, set of two boards. Guitar Sustain (1410-3) 55p.
 Send S.A.E. for information on current boards and a full list. C.W.O. pleose.

 PROTO DESIGN
 4 Highcliffe Way, Wickford, Essex SSII BLA

